-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest_video.py
122 lines (107 loc) · 4.95 KB
/
test_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from ast import arg
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import argparse
from pickle import FALSE, TRUE
from statistics import mode
from tkinter import image_names
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import time
import random
from utils.config import get_config
from utils.evaluation import get_eval
from importlib import import_module
from torch.nn.modules.loss import CrossEntropyLoss
from monai.losses import DiceCELoss
from einops import rearrange
from models.model_dict import get_model
from utils.data_us import EchoVideoDataset, JointTransform3D, EchoDataset
from utils.loss_functions.sam_loss import get_criterion
from utils.generate_prompts import get_click_prompt
from easydict import EasyDict
args = EasyDict(base_lr=0.0005,
batch_size=1,
encoder_input_size=256,
keep_log=False,
low_image_size=256,
modelname='MemSAM',
n_gpu=1,
sam_ckpt='checkpoints/sam_vit_b_01ec64.pth',
task='CAMUS_Video_Full',
vit_name='vit_b',
enable_memory=True,
disable_point_prompt=False,
point_numbers_prompt=True,
point_numbers=1,
reinforce=True,
compute_ef=True)
opt = get_config(args.task) # please configure your hyper-parameter
opt.load_path = 'checkpoints/CAMUS_full/your_checkpoint.pth'
print("task", args.task, "checkpoints:", opt.load_path)
opt.mode = "test"
#opt.classes=2
opt.semi = False
opt.visual = True
#opt.eval_mode = "patient"
opt.modelname = 'MemSAM'
device = torch.device(opt.device)
# ==================================================set random seed==================================================
seed_value = 1234 # the number of seed
np.random.seed(seed_value) # set random seed for numpy
random.seed(seed_value) # set random seed for python
os.environ['PYTHONHASHSEED'] = str(seed_value) # avoid hash random
torch.manual_seed(seed_value) # set random seed for CPU
torch.cuda.manual_seed(seed_value) # set random seed for one GPU
torch.cuda.manual_seed_all(seed_value) # set random seed for all GPU
torch.backends.cudnn.deterministic = True # set random seed for convolution
torch.backends.cudnn.benchmark = False
# torch.use_deterministic_algorithms(True)
opt.batch_size = args.batch_size * args.n_gpu
tf_val = JointTransform3D(img_size=args.encoder_input_size, low_img_size=args.low_image_size, ori_size=opt.img_size, crop=opt.crop, p_flip=0, color_jitter_params=None, long_mask=True)
test_dataset = EchoVideoDataset(opt.data_path, opt.test_split, tf_val, img_size=args.encoder_input_size, frame_length=10,disable_point_prompt=args.disable_point_prompt, point_numbers=args.point_numbers) # return image, mask, and filename
testloader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0, pin_memory=True)
model = get_model(args.modelname, args=args, opt=opt)
model.to(device)
model.train()
checkpoint = torch.load(opt.load_path)
#------when the load model is saved under multiple GPU
new_state_dict = {}
for k,v in checkpoint.items():
if k[:7] == 'module.':
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
optimizer = optim.Adam(model.parameters(), lr=args.base_lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
#optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=b_lr, betas=(0.9, 0.999), weight_decay=0.1)
criterion = get_criterion(modelname=args.modelname, opt=opt)
# ========================================================================= begin to evaluate the model ============================================================================
# pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print("Total_params: {}".format(pytorch_total_params))
input = torch.randn(1, 1, 3, args.encoder_input_size, args.encoder_input_size).cuda()
points = (torch.tensor([[[[1, 2]]]]).float().cuda(), torch.tensor([[1]]).float().cuda())
from thop import profile
flops, params = profile(model, inputs=(input, points), )
print('Gflops:', flops/1000000000, 'params:', params)
# sum_time = 0
# with torch.no_grad():
# start_time = time.time()
# pred = model(input, points, None)
# sum_time = sum_time + (time.time()-start_time)
# print("test speed", sum_time)
model.eval()
dice_mean, iou_mean, hd_mean, assd_mean, dices_std, iou_std, hd_std, assd_std = get_eval(testloader, model, criterion=criterion, opt=opt, args=args)
print("dataset:" + args.task + " -----------model name: "+ args.modelname)
print("task", args.task, "checkpoints:", opt.load_path)
print("dice_mean iou_mean hd_mean assd_mean")
print(dice_mean, iou_mean, hd_mean, assd_mean)
print("dices_std iou_std hd_std assd_std")
print(dices_std, iou_std, hd_std, assd_std)