-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sweep.py
157 lines (126 loc) · 4.86 KB
/
train_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import wandb
import argparse
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from trajectory.models.general_trainer import Trainer #general trainer
from trajectory.datasets.d4rl_dataset import DiscretizedDataset
from trajectory.utils.common import set_seed
from trajectory.models.trajectory import TrajectoryModel
def create_argparser():
parser = argparse.ArgumentParser(description="Trajectory models training hyperparameters. All can be set from command line.")
parser.add_argument("--config", default="configs/halfcheetah_medium_gpt.yaml")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--device", default="cpu", type=str)
return parser
def build_sweep_config():
'''
Build hyperparameter sweep configuration
Find best dropouts
Keep number of layers between 11-12 for around 1.5 million parameter model
'''
sweep_config = {
'method': 'random'
}
#goal of hyperparameter sweep
metric = {
'name': 'loss',
'goal': 'minimize'
}
sweep_config['metric'] = metric
#parameters for hyperparameter sweep
parameters_dict = {
'num_layers': {
'values': [11, 12]
},
'embedding_dropout':{
'distribution': 'uniform',
'min': 0.0,
'max': 0.3,
},
'residual_dropout': {
'distribution': 'uniform',
'min': 0.0,
'max': 0.3
},
'attention_dropout': {
'distribution': 'uniform',
'min': 0.0,
'max': 0.3
}
}
sweep_config['parameters'] = parameters_dict
return sweep_config
def run_experiment():
seed = args.seed
device = args.device
wandb.init(project=config.wandb.name)
config.model.update(wandb.config) #override default parameters with those from wandb sweep
config.run_seed = seed
os.makedirs(config.trainer.checkpoints_path, exist_ok=True)
OmegaConf.save(OmegaConf.to_container(config, resolve=True), os.path.join(config.trainer.checkpoints_path, "config.yaml"))
set_seed(seed=seed)
trainer_conf = config.trainer
data_conf = config.dataset
dataset = DiscretizedDataset(
env_name=data_conf.env_name,
seq_len=data_conf.seq_len,
cache_path=data_conf.cache_path,
num_bins=data_conf.num_bins,
discount=data_conf.discount,
strategy=data_conf.strategy
)
dataloader = DataLoader(dataset, batch_size=data_conf.batch_size, shuffle=True, num_workers=8, pin_memory=True)
model_parse = config.wandb.name.split('_')[-1]
model = TrajectoryModel(layer_type=model_parse, **config.model)
model.to(device)
num_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of trainable parameters is ", num_trainable_params)
wandb.log({'trainable_params': num_trainable_params})
num_epochs = int(1e6 / len(dataset) * trainer_conf.num_epochs_ref)
warmup_tokens = len(dataset) * data_conf.seq_len * config.model.transition_dim
final_tokens = warmup_tokens * num_epochs
trainer = Trainer(
final_tokens=final_tokens,
warmup_tokens=warmup_tokens,
action_weight=trainer_conf.action_weight,
value_weight=trainer_conf.value_weight,
reward_weight=trainer_conf.reward_weight,
learning_rate=trainer_conf.lr,
betas=trainer_conf.betas,
weight_decay=trainer_conf.weight_decay,
clip_grad=trainer_conf.clip_grad,
eval_seed=trainer_conf.eval_seed,
eval_every=trainer_conf.eval_every,
eval_episodes=trainer_conf.eval_episodes,
eval_temperature=trainer_conf.eval_temperature,
eval_discount=trainer_conf.eval_discount,
eval_plan_every=trainer_conf.eval_plan_every,
eval_beam_width=trainer_conf.eval_beam_width,
eval_beam_steps=trainer_conf.eval_beam_steps,
eval_beam_context=trainer_conf.eval_beam_context,
eval_sample_expand=trainer_conf.eval_sample_expand,
eval_k_obs=trainer_conf.eval_k_obs, # as in original implementation
eval_k_reward=trainer_conf.eval_k_reward,
eval_k_act=trainer_conf.eval_k_act,
checkpoints_path=trainer_conf.checkpoints_path,
save_every=1,
device=device
)
trainer.train(
model=model,
dataloader=dataloader,
num_epochs=num_epochs
)
if __name__ == "__main__": #run full sweep
args, override = create_argparser().parse_known_args()
config = OmegaConf.merge(
OmegaConf.load(args.config),
OmegaConf.from_cli(override)
)
#begin wandb sweep
sweep_config = build_sweep_config()
sweep_id = wandb.sweep(sweep=sweep_config, project=config.wandb.name)
wandb.agent(sweep_id, function=run_experiment, count=10)
print(f'Device: {args.device}')
print(f'Config: {config}')