-
Notifications
You must be signed in to change notification settings - Fork 307
/
formatter.go
1245 lines (1138 loc) · 27.9 KB
/
formatter.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package tengo
import (
"strconv"
"sync"
"unicode/utf8"
)
// Strings for use with fmtbuf.WriteString. This is less overhead than using
// fmtbuf.Write with byte arrays.
const (
commaSpaceString = ", "
nilParenString = "(nil)"
percentBangString = "%!"
missingString = "(MISSING)"
badIndexString = "(BADINDEX)"
extraString = "%!(EXTRA "
badWidthString = "%!(BADWIDTH)"
badPrecString = "%!(BADPREC)"
noVerbString = "%!(NOVERB)"
)
const (
ldigits = "0123456789abcdefx"
udigits = "0123456789ABCDEFX"
)
const (
signed = true
unsigned = false
)
// flags placed in a separate struct for easy clearing.
type fmtFlags struct {
widPresent bool
precPresent bool
minus bool
plus bool
sharp bool
space bool
zero bool
// For the formats %+v %#v, we set the plusV/sharpV flags
// and clear the plus/sharp flags since %+v and %#v are in effect
// different, flagless formats set at the top level.
plusV bool
sharpV bool
// error-related flags.
inDetail bool
needNewline bool
needColon bool
}
// A formatter is the raw formatter used by Printf etc.
// It prints into a fmtbuf that must be set up separately.
type formatter struct {
buf *fmtbuf
fmtFlags
wid int // width
prec int // precision
// intbuf is large enough to store %b of an int64 with a sign and
// avoids padding at the end of the struct on 32 bit architectures.
intbuf [68]byte
}
func (f *formatter) clearFlags() {
f.fmtFlags = fmtFlags{}
}
func (f *formatter) init(buf *fmtbuf) {
f.buf = buf
f.clearFlags()
}
// writePadding generates n bytes of padding.
func (f *formatter) writePadding(n int) {
if n <= 0 { // No padding bytes needed.
return
}
buf := *f.buf
oldLen := len(buf)
newLen := oldLen + n
if newLen > MaxStringLen {
panic(ErrStringLimit)
}
// Make enough room for padding.
if newLen > cap(buf) {
buf = make(fmtbuf, cap(buf)*2+n)
copy(buf, *f.buf)
}
// Decide which byte the padding should be filled with.
padByte := byte(' ')
if f.zero {
padByte = byte('0')
}
// Fill padding with padByte.
padding := buf[oldLen:newLen]
for i := range padding {
padding[i] = padByte
}
*f.buf = buf[:newLen]
}
// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatter) pad(b []byte) {
if !f.widPresent || f.wid == 0 {
f.buf.Write(b)
return
}
width := f.wid - utf8.RuneCount(b)
if !f.minus {
// left padding
f.writePadding(width)
f.buf.Write(b)
} else {
// right padding
f.buf.Write(b)
f.writePadding(width)
}
}
// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
func (f *formatter) padString(s string) {
if !f.widPresent || f.wid == 0 {
f.buf.WriteString(s)
return
}
width := f.wid - utf8.RuneCountInString(s)
if !f.minus {
// left padding
f.writePadding(width)
f.buf.WriteString(s)
} else {
// right padding
f.buf.WriteString(s)
f.writePadding(width)
}
}
// fmtBoolean formats a boolean.
func (f *formatter) fmtBoolean(v bool) {
if v {
f.padString("true")
} else {
f.padString("false")
}
}
// fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
func (f *formatter) fmtUnicode(u uint64) {
buf := f.intbuf[0:]
// With default precision set the maximum needed buf length is 18
// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
// into the already allocated intbuf with a capacity of 68 bytes.
prec := 4
if f.precPresent && f.prec > 4 {
prec = f.prec
// Compute space needed for "U+" , number, " '", character, "'".
width := 2 + prec + 2 + utf8.UTFMax + 1
if width > len(buf) {
buf = make([]byte, width)
}
}
// Format into buf, ending at buf[i]. Formatting numbers is easier
// right-to-left.
i := len(buf)
// For %#U we want to add a space and a quoted character at the end of
// the fmtbuf.
