forked from eyra/fertility-prediction-challenge
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.R
83 lines (63 loc) · 2.18 KB
/
run.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env Rscript
# This script calls submission.R.
# Add your method there.
# To test your submission use the following command:
# Rscript run.R PreFer_fake_data.csv PreFer_fake_background_data.csv
# Install required packages with Rscript packages.R
library(dplyr)
library(tidyr)
source("submission.R")
print_usage <- function() {
cat("Usage:\n")
cat(" Rscript script.R DATA_FILE BACKGROUND_DATA_FILE [--output OUTPUT_FILE]\n")
}
parse_arguments <- function() {
args <- list()
command_args <- commandArgs(trailingOnly = TRUE)
if (length(command_args) < 2) {
return(args)
}
args$data <- commandArgs(trailingOnly = TRUE)[1]
args$background_data <- commandArgs(trailingOnly = TRUE)[2]
args$output <- get_argument("--output")
return(args)
}
get_argument <- function(arg_name) {
if (arg_name %in% commandArgs(trailingOnly = TRUE)) {
arg_index <- which(commandArgs(trailingOnly = TRUE) == arg_name)
if (arg_index < length(commandArgs(trailingOnly = TRUE))) {
return(commandArgs(trailingOnly = TRUE)[arg_index + 1])
}
}
return(NULL)
}
parse_and_run_predict <- function(args) {
if (is.null(args$data)||is.null(args$background_data)) {
stop("Error: Please provide data and background_data argument for prediction.")
}
cat("Processing input data for prediction from:", args$data, " ", args$background_data, "\n")
if (!is.null(args$output)) {
cat("Output will be saved to:", args$output, "\n")
}
run_predict(args$data, args$background_data, args$output)
}
run_predict <- function(data_path, background_data_path, output=NULL) {
if (is.null(output)) {
output <- stdout()
}
df <- read.csv(data_path, encoding="latin1")
background_df <- read.csv(background_data_path, encoding="latin1")
predictions <- predict_outcomes(df, background_df)
# Check if predictions have the required format
stopifnot(ncol(predictions) == 2,
all(c("nomem_encr", "prediction") %in% colnames(predictions)))
# Write predictions to output file
write.csv(predictions, output, row.names = FALSE)
}
# Main function
main <- function() {
args <- parse_arguments()
parse_and_run_predict(args)
}
# Call main function
main()