-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinference.py
378 lines (315 loc) · 15 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# coding:utf-8
import os
import torch
import cv2
import numpy as np
import matplotlib.cm as cm
from src.utils.plotting import make_matching_figure
from src.loftr import LoFTR, default_cfg
import ransac
import blend
import k_means
from typing import List, Tuple, Union
def show_image(image: np.ndarray) -> None:
from PIL import Image
Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).show()
# 变换、拼接 源:https://blog.csdn.net/qq_44019424/article/details/106010362
def drawMatches(img_left, img_right, kps_left, kps_right):
H, status = cv2.findHomography(kps_right, kps_left, cv2.RANSAC)
# 获取图片宽度和高度
h_left, w_left = img_left.shape[:2]
h_right, w_right = img_right.shape[:2]
"""对imgB进行透视变换
由于透视变换会改变图片场景的大小,导致部分图片内容看不到
所以对图片进行扩展:高度取最高的,宽度为两者相加"""
image = np.zeros((max(h_left, h_right), w_left + w_right, 3), dtype='uint8')
# 初始化
image[0:h_left, 0:w_left] = img_right
"""利用以获得的单应性矩阵进行变透视换"""
image = cv2.warpPerspective(image, H, (image.shape[1], image.shape[0])) # (w,h
"""将透视变换后的图片与另一张图片进行拼接"""
image[0:h_left, 0:w_left] = img_left
max_w = 2 * w_left
for i in range(w_left, max_w): # 计算右边界
if np.max(image[:, i]) == 0:
max_w = i
break
print(max_w)
return image[:, :max_w]
# 你发的github上的代码,可以用他的拼接,但感觉效果也差不多
class Stitcher:
def __init__(self, image1: np.ndarray, image2: np.ndarray):
"""输入图像和匹配,对图像进行拼接
目前采用简单矩阵匹配和平均值拼合
Args:
image1 (np.ndarray): 图像一
image2 (np.ndarray): 图像二
matcher (Matcher): 匹配结果
use_kmeans (bool): 是否使用kmeans 优化点选择
"""
self.image1 = image1
self.image2 = image2
self.M = np.eye(3)
self.image = None
def stich(self, p1s, p2s, show_result=True, show_match_point=False, use_new_match_method=False, use_partial=False,
use_gauss_blend=True):
"""对图片进行拼合
show_result (bool, optional): Defaults to True. 是否展示拼合图像
show_match_point (bool, optional): Defaults to True. 是否展示拼合点
"""
# 得到匹配点
self.image_points1, self.image_points2 = p1s, p2s
if use_new_match_method:
self.M = ransac.GeneticTransform(self.image_points1, self.image_points2).run()
else:
self.M, _ = cv2.findHomography(
self.image_points1, self.image_points2, method=cv2.RANSAC)
print("Good points and average distance: ", ransac.GeneticTransform.get_value(
self.image_points1, self.image_points2, self.M))
left, right, top, bottom = self.get_transformed_size()
# print(self.get_transformed_size())
width = int(max(right, self.image2.shape[1]) - min(left, 0))
height = int(max(bottom, self.image2.shape[0]) - min(top, 0))
print(width, height)
# width, height = min(width, 10000), min(height, 10000)
if width * height > 8000 * 5000:
# raise MemoryError("Too large to get the combination")
factor = width * height / (8000 * 5000)
width = int(width / factor)
height = int(height / factor)
if use_partial:
self.partial_transform()
# 移动矩阵
self.adjustM = np.array(
[[1, 0, max(-left, 0)], # 横向
[0, 1, max(-top, 0)], # 纵向
[0, 0, 1]
], dtype=np.float64)
# print('adjustM: ', adjustM)
self.M = np.dot(self.adjustM, self.M)
transformed_1 = cv2.warpPerspective(
self.image1, self.M, (width, height))
transformed_2 = cv2.warpPerspective(
self.image2, self.adjustM, (width, height))
self.image = self.blend(transformed_1, transformed_2, use_gauss_blend=use_gauss_blend)
if show_match_point:
for point1, point2 in zip(self.image_points1, self.image_points2):
point1 = self.get_transformed_position(tuple(point1))
point1 = tuple(map(int, point1))
point2 = self.get_transformed_position(tuple(point2), M=self.adjustM)
