-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathlibyolo.c
175 lines (148 loc) · 4.79 KB
/
libyolo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include "darknet.h"
#include "option_list.h"
#include "network.h"
#include "parser.h"
#include "region_layer.h"
#include "utils.h"
#include "libyolo.h"
typedef struct {
char darknet_path[1024];
char **names;
float nms;
// box *boxes;
// float **probs;
network *net;
} yolo_obj;
void get_detection_info(image im, int num, float thresh, detection *dets, int classes, char **names, list *output)
{
int i,j;
for(i = 0; i < num; ++i){
char labelstr[4096] = {0};
int class = -1;
float prob = thresh;
for(j = 0; j < classes; ++j){
if (dets[i].prob[j] > prob){
strcpy(labelstr, names[j]);
class = j;
prob = dets[i].prob[j];
// if (class < 0){
// strcat(labelstr, names[j]);
// class = j;
// prob = dets[i].prob[j];
// }
// else if {
// strcat(labelstr, ", ");
// strcat(labelstr, names[j]);
// }
}
}
if(class >= 0){
box b = dets[i].bbox;
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
int top = (b.y-b.h/2.)*im.h;
int bot = (b.y+b.h/2.)*im.h;
if(left < 0) left = 0;
if(right > im.w-1) right = im.w-1;
if(top < 0) top = 0;
if(bot > im.h-1) bot = im.h-1;
detection_info *info = (detection_info *)malloc(sizeof(detection_info));
strncpy(info->name, labelstr, sizeof(info->name)); //names[class]
info->left = left;
info->right = right;
info->top = top;
info->bottom = bot;
info->prob = prob;
list_insert(output, info);
}
}
}
yolo_handle yolo_init(char *darknet_path, char *datacfg, char *cfgfile, char *weightfile)
{
yolo_obj *obj = (yolo_obj *)malloc(sizeof(yolo_obj));
if (!obj) return NULL;
memset(obj, 0, sizeof(yolo_obj));
char cur_dir[1024];
strncpy(obj->darknet_path, darknet_path, sizeof(obj->darknet_path));
getcwd(cur_dir, sizeof(cur_dir));
chdir(darknet_path);
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
obj->names = get_labels(name_list);
obj->net = load_network(cfgfile, weightfile, 0);
set_batch_network(obj->net, 1);
srand(2222222);
//int j;
obj->nms=.45;
//layer l = obj->net->layers[obj->net->n-1];
//obj->boxes = calloc(l.w*l.h*l.n, sizeof(box));
//obj->probs = calloc(l.w*l.h*l.n, sizeof(float *));
//for(j = 0; j < l.w*l.h*l.n; ++j) obj->probs[j] = calloc(l.classes + 1, sizeof(float *));
chdir(cur_dir);
return (yolo_handle)obj;
}
void yolo_cleanup(yolo_handle handle)
{
yolo_obj *obj = (yolo_obj *)handle;
if (obj) {
// layer l = obj->net->layers[obj->net->n-1];
//free(obj->dets);
// free_ptrs((void **)obj->dets, l.w*l.h*l.n);
free(obj);
}
}
detection_info **yolo_detect(yolo_handle handle, image im, float thresh, float hier_thresh, int *num)
{
yolo_obj *obj = (yolo_obj *)handle;
image sized = letterbox_image(im, obj->net->w, obj->net->h);
float *X = sized.data;
clock_t time;
time=clock();
network_predict(obj->net, X);
printf("Cam frame predicted in %f seconds.\n", sec(clock()-time));
layer l = obj->net->layers[obj->net->n-1];
// get_region_boxes(l, im.w, im.h, obj->net->w, obj->net->h, thresh, obj->probs, obj->boxes, NULL, 0, 0, hier_thresh, 1);
// if (obj->nms) do_nms_obj(obj->boxes, obj->probs, l.w*l.h*l.n, l.classes, obj->nms);
int nboxes = 0;
detection *dets = get_network_boxes(obj->net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
if (obj->nms) do_nms_sort(dets, nboxes, l.classes, obj->nms);
list *output = make_list();
get_detection_info(im, nboxes, thresh, dets, l.classes, obj->names, output);
detection_info **info = (detection_info **)list_to_array(output);
*num = output->size;
free_list(output);
// free_image(im);
free_image(sized);
return info;
}
detection_info **yolo_test(yolo_handle handle, char *filename, float thresh, float hier_thresh, int *num, float **feature_map, int *map_size)
{
yolo_obj *obj = (yolo_obj *)handle;
char input[256];
strncpy(input, filename, sizeof(input));
image im = load_image_color(input,0,0);
image sized = letterbox_image(im, obj->net->w, obj->net->h);
float *X = sized.data;
clock_t time;
time=clock();
network_predict(obj->net, X);
// *feature_map = obj->net->output;
// *map_size = obj->net->outputs;
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
layer l = obj->net->layers[obj->net->n-1];
int nboxes = 0; // nboxes = l.w*l.h*l.n
detection *dets = get_network_boxes(obj->net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
if (obj->nms) do_nms_sort(dets, nboxes, l.classes, obj->nms);
list *output = make_list();
get_detection_info(im, nboxes, thresh, dets, l.classes, obj->names, output);
detection_info **info = (detection_info **)list_to_array(output);
*num = output->size;
free_list(output);
free_image(im);
free_image(sized);
return info;
}