Skip to content

Latest commit

 

History

History
381 lines (331 loc) · 10.4 KB

File metadata and controls

381 lines (331 loc) · 10.4 KB
comments difficulty edit_url tags
true
中等
广度优先搜索
数组
矩阵

English Version

题目描述

在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一:

  • 值 0 代表空单元格;
  • 值 1 代表新鲜橘子;
  • 值 2 代表腐烂的橘子。

每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。

返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1 。

 

示例 1:

输入:grid = [[2,1,1],[1,1,0],[0,1,1]]
输出:4

示例 2:

输入:grid = [[2,1,1],[0,1,1],[1,0,1]]
输出:-1
解释:左下角的橘子(第 2 行, 第 0 列)永远不会腐烂,因为腐烂只会发生在 4 个方向上。

示例 3:

输入:grid = [[0,2]]
输出:0
解释:因为 0 分钟时已经没有新鲜橘子了,所以答案就是 0 。

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] 仅为 01 或 2

解法

方法一:BFS

我们首先遍历一遍整个网格,统计出新鲜橘子的数量,记为 $\textit{cnt}$,并且将所有腐烂的橘子的坐标加入队列 $q$ 中。

接下来,我们进行广度优先搜索,每一轮搜索,我们将队列中的所有腐烂的橘子向四个方向腐烂新鲜橘子,直到队列为空或者新鲜橘子的数量为 $0$ 为止。

最后,如果新鲜橘子的数量为 $0$,则返回当前的轮数,否则返回 $-1$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是网格的行数和列数。

Python3

class Solution:
    def orangesRotting(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        cnt = 0
        q = deque()
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x == 2:
                    q.append((i, j))
                elif x == 1:
                    cnt += 1
        ans = 0
        dirs = (-1, 0, 1, 0, -1)
        while q and cnt:
            ans += 1
            for _ in range(len(q)):
                i, j = q.popleft()
                for a, b in pairwise(dirs):
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
                        grid[x][y] = 2
                        q.append((x, y))
                        cnt -= 1
                        if cnt == 0:
                            return ans
        return -1 if cnt else 0

Java

class Solution {
    public int orangesRotting(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        Deque<int[]> q = new ArrayDeque<>();
        int cnt = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    ++cnt;
                } else if (grid[i][j] == 2) {
                    q.offer(new int[] {i, j});
                }
            }
        }
        final int[] dirs = {-1, 0, 1, 0, -1};
        for (int ans = 1; !q.isEmpty() && cnt > 0; ++ans) {
            for (int k = q.size(); k > 0; --k) {
                var p = q.poll();
                for (int d = 0; d < 4; ++d) {
                    int x = p[0] + dirs[d], y = p[1] + dirs[d + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                        grid[x][y] = 2;
                        q.offer(new int[] {x, y});
                        if (--cnt == 0) {
                            return ans;
                        }
                    }
                }
            }
        }
        return cnt > 0 ? -1 : 0;
    }
}

C++

class Solution {
public:
    int orangesRotting(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        queue<pair<int, int>> q;
        int cnt = 0;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    ++cnt;
                } else if (grid[i][j] == 2) {
                    q.emplace(i, j);
                }
            }
        }
        const int dirs[5] = {-1, 0, 1, 0, -1};
        for (int ans = 1; q.size() && cnt; ++ans) {
            for (int k = q.size(); k; --k) {
                auto [i, j] = q.front();
                q.pop();
                for (int d = 0; d < 4; ++d) {
                    int x = i + dirs[d], y = j + dirs[d + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                        grid[x][y] = 2;
                        q.emplace(x, y);
                        if (--cnt == 0) {
                            return ans;
                        }
                    }
                }
            }
        }
        return cnt > 0 ? -1 : 0;
    }
};

