-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathrun_training_divae.py
executable file
·1607 lines (1387 loc) · 81 KB
/
run_training_divae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.insert(0,'..')
import argparse
import datetime
import wandb
from wandb import AlertLevel
import json
import math
import os
import io
import re
import time
import warnings
from pathlib import Path
from typing import Iterable, List, Set, Dict, Optional, Union, Callable
import yaml
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from einops import rearrange, repeat
import webdataset as wds
from webdataset.handlers import reraise_exception
import boto3
from boto3.s3.transfer import TransferConfig
# Metrics
from torchmetrics import MeanSquaredError, MeanAbsoluteError
from torchmetrics.image import PeakSignalNoiseRatio, MultiScaleStructuralSimilarityIndexMeasure
from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchmetrics.image.inception import InceptionScore
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import diffusers.schedulers as diffusers_schedulers
from fourm.vq.scheduling import DDPMScheduler, DDIMScheduler
import fourm.utils as utils
from fourm.data import build_wds_divae_dataloader
from fourm.data import RandomCropImageAugmenter, CenterCropImageAugmenter
import fourm.utils.data_constants as data_constants
from fourm.utils import denormalize
from fourm.utils.optim_factory import create_optimizer
from fourm.utils import to_2tuple
from fourm.utils import NativeScalerWithGradNormCount as NativeScaler
from fourm.utils import ModelEmaV2 as ModelEma
from fourm.vq.vqvae import DiVAE
from fourm.vq.vq_utils import compute_codebook_usage
from fourm.data.modality_info import MODALITY_INFO, MODALITY_TRANSFORMS_DIVAE
from fourm.data.modality_transforms import UnifiedDataTransform, RGBTransform, NormalTransform
from fourm.data.multimodal_dataset_folder import MultiModalDatasetFolder
def unwrap_model(model: Union[nn.Module, DDP]) -> nn.Module:
"""Retrieves a model from a DDP wrapper, if necessary."""
return model.module if hasattr(model, 'module') else model
def setup_modality_info(args: argparse.Namespace) -> Dict[str, dict]:
"""Sets up the modality info dictionary for the given domains."""
modality_info = {mod: MODALITY_INFO[mod] for mod in args.all_domains}
return modality_info
def get_crop_size(crop_coords: torch.Tensor) -> torch.Tensor:
"""Returns the crop heights and widths from the crop coordinates."""
heights = crop_coords[:,2] - crop_coords[:,0]
widths = crop_coords[:,3] - crop_coords[:,1]
return torch.stack([heights, widths], dim=1)
def get_args() -> argparse.Namespace:
"""Parses the arguments from the command line."""
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser('Diffusion VQ-VAE training script', add_help=False)
# Model parameters
parser.add_argument('--patch_size', default=16, type=int,
help='Patch size for ViT encoder (default: %(default)s)')
parser.add_argument('--input_size_min', default=224, type=int,
help='Minimum image size (default: %(default)s)')
parser.add_argument('--input_size_max', default=512, type=int,
help='Maximum image size (default: %(default)s)')
parser.add_argument('--resolution_step', default=32, type=int,
help='Interval between different training resolutions (default: %(default)s)')
parser.add_argument('--input_size_enc', default=None, type=int,
help='Only used when frozen encoder pos emb are initialized at a certain resolution. (default: %(default)s)')
parser.add_argument('--encoder_type', default='vit_s_enc', type=str, metavar='ENC',
help='Name of encoder (default: %(default)s)')
parser.add_argument('--decoder_type', default='unet_cat', type=str, metavar='DEC',
help='Name of decoder (default: %(default)s)')
parser.add_argument('--post_mlp', action='store_true')
parser.add_argument('--no_post_mlp', action='store_false', dest='post_mlp')
parser.set_defaults(post_mlp=True)
parser.add_argument('--encoder_ckpt', default=None, type=str,
help='Optional path to encoder checkpoint (default: %(default)s)')
parser.add_argument('--full_ckpt', default=None, type=str,
help='Optional path to encoder + quantizer + decoder checkpoint (default: %(default)s)')
parser.add_argument('--freeze_enc', action='store_true',
help='Freeze encoder and quantizer (default: %(default)s)')
parser.add_argument('--no_freeze_enc', action='store_false', dest='freeze_enc')
parser.set_defaults(freeze_enc=False)
parser.add_argument('--dec_transformer_dropout', default=0.2, type=int,
help='Dropout ratio for the transformer midblock of the UViT decoder (default: %(default)s)')
# Quantizer parameters
parser.add_argument('--quantizer_type', default='lucid', type=str, metavar='QUANT',
help='Type of quantizer. Either lucid or memcodes (default: %(default)s)')
parser.add_argument('--codebook_size', default=8192,
help="""Size of the VQ code book. For FSQ, this is a string of integers separated by hyphen,
specifying the number levels for each dimension. (default: %(default)s)""")
parser.add_argument('--latent_dim', default=32, type=int,
help='Dimension of the bottleneck. For FSQ, this is set to the number of levels in codebook_size and is ignored. (default: %(default)s)')