if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
i--
buf[i] = '\''
i -= utf8.RuneLen(rune(u))
utf8.EncodeRune(buf[i:], rune(u))
i--
buf[i] = '\''
i--
buf[i] = ' '
}
// Format the Unicode code point u as a hexadecimal number.
for u >= 16 {
i--
buf[i] = udigits[u&0xF]
prec--
u >>= 4
}
i--
buf[i] = udigits[u]
prec--
// Add zeros in front of the number until requested precision is reached.
for prec > 0 {
i--
buf[i] = '0'
prec--
}
// Add a leading "U+".
i--
buf[i] = '+'
i--
buf[i] = 'U'
oldZero := f.zero
f.zero = false
f.pad(buf[i:])
f.zero = oldZero
}
// fmtInteger formats signed and unsigned integers.
func (f *formatter) fmtInteger(
u uint64,
base int,
isSigned bool,
verb rune,
digits string,
) {
negative := isSigned && int64(u) < 0
if negative {
u = -u
}
buf := f.intbuf[0:]
// The already allocated f.intbuf with a capacity of 68 bytes
// is large enough for integer formatting when no precision or width is set.
if f.widPresent || f.precPresent {
// Account 3 extra bytes for possible addition of a sign and "0x".
width := 3 + f.wid + f.prec // wid and prec are always positive.
if width > len(buf) {
// We're going to need a bigger boat.
buf = make([]byte, width)
}
}
// Two ways to ask for extra leading zero digits: %.3d or %03d.
// If both are specified the f.zero flag is ignored and
// padding with spaces is used instead.
prec := 0
if f.precPresent {
prec = f.prec
// Precision of 0 and value of 0 means "print nothing" but padding.
if prec == 0 && u == 0 {
oldZero := f.zero
f.zero = false
f.writePadding(f.wid)
f.zero = oldZero
return
}
} else if f.zero && f.widPresent {
prec = f.wid
if negative || f.plus || f.space {
prec-- // leave room for sign
}
}
// Because printing is easier right-to-left: format u into buf, ending at
// buf[i]. We could make things marginally faster by splitting the 32-bit
// case out into a separate block but it's not worth the duplication, so
// u has 64 bits.
i := len(buf)
// Use constants for the division and modulo for more efficient code.
// Switch cases ordered by popularity.
switch base {
case 10:
for u >= 10 {
i--
next := u / 10
buf[i] = byte('0' + u - next*10)
u = next
}
case 16:
for u >= 16 {
i--
buf[i] = digits[u&0xF]
u >>= 4
}
case 8:
for u >= 8 {
i--
buf[i] = byte('0' + u&7)
u >>= 3
}
case 2:
for u >= 2 {
i--
buf[i] = byte('0' + u&1)
u >>= 1
}
default:
panic("fmt: unknown base; can't happen")
}
i--
buf[i] = digits[u]
for i > 0 && prec > len(buf)-i {
i--
buf[i] = '0'
}
// Various prefixes: 0x, -, etc.
if f.sharp {
switch base {
case 2:
// Add a leading 0b.
i--
buf[i] = 'b'
i--
buf[i] = '0'
case 8:
if buf[i] != '0' {
i--
buf[i] = '0'
}
case 16:
// Add a leading 0x or 0X.
i--
buf[i] = digits[16]
i--
buf[i] = '0'
}
}
if verb == 'O' {
i--
buf[i] = 'o'
i--
buf[i] = '0'
}
if negative {
i--
buf[i] = '-'
} else if f.plus {
i--
buf[i] = '+'
} else if f.space {
i--
buf[i] = ' '
}
// Left padding with zeros has already been handled like precision earlier
// or the f.zero flag is ignored due to an explicitly set precision.
oldZero := f.zero
f.zero = false
f.pad(buf[i:])
f.zero = oldZero
}
// truncate truncates the string s to the specified precision, if present.
func (f *formatter) truncateString(s string) string {
if f.precPresent {
n := f.prec
for i := range s {
n--
if n < 0 {
return s[:i]
}
}
}
return s
}
// truncate truncates the byte slice b as a string of the specified precision,
// if present.
