From 51b2ca1632fe75e852ebed49efd7b7c5193dc580 Mon Sep 17 00:00:00 2001 From: Seyed Mostafa Kia Date: Tue, 23 Jul 2024 10:29:48 +0200 Subject: [PATCH 01/68] Minor modig=fication in slurm job and log file names --- pcntoolkit/normative_parallel.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py index 4733bf77..2be391d1 100755 --- a/pcntoolkit/normative_parallel.py +++ b/pcntoolkit/normative_parallel.py @@ -1123,13 +1123,13 @@ def sbatchwrap_nm(processing_dir, output_changedir = ['cd ' + processing_dir + '\n'] sbatch_init = '#!/bin/bash\n' - sbatch_jobname = '#SBATCH --job-name=' + processing_dir + '\n' + sbatch_jobname = '#SBATCH --job-name=' + job_name + '\n' sbatch_nodes = '#SBATCH --nodes=1\n' sbatch_tasks = '#SBATCH --ntasks=1\n' sbatch_time = '#SBATCH --time=' + str(duration) + '\n' sbatch_memory = '#SBATCH --mem-per-cpu=' + str(memory) + '\n' - sbatch_log_out = '#SBATCH -o ' + log_path + '%j.out' + '\n' - sbatch_log_error = '#SBATCH -e ' + log_path + '%j.err' + '\n' + sbatch_log_out = '#SBATCH -o ' + log_path + '%x_%j.out' + '\n' + sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n' #sbatch_module = 'module purge\n' #sbatch_anaconda = 'module load anaconda3\n' sbatch_exit = 'set -o errexit\n' From 0b4ff50717fbbd1a3080e873913a78e4e6c0f953 Mon Sep 17 00:00:00 2001 From: Seyed Mostafa Kia Date: Sun, 11 Aug 2024 11:35:15 +0200 Subject: [PATCH 02/68] The HBR test is simplified --- pcntoolkit/util/utils.py | 157 +++++++++++++++++++-------------------- tests/testHBR.py | 116 ++++++++++++++--------------- 2 files changed, 129 insertions(+), 144 deletions(-) diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index 9eb9208b..ac855315 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -5,7 +5,7 @@ import numpy as np from scipy import stats from subprocess import call -from scipy.stats import genextreme, norm +from scipy.stats import genextreme, norm, skewnorm from six import with_metaclass from abc import ABCMeta, abstractmethod import pickle @@ -879,90 +879,83 @@ def calibration_error(Y, m, s, cal_levels): def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, working_dir=None, plot=False, random_state=None, noise=None): - """ This function simulates linear synthetic data for testing pcntoolkit methods. - - :param method: simulate 'linear' or 'non-linear' function. - :param n_samples: number of samples in each group of the training and test sets. - If it is an int then the same sample number will be used for all groups. - It can be also a list of size of n_grps that decides the number of samples - in each group (default=100). - :param n_features: A positive integer that decides the number of features - (default=1). - :param n_grps: A positive integer that decides the number of groups in data - (default=1). - :param working_dir: Directory to save data (default=None). - :param plot: Boolean to plot the simulated training data (default=False). - :param random_state: random state for generating random numbers (Default=None). - :param noise: Type of added noise to the data. The options are 'gaussian', - 'exponential', and 'hetero_gaussian' (The defauls is None.). - - :returns: - X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef - + """ + Simulates synthetic data for testing purposes, with options for linear, non-linear, + or combined data generation methods, and various noise types. + + :param method: Method to simulate ('linear', 'non-linear', or 'combined'). + :param n_samples: Number of samples per group, either an int or a list for each group (default=100). + :param n_features: Number of features to simulate (default=1). + :param n_grps: Number of groups in the data (default=1). + :param working_dir: Directory to save the data (default=None). + :param plot: Boolean flag to plot the simulated training data (default=False). + :param random_state: Seed for random number generation (default=None). + :param noise: Type of noise to add ('homoscedastic_gaussian', 'heteroscedastic_gaussian', + 'homoscedastic_nongaussian', 'heteroscedastic_nongaussian', default=None). + + :returns: Tuple of (X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef) """ + #np.random.seed(random_state) + if isinstance(n_samples, int): - n_samples = [n_samples for i in range(n_grps)] + n_samples = [n_samples for _ in range(n_grps)] X_train, Y_train, X_test, Y_test = [], [], [], [] grp_id_train, grp_id_test = [], [] coef = [] + for i in range(n_grps): bias = np.random.randint(-10, high=10) if method == 'linear': - X_temp, Y_temp, coef_temp = make_regression(n_samples=n_samples[i]*2, - n_features=n_features, n_targets=1, - noise=10 * np.random.rand(), bias=bias, - n_informative=1, coef=True, - random_state=random_state) + X_temp, Y_temp, coef_temp = make_regression( + n_samples=n_samples[i] * 2, n_features=n_features, n_targets=1, + noise=10 * np.random.rand(), bias=bias, n_informative=1, coef=True, + ) elif method == 'non-linear': - X_temp = np.random.randint(-2, 6, [2*n_samples[i], n_features]) \ - + np.random.randn(2*n_samples[i], n_features) + X_temp = np.random.randint(-2, 6, [2 * n_samples[i], n_features]) \ + + np.random.randn(2 * n_samples[i], n_features) Y_temp = X_temp[:, 0] * 20 * np.random.rand() + np.random.randint(10, 100) \ * np.sin(2 * np.random.rand() + 2 * np.pi / 5 * X_temp[:, 0]) coef_temp = 0 elif method == 'combined': - X_temp = np.random.randint(-2, 6, [2*n_samples[i], n_features]) \ - + np.random.randn(2*n_samples[i], n_features) + X_temp = np.random.randint(-2, 6, [2 * n_samples[i], n_features]) \ + + np.random.randn(2 * n_samples[i], n_features) Y_temp = (X_temp[:, 0]**3) * np.random.uniform(0, 0.5) \ + X_temp[:, 0] * 20 * np.random.rand() \ + np.random.randint(10, 100) coef_temp = 0 else: - raise ValueError("Unknow method. Please specify valid method among \ - 'linear' or 'non-linear'.") - coef.append(coef_temp/100) - X_train.append(X_temp[:X_temp.shape[0]//2]) - Y_train.append(Y_temp[:X_temp.shape[0]//2]/100) - X_test.append(X_temp[X_temp.shape[0]//2:]) - Y_test.append(Y_temp[X_temp.shape[0]//2:]/100) - grp_id = np.repeat(i, X_temp.shape[0]) - grp_id_train.append(grp_id[:X_temp.shape[0]//2]) - grp_id_test.append(grp_id[X_temp.shape[0]//2:]) - - if noise == 'hetero_gaussian': - t = np.random.randint(5, 10) - Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \ - * np.log(1 + np.exp(X_train[i][:, 0])) - Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \ - * np.log(1 + np.exp(X_test[i][:, 0])) - elif noise == 'gaussian': - t = np.random.randint(3, 10) - Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0])/t - Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0])/t - elif noise == 'exponential': - t = np.random.randint(1, 3) - Y_train[i] = Y_train[i] + \ - np.random.exponential(1, Y_train[i].shape[0]) / t - Y_test[i] = Y_test[i] + \ - np.random.exponential(1, Y_test[i].shape[0]) / t - elif noise == 'hetero_gaussian_smaller': - t = np.random.randint(5, 10) - Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \ - * np.log(1 + np.exp(0.3 * X_train[i][:, 0])) - Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \ - * np.log(1 + np.exp(0.3 * X_test[i][:, 0])) + raise ValueError("Unknown method. Please specify 'linear', 'non-linear', or 'combined'.") + + coef.append(coef_temp / 100) + X_train.append(X_temp[:n_samples[i]]) + Y_train.append(Y_temp[:n_samples[i]] / 100) + X_test.append(X_temp[n_samples[i]:]) + Y_test.append(Y_temp[n_samples[i]:] / 100) + grp_id = np.repeat(i, n_samples[i] * 2) + grp_id_train.append(grp_id[:n_samples[i]]) + grp_id_test.append(grp_id[n_samples[i]:]) + + t = np.random.randint(1,5) + # Add noise to the data + if noise == 'homoscedastic_gaussian': + Y_train[i] += np.random.normal(loc=0, scale=0.2, size=Y_train[i].shape[0]) / t + Y_test[i] += np.random.normal(loc=0, scale=0.2, size=Y_test[i].shape[0]) / t + + elif noise == 'heteroscedastic_gaussian': + Y_train[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0]) + Y_test[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0]) + + elif noise == 'homoscedastic_nongaussian': + Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_train[i].shape[0]) / t + Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_test[i].shape[0]) / t + + elif noise == 'heteroscedastic_nongaussian': + Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0]) + Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0]) + X_train = np.vstack(X_train) X_test = np.vstack(X_test) Y_train = np.concatenate(Y_train) @@ -970,32 +963,32 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, grp_id_train = np.expand_dims(np.concatenate(grp_id_train), axis=1) grp_id_test = np.expand_dims(np.concatenate(grp_id_test), axis=1) - for i in range(n_features): - plt.figure() - for j in range(n_grps): - plt.scatter(X_train[grp_id_train[:, 0] == j, i], - Y_train[grp_id_train[:, 0] == j,], label='Group ' + str(j)) - plt.xlabel('X' + str(i)) - plt.ylabel('Y') - plt.legend() - - if working_dir is not None: + if plot: + for i in range(n_features): + plt.figure() + for j in range(n_grps): + plt.scatter(X_train[grp_id_train[:, 0] == j, i], Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j)) + plt.xlabel(f'X{i}') + plt.ylabel('Y') + plt.legend() + plt.show() + + if working_dir: if not os.path.isdir(working_dir): os.mkdir(working_dir) + with open(os.path.join(working_dir, 'trbefile.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(grp_id_train), - file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(grp_id_train), file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'tsbefile.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(grp_id_test), - file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(grp_id_test), file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'X_train.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(X_train), file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(X_train), file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'X_test.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(X_test), file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(X_test), file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'Y_train.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(Y_train), file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(Y_train), file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'Y_test.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(Y_test), file, protocol=PICKLE_PROTOCOL) + pickle.dump(pd.DataFrame(Y_test), file, protocol=pickle.HIGHEST_PROTOCOL) return X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef diff --git a/tests/testHBR.py b/tests/testHBR.py index fee7065e..1d2ba679 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -16,18 +16,15 @@ import matplotlib.pyplot as plt from pcntoolkit.normative import estimate from warnings import filterwarnings -from pcntoolkit.util.utils import scaler -import xarray - filterwarnings('ignore') -np.random.seed(10) ########################### Experiment Settings ############################### -working_dir = '/home/stijn/temp/' # Specifyexit() a working directory -# to save data and results. +random_state = 29 + +working_dir = '/' # Specify a working directory to save data and results. simulation_method = 'linear' n_features = 1 # The number of input features of X @@ -35,75 +32,70 @@ n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) -model_types = ['linear', 'polynomial', 'bspline'] # models to try +model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline' + + ############################## Data Simulation ################################ X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \ simulate_data(simulation_method, n_samples, n_features, n_grps, - working_dir=working_dir, plot=True) - -################################# Methods Tests ############################### - - -for model_type in model_types: - - nm = norm_init(X_train, Y_train, alg='hbr', likelihood='SHASHb', - model_type=model_type, n_samples=100, n_tuning=10) - nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') - yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') - - for i in range(n_features): - sorted_idx = X_test[:, i].argsort(axis=0).squeeze() - temp_X = X_test[sorted_idx, i] - temp_Y = Y_test[sorted_idx,] - temp_be = grp_id_test[sorted_idx, :].squeeze() - temp_yhat = yhat[sorted_idx,] - temp_s2 = ys2[sorted_idx,] - - plt.figure() - for j in range(n_grps): - scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,], - label='Group' + str(j)) - plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,]) - plt.fill_between(temp_X[temp_be == j,], temp_yhat[temp_be == j,] - - 1.96 * np.sqrt(temp_s2[temp_be == j,]), - temp_yhat[temp_be == j,] + - 1.96 * np.sqrt(temp_s2[temp_be == j,]), - color='gray', alpha=0.2) - - # Showing the quantiles - resolution = 200 - synth_X = np.linspace(-3, 3, resolution) - q = nm.get_mcmc_quantiles( - synth_X, batch_effects=j*np.ones(resolution)) - col = scat1.get_facecolors()[0] - plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0) - - plt.title('Model %s, Feature %d' % (model_type, i)) - plt.legend() - plt.show() + working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian', + random_state=random_state) +################################# Fittig and Predicting ############################### + +nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', + linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True') + +nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') +yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') -############################## Normative Modelling Test ####################### +################################# Plotting Quantiles ############################### -model_type = model_types[0] -covfile = working_dir + 'X_train.pkl' -respfile = working_dir + 'Y_train.pkl' -testcov = working_dir + 'X_test.pkl' -testresp = working_dir + 'Y_test.pkl' -trbefile = working_dir + 'trbefile.pkl' -tsbefile = working_dir + 'tsbefile.pkl' +for i in range(n_features): + sorted_idx = X_test[:, i].argsort(axis=0).squeeze() + temp_X = X_test[sorted_idx, i] + temp_Y = Y_test[sorted_idx,] + temp_be = grp_id_test[sorted_idx, :].squeeze() + temp_yhat = yhat[sorted_idx,] + temp_s2 = ys2[sorted_idx,] + + plt.figure() + for j in range(n_grps): + scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,], + label='Group' + str(j)) + # Showing the quantiles + resolution = 200 + synth_X = np.linspace(-3, 3, resolution) + q = nm.get_mcmc_quantiles( + synth_X, batch_effects=j*np.ones(resolution)) + col = scat1.get_facecolors()[0] + plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0) + + plt.title('Model %s, Feature %d' % (model_type, i)) + plt.legend() + plt.show() + + +############################## Normative Modelling Test ####################### + +# covfile = working_dir + 'X_train.pkl' +# respfile = working_dir + 'Y_train.pkl' +# testcov = working_dir + 'X_test.pkl' +# testresp = working_dir + 'Y_test.pkl' +# trbefile = working_dir + 'trbefile.pkl' +# tsbefile = working_dir + 'tsbefile.pkl' -os.chdir(working_dir) +# os.chdir(working_dir) -estimate(covfile, respfile, testcov=testcov, testresp=testresp, trbefile=trbefile, - tsbefile=tsbefile, alg='hbr', outputsuffix='_' + model_type, - inscaler='None', outscaler='None', model_type=model_type, - savemodel='True', saveoutput='True') +# estimate(covfile, respfile, testcovfile_path=testcov, testrespfile_path=testresp, trbefile=trbefile, +# tsbefile=tsbefile, alg='hbr', outputsuffix='_' + model_type, +# inscaler='None', outscaler='None', model_type=model_type, +# savemodel='True', saveoutput='True') ############################################################################### From edac27925f64d305468700f87b3a4dbfa0eef896 Mon Sep 17 00:00:00 2001 From: AuguB Date: Thu, 12 Sep 2024 22:58:14 +0200 Subject: [PATCH 03/68] Runs the testHBR script correctly on pymc==5.16 --- pcntoolkit/model/hbr.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 77c60f1d..f95e3e85 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -233,7 +233,7 @@ def get_sample_dims(var): pb.batch_effect_indices = tuple( [ pm.Data( - pb.batch_effect_dim_names[i], + pb.batch_effect_dim_names[i]+"_data", pb.batch_effect_indices[i], mutable=True, dims="datapoints", @@ -520,7 +520,7 @@ def predict( # Compute those indices for the test data indices = list(map(lambda x: valmap[x], batch_effects[:, i])) # Those indices need to be used by the model - pm.set_data({f"batch_effect_{i}": indices}) + pm.set_data({f"batch_effect_{i}_data": indices}) self.idata = pm.sample_posterior_predictive( trace=self.idata, From 88e12adc31a6df79d0a9dc7f442b5b5c450472d6 Mon Sep 17 00:00:00 2001 From: AuguB Date: Tue, 17 Sep 2024 16:22:43 +0200 Subject: [PATCH 04/68] Suppress warnings due to pymc==5.16 --- pcntoolkit/model/SHASH.py | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 39bf0646..8d43908b 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -152,8 +152,7 @@ def m(epsilon, delta, r): class SHASH(RandomVariable): name = "shash" - ndim_supp = 0 - ndims_params = [0, 0] + signature = "(),()->()" dtype = "floatX" _print_name = ("SHASH", "\\operatorname{SHASH}") @@ -194,8 +193,7 @@ def logp(value, epsilon, delta): class SHASHoRV(RandomVariable): name = "shasho" - ndim_supp = 0 - ndims_params = [0, 0, 0, 0] + signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHo", "\\operatorname{SHASHo}") @@ -239,8 +237,7 @@ def logp(value, mu, sigma, epsilon, delta): class SHASHo2RV(RandomVariable): name = "shasho2" - ndim_supp = 0 - ndims_params = [0, 0, 0, 0] + signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHo2", "\\operatorname{SHASHo2}") @@ -286,8 +283,7 @@ def logp(value, mu, sigma, epsilon, delta): class SHASHbRV(RandomVariable): name = "shashb" - ndim_supp = 0 - ndims_params = [0, 0, 0, 0] + signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHo2", "\\operatorname{SHASHo2}") From cc8352677194e62eeb9dfa74106d8725b1360249 Mon Sep 17 00:00:00 2001 From: AuguB Date: Tue, 17 Sep 2024 16:24:27 +0200 Subject: [PATCH 05/68] Correct error in SHASHb name --- pcntoolkit/model/SHASH.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 8d43908b..1ccffcb6 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -285,7 +285,7 @@ class SHASHbRV(RandomVariable): name = "shashb" signature = "(),(),(),()->()" dtype = "floatX" - _print_name = ("SHASHo2", "\\operatorname{SHASHo2}") + _print_name = ("SHASHb", "\\operatorname{SHASHb}") @classmethod def rng_fn( From 255ecca39cf7bc6920ef527d4a76c65dbccc6f49 Mon Sep 17 00:00:00 2001 From: AuguB Date: Wed, 2 Oct 2024 15:36:01 +0200 Subject: [PATCH 06/68] Address issue 215 Speedup for python==3.12 --- README.md | 56 ++++++++++---- pcntoolkit/model/SHASH.py | 76 +++++++++--------- pcntoolkit/model/architecture.py | 12 ++- pcntoolkit/model/hbr.py | 2 + pcntoolkit/normative.py | 15 ++-- pcntoolkit/normative_model/norm_hbr.py | 3 +- pcntoolkit/normative_parallel.py | 103 ++++++++++++------------- pcntoolkit/util/utils.py | 62 +++++++++------ requirements.txt | 4 +- setup.py | 3 +- tests/testHBR.py | 11 ++- tests/test_normative_parallel.py | 28 +++---- 12 files changed, 215 insertions(+), 160 deletions(-) diff --git a/README.md b/README.md index fa37c7d4..51c7d474 100644 --- a/README.md +++ b/README.md @@ -8,64 +8,92 @@ Methods for normative modelling, spatial statistics and pattern recognition. Doc ## Basic installation (on a local machine) -i) install anaconda3 ii) create enviornment with "conda create --name " iii) activate environment by "source activate " iv) install required conda packages +#### Install anaconda3 + +using the download here: https://www.anaconda.com/download + +#### Create environment +``` +conda create +``` + +#### Activate environment + +``` +source activate +``` + +#### Install torch + +Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option. + +#### Install other required conda packages ``` -conda install pip pandas scipy +conda install pip pandas scipy pymc ``` -v) install PCNtoolkit (plus dependencies) +#### Install PCNtoolkit ``` pip install pcntoolkit ``` ## Alternative installation (on a shared resource) -Make sure conda is available on the system. + +#### Make sure conda is available on the system. Otherwise install it first from https://www.anaconda.com/ ``` conda --version ``` -Create a conda environment in a shared location +#### Create a conda environment in a shared location ``` -conda create -y python==3.8.3 numpy mkl blas --prefix=/shared/conda/ +conda create -y python==3.10 numpy mkl blas --prefix=/shared/conda/ ``` -Activate the conda environment +#### Activate the conda environment ``` conda activate /shared/conda/ ``` +#### install torch -Install other dependencies +Using the command that you get from the command builder here: ``` -conda install -y pandas scipy +https://pytorch.org/get-started/locally/ ``` -Install pip dependencies +If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip. + +#### Install other dependencies + +``` +conda install -y pandas scipy pymc +``` + +#### Install pip dependencies ``` pip --no-cache-dir install nibabel scikit-learn torch glob3 ``` -Clone the repo +#### Clone the repo ``` git clone https://github.com/amarquand/PCNtoolkit.git ``` -install in the conda environment +### Install in the conda environment ``` cd PCNtoolkit/ python3 setup.py install ``` - -Test +### Test ``` python -c "import pcntoolkit as pk;print(pk.__file__)" ``` diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 1ccffcb6..4be5c947 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -23,26 +23,42 @@ """ -def numpy_P(q): +def K(q, x): """ - The P function as given in Jones et al. + The K function as given in Jones et al. :param q: + :param x: :return: """ - frac = np.exp(1.0 / 4.0) / np.power(8.0 * np.pi, 1.0 / 2.0) - K1 = numpy_K((q + 1) / 2, 1.0 / 4.0) - K2 = numpy_K((q - 1) / 2, 1.0 / 4.0) - a = (K1 + K2) * frac - return a + return spp.kv(q, x) -def numpy_K(p, x): +def unique_K(q, x): """ - Computes the values of spp.kv(p,x) for only the unique values of p + This is the K function, but it only calculates the unique values of q. + :param q: + :param x: + :return: """ + unique_q, inverse_indices = np.unique(q, return_inverse=True) + unique_outputs = spp.kv(unique_q, x) + outputs = unique_outputs[inverse_indices].reshape(q.shape) + return outputs + - ps, idxs = np.unique(p, return_inverse=True) - return spp.kv(ps, x)[idxs].reshape(p.shape) +CONST = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) + + +def P(q): + """ + The P function as given in Jones et al. + :param q: + :return: + """ + K1 = K()((q + 1) / 2, 0.25) + K2 = K()((q - 1) / 2, 0.25) + a = (K1 + K2) * CONST + return a class K(Op): @@ -58,23 +74,19 @@ def make_node(self, p, x): return Apply(self, [p, x], [p.type()]) def perform(self, node, inputs_storage, output_storage): - # Doing this on the unique values avoids doing A LOT OF double work, apparently scipy doesn't do this by itself - - unique_inputs, inverse_indices = np.unique( - inputs_storage[0], return_inverse=True - ) - unique_outputs = spp.kv(unique_inputs, inputs_storage[1]) - outputs = unique_outputs[inverse_indices].reshape( - inputs_storage[0].shape) - output_storage[0][0] = outputs + output_storage[0][0] = unique_K(inputs_storage[0], inputs_storage[1]) def grad(self, inputs, output_grads): # Approximation of the derivative. This should suffice for using NUTS - dp = 1e-10 + dp = 1e-16 p = inputs[0] x = inputs[1] - grad = (self(p + dp, x) - self(p, x)) / dp - return [output_grads[0] * grad, grad_not_implemented(0, 1, 2, 3)] + grad = (self(p + dp, x) - self(p - dp, x)) / dp + return [ + output_grads[0] * grad, + grad_not_implemented( + "K", 1, "x", "Gradient not implemented for x"), + ] def S(x, epsilon, delta): @@ -102,19 +114,6 @@ def C(x, epsilon, delta): return np.cosh(np.arcsinh(x) * delta - epsilon) -def P(q): - """ - The P function as given in Jones et al. - :param q: - :return: - """ - frac = np.exp(1.0 / 4.0) / np.power(8.0 * np.pi, 1.0 / 2.0) - K1 = K()((q + 1) / 2, 1.0 / 4.0) - K2 = K()((q - 1) / 2, 1.0 / 4.0) - a = (K1 + K2) * frac - return a - - def m(epsilon, delta, r): """ :param epsilon: @@ -298,9 +297,8 @@ def rng_fn( size: Optional[Union[List[int], int]], ) -> np.ndarray: s = rng.normal(size=size) - mean = np.sinh(epsilon / delta) * numpy_P(1 / delta) - var = ((np.cosh(2 * epsilon / delta) * - numpy_P(2 / delta) - 1) / 2) - mean**2 + mean = np.sinh(epsilon / delta) * P(1 / delta) + var = ((np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2) - mean**2 out = ( (np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var) ) * sigma + mu diff --git a/pcntoolkit/model/architecture.py b/pcntoolkit/model/architecture.py index 0dfb09c9..8894ce3f 100644 --- a/pcntoolkit/model/architecture.py +++ b/pcntoolkit/model/architecture.py @@ -46,7 +46,8 @@ def __init__(self, x, y, args): # Conv 1 self.encoder_y_layer_1_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor, kernel_size=5, stride=2, padding=0, - dilation=1, groups=self.factor, bias=True) # in:(90,108,90) out:(43,52,43) + # in:(90,108,90) out:(43,52,43) + dilation=1, groups=self.factor, bias=True) self.encoder_y_layer_1_bn = nn.BatchNorm3d(self.factor) d_out_1, h_out_1, w_out_1 = compute_conv_out_size(y.shape[2], y.shape[3], y.shape[4], padding=[ @@ -57,7 +58,8 @@ def __init__(self, x, y, args): # Conv 2 self.encoder_y_layer_2_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor, kernel_size=3, stride=2, padding=0, - dilation=1, groups=self.factor, bias=True) # out: (21,25,21) + # out: (21,25,21) + dilation=1, groups=self.factor, bias=True) self.encoder_y_layer_2_bn = nn.BatchNorm3d(self.factor) d_out_2, h_out_2, w_out_2 = compute_conv_out_size(d_out_1, h_out_1, w_out_1, padding=[ @@ -68,7 +70,8 @@ def __init__(self, x, y, args): # Conv 3 self.encoder_y_layer_3_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor, kernel_size=3, stride=2, padding=0, - dilation=1, groups=self.factor, bias=True) # out: (10,12,10) + # out: (10,12,10) + dilation=1, groups=self.factor, bias=True) self.encoder_y_layer_3_bn = nn.BatchNorm3d(self.factor) d_out_3, h_out_3, w_out_3 = compute_conv_out_size(d_out_2, h_out_2, w_out_2, padding=[ @@ -79,7 +82,8 @@ def __init__(self, x, y, args): # Conv 4 self.encoder_y_layer_4_conv = nn.Conv3d(in_channels=self.factor, out_channels=1, kernel_size=3, stride=2, padding=0, - dilation=1, groups=1, bias=True) # out: (4,5,4) + # out: (4,5,4) + dilation=1, groups=1, bias=True) self.encoder_y_layer_4_bn = nn.BatchNorm3d(1) d_out_4, h_out_4, w_out_4 = compute_conv_out_size(d_out_3, h_out_3, w_out_3, padding=[ diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index f95e3e85..4d051b38 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -448,6 +448,7 @@ def estimate(self, X, y, batch_effects, **kwargs): init=self.configs["init"], n_init=500000, cores=self.configs["cores"], + nuts_sampler=self.configs["nuts_sampler"], ) self.vars_to_sample = ['y_like'] if self.configs['remove_datapoints_from_posterior']: @@ -559,6 +560,7 @@ def estimate_on_new_site(self, X, y, batch_effects): init=self.configs["init"], n_init=50000, cores=self.configs["cores"], + nuts_sampler=self.configs["nuts_sampler"], ) return self.idata diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index 1c62737c..14a35643 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -522,7 +522,8 @@ def estimate(covfile, respfile, **kwargs): if warp is not None: # TODO: Warping for scaled data if outscaler is not None and outscaler != 'None': - raise ValueError("outscaler not yet supported warping") + raise ValueError( + "outscaler not yet supported warping") warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] Ywarp[ts, nz[i]] = nm.blr.warp.f( Y[ts, nz[i]], warp_param) @@ -804,7 +805,7 @@ def predict(covfile, respfile, maskfile=None, **kwargs): Y, maskvol = load_response_vars(respfile, maskfile) if len(Y.shape) == 1: Y = Y[:, np.newaxis] - + sample_num = X.shape[0] if models is not None: feature_num = len(models) @@ -853,13 +854,13 @@ def predict(covfile, respfile, maskfile=None, **kwargs): if respfile is not None: if alg == 'hbr': # Z scores for HBR must be computed independently for each model - Z[:,i] = nm.get_mcmc_zscores(Xz, Yz[:, i:i+1], **kwargs) - + Z[:, i] = nm.get_mcmc_zscores(Xz, Yz[:, i:i+1], **kwargs) + if respfile is None: save_results(None, Yhat, S2, None, outputsuffix=outputsuffix) return (Yhat, S2) - + else: if models is not None and len(Y.shape) > 1: Y = Y[:, models] @@ -891,9 +892,9 @@ def predict(covfile, respfile, maskfile=None, **kwargs): Y = Yw else: warp = False - + if alg != 'hbr': - # For HBR the Z scores are already computed + # For HBR the Z scores are already computed Z = (Y - Yhat) / np.sqrt(S2) print("Evaluating the model ...") diff --git a/pcntoolkit/normative_model/norm_hbr.py b/pcntoolkit/normative_model/norm_hbr.py index f972bfd0..b98674d0 100644 --- a/pcntoolkit/normative_model/norm_hbr.py +++ b/pcntoolkit/normative_model/norm_hbr.py @@ -135,13 +135,14 @@ def __init__(self, **kwargs): "random_noise", "True") == "True" self.configs["likelihood"] = kwargs.get("likelihood", "Normal") # sampler settings + self.configs["nuts_sampler"] = kwargs.get("nuts_sampler", "pymc") self.configs["n_samples"] = int(kwargs.get("n_samples", "1000")) self.configs["n_tuning"] = int(kwargs.get("n_tuning", "500")) self.configs["n_chains"] = int(kwargs.get("n_chains", "1")) self.configs["sampler"] = kwargs.get("sampler", "NUTS") self.configs["target_accept"] = float( kwargs.get("target_accept", "0.8")) - self.configs["init"] = kwargs.get("init", "jitter+adapt_diag") + self.configs["init"] = kwargs.get("init", "jitter+adapt_diag_grad") self.configs["cores"] = int(kwargs.get("cores", "1")) self.configs["remove_datapoints_from_posterior"] = kwargs.get( "remove_datapoints_from_posterior", "True") == "True" diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py index 2be391d1..f6a957e7 100755 --- a/pcntoolkit/normative_parallel.py +++ b/pcntoolkit/normative_parallel.py @@ -132,7 +132,7 @@ def execute_nm(processing_dir, kwargs.update({'batch_size': str(batch_size)}) job_ids = [] start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") - + for n in range(1, number_of_batches+1): kwargs.update({'job_id': str(n)}) if testrespfile_path is not None: @@ -181,11 +181,10 @@ def execute_nm(processing_dir, memory=memory, duration=duration, **kwargs) - + job_id = sbatch_nm(job_path=batch_job_path) job_ids.append(job_id) - - + elif cluster_spec == 'new': # this part requires addition in different envioronment [ sbatchwrap_nm(processing_dir=batch_processing_dir, @@ -225,7 +224,7 @@ def execute_nm(processing_dir, memory=memory, duration=duration, **kwargs) - + job_id = sbatch_nm(job_path=batch_job_path) job_ids.append(job_id) elif cluster_spec == 'new': @@ -268,11 +267,10 @@ def execute_nm(processing_dir, memory=memory, duration=duration, **kwargs) - - + job_id = sbatch_nm(job_path=batch_job_path) job_ids.append(job_id) - + elif cluster_spec == 'new': # this part requires addition in different envioronment [ bashwrap_nm(processing_dir=batch_processing_dir, func=func, @@ -301,31 +299,31 @@ def execute_nm(processing_dir, if response: if cluster_spec == 'torque': rerun_nm(processing_dir, log_path=log_path, memory=memory, - duration=duration, binary=binary, - interactive=interactive) + duration=duration, binary=binary, + interactive=interactive) elif cluster_spec == 'slurm': sbatchrerun_nm(processing_dir, - memory=memory, - duration=duration, - binary=binary, - log_path=log_path, - interactive=interactive) - + memory=memory, + duration=duration, + binary=binary, + log_path=log_path, + interactive=interactive) + else: success = True else: print('Reruning the failed jobs ...') if cluster_spec == 'torque': rerun_nm(processing_dir, log_path=log_path, memory=memory, - duration=duration, binary=binary, - interactive=interactive) + duration=duration, binary=binary, + interactive=interactive) elif cluster_spec == 'slurm': sbatchrerun_nm(processing_dir, - memory=memory, - duration=duration, - binary=binary, - log_path=log_path, - interactive=interactive) + memory=memory, + duration=duration, + binary=binary, + log_path=log_path, + interactive=interactive) if interactive == 'query': response = yes_or_no('Collect the results?') @@ -508,11 +506,11 @@ def collect_nm(processing_dir, # prediction is made (when test cov is not specified). files = glob.glob(processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions) - if len(files)>0: + if len(files) > 0: file_example = fileio.load(files[0]) else: - raise ValueError(f"Missing output files (yhats at: {processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions}") - + raise ValueError(f"Missing output files (yhats at: {processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions}") + numsubjects = file_example.shape[0] try: # doesn't exist if size=1, and txt file @@ -1129,9 +1127,9 @@ def sbatchwrap_nm(processing_dir, sbatch_time = '#SBATCH --time=' + str(duration) + '\n' sbatch_memory = '#SBATCH --mem-per-cpu=' + str(memory) + '\n' sbatch_log_out = '#SBATCH -o ' + log_path + '%x_%j.out' + '\n' - sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n' - #sbatch_module = 'module purge\n' - #sbatch_anaconda = 'module load anaconda3\n' + sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n' + # sbatch_module = 'module purge\n' + # sbatch_anaconda = 'module load anaconda3\n' sbatch_exit = 'set -o errexit\n' # echo -n "This script is running on " @@ -1142,8 +1140,8 @@ def sbatchwrap_nm(processing_dir, sbatch_nodes + sbatch_tasks + sbatch_time + - sbatch_memory+ - sbatch_log_out+ + sbatch_memory + + sbatch_log_out + sbatch_log_error ] @@ -1212,7 +1210,7 @@ def sbatch_nm(job_path): # submits job to cluster job_id = check_output(sbatch_call, shell=True).decode( sys.stdout.encoding).replace("\n", "") - + return job_id @@ -1240,11 +1238,11 @@ def sbatchrerun_nm(processing_dir, written by (primarily) T Wolfers, (adapted) S Rutherford. ''' - - #log_path = kwargs.pop('log_path', None) - + + # log_path = kwargs.pop('log_path', None) + job_ids = [] - + start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") if binary: @@ -1284,15 +1282,16 @@ def sbatchrerun_nm(processing_dir, print(line.replace(memory, new_memory), end='') job_id = sbatch_nm(jobpath) job_ids.append(job_id) - + if interactive: - check_jobs(job_ids, cluster_spec='slurm', start_time=start_time, delay=60) + check_jobs(job_ids, cluster_spec='slurm', + start_time=start_time, delay=60) def retrieve_jobs(cluster_spec, start_time=None): """ A utility function to retrieve task status from the outputs of qstat. - + :param cluster_spec: type of cluster, either 'torque' or 'slurm'. :return: a dictionary of jobs. @@ -1300,7 +1299,7 @@ def retrieve_jobs(cluster_spec, start_time=None): """ if cluster_spec == 'torque': - + output = check_output('qstat', shell=True).decode(sys.stdout.encoding) output = output.split('\n') jobs = dict() @@ -1310,9 +1309,9 @@ def retrieve_jobs(cluster_spec, start_time=None): jobs[Job_ID]['name'] = Job_Name jobs[Job_ID]['walltime'] = Wall_Time jobs[Job_ID]['status'] = Status - + elif cluster_spec == 'slurm': - + end_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") cmd = ['sacct', '-n', '-X', '--parsable2', '--noheader', '-S', start_time, '-E', end_time, '--format=JobName,State'] @@ -1336,9 +1335,9 @@ def check_job_status(jobs, cluster_spec, start_time=None): c = 0 q = 0 u = 0 - + if cluster_spec == 'torque': - + for job in jobs: try: if running_jobs[job]['status'] == 'C': @@ -1352,14 +1351,14 @@ def check_job_status(jobs, cluster_spec, start_time=None): except: # probably meanwhile the job is finished. c += 1 continue - + print('Total Jobs:%d, Queued:%d, Running:%d, Completed:%d, Unknown:%d' - % (len(jobs), q, r, c, u)) - + % (len(jobs), q, r, c, u)) + elif cluster_spec == 'slurm': - + lines = running_jobs.stdout.strip().split('\n') - + for line in lines: if line: parts = line.split('|') @@ -1373,10 +1372,10 @@ def check_job_status(jobs, cluster_spec, start_time=None): c += 1 elif state == 'FAILED': u += 1 - + print('Total Jobs:%d, Pending:%d, Running:%d, Completed:%d, Failed:%d' - % (len(jobs), q, r, c, u)) - + % (len(jobs), q, r, c, u)) + return q, r, c, u diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index ac855315..5b1550ec 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -469,7 +469,8 @@ def __init__(self): def _get_params(self, param): if len(param) != self.n_params: - raise ValueError('number of parameters must be ' + str(self.n_params)) + raise ValueError( + 'number of parameters must be ' + str(self.n_params)) return param[0], np.exp(param[1]) def f(self, x, params): @@ -570,7 +571,8 @@ def __init__(self): def _get_params(self, param): if len(param) != self.n_params: - raise ValueError('number of parameters must be ' + str(self.n_params)) + raise ValueError( + 'number of parameters must be ' + str(self.n_params)) epsilon = param[0] b = np.exp(param[1]) @@ -896,8 +898,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, :returns: Tuple of (X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef) """ - #np.random.seed(random_state) - + # np.random.seed(random_state) + if isinstance(n_samples, int): n_samples = [n_samples for _ in range(n_grps)] @@ -927,7 +929,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, + np.random.randint(10, 100) coef_temp = 0 else: - raise ValueError("Unknown method. Please specify 'linear', 'non-linear', or 'combined'.") + raise ValueError( + "Unknown method. Please specify 'linear', 'non-linear', or 'combined'.") coef.append(coef_temp / 100) X_train.append(X_temp[:n_samples[i]]) @@ -938,23 +941,31 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, grp_id_train.append(grp_id[:n_samples[i]]) grp_id_test.append(grp_id[n_samples[i]:]) - t = np.random.randint(1,5) + t = np.random.randint(1, 5) # Add noise to the data if noise == 'homoscedastic_gaussian': - Y_train[i] += np.random.normal(loc=0, scale=0.2, size=Y_train[i].shape[0]) / t - Y_test[i] += np.random.normal(loc=0, scale=0.2, size=Y_test[i].shape[0]) / t + Y_train[i] += np.random.normal(loc=0, + scale=0.2, size=Y_train[i].shape[0]) / t + Y_test[i] += np.random.normal(loc=0, + scale=0.2, size=Y_test[i].shape[0]) / t elif noise == 'heteroscedastic_gaussian': - Y_train[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0]) - Y_test[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0]) + Y_train[i] += np.random.normal(loc=0, scale=np.log( + 1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0]) + Y_test[i] += np.random.normal(loc=0, scale=np.log( + 1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0]) elif noise == 'homoscedastic_nongaussian': - Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_train[i].shape[0]) / t - Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_test[i].shape[0]) / t + Y_train[i] += skewnorm.rvs(a=10, loc=0, + scale=0.2, size=Y_train[i].shape[0]) / t + Y_test[i] += skewnorm.rvs(a=10, loc=0, + scale=0.2, size=Y_test[i].shape[0]) / t elif noise == 'heteroscedastic_nongaussian': - Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0]) - Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0]) + Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log( + 1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0]) + Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + + np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0]) X_train = np.vstack(X_train) X_test = np.vstack(X_test) @@ -967,7 +978,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, for i in range(n_features): plt.figure() for j in range(n_grps): - plt.scatter(X_train[grp_id_train[:, 0] == j, i], Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j)) + plt.scatter(X_train[grp_id_train[:, 0] == j, i], + Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j)) plt.xlabel(f'X{i}') plt.ylabel('Y') plt.legend() @@ -976,19 +988,25 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, if working_dir: if not os.path.isdir(working_dir): os.mkdir(working_dir) - + with open(os.path.join(working_dir, 'trbefile.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(grp_id_train), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(grp_id_train), file, + protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'tsbefile.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(grp_id_test), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(grp_id_test), file, + protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'X_train.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(X_train), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(X_train), file, + protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'X_test.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(X_test), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(X_test), file, + protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'Y_train.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(Y_train), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(Y_train), file, + protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(working_dir, 'Y_test.pkl'), 'wb') as file: - pickle.dump(pd.DataFrame(Y_test), file, protocol=pickle.HIGHEST_PROTOCOL) + pickle.dump(pd.DataFrame(Y_test), file, + protocol=pickle.HIGHEST_PROTOCOL) return X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef diff --git a/requirements.txt b/requirements.txt index 58c3f61e..1ec16b74 100644 --- a/requirements.txt +++ b/requirements.txt @@ -10,4 +10,6 @@ pandas>=0.25.3 torch>=1.1.0 sphinx-tabs pymc>=5.1.0 -arviz==0.13.0 +arviz +numba +nutpie \ No newline at end of file diff --git a/setup.py b/setup.py index d37cd554..00693595 100644 --- a/setup.py +++ b/setup.py @@ -7,10 +7,11 @@ def parse_requirements(filename): lineiter = (line.strip() for line in f) return [line for line in lineiter if line and not line.startswith("#")] + requirements = parse_requirements('requirements.txt') # Note: to force PyPI to overwrite a version without bumping the version number -# use e.g.: +# use e.g.: # version = '0.29-1' setup(name='pcntoolkit', diff --git a/tests/testHBR.py b/tests/testHBR.py index 1d2ba679..30168317 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -24,7 +24,7 @@ random_state = 29 -working_dir = '/' # Specify a working directory to save data and results. +working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results. simulation_method = 'linear' n_features = 1 # The number of input features of X @@ -32,8 +32,7 @@ n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) -model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline' - +model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline' ############################## Data Simulation ################################ @@ -41,13 +40,13 @@ X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \ simulate_data(simulation_method, n_samples, n_features, n_grps, - working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian', + working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian', random_state=random_state) ################################# Fittig and Predicting ############################### -nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True') +nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo', + linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') diff --git a/tests/test_normative_parallel.py b/tests/test_normative_parallel.py index 89644c59..1a861429 100644 --- a/tests/test_normative_parallel.py +++ b/tests/test_normative_parallel.py @@ -12,7 +12,7 @@ # configs # specify your python path. Make sure you are using the Python in the right environement. -python_path = '/path/to/my/python' +python_path = '/path/to/my/python' # specify the working directory to sacve the results. processing_dir = '/path/to/my/test/directory/' @@ -21,29 +21,31 @@ cov_num = 1 # simulating data -pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(os.path.join(processing_dir,'train_resp.pkl')) -pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(os.path.join(processing_dir,'train_cov.pkl')) -pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(os.path.join(processing_dir,'test_resp.pkl')) -pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(os.path.join(processing_dir,'test_cov.pkl')) +pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle( + os.path.join(processing_dir, 'train_resp.pkl')) +pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle( + os.path.join(processing_dir, 'train_cov.pkl')) +pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle( + os.path.join(processing_dir, 'test_resp.pkl')) +pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle( + os.path.join(processing_dir, 'test_cov.pkl')) -respfile = os.path.join(processing_dir,'train_resp.pkl') -covfile = os.path.join(processing_dir,'train_cov.pkl') +respfile = os.path.join(processing_dir, 'train_resp.pkl') +covfile = os.path.join(processing_dir, 'train_cov.pkl') -testresp = os.path.join(processing_dir,'test_resp.pkl') -testcov = os.path.join(processing_dir,'test_cov.pkl') +testresp = os.path.join(processing_dir, 'test_resp.pkl') +testcov = os.path.join(processing_dir, 'test_cov.pkl') job_name = 'nmp_test' batch_size = 1 memory = '4gb' duration = '01:00:00' cluster = 'slurm' -binary='True' +binary = 'True' execute_nm(processing_dir, python_path, job_name, covfile, respfile, - testcovfile_path=testcov, testrespfile_path=testresp, batch_size=batch_size, + testcovfile_path=testcov, testrespfile_path=testresp, batch_size=batch_size, memory=memory, duration=duration, cluster_spec=cluster, log_path=processing_dir, interactive='auto', binary=binary, savemodel='True', saveoutput='True') - - From 053d0c1c27a66ed57c9a89703a6458ab0abff587 Mon Sep 17 00:00:00 2001 From: AuguB Date: Wed, 2 Oct 2024 15:36:12 +0200 Subject: [PATCH 07/68] Formatting --- pcntoolkit/normative_model/norm_hbr.py | 119 ++++++++++++------------- 1 file changed, 59 insertions(+), 60 deletions(-) diff --git a/pcntoolkit/normative_model/norm_hbr.py b/pcntoolkit/normative_model/norm_hbr.py index b98674d0..170af404 100644 --- a/pcntoolkit/normative_model/norm_hbr.py +++ b/pcntoolkit/normative_model/norm_hbr.py @@ -40,7 +40,6 @@ class NormHBR(NormBase): - """HBR multi-batch normative modelling class. By default, this function estimates a linear model with random intercept, random slope, and random homoscedastic noise. @@ -144,8 +143,9 @@ def __init__(self, **kwargs): kwargs.get("target_accept", "0.8")) self.configs["init"] = kwargs.get("init", "jitter+adapt_diag_grad") self.configs["cores"] = int(kwargs.get("cores", "1")) - self.configs["remove_datapoints_from_posterior"] = kwargs.get( - "remove_datapoints_from_posterior", "True") == "True" + self.configs["remove_datapoints_from_posterior"] = ( + kwargs.get("remove_datapoints_from_posterior", "True") == "True" + ) # model transfer setting self.configs["freedom"] = int(kwargs.get("freedom", "1")) self.configs["transferred"] = False @@ -261,8 +261,8 @@ def estimate(self, X, y, **kwargs): """ Sample from the posterior of the Hierarchical Bayesian Regression model. - This function samples from the posterior distribution of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. - If 'trbefile' is provided in kwargs, it is used as batch effects for the training data. + This function samples from the posterior distribution of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. + If 'trbefile' is provided in kwargs, it is used as batch effects for the training data. Otherwise, the batch effects are initialized as zeros. :param X: Data matrix. @@ -291,9 +291,9 @@ def predict(self, Xs, X=None, Y=None, **kwargs): """ Predict the target values for the given test data. - This function predicts the target values for the given test data 'Xs' using the Hierarchical Bayesian Regression (HBR) model. - If 'X' and 'Y' are provided, they are used to update the model before prediction. - If 'tsbefile' is provided in kwargs, it is used to as batch effects for the test data. + This function predicts the target values for the given test data 'Xs' using the Hierarchical Bayesian Regression (HBR) model. + If 'X' and 'Y' are provided, they are used to update the model before prediction. + If 'tsbefile' is provided in kwargs, it is used to as batch effects for the test data. Otherwise, the batch effects are initialized as zeros. :param Xs: Test data matrix. @@ -332,8 +332,8 @@ def estimate_on_new_sites(self, X, y, batch_effects): """ Samples from the posterior of the Hierarchical Bayesian Regression model. - This function samples from the posterior of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. The posterior samples from the previous iteration are used to construct the priors for this one. - If 'trbefile' is provided in kwargs, it is used as batch effects for the training data. + This function samples from the posterior of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. The posterior samples from the previous iteration are used to construct the priors for this one. + If 'trbefile' is provided in kwargs, it is used as batch effects for the training data. Otherwise, the batch effects are initialized as zeros. :param X: Data matrix. @@ -350,7 +350,7 @@ def predict_on_new_sites(self, X, batch_effects): """ Predict the target values for the given test data on new sites. - This function predicts the target values for the given test data 'X' on new sites using the Hierarchical Bayesian Regression (HBR) model. + This function predicts the target values for the given test data 'X' on new sites using the Hierarchical Bayesian Regression (HBR) model. The batch effects for the new sites must be provided. :param X: Test data matrix for the new sites. @@ -373,8 +373,8 @@ def extend( """ Extend the Hierarchical Bayesian Regression model using data sampled from the posterior predictive distribution. - This function extends the Hierarchical Bayesian Regression (HBR) model, given the data matrix 'X' and target 'y'. - It also generates data from the posterior predictive distribution and merges it with the new data before estimation. + This function extends the Hierarchical Bayesian Regression (HBR) model, given the data matrix 'X' and target 'y'. + It also generates data from the posterior predictive distribution and merges it with the new data before estimation. If 'informative_prior' is True, it uses the adapt method for estimation. Otherwise, it uses the estimate method. :param X: Data matrix for the new sites. @@ -427,11 +427,13 @@ def tune( """ This function tunes the Hierarchical Bayesian Regression model using data sampled from the posterior predictive distribution. Its behavior is not tested, and it is unclear if the desired behavior is achieved. """ - - #TODO need to check if this is correct - print("The 'tune' function is being called, but it is currently in development and its behavior is not tested. It is unclear if the desired behavior is achieved. Any output following this should be treated as unreliable.") - + # TODO need to check if this is correct + + print( + "The 'tune' function is being called, but it is currently in development and its behavior is not tested. It is unclear if the desired behavior is achieved. Any output following this should be treated as unreliable." + ) + tune_ids = list(np.unique(batch_effects[:, merge_batch_dim])) X_dummy, batch_effects_dummy = self.hbr.create_dummy_inputs( @@ -516,7 +518,7 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None): Args: X ([N*p]ndarray): covariates for which the quantiles are computed (must be scaled if scaler is set) batch_effects (ndarray): the batch effects corresponding to X - z_scores (ndarray): Use this to determine which quantiles will be computed. The resulting quantiles will have the z-scores given in this list. + z_scores (ndarray): Use this to determine which quantiles will be computed. The resulting quantiles will have the z-scores given in this list. """ # Set batch effects to zero if none are provided if batch_effects is None: @@ -525,9 +527,9 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None): # Set the z_scores for which the quantiles are computed if z_scores is None: z_scores = np.arange(-3, 4) - likelihood = self.configs['likelihood'] + likelihood = self.configs["likelihood"] - # Determine the variables to predict + # Determine the variables to predict if self.configs["likelihood"] == "Normal": var_names = ["mu_samples", "sigma_samples", "sigma_plus_samples"] elif self.configs["likelihood"].startswith("SHASH"): @@ -543,24 +545,21 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None): exit("Unknown likelihood: " + self.configs["likelihood"]) # Delete the posterior predictive if it already exists - if 'posterior_predictive' in self.hbr.idata.groups(): + if "posterior_predictive" in self.hbr.idata.groups(): del self.hbr.idata.posterior_predictive if self.configs["transferred"] == True: - self.predict_on_new_sites( - X=X, - batch_effects=batch_effects - ) - #var_names = ["y_like"] - else: + self.predict_on_new_sites(X=X, batch_effects=batch_effects) + # var_names = ["y_like"] + else: self.hbr.predict( - # Do a forward to get the posterior predictive in the idata + # Do a forward to get the posterior predictive in the idata X=X, batch_effects=batch_effects, batch_effects_maps=self.batch_effects_maps, pred="single", - var_names=var_names+["y_like"], - ) + var_names=var_names + ["y_like"], + ) # Extract the relevant samples from the idata post_pred = az.extract( @@ -568,9 +567,9 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None): ) # Remove superfluous var_nammes - var_names.remove('sigma_samples') - if 'delta_samples' in var_names: - var_names.remove('delta_samples') + var_names.remove("sigma_samples") + if "delta_samples" in var_names: + var_names.remove("delta_samples") # Separate the samples into a list so that they can be unpacked array_of_vars = list(map(lambda x: post_pred[x], var_names)) @@ -586,7 +585,7 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None): quantiles[i] = xarray.apply_ufunc( quantile, *array_of_vars, - kwargs={"zs": zs, "likelihood": self.configs['likelihood']}, + kwargs={"zs": zs, "likelihood": self.configs["likelihood"]}, ) return quantiles.mean(axis=-1) @@ -599,12 +598,12 @@ def get_mcmc_zscores(self, X, y, **kwargs): y ([N*1]ndarray): response variables """ - print(self.configs['likelihood']) + print(self.configs["likelihood"]) tsbefile = kwargs.get("tsbefile", None) if tsbefile is not None: batch_effects_test = fileio.load(tsbefile) - else: # Set batch effects to zero if none are provided + else: # Set batch effects to zero if none are provided print("Could not find batch-effects file! Initializing all as zeros ...") batch_effects_test = np.zeros([X.shape[0], 1]) @@ -624,7 +623,7 @@ def get_mcmc_zscores(self, X, y, **kwargs): exit("Unknown likelihood: " + self.configs["likelihood"]) # Delete the posterior predictive if it already exists - if 'posterior_predictive' in self.hbr.idata.groups(): + if "posterior_predictive" in self.hbr.idata.groups(): del self.hbr.idata.posterior_predictive # Do a forward to get the posterior predictive in the idata @@ -633,7 +632,7 @@ def get_mcmc_zscores(self, X, y, **kwargs): batch_effects=batch_effects_test, batch_effects_maps=self.batch_effects_maps, pred="single", - var_names=var_names+["y_like"], + var_names=var_names + ["y_like"], ) # Extract the relevant samples from the idata @@ -642,9 +641,9 @@ def get_mcmc_zscores(self, X, y, **kwargs): ) # Remove superfluous var_names - var_names.remove('sigma_samples') - if 'delta_samples' in var_names: - var_names.remove('delta_samples') + var_names.remove("sigma_samples") + if "delta_samples" in var_names: + var_names.remove("delta_samples") # Separate the samples into a list so that they can be unpacked array_of_vars = list(map(lambda x: post_pred[x], var_names)) @@ -656,7 +655,7 @@ def get_mcmc_zscores(self, X, y, **kwargs): z_scores = xarray.apply_ufunc( z_score, *array_of_vars, - kwargs={"y": y, "likelihood": self.configs['likelihood']}, + kwargs={"y": y, "likelihood": self.configs["likelihood"]}, ) return z_scores.mean(axis=-1).values @@ -704,19 +703,19 @@ def m(epsilon, delta, r): def quantile(mu, sigma, epsilon=None, delta=None, zs=0, likelihood="Normal"): """Get the zs'th quantiles given likelihood parameters""" - if likelihood.startswith('SHASH'): + if likelihood.startswith("SHASH"): if likelihood == "SHASHo": - quantiles = S_inv(zs, epsilon, delta)*sigma + mu + quantiles = S_inv(zs, epsilon, delta) * sigma + mu elif likelihood == "SHASHo2": - sigma_d = sigma/delta - quantiles = S_inv(zs, epsilon, delta)*sigma_d + mu + sigma_d = sigma / delta + quantiles = S_inv(zs, epsilon, delta) * sigma_d + mu elif likelihood == "SHASHb": true_mu = m(epsilon, delta, 1) - true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu ** 2)) - SHASH_c = ((S_inv(zs, epsilon, delta)-true_mu)/true_sigma) + true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu**2)) + SHASH_c = (S_inv(zs, epsilon, delta) - true_mu) / true_sigma quantiles = SHASH_c * sigma + mu - elif likelihood == 'Normal': - quantiles = zs*sigma + mu + elif likelihood == "Normal": + quantiles = zs * sigma + mu else: exit("Unsupported likelihood") return quantiles @@ -724,22 +723,22 @@ def quantile(mu, sigma, epsilon=None, delta=None, zs=0, likelihood="Normal"): def z_score(mu, sigma, epsilon=None, delta=None, y=None, likelihood="Normal"): """Get the z-scores of Y, given likelihood parameters""" - if likelihood.startswith('SHASH'): + if likelihood.startswith("SHASH"): if likelihood == "SHASHo": - SHASH = (y-mu)/sigma - Z = np.sinh(np.arcsinh(SHASH)*delta - epsilon) + SHASH = (y - mu) / sigma + Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon) elif likelihood == "SHASHo2": - sigma_d = sigma/delta - SHASH = (y-mu)/sigma_d - Z = np.sinh(np.arcsinh(SHASH)*delta - epsilon) + sigma_d = sigma / delta + SHASH = (y - mu) / sigma_d + Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon) elif likelihood == "SHASHb": true_mu = m(epsilon, delta, 1) - true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu ** 2)) - SHASH_c = ((y-mu)/sigma) + true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu**2)) + SHASH_c = (y - mu) / sigma SHASH = SHASH_c * true_sigma + true_mu Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon) - elif likelihood == 'Normal': - Z = (y-mu)/sigma + elif likelihood == "Normal": + Z = (y - mu) / sigma else: exit("Unsupported likelihood") return Z From 4ade92700dfac402eb7da629d7005524dd411895 Mon Sep 17 00:00:00 2001 From: AuguB Date: Wed, 2 Oct 2024 15:37:00 +0200 Subject: [PATCH 08/68] Git thinks this has changed --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 1ec16b74..dda3803d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -10,6 +10,6 @@ pandas>=0.25.3 torch>=1.1.0 sphinx-tabs pymc>=5.1.0 -arviz +arviz numba nutpie \ No newline at end of file From e43e1881d7ac98d28f2fcc4d37ef089f90e74857 Mon Sep 17 00:00:00 2001 From: AuguB Date: Wed, 2 Oct 2024 18:46:39 +0200 Subject: [PATCH 09/68] Added test notebook --- tests/test_HBR.ipynb | 188 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 188 insertions(+) create mode 100644 tests/test_HBR.ipynb diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb new file mode 100644 index 00000000..1abbd02d --- /dev/null +++ b/tests/test_HBR.ipynb @@ -0,0 +1,188 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "\"\"\"\n", + "Created on Mon Jul 29 13:26:35 2019\n", + "\n", + "@author: seykia\n", + "\n", + "This script tests HBR models with default configs on toy data.