-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy pathextract_features.py
328 lines (301 loc) · 10.5 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse
import collections.abc as collections
import glob
import pprint
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Optional, Union
import cv2
import h5py
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
from . import extractors, logger
from .utils.base_model import dynamic_load
from .utils.io import list_h5_names, read_image
from .utils.parsers import parse_image_lists
"""
A set of standard configurations that can be directly selected from the command
line using their name. Each is a dictionary with the following entries:
- output: the name of the feature file that will be generated.
- model: the model configuration, as passed to a feature extractor.
- preprocessing: how to preprocess the images read from disk.
"""
confs = {
"superpoint_aachen": {
"output": "feats-superpoint-n4096-r1024",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
},
},
# Resize images to 1600px even if they are originally smaller.
# Improves the keypoint localization if the images are of good quality.
"superpoint_max": {
"output": "feats-superpoint-n4096-rmax1600",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
"resize_force": True,
},
},
"superpoint_inloc": {
"output": "feats-superpoint-n4096-r1600",
"model": {
"name": "superpoint",
"nms_radius": 4,
"max_keypoints": 4096,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
},
},
"r2d2": {
"output": "feats-r2d2-n5000-r1024",
"model": {
"name": "r2d2",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1024,
},
},
"d2net-ss": {
"output": "feats-d2net-ss",
"model": {
"name": "d2net",
"multiscale": False,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"sift": {
"output": "feats-sift",
"model": {"name": "dog"},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
},
},
"sosnet": {
"output": "feats-sosnet",
"model": {"name": "dog", "descriptor": "sosnet"},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
},
},
"disk": {
"output": "feats-disk",
"model": {
"name": "disk",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"aliked-n16": {
"output": "feats-aliked-n16",
"model": {
"name": "aliked",
"model_name": "aliked-n16",
},
"preprocessing": {
"grayscale": False,
"resize_max": 1024,
},
},
# Global descriptors
"dir": {
"output": "global-feats-dir",
"model": {"name": "dir"},
"preprocessing": {"resize_max": 1024},
},
"netvlad": {
"output": "global-feats-netvlad",
"model": {"name": "netvlad"},
"preprocessing": {"resize_max": 1024},
},
"openibl": {
"output": "global-feats-openibl",
"model": {"name": "openibl"},
"preprocessing": {"resize_max": 1024},
},
"eigenplaces": {
"output": "global-feats-eigenplaces",
"model": {"name": "eigenplaces"},
"preprocessing": {"resize_max": 1024},
},
}
def resize_image(image, size, interp):
if interp.startswith("cv2_"):
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper())
h, w = image.shape[:2]
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
interp = cv2.INTER_LINEAR
resized = cv2.resize(image, size, interpolation=interp)
elif interp.startswith("pil_"):
interp = getattr(PIL.Image, interp[len("pil_") :].upper())
resized = PIL.Image.fromarray(image.astype(np.uint8))
resized = resized.resize(size, resample=interp)
resized = np.asarray(resized, dtype=image.dtype)
else:
raise ValueError(f"Unknown interpolation {interp}.")
return resized
class ImageDataset(torch.utils.data.Dataset):
default_conf = {
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
"grayscale": False,
"resize_max": None,
"resize_force": False,
"interpolation": "cv2_area", # pil_linear is more accurate but slower
}
def __init__(self, root, conf, paths=None):
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.root = root
if paths is None:
paths = []
for g in conf.globs:
paths += glob.glob((Path(root) / "**" / g).as_posix(), recursive=True)
if len(paths) == 0:
raise ValueError(f"Could not find any image in root: {root}.")
paths = sorted(set(paths))
self.names = [Path(p).relative_to(root).as_posix() for p in paths]
logger.info(f"Found {len(self.names)} images in root {root}.")
else:
if isinstance(paths, (Path, str)):
self.names = parse_image_lists(paths)
elif isinstance(paths, collections.Iterable):
self.names = [p.as_posix() if isinstance(p, Path) else p for p in paths]
else:
raise ValueError(f"Unknown format for path argument {paths}.")
for name in self.names:
if not (root / name).exists():
raise ValueError(f"Image {name} does not exists in root: {root}.")
def __getitem__(self, idx):
name = self.names[idx]
image = read_image(self.root / name, self.conf.grayscale)
image = image.astype(np.float32)
size = image.shape[:2][::-1]
if self.conf.resize_max and (
self.conf.resize_force or max(size) > self.conf.resize_max
):
scale = self.conf.resize_max / max(size)
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, self.conf.interpolation)
if self.conf.grayscale:
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = image / 255.0
data = {
"image": image,
"original_size": np.array(size),
}
return data
def __len__(self):
return len(self.names)
@torch.no_grad()
def main(
conf: Dict,
image_dir: Path,
export_dir: Optional[Path] = None,
as_half: bool = True,
image_list: Optional[Union[Path, List[str]]] = None,
feature_path: Optional[Path] = None,
overwrite: bool = False,
) -> Path:
logger.info(
"Extracting local features with configuration:" f"\n{pprint.pformat(conf)}"
)
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list)
if feature_path is None:
feature_path = Path(export_dir, conf["output"] + ".h5")
feature_path.parent.mkdir(exist_ok=True, parents=True)
skip_names = set(
list_h5_names(feature_path) if feature_path.exists() and not overwrite else ()
)
dataset.names = [n for n in dataset.names if n not in skip_names]
if len(dataset.names) == 0:
logger.info("Skipping the extraction.")
return feature_path
device = "cuda" if torch.cuda.is_available() else "cpu"
Model = dynamic_load(extractors, conf["model"]["name"])
model = Model(conf["model"]).eval().to(device)
loader = torch.utils.data.DataLoader(
dataset, num_workers=1, shuffle=False, pin_memory=True
)
for idx, data in enumerate(tqdm(loader)):
name = dataset.names[idx]
pred = model({"image": data["image"].to(device, non_blocking=True)})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
pred["image_size"] = original_size = data["original_size"][0].numpy()
if "keypoints" in pred:
size = np.array(data["image"].shape[-2:][::-1])
scales = (original_size / size).astype(np.float32)
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5
if "scales" in pred:
pred["scales"] *= scales.mean()
# add keypoint uncertainties scaled to the original resolution
uncertainty = getattr(model, "detection_noise", 1) * scales.mean()
if as_half:
for k in pred:
dt = pred[k].dtype
if (dt == np.float32) and (dt != np.float16):
pred[k] = pred[k].astype(np.float16)
with h5py.File(str(feature_path), "a", libver="latest") as fd:
try:
if name in fd:
del fd[name]
grp = fd.create_group(name)
for k, v in pred.items():
grp.create_dataset(k, data=v)
if "keypoints" in pred:
grp["keypoints"].attrs["uncertainty"] = uncertainty
except OSError as error:
if "No space left on device" in error.args[0]:
logger.error(
"Out of disk space: storing features on disk can take "
"significant space, did you enable the as_half flag?"
)
del grp, fd[name]
raise error
del pred
logger.info("Finished exporting features.")
return feature_path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--export_dir", type=Path, required=True)
parser.add_argument(
"--conf", type=str, default="superpoint_aachen", choices=list(confs.keys())
)
parser.add_argument("--as_half", action="store_true")
parser.add_argument("--image_list", type=Path)
parser.add_argument("--feature_path", type=Path)
args = parser.parse_args()
main(
confs[args.conf],
args.image_dir,
args.export_dir,
args.as_half,
args.image_list,
args.feature_path,
)