-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_path.py
902 lines (730 loc) · 45.9 KB
/
find_path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
from graph_embeddings import Embeddings
import numpy as np
import pandas as pd
from scipy import spatial
from scipy.spatial import distance
from collections import defaultdict
from assign_nodes import unique_nodes
import re
from tqdm import tqdm
import copy
from create_graph import create_graph,create_igraph_graph,create_graph
from graph import KnowledgeGraph
from visualize_subgraph import output_visualization
from tqdm import tqdm
#Go from label to entity_uri (for PKL original labels file) or Label to Idenifier (for microbiome PKL)
# kg_type adds functionality for kg-covid19
def get_uri(labels,value, kg_type,s):
manually_chosen_uris = {}
try:
uri = manually_chosen_uris[value]
return uri
except KeyError:
#Added since I know what this once should be, otherwise would have to automatically select this for every subgraph
if value == 'depressive disorder' and kg_type == 'kg-covid19':
uri = 'MONDO:0002050'
else:
try:
if len(labels.loc[labels['label'] == value,'entity_uri']) == 1:
uri = labels.loc[labels['label'] == value,'entity_uri'].values[0]
elif len(labels.loc[labels['label'] == value,'entity_uri']) > 1:
l = labels.loc[labels['label'] == value,'entity_uri']
uri = [i for i in l if 'MONDO' in i][0]
'''
if 'disorder' in value or 'disease' in value:
l = [i for i in (labels.loc[labels['label'] == value,'entity_uri'])]
uri = [i for i in l if 'MONDO' in i][0]
'''
#For manual selection
if (len(uri) == 0) and (value not in manually_chosen_uris.keys()):
print(value)
print(labels.loc[labels['label'] == value,'entity_uri'])
uri = input("Please input the ID/uri of the desired node: ")
manually_chosen_uris[value] = uri
except IndexError:
if kg_type == 'kg-covid19':
uri = s.loc[s['target_label'] == value,'target_id'].values[0].split("/")[-1].split('>')[0].replace("_",":")
return uri
def get_label(labels,value,kg_type):
if kg_type == 'pkl':
label = labels.loc[labels['entity_uri'] == value,'label'].values[0]
if kg_type != 'pkl':
label = labels.loc[labels['entity_uri'] == value,'label'].values[0]
return label
def get_key(dictionary,value):
for key, val in dictionary.items():
if val == value:
return key
def define_path_triples(g_nodes,triples_df,path_nodes,search_type):
#Dict to store all dataframes of shortest mechanisms for this node pair
mechanism_dfs = {}
#Keep track of # of mechanisms generated for this node pair in file name for all shortest paths
count = 1
#When there is no connection in graph, path_nodes will equal 1 ([[]]) - for all shortest path search, and [] for all simple path search
if len(path_nodes) == 0:
pass
elif len(path_nodes[0]) != 0:
for p in range(len(path_nodes)):
#Dataframe to append each triple to
full_df = pd.DataFrame()
n1 = g_nodes[path_nodes[p][0]]
for i in range(1,len(path_nodes[p])):
n2 = g_nodes[path_nodes[p][i]]
if search_type.lower() == 'all':
#Try first direction which is n1 --> n2
df = triples_df.loc[(triples_df['subject'] == n1) & (triples_df['object'] == n2)]
full_df = pd.concat([full_df,df])
if len(df) == 0:
#If no results, try second direction which is n2 --> n1
df = triples_df.loc[(triples_df['object'] == n1) & (triples_df['subject'] == n2)]
full_df = pd.concat([full_df,df])
elif search_type.lower() == 'out':
#Only try direction n1 --> n2
df = triples_df.loc[(triples_df['subject'] == n1) & (triples_df['object'] == n2)]
full_df = pd.concat([full_df,df])
full_df = full_df.reset_index(drop=True)
n1 = n2
#For all shortest path search
if len(path_nodes) > 1:
#Generate df
full_df.columns = ['S','P','O']
mechanism_dfs['mech#_'+str(count)] = full_df
count += 1
#For shortest path search
if len(path_nodes) == 1 or len(path_nodes) == 0:
#Generate df
full_df.columns = ['S','P','O']
return full_df
#Return dictionary if all shortest paths search
if len(path_nodes) > 1:
return mechanism_dfs
def find_all_shortest_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type, kg_type,s):
print('Searching for all shortest paths between ',start_node,' and ',end_node)
node1 = get_uri(labels_all,start_node, kg_type,s)
node2 = get_uri(labels_all,end_node, kg_type,s)
#Add weights if specified
if weights:
w = graph.es["weight"]
else:
w = None
#Dict to store all dataframes of shortest mechanisms for this node pair
mechanism_dfs = {}
#list of nodes
path_nodes = graph.get_all_shortest_paths(v=node1, to=node2, weights=w, mode=search_type)
#Remove duplicates for bidirectional nodes, only matters when search type=all for mode
path_nodes = list(set(tuple(x) for x in path_nodes))
path_nodes = [list(tup) for tup in path_nodes]
#Dictionary of all triples that are shortest paths, not currently used
