-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
80 lines (65 loc) · 3.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn.functional as F
import numpy as np
import math
import matplotlib.pyplot as plt
def get_cosine_schedule(num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.from_numpy(np.array(betas)).float()
def get_values(device):
beta_1 = 1e-4
beta_T = 0.02
beta_ts = torch.linspace(beta_1, beta_T, 1000)
# beta_ts = get_cosine_schedule(1000)
alpha_ts = 1 - beta_ts
alpha_hat_ts = torch.cumprod(alpha_ts, 0)
alpha_hat_ts_prev = F.pad(alpha_hat_ts[:-1], (1, 0), 'constant',1.0)
sqrt_alpha_ts = torch.sqrt(alpha_ts)
sqrt_alpha_hat_ts = torch.sqrt(alpha_hat_ts)
sqrt_alpha_hat_ts_2 = torch.sqrt(1-alpha_hat_ts)
post_std = torch.sqrt(((1-alpha_hat_ts_prev)/(1-alpha_hat_ts))*beta_ts)
# prev_sqrt_alpha_hat_ts = sqrt_alpha_hat_ts[:-1] # sqrt(alpha_hat_t-1)
# prev_alpha_hat_ts = alpha_hat_ts[:-1] # alpha_hat_t-1
# curr_alpha_hat_ts = alpha_hat_ts[1:] # alpha_hat_t
# curr_alpha_ts = alpha_ts[1:] # alpha_t
# curr_sqrt_alpha_hat_ts = sqrt_alpha_hat_ts[1:] # sqrt(alpha_t)
# curr_sqrt_alpha_hat_ts_2 = torch.sqrt(1-curr_alpha_hat_ts) # sqrt(1 - alpha_hat)
# curr_beta_ts = beta_ts[1:] # beta_t
# coeff1 = prev_sqrt_alpha_hat_ts / (1 - curr_alpha_hat_ts)
# coeff2 = (( 1- prev_alpha_hat_ts ) / ( 1- curr_alpha_hat_ts )) * (curr_sqrt_alpha_ts)
# beta_hat_ts = ((1 - prev_alpha_hat_ts) / (1 - curr_alpha_hat_ts)) * curr_beta_ts
# coeff_3 = (1-curr_alpha_hat_ts)/curr_sqrt_alpha_hat_ts_2
sqrt_alpha_hat_ts = sqrt_alpha_hat_ts.to(device)
sqrt_alpha_hat_ts_2 = sqrt_alpha_hat_ts_2.to(device)
alpha_ts = alpha_ts.to(device)
beta_ts = beta_ts.to(device)
post_std = post_std.to(device)
return sqrt_alpha_hat_ts, sqrt_alpha_hat_ts_2, alpha_ts, beta_ts, post_std
def print_stats(x, name):
print(f"{name} max: {torch.max(x)}, min: {torch.min(x)}, mean: {torch.mean(x)}, std: {torch.std(x)}")