parser.add_argument('--norm_codes', action='store_true')
parser.add_argument('--no_norm_codes', action='store_false', dest='norm_codes')
parser.set_defaults(norm_codes=True)
parser.add_argument('--norm_latents', action='store_true')
parser.add_argument('--no_norm_latents', action='store_false', dest='norm_latents')
parser.set_defaults(norm_latents=False)
parser.add_argument('--codebook_weight', default=1.0, type=float,
help='Weight of code book loss (default: %(default)s)')
parser.add_argument('--quantizer_ema_decay', default=0.8, type=float,
help='Quantizer EMA decay rate (default: %(default)s)')
parser.add_argument('--coef_ema_dead_code', default=4.0, type=float,
help='Dead code restart coefficient (default: %(default)s)')
parser.add_argument('--code_replacement_policy', default='batch_random', type=str,
help='Method of replacing dead codes. batch_random or linde_buzo_gray. (default: %(default)s)')
parser.add_argument('--commitment_weight', default=1.0, type=float,
help='Quantizer commitment weight, aka "beta" (default: %(default)s)')
parser.add_argument('--kmeans_init', action='store_true')
parser.add_argument('--no_kmeans_init', action='store_false', dest='kmeans_init')
parser.set_defaults(kmeans_init=False)
# Diffusion parameters
parser.add_argument('--num_train_timesteps', default=1000, type=int,
help='Number of diffusion steps during training (default: %(default)s)')
parser.add_argument('--prediction_type', default='sample', type=str,
help='sample (x_0), epsilon (noise), v_prediction (velocity), or v_prediction-epsilon_loss diffusion mode (default: %(default)s)')
parser.add_argument('--beta_schedule', default='linear', type=str,
help='Forward process beta schedule. linear or squaredcos_cap_v2 (default: %(default)s)')
parser.add_argument('--zero_terminal_snr', action='store_true',
help='Enforce SNR of beta schedule to be zero at t=T. (default: %(default)s)')
parser.add_argument('--no_zero_terminal_snr', action='store_false', dest='zero_terminal_snr')
parser.set_defaults(zero_terminal_snr=True)
parser.add_argument('--cls_free_guidance_dropout', default=0.2, type=int,
help='Condition dropout percentage during training for classifier free guidance (default: %(default)s)')
parser.add_argument('--masked_cfg', action='store_true',
help='Enable to perform masking on the encoded tokens. (default: %(default)s)')
parser.add_argument('--no_masked_cfg', action='store_false', dest='masked_cfg')
parser.set_defaults(masked_cfg=True)
parser.add_argument('--masked_cfg_low', default=0, type=int,
help='Lower bound of number of tokens to mask out (default: %(default)s)')
parser.add_argument('--masked_cfg_high', default=None, type=int,
help='Upper bound of number of tokens to mask out, defaults to total number of tokens minus 1 (default: %(default)s)')
parser.add_argument('--thresholding', default=True, type=bool,
help='Whether or not to dynamically clip outputs to [-1,1]. Only affects inference time. (default: %(default)s)')
parser.add_argument('--loss_fn', default='mse', type=str,
help='Diffusion noise loss function. mse, l1, or smooth_l1 (default: %(default)s)')
parser.add_argument('--conditioning', default='concat', type=str,
help='Method to condition UViT Transformer on tokens. concat or xattn. (default: %(default)s)')
parser.add_argument('--resolution_cond', action='store_true',
help='Enable to condition diffusion decoder on original image resolution. (default: %(default)s)')
parser.add_argument('--no_resolution_cond', action='store_false', dest='resolution_cond')
parser.set_defaults(resolution_cond=False)
parser.add_argument('--eval_res_cond', default=512, type=int,
help='"Original" resolution to condition diffusion decoder on during evaluation. (default: %(default)s)')
# Optimizer parameters
parser.add_argument('--batch_size', default=256, type=int,
help='Batch size per GPU (default: %(default)s)')
parser.add_argument('--batch_size_eval', default=None, type=int,
help='Batch size per GPU during evaluation (default: %(default)s)')
parser.add_argument('--epochs', default=100, type=int,
help='Number of epochs (default: %(default)s)')
parser.add_argument('--save_ckpt_freq', default=10, type=int,
help='Checkpoint saving frequency in epochs (default: %(default)s)')
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: %(default)s)')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer epsilon (default: %(default)s)')
parser.add_argument('--opt_betas', default=[0.9, 0.95], type=float, nargs='+', metavar='BETA',
help='Optimizer betas (default: %(default)s)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='CLIPNORM',
help='Clip gradient norm (default: %(default)s)')
parser.add_argument('--skip_grad', type=float, default=None, metavar='SKIPNORM',
help='Skip update if gradient norm larger than threshold (default: %(default)s)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: %(default)s)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='Weight decay (default: %(default)s)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD. (Set the same value as args.weight_decay to keep weight decay unchanged)""")
