Skip to content

Latest commit

 

History

History
172 lines (137 loc) · 4.15 KB

File metadata and controls

172 lines (137 loc) · 4.15 KB
comments difficulty edit_url tags
true
Medium
Bit Manipulation
Array
Math

中文文档

Description

The Hamming distance between two integers is the number of positions at which the corresponding bits are different.

Given an integer array nums, return the sum of Hamming distances between all the pairs of the integers in nums.

 

Example 1:

Input: nums = [4,14,2]
Output: 6
Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case).
The answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.

Example 2:

Input: nums = [4,14,4]
Output: 4

 

Constraints:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 109
  • The answer for the given input will fit in a 32-bit integer.

Solutions

Solution 1: Bit Manipulation

We enumerate each bit in the range $[0, 31]$. For the current enumerated bit $i$, we count the number of numbers where the $i$-th bit is $1$, denoted as $a$. Therefore, the number of numbers where the $i$-th bit is $0$ is $b = n - a$, where $n$ is the length of the array. In this way, the sum of the Hamming distance on the $i$-th bit is $a \times b$. We add the Hamming distances of all bits to get the answer.

The time complexity is $O(n \times \log M)$, where $n$ and $M$ are the length of the array and the maximum value in the array, respectively. The space complexity is $O(1)$.

Python3

class Solution:
    def totalHammingDistance(self, nums: List[int]) -> int:
        ans, n = 0, len(nums)
        for i in range(32):
            a = sum(x >> i & 1 for x in nums)
            b = n - a
            ans += a * b
        return ans

Java

class Solution {
    public int totalHammingDistance(int[] nums) {
        int ans = 0, n = nums.length;
        for (int i = 0; i < 32; ++i) {
            int a = 0;
            for (int x : nums) {
                a += (x >> i & 1);
            }
            int b = n - a;
            ans += a * b;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int totalHammingDistance(vector<int>& nums) {
        int ans = 0, n = nums.size();
        for (int i = 0; i < 32; ++i) {
            int a = 0;
            for (int x : nums) {
                a += x >> i & 1;
            }
            int b = n - a;
            ans += a * b;
        }
        return ans;
    }
};

Go

func totalHammingDistance(nums []int) (ans int) {
	for i := 0; i < 32; i++ {
		a := 0
		for _, x := range nums {
			a += x >> i & 1
		}
		b := len(nums) - a
		ans += a * b
	}
	return
}

TypeScript

function totalHammingDistance(nums: number[]): number {
    let ans = 0;
    for (let i = 0; i < 32; ++i) {
        const a = nums.filter(x => (x >> i) & 1).length;
        const b = nums.length - a;
        ans += a * b;
    }
    return ans;
}

Rust

impl Solution {
    pub fn total_hamming_distance(nums: Vec<i32>) -> i32 {
        let mut ans = 0;
        for i in 0..32 {
            let mut a = 0;
            for &x in nums.iter() {
                a += (x >> i) & 1;
            }
            let b = (nums.len() as i32) - a;
            ans += a * b;
        }
        ans
    }
}