comments | difficulty | edit_url | tags | ||
---|---|---|---|---|---|
true |
Hard |
|
A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.
Given a list of stones
positions (in units) in sorted ascending order, determine if the frog can cross the river by landing on the last stone. Initially, the frog is on the first stone and assumes the first jump must be 1
unit.
If the frog's last jump was k
units, its next jump must be either k - 1
, k
, or k + 1
units. The frog can only jump in the forward direction.
Example 1:
Input: stones = [0,1,3,5,6,8,12,17] Output: true Explanation: The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to the 3rd stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th stone, and 5 units to the 8th stone.
Example 2:
Input: stones = [0,1,2,3,4,8,9,11] Output: false Explanation: There is no way to jump to the last stone as the gap between the 5th and 6th stone is too large.
Constraints:
2 <= stones.length <= 2000
0 <= stones[i] <= 231 - 1
stones[0] == 0
stones
is sorted in a strictly increasing order.
We use a hash table true
, otherwise it returns false
.
The calculation process of function
If true
;
Otherwise, we need to enumerate the frog's next jump distance true
, the frog can successfully jump to the end from the true
.
The enumeration is over, indicating that the frog cannot choose the appropriate jump distance on the false
.
In order to prevent repeated calculations in the function
The time complexity is
class Solution:
def canCross(self, stones: List[int]) -> bool:
@cache
def dfs(i, k):
if i == n - 1:
return True
for j in range(k - 1, k + 2):
if j > 0 and stones[i] + j in pos and dfs(pos[stones[i] + j], j):
return True
return False
n = len(stones)
pos = {s: i for i, s in enumerate(stones)}
return dfs(0, 0)
class Solution {
private Boolean[][] f;
private Map<Integer, Integer> pos = new HashMap<>();
private int[] stones;
private int n;
public boolean canCross(int[] stones) {
n = stones.length;
f = new Boolean[n][n];
this.stones = stones;
for (int i = 0; i < n; ++i) {
pos.put(stones[i], i);
}
return dfs(0, 0);
}
private boolean dfs(int i, int k) {
if (i == n - 1) {
return true;
}
if (f[i][k] != null) {
return f[i][k];
}
for (int j = k - 1; j <= k + 1; ++j) {
if (j > 0) {
int h = stones[i] + j;
if (pos.containsKey(h) && dfs(pos.get(h), j)) {
return f[i][k] = true;
}
}
}
return f[i][k] = false;
}
}
class Solution {
public:
bool canCross(vector<int>& stones) {
int n = stones.size();
int f[n][n];
memset(f, -1, sizeof(f));
unordered_map<int, int> pos;
for (int i = 0; i < n; ++i) {
pos[stones[i]] = i;
}
function<bool(int, int)> dfs = [&](int i, int k) -> bool {
if (i == n - 1) {
return true;
}
if (f[i][k] != -1) {
return f[i][k];
}
for (int j = k - 1; j <= k + 1; ++j) {
if (j > 0 && pos.count(stones[i] + j) && dfs(pos[stones[i] + j], j)) {
return f[i][k] = true;
}
}
return f[i][k] = false;
};
return dfs(0, 0);
}
};
func canCross(stones []int) bool {
n := len(stones)
f := make([][]int, n)
pos := map[int]int{}
for i := range f {
pos[stones[i]] = i
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(int, int) bool
dfs = func(i, k int) bool {
if i == n-1 {
return true
}
if f[i][k] != -1 {
return f[i][k] == 1
}
for j := k - 1; j <= k+1; j++ {
if j > 0 {
if p, ok := pos[stones[i]+j]; ok {
if dfs(p, j) {
f[i][k] = 1
return true
}
}
}
}
f[i][k] = 0
return false
}
return dfs(0, 0)
}
function canCross(stones: number[]): boolean {
const n = stones.length;
const pos: Map<number, number> = new Map();
for (let i = 0; i < n; ++i) {
pos.set(stones[i], i);
}
const f: number[][] = new Array(n).fill(0).map(() => new Array(n).fill(-1));