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='Base learning rate: absolute_lr = base_lr * total_batch_size / 256 (default: %(default)s)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='Warmup learning rate (default: %(default)s)')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='Lower lr bound for cyclic schedulers that hit 0 (default: %(default)s)')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='Epochs to warmup LR, if scheduler supports (default: %(default)s)')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='Epochs to warmup LR, if scheduler supports (default: %(default)s)')
parser.add_argument('--dtype', type=str, default='float16',
choices=['float16', 'bfloat16', 'float32', 'bf16', 'fp16', 'fp32'],
help='Data type (default: %(default)s')
parser.add_argument('--model_ema', action='store_true', default=True)
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='')
parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='')
parser.add_argument('--model_ema_update_freq', type=int, default=1, help='')
# Augmentation parameters
parser.add_argument('--hflip', type=float, default=0.5,
help='Probability of horizontal flip (default: %(default)s)')
# Dataset parameters
parser.add_argument('--domain', default='rgb', type=str,
help='Domain/Task name to load (default: %(default)s)')
parser.add_argument('--mask_value', default=None, type=float,
help='Optionally set masked-out regions to this value after data augs (default: %(default)s)')
parser.add_argument('--data_path', default=None, type=str, help='dataset path')
parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path')
parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true')
parser.add_argument('--standardize_surface_normals', default=False, action='store_true')
parser.add_argument('--min_crop_scale', default=0.8, type=float,
help='Minimum crop scale for random data augmentation (default: %(default)s)')
parser.add_argument('--cache_datasets', default=False, action='store_true',
help='Cache file paths in data_path/dataloader_cache for faster Dataset initialization (default: %(default)s)')
parser.add_argument('--use_wds', action='store_true', help='webdatasets')
parser.add_argument('--no_use_wds', action='store_false', dest='use_wds')
parser.set_defaults(use_wds=False)
parser.add_argument('--s3_endpoint', default='', type=str, help='S3 endpoint URL')
parser.add_argument('--s3_data_endpoint', default=None, type=str,
help='S3 endpoint URL for the data (if different). If set to None, will be set to s3_endpoint')
parser.add_argument('--wds_n_repeats', default=1, type=int, help='Number of repeats for webdataset loader to improve efficiency')
parser.add_argument('--wds_shuffle_buffer_tar', default=1_000, type=int, help='Webdatasets shuffle buffer after loading tar files')
parser.add_argument('--wds_shuffle_buffer_repeat', default=1_000, type=int, help='Webdatasets shuffle buffer after repeating samples')
parser.add_argument('--s3_multipart_chunksize_mb', default=512, type=int)
parser.add_argument('--s3_multipart_threshold_mb', default=512, type=int)
parser.add_argument('--dataset_size', default=None, type=int, help='Needed for DDP when using webdatasets')
# Eval parameters
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation')
parser.add_argument('--no_dist_eval', action='store_false', dest='dist_eval',
help='Disabling distributed evaluation')
parser.set_defaults(dist_eval=True)
parser.add_argument('--step_eval', action='store_true', default=False, help="Evaluate on a step basis")
parser.add_argument('--epoch_eval', action='store_false', dest='step_eval', help="Evaluate on an epoch basis")
parser.add_argument('--eval_noise_schedule', default='DDIMScheduler', type=str,
help='Type of diffusers.schedulers noise scheduler for evaluation. (default: %(default)s)')
parser.add_argument('--num_eval_timesteps', default=50, type=int,
help='Number of diffusion steps during evaluation (default: %(default)s)')
parser.add_argument('--input_size_eval', default="256", type=str,
help='Evaluation is ran at this list of image sizes, split by a hyphen (+ min and max size if they are different) (default: %(default)s)')
parser.add_argument('--num_eval_metrics_samples', default=None, type=int,
help='Number of samples to use for computing evaluation metrics (default: %(default)s)')
parser.add_argument('--eval_freq', default=1, type=int, help="frequency of evaluation (in iterations or epochs)")
parser.add_argument('--eval_metrics_freq', default=1, type=int, help="frequency of evaluation metrics (in iterations or epochs)")
parser.add_argument('--eval_image_log_freq', default=5, type=int, help="frequency of evaluation image logging (in iterations)")
parser.add_argument('--num_logged_images', default=100, type=int, help="number of images to log")
parser.add_argument('--eval_only', action='store_true', default=False)
parser.add_argument('--no_inception', action='store_true', default=False, help="Disable Inception metric during eval")
parser.add_argument('--log_codebook_usage', action='store_true', help='Log the codebook usage')
parser.add_argument('--no_codebook_usage', action='store_false', dest='log_codebook_usage', help='Disable logging of the codebook usage')
parser.set_defaults(log_codebook_usage=True)
