forked from M-Nauta/PIPNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
420 lines (371 loc) · 23.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from pipnet.pipnet import PIPNet, get_network
from util.log import Log
import torch.nn as nn
from util.args import get_args, save_args, get_optimizer_nn
from util.data import get_dataloaders
from util.func import init_weights_xavier
from pipnet.train import train_pipnet
from pipnet.test import eval_pipnet, get_thresholds, eval_ood
from util.eval_cub_csv import eval_prototypes_cub_parts_csv, get_topk_cub, get_proto_patches_cub
import torch
from util.vis_pipnet import visualize, visualize_topk, remove_background
from util.visualize_prediction import vis_pred, vis_pred_experiments
import sys, os
import random
import numpy as np
from shutil import copy
import matplotlib.pyplot as plt
from copy import deepcopy
def run_pipnet(args=None):
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
args = args or get_args()
assert args.batch_size > 1
# Create a logger
log = Log(args.log_dir)
print("Log dir: ", args.log_dir, flush=True)
# Log the run arguments
save_args(args, log.metadata_dir)
gpu_list = args.gpu_ids.split(',')
device_ids = []
if args.gpu_ids!='':
for m in range(len(gpu_list)):
device_ids.append(int(gpu_list[m]))
global device
if not args.disable_cuda and torch.cuda.is_available():
if len(device_ids)==1:
device = torch.device('cuda:{}'.format(args.gpu_ids))
elif len(device_ids)==0:
device = torch.device('cuda')
print("CUDA device set without id specification", flush=True)
device_ids.append(torch.cuda.current_device())
else:
print("This code should work with multiple GPU's but we didn't test that, so we recommend to use only 1 GPU.", flush=True)
device_str = ''
for d in device_ids:
device_str+=str(d)
device_str+=","
device = torch.device('cuda:'+str(device_ids[0]))
else:
device = torch.device('cpu')
# Log which device was actually used
print("Device used: ", device, "with id", device_ids, flush=True)
# Obtain the dataset and dataloaders
trainloader, trainloader_pretraining, trainloader_normal, trainloader_normal_augment, projectloader, testloader, test_projectloader, classes = get_dataloaders(args, device)
if len(classes)<=20:
if args.validation_size == 0.:
print("Classes: ", testloader.dataset.class_to_idx, flush=True)
else:
print("Classes: ", str(classes), flush=True)
# Create a convolutional network based on arguments and add 1x1 conv layer
feature_net, add_on_layers, pool_layer, classification_layer, num_prototypes = get_network(len(classes), args)
# Create a PIP-Net
net = PIPNet(num_classes=len(classes),
num_prototypes=num_prototypes,
feature_net = feature_net,
args = args,
add_on_layers = add_on_layers,
pool_layer = pool_layer,
classification_layer = classification_layer)
if args.eval_from_trained:
checkpoint = torch.load(args.eval_from_trained, map_location=device)
state_dict = checkpoint['model_state_dict']
new_state_dict = {}
for key in state_dict:
new_key = key.replace('module.', '') # Remove 'module.' prefix
new_state_dict[new_key] = state_dict[key]
net.load_state_dict(new_state_dict, strict=True)
net = net.to(device=device)
net = nn.DataParallel(net, device_ids = device_ids)
optimizer_net, optimizer_classifier, params_to_freeze, params_to_train, params_backbone = get_optimizer_nn(net, args)
# Initialize or load model
with torch.no_grad():
if args.state_dict_dir_net != '' and args.eval_from_trained is None:
epoch = 0
checkpoint = torch.load(args.state_dict_dir_net,map_location=device)
net.load_state_dict(checkpoint['model_state_dict'],strict=True)
print("Pretrained network loaded", flush=True)
net.module._multiplier.requires_grad = False
try:
optimizer_net.load_state_dict(checkpoint['optimizer_net_state_dict'])
except:
pass
if torch.mean(net.module._classification.weight).item() > 1.0 and torch.mean(net.module._classification.weight).item() < 3.0 and torch.count_nonzero(torch.relu(net.module._classification.weight-1e-5)).float().item() > 0.8*(num_prototypes*len(classes)): #assume that the linear classification layer is not yet trained (e.g. when loading a pretrained backbone only)
print("We assume that the classification layer is not yet trained. We re-initialize it...", flush=True)
torch.nn.init.normal_(net.module._classification.weight, mean=1.0,std=0.1)
torch.nn.init.constant_(net.module._multiplier, val=2.)
print("Classification layer initialized with mean", torch.mean(net.module._classification.weight).item(), flush=True)
if args.bias:
torch.nn.init.constant_(net.module._classification.bias, val=0.)
