-
Notifications
You must be signed in to change notification settings - Fork 354
/
Copy pathbaselines_legacy.py
138 lines (120 loc) · 5.25 KB
/
baselines_legacy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import tensorflow.contrib.layers as layers
import tensorflow as tf
import os
class TfInput(object):
def __init__(self, name="(unnamed)"):
"""Generalized Tensorflow placeholder. The main differences are:
- possibly uses multiple placeholders internally and returns multiple values
- can apply light postprocessing to the value feed to placeholder.
"""
self.name = name
def get(self):
"""Return the tf variable(s) representing the possibly postprocessed value
of placeholder(s).
"""
raise NotImplemented()
def make_feed_dict(data):
"""Given data input it to the placeholder(s)."""
raise NotImplemented()
class PlaceholderTfInput(TfInput):
def __init__(self, placeholder):
"""Wrapper for regular tensorflow placeholder."""
super().__init__(placeholder.name)
self._placeholder = placeholder
def get(self):
return self._placeholder
def make_feed_dict(self, data):
return {self._placeholder: data}
class BatchInput(PlaceholderTfInput):
def __init__(self, shape, dtype=tf.float32, name=None):
"""Creates a placeholder for a batch of tensors of a given shape and dtype
Parameters
----------
shape: [int]
shape of a single elemenet of the batch
dtype: tf.dtype
number representation used for tensor contents
name: str
name of the underlying placeholder
"""
super().__init__(tf.placeholder(dtype, [None] + list(shape), name=name))
def _mlp(hiddens, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = input_
for hidden in hiddens:
out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
if layer_norm:
out = layers.layer_norm(out, center=True, scale=True)
out = tf.nn.relu(out)
q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return q_out
def mlp(hiddens=[], layer_norm=False):
"""This model takes as input an observation and returns values of all actions.
Parameters
----------
hiddens: [int]
list of sizes of hidden layers
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------
q_func: function
q_function for DQN algorithm.
"""
return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
def _cnn_to_mlp(convs, hiddens, dueling, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = input_
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
num_outputs=num_outputs,
kernel_size=kernel_size,
stride=stride,
activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
action_out = conv_out
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = conv_out
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
"""This model takes as input an observation and returns values of all actions.
Parameters
----------
convs: [(int, int, int)]
list of convolutional layers in form of
(num_outputs, kernel_size, stride)
hiddens: [int]
list of sizes of hidden layers
dueling: bool
if true double the output MLP to compute a baseline
for action scores
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------
q_func: function
q_function for DQN algorithm.
"""
return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)