# Misc.
parser.add_argument('--output_dir', default='',
help='Path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='Device to use for training / testing')
parser.add_argument('--seed', default=0, type=int, help='Random seed ')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--no_find_unused_params', action='store_false', dest='find_unused_params')
parser.set_defaults(find_unused_params=False)
# Wandb logging
parser.add_argument('--log_wandb', default=False, action='store_true',
help='Log training and validation metrics to wandb')
parser.add_argument('--no_log_wandb', action='store_false', dest='log_wandb')
parser.set_defaults(log_wandb=False)
parser.add_argument('--wandb_project', default=None, type=str,
help='Project name on wandb')
parser.add_argument('--wandb_entity', default=None, type=str,
help='User or team name on wandb')
parser.add_argument('--wandb_run_name', default=None, type=str,
help='Run name on wandb')
parser.add_argument('--wandb_tags', default='', type=str, help='Extra wandb tags, separated by a double hyphen')
parser.add_argument('--show_user_warnings', default=False, action='store_true')
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# S3 Load & Save
parser.add_argument('--s3_path', default='', type=str, help='S3 path to model')
parser.add_argument('--s3_save_dir', type=str, default="")
# Parse config file if there is one
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Add the config path as a final args if given
args.config_path = args_config.config
return args
def get_model(args: argparse.Namespace, device: Union[torch.device, str]) -> DiVAE:
"""Creates and returns model from arguments."""
# Compute the dead codebook threshold
total_batch_size = args.batch_size * utils.get_world_size()
mean_img_size = (args.input_size_min + args.input_size_max) // 2
tokens_per_image = (mean_img_size // args.patch_size) ** 2
codebook_size_int = np.prod([int(d) for d in args.codebook_size.split('-')]) if isinstance(args.codebook_size, str) else args.codebook_size
uniform_token_count_per_batch = total_batch_size * tokens_per_image / codebook_size_int
threshold_ema_dead_code = uniform_token_count_per_batch / args.coef_ema_dead_code
print(f'Computed dead code EMA threshold: {threshold_ema_dead_code:.4f}')
ignore_keys = ['decoder', 'loss', 'post_quant_conv', 'post_quant_proj', 'encoder.pos_emb']
ckpt = args.encoder_ckpt
if args.full_ckpt is not None:
ignore_keys = ['encoder.pos_emb']
ckpt = args.full_ckpt
n_channels = MODALITY_INFO[args.domain]['num_channels']
if args.mask_value is not None:
n_channels += 1
model = DiVAE(
image_size=args.input_size_max,
image_size_enc=args.input_size_enc,
n_channels=n_channels,
enc_type=args.encoder_type,
dec_type=args.decoder_type,
post_mlp=args.post_mlp,
quant_type=args.quantizer_type,
patch_size=args.patch_size,
codebook_size=args.codebook_size,
latent_dim=args.latent_dim,
norm_codes=args.norm_codes,
norm_latents=args.norm_latents,
prediction_type=args.prediction_type.split('-')[0],
num_train_timesteps=args.num_train_timesteps,
ckpt_path=ckpt,
ignore_keys=ignore_keys,
freeze_enc=args.freeze_enc,
cls_free_guidance_dropout=args.cls_free_guidance_dropout,
masked_cfg=args.masked_cfg,
masked_cfg_low=args.masked_cfg_low,
masked_cfg_high=args.masked_cfg_high,
beta_schedule=args.beta_schedule,
thresholding=args.thresholding,
sync_codebook=True,
ema_decay=args.quantizer_ema_decay,
threshold_ema_dead_code=threshold_ema_dead_code,
code_replacement_policy=args.code_replacement_policy,
commitment_weight=args.commitment_weight,
kmeans_init=args.kmeans_init,
undo_std=False,
conditioning=args.conditioning,
dec_transformer_dropout=args.dec_transformer_dropout,
zero_terminal_snr=args.zero_terminal_snr,
)
return model.to(device)
def main(args: argparse.Namespace) -> None:
"""Main function for training and evaluation."""