mechanism_dfs = define_path_triples(g_nodes,triples_df,path_nodes,search_type)
return path_nodes
def find_all_simple_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type, kg_type,s ,length):
node1 = get_uri(labels_all,start_node, kg_type,s)
node2 = get_uri(labels_all,end_node, kg_type,s)
#Add weights if specified
if weights:
w = graph.es["weight"]
else:
w = None
#Dict to store all dataframes of shortest mechanisms for this node pair
mechanism_dfs = {}
#list of nodes
path_nodes = graph.get_all_simple_paths(v=node1, to=node2, mode=search_type,cutoff=length)
#Remove duplicates for bidirectional nodes, only matters when search type=all for mode
path_nodes = list(set(tuple(x) for x in path_nodes))
path_nodes = [list(tup) for tup in path_nodes]
#Dictionary of all triples that are shortest paths, not currently used
mechanism_dfs = define_path_triples(g_nodes,triples_df,path_nodes,search_type)
return path_nodes
def get_embedding(emb,node):
embedding_array = emb[str(node)]
embedding_array = np.array(embedding_array)
return embedding_array
def calc_cosine_sim(emb,path_nodes,g_nodes,triples_df,search_type,labels_all,kg_type):
target_emb = get_embedding(emb,path_nodes[0][len(path_nodes[0])-1])
#Dict of all embeddings to reuse if they exist
embeddings = defaultdict(list)
#List of total cosine similarity for each path in path_nodes, should be same length as path_nodes
paths_total_cs = []
for l in path_nodes:
cs = 0
for i in range(0,len(l)-1):
if l[i] not in list(embeddings.keys()):
e = get_embedding(emb,l[i])
embeddings[l[i]] = e
else:
e = embeddings[l[i]]
cs += 1 - spatial.distance.cosine(e,target_emb)
paths_total_cs.append(cs)
chosen_path_nodes_cs = select_path(paths_total_cs,path_nodes)
#Will only return 1 dataframe
df = define_path_triples(g_nodes,triples_df,chosen_path_nodes_cs,search_type)
df = convert_to_labels(df,labels_all,kg_type)
return df,paths_total_cs
def calc_pdp(path_nodes,graph,w,g_nodes,triples_df,search_type,labels_all,kg_type):
#List of pdp for each path in path_nodes, should be same length as path_nodes
paths_pdp = []
for l in path_nodes:
pdp = 1
for i in range(0,len(l)-1):
dp = graph.degree(l[i],mode='all',loops=True)
dp_damped = pow(dp,-w)
pdp = pdp*dp_damped
paths_pdp.append(pdp)
chosen_path_nodes_pdp = select_path(paths_pdp,path_nodes)
#Will only return 1 dataframe
df = define_path_triples(g_nodes,triples_df,chosen_path_nodes_pdp,search_type)
df = convert_to_labels(df,labels_all,kg_type)
return df,paths_pdp
def select_path(value_list,path_nodes):
#Get max cs from total_cs_path, use that idx of path_nodes then create mechanism
max_index = value_list.index(max(value_list))
#Must be list of lists for define_path_triples function
chosen_path_nodes = [path_nodes[max_index]]
return chosen_path_nodes
def convert_to_labels(df,labels_all,kg_type):
full_new_df = pd.DataFrame()
if kg_type == 'pkl' or kg_type == 'mikg4md':
for i in range(len(df)):
data = []
new_df = pd.DataFrame()
s_label = [labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['S'],'label'].values[0]]
#df.iloc[i].loc['S'] = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['S'],'label'].values[0]
try:
p_label = [labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['P'],'label'].values[0]]
#df.iloc[i].loc['P'] = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['P'],'label'].values[0]
except IndexError:
df_a = pd.DataFrame.from_dict([{'label':df.iloc[i].loc['P'].split('#')[1],'entity_uri':df.iloc[i].loc['P']}])
labels_all = pd.concat([labels_all,df_a])
#labels_all = labels_all.append(df_a)
labels_all.reset_index(drop=True)
p_label = [labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['P'],'label'].values[0]]
#df.iloc[i].loc['P'] = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['P'],'label'].values[0]
try:
o_label = [labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['O'],'label'].values[0]]
#df.iloc[i].loc['O'] = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['O'],'label'].values[0]
except IndexError:
print('Index error with ',df.iloc[i].loc['O'])
try:
df_a = pd.DataFrame.from_dict([{'label':df.iloc[i].loc['O'].split('#')[1],'entity_uri':df.iloc[i].loc['O']}])
#Errors if name is not after a "#" such as evidence level
except IndexError:
break
labels_all = pd.concat([labels_all,df_a])
labels_all.reset_index(drop=True)
o_label = [labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['O'],'label'].values[0]]
#df.iloc[i].loc['O'] = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['O'],'label'].values[0]
data.append(s_label)
data.append(p_label)
data.append(o_label)
new_df = pd.DataFrame([data],columns=df.columns)
full_new_df = pd.concat([full_new_df,new_df],axis=0)
full_new_df = full_new_df.reset_index(drop=True)