\n", + "\n", + "\"\"\"\n", + "\n", + "import os\n", + "import numpy as np\n", + "from pcntoolkit.normative_model.norm_utils import norm_init\n", + "from pcntoolkit.util.utils import simulate_data\n", + "import matplotlib.pyplot as plt\n", + "from pcntoolkit.normative import estimate\n", + "from warnings import filterwarnings\n", + "filterwarnings('ignore')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDjElEQVR4nOydeXwTdfrHPzNpel+00AsRORQoRe5KARGVoyIUVtQVD8Rr5VBAPBBXZVFXcGXXggh4IQoKP1c8imABl0ukUJBDsCCCiAgtlZYe9Ewz8/tjMukkmTNNmrR93q8X1iZzfGeSzjzzfD/P52F4nudBEARBEATRTGB9PQCCIAiCIAhPQsENQRAEQRDNCgpuCIIgCIJoVlBwQxAEQRBEs4KCG4IgCIIgmhUU3BAEQRAE0ayg4IYgCIIgiGZFgK8H0NhwHIfz588jIiICDMP4ejgEQRAEQeiA53mUl5cjKSkJLKuem2lxwc358+fRrl07Xw+DIAiCIAg3OHv2LK644grVZVpccBMREQFAODmRkZE+Hg1BEARBEHooKytDu3bt7PdxNVpccCNORUVGRlJwQxAEQRBNDD2SEhIUEwRBEATRrKDghiAIgiCIZgUFNwRBEARBNCtanOZGL1arFRaLxdfDIJwwm80wmUy+HgZBEAThx1Bw4wTP8ygoKEBJSYmvh0IoEB0djYSEBPIpIgiCIGSh4MYJMbCJi4tDaGgo3UD9CJ7nUVlZicLCQgBAYmKij0dEEARB+CMU3EiwWq32wCY2NtbXwyFkCAkJAQAUFhYiLi6OpqgIgiAIF0hQLEHU2ISGhvp4JIQa4udDmiiCIAhCDgpuZKCpKP+GPh+CIAhCDZqWIgiCIIimBmcFzuwGLl8AwuOB9gMBlqbpRSi4IQiCIIimRF4WkD0bKDtf/1pkEpD+GpCc4btx+RE0LUUQBEEQTYW8LODTiY6BDQCU5Quv52X5Zlx+BgU3XsLK8cg5VYSvDp1DzqkiWDne6/ssKCjAjBkz0LlzZwQHByM+Ph6DBw/G8uXLUVlZ6fX9u0tNTQ0ef/xxtG7dGmFhYcjIyMAff/zh62ERBEH4F5xVyNhA7n5iey37WWG5Fg5NS3mB7KP5mLc+D/ml1fbXEqOCMXdMMtJTvOPN8uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+XSlxWKB2Wz2yrj0MHPmTKxfvx5r165FbGwsnnzySYwePRo//PADlXoTBEGInNntmrFxgAfKzgnLdbi+0Yblj1DmxsNkH83HlNUHHAIbACgorcaU1QeQfTTfK/udOnUqAgICsH//ftx5553o1q0bevTogfHjx2PDhg0YM2aMfVmGYbB8+XKMHTsWYWFheOWVVwAAy5YtQ6dOnRAYGIguXbpg1apV9nV+++03MAyDQ4cO2V8rKSkBwzDYvn07AGD79u1gGAYbNmxAz549ERwcjOuuuw5HjhxRHHdpaSnef/99/Pvf/8awYcPQu3dvrF69GkeOHMG3337r2ZNEEATRlLl8wbPLNWMouPEgVo7HvPV5aglDzFuf5/EpqqKiImzevBnTpk1DWFiY7DLO5dNz587F2LFjceTIETz44IP44osvMGPGDDz55JM4evQoHn30UTzwwAPYtm2b4fE8/fTTWLhwIfbt24e4uDhkZGQoetL88MMPsFgsGDFihP21pKQkpKSkYPfu3Yb3TRAE0WwJj/fscs0YCm48SO7pYpeMjRQeQH5pNXJPF3t0vydPngTP8+jSpYvD661bt0Z4eDjCw8Mxe/Zsh/fuvvtuPPjgg+jYsSPat2+PhQsXYtKkSZg6dSquueYazJo1C7fddhsWLlxoeDxz587F8OHD0aNHD3z44Ye4cOECvvjiC9llCwoKEBgYiFatWjm8Hh8fj4KCAsP7JgiCaLa0HyhURUHJ64sBItsKy7VwKLjxIIXlyoGNO8sZxTk7k5ubi0OHDqF79+6oqalxeK9fv34Ovx87dgyDBg1yeG3QoEE4duyY4XGkpaXZ/z8mJgZdunQxvB2e58msjyAIQgprEsq9AbgGOLbf0xeQ3w0ouPEocRHBHl1OL507dwbDMDh+/LjD6x07dkTnzp3t/ZikyE1fOQcT0gCDZVn7ayJG2h8oBSoJCQmora3FpUuXHF4vLCxEfDylVgmCIBxIzgDu/AiIdCpOiUwSXiefGwAU3HiU1A4xSIwKVksYIjEqGKkdYjy639jYWAwfPhxLlixBRUWFW9vo1q0bdu3a5fDa7t270a1bNwBAmzZtAAD5+fWCaKm4WMqePXvs/3/p0iWcOHECXbt2lV22b9++MJvN2LJli/21/Px8HD16FAMHUmqVIAjCheQMYOZR4P6vgfHvCz9nHqHARgKVgnsQE8tg7phkTFl9AAwcnQjEgGfumGSYWM9PtyxduhSDBg1Cv3798I9//APXXnstWJbFvn37cPz4cfTt21d1/aeffhp33nkn+vTpg5tvvhnr16/H559/bq9YCgkJwYABA7BgwQJcddVVuHjxIp5//nnZbb300kuIjY1FfHw8/v73v6N169YYN26c7LJRUVF46KGH8OSTTyI2NhYxMTF46qmn0KNHDwwbNqxB54QgCKLZwppafLm3GpS58TDpKYlYdm8fJEQ5Tj0lRAVj2b19vOZz06lTJxw8eBDDhg3DnDlz0LNnT/Tr1w9vvvkmnnrqKbz88suq648bNw6LFi3C66+/ju7du+Ptt9/GBx98gKFDh9qXWbFiBSwWC/r164cZM2bYS8idWbBgAWbMmIG+ffsiPz8fWVlZCAwMVNz3G2+8gXHjxuHOO+/EoEGDEBoaivXr15PHDUEQBOEWDC8VUbQAysrKEBUVhdLSUkRGRjq8V11djdOnT6NDhw4IDm6YLsbK8cg9XYzC8mrERQhTUd7I2PgT27dvx4033ohLly4hOjraa/vx5OdEEARBNA3U7t/O+DRzs2zZMlx77bWIjIxEZGQk0tLS8M0336ius2PHDvTt2xfBwcHo2LEjli9f3kijNYaJZZDWKRZje7VFWqfYZh/YEARBEIS/4NPg5oorrsCCBQuwf/9+7N+/HzfddBPGjh2Ln376SXb506dPY9SoUbj++utx8OBBPPfcc5g+fTrWrVvXyCMnCIIgCMJf8btpqZiYGLz++ut46KGHXN6bPXs2srKyHDxTJk+ejMOHDyMnJ0d2ezU1NQ4eL2VlZWjXrp3Xp6UI70GfE0EQRMujyUxLSbFarVi7di0qKiocTOCk5OTkONj0A8DIkSOxf/9+Rc+V+fPnIyoqyv6vXbt2Hh87QRAEQRD+g8+DmyNHjiA8PBxBQUGYPHkyvvjiCyQnJ8suW1BQ4GLsFh8fj7q6Oly8eFF2nTlz5qC0tNT+7+zZsx4/BoIgCIIg/Aef+9x06dIFhw4dQklJCdatW4f7778fO3bsUAxw5Fx05V4XCQoKQlBQkGcHTRAEQTQtOCtwZrfQMTs8Xui/RG0Kmi0+D24CAwPRuXNnAEK/o3379mHRokV4++23XZZNSEhwaaZYWFiIgIAAxMbGNsp4CYIgiCZGXhaQPRsoO1//WmSS0KeJXH2bJT6flnKG53mXJo8iaWlpDjb9ALB582b069cPZrO5MYZHEARBNCXysoBPJzoGNgBQli+8npflm3ERXsWnwc1zzz2H7777Dr/99huOHDmCv//979i+fTvuueceAIJeZuLEifblJ0+ejDNnzmDWrFk4duwYVqxYgffffx9PPfWUrw6BIAiC8Fc4q5CxgVxRsO217GeF5YhmhU+DmwsXLuC+++5Dly5dcPPNN2Pv3r3Izs7G8OHDAQgNFH///Xf78h06dMDGjRuxfft29OrVCy+//DIWL16M8ePH++oQ/IqCggLMmDEDnTt3RnBwMOLj4zF48GAsX74clZWVvh6eIu+88w6GDh2KyMhIMAyDkpISXw+JIIjmwJndrhkbB3ig7JywHNGs8Knm5v3331d9f+XKlS6v3XDDDThw4ICXRuRBGlm89uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+blli8Xi02m9yspKpKenIz09HXPmzPHZOAiCaGZcvuDZ5Ygmg99pbpoFeVlAZgrw4Whg3UPCz8wUr87tTp06FQEBAdi/fz/uvPNOdOvWDT169MD48eOxYcMGjBkzxr4swzBYvnw5xo4di7CwMHsDzGXLlqFTp04IDAxEly5dsGrVKvs6v/32GxiGwaFDh+yvlZSUgGEYbN++HYDQW4phGGzYsAE9e/ZEcHAwrrvuOhw5ckR17DNnzsSzzz6LAQMGeO6EEARBhMdrL2NkOaLJQMGNp/GBeK2oqAibN2/GtGnTEBYWJruMc6n83LlzMXbsWBw5cgQPPvggvvjiC8yYMQNPPvkkjh49ikcffRQPPPAAtm3bZng8Tz/9NBYuXIh9+/YhLi4OGRkZiiaLBEEQXqP9QKEqCkq9/Rggsq2wHNGsoODGk/hIvHby5EnwPI8uXbo4vN66dWuEh4cjPDwcs2fPdnjv7rvvxoMPPoiOHTuiffv2WLhwISZNmoSpU6fimmuuwaxZs3Dbbbdh4cKFhsczd+5cDB8+HD169MCHH36ICxcu4IsvvmjQMRIEQRiGNQnl3gBcAxzb7+kLyO+mGULBjSfxsXjNOTuTm5uLQ4cOoXv37i7l9f369XP4/dixYxg0aJDDa4MGDXLo46UXafuMmJgYdOnSxa3tEARBNJjkDODOj4DIRMfXI5OE18nnplnicxO/ZoWPxGudO3cGwzA4fvy4w+sdO3YEAISEhLisIzd9Jef+LL7Gsqz9NREjU01KDtIEQRBeJzkD6HorORS3IChz40l8JF6LjY3F8OHDsWTJElRUVLi1jW7dumHXrl0Or+3evRvdunUDALRp0waAUJ4vIhUXS9mzZ4/9/y9duoQTJ06ga9eubo2LIAjCI7AmoMP1QI/bhZ8U2DRrKHPjSUTxWlk+5HU3jPC+F8RrS5cuxaBBg9CvXz/84x//wLXXXguWZbFv3z4cP34cffv2VV3/6aefxp133ok+ffrg5ptvxvr16/H555/j22+/BSBkfwYMGIAFCxbgqquuwsWLF/H888/Lbuull15CbGws4uPj8fe//x2tW7fGuHHjFPddUFCAgoICnDx5EoDQTDUiIgJXXnklYmJi3DshBEEQRIuFMjeexIfitU6dOuHgwYMYNmwY5syZg549e6Jfv35488038dRTT+Hll19WXX/cuHFYtGgRXn/9dXTv3h1vv/02PvjgAwwdOtS+zIoVK2CxWNCvXz/MmDHDXkLuzIIFCzBjxgz07dsX+fn5yMrKQmBgoOK+ly9fjt69e+ORRx4BAAwZMgS9e/dGVhbZohMEQRDGYXipiKIFUFZWhqioKJSWliIyMtLhverqapw+fRodOnRAcHCw+zuRbdLWVghsmrF4bfv27bjxxhtx6dIlREdHe20/HvucCIIgiCaD2v3bGZqW8gYkXiMIgiAIn0HBjbcQxWsEQRAEQTQqFNwQHmPo0KFoYbOcBEEQhB9CgmKCIAiCIJoVFNzIQNkH/4Y+H4IgCEINCm4kmM1mAEBlZaWPR0KoIX4+4udFEARBEFJIcyPBZDIhOjoahYWFAIDQ0FBqG+BH8DyPyspKFBYWIjo6GiYTVZ8RBEEQrlBw40RCQgIA2AMcwv+Ijo62f04EQRAE4QwFN04wDIPExETExcUZagxJNA5ms5kyNgRBEIQqFNwoYDKZ6CZKEARBEE0QEhQTBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWRHg6wEQBEEQzQDOCpzZDVy+AITHA+0HAqzJ16MiWig+zdzMnz8f/fv3R0REBOLi4jBu3Dj8/PPPquts374dDMO4/Dt+/HgjjZogCIJwIC8LyEwBPhwNrHtI+JmZIrxOED7Ap8HNjh07MG3aNOzZswdbtmxBXV0dRowYgYqKCs11f/75Z+Tn59v/XX311Y0wYoIgCMKBvCzg04lA2XnH18vyhdcpwCF8gE+npbKzsx1+/+CDDxAXF4cffvgBQ4YMUV03Li4O0dHRmvuoqalBTU2N/feysjK3xkoQBEE4wVmB7NkAeJk3eQAMkP0s0PVWmqIiGhW/EhSXlpYCAGJiYjSX7d27NxITE3HzzTdj27ZtisvNnz8fUVFR9n/t2rXz2HgJgiBaNGd2u2ZsHOCBsnPCcgTRiPhNcMPzPGbNmoXBgwcjJSVFcbnExES88847WLduHT7//HN06dIFN998M3bu3Cm7/Jw5c1BaWmr/d/bsWW8dAkEQhB0rxyPnVBG+OnQOOaeKYOXkshtNnMsXPLscQXgIv6mWeuyxx/Djjz9i165dqst16dIFXbp0sf+elpaGs2fPYuHChbJTWUFBQQgKCvL4eAmCIJTIPpqPeevzkF9abX8tMSoYc8ckIz0l0Ycj8zDh8Z5djiA8hF9kbh5//HFkZWVh27ZtuOKKKwyvP2DAAPzyyy9eGBlBEIQxso/mY8rqAw6BDQAUlFZjyuoDyD6a76OReYH2A4HIJACMwgIMENlWWI4gGhGfBjc8z+Oxxx7D559/jq1bt6JDhw5ubefgwYNITGxGT0MEQTRJrByPeevzFOW1ADBvfV7zmaJiTUD6a7ZfnAMc2+/pC0hMTDQ6Pp2WmjZtGj755BN89dVXiIiIQEFBAQAgKioKISEhAATNzLlz5/DRRx8BADIzM3HVVVehe/fuqK2txerVq7Fu3TqsW7fOZ8dBEAQBALmni10yNlJ4APml1cg9XYy0TrGNNzBvkpwB3PmRUDUlFRdHJgmBTXKG78ZGtFh8GtwsW7YMADB06FCH1z/44ANMmjQJAJCfn4/ff//d/l5tbS2eeuopnDt3DiEhIejevTs2bNiAUaNGNdawCYIgZCksVw5s3FmuyZCcIZR7k0Mx4ScwPM83k/yoPsrKyhAVFYXS0lJERkb6ejgEQTQjck4VYcK7ezSXW/PIgOaTuSGIRsLI/dsvBMUEQRDNgdQOMUiMClaT1yIxKhipHbS9vAiCcB8KbgiCIDyEiWUwd0wyAEV5LeaOSYaJVQp/CILwBBTcEARBeJD0lEQsu7cPEqKCHV5PiArGsnv7NC+fG4LwU/zGxI8gCKK5kJ6SiOHJCcg9XYzC8mrERQhTUZSxIYjGgYIbgiAIL2BiGRINE4SPoGkpgiAIgiCaFRTcEARBEATRrKBpKYIgiBaIleNJE0Q0Wyi4IQiCaGH4pGs5ZyUHY6LRoOCGIAiiBSF2LXe2phe7lnulXD0vS6H31GvUe4rwCqS5IQiCaCH4pGt5Xhbw6UTHwAYAyvKF1/OyPLcvgrBBwQ1BEEQLwUjXco/AWYWMjVo4lf2ssBxBeBAKbgiCIFoIjd61/Mxu14yNAzxQdk5YjiA8CAU3BEEQLYS4iGDthQwsp8nlC55djiB0QsENQRBEC6HRu5aHx3t2OYLQCQU3BEEQLQQTy+CFW5NlFTBe6VrefqBQFaUWTkW2FZYjCA9CwQ1BEEQLIftoPl7ekCf7nle6lrMmodwbgGuAY/s9fQH53RAeh4IbgiCIFoDob6NULfXCrd28Y+CXnAHc+REQ6bTtyCThdfK5IbwAmfgRBEE0c9T8bQAhh/LyhmMYmZLonRYMyRlA11vJoZhoNCi4IQiCaOYY8bdJ6xTrnUGwJqDD9d7ZNkE4QcENQRCEh/DXZpSN7m9DED6GghuCIAgP4JNmlDppdH8bgvAxJCgmCIJoIEpiXbEZZfbRfB+NTKDR/W0IwsdQcEMQBNEAfNKM0iAmlsHcMckAFAuyPetvQxA+hoIbgiCIBtDozSjdJD0lEcvu7YOEKMepJ6/42xCEjyHNDUEQfoO/CnLVaEpi3fSURAxPTmhy55jwP/z9b5WCG4IgGgfOqupz4s+CXDWamljXxDLeK/cmWgRN4W+VpqUIgvA+eVlAZgrw4Whg3UPCz8wU4XX4vyBXDRLrEi2JpvK3SsENQRDeJS8L+HQiUHbe8fWyfODTibD+9JXfC3LVILEu0VJoCuJ5EQpuCILwHpwVyJ4NqFwO6zbMxoXSSsVN+IsgVw0S6xItgaYingdIc0MQhDc5s9s1Y+MAj6DKfKSyx7GHS1bdlD8IctXwlVjX34WdhtDQZRG+pSmJ5ym4IQjCe1y+oGuxOJRoL+Mnglw1Glus2xSEnbrJyxKyfNJgODIJSH+NOof7CU1JPE/TUgRBeI/weF2L1YXFkSDXIE1F2KkLDV2WKDwnfEtTEs9TcEMQhPdoP1B4+la7HEa2RUbGePE353cBkCDXmaYk7NREhy4L2c8KyzUxrByPnFNF+OrQOeScKmoan4cKTUk8T8ENQRDegzUJ0woAFC+H6QuQ3uMKEuQawJCwk7MCp78Djnwm/PS3IEGHLgtl54TlmhDZR/Mx+LWtmPDuHsxYewgT3t2Dwa9tbVoZNRmainieNDcEQXiX5Azgzo8U9BQL7HoKcs/Vj17Bpunn9cBXr/m3jkWnLkv3cn6AOGXonKcRpwwbKwjwlti8KfytUnBDEIT3Sc4Aut6qWQmjKcilahoA+gSbI9lc9M9dBJfpHlHHcudH/hHg6NRl6V7Ox2hNGTIQpgyHJyd4NRjwttjc352uKbghCKJxYE1Ah+vdX78FVtMoPXmLws6C0mrZm6gJHF4KXAVlHQsj6Fi63ur74FDUZZXlQ368jPB++4GNPTK3MDJl6K3gwF8yR76ENDcEQfg/LbCaRk2zoSXs7M8eRzyKFGXcfqVj0anL8nkQphNfe8E0K7F5A6DghiAI/6YZV9MooafMW03YOWdwtL4d+YuORdRlRTplEyKT/Gf6TCe+9oJpSi7C3sSn01Lz58/H559/juPHjyMkJAQDBw7Ea6+9hi5duqiut2PHDsyaNQs//fQTkpKS8Mwzz2Dy5MmNNGqCIBoVI9U0DZn28hOMaDYUhZ1nAoFcHTvzJx2LTl2Wv6M1ZchACEC95QXj68yRv+DTzM2OHTswbdo07NmzB1u2bEFdXR1GjBiBiooKxXVOnz6NUaNG4frrr8fBgwfx3HPPYfr06Vi3bl0jjpwgiEajGVbTqGH0yVsUdo7t1RZpnWIFkapOfyG/07GIuqwetws/m1hgA/jeC8bXmSN/waeZm+zsbIffP/jgA8TFxeGHH37AkCFDZNdZvnw5rrzySmRmZgIAunXrhv3792PhwoUYP368y/I1NTWoqamx/15WVua5AyAIwvs0s2oaLTzy5C3qWD6dCOGWKs0hND0dS1NDnDJ0rlZKaITWGL7OHPkLflUtVVpaCgCIiVE+6Tk5ORgxYoTDayNHjsT7778Pi8UCs9ns8N78+fMxb948zw+WIIjGoZlV02ghPlGz4JDKHkccSlCIaORyXcFJku2aT946/YWaBE3QAsBXXjBi5mjK6gNKYa3fuAh7E78Jbniex6xZszB48GCkpKQoLldQUID4eMcntPj4eNTV1eHixYtITHSMiOfMmYNZs2bZfy8rK0O7du08O3iCILxHC8tCpHaIwV3hhzDd8h6SmHrR53k+BvMsE7GZS9X/5N0cdCxN2ALAV14wvswc+Qt+E9w89thj+PHHH7Fr1y7NZRnGMeLkeV72dQAICgpCUFCQZwZJEIRvaE5ZCA1Mx9djft3r4J2yVAkoxjJzJqZaZmLcmMn6n7wb6i/kS0QLAH83IvRDmoKLsDfxi+Dm8ccfR1ZWFnbu3IkrrrhCddmEhAQUFBQ4vFZYWIiAgADExvqvWyJBEA2kOWQhtLCVvTPg4fysxjIAB+CNqLUISX7RJ8NrVDQtAPzIiNBP8XcXYW/i0+CG53k8/vjj+OKLL7B9+3Z06NBBc520tDSsX7/e4bXNmzejX79+LnobgiCaGU05C6EHjbJ3FkBIVUGzKXtXpYVZABCexael4NOmTcPq1avxySefICIiAgUFBSgoKEBVVZV9mTlz5mDixIn23ydPnowzZ85g1qxZOHbsGFasWIH3338fTz31lC8OgSAIwnN4qezdyvHIOVWErw6dQ86poqbhTtvCLAAIz+LTzM2yZcsAAEOHDnV4/YMPPsCkSZMAAPn5+fj999/t73Xo0AEbN27EE088gbfeegtJSUlYvHixbBk4QRBEk8ILZe/ebqDoNVqYBQDhWRheVOO2EMrKyhAVFYXS0lJERkb6ejgEQRD1cFYgM0W77H3mEV06E6UGiqKcx68bKHr4XBBNHyP3b+otRRAE4S94sIlkk2+g2MwaahKNCwU3BEEQ/oSHmkg2iwaKzaihJtG4+EUpOEEQBCHBA2XvzaaBYkuwACA8DgU3BEEQ/kgDy96bVQPF5m4BQHgcCm4IgiC0aIK9jaiBItGSoeCGIAhCjSba24gaKBItGRIUEwRBKCH2NnJ2yhV7G+Vl+WZcOhEbKCZEOU49JUQF+3cZOEE0EPK5IQiCkMPus6LUAqDp+KxYOb7FNlAkmg9G7t80LUUQBCGHB3ob+UtQ0ZIbKBItEwpuCIIg5Ghgb6Mm2/aAIBqAvwT0FNwQBNE88HRFUwN6Gym1PSgorcaU1QdI70I0S/wpoCdBMUEQTZ+8LEEf8+FoYN1Dws/MlIYJftsPFDQ1Ltb/IgwQ2VZYTkKTb3tAEG4gBvTOrthiQJ99NL9Rx0PBDUEQTRtvVTS52duoWbQ9IAgD+GNAT8ENQRBNF84qeNCoXVaznxWW04mV45FzqghfHTqHnKBBsN7xoaHeRs2m7QFB6MQfA3rS3BAE0XTxQEWTFHnNQDjmjt6C9PDTuvQ8zartAUHowB8DesrcEATRdGlgRZMdzorcrV9i4ydL0L78AFhw9rcKSqsx5ePDyK7oDPS4XQiSVITKYtsDFaUOEqntAdGM8MeAnoIbgiCaLg2oaLKTlwU+MwWpO+/H4sAlWBv4CnYFTcdINheAcc2A2PYAUFTqUNsDolnhjwE9BTcEQTRd3KxosqMgRk5AMZaZMx0CHCOaAWp7YBDOCpz+DjjymfDTgEaK8D3+GNCT5oYgiKaLWNH06URAqT2kTEUTAAcxsvMll2UAjgfmmldhS00/cLbnQCOagfSURAxPTvALQzO/pok2JiUcEQN6Z81ago98bii4IQiiaZOcIVQuyd4gFyjfIDXEyCwDJKEIqexx7OGEp1KjmgFqe6CBmDlzrnYTy/gVKtII/8SfAnoKbgiC8DyedgvWIjkD6HqrsX3qFCPHoQQMhCdQEgF70F5fs4yfEcr4u97q941JiXr8JaCn4IYgCM/iq2kG1qSr3NuOTjFyIaIBkAgY8LC9vofL+AlCCgmKCcLHOJjGnSpq2rb83nIL9gYaYmSOB87zsTgb3hNv3d0HUSGBzeMzchOP2+t7qoyfIGSgzA1B+BB/ajTXYJraNIOKGJkHA4YBym94GX+PTcHLG4x/Rp7ujuzLbsta9voMhFL54ckJ+sekM3NmDYuDH3xbiCYGBTcE4SOaXefopjjNoCBGZmxi5NNcf0xz4zPydNAqt72YMDNeGZuCUdcmGd6eUYzY6+vWW4iZs7J8yAXEHA8UIBZ3rK3GCxn5TetvgfA5NC1FED5AT6O5l7OOwPrrzqbj/dFUpxmSM4Dph4GRrwKpfxN+Tj8Ea9cxbjUD9PT0jdL2iissmPrJQczfmGdoe+7gFXt9lcak4imdZ7kP58ssPukqTTRtKHNDED5A60l4BJuLuTUfwfSRxDTO370/POEW7AvkBNA5S3Cy9/PIL41WXE0uW+Hp6Ru17Ym8vfM0el7RCqOu9V5mw2v2+rbMGZ89G4zk/BcgFvMs92ETlwrAzWkvokVDmRuC8AFqT7gj2VwsM2ciAU5uuP4oypXSULdgX6AigL5mxzS7Q7Ea0s/S092RtbYn8sJXR70qcvaqvX5yBvaM2YG7ap/H9NrHcFft8xhcs8ge2AC+6SpNNG0ouCEIH6D0hMuCw1zzR8L/u9xJbDev7Gf9c4pKZZpB0y3YF2gKoAWHYmkTTTmkn6Wnp2/0LldUUeuVG79Yyff1j+dxV/929uyTFE/Y6xdWWLCHS0YWNxB7uGS7I7TLco3YVZpo2tC0FEH4APFJuKC02uHWmsoeRxKjdpPyQ1GuFHfdgn2BhgCaAY8kxtGh2PF9V2M/T0/fGJnm8fSNX07EHB1qBgCUVFrsr3nCXt8fu0oTTRsKbgjCB4iN5qasPuBQhByHEn0b8DdRrg0rxyM3aBAKb9yEzpVH0C2iEmxEgvcdit3BoEOxTNcql2yFUtAqXc+I03FqhxjEhJlRXGHRXNaTN36lSr5SW1DzxLBrcFXrUI+VpHv6vBEETUsRhI+Q6xwtuuFq4m+iXAg3xMGvbcWEd/dgxv8dwa3rgUEbYpBd0dn/AhtA9zm8d1h/3d29Pd0d2cQyeCWjGwawechgd2MAmyc7Tea23kUGPZV8a/f9jtHXJiGtU6xHBL7+2FWaaNowPM+3KKvNsrIyREVFobS0FJGRkb4eDkE4mrOFmTFg/Q1gFLw/BFFuEjDziF8FDEpP+uKtyC89ezgrkJmi6LMiPddWsIYM9DzmcyNTyXWej8E8y0SHSiJPnt+cU0WY8O4ezeXWPDLA4z2EmpWpJeFxjNy/aVqKIHyMS6M5BddcvxTlwkvutY2BikOx87k2Aeo3cqdGoenJAxveHVmhY3YCirHMnIkplpn4MWKIx2/8XvG00Yk/dZUmmjYU3BCEv9GURLnwknttY+GJc63QKNSU/hrS3P2sbJVcPHiXaRqWEdpDLI7+PwTMegGmAM9exn0t7vWXrtJE04aCG4LwR5IzhB5MkmyAX4py4dsnfY/QkHOtkF2xexLd+ZF7waitkkvZV4ZHUGU+cDbH41VzDRX3+rIHFkGIUHBDEP4Ka/LPcm8nfP2k7xHcOdceahQqFwwcPXYcPfWMQanii7MKLTvO7BKG0uF64KrBugI2pUo+QFvcS5oZwl+g4IYgiAbR3Mp4dWcePNAoVC4YSIgMQorlMt7TM1i5iq+8LGD9dKDqUv1r370OhMQAYxYByRmaxyhW8rmMTSVQaXaNYIkmDQU3BKEBpdnVaciTvk9wEv9Kp6AMZR4a2ChUMRgoq0EhOuN8UAwSUCzjVC00lrSEJSLIuZVFXhbw6X3y46gqBj69DwfTFmPqgSs0j9GIuLfJisqJZgsFNwShAqXZ9eHOk75PUBD/Iv01ZHP9jWUeGtAoVKshJgcW8ywTscycCY53bMUhtpA6nPIsUqXTTJwV+OYZ1aHwAOJ3/wMXahaDheCIHYcSFJZHY9rqSrx1bz+HY9Qr7vV7UblKQEs0T3wa3OzcuROvv/46fvjhB+Tn5+OLL77AuHHjFJffvn07brzxRpfXjx07hq5du3pxpERLhNLsxvD7Ml4V8S//6URsD3gaPHq5rKaYeRAbhWr55Mg0CtXTEHMTl4oplpmYa/4ISZImqmLH7EldxjiucGY3UJ6vuk0GQBJTjGmmLzAhYJtDq4/zfAwWf/kwhic/Z/gz82tRuUpA62+Vh4Tn8GlwU1FRgZ49e+KBBx7A+PHjda/3888/Oxj4tGnTxhvDI1owlGZ3D78t49Uh/p1ueR+fYpFs00bZzIMBnxxn9N7kN3Gp2FLTrz7Dgmjs47oiLirUVcNkoCXHrIB1Lq8loBivWv6FX3ZchS433qN7W4Afi8q9Vc1G+D26g5s//vgDV1xxhUd3fsstt+CWW24xvF5cXByio6N1LVtTU4Oamhr772VlZYb3R7Q8/D7NThijgU0yRVyCEjd9cozc5Dmw9jGpapgMtORgZOJxlhGmvNrlvgTccJehaRu/FJV7qJqNaJro7i2VkpKCVatWeXMsuunduzcSExNx8803Y9u2barLzp8/H1FRUfZ/7dq1a6RREk0Zv06zE8Yx0CRT9X25oCQ5A5h5FLj/a2D8+8LPmUdUMwJiMKDsYyN04E6I1NfTCoAw/RWhPk2q1WyHZYDQqgIhGDSAX/aGMlLNRjQ7dAc3r776KqZNm4bx48ejqKjIm2NSJDExEe+88w7WrVuHzz//HF26dMHNN9+MnTt3Kq4zZ84clJaW2v+dPXu2EUdMNFX8Ns1OuIfOrIZS41IGGs0pRZ+cHrcLPzUyAXqCgQW39cD3z96ENY8MwKK7emHNIwOwa/ZNyjov1gTc8i/FfRrqIuhG13m5RrCARkDmCURPnyOfCT85q/B6A6vZiKaN7mmpqVOn4pZbbsFDDz2E7t2745133kFGRuPOVXbp0gVdunSx/56WloazZ89i4cKFGDJkiOw6QUFBCAoKaqwhEs0Ev0yzE+6jQ/xbFRKPfdVdG62cXW+FmaFpz+QM4M5Vrj43kJ+KUsTNrvONLipXEws3oJpNN1SF5bcYEhR36NABW7duxZIlSzB+/Hh069YNAU59TQ4cOODRAWoxYMAArF69ulH3STR/mpx3S2PT1C7qDuJfeULGvI63uH5ulbO764XklWBAbCdhcyg+W1yFLw+exePmr/StH9lW+Dzd/IwbTVSuJRa+Y6Xb1Wy6909VWH6L4WqpM2fOYN26dYiJicHYsWNdgpvG5uDBg0hMpHJcwvM0Ge+WxqapXtSTM4CBjwM5SwCeq3+dYYG0x4DkDKQDhoMNNS8kPdvySjDAmoBOQ4FOQ3Hg0Dl8f+ATPA6dwU36AuD4Bv/+jPWIhTc9B4yYD3w2CUar2TTRUYVl7TrGf20RWgCGIpN3330XTz75JIYNG4ajR482uAT78uXLOHnypP3306dP49ChQ4iJicGVV16JOXPm4Ny5c/joo48AAJmZmbjqqqvQvXt31NbWYvXq1Vi3bh3WrXMtayQIT+D33i2NTVMurc3LAna/CZex87zw+hX9geQMQ8GGmhfS5NUHEB1qRkmlxf66Lwwg4yKCkct1xXle2fEYAHiGBXP7B8Iv/v4Z6xULh8U2vOu7MzoCq6r1T2PYl8E4V+bbz74lozu4SU9PR25uLpYsWYKJE5VTu0bYv3+/gynfrFmzAAD3338/Vq5cifz8fPz+++/292tra/HUU0/h3LlzCAkJQffu3bFhwwaMGjXKI+MhCDn81rulsWlgaa1P21h4oSzYyvF4OesIrmPz7B40uVxXcGDte5EGNoBvDCBTO8QgPioUL5VPxFIFx2OGAbjxK2DqNgbITIHfl08bEQv3uN39ru9y6AisQqoK0K72MM6h3laAzD8bF93BjdVqxY8//uhRr5uhQ4eCV5Hwr1y50uH3Z555Bs88o24vThCEl9D7tLx3uXADkdxEfNbGQtSN/LqjwU0unTm54xP8t+Z5JAU6uvzOs0zEJi5VaS+NbgBZrx+rxlTLTLwo43h8IW0ueqf8RdDpePg8eQWjYmF3ur4r4aatAJl/Ni66g5stW7Z4cxwEQfg7ep+WNz1X//+RSTjY/VlM2da68dtYyGmDtNB7jHlZuGbHNPBOR5WAYiwzZ2KKZaZqgOOuAWRDhMuCfiwYg0vrHY/rwuKQkTEe6T1sD61+WD4te8wNaH3RYBpgK0Dmn40HNc4kCEIfbpTM8mX56JUzHSNY15u9V55kxUzNzxuBPUuNr6/nGCVTXM5DFl1+55pXYUtNP9lWDiJGDSAbmv1y1I/1kQ+OGqN82gCqx+xm64sGoxFYcbyQDcvllPsdkvmn99Ft4kcQRAtHvKgr+uq6woAHb7vZs+Bc3pc+yTaYvCxBL/LhaMOBDQ+mvgRaC9v0nNJZYBnYWzmoYcQAUhQuO7cEEbNf2UfVG2aKiPqxsb3aIq1TrGtAqfkZGzhPgLLBng40j5nrL4iFI50Cu8gk74qeRVsBAM7nibf9Ps9yn2pgS+af3ocyNwRB6EO1UaTKagyQBPW+TQ1+klWq4tKBIKjlYR05HyY9T/oNbOVg1ACyUZu4NqAZqAsNsAzQfcyzx8DkSbGwXlR6ij1XeQ821/SSXY3MPxsPCm4IooXgkWolpYu6DtT6NjXoSVa1EkqbAsRiXu19mBQ8GGl6VjCguTBkAKlgmqe3ieueU0VgWabh1WhuNgN1oIGWAYYb1/pC3CyaJUo+M6b9QAzNK8T/kfmnz6HghiBaAB6tVnK+qF++4CgiVkBOYOmRJ1nNKi55FlvGYTefYi/fHqU3e9R+IBASA1TJT6XxNjHrpOETcObrn/UZQKpkOQpr++oa1rRPDqCkykO+KjI3bt0ZEQ+U3TeZxrUyVVhk/ukfUHBDEM0cNaM5e7VScpyxG5n0os5ZBddfBYElDwb5fAz2OQksFZ9kjdr+G6zcEQWfmdbbHXQRurNHxzcoBjaAoDNC+gKkJ1+B4d3bamfLNLIcXW94C1Bo6ClFGtgAHqhGc7d8WqdlwK7/ZcHUcYjsOWnqjWvJ/NP3UHBDEM0YPdqF7V+uwMjNq8G4a7WvodNgAFwYOBdxB0K1n2Td0WkYqNzhbEOTCj4NZY/sWQkVQmKErAR0GEDqyHJcc/CfaBuZifNlFkMTbz7zVdEZbH66bT+y/hcom2FqDo1ryfzTt1C1FEE0Y7S0CyPYXLxq+Zfrk7aojcjL0lfxIuo0FCpXeo+8H7tm34Q1jwzAort6Yc0jA7Br9k2ugc2nE9XHIoeBKq4CxDp40Mhlj6wcj5xTRfjq0DnknCqClZPcXvVMgVUVA7/t0lclpCPLwZSdwxsDKh3GqxePVqPpxaAPjFzFl2g8CLgeM2lXCD1Q5oYgmjFqmgQWHOaahb5trrcI23P/+hnAN88A5ZJSY6VMioZOQ/VJtiE6DVvmiP90Ing4PrGJcckKazq+5frZ9TUiztkjLW0SV16g74nwvxOBqpL635XOmc4sR2qbOiy79zqXsUWHmF2mo+RwV5vilgjdoA+MUoaJtCtEQ6DghiCaMWqahFT2OJIYtSd6Xl5bolbxYkCnIb1xdq44hO4NsP3P5vrjy9oZQmsByTEVIBbzLPcpugUvvL0nBl3dGgCw8cfzmPrJQZdlxMzC34Z0wNmD56HLQUca2ADK58yAaV56B1cdB8fzuOe9vZqrXyyvgZXjDWU63Bahq0xTyk0LAsrOvaRdIdyFghuCaMaoaRfUSrPVaXgDRecbZwa7G4sDdazolOmwcjz2nCrCs+uOoIRLxeaa+tYC0kaWSlysqAEAbPwxH4+tcQ1sgPpb89s7T4NFR5wPikEiisEYur8qnDODbQScs1+1dRxiwgJRXFGruveXNxzDe7tO68546BKhq21HoZxcK9iUyzB5Urvi0+atRKNCwQ1BeAKjFT6NRH3TRFffDbnSbP2430BR7sapeyySTIcYIF0orRQCGlZfQCMlLiIY2UfzMfWTA7qW58Aiq24gHg34Grytm7aIOL2ijMw5a4Bpnnj8WoGNSL7OwMRjpoGSacoTp07ixa0XNT8bb1Y/+aR5q59eF1oCFNwQRENpgBNrY6CkXTgb3hNVpgSEVF2AuwZ4RsuwlW6cuVxXnOdjkIBil35NgFBOzkgyGGKANILNxdwgx6korc7cLDikssdxTWgF+vERGJqlX4/CgkNGwG5B2+M0Tt3P/87nzA3TPKXMih60AhPDBnpq2KYpO7UfjDP7toJX2K63q58anIlyBz+/LjR3KLghiIbQQCfWxkJRu3D8dcPtFBww2EBR6cbJgcU8y0QsM2eC4x0DB07MkNgyGGKAlM7uxVLzIpdtqXXmHsnmYq6oy6kDsPoN/JePwTxWORiSoq1T0oHcOUvOgPWaUTi+dxOqLp1DSKu26HrdSJgCXC/RapkVLfQEJs5TQ2Iw6DzVZ0SkrJZB9Hb1U6O2rxBpIteF5gyVghOEu2hW+EDQWDiVAauWGrs7Dh1lx7JNExVLuNsCIa3gsQaKNtRuiJu4VEyxzEQBHJ/eCxCLfamZ9ptB7uli9CzfjiXmxWAYuGhfxPuTc7POkWwulpkzkeAUnIjB0Eg2V3XsLDgMYo+oH6Aqyucs+2g+Br++A7euB27f1Ra3rgcGv75DtiGmVmZFD2qfg3RqaCSbi11B07E28BUsDlyCtYGvYFfQdIxkcw1PIYkZxIQox/USooK9kzmxYSQT5RHcvC4QnoUyNwThLjqdWKUaC4/P+3si9a1Uwn18g2caKErQuiFu4lKxRUYU/HEXISCwcjwK936KpebFstNXItJmnXu5ZDxxcyc88sMTYKpdwzWWEbJDc82rsKWmn6wmZCSbi/nm9xDDXDZ0vPUonzOjUyaeaDmg9DlYOR4czyM6xIzrar7HMnOmyzKJKMbywExwVb0A/EV2G0qiXV9UPzV6Kwc3rguE56HghiDcRa/exLacx+f9PZn6livhTs6A9Y4PUbfhGQRVFtS/bqSBohNazrOAMEUldg+XajE2/piPF788jCzrv3Tvr0NQOSaN74P0sJPA98qfl1rn8ltMuVhqztQ5a8cIGS9zsC79jDtTJg0R3appW6SBNwsOc4MEDyQXbZHtd9O6B4UtpoyT3YaIc/De2M69rcOCPLqcJgavC4R3oOCGINzFgEeJx+f9PdCcUAnxyXtLXgG+PBSKkoqF9kxKXVgcMoaPR3ryFYa2KaKmvXBGqsX4V/YxvL3zNAaweUgK1D99MGpgb1yfkggc+V7X8s7l8Sw4/CdiDZhq6FcMj1mku+mkO+JdMUA0OjWlpm1xDrx1aYt4DvjsfoBdBSRn+Ea0qwedn9vuUxfBskzDM0kGrguE9yDNDUG4i6btf73GwuPz/kZS3wbIPpqPwa9txYR392DF97+huKLWnknJ4gbim/LOmPLxYVktiF6UtBfO9xNRi8FxPN7eeRqAfm8engfO87FgRX2LwZYAgJBxWDvCipBqnU/Yoa3rs2ViJqzH7cJPD3a/FgNEo7dfJW2LXOBtyAMp+1lY6+pUg3dACN4brC9zg4uXa3Qt99b2U5jw7h4Mfm1rg77fRq4LhPegzA1BuIsBjxKPz/t7IfWtp7zYU9UlctqLvu1b4Yczlxy0GADQ/59b7OsZ8eaZZ7kPhz87gn+MsSA9jANCol2dg+0w4COTMGPM/ZhQYanXgmx+zsBBzdc3VSfxPulcEQIWnKYvzy8XLiPnVJE9q6BU3i+SGBWMF25NRquwQE1ti1zgbcgDqewcju/dhPxS5UUMlY97GKPTeB7ppu6mdxHhOSi4IYiGoNOjRO8FVveF2MOpbyPlxZ66UclpL5x/zzlVhOKK+t5JWn44AFDHs3jc8jg2calIv/wdrv3sEUB1ikXYEJO+AGlXx9W/zFlRc2ANdCsxInTcCJ0E4N0B5ATHYm7tfchWKUVfsu0klmw7Wa9fSY5DethJjLi1GMfKQ3EiOAXFlVbEhAchIdKYSFcuoBbPs14n5qpL5wC0VXxfLCc3HzsHsN0a1cxOj85LikcCeKXrQmgscOu/qQy8EaDghiAaikbDSED7AmvYxMygbb8W7pQXe6y6xMA+tPxwAOAxy2PI5q7DSNYmBNZCSez72/cIqr2kuToPgNEzzaAgAI9DMZaaMzHVMlM1wAGErMKXnyzHDVFrEVIlNPHsDqB7A8zh5AJq8Twv13P+AIS0Ug5sHLyF9kP414hmdkZ0XiIeCeCTMwCOAzbOAiqLhNcqLwKb5gAMSwGOlyHNDUF4Ag2NhXiBBVxn4t0yMRNT32pblKS+tbx13AlUvGmVr7YPNT+cKZaZyOYGOHQ8VzylITHAfV8BM4/I3mhO/XpK/0C1phlUBOAMeDAMg38EOvryyDHCFrAFVRU4viFWyOVl6R+zDTHwlp4mFhxKEY4VdSNh5dW+k4J+pOt1I9E20owBbB4y2N0YwOaBBVfvLQSnzFkDxqsH5+/78OQEWZ2XFg0K4POygM8m1Qc2Il4+dkKAMjcE0Ugo6SQS3PW50Tklpqc812igEh1q9ppVvhSlyiAlPxxRu6Kr2qeqWAhIbK7Hzt4rhXw0rtExxuNdH0M3padwUV9zeoeqAJwBjwQUYf0YFt9c7oQl21wDK4eAzeVd9yvknDMbI6SZFsetu4waAJC+AKYTG/Gt6WmEBNYHXfl8DIIg9L1yDTB1jNfNvkxq3/dds29C7ulifH/yIpZsO6m5LbcDeC9WMxL6oOCGIBoRj5uYaUyJ6S3PNapLaKw+ytIbr/O4xCqu0dcmYs+PjtUtuqt9ft6I7IrOsjfDCf26oaOKvofjgQLEoKTvDPltyxksatA9sgonwyJk39MO2Nw3hxMD7+1frsCrlkyX92U/bzGIBoBPJyLE6ROKV9FFaY7XTXNKI9/3dQf+8Nw0sTNk5OdzaFqKIBoZ2TYIDUFhSkzLWweoL8+VTpvp4VKlxXN29RqIN95EpymFmDAzlt7dG4vu6u0yraK32offsxRffrLcJTNUUFqNN/53CgvZBwHU63lExN8Xmx9Gaqc2rhsW9TUGAhsAQHi8YrZAd8DmpjlcenIc5oeuBsMoTeUxQrn7be8C938tTOd1vRV89mzwMt8y3V9r5/EqnTuN6Rx3v+8emSZ2hoz8fA4FNwTRRDDak8qot44YRESHmHWNpzEExSLpKYnYNfsmrHlkABbd1QtrHhmAfX8fjlHXJsneqMRqHy1bFR7Ai2ZXrYu42jbmOkV9z1TLTAwd96DrDVB1SkKF0NZAu+tkNTCAgfJsd83hzuwGU3ZeJSvHC4LYiER7EJ27fb3GOjqQjrcBfZnc/b57pdcVGfn5HJqWIogmgDs9qdzx1klPSUREsBn3vLdXc73GEBSr9SmS4qxnslf7BGaqbp8FkMQIbRdyua4uGp5LlRYkD7sHd+QOQrvLh+3vnQ3viRfu6CF/7jWnJBSovAgs7glTn0lY3jMG83eVYB/XFVbbM6h2Gbx8hZyV47HnVBFyfr0IQMgaDugokzF0o53Ixm/3ITXQ2GGqjrcB0znuft+90utKbzUjZxUa3hrQFBH6oOCGIPwcd23t3fXWGdAx1rNl625iNKBzvVENAH+iBszeZZr7Gsb8gP8ELXXQtJznYzDPMhFXte6Fnc8OR+7pvsJ2w8xINR2HqeJ74LTMTakhUw1l54Htr6IngLWBwAXE4sXa+7CJSwUHFovND2N+3eu2hbXN4bKP5uPZz4+gpLLeK2jJtpOIDjVjwW1OwZnOLELunwHoa5sCam/E7E8O5yqzBkznuPt990qvK00jPx6wVAKrxta/3Ijl8S0BmpYiCD/GiI7AGaXpDREGQrDgHKRo6W94ABk9E73ayVkM6OS0MFNWH3Cxxxen7L7+UXjqH31tEtI6xYLtequu/T0U8I1LuXICirHMnImul7bX66QCf0Da+htg+mgMsO4h4MPRQGaKow6kyEAJuQZxKMLywEX4dMifWPPIAPzzuefA3PkREOkU3EUmuTRKzT6aj8mrD6Ck0gIWnEOZdlllDSY7nUdruzRcQKziVB5na2kxMycEe34tEqZ4NKb/eF745/I6AGvaY0JzVsl0609lIfpOjEwg5u733WuI1YzOn1VIK+FnlZOHEpWIexTK3BCEH+NOY0URNfMyLdFkekoi/jakg72nkzPv7DyN3le28kojRKNNRlUzPMnq0wMcAJ5nwYBzmephGeH9aw7+E7jhLuD4Bu0u7ACwfb7bx+6M8LnxSD3+LyD9PmFQOkwjrRyPf2T9BMDJRM+GmJWatz7Yfh5zz5RiZe19qgaJ8yz34XxNHXJOCd4taqaKYlAj53DM88CfOZ9gZd1f8dWPhfbPjgWHnOBYxKEYjEFzyoZ8372G82cV1gb44lGFhalE3JNQ5oZocRgV5vqShvakclc0aeV4ZB1Wbx7orUaIRgI6zQxPXqGq2SEDwMS4BjYiLACm7Bxw+jttoes3s90TEmvAAK5NUDVMI3NPF6OgrEbRRE/MSl1bvtMusC0sr9Y0SNxkd1CuP0aldRhGPrABhCAoAUU49H22w2fHgcXc2vvA8zx4HeaUznhVJOwu0s+KYYFytb8r9xreEq5Q5oZoUbgjzPUl7uoInIW4O56+0aUppdoTbEMyRg1FLlATexNJxb4FZdX4V/Zx7QzP7DEwKZgdMsljgT1LtQd1Zpe20LVcp4i45z3A4Y/1LSuBKy/Q/TRaWF6t6tLMMkI2ZoH5Pfx06lqgwzj7d0jLIBEA0jq2xroD5+y6LOk6w5gf8FDAN7p6UsmVt2dzqZhqmYl5gasQD4m7r0KbDGdkRcLto2A6mwMc+d634l1vlIi7aXbY3KHghmgxuCvM9SXu9KRSC+DG9rL1AOKswGnlC6LHu5gbwDlQU5pWyfv1OeSXJiluxyEAU5rKObNbX3DjwWTM4aCeaMN/o9r8U45j5aHornPZuIhgTdM/lgFa4TIG734QOPo8+gybD0CwARANEuWIjwjEgE6xmDu6C1auWeMQAOVyXfGfIB3n00Z7Rj6Lkc2lYnN1P6wfw6J7ZJXhm7aDSDgvC1hs3BDQK3i6RNxNs8OWAE1LES2ChghzfYlRszFdQty8LEEE++FoRVGsx7uYG0AqDFWcVmGKcfORpzGSzdXcXkHJZWFa6acvhBe6/6V+Kkcs2VWToUa29aiL7NsHqzHPMhGAqzmgEhf5SJwM7eH4ImcVjuvIZ8JPifdLaocYXB1yWf+gyvIR+PkkXefz+qvjYDq+HulbhmNt4CtYHLgEawNfwa6g6Zhm+hJJjL5O4jwPPBGwTnGfHFicDOulOPWmCzcNAb2G3u+bnoa3/nZsfgYFN0SLwKjBlz+hV0egJ4Db/uUK8DouiL6sPBEDOtVpFdvPuTIGfFJGsrlIW3+jciCntwHplWmCXkIBHgAPBlXB8TJakfrt1YQmIru8o12nUopwxW0C9dVGz1smIS4yrP4NHQFqz25dVbctdwRa5xMA+lZ9J3tTTWSKMcv8me49igGQ2j7F4NktnVwDDAG9hsGGt4r447H5GTQtRbQIfDnN4gn0mI1pBXAMOEy3vAcw2s38TKzJvcoTD83/p6ckYs0IK5J2KgebDHi7AZ/cFIqY9XHp+iitbkrO0NeA9PR3AK980xc2z2Np+fV4IuAz8Izzk6OwxOGUZ8HtrH8nCpfB88rCWwB4u240DkcMrQ8kxSd2haqtg2mLMPXAFbhQGo6BQWqmf67HoHY+AUH7NOb8Ytd9w9XNRQ8sAyTBdZ/S6Va3dXL+2t9JZ8NbVfz12PwICm6IFoEvp1k8hZbZmFZgZrTxouEu5h6e/09tU6drOTlRqlrWR7bkVqu8WqfA8wyfgCmWmS4aIfHGZQ0aBOzc4zA+pcDGyjN43PIYvuHSsEwMJDWe2HkwiN89DxdqFgEA1tTdhFkBn7mUaauh1sPqOvY4wmuUz4W4Cw7GpgWk+5QGz1vyCtzXyflzfycd5fyq+POx+QkU3BAtAneEuU0NrcDMncaLuu3pNbIJzgZzutApqrx3WH/s+t6M4op6F163OmiLJbsNGEtrpgQrren2yqFrQisw9+6bYLpqEMCakMrxSIwKRvvyAxrjA0wMD4S1wbKxkhu4xhO7mM2aZvoCEwK22fdhxNlFrYfVXd3MgB6PQt4W4OjcsXSfYvA8PDkBg1/bav9GseBwHZuHNDYP4IEcPhkvZ5ntPj0u+Ht/J7Xvmxb+fmx+gE81Nzt37sSYMWOQlJQEhmHw5Zdfaq6zY8cO9O3bF8HBwejYsSOWL1/u/YESTR6vdwH2Ac46hL7tW6nqZNxtvKjZxdxb8/8a4kseDCpDEmBtNxDPj3KcRvF4B21NIajAi+bV2BU0HcPZ/djDJeOjy/2Ry3e3P5GL30O941syJskxM6FzvE8ErHMRYXM2/Y7S1JHoQJzLuWp1WAZ4dEgHjB3cV9f+36gb7+J7Iw8DPrItZjxwv70h6q7ZNyE9JdFhmnUkm4v9QZOxJvBVTA/4EtPNX2JN4KtYX/MATu74RH7TnhTv+hvN+dg8hE8zNxUVFejZsyceeOABjB8/XnP506dPY9SoUXjkkUewevVqfP/995g6dSratGmja32iZWN4msWG3uaNjYmSDiGjZyLe2XlaViej1XiRA8BEtgVj9ILorfl/lf48HADwPJ4ovQub3t+HmDChhFn0w+nM/qFvH3qfbG1j4T+dCB6OT4XOmhnRIE80vfv+5J8O3530lETEDOsP7NSx3z+PC3ofccrCwJO4nLeN6BrsLEOSOhBL/WxGJMfjug4xuC/tKgQGsEKAquL4zINBPh+Dt6x/wVvWvwi+N+x+PGjKlhmT8AuTvgBpV8e5bEucZh3J5mK5OVP2GFvhMlrtmArER7hmBjX7O0GfeNcfac7H5iEYnpfr/NH4MAyDL774AuPGjVNcZvbs2cjKysKxY8fsr02ePBmHDx9GTk6Orv2UlZUhKioKpaWliIyMbOiwiSaIkWDFH03/lPx6xCP425AOyDqc7zDm2LBAFFXU1otsIW+v/8vQpehy4z3GBnTkM6FiR4vx7wtlvUaR0fKc52Mxz3KfxDFX3g9HVawb2RaYeUT3DSD7aD6+/GQ5XnTW08jA8UAxIvGy5V5cQIzdBK++LUQc+MwUoCxfts2Ay7hF7VLXW4WqKKXgQkOcLFJjboUgS31vI7nzCQCL7upV740kYp+CBJxvqjyAybUzXLYj99kgsq2qgDbnVBHueXc3vg+ajgQol5fzAJiQWODJ40CATItyWS2Y+r6bDM352GQwcv9uUsHNkCFD0Lt3byxatMj+2hdffIE777wTlZWVMJvNLuvU1NSgpqbG/ntZWRnatWtHwQ2hiVYQ4QvTPyvHY/BrWxWrokTtkLMjcUFpFZ749DAAJVM84eY26s6/ud7MtPh1B/CRjgvp/V+7rzHgrLD+9j3mfbIVJyrDXBxzlYI2tf5G6H6bECzoEHNKzzsLDpNM2XjRvFr38MVeTpttN/1l9/ZBOrtPNkiQGzNvaxUh9q8SMki8SwZJ8VidODHoP3hxW7GiA7HImkcGyIvYFW6qP/f+O0Zuipbdp9Rl+tFbB6J7WrrwhoKo1srxeHz+Yiy1vKh9QAAQGguMzpS/qTdnF9/mfGxOGAlumpSguKCgAPHxjmnZ+Ph41NXV4eLFi0hMdL3RzJ8/H/PmzWusIRLNBKPNGxsLvX49P5y55HBTEhsdAur2+pOMVovlZQHfPKOxkHKzQ92wJuTy3fHR5XLXt1Qqo1Rv9D99LvwD5Ku6JDeN42UhuFDK2fbG4iIfbWj40qmqzVyqQ1sIPns2GKdpPedxM7ZKKCb7WWDmEZy44S1EbH/eJYOkJ7ABgE6drsaZ/RbsdVdgr1Dt0xksEvdslRXuc2Cxl0tGQlQw3ki7CTi+XrW6zsQyeLR3KKDtKyhQWaQsXm+IeNffac7H1gCanIkf4/TXKyaenF8XmTNnDkpLS+3/zp496/UxEk0EFYdXfzX9M+TXIzm+VOYntI00S0p1BXv9LG4g9nDJ4G1TJoaqxcTpCdVGgLY9jnhVuBHKnGu9KB27WBnVoBjT2dXVySSv+5a7sStout1NV7c424Y4trnmVWDAIb+0Gnt+LUJO0CD8J3kd7qp9HovrxgFQDlAYiXbpeKuhGFyzWFjPor6e81YQ2Ra4ciDu6t9OMbABdAjsZZp36hbuH1+vy13XmBGhjRZuXkcINKnMTUJCAgoKChxeKywsREBAAGJj5f0/goKCEBQU1BjDI5oSGp4s/mr6p9eHp+ul7UDmK/bjMwH4NiQBT7B3YROXqt+UTwFrXR3qvn4agSp+vACEc5oyHtg8x/Vcj5wvTCXoTKcrHfsw5gddY1ZH4n3DccBnk+CsaZFmX7Zw/ZDPxyDeQH8oZ8O6aR8fQEmVWL6uv4IKly8gLiLZHqDGsTrXs3Gw+2xMfX2HYvCuJbDXQlO4nxwHZKpV10k8iGxVQXzZeZ3l7G6K11vQ1E5LoUkFN2lpaVi/fr3Da5s3b0a/fv1k9TYEIYsOT5a4iEG6NtXYpn+pHWIQHWpGSaVF9n0GwF/DD+GaHa/D+fhCqi5gWeAizAl4Gmsv97K/bvRmln00H1lffYqllgLthXvfB+x4zWUsKDsP/Pd+x9c0DP/kvIpGsrl4KOAbXePWxnZj3DjLdbyo76Q917wKrIVHEGrdyhaJQUx9YCNgpFQ/tX0MEiKDUFBWo3+90NY42PNF3LatNXjIBzZPDLsGj93UucFTrar+SKe/M1Zdl/4amE/vMzaAyxf0ByzUfLJZ4tPg5vLlyzh58qT999OnT+PQoUOIiYnBlVdeiTlz5uDcuXP46CNhPn3y5MlYsmQJZs2ahUceeQQ5OTl4//33sWbNGl8dAtHU0PRkEZ4aU6f/6Jemf1vyChQDG0BosTDX/BGYOvnjYwDMD/0YY//6CAorLIZL20WR9Ri2EJApTHEh923oNuXXMPwzsQzmju6CD9d8jDQmDwzD427TVpey5gZTWaT4lph9WWpe5HajcKVgRKtUnwcDxqZdMrEM7u7fFru3fY14FKOIj0ArlCusBzChrWGdmYep/96lGNgwANbu+x2P3dTZzSNzRNFR26i7bnIGcOcqYP0MoErnNHDRKVtVmUbA4g3zScIv8Glws3//ftx4443232fNmgUAuP/++7Fy5Urk5+fj999/t7/foUMHbNy4EU888QTeeustJCUlYfHixeRxQ+hHpyeL6WyO7t5KjeWDI4qc1bgp5CRCqtQzKkzZOaQF/Az0MiZClIqsdWcLqi5pL2NHpi2ClLwspG+cjvRAI9v0HkY/Yo4HCiBvkgcIOqh5lolYZs50aZfAwfa9E71L8rLwyA9PYXpgfaAgNtmUam843qZHHP0Gcs9exoXSSgyQEZIDjjoytTYfDcYdd11RwPzrTuDTe4FapY7nDBDSCtj+qutbzgGLzgcd2e9iE8EfPboaC58GN0OHDoVaJfrKlStdXrvhhhtw4MABL46KaNYYeGpM73G9pumfV31wnNLquXVdVEXOABBWoy+jwpWex95TRYYuelKRtVaWQbjJRBsMbgBFzUReFmB0asIt9LV/1FuVJCL6CC1kH5AtuRYRu4XPNX+EJInDcAEfi/KhL6NLcoY92xDsNE65DFYBYlF+g7CeaeNK7Aqa52QBIJSoS31pvK4jE911Fbx6FKvrWBPQ+UZg3DJFnx3X16Q4BSzNvPmkP3p0NSZNSnNDEA3G4FOjmnZAyQfHpamfO2JFGR1Ar+B4jGQnONyIpN4hhYhGa6ZE1+EtWp+DRRXh9t/1XPSkNz21LIPdk+W6KfJP0HqQBqGcVUe5uafwkO1XYLhDdqE6NAFnU1/E+CtG4vP396quqlSq/0arPugiyTY4BzKiJqiIrzcPPBveEztvGA7kZaF/7kzwKiJp8XvldR1ZQ9111bpq97lf4zsnCViacfNJ3demZgwFN0TLwo2nRjntgG4fHCYXpk3PGhMrKugAgqsLHW5EcmZ8l/gwtaO381tViMPvei56rcMdqw6VsgzlgXHIT5uLzoP/CtOBlSrnWgVpEHpmt0a5uR8iCWz40FiE3voaunQfh84cj5iwQBRX1KquLlZCSYmLCNYU47IM0BpluIAY7OWSsSyjB0zg7AGRXEsGUST9bU0/xEWFNo6OTC1A0eOuq9RV+6cv9O1fXEcPTaz5pL96dDU2FNwQLQsP9WTR44NzbflOsP9dBJcbu5pYUUUHwIAHz9RX67xlXuSyTDRToTpukQtOTQ2lF72busY7uBvbp6xkrpayWYbqruA2sUjcswNL+zyL3jkzoHe6R3ZKwq0nZ9tnOfBx4OhnjjfQ0NZA5UU3tikgHoXcbUFuaoivLAL+OwkM8xFMyRkY1ysJK77/Tff+7OL16l3A1zN0rXNNaAUmjbMFqraASOk2Joqk+7PHMWnMvY13w1MKUPTqW+TM64wELO5Oj/k5Rjy6vKqt8jEU3BAtj4Y+NUJbl1DvmmtQrKihA2ABJDFFeMW8QvjdxclWHTVRq3jRGzD/fw6ZBXHKqqaOk9+mTJYBELJBt21rjc9vXITePy3Q0DdIRu8cXIa21lhPBulnOewfjjfQ8nzg80eMb1MySrG7tmOLBMhGNywAjudRvf5phHS9FcOTEwwFNwCwtM8fMP13BvRmwObefRNMHW0ZOJ3B4ZzB0ejp5lSF28JVT7vrGglYmmnzSX/16GpsKLghWiYNfGrU0iWIrrnKKIgVdd6IYhnXNgRaiJdu587PzkgDGxYc2pcfwMZPtmJInxSwCLev66z3ce5PJN7npx64AruePgLT2Zz6c11RJG/sJxdc6lTv8kGRYG79NxCR6PhZOt9AT3+na3tqyA2Jsf/HFZYBQqoKYP3te6R2uN4+NaV1DmPDAvHPcd3Qe8twGMl8ma6S+DTpzGa45QYMPxOuGg1YPPCg42/o1Uw1tkdXY0PBDdFyacBTo5yhnBQjbrMOeHJ+PyQaqKofR21oIqaX/NWlY7MSLpqeo8D1wbGYW3sfeECm+aZr5Y09BX6mFGmdnM518hh7cGkJicOq84n47ZcatC/6FfelXYXAANtNvuJPXeNdaxmCVuz1SO+gfkO1tktDXWgCAisvyHbkNsLiunEAD0w3f6lr+VO/nsI1HYfglbEp+GrtctVzGBNmRs6cmxF49nsdWS8JztmG9gNRFZKAoKoChZDW/ekXvxSuGg1YGjo95mdoXZt85dHV2FBwQxBuIPbQUfLBMeI264CetHporD7NyB0fAQxrv2AHtEvDj6/vAKNw0ZMi7bItJQ5FWGbOlF1frvJGRDYFzppgbT8YM9YexIYf88GjPhv1z43H8Mj1HTBnVLLugO+r6l7Yq3FDFbMM15bfZT+OhkhMdnMp+gNZAIV8NK4BMCpgH24JzISzE4Z4DqdaZmLcXyYLAZ5ezVFIK2DMYpebd3ZeIb4svQtLzZng4OSfY/PFYdyYfvGVcFXXFJjRgKUZNZ/UujYBxlqtNFWaXONMgvAXxB46CVGO6d2EqGBMmjBBCFIUVTC2BoZyXh7prymvAwCj/q1v21cNhrX9YOSE3oivSjsi90wpXri1m3RLsqh22bb9h2Fc35M2h2ThqM+RS4FnH81Hj39swtc/5rt2kOaBt3eexvyNefUBn8KoOR44z9friOatz4OVc73lilmG/NJqe6VXgZOwGiExQpCggXSfegPZi3ykMF1kE40zUDiHDPBG1FqhBxOgP5s3/gOXwEYMQLIVjrcAsZgT8DSsXcfo24eExmgua+V45JwqwleHziHnVBE2/piPwa9txYR392DG2kOY8O4eDH5tK7KPylTTyTT2bCmoXZtaQhk4QJkbggA4K6y/fY9Tv55CIR8N01WDkNqpja4nG9UeOib1uX/ryPnIPV0i/wQqZ4AX0goYs0i4gbGspq4gO69QVgsxLDkO/ztW6JA1kG5FSy+kGhgxjs0hlVLg2UfzMXm1thnnu9+dxpMjuiLQpqMQPHTqBy7GMFIdkdhxm2UY+7nt274V5q3PAwMO10k0LkNqMtGPPYE4lKAuLA5vPjlN+AzO7AZ+3gjsWQrnc+y8T9HQMBHFsloc8Tw/b5mEjKo6XaLxkKqCej2WZjbPxldTgFv+5RDgSAMQJf8crobFWDcqZwrLqzU1Q+Jy7iCn5ZGjJXm3GEH12tQCoOCGaNnkZaFq/dMIqSrANQCuAXB+Vwz+bn4YQ8c9qOtiqdhDR2Xu/2D32ZiaFY780j32lxOjgrG0zx+20mmZm5i0r46GrmBjXX9M/cQ1eMgvrZa9WUhv+p2ZPzSPWYth7H7stVVQOafA9bSREG+a8SjGgbX7kJrAoLjdSASfy0E4V2pfrgCxmGe5z2UazLHjNhARHICBtbsxN0he45LFDQTKgfvOlAqfZYfrhX9XprmcY+d9cmDxkmUilgZmAk7tD0TerhuNbG4A9n31E0aMuaTvwitOR6mKZCWUF7hYDDgHFkqVbe4EIF0vbceuoOc1dVfuCFeVtDxyGJ0Ca0ktCRSvTS0Ahlfrf9AMKSsrQ1RUFEpLSxEZGenr4RC+JC8L/KcTwfO8iw4BgKB7uHuyW0+DDhfQMDNSTcdhqigEwuORfbkDpnx82OXCbQKH74KmI5EpVsiO2ISfM4/Up9hl3I83Hr2Ax9YchMzMjCxyZoAN5SIfibFB7+OFjB4u5y/nVBEmvLtHYU3t8ZTxwfjUOhTfcv1kMwVSxCBpGPMDHgr4xkVjI56jaZYZuIQIPDUwCv26d3PQZ2Qf+QNZWesQUFEom50QN/dmrz/Q59gCh3Ff5CPxguUBfMNdZ39teOgJvMv9Q3HMdoY+BwydXf97XhbwzWygXE1c7Pgd0TrXImseGWDsJij+7YB3OPvi+ZximYnNXCoSooKxa/ZNhoIHK8dj8GtbNTM2cmgdh19VdhGGMXL/pswN0TLhrOCzZwsXZwXX1hfNq3BH1iDDgkjlC+ggDG+fgHmvbZV9Iu3vTvm4kxAy+2g+pn5yUPdYlYTD4iOP0R5KIq2ZMuy8K7jea0WCWpZAHI/abiNQjQdN2dinEdjIBUlyLQt4HnjTvBgBDA/sh/DP5iKdzfW3BaKdAch3y06w+wD1wuBDSZrTNP+r7Iz8oBgkKAaxNn5YCQx5ylErUqd1w7d9R7bNBzregNT2aZ6vnLFrhpRbQIiOx+4IV7W0PGqofbf8srKL8BoU3BB+i1fTx2d2g9Hh2tru8mHknu6r+6lW6wI6c9g1ihduI+XjcucGgOZ0jxRV4bDNkNjVk06v0zCETJUMStMU0vGoBVWMbQhzzR9hS00/2QBHKWhT2l6Ai4v0efCf3odL7Ghcx/ZSzBDFhJmx4+kbERjAIudUkeK0j7M2ZU3djZhlXqc+sPLzwN7lQkau6JSxPl3fvQ589zpMkUlY2udZ3LattVuVM7J/g1qaIdvfzpoRVqS6ESw0xFxO6btFLQlaHhTcEH6J19PHOstr41Ci+2Kr5wL6we7TiuvrrbrJ/TMAM5zS9olRwbirfztDT7xuCYd1NSe0oVDlo+TDoW18KBkbAySh2C5cBoDoUDNKKi2qQZsRGAATuK8xIfBrWS0JABRXWPDDmUtI6xSreFzyPcDCoYtNz7l/AAD4snz0ypmBN3u9hld+7YyCMvnu9nIo/Q0u7/kreurYd2qbOrfG7I5GRysDRS0JWh4U3BB+R6Okj3WW1xYiWvfFVs8FtKTSovi+WHWTgGKFmzKDqpB4TNhsghWO+ykorcYb3/7i8JpUlBvLlKGIj8QFxNizEHozRWV8ED6sS0dYsBkpvW5F6uDRwIGVKk/v6qZwSj4cRvxiROJQgolp7XFLSiI4jsc97+81FCTpRY+Hj/S4RJQySFG47PKaN2DAg+OBPsdeAxu4DE8MuxpXtQ7TzISq/Q3O31WCtYE6du6mIaWWCZ0zejJQ3m5J0JJEyk0FCm4In+J8URBLdr2ePm4/EHxkEviy87KqDbEH09nwnrr1CHovjNEhZpRWWVy9XWxVN8sCM11KnmH7bZ5lIqwyI3belpooV8xC6M0URTI1eNz8FWAFsPMzVO1LQEjvO4Hdb8rsXV9PHtGHQ5oZ0G18KKEQ0ZiQkoi0TrGwcjwSIoMQd7nE8Ha0kGpJnKfCpMGveFzPfXEUJRXVihkkUesDyE/B8QpVV+6OPQlFuLLiR2R+W4dl9/ZRzU5oZSD3cV1xAbGIQ7GCw7P7jseAugmdHFoZKEB/NuhieQ2sHO8hjZ3TmGTE/y3Je6exIRM/wmdkH3U15Bow/1uvG4MBAFgTmPTXwIBxqSoSf3/Jch9eyOih+0Kn9wL6wKCrALhO+zAQvEgOpS0GE+l0oQ6NRX63SfitMtDFIM8ZMVuQAPlzlGjLQkSjTP/0iISgqgLwu98UOm47jzMySb7buQzpKYnYNfsmPDHsakSFmO2ZKz1VXjwvBGnS4HNLXgGq6zi3giQ9sIzQtDSVPQ5A+LwSZaZC0lMSsWfOzbg59CSSGKUsnM0ZmIHs8XoqsJEiZsaUTA5FtDKQVrB4sfY+KIcdfIMbTiqZ0CVGBWPp3b2x5pEBWHRXL6x5ZAB2zb5JM5MrZoO0TuvLG44pmwLKIDWGlCJmme3bycsCMlOAD0cD6x4CPhyNmoXJyN24EjmnilQ/D8I9KHND+ASltHdxhfK0jRSPdLRNzgBz50dCt+aqAvvLBYjFYvNDGHeHPp8bEb09XR676Wp0SYhwedoTn0B7pyQCw++tN5L78VOg8iKSjn2AtYHyXiIievQmjC1r8KL5Y3xQNwKzzJ/rPkZhH7bb2tF1wPTDwNm9Qqftij+BsDaC2SBn1XVz25JXIJlOYzHPMlFoi6CSuRAzHll1A/HCHULwKf0+5UJreq9hxKFEcyokMIDFY/3CgVzt7ZUiDK1Q4dlBylCIaF3aEj1/W72ZEx4enSsNNqGTZEpM4fGYO7oLpnx8WDYb5CD4Lo/GtNWVeOvefqp//7pFykwuTP+932Wv5ooC9Ns7A1N2ncasiCFUju5hKLghHGiMuWO1i4KIlvOpxzraJmcgpOutLg7F/9TpUCzFSE8XzQs3axIcivcsg/NFUU3/oVdvIk5VHDN3Bx+yDYyzG7IGjFhyfHavMM5v5zpocGpCE3A4ZQ6sXcYofoesHI9nPz9SPyZwuIb5A5UIRjijfIMVK7nuj9yPkOQ4l+8TpzNIcpdCROuaCqkJbqNre1MtM8DbNFCtmRK8aF7tqaECqJ9iFdtTAEBhWQVwOk92ikTrb2uO6WP8LWCjehYk+1mht1MDp12UTOg0r1N5WS7mi+mRSfj8xmcx9cAVDg8VclO45/kYLP7yYQxPfk7xOqBHY3ehtBJ1G56BSeZqJ53qvL60H5WjexgKbgg7jWVwpXVRULrYzLNMtBuDebSjLWuCqeMQXNNxCK5p4KbSUxKx7J6eLqZvcZEhmJB6JWrqOOScKtIev81LRC71r6r/MCjKfSw1CsxVi4FP7zO0np2fN8oGYNKn0mkhg3BbzwT8JfYsukVUgo1IANoPxJ5fL9kF1iPZXMw3v4cYRp/QlkF9i4JcLtnl+yT2jppvfg8xHhTv1pijMeOe+zXbc1g5Hk/sCcV/Ndoy5CMWe7lk+2fIgsPDARs9lnWSa08xks1F+pZZQGV9tlL09UFyhmoG8hZ2L/4WsEE7YHT2Y/IgmtepvCybm7NzeX8+eufMwK47PsTK4h54ecMxRcF3AorxquVf+GXHVehy4z2y49CT4UpljyNIep6dEB8y+rPHsZdLpnJ0D0LBDQGgcQ2u1C4Kt7B7sdS8yOV1h27JYyb77x9/XhbSt8xGuuU8YKsoKQ+Mwz+5SXjj2xr7YtGhZgCO1VMOF2idXiLSUmjAuCi3Z7euwg1o6HPGfFREfvw/aAVgL1fxePCHVY4ZpcgkXEyYAaCdLuM+RS5fQKG1o+xbYi+laaYv8WBANlrpDJzUCOo+SsgkaHz/ck8X41yZBVmmgXg04GuXDFL91FqaQ3DKgcWbAQ/iVevCBo8VcG0Vkc7mYllgJlDptGBZvr11gyk5QzYDyYLDK+YV+jNheruZG0DzOnVPT6RvkX8oECeLTJvmoPWN2apTuOL3t13uS8ANd8lmoPRkj/U+bMShhMrRPQwJignNuWNAW4RoBKWLQjq7B0vMi+1CSymy3ZL9Ac4KnP4OOPIZsN3W/8cpKAmrKcSrln9hJFsvwCiptLiUhYsX6I0/5uPEqZO6du988dQryuWdu5IPeQqITNJpz2cjOAqoLFJ8WxTgLjUvchE382XnkXFiNm5h9+oy7lMkPF71JsOBxZvW29C3Zjnuqn0e79Wlg+NdRbwcLwQcms1oDn0iCEPzslQXE5tKZgTsFm6pCiaJGQE5DgLxW1IS8Mo9N7gX6NmoMbfCzNqpuKv2eQyuWWQPbEzg8KJ4rl3Wsh149rMAZ5UV9KayxxHLlOsfiJul4ErouU5lZa1TfSgQHZw7Vx7BdWyequCbZYBQsYGpDFoiZQZAXZi+a5X0ocQjekKCghvCmMGVJ5C7KIxkc7HUvBgmRvnu4tAt2R9wroDY/iqUshiAkMVQq3QSHYEfW3MAL269qGsIhYjG6GsTYYv97HoTQL4KR4QBHCtaWBMOdn9Wcz0HrnAVNCvh4oBs+7nA/K7qDUYVW3CmpxJGdA5+pW4iplhm4gIcpwULEIO360aDh47jF7McKgFOXESwXf+kdvOUVl8Bwt8i08CMR5DlEu66+TqciejjkBUaGfErklRbPvD100mor2YTK5P+c+05/YMIbe12KbgSeq5TAQqu2M50K/sOywMX69uxwuchauwA+cpHAMjIGC9M+SmcdY4HzvOOeiiP6QlbOBTcEF43uHLG+aIgTQ/rwgvpbsOI8/qqT4n1yN3IlOB47QyMeFHcx3XFD2cu4a2765+yRb3Jn4xCajuyrUu5dvaRP/DajkK8X5eOcoToOiZ0HKprMaWMDAMginGeHzGALTiT+z4NYPOQwe7GADZPNqDkXYJQHgf5zphimYkCaOm5HLMcclyqqDE0JSFSVFGLY+WhutZTY2POIbxwa7JDyfSSMUn6Vpb8fYmC3rHXJiDpd/VslQO3/tvjHi56rj96p2XZvcsQqVeLpZKBUipZT4gKFqbye1whaJkAl05cznooJWsBwj1Ic0PoflLw5BOF1MStffkBY46yGuludyu+dK9na7rpernSRu8NT1rxw/HynaznWe6DFSzyS6vRKiwQu2bfJBn/ALRu/wJwNsexTDsi0cU8zPrTV+i97gmkB9ZPMVl5Bix49aminQuB4FZAdQnkMlbO4/YoNzwrlJwf+QwIj0d68kAsu7cPtn+5AtMt78mK0TdxqSoC0kv2CrTBNYsxyZStUbXEy4pmrRyPPb8W4bkvjqKrzhtte8bRU+VkaA90j0wSMkTGJgrtnKgMw6pPBK3c2F5thRdPJ+ha95djh3B1j9sdX9y5UHUK0oG0x4Hu4/QPVid6rj+5XFfUhCYgqPIC5M+dbc6b53T87eozI9SsfEzOAO78CIxT9ZZUD6XHZZkwBgU3hG5/Fk8/UYgXhVNbfwd26VxJqhORwd2KLyPr5W5fj1SdGRtnjAh+xQzMXPNHSJJoVpxFooDwVCtbNqtVrZKXBfa/96MNzztkzlnbN0E1QKmuLx93dlT2licZB4AJbgXmwIfAjgX1b0QmIT3ldoysexNwmtoUxejTLDPwgnkVAGUBqViBdpGP1jcgSZbD+Tukx2+H54EnAoQGmm9Z/yK0xYgMg3XkArD/vR88HNPrHF/fulQ27uaBYkQiHsW4js3Dy1nm+uqb9gOFm7XKd5fngbCfPkb2kclC1gEQspR6xeZXjwBGvqJvWYPouU7FR4Ui4NZ/Af+9H65NXm2/awqrJOg0I5T923N2JLZ5Qh0+dhxvH6xEdnlH+7ShHmsBwhgMzxv5pJs+ZWVliIqKQmlpKSIjI309HL9BrEIA5P1ZvOq/cPo7QbeihztXKbrfKlVSaB2DkfWyj+Zj4ydLsDhwib7x2hC9RgbXLJLtLq2GlucPAKx5ZICuCguH7FSYGQPW3wAodEfneYADo6qDEt+pNUchyFJqf/0iH4ksaxoeDNik5xB1wdkqjtx5rhVv+q2ZMs1l76p9HjFhgVhqeVF7w/d/DXS4XvE7JK0E0xJM5/MxWGR+GEMyHsTLG/JwbflOGUuEWGTVpeFvAV8DcM3oOe/nPB+D8qGv1Jczb39NV6Ay1fwS3pwzHSZwgq5MbzBvOx/eQvd1SsbnBpFtgeSxwJ6l2jsKiQHGLNLltC2L7P7ry+2pF5V7GLl/U+aGACDf6wdopCcK+xOlShqeMQG3r1C82OippHjuiyOosnBIiKy/mOh2GU0WUvrz1uehvcFyazmvEUPr28SwSrQKNaOgrNrun6PWDFH6+Q5g85AWqHzTYhjImo85LGP7WVNbi3KEo7Wt3Lo1U4Y7TDtU1zVKTUg8QphawTTQICwDtIZ2YAMIU4fpo6cA/1uu+J3kwaA2NAEB7dIAle/QJi4Vb9TdjifNn2nuNx7FmF/3L0xZW4t8LhX5EErZ5QLbg3xnl4ye3KeegGIk7pgGxEcIfzuxnXSdg4CKQqEkmc3TH9hoZFU9ge7rVHKGYCLo3MvpzG59wc3tHwCdhro3SBWfHWm5PZV7excKbgg7DbY7dxfWJDzRfDoRrqlk4bcT1y/CcUt/xCncwLUqKQChtcMT/3cIQP2UU1RIoP5KMc6K9uUHEI9iXOQjEINy2akBZ08TuWkkOZ8bcWrEKJcqXY/LORiVyyy404VbiUimymXsETaXYSMuwc7LitmIY12nITl1BLBqrGcGrEIhovHyxp+R2OdZ9M6ZAefvpHCcPKaX/BU/vr4Dd/Vvp/odOsPr07qIn/+L5lXYbDNnVApsRQ8fsev7i+ZVaCXzfWRtJed2x2Cd5dmFiBYEvCYD4v0G9pPSvRu91ynW5JpF0nyQsuls3M0+qZhv2h+XPOTeTKhDwQ3hgJLdudexie6cU7lVIQmYZ5mItZtjABwCIH8DN1rJVVhaiZWfrMYdXQIwgK2TneqRYvp5PXr8+CrWBtZf7HneVZMi3uD/YxmPM3yi7DTS30d1w4ODOwCAwwX6UkUNpn1y0E0JqYCc6aJSdsrTDSYVY2CmPgumBMcDJQhHDQKRKKMvmpQ6Hajc1uAxVplbIaj2kqpeZT93Dayl1bhtW2t8fuMi9P5pgaIQFKXVkt5Y8hg5z0rmjHKIgc8ANk/Vf8beKuPMbqD9QNSEJsBcUaB4DsRWDTMiggFWp1fN0Ofcn8JxA7evU6oPUrYT0pAgTcN8U0mITngeCm4I/8EplZz7ZwAmbDbB6hR0yN3AjVRyObR3OA2M12hGOZLNRf/cRZB7GnO+P8hlaVwOMzHS/pTpfIFexjL4R9ZPKCirkVtVE+epNBPLKGa1xHJzJcErzwMVTAhCUdUgzwitpI1YqD3H8jC2cI7TMPu4roiLChXE7GcaZgpXjEg8V3EflpoXywqlxamrnUEz7a0+ph64Ajue/BEzX1/q0E7DyPSi1nmWQ8yq6dFb6c7AXb4AsCYc7fEceu+ZrhiYv2S5D/HiOYeOKeOIJMEEsqmg8CAlaGIWuB2kWTkep06d1NfCxR/sLJo5FNwQ/oUtlWzleMx4bSuscL0py93AtSopRLTaOzg3ozSBw7zAVeDBu9zOGNs0QhEfiZct9+ICYnTd+C5WKAcuYsp9ydaTeONb9zovS6fS0jrFKma11MrNAeH4wlHl1hgU6TYWOPM9UFlvUlhujsMzFXfbz7uYsXAuj7W2S8NFxKINX+RWifnndQORzQ3AFAvroleR4vBdKE3Fqr1nsbG8M4DOxncK7fMsRyGiVXusOVTK6cwM7Sow4YcLvyBzR2uMYJWr8DZzqVhmL0nWkem45bWmN8WipMlx8zhEPVv78otYG6hjBQ+7NxOukImfn2PleOScKsJXh84h51SRx1og+DtGXZPV3EJFNNs7wNFFmAHQnz2OBBQp/qGwjCCevYAY7JE0QFRDK8tkYhnMGHY1lt7dBzFheq6U8ohBjdr+xHJzbeM6eYzWWh6OuB546gRyh3yIFwOewF21z6N3+X+wiUt1uenbjdBs2bncM6WYW3uPcIt148/gW64fAOGYh9RkooiPkN2O83fht6IGGA3a2MSlYqplJgrQSnU50ZwxGmVYZs50aVshBl7SVh52w0elbULY5sT/BeCNb0+At41ncM1i3FX7PKbXPmZv1bCFT8Vbd/d21GyJmY5Ip6KCyCQXM8gmhajJ6XG78LMBgc2U1QeE65Fm+xOmUYTXBGVu/JrG6tLtj7jjmqxUSQHUt3dQe2oW9Q6TTNm4yEejLiwOUZLyZjWuCa3AxIzeeHnDMY/4BWUfzcfLG/JQXFGra/9y/HaxAoC2P8gmLhX/q+mDPUHTFEXSShQhEkF8LcJRrUs0PH9XCXriZ7yz0wwe/R3eEwONhwa2w22xZ9Etohhs2EmAiwNYEwpKq1CCSMM9qKQ6EpF+7AlVnYpU+wJcpWs/SlNILDhcx+YhNeQPVHS6E+t/+Rmjue0uXjXiDfFly714UacfDwcWPFi8ZJmIZYFiRtLVb0iuUk9WrMwDrcKCXA9OI9Nh5XjsOVWEnF8vAhD0MAM6xjZOebOzn0wDMjBGcdazqWfpPKDpIXRDwY2f0phduv0Rd12TpZUUBaVVeHnDMZRWVBtq72B3prUAF/kIXcYqc+++CaaOSWBZxqWbMuA6xaJG9pE/sHLNGvRHCQpZV52FHh0GAKzJ/R2P3XS1PaslNy6RfuwJtDbSFNHGK5a7NZx8BcQAYx/XFbnfnVasJUlnc/G3A48jHhI33JBo4LqpuMTeZrjCS+nmrnc714RWoOcV0ViF31WXk5tCKguMQ1mnsWhz6r8Iqi0BrABOAFcDKEcwLAhAjKQFQAFi8ZLlHiQxRaqO3c6i44SoYIwbMxkM29dFR6JHA+aM4oOFXPURhGvVs58fcaj8W7LtJKJDzVhwWw/vXqc0/GS8jVyGWcl8s6GaHsIYFNz4IUa8V5qr8VNDXJOllRQhgSas/GS1sfYOEmJQbs8oyGUMOB6oDk1A6FWDADTcL0iuFYJz+wA9OgwAKCirsetuxHEpiZXdLQuPYS4jhtHXo0dsF6EkihKya5mupVVVJcD2V3GPeSlKmJsMjU/p5q5Xp9Klc2ckRKn32lJq6RBRW4jIY+/KrhPOVIPngX9LqupaoRwvmlfp/q7e0SUAMwYPkJRB12dXTpw6iRe3XjQsfgZ0PFhIMiW5fwZg6maT7D5KKi2YvPoAlnviQUwuO3N8g6afjNcCCdt4zMeOYQBb6nKepaX6cSjBnTf2w+CbMyhj04hQcOOHGNGbNDsjKNtFw3T5AhZdJ1RLcfZmAAJGsiDpKYlIHBwN5Koupog4DcBAuez7TL8X0U1y0XLbL0ihFYKos3inbrTdmVaKkhgacJ22iwg245739rpsw2hZuJiJKeL1uXyvsKarZg+kzVOVTlOgpQRPBHyuOa5iaAu8tSqYxON74VAUIn8+4Na41T5t8b0JAdswuGYxhrP78ZaM0F2N//3B4k3xe1VXC+x7F7j0G9DqKhyLGYU9XJ6h7emaNnXKlKQC2BUkH1yLGcbdX+7D8NCbYLpqkHs3d7nsTEQiUFcDd/1kGuQQLBlPPwBrFaotpdN+f+1wHXJOl5AjcSNCwY0f0thduv0GmQvn0VY2n5vLveyLGXVN7tmtq9vBDVB/0yrmIxCL+qkbMSswsf1Il3UM+3BIzL+UdBYPB2xwGI/z+1IdhojzU/jFy/KVWkbKlaVTPaUI1zw0QBDzqk2npbLHNTMWDABeZWziuD6sGy5T2+a0rFQbAdf+TUD9VFZJlcVhXelxtGZK3M4KMgyQZOsBpRXYOYzdFnhll3cUHnBOZQI5SwC+XlKcwTyPfNMoLLDerW8stp+qDwwKzrtywbVDhrEOwEdvuDddpOT2W54vu3g9Tn4yTtmmJ/aE4lxZ/eeqW8to4BwAwnmNDjXjyU8POWRMW4p20pdQcOOH+KJLt89RuGiEVF3AfLyOB0a+hbzooSi+XIOYsEBEhQTCyvH6nn70tHfQwUuW+3ABMS4351EKAYMhbOZfSkfDMnDKX7m+L9VhKD2FK31n1ISQao7LLDhdGZBWKMeuoOmK02l6p8XUPu0KBMECM540r5PdhzN7gwbho7axGHH2DYdxqelU5KYFG8q97Le6t+cceLXOeQU4ucLVJJHn8KhZyPLpCXA0HxhUnHedg+vh7H7ZaTrD00Wqbr86uXxB9qHpv3wM5rH13wtdWkYD54ADa9e3Xaq0uCzfUrSTvoSCGy/jTvrTV126fYaGZTkDBlfmvoQHrW3ce9rSaO+gF+nUDWOrgGmDMnSuAMAlGE+5S3UEfx53a0zOxKFE9Slc7bslCiEXmN9DK4nQlWGACj4Qe7lu2MX1wEfWEaizXTrUgiLxRpxVlyY75SJ92vWEW3I4asDDMdBUm7IrqbLgHyc74SUs1iXQVtLWNJRRJv1pRWngFYA6dD61Utb9WfyWPxywEf+23gmL5FIvvvfEsKtxVesw9euS+B39dYeq864YXKtnoQy2H9B0+9VB0Slg+3xoZVp0aRk1xiMn9K6yWB2E1iItRTvpS3we3CxduhSvv/468vPz0b17d2RmZuL66+Vtqbdv344bb7zR5fVjx46ha9euMmv4FndLudWqW4zoTZoMOizLQ6oK0K72MM6hvnRVbKGQODhamHpSKwFVdCVtC4x4Fdg8RzGzI7YG+I95ORLlnrC3LAH2Gky5y+kIPEB7psD1KVy8QZXnw1TxJ5b3DMD8XWXYx3V1cX8GgGgZgXAYU4ubTIdxk+kwHg7Y6JANUaoOEat/xGoqtem0ITVv4AJiEYcit7p+A/Idw9Wm7ES0GpMC2pogI/2zXNaFvk7nL1nuxUpruj0rMC1sGxirkruNsM0AhsPUsG1YVDHc/rruaV03vqMD2Z80slAG2g80wMWXA8BEtgXzwwfQm2nR1DLqHM9TA6Ng6TYAHMfjnvdd9W0izVo76Qf4NLj5v//7P8ycORNLly7FoEGD8Pbbb+OWW25BXl4errzySsX1fv75Z4d2523atGmM4RqioaXcblXd+NDvoUHovGhIpy4cpgdyIfzTmtNX8+pgWdnMDm/7vRUuq+d7FFLuspm74+vldQQqiBVbzt4ozss8EfAZhva6Hn1TbhZelLlB9YQggryAWLxYWz/90ibUhMygtWA0TInlsiHO1SFiBkRLSyM+7X41JgAxUW8An03UfbPXi7iPIUEnsL3GvYcgreNwN7AB6j9PJfdicWpPGtgAwF/a1wK/am9/em8TBnQbYFjcbvQ7CgCTTJv0LfjzRu3gRqeLr1LG8OxVd+DKHzMV11Pq46WoZdQ5nn7duwEdYvHVoXO6lm922kk/wafBzX/+8x889NBDePjhhwEAmZmZ2LRpE5YtW4b58+crrhcXF4fo6OhGGqVxPFXKbajqxsd+Dw3CQKdiQGV6QM+cvoJXh1Jmh4lIhKWmEgG1JRoSVdeUu1zmrm2kGd+ankaIwZsGw9iyA1DOEojLtN37Eqw3T4Bpdyaw/VXFbcahCMsCMzGlVghSOlUfQQhXoDkWpWyIXAZEr5amrvQ8+v+vPa6rnYn55vd0l5cbIdLivk7Gkx3UlZCryOPBgGF4zKut9+lJiArG3NFdEHRko67t/s4nuC1u170KAIYHwmXapciyZylwZZr6tUlDK6fVbPWRwLZQfkSux/mzVdQy6u0obnMfbpHaST/CZ8FNbW0tfvjhBzz77LMOr48YMQK7d+9WXbd3796orq5GcnIynn/+edmpKpGamhrU1NTPw5eVlTVs4DrwZCm3rqobpaesxvB7aAiS6RKEtgYqi6B0ERMdZtWnBwzO6Tsjl9nhOQR+pPfc1afcsys6y2bu2l0+jJBA7QBCDj3ZAZYBElCE2n93ganmkvr2IARDYpASr9BrSWk/Wt2rWXDoEFIhmNdpMH9XCUq4JGyCkAGaZvoSDwZko5UHgxwlXY8eU0S9mqCXLPegLS7iwQAhg2Eko1OFINQgAK1QYX/tAmJw7roXMemaMRglPuBU74Jp03DN6SKeB6xg8WPb29FB/zDc0rqIh6n/eHX8napo5cTsjFyzVfHzm95K30jEz1ZTy2iwo3iL0076GT4Lbi5evAir1Yr4eMen9vj4eBQUyF/8ExMT8c4776Bv376oqanBqlWrcPPNN2P79u0YMmSI7Drz58/HvHnzPD5+NRq1lFtDjNugm7030TmfLx6VWB0ygM3zyJy+otDbObNz5DP9x2SDKy/AvA21sp9IY2QAAMCsEdiISIOUWMZ44C89HmmQ0J7Jx4SArUiyqo+DB2P3oxHhwOJN6214yzrOvr0/EYl3zP9GOGpkb6BaRouFjGP7BRG9poh6S+UfDtiINXU3uzVNFcrUINQmiL7Eh2FFXTqWWv8CbgeLZe1qMbZXW+Hv5r/3w/nv3TmbJ56P9+pGoWeUPi8iOwa1LnxoazCVFw3OJerU3iRnwHrHh6jb8AyCKuvvC4VMLP5RW1+x50xiVDC6XneDoIVTyfyID026tYwGOoq3OO2kn+FzQTHjdBXged7lNZEuXbqgS5cu9t/T0tJw9uxZLFy4UDG4mTNnDmbNmmX/vaysDO3atfPAyJVp1HSkDjGubgFfY2FgPp8BUMqE2y8GuoMDlQu083QRCw43h57E1L7h6J3sKEzO/TMA+o3rBc6c+Q39yw/ZWycAcPBFaQyMXi7jUKLbkE+KdKrQOUjQ9+kCc2td+x4BrtNcT1mmYLk5U/FGztv+X05/IbcPpelNqaZoM5eKhKhgLLy9J/74ZS4Sc2faHhnkjy4BlzArwHhA7EwUKvBEwDqc4NthC9cP6z5fi9hfQ9Drp9cQYFOCSXG+ZFrB4r26Ufgw/EHsMpoZ0NuxesjTQIcb8MvJE7jm+1nay8uhEUgJf6vhuFC60P43VBcWhyt73YRN3/2OdDYXL8oEpwtrH8SW48lIV8r82H6KD02GfGfUtHtOusf0rtfh/0ZY8PXuQzhRGWbPKhn16iKM47PgpnXr1jCZTC5ZmsLCQpdsjhoDBgzA6tXKvW2CgoIQFCTTCM6LeDodqVpOrvcpy2m5Bjl0NgQ35vOjcBlLjZYMK1ygnYXe9psyVwzsg/DPplXK5vpj2mYTvgvSZ24HAGBYdPjhFSy2NfMu5gWTO6mGxMozMDHGy9F5HshHDAAeCbhkqMGlFu46FOdyXRWDBM3hhcZiX/e/Y9N3+v7eN3GpmGyZiX+YP3LQWORDyLQAkK3YkvOsUZvelGqKvq3phxduTQYLDrXmKOR3nYTE37NsU6iuSB2tG4K4nfnm9zAXHyKJuwQoGyU78GHdMLxSNxF1CMAydzIDerUlQ+cArAmFJy/iGmN7qEclkHL8W60PdJlyAN/9joUpZ/CXk5kuQ0xAMRZyCzH1kzrg7slIl9PSRbbFid5/x6hWQzHJneufnHZPLhvNsEjlOeEBKRCoCo7H79fNRecb7qaMjZfxWXATGBiIvn37YsuWLfjLX/5if33Lli0YO3as7u0cPHgQiYn+Ff16Mh2pWU6u9ylLspxPu427OZ/Po75kWH16wFHUJ8VZ6K10U+ZtWqXtAU/Dil4qXX5l4B1T5FK/mPoR8kK2QaZ0WQvxJq7HbE8Pzh2zz/MxSESx6nakRnIADLnrOlB5ET1/eg0j2bt0N3ZUqsoSszJq70nRW8U1vXMhvv38PTzFr9BttOepexbLADG4bD/fevmB64rWUeGqf8+qDzcSbYngMuVYPcgADtoS01WDcGlXuEF9lPLfqTg+taIMEzgMPrlQGK5CcPqieRXuyBqE4c+Ogckp08K0H4gurAldXDfvHkrZaKfrQUh1IbrsmAbER/inDrIZYayjmoeZNWsW3nvvPaxYsQLHjh3DE088gd9//x2TJ08GIEwpTZw40b58ZmYmvvzyS/zyyy/46aefMGfOHKxbtw6PPfaYrw5BEbGUOyHKceopISpYtyul+OTiLE4Wy8mzj+bXP2Up3iYZwcvFdhHRtU1v4qZ3BcsASUwR+rEnsKvTU2AYRi45L/yQXHilSIXe6j2BhAvUdMv7YMHZfVwKoJJpY+T/lBjGNeBgGRiOaqxgMdUyA5u4VGziUjGtbjqKEeGwTBlCDW2TlwQpHFi7IR8PqN5QCxBrLwMXgwR3b+iBlRewPDATt7B7MYDNQwa7GwPYPFkdhbgLcbpqZ/AN2MMlO7RaEN/L4gZiD5es2DRS7/Rm999WYSG/EAkGxNZqGM/XGQ+WChGNhbf3dLzGcFbg9HfAkc+Qu/VLDFmwBRPe3YMZaw9hwrt7MPi1rY5/+8kZOJi2CIVO3/kLiMHBAW8AIa0EPdrp75DaIQb/DRht8Kh4xb9TQLsooz97HPEoUryBideLdpcPI/d0cX2mpcftwk9P6g8NZaNty2Q/K6xHeA2fam7++te/oqioCC+99BLy8/ORkpKCjRs3on379gCA/Px8/P777/bla2tr8dRTT+HcuXMICQlB9+7dsWHDBowaNcpXh6CK2w0UYbCcXKeC3y+6jevNNCkQhxK8ca4Pxt/xIUybntUU9UmRCrg1fUvAI4mprwZyzhj8CUGf0gZl6BBSgSesHxg6DsNn9/YVmBgyBOnl1Qg7tRHJP65Ga6a+z5WVZxDFVBraZL7MlI2SId9FPhJf1g3Ct3xfh2xIQwXSDHjwAN40L0aAZKpOTtTLA3jh1m5oHRFk/1vaklfgkoXUg95puJtNB4VxeujPgQELPiQKTJU+wbcRpFm4ixUSp2Y32g9kH83HlG2twWCRQyasFcrwQs5LwJ7674YpMgn9+z+D4pyv0QqXdZ2rnLg7gaBBSFVooaJVbKH3exeHEu/7yBjORvuhDrIZ4nNB8dSpUzF16lTZ91auXOnw+zPPPINnnnmmEUblOQw3ULRhqJxcp4LfL7qNN7DPUyGihTEGD0bazKOGTAulAm4jF0cRMSvgXDrMVHFAoOFD0UdkWyB9AUzJGUgDgLws8EeetoUE9Tj3nXKeohJ1IJ9ah2A3l+LQMdv5eLZw/XRP73iibQIDOAQ2gLxRIAsOXaoPY3C0FWDjAQy0P0As2foL3t75Kypr9T0N661+8lRQUw+HxywzUFRbh3gU4wXzKsQw5Q1OoTv3nLJ/13U2epQ+3NzUNd7+EMRLtC4j2Vy8ZV7suvOyfPTe8wR+7fIgWp14X9d4F/1xDfa8u0dxOlyr2ELv964Q0d73kXHXSbkBDsyENj4Pbgh5DJeTqyn43d2mN3DwitCPszaksLxa0ZBPSU+Q2iEGMWGBKK6oNXRxlCJXFVTBmw0di17qhr2KgIGT6z9Dlc7hzjdh59/F0tlsJ22L3PFc5CPwpXUQvuX64WtugOLUDmCsm7gRnI0CR7C5eMX8AVp/X5+tEoXfW7j+yPz2F0OhsrQnVmNjqryIPZwwTVxtCazvTO4UjBo5n6JwejOXikSxWMFgo0fx4WZVzm8uD0F6/KU6/vEVuP5/A7/vXcUmr85/x0qO7VpFGfu4rriAWLRRmJoS93M2vGd94Ya3HNzdzUY3MIst4rPiED+Hghs/xa1yciX33YZs0xvYMk21XzyGQEup5uLOT6WA8hi1xNKvjE3B1E8OaN6UnS/CgLIAOYyxGG4ZoOXLUoBYZGztiFeiC+sv+hqdwxUZ+SoOhY/Fpo8PO76scDytmXI8HJCNh5Gt2lUb0OgmjoZVDYmi3jcCliDDtMf1XJWdB28TfvPoZXj7m7hUrLCm4+GA7AaM0jjSgFlpGrA6JAE11ZcRxV9W7GVVjhC8YHnAnoUTtUf2YoXTxho9ipwpdp3e1JrGBXig8iLYfe/Yx8dDvixf+nesNB2uVZTBgcX5tLmIy5kBjudl9/OS5T68cEcPYZvedHA3nI1WF1MbwafFIX6OTwXFhDLik4uKTLj+Cc2H23QXa9cxmMU/oWvZYkTa0+dqY9Qjlh51bSIeHdLBflMGXMWzchdhrcaJSueU5+sDGeftywl3pfu+WMk5irzdTWOHxyO9xxWCwD1SCAq1jkdEnL4YyTp2rmbB2QXApQjHNMsMF8H1BcTi35bbMbN2Mir5QJfzoJcM0x6Vd3k8ZVmOsewuFyGyOMax7C48aNoou8z/uD7uDQqCV0pNaCIm1D6H6bWPYULtczjPt1IUY3M8cJ53NRPcxKVicM1i3FX7PE4MzgTu/xqhz+ThtzShdYbSeYtAFaoRaBdOx4QFOmZA3OjZBgDtY1yF6e5oq5y/VlIhuhTpdLgUraKM3iPvB3PnR6gJTXDZz3PmZzDu7snCuRCn5pwDPdHBPS/L8LE5IGajAWiH8+pFD0bweXGIn0OZGz/FG+6W/uSYmXu6GBsvd8Z5FQ8ZngeKEIkBNUtQhwDHMYITnkxtKWZruzTdYuk5o5LR84poPP+VGVOq9HmjaD+5ysMwQDkfjAhJzx1x+4DgYxIjKRdnmXpvHJF/ZP2EiGAz+AITBhseAezp7/SURAzv2gZffPlfnD+Uret45KYvlIzTXrLcixJEOuh0hrP7Md/8HkKZWndGDkBd98IAaM2UYVHgUvs4HDxvZI5RKxslh6yGiWEQcOtrOP1VGHLKBAHvPMv9slksZ9M4Z0Q917HWvXBNh7YAgN7D70XtDy/CXFvietyMMKb55vfsn8vzt3ZzfFo32LNN9N+6L+0qvLfrtMOUkFFtFWP73lzmQ7DSOgK7ue7Yq1K9BshPh2sWZSRnIKTrrbD+9j1O/XoKhXw0TFcNwj87tRGWaSwHdyXdI8M6loNrFD3oxS+KQ/wcCm78GLc6g/tgm+5QWF6tOqUhPv3+3fIg6mxf06gQMx4YdBWGM7lApmOlVF1oAq4tvwv5Tn7CDmLZ8mjknuqBtKvjMOraJIxMSUTu6b7YV/YQOlceQZewCkzfkI9N5R1hdboIN6Qq6NO6G7CF7+8izh3J5iIal11unNG47CD2LCirwT3v7QWLAOwKikECU6wr5crzgtbm4OUOSAeAvCzUrn8at1cVGPrLl05fROEylgZmyhqnLTUvxhTLTGTZ9CTitJfapVVtes4d3x4x06S2mlRMG4Q6Xdt1HkdNaAJCxrwOU3IGJuSfwBvf/gJAeZqpgJc3E3TGYbr1zG4EygQ20jHF4DKmmb7Em9bbkBAV4qi/COuCAZFJYAy2HwgMYF0egnK5rijiIxArqdDTgmWE7NLjAV/hXv5brKhLx1vWvyiX5ytMNWsWZbAmmDoOwTUdh7iaCXrbwd1ZxzP9MHB2b/3v7a5z/N1DOh+/KA7xcyi48XMaUk7emNs0inghU7wZ2LIbEb1uQ/SxCyipsqCkyoK8rR+DDcx00XMEVl5wqa6RE8tWrXsXyFgIJGdILpqxgK1/cEZAPr6RyWy1Z9xrdgkADwZsQq6lG3aF3IBLFYI+RzotJOeDo9R12x4MQltwyjDAasuNWPLxYXw+dAt67ZmJoAYIYZ5Ki0CPY++BqdQeMwDF43MeozvvKcEy6gGT81iftDxqaPvidyLk1nqtxlWtwxyWUbINaB9YgQG1edjPXYN+7AmHYJe3WfI7TLfqnFZ6MCAbn4f9FZcqajH4ta0ON73bQ+/G61gIOJnxabUfcH4I4sDioLUzhgUc1H+yJLRiKvCkeR0eCNiEOZaHHYI8MWPklelwNx3cdaGm4+lxe/1rXij39oviED+HgpsmgLvl5I29TSNIqyE2can4X00fTDRtxpVMIX7n47DKOgLhoSG4dOAP+zpiQODcPwio90v5p3kFgi21uJIpxBMyPX6CqwtVO6XLZbZYcLg7YKtbmQSg3l35wOiH8Pj/HQED/Q65othTzEAFoQ5v1N2ORwPWIxw1iuuLnOETkM7uxbV73gSDhpU292ttBSqVgzzpmAG4NY3nCfR2T09CEQayP+EiH4EYlOuqTmLE/25+DkgeA7Am2YyDOM00ks3Fv83L689FoGv7DWFKbyLGjZns+IChc1qpFXMZd8b9gWmfWFzyM59V9kE5O9MlyNfTfkB8CFr5/WnkfvOh3fOnIbRyykp6fTrcDQd3XSg5Eos6HoXri6fwm+IQP4aCG8InSPU/chqOhwM2YiH/ID5HveBTT0DQGvX6C7lghNExz+6c2Qr4/XskHnD/Ri3eSC9VHrEHTnHlJbrWjUMJbmH34hXzCocpAatOcW57pgCzAj5rYK8jW3VHWBtdS8ehBIyMw7A/8njAVwCE74r+8mvHqQylsmWlajTW2dOHKcaywEVg2L4AJDfE9gPBh0SDqSrRHNGpX0+BR7yLZ1Eu19Ulk3TvsP5IHTpGV/sBE8ugdXiA8FCBhvfMErVCYoYvPirUu9PhevtkGalcaiwdjwqe7l/YHKHghvAZ6SmJ+PzGi+iVk+lSEZLICM3vKtj6aSajuhflJ3jh5mT9dSdMpgDZ+XBpZotjGd1NC9WoLPoDUQkD8Ex6VwSeLdK1zZvZ/bJl0CYdd5mLfATuDtjq3mDtSKo7QlrpWqM9U4BJAZsauN/Gx/CN2zaVISfUV2/v4YhdgeJ0Q8zOK8TvNen4G9ZqDqUQ0bLTsFLxtFjuvXOXGW+1u4QBnWJ1ZUs6Vx7xaBZODPbXj2HR9bobYDqbAxz53rPeM/adSX215MooeKDP/cBPX+jfv7d1PDrwp+IQf4WCG8K7qBlncVb0/mmBix8G4NgsU9SdeMINV8rl1fciStrYMjIJ1pELkBs82FGLFJGgvBEDvHOoElt2C2XNLELQLzgWcSh20EKIcDxQgjCNMmh19lq74daAXO0FbVTxgahEkEOGiI9MAtPnfsBaK3yWKk/BwpjDZacD3UUa9HreLdhx2xwPFPGRWFN3Ix43f6W9kmQqw3k603h1neMNceOP+Zj6yQGwGI3bg5TbGoii4GiUYamMe7Cc03NJpQX3vL9Xtx9KtwhjbT300r18F7D4Ke94z0hRqmQSg/Xtrxrbvzd1PAbwl+IQf4WCG8J7aBlnaZjSOetOPO2GG8lfdniM5svywf53IlbW1t8IEqOCMXd0F6RHJoF3x0AP9Teg/1V2rn8NLObW3oel5kyAkem8zPAI4K0NuqGfQpKh5UOYWjxY+xR4sIhDCdoz+bi3bCvipRf/4GjUF5tKBKpOsY4nHxjlgl9vIE5r7ua7Yzz/HRKZS7KBJw8GtaEJyC5pj7hTRXa9inQ603zsHLDfjUFcvoCNP57HY2sEfQsHFnMsD2OZOdNFayae85ct9+JF8yr7MTgfk5w4HQAKSyux8pPVSBwcjZ7duipmLVi9wf2IfwLfvQ7omEYDAOxZ6vqatzQrzg7uRaeA7fPhlmbGWzoeN/CH4hB/hUz8CO+gxzjLoMmYmvGeEURjPTk9jqgHEI3eCkqrMeXjw/jlivFuBzaAvL9Jtq1S7IKT+R0TmYTjXR9DJONepYNoFpcjcZ3VSxuUYQ+XjBoE4ImAdYjjLzkuUF0i/HSaoipALN6oG48YRt5RVwk1Yz8rz4BhGiewkdIGZfbvmfMkEm8L6qaX/BUz/u8IJry7B/3/uQUbfxS+5+J0Zr/u3dza92c/WzD1k4MO32+lrvSiKd4lRKh2Zhc7ZItCb0DQA30XNB1rA19Bz9yngA9HA5kp8oZ2Nt0Kr/AXwIMReqANmAKMedPwMTtvDYDbXbOtHI+cU0X46uDv+On7DeB+/K/QDZ2z1ju4d/8LcGAllDUzGvsXdTxqdqiRbT3iQKwH8Ts3tldbpOmcamwJUHBDeB5NwR2Ei0doa12bc7arnypzodc9NFtQo1YmLL0RiEew6oR7Sc5CRt6VVWQTl4qB1YtwV+3zmF77GKaaX0L28M0wte4su7wW0mBqL5eM83yMoUCwENFgwWG++T3F6ioegMXK4cjNqzC99jHcVfs8BtcswhnevTS48/DE4HNl3Qi3tucMxwv9v/Seh0JEYxOXihM3vAVEOh5TPh+DybWOn2dxhRCQzN+YV7+g5g3QER4MChCLZ/aHy74vdTGWnvNNXKrhJrCi0DkBTtNmSo69Nt0KA7gEODwY4RXRcTc5A7hzlW59ljySKTpIApZD55BzqghWhQ8y+2g+Br+2FSvfX4z+X96A7lvuBvv5w66BmxHNjByqjsQSjZqXxMSEPmhaqoXi1WZrei8eDKNZyVAVEo+zgT2BMov91cMRQ/Dj6Edwqeww3tmwS+isrLOUtxThaCXV2SiQbms3IBrunagM09X52zrsZRxHB1SV5COkVVucCOmBTZ8eUV1HLBsGAKYc+Objw1gzXN/NwbnCx9ld+SXLvbJaDDku8pHI5briOjYPMYzyOWIAmGtLsOh/J/AtV/906pYmihH/U//55yMWL1vuRSJTZHhzzhU94n3QChMAi8wajssWIBb7uK5IjApG5xvuBm64CzizG1x5AR5bfx7Z5R0VTeje3nkaPa9ohVHXJmoIWV3HzPM85iq4F9vHJ/meSDHSBFZPA0zZSh+bboVxmmZm5Bx3xSmgrMeAQ5/oGpscXHkBNuvsnSS2IhihUKHGl+WDEaebrDrdstUyy0o6Hg85EBMNh4KbFojXm63pFdJV/KlRyQCEjHkdO7sOlw3EXlpfiq+4+s7Kaj40YiuHGZZp+DhwvubQJgVsxiRstlebbOH6oSo4HiHVhVAKxBCZBNPAaeguuSmUnTJ2gxZvzk/uDcW2wGiYa0oU3XsBxxtUER+Bly33OpgYvmherRn0idt63jIJHFikMXnqK9j4S90mfIv66Rd3NFHCYjwutr4OL53vj0JEIxpleNG8ynCFjtynIo4jEtpTfAyEZoscWEmliTCVsfdUETaWa4u7X/jqKEam2CzvdVry5+t0L1bCSBNYXQ0wlSp9nHUratVFrAnodHODgpu/ffEHvq1yLSl07iQutiJgVCvUeCHLlP0sMG6ZvgFoaWaMnA+i0aFpqRZGozRbMyK4E28ATul/RCbZRX1yc8rZR/Ox4vvfAABbuH74r3WIpttta6YMHBjVqRpnDYhYbTKc3Y/fr5srbs1568IPmVS0VrNS2TEAyC+rUUy/K9EK5XjLvAgj2VzFqQcljctma19kcwOEX3QO9kbTIYdmlA3RRMVczMVGLlVo72BerHvcUvL5WEytnYF3THfp6s0sR3hwgGPzSRt6nV6LKmodG0AmZwAzjwL3fw2Mf1/4+fcLyB3yocv0krQZqXODT2ceHdIBibaGkuJ5Zxj5aSMw9ZqvYaxOlfPlC8L08unvgCOfuepWetwu/FS7kbspqBU1Y1ur5Kdmxc923vo8ewZaWqGmFFgzYuDG857TzBg5H0SjQpmbFkSjNVszapyl9wnIVlbOlRcga/15sOiI4ex+xQaJcohiUbl+VnKZH7HaZF7gKrS5/gQQHyGbiraOnI/coEEoPHTOIbtkYhm8cGs3TP3EmLtrKnscIXWlitdfuUCuvjLmQ1EJ4foEq6ChGW76ASO5XGziUlHH63vmCWVqXRpWKrXT0IIFj4mmTXg44Bvd4xbheKFz/JCaN8CBxQt104Xvs8GvMA/gpcDVCE1+zuU9I06vLoGQeAO0YeV4zNgbgXzJlJ6WR419UwywZEIfjLo2Ec+kd5NkNAeAq+4D06ZnXaaNDnWfjc3bWiOdzcWDpmx9B1F0StCpNKRMW+M6INcmQ02A77Au6nsniedbtw9W5UXNjDFpZpo+FNy0IBqt2ZoevYHzxcPpBuDC0S+BjbOAyiKwAJYCKA4KR7QO/YyUQkRjD5eMKZaZeClwFeJRP22kJjJOQBFwNkc2EMu+3AHzsn5Gfmn9tIU4zQcAL284ZmiMgPuNOoXy+UvaCzqtw4PBXPMqMBYOMwM+N9xqwtlPRXTEjUcxFpjfRQijrncBgFTmZ7fM4sQS7n7sCQDut31gGSC0ukD4bNsPdPiMU9unISbMjOIK7ePQCoTEv0PRTXgY8wMeCvjG5a8kAcVYbs7Ef+pux1vWceDAYsmE3oKmB3ItVMYC3Ua7PCT0Zk1YlvQHeq97XE36Y4MRxMDS8n+RsvPGyrRVrgNiEFOCcMRI/oadNWNaiFPVgAHNV3i8cK0hzUyzhoKbFkSjNlsTp5vWzwCqnG42IdHGtrX5BWC3qyhWFAbruQmLuoP93DUYwOYhJohHzIT3gQAWOP41kPuO9kZO76jPKNkCseyj+Zjy8QGXe4boIRKHErRHNC6gq+qTqDOeNizUggGPJKYI/zR/IPxuMOvh7KcSamYBK8CDxR6uG240/ai5jQomyJ2h22lI53Yp+d++icSyR4Dy+ilaU2QSnrvqcTz1U3vVdRN1WN4XllfLZmqcT7mYvXrS/BnuNW/F+bR/oPe1Kt5FKoaZ6eGnARTpmHLkoR4B8cZaCyjojsQgZgvXz6VdhJG/EzFLmhgVjH2l6tojHowggDaaMSaaJBTctCB80mzNObABBJMvHU+AVo7HyW2rcY0tsHFRuui8AYtPiVl1adgZNFO4ofAAPlkkPKn1maRvQztfBw59bE/NK03z6Z1iUMPThoV6kboTG0U0XZxm+hL3m7ejtemi/T1Vsbft5xfWQRhv+t7t/XsqIEw8t8ml6oovy8f4sjnYwiqX9QPAC7d2g4llVKsRu17ajjEyFT1qxKEY8TkzgHatXP5mrByPkzs+wZV75yGkWiLml04j6RX5dxsLHPtKfRmjrQWcgoifykIwZj1nD2LkKsC0YFDfO0naiuAly0QslZtydi5ZF2FNjlk6MWtHAU6Th4KbFkSjNluze93IoVJyaiP7aD5ezjqCrJo5DbbdL0YkDlk74dGAr12Puywf2D4fNYHRMNeWaD8zShxMc4MGuUzzKTVLlLPBV0MUicppg/ydWQGfwVkLqyr2tv3kEOBWQCetBgLgkaDQVTLOKzr9ArBPMYX8/Bv2/NkWT+4NxTmJfYG9GjE5DtccfAU8Y6yawz4e5/5TR/Ox/csVeNXyL5eB87bvKnfHhzDpFvfqlGKXGyw8kGQ7u3I84ndulb0OyTX+dD7X4iFKeyfVtyIIxpRyuGi+ZEvWAW0XdaLJwvC8njqE5kNZWRmioqJQWlqKyMhIXw+n0RGrpQD5ZmtylSJucfo7wTxLi/u/dnkCFMd4HZuHtYGvNGgYpXwIopgq1WV4MLjEh9n1O9o3RUEQ/dWN2Zjxf/UeNiw47AqarlmSO7hmkWzqPSiARU2dY1QglwUygnPGRCmDIn4XPBFDOWc99HI4dSF+3L8L91q/FMaic7oRgEPQKA0wvREU3lX7vEO2QS1T9z+uDyaaNuNKphC/83FIv/FGpO56qGEDsP3NZB/Nx7TV+/GdxneukInFodu2IX3LSO2gJCgSqCnTHsOIfwKJPd2ezpG7Dimdx4Xsg/i8qo/9NTXbCnvGrKwCnSuPoFtEpdA+Qm58oou6S4hlO5GebgFBNBgj92/K3LQwGq3ZmpvN5aRTPQ3RUHC8cImKgHpgAwhP5THMZfzbMh4TArbpqPIRSko7Vzqa82l5iDj3ynJ+Sh14w2j853+/OqzjLM590bwKrXQaFgLAZQQjwsnjRS4TpGdzHC+m93nFGynLuB8g9exyNa49/h+gTP82ShCO5ywPO2TD3K3Y0ku8ZJtamToeDEyMREi76+OGD6A8H9Zfd2L3l1txv+lPze9cAoqwcu2n6NTrdlydp9EeQU9gAwhTtGIrDsBwtsP5OqR0HhOZS/g3/288OvItHG81VNNwtF5kHQvgSuUBaLqoq2eWCf+HgpsWSKM0W3OzuZy0okuvhsI5GyEGNoCxJ/czfCKG1GTitYC3MT5AW/tRe+kPDGDL7MFJvM4baRxKZJ9S+SMrcD78Xqy93MtheakzrWhYqHeq6lHLTHAIsI9RMMhbbfimL2ZI3q27FX8L+Npl/5y76RqRkBihgaiqs7UrrZgKRIcGwrloTgwKJ5my8aJ5dQMG5soL5lWotgRiC9dP0TSOZWzfS6ebJ8PzDU6P8dnPwlRZhJcAwKxvnTiUYNUJs7COJ5AGNoBbDS+HJycgItiMvb/kY/IPU8HUyU8HAgy6HPwnusy8y3OBhpEWDHq1RYRfQcFNC8W1jNSDcFbBgTUkWqVDsJPXjQ1ppZYoqk1EsepUSgkThlaokLzOgGXknsjUac/k1wuOdXDV/lewNrD+SfciH6FvPSYfMwPWuTbuLMvHfLyOS+wM1V5U79SNxiMBG6Bq6c8DlxCOPVyKyxTYtzX9sCdomu6WFQBwGSF42vIoNnGpOMh3dsmKFDKxaD3kb2B3ars/y1JVDJzQ6cEigQEwP/RjjP3rI/j+10tYsu2k/T0OLFZa0/FwwEaPCrNjUI5l5ky8UTde9bsi951tiH5MDNr5yiLD8VEholFYCV0tRBDaWvCCMYSxbIfokn5t+U780/w+QlWF7F4INNzMLBNNB3IobgbobSzXKORlCeZfH2WoBzaArFGWtFJLFNUKvXdkNsMDb1tGo2/127ir9nm8Z7kFPC8YwhmB44FiPhxPBKxzbSaoAA8gindM4ceg3N70UWk/5/kYTAjYKjTvlN0q8Hr4GkV32pFsLv4W8LVLRsBhK7ywpTmWh2W1Pf3YE2jN6A9sAOCjupvRlrmIfwSsRFvmIobW/MehieOh8TsRMPRp1e7R6jDAj5+6sR4Ppuwc0gJ+xtXxrk0n1VyTOR6qn5cS4nl7MGCTG+Otx3m34ng4Xt7hWdyv3EVb/TsniK1zua74k22t6B7N8UBVSAJw678hfDuNfo6SIEQFUW9zbflOLDNnIgY6K/Q8GWi4mVkmmg4U3DRxxE64E97dgxlrD2HCu3sw+LWtnmmjYBRRoKc1tSBpreCMc7sCUT+R79QF/CIfiamWGVhgvRscWORyXTEqYK9hZ1oejMPyRm74slMR4nadbiDibMQ+axckMpdUjN95RNZewE3Bv7juT7XpYT35aKValeWOlmlKwNd40bwakwI240XzahwLegBDmUP4X8D1mHT3vUjvcYV692jNAIIHKi+ikg0zPDYAwOULihYG4nfIuZN8AWLxdt1o8DDeLoJlgFYqzUX14PwRFiAWky0zMcUyEyWQ7w6u9N2We108ppcs9yCVPY7R7B58VHODw3vOy86zTIS121j5lighOqsoVYIQPX2gFPFkoKHZtZ3R34KB8EtoWqoJIz4BOV+XnRvLNQqqAj0bITHA7R+o9mCRelaInqZSUa1Siah2Q0B5mIhE/NJuvLbQ0nk9hdcV+9rYNBhDTOodwkVCawXnZBM49Lcdd2umRNcxPmmZghwupX5MTsLliwo3TjWcn4JY8Hg04GugDvi5oBOGJ/MOzSJdukfrvIHtsXTGTabDhscnuAjHIDrEjJIqVxdhte+Q3DSbXi7x4YjC5QZPeb1kuRcrrengwApBLD5ssAUAywCX+WC8al7h0OW9mBc+f1ln4JpeGHu6GGlyBnecFVg1VnvHKkGIqKkbYOjvVX4Ku0GouqgrZ5aJpgMFN02URusTpRdNgR4EXQVr0rxgyFV0cWBxIqQn9ijY37tdWfWX5bi64k9AXyPsBsEw9a7KWhQiGuNDDuAZ/gOHFhF6aIP66TI54bKVN/59cNEH2YK1hwM2ouu3d2JN7hn8I6O7EExLboxc3ldg972rez+7uB7GgxvbE7aJZfDAoA5449sTsotJhdlSNnGpYC08lgYuEo7NwK5X1KXjiYDPZPuUAfqDuot8tD1YFwJ1Yy00pPuV7jMM1XDOhYmWB/+23I4zfILLw4Jd9+bcEoWzGusZJ4PhPlAi3gg0lLq2UwuGZgEFN02URusTpRcPC/SGJycgIsiMnF8vAhDEz4XlNXji/w7JLu+2O23Fn7CGxaExn88u8WGIQoWqF040yvA6t9gtAap4LpTKa41qkpRgGCAAHCaaNmNF2SjHbKHtxsgCgM7gxsqzKOBboYiPMOSUbO09ESbbje+xmzrj7Z2nUFlr1b2+CRxeMK8SjknnOuLn9JZ1HH4PuBKzsdIh83MZwQhHte4eXdLvrzuBulIwpdZgdULANlnPJUWHcg9kOwz3gQptDYx+w3uBBrVgaLZQcNNEadQ+UXrwoEBPrKSQBm/rDvyBu/q3U1zH7XYF4fF462Qb3MeHoRVTob28BxCe9tfJl1MDeNlyL15Uudkq3TClTr1BLK+oaWio47MzVzKFwrgAPLvuCCKCzRjQMVbIGFbqzzqx4LDE/Ca2WntjWMBB3evN+74aA9vkIz0lESaWwaNDOuKNb101S0qMjPgVSRb9U1L1Wpb7EB8Vij3cQAwu72Of8voTgrnYQ+w3uNF0CCaVYFL6mYlBh9FA3WiTU8DVc0kkNixQ3aG8gdkO/X2gACa0NTDrGBCgp8SrAWg17SWaJCQobqL4pE+UGh4S6Ik6IuesVEFpNRZ9+zOGhZxABrsbA9g8h4oie1UM4ypmlYO3jcfaLg0rdv+OFXXpmus4Y7T6Rqxcecv6F1mBazEisaLuFiQyRUhilIM0NfHoPMt94MCiN46pbsOT/M7H2f+/pMqCe97bK4jaj/wBbJqjeztiBdlA00+G9n+iMgxTVh+wi+gfu+lqRIfWG8Cw4DCAzZP93sSEmbH4VmO6tALEYqpNsH1X/ytxobzWPuVVgwD827wcawJfxbCAgzAxPCp4s2wFlPNnxvFCb6oJd/wVNaEJbladGcM5S/Ty2BTtaezkDGDmUcEpefz7ws+ZR3RlV0RNHQcWLylUsQlGkYyQsfF2YEM0Wyhz00Qx3CdKpWOwJ7CCxcnez+OaHdMAm4ut42igmbJW0xGNELUjfLHdq8O5GeUmLhVTamfipcBVDjoVlxYEkiZ6uWdKUVJlwVv4Cx4I2IRWuKz5FMzxgjNuNcxIQr02ogCxyKpLw98CvhZK0mWyMuKNbBOXih+YVGRYNmIwcwR9TSfQminDw+Zv1HeuQAnCMUfi1OupDtlaWHkGH1lHuLxeUFqNlWvWID3QmCkfwwChqNWVjXDuKSXVmC24rQcmrz6g2cS0uMKCnyvC0F3H2BZbxmE3n4Jcrivio0KxbEyyQ7sMpWnAEFjAQPAdkhXxSqraWkcEYWyvtkDQ68CnE+2O0CJy56UhmThplujRIR0w6lqZQE/p2uFmtsPtPlAEYQAKbpooclVFIuK1zt5YzkvN4cQ+LlvyCvDlofMorojGSHaGay8knRcrJR2RkWaUm7hUfFvdD/3Z45gzOBopIUWo2/cBgioL7OtJL56Fh84BEDI/cywPC5b5KlUqYpAyx/IwtnD6q2+kN7LEqGAs7fMHuh56FSEokN+RATi+XiQq4qkO2Vpss/ZCncxlhEfDAiytG7ZYWv+y5V67ZkSqMUtPScRryb/hjlOZLus6f29OhvZAdw2hLB+ZhP5jXkf7CgtmSBy9c04JQTQLDvPN7wnuMApuxdUIxITa59AGZYpNIe2Z1gZWnWkhDQxjwsx4ZWwKRl2b5LCMrm7jblLvkt4L+8oe0u4DRRAGocaZTRw5fYpDYzkvNYeT26+ItPT43mH9kTp0jK6L1VeHzmHG2kMu23KnGaWYudo1+yaYwClmrXJOFWHCu3vs62k1qjzPuz5ty3UyBuDyWkigGe/c1w+pNd8j4LP7oTWBJla96cH5PLDgsD9osq5MVENwbiIpZYAHGp9q4Zy9W3RXL4zt1RbZR/5Ar3VDEMcXaX5vPn5kINJqvrf9nQCyjwoKfydWjsfg17bi9suf4EnzZ5rjVTtfMWFm7Pv7cMdpIc4K7F0ObHpOc9t6Eb91/9/evUc3Ue17AP9OQpu+oaXQUilQYYFglUp5WASuoJaHIPUCynEdLFf0UkSQy9GFoBdUUDwHXCAqD1+IL0DlInhEpB6k4KJIUUAeokeop9W2p2JpqQVbmsz9Yzohj5lkkiadafh+1mJp00myZ5qZ+WXv3/7tooErYe01TnHpFdfVxp1/3bxrB5G/uHDmFcTjOlFBWhxOrb6OTM4/EAAUfRWBL282uc1Gsq/e69BmpfwgXxejdNw7p9liKl3oA9MSkBAdjqq6BgDu9VDk5FC1b9vehj1kAoDn7+qL2j/+QNWW/0EHUXnxSUe+xCSux+E20yG33pxAch0SUtIO56X8IyEwq40rce2F6RgbgZ3Hy/Hmxo3YFP6b6hvLx2tU7BkMTBsLmO4AJr4J7JjrnATtpdfRbBKwaGwvDPpQ23Cip/XHlijlu5jMvhWvc106ITIBgAhcvDx8KvdcDlTZp8urjb8mNcHtGPp/7SBqKQxuQoDqOlFBWBzOU16MwqsrTkdX6vVJjrNg8oAubkXYtA5tqG1XWfsHYLPCemYvyo7ko67BCmuXIbjmxtEwt2kDs0nAkvHpePC9b+zPUaqH4tguuafmVtMh3Gd2Xw8pWXC+4co9aQCa8lDUb7rN1RHVTpWMg9Fr4zirS62wogk2LAx7ByKCO2tBnmG0KOxtHLfchMyu8fiPZV9ggMbPzfQboi4P3e6a7xzYRCUCI5/12jsxKqYY0DjTrr2gvOq2lO+Sovg7zcGNPLuo9CvnXkrgcs9ldAdpjOzCWaB4n9sQkHx+D/BaZM/3awdRS2JwEyBKPREtUjzPkyAsDuetvo4Sx+noqlWVz9dj5T/cp+9qzR1R2+6ac3tQ/9wCWBqqYZ9I/sNaVH8eg11XL0DqTZMxMj0Z04elYd3eYgDuw0xFtmvwXzd1w4rP/+l12Ep6PiAKAla03YSj/zkTA7t3AAAM+etuzTddf1Wind/VmrWqQAK2Nw7G/4a9rdpj1Zw22AAIPkxvlnthVtx4AV//6xzKa/5Apamdpuf27X2N+tDthd+AD6YCgpfhFx/Onz/C4gGHEjzto8OxeHy6ciKvTJ6J6K1I5pjnpdlFSsFG2lBpPz/K85h7J5/fA0zV2naIC0uSQTG4CQCveS96CcLicP7UzZGHm3zp9ZHZ69cIVYo9AJ6GR0aaDqJnwUrF5JW24u+YdHoB8k5VYm7sMCwa1wer72mH3R+9jrnWN5xuzBcjkxHe6W8ojzmOZy+t1NRuASKiLlYgq833gKkjCk//5tNN11eOx2GB+d2Avq4IAWaHVdYj8Aemt/m729/RcYjIgka/3k9OFPanx2lgh0Zsa/p8HrL1hFUUYIKouqK8IJiBq/oDL/VDs4ZufTh/Ft+bjXHitb59CXIqnqdy9gyeDaTnqL+GWgB3vlx6vCl/Rj6/NSekc2FJMijWuWkmT3VZHGtv6CIIi8P5UjdHgBTkydPR/en1iYuyoGbYkqbJ28774Tq92pE0NLMBUOkBkB9bFPYW/l1zATPe+QadyvOxzPY8Orn0OERe/DfMH+TiKdMr0mv7cOO11UqzoeSbhhysBXbhdgGCIGBV2DTcZjqEaW38m07uytYUaLhWNI7HBQiC8sKhgDREJOcq+cPvQxOTZP989jf9ALOgHNgATZ8k0QrkP6F96FaN/TzzIjYF5m43Iat7e4zPuApZ3dtr792Vi+e5vk9UIjBpA5C9WP25XnPvIAVwNqv9+Hn7nIp+XDuIWpLuwc3q1auRlpaGiIgIZGZmYt++fR63LygoQGZmJiIiInD11Vdj7dq1LdRSd97WdwKk2hvWwN7JtJO/8QFwD3C01Z5x5bpqtxrppmjDC4NqYT6xBSjeh8rzvlcArr5wCdXdRkFQWKW4Au1VV7+W1+fx1AMgCECKUIWBplMwwYaUwqegPINJBCDC0lDtc1G8hz4uw87j5fabhr3YILSslK1RXAqEu97CM4/Nw6p2mwKWzyMK0uXBl7oqJgFIEaS8lTIxwadCdHVimJSj42P7bQDEphut/PnUPA296DVt23kafnE6zzwY/dfmJd8qFc975Afg2hz3bW1WKafm2IfSbCuNAZx8/ESHz6lb8UH5f7iwJBmYrsHN5s2bMWfOHDz++OM4fPgwhg4ditGjR6OkpERx++LiYowZMwZDhw7F4cOHsWDBAsyePRtbtmxp4ZZLfFnfyWeOF6fifdLP/rB/43MZHotL8Wsqp1xfB/B8D7075giOxz+CgXtzgS3TgA1jMSr/Now0HfRxB5p6Pa65HchZCwx9FKXpM/GnhgUYUv+CYmAD+FZjpSOqMcB0Ckn4LWB5vnI14s9qr8aMd77Bubp6e1CYb+uPOvhbOVoAYlOAe7e7VYc1lxbCcqGi+fsQmQBkL4EZNr8TkjuiGhsbR8CXfpho4ZLvgY0Ud+KHGx4HTGb75zPgdX68Db/0uQO46+2m2UkuIhOk3wVi2rRcPO+6idJ/lYKLk9uBlenAhrHSuad1Gvnv/3Y6v3fZBipW0q6PTJa+bHAaOBmYrnVuBg0ahH79+mHNmjX2x3r37o2cnBwsXbrUbft58+Zh+/bt+O677+yP5eXl4ejRoygsLNT0noGsc6NUl0WJXHtDs2AU3QtwhWKlPKOE6DDcmXEV7oo5gp4FM12qFMt9IiJmNMzBToWgRKlejA0mfDayGr0OL3E6HkrTrR35UmNlcsMT6IhqrAp/SdP23sjfdOVeJbnmzoIxvTFr42HMMv+fppoo7rzUFzn2oXQz86ZdN6D6J/XfD54NdOqr7bVU1IiRaCtc1LStKAJ1iECM4Hs+l1x3aMxd/+10ju089jNu2DIMHVTq3GgnSOfenGPazhebFfjpS+kLiQCg6xD1ICQYVOtaaZD7d3sysuP5LZ+XPaPqMHZwhua6VUSB1irq3DQ0NODrr7/GY4895vR4dnY29u9XHt8uLCxEdrZzqfeRI0fi9ddfx6VLlxAWFub2nPr6etTX19t/Pn9eeSqmP4KyvpPGxD+fBXhxONX6OrABKydC6eIqQIQIAQvD3kZ+fX9YNdSL+Yd5GHoWbHN7PaXqxI6knIF4dIL60JQoAuVIwEHbNRhkOunXcVDiWlZf7sFbtP0ETLDhvjbu08cVRcY71SfxWulZa3JnjXLPqN3xLUCPW7W9lgpfAhsRwLrGsZoCvsWX7sFJsZtb3aGpLufYqOs6w2paAeGD3KZPnT/8GLo1mYGr/0P619I85tZ40hTAOeTPuJ/fg40xA5RII92Cm7Nnz8JqtSIpyfmCnJSUhIoK5ZL0FRUVits3Njbi7Nmz6NTJfWbS0qVL8dRTTwWu4Q58Xt/JmyAV3QsWxfo6xZ5r6wgQkSL8hpGxZ7CjtgcAz8sr/Nn2keKNybG+SX59f7eEYim3JVd6XYWkYrm/8qlL97o91zvnBS9ESPX1X28cjc/FTMWy+gBQVdeAG02nEC9oLK438U3p76y1t63rYCCqvfeVuEWb59+f/0U6QHEpEM+Xu/XABZIgACsuTcDL1hz8qc1ur5Wo11vHuFWi7qRyjpmvHS9N4/77HJ9WJ7drbWscea1rpUQ9gFOtn0XUCuieUCy43HVEUXR7zNv2So/L5s+fj5qaGvu/0tLSZrb4Mk/5J27rO2nhS9E9o9JY9+KlcSnY+MCNeOHu67A85j1AZfaNpyMnJ68ONJ1S/P1ntoH4qdc0TQm2HaCxR+/GB93ylxqikpF3aQ6WWKfggK2Px2BJcy5QZLzU0+Ytv8KRyQxcf7e21/fmwllg1F+bwrjgflv/SezkMYFVfv+nXWbFOZ1jsAFnCoB/LAF2LwFO75G+LPS5Q7pxazXyWZ9XujYMf2rO+Jl7R2R0uvXcJCYmwmw2u/XSVFZWuvXOyJKTkxW3b9OmDdq3V/6GYbFYYLFYAtNoBZdXuHWpuOtPnZsgFN1zEuSVwQFoHhoxxSYjK609UHwSaKhs1luqBQwJkSZ0Kv1E8dYsuPT8aE5A7TUGyF7idBzbpGbh22UFEFR68Bxpfp9BM/z72/QaAxxY7fvzXMUkSQGVwuKNWlbs9sWfbx2Aoq8i8FmNlMCqtEr0kWvn4eg3nQGlc8xUBCx7GLjomLi/TAoQx60CYjWeg1GJwKA8Q/SK+kXrsOTIZ6Vtg3UNIDIA3YKb8PBwZGZmIj8/H3feeaf98fz8fIwfP17xOVlZWfj444+dHtu1axf69++vmG/TUjyu7+SLIBTdswvSyuBu7NVU1VdYdhrfD0CF02H90rH9kPvjPeuPI1JUX3Vbrmw7x/whCsU+KBcTkKQyLCICaAxvh6/+WQlz428Y2H2I/e9rBlRXaHdlL0qo8j4ApNk1wx7x8CoeeD3+GkQmXP779LlDGgb9137Yaivw84/H0eGHjc6rRPtN+iwMvHkcvrzZ1HT+ZOBf0TORZD4Fc12l/QZ8g8mML29TqAJ+6mPg/SnKL3/xnPS7iRu0V/htzTd6redeaw7giDTSdbbU5s2bMWXKFKxduxZZWVl45ZVX8Oqrr+LEiRPo2rUr5s+fj19++QVvvSWtk1NcXIz09HRMnz4dDzzwAAoLC5GXl4eNGzdiwoQJmt7T0KuC26zSFE5vFyetMzdkQVoZ3Pv7weU9Fd6veJ80ZdUvAi5GJiH93HKn5GTZHab9Ps2AqhJjEI/f3WqtuPZUlIkJWBV2P27Ouc+pZ05tBllV3eW1sgDnHCP3AEdo/t+jOTNmACm4efRH9c+YzYoThTux7pP9SBSqsTDsHT/eJACfPZsVWHEtUOulUGZsCjBqKfBBrvo2g2crF8Jrid7OQPLl3CNqZXy5f+uac3P33Xdj5cqVePrpp5GRkYG9e/dix44d6Nq1KwCgvLzcqeZNWloaduzYgT179iAjIwOLFy/GqlWrNAc2uvClXk0Qiu75Up3UZ2r7pqW2TtNzbefLcA5x6pVQRbmEnitp7tWcmsmKgQ0An6vktmsKbKoR43G7ZFTh2Ut/w0fvrXWqQD0qvRO+nDdCyiWanIGND9yIA/NvdSt6+JlK/RDEXRWYm498/CPj/Xv+xSrPeV0mM67JGoOi2BHYYB3lX8XlQOR67F3uPbABgNoy4NfvPW/TeYD7Y671YjaMlX4+ud2/9raEANe1ImqtdO250UOL9tz4OxSk+Lyr/Ju5obVnxKHGhSZa9k3tW6/Cc+VPoeI6QCIAkwmCwyyfi5HJmFMzWbXODQBkmY5jY/iz2vcJ8qycBDx6aTpeCluFtqjzOHtnkmUt9j52m8chSHmJDsA5SDPDhgGmU5g/pJ20gGOgewVO7wHeVh7i9WrC61Iiswfyfo00HcRq1Z6oJrEpQOZUoH33wPSAnNyuPhylxHVavROFHtGW7u0MtNbW40SkQauocxPymlOvxiHPodkXp2AkKWvdN6XaOirP9bZMAkSbPRHSGt0RQ9+5gLNeeps0z4ByIOXhVKGXUIp4QX25CDlfJ/X3ozhYnOlxyqxa0nnHtlGYOu7P6BusxVXThvqff6Mhr+vyfkVgRi3cEoERlQhcf5eU5BzIm6u9N9IHqoEN4DQLMW1oqyvJoCjAda2IWhsGN8EQiItjoC5OgU5Sbs6++V1kzKGN103EwdO/4eyFA143b04J/i6CthlcHVGtaaX0gCWd+8JpNWlvqc4y94JunlzerwwUnZ+GHheOoXfsBZhik4PXW+BrPZeIdsAf1d63kwN8X0oyMIAgMiQGN8FgpIujr7OXvGnOvvlVZMxBUwCmJZgALs9M6iSc87kQ3TnLVYCGNKRKtNNcgVqXomhyDobrEKIi//K6Lu9XewBd/G2pdr7OsLvxQWCPhuFJOcAPdkkGIgo63Yv4hSQjXRwDnaTcnH3zc39FCFLOUVMApjWYEGFC+Y1PNu2lth4SEQLqozph9qPPQhRMqiGRKAKNogm/RKdrr0CtF6XVpOXp0Y5aS9Kp1l7G8FhpwcphjzTtq9pnwPnzFdSSDETUIthzEwxGuziqfXv3p7x8c/bNj/0VIUi3JIcATF72wtOK7ADw4uQMZGZcBXSN19xzIQCwjP0bUP61x2UKBAFoAxuez6pvHevtKA1z9hnXOpNOtdTyiUoE5n4HtAmXflYdnlMI8APd20lELY7BTTAY8eIYqCTl5uybl+eKACA4z4oSotpLxdUcAjB52YsZ73yj2rMyfVgaxsqrRCvte91vwK756sHeMW2rdg/s0KhpO0NqrUmnHnOJmoKVsSsuBzaAbwG+ltf3tSQDEbUoTgUPllAuptWcffP23KyHgKMbpbWNZCrT55WK5rWPDsfi8ekYc72GGUiepssGawo9BY4/JRN8mSIdyJIMRNRsvty/GdwEUyhfHJuzb2rPTZ8A7H8RvtQWsdoUSvIHYpgoWNWiKbCCXc+F9WKIDIPBjQctvvxCKF8cm7Nvrs9NHQSs6ushL0aHYCKUe9+IiFoZFvEzktaa16BFc/bN9bnF+4wzfV4WyERsIiJqMQxuyBiMNH3eUSCrRRMRUYtgcEPGYLTp845CufeNiCgEsYgfGYM8TVxroTUiIiIVDG7IGAJdSZmIiK5YDG7IOOQE3jiXGjWtZVkAIiIyBObckLEwgZeIiJqJwQ0ZDxN4iYioGTgsRURERCGFwQ0RERGFFAY3REREFFIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQh5YqrUCyKIgDg/PnzOreEiIiItJLv2/J93JMrLripra0FAKSmpurcEiIiIvJVbW0t2rZt63EbQdQSAoUQm82GsrIyxMbGQhCEZr3W+fPnkZqaitLSUsTFxQWohaGJx0o7HitteJy047HSjsdKGz2OkyiKqK2tRUpKCkwmz1k1V1zPjclkQufOnQP6mnFxcTwJNOKx0o7HShseJ+14rLTjsdKmpY+Ttx4bGROKiYiIKKQwuCEiIqKQwuCmGSwWCxYtWgSLxaJ3UwyPx0o7HitteJy047HSjsdKG6MfpysuoZiIiIhCG3tuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG4C6I477kCXLl0QERGBTp06YcqUKSgrK9O7WYby008/Ydq0aUhLS0NkZCS6d++ORYsWoaGhQe+mGdIzzzyDwYMHIyoqCu3atdO7OYayevVqpKWlISIiApmZmdi3b5/eTTKcvXv3Yty4cUhJSYEgCPjoo4/0bpIhLV26FAMGDEBsbCw6duyInJwcfP/993o3y5DWrFmD66+/3l68LysrC59++qnezXLD4CaAhg8fjvfffx/ff/89tmzZgtOnT2PixIl6N8tQTp06BZvNhnXr1uHEiRNYsWIF1q5diwULFujdNENqaGjApEmTMGPGDL2bYiibN2/GnDlz8Pjjj+Pw4cMYOnQoRo8ejZKSEr2bZih1dXXo27cvXnrpJb2bYmgFBQWYOXMmDhw4gPz8fDQ2NiI7Oxt1dXV6N81wOnfujOeeew6HDh3CoUOHMGLECIwfPx4nTpzQu2lOOBU8iLZv346cnBzU19cjLCxM7+YY1rJly7BmzRqcOXNG76YY1ptvvok5c+agurpa76YYwqBBg9CvXz+sWbPG/ljv3r2Rk5ODpUuX6tgy4xIEAVu3bkVOTo7eTTG8X3/9FR07dkRBQQGGDRumd3MMLyEhAcuWLcO0adP0boode26CpKqqCu+++y4GDx7MwMaLmpoaJCQk6N0MaiUaGhrw9ddfIzs72+nx7Oxs7N+/X6dWUSipqakBAF6XvLBardi0aRPq6uqQlZWld3OcMLgJsHnz5iE6Ohrt27dHSUkJtm3bpneTDO306dN48cUXkZeXp3dTqJU4e/YsrFYrkpKSnB5PSkpCRUWFTq2iUCGKIubOnYshQ4YgPT1d7+YY0rFjxxATEwOLxYK8vDxs3boVffr00btZThjcePHkk09CEASP/w4dOmTf/tFHH8Xhw4exa9cumM1m3HvvvbgSRv58PU4AUFZWhlGjRmHSpEm4//77dWp5y/PnWJE7QRCcfhZF0e0xIl899NBD+Pbbb7Fx40a9m2JYvXr1wpEjR3DgwAHMmDEDubm5OHnypN7NctJG7wYY3UMPPYTJkyd73KZbt272/09MTERiYiJ69uyJ3r17IzU1FQcOHDBcl12g+XqcysrKMHz4cGRlZeGVV14JcuuMxddjRc4SExNhNpvdemkqKyvdenOIfDFr1ixs374de/fuRefOnfVujmGFh4ejR48eAID+/fujqKgIL7zwAtatW6dzyy5jcOOFHKz4Q+6xqa+vD2STDMmX4/TLL79g+PDhyMzMxPr162EyXVkdiM35TJF0Yc3MzER+fj7uvPNO++P5+fkYP368ji2j1koURcyaNQtbt27Fnj17kJaWpneTWhVRFA13n2NwEyAHDx7EwYMHMWTIEMTHx+PMmTNYuHAhunfvHvK9Nr4oKyvDzTffjC5dumD58uX49ddf7b9LTk7WsWXGVFJSgqqqKpSUlMBqteLIkSMAgB49eiAmJkbfxulo7ty5mDJlCvr372/v/SspKWHulovff/8dP/74o/3n4uJiHDlyBAkJCejSpYuOLTOWmTNn4r333sO2bdsQGxtr7xVs27YtIiMjdW6dsSxYsACjR49GamoqamtrsWnTJuzZswc7d+7Uu2nORAqIb7/9Vhw+fLiYkJAgWiwWsVu3bmJeXp74888/6900Q1m/fr0IQPEfucvNzVU8Vl988YXeTdPdyy+/LHbt2lUMDw8X+/XrJxYUFOjdJMP54osvFD8/ubm5ejfNUNSuSevXr9e7aYZz33332c+7Dh06iLfccou4a9cuvZvlhnVuiIiIKKRcWckOREREFPIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQhhcENERERhRQGN0RERBRSGNwQUatitVoxePBgTJgwwenxmpoapKam4oknngAgrcs1btw4REdHIzExEbNnz0ZDQ4MeTSaiFsbghohaFbPZjA0bNmDnzp1499137Y/PmjULCQkJWLhwIaxWK26//XbU1dXhyy+/xKZNm7Blyxb85S9/0bHlRNRSuLYUEbVKq1atwpNPPonjx4+jqKgIkyZNwsGDB5GRkYFPP/0UY8eORWlpKVJSUgAAmzZtwtSpU1FZWYm4uDidW09EwcTghohaJVEUMWLECJjNZhw7dgyzZs2yD0ktXLgQ27Ztw9GjR+3bnzt3DgkJCdi9ezeGDx+uV7OJqAW00bsBRET+EAQBa9asQe/evXHdddfhscces/+uoqICSUlJTtvHx8cjPDwcFRUVLd1UImphzLkholbrjTfeQFRUFIqLi/Hzzz87/U4QBLftRVFUfJyIQguDGyJqlQoLC7FixQps27YNWVlZmDZtGuRR9uTkZLcemnPnzuHSpUtuPTpEFHoY3BBRq3Px4kXk5uZi+vTpuPXWW/Haa6+hqKgI69atAwBkZWXh+PHjKC8vtz9n165dsFgsyMzM1KvZRNRCmFBMRK3Oww8/jE8++QRHjx5FdHQ0AODVV1/F3LlzcezYMaSmpiIjIwNJSUlYtmwZqqqqMHXqVOTk5ODFF1/UufVEFGwMboioVSkoKMAtt9yCPXv2YMiQIU6/GzlyJBobG/H555+jtLQUDz74IHbv3o3IyEjcc889WL58OSwWi04tJ6KWwuCGiIiIQgpzboiIiCikMLghIiKikMLghoiIiEIKgxsiIiIKKQxuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG6IiIgopDC4ISIiopDC4IaIiIhCyv8D0JM2LP49U+EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "\n", + "########################### Experiment Settings ###############################\n", + "\n", + "\n", + "random_state = 29\n", + "\n", + "working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.\n", + "\n", + "simulation_method = 'linear'\n", + "n_features = 1 # The number of input features of X\n", + "n_grps = 2 # Number of batches in data\n", + "n_samples = 500 # Number of samples in each group (use a list for different\n", + "# sample numbers across different batches)\n", + "\n", + "model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'\n", + "\n", + "\n", + "############################## Data Simulation ################################\n", + "\n", + "\n", + "X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \\\n", + " simulate_data(simulation_method, n_samples, n_features, n_grps,\n", + " working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',\n", + " random_state=random_state)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "ename": "TypingError", + "evalue": "Failed in nopython mode pipeline (step: nopython frontend)\nFailed in nopython mode pipeline (step: nopython frontend)\nInvalid use of type(CPUDispatcher()) with parameters (readonly array(float64, 2d, C))\nKnown signatures:\n * (Array(float64, 2, 'A', False, aligned=True),) -> array(float64, 1d, A)\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /tmp/tmp01rwehf6 (7)\n\n\nFile \"../../../../../tmp/tmp01rwehf6\", line 7:\ndef numba_funcified_fgraph(_unconstrained_point, y, batch_effect_0_data, X):\n \n # Sum{axis=1}(X)\n tensor_variable_2 = careduce_axis(X)\n ^\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\n\nFile \"../../../anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py\", line 637:\n def extract_shared(x, user_data_):\n \n\n return inner(x, *_shared_tuple)\n ^\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypingError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[4], line 6\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m################################# Fittig and Predicting ###############################\u001b[39;00m\n\u001b[1;32m 3\u001b[0m nm \u001b[38;5;241m=\u001b[39m norm_init(X_train, Y_train, alg\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhbr\u001b[39m\u001b[38;5;124m'\u001b[39m, model_type\u001b[38;5;241m=\u001b[39mmodel_type, likelihood\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSHASHo\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 4\u001b[0m linear_sigma\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, random_intercept_mu\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, random_slope_mu\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, linear_epsilon\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFalse\u001b[39m\u001b[38;5;124m'\u001b[39m, linear_delta\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFalse\u001b[39m\u001b[38;5;124m'\u001b[39m, nuts_sampler\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnutpie\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 6\u001b[0m \u001b[43mnm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mY_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrbefile\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mworking_dir\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrbefile.pkl\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m yhat, ys2 \u001b[38;5;241m=\u001b[39m nm\u001b[38;5;241m.\u001b[39mpredict(X_test, tsbefile\u001b[38;5;241m=\u001b[39mworking_dir\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtsbefile.pkl\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;66;03m################################# Plotting Quantiles ###############################\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pcntoolkit-0.30.post2-py3.11.egg/pcntoolkit/normative_model/norm_hbr.py:286\u001b[0m, in \u001b[0;36mNormHBR.estimate\u001b[0;34m(self, X, y, **kwargs)\u001b[0m\n\u001b[1;32m 279\u001b[0m batch_effects_train \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mzeros([X\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatch_effects_maps \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 282\u001b[0m {v: i \u001b[38;5;28;01mfor\u001b[39;00m i, v \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(np\u001b[38;5;241m.\u001b[39munique(batch_effects_train[:, j]))}\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(batch_effects_train\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 284\u001b[0m ]\n\u001b[0;32m--> 286\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhbr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_effects_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 288\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pcntoolkit-0.30.post2-py3.11.egg/pcntoolkit/model/hbr.py:444\u001b[0m, in \u001b[0;36mHBR.estimate\u001b[0;34m(self, X, y, batch_effects, **kwargs)\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39midata\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m modeler(X, y, batch_effects, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfigs) \u001b[38;5;28;01mas\u001b[39;00m m:\n\u001b[0;32m--> 444\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39midata \u001b[38;5;241m=\u001b[39m \u001b[43mpm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 445\u001b[0m \u001b[43m \u001b[49m\u001b[43mdraws\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_samples\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 446\u001b[0m \u001b[43m \u001b[49m\u001b[43mtune\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_tuning\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 447\u001b[0m \u001b[43m \u001b[49m\u001b[43mchains\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_chains\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 448\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43minit\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 449\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_init\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m500000\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[43m \u001b[49m\u001b[43mcores\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcores\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[43m \u001b[49m\u001b[43mnuts_sampler\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnuts_sampler\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[43m \u001b[49m\u001b[43mprogressbar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 453\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvars_to_sample \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124my_like\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 455\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfigs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mremove_datapoints_from_posterior\u001b[39m\u001b[38;5;124m'\u001b[39m]:\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pymc/sampling/mcmc.py:725\u001b[0m, in \u001b[0;36msample\u001b[0;34m(draws, tune, chains, cores, random_seed, progressbar, progressbar_theme, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, blas_cores, model, **kwargs)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 721\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel can not be sampled with NUTS alone. Your model is probably not continuous.