func (f *formatter) truncate(b []byte) []byte {
if f.precPresent {
n := f.prec
for i := 0; i < len(b); {
n--
if n < 0 {
return b[:i]
}
wid := 1
if b[i] >= utf8.RuneSelf {
_, wid = utf8.DecodeRune(b[i:])
}
i += wid
}
}
return b
}
// fmtS formats a string.
func (f *formatter) fmtS(s string) {
s = f.truncateString(s)
f.padString(s)
}
// fmtBs formats the byte slice b as if it was formatted as string with fmtS.
func (f *formatter) fmtBs(b []byte) {
b = f.truncate(b)
f.pad(b)
}
// fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes.
func (f *formatter) fmtSbx(s string, b []byte, digits string) {
length := len(b)
if b == nil {
// No byte slice present. Assume string s should be encoded.
length = len(s)
}
// Set length to not process more bytes than the precision demands.
if f.precPresent && f.prec < length {
length = f.prec
}
// Compute width of the encoding taking into account the f.sharp and
// f.space flag.
width := 2 * length
if width > 0 {
if f.space {
// Each element encoded by two hexadecimals will get a leading
// 0x or 0X.
if f.sharp {
width *= 2
}
// Elements will be separated by a space.
width += length - 1
} else if f.sharp {
// Only a leading 0x or 0X will be added for the whole string.
width += 2
}
} else { // The byte slice or string that should be encoded is empty.
if f.widPresent {
f.writePadding(f.wid)
}
return
}
// Handle padding to the left.
if f.widPresent && f.wid > width && !f.minus {
f.writePadding(f.wid - width)
}
// Write the encoding directly into the output fmtbuf.
buf := *f.buf
if f.sharp {
// Add leading 0x or 0X.
buf = append(buf, '0', digits[16])
}
var c byte
for i := 0; i < length; i++ {
if f.space && i > 0 {
// Separate elements with a space.
buf = append(buf, ' ')
if f.sharp {
// Add leading 0x or 0X for each element.
buf = append(buf, '0', digits[16])
}
}
if b != nil {
c = b[i] // Take a byte from the input byte slice.
} else {
c = s[i] // Take a byte from the input string.
}
// Encode each byte as two hexadecimal digits.
buf = append(buf, digits[c>>4], digits[c&0xF])
}
*f.buf = buf
// Handle padding to the right.
if f.widPresent && f.wid > width && f.minus {
f.writePadding(f.wid - width)
}
}
// fmtSx formats a string as a hexadecimal encoding of its bytes.
func (f *formatter) fmtSx(s, digits string) {
f.fmtSbx(s, nil, digits)
}
// fmtBx formats a byte slice as a hexadecimal encoding of its bytes.
func (f *formatter) fmtBx(b []byte, digits string) {
f.fmtSbx("", b, digits)
}
// fmtQ formats a string as a double-quoted, escaped Go string constant.
// If f.sharp is set a raw (backquoted) string may be returned instead
// if the string does not contain any control characters other than tab.
func (f *formatter) fmtQ(s string) {
s = f.truncateString(s)
if f.sharp && strconv.CanBackquote(s) {
f.padString("`" + s + "`")
return
}
buf := f.intbuf[:0]
if f.plus {
f.pad(strconv.AppendQuoteToASCII(buf, s))
} else {
f.pad(strconv.AppendQuote(buf, s))
}
}
// fmtC formats an integer as a Unicode character.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatter) fmtC(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
f.pad(buf[:w])
}
// fmtQc formats an integer as a single-quoted, escaped Go character constant.
