-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathpipeline.py
109 lines (96 loc) · 3.25 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
from pathlib import Path
from pprint import pformat
from ... import (
colmap_from_nvm,
extract_features,
localize_sfm,
logger,
match_features,
pairs_from_covisibility,
pairs_from_retrieval,
triangulation,
)
def run(args):
# Setup the paths
dataset = args.dataset
images = dataset / "images_upright/"
outputs = args.outputs # where everything will be saved
sift_sfm = outputs / "sfm_sift" # from which we extract the reference poses
reference_sfm = outputs / "sfm_superpoint+superglue" # the SfM model we will build
sfm_pairs = (
outputs / f"pairs-db-covis{args.num_covis}.txt"
) # top-k most covisible in SIFT model
loc_pairs = (
outputs / f"pairs-query-netvlad{args.num_loc}.txt"
) # top-k retrieved by NetVLAD
results = outputs / f"Aachen_hloc_superpoint+superglue_netvlad{args.num_loc}.txt"
# list the standard configurations available
logger.info("Configs for feature extractors:\n%s", pformat(extract_features.confs))
logger.info("Configs for feature matchers:\n%s", pformat(match_features.confs))
# pick one of the configurations for extraction and matching
retrieval_conf = extract_features.confs["netvlad"]
feature_conf = extract_features.confs["superpoint_aachen"]
matcher_conf = match_features.confs["superglue"]
features = extract_features.main(feature_conf, images, outputs)
colmap_from_nvm.main(
dataset / "3D-models/aachen_cvpr2018_db.nvm",
dataset / "3D-models/database_intrinsics.txt",
dataset / "aachen.db",
sift_sfm,
)
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=args.num_covis)
sfm_matches = match_features.main(
matcher_conf, sfm_pairs, feature_conf["output"], outputs
)
triangulation.main(
reference_sfm, sift_sfm, images, sfm_pairs, features, sfm_matches
)
global_descriptors = extract_features.main(retrieval_conf, images, outputs)
pairs_from_retrieval.main(
global_descriptors,
loc_pairs,
args.num_loc,
query_prefix="query",
db_model=reference_sfm,
)
loc_matches = match_features.main(
matcher_conf, loc_pairs, feature_conf["output"], outputs
)
localize_sfm.main(
reference_sfm,
dataset / "queries/*_time_queries_with_intrinsics.txt",
loc_pairs,
features,
loc_matches,
results,
covisibility_clustering=False,
) # not required with SuperPoint+SuperGlue
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=Path,
default="datasets/aachen",
help="Path to the dataset, default: %(default)s",
)
parser.add_argument(
"--outputs",
type=Path,
default="outputs/aachen",
help="Path to the output directory, default: %(default)s",
)
parser.add_argument(
"--num_covis",
type=int,
default=20,
help="Number of image pairs for SfM, default: %(default)s",
)
parser.add_argument(
"--num_loc",
type=int,
default=50,
help="Number of image pairs for loc, default: %(default)s",
)
args = parser.parse_args()
run(args)