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 722\u001b[0m )\n\u001b[1;32m 724\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m joined_blas_limiter():\n\u001b[0;32m--> 725\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_sample_external_nuts\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 726\u001b[0m \u001b[43m \u001b[49m\u001b[43msampler\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnuts_sampler\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 727\u001b[0m \u001b[43m \u001b[49m\u001b[43mdraws\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdraws\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 728\u001b[0m \u001b[43m \u001b[49m\u001b[43mtune\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtune\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 729\u001b[0m \u001b[43m \u001b[49m\u001b[43mchains\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchains\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 730\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_accept\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnuts\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtarget_accept\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0.8\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 731\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_seed\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrandom_seed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 732\u001b[0m \u001b[43m \u001b[49m\u001b[43minitvals\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitvals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 733\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 734\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvar_names\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 735\u001b[0m \u001b[43m \u001b[49m\u001b[43mprogressbar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprogressbar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 736\u001b[0m \u001b[43m \u001b[49m\u001b[43midata_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43midata_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 737\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_convergence_checks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcompute_convergence_checks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 738\u001b[0m \u001b[43m \u001b[49m\u001b[43mnuts_sampler_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnuts_sampler_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 739\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 740\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 742\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(step, \u001b[38;5;28mlist\u001b[39m):\n\u001b[1;32m 743\u001b[0m step \u001b[38;5;241m=\u001b[39m CompoundStep(step)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pymc/sampling/mcmc.py:307\u001b[0m, in \u001b[0;36m_sample_external_nuts\u001b[0;34m(sampler, draws, tune, chains, target_accept, random_seed, initvals, model, var_names, progressbar, idata_kwargs, compute_convergence_checks, nuts_sampler_kwargs, **kwargs)\u001b[0m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m var_names \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 303\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 304\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`var_names` are currently ignored by the nutpie sampler\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 305\u001b[0m \u001b[38;5;167;01mUserWarning\u001b[39;00m,\n\u001b[1;32m 306\u001b[0m )\n\u001b[0;32m--> 307\u001b[0m compiled_model \u001b[38;5;241m=\u001b[39m \u001b[43mnutpie\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_pymc_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 308\u001b[0m t_start \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 309\u001b[0m idata \u001b[38;5;241m=\u001b[39m nutpie\u001b[38;5;241m.\u001b[39msample(\n\u001b[1;32m 310\u001b[0m compiled_model,\n\u001b[1;32m 311\u001b[0m draws\u001b[38;5;241m=\u001b[39mdraws,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mnuts_sampler_kwargs,\n\u001b[1;32m 318\u001b[0m )\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py:391\u001b[0m, in \u001b[0;36mcompile_pymc_model\u001b[0;34m(model, backend, gradient_backend, **kwargs)\u001b[0m\n\u001b[1;32m 388\u001b[0m backend \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumba\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m backend\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumba\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 391\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_compile_pymc_model_numba\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 392\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m backend\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mjax\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 393\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _compile_pymc_model_jax(\n\u001b[1;32m 394\u001b[0m model, gradient_backend\u001b[38;5;241m=\u001b[39mgradient_backend, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 395\u001b[0m )\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py:207\u001b[0m, in \u001b[0;36m_compile_pymc_model_numba\u001b[0;34m(model, **kwargs)\u001b[0m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings():\n\u001b[1;32m 201\u001b[0m warnings\u001b[38;5;241m.\u001b[39mfilterwarnings(\n\u001b[1;32m 202\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 203\u001b[0m message\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot cache compiled function .* as it uses dynamic globals\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 204\u001b[0m category\u001b[38;5;241m=\u001b[39mnumba\u001b[38;5;241m.\u001b[39mNumbaWarning,\n\u001b[1;32m 205\u001b[0m )\n\u001b[0;32m--> 207\u001b[0m logp_numba \u001b[38;5;241m=\u001b[39m \u001b[43mnumba\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mc_sig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlogp_numba_raw\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 209\u001b[0m expand_shared_names \u001b[38;5;241m=\u001b[39m [var\u001b[38;5;241m.\u001b[39mname \u001b[38;5;28;01mfor\u001b[39;00m var \u001b[38;5;129;01min\u001b[39;00m expand_fn_pt\u001b[38;5;241m.\u001b[39mget_shared()]\n\u001b[1;32m 210\u001b[0m expand_numba_raw, c_sig_expand \u001b[38;5;241m=\u001b[39m _make_c_expand_func(\n\u001b[1;32m 211\u001b[0m n_dim, n_expanded, expand_fn, user_data, expand_shared_names, shared_data\n\u001b[1;32m 212\u001b[0m )\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/decorators.py:275\u001b[0m, in \u001b[0;36mcfunc..wrapper\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cache:\n\u001b[1;32m 274\u001b[0m res\u001b[38;5;241m.\u001b[39menable_caching()\n\u001b[0;32m--> 275\u001b[0m \u001b[43mres\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_lock.py:35\u001b[0m, in \u001b[0;36m_CompilerLock.__call__.._acquire_compile_lock\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_acquire_compile_lock\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 35\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/ccallback.py:68\u001b[0m, in \u001b[0;36mCFunc.compile\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 65\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cache\u001b[38;5;241m.\u001b[39mload_overload(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig,\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_targetdescr\u001b[38;5;241m.\u001b[39mtarget_context)\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cres \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 68\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_uncached\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cache\u001b[38;5;241m.\u001b[39msave_overload(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig, cres)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/ccallback.py:82\u001b[0m, in \u001b[0;36mCFunc._compile_uncached\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 79\u001b[0m sig \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig\n\u001b[1;32m 81\u001b[0m \u001b[38;5;66;03m# Compile native function as well as cfunc wrapper\u001b[39;00m\n\u001b[0;32m---> 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile\u001b[49m\u001b[43m(\u001b[49m\u001b[43msig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:84\u001b[0m, in \u001b[0;36m_FunctionCompiler.compile\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m retval\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 84\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m retval\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:94\u001b[0m, in \u001b[0;36m_FunctionCompiler._compile_cached\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 94\u001b[0m retval \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_core\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m errors\u001b[38;5;241m.\u001b[39mTypingError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_failed_cache[key] \u001b[38;5;241m=\u001b[39m e\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:107\u001b[0m, in \u001b[0;36m_FunctionCompiler._compile_core\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 104\u001b[0m flags \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_customize_flags(flags)\n\u001b[1;32m 106\u001b[0m impl \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_implementation(args, {})\n\u001b[0;32m--> 107\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[43mcompiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_extra\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetdescr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtyping_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetdescr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtarget_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43mimpl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 111\u001b[0m \u001b[43m \u001b[49m\u001b[43mflags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mflags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mlocals\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 112\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipeline_class\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpipeline_class\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;66;03m# Check typing error if object mode is used\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cres\u001b[38;5;241m.\u001b[39mtyping_error \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m flags\u001b[38;5;241m.\u001b[39menable_pyobject:\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:744\u001b[0m, in \u001b[0;36mcompile_extra\u001b[0;34m(typingctx, targetctx, func, args, return_type, flags, locals, library, pipeline_class)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Compiler entry point\u001b[39;00m\n\u001b[1;32m 721\u001b[0m \n\u001b[1;32m 722\u001b[0m \u001b[38;5;124;03mParameter\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 740\u001b[0m \u001b[38;5;124;03m compiler pipeline\u001b[39;00m\n\u001b[1;32m 741\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 742\u001b[0m pipeline \u001b[38;5;241m=\u001b[39m pipeline_class(typingctx, targetctx, library,\n\u001b[1;32m 743\u001b[0m args, return_type, flags, \u001b[38;5;28mlocals\u001b[39m)\n\u001b[0;32m--> 744\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_extra\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:438\u001b[0m, in \u001b[0;36mCompilerBase.compile_extra\u001b[0;34m(self, func)\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mlifted \u001b[38;5;241m=\u001b[39m ()\n\u001b[1;32m 437\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mlifted_from \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 438\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_bytecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:506\u001b[0m, in \u001b[0;36mCompilerBase._compile_bytecode\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 503\u001b[0m \u001b[38;5;124;03mPopulate and run pipeline for bytecode input\u001b[39;00m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 505\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfunc_ir \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 506\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_core\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:485\u001b[0m, in \u001b[0;36mCompilerBase._compile_core\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 483\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstatus\u001b[38;5;241m.\u001b[39mfail_reason \u001b[38;5;241m=\u001b[39m e\n\u001b[1;32m 484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_final_pipeline:\n\u001b[0;32m--> 485\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 486\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CompilerError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAll available pipelines exhausted\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:472\u001b[0m, in \u001b[0;36mCompilerBase._compile_core\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 470\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 472\u001b[0m \u001b[43mpm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 473\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mcr \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:368\u001b[0m, in \u001b[0;36mPassManager.run\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 365\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed in \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m mode pipeline (step: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m \\\n\u001b[1;32m 366\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline_name, pass_desc)\n\u001b[1;32m 367\u001b[0m patched_exception \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_patch_error(msg, e)\n\u001b[0;32m--> 368\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m patched_exception\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:356\u001b[0m, in \u001b[0;36mPassManager.run\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 354\u001b[0m pass_inst \u001b[38;5;241m=\u001b[39m _pass_registry\u001b[38;5;241m.\u001b[39mget(pss)\u001b[38;5;241m.\u001b[39mpass_inst\n\u001b[1;32m 355\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(pass_inst, CompilerPass):\n\u001b[0;32m--> 356\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_runPass\u001b[49m\u001b[43m(\u001b[49m\u001b[43midx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpass_inst\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 357\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLegacy pass in use\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_lock.py:35\u001b[0m, in \u001b[0;36m_CompilerLock.__call__.._acquire_compile_lock\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_acquire_compile_lock\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 35\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:311\u001b[0m, in \u001b[0;36mPassManager._runPass\u001b[0;34m(self, index, pss, internal_state)\u001b[0m\n\u001b[1;32m 309\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m check(pss\u001b[38;5;241m.\u001b[39mrun_initialization, internal_state)\n\u001b[1;32m 310\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m SimpleTimer() \u001b[38;5;28;01mas\u001b[39;00m pass_time:\n\u001b[0;32m--> 311\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43mcheck\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_pass\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minternal_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m SimpleTimer() \u001b[38;5;28;01mas\u001b[39;00m finalize_time:\n\u001b[1;32m 313\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m check(pss\u001b[38;5;241m.\u001b[39mrun_finalizer, internal_state)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:273\u001b[0m, in \u001b[0;36mPassManager._runPass..check\u001b[0;34m(func, compiler_state)\u001b[0m\n\u001b[1;32m 272\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcheck\u001b[39m(func, compiler_state):\n\u001b[0;32m--> 273\u001b[0m mangled \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcompiler_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mangled \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[1;32m 275\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCompilerPass implementations should return True/False. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCompilerPass with name \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m did not.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typed_passes.py:112\u001b[0m, in \u001b[0;36mBaseTypeInference.run_pass\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 107\u001b[0m \u001b[38;5;124;03mType inference and legalization\u001b[39;00m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m fallback_context(state, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFunction \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m failed type inference\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;241m%\u001b[39m (state\u001b[38;5;241m.\u001b[39mfunc_id\u001b[38;5;241m.\u001b[39mfunc_name,)):\n\u001b[1;32m 111\u001b[0m \u001b[38;5;66;03m# Type inference\u001b[39;00m\n\u001b[0;32m--> 112\u001b[0m typemap, return_type, calltypes, errs \u001b[38;5;241m=\u001b[39m \u001b[43mtype_inference_stage\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtypingctx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 114\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetctx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 115\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_ir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 119\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_errors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raise_errors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 120\u001b[0m state\u001b[38;5;241m.\u001b[39mtypemap \u001b[38;5;241m=\u001b[39m typemap\n\u001b[1;32m 121\u001b[0m \u001b[38;5;66;03m# save errors in case of partial typing\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typed_passes.py:93\u001b[0m, in \u001b[0;36mtype_inference_stage\u001b[0;34m(typingctx, targetctx, interp, args, return_type, locals, raise_errors)\u001b[0m\n\u001b[1;32m 91\u001b[0m infer\u001b[38;5;241m.\u001b[39mbuild_constraint()\n\u001b[1;32m 92\u001b[0m \u001b[38;5;66;03m# return errors in case of partial typing\u001b[39;00m\n\u001b[0;32m---> 93\u001b[0m errs \u001b[38;5;241m=\u001b[39m \u001b[43minfer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpropagate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mraise_errors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_errors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 94\u001b[0m typemap, restype, calltypes \u001b[38;5;241m=\u001b[39m infer\u001b[38;5;241m.\u001b[39munify(raise_errors\u001b[38;5;241m=\u001b[39mraise_errors)\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _TypingResults(typemap, restype, calltypes, errs)\n", + "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typeinfer.py:1091\u001b[0m, in \u001b[0;36mTypeInferer.propagate\u001b[0;34m(self, raise_errors)\u001b[0m\n\u001b[1;32m 1088\u001b[0m force_lit_args \u001b[38;5;241m=\u001b[39m [e \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m errors\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, ForceLiteralArg)]\n\u001b[1;32m 1090\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m force_lit_args:\n\u001b[0;32m-> 1091\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m errors[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 1092\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1093\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m reduce(operator\u001b[38;5;241m.\u001b[39mor_, force_lit_args)\n", + "\u001b[0;31mTypingError\u001b[0m: Failed in nopython mode pipeline (step: nopython frontend)\nFailed in nopython mode pipeline (step: nopython frontend)\nInvalid use of type(CPUDispatcher()) with parameters (readonly array(float64, 2d, C))\nKnown signatures:\n * (Array(float64, 2, 'A', False, aligned=True),) -> array(float64, 1d, A)\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /tmp/tmp01rwehf6 (7)\n\n\nFile \"../../../../../tmp/tmp01rwehf6\", line 7:\ndef numba_funcified_fgraph(_unconstrained_point, y, batch_effect_0_data, X):\n \n # Sum{axis=1}(X)\n tensor_variable_2 = careduce_axis(X)\n ^\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\n\nFile \"../../../anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py\", line 637:\n def extract_shared(x, user_data_):\n \n\n return inner(x, *_shared_tuple)\n ^\n" + ] + } + ], + "source": [ + "\n", + "################################# Fittig and Predicting ###############################\n", + "\n", + "nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo',\n", + " linear_sigma='True', random_intercept_mu='True', random_slope_mu='True', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie')\n", + "\n", + "nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')\n", + "yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')\n", + "\n", + "\n", + "################################# Plotting Quantiles ###############################\n", + "\n", + "\n", + "for i in range(n_features):\n", + " sorted_idx = X_test[:, i].argsort(axis=0).squeeze()\n", + " temp_X = X_test[sorted_idx, i]\n", + " temp_Y = Y_test[sorted_idx,]\n", + " temp_be = grp_id_test[sorted_idx, :].squeeze()\n", + " temp_yhat = yhat[sorted_idx,]\n", + " temp_s2 = ys2[sorted_idx,]\n", + "\n", + " plt.figure()\n", + " for j in range(n_grps):\n", + " scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,],\n", + " label='Group' + str(j))\n", + " # Showing the quantiles\n", + " resolution = 200\n", + " synth_X = np.linspace(-3, 3, resolution)\n", + " q = nm.get_mcmc_quantiles(\n", + " synth_X, batch_effects=j*np.ones(resolution))\n", + " col = scat1.get_facecolors()[0]\n", + " plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0)\n", + "\n", + " plt.title('Model %s, Feature %d' % (model_type, i))\n", + " plt.legend()\n", + " plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "dev_216", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 447f383f0e44b6bc7b7772f14ba42041e1acbbee Mon Sep 17 00:00:00 2001 From: AuguB Date: Thu, 3 Oct 2024 10:50:32 +0200 Subject: [PATCH 10/68] Fix shape problem that arises when using nutpie sampler --- pcntoolkit/model/hbr.py | 21 +- tests/test_HBR.ipynb | 605 ++++++++++++++++++++++++++++++++++------ 2 files changed, 537 insertions(+), 89 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 4d051b38..2237a203 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -1013,8 +1013,8 @@ def get_samples(self, pb: ParamBuilder): :return: The samples from the parameterization. """ with pb.model: - samples = self.dist[pb.batch_effect_indices] - return samples + return self.dist[pb.batch_effect_indices] + class NonCentralRandomFixedParameterization(Parameterization): @@ -1072,8 +1072,7 @@ def get_samples(self, pb: ParamBuilder): :return: The samples from the parameterization. """ with pb.model: - samples = self.dist[pb.batch_effect_indices] - return samples + return self.dist[pb.batch_effect_indices] class LinearParameterization(Parameterization): @@ -1109,15 +1108,19 @@ def get_samples(self, pb): :return: The samples from the parameterization. """ with pb.model: - intc = self.intercept_parameterization.get_samples(pb) + intercept_samples = self.intercept_parameterization.get_samples(pb) slope_samples = self.slope_parameterization.get_samples(pb) + if pb.configs[f"random_slope_{self.name}"]: - slope = pb.X * slope_samples - slope = slope.sum(axis=-1) + if slope_samples.shape.eval()[1] > 1: + slope = pm.math.sum( + pb.X * slope_samples, axis=1) + else: + slope = pb.X *slope_samples else: - slope = pb.X @ self.slope_parameterization.get_samples(pb) + slope = pb.X @ slope_samples - samples = pm.math.flatten(intc) + pm.math.flatten(slope) + samples = pm.math.flatten(intercept_samples) + pm.math.flatten(slope) return samples diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb index 1abbd02d..70dd46ee 100644 --- a/tests/test_HBR.ipynb +++ b/tests/test_HBR.ipynb @@ -2,21 +2,11 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", - "\n", - "\"\"\"\n", - "Created on Mon Jul 29 13:26:35 2019\n", - "\n", - "@author: seykia\n", - "\n", - "This script tests HBR models with default configs on toy data.\n", - "\n", - "\"\"\"\n", - "\n", "import os\n", "import numpy as np\n", "from pcntoolkit.normative_model.norm_utils import norm_init\n", @@ -24,111 +14,560 @@ "import matplotlib.pyplot as plt\n", "from pcntoolkit.normative import estimate\n", "from warnings import filterwarnings\n", - "filterwarnings('ignore')\n" + "filterwarnings('ignore')\n", + "\n", + "plt.rcParams.update({'font.size': 8, 'figure.figsize': (5, 3)})\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDjElEQVR4nOydeXwTdfrHPzNpel+00AsRORQoRe5KARGVoyIUVtQVD8Rr5VBAPBBXZVFXcGXXggh4IQoKP1c8imABl0ukUJBDsCCCiAgtlZYe9Ewz8/tjMukkmTNNmrR93q8X1iZzfGeSzjzzfD/P52F4nudBEARBEATRTGB9PQCCIAiCIAhPQsENQRAEQRDNCgpuCIIgCIJoVlBwQxAEQRBEs4KCG4IgCIIgmhUU3BAEQRAE0ayg4IYgCIIgiGZFgK8H0NhwHIfz588jIiICDMP4ejgEQRAEQeiA53mUl5cjKSkJLKuem2lxwc358+fRrl07Xw+DIAiCIAg3OHv2LK644grVZVpccBMREQFAODmRkZE+Hg1BEARBEHooKytDu3bt7PdxNVpccCNORUVGRlJwQxAEQRBNDD2SEhIUEwRBEATRrKDghiAIgiCIZgUFNwRBEARBNCtanOZGL1arFRaLxdfDIJwwm80wmUy+HgZBEAThx1Bw4wTP8ygoKEBJSYmvh0IoEB0djYSEBPIpIgiCIGSh4MYJMbCJi4tDaGgo3UD9CJ7nUVlZicLCQgBAYmKij0dEEARB+CMU3EiwWq32wCY2NtbXwyFkCAkJAQAUFhYiLi6OpqgIgiAIF0hQLEHU2ISGhvp4JIQa4udDmiiCIAhCDgpuZKCpKP+GPh+CIAhCDZqWIgiCIIimBmcFzuwGLl8AwuOB9gMBlqbpRSi4IQiCIIimRF4WkD0bKDtf/1pkEpD+GpCc4btx+RE0LUUQBEEQTYW8LODTiY6BDQCU5Quv52X5Zlx+BgU3XsLK8cg5VYSvDp1DzqkiWDne6/ssKCjAjBkz0LlzZwQHByM+Ph6DBw/G8uXLUVlZ6fX9u0tNTQ0ef/xxtG7dGmFhYcjIyMAff/zh62ERBEH4F5xVyNhA7n5iey37WWG5Fg5NS3mB7KP5mLc+D/ml1fbXEqOCMXdMMtJTvOPN8uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+XSlxWKB2Wz2yrj0MHPmTKxfvx5r165FbGwsnnzySYwePRo//PADlXoTBEGInNntmrFxgAfKzgnLdbi+0Yblj1DmxsNkH83HlNUHHAIbACgorcaU1QeQfTTfK/udOnUqAgICsH//ftx5553o1q0bevTogfHjx2PDhg0YM2aMfVmGYbB8+XKMHTsWYWFheOWVVwAAy5YtQ6dOnRAYGIguXbpg1apV9nV+++03MAyDQ4cO2V8rKSkBwzDYvn07AGD79u1gGAYbNmxAz549ERwcjOuuuw5HjhxRHHdpaSnef/99/Pvf/8awYcPQu3dvrF69GkeOHMG3337r2ZNEEATRlLl8wbPLNWMouPEgVo7HvPV5aglDzFuf5/EpqqKiImzevBnTpk1DWFiY7DLO5dNz587F2LFjceTIETz44IP44osvMGPGDDz55JM4evQoHn30UTzwwAPYtm2b4fE8/fTTWLhwIfbt24e4uDhkZGQoetL88MMPsFgsGDFihP21pKQkpKSkYPfu3Yb3TRAE0WwJj/fscs0YCm48SO7pYpeMjRQeQH5pNXJPF3t0vydPngTP8+jSpYvD661bt0Z4eDjCw8Mxe/Zsh/fuvvtuPPjgg+jYsSPat2+PhQsXYtKkSZg6dSquueYazJo1C7fddhsWLlxoeDxz587F8OHD0aNHD3z44Ye4cOECvvjiC9llCwoKEBgYiFatWjm8Hh8fj4KCAsP7JgiCaLa0HyhURUHJ64sBItsKy7VwKLjxIIXlyoGNO8sZxTk7k5ubi0OHDqF79+6oqalxeK9fv34Ovx87dgyDBg1yeG3QoEE4duyY4XGkpaXZ/z8mJgZdunQxvB2e58msjyAIQgprEsq9AbgGOLbf0xeQ3w0ouPEocRHBHl1OL507dwbDMDh+/LjD6x07dkTnzp3t/ZikyE1fOQcT0gCDZVn7ayJG2h8oBSoJCQmora3FpUuXHF4vLCxEfDylVgmCIBxIzgDu/AiIdCpOiUwSXiefGwAU3HiU1A4xSIwKVksYIjEqGKkdYjy639jYWAwfPhxLlixBRUWFW9vo1q0bdu3a5fDa7t270a1bNwBAmzZtAAD5+fWCaKm4WMqePXvs/3/p0iWcOHECXbt2lV22b9++MJvN2LJli/21/Px8HD16FAMHUmqVIAjCheQMYOZR4P6vgfHvCz9nHqHARgKVgnsQE8tg7phkTFl9AAwcnQjEgGfumGSYWM9PtyxduhSDBg1Cv3798I9//APXXnstWJbFvn37cPz4cfTt21d1/aeffhp33nkn+vTpg5tvvhnr16/H559/bq9YCgkJwYABA7BgwQJcddVVuHjxIp5//nnZbb300kuIjY1FfHw8/v73v6N169YYN26c7LJRUVF46KGH8OSTTyI2NhYxMTF46qmn0KNHDwwbNqxB54QgCKLZwppafLm3GpS58TDpKYlYdm8fJEQ5Tj0lRAVj2b19vOZz06lTJxw8eBDDhg3DnDlz0LNnT/Tr1w9vvvkmnnrqKbz88suq648bNw6LFi3C66+/ju7du+Ptt9/GBx98gKFDh9qXWbFiBSwWC/r164cZM2bYS8idWbBgAWbMmIG+ffsiPz8fWVlZCAwMVNz3G2+8gXHjxuHOO+/EoEGDEBoaivXr15PHDUEQBOEWDC8VUbQAysrKEBUVhdLSUkRGRjq8V11djdOnT6NDhw4IDm6YLsbK8cg9XYzC8mrERQhTUd7I2PgT27dvx4033ohLly4hOjraa/vx5OdEEARBNA3U7t/O+DRzs2zZMlx77bWIjIxEZGQk0tLS8M0336ius2PHDvTt2xfBwcHo2LEjli9f3kijNYaJZZDWKRZje7VFWqfYZh/YEARBEIS/4NPg5oorrsCCBQuwf/9+7N+/HzfddBPGjh2Ln376SXb506dPY9SoUbj++utx8OBBPPfcc5g+fTrWrVvXyCMnCIIgCMJf8btpqZiYGLz++ut46KGHXN6bPXs2srKyHDxTJk+ejMOHDyMnJ0d2ezU1NQ4eL2VlZWjXrp3Xp6UI70GfE0EQRMujyUxLSbFarVi7di0qKiocTOCk5OTkONj0A8DIkSOxf/9+Rc+V+fPnIyoqyv6vXbt2Hh87QRAEQRD+g8+DmyNHjiA8PBxBQUGYPHkyvvjiCyQnJ8suW1BQ4GLsFh8fj7q6Oly8eFF2nTlz5qC0tNT+7+zZsx4/BoIgCIIg/Aef+9x06dIFhw4dQklJCdatW4f7778fO3bsUAxw5Fx05V4XCQoKQlBQkGcHTRAEQTQtOCtwZrfQMTs8Xui/RG0Kmi0+D24CAwPRuXNnAEK/o3379mHRokV4++23XZZNSEhwaaZYWFiIgIAAxMbGNsp4CYIgiCZGXhaQPRsoO1//WmSS0KeJXH2bJT6flnKG53mXJo8iaWlpDjb9ALB582b069cPZrO5MYZHEARBNCXysoBPJzoGNgBQli+8npflm3ERXsWnwc1zzz2H7777Dr/99huOHDmCv//979i+fTvuueceAIJeZuLEifblJ0+ejDNnzmDWrFk4duwYVqxYgffffx9PPfWUrw6BIAiC8Fc4q5CxgVxRsO217GeF5YhmhU+DmwsXLuC+++5Dly5dcPPNN2Pv3r3Izs7G8OHDAQgNFH///Xf78h06dMDGjRuxfft29OrVCy+//DIWL16M8ePH++oQ/IqCggLMmDEDnTt3RnBwMOLj4zF48GAsX74clZWVvh6eIu+88w6GDh2KyMhIMAyDkpISXw+JIIjmwJndrhkbB3ig7JywHNGs8Knm5v3331d9f+XKlS6v3XDDDThw4ICXRuRBGlm89uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+blli8Xi02m9yspKpKenIz09HXPmzPHZOAiCaGZcvuDZ5Ygmg99pbpoFeVlAZgrw4Whg3UPCz8wUr87tTp06FQEBAdi/fz/uvPNOdOvWDT169MD48eOxYcMGjBkzxr4swzBYvnw5xo4di7CwMHsDzGXLlqFTp04IDAxEly5dsGrVKvs6v/32GxiGwaFDh+yvlZSUgGEYbN++HYDQW4phGGzYsAE9e/ZEcHAwrrvuOhw5ckR17DNnzsSzzz6LAQMGeO6EEARBhMdrL2NkOaLJQMGNp/GBeK2oqAibN2/GtGnTEBYWJruMc6n83LlzMXbsWBw5cgQPPvggvvjiC8yYMQNPPvkkjh49ikcffRQPPPAAtm3bZng8Tz/9NBYuXIh9+/YhLi4OGRkZiiaLBEEQXqP9QKEqCkq9/Rggsq2wHNGsoODGk/hIvHby5EnwPI8uXbo4vN66dWuEh4cjPDwcs2fPdnjv7rvvxoMPPoiOHTuiffv2WLhwISZNmoSpU6fimmuuwaxZs3Dbbbdh4cKFhsczd+5cDB8+HD169MCHH36ICxcu4IsvvmjQMRIEQRiGNQnl3gBcAxzb7+kLyO+mGULBjSfxsXjNOTuTm5uLQ4cOoXv37i7l9f369XP4/dixYxg0aJDDa4MGDXLo46UXafuMmJgYdOnSxa3tEARBNJjkDODOj4DIRMfXI5OE18nnplnicxO/ZoWPxGudO3cGwzA4fvy4w+sdO3YEAISEhLisIzd9Jef+LL7Gsqz9NREjU01KDtIEQRBeJzkD6HorORS3IChz40l8JF6LjY3F8OHDsWTJElRUVLi1jW7dumHXrl0Or+3evRvdunUDALRp0waAUJ4vIhUXS9mzZ4/9/y9duoQTJ06ga9eubo2LIAjCI7AmoMP1QI/bhZ8U2DRrKHPjSUTxWlk+5HU3jPC+F8RrS5cuxaBBg9CvXz/84x//wLXXXguWZbFv3z4cP34cffv2VV3/6aefxp133ok+ffrg5ptvxvr16/H555/j22+/BSBkfwYMGIAFCxbgqquuwsWLF/H888/Lbuull15CbGws4uPj8fe//x2tW7fGuHHjFPddUFCAgoICnDx5EoDQTDUiIgJXXnklYmJi3DshBEEQRIuFMjeexIfitU6dOuHgwYMYNmwY5syZg549e6Jfv35488038dRTT+Hll19WXX/cuHFYtGgRXn/9dXTv3h1vv/02PvjgAwwdOtS+zIoVK2CxWNCvXz/MmDHDXkLuzIIFCzBjxgz07dsX+fn5yMrKQmBgoOK+ly9fjt69e+ORRx4BAAwZMgS9e/dGVhbZohMEQRDGYXipiKIFUFZWhqioKJSWliIyMtLhverqapw+fRodOnRAcHCw+zuRbdLWVghsmrF4bfv27bjxxhtx6dIlREdHe20/HvucCIIgiCaD2v3bGZqW8gYkXiMIgiAIn0HBjbcQxWsEQRAEQTQqFNwQHmPo0KFoYbOcBEEQhB9CgmKCIAiCIJoVFNzIQNkH/4Y+H4IgCEINCm4kmM1mAEBlZaWPR0KoIX4+4udFEARBEFJIcyPBZDIhOjoahYWFAIDQ0FBqG+BH8DyPyspKFBYWIjo6GiYTVZ8RBEEQrlBw40RCQgIA2AMcwv+Ijo62f04EQRAE4QwFN04wDIPExETExcUZagxJNA5ms5kyNgRBEIQqFNwoYDKZ6CZKEARBEE0QEhQTBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWRHg6wEQBEEQzQDOCpzZDVy+AITHA+0HAqzJ16MiWig+zdzMnz8f/fv3R0REBOLi4jBu3Dj8/PPPquts374dDMO4/Dt+/HgjjZogCIJwIC8LyEwBPhwNrHtI+JmZIrxOED7Ap8HNjh07MG3aNOzZswdbtmxBXV0dRowYgYqKCs11f/75Z+Tn59v/XX311Y0wYoIgCMKBvCzg04lA2XnH18vyhdcpwCF8gE+npbKzsx1+/+CDDxAXF4cffvgBQ4YMUV03Li4O0dHRmvuoqalBTU2N/feysjK3xkoQBEE4wVmB7NkAeJk3eQAMkP0s0PVWmqIiGhW/EhSXlpYCAGJiYjSX7d27NxITE3HzzTdj27ZtisvNnz8fUVFR9n/t2rXz2HgJgiBaNGd2u2ZsHOCBsnPCcgTRiPhNcMPzPGbNmoXBgwcjJSVFcbnExES88847WLduHT7//HN06dIFN998M3bu3Cm7/Jw5c1BaWmr/d/bsWW8dAkEQhB0rxyPnVBG+OnQOOaeKYOXkshtNnMsXPLscQXgIv6mWeuyxx/Djjz9i165dqst16dIFXbp0sf+elpaGs2fPYuHChbJTWUFBQQgKCvL4eAmCIJTIPpqPeevzkF9abX8tMSoYc8ckIz0l0Ycj8zDh8Z5djiA8hF9kbh5//HFkZWVh27ZtuOKKKwyvP2DAAPzyyy9eGBlBEIQxso/mY8rqAw6BDQAUlFZjyuoDyD6a76OReYH2A4HIJACMwgIMENlWWI4gGhGfBjc8z+Oxxx7D559/jq1bt6JDhw5ubefgwYNITGxGT0MEQTRJrByPeevzFOW1ADBvfV7zmaJiTUD6a7ZfnAMc2+/pC0hMTDQ6Pp2WmjZtGj755BN89dVXiIiIQEFBAQAgKioKISEhAATNzLlz5/DRRx8BADIzM3HVVVehe/fuqK2txerVq7Fu3TqsW7fOZ8dBEAQBALmni10yNlJ4APml1cg9XYy0TrGNNzBvkpwB3PmRUDUlFRdHJgmBTXKG78ZGtFh8GtwsW7YMADB06FCH1z/44ANMmjQJAJCfn4/ff//d/l5tbS2eeuopnDt3DiEhIejevTs2bNiAUaNGNdawCYIgZCksVw5s3FmuyZCcIZR7k0Mx4ScwPM83k/yoPsrKyhAVFYXS0lJERkb6ejgEQTQjck4VYcK7ezSXW/PIgOaTuSGIRsLI/dsvBMUEQRDNgdQOMUiMClaT1yIxKhipHbS9vAiCcB8KbgiCIDyEiWUwd0wyAEV5LeaOSYaJVQp/CILwBBTcEARBeJD0lEQsu7cPEqKCHV5PiArGsnv7NC+fG4LwU/zGxI8gCKK5kJ6SiOHJCcg9XYzC8mrERQhTUZSxIYjGgYIbgiAIL2BiGRINE4SPoGkpgiAIgiCaFRTcEARBEATRrKBpKYIgiBaIleNJE0Q0Wyi4IQiCaGH4pGs5ZyUHY6LRoOCGIAiiBSF2LXe2phe7lnulXD0vS6H31GvUe4rwCqS5IQiCaCH4pGt5Xhbw6UTHwAYAyvKF1/OyPLcvgrBBwQ1BEEQLwUjXco/AWYWMjVo4lf2ssBxBeBAKbgiCIFoIjd61/Mxu14yNAzxQdk5YjiA8CAU3BEEQLYS4iGDthQwsp8nlC55djiB0QsENQRBEC6HRu5aHx3t2OYLQCQU3BEEQLQQTy+CFW5NlFTBe6VrefqBQFaUWTkW2FZYjCA9CwQ1BEEQLIftoPl7ekCf7nle6lrMmodwbgGuAY/s9fQH53RAeh4IbgiCIFoDob6NULfXCrd28Y+CXnAHc+REQ6bTtyCThdfK5IbwAmfgRBEE0c9T8bQAhh/LyhmMYmZLonRYMyRlA11vJoZhoNCi4IQiCaOYY8bdJ6xTrnUGwJqDD9d7ZNkE4QcENQRCEh/DXZpSN7m9DED6GghuCIAgP4JNmlDppdH8bgvAxJCgmCIJoIEpiXbEZZfbRfB+NTKDR/W0IwsdQcEMQBNEAfNKM0iAmlsHcMckAFAuyPetvQxA+hoIbgiCIBtDozSjdJD0lEcvu7YOEKMepJ6/42xCEjyHNDUEQfoO/CnLVaEpi3fSURAxPTmhy55jwP/z9b5WCG4IgGgfOqupz4s+CXDWamljXxDLeK/cmWgRN4W+VpqUIgvA+eVlAZgrw4Whg3UPCz8wU4XX4vyBXDRLrEi2JpvK3SsENQRDeJS8L+HQiUHbe8fWyfODTibD+9JXfC3LVILEu0VJoCuJ5EQpuCILwHpwVyJ4NqFwO6zbMxoXSSsVN+IsgVw0S6xItgaYingdIc0MQhDc5s9s1Y+MAj6DKfKSyx7GHS1bdlD8IctXwlVjX34WdhtDQZRG+pSmJ5ym4IQjCe1y+oGuxOJRoL+Mnglw1Glus2xSEnbrJyxKyfNJgODIJSH+NOof7CU1JPE/TUgRBeI/weF2L1YXFkSDXIE1F2KkLDV2WKDwnfEtTEs9TcEMQhPdoP1B4+la7HEa2RUbGePE353cBkCDXmaYk7NREhy4L2c8KyzUxrByPnFNF+OrQOeScKmoan4cKTUk8T8ENQRDegzUJ0woAFC+H6QuQ3uMKEuQawJCwk7MCp78Djnwm/PS3IEGHLgtl54TlmhDZR/Mx+LWtmPDuHsxYewgT3t2Dwa9tbVoZNRmainieNDcEQXiX5Azgzo8U9BQL7HoKcs/Vj17Bpunn9cBXr/m3jkWnLkv3cn6AOGXonKcRpwwbKwjwlti8KfytUnBDEIT3Sc4Aut6qWQmjKcilahoA+gSbI9lc9M9dBJfpHlHHcudH/hHg6NRl6V7Ox2hNGTIQpgyHJyd4NRjwttjc352uKbghCKJxYE1Ah+vdX78FVtMoPXmLws6C0mrZm6gJHF4KXAVlHQsj6Fi63ur74FDUZZXlQ368jPB++4GNPTK3MDJl6K3gwF8yR76ENDcEQfg/LbCaRk2zoSXs7M8eRzyKFGXcfqVj0anL8nkQphNfe8E0K7F5A6DghiAI/6YZV9MooafMW03YOWdwtL4d+YuORdRlRTplEyKT/Gf6TCe+9oJpSi7C3sSn01Lz58/H559/juPHjyMkJAQDBw7Ea6+9hi5duqiut2PHDsyaNQs//fQTkpKS8Mwzz2Dy5MmNNGqCIBoVI9U0DZn28hOMaDYUhZ1nAoFcHTvzJx2LTl2Wv6M1ZchACEC95QXj68yRv+DTzM2OHTswbdo07NmzB1u2bEFdXR1GjBiBiooKxXVOnz6NUaNG4frrr8fBgwfx3HPPYfr06Vi3bl0jjpwgiEajGVbTqGH0yVsUdo7t1RZpnWIFkapOfyG/07GIuqwetws/m1hgA/jeC8bXmSN/waeZm+zsbIffP/jgA8TFxeGHH37AkCFDZNdZvnw5rrzySmRmZgIAunXrhv3792PhwoUYP368y/I1NTWoqamx/15WVua5AyAIwvs0s2oaLTzy5C3qWD6dCOGWKs0hND0dS1NDnDJ0rlZKaITWGL7OHPkLflUtVVpaCgCIiVE+6Tk5ORgxYoTDayNHjsT7778Pi8UCs9ns8N78+fMxb948zw+WIIjGoZlV02ghPlGz4JDKHkccSlCIaORyXcFJku2aT946/YWaBE3QAsBXXjBi5mjK6gNKYa3fuAh7E78Jbniex6xZszB48GCkpKQoLldQUID4eMcntPj4eNTV1eHixYtITHSMiOfMmYNZs2bZfy8rK0O7du08O3iCILxHC8tCpHaIwV3hhzDd8h6SmHrR53k+BvMsE7GZS9X/5N0cdCxN2ALAV14wvswc+Qt+E9w89thj+PHHH7Fr1y7NZRnGMeLkeV72dQAICgpCUFCQZwZJEIRvaE5ZCA1Mx9djft3r4J2yVAkoxjJzJqZaZmLcmMn6n7wb6i/kS0QLAH83IvRDmoKLsDfxi+Dm8ccfR1ZWFnbu3IkrrrhCddmEhAQUFBQ4vFZYWIiAgADExvqvWyJBEA2kOWQhtLCVvTPg4fysxjIAB+CNqLUISX7RJ8NrVDQtAPzIiNBP8XcXYW/i0+CG53k8/vjj+OKLL7B9+3Z06NBBc520tDSsX7/e4bXNmzejX79+LnobgiCaGU05C6EHjbJ3FkBIVUGzKXtXpYVZABCexael4NOmTcPq1avxySefICIiAgUFBSgoKEBVVZV9mTlz5mDixIn23ydPnowzZ85g1qxZOHbsGFasWIH3338fTz31lC8OgSAIwnN4qezdyvHIOVWErw6dQ86poqbhTtvCLAAIz+LTzM2yZcsAAEOHDnV4/YMPPsCkSZMAAPn5+fj999/t73Xo0AEbN27EE088gbfeegtJSUlYvHixbBk4QRBEk8ILZe/ebqDoNVqYBQDhWRheVOO2EMrKyhAVFYXS0lJERkb6ejgEQRD1cFYgM0W77H3mEV06E6UGiqKcx68bKHr4XBBNHyP3b+otRRAE4S94sIlkk2+g2MwaahKNCwU3BEEQ/oSHmkg2iwaKzaihJtG4+EUpOEEQBCHBA2XvzaaBYkuwACA8DgU3BEEQ/kgDy96bVQPF5m4BQHgcCm4IgiC0aIK9jaiBItGSoeCGIAhCjSba24gaKBItGRIUEwRBKCH2NnJ2yhV7G+Vl+WZcOhEbKCZEOU49JUQF+3cZOEE0EPK5IQiCkMPus6LUAqDp+KxYOb7FNlAkmg9G7t80LUUQBCGHB3ob+UtQ0ZIbKBItEwpuCIIg5Ghgb6Mm2/aAIBqAvwT0FNwQBNE88HRFUwN6Gym1PSgorcaU1QdI70I0S/wpoCdBMUEQTZ+8LEEf8+FoYN1Dws/MlIYJftsPFDQ1Ltb/IgwQ2VZYTkKTb3tAEG4gBvTOrthiQJ99NL9Rx0PBDUEQTRtvVTS52duoWbQ9IAgD+GNAT8ENQRBNF84qeNCoXVaznxWW04mV45FzqghfHTqHnKBBsN7xoaHeRs2m7QFB6MQfA3rS3BAE0XTxQEWTFHnNQDjmjt6C9PDTuvQ8zartAUHowB8DesrcEATRdGlgRZMdzorcrV9i4ydL0L78AFhw9rcKSqsx5ePDyK7oDPS4XQiSVITKYtsDFaUOEqntAdGM8MeAnoIbgiCaLg2oaLKTlwU+MwWpO+/H4sAlWBv4CnYFTcdINheAcc2A2PYAUFTqUNsDolnhjwE9BTcEQTRd3KxosqMgRk5AMZaZMx0CHCOaAWp7YBDOCpz+DjjymfDTgEaK8D3+GNCT5oYgiKaLWNH06URAqT2kTEUTAAcxsvMll2UAjgfmmldhS00/cLbnQCOagfSURAxPTvALQzO/pok2JiUcEQN6Z81ago98bii4IQiiaZOcIVQuyd4gFyjfIDXEyCwDJKEIqexx7OGEp1KjmgFqe6CBmDlzrnYTy/gVKtII/8SfAnoKbgiC8DyedgvWIjkD6HqrsX3qFCPHoQQMhCdQEgF70F5fs4yfEcr4u97q941JiXr8JaCn4IYgCM/iq2kG1qSr3NuOTjFyIaIBkAgY8LC9vofL+AlCCgmKCcLHOJjGnSpq2rb83nIL9gYaYmSOB87zsTgb3hNv3d0HUSGBzeMzchOP2+t7qoyfIGSgzA1B+BB/ajTXYJraNIOKGJkHA4YBym94GX+PTcHLG4x/Rp7ujuzLbsta9voMhFL54ckJ+sekM3NmDYuDH3xbiCYGBTcE4SOaXefopjjNoCBGZmxi5NNcf0xz4zPydNAqt72YMDNeGZuCUdcmGd6eUYzY6+vWW4iZs7J8yAXEHA8UIBZ3rK3GCxn5TetvgfA5NC1FED5AT6O5l7OOwPrrzqbj/dFUpxmSM4Dph4GRrwKpfxN+Tj8Ea9cxbjUD9PT0jdL2iissmPrJQczfmGdoe+7gFXt9lcak4imdZ7kP58ssPukqTTRtKHNDED5A60l4BJuLuTUfwfSRxDTO370/POEW7AvkBNA5S3Cy9/PIL41WXE0uW+Hp6Ru17Ym8vfM0el7RCqOu9V5mw2v2+rbMGZ89G4zk/BcgFvMs92ETlwrAzWkvokVDmRuC8AFqT7gj2VwsM2ciAU5uuP4oypXSULdgX6AigL5mxzS7Q7Ea0s/S092RtbYn8sJXR70qcvaqvX5yBvaM2YG7ap/H9NrHcFft8xhcs8ge2AC+6SpNNG0ouCEIH6D0hMuCw1zzR8L/u9xJbDev7Gf9c4pKZZpB0y3YF2gKoAWHYmkTTTmkn6Wnp2/0LldUUeuVG79Yyff1j+dxV/929uyTFE/Y6xdWWLCHS0YWNxB7uGS7I7TLco3YVZpo2tC0FEH4APFJuKC02uHWmsoeRxKjdpPyQ1GuFHfdgn2BhgCaAY8kxtGh2PF9V2M/T0/fGJnm8fSNX07EHB1qBgCUVFrsr3nCXt8fu0oTTRsKbgjCB4iN5qasPuBQhByHEn0b8DdRrg0rxyM3aBAKb9yEzpVH0C2iEmxEgvcdit3BoEOxTNcql2yFUtAqXc+I03FqhxjEhJlRXGHRXNaTN36lSr5SW1DzxLBrcFXrUI+VpHv6vBEETUsRhI+Q6xwtuuFq4m+iXAg3xMGvbcWEd/dgxv8dwa3rgUEbYpBd0dn/AhtA9zm8d1h/3d29Pd0d2cQyeCWjGwawechgd2MAmyc7Tea23kUGPZV8a/f9jtHXJiGtU6xHBL7+2FWaaNowPM+3KKvNsrIyREVFobS0FJGRkb4eDkE4mrOFmTFg/Q1gFLw/BFFuEjDziF8FDEpP+uKtyC89ezgrkJmi6LMiPddWsIYM9DzmcyNTyXWej8E8y0SHSiJPnt+cU0WY8O4ezeXWPDLA4z2EmpWpJeFxjNy/aVqKIHyMS6M5BddcvxTlwkvutY2BikOx87k2Aeo3cqdGoenJAxveHVmhY3YCirHMnIkplpn4MWKIx2/8XvG00Yk/dZUmmjYU3BCEv9GURLnwknttY+GJc63QKNSU/hrS3P2sbJVcPHiXaRqWEdpDLI7+PwTMegGmAM9exn0t7vWXrtJE04aCG4LwR5IzhB5MkmyAX4py4dsnfY/QkHOtkF2xexLd+ZF7waitkkvZV4ZHUGU+cDbH41VzDRX3+rIHFkGIUHBDEP4Ka/LPcm8nfP2k7xHcOdceahQqFwwcPXYcPfWMQanii7MKLTvO7BKG0uF64KrBugI2pUo+QFvcS5oZwl+g4IYgiAbR3Mp4dWcePNAoVC4YSIgMQorlMt7TM1i5iq+8LGD9dKDqUv1r370OhMQAYxYByRmaxyhW8rmMTSVQaXaNYIkmDQU3BKEBpdnVaciTvk9wEv9Kp6AMZR4a2ChUMRgoq0EhOuN8UAwSUCzjVC00lrSEJSLIuZVFXhbw6X3y46gqBj69DwfTFmPqgSs0j9GIuLfJisqJZgsFNwShAqXZ9eHOk75PUBD/Iv01ZHP9jWUeGtAoVKshJgcW8ywTscycCY53bMUhtpA6nPIsUqXTTJwV+OYZ1aHwAOJ3/wMXahaDheCIHYcSFJZHY9rqSrx1bz+HY9Qr7vV7UblKQEs0T3wa3OzcuROvv/46fvjhB+Tn5+OLL77AuHHjFJffvn07brzxRpfXjx07hq5du3pxpERLhNLsxvD7Ml4V8S//6URsD3gaPHq5rKaYeRAbhWr55Mg0CtXTEHMTl4oplpmYa/4ISZImqmLH7EldxjiucGY3UJ6vuk0GQBJTjGmmLzAhYJtDq4/zfAwWf/kwhic/Z/gz82tRuUpA62+Vh4Tn8GlwU1FRgZ49e+KBBx7A+PHjda/3888/Oxj4tGnTxhvDI1owlGZ3D78t49Uh/p1ueR+fYpFs00bZzIMBnxxn9N7kN3Gp2FLTrz7Dgmjs47oiLirUVcNkoCXHrIB1Lq8loBivWv6FX3ZchS433qN7W4Afi8q9Vc1G+D26g5s//vgDV1xxhUd3fsstt+CWW24xvF5cXByio6N1LVtTU4Oamhr772VlZYb3R7Q8/D7NThijgU0yRVyCEjd9cozc5Dmw9jGpapgMtORgZOJxlhGmvNrlvgTccJehaRu/FJV7qJqNaJro7i2VkpKCVatWeXMsuunduzcSExNx8803Y9u2barLzp8/H1FRUfZ/7dq1a6RREk0Zv06zE8Yx0CRT9X25oCQ5A5h5FLj/a2D8+8LPmUdUMwJiMKDsYyN04E6I1NfTCoAw/RWhPk2q1WyHZYDQqgIhGDSAX/aGMlLNRjQ7dAc3r776KqZNm4bx48ejqKjIm2NSJDExEe+88w7WrVuHzz//HF26dMHNN9+MnTt3Kq4zZ84clJaW2v+dPXu2EUdMNFX8Ns1OuIfOrIZS41IGGs0pRZ+cHrcLPzUyAXqCgQW39cD3z96ENY8MwKK7emHNIwOwa/ZNyjov1gTc8i/FfRrqIuhG13m5RrCARkDmCURPnyOfCT85q/B6A6vZiKaN7mmpqVOn4pZbbsFDDz2E7t2745133kFGRuPOVXbp0gVdunSx/56WloazZ89i4cKFGDJkiOw6QUFBCAoKaqwhEs0Ev0yzE+6jQ/xbFRKPfdVdG62cXW+FmaFpz+QM4M5Vrj43kJ+KUsTNrvONLipXEws3oJpNN1SF5bcYEhR36NABW7duxZIlSzB+/Hh069YNAU59TQ4cOODRAWoxYMAArF69ulH3STR/mpx3S2PT1C7qDuJfeULGvI63uH5ulbO764XklWBAbCdhcyg+W1yFLw+exePmr/StH9lW+Dzd/IwbTVSuJRa+Y6Xb1Wy6909VWH6L4WqpM2fOYN26dYiJicHYsWNdgpvG5uDBg0hMpHJcwvM0Ge+WxqapXtSTM4CBjwM5SwCeq3+dYYG0x4DkDKQDhoMNNS8kPdvySjDAmoBOQ4FOQ3Hg0Dl8f+ATPA6dwU36AuD4Bv/+jPWIhTc9B4yYD3w2CUar2TTRUYVl7TrGf20RWgCGIpN3330XTz75JIYNG4ajR482uAT78uXLOHnypP3306dP49ChQ4iJicGVV16JOXPm4Ny5c/joo48AAJmZmbjqqqvQvXt31NbWYvXq1Vi3bh3WrXMtayQIT+D33i2NTVMurc3LAna/CZex87zw+hX9geQMQ8GGmhfS5NUHEB1qRkmlxf66Lwwg4yKCkct1xXle2fEYAHiGBXP7B8Iv/v4Z6xULh8U2vOu7MzoCq6r1T2PYl8E4V+bbz74lozu4SU9PR25uLpYsWYKJE5VTu0bYv3+/gynfrFmzAAD3338/Vq5cifz8fPz+++/292tra/HUU0/h3LlzCAkJQffu3bFhwwaMGjXKI+MhCDn81rulsWlgaa1P21h4oSzYyvF4OesIrmPz7B40uVxXcGDte5EGNoBvDCBTO8QgPioUL5VPxFIFx2OGAbjxK2DqNgbITIHfl08bEQv3uN39ru9y6AisQqoK0K72MM6h3laAzD8bF93BjdVqxY8//uhRr5uhQ4eCV5Hwr1y50uH3Z555Bs88o24vThCEl9D7tLx3uXADkdxEfNbGQtSN/LqjwU0unTm54xP8t+Z5JAU6uvzOs0zEJi5VaS+NbgBZrx+rxlTLTLwo43h8IW0ueqf8RdDpePg8eQWjYmF3ur4r4aatAJl/Ni66g5stW7Z4cxwEQfg7ep+WNz1X//+RSTjY/VlM2da68dtYyGmDtNB7jHlZuGbHNPBOR5WAYiwzZ2KKZaZqgOOuAWRDhMuCfiwYg0vrHY/rwuKQkTEe6T1sD61+WD4te8wNaH3RYBpgK0Dmn40HNc4kCEIfbpTM8mX56JUzHSNY15u9V55kxUzNzxuBPUuNr6/nGCVTXM5DFl1+55pXYUtNP9lWDiJGDSAbmv1y1I/1kQ+OGqN82gCqx+xm64sGoxFYcbyQDcvllPsdkvmn99Ft4kcQRAtHvKgr+uq6woAHb7vZs+Bc3pc+yTaYvCxBL/LhaMOBDQ+mvgRaC9v0nNJZYBnYWzmoYcQAUhQuO7cEEbNf2UfVG2aKiPqxsb3aIq1TrGtAqfkZGzhPgLLBng40j5nrL4iFI50Cu8gk74qeRVsBAM7nibf9Ps9yn2pgS+af3ocyNwRB6EO1UaTKagyQBPW+TQ1+klWq4tKBIKjlYR05HyY9T/oNbOVg1ACyUZu4NqAZqAsNsAzQfcyzx8DkSbGwXlR6ij1XeQ821/SSXY3MPxsPCm4IooXgkWolpYu6DtT6NjXoSVa1EkqbAsRiXu19mBQ8GGl6VjCguTBkAKlgmqe3ieueU0VgWabh1WhuNgN1oIGWAYYb1/pC3CyaJUo+M6b9QAzNK8T/kfmnz6HghiBaAB6tVnK+qF++4CgiVkBOYOmRJ1nNKi55FlvGYTefYi/fHqU3e9R+IBASA1TJT6XxNjHrpOETcObrn/UZQKpkOQpr++oa1rRPDqCkykO+KjI3bt0ZEQ+U3TeZxrUyVVhk/ukfUHBDEM0cNaM5e7VScpyxG5n0os5ZBddfBYElDwb5fAz2OQksFZ9kjdr+G6zcEQWfmdbbHXQRurNHxzcoBjaAoDNC+gKkJ1+B4d3bamfLNLIcXW94C1Bo6ClFGtgAHqhGc7d8WqdlwK7/ZcHUcYjsOWnqjWvJ/NP3UHBDEM0YPdqF7V+uwMjNq8G4a7WvodNgAFwYOBdxB0K1n2Td0WkYqNzhbEOTCj4NZY/sWQkVQmKErAR0GEDqyHJcc/CfaBuZifNlFkMTbz7zVdEZbH66bT+y/hcom2FqDo1ryfzTt1C1FEE0Y7S0CyPYXLxq+Zfrk7aojcjL0lfxIuo0FCpXeo+8H7tm34Q1jwzAort6Yc0jA7Br9k2ugc2nE9XHIoeBKq4CxDp40Mhlj6wcj5xTRfjq0DnknCqClZPcXvVMgVUVA7/t0lclpCPLwZSdwxsDKh3GqxePVqPpxaAPjFzFl2g8CLgeM2lXCD1Q5oYgmjFqmgQWHOaahb5trrcI23P/+hnAN88A5ZJSY6VMioZOQ/VJtiE6DVvmiP90Ing4PrGJcckKazq+5frZ9TUiztkjLW0SV16g74nwvxOBqpL635XOmc4sR2qbOiy79zqXsUWHmF2mo+RwV5vilgjdoA+MUoaJtCtEQ6DghiCaMWqahFT2OJIYtSd6Xl5bolbxYkCnIb1xdq44hO4NsP3P5vrjy9oZQmsByTEVIBbzLPcpugUvvL0nBl3dGgCw8cfzmPrJQZdlxMzC34Z0wNmD56HLQUca2ADK58yAaV56B1cdB8fzuOe9vZqrXyyvgZXjDWU63Bahq0xTyk0LAsrOvaRdIdyFghuCaMaoaRfUSrPVaXgDRecbZwa7G4sDdazolOmwcjz2nCrCs+uOoIRLxeaa+tYC0kaWSlysqAEAbPwxH4+tcQ1sgPpb89s7T4NFR5wPikEiisEYur8qnDODbQScs1+1dRxiwgJRXFGruveXNxzDe7tO68546BKhq21HoZxcK9iUyzB5Urvi0+atRKNCwQ1BeAKjFT6NRH3TRFffDbnSbP2430BR7sapeyySTIcYIF0orRQCGlZfQCMlLiIY2UfzMfWTA7qW58Aiq24gHg34Grytm7aIOL2ijMw5a4Bpnnj8WoGNSL7OwMRjpoGSacoTp07ixa0XNT8bb1Y/+aR5q59eF1oCFNwQRENpgBNrY6CkXTgb3hNVpgSEVF2AuwZ4RsuwlW6cuVxXnOdjkIBil35NgFBOzkgyGGKANILNxdwgx6korc7cLDikssdxTWgF+vERGJqlX4/CgkNGwG5B2+M0Tt3P/87nzA3TPKXMih60AhPDBnpq2KYpO7UfjDP7toJX2K63q58anIlyBz+/LjR3KLghiIbQQCfWxkJRu3D8dcPtFBww2EBR6cbJgcU8y0QsM2eC4x0DB07MkNgyGGKAlM7uxVLzIpdtqXXmHsnmYq6oy6kDsPoN/JePwTxWORiSoq1T0oHcOUvOgPWaUTi+dxOqLp1DSKu26HrdSJgCXC/RapkVLfQEJs5TQ2Iw6DzVZ0SkrJZB9Hb1U6O2rxBpIteF5gyVghOEu2hW+EDQWDiVAauWGrs7Dh1lx7JNExVLuNsCIa3gsQaKNtRuiJu4VEyxzEQBHJ/eCxCLfamZ9ptB7uli9CzfjiXmxWAYuGhfxPuTc7POkWwulpkzkeAUnIjB0Eg2V3XsLDgMYo+oH6Aqyucs+2g+Br++A7euB27f1Ra3rgcGv75DtiGmVmZFD2qfg3RqaCSbi11B07E28BUsDlyCtYGvYFfQdIxkcw1PIYkZxIQox/USooK9kzmxYSQT5RHcvC4QnoUyNwThLjqdWKUaC4/P+3si9a1Uwn18g2caKErQuiFu4lKxRUYU/HEXISCwcjwK936KpebFstNXItJmnXu5ZDxxcyc88sMTYKpdwzWWEbJDc82rsKWmn6wmZCSbi/nm9xDDXDZ0vPUonzOjUyaeaDmg9DlYOR4czyM6xIzrar7HMnOmyzKJKMbywExwVb0A/EV2G0qiXV9UPzV6Kwc3rguE56HghiDcRa/exLacx+f9PZn6livhTs6A9Y4PUbfhGQRVFtS/bqSBohNazrOAMEUldg+XajE2/piPF788jCzrv3Tvr0NQOSaN74P0sJPA98qfl1rn8ltMuVhqztQ5a8cIGS9zsC79jDtTJg0R3appW6SBNwsOc4MEDyQXbZHtd9O6B4UtpoyT3YaIc/De2M69rcOCPLqcJgavC4R3oOCGINzFgEeJx+f9PdCcUAnxyXtLXgG+PBSKkoqF9kxKXVgcMoaPR3ryFYa2KaKmvXBGqsX4V/YxvL3zNAaweUgK1D99MGpgb1yfkggc+V7X8s7l8Sw4/CdiDZhq6FcMj1mku+mkO+JdMUA0OjWlpm1xDrx1aYt4DvjsfoBdBSRn+Ea0qwedn9vuUxfBskzDM0kGrguE9yDNDUG4i6btf73GwuPz/kZS3wbIPpqPwa9txYR392DF97+huKLWnknJ4gbim/LOmPLxYVktiF6UtBfO9xNRi8FxPN7eeRqAfm8engfO87FgRX2LwZYAgJBxWDvCipBqnU/Yoa3rs2ViJqzH7cJPD3a/FgNEo7dfJW2LXOBtyAMp+1lY6+pUg3dACN4brC9zg4uXa3Qt99b2U5jw7h4Mfm1rg77fRq4LhPegzA1BuIsBjxKPz/t7IfWtp7zYU9UlctqLvu1b4Yczlxy0GADQ/59b7OsZ8eaZZ7kPhz87gn+MsSA9jANCol2dg+0w4COTMGPM/ZhQYanXgmx+zsBBzdc3VSfxPulcEQIWnKYvzy8XLiPnVJE9q6BU3i+SGBWMF25NRquwQE1ti1zgbcgDqewcju/dhPxS5UUMlY97GKPTeB7ppu6mdxHhOSi4IYiGoNOjRO8FVveF2MOpbyPlxZ66UclpL5x/zzlVhOKK+t5JWn44AFDHs3jc8jg2calIv/wdrv3sEUB1ikXYEJO+AGlXx9W/zFlRc2ANdCsxInTcCJ0E4N0B5ATHYm7tfchWKUVfsu0klmw7Wa9fSY5DethJjLi1GMfKQ3EiOAXFlVbEhAchIdKYSFcuoBbPs14n5qpL5wC0VXxfLCc3HzsHsN0a1cxOj85LikcCeKXrQmgscOu/qQy8EaDghiAaikbDSED7AmvYxMygbb8W7pQXe6y6xMA+tPxwAOAxy2PI5q7DSNYmBNZCSez72/cIqr2kuToPgNEzzaAgAI9DMZaaMzHVMlM1wAGErMKXnyzHDVFrEVIlNPHsDqB7A8zh5AJq8Twv13P+AIS0Ug5sHLyF9kP414hmdkZ0XiIeCeCTMwCOAzbOAiqLhNcqLwKb5gAMSwGOlyHNDUF4Ag2NhXiBBVxn4t0yMRNT32pblKS+tbx13AlUvGmVr7YPNT+cKZaZyOYGOHQ8VzylITHAfV8BM4/I3mhO/XpK/0C1phlUBOAMeDAMg38EOvryyDHCFrAFVRU4viFWyOVl6R+zDTHwlp4mFhxKEY4VdSNh5dW+k4J+pOt1I9E20owBbB4y2N0YwOaBBVfvLQSnzFkDxqsH5+/78OQEWZ2XFg0K4POygM8m1Qc2Il4+dkKAMjcE0Ugo6SQS3PW50Tklpqc812igEh1q9ppVvhSlyiAlPxxRu6Kr2qeqWAhIbK7Hzt4rhXw0rtExxuNdH0M3padwUV9zeoeqAJwBjwQUYf0YFt9c7oQl21wDK4eAzeVd9yvknDMbI6SZFsetu4waAJC+AKYTG/Gt6WmEBNYHXfl8DIIg9L1yDTB1jNfNvkxq3/dds29C7ulifH/yIpZsO6m5LbcDeC9WMxL6oOCGIBoRj5uYaUyJ6S3PNapLaKw+ytIbr/O4xCqu0dcmYs+PjtUtuqt9ft6I7IrOsjfDCf26oaOKvofjgQLEoKTvDPltyxksatA9sgonwyJk39MO2Nw3hxMD7+1frsCrlkyX92U/bzGIBoBPJyLE6ROKV9FFaY7XTXNKI9/3dQf+8Nw0sTNk5OdzaFqKIBoZ2TYIDUFhSkzLWweoL8+VTpvp4VKlxXN29RqIN95EpymFmDAzlt7dG4vu6u0yraK32offsxRffrLcJTNUUFqNN/53CgvZBwHU63lExN8Xmx9Gaqc2rhsW9TUGAhsAQHi8YrZAd8DmpjlcenIc5oeuBsMoTeUxQrn7be8C938tTOd1vRV89mzwMt8y3V9r5/EqnTuN6Rx3v+8emSZ2hoz8fA4FNwTRRDDak8qot44YRESHmHWNpzEExSLpKYnYNfsmrHlkABbd1QtrHhmAfX8fjlHXJsneqMRqHy1bFR7Ai2ZXrYu42jbmOkV9z1TLTAwd96DrDVB1SkKF0NZAu+tkNTCAgfJsd83hzuwGU3ZeJSvHC4LYiER7EJ27fb3GOjqQjrcBfZnc/b57pdcVGfn5HJqWIogmgDs9qdzx1klPSUREsBn3vLdXc73GEBSr9SmS4qxnslf7BGaqbp8FkMQIbRdyua4uGp5LlRYkD7sHd+QOQrvLh+3vnQ3viRfu6CF/7jWnJBSovAgs7glTn0lY3jMG83eVYB/XFVbbM6h2Gbx8hZyV47HnVBFyfr0IQMgaDugokzF0o53Ixm/3ITXQ2GGqjrcB0znuft+90utKbzUjZxUa3hrQFBH6oOCGIPwcd23t3fXWGdAx1rNl625iNKBzvVENAH+iBszeZZr7Gsb8gP8ELXXQtJznYzDPMhFXte6Fnc8OR+7pvsJ2w8xINR2HqeJ74LTMTakhUw1l54Htr6IngLWBwAXE4sXa+7CJSwUHFovND2N+3eu2hbXN4bKP5uPZz4+gpLLeK2jJtpOIDjVjwW1OwZnOLELunwHoa5sCam/E7E8O5yqzBkznuPt990qvK00jPx6wVAKrxta/3Ijl8S0BmpYiCD/GiI7AGaXpDREGQrDgHKRo6W94ABk9E73ayVkM6OS0MFNWH3Cxxxen7L7+UXjqH31tEtI6xYLtequu/T0U8I1LuXICirHMnImul7bX66QCf0Da+htg+mgMsO4h4MPRQGaKow6kyEAJuQZxKMLywEX4dMifWPPIAPzzuefA3PkREOkU3EUmuTRKzT6aj8mrD6Ck0gIWnEOZdlllDSY7nUdruzRcQKziVB5na2kxMycEe34tEqZ4NKb/eF745/I6AGvaY0JzVsl0609lIfpOjEwg5u733WuI1YzOn1VIK+FnlZOHEpWIexTK3BCEH+NOY0URNfMyLdFkekoi/jakg72nkzPv7DyN3le28kojRKNNRlUzPMnq0wMcAJ5nwYBzmephGeH9aw7+E7jhLuD4Bu0u7ACwfb7bx+6M8LnxSD3+LyD9PmFQOkwjrRyPf2T9BMDJRM+GmJWatz7Yfh5zz5RiZe19qgaJ8yz34XxNHXJOCd4taqaKYlAj53DM88CfOZ9gZd1f8dWPhfbPjgWHnOBYxKEYjEFzyoZ8372G82cV1gb44lGFhalE3JNQ5oZocRgV5vqShvakclc0aeV4ZB1Wbx7orUaIRgI6zQxPXqGq2SEDwMS4BjYiLACm7Bxw+jttoes3s90TEmvAAK5NUDVMI3NPF6OgrEbRRE/MSl1bvtMusC0sr9Y0SNxkd1CuP0aldRhGPrABhCAoAUU49H22w2fHgcXc2vvA8zx4HeaUznhVJOwu0s+KYYFytb8r9xreEq5Q5oZoUbgjzPUl7uoInIW4O56+0aUppdoTbEMyRg1FLlATexNJxb4FZdX4V/Zx7QzP7DEwKZgdMsljgT1LtQd1Zpe20LVcp4i45z3A4Y/1LSuBKy/Q/TRaWF6t6tLMMkI2ZoH5Pfx06lqgwzj7d0jLIBEA0jq2xroD5+y6LOk6w5gf8FDAN7p6UsmVt2dzqZhqmYl5gasQD4m7r0KbDGdkRcLto2A6mwMc+d634l1vlIi7aXbY3KHghmgxuCvM9SXu9KRSC+DG9rL1AOKswGnlC6LHu5gbwDlQU5pWyfv1OeSXJiluxyEAU5rKObNbX3DjwWTM4aCeaMN/o9r8U45j5aHornPZuIhgTdM/lgFa4TIG734QOPo8+gybD0CwARANEuWIjwjEgE6xmDu6C1auWeMQAOVyXfGfIB3n00Z7Rj6Lkc2lYnN1P6wfw6J7ZJXhm7aDSDgvC1hs3BDQK3i6RNxNs8OWAE1LES2ChghzfYlRszFdQty8LEEE++FoRVGsx7uYG0AqDFWcVmGKcfORpzGSzdXcXkHJZWFa6acvhBe6/6V+Kkcs2VWToUa29aiL7NsHqzHPMhGAqzmgEhf5SJwM7eH4ImcVjuvIZ8JPifdLaocYXB1yWf+gyvIR+PkkXefz+qvjYDq+HulbhmNt4CtYHLgEawNfwa6g6Zhm+hJJjL5O4jwPPBGwTnGfHFicDOulOPWmCzcNAb2G3u+bnoa3/nZsfgYFN0SLwKjBlz+hV0egJ4Db/uUK8DouiL6sPBEDOtVpFdvPuTIGfFJGsrlIW3+jciCntwHplWmCXkIBHgAPBlXB8TJakfrt1YQmIru8o12nUopwxW0C9dVGz1smIS4yrP4NHQFqz25dVbctdwRa5xMA+lZ9J3tTTWSKMcv8me49igGQ2j7F4NktnVwDDAG9hsGGt4r447H5GTQtRbQIfDnN4gn0mI1pBXAMOEy3vAcw2s38TKzJvcoTD83/p6ckYs0IK5J2KgebDHi7AZ/cFIqY9XHp+iitbkrO0NeA9PR3AK980xc2z2Np+fV4IuAz8Izzk6OwxOGUZ8HtrH8nCpfB88rCWwB4u240DkcMrQ8kxSd2haqtg2mLMPXAFbhQGo6BQWqmf67HoHY+AUH7NOb8Ytd9w9XNRQ8sAyTBdZ/S6Va3dXL+2t9JZ8NbVfz12PwICm6IFoEvp1k8hZbZmFZgZrTxouEu5h6e/09tU6drOTlRqlrWR7bkVqu8WqfA8wyfgCmWmS4aIfHGZQ0aBOzc4zA+pcDGyjN43PIYvuHSsEwMJDWe2HkwiN89DxdqFgEA1tTdhFkBn7mUaauh1sPqOvY4wmuUz4W4Cw7GpgWk+5QGz1vyCtzXyflzfycd5fyq+POx+QkU3BAtAneEuU0NrcDMncaLuu3pNbIJzgZzutApqrx3WH/s+t6M4op6F163OmiLJbsNGEtrpgQrren2yqFrQisw9+6bYLpqEMCakMrxSIwKRvvyAxrjA0wMD4S1wbKxkhu4xhO7mM2aZvoCEwK22fdhxNlFrYfVXd3MgB6PQt4W4OjcsXSfYvA8PDkBg1/bav9GseBwHZuHNDYP4IEcPhkvZ5ntPj0u+Ht/J7Xvmxb+fmx+gE81Nzt37sSYMWOQlJQEhmHw5Zdfaq6zY8cO9O3bF8HBwejYsSOWL1/u/YESTR6vdwH2Ac46hL7tW6nqZNxtvKjZxdxb8/8a4kseDCpDEmBtNxDPj3KcRvF4B21NIajAi+bV2BU0HcPZ/djDJeOjy/2Ry3e3P5GL30O941syJskxM6FzvE8ErHMRYXM2/Y7S1JHoQJzLuWp1WAZ4dEgHjB3cV9f+36gb7+J7Iw8DPrItZjxwv70h6q7ZNyE9JdFhmnUkm4v9QZOxJvBVTA/4EtPNX2JN4KtYX/MATu74RH7TnhTv+hvN+dg8hE8zNxUVFejZsyceeOABjB8/XnP506dPY9SoUXjkkUewevVqfP/995g6dSratGmja32iZWN4msWG3uaNjYmSDiGjZyLe2XlaViej1XiRA8BEtgVj9ILorfl/lf48HADwPJ4ovQub3t+HmDChhFn0w+nM/qFvH3qfbG1j4T+dCB6OT4XOmhnRIE80vfv+5J8O3530lETEDOsP7NSx3z+PC3ofccrCwJO4nLeN6BrsLEOSOhBL/WxGJMfjug4xuC/tKgQGsEKAquL4zINBPh+Dt6x/wVvWvwi+N+x+PGjKlhmT8AuTvgBpV8e5bEucZh3J5mK5OVP2GFvhMlrtmArER7hmBjX7O0GfeNcfac7H5iEYnpfr/NH4MAyDL774AuPGjVNcZvbs2cjKysKxY8fsr02ePBmHDx9GTk6Orv2UlZUhKioKpaWliIyMbOiwiSaIkWDFH03/lPx6xCP425AOyDqc7zDm2LBAFFXU1otsIW+v/8vQpehy4z3GBnTkM6FiR4vx7wtlvUaR0fKc52Mxz3KfxDFX3g9HVawb2RaYeUT3DSD7aD6+/GQ5XnTW08jA8UAxIvGy5V5cQIzdBK++LUQc+MwUoCxfts2Ay7hF7VLXW4WqKKXgQkOcLFJjboUgS31vI7nzCQCL7upV740kYp+CBJxvqjyAybUzXLYj99kgsq2qgDbnVBHueXc3vg+ajgQol5fzAJiQWODJ40CATItyWS2Y+r6bDM352GQwcv9uUsHNkCFD0Lt3byxatMj+2hdffIE777wTlZWVMJvNLuvU1NSgpqbG/ntZWRnatWtHwQ2hiVYQ4QvTPyvHY/BrWxWrokTtkLMjcUFpFZ749DAAJVM84eY26s6/ud7MtPh1B/CRjgvp/V+7rzHgrLD+9j3mfbIVJyrDXBxzlYI2tf5G6H6bECzoEHNKzzsLDpNM2XjRvFr38MVeTpttN/1l9/ZBOrtPNkiQGzNvaxUh9q8SMki8SwZJ8VidODHoP3hxW7GiA7HImkcGyIvYFW6qP/f+O0Zuipbdp9Rl+tFbB6J7WrrwhoKo1srxeHz+Yiy1vKh9QAAQGguMzpS/qTdnF9/mfGxOGAlumpSguKCgAPHxjmnZ+Ph41NXV4eLFi0hMdL3RzJ8/H/PmzWusIRLNBKPNGxsLvX49P5y55HBTEhsdAur2+pOMVovlZQHfPKOxkHKzQ92wJuTy3fHR5XLXt1Qqo1Rv9D99LvwD5Ku6JDeN42UhuFDK2fbG4iIfbWj40qmqzVyqQ1sIPns2GKdpPedxM7ZKKCb7WWDmEZy44S1EbH/eJYOkJ7ABgE6drsaZ/RbsdVdgr1Dt0xksEvdslRXuc2Cxl0tGQlQw3ki7CTi+XrW6zsQyeLR3KKDtKyhQWaQsXm+IeNffac7H1gCanIkf4/TXKyaenF8XmTNnDkpLS+3/zp496/UxEk0EFYdXfzX9M+TXIzm+VOYntI00S0p1BXv9LG4g9nDJ4G1TJoaqxcTpCdVGgLY9jnhVuBHKnGu9KB27WBnVoBjT2dXVySSv+5a7sStout1NV7c424Y4trnmVWDAIb+0Gnt+LUJO0CD8J3kd7qp9HovrxgFQDlAYiXbpeKuhGFyzWFjPor6e81YQ2Ra4ciDu6t9OMbABdAjsZZp36hbuH1+vy13XmBGhjRZuXkcINKnMTUJCAgoKChxeKywsREBAAGJj5f0/goKCEBQU1BjDI5oSGp4s/mr6p9eHp+ul7UDmK/bjMwH4NiQBT7B3YROXqt+UTwFrXR3qvn4agSp+vACEc5oyHtg8x/Vcj5wvTCXoTKcrHfsw5gddY1ZH4n3DccBnk+CsaZFmX7Zw/ZDPxyDeQH8oZ8O6aR8fQEmVWL6uv4IKly8gLiLZHqDGsTrXs3Gw+2xMfX2HYvCuJbDXQlO4nxwHZKpV10k8iGxVQXzZeZ3l7G6K11vQ1E5LoUkFN2lpaVi/fr3Da5s3b0a/fv1k9TYEIYsOT5a4iEG6NtXYpn+pHWIQHWpGSaVF9n0GwF/DD+GaHa/D+fhCqi5gWeAizAl4Gmsv97K/bvRmln00H1lffYqllgLthXvfB+x4zWUsKDsP/Pd+x9c0DP/kvIpGsrl4KOAbXePWxnZj3DjLdbyo76Q917wKrIVHEGrdyhaJQUx9YCNgpFQ/tX0MEiKDUFBWo3+90NY42PNF3LatNXjIBzZPDLsGj93UucFTrar+SKe/M1Zdl/4amE/vMzaAyxf0ByzUfLJZ4tPg5vLlyzh58qT999OnT+PQoUOIiYnBlVdeiTlz5uDcuXP46CNhPn3y5MlYsmQJZs2ahUceeQQ5OTl4//33sWbNGl8dAtHU0PRkEZ4aU6f/6Jemf1vyChQDG0BosTDX/BGYOvnjYwDMD/0YY//6CAorLIZL20WR9Ri2EJApTHEh923oNuXXMPwzsQzmju6CD9d8jDQmDwzD427TVpey5gZTWaT4lph9WWpe5HajcKVgRKtUnwcDxqZdMrEM7u7fFru3fY14FKOIj0ArlCusBzChrWGdmYep/96lGNgwANbu+x2P3dTZzSNzRNFR26i7bnIGcOcqYP0MoErnNHDRKVtVmUbA4g3zScIv8Glws3//ftx4443232fNmgUAuP/++7Fy5Urk5+fj999/t7/foUMHbNy4EU888QTeeustJCUlYfHixeRxQ+hHpyeL6WyO7t5KjeWDI4qc1bgp5CRCqtQzKkzZOaQF/Az0MiZClIqsdWcLqi5pL2NHpi2ClLwspG+cjvRAI9v0HkY/Yo4HCiBvkgcIOqh5lolYZs50aZfAwfa9E71L8rLwyA9PYXpgfaAgNtmUam843qZHHP0Gcs9exoXSSgyQEZIDjjoytTYfDcYdd11RwPzrTuDTe4FapY7nDBDSCtj+qutbzgGLzgcd2e9iE8EfPboaC58GN0OHDoVaJfrKlStdXrvhhhtw4MABL46KaNYYeGpM73G9pumfV31wnNLquXVdVEXOABBWoy+jwpWex95TRYYuelKRtVaWQbjJRBsMbgBFzUReFmB0asIt9LV/1FuVJCL6CC1kH5AtuRYRu4XPNX+EJInDcAEfi/KhL6NLcoY92xDsNE65DFYBYlF+g7CeaeNK7Aqa52QBIJSoS31pvK4jE911Fbx6FKvrWBPQ+UZg3DJFnx3X16Q4BSzNvPmkP3p0NSZNSnNDEA3G4FOjmnZAyQfHpamfO2JFGR1Ar+B4jGQnONyIpN4hhYhGa6ZE1+EtWp+DRRXh9t/1XPSkNz21LIPdk+W6KfJP0HqQBqGcVUe5uafwkO1XYLhDdqE6NAFnU1/E+CtG4vP396quqlSq/0arPugiyTY4BzKiJqiIrzcPPBveEztvGA7kZaF/7kzwKiJp8XvldR1ZQ9111bpq97lf4zsnCViacfNJ3demZgwFN0TLwo2nRjntgG4fHCYXpk3PGhMrKugAgqsLHW5EcmZ8l/gwtaO381tViMPvei56rcMdqw6VsgzlgXHIT5uLzoP/CtOBlSrnWgVpEHpmt0a5uR8iCWz40FiE3voaunQfh84cj5iwQBRX1KquLlZCSYmLCNYU47IM0BpluIAY7OWSsSyjB0zg7AGRXEsGUST9bU0/xEWFNo6OTC1A0eOuq9RV+6cv9O1fXEcPTaz5pL96dDU2FNwQLQsP9WTR44NzbflOsP9dBJcbu5pYUUUHwIAHz9RX67xlXuSyTDRToTpukQtOTQ2lF72busY7uBvbp6xkrpayWYbqruA2sUjcswNL+zyL3jkzoHe6R3ZKwq0nZ9tnOfBx4OhnjjfQ0NZA5UU3tikgHoXcbUFuaoivLAL+OwkM8xFMyRkY1ysJK77/Tff+7OL16l3A1zN0rXNNaAUmjbMFqraASOk2Joqk+7PHMWnMvY13w1MKUPTqW+TM64wELO5Oj/k5Rjy6vKqt8jEU3BAtj4Y+NUJbl1DvmmtQrKihA2ABJDFFeMW8QvjdxclWHTVRq3jRGzD/fw6ZBXHKqqaOk9+mTJYBELJBt21rjc9vXITePy3Q0DdIRu8cXIa21lhPBulnOewfjjfQ8nzg80eMb1MySrG7tmOLBMhGNywAjudRvf5phHS9FcOTEwwFNwCwtM8fMP13BvRmwObefRNMHW0ZOJ3B4ZzB0ejp5lSF28JVT7vrGglYmmnzSX/16GpsKLghWiYNfGrU0iWIrrnKKIgVdd6IYhnXNgRaiJdu587PzkgDGxYc2pcfwMZPtmJInxSwCLev66z3ce5PJN7npx64AruePgLT2Zz6c11RJG/sJxdc6lTv8kGRYG79NxCR6PhZOt9AT3+na3tqyA2Jsf/HFZYBQqoKYP3te6R2uN4+NaV1DmPDAvHPcd3Qe8twGMl8ma6S+DTpzGa45QYMPxOuGg1YPPCg42/o1Uw1tkdXY0PBDdFyacBTo5yhnBQjbrMOeHJ+PyQaqKofR21oIqaX/NWlY7MSLpqeo8D1wbGYW3sfeECm+aZr5Y09BX6mFGmdnM518hh7cGkJicOq84n47ZcatC/6FfelXYXAANtNvuJPXeNdaxmCVuz1SO+gfkO1tktDXWgCAisvyHbkNsLiunEAD0w3f6lr+VO/nsI1HYfglbEp+GrtctVzGBNmRs6cmxF49nsdWS8JztmG9gNRFZKAoKoChZDW/ekXvxSuGg1YGjo95mdoXZt85dHV2FBwQxBuIPbQUfLBMeI264CetHporD7NyB0fAQxrv2AHtEvDj6/vAKNw0ZMi7bItJQ5FWGbOlF1frvJGRDYFzppgbT8YM9YexIYf88GjPhv1z43H8Mj1HTBnVLLugO+r6l7Yq3FDFbMM15bfZT+OhkhMdnMp+gNZAIV8NK4BMCpgH24JzISzE4Z4DqdaZmLcXyYLAZ5ezVFIK2DMYpebd3ZeIb4svQtLzZng4OSfY/PFYdyYfvGVcFXXFJjRgKUZNZ/UujYBxlqtNFWaXONMgvAXxB46CVGO6d2EqGBMmjBBCFIUVTC2BoZyXh7prymvAwCj/q1v21cNhrX9YOSE3oivSjsi90wpXri1m3RLsqh22bb9h2Fc35M2h2ThqM+RS4FnH81Hj39swtc/5rt2kOaBt3eexvyNefUBn8KoOR44z9friOatz4OVc73lilmG/NJqe6VXgZOwGiExQpCggXSfegPZi3ykMF1kE40zUDiHDPBG1FqhBxOgP5s3/gOXwEYMQLIVjrcAsZgT8DSsXcfo24eExmgua+V45JwqwleHziHnVBE2/piPwa9txYR392DG2kOY8O4eDH5tK7KPylTTyTT2bCmoXZtaQhk4QJkbggA4K6y/fY9Tv55CIR8N01WDkNqpja4nG9UeOib1uX/ryPnIPV0i/wQqZ4AX0goYs0i4gbGspq4gO69QVgsxLDkO/ztW6JA1kG5FSy+kGhgxjs0hlVLg2UfzMXm1thnnu9+dxpMjuiLQpqMQPHTqBy7GMFIdkdhxm2UY+7nt274V5q3PAwMO10k0LkNqMtGPPYE4lKAuLA5vPjlN+AzO7AZ+3gjsWQrnc+y8T9HQMBHFsloc8Tw/b5mEjKo6XaLxkKqCej2WZjbPxldTgFv+5RDgSAMQJf8crobFWDcqZwrLqzU1Q+Jy7iCn5ZGjJXm3GEH12tQCoOCGaNnkZaFq/dMIqSrANQCuAXB+Vwz+bn4YQ8c9qOtiqdhDR2Xu/2D32ZiaFY780j32lxOjgrG0zx+20mmZm5i0r46GrmBjXX9M/cQ1eMgvrZa9WUhv+p2ZPzSPWYth7H7stVVQOafA9bSREG+a8SjGgbX7kJrAoLjdSASfy0E4V2pfrgCxmGe5z2UazLHjNhARHICBtbsxN0he45LFDQTKgfvOlAqfZYfrhX9XprmcY+d9cmDxkmUilgZmAk7tD0TerhuNbG4A9n31E0aMuaTvwitOR6mKZCWUF7hYDDgHFkqVbe4EIF0vbceuoOc1dVfuCFeVtDxyGJ0Ca0ktCRSvTS0Ahlfrf9AMKSsrQ1RUFEpLSxEZGenr4RC+JC8L/KcTwfO8iw4BgKB7uHuyW0+DDhfQMDNSTcdhqigEwuORfbkDpnx82OXCbQKH74KmI5EpVsiO2ISfM4/Up9hl3I83Hr2Ax9YchMzMjCxyZoAN5SIfibFB7+OFjB4u5y/nVBEmvLtHYU3t8ZTxwfjUOhTfcv1kMwVSxCBpGPMDHgr4xkVjI56jaZYZuIQIPDUwCv26d3PQZ2Qf+QNZWesQUFEom50QN/dmrz/Q59gCh3Ff5CPxguUBfMNdZ39teOgJvMv9Q3HMdoY+BwydXf97XhbwzWygXE1c7Pgd0TrXImseGWDsJij+7YB3OPvi+ZximYnNXCoSooKxa/ZNhoIHK8dj8GtbNTM2cmgdh19VdhGGMXL/pswN0TLhrOCzZwsXZwXX1hfNq3BH1iDDgkjlC+ggDG+fgHmvbZV9Iu3vTvm4kxAy+2g+pn5yUPdYlYTD4iOP0R5KIq2ZMuy8K7jea0WCWpZAHI/abiNQjQdN2dinEdjIBUlyLQt4HnjTvBgBDA/sh/DP5iKdzfW3BaKdAch3y06w+wD1wuBDSZrTNP+r7Iz8oBgkKAaxNn5YCQx5ylErUqd1w7d9R7bNBzregNT2aZ6vnLFrhpRbQIiOx+4IV7W0PGqofbf8srKL8BoU3BB+i1fTx2d2g9Hh2tru8mHknu6r+6lW6wI6c9g1ihduI+XjcucGgOZ0jxRV4bDNkNjVk06v0zCETJUMStMU0vGoBVWMbQhzzR9hS00/2QBHKWhT2l6Ai4v0efCf3odL7Ghcx/ZSzBDFhJmx4+kbERjAIudUkeK0j7M2ZU3djZhlXqc+sPLzwN7lQkau6JSxPl3fvQ589zpMkUlY2udZ3LattVuVM7J/g1qaIdvfzpoRVqS6ESw0xFxO6btFLQlaHhTcEH6J19PHOstr41Ci+2Kr5wL6we7TiuvrrbrJ/TMAM5zS9olRwbirfztDT7xuCYd1NSe0oVDlo+TDoW18KBkbAySh2C5cBoDoUDNKKi2qQZsRGAATuK8xIfBrWS0JABRXWPDDmUtI6xSreFzyPcDCoYtNz7l/AAD4snz0ypmBN3u9hld+7YyCMvnu9nIo/Q0u7/kreurYd2qbOrfG7I5GRysDRS0JWh4U3BB+R6Okj3WW1xYiWvfFVs8FtKTSovi+WHWTgGKFmzKDqpB4TNhsghWO+ykorcYb3/7i8JpUlBvLlKGIj8QFxNizEHozRWV8ED6sS0dYsBkpvW5F6uDRwIGVKk/v6qZwSj4cRvxiROJQgolp7XFLSiI4jsc97+81FCTpRY+Hj/S4RJQySFG47PKaN2DAg+OBPsdeAxu4DE8MuxpXtQ7TzISq/Q3O31WCtYE6du6mIaWWCZ0zejJQ3m5J0JJEyk0FCm4In+J8URBLdr2ePm4/EHxkEviy87KqDbEH09nwnrr1CHovjNEhZpRWWVy9XWxVN8sCM11KnmH7bZ5lIqwyI3belpooV8xC6M0URTI1eNz8FWAFsPMzVO1LQEjvO4Hdb8rsXV9PHtGHQ5oZ0G18KKEQ0ZiQkoi0TrGwcjwSIoMQd7nE8Ha0kGpJnKfCpMGveFzPfXEUJRXVihkkUesDyE/B8QpVV+6OPQlFuLLiR2R+W4dl9/ZRzU5oZSD3cV1xAbGIQ7GCw7P7jseAugmdHFoZKEB/NuhieQ2sHO8hjZ3TmGTE/y3Je6exIRM/wmdkH3U15Bow/1uvG4MBAFgTmPTXwIBxqSoSf3/Jch9eyOih+0Kn9wL6wKCrALhO+zAQvEgOpS0GE+l0oQ6NRX63SfitMtDFIM8ZMVuQAPlzlGjLQkSjTP/0iISgqgLwu98UOm47jzMySb7buQzpKYnYNfsmPDHsakSFmO2ZKz1VXjwvBGnS4HNLXgGq6zi3giQ9sIzQtDSVPQ5A+LwSZaZC0lMSsWfOzbg59CSSGKUsnM0ZmIHs8XoqsJEiZsaUTA5FtDKQVrB4sfY+KIcdfIMbTiqZ0CVGBWPp3b2x5pEBWHRXL6x5ZAB2zb5JM5MrZoO0TuvLG44pmwLKIDWGlCJmme3bycsCMlOAD0cD6x4CPhyNmoXJyN24EjmnilQ/D8I9KHND+ASltHdxhfK0jRSPdLRNzgBz50dCt+aqAvvLBYjFYvNDGHeHPp8bEb09XR676Wp0SYhwedoTn0B7pyQCw++tN5L78VOg8iKSjn2AtYHyXiIievQmjC1r8KL5Y3xQNwKzzJ/rPkZhH7bb2tF1wPTDwNm9Qqftij+BsDaC2SBn1XVz25JXIJlOYzHPMlFoi6CSuRAzHll1A/HCHULwKf0+5UJreq9hxKFEcyokMIDFY/3CgVzt7ZUiDK1Q4dlBylCIaF3aEj1/W72ZEx4enSsNNqGTZEpM4fGYO7oLpnx8WDYb5CD4Lo/GtNWVeOvefqp//7pFykwuTP+932Wv5ooC9Ns7A1N2ncasiCFUju5hKLghHGiMuWO1i4KIlvOpxzraJmcgpOutLg7F/9TpUCzFSE8XzQs3axIcivcsg/NFUU3/oVdvIk5VHDN3Bx+yDYyzG7IGjFhyfHavMM5v5zpocGpCE3A4ZQ6sXcYofoesHI9nPz9SPyZwuIb5A5UIRjijfIMVK7nuj9yPkOQ4l+8TpzNIcpdCROuaCqkJbqNre1MtM8DbNFCtmRK8aF7tqaECqJ9iFdtTAEBhWQVwOk92ikTrb2uO6WP8LWCjehYk+1mht1MDp12UTOg0r1N5WS7mi+mRSfj8xmcx9cAVDg8VclO45/kYLP7yYQxPfk7xOqBHY3ehtBJ1G56BSeZqJ53qvL60H5WjexgKbgg7jWVwpXVRULrYzLNMtBuDebSjLWuCqeMQXNNxCK5p4KbSUxKx7J6eLqZvcZEhmJB6JWrqOOScKtIev81LRC71r6r/MCjKfSw1CsxVi4FP7zO0np2fN8oGYNKn0mkhg3BbzwT8JfYsukVUgo1IANoPxJ5fL9kF1iPZXMw3v4cYRp/QlkF9i4JcLtnl+yT2jppvfg8xHhTv1pijMeOe+zXbc1g5Hk/sCcV/Ndoy5CMWe7lk+2fIgsPDARs9lnWSa08xks1F+pZZQGV9tlL09UFyhmoG8hZ2L/4WsEE7YHT2Y/IgmtepvCybm7NzeX8+eufMwK47PsTK4h54ecMxRcF3AorxquVf+GXHVehy4z2y49CT4UpljyNIep6dEB8y+rPHsZdLpnJ0D0LBDQGgcQ2u1C4Kt7B7sdS8yOV1h27JYyb77x9/XhbSt8xGuuU8YKsoKQ+Mwz+5SXjj2xr7YtGhZgCO1VMOF2idXiLSUmjAuCi3Z7euwg1o6HPGfFREfvw/aAVgL1fxePCHVY4ZpcgkXEyYAaCdLuM+RS5fQKG1o+xbYi+laaYv8WBANlrpDJzUCOo+SsgkaHz/ck8X41yZBVmmgXg04GuXDFL91FqaQ3DKgcWbAQ/iVevCBo8VcG0Vkc7mYllgJlDptGBZvr11gyk5QzYDyYLDK+YV+jNheruZG0DzOnVPT6RvkX8oECeLTJvmoPWN2apTuOL3t13uS8ANd8lmoPRkj/U+bMShhMrRPQwJignNuWNAW4RoBKWLQjq7B0vMi+1CSymy3ZL9Ac4KnP4OOPIZsN3W/8cpKAmrKcSrln9hJFsvwCiptLiUhYsX6I0/5uPEqZO6du988dQryuWdu5IPeQqITNJpz2cjOAqoLFJ8WxTgLjUvchE382XnkXFiNm5h9+oy7lMkPF71JsOBxZvW29C3Zjnuqn0e79Wlg+NdRbwcLwQcms1oDn0iCEPzslQXE5tKZgTsFm6pCiaJGQE5DgLxW1IS8Mo9N7gX6NmoMbfCzNqpuKv2eQyuWWQPbEzg8KJ4rl3Wsh149rMAZ5UV9KayxxHLlOsfiJul4ErouU5lZa1TfSgQHZw7Vx7BdWyequCbZYBQsYGpDFoiZQZAXZi+a5X0ocQjekKCghvCmMGVJ5C7KIxkc7HUvBgmRvnu4tAt2R9wroDY/iqUshiAkMVQq3QSHYEfW3MAL269qGsIhYjG6GsTYYv97HoTQL4KR4QBHCtaWBMOdn9Wcz0HrnAVNCvh4oBs+7nA/K7qDUYVW3CmpxJGdA5+pW4iplhm4gIcpwULEIO360aDh47jF7McKgFOXESwXf+kdvOUVl8Bwt8i08CMR5DlEu66+TqciejjkBUaGfErklRbPvD100mor2YTK5P+c+05/YMIbe12KbgSeq5TAQqu2M50K/sOywMX69uxwuchauwA+cpHAMjIGC9M+SmcdY4HzvOOeiiP6QlbOBTcEF43uHLG+aIgTQ/rwgvpbsOI8/qqT4n1yN3IlOB47QyMeFHcx3XFD2cu4a2765+yRb3Jn4xCajuyrUu5dvaRP/DajkK8X5eOcoToOiZ0HKprMaWMDAMginGeHzGALTiT+z4NYPOQwe7GADZPNqDkXYJQHgf5zphimYkCaOm5HLMcclyqqDE0JSFSVFGLY+WhutZTY2POIbxwa7JDyfSSMUn6Vpb8fYmC3rHXJiDpd/VslQO3/tvjHi56rj96p2XZvcsQqVeLpZKBUipZT4gKFqbye1whaJkAl05cznooJWsBwj1Ic0PoflLw5BOF1MStffkBY46yGuludyu+dK9na7rpernSRu8NT1rxw/HynaznWe6DFSzyS6vRKiwQu2bfJBn/ALRu/wJwNsexTDsi0cU8zPrTV+i97gmkB9ZPMVl5Bix49aminQuB4FZAdQnkMlbO4/YoNzwrlJwf+QwIj0d68kAsu7cPtn+5AtMt78mK0TdxqSoC0kv2CrTBNYsxyZStUbXEy4pmrRyPPb8W4bkvjqKrzhtte8bRU+VkaA90j0wSMkTGJgrtnKgMw6pPBK3c2F5thRdPJ+ha95djh3B1j9sdX9y5UHUK0oG0x4Hu4/QPVid6rj+5XFfUhCYgqPIC5M+dbc6b53T87eozI9SsfEzOAO78CIxT9ZZUD6XHZZkwBgU3hG5/Fk8/UYgXhVNbfwd26VxJqhORwd2KLyPr5W5fj1SdGRtnjAh+xQzMXPNHSJJoVpxFooDwVCtbNqtVrZKXBfa/96MNzztkzlnbN0E1QKmuLx93dlT2licZB4AJbgXmwIfAjgX1b0QmIT3ldoysexNwmtoUxejTLDPwgnkVAGUBqViBdpGP1jcgSZbD+Tukx2+H54EnAoQGmm9Z/yK0xYgMg3XkArD/vR88HNPrHF/fulQ27uaBYkQiHsW4js3Dy1nm+uqb9gOFm7XKd5fngbCfPkb2kclC1gEQspR6xeZXjwBGvqJvWYPouU7FR4Ui4NZ/Af+9H65NXm2/awqrJOg0I5T923N2JLZ5Qh0+dhxvH6xEdnlH+7ShHmsBwhgMzxv5pJs+ZWVliIqKQmlpKSIjI309HL9BrEIA5P1ZvOq/cPo7QbeihztXKbrfKlVSaB2DkfWyj+Zj4ydLsDhwib7x2hC9RgbXLJLtLq2GlucPAKx5ZICuCguH7FSYGQPW3wAodEfneYADo6qDEt+pNUchyFJqf/0iH4ksaxoeDNik5xB1wdkqjtx5rhVv+q2ZMs1l76p9HjFhgVhqeVF7w/d/DXS4XvE7JK0E0xJM5/MxWGR+GEMyHsTLG/JwbflOGUuEWGTVpeFvAV8DcM3oOe/nPB+D8qGv1Jczb39NV6Ay1fwS3pwzHSZwgq5MbzBvOx/eQvd1SsbnBpFtgeSxwJ6l2jsKiQHGLNLltC2L7P7ry+2pF5V7GLl/U+aGACDf6wdopCcK+xOlShqeMQG3r1C82OippHjuiyOosnBIiKy/mOh2GU0WUvrz1uehvcFyazmvEUPr28SwSrQKNaOgrNrun6PWDFH6+Q5g85AWqHzTYhjImo85LGP7WVNbi3KEo7Wt3Lo1U4Y7TDtU1zVKTUg8QphawTTQICwDtIZ2YAMIU4fpo6cA/1uu+J3kwaA2NAEB7dIAle/QJi4Vb9TdjifNn2nuNx7FmF/3L0xZW4t8LhX5EErZ5QLbg3xnl4ye3KeegGIk7pgGxEcIfzuxnXSdg4CKQqEkmc3TH9hoZFU9ge7rVHKGYCLo3MvpzG59wc3tHwCdhro3SBWfHWm5PZV7excKbgg7DbY7dxfWJDzRfDoRrqlk4bcT1y/CcUt/xCncwLUqKQChtcMT/3cIQP2UU1RIoP5KMc6K9uUHEI9iXOQjEINy2akBZ08TuWkkOZ8bcWrEKJcqXY/LORiVyyy404VbiUimymXsETaXYSMuwc7LitmIY12nITl1BLBqrGcGrEIhovHyxp+R2OdZ9M6ZAefvpHCcPKaX/BU/vr4Dd/Vvp/odOsPr07qIn/+L5lXYbDNnVApsRQ8fsev7i+ZVaCXzfWRtJed2x2Cd5dmFiBYEvCYD4v0G9pPSvRu91ynW5JpF0nyQsuls3M0+qZhv2h+XPOTeTKhDwQ3hgJLdudexie6cU7lVIQmYZ5mItZtjABwCIH8DN1rJVVhaiZWfrMYdXQIwgK2TneqRYvp5PXr8+CrWBtZf7HneVZMi3uD/YxmPM3yi7DTS30d1w4ODOwCAwwX6UkUNpn1y0E0JqYCc6aJSdsrTDSYVY2CmPgumBMcDJQhHDQKRKKMvmpQ6Hajc1uAxVplbIaj2kqpeZT93Dayl1bhtW2t8fuMi9P5pgaIQFKXVkt5Y8hg5z0rmjHKIgc8ANk/Vf8beKuPMbqD9QNSEJsBcUaB4DsRWDTMiggFWp1fN0Ofcn8JxA7evU6oPUrYT0pAgTcN8U0mITngeCm4I/8EplZz7ZwAmbDbB6hR0yN3AjVRyObR3OA2M12hGOZLNRf/cRZB7GnO+P8hlaVwOMzHS/pTpfIFexjL4R9ZPKCirkVtVE+epNBPLKGa1xHJzJcErzwMVTAhCUdUgzwitpI1YqD3H8jC2cI7TMPu4roiLChXE7GcaZgpXjEg8V3EflpoXywqlxamrnUEz7a0+ph64Ajue/BEzX1/q0E7DyPSi1nmWQ8yq6dFb6c7AXb4AsCYc7fEceu+ZrhiYv2S5D/HiOYeOKeOIJMEEsqmg8CAlaGIWuB2kWTkep06d1NfCxR/sLJo5FNwQ/oUtlWzleMx4bSuscL0py93AtSopRLTaOzg3ozSBw7zAVeDBu9zOGNs0QhEfiZct9+ICYnTd+C5WKAcuYsp9ydaTeONb9zovS6fS0jrFKma11MrNAeH4wlHl1hgU6TYWOPM9UFlvUlhujsMzFXfbz7uYsXAuj7W2S8NFxKINX+RWifnndQORzQ3AFAvroleR4vBdKE3Fqr1nsbG8M4DOxncK7fMsRyGiVXusOVTK6cwM7Sow4YcLvyBzR2uMYJWr8DZzqVhmL0nWkem45bWmN8WipMlx8zhEPVv78otYG6hjBQ+7NxOukImfn2PleOScKsJXh84h51SRx1og+DtGXZPV3EJFNNs7wNFFmAHQnz2OBBQp/qGwjCCevYAY7JE0QFRDK8tkYhnMGHY1lt7dBzFheq6U8ohBjdr+xHJzbeM6eYzWWh6OuB546gRyh3yIFwOewF21z6N3+X+wiUt1uenbjdBs2bncM6WYW3uPcIt148/gW64fAOGYh9RkooiPkN2O83fht6IGGA3a2MSlYqplJgrQSnU50ZwxGmVYZs50aVshBl7SVh52w0elbULY5sT/BeCNb0+At41ncM1i3FX7PKbXPmZv1bCFT8Vbd/d21GyJmY5Ip6KCyCQXM8gmhajJ6XG78LMBgc2U1QeE65Fm+xOmUYTXBGVu/JrG6tLtj7jjmqxUSQHUt3dQe2oW9Q6TTNm4yEejLiwOUZLyZjWuCa3AxIzeeHnDMY/4BWUfzcfLG/JQXFGra/9y/HaxAoC2P8gmLhX/q+mDPUHTFEXSShQhEkF8LcJRrUs0PH9XCXriZ7yz0wwe/R3eEwONhwa2w22xZ9Etohhs2EmAiwNYEwpKq1CCSMM9qKQ6EpF+7AlVnYpU+wJcpWs/SlNILDhcx+YhNeQPVHS6E+t/+Rmjue0uXjXiDfFly714UacfDwcWPFi8ZJmIZYFiRtLVb0iuUk9WrMwDrcKCXA9OI9Nh5XjsOVWEnF8vAhD0MAM6xjZOebOzn0wDMjBGcdazqWfpPKDpIXRDwY2f0phduv0Rd12TpZUUBaVVeHnDMZRWVBtq72B3prUAF/kIXcYqc+++CaaOSWBZxqWbMuA6xaJG9pE/sHLNGvRHCQpZV52FHh0GAKzJ/R2P3XS1PaslNy6RfuwJtDbSFNHGK5a7NZx8BcQAYx/XFbnfnVasJUlnc/G3A48jHhI33JBo4LqpuMTeZrjCS+nmrnc714RWoOcV0ViF31WXk5tCKguMQ1mnsWhz6r8Iqi0BrABOAFcDKEcwLAhAjKQFQAFi8ZLlHiQxRaqO3c6i44SoYIwbMxkM29dFR6JHA+aM4oOFXPURhGvVs58fcaj8W7LtJKJDzVhwWw/vXqc0/GS8jVyGWcl8s6GaHsIYFNz4IUa8V5qr8VNDXJOllRQhgSas/GS1sfYOEmJQbs8oyGUMOB6oDk1A6FWDADTcL0iuFYJz+wA9OgwAKCirsetuxHEpiZXdLQuPYS4jhtHXo0dsF6EkihKya5mupVVVJcD2V3GPeSlKmJsMjU/p5q5Xp9Klc2ckRKn32lJq6RBRW4jIY+/KrhPOVIPngX9LqupaoRwvmlfp/q7e0SUAMwYPkJRB12dXTpw6iRe3XjQsfgZ0PFhIMiW5fwZg6maT7D5KKi2YvPoAlnviQUwuO3N8g6afjNcCCdt4zMeOYQBb6nKepaX6cSjBnTf2w+CbMyhj04hQcOOHGNGbNDsjKNtFw3T5AhZdJ1RLcfZmAAJGsiDpKYlIHBwN5Koupog4DcBAuez7TL8X0U1y0XLbL0ihFYKos3inbrTdmVaKkhgacJ22iwg245739rpsw2hZuJiJKeL1uXyvsKarZg+kzVOVTlOgpQRPBHyuOa5iaAu8tSqYxON74VAUIn8+4Na41T5t8b0JAdswuGYxhrP78ZaM0F2N//3B4k3xe1VXC+x7F7j0G9DqKhyLGYU9XJ6h7emaNnXKlKQC2BUkH1yLGcbdX+7D8NCbYLpqkHs3d7nsTEQiUFcDd/1kGuQQLBlPPwBrFaotpdN+f+1wHXJOl5AjcSNCwY0f0thduv0GmQvn0VY2n5vLveyLGXVN7tmtq9vBDVB/0yrmIxCL+qkbMSswsf1Il3UM+3BIzL+UdBYPB2xwGI/z+1IdhojzU/jFy/KVWkbKlaVTPaUI1zw0QBDzqk2npbLHNTMWDABeZWziuD6sGy5T2+a0rFQbAdf+TUD9VFZJlcVhXelxtGZK3M4KMgyQZOsBpRXYOYzdFnhll3cUHnBOZQI5SwC+XlKcwTyPfNMoLLDerW8stp+qDwwKzrtywbVDhrEOwEdvuDddpOT2W54vu3g9Tn4yTtmmJ/aE4lxZ/eeqW8to4BwAwnmNDjXjyU8POWRMW4p20pdQcOOH+KJLt89RuGiEVF3AfLyOB0a+hbzooSi+XIOYsEBEhQTCyvH6nn70tHfQwUuW+3ABMS4351EKAYMhbOZfSkfDMnDKX7m+L9VhKD2FK31n1ISQao7LLDhdGZBWKMeuoOmK02l6p8XUPu0KBMECM540r5PdhzN7gwbho7axGHH2DYdxqelU5KYFG8q97Le6t+cceLXOeQU4ucLVJJHn8KhZyPLpCXA0HxhUnHedg+vh7H7ZaTrD00Wqbr86uXxB9qHpv3wM5rH13wtdWkYD54ADa9e3Xaq0uCzfUrSTvoSCGy/jTvrTV126fYaGZTkDBlfmvoQHrW3ce9rSaO+gF+nUDWOrgGmDMnSuAMAlGE+5S3UEfx53a0zOxKFE9Slc7bslCiEXmN9DK4nQlWGACj4Qe7lu2MX1wEfWEaizXTrUgiLxRpxVlyY75SJ92vWEW3I4asDDMdBUm7IrqbLgHyc74SUs1iXQVtLWNJRRJv1pRWngFYA6dD61Utb9WfyWPxywEf+23gmL5FIvvvfEsKtxVesw9euS+B39dYeq864YXKtnoQy2H9B0+9VB0Slg+3xoZVp0aRk1xiMn9K6yWB2E1iItRTvpS3we3CxduhSvv/468vPz0b17d2RmZuL66+Vtqbdv344bb7zR5fVjx46ha9euMmv4FndLudWqW4zoTZoMOizLQ6oK0K72MM6hvnRVbKGQODhamHpSKwFVdCVtC4x4Fdg8RzGzI7YG+I95ORLlnrC3LAH2Gky5y+kIPEB7psD1KVy8QZXnw1TxJ5b3DMD8XWXYx3V1cX8GgGgZgXAYU4ubTIdxk+kwHg7Y6JANUaoOEat/xGoqtem0ITVv4AJiEYcit7p+A/Idw9Wm7ES0GpMC2pogI/2zXNaFvk7nL1nuxUpruj0rMC1sGxirkruNsM0AhsPUsG1YVDHc/rruaV03vqMD2Z80slAG2g80wMWXA8BEtgXzwwfQm2nR1DLqHM9TA6Ng6TYAHMfjnvdd9W0izVo76Qf4NLj5v//7P8ycORNLly7FoEGD8Pbbb+OWW25BXl4errzySsX1fv75Z4d2523atGmM4RqioaXcblXd+NDvoUHovGhIpy4cpgdyIfzTmtNX8+pgWdnMDm/7vRUuq+d7FFLuspm74+vldQQqiBVbzt4ozss8EfAZhva6Hn1TbhZelLlB9YQggryAWLxYWz/90ibUhMygtWA0TInlsiHO1SFiBkRLSyM+7X41JgAxUW8An03UfbPXi7iPIUEnsL3GvYcgreNwN7AB6j9PJfdicWpPGtgAwF/a1wK/am9/em8TBnQbYFjcbvQ7CgCTTJv0LfjzRu3gRqeLr1LG8OxVd+DKHzMV11Pq46WoZdQ5nn7duwEdYvHVoXO6lm922kk/wafBzX/+8x889NBDePjhhwEAmZmZ2LRpE5YtW4b58+crrhcXF4fo6OhGGqVxPFXKbajqxsd+Dw3CQKdiQGV6QM+cvoJXh1Jmh4lIhKWmEgG1JRoSVdeUu1zmrm2kGd+ankaIwZsGw9iyA1DOEojLtN37Eqw3T4Bpdyaw/VXFbcahCMsCMzGlVghSOlUfQQhXoDkWpWyIXAZEr5amrvQ8+v+vPa6rnYn55vd0l5cbIdLivk7Gkx3UlZCryOPBgGF4zKut9+lJiArG3NFdEHRko67t/s4nuC1u170KAIYHwmXapciyZylwZZr6tUlDK6fVbPWRwLZQfkSux/mzVdQy6u0obnMfbpHaST/CZ8FNbW0tfvjhBzz77LMOr48YMQK7d+9WXbd3796orq5GcnIynn/+edmpKpGamhrU1NTPw5eVlTVs4DrwZCm3rqobpaesxvB7aAiS6RKEtgYqi6B0ERMdZtWnBwzO6Tsjl9nhOQR+pPfc1afcsys6y2bu2l0+jJBA7QBCDj3ZAZYBElCE2n93ganmkvr2IARDYpASr9BrSWk/Wt2rWXDoEFIhmNdpMH9XCUq4JGyCkAGaZvoSDwZko5UHgxwlXY8eU0S9mqCXLPegLS7iwQAhg2Eko1OFINQgAK1QYX/tAmJw7roXMemaMRglPuBU74Jp03DN6SKeB6xg8WPb29FB/zDc0rqIh6n/eHX8napo5cTsjFyzVfHzm95K30jEz1ZTy2iwo3iL0076GT4Lbi5evAir1Yr4eMen9vj4eBQUyF/8ExMT8c4776Bv376oqanBqlWrcPPNN2P79u0YMmSI7Drz58/HvHnzPD5+NRq1lFtDjNugm7030TmfLx6VWB0ygM3zyJy+otDbObNz5DP9x2SDKy/AvA21sp9IY2QAAMCsEdiISIOUWMZ44C89HmmQ0J7Jx4SArUiyqo+DB2P3oxHhwOJN6214yzrOvr0/EYl3zP9GOGpkb6BaRouFjGP7BRG9poh6S+UfDtiINXU3uzVNFcrUINQmiL7Eh2FFXTqWWv8CbgeLZe1qMbZXW+Hv5r/3w/nv3TmbJ56P9+pGoWeUPi8iOwa1LnxoazCVFw3OJerU3iRnwHrHh6jb8AyCKuvvC4VMLP5RW1+x50xiVDC6XneDoIVTyfyID026tYwGOoq3OO2kn+FzQTHjdBXged7lNZEuXbqgS5cu9t/T0tJw9uxZLFy4UDG4mTNnDmbNmmX/vaysDO3atfPAyJVp1HSkDjGubgFfY2FgPp8BUMqE2y8GuoMDlQu083QRCw43h57E1L7h6J3sKEzO/TMA+o3rBc6c+Q39yw/ZWycAcPBFaQyMXi7jUKLbkE+KdKrQOUjQ9+kCc2td+x4BrtNcT1mmYLk5U/FGztv+X05/IbcPpelNqaZoM5eKhKhgLLy9J/74ZS4Sc2faHhnkjy4BlzArwHhA7EwUKvBEwDqc4NthC9cP6z5fi9hfQ9Drp9cQYFOCSXG+ZFrB4r26Ufgw/EHsMpoZ0NuxesjTQIcb8MvJE7jm+1nay8uhEUgJf6vhuFC60P43VBcWhyt73YRN3/2OdDYXL8oEpwtrH8SW48lIV8r82H6KD02GfGfUtHtOusf0rtfh/0ZY8PXuQzhRGWbPKhn16iKM47PgpnXr1jCZTC5ZmsLCQpdsjhoDBgzA6tXKvW2CgoIQFCTTCM6LeDodqVpOrvcpy2m5Bjl0NgQ35vOjcBlLjZYMK1ygnYXe9psyVwzsg/DPplXK5vpj2mYTvgvSZ24HAGBYdPjhFSy2NfMu5gWTO6mGxMozMDHGy9F5HshHDAAeCbhkqMGlFu46FOdyXRWDBM3hhcZiX/e/Y9N3+v7eN3GpmGyZiX+YP3LQWORDyLQAkK3YkvOsUZvelGqKvq3phxduTQYLDrXmKOR3nYTE37NsU6iuSB2tG4K4nfnm9zAXHyKJuwQoGyU78GHdMLxSNxF1CMAydzIDerUlQ+cArAmFJy/iGmN7qEclkHL8W60PdJlyAN/9joUpZ/CXk5kuQ0xAMRZyCzH1kzrg7slIl9PSRbbFid5/x6hWQzHJneufnHZPLhvNsEjlOeEBKRCoCo7H79fNRecb7qaMjZfxWXATGBiIvn37YsuWLfjLX/5if33Lli0YO3as7u0cPHgQiYn+Ff16Mh2pWU6u9ylLspxPu427OZ/Po75kWH16wFHUJ8VZ6K10U+ZtWqXtAU/Dil4qXX5l4B1T5FK/mPoR8kK2QaZ0WQvxJq7HbE8Pzh2zz/MxSESx6nakRnIADLnrOlB5ET1/eg0j2bt0N3ZUqsoSszJq70nRW8U1vXMhvv38PTzFr9BttOepexbLADG4bD/fevmB64rWUeGqf8+qDzcSbYngMuVYPcgADtoS01WDcGlXuEF9lPLfqTg+taIMEzgMPrlQGK5CcPqieRXuyBqE4c+Ogckp08K0H4gurAldXDfvHkrZaKfrQUh1IbrsmAbER/inDrIZYayjmoeZNWsW3nvvPaxYsQLHjh3DE088gd9//x2TJ08GIEwpTZw40b58ZmYmvvzyS/zyyy/46aefMGfOHKxbtw6PPfaYrw5BEbGUOyHKceopISpYtyul+OTiLE4Wy8mzj+bXP2Up3iYZwcvFdhHRtU1v4qZ3BcsASUwR+rEnsKvTU2AYRi45L/yQXHilSIXe6j2BhAvUdMv7YMHZfVwKoJJpY+T/lBjGNeBgGRiOaqxgMdUyA5u4VGziUjGtbjqKEeGwTBlCDW2TlwQpHFi7IR8PqN5QCxBrLwMXgwR3b+iBlRewPDATt7B7MYDNQwa7GwPYPFkdhbgLcbpqZ/AN2MMlO7RaEN/L4gZiD5es2DRS7/Rm999WYSG/EAkGxNZqGM/XGQ+WChGNhbf3dLzGcFbg9HfAkc+Qu/VLDFmwBRPe3YMZaw9hwrt7MPi1rY5/+8kZOJi2CIVO3/kLiMHBAW8AIa0EPdrp75DaIQb/DRht8Kh4xb9TQLsooz97HPEoUryBideLdpcPI/d0cX2mpcftwk9P6g8NZaNty2Q/K6xHeA2fam7++te/oqioCC+99BLy8/ORkpKCjRs3on379gCA/Px8/P777/bla2tr8dRTT+HcuXMICQlB9+7dsWHDBowaNcpXh6CK2w0UYbCcXKeC3y+6jevNNCkQhxK8ca4Pxt/xIUybntUU9UmRCrg1fUvAI4mprwZyzhj8CUGf0gZl6BBSgSesHxg6DsNn9/YVmBgyBOnl1Qg7tRHJP65Ga6a+z5WVZxDFVBraZL7MlI2SId9FPhJf1g3Ct3xfh2xIQwXSDHjwAN40L0aAZKpOTtTLA3jh1m5oHRFk/1vaklfgkoXUg95puJtNB4VxeujPgQELPiQKTJU+wbcRpFm4ixUSp2Y32g9kH83HlG2twWCRQyasFcrwQs5LwJ7674YpMgn9+z+D4pyv0QqXdZ2rnLg7gaBBSFVooaJVbKH3exeHEu/7yBjORvuhDrIZ4nNB8dSpUzF16lTZ91auXOnw+zPPPINnnnmmEUblOQw3ULRhqJxcp4LfL7qNN7DPUyGihTEGD0bazKOGTAulAm4jF0cRMSvgXDrMVHFAoOFD0UdkWyB9AUzJGUgDgLws8EeetoUE9Tj3nXKeohJ1IJ9ah2A3l+LQMdv5eLZw/XRP73iibQIDOAQ2gLxRIAsOXaoPY3C0FWDjAQy0P0As2foL3t75Kypr9T0N661+8lRQUw+HxywzUFRbh3gU4wXzKsQw5Q1OoTv3nLJ/13U2epQ+3NzUNd7+EMRLtC4j2Vy8ZV7suvOyfPTe8wR+7fIgWp14X9d4F/1xDfa8u0dxOlyr2ELv964Q0d73kXHXSbkBDsyENj4Pbgh5DJeTqyn43d2mN3DwitCPszaksLxa0ZBPSU+Q2iEGMWGBKK6oNXRxlCJXFVTBmw0di17qhr2KgIGT6z9Dlc7hzjdh59/F0tlsJ22L3PFc5CPwpXUQvuX64WtugOLUDmCsm7gRnI0CR7C5eMX8AVp/X5+tEoXfW7j+yPz2F0OhsrQnVmNjqryIPZwwTVxtCazvTO4UjBo5n6JwejOXikSxWMFgo0fx4WZVzm8uD0F6/KU6/vEVuP5/A7/vXcUmr85/x0qO7VpFGfu4rriAWLRRmJoS93M2vGd94Ya3HNzdzUY3MIst4rPiED+Hghs/xa1yciX33YZs0xvYMk21XzyGQEup5uLOT6WA8hi1xNKvjE3B1E8OaN6UnS/CgLIAOYyxGG4ZoOXLUoBYZGztiFeiC+sv+hqdwxUZ+SoOhY/Fpo8PO76scDytmXI8HJCNh5Gt2lUb0OgmjoZVDYmi3jcCliDDtMf1XJWdB28TfvPoZXj7m7hUrLCm4+GA7AaM0jjSgFlpGrA6JAE11ZcRxV9W7GVVjhC8YHnAnoUTtUf2YoXTxho9ipwpdp3e1JrGBXig8iLYfe/Yx8dDvixf+nesNB2uVZTBgcX5tLmIy5kBjudl9/OS5T68cEcPYZvedHA3nI1WF1MbwafFIX6OTwXFhDLik4uKTLj+Cc2H23QXa9cxmMU/oWvZYkTa0+dqY9Qjlh51bSIeHdLBflMGXMWzchdhrcaJSueU5+sDGeftywl3pfu+WMk5irzdTWOHxyO9xxWCwD1SCAq1jkdEnL4YyTp2rmbB2QXApQjHNMsMF8H1BcTi35bbMbN2Mir5QJfzoJcM0x6Vd3k8ZVmOsewuFyGyOMax7C48aNoou8z/uD7uDQqCV0pNaCIm1D6H6bWPYULtczjPt1IUY3M8cJ53NRPcxKVicM1i3FX7PE4MzgTu/xqhz+ThtzShdYbSeYtAFaoRaBdOx4QFOmZA3OjZBgDtY1yF6e5oq5y/VlIhuhTpdLgUraKM3iPvB3PnR6gJTXDZz3PmZzDu7snCuRCn5pwDPdHBPS/L8LE5IGajAWiH8+pFD0bweXGIn0OZGz/FG+6W/uSYmXu6GBsvd8Z5FQ8ZngeKEIkBNUtQhwDHMYITnkxtKWZruzTdYuk5o5LR84poPP+VGVOq9HmjaD+5ysMwQDkfjAhJzx1x+4DgYxIjKRdnmXpvHJF/ZP2EiGAz+AITBhseAezp7/SURAzv2gZffPlfnD+Uret45KYvlIzTXrLcixJEOuh0hrP7Md/8HkKZWndGDkBd98IAaM2UYVHgUvs4HDxvZI5RKxslh6yGiWEQcOtrOP1VGHLKBAHvPMv9slksZ9M4Z0Q917HWvXBNh7YAgN7D70XtDy/CXFvietyMMKb55vfsn8vzt3ZzfFo32LNN9N+6L+0qvLfrtMOUkFFtFWP73lzmQ7DSOgK7ue7Yq1K9BshPh2sWZSRnIKTrrbD+9j1O/XoKhXw0TFcNwj87tRGWaSwHdyXdI8M6loNrFD3oxS+KQ/wcCm78GLc6g/tgm+5QWF6tOqUhPv3+3fIg6mxf06gQMx4YdBWGM7lApmOlVF1oAq4tvwv5Tn7CDmLZ8mjknuqBtKvjMOraJIxMSUTu6b7YV/YQOlceQZewCkzfkI9N5R1hdboIN6Qq6NO6G7CF7+8izh3J5iIal11unNG47CD2LCirwT3v7QWLAOwKikECU6wr5crzgtbm4OUOSAeAvCzUrn8at1cVGPrLl05fROEylgZmyhqnLTUvxhTLTGTZ9CTitJfapVVtes4d3x4x06S2mlRMG4Q6Xdt1HkdNaAJCxrwOU3IGJuSfwBvf/gJAeZqpgJc3E3TGYbr1zG4EygQ20jHF4DKmmb7Em9bbkBAV4qi/COuCAZFJYAy2HwgMYF0egnK5rijiIxArqdDTgmWE7NLjAV/hXv5brKhLx1vWvyiX5ytMNWsWZbAmmDoOwTUdh7iaCXrbwd1ZxzP9MHB2b/3v7a5z/N1DOh+/KA7xcyi48XMaUk7emNs0inghU7wZ2LIbEb1uQ/SxCyipsqCkyoK8rR+DDcx00XMEVl5wqa6RE8tWrXsXyFgIJGdILpqxgK1/cEZAPr6RyWy1Z9xrdgkADwZsQq6lG3aF3IBLFYI+RzotJOeDo9R12x4MQltwyjDAasuNWPLxYXw+dAt67ZmJoAYIYZ5Ki0CPY++BqdQeMwDF43MeozvvKcEy6gGT81iftDxqaPvidyLk1nqtxlWtwxyWUbINaB9YgQG1edjPXYN+7AmHYJe3WfI7TLfqnFZ6MCAbn4f9FZcqajH4ta0ON73bQ+/G61gIOJnxabUfcH4I4sDioLUzhgUc1H+yJLRiKvCkeR0eCNiEOZaHHYI8MWPklelwNx3cdaGm4+lxe/1rXij39oviED+HgpsmgLvl5I29TSNIqyE2can4X00fTDRtxpVMIX7n47DKOgLhoSG4dOAP+zpiQODcPwio90v5p3kFgi21uJIpxBMyPX6CqwtVO6XLZbZYcLg7YKtbmQSg3l35wOiH8Pj/HQED/Q65othTzEAFoQ5v1N2ORwPWIxw1iuuLnOETkM7uxbV73gSDhpU292ttBSqVgzzpmAG4NY3nCfR2T09CEQayP+EiH4EYlOuqTmLE/25+DkgeA7Am2YyDOM00ks3Fv83L689FoGv7DWFKbyLGjZns+IChc1qpFXMZd8b9gWmfWFzyM59V9kE5O9MlyNfTfkB8CFr5/WnkfvOh3fOnIbRyykp6fTrcDQd3XSg5Eos6HoXri6fwm+IQP4aCG8InSPU/chqOhwM2YiH/ID5HveBTT0DQGvX6C7lghNExz+6c2Qr4/XskHnD/Ri3eSC9VHrEHTnHlJbrWjUMJbmH34hXzCocpAatOcW57pgCzAj5rYK8jW3VHWBtdS8ehBIyMw7A/8njAVwCE74r+8mvHqQylsmWlajTW2dOHKcaywEVg2L4AJDfE9gPBh0SDqSrRHNGpX0+BR7yLZ1Eu19Ulk3TvsP5IHTpGV/sBE8ugdXiA8FCBhvfMErVCYoYvPirUu9PhevtkGalcaiwdjwqe7l/YHKHghvAZ6SmJ+PzGi+iVk+lSEZLICM3vKtj6aSajuhflJ3jh5mT9dSdMpgDZ+XBpZotjGd1NC9WoLPoDUQkD8Ex6VwSeLdK1zZvZ/bJl0CYdd5mLfATuDtjq3mDtSKo7QlrpWqM9U4BJAZsauN/Gx/CN2zaVISfUV2/v4YhdgeJ0Q8zOK8TvNen4G9ZqDqUQ0bLTsFLxtFjuvXOXGW+1u4QBnWJ1ZUs6Vx7xaBZODPbXj2HR9bobYDqbAxz53rPeM/adSX215MooeKDP/cBPX+jfv7d1PDrwp+IQf4WCG8K7qBlncVb0/mmBix8G4NgsU9SdeMINV8rl1fciStrYMjIJ1pELkBs82FGLFJGgvBEDvHOoElt2C2XNLELQLzgWcSh20EKIcDxQgjCNMmh19lq74daAXO0FbVTxgahEkEOGiI9MAtPnfsBaK3yWKk/BwpjDZacD3UUa9HreLdhx2xwPFPGRWFN3Ix43f6W9kmQqw3k603h1neMNceOP+Zj6yQGwGI3bg5TbGoii4GiUYamMe7Cc03NJpQX3vL9Xtx9KtwhjbT300r18F7D4Ke94z0hRqmQSg/Xtrxrbvzd1PAbwl+IQf4WCG8J7aBlnaZjSOetOPO2GG8lfdniM5svywf53IlbW1t8IEqOCMXd0F6RHJoF3x0AP9Teg/1V2rn8NLObW3oel5kyAkem8zPAI4K0NuqGfQpKh5UOYWjxY+xR4sIhDCdoz+bi3bCvipRf/4GjUF5tKBKpOsY4nHxjlgl9vIE5r7ua7Yzz/HRKZS7KBJw8GtaEJyC5pj7hTRXa9inQ603zsHLDfjUFcvoCNP57HY2sEfQsHFnMsD2OZOdNFayae85ct9+JF8yr7MTgfk5w4HQAKSyux8pPVSBwcjZ7duipmLVi9wf2IfwLfvQ7omEYDAOxZ6vqatzQrzg7uRaeA7fPhlmbGWzoeN/CH4hB/hUz8CO+gxzjLoMmYmvGeEURjPTk9jqgHEI3eCkqrMeXjw/jlivFuBzaAvL9Jtq1S7IKT+R0TmYTjXR9DJONepYNoFpcjcZ3VSxuUYQ+XjBoE4ImAdYjjLzkuUF0i/HSaoipALN6oG48YRt5RVwk1Yz8rz4BhGiewkdIGZfbvmfMkEm8L6qaX/BUz/u8IJry7B/3/uQUbfxS+5+J0Zr/u3dza92c/WzD1k4MO32+lrvSiKd4lRKh2Zhc7ZItCb0DQA30XNB1rA19Bz9yngA9HA5kp8oZ2Nt0Kr/AXwIMReqANmAKMedPwMTtvDYDbXbOtHI+cU0X46uDv+On7DeB+/K/QDZ2z1ju4d/8LcGAllDUzGvsXdTxqdqiRbT3iQKwH8Ts3tldbpOmcamwJUHBDeB5NwR2Ei0doa12bc7arnypzodc9NFtQo1YmLL0RiEew6oR7Sc5CRt6VVWQTl4qB1YtwV+3zmF77GKaaX0L28M0wte4su7wW0mBqL5eM83yMoUCwENFgwWG++T3F6ioegMXK4cjNqzC99jHcVfs8BtcswhnevTS48/DE4HNl3Qi3tucMxwv9v/Seh0JEYxOXihM3vAVEOh5TPh+DybWOn2dxhRCQzN+YV7+g5g3QER4MChCLZ/aHy74vdTGWnvNNXKrhJrCi0DkBTtNmSo69Nt0KA7gEODwY4RXRcTc5A7hzlW59ljySKTpIApZD55BzqghWhQ8y+2g+Br+2FSvfX4z+X96A7lvuBvv5w66BmxHNjByqjsQSjZqXxMSEPmhaqoXi1WZrei8eDKNZyVAVEo+zgT2BMov91cMRQ/Dj6Edwqeww3tmwS+isrLOUtxThaCXV2SiQbms3IBrunagM09X52zrsZRxHB1SV5COkVVucCOmBTZ8eUV1HLBsGAKYc+Objw1gzXN/NwbnCx9ld+SXLvbJaDDku8pHI5briOjYPMYzyOWIAmGtLsOh/J/AtV/906pYmihH/U//55yMWL1vuRSJTZHhzzhU94n3QChMAi8wajssWIBb7uK5IjApG5xvuBm64CzizG1x5AR5bfx7Z5R0VTeje3nkaPa9ohVHXJmoIWV3HzPM85iq4F9vHJ/meSDHSBFZPA0zZSh+bboVxmmZm5Bx3xSmgrMeAQ5/oGpscXHkBNuvsnSS2IhihUKHGl+WDEaebrDrdstUyy0o6Hg85EBMNh4KbFojXm63pFdJV/KlRyQCEjHkdO7sOlw3EXlpfiq+4+s7Kaj40YiuHGZZp+DhwvubQJgVsxiRstlebbOH6oSo4HiHVhVAKxBCZBNPAaeguuSmUnTJ2gxZvzk/uDcW2wGiYa0oU3XsBxxtUER+Bly33OpgYvmherRn0idt63jIJHFikMXnqK9j4S90mfIv66Rd3NFHCYjwutr4OL53vj0JEIxpleNG8ynCFjtynIo4jEtpTfAyEZoscWEmliTCVsfdUETaWa4u7X/jqKEam2CzvdVry5+t0L1bCSBNYXQ0wlSp9nHUratVFrAnodHODgpu/ffEHvq1yLSl07iQutiJgVCvUeCHLlP0sMG6ZvgFoaWaMnA+i0aFpqRZGozRbMyK4E28ATul/RCbZRX1yc8rZR/Ox4vvfAABbuH74r3WIpttta6YMHBjVqRpnDYhYbTKc3Y/fr5srbs1568IPmVS0VrNS2TEAyC+rUUy/K9EK5XjLvAgj2VzFqQcljctma19kcwOEX3QO9kbTIYdmlA3RRMVczMVGLlVo72BerHvcUvL5WEytnYF3THfp6s0sR3hwgGPzSRt6nV6LKmodG0AmZwAzjwL3fw2Mf1/4+fcLyB3yocv0krQZqXODT2ceHdIBibaGkuJ5Zxj5aSMw9ZqvYaxOlfPlC8L08unvgCOfuepWetwu/FS7kbspqBU1Y1ur5Kdmxc923vo8ewZaWqGmFFgzYuDG857TzBg5H0SjQpmbFkSjNVszapyl9wnIVlbOlRcga/15sOiI4ex+xQaJcohiUbl+VnKZH7HaZF7gKrS5/gQQHyGbiraOnI/coEEoPHTOIbtkYhm8cGs3TP3EmLtrKnscIXWlitdfuUCuvjLmQ1EJ4foEq6ChGW76ASO5XGziUlHH63vmCWVqXRpWKrXT0IIFj4mmTXg44Bvd4xbheKFz/JCaN8CBxQt104Xvs8GvMA/gpcDVCE1+zuU9I06vLoGQeAO0YeV4zNgbgXzJlJ6WR419UwywZEIfjLo2Ec+kd5NkNAeAq+4D06ZnXaaNDnWfjc3bWiOdzcWDpmx9B1F0StCpNKRMW+M6INcmQ02A77Au6nsniedbtw9W5UXNjDFpZpo+FNy0IBqt2ZoevYHzxcPpBuDC0S+BjbOAyiKwAJYCKA4KR7QO/YyUQkRjD5eMKZaZeClwFeJRP22kJjJOQBFwNkc2EMu+3AHzsn5Gfmn9tIU4zQcAL284ZmiMgPuNOoXy+UvaCzqtw4PBXPMqMBYOMwM+N9xqwtlPRXTEjUcxFpjfRQijrncBgFTmZ7fM4sQS7n7sCQDut31gGSC0ukD4bNsPdPiMU9unISbMjOIK7ePQCoTEv0PRTXgY8wMeCvjG5a8kAcVYbs7Ef+pux1vWceDAYsmE3oKmB3ItVMYC3Ua7PCT0Zk1YlvQHeq97XE36Y4MRxMDS8n+RsvPGyrRVrgNiEFOCcMRI/oadNWNaiFPVgAHNV3i8cK0hzUyzhoKbFkSjNlsTp5vWzwCqnG42IdHGtrX5BWC3qyhWFAbruQmLuoP93DUYwOYhJohHzIT3gQAWOP41kPuO9kZO76jPKNkCseyj+Zjy8QGXe4boIRKHErRHNC6gq+qTqDOeNizUggGPJKYI/zR/IPxuMOvh7KcSamYBK8CDxR6uG240/ai5jQomyJ2h22lI53Yp+d++icSyR4Dy+ilaU2QSnrvqcTz1U3vVdRN1WN4XllfLZmqcT7mYvXrS/BnuNW/F+bR/oPe1Kt5FKoaZ6eGnARTpmHLkoR4B8cZaCyjojsQgZgvXz6VdhJG/EzFLmhgVjH2l6tojHowggDaaMSaaJBTctCB80mzNObABBJMvHU+AVo7HyW2rcY0tsHFRuui8AYtPiVl1adgZNFO4ofAAPlkkPKn1maRvQztfBw59bE/NK03z6Z1iUMPThoV6kboTG0U0XZxm+hL3m7ejtemi/T1Vsbft5xfWQRhv+t7t/XsqIEw8t8ml6oovy8f4sjnYwiqX9QPAC7d2g4llVKsRu17ajjEyFT1qxKEY8TkzgHatXP5mrByPkzs+wZV75yGkWiLml04j6RX5dxsLHPtKfRmjrQWcgoifykIwZj1nD2LkKsC0YFDfO0naiuAly0QslZtydi5ZF2FNjlk6MWtHAU6Th4KbFkSjNluze93IoVJyaiP7aD5ezjqCrJo5DbbdL0YkDlk74dGAr12Puywf2D4fNYHRMNeWaD8zShxMc4MGuUzzKTVLlLPBV0MUicppg/ydWQGfwVkLqyr2tv3kEOBWQCetBgLgkaDQVTLOKzr9ArBPMYX8/Bv2/NkWT+4NxTmJfYG9GjE5DtccfAU8Y6yawz4e5/5TR/Ox/csVeNXyL5eB87bvKnfHhzDpFvfqlGKXGyw8kGQ7u3I84ndulb0OyTX+dD7X4iFKeyfVtyIIxpRyuGi+ZEvWAW0XdaLJwvC8njqE5kNZWRmioqJQWlqKyMhIXw+n0RGrpQD5ZmtylSJucfo7wTxLi/u/dnkCFMd4HZuHtYGvNGgYpXwIopgq1WV4MLjEh9n1O9o3RUEQ/dWN2Zjxf/UeNiw47AqarlmSO7hmkWzqPSiARU2dY1QglwUygnPGRCmDIn4XPBFDOWc99HI4dSF+3L8L91q/FMaic7oRgEPQKA0wvREU3lX7vEO2QS1T9z+uDyaaNuNKphC/83FIv/FGpO56qGEDsP3NZB/Nx7TV+/GdxneukInFodu2IX3LSO2gJCgSqCnTHsOIfwKJPd2ezpG7Dimdx4Xsg/i8qo/9NTXbCnvGrKwCnSuPoFtEpdA+Qm58oou6S4hlO5GebgFBNBgj92/K3LQwGq3ZmpvN5aRTPQ3RUHC8cImKgHpgAwhP5THMZfzbMh4TArbpqPIRSko7Vzqa82l5iDj3ynJ+Sh14w2j853+/OqzjLM590bwKrXQaFgLAZQQjwsnjRS4TpGdzHC+m93nFGynLuB8g9exyNa49/h+gTP82ShCO5ywPO2TD3K3Y0ku8ZJtamToeDEyMREi76+OGD6A8H9Zfd2L3l1txv+lPze9cAoqwcu2n6NTrdlydp9EeQU9gAwhTtGIrDsBwtsP5OqR0HhOZS/g3/288OvItHG81VNNwtF5kHQvgSuUBaLqoq2eWCf+HgpsWSKM0W3OzuZy0okuvhsI5GyEGNoCxJ/czfCKG1GTitYC3MT5AW/tRe+kPDGDL7MFJvM4baRxKZJ9S+SMrcD78Xqy93MtheakzrWhYqHeq6lHLTHAIsI9RMMhbbfimL2ZI3q27FX8L+Npl/5y76RqRkBihgaiqs7UrrZgKRIcGwrloTgwKJ5my8aJ5dQMG5soL5lWotgRiC9dP0TSOZWzfS6ebJ8PzDU6P8dnPwlRZhJcAwKxvnTiUYNUJs7COJ5AGNoBbDS+HJycgItiMvb/kY/IPU8HUyU8HAgy6HPwnusy8y3OBhpEWDHq1RYRfQcFNC8W1jNSDcFbBgTUkWqVDsJPXjQ1ppZYoqk1EsepUSgkThlaokLzOgGXknsjUac/k1wuOdXDV/lewNrD+SfciH6FvPSYfMwPWuTbuLMvHfLyOS+wM1V5U79SNxiMBG6Bq6c8DlxCOPVyKyxTYtzX9sCdomu6WFQBwGSF42vIoNnGpOMh3dsmKFDKxaD3kb2B3ars/y1JVDJzQ6cEigQEwP/RjjP3rI/j+10tYsu2k/T0OLFZa0/FwwEaPCrNjUI5l5ky8UTde9bsi951tiH5MDNr5yiLD8VEholFYCV0tRBDaWvCCMYSxbIfokn5t+U780/w+QlWF7F4INNzMLBNNB3IobgbobSzXKORlCeZfH2WoBzaArFGWtFJLFNUKvXdkNsMDb1tGo2/127ir9nm8Z7kFPC8YwhmB44FiPhxPBKxzbSaoAA8gindM4ceg3N70UWk/5/kYTAjYKjTvlN0q8Hr4GkV32pFsLv4W8LVLRsBhK7ywpTmWh2W1Pf3YE2jN6A9sAOCjupvRlrmIfwSsRFvmIobW/MehieOh8TsRMPRp1e7R6jDAj5+6sR4Ppuwc0gJ+xtXxrk0n1VyTOR6qn5cS4nl7MGCTG+Otx3m34ng4Xt7hWdyv3EVb/TsniK1zua74k22t6B7N8UBVSAJw678hfDuNfo6SIEQFUW9zbflOLDNnIgY6K/Q8GWi4mVkmmg4U3DRxxE64E97dgxlrD2HCu3sw+LWtnmmjYBRRoKc1tSBpreCMc7sCUT+R79QF/CIfiamWGVhgvRscWORyXTEqYK9hZ1oejMPyRm74slMR4nadbiDibMQ+axckMpdUjN95RNZewE3Bv7juT7XpYT35aKValeWOlmlKwNd40bwakwI240XzahwLegBDmUP4X8D1mHT3vUjvcYV692jNAIIHKi+ikg0zPDYAwOULihYG4nfIuZN8AWLxdt1o8DDeLoJlgFYqzUX14PwRFiAWky0zMcUyEyWQ7w6u9N2We108ppcs9yCVPY7R7B58VHODw3vOy86zTIS121j5lighOqsoVYIQPX2gFPFkoKHZtZ3R34KB8EtoWqoJIz4BOV+XnRvLNQqqAj0bITHA7R+o9mCRelaInqZSUa1Siah2Q0B5mIhE/NJuvLbQ0nk9hdcV+9rYNBhDTOodwkVCawXnZBM49Lcdd2umRNcxPmmZghwupX5MTsLliwo3TjWcn4JY8Hg04GugDvi5oBOGJ/MOzSJdukfrvIHtsXTGTabDhscnuAjHIDrEjJIqVxdhte+Q3DSbXi7x4YjC5QZPeb1kuRcrrengwApBLD5ssAUAywCX+WC8al7h0OW9mBc+f1ln4JpeGHu6GGlyBnecFVg1VnvHKkGIqKkbYOjvVX4Ku0GouqgrZ5aJpgMFN02URusTpRdNgR4EXQVr0rxgyFV0cWBxIqQn9ijY37tdWfWX5bi64k9AXyPsBsEw9a7KWhQiGuNDDuAZ/gOHFhF6aIP66TI54bKVN/59cNEH2YK1hwM2ouu3d2JN7hn8I6O7EExLboxc3ldg972rez+7uB7GgxvbE7aJZfDAoA5449sTsotJhdlSNnGpYC08lgYuEo7NwK5X1KXjiYDPZPuUAfqDuot8tD1YFwJ1Yy00pPuV7jMM1XDOhYmWB/+23I4zfILLw4Jd9+bcEoWzGusZJ4PhPlAi3gg0lLq2UwuGZgEFN02URusTpRcPC/SGJycgIsiMnF8vAhDEz4XlNXji/w7JLu+2O23Fn7CGxaExn88u8WGIQoWqF040yvA6t9gtAap4LpTKa41qkpRgGCAAHCaaNmNF2SjHbKHtxsgCgM7gxsqzKOBboYiPMOSUbO09ESbbje+xmzrj7Z2nUFlr1b2+CRxeMK8SjknnOuLn9JZ1HH4PuBKzsdIh83MZwQhHte4eXdLvrzuBulIwpdZgdULANlnPJUWHcg9kOwz3gQptDYx+w3uBBrVgaLZQcNNEadQ+UXrwoEBPrKSQBm/rDvyBu/q3U1zH7XYF4fF462Qb3MeHoRVTob28BxCe9tfJl1MDeNlyL15Uudkq3TClTr1BLK+oaWio47MzVzKFwrgAPLvuCCKCzRjQMVbIGFbqzzqx4LDE/Ca2WntjWMBB3evN+74aA9vkIz0lESaWwaNDOuKNb101S0qMjPgVSRb9U1L1Wpb7EB8Vij3cQAwu72Of8voTgrnYQ+w3uNF0CCaVYFL6mYlBh9FA3WiTU8DVc0kkNixQ3aG8gdkO/X2gACa0NTDrGBCgp8SrAWg17SWaJCQobqL4pE+UGh4S6Ik6IuesVEFpNRZ9+zOGhZxABrsbA9g8h4oie1UM4ypmlYO3jcfaLg0rdv+OFXXpmus4Y7T6Rqxcecv6F1mBazEisaLuFiQyRUhilIM0NfHoPMt94MCiN46pbsOT/M7H2f+/pMqCe97bK4jaj/wBbJqjeztiBdlA00+G9n+iMgxTVh+wi+gfu+lqRIfWG8Cw4DCAzZP93sSEmbH4VmO6tALEYqpNsH1X/ytxobzWPuVVgwD827wcawJfxbCAgzAxPCp4s2wFlPNnxvFCb6oJd/wVNaEJbladGcM5S/Ty2BTtaezkDGDmUcEpefz7ws+ZR3RlV0RNHQcWLylUsQlGkYyQsfF2YEM0Wyhz00Qx3CdKpWOwJ7CCxcnez+OaHdMAm4ut42igmbJW0xGNELUjfLHdq8O5GeUmLhVTamfipcBVDjoVlxYEkiZ6uWdKUVJlwVv4Cx4I2IRWuKz5FMzxgjNuNcxIQr02ogCxyKpLw98CvhZK0mWyMuKNbBOXih+YVGRYNmIwcwR9TSfQminDw+Zv1HeuQAnCMUfi1OupDtlaWHkGH1lHuLxeUFqNlWvWID3QmCkfwwChqNWVjXDuKSXVmC24rQcmrz6g2cS0uMKCnyvC0F3H2BZbxmE3n4Jcrivio0KxbEyyQ7sMpWnAEFjAQPAdkhXxSqraWkcEYWyvtkDQ68CnE+2O0CJy56UhmThplujRIR0w6lqZQE/p2uFmtsPtPlAEYQAKbpooclVFIuK1zt5YzkvN4cQ+LlvyCvDlofMorojGSHaGay8knRcrJR2RkWaUm7hUfFvdD/3Z45gzOBopIUWo2/cBgioL7OtJL56Fh84BEDI/cywPC5b5KlUqYpAyx/IwtnD6q2+kN7LEqGAs7fMHuh56FSEokN+RATi+XiQq4qkO2Vpss/ZCncxlhEfDAiytG7ZYWv+y5V67ZkSqMUtPScRryb/hjlOZLus6f29OhvZAdw2hLB+ZhP5jXkf7CgtmSBy9c04JQTQLDvPN7wnuMApuxdUIxITa59AGZYpNIe2Z1gZWnWkhDQxjwsx4ZWwKRl2b5LCMrm7jblLvkt4L+8oe0u4DRRAGocaZTRw5fYpDYzkvNYeT26+ItPT43mH9kTp0jK6L1VeHzmHG2kMu23KnGaWYudo1+yaYwClmrXJOFWHCu3vs62k1qjzPuz5ty3UyBuDyWkigGe/c1w+pNd8j4LP7oTWBJla96cH5PLDgsD9osq5MVENwbiIpZYAHGp9q4Zy9W3RXL4zt1RbZR/5Ar3VDEMcXaX5vPn5kINJqvrf9nQCyjwoKfydWjsfg17bi9suf4EnzZ5rjVTtfMWFm7Pv7cMdpIc4K7F0ObHpOc9t6Eb91/9/evUc3Ue17AP9OQpu+oaXQUilQYYFglUp5WASuoJaHIPUCynEdLFf0UkSQy9GFoBdUUDwHXCAqD1+IL0DlInhEpB6k4KJIUUAeokeop9W2p2JpqQVbmsz9Yzohj5lkkiadafh+1mJp00myZ5qZ+WXv3/7tooErYe01TnHpFdfVxp1/3bxrB5G/uHDmFcTjOlFBWhxOrb6OTM4/EAAUfRWBL282uc1Gsq/e69BmpfwgXxejdNw7p9liKl3oA9MSkBAdjqq6BgDu9VDk5FC1b9vehj1kAoDn7+qL2j/+QNWW/0EHUXnxSUe+xCSux+E20yG33pxAch0SUtIO56X8IyEwq40rce2F6RgbgZ3Hy/Hmxo3YFP6b6hvLx2tU7BkMTBsLmO4AJr4J7JjrnATtpdfRbBKwaGwvDPpQ23Cip/XHlijlu5jMvhWvc106ITIBgAhcvDx8KvdcDlTZp8urjb8mNcHtGPp/7SBqKQxuQoDqOlFBWBzOU16MwqsrTkdX6vVJjrNg8oAubkXYtA5tqG1XWfsHYLPCemYvyo7ko67BCmuXIbjmxtEwt2kDs0nAkvHpePC9b+zPUaqH4tguuafmVtMh3Gd2Xw8pWXC+4co9aQCa8lDUb7rN1RHVTpWMg9Fr4zirS62wogk2LAx7ByKCO2tBnmG0KOxtHLfchMyu8fiPZV9ggMbPzfQboi4P3e6a7xzYRCUCI5/12jsxKqYY0DjTrr2gvOq2lO+Sovg7zcGNPLuo9CvnXkrgcs9ldAdpjOzCWaB4n9sQkHx+D/BaZM/3awdRS2JwEyBKPREtUjzPkyAsDuetvo4Sx+noqlWVz9dj5T/cp+9qzR1R2+6ac3tQ/9wCWBqqYZ9I/sNaVH8eg11XL0DqTZMxMj0Z04elYd3eYgDuw0xFtmvwXzd1w4rP/+l12Ep6PiAKAla03YSj/zkTA7t3AAAM+etuzTddf1Wind/VmrWqQAK2Nw7G/4a9rdpj1Zw22AAIPkxvlnthVtx4AV//6xzKa/5Apamdpuf27X2N+tDthd+AD6YCgpfhFx/Onz/C4gGHEjzto8OxeHy6ciKvTJ6J6K1I5pjnpdlFSsFG2lBpPz/K85h7J5/fA0zV2naIC0uSQTG4CQCveS96CcLicP7UzZGHm3zp9ZHZ69cIVYo9AJ6GR0aaDqJnwUrF5JW24u+YdHoB8k5VYm7sMCwa1wer72mH3R+9jrnWN5xuzBcjkxHe6W8ojzmOZy+t1NRuASKiLlYgq833gKkjCk//5tNN11eOx2GB+d2Avq4IAWaHVdYj8Aemt/m729/RcYjIgka/3k9OFPanx2lgh0Zsa/p8HrL1hFUUYIKouqK8IJiBq/oDL/VDs4ZufTh/Ft+bjXHitb59CXIqnqdy9gyeDaTnqL+GWgB3vlx6vCl/Rj6/NSekc2FJMijWuWkmT3VZHGtv6CIIi8P5UjdHgBTkydPR/en1iYuyoGbYkqbJ28774Tq92pE0NLMBUOkBkB9bFPYW/l1zATPe+QadyvOxzPY8Orn0OERe/DfMH+TiKdMr0mv7cOO11UqzoeSbhhysBXbhdgGCIGBV2DTcZjqEaW38m07uytYUaLhWNI7HBQiC8sKhgDREJOcq+cPvQxOTZP989jf9ALOgHNgATZ8k0QrkP6F96FaN/TzzIjYF5m43Iat7e4zPuApZ3dtr792Vi+e5vk9UIjBpA5C9WP25XnPvIAVwNqv9+Hn7nIp+XDuIWpLuwc3q1auRlpaGiIgIZGZmYt++fR63LygoQGZmJiIiInD11Vdj7dq1LdRSd97WdwKk2hvWwN7JtJO/8QFwD3C01Z5x5bpqtxrppmjDC4NqYT6xBSjeh8rzvlcArr5wCdXdRkFQWKW4Au1VV7+W1+fx1AMgCECKUIWBplMwwYaUwqegPINJBCDC0lDtc1G8hz4uw87j5fabhr3YILSslK1RXAqEu97CM4/Nw6p2mwKWzyMK0uXBl7oqJgFIEaS8lTIxwadCdHVimJSj42P7bQDEphut/PnUPA296DVt23kafnE6zzwY/dfmJd8qFc975Afg2hz3bW1WKafm2IfSbCuNAZx8/ESHz6lb8UH5f7iwJBmYrsHN5s2bMWfOHDz++OM4fPgwhg4ditGjR6OkpERx++LiYowZMwZDhw7F4cOHsWDBAsyePRtbtmxp4ZZLfFnfyWeOF6fifdLP/rB/43MZHotL8Wsqp1xfB/B8D7075giOxz+CgXtzgS3TgA1jMSr/Now0HfRxB5p6Pa65HchZCwx9FKXpM/GnhgUYUv+CYmAD+FZjpSOqMcB0Ckn4LWB5vnI14s9qr8aMd77Bubp6e1CYb+uPOvhbOVoAYlOAe7e7VYc1lxbCcqGi+fsQmQBkL4EZNr8TkjuiGhsbR8CXfpho4ZLvgY0Ud+KHGx4HTGb75zPgdX68Db/0uQO46+2m2UkuIhOk3wVi2rRcPO+6idJ/lYKLk9uBlenAhrHSuad1Gvnv/3Y6v3fZBipW0q6PTJa+bHAaOBmYrnVuBg0ahH79+mHNmjX2x3r37o2cnBwsXbrUbft58+Zh+/bt+O677+yP5eXl4ejRoygsLNT0noGsc6NUl0WJXHtDs2AU3QtwhWKlPKOE6DDcmXEV7oo5gp4FM12qFMt9IiJmNMzBToWgRKlejA0mfDayGr0OL3E6HkrTrR35UmNlcsMT6IhqrAp/SdP23sjfdOVeJbnmzoIxvTFr42HMMv+fppoo7rzUFzn2oXQz86ZdN6D6J/XfD54NdOqr7bVU1IiRaCtc1LStKAJ1iECM4Hs+l1x3aMxd/+10ju089jNu2DIMHVTq3GgnSOfenGPazhebFfjpS+kLiQCg6xD1ICQYVOtaaZD7d3sysuP5LZ+XPaPqMHZwhua6VUSB1irq3DQ0NODrr7/GY4895vR4dnY29u9XHt8uLCxEdrZzqfeRI0fi9ddfx6VLlxAWFub2nPr6etTX19t/Pn9eeSqmP4KyvpPGxD+fBXhxONX6OrABKydC6eIqQIQIAQvD3kZ+fX9YNdSL+Yd5GHoWbHN7PaXqxI6knIF4dIL60JQoAuVIwEHbNRhkOunXcVDiWlZf7sFbtP0ETLDhvjbu08cVRcY71SfxWulZa3JnjXLPqN3xLUCPW7W9lgpfAhsRwLrGsZoCvsWX7sFJsZtb3aGpLufYqOs6w2paAeGD3KZPnT/8GLo1mYGr/0P619I85tZ40hTAOeTPuJ/fg40xA5RII92Cm7Nnz8JqtSIpyfmCnJSUhIoK5ZL0FRUVits3Njbi7Nmz6NTJfWbS0qVL8dRTTwWu4Q58Xt/JmyAV3QsWxfo6xZ5r6wgQkSL8hpGxZ7CjtgcAz8sr/Nn2keKNybG+SX59f7eEYim3JVd6XYWkYrm/8qlL97o91zvnBS9ESPX1X28cjc/FTMWy+gBQVdeAG02nEC9oLK438U3p76y1t63rYCCqvfeVuEWb59+f/0U6QHEpEM+Xu/XABZIgACsuTcDL1hz8qc1ur5Wo11vHuFWi7qRyjpmvHS9N4/77HJ9WJ7drbWscea1rpUQ9gFOtn0XUCuieUCy43HVEUXR7zNv2So/L5s+fj5qaGvu/0tLSZrb4Mk/5J27rO2nhS9E9o9JY9+KlcSnY+MCNeOHu67A85j1AZfaNpyMnJ68ONJ1S/P1ntoH4qdc0TQm2HaCxR+/GB93ylxqikpF3aQ6WWKfggK2Px2BJcy5QZLzU0+Ytv8KRyQxcf7e21/fmwllg1F+bwrjgflv/SezkMYFVfv+nXWbFOZ1jsAFnCoB/LAF2LwFO75G+LPS5Q7pxazXyWZ9XujYMf2rO+Jl7R2R0uvXcJCYmwmw2u/XSVFZWuvXOyJKTkxW3b9OmDdq3V/6GYbFYYLFYAtNoBZdXuHWpuOtPnZsgFN1zEuSVwQFoHhoxxSYjK609UHwSaKhs1luqBQwJkSZ0Kv1E8dYsuPT8aE5A7TUGyF7idBzbpGbh22UFEFR68Bxpfp9BM/z72/QaAxxY7fvzXMUkSQGVwuKNWlbs9sWfbx2Aoq8i8FmNlMCqtEr0kWvn4eg3nQGlc8xUBCx7GLjomLi/TAoQx60CYjWeg1GJwKA8Q/SK+kXrsOTIZ6Vtg3UNIDIA3YKb8PBwZGZmIj8/H3feeaf98fz8fIwfP17xOVlZWfj444+dHtu1axf69++vmG/TUjyu7+SLIBTdswvSyuBu7NVU1VdYdhrfD0CF02H90rH9kPvjPeuPI1JUX3Vbrmw7x/whCsU+KBcTkKQyLCICaAxvh6/+WQlz428Y2H2I/e9rBlRXaHdlL0qo8j4ApNk1wx7x8CoeeD3+GkQmXP779LlDGgb9137Yaivw84/H0eGHjc6rRPtN+iwMvHkcvrzZ1HT+ZOBf0TORZD4Fc12l/QZ8g8mML29TqAJ+6mPg/SnKL3/xnPS7iRu0V/htzTd6redeaw7giDTSdbbU5s2bMWXKFKxduxZZWVl45ZVX8Oqrr+LEiRPo2rUr5s+fj19++QVvvSWtk1NcXIz09HRMnz4dDzzwAAoLC5GXl4eNGzdiwoQJmt7T0KuC26zSFE5vFyetMzdkQVoZ3Pv7weU9Fd6veJ80ZdUvAi5GJiH93HKn5GTZHab9Ps2AqhJjEI/f3WqtuPZUlIkJWBV2P27Ouc+pZ05tBllV3eW1sgDnHCP3AEdo/t+jOTNmACm4efRH9c+YzYoThTux7pP9SBSqsTDsHT/eJACfPZsVWHEtUOulUGZsCjBqKfBBrvo2g2crF8Jrid7OQPLl3CNqZXy5f+uac3P33Xdj5cqVePrpp5GRkYG9e/dix44d6Nq1KwCgvLzcqeZNWloaduzYgT179iAjIwOLFy/GqlWrNAc2uvClXk0Qiu75Up3UZ2r7pqW2TtNzbefLcA5x6pVQRbmEnitp7tWcmsmKgQ0An6vktmsKbKoR43G7ZFTh2Ut/w0fvrXWqQD0qvRO+nDdCyiWanIGND9yIA/NvdSt6+JlK/RDEXRWYm498/CPj/Xv+xSrPeV0mM67JGoOi2BHYYB3lX8XlQOR67F3uPbABgNoy4NfvPW/TeYD7Y671YjaMlX4+ud2/9raEANe1ImqtdO250UOL9tz4OxSk+Lyr/Ju5obVnxKHGhSZa9k3tW6/Cc+VPoeI6QCIAkwmCwyyfi5HJmFMzWbXODQBkmY5jY/iz2vcJ8qycBDx6aTpeCluFtqjzOHtnkmUt9j52m8chSHmJDsA5SDPDhgGmU5g/pJ20gGOgewVO7wHeVh7i9WrC61Iiswfyfo00HcRq1Z6oJrEpQOZUoH33wPSAnNyuPhylxHVavROFHtGW7u0MtNbW40SkQauocxPymlOvxiHPodkXp2AkKWvdN6XaOirP9bZMAkSbPRHSGt0RQ9+5gLNeeps0z4ByIOXhVKGXUIp4QX25CDlfJ/X3ozhYnOlxyqxa0nnHtlGYOu7P6BusxVXThvqff6Mhr+vyfkVgRi3cEoERlQhcf5eU5BzIm6u9N9IHqoEN4DQLMW1oqyvJoCjAda2IWhsGN8EQiItjoC5OgU5Sbs6++V1kzKGN103EwdO/4eyFA143b04J/i6CthlcHVGtaaX0gCWd+8JpNWlvqc4y94JunlzerwwUnZ+GHheOoXfsBZhik4PXW+BrPZeIdsAf1d63kwN8X0oyMIAgMiQGN8FgpIujr7OXvGnOvvlVZMxBUwCmJZgALs9M6iSc87kQ3TnLVYCGNKRKtNNcgVqXomhyDobrEKIi//K6Lu9XewBd/G2pdr7OsLvxQWCPhuFJOcAPdkkGIgo63Yv4hSQjXRwDnaTcnH3zc39FCFLOUVMApjWYEGFC+Y1PNu2lth4SEQLqozph9qPPQhRMqiGRKAKNogm/RKdrr0CtF6XVpOXp0Y5aS9Kp1l7G8FhpwcphjzTtq9pnwPnzFdSSDETUIthzEwxGuziqfXv3p7x8c/bNj/0VIUi3JIcATF72wtOK7ADw4uQMZGZcBXSN19xzIQCwjP0bUP61x2UKBAFoAxuez6pvHevtKA1z9hnXOpNOtdTyiUoE5n4HtAmXflYdnlMI8APd20lELY7BTTAY8eIYqCTl5uybl+eKACA4z4oSotpLxdUcAjB52YsZ73yj2rMyfVgaxsqrRCvte91vwK756sHeMW2rdg/s0KhpO0NqrUmnHnOJmoKVsSsuBzaAbwG+ltf3tSQDEbUoTgUPllAuptWcffP23KyHgKMbpbWNZCrT55WK5rWPDsfi8ekYc72GGUiepssGawo9BY4/JRN8mSIdyJIMRNRsvty/GdwEUyhfHJuzb2rPTZ8A7H8RvtQWsdoUSvIHYpgoWNWiKbCCXc+F9WKIDIPBjQctvvxCKF8cm7Nvrs9NHQSs6ushL0aHYCKUe9+IiFoZFvEzktaa16BFc/bN9bnF+4wzfV4WyERsIiJqMQxuyBiMNH3eUSCrRRMRUYtgcEPGYLTp845CufeNiCgEsYgfGYM8TVxroTUiIiIVDG7IGAJdSZmIiK5YDG7IOOQE3jiXGjWtZVkAIiIyBObckLEwgZeIiJqJwQ0ZDxN4iYioGTgsRURERCGFwQ0RERGFFAY3REREFFIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQh5YqrUCyKIgDg/PnzOreEiIiItJLv2/J93JMrLripra0FAKSmpurcEiIiIvJVbW0t2rZt63EbQdQSAoUQm82GsrIyxMbGQhCEZr3W+fPnkZqaitLSUsTFxQWohaGJx0o7HitteJy047HSjsdKGz2OkyiKqK2tRUpKCkwmz1k1V1zPjclkQufOnQP6mnFxcTwJNOKx0o7HShseJ+14rLTjsdKmpY+Ttx4bGROKiYiIKKQwuCEiIqKQwuCmGSwWCxYtWgSLxaJ3UwyPx0o7HitteJy047HSjsdKG6MfpysuoZiIiIhCG3tuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG4C6I477kCXLl0QERGBTp06YcqUKSgrK9O7WYby008/Ydq0aUhLS0NkZCS6d++ORYsWoaGhQe+mGdIzzzyDwYMHIyoqCu3atdO7OYayevVqpKWlISIiApmZmdi3b5/eTTKcvXv3Yty4cUhJSYEgCPjoo4/0bpIhLV26FAMGDEBsbCw6duyInJwcfP/993o3y5DWrFmD66+/3l68LysrC59++qnezXLD4CaAhg8fjvfffx/ff/89tmzZgtOnT2PixIl6N8tQTp06BZvNhnXr1uHEiRNYsWIF1q5diwULFujdNENqaGjApEmTMGPGDL2bYiibN2/GnDlz8Pjjj+Pw4cMYOnQoRo8ejZKSEr2bZih1dXXo27cvXnrpJb2bYmgFBQWYOXMmDhw4gPz8fDQ2NiI7Oxt1dXV6N81wOnfujOeeew6HDh3CoUOHMGLECIwfPx4nTpzQu2lOOBU8iLZv346cnBzU19cjLCxM7+YY1rJly7BmzRqcOXNG76YY1ptvvok5c+agurpa76YYwqBBg9CvXz+sWbPG/ljv3r2Rk5ODpUuX6tgy4xIEAVu3bkVOTo7eTTG8X3/9FR07dkRBQQGGDRumd3MMLyEhAcuWLcO0adP0boode26CpKqqCu+++y4GDx7MwMaLmpoaJCQk6N0MaiUaGhrw9ddfIzs72+nx7Oxs7N+/X6dWUSipqakBAF6XvLBardi0aRPq6uqQlZWld3OcMLgJsHnz5iE6Ohrt27dHSUkJtm3bpneTDO306dN48cUXkZeXp3dTqJU4e/YsrFYrkpKSnB5PSkpCRUWFTq2iUCGKIubOnYshQ4YgPT1d7+YY0rFjxxATEwOLxYK8vDxs3boVffr00btZThjcePHkk09CEASP/w4dOmTf/tFHH8Xhw4exa9cumM1m3HvvvbgSRv58PU4AUFZWhlGjRmHSpEm4//77dWp5y/PnWJE7QRCcfhZF0e0xIl899NBD+Pbbb7Fx40a9m2JYvXr1wpEjR3DgwAHMmDEDubm5OHnypN7NctJG7wYY3UMPPYTJkyd73KZbt272/09MTERiYiJ69uyJ3r17IzU1FQcOHDBcl12g+XqcysrKMHz4cGRlZeGVV14JcuuMxddjRc4SExNhNpvdemkqKyvdenOIfDFr1ixs374de/fuRefOnfVujmGFh4ejR48eAID+/fujqKgIL7zwAtatW6dzyy5jcOOFHKz4Q+6xqa+vD2STDMmX4/TLL79g+PDhyMzMxPr162EyXVkdiM35TJF0Yc3MzER+fj7uvPNO++P5+fkYP368ji2j1koURcyaNQtbt27Fnj17kJaWpneTWhVRFA13n2NwEyAHDx7EwYMHMWTIEMTHx+PMmTNYuHAhunfvHvK9Nr4oKyvDzTffjC5dumD58uX49ddf7b9LTk7WsWXGVFJSgqqqKpSUlMBqteLIkSMAgB49eiAmJkbfxulo7ty5mDJlCvr372/v/SspKWHulovff/8dP/74o/3n4uJiHDlyBAkJCejSpYuOLTOWmTNn4r333sO2bdsQGxtr7xVs27YtIiMjdW6dsSxYsACjR49GamoqamtrsWnTJuzZswc7d+7Uu2nORAqIb7/9Vhw+fLiYkJAgWiwWsVu3bmJeXp74888/6900Q1m/fr0IQPEfucvNzVU8Vl988YXeTdPdyy+/LHbt2lUMDw8X+/XrJxYUFOjdJMP54osvFD8/ubm5ejfNUNSuSevXr9e7aYZz33332c+7Dh06iLfccou4a9cuvZvlhnVuiIiIKKRcWckOREREFPIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQhhcENERERhRQGN0RERBRSGNwQUatitVoxePBgTJgwwenxmpoapKam4oknngAgrcs1btw4REdHIzExEbNnz0ZDQ4MeTSaiFsbghohaFbPZjA0bNmDnzp1499137Y/PmjULCQkJWLhwIaxWK26//XbU1dXhyy+/xKZNm7Blyxb85S9/0bHlRNRSuLYUEbVKq1atwpNPPonjx4+jqKgIkyZNwsGDB5GRkYFPP/0UY8eORWlpKVJSUgAAmzZtwtSpU1FZWYm4uDidW09EwcTghohaJVEUMWLECJjNZhw7dgyzZs2yD0ktXLgQ27Ztw9GjR+3bnzt3DgkJCdi9ezeGDx+uV7OJqAW00bsBRET+EAQBa9asQe/evXHdddfhscces/+uoqICSUlJTtvHx8cjPDwcFRUVLd1UImphzLkholbrjTfeQFRUFIqLi/Hzzz87/U4QBLftRVFUfJyIQguDGyJqlQoLC7FixQps27YNWVlZmDZtGuRR9uTkZLcemnPnzuHSpUtuPTpEFHoY3BBRq3Px4kXk5uZi+vTpuPXWW/Haa6+hqKgI69atAwBkZWXh+PHjKC8vtz9n165dsFgsyMzM1KvZRNRCmFBMRK3Oww8/jE8++QRHjx5FdHQ0AODVV1/F3LlzcezYMaSmpiIjIwNJSUlYtmwZqqqqMHXqVOTk5ODFF1/UufVEFGwMboioVSkoKMAtt9yCPXv2YMiQIU6/GzlyJBobG/H555+jtLQUDz74IHbv3o3IyEjcc889WL58OSwWi04tJ6KWwuCGiIiIQgpzboiIiCikMLghIiKikMLghoiIiEIKgxsiIiIKKQxuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG6IiIgopDC4ISIiopDC4IaIiIhCyv8D0JM2LP49U+EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAEeCAYAAADy064SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0kElEQVR4nO29eXxU9b3//zxn9sm+J0ASQghLAFlEQBYVsIpWrK0t9ipu5Yq97f12cbkud1F/vVfx1nrb2t66XK1abdVa24q1URFRXABlEwxCCCGEkJ0kk2Qyk5k55/fHZCYzmT3rJPk8H4/WzJnPOeczYTKv+bw/7/f7JamqqiIQCAQCwQREHu0JCAQCgUAwWggRFAgEAsGERYigQCAQCCYsQgQFAoFAMGERIigQCASCCYsQQYFAIBBMWIQICgQCgWDCIkRQIBAIBBMW7WhPYChRFIUzZ86QlJSEJEmjPR2BQCAQjAKqqtLR0cGkSZOQ5fBrvXElgmfOnCE/P3+0pyEQCASCOKCmpoYpU6aEHTOuRDApKQlwv/Dk5ORRno1AIBAIRgOLxUJ+fr5XE8IRlyJot9u5/fbbeeutt9Dr9SxcuJAXXngh4nmeEGhycrIQQYFAIJjgRLMtFpciePfddyPLMseOHUOSJOrq6kZ7SgKBQCAYh8SdCHZ1dfHb3/6W06dPe1U8Ly8v6Fi73Y7dbvc+tlgsIa+rKAo9PT1DO9kJiE6nQ6PRjPY0BAKBYEiIOxGsrKwkIyOD//zP/2Tbtm2YTCbuv/9+1q5dGzD2oYce4oEHHoh4zZ6eHqqqqlAUZTimPOFITU0lNzdXZOAKBGMUVVGxV7WjdPQgJ+kxFKUgyRPz71mKNz/BvXv3snjxYp577jluuOEGDh48yMUXX0x5eTlZWVl+Y4OtBPPz82lvb/fuCaqqyqlTp3A4HFGlywpCo6oqVquVxsZGUlNTQ67QBQJB/NJ9uJm2rZW42vsiY5oUPanrizHNzRzFmQ0dFouFlJQUPy0IRdytBAsLC5Flmeuuuw6A+fPnU1RUxBdffMFFF13kN9ZgMGAwGMJez+l0YrVamTRpEmazebimPWEwmUwANDY2kp2dLUKjAsEYovtwMy0vHAk47mrvoeWFI2RsnD1uhDBa4m5ZlJmZydq1a3nrrbcAqK6upqqqipkzZw7oei6XCwC9Xj9kc5zoeL5MOByOUZ6JQCCIFlVRadtaGXZM29YTqEpcBQeHnbhbCQI8/vjjfOc73+Guu+5Co9Hw5JNPDjr0Jvavhg7xuxQIxh72qna/EGgwXO127FXtGItTR2ZScUBciuC0adPYsWPHaE8Dl6Kyp+osjR02spOMLClKRzNEm8cOh4MHH3yQP/zhD2g0GvR6PYWFhdx///0sWLBgSO4RK4qi8MMf/pA333wTSZK47bbb+N73vjcqcxEIBEOL0hFddny048YLcSmC8UDZ4Toe2FpOXbvNeywvxch960tZN3fwCSE333wznZ2dfPLJJ6SlpQGwdetWvvjii6Ai6HK5hn3/7YUXXqC8vJxjx47R3t7OokWLWLNmDbNmzRrW+woEY4nRyqxUFIXq6mo6OztJTEz05k9Ei5wU3ZZQtOPGC0IEg1B2uI5/emEf/SPj9e02/umFffxm46JBCWFFRQV//vOfqamp8QogwPr1670/P/vss7z00ktkZ2dTXl7OY489Rnt7O/feey9Op5O0tDR+85vfUFpayo4dO7jjjjv47LPPADh8+DBXXHEFJ0+e5OTJkyxevJibbrqJnTt30tnZyWOPPcaaNWsC5vXyyy/z3e9+F41GQ3p6Ohs2bOCll17i/vvvH/BrFQjGE6OVWVleXk5ZWZlfLXRycjLr1q2jtLQ0qmvoC5ORE3QoXaH38jUpBgxFKYOe71gi7hJjRhuXovLA1vIAAQS8xx7YWo5rEJvH+/fvZ/r06aSnp4cd9+GHH/Lv//7vfPbZZxQXF7Nx40aee+45Pv/8czZv3syGDRuiul9LSwvz5s1j9+7dPP3001x77bV0dXUFjDt16hSFhYXex1OnTuXUqVOxvTiBYJziyazsv6/myazsPtw8LPctLy/nlVdeCWgGYrFYeOWVVygvL494je7DzTT89NOwAgiQun7ahKsXFCLYjz1VZ/1CoP1Rgbp2G3uqzg7qPr7JJZWVlSxYsICZM2dyyy23eI+vXLmSkpISAHbv3s2CBQuYN28eANdddx2nT5+OqqWcXq/n+uuvB2DZsmXk5uZy8ODBiPOKsxJSgWDUGK3MSkVRKCsrCzumrKwsbCOQUOLtiybFMCHLI0CIYACNHaEFcCDjgrFw4UIqKipobW0FoLi4mAMHDnDPPfd4jwEkJiZ6f1ZVNWhWpiRJaLVabykIgM0WeW7BrlVQUMDJkye9j6urqykoKIjqNQkE45lYMitjxaWofFLZwl8P1PJJZYtflKm6ujpsO0hwrwirq6uDPheNeMsJOnLuXDwhBRCECAaQnWQc0nHBKCkp4Wtf+xqbNm2ira3NezxYiNLD+eefz4EDBzhyxF3o+tJLLzFlyhRyc3MpKiqiqqqKlpYWAH73u9/5ndvT08OLL74IwJ49e6ivr+ecc84JuMe3vvUtnnjiCVwuF2fPnuXll1/mmmuuGfDrFAjGC8OVWVl2uI6VD2/nH57axQ9fOsA/PLWLlQ9vp+ywO8LT2dkZ1XVCjYtGvJUuBz3V4YV2pAj3hWC4EIkx/VhSlE5eipH6dlvQfUEJyE1xl0sMhmeffZb/+q//YunSpWg0GtLS0sjOzubuu+8OOj4rK4vf/e53XHfddbhcLlJTU3nllVcAmDx5MnfccQeLFy9m6tSpXHDBBX7nZmRkcPz4cZYuXUpnZye///3vSUhICLjH9ddfz6effsqMGTMAuPPOO5k9e/agXqdAMB6QE3XRjYshszKaBLyZPtGgcCSGGDeWyiKGOyM/FHHXO3QwBOsXZ7PZqKqqoqioCKMxutWb580J+L1BPQHEwWaHjiSe7NDm5qHbtB/I71QgGKt0H26m9fXjKJbwSSWaFAO5d50XVWKJS1FZ+fB2vw98GZiPhgwkWlBpTNax418u4pc/+x86rJ19H0C+qJBkTuTHd94WtFzCVtlG81OHIs4n85Z5o1ogH+oLwUA/c2PpHSrCoUFYNzeP32xcRG6K/wd8bopxTAmgQCAYHJ6kkkgCCLFlVvZPwLsALa+SyGMkcD9mHiOBxyxavnivmmUOd3JcgEL0Pl7mmIEUVCHBUJSCJiX86nS0yyJGIiM/HCIcGoJ1c/P4SmnusHWMGSmmTp06pKtAgWCiEE1SCQSvE4zUbco3se4CtPwXpgARyERCereWTNJZK89jl+4YXfS55iRgYJljBoX2tJCtziRZInV9cdCm2R5Guywiloz884szhvz+QgTDoJGlYfmlCwSC+CeapBKA1G/OwFTS1/Qimr0tT2KdDPwIIyog91vNyUheYSxSsim0Z1Evt9GNHRMGcpVU7znh9vRMczPJ2Dg7SJG/gdT100Y9K3QkMvLDIURQIBAIghBtsojqU4AebbcpTwJebruD7DC7Ur6yKCMxSUkLOi5SQo5pbibG0oy4NNIdiYz8cIg9QYFAIAhCrL02Y9nb0sgS960vJSPEXl4sRLunJ8kSxuJUzAuyMRanxoUAQl9GfqjZSLhX0oPNyA+FEEGBQCAIQqxJJbF2m1o3N48bL54+6HmO9p7eYPF8IYDABFjP4/vWlw5bPoYQwXAoLqjaCYdedf9XcUU+RyAQjAs8SSXh8BWggextrVwzDTlZH3T16EGTYiD92lkBgjyeWp2NZka+2BMMRfnrUHYXWM70HUueBOsehtIrB335ePQT/Nvf/sZ9993HoUOH+H//7//xyCOPjMo8BIJ4IZakkoHsbUmyRNqVkbM3TXMzMc3NHLY9PdXlwvrZXpxNTWizsjAvPhdpmK3b+jNaGflCBINR/jq8cgMBhTmWOvfxDc8PWgjj0U+wpKSEp59+mj/+8Y9R9R8VCCYC0SaVDLTbVLRC69nTG2osb79Nw4MP4ayv9x7T5uaSc+89JF9yyZDfLxyjkZEvwqH9UVzuFWC47e2yuwcVGvX4CT7zzDMBfoLXXXcd4G6rtm7dOm644QYWL17Mnj17KCsrY9GiRZxzzjlceOGFXguVHTt2sHjxYu91Dh8+zNSpUwF3x5jMzEzuuOMOli5dypw5c9i+fXvQec2YMYP58+ej1YrvRgKBL9EklQxmb8s0N5Pcu5aQecs80r89k8xb5pF713nDHuq0vP02tT/8kZ8AAjgbGqj94Y+wvP32sN4/HhAi2J/qj/1DoAGoYKl1jxsg8eonKBAIBsdg9rZGOntTdbloePAhCNY5s/dYw4MPobrGdy6E+Mrfn86GoR0Xgv5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL58+aBeg0AgCGSsdJuyfrY3YAXoh6rirK/H+tleEpYuGbmJjTBCBPuTmDO044Lg6yeYlpbm9RN89tlneeONN/puMcJ+ggKBYGgYC92mnE1NvT9JaDJLkAwpqPZ2XM0V+G4H9Y0bn4hwaH8Kl7uzQMOVbiZPdo8bIPHqJygQCOKDkfDV02Zloc1bSMKlD2FeeQem827BvPIOEi59CG3eQr9x4xmxEuyPrHGXQbxyA24hDGKmtG6Le9wgiEc/wR07drBx40YsFguqqvLSSy/xv//7v1x55eBLQgSCiUykhtq+BOs9mmrScfOKIv55zfQhC6tKpqkYl3w38LgxDeOS72L79AlQzmBefO6Q3C9eEX6CoQhaJzjZLYBDUCc4Ugg/QYEgOmIRqliIxSw2VO9RD6lmHVu+MW/QxeOqolL/8B5c7XaCRb1UVUXtbiXlqyZSLh3ZMomhIBY/QbESDEXplTDrq+4s0M4G9x5g4fJBrwAFAkH8MVyu5tE21IbwvUc9tFkdfPeFfTweItM0WiHvc8gILvKSJCGZ0zFMnxflKx27CBEMh6yBolWjPYtBIfwEBYLwxCJUsRCpobaEu6H2V0pz0chSxN6jvvie5/s6ohXyaB0yoh03lhGJMQKBYMKhKiq2yjY69zfyxz8fCboeGqyreawNtWPxy/M9D/qEvP/9PEJedthdSuV53Y4Ga1T3idZJYywjVoICgWBC0X242a9F2QPo+D4afo6ND3D6jR2Mq3msDbVj9cvznBftinOloqXjbyeiMgqG6C2axjpiJSgQCCYM3YebaXnhSIAQZCLxX5i4IMS6YCCu5rE21Pb0Ho31+tGsOEvanbT+/suoBRDGvkVTtAgRFAgEEwJVUWnbWhn0ORkJFfghxqAfigNxNY/VLNbTe9TPTV5VmNd0nAtP72de03FkVQk4L5JAy8CPiH7+Q2XR5Am9Wg80YqtsQx2GWsehQIRDw+BSXOxr3EeTtYkscxaLshehGaLs0Hi0UvrlL3/Jk08+iSzLyLLMPffcwzXXXDMqcxEIgjGYMoa+jMjgyEjkIDEfDfvp68A0UFdzj6j90wv7QlUcBzTU9vQevfu1Q5Qe38d3P/8LWbZ27/NNxhSeOOcqrt94o/e8SAI9Hw3ZUax3klbnY5ieOiQWTf1DzgCaFD2p64vjzv9QiGAItlVvY8ueLTRY+3qE5phzuHvJ3VxcePGgrx+PVkpz5szho48+IiUlhZqaGhYtWsSyZcsoLCwc1vsKBNEw2DKGaDMdM/qt3a6cnzfgesF1c/PYfEERT+2s8utTLUlwy6qioPNeNzePZbWHOPP75wLnZmvnX/c8x5Qzi6D33EgWTv1fTyh0OeYhsWryhJz742rvoeWFI3FnBCzCoUHYVr2N23bc5ieAAI3WRm7bcRvbqrcN6vrxaqW0du1aUlLcG+H5+fnk5ORQU1MzqNcqEAwF0WY/hiPaTMeWflLy5AdVUV0/GGWH63jygyr6RwIVNfR1VZeLpoceQiKwik/GXcPn6+4QycKp/+sJxVBkgoYLOXto23oirkKjQgT74VJcbNmzBTXIG8dz7OE9D+MahJ/gWLBS2rZtG62trZx77vhumSSIfyJlP4J/GUOovpuGohQ0KaE/6BVUGlA4SODfdqgyiXD7Xv3nLaGSK1soklvIlS1IqAHXVRQXFX/+E6dsnbQkGIPLl4+7g4dwFk63XntO2NcNQ5cJGinkDOBqt2Ovag87ZiQR4dB+7GvcF7AC9EVFpd5az77GfZyXe96A7xPPVkqHDh3i5ptv5uWXX8ZkMg34NQoEQ0Es9Xbt3T1hQ6ap64uDhuoUVCTgF9hQwlzft0wi0r6X77wL5LMs1Z0iQXJ4x3apOnZ3FHivW7H7Y7Y/+ySdZ5uh0O1SY+xxUnqmmdz2wC+t/d0dwlk4dct6Wl444i2Z8L623hitdaZjSDJBx2IRvlgJ9qPJGp1tSLTjguFrpQR4rZTuuece7zEYHSul8vJyrrjiCp555hlWrlwZ9WsSCIaLekt05QnvlNdHDJma5maSsXF2wMqoCZV/pTugTtAX3yzMUKUWnn2v7sPN3vEF8llW6yox4/Aba8bBal0lx44eoWL3x7z+6INuAfTBptOwrzCH+pTAhvfB3B08Fk5fWzCZ84szvHuZprmZ2JfIdDstfuOtrg4+avwLf3n5ISp2D9wo3EO0IdV4KsIXK8F+ZJmjsw2JdlwwfK2UnnnmGVJTU4HIVkqbNm3iyJEjzJ49289KyeVyea2UMjIyQlopXX/99WGtlI4cOcLll1/Ok08+yVe+8pUBvz6BYKgoO1zHT974IqqxfzlwJqoWZaa5mRhLM7BXtaN09PBlh41v/e1QwAqwP54szGj3vbK/OQ0JlaW6U4A7GcYXSXIbuJ85vIt3qw4Hv1DvoPJJGeS0d7lXcZKENicnJncHRXGx7Z2n6DrbQqZxCiZNIlZXJw1yG4pWh2ROZPv//YLi85YiDyID3hNyDhcSjbcifCGC/ViUvYgccw6N1sag+4ISEjnmHBZlLxrUfeLRSukHP/gB7e3t3HXXXdx1110APPzww1x66aWDeq0CwUCI5KjgQQLSEnSc7Qr9wds/pCnJkjcT8hyHkwte/Ru0tNBiSOKLzGkoUl+QTALSE/TUt3fzcUUTk6tr0ESx7zVf0jA7yU6CwxFynCSB3dpJu80e+sNYkrDpdZxNMJJhtQOQc+89SDFki9ce+cK7ymyy1eBISsWeV4Cq6zMHtzl6+Oj3j7Fq44+ivm7AVGUpZMjZQ7wV4cetldIDDzzA/fffz6FDh5g7d25U5wyVlZInOxTwE0KpN5r+6EWPDkmZxEggrJQEYxGXorLy4e0RG0p7Pkq/s2IqT390MuJ1f7FhPpemJKJ09CAn6bEf30PjQw/hrK/3jmkypvD4OVfx8ST3/ruMu9au1NZEQft+0iUt52evj3iv9G/P5LUzRzm+592IY421J9BZzoYds6C6gQJjIjn33kPyJbHZGx356H3e/OVPAXAkpWKbXOx+wnd52isFGzZ8i9I50X3mhiL4fqmB1PXTRqQ8YsxbKe3bt49du3ZRUFAwKve/uPBiHr3o0aB1gnctuWvMCKBAMFaJ1lEhPUHPf319LikmfUQRvAAt8/9WQ3NX376f0t0NUh7QJ4IZtnb+bc9z/OeSG9FOWsiPMLqLzY0JYJyKzRU+s9qDnKRnxewpHN8TeazkDL1a9JB/x51M//rVMa0APSSmukuxVMCe0/u5GiI+W/a3rcyaXYosDzxlpH/IWU7SD0kR/nAQdyJot9v5/ve/z+9//3tWr149avO4uPBiVuevHraOMSOFsFISjEWi7dX5b1+dzbq5ebgUNWzB+IVo+U9MSF3+iS9eF/U9j+Os2w+4V34qcHtjJdl5y93X8/nsNshmb1ZlqAQzyaxFVVQKCgtITk7GYrEEHYcKCZKRksQZVFr3Bh8DJGVkMv0bVyMN8PNn8uw5JCSaaFc0qLowSSmShMVqp7q6mqKiogHdy3spn5BzPBN3Ivgf//EfbNy4Map/ALvdjt1u9z4O+UYbIBpZM6gyCIFAMDCi7dWZm+Iu4QnXokyDuydoMANZSZJQVRXDvGtw1h3wnikhkTXzCgDkfkLnOQdCZ22rVictTx9Gk6JnzaIV/OWTvwdOvneSy3pKmJqQjc3cQa31WNDXufrGzYNKWKn8dDcuRUXVRpeV2dnZOeB7jTXiqkTik08+4dNPP+V73/teVOMfeughUlJSvP/Lz88f5hkKBIKRINbm0xC6YNzTOzPktSQJ2ZyOJrPEe0yTWYJsSg+90pMkJEnCroT35XO195D5Xg9XLV1HQr8m1gkYWOuYR5GSjQQsn/p1EtP9s86TMjK58rZ7KVkavKY3GjzlFzarLaqwK/iXZ/miKApVVVUcOnSIqqoqFCVSTm38E1crwffff58vv/zSuwo8ffo0l156Kf/3f//HZZddFjD+nnvu4bbbbvM+tlgsQggFgnFALM2nFUWhurqazs5OZiYm8sGdF/FZdRvbyut5+qOTpEfZO1MypAT9ORz7W97F5upiZfY30GoMIe+U/RlcY1tOvdxGN3ZMGMhVUv2kWe6GG27/Gc3203S2tZKYmsbk2XMGtQJUFBfbn33S+1hj7UBy9KBqdYF7gr0kJycH7RdcXl5OWVmZX8QtOTmZdevWUVpaOuA5jjZxJYJ33323X4nA1KlTeeONN0JmhxoMBgwGw0hNTyAQjCCelV3/DjC5Ph1gQn0wX3LpOt487E52ibZ3pmpvR5EkmrMysaXKpMmtAULVH4PGzGRzCTpN+M8hpcuBjMQkJS3sOLXTSf6CwBregeJbGgHuLxCGhlPu7FBVDSqE69atC0iKKS8v95Zk+WKxWHjllVfYsGHDmBXCuBLBeEN1ubB+thdnUxParCzMi88dUGaWQCAYGOFagYX7YH71j6+g6ykG0jmIi0YUMpGCCpqqqqjdrVQbrexbfwXdZnPvM/swqwbOd8ygSMkOPAeVRRkDyxRXUIOuCh3N3YOyi+pPZ1trwDFdRxvUVmLPKfBLkgm1qlMUhbKysrD3KSsrY9asWYPKKB0t4loET548OWr3trz9Ng0P+tcPaXNzB1SjE4x49BP89a9/zeOPP45Go8HlcnHLLbfwgx/8YFTmIpg4+IYzExMTKSws9Psw9bQC83wp7TyyCzkzk7KPPgx73aX6E9TpqlFcyfzcOoP/woyC6ieEnjrgirq/8dGKwH03K3be1R1ikbOIBa4it/mu2pc8MxCq5EZ26Y7RJfUl9SWoBpY5ZjB1G/zHx5X81drtfS4Wu6j+eEoj+qPraEPb0YbLnISq1bHm2htZfOHqoCJWXV0dMenQYrEMSUbpaBDXIjhaWN5+m9of/gj69RFwNjS4j//i54MWwnj0E9y4cSPf//73Afebeu7cuVx00UVBW6wJBDA4k1uIfp/J/aV0C6ozCcmQQr3ZheXckmCX9JKAypSMd2k2NbPXkcJ/nL6R/2ebQbaPeDWi8hhWJs2cjA41MDrY+3ifroovtbWc75gZsCqMhSq5kXd1hwKOd/WK7RrHXG6wZrEVvG3cPL1Pf7NxkVcIVUWNqgZv8uw5JKZnBvQk9bw0rbWDpIxMFl94UchVXLSZomM1o1SIYD9Ul4uGBx8KEED3k+4YesODD5G0du2AQ6MeP8GampoAP0EPzz77LC+99BLZ2dmUl5fz2GOP0d7ezr333ovT6SQtLY3f/OY3lJaWsmPHDu644w4+++wzwO0neMUVV3Dy5Elvx5ibbrqJnTt30tnZyWOPPcaaNWsC5uXxEgSwWq04nc6Q2XECQSST20jbCZH2ma5acimzZs52d3V5+DkM83+IbHJngypyPRC5p6jZ6S6hkLTtfDr1l1xbs5H1XQuZhES93MZeutFLDqZqI+8bWunhXd0hb0ZnrCio7NL1lkAEE1sVdusquMae7edu37/3aU95S9Su7bKsYc1Nm3n90QdDzuui6/8xbPJNqEzRgY6LN4QI9sP62V6/EGgAPl5eCUuXDOgesfgJ7t+/n5KSEhobGyktLeW9995j3rx5vPjii2zYsIHDh0M03vXB4yf4yCOPsGvXLq666ioqKyuD9g999dVXue+++zh+/DhbtmzxWjcJBL6E6uvpWbU8O72TSS88HnI7IeI+kwrv7N5B+gcOJIeC8bxb/Z42EV1C3O1nNnLYeIiK1HryerK4rLuUTrmDXbpjmCQ7Mfmk9ArVLt0xCu1ZYRNmglEvt/mFQINdvws79XIbGYr/6/P0Pj20/SSZ204HnBrOtb1k6XKuvO3ePpumXow9DkrPtCDd8+9YwmzzFBYWhi/4J3RG6Vhg7O1iDjP9PboGOy4U/f0EFyxYwMyZM7nlllu8xyP5CZ4+fXpQfoLB+OY3v8kXX3zB0aNHef755zl69OiAX6NgfBLJ5Hb5mUNkPXJ/wJdJz3aC5e23I+8zSdAluQUBrTtRxfdvJldJJUE1EDLxU3XvsxW7JvMN6+XcdeY73NC8ns7esGMXYcQoHL7zipHuKO/ZjT1oRqsMJH8U/u89lGt7ydLlXPO1b7O08gwLqhtYeryW1UdOkdve5ffvEgxZllm3bl3Y+wbLKB0rjM1ZDyPBPLoGMy4Y8ewn6GHq1KksXbqUN954I+K1BBOLcH09ZVXh1s//EvzE3i2GhgcfoiPK7k7d2L2F6X73QWKZY0bvdfvfx/2fZY4ZaHzcINzhyAr3g2Bv/xi8BKIVNF+iXb3a0AV1t5+PBn134HFfQrm2qy4XTVseJqOzm0ltnWR02fp+BT7/Lqor+PVLS0vZsGFDQDPq5OTkMV0eAUIEAzAvPhdtbm7IQlIkCW1ubkxeXv3x9RNsa2vzHo/kJ3jgwAGOHHFblPj6CRYVFXn9BIGQfoJARD9BD01NTbz77rsiKUYQQLi+nnOaT5Blaw8dKOzdTtDVnonqXuGEo0jJZq1jHgn9xvh2YvHFG44M3TomqjmFmpeqqt7/BSPa1euLijHA21ACik3RiWgw1/ZYtnlCUVpayo9+9CNuvPFGrr76am688UZ+9KMfjWkBBLEnGICk0ZBz7z3uLFCP66X3SfcfSaxeXsGIRz/Bxx57jPfffx+dToeqqvz4xz8W5rqCAML19Uy3d6ACZxOM2HVaDA4n6V02JCQ0mSVIhhRUezuZThcGcyL2rs4QqzK3mKmoVMr1QTusgFsIC+1ZfjV32UoKjXJ7wHkDWb0Fm5cRHdlKkI4yqkJP5TZSv34RPTVJAcayntXru7pDfdkuPtcFqHIUsrPfKtAz7GsrCmBb5C8PwVzbh2qbR5blMVkGEY649RMcCEPlJwjDXyc4Ugg/QcFQ4/H6C+bYsLruIxZb9mHT932/LtIXszBjLTpjXya0ZIRPc7s4ULer94DPRXovqkdLj9Tn+mBW9SFLFDzF56ekJo5r67FJfT0yPTV4BnS8qd834Nfti+eavnNxb1lAxsZSPxshR4OVjvdqvPM8oKniC20Ndp/X5rlexdzpPFXdHDTj9tLSXOof3hPRtT33rvMCyiW6du/h1I03RnxdBc89N+CEv3hizPsJxgPJl1xC0tq1omOMQNCPUH09i7tOMMf2OTZd39/IZPMMzsu+KuAaig3OPWkmQ57nLhz3WaUZ0GHHQQ/+tkeeEoU5rnwKlSzvCi9Y8bkvvjV4BtV97QHWuQdc0zfs6tm3bNt6gtzSDK+N0NmXtwGGoPM0qFrmOPO9hfhfHmnlnesXcUhy0dhlD6i9HKhru2ebx9nQEHzvU5LQ5uQMaptnrCJWgoKYEb9TAfjXCUqqwo01L5Do6vIKo2JOYkHOZaRKKeSqaQGhTBUVCcmvhZgRPe/qPqcHV0ShMqo6pjtzOax1r7LCju8NrzpwucV1KMpfe695jX1FwGs7elEOyd3VTJe7adzyMPUrb+U984nAefZ++vbfwwxV9wcDd233NgGBoNs8k4egCUi8IFaCAoFg2Fk3N4+LZ+Xw+SenOXuskjP16TS7rPQkpWDLLQStjo9xf/AHCx962o75Npaulc/SI4XPgPRgkxzRCWDv8wMui4hwzXq5LaAxduovHsVc9T71wKkpU9hlrgyeeBOi9jBc3d9AXduTL7kEfvHzwG2enJwxt80zlAgRFAgEA8KzIslu7yEbLbPyruUj6TBH9PUBH/jBwofBqJMCGz6HJQ4aGgVLuEnsqEMBTk+ZzCcrlofPPO0V0zq5Fak3gceT0NO29QTG0owAgRuoa3s02zyKolJX0UaXxU5CsoG8klTkATbwHgsIERQIBDHTfbg5YG/qhNzAEV0DQZUpxIqnv5uCKsXB7kz/zM0I+JZLeBwplOYKFElm/+Lok0y26Q7ikPqKIxJUA8s6ZpBWNWNAguchWIPyUMkvlfsb2flyBV1tPs29Uw2suqaE4oUD75kazwgRFAgEMaEqKm1bK/2OKah8rDsaXjz6hQ+DJYoYVd0wTbqv5MJKT8iyDD1aHDijcyDsvWaukup32HF6D9q8BZxddDlW4/Gop+grgNC3ek48MomFxef73zpMA22X4mJf4z6arE04651U7Kqgw9LhPTeUZVLl/kbKnghsw9jVZqfsicOsu3XuuBRCIYJhGM6wQDxaKXk4evQoCxcu5Hvf+x6PPPLIqM5FEH/Yq9oD0vTr5Ta/soRwdGOnSm7gXV3gB64NR1+66VBF4Hw6yABh6/TmOvPZp6uK+tLTnDkBSTH6kksB6NaEKU6Pht7V8/ZDHzL/8qXetmTBE2PciTQfJR1gy54tNFgbmNQ1iWWNy3ov1TfHYEa4iqKy8+WKsNP58JUKiuZnjbvQqBDBEAx3WCAerZQ897n11lu56qqrhv1egvgl3EojWEeSWArRjej5QHcYCOJs7ltzMURIwGrHXIqUbKrkxrBjfWv3ouGQ9hTZaopfmYQn4d7MEGROS9Bh7/J69QULQ4M7kab5hXJenfwcDckNoML8lvm9lwguWr5GuHUVbX6fdcHobLVTV9HG5JnBPQrHKqJtWhA8YYH+bwpPWKByf/g/pEh4rJSeeeaZACul6667DnB3lFm3bh033HADixcvZs+ePZSVlbFo0SLOOeccLrzwQsrLywHYsWMHixcv9l7n8OHDTJ06FXAXy2dmZnLHHXewdOlS5syZw/bt20PObcuWLVxxxRXMmDFjUK9RMHbpPtxM/cN7aH7qEGdfOkrzU4eof3gP3YfdDReCdSSJti+mJ9zZJTnCtCZkSBNe1N6m106U8FZGQGUsq7fec3bpjqH0KreCSp2mjROaBlRUzOHapMXAey9u5+3tJ2l9vTLkGBXY3PBNZFUi05aJ2WUOa/xrsVh4bc9rAHRZovsSE+24sYRYCfZjJMIC8Wql9Pnnn/PWW2/x3nvv8ZOf/GRAr00wtgm30vCk7BtLM9Ck6P3CcZ6+mF2E6M3ZKwTLHTOHpn1ZjOzWVbBPewJHuPILyR2O1ama8OP6nePZ57TjCFoMD8ScbNOflrM6TK+dQEkMvWcqI5HtTGeOdTqtanfIcb48s/cZUvNSmZ0cXZF8QnJ0X3bGEmIl2I9YwgKDId6slBwOB7fccguPP/74iIRdBfFHsISX/rRtddf9pa4v9jse1tWhl3nOAiSkPieHESZaYZvhzHO/hhhWcNVyU1CLJntv1xsDg0v46Uo+wYm0XRHDuQDpzhRsmshOMgA2jY2H9zxMdnESCanhBS4xzZ0XMd4QK8F+jERYwNdKKS0tzWul9Oyzz/pZF42klVJdXR2VlZVcfvnlALS1taGqKq2trTz99NMxv0bB2CNYwkt/XO12Pt+7m9qMs+RfkU7GBxKKxX1OkZLN6u7p7DHV+ImBUdWx3DETCcmdlBLnJGJiqiuLk9roPUO9YdQQjvEqCksc0zGpeoyqjrfkT0GrC18/qPrvmTrkHt6VI9dantW202xsxqqxYnKZgoZEVVS6Nd00GZvACgea97PqmpKg2aEeVm4oGXdJMSBEMIBol/uDCQv4Wik988wzpKamApGtlDZt2sSRI0eYPXu2n5WSy+XyWillZGSEtFK6/vrrQ1opFRQU+DXZvv/+++ns7BTZoROIYAkvwXjqkyd4P+UzZEViTcoqviLNJ/V4C1kt7eQ1H+Ubi2+ixQTdUo+36BvgZcNH7gvE+efobl0FOjX6IJlGlcNnxkrQg4s9uuPezjkXuObygfZogND5nxc8aWiX9hiFPYHO9goqzdpWvjAfBwkOZhxkWeMyb3s6D2rvEvdgxkHvv0WTtYnzFp7HulvnBiQEJqYZWLlB1AlOGPJKUklINYQNiQ5FWCAerZQE8UuwguehdvIOlvASjLPadtY0rSCvIx+b5GAPZyAfjFOSWO64jqndevIU9/vLE3E4I7eGbHAdF/Tbs+tfsxcOVwxjvZ1zeuaytmce72s+x6n1uXE4UYQ+Z3uplUlqev+neDLnVdTe088knGFX9i7mt8zH7DJ7x3VrujmYcZAzCX22TFlmt0l48cJsiuZnTaiOMaKBdhBCFY16GEtFo8JKaexTXl5OWVkZFh839lAFz4NBVdSwVj2elcZzqX8nrSPXfbD/Z6MK85z5LHWWIEkWVNy+e5VyPe/pvxiyuYZkkAkoAddiCK/nc10jOq6xrcDu7OS17r/SkzUpJlPf5fbZlKqTvI89DbR96wQ9yMikd6djdBmxaWw0G5u9r0lCIsecQ9nVZWjk8ZMLIBpoD5LihdkTMiwgiD/Ky8u9K35fghU8DxZJlkJa9SioSMDf5D8yyTKbbim0HdEhbQ2ZajL5qha77iWSey6PuoRisOiQQY1yJRdJMKUox0V7PZ/r2nDwsvEjSpx59CTGJoAAnzpsrNg8F8nq8KvjvJiLWZ2/2tsxJsucRautlTvev6N3in1rHk+I9K4ld40rAYwVIYIhGC9hgalTpw7pKlAwciiKQllZWdgxvgXP0aC6XGGbJ5vmZpJ27UzO/uUYkrXvA7ODVro/f5n5KWb2zQy//wXwoe5LrrNfQGLPNShArkL4EoohosCVRYGSyXu6L/zm40esK7yhHteLDQeHtKdiO6mXnDk5JMwIXrSukTWcl3ue37FHpUcDVog55hzuWnIXFxdePKA5jBeECIZBlqVx1x1BMHaorq72C4EGw2KxeLuJ+BJM7DrefTfQRic3189Gp2LXRxx4YStYXRg0ZuyubjoUK4lnq6maO5tus5locEguXjJ8yIqemRSpOUi425YNd3ZopbaBerWNAlcmpzQhvvzFy/dYKeCHqFl70cyYxl9cGLhCXJS9aEKvAD0IERQI4pTOzs4BjbO8/XaA2MmpqShtbQHnOhsa3Earv/g5TZ0JqB+3cX7iV6G3OqfT2c42x4ecKlwU8/xtOHhXf5i1DokiJZsiJZtFzqKYenMOhC7sdGns5LsyqNG0xI/oDQWqSrLZ3Wc4VoKtEAWiWF4giFt860SjHedxD/cVQCCoAAK9DuMSzc9+jH63C5MmyftUldzI6+ZDNKcZ3XtWMe5b9W8rpqCSo6aiVzVD3h802H1Pa1qG8SajgKqCBOvYgTysv8CJhVgJCgRxSmFhIcnJyWFDosnJyd5Vgepy0fDgQ73CFh3avIUYzrkG2eSfbl8lNw5N6LK3rdgBTRVHtWf8yySGMpMzyH3Hm0xIqJzPXkq790D1x1C0arSnNC4QK0GBIE6RZZl169aFHTN/+jLqKtpRFNW9B1gffQNobd5CjEu+i2RMQ0HljNxKpVxPrXyWT0I1mh4g+7RVAS3FJgwxtmBzn6MGfJlRJYmPWUw506GzIcSJfbgUF5/Wf8qbJ97k0/pPcSlR9kOdYIiVYBgUxUXtkS/obGslMTWNybPnIA/RRnI8+gnef//9/O///i+TJrnrj+bMmcOLL744KnMRuCktLWXDhg0BdYIa1UBCWzFfvmnjyzf3k5Bq4NxiS9R/0CoSmvnXUCe3ckpu5ri2Pmo/wAETwrlhPLPUUUKCome7/osgHoaRCuOD92Ar40JmGjKx7d4TMst3W/W2oNmgdy+5e8Jng/ZHiGAIKnZ/zPZnn6TzbF+GWWJ6Jmtu2kzJ0uWDvn68+gnecMMNolVanFFaWsqsWbOorq7m+KHTHN7WhK4nGcknkNPVZuODvXrmZs4nu/lgmKtBfUoCx+cvpy2lfPBdXHwXK6HKEYbYGikqIs1rBDCqOkqdU5CRWOuQ3Q4TvqvhYALoEcaQ4ihhIZlP7vw5GUePeo/6Zvluq97GbTtu86sJBGi0NnLbjtt49KJHhRD6IMKhQajY/TGvP/qgnwACdJ5t5vVHH6Ri98eDu34c+wkK4hWJz09VcujtdnQ9KX4C6HkeFSqmf6u3rD049SkJ7J47i9q8tMGHJ3s/Y+c5C/we95/WiOMrvKN1f9VtGyUjIUnu7Nhr7CtY6igJf26UyUed3f5WSZ4s37a3ytiyZ0uAALqn5T728J6HRWjUByGC/VAUF9uffTLsmPeeexJlEG+iWPwE//3f/53PPvuM4uJiNm7cyHPPPcfnn3/O5s2b2bBhQ1T38/gJ7t69m6effpprr702ZLPuP/zhD8yfP581a9bw3nvvxfzaBENP5f5GnrprO6f/IGNwhjFKlSTsxjTaUkvQZM5AO/k8NJkz8CiBCnwxKRN7bn7v+MHNy4yetY55LHWVsNYxDy2i5syNSlErTFNy/NxaZCTManT9WSNhsvXzC+zdP6z9r5/Q2Bl6X1hFpd5az77GfUMyj/GAEMF+1B75ImAF2J+OlmZqjwyuD2K8+QkCfPe73+XkyZMcPHiQn/zkJ1xzzTVUV1cP6nUKBoenj62jI7rxuVrIXX4r5pV3YDrvFswr7yDh0ofQ5i2kJcGIJWcSqs4Qe7mDh95VziJHERvsKzCgo1Ku54Rcj5M4WV2M5l6jChf2zGFyT/B+lVG3jwuV4auqGKxWMpuCfEapKnLjWWbXRM7CabJGbxM13hF7gv3obGsd0nHBiEc/QYDc3FzvzytWrGDhwoV89tlnAyrMFQweRVHZ+bLbgDbk6s+HHKmeJQlT8Fa69yKZ0qhf9g0+kg7Qox/8n7wBHalqAn80fBzfzhCjgQSf6SpZlFrAGbmVbuxeOykZiVwlNXz7OFUFlxM02sDEmV5hnHb0CHKYMpi0KHoseFwjBGIlGEBianRt0qIdFwxfP8E2nyLmSH6CBw4c4MgRd3NjXz/BoqIir58gENJPEAjpJwhw+vRp788VFRUcOHDAu/IUjDx1FW1hLb08qKgk6E+QkaalTtPmtdLxcFJu4l39YWy6IfjOK4FdcrBdd3jiljxEoEuys9NQwZv6fbyn/4I39ft42fARVXIjMhLLHDPcA/vrWK+wGeurMdZWIjn9s3UlZw/G2kom+/ydBiUzPeSXJgmJXHMui7Jj7wA0XhErwX5Mnj2HxPTMsCHRpIxMJs+eM6j7xKOf4L/+67+yd+9etFotGo2GX//618yYMWNQr1MwcLoskUXGbmimO/k4zZoeTvYe8xi3FinZKKjsGuKavyG/1lglVCNuiQCB8/oIOuYx1ZXFWnVur5dg3zpEcvZgaKhB19EGgLajDZc5CVWrQ3I60Fg7MLkU0q0h3heShDYnh29+8x4+3nkHEpJwjYgC4ScYBE92aCiuvO3eISmTGAmEn2D841JcfY2NjeksstnRdDVR05LJq6+dRZF7kBV9b1Zo3yeu3dCMJdWdIexff+b+z1rHPAzoeFMvkiCGnIF0u1EhAQNXdM3jYMt2TluPBYhcyEv2fkxfMH0OiX9+w+8Y4A2bTv7Fz71lEv3rBHPNuRPGNWJM+wnabDa+/e1vU15ejtlsJjc3l8cff9yb8j8SlCxdzpW33RtQJ5iUkcnqG4emTlAggBBFzU4n/9iQyhn7cizpfb08ZZeeRMt0DPZMFBQ6kkOs8HpXIrt0xzjXMW34X4QgOnpbyG1tedEreFprdBlPeqeLubXNpDZayfmfR2nY8rC/G0hOjp8biHCNiJ64E0GAzZs3c9lllyFJEr/61a/YvHkzb7/99ojOoWTpcorPWzpsHWNGCuEnGL+EKmrW2vI50nN+QAKnIvdgSS3H1DUFm6kBVeMMffHeD9xduophmLlgMOFgRauLuZhk9pkWctu7cLZ3oUlLZ/q728L6QoJwjYiWuBNBo9HI5Zdf7n28bNkyfv7zn4/KXGRZQ/6cwAQSgSAqFJe70XFnAyTmQOFy6P0S5VJcwYuaVTjn7ILeB/0+aXtXeN0JERIjfOghjFAKBs8AwqL9E16iwejo+3d0NjUhaTQkLF0S83UEgcSdCPbnl7/8JevXrw/6nN1ux27v2ySOZEAqEIwY5a9D2V1gOdN3LHkSrHsYSq9kX+M+vxCoh0xbJmZXGOPaWFcgIoFl+Im2J6iqIjl70EQZAvWcY3Q4Se/qK3vSZg28vMFv/1mESIE4F8EHH3yQiooKHn/88aDPP/TQQzzwwAMjPCuBIALlr8MrNxCQImipcx/f8DxNxuB/ekaXSDQaK0gqzHHmc0yuoae/joSo8TM01IT4XhIk1bT3nNIzLd6j2txczIvPHdB8RVPt4MRtneAjjzzCa6+9xt///nfM5uDfjO+55x7a29u9/6upqRnhWQoE/VBc7hVg0Eaa7uCnWnY3WcbgLfNsmsiNDiIybvK94xsVOKytIa25HVP1UYy1JzBVH8UQpsbPU/4QDKPsH7o2Opwsqm4gt723fliSyLn3noC9v2jw7D/3jz54mmpvq94W8zXHC3G5Enz00Uf5wx/+wLZt20hNTQ05zmAwYDBE2YZoAKiKir2qHaWjBzlJj6EoBUkemvhSPFopAfzpT3/i/vvvR1EUVFXlzTffHNHM3DHPB4/4h0D7IaGCpRbXkTPk6JJp7GlH9VkxNBubsWqsmFymqLrEhLiJYCTo3aNtTDeRcNy/vEEXpMYv3D/L8vMKWdrxe2qtKTQ1mLEf15NytqdvBZiRQs59/583+zMWQu4/4/5aJiHx8J6HWZ2/ekKGRuNOBE+fPs3tt9/OtGnTWL16NeAWu927d4/oPLoPN9O2tRJXe4/3mCZFT+r6YkxzMwd9/Xi0Utq/fz//9m//xrvvvsukSZOwWCxotXH3Folfyl+HHaHrSxVVpq5nNl1KGp+/9QH/klHFHTnp/qEzCQ5mHGRZ4zLvB5SXIHVhfqi9m1NCBEcOCVSdHpc5ya/cIfryB7fnx3klBmTlWvKP/o38hDOoU8HapMcpZaK9aDPmq38woBUgEHL/uW8GfU21J2I2adx9wk2ZMoXRrt/vPtxMywtHAo672ntoeeEIGRtnD0oIPVZKNTU1AVZKHp599lleeuklsrOzKS8v57HHHqO9vZ17770Xp9NJWloav/nNbygtLWXHjh3ccccdfPbZZ4DbSumKK67g5MmT3mL5m266iZ07d9LZ2cljjz3GmjVrAub1s5/9jNtvv91rqhupyFTggzcMGpxK2zJ2WjbRpfS9b051rOae1jIenvkhLh/hOpNwhl3Zu5jfMt8vScZk7abwVDVfzpoVYs9JCOBooWp1AzxTQgXqPvwT+QntfUcTUklY8z244A5vRvFAibZZ9kRtqh13IjjaqIpK29bKsGPatp7AWJox4NBoLFZK+/fvp6SkhMbGRkpLS3nvvfeYN28eL774Ihs2bODw4cMR7+exUnrkkUfYtWsXV111FZWVlQGt08rLy5k2bRoXXnghFouFK664gvvvv39EzHzHPNUfhwyDVtqWUdb2LwHH7WoS9rZvsXHvZXww7WWqMj4H1Z0hmtsxlZTWUkzOJFTZgazoSbQo5NWeQt/5KYcWLEDV+djyDNQVQjAkDKTswZdOZz+Lpe422PEQZM+G0isHde1om2VP1KbacZsYM1rYq9r9QqDBcLXbsVe1hx0TiXi0UnI4HOzdu5eysjI++ugjPvnkE5544olBvc4JQ2fwcJOiyuy0bOp9FFyojM4ELjn2HRbWLeeK6vVcWH8hRd15OJJPYkk5jEPThYqKJcXBvoXfQu0xkXD8c0zVR0lrt6NTxZeUISfaYJSqIjnssZU9BCFRG+wzR4Wyu91RhkGwKHsROeYc0VQ7BEIE+6F0hBfAWMcFw9dKCfBaKd1zzz3eYzDyVkqFhYVcffXVmEwmzGYz3/jGN9izZ09Mr23Ckpjj/VFVoKtBT3u1iRMN5/SGQEOv1CQk7IZmpnXnYVD6rQg0KrakGizph+hIO0p7xiGOLF1AWuZcko25tCYbcMSLj98ExdBQg6QS2gMwDCoqBp2dyeYQX6otte4owyDQyBruXuJuzN9fCEVTbSGCAchJ0Tk/RzsuGPFqpXTttdfy9ttvoygKLpeLd955h/nz5w/4dY43FEWl9mgrxz6tp/ZoK4rS96Hnyl/Kp+mT2dGUQvkbOZx6L5Mzn6RRU14Q8boqKl3JvSH4KKKaTo2LmkwjZ7PToz5HEBtTXOG3Kjzozjb4lz3EIISekRkFp9lrMvBmgplPjYbArzQhogyxcHHhxTx60aNkm7P9jueYc3j0okcndJ2g2BPsh6EoBU2KPmxIVJNiwFCUMqj7xKOV0re//W0+++wz5syZg0aj4YILLuCf//mfB/U6xwuV+xvZ+XKFn79fQqqBVdeUUJX+OVt2P8ycmhKuOpREm95CmvU4Eio9+qQwV3Xj0LejaGKILPSKnlgBDh8OSx2kRy6/0na2g5SIznwR+TXbOJPUiS2kcbG/x5IkJeFKXszr6ckczurb289xOrm7pZWLrd3uAz5RhsEgmmoHR1gpBSFUdqiHwWaHjiTCSmnwVO5vpOyJUAlIKgfy3mV6y7kk9vRl+hpsrZQc/yMuWceR0pvDXt9mbKQj9cshnLFgwPS2NjMfP4R1+jnurM+QLdAcpNZNR6MrQJJkdD0WVnx8L60JBhrTp1GfcxEOfRISVpASkORcVFcd9D6WtZO91357xjPuxChA6v1IfrSxmYu16fCjQ4POEJ1oxGKlJMKhQTDNzSRj42w0Kf4hT02KYUwJoGDwKIrKzpdDOzGowPy6tZjtybgcNbh6vsTlqMGmT+bwnFuwmSK/V+T++4CC0cGntZkMGBpO+R3vPy6hLRutfiqS5P4YdeiTaU+dTnqXjYxuHXrtJLT6AjT6WWh0+ciyFo3PY0mSvXtyy09+A0l1/+xpnvBwRhqur/xndAKouKBqJxx61f3fQSbTTCSiCof+z//8Dz/+8Y+Hey5xhWluJsbSjGHrGDNSCCulwVFX0eYXAu2PhISrpwKH9T1QO32eSERnuogzeSvQ21rpMaT6rSgytBJGCRJkiQJDBq+rBrqwi/29UaS/s7uuow1qK7HnFPiVo0jOHkwtekwE7qvb9ck0Zc7n8JxbAp4LVcYiIZHUk8bcugvo1ndg1VmoS66kXiux771/4zyNNnyZRIRm7dGiKKr7/W6xk5BsIK8kFXmMfd4NhKhE8K233uKvf/0rzz//PAUFkTf6xwuSLGEsTh3taQhGkc628Jm2rp4KHF1bA59QO3FY38CasJ7i2i85OfUKVMVFrqaNcxLTMWv6iqtVVWWZYwbv6g4NzLFcMDBcTnRnG9D02EO2NtN1tKEN0QLNlTAJjb7Ef3xPJ+WlN7v/GWOs3VxR/Q3vz536Vj6a+hq75J0seuUGNBueDy5o5a/DK9cHHreccR/f8LuohDDcnnfxwuwwZ459ogqHlpWVcd1117FixQp++9vfDvecBIL4QHFhPem/V6eqijfs6ew55V4BhsFh3YGpu5HJlb8hy7mdpck5mGT/7iKSJFGkZLPIWSQEcASQXAq6ploSjx3A2FyHznIWbZjenp4WaP3HOaw7UFXF/UBV0fV08kXpze59wEE2L0joSeWSY9/hHWUVl+bnsW17kHpBxQVbfxj+Qlt/GDE06tnz7h/x6GqzU/bEYSr31o/rUGvU2aG33HILF110EUuWLOHOO+9ElmVv7VpjY+NwzlEgGBEUxUXtkS/obGslsf0Ik4/8AlvtRcC3AIKHPSOhdtBkhNpUuCJ9JRB6hZCihvERFAyO3m29c3qmUHXir0SuhtcDETJ21Q4UZy0a7RQAHLrAjOvopqYGrd9TUVl+8hv8YeHn3Jao8ujeX3PxeT/oG3TyQ+g+G/7i3Wfd46ZdGPTpSHveoPLhbz+kKOMWZKlX8AcQao1nohbBvXv3ctNNN/Htb3+bO++8U7TSEowrKnZ/zPZnn6TzbN/+qV43hXytDYxhwp5R0JDkItM4FbM2fJaaieFzRJnoGFQtKx2zqK3/mOjawTgjDwFQuzDYW3HJepy6hAG1rwvXySWpJ43cjunUJVfwcMXLrD73+30lDVU7o7tB1c6QIhhpzxskOp3p1PXMZrLhC/chH1/M8SCEUYngv/3bv/Hiiy/y+OOPc+mllw73nASCEaVi98e8/mig+4PdoaeypwmtdAxn944BX9+h1WDSJvodU1Cpl9voxo4JA7lKKrlKKmZVj5UeERYdKlRY6Cxipj2DAy3bqbUei/JEJapRJZV/J9kuc2BBhLCkdzqBq75ImB3JqJJEvcPi7/QQ7WXCjOuyhBNAn3FKms+j3o3rsrth1lfHfPlGVCJ48uRJ9u/fH9bbbzyiKArV1dV0dnaSmJhIYWEhsjw0VSXx6Cf4gx/8gA8++MD7+Msvv+S///u/+cEPfhDmrLGNorjY/uyTQZ+TeoubndZtwADNbiUjqDa6XX0h1Cq5kV26Y3RJPkkIqoFljhnMdE5iv+7kwO4l6KO3jGFKs532zl28aTsd1E9vMHTrXDy75hRT286loDuGqaHyee4O9E4js5vPjzjeqrN4f/ZzeihcCfw08g0LV4Z8KiE5uuhDgtza74ja19KtaFVU14hXohLBF154YbjnEXeUl5dTVlaGxdL3BkxOTmbdunWUlpYO+vrx6Cf4y1/+0vtzfX09RUVFbNiwYVjvOdqcKj/kFwINQJIYsAACGsNCXLZPaLadxuq00KDr5l1dYOF9F3be1R1iqjIxO/kPCk8dn08o0lPu0B7GyX2wnJjcSflUmbb2DgrKozvHs9c3o/k8jM6EsCtDFZVOfRt1yX2uNn5OD0WrwJQG3f0FygdTeliRyitJJSHVECYkqpAot5CnD9E8ZAhauo02olg+COXl5bzyyit+AgjuLgSvvPIK5eVRvuND4PETfOaZZwL8BK+77jrA3VZt3bp13HDDDSxevJg9e/ZQVlbGokWLOOecc7jwwgu989ixYweLFy/2Xufw4cNeN/iTJ0+SmZnJHXfcwdKlS5kzZw7bt2+POMfnn3+eSy+9lNzc3EG91pgZwaLfbdXb+Pe3Ai2OfJGQyDLmU5AwmyxjfvShLCkJXcJ6tMalICWiorK35V126So8F+5/IwBq5QiJDgJ/egXQWFuJqfooxtoTmKqPknD8kH9Pz2GgJse9/KtLOo5V10q0IVQJCZMz0ftzMDyr1o+nvoYqqcGdHmQNrP9l0PO9rP9F2HClLEusuqYkxLMKILEy+Zm+pJj+DFFLt9FE9A7th6IolJWVhR1TVlbGrFmzBhwajVc/QV+eeeYZfvrTKEItQ8kQFf1Gw7bqbdy24zZyJD0QXOgnm2ewKGOtX0KL1WlhX8u7QfaWEtElXAp0e1tieTqJ6MyrcXRtpZo6bHKY5BhJ9AMdCMbaymEXPF9UVLqMLhrS3asnVVLRZb8Atf8c055fuHESEp9OeZOqjM/DOz2UXumuBfz7v0CHj61a0iS4LLq/m+KF2ay7dW5AnWCito2ViU9RbNwVdIYkT4LC5RGvH+8IEexHdXV1wAqwPxaLherqaoqKigZ8n/5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL48+Bv4o48+wmKxcPnllw/49cVM+evujLP++zZhMtFi6XDhO9aYpGPL5w+jotKQbqfL6MRs0/h9KE02z2BF9lUB1zFpkliRfRUfNf6F09Zj3iJqnXYxsloQ8oPNlDGLzswoU+hFwXz0SBKSa+S+OHjenXtKz6L6/Bu9Ovko9/Y8yhdt38HsSAt6bqy0m9z7fznmHO5acldop4fSK90JKtUfu8OTiTlucYohYaV4YTZF87P8/54cO5Ff3U3/xt/eN+e6LWM+KQaECAbQ2RldDVi044Lh6yeYlpbm9RN89tlneeONN7zjRtpP0MPTTz/NjTfeOHJlMIrLvQIMmrgQPBPt+N4G3v/9MWxdfY7exgQdF147g+nn+oRoFBeVb3/Iznd66Orqez1f0X+Xj6a+RlXG5+wuPcvqfVle7ZGQWJSxFgj8PUmShKqqZGYv5KjW6G2nZeMsna5PSLSUYLRn9c5cJVFfhSOzm1pN4pBk8wkCUbW6yIOGCKvBye45ZzmV65MJI0m0azTcNf0UCa77mFl7KefVXoYUYrcp2tXixnP/gYJZ/xyd04OsGXSCiixLTJ7pK+BXgvx8iOjMlnFRHgFCBAPwFZ6hGBcMXz/BZ555xpt1G8lPcNOmTRw5coTZs2f7+Qm6XC6vn2BGRkZIP8Hrr78+rJ8guMX91VdfZe/evQN+fTFT/bH/H1kAfZloSuFK3nn6C47vDWzQYOty8NZTX9Bw0sKyr09j3+5fcvLdT2g8fSv9t789HTnenvEMVbmfs2NhMxcdLATFSqZxStiavpOaJj7UVQL+H76qxklH6hGcXR3oHMnYUo7TLA/cfFkQHZLTEXnQEKCaz+VPF/wZRQ6dZZrdNp/zakNHUDx7fZESYnRJ8PULLh393p1DsMqMd4QI9qOwsJDk5OSwIdHk5GQKCwsHdZ949BMEePnll1m4cKE3DDsiRJlhVnnwLNsf20mPNXwh84F3TvHEqQc5kLaX6xrvI4Hgjtqejhwn0w/hME/CmLwZxVlLYkg/OHd93y5d735g0NW0SnfCaWLImBcMlF7bI421Y8guqTEsxtXzZb9m6EnozBeh0ZeQ2/E5Z1KOBz1XUiVWnHT3/4y00ouUEPNm3m8prlHjw+x2CFaZ8YzwEwyCJzs0FBs2bBiSMomRYEz4CVbthOeuCDuk0raMsra7or6kVdvBtpLnuPJIZFPgvZPdiVDn1q4D3A4PKxP7hNC3sN0q9bBbF67NVC9iX2948ckKjTopRjKiM38FIIjrR5/QqaqC4qwFtSsgyelg3nt8MvUvQS8/qX06V5b/v4G+Ii+fTnmTfflvk2POoezqsglvejsQYvETFCvBIJSWlrJhw4ZhrRMU+FC43L3PYKkj2L6gomrY2bk5pkuanUlMtkyPaqxH/Dy0OFW6FIV2TRvVmmYqNfXYpBhDbkIAh5X+tkeRkHWl6BIu8YqZrCsOKXSSJKPR5Qe9zjl1F2HXWNk/5R1Uyf+9anaE/7CNlnZTEyoq9dZ6/w4xgmFBiGAISktLmTVr1rB1jBkpxoSfoKxxl0G8cgPBMtHqembT5RyajLtQqKg49O0ocg8uTTevGupwaMR+XtygquByug1vQ9gehURK9BNACC90YS+FxJLTX2Ve/QXsnPZHTmQc9D7n29llMCR39xkx+3WIEQwLY+sTfYSRZZmioiLmzZtHUVHRmBPAMUXple4yiOQ8/+PJk+ha8q8DuqRNY8Wm6YrYLstuaOZs1m7a0z+nI/VLrEnVOERCy8ijqn3/638cMNZXo49gexQMnXm1nwAOBSZnEl85djNLT673HqtLrqRT3xrm/aaioIR9P6qozG5Y7nWZ9+sQIxgWJsxKcBxtfY46ihJdZ4zoL+hyZ5+5euCqx1FcCnWV7XS50kgonotZleCtA1FfzvMhs+LUNyKMdAugJTVIB6DBhDPFfuDAcPagaz+LMyUjwMk9utCnEb8Wdz77fMPFgrq1NCaeoirzIKqkUpGxlwV1a4Nkf7rfk/WJVUzqLA55PQmJJEcaeZbpKHkd/h1iBMPCuBdBnU6HJEk0NTWRlZU1aLPLiYyqqvT09NDU1IQsy+j1+sgnRaJfl5hK2zJ2dm7uDX+6gIMkpBowmLXYrQ6iUZdoO3aoqHQmH/ecNHSIt1j09H451TedQd9S5w6GN9UGdXIPi5SEPvlmVFdd0H2+4cDzPruo8h84mfE5kioxq2mp33O+o0Ehozu6NmNmRzLfX/I9kRQzAox7EdRoNEyZMoXTp09z8uTJ0Z7OuMBsNlNQUBB9eNiz0utfZ9SvS4w7AzSwl6dvK6eBWNGEolvZiSI+Y0aVYKs8j5N7LOjMFyHLWpBj3+cbLAbFxKKaS5jbsAqTMynMSBmDK7r64pvP2xgf5RETgHEvguAubC8pKcHhGJmi2vGMRqNBq9VGv6IO1Q/00ofgrXvwCKCiyuy0bOodELz+DtSQXThixWH9AJfhBDBtSK4niB59/SlklzP6VR4QmDDlOTz8Ic9oWFx7WdRjJakbRTWG/DKXkGbgipVjvyfnWGFCiCC4P7xHrA2YwE24fqB/vBFwBzz3GQ2c6plLl5IZcIk+JIYqzqgoTlz2vUiagXf9EQyA3uJ2fWtjyH9JSbcYSTYjySZQbb0/JyJp8lBddahKJ6piRZJNSHLSsIc8o0Xy+f9IqKqxd6RCsNzEVRtKRr9TzARiwoigYOgJ28A6Yj9Q2GY2sSUjjQatlunN+YxU8MdlPwio7lWIo8fde1LsFQ8vvXt/hoaakFKhNV+B1jAj9DVGIdQZPbG8f1SMchcacwJdPvX6iWkGVm4ooXhh9pDPThAaIYKCAVG5vzHAeiUh1cCqa3r/iCP0A91mNnFbdqZXIlO6Ry4VXFXaAPfHlqHhFLbJxe4PaV8h7PdYViUUSWQYR02/DNlIGZ4aw+LwAjiukLEpSXxt0wIkWYrKBUUwfAgRFMRM5f5Gyp4I4o7eZqfsicOsu3UuxdrQ/UBdwJaMNLcAShKSKjG78fwhTXoJee+eCpSePpdsXUcb1FZizynwS8s3YyDRZaRRtoCEEMBIqKBDQ6lzCulOA7WNn1FDXeQMT8mE1rR2DAjg0Ne9WDt7mHHeCJtWCwIQIigInb0ZbKiisvPl8L0zP3ylgqJ/zA6ZwrLPaKBB637rSarE3LoLSOwZ3o4w4BZAR9fWgOO6jjYKXdkU5y7FKtkxY+SU1MRhbc2wz2lc0Pv9ILfZSkfnHqpsp1FRQ3y4GNCav4ok2UakjGEo8Hw5c5fphG/eHgsJyYYhu5Zg4AgRnOjE6OZeV9HmFwINRmernTrHfCaH6Af6ntkEQFHLOaw4+Y0REUBVVdxNk3tn41uHprV2cm7GWkxKEpIk4UTh74Z97hNFdCoiCaqB1OZW2lqCNB3ohy7hEjT6qcM/qSGk22DhqhvOp3hhDnUVbXS22fnwlQo/L8tYSUxzhz8Fo48QwYnMANzcuyzhBdBDZ7sD5ZKHqXvxYbqUNBLks+Tpj6BKCm8kJlDUcg6XHPvOEL2QyLibJXfiSEoNCH1qnC4aFBtFirsB8hHNaT/XcEFwCl2ZlPRkUdO4mzPWYxFGG9ElfGXUSxli5WjmHtZvWkxJkTtsOXlmGrVHWwclgAArRQZo3CBEcKIyADd3iD6E8/4fvmSnnIrd+pO+c+Vm8jKeo02u4atR+q4NFo8tjtP2KY6kVHcSTD9cGpl3NYdY65hHkZJNhyTcAMPSu/+33FbMm6d+g0KQNnpyFpJ2KrIsI2ny0eimxH3YMxhrv7KYrxT55y1H+0Vw3prJnNjX7Bc5ERmg8YcQwYlKFG7uSnsddTs/pMs805u9lleSSkKqIWJI1GFToN+HY5eSzvGm21hoeHPk9gB7feNUwJ5zjvuJ/uUQkgQq7NIdo9CeRZJqGva5jRn654P0fme6oGc2+5vfCSqAGtNl6IyzR2R6w4khQcv6VYFmstF+ESyen83Kb84IXUYkiAuECE5UIri5V9qWsdOyia4/uAD3Xo+nBGLVNSVBs0MjIwMKi05fMoBzY8OTBCMhkWnMRzEn06kL0+tUgi7sfKz9Eit20QS7FyM6bPSF/hIwsNA2hdrGj6kNEgKV9eeOAQGM7h939cZZQQUrmi+Cnj0/WZaYPHP4v/AJBk5cimBFRQU33ngjzc3NpKam8uyzzwoj26EmMXQj39A9PG2UPXGYBRdPwZCgxd41kEw5Ge0wOnipqoLiqMHR9TaTzTNYlLEWszaZT7THgMjZnl9qw62OJxCqW/C+ZV9Oo9SGVbLT0nmSzvYqPrd9HMQOSEJjOBed+YJRmW70qD7/DS6EkUKWsixF/CIo9vzGDnEpgrfeeiubN2/mpptu4tVXX2XTpk188sknoz2t8UVXC0gyqP7hrPA9PN2d8A9sqwnx/OjiG/6cbJ7BiuyrAFBQqdTUj+7kxhK9OrHMMQMtMikOLSda3g+68pO0hcjaqWgM890NrOMco0li1oopVHzW5LeSMyXqKFmaw7RzsqIKWRYvzGbdrXMDGkaIPb+xh6TGmdFeY2MjM2bMoLm5Ga1Wi6qq5OXlsWvXLqZOnRr2XIvFQkpKCu3t7SQnJ4/MhMciobJCgVr7HP7S+p8jP6cB4nGEdyqnULp2o7F2ICNxRf53MWncJQ9n5Fbe1O8b7amOGfROSGtpI9Ouo9vVSXNv3Z8fkgmd+eK4zPY0JuhQVdWvps+QoOWcNVNYfFkRsiyFb/kXA0N1HcHQEosWxN1Xt5qaGiZNmoTWU0wtSRQUFHDq1KkAEbTb7djtfd/CLBbLSE51bBI2KxS6lLGzf2E3NNOZfBxF0+sCnzkTydFD9lkrZm3fG7+b6LL5JhQqaJBZ5ZiFCXeiRzd2tC7YffJ3WFE5FfJkE/rkW+Ju5XfO2inelRwQVpyGaq9O7PmNfeLrXdxLf5ueUIvVhx56iAceeGAkpjR+iJAVmiC3juBkosdT6uAxTHUkGuhI/TJwnFZHQ3YKVY5GipRsFFSsUs8ozDiO6f1zusgxhyLFHbbz/I191PgXQn1B8qBLuHgYBTD4Xp3epKGn2xX0jFAhSCFOgmiIOxHMz8/n9OnTOJ1Obzi0pqaGgoKCgLH33HMPt912m/exxWIhPz+eO83HARGyQvP0R0iQm+lSMoiXPT/fvT5wf0x25c4HdEG2LSVQVXbpjqE6VHbrKuiSxErQlwTVwHmOIorUPtGwujrYf3Yn9a5EdInfQlW6cXbv8P7OgRHx7jMYVOz2vn/UhFQ9q66ZQdH8LO/KzpyoR5Wgu6NHhCAFgybuRDA7O5uFCxfywgsvcNNNN/GnP/2JqVOnBt0PNBgMGAyi/15MhMkKBZAlhZVJz/BW+52EzqAbufqBYP0+XeYkVJ0u9EmSRBd2tusGUsYxDvEUtztmonOp1DTuZp/1Y04ZCzDpS+iRUmhxyci6i9Hp+zJ3Nfrpfqtv3z6fnj3CoWt2oJKYqHLdljU0VLYHDWOKlZ1gOIg7EQR44oknuOmmm3jwwQdJTk7mueeeG+0pjR8Kl7t7g4YJiZpkC+FFbmQE0Lffp99xbRgB7M9EXyD0Rjant+upaX3PneQiGdAYl2ExLqWjV9Q0QapWJElGo8sPcPcYHrcPiZXXzUOrlYXYCUaUuBTBmTNnipKIIAw6E83jFpE7L6wIdroyhmC2g8fT77M/Ln2Uq/+JLoCAAR1FbRpO1+9E1i9Em7gsCucGldqkSuqTKnFJTkobl5Po6BMmu9aK0ZkQ8d6F8zJorumM2F1IlBUIRpO4FMGJRjTiFtHENhLB3CJCcLpnXsyvIVb6J7oE/WBWuwLPAxypWYEmuAI/NKrMHMckeurKqbUe83NtDyx070OS4JJ/nMfJTJUte16hwdrA/vx3yLMUk6XmsWDqPBZkzufo72wR57Dw4gLySlK9721Tkh5Jdffe7O5wYErSk5gq9vQEo4sQwVEmmLgZzFrOWdtX0xSVie3C7NBiGqQu0IXb169JoyHL5WKRzY4Gd7eYL21rh/U19090AUBKRGde7Z90IQWuNlzmJAjX/myCcp6jGAcuQCXDaaaq/n1O2j5FlRLQJaxHoy/Bpu3idMqXFLcsItS+7iX/OIfp52YznYtZnb+afY37aLI2kWXOYlH2IjSyBkVROb31Y9E2TDAuECI4ioQSN7vVyadbT/L59tNcdO0sPvxjZBNbVVH58I/HA1eK3yqm+P2+ukBFlXlDXsBrpsnUGawAmJ1JGAytfMf+GWcaNwW7RVREs1cUytgWtbP3+HqvEMraySAl+ollTPuBE4hMNZlJLrfYvCbtZNv0L3BK0/nq7G+yZvI51KmnsGXZuCDxIlJr8/noj5URO51oZA3n5Z4XcC/RNkwwnoi7jjGDYSx1jFEUlefvDf9teqhYl/owxcZdVNqWsa3jH3GG2PPr1nRgciUN+D4G21lcsh6nLiFoqFJVFezt/xd0n8+LlIQhZZM3NOqwfoDL/pn3aac5ie7CmQOe43hldc8cUjHzq9QPSZm1mK+XrmLZtCw0IYRoKDqdBItiiP09QTwwpjvGTBSicWiPjdDlDB9avoOqSrzVfmfY4gajK3FAd7Zpuig8tZ3ZFW9ROe1KavK/EnRcqEQX/+l2oDhq0OgLcfVU+AkggMbageToca8IxZ6gl+cyy/jQOp2esyv5RcECVkwPL0JDEaYsXpjtV78navYEYxEhgjEyVL0CozXmjJ5Qc5DoVLJ433Jr76PQcx1o2rvBZaZh0hXoXYaQAggETXQJhqPrDVT1K+5ibdzy7jInoWp1SE4H+oZT2IOY445rQnx7UQErEu81fg0Vt/lxdpJxxKYl9vwEYx0hgjEw6AxNH6I15oxMdIXrNjVliO4XiFs8VWryex24Q63QgiS6BMeO0/oGAI6kVOw5Bai+yTBOJ5LdhmqcYOa3/f6pPRsZux3TUNEgAbkpRpYUpY/G7ASCMcnwGbuNMzxJLP1DmJ4Mzcr9jTFdL684iQRtK/3d12NjMOeGJ1wafVAkyW3NFCZE6U10iXQpJLKM+aRmzsU2uTgwGUarnTgCqLrbnK1xzCUB/y9OXeh5z1HMKSXdq433rS8NuQ8oEAgCESIYBYqisvPlyBmaihK9cMg1n7Aq8UnoXUWFIzHNwKW3zCEhwb+BcKLcwqUpPyVBbia0ICoYpbao5+Whf2jULnfHfI2Aa0oyOvPqsGMmm2dwRf53uSjvH2jMTAKkibv35+PrN03J4Rr7CtbrljKveAV7dPP4k/0cTinuVV9uipHfbFzEurl5ozhhgWDsIcKhURBNEktnq526irbo90c6Gyg27mJd6n/zXvs/YVeDZTApgOTNtpuWaqDu/+6mS0kjQW4lT38EWVKQJLXXCV7B/3uN+/wLk5/kw47v0KWkE8v3nr2Ty2g1N2DVWUCVuPLIP0dV5B5sDJKEQ9+OYkwBwyWorR8gqf4F175GuGfkVuySI+q5jik833l8tF2jSoCES+r7MpOAgWWOGZQumINpRjpykp78ohTOlSWuUlT2VJ2lscNGdpI7BCpWgAJB7AgRjIJok1hiSnbpbWRdbNxFkWEPezuv5qB1PXa1r0QhUW5h5ZW53v1GuWgFk7NawVKO7+rRI6Y7LZvoUjL9z09+hmLjLh+hjJ7alArOpBwHQFIlupT9aCyfBi9y100HVJw9FTi7t4Pat3J0JOVizy1A1fZ9wEsZ8zHUH0XX0eZ+jMSiDHeRviRJ1MWppdOg6f1nW+OYixE93dgxYSBXSQWgXm7zOyYjYZqRjnmB/56zRpY4vzg+2tsJBGMZIYJREG0SS0zJLt5G1nXIksJ5SX/k3MQ/Udczu3el10ZeZhvyJZ/3nSNrYN3Dvd1f/MOoxcbdFBj28AHzaVHTyZDOcgEH0fWuLIqNu7g05ae83X67N4swFCoqnfo26pIrvcfyG4zI7YHNrL1F7uYrSGj9hDZDi9/TjqRUbJMn4+5R49OEWePCNrkYTlei62wj0zjFzwg31i3JsYIBHSsds7w+fv2ZFMTUWE4SHXIEguFCiGAU5JWkkpBqiKpNVNQEETRZUphs+AKvWFz2vHucL6VXwobnA/qAbsucxJaUBBqUFsAtRDnOXO5uaeViq3tVNt30CfCzXpskCJZV6kmI+Xjqa6hSr12OCkvL0wmXierqeIM2vQqq5B2iAvacXh/I/vt6vRpuz81HW9GKSeOfMJOnpnGAk0HvNebodXH/iuMcJinpyDGUomhSDBiKhi+zVyCY6IjEmCjwtIkKx4DaRHkELblfMkPyJPfx0itDn/ejw3DjG3D102z76k+4LUlLg+K/x9ao0XBbdibbzH2ZlNNNn7DuKi0JicGXWp36Nt6e8QxVGX0r0JyzBhJs2rB1hIqG3gzRvmNu3z99mJIJCVVnwJWQjNXVyRm5lUq5njNyKzlKKlp1HLw9fVzcpygZMQkgQOr6aUhir08gGDbEStAXj9VQZ4N7z65wuXclVrwwm3W3zh36NlGlV8Ksr4a8b0hkDRStwqW42PKnS4OWNKiShKSqbMlII0lRaNFoyTKksuji88mQdnD057/D2qXQo09C19OBXdPOq8tOUJXh/6FrskeYSwii7fPpTEyhJiWLKu0+7zGjqiNNSaRJYxnQveOFSOHPUGhSDKSun4ZpbmbkwQKBYMCI3qEeglkNJU9yhyx9VmRD1TFmqPi0/lO+89Z3YjrnkqpkNr10NmBN4s4lhZ99Q2bPzL5VWG6LgXW7c2OeW9R9PtXeMGuoX+PIGdkPnt6/pkIli1LXFPKUtKhXf8lfLUKbpEdO0mMoShErQIFggIjeobESxGoIAEud+7hPaDLe2kQ1WZtiGi8pKlf97WzQ52TcQnjL3xU+KwZF6xbChnQ7XUYnZpsmeEg0hLdf1H0+x1EdYLCVn2eVHi6crEkxkLRishA+gWCEGQebLoNEcblXgEHTEXuPld3tHheHpBtja5E1u0YlsyP0wkoGUrrhiV8rLDnqzixVJTiR19v3s3/gIIy5rQQYGk6FPi9axoIuqKBTNfyDfWVA6NOKyh/oQQ3Th0fs/QkEo4MQweqPI7itq2CpdY+LQ6QYV1FpEUwcPCRb4fbX3EIoqTCtLsFzw/4T8H/cT9x0HW0YayuRnP0K38fR6s+jbBc4StEG+ZPaOSeZVbcsJO3a2WhT/MsdNCkGMjbOFnt/AsEoIcKhnQ1DO26EaeluiTzIh9Yo3ZIk3KHRm95ROJVuIsEW5VsliLjpOtrQdrTRk5ZNT25B1HMdK3g6uwRLfpEStGy6boF3lZcwNxN7VTtKR4/Y+xMI4gAhgr2dW4Zs3AiTZc6KafyRfInmJEjviBwGkIHMDph+JvaAQX/7I421A9nljPk6cYkKWmRWOGaRgNHb2SUYaV+b7idykixhLE4doYkKBIJICBH06dwSfF9Qcj9fuHykZxYVi7IXkWPOodHaGJXzgypLPPsVmdtfU4ImXSqSRHNWJt1GEyZbN5lNzaRYYnNsCGZ/JDl6kK0dMV0nLun9FV/omBOx7CHxgsmYz4ntS4pAIBhZhAiGaUXmlYh1WyLX7Y0SGlnD3Uvu5rYdtyEhRSWEn87U8PpSuHK3v/PE6SmT2bdoEd1ms/eYyWol4WwTKk1R5ae426QFGt6qWh2u5PSwiTRxQ5iSDHfoswSzksn9Zgf/nJ9BVnUXqq0vcUpO0JH6tWIhgALBGEDUCXoIWic42S2AoTq3xBHbqrexZc8WGqx9e5e55lwuK7qMN6ve9DueZ8zhZ491oW1u8x47PWUyH61Y4X7gK1K9bw9jbaW32XUoFKBrxgL3F4ZgQjcWBBAwqFrsUl/o1qjqmO7MpUDNIkdJQUaiae0U5q8tQiNLqIoq9vkEgjgiFi0QIuhLmI4xYwGX4mJf4z6arE1kmbNYlL0IjawJOD7rpJPTN/UV2CuSxBvrr6DbZAopXpKzh4Tjh0KuBh1JqdjyikAzdn5fobisZyESUoCbA0AbCpYLJrH88vBt9AQCweghiuUHSm8rsrGKRtZwXu55EY+37tlKc4KRlkT3Xp9sMPuFQAPw9Pg0J6ENsq8XKgQ65lDd4c5QXV4UVMwmHXPWTR+FyQkEguFAiOAEo2L3x7z1p+exT5/sPeZIjq7gPlgv0LBOEWMJHxf3UJmeMhL6bhf2qnaR4SkQjBOECI5TFMVF7ZEv6GxrJTE1jcmz51D56W5ef/TBgLEBhewhkBw9Ace8ThFjCbU3BcpH68LV+vVH6Qj8PQgEgrGJEMFxSMXuj9n+7JN0nm32HktIy8AVRMQgih6fqorObsPU3oZD7/+WidYpIm7oXfGtDuLsHm2ja2FyKxCMH4QIjjMqdn8cdLXX1Rq6s4ynx6dtcnFgBmdv3pSmuRYNkNnawZnURO8KUNGMrbdQqBWfbnICusmJWMuboTN0n1hhcisQjC/G1ieYICyK4mL7s08O6FxdRxvUVgYWuTt7MDTUoOtow6bTcCo/H1fWFBxGY9/J8Vz6oIIRHUsdJSG7u/j27jTNSKflhSMhLycaXQsE4wshguOI2iNf0Hm2OWjLsmg+trUdbeBy4TInAhIaawdan3MdyWnBs0DjRQD7F7n3hj5XhDK1NWnIuHqGX/Nq09xMMjbOpm1rJa72vvCxMLkVCMYnQgTHEZ1trSFblhkaToUtdnefl4+qM3iPOR090HueCthyC3svGCeiB6BClpLMFCWDo9ozWLF7nwrb2NqgIe9flyFrA/uimuZmYizNEAXwAsEEQIjgOKK50xqyZZltcjGE6PoSrtWZbXIxrrMNqLIG4ikJRoVcJZV1joVe+6KFriLq5baokl3SvzUjqAB6EI2uBYKJgRDBcYKiKHz6Rbn7QTDPP1XFnpNPoupy/9zlNhYMW+fX+9iRkTuMM4+R3hDnRvuFGPu9fWUkJilpYU+Xk/WkXVkswpoCgQAQIjhuqK6uxmLpCB2q7O36MmXpKhr27/aK4Fis85vnLAgQwJBIYJyXibk0Q4Q1BQJBAEIExwmdndFZxn/56S60lrPeIGHc1fmFcXBAhbnOfJa6ouvbmXRZIUkrpoQNewoEgomNEMExQrAOMLJPc+/EcL0/fXE6/DQm2m4xI0YwAfQWuM+hWIk+NGuYkiwEUCAQhEWI4BggWAeYxPRM1ty0mZKly7G8/TY9Dz6Eacl5IZ0gVBVkpz2gAbbG2gGOHnfSSzxlffoQS0szX0R7M4FAEIm4EsF7772XP//5z+j1egwGA1u2bGHNmjWjPa1RJVQHmM6zzbz+6INcvPZy9P/zK1BVFu3b5/YE7Fe87jHLMjTUBCy0nEmp7rFxJoBLHSWYVX3MLc18Ee3NBAJBJOIqVrRq1Sr27dvHwYMHeeqpp7j66qux2WyjPa1RI5oOMB++/QYeS8gpp2tZ8dFHmLq7/cZYVR2fd6UFlEd4SyPiqfWZCgmqgTmufIqVXCaFsDWKhGhvJhAIoiGOPv3gsssu8/48b948XC4Xzc3NTJkyZRRnNXp4OsCEw6aROZaTRmZnN+ldNqacrmVS7RmaszLpNpow2bp5pOQbHM6cxnxNAomuLreDAnFggRSiw0s4OyNwn2OcnY6t/GzIIaK9mUAgiIa4EkFffvvb31JcXBxWAO12O3Z7X4cQi8UyElMbMTrbWqMaV5mbTiVg7HFSeqaZ3PYushubvM9nFHSyQNLhyP4qSd2f0aq0oWi0o14a4RFjD9Hs/SVfNpXEFZORtTLdh5tFezOBQDAoRlQEV61axZEjwZsT79+/n/z8fADeffddHnjgAd55552w13vooYd44IEHhnye8UJb3ZmYxtt0GvYV5rCouoHc9i4AtHkLuT3vfNrkNnal1FKXmg5EZ6I7XExxpXOOayrZSgqNcnvUdkaJF0wm+cJ872PR3kwgEAwWSfVsKMUJ77//Ptdffz1bt25l/vz5YccGWwnm5+fT3t5OcnLycE91WAmVEBMRVcXocLL6yCk0eQsxL/kuVXIj2/WH3c/HgT5c3rMoYmcXPyRIXDWZ1MunDd+kBALBuMFisZCSkhKVFsRVOPSDDz7g+uuv569//WtEAQQwGAwYDIaI48Yag7FEQpKw6XWcTTRTcM41KKjs1lf0Phf9ZTxfjaQYzwt/UXfIM1dJ9T+ulci4YQ5KlwNXZw+SSYvjtLuUQ5thIvH8SaLeTyAQDAtxJYKbNm3Cbrdz8803e4/97ne/Y968eaM4q5FnsJZIANqpC5BN6ZyRW+mS7JFP8KVXADuceSRr64InsESaSAxJL2nfnIFpRr+V4eI46lcqEAjGLXElghUVFaM9hbhgMJZIKuA0J1G3dDX1NZWoUuzRbgk41zGHnUoKa9VMdumO0UU/IY0gjNEmvRhL00lYEFsRvEAgEAwVcSWCAjeDskTKLQStjoP1x2GAbUFVCXIw8ANMoJgotGf5WRTZ6GG3rsJPGM3omeWYTIpqxoQhqqSXxFWTSf2q2OcTCASjhxDBOCNaSyRtR5ufpITyBAT6lmQx7O11+whcMIuiqfbsiN59QZNfdDLmeZmkfqNE7PMJBIJRR4hgnBGtJdL0tZfTsH+Pd+8wbOG7JzYZzV5eLybCJxxF493nS9LqfAzTU0UJg0AgiCuECMYZlo6OyIOAomUrufIfb6X2yBecOHGC9/YeCH9CtLoTKoNzkOhyzMKpXSAQxB0iHhVnnO6ILpHldIeKLGvIn3MO6VNDhEGDsMAxlTnO/L6VoS/Rti0bAKKZtUAgiEfESjDOcJjT6VJ1mHEEjWyqKnShx2Hu6/pS3hS9ZdAkNZ1JrjRyldSArM+BWhZFQjSzFggE8YoQwTgjJ9nMbkcBq3WV/R2RvAXsexz5XJ3sNtF1KSo/39XKyjDC6T7ZncHpCXMWKdkBWZ9RWRb1q33QpBgwzc+k84PakKeIZtYCgSBeESIYZywpSseRNIkdHbBEd4oE+pzfu9DzqSMfR9IklhS5V4J7KlvItTjplosw644FCCfgFa3zHTP9RC7W5BaA9H+YhZygC+jVaShIFs2sBQLBmEOIYJyhkSXuW1/KP71go8aeRrbcgQkH3ehoVJJQkfjN+lI0skT34WZy/nSMx0gAJYEqh4EPdEdw4PS7pgEtKx2zBxXmjCRoopm1QCAYi8RdA+3BEEvT1Hin7HAdD2wtp669z1Q4L8XIfetLWTc3j+7DzbS8cCSg6sGJQr3cyh/kJqpVhQVqOt9RcgaX6GKQmfTv54u6PoFAMCYYsw20BX2sm5vHV0pz2VN1lsYOG9lJRpYUpaORJRSnQuufjwOBlQ9aZCYp6dygpHENnfwHiYPP87Qr9FRbRImDQCAYdwgRjBMURaG6uprOzk4SExMpLCxEI8ucX5zhN677cDOtf65A6XKGuJJ7ry8Hia+jI3uIqmCUjugzUAUCgWCsIEQwDigvL6esrAyLxeI9lpyczLp16ygtLfUe84RAo2WGTo9PXs2gEHV+AoFgPCI2eUaZ8vJyXnnlFT8BBHdM+5VXXuG5Nz/kk8oWnE6Ftq2VMV37yqlD4yAv6vwEAsF4RawERxFFUSgrKwv5vKrCod0fcP8HbaxJMPNAV/S2EHKyHkdNZ1RjdVMScJzuCvm8qPMTCATjFbESHEXczbItIZ+XJEiUesiRO5C6YotrJi7JBZsrqrEpl00j/dpZyAn+34k0KQYyNs4WdX4CgWDcIlaCo0hnZ3QrNRMOWgIafQZHTtCR9vXpqE4lqvGSSeut5zPNzRR1fgKBYEIhRHAUSUxMjGpcNzqqcdGIQiZSyJo/OUFH7j1LkLUytsq2qK6dtGKSV+gkWRJlEAKBYEIhwqGjSGFhYdhCTlWFTlVPg5KEAvwcW//WnX6kfX26t6DdUJSCJiV8Rqds1pK0pmBgkxcIBIJxgBDBUUSWZdatWxf0Od9m2Wrvyu8DnPwr3bii2LuTZInU9eEtltK+USLCnQKBYEIj2qbFAcHqBDtVPXsc+ZxS+socJCA3xcjOO1fjrLZEtXfXfbhZNLYWCAQTCtE2bYxRWlrKrFmzqK6u5qMjp/nVh6dpVJJQfPb+PD/dt74UrVZGG+XenWhsLRAIBKERIhgnyLJMUVERRUVFZBYENs/O9WmeHSsi4UUgEAiCI0QwDgnXPFsgEAgEQ4cQwThFI0sBzbMFAoFAMLSI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTlnG1J+gpeQzXlFogEAgE4xuPBkRTBj+uRLCjowOA/Pz8UZ6JQCAQCEabjo4OUlLCe6GOq44xiqJw5swZkpKSkKSRKSewWCzk5+dTU1MzprrUxBvi9zh4xO9waBC/x8Ez2r9DVVXp6Ohg0qRJyHL4Xb9xtRKUZZkpU6aMyr2Tk5PFH8wQIH6Pg0f8DocG8XscPKP5O4y0AvQgEmMEAoFAMGERIigQCASCCYsQwUFiMBi47777MBgMoz2VMY34PQ4e8TscGsTvcfCMpd/huEqMEQgEAoEgFsRKUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiOAQs2PHDjQaDb/61a9GeypjknvvvZfZs2czf/58lixZwvbt20d7SmOGiooKli9fzowZM1iyZAnl5eWjPaUxhc1m46qrrmLGjBksWLCAdevWcfLkydGe1pjlgQceQJIkDh8+PNpTCYsQwSGko6ODu+66i8suu2y0pzJmWbVqFfv27ePgwYM89dRTXH311dhsttGe1pjg1ltvZfPmzRw7dox/+Zd/YdOmTaM9pTHH5s2bOXr0KAcOHOCKK65g8+bNoz2lMcm+ffvYtWsXBQUFoz2ViAgRHEJuu+027rzzTjIzM0d7KmOWyy67DJPJBMC8efNwuVw0NzeP8qzin8bGRvbt28fGjRsBuPrqq6mqqhIrmRgwGo1cfvnl3paLy5Yt48SJE6M8q7GH3W7n+9//Pv/7v/87Yu0rB4MQwSHi73//O21tbXzzm98c7amMG377299SXFw8aq3wxhI1NTVMmjQJrdbdCVGSJAoKCjh16tQoz2zs8stf/pL169eP9jTGHP/xH//Bxo0bKSoqGu2pRMW46h06nKxatYojR44EfW7//v3cfffdvPPOOyM8q7FHpN+jxwHk3Xff5YEHHhC/0xjo/61blAAPnAcffJCKigoef/zx0Z7KmOKTTz7h008/ZcuWLaM9lagRIhglO3fuDPnchx9+SF1dHUuWLAGgubmZrVu30tTUxAMPPDBSUxwThPs9enj//fe5+eab2bp1KzNnzhyBWY198vPzOX36NE6nE61Wi6qq1NTUjIk9mXjjkUce4bXXXmPbtm2YzebRns6Y4v333+fLL7/0rgJPnz7NpZdeyv/93//Fb66EKhhybrzxRvWxxx4b7WmMSd5//301Pz9f3bdv32hPZcxx4YUXqr/97W9VVVXVP/7xj+rSpUtHd0JjkJ/97GfqokWL1LNnz472VMYFhYWF6qFDh0Z7GmERK0FBXLFp0ybsdjs333yz99jvfvc75s2bN4qzGhs88cQT3HTTTTz44IMkJyfz3HPPjfaUxhSnT5/m9ttvZ9q0aaxevRpw98DcvXv3KM9MMJyI3qECgUAgmLCI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAWCMUhbWxsFBQV88skn3mO/+tWvWL16Naqq8vTTT1NSUkJxcTGbN2/G6XSO4mwFgvhF1AkKBGOUN998kx//+Mfs37+f2tpaVq1axa5du1BVlRUrVrB//36ys7P52te+xle/+lVuvfXW0Z6yQBB3CBEUCMYwmzZtwmg0sn//fm6++WZuueUWfvrTn3Ly5El+/etfA26x/O///m927NgxupMVCOIQ0TZNIBjD/M///A9Tp07l3HPP5ZZbbgHg1KlTFBYWesdMnTpVWCoJBCEQe4ICwRjm/fffx2w2c+LECTo7O73HfW2VRLBHIAiNEEGBYIzS0tLC9773PV577TXWrVvHnXfeCUBBQYGfo3x1dbWwVBIIQiD2BAWCMcq3v/1tpk2bxoMPPkhXVxfz58/niSeeoKioiJUrV/olxlx++eV897vfHe0pCwRxh9gTFAjGIK+++ipffPEFzz//PAAJCQk8/fTT3HzzzRw8eJAHHniAFStWoCgKa9asYdOmTaM8Y4EgPhErQYFAIBBMWMSeoEAgEAgmLEIEBQKBQDBhESIoEAgEggmLEEGBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAUCgUAwYREiKBAIBIIJy/8POapuTj8OK00AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { "text/plain": [ - "
" + "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(16000,)\n", + "[[-0.25317189]\n", + " [-0.25317189]\n", + " [-0.25317189]\n", + " ...\n", + " [-0.14649218]\n", + " [-0.14649218]\n", + " [-0.14649218]]\n" + ] } ], "source": [ - "\n", - "\n", - "\n", "########################### Experiment Settings ###############################\n", - "\n", - "\n", "random_state = 29\n", - "\n", "working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.\n", - "\n", "simulation_method = 'linear'\n", "n_features = 1 # The number of input features of X\n", - "n_grps = 2 # Number of batches in data\n", - "n_samples = 500 # Number of samples in each group (use a list for different\n", + "n_grps = 8 # Number of batches in data\n", + "n_samples = 2000 # Number of samples in each group (use a list for different\n", "# sample numbers across different batches)\n", - "\n", - "model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'\n", - "\n", - "\n", + "model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline'\n", "############################## Data Simulation ################################\n", - "\n", - "\n", "X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \\\n", " simulate_data(simulation_method, n_samples, n_features, n_grps,\n", " working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',\n", " random_state=random_state)\n", - "\n" + "plt.tight_layout()\n", + "plt.show()\n", + "print(Y_train.shape)\n", + "\n", + "random_group_offsets = np.random.normal(0, 1, n_grps)\n", + "print(random_group_offsets[grp_id_train])\n", + "Y_train += np.squeeze(np.array(random_group_offsets[grp_id_train]))\n", + "Y_test += np.squeeze(np.array(random_group_offsets[grp_id_test]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb',\n", + " random_intercept_mu='True', random_slope_mu='False', linear_sigma='True', linear_delta='True',linear_epsilon='True', nuts_sampler='nutpie')" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "

