-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer_gan.py
265 lines (233 loc) · 12.2 KB
/
trainer_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import cv2
import copy
import math
import torch
import argparse
import torch.nn.functional as F
from collections import defaultdict
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
import register
from classification import utils
from gan.dataset import GANDataset
from gan.evaluation import calculate_frechet_distance
def back(img):
img_tran = copy.deepcopy(img)
img_tran[2] = (img[0] * 0.5 + 0.5) * 255
img_tran[1] = (img[1] * 0.5 + 0.5) * 255
img_tran[0] = (img[2] * 0.5 + 0.5) * 255
img_tran = torch.clamp(img_tran, min=0, max=255)
return img_tran.permute(1, 2, 0)
def cal_trn_imgs_FID_statistics():
fid_mean, fid_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
fid_trans = transforms.Compose([
transforms.Resize((299, 299)),
transforms.ToTensor(),
transforms.Normalize(mean=fid_mean, std=fid_std)
])
fid_data = GANDataset(configs["Dataset"]["trn_path"], configs["Dataset"]["vec_dim"], transforms=fid_trans)
fid_loader = DataLoader(fid_data,
batch_size=metric_configs["InceptionScore_FID"]["batch_size"],
shuffle=False,
num_workers=num_workers,
drop_last=False,
pin_memory=pin_memory)
device_id, _, device = utils.parse_device(model_configs["Train"]["device"])
feats = []
with torch.no_grad():
for data in fid_loader:
img = data["real"].to(device_id)
_, _, feat = inception3(img)
feats.append(feat)
feats = torch.cat(feats, dim=0)
mu = torch.mean(feats, dim=0)
sigma = torch.cov(feats.t())
return mu, sigma
def cal_metrics(mu_w, sigma_w):
metrics = {}
if "Metric" in model_configs["Train"]:
metric_configs = model_configs["Train"]["Metric"]
data_temp = GANDataset(configs["Dataset"]["trn_path"], configs["Dataset"]["vec_dim"], transforms=trn_trans)
data_temp = DataLoader(data_temp,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
drop_last=True,
pin_memory=pin_memory)
if "InceptionScore_FID" in metric_configs:
n_images = metric_configs["InceptionScore_FID"]["n_images"]
n_repeat = metric_configs["InceptionScore_FID"]["n_repeat"]
kl_div = torch.nn.KLDivLoss(reduction="batchmean", log_target=True)
resize_op = transforms.Resize(size=299)
scores, feats = [], []
with torch.no_grad():
for _ in range(n_repeat):
count = 0
preds = []
while count < n_images:
for data in data_temp:
model.set_input(data)
model.forward()
imgs_fake = model.imgs_fake
count += batch_size
x_ch0 = torch.unsqueeze(imgs_fake[:, 0], 1) * (0.5 / 0.229) + (0.5 - 0.485) / 0.229
x_ch1 = torch.unsqueeze(imgs_fake[:, 1], 1) * (0.5 / 0.224) + (0.5 - 0.456) / 0.224
x_ch2 = torch.unsqueeze(imgs_fake[:, 2], 1) * (0.5 / 0.225) + (0.5 - 0.406) / 0.225
imgs_fake = torch.cat((x_ch0, x_ch1, x_ch2), 1)
imgs_fake = resize_op(imgs_fake)
inception_batch = metric_configs["InceptionScore_FID"]["batch_size"]
for i in range(1, int(batch_size / inception_batch + 1)):
input_imgs = imgs_fake[int((i - 1) * inception_batch): int(i * inception_batch)]
pred, _, feat = inception3(input_imgs)
preds.append(pred.cpu().detach())
feats.append(feat.cpu().detach())
if count >= n_images:
break
preds = torch.cat(preds, dim=0)
preds = F.softmax(preds, dim=-1)
p_y = torch.mean(preds, dim=0)
preds = torch.log(preds)
p_y = torch.log(p_y).unsqueeze(0)
p_y = p_y.repeat(preds.size(0), 1)
score = math.exp(kl_div(preds, p_y))
scores.append(score)
metrics["IS"] = sum(scores) / len(scores)
# Compute FID score
feats = torch.cat(feats, dim=0)[:int(n_images * n_repeat)]
mu = torch.mean(feats, dim=0).numpy()
sigma = torch.cov(feats.t()).numpy()
mu_w = mu_w.cpu().detach().numpy()
sigma_w = sigma_w.cpu().detach().numpy()
metrics["FID"] = calculate_frechet_distance(mu, sigma, mu_w, sigma_w)
return metrics
if __name__ == "__main__":
# Kindly print the current path of your env.
# So you can quickly find the config file path error when it occurs.
print(f"The current path is: {os.getcwd()}")
# Load configs
parser = argparse.ArgumentParser(description="Trainer for GAN task.")
parser.add_argument('--config_file', type=str,
default="gan/configs/CIFAR10/DCGAN_CIFAR10_small.yaml",
help="Path of config file.")
