comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Easy |
|
Given the root
of a binary tree, return the preorder traversal of its nodes' values.
Example 1:
Example 2:
Example 3:
Input: root = []
Output: []
Example 4:
Input: root = [1]
Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
We first visit the root node, then recursively traverse the left and right subtrees.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
def dfs(root):
if root is None:
return
ans.append(root.val)
dfs(root.left)
dfs(root.right)
ans = []
dfs(root)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> ans = new ArrayList<>();
public List<Integer> preorderTraversal(TreeNode root) {
dfs(root);
return ans;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
ans.add(root.val);
dfs(root.left);
dfs(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ans;
function<void(TreeNode*)> dfs = [&](TreeNode* root) {
if (!root) {
return;
}
ans.push_back(root->val);
dfs(root->left);
dfs(root->right);
};
dfs(root);
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal(root *TreeNode) (ans []int) {
var dfs func(*TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
ans = append(ans, root.Val)
dfs(root.Left)
dfs(root.Right)
}
dfs(root)
return
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal(root: TreeNode | null): number[] {
const ans: number[] = [];
const dfs = (root: TreeNode | null) => {
if (!root) {
return;
}
ans.push(root.val);
dfs(root.left);
dfs(root.right);
};
dfs(root);
return ans;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, ans: &mut Vec<i32>) {
if root.is_none() {
return;
}
let node = root.as_ref().unwrap().borrow();
ans.push(node.val);
Self::dfs(&node.left, ans);
Self::dfs(&node.right, ans);
}
pub fn preorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
let mut ans = vec![];
Self::dfs(&root, &mut ans);
ans
}
}
The idea of using a stack to implement non-recursive traversal is as follows:
- Define a stack
$stk$ , and first push the root node into the stack. - If the stack is not empty, pop a node from the stack each time.
- Process the node.
- First push the right child of the node into the stack, then push the left child of the node into the stack (if there are child nodes).
- Repeat steps 2-4.
- Return the result.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
ans = []
if root is None:
return ans
stk = [root]
while stk:
node = stk.pop()
ans.append(node.val)
if node.right:
stk.append(node.right)
if node.left:
stk.append(node.left)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> stk = new ArrayDeque<>();
stk.push(root);
while (!stk.isEmpty()) {
TreeNode node = stk.pop();
ans.add(node.val);
if (node.right != null) {
stk.push(node.right);
}
if (node.left != null) {
stk.push(node.left);
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ans;
if (!root) {
return ans;
}
stack<TreeNode*> stk;
stk.push(root);
while (stk.size()) {
auto node = stk.top();
stk.pop();
ans.push_back(node->val);
if (node->right) {
stk.push(node->right);
}
if (node->left) {
stk.push(node->left);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal(root *TreeNode) (ans []int) {
if root == nil {
return
}
stk := []*TreeNode{root}
for len(stk) > 0 {
node := stk[len(stk)-1]
stk = stk[:len(stk)-1]
ans = append(ans, node.Val)
if node.Right != nil {
stk = append(stk, node.Right)
}
if node.Left != nil {
stk = append(stk, node.Left)
}
}
return
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal(root: TreeNode | null): number[] {
const ans: number[] = [];
if (!root) {
return ans;
}
const stk: TreeNode[] = [root];
while (stk.length) {
const { left, right, val } = stk.pop();
ans.push(val);
right && stk.push(right);
left && stk.push(left);
}
return ans;
}
Morris traversal does not require a stack, and its space complexity is
Traverse the binary tree nodes,
- If the left subtree of the current node
root
is empty, add the current node value to the result list$ans$ , and update the current node toroot.right
. - If the left subtree of the current node
root
is not empty, find the rightmost nodepre
of the left subtree (which is the predecessor of theroot
node in inorder traversal):- If the right subtree of the predecessor node
pre
is empty, add the current node value to the result list$ans$ , then point the right subtree of the predecessor node to the current noderoot
, and update the current node toroot.left
. - If the right subtree of the predecessor node
pre
is not empty, point the right subtree of the predecessor node to null (i.e., disconnectpre
androot
), and update the current node toroot.right
.
- If the right subtree of the predecessor node
- Repeat the above steps until the binary tree node is null, and the traversal ends.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
ans = []
while root:
if root.left is None:
ans.append(root.val)
root = root.right
else:
prev = root.left
while prev.right and prev.right != root:
prev = prev.right
if prev.right is None:
ans.append(root.val)
prev.right = root
root = root.left
else:
prev.right = None
root = root.right
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
while (root != null) {
if (root.left == null) {
ans.add(root.val);
root = root.right;
} else {
TreeNode prev = root.left;
while (prev.right != null && prev.right != root) {
prev = prev.right;
}
if (prev.right == null) {
ans.add(root.val);
prev.right = root;
root = root.left;
} else {
prev.right = null;
root = root.right;
}
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> ans;
while (root) {
if (!root->left) {
ans.push_back(root->val);
root = root->right;
} else {
TreeNode* prev = root->left;
while (prev->right && prev->right != root) {
prev = prev->right;
}
if (!prev->right) {
ans.push_back(root->val);
prev->right = root;
root = root->left;
} else {
prev->right = nullptr;
root = root->right;
}
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal(root *TreeNode) (ans []int) {
for root != nil {
if root.Left == nil {
ans = append(ans, root.Val)
root = root.Right
} else {
prev := root.Left
for prev.Right != nil && prev.Right != root {
prev = prev.Right
}
if prev.Right == nil {
ans = append(ans, root.Val)
prev.Right = root
root = root.Left
} else {
prev.Right = nil
root = root.Right
}
}
}
return
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal(root: TreeNode | null): number[] {
const ans: number[] = [];
while (root) {
const { left, right, val } = root;
if (!left) {
ans.push(val);
root = right;
} else {
let prev = left;
while (prev.right && prev.right != root) {
prev = prev.right;
}
if (!prev.right) {
ans.push(val);
prev.right = root;
root = root.left;
} else {
prev.right = null;
root = root.right;
}
}
}
return ans;
}