return full_new_df
if kg_type != 'pkl':
for i in range(len(df)):
data = []
s_label = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['S'],'label'].values[0]
data.append(s_label)
o_label = labels_all.loc[labels_all['entity_uri'] == df.iloc[i].loc['O'],'label'].values[0]
data.append(df.iloc[i].loc['P'])
data.append(o_label)
new_df = pd.DataFrame([data],columns=df.columns)
full_new_df = pd.concat([full_new_df,new_df],axis=0)
full_new_df = full_new_df.reset_index(drop=True)
#df = df.reset_index(drop=True)
#return df
return full_new_df
# Wrapper functions
#Returns the path as a dataframe of S/P/O of all triples' labels within the path
def find_shortest_path(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type, kg_type,s):
node1 = get_uri(labels_all,start_node,kg_type,s)
node2 = get_uri(labels_all,end_node,kg_type,s)
#Add weights if specified
if weights:
w = graph.es["weight"]
else:
w = None
#list of nodes
path_nodes = graph.get_shortest_paths(v=node1, to=node2, weights=w, mode=search_type)
if len(path_nodes[0]) > 0:
df = define_path_triples(g_nodes,triples_df,path_nodes,search_type)
df = convert_to_labels(df,labels_all,kg_type)
else:
df = pd.DataFrame()
return df
def prioritize_path_cs(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type,triples_file,output_dir,input_dir,embedding_dimensions, kg_type,s):
path_nodes = find_all_shortest_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,False,search_type, kg_type,s)
e = Embeddings(triples_file,output_dir,input_dir,embedding_dimensions, kg_type)
emb = e.generate_graph_embeddings()
df,paths_total_cs = calc_cosine_sim(emb,path_nodes,g_nodes,triples_df,search_type,labels_all, kg_type)
return path_nodes,df,paths_total_cs
#Returns dictionary of data frames with all mechanisms/subgraphs with labels
def return_all_simple_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type,kg_type,s,length):
path_nodes = find_all_simple_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,False,search_type, kg_type,s,length)
mechanism_dfs = {}
labels_mechanisms_dfs = {}
#Will get dictionary from define_path_triples if more than 1 path, otherwise is df
if len(path_nodes) == 1:
df = define_path_triples(g_nodes,triples_df,path_nodes,search_type)
labels_mechanisms_dfs['1'] = convert_to_labels(df,labels_all,kg_type)
if len(path_nodes) > 1:
#Dictionary of all triples that are shortest paths, not currently used
mechanism_dfs = define_path_triples(g_nodes,triples_df,path_nodes,search_type)
for k,v in mechanism_dfs.items():
labels_mechanisms_dfs[k] = convert_to_labels(v,labels_all,kg_type)
return labels_mechanisms_dfs
def prioritize_path_pdp(start_node,end_node,graph,g_nodes,labels_all,triples_df,weights,search_type,pdp_weight, kg_type,s):
path_nodes = find_all_shortest_paths(start_node,end_node,graph,g_nodes,labels_all,triples_df,False,search_type, kg_type,s)
df,paths_pdp = calc_pdp(path_nodes,graph,pdp_weight,g_nodes,triples_df,search_type,labels_all, kg_type)
return path_nodes,df,paths_pdp
# expand nodes by drugs 1 hop away
def drugNeighbors(graph,nodes, kg_type):
neighbors = []
if kg_type == 'kg-covid19':
nodes = list(graph.labels_all[graph.labels_all['label'].isin(nodes)]['entity_uri'])
for node in nodes:
tmp_nodes = graph.igraph.neighbors(node,mode = "in")
tmp = graph.igraph.vs(tmp_nodes)['name']
drug_neighbors = [i for i in tmp if re.search(r'Drug|Pharm',i)]
if len(drug_neighbors) != 0:
for source in drug_neighbors:
path = graph.igraph.get_shortest_paths(v = source, to = node)
path_triples = define_path_triples(graph.igraph_nodes,graph.edgelist,path, 'all')
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
neighbors.append(path_labels)
all_neighbors = pd.concat(neighbors)
return all_neighbors
def drug_neighbors_wrapper(input_nodes_df, subgraph_df,graph,kg_type):
subgraph_nodes = unique_nodes(subgraph_df[['S','O']])
all_neighbors = drugNeighbors(graph,subgraph_nodes,kg_type)
updated_subgraph = pd.concat([subgraph_df,all_neighbors])
for_input = pd.concat([all_neighbors[['S','O']],all_neighbors[['S','O']]],axis = 1)
for_input.columns = ['source', 'target', 'source_label', 'target_label']
updated_input_nodes_df = pd.concat([input_nodes_df, for_input])
return updated_input_nodes_df, updated_subgraph
def get_node_namespace(kg_type,node_type):
if kg_type == 'pkl':
namespace_dict = {'microbe':'http://github.com/callahantiff/PheKnowLator/pkt/','gene':'http://www.ncbi.nlm.nih.gov/gene/','protein':'http://purl.obolibrary.org/obo/PR_','metabolite':'http://purl.obolibrary.org/obo/CHEBI_','process':'http://purl.obolibrary.org/obo/GO_','neurotransmitter':'http://purl.obolibrary.org/obo/CHEBI_','disease':'http://purl.obolibrary.org/obo/MONDO_','serotonin':'<http://purl.obolibrary.org/obo/CHEBI_28790>','depressive disorder':'<http://purl.obolibrary.org/obo/MONDO_0002050>'}