// If the character is not valid Unicode, it will print '\ufffd'.
func (f *formatter) fmtQc(c uint64) {
r := rune(c)
if c > utf8.MaxRune {
r = utf8.RuneError
}
buf := f.intbuf[:0]
if f.plus {
f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
} else {
f.pad(strconv.AppendQuoteRune(buf, r))
}
}
// fmtFloat formats a float64. It assumes that verb is a valid format specifier
// for strconv.AppendFloat and therefore fits into a byte.
func (f *formatter) fmtFloat(v float64, size int, verb rune, prec int) {
// Explicit precision in format specifier overrules default precision.
if f.precPresent {
prec = f.prec
}
// Format number, reserving space for leading + sign if needed.
num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
if num[1] == '-' || num[1] == '+' {
num = num[1:]
} else {
num[0] = '+'
}
// f.space means to add a leading space instead of a "+" sign unless
// the sign is explicitly asked for by f.plus.
if f.space && num[0] == '+' && !f.plus {
num[0] = ' '
}
// Special handling for infinities and NaN,
// which don't look like a number so shouldn't be padded with zeros.
if num[1] == 'I' || num[1] == 'N' {
oldZero := f.zero
f.zero = false
// Remove sign before NaN if not asked for.
if num[1] == 'N' && !f.space && !f.plus {
num = num[1:]
}
f.pad(num)
f.zero = oldZero
return
}
// The sharp flag forces printing a decimal point for non-binary formats
// and retains trailing zeros, which we may need to restore.
if f.sharp && verb != 'b' {
digits := 0
switch verb {
case 'v', 'g', 'G', 'x':
digits = prec
// If no precision is set explicitly use a precision of 6.
if digits == -1 {
digits = 6
}
}
// Buffer pre-allocated with enough room for
// exponent notations of the form "e+123" or "p-1023".
var tailBuf [6]byte
tail := tailBuf[:0]
hasDecimalPoint := false
// Starting from i = 1 to skip sign at num[0].
for i := 1; i < len(num); i++ {
switch num[i] {
case '.':
hasDecimalPoint = true
case 'p', 'P':
tail = append(tail, num[i:]...)
num = num[:i]
case 'e', 'E':
if verb != 'x' && verb != 'X' {
tail = append(tail, num[i:]...)
num = num[:i]
break
}
fallthrough
default:
digits--
}
}
if !hasDecimalPoint {
num = append(num, '.')
}
for digits > 0 {
num = append(num, '0')
digits--
}
num = append(num, tail...)
}
// We want a sign if asked for and if the sign is not positive.
if f.plus || num[0] != '+' {
// If we're zero padding to the left we want the sign before the
// leading zeros. Achieve this by writing the sign out and then padding
// the unsigned number.
if f.zero && f.widPresent && f.wid > len(num) {
f.buf.WriteSingleByte(num[0])
f.writePadding(f.wid - len(num))
f.buf.Write(num[1:])
return
}
f.pad(num)
return
}
// No sign to show and the number is positive; just print the unsigned
// number.
f.pad(num[1:])
}
// Use simple []byte instead of bytes.Buffer to avoid large dependency.
type fmtbuf []byte
func (b *fmtbuf) Write(p []byte) {
if len(*b)+len(p) > MaxStringLen {
panic(ErrStringLimit)
}
*b = append(*b, p...)
}
func (b *fmtbuf) WriteString(s string) {
if len(*b)+len(s) > MaxStringLen {
panic(ErrStringLimit)
}
*b = append(*b, s...)
}
func (b *fmtbuf) WriteSingleByte(c byte) {
if len(*b) >= MaxStringLen {
panic(ErrStringLimit)
}
*b = append(*b, c)
}
func (b *fmtbuf) WriteRune(r rune) {
if len(*b)+utf8.RuneLen(r) > MaxStringLen {
panic(ErrStringLimit)
}
if r < utf8.RuneSelf {
*b = append(*b, byte(r))
return
}
b2 := *b
n := len(b2)
for n+utf8.UTFMax > cap(b2) {
b2 = append(b2, 0)
}
w := utf8.EncodeRune(b2[n:n+utf8.UTFMax], r)
*b = b2[:n+w]
}
// pp is used to store a printer's state and is reused with sync.Pool to avoid
// allocations.
type pp struct {
buf fmtbuf
// arg holds the current item.
arg Object
// fmt is used to format basic items such as integers or strings.
fmt formatter
// reordered records whether the format string used argument reordering.
reordered bool
// goodArgNum records whether the most recent reordering directive was
// valid.
goodArgNum bool
// erroring is set when printing an error string to guard against calling
// handleMethods.
erroring bool
}
var ppFree = sync.Pool{
New: func() interface{} { return new(pp) },
}
// newPrinter allocates a new pp struct or grabs a cached one.
func newPrinter() *pp {
p := ppFree.Get().(*pp)
p.erroring = false
p.fmt.init(&p.buf)
return p
}
// free saves used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
// Proper usage of a sync.Pool requires each entry to have approximately
// the same memory cost. To obtain this property when the stored type
// contains a variably-sized fmtbuf, we add a hard limit on the maximum
// fmtbuf to place back in the pool.