utils.init_distributed_mode(args)
device = torch.device(args.device)
# Fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
if not args.show_user_warnings:
warnings.filterwarnings("ignore", category=UserWarning)
if args.dtype in ['float16', 'fp16']:
dtype = torch.float16
elif args.dtype in ['bfloat16', 'bf16']:
dtype = torch.bfloat16
elif args.dtype in ['float32', 'fp32']:
dtype = torch.float32
else:
raise ValueError(f"Invalid dtype: {args.dtype}")
num_tasks = utils.get_world_size()
args.num_tasks = num_tasks
global_rank = utils.get_rank()
sampler_rank = global_rank
args.eval_res_cond = to_2tuple(args.eval_res_cond) if args.resolution_cond else None
args.all_domains = [args.domain] if args.mask_value is None else [args.domain, 'mask_valid']
modality_info = setup_modality_info(args)
modality_paths = {mod: modality_info[mod]['path'] for mod in modality_info if modality_info[mod].get('path', None) is not None}
args.input_size = args.input_size_max # For multi-resolution training, load the largest resolution and downsample accordingly
image_augmenter_train = RandomCropImageAugmenter(target_size=args.input_size, main_domain=args.domain, crop_scale=(args.min_crop_scale, 1.0))
MODALITY_TRANSFORMS_DIVAE['normal'] = NormalTransform(standardize_surface_normals=args.standardize_surface_normals)
MODALITY_TRANSFORMS_DIVAE['rgb'] = RGBTransform(imagenet_default_mean_and_std=args.imagenet_default_mean_and_std)
if args.use_wds:
if args.data_path.startswith("s3"):
# When loading from S3 using boto3, hijack webdatasets tar loading
MB = 1024 ** 2
transfer_config = TransferConfig(
multipart_threshold=args.s3_multipart_threshold_mb * MB,
multipart_chunksize=args.s3_multipart_chunksize_mb * MB,
max_io_queue=1000)
s3_client = boto3.client(
service_name='s3',
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'],
endpoint_url=args.s3_data_endpoint,
)
def get_bytes_io(path):
byte_io = io.BytesIO()
_, bucket, key, _ = re.split("s3://(.*?)/(.*)$", path)
s3_client.download_fileobj(bucket, key, byte_io, Config=transfer_config)
byte_io.seek(0)
return byte_io
def url_opener(data, handler=reraise_exception, **kw):
for sample in data:
url = sample["url"]
try:
stream = get_bytes_io(url)
sample.update(stream=stream)
yield sample
except Exception as exn:
exn.args = exn.args + (url,)
if handler(exn):
continue
else:
break
wds.tariterators.url_opener = url_opener
# When using webdatasets
data_loader_train = build_wds_divae_dataloader(
data_path=args.data_path, modality_info=modality_info, modality_transforms=MODALITY_TRANSFORMS_DIVAE,
image_augmenter=image_augmenter_train, num_gpus=num_tasks, num_workers=args.num_workers,
batch_size=args.batch_size, epoch_size=args.dataset_size, shuffle_buffer_load=args.wds_shuffle_buffer_tar,
shuffle_buffer_repeat=args.wds_shuffle_buffer_repeat, n_repeats=args.wds_n_repeats,
)
num_training_steps_per_epoch = args.dataset_size // (args.batch_size * num_tasks)
else:
transforms_train = UnifiedDataTransform(transforms_dict=MODALITY_TRANSFORMS_DIVAE, image_augmenter=image_augmenter_train, add_sizes=args.resolution_cond)
dataset_train = MultiModalDatasetFolder(root=args.data_path, modalities=args.all_domains, modality_paths=modality_paths,
modality_transforms=MODALITY_TRANSFORMS_DIVAE, transform=transforms_train, cache=args.cache_datasets)
num_training_steps_per_epoch = len(dataset_train) // (args.batch_size * num_tasks)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True, drop_last=True,
)
print("Sampler_train = %s" % str(sampler_train))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if args.eval_data_path:
image_augmenter_val = CenterCropImageAugmenter(target_size=args.input_size, main_domain=args.domain)
transforms_val = UnifiedDataTransform(transforms_dict=MODALITY_TRANSFORMS_DIVAE, image_augmenter=image_augmenter_val, add_sizes=args.resolution_cond)
dataset_val = MultiModalDatasetFolder(root=args.eval_data_path, modalities=args.all_domains, modality_paths=modality_paths,
modality_transforms=MODALITY_TRANSFORMS_DIVAE, transform=transforms_val, cache=args.cache_datasets)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size) if args.batch_size_eval is None else args.batch_size_eval,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# Computing image metrics can be expensive (because of the many diffusion forward passes), so we can choose to only do it on a subset of the data
if args.num_eval_metrics_samples is not None:
dataset_metrics = MultiModalDatasetFolder(root=args.eval_data_path, modalities=args.all_domains, modality_paths=modality_paths,
modality_transforms=MODALITY_TRANSFORMS_DIVAE, transform=transforms_val,
pre_shuffle=True, max_samples=args.num_eval_metrics_samples, cache=args.cache_datasets)
if args.dist_eval:
if len(dataset_metrics) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_metrics = torch.utils.data.DistributedSampler(
