comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Hard |
|
Write a program to solve a Sudoku puzzle by filling the empty cells.
A sudoku solution must satisfy all of the following rules:
- Each of the digits
1-9
must occur exactly once in each row. - Each of the digits
1-9
must occur exactly once in each column. - Each of the digits
1-9
must occur exactly once in each of the 93x3
sub-boxes of the grid.
The '.'
character indicates empty cells.
Example 1:
Input: board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] Output: [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] Explanation: The input board is shown above and the only valid solution is shown below:
Constraints:
board.length == 9
board[i].length == 9
board[i][j]
is a digit or'.'
.- It is guaranteed that the input board has only one solution.
We use arrays row
, col
, and box
to record whether a number has appeared in each row, each column, and each 3x3 grid respectively. If the number i
has appeared in the r
th row, the c
th column, and the b
th 3x3 grid, then row[r][i]
, col[c][i]
, and box[b][i]
are all true
.
We traverse each empty space in board
, enumerate the numbers v
that it can fill in. If v
has not appeared in the current row, the current column, and the current 3x3 grid, then we can try to fill in the number v
and continue to search for the next empty space. If we search to the end and all spaces are filled, it means that a feasible solution has been found.
The time complexity is
class Solution:
def solveSudoku(self, board: List[List[str]]) -> None:
def dfs(k):
nonlocal ok
if k == len(t):
ok = True
return
i, j = t[k]
for v in range(9):
if row[i][v] == col[j][v] == block[i // 3][j // 3][v] == False:
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = True
board[i][j] = str(v + 1)
dfs(k + 1)
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = False
if ok:
return
row = [[False] * 9 for _ in range(9)]
col = [[False] * 9 for _ in range(9)]
block = [[[False] * 9 for _ in range(3)] for _ in range(3)]
t = []
ok = False
for i in range(9):
for j in range(9):
if board[i][j] == '.':
t.append((i, j))
else:
v = int(board[i][j]) - 1
row[i][v] = col[j][v] = block[i // 3][j // 3][v] = True
dfs(0)
class Solution {
private boolean ok;
private char[][] board;
private List<Integer> t = new ArrayList<>();
private boolean[][] row = new boolean[9][9];
private boolean[][] col = new boolean[9][9];
private boolean[][][] block = new boolean[3][3][9];
public void solveSudoku(char[][] board) {
this.board = board;
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
if (board[i][j] == '.') {
t.add(i * 9 + j);
} else {
int v = board[i][j] - '1';
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
}
}
}
dfs(0);
}
private void dfs(int k) {
if (k == t.size()) {
ok = true;
return;
}
int i = t.get(k) / 9, j = t.get(k) % 9;
for (int v = 0; v < 9; ++v) {
if (!row[i][v] && !col[j][v] && !block[i / 3][j / 3][v]) {
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
board[i][j] = (char) (v + '1');
dfs(k + 1);
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = false;
}
if (ok) {
return;
}
}
}
}
using pii = pair<int, int>;
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
bool row[9][9] = {false};
bool col[9][9] = {false};
bool block[3][3][9] = {false};
bool ok = false;
vector<pii> t;
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
if (board[i][j] == '.') {
t.push_back({i, j});
} else {
int v = board[i][j] - '1';
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
}
}
}
function<void(int k)> dfs = [&](int k) {
if (k == t.size()) {
ok = true;
return;
}
int i = t[k].first, j = t[k].second;
for (int v = 0; v < 9; ++v) {
if (!row[i][v] && !col[j][v] && !block[i / 3][j / 3][v]) {
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = true;
board[i][j] = v + '1';
dfs(k + 1);
row[i][v] = col[j][v] = block[i / 3][j / 3][v] = false;
}
if (ok) {
return;
}
}
};
dfs(0);
}
};
func solveSudoku(board [][]byte) {
var row, col [9][9]bool
var block [3][3][9]bool
var t [][2]int
ok := false
for i := 0; i < 9; i++ {
for j := 0; j < 9; j++ {
if board[i][j] == '.' {
t = append(t, [2]int{i, j})
} else {
v := int(board[i][j] - '1')
row[i][v], col[j][v], block[i/3][j/3][v] = true, true, true
}
}
}
var dfs func(int)
dfs = func(k int) {
if k == len(t) {
ok = true
return
}
i, j := t[k][0], t[k][1]
for v := 0; v < 9; v++ {
if !row[i][v] && !col[j][v] && !block[i/3][j/3][v] {
row[i][v], col[j][v], block[i/3][j/3][v] = true, true, true
board[i][j] = byte(v + '1')
dfs(k + 1)
row[i][v], col[j][v], block[i/3][j/3][v] = false, false, false
}
if ok {
return
}
}
}
dfs(0)
}
public class Solution {
public void SolveSudoku(char[][] board) {
this.board = new ushort?[9,9];
for (var i = 0; i < 9; ++i)
{
for (var j = 0; j < 9; ++j)
{
if (board[i][j] != '.')