# else: #uncomment these lines if you want to load the optimizer too
# if 'optimizer_classifier_state_dict' in checkpoint.keys():
# optimizer_classifier.load_state_dict(checkpoint['optimizer_classifier_state_dict'])
elif args.eval_from_trained is None:
net.module._add_on.apply(init_weights_xavier)
torch.nn.init.normal_(net.module._classification.weight, mean=1.0,std=0.1)
if args.bias:
torch.nn.init.constant_(net.module._classification.bias, val=0.)
torch.nn.init.constant_(net.module._multiplier, val=2.)
net.module._multiplier.requires_grad = False
print("Classification layer initialized with mean", torch.mean(net.module._classification.weight).item(), flush=True)
# Define classification loss function and scheduler
criterion = nn.NLLLoss(reduction='mean').to(device)
scheduler_net = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_net, T_max=len(trainloader_pretraining)*args.epochs_pretrain, eta_min=args.lr_block/100., last_epoch=-1)
# Forward one batch through the backbone to get the latent output size
with torch.no_grad():
xs1, xs2, m2, xs1_ds, xs2_ds, m2_ds, hflip1, hflip2, ys = next(iter(trainloader))
xs1 = xs1.to(device)
xs1_ds = xs1_ds.to(device)
proto_features, proto_features_ds, _, _ = net(xs1, xs1_ds)
wshape = proto_features.shape[-1]
wshape_ds = proto_features_ds.shape[-1]
args.wshape = wshape
args.wshape_ds = wshape_ds #needed for calculating image patch size
print("Output shape: ", proto_features.shape, flush=True)
print("Downsampled output shape: ", proto_features_ds.shape, flush=True)
if net.module._num_classes == 2:
# Create a csv log for storing the test accuracy, F1-score, mean train accuracy and mean loss for each epoch
log.create_log('log_epoch_overview', 'epoch', 'test_top1_acc', 'test_f1', 'almost_sim_nonzeros', 'local_size_all_classes','almost_nonzeros_pooled', 'num_nonzero_prototypes', 'mean_train_acc', 'mean_train_loss_during_epoch')
print("Your dataset only has two classes. Is the number of samples per class similar? If the data is imbalanced, we recommend to use the --weighted_loss flag to account for the imbalance.", flush=True)
else:
# Create a csv log for storing the test accuracy (top 1 and top 5), mean train accuracy and mean loss for each epoch
log.create_log('log_epoch_overview', 'epoch', 'test_top1_acc', 'test_top5_acc', 'almost_sim_nonzeros', 'local_size_all_classes','almost_nonzeros_pooled', 'num_nonzero_prototypes', 'mean_train_acc', 'mean_train_loss_during_epoch')
if args.eval_from_trained:
prot_frac = remove_background(net, projectloader, len(classes), device, args)
set_to_zero = []
for p in prot_frac.keys():
if prot_frac[p] < 0.2:
torch.nn.init.zeros_(net.module._classification.weight[:, p])
set_to_zero.append(p)
print("Weights of prototypes", set_to_zero,
"are set to zero (mostly background)", flush=True)
eval_info = eval_pipnet(net, testloader, "notused_bg" + str(args.epochs), device, log)
log.log_values('log_epoch_overview', "notused_bg" + str(args.epochs), eval_info['top1_accuracy'],
eval_info['top5_accuracy'], eval_info['almost_sim_nonzeros'],
eval_info['local_size_all_classes'], eval_info['almost_nonzeros'],
eval_info['num non-zero prototypes'], "n.a.", "n.a.")