dataset_metrics, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_metrics = torch.utils.data.SequentialSampler(dataset_metrics)
data_loader_metrics = torch.utils.data.DataLoader(
dataset_metrics, sampler=sampler_metrics,
batch_size=int(1.5 * args.batch_size) if args.batch_size_eval is None else args.batch_size_eval,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
else:
data_loader_metrics = data_loader_val
if args.num_logged_images is not None:
dataset_image_log = MultiModalDatasetFolder(root=args.eval_data_path, modalities=args.all_domains, modality_paths=modality_paths,
modality_transforms=MODALITY_TRANSFORMS_DIVAE, transform=transforms_val,
pre_shuffle=True, max_samples=args.num_logged_images, cache=args.cache_datasets)
# No dist eval, we only run it on the main process
sampler_image_log = torch.utils.data.SequentialSampler(dataset_image_log)
data_loader_image_log = torch.utils.data.DataLoader(
dataset_image_log, sampler=sampler_image_log,
batch_size=int(1.5 * args.batch_size) if args.batch_size_eval is None else args.batch_size_eval,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
else:
data_loader_image_log = data_loader_val
else:
data_loader_val, data_loader_metrics, dataset_image_log = None, None, None
if global_rank == 0 and args.log_wandb:
log_writer = utils.WandbLogger(args)
log_writer.set_step(0)
else:
log_writer = None
if global_rank == 0 and args.log_wandb:
# Edit run name and add tags
args.wandb_tags = args.wandb_tags.split('--') if args.wandb_tags else []
log_writer = utils.WandbLogger(args)
log_writer.set_step(0)
else:
log_writer = None
print(args)
model = get_model(args, device)
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
else:
model_ema = None
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Model = %s" % str(model_without_ddp))
print(f"Number of params: {n_parameters / 1e6} M")
total_batch_size = args.batch_size * utils.get_world_size()
args.lr = args.blr * total_batch_size / 256
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
if args.distributed:
model = DDP(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
model_without_ddp = model.module
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler(enabled=dtype == torch.float16)
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
# Evaluation noise scheduler
if args.eval_noise_schedule in ['DDPMScheduler', 'DDIMScheduler']:
eval_noise_schedule = getattr(sys.modules[__name__], args.eval_noise_schedule)(
num_train_timesteps=args.num_train_timesteps,
beta_schedule=args.beta_schedule,
prediction_type=args.prediction_type.split('-')[0],
thresholding=args.thresholding,
clip_sample=False,
zero_terminal_snr=args.zero_terminal_snr
)
elif args.eval_noise_schedule is not None:
eval_noise_schedule = getattr(diffusers_schedulers, args.eval_noise_schedule)(
num_train_timesteps=args.num_train_timesteps,
beta_schedule=args.beta_schedule,
prediction_type=args.prediction_type.split('-')[0],
thresholding=args.thresholding,
clip_sample=False
)
else:
eval_noise_schedule = None
# The various train resolutions
train_res_choices = list(range(args.input_size_min, args.input_size_max+args.resolution_step, args.resolution_step))
if isinstance(args.input_size_eval, str):
args.input_size_eval = [int(s) for s in args.input_size_eval.split("-")]
elif isinstance(args.input_size_eval, int):
args.input_size_eval = [args.input_size_eval]
eval_image_sizes = set([*args.input_size_eval, train_res_choices[0], train_res_choices[-1]])
if args.eval_only:
# Evaluate the model
eval_stats = evaluate(
model, data_loader_val, device, args.domain, train_res_choices, args.prediction_type,
args.loss_fn, args.codebook_weight, dtype=dtype, mask_value=args.mask_value,
)
if log_writer is not None:
log_writer.update(eval_stats)
# Evaluate several common metrics at eval resolution, min train resolution and max train resolutions
for eval_img_size in eval_image_sizes:
eval_metrics_results = eval_metrics(
model, data_loader_metrics, device, args.domain, eval_img_size, eval_noise_schedule,
args.num_eval_timesteps, dtype=dtype, mask_value=args.mask_value,
no_inception=args.no_inception, log_writer=log_writer, log_codebook_usage=args.log_codebook_usage,
)
if log_writer is not None:
log_writer.update(eval_metrics_results)
eval_image_log(model, data_loader_image_log, device, args.domain, eval_img_size, eval_noise_schedule,
args.num_eval_timesteps, dtype=dtype, num_logged_images=args.num_logged_images,
mask_value=args.mask_value, log_writer=log_writer)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model=model,
data_loader=data_loader_train,
optimizer=optimizer,
device=device,
epoch=epoch,
loss_scaler=loss_scaler,
domain=args.domain,
codebook_weight=args.codebook_weight,
train_res_choices=train_res_choices,
eval_image_sizes=eval_image_sizes,
eval_noise_schedule=eval_noise_schedule,
num_eval_timesteps=args.num_eval_timesteps,
