-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
69 lines (61 loc) · 2.13 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
from dataloader import get_dataloader
from diffusion import Diffusion
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
from utils import get_values, print_stats
import torchvision.transforms as T
import torchvision
from torchvision import transforms
import matplotlib.pyplot as plt
from models import Classifier
import numpy as np
if torch.cuda.is_available():
dev = "cuda:0"
else:
dev = "cpu"
device = torch.device(dev)
sqrt_alpha_hat_ts, sqrt_alpha_hat_ts_2, alpha_ts, beta_ts, post_std = get_values(device)
model = Diffusion(sqrt_alpha_hat_ts, sqrt_alpha_hat_ts_2, alpha_ts, beta_ts, post_std, 1, 1)
model.load_state_dict(
torch.load(
"D:/diffusion/runs/fashion_trainer_20230410_151501/model_20230410_151501_1"
)
)
classifier = Classifier()
classifier.load_state_dict(
torch.load(
"runs/mnist_classifier20230410_131629/classifier_20230410_131629_2809"
)
)
def show_tensor_image(image):
reverse_transforms = transforms.Compose([
transforms.Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
transforms.Lambda(lambda t: t * 255.),
# transforms.Lambda(lambda t: torch.clamp(t, 0, 255)), # why is this messing things up?
transforms.Lambda(lambda t: t.numpy().astype(np.uint8)),
transforms.ToPILImage(),
])
# Take first image of batch
if len(image.shape) == 4:
image = image[0, :, :, :]
plt.imshow(reverse_transforms(image))
def show_grid_images(x):
plt.figure(figsize=(15,15))
plt.axis('off')
num_images = len(x)
for i in range(num_images):
plt.subplot(1, num_images, 1+i)
show_tensor_image(x[i].detach().cpu())
plt.savefig("sample.jpg")
plt.show()
model = model.to(device)
model.train(True) # okay why is this causing so much difference
y = torch.ones([1], dtype=torch.long, device=device)*5
y_one_hot = torch.nn.functional.one_hot(y, 10).float()
x = model.sample(device, y_one_hot, classifier)
show_grid_images(x)
x = torch.stack(x)
print_stats(x, "x")
print(x.shape)
torchvision.utils.save_image(x, "sample.png")