if kg_type == 'kgx':
namespace_dict = {'microbe':'NCBITaxon:','gene':'PR:','metabolite':'CHEBI:','process':'GO:','neurotransmitter':'CHEBI:','disease':'MONDO:'}
if kg_type == 'uniprot_kg':
namespace_dict = {'microbe':'NCBITaxon:','metabolite':'CHEBI:','process':'GO:','protein':'Uniprot:','disease':'MONDO:','reaction':'Rhea:'}
namespace = namespace_dict[node_type]
return namespace
#Returns all neighbors of a source node type that are a target node type with a specific edge type
def get_specific_neighbors_by_edge(count,graph,node_type1,triples_edge_type,node_type2,kg_type,type2_neighbors,search_type):
neighbors = []
all_type2_neighbors = []
previous_nodes = {}
#if direction == 'reverse':
# type2_neighbors = []
#triples_edge_type = graph.edgelist.loc[graph.edgelist['predicate'] == edge]
#Get all nodes of node_type1
if count == 1:
g_node_type1 = list(graph.labels_all[graph.labels_all['entity_uri'].str.contains(node_type1)]['entity_uri'])
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/9632542199d7d436bdb9e43a46b05929>')
except ValueError:
pass
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/93a541ff207b2f9e1d2ecf46c1f99ea4>')
except ValueError:
pass
elif count > 1:
g_node_type1 = type2_neighbors
#t_2_nodes = 0
#Get all neighbors of each of the nodes in this node type
node_type2_neighbors = []
print('searching between: ',node_type1,node_type2)
for node in tqdm(g_node_type1):
node_label = graph.labels_all.loc[graph.labels_all['entity_uri'] == node,'label'].values[0]
if ~(node_type1 == 'Uniprot:' and node_type2 == 'Rhea:') | (node_type1 == 'GO:' and node_type2 == 'MONDO:') | (node_type1 == 'CHEBI:' and node_type2 == 'GO:'):
try:
all_triples = triples_edge_type.loc[(triples_edge_type['subject'] == node) & (triples_edge_type['object'].str.contains(node_type2))]
except IndexError:
continue
#Get each neighbor of each of the nodes in this node type
for t in range(len(all_triples)):
path_triples = pd.DataFrame()
df = pd.DataFrame()
path_triples['S'] = [node]
path_triples['P'] = [all_triples.iloc[t].loc['predicate']] #.values[0]]
path_triples['O'] = [all_triples.iloc[t].loc['object']]
try:
df['S_ID'] = [node]
df['P_ID'] = [path_triples['P'].values[0]]
df['O_ID'] = [path_triples['O'].values[0]]
df['S'] = [node_label]
df['P'] = [previous_nodes[path_triples['P'].values[0]]]
df['O'] = [previous_nodes[path_triples['O'].values[0]]]
neighbors.append(df)
except KeyError:
df = pd.DataFrame()
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
path_triples_new = copy.deepcopy(path_triples)
path_triples_new = path_triples_new.rename({'S': 'S_ID', 'P': 'P_ID','O':'O_ID'}, axis=1)
df = pd.concat([df,path_triples_new])
df = pd.concat([df,path_labels],axis=1)
neighbors.append(df)
previous_nodes[df['S_ID'].values[0]] = df['S'].values[0]
previous_nodes[df['P_ID'].values[0]] = df['P'].values[0]
previous_nodes[df['O_ID'].values[0]] = df['O'].values[0]
node_type2_neighbors.append(all_triples.iloc[t].loc['object'])
all_triples = pd.DataFrame()
try:
all_triples = triples_edge_type.loc[(triples_edge_type['object'] == node) & (triples_edge_type['subject'].str.contains(node_type2))]
except IndexError:
continue
for t in range(len(all_triples)):
#try:
path_triples = pd.DataFrame()
df = pd.DataFrame()
path_triples['S'] = [all_triples.iloc[t].loc['subject']]
path_triples['P'] = [all_triples.iloc[t].loc['predicate']] #.values[0]]
path_triples['O'] = [node]#.values[0]]
try:
df['S_ID'] = [path_triples['S'].values[0]]
df['P_ID'] = [path_triples['P'].values[0]]
df['O_ID'] = [node]
df['S'] = [previous_nodes[path_triples['S'].values[0]]]
df['P'] = [previous_nodes[path_triples['P'].values[0]]]
df['O'] = [node_label]
neighbors.append(df)
except KeyError:
df = pd.DataFrame()
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
path_triples_new = copy.deepcopy(path_triples)
path_triples_new = path_triples_new.rename({'S': 'S_ID', 'P': 'P_ID','O':'O_ID'}, axis=1)
df = pd.concat([df,path_triples_new])
df = pd.concat([df,path_labels],axis=1)
neighbors.append(df)
previous_nodes[df['S_ID'].values[0]] = df['S'].values[0]
previous_nodes[df['P_ID'].values[0]] = df['P'].values[0]
previous_nodes[df['O_ID'].values[0]] = df['O'].values[0]
node_type2_neighbors.append(all_triples.iloc[t].loc['subject'])
else:
try:
all_triples = triples_edge_type.loc[(triples_edge_type['object'] == node) & (triples_edge_type['subject'].str.contains(node_type2))]
except IndexError:
continue
for t in range(len(all_triples)):
#try:
path_triples = pd.DataFrame()
df = pd.DataFrame()
path_triples['S'] = [all_triples.iloc[t].loc['subject']]
path_triples['P'] = [all_triples.iloc[t].loc['predicate']] #.values[0]]