{
this.board[i, j] = (ushort) (1 << (board[i][j] - '0' - 1));
}
}
}
if (SolveSudoku(0, 0))
{
for (var i = 0; i < 9; ++i)
{
for (var j = 0; j < 9; ++j)
{
if (board[i][j] == '.')
{
board[i][j] = '0';
while (this.board[i, j].Value != 0)
{
board[i][j] = (char)(board[i][j] + 1);
this.board[i, j] >>= 1;
}
}
}
}
}
}
private ushort?[,] board;
private bool ValidateHorizontalRule(int row)
{
ushort temp = 0;
for (var i = 0; i < 9; ++i)
{
if (board[row, i].HasValue)
{
if ((temp | board[row, i].Value) == temp)
{
return false;
}
temp |= board[row, i].Value;
}
}
return true;
}
private bool ValidateVerticalRule(int column)
{
ushort temp = 0;
for (var i = 0; i < 9; ++i)
{
if (board[i, column].HasValue)
{
if ((temp | board[i, column].Value) == temp)
{
return false;
}
temp |= board[i, column].Value;
}
}
return true;
}
private bool ValidateBlockRule(int row, int column)
{
var startRow = row / 3 * 3;
var startColumn = column / 3 * 3;
ushort temp = 0;
for (var i = startRow; i < startRow + 3; ++i)
{
for (var j = startColumn; j < startColumn + 3; ++j)
{
if (board[i, j].HasValue)
{
if ((temp | board[i, j].Value) == temp)
{
return false;
}
temp |= board[i, j].Value;
}
}
}
return true;
}
private bool SolveSudoku(int i, int j)
{
while (true)
{
if (j == 9)
{
++i;
j = 0;
}
if (i == 9)
{
return true;
}
if (board[i, j].HasValue)
{
++j;
}
else
{
break;
}
}
ushort stop = 1 << 9;
for (ushort t = 1; t != stop; t <<= 1)
{
board[i, j] = t;
if (ValidateHorizontalRule(i) && ValidateVerticalRule(j) && ValidateBlockRule(i, j))
{
if (SolveSudoku(i, j + 1))
{
return true;
}
}
}
board[i, j] = null;
return false;
}
}
class Solution {
/**
* @param string[][] $board
* @return bool
*/
public function solveSudoku(&$board) {
if (isSolved($board)) {
return true;
}
$emptyCell = findEmptyCell($board);
$row = $emptyCell[0];
$col = $emptyCell[1];
for ($num = 1; $num <= 9; $num++) {
if (isValid($board, $row, $col, $num)) {
$board[$row][$col] = (string) $num;
if ($this->solveSudoku($board)) {
return true;
}
$board[$row][$col] = '.';
}
}
return false;
}
}
function isSolved($board) {
foreach ($board as $row) {
if (in_array('.', $row)) {
return false;
}
}
return true;
}
function findEmptyCell($board) {
for ($row = 0; $row < 9; $row++) {
for ($col = 0; $col < 9; $col++) {
if ($board[$row][$col] === '.') {
return [$row, $col];
}
}
}
return null;
}
function isValid($board, $row, $col, $num) {
for ($i = 0; $i < 9; $i++) {
if ($board[$row][$i] == $num) {
return false;
}
}
for ($i = 0; $i < 9; $i++) {
if ($board[$i][$col] == $num) {
return false;
}
}
$startRow = floor($row / 3) * 3;
$endCol = floor($col / 3) * 3;
for ($i = 0; $i < 3; $i++) {
for ($j = 0; $j < 3; $j++) {
if ($board[$startRow + $i][$endCol + $j] == $num) {
return false;
}
}
}
return true;
}