-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
66 lines (53 loc) · 2.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
# import torch.nn.functional as F
import jax.numpy as jnp
import math
import matplotlib.pyplot as plt
def get_cosine_schedule(num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return jnp.array(betas)
def get_values():
beta_1 = 1e-4
beta_T = 0.02
beta_ts = jnp.linspace(beta_1, beta_T, 1000)
# beta_ts = get_cosine_schedule(1000)
alpha_ts = 1 - beta_ts
alpha_hat_ts = jnp.cumprod(alpha_ts, 0)
alpha_hat_ts_prev = jnp.pad(
alpha_hat_ts[:-1], (1, 0), "constant", constant_values=1.0
)
sqrt_alpha_ts = jnp.sqrt(alpha_ts)
sqrt_alpha_hat_ts = jnp.sqrt(alpha_hat_ts)
sqrt_alpha_hat_ts_2 = jnp.sqrt(1 - alpha_hat_ts)
post_std = jnp.sqrt(((1 - alpha_hat_ts_prev) / (1 - alpha_hat_ts)) * beta_ts)
return sqrt_alpha_hat_ts, sqrt_alpha_hat_ts_2, alpha_ts, beta_ts, post_std
def print_stats(x, name):
print(
f"{name} max: {jnp.max(x)}, min: {jnp.min(x)}, mean: {jnp.mean(x)}, std: {jnp.std(x)}"
)