Sampler Progress

\n", + "

Total Chains: 1

\n", + "

Active Chains: 1

\n", + "

\n", + " Finished Chains:\n", + " 0\n", + "

\n", + "

Sampling for a minute

\n", + "

\n", + " Estimated Time to Completion:\n", + " 35 minutes\n", + "

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ProgressDrawsDivergencesStep SizeGradients/Draw
\n", + " \n", + " \n", + " 3700.018
\n", + "
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Graph is constructed here\n", + "nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 47, "metadata": {}, "outputs": [ { - "ename": "TypingError", - "evalue": "Failed in nopython mode pipeline (step: nopython frontend)\nFailed in nopython mode pipeline (step: nopython frontend)\nInvalid use of type(CPUDispatcher()) with parameters (readonly array(float64, 2d, C))\nKnown signatures:\n * (Array(float64, 2, 'A', False, aligned=True),) -> array(float64, 1d, A)\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /tmp/tmp01rwehf6 (7)\n\n\nFile \"../../../../../tmp/tmp01rwehf6\", line 7:\ndef numba_funcified_fgraph(_unconstrained_point, y, batch_effect_0_data, X):\n \n # Sum{axis=1}(X)\n tensor_variable_2 = careduce_axis(X)\n ^\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\n\nFile \"../../../anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py\", line 637:\n def extract_shared(x, user_data_):\n \n\n return inner(x, *_shared_tuple)\n ^\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypingError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 6\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m################################# Fittig and Predicting ###############################\u001b[39;00m\n\u001b[1;32m 3\u001b[0m nm \u001b[38;5;241m=\u001b[39m norm_init(X_train, Y_train, alg\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhbr\u001b[39m\u001b[38;5;124m'\u001b[39m, model_type\u001b[38;5;241m=\u001b[39mmodel_type, likelihood\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSHASHo\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 4\u001b[0m linear_sigma\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, random_intercept_mu\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, random_slope_mu\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTrue\u001b[39m\u001b[38;5;124m'\u001b[39m, linear_epsilon\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFalse\u001b[39m\u001b[38;5;124m'\u001b[39m, linear_delta\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFalse\u001b[39m\u001b[38;5;124m'\u001b[39m, nuts_sampler\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnutpie\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 6\u001b[0m \u001b[43mnm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mY_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrbefile\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mworking_dir\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrbefile.pkl\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m yhat, ys2 \u001b[38;5;241m=\u001b[39m nm\u001b[38;5;241m.\u001b[39mpredict(X_test, tsbefile\u001b[38;5;241m=\u001b[39mworking_dir\u001b[38;5;241m+\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtsbefile.pkl\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;66;03m################################# Plotting Quantiles ###############################\u001b[39;00m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pcntoolkit-0.30.post2-py3.11.egg/pcntoolkit/normative_model/norm_hbr.py:286\u001b[0m, in \u001b[0;36mNormHBR.estimate\u001b[0;34m(self, X, y, **kwargs)\u001b[0m\n\u001b[1;32m 279\u001b[0m batch_effects_train \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mzeros([X\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatch_effects_maps \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 282\u001b[0m {v: i \u001b[38;5;28;01mfor\u001b[39;00m i, v \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(np\u001b[38;5;241m.\u001b[39munique(batch_effects_train[:, j]))}\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(batch_effects_train\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 284\u001b[0m ]\n\u001b[0;32m--> 286\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhbr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_effects_train\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 288\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pcntoolkit-0.30.post2-py3.11.egg/pcntoolkit/model/hbr.py:444\u001b[0m, in \u001b[0;36mHBR.estimate\u001b[0;34m(self, X, y, batch_effects, **kwargs)\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39midata\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m modeler(X, y, batch_effects, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfigs) \u001b[38;5;28;01mas\u001b[39;00m m:\n\u001b[0;32m--> 444\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39midata \u001b[38;5;241m=\u001b[39m \u001b[43mpm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 445\u001b[0m \u001b[43m \u001b[49m\u001b[43mdraws\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_samples\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 446\u001b[0m \u001b[43m \u001b[49m\u001b[43mtune\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_tuning\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 447\u001b[0m \u001b[43m \u001b[49m\u001b[43mchains\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_chains\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 448\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43minit\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 449\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_init\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m500000\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[43m \u001b[49m\u001b[43mcores\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcores\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[43m \u001b[49m\u001b[43mnuts_sampler\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnuts_sampler\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[43m \u001b[49m\u001b[43mprogressbar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 453\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvars_to_sample \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124my_like\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 455\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfigs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mremove_datapoints_from_posterior\u001b[39m\u001b[38;5;124m'\u001b[39m]:\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pymc/sampling/mcmc.py:725\u001b[0m, in \u001b[0;36msample\u001b[0;34m(draws, tune, chains, cores, random_seed, progressbar, progressbar_theme, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback, mp_ctx, blas_cores, model, **kwargs)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 721\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel can not be sampled with NUTS alone. Your model is probably not continuous.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 722\u001b[0m )\n\u001b[1;32m 724\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m joined_blas_limiter():\n\u001b[0;32m--> 725\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_sample_external_nuts\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 726\u001b[0m \u001b[43m \u001b[49m\u001b[43msampler\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnuts_sampler\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 727\u001b[0m \u001b[43m \u001b[49m\u001b[43mdraws\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdraws\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 728\u001b[0m \u001b[43m \u001b[49m\u001b[43mtune\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtune\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 729\u001b[0m \u001b[43m \u001b[49m\u001b[43mchains\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchains\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 730\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_accept\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnuts\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtarget_accept\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0.8\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 731\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_seed\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrandom_seed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 732\u001b[0m \u001b[43m \u001b[49m\u001b[43minitvals\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitvals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 733\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 734\u001b[0m \u001b[43m \u001b[49m\u001b[43mvar_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvar_names\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 735\u001b[0m \u001b[43m \u001b[49m\u001b[43mprogressbar\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprogressbar\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 736\u001b[0m \u001b[43m \u001b[49m\u001b[43midata_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43midata_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 737\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_convergence_checks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcompute_convergence_checks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 738\u001b[0m \u001b[43m \u001b[49m\u001b[43mnuts_sampler_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnuts_sampler_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 739\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 740\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 742\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(step, \u001b[38;5;28mlist\u001b[39m):\n\u001b[1;32m 743\u001b[0m step \u001b[38;5;241m=\u001b[39m CompoundStep(step)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/pymc/sampling/mcmc.py:307\u001b[0m, in \u001b[0;36m_sample_external_nuts\u001b[0;34m(sampler, draws, tune, chains, target_accept, random_seed, initvals, model, var_names, progressbar, idata_kwargs, compute_convergence_checks, nuts_sampler_kwargs, **kwargs)\u001b[0m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m var_names \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 303\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 304\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`var_names` are currently ignored by the nutpie sampler\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 305\u001b[0m \u001b[38;5;167;01mUserWarning\u001b[39;00m,\n\u001b[1;32m 306\u001b[0m )\n\u001b[0;32m--> 307\u001b[0m compiled_model \u001b[38;5;241m=\u001b[39m \u001b[43mnutpie\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_pymc_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 308\u001b[0m t_start \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 309\u001b[0m idata \u001b[38;5;241m=\u001b[39m nutpie\u001b[38;5;241m.\u001b[39msample(\n\u001b[1;32m 310\u001b[0m compiled_model,\n\u001b[1;32m 311\u001b[0m draws\u001b[38;5;241m=\u001b[39mdraws,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mnuts_sampler_kwargs,\n\u001b[1;32m 318\u001b[0m )\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py:391\u001b[0m, in \u001b[0;36mcompile_pymc_model\u001b[0;34m(model, backend, gradient_backend, **kwargs)\u001b[0m\n\u001b[1;32m 388\u001b[0m backend \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumba\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 390\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m backend\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnumba\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 391\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_compile_pymc_model_numba\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 392\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m backend\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mjax\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 393\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _compile_pymc_model_jax(\n\u001b[1;32m 394\u001b[0m model, gradient_backend\u001b[38;5;241m=\u001b[39mgradient_backend, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 395\u001b[0m )\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py:207\u001b[0m, in \u001b[0;36m_compile_pymc_model_numba\u001b[0;34m(model, **kwargs)\u001b[0m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings():\n\u001b[1;32m 201\u001b[0m warnings\u001b[38;5;241m.\u001b[39mfilterwarnings(\n\u001b[1;32m 202\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 203\u001b[0m message\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot cache compiled function .* as it uses dynamic globals\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 204\u001b[0m category\u001b[38;5;241m=\u001b[39mnumba\u001b[38;5;241m.\u001b[39mNumbaWarning,\n\u001b[1;32m 205\u001b[0m )\n\u001b[0;32m--> 207\u001b[0m logp_numba \u001b[38;5;241m=\u001b[39m \u001b[43mnumba\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mc_sig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlogp_numba_raw\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 209\u001b[0m expand_shared_names \u001b[38;5;241m=\u001b[39m [var\u001b[38;5;241m.\u001b[39mname \u001b[38;5;28;01mfor\u001b[39;00m var \u001b[38;5;129;01min\u001b[39;00m expand_fn_pt\u001b[38;5;241m.\u001b[39mget_shared()]\n\u001b[1;32m 210\u001b[0m expand_numba_raw, c_sig_expand \u001b[38;5;241m=\u001b[39m _make_c_expand_func(\n\u001b[1;32m 211\u001b[0m n_dim, n_expanded, expand_fn, user_data, expand_shared_names, shared_data\n\u001b[1;32m 212\u001b[0m )\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/decorators.py:275\u001b[0m, in \u001b[0;36mcfunc..wrapper\u001b[0;34m(func)\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cache:\n\u001b[1;32m 274\u001b[0m res\u001b[38;5;241m.\u001b[39menable_caching()\n\u001b[0;32m--> 275\u001b[0m \u001b[43mres\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_lock.py:35\u001b[0m, in \u001b[0;36m_CompilerLock.__call__.._acquire_compile_lock\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_acquire_compile_lock\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 35\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/ccallback.py:68\u001b[0m, in \u001b[0;36mCFunc.compile\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 65\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cache\u001b[38;5;241m.\u001b[39mload_overload(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig,\n\u001b[1;32m 66\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_targetdescr\u001b[38;5;241m.\u001b[39mtarget_context)\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cres \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 68\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_uncached\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cache\u001b[38;5;241m.\u001b[39msave_overload(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig, cres)\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/ccallback.py:82\u001b[0m, in \u001b[0;36mCFunc._compile_uncached\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 79\u001b[0m sig \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sig\n\u001b[1;32m 81\u001b[0m \u001b[38;5;66;03m# Compile native function as well as cfunc wrapper\u001b[39;00m\n\u001b[0;32m---> 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile\u001b[49m\u001b[43m(\u001b[49m\u001b[43msig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:84\u001b[0m, in \u001b[0;36m_FunctionCompiler.compile\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m retval\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 84\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m retval\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:94\u001b[0m, in \u001b[0;36m_FunctionCompiler._compile_cached\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 94\u001b[0m retval \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_core\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m errors\u001b[38;5;241m.\u001b[39mTypingError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_failed_cache[key] \u001b[38;5;241m=\u001b[39m e\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/dispatcher.py:107\u001b[0m, in \u001b[0;36m_FunctionCompiler._compile_core\u001b[0;34m(self, args, return_type)\u001b[0m\n\u001b[1;32m 104\u001b[0m flags \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_customize_flags(flags)\n\u001b[1;32m 106\u001b[0m impl \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_implementation(args, {})\n\u001b[0;32m--> 107\u001b[0m cres \u001b[38;5;241m=\u001b[39m \u001b[43mcompiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_extra\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetdescr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtyping_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 108\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetdescr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtarget_context\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[43m \u001b[49m\u001b[43mimpl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 110\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 111\u001b[0m \u001b[43m \u001b[49m\u001b[43mflags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mflags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mlocals\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 112\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipeline_class\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpipeline_class\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;66;03m# Check typing error if object mode is used\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cres\u001b[38;5;241m.\u001b[39mtyping_error \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m flags\u001b[38;5;241m.\u001b[39menable_pyobject:\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:744\u001b[0m, in \u001b[0;36mcompile_extra\u001b[0;34m(typingctx, targetctx, func, args, return_type, flags, locals, library, pipeline_class)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Compiler entry point\u001b[39;00m\n\u001b[1;32m 721\u001b[0m \n\u001b[1;32m 722\u001b[0m \u001b[38;5;124;03mParameter\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 740\u001b[0m \u001b[38;5;124;03m compiler pipeline\u001b[39;00m\n\u001b[1;32m 741\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 742\u001b[0m pipeline \u001b[38;5;241m=\u001b[39m pipeline_class(typingctx, targetctx, library,\n\u001b[1;32m 743\u001b[0m args, return_type, flags, \u001b[38;5;28mlocals\u001b[39m)\n\u001b[0;32m--> 744\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompile_extra\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:438\u001b[0m, in \u001b[0;36mCompilerBase.compile_extra\u001b[0;34m(self, func)\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mlifted \u001b[38;5;241m=\u001b[39m ()\n\u001b[1;32m 437\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mlifted_from \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 438\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_bytecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:506\u001b[0m, in \u001b[0;36mCompilerBase._compile_bytecode\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 503\u001b[0m \u001b[38;5;124;03mPopulate and run pipeline for bytecode input\u001b[39;00m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 505\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfunc_ir \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 506\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_compile_core\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:485\u001b[0m, in \u001b[0;36mCompilerBase._compile_core\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 483\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstatus\u001b[38;5;241m.\u001b[39mfail_reason \u001b[38;5;241m=\u001b[39m e\n\u001b[1;32m 484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_final_pipeline:\n\u001b[0;32m--> 485\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 486\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CompilerError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAll available pipelines exhausted\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler.py:472\u001b[0m, in \u001b[0;36mCompilerBase._compile_core\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 470\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 472\u001b[0m \u001b[43mpm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 473\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mcr \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:368\u001b[0m, in \u001b[0;36mPassManager.run\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 365\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed in \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m mode pipeline (step: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m \\\n\u001b[1;32m 366\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline_name, pass_desc)\n\u001b[1;32m 367\u001b[0m patched_exception \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_patch_error(msg, e)\n\u001b[0;32m--> 368\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m patched_exception\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:356\u001b[0m, in \u001b[0;36mPassManager.run\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 354\u001b[0m pass_inst \u001b[38;5;241m=\u001b[39m _pass_registry\u001b[38;5;241m.\u001b[39mget(pss)\u001b[38;5;241m.\u001b[39mpass_inst\n\u001b[1;32m 355\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(pass_inst, CompilerPass):\n\u001b[0;32m--> 356\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_runPass\u001b[49m\u001b[43m(\u001b[49m\u001b[43midx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpass_inst\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 357\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLegacy pass in use\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_lock.py:35\u001b[0m, in \u001b[0;36m_CompilerLock.__call__.._acquire_compile_lock\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_acquire_compile_lock\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m:\n\u001b[0;32m---> 35\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:311\u001b[0m, in \u001b[0;36mPassManager._runPass\u001b[0;34m(self, index, pss, internal_state)\u001b[0m\n\u001b[1;32m 309\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m check(pss\u001b[38;5;241m.\u001b[39mrun_initialization, internal_state)\n\u001b[1;32m 310\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m SimpleTimer() \u001b[38;5;28;01mas\u001b[39;00m pass_time:\n\u001b[0;32m--> 311\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[43mcheck\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_pass\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minternal_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m SimpleTimer() \u001b[38;5;28;01mas\u001b[39;00m finalize_time:\n\u001b[1;32m 313\u001b[0m mutated \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m check(pss\u001b[38;5;241m.\u001b[39mrun_finalizer, internal_state)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/compiler_machinery.py:273\u001b[0m, in \u001b[0;36mPassManager._runPass..check\u001b[0;34m(func, compiler_state)\u001b[0m\n\u001b[1;32m 272\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcheck\u001b[39m(func, compiler_state):\n\u001b[0;32m--> 273\u001b[0m mangled \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcompiler_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mangled \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[1;32m 275\u001b[0m msg \u001b[38;5;241m=\u001b[39m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCompilerPass implementations should return True/False. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCompilerPass with name \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m did not.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typed_passes.py:112\u001b[0m, in \u001b[0;36mBaseTypeInference.run_pass\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 107\u001b[0m \u001b[38;5;124;03mType inference and legalization\u001b[39;00m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m fallback_context(state, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFunction \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m failed type inference\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;241m%\u001b[39m (state\u001b[38;5;241m.\u001b[39mfunc_id\u001b[38;5;241m.\u001b[39mfunc_name,)):\n\u001b[1;32m 111\u001b[0m \u001b[38;5;66;03m# Type inference\u001b[39;00m\n\u001b[0;32m--> 112\u001b[0m typemap, return_type, calltypes, errs \u001b[38;5;241m=\u001b[39m \u001b[43mtype_inference_stage\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtypingctx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 114\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtargetctx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 115\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_ir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 119\u001b[0m \u001b[43m \u001b[49m\u001b[43mraise_errors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raise_errors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 120\u001b[0m state\u001b[38;5;241m.\u001b[39mtypemap \u001b[38;5;241m=\u001b[39m typemap\n\u001b[1;32m 121\u001b[0m \u001b[38;5;66;03m# save errors in case of partial typing\u001b[39;00m\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typed_passes.py:93\u001b[0m, in \u001b[0;36mtype_inference_stage\u001b[0;34m(typingctx, targetctx, interp, args, return_type, locals, raise_errors)\u001b[0m\n\u001b[1;32m 91\u001b[0m infer\u001b[38;5;241m.\u001b[39mbuild_constraint()\n\u001b[1;32m 92\u001b[0m \u001b[38;5;66;03m# return errors in case of partial typing\u001b[39;00m\n\u001b[0;32m---> 93\u001b[0m errs \u001b[38;5;241m=\u001b[39m \u001b[43minfer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpropagate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mraise_errors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mraise_errors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 94\u001b[0m typemap, restype, calltypes \u001b[38;5;241m=\u001b[39m infer\u001b[38;5;241m.\u001b[39munify(raise_errors\u001b[38;5;241m=\u001b[39mraise_errors)\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _TypingResults(typemap, restype, calltypes, errs)\n", - "File \u001b[0;32m~/anaconda3/envs/dev_215/lib/python3.11/site-packages/numba-0.60.0-py3.11-linux-x86_64.egg/numba/core/typeinfer.py:1091\u001b[0m, in \u001b[0;36mTypeInferer.propagate\u001b[0;34m(self, raise_errors)\u001b[0m\n\u001b[1;32m 1088\u001b[0m force_lit_args \u001b[38;5;241m=\u001b[39m [e \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m errors\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, ForceLiteralArg)]\n\u001b[1;32m 1090\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m force_lit_args:\n\u001b[0;32m-> 1091\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m errors[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 1092\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1093\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m reduce(operator\u001b[38;5;241m.\u001b[39mor_, force_lit_args)\n", - "\u001b[0;31mTypingError\u001b[0m: Failed in nopython mode pipeline (step: nopython frontend)\nFailed in nopython mode pipeline (step: nopython frontend)\nInvalid use of type(CPUDispatcher()) with parameters (readonly array(float64, 2d, C))\nKnown signatures:\n * (Array(float64, 2, 'A', False, aligned=True),) -> array(float64, 1d, A)\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /tmp/tmp01rwehf6 (7)\n\n\nFile \"../../../../../tmp/tmp01rwehf6\", line 7:\ndef numba_funcified_fgraph(_unconstrained_point, y, batch_effect_0_data, X):\n \n # Sum{axis=1}(X)\n tensor_variable_2 = careduce_axis(X)\n ^\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /home/guus/anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py (637)\n\n\nFile \"../../../anaconda3/envs/dev_215/lib/python3.11/site-packages/nutpie-0.13.2-py3.11-linux-x86_64.egg/nutpie/compile_pymc.py\", line 637:\n def extract_shared(x, user_data_):\n \n\n return inner(x, *_shared_tuple)\n ^\n" + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5367d8f840af4551bd83b9c02e9b05d6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ecd32eb3521a473cba91608f3f0d2398",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2d85af8e3b1a4c46b6be990b16991288",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "611ab6569ff040328353ffbd973f7e0e",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "60eee6c3c6ff4f6ea2a272f59cbc4eca",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "43eac13b81734f20bf91b8c9a700066b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d0fbb98d97764f1bbde9823805438275",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "58059d001e0e4555b975382dcbb7a98c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling: [y_like]\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1fa65f3f89f942658491d560d2569198",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEiCAYAAACPwherAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBxElEQVR4nOzdd3wc1bn4/8/MbF/1bluyJMtV7h2wDaabbopNQi+hJKEkJNwACZfwvTchjfxSySWFQAIEkwSSEMChmG7jgpvkKqv3Lq20fWfO74+VZAlJtmR16bz90svaaefMSppn58w551GEEAJJkiRJGqfUka6AJEmSJA0lGegkSZKkcU0GOkmSJGlck4FOkiRJGtdkoJMkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6KRx5Tvf+Q5r167t8/bf/e53Wb169SmvH6hbbrmFG264oeN1RkYGv//974esPEmaiGSgk4bV2rVrURSFZ555pstyt9tNZGQkiqJQVFQ0MpUbBXbu3Mn1118/rGUqitLt66GHHhqUY6empvLss88OyrFOxdGjR1m7di12u53MzMxuv3fSxGAa6QpIE09qaip//vOfue222zqWvfLKK8TExNDa2jqCNRt5iYmJI1Luyy+/zJo1azpeR0REjEg9emIYBoZhYDL173IVDAa55JJLWLRoETt37mT79u3cddddpKenc+655w5RbaXRSN7RScPuqquuYufOnZSUlHQs+9Of/tSlCa/z8unTp2O1Wpk/fz5vvvlml/V//etfSU9Px+l0ctNNN+Hz+bqs13WdRx99lNTUVCIjI1m7di379+/vd51//OMfk5SURGxsLI888gjtc6ELIXj44YeZMmUKNpuNadOm8fTTTwNQVFSEoii8/PLLLFq0CJvNxjnnnENpaWmv5XRuumzf/x//+AcrVqzA6XSydu3aLu8bwC9+8QumTZuGw+Fg+fLlvP/++/0+v9jYWFJSUjq+2gPd7t27O+6IMjIyeOyxxwiFQh37fe1rX+soe+7cuWzatKlj3dq1aykvL+fWW29FUZSOJuW1a9fyne9856Tn/de//pXly5djs9nIycnp98/yzTffpLS0lGeeeYZ58+Zx++2388UvfpFf/vKX/X5/pLFNBjpp2EVGRnL55Zfz/PPPA1BeXs62bdvYsGFDl+22bt3Kbbfdxn333cf+/fu58sorWb9+fUfTZn5+Ptdddx1f+tKX2L17NzNmzOgIMu0ef/xx3njjDf7yl7+wZ88eVq1axfnnn4/L5epzffft28e2bdt47733+N3vfsevfvUrnnvuOSAcaF988UVefvlljhw5wh/+8AeSk5O77P/tb3+bH/3oR2zfvp1QKMSNN97Yr/fru9/9Lj/84Q/ZsWMHHo+Hr3/96x3rnnnmGX7+85/z1FNPkZuby0033cTFF188KM2/9fX1nH/++Vx88cXk5OTw7LPP8uKLL/Lkk092bBMfH89LL71Ebm4u9957LzfeeCM5OTlA+C590qRJ/OxnP6OyspJXXnmlX+X/93//N9/73vc4ePAg06ZN6/fPcseOHSxfvpzIyMiOZeeeey7bt28/hXdDGtOEJA2js846S3z7298Wb775ppg9e7YQQogf/OAH4gtf+ILIy8sTgCgsLBRCCHHttdeKDRs2dNl/5cqV4pvf/KYQQoj/+q//EitXruy2/qyzzhJCCOH1eoXdbhc5OTldtpkxY4b485//LIQQ4rHHHhOrVq3qtb6PPfaYsNvtoqGhoWPZt7/9bbF06VIhhBA/+clPxLnnnisMw+i2b2FhoQDEb37zm45l7efYXqebb75ZXH/99R3r09PTxe9+97su+2/atKlj/Ysvviji4+M7XmdmZorXXnutS7nnn3+++J//+Z9ez+nzAGGz2YTT6ez4Ki8vF48//ri4+uqru2z7wgsviKysrF6PdeGFF4rHH3+84/WUKVPEH//4xy7btP8OdNbTeT/77LMd6/vys/y8O+64Q1x11VVdlr3++utC07Re6y+NT/IZnTQizj//fJqamti5cyd//vOf+fGPf9xtmyNHjnS7+zn99NM5cuRIx/oVK1Z0Wb9ixYqO5qz8/Hy8Xi+nnXZal228Xi8FBQV9ruv06dOJjY3tUsbPf/5zAK6++mqefPJJ5syZw0UXXcT69es566yzutXp88c6cuQI8+bN61P58+fP7/g+JSWF+vp6dF3H6/VSWFjItddei6IoHdv4/X5SU1P7fH4ATz/9NGeccUbH6+TkZHJycvjXv/7V5XmdrusEg0EMw0BVVZ577jl++ctfUlRUhM/nw+/3k5aW1q+ye7N48eKO70/lZylkqk2pjQx00ojQNI3rrruOb3zjG9TV1XHBBRdQWFjYZZuTXaiEEF0u8J/X3rHl/fffJyYmpsu6uLi4Ptf1RGVkZGSQl5fHm2++yX/+8x8uu+wybr755i7PgU60f1+YzeZuxxJC4Ha7AXjxxReZO3dul306N9f1xeTJk5k+fXqXZa2trXzhC1/gv//7v7ttr6oqH330EXfccQc//vGPOeuss4iIiODee+8lGAyesCxVVbv9bHvax+FwdKkL9O9nmZyczOHDh7ssq62tHbEOP9LIkYFOGjE333wzP/3pT/n617+Opmnd1s+ePZtPP/20y7Jt27Zx5plnAjBr1iw++uijLut37tyJ1WoFYM6cOVgsFiorK1m2bNkp1zMvL4+mpqaOC+zOnTuZNWtWx3qn08k111zDNddcw/nnn88tt9zSJdDt2LGj4+4kPz+fxsbGLvufqqSkJFJSUigpKeGKK64Y8PE+b+HChbzzzjvdAmC77du3k52dzf333w+Ee0fm5+d3eUZpNpvRdb3LfomJiVRVVXW8rq2t7fK6J6fys1yxYgVPPvkkra2tHXelW7ZsYeXKlX3aXxo/ZKCTRsyCBQuoq6vrtSv7fffdx5lnnsmvfvUrLrjgAp5//nn27NnDSy+9BMCdd97JT3/6U773ve+xYcMG/vrXv5Kbm8vSpUsBiIqK4p577uHLX/4ygUCAJUuWUFVVxWuvvcb111/f7S6oN5qm8aUvfYn/9//+H4cPH+YXv/gFP/vZzwB47rnnEEKwcuVKNE3jH//4R7cg9uSTT5KVlUViYiL3338/Z555Zp+bLU9EURQeeeQRHn30USIiIjjzzDNpbGzknXfeYcWKFZxzzjkDOv5Xv/pVnn76ae644w7uuecebDYb+/bt4+jRo3znO98hKyuLI0eO8O9//5sZM2bwi1/8olvASk9P58MPP+SSSy7BbrcTHR3NmWeeyXe+8x1uuOEGEhIS+M53vtPx4aQ3p/KzXLduHVOmTOG2227jscceY/v27fzlL3/p1nNXmgBG8gGhNPH01BGh3ec7owghxHPPPSeysrKE2WwW8+bNE2+88UaXff7yl7+ItLQ04XA4xHXXXSceeOCBjs4oQgih67r43ve+JzIyMoTZbBapqanihhtuEJWVlUKIvnVGWbVqlXjiiSdEfHy8iI6OFt/61rc6Op+8+uqrYvny5SIiIkJER0eLCy+8UBw+fFgIcbxTxV/+8hcxf/58YbFYxFlnnSWKioo6jt+Xzih5eXkd69977z0BiGAw2LHs6aefFrNnzxZms1mkpKSIK6+8slsd3nvvvV7PERBvv/12j+v2798vLrzwQuF0OkVkZKRYvny5eO6554QQQhiGIe69914RExMj4uLixLe+9S1x3XXXiZtvvrlLfWfNmiVMJlPHz8Xn84nbbrtNREdHi7S0NPGXv/zlpOctxMl/lj05fPiwOOuss4TVahXp6eni97//fa/bSuOXIoR8YitJQ6GoqIjMzEzy8vJ6bf4bah988AHr16+noKCgS4caSZpI5Dg6SRrH3nrrLR555BEZ5KQJTT6jk6Rx7Hvf+95IV0GSRpxsupQkSZLGNdl0KUmSJI1rMtBJkiRJ45oMdJIkSdK4NmY6oxiGQUVFRUdyTkmSJGliEkLQ0tLC5MmTUdWT36+NmUBXUVExaJPFSpIkSWNfaWlpnyYwHzOBrn2S2tLSUqKioka4NpIkSdJIcblcpKWl9Xny8jET6NqbK6OiomSgkyRJkvr8GEt2RpEkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6CRJkqRxTQY6SZIkaVwbM+PoJEkaWcIQBPw6fk+QgDeE3x3C7w0R8IUIBQxCAZ1QQCfY8X2n/4M6ekggDIGhCwzdwDA6vxZdXndQuvwHbeOmPj98StUUFFVBVRVUTUHV1M+9Dn+vaJ2WdXmtdixXNAWt7Rjt+yqqgtbt9Ym3Ubt832mZ2vNrRZVTGw4VGegkaQIL+nXcTX48rkCnLz/eTq997iB+Tzio0Uv2SkUFzayiWRRUs4JiEihmwGSAZiBMBkIN/49FYCgGotOXrugd3xsYnQ7c9r9oC3AoXRaDAgJUVBShoorw/4pQUYz275Xw/yEFgiqKoYSPZygoBoi27zEAQ0EYIHTAAMMQ4f91EJ0Ccm/vw0AoCt2CY8eA6M7/9RTsO9Yrx79XQIjwvJDCaP9fhJe1/W+yqNz6w9WDfzKjjAx0kjSO6SGD5hovzbUeXPU+Whp8tNQf//K5g122VzUFS4SK5hQIe4ig00cwyosfH37hx2/48Bt+/LoffzCIHgqi6wLNMGESZjTDgskwYwqYMfnMaIYZkx5epgmtIxgdD0ymcBBqf43a6/MU0REABQLRdkEPRxwdgVAEQtExMDAUHUMJYKg6uqJjKDq6YmCoOoYSXi/a/tc7fR/+MjBMeqfXx/fp2B+d9piiqCqaooCqoKKiqSqqqqIpKoqioikaqqJ2fGmKFl5G+HtrayRayAJmHRERDK8zNLq8GwodwT78snOwU9rfluPrjLblQiCUtiDX8c/o+E5VFUAGOkmSxoCAL0R9uZvGKjdNVR4aqz00Vrlx1fkQRvgKqJoUbDEqRIYIOj24I1poNVy4gx58QT+BQBBT0II9FImjKRJ7bQT2YCQqDqyA9fOFihBmw41FeDAJPyYRxCRCaOiYRBCNABoCDQVNCU/XpBC+EKuKAorStqztNWr4dedbFUH7TVv49iR8xT++juPrBAZCgCEEIDA6Lu5tdzaEL/gGIFAQioIhQCgKQpgxFDMGCgIFXVHRUck322hWTUQIwdSgQFFUQmgIxYQQGrpqxsCEgYZA6d6m2g/xJgWbAj4B9SHR4zIDQZnJwK0InEIhNaSitgU6gYHSw8eEE9XIUAJ9qptuCHYUNlDT4iMp0saKzDi0MdTUKgOdJI0xHleA2tIW6kpbqCttpba0heZab0dQsMdoKLFBPHEuXLFNNPub8fl8qH4rkd44IppjcASjsOAkjhTiAEV4sRpN2EMu7IYXm3BjUxTMmgmTZsakWTBp1rYvGybNilmzgRJHgChC6IQUAx294/sQOiEMgoTwEEBHR8cIByDFQBcGhiIwRPgOySCIoQiE6P6MLvxt2wVdgBFyIgwzqhJCNblRFYXwfWH4n4YaXiba7qLa/lfR0NrupDAUjgoNG1YSUEjBIKToqIrCTkPhj6g0orAQjXgUjiFYBaxBaysrXJ7S8b2CAewVQeqEzlShME0BRQhCRgAhDAxhIDCoCWkcCEYAMMmsMt+uYe8UOEKGjopAVY9foj0EeFWt4VB1NbH+Voqtkbwbm8r9FQfI9jYgLE5CUZM7PigIRKc7v/b/28Ni+AOFIUIn/X3bnFvJ468dpLLZ17FsUrSNxy7LZt28SX39tR1RiujyWzV6uVwuoqOjaW5ulpM6SxOGMAQNlW4qjzVRkddExbFm3E1+AExWFUuSgcfeTJPeQLO3Gd0HUb5EYnyJmAxL21FCmEN1ROl1OHUfTgQ2kxmLxYnVEonFFEkrTnwAagiLyY9PDeDGSysePMKLXwkSIERA0QkqBiFFEFINjD5+qFeFgirCd28KoIhwYFAEmILRJBkx2IUVnxKgXmlGmFtBCV+ahAAlGAnCjBKyovoTUYzj95fTrAY2aystWjN5ajkhtVMznUJbQx3hps2274uNWEzBLL5MJEmd7oI8IsQ2tYbHhZM1wsQD2IlXVAwEVWoTjcJLmeEjzlMJ/mYqVBetjgVEeBT8ATfbFB1nwjzuU+xdjuvGx+GWI9R7GgiZdfzaaSRqVjLNKpMt4e0638m2X5Z7mrTY8Lfi3/tnQpV70FHQ2m5tDUWhYkoa9XPOQIlMwWpoNOPudN7h90MXghJhp0Ux4RRBLvnStdS1+kmKtLEsPYay0hJaWlpwu90cawzw648rqDYiw3esnSjAb25YMiLBrr/xQAY6SRpFDN2gtrSVirymcHA71oTfHUJRFWzJAre9kcZQIx6PF6snkjhvCiYRDmiK0URUsJJovYVIwG5xYLPF4LDGYzFH0Kr4aFG8tOClCRfNuHEHHKiedNROgUNX/HjtFShtd0aaqRWz2YtVMWPDghUzWttztWDQhm5omFQDi+bHr1vQdQ1FDWLS3EQoNlSh0hqwUqsbKKofxVoHqkAPRJHkT2e+3drlbsZrCPZ7A5Sb8hF6FDpmhBoiRrESF4rGL6A+BNk2lSyr2tbs2fb+CUEFbvxCQQhBbaCQJqOcJHMKiZbJROLAr5txozKt7W6pp2DiNwzqtSY8ih+X4uWwqQKP4u9YbxYa80JpzA2k0xjyUBMMUBiMZLJZZbmz+3HDTaaCDwINaJqfGEsIO2b8SgibMOPERooR09EMeSLtl+zKI28TrNpHbFM+lXOW8Vn2NDzm45dzp7CyxJ+BRXegK1BrauAVRw45Rhqtnul8fnTZVLWB0y2l2OnenOkWZrYHp1JixHVZPinaxsffOuekzZi6IdieX0dBUREOJcTCaSlkZqT3KWlqT2Sgk6QxJBTUqSlyhe/W8pqoKnAR9OuoJgVzgo7b1Eyzz4XSaiXWl4SCiiCESW8kMlhHpDAwWSKJMEdgs0bjVRQCqo9WvDQKLx6lFY8aRFdM4ecxCqhBC7ZgDOZQJIrubKtJ5wuV4PNPdgxCuKOO4LfWMSWQRrQ/BT1kB9SOZ0h1IaOjqWySWWGeXcPRpTlOUB402OMNoeMl1exkhaPnoACwUy/mkL2UoHb8wusQVk4PziQtlIjW3gdDgSq1CQ8+vEqwW+AQbR0yqtQmvPixY+0WVAwElWojlUojTaqbKrUJn9Kpo073twQATajM0icTKexYhIaPIA6s3QJXvlrNJ+ZDBBS9198FmzCTpacw1UgAwEego67Qtf7JejR+QyfHB0pEMfstxT3/GIFzg/NJNxKpUptw46NIbWCrvgW9NpZakc2BhGmkak2cbc5v+1l0r1t7lHgvmNUt2P3ljtM4PSu+1/PanFvJb/7xITMDx3Cqx99Ti93J+ssuITs7u9d9eyMDnSQNAcMQVOY10drkw9sSxOY043MHsUdacEZZEAp4WwI4o6wkZ0VTnd+M2+XH7jBTXdJE9afVmEOCiClOklekkL+3jor8JtyN4Yu4ooESoeMXXoI+A2vAgYYJgY6CF1PIh1ko+E0xGIp2SufQ3rHBqir4DdHxf+fOD58nEAQtzThNQaaoFmarMVjVnh/t+3SDqkArkZpGnNkRPq8erppCCDyGgUMNdz5pDzIVSgOtqo8IYUMRCntNReEderh4LwllEiXslKuNFGk1BHsIIO2BwypM3e7IbMJMqh5HQAnhwkuT6jlxr41TYBcWzgjO4qhaQalWf8rHNwkVAejK8WEXNmFmeiiFAq0aj3qCDiUCrJjQ0Lqcv2aYcDbHseSzD1Fai3jr0nWYtBP3pREC3Fj4u39Bp2ZMg/su1pidComORJYkLUFTj/9+bs6t5IkX32GtOZ/OHUTb64YCGzdu7Hewk4FOGvXag4bb5ccRcTxIdP7eGWVl0oyYtu7Pp3ZMT7O/bRxYCFWBSTNiUFSF1nov+XtrcTcHsNo1psyOo7HCQyigM2l6NHPPSqW20NUR1Fx1Xo5sryLg7f3TeG8mmZVuHQ28hiDHq1MZ7Pqn11Ovu/7ovD+AFYE3VEu8SWW6IxGr2nuA9OlBPmvYSZmnEEWxolim4Uy0UOeoJ6Ac77BgERrpeiKTjbgudy2d74hQIMWIwcAgRyuhVfFhERqTRBx2YcFPkFbVh4JCCINytZ5Qp4v4SfVyd9WvfU7lGP3V+Uc4FGW1H78vx+7lfBXDRHpBJUXTE/tc7Gb/TKpENKbIXKzJr6GamzvWJTuSeWjFQ5yXfh66IVj9g3dZ69uBta01oad6OewRfPO/HuhXM6YMdFI3nYNA5wDS2/L+CAR0tv0tj6ZaLzGJdk6/ZgYWi9Zrucd21/DBC4f7FDRMVpW02bGYLBqg4Iy1EPCGaGn00VTlQQjR0R29pd6H6Me1crD1FKQmmRWWO8LvRY9Nc55wsOspGHr0IPtbK6gI6KimKSSYtS5BrON7YZCseciwRWL+XCD7fPCZZMQyyYjt8TmQgaBKaaQVL+VqI8Wm2j4FH02oRBl2mlUPhjImLiXjx2AE6/4Ey3aV5XwSHUNl9ubwrj30jP3p2p/iDC3m679/i3XWIyc95E033cy0aZl9rkJ/44EcXjDGGYag4kgjpUcbaK33ExFnI3V2LFNmxqKqCvl7avhoU15HTz0AZ4yVGcuTyNtZ02356g3TsTnMlOU1ogiYPOv4sdrLaw9e+7eUUV3o6ti/7FAjuR9WkJQRQdqcePa9W0oocOrRJ+Q3KNxXf8r7D4eeg1SA/a0NLLInA92b7xRFQRcGk5wuHPiJVSzUA34l2PFMxq6aWBk1lZDQqdGa8bWtSzKiqVabqFQasbUFr3gjiu2mo9Qq4Z/FJBGLlwCFWk2X4LOXIhDgNMx4lSCgYEbDLEx4VP8pBSpdMWjU3P3eTxoEg3GXqNBpfGLf2AKtXFhcwXtxdkomebusax/S8MMdP+Qr0/9AqnHy4QsApXnV/Qp0/SUD3ecM5d3PYMvfU8N7fz6M39P1l2n35mKsThNzzpjE3rdLu+3nbvL3uvw/vzvQdeGb4WOdfcNsgG5Bsyc1Ra3UFLX282xOnRAGRqgchBsUJ6ppCkC3ZYrSc9NI57uxuqDe637TrCpOBWxth3GoCtFa998Bu2pmZVRyx/OnCrWBcqWeOrUFExpmoVGmNeBXgt32DZ8QOAwLJjQ8qr/rndXnrkntwavzsnpO8N4r4NbayxX4CeGnbxcjaZxq/yAmxEkf0imhACZPCwArDsVRmlLeecKW8GYIqjxVNBtHUTuGuJyYKsynUvM+k4Guk/7e/ay5dgZZi5NGoqrk76lh89O5va73u0M9BrNT4XeH2Px0Tqclo2dGBD2QR9DzHojOF/f2P5rOgcSGapmDokYhsEKoitmRqcyMmkm9ydPRm215yIEraOMzSzWNWh0WypgfyiRLmYKiKFSpTbTioUirI0AQHQMbFszCRLyIwC4seJUAtUozFUojAVXv/9ulgEfrpYNBT8caPT8OaazrLdi1Nbdbq0s7BpxH+EwkN1ipiu/5g29CjJ+AIx5Vt2CovT+jUw0rGekZg3QCPZOBrk1vgeNEdz+bn85l3V3zhj3YGYbgw5eODmuZx5vyT/2q2tOdV/vdkhAGerAMoZeGf/lNqSimKQi9EmG0IgwPimoHJQIFgRAepllUHFYfVfZZlAVKmGHPJkOdQp65libFjUkxERnUCPlbiAvZUIBocyzRlkSs5nlsM+fxF20boc499syAnY4/SjcGH1qO8qE42v4G9KqA6lN+byRpKJiERoi+fdiy1FagRMbht9u7rVNCAazVpZhbmrost/t77+CU7EzirqunsPuZOozowz13CAISjFlMmRXX0yEGzbAHury8PG6++Wbq6uqIiYnh2WefPaVxFIPJMAQfbco7pX0/fjmPzIWJw9qMWZnXhKe5b3PUDRohugUi1ZzWrTmwt4AV8u3E8H8GnQajCjT0iOkIkxklUILmaSEyJhPN7MAuijB7D+HTW1FQSLKlYTcpeKx+MNsQWjQuxcs+UwshRQHS2Y+b/eJopz+mQDhoAQhf2x9WWfhLoX93R/KuSRqD5ofS2GMqOnHHlbYmSUt9JYt278VssVMTHUXelCQUPYQaCqJ5Wnrc3Wvt3qlMQSHZkRweapCi4T57McVbFNxR+RidWipUw0qEK4sLb1k95NfPYQ90d911F3feeSe33HILf/vb37j99tvZtm3bcFeji8q8ppM+d+pNa6OfyrwmpsyK7X0jQ4firdBaDRHJkH4GnKCr98m4Xd3reqK7pc+vFzhQEID3pM+voK150P02cHyuO92/HTCj2ZaR7FyJlSYsRiPeYD5evZl6XznxtlSSzWYcJi+Y47DFrCdkBKnzl3JIFBGYlEGo422YCQJaO/2+m0Uk2aHZWLFQrNZRodaePOCcKFDJYCWNJ+0d5ntpalRCAfKPvULWpPMpjmwipPXQ0/lzTZK2YIj4ploSamqpMYXwWXoLEQK3Tacm1kfnP6z2Fp9vrfhWx3i6a66YRV5qLFv+MglPoA5DDaAaFmKdSay5ZeawtIgNa6Crqalh9+7dvPXWWwBcffXV3HPPPRQVFZGRkTGcVemip8AxaPsf/Bds/ha4Ko4vi5oM634I2Zd321zoOp5dnxGqrcWUmIhj2VIUrWtQdEZ1nUc+5D9KyPsuiM49oJxotgUoagxGsBgjeAx6mNonTAUlKtwsqDlRlCiSbMnYTBFYCeIlH68tmVhLIk5TDAD1/gq0qESqIzTq1L3YhYUYw4lXnQpAvJhPJHZijDgmGeEPAeGu7vWUqk48akbv71mboKKzz1xy0u0kaULSQ6CZuj9X6whe1WiOi3H5ZhLtCdFi/ieB2FgwHb/sdzRJuhqxBUPEucMfZi0pKay+6HLeefcNemtzzJ5cxIeGQnWnCQSSHcl8a8W3OC/9vC5VnbE0iazFiSPWoW9YA11paSmTJ0/GZDo+7c/UqVMpKSnpFuj8fj9+//EA4nK5GKjegsjnA0d/9br/wX/ByzfRLUujqxJevgnjymdpLknCl3sMoQao85dT/8lHmOvqiXP7UABTSgrJjzxM1AUXHC+vaCcWXwsBawxB70fo/l0oKCTY0rBrEcRbp3Rs2+AvxqO1UBcMhie2BXRHJJjMxKgxxAat2DQHPt1L0G7HZo1jsiUNRVWpVBppVH1EiDnMagtYKgqFag2HzM0YStdu5WVaQ7e3YB/FaG0zOxgnG5cl77gkqbtQAM3dihIIhpsSdX9Hc2IoMgZf8lQwH+/dqOgazqYEbNoaFFO4pcYWcJFYEaCsdi+6IxJhNqN0bpJUFM68+jqmxCR0uTY6Yr1s+cdmWkPHr3GRJj9nJxcww1rPlaWw22al9vQvkzjr0m4zo3SmqsqJW76G0LA3XX5+TFFv49WfeOIJHn/88UEr1/XWW1R//wlCVVUdy9qDyKTzzscZYz1B82XvDdwRseFPJt0YevhOrsdUxIL66rNwP6Og2nUgPH7EFppE9eRmymOOYg2EmOIT2A2o+N/vsVAIYi68EKHr1D7xBDNDyeydfha6fxdTHDNZEn8uNlNkD/P5LQXAE3LxvucDKuLMYAr3SvQCLmFlWiiZYlM1bsUPNJJDY7ca76MYk9BI0+Mp1Gp6eZ96pvdn1gtJGk9O1mW/nR5C8ftQAz5MzfWAoGxSiKqYFoKhJqJN6cyr34AzFIuulyGMUgJOLwemHGNfxmsk+BKZ5JrKjHILUc0mXPZ89kzNxWxq4SpPGXXuIj5IsiMMJ5NrQjhdxy/9kfEJnH3zncxYeUa3as1YtoKs3P9HuSea1pCFCFOAKY5m2m/ENGC5zw9Tz4OU5YPzng2BYZ0ZpaamhhkzZlBfX4/JZEIIwaRJk/j000/7dEeXlpZ2SjOjuN56i/L7v3a8Tbtd2y/glJ//jNrERb101zc4HuS6/8L22uuy8CN47tIe61NffRaeqG+2VaH7jBmbW/5NVZwV3XT8k5HD5+PSG24g3e2h5OabEcBb87JIiZzJqqT1FKk1fGrJawtWYU5h5bTgTDKNJLZrR8kxlXY/hVOZpmg4pk+SpNGkp+bBUBACvvDzdk0DQ6C2NKLpIVQ9hBIKcDS+lGjVTqzLiaZNIogKmo4INaIpFnwmN5WxjexJrWNWWRQxrRp2i49Pszy4TcefmytCACqTXFk4glF4zC6qIo9hdHq0nhIK8WB9I7GGQa2mkajrLPH5O3IUbGERT0dNxqt5mFRvI7UpBUWz8+0nv4faW58BQ4efzQu3QvX4oV0JP4r5Ws6A+h3016ieGSUpKYnFixfz/PPPc8stt/D3v/+djIyMHp/PWa1WrNaBNSlCuLmy+vtPdA9y0PHLW/39J5j+7jusu2seH72Yi7vl+CYRaj3TbR+T51uDu21WcYCISFh9Xfcg156J13TgID19vjF0Fbfl9nDfiB5mzChUqilPdHTbz2O18vLf/salWVk4gQanDUNTWBJ/LkVqDe9aehgagZ93zTnMC6WRa+plTJ1C/wOXDHLSaGfooKhdg5NhdLoOCPC1otWVQ3QSKCrC20hrRBCfw4TTp2HzqihohAL15CdWYbdMxWFE4FFaia2qJMIPiUqAxmQvzViIVQMsCmk0mjR0Z4CZ8VU8GPCjAV4H/DQuhnKzCZshyAiGqDVpGEAScGurzjJLHYsdArviw2hvEmwLWAt9fvbYrOywNYEGyz0+ljT42WezUqNqJBnhoNZTqBFCId99Dv7Wy/hSpYGmgEkBTVFQgkbvQQ7CwWvdD9sewbRfLNq1vbfrfjCsQe5UDHvT5dNPP80tt9zC97//faKionjuueeGtDzPrs+6NFd2IwShqio8uz4ja+UKMtUGKl/6KW4jFqfayCTLIVTF4PTI56kMzDm+/AsPoC7sGuQ6Z+I9TXXxUg+TArgaF6JG9DxmxEDwqaVtmMPng0nbH+wH5eWsUxT8ZhMJtlRspkg+tezvZR9AEA5yJwpOMnBJo4HR1sQtBAgDgoHwXZMjgo5fUqGD3wdBH5it6CYQIkAw1IwRqsesaJj8KgRbsZn9+KKd1FptCD2Ix1RDlDmII7IFlPARJ0/RWe4Ld8DYabPRatKoMptRgHl+P99saMIO6MBuS8HxO6WUnoMKnXOQdur7ZQe+3dDU42kLAS3B06gJfg2Xtgu79Seooq1JsNM2K7x+Vvq6Pl5Z7vMjhIrS6fGALix4jWT8JNIsZlBqnINhUdHigvhFgADhJLpBJUiIEKtO9nPJvhw2/qmXTnU/6LFT3Wgz7IFu1qxZwzqcIFRb26/t1KhkplgPdFuvKkbX5VHJXdZvzq3ky8/v7vi8s8OYTYWII4UGOncsCum9522qUpu6ND32pMXno3HWTKxlJdi1iJPvI4OYNBDG556vdm4ZUZROTXri+Id9YUDID6oSvqsSoBitWIwAGmClBc3qxqxFoAonfhHAGiphKmXMDARo0S28FmdhX2oQRYHTvH5O9/lY3n7HcipXLS1cRQJAL9OnnuHr/e+o41kUPfRB7OUxXEAoNBBLjUigmWgMFJYpOTiV472jW4WNN8W5HDHNRJg+BWC2uJQLlPeJ7jSVm4sI/sNZeLATQSsReHDjoIUISpRJTKWSCNy04qRYmYLQOg8XOgyEmz81w0AzBJoBmg7mvj4+z74cZl8yqMOkhtO4nxnFlNi39BMd26WfEf6kcrI26fTjD251Q/D4awe7bG2g8njwJn5j/hmGoCPYmbTeJyn20rdhDpYNG4j43+9R5mvu8z7SBPD5oPR5QqCKIEa4m104wbRiAgQqggg8pFHOJGqJEB4CPoEz0EiUyd+lA8JJioD2w/anuqa2v7a2/eYFQZSDUCwYworfSMeveFEVHxDChAdFCWIIMwIrmuJBYCIoolAJoipuFBS8xhQ8RhpuYyox2n5UJYDPiMdrxBOpFaFjpkWfgkkJ56NrCE1DIIg15WOlEa+IoUHPxEDFqrTgExHU6WnEasXYlBZ8IpJaPZUErQQrLViUVvzCgU9EUqNPbcvbJtquDYJ/i3NIMJViV1rwCCe1+lQEGlmEs3AoQkEoS3iLxSRppdiUVgIikjo9E6uiYUNBQUVXNJyKRjQmMhQTZhZgVsyYMLNYactP0TYJpVBAYKBjEFIMQugEFZ2gFiJ4olx2n6dqkLmm79uPIuM+0DmWLcWUkkKourrn53SKgik5GceycO/EU2mT3lHYQGWzj8/7j7GCLwe/xmPmPzGZcNf7qNh9uFwNKLbYbs/o7PTtmWTiGWcQ//OfUfvkj1HT5IS8o05vzzyF8bnPTqLTxkqnZaBi4KQFEzpBNNxEoAI2AixlD2YMmohCQWEyldhwk2zUEGkEQQVVUTAUFRfRvK+vYrW6nSilDkUBF05UBB7FQjQeVATNONhPGt6QlUAoQIPfAj4rDtWMMHzUi1hCRjQ2sx9VUbGYWhCKFQUrAo0QFlqM2VQZ5xFUBHblIJrSSIuwESSESWnCLWzoCKxK+M6jnFSCKOiKgYFAVwRGp6AQvkCH3xqhdVrevgzR8bZ1nppO6bxEDX+FX03qWBZ+PTv8zmud9tLav4s//lMxKW3fJ7YdOYAiJqEwqa0cgwpSO+qgtC1VxPF6dCzDTCszw6+FgrAIBAKj7cxEp/OuIe34MsLZJUTbdjoCQ2n7H4GhGB1b9qcVxy9MXNz3zcescR/oFE0j+ZGHw70u25taOlaGfyOSH3m466DsfrZJ17R0D3Lt/mOs4G3/Mlaoh0miiRpiWOit4gZbbEc+tXYpRgxOYcWNv9cJUCOdEaSnp6NmZnLmuedy6Dd/x1ljDTdf9rJPR7juZf3x96PX0+h5v7HeLPr5czCMtguOig4EBZgVCHcZaG8KMlBoGxcI6Ch4hBk3NnTFRJUpGXNEIjZXIWmhcpxKEK+icVhEU++Hc2pcJEakM8WZQqTawDGtnBrVTbWIpJ5IIqOiOW12GksmT6VxbzP5e2qwABGZreRGbeVjbQtveQzWF9lYUBDEJrIR8WejRWXSaIkgT3VRadRTSSONJi9BVQcVcsik1dxKq+bCFvAx2eVlaoOH5BYbjlAsmj2FSc5kLPZEbJYYzFYHHpsfN37qFR8u3Lhoxa0E8CkhfKpOAD08T2h7eh8NYF+nNzSSkFAJYidIDAYaQlEQihZu0lRVFEUL/69qqJqGoqjhWXra8gy2f6EoqEpbuGhfriptf9PhmX+EEG0tqAJEW1AQbd+LTmHSaAuWov1/o+M17fu0NcUe/1502qa9mbYtsAjo0sml0/ouy0Wn9YhwT0pFabvra2vmhfA5KUr4d05R2i5TStv3bcva3i9NM6FpGppJw6SZMZk0NJMJs8mExWzGYgl/b7dZcdhsRNitRDhsRDrsRDqsOKzjPgQAwzy8YCAGmnj1ROPoOg/G7qKPU3dty6/ni7/7tF/1ubOhnOvsKZjsxwdQGsKgWK093oPy85MRKLBxw0ay53adG3TPm9v456f/6XkfYH5oKjmmkvAhehheMFVPoF5rOenzwc8fV4FuKTo60wXoqFhOkGYmfN3RQNG7No0JQGi4hZlWNFqEhQZhY4raRJziQwX8qPiFhobASghVUQgKBT8aVlQCqNQLO35hwqEGcAsTlrbhIm5hoUSPIEn1EWkSWBxRXHHWYq5ZPo3PihupafGRFGljRWYcWj9mb/B7gnzwl6Pk7azGn17L32N/yWWHvZxTvBDn1HW4nVZylEJKTU0YQJMWQ1LaNM4+bTGnz0qltqSFXa8XUpRTjyUWytJyeNP6EjE+LxsPW5hfnIQWcxrOuDlotmgq1EYKqaRGa8Hbln4nhKDR2kC9rQZLwM2iGi8LSzxE+VMR9kxM0VNxOKdgtcTQovpoVjzU00SD0kKT6sOtBtE/NxFwQKh4saBrVhSTFc1iw2KzY7fbcTodRDojiHTaiHDYiXKGv2IiHETaLURYTdjMarcWDEk6VTLD+An0ZXqtU6EbgtU/3NJj82VvFMAkDP6cZSa9vgahBvDGJGApjKNIreVT89FuY+LOP+McFl24ssfj/esbv+SAsxm/erwpUxEW6oMZlBpxuNVKVphLMHVKrqkJE1OD07EGY/lQMYgyteIkSLzio9FUSbDXfGkWioIZfGREkai6SFFcRCk+IvQgQQRNmoUyxYShOHEGErEYLTitOpGxUbgsMcTRwrRoE/Mzk1l32nwECn/aWkBJSQnxFoPMSQkYEfFYNY1jFXUcKa3B62rC63bh9wcAgUMJ4lCCJKstba1TKpo4/gA+3Kzz+Yu1RqvqxBaTRFpaKkvnTmdZ1mQsJrXbKZ6K6iIX//ltLm63j61Zf8fUvJU7P5tNdMbV1DsUdmpHcWl+WoSNyNRZXH7OaSyeloKiKHhcAba+cowjn1ZhjhPsSX2bT61vsD7fxvm5CZhjziAqYT5eq4k8pZwitQ63Kfx8RTcsNNlcFEYeIEAdF5QarDhmxm7MRI2dgyMmC6s1lnqlhRqliSqlgTrNg1c5njrFLzQ8ih3FFok9IoqoqGjiYmOYnBTL1OQEpiZGE+Mwy2AljQoy0I2Qz/e6PJlJ0TYeuyybdfMmdVnuza2j6bV8gs3+jllOIpwRzL58Kc75vU9++pPv/hhV14kybEQqTuKNKFyhGMoDTVi91UxxH6LB1khRYixuqxMzdrS2DtJ23UxiKBKPmEwJDmp1nZC/keRQEVHWEg5OKqLRaWGl/2wSq6ejt1gpTPRzWHjRdA+pajOZ+JitpzBTpGK01uIpe5c9k3J5ZqGf00JXMrfgLAhpLL84g4XnpqGdYnAxDEG1y0dBZT2l1XVU1zXgamnFHwgQDAQQQqC2Ne3Y7TYiIyNIiIlm+tQU5qQmEePsWyLI/srfXcPbfzyIP8bFP5N+zNc+MjM17gv445L5WDtIi+anUY1hwbKVfPHc5R1NRkIIDnxUwbZX89EJkTPtXXaZ/8Wde2zMr12GI/VMdGc0R5RSCky1+NQQimFCC8bSENXEjri3cASa+cIRC9nFCWhRy3AmzMNsj6dKbaSYaiq05o78diGh0KI40SLiSEhMJj11EjOmTmLmlHhiHEPz3kjSYJOBbgR1Hkf3eSlRVr64YioZCc6TNokJQ+AvbMZoCaBGWrBmRoefR5zA//7xX9RWlmPyNxHZdieoCIVow0ayHkkqyaQYMej+FtyuQoINuVQ5i9iRHklldCSxgSQig5EoCjh0M+l6AlliMtEhM811+wjWf8B/5tbyr6wgawNXMatgNcKnMnN1CsfsDRw8nIvTU4VZMYgPOVhsZJHgN+MqeYedidt4foHgIvcdJOTPIG5SBOfflk38lIiBv+kjTAjBnrdK2PZqPnWTC8jjN9yTswLntEvYYc6n1NRIkxLF8tVruXbtIkydun37vSHe+9Mh8vfU4ppWwr8jn+KW3YKFzauJSjuHSquX/WohjSYvhmHC4UtAVWM4mraT3da3uDLfxnkH4jDHnElk4gJ8Fo0CpZJ8rYZWLfw70CKsGM5EUqakMicrneWz00mJtss7M2lMk4FuhLXPjFLV7KXBHSAuwkpKVP+f9ZyqQMggt6SWPYcLKSwto6W+BrO/mYi24GczzEwKRTGNSUzSY/G6K/DV5eLz7eDdbD87UiLIaJ1Hgi8WVdUxGypZehLZRjqauxl36Vt8mrqfF+canO+7mcn5C4iItnLuzXMIxWr89d0dlBzeT6xwYTNMLA1lkeZz0FyymVezdvBZxiSuLL0HxWXltCuyWHRu2kmD+GglhGDHa4XseqOIo5lbmVL4GueJm2iOT+Rj8yHcmEjMXsFXrjwb++fSndSVtfDm/+XQ2uLl/awXSanezRcPLyMm43KKrS3sNhXgV0P4jRgSWyZhN8exJ/0tcpXN3LnXTnbdUpypZ2E4YzislJBnqiGghggIFbctkbSMLFYumMXKWWmD1jQrSaOFDHRSN/6QzvYjZezMPUp5aSm01BKleEFAnO5gmpFClkhBb63DU7WdSusOnl7mwarOYX7NGWhKC0ILEhOys9SYToJPw1XyFv9J387bM6LYUPk1tJpIFp6bxunrsxAK/OOTXD76+BNiA9XYDBMrQzNJaA3RUPwiP1pdziJxK5ML5pGxIIHzb83GYh97vb92vFbAzteL2Jv+JufkfsbcxLvZHVFDkamOJvtk7rt5A9NSYrvtV3GsiX//ah8+p4t/J/6EBz62MSnlOpqiHGw1HcGnhGi1pDDDPw291kTl9Fzedf6Ru3dYyPaeQ9SUVVRYPOxVC2g2+fALDX/kFGbPns2lqxYyOdY5Au+GJA0fGeikkwrqBh/lFvPJ7hxqy4uIDjaiKYLYkJ05RhoZoThcNXtpcb3NL1bVY9izOaP4YoJqLSFrMw7dzHJ9BkluaC76Gz9beYRk+5XMOXYmk6bFsO6uedgjLAgh+Pf2Q7yz5T1iA7XE6Q7WBOeiV+fwbsTf2T5jNufn30J0rJOL7p5PbMrYuUDveqOQ7f8qJCftTa7cc4yUzJvZYjtMgxogNvsM7t9wbo938CUH6nnj/3Joiq5kv/lJ7jtwOvbMC/nEfIQaUwuNlkTOnLOKhg+aCdp9/CvtKVYfKeOCitVEpZ/PMWs9+7QSgqpOgxZL1pz5bDxnBZPixn4zsCT1lQx0Ur8dq2zkH+/vpOTYYWJDDWgozAqlME9Px1d7kFrXP3nyjGaWiBuYVDSd5sgyhLmOaN3GKj0bU20xe/QXeWVhMpcU3UOEw8ElX1nQ8QzOMAR/emsnOZ++R6Twkh2aQrYnlqriZ3lytYdLar6J1e/kkq8sZHJPKY9GmUNbK9jyp8McSH2bK/cWETv9Wt6y5NCsaJy/fgPnLZ7R434lB+t5/df7qYsvJtj4W67wf5GmxCQ+Nh2mFQvTl65hiSmVHa8V0JxSxscRv+ChjyYTn3ETFY4gO03H8Ck6Lc4pnHvmai5eMXvYEldK0mgiA510yoQQfHKwlNfe/Qi1vgArOjNCySwOZeKu+JQPov7N23OmcEXhPQQVL2XOoziVVqaFElnqTaWxcBM/PK2U85oexOGN5oqvLSYp/fjPqqHVx//34r9Ryg8QY1g4OzgPf9EWnpz3Ecv83yC6KYUL75hP5oKEE9RyZJUeauC1X+6lIGEnFxzcQ+T0DbxtzaVJi+COW29iTlrPU87VlrTwyk8+oyq6gIjqZzjP/lX2RTZQYKql2ZnGg7dtpPjDanb/p4Sj07YSUfEP1jeuR5u0kPfNB2hWfTTZJ3HVJRdw1vzMYT5rSRpdZKCTBkVJnYvfv/IOofIDWDFYEEpjpieahsIX+eGqCs5u+Qb2+jhaZrfQUrcPp1A5OzQPtXQ3v858k7mhB4n1JnP5/YtJzuj683pjx2HefeNfRAkPp4dmEV9dxV8jX8QefTeJNZmce9McZp02qZeajZz6ilb+/qNdVDiOsfLYu8RMuyYc5MwxPHzvHSRGd0+vBOBxBdj0/R1UizJiqn/HaXF38aGzmFrVQ8ycM/j6xvPY+e9wp5bPMl7jnNw9LIi7k7xILzmmUlyKk1XnruOq1fNkb0lJQgY6aZDlVzby27+9ibXuKFGGhbWh+Yjy3fw+9R8kW+8mpXoG6Rcm8vb+LcTojSwJZpJa5+bv1ueJirifOG9Ktzs7gDqXhyd+/zKRriJmhFKY74pki/c3VE3dQFrFfM67JZtZK1NG6Ky783tDvPz9HVT6Kpha8QLpaTeEg5wphkfuv4OEqJ6DnGEI/vmzPZSUVKG6fsXq2Nt433GMOjXIaeuu4rLT57LrjSK2/6uAfWmvc83uQlKm3cz7tqPUqR6MSdl848bLiHXahvmMJWn0koFOGhJv7DjM22++TrRoYVEwnYwmwUe+31OR/gVSK+ex+osz2ZTzCZbaQ2SEEljsiuNfwf/DGnMPCfokNj68gojYrpNWG4bgxy/+B3fedpIMJ2vcGeyp/TWHpl/O1KqFXHDbXGYsT+6lRsNHCMGb/5dD/sFKDO9TnB57I285DtJoiuLh++/sNcgB7HqziO3/zKfO9DSXWq7ivYgCGhTB+Vdey9mLppO3q5q3fn+AA1Pe5ur9pURlbeAdSw4uRWHF+Vdw5ep5w3imkjQ29DceyAE2Up9cvGI2/++/7iWYnM0eUzE7Yl2sjX6QuUdfo3jSHj556Sh3n30e8QvWUqDV82F0OZda7ybY/DSuYDNv/N9+QgG9yzFVVeFbN6xjwXnrqVS9vOs8xqLke1ly+C3KknN5+48HKNjTt3yCQ2nPWyUU7qujWv0TqyK/wHv2I7QoNh74yu0nDHK1JS3seK2Akoi3uYR1fBhRTIMiuOKLN3H2ounUl7fy7nMHKU3Yx/r9RdiyruQN6x5qNTvX3Xq7DHKSNEhkoJP6LNJu4Xtf3sjUlRdSrLWwOeIQcyd9maWH3qY6Jp/Nv83l+tOXs+zCa6hRvXwcWc7Fli/RFPwdNWXNbPnTIXpqQLhmzUIuuPp6alSD/zgOMSP1ThYefZOKhMP85w+5VBxrGv6TbVN2pJFt/8inIOYtLg+u4ZOIUlwIrr/5JqbER/a6n6EbvPOnA7hsVVxRH8FnsS004ueCq65l5ew0QgGdzb/Podlay5l5O4nIuoZ3rbk0W+L59te/wvyM0dNsK0ljnQx0Ur/dfvHpXHLtTdQrCv+xH2RG6l3MKXqdZnMd//71Ps6fP4PTLg4Hu48iy7hMWc/RiGfJ21XDgQ/LezzmWQumce1Nt1KvmviP/QAzptzBnPzXqI8s5fVf76O+orXH/YZSa6Of//wuh7qoAq4sVzkQr9Ogell7xUYWZJ44EOW8X059mZtZtVupnDKZSrWRWWdezNqF0wHY9o98GmtaSax7lZjMq3jHmkuTOZZv3/cl4qPsw3F6kjRhyEAnnZIzstO57pZbaGgLTFmpN2JuepamFhfvPHuQi5fP4bSLN1CneNkZ08wN9YsojtnKR3/Lo6nG0+MxF2dN4vYv3UajauZt+0FmT/4Skypeoslcx2u/2EtrY9+zQwyUrhts/l0OLr2ZhWUf0jR1NsVaLVOWnsv5S2eecF9va4Btrx3Do31C/ORV5JhKUFPnc/15ywCoKmxm/5ZSGtTXmZewni3WgzSbonnkvi8RHymDnCQNNhnopFO2IHMSt91+O42qmS22w6yO+CJVynOUHGhg/3tlXLJyDnPPvpQqtYmClGguKW3GrTXyzrMHMYye+0DNSk3klttupVEx8Y79MAsTbkU0/47mQDP/+sVefO5eUgcNsk9fzaeqqBnD8wIJqZewy1RAIH46d1y26qT77vx3If6gj9V6DNusBXi1aB66dT0Q7oDz7p8P4rKVcWFwBh85CnFj4etfufWEz/skSTp1MtBJAzI7LZGbb70FlwJbI8u5KrCWsoj32fpqHk3VHq49ewmOGSs5bCrHm76ISU3/oaqgmb1vl/R6zOypSdxw6600KQrvO49xrv1GKo1f0tDg4s3/208oqPe672Ao2FPL3ndKKXK+yhrbRXxkzcOtRfGdO6896Tg2V52XnA/LSPZtoyDRgo8QN974RSymcEqkQ59U0FThZVHjQY4kKrTg57Jrv0BqfPSQnpMkTWQy0EkDNjc9mTMvu5p6xcP++CCX1qm4TY28+6eDCEPw4PXr8EZnsN2cR3rimdRbt7D9tXxc9d5ejzk/I5krvnADTYTYGlnJhuAGDtp/RUVBI+/88RCilzvCgWqu9fD2cweoisnlmvpUdkbX4Qa+dNtNOKzmk+6//Y18ArhIiZ3OMa2KyNkrmdfWsSTgC/HJP/LwqzswTZ5PgVZDwsI1nJGdMSTnIklSmAx00qC4cNlspq44nxK1jtopGaQ1bqEq38XhT6tQFIX//vL1+BQH2+2lnOeJwau0svWVYyc85mlzpnLGJVdTq7rZHdfKbQ3nsTfm9+Tvqebjv+X12INzIEJBnTd/m0OL2siakoOUTk6gVmlh6QWXMyv15NOSueq8HP20mln+w+x1VBESDu7ZeH7H+v1bSvF7gqwgkp2WQnzWZL561dmDeg6SJHUnA500aG6/5AxEyhz2moqYnLyaFtNnfPzKEfzeEE6bmUuu2UCL4qMsOYbUlq3kf1ZLZX7zCY958cpsZqy6iDK1kcNJFm4vz2Z/8t/Yv6WMve+UDlrdhRB88OIR6ipaiGh6GXP6Wg6YyrBkLObK1Qv6dIxd/ylEiGZInEyT4mH1pZd1NFkGfCF2vV1IbGgnBfEKQSH40s0b5JRekjQMZKCTBtW3brsKnxrBp7Yi1vhVfB4/n71ZBMDqeZlYMxdzyFROStICfKZiPth08mbIGy9YQdy8NRwzVVGRmsZNRx0cSd7C1r8f48inlYNS78/eLObwtipKrC+wJOZSPrEcxW1J4r9uuqxP+/tagxzaVkmWXsg+axkhWxLrls/pWJ/7QTkBb4jUqEkUaDXEzF3J9Mmjd/JqSRpPZKCTBpXDauaqazfiUQKUJ0cTFdzK3i3FuJvCGc4fuP5S/Eok223FLPZVUl/i4ejO6pMe9/4N56KkLmS/qZjWjKVccbiC4qTdvPPcIY5srxpQnY/urGL7vwo4krCZq1sXsi2iHA8m7r/rekxa3/5E9n9QihLyEEiIJUCQazZc0bFO1w12vZvPZGM/uc4GDMPKl68+b0B1liSp72SgkwbditlTsaQv5KCpjMzITAKGh+2v5wNgNWtcsfEaPIqflqRJ6Mo+tv7raK/DDTp79Lb1eGIy2WY+innaRaw++imlyft559mDpxzsSg838O6zhyhN2MPV+V7yk+w0Kl7OvvyaPveENHSDPe8Xkk4BB80V6I7JLJo+pWN9wZ5aAs2CyJg46tQWFpyzrqNJU5KkoScDnTQk7r/+EnTDSk5EA9MC+zn0SWXHgO/T5qSjx2Sw31zKIsWEpz5E/u6akx5TVRUe/8r1tNiSeN9ykMT0L7D46FuUpISD3b4tpf3qoFKcW8/rv95HTUwBa/I+I5B5OkdNlUTNOf2kg8I7K8qpJ+QyCMU4CRDi6msu6bJ++1t5JHOIw7Z6hHBy9VmL+nxsSZIGTgY6aUg4rGYWnXsRtaoLS3wqumjls7eKOtbfccN6DCEojTfjFLlse/1on4KU3WLikXtuxaVFssV2iKwpt7P48GbyU7fz8ct5bPnTIQK+0AmPIYRg35ZSXn9qHzWxhWSWvEJsxpVsNR/FHZHG1zr1lOyLHe/mkaIc46i1FszxLMw6fjdXX9FKc0mAyEgrjaqbReedLzugSNIwk4FOGjJXnbmQkBZLjrWCGaE8DnxUjrc1AEBaYgyOGUvJ06pIt9tpqQxSnFvfp+PGR9r56p230qxYeNsengT6tNwP2D7z7xzdVcVL/7ODvJ3VPTaH1pW18q+f7+Xjl/MoTPuM+LJnmZNyM+/ZDtFiiuHRr9yAqvY9ELU0+KjP82GLNOFW/Ky55MIu6/d/XEwUFeQ7WtB0K+tXL+zzsSVJGhwy0ElDRlEU1l15OW7FTyghHhHycuCj45M6f3Xjhai6iWORXhziCFv/3be7OoDMlNjwVGGqibfsB8lKvZMvbi3h7zP+h0ZnFW/94QDPPfwJ7z57kO2vFfDxy3n89Qe72PS/O6isrOe9eX8k+/DrnBFzL+/bj9GChfvvvpUoh/XkhXdy4NMyIqmhyN6CSbdx9qIZHet03eDQtgoSra3Uqi7STlst7+YkaQTIQCcNqdXzMjFsSRywVDBVHOOz9wowdAMIN28mLV5FudZAmg0ai30nHVfXWfbUJG65LTwJ9Fv2gyRlfYn/+SCLrcrj/Gfp/9E8pZSS0hpyPyrl6L4KGs3VHFj0Fi+kPcBd7zWyJPF+tkQco1ExuOb6G0hL7P80XDlbi0iwNlKrukhduapLICs50IDJE6Am0sCsq3zxgjP6fXxJkgZOBjppyF121aX4CEJsJKFmg8J9dR3rbr50NZquURZlYKWYXe/m9+vY2VOTuO3226hTrbxu20tw1jq+VfAl7nm7hs98T/LTtHv42dx7+P9m3sPzzodZsm8LT35yEfHT72Sz4yB1isHFG65n2czUfp9XfXkrem2IpkgFs66w8fzTuqzfs/UYyVoZRVot1tQ5WM2yp6UkjYRBDXSPPPIIc+bMYeHChaxYsYItW7Z0rDMMg3vvvZesrCymT5/OU089NZhFS6PY8llTwRTLYWsNyRxl55a8jnV2i5moOUsp0mrJMHsp3deItyXQr+PPTkvkm/d/mQZbElssueQmKaRlfouv593EM/84nWf+No1n/j6PJz++kjWO/6Zu2jxes+2hRrVw9fW3sHpe5imdV87WYhK0Sgq0GrT4jC5zYYYCOhU5zRiRCgLB1Vece0plSJI0cIMa6NasWcPu3bvZt28fv/vd77j66qvx+cJdyp9//nkOHjzI0aNH2bFjBz/60Y84fPjwYBYvjWJnXnoxbsWPPdJM3TFflwmdb11/LpquUhWtYtNdHNjac3LWE5kUG8GPHrwT2/TTOGxq5GXbDvYlgSf7QrR5d6DPu5bSqWm84tzLdlM+rugMvnHfl1k2c8rJD94DYQgObS/H5PARUgzWXdZ1AHjxgXqidBclVhcWHGSmxJ1SOZIkDdygBrqLLroIuz2cOHL+/Pnouk5dXbiZatOmTdx9991omkZcXBwbN27kpZdeGszipVHs7EXTMelWih1uoqgh95OyjnVRDivWjPnka1VMNlWw+72CU8pOYDFpPHTDOm6966sEkueQa/LwniWXf1l3sdmyl53mSqodSSxdt5GffP0mJsdFnPL5VOY3Y2oJUGsPYg+ZWJTVNWDu3Z5PtLWeRrWVtNNOnsNOkqShYxqqA//xj38kKyuL1NTws4+SkhLS09M71mdkZLBr165e9/f7/fj9/o7XLpdrqKoqDQNFUZiyYhXFn20h02pj/8fFnH7Z9I7OG7decwFPP7mf1mgLoXqDssONpGWf2l3QjMlxfO8rG/EFdXKLaymtrsdpt7JkRioJkbZBOZ+9nxSQaKpkn9pATEbXIQOGblCZ20RiFJgNhavOWTEoZUqSdGr6dUe3Zs0aEhISevwqLT0+k/y7777L448/3u2OrXOPtJN1I3/iiSeIjo7u+EpLS+tPVaVR6AsXno5FV6mPBJpDVBUc//CSGO0ERzL55loSlUJ2vnfiFD59YTNrLJuewpWr5nLBkumDFuSEISjcW4vhDCeAveKitV3WVxW6iA61UGpuwmyK6lMeO0mShk6/At1HH31EXV1dj1/tgeiDDz7g1ltv5bXXXmPWrFkd+06dOpWioqKO18XFxUydOrXXsh5++GGam5s7vjoHUmlsslvMqAkZFGl1JGnl7Nta0GX9WZdcgE8J4ogQVOS29LtTynCpLnJh9/qotHmwG1YyUmK7rM/5rJAoWxOtio+s1WtGqJaSJLUb1Gd0H374ITfeeCP//Oc/Wbiwa3POhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvqSx76JLzyOEjikiRMFntR1j6iA85s6iWyize3GKJo7sGpwUPIMt97Mi4i211KouYhcu67a+cE8lHkcIi6FwyepFw19BSZK6GNRAd/vtt+P3+7n11ltZtGgRixYtIicnB4Abb7yRWbNmMXPmTJYvX86DDz7InDlzTnJEabxZmDUZm26hzObB6vVSntfUsU5RFOLmL6dSayLZXMOeT/o3pm64HPusgoAzhGYoXHlB144mrY1+LI1+Kk0t2BQHNsuQPQaXJKmPBvWvMC8vr9d1mqbx61//ejCLk8aouPlLqTi0jUXmavbvKCBt9vFOJ1+4ZA2/yt1KS5SKtzSEq85LVIJ9BGvbVXOtF0ujn4rkFuzCRkKUo8v6goPVRFsaKFG9ZC09Z4RqKUlSZ3JmFGnYXXXhajShEIowKN5b16VjUozThhqRQr6plnilioPby05wpOF3dG8F0ZZ6GlU38Yu7N1vm7jmGYQ+gCoWLzuq+XpKk4ScDnTTsEmKcWIWdcksLDo+H2pKWLuvPvOh8AkoIm9NNzrbiEaplz3J2FrQFMrjknJVd1gkhcB1upsHqJyKodbvbkyRpZMhAJ42IlGUraVTdRJvryd3ZNZitmpeJPaTRaNfRa4PUl7eOUC278nuCBIr9NFj9OEMmkmK6DjhvqvYQbXioUpuxTpk2QrWUJOnzZKCTRsQV565EMxSCzhB5e7s2TyqKgpYyjVKtgUStiv1bR8ddXVFuHXFaA1VqM5ap3TOQHztQidnailAEy885fQRqKElST2Sgk0ZEtNOGw7BQY/FgqgvhbvZ3WX/BJeegY6A5fBzZVd7nPHVDad9nxzDZ3QhFcPaFZ3ZbfygnH58thE1XWTYrvYcjSJI0EmSgk0ZM1LzF1KktxJjqKMit6bJuQeYk7LqJWnsArSlAQ4V7hGoZJoSg9lAjLruOM6gyLyOl2zb+Y83Um73YhRlVlX9akjRayL9GacRccv7pKAIMh5ecz7qPmbNnzaNCbSTBVMPBXSM7M05jlYfYgIcKrQktOrnb+tZGH1GGl0a1FceM7BGooSRJvZGBThoxk+OjiQxpNFqDNB9xdctYcMXFZwEgnAEO7SoZiSp2OLq/HKu9mYASYv7Z3af1KjpSg2IPpx46Uz6fk6RRRQY6aUSZkqZSrTYTa7RQV9a1d2V6cizOkJkqqxelJoirztvLUYbeoX2F+G0hrLrK2Utmd1+fk4/fEsQRUpmVljQCNZQkqTcy0Ekjauk5q9EVA7OthcO53ZsnnbPmU6M2E2eq4cjuihGoIei6QajQQ53Zi0OYMWnd/2waD1XTaPbjMLQRqKEkSSciA500ok7LzsSmq/jsOnn7irqtv+iCNSiA4vCTs7Nw2OsHUFPoIlp10aC24pg5t9v6UFDH6Q3SqLRiSc0Y/gpKknRCMtBJI0rTVOxYqTa1QokXvVM2A4CMlFicIRP1tiD+Ev+IpO7J3VeEavMAcFYPz9/qSlswWz0IBRacKZ/PSdJoIwOdNOJiFizGpXqJUFuoLW7ptt6UmkWl2ki8Vs+xfdXDXr+CPaV4bDrOkMrM1MRu648eKSVoC2ExVJbNyRj2+kmSdGIy0Ekj7uwzl4MAxe7l8IHuvSvPufAsDEVgsreyb+fwpu4JeEOYav1Um1qwmHqeu7Jgfz4t5gARQaXH53eSJI0s+VcpjbipybFEhFTc1hDH9nV/Drdg2mScQY1mu0HzUTd60OjhKEOj9Eg9URYXbsVP0rKVPW4jSl3Uq61Y7BE9rpckaWTJQCeNChazg1pTK2q5t8fpvrT4yVRojcTTRNnRxmGrV87eAoTNhyLg/NVLuq0PeEPYCBFUdOIXLR62ekmS1Hcy0EmjQsLiZbgVP06Tm6ZqT7f1y845k6CiY7G1sH/X8DVfVubU0GINERnSSIhxdltfXdqMYvUBcNrpi4atXpIk9Z0MdNKocO6ZS0EAVh/HDnUfL7d6QRb2kIrHYVCyr3ZYJnlubfQR6fZTpTVjikzocZujecUELDoOXSMtMWbI6yRJUv/JQCeNCsmxkUSGVLxWnSM5Bd3Wq6qK2RJJhamZCLeXhsqhn+S54EA1NmszQUVn+ppVPW5TnnOMFlMAR2jIqyNJ0imSgU4aNayKhQbNg+9YQ4/r085YhUfxE2lt5PDush63GUy5ewoI2QKYDIWzl8/peaOyVhpUN5bI2CGvjyRJp0YGOmnUcM7MxqV6cepB/J5gt/UXrVqEyVAI2oMc2j20yViFELgON9NoCRAR0rBbzN220XUDs2KgKwYpy5cPaX0kSTp1ppGuwGDRdZ1gsPvFUTo5s9mMpo38HI2nnbWS4oLdaFYPFUWNZGZ3nRw5wm7BoZups/owl/vxtQaxRXQPQIOhocJNtHBzVHWRkDK9x20aK91gCc/UsmKpTM0jSaPVuAh0ra2tlJWVjYos1GORoiikpqYSETGy48BmT03Crqv4rSEOHyjsFugAnLPnU5n/GXNNDRTk1JB9+pQhqcvh/WWYrS0IRbDs7DN63KYgv4KgOdwRJSUuckjqIUnSwI35QKfrOmVlZTgcDhITE1EUZaSrNKYIIaitraWsrIwZM2aM6J2doig4Qwous59ATjFs6D5A+/zzzuBPxz5DsXvYtyt/yALdkb2FWG06Nl1l+ez0HrcpPHQMtzmIIyQ/YEnSaDbmA10wGEQIQWJiIna7faSrMyYlJiZSVFREMBgc8SZMc2wiNe4a0msCCCG6fXCZNimeiJCGy6bjO9yCrhtogzztlh400It91CZ5sBsWVLXn43vzKmmM8JBgkb93kjSajZvOKPJO7tSNpvcu7fSV6IqB1ezD3dRzpgItbjIVWhMxejNVx5oHvQ6VBU3EaC6aVDcRc+b3up3FZxBQQkTMmTfodZAkafCMm0DXX7oh2JZfzz/3lrMtvx7dGNzmp2AwyOOPP87s2bOZO3cuixcvZv369ezdu3dQyzmR7du3s2jRImbOnMm5555LZWXlsJV9qlYtmYMiwLD6KSuq7XGbxeesJqTo2Owu9n/WfczdQB3YVwRtaXnOPue0HrcJBXQUS3jOzcWnLRr0OkiSNHjGfNPlqdicW8njrx2kstnXsWxStI3HLstm3bxJg1LGrbfeSmtrK9u2bSM2NjzG6rXXXuPAgQMsWrSoy7a6rg96k6EQguuvv57f//73rF27lp/85Cc88MAD/OUvfxnUcgZbtNNGZEjDZ9HJO1zA7MWp3bZZs2AG215R8dkNqvZUwXWDW4fCvWXYbToRQZVpk+J73KahqhXdHMRsqMyamjy4FZAkaVBNuDu6zbmVfPn53V2CHEBVs48vP7+bzbkDv+vJy8vj1Vdf5ZlnnukIcgCXXXYZ119/Pc8++yzr1q3jpptuYtmyZezYsYPNmzezZMkSFixYwFlnncXBgwcBeP/991m2bFnHMXJzc8nIyACgqKiIhIQEvvnNb7Jy5Urmzp3Lli1bANi1axdWq5W1a9cCcNddd/GPf/xjTAzBsAmVJs1HfU73lD0QTtZq1RxUmlzYW/w9zo15qnzuINaGANUmF2ZL771QCwrL8JvDOep6e4YnSdLoMKH+QnVD8PhrB+mpkbJ92eOvHRxwM+aePXuYPn06cXFxvW7z8ccf8+ijj7Jr1y6ysrK44YYbeO6559i/fz933nknGzdu7FNZ9fX1zJ8/n+3bt/OHP/yB6667DrfbTUlJCenpx3sLRkZGEhkZOSaaLx2T0mhWPWjN/l63mbTidFpUH1HmBo7sLR+0sksO1xFhbsajBJi0sudmS4CSA3m4tSBWY/hSBkmSdGomVKDbUdjQ7U6uMwFUNvvYUdjzFFT90bmDR35+PosWLWLWrFnccccdAKxevZoZM2YAx5+lzZ8f7vhw/fXXU1ZW1qegZLFYuPHGGwE47bTTSElJYd++fd3qAIyZcYZZZ4SHFZhNOn5vz5NIXnTWUjShoDsCHNjVPYfdqdq3Kx9h86EKhXNXLep1O19+Dc2KF6tD5qCTpNFuQgW6mpbeg9ypbNebxYsXk5eXR2NjOG9aVlYWe/fu5eGHH+5Y1nlwdk/d6CEcqEwmE7qudyzz+U5eN0VRmDp1KkVFRR3LWlpaaGlpYdKkwXkGOZSWzM1EFQqGJUhNac+9KmOcNpwhE/UWP8ESf68BsT+EIajJbaTZFiIyqBIf2XNGcQA1EJ76Kzp77oDLlSRpaE2oQJcUaRvU7XozY8YMrrjiCm6//Xaampo6lrvdPc+4f/rpp7N3714OHToEwEsvvURqaiopKSlkZmZSWFhIfX09AH/+85+77BsIBHjhhRcA2LFjB1VVVSxYsIClS5fi8/l4//33AXj66adZv349ZvPQTJk1mJw2CxEhFb9Z58iR3u/WrNNmU6M2E6c1UnygbsDl1pa2EBv0UK260GK6z8rSTg8aqFr47njusoUDLleSpKE1JIHu/fffR9M0fvWrX3UsMwyDe++9l6ysLKZPn85TTz01FEWf0IrMOCZF2+ht1JhCuPfliszen6311bPPPsv8+fNZuXIl2dnZrFq1infeeYcHH3yw27aJiYn8+c9/5vrrr2fhwoX85je/4eWXXwZgypQpfPOb32TZsmWcffbZxMTEdNk3Pj6eY8eOsXLlSm699VZefPFFnE4nqqry/PPPc//99zNz5kxef/11nnzyyQGf13CxGdBiClCe03uS1XPPW41QQLW72bvz2IDLPLinBKutiZCiM/us1b1u11jtxrDomIXKjLTeA6IkSaPDoA8vaGlp4Vvf+hYXXXRRl+XPP/88Bw8e5OjRozQ3N7NkyRLOOeccZs+ePdhV6JWmKjx2WTZffn43CnTplNIe/B67LBtNHfgAaovFwuOPP87jjz/ebd3KlSu55ZZbuixbt24d69at6/FY3/nOd/jOd77T8frzx+ytnNNPP73jed1YY4mOo85bR0xF73nnZqcn4wyqtNh13AeaMAyBOoCf3dHdpUTadSyGwtqlvf9eFhVXEDDpOELqoM/KIknS4Bv0v9IHHniABx98kISErhmZN23axN13342macTFxbFx40ZeeumlwS7+pNbNm8RvblhCSnTX5smUaBu/uWHJoI2jkwYmZdkyDEWE0+CEeu/ZaIpOokJrIjbUSlX+qc+S4m0JoNYEqDG7sQsrFlPv4xqL2npc2nTZ41KSxoJBvaN78803aWpq4pprruHf//53l3Wf7+6ekZHBrl27ej2W3+/H7z/evdzlcg1aPdfNm8T52SnsKGygpsVHUmS4uXIw7uSGU0ZGBnV1A382NRqtWJrNro/fBEuAhko3iWk9ZweYe9Yatr75V2y2JvZtL2DyjCWnVF5BTg2xpgbKVDdTs3vOVtDOk1dJs8PDJHvvnVUkSRo9+hXo1qxZ09Fh4vP27NnDQw89xNtvv93r/p17Fp6sq/sTTzzRY3PcYNFUhdOzep71Qhp5SbGROHSNoEWnoKCcxLSemxLPXjqbXf9W8dsNqj6rRVwnUE7hA8u+Xcew2L0oAi48p3vWhM5Uj0HIaRA5ffia3SVJOnX9arr86KOPqKur6/GruLiYyspKVqxYQUZGBn/729947LHHeOyxxwC6dXcvLi5m6tSpvZb18MMP09zc3PFVWlp6amcojVmOkMBtClKQ03tHE7NJw6bYqTK3Yvd4qSzof/OlHjJoOtJKky1EREhjSkJ079vqBqo5/CFtzspF/S5LkqThN2hNl6tXr6ampqbj9S233MKyZcu45557ANiwYQNPP/00V111Fc3NzWzatInNmzf3ejyr1YrVah2s6kljkMVipw4PtvyaE26XsHQ5BXveJ8NSw75thUyevrhf5ZQeaiBWd3FMbSIytvvcmp0113gxzCE0oTAnc3K/ypEkaWQMW5exG2+8kVmzZjFz5kyWL1/Ogw8+yJw5c4areGkMisyeR0AJYQ3oJ9zu4rNXhGdJceoU7qo9YeeVnuzZegyLrQldMVhyzpoTbltWXk3ArOMMaZhkj0tJGhOGLHvBs88+2+W1pmn8+te/HqripHFo8crFHDm0HcUSwtcaxBbR82D3hCgHNsNKpcWDs9FDcW490xYl9qmMUFCnfH8zcdECm66yan7WCbcvPpKHRwthC8oel5I0Vkzcj6SGDoUfQc7fwv8bJ75r6K/RkI/ummuuYfLkySiKQmtr67CVO1hmTk3CYqjoFp2a8qYTbhu3cDn1agtx5kp2fZjX5zIK99URFWqh0tSKyRRx0nFxrsMlNKseLGZLn8uQJGlkTcxAd/Bf8LN58Nyl8Pfbw///bF54+SC59dZb2bNnD9u2bePAgQPs2bOH22+/nQMHDnTbtvNcloPp7rvvHtbAOthUVcUZUvCYQhwr6DllT7srLjg93HwZoVJ90E1rY9/mK935Xh7R1hpaVC9TTus9W0E70RwgqOhETM3o0/ElSRp5Ey/QHfwXvHwTuCq6LndVhpcPQrAbDfnoAM477zySksb2FFU2AS2an6qcoyfcLiHKgRkHpZZmoqhh33snDowATTUeGo758TlVzIbCFWuXn3Sf9hEyGSuX9qn+kiSNvIkV6AwdNn8LTpSRbvNDA27GHA356MYLa0w8LYqXUHnLSbedesYamlQPCeYG9n9YSvAknVj2vl9MlFJBqaUJsykKh/XEE17rIQNhAkXAvBnpJ9xWkqTRY2IFuuKt3e/kuhDgKg9vN0CjIR/deJC0ZAkooPUhGe6VZy/FrCu4oswIb4Cc98p63dbjCnDwwwoSLM20Kj6mrTpxb0sAV70X3axjN0xE2OUzOkkaKyZWoGutHtztejEa8tGNF4sWh4egKGaDwElyztktZoieQqGpjikcZMcb+fhagz1uu2tzIYRaaIjSMOsql65ZdNK6lJZV49d0bEPzSFWSpCEysQJdRPLgbteL0ZCPbryYnBCNzdAImUPUVpx81pMLL7+QACG06Gj8AR+f/L17D8za0hZyPigj1ThCoVaLlpyFzXLykTbFh/PwaiEshhxaIEljyZCNoxuV0s+AqMnhjic9PqdTwuvTTzypb188++yzfO9732PlypVomkZsbCxJSUk89NBD3eYL7ZyPTtd1YmJiesxHl5GRwZlnntll38756FpbWzvy0QFcfvnl7N69G4BZs2YxY8aMjkSsY4kjpOA36RwrKGXKSeYnXTYzjTeVCI7ZGphcX8jhbTaSM6KYd1Z4xhOfO8ibv83Bp5WhRCZgUMoVl5/Xp3q0HCnBpXhJtcgZeyRpLFHEyWZXHiVcLhfR0dE0NzcTFRXVsdzn81FYWEhmZiY2Wx8yg7f3ugR6zEi38U+Qffmg1XsoFRUVsWzZsgFnMOj3ezjM/u/h/8FrtpISk8EXHzh5J52/v/8ZOe+/xhp3BluUUia7VjH79BTip0Sw791SXK2tTG99jwNpMTSb7fzPo/f3qR7P3/drjsXVMmfKbK694wsDPS1Jkk5Rb/GgNxOr6RLCQWzjnyDqc3nnoiaPqSA3kVgjY3ApXkIlTX3afv2axYRwst9ew3mVTeROf5Nj+6r49J/5NNqrqFCfxEieTavi49zLL+lzPdoffaYt799cmpIkjayJ1XTZLvtymH1JuHdla3X4mVz6GaD2nmxzNBrP+eg6i1+4kOKdW1D7mOhU01RWX3wpn76+CV/aYi7+7O88du59BM0Ki4o07g1+mfeiywlZE1m7cHqfjqnrBrQNLZg/M2MAZyNJ0nCbmIEOwkEt8+RdyqWRt2jZfHbv3IJigqBfx2w9+QeSdSvm8N6HaexsyefCtOv5zRubIVSKedIV7E0K4kHn6mvX97kOLXVeQqbw0IJIh3xGJ0ljycRrupTGnLSkGKyGhm4OUl958oHj7f7rrutoVR28YzuEf/Y6HHO/zr5EnRKtjrTl57A4a0qfj1VaXk3AJIcWSNJYJAOdNOopihLueWnWyS/ofRD458VH2rnl1pupscayxZLL362fckxrIjp7DbdfuqpfdSg+fAyPHFogSWPSxG26lMYUq2HQaglSevAInDOvz/tlT03iyYe+wquf5NLq8bF8Tjrz0vs/TrL5SDEtipcoi5wRRZLGGhnopDHBEhFFTbCZ+IL+d74xaSobzhzYIHrRGCAUZ+CcMnVAx5EkafhN2KZL3dDZWbWTNwreYGfVTvRxlo+uoqKCCy+8kFmzZrFgwQI2btxIQ0PDsJQ9FGLmzsdQBGpgZJoO2ydVS122ZETKlyTp1E3IO7p3it/hBzt+QLXn+JyWyY5kHlrxEOel922WjJO59dZbaW1tZdu2bR2pel577TUOHDjAokWLumyr6zqaNrhDGzRN49FHH2X16tUAPPjggzz00EP89re/HdRyhsu85fPZv+8jFDMIQ6Cowzefp2EIhFmAgHmzM4atXEmSBseEu6N7p/gdHnj/gS5BDqDGU8MD7z/AO8XvDLiM0ZCPLjk5uSPIAaxcuZKCgoIBn9tImT45AbOhoptDtDb5h7Vsd5Mf3WRgN0xEOUbfzDGSJJ3YhLqj0w2dH+z4AaKHeS4FAgWFH+74IWennY02gMHjfc1Ht2fPHmbMmEFNTQ3Z2dm89957zJ8/nxdeeIGNGzeSm5t70rLa89H95Cc/4dNPP2X9+vXk5+d3zHcJ4TvGX//616xfv/6Uz2mkqaqKQ1cJmHQqyuuYFZc6bGVXVtYRMOnY9fGTFUKSJpIJdUe3u2Z3tzu5zgSCKk8Vu2t2D7is0ZKPTgjBV77yFWJiYrj33nsHfF4jyaob+DSd4mOFw1puSX5h29ACOYhOksaiCRXoaj21g7pdb0ZTPrr77ruP0tJSNm3ahKqO7R+3RTPhUn3UHcgf1nLrDxyjVfFhMY2tKeIkSQob21e+fkp0JA7qdr0ZLfno7rvvPo4dO8arr76KZRyM/7KnTMKvBDFqPcNabrC2laCiY0sYWJ5CSZJGxoR6RrckaQnJjmRqPDU9PqdTUEh2JLMkaeBdyEc6H90nn3zCL3/5S2bPns3KlSsByMzM5NVXXx3wuY2UyUuXkvdWMcpwJ5ZqS2yevHDRMBcsSdJgmHD56Np7XQJdgp3SNlLqp2t/OmhDDIbaRMlH167e5eaXP/0xM1xJfOFHd6OZhqdB4vmv/4pj0XXccc/XmJIQMyxlSpLUO5mP7iTOSz+Pn679KUmOpC7Lkx3JYyrITUTxUU5sugndrNM8TM2XoYCOYRKYhcrk+OhhKVOSpME1oZou252Xfh5np53N7prd1HpqSXQksiRpyYCGFIyEiZKPrjO7DgGTTklpFXGT+pZLbiCaat2ETAZ2Xeuxw5AkSaPfhAx0AJqqsTxl+UhXQ+onq2HgtgQpPnyMRSuGPtCVVlTj10JY9THRwi9JUg8mXNOlNLZZrDZcipeWI6XDUl7Z4aN41CBmIdPzSNJYJQOdNKZEZGSiKwa4AsNSXmteKa2KH6vdPizlSZI0+GSgk8aUaSuWAgzbpM56cxChCCKmZgxLeZIkDb4JG+iEruPevoPmf7+Oe/sOhD6+0vS43W5WrlzJwoULWbhwIevWraOoqGhYyh5K2dNTw+PozIKALzT0BYpwQE1bumjoy5IkaUhMyM4orrfeovr7TxCqqupYZkpJIfmRh4m64IJBKWOk0/TY7XbeeecdIiMjAfjZz37GAw88wCuvvDKo5Qw3h9WCwzARMunUV7UwKSP25DudIiEEmAEBc6bLhKuSNFZNuDs611tvUX7/17oEOYBQdTXl938N11tvDbiM0ZCmR1XVjiAnhMDlco35uS7b2UMCn0mnsLhsSMvxu0Ph9DzCRKTDOqRlSZI0dAb9yvfUU08xZ84c5s2bx4IFCzomITYMg3vvvZesrCymT5/OU089NdhFn5TQdaq//wT0NBlM27Lq7z8x4GbMvqbpefTRR9m1axdZWVnccMMNPPfcc+zfv58777yTjRs39qms9jQ927dv5w9/+APXXXddlzk1zzvvPFJSUnj55Zf5xS9+MaDzGi3MQuBWA1QcODKk5dRWNxHUDGwyPY8kjWmDGuj++c9/8sILL/Dpp5+Sm5vLO++8g9lsBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bxJ+XZ9Vm3O7kuhCBUVYVn12cDLmu0pOl55513qKys5Nprr+V///d/B3xeo4EtIooWxYe/cGgHyxcXl+DTQlh0ObRAksayQQ10P/7xj3n88ceJjg5PlZSUlNTx7GnTpk3cfffdaJpGXFwcGzdu5KWXXhrM4k8qVNu39Dt93a43oylND4SbMe+4445umQ/GqujZcxCKAN/Q5oerPnAUtxrALG/oJGlMG9RAd/DgQXbt2sWqVatYtmxZl6aykpIS0tPTO15nZGRQUlLS67H8fj8ul6vL10CZEvuWfqev2/VmNKTpqa6upqGhoWO7l156qSN9z1g3a2n4zhdtaCOQr6QRrxLAFh0zpOVIkjS0+tXrcs2aNd1SzLTbs2cPoVCI/Px8PvzwQ5qbmznrrLOYPn06F198MdD1TuNkSROeeOIJHn/88f5U76Qcy5ZiSkkhVF3d83M6RcGUnIxj2dIBlzXSaXoOHz7MHXfcQSgUQghBVlYWzz///IDPazSYMTUFTSgIs4HfE8TqMA9JOcKvgxNiZmcPyfElSRoeg5qmZ968efziF7/gnHPOAeC//uu/cDgcfPe73+WSSy7hlltuYcOGDd3W9cTv9+P3+zteu1wu0tLSBpymp73XJdA12LUF4Sk//9mgDTEYahMtTU9nT37ne8TpEVx4x41MntZ7p5+BeOFrvyIvpo4v3no3s9JThqQMSZL6b0TT9Fx33XVs3rwZCF88P/jgAxYuXAjAhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvgZD1AUXMOXnP8OU3DVbtCk5eUwFuYnOGjLwaToFxUMz56VhCAwTaEIhKzXp5DtIkjRqDeqA8a9//evcddddZGdnoygKGzZs4MorrwTgxhtvZOfOncycOROABx98kDlz5gxm8X0WdcEFRJ57brgXZm0tpsREHMuWogzyoO2hNhHT9LSzIHCpAapyD8PZCwf9+K0NPnSTjt0wYdLGx/hDSZqoBjXQ2e12/vSnP/W4TtM0fv3rXw9mcQOiaBrOlStGuhrSKbJFRVPhb8RX3HDyjU9BRWUdfs3AGpLpeSRprJMfVaUxKTp7LiiAf2jGuJUcy8erBbHI9DySNObJQCeNSbOXhIcYKEM0xKDhYD6tih+LaWh6dEqSNHxkoJPGpOlTEtGEijAb+NzBQT9+qM5DSNGxJ8velpI01slAJ41Jmqbi0DWCJp26qoFPJtBN26QryQsXDf6xJUkaVhM20BmGoPxII0d3VlF+pBHDGNxOByOdj66z2267DUVRaG1tHfayh5JNDw8xKCwsHvyDm8JNotnzpw/+sSVJGlYTMh9d/p4aPtqUh7vp+IB0Z4yVNdfOIGvx4IyZGul8dO1ee+21HufRHA8sQJPmpzL3KJy3ZNCOG/CFECaBxdBIiok4+Q6SJI1qE+6OLn9PDZufzu0S5ADcTX42P51L/p6aAZcxGvLRQTiFz+OPP85Pf/rTAZ/TaGSNisGt+AmUDu4Qg8aaVoKajl1Xx+2HBEmaSCbUHZ1hCD7alHfCbT5+OY/MhYmo6qlf4Pqaj27Pnj3MmDGDmpoasrOzee+995g/fz4vvPACGzduJDc396Rlteej+8lPfsKnn37K+vXryc/Px+l08tWvfpXvfve7HdkkxpvYuXNh94cQGNxm56KScnyajkWOoZOkcWFC3dFV5jV1u5P7vNZGP5V5TQMua6Tz0f31r3/FYrFw6aWXDvhcRqvZS+YC4SEGgzhlK5UHj+BRg5iRY+gkaTyYUIHO7TpxkOvvdr0ZDfno3nvvPbZs2UJGRkZHU+fcuXPJyckZyKmNKtMmJWISKoZZH9QhBp6CGtyKD6vTOWjHlCRp5EyoQOeMsg7qdr0ZDfnonnrqKcrKyigqKqKoqAiAAwcOdNw1jgftQwxCJmNQhxjoniBCgcgZswftmJIkjZwJ9Yxu0owYnDHWEzZfRsRamTQjZsBljXQ+uonCGjLwmkIUFBaTNj1hUI7Z/nx2xtLBnyxakqThN6j56IZSb/mH+ptLrb3XZW/W3TVv0IYYDLWJnI+u3e8e/h8aLSYyojPY+MAXB3w8XTf4y7eeosBZz7e+822s5gn1WVCSxoQRzUc3FmQtTmLdXfNwxnRtnoyItY6pICeF2WJi8Sh+AmVNg3K8ljovIZOB3TDJICdJ48SE/EvOWpxE5sLEcC9Mlx9nVLi5ciBDCkbCRM5H1y523gLYuQWCg9NDsrSihoCmY5NDCyRp3JiQgQ7Cz2GmzIo9+YbSqJa9eA67dm5BMSm99l7tj5IjeXi0IPaQHFogSePFhGu6lMaXjJT48BADk4G3ZeBDDFyHi2lRfFislkGonSRJo4EMdNKYpqoqjpBG0BSiurJxwMcLNfjRFQPHlLRBqJ0kSaOBDHTSmGfVDXwmnYJjA89i0P4Hkbp08CaJliRpZE3YQGcYOqUH9nPokw8oPbAfw9BPvlM/jIY0PYqisGDBAhYtWsSiRYv46KOPhq3s4WRRFVpVPzW5J57H9GSEEIj29DyzMwahZpIkjQYTsjNK3vatbHn2t7Q2HO+xGBGXwDm33MmMlWcMShmjJU3P1q1bu0w3Nh7ZYxMod1cRrBjY7CgeVwDDbGAzTMRG2AepdpIkjbQJd0eXt30r//rp97sEOYDWhjr+9dPvk7d968DLGCVpeiaKuLYPDpoxsB6X1ZWNBDQde2hsDTORJOnEJlSgMwydLc/+9oTbvPfcbwfcjNnXND2PPvoou3btIisrixtuuIHnnnuO/fv3c+edd7Jx48Y+ldWepmf79u384Q9/4Lrrrusyp+batWtZuHAhDzzwQK9zbY51Cxa3zUlpNggGTv1nV1RYiFcLYRnkZmxJkkbWhAp05YcOdLuT+7yW+jrKDx0YcFkjnaYHoLi4mF27drF161Zqa2t58MEHB3xeo9GU+GishoZu1mmobDnl49TlHKNV9WNRJ9SfhSSNexPqL7q1qW/dz/u6XW9GQ5oegKlTpwLgdDr5yle+Mm47oyiKgiOkEDDpFBSVn/JxAhUu/EoQe/zgTA4tSdLoMKECXURM32ZC6et2vRkNaXoaGxvxeDwAGIbBpk2bWLx48YDOazSzGgatWoDS3KOnfpC2yVDiF8qsBZI0nkyoXpdT5swlIi7hhM2XkfEJTJkzd8BljXSanv3793PXXXehKAqhUIglS5bw85//fMDnNVpZHBHU6C3EF9ac0v7CECha+E54znyZh06SxpMJl6anvddlby5/4JFBG2Iw1GSanuP+/tf/kHNgG9Prk7nhl1/u9/4tDT7+8cTvKbE38Mjjjw54zkxJkoaOTNNzEjNWnsHlDzxCRFzX5zCR8QljKshJXWUvXwCAqoGh939C5vKyWoJmHbuuyiAnSePMhGq6bDdj5RlkLV8Z7oXZ1EhETCxT5sxFVYdm0PZQkWl6jpuZlhye3Nms01zrJTalf1nWi/LCQwusg5TuR5Kk0WNCBjoAVdVIm7tgpKshDRJNU3GGVAJmnZKSKmJTsvq1f/2BAlpUHwnahP2TkKRxa8I1XUrjl1U38GhBCg8d6/e+os6HTwliT5k8BDWTJGkkyUAnjRsWs5Vm1UvL4bJ+76sQ7pM1ZfnSwa6WJEkjbFADXX5+Pueeey6LFi1i9uzZfOMb38Awws88DMPg3nvvJSsri+nTp/PUU08NZtGShDNzGkFFR2ntXwJWvzcEJgECFs6bPkS1kyRppAxqoPvmN7/JFVdcwd69e9m7dy9vvfUWmzdvBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bx0gQ3fWX4bkxVw+Pi+qqmrAndEsIusxZI0rg06E2Xzc3NAHi9XoLBIJMmTQJg06ZN3H333WiaRlxcHBs3buSll14a7OL7TBgCX34Tnr01+PKb+nVh7IvRkI+usbGR66+/nhkzZjBnzhweeuihYSt7JMyfMRVVKAhLuOdlX+XlleDTdOz6mBhSKklSPw1qF7Of/exnXHbZZfzmN7+hsbGRRx99tGPaqZKSEtLT0zu2zcjIYNeuXb0ey+/34/f7O167XAPLNdaZN7eOptfy0ZsDHcu0aAsxl2Vhnzc48xyOhnx0t912G6tWreqYIqwvk0SPZTaLCYeuETSFKCqoYlHytD7tV5GTh1sL4uhfi6ckSWNEv+7o1qxZQ0JCQo9fpaWlPP3009x4441UVFRQXFzMiy++2CU/WueBuCebkOWJJ54gOjq64ystLa2fp9Yzb24d9c8f6hLkAPTmAPXPH8KbO/BxaaMhH92xY8fYvXs3DzzwQMe+7XfX45lNF3hNOscO5fd5H1HuwqV4sUQPbI5TSZJGp37d0Z1s9vtf/OIXFBQUAJCUlMRFF13EBx98wDnnnMPUqVMpKipi+fLlQDiFTPvs+j15+OGHu1ykXS7XgIOdMARNr534Atj0WgG27HgU9dRnx+hrPro9e/YwY8YMampqyM7O5r333mP+/Pm88MILbNy4kdzc3JOW1Z6P7ic/+Qmffvop69evJz8/n4MHD5KWlsbdd9/Nrl27SEhI4Ic//OG4ntgZwGIy06j6sB2s6NP2Qgg0AUIRJCySPS4laTwa1Gd006ZN48033wTCM/Vv2bKFefPmAbBhwwaefvppdF2noaGBTZs2ce211/Z6LKvVSlRUVJevgfIXNne7k/s8vdmPv7B5wGWNdD66YDDItm3b+OIXv8ju3bv5xje+wWWXXUYoFBrwuY1m9mkz8CoBLN6+JU9tbfSjmMPvydJl2UNZNUmSRsigBrrnnnuO3/72tyxYsIBly5ZxwQUXcM011wBw4403MmvWLGbOnMny5ct58MEHmTNnzmAWf1JGy4mDXH+3681oyEeXnp7OlClTOPvsswG48MILCQQClJX1f4zZWDL3jHAzr2oO4m72n2RrKC+uI2QJYdM1JidED3X1JEkaAYPaGWXx4sV88sknPa7TNI1f//rXg1lcv6mRlkHdrjed89E988wzxMTEACfOR3f77bdz6NAh5syZ0yUfna7rHfno4uPje81Hd+ONN3bJR+dwOIiKimL//v0sWLCgo+PPlClTBnRuo92C6Wm8IVQMS5DS/DpmLznx+R49kI/HFMIxvm90JWlCm1AT+1kzo9GiLSdsvtSirVgzB/7JfqTz0bXX4Utf+hI+nw+bzcbf//53zGbzgM9tNDNpKhFBBZ9Z58iBgpMGurrcclxWH1FCThIkSePVhMtH197rsjfxN8wZtCEGQ03mo+vZ/z3yPTwmE1H+DL70w96fAwtD8PxX/0R+ciGZidO4+as3DWMtJUk6VTIf3UnY5yUQf8MctOiuzZNatHVMBTmpd5aUVFyqF5sriB7qPe1OU40HiyX8HC/ztBXDVT1JkobZhGq6bGefl4AtOx5/YTNGSwA10oI1M3pAQwpGgsxH17NpZ6yk5N+FmK0eaktcpEyL6XG7/KOVGNYgqlBYOrdvg8slSRp7JtwdXTtFVbBlxeBYlIQtK2bMBTmpdysXZKEJBcMS5Mih0l63y8vJx2sOERlUcdoG1gFJkqTRa8IGOmn8slvMRAZV3JYQx3YX9biNEAL34SYaTF6s6vjuoCNJE50MdNK4ZLE4qdNaUcr9BP3dB483VXtw6H5aFR+OmcM7nlOSpOElA500LsUvXYpPCeIwtVBysL7b+sN7ytGs4XGNy1Yt67ZekqTxY8IGOsMwKCwsJCcnh8LCwo4EsYNlpNP0HDx4kEWLFnV8ZWRknHDuzfFmzRmLQIBq9bB3x7Fu6w/uLkS36lh1lezM8T/ZtSRNZBOy1+XBgwfZvHlzl9Q/UVFRrFu3juzswZnvcKTT9GRnZ3cJqvfcc0+P04yNV5Pjo3HqKj4buHKaCAV0TJbwe+xu8hMq8dOYHMCma6jqhP28J0kTwoT7Cz948CAvv/xyt/x2LpeLl19+uSM9zkCMhjQ9nfn9fl588UVuv/32AZ/bWKLaY6kwNREdaubAx8ezGex+u4g4rY5axYVtupzIWZLGuwkV6AzDYPPmzSfcZvPmzQNuxuxrmp5HH32UXbt2kZWVxQ033MBzzz3H/v37ufPOO9m4cWOfympP07N9+3b+8Ic/cN1113WbU/OVV14hMzOz253keDfzzDPxKUEiLLVsf+MYoaCOrzVIzodlaHY3KHDOeatGupqSJA2xCRXoiouLT5qp3OVyUVxcPOCyRjpNT2fPPPPMhLubAzh/5VzMhoLfacLfGuQfP93DKz/5DD3kxmVXcAY1ZqUljXQ1JUkaYhMq0LW2tg7qdr0ZDWl62hUXF7N161auu+66Uz6fscpmMaGZoqk0txIf/Dc1jfXUB+rJ9G+jQmvCiB/fmRwkSQqbUIGuc3AZjO160zlNT1NTU8fyE6Xp2bt3b0dWg85pejIzMzvS9AC9pukBuqTpaffHP/6RK6+8siNV0ESTuWoVzaqHpJgF/CP+m3xsewQSZxAgxJnrzhnp6kmSNAwmVK/L9PR0oqKiTth8GRUVRXp6+oDLGg1peoQQPPvss/zxj38c8PmMVdesXcr/fvAOR5wuvpe7AUwRfDClBkwxnJ6dMdLVkyRpGEy4ND3tvS57s3HjxkEbYjDUZJqevnnhrU/J27qZ+cGp+JQAeaYqVl36Bc5fNnukqyZJ0imQaXpOIjs7m40bN3Z7c6KiosZUkJP67gvnriCQNId9phKOaNVYpi3nvKWzRrpakiQNkwnVdNkuOzub2bNnU1xcTGtrKxEREaSnp4+5gcMyTU/faJrK979yLf/ZlYfFrHH2QpmSR5ImkgkZ6ABUVSUzM3OkqyENowuXzRjpKkiSNALG1i2MJEmSJPXTuAl0Y6RPzagk3ztJksazMd90aTabURSF2tpaEhMTJ9TExYNBCEFtbS2KomA2ywSkkiSNP2M+0GmaRmpqKmVlZRQVFY10dcYkRVFITU0d9AwKkiRJo8GYD3QQnslkxowZBIPBka7KmGQ2m2WQkyRp3BoXgQ7Cd3byYi1JkiR93rjpjCJJkiRJPRkzd3TtPQNPlmZHkiRJGt/a40Bfe4yPmUDX0tICQFpa2gjXRJIkSRoNWlpaiI6OPul2Y2ZSZ8MwqKioIDIycsiHELhcLtLS0igtLe3ThKGjgazz8JB1Hnpjrb4g6zxc2utcUlKCoihMnjy5T1M3jpk7OlVVSU1NHdYyo6KixswvQDtZ5+Eh6zz0xlp9QdZ5uERHR/erzrIziiRJkjSuyUAnSZIkjWsy0PXAarXy2GOPYbVaR7oqfSbrPDxknYfeWKsvyDoPl1Ot85jpjCJJkiRJp0Le0UmSJEnjmgx0kiRJ0rgmA50kSZI0rslA1wfvv/8+mqbxq1/9aqSrclLf/va3mT9/PosWLWLRokVs2rRppKt0Uo888ghz5sxh4cKFrFixgi1btox0lU7qmWeeYf78+ZhMplH9e5GXl8cZZ5zBzJkzWbFiBQcPHhzpKp3QfffdR0ZGBoqikJubO9LV6ROfz8f69euZOXMmixYtYt26dWMiZdgFF1zAggULWLRoEWvWrGHv3r0jXaU+efzxx/v/+yGkE3K5XGLFihXikksuEb/85S9Hujon1djY2PF9eXm5iIyMFA0NDSNXoT544403hMfjEUIIsXfvXhETEyO8Xu8I1+rE9u7dKw4ePChuvPHGUf17cfbZZ4s//vGPQggh/vrXv4rTTjttZCt0Eh988IEoLS0V6enpIicnZ6Sr0yder1e8/vrrwjAMIYQQv/zlL8X5558/wrU6uc7XildffVUsXrx45CrTR5999plYt26dmDp1ar9+P+Qd3Uk88MADPPjggyQkJIx0VfokJiam4/uWlhYURcEwjJGrUB9cdNFF2O12AObPn4+u69TV1Y1wrU5s4cKFzJkzp0/TD42Umpoadu/ezQ033ADA1VdfTWFh4ai+2/j/27mfUHb/AA7gb4xWYweMNj3mT3JAMYoLLkopOeC22H3aTXbQygWFyw6Six4cpURzkCIHSflzIXmijKKIuUjK53v49l1fv3zn2e+b7+fZ0/t12p7tWe+tp8977fPZp6Wl5Z/vgPS3rFYrOjo64lsTNjU14eLiQnKqr/0+VsRiMUNfywDw+voKv9+P6enppLeBNPY7k2x9fR1PT0/o6emRHSUp4XAYlZWV8Hg8mJ2dRV5enuxIus3NzaG8vDzlBjsjikajcLlcsFh+7vSXlpaG4uJiXF1dSU5mbuFwGJ2dnbJj6NLX1wdFUTA8PAxVVWXHSSgUCsHr9aK0tDTpc1Nmr8vv0NzcjNPT008fOzw8RDAYxMbGxj9OldhXmRVFQSAQQCAQwPHxMbxeL9ra2qSWnZ7MALC5uYmRkRFDfOZ6Mxvdf7/5Cv5t9luNjo7i/PwcMzMzsqPoMj8/DwBQVRWDg4OIRCKSE31ud3cX+/v7GB8f/38v8H2/pqa2nZ0d4XA4hNvtFm63W9hsNpGbmytCoZDsaElpb28XS0tLsmN8aWtrSyiKIo6OjmRHSUp/f79h5+ju7u6E3W4Xb29vQggh3t/fRWFhobi8vJQbTIdUmqP7ZWJiQtTX13+Y+0olVqtV3N/fy47xqbGxMeF0OuPjcUZGhnC5XCISieg6n0Wnk5EHtN+dnJzEb2uaJgoKCj4cM6Lt7W2hKIo4ODiQHSVpRr8uWltbPyxGaWxslBtIp1QruqmpKeHxeAy/8OuXWCwmbm5u4veXl5dFUVFRfEGN0SV7fXALMJ18Ph8aGhowMDAgO0pCXV1d0DQNmZmZsFgsGBoaQm9vr+xYCVVUVOD5+RlOpzN+bGFhATU1NRJTJba4uIhgMIjHx0dkZWXBZrNhdXUVdXV1sqN9cHZ2Bp/Ph4eHB9jtdqiqiqqqKtmx/sjv92NlZQW3t7fIz89HdnY2NE2THSuh6+trKIqCsrIy5OTkAPi5J+Pe3p7kZH8WjUbR3d2Nl5cXpKenw+FwYHJyErW1tbKj6VJSUoK1tTVUV1frej6LjoiITI2rLomIyNRYdEREZGosOiIiMjUWHRERmRqLjoiITI1FR0REpsaiIyIiU2PRERGRqbHoiIjI1Fh0RERkaiw6IiIytR+1gCl1HQZKowAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "\n", - "################################# Fittig and Predicting ###############################\n", - "\n", - "nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo',\n", - " linear_sigma='True', random_intercept_mu='True', random_slope_mu='True', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie')\n", - "\n", - "nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')\n", - "yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')\n", - "\n", - "\n", - "################################# Plotting Quantiles ###############################\n", - "\n", "\n", "for i in range(n_features):\n", " sorted_idx = X_test[:, i].argsort(axis=0).squeeze()\n", @@ -152,10 +591,16 @@ "\n", " plt.title('Model %s, Feature %d' % (model_type, i))\n", " plt.legend()\n", - " plt.show()\n", - "\n" + " plt.show()" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, From cc6c21c80c21580b703feb96a03c6fdf6f429f40 Mon Sep 17 00:00:00 2001 From: AuguB Date: Thu, 3 Oct 2024 10:50:51 +0200 Subject: [PATCH 11/68] Update test HBR notebook --- tests/test_HBR.ipynb | 24 +++++++++++++++++------- 1 file changed, 17 insertions(+), 7 deletions(-) diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb index 70dd46ee..12e03746 100644 --- a/tests/test_HBR.ipynb +++ b/tests/test_HBR.ipynb @@ -208,16 +208,16 @@ " Finished Chains:\n", " 0\n", "