point2 = tuple(map(int, point2))
# cv2.line(self.image, point1, point2, random.choice(colors), 3)
cv2.circle(self.image, point1, 10, (20, 20, 255), 5)
cv2.circle(self.image, point2, 8, (20, 200, 20), 5)
# if show_result:
# show_image(self.image)
def blend(self, image1: np.ndarray, image2: np.ndarray, use_gauss_blend=True) -> np.ndarray:
"""对图像进行融合
Args:
image1 (np.ndarray): 图像一
image2 (np.ndarray): 图像二
Returns:
np.ndarray: 融合结果
"""
mask = self.generate_mask(image1, image2)
print("Blending")
if use_gauss_blend:
result = blend.gaussian_blend(image1, image2, mask, mask_blend=10)
else:
result = blend.direct_blend(image1, image2, mask, mask_blend=0)
return result
def generate_mask(self, image1: np.ndarray, image2: np.ndarray):
"""生成供融合使用的遮罩,由变换后图像的垂直平分线来构成分界线
Args:
shape (tuple): 遮罩大小
Returns:
np.ndarray: 01数组
"""
print("Generating mask")
# x, y
center1 = self.image1.shape[1] / 2, self.image1.shape[0] / 2
center1 = self.get_transformed_position(center1)
center2 = self.image2.shape[1] / 2, self.image2.shape[0] / 2
center2 = self.get_transformed_position(center2, M=self.adjustM)
# 垂直平分线 y=-(x2-x1)/(y2-y1)* [x-(x1+x2)/2]+(y1+y2)/2
x1, y1 = center1
x2, y2 = center2
# note that opencv is (y, x)
def function(y, x, *z):
return (y2 - y1) * y < -(x2 - x1) * (x - (x1 + x2) / 2) + (y2 - y1) * (y1 + y2) / 2
mask = np.fromfunction(function, image1.shape)
# mask = mask&_i2+mask&i1+i1&_i2
mask = np.logical_and(mask, np.logical_not(image2)) \
+ np.logical_and(mask, image1) \
+ np.logical_and(image1, np.logical_not(image2))
return mask
def get_transformed_size(self) -> Tuple[int, int, int, int]:
"""计算形变后的边界
计算形变后的边界,从而对图片进行相应的位移,保证全部图像都出现在屏幕上。
Returns:
Tuple[int, int, int, int]: 分别为左右上下边界
"""
conner_0 = (0, 0) # x, y
conner_1 = (self.image1.shape[1], 0)
conner_2 = (self.image1.shape[1], self.image1.shape[0])
conner_3 = (0, self.image1.shape[0])
points = [conner_0, conner_1, conner_2, conner_3]
# top, bottom: y, left, right: x
top = min(map(lambda x: self.get_transformed_position(x)[1], points))
bottom = max(
map(lambda x: self.get_transformed_position(x)[1], points))
left = min(map(lambda x: self.get_transformed_position(x)[0], points))
right = max(map(lambda x: self.get_transformed_position(x)[0], points))
return left, right, top, bottom
def get_transformed_position(self, x: Union[float, Tuple[float, float]], y: float = None, M=None) -> Tuple[
float, float]:
"""求得某点在变换矩阵(self.M)下的新坐标
Args:
x (Union[float, Tuple[float, float]]): x坐标或(x,y)坐标
y (float, optional): Defaults to None. y坐标,可无
M (np.ndarray, optional): Defaults to None. 利用M进行坐标变换运算
Returns:
Tuple[float, float]: 新坐标
"""
if isinstance(x, tuple):
x, y = x
p = np.array([x, y, 1])[np.newaxis].T
if M is not None:
M = M
else:
M = self.M
pa = np.dot(M, p)
return pa[0, 0] / pa[2, 0], pa[1, 0] / pa[2, 0]
# 定义一个类,方便调用
class loftrInfer(object):
''' 初始化之后,仅需调用run函数 '''
def __init__(self, model_path="weights/indoor_ds.ckpt"):
'''
初始化,输入参数:
model_path: 模型地址
'''
self.matcher = LoFTR(config=default_cfg) # 初始化模型
self.matcher.load_state_dict(torch.load(model_path)['state_dict']) # 下载训练好的模型文件,可选indoor_ds 、outdoor_ds
self.matcher = self.matcher.eval().cuda() # cuda验证
def _infer_run(self, img0_raw, img1_raw):
'''
推理单对图片,输入参数:
img0_raw 、img1_raw numpy.ndarray类型,单通道图像
返回值:
np_result/False False 或 (n,5)推理结果,numpy.ndarray类型; 格式为(p1x,p1y,p2x,p2y,conf)
'''
img0 = torch.from_numpy(img0_raw)[None][None].cuda() / 255. # 转torch格式,cuda ,归一到0-1
img1 = torch.from_numpy(img1_raw)[None][None].cuda() / 255.