path_triples['O'] = [node]#.values[0]]
try:
df['S_ID'] = [path_triples['S'].values[0]]
df['P_ID'] = [path_triples['P'].values[0]]
df['O_ID'] = [node]
df['S'] = [previous_nodes[path_triples['S'].values[0]]]
df['P'] = [previous_nodes[path_triples['P'].values[0]]]
df['O'] = [node_label]
neighbors.append(df)
except KeyError:
df = pd.DataFrame()
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
path_triples_new = copy.deepcopy(path_triples)
path_triples_new = path_triples_new.rename({'S': 'S_ID', 'P': 'P_ID','O':'O_ID'}, axis=1)
df = pd.concat([df,path_triples_new])
df = pd.concat([df,path_labels],axis=1)
neighbors.append(df)
previous_nodes[df['S_ID'].values[0]] = df['S'].values[0]
previous_nodes[df['P_ID'].values[0]] = df['P'].values[0]
previous_nodes[df['O_ID'].values[0]] = df['O'].values[0]
node_type2_neighbors.append(all_triples.iloc[t].loc['subject'])
try:
all_neighbors = pd.concat(neighbors)
except ValueError:
print('No edges between: ',node_type1,node_type2)
all_neighbors = pd.DataFrame()
#returns df of S/P/O for all neighbors
return all_neighbors,node_type2_neighbors
#Returns all neighbors of a source node type that are a target node type with a specific edge type
def get_specific_neighbors_by_edge_removal(count,graph,node_type1,edges_list,node_type2,kg_type,type2_neighbors,search_type):
neighbors = []
all_type2_neighbors = []
triples_edge_type = graph.edgelist.loc[~graph.edgelist['predicate'] == edges_list[0]]
if len(edges_list) > 1:
for i in edges_list:
triples_edge_type = triples_edge_type.loc[~triples_edge_type['predicate'] == edges_list[i]]
#Get all nodes of node_type1
if count == 1:
g_node_type1 = list(graph.labels_all[graph.labels_all['entity_uri'].str.contains(node_type1)]['entity_uri'])
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/9632542199d7d436bdb9e43a46b05929>')
except ValueError:
pass
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/93a541ff207b2f9e1d2ecf46c1f99ea4>')
except ValueError:
pass
elif count > 1:
g_node_type1 = type2_neighbors
t_2_nodes = 0
#Get neighbors of each of the nodes in this node type
node_type2_neighbors = []
for node in tqdm(g_node_type1):
n = triples_edge_type.loc[(triples_edge_type['subject'] == node) & (graph.edgelist['object'].str.contains(node_type2)),'object'].values[0]
node_type2_neighbors.append(n)
if len(node_type2_neighbors) != 0:
for l in node_type2_neighbors:
all_type2_neighbors.append(l)
for source in node_type2_neighbors:
df = pd.DataFrame()
path = graph.igraph.get_shortest_paths(v = source, to = node,mode=search_type)
path_triples = define_path_triples(graph.igraph_nodes,graph.edgelist,path, search_type)
path_triples_new = copy.deepcopy(path_triples)
path_triples_new = path_triples_new.rename({'S': 'S_ID', 'P': 'P_ID','O':'O_ID'}, axis=1)
#path_triples_new.columns={'S_ID','P_ID','O_ID'}
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
df = pd.concat([df,path_triples_new])
df = pd.concat([df,path_labels],axis=1)
neighbors.append(df)
try:
all_neighbors = pd.concat(neighbors)
except ValueError:
print('No edges between: ',node_type1,node_type2)
all_neighbors = pd.DataFrame()
#returns df of S/P/O for all neighbors
return all_neighbors,all_type2_neighbors
#Returns all neighbors of a source node type that are a target node type
def get_specific_neighbors(count,graph,node_type1,node_type2,kg_type,type2_neighbors,search_type):
neighbors = []
all_type2_neighbors = []
#Get all nodes of node_type1
if count == 1:
g_node_type1 = list(graph.labels_all[graph.labels_all['entity_uri'].str.contains(node_type1)]['entity_uri'])
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/9632542199d7d436bdb9e43a46b05929>')
except ValueError:
pass
try:
g_node_type1.remove('<http://github.com/callahantiff/PheKnowLator/pkt/93a541ff207b2f9e1d2ecf46c1f99ea4>')
except ValueError:
pass
elif count > 1:
g_node_type1 = type2_neighbors
t_2_nodes = 0
#Get neighbors of each of the nodes in this node type
for node in tqdm(g_node_type1):
#for node in tqdm(g_node_type1[0:10]):
tmp_nodes = graph.igraph.neighbors(node,mode = search_type)
tmp = graph.igraph.vs(tmp_nodes)['name']
node_type2_neighbors = [i for i in tmp if re.search(r'{}'.format(node_type2),i)]
t_2_nodes += len(node_type2_neighbors)
if len(node_type2_neighbors) != 0:
for l in node_type2_neighbors:
all_type2_neighbors.append(l)
for source in node_type2_neighbors:
df = pd.DataFrame()
path = graph.igraph.get_shortest_paths(v = source, to = node,mode=search_type)
path_triples = define_path_triples(graph.igraph_nodes,graph.edgelist,path, search_type)
path_triples_new = copy.deepcopy(path_triples)
path_triples_new = path_triples_new.rename({'S': 'S_ID', 'P': 'P_ID','O':'O_ID'}, axis=1)
#path_triples_new.columns={'S_ID','P_ID','O_ID'}
