forked from timothybrooks/instruct-pix2pix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedit_dataset.py
121 lines (96 loc) · 4.11 KB
/
edit_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import annotations
import json
import math
from pathlib import Path
from typing import Any
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
from torch.utils.data import Dataset
class EditDataset(Dataset):
def __init__(
self,
path: str,
split: str = "train",
splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
min_resize_res: int = 256,
max_resize_res: int = 256,
crop_res: int = 256,
flip_prob: float = 0.0,
):
assert split in ("train", "val", "test")
assert sum(splits) == 1
self.path = path
self.min_resize_res = min_resize_res
self.max_resize_res = max_resize_res
self.crop_res = crop_res
self.flip_prob = flip_prob
with open(Path(self.path, "seeds.json")) as f:
self.seeds = json.load(f)
split_0, split_1 = {
"train": (0.0, splits[0]),
"val": (splits[0], splits[0] + splits[1]),
"test": (splits[0] + splits[1], 1.0),
}[split]
idx_0 = math.floor(split_0 * len(self.seeds))
idx_1 = math.floor(split_1 * len(self.seeds))
self.seeds = self.seeds[idx_0:idx_1]
def __len__(self) -> int:
return len(self.seeds)
def __getitem__(self, i: int) -> dict[str, Any]:
name, seeds = self.seeds[i]
propt_dir = Path(self.path, name)
seed = seeds[torch.randint(0, len(seeds), ()).item()]
with open(propt_dir.joinpath("prompt.json")) as fp:
prompt = json.load(fp)["edit"]
image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))
image_1 = Image.open(propt_dir.joinpath(f"{seed}_1.jpg"))
reize_res = torch.randint(self.min_resize_res, self.max_resize_res + 1, ()).item()
image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
image_1 = image_1.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
image_1 = rearrange(2 * torch.tensor(np.array(image_1)).float() / 255 - 1, "h w c -> c h w")
crop = torchvision.transforms.RandomCrop(self.crop_res)
flip = torchvision.transforms.RandomHorizontalFlip(float(self.flip_prob))
image_0, image_1 = flip(crop(torch.cat((image_0, image_1)))).chunk(2)
return dict(edited=image_1, edit=dict(c_concat=image_0, c_crossattn=prompt))
class EditDatasetEval(Dataset):
def __init__(
self,
path: str,
split: str = "train",
splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
res: int = 256,
):
assert split in ("train", "val", "test")
assert sum(splits) == 1
self.path = path
self.res = res
with open(Path(self.path, "seeds.json")) as f:
self.seeds = json.load(f)
split_0, split_1 = {
"train": (0.0, splits[0]),
"val": (splits[0], splits[0] + splits[1]),
"test": (splits[0] + splits[1], 1.0),
}[split]
idx_0 = math.floor(split_0 * len(self.seeds))
idx_1 = math.floor(split_1 * len(self.seeds))
self.seeds = self.seeds[idx_0:idx_1]
def __len__(self) -> int:
return len(self.seeds)
def __getitem__(self, i: int) -> dict[str, Any]:
name, seeds = self.seeds[i]
propt_dir = Path(self.path, name)
seed = seeds[torch.randint(0, len(seeds), ()).item()]
with open(propt_dir.joinpath("prompt.json")) as fp:
prompt = json.load(fp)
edit = prompt["edit"]
input_prompt = prompt["input"]
output_prompt = prompt["output"]
image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))
reize_res = torch.randint(self.res, self.res + 1, ()).item()
image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
return dict(image_0=image_0, input_prompt=input_prompt, edit=edit, output_prompt=output_prompt)