model_ema=model_ema,
max_norm=args.clip_grad,
max_skip_norm=args.skip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
dtype=dtype,
loader_len=num_training_steps_per_epoch,
data_loader_val=data_loader_val,
data_loader_metrics=data_loader_metrics,
data_loader_image_log=data_loader_image_log,
eval_freq=args.eval_freq,
eval_metrics_freq=args.eval_metrics_freq,
eval_image_log_freq=args.eval_image_log_freq,
num_logged_images=args.num_logged_images,
prediction_type=args.prediction_type,
loss_fn=args.loss_fn,
ema_freq=args.model_ema_update_freq,
mask_value=args.mask_value,
no_inception=args.no_inception,
log_codebook_usage=args.log_codebook_usage,
step_eval=args.step_eval,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
if epoch + 1 == args.epochs:
use_s3 = len(args.s3_save_dir) > 0
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, ckpt_name='final', use_s3=use_s3)
log_stats = {**{k: v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# Evaluation (if we evaluate on an epoch-basis)
if not args.step_eval or (epoch + 1 == args.epochs):
launch_evaluate = (data_loader_val is not None) and ((epoch % args.eval_freq == 0) or (epoch + 1 == args.epochs))
launch_eval_metrics = (data_loader_metrics is not None) and args.eval_metrics_freq > 0 and ((epoch % args.eval_metrics_freq == 0) or (epoch + 1 == args.epochs))
launch_eval_image_log = (data_loader_image_log is not None) and args.eval_image_log_freq > 0 and ((epoch % args.eval_image_log_freq == 0) or (epoch + 1 == args.epochs))
eval_stats = launch_evals(
launch_evaluate=launch_evaluate, launch_eval_metrics=launch_eval_metrics, launch_eval_image_log=launch_eval_image_log,
model=model, device=device, domain=args.domain, codebook_weight=args.codebook_weight, train_res_choices=train_res_choices,
eval_image_sizes=eval_image_sizes, eval_noise_schedule=eval_noise_schedule, num_eval_timesteps=args.num_eval_timesteps,
model_ema=model_ema, dtype=dtype, data_loader_val=data_loader_val, data_loader_metrics=data_loader_metrics,
data_loader_image_log=data_loader_image_log, num_logged_images=args.num_logged_images, prediction_type=args.prediction_type,
loss_fn=args.loss_fn, mask_value=args.mask_value, no_inception=args.no_inception,
log_writer=log_writer, log_codebook_usage=args.log_codebook_usage,
)
log_stats.update(eval_stats)
if log_writer is not None:
log_writer.update(log_stats)
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def mask_out_samples(clean_inputs: torch.Tensor,
mask_valid: Optional[torch.BoolTensor] = None,
mask_value: Optional[float] = None) -> torch.Tensor:
"""Optionally mask out invalid regions and concat mask to images.
Useful when tokenizing simulated data that contains unlabeled regions.
Args:
clean_inputs: Input images
mask_valid: Boolean mask of valid regions.
True = keep, False = replace by mask_value
mask_value: Value to replace invalid regions with
Returns:
Masked out images with C+1 channels (mask is the last channel).
The mask is converted to [-1, 1] range, where -1 is invalid and 1 is valid.
"""
if mask_valid is not None and mask_value is not None:
mask_valid = mask_valid.to(clean_inputs.device, non_blocking=True)
clean_inputs[~repeat(mask_valid, 'b 1 h w -> b n h w', n=clean_inputs.shape[1])] = mask_value
mask_valid = mask_valid.float() * 2 - 1 # Valid regions -> 1, Masked-out regions -> -1
clean_inputs = torch.cat([clean_inputs, mask_valid], dim=1)
return clean_inputs
def train_one_epoch(model: Union[nn.Module, DDP],
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: Union[torch.device, str],
epoch: int,
loss_scaler: NativeScaler,
domain: str,
codebook_weight: float,
train_res_choices: List[int],
eval_image_sizes: Set[int],
eval_noise_schedule: SchedulerMixin,
num_eval_timesteps: int,
model_ema: Optional[ModelEma] = None,
max_norm: Optional[float] = None,
max_skip_norm: Optional[float] = None,
log_writer: Optional[utils.WandbLogger] = None,
lr_scheduler: Optional[torch.optim.lr_scheduler.LRScheduler] = None,
start_steps: int = None,
lr_schedule_values: Iterable[float] = None,
wd_schedule_values: Iterable[float] = None,
dtype: torch.dtype = torch.float16,
loader_len: Optional[int] = None,
data_loader_val: Optional[Iterable] = None,
data_loader_metrics: Optional[Iterable] = None,
data_loader_image_log: Optional[Iterable] = None,
eval_freq: int = 1000,
eval_metrics_freq: int = 10_000,
eval_image_log_freq: int = 10_000,
num_logged_images: int = 100,
prediction_type: str = 'v_prediction',
loss_fn: str = 'mse',
ema_freq: int = 1,
mask_value: Optional[float] = None,
no_inception: bool = False,
log_codebook_usage: bool = True,
step_eval: bool = False) -> Dict[str, float]:
"""Perform one training epoch and return stats. The image resolution is
randomly sampled from train_res_choices. At the specified intervals,
evaluation is performed, metrics are computed, and images are logged.
