-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
96 lines (79 loc) · 3.33 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import config
import numpy as np
import tensorflow.compat.v1 as tf
model_file = config.model_file
label_file = config.label_file
input_layer = config.input_layer
output_layer = config.output_layer
input_size = config.classifier_input_size
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def load_labels(label_file):
labels = []
with open(label_file, "r", encoding='cp1251') as inst:
for line in inst:
labels.append(line.rstrip())
return labels
def resize_and_pad(image, size, padColor=0):
height, width = image.shape[:2]
size_height, size_width = size
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0
# interpolation method
if height > size_height or width > size_width:
interpolation = cv2.INTER_AREA
else: # stretching image
interpolation = cv2.INTER_CUBIC
# aspect ratio of image
aspect = width / height
# compute scaling and pad sizing
if aspect > 1: # horizontal
new_width = size_width
new_height = np.round(new_width / aspect).astype(int)
pad_vert = (size_height - new_height) / 2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
elif aspect < 1: # vertical
new_height = size_height
new_width = np.round(new_height * aspect).astype(int)
pad_horz = (size_width - new_width) / 2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
else: # square
new_height, new_width = size_height, size_width
# scale and pad
scaled_image = cv2.resize(image, (new_width, new_height), interpolation=interpolation)
scaled_image = cv2.copyMakeBorder(scaled_image, pad_top, pad_bot, pad_left, pad_right,
borderType=cv2.BORDER_CONSTANT, value=padColor)
return scaled_image
class Classifier():
def __init__(self):
self.graph = load_graph(model_file)
self.labels = load_labels(label_file)
self.input_operation = self.graph.get_operation_by_name("import/" + input_layer)
self.output_operation = self.graph.get_operation_by_name("import/" + output_layer)
self.sess = tf.Session(graph=self.graph)
self.sess.graph.finalize()
def predict(self, image, jsdata, coordinates):
jsdata['car' + str(len(jsdata) + 1)] = coordinates
image = image[:, :, ::-1]
image = resize_and_pad(image, input_size)
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
image /= 127.5
image -= 1.
results = self.sess.run(self.output_operation.outputs[0],
{self.input_operation.outputs[0]: image})
results = np.squeeze(results)
top = 3
top_indices = results.argsort()[-top:][::-1]
classes = []
for ix in top_indices:
make_model = self.labels[ix].split('\t')
classes.append({"make": make_model[0], "model": make_model[1],
"prob": str(results[ix])})
return(classes)