forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhumanoid_amp.py
333 lines (261 loc) · 14.6 KB
/
humanoid_amp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright (c) 2021-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE..
from enum import Enum
import numpy as np
import torch
import os
from gym import spaces
from isaacgym import gymapi
from isaacgym import gymtorch
from isaacgymenvs.tasks.amp.humanoid_amp_base import HumanoidAMPBase, dof_to_obs
from isaacgymenvs.tasks.amp.utils_amp import gym_util
from isaacgymenvs.tasks.amp.utils_amp.motion_lib import MotionLib
from isaacgymenvs.utils.torch_jit_utils import quat_mul, to_torch, calc_heading_quat_inv, quat_to_tan_norm, my_quat_rotate
NUM_AMP_OBS_PER_STEP = 13 + 52 + 28 + 12 # [root_h, root_rot, root_vel, root_ang_vel, dof_pos, dof_vel, key_body_pos]
class HumanoidAMP(HumanoidAMPBase):
class StateInit(Enum):
Default = 0
Start = 1
Random = 2
Hybrid = 3
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
state_init = cfg["env"]["stateInit"]
self._state_init = HumanoidAMP.StateInit[state_init]
self._hybrid_init_prob = cfg["env"]["hybridInitProb"]
self._num_amp_obs_steps = cfg["env"]["numAMPObsSteps"]
assert(self._num_amp_obs_steps >= 2)
self._reset_default_env_ids = []
self._reset_ref_env_ids = []
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
motion_file = cfg['env'].get('motion_file', "amp_humanoid_backflip.npy")
motion_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets/amp/motions/" + motion_file)
self._load_motion(motion_file_path)
self.num_amp_obs = self._num_amp_obs_steps * NUM_AMP_OBS_PER_STEP
self._amp_obs_space = spaces.Box(np.ones(self.num_amp_obs) * -np.Inf, np.ones(self.num_amp_obs) * np.Inf)
self._amp_obs_buf = torch.zeros((self.num_envs, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float)
self._curr_amp_obs_buf = self._amp_obs_buf[:, 0]
self._hist_amp_obs_buf = self._amp_obs_buf[:, 1:]
self._amp_obs_demo_buf = None
return
def post_physics_step(self):
super().post_physics_step()
self._update_hist_amp_obs()
self._compute_amp_observations()
amp_obs_flat = self._amp_obs_buf.view(-1, self.get_num_amp_obs())
self.extras["amp_obs"] = amp_obs_flat
return
def get_num_amp_obs(self):
return self.num_amp_obs
@property
def amp_observation_space(self):
return self._amp_obs_space
def fetch_amp_obs_demo(self, num_samples):
return self.task.fetch_amp_obs_demo(num_samples)
def fetch_amp_obs_demo(self, num_samples):
dt = self.dt
motion_ids = self._motion_lib.sample_motions(num_samples)
if (self._amp_obs_demo_buf is None):
self._build_amp_obs_demo_buf(num_samples)
else:
assert(self._amp_obs_demo_buf.shape[0] == num_samples)
motion_times0 = self._motion_lib.sample_time(motion_ids)
motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps])
motion_times = np.expand_dims(motion_times0, axis=-1)
time_steps = -dt * np.arange(0, self._num_amp_obs_steps)
motion_times = motion_times + time_steps
motion_ids = motion_ids.flatten()
motion_times = motion_times.flatten()
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \
= self._motion_lib.get_motion_state(motion_ids, motion_times)
root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1)
amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos,
self._local_root_obs)
self._amp_obs_demo_buf[:] = amp_obs_demo.view(self._amp_obs_demo_buf.shape)
amp_obs_demo_flat = self._amp_obs_demo_buf.view(-1, self.get_num_amp_obs())