Args:
model: Model to train.
data_loader: Training data loader.
optimizer: Optimizer.
device: Device to train on.
epoch: Epoch number.
loss_scaler: Loss scaler for mixed precision.
domain: Image domain.
codebook_weight: Codebook loss weight.
train_res_choices: List of training resolutions to randomly sample from.
eval_image_sizes: [Eval] Set of evaluation resolutions to perform eval on.
eval_noise_schedule: Noise schedule to use for diffusion.
num_eval_timesteps: Number of diffusion timesteps to use for evaluation.
model_ema: Optional EMA model to update every ema_freq iterations.
max_norm: Max norm for gradient clipping.
max_skip_norm: Max norm for gradient skipping.
log_writer: Optional wandb logger.
lr_scheduler: Optional learning rate scheduler.
start_steps: Epoch start steps to compute global training iteration.
lr_schedule_values: Learning rate schedule values.
wd_schedule_values: Weight decay schedule values.
dtype: Data type for mixed precision training.
loader_len: Length of the data loader.
data_loader_val: [Eval] Dataloader for standard evaluation.
data_loader_metrics: [Eval] Dataloader for evaluation of image metrics.
data_loader_image_log: [Eval] Dataloader for image logging.
eval_freq: [Eval] Frequency at which to perform standard evaluation.
eval_metrics_freq: [Eval] Frequency at which to compute image metrics.
eval_image_log_freq: [Eval] Frequency at which to log images.
num_logged_images: [Eval] Number of images to log.
prediction_type: Type of diffusion target.
loss_fn: Reconstruction loss function identifyer.
ema_freq: Frequency at which to update the EMA model.
mask_value: Value to mask out invalid regions with.
no_inception: [Eval] Whether to skip Inception score computation.
log_codebook_usage: [Eval] Whether to compute and log codebook usage.
step_eval: [Eval] Whether to perform evaluation on a step-basis instead of epoch-basis.
Returns:
Training stats.
"""
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
optimizer.zero_grad()
for step, x in enumerate(metric_logger.log_every(data_loader, print_freq, iter_len=loader_len, header=header)):
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
# Evaluation (if we evaluate on a step-basis)
if step_eval:
launch_evaluate = (data_loader_val is not None) and (it % eval_freq == 0) and (it != 0)
launch_eval_metrics = (data_loader_metrics is not None) and (it % eval_metrics_freq == 0) and (it != 0)
launch_eval_image_log = (data_loader_image_log is not None) and (it % eval_image_log_freq == 0) and (it != 0)
eval_stats = launch_evals(
launch_evaluate=launch_evaluate, launch_eval_metrics=launch_eval_metrics, launch_eval_image_log=launch_eval_image_log,
model=model, device=device, domain=domain, codebook_weight=codebook_weight, train_res_choices=train_res_choices,
eval_image_sizes=eval_image_sizes, eval_noise_schedule=eval_noise_schedule, num_eval_timesteps=num_eval_timesteps,
model_ema=model_ema, dtype=dtype, data_loader_val=data_loader_val, data_loader_metrics=data_loader_metrics,
data_loader_image_log=data_loader_image_log, num_logged_images=num_logged_images, prediction_type=prediction_type,
loss_fn=loss_fn, mask_value=mask_value, no_inception=no_inception, log_writer=log_writer, log_codebook_usage=log_codebook_usage,
)
if log_writer is not None:
log_writer.update(eval_stats)
if lr_schedule_values is not None or wd_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
# Prepare clean and noised images
clean_images = x[domain].to(device, non_blocking=True)
# Optionally mask out invalid regions and concat mask and images
clean_images = mask_out_samples(clean_images, x.get('mask_valid', None), mask_value=mask_value)
# Randomly sample an image size between the min and max for this batch and resize the images
res_idx = hash(str(it)) % len(train_res_choices)
image_size = train_res_choices[res_idx]
clean_images = F.interpolate(clean_images, image_size, mode='bilinear', align_corners=False)
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(device)
# Sample a uniformly random timestep for each image
timesteps = torch.randint(
0, unwrap_model(model).noise_scheduler.config.num_train_timesteps, (clean_images.shape[0],)
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
noisy_images = unwrap_model(model).noise_scheduler.add_noise(clean_images, noise, timesteps)
# Optionally condition diffusion model on original resolution
orig_res = get_crop_size(x['crop_coords']).to(device) if 'crop_coords' in x else None
with torch.cuda.amp.autocast(dtype=dtype, enabled=dtype != torch.float32):
model_output, code_loss = model(clean_images, noisy_images, timesteps.to(device), orig_res=orig_res)
if prediction_type == 'sample':
target = clean_images
elif prediction_type == 'epsilon':
target = noise
elif prediction_type == 'v_prediction':
target = unwrap_model(model).noise_scheduler.get_velocity(clean_images, noise, timesteps)
elif prediction_type == 'v_prediction-epsilon_loss':
target = noise
model_output = unwrap_model(model).noise_scheduler.get_noise(noisy_images, model_output, timesteps)
if loss_fn == 'mse':
reconst_loss = F.mse_loss(model_output, target)
elif loss_fn == 'l1':
reconst_loss = F.l1_loss(model_output, target)
elif loss_fn == 'smooth_l1':
reconst_loss = F.smooth_l1_loss(model_output, target)
loss = reconst_loss + codebook_weight * code_loss
loss_value = loss.item()
reconst_loss_value = reconst_loss.item()
code_loss_value = code_loss.item()