-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathdebug.py
executable file
·92 lines (77 loc) · 2.4 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import print_function
import torch.optim as optim
import os
import torch
import numpy as np
from darknet import Darknet
from PIL import Image
from utils import image2torch, convert2cpu
from torch.autograd import Variable
cfgfile = 'face4.1re_95.91.cfg'
weightfile = 'face4.1re_95.91.conv.15'
imgpath = 'data/train/images/10002.png'
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
label = torch.zeros(50*5)
if os.path.getsize(labpath):
tmp = torch.from_numpy(np.loadtxt(labpath))
#tmp = torch.from_numpy(read_truths_args(labpath, 8.0/img.width))
#tmp = torch.from_numpy(read_truths(labpath))
tmp = tmp.view(-1)
tsz = tmp.numel()
#print('labpath = %s , tsz = %d' % (labpath, tsz))
if tsz > 50*5:
label = tmp[0:50*5]
elif tsz > 0:
label[0:tsz] = tmp
label = label.view(1, 50*5)
m = Darknet(cfgfile)
region_loss = m.loss
m.load_weights(weightfile)
print('--- bn weight ---')
print(m.models[0][1].weight)
print('--- bn bias ---')
print(m.models[0][1].bias)
print('--- bn running_mean ---')
print(m.models[0][1].running_mean)
print('--- bn running_var ---')
print(m.models[0][1].running_var)
m.train()
m = m.cuda()
optimizer = optim.SGD(m.parameters(), lr=1e-2, momentum=0.9, weight_decay=0.1)
img = Image.open(imgpath)
img = image2torch(img)
img = Variable(img.cuda())
target = Variable(label)
print('----- img ---------------------')
print(img.data.storage()[0:100])
print('----- target -----------------')
print(target.data.storage()[0:100])
optimizer.zero_grad()
output = m(img)
print('----- output ------------------')
print(output.data.storage()[0:100])
exit()
loss = region_loss(output, target)
print('----- loss --------------------')
print(loss)
save_grad = None
def extract(grad):
global saved_grad
saved_grad = convert2cpu(grad.data)
output.register_hook(extract)
loss.backward()
saved_grad = saved_grad.view(-1)
for i in xrange(saved_grad.size(0)):
if abs(saved_grad[i]) >= 0.001:
print('%d : %f' % (i, saved_grad[i]))
print(m.state_dict().keys())
#print(m.models[0][0].weight.grad.data.storage()[0:100])
#print(m.models[14][0].weight.data.storage()[0:100])
weight = m.models[13][0].weight.data
grad = m.models[13][0].weight.grad.data
mask = torch.abs(grad) >= 0.1
print(weight[mask])
print(grad[mask])
optimizer.step()
weight2 = m.models[13][0].weight.data
print(weight2[mask])