return amp_obs_demo_flat
def _build_amp_obs_demo_buf(self, num_samples):
self._amp_obs_demo_buf = torch.zeros((num_samples, self._num_amp_obs_steps, NUM_AMP_OBS_PER_STEP), device=self.device, dtype=torch.float)
return
def _load_motion(self, motion_file):
self._motion_lib = MotionLib(motion_file=motion_file,
num_dofs=self.num_dof,
key_body_ids=self._key_body_ids.cpu().numpy(),
device=self.device)
return
def reset_idx(self, env_ids):
super().reset_idx(env_ids)
self._init_amp_obs(env_ids)
return
def _reset_actors(self, env_ids):
if (self._state_init == HumanoidAMP.StateInit.Default):
self._reset_default(env_ids)
elif (self._state_init == HumanoidAMP.StateInit.Start
or self._state_init == HumanoidAMP.StateInit.Random):
self._reset_ref_state_init(env_ids)
elif (self._state_init == HumanoidAMP.StateInit.Hybrid):
self._reset_hybrid_state_init(env_ids)
else:
assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init))
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 0
self._terminate_buf[env_ids] = 0
return
def _reset_default(self, env_ids):
self._dof_pos[env_ids] = self._initial_dof_pos[env_ids]
self._dof_vel[env_ids] = self._initial_dof_vel[env_ids]
env_ids_int32 = env_ids.to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._initial_root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self._reset_default_env_ids = env_ids
return
def _reset_ref_state_init(self, env_ids):
num_envs = env_ids.shape[0]
motion_ids = self._motion_lib.sample_motions(num_envs)
if (self._state_init == HumanoidAMP.StateInit.Random
or self._state_init == HumanoidAMP.StateInit.Hybrid):
motion_times = self._motion_lib.sample_time(motion_ids)
elif (self._state_init == HumanoidAMP.StateInit.Start):
motion_times = np.zeros(num_envs)
else:
assert(False), "Unsupported state initialization strategy: {:s}".format(str(self._state_init))
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \
= self._motion_lib.get_motion_state(motion_ids, motion_times)
self._set_env_state(env_ids=env_ids,
root_pos=root_pos,
root_rot=root_rot,
dof_pos=dof_pos,
root_vel=root_vel,
root_ang_vel=root_ang_vel,
dof_vel=dof_vel)
self._reset_ref_env_ids = env_ids
self._reset_ref_motion_ids = motion_ids
self._reset_ref_motion_times = motion_times
return
def _reset_hybrid_state_init(self, env_ids):
num_envs = env_ids.shape[0]
ref_probs = to_torch(np.array([self._hybrid_init_prob] * num_envs), device=self.device)
ref_init_mask = torch.bernoulli(ref_probs) == 1.0
ref_reset_ids = env_ids[ref_init_mask]
if (len(ref_reset_ids) > 0):
self._reset_ref_state_init(ref_reset_ids)
default_reset_ids = env_ids[torch.logical_not(ref_init_mask)]
if (len(default_reset_ids) > 0):
self._reset_default(default_reset_ids)
return
def _init_amp_obs(self, env_ids):
self._compute_amp_observations(env_ids)
if (len(self._reset_default_env_ids) > 0):
self._init_amp_obs_default(self._reset_default_env_ids)
if (len(self._reset_ref_env_ids) > 0):
self._init_amp_obs_ref(self._reset_ref_env_ids, self._reset_ref_motion_ids,
self._reset_ref_motion_times)
return
def _init_amp_obs_default(self, env_ids):
curr_amp_obs = self._curr_amp_obs_buf[env_ids].unsqueeze(-2)
self._hist_amp_obs_buf[env_ids] = curr_amp_obs
return
def _init_amp_obs_ref(self, env_ids, motion_ids, motion_times):
dt = self.dt
motion_ids = np.tile(np.expand_dims(motion_ids, axis=-1), [1, self._num_amp_obs_steps - 1])