path_labels = convert_to_labels(path_triples,graph.labels_all,kg_type)
df = pd.concat([df,path_triples_new])
df = pd.concat([df,path_labels],axis=1)
neighbors.append(df)
try:
all_neighbors = pd.concat(neighbors)
except ValueError:
print('No edges between: ',node_type1,node_type2)
all_neighbors = pd.DataFrame()
#returns df of S/P/O for all neighbors, plus the uris of each
return all_neighbors,all_type2_neighbors
def get_template_based_paths(template,kg_type,graph,search_type):
df = pd.DataFrame()
#Get first node namespace
n_1_namespace = get_node_namespace(kg_type,template[0])
count = 1
type2_neighbors = []
if kg_type == 'pkl':
#Create each edge type that is needed for the template
triples_microbe_gene_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0011016>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0011013>')]
triples_microbe_metabolite_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://github.com/callahantiff/PheKnowLator/pkt/9632542199d7d436bdb9e43a46b05929>') | (graph.edgelist['predicate'] == '<http://github.com/callahantiff/PheKnowLator/pkt/93a541ff207b2f9e1d2ecf46c1f99ea4>')]
triples_metabolite_gene_edge_type = graph.edgelist.loc[graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002434>']
triples_PR_gene_edge_type = graph.edgelist.loc[graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/pr#has_gene_template>']
triples_gene_PR_edge_type = graph.edgelist.loc[graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002205>']
triples_PR_GO_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0000056>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0000085>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002353>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/pw#part_of>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002215>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002331>')]
triples_GO_MONDO_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004021>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004024>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/BFO_0000054>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/mondo#disease_triggers>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004020>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0009501>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004026>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0009501>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004028>')]
triples_metabolite_disease_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004028>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/mondo#disease_responds_to>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/mondo#disease_has_basis_in_accumulation_of>') | (graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0004020>')]
triples_GO_metabolite_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == '<http://purl.obolibrary.org/obo/RO_0002436>') & (graph.edgelist['subject'].str.contains('/CHEBI_')) & (graph.edgelist['object'].str.contains('/GO_'))]
for n in template[1:]:
n_namespace = get_node_namespace(kg_type,n)
#Df of triples
print(n_1_namespace,n_namespace)
#For protein-gene search with specific relationships
if n_1_namespace == 'http://purl.obolibrary.org/obo/PR_' and n_namespace == 'http://www.ncbi.nlm.nih.gov/gene/':
print('getting neighbors from protein to gene')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_PR_gene_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For gene-protein search with specific relationships
elif n_1_namespace == 'http://www.ncbi.nlm.nih.gov/gene/' and n_namespace == 'http://purl.obolibrary.org/obo/PR_':
print('getting neighbors from gene to protein')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_gene_PR_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For protein-GO search, need to remove "subClassOf" edges from this- cellular components
elif n_1_namespace == 'http://purl.obolibrary.org/obo/PR_' and n_namespace == 'http://purl.obolibrary.org/obo/GO_' or n_1_namespace == 'http://purl.obolibrary.org/obo/GO_' and n_namespace == 'http://purl.obolibrary.org/obo/PR_':
print('getting neighbors from protein to GO/GO-protein')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_PR_GO_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For microbe-gene search
elif n_1_namespace == 'http://github.com/callahantiff/PheKnowLator/pkt/' and n_namespace == 'http://www.ncbi.nlm.nih.gov/gene/':
print('getting neighbors from microbe to gene')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_microbe_gene_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For GO-Disease search
elif n_1_namespace == 'http://purl.obolibrary.org/obo/GO_' and n_namespace == 'http://purl.obolibrary.org/obo/MONDO_':
