Skip to content

Latest commit

 

History

History
190 lines (154 loc) · 5.19 KB

README.md

File metadata and controls

190 lines (154 loc) · 5.19 KB

Social-PatteRNN

This repository contains the code for the paper:

Social-PatteRNN: Socially-Aware Trajectory Prediction Guided by Motion Patterns

Ingrid Navarro and Jean Oh

SocialPatteRNN

Model Overview

Social-PatteRNN is an algorithm for recurrent, multi-modal trajectory prediction in multi-agent settings. Our approach guides long-term trajectory prediction by learning to predict short-term motion patterns. It then extracts sub-goal information from the patterns and aggregates it as social context.

SocialPatteRNN

Note:

This version of the code now supports context information.

Installation

Setup a conda environment:

conda create --name sprnn python=3.7
conda activate sprnn

Download the repository and install requirements:

git clone --branch sprnn [email protected]:cmubig/social-patternn.git
cd social-patternn
pip install -e . 

Dataset

We have tested our algorithm on three different datasets:

  • TrajAir (111days)

We provide instructions and the dataloaders to setup the data here.

Running the code

This repository provides four baselines:

  • VRNN: a Recurrent C-VAE for trajectory prediction
  • PATTERNN: a VRNN with a context module for pattern learning
  • SOCPATTERNN-MLP: a VRNN with a context module for pattern learning and interaction encoding
  • SOCPATTERNN-MHA: the full model; a VRNN with a context module for pattern learning and interaction encoding with multi-head attention

All of the parameters related to the trajectory specifications, training details and model architectures are provided in the configuration files of each baseline and experiment. These configuration files can be found in social-patternn/config/dataset-name.

The run.py script controls the training, validation and testing for all experiments and datasets. An experiment is specified with the flag --exp-config, and the type of process is specified with the flag --run-type:

python run.py --exp-config path/to/exp-config.json --run-type [trainval | train | eval | test]

Running the SocialPatteRNN model

For example, to train and validate the SocialPatteRNN model on the 111days dataset, execute:

python run.py --exp config/111days/socpatternn-mha.json

To test a trained model, run:

python run.py --exp config/111days/socpatternn-mha.json --run test --best

To test or evaluate one of a specific checkpoint, you can specify the checkpoint number ckpt_num if the checkpoint is in the default path or the checkpoint path ckpt_path if not.

Example with checkpoint number which would load ckpt_10.pth:

python run.py --exp config/111days/socpatternn-mha.json --run test --ckpt_num 10

For each experiment, we provide the configuration files for all the ablations performed in our paper. They are organized as follows:

config/
├─ 111days
|   ├─ base_config.json        
|   ├─ vrnn.json
|   ├─ patternn.json
|   ├─ socpatternn_mlp.json
|   ├─ socpatternn_mha.json
|   ├─ ...
├─ ...

Results

<style> .column { float: left; width: 33.33%; padding: 5px; } .row::after { content: ""; clear: both; display: table; } </style>

TrajAir (with weather context)

Baselines MinADE MinFDE
VRNN 0.647 1.392
PATTERNN 0.619 1.385
SOCPATTERNN-MLP 0.608 1.203
SOCPATTERNN-MHA 0.541 1.192
Trajair
Trajair

SDD

Baselines MinADE MinFDE
VRNN
PATTERNN
SOCPATTERNN-MLP
SOCPATTERNN-MHA
SDD
SDD
SDD

NBA

Baselines MinADE MinFDE
VRNN
PATTERNN
SOCPATTERNN-MLP
SOCPATTERNN-MHA
NBA
NBA

Citation

@article{navarro2022social,
  title={Social-PatteRNN: Socially-Aware Trajectory Prediction Guided by Motion Patterns},
  author={Navarro, Ingrid and Oh, Jean},
  journal={arXiv preprint arXiv:2209.05649},
  year={2022}
}