-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlosses.py
214 lines (162 loc) · 8.82 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
'''
symmetrical-synthesis
Copyright (c) 2020-present NAVER Corp.
MIT license
'''
import sys
import tensorflow as tf
import numpy as np
from tensorflow.contrib import slim
import itertools
tf.app.flags.DEFINE_float('symm_ratio', 2.0, 'should be more than 1.0')
tf.app.flags.DEFINE_float('symm_norm_ratio', 1.0, '')
tf.app.flags.DEFINE_boolean('symm_norm', False, '')
FLAGS = tf.app.flags.FLAGS
EPS = 1e-12
class loss_builder:
def __init__(self):
return
def npair_loss(self, gt, anchor, pos):
'''
build tf.contrib.losses.metric_learning.npairs_loss
anchor, pos: features, which are extracted from a backbone networks
NOTE!!! features should not be l2-normalized
'''
gt = tf.reshape(gt, [-1])
loss = tf.contrib.losses.metric_learning.npairs_loss(
labels=gt,
embeddings_anchor=anchor,
embeddings_positive=pos,
reg_lambda=0.002)
return loss
def tf_get_symmetric_point(self, anchor, pos):
P = pos
A = anchor # basis
A_norm = tf.linalg.norm(A, axis=1, keepdims=True)
U = A / A_norm
R = A + tf.reduce_sum(tf.multiply((P - A), U), axis=1, keepdims=True) * U
Q = FLAGS.symm_norm_ratio * (FLAGS.symm_ratio * R - P)
if FLAGS.symm_norm:
Q = Q / tf.linalg.norm(Q, axis=1, keepdims=True) * A_norm
return Q
def symm_npair_loss(self, gt, anchor, pos, l2_norm=False, with_l2reg=False, symm_type='sphere'):
gt = tf.reshape(gt, [-1])
if with_l2reg:
reg_anchor = tf.reduce_mean(tf.reduce_sum(tf.square(anchor), 1))
reg_positive = tf.reduce_mean(tf.reduce_sum(tf.square(pos), 1))
l2loss = tf.multiply(0.25 * 0.002, reg_anchor + reg_positive, name='l2loss_am_npair')
else:
l2loss = 0.0
if l2_norm:
anchor = tf.nn.l2_normalize(anchor, axis=1)
pos = tf.nn.l2_normalize(pos, axis=1)
## get symm vectors
print('\n\n\n%s type symmetric points used!!! \n\n\n' % 'sphere')
# e.g., sym1 | anchor | pos
# e.g., anchor | pos | sym2
sym1 = self.tf_get_symmetric_point(anchor, pos)
sym2 = self.tf_get_symmetric_point(pos, anchor)
## similarity matrix fTf
pts_list = []
pts_list.append(anchor)
pts_list.append(pos)
pts_list.append(sym1)
pts_list.append(sym2)
sim_mat_list = []
selected_pts_list = itertools.combinations(pts_list, 2) # use combination! more simple, more stable.
for selected_pts in selected_pts_list:
sim_mat = tf.matmul(selected_pts[0], selected_pts[1], transpose_a=False, transpose_b=True)
sim_mat_list.append(tf.expand_dims(sim_mat, axis=-1))
sim_concat = tf.concat(sim_mat_list, axis=-1)
similarity_matrix = tf.reduce_max(sim_concat, axis=-1)
# do softmax cross-entropy
lshape = tf.shape(gt)
labels = tf.reshape(gt, [lshape[0], 1])
labels_remapped = tf.to_float(tf.equal(labels, tf.transpose(labels)))
labels_remapped /= tf.reduce_sum(labels_remapped, 1, keepdims=True)
xent_loss = tf.nn.softmax_cross_entropy_with_logits(logits=similarity_matrix, labels=labels_remapped)
xent_loss = tf.reduce_mean(xent_loss, name='xentropy_am_npair')
return l2loss + xent_loss, tf.expand_dims(tf.argmax(sim_concat, axis=-1), axis=-1)#tf.expand_dims(similarity_matrix, axis=-1)#sim_concat
def get_angular_sim_mat(self, anchor, pos, sq_tan_alpha, batch_size):
xaTxp = tf.matmul(anchor, pos, transpose_a=False, transpose_b=True)
sim_matrix_1 = tf.multiply(2.0 * (1.0 + sq_tan_alpha) * xaTxp, tf.eye(batch_size, dtype=tf.float32))
xaPxpTxn = tf.matmul((anchor + pos), pos, transpose_a=False, transpose_b=True)
sim_matrix_2 = tf.multiply(4.0 * sq_tan_alpha * xaPxpTxn, tf.ones_like(xaPxpTxn, dtype=tf.float32) - tf.eye(batch_size, dtype=tf.float32))
similarity_matrix = sim_matrix_1 + sim_matrix_2
return similarity_matrix
def angular_loss(self, gt, anchor, pos, bs, degree=45, l2_norm=False, with_l2reg=False, with_npair=False):
gt = tf.reshape(gt, [-1])
if with_l2reg:
reg_anchor = tf.reduce_mean(tf.reduce_sum(tf.square(anchor), 1))