//
// See https://golang.org/issue/23199
if cap(p.buf) > 64<<10 {
return
}
p.buf = p.buf[:0]
p.arg = nil
ppFree.Put(p)
}
func (p *pp) Width() (wid int, ok bool) {
return p.fmt.wid, p.fmt.widPresent
}
func (p *pp) Precision() (prec int, ok bool) {
return p.fmt.prec, p.fmt.precPresent
}
func (p *pp) Flag(b int) bool {
switch b {
case '-':
return p.fmt.minus
case '+':
return p.fmt.plus || p.fmt.plusV
case '#':
return p.fmt.sharp || p.fmt.sharpV
case ' ':
return p.fmt.space
case '0':
return p.fmt.zero
}
return false
}
// Implement Write so we can call Fprintf on a pp (through State), for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err error) {
p.buf.Write(b)
return len(b), nil
}
// Implement WriteString so that we can call io.WriteString
// on a pp (through state), for efficiency.
func (p *pp) WriteString(s string) (ret int, err error) {
p.buf.WriteString(s)
return len(s), nil
}
func (p *pp) WriteRune(r rune) (ret int, err error) {
p.buf.WriteRune(r)
return utf8.RuneLen(r), nil
}
func (p *pp) WriteSingleByte(c byte) (ret int, err error) {
p.buf.WriteSingleByte(c)
return 1, nil
}
// tooLarge reports whether the magnitude of the integer is
// too large to be used as a formatting width or precision.
func tooLarge(x int) bool {
const max int = 1e6
return x > max || x < -max
}
// parsenum converts ASCII to integer. num is 0 (and isnum is false) if no
// number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
if start >= end {
return 0, false, end
}
for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
if tooLarge(num) {
return 0, false, end // Overflow; crazy long number most likely.
}
num = num*10 + int(s[newi]-'0')
isnum = true
}
return
}
func (p *pp) badVerb(verb rune) {
p.erroring = true
_, _ = p.WriteString(percentBangString)
_, _ = p.WriteRune(verb)
_, _ = p.WriteSingleByte('(')
switch {
case p.arg != nil:
_, _ = p.WriteString(p.arg.String())
_, _ = p.WriteSingleByte('=')
p.printArg(p.arg, 'v')
default:
_, _ = p.WriteString(UndefinedValue.String())
}
_, _ = p.WriteSingleByte(')')
p.erroring = false
}
func (p *pp) fmtBool(v bool, verb rune) {
switch verb {
case 't', 'v':
p.fmt.fmtBoolean(v)
default:
p.badVerb(verb)
}
}
// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *pp) fmt0x64(v uint64, leading0x bool) {
sharp := p.fmt.sharp
p.fmt.sharp = leading0x
p.fmt.fmtInteger(v, 16, unsigned, 'v', ldigits)
p.fmt.sharp = sharp
}
// fmtInteger formats a signed or unsigned integer.
func (p *pp) fmtInteger(v uint64, isSigned bool, verb rune) {
switch verb {
case 'v':
if p.fmt.sharpV && !isSigned {
p.fmt0x64(v, true)
} else {
p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
}
case 'd':
p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
case 'b':
p.fmt.fmtInteger(v, 2, isSigned, verb, ldigits)
case 'o', 'O':
p.fmt.fmtInteger(v, 8, isSigned, verb, ldigits)
case 'x':
p.fmt.fmtInteger(v, 16, isSigned, verb, ldigits)
case 'X':
p.fmt.fmtInteger(v, 16, isSigned, verb, udigits)
case 'c':
p.fmt.fmtC(v)
case 'q':
if v <= utf8.MaxRune {
p.fmt.fmtQc(v)
} else {
p.badVerb(verb)
}
case 'U':
p.fmt.fmtUnicode(v)
default:
p.badVerb(verb)
}
}
// fmtFloat formats a float. The default precision for each verb
// is specified as last argument in the call to fmt_float.
