Skip to content

Latest commit

 

History

History
220 lines (177 loc) · 5.65 KB

File metadata and controls

220 lines (177 loc) · 5.65 KB
comments difficulty edit_url rating source tags
true
Medium
1407
Weekly Contest 127 Q2
Stack
Math
Simulation

中文文档

Description

The factorial of a positive integer n is the product of all positive integers less than or equal to n.

  • For example, factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1.

We make a clumsy factorial using the integers in decreasing order by swapping out the multiply operations for a fixed rotation of operations with multiply '*', divide '/', add '+', and subtract '-' in this order.

  • For example, clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1.

However, these operations are still applied using the usual order of operations of arithmetic. We do all multiplication and division steps before any addition or subtraction steps, and multiplication and division steps are processed left to right.

Additionally, the division that we use is floor division such that 10 * 9 / 8 = 90 / 8 = 11.

Given an integer n, return the clumsy factorial of n.

 

Example 1:

Input: n = 4
Output: 7
Explanation: 7 = 4 * 3 / 2 + 1

Example 2:

Input: n = 10
Output: 12
Explanation: 12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1

 

Constraints:

  • 1 <= n <= 104

Solutions

Solution 1: Stack + Simulation

The calculation process of clumsy factorial can be seen as a simulation of a stack.

We define a stack stk, initially we push $n$ into the stack, and define a variable $k$ to represent the current operator, initially $k = 0$.

Then we start from $n-1$, enumerate $x$, and decide how to handle $x$ based on the current value of $k$:

  • When $k = 0$, it represents a multiplication operation, we pop the top element of the stack, multiply it by $x$, and then push it back into the stack;
  • When $k = 1$, it represents a division operation, we pop the top element of the stack, divide it by $x$, take the integer part, and then push it back into the stack;
  • When $k = 2$, it represents an addition operation, we directly push $x$ into the stack;
  • When $k = 3$, it represents a subtraction operation, we push $-x$ into the stack.

Next, we update $k = (k + 1) \mod 4$.

Finally, the sum of the elements in the stack is the answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the integer $N$ given in the problem.

Python3

class Solution:
    def clumsy(self, n: int) -> int:
        k = 0
        stk = [n]
        for x in range(n - 1, 0, -1):
            if k == 0:
                stk.append(stk.pop() * x)
            elif k == 1:
                stk.append(int(stk.pop() / x))
            elif k == 2:
                stk.append(x)
            else:
                stk.append(-x)
            k = (k + 1) % 4
        return sum(stk)

Java

class Solution {
    public int clumsy(int n) {
        Deque<Integer> stk = new ArrayDeque<>();
        stk.push(n);
        int k = 0;
        for (int x = n - 1; x > 0; --x) {
            if (k == 0) {
                stk.push(stk.pop() * x);
            } else if (k == 1) {
                stk.push(stk.pop() / x);
            } else if (k == 2) {
                stk.push(x);
            } else {
                stk.push(-x);
            }
            k = (k + 1) % 4;
        }
        return stk.stream().mapToInt(Integer::intValue).sum();
    }
}

C++

class Solution {
public:
    int clumsy(int n) {
        stack<int> stk;
        stk.push(n);
        int k = 0;
        for (int x = n - 1; x; --x) {
            if (k == 0) {
                stk.top() *= x;
            } else if (k == 1) {
                stk.top() /= x;
            } else if (k == 2) {
                stk.push(x);
            } else {
                stk.push(-x);
            }
            k = (k + 1) % 4;
        }
        int ans = 0;
        while (!stk.empty()) {
            ans += stk.top();
            stk.pop();
        }
        return ans;
    }
};

Go

func clumsy(n int) (ans int) {
	stk := []int{n}
	k := 0
	for x := n - 1; x > 0; x-- {
		switch k {
		case 0:
			stk[len(stk)-1] *= x
		case 1:
			stk[len(stk)-1] /= x
		case 2:
			stk = append(stk, x)
		case 3:
			stk = append(stk, -x)
		}
		k = (k + 1) % 4
	}
	for _, x := range stk {
		ans += x
	}
	return
}

TypeScript

function clumsy(n: number): number {
    const stk: number[] = [n];
    let k = 0;
    for (let x = n - 1; x; --x) {
        if (k === 0) {
            stk.push(stk.pop()! * x);
        } else if (k === 1) {
            stk.push((stk.pop()! / x) | 0);
        } else if (k === 2) {
            stk.push(x);
        } else {
            stk.push(-x);
        }
        k = (k + 1) % 4;
    }
    return stk.reduce((acc, cur) => acc + cur, 0);
}