\n", - "

Sampling for a minute

\n", + "

Sampling for 2 minutes

\n", "

\n", " Estimated Time to Completion:\n", - " 35 minutes\n", + " an hour\n", "

\n", "\n", " \n", + " value=\"58\">\n", " \n", " \n", " \n", @@ -235,13 +235,13 @@ " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -255,6 +255,16 @@ }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ From d4e0631737f0f1938fd362b5181a0196b7ecdc52 Mon Sep 17 00:00:00 2001 From: AuguB Date: Thu, 3 Oct 2024 15:19:37 +0200 Subject: [PATCH 12/68] Small bug fix in gradient calculation for SHASH model --- pcntoolkit/model/SHASH.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 4be5c947..a3a48a84 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -81,7 +81,7 @@ def grad(self, inputs, output_grads): dp = 1e-16 p = inputs[0] x = inputs[1] - grad = (self(p + dp, x) - self(p - dp, x)) / dp + grad = (self(p + dp, x) - self(p - dp, x)) / (2*dp) return [ output_grads[0] * grad, grad_not_implemented( From 924681f3a584d64d343fca2ad6aadc1fb2c835bc Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 7 Oct 2024 15:04:22 +0200 Subject: [PATCH 13/68] Refactoring of SHASH Prior tuning --- pcntoolkit/model/SHASH.py | 139 ++++++++++++++++++-------------------- pcntoolkit/model/hbr.py | 49 +++++++------- 2 files changed, 91 insertions(+), 97 deletions(-) diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index a3a48a84..d9139d67 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -1,4 +1,12 @@ +""" +@author: Stijn de Boer (AuguB) +See: Jones et al. (2009), Sinh-Arcsinh distributions. +""" + +# Standard library imports from typing import Union, List, Optional + +# Third-party imports import pymc as pm from pymc import floatX from pymc.distributions import Continuous @@ -11,61 +19,17 @@ from pytensor.tensor.random.basic import normal from pytensor.tensor.random.op import RandomVariable - import numpy as np import scipy.special as spp import matplotlib.pyplot as plt +CONST1 = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) +CONST2 = -np.log(2 * np.pi) / 2 -""" -@author: Stijn de Boer (AuguB) -See: Jones et al. (2009), Sinh-Arcsinh distributions. -""" - - -def K(q, x): - """ - The K function as given in Jones et al. - :param q: - :param x: - :return: - """ - return spp.kv(q, x) - - -def unique_K(q, x): - """ - This is the K function, but it only calculates the unique values of q. - :param q: - :param x: - :return: +class KOp(Op): """ - unique_q, inverse_indices = np.unique(q, return_inverse=True) - unique_outputs = spp.kv(unique_q, x) - outputs = unique_outputs[inverse_indices].reshape(q.shape) - return outputs - - -CONST = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) - - -def P(q): + Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv """ - The P function as given in Jones et al. - :param q: - :return: - """ - K1 = K()((q + 1) / 2, 0.25) - K2 = K()((q - 1) / 2, 0.25) - a = (K1 + K2) * CONST - return a - - -class K(Op): - """ - Modified Bessel function of the second kind, pytensor implementation - """ - __props__ = () def make_node(self, p, x): @@ -74,7 +38,7 @@ def make_node(self, p, x): return Apply(self, [p, x], [p.type()]) def perform(self, node, inputs_storage, output_storage): - output_storage[0][0] = unique_K(inputs_storage[0], inputs_storage[1]) + output_storage[0][0] = spp.kv(inputs_storage[0], inputs_storage[1]) def grad(self, inputs, output_grads): # Approximation of the derivative. This should suffice for using NUTS @@ -84,10 +48,9 @@ def grad(self, inputs, output_grads): grad = (self(p + dp, x) - self(p - dp, x)) / (2*dp) return [ output_grads[0] * grad, - grad_not_implemented( - "K", 1, "x", "Gradient not implemented for x"), - ] + grad_not_implemented("KOp", 2, "x", "") + ] def S(x, epsilon, delta): """ @@ -137,17 +100,47 @@ def m(epsilon, delta, r): - 4 * np.cosh(2 * epsilon / delta) * P(2 / delta) + 3 ) / 8 - # else: - # frac1 = ptt.as_tensor_variable(1 / pm.power(2, r)) - # acc = ptt.as_tensor_variable(0) - # for i in range(r + 1): - # combs = spp.comb(r, i) - # flip = pm.power(-1, i) - # ex = np.exp((r - 2 * i) * epsilon / delta) - # p = P((r - 2 * i) / delta) - # acc += combs * flip * ex * p - # return frac1 * acc +def m1(epsilon, delta): + return np.sinh(epsilon / delta) * P(1 / delta) + +def m2(epsilon, delta): + return (np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2 + +def m3(epsilon, delta): + return ( + np.sinh(3 * epsilon / delta) * P(3 / delta) + - 3 * np.sinh(epsilon / delta) * P(1 / delta) + ) / 4 + +def numpy_P(q): + """ + The P function as given in Jones et al. + :param q: + :return: + """ + frac = CONST1 + K1 = spp.kv((q + 1) / 2, 0.25) + K2 = spp.kv((q - 1) / 2, 0.25) + a = (K1 + K2) * frac + return a + +# Instance of the KOp +my_K = KOp() + +def P(q): + """ + The P function as given in Jones et al. + :param q: + :return: + """ + K1 = my_K((q + 1) / 2, 0.25) + K2 = my_K((q - 1) / 2, 0.25) + a = (K1 + K2) * CONST1 + return a + + +##### SHASH Distributions ##### class SHASH(RandomVariable): name = "shash" @@ -181,13 +174,12 @@ def logp(value, epsilon, delta): this_S = S(value, epsilon, delta) this_S_sqr = ptt.sqr(this_S) this_C_sqr = 1 + this_S_sqr - frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2 frac2 = ( ptt.log(delta) + ptt.log(this_C_sqr) / 2 - ptt.log(1 + ptt.sqr(value)) / 2 ) exp = -this_S_sqr / 2 - return frac1 + frac2 + exp + return CONST2 + frac2 + exp class SHASHoRV(RandomVariable): @@ -224,14 +216,13 @@ def logp(value, mu, sigma, epsilon, delta): this_S = S(remapped_value, epsilon, delta) this_S_sqr = ptt.sqr(this_S) this_C_sqr = 1 + this_S_sqr - frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2 frac2 = ( ptt.log(delta) + ptt.log(this_C_sqr) / 2 - ptt.log(1 + ptt.sqr(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return frac1 + frac2 + exp - ptt.log(sigma) + return CONST2 + frac2 + exp - ptt.log(sigma) class SHASHo2RV(RandomVariable): @@ -270,14 +261,15 @@ def logp(value, mu, sigma, epsilon, delta): this_S = S(remapped_value, epsilon, delta) this_S_sqr = ptt.sqr(this_S) this_C_sqr = 1 + this_S_sqr - frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2 frac2 = ( ptt.log(delta) + ptt.log(this_C_sqr) / 2 - ptt.log(1 + ptt.sqr(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return frac1 + frac2 + exp - ptt.log(sigma_d) + return CONST2 + frac2 + exp - ptt.log(sigma_d) + + class SHASHbRV(RandomVariable): @@ -297,8 +289,8 @@ def rng_fn( size: Optional[Union[List[int], int]], ) -> np.ndarray: s = rng.normal(size=size) - mean = np.sinh(epsilon / delta) * P(1 / delta) - var = ((np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2) - mean**2 + mean = np.sinh(epsilon / delta) * numpy_P(1 / delta) + var = ((np.cosh(2 * epsilon / delta) * numpy_P(2 / delta) - 1) / 2) - mean**2 out = ( (np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var) ) * sigma + mu @@ -323,17 +315,16 @@ def dist(cls, mu, sigma, epsilon, delta, **kwargs): return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): - mean = m(epsilon, delta, 1) - var = m(epsilon, delta, 2) - mean**2 + mean = m1(epsilon, delta) + var = m2(epsilon, delta) - mean**2 remapped_value = ((value - mu) / sigma) * np.sqrt(var) + mean this_S = S(remapped_value, epsilon, delta) this_S_sqr = np.square(this_S) this_C_sqr = 1 + this_S_sqr - frac1 = -np.log(2 * np.pi) / 2 frac2 = ( np.log(delta) + np.log(this_C_sqr) / 2 - np.log(1 + np.square(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return frac1 + frac2 + exp + np.log(var) / 2 - np.log(sigma) + return CONST2 + frac2 + exp + np.log(var) / 2 - np.log(sigma) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 2237a203..8fff24e9 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -247,22 +247,24 @@ def get_sample_dims(var): "mu_samples", pb.make_param( "mu", - mu_slope_mu_params=(0.0, 3.0), - sigma_slope_mu_params=(3.0,), - mu_intercept_mu_params=(0.0, 3.0), - sigma_intercept_mu_params=(3.0,), + mu_slope_mu_params=(0.0, 10.0), + sigma_slope_mu_params=(10.0,), + mu_intercept_mu_params=(0.0, 10.0), + sigma_intercept_mu_params=(10.0,), ).get_samples(pb), dims=get_sample_dims('mu'), ) sigma = pm.Deterministic( "sigma_samples", pb.make_param( - "sigma", mu_sigma_params=(0.0, 2.0), sigma_sigma_params=(2.0,) + "sigma", sigma_params = (0, 2), + mu_sigma_params=(0.0, 2.0), + sigma_sigma_params=(2.0,) ).get_samples(pb), dims=get_sample_dims('sigma'), ) sigma_plus = pm.Deterministic( - "sigma_plus_samples", pm.math.log(1 + pm.math.exp(sigma/3))*3, dims=get_sample_dims('sigma') + "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma') ) y_like = pm.Normal( "y_like", mu, sigma=sigma_plus, observed=y, dims="datapoints" @@ -285,11 +287,11 @@ def get_sample_dims(var): "mu_samples", pb.make_param( "mu", - slope_mu_params=(0.0, 2.0), - mu_slope_mu_params=(0.0, 2.0), - sigma_slope_mu_params=(2.0,), - mu_intercept_mu_params=(0.0, 2.0), - sigma_intercept_mu_params=(2.0,), + slope_mu_params=(0.0, 10.0), + mu_slope_mu_params=(0.0, 10.0), + sigma_slope_mu_params=(10.0,), + mu_intercept_mu_params=(0.0, 10.0), + sigma_intercept_mu_params=(10.0,), ).get_samples(pb), dims=get_sample_dims('mu'), ) @@ -297,23 +299,23 @@ def get_sample_dims(var): "sigma_samples", pb.make_param( "sigma", - sigma_params=(1.0, 1.0), + sigma_params=(0., 2.0), sigma_dist="normal", - slope_sigma_params=(0.0, 1.0), - intercept_sigma_params=(1.0, 1.0), + slope_sigma_params=(0.0, 2.0), + intercept_sigma_params=(0.0, 2.0), ).get_samples(pb), dims=get_sample_dims('sigma'), ) sigma_plus = pm.Deterministic( - "sigma_plus_samples", np.log(1 + np.exp(sigma)), dims=get_sample_dims('sigma') + "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma') ) epsilon = pm.Deterministic( "epsilon_samples", pb.make_param( "epsilon", - epsilon_params=(0.0, 1.0), - slope_epsilon_params=(0.0, 0.2), - intercept_epsilon_params=(0.0, 0.2), + epsilon_params=(0.0, 10.0), + slope_epsilon_params=(0.0, 10.0), + intercept_epsilon_params=(0.0, 10.0), ).get_samples(pb), dims=get_sample_dims('epsilon'), ) @@ -321,16 +323,16 @@ def get_sample_dims(var): "delta_samples", pb.make_param( "delta", - delta_params=(1.0, 1.0), + delta_params=(0., 2.0), delta_dist="normal", - slope_delta_params=(0.0, 0.2), - intercept_delta_params=(1.0, 0.3), + slope_delta_params=(0.0, 2.0), + intercept_delta_params=(0.0, 2.0), ).get_samples(pb), dims=get_sample_dims('delta'), ) delta_plus = pm.Deterministic( "delta_plus_samples", - np.log(1 + np.exp(delta * 10)) / 10 + 0.3, + np.exp(delta) + 0.3, dims=get_sample_dims('delta'), ) y_like = SHASH_map[configs["likelihood"]]( @@ -558,7 +560,7 @@ def estimate_on_new_site(self, X, y, batch_effects): chains=self.configs["n_chains"], target_accept=self.configs["target_accept"], init=self.configs["init"], - n_init=50000, + n_init=500000, cores=self.configs["cores"], nuts_sampler=self.configs["nuts_sampler"], ) @@ -751,6 +753,7 @@ def __init__(self, name, dist, params, pb, has_random_effect=False) -> None: "hcauchy": pm.HalfCauchy, "hstudt": pm.HalfStudentT, "studt": pm.StudentT, + "lognormal": pm.Lognormal, } self.make_dist(dist, params, pb) From 500f7cdd22151929b941c2cabb109d4983fc089c Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 8 Oct 2024 10:58:33 +0200 Subject: [PATCH 14/68] Modify test script --- tests/testHBR.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tests/testHBR.py b/tests/testHBR.py index 30168317..2dab4972 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -32,7 +32,7 @@ n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) -model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline' +model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline' ############################## Data Simulation ################################ @@ -45,8 +45,8 @@ ################################# Fittig and Predicting ############################### -nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo', - linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie') +nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='Normal', + linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='pymc') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') From 24d84debe9cbd9a9194c6d9d9f6d0e98a8277ade Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 8 Oct 2024 11:09:57 +0200 Subject: [PATCH 15/68] Modify test script --- tests/testHBR.py | 2 +- tests/test_HBR.ipynb | 2455 ++++++++++++++++++++++++++++++++++++++---- 2 files changed, 2250 insertions(+), 207 deletions(-) diff --git a/tests/testHBR.py b/tests/testHBR.py index 2dab4972..edfad541 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -24,7 +24,7 @@ random_state = 29 -working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results. +working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results. simulation_method = 'linear' n_features = 1 # The number of input features of X diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb index 12e03746..45ec901a 100644 --- a/tests/test_HBR.ipynb +++ b/tests/test_HBR.ipynb @@ -2,11 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 38, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", + "from IPython.display import clear_output, DisplayHandle\n", + "def update_patch(self, obj):\n", + " clear_output(wait=True)\n", + " self.display(obj)\n", + "DisplayHandle.update = update_patch\n", "import os\n", "import numpy as np\n", "from pcntoolkit.normative_model.norm_utils import norm_init\n", @@ -21,12 +26,12 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAEeCAYAAADy064SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0kElEQVR4nO29eXxU9b3//zxn9sm+J0ASQghLAFlEQBYVsIpWrK0t9ipu5Yq97f12cbkud1F/vVfx1nrb2t66XK1abdVa24q1URFRXABlEwxCCCGEkJ0kk2Qyk5k55/fHZCYzmT3rJPk8H4/WzJnPOeczYTKv+bw/7/f7JamqqiIQCAQCwQREHu0JCAQCgUAwWggRFAgEAsGERYigQCAQCCYsQgQFAoFAMGERIigQCASCCYsQQYFAIBBMWIQICgQCgWDCIkRQIBAIBBMW7WhPYChRFIUzZ86QlJSEJEmjPR2BQCAQjAKqqtLR0cGkSZOQ5fBrvXElgmfOnCE/P3+0pyEQCASCOKCmpoYpU6aEHTOuRDApKQlwv/Dk5ORRno1AIBAIRgOLxUJ+fr5XE8IRlyJot9u5/fbbeeutt9Dr9SxcuJAXXngh4nmeEGhycrIQQYFAIJjgRLMtFpciePfddyPLMseOHUOSJOrq6kZ7SgKBQCAYh8SdCHZ1dfHb3/6W06dPe1U8Ly8v6Fi73Y7dbvc+tlgsIa+rKAo9PT1DO9kJiE6nQ6PRjPY0BAKBYEiIOxGsrKwkIyOD//zP/2Tbtm2YTCbuv/9+1q5dGzD2oYce4oEHHoh4zZ6eHqqqqlAUZTimPOFITU0lNzdXZOAKBGMUVVGxV7WjdPQgJ+kxFKUgyRPz71mKNz/BvXv3snjxYp577jluuOEGDh48yMUXX0x5eTlZWVl+Y4OtBPPz82lvb/fuCaqqyqlTp3A4HFGlywpCo6oqVquVxsZGUlNTQ67QBQJB/NJ9uJm2rZW42vsiY5oUPanrizHNzRzFmQ0dFouFlJQUPy0IRdytBAsLC5Flmeuuuw6A+fPnU1RUxBdffMFFF13kN9ZgMGAwGMJez+l0YrVamTRpEmazebimPWEwmUwANDY2kp2dLUKjAsEYovtwMy0vHAk47mrvoeWFI2RsnD1uhDBa4m5ZlJmZydq1a3nrrbcAqK6upqqqipkzZw7oei6XCwC9Xj9kc5zoeL5MOByOUZ6JQCCIFlVRadtaGXZM29YTqEpcBQeHnbhbCQI8/vjjfOc73+Guu+5Co9Hw5JNPDjr0Jvavhg7xuxQIxh72qna/EGgwXO127FXtGItTR2ZScUBciuC0adPYsWPHaE8Dl6Kyp+osjR02spOMLClKRzNEm8cOh4MHH3yQP/zhD2g0GvR6PYWFhdx///0sWLBgSO4RK4qi8MMf/pA333wTSZK47bbb+N73vjcqcxEIBEOL0hFddny048YLcSmC8UDZ4Toe2FpOXbvNeywvxch960tZN3fwCSE333wznZ2dfPLJJ6SlpQGwdetWvvjii6Ai6HK5hn3/7YUXXqC8vJxjx47R3t7OokWLWLNmDbNmzRrW+woEY4nRyqxUFIXq6mo6OztJTEz05k9Ei5wU3ZZQtOPGC0IEg1B2uI5/emEf/SPj9e02/umFffxm46JBCWFFRQV//vOfqamp8QogwPr1670/P/vss7z00ktkZ2dTXl7OY489Rnt7O/feey9Op5O0tDR+85vfUFpayo4dO7jjjjv47LPPADh8+DBXXHEFJ0+e5OTJkyxevJibbrqJnTt30tnZyWOPPcaaNWsC5vXyyy/z3e9+F41GQ3p6Ohs2bOCll17i/vvvH/BrFQjGE6OVWVleXk5ZWZlfLXRycjLr1q2jtLQ0qmvoC5ORE3QoXaH38jUpBgxFKYOe71gi7hJjRhuXovLA1vIAAQS8xx7YWo5rEJvH+/fvZ/r06aSnp4cd9+GHH/Lv//7vfPbZZxQXF7Nx40aee+45Pv/8czZv3syGDRuiul9LSwvz5s1j9+7dPP3001x77bV0dXUFjDt16hSFhYXex1OnTuXUqVOxvTiBYJziyazsv6/myazsPtw8LPctLy/nlVdeCWgGYrFYeOWVVygvL494je7DzTT89NOwAgiQun7ahKsXFCLYjz1VZ/1CoP1Rgbp2G3uqzg7qPr7JJZWVlSxYsICZM2dyyy23eI+vXLmSkpISAHbv3s2CBQuYN28eANdddx2nT5+OqqWcXq/n+uuvB2DZsmXk5uZy8ODBiPOKsxJSgWDUGK3MSkVRKCsrCzumrKwsbCOQUOLtiybFMCHLI0CIYACNHaEFcCDjgrFw4UIqKipobW0FoLi4mAMHDnDPPfd4jwEkJiZ6f1ZVNWhWpiRJaLVabykIgM0WeW7BrlVQUMDJkye9j6urqykoKIjqNQkE45lYMitjxaWofFLZwl8P1PJJZYtflKm6ujpsO0hwrwirq6uDPheNeMsJOnLuXDwhBRCECAaQnWQc0nHBKCkp4Wtf+xqbNm2ira3NezxYiNLD+eefz4EDBzhyxF3o+tJLLzFlyhRyc3MpKiqiqqqKlpYWAH73u9/5ndvT08OLL74IwJ49e6ivr+ecc84JuMe3vvUtnnjiCVwuF2fPnuXll1/mmmuuGfDrFAjGC8OVWVl2uI6VD2/nH57axQ9fOsA/PLWLlQ9vp+ywO8LT2dkZ1XVCjYtGvJUuBz3V4YV2pAj3hWC4EIkx/VhSlE5eipH6dlvQfUEJyE1xl0sMhmeffZb/+q//YunSpWg0GtLS0sjOzubuu+8OOj4rK4vf/e53XHfddbhcLlJTU3nllVcAmDx5MnfccQeLFy9m6tSpXHDBBX7nZmRkcPz4cZYuXUpnZye///3vSUhICLjH9ddfz6effsqMGTMAuPPOO5k9e/agXqdAMB6QE3XRjYshszKaBLyZPtGgcCSGGDeWyiKGOyM/FHHXO3QwBOsXZ7PZqKqqoqioCKMxutWb580J+L1BPQHEwWaHjiSe7NDm5qHbtB/I71QgGKt0H26m9fXjKJbwSSWaFAO5d50XVWKJS1FZ+fB2vw98GZiPhgwkWlBpTNax418u4pc/+x86rJ19H0C+qJBkTuTHd94WtFzCVtlG81OHIs4n85Z5o1ogH+oLwUA/c2PpHSrCoUFYNzeP32xcRG6K/wd8bopxTAmgQCAYHJ6kkkgCCLFlVvZPwLsALa+SyGMkcD9mHiOBxyxavnivmmUOd3JcgEL0Pl7mmIEUVCHBUJSCJiX86nS0yyJGIiM/HCIcGoJ1c/P4SmnusHWMGSmmTp06pKtAgWCiEE1SCQSvE4zUbco3se4CtPwXpgARyERCereWTNJZK89jl+4YXfS55iRgYJljBoX2tJCtziRZInV9cdCm2R5Guywiloz884szhvz+QgTDoJGlYfmlCwSC+CeapBKA1G/OwFTS1/Qimr0tT2KdDPwIIyog91vNyUheYSxSsim0Z1Evt9GNHRMGcpVU7znh9vRMczPJ2Dg7SJG/gdT100Y9K3QkMvLDIURQIBAIghBtsojqU4AebbcpTwJebruD7DC7Ur6yKCMxSUkLOi5SQo5pbibG0oy4NNIdiYz8cIg9QYFAIAhCrL02Y9nb0sgS960vJSPEXl4sRLunJ8kSxuJUzAuyMRanxoUAQl9GfqjZSLhX0oPNyA+FEEGBQCAIQqxJJbF2m1o3N48bL54+6HmO9p7eYPF8IYDABFjP4/vWlw5bPoYQwXAoLqjaCYdedf9XcUU+RyAQjAs8SSXh8BWggextrVwzDTlZH3T16EGTYiD92lkBgjyeWp2NZka+2BMMRfnrUHYXWM70HUueBOsehtIrB335ePQT/Nvf/sZ9993HoUOH+H//7//xyCOPjMo8BIJ4IZakkoHsbUmyRNqVkbM3TXMzMc3NHLY9PdXlwvrZXpxNTWizsjAvPhdpmK3b+jNaGflCBINR/jq8cgMBhTmWOvfxDc8PWgjj0U+wpKSEp59+mj/+8Y9R9R8VCCYC0SaVDLTbVLRC69nTG2osb79Nw4MP4ayv9x7T5uaSc+89JF9yyZDfLxyjkZEvwqH9UVzuFWC47e2yuwcVGvX4CT7zzDMBfoLXXXcd4G6rtm7dOm644QYWL17Mnj17KCsrY9GiRZxzzjlceOGFXguVHTt2sHjxYu91Dh8+zNSpUwF3x5jMzEzuuOMOli5dypw5c9i+fXvQec2YMYP58+ej1YrvRgKBL9EklQxmb8s0N5Pcu5aQecs80r89k8xb5pF713nDHuq0vP02tT/8kZ8AAjgbGqj94Y+wvP32sN4/HhAi2J/qj/1DoAGoYKl1jxsg8eonKBAIBsdg9rZGOntTdbloePAhCNY5s/dYw4MPobrGdy6E+Mrfn86GoR0Xgv5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL58+aBeg0AgCGSsdJuyfrY3YAXoh6rirK/H+tleEpYuGbmJjTBCBPuTmDO044Lg6yeYlpbm9RN89tlneeONN/puMcJ+ggKBYGgYC92mnE1NvT9JaDJLkAwpqPZ2XM0V+G4H9Y0bn4hwaH8Kl7uzQMOVbiZPdo8bIPHqJygQCOKDkfDV02Zloc1bSMKlD2FeeQem827BvPIOEi59CG3eQr9x4xmxEuyPrHGXQbxyA24hDGKmtG6Le9wgiEc/wR07drBx40YsFguqqvLSSy/xv//7v1x55eBLQgSCiUykhtq+BOs9mmrScfOKIv55zfQhC6tKpqkYl3w38LgxDeOS72L79AlQzmBefO6Q3C9eEX6CoQhaJzjZLYBDUCc4Ugg/QYEgOmIRqliIxSw2VO9RD6lmHVu+MW/QxeOqolL/8B5c7XaCRb1UVUXtbiXlqyZSLh3ZMomhIBY/QbESDEXplTDrq+4s0M4G9x5g4fJBrwAFAkH8MVyu5tE21IbwvUc9tFkdfPeFfTweItM0WiHvc8gILvKSJCGZ0zFMnxflKx27CBEMh6yBolWjPYtBIfwEBYLwxCJUsRCpobaEu6H2V0pz0chSxN6jvvie5/s6ohXyaB0yoh03lhGJMQKBYMKhKiq2yjY69zfyxz8fCboeGqyreawNtWPxy/M9D/qEvP/9PEJedthdSuV53Y4Ga1T3idZJYywjVoICgWBC0X242a9F2QPo+D4afo6ND3D6jR2Mq3msDbVj9cvznBftinOloqXjbyeiMgqG6C2axjpiJSgQCCYM3YebaXnhSIAQZCLxX5i4IMS6YCCu5rE21Pb0Ho31+tGsOEvanbT+/suoBRDGvkVTtAgRFAgEEwJVUWnbWhn0ORkJFfghxqAfigNxNY/VLNbTe9TPTV5VmNd0nAtP72de03FkVQk4L5JAy8CPiH7+Q2XR5Am9Wg80YqtsQx2GWsehQIRDw+BSXOxr3EeTtYkscxaLshehGaLs0Hi0UvrlL3/Jk08+iSzLyLLMPffcwzXXXDMqcxEIgjGYMoa+jMjgyEjkIDEfDfvp68A0UFdzj6j90wv7QlUcBzTU9vQevfu1Q5Qe38d3P/8LWbZ27/NNxhSeOOcqrt94o/e8SAI9Hw3ZUax3klbnY5ieOiQWTf1DzgCaFD2p64vjzv9QiGAItlVvY8ueLTRY+3qE5phzuHvJ3VxcePGgrx+PVkpz5szho48+IiUlhZqaGhYtWsSyZcsoLCwc1vsKBNEw2DKGaDMdM/qt3a6cnzfgesF1c/PYfEERT+2s8utTLUlwy6qioPNeNzePZbWHOPP75wLnZmvnX/c8x5Qzi6D33EgWTv1fTyh0OeYhsWryhJz742rvoeWFI3FnBCzCoUHYVr2N23bc5ieAAI3WRm7bcRvbqrcN6vrxaqW0du1aUlLcG+H5+fnk5ORQU1MzqNcqEAwF0WY/hiPaTMeWflLy5AdVUV0/GGWH63jygyr6RwIVNfR1VZeLpoceQiKwik/GXcPn6+4QycKp/+sJxVBkgoYLOXto23oirkKjQgT74VJcbNmzBTXIG8dz7OE9D+MahJ/gWLBS2rZtG62trZx77vhumSSIfyJlP4J/GUOovpuGohQ0KaE/6BVUGlA4SODfdqgyiXD7Xv3nLaGSK1soklvIlS1IqAHXVRQXFX/+E6dsnbQkGIPLl4+7g4dwFk63XntO2NcNQ5cJGinkDOBqt2Ovag87ZiQR4dB+7GvcF7AC9EVFpd5az77GfZyXe96A7xPPVkqHDh3i5ptv5uWXX8ZkMg34NQoEQ0Es9Xbt3T1hQ6ap64uDhuoUVCTgF9hQwlzft0wi0r6X77wL5LMs1Z0iQXJ4x3apOnZ3FHivW7H7Y7Y/+ySdZ5uh0O1SY+xxUnqmmdz2wC+t/d0dwlk4dct6Wl444i2Z8L623hitdaZjSDJBx2IRvlgJ9qPJGp1tSLTjguFrpQR4rZTuuece7zEYHSul8vJyrrjiCp555hlWrlwZ9WsSCIaLekt05QnvlNdHDJma5maSsXF2wMqoCZV/pTugTtAX3yzMUKUWnn2v7sPN3vEF8llW6yox4/Aba8bBal0lx44eoWL3x7z+6INuAfTBptOwrzCH+pTAhvfB3B08Fk5fWzCZ84szvHuZprmZ2JfIdDstfuOtrg4+avwLf3n5ISp2D9wo3EO0IdV4KsIXK8F+ZJmjsw2JdlwwfK2UnnnmGVJTU4HIVkqbNm3iyJEjzJ49289KyeVyea2UMjIyQlopXX/99WGtlI4cOcLll1/Ok08+yVe+8pUBvz6BYKgoO1zHT974IqqxfzlwJqoWZaa5mRhLM7BXtaN09PBlh41v/e1QwAqwP54szGj3vbK/OQ0JlaW6U4A7GcYXSXIbuJ85vIt3qw4Hv1DvoPJJGeS0d7lXcZKENicnJncHRXGx7Z2n6DrbQqZxCiZNIlZXJw1yG4pWh2ROZPv//YLi85YiDyID3hNyDhcSjbcifCGC/ViUvYgccw6N1sag+4ISEjnmHBZlLxrUfeLRSukHP/gB7e3t3HXXXdx1110APPzww1x66aWDeq0CwUCI5KjgQQLSEnSc7Qr9wds/pCnJkjcT8hyHkwte/Ru0tNBiSOKLzGkoUl+QTALSE/TUt3fzcUUTk6tr0ESx7zVf0jA7yU6CwxFynCSB3dpJu80e+sNYkrDpdZxNMJJhtQOQc+89SDFki9ce+cK7ymyy1eBISsWeV4Cq6zMHtzl6+Oj3j7Fq44+ivm7AVGUpZMjZQ7wV4cetldIDDzzA/fffz6FDh5g7d25U5wyVlZInOxTwE0KpN5r+6EWPDkmZxEggrJQEYxGXorLy4e0RG0p7Pkq/s2IqT390MuJ1f7FhPpemJKJ09CAn6bEf30PjQw/hrK/3jmkypvD4OVfx8ST3/ruMu9au1NZEQft+0iUt52evj3iv9G/P5LUzRzm+592IY421J9BZzoYds6C6gQJjIjn33kPyJbHZGx356H3e/OVPAXAkpWKbXOx+wnd52isFGzZ8i9I50X3mhiL4fqmB1PXTRqQ8YsxbKe3bt49du3ZRUFAwKve/uPBiHr3o0aB1gnctuWvMCKBAMFaJ1lEhPUHPf319LikmfUQRvAAt8/9WQ3NX376f0t0NUh7QJ4IZtnb+bc9z/OeSG9FOWsiPMLqLzY0JYJyKzRU+s9qDnKRnxewpHN8TeazkDL1a9JB/x51M//rVMa0APSSmukuxVMCe0/u5GiI+W/a3rcyaXYosDzxlpH/IWU7SD0kR/nAQdyJot9v5/ve/z+9//3tWr149avO4uPBiVuevHraOMSOFsFISjEWi7dX5b1+dzbq5ebgUNWzB+IVo+U9MSF3+iS9eF/U9j+Os2w+4V34qcHtjJdl5y93X8/nsNshmb1ZlqAQzyaxFVVQKCgtITk7GYrEEHYcKCZKRksQZVFr3Bh8DJGVkMv0bVyMN8PNn8uw5JCSaaFc0qLowSSmShMVqp7q6mqKiogHdy3spn5BzPBN3Ivgf//EfbNy4Map/ALvdjt1u9z4O+UYbIBpZM6gyCIFAMDCi7dWZm+Iu4QnXokyDuydoMANZSZJQVRXDvGtw1h3wnikhkTXzCgDkfkLnOQdCZ22rVictTx9Gk6JnzaIV/OWTvwdOvneSy3pKmJqQjc3cQa31WNDXufrGzYNKWKn8dDcuRUXVRpeV2dnZOeB7jTXiqkTik08+4dNPP+V73/teVOMfeughUlJSvP/Lz88f5hkKBIKRINbm0xC6YNzTOzPktSQJ2ZyOJrPEe0yTWYJsSg+90pMkJEnCroT35XO195D5Xg9XLV1HQr8m1gkYWOuYR5GSjQQsn/p1EtP9s86TMjK58rZ7KVkavKY3GjzlFzarLaqwK/iXZ/miKApVVVUcOnSIqqoqFCVSTm38E1crwffff58vv/zSuwo8ffo0l156Kf/3f//HZZddFjD+nnvu4bbbbvM+tlgsQggFgnFALM2nFUWhurqazs5OZiYm8sGdF/FZdRvbyut5+qOTpEfZO1MypAT9ORz7W97F5upiZfY30GoMIe+U/RlcY1tOvdxGN3ZMGMhVUv2kWe6GG27/Gc3203S2tZKYmsbk2XMGtQJUFBfbn33S+1hj7UBy9KBqdYF7gr0kJycH7RdcXl5OWVmZX8QtOTmZdevWUVpaOuA5jjZxJYJ33323X4nA1KlTeeONN0JmhxoMBgwGw0hNTyAQjCCelV3/DjC5Ph1gQn0wX3LpOt487E52ibZ3pmpvR5EkmrMysaXKpMmtAULVH4PGzGRzCTpN+M8hpcuBjMQkJS3sOLXTSf6CwBregeJbGgHuLxCGhlPu7FBVDSqE69atC0iKKS8v95Zk+WKxWHjllVfYsGHDmBXCuBLBeEN1ubB+thdnUxParCzMi88dUGaWQCAYGOFagYX7YH71j6+g6ykG0jmIi0YUMpGCCpqqqqjdrVQbrexbfwXdZnPvM/swqwbOd8ygSMkOPAeVRRkDyxRXUIOuCh3N3YOyi+pPZ1trwDFdRxvUVmLPKfBLkgm1qlMUhbKysrD3KSsrY9asWYPKKB0t4loET548OWr3trz9Ng0P+tcPaXNzB1SjE4x49BP89a9/zeOPP45Go8HlcnHLLbfwgx/8YFTmIpg4+IYzExMTKSws9Psw9bQC83wp7TyyCzkzk7KPPgx73aX6E9TpqlFcyfzcOoP/woyC6ieEnjrgirq/8dGKwH03K3be1R1ikbOIBa4it/mu2pc8MxCq5EZ26Y7RJfUl9SWoBpY5ZjB1G/zHx5X81drtfS4Wu6j+eEoj+qPraEPb0YbLnISq1bHm2htZfOHqoCJWXV0dMenQYrEMSUbpaBDXIjhaWN5+m9of/gj69RFwNjS4j//i54MWwnj0E9y4cSPf//73Afebeu7cuVx00UVBW6wJBDA4k1uIfp/J/aV0C6ozCcmQQr3ZheXckmCX9JKAypSMd2k2NbPXkcJ/nL6R/2ebQbaPeDWi8hhWJs2cjA41MDrY+3ifroovtbWc75gZsCqMhSq5kXd1hwKOd/WK7RrHXG6wZrEVvG3cPL1Pf7NxkVcIVUWNqgZv8uw5JKZnBvQk9bw0rbWDpIxMFl94UchVXLSZomM1o1SIYD9Ul4uGBx8KEED3k+4YesODD5G0du2AQ6MeP8GampoAP0EPzz77LC+99BLZ2dmUl5fz2GOP0d7ezr333ovT6SQtLY3f/OY3lJaWsmPHDu644w4+++wzwO0neMUVV3Dy5Elvx5ibbrqJnTt30tnZyWOPPcaaNWsC5uXxEgSwWq04nc6Q2XECQSST20jbCZH2ma5acimzZs52d3V5+DkM83+IbHJngypyPRC5p6jZ6S6hkLTtfDr1l1xbs5H1XQuZhES93MZeutFLDqZqI+8bWunhXd0hb0ZnrCio7NL1lkAEE1sVdusquMae7edu37/3aU95S9Su7bKsYc1Nm3n90QdDzuui6/8xbPJNqEzRgY6LN4QI9sP62V6/EGgAPl5eCUuXDOgesfgJ7t+/n5KSEhobGyktLeW9995j3rx5vPjii2zYsIHDh0M03vXB4yf4yCOPsGvXLq666ioqKyuD9g999dVXue+++zh+/DhbtmzxWjcJBL6E6uvpWbU8O72TSS88HnI7IeI+kwrv7N5B+gcOJIeC8bxb/Z42EV1C3O1nNnLYeIiK1HryerK4rLuUTrmDXbpjmCQ7Mfmk9ArVLt0xCu1ZYRNmglEvt/mFQINdvws79XIbGYr/6/P0Pj20/SSZ204HnBrOtb1k6XKuvO3ePpumXow9DkrPtCDd8+9YwmzzFBYWhi/4J3RG6Vhg7O1iDjP9PboGOy4U/f0EFyxYwMyZM7nlllu8xyP5CZ4+fXpQfoLB+OY3v8kXX3zB0aNHef755zl69OiAX6NgfBLJ5Hb5mUNkPXJ/wJdJz3aC5e23I+8zSdAluQUBrTtRxfdvJldJJUE1EDLxU3XvsxW7JvMN6+XcdeY73NC8ns7esGMXYcQoHL7zipHuKO/ZjT1oRqsMJH8U/u89lGt7ydLlXPO1b7O08gwLqhtYeryW1UdOkdve5ffvEgxZllm3bl3Y+wbLKB0rjM1ZDyPBPLoGMy4Y8ewn6GHq1KksXbqUN954I+K1BBOLcH09ZVXh1s//EvzE3i2GhgcfoiPK7k7d2L2F6X73QWKZY0bvdfvfx/2fZY4ZaHzcINzhyAr3g2Bv/xi8BKIVNF+iXb3a0AV1t5+PBn134HFfQrm2qy4XTVseJqOzm0ltnWR02fp+BT7/Lqor+PVLS0vZsGFDQDPq5OTkMV0eAUIEAzAvPhdtbm7IQlIkCW1ubkxeXv3x9RNsa2vzHo/kJ3jgwAGOHHFblPj6CRYVFXn9BIGQfoJARD9BD01NTbz77rsiKUYQQLi+nnOaT5Blaw8dKOzdTtDVnonqXuGEo0jJZq1jHgn9xvh2YvHFG44M3TomqjmFmpeqqt7/BSPa1euLijHA21ACik3RiWgw1/ZYtnlCUVpayo9+9CNuvPFGrr76am688UZ+9KMfjWkBBLEnGICk0ZBz7z3uLFCP66X3SfcfSaxeXsGIRz/Bxx57jPfffx+dToeqqvz4xz8W5rqCAML19Uy3d6ACZxOM2HVaDA4n6V02JCQ0mSVIhhRUezuZThcGcyL2rs4QqzK3mKmoVMr1QTusgFsIC+1ZfjV32UoKjXJ7wHkDWb0Fm5cRHdlKkI4yqkJP5TZSv34RPTVJAcayntXru7pDfdkuPtcFqHIUsrPfKtAz7GsrCmBb5C8PwVzbh2qbR5blMVkGEY649RMcCEPlJwjDXyc4Ugg/QcFQ4/H6C+bYsLruIxZb9mHT932/LtIXszBjLTpjXya0ZIRPc7s4ULer94DPRXovqkdLj9Tn+mBW9SFLFDzF56ekJo5r67FJfT0yPTV4BnS8qd834Nfti+eavnNxb1lAxsZSPxshR4OVjvdqvPM8oKniC20Ndp/X5rlexdzpPFXdHDTj9tLSXOof3hPRtT33rvMCyiW6du/h1I03RnxdBc89N+CEv3hizPsJxgPJl1xC0tq1omOMQNCPUH09i7tOMMf2OTZd39/IZPMMzsu+KuAaig3OPWkmQ57nLhz3WaUZ0GHHQQ/+tkeeEoU5rnwKlSzvCi9Y8bkvvjV4BtV97QHWuQdc0zfs6tm3bNt6gtzSDK+N0NmXtwGGoPM0qFrmOPO9hfhfHmnlnesXcUhy0dhlD6i9HKhru2ebx9nQEHzvU5LQ5uQMaptnrCJWgoKYEb9TAfjXCUqqwo01L5Do6vIKo2JOYkHOZaRKKeSqaQGhTBUVCcmvhZgRPe/qPqcHV0ShMqo6pjtzOax1r7LCju8NrzpwucV1KMpfe695jX1FwGs7elEOyd3VTJe7adzyMPUrb+U984nAefZ++vbfwwxV9wcDd233NgGBoNs8k4egCUi8IFaCAoFg2Fk3N4+LZ+Xw+SenOXuskjP16TS7rPQkpWDLLQStjo9xf/AHCx962o75Npaulc/SI4XPgPRgkxzRCWDv8wMui4hwzXq5LaAxduovHsVc9T71wKkpU9hlrgyeeBOi9jBc3d9AXduTL7kEfvHzwG2enJwxt80zlAgRFAgEA8KzIslu7yEbLbPyruUj6TBH9PUBH/jBwofBqJMCGz6HJQ4aGgVLuEnsqEMBTk+ZzCcrlofPPO0V0zq5Fak3gceT0NO29QTG0owAgRuoa3s02zyKolJX0UaXxU5CsoG8klTkATbwHgsIERQIBDHTfbg5YG/qhNzAEV0DQZUpxIqnv5uCKsXB7kz/zM0I+JZLeBwplOYKFElm/+Lok0y26Q7ikPqKIxJUA8s6ZpBWNWNAguchWIPyUMkvlfsb2flyBV1tPs29Uw2suqaE4oUD75kazwgRFAgEMaEqKm1bK/2OKah8rDsaXjz6hQ+DJYoYVd0wTbqv5MJKT8iyDD1aHDijcyDsvWaukup32HF6D9q8BZxddDlW4/Gop+grgNC3ek48MomFxef73zpMA22X4mJf4z6arE04651U7Kqgw9LhPTeUZVLl/kbKnghsw9jVZqfsicOsu3XuuBRCIYJhGM6wQDxaKXk4evQoCxcu5Hvf+x6PPPLIqM5FEH/Yq9oD0vTr5Ta/soRwdGOnSm7gXV3gB64NR1+66VBF4Hw6yABh6/TmOvPZp6uK+tLTnDkBSTH6kksB6NaEKU6Pht7V8/ZDHzL/8qXetmTBE2PciTQfJR1gy54tNFgbmNQ1iWWNy3ov1TfHYEa4iqKy8+WKsNP58JUKiuZnjbvQqBDBEAx3WCAerZQ897n11lu56qqrhv1egvgl3EojWEeSWArRjej5QHcYCOJs7ltzMURIwGrHXIqUbKrkxrBjfWv3ouGQ9hTZaopfmYQn4d7MEGROS9Bh7/J69QULQ4M7kab5hXJenfwcDckNoML8lvm9lwguWr5GuHUVbX6fdcHobLVTV9HG5JnBPQrHKqJtWhA8YYH+bwpPWKByf/g/pEh4rJSeeeaZACul6667DnB3lFm3bh033HADixcvZs+ePZSVlbFo0SLOOeccLrzwQsrLywHYsWMHixcv9l7n8OHDTJ06FXAXy2dmZnLHHXewdOlS5syZw/bt20PObcuWLVxxxRXMmDFjUK9RMHbpPtxM/cN7aH7qEGdfOkrzU4eof3gP3YfdDReCdSSJti+mJ9zZJTnCtCZkSBNe1N6m106U8FZGQGUsq7fec3bpjqH0KreCSp2mjROaBlRUzOHapMXAey9u5+3tJ2l9vTLkGBXY3PBNZFUi05aJ2WUOa/xrsVh4bc9rAHRZovsSE+24sYRYCfZjJMIC8Wql9Pnnn/PWW2/x3nvv8ZOf/GRAr00wtgm30vCk7BtLM9Ck6P3CcZ6+mF2E6M3ZKwTLHTOHpn1ZjOzWVbBPewJHuPILyR2O1ama8OP6nePZ57TjCFoMD8ScbNOflrM6TK+dQEkMvWcqI5HtTGeOdTqtanfIcb48s/cZUvNSmZ0cXZF8QnJ0X3bGEmIl2I9YwgKDId6slBwOB7fccguPP/74iIRdBfFHsISX/rRtddf9pa4v9jse1tWhl3nOAiSkPieHESZaYZvhzHO/hhhWcNVyU1CLJntv1xsDg0v46Uo+wYm0XRHDuQDpzhRsmshOMgA2jY2H9zxMdnESCanhBS4xzZ0XMd4QK8F+jERYwNdKKS0tzWul9Oyzz/pZF42klVJdXR2VlZVcfvnlALS1taGqKq2trTz99NMxv0bB2CNYwkt/XO12Pt+7m9qMs+RfkU7GBxKKxX1OkZLN6u7p7DHV+ImBUdWx3DETCcmdlBLnJGJiqiuLk9roPUO9YdQQjvEqCksc0zGpeoyqjrfkT0GrC18/qPrvmTrkHt6VI9dantW202xsxqqxYnKZgoZEVVS6Nd00GZvACgea97PqmpKg2aEeVm4oGXdJMSBEMIBol/uDCQv4Wik988wzpKamApGtlDZt2sSRI0eYPXu2n5WSy+XyWillZGSEtFK6/vrrQ1opFRQU+DXZvv/+++ns7BTZoROIYAkvwXjqkyd4P+UzZEViTcoqviLNJ/V4C1kt7eQ1H+Ubi2+ixQTdUo+36BvgZcNH7gvE+efobl0FOjX6IJlGlcNnxkrQg4s9uuPezjkXuObygfZogND5nxc8aWiX9hiFPYHO9goqzdpWvjAfBwkOZhxkWeMyb3s6D2rvEvdgxkHvv0WTtYnzFp7HulvnBiQEJqYZWLlB1AlOGPJKUklINYQNiQ5FWCAerZQE8UuwguehdvIOlvASjLPadtY0rSCvIx+b5GAPZyAfjFOSWO64jqndevIU9/vLE3E4I7eGbHAdF/Tbs+tfsxcOVwxjvZ1zeuaytmce72s+x6n1uXE4UYQ+Z3uplUlqev+neDLnVdTe088knGFX9i7mt8zH7DJ7x3VrujmYcZAzCX22TFlmt0l48cJsiuZnTaiOMaKBdhBCFY16GEtFo8JKaexTXl5OWVkZFh839lAFz4NBVdSwVj2elcZzqX8nrSPXfbD/Z6MK85z5LHWWIEkWVNy+e5VyPe/pvxiyuYZkkAkoAddiCK/nc10jOq6xrcDu7OS17r/SkzUpJlPf5fbZlKqTvI89DbR96wQ9yMikd6djdBmxaWw0G5u9r0lCIsecQ9nVZWjk8ZMLIBpoD5LihdkTMiwgiD/Ky8u9K35fghU8DxZJlkJa9SioSMDf5D8yyTKbbim0HdEhbQ2ZajL5qha77iWSey6PuoRisOiQQY1yJRdJMKUox0V7PZ/r2nDwsvEjSpx59CTGJoAAnzpsrNg8F8nq8KvjvJiLWZ2/2tsxJsucRautlTvev6N3in1rHk+I9K4ld40rAYwVIYIhGC9hgalTpw7pKlAwciiKQllZWdgxvgXP0aC6XGGbJ5vmZpJ27UzO/uUYkrXvA7ODVro/f5n5KWb2zQy//wXwoe5LrrNfQGLPNShArkL4EoohosCVRYGSyXu6L/zm40esK7yhHteLDQeHtKdiO6mXnDk5JMwIXrSukTWcl3ue37FHpUcDVog55hzuWnIXFxdePKA5jBeECIZBlqVx1x1BMHaorq72C4EGw2KxeLuJ+BJM7DrefTfQRic3189Gp2LXRxx4YStYXRg0ZuyubjoUK4lnq6maO5tus5locEguXjJ8yIqemRSpOUi425YNd3ZopbaBerWNAlcmpzQhvvzFy/dYKeCHqFl70cyYxl9cGLhCXJS9aEKvAD0IERQI4pTOzs4BjbO8/XaA2MmpqShtbQHnOhsa3Earv/g5TZ0JqB+3cX7iV6G3OqfT2c42x4ecKlwU8/xtOHhXf5i1DokiJZsiJZtFzqKYenMOhC7sdGns5LsyqNG0xI/oDQWqSrLZ3Wc4VoKtEAWiWF4giFt860SjHedxD/cVQCCoAAK9DuMSzc9+jH63C5MmyftUldzI6+ZDNKcZ3XtWMe5b9W8rpqCSo6aiVzVD3h802H1Pa1qG8SajgKqCBOvYgTysv8CJhVgJCgRxSmFhIcnJyWFDosnJyd5Vgepy0fDgQ73CFh3avIUYzrkG2eSfbl8lNw5N6LK3rdgBTRVHtWf8yySGMpMzyH3Hm0xIqJzPXkq790D1x1C0arSnNC4QK0GBIE6RZZl169aFHTN/+jLqKtpRFNW9B1gffQNobd5CjEu+i2RMQ0HljNxKpVxPrXyWT0I1mh4g+7RVAS3FJgwxtmBzn6MGfJlRJYmPWUw506GzIcSJfbgUF5/Wf8qbJ97k0/pPcSlR9kOdYIiVYBgUxUXtkS/obGslMTWNybPnIA/RRnI8+gnef//9/O///i+TJrnrj+bMmcOLL744KnMRuCktLWXDhg0BdYIa1UBCWzFfvmnjyzf3k5Bq4NxiS9R/0CoSmvnXUCe3ckpu5ri2Pmo/wAETwrlhPLPUUUKCome7/osgHoaRCuOD92Ar40JmGjKx7d4TMst3W/W2oNmgdy+5e8Jng/ZHiGAIKnZ/zPZnn6TzbF+GWWJ6Jmtu2kzJ0uWDvn68+gnecMMNolVanFFaWsqsWbOorq7m+KHTHN7WhK4nGcknkNPVZuODvXrmZs4nu/lgmKtBfUoCx+cvpy2lfPBdXHwXK6HKEYbYGikqIs1rBDCqOkqdU5CRWOuQ3Q4TvqvhYALoEcaQ4ihhIZlP7vw5GUePeo/6Zvluq97GbTtu86sJBGi0NnLbjtt49KJHhRD6IMKhQajY/TGvP/qgnwACdJ5t5vVHH6Ri98eDu34c+wkK4hWJz09VcujtdnQ9KX4C6HkeFSqmf6u3rD049SkJ7J47i9q8tMGHJ3s/Y+c5C/we95/WiOMrvKN1f9VtGyUjIUnu7Nhr7CtY6igJf26UyUed3f5WSZ4s37a3ytiyZ0uAALqn5T728J6HRWjUByGC/VAUF9uffTLsmPeeexJlEG+iWPwE//3f/53PPvuM4uJiNm7cyHPPPcfnn3/O5s2b2bBhQ1T38/gJ7t69m6effpprr702ZLPuP/zhD8yfP581a9bw3nvvxfzaBENP5f5GnrprO6f/IGNwhjFKlSTsxjTaUkvQZM5AO/k8NJkz8CiBCnwxKRN7bn7v+MHNy4yetY55LHWVsNYxDy2i5syNSlErTFNy/NxaZCTManT9WSNhsvXzC+zdP6z9r5/Q2Bl6X1hFpd5az77GfUMyj/GAEMF+1B75ImAF2J+OlmZqjwyuD2K8+QkCfPe73+XkyZMcPHiQn/zkJ1xzzTVUV1cP6nUKBoenj62jI7rxuVrIXX4r5pV3YDrvFswr7yDh0ofQ5i2kJcGIJWcSqs4Qe7mDh95VziJHERvsKzCgo1Ku54Rcj5M4WV2M5l6jChf2zGFyT/B+lVG3jwuV4auqGKxWMpuCfEapKnLjWWbXRM7CabJGbxM13hF7gv3obGsd0nHBiEc/QYDc3FzvzytWrGDhwoV89tlnAyrMFQweRVHZ+bLbgDbk6s+HHKmeJQlT8Fa69yKZ0qhf9g0+kg7Qox/8n7wBHalqAn80fBzfzhCjgQSf6SpZlFrAGbmVbuxeOykZiVwlNXz7OFUFlxM02sDEmV5hnHb0CHKYMpi0KHoseFwjBGIlGEBianRt0qIdFwxfP8E2nyLmSH6CBw4c4MgRd3NjXz/BoqIir58gENJPEAjpJwhw+vRp788VFRUcOHDAu/IUjDx1FW1hLb08qKgk6E+QkaalTtPmtdLxcFJu4l39YWy6IfjOK4FdcrBdd3jiljxEoEuys9NQwZv6fbyn/4I39ft42fARVXIjMhLLHDPcA/vrWK+wGeurMdZWIjn9s3UlZw/G2kom+/ydBiUzPeSXJgmJXHMui7Jj7wA0XhErwX5Mnj2HxPTMsCHRpIxMJs+eM6j7xKOf4L/+67+yd+9etFotGo2GX//618yYMWNQr1MwcLoskUXGbmimO/k4zZoeTvYe8xi3FinZKKjsGuKavyG/1lglVCNuiQCB8/oIOuYx1ZXFWnVur5dg3zpEcvZgaKhB19EGgLajDZc5CVWrQ3I60Fg7MLkU0q0h3heShDYnh29+8x4+3nkHEpJwjYgC4ScYBE92aCiuvO3eISmTGAmEn2D841JcfY2NjeksstnRdDVR05LJq6+dRZF7kBV9b1Zo3yeu3dCMJdWdIexff+b+z1rHPAzoeFMvkiCGnIF0u1EhAQNXdM3jYMt2TluPBYhcyEv2fkxfMH0OiX9+w+8Y4A2bTv7Fz71lEv3rBHPNuRPGNWJM+wnabDa+/e1vU15ejtlsJjc3l8cff9yb8j8SlCxdzpW33RtQJ5iUkcnqG4emTlAggBBFzU4n/9iQyhn7cizpfb08ZZeeRMt0DPZMFBQ6kkOs8HpXIrt0xzjXMW34X4QgOnpbyG1tedEreFprdBlPeqeLubXNpDZayfmfR2nY8rC/G0hOjp8biHCNiJ64E0GAzZs3c9lllyFJEr/61a/YvHkzb7/99ojOoWTpcorPWzpsHWNGCuEnGL+EKmrW2vI50nN+QAKnIvdgSS3H1DUFm6kBVeMMffHeD9xduophmLlgMOFgRauLuZhk9pkWctu7cLZ3oUlLZ/q728L6QoJwjYiWuBNBo9HI5Zdf7n28bNkyfv7zn4/KXGRZQ/6cwAQSgSAqFJe70XFnAyTmQOFy6P0S5VJcwYuaVTjn7ILeB/0+aXtXeN0JERIjfOghjFAKBs8AwqL9E16iwejo+3d0NjUhaTQkLF0S83UEgcSdCPbnl7/8JevXrw/6nN1ux27v2ySOZEAqEIwY5a9D2V1gOdN3LHkSrHsYSq9kX+M+vxCoh0xbJmZXGOPaWFcgIoFl+Im2J6iqIjl70EQZAvWcY3Q4Se/qK3vSZg28vMFv/1mESIE4F8EHH3yQiooKHn/88aDPP/TQQzzwwAMjPCuBIALlr8MrNxCQImipcx/f8DxNxuB/ekaXSDQaK0gqzHHmc0yuoae/joSo8TM01IT4XhIk1bT3nNIzLd6j2txczIvPHdB8RVPt4MRtneAjjzzCa6+9xt///nfM5uDfjO+55x7a29u9/6upqRnhWQoE/VBc7hVg0Eaa7uCnWnY3WcbgLfNsmsiNDiIybvK94xsVOKytIa25HVP1UYy1JzBVH8UQpsbPU/4QDKPsH7o2Opwsqm4gt723fliSyLn3noC9v2jw7D/3jz54mmpvq94W8zXHC3G5Enz00Uf5wx/+wLZt20hNTQ05zmAwYDBE2YZoAKiKir2qHaWjBzlJj6EoBUkemvhSPFopAfzpT3/i/vvvR1EUVFXlzTffHNHM3DHPB4/4h0D7IaGCpRbXkTPk6JJp7GlH9VkxNBubsWqsmFymqLrEhLiJYCTo3aNtTDeRcNy/vEEXpMYv3D/L8vMKWdrxe2qtKTQ1mLEf15NytqdvBZiRQs59/583+zMWQu4/4/5aJiHx8J6HWZ2/ekKGRuNOBE+fPs3tt9/OtGnTWL16NeAWu927d4/oPLoPN9O2tRJXe4/3mCZFT+r6YkxzMwd9/Xi0Utq/fz//9m//xrvvvsukSZOwWCxotXH3Folfyl+HHaHrSxVVpq5nNl1KGp+/9QH/klHFHTnp/qEzCQ5mHGRZ4zLvB5SXIHVhfqi9m1NCBEcOCVSdHpc5ya/cIfryB7fnx3klBmTlWvKP/o38hDOoU8HapMcpZaK9aDPmq38woBUgEHL/uW8GfU21J2I2adx9wk2ZMoXRrt/vPtxMywtHAo672ntoeeEIGRtnD0oIPVZKNTU1AVZKHp599lleeuklsrOzKS8v57HHHqO9vZ17770Xp9NJWloav/nNbygtLWXHjh3ccccdfPbZZ4DbSumKK67g5MmT3mL5m266iZ07d9LZ2cljjz3GmjVrAub1s5/9jNtvv91rqhupyFTggzcMGpxK2zJ2WjbRpfS9b051rOae1jIenvkhLh/hOpNwhl3Zu5jfMt8vScZk7abwVDVfzpoVYs9JCOBooWp1AzxTQgXqPvwT+QntfUcTUklY8z244A5vRvFAibZZ9kRtqh13IjjaqIpK29bKsGPatp7AWJox4NBoLFZK+/fvp6SkhMbGRkpLS3nvvfeYN28eL774Ihs2bODw4cMR7+exUnrkkUfYtWsXV111FZWVlQGt08rLy5k2bRoXXnghFouFK664gvvvv39EzHzHPNUfhwyDVtqWUdb2LwHH7WoS9rZvsXHvZXww7WWqMj4H1Z0hmtsxlZTWUkzOJFTZgazoSbQo5NWeQt/5KYcWLEDV+djyDNQVQjAkDKTswZdOZz+Lpe422PEQZM+G0isHde1om2VP1KbacZsYM1rYq9r9QqDBcLXbsVe1hx0TiXi0UnI4HOzdu5eysjI++ugjPvnkE5544olBvc4JQ2fwcJOiyuy0bOp9FFyojM4ELjn2HRbWLeeK6vVcWH8hRd15OJJPYkk5jEPThYqKJcXBvoXfQu0xkXD8c0zVR0lrt6NTxZeUISfaYJSqIjnssZU9BCFRG+wzR4Wyu91RhkGwKHsROeYc0VQ7BEIE+6F0hBfAWMcFw9dKCfBaKd1zzz3eYzDyVkqFhYVcffXVmEwmzGYz3/jGN9izZ09Mr23Ckpjj/VFVoKtBT3u1iRMN5/SGQEOv1CQk7IZmpnXnYVD6rQg0KrakGizph+hIO0p7xiGOLF1AWuZcko25tCYbcMSLj98ExdBQg6QS2gMwDCoqBp2dyeYQX6otte4owyDQyBruXuJuzN9fCEVTbSGCAchJ0Tk/RzsuGPFqpXTttdfy9ttvoygKLpeLd955h/nz5w/4dY43FEWl9mgrxz6tp/ZoK4rS96Hnyl/Kp+mT2dGUQvkbOZx6L5Mzn6RRU14Q8boqKl3JvSH4KKKaTo2LmkwjZ7PToz5HEBtTXOG3Kjzozjb4lz3EIISekRkFp9lrMvBmgplPjYbArzQhogyxcHHhxTx60aNkm7P9jueYc3j0okcndJ2g2BPsh6EoBU2KPmxIVJNiwFCUMqj7xKOV0re//W0+++wz5syZg0aj4YILLuCf//mfB/U6xwuV+xvZ+XKFn79fQqqBVdeUUJX+OVt2P8ycmhKuOpREm95CmvU4Eio9+qQwV3Xj0LejaGKILPSKnlgBDh8OSx2kRy6/0na2g5SIznwR+TXbOJPUiS2kcbG/x5IkJeFKXszr6ckczurb289xOrm7pZWLrd3uAz5RhsEgmmoHR1gpBSFUdqiHwWaHjiTCSmnwVO5vpOyJUAlIKgfy3mV6y7kk9vRl+hpsrZQc/yMuWceR0pvDXt9mbKQj9cshnLFgwPS2NjMfP4R1+jnurM+QLdAcpNZNR6MrQJJkdD0WVnx8L60JBhrTp1GfcxEOfRISVpASkORcVFcd9D6WtZO91357xjPuxChA6v1IfrSxmYu16fCjQ4POEJ1oxGKlJMKhQTDNzSRj42w0Kf4hT02KYUwJoGDwKIrKzpdDOzGowPy6tZjtybgcNbh6vsTlqMGmT+bwnFuwmSK/V+T++4CC0cGntZkMGBpO+R3vPy6hLRutfiqS5P4YdeiTaU+dTnqXjYxuHXrtJLT6AjT6WWh0+ciyFo3PY0mSvXtyy09+A0l1/+xpnvBwRhqur/xndAKouKBqJxx61f3fQSbTTCSiCof+z//8Dz/+8Y+Hey5xhWluJsbSjGHrGDNSCCulwVFX0eYXAu2PhISrpwKH9T1QO32eSERnuogzeSvQ21rpMaT6rSgytBJGCRJkiQJDBq+rBrqwi/29UaS/s7uuow1qK7HnFPiVo0jOHkwtekwE7qvb9ck0Zc7n8JxbAp4LVcYiIZHUk8bcugvo1ndg1VmoS66kXiux771/4zyNNnyZRIRm7dGiKKr7/W6xk5BsIK8kFXmMfd4NhKhE8K233uKvf/0rzz//PAUFkTf6xwuSLGEsTh3taQhGkc628Jm2rp4KHF1bA59QO3FY38CasJ7i2i85OfUKVMVFrqaNcxLTMWv6iqtVVWWZYwbv6g4NzLFcMDBcTnRnG9D02EO2NtN1tKEN0QLNlTAJjb7Ef3xPJ+WlN7v/GWOs3VxR/Q3vz536Vj6a+hq75J0seuUGNBueDy5o5a/DK9cHHreccR/f8LuohDDcnnfxwuwwZ459ogqHlpWVcd1117FixQp++9vfDvecBIL4QHFhPem/V6eqijfs6ew55V4BhsFh3YGpu5HJlb8hy7mdpck5mGT/7iKSJFGkZLPIWSQEcASQXAq6ploSjx3A2FyHznIWbZjenp4WaP3HOaw7UFXF/UBV0fV08kXpze59wEE2L0joSeWSY9/hHWUVl+bnsW17kHpBxQVbfxj+Qlt/GDE06tnz7h/x6GqzU/bEYSr31o/rUGvU2aG33HILF110EUuWLOHOO+9ElmVv7VpjY+NwzlEgGBEUxUXtkS/obGslsf0Ik4/8AlvtRcC3AIKHPSOhdtBkhNpUuCJ9JRB6hZCihvERFAyO3m29c3qmUHXir0SuhtcDETJ21Q4UZy0a7RQAHLrAjOvopqYGrd9TUVl+8hv8YeHn3Jao8ujeX3PxeT/oG3TyQ+g+G/7i3Wfd46ZdGPTpSHveoPLhbz+kKOMWZKlX8AcQao1nohbBvXv3ctNNN/Htb3+bO++8U7TSEowrKnZ/zPZnn6TzbN/+qV43hXytDYxhwp5R0JDkItM4FbM2fJaaieFzRJnoGFQtKx2zqK3/mOjawTgjDwFQuzDYW3HJepy6hAG1rwvXySWpJ43cjunUJVfwcMXLrD73+30lDVU7o7tB1c6QIhhpzxskOp3p1PXMZrLhC/chH1/M8SCEUYngv/3bv/Hiiy/y+OOPc+mllw73nASCEaVi98e8/mig+4PdoaeypwmtdAxn944BX9+h1WDSJvodU1Cpl9voxo4JA7lKKrlKKmZVj5UeERYdKlRY6Cxipj2DAy3bqbUei/JEJapRJZV/J9kuc2BBhLCkdzqBq75ImB3JqJJEvcPi7/QQ7WXCjOuyhBNAn3FKms+j3o3rsrth1lfHfPlGVCJ48uRJ9u/fH9bbbzyiKArV1dV0dnaSmJhIYWEhsjw0VSXx6Cf4gx/8gA8++MD7+Msvv+S///u/+cEPfhDmrLGNorjY/uyTQZ+TeoubndZtwADNbiUjqDa6XX0h1Cq5kV26Y3RJPkkIqoFljhnMdE5iv+7kwO4l6KO3jGFKs532zl28aTsd1E9vMHTrXDy75hRT286loDuGqaHyee4O9E4js5vPjzjeqrN4f/ZzeihcCfw08g0LV4Z8KiE5uuhDgtza74ja19KtaFVU14hXohLBF154YbjnEXeUl5dTVlaGxdL3BkxOTmbdunWUlpYO+vrx6Cf4y1/+0vtzfX09RUVFbNiwYVjvOdqcKj/kFwINQJIYsAACGsNCXLZPaLadxuq00KDr5l1dYOF9F3be1R1iqjIxO/kPCk8dn08o0lPu0B7GyX2wnJjcSflUmbb2DgrKozvHs9c3o/k8jM6EsCtDFZVOfRt1yX2uNn5OD0WrwJQG3f0FygdTeliRyitJJSHVECYkqpAot5CnD9E8ZAhauo02olg+COXl5bzyyit+AgjuLgSvvPIK5eVRvuND4PETfOaZZwL8BK+77jrA3VZt3bp13HDDDSxevJg9e/ZQVlbGokWLOOecc7jwwgu989ixYweLFy/2Xufw4cNeN/iTJ0+SmZnJHXfcwdKlS5kzZw7bt2+POMfnn3+eSy+9lNzc3EG91pgZwaLfbdXb+Pe3Ai2OfJGQyDLmU5AwmyxjfvShLCkJXcJ6tMalICWiorK35V126So8F+5/IwBq5QiJDgJ/egXQWFuJqfooxtoTmKqPknD8kH9Pz2GgJse9/KtLOo5V10q0IVQJCZMz0ftzMDyr1o+nvoYqqcGdHmQNrP9l0PO9rP9F2HClLEusuqYkxLMKILEy+Zm+pJj+DFFLt9FE9A7th6IolJWVhR1TVlbGrFmzBhwajVc/QV+eeeYZfvrTKEItQ8kQFf1Gw7bqbdy24zZyJD0QXOgnm2ewKGOtX0KL1WlhX8u7QfaWEtElXAp0e1tieTqJ6MyrcXRtpZo6bHKY5BhJ9AMdCMbaymEXPF9UVLqMLhrS3asnVVLRZb8Atf8c055fuHESEp9OeZOqjM/DOz2UXumuBfz7v0CHj61a0iS4LLq/m+KF2ay7dW5AnWCito2ViU9RbNwVdIYkT4LC5RGvH+8IEexHdXV1wAqwPxaLherqaoqKigZ8n/5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL48+Bv4o48+wmKxcPnllw/49cVM+evujLP++zZhMtFi6XDhO9aYpGPL5w+jotKQbqfL6MRs0/h9KE02z2BF9lUB1zFpkliRfRUfNf6F09Zj3iJqnXYxsloQ8oPNlDGLzswoU+hFwXz0SBKSa+S+OHjenXtKz6L6/Bu9Ovko9/Y8yhdt38HsSAt6bqy0m9z7fznmHO5acldop4fSK90JKtUfu8OTiTlucYohYaV4YTZF87P8/54cO5Ff3U3/xt/eN+e6LWM+KQaECAbQ2RldDVi044Lh6yeYlpbm9RN89tlneeONN7zjRtpP0MPTTz/NjTfeOHJlMIrLvQIMmrgQPBPt+N4G3v/9MWxdfY7exgQdF147g+nn+oRoFBeVb3/Iznd66Orqez1f0X+Xj6a+RlXG5+wuPcvqfVle7ZGQWJSxFgj8PUmShKqqZGYv5KjW6G2nZeMsna5PSLSUYLRn9c5cJVFfhSOzm1pN4pBk8wkCUbW6yIOGCKvBye45ZzmV65MJI0m0azTcNf0UCa77mFl7KefVXoYUYrcp2tXixnP/gYJZ/xyd04OsGXSCiixLTJ7pK+BXgvx8iOjMlnFRHgFCBAPwFZ6hGBcMXz/BZ555xpt1G8lPcNOmTRw5coTZs2f7+Qm6XC6vn2BGRkZIP8Hrr78+rJ8guMX91VdfZe/evQN+fTFT/bH/H1kAfZloSuFK3nn6C47vDWzQYOty8NZTX9Bw0sKyr09j3+5fcvLdT2g8fSv9t789HTnenvEMVbmfs2NhMxcdLATFSqZxStiavpOaJj7UVQL+H76qxklH6hGcXR3oHMnYUo7TLA/cfFkQHZLTEXnQEKCaz+VPF/wZRQ6dZZrdNp/zakNHUDx7fZESYnRJ8PULLh393p1DsMqMd4QI9qOwsJDk5OSwIdHk5GQKCwsHdZ949BMEePnll1m4cKE3DDsiRJlhVnnwLNsf20mPNXwh84F3TvHEqQc5kLaX6xrvI4Hgjtqejhwn0w/hME/CmLwZxVlLYkg/OHd93y5d735g0NW0SnfCaWLImBcMlF7bI421Y8guqTEsxtXzZb9m6EnozBeh0ZeQ2/E5Z1KOBz1XUiVWnHT3/4y00ouUEPNm3m8prlHjw+x2CFaZ8YzwEwyCJzs0FBs2bBiSMomRYEz4CVbthOeuCDuk0raMsra7or6kVdvBtpLnuPJIZFPgvZPdiVDn1q4D3A4PKxP7hNC3sN0q9bBbF67NVC9iX2948ckKjTopRjKiM38FIIjrR5/QqaqC4qwFtSsgyelg3nt8MvUvQS8/qX06V5b/v4G+Ii+fTnmTfflvk2POoezqsglvejsQYvETFCvBIJSWlrJhw4ZhrRMU+FC43L3PYKkj2L6gomrY2bk5pkuanUlMtkyPaqxH/Dy0OFW6FIV2TRvVmmYqNfXYpBhDbkIAh5X+tkeRkHWl6BIu8YqZrCsOKXSSJKPR5Qe9zjl1F2HXWNk/5R1Uyf+9anaE/7CNlnZTEyoq9dZ6/w4xgmFBiGAISktLmTVr1rB1jBkpxoSfoKxxl0G8cgPBMtHqembT5RyajLtQqKg49O0ocg8uTTevGupwaMR+XtygquByug1vQ9gehURK9BNACC90YS+FxJLTX2Ve/QXsnPZHTmQc9D7n29llMCR39xkx+3WIEQwLY+sTfYSRZZmioiLmzZtHUVHRmBPAMUXple4yiOQ8/+PJk+ha8q8DuqRNY8Wm6YrYLstuaOZs1m7a0z+nI/VLrEnVOERCy8ijqn3/638cMNZXo49gexQMnXm1nwAOBSZnEl85djNLT673HqtLrqRT3xrm/aaioIR9P6qozG5Y7nWZ9+sQIxgWJsxKcBxtfY46ihJdZ4zoL+hyZ5+5euCqx1FcCnWV7XS50kgonotZleCtA1FfzvMhs+LUNyKMdAugJTVIB6DBhDPFfuDAcPagaz+LMyUjwMk9utCnEb8Wdz77fMPFgrq1NCaeoirzIKqkUpGxlwV1a4Nkf7rfk/WJVUzqLA55PQmJJEcaeZbpKHkd/h1iBMPCuBdBnU6HJEk0NTWRlZU1aLPLiYyqqvT09NDU1IQsy+j1+sgnRaJfl5hK2zJ2dm7uDX+6gIMkpBowmLXYrQ6iUZdoO3aoqHQmH/ecNHSIt1j09H451TedQd9S5w6GN9UGdXIPi5SEPvlmVFdd0H2+4cDzPruo8h84mfE5kioxq2mp33O+o0Ehozu6NmNmRzLfX/I9kRQzAox7EdRoNEyZMoXTp09z8uTJ0Z7OuMBsNlNQUBB9eNiz0utfZ9SvS4w7AzSwl6dvK6eBWNGEolvZiSI+Y0aVYKs8j5N7LOjMFyHLWpBj3+cbLAbFxKKaS5jbsAqTMynMSBmDK7r64pvP2xgf5RETgHEvguAubC8pKcHhGJmi2vGMRqNBq9VGv6IO1Q/00ofgrXvwCKCiyuy0bOodELz+DtSQXThixWH9AJfhBDBtSK4niB59/SlklzP6VR4QmDDlOTz8Ic9oWFx7WdRjJakbRTWG/DKXkGbgipVjvyfnWGFCiCC4P7xHrA2YwE24fqB/vBFwBzz3GQ2c6plLl5IZcIk+JIYqzqgoTlz2vUiagXf9EQyA3uJ2fWtjyH9JSbcYSTYjySZQbb0/JyJp8lBddahKJ6piRZJNSHLSsIc8o0Xy+f9IqKqxd6RCsNzEVRtKRr9TzARiwoigYOgJ28A6Yj9Q2GY2sSUjjQatlunN+YxU8MdlPwio7lWIo8fde1LsFQ8vvXt/hoaakFKhNV+B1jAj9DVGIdQZPbG8f1SMchcacwJdPvX6iWkGVm4ooXhh9pDPThAaIYKCAVG5vzHAeiUh1cCqa3r/iCP0A91mNnFbdqZXIlO6Ry4VXFXaAPfHlqHhFLbJxe4PaV8h7PdYViUUSWQYR02/DNlIGZ4aw+LwAjiukLEpSXxt0wIkWYrKBUUwfAgRFMRM5f5Gyp4I4o7eZqfsicOsu3UuxdrQ/UBdwJaMNLcAShKSKjG78fwhTXoJee+eCpSePpdsXUcb1FZizynwS8s3YyDRZaRRtoCEEMBIqKBDQ6lzCulOA7WNn1FDXeQMT8mE1rR2DAjg0Ne9WDt7mHHeCJtWCwIQIigInb0ZbKiisvPl8L0zP3ylgqJ/zA6ZwrLPaKBB637rSarE3LoLSOwZ3o4w4BZAR9fWgOO6jjYKXdkU5y7FKtkxY+SU1MRhbc2wz2lc0Pv9ILfZSkfnHqpsp1FRQ3y4GNCav4ok2UakjGEo8Hw5c5fphG/eHgsJyYYhu5Zg4AgRnOjE6OZeV9HmFwINRmernTrHfCaH6Af6ntkEQFHLOaw4+Y0REUBVVdxNk3tn41uHprV2cm7GWkxKEpIk4UTh74Z97hNFdCoiCaqB1OZW2lqCNB3ohy7hEjT6qcM/qSGk22DhqhvOp3hhDnUVbXS22fnwlQo/L8tYSUxzhz8Fo48QwYnMANzcuyzhBdBDZ7sD5ZKHqXvxYbqUNBLks+Tpj6BKCm8kJlDUcg6XHPvOEL2QyLibJXfiSEoNCH1qnC4aFBtFirsB8hHNaT/XcEFwCl2ZlPRkUdO4mzPWYxFGG9ElfGXUSxli5WjmHtZvWkxJkTtsOXlmGrVHWwclgAArRQZo3CBEcKIyADd3iD6E8/4fvmSnnIrd+pO+c+Vm8jKeo02u4atR+q4NFo8tjtP2KY6kVHcSTD9cGpl3NYdY65hHkZJNhyTcAMPSu/+33FbMm6d+g0KQNnpyFpJ2KrIsI2ny0eimxH3YMxhrv7KYrxT55y1H+0Vw3prJnNjX7Bc5ERmg8YcQwYlKFG7uSnsddTs/pMs805u9lleSSkKqIWJI1GFToN+HY5eSzvGm21hoeHPk9gB7feNUwJ5zjvuJ/uUQkgQq7NIdo9CeRZJqGva5jRn654P0fme6oGc2+5vfCSqAGtNl6IyzR2R6w4khQcv6VYFmstF+ESyen83Kb84IXUYkiAuECE5UIri5V9qWsdOyia4/uAD3Xo+nBGLVNSVBs0MjIwMKi05fMoBzY8OTBCMhkWnMRzEn06kL0+tUgi7sfKz9Eit20QS7FyM6bPSF/hIwsNA2hdrGj6kNEgKV9eeOAQGM7h939cZZQQUrmi+Cnj0/WZaYPHP4v/AJBk5cimBFRQU33ngjzc3NpKam8uyzzwoj26EmMXQj39A9PG2UPXGYBRdPwZCgxd41kEw5Ge0wOnipqoLiqMHR9TaTzTNYlLEWszaZT7THgMjZnl9qw62OJxCqW/C+ZV9Oo9SGVbLT0nmSzvYqPrd9HMQOSEJjOBed+YJRmW70qD7/DS6EkUKWsixF/CIo9vzGDnEpgrfeeiubN2/mpptu4tVXX2XTpk188sknoz2t8UVXC0gyqP7hrPA9PN2d8A9sqwnx/OjiG/6cbJ7BiuyrAFBQqdTUj+7kxhK9OrHMMQMtMikOLSda3g+68pO0hcjaqWgM890NrOMco0li1oopVHzW5LeSMyXqKFmaw7RzsqIKWRYvzGbdrXMDGkaIPb+xh6TGmdFeY2MjM2bMoLm5Ga1Wi6qq5OXlsWvXLqZOnRr2XIvFQkpKCu3t7SQnJ4/MhMciobJCgVr7HP7S+p8jP6cB4nGEdyqnULp2o7F2ICNxRf53MWncJQ9n5Fbe1O8b7amOGfROSGtpI9Ouo9vVSXNv3Z8fkgmd+eK4zPY0JuhQVdWvps+QoOWcNVNYfFkRsiyFb/kXA0N1HcHQEosWxN1Xt5qaGiZNmoTWU0wtSRQUFHDq1KkAEbTb7djtfd/CLBbLSE51bBI2KxS6lLGzf2E3NNOZfBxF0+sCnzkTydFD9lkrZm3fG7+b6LL5JhQqaJBZ5ZiFCXeiRzd2tC7YffJ3WFE5FfJkE/rkW+Ju5XfO2inelRwQVpyGaq9O7PmNfeLrXdxLf5ueUIvVhx56iAceeGAkpjR+iJAVmiC3juBkosdT6uAxTHUkGuhI/TJwnFZHQ3YKVY5GipRsFFSsUs8ozDiO6f1zusgxhyLFHbbz/I191PgXQn1B8qBLuHgYBTD4Xp3epKGn2xX0jFAhSCFOgmiIOxHMz8/n9OnTOJ1Obzi0pqaGgoKCgLH33HMPt912m/exxWIhPz+eO83HARGyQvP0R0iQm+lSMoiXPT/fvT5wf0x25c4HdEG2LSVQVXbpjqE6VHbrKuiSxErQlwTVwHmOIorUPtGwujrYf3Yn9a5EdInfQlW6cXbv8P7OgRHx7jMYVOz2vn/UhFQ9q66ZQdH8LO/KzpyoR5Wgu6NHhCAFgybuRDA7O5uFCxfywgsvcNNNN/GnP/2JqVOnBt0PNBgMGAyi/15MhMkKBZAlhZVJz/BW+52EzqAbufqBYP0+XeYkVJ0u9EmSRBd2tusGUsYxDvEUtztmonOp1DTuZp/1Y04ZCzDpS+iRUmhxyci6i9Hp+zJ3Nfrpfqtv3z6fnj3CoWt2oJKYqHLdljU0VLYHDWOKlZ1gOIg7EQR44oknuOmmm3jwwQdJTk7mueeeG+0pjR8Kl7t7g4YJiZpkC+FFbmQE0Lffp99xbRgB7M9EXyD0Rjant+upaX3PneQiGdAYl2ExLqWjV9Q0QapWJElGo8sPcPcYHrcPiZXXzUOrlYXYCUaUuBTBmTNnipKIIAw6E83jFpE7L6wIdroyhmC2g8fT77M/Ln2Uq/+JLoCAAR1FbRpO1+9E1i9Em7gsCucGldqkSuqTKnFJTkobl5Po6BMmu9aK0ZkQ8d6F8zJorumM2F1IlBUIRpO4FMGJRjTiFtHENhLB3CJCcLpnXsyvIVb6J7oE/WBWuwLPAxypWYEmuAI/NKrMHMckeurKqbUe83NtDyx070OS4JJ/nMfJTJUte16hwdrA/vx3yLMUk6XmsWDqPBZkzufo72wR57Dw4gLySlK9721Tkh5Jdffe7O5wYErSk5gq9vQEo4sQwVEmmLgZzFrOWdtX0xSVie3C7NBiGqQu0IXb169JoyHL5WKRzY4Gd7eYL21rh/U19090AUBKRGde7Z90IQWuNlzmJAjX/myCcp6jGAcuQCXDaaaq/n1O2j5FlRLQJaxHoy/Bpu3idMqXFLcsItS+7iX/OIfp52YznYtZnb+afY37aLI2kWXOYlH2IjSyBkVROb31Y9E2TDAuECI4ioQSN7vVyadbT/L59tNcdO0sPvxjZBNbVVH58I/HA1eK3yqm+P2+ukBFlXlDXsBrpsnUGawAmJ1JGAytfMf+GWcaNwW7RVREs1cUytgWtbP3+HqvEMraySAl+ollTPuBE4hMNZlJLrfYvCbtZNv0L3BK0/nq7G+yZvI51KmnsGXZuCDxIlJr8/noj5URO51oZA3n5Z4XcC/RNkwwnoi7jjGDYSx1jFEUlefvDf9teqhYl/owxcZdVNqWsa3jH3GG2PPr1nRgciUN+D4G21lcsh6nLiFoqFJVFezt/xd0n8+LlIQhZZM3NOqwfoDL/pn3aac5ie7CmQOe43hldc8cUjHzq9QPSZm1mK+XrmLZtCw0IYRoKDqdBItiiP09QTwwpjvGTBSicWiPjdDlDB9avoOqSrzVfmfY4gajK3FAd7Zpuig8tZ3ZFW9ROe1KavK/EnRcqEQX/+l2oDhq0OgLcfVU+AkggMbageToca8IxZ6gl+cyy/jQOp2esyv5RcECVkwPL0JDEaYsXpjtV78navYEYxEhgjEyVL0CozXmjJ5Qc5DoVLJ433Jr76PQcx1o2rvBZaZh0hXoXYaQAggETXQJhqPrDVT1K+5ibdzy7jInoWp1SE4H+oZT2IOY445rQnx7UQErEu81fg0Vt/lxdpJxxKYl9vwEYx0hgjEw6AxNH6I15oxMdIXrNjVliO4XiFs8VWryex24Q63QgiS6BMeO0/oGAI6kVOw5Bai+yTBOJ5LdhmqcYOa3/f6pPRsZux3TUNEgAbkpRpYUpY/G7ASCMcnwGbuNMzxJLP1DmJ4Mzcr9jTFdL684iQRtK/3d12NjMOeGJ1wafVAkyW3NFCZE6U10iXQpJLKM+aRmzsU2uTgwGUarnTgCqLrbnK1xzCUB/y9OXeh5z1HMKSXdq433rS8NuQ8oEAgCESIYBYqisvPlyBmaihK9cMg1n7Aq8UnoXUWFIzHNwKW3zCEhwb+BcKLcwqUpPyVBbia0ICoYpbao5+Whf2jULnfHfI2Aa0oyOvPqsGMmm2dwRf53uSjvH2jMTAKkibv35+PrN03J4Rr7CtbrljKveAV7dPP4k/0cTinuVV9uipHfbFzEurl5ozhhgWDsIcKhURBNEktnq526irbo90c6Gyg27mJd6n/zXvs/YVeDZTApgOTNtpuWaqDu/+6mS0kjQW4lT38EWVKQJLXXCV7B/3uN+/wLk5/kw47v0KWkE8v3nr2Ty2g1N2DVWUCVuPLIP0dV5B5sDJKEQ9+OYkwBwyWorR8gqf4F175GuGfkVuySI+q5jik833l8tF2jSoCES+r7MpOAgWWOGZQumINpRjpykp78ohTOlSWuUlT2VJ2lscNGdpI7BCpWgAJB7AgRjIJok1hiSnbpbWRdbNxFkWEPezuv5qB1PXa1r0QhUW5h5ZW53v1GuWgFk7NawVKO7+rRI6Y7LZvoUjL9z09+hmLjLh+hjJ7alArOpBwHQFIlupT9aCyfBi9y100HVJw9FTi7t4Pat3J0JOVizy1A1fZ9wEsZ8zHUH0XX0eZ+jMSiDHeRviRJ1MWppdOg6f1nW+OYixE93dgxYSBXSQWgXm7zOyYjYZqRjnmB/56zRpY4vzg+2tsJBGMZIYJREG0SS0zJLt5G1nXIksJ5SX/k3MQ/Udczu3el10ZeZhvyJZ/3nSNrYN3Dvd1f/MOoxcbdFBj28AHzaVHTyZDOcgEH0fWuLIqNu7g05ae83X67N4swFCoqnfo26pIrvcfyG4zI7YHNrL1F7uYrSGj9hDZDi9/TjqRUbJMn4+5R49OEWePCNrkYTlei62wj0zjFzwg31i3JsYIBHSsds7w+fv2ZFMTUWE4SHXIEguFCiGAU5JWkkpBqiKpNVNQEETRZUphs+AKvWFz2vHucL6VXwobnA/qAbsucxJaUBBqUFsAtRDnOXO5uaeViq3tVNt30CfCzXpskCJZV6kmI+Xjqa6hSr12OCkvL0wmXierqeIM2vQqq5B2iAvacXh/I/vt6vRpuz81HW9GKSeOfMJOnpnGAk0HvNebodXH/iuMcJinpyDGUomhSDBiKhi+zVyCY6IjEmCjwtIkKx4DaRHkELblfMkPyJPfx0itDn/ejw3DjG3D102z76k+4LUlLg+K/x9ao0XBbdibbzH2ZlNNNn7DuKi0JicGXWp36Nt6e8QxVGX0r0JyzBhJs2rB1hIqG3gzRvmNu3z99mJIJCVVnwJWQjNXVyRm5lUq5njNyKzlKKlp1HLw9fVzcpygZMQkgQOr6aUhir08gGDbEStAXj9VQZ4N7z65wuXclVrwwm3W3zh36NlGlV8Ksr4a8b0hkDRStwqW42PKnS4OWNKiShKSqbMlII0lRaNFoyTKksuji88mQdnD057/D2qXQo09C19OBXdPOq8tOUJXh/6FrskeYSwii7fPpTEyhJiWLKu0+7zGjqiNNSaRJYxnQveOFSOHPUGhSDKSun4ZpbmbkwQKBYMCI3qEeglkNJU9yhyx9VmRD1TFmqPi0/lO+89Z3YjrnkqpkNr10NmBN4s4lhZ99Q2bPzL5VWG6LgXW7c2OeW9R9PtXeMGuoX+PIGdkPnt6/pkIli1LXFPKUtKhXf8lfLUKbpEdO0mMoShErQIFggIjeobESxGoIAEud+7hPaDLe2kQ1WZtiGi8pKlf97WzQ52TcQnjL3xU+KwZF6xbChnQ7XUYnZpsmeEg0hLdf1H0+x1EdYLCVn2eVHi6crEkxkLRishA+gWCEGQebLoNEcblXgEHTEXuPld3tHheHpBtja5E1u0YlsyP0wkoGUrrhiV8rLDnqzixVJTiR19v3s3/gIIy5rQQYGk6FPi9axoIuqKBTNfyDfWVA6NOKyh/oQQ3Th0fs/QkEo4MQweqPI7itq2CpdY+LQ6QYV1FpEUwcPCRb4fbX3EIoqTCtLsFzw/4T8H/cT9x0HW0YayuRnP0K38fR6s+jbBc4StEG+ZPaOSeZVbcsJO3a2WhT/MsdNCkGMjbOFnt/AsEoIcKhnQ1DO26EaeluiTzIh9Yo3ZIk3KHRm95ROJVuIsEW5VsliLjpOtrQdrTRk5ZNT25B1HMdK3g6uwRLfpEStGy6boF3lZcwNxN7VTtKR4/Y+xMI4gAhgr2dW4Zs3AiTZc6KafyRfInmJEjviBwGkIHMDph+JvaAQX/7I421A9nljPk6cYkKWmRWOGaRgNHb2SUYaV+b7idykixhLE4doYkKBIJICBH06dwSfF9Qcj9fuHykZxYVi7IXkWPOodHaGJXzgypLPPsVmdtfU4ImXSqSRHNWJt1GEyZbN5lNzaRYYnNsCGZ/JDl6kK0dMV0nLun9FV/omBOx7CHxgsmYz4ntS4pAIBhZhAiGaUXmlYh1WyLX7Y0SGlnD3Uvu5rYdtyEhRSWEn87U8PpSuHK3v/PE6SmT2bdoEd1ms/eYyWol4WwTKk1R5ae426QFGt6qWh2u5PSwiTRxQ5iSDHfoswSzksn9Zgf/nJ9BVnUXqq0vcUpO0JH6tWIhgALBGEDUCXoIWic42S2AoTq3xBHbqrexZc8WGqx9e5e55lwuK7qMN6ve9DueZ8zhZ491oW1u8x47PWUyH61Y4X7gK1K9bw9jbaW32XUoFKBrxgL3F4ZgQjcWBBAwqFrsUl/o1qjqmO7MpUDNIkdJQUaiae0U5q8tQiNLqIoq9vkEgjgiFi0QIuhLmI4xYwGX4mJf4z6arE1kmbNYlL0IjawJOD7rpJPTN/UV2CuSxBvrr6DbZAopXpKzh4Tjh0KuBh1JqdjyikAzdn5fobisZyESUoCbA0AbCpYLJrH88vBt9AQCweghiuUHSm8rsrGKRtZwXu55EY+37tlKc4KRlkT3Xp9sMPuFQAPw9Pg0J6ENsq8XKgQ65lDd4c5QXV4UVMwmHXPWTR+FyQkEguFAiOAEo2L3x7z1p+exT5/sPeZIjq7gPlgv0LBOEWMJHxf3UJmeMhL6bhf2qnaR4SkQjBOECI5TFMVF7ZEv6GxrJTE1jcmz51D56W5ef/TBgLEBhewhkBw9Ace8ThFjCbU3BcpH68LV+vVH6Qj8PQgEgrGJEMFxSMXuj9n+7JN0nm32HktIy8AVRMQgih6fqorObsPU3oZD7/+WidYpIm7oXfGtDuLsHm2ja2FyKxCMH4QIjjMqdn8cdLXX1Rq6s4ynx6dtcnFgBmdv3pSmuRYNkNnawZnURO8KUNGMrbdQqBWfbnICusmJWMuboTN0n1hhcisQjC/G1ieYICyK4mL7s08O6FxdRxvUVgYWuTt7MDTUoOtow6bTcCo/H1fWFBxGY9/J8Vz6oIIRHUsdJSG7u/j27jTNSKflhSMhLycaXQsE4wshguOI2iNf0Hm2OWjLsmg+trUdbeBy4TInAhIaawdan3MdyWnBs0DjRQD7F7n3hj5XhDK1NWnIuHqGX/Nq09xMMjbOpm1rJa72vvCxMLkVCMYnQgTHEZ1trSFblhkaToUtdnefl4+qM3iPOR090HueCthyC3svGCeiB6BClpLMFCWDo9ozWLF7nwrb2NqgIe9flyFrA/uimuZmYizNEAXwAsEEQIjgOKK50xqyZZltcjGE6PoSrtWZbXIxrrMNqLIG4ikJRoVcJZV1joVe+6KFriLq5baokl3SvzUjqAB6EI2uBYKJgRDBcYKiKHz6Rbn7QTDPP1XFnpNPoupy/9zlNhYMW+fX+9iRkTuMM4+R3hDnRvuFGPu9fWUkJilpYU+Xk/WkXVkswpoCgQAQIjhuqK6uxmLpCB2q7O36MmXpKhr27/aK4Fis85vnLAgQwJBIYJyXibk0Q4Q1BQJBAEIExwmdndFZxn/56S60lrPeIGHc1fmFcXBAhbnOfJa6ouvbmXRZIUkrpoQNewoEgomNEMExQrAOMLJPc+/EcL0/fXE6/DQm2m4xI0YwAfQWuM+hWIk+NGuYkiwEUCAQhEWI4BggWAeYxPRM1ty0mZKly7G8/TY9Dz6Eacl5IZ0gVBVkpz2gAbbG2gGOHnfSSzxlffoQS0szX0R7M4FAEIm4EsF7772XP//5z+j1egwGA1u2bGHNmjWjPa1RJVQHmM6zzbz+6INcvPZy9P/zK1BVFu3b5/YE7Fe87jHLMjTUBCy0nEmp7rFxJoBLHSWYVX3MLc18Ee3NBAJBJOIqVrRq1Sr27dvHwYMHeeqpp7j66qux2WyjPa1RI5oOMB++/QYeS8gpp2tZ8dFHmLq7/cZYVR2fd6UFlEd4SyPiqfWZCgmqgTmufIqVXCaFsDWKhGhvJhAIoiGOPv3gsssu8/48b948XC4Xzc3NTJkyZRRnNXp4OsCEw6aROZaTRmZnN+ldNqacrmVS7RmaszLpNpow2bp5pOQbHM6cxnxNAomuLreDAnFggRSiw0s4OyNwn2OcnY6t/GzIIaK9mUAgiIa4EkFffvvb31JcXBxWAO12O3Z7X4cQi8UyElMbMTrbWqMaV5mbTiVg7HFSeqaZ3PYushubvM9nFHSyQNLhyP4qSd2f0aq0oWi0o14a4RFjD9Hs/SVfNpXEFZORtTLdh5tFezOBQDAoRlQEV61axZEjwZsT79+/n/z8fADeffddHnjgAd55552w13vooYd44IEHhnye8UJb3ZmYxtt0GvYV5rCouoHc9i4AtHkLuT3vfNrkNnal1FKXmg5EZ6I7XExxpXOOayrZSgqNcnvUdkaJF0wm+cJ872PR3kwgEAwWSfVsKMUJ77//Ptdffz1bt25l/vz5YccGWwnm5+fT3t5OcnLycE91WAmVEBMRVcXocLL6yCk0eQsxL/kuVXIj2/WH3c/HgT5c3rMoYmcXPyRIXDWZ1MunDd+kBALBuMFisZCSkhKVFsRVOPSDDz7g+uuv569//WtEAQQwGAwYDIaI48Yag7FEQpKw6XWcTTRTcM41KKjs1lf0Phf9ZTxfjaQYzwt/UXfIM1dJ9T+ulci4YQ5KlwNXZw+SSYvjtLuUQ5thIvH8SaLeTyAQDAtxJYKbNm3Cbrdz8803e4/97ne/Y968eaM4q5FnsJZIANqpC5BN6ZyRW+mS7JFP8KVXADuceSRr64InsESaSAxJL2nfnIFpRr+V4eI46lcqEAjGLXElghUVFaM9hbhgMJZIKuA0J1G3dDX1NZWoUuzRbgk41zGHnUoKa9VMdumO0UU/IY0gjNEmvRhL00lYEFsRvEAgEAwVcSWCAjeDskTKLQStjoP1x2GAbUFVCXIw8ANMoJgotGf5WRTZ6GG3rsJPGM3omeWYTIpqxoQhqqSXxFWTSf2q2OcTCASjhxDBOCNaSyRtR5ufpITyBAT6lmQx7O11+whcMIuiqfbsiN59QZNfdDLmeZmkfqNE7PMJBIJRR4hgnBGtJdL0tZfTsH+Pd+8wbOG7JzYZzV5eLybCJxxF493nS9LqfAzTU0UJg0AgiCuECMYZlo6OyIOAomUrufIfb6X2yBecOHGC9/YeCH9CtLoTKoNzkOhyzMKpXSAQxB0iHhVnnO6ILpHldIeKLGvIn3MO6VNDhEGDsMAxlTnO/L6VoS/Rti0bAKKZtUAgiEfESjDOcJjT6VJ1mHEEjWyqKnShx2Hu6/pS3hS9ZdAkNZ1JrjRyldSArM+BWhZFQjSzFggE8YoQwTgjJ9nMbkcBq3WV/R2RvAXsexz5XJ3sNtF1KSo/39XKyjDC6T7ZncHpCXMWKdkBWZ9RWRb1q33QpBgwzc+k84PakKeIZtYCgSBeESIYZywpSseRNIkdHbBEd4oE+pzfu9DzqSMfR9IklhS5V4J7KlvItTjplosw644FCCfgFa3zHTP9RC7W5BaA9H+YhZygC+jVaShIFs2sBQLBmEOIYJyhkSXuW1/KP71go8aeRrbcgQkH3ehoVJJQkfjN+lI0skT34WZy/nSMx0gAJYEqh4EPdEdw4PS7pgEtKx2zBxXmjCRoopm1QCAYi8RdA+3BEEvT1Hin7HAdD2wtp669z1Q4L8XIfetLWTc3j+7DzbS8cCSg6sGJQr3cyh/kJqpVhQVqOt9RcgaX6GKQmfTv54u6PoFAMCYYsw20BX2sm5vHV0pz2VN1lsYOG9lJRpYUpaORJRSnQuufjwOBlQ9aZCYp6dygpHENnfwHiYPP87Qr9FRbRImDQCAYdwgRjBMURaG6uprOzk4SExMpLCxEI8ucX5zhN677cDOtf65A6XKGuJJ7ry8Hia+jI3uIqmCUjugzUAUCgWCsIEQwDigvL6esrAyLxeI9lpyczLp16ygtLfUe84RAo2WGTo9PXs2gEHV+AoFgPCI2eUaZ8vJyXnnlFT8BBHdM+5VXXuG5Nz/kk8oWnE6Ftq2VMV37yqlD4yAv6vwEAsF4RawERxFFUSgrKwv5vKrCod0fcP8HbaxJMPNAV/S2EHKyHkdNZ1RjdVMScJzuCvm8qPMTCATjFbESHEXczbItIZ+XJEiUesiRO5C6YotrJi7JBZsrqrEpl00j/dpZyAn+34k0KQYyNs4WdX4CgWDcIlaCo0hnZ3QrNRMOWgIafQZHTtCR9vXpqE4lqvGSSeut5zPNzRR1fgKBYEIhRHAUSUxMjGpcNzqqcdGIQiZSyJo/OUFH7j1LkLUytsq2qK6dtGKSV+gkWRJlEAKBYEIhwqGjSGFhYdhCTlWFTlVPg5KEAvwcW//WnX6kfX26t6DdUJSCJiV8Rqds1pK0pmBgkxcIBIJxgBDBUUSWZdatWxf0Od9m2Wrvyu8DnPwr3bii2LuTZInU9eEtltK+USLCnQKBYEIj2qbFAcHqBDtVPXsc+ZxS+socJCA3xcjOO1fjrLZEtXfXfbhZNLYWCAQTCtE2bYxRWlrKrFmzqK6u5qMjp/nVh6dpVJJQfPb+PD/dt74UrVZGG+XenWhsLRAIBKERIhgnyLJMUVERRUVFZBYENs/O9WmeHSsi4UUgEAiCI0QwDgnXPFsgEAgEQ4cQwThFI0sBzbMFAoFAMLSI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTlnG1J+gpeQzXlFogEAgE4xuPBkRTBj+uRLCjowOA/Pz8UZ6JQCAQCEabjo4OUlLCe6GOq44xiqJw5swZkpKSkKSRKSewWCzk5+dTU1MzprrUxBvi9zh4xO9waBC/x8Ez2r9DVVXp6Ohg0qRJyHL4Xb9xtRKUZZkpU6aMyr2Tk5PFH8wQIH6Pg0f8DocG8XscPKP5O4y0AvQgEmMEAoFAMGERIigQCASCCYsQwUFiMBi47777MBgMoz2VMY34PQ4e8TscGsTvcfCMpd/huEqMEQgEAoEgFsRKUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiOAQs2PHDjQaDb/61a9GeypjknvvvZfZs2czf/58lixZwvbt20d7SmOGiooKli9fzowZM1iyZAnl5eWjPaUxhc1m46qrrmLGjBksWLCAdevWcfLkydGe1pjlgQceQJIkDh8+PNpTCYsQwSGko6ODu+66i8suu2y0pzJmWbVqFfv27ePgwYM89dRTXH311dhsttGe1pjg1ltvZfPmzRw7dox/+Zd/YdOmTaM9pTHH5s2bOXr0KAcOHOCKK65g8+bNoz2lMcm+ffvYtWsXBQUFoz2ViAgRHEJuu+027rzzTjIzM0d7KmOWyy67DJPJBMC8efNwuVw0NzeP8qzin8bGRvbt28fGjRsBuPrqq6mqqhIrmRgwGo1cfvnl3paLy5Yt48SJE6M8q7GH3W7n+9//Pv/7v/87Yu0rB4MQwSHi73//O21tbXzzm98c7amMG377299SXFw8aq3wxhI1NTVMmjQJrdbdCVGSJAoKCjh16tQoz2zs8stf/pL169eP9jTGHP/xH//Bxo0bKSoqGu2pRMW46h06nKxatYojR44EfW7//v3cfffdvPPOOyM8q7FHpN+jxwHk3Xff5YEHHhC/0xjo/61blAAPnAcffJCKigoef/zx0Z7KmOKTTz7h008/ZcuWLaM9lagRIhglO3fuDPnchx9+SF1dHUuWLAGgubmZrVu30tTUxAMPPDBSUxwThPs9enj//fe5+eab2bp1KzNnzhyBWY198vPzOX36NE6nE61Wi6qq1NTUjIk9mXjjkUce4bXXXmPbtm2YzebRns6Y4v333+fLL7/0rgJPnz7NpZdeyv/93//Fb66EKhhybrzxRvWxxx4b7WmMSd5//301Pz9f3bdv32hPZcxx4YUXqr/97W9VVVXVP/7xj+rSpUtHd0JjkJ/97GfqokWL1LNnz472VMYFhYWF6qFDh0Z7GmERK0FBXLFp0ybsdjs333yz99jvfvc75s2bN4qzGhs88cQT3HTTTTz44IMkJyfz3HPPjfaUxhSnT5/m9ttvZ9q0aaxevRpw98DcvXv3KM9MMJyI3qECgUAgmLCI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAWCMUhbWxsFBQV88skn3mO/+tWvWL16Naqq8vTTT1NSUkJxcTGbN2/G6XSO4mwFgvhF1AkKBGOUN998kx//+Mfs37+f2tpaVq1axa5du1BVlRUrVrB//36ys7P52te+xle/+lVuvfXW0Z6yQBB3CBEUCMYwmzZtwmg0sn//fm6++WZuueUWfvrTn3Ly5El+/etfA26x/O///m927NgxupMVCOIQ0TZNIBjD/M///A9Tp07l3HPP5ZZbbgHg1KlTFBYWesdMnTpVWCoJBCEQe4ICwRjm/fffx2w2c+LECTo7O73HfW2VRLBHIAiNEEGBYIzS0tLC9773PV577TXWrVvHnXfeCUBBQYGfo3x1dbWwVBIIQiD2BAWCMcq3v/1tpk2bxoMPPkhXVxfz58/niSeeoKioiJUrV/olxlx++eV897vfHe0pCwRxh9gTFAjGIK+++ipffPEFzz//PAAJCQk8/fTT3HzzzRw8eJAHHniAFStWoCgKa9asYdOmTaM8Y4EgPhErQYFAIBBMWMSeoEAgEAgmLEIEBQKBQDBhESIoEAgEggmLEEGBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAUCgUAwYREiKBAIBIIJy/8POapuTj8OK00AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAT5CAYAAACrqqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm37zMz21VWXXKR5W7LNrZxAwOh1wAhJC/JGwihhBZII/AFSIOQBPJCCAlJSKOEEkpCAoGA6aa7YRswcpW7rS7tStt3Zs73x0orrbZojWVsw9zX5cvS7JmZs6Pd+c3znKcIKaXEwsLCwsLiU4iyvydgYWFhYWGxv7BE0MLCwsLiU4slghYWFhYWn1osEbSwsLCw+NRiiaCFhYWFxacWSwQtLCwsLD61WCJoYWFhYfGpxRJBCwsLC4tPLdr+nsBwYpomu3fvprCwECHE/p6OhYWFhcV+QEpJT08PI0aMQFFy23qfKBHcvXs3o0eP3t/TsLCwsLA4ANixYwejRo3KOeYTJYKFhYVA4o0XFRXt59lYWFhYWOwPuru7GT16dFITcvGJEsE+F2hRUZElghYWFhafcvJZFjsgA2Oi0ShXXXUVEydOZNq0aZx33nn7e0oWFhYWFp9ADkhL8LrrrkNRFDZs2IAQgqampv09JQsLC4s9wjAM4vH4/p7GJxpVVdE0ba8CIQ84EQwGg9x3333s3Lkz+cZqamoyjo1Go0Sj0eTv3d3dH8scLSwsLHIRCATYuXMnn/hOdRKkbiKlRAiB0BT4mAPz3W43NTU12O32j7T/ASeCjY2NlJWV8bOf/YyXXnoJl8vFjTfeyPHHH5829pZbbuGmm27aD7O0sLCwyIxhGOzcuRO3201FRcUnNl3LjMTRu2NgDtiogFZkR3Ha9vn5pZTEYjHa2trYsmULEydOHDIdIhMHnAjG43E2b95MfX09t956K++99x4nnHACDQ0NVFRUpIy9/vrrufrqq5O/90UEWVhYWOwv4vE4UkoqKipwuVz7ezr7BDMcRw/E0RR7emRJADSHiuLa90Locrmw2Wxs27aNWCyG0+nc42MccIExY8aMQVEUzj33XABmzpzJ2LFj+fDDD9PGOhyOZCSoFRFqYWFxIPFJtQCllOi+aM4xui/2sbmCP4r1l7L/MM1j2CgvL+f444/n+eefB2Dbtm1s2bKFyZMn7+eZWVhYWOxfpJTEwiHCgR5i4dB+WXOUUQOMIc5rmIlxBwEHnAgC/PGPf+T//u//mDFjBp/73Of485//nDU4xsLCwuKTgmFK3mns4KnVu3insQPD7BebSCBA+/atdO7ehb+lmc7du2jfvpVIIJDXsePxODfddBNTpkxh2rRpzJ49m7POOovVq1fv0RylmZ/w5jPONE2++c1vMn78eCZMmMAf/vCHPZrLcHDArQkCjBs3jsWLF+/vaVhYWFh8bCxa08RNTzfQ5I8kt9UUO/nJGfUcU1eIryU9VczQdXwtTXipwVlQkPP4F154IYFAgHfeeYeSkhIAnn76aT788ENmzZqVfmzDQFXVtO1Cyc/Nm8+4hx56iIaGBjZs2IDf7+fQQw/luOOOY8qUKXmdYzg4IC1BCwsLi08Ti9Y0ccVDK1MEEKDZH+GKh1by1PLGnPv3dLTldI1u3LiRf//739x7771JAQQ444wzkvEX999/P6eccgrnn38+c+fOZdmyZSxatIhDDz2UQw45hKOPPpqGhgaEQ+W1pW9y+GlHJ4/z4boGJh0+HYCtO7Yx4pA6rv3B91mwYAHTpk3jlVdeyTivxx57jMsvvxxVVSktLeWcc87h0UcfzX2xhpkD0hK0sLCw+LRgmJKbnm4gk4RJEml3d7zZzJFfHouaxboydJ14JIzd5c74+qpVq5gwYQKlpaU55/Lmm2+yatUqJk6cSGtrK/X19bz66qvMmDGDhx9+mHPOOYc1a9agFuSO/Ozo6uSQQw7hV7/6FUuWLOGss86isbERj8eTMm779u2MGTMm+XtdXR0rVqzIeezhxrIELSwsLPYjy7Z0plmAA5FAS1BndXM453EMPXcgysBo1cbGRmbNmsXkyZO55JJLktuPPPJIJk6cCMDSpUuZNWsWM2bMAODcc89l586dNDU1oTg0hCZAHSTKqoJW4sBut/PVr34VgMMOO4zq6mree++9Iee1PwJ9LBG0sLCw2I+09mQXwIF0hPScr0t/HDOcuUzb7Nmz2bhxI11dXQCMHz+e1atXc/311ye3ARQMWFfsqwIzGCEEmqZhSBNbtQet3EXMKUER2KrdWRPlMx2rtraWrVu3Jn/ftm0btbW1Od/ncGOJoIWFhcV+pLIwvwTvyoLs4xShomJD74hkFMKJEyfyuc99josvvhifz5fcHgwGsx7z8MMPZ/Xq1axduxaARx99lFGjRlFdXc3YsWPZsmULnZ2dKE6Nv//jERD9QheLxXj44YcBWLZsGc3NzRxyyCFp5/if//kf/vSnP2EYBp2dnTz22GN86Utfyut6DBfWmqCFhYVFHhimZNmWTlp7IlQWOpk/tjTrGt2eMH9sKTXFTpr9kYzrggKoLnBw9OjRCGES0nuImanWo1srTJbs1H0xbM70otL3338/P//5z1mwYAGqqlJSUkJlZSXXXXddxnlVVFTw4IMPcu6552IYBl6vl8cffxyAkSNHcs011zB37lzq6ur4zGc+k7JvWVkZmzZtYsGCBQQCAf7+97+nrQcCfPWrX2X58uVMmjQJgGuvvZapU6cOfdGGESE/QRVeu7u7KS4uxu/3W9VjLCwsho1c6QunTE/NYY5EImzZsoWxY8fmXcarLzoUSBHCPhn77an1nDy+PLk9EPcRMyMoQsWtFWJXUs+jlbtQnPvHxtm6dStz586lvb39Yzlfpuu9J1pguUMtLCwscjBU+sKiNXvf6u2U6TXcfd6hVBenill1gSNNAAE8tmIKbaUU2yvSBBDyT2i3sNyhFhYWFlnJJ33hpqcbOLG+eq9do6dMr+HE+mqWrm+juamHCreduSOKMx5XILAp2VsH5ZvQvi+oq6v72KzA4cASQQsLC4ss5JO+0OSPsGxLJ4ePL9vr86mKYMGYEozCveg+oSoIR3qlF4vMWO5QCwsLiyzkm76Q77h82FsrTvPaP7EdLPYFliVoYWFhkYW80xfyHJcLKSVBwySugFsViFydGhSR8MUOHKMqaF77x9LH75OEJYIWFhYWWcgrfaE4kS4xFH2d0PsKU9vsdkJRA900iUpJuzTRewNaCh2CUaHsIqiVOBBODRk1kKZEKALhUC0L8CNgiaCFhYVFFlRF8JMz6rnioZUIMqcv/OSM+iGDYsLhMH6/H9M0k9sk0GPaifXdhoUAB3halqN2N9OhlVNUdRg2pX99TyoCW4kjae2J/ZQG8UnCWhO0sLCwyMHJ0yq57awCKgpSLbPqYid3n3doWp7gYMLhMF1dXSkCCCCQFClRCtUQAEWbn2XqfQuY8I8vMOb5K6n575ewPXYYHVv+y25MtmOywdTpyWiTDs1w9RMcTv773/8yd+5cHA4H11xzzX6Zg/UYYWFhYZGF1tbn2bDxp5REm/n54YINXeMJmrXMGH82J80+bkgLUEqJ3+/P8mrCtnRi4Nz+FNUvfxsGCZwt2Ez1y5ez7fi7CY09FYBdXWFMCTZFwbMHLtDh6ic4nEycOJF77rmHf/zjH0QiwxdctCdYlqCFhcVBj2mabNmyhQ8++IAtW7akWV0fhdbW5/lgzZVEo80AKEIypXQTc8pfxe7/Jh3tLwx5jFgsNsRcBNKAyrd/BkgGy5noFcURS24CM9ElQjclOzpDbG4PsK65B384NuQ8hrOfIMDixYuZO3du8jhr1qyhrq4OSFSMKS8v55prrhmyn+CkSZOYOXMmmrb/7DHLErSwsDioaWhoYNGiRXR3dye3FRUVccopp1BfX5/XMQwpWeIL0BrTqbRrLCh2sWHjTxlsmSVIpMlv2HgzFRUnIER2a8kwcrc3ArA3v4saaM36ukBiDzbhaV5GcMThKa/FDZNtHSHGlEGxK3vy/HD3ExyKjo4OZsyYwe23356zn+CBgGUJWlhYHLQ0NDTw+OOPpwggJGpHPv7440nLJRf/bfMx950GvrC6kSsatvGF1Y3MffsD3oyOybGXJBptwudbnvPY+bgT1VDbkGMA3DnG7e6KDNmLbzj7CQ7FnvQT3N9YImhhYXFQYpomixYtyjlm0aJFOd2R/23z8fU1W2mKprYfaonDnVzLchak7SNNQbB1Et3b57NzXQdmjjqddrsdRRkcV5pyNEzP0OkVAE5nFU6Zef0vbpr4mwKY4ThSSoxAEN3nwwgEMCM6h0yZzsaNG+ns7ARg3LhxvLniXb71//4fbZ2dSQHdo36CA6zcfNbzDtT0DUsELSwsDkq2bduWZgEOpru7m23btmV8zZCSH27clcXhmRCuB7gIc8BtsmfnbBr/eys7Fl/L7iWX8PrfXDxww9s0rsrszhRCUFzsTR518FkAxJipGAWVGVYE++dieEYQr5pPoZldSHRTEm/uJLp+PbGtW4jv3Els61aijRsZW1jGGSeexkXnXcCOnS2sDUZoDEXZ6esmqJusDUYIDXLd5tNPsKOjA4AHH3wwZd98+wkeCFhrghYWFgclgUBgr8Yt8QXSLMAUhEIn5ayTU6nnQ3p2zmbX21ekDQv6oiz60xpOuWw642dXpr0eQyWuCOzSQMp+96gQJg5HCE0zaF34Q6pf+DYSkQyGgf5QmcD8G0FRUQG7FMREunTb4yHMYIbC1dLADLbxl1/ewS//+HuOP/pIpKbiKSmhtKKCi777PeKmpD2mEx9g1X4c/QQXL17MeeedR3d3N1JKHn30Uf7whz9w5plnpr+PfYTVT9DCwuKgZMuWLfztb38bctzXvvY1xo4dm7b93y1dXNGQ2UocyJXy1xxuvkXjf29FD5dAFoutoMTBV3++kFgsmuxvF5UK2zoSeYBuLYzX3oNAoggTVdUxTYHhtyPCAteuN7C/+3+oof41N8MzgsD8G4nWnZrc5lMkkUEiaAPq/E0gcwTiKCpq0SgkoCuwqSB9vdKmCKZ6nHvlujzY+glalqCFhcVBh5QGRUXN1NY24/eD319JptWdoqIixozJHOBSac/v9lfrH4PSsRs9nHvtLtAVpWmjj7Ixrt45Snb7+tfKQrqLkO7CqUZRFQPDVDHiKnU9LQjNATO+iH/85xHNy1DCLZiuKuJV80FJFatMK5w1eiy3AAKYBlKPIDQnNhPchiSkpopd3EzULy3QPj1dKCwRtLCwOKjoS2CPRpsZU5fYFo26adw0j46O2pSxp5xyCoqSOfThMG8BNQ4bzdF45rAVKfnK7tc4d+PDbI5MYW0ec9u2tp0lW1sYVeak3eeDuAZKakHriOGAXr0qVASieBSKUCAGBZqGOWohYVMSzzApE1JcoTYElQhcpplRHNMP0C+Umglk0Lr4XjoHD7Z+glZgjIWFxUHD4AT2Puz2EFPrX6OsbDuQsADPOeecnHmCqhD8bOJIAMTgG7+UnNb+Or/a9BNU2vEoXUPObe1IG1/TOrnF6cGv2uiwOdGLnBQSxGFG08YXIhiJkhDAASiARxHYMngkveUuahWVESjUojAOhUJEmrWYlQHj9Cx3f9seukKllJgRHSMUx4zoQ6ZqHGhYlqCFhcVBgZRG1gT2vvv29BkfMqb2BurqxqVZgNKURLf4MXtiKIV2HGOL+WyFlz+UVfCTXS20Ovtv/jVhnbvW/hZk4tg19rV4lHaCZimZbIe1I23884hEekHxgO2motJdVEJxwAd6lKjiSMwXqMqyttiHSxHEe1slKapCQakDp9uGXQG9IzUlQWhOEOqQa4JCcybXBAe7QiGxJuhR87eNzHAc3Rcd1NJJoHkdB01LJ0sELSwsDgp8vuVpFuBgTLOdkpJ2FGVCyvbwmnZ8Tzdi+PtLjKnFdiLTy3G+1cTTSFaVqLQ7BOVRyWH+VXjs7ckYGEWYHFV0D4t8/4++ijF9GAKeP9Sd+EVkzgns8RRR6msnSkIEi0wdrVcQs6EARV4HikPFNqBGqOKyoZWRJj5KQRlmT/bKM6qrAIUeJBotDnfGMSMctryDYsxwPE2MATAkekcErYyDQggtEbSwsDggGWy5RVzZb/ADiUb7x5mmZOvzW2h9cQdOISnTlORNXvfH0N7chRYxUV0qc7v6rShbHu7PPowR6+lxH55zjCkU4g4n9licmGLDY0ZhCBEEsNkU1AHtkpKNdzWBrcKFS5eQ7CdYgNntIN7cjIz3p34IRUFzG2j2/nW60TGNXaISv1bY+34FIxw2vLb8JEFKmRDhHOi+GDandsAmyfdhiaCFhcUBRybLTRSWUDBuDoHKlbi6JqNFi9EdfsIl62FAsIjDkcjVa1zVyhsPv08w0O/ecwqTGS6VEXYl2R+wzmUQEToOaUf0Wngm/UWmAUyp8Eb3xX0zSW4f53iHcOm7QG4RhIRrVBNGIrpF6hnHGNJgle892qPtlDvKmVd6WDJ2xRfX2R2N9+bySZxEsAuDUruTInshQgjU4mKUoiLMYAipxxFmBCXcBCLRSukXd93LI08+j6oq2G02RtaN44Ybb+bwOYdmFSspJfFIuL8ZsNOFjBqpLtCMb8ZERo2cPQ9/+9vf8uc//xlFUVAUheuvv54vfelLQ17L4cQSQQsLiwOK8Jp2Oh5Kj8WUPTDivasw1ACaUZjcHnd00jrlYQJVK3E4qvF659G4qpVFf/qAwTl9EQnLQwbzICGEQuDCTtu4f+Fo/DyyN109ak5Dl+WotCMENMWmEjTLU44lMDiy6B7ej43O630pUuKyCUw9TNiAAmmgDCi+/UrrYm7bcCetAyzZqnVVXDf/OuaOOIZtvd0i3AQoowMNPaHiUeiJabicI7DZihNiWOABKaFlZ/ISXHj1jQSCYd75z/2UeBO5c0+/9BZb1q1l4dw5afM1DIN4OExPRxuG3i/aqqZRVFg+xIpmApmjpBzAtGnTeOuttyguLmbHjh0ceuihHHbYYVnTWvYFVnSohYXFAYM0Jb6nG7O+LhCoRkHKNi3qZcR7V1HQModJE3+ElApvPLYhuUcm1oSNlCjGuLuF3TN/h+7oc4Oq+OKXgkjoTNAsSTtGjX0thWoHh/nfpzLSkRCdLCjSxGbo+HSNDoroshXTMuD1V1oXc+0HN6QIIEBrqJWrF1/Nvze/AEgK4z7Kou2I+KCECKkTDm8nHh/QuzAWADPhFt24eTv/fu5V7v3VT5ICCHDGCUdw7v98DkhvpfTG4sX86/HHOO600znus2fw+f89l/UbN2HoOoue/y+Hn3Z08jgfrmtg0uHTAdi6YxsjDqnj+zf/gIVHH5GzldLxxx9PcXEilGj06NFUVVWxY8eOrNdxX2CJoIWFxQFDdIs/xQWaCTFI2ETvbWzk5m9QUX4STRt9BH0xsgkgQFhCh94vWrrDT6DqXTZ/5ntsn3MrOyY/wEvdc+k4/A8ElfKMKRJ921RMftF4Z2JjFiEsiISREuIDEvP8AnZhEjPj3Lbhzoz7SSQS+NvqX1HasRu3L0is20bUZyfc6cCIpt7CI9GmfnE3+tcFV61Zx4S60ZSWFDMYPRIkHOhBj0V58803+dGPfsTy5cup9BZx1TXX8Nvbfskr/32a8778JS771rcThzZ1shcFh46uTqbXT2fJsqXcc889fOUrXyEYDGYdD/DSSy/R1dXFnDnpVum+xBJBCwuLAwazZ+gGsUCvNPQjENCjEN3iJ9idO2Cjj4hMHCfu6EisKwIISbhsHaExr0DtFjzjT+MO+Ue+x1nERSTlvAOtw9PbX+fGhj/giYZTzqFIk6JwELseJyDTA2F6kDzrW5VmAQ5+tx2RVho6U/v4SUMQ7banCKE04xhGr9ioqZGZKa2Utu5g1olfZvJRn+eiy76Jv6WZoM/H/DlzGF1TQzwSZsW7K5k+dSpTJ08G4AufO5Om5mZaWhNzNXKkY9jtdr729a8hhMirldIHH3zAhRdeyGOPPYbL5cpxLYYfSwQtLCwOGJTC7I1hBzLQGjQwed+9gcVFy1netAy7J79QB0dvMI3pfT4lsKaPqUc7WbHLxzPhEEtkPf91Jc7ZJ4RNsan0GGVJ4+/y9sd5cum3OG3tW7jiUQojIUqD3dh1nZh0pFiBA+mM5ReJ2hHPPC4WTBU72Rd0Yy9AKjYkMHv6FDZu2U6XL9F1Y3zdaFa98Cjfv+oiOn09yX3dLhe+liYiwWDOVkqqpmIYOqYbUAWR6IBUid48w8HpEdkCbxoaGjj99NO59957OfLII3Ndgn3CASuCN910E0KIvLoYW1hYfDJwjC1GOpS8q46sd27lggk/5Ptj7uSXI+/jklX3csLfX6RH5C4i5hJQqgkC4g2qO7dT0JTugltXOYkfbW6iTWqMjquoCN5yxAn0iqBE5c3eiNG++I8ZbOS6wJ/wGj2UGj5KpKBcFjASO+NQE9VdBuF1lOX1Xsts6euSkLAIjXj/rVwIre8Hou4akDBhbC2fO/kYLr7mJnz+nqRwd/Rk7qIRCfQwZ/Zs1jSsZcOmTQA8+cwz1FRXU1lRQe2oUWzfuZOukA9btYdHnv0nKAKt3IWtwpV3K6W1a9dy2mmn8ec//5kTTzwxr+sw3ByQ0aErV65kyZIl1NbWDj3YwsLiE4Wux9CyWE19mNKkPbKTfzn+ieYPI8og1jONyK7zANjsMpgZyv6MP92logoFtzyKl+ML6fgghgxWM3r8s4BEqNXcuttNSXcnl3Y7KJL9x7ILGGsX2Iqa0Jyl7OZ8KmP/RSHRW09BoiLRZCGaLEACISQ6UNLbKKlPSJ1qlEMrJlDhKKMt2pF1vhX2MqYXT836uuztMygUG6rqQUqJjBrETQ9dcgRlopX7f30TP//tX1lw+vmoqkJhkZfS0jK+edll6dfXMKisrOCu22/jyquvwTQNigqL+NNvfwNATXU137j0EhYe9Zn+VkoClN68wHxbKX3rW9/C7/fz/e9/n+9///sA/PKXv+Tkk0/O+l6HmwOulVI0GuWYY47h73//O8ceeyzPPPMM06dPz2tfq5WShcXBTXhTJx1//TDnmJ3B9azseJmw0e/GCzp1Xis5hkbndEBwAhqXxpx8EDaISECYuMs34nL5qJWljO6ZwusY3EmEtgHrfKW2IBfXPkh35bE8330kX3wrAL1pE/0kxo9ceDeFo1YBoIW9jPnwCJ7zFXNi4RjCR89hzIha4pqNFiT6gHNoCFQ1SoW7PZE3CCzetYwfLLsz63v+8ZT/x1Hlh2V93eGNodpMXK5aREDFDMmUuJU44CeCTgwhDWyxoddN3cVeQn5f1te9VTU4CwrStlutlPaSH//4x5x33nkZ+38NJhqNEo32/zGH6jJtYWFxYNO+bnPO/LOdwfW81fpk2nZ3ROPUpjd5rsJNY8F4OpCMsCvU2AS7y1cQrP870pVYUwsDayMlPLHubNpaZyaPIaSJq7uLp947jqNK1nGqfwagpEWjJqJOTVpWfZmCEasRikR3+mic81/mvnclWngKAEEkbRl6O+hIdMNOLFqAUHSEonPMyPn8fP53uPP9B2iLdCbHljsq+Ma4CzmqLLsAClWi2kxsFGFs86E401s+aUA5TnZhJypjeBlaBJ0eD3anK2OeYGFZRUYBPBg5oETwnXfeYfny5dx66615jb/lllu46aab9vGsLCwsPi7CRhB3llAFU5qs7Hg542t9MnVq24s8h+SDggkYSIJVKwjM/H3aeMXRxTdm3sPd713Iu62zGR/czFEdb1LYF1nZBoh7MN3HotonZjijgh4uJdQ+EU/lBvrKz4QmP4K5ag6YccLxEAVSRVc0TKEQ622p5JSCQlOghL30rcgJReeoimM46pS5rG5bz8YuKHJWMMV7CC6pQzzHA74kESGqduOwZ07c76uOU4nCZsWGKRQUmX3dVCgKUig4PC4cHk9axZhcpdCsVkp7wWuvvca6desYO3YsdXV17Ny5k5NPPpnnnnsu4/jrr78ev9+f/PdxJ1laWFgML65xXkJ6d8bAmPbIzhQXaCYEklPbXuSY4FYUJG1T/t73Quo4kfh32cz7OVF7mVNbn6fAGJTHJgPEg09jxDZmPZ8R8Q48Odq6LsJv34YeC+Awg7jNEEV6N964j/JYBwWGjtcUaSue0tSIBysgXsCcyqkcM+po6ktmowiVqOIg5HAhlMwrV9JMpErIuBuRo6WSINGB3oWgR8ttxUnTpKOtlZaWFiKRCHaXG1dBIXaX+4CvBbqnHFAieN1117F79262bt3K1q1bGTVqFM8//zynnnpqxvEOh4OioqKUfxYWFgcvI6dNZ210GUCaEIb13AI4kAkdbxDyrkN3duXKmUeRkhm7E2uQ2YbFQ4uRWawm1elL/uxcJSj5i0abJolpKuYgsVCkiUfmdr7p4UQEqKqk5uBJ29C3ajOSX3pJVYGDkZWlKEO0TFLiMUzDoKuri3A4nHPswcwBJYIWFhafXEzTYMeH77P2rdfY8eH7mAO6nBum5J3GDp5+vxn1+MN4q+Xf6VafyO92JQCbEaA1un3IsYFmN/GgLXcdTNmDqe8a/G7QXJ24yzcm/IyGRtE/NSTQWJk5lUEIO2KI9yBNDVN3YJiDLDpdJiNAs2GYefWWx+PUsMs4pjHEeCmh95h+v/+ga5abLwfUmuBgtm7dur+nYGFhMQhpGIRWvIve1oZWUYF77hyEmrhpG6Zk2ZZOWnsiVBTYqRQ9hENB/Fs38eGzTxLo7E8DKCgt57gLLqXRM5abnm6gyd+fcD3LUUXT1j9S5hmFSy0gbAR4z91AsdOFO6JmCFZJpyeokqlZkTQT4qeHNMJd+VlPyIGuUhMQVM1+tN9Fqeqop11J54oPidmyVVLJT8R1w07ESJ25YQx9q9bNGNI0crpEURWEQ8UI5mi+24sQdoTUwFQwpUEsFsPhGLr908HGAS2CFhYWBxbdL7zA7l/cynu6m05HIaXRHmZqIUbccB1vj5iRJmZuopwYWcHopvfTZCvQ2c5/7vgFz1aeTJNnXMprq73Tea+4nvN3/JdSsYvCYJAVczsoCLo5dlVFXnPd3W5nVMCO5oklO8/7Nhey6+0q4sE9bPYq+nPcNJePqtmPJtMj+pAFOmOmfI2WWOZi0WSIFB2MNAz8y9ch2ruhtBw5YyaoKma+AhrpwuYuz/q65rUnKr6oOdYOhQOhFIFQUCVgJKrkREO6JYIWFhafXrpfeIHHb/0rf5x5Me0ub3J7edjHMX96gScmxtNKKoelRklr9q4QEjiq4y02u+sAhVG6gkcKgkKyS5W8OGoe9ok2oloXQWUznUVhXqWNY1ZVoOSyBoUTf3AJvF1B3YkJV6ZvcyFbXxyZZRaQbVVQUxVmz3mQkCwhWhrAXbExY5CKGvMCUO89jEyxnFLGENLM6taNvvkqobvvwGxvTd6YZXklxpXfJXbUMUihJPbPghQQFkHUoES4SlMtQgGyUOWnv/w5jzzyCKqioCoKI0fUcM23vsn0+vrEMOFAqN60YwsEkW4DuyOO0z183eJ///vf88c//hFVVTEMg0suuYRvfetbw3b8fLBE0MLCYkikYfDPu//Jz+adn/Zau7OYf044JrGGNCgYZESkuT/tIAMCKDQCzA+0MMusS1ZmMWIbiYdeBRmA3qW9oHMkS+s72V4T5jXaOGZVZXYZ7NUo/5Yitr4IY47bxa63qwacdfAssq13SU6rXsPE1oQbN+JX2KB6aCvvt4ikhGjUjd9fSYEQuLQCAlkmZprdKBlEJvrmqwRuvi59h/ZW1Juux/zJLbiPOIJw3JdlnuDWimguaMfTGkLGQwjNidDsqKVe1JJCvvK//4uvs5OnHnkYb2/7ohdefoX1Gzf1i6DSH1zYlxIxkEBnFIdr+LrFn3feeVx55ZVAIs97+vTpHHPMMRlLrO0rrMAYCwuLIelZvoI/1Pb2jxt8A+zLN8hwYxwb3JzX8ReGoxTKxP5GbCPx4NMJARyAO6Jx7MoKaptdbKsJs25CAYhBof6iENV5ONDvkvVvKaLxv6N7XaDZbt7p2wu1CGeMXMvEov51TEfMZEZDDxXtiWTzvliRzY3ziNBfhzNrAIyMImVqvU5pGITuviPnrNQ//BqntFFg86Y04gVQhEqBzYtLcWPDgV5bjW3UKGyjarCPH41WWsSH773HU//5D3fc8vOkAAKcdPxxfOFzZwLw2BNP8eWvfZGrrr6Mk844mpWr3+WVxS9xwmeP4phTFnLWOaexdl0D8ajB4sWLmTt3bvI4a9asoa6uDkjEcpSXl3PNNdewYMGCnP0EiwfMJRQKoev6x56CYVmCFhYWQ7JsU3uKCzQfxgcamdmTXwF8ITwIBFKaCQsw0xgSBcwWNJSyo2oXO6qizGq/MhG5KYMgPCjaSPTw62n72jsmEKR5yHmojnkompdTSn/DeHcHg7MI+mzGSY1B2srsRKMeNjfOo6OjFhcDrcN0t6UpFFSlCCFS3Yn6mtWY7dlbKQmAtlYiH6zGNWsONruTHhlHlyaaUCgU/dGtmlQxHTY0R7+4SClZ8tabjB1TS4nXm/EciqqiOZwsXbGEl//7BuPGjqetvY3PnDifJx55hvop0/jnk49zyZUXsHpl9pZIfXR0dDBjxgxuv/12lixZwllnnUVjY2PG+qH//Oc/+clPfsKmTZu49dZbmTFjxpDHH04sS9DCwmJIOp2FQ44R0mRkeBcTAxuZ17WCU9teyO8GI1wo2iiAXkELZB8KeCIax+2YRlNRI0GHH8U2CtU+BdU2GjPeiBFdmbLPSPckpqvj85kJFc5mFpzwOyYVpAvgwDk4oyadK2eyfNnn6WivxSMdVJtepJSEjRAIBaG60LUCQpoXn81LQCtDiPTAErMzv+oqemc7PUgaMdktFFoVjd1CoRGTnl53ri4MNCXVtolFwpiGkWJhbd22nRPOOJMjTzyZ793wA0zDQLPZWDD3MMaNTVyrlatXMK1+BvVTpgHwxbPOoalpNy2tQz9M2O12vvrVrwIM2U/wi1/8Ih9++CHr16/ngQceYP369Xldj+HCsgQtLCyGZPTMKbBiedbX08qOkavveCqqfWq/+1Dm7j7ex7mtVdR6/OyqfpuqlpPpiO/ApgcolKtQ6XcjCgSHlh2PursB1TDZMmocQU8RnlAPo5q2ovT5M6XEGdcZM+4l3CJzYriJYBsjCeChgCAEHWAq2OLFTI6NpwOTHns7q527mKfOx7QJNE3ilDpOw0EkiytWKc0ezTmQSGkpHVlqke5CUg3omonTcGDE4whF0GOatHcGmD6tns1bt+Hz+/EWF1M3ppaXnv4Pjz3xL158JWF5C0XiGVAPNGM/QQF2p4amaRhGf5pFJBJhKIZyc9bV1bFgwQKeeeYZJvc28v04sETQwsJiSOaPr6BIg249/bXxwc2c2vp82vZ8V3YU2wArTaS7yzKhmy9T31XNw9F5dLji4KoGwM1oFiibmdy6GnuPnwlFh+LWinhsvJe753+fQEG/m7Ag4Of4t/7LpM2JijH1uzswiyUxR/rMG5jAIo6hm36LWJVQ0DMRV7iGHcAmRyvdBQ0UDF6nRIIawW04MdHSrGNt+iyU8sqsLlEJiIoqfDNmZny9jzYk4yM1GKF+EdcAu1QZV1fHKSccz9XX38Cvb72F4t7qWqFQKDlWUQSavX92cw+dz9Xfv4oNm9YzacJk/v2ffzJiRCXl5W5Mcyxbtmyho6ODsrIyHnzwwZS59PUT/OpXvzpkP8GpUxMtotra2nj55Zf5whe+kPN9DjeWCFpYWGTEkJIlvgCtMZ1Ku8ZFx0zkzpc2IqTJiEgTbiNESHFxVMebQP6i14cEAqoHl6sAj55oV6RoIxPBLjlcoiD5R+QI/hU7I21BJ4SdV80pUK1xXlkZk0UdL1cq3DZrbtpRAp4injrpf/nc839n2sYPKFMCtE2U+ISNiF3BETMRJATwcU5Pvz5AoGgjimnDHi0jUJRoPpst+NRUowhdI6oJTAUUE+y6RKgq7iuuzhwd2ru79xvfpS1Hbl9iPoKIKXEPmIAGVAk73aqLO395K7/5w9189gv/g6IoeIuLKSsr5ZuXXYaqaag2O6qqYC/oJB4qorysnN/d8We+8e2vY5gGXq+bv/3t/4hEmxgxYjLXXHMNc+fO7e8nOIB8+wneddddvPbaa9hsNqSUfPe73/3Ym+secP0E9warn6CFxfDw3zYfP9y4i6ZofyRjtV1jxBOvMb/59ZxpD/kigedHz8Q1YisnbriQuN2PVOKY4Y0I39KsolrmGMkdVSfSrTrJLL0Sj4zwNX0FC6J1XHHqLDpdjozRq0hJYcDPpX//FdMmb8NxdOJ9VbRHmdHQg4ngN1xMNwWZzyVBMR0U+CfRXfoBAAUFBRxxxBGMHDkSTeu3M6KajYDDnVJTVDElRWEduxEl9sbrhH//W2R7W/J1taKK8m9cjXnUMezOI9l+BApFg+aZyHeXdEdbsu7X1xtQ1wOEQlsAMHUH0tQQio6ipbZecrvHomUpwm31E7SwsDio+W+bj6+v2ZqypiekZMy7b3DUrswdXfYUE8GiihPYVhpgvLOdpppXscveqEkviPJDcLRsx9bjS+7jVAuYU3YCrZ7xdNPvxhNIqpQeXMQJY8PT08ZRHW+hGkH+NSJIpzt7Lz6EoKfQy86aOiqUDry7JQXVIdrKHXxQD44NXrr1HEFBImHhxe2+7GNICGC3M90SMhWBz2OjJKDgWngSzgXHE1+zCsPXjCjz4p0+D6fqJJTnCmumG7og0cg3aivBpvtTWigJVaW4vDLZG1DKfn93QviiGIZGXLejCBNV1dPGHexYImhhYZHEkJIfbtyVcssd27abIza+R1VDorvD4B7r+bhB+8Yl/pd0V46j0TOBuvhaDmtNFylTsxEZOR52NVIZdTKz5BjKnaNQFZW1A/LxapVOFti24xEDcvSKYjjCNuiBoHvoqFYAf2kVHWtK6WgoxeaJM3JhC4yDVqMS9jJYUQIBhyv3+d0KDr+BUFXsMxOuW0MNExI6Dplof6QhUjrUD8aGwJXjryEVG+32MuxmHAUTE4VRlV6czv6UDSH6JUHX7USjbqRUB7xu4HCEUsYN5mDrJ2iJoIWFRZIlvkCKC3Rs225OaliGEuzGtDuR7kKEHkcN9SAAw1WAEo8i9HgWxyRIzYZpc6CFAwhRQNmIAFcX/o0z4lU8bwp0QVpBbCEEUkKweiwLIwvwqEXJ6MIyBAKTI8tWscDVSCzmoru7kr4FQjlAQD2h/Nov2V3upFDHgza2vjiSmvkmhrsmr/1tMS9RowVTiaW9FlcTTXVzYSqCmCZw6P0ipxhODC2IjoENlSoEu3KIYGWWsuIS0DGQGNgg2dzXpip4HKkSoKoehGIjHhNEIunuTikVIpECXC4V7ROiHp+Qt2FhYbGnmKbBrrUfEvB1UeAtYeTUaTRH4iidUYgaYFdYuOE9lEgI6XQTHtMfti7iMRwt20EoREurcO5qTLMK+27X0apaHLEx2NQyhDaCeLQLs+AtSm3/xRAnpdy6TaCpuJyQ3YE7FqXG387r9igz6SRUsg67PcIoVw+3j3oFr7O/Qmc06qZxUyJpHSFASqJVoxnZuIaCYDcBd2HWNUFPNEx1oJtoeQ3O9qa+d8iuFSW0TDiflqotOONBavzt6XmPvWuC9piXgu4JdHsb0nJDBvcVzPr3SEvMFwipYmICKoUIRqLQgkyxCG0IKhEUZpDAKDpBEcEUEgfgAAwpCEo7Nd70BrlCCJyOGgI9fdc2U5RPorWS0+n8RDTYtUTQwuJTyMalb/PK/X8mMCBRe1flTF4uOxJ7JLFmND64GU+skZ1TZhKyO5OipNBvbdnbdqMXlRBhPI6W7Qi934qUmo1oVS16UQmezjpUmxeAmFFOc3wqYUfqutLm8hreGn8IQWe/69ATCTOj6V26R7xO2O7CSxdTWEvxoIosdnuIqfWvsbbh6KQQSpsD6SrgmHcX88xRZ6TXNu2NCTyi8QMUIF4+AjUaRhgGG+umsnjOMQQ8RcDs5FyOaHyfcX1C2bu/u9OFQOCIllPom4p0706Zm5Jn7KGSMe5FoAyQ3kIEBQjCSHQSN3BXFgswik5PhpxHRUiKRBRb3Il02tKEzDSdyCHyNU3T/MS0VrJE0MLiU8bGpW/znzt+kbJtk3ssz7kPh7ABQjA+uJlxnh08fNpFBJ3u5LgUIZCSeEk5xGPohV70Qm/CTarHKKzsRisELRalp8uGLVaccr6AUcpqWZg0NDaX1/BC/fy0uQYdTpbUHcEScWRyW6ls53xxL/NYmtzWa/wxbvxyOjpGMdA1OnHrWk4qq0oX2GiYIxo/6Bc1IDJyPJsrRmSdywv18zmpYRnj2psQegxHyw5Ejw/D40K1TyQuNZpcTSn72QwdRZo5XaKKKbHr6WKZCGpR07a5M8he2AjgUFwoQkUCQRHJuGArACR093SjBSWa14Hi6l8XHJgEn4t8xx3oWCJoYfEpwjQNXrn/z6nbELxR1isyQqCYOqNLO3n66P9N23+wEEibA1vbLuLlIwDw1voYP2E5Dkd/9GY8XEzbSjvdu+Ykt70SuAyj24VSsQxdifHW+EOS50+hT90G0Ekpd3It3+G2NCF0OkMUF7fi9yeS5/vWL8c3baOubTdN3ooUV6sy6FwmDDmXt8bPYO7GrcSaP0hqTDy0mI017bwy5UXGuc5L3Q0oiIYzRof2URxK5CRKU9K2o4dIII6jwEZtnQuUocOPTGkQ1gOECaApdlxFXsxo6nWLx+PcddddPPnkk6iqis1mY+zIMfz46huY85n5SSHM1WtwIPmOy4f169cze/ZsvvGNb3D77bcP23HzwRJBC4tPEbvWfkh3Zwe7nSMIqW4cZoRNIyfhr6iAqMHEnes4rvM17v/yNxM75BCCuvYmFMAZDzKt+x06xpUxpn5Z2jk1p5+ahX/EfPsKArsOBcAwE9ZlQfcE1ta1plhoaaTNQQFp8gAXMYflKAPy50wUdnvL2G0fiSfcw4RwAAE4WrYTGTmekf7cUYtNxeVDziXodLNxzBjqmtfQtwBoEsAuJ+NwnUhTuYYUsZSlQYcepygSJOBwpViEiikpDpk445Kd67tY/eJ2wj39LmVXocq0EyoYMcWLhsBu6jhUJ3bFmTKtkN4fAGQIE+GyQWpqH1dffTXBYJD//Oc/eHsLab/5/GIaNqxl5iGzsDkTLZLsdjuKohCPx7MKnaIo2O327NdpDzAMg8suu4yzzjprWI63p1giaGHxKeL5tW38bfR5BLQCjEon8anF4Oy/DWyvt7NybTSlvFgavULQVFzOSH878bikscnGtGPfTdgrWYy5qtmPEtg9C6SSXMVyRMuR8fzSGFIPqtBJOevkVOpJlD1bzgIe4CI66/prcRZMnpMojbalAbNtN7HKTE11+wnZ81vj6nSoTPeOJeDbzIax9bx8xGeT12yUkITsTmKqxsB+EQ49jl2P90aLChQpcUY1FKmxc30X7/wrvflwuMdgxb+bmfpFF+VTSlAVkwI9QBlgV5yY0iCk9xAz+2t3FpdXIAZV/968eTPPPfccy5cvTwogwGdPPA0bKhgm9/31Xh5/4h9UVlayZs0abrzxRnp6erj11lsxDIPi4mJuueUWJk2axHvvvccPfvADVqxYASRaKZ1++uls3bo1mSx/wQUX8MYbbxAIBLjrrrs47rjjMl7LW2+9ldNPP51AIEAgkKtS0L7BEkELiwMEaUqiW/yYPTGUQjuOscUIZe+i7wZGgDZ0SX6+PIRUPQkBnFWaNj7gKeLtucfndew+wSgJhGFkCFtB9jUiIcDm7kIbsQytcyqlejFRKejQJSU9+dULzYSPEiAhgHdybdrrydJoLzzCxC0NxEoqQLNljhQF3LFoxu2Zxqk2NxvG1vPUSeluY1MIgg4XmqnjGBAsJAC70RsQJMFUDURMZfWL23Oeb/MLOymb5MVQFPy2IoTejdsIoZv9KRmmUHB6y3DaJPGID6SZOKMQyX5/JSUlyXMriNT1RhPefPNNVq1axcSJE9m2bRuzZ8/mH//4B1OnTuVf//oXl19+OatWrRoyICbfVkrvv/8+zz//PK+++io333xzzmPuKywRtLA4AAivacf3dCOGv/+mphbb8Z4xHtf0/LoMDCZTBOjXVA+vlx3Jpmm9tTTzWIPLRp9g1ASitLnzqyCil66nyYjRKR0cFp/EHL2C1V06/w50E/BkSWPIQTPVmCg8wEX98x9I7/t55YjTmLB1Lc5et2g2avzteCJhgg5nzpSKGn87cT3My0ecnfm8vQQcLuxZcij7IlRad/pTXKCZiHbH8W8P4K1LWM09agFqvBvVVPG7PCiojCgET3gnMhLHxIZHOAhKd/LvmYwClYnSZpdfehmRSJiF8w/n97+8E8woRx55JBMnTgQSAnXooYdy5JFHYhgGl1xyCT/84Q/x+Xw55wrZWyktXLgwOSYej3PJJZdw3333Dev64p5i9RO0sNjPhNe00/HQ2hQBBDD8MToeWkt4zZ5X3+iLAA0M6lVXYASZrm0gZndlF5zkzTKLGEqJJxKipnd9zbCNwtGTn1DHYon1tiBRXrZ9QLPaynyPyskfvp/5nLkEWUpe5UTWUk+nKM/5fnoKvHTNrsDW48PWvjvzOBI3xCMac8/liE0fUGDaWecyEy7QHMJtCoW4mtvWiARyC2AfsQHjDKHQo3lodZUSFU4UB7iDOwibCi2U00EpQTzJuU2fPp0tW7bg8/lQEEytHc9LTz/FlZddQntXGz3xToI93bic/WuNfa2UHA4Hbrc7af0JIYallVJTUxONjY2cdtpp1NXVceedd/KXv/yFiy++OK/rMVxYImhhsR+RpsT3dPpa0EB8T29GmvnXuTdNg5f/9NuMAiKAoDtz4ePME8x83gmtO1EkKIaDXSO+jF+/kniwIJduEom48fsrE3MUsMtbzl9G+bmtai1lkXZOaliGJzroZprLMhSCTlHOKy1n5vVWnHMNCibHUWJRMLJbruPamzLOxaHHmLt1HXXtTZS0+/IuyTZUsryzwJbz9T7sg8YlA2ykJBjV6JRFdFGMmeG2Pm7sWE496RS+f/W1RDv8RGPdifXEAa2UTATRWIzWQICAbnDYYYexevVq1q5dC8Cjjz7KqFGjqK6uZuzY/lZKQNZWSkDWVkq1tbW0t7cn1xG/853vcMkll3DPPffkdT2GC8sdamGxH4lu8adZgIMx/FGiW/w4x3vzOuaGB/9GMBjIKiAFofyCDyZvep/1E9J7wAG8N3oiVd1dzNpUgkAQVj5gU+NMpsx4K1tOOpsb5wFK1qT4Ixrf59ylzycrxnS5C1lZN2XIeb5bnnmOg/HSxYjDmli+/rPs9ibEeISvnREZKsGMa2+irr2JVbWTeH/kBKJ2O1GbgxVjp7KhejwnLN1McTy/22fWZHkJIKgcVYyr0JbTJeooslFcm/rwoosBNT2BMK7EubK4hH/169u56447OP6s09JaKUUdLnoKionbHDSZCoSi2NyF3H3f/Zx77rkYhoHX6+Xxxx8HYOTIkcPSSulAwGqlZGGxHwmtbqXz0aErNJd+eTLuWZVDjpOGweLPnszKYmfWMaYQ/Onca3rX4DI4g6SkMOjHRBD0FGVvQRTW+dYzPcTsrfR4E9ZCWfmOtDzBSMTN5sZESbOUpPgMStmXfwiwq7icp2f1J8lnf9MDbmFZ5lpKB+dxH/dyGQGRem9wxKIcvXF1StI8wObSkbwwPcPaae/5PresiZdmlqStH45SJL8oUqgcXYtqs1Ea7E5fE+ydsmI4c0aH9jH1i2Mpn1KS/F1BYg44qg2DYmXooB5bXEeVAlOayaCaqMOFryg9SKqPMS47Xlv+9tLB1krJcodaWOxHlML8cq3yHRda8S62to7cx5KS49/6L5AhCKb390PWriCYa71LCHrcNraVqwQKNya3dXTUsmzp53n/vRNZt/ZI3n/vRJYv+zwdHbVDJ6IDb42fkcz6q/K3I6Q5dKBOJrNz0O9jaeS3XEOAdBdm1Gbnhfr5bC7vL5ZtAm9NnJ5zri/N9LJwU5b1w14Ke/woukirJwoiKYAAoyaXcPjZ43EVpro8HUW2NAFMzC91TkqerZacagEFmpciWyleewU21Ul3rnQYYHc0jpQSKSXRaJRQKEQ0GuWTYj9Z7lALi/2IY2wxarE9p0tULXbgGFtMXDd4YekaWrt8VJZ4OWnBdGxaalSd3tZGaTCCM6YTsakZRUwCk3at4+wdD/JC6edScgILA36Oe/tZjCGCOfrwF0YoCBmkJgcqyYotA8k3Eb0v/7CluBw5RPeFgftm3S5NVpIlGjY5RvLmgAIA+c7Vqcc5qWFZmntX6W3W6zQSLk4RBxQNVAVTtaHq7rSKn6MmlzByope2HT1EQ1FsZWHU6mqMAW2LNGHg1CIE4qmuxcGimI2BdUgVoVKoefGYCj05LnPclHSGI8S7/Zhmf2ECRVEoLi7G5Uq9TlYrJQsLi7wRisB7xng6HlqbdYz3jHE88uLbvP/OaziJASa+4lY2ro4zcuLhfPHECxG960NqeTkCwfQeOytK0ysy9z27v+Q9Bn25wmXtt7Ozpo6guxBPqIdRTVtRpGT7iLF5zd8Vasq4PVM3iHwT0fvGhYapIgkiDztJCEIDBHhP5jqxbRd17U3J9ztCFXhmTsOme1KfDUw9cWGEABEG6U47nlAElWOKsHnaUO0SaCKiOzCkiioMHFoUw1TTRDCOiikTxbEzlljLlBfYS1XEpKcgd4qCPxDAaaZ+nkzTpKurCyBNCA8mLBG0sNjPuKaXU3be1Ax5gg6KP1vHY8tfY8vWD3AAZeXbB625LebFV/7ErBk/o7B1Dr5FOp5Tfsk4RxFK82KWxlcjjP6AC1NV+XDyXKIlpVTHtlBa5KMotIZAoxvkgHWtpq0UBPyJLgpZ1tmckRBGdC2mw5WyrpIp8MURjzKmvTmv69GXf1hpz2/8cNInfnuSNA+JdaW+kmwFvV3aE9ctXX6VeAxTxBGahmKmC710BgnbFVScuIjg1FLnoikGTjVKxEgVatUeRcbtpLU67p2CRzoz2os2E9yGJKRmtyZzdcI42NsqWSJoYXEA4JpejrO+LKViTHTTMrZ+68us/cxxOAWUl29nav1rafsqdPLBmm/gbPgfaiOnYXQ0Ev3gccwilaoFNXi7mwnFVF6tOoyXjjiDKZ61XM4fKKN/7TAW0Nj1dhX+LYkggr51w6dO+t/MLYiEIOLy8MRJ/4snEuKITR8wrqMpazeIqM3BhpoxKVVM0pASd28iOphQFE2Mz9clOgwkCwDsQdJ8VqTMXPdaSoSwZxRAABHx0KMVEbEJVHTKaMdDamsjVTGgN01PQeIRMRxahLgSw4i5YUA3eAWBRzpx5Ljda4mWhRlRpIktR0rJwd5WyRJBC4sDBKGIZBpE9wsvsPs732HJhJm4FB0wGT9heWJcliIv8bEvEV9WSWT5XygcFWbevCBHO94HD5gSJsW7qWtpZu7Yd3p37D+GzaNTd+Iutr4Ivi1FGJ4CDlHX4173JM/VHY/PlT3CLuhw8cK0+Zz44TLezhb40j/bxH9ZQvkNVaVjrI3q6k08YvvW0Betjz5LJaNgmQgkEiX7vKTEHo8lRa0vaf6F+vnZ+xBu+iBzZGFfhRbTgCyVUAS5Xb1FIYNIsYaBSivVVNKcIoROaaCIKAoSDZO4GqPFMBMNeG3daKaGhqBYFFIYLRhyxVDP8ZxREA0Puf/B3FbJEkELiwMMaRi0/OIWkBKfJxHNWFzcmpJ2MBghwHB14Qs9SMWoMNULu1mlH44vVko80s2OlhBBw87Mw3IL6Ygj2ohU1zJu8ns4HCGmsIbT+DsN0Xn8Tvs2PYo9685vTppFeKi1tGRZtsxrV1HNzhOjT6OAnv7x+ZCscjPIcuy1PE/lPzzL5zKLb99QJVUJ+pLms/Yh7Mi8Htp3fKnkWGcTGlIYSGSyg/xAVBPsuiSmJVyqHZTjIYhqSIQpcJgGQuiAIKbECGqplqKu6OhAhE48wo0ilcxGKQkBDKkCVYAxwOtpUwSVqkipVJON/Vn2bG+xRNDCYghM02Tbtm0EAgEKCgoYM2YMirLvXHShFe+iNyfWw7zBHroBuz29Q3gmpDPIujkLuV/WY9h7XVh2EK4Y5fID7AXZ3VpCgMMTY8qMd1K2K5gIW4AeJYfACTG0AA48UTbbolckB+fy5YuTCBH6A05K6eR87sVDgGfFWTnnFNdsvDxlDieuezexTfYnzfcH+USo3dyAUVY19GSyrAnGnC50Gygyjs3Qe7tKGGi6hi0KbVvWEe72oVeW4KmfhlAUCvQwnqiBIiVB1YWq6XhkDN3Q8KsRnDGJZiYELWJPvbbdWpSSuIt4PM4vf3c7jz31T1RVxW6zUztyNN/8/g1Uzp3FSKcdmxDEpcQmBJ7eThQtipISFTqYvWmrdOONN/KHP/yBESMS/SinTZuWrDTzcWGJoIVFDhoaGli0aBHd3d3JbUVFRZxyyinU19fv9fEN02Bl60raQm1UuCs4tPJQ9La25OvzNr3P+tn1RKP5Rd+tnziHDeYkIFXspGaDipLMO2VgsLHkF/nvu9fsRYBFRPQLYKH0cx73MY+lPMgFee3fWDmK4lAPI/ydxO1u7LFEjdSR/nY8poPZ0VGsDPgI5RBBEzAUlZjNDgLsveuMEYeTngIvZoqF2G8Rt65cyvpH7yPa1Zl81VFSxuz/+RKHTK3BrxWw21FJXPTnEmoyTkV3O4X+/ockXZF0FEHQmThugZ54OLnke1cQCAZ5/cmXKPEm/p7PvPgcOxoaqJw7C5sQFAxIuTEMA1VVKS4uTkaBZqK4uHivgmLOP//8j72R7kAsEbSwyEJDQ0OyTNRAuru7efzxxznnnHP2Sghf2vYSty67lZZQS3JblbuKb3vPZgIgEfgWVlA8shH/7lqiETd2RyizRkgIBD1s0usxFYMmb2p6giJEsnj1UGQ6vpfsN8GBOGNRIrYMLtN9TYY1wR4K+S3XcDpPsojT8zuOEKwcW8/KAZsK4xGO7mjltO2lTIxJdpletsZjiQeLQe9zc3kNWyYdwiy7g4C7EGF3oJgGzkiIUMZao/0C+P7dv0p7NdrVwZI//wHPxRciDjs17XVdaDQV1yBFM0W+hLtcM6HKBy1eiWl3YpMKG7ds4qlFz9C4tCEpgACnn5g45i4T/vHgAzz22GNUVlbS0NDAXXfdhd/v54YbbiAej1NQUJDsJ/j2229z8803s2TJElwu1171E9zfWCJoYZEB0zRZtGhRzjGLFi1iypQpH8k1+tK2l7h68dXIQe6y1lArN4Tu5ivzJ1PC8ZTMeox697s0jJCsbVzAzPpX05fTeg9Ruv5zbKqqzFqXc1y7STTqxm7PLKQ5lsuYwlpKZTudlGYptWZSFA+yYGMDL2YKJvko7OkxsnSgf4b8Cmxno8fm5JnqWp6phopYhDPfnkrhrmWJlkwD5tgXGTtKSf2bmoqaRQATSNNk/aP355zDW/96iiPmn4xI+6wlXK5tReUUxLajDFg2LuuGrrKEZffemvcZXzeO0pLM5dEqVBUhREo/wdbWVurr63n11VeZMWMGDz30EFdeeSXLly+nqKgIm82WNT8w336CAI888ggvvvgiZWVl/OhHP+LYY4/NeS2GmwOubFokEuGss85i0qRJzJo1i1NOOYWtW7fu72lZfMrYtm1bigs0E93d3Wzbti1tu5QGXV1LaG7+D11dS5AyNXLOMA1uXXYrSEl1u4NDtlYxY+coykPlSCmpbXIRJ0ow+jw73/TS+MwYCpY2U+t4F/eDTtTu1PUXLVLKiPeu4h3b4bxQPz8R1j+AoMPZWxZsJI2b5vXOcfCc+382UWhgGm9zJA1Mw0RBweR87iVRai3T+pCgTtmIMx7lxIZlOPTcRcHzJt/SXFkrxiggMlfO+Si02ezcc/RRLJ80i62ajd2FXkzIXRJuCLo2riXalbvUXaSrk66N2QoqCAw0giWpa7KaCYre/9kb6LJs3LqZeScfwfSjD+WK//dN3LaEWA7sJ7h06VJmzZrFjBkzADjvvPPYtWsXfr9/yDXAbP0EB3P55ZezdetW3nvvPW6++Wa+9KUvZfxO7UsOSEvw0ksv5dRTT0UIwe9+9zsuvfRSXnjhhf09LYtPEYFAfp0WBo9rbX2eDRt/SjTajCmhMaoQVkqYNuZrHD/5clRFZWXrShybu/nSmlqcsf4bk6l5CRfX4u5Izz2LBzW2vzyC8q2tjCu+gUhNG4bTjxYtxtU1GROFvx3d+1SeJXrznYn1zNv0Dtu2zqRmxAYcjv51pHjcgd0eZTkLeICLEv35eimV7ZzPvcxjKafzJM9wVvqFEIL3tUN5f1aiIHX2MIqDHKGAlLw174TkpqJQgMnN2wdY33tWUzPmy8/VPNQ4XdWQjihiQG69ISOYwmDm9EPYtKWRLl8XJd4SxteNY/nzb/HA4w/z7CuLEI6ECCYT/envJziY4eonCFBd3V9e74gjjmD27NmsWLGCMWPGDHm84eKAE0Gn08lpp52W/P2www7jzjvv3H8TsvhUMvBmkO+41tbn+WDNlZhS8kK3xus9GiGpAGFo+SPlq/7ODQtv5N1XV3LsygoGR0gKPY67owPSqkpCn9urddIsJrrK8fhSm9iuKlHpcOb4OgtBj70QpnZSx4fEYg62bp1BJFxMJOam2VtC2xhXxrWzTkq5k2v5FrfzNkcNeU2ituEqd5aeoH9AMGge3S4Py8dO/ciHsw9Yo9ubcSo6UpUpnx6PTaJrHUwcO4EzTjqNy669ij/f/nu8xV4AgqEgSJCR9Kjhww8/nIsvvpi1a9cyderUlH6ChmEk+wmWlZVl7Sf41a9+NWs/QYCdO3cyatQoADZu3Mjq1auTlufHxQEngoP57W9/yxlnnJHxtWg0SjTa/9gzlPvKwiJfxowZQ1FRUc7PVFFRUfKJVUqDDRt/ynshhce67ITM9Bt2e7yba17+Ll9+eVxWmcuNQLF5M77S7shPIHwkbqR2e5QxYz5gUfsX+XfRWUMUi06srf2FKwiLPB4ODhSx+rhI5j5+NEomTsVRUpbTJeooKaNkYrbeihIVAxcRoqoD3W1HNXRcegS7C+IyQrca4U93/JHb7rqNI888DlVVKSn2UlFWwbVXfhe9I4IZS3XbV1RU8OCDD+7TfoI/+MEPePfdd9E0DVVV+f3vf8+kSZP27ALuJQd0P8Ff/OIXPP3007z88su43enFZm+88UZuuummtO1WP0GL4SBbdGgfA6NDu7qWcN9b53NfR58VlC4E89ebnP2GnXUjRiIB0+5MRBhKiRoOIBl6kb7CWctxNf+btn1Ficrl89O/I4P5gfwx9XwIwDK5gN+Ia3un+ykTrn3IwH6CIs/cyWzRoX0cc9F30Q4/nMxRUYJKmnEQYQdjkq+rUqdMtOMwI+wKjGAcKjl72KuCWIUrJU/wo6Q+WP0Eh4nbb7+df/3rXzz33HMZBRDg+uuvx+/3J//t2LHjY56lxSeZ+vp6zjnnnLQvUVFRUVp6RDDczL99fbeYzAL4vX+ZhDUPUiTsQDUWQQv1oMSjRKrH0FowMud8RrknsbAyc6Tj7C6DykiO3nvSpFS2M4VEcIWJwoPiot7pWgK4/0j8vSoPXcAhV3wPx6DozQJvGad+7bvMmDafmmgYlVRrTcVIllTroJyBnz1DJEquRRUnxUo8twACGJKmngjbwzEaQ1HWBiP44tmLK3xSOCDdoXfccQePPPIIL730El6vN+s4h8Nx0BZttTg4qK+vZ8qUKTkrxjSuauUfi1fjK838TClMyQUvmjQXe9hWUZwmVEKP42zehqYM+DoKibs6zM6RY/BTwqSeqRwancRr5RFaHAGqogrHdbiw9d70BJKL1rVz68yKDLUuE6XDzudelN6QlXVMTQl+2SMOpPW5gxiByRi2EsGBgcbo+kM48oa7aNq8jlB3F+6iEkaM60/B8UbtFBhB/O4AEhUVHRcRTKCLEkIMdjf2l1wrE0MHrkBqIe24KdkWTkT57klneauf4F6yc+dOvve97zFu3LhkvojD4WDp0qX7eWYWn1YURWHs2P7+eqZpsmXLFgKBAN3NOque6KS53A2lgITySDlOw0lEjdDubGfqDklZD7wytYIKVy0utYCwEaA9srO3dmTCHtDMxFN38dhumj4zhnucX0sRqlukiRT9DXALImEuWe9D0YN86OrGFgtxYsMWlkyqp8fWn5fWVzpsHv3fob61wY/Ep1kAh/EBQKIQwYGLCMJUccTKQYFRE7IXYNB0D2Yohunoxq0mHqYUoIQuCumhgzJCDFy3TaRPREV+t/pMhbR3R+MUa+pB2yppKA44ERw1ahQH8DKlxaecgWXU+hrHxqY7UUNlTO6aysTu8TjMfu9ESA0RDa8mMraGk8afg1vrd62G9G5WdrzMrtCGpBOreGw3bSeO4vfi6rRzy0Fu1oDDya8PqU65KTviUcSgBIVM36Z8K8BYkLSk5xnvsFw9fFjbOxm9t2AtUpb3Pg7VxK6m/1U1dKpooQUGCSF0C40aRSDMzPfWgYW0BxM3JUHDTCmp9knigBNBC4v9SaZanmpvrceBgTKZGsd6IvW4G99nXHt/dwGX4aJeO5OKDOHhLrWQIyrP4q3WJ9kV2gBCUrOwlTvEjxMDMuX7Df590ANjVEtPT+jqTXH4Drcxh+U0UM+LnPyx9+o7aOmNjm1UJ/EtbuchLqSTj+hKHoQpbdjClaj60EFNfdjswZyvl9HR6xrt/7xUFTiwKQp6R7pbtO8T1OLM/lmIf4INE0sELSx6yVbL87r513Hc6ONY9PS/Acnm8hEZG8f2VWY5ec1S5q99H1ckTNjp5rDiI4H0ZGEhBFJKZpcdz+7QRjzVITYXTNqztbqhhBKSCd5/5XL+wuUEh+rQ0Nf4NtvxcvXu+6QiFDopp1D28BuuYJ2cio8SiqWPu/k2XaLkI10PR6QYdQ9iTww1ghC5SxFo6DgJoxpgkzqmolFZWJZIci8D3RdN6ZmkKwkB7NGyz9/2Cf5bWyJoYUHuWp5XL76aH5d8ie5wHBORvTxWr2X27qiJXHv3b1GlRC2fhPtIZ6LaGCbhkvXojv5KL0IoeLQipnoPo3q0wTM07ps3KAQBivLLZ+uzDqXM2lD2UyWAA/BRgoKZTDNBwNf4K3dy7UdaL9RMkVwXBpCmJL47gBHSEYUm2igHCmriU6mYmDK/Ska10SZcAyM7I83E3VX84td/4JFHHkFVVOw2G7W1Yzj/+uuZMD3dU9GHTelvq7QveOKJJ7jxxhsxTRMpJc8++yx1dXX77HyDsUTQ4lOPYRr84vUbE2vRg+5hJhB3TObB5hZmU0pTcfkQieWC9pIyPpgwhVkb1yIciUCWnsoVtE55GN3ZvxanRUqoXHcuha1zme49ikB8LV5WDP8bHDS/vRr/KRW/PjKtpc5jKTe0vsBfik6gzTW4TVI2Egnu0hYAIxHEFGn0EXhjF+aAJraiUOA80YVtyp5V4bGZqakU0oxz4YVfIxATvPPOO5SUJAKjnn76aZo2bsgogn2tlEY4bPssKGbVqlX88Ic/5OWXX2bEiBF0d3ejaR+vLFkiaHHAkmt9briQ0uD5Z39Em+lPE8Coay7Bkq8wSW2hrGA7xcHtbLSPyOu4XaOmwsZ1yKifnsoV7J75u7QxMYefl2a+itheyajWOir9VYyNbqXUkaNbw8fJp1zwUpAmpXQm8ywHM63iz9z+zlaaa8fSMXo3xXyeUtx0MZJsCe5ltKPZg8RsPowP7ASeS+9UL3sk4X+F4GzyFkIhJaqRKsCbNm/n38+9yo53X6JkQNpZXzUuX1zn9/fcy7P//AelFRVsXreOH9x+B/ZwkAt//CN0XaekpIS7776b+vp6Fi9ezDXXXMOKFYmHto/aSulXv/oV3/ve95JNdfdHkRNLBC0OSAavzwlTsrCthK9WfpZZU4/DPXcOQt07QWxtfZ4NG37KGtkGpOabRp3zmFQ+j/P5AWV0gBuYCUTaeJn09cDBjKg7Fc+pC4nvXELT5IcSGwfcB5ezgAdEb6HqOqAOSmOCr4hZnM+9ve41K3DlgEAmRGshbyTzLNOGANphLzJKkdSKEdg5HTdhbDTTQXkyChQSCe5ltOMhEeBiSp3ga50Zj9tH5KUw2iQbQhn6wcQZMdPKNaxas44JdaMpLXZDLACO1NZOXpvGCIeN95a8w+Jly5kyaRLBjnamTZuWbKX08MMPc84557BmzZoh55BvK6WGhgbGjRvH0UcfTXd3N6effjo33ngj6l5+t/cE6xtmccDRtz7XJ4Dz15v8/g8G3763ndJb/8b2r32NTcefQPdH7CwiTUnzuy+y9cUHUJq9FA36FtR1zGRm0Ry+w+2UklrPcbrjfUpl+5CVWYpnfJfOqa/QfVIPusuXJoB3ci2dpIbFd9qc/E77LgDf4TYK6flI789imOm1iN/mKMwst0whgN4+giYKMWyEcKNgUql346ULL11Us5tatiUFEMDYoSN7cq/Vym6JsWOICBod1DaB0aFixNLFMunSNOI0NjYya9YsJk+ezCWXXJJ8/cgjj2Ru/VQKNJVly5altFI699xz2blzJ01N6RbrYPJtpRSPx3n33XdZtGgRb731Fu+88w5/+tOfhjz+cGJZghYHFH299voCVPrKjQ1Gb2lh17e/g/GbO2mYdzitMZ1Ku8Zh3gLUHG688Jp2up5uxPQ7GcHlSGlS0b0cR81/aKttxsZ4ZPQwJtj+BBniHBRhcr68lztFhkCIAZVZTEcnHROeTDu/icIDZClX1huK/wAX8RuuIIKDP/LtfC7bp4P9WalGCDopZ52c2h8Uk4HlLOBFvs738eKgDIEj5S6rUphiBQLIQH7pB5nGKX4QcRCGSLZQkghiAQ17gY5qT+wze/oUNm7ZTpevm5IyG+PHj2f16tXcf//9PPPMM8njfdytlMaMGcPZZ5+dbM579tlns2zZMr7xjW8MebzhwrIELQ4oVrauTHGBXvBiQgAHf32klPx3wUKOCNv5wupGrmjYxhdWNzL3nQaeaeki0ugjtLqVSKMP2ZsgHF7TTsdDazH9iVJQ0d3v0rz7O+w49W5qj9zFnFqDQ2o3MHPBr/Eowaz323liKd/hNipiqY1jS+nkO9yWqMySZd9kubIcTWA7RTl/4XIe5oIhr9enAinRZPSAWKPMVWmnz8L34806xiBRzzM4oMSZKMjvfWUap0QESkik9BDsIx5Skw6LieNq+dxJx3DR926mub2/j2QwmD3n8PDDD2f16tWsXZtYBx3YSmns2LHJVkpA1lZKQM5WSl/5yld44YUXME0TwzB48cUXmTlzZu4LMcxYlqDFAUVbqC3589QdkvIMHsHmYg9PHHU0/zztvPTXonEu+XArv1wd4bhWHRNJW2EAOasYsdpPBR4UFFbvWkZ1/M90X6KnhS3kwzyWcsKOR3lnfCM+SvDSxRTWZl0z6iPfcmWvi+P3qj3PJw2dYepRuJdkq7ST08JPob+eZ581qI7WEIUip0tUFAnU0YNu1zoZxa8PaQpMXaDaJFLCfb++iR//5lGO/MwR2B02SkpKqKys5Lrrrsu4/0dtpSSlpKyslPXr1zB//jyCwVDWVkpf/vKXWbFiBdOmTUNVVT7zmc9w1VVXZX9T+4ADupXSnrIn7TMsDkyWNy/noucTN5MjPjT59n9SRaW52MOKumr+dN61BDxFWZO5qyKS37y5heW2DQQH3Cnc0kEoWsL095/Fc2UjNmfkIxsYhbsOp2fkO3u0TwPT+Ln46Uc74aeVA6Fgt5QU0MPdXJzxQWfg3zXfVkrV7MJFwo0YXxdLRIFmwXW2Oy06VG0TKOEsO/Ri8xhoDpM4gpBeSVQm3J3eKjf2XE2YPyLxuJ/1G1Zw9Ge+yJYtrwMgFBtORw02W/EQe380PrGtlCwOTKRhEFy6DP8z/yW4dBnSMIbeaQ84tPJQqtxVCARdg/q3SqBhRDk7a+oIFBTncCkKWlwKD1c0ESSKCewqLmdjxUg2egsxHM3sOKEGu+ujCyCwxwIIMIW1vYE1uS1GiwHsbwHMg49SkHxgxKhtip2C02tQClIbHokikS6Aen4CCNBuU9iiaWyw2+hR+o9tGsNv+8TjfsLh7UgznrJdmnHC4e3E4/5hP+dwkNejwK9//Wu++93v7uu5WBzgdL/wAi2/uAW9uTm5TauupuqG6yk66aRhOYeqqFw3/zquXnw160cK/C4oCiecSJ0eJxG7RtCTn5UfsjvYXJFa41ORksNbQpwWeHpY5tvnSzVRWEs9DUxHIvDQQzH+ZG5Zn/WgYA5IgTgALJxPOsN1jXsr7jxvnMrJynNp1uBHKUiu0hvtaYLms6NUqNjPLiPaHKDFWYhaaEeMtiMiBlpnFM0MpgTADIWuQMeAeqCm6H9gVTIUyt4bpJREoomo0TFjRiatwIFEok1oWtEB140iLxF8/vnneeqpp3jggQeora3d13OyOADpfuEFdn37O2nrVH1RmvzmzmETwhNGH8vDsc/gfuoZtEKFUMQOUhDt7WnmCeWXOuB3eVhRNzX5+7Etca5ZG6UqKgmVjGPH+GGYrEgERPyVywlkqclZKttTWhnNYTkF9BCgMON4i2FmGB82HlIv4ll5JufL+5jHkuRicp+F30kpQ68wJ6rFuMwISg+ofgHEkcQRQNfUCqKe/ua6YZdEjRoURiIIM38PQsegj6MiE7l3iqpgcwxvHp5hBNMswMFIM45hBNG0gpzjPm7ycocuWrSIc889lyOOOIL77rtvX8/J4gBDGgYtv7glc6BG77aWX9ySl2vUMCXvNHbw1OpdvNPYgTG4tUvDfzBvnciMXQ8yfm4XY47rYMIZLRSOCuPorYU4qmkrBQF/jlw9iScSoqGmtwegEBzbEueXqyNURhM3EVfXZNSIN3dlqzzoiwjMJWidvV0clrMASESIBkSW9UyL4UWIYb/OnZRyp7gm8ffs/fz0WfiJIrG5hCrhOigMtyOaRK8AJtBVld3lVfQMEEAAUwhMERvysyo0J8LmwbQ7afEKgs7+YytSxWYk1icLSh3Dbo1JmV8V8KHGSSnR9QDxuA9dD3wsbfXyXhm95JJLOOaYY5g/fz7XXnstiqIk80haW1v35Rwt9jOhFe+muEDTkBK9uZnQinfxLMheTWXRmiZuerqBJn9/TlFNsZOfnFHPKdNrkB8+Bf/4GmJQDU/NZTLyiC7kW/BerIqoTeOit5awYfoxlMQkXQ6FNqfCqhI16aSa2rSNd+smMZUPKZFdfHu3E5iI6G2bLVCoWndeopxZHuGhJgrrmJoSCQrkFxHYm//3Ny7CTZBnODP3ySyGn+F0Pfflc4qLmCOXJ12j80ikzrzI14HM/QE1w6Cys4OQI8T2CoErJhAUEre5CTucZPsgKnoAkU1cbW6EuxRF9Fp6QKUwaDM6CaiJhcOCqBfDFsNeoGDYYkipDasQijyb9uYaF4/7iUSbUizKfR1UA3sggu+++y4XXHABX/7yl7n22ms/1rI2FvsXva1t6EFDjFu0pokrHlqZ9jDb7I9wxUMrefio8SxYfjWKlFnb5lXP9jOvoQbv+C/ipgjWpObptTgEv6/T0dY/S/kUnfP5daLkGRCcBVsGFKyWmKhxD95tJ+Ef+RqGLZ4mcn03t+Us4AEuSmlxVCrbOZYX8297JBS6KOcX3JTfeIvhZbit7t7WSutITZ6fx1LmsYsCfkopHtxdIGJgqBqqoeOOJh4AfW4vDs3EZietclAmNCOzBSVsbhRPRdp2VarUxCtoFV0Iu0bA5UeXOsSAGGiKRo2nhiLH8ETRq6oHodhyukSFYkNV09MkoD+oZjB9QTVQu8+EMC8R/OEPf8jDDz/MH//4R04++eR9MhGLAxetIv1LtifjDFNy09MNSQGUgFliB4cKUYPjunSqG+6nraIbR8yG1x9Pex4WAnTnAmqmX5j1/JURk5vWKbxQFWTM6EVpr+uOLnbP/B0lW0+lp2ZJsqNDNpFLuLdIBLEMopNSnuDL2S+GxaeCTFGhCiZ24rgJ4TIESjT106yrGiFPCSB6MwX7vhmZhVobIJ6DEa7SzNt7/6/QS9ikpIuLburs6NnBaEYPixAKIXA6ajIKWR9OR01G63NgUE029mVQTV4iuHXrVlatWoV3QPVxi08P7rlz0Kqr0VtaMq/DCYFWVYV77hwgUZszusWP2RNDKbSzytSTLlCj0kl8ajH05ijNlUs4Q97LFtEBJL6MjqjBpE1BKjv6LT0pFXzxS3tPl/mLIITAxGDclKUYZLilJPKU6ap7Lrmpb01vMH3reAV99Tszljj7xKTYHvxk6nO4Fy5QlwwQFkMHcAwVFSqEC6GB1PtFrLWkjNRPZ//P0jRp37WTSDCA01NA+chRVHam1q9N7qU5EUN0VREmuEwHYSVKPB7nL3f+hef+9VwiOMZmY+Tokdz289uYPXv2kO91KBKWWu0euTS/9a1v8dpri5Ey8V3fsGELP/3pd7n88nNTxu3LoJq8RPChhx4a9hNbHBxIwyC04l0KTz6Jrr89kD6g9yZTdcP1CFUlvKYd39ONGP5+AatyqXwGjVcqNfRZ/U+uc+USvsNt6S2M7Cof1BcxvaGHqo5EPHjUnIZBxZD3tEjJBkxnV/YlvgEv6Gjcw2Up76N/XGLdJ1vEZ8o+VqrDAYAk0Z62XxSK8NOdo4RZ6u4mRXRzLvdTSieTWM935e+zt7QaorUSgDAVNFsV2ECaBnrUT3Ohm4A7s0tw18YNvP/qy0QC/dHPbo+Hkw45hMkjR6aM1RUFRdXyimzUeqNCf/itHxIOhnnouYco9iYEafHzi1n1/qqMItjXT3BPsNmK0bSiRLSo1BFCS7hKs3w/fvvb3xKP+wiHd9DS0s4hh5zK5z+f2duYb/DNnmIly1tkpfuFF9h0/Als/9rX+gVQSf3IaFVVjPj1HajFXtr++Cgtv34S3ZfqurGFDY6tLEwIYG+0npBG0t2Y0WID1o0bTcg4DABD5peMrDvyS8hdzgKu4s/0iFxJ99bX46BBKEihcp68lyvlr/mB/DF3cVl+hQl6C59fxJ85kjeo50M09OzRngMKpSuY6Q6B3t/VqHfA9FRsrlKE3Z1xCrs2bmDZ00+mCCBAKBjkyXfeYf2uXQDEVYUep52gw0ZYG/rBy1QjqFqMpi1beeXZV7j5NzcnBRDgmJOP4Qtf/gIA999/P6eccgrnn38+c+fOZdmyZSxatIhDDz2UQw45hKOPPpqGhgYAFi9ezNy5c5PHWbNmTbIb/LZt26iuruP663/GEUccz/Tp03nllVeyzrEvWOaRR/7D8ccvpKoq8zp7vsE3e4pVO9QiI9nyAunNUyo46SRK/vfLmH4/Lbf+MiV6VDhLcBzyJWwjDkVi8ta4TTw9LsDpOwOEm4toLy4jPsGgTGR28yQOArrLx86CyxjVI1BFfsnIWnToxfNsLlCLg59i/CzkzeTv+fRmLKUzJY+zj75ozwe4iE7Ks44f/AylRotRY4UohivlDiuBqohJT0GqdSVNk/dffTnn+3p59WrqRo0kYu+v+qKbMUxpJKNCB2JoIXRXB1IYFAI7P1zLuLGjqS4rIjxI0zWlf5Jvvvkmq1atYuLEibS2tlJfX79P+wlCf1DNQw89yc03X53xeLmCavYWSwQt0siZF9hL4IUXCC1Zgtndnb5/pIvIsj/S88XjaVv4NhVOP1cCjALFA8X/0PCtdCO/NPRcdEcXXV2X8ab9X8wkggcHIkc+g671gBQgMs89/0LHe4DlCj1gGLxGl03ICqWfI3idOSzPWfh8HkuZw3LWycyRw4Mp3n4cZbu+SuDY9ILfArCZ4DYkoQEVW9p37UyzAAfTEw6zpauLmprqlO0hvYcCmzdlm6GFiLvT09YURVCuSdp1WN+4g+9e+F2ikSjHH3M8f/3rXwE48sgjmThxIgBLly5N6yd45ZVX7lU/wYULF6aNFUKw8t1t9PQEOemkozIeL1tQzXBgiaBFGkPmBfZi9Apgpo/mzuO9iGOfS3vd8ELXJTrE0sUzE1q0BEk5PjmHJbYNHB+fgURmFMLuiuU0zfpD9oPJ3lZGSp5pDdZa38FDjjW6PRWywSiYOXsIDkQgEEOsMmkmDFi6JBIM5HXsQIaefTEzQiDuw60VJi1C3ZXuYZk5cwqNjdvo6urG6y2idmwtTyx+gtf//TovP99vhX7c/QT7+NvfHuOrXz0Pzeb82PMErUUPizTyzQsUZBHA0SOIfzbxxc6Y8wcM2RlHghL2IpF0Vy+h2NvCVrWFF20f4BfpuUgSk7apf++fWBaCwSlDnLjvgJYAHjQMWqPLRJ+QLeRN6vkwbwHcU2yhyiHH6IPuuk5PfhGP7t7Gs4OJmRF8sTa6453onghSpFduGj9+DKeddixXXfUTAv5uPKrK6MLRmLHs1+Hj6CcIEAgE+Oc//8kll1xBgWcybvdYXK7RuN1jKfBM3qcCCJYl+KnHMA1Wtq6kLdRGhbuCQysPzTsvMBOmEGw8vpbJzq1Zx+SlLQKkFmHnvP8DoALwxu20bhyL+P3viEw+FeOwKegOH7ZYQiz78v5S5jOw0ovowlWwPr83YgngQUMJnXwtw5reHiMhmUezh39+KRO7x3cfiunK7IqXJAQwNKh4dcWIETgLCnO6RN0FBdRU5v5e6mYMYXdBluqFd9/9M26//c8cf/y5aJqT0tKyfdJPEKCsrIxNmzaxYMECAoFA1n6CAI899hizZ89OumE/7tqiVj/BTzEvbXuJW5fdmuzkDlDlruK6Of+PUV/7MWabL+f6GwjU8okIRzEy6sdo30hzZQUNX6pjytQ3c+yXJ9nKmYVBUdyYjv7+a0rMg2lP7ZKdLQk+hp0ABVlD362o0IOA3tvWF3iUs/jX8Fp2e9hlue8O+kqPSseOBVzXfSmBYwsYM6IWp5bq8gjqPZjxxOe2r4qMTdd5MxRm2dNPZT3H/DM+x8yyYtQc9XlVTaNkZAWh0JYh5+x2j02KjZQy75SGfNi6dStz586lvb39Ix9jT9jbfoKWJfgpwzRNtm3bxpKtS/jr2j9T3tbKhCB0FcDa0YLWUCtXv3E1vzozxsh7lKzrb1rNbByHfAllQMWKeMzPTvsmYrF1wzPZLN9D06nQwNjUOp62dAHMlgSfPHAmwbME8KCghI7hsf4yYdpAzd0RYSB9erE2orGpaDV3ux7nXHFByhhpGshwJ8545sa5E2pr4Yyz0vIEXYWFzDjmeEZOnERPNIy3uzPrPArLKhIChorMZg4CAjUZabm/6nUeSFgi+CmioaGB559bhNunMLIjyK/XVWDb3UJfYlN7Idx/oqTzEIkyx6BLmJTco6VVr9dqZuOcf3na8TV7EcdwKC93qkSjb2G3h4bdq7icBTwgMpQ4E/cyTy5N9vbLGgHamwRfQAAJBLE8BgcLZ8l/MJKdexzYssfsgQAOpEiVICWrPev4gtKJJlx02SuxBSO4gr6c+2qGwciJkxgxfkJaxRjRm5sbdbjwFZVS3NOVKDLfi6KqFJVX4iwoQEqJ0glG5mpqifGdQOG+q9dZV1f3sVmBw4Elgp8QpDTw+ZYTjbbicFTi9c5DDMgfamhoYNkjr3JqfAYFOBMVyuZ/BjPcSfT9x9CbVlHaA9/7l8mqbhPOArMAhEyr4onjkERuw2CXieit2THPqOfvrSdz7Kh/p8eX5C6TmNMVNVSJs++I25jHUtbJISJAhUKAIgql3wqAOYiYxgd5R2l+JPrWBLOk1wxFt5GIC/18TwC3FDTbCyjs6cEVDg65r95b/kwoChWjs/dsjTpcCFPDGYvQLU1CaIyq9OJ0JvIHzWAQJWCCITBKZUoUKjqoXQIlbGIGg0TYf/U6DyQsEfwE0Nr6PBs2/pRotD+tweGoZtLEH1NZeTKGEef9f7/J8fEZafsKZwnO+ZcTWfZH9KZVABz6koKxwkZ4dvqTduHUWshStBcSQlhs2lld8GXeExO4wPwrJQMS3UUQpIc9XnfJx7p7gIuYw3J8Ir/qMj3i0+HuORCpkxv5LM9QjI8/8E18lGV/GJGSUjpyligbFgR8lAaTUoLPgFC4jAWOz7LbdBCN2hjV5sOpDO1e11VBxKHhJIyKjoFGhOxtlRymilu48QmTGBJ9QE/OaDSIAJQwKLsE0gFSlWkd6SMxH1I7OJvgDjeWCA4iU7SkOkSR2v1Ja+vzfLDmSgZ/eaPRFj5YcyW1o7/O2rVvMavnWwBp63tCCKSUOGZ8Cb1pdfI4ig88r6Z+gQtHhSmZZqMrjxJ+n2nV+XXpYbyrzOELgWe4ds2f6XqnGJdvEqFD4nR+fkPm73iW++A6puZuW9Tb2uZ5earVsf0goIzOZGWXC5JVXTJY5b1uv1zpD8OO7gAtOvQ4+oNi/u2zs1vxsUVbj3fM+ZzodGGq2tAl24DuUskotqfcjHU0OigjRKoAaVLiNmTvmN5tA4RWV8A2YLyIpn/nAQxl6AbYsO/qdR5IWCI4gKzRkvOv44QxJ3zk4/YVodbb2tAqKnDPnYPYi36MSaEOtuDcdROZn14T27bv+Atay9EJF2gWhBAIdylq+USM9g2Jbb2uTdl7HCGg6lA/Rp7ly05tivObyQ5MYeNfntP5fzvXUTruKwTHbMZXf/8eZ6hmalmTiYfERf2/WK7OA5bJNCR/7qvq8lcuJzBojbaAHr7OH/dNAEwWGppGMXVUIzD0x8eMwvbdCtttiYGO8AqKW3ehF/2YHm8JmmHDoetg6shoD8h+8dEV6C6DwgwpFRo6VbTQAilCWBWWCCAOhJHYVAWPo/9eono86EpbIiE/C7oCitODmUfBin1Vr/NA4pP/DvPkpW0vcfXiq5M3/T5aQ61cvfhq7jjmjo8khN0vvEDLL25JqcCiVVdTdcP1FJ100keaZ59QT3AYXFU59BOryzn0mgSAs9JDsEMmyo7R/wQpkbgqYtjcJpr8EAUfJl4kJuGS9egOP1q0GFfX5GS1jNIYzO4yeLdU4+g2EEVX0lOxgqaZv9/j9wxDt6zJSF83XksIDyykycmk9nvsq+rSIOtZy3QA6lnDVBqG3wLM4oqXEqJRNx1bDmOndDBqdEOGQYn/XG8K3CtU7JsEo6VggddkywmV+N1nUuEop2KMh9K4PZEiYXcAECuJ4o+H0fWEEEXsUGNLvd9IadDT00A83oXNVkJpoSAkPGgyIYBFemJ8KyYSGOF1pqzZuW0edno1yjvTLbh4PM7//fWvPPr8czgcLjRNMnp0NddddwWHHJJeRGJf1uvso6Ojg4svvpjNmzcTj8eZP38+f/zjH3FlKQywL7BEkIRldeuyW9MEEEimCPxy2S85dvSxe+QazVaEWm9pSWz/zZ17JISDhbpIzW/9Qi3ande4ymnbUSe00LKymJ6dfR9CgVo+Ca3GRcTYiUP5ELf6Kk1lo2md8nBKgro2oHM7QHlUokjJNWujmMisFV1SEtqzRP5NYS2lsj1HaxtL7PYLe3Lde78Hp/EfNNJv0gom01nDdIYu0LzXDBLCvq/o5sZ5gMLWrXPo6SlnwsSl2O39D5pmVFD6gIJrtZLiZlR9MOGfzYTPeZ5i27cIDzyV0Ik7OzFtIcJCEO3t/uBQJAMbQXR2vcP27X8lHu8ve2azlTG6+hpGuE5FAIY0aRYQUQVjvC6KXal5iEIIistG0GLuoKxbpliEl/z4R3TFwrz85quMqR5DPO7nX/96gHXrGjOKoE2r3OdBMT/72c8YN24cTz75JIZh8NnPfpb77ruPb3zjG/v0vAOxRBBY2boyxQU6GImkOdTMytaVzKuel9cxcxah7r1xtPziFgqPPz4v12gmoe428vuAht+LYEQ6URwlWT7UJiodOJQPwWUy8ogudr0FYWNhSi5gexxU2ohWP8DuGemJvX2d20e8dxWFrXPxm2uZ21JAVbSCUMn6jBVdcnV1H+gCUzBzdwTI2g7JEsZ9zh4I4RyWcS4PDj1wH+LddhKB6uUpn8do1M3mxnl0dPRHZna019LZXElVcBk2t44eUtF32jlmzfb0tfXe5QP7i9vY8bNfUuK4Gd3RScwBppaoq2kCUXOAcA7Yv7PrHRobf5k213i8g807rsdeGqHUfSTRkSOpUFU8DjWrQBU5iqBiNE3uJtRIHM2ETVu38fQrr9CwqYEx1WOARO+/s88+P5kn+PDDT/HEE89RUVnOhvXb+d3v/oDf7+eGG25A13VKSkq4++67qa+vZ/HixVxzzTWsWLECSLRSOv3009m6dWsyWf6CCy7gjTfeIBAIcNddd3HcccdlnG9PTw+maRKLxQiFQowaNSr7H28fcEBmBm/cuJGFCxcyadIk5s+fn+xhta9oC+VXKzPfcZBHEWop0ZubCa14N+0lw5S809jBU6t38U5jB4YpMwp1Y1ShSxdZmz1ICZGIm3fMU3nL3ti7bfDgRN1Fr+3PCGEm72XFs+sTuYDOYkIla+muXkKoZC1xitk2aWdiUHr2BACtk/9Oi9bOtvivOHLnciBzn7++lIdOylK296U8LGdByva+taNSsicMW3y8nMwzFJC7AwIkOrVfxa+4mv/7GGaVG1ukjLGv30b3i0fR+NZE3l99AsuXnpUigH1fKkfLLoJNHnyNxQSaCoiodro8mV11AoHWJbDtAKnEMW3hpAAC9Ax6aO1bHZTSYPv2v+ac82bf77FVevF6HBQ4tSEttCJHERNLJlFdMRZvxWh2be9g4oSJ1NXUpV4LW3GyXqfdXsqSJe9x04238e67qxg/fjznnXcef/vb33j//fe59NJLOeecc3Ket4++VkpLly7lnnvu4Stf+QrBYPqyzI9+9CM2bdpEdXU1lZWVTJ06lTPPPDOvcwwXB6QleNlll3HppZdywQUX8M9//pOLL76Yd955Z5+dr8KdX63MfMdB/kWoB49btKaJm55uoMnf/+WpKXZy5hHplqpE8G+fjQvLYmkP44PdOxtcfmLG+xwdqsNm708NUOnAa/szLnXg9VUIqF+np2IFbVP/nvLErMQKMO05qt4L0F2dvDvyOe5tvJkKPRHQEnOnPhDsScqDgpl0mcaxcRl3IST48fIBh/C6OD77fCz2KXNZznk8QIOsp4EZtFNOGe3UswaBpBvvvk9u30PapjxCV90i4u/U0rNGI14QRKnSMe39tpnQYzhadmDr8aXtH7Xlvm2qPekCZZLqubEpNio9VYh4E92+D1JcoJmIme30yA2UcFjuNzcAIQQeW2JNz6mlrh02NjbyhS98gXA4zGc+8xn+8pe/oKpujjzySCZNmgR8PK2U/vGPf3DIIYfw0ksvEQqFOPPMM7n//vu54IIL8n6fe8sBJ4Ktra2sXLmSF154AYAvfOELXHXVVWzdujXZuXi4ObTyUKrcVbSGWjOuCwoEVe4qDq08NO9j5luEeuC4RWuauOKhlWkzaPZHuGdxO64x6fu/H9a4rwM+741Tog3MFxrk3hGCrWobreo2/nfjB5TV21DowqF8iBCpN6eoOQ1f5baMQSymLb+2L0dEJ1Cke4FEhwf/qNdS1mHyTXlYJ6cSpCCjy/Q87uMDZlrrgfuDAbl7e72Wt4c5o8NxDt3RRekxXXTHR+LfAlrAx6iQwdbqCoQeRw31ZJ2SI547bcAoTL+HeFy11Lk0dFNHUzTcmhshBHEF2uP5BX1Fo+k9AvNl9uzZbNy4ka6uLkpKShg/fjyrV6/m/vvv55lnnkmO+7hbKd11113ce++9qKpKYWEhX/ziF3n11Vc/VhE84NyhO3bsYMSIEWhaQp+FENTW1rJ9e3p5n2g0Snd3d8q/j4KqqFw3P1FJPZOvH+D787+/R0Ex7rlz0Kqrc65VadXVuOfOARIu0Juebsia7GCExiIMb8acn/fDGjc3uXiyZTzr1h7J+++dyPJln0917/SeM+Tx0BFvxa2+jlP9IE0AAQy8tE55uHefwfPO/b770KL9cw33rQcO2DfflId3mZfVZfpbrqFLlFsCuC+RMn1duzf3ba9y92Si6HnpprNQo969m2M+ZPkcj1zYAiKRdlDe1k5heytasDvLx1zi1OOUBMNZXpXoJZJ4bf/1EooNlytRfsxj81DsSPzfJwg2WzEFBfm193I4hm7TlI2JEyfyuc99josvvhifz5fcnslF2cfH0Upp3LhxPPdcou9oPB5n0aJFTJ8+/SO/z4/CASeCkP7EkK3RxS233EJxcXHy3+jRoz/yOU8YcwJ3HHMHle7UD1qVu+ojpUcIVaXqhut7f8nQVA+ouuH6ZFDMsi2dKS7QwUgUQk2nZyxonViUFyysvpC2trH4/dUM/tOawK7icjZWjGRx5TxiITXjvS3YYqdNdqaJVr5ICUgwbP3rRJnWA/NNeXiL3hYtmVymFvscDz1pa36ldPIdbvvouXu9n7vqhgup2HwW41+/g1HLr0WJefIr2JJZg9KHravL+boQYC/QKahOFLV2xnXqd/fWvEy75yR+r53SmvVrIRDU3ngH9dNuw2YrwekcmVc/vPLyY3A4qsn+hRM4HDV4vfkF5WXj/vvvZ8aMGSxYsID6+nqOOOIIXnrpJa69Nr0UIaS2Upo5cyZ33313xlZKxx57LF6vN2Xfga2ULrzwwqytlH7zm9/w9ttvM336dGbOnEl1dTXf+ta39up97ikHXCul1tZWJk6cSEdHB5qmIaWkpqaGJUuWpLlDo9Eo0Wh/+HJ3dzejR4/eq1ZKw10xJt88wadW7+Lbj64e8niXnhLglba/pATJVLur+f7c7zNh90heX7SYMFGaFV9fuh+by2t4a/whBJ2JBX1FGly3/i98s+URIPHV8+90st1XRMwpiFdLgqfl8YSfzY0lQYuUMu6N2xEohErWsmNeauSbicK3uTtHyoNJEd10C+/Q87DYO7IsKPe1KQKGTGHZE0TcSc2HX0+m0vTRU7mC3TN/1zsobTqItxyULTewNULrzTqml4yfPykhHtTYvaSCuhOGXr/a+tIIImvdHLt2OwJoLvbQMKKciL1/tcjmiTNyYQtVUwsYs/tMIr9/Lut3OlNrn6Hor/wEqU8CiTc4Y/rvqaw8Oa9j7W+sVkp7SWVlJbNnz+ahhx7iggsu4IknnqCuri7jeqDD4cDhcAzr+VVFzTsNIh8KTzwefU4BPeuWovgFJaWH4Zk3Ly0torIwvy/LxNChnDfjUZqKNtMRaafCXcHU1jH0PLoFw9/Ocb2JxgEiLLFt4JUqjRfq5yf3P63tdW7e9BvcLj8tFXYcMYnfb2fLqS7Mkj28sWV/cEV3ddJV+yIl209EtwUSCfgDChPnTHno7RS+kDdYxBl7NieL/JESGzEK6KGLAeutdKSlqOQsXD1UUfQB49RYIeNe+zVKhltPYetcqlZcSFP9Iyiefq+IHtCwPWWn5u14shhD8T80ui7Rs+b77Xq7CiOS38OrHlKp392RPEy1P0ilP0j36BEU/+gGsLfhrXXiclUnC9PLs783rFWgKitPZsb032epAfyjg0YAD0YOOEsQYP369VxwwQV0dHRQVFTE3/72N6ZNmzbkfgdaU92hClsPxDAlR/7yFZr9kaweISHhjJCNyXENj9fBUV+ayAibQsdD6YWF+wJ8flSvsmiUG4TgtLbXuaXlZjZM8BAbUGop400sV7DCHgQyKDEPZl+vvwz75MoT9BDg5+Kn+Z3IIpVM1l0Ga+873MYclu+dpRd3oEhbStRwtmjlEauvpLB1bsqSR98tqKvxWdQ1/wFh0jHdRrxEoHZJytfECB1v4l6hovr692ufqxI4J4K9YMA3xifQnnKypnsUEbtC/bmN2Dx6xmVjKRMCa7+lgBrfgD5/vYNH7mExiz4+iiXYP6fc3WAs0tlbS/CAFMGPyoEkgtkKW+dyb2SLDk3S+8LnQnYmxRNfjDNrXIhw5mg1iaTFqXDmZzwIdJ7d8WXaR/X5lgbeochb1DIJZq6KL6ZUWCdy32Cz7W+icDn3EBT7/4HmoGOQCglpIAfcTJMFCXp7MPYRC4PpAIcYOt4oHhe0rS5jxS4PgbEljC4y0e0+Ip4mFnp0igeUBIsFNHa9XUVBy1wOLTset9b/Nw3q3bwdfIdnJ4zmqn88QKWvPw+0p8TB6P/3dcThtdi1cuyNAqOtk5UBha+v0pHC5Gz1H/zvtmUIv8C5SSCkoLnYw8oxVRSP7aHupF2Ja5DhIW9c/BL0W54ftrKGsHciaLHnWCI4gANFBKU0eOvtz6RYgIPR1CqOPPJ1VDXVLfTs+01c9chKTAkCSZXSg4s4YWy0mIVIKSiUcGm3kwpN4ciCoT3aty18n2Pdf6ZQyS+9ISemoPr9y2if8hi6o4vlIrslB+RVDSZ56Axi+KQ8myeU/937eX+akJIT4y8w3/ZW8lpOYj0bmJz6oNEb5VnwjELcL3h2ssIz1RozXAYXlsWAzNbc1vY6Hik/n7XUM7JpB5WdzZzy+j1EnGGKQ2BKJ0FbNQUjwmhuHT2kEWh2p9SkLXeOwqUWEDYCtEV28uRJX2bjuGkopsnM9Uupa3mJcw49lmNOvyKrm3FgTu3C3R9w+ftPUhHpD8LaXVvFxpHVaFW7GbmwBXtB/8Oiw1GTdDMOd4F7SwQ/Xj5xa4KfBBLujBzVYgDdaOHx2+9n/klnMn52f0RqiceOKaFW6WSBbTse0d/zKyhtLI3Xst0sZYem43F3ArlLDPVUruAMz+/26v2koEhs8WIq153LUzOX52xym4lkA9xB0YXLWcDfuCiR8tBLiWzncN4YEBlhpUJkRUpsuuQzH4SY3xhDk3Nwlxfh9jTTbqi0jNjBlJENKANySSMxF2/uOIF1tfVogTfYXvwBEiOZe3q2N453wHi/4eV+9essrzy895wmO0aMpaL9KWZtC1GeDCINEy/vou3o08BTxfq3FoPsT1+SSNoiOwAIOHWWHdpFvOx1vuCxM76ghIX1c5lXdemQAWmnTK/hxPpqlm3ppLVnFjb3RYzq3ILZ3o5WUcGUuXM4VsCutR/S09WB6mmiqNqD01mV4mYUqopnwfyc57L45GKJ4D4g36TWuN7Goj+t4ZTLpieFsLUnQq3SybG2xrTxbuIca2vkdW0HL49/lp3xSk7a/t2sx5eYyXy/4dQP3eHH03wYD+uHJ5qXZaz4kiWBfVA1GIAnOZsn+HLa0C7KeFacxbC/gU8avQ8Jn1saZOquOG+N+Rdhew8hrZuo6Ob7wW2ctK0NZRv4im10aE6WBiazODAPdyjIwqanUaRkPiNpKY0Sdhi4oiqNXXY+OGMhgZpifJSwTpua4lJVjC4Kuh4iPnI30cd+Q22bN6M1dez5F7Nr7YcEfF24i4tBQsDXxW7aidW4OK2g6iNHYauK4PDxA3NIU1OcBDB6Wnp+moVFH5YI7gPyTWo1Il4A3nx8I2NnVqAoggqPnQW2RGGATOmFEpiHj+dUP826nU61G69RiJJhUa+vaPVwy4cWLWZViUqbPYerJ5do9VaDeVKezSucmGL95X2MTzODommLQiYnrQoxZVeMsBai29ZDtc/JsTtqELE1vGg7hgZ3DxXCh31biN2hIkxgyqAKLwqCms7E39RTWsax372Uwycewlu+HgSCnxS7UYVCayyGP7iFSqJUeb7RL2DjMk9XUdSMQjR0qJuFxb7HEsF9gNc7D4ejmmi0hUzZv1KCHi4h1D4RgEBXlKaNPkZOLqFKDaS4QAcjALfh5rM7P4vTdLJS2crxxoy0JHqJRHf4hveN9eb/ubom01699wKVyfr71JLNcu618uZsXYc3HMAdizJ2p4dO9ziCLpWCsEltu47SO+5ox1Oc2daOR+miesxawOQvZaN5LuDBGVMJ2w2KQj5mbfRmLLwAsPB/vsKCs7+EoqhMBo4qLcww4bIM2yz2FkNKlvgCtMZ0Ku0ah3kLUIfpYTAej/OLX/yCRx55BFVVsdvtjBkzhhtvvJFZs2YNyzn2lJaWFq644go2bdpELBbj8ssv5zvf+c7HOgdLBPcBQqhMmvjjAcmv/fQtb7Ws+jLI/qf5gC9EcOlGwivfpaKllfaKcqSSvSqKw0zkR25V23iZDzgsPimle3y3CPFI4Zscm++kB0eIZvod+P/s3Xl8VPW9P/7XmZlkQtYJJJOEBALGANkghCU2ARFIIbJJv4WUq1ihCLbWXivVC1KxYi2iPy9KvSqoKPaqyHLrAtagCLgRthIMIRRjSEII2ViyTJZJMuf8/hgyZMgkmS2ZOZ3X8z766OXkM2eZAm8+n/P5fF7ac3dDgAIheifNp2JvDwDgq29GRN0VXByohd7rxtpXP30z0otO45bLFVAY1PCrvwUXDcG4pbEFCniZ2qnUeqT7v4JEr29Nx1rUCvwQE4jYkBaEhizBa+eyTZssXAtow0/OhmJAp91XAgaFYOp9KxCbar7JMfWPT2tq8URhOSr0N/4RHKH2wjOxkZgdqnH4/EuXLoVOp0NOTg6Cg43bFu7ZswdnzpyxWAQNBgOUDkwQssbKlSuRlJSEv//979DpdEhLS0N6ejomTHDeWu3ecHZoH6qu3oezBU+hXbzxjrCtKRhVuYugK7+xGXdozSkkVXwEXL2RKNHk44OT48ahfIh12VqCBISJGqgUgN63Gdu1n6FeuIpntM3wU6PnJRDXfwf471VAVSOgPVRC4yQRUqftPVVNGoSeuweBNcbfnAYAc6f4odqaufRkeXLP9WPjS84ipfQHKATj9nYVQSFo8lbDt1WPmIt+8DIMgEL0hqo1EHoAfxtnwOXhoUiolbBMo8HkIQMREavB5epsVB1fDaHxCvTeAmqDvKD2GWyaBXnzbkjJIWNQee5f0NVeg78mGJFxCVA4sDsSGdkzO/TTmlrcn1/SzYIq4M3EYQ4VwsLCQiQnJ6OsrAwDBw602Gbbtm344IMPoNVqUVBQgJdffrnP8wQTExPx1ltvYeJE48Sk3/3udxAEAX/961+tfjbODnVjWu1MDBo0HTtf2Ia29hoYWjTGIdBOPcDQmlNIPPNGl88OaGlB+nff4bv0dKsKoSQAlcpaAEBz5GeoMzRBEIGgnSq039t1Z43OFNeAoN0qDDh1474CsiV8f4eEEQ0SlHUCfBtHYMCE8cYhNEGAEsCjZ/X4r2QfpjhYQd1mXHKg9+7ay4svVaDVxxuishUKAJF1l6EwqOFfHwO13vx96QAAa5JGYMjI4C5DZdrwOxE6Z4ZpsfUtNy22trQbEieNuJ5BkvBEYXm3m+cLANYWliMzJMjuodHc3Fzceuut3RbADt9++y1yc3MRGxuL6upqxMfH4+DBg0hKSsJ7772HrKws5Of3nhbSkSf4wgsv4MiRI5g/fz6Kioq67B86YcIEvP/++6Zt1vbt24dRo6zbUNxZWAT7mFKpwsQZ85C9xcJvHEnEyHPvWaxNAox/AMYfP45LkYN7HBq9WdARb2BCE+LKJGiPKNDcokLdwnaInXp2Qj3ge1wBnzwFvK8vMDa7viSgrlqA7/Xdsgw4hZZjm6Ee/QsI15Pmp1W347ljNVifOAB1fpbeGzmBjAusqq0VcZUXMOxKJSLqjPsodu7lRdRdhgKAWj8a/g23oM27DqKiFQrRG16tQRbf1wFAitIbI4Itf9+CoERwsPWZc+R6R2p1ZkOgN5MAXNK34UitDund/O9ujd7yBAFg0qRJiI01zlXojzzB//7v/8ajjz6KlJQUhIeHY9q0aaixMovVWVgE+0HMWC0yH0jENzsK0Vh7Y8PviPZieLc3dfs5AYBPaytCqmtQEx4GX19fNDV1375DaLVxUXDw9bXxA04p4PO9F1pvlWAIMvbsLBW+DhKAKwHAVwnAlE5bRrZX5KK94hSUIbGQ1EGo9jUgTH8Zd1wcgapht+DIOKvfQFpPpgVwREUJ7vjhVJeYlsi6TpsKS4BCVJsKnnerxqpz+wU6d79ccq3q1p7zCW1tZ4m75gkOHDgQb731lunXv/71rxEfH2/1czkD82j6ScxYLe79cyrmZEiYHl+BORkS0hKs28FlyqCBuO+++7By5cqex7clCQMaG3Fbfh0G1ku41mnkQZAEqAsV8D2hhLpQ0WMBBIBtP1XgzHAl6n1unt8qodSnER+NC8eX42JxJO0niAgZBOsihD2AJMGvpcm8AF6PlzJvZ/wv//qYm3p8FvL7OvEPViMiVuO02yXX03pb1xextp0l7poneOXKFbS1GXvBJ0+exEcffYQHH3zQ7ue0B3uC/eTmSKUmAC0W8rUs0YZqoR0+HACQmZlpyvQyc/0vzpTcXKhECUu/ELFxvgKXA4CBDZb/tXPza0KDIOBwYhzeyUzEpUGAV8tZbJlVgEf/bjC1vRgVie/S07veY0MtfFpb0OKllm3vzWqdi5SFiS7pRafNCyAAQVRBUt74l7xC7PrOT5DaIDb+CKGHkNVJWbFQKP7Nv18Pc5vGHxFqL1Tq2yy+FxRgnCV6m8bfwk+tt23bNvzlL39BamoqlEolgoODodVqsXr1aovtO+cJGgwGaDQai3mCw4YNw+2332722c55gjqdrts8wWPHjuF3v/sdvLy8EBAQgJ07dyIiIsKh57QVZ4f2g/rPP0f5w7/v8V/4PRny9lvw/8lPTL8uKCjAPz78ELq2G+8RBjQ2IiU3F1EXjZsFGwQBC575NX6S+x4e210PCeaFsONO3p71/6ASRZQMjsLXYyfCoPJCZ4KhAWPz38Tj7x7DwEYBe+fOQfOAAWZ/+d+cV/hvTZLw04JjEIAuz+zX0mRaztBBEFUIqBsBb/0gs3d+0WIQ4rxbkF21FxB8ARgwtlaPlP/8GWpCk7sMnfsHqzEpK9Zsiz1yT47MDgUspQk6Pju0PzFPkMxIBgOq1j/bQwHsOcJBqdHAb6L5vobx8fEYUt+Ak//1GJp9BmBASzNCai6bFkwDwLuZ81E78HZ8NjUNrQO24oGPjyC0/sa4fZPvAOSOTUHVLUPxVWwy9F7elu9O4Y+To3+PXz36V6T/qxjD4Gv28/MhEWZ5hf+2rn+3Py04hpjLFYAEDKupQL1qHHRqFZTKUoQ1VJr+oSGIKgxojIRv41DjryFA3apBpApIHqCAQqHAd9WfwtBeBgHAT+csQNLd90JQKhEIYPiYUFQU1qKxXg+/QOMQKHuA/75mh2rwZuIwi+sE/+ykdYJkGYtgH2s68U+zmJauOv5is1wMw59eZ3FHe/8J4zFYoUTbhQtdPmUQBOzKmAPvpuPwv/Yu8qKu4qHfSIgrUyCqVotbmuNMi/GHXa7AoZgx12/F0l6fxmMN2t/hWFsJvC5fMs1qFGHsDXX7WUvcaTNsG+6l86J1wDicGVgfA23L9X8UCLFo89Z2O7tzlFqBET4KCIKAxvZ65FZ/ifKmH+AVGIxZ9/+mywJ1hUJA5MhgkOeYHapBZkhQn+0Y01+GDRvWb71AZ2AR7GPtVk73VXhJENtu/GbvLtNMFA0oP3sG9deuQj9vDnxef7NL+fz+1lFowxkEXr6x4FRSCCiIFlA/yAcBNcYhNRHA1xGJaLVmyEZQ4GrULdgTdQv8WpqRXpQHdVub7UOg/fQHWt3agrD6a7ikGYR2lYVe7vUCqG5vNduhxfwcbYi7eAW3VtUhulIJJUIgKYLMilxHeLHl2Z0SIpQCJvir0AQRO6FHnlrCyFsMSAyZhp+PWIKh8VygTjcoBcGhZRBkOxbBPqYKtW7eZGT6VQgC0D5xNVTxk+E7fhwkASg7k2fa0aOpoR6H3nkT19raoQ8bCsnLG5Hp6Ug5eRK+zTf2vyoeMhr+194F0LVv2aI0Dok68h6vUe2Dz+MnIuli16SLPmPNekHTDiz/QsqFc6be6smhI5AXeStavW8UQ199MyYVncawyxWmtXsDWo3v4Jq91dBcA0aVx0AheQM9zH3tmPatQBtEdH6fKiIcdRhdfhxls6ehZlw80oIG4PfDB0LJYU0it8Ei2Md8x4+DKjy8hyFRCSpfA/y0rcZggPHRQNJEFB49jAPbXofuqvmwQluABi2RMaZflw+JwqXIwYgob0Xw1WC0egfhfJQSSsNVWHLZ5zLOagfiq1EOvMcTBECSUBhm3ZZuzqBua0VS+XnoVV44Gx6Ndi8vi22mFJ4ym5iiADD+wg9IufBD14Xq17vQN6/d82mMRIAupsv5e9JUfwDtrSLq1JEIar6MmQUfwS88FNo1j+NWOxPKiajvsQj2MUGpRNiax1H+nw+ju12pw8bW30jG8Q9D4dHD+GTj+i7nkgDow4ZeP3GnxAhBgRb1FFSFeUOAgICmf3Z7P5Ig4PCtNr7Hs0QQ0OLtA59WPVq8vG07ly27wEgSxpWcxbgLP5gmnfzkfD4uBYWgXBMCnY8v/FuaEFl7GYOvv6u0pGM7MhODwngPwo0Fv4LBC/71t8JHb/uqx5+cPwtNbSGUwcEIf/xxqMLmOZxQTkR9j0WwHwTOmAFsehFVax5Be6e1qSpfA8LG1iNwSAsAAQgcDHFIKg48v8LieQy+AZAszOL0ag2CUuy0J2Vr91OC29Qj0ealsfdRuogqr8SPw4bavr1Zb+1vno3ZiQJAVN1lRNXZ+PJdAiApEVgbb3p/Z+1WZT3dp1p/DZraHyEIAiLWPdXlPS6RtQyihGPFV1Hd0AJtgA8mcvi8z3HHmH4SODMTt257FkOnXsHgn1zD0KmXceuc6hsFEAAyN6D83L+6DIF2kG5awwcJUOoDcFXVhMJB/0R5YCFEiIioj4F/m7+lKEOISo1Tn0scoMC4krPwub5BtDWSLhZB3d5ze3VbK2ZYKIB2u/5dBNaNhLo1GML1//Nu1cCnRQvvVo3tBfC62B93QzUwGJGbXmIBJLtl51dg0nMH8B9vHMHDH5zCf7xxBJOeO4DsfOf8GWhra8O6deswatQoJCQkYOzYsZg/fz5OnTrllPPb49NPP8X48eOhVqvx6KOPdvn5M888g5iYGMTExGDt2rV9cg/sCfYjIWk+/H6nALJXAfWXbvwgcDCQuQGInwfdd191//n2G+uHvFsGoUbZjJzhH6GxU3iun16D6fXJWBh+BW9fVncZgRXab7TtkZU9u/PhQ6w7XyfDrlTiJ+fzcXLoCJyOvBX6ThNW1K16JJUXIaXT8Ket1E1haPW5DElxY6jT0g4tvVFBgnGPl26+B8mAxDNvIdxwAbd+dQgKb8trLYl6k51fgd+8e7LLv1sr61rwm3dP4rXFKchMdGwnFXfME4yNjcXWrVuxa9euLvuPfv3119i+fTvy8vKgUqmQnp6OSZMmYebMmU69BxbB/hY/Dxg1Gyg9DOiqAP8wIDoNuD5N3l/T/dowZVMDhLZWeLVH4LKyDftjjfv1CaKEuDIJwTrgmt9V7Bl6EEsA/NRnEPbp2qFU1pp+fsWnDN8GN0Py9uk2yVzd1goBQIu3nRs195CS7qdvNq0z7HbCin1XNW1IHVA/Aqgf4fBQZ4xagXOWwoOvD9UmFLwN7ZXvEbHpJRZAsptBlLBuT0GPUUrr9hTgp/Hhdg+NFhYW4sMPP0RZWZmpAALA3LlzTf+/K/IER4wYAQD48MMPu/xsx44dWLJkiWm7tV/96lfYvn07i+C/BYUSGD7Z4o8i4xLgPzDE4pCoAEBdVQYf7zQcTn4OADDxBxFLvhAR0mBsY4CAw0OGI3tCECbcKmLKqRGY+a8juLW87PqOMnXYW/wO/nvpA12L1fW/3KcUnsLQyxV49yd32j7pBTDNHu11X01YmLBiLwsbUneXytB5p0BLO9sDEnwEAcO8WhGo9MHpZgNaOv8NJTYg8ewHGKyqQhiHQMlBx4qvoqKu+xQGCUBFXQuOFV/FT2IG2XUNd80T7MmFCxcwZcoU06+HDRuG3bt3W/15a7EIuhmFQolpS1aYzQ4VIeCSTwSalL7wF/3g7X8RjepaTDwn4g9/FyEKAqq1ITgcnoidkZNxTR0IiMDJHwBffz2afzIQo/TlSDl5ElEXyzHr+FcIaGvCs/eugN73xqa8/vpmpP14GrdcMb6DuL3wlHFLNHsy/W5qf/OOK84mSMY9Oq0a7pQa0K4/B5XPeAtxMcZqp9KfwCdXvkHIgCgEKP0hSANQ39YESdLhjrQEjLh/JWd/klNUN/QeQ2RLu+64Y56gLffcV9tcswi6odjUNMxbuQYHtr2OUy0B+GbQJOhUnYqV/ykoRAlLvhBxMSoSuSkp+Jc6Egfbuq5ta4K38bi3hOb0AUj/7jtEXSzH5FPHMer8Cfz6kQRoa4cg+Yc2hOtq0Tr4FuMHBQG3XK7AjIJjDm2OnXCxCLdcrnDKMKd3kxYtfuWAQjT9qPMenZaGO9uacyAZrkFQDIAkSfDyvQNieyUM+lxIhgp4+U4FhBs7dCjbmxH3r/cgthVCNzgENUKZ6WcBg0Iw9b4VXbY4I3KENsC6TbatbWeJu+YJ9mTo0KEoKSkx/bq0tBRDhw616RzWYBF0U7GpaSgcEI1n3z/V5WfNhgCMKwNyk27H0XHjMUDfgiPVkdd/evNvNGNG/dH2oRiiuIaTY8dicPklKCQJYfUSxhQWoGDov1AbNBhDqn2hKC9CS8Rw4HoP55bLFaZdVco1ITg5rPuYH0tuuVzh2HBnp2FOtT4E/o3DbHrXJ7WXQWy/CADw8psLQVDAXz0CCUEj4SVeQlN7JVoFPXK9NDjYXo9nD/0JKhiLbOSAAIhLsyDdGgN/TTAi47jFGTnfxOEDERHkg8q6lm6jlMKDjMsl7NU5T/Ctt96CRqMB0Hue4LJly3D27FnExcWZ5QkaDAZTnuCgQYO6zRO89957e8wT7MnChQvx0EMP4cEHH4RKpcJbb72FZ555xuZn7w2LoJsyiBL+/Om/LP6sNSAex0b9FV9P7vSHoqUdXmfroKy29C8yAU1Qo0oKRISfgMuhIdBWG/c0DdYBIS0hqAlRoKrFC8FtoYDCvM/W8d4uou4yzoVHo1HdzaSazjpNgrHJTbNZb57VaW0CuyRJgNQAsb0cgA+8/H4KH+9YTPBTIERl3MhakoagXWpDptAIvdCKZ6f4Yfg9b8Fw+TJUoaEc7qR+oVQI+NPcePzm3ZPX/8l6Q8cfhT/NjXd4vaA75gkeOnQIixcvRn19PSRJwgcffIBXX30V8+bNwx133IGsrCzTcOyiRYuQmZnp0HdgCfME3VRO0RX8xxtHTL8WJBGDWyrQFuaLC7clXD/YdeKJ16mr3RRC4HavItyivIrbDucg+sIFXIyKxKFJKfAyi0cS0dPyUbPopO4K4fV7mVFwzOZ3gD66wVC3hjg0q7Pjt3Rb0z4IiiCofFIhCApM8FVisLfCrM3L+hL8I2AA1mb64xfpd9p0HSJL7MkTBIzLJNbtKTCbJBMR5IM/zY13eHlEf2Ke4L85URRRWloKnU4Hf39/REdHQ6Fw/p4DnV+CxzSex+Qr38JPbMKWjOsLSm8uQNdnZLaNCoKiusVi2RgA4zrDAS16XIiKRE56uoXfAD0/izXvCf30zUjvNMHGFurWkF57et29q+ggoA0GQz28fGdAEBTwEYB4H5gKIAA0iTocHVSD6TOHY/3oNKiU/KNArpWZGIGfxodzx5h+xj/5NigoKEB2djbq6+tNxwIDA5GZmYn4+HinXqvjJXhM43ncWb0PAFA2eDh0/kHdf0gQgAEqiMHeUF7rvCOLBF+0IkyoQ1jgNQRMGIgcdcz1kUfb/4B1fk/YOX0BbTEIbvBDWH0lGgNrIFkaSewuQ/j65Bev1h6ez/SY0vXUhk6L7IU2RHqpEeElYKByAK4aBqBFArwg4qvyl/B9cDAGz34IrVcb4TMoALdO+QlGqvjbn9yLUiHYvQzCXTBP8N9UQUGBaTy8s/r6euzcuRNZWVlOLYTjooOhhIjJV74FYKwbjb5W5oypu1afjIEncVvix1D7NKF4WBha8kbbuUkYjAWrU/qCwtDx3k4NoB1ACHxqBqHVuxZt3rUQFXoIohqCJKDZ/0J3+4ibrfHr7sKDvfIwN/gZKAQR5a1jcKVtBiD9BINUA8x6hyHXO32nr34HEQZMX7oC0anj7X1iIvo3xSJoBVEUkZ2d3WOb7OxsjBo1ymlDo/8svYbw5goEGG7M3vJrarDuw3qD2S9T/Aoxb9x2U3lpbbVvuYOpWNWOglLy7vG9nQAB6tZgqFvNd8DxaveHLvBHiMobPdWOyS/eLYO63aFMBR2mB72KWwfkwCAFoKF9HgQpCyEqyxNXJEmCXmzGqZZ8LFi5hssaiMgiFsFOunvfV1paajYEakl9fT1KS0sxfPhwp9xLdUMLfA1NZseiKkrgr6uDzi+w223J0GKA4pr55tQZMd8Ya8v1j3h7N3f5qLV8GiMxQK+1+/NqfQi8awah1asWkrLNVEQ7CqwkiRCEzv+QkDDEqwap/legEiahpnUu9GICgO5nbXZMenml/Sqm/P45xKbYvr8pEXkGFsHrenrf13lRaE90Op3N1+2u8GoDfNCk9DVrq5AkTP/uU3w84z+63ZbM6191Zp2pUKEdsWF5Zj2soKBqeHs3orXVF912vSwRAHWrpfcVEqBoBcTe9xptb8mFJDXBWxwNQXGjlyhJ9RANOii9BpuODRBqcXvg6whSzoVeHI22buYx3zxRplqQsAkt+FodiKwgX8sfIiICiyCA3t/33XHHHVadx9fXtr9weyq8E0fFQQwbjoYaP/gbGk2lakRxAe76fDu+TJ9tPkmmxQCvf3VdJ7giqAIKwbx6CIKEmFuP42zBlO4nqnRDVFiKQBKsKoAAILYVQmy/CEPLMShUkYDgB6AN2gE+iAwwQEAuwrwLEaC8jHCvs5CEgajUJ/R4znaxHe8o2nFRkHAFEr6HARKM08sdWWBM1O9EQ7eb6zuqra0N69evx/bt26FUKuHt7Y3o6Gg89dRTFlMk+sOnn36KP/3pTzh9+jR+97vf4YUXXjD97Pjx43j44Ydx6tQpzJo1q0/2DQXcrAiuWbMGH374Iby9vaFWq7FhwwaLO487kzXv+06ePImAgAA0NPT8Tu7jjz+2eqaoNRNt/jQvEf9fxSTcWb3PrFaNKC5ATMlZXIwYhoHhdwAIwd5rjbjcaZmtFgJ+J6oxvFmNmgsTofSphW9IIQSFsU1ISBlGjfoa5wqmQRKs6+kCgELsPi2hYxjS0vIF88XrACABQgB81MPw05BPEONzxFLHFlfaVqBj6PPmHp8kSbjQeBZ/Elrxo98tpuPOXGBM1G8KPukmZu05Y/qMg+QWpRQREYGXXnoJubm5+OKLL/rsHtwqVHfy5Mk4efIkvv/+e7zxxhv4+c9/btWedI6w9n3fuHHjej1XRwErKCjosZ21E20yRoViZIQaX2qnQac0323BoPRGrBSA+69pcf81Bf4P/vgrfPEnDMBf4Yu/tvqitUHAqaqhKDm5EIVH7kNB9hOoLxtrOkeo9gIG+3W/bZIZyTgLtKclDB0F6ub9F24sXj8E08s/IQBefjMxN/R93DrgCESYz3w1IARXWh9Hi3hjQkujQYfzDd/jh7p/4uSV/Xi7bDOeFFpxOXSk2WfDg3yckr9G1G8KPgF2/tK8AAJAfYXxeMEnDp2+I0rprbfe6hKldM899wAw7iiTmZmJX/7ylxg/fjyOHTuG7OxspKSkYPTo0ZgyZYrp77ZDhw5h/Pgbs63z8/MxbNgwAMbF8iEhIXj00UeRmpqKhIQEHDhwwOJ9jRgxAmPGjIHKwnKlqKgoTJw4EWq1nZFuVnKrnuCdd97YsSMpKQkGgwGXL19GVFSUxfZ6vR56vd70696KmSXWvscbNGgQsrKy8Nlnn/XaI+xtpqi1hff48ePQtl5CyECgImgCqpp18GtvQoBXOyS/AESK4bi+/h1KCEi5/j/npVYRx5sM0Ksvd5mJWftjCoY2BWLIyK8gigIMleOg8C80DnN212myeglDN5vkSg1oazoEse1H0yEv3ykIUF7BYLXxD9XVtlUAFFDgGkQEQy8moEoS8InQgnJJxBWIyFMaEK7yhq+hHU3ekbg0cDxWTInBf2XGcYExyZdoMPYAe0oUzF5tzCG1c2hUjlFK/cWtimBnb7/9NmJiYrotgADw7LPPYt26dQ5dp/Ou6b2169iW529/+1uPbXubKWpt4b127RoA45q8CJUOxs6Sr+mPSjP0XT4jSRJONxsLYL2ma49UVLSipHIofIKHwrvZD4bmQfAXJWPbbt4PCqIKAfVWxhRd196cA9FwFZAarw+BduoB+k6B0jsWkwKfhwAR7VII9GISACUkSIAEbEULFD8JR2ZSJK42tODpj/JgaFGgfIBxo/BBft545a5EzBpt7O3JfYExebDSw117gGYkoL7c2K6bHFJryDFKqT/0axGcPHkyzp49a/Fnubm5GDLEOJX9yy+/xLp163odB3788cexcuVK06/r6+tN57BWdHQ0AgMDe+yZBQYGIjo6GkDPu6531lOhs7bwdh62sKRSUYtGtMJX8jL9Br/SLqFZkqALvN7rshwqgR/OpMO/pBlqP+OyhcDa+C69xt5iinoitldigHcEhgyoRXnrdLSI3oDgB4UqEgHKK5gU+DxuURv3Rq3t9N6vGhLeaK/FjLFq/L/5N3adzxw9mL09+vekq3JuOwvkGKXUX/q1CH7zzTe9tvnqq6+wdOlS7NmzByNHjuyxrVqtdni8WKFQIDMz0+IklQ6ZmZmmoU1beo7dsbbwTpgwATk5Od22kwCcbjIgdYCX6TdsiwRj1JDS0izO6wRAVKpgULeZDnWs3+stpqi3VPaOCTC3DTyNicHvQqkQIUp/R0VrHBoNwfBTXkOE91koBGMPsLZtBZoNP8FhoQ0foBXfS+0I9Vfhlbtnmp3332E7KSKL/MOc284COUYp9Re3Gg79+uuvce+99+Ljjz/GmDFj+u268fHxyMrKsmpfUFt7jpZYW3hVKlWP7VStQahqVeG4ZEDSACUGCICP0N0yhq5ElRqS2AAI/hAEoUtMkSRJXXqSxggiyfTzm2drCgBu8WpEbMCdkIQyAJehEEREqs+gXRqExvZMXGubBRHBaGiPRY6hCX/yakD7jQugSg8cK77KokeeITrNOAu0vgKW3wsKxp9HOzaUKLcopaKiIkyZMgVNTU1oaWlBVFQU1qxZgwcffNCh7+FmbhWlFBsbi/r6ekRE3JjV97//+7+mMeneOBqlZG1CRHfLGzrcOuVWjIwbiRRtCpQ9vMi2dkNuS+2UPj5QXgtAUF2c6dgglQA1JFxQ1OLawLxenzfwShIU9T9C5WOc5WXrcIUkNkFQ3Fgb6SNcQ+KAYER6e10/YoBaccZssgugxOHmEnyhEHDAOwgGwfLkoU2LknFXcqTFnxG5M7uilDpmhwKwmCiY9TenLJPoD4xSckBhYaFLr69QKKza9qy7nmOLqgW5A3Pxfxf+D7gAhPmGYfXE1ciIzuj2PKNGjeq18N7czs/XDz9c9cZH+wuQVHej3ZV24x8eJYKgMHh3P+OzU2KDoB6Jtsa98PK9AxCs3KD7upQBf8MQ34toNgTDV3kN3rgLrVLnf60qoRe7DoFsHxCKXPS8NrEjRYPII8TPMxY6i+sEN8imAMqRWxVBOelcmI6UHMEb595AjU+NWdGpbqrGykMrsfGOjd0WQmsLL64PVdb+qw3HjpSjpbENSR3/8920hZoAAf71t1qe8dlpuYNCUABCICC1QF/3pmkHF0EZDK8BvQ+9RPteRKT6DHTiINS23X9TAeyqY3i1aoASQrOhu4EfhHOnF/JE8fOMyyD6aMeY/sIoJQ+iUCgwNHoolp9YjpoBNV1+LkGCAAHPHXsOU4dM7XFotCdFudX4ZkchGmu7LokAAEkAhJsKobplEAJr46ALLLKY2NB5uYPPgHFok24DpEZA8EOAlzcMQj30kj+6209hgNAGb8xCTes9qDHE4fCxLbi97RjEcYvh52PcYLvL+0JBgP/tkXhy6AD85t2THRNVTbjTC3k8hdKhZRBkOxZBB52sPomqpu6nLkuQUNlUiZPVJzEhfEL37SQDamuPQ6+vhlqthUYzAYKgRFFuNbK39Lw4VYDQZdhTrb+GkMrvURMxvdcZn3NCt0EBEY1iMPwUxtmbxfqJyK79LwAizAuhsWuZOMAHesm492igANze1gKxsQZ+PqGQIEESJCg7JT0o/b2huSsGvqNDkQngtcUpWLenABV1N6ZWhwf54E9z47nTCxH1GxZBB9U0de0B2tquunoffih8Gnp9pemYWh2OW4c/iUPv2ZqCIKFUUwOp7QwmFx8GwlLhpQ/qZtKLCH/FFUR6n4FCEM1+EuNzBJma5/FN/TI0ijd6jQOEdiQO8MFgb/MeoqAOgvqWaRAEBQQAA+8eBYWfF8SGVigCvKEeHgShU+8uMzECP40P59o/InIpFkEHhfqGOtSuunofTuf/FjdPjb5cNBindzRDbPWy+LnuCQjTBSNz//+hQuOHtqaD8PKb283CVwHpAW9BgGjxTDE+RzBcfcy0xs9HKUIQ/+umvD8jr+FToAoZAWWQGpq5t2BAYu+7y3DtHxG5Gougg1K0KQjzDUN1U7Vxy6+bCBAQ5huGFG1Kl59JkgE/FD6Nmwtgw8WxKD/8a7vvyafdC7WaW+HTVgax7Ue0Ne6Bj99PIeJGovwAAUgcoIJGOQ0G/AgVbrzI7vx6USGIGOx9BgBwpW0NWgTz3zKSJEHho0Log3OgDFJ36fERkfUMogEnq0+ipqkGob6hvS6zIse5VYqEHCkVSqyeaFxsevO7to5fr5q4yuJvZOM7wEqzY5IooCp3kekM9mr1DsTAxhb4tLZDav0R0/yBND8Fxvkqke6nxE8DVRjsrUCLmIZK/VbUtK7HldbHUNd2Nwww750ZEGIsgGLX2Z+CIGDgwhHwSwmDT4yGBZDITvtL92Pm/83Er/b9Cqu+WYVf7fsVZv7fTOwv3e+U87e1tWHdunUYNWoUEhISMHbsWMyfPx+nTp1yyvnt8emnn2L8+PFQq9V49NFHzX62Y8cOjB07FomJiUhKSsLLL7/cJ/fAnqATZERnYOMdG7Hh2AazSTJhvmFYNXFVt8sj9PrqLseaLseivdnx5QHq1noIAOIvXUbZyAnw8wpE9/u3m6/nazD8wuIi95uHVG0Z+iSi7u0v3Y+Vh1Z2GU2yZpmVteSWJxgVFYXPPvsM4eHhqKurw7hx45CSkoL09HSn3gOLoJNkRGdg6pCpNg1lqNXaLscMLRoH70SCuuUaNLXGDbTD6xrhd60dGGzDGSQFWgxJ5kscYOz1BWYMhSpkgMXJLkRkO4NowIZjGyy+TnHWMquOPMGysrIueYIdtm3bhg8++ABarRYFBQV4+eWXUVdXhzVr1qC9vR3BwcF47bXXEB8fj0OHDuHRRx/FiRMnABjzBOfMmYOSkhLTjjFLlizBN998A51Oh5dfftliQPqIESMAAB9++GGXn3UudkFBQRg1ahSKi4tZBN2ZUqHscRnEzTSaCVCrw6HXV6HjvaDSp9aqz3b8gek8BNtxbNTl/cZ3eh3p7KLKlhoIqAUoVCpITaYdPaFir4+oTzhrmVVP5J4nWFBQgJycHLz++ut2fb4nfCfoQoKgxIjYJzt+BQDwDSmEasBVWN5I1zgRRRQbcVQoQ4Nw04QaQcLHvq3wyZrRcQEAQElLHaohQuzmnCIkXIOI87eFImR5EqKemoTBT9yGkOVJGLhoJEKWJyF81QQWQKI+4IxlVta4OU8wOTkZI0eOxPLly03He8sTvHjxokN5gva4ePEi7rrrLmzevBmDB9v0z3mrsAi6mFY7E0mJr0CtNsakCAoJ2jE7IEnmsUXAjV+3NX2JmLpsvBHQjA/89Njj24oP/PR4PVCPQm8R5aNTEbnpJajCjOccqK/HS2iBAHQphCKMyQ//H1rglRRqmtwiKAT4xGjgm6zlhBeiPuToMitrdM4TBGDKE3z88cdNxwD3yxO8dOkSMjIy8MQTT2DhwoU2f94aLIJuQKudifS0r5Ey9j3Eef8Pos/NR1vjHkC6KZhXakBb4x5IbT8iwKBDhL4CZV4i/uVtQJmXCOn67zFtgA8CZ8zArV/ux9B33sFPV/0G53xEPIFmXL6pCNZAwhNoRmGQivt1ErlAxzKr7oKrBQgI9w23uMzKWp3zBGtra03He8sTPHXqlCkIvXOe4PDhw015ggC6zRMEYHeeYEVFBaZPn45Vq1bhvvvus+mztuA7QTchCEr4lN+Kxr1n0ay7ALHtR+jrikybWkNqhNhejs7DpL6GJvNzwHzzaUGphF/qRPgBWDe8Ar959yS+hQ6jocQgCLgCCXkwQATw2tzR3K2FyAU6llmtPLQSAgSzCTK9LbOyhdzyBJ988klcuHABmzZtwqZNmwAADz/8MJYuXerQ93Azt8oTdJSjeYKuJIkSKp87BkNdK6qbL+Bg5fZeP/P38HkoH2DM3OsoX68tTul2783s/Iou+3VGcL9OIqeyK08QxmUSNy+zCvcN73GZlTtiniDZRV9cB0OdMe0hxCcKA5QBaDY0dNu+ycsfl3xuFC5rNp/mfp1E7sueZVbkOBbBPiaJEvTFdd1uJN1BbOgUdyQokDJoOr6r/qjb82Y99DtkhI6yuZhxv04i92XrMit3xDxBMmnOv4zaPUWmHh4AKIO8oZkb02W5gSLA2+zXUX4jka6dj5NXvjTrEfoHDcS0Zb9GbGrvobdERNQzFsE+0px/GVfePdvluKGuFVfePYtBi+PMCqF6eBCUQd5mBTPKbyQG+8bicstFNBt08AsMRtLT/w9KFf9nIyJyBi6R6AOSKKF2T1GPbWr3nIckdpoFphCgmRvTpZ1CUEA7YCii/eMx8u5pLIBERE7EItgHOk9y6Y6hTg99cZ3ZsQGJIRi0OA7KIPOhUWWQukvPkYiIHMci2Ac6T3Kxtd2AxBCEr5rILcuIPJBkMKDx6DHU7f0UjUePQeq0K4uj5Bal9OGHH2L06NFITk5GQkIC/vjHP3bZRcsZOLbWB26e5GJru44ty4jIc9R//jmq1j+L9sobGaOq8HCErXkcgTNmOHx+uUUpZWRk4K677oJCoUBraysmTZqE1NRUzJs3z6n3wJ5gH+iY5NKTjhR2IqL6zz9H+cO/NyuAANBeVYXyh3+P+s8/d+j8HVFKb731VpcopXvuuQeAcUeZzMxM/PKXv8T48eNx7NgxZGdnIyUlBaNHj8aUKVNQUFAAwLjTy/jx403nyc/Px7BhwwAYF8uHhITg0UcfRWpqKhISEnDgwAGL9zVixAiMGTMGKgtzHQICAqBQGEtUS0sL9Hq96dfOxCLYB7qb5NJZ0Ozh0BfXoelUNVqKas0myRCR55AMBlStfxawNNR3/VjV+mcdGhq1JUpp7dq1OHHiBGJiYrB48WK88847yMvLw4oVK5CVlWXV9TqilI4ePYqtW7fi7rvv7nGf0u4cPnwYo0ePhlarxfTp0zF79mybz9EbFsE+0tMkF//bI1H36XlcfuM0rn5wDpffOI3K546hOV8+C0yJyDmaTvyzSw/QjCShvbISTSf+6dB15BillJaWhry8PJSVleH48eP45ptvbD5Hb/hOsA8NSAyBT/wgsx1jxMY2XH3/X13adrd+kIj+vbXXWJcTaG07SzpHKQUHB5uilLZt24a9e/ea2rlblFKH0NBQzJ49G7t27eqyWbej2BPsY51z+dTDg1D36fke29+8fpCI/r2pQq3LCbS2nSVyjFI6d+4cRFEEADQ0NGDv3r02n8Ma7An2I1vWD3J2KJFn8B0/DqrwcLRXVVl+LygIUIWFwXf8OIeuI7copV27duH999+Hl5cXDAYDFixYgPvvv9+h78ASRin1o6ZT1bj6wble2w1cNBK+ydp+uCMicjZ7opQ6ZocCMC+E14cQIze95JRlEv1BblFKHA7tR46uHySif0+BM2YgctNLUIWFmR1XhYXJqgDKEYdD+5GlTbJvxvWDRJ4pcMYMBEyfbpwtWlMDVWgofMePg9DHC9adjVFK1K2O9YOW0iU6aObeYjFvkIj+/QlKJfxSJ7r6NjwKh0P7GTfJJiJyH+wJuoCl9YPdJc4TEVHfccue4KFDh6BUKvE///M/rr6VPtN5/aBPjIYFkIjIBdyuCDY0NGDVqlW48847XX0rRET0b87tiuDKlSvx2GOPISSE78aIyLOIooTyc9fww/FKlJ+7BtGJu0fJLU+wQ01NDcLCwrBgwYI+uQe3eif42Wefoba2FgsWLDDbz647er0eer3e9Ov6+vq+vD0ioj5TlFuNb3YUorH2xt9pfho1Jv8iFjFjHd88Q255gh0efPBBzJo1Cw0NDX1yD/1aBCdPnmzah+5mubm5WL16Nb744gurz/fss89i3bp1XY6zGBKRq7S2tkIURRgMBrNNpnty/lQNPn+joMvxxlo9srfkY8byeNySbP/eoR15giUlJQgMDDTd16xZswAYC94777yDHTt2QKvV4uzZs3jppZdQV1eHtWvXor29HRqNBq+88gri4+Nx6NAhrFq1CkePHgVgzBO86667UFRUhJKSEqSmpuKXv/wlvv32WzQ2NuKll17CtGnTutxXTIwxcu7//u//TN9ZZ++//z60Wi3GjRuHTz/91OL3aTAYIIoidDodWluNa7A7aoA1G6L1axHsKQbj22+/RUVFBSZONK6RuXz5Mvbs2YOamhqLhQ4AHn/8caxcudL06/LycsTHx2PIkCHOvXEiIitFR0dj8+bNaG5utqq9JEo4tUPXY5tD759FraHM7gl0X3zxBSIjI1FaWorS0lKLbUpLS/HNN9/g3XffxcMPP4yrV6/innvuwebNm3Hrrbfis88+w/z587Fjxw78+OOPaGpqQm5uLgDgxx9/RGtrK3Jzc3Hp0iVcuXIFgYGBePXVV3H69GksWrQIH330EQYMGGDx2pWVlWbnA4zDoOvXr8eWLVvw5Zdfora21uznnV2+fBmzZ8/u8mwNDQ0ICup58xG3GQ6dNGkSqqurTb9esmQJxo8fj4ceeqjbz6jVaqjVatOv/f39UVZWhoCAAIdiO+xVX1+PIUOGoKyszC33LnV3/P7sx+/OMc78/lpbW1FVVYVhw4ZZtXdo+Q+1aG3sOWuvtVFCWMAtiByhseuefvzxR/j6+mLs2LEAjHmCWVlZaG5uxuTJk7Flyxbk5eVh8uTJuOuuuwAYh0rHjRuHhQsXAjDGMf33f/83wsPDceutt5rOZzAY8OOPP8Lb2xtjx45FcHAwvL298cc//hEKhQJjx47Fpk2bTOewJDw8HDqdzuznc+fOxaZNm5Ceno4ff/wR+fn5Fj/f0tKCkpISnDhxAt7exvXXkiShoaEBgwcP7vW7cZsi6AwKhQJRUVGuvg0EBgbyLyIH8PuzH787xzjj+2tpaUFNTQ2USqVV79RadG3WnVfXZvc7unHjxqGwsBD19fUIDg7GiBEjzPIElUolFAoFAgICTNdQKBRQKBRdrqlSqaBWq83eGXYMQ3Z+5o5zdv5cd/dv6VpHjhzBihUrAAA6nQ7Nzc2YNWsW9u3bZ/bZjuv4+/ub/aOjtx6g6dpWtXKBbdu29dgLJCL6d+AXqO69kQ3tLOnrPMF//OMfZp91Rp7g1atXUVJSgpKSErzwwgu48847uxRAZ/i36gkSEclNRKwGfhq12azQm/kHqxERq3HoOn2VJxgdHY3Y2FizzzojT7C//FvlCbqaXq/Hs88+i8cff9zsXSVZh9+f/fjdOcaZ3589eYJFudXI3pLf7c8zH0h0yjKJviCKIiorKxEeHg6FQuEWeYK2YBEkInIie/9StrRO0D9YjUlZzlkn2F/kVgQ5HEpE5AZixmoxfEwoKgpr0Vivh1+gcQhUIbN9hZknSEREdlEoBESODHb1bXgUt50dSkRE1NdYBPuQJ0RC9YU1a9YgLi4OY8aMwcSJE3HgwAFX35JbKywsRFpaGkaMGIGJEyeioKDr9ltkWUtLC+bPn48RI0YgOTkZmZmZKCkpcfVtyc6lS5dw4sQJq3fJcScsgn2EkVD2mzx5Mk6ePInvv/8eb7zxBn7+8593u7kuAQ888ABWrFiBH374Af/1X/+FZcuWufqWZGXFihU4d+4cTp06hTlz5pgWaJN1GhsbodPpTLu1yA2LYB9hJJT97rzzTtMeg0lJSTAYDLJ60d6fqqurcfLkSSxevBgA8POf/xzFxcXszVjJx8cHs2bNMm2zeNttt+H8+fMuux9RNKDsTB7OfvcVys7kQRSt24DbGn0RpSSKIi5cuIDo6Gi7Pt9TlNK2bdug0WiQnJyM5ORkTJ061e777AknxvQBWyOhqHtvv/02YmJi3GI7PHdUVlaGwYMHQ6Uy/lEWBAFDhw7FhQsXMGzYMNfenAz99a9/xdy5c11y7cKjh3Fg2+vQXb3xDz7/gSGYtmQFYlPTHD5/X0QpXbp0CYMGDbJ7bWVvUUoZGRnYvXu3Xee2FnuCdpg8eTJCQkIs/qesrAyrV6/GK6+84urbdFu9fX8dvvzyS6xbtw4ffPCBC+/W/d28WTyX/tpn/fr1KCwsxF/+8pd+v3bh0cP4ZON6swIIALqrl/HJxvUoPHrYsfNfj1J66623TAUQMG5Sfc899wAw9rwyMzPxy1/+EuPHj8exY8eQnZ2NlJQUjB49GlOmTDG9bz506BBSUlLQ2NiI0NBQ5Ofnm179lJSUICQkBI8++ihSU1ORkJDQ7Xv9ESNGYMyYMaZ/xLkCe4J2cHYklKfp6fvr8NVXX2Hp0qXYs2cPRo4c2Q93JU9DhgzBxYsX0d7eDpVKBUmSUFZWhqFDh7r61mTlhRdewN///nfs378fvr6+/XptUTTgwLbXe2xz8J3XETMhFQqFfRto5+bm4tZbb8XAgQN7bPftt98iNzcXsbGxqK6uRnx8PA4ePIikpCS89957yMrKQn6+cWcbg8GAlpYWnD59GoWFhZAkCT/88AMEQcCVK1eQlJSEF154AUeOHMH8+fNRVFRkceu0nnz11VdITk6Gn58fHnnkkT5Jl2dP0Mk6IqE6Nn5dsGAB1q1bxwJog6+//hr33nsvPv74Y4wZM8bVt+PWtFotxo4di3fffReAMZx02LBhHAq1wcaNG7F9+3Z88cUX0Gg0/X798rNnuvQAb9Zw5TLKz55x6DqdRwyKioqQnJyMkSNHYvny5abjkyZNMu0DevToUSQnJyMpKQkAcM899+DixYuoqKgAAHh5eWHMmDEYPXo0Ro4cCUEQMGLECAQGBsLb2xv33nsvAON71vDwcHz/fc9xUTebM2cOSktLcerUKbz55pt45JFHcOTIEYe+A0tYBMntLFu2DHq9HkuXLjW9FD99+rSrb8ttbdmyBVu2bMGIESOwYcMGbN261dW3JBsXL17EH/7wB9TW1mLq1KlITk5Gampqv96DrvaaU9tZMnbsWBQWFuLaNeM5YmJicOrUKTz++OOmY4Axk7WDJEkWc1kFQYBKpTJLebdm9ratGa8hISGmXnlcXBxmzZqF7777zqZzWIPDoX1s27Ztrr4F2SksLHT1LcjKyJEjkZOT4+rbkKWoqCiXv0P111i3Q4y17SzpHKX01ltvmXq8vUUpLVu2DGfPnkVcXJxZlJLBYDBFKQ0aNAj/+7//Cy8vL9Os7o4opXvvvdfuKKXy8nJERkYCAKqqqnDgwAH84he/sO8L6AGLIBGRC0XGJcB/YEiPQ6IBg0IQGZfg0HX6Kkpp2LBhuP32280+64wopVdeeQUff/wxvLy8IIoiHnnkEUybNs2h78ASpkgQETmRPakGHbNDuzNv5RqnLJPoD3JLkeA7QSIiF4tNTcO8lWvgP9B8c42AQSGyKoByxOFQIiI3EJuahpgJqcbZorXX4K8JRmRcgt3LIlyFUUpERGQXhUKJIQm2TSAhx3A4lIiIPBaLIJEM1dbWYujQoWZLI/7nf/4HU6dOhSRJ2Lp1K2JjYxETE4MVK1agvb3dhXdL5L5YBIlkSKPRYPPmzViyZAmamppQWFiIZ555Bm+//TZKSkqwdu1afPvtt/jxxx9RWVnJBfRE3WARJJKpWbNmYdKkSXjsscdw33334c9//jOGDRuG3bt342c/+xnCwsIgCAJ+/etfY/v27a6+XSK3xCJIJGMvvvgitm/fDj8/P9MekDfnuw0bNgwXLlxw1S2SDSRRQktRLZpOVaOlqBaS6Lxl3H2RJ+ionvIEAeMG2hMmTEBCQgJGjRrVJzsjcXYokYx99dVX8PX1xfnz56HT6Ux7P3bep5H7YchDc/5l1O4pgqGu1XRMGeQNzdwYDEh0PJy7L/IEHdVTnuClS5dw33334bPPPkNcXBxaWlqs2qPUVuwJEsnUlStX8OCDD+Lvf/87MjMz8dhjjwEAhg4dapYsX1paymglN9ecfxlX3j1rVgABwFDXiivvnkVzvmPr7voiT3D8+PGm8+Tn55uSS5yVJ/jqq69i8eLFiIuLAwD4+Pj0ScoHe4JEMvXb3/4W9957LyZOnIiEhASMGTMGX375JX7+859j0qRJePLJJ6HVarF582YsWrTI1bdL3ZBECbV7inpsU7vnPHziB0FQ2JbE0KEv8gR74ow8wYKCAgwfPhwZGRm4fPkyJk+ejOeee87peY/sCRLJ0O7du3HmzBk89dRTAAA/Pz9s3boVy5cvR2hoKNatW4f09HTExMRAq9Vi2bJlrr1h6pa+uK5LD/Bmhjo99MV1Dl3H2XmCPXFGnmBbWxsOHTqEXbt24cSJE6irqzP9fncmFkEiGVqwYAFOnz4Nb29v07EpU6bg/PnzCAgIwPLly/Hjjz/i/PnzePPNN+Hl5eXCu6WeiA09F0Bb21kixzzB6OhozJ49G8HBwVCpVFi0aBGOHTtm0zmswSJIRORCigDv3hvZ0M6SznmCtbW1puO95QmeOnUKZ8+eBQCzPMHhw4eb8gQB4H//93/NPtuRJwjA7jzBu+++GwcPHoRerwcAZGdnY8yYMTadwxp8J0hE5ELq4UFQBnn3OCSqDFJDPTzIoevILU8wLS0Nc+fORXJyMlQqFRITE7F582aHvgNLmCdIRORE9uTbdcwO7c6gxXFOWSbRH5gnSERENhmQGIJBi+OgDDIf8lQGqWVVAOWIw6FERG5gQGIIfOIHQV9cB7GhFYoAb6iHB9m9LMJVmCdIRER2ERQCfGI0rr4Nj8LhUCIi8lgsgkRE5LFYBImIyGOxCBIRuQlRFFFcXIzTp0+juLgYoig67dxyi1LasGEDkpOTTf8JDAzEypUrnX4PnBhDROQGCgoKkJ2djfr6etOxwMBAZGZmIj4+3uHzyy1KafXq1aaF/K2trRg8eLAp8cKZ2BMkInKxgoIC7Ny506wAAkB9fT127txpijCylxyjlDr76KOPEBUVhXHjxjnyNVjEniARkQuJoojs7Owe22RnZ2PUqFFQKOzrt8gxSqmzrVu39lkSCnuCREQuVFpa2qUHeLP6+nqUlpY6dB25RSl1KCsrw7ffftsnQ6EAiyARkUvpdDqntrNEjlFKHd5++23Mmzev116svVgEiYhcqHPhcUY7S+QYpQQYC/G2bdv6NBSa7wSJiFwoOjoagYGBPQ6JBgYGIjo62qHryC1KCQAOHDgASZIwffp0h569J4xSIiJyInuifTpmh3YnKyvLKcsk+gOjlIiIyCbx8fHIyspCYGCg2fHAwEBZFUA54nAoEZEbiI+Px6hRo1BaWgqdTgd/f39ER0fbvSzCVRilREREdlEoFBg+fLirb8OjyOufGERERE7EIkhERB6LRZCIiDwWiyAREXksFkEiIjchSQZcu3YElZWf4Nq1I5AkQ+8fspLc8gRbWlqwZMkSJCUlITExEfPmzeuTWaecHUpE5Aaqq/fhh8KnoddXmo6p1eEYEfsktNqZDp9fbnmCW7ZsgU6nQ15eHgRBwPLly/H888/j+eefd+o9sCdIRORi1dX7cDr/t2YFEAD0+iqczv8tqqv3OXR+ueYJNjU1oa2tDe3t7dDpdIiKinLoe7CEPUEiIheSJAN+KHwagKUdLCUAAn4o/DNCQzMgCPb1zOSYJ/jAAw8gJycHWq0WSqUSqampeOihh6z+vLXYEyQicqHa2uNdeoDmJOj1FaitPe7QdeSWJ7h//34IgoDKykpUVFRAo9Hg6aeftukc1mARJCJyIb2+2qntLJFjnuDmzZvxs5/9DD4+PvD29sY999yDgwcP2nQOa7AIEhG5kFqtdWo7S+SYJ3jLLbdg3759kCQJkiRh7969SExMtOkc1uA7QSIiF9JoJkCtDodeXwXL7wUFqNXh0GgmOHQdueUJPvXUU1ixYgUSEhIgCALi4+OxZcsWh74DS5gnSETkRPbk23XMDjXq/FeycQgxKfEVpyyT6A/MEyQiIptotTORlPgK1Oows+NqdbisCqAccTiUiMgNaLUzERqacX22aDXUai00mgl2L4twFeYJEhGRXQRBieDg21x9Gx6Fw6FEROSxWASJiMhjsQgSEZHH4jtBIiI3YZAkHKnVobq1HVpvFW7T+ENp404rZBv2BImI3MCnNbUYn1OAn58qwm8KSvHzU0UYn1OAT2tqnXJ+ueUJNjY2YunSpUhKSsLIkSOxevVq9MWydhZBIiIX+7SmFvfnl6BC32Z2vFLfhvvzS5xSCJcuXYrc3Fzk5OTgzJkzyM3NxbJly3DmzBmL7TvvDdpXOvIEH3vssS4/W79+PQAgLy8P+fn5yM3Nxe7du51+DyyCREQuZJAkPFFY3m2QEgCsLSyHwYFekBzzBL///nvceeedEAQBXl5emDFjRpc9Sp2B7wSJiFzoSK2uSw+wMwnAJX0bjtTqkB4cYNc15JgnOGHCBOzcuRPz58+HXq/Hhx9+iPr6eqs/by32BImIXKi6td2p7bojtzzBVatWYciQIZg4cSLmzZuHtLQ0eHl52XQOa7AIEhG5kNbbugE5a9tZIsc8QR8fH7z44os4deoUDh48iIEDByI+Pt6mc1iDRZCIyIVu0/gjQu2F7kqEAGCw2gu3afy7adE7OeYJ1tfXo6mpCQBQXFyM1157DX/4wx9sOoc1+E6QiMiFlIKAZ2IjcX9+CQRYClIC/hwb6fB6QbnlCZ4/fx5ZWVlQqVRQqVR48cUXkZyc7NB3YAnzBImInMjefLtPa2rxRGG52SSZwWov/Dk2ErNDNX1wp31DbnmC7AkSEbmB2aEaZIYEcceYfsYiSETkJpSCYPcyCHchtzxBTowhIiKPxSJIREQei0WQiIg8FosgERF5LBZBIiI3YRAl5BRdwcenypFTdAUG0Xkr2NwxSumvf/0rEhMTMXr0aCQnJ2PHjh1mP3/mmWcQExODmJgYrF27tk/ugbNDiYjcQHZ+BdbtKUBF3Y0tyCKCfPCnufHITIxw+PxLly6FTqdDTk6OKUliz549OHPmjMVF6AaDAUql0uHr9iQhIQHfffcdgoKCUFZWhpSUFNx2222Ijo7G119/je3btyMvLw8qlQrp6emYNGkSZs6c6dR7YE+QiMjFsvMr8Jt3T5oVQACorGvBb949iez83jet7om7RilNnz4dQUFBAIAhQ4YgLCwMZWVlAIAdO3ZgyZIl8PPzg1qtxq9+9Sts377doe/BEhZBIiIXMogS1u0p6DFPcN2eAoeGRm2JUlq7di1OnDiBmJgYLF68GO+88w7y8vKwYsUKZGVlWXW9jiilo0ePYuvWrbj77rt73KcUAPbv349r165h3LhxAIALFy4gOjra9PNhw4bhwoULVl3fFiyCREQudKz4apceYGcSgIq6FhwrvurQddw5Sun06dNYunQpduzYgQEDBli8577a4ZNFkIjIhaobeo8hsqWdJe4cpVRQUIA5c+bgrbfewqRJk0zHhw4dipKSEtOvS0tLMXTo0F6vYysWQSIiF9IGWLfps7XtLHHXKKWzZ89i1qxZeP311/HTn/7U7GcLFy7EO++8g8bGRuj1erz11ltYtGiRXc/fE84OJSJyoYnDByIiyAeVdS0W3wsKAMKDfDBxeM/v83rjjlFK//mf/4m6ujqsWrUKq1atAgA899xzmDlzJu644w5kZWWZhmMXLVqEzMxMh74DSxilRETkRPZE+3TMDgUs5wm+tjjFKcsk+oPcopQ4HEpE5GKZiRF4bXEKwoPM/xIPD/KRVQGUIw6HEhG5gczECPw0PhzHiq+iuqEF2gDjEKhSIa88QblFKbEIEhG5CaVCwE9iBrn6NjwKh0OJiMhjsQgSEZHHYhEkIiKPxXeCRETuQjQApYcBXRXgHwZEpwGKvk1y8HTsCRIRuYOCT4CXEoF35gD/t8z43y8lGo87gdzyBI8fP460tDT4+vpiwYIFfXYP7AkSEblawSfAzl8CN+8ZU19hPJ71NyB+nkOXkFueYEREBF566SXk5ubiiy++6LN7YE+QiMiVRAOQvQpdCiBw41j2amM7O8kxTzAqKgoTJ06EWq22+7mtwZ4gEZErlR4G6i/10EAC6suN7YZPtusStuQJ5ubmIjY2FtXV1YiPj8fBgweRlJSE9957D1lZWcjPz+/1eh15gi+88AKOHDmC+fPno6ioyOL+oR1uzhPsL+wJEhG5kq7Kue26Icc8wf7AIkhE5Er+Yc5tZ4Ec8wT7C4sgEZErRacBgYNxIzPiZgIQGGlsZyc55gn2F74TJCJyJYUSyHzu+uxQARbDlDI3OLxeUG55gkVFRZgyZQqamprQ0tKCqKgorFmzBg8++KBD38PNmCdIROREdufbFXxinCXaeZJMYKSxADq4PKI/yS1PkD1BIiJ3ED8PGDWbO8b0MxZBIiJ3oVDavQzCXcgtT5ATY4iIyGOxCBIRkcdiESQiIo/FIkhERB6LRZCIyE0YRAOOVx7HP87/A8crj8PgwKbZN5NblNKOHTswduxYJCYmIikpCS+//HKf3ANnhxIRuYH9pfux4dgGVDXd2CM0zDcMqyeuRkZ0hsPnl1uUUlRUFD777DOEh4ejrq4O48aNQ0pKCtLT0516D+wJEhG52P7S/Vh5aKVZAQSA6qZqrDy0EvtL9zt0fjlGKaWnpyM8PBwAEBQUhFGjRqG4uNih78ES9gSJiFzIIBqw4dgGSBbyBCVIECDguWPPYeqQqVDauXBe7lFKBQUFyMnJweuvv977w9qIPUEiIhc6WX2ySw+wMwkSKpsqcbL6pEPXkWuU0sWLF3HXXXdh8+bNGDx4sPUPbCUWQSIiF6ppqnFqO0vkGqV06dIlZGRk4IknnsDChQt7vYY9WASJiFwo1DfUqe0skWOUUkVFBaZPn45Vq1bhvvvus+u5rcEiSETkQinaFIT5hkHoJk9QgIBw33CkaFMcus62bduQlJSE1NRUxMfHIz09Hfv378djjz1msX3nKKUxY8bgtddesxilNHXqVGg0GrPPdo5SWrp0qVVRSsnJyUhOTsa+ffsAAE8++SQuXLiATZs2mX729ttvO/QdWMIoJSIiJ7In2qdjdigAswkyHYVx4x0bnbJMoj/ILUqJPUEiIhfLiM7Axjs2QuurNTse5hsmqwIoR1wiQUTkBjKiMzB1yFScrD6JmqYahPqGIkWbYveyCFeRW5QSiyARkZtQKpSYED7B1bfhUTgcSkREHotFkIiIPBaLIBEReSwWQSIi8lgsgkREbkIyGNB49Bjq9n6KxqPHIBk8N0/www8/NB1PSEjAH//4R/TFsnbODiUicgP1n3+OqvXPor2y0nRMFR6OsDWPI3DGDIfPL7c8wYyMDNx1111QKBRobW3FpEmTkJqainnz5jn1HtgTJCJysfrPP0f5w783K4AA0F5VhfKHf4/6zz936PxyzBMMCAiAQmEsUS0tLdDr9aZfOxOLIBGRC0kGA6rWPwtYGuq7fqxq/bMODY3akie4du1anDhxAjExMVi8eDHeeecd5OXlYcWKFcjKyrLqeh15gkePHsXWrVtx991397hZN2A5T/Dw4cMYPXo0tFotpk+fjtmzZ1t1fVuwCBIRuVDTiX926QGakSS0V1ai6cQ/HbqOHPME09LSkJeXh7KyMhw/fhzffPONbQ9tBRZBIiIXaq+xLifQ2naWyDVPsENoaChmz56NXbt29XodW7EIEhG5kCrUupxAa9tZIsc8wXPnzkEURQBAQ0MD9u7da/EcjuLsUCIiF/IdPw6q8HC0V1VZfi8oCFCFhcF3/LiuP7PBtm3b8Je//AWpqalQKpUIDg6GVqvF6tWrLbbvnCdoMBig0Wgs5gkOGzYMt99+u9lnO+cJ6nQ6q/IEV61aBQB47rnnMHPmTOzatQvvv/8+vLy8YDAYsGDBAtx///0OfQeWME+QiMiJ7Mm365gdCsC8EF4fQozc9JJTlkn0B+YJEhGRTQJnzEDkppegCgszO64KC5NVAZQjDocSEbmBwBkzEDB9unG2aE0NVKGh8B0/DkIfL1h3NuYJEhGRXQSlEn6pE119Gx6Fw6FEROSxWASJiMhjsQgSEZHHYhEkInIToiih/Nw1/HC8EuXnrkEUnbeCTW5RSh1qamoQFhaGBQsW9Mk9cGIMEZEbKMqtxjc7CtFYqzcd89OoMfkXsYgZq3X4/HKLUurw4IMPYtasWWhoaOiTe2BPkIjIxYpyq5G9Jd+sAAJAY60e2VvyUZRb7dD55RilBADvvfcewsLCMGXKFIeevyfsCRIRuZAoSvhmR2GPbb7dWYjhY0KhUFjehLo3tkQp5ebmIjY2FtXV1YiPj8fBgweRlJSE9957D1lZWcjPz+/1eh1RSi+88AKOHDmC+fPno6ioyOLWaR1ujlK6dOkSNm7ciK+++gq7d++27YFtwJ4gEZELVRTWdukB3kx3TY+KwlqHriO3KKXly5fj+eefN0u26AvsCRIRuVBjfc8F0NZ2lnSOUgoODjZFKW3btg179+41tXOnKKWcnBwsW7YMAKDT6dDc3IyZM2di3759vT+wDdgTJCJyIb9AtVPbWSLHKKWrV6+ipKQEJSUleOGFF3DnnXc6vQAC7AkSEblURKwGfhp1j0Oi/sFqRMRqHLqO3KKU+gujlIiInMieaJ+O2aHdyXwg0SnLJPoDo5SIiMgmMWO1yHwgEX4a8yFP/2C1rAqgHHE4lIjIDcSM1WL4mFDjbNF6PfwCjUOg9i6LcBVGKRERkV0UCgGRI4N7b0hOw+FQIiLyWCyCRETksVgEiYjIY7EIEhGRx2IRJCJyE6JoQNmZPJz97iuUncmDKBp6/5CV5JYnuG3bNmg0GiQnJyM5ORlTp07tk3vg7FAiIjdQePQwDmx7HbqrN5YX+A8MwbQlKxCbmubw+eWYJ5iRkdGnCRIAe4JERC5XePQwPtm43qwAAoDu6mV8snE9Co8eduz8Ms0T7A8sgkRELiSKBhzY9nqPbQ6+87pDQ6O25AmuXbsWJ06cQExMDBYvXox33nkHeXl5WLFiBbKysqy6Xkee4NGjR7F161bcfffdPW7WDXTNEwSAr776CsnJyUhPT++zHiGLIBGRC5WfPdOlB3izhiuXUX72jEPXkVue4Jw5c1BaWopTp07hzTffxCOPPIIjR47Y/uC9YBEkInIhXe01p7azpHOeIABTnuDjjz9uOga4V55gSEgIfH19AQBxcXGYNWsWvvvuu16vYysWQSIiF/LXWLdNmrXtLJFjnmB5ebnp/6+qqsKBAwcwduxY2x7cCpwdSkTkQpFxCfAfGNLjkGjAoBBExiU4dB255Qm+8sor+Pjjj+Hl5QVRFPHII49g2rRpDn0HljBPkIjIiezJt+uYHdqdeSvXOGWZRH9gniAREdkkNjUN81augf/AELPjAYNCZFUA5YjDoUREbiA2NQ0xE1KNs0Vrr8FfE4zIuAQoFH27YN3ZmCdIRER2USiUGJLQdQIJ9R0OhxIRkcdiESQiIo/FIkhERB6LRZCIyE1IooSWolo0napGS1EtJNF5K9jkFqUEGPcOnTBhAhISEjBq1Cjk5OQ4/R44MYaIyA00519G7Z4iGOpaTceUQd7QzI3BgMSQHj5pHblFKV26dAn33XcfPvvsM8TFxaGlpcWq7dlsxZ4gEZGLNedfxpV3z5oVQAAw1LXiyrtn0Zzv2JIDOUYpvfrqq1i8eDHi4uIAAD4+PtBoNA59D5awJ0hE5EKSKKF2T1GPbWr3nIdP/CAICsubUPfGliil3NxcxMbGorq6GvHx8Th48CCSkpLw3nvvISsrC/n5+b1eryNK6YUXXsCRI0cwf/58FBUVWdw6rcPNUUoFBQUYPnw4MjIycPnyZUyePBnPPfecaVNtZ2FPkIjIhfTFdV16gDcz1OmhL65z6Dpyi1Jqa2vDoUOHsGvXLpw4cQJ1dXV46qmnbH7u3rAIEhG5kNjQcwG0tZ0lcoxSio6OxuzZsxEcHAyVSoVFixbh2LFjvT+sjVgEiYhcSBHg7dR2lsgxSunuu+/GwYMHodfrAQDZ2dkYM2aM7Q/fC74TJCJyIfXwICiDvHscElUGqaEeHuTQdeQWpZSWloa5c+ciOTkZKpUKiYmJ2Lx5s0PfgSWMUiIiciJ7on06Zod2Z9DiOKcsk+gPjFIiIiKbDEgMwaDFcVAGmQ95KoPUsiqAcsThUCIiNzAgMQQ+8YOgL66D2NAKRYA31MOD7F4W4SqMUiIiIrsICgE+MRpX34ZH4XAoERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CVEUUVxcjNOnT6O4uBiiKDrt3HLLE9ywYQOSk5NN/wkMDMTKlSudfg+cHUpE5AYKCgqQnZ2N+vp607HAwEBkZmYiPj7e4fPLLU9w9erVpt1sWltbMXjwYFPskzOxJ0hE5GIFBQXYuXOnWQEEgPr6euzcudOU42cvOeYJdvbRRx8hKirKFLPkTOwJEhG5kCiKyM7O7rFNdnY2Ro0aBYXCvn6LHPMEO9u6dSuWLVvW+4PagT1BIiIXKi0t7dIDvFl9fT1KS0sduo7c8gQ7lJWV4dtvv+2ToVCARZCIyKV0Op1T21kixzzBDm+//TbmzZvXay/WXiyCREQu1LnwOKOdJXLMEwSMhXjbtm19NhQK8J0gEZFLRUdHIzAwsMch0cDAQERHRzt0HbnlCQLAgQMHIEkSpk+f7tCz94R5gkRETmRPvl3H7NDuZGVlOWWZRH9gniAREdkkPj4eWVlZCAwMNDseGBgoqwIoRxwOJSJyA/Hx8Rg1ahRKS0uh0+ng7++P6Ohou5dFuArzBImIyC4KhQLDhw939W14FHn9E4OIiMiJWASJiMhjsQgSEZHH4jtBIiI3IUkG1NYeh15fDbVaC41mAgShb5McPB17gkREbqC6eh++O3w7TubegzMFj+Bk7j347vDtqK7e55Tzyy1PsKWlBUuWLEFSUhISExMxb968Ppl1yiJIRORi1dX7cDr/t9DrK82O6/VVOJ3/W6cUwqVLlyI3Nxc5OTk4c+YMcnNzsWzZMpw5c8Zi+857g/aVjjzBvLw87NmzBw899JBpo/AtW7ZAp9MhLy8P+fn5CAsLw/PPP+/0e2ARJCJyIUky4IfCpwFY2rzLeOyHwj9DkuwvSnLNE2xqakJbWxva29uh0+kQFRVl93fQHb4TJCJyIeM7wMoeWkjQ6ytQW3scwcG32XUNOeYJPvDAA8jJyYFWq4VSqURqaioeeugh2x7cCuwJEhG5kF5f7dR23ZFbnuD+/fshCAIqKytRUVEBjUaDp59+2vYH7wWLIBGRC6nVWqe2s0SOeYKbN2/Gz372M/j4+MDb2xv33HMPDh482PvD2ohFkIjIhTSaCVCrwwFYLhKAALU6AhrNBLuvIcc8wVtuuQX79u2DJEmQJAl79+5FYmKiXc/fExZBIiIXEgQlRsQ+2fGrm38KABgRu9bh9YLbtm1DUlISUlNTER8fj/T0dOzfvx+PPfaYxfad8wTHjBmD1157zWKe4NSpU6HRaMw+2zlPcOnSpVblCSYnJyM5ORn79hlnwj711FOoq6tDQkICEhMTcfnyZfz5z3926DuwhHmCREROZG++XXX1PvxQ+LTZJBm1OgIjYtdCq53ZF7faJ+SWJ8jZoUREbkCrnYnQ0AzuGNPPWASJiNyEICjtXgbhLuSWJ8h3gkRE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5CYMkoTvrjXgw6pr+O5aAwxOXMEmtyilxsZGLF26FElJSRg5ciRWr16NvljRx9mhRERu4NOaWjxRWI4KfZvpWITaC8/ERmJ2qMbh8y9duhQ6nQ45OTmmJIk9e/bgzJkzSE5O7tLeYDBAqezb5RkdUUpBQUEoKytDSkoKbrvtNkRHR2P9+vUAgLy8PLS3t2POnDnYvXs3Fi5c6NR7YE+QiMjFPq2pxf35JWYFEAAq9W24P78En9bUOnR+OUYpff/997jzzjshCAK8vLwwY8aMLtuzOQN7gkRELmSQJDxRWN5tmqAAYG1hOTJDgqDsZhPq3sgxSmnChAnYuXMn5s+fD71ejw8//BD19fW2PbgV2BMkInKhI7W6Lj3AziQAl/RtOFKrc+g6cotSWrVqFYYMGYKJEydi3rx5SEtLg5eXl+0P3gsWQSIiF6pubXdqO0vkGKXk4+ODF198EadOncLBgwcxcOBAxMfH9/6wNmIRJCJyIa23dW+lrG1niRyjlOrr69HU1AQAKC4uxmuvvYY//OEPtj98L/hOkIjIhW7T+CNC7YVKfZvF94ICjLNEb9P4W/ip9bZt24a//OUvSE1NhVKpRHBwMLRaLVavXm2xfecoJYPBAI1GYzFKadiwYbj99tvNPts5Skmn01kVpbRq1SoAwHPPPYeZM2fi/PnzyMrKgkqlgkqlwosvvmhxFqujGKVERORE9kT7dMwOBWBWCDsGEN9MHOaUZRL9QW5RShwOJSJysdmhGryZOAzhavOJHxFqL1kVQDnicCgRkRuYHapBZkgQjtTqUN3aDq23Crdp/O1eFuEqcotSYhEkInITSkFAenCAq2/Do3A4lIiIPBaLIBEReSwWQSIi8lh8J0hE5CYMooRjxVdR3dACbYAPJg4fCKVCXhNj5IY9QSIiN5CdX4FJzx3Af7xxBA9/cAr/8cYRTHruALLze9+r0xrumCf4yiuvICkpybRH6V//+leznz/zzDOIiYlBTEwM1q5d2yf3wJ4gEZGLZedX4DfvnuyyY0xlXQt+8+5JvLY4BZmJEQ5dwx3zBBcvXozf/va3AIzbpCUmJuKOO+7A6NGj8fXXX2P79u3Iy8uDSqVCeno6Jk2ahJkzZzr1HtgTJCJyIYMoYd2egm6jlABg3Z4CGET7N/dy1zzBjixBAGhqakJ7e7tpo+0dO3ZgyZIl8PPzg1qtxq9+9Sts377d7u+gOyyCREQudKz4Kirquk9hkABU1LXgWPFVu69hS57g2rVrceLECcTExGDx4sV45513kJeXhxUrViArK8uq63XkCR49ehRbt27F3Xff3e1m3bt370ZCQgKio6Px2GOPmaKbLly4gOjoaFO7YcOG4cKFC1Y+sfVYBImIXKi6ofcYIlvadcdd8wQXLFiAM2fO4Ny5c/jb3/6Gc+fOWbznvtrmmkWQiMiFtAHWbfpsbTtL3DlPsMOwYcOQmpqKvXv3AgCGDh2KkpIS089LS0sxdOjQXq9jKxZBIiIXmjh8ICKCfNBdiRAARAQZl0vYy53zBDvU1NTgyy+/NLVbuHAh3nnnHTQ2NkKv1+Ott97CokWL7PsCesDZoURELqRUCPjT3Hj85t2TEGA5SulPc+MdXi/ojnmCL7/8Mr766it4eXlBkiQ88sgjpnDdO+64A1lZWabh2EWLFiEzM9Oh78AS5gkSETmRvfl22fkVWLenwGySTESQD/40N97h5RH9SW55guwJEhG5gczECPw0Ppw7xvQzFkEiIjehVAj4ScwgV9+GQ+SWJ8iJMURE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5C5EA1D8DXB6t/G/RUPvn7GS3KKUjh8/jrS0NPj6+mLBggV9dg+cHUpE5A4KPgGyVwH1l24cCxwMZD4HxM9z+PRyi1KKiIjASy+9hNzcXHzxxRd9dg/sCRIRuVrBJ8DOX5oXQACorzAeL/jEodPLMUopKioKEydOhFqtdujZe8MiSETkSqLB2APsKVEwe7VDQ6NyjFLqLyyCRESuVHq4aw/QjATUlxvbOUCOUUr9gUWQiMiVdFXObWeBHKOU+guLIBGRK/mHObedBXKMUuovnB1KRORK0WnGWaD1FbD8XlAw/jw6zaHLyC1KqaioCFOmTEFTUxNaWloQFRWFNWvW4MEHH3Toe7gZo5SIiJzIrmifjtmhACwmCmb9zSnLJPqD3KKUOBxKRORq8fOMhS7wptzAwMGyKoByxOFQIiJ3ED8PGDXbOAtUV2V8BxidBij6dsG6s8ktSolFkIjIXSiUwPDJrr4Lj8LhUCIi8lgsgkRE5LFYBImIyGOxCBIRkcdiESQichMG0YDjlcfxj/P/wPHK4zB4cJ7gjh07MHbsWCQmJiIpKQkvv/xyn9wDZ4cSEbmB/aX7seHYBlQ13dgjNMw3DKsnrkZGdIbD55dbnmBUVBQ+++wzhIeHo66uDuPGjUNKSgrS09Odeg/sCRIRudj+0v1YeWilWQEEgOqmaqw8tBL7S/c7dH455gmmp6cjPDzc1G7UqFEoLi526HuwhEWQiMiFDKIBG45tgGRh39COY88de86hoVG55wkWFBQgJycH06ZNs+r6tmARJCJyoZPVJ7v0ADuTIKGyqRInq086dB255glevHgRd911FzZv3ozBgwfb9tBWYBEkInKhmqYap7azRK55gpcuXUJGRgaeeOIJLFy4sNdr2INFkIjIhUJ9Q53azhI55glWVFRg+vTpWLVqFe677z77HtwKnB1KRORCKdoUhPmGobqp2uJ7QQECwnzDkKJNceg6cssTfPLJJ3HhwgVs2rQJmzZtAgA8/PDDWLp0qUPfw82YJ0hE5ET25Nt1zA4FYFYIhet5ghvv2OiUZRL9gXmCRERkk4zoDGy8YyO0vlqz42G+YbIqgHLE4VAiIjeQEZ2BqUOm4mT1SdQ01SDUNxQp2hQomSfYp1gEiYjchFKhxITwCa6+DY/C4VAiIvJYLIJEROSxWASJiMhjsQgSEbkJyWBA49FjqNv7KRqPHoNk8NwopQ8//BCjR49GcnIyEhIS8Mc//hF9saKPE2OIiNxA/eefo2r9s2ivrDQdU4WHI2zN4wicMcPh88stSikjIwN33XUXFAoFWltbMWnSJKSmpmLevHlOvQf2BImIXKz+889R/vDvzQogALRXVaH84d+j/vPPHTq/HKOUAgICoFAYS1RLSwv0er3p187EIkhE5EKSwYCq9c8Clob6rh+rWv+sQ0Ojco1SOnz4MEaPHg2tVovp06dj9uzZ1j+0lVgEiYhcqOnEP7v0AM1IEtorK9F04p8OXUeOUUppaWnIy8tDWVkZjh8/jm+++cb2B+8FiyARkQu111gXkWRtO0vkGqXUITQ0FLNnz8auXbt6vY6tWASJiFxIFWpdRJK17SyRY5TSuXPnIIoiAKChoQF79+61eA5HcXYoEZEL+Y4fB1V4ONqrqiy/FxQEqMLC4Dt+nEPXkVuU0q5du/D+++/Dy8sLBoMBCxYswP333+/Qd2AJo5SIiJzInmifjtmhAMwL4fUhxMhNLzllmUR/YJQSERHZJHDGDERuegmqsDCz46qwMFkVQDnicCgRkRsInDEDAdOnG2eL1tRAFRoK3/HjIPTxgnVnY5QSERHZRVAq4Zc60dW34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIvJYLIJERG5CFCWUn7uGH45XovzcNYii85Zxyy1PsENNTQ3CwsKwYMGCPrkHzg4lInIDRbnV+GZHIRpr9aZjfho1Jv8iFjFjtQ6fX255gh0efPBBzJo1Cw0NDX1yD+wJEhG5WFFuNbK35JsVQABorNUje0s+inKrHTq/HPMEAeC9995DWFgYpkyZ4tDz94RFkIjIhURRwjc7Cnts8+3OQoeGRuWYJ3jp0iVs3LgRGzZssO1hbcQiSETkQhWFtV16gDfTXdOjorDWoevILU9w+fLleP75583infoC3wkSEblQY33PBdDWdpZ0zhMMDg425Qlu27bNLL/PXfIER44ciZycHCxbtgwAoNPp0NzcjJkzZ2Lfvn29XssW7AkSEbmQX6Daqe0skWOe4NWrV1FSUoKSkhK88MILuPPOO51eAAH2BImIXCoiVgM/jbrHIVH/YDUiYjUOXUdueYL9hXmCREROZE++Xcfs0O5kPpDolGUS/YF5gkREZJOYsVpkPpAIP435kKd/sFpWBVCOOBxKROQGYsZqMXxMqHG2aL0efoHGIVCFoucJJe6GeYJERGQXhUJA5Mjg3huS03A4lIiIPBaLIBEReSwWQSIi8lgsgkREbkIUDSg7k4ez332FsjN5EEVD7x+yktyilLZt2waNRoPk5GQkJydj6tSpfXIPnBhDROQGCo8exoFtr0N39cbMSv+BIZi2ZAViU9McPr8co5QyMjKwe/fuPr0H9gSJiFys8OhhfLJxvVkBBADd1cv4ZON6FB497Nj5ZRql1B9YBImIXEgUDTiw7fUe2xx853WHhkblGKUEAF999RWSk5ORnp7eZz1CFkEiIhcqP3umSw/wZg1XLqP87BmHriO3KKU5c+agtLQUp06dwptvvolHHnkER44cse/he8AiSETkQrraa05tZ0nnKCUApiilxx9/3HQMcJ8oJQAICQmBr68vACAuLg6zZs3Cd9991+t1bMUiSETkQv4a63aIsbadJXKMUiovLzf9rKqqCgcOHMDYsWNtfPLecXYoEZELRcYlwH9gSI9DogGDQhAZl+DQdeQWpfTKK6/g448/hpeXF0RRxCOPPIJp06Y59B1YwiglIiInsifap2N2aHfmrVzjlGUS/YFRSkREZJPY1DTMW7kG/gNDzI4HDAqRVQGUIw6HEhG5gdjUNMRMSDXOFq29Bn9NMCLjEqBQ9O2CdWdjlBIREdlFoVBiSELXCSTUdzgcSkREHotFkIiIPBaLIBEReSwWQSIi8lgsgkREbkISJbQU1aLpVDVaimohic5bxi23PEHAuIH2hAkTkJCQgFGjRiEnJ8fp98DZoUREbqA5/zJq9xTBUNdqOqYM8oZmbgwGJIb08EnryC1P8NKlS7jvvvvw2WefIS4uDi0tLVbtUWor9gSJiFysOf8yrrx71qwAAoChrhVX3j2L5nzH1t3JMU/w1VdfxeLFixEXFwcA8PHxgUajceh7sIRFkIjIhSRRQu2eoh7b1O4579DQqBzzBAsKCtDc3IyMjAwkJyfjd7/7HZqammx7cCuwCBIRuZC+uK5LD/Bmhjo99MV1Dl1HbnmCbW1tOHToEHbt2oUTJ06grq4OTz31lF3P3hMWQSIiFxIbei6AtrazRI55gtHR0Zg9ezaCg4OhUqmwaNEiHDt2rNfr2IpFkIjIhRQB3k5tZ4kc8wTvvvtuHDx4EHq9HgCQnZ2NMWPG2PH0PePsUCIiF1IPD4IyyLvHIVFlkBrq4UHd/twacssTTEtLw9y5c5GcnAyVSoXExERs3rzZoe/AEuYJEhE5kT35dh2zQ7szaHGcU5ZJ9AfmCRIRkU0GJIZg0OI4KIPMhzyVQWpZFUA54nAoEZEbGJAYAp/4QdAX10FsaIUiwBvq4UEQFD1PKHE3zBMkIiK7CAoBPjEaV9+GR+FwKBEReSwWQSIi8lgsgkRE5LH4TpCIyE2IoojS0lLodDr4+/sjOjoaCgX7Kn2JRZCIyA0UFBQgOzsb9fX1pmOBgYHIzMxEfHy8w+dva2vD+vXrsX37diiVSnh7eyM6OhpPPfWUxSil/vDKK69g8+bNUCqVMBgMWL58Of7zP/8TALBhwwZ88MEHprbnz5/H/fffj40bNzr1HrhYnojIiexZvF1QUGDajcWSrKwshwvh4sWLodPp8Pbbb5vlCdbX15vilDrrjzzBuro6U5xSR57g3r17u2yx1traisGDB2Pfvn0YN26c2c+4WJ6ISMZEUUR2dnaPbbKzsyGKot3XkGOeYGcfffQRoqKiuhRAZ2ARJCJyodLSUrMhUEvq6+tRWlpq9zXkmCfY2datW7Fs2TKrrm0rFkEiIhfS6XRObdcdueUJdigrK8O3335rccjWGVgEiYhcqHOGnzPaWSLHPMEOb7/9NubNm9drL9ZeLIJERC4UHR2NwMDAHtsEBgYiOjra7mvIMU8QMBbibdu29dlQKMAlEkRELqVQKJCZmdnj7NDMzEyH1wvKLU8QAA4cOABJkjB9+nSHnr0nXCJBRORE9k7Z7+t1gv1FbnmC7AkSEbmB+Ph4jBo1ijvG9DMWQSIiN6FQKDB8+HBX34ZD5JYnyH9iEBGRx2IRJCIij8UiSEREHotFkIiIPBaLIBGRm5AkA65dO4LKyk9w7doRSJKh9w9Zqa2tDevWrcOoUaOQkJCAsWPHYv78+Th16pTTrmGrV155BUlJSabt2f7617+aftbS0oIlS5YgKSkJiYmJmDdvXp9MuOHsUCIiN1BdvQ8/FD4Nvb7SdEytDseI2Ceh1c50+PxLly6FTqdDTk6OWZTSmTNnLOYJ9keU0uLFi/Hb3/4WwI0opTvuuAOjR4/Gli1boNPpkJeXB0EQsHz5cjz//PN4/vnnnXoP7AkSEblYdfU+nM7/rVkBBAC9vgqn83+L6up9Dp1frlFKTU1NaGtrQ3t7O3Q6HaKiohz6HixhESQiciFJMuCHwqcBWNq8y3jsh8I/OzQ0KscopQceeACBgYHQarUICwtDXV0dHnroIdse3AosgkRELlRbe7xLD9CcBL2+ArW1xx26jtyilPbv3w9BEFBZWYmKigpoNBo8/fTT9j18D1gEiYhcSK+vdmo7S+QYpbR582b87Gc/g4+PD7y9vXHPPffg4MGDvV7HViyCREQupFZrndrOEjlGKd1yyy3Yt28fJEmCJEnYu3cvEhMT7fsCesDZoURELqTRTIBaHQ69vgqW3wsKUKvDodFMcOg6cotSeuqpp7BixQokJCRAEATEx8djy5YtDn0HljBKiYjIieyJ9umYHWrU+a9k4xBiUuIrTlkm0R/kFqXE4VAiIhfTamciKfEVqNVhZsfV6nBZFUA54nAoEZEb0GpnIjQ04/ps0Wqo1VpoNBMgCH27YN3Z5BalxCJIROQmBEGJ4ODbXH0bHoXDoURE5LFYBImIyGOxCBIRkcfiO0EiIjdhkCQcqdWhurUdWm8VbtP4Q9nLTivkGPYEiYjcwKc1tRifU4CfnyrCbwpK8fNTRRifU4BPa2qdcn655Qk2NjZi6dKlSEpKwsiRI7F69Wr0xbJ29gSJiFzs05pa3J9f0mW/mEp9G+7PL8GbicMwO1Tj0DXklie4fv16AEBeXh7a29sxZ84c7N69GwsXLnTqPbAnSETkQgZJwhOF5T0EKQFrC8thcKAXJMc8we+//x533nknBEGAl5cXZsyY0WWPUmdgESQicqEjtTpU6Nu6/bkE4JK+DUdqdXZfQ455ghMmTMDOnTvR2tqKhoYGfPjhhygpKbHpua3BIkhE5ELVre1ObdcdueUJrlq1CkOGDMHEiRMxb948pKWlwcvLy76H7wGLIBGRC2m9rZuaYW07S+SYJ+jj44MXX3wRp06dwsGDBzFw4EDEx8f3eh1bsQgSEbnQbRp/RKi90F2JEAAMVnvhNo1/Ny16J8c8wfr6ejQ1NQEAiouL8dprr+EPf/iDHU/fM84OJSJyIaUg4JnYSNyfXwIBloKUgD/HRjq8XlBueYLnz59HVlYWVCoVVCoVXnzxRYuzWB3FPEEiIieyN9/u05paPFFYbjZJZrDaC3+OjXR4eUR/klueIHuCRERuYHaoBpkhQdwxpp+xCBIRuQmlICA9OMDVt+EQueUJcmIMERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CYMoIafoCj4+VY6coiswiM5bweaOUUodzp07B19fXzz66KNmx5955hnExMQgJiYGa9eu7ZNrc3YoEZEbyM6vwLo9Baiou7EFWUSQD/40Nx6ZiREOn98do5Q6rvPAAw9g/vz5Zse//vprbN++HXl5eVCpVEhPT8ekSZMwc+ZMp16fPUEiIhfLzq/Ab949aVYAAaCyrgW/efcksvN737S6J+4apQQAGzZswJw5czBixAiz4zt27MCSJUvg5+cHtVqNX/3qV9i+fbtD34MlLIJERC5kECWs21PQY57guj0FDg2NumuUUl5eHvbt24dHHnmky88uXLiA6Oho06+HDRuGCxcuWHV9W7AIEhG50LHiq116gJ1JACrqWnCs+KpD13G3KKW2tjYsX74cmzdv7nbYtfM999UOn3wnSETkQtUNvccQ2dLOks5RSsHBwaYopW3btpmii4D+jVKqqKhAUVERZs2aBQCora2FJEm4du0atm7diqFDh5qF6JaWlmLo0KFWP7O12BMkInIhbYB1mz5b284Sd4xSGjp0KC5fvoySkhKUlJTg97//PZYvX46tW7cCABYuXIh33nkHjY2N0Ov1eOutt7Bo0SK7v4PusCdIRORCE4cPRESQDyrrWiy+FxQAhAf5YOLwnt/n9cYdo5R6cscddyArK8s0HLto0SJkZmba8eQ9Y5QSEZET2RPt0zE7FLCcJ/ja4hSnLJPoD3KLUuJwKBGRi2UmRuC1xSkIDzL/Szw8yEdWBVCOOBxKROQGMhMj8NP4cBwrvorqhhZoA4xDoEqFvPIE5RalxCJIROQmlAoBP4kZ5Orb8CgcDiUiIo/FIkhERB6LRZCIiDwWiyAREXksFkEiInchGoDib4DTu43/LRp6/4yV5JYnePz4caSlpcHX1xcLFizos2tzdigRkTso+ATIXgXUX7pxLHAwkPkcED/P4dPLLU8wIiICL730EnJzc/HFF1/02fXZEyQicrWCT4CdvzQvgABQX2E8XvCJQ6eXY55gVFQUJk6cCLVa7dCz94ZFkIjIlUSDsQfYU6Jg9mqHhkblmCfYX1gEiYhcqfRw1x6gGQmoLze2c4Ac8wT7A98JEhG5kq7Kue0skGOeYH9hT5CIyJX8w5zbzgI55gn2F/YEiYhcKTrNOAu0vgKW3wsKxp9Hpzl0GbnlCRYVFWHKlCloampCS0sLoqKisGbNGjz44IP2fQHdYJ4gEZET2ZVv1zE7FIDFRMGsvzllmUR/YJ4gERHZJn6esdAF3pQbGDhYVgVQjjgcSkTkDuLnAaNmG2eB6qqM7wCj0wCF62ZO2oN5gkREZB+FEhg+2dV34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIjdhEA04Xnkc/zj/DxyvPA6DB0cp7dixA2PHjkViYiKSkpLw8ssv98m1OTGGiMgN7C/djw3HNqCq6cb2aGG+YVg9cTUyojMcPr/copSioqLw2WefITw8HHV1dRg3bhxSUlKQnp7u1OuzJ0hE5GL7S/dj5aGVZgUQAKqbqrHy0ErsL93v0PnlGKWUnp6O8PBwAEBQUBBGjRqF4uJih74HS1gEiYhcyCAasOHYBkgWtkzrOPbcseccGhqVe5RSQUEBcnJyMG3aNKuubwsWQSIiFzpZfbJLD7AzCRIqmypxsvqkQ9eRa5TSxYsXcdddd2Hz5s0YPHiw9Q9sJb4TJCJyoZqmGqe2s0SuUUqXLl1CRkYGnnjiCSxcuNC2h7YSe4JERC4U6hvq1HaWyDFKqaKiAtOnT8eqVatw33332f3svWFPkIjIhVK0KQjzDUN1U7XF94ICBIT5hiFFm+LQdeQWpfTkk0/iwoUL2LRpEzZt2gQAePjhh7F06VI7nr57jFIiInIie6J9OmaHAjArhML1KKWNd2x0yjKJ/sAoJSIisklGdAY23rERWl+t2fEw3zBZFUA54nAoEZEbyIjOwNQhU3Gy+iRqmmoQ6huKFG0KlIxS6lMsgkREbkKpUGJC+ARX34ZH4XAoERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CclgQOPRY6jb+ykajx6DZPDcPMEPP/wQo0ePRnJyMhISEvDHP/4RfbGsnbNDiYjcQP3nn6Nq/bNor6w0HVOFhyNszeMInDHD4fPLLU8wIyMDd911FxQKBVpbWzFp0iSkpqZi3rx5Tr0+e4JERC5W//nnKH/492YFEADaq6pQ/vDvUf/55w6dX455ggEBAVAojCWqpaUFer3e9GtnYhEkInIhyWBA1fpnAUtDfdePVa1/1qGhUbnmCR4+fBijR4+GVqvF9OnTMXv2bKuubwsWQSIiF2o68c8uPUAzkoT2yko0nfinQ9eRY55gWloa8vLyUFZWhuPHj+Obb76x7aGtwHeCREQu1F5jXU6gte0skWueYIfQ0FDMnj0bu3bt6pJY4Sj2BImIXEgVal1OoLXtLJFjnuC5c+cgiiIAoKGhAXv37u1yDmdgT5CIyIV8x4+DKjwc7VVVlt8LCgJUYWHwHT/OoevILU9w165deP/99+Hl5QWDwYAFCxbg/vvvt+/he8A8QSIiJ7In365jdigA80J4fQgxctNLTlkm0R+YJ0hERDYJnDEDkZtegioszOy4KixMVgVQjjgcSkTkBgJnzEDA9OnG2aI1NVCFhsJ3/DgI/bBg3ZmYJ0hERHYRlEr4pU509W14FA6HEhGRx2IRJCIij8UiSEREHotFkIjITYiihPJz1/DD8UqUn7sGUXTeCja5RSl1qKmpQVhYGBYsWNAn1+bEGCIiN1CUW41vdhSisVZvOuanUWPyL2IRM1br8PnlFqXU4cEHH8SsWbPQ0NDQJ9dnT5CIyMWKcquRvSXfrAACQGOtHtlb8lGUW+3Q+eUYpQQA7733HsLCwjBlyhSHnr8nLIJERC4kihK+2VHYY5tvdxY6NDQqxyilS5cuYePGjdiwYYN1D2knFkEiIheqKKzt0gO8me6aHhWFtQ5dR25RSsuXL8fzzz9vlmzRF/hOkIjIhRrrey6AtrazRI5RSjk5OVi2bBkAQKfTobm5GTNnzsS+fftse/hesCdIRORCfoFqp7azRI5RSlevXjX97IUXXsCdd97p9AIIsCdIRORSEbEa+GnUPQ6J+gerERGrceg6cotS6i+MUiIiciJ7on06Zod2J/OBRKcsk+gPjFIiIiKbxIzVIvOBRPhpzIc8/YPVsiqAcsThUCIiNxAzVovhY0KNs0Xr9fALNA6BKhRdJ6e4M0YpERGRXRQKAZEjg3tvSE7D4VAiIvJYLIJEROSxWASJiMhjsQgSEZHHYhEkInITomhA2Zk8nP3uK5SdyYMoGnr/kJXklie4bds2aDQaJCcnIzk5GVOnTu2Ta3N2KBGRGyg8ehgHtr0O3dUbywv8B4Zg2pIViE1Nc/j8cswTzMjIwO7du/v0+uwJEhG5WOHRw/hk43qzAggAuquX8cnG9Sg8etix88s0T7A/sAgSEbmQKBpwYNvrPbY5+M7rDg2NyjFPEAC++uorJCcnIz09vc96hCyCREQuVH72TJce4M0arlxG+dkzDl1HbnmCc+bMQWlpKU6dOoU333wTjzzyCI4cOWL7g/eC7wSJiFxIV3vNqe0skWOeYEhIiKltXFwcZs2ahe+++w633Xab9Q9uBfYEiYhcyF9j3TZp1razRI55guXl5aa2VVVVOHDgAMaOHWv3d9Ad9gSJiFwoMi4B/gNDehwSDRgUgsi4BIeuI7c8wVdeeQUff/wxvLy8IIoiHnnkEUybNs2+h+8B8wSJiJzInny7jtmh3Zm3co1Tlkn0B+YJEhGRTWJT0zBv5Rr4DwwxOx4wKERWBVCOOBxKROQGYlPTEDMh1ThbtPYa/DXBiIxLgELR9wvWnYl5gkREZBeFQokhCaN7b0hOw+FQIiLyWCyCRETksVgEiYjIY/GdIBGRm5BECfriOogNrVAEeEM9PAiCouuuLeQ87AkSEbmB5vzLqHzuGC6/cRpXPziHy2+cRuVzx9Cc75yZlnLLEwSMG2hPmDABCQkJGDVqFHJycpx+bfYEiYhcrDn/Mq68e7bLcUNdK668exaDFsdhQGKIhU9aT255gpcuXcJ9992Hzz77DHFxcWhpabFqj1JbsSdIRORCkiihdk9Rj21q95yHJNq/uZcc8wRfffVVLF68GHFxcQAAHx8faDQau7+D7rAIEhG5kL64Doa61h7bGOr00BfX2X0NOeYJFhQUoLm5GRkZGUhOTsbvfvc7NDU1WffANmARJCJyIbGh5wJoa7vuyC1PsK2tDYcOHcKuXbtw4sQJ1NXV4amnnrL5uXvDd4JERC6kCPB2ajtL5JgnGB0djbFjx5qGbxctWoTnn3/etge3AnuCREQupB4eBGVQzwVOGaSGeniQ3deQY57g3XffjYMHD0Kv1wMAsrOzMWbMGLu/g+6wJ0hE5EKCQoBmbozF2aEdNHNvcXi9oNzyBNPS0jB37lwkJydDpVIhMTERmzdvtu/he8A8QSIiJ7I33645/zJq9xSZTZJRBqmhmXuLw8sj+pPc8gTZEyQicgMDEkPgEz+IO8b0MxZBIiI3ISgE+MRoXH0bDpFbniAnxhARkcdiESQiIo/FIkhERB6LRZCIiDwWiyARkZsQRRHFxcU4ffo0iouLIYqi084ttyilDRs2IDk52fSfwMBArFy50unX5uxQIiI3UFBQgOzsbNTX15uOBQYGIjMzE/Hx8Q6fX25RSqtXrzYt5G9tbcXgwYNNiRfOxJ4gEZGLFRQUYOfOnWYFEADq6+uxc+dOU4SRveQYpdTZRx99hKioKIwbN86Rr8EiFkEiIhcSRRHZ2dk9tsnOznZoaFSOUUqdbd26FcuWLbPq2rZiESQicqHS0tIuPcCb1dfXo7S01KHryC1KqUNZWRm+/fbbPhkKBfhOkIjIpXQ6nVPbWSLHKKUOb7/9NubNm9drL9Ze7AkSEblQ58LjjHaWyDFKCTAW4m3btvXZUCjAniARkUtFR0cjMDCwxyHRwMBAREdHO3QduUUpAcCBAwcgSRKmT59u+wNbiVFKREROZE+0T8fs0O5kZWU5ZZlEf5BblBKHQ4mIXCw+Ph5ZWVkIDAw0Ox4YGCirAihHHA4lInID8fHxGDVqFEpLS6HT6eDv74/o6GgoFPLqq8gtSolFkIjITSgUCgwfPtzVt+FR5PVPDCIiIidiESQiIo/FIkhERB6L7wSJiNyEJBlQW3scen011GotNJoJEIS+T3LwZOwJEhG5gerqffju8O04mXsPzhQ8gpO59+C7w7ejunqfU84vtzzBlpYWLFmyBElJSUhMTMS8efP6ZNYpiyARkYtVV+/D6fzfQq+vNDuu11fhdP5vnVIIly5ditzcXOTk5ODMmTPIzc3FsmXLcObMGYvtO+8N2pe6yxPcsmULdDod8vLykJ+fj7CwMDz//PNOvz6LIBGRC0mSAT8UPg3A0uZdxmM/FP4ZkmR/UZJrnmBTUxPa2trQ3t4OnU6HqKgou7+D7rAIEhG5kPEdYGUPLSTo9RWorT1u9zXkmCf4wAMPIDAwEFqtFmFhYairq8NDDz1k3QPbgEWQiMiF9Ppqp7brjtzyBPfv3w9BEFBZWYmKigpoNBo8/fTTtj94L1gEiYhcSK3WOrWdJZ3zBAGY8gQff/xx0zHAdXmCw4YNw0svvYQ33njDFJu0efNm/OxnP4OPjw+8vb1xzz334ODBg7Y9uBVYBImIXEijmQC1C/WXdwAARANJREFUOhxA14JjJECtjoBGM8Hua8gxT/CWW27Bvn37IEkSJEnC3r17kZiYaPd30B2uEyQiciFBUGJE7JM4nf9bGAth5wkyxsI4Inatw+sF5ZYn+NRTT2HFihVISEiAIAiIj4/Hli1b7Hv4HjBPkIjIiezNt6uu3ocfCp82mySjVkdgROxaaLUz++JW+4Tc8gTZEyQicgNa7UyEhmZwx5h+xiJIROQmBEGJ4ODbXH0bDpFbniAnxhARkcdiESQiIo/FIkhERB6LRZCIiDwWiyARkZswSBK+u9aAD6uu4btrDTA4cQWb3KKUGhsbsXTpUiQlJWHkyJFYvXo1+mJFH2eHEhG5gU9ravFEYTkq9G2mYxFqLzwTG4nZoRqHz7906VLodDrk5OSYkiT27NmDM2fOIDk5uUt7g8FgcU9PZ+suSmn9+vUAjJtst7e3Y86cOdi9ezcWLlzo1OuzJ0hE5GKf1tTi/vwSswIIAJX6NtyfX4JPa2odOr8co5S+//573HnnnRAEAV5eXpgxY0aX7dmcgUWQiMiFDJKEJwrLe0gTBNYWljs0NCrHKKUJEyZg586daG1tRUNDAz788EOUlJRYdX1bsAgSEbnQkVpdlx5gZxKAS/o2HKnVOXQduUUprVq1CkOGDMHEiRMxb948pKWlwcvLy/YH7wXfCRIRuVB1a7tT21nSOUopODjYFKW0bds27N2719TOVVFKAFBbWwtJknDt2jVs3boVPj4+ePHFF03tN2zYgPj4eOsf2krsCRIRuZDW27q+iLXtLJFjlFJ9fT2ampoAAMXFxXjttdfwhz/8we7voDvsCRIRudBtGn9EqL1QqW+z+F5QgHGW6G0afws/tZ7copTOnz+PrKwsqFQqqFQqvPjiixZnsTqKUUpERE5kT7RPx+xQwFKaIPBm4jCnLJPoD3KLUuJwKBGRi80O1eDNxGEIV5tP/IhQe8mqAMoRh0OJiNzA7FANMkOCcKRWh+rWdmi9VbhN4w+lhckp7kxuUUosgkREbkIpCEgPDnD1bXgUDocSEZHHYhEkIiKPxSJIREQei0WQiIg8FosgEZGbMIgScoqu4ONT5cgpugKD+O+dJ/jUU09Bq9UiOTkZycnJpkSLDs888wxiYmIQExODtWvX9sk9cHYoEZEbyM6vwLo9Baiou7EPZ0SQD/40Nx6ZiREOn99d8wR/+ctf4oUXXuhy/Ouvv8b27duRl5cHlUqF9PR0TJo0CTNnznTq9dkTJCJysez8Cvzm3ZNmBRAAKuta8Jt3TyI7v/fkhp64c55gd3bs2IElS5bAz88ParUav/rVr7B9+3YHvgXLWASJiFzIIEpYt6egxzzBdXsKHBoaddc8QQDYvn07xowZg2nTpuHgwYOm4xcuXEB0dLTp18OGDcOFCxesur4tWASJiFzoWPHVLj3AziQAFXUtOFZ81aHruFueIAD8+te/RklJCb7//nv8+c9/xi9+8QuUlpZavOe+2uaaRZCIyIWqG3rP4rOlnSWd8wQBmPIEH3/8cdMxoH/zBAEgPDzcFJSbnp6OsWPH4sSJEwCMUUudk+RLS0sxdOjQXq9jKxZBIiIX0gZYl3xgbTtL3DFPEAAuXrxo+v8LCwtx6tQpU89z4cKFeOedd9DY2Ai9Xo+33noLixYtsu8L6AFnhxIRudDE4QMREeSDyrqWbvMEw4N8MHF4z+/zeuOOeYJ//OMf8c9//hMqlQpKpRKvvPIKRowYAQC44447kJWVZSqKixYtQmZmpkPfgSXMEyQiciJ78u06ZocClvMEX1uc4pRlEv2BeYJERGSTzMQIvLY4BeFB5n+Jhwf5yKoAyhGHQ4mI3EBmYgR+Gh+OY8VXUd3QAm2AcQhUqWCeYF9iESQichNKhYCfxAxy9W14FA6HEhGRx2IRJCIij8UiSEREHotFkIjIXYgGoPgb4PRu43+Lht4/YyW5RSkdP34caWlp8PX1xYIFC/rsHjgxhojIHRR8AmSvAuov3TgWOBjIfA6In+fw6eUWpRQREYGXXnoJubm5+OKLL/rs+uwJEhG5WsEnwM5fmhdAAKivMB4v+MSh08sxSikqKgoTJ06EWq124Ml7xyJIRORKosHYA+wpTCl7tUNDo3KMUuovLIJERK5UerhrD9CMBNSXG9s5QI5RSv2BRZCIyJV0Vc5tZ4Eco5T6C4sgEZEr+Yc5t50FcoxS6i+cHUpE5ErRacZZoPUVsPxeUDD+PDrNocvILUqpqKgIU6ZMQVNTE1paWhAVFYU1a9bgwQcfdOh7uBmjlIiInMiuaJ+O2aEALIYpZf3NKcsk+gOjlIiIyDbx84yFLvCmyKTAwbIqgHLE4VAiIncQPw8YNds4C1RXZXwHGJ0GKPp+wbozMUqJiIjso1ACwye7+i48CodDiYjIY7EIEhGRx2IRJCIij8UiSEREHotFkIjITRhEA45XHsc/zv8DxyuPw+DBeYI7duzA2LFjkZiYiKSkJLz88st9cg+cHUpE5Ab2l+7HhmMbUNV0Y4/QMN8wrJ64GhnRGQ6fX255glFRUfjss88QHh6Ouro6jBs3DikpKUhPT3fq9dkTJCJysf2l+7Hy0EqzAggA1U3VWHloJfaX7nfo/HLME0xPT0d4eDgAICgoCKNGjUJxcbG9X0G3WASJiFzIIBqw4dgGSBb2De049tyx5xwaGpV7nmBBQQFycnIwbdo0q65vCxZBIiIXOll9sksPsDMJEiqbKnGy+qRD15FrnuDFixdx1113YfPmzRg8eLDtD94LFkEiIheqaapxajtL5JoneOnSJWRkZOCJJ57AwoULrXhS27EIEhG5UKhvqFPbWSLHPMGKigpMnz4dq1atwn333Wffg1uBs0OJiFwoRZuCMN8wVDdVW3wvKEBAmG8YUrQpDl1HbnmCTz75JC5cuIBNmzZh06ZNAICHH34YS5cudeh7uBnzBImInMiefLuO2aEAzAqhcD1PcOMdG52yTKI/ME+QiIhskhGdgY13bITWV2t2PMw3TFYFUI44HEpE5AYyojMwdchUnKw+iZqmGoT6hiJFmwIl8wT7FIsgEZGbUCqUmBA+wdW34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIjchGQxoPHoMdXs/RePRY5AMnhul9OGHH2L06NFITk5GQkIC/vjHP6IvVvRxYgwRkRuo//xzVK1/Fu2VlaZjqvBwhK15HIEzZjh8frlFKWVkZOCuu+6CQqFAa2srJk2ahNTUVMybN8+p12dPkIjIxeo//xzlD//erAACQHtVFcof/j3qP//cofPLMUopICAACoWxRLW0tECv15t+7UwsgkRELiQZDKha/yxgaajv+rGq9c86NDQq1yilw4cPY/To0dBqtZg+fTpmz55t3QPbgEWQiMiFmk78s0sP0Iwkob2yEk0n/unQdeQYpZSWloa8vDyUlZXh+PHj+Oabb+x7+B6wCBIRuVB7jXURSda2s0SuUUodQkNDMXv2bOzatavX69iKRZCIyIVUodZFJFnbzhI5RimdO3cOoigCABoaGrB3716L53AUZ4cSEbmQ7/hxUIWHo72qyvJ7QUGAKiwMvuPHOXQduUUp7dq1C++//z68vLxgMBiwYMEC3H///Q59B5YwSomIyInsifbpmB0KwLwQXh9CjNz0klOWSfQHRikREZFNAmfMQOSml6AKCzM7rgoLk1UBlCMOhxIRuYHAGTMQMH26cbZoTQ1UoaHwHT8OQj8sWHcmRikREZFdBKUSfqkTXX0bHoXDoURE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5CZEUUL5uWv44Xglys9dgyg6bxm33PIEO9TU1CAsLAwLFizok3vg7FAiIjdQlFuNb3YUorFWbzrmp1Fj8i9iETNW6/D55ZYn2OHBBx/ErFmz0NDQ0CfXZ0+QiMjFinKrkb0l36wAAkBjrR7ZW/JRlFvt0PnlmCcIAO+99x7CwsIwZcoUO5+8dyyCREQuJIoSvtlR2GObb3cWOjQ0Ksc8wUuXLmHjxo3YsGGD9Q9qBxZBIiIXqiis7dIDvJnumh4VhbUOXUdueYLLly/H888/bxbv1Bf4TpCIyIUa63sugLa2s6RznmBwcLApT3Dbtm3Yu3evqZ0r8gQ7dM4TjI6ORk5ODpYtWwYA0Ol0aG5uxsyZM7Fv3z7rHtpK7AkSEbmQX6Daqe0skWOe4NWrV1FSUoKSkhK88MILuPPOO51eAAH2BImIXCoiVgM/jbrHIVH/YDUiYjUOXUdueYL9hXmCREROZE++Xcfs0O5kPpDolGUS/YF5gkREZJOYsVpkPpAIP435kKd/sFpWBVCOOBxKROQGYsZqMXxMqHG2aL0efoHGIVCFouuEEnfGPEEiIrKLQiEgcmRw7w3JaTgcSkREHotFkIiIPBaLIBEReSy+EyQichOiaED52TPQ1V6DvyYYkXEJUCj6PsnBk7EIEhG5gcKjh3Fg2+vQXb0xs9J/YAimLVmB2NQ0h8/f1taG9evXY/v27VAqlfD29kZ0dDSeeuopi1FK/eGpp57Cq6++isGDBwMAEhISTDvNbNu2Db///e9N6RTBwcFmG2w7C4sgEZGLFR49jE82ru9yXHf1Mj7ZuB7zVq5xuBDKMU8wIyMDu3fv7tPr850gEZELiaIBB7a93mObg++8DlE09NimJ3LNE+wPLIJERC5UfvaM2RCoJQ1XLqP87Bm7ryHHPEEA+Oqrr5CcnIz09PQ+6xGyCBIRuZCu9ppT23VHbnmCc+bMQWlpKU6dOoU333wTjzzyCI4cOWL/F9ANFkEiIhfy11i3Q4y17SzpnCcIwJQn+Pjjj5uOAa7JE/Ty8gJgnicIACEhIfD19QUAxMXFYdasWfjuu++seVybsAgSEblQZFwC/AeG9NgmYFAIIuMS7L6GHPMEy8vLTT+rqqrCgQMHMHbsWBufvHecHUpE5EIKhRLTlqywODu0w9T7Vji8XlBueYKvvPIKPv74Y3h5eUEURTzyyCOYNm2aQ9+BJcwTJCJyInvz7SytEwwYFIKp9zlnnWB/kVueIHuCRERuIDY1DTETUrljTD9jESQichMKhRJDErq+O5MTueUJcmIMERF5LBZBIiLyWCyCRETksVgEiYjIY7EI/v/t3X9U1HW+P/DnDD+GEIfBZACjJuRwg2GoQRfrYl0quUqhRPfmXA9xVs2ys21bm+05tq30xW7HNfNq3T2VdjN1T66b2rEftoJ5JSsDlRVDpFtcRDAFB1MYRmSAmfn+QUxMDDAznw985nPn+TinU35483l/PvOHr97veb/fTyKiAOF0ONHT2IHuk2b0NHbA6RBvB1tfXx9Wr16N1NRUpKenIzMzE4WFhTh58qRoffiqtLQUWq0WRqMRRqPRdZj3oMOHDyMrKwvp6elITU1FZWWl6M/A1aFERAHgWt0ldHzcCHtnr+taSHQ4NAuScZ1h9BNlvCG3KKULFy5g8eLF2L9/P9LS0tDT0+PV8Wy+4kiQiEhi1+ou4Yd3v3ErgABg7+zFD+9+g2t1wrYcyDFK6Y033kBxcTHS0tIAABEREdBoNH5+AiNjESQikpDT4UTHx42jtun4+IygqVE5RinV19fj2rVryM3NhdFoxG9+8xt0d3d7/9JeYhEkIpKQralz2Ajw5+ydNtiaOgX1I7copb6+Pnz22WfYvXs3qqur0dnZidLSUr/ffyQsgkREEnJ0jV4AfW3niRyjlHQ6HfLz8xETE4PQ0FAsWrQIx44d8/KNvcciSEQkIeXkcFHbeSLHKKWioiJUVFTAZrMBAMrKynDbbbf58faj4+pQIiIJqZKiERIdPuqUaEi0CqqkaEH9yC1KKTs7GwsWLIDRaERoaCgMBgM2bdok6DPwhFFKREQi8ifaZ3B16EiuL04TZZvERJBblBKnQ4mIJHadYSquL05DSLT7lGdItEpWBVCOOB1KRBQArjNMRYT+etiaOuHo6oVycjhUSdFQKIcvKAlkcotSYhEkIgoQCqUCEckaqR8jqHA6lIiIghaLIBERBS0WQSIiClr8TpCIKEA4HA40NzfDarUiKioKOp0OSiXHKuOJRZCIKADU19ejrKwMFovFdU2tViMvLw96vV7w/fv6+rBmzRrs3LkTISEhCA8Ph06nQ2lpqccopYlQWlqKN954A9OmTQMApKenu06aWbt2Lf7617+62p45cwaPPvooNmzYIOozcLM8EZGI/Nm8XV9f7zqNxROTySS4EBYXF8NqtWLr1q1ueYIWi2VYmC0wMXmCpaWlsFqtHvMEh+rt7cW0adNQXl6OmTNnuv2Mm+WJiGTM4XCgrKxs1DZlZWVwOBx+9yHHPMGhPvjgAyQmJg4rgGJgESQiklBzc7PbFKgnFovFFTHkDznmCQ61ZcsWLFu2zKu+fcUiSEQkIavVKmq7kcgtT3DQuXPn8OWXX3qcshUDiyARkYSGZviJ0c4TOeYJDtq6dSsKCgrGHMX6i0WQiEhCOp0OarV61DZqtRo6nc7vPuSYJwgMFOJt27aN21QowC0SRESSUiqVyMvLG3V1aF5enuD9gnLLEwSAQ4cOwel0Ys6cOYLefTTcIkFEJCJ/l+yP9z7BiSK3PEGOBImIAoBer0dqaipPjJlgLIJERAFCqVQiKSlJ6scQRG55gvxfDCIiClosgkREFLRYBImIKGixCBIRUdBiESQiChBOpx1XrlShre0jXLlSBafTPvYveamvrw+rV69Gamoq0tPTkZmZicLCQpw8eVK0PnxVWloKrVYLo9EIo9HodjRaT08PlixZgoyMDBgMBhQUFIzLghuuDiUiCgBmczm+a3gRNlub65pKFY9/SHkBWu08wfdfunQprFYrKisr3aKUTp8+7TFPcCKilADgl7/8pccopc2bN8NqtaK2thYKhQKPPfYY1q1bh3Xr1onaP0eCREQSM5vLcaru124FEABstos4VfdrmM3lgu4v1yil7u5u9PX1ob+/H1arFYmJiX5+AiNjESQikpDTacd3DS8C8HR418C17xr+XdDUqByjlB5//HGo1WpotVrExcWhs7MTTz75pPcv7SUWQSIiCXV0HB82AnTnhM3Wio6O44L6kVuU0sGDB6FQKNDW1obW1lZoNBq8+OKL/n8AI2ARJCKSkM1mFrWdJ3KMUtq0aRMefPBBREREIDw8HA8//PCIobtCsAgSEUlIpdKK2s4TOUYpTZ8+HeXl5XA6nXA6ndi3bx8MBoN/H8AouDqUiEhCGk0WVKp42GwX4fl7QQVUqnhoNFmC+pFblFJpaSmWL1+O9PR0KBQK6PV6bN68WdBn4AmjlIiIRORPtM/g6tABQ/9KHphCzDC8Lso2iYkgtyglTocSEUlMq52HDMPrUKni3K6rVPGyKoByxOlQIqIAoNXOQ2xs7o+rRc1QqbTQaLKgUIz/hnUxyS1KiUWQiChAKBQhiIm5Q+rHCCqcDiUioqDFIkhEREGLRZCIiIIWiyAREQUtFkEiogBhdzpx5EoX9l68giNXumAXcRu33PIEr169iqVLlyIjIwO33HILnnvuOYzHtnauDiUiCgCftHdgVcN5tNr6XNcSVGF4KeUG5MdqBN9fbnmCa9asAQDU1taiv78f8+fPx549e7Bw4UJR++dIkIhIYp+0d+DRurNuBRAA2mx9eLTuLD5p7xB0fznmCX799de47777oFAoEBYWhrlz5w47o1QMLIJERBKyO51Y1XB+lDRBoKThvKCpUTnmCWZlZWHXrl3o7e1FV1cX9u7di7Nnz3r9zt5iESQiklBVh3XYCHAoJ4ALtj5UdVgF9SO3PMGVK1fixhtvxKxZs1BQUIDs7GxX7JKYWASJiCRk7u0XtZ0ncswTjIiIwMaNG3Hy5ElUVFRgypQp0Ov1Xr6x91gEiYgkpA33bn2it+08kWOeoMViQXd3NwCgqakJb775Jp599lk/3n50XB1KRCShOzRRSFCFoc3WN0Ka4MAq0Ts0UR5+6j255QmeOXMGJpMJoaGhCA0NxcaNGz2uYhWKeYJERCLyJ99ucHUo4ClNEHjbcLMo2yQmAvMEiYjIJ/mxGrxtuBnxKveFHwmqMFkVQDnidCgRUQDIj9Ugb2o0qjqsMPf2Qxseijs0UQjxsKAkkDFPkIiI/BKiUGB2zGSpHyOocDqUiIiCFosgEREFLRZBIiIKWiyCREQBwu5worLxB3x48jwqG3+A3fF/O0oJAN5//31kZGQgPT0der3e7XzQl156CcnJyUhOTkZJScm49M+FMUREAaCsrhWrP65Ha+dPR5AlREfg/y3QI8+QIPj+gRilVFNTg1WrVuG///u/MW3aNFgsFoSGDpSlzz//HDt37kRtbS1CQ0Mxe/Zs3HnnnZg3b56oz8CRIBGRxMrqWvGrd0+4FUAAaOvswa/ePYGyurEPrR5NoEYp/cd//AeeffZZTJs2DQCgVqsRGRkJAHjvvfewZMkSTJo0CSqVCo888gh27twp6HPwhEWQiEhCdocTqz+uHzVKafXH9YKmRgM1Sqm+vh4tLS3IyclBZmYmSkpKXAdzt7S0QKfTudrefPPNaGlp8eGtvcMiSEQkoWNNl4eNAIdyAmjt7MGxpsuC+gnEKKW+vj78/e9/R1lZGY4cOYLKykps3rzZ4zOP1wmfLIJERBIyd40dQ+RLO08CNUpJp9PhX//1X3HdddchMjIS//Iv/4Jjx44BAG666Sa3RTLNzc246aabxn5ZH7EIEhFJSDvZu0OfvW3nSaBGKRUVFeHAgQNwOByw2+349NNPcdtttwEAFi5ciO3bt+Pq1auw2Wx45513sGjRIr8/g5FwdSgRkYRmJU1BQnQE2jp7RoxSio+OwKyk0b/PG0sgRiktWrQI1dXVSE9PR0hICP7pn/4JTz75JADg7rvvhslkck3HLlq0CHl5eYI+A08YpUREJCJ/on0GV4cCnqOU3iyeIco2iYnAKCUiIvJJniEBbxbPQHy0+1/i8dERsiqAcsTpUCKiAJBnSMA/6+NxrOkyzF090E4emAINUTJKaTyxCBIRBYgQpQL/mHy91I8RVDgdSkREQYtFkIiIghaLIBERBS0WQSIiClosgkREgcJhB5q+AE7tGfi3wz7273hJbnmCx48fR3Z2NiIjI/HQQw+NW/9cHUpEFAjqPwLKVgKWCz9dU08D8l4G9AWCby+3PMGEhAS8+uqrqKmpwaeffjpuz8CRIBGR1Oo/Anb90r0AAoCldeB6/UeCbi/HPMHExETMmjULKpVK0LuPhSNBIiIpOewDI8AREwUVQNlzQGo+oPRvZOZLnmBNTQ1SUlJgNpuh1+tRUVGBjIwM7NixAyaTCXV1dWP2N5gnuH79elRVVaGwsBCNjY3Dzg+tr6/H9OnTkZOTA4vFgvnz56O0tHTcR6BDcSRIRCSl5q+GjwDdOAHL+YF2AsgxT3AisAgSEUnJelHcdh7IMU9worAIEhFJKSpO3HYeyDFPcKLwO0EiIinpsgdWgVpa4fl7QcXAz3XZgrqRW55gY2MjcnJy0N3djZ6eHiQmJuL555/HE088Iehz+DnmCRIRicivfLvB1aEAPCYKmv4syjaJicA8QSIi8o2+YKDQqX+WG6ieJqsCKEecDiUiCgT6goFtEM1fDSyCiYobmAL1c1uEVJgnSERE/lGGAEl3Sf0UQYXToUREFLRYBImIKGixCBIRUdBiESQiChB2hx3H247jb2f+huNtx2EP4iil9957D5mZmTAYDMjIyMCf/vSncemfC2OIiALAweaDWHtsLS52/3Q8WlxkHJ6b9RxydbmC7y+3KKXExETs378f8fHx6OzsxMyZMzFjxgzMnj1b1GfgSJCISGIHmw9ixWcr3AogAJi7zVjx2QocbD4o6P5yjFKaPXs24uPjAQDR0dFITU1FU1OToM/BExZBIiIJ2R12rD22Fk4PR6YNXnv52MuCpkZ9iVIqKSlBdXU1kpOTUVxcjO3bt6O2thbLly+HyWTyqr/BKKWjR49iy5YtKCoq8nhOaX19PVpaWpCTk4PMzEyUlJS4Hcw9tF1lZSXuvfde717YByyCREQSOmE+MWwEOJQTTrR1t+GE+YSgfuQapfT999/jgQcewKZNm1wjRjGxCBIRSai9u13Udp7INUrpwoULyM3NxapVq7Bw4ULvXtZHLIJERBKKjYwVtZ0ncoxSam1txZw5c7By5UosXrzY73cfC1eHEhFJaIZ2BuIi42DuNnv8XlABBeIi4zBDO0NQP3KLUnrhhRfQ0tKC1157Da+99hoA4Omnn8bSpUsFfQ4/xyglIiIR+RPtM7g6FIBbIVT8GKW04e4NomyTmAiMUiIiIp/k6nKx4e4N0EZq3a7HRcbJqgDKEadDiYgCQK4uF/fceA9OmE+gvbsdsZGxmKGdgRBGKY0rFkEiogARogxBVnyW1I8RVDgdSkREQYtFkIiIghaLIBERBS0WQSIiClosgkREAcJpt+Pq0WPo3PcJrh49BqeHw6T9Jbc8wb179+LWW2+F0WhEeno6/vCHP2A8trVzdSgRUQCwHDiAi2v+iP62Nte10Ph4xD3/e6jnzhV8f7nlCebm5uKBBx6AUqlEb28v7rzzTtx+++0oKCgQ9Rk4EiQikpjlwAGcf/q3bgUQAPovXsT5p38Ly4EDgu4vxzzByZMnQ6kcKFE9PT2w2WyuP4uJRZCISEJOux0X1/wR8DTV9+O1i2v+KGhqVK55gl999RVuvfVWaLVazJkzB/n5+b69uBdYBImIJNRd/fdhI0A3Tif629rQXf13Qf3IMU8wOzsbtbW1OHfuHI4fP44vvvjCv5cfBYsgEZGE+tu9ywn0tp0ncs0THBQbG4v8/Hzs3r17zH58xSJIRCSh0FjvcgK9beeJHPMEv/32WzgcDgBAV1cX9u3b5/EeQnF1KBGRhCJ/MROh8fHov3jR8/eCCgVC4+IQ+YuZgvqRW57g7t278Ze//AVhYWGw2+146KGH8Oijjwr6DDxhniARkYj8ybcbXB0KwL0Q/jiFeMNrr4qyTWIiME+QiIh8op47Fze89ipC4+LcrofGxcmqAMoRp0OJiAKAeu5cTJ4zZ2C1aHs7QmNjEfmLmVCM84Z1sTFPkIiI/KIICcGk22dJ/RhBhdOhREQUtFgEiYgoaLEIEhFR0OJ3gkREAcLhcKK1oQNXLTZMUquQkKKBUjn8pBUSD4sgEVEAaKwx44v3GnC1w+a6Nkmjwl3/loLkTK3g+/f19WHNmjXYuXMnQkJCEB4eDp1Oh9LSUo9RShPl/fffR2lpKRwOB5xOJ/72t7+5EikAoL29HQaDAXfddRf27Nkjev8sgkREEmusMaNsc92w61c7bCjbXIe8xw2CC6Hc8gQHPfHEE7j//vvR1dU1Ls/A7wSJiCTkcDjxxXsNo7b5clcDHA7/D/eSY54gAOzYsQNxcXHIycnx+93HwpEgEZGEWhs63KZAPbFesaG1oQM33BIzaruR+JInWFNTg5SUFJjNZuj1elRUVCAjIwM7duyAyWRCXd3wEevPDeYJrl+/HlVVVSgsLERjY+Ow80Pr6+sxffp05OTkwGKxYP78+SgtLUVISAguXLiADRs24PDhw+MyDTqII0EiIgldtYxeAH1tNxK55Qk+9thjWLdunVu803hgESQiktAktUrUdp7IMU+wsrISy5Ytw80334zf/e532L9/P+bNm+f9S3uJRZCISEIJKRpM0oxe4KJiBrZL+EuOeYKXL1/G2bNncfbsWaxfvx733XcfysvL/f4MRsLvBImIJKRUKnDXv6V4XB066E5TiuD9gnLLE5wozBMkIhKRv/l2nvYJRsWocKdJnH2CE0VueYIcCRIRBYDkTC2SbovliTETjEWQiChAKJUKv7dBBAq55QlyYQwREQUtFkEiIgpaLIJERBS0WASJiChosQgSEQUIh8OOc6dr8c2Rwzh3uhYOh33sX/JSX18fVq9ejdTUVKSnpyMzMxOFhYU4efKkaH344/3330dGRgbS09Oh1+tx9uxZAAP7GjUaDYxGI4xGI+65555x6Z+rQ4mIAkDD0a9waNtbsF7+aWVl1JSpuHfJcqTcni34/nKMUsrNzR3Xw7MBjgSJiCTXcPQrfLRhjVsBBADr5Uv4aMMaNBz9Stj9ZRqlNBFYBImIJORw2HFo21ujtqnY/pagqVFfopRKSkpQXV2N5ORkFBcXY/v27aitrcXy5cthMpm86m8wSuno0aPYsmULioqKPJ5TWl9fj5aWFuTk5CAzMxMlJSVuB3MfPnwYRqMRs2fPHrcRIYsgEZGEzn9zetgI8Oe6friE89+cFtSP3KKU5s+fj+bmZpw8eRJvv/02nnnmGVRVVfn/AYyARZCISELWjitjN/KhnSdyjFKaOnWqa2o0LS0N999/P44cOeLlG3uPRZCISEJRGu+OSfO2nSdyjFI6f/68q93Fixdx6NAhZGZm+vcBjIKrQ4mIJHRDWjqipkwddUp08vVTcUNauqB+5Bal9Prrr+PDDz9EWFgYHA4HnnnmGdx7772CPgNPGKVERCQif6J9BleHjqRgxfOibJOYCHKLUuJ0KBGRxFJuz0bBiucRNWWq2/XJ10+VVQGUI06HEhEFgJTbs5GcdfvAatGOK4jSxOCGtHQoleO7YV1scotSYhEkIgoQSmUIbkwfvoCExg+nQ4mIKGixCBIRUdBiESQioqDF7wSJiAKE0+GErakTjq5eKCeHQ5UUDYVy+EkrJB6OBImIAsC1uktoe/kYLv3XKVz+67e49F+n0PbyMVyrE2elpdzyBIGBA7SzsrKQnp6O1NRUVFZWit4/R4JERBK7VncJP7z7zbDr9s5e/PDuN7i+OA3XGaZ6+E3vyS1P8MKFC1i8eDH279+PtLQ09PT0eHVGqa84EiQikpDT4UTHx42jtun4+AycDv8P95JjnuAbb7yB4uJipKWlAQAiIiKg0Wj8/gxGwiJIRCQhW1Mn7J29o7axd9pga+r0uw855gnW19fj2rVryM3NhdFoxG9+8xt0d3f7/vJjYBEkIpKQo2v0Auhru5HILU+wr68Pn332GXbv3o3q6mp0dnaitLTU7/cfCYsgEZGElJPDRW3niRzzBHU6HfLz8xETE4PQ0FAsWrTI9TMxsQgSEUlIlRSNkOjRC1xItAqqpGi/+5BjnmBRUREqKipgs9kAAGVlZa6fiYmrQ4mIJKRQKqBZkOxxdeggzYLpgvcLyi1PMDs7GwsWLIDRaERoaCgMBgM2bdok6DPwhHmCREQi8jff7lrdJXR83Oi2SCYkWgXNgumCt0dMJLnlCXIkSEQUAK4zTEWE/nqeGDPBWASJiAKEQqlARLJG6scQRG55glwYQ0REQYtFkIiIghaLIBERBS0WQSIiClosgkREAcLhcKCpqQmnTp1CU1MTHA6HaPeWW5TS2rVrYTQaXf+o1WqsWLFC9P65T5CISET+7lurr69HWVkZLBaL65parUZeXh70er3g5youLobVasXWrVvdopQsFosrSWKoiYpSKioqGhalNJgkMai3txfTpk1DeXk5Zs6c6fYzofsEORIkIpJYfX09du3a5VYAAcBisWDXrl2uCCN/yTFKaagPPvgAiYmJwwqgGLhPkIhIQg6HA2VlZaO2KSsrQ2pqKpRK/8YtvkQp1dTUICUlBWazGXq9HhUVFcjIyMCOHTtgMplQV1c3Zn+DUUrr169HVVUVCgsL0djYOOzotPr6ekyfPh05OTmwWCyYP38+SktLh41At2zZgmXLlvn+4l7gSJCISELNzc3DRoA/Z7FY0NzcLKgfuUUpDTp37hy+/PJLj1O2YmARJCKSkNVqFbWdJ3KMUhq0detWFBQUjDmK9ReLIBGRhIYWHjHaeSLHKCVgoBBv27Zt3KZCAX4nSEQkKZ1OB7VaPeqUqFqthk6nE9SP3KKUAODQoUNwOp2YM2eOoHcfDbdIEBGJyJ8l+4OrQ0diMplE2SYxEeQWpcTpUCIiien1ephMJqjVarfrarVaVgVQjjgdSkQUAPR6PVJTU9Hc3Ayr1YqoqCjodDq/t0VIRW5RSiyCREQBQqlUIikpSerHCCry+l8MIiIiEbEIEhFR0GIRJCKioMUiSEREQYtFkIgoQDiddly5UoW2to9w5UoVnE772L/kJbnlCfb09GDJkiXIyMiAwWBAQUHBuKw65epQIqIAYDaX47uGF2GztbmuqVTx+IeUF6DVzhN8/6VLl8JqtaKystItT/D06dMwGo3D2k9UnuCqVauG5QkCwObNm2G1WlFbWwuFQoHHHnsM69atw7p160R9Bo4EiYgkZjaX41Tdr90KIADYbBdxqu7XMJvLBd1frnmC3d3d6OvrQ39/P6xWKxITEwV9Dp6wCBIRScjptOO7hhcBeDrBcuDadw3/Lmhq1Jc8wZKSElRXVyM5ORnFxcXYvn07amtrsXz5cphMJq/6G8wTPHr0KLZs2YKioiKPh3XX19ejpaUFOTk5yMzMRElJiSud4vHHH4darYZWq0VcXBw6OzvdzhUVC4sgEZGEOjqODxsBunPCZmtFR8dxQf3ILU/w4MGDUCgUaGtrQ2trKzQaDV588UX/P4ARsAgSEUnIZjOL2s4TOeYJbtq0CQ8++CAiIiIQHh6Ohx9+GBUVFd6/tJdYBImIJKRSaUVt54kc8wSnT5+O8vJyOJ1OOJ1O7Nu3DwaDwe/PYCRcHUpEJCGNJgsqVTxstovw/L2gAipVPDSaLEH9yC1PsLS0FMuXL0d6ejoUCgX0er1rqlRMzBMkIhKRP/l2g6tDBwz9K3lgCjHD8Loo2yQmAvMEiYjIJ1rtPGQYXodKFed2XaWKl1UBlCNOhxIRBQCtdh5iY3N/XC1qhkqlhUaTBYVifDesi415gkRE5BeFIgQxMXdI/RhBhdOhREQUtFgEiYgoaLEIEhFR0GIRJCIKEHanE0eudGHvxSs4cqULdhF3sMktSunq1atYunQpMjIycMstt+C5557DeOzo48IYIqIA8El7B1Y1nEerrc91LUEVhpdSbkB+rEbw/eUWpbRmzRoAQG1tLfr7+zF//nzs2bMHCxcuFPUZOBIkIpLYJ+0deLTurFsBBIA2Wx8erTuLT9o7BN1fjlFKX3/9Ne677z4oFAqEhYVh7ty5w45nEwOLIBGRhOxOJ1Y1nB8lSAkoaTgvaGpUjlFKWVlZ2LVrF3p7e9HV1YW9e/e6pkrFxCJIRCShqg7rsBHgUE4AF2x9qOqwCupHblFKK1euxI033ohZs2ahoKAA2dnZCAsL8/8DGAGLIBGRhMy9/aK280SOUUoRERHYuHEjTp48iYqKCkyZMgV6vd77l/YSiyARkYS04d6tT/S2nSdyjFKyWCzo7u4GADQ1NeHNN9/Es88+6/dnMBKuDiUiktAdmigkqMLQZusbIUhpYJXoHZooDz/1ntyilM6cOQOTyYTQ0FCEhoZi48aNHlexCsUoJSIiEfkT7TO4OhTwFKQEvG24WZRtEhOBUUpEROST/FgN3jbcjHiV+8KPBFWYrAqgHHE6lIgoAOTHapA3NRpVHVaYe/uhDQ/FHZoohHhYUBLIGKVERER+CVEoMDtmstSPEVQ4HUpEREGLRZCIiIIWiyAREQUtFkEiIgpaLIJERAHC7nCisvEHfHjyPCobf4Dd8X87T/Cpp56C0Wh0/RMREYH//M//dP38pZdeQnJyMpKTk1FSUjIuz8DVoUREAaCsrhWrP65Ha+dP53AmREfg/y3QI8+QIPj+gZgnOLTgtbW1ISkpyZVU8fnnn2Pnzp2ora1FaGgoZs+ejTvvvBPz5s0T9Rk4EiQiklhZXSt+9e4JtwIIAG2dPfjVuydQVjd2csNoAjVPcKg///nPmDdvHuLj4wEA7733HpYsWYJJkyZBpVLhkUcewc6dOwV9Dp6wCBIRScjucGL1x/Wj5gmu/rhe0NRooOYJDvXOO+9g2bJlrj+3tLRAp9O5/nzzzTejpaXFq/59wSJIRCShY02Xh40Ah3ICaO3swbGmy4L6CcQ8wUFHjhyBxWLB/fffP+Izj9cx1yyCREQSMneNncXnSztPAjVPcNCWLVuwePFit+8gb7rpJrck+ebmZtx0001j9uMrFkEiIglpJ3uXfOBtO08CNU8QAKxWK/bs2YNHHnnE7frChQuxfft2XL16FTabDe+88w4WLVrk87uPhatDiYgkNCtpChKiI9DW2TNinmB8dARmJY3+fd5YAjFPEBhYAJOZmemahh109913w2QyuaZjFy1ahLy8PEGfgSfMEyQiEpE/+XaDq0MBz3mCbxbPEGWbxERgniAREfkkz5CAN4tnID7a/S/x+OgIWRVAOeJ0KBFRAMgzJOCf9fE41nQZ5q4eaCcPTIGGKJknOJ5YBImIAkSIUoF/TL5e6scIKpwOJSKioMUiSEREQYtFkIiIghaLIBFRoHDYgaYvgFN7Bv7tsI/9O16SW5TS8ePHkZ2djcjISDz00EPj9gxcGENEFAjqPwLKVgKWCz9dU08D8l4G9AWCby+3KKWEhAS8+uqrqKmpwaeffjpuz8CRIBGR1Oo/Anb90r0AAoCldeB6/UeCbi/HKKXExETMmjULKpVK0LuPhSNBIiIpOewDI8ARw5QUQNlzQGo+oPRvZOZLlFJNTQ1SUlJgNpuh1+tRUVGBjIwM7NixAyaTCXV1dWP2NxiltH79elRVVaGwsBCNjY0jHp0GDEQpvfLKKz6/m1AcCRIRSan5q+EjQDdOwHJ+oJ0AcoxSmggsgkREUrJeFLedB3KMUpooLIJERFKKihO3nQdyjFKaKPxOkIhISrrsgVWgllZ4/l5QMfBzXbagbuQWpdTY2IicnBx0d3ejp6cHiYmJeP755/HEE08I+hx+jlFKREQi8ivaZ3B1KACPYUqmP4uyTWIiMEqJiIh8oy8YKHTqn0UmqafJqgDKEadDiYgCgb5gYBtE81cDi2Ci4gamQP3cFiEVRikREZF/lCFA0l1SP0VQ4XQoEREFLRZBIiIKWiyCREQUtFgEiYgoaLEIEhEFCLvDjuNtx/G3M3/D8bbjsAdxnuDgJnqDwYCMjAz86U9/Gpdn4OpQIqIAcLD5INYeW4uL3T+dERoXGYfnZj2HXF2u4PvLLU8wMTER+/fvR3x8PDo7OzFz5kzMmDEDs2fPFvUZOBIkIpLYweaDWPHZCrcCCADmbjNWfLYCB5sPCrq/HPMEZ8+e7frv6OhopKamoqmpSdDn4AlHgkREErI77Fh7bC2cHs4NdcIJBRR4+djLuOfGexASpHmC9fX1qKysxFtvvTVm377iSJCISEInzCeGjQCHcsKJtu42nDCfENSPXPMEv//+ezzwwAPYtGkTpk2b5t3L+oBFkIhIQu3d7aK280SueYIXLlxAbm4uVq1ahYULF47Zhz9YBImIJBQbGStqO0/kmCfY2tqKOXPmYOXKlVi8eLHP7+wtfidIRCShGdoZiIuMg7nb7PF7QQUUiIuMwwztDEH9yC1P8IUXXkBLSwtee+01vPbaawCAp59+GkuXLhX0Ofwc8wSJiETkT77d4OpQAG6FUPFjnuCGuzeIsk1iIjBPkIiIfJKry8WGuzdAG6l1ux4XGSerAihHnA4lIgoAubpc3HPjPThhPoH27nbERsZihnaG39sipMI8QSIi8kuIMgRZ8VlSP0ZQ4XQoEREFLRZBIiIKWiyCREQUtPidIBFRgHDa7eiu/jv629sRGhuLyF/MhGKckxyCHUeCREQBwHLgAP53Ti5aFi/Ghd/9Di2LF+N/5+TCcuCAKPeXW57g3r17ceutt8JoNCI9PR1/+MMfMB7b2rlZnohIRP5s3rYcOIDzT/8W+Plfxz+et3nDa69CPXeuoOcqLi6G1WrF1q1b3fIELRaLK05pqInIExxqME+wqakJ8fHx6OrqwqRJk6BUKtHb24s777wTq1atQkFBgdvvcbM8EZGMOe12XFzzx+EFEHBdu7jmj3Da/U+Zl2Oe4OTJk6FUDpSonp4e2Gw215/FxCJIRCSh7uq/o7+tbeQGTif629rQXf13v/vwJU+wpKQE1dXVSE5ORnFxMbZv347a2losX77clfo+lsE8waNHj2LLli0oKioa9bBuYCBPcNmyZW7XvvrqK9x6663QarWYM2cO8vPzverfFyyCREQS6m/3LiLJ23YjkWOeYHZ2Nmpra3Hu3DkcP34cX3zxhfcv7CUWQSIiCYXGeheR5G07T+SaJzgoNjYW+fn52L1795j9+IpFkIhIQpG/mInQ+HjXIphhFAqExscj8hcz/e5DjnmC3377LRwOBwCgq6sL+/btG/EeQnCfIBGRhBQhIYh7/vcDq0MVCvcFMj8Wxrjnfy94v6Dc8gR3796Nv/zlLwgLC4PdbsdDDz2ERx99VNBn4Am3SBARicjfJfuWAwdwcc0f3RbJhMbHI+753wveHjGR5JYnyJEgEVEAUM+di8lz5vDEmAnGIkhEFCAUISGYdPssqR9DELnlCXJhDBERBS0WQSIiClosgkREFLRYBImIKGixCBIRBQiHw4nz317Bd8fbcP7bK3A4xNvBJrcopUHt7e2Ii4vDQw89NC7PwNWhREQBoLHGjC/ea8DVDpvr2iSNCnf9WwqSM7WC77906VJYrVZUVla6RSmdPn0aRqNxWPuJiFIaWvAGo5R+fkj3E088gfvvvx9dXV3j8gwcCRIRSayxxoyyzXVuBRAArnbYULa5Do01ZkH3l2OUEgDs2LEDcXFxyMnJEfT+o+FIkIhIQg6HE1+81zBqmy93NSDptlgolSMfQj0aX6KUampqkJKSArPZDL1ej4qKCmRkZGDHjh0wmUyoq6sbs7/BKKX169ejqqoKhYWFaGxsHPHoNGAgSumVV15x/fnChQvYsGEDDh8+jD179nj/sj7iSJCISEKtDR3DRoA/Z71iQ2tDh6B+5Bal9Nhjj2HdunVuyRbjgSNBIiIJXbWMXgB9befJ0CilmJgYV5TStm3bsG/fPle7QIpSqqysdIXsWq1WXLt2DfPmzUN5efmYffmCI0EiIglNUqtEbeeJHKOULl++jLNnz+Ls2bNYv3497rvvPtELIMCRIBGRpBJSNJikUY06JRoVo0JCikZQP3KLUpoojFIiIhKRP9E+g6tDR5L3uEGUbRITQW5RSpwOJSKSWHKmFnmPGzBJ4z7lGRWjklUBlCNOhxIRBYDkTC2SbosdWC1qsWGSemAK1N9tEVKRW5QSiyARUYBQKhW44ZaYsRuSaDgdSkREQYtFkIiIghaLIBERBS1+J0hEFCAcDjvOf3Ma1o4riNLE4Ia0dCiV45vkEOxYBImIAkDD0a9waNtbsF7+aWVl1JSpuHfJcqTcni34/n19fVizZg127tyJkJAQhIeHQ6fTobS01GOU0kR46qmn8Pnnn7v+/D//8z9Yt24dnnrqKWzbtg2//e1vXekUMTExqKioEP0ZWASJiCTWcPQrfLRhzbDr1suX8NGGNShY8bzgQijHPMHc3NxxTZAA+J0gEZGkHA47Dm17a9Q2FdvfgsNhH7XNaOSaJzgRWASJiCR0/pvTblOgnnT9cAnnvzntdx++5AmWlJSguroaycnJKC4uxvbt21FbW4vly5cPS30fyWCe4NGjR7FlyxYUFRWