comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
There is a group of n
members, and a list of various crimes they could commit. The ith
crime generates a profit[i]
and requires group[i]
members to participate in it. If a member participates in one crime, that member can't participate in another crime.
Let's call a profitable scheme any subset of these crimes that generates at least minProfit
profit, and the total number of members participating in that subset of crimes is at most n
.
Return the number of schemes that can be chosen. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 5, minProfit = 3, group = [2,2], profit = [2,3] Output: 2 Explanation: To make a profit of at least 3, the group could either commit crimes 0 and 1, or just crime 1. In total, there are 2 schemes.
Example 2:
Input: n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8] Output: 7 Explanation: To make a profit of at least 5, the group could commit any crimes, as long as they commit one. There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).
Constraints:
1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100
We design a function
The execution process of function
- If
$i = n$ , it means that all the jobs have been considered. If$k \geq minProfit$ , the number of schemes is$1$ , otherwise the number of schemes is$0$ ; - If
$i < n$ , we can choose not to choose the$i$ -th job, then the number of schemes is$dfs(i + 1, j, k)$ ; if$j + group[i] \leq n$ , we can also choose the$i$ -th job, then the number of schemes is$dfs(i + 1, j + group[i], \min(k + profit[i], minProfit))$ . Here we limit the profit upper limit to$minProfit$ , because the profit exceeding$minProfit$ has no effect on our answer.
Finally, return
In order to avoid repeated calculation, we can use the method of memoization. We use a three-dimensional array
The time complexity is
class Solution:
def profitableSchemes(
self, n: int, minProfit: int, group: List[int], profit: List[int]
) -> int:
@cache
def dfs(i: int, j: int, k: int) -> int:
if i >= len(group):
return 1 if k == minProfit else 0
ans = dfs(i + 1, j, k)
if j + group[i] <= n:
ans += dfs(i + 1, j + group[i], min(k + profit[i], minProfit))
return ans % (10**9 + 7)
return dfs(0, 0, 0)
class Solution {
private Integer[][][] f;
private int m;
private int n;
private int minProfit;
private int[] group;
private int[] profit;
private final int mod = (int) 1e9 + 7;
public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
m = group.length;
this.n = n;
f = new Integer[m][n + 1][minProfit + 1];
this.minProfit = minProfit;
this.group = group;
this.profit = profit;
return dfs(0, 0, 0);
}
private int dfs(int i, int j, int k) {
if (i >= m) {
return k == minProfit ? 1 : 0;
}
if (f[i][j][k] != null) {
return f[i][j][k];
}
int ans = dfs(i + 1, j, k);
if (j + group[i] <= n) {
ans += dfs(i + 1, j + group[i], Math.min(k + profit[i], minProfit));
}
ans %= mod;
return f[i][j][k] = ans;
}
}
class Solution {
public:
int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {
int m = group.size();
int f[m][n + 1][minProfit + 1];
memset(f, -1, sizeof(f));
const int mod = 1e9 + 7;
function<int(int, int, int)> dfs = [&](int i, int j, int k) -> int {
if (i >= m) {
return k == minProfit ? 1 : 0;
}
if (f[i][j][k] != -1) {
return f[i][j][k];
}
int ans = dfs(i + 1, j, k);
if (j + group[i] <= n) {
ans += dfs(i + 1, j + group[i], min(k + profit[i], minProfit));
}
ans %= mod;
return f[i][j][k] = ans;
};
return dfs(0, 0, 0);
}
};
func profitableSchemes(n int, minProfit int, group []int, profit []int) int {
m := len(group)
f := make([][][]int, m)
for i := range f {
f[i] = make([][]int, n+1)
for j := range f[i] {
f[i][j] = make([]int, minProfit+1)
for k := range f[i][j] {
f[i][j][k] = -1
}
}
}
const mod = 1e9 + 7
var dfs func(i, j, k int) int
dfs = func(i, j, k int) int {
if i >= m {
if k >= minProfit {
return 1
}
return 0
}
if f[i][j][k] != -1 {
return f[i][j][k]
}
ans := dfs(i+1, j, k)
if j+group[i] <= n {
ans += dfs(i+1, j+group[i], min(k+profit[i], minProfit))
}
ans %= mod
f[i][j][k] = ans
return ans
}
return dfs(0, 0, 0)
}
We define
For the
The final answer is
The time complexity is
class Solution:
def profitableSchemes(
self, n: int, minProfit: int, group: List[int], profit: List[int]
) -> int:
mod = 10**9 + 7
m = len(group)
f = [[[0] * (minProfit + 1) for _ in range(n + 1)] for _ in range(m + 1)]
for j in range(n + 1):
f[0][j][0] = 1
for i, (x, p) in enumerate(zip(group, profit), 1):
for j in range(n + 1):
for k in range(minProfit + 1):
f[i][j][k] = f[i - 1][j][k]
if j >= x:
f[i][j][k] = (f[i][j][k] + f[i - 1][j - x][max(0, k - p)]) % mod
return f[m][n][minProfit]
class Solution {
public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
final int mod = (int) 1e9 + 7;
int m = group.length;
int[][][] f = new int[m + 1][n + 1][minProfit + 1];
for (int j = 0; j <= n; ++j) {
f[0][j][0] = 1;
}
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
for (int k = 0; k <= minProfit; ++k) {
f[i][j][k] = f[i - 1][j][k];
if (j >= group[i - 1]) {
f[i][j][k]
= (f[i][j][k]
+ f[i - 1][j - group[i - 1]][Math.max(0, k - profit[i - 1])])
% mod;
}
}
}
}
return f[m][n][minProfit];
}
}
class Solution {
public:
int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {
int m = group.size();
int f[m + 1][n + 1][minProfit + 1];
memset(f, 0, sizeof(f));
for (int j = 0; j <= n; ++j) {
f[0][j][0] = 1;
}
const int mod = 1e9 + 7;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
for (int k = 0; k <= minProfit; ++k) {
f[i][j][k] = f[i - 1][j][k];
if (j >= group[i - 1]) {
f[i][j][k] = (f[i][j][k] + f[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])]) % mod;
}
}
}
}
return f[m][n][minProfit];
}
};
func profitableSchemes(n int, minProfit int, group []int, profit []int) int {
m := len(group)
f := make([][][]int, m+1)
for i := range f {
f[i] = make([][]int, n+1)
for j := range f[i] {
f[i][j] = make([]int, minProfit+1)
}
}
for j := 0; j <= n; j++ {
f[0][j][0] = 1
}
const mod = 1e9 + 7
for i := 1; i <= m; i++ {
for j := 0; j <= n; j++ {
for k := 0; k <= minProfit; k++ {
f[i][j][k] = f[i-1][j][k]
if j >= group[i-1] {
f[i][j][k] += f[i-1][j-group[i-1]][max(0, k-profit[i-1])]
f[i][j][k] %= mod
}
}
}
}
return f[m][n][minProfit]
}