reg_positive = tf.reduce_mean(tf.reduce_sum(tf.square(pos), 1))
l2loss = tf.multiply(0.25 * 0.002, reg_anchor + reg_positive, name='l2loss_angular')
else:
l2loss = 0.0
## l2_normalize
if l2_norm:
anchor = tf.nn.l2_normalize(anchor, axis=1)
pos = tf.nn.l2_normalize(pos, axis=1)
alpha = np.deg2rad(degree)
sq_tan_alpha = np.tan(alpha) ** 2
batch_size = bs // 2
# 2(1+(tan(alpha))^2 * xaTxp)
xaTxp = tf.matmul(anchor, pos, transpose_a=False, transpose_b=True)
sim_matrix_1 = tf.multiply(2.0 * (1.0 + sq_tan_alpha) * xaTxp, tf.eye(batch_size, dtype=tf.float32))
# 4((tan(alpha))^2(xa + xp)Txn
xaPxpTxn = tf.matmul((anchor + pos), pos, transpose_a=False, transpose_b=True)
sim_matrix_2 = tf.multiply(4.0 * sq_tan_alpha * xaPxpTxn, tf.ones_like(xaPxpTxn, dtype=tf.float32) - tf.eye(batch_size, dtype=tf.float32))
# similarity_matrix
if with_npair:
print('\nangular with nested npair loss\n')
sim_matrix_3 = xaTxp
else:
sim_matrix_3 = 0.0
similarity_matrix = sim_matrix_1 + sim_matrix_2 + sim_matrix_3
# do softmax cross-entropy
lshape = tf.shape(gt)
labels = tf.reshape(gt, [lshape[0], 1])
labels_remapped = tf.to_float(tf.equal(labels, tf.transpose(labels)))
labels_remapped /= tf.reduce_sum(labels_remapped, 1, keepdims=True)
xent_loss = tf.nn.softmax_cross_entropy_with_logits(logits=similarity_matrix, labels=labels_remapped)
xent_loss = tf.reduce_mean(xent_loss, name='xentropy_angular')
return l2loss + xent_loss
def symm_angular_loss(self, gt, anchor, pos, bs, degree=45, l2_norm=False, with_l2reg=False):
gt = tf.reshape(gt, [-1])
if with_l2reg:
reg_anchor = tf.reduce_mean(tf.reduce_sum(tf.square(anchor), 1))
reg_positive = tf.reduce_mean(tf.reduce_sum(tf.square(pos), 1))
l2loss = tf.multiply(0.25 * 0.002, reg_anchor + reg_positive, name='l2loss_angular')
else:
l2loss = 0.0
## l2_normalize
if l2_norm:
anchor = tf.nn.l2_normalize(anchor, axis=1)
pos = tf.nn.l2_normalize(pos, axis=1)
alpha = np.deg2rad(degree)
sq_tan_alpha = np.tan(alpha) ** 2
batch_size = bs // 2
## get symm vectors
sym1 = self.tf_get_symmetric_point(anchor, pos)
sym2 = self.tf_get_symmetric_point(pos, anchor)
sim_org = tf.expand_dims(self.get_angular_sim_mat(anchor, pos, sq_tan_alpha, batch_size), axis=-1)
sim_1 = tf.expand_dims(self.get_angular_sim_mat(anchor, sym1, sq_tan_alpha, batch_size), axis=-1)
sim_2 = tf.expand_dims(self.get_angular_sim_mat(anchor, sym2, sq_tan_alpha, batch_size), axis=-1)
sim_3 = tf.expand_dims(self.get_angular_sim_mat(pos, anchor, sq_tan_alpha, batch_size), axis=-1)
sim_4 = tf.expand_dims(self.get_angular_sim_mat(pos, sym1, sq_tan_alpha, batch_size), axis=-1)
sim_5 = tf.expand_dims(self.get_angular_sim_mat(pos, sym2, sq_tan_alpha, batch_size), axis=-1)
sim_6 = tf.expand_dims(self.get_angular_sim_mat(sym1, pos, sq_tan_alpha, batch_size), axis=-1)
sim_7 = tf.expand_dims(self.get_angular_sim_mat(sym1, anchor, sq_tan_alpha, batch_size), axis=-1)
sim_8 = tf.expand_dims(self.get_angular_sim_mat(sym1, sym2, sq_tan_alpha, batch_size), axis=-1)
sim_9 = tf.expand_dims(self.get_angular_sim_mat(sym2, pos, sq_tan_alpha, batch_size), axis=-1)
sim_10 = tf.expand_dims(self.get_angular_sim_mat(sym2, anchor, sq_tan_alpha, batch_size), axis=-1)
sim_11 = tf.expand_dims(self.get_angular_sim_mat(sym2, sym1, sq_tan_alpha, batch_size), axis=-1)
sim_concat = tf.concat([sim_org, sim_1, sim_2, sim_3, sim_4, sim_5, sim_6, sim_7, sim_8, sim_9, sim_10, sim_11], axis=-1)
similarity_matrix = tf.reduce_max(sim_concat, axis=-1)
# do softmax cross-entropy
lshape = tf.shape(gt)
labels = tf.reshape(gt, [lshape[0], 1])
labels_remapped = tf.to_float(tf.equal(labels, tf.transpose(labels)))
labels_remapped /= tf.reduce_sum(labels_remapped, 1, keepdims=True)
xent_loss = tf.nn.softmax_cross_entropy_with_logits(logits=similarity_matrix, labels=labels_remapped)
xent_loss = tf.reduce_mean(xent_loss, name='xentropy_angular')
return l2loss + xent_loss, sim_concat