func (p *pp) fmtFloat(v float64, size int, verb rune) {
switch verb {
case 'v':
p.fmt.fmtFloat(v, size, 'g', -1)
case 'b', 'g', 'G', 'x', 'X':
p.fmt.fmtFloat(v, size, verb, -1)
case 'f', 'e', 'E':
p.fmt.fmtFloat(v, size, verb, 6)
case 'F':
p.fmt.fmtFloat(v, size, 'f', 6)
default:
p.badVerb(verb)
}
}
func (p *pp) fmtString(v string, verb rune) {
switch verb {
case 'v':
if p.fmt.sharpV {
p.fmt.fmtQ(v)
} else {
p.fmt.fmtS(v)
}
case 's':
p.fmt.fmtS(v)
case 'x':
p.fmt.fmtSx(v, ldigits)
case 'X':
p.fmt.fmtSx(v, udigits)
case 'q':
p.fmt.fmtQ(v)
default:
p.badVerb(verb)
}
}
func (p *pp) fmtBytes(v []byte, verb rune, typeString string) {
switch verb {
case 'v', 'd':
if p.fmt.sharpV {
_, _ = p.WriteString(typeString)
if v == nil {
_, _ = p.WriteString(nilParenString)
return
}
_, _ = p.WriteSingleByte('{')
for i, c := range v {
if i > 0 {
_, _ = p.WriteString(commaSpaceString)
}
p.fmt0x64(uint64(c), true)
}
_, _ = p.WriteSingleByte('}')
} else {
_, _ = p.WriteSingleByte('[')
for i, c := range v {
if i > 0 {
_, _ = p.WriteSingleByte(' ')
}
p.fmt.fmtInteger(uint64(c), 10, unsigned, verb, ldigits)
}
_, _ = p.WriteSingleByte(']')
}
case 's':
p.fmt.fmtBs(v)
case 'x':
p.fmt.fmtBx(v, ldigits)
case 'X':
p.fmt.fmtBx(v, udigits)
case 'q':
p.fmt.fmtQ(string(v))
}
}
func (p *pp) printArg(arg Object, verb rune) {
p.arg = arg
if arg == nil {
arg = UndefinedValue
}
// Special processing considerations.
// %T (the value's type) and %p (its address) are special; we always do
// them first.
switch verb {
case 'T':
p.fmt.fmtS(arg.TypeName())
return
case 'v':
p.fmt.fmtS(arg.String())
return
}
// Some types can be done without reflection.
switch f := arg.(type) {
case *Bool:
p.fmtBool(!f.IsFalsy(), verb)
case *Float:
p.fmtFloat(f.Value, 64, verb)
case *Int:
p.fmtInteger(uint64(f.Value), signed, verb)
case *String:
p.fmtString(f.Value, verb)
case *Bytes:
p.fmtBytes(f.Value, verb, "[]byte")
default:
p.fmtString(f.String(), verb)
}
}
// intFromArg gets the argNumth element of a. On return, isInt reports whether
// the argument has integer type.
func intFromArg(a []Object, argNum int) (num int, isInt bool, newArgNum int) {
newArgNum = argNum
if argNum < len(a) {
var num64 int64
num64, isInt = ToInt64(a[argNum])
num = int(num64)
newArgNum = argNum + 1
if tooLarge(num) {
num = 0
isInt = false
}
}
return
}
// parseArgNumber returns the value of the bracketed number, minus 1
// (explicit argument numbers are one-indexed but we want zero-indexed).
// The opening bracket is known to be present at format[0].
// The returned values are the index, the number of bytes to consume
// up to the closing paren, if present, and whether the number parsed
// ok. The bytes to consume will be 1 if no closing paren is present.
func parseArgNumber(format string) (index int, wid int, ok bool) {
// There must be at least 3 bytes: [n].
if len(format) < 3 {
return 0, 1, false
}
// Find closing bracket.
for i := 1; i < len(format); i++ {
if format[i] == ']' {