print('getting neighbors from go to mondo')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_GO_MONDO_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For microbe-metab search
elif n_1_namespace == 'http://github.com/callahantiff/PheKnowLator/pkt/' and n_namespace == 'http://purl.obolibrary.org/obo/CHEBI_':
print('getting neighbors from microbe to metab')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_microbe_metabolite_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For metab-gene search
elif n_1_namespace == 'http://purl.obolibrary.org/obo/CHEBI_' and n_namespace == 'http://www.ncbi.nlm.nih.gov/gene/':
print('getting neighbors from metab to gene')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_metabolite_gene_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For metab-disease search
elif n_1_namespace == 'http://purl.obolibrary.org/obo/CHEBI_' and n_namespace == 'http://purl.obolibrary.org/obo/MONDO_':
print('getting neighbors from metab to gene')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_metabolite_disease_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For go-metab search
elif n_1_namespace == 'http://purl.obolibrary.org/obo/GO_' and n_namespace == 'http://purl.obolibrary.org/obo/CHEBI_':
print('getting neighbors from process to metab')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_GO_metabolite_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
else:
print('in get_specific_neighbors')
n_neighbors_df,type2_neighbors = get_specific_neighbors(count,graph,n_1_namespace,n_namespace,kg_type,type2_neighbors,search_type)
df = pd.concat([df,n_neighbors_df],axis=0)
n_1_namespace = n_namespace
count += 1
elif kg_type == 'uniprot_kg':
#Create each edge type that is needed for the template
triples_microbe_protein_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'expresses')]
triples_reaction_protein_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'catalysed_by')]
triples_reaction_process_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'affects')]
triples_disease_process_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'biolink:has_participant')]
triples_process_chemical_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'biolink:has_participant')]
triples_reaction_chemical_edge_type = graph.edgelist.loc[(graph.edgelist['predicate'] == 'has_cofactor')]
print(len(triples_microbe_protein_edge_type))
for n in template[1:]:
n_namespace = get_node_namespace(kg_type,n)
#Df of triples
print(n_1_namespace,n_namespace)
#['microbe','protein','reaction','process','disease'] # ['microbe','protein','reaction','chemical','process','disease'] ]
#For protein-gene search with specific relationships
if n_1_namespace == 'NCBITaxon:' and n_namespace == 'Uniprot:':
print('getting neighbors from microbe to protein')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_microbe_protein_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For reaction-protein search with specific relationships
elif n_1_namespace == 'Uniprot:' and n_namespace == 'Rhea:': #reverse
print('getting neighbors from reaction to protein')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_reaction_protein_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For reaction-process search with specific relationships
elif n_1_namespace == 'Rhea:' and n_namespace == 'GO:':
print('getting neighbors from reaction to process')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_reaction_process_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For disease-process search with specific relationships
elif n_1_namespace == 'GO:' and n_namespace == 'MONDO:': #reverse
print('getting neighbors from disease to process')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_disease_process_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For process-chemical search with specific relationships
#Sometimes forward, sometimes reverse so CHECK
elif n_1_namespace == 'CHEBI:' and n_namespace == 'GO:': #reverse
print('getting neighbors from process to chemical')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_process_chemical_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
#For reaction-chemical search with specific relationships
elif n_1_namespace == 'Rhea:' and n_namespace == 'CHEBI:':
print('getting neighbors from reaction to chemical')
n_neighbors_df,type2_neighbors = get_specific_neighbors_by_edge(count,graph,n_1_namespace,triples_reaction_chemical_edge_type,n_namespace,kg_type,type2_neighbors,search_type)
else:
print('in get_specific_neighbors')
n_neighbors_df,type2_neighbors = get_specific_neighbors(count,graph,n_1_namespace,n_namespace,kg_type,type2_neighbors,search_type)
