-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecryptMessage.js
105 lines (91 loc) · 3.43 KB
/
decryptMessage.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
const assert = require("assert");
const crypto = require("crypto");
const EC = require("elliptic").ec;
const ec = new EC("secp256k1");
const axios = require("axios");
function kdf(secret, outputLength) {
let ctr = 1;
let written = 0;
let result = Buffer.from("");
while (written < outputLength) {
const ctrs = Buffer.from([ctr >> 24, ctr >> 16, ctr >> 8, ctr]);
const hashResult = crypto
.createHash("sha256")
.update(Buffer.concat([ctrs, secret]))
.digest();
result = Buffer.concat([result, hashResult]);
written += 32;
ctr += 1;
}
return result;
}
//ECDH.
function derive(privateKeyA, publicKeyB) {
assert(Buffer.isBuffer(privateKeyA), "Bad input");
assert(Buffer.isBuffer(publicKeyB), "Bad input");
assert(privateKeyA.length === 32, "Bad private key");
assert(publicKeyB.length === 65, "Bad public key");
assert(publicKeyB[0] === 4, "Bad public key");
const keyA = ec.keyFromPrivate(privateKeyA);
const keyB = ec.keyFromPublic(publicKeyB);
const Px = keyA.derive(keyB.getPublic()); // BN instance
return new Buffer(Px.toArray());
}
function hmacSha256Sign(key, msg) {
return crypto.createHmac('sha256', key).update(msg).digest();
}
// AES-128-CTR encryption.
function aesCtrEncrypt(counter, key, data) {
const cipher = crypto.createCipheriv('aes-128-ctr', key, counter);
const firstChunk = cipher.update(data);
const secondChunk = cipher.final();
return Buffer.concat([firstChunk, secondChunk]);
}
// AES-128-CTR decryption.
function aesCtrDecrypt(counter, key, data) {
const cipher = crypto.createDecipheriv('aes-128-ctr', key, counter);
const firstChunk = cipher.update(data);
const secondChunk = cipher.final();
return Buffer.concat([firstChunk, secondChunk]);
}
// Obtain the public elliptic curve key from a private.
function getPublic(privateKey) {
assert(privateKey.length === 32, "Bad private key");
return new Buffer(ec.keyFromPrivate(privateKey).getPublic("arr"));
}
// Sha256 HMAC.
function hmacSha256Sign(key, msg) {
return crypto.createHmac("sha256", key).update(msg).digest();
}
function aesCtrDecrypt(counter, key, data) {
const cipher = crypto.createDecipheriv("aes-128-ctr", key, counter);
const firstChunk = cipher.update(data);
const secondChunk = cipher.final();
return Buffer.concat([firstChunk, secondChunk]);
}
function decryptMessage(sharedSecret, encryptedText) {
const sharedPrivateKey = new Buffer(sharedSecret, "hex");
const encrypted = new Buffer(encryptedText, "hex");
const metaLength = 1 + 64 + 16 + 32;
assert(
encrypted.length > metaLength,
"Invalid Ciphertext. Data is too small"
);
assert(encrypted[0] >= 2 && encrypted[0] <= 4, "Not valid ciphertext.");
// deserialize
const ephemPublicKey = encrypted.slice(0, 65);
const cipherTextLength = encrypted.length - metaLength;
const iv = encrypted.slice(65, 65 + 16);
const cipherAndIv = encrypted.slice(65, 65 + 16 + cipherTextLength);
const ciphertext = cipherAndIv.slice(16);
const msgMac = encrypted.slice(65 + 16 + cipherTextLength);
// check HMAC
const px = derive(sharedPrivateKey, ephemPublicKey);
const hash = kdf(px, 32);
const encryptionKey = hash.slice(0, 16);
const macKey = crypto.createHash("sha256").update(hash.slice(16)).digest();
const dataToMac = Buffer.from(cipherAndIv);
const hmacGood = hmacSha256Sign(macKey, dataToMac);
assert(hmacGood.equals(msgMac), "Incorrect MAC");
return aesCtrDecrypt(iv, encryptionKey, ciphertext).toString();
}