Skip to content

Latest commit

 

History

History
244 lines (206 loc) · 6.18 KB

File metadata and controls

244 lines (206 loc) · 6.18 KB
comments difficulty edit_url tags
true
困难
字符串
动态规划
滑动窗口

English Version

题目描述

给定字符串 s1 和 s2,找出 s1 中最短的连续 子串,使得 s2 是该子串的 子序列

如果 s1 中没有窗口可以包含 s2 中的所有字符,返回空字符串 ""。如果有不止一个最短长度的窗口,返回 开始位置最靠左 的那个。

示例 1:

输入:
s1 = "abcdebdde", s2 = "bde"
输出:"bcde"
解释:
"bcde" 是答案,因为它在相同长度的字符串 "bdde" 出现之前。
"deb" 不是一个更短的答案,因为在窗口中必须按顺序出现 T 中的元素。

示例 2:

输入:s1 = "jmeqksfrsdcmsiwvaovztaqenprpvnbstl", s2 = "u"
输出:""

 

提示:

  • 1 <= s1.length <= 2 * 104
  • 1 <= s2.length <= 100
  • s1 和 s2 只包含小写英文字母。

 

解法

方法一:动态规划

我们定义 $f[i][j]$ 表示字符串 $s1$ 的前 $i$ 个字符包含字符串 $s2$ 的前 $j$ 个字符时的最短子串的起始位置,如果不存在则为 $0$

我们可以得到状态转移方程:

$$ f[i][j] = \begin{cases} i, & j = 1 \textit{ and } s1[i-1] = s2[j] \\ f[i - 1][j - 1], & j > 1 \textit{ and } s1[i-1] = s2[j-1] \\ f[i - 1][j], & s1[i-1] \ne s2[j-1] \end{cases} $$

接下来我们只需要遍历 $s1$,如果 $f[i][n] \gt 0$,则更新最短子串的起始位置和长度。最后返回最短子串即可。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别为字符串 $s1$$s2$ 的长度。

Python3

class Solution:
    def minWindow(self, s1: str, s2: str) -> str:
        m, n = len(s1), len(s2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i, a in enumerate(s1, 1):
            for j, b in enumerate(s2, 1):
                if a == b:
                    f[i][j] = i if j == 1 else f[i - 1][j - 1]
                else:
                    f[i][j] = f[i - 1][j]
        p, k = 0, m + 1
        for i, a in enumerate(s1, 1):
            if a == s2[n - 1] and f[i][n]:
                j = f[i][n] - 1
                if i - j < k:
                    k = i - j
                    p = j
        return "" if k > m else s1[p : p + k]

Java

class Solution {
    public String minWindow(String s1, String s2) {
        int m = s1.length(), n = s2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                    f[i][j] = j == 1 ? i : f[i - 1][j - 1];
                } else {
                    f[i][j] = f[i - 1][j];
                }
            }
        }
        int p = 0, k = m + 1;
        for (int i = 1; i <= m; ++i) {
            if (s1.charAt(i - 1) == s2.charAt(n - 1) && f[i][n] > 0) {
                int j = f[i][n] - 1;
                if (i - j < k) {
                    k = i - j;
                    p = j;
                }
            }
        }
        return k > m ? "" : s1.substring(p, p + k);
    }
}

C++

class Solution {
public:
    string minWindow(string s1, string s2) {
        int m = s1.size(), n = s2.size();
        int f[m + 1][n + 1];
        memset(f, 0, sizeof(f));
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (s1[i - 1] == s2[j - 1]) {
                    f[i][j] = j == 1 ? i : f[i - 1][j - 1];
                } else {
                    f[i][j] = f[i - 1][j];
                }
            }
        }
        int p = 0, k = m + 1;
        for (int i = 1; i <= m; ++i) {
            if (s1[i - 1] == s2[n - 1] && f[i][n]) {
                int j = f[i][n] - 1;
                if (i - j < k) {
                    k = i - j;
                    p = j;
                }
            }
        }
        return k > m ? "" : s1.substr(p, k);
    }
};

Go

func minWindow(s1 string, s2 string) string {
	m, n := len(s1), len(s2)
	f := make([][]int, m+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			if s1[i-1] == s2[j-1] {
				if j == 1 {
					f[i][j] = i
				} else {
					f[i][j] = f[i-1][j-1]
				}
			} else {
				f[i][j] = f[i-1][j]
			}
		}
	}
	p, k := 0, m+1
	for i := 1; i <= m; i++ {
		if s1[i-1] == s2[n-1] && f[i][n] > 0 {
			j := f[i][n] - 1
			if i-j < k {
				k = i - j
				p = j
			}
		}
	}
	if k > m {
		return ""
	}
	return s1[p : p+k]
}

TypeScript

function minWindow(s1: string, s2: string): string {
    const m = s1.length;
    const n = s2.length;
    const f: number[][] = Array(m + 1)
        .fill(0)
        .map(() => Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            if (s1[i - 1] === s2[j - 1]) {
                f[i][j] = j === 1 ? i : f[i - 1][j - 1];
            } else {
                f[i][j] = f[i - 1][j];
            }
        }
    }
    let p = 0;
    let k = m + 1;
    for (let i = 1; i <= m; ++i) {
        if (s1[i - 1] === s2[n - 1] && f[i][n]) {
            const j = f[i][n] - 1;
            if (i - j < k) {
                k = i - j;
                p = j;
            }
        }
    }
    return k > m ? '' : s1.slice(p, p + k);
}