-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
365 lines (312 loc) · 10.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import os
import codecs
import random
import socket
import json
import numpy as np
import tensorflow as tf
import tensorflow.contrib as tc
import main as graph
from utils.apply_bpe import BPE
from vocab import Vocab
from utils import dtype, util
logger = tf.get_logger()
logger.propagate = False
# define global initial parameters
global_params = tc.training.HParams(
# whether share source and target word embedding
shared_source_target_embedding=False,
# whether share target and softmax word embedding
shared_target_softmax_embedding=True,
# sign embedding yaml config
sign_cfg='',
# sign gloss dict path
gloss_path='',
smkd_model_path='',
# separately encoding textual and sign video until `sep_layer`
sep_layer=0,
# source/target BPE codes and dropout rate => used for BPE-dropout
src_codes='',
tgt_codes='',
src_bpe_dropout=0.,
tgt_bpe_dropout=0.,
bpe_dropout_stochastic_rate=0.6,
# decoding maximum length: source length + decode_length
decode_length=50,
# beam size
beam_size=4,
# length penalty during beam search
decode_alpha=0.6,
# noise beam search with gumbel
enable_noise_beam_search=False,
# beam search temperature, sharp or flat prediction
beam_search_temperature=1.0,
# return top elements, not used
top_beams=1,
# remove BPE symbols at evaluation
remove_bpe=False,
# ctc setting for tf's ctc loss, handeling invalid paths
ctc_repeated=False,
# whether add ctc-loss during training
ctc_enable=False,
# ctc loss factor, corresponding to \alpha in Eq. (3)
ctc_alpha=0.3,
# learning rate setup
# warmup steps: start point for learning rate stop increasing
warmup_steps=400,
# initial learning rate
lrate=1e-5,
# minimum learning rate
min_lrate=0.0,
# maximum learning rate
max_lrate=1.0,
# initialization
# type of initializer
initializer="uniform",
# initializer range control
initializer_gain=0.08,
# parameters for transformer
# encoder and decoder hidden size
hidden_size=512,
# source and target embedding size
embed_size=512,
# sign video feature size
img_feature_size=2048,
# sign video duplicate size
img_aug_size=11,
# ffn filter size for transformer
filter_size=2048,
# dropout value
dropout=0.1,
relu_dropout=0.1,
residual_dropout=0.1,
# scope name
scope_name="transformer",
# attention dropout
attention_dropout=0.1,
# the number of encoder layers, valid for deep nmt
num_encoder_layer=6,
# the number of decoder layers, valid for deep nmt
num_decoder_layer=6,
# the number of attention heads
num_heads=8,
# allowed maximum sentence length
max_len=100,
max_img_len=512,
eval_max_len=1000,
# constant batch size at 'batch' mode for batch-based batching
batch_size=80,
# constant token size at 'token' mode for token-based batching
token_size=3000,
# token or batch-based data iterator
batch_or_token='token',
# batch size for decoding, i.e. number of source sentences decoded at the same time
eval_batch_size=32,
# whether shuffle batches during training
shuffle_batch=True,
# whether use multiprocessing deal with data reading, default true
process_num=1,
# buffer size controls the number of sentences read in one time,
buffer_size=100,
# a unique queue in multi-thread reading process
input_queue_size=100,
output_queue_size=100,
# data leak buffer threshold
data_leak_ratio=0.5,
# source vocabulary
src_vocab_file="",
# target vocabulary
tgt_vocab_file="",
# source train file
src_train_file="",
# target train file
tgt_train_file="",
# sign video train file
img_train_file="",
# source development file
src_dev_file="",
# target development file
tgt_dev_file="",
# sign video dev file
img_dev_file="",
# source test file
src_test_file="",
# target test file
tgt_test_file="",
# sign video test file
img_test_file="",
# working directory
output_dir="",
# test output file
test_output="",
# pretrained modeling
pretrained_model="",
# adam optimizer hyperparameters
beta1=0.9,
beta2=0.999,
epsilon=1e-9,
# gradient clipping value
clip_grad_norm=5.0,
# gradient norm upper bound, avoid wired large gnorm, only works under safe-nan mode
gnorm_upper_bound=1e20,
# early stopping
estop_patience=100,
# label smoothing value
label_smooth=0.1,
# maximum epochs
epoches=10,
# the effective batch size is: batch/token size * update_cycle * num_gpus
# sequential update cycle
update_cycle=1,
# the available gpus
gpus=[0],
# enable safely handle nan (only helpful for some wired large/nan norms)
safe_nan=False,
# enable training deep transformer
deep_transformer_init=False,
# which task to evaluate, supporting sign2text, sign2gloss, gloss2text
eval_task="sign2text",
# print information every disp_freq training steps
disp_freq=100,
# evaluate on the development file every eval_freq steps
eval_freq=10000,
# save the model parameters every save_freq steps
save_freq=5000,
# print sample translations every sample_freq steps
sample_freq=1000,
