Skip to content

Latest commit

 

History

History
296 lines (252 loc) · 7.54 KB

File metadata and controls

296 lines (252 loc) · 7.54 KB
comments difficulty edit_url tags
true
Medium
Stack
Greedy
String
Dynamic Programming

中文文档

Description

Given a string s containing only three types of characters: '(', ')' and '*', return true if s is valid.

The following rules define a valid string:

  • Any left parenthesis '(' must have a corresponding right parenthesis ')'.
  • Any right parenthesis ')' must have a corresponding left parenthesis '('.
  • Left parenthesis '(' must go before the corresponding right parenthesis ')'.
  • '*' could be treated as a single right parenthesis ')' or a single left parenthesis '(' or an empty string "".

 

Example 1:

Input: s = "()"
Output: true

Example 2:

Input: s = "(*)"
Output: true

Example 3:

Input: s = "(*))"
Output: true

 

Constraints:

  • 1 <= s.length <= 100
  • s[i] is '(', ')' or '*'.

Solutions

Solution 1: Dynamic Programming

Let dp[i][j] be true if and only if the interval s[i], s[i+1], ..., s[j] can be made valid. Then dp[i][j] is true only if:

  • s[i] is '*', and the interval s[i+1], s[i+2], ..., s[j] can be made valid;

  • or, s[i] can be made to be '(', and there is some k in [i+1, j] such that s[k] can be made to be ')', plus the two intervals cut by s[k] (s[i+1: k] and s[k+1: j+1]) can be made valid;

  • Time Complexity: $O(n^3)$, where $n$ is the length of the string. There are $O(n^2)$ states corresponding to entries of dp, and we do an average of $O(n)$ work on each state.

  • Space Complexity: $O(n^2)$.

Python3

class Solution:
    def checkValidString(self, s: str) -> bool:
        n = len(s)
        dp = [[False] * n for _ in range(n)]
        for i, c in enumerate(s):
            dp[i][i] = c == '*'
        for i in range(n - 2, -1, -1):
            for j in range(i + 1, n):
                dp[i][j] = (
                    s[i] in '(*' and s[j] in '*)' and (i + 1 == j or dp[i + 1][j - 1])
                )
                dp[i][j] = dp[i][j] or any(
                    dp[i][k] and dp[k + 1][j] for k in range(i, j)
                )
        return dp[0][-1]

Java

class Solution {
    public boolean checkValidString(String s) {
        int n = s.length();
        boolean[][] dp = new boolean[n][n];
        for (int i = 0; i < n; ++i) {
            dp[i][i] = s.charAt(i) == '*';
        }
        for (int i = n - 2; i >= 0; --i) {
            for (int j = i + 1; j < n; ++j) {
                char a = s.charAt(i), b = s.charAt(j);
                dp[i][j] = (a == '(' || a == '*') && (b == '*' || b == ')')
                    && (i + 1 == j || dp[i + 1][j - 1]);
                for (int k = i; k < j && !dp[i][j]; ++k) {
                    dp[i][j] = dp[i][k] && dp[k + 1][j];
                }
            }
        }
        return dp[0][n - 1];
    }
}

C++

class Solution {
public:
    bool checkValidString(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool>(n));
        for (int i = 0; i < n; ++i) {
            dp[i][i] = s[i] == '*';
        }
        for (int i = n - 2; i >= 0; --i) {
            for (int j = i + 1; j < n; ++j) {
                char a = s[i], b = s[j];
                dp[i][j] = (a == '(' || a == '*') && (b == '*' || b == ')') && (i + 1 == j || dp[i + 1][j - 1]);
                for (int k = i; k < j && !dp[i][j]; ++k) {
                    dp[i][j] = dp[i][k] && dp[k + 1][j];
                }
            }
        }
        return dp[0][n - 1];
    }
};

Go

func checkValidString(s string) bool {
	n := len(s)
	dp := make([][]bool, n)
	for i := range dp {
		dp[i] = make([]bool, n)
		dp[i][i] = s[i] == '*'
	}
	for i := n - 2; i >= 0; i-- {
		for j := i + 1; j < n; j++ {
			a, b := s[i], s[j]
			dp[i][j] = (a == '(' || a == '*') && (b == '*' || b == ')') && (i+1 == j || dp[i+1][j-1])
			for k := i; k < j && !dp[i][j]; k++ {
				dp[i][j] = dp[i][k] && dp[k+1][j]
			}
		}
	}
	return dp[0][n-1]
}

Solution 2: Greedy

Scan twice, first from left to right to make sure that each of the closing brackets is matched successfully, and second from right to left to make sure that each of the opening brackets is matched successfully.

  • Time Complexity: $O(n)$, where $n$ is the length of the string.
  • Space Complexity: $O(1)$.

Python3

class Solution:
    def checkValidString(self, s: str) -> bool:
        x = 0
        for c in s:
            if c in '(*':
                x += 1
            elif x:
                x -= 1
            else:
                return False
        x = 0
        for c in s[::-1]:
            if c in '*)':
                x += 1
            elif x:
                x -= 1
            else:
                return False
        return True

Java

class Solution {
    public boolean checkValidString(String s) {
        int x = 0;
        int n = s.length();
        for (int i = 0; i < n; ++i) {
            if (s.charAt(i) != ')') {
                ++x;
            } else if (x > 0) {
                --x;
            } else {
                return false;
            }
        }
        x = 0;
        for (int i = n - 1; i >= 0; --i) {
            if (s.charAt(i) != '(') {
                ++x;
            } else if (x > 0) {
                --x;
            } else {
                return false;
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    bool checkValidString(string s) {
        int x = 0, n = s.size();
        for (int i = 0; i < n; ++i) {
            if (s[i] != ')') {
                ++x;
            } else if (x) {
                --x;
            } else {
                return false;
            }
        }
        x = 0;
        for (int i = n - 1; i >= 0; --i) {
            if (s[i] != '(') {
                ++x;
            } else if (x) {
                --x;
            } else {
                return false;
            }
        }
        return true;
    }
};

Go

func checkValidString(s string) bool {
	x := 0
	for _, c := range s {
		if c != ')' {
			x++
		} else if x > 0 {
			x--
		} else {
			return false
		}
	}
	x = 0
	for i := len(s) - 1; i >= 0; i-- {
		if s[i] != '(' {
			x++
		} else if x > 0 {
			x--
		} else {
			return false
		}
	}
	return true
}