comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Easy |
|
Given an integer array nums
of 2n
integers, group these integers into n
pairs (a1, b1), (a2, b2), ..., (an, bn)
such that the sum of min(ai, bi)
for all i
is maximized. Return the maximized sum.
Example 1:
Input: nums = [1,4,3,2] Output: 4 Explanation: All possible pairings (ignoring the ordering of elements) are: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 So the maximum possible sum is 4.
Example 2:
Input: nums = [6,2,6,5,1,2] Output: 9 Explanation: The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9.
Constraints:
1 <= n <= 104
nums.length == 2 * n
-104 <= nums[i] <= 104
For a pair of numbers
Therefore, we can sort the array
The time complexity is
class Solution:
def arrayPairSum(self, nums: List[int]) -> int:
nums.sort()
return sum(nums[::2])
class Solution {
public int arrayPairSum(int[] nums) {
Arrays.sort(nums);
int ans = 0;
for (int i = 0; i < nums.length; i += 2) {
ans += nums[i];
}
return ans;
}
}
class Solution {
public:
int arrayPairSum(vector<int>& nums) {
sort(nums.begin(), nums.end());
int ans = 0;
for (int i = 0; i < nums.size(); i += 2) {
ans += nums[i];
}
return ans;
}
};
func arrayPairSum(nums []int) (ans int) {
sort.Ints(nums)
for i := 0; i < len(nums); i += 2 {
ans += nums[i]
}
return
}
impl Solution {
pub fn array_pair_sum(mut nums: Vec<i32>) -> i32 {
nums.sort();
nums.iter().step_by(2).sum()
}
}
/**
* @param {number[]} nums
* @return {number}
*/
var arrayPairSum = function (nums) {
nums.sort((a, b) => a - b);
return nums.reduce((acc, cur, i) => (i % 2 === 0 ? acc + cur : acc), 0);
};