# saved checkpoint number
checkpoints=5,
best_checkpoints=1,
# the maximum training steps, program with stop if epochs or max_training_steps is meet
max_training_steps=1000,
# number of threads for threaded reading, seems useless
nthreads=6,
# random control, not so well for tensorflow.
random_seed=1234,
# whether or not train from checkpoint
train_continue=True,
# support for float32/float16
default_dtype="float32",
dtype_epsilon=1e-8,
dtype_inf=1e8,
loss_scale=1.0,
)
flags = tf.flags
flags.DEFINE_string("config", "", "Additional Mergable Parameters")
flags.DEFINE_string("parameters", "", "Command Line Refinable Parameters")
flags.DEFINE_string("name", "model", "Description of the training process for distinguishing")
flags.DEFINE_string("mode", "train", "train or test or ensemble")
# saving model configuration
def save_parameters(params, output_dir):
if not tf.gfile.Exists(output_dir):
tf.gfile.MkDir(output_dir)
param_name = os.path.join(output_dir, "param.json")
with tf.gfile.Open(param_name, "w") as writer:
tf.logging.info("Saving parameters into {}"
.format(param_name))
writer.write(params.to_json())
# load model configuration
def load_parameters(params, output_dir):
param_name = os.path.join(output_dir, "param.json")
param_name = os.path.abspath(param_name)
if tf.gfile.Exists(param_name):
tf.logging.info("Loading parameters from {}"
.format(param_name))
with tf.gfile.Open(param_name, 'r') as reader:
json_str = reader.readline()
params.parse_json(json_str)
return params
class Recorder(object):
def load_from_json(self, file_name):
tf.logging.info("Loading recoder file from {}".format(file_name))
with open(file_name, 'r', encoding='utf-8') as fh:
self.__dict__.update(json.load(fh))
def save_to_json(self, file_name):
tf.logging.info("Saving recorder file into {}".format(file_name))
with open(file_name, 'w', encoding='utf-8') as fh:
json.dump(self.__dict__, fh, indent=2)
# build training process recorder
def setup_recorder(params):
recorder = Recorder()
# for early stopping
recorder.bad_counter = 0 # start from 0
recorder.estop = False
recorder.lidx = -1 # local data index
recorder.step = 0 # global step, start from 0
recorder.epoch = 1 # epoch number, start from 1
recorder.lrate = params.lrate # running learning rate
recorder.history_scores = []
recorder.valid_script_scores = []
# trying to load saved recorder
record_path = os.path.join(params.output_dir, "record.json")
record_path = os.path.abspath(record_path)
if tf.gfile.Exists(record_path):
recorder.load_from_json(record_path)
params.add_hparam('recorder', recorder)
return params
# print model configuration
def print_parameters(params):
tf.logging.info("The Used Configuration:")
for k, v in params.values().items():
tf.logging.info("%s\t%s", k.ljust(20), str(v).ljust(20))
tf.logging.info("")
def main(_):
# set up logger
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info("Welcome Using Zero :)")
pid = os.getpid()
tf.logging.info("Your pid is {0} and use the following command to force kill your running:\n"
"'pkill -9 -P {0}; kill -9 {0}'".format(pid))
# On clusters, this could tell which machine you are running
tf.logging.info("Your running machine name is {}".format(socket.gethostname()))
params = global_params
# try loading parameters
# priority: command line > saver > default
params.parse(flags.FLAGS.parameters)
if os.path.exists(flags.FLAGS.config):
params.override_from_dict(eval(open(flags.FLAGS.config).read()))
params = load_parameters(params, params.output_dir)
# override
if os.path.exists(flags.FLAGS.config):
params.override_from_dict(eval(open(flags.FLAGS.config).read()))
params.parse(flags.FLAGS.parameters)
# set up random seed
random.seed(params.random_seed)
np.random.seed(params.random_seed)
tf.set_random_seed(params.random_seed)
# loading vocabulary
tf.logging.info("Begin Loading Vocabulary")
start_time = time.time()
params.src_vocab = Vocab(params.src_vocab_file)
params.tgt_vocab = Vocab(params.tgt_vocab_file)
params.src_bpe = BPE(codecs.open(params.src_codes, encoding='utf-8'), -1, '@@', None, None)
params.tgt_bpe = BPE(codecs.open(params.tgt_codes, encoding='utf-8'), -1, '@@', None, None)
tf.logging.info("End Loading Vocabulary, Source Vocab Size {}, "
"Target Vocab Size {}, within {} seconds"
.format(params.src_vocab.size(), params.tgt_vocab.size(), time.time() - start_time))
# print parameters
print_parameters(params)
# set up the default datatype
dtype.set_floatx(params.default_dtype)
dtype.set_epsilon(params.dtype_epsilon)
dtype.set_inf(params.dtype_inf)
mode = flags.FLAGS.mode
if mode == "train":
# save parameters
save_parameters(params, params.output_dir)
# load the recorder
params = setup_recorder(params)
graph.train(params)
elif mode == "test":
graph.evaluate(params)
elif mode == "infer":
graph.inference(params)
else:
tf.logging.error("Invalid mode: {}".format(mode))
if __name__ == '__main__':
tf.app.run()