visualize(net, projectloader, len(classes), device, 'visualised_prototypes', args)
testset_img0_path = test_projectloader.dataset.samples[0][0]
test_path = os.path.split(os.path.split(testset_img0_path)[0])[0]
vis_pred(net, test_path, classes, device, args)
exit(0)
lrs_pretrain_net = []
# PRETRAINING PROTOTYPES PHASE
for epoch in range(1, args.epochs_pretrain+1):
for param in params_to_train:
param.requires_grad = True
for param in net.module._add_on.parameters():
param.requires_grad = True
for param in net.module._classification.parameters():
param.requires_grad = False
for param in params_to_freeze:
param.requires_grad = True # can be set to False when you want to freeze more layers
for param in params_backbone:
param.requires_grad = False #can be set to True when you want to train whole backbone (e.g. if dataset is very different from ImageNet)
print("\nPretrain Epoch", epoch, "with batch size", trainloader_pretraining.batch_size, flush=True)
# Pretrain prototypes
train_info = train_pipnet(net, trainloader_pretraining, optimizer_net, optimizer_classifier, scheduler_net, None, criterion, epoch, args.epochs_pretrain, device, pretrain=True, finetune=False)
lrs_pretrain_net+=train_info['lrs_net']
plt.clf()
plt.plot(lrs_pretrain_net)
plt.savefig(os.path.join(args.log_dir,'lr_pretrain_net.png'))
log.log_values('log_epoch_overview', epoch, "n.a.", "n.a.", "n.a.", "n.a.", "n.a.", "n.a.", "n.a.", train_info['loss'])
if args.state_dict_dir_net == '':
net.eval()
torch.save({'model_state_dict': net.state_dict(), 'optimizer_net_state_dict': optimizer_net.state_dict()}, os.path.join(os.path.join(args.log_dir, 'checkpoints'), 'net_pretrained'))
net.train()
with torch.no_grad():
if 'convnext' in args.net and args.epochs_pretrain > 0:
topks = visualize_topk(net, projectloader, len(classes), device, 'visualised_pretrained_prototypes_topk', args)
# SECOND TRAINING PHASE
# re-initialize optimizers and schedulers for second training phase
optimizer_net, optimizer_classifier, params_to_freeze, params_to_train, params_backbone = get_optimizer_nn(net, args)
scheduler_net = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_net, T_max=len(trainloader)*args.epochs, eta_min=args.lr_net/100.)
# scheduler for the classification layer is with restarts, such that the model can re-active zeroed-out prototypes. Hence an intuitive choice.
if args.epochs<=30:
scheduler_classifier = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer_classifier, T_0=5, eta_min=0.001, T_mult=1, verbose=False)
else:
scheduler_classifier = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer_classifier, T_0=10, eta_min=0.001, T_mult=1, verbose=False)
for param in net.module.parameters():
param.requires_grad = False
for param in net.module._classification.parameters():
param.requires_grad = True
frozen = True
lrs_net = []
lrs_classifier = []
for epoch in range(1, args.epochs + 1):
epochs_to_finetune = 3 #during finetuning, only train classification layer and freeze rest. usually done for a few epochs (at least 1, more depends on size of dataset)
if epoch <= epochs_to_finetune and (args.epochs_pretrain > 0 or args.state_dict_dir_net != ''):
for param in net.module._add_on.parameters():
param.requires_grad = False
for param in params_to_train:
param.requires_grad = False
for param in params_to_freeze:
param.requires_grad = False
for param in params_backbone:
param.requires_grad = False
finetune = True
else:
finetune=False
if frozen:
# unfreeze backbone
if epoch>(args.freeze_epochs):
for param in net.module._add_on.parameters():
param.requires_grad = True
for param in params_to_freeze:
param.requires_grad = True
for param in params_to_train:
param.requires_grad = True
for param in params_backbone:
param.requires_grad = True
frozen = False
# freeze first layers of backbone, train rest
else:
for param in params_to_freeze:
param.requires_grad = True #Can be set to False if you want to train fewer layers of backbone
for param in net.module._add_on.parameters():
param.requires_grad = True
for param in params_to_train:
param.requires_grad = True
for param in params_backbone:
param.requires_grad = False
print("\n Epoch", epoch, "frozen:", frozen, flush=True)
if (epoch==args.epochs or epoch%30==0) and args.epochs>1:
# SET SMALL WEIGHTS TO ZERO
with torch.no_grad():
torch.set_printoptions(profile="full")
net.module._classification.weight.copy_(torch.clamp(net.module._classification.weight.data - 0.001, min=0.))
