comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Medium |
|
Given an integer array nums
and an integer k
, return the number of non-empty subarrays that have a sum divisible by k
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [4,5,0,-2,-3,1], k = 5 Output: 7 Explanation: There are 7 subarrays with a sum divisible by k = 5: [4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Example 2:
Input: nums = [5], k = 9 Output: 0
Constraints:
1 <= nums.length <= 3 * 104
-104 <= nums[i] <= 104
2 <= k <= 104
-
Key Insight:
- If there exist indices
$i$ and$j$ such that$i \leq j$ , and the sum of the subarray$nums[i, ..., j]$ is divisible by$k$ , then$(s_j - s_i) \bmod k = 0$ , this implies:$s_j \bmod k = s_i \bmod k$ - We can use a hash table to count the occurrences of prefix sums modulo
$k$ to efficiently check for subarrays satisfying the condition.
- If there exist indices
-
Prefix Sum Modulo:
- Use a hash table
$cnt$ to count occurrences of each prefix sum modulo$k$ . -
$cnt[i]$ represents the number of prefix sums with modulo$k$ equal to$i$ . - Initialize
$cnt[0] = 1$ to account for subarrays directly divisible by$k$ .
- Use a hash table
-
Algorithm:
- Let a variable
$s$ represent the running prefix sum, starting with$s = 0$ . - Traverse the array
$nums$ from left to right.- For each element
$x$ :- Compute
$s = (s + x) \bmod k$ . - Update the result:
$ans += cnt[s]$ . - Increment
$cnt[s]$ by$1$ .
- Compute
- For each element
- Return the result
$ans$ .
- Let a variable
Note: if
$s$ is negative, adjust it to be non-negative by adding$k$ and taking modulo$k$ again.
The time complexity is
class Solution:
def subarraysDivByK(self, nums: List[int], k: int) -> int:
cnt = Counter({0: 1})
ans = s = 0
for x in nums:
s = (s + x) % k
ans += cnt[s]
cnt[s] += 1
return ans
class Solution {
public int subarraysDivByK(int[] nums, int k) {
Map<Integer, Integer> cnt = new HashMap<>();
cnt.put(0, 1);
int ans = 0, s = 0;
for (int x : nums) {
s = ((s + x) % k + k) % k;
ans += cnt.getOrDefault(s, 0);
cnt.merge(s, 1, Integer::sum);
}
return ans;
}
}
class Solution {
public:
int subarraysDivByK(vector<int>& nums, int k) {
unordered_map<int, int> cnt{{0, 1}};
int ans = 0, s = 0;
for (int& x : nums) {
s = ((s + x) % k + k) % k;
ans += cnt[s]++;
}
return ans;
}
};
func subarraysDivByK(nums []int, k int) (ans int) {
cnt := map[int]int{0: 1}
s := 0
for _, x := range nums {
s = ((s+x)%k + k) % k
ans += cnt[s]
cnt[s]++
}
return
}
function subarraysDivByK(nums: number[], k: number): number {
const counter = new Map();
counter.set(0, 1);
let s = 0,
ans = 0;
for (const num of nums) {
s += num;
const t = ((s % k) + k) % k;
ans += counter.get(t) || 0;
counter.set(t, (counter.get(t) || 0) + 1);
}
return ans;
}