df = pd.concat([df,n_neighbors_df],axis=0)
n_1_namespace = n_namespace
count += 1
return df
def template_based_subgraph_output(output_dir,kg_type,template,template_df,subfolder_name):
#Takes in a file that shows all triples among a specific pattern, creates all the separate path files, and then evaluates the content of them by creating a histogram per category
#length of templates - i.e. 7, so need 7 pairs (0,1 , 1,2 , 2,3 , 3,4 , 4,5 , 5,6 , 6,7)
path_length = len(template)
search_type = 'all'
#Template df has duplicate rows
template_df.drop_duplicates(inplace=True)
triples_df = template_df[['S_ID','P_ID','O_ID']]
triples_df = triples_df.rename({'S_ID': 'subject', 'P_ID': 'predicate','O_ID':'object'}, axis=1)
#Create a smaller labels df in order to create igraph object
labels = pd.DataFrame()
a = []
for i in range(len(template_df)):
df = pd.DataFrame()
if template_df.iloc[i].loc['S_ID'] not in a:
df['entity_uri'] = [template_df.iloc[i].loc['S_ID']]
df['label'] = [template_df.iloc[i].loc['S']]
labels = pd.concat([labels,df],axis=0)
a.append(template_df.iloc[i].loc['S_ID'])
df = pd.DataFrame()
if template_df.iloc[i].loc['P_ID'] not in a:
df['entity_uri'] = [template_df.iloc[i].loc['P_ID']]
df['label'] = [template_df.iloc[i].loc['P']]
labels = pd.concat([labels,df],axis=0)
a.append(template_df.iloc[i].loc['P_ID'])
df = pd.DataFrame()
if template_df.iloc[i].loc['O_ID'] not in a:
df['entity_uri'] = [template_df.iloc[i].loc['O_ID']]
df['label'] = [template_df.iloc[i].loc['O']]
labels = pd.concat([labels,df],axis=0)
a.append(template_df.iloc[i].loc['O_ID'])
g_igraph,g_nodes_igraph = create_igraph_graph(triples_df,labels)
g = KnowledgeGraph(triples_df,labels,g_igraph,g_nodes_igraph)
unique_types = {}
if kg_type == 'pkl':
for i in range(len(template_df)):
if '<http://github.com/callahantiff/PheKnowLator/pkt' in template_df.iloc[i].loc['S_ID']:
if '<http://github.com/callahantiff/PheKnowLator/pkt' not in unique_types.keys():
unique_types['<http://github.com/callahantiff/PheKnowLator/pkt'] = 'S'
elif '<http://github.com/callahantiff/PheKnowLator/pkt' in template_df.iloc[i].loc['O_ID']:
if '<http://github.com/callahantiff/PheKnowLator/pkt' not in unique_types.keys():
unique_types['<http://github.com/callahantiff/PheKnowLator/pkt'] = 'O'
elif '<http://www.ncbi.nlm.nih.gov/gene/' in template_df.iloc[i].loc['S_ID']:
if '<http://www.ncbi.nlm.nih.gov/gene/' not in unique_types.keys():
unique_types['<http://www.ncbi.nlm.nih.gov/gene/'] = 'S'
elif '<http://www.ncbi.nlm.nih.gov/gene/' in template_df.iloc[i].loc['O_ID']:
if '<http://www.ncbi.nlm.nih.gov/gene/' not in unique_types.keys():
unique_types['<http://www.ncbi.nlm.nih.gov/gene/'] = 'O'
else:
if template_df.iloc[i].loc['S_ID'].split('<http://purl.obolibrary.org/obo/')[1].split('_')[0] not in unique_types.keys():
unique_types[template_df.iloc[i].loc['S_ID'].split('<http://purl.obolibrary.org/obo/')[1].split('_')[0]] = 'S'
if template_df.iloc[i].loc['O_ID'].split('<http://purl.obolibrary.org/obo/')[1].split('_')[0] not in unique_types.keys():
unique_types[template_df.iloc[i].loc['O_ID'].split('<http://purl.obolibrary.org/obo/')[1].split('_')[0]] = 'O'
elif kg_type != 'pkl':
for i in range(len(template_df)):
if template_df.iloc[i].loc['S_ID'].split(':')[0] not in unique_types.keys():
unique_types[template_df.iloc[i].loc['S_ID'].split(':')[0]] = 'S'
if template_df.iloc[i].loc['O_ID'].split(':')[0] not in unique_types.keys():
unique_types[template_df.iloc[i].loc['O_ID'].split(':')[0]] = 'O'
print(unique_types)
start_nodes = template_df.loc[template_df[list(unique_types.values())[0]+'_ID'].str.contains(list(unique_types.keys())[0])]
start_nodes = list(start_nodes[list(unique_types.values())[0]])
end_nodes = template_df.loc[template_df[unique_types['MONDO']+'_ID'].str.contains('MONDO')]
end_nodes = list(end_nodes[list(unique_types.values())[len(unique_types)-1]])
#Not allow duplicates
list_of_mechs = []
print("Finding subgraphs for template based using all shortest path search......")
template = '_'.join(map(str,template))
for s in tqdm(start_nodes):
for o in end_nodes:
subgraph_dict = return_all_simple_paths(s,o,g.igraph,g.igraph_nodes,g.labels_all,g.edgelist,None,search_type,kg_type,s,path_length)
if len(subgraph_dict) > 0:
count = 1
for k,v, in subgraph_dict.items():
df = v
# Define output filenames for s
source_name = df.iloc[0].loc['S']
source_name = source_name.replace('CONTEXTUAL ','')
source_name = source_name.replace(' ','_')
source_name = source_name.replace(':','_')
target_name = df.iloc[-1].loc['O']
target_name = target_name.replace(' ','_')
cs_noa_df = output_visualization(pd.DataFrame(),source_name,target_name+'_'+str(count),df,output_dir + '/' + subfolder_name + '/' + template)
count += 1