comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Medium |
|
You are standing at position 0
on an infinite number line. There is a destination at position target
.
You can make some number of moves numMoves
so that:
- On each move, you can either go left or right.
- During the
ith
move (starting fromi == 1
toi == numMoves
), you takei
steps in the chosen direction.
Given the integer target
, return the minimum number of moves required (i.e., the minimum numMoves
) to reach the destination.
Example 1:
Input: target = 2 Output: 3 Explanation: On the 1st move, we step from 0 to 1 (1 step). On the 2nd move, we step from 1 to -1 (2 steps). On the 3rd move, we step from -1 to 2 (3 steps).
Example 2:
Input: target = 3 Output: 2 Explanation: On the 1st move, we step from 0 to 1 (1 step). On the 2nd move, we step from 1 to 3 (2 steps).
Constraints:
-109 <= target <= 109
target != 0
Due to symmetry, each time we can choose to move left or right, so we can take the absolute value of
Define
We keep adding to
Why? Because if
The time complexity is
class Solution:
def reachNumber(self, target: int) -> int:
target = abs(target)
s = k = 0
while 1:
if s >= target and (s - target) % 2 == 0:
return k
k += 1
s += k
class Solution {
public int reachNumber(int target) {
target = Math.abs(target);
int s = 0, k = 0;
while (true) {
if (s >= target && (s - target) % 2 == 0) {
return k;
}
++k;
s += k;
}
}
}
class Solution {
public:
int reachNumber(int target) {
target = abs(target);
int s = 0, k = 0;
while (1) {
if (s >= target && (s - target) % 2 == 0) return k;
++k;
s += k;
}
}
};
func reachNumber(target int) int {
if target < 0 {
target = -target
}
var s, k int
for {
if s >= target && (s-target)%2 == 0 {
return k
}
k++
s += k
}
}
/**
* @param {number} target
* @return {number}
*/
var reachNumber = function (target) {
target = Math.abs(target);
let [s, k] = [0, 0];
while (1) {
if (s >= target && (s - target) % 2 == 0) {
return k;
}
++k;
s += k;
}
};