Skip to content

Latest commit

 

History

History

mediapipe_iris

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MediaPipe Iris

Input

(Image from https://pixabay.com/photos/person-human-male-face-man-view-829966/)

Detector

  • ailia input shape: (1, 3, 128, 128) RGB channel order
  • Pixel value range: [-1, 1]

Face Landmark

  • ailia input shape: (batch_size, 3, 192, 192) RGB channel order
  • Pixel value range: [-1, 1]

Iris Landmark

  • ailia input shape: (batch_size, 3, 64, 64) RGB channel order
  • Pixel value range: [-1, 1]
  • Left eye (or horizontally flipped right eye)

Output

Detector

  • ailia Predict API output:
    • Bounding boxes and keypoints
      • Shape: (1, 896, 16)
    • Classification confidences
      • Shape: (1, 896, 1)
  • With helper functions, filtered detections with keypoints can be obtained.

Face Estimator

  • ailia Predict API output:
    • landmarks: 468 face landmarks with (x, y, z) coordinates
      • Shape: (batch_size, 468, 3)
      • x and y are in the range [0, 192] (to normalize, divide by the image width and height, 192). z represents the landmark depth with the depth at center of the head being the origin, and the smaller the value the closer the landmark is to the camera. The magnitude of z uses roughly the same scale as x.
    • confidences: no information. Probably a confidence score for the landmarks
      • Shape: (batch_size,)
  • With helper functions, image (original size) coordinates of iris landmarks and cropped eye region image can be obtained.

Iris Estimator

  • ailia Predict API output:
    • eyes: 71 eye/eyebrow region landmarks with (x, y, z) coordinates
      • Shape: (1, 213 * batch_size)
      • x and y are in the range [0, 64] (origin is upper left corner for both left and FLIPPED right eye image). z is unused (refer to Face Estimator for those interested in using this coordinate).
      • The 16 points defining one eye's contour is refined with this estimator (16 first points).
    • iris: 5 iris landmarks with (x, y, z) coordinates
      • Shape: (1, 15 * batch_size)
      • x and y are in the range [0, 64] (origin is upper left corner for both left and FLIPPED right eye image). z coordinate is set to the average of the z coordinate of the eye corners.
  • With helper functions, image (original size) coordinates of iris landmarks can be obtained.

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 iris.py 

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 mediapipe_iris.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 mediapipe_iris.py --video VIDEO_PATH --savepath SAVE_VIDEO_PATH

Reference

Framework

PyTorch 1.7.1

Model Format

ONNX opset = 10

Netron

iris.onnx.prototxt