Go

func orangesRotting(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	q := [][2]int{}
	cnt := 0
	for i, row := range grid {
		for j, x := range row {
			if x == 1 {
				cnt++
			} else if x == 2 {
				q = append(q, [2]int{i, j})
			}
		}
	}
	dirs := [5]int{-1, 0, 1, 0, -1}
	for ans := 1; len(q) > 0 && cnt > 0; ans++ {
		for k := len(q); k > 0; k-- {
			p := q[0]
			q = q[1:]
			for d := 0; d < 4; d++ {
				x, y := p[0]+dirs[d], p[1]+dirs[d+1]
				if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 {
					grid[x][y] = 2
					q = append(q, [2]int{x, y})
					if cnt--; cnt == 0 {
						return ans
					}
				}
			}
		}
	}
	if cnt > 0 {
		return -1
	}
	return 0
}

TypeScript

function orangesRotting(grid: number[][]): number {
    const m: number = grid.length;
    const n: number = grid[0].length;
    const q: number[][] = [];
    let cnt: number = 0;
    for (let i: number = 0; i < m; ++i) {
        for (let j: number = 0; j < n; ++j) {
            if (grid[i][j] === 1) {
                cnt++;
            } else if (grid[i][j] === 2) {
                q.push([i, j]);
            }
        }
    }
    const dirs: number[] = [-1, 0, 1, 0, -1];
    for (let ans = 1; q.length && cnt; ++ans) {
        const t: number[][] = [];
        for (const [i, j] of q) {
            for (let d = 0; d < 4; ++d) {
                const [x, y] = [i + dirs[d], j + dirs[d + 1]];
                if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] === 1) {
                    grid[x][y] = 2;
                    t.push([x, y]);
                    if (--cnt === 0) {
                        return ans;
                    }
                }
            }
        }
        q.splice(0, q.length, ...t);
    }
    return cnt > 0 ? -1 : 0;
}

Rust

use std::collections::VecDeque;

impl Solution {
    pub fn oranges_rotting(mut grid: Vec<Vec<i32>>) -> i32 {
        let m = grid.len();
        let n = grid[0].len();
        let mut q = VecDeque::new();
        let mut cnt = 0;
        for i in 0..m {
            for j in 0..n {
                if grid[i][j] == 1 {
                    cnt += 1;
                } else if grid[i][j] == 2 {
                    q.push_back((i, j));
                }
            }
        }

        let dirs = [-1, 0, 1, 0, -1];
        for ans in 1.. {
            if q.is_empty() || cnt == 0 {
                break;
            }
            let mut size = q.len();
            for _ in 0..size {
                let (x, y) = q.pop_front().unwrap();
                for d in 0..4 {
                    let nx = x as isize + dirs[d] as isize;
                    let ny = y as isize + dirs[d + 1] as isize;
                    if nx >= 0 && nx < m as isize && ny >= 0 && ny < n as isize {
                        let nx = nx as usize;
                        let ny = ny as usize;
                        if grid[nx][ny] == 1 {
                            grid[nx][ny] = 2;
                            q.push_back((nx, ny));
                            cnt -= 1;
                            if cnt == 0 {
                                return ans;
                            }
                        }
                    }
                }
            }
        }
        if cnt > 0 {
            -1
        } else {
            0
        }
    }
}

JavaScript

/**
 * @param {number[][]} grid
 * @return {number}
 */
var orangesRotting = function (grid) {
    const m = grid.length;
    const n = grid[0].length;
    let q = [];
    let cnt = 0;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (grid[i][j] === 1) {
                cnt++;
            } else if (grid[i][j] === 2) {
                q.push([i, j]);
            }
        }
    }

    const dirs = [-1, 0, 1, 0, -1];
    for (let ans = 1; q.length && cnt; ++ans) {
        let t = [];
        for (const [i, j] of q) {
            for (let d = 0; d < 4; ++d) {
                const x = i + dirs[d];
                const y = j + dirs[d + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] === 1) {
                    grid[x][y] = 2;
                    t.push([x, y]);
                    if (--cnt === 0) {
                        return ans;
                    }
                }
            }
        }
        q = [...t];
    }

    return cnt > 0 ? -1 : 0;
};