print("Classifier weights: ", net.module._classification.weight[net.module._classification.weight.nonzero(as_tuple=True)], (net.module._classification.weight[net.module._classification.weight.nonzero(as_tuple=True)]).shape, flush=True)
if args.bias:
print("Classifier bias: ", net.module._classification.bias, flush=True)
torch.set_printoptions(profile="default")
train_info = train_pipnet(net, trainloader, optimizer_net, optimizer_classifier, scheduler_net, scheduler_classifier, criterion, epoch, args.epochs, device, pretrain=False, finetune=finetune)
lrs_net+=train_info['lrs_net']
lrs_classifier+=train_info['lrs_class']
# Evaluate model
eval_info = eval_pipnet(net, testloader, epoch, device, log)
log.log_values('log_epoch_overview', epoch, eval_info['top1_accuracy'], eval_info['top5_accuracy'], eval_info['almost_sim_nonzeros'], eval_info['local_size_all_classes'], eval_info['almost_nonzeros'], eval_info['num non-zero prototypes'], train_info['train_accuracy'], train_info['loss'])
with torch.no_grad():
net.eval()
torch.save({'model_state_dict': net.state_dict(), 'optimizer_net_state_dict': optimizer_net.state_dict(), 'optimizer_classifier_state_dict': optimizer_classifier.state_dict()}, os.path.join(os.path.join(args.log_dir, 'checkpoints'), 'net_trained'))
if epoch%30 == 0:
net.eval()
torch.save({'model_state_dict': net.state_dict(), 'optimizer_net_state_dict': optimizer_net.state_dict(), 'optimizer_classifier_state_dict': optimizer_classifier.state_dict()}, os.path.join(os.path.join(args.log_dir, 'checkpoints'), 'net_trained_%s'%str(epoch)))
# save learning rate in figure
plt.clf()
plt.plot(lrs_net)
plt.savefig(os.path.join(args.log_dir,'lr_net.png'))
plt.clf()
plt.plot(lrs_classifier)
plt.savefig(os.path.join(args.log_dir,'lr_class.png'))
net.eval()
torch.save({'model_state_dict': net.state_dict(), 'optimizer_net_state_dict': optimizer_net.state_dict(), 'optimizer_classifier_state_dict': optimizer_classifier.state_dict()}, os.path.join(os.path.join(args.log_dir, 'checkpoints'), 'net_trained_last'))
topks = visualize_topk(net, projectloader, len(classes), device, 'visualised_prototypes_topk', args)
# set weights of prototypes that are never really found in projection set to 0
set_to_zero = []
if topks:
for prot in topks.keys():
found = False
for (i_id, score) in topks[prot]:
if score > 0.1:
found = True
if not found:
torch.nn.init.zeros_(net.module._classification.weight[:,prot])
set_to_zero.append(prot)
print("Weights of prototypes", set_to_zero, "are set to zero because it is never detected with similarity>0.1 in the training set", flush=True)
eval_info = eval_pipnet(net, testloader, "notused"+str(args.epochs), device, log)
log.log_values('log_epoch_overview', "notused"+str(args.epochs), eval_info['top1_accuracy'], eval_info['top5_accuracy'], eval_info['almost_sim_nonzeros'], eval_info['local_size_all_classes'], eval_info['almost_nonzeros'], eval_info['num non-zero prototypes'], "n.a.", "n.a.")
prot_frac = remove_background(net, projectloader, len(classes), device, args)
set_to_zero = []
for p in prot_frac.keys():
if prot_frac[p] < 0.2:
torch.nn.init.zeros_(net.module._classification.weight[:, p])
set_to_zero.append(p)
print("Weights of prototypes", set_to_zero,
"are set to zero (mostly background)", flush=True)
_ = visualize_topk(net, projectloader, len(classes), device, 'visualised_prototypes_topk_nbg', args)
eval_info = eval_pipnet(net, testloader, "notused_bg" + str(args.epochs), device, log)
log.log_values('log_epoch_overview', "notused_bg" + str(args.epochs), eval_info['top1_accuracy'],
eval_info['top5_accuracy'], eval_info['almost_sim_nonzeros'],
eval_info['local_size_all_classes'], eval_info['almost_nonzeros'],
eval_info['num non-zero prototypes'], "n.a.", "n.a.")