config_file_path = parser.parse_args().config_file
configs = utils.load_yaml_file(config_file_path)
# Construct argumentation methods.
# You can use any argumentation methods supported by PyTorch
# simply setting the tag "Argumentation" in the config file.
# See config files in the "classification/configs" dict for example.
train_trans = []
if "Argumentation" in configs:
train_trans = utils.get_transformations(configs["Argumentation"])
if "mean" in configs["Argumentation"] and "std" in configs["Argumentation"]:
mean, std = configs["Argumentation"]["mean"], configs["Argumentation"]["std"]
else:
# If mean OR std is not specified, we use the default values to map the
# pixels to range [-1, 1]
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
trans = [
# You need to specify the image size by setting "h" and "w" in the config file
transforms.Resize((configs["Dataset"]["h"], configs["Dataset"]["w"])),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)
]
trn_trans = transforms.Compose(train_trans + trans)
tst_trans = transforms.Compose(trans)
# Set your dataset
trn_data = GANDataset(configs["Dataset"]["trn_path"], configs["Dataset"]["vec_dim"], transforms=trn_trans)
tst_data = GANDataset(configs["Dataset"]["tst_path"], configs["Dataset"]["vec_dim"], transforms=tst_trans)
# Construct the dataloader
num_workers = configs["Dataset"]["num_workers"] if "num_workers" in configs["Dataset"] else 1
pin_memory = configs["Dataset"]["pin_memory"] if "pin_memory" in configs["Dataset"] else False
batch_size = configs["Dataset"]["batch_size"]
trn_loader = DataLoader(trn_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
pin_memory=pin_memory)
tst_loader = DataLoader(tst_data,
batch_size=1,
shuffle=False,
num_workers=num_workers,
drop_last=True,
pin_memory=pin_memory)
# Construct the model.
# The Register can automatically load corresponding model
# using the model name once it was registered in the class definition.
# Each model class (under "classification/models") defines its own "make_network" method to parse the args.
# So you can see the model's "make_network" method to find out the valid args for the model.
model, model_configs = register.make_network(configs["Model"])
# Create output dict if it does not exist
output_path = os.path.join(model_configs["Train"]["output"])
if not os.path.exists(output_path):
os.makedirs(output_path)
# This is logger. All training info will be stored in it.
log = utils.Logger(os.path.join(output_path, "train.log"))
# Print model info
model.setup(configs, log)
model.train()
# Load Inception3 model if it is needed to compute evaluation metrics
best_metrics = {}
history_metrics = defaultdict(list)
inception3 = None
if "Metric" in model_configs["Train"]:
metric_configs = model_configs["Train"]["Metric"]
if "InceptionScore_FID" in metric_configs:
best_metrics["IS"] = 1
best_metrics["FID"] = float("inf")
from classification.models.inception3 import Inception3
inception3 = Inception3(mode="test")
inception3.load_state_dict(torch.load(metric_configs["InceptionScore_FID"]["inception3_path"]))
inception3 = utils.set_device(inception3, *utils.parse_device(model_configs["Train"]["device"]))
inception3.eval()
mu_w, sigma_w = cal_trn_imgs_FID_statistics()
iterations = 1
while iterations < model_configs["Train"]["iterations"]:
for data in trn_loader:
if iterations == model_configs["Train"]["iterations"]:
break
model.set_input(data)
model.optimize_parameters()
if iterations % model_configs["Train"]["print_freq"] == 0:
losses = model.get_current_losses()
for loss in losses.keys():
log.logger.info(f"The {loss} at {iterations}-th iteration: {losses[loss]}")
log.logger.info("\n")
if iterations % model_configs["Train"]["save_freq"] == 0:
model.eval()
save_to = os.path.join(output_path, str(iterations))
if not os.path.exists(save_to):
os.makedirs(save_to)
model.save_networks(save_to)
model.save_figures(save_to)
imgs = model.compute_info(tst_loader)
for name, img in imgs:
if not os.path.exists(os.path.join(output_path, str(iterations), "imgs")):
os.makedirs(os.path.join(output_path, str(iterations), "imgs"))
img_path = os.path.join(output_path, str(iterations), "imgs", f"{name}.jpg")
img = back(img.squeeze(0)).cpu().numpy()
cv2.imwrite(img_path, img)
if "Metric" in model_configs["Train"]:
metric_configs = model_configs["Train"]["Metric"]
if "InceptionScore_FID" in metric_configs:
metrics = cal_metrics(mu_w, sigma_w)
for k, v in metrics.items():
if k in ["IS"] and v > best_metrics[k]:
best_metrics[k] = v
elif k in ["FID"] and v < best_metrics[k]:
best_metrics[k] = v
history_metrics[k].append(v)
log.logger.info(f"The metric {k} at {iterations}-th is : {v}")
log.logger.info(f"The best metric {k} at {iterations}-th is: {best_metrics[k]}")
iteration_list = [i for i in range(len(history_metrics[k]))]
save_freq = model_configs["Train"]["save_freq"]
utils.draw_line_figure(data_list=[[iteration_list, history_metrics[k], "red", k]],
figsize=(20, 8),
dpi=80,
x_label=f"iterations x{save_freq}",
y_label=k,
legend_loc="upper right",
save_path=os.path.join(model_configs["Train"]["output"], f"{k}.jpg"))
model.train()
iterations += 1