const dfs = (i: number, k: number): boolean => {
if (i === n - 1) {
return true;
}
if (f[i][k] !== -1) {
return f[i][k] === 1;
}
for (let j = k - 1; j <= k + 1; ++j) {
if (j > 0 && pos.has(stones[i] + j)) {
if (dfs(pos.get(stones[i] + j)!, j)) {
f[i][k] = 1;
return true;
}
}
}
f[i][k] = 0;
return false;
};
return dfs(0, 0);
}
use std::collections::HashMap;
impl Solution {
#[allow(dead_code)]
pub fn can_cross(stones: Vec<i32>) -> bool {
let n = stones.len();
let mut record = vec![vec![-1; n]; n];
let mut pos = HashMap::new();
for (i, &s) in stones.iter().enumerate() {
pos.insert(s, i);
}
Self::dfs(&mut record, 0, 0, n, &pos, &stones)
}
#[allow(dead_code)]
fn dfs(
record: &mut Vec<Vec<i32>>,
i: usize,
k: usize,
n: usize,
pos: &HashMap<i32, usize>,
stones: &Vec<i32>,
) -> bool {
if i == n - 1 {
return true;
}
if record[i][k] != -1 {
return record[i][k] == 1;
}
let k = k as i32;
for j in k - 1..=k + 1 {
if j > 0
&& pos.contains_key(&(stones[i] + j))
&& Self::dfs(record, pos[&(stones[i] + j)], j as usize, n, pos, stones)
{
record[i][k as usize] = 1;
return true;
}
}
record[i][k as usize] = 0;
false
}
}
We define
We can determine the value of
If we can reach the last stone, the answer is true. Otherwise, the answer is false.
The time complexity is
class Solution:
def canCross(self, stones: List[int]) -> bool:
n = len(stones)
f = [[False] * n for _ in range(n)]
f[0][0] = True
for i in range(1, n):
for j in range(i - 1, -1, -1):
k = stones[i] - stones[j]
if k - 1 > j:
break
f[i][k] = f[j][k - 1] or f[j][k] or f[j][k + 1]
if i == n - 1 and f[i][k]:
return True
return False
class Solution {
public boolean canCross(int[] stones) {
int n = stones.length;
boolean[][] f = new boolean[n][n];
f[0][0] = true;
for (int i = 1; i < n; ++i) {
for (int j = i - 1; j >= 0; --j) {
int k = stones[i] - stones[j];
if (k - 1 > j) {
break;
}
f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1];
if (i == n - 1 && f[i][k]) {
return true;
}
}
}
return false;
}
}
class Solution {
public:
bool canCross(vector<int>& stones) {
int n = stones.size();
bool f[n][n];
memset(f, false, sizeof(f));
f[0][0] = true;
for (int i = 1; i < n; ++i) {
for (int j = i - 1; j >= 0; --j) {
int k = stones[i] - stones[j];
if (k - 1 > j) {
break;
}
f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1];
if (i == n - 1 && f[i][k]) {
return true;
}
}
}
return false;
}
};
func canCross(stones []int) bool {
n := len(stones)
f := make([][]bool, n)
for i := range f {
f[i] = make([]bool, n)
}
f[0][0] = true
for i := 1; i < n; i++ {
for j := i - 1; j >= 0; j-- {
k := stones[i] - stones[j]
if k-1 > j {
break
}
f[i][k] = f[j][k-1] || f[j][k] || f[j][k+1]
if i == n-1 && f[i][k] {
return true
}
}
}
return false
}
function canCross(stones: number[]): boolean {
const n = stones.length;
const f: boolean[][] = new Array(n).fill(0).map(() => new Array(n).fill(false));
f[0][0] = true;
for (let i = 1; i < n; ++i) {
for (let j = i - 1; j >= 0; --j) {
const k = stones[i] - stones[j];
if (k - 1 > j) {
break;
}
f[i][k] = f[j][k - 1] || f[j][k] || f[j][k + 1];
if (i == n - 1 && f[i][k]) {
return true;
}
}
}
return false;
}
impl Solution {
#[allow(dead_code)]
pub fn can_cross(stones: Vec<i32>) -> bool {
let n = stones.len();
let mut dp = vec![vec![false; n]; n];
// Initialize the dp vector
dp[0][0] = true;
// Begin the actual dp process
for i in 1..n {
for j in (0..=i - 1).rev() {
let k = (stones[i] - stones[j]) as usize;
if k - 1 > j {
break;
}
dp[i][k] = dp[j][k - 1] || dp[j][k] || dp[j][k + 1];
if i == n - 1 && dp[i][k] {
return true;
}
}
}
false
}
}