batch = {'image0': img0, 'image1': img1} # 模型输入为字典,加载输入
# Inference with LoFTR and get prediction 开始推理
with torch.no_grad():
self.matcher(batch) # 网络推理
mkpts0 = batch['mkpts0_f'].cpu().numpy() # (n,2) 0的结果 -特征点
mkpts1 = batch['mkpts1_f'].cpu().numpy() # (n,2) 1的结果 -特征点
mconf = batch['mconf'].cpu().numpy() # (n,) 置信度
# 筛选,需要四个以上的匹配点才能得到单应性矩阵
if mconf.shape[0] < 4:
return False
mconf = mconf[:, np.newaxis] # 末尾增加新维度
np_result = np.hstack((mkpts0, mkpts1, mconf)) # 水平拼接
print(np_result.shape)
list_result = list(np_result)
def key_(a):
return a[-1]
list_result.sort(key=key_, reverse=True) # 按得分从大到小排序
np_result = np.array(list_result)
return np_result
def _points_filter(self, np_result, lenth=200, use_kmeans=True):
'''
进行特征值筛选,输入参数:
np_result 推理结果(n,5)
lenth -1 不进行筛选,取全部
>0 取前nums个
use_kmeans bool类型: 0 - 不使用
1 - 使用聚类,取最多一类
'''
'''' 本来想直接取前多少个进行矩阵运算,但发现聚类后好些 '''
lenth = min(lenth, np_result.shape[0]) # 选最大200个置信度较大的点对
if lenth < 4: lenth = 4
mkpts0 = np_result[:lenth, :2].copy()
mkpts1 = np_result[:lenth, 2:4].copy()
if use_kmeans:
use_mkpts0, use_mkpts1 = k_means.get_group_center(mkpts0, mkpts1) # 聚类,并返回同一类最多元素的匹配点
print("一共:", mkpts0.shape)
print("筛选与聚类后:", use_mkpts0.shape)
if use_mkpts0.shape[0] < 4:
return mkpts0, mkpts1
return use_mkpts0, use_mkpts1
return mkpts0, mkpts1
def _draw_matchs(self, img1, img2, p1s, p2s, mid_space=10, if_save=False):
'''
画匹配点并显示,分别输入图像、特征点 ; mid_space间隔
输入参数:
img1,img2 彩色图像; p1s,p2s 分别的特征点位置
mid_space 左右图显示间隔
if_save 保存否
'''
h, w = img1.shape[:2]
show = cv2.resize(img1, (2 * w + mid_space, h))
show.fill(0)
show[:, :w] = img1.copy()
show[:, w + 10:] = img2.copy()
p1s = p1s.astype(np.int)
p2s = p2s.astype(np.int)
for i in range(p1s.shape[0]):
p1 = tuple(p1s[i])
p2 = (p2s[i][0] + w + mid_space, p2s[i][1])
cv2.line(show, p1, p2, (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)),
1) # 画线
cv2.namedWindow('show', 2)
cv2.imshow('show', show)
if if_save:
cv2.imwrite('save.jpg', show)
cv2.waitKey()
cv2.destroyAllWindows()
def run(self, img0_bgr, img1_bgr, lenth=200, use_kmeans=True, if_draw=True, if_save=False, stitch_method=1):
'''
只需要调用该函数,完成推理+拼接
输入参数 :
img0_bgr , img1_bgr 彩色图像,默认左右
lenth -1 不进行筛选,取全部
>0 取前nums个
use_kmeans bool类型: 0 - 不使用
1 - 使用聚类,取最多一类
if_draw bool类型 是否绘制特征点匹配图像
if_save bool类型 是否保存特征点匹配图像
stitch_method 拼接方法选择, 0 为l2n方法 ; 其他为简单方法
返回值:
image 拼接图像
'''
img0_bgr = cv2.resize(img0_bgr, (640, 480)) # 统一尺寸为640x480
img1_bgr = cv2.resize(img1_bgr, (640, 480))
img0_raw = cv2.cvtColor(img0_bgr, cv2.COLOR_BGR2GRAY) # 转灰度,网络输入的是单通道图
img1_raw = cv2.cvtColor(img1_bgr, cv2.COLOR_BGR2GRAY)
np_result = self._infer_run(img0_raw, img1_raw) # 推理
if np_result is False:
print("特征点数量不够!!!")
return False
mkpts0, mkpts1 = self._points_filter(np_result, lenth=lenth, use_kmeans=use_kmeans) # 特征点筛选
if if_draw: # 显示匹配点对
self._draw_matchs(img0_bgr, img1_bgr, mkpts0, mkpts1, mid_space=10, if_save=if_save)
if stitch_method == 0:
'''拼接,github方法,你推荐的l2net中的方法'''
stitcher = Stitcher(img0_bgr, img1_bgr)
stitcher.stich(p1s=mkpts0, p2s=mkpts1, use_partial=False, use_new_match_method=0, use_gauss_blend=0)
image = (stitcher.image).copy()
else:
# 简单方法,变换右图进行拼接
image = drawMatches(img0_bgr, img1_bgr, mkpts0, mkpts1)
return image
if __name__ == "__main__":
# 调用实例
testInfer = loftrInfer(model_path="weights/indoor_ds.ckpt")
img1_pth = "assets/scannet_sample_images/scene0768_00_frame-001095.jpg"
img0_pth = "assets/scannet_sample_images/scene0768_00_frame-003435.jpg"
img0_bgr = cv2.imread(img0_pth) # 读取图片,bgr格式
img1_bgr = cv2.imread(img1_pth)
result = testInfer.run(img0_bgr, img1_bgr, lenth=200, use_kmeans=True, if_draw=True, if_save=False,
stitch_method=0)
cv2.imshow('show', result)
cv2.waitKey()