-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpredict_from_tfrecords.py
executable file
·240 lines (192 loc) · 9.56 KB
/
predict_from_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) 2017 Artsiom Sanakoyeu
import argparse
import tflearn
import sys
from data_utils import *
from net_config import *
from net_spec import SegPlusRegNet
from records.records import read_test_batch
from net_spec import preprocessing_fn_map
def parse_dir(value):
if value:
return join(ROOT_DIR, 'out_preds', value)
else:
return None
def parse_scale(value):
try:
value = float(value)
except:
pass
return value
parser = argparse.ArgumentParser()
parser.add_argument('--suf', help='Dir suffix')
parser.add_argument('--model', default='small', help='Network model type.',
choices=['vgg_16', 'vgg_19', 'resnet_v2_50', 'resnet_v2_101',
'resnet_v2_152', 'inception_resnet_v2'])
parser.add_argument('--snapshot_iter', type=int, default='None',
help='Snapshot iteration to use for prediction. Last snapshot if None')
parser.add_argument('--tile_size', type=int, default=224,
help='part of the validation split')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size')
parser.add_argument('--scale', type=parse_scale, default=1, choices=[1, 0.5, 'a', 'b'],
help='images scale to use for prediction')
parser.add_argument('--preds_out', default=None, type=parse_dir,
help='predicted maps output dir')
parser.add_argument('--ssd', action='store_true',
help='read from ssd?')
parser.add_argument('--preproc', default=None, choices=['vgg', 'inception'],
help='preprocessing type')
parser.add_argument('--extra_fc', type=int, default=0,
help='size of the extra fc layer. If 0 do not add extra layer.')
parser.add_argument('--pool', choices=['avg', 'sum'], default=None,
help='sum/avg pool of last base conv(pool) layer')
parser.add_argument('--img_pad_offset', type=int, default=None,
help='Number of rows/columns of zeros to add on top/left of the image. Pad to center if None.')
FLAGS = parser.parse_args(sys.argv[1:])
def assemble_predictions_per_image(class_counts, images_info):
predict_df = pd.DataFrame(index=images_info.index, columns=CLASS_NAMES, dtype=np.float32)
prev_pos = 0
for image_id, num_tiles in images_info['num_tiles'].iteritems():
predict_df.loc[image_id, CLASS_NAMES] = \
class_counts[prev_pos:prev_pos + num_tiles, :].sum(axis=0)
prev_pos += num_tiles
assert prev_pos == images_info.num_tiles.sum()
return predict_df
def run_prediction(net, images_info, batch_size):
assert 'num_tiles' in images_info.columns
assert 'image_path' in images_info.columns
number_tiles_total = images_info['num_tiles'].sum()
print 'Number of tiles in this block:', number_tiles_total
class_counts_per_tile = np.zeros((number_tiles_total, LionClasses.NUM_CLASSES), dtype=np.float32)
for batch_start in tqdm(range(0, number_tiles_total, batch_size), desc='feed-fwd'):
feed_dict = {net.is_training_pl: False}
try:
class_counts_per_tile[batch_start:batch_start + batch_size, :] = \
np.clip(net.sess.run(net.obj_counts, feed_dict=feed_dict), 0, 1e6)
except tf.errors.OutOfRangeError:
print 'Finished.'
break
predict_df = assemble_predictions_per_image(class_counts_per_tile, images_info)
return predict_df, class_counts_per_tile
def predict(net, images_info,
tile_size=224, batch_size=12,
predictions_output_dir=None,
image_pad_offset=None):
images_info['num_tiles'] = calc_number_of_tiles(images_info, tile_size,
image_pad_offset=image_pad_offset)
predict_df, tile_predictions = run_prediction(net, images_info, batch_size)
predict_df.index.name = 'test_id'
if predictions_output_dir is not None:
print 'Saving predicitons for all tiles'
np.save(join(predictions_output_dir, 'all_tile_predictions.npy'), tile_predictions)
images_info.to_hdf(join(predictions_output_dir, 'images_info.hdf5'), 'df', mode='w')
assert np.all(predict_df.index == images_info.index)
return predict_df
BLACK_OUT_TRAIN_DIR = join(ROOT_DIR, 'Train/black')
def get_splits(train_from_script_df, test_dir=join(ROOT_DIR, 'Test')):
train_img_ids = train_from_script_df.index
