Skip to content

Latest commit

 

History

History
322 lines (277 loc) · 9.34 KB

File metadata and controls

322 lines (277 loc) · 9.34 KB
comments difficulty edit_url tags
true
Easy
Tree
Binary Search Tree
Array
Divide and Conquer
Binary Tree

中文文档

Description

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

 

Example 1:

Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:

Example 2:

Input: nums = [1,3]
Output: [3,1]
Explanation: [1,null,3] and [3,1] are both height-balanced BSTs.

 

Constraints:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums is sorted in a strictly increasing order.

Solutions

Solution 1: Binary Search + Recursion

We design a recursive function $\textit{dfs}(l, r)$, which represents that the values of the nodes to be constructed in the current binary search tree are within the index range $[l, r]$ of the array $\textit{nums}$. This function returns the root node of the constructed binary search tree.

The execution process of the function $\textit{dfs}(l, r)$ is as follows:

  1. If $l &gt; r$, it means the current array is empty, so return null.
  2. If $l \leq r$, take the element at index $\textit{mid} = \lfloor \frac{l + r}{2} \rfloor$ of the array as the root node of the current binary search tree, where $\lfloor x \rfloor$ denotes the floor function of $x$.
  3. Recursively construct the left subtree of the current binary search tree, with the root node's value being the element at index $\textit{mid} - 1$ of the array. The values of the nodes in the left subtree are within the index range $[l, \textit{mid} - 1]$ of the array.
  4. Recursively construct the right subtree of the current binary search tree, with the root node's value being the element at index $\textit{mid} + 1$ of the array. The values of the nodes in the right subtree are within the index range $[\textit{mid} + 1, r]$ of the array.
  5. Return the root node of the current binary search tree.

The answer is the return value of the function $\textit{dfs}(0, n - 1)$.

The time complexity is $O(n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $\textit{nums}$.

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        def dfs(l: int, r: int) -> Optional[TreeNode]:
            if l > r:
                return None
            mid = (l + r) >> 1
            return TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r))

        return dfs(0, len(nums) - 1)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int[] nums;

    public TreeNode sortedArrayToBST(int[] nums) {
        this.nums = nums;
        return dfs(0, nums.length - 1);
    }

    private TreeNode dfs(int l, int r) {
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1;
        return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        auto dfs = [&](this auto&& dfs, int l, int r) -> TreeNode* {
            if (l > r) {
                return nullptr;
            }
            int mid = (l + r) >> 1;
            return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
        };
        return dfs(0, nums.size() - 1);
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func sortedArrayToBST(nums []int) *TreeNode {
	var dfs func(int, int) *TreeNode
	dfs = func(l, r int) *TreeNode {
		if l > r {
			return nil
		}
		mid := (l + r) >> 1
		return &TreeNode{nums[mid], dfs(l, mid-1), dfs(mid+1, r)}
	}
	return dfs(0, len(nums)-1)
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function sortedArrayToBST(nums: number[]): TreeNode | null {
    const dfs = (l: number, r: number): TreeNode | null => {
        if (l > r) {
            return null;
        }
        const mid = (l + r) >> 1;
        return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
    };
    return dfs(0, nums.length - 1);
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
        fn dfs(nums: &Vec<i32>, l: usize, r: usize) -> Option<Rc<RefCell<TreeNode>>> {
            if l > r {
                return None;
            }
            let mid = (l + r) / 2;
            if mid >= nums.len() {
                return None;
            }
            let mut node = Rc::new(RefCell::new(TreeNode::new(nums[mid])));
            node.borrow_mut().left = dfs(nums, l, mid - 1);
            node.borrow_mut().right = dfs(nums, mid + 1, r);
            Some(node)
        }
        dfs(&nums, 0, nums.len() - 1)
    }
}

JavaScript

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} nums
 * @return {TreeNode}
 */
var sortedArrayToBST = function (nums) {
    const dfs = (l, r) => {
        if (l > r) {
            return null;
        }
        const mid = (l + r) >> 1;
        return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
    };
    return dfs(0, nums.length - 1);
};

C#

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
public class Solution {
    private int[] nums;

    public TreeNode SortedArrayToBST(int[] nums) {
        this.nums = nums;
        return dfs(0, nums.Length - 1);
    }

    private TreeNode dfs(int l, int r) {
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1;
        return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
    }
}