-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain.py
39 lines (33 loc) · 1.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import data_io
from features import FeatureMapper, SimpleTransform
import numpy as np
import pickle
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
def feature_extractor():
features = [('FullDescription-Bag of Words', 'FullDescription', CountVectorizer(max_features=100)),
('Title-Bag of Words', 'Title', CountVectorizer(max_features=100)),
('LocationRaw-Bag of Words', 'LocationRaw', CountVectorizer(max_features=100)),
('LocationNormalized-Bag of Words', 'LocationNormalized', CountVectorizer(max_features=100))]
combined = FeatureMapper(features)
return combined
def get_pipeline():
features = feature_extractor()
steps = [("extract_features", features),
("classify", RandomForestRegressor(n_estimators=50,
verbose=2,
n_jobs=1,
min_samples_split=30,
random_state=3465343))]
return Pipeline(steps)
def main():
print("Reading in the training data")
train = data_io.get_train_df()
print("Extracting features and training model")
classifier = get_pipeline()
classifier.fit(train, train["SalaryNormalized"])
print("Saving the classifier")
data_io.save_model(classifier)
if __name__=="__main__":
main()