# train_img_ids = train_img_ids[:100]
rs = np.random.RandomState(1993)
val_part = 0.2
random_perm = rs.permutation(len(train_img_ids))
num_val = int(len(random_perm) * val_part)
val_image_ids = train_img_ids[random_perm[:num_val]]
train_img_ids = train_img_ids[random_perm[num_val:]]
test_img_paths = glob.glob(join(test_dir, '*jpg'))
test_img_paths.sort()
test_img_ids = map(lambda x: int(os.path.basename(x)[:-4]), test_img_paths)
test_img_ids.sort()
return train_img_ids, val_image_ids, test_img_ids
def main():
print FLAGS
PREDICTIONS_DIR = join(ROOT_DIR, 'predictions')
if not os.path.exists(PREDICTIONS_DIR):
os.makedirs(PREDICTIONS_DIR)
preds_name = FLAGS.model + FLAGS.suf + '_scale{scale:}{img_pad_offset:}it{it:}'.format(
scale=FLAGS.scale,
img_pad_offset='_pad{}'.format(FLAGS.img_pad_offset) if FLAGS.img_pad_offset is not None else '',
it=str(FLAGS.snapshot_iter / 1000) + 'k' if FLAGS.snapshot_iter % 1000 == 0 else FLAGS.snapshot_iter)
if FLAGS.preds_out is not None:
preds_out_dir = FLAGS.preds_out
else:
preds_out_dir = join(ROOT_DIR, 'out_preds', 'test_' + preds_name)
df_output_path = join(preds_out_dir, 'test_preds_df_' + preds_name + '.csv')
if FLAGS.ssd:
raise NotImplemented()
else:
data_dir = ROOT_DIR
print 'Test images dir:', data_dir
###########################################################################
# Prepare data
np.random.seed(41)
train_from_script_df = df_from_script_data()
train_ids, val_ids, test_ids = get_splits(train_from_script_df)
images_info = get_test_images_info_df(scale=FLAGS.scale)
image_ids = test_ids
assert np.all(images_info.index == image_ids)
should_calc_scores = False
# images_info = images_info[:10]
###########################################################################
# Predict
with tf.Graph().as_default():
if FLAGS.preproc is not None:
preproc_fn = preprocessing_fn_map[FLAGS.preproc]
else:
preproc_fn = preprocessing_fn_map[FLAGS.model]
images_tensor, img_ids_tensor = read_test_batch(join(data_dir,
'records/test_black_{}.tfrecords'.format(FLAGS.scale)),
num_threads=1,
batch_size=FLAGS.batch_size, tile_size=FLAGS.tile_size,
image_pad_offset=FLAGS.img_pad_offset,
preprocessing_fn=preproc_fn)
net = SegPlusRegNet(images_tensor, None, None,
use_regression_loss=False,
use_segmentation_loss=False,
net_name=FLAGS.model,
should_create_summaries=False,
extra_fc_size=FLAGS.extra_fc,
global_pool=FLAGS.pool)
config = tflearn.init_graph(num_cores=0, gpu_memory_fraction=None,
log_device=False, seed=41)
net.sess = tf.Session(config=config)
net.sess.run(tf.local_variables_initializer())
net.sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=net.sess, coord=coord)
checkpoints_dir = join(ROOT_DIR, 'checkpoints', FLAGS.model + FLAGS.suf)
if not os.path.exists(checkpoints_dir):
raise ValueError('Dir {} doesn\'t exist!'.format(checkpoints_dir))
if FLAGS.snapshot_iter is not None:
snapshot_path = join(checkpoints_dir, 'checkpoint-{}'.format(FLAGS.snapshot_iter))
else:
snapshot_path = tf.train.latest_checkpoint(checkpoints_dir)
saver = tf.train.Saver()
saver.restore(net.sess, snapshot_path)
print 'Restored from {}'.format(snapshot_path)
if not os.path.exists(preds_out_dir):
os.makedirs(preds_out_dir)
start_time = time.time()
predict_df = predict(net, images_info,
tile_size=FLAGS.tile_size,
batch_size=FLAGS.batch_size,
predictions_output_dir=preds_out_dir,
image_pad_offset=FLAGS.img_pad_offset)
coord.request_stop()
coord.join(threads)
duration = time.time() - start_time
print 'Elapsed time: {}h {}m'.format(int(duration) / 60**2, int(duration) / 60)
print predict_df.head()
print predict_df.describe()
predict_df[CLASS_NAMES].to_csv(df_output_path)
print 'Saved preds df to {}'.format(df_output_path)
# TODO: create submit file
submission_df = np.round(predict_df[CLASS_NAMES]).astype(int)
submission_df = np.clip(submission_df, 0, 1e6)
submission_df.index.name = 'test_id'
submission_df.to_csv(join(ROOT_DIR, 'predictions/submission_{}.csv'.format(preds_name)))
if should_calc_scores:
evaluate_df(train_from_script_df, predict_df[CLASS_NAMES],
check_indices=False)
if __name__ == '__main__':
main()