comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
中等 |
|
给定两个整数数组 inorder
和 postorder
,其中 inorder
是二叉树的中序遍历, postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3] 输出:[3,9,20,null,null,15,7]
示例 2:
输入:inorder = [-1], postorder = [-1] 输出:[-1]
提示:
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
和postorder
都由 不同 的值组成postorder
中每一个值都在inorder
中inorder
保证是树的中序遍历postorder
保证是树的后序遍历
后序遍历的最后一个节点是根节点,我们可以根据这个特点找到根节点在中序遍历中的位置,然后递归地构造左右子树。
具体地,我们先用一个哈希表
- 如果
$n \leq 0$ ,说明子树为空,返回空节点。 - 否则,取出后序遍历的最后一个节点
$v$ ,然后我们在哈希表$d$ 中找到$v$ 在中序遍历中的位置,设为$k$ 。那么左子树包含的节点数为$k - i$ ,右子树包含的节点数为$n - k + i - 1$ 。 - 递归构造左子树
$dfs(i, j, k - i)$ 和右子树$dfs(k + 1, j + k - i, n - k + i - 1)$ ,并连接到根节点上,最后返回根节点。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
def dfs(i: int, j: int, n: int) -> Optional[TreeNode]:
if n <= 0:
return None
v = postorder[j + n - 1]
k = d[v]
l = dfs(i, j, k - i)
r = dfs(k + 1, j + k - i, n - k + i - 1)
return TreeNode(v, l, r)
d = {v: i for i, v in enumerate(inorder)}
return dfs(0, 0, len(inorder))
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<Integer, Integer> d = new HashMap<>();
private int[] postorder;
public TreeNode buildTree(int[] inorder, int[] postorder) {
this.postorder = postorder;
int n = inorder.length;
for (int i = 0; i < n; ++i) {
d.put(inorder[i], i);
}
return dfs(0, 0, n);
}
private TreeNode dfs(int i, int j, int n) {
if (n <= 0) {
return null;
}
int v = postorder[j + n - 1];
int k = d.get(v);
TreeNode l = dfs(i, j, k - i);
TreeNode r = dfs(k + 1, j + k - i, n - k + i - 1);
return new TreeNode(v, l, r);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
unordered_map<int, int> d;
int n = inorder.size();
for (int i = 0; i < n; ++i) {
d[inorder[i]] = i;
}
function<TreeNode*(int, int, int)> dfs = [&](int i, int j, int n) -> TreeNode* {
if (n <= 0) {
return nullptr;
}
int v = postorder[j + n - 1];
int k = d[v];
auto l = dfs(i, j, k - i);
auto r = dfs(k + 1, j + k - i, n - k + i - 1);
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(inorder []int, postorder []int) *TreeNode {
d := map[int]int{}
for i, v := range inorder {
d[v] = i
}
var dfs func(i, j, n int) *TreeNode
dfs = func(i, j, n int) *TreeNode {
if n <= 0 {
return nil
}
v := postorder[j+n-1]
k := d[v]
l := dfs(i, j, k-i)
r := dfs(k+1, j+k-i, n-k+i-1)
return &TreeNode{v, l, r}
}
return dfs(0, 0, len(inorder))
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function buildTree(inorder: number[], postorder: number[]): TreeNode | null {
const n = inorder.length;
const d: Record<number, number> = {};
for (let i = 0; i < n; i++) {
d[inorder[i]] = i;
}
const dfs = (i: number, j: number, n: number): TreeNode | null => {
if (n <= 0) {
return null;
}
const v = postorder[j + n - 1];
const k = d[v];
const l = dfs(i, j, k - i);
const r = dfs(k + 1, j + k - i, n - 1 - (k - i));
return new TreeNode(v, l, r);
};
return dfs(0, 0, n);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;
impl Solution {
pub fn build_tree(inorder: Vec<i32>, postorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
let n = inorder.len();
let mut d: HashMap<i32, usize> = HashMap::new();
for i in 0..n {
d.insert(inorder[i], i);
}
fn dfs(
postorder: &[i32],
d: &HashMap<i32, usize>,
i: usize,
j: usize,
n: usize,
) -> Option<Rc<RefCell<TreeNode>>> {
if n <= 0 {
return None;
}
let val = postorder[j + n - 1];
let k = *d.get(&val).unwrap();
let left = dfs(postorder, d, i, j, k - i);
let right = dfs(postorder, d, k + 1, j + k - i, n - 1 - (k - i));
Some(Rc::new(RefCell::new(TreeNode { val, left, right })))
}
dfs(&postorder, &d, 0, 0, n)
}
}