-
Notifications
You must be signed in to change notification settings - Fork 5
/
avw2ctf.m
80 lines (64 loc) · 2.44 KB
/
avw2ctf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function mri = avw2ctf(avw)
% mri = avw2ctf(avw)
%
% The purpose of this function is to convert an Analyze volume into a CTF
% .mri volume. It currently requires that the Analyze volume is
% 256x256x256, 1x1x1 mm voxels. The avw_read function can
% handle various Analyze orientations, so this function assumes that the
% avw.img volume has axial unflipped orientation (it always is when
% returned by avw_read, regardless of the format in the .img file). The
% returned mri struct in the matlab workspace can be saved using
% ctf_write_mri (available in the ctf module of the cvs repository, see
% http://eeg.sf.net/.
%
% $Revision: 1.1 $ $Date: 2004/11/12 01:30:25 $
% Licence: GNU GPL, no implied or express warranties
% History: 08/2003, Darren.Weber_at_radiology.ucsf.edu
% - adapted from an appendex to CTF document
% MRIConverter.pdf, which is copied at the end of this
% function.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mri = ctf_make_mri;
mri.file = [avw.fileprefix,'.mri'];
ver = '[$Revision: 1.1 $]';
fprintf('\nCTF_AVW2MRI [v%s]\n',ver(12:16)); tic;
% these checks for the volume dims/pixel size could be replaced with an
% interpolation function that could take any Analyze volume and convert it
% to 256x256x256, 1x1x1 mm
if avw.hdr.dime.dim(2) ~= 256,
error('avw.hdr.dime.dim(2) ~= 256');
end
if avw.hdr.dime.dim(3) ~= 256,
error('avw.hdr.dime.dim(3) ~= 256');
end
if avw.hdr.dime.dim(4) ~= 256,
error('avw.hdr.dime.dim(4) ~= 256');
end
if avw.hdr.dime.pixdim(2) ~= 1,
error('avw.hdr.dime.dim(2) ~= 256');
end
if avw.hdr.dime.pixdim(3) ~= 1,
error('avw.hdr.dime.dim(3) ~= 256');
end
if avw.hdr.dime.pixdim(4) ~= 1,
error('avw.hdr.dime.dim(4) ~= 256');
end
% mri.hdr.dataSize = 1 or 2 (bytes), 8 or 16 bits
if avw.hdr.dime.bitpix == 8,
mri.hdr.dataSize = 1;
mri.hdr.clippingRange = 255;
else
mri.hdr.dataSize = 2;
mri.hdr.clippingRange = 65536;
end
% This next step should always work correctly, given that avw_read always
% converts any Analyze orientation into axial unflipped in the matlab
% workspace variable avw.img; the axial unflipped orientation is
% (+X left, +Y anterior, +Z superior); the ctf orientation is
% (+X right, +Y posterior, +Z inferior), the complete opposite.
temp = flipdim(avw.img,1);
temp = flipdim(temp,2);
temp = flipdim(temp,3);
mri.img = temp;
t=toc; fprintf('...done (%5.2f sec).\n\n',t);
return