print("classifier weights: ", net.module._classification.weight, flush=True)
print("Classifier weights nonzero: ", net.module._classification.weight[net.module._classification.weight.nonzero(as_tuple=True)], (net.module._classification.weight[net.module._classification.weight.nonzero(as_tuple=True)]).shape, flush=True)
print("Classifier bias: ", net.module._classification.bias, flush=True)
# Print weights and relevant prototypes per class
for c in range(net.module._classification.weight.shape[0]):
relevant_ps = []
proto_weights = net.module._classification.weight[c,:]
for p in range(net.module._classification.weight.shape[1]):
if proto_weights[p]> 1e-3:
relevant_ps.append((p, proto_weights[p].item()))
if args.validation_size == 0.:
print("Class", c, "(", list(testloader.dataset.class_to_idx.keys())[list(testloader.dataset.class_to_idx.values()).index(c)],"):","has", len(relevant_ps),"relevant prototypes: ", relevant_ps, flush=True)
# Evaluate prototype purity
if args.dataset == 'CUB-200-2011':
projectset_img0_path = projectloader.dataset.samples[0][0]
project_path = os.path.split(os.path.split(projectset_img0_path)[0])[0].split("dataset")[0]
parts_loc_path = os.path.join(project_path, "parts/part_locs.txt")
parts_name_path = os.path.join(project_path, "parts/parts.txt")
imgs_id_path = os.path.join(project_path, "images.txt")
cubthreshold = 0.5
net.eval()
print("\n\nEvaluating cub prototypes for training set", flush=True)
csvfile_topk = get_topk_cub(net, projectloader, 10, 'train_'+str(epoch), device, args)
eval_prototypes_cub_parts_csv(csvfile_topk, parts_loc_path, parts_name_path, imgs_id_path, 'train_topk_'+str(epoch), args, log)
csvfile_all = get_proto_patches_cub(net, projectloader, 'train_all_'+str(epoch), device, args, threshold=cubthreshold)
eval_prototypes_cub_parts_csv(csvfile_all, parts_loc_path, parts_name_path, imgs_id_path, 'train_all_thres'+str(cubthreshold)+'_'+str(epoch), args, log)
print("\n\nEvaluating cub prototypes for test set", flush=True)
csvfile_topk = get_topk_cub(net, test_projectloader, 10, 'test_'+str(epoch), device, args)
eval_prototypes_cub_parts_csv(csvfile_topk, parts_loc_path, parts_name_path, imgs_id_path, 'test_topk_'+str(epoch), args, log)
cubthreshold = 0.5
csvfile_all = get_proto_patches_cub(net, test_projectloader, 'test_'+str(epoch), device, args, threshold=cubthreshold)
eval_prototypes_cub_parts_csv(csvfile_all, parts_loc_path, parts_name_path, imgs_id_path, 'test_all_thres'+str(cubthreshold)+'_'+str(epoch), args, log)
# visualize predictions
visualize(net, projectloader, len(classes), device, 'visualised_prototypes', args)
testset_img0_path = test_projectloader.dataset.samples[0][0]
test_path = os.path.split(os.path.split(testset_img0_path)[0])[0]
vis_pred(net, test_path, classes, device, args)
if args.extra_test_image_folder != '':
if os.path.exists(args.extra_test_image_folder):
vis_pred_experiments(net, args.extra_test_image_folder, classes, device, args)
# EVALUATE OOD DETECTION
# ood_datasets = ["CARS", "CUB-200-2011", "pets"]
# for percent in [95.]:
# print("\nOOD Evaluation for epoch", epoch,"with percent of", percent, flush=True)
# _, _, _, class_thresholds = get_thresholds(net, testloader, epoch, device, percent, log)
# print("Thresholds:", class_thresholds, flush=True)
# # Evaluate with in-distribution data
# id_fraction = eval_ood(net, testloader, epoch, device, class_thresholds)
# print("ID class threshold ID fraction (TPR) with percent",percent,":", id_fraction, flush=True)
#
# # Evaluate with out-of-distribution data
# for ood_dataset in ood_datasets:
# if ood_dataset != args.dataset:
# print("\n OOD dataset: ", ood_dataset,flush=True)
# ood_args = deepcopy(args)
# ood_args.dataset = ood_dataset
# _, _, _, _, _,ood_testloader, _, _ = get_dataloaders(ood_args, device)
#
# id_fraction = eval_ood(net, ood_testloader, epoch, device, class_thresholds)
# print(args.dataset, "- OOD", ood_dataset, "class threshold ID fraction (FPR) with percent",percent,":", id_fraction, flush=True)
print("Done!", flush=True)
if __name__ == '__main__':
args = get_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
print_dir = os.path.join(args.log_dir,'out.txt')
tqdm_dir = os.path.join(args.log_dir,'tqdm.txt')
if not os.path.isdir(args.log_dir):
os.mkdir(args.log_dir)
sys.stdout.close()
sys.stderr.close()
sys.stdout = open(print_dir, 'w')
sys.stderr = open(tqdm_dir, 'w')
run_pipnet(args)
sys.stdout.close()
sys.stderr.close()