motion_times = np.expand_dims(motion_times, axis=-1)
time_steps = -dt * (np.arange(0, self._num_amp_obs_steps - 1) + 1)
motion_times = motion_times + time_steps
motion_ids = motion_ids.flatten()
motion_times = motion_times.flatten()
root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel, key_pos \
= self._motion_lib.get_motion_state(motion_ids, motion_times)
root_states = torch.cat([root_pos, root_rot, root_vel, root_ang_vel], dim=-1)
amp_obs_demo = build_amp_observations(root_states, dof_pos, dof_vel, key_pos,
self._local_root_obs)
self._hist_amp_obs_buf[env_ids] = amp_obs_demo.view(self._hist_amp_obs_buf[env_ids].shape)
return
def _set_env_state(self, env_ids, root_pos, root_rot, dof_pos, root_vel, root_ang_vel, dof_vel):
self._root_states[env_ids, 0:3] = root_pos
self._root_states[env_ids, 3:7] = root_rot
self._root_states[env_ids, 7:10] = root_vel
self._root_states[env_ids, 10:13] = root_ang_vel
self._dof_pos[env_ids] = dof_pos
self._dof_vel[env_ids] = dof_vel
env_ids_int32 = env_ids.to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
return
def _update_hist_amp_obs(self, env_ids=None):
if (env_ids is None):
for i in reversed(range(self._amp_obs_buf.shape[1] - 1)):
self._amp_obs_buf[:, i + 1] = self._amp_obs_buf[:, i]
else:
for i in reversed(range(self._amp_obs_buf.shape[1] - 1)):
self._amp_obs_buf[env_ids, i + 1] = self._amp_obs_buf[env_ids, i]
return
def _compute_amp_observations(self, env_ids=None):
key_body_pos = self._rigid_body_pos[:, self._key_body_ids, :]
if (env_ids is None):
self._curr_amp_obs_buf[:] = build_amp_observations(self._root_states, self._dof_pos, self._dof_vel, key_body_pos,
self._local_root_obs)
else:
self._curr_amp_obs_buf[env_ids] = build_amp_observations(self._root_states[env_ids], self._dof_pos[env_ids],
self._dof_vel[env_ids], key_body_pos[env_ids],
self._local_root_obs)
return
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def build_amp_observations(root_states, dof_pos, dof_vel, key_body_pos, local_root_obs):
# type: (Tensor, Tensor, Tensor, Tensor, bool) -> Tensor
root_pos = root_states[:, 0:3]
root_rot = root_states[:, 3:7]
root_vel = root_states[:, 7:10]
root_ang_vel = root_states[:, 10:13]
root_h = root_pos[:, 2:3]
heading_rot = calc_heading_quat_inv(root_rot)
if (local_root_obs):
root_rot_obs = quat_mul(heading_rot, root_rot)
else:
root_rot_obs = root_rot
root_rot_obs = quat_to_tan_norm(root_rot_obs)
local_root_vel = my_quat_rotate(heading_rot, root_vel)
local_root_ang_vel = my_quat_rotate(heading_rot, root_ang_vel)
root_pos_expand = root_pos.unsqueeze(-2)
local_key_body_pos = key_body_pos - root_pos_expand
heading_rot_expand = heading_rot.unsqueeze(-2)
heading_rot_expand = heading_rot_expand.repeat((1, local_key_body_pos.shape[1], 1))
flat_end_pos = local_key_body_pos.view(local_key_body_pos.shape[0] * local_key_body_pos.shape[1], local_key_body_pos.shape[2])
flat_heading_rot = heading_rot_expand.view(heading_rot_expand.shape[0] * heading_rot_expand.shape[1],
heading_rot_expand.shape[2])
local_end_pos = my_quat_rotate(flat_heading_rot, flat_end_pos)
flat_local_key_pos = local_end_pos.view(local_key_body_pos.shape[0], local_key_body_pos.shape[1] * local_key_body_pos.shape[2])
dof_obs = dof_to_obs(dof_pos)
obs = torch.cat((root_h, root_rot_obs, local_root_vel, local_root_ang_vel, dof_obs, dof_vel, flat_local_key_pos), dim=-1)
return obs