comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Medium |
|
There are two types of soup: type A and type B. Initially, we have n
ml of each type of soup. There are four kinds of operations:
- Serve
100
ml of soup A and0
ml of soup B, - Serve
75
ml of soup A and25
ml of soup B, - Serve
50
ml of soup A and50
ml of soup B, and - Serve
25
ml of soup A and75
ml of soup B.
When we serve some soup, we give it to someone, and we no longer have it. Each turn, we will choose from the four operations with an equal probability 0.25
. If the remaining volume of soup is not enough to complete the operation, we will serve as much as possible. We stop once we no longer have some quantity of both types of soup.
Note that we do not have an operation where all 100
ml's of soup B are used first.
Return the probability that soup A will be empty first, plus half the probability that A and B become empty at the same time. Answers within 10-5
of the actual answer will be accepted.
Example 1:
Input: n = 50 Output: 0.62500 Explanation: If we choose the first two operations, A will become empty first. For the third operation, A and B will become empty at the same time. For the fourth operation, B will become empty first. So the total probability of A becoming empty first plus half the probability that A and B become empty at the same time, is 0.25 * (1 + 1 + 0.5 + 0) = 0.625.
Example 2:
Input: n = 100 Output: 0.71875
Constraints:
0 <= n <= 109
In this problem, since each operation is a multiple of
We design a function
When
Next, for each operation, we have four choices:
- Take
$4$ units from soup$A$ and$0$ units from soup$B$ ; - Take
$3$ units from soup$A$ and$1$ unit from soup$B$ ; - Take
$2$ units from soup$A$ and$2$ units from soup$B$ ; - Take
$1$ unit from soup$A$ and$3$ units from soup$B$ .
Each choice has a probability of
We use memoization to store the results of the function.
Additionally, we find that when
The time complexity is
class Solution:
def soupServings(self, n: int) -> float:
@cache
def dfs(i: int, j: int) -> float:
if i <= 0 and j <= 0:
return 0.5
if i <= 0:
return 1
if j <= 0:
return 0
return 0.25 * (
dfs(i - 4, j)
+ dfs(i - 3, j - 1)
+ dfs(i - 2, j - 2)
+ dfs(i - 1, j - 3)
)
return 1 if n > 4800 else dfs((n + 24) // 25, (n + 24) // 25)
class Solution {
private double[][] f = new double[200][200];
public double soupServings(int n) {
return n > 4800 ? 1 : dfs((n + 24) / 25, (n + 24) / 25);
}
private double dfs(int i, int j) {
if (i <= 0 && j <= 0) {
return 0.5;
}
if (i <= 0) {
return 1.0;
}
if (j <= 0) {
return 0;
}
if (f[i][j] > 0) {
return f[i][j];
}
double ans
= 0.25 * (dfs(i - 4, j) + dfs(i - 3, j - 1) + dfs(i - 2, j - 2) + dfs(i - 1, j - 3));
f[i][j] = ans;
return ans;
}
}
class Solution {
public:
double soupServings(int n) {
double f[200][200] = {0.0};
function<double(int, int)> dfs = [&](int i, int j) -> double {
if (i <= 0 && j <= 0) return 0.5;
if (i <= 0) return 1;
if (j <= 0) return 0;
if (f[i][j] > 0) return f[i][j];
double ans = 0.25 * (dfs(i - 4, j) + dfs(i - 3, j - 1) + dfs(i - 2, j - 2) + dfs(i - 1, j - 3));
f[i][j] = ans;
return ans;
};
return n > 4800 ? 1 : dfs((n + 24) / 25, (n + 24) / 25);
}
};
func soupServings(n int) float64 {
if n > 4800 {
return 1
}
f := [200][200]float64{}
var dfs func(i, j int) float64
dfs = func(i, j int) float64 {
if i <= 0 && j <= 0 {
return 0.5
}
if i <= 0 {
return 1.0
}
if j <= 0 {
return 0
}
if f[i][j] > 0 {
return f[i][j]
}
ans := 0.25 * (dfs(i-4, j) + dfs(i-3, j-1) + dfs(i-2, j-2) + dfs(i-1, j-3))
f[i][j] = ans
return ans
}
return dfs((n+24)/25, (n+24)/25)
}
function soupServings(n: number): number {
const f = new Array(200).fill(0).map(() => new Array(200).fill(-1));
const dfs = (i: number, j: number): number => {
if (i <= 0 && j <= 0) {
return 0.5;
}
if (i <= 0) {
return 1;
}
if (j <= 0) {
return 0;
}
if (f[i][j] !== -1) {
return f[i][j];
}
f[i][j] =
0.25 * (dfs(i - 4, j) + dfs(i - 3, j - 1) + dfs(i - 2, j - 2) + dfs(i - 1, j - 3));
return f[i][j];
};
return n >= 4800 ? 1 : dfs(Math.ceil(n / 25), Math.ceil(n / 25));
}