-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevalu.py
184 lines (143 loc) · 5.52 KB
/
evalu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import tensorflow as tf
from utils import queuer, util, metric
def decode_target_token(id_seq, vocab):
"""Convert sequence ids into tokens"""
valid_id_seq = []
for tok_id in id_seq:
if tok_id == vocab.eos() \
or tok_id == vocab.pad():
break
valid_id_seq.append(tok_id)
return vocab.to_tokens(valid_id_seq)
def decode_hypothesis(seqs, scores, params, mask=None):
"""Generate decoded sequence from seqs"""
if mask is None:
mask = [1.] * len(seqs)
hypoes = []
marks = []
for _seqs, _scores, _m in zip(seqs, scores, mask):
if _m < 1.: continue
for seq, score in zip(_seqs, _scores):
# Temporarily, Use top-1 decoding
best_seq = seq[0]
best_score = score[0]
hypo = decode_target_token(best_seq, params.tgt_vocab)
mark = best_score
hypoes.append(hypo)
marks.append(mark)
return hypoes, marks
def decoding(session, features, out_seqs, out_scores, dataset, params):
"""Performing decoding with exising information"""
translations = []
scores = []
indices = []
eval_queue = queuer.EnQueuer(
dataset.batcher(params.eval_batch_size,
buffer_size=params.buffer_size,
shuffle=False,
train=False),
lambda x: x,
worker_processes_num=params.process_num,
input_queue_size=params.input_queue_size,
output_queue_size=params.output_queue_size,
)
def _predict_one_batch(_data_on_gpu):
feed_dicts = {}
_step_indices = []
for fidx, shard_data in enumerate(_data_on_gpu):
# define feed_dict
_feed_dict = {
features[fidx]["image"]: shard_data['img'],
features[fidx]["mask"]: shard_data['mask'],
features[fidx]["source"]: shard_data['src'],
}
feed_dicts.update(_feed_dict)
# collect data indices
_step_indices.extend(shard_data['index'])
# pick up valid outputs
data_size = len(_data_on_gpu)
valid_out_seqs = out_seqs[:data_size]
valid_out_scores = out_scores[:data_size]
_decode_seqs, _decode_scores = session.run(
[valid_out_seqs, valid_out_scores], feed_dict=feed_dicts)
_step_translations, _step_scores = decode_hypothesis(
_decode_seqs, _decode_scores, params
)
return _step_translations, _step_scores, _step_indices
very_begin_time = time.time()
data_on_gpu = []
for bidx, data in enumerate(eval_queue):
if bidx == 0:
# remove the data reading time
very_begin_time = time.time()
data_on_gpu.append(data)
# use multiple gpus, and data samples is not enough
if len(params.gpus) > 0 and len(data_on_gpu) < len(params.gpus):
continue
start_time = time.time()
step_outputs = _predict_one_batch(data_on_gpu)
data_on_gpu = []
translations.extend(step_outputs[0])
scores.extend(step_outputs[1])
indices.extend(step_outputs[2])
tf.logging.info(
"Decoding Batch {} using {:.3f} s, translating {} "
"sentences using {:.3f} s in total".format(
bidx, time.time() - start_time,
len(translations), time.time() - very_begin_time
)
)
if len(data_on_gpu) > 0:
start_time = time.time()
step_outputs = _predict_one_batch(data_on_gpu)
translations.extend(step_outputs[0])
scores.extend(step_outputs[1])
indices.extend(step_outputs[2])
tf.logging.info(
"Decoding Batch {} using {:.3f} s, translating {} "
"sentences using {:.3f} s in total".format(
'final', time.time() - start_time,
len(translations), time.time() - very_begin_time
)
)
return translations, scores, indices
def eval_metric(trans, target_file, indices=None, remove_bpe=False):
"""BLEU Evaluate """
target_valid_files = util.fetch_valid_ref_files(target_file)
if target_valid_files is None:
return 0.0
if indices is not None:
trans = [data[1] for data in sorted(zip(indices, trans), key=lambda x: x[0])]
references = []
for ref_file in target_valid_files:
cur_refs = tf.gfile.Open(ref_file).readlines()
if remove_bpe:
cur_refs = [line.replace("@@ ", "") for line in cur_refs]
cur_refs = [line.strip().split() for line in cur_refs]
references.append(cur_refs)
references = list(zip(*references))
if remove_bpe:
new_trans = []
for line in trans:
line = (' '.join(line)).replace('@@ ', '').split()
new_trans.append(line)
trans = new_trans
return metric.bleu(trans, references)
def dump_tanslation(tranes, output, indices=None):
"""save translation"""
if indices is not None:
tranes = [data[1] for data in
sorted(zip(indices, tranes), key=lambda x: x[0])]
with tf.gfile.Open(output, 'w') as writer:
for hypo in tranes:
if isinstance(hypo, list):
writer.write(' '.join(hypo) + "\n")
else:
writer.write(str(hypo) + "\n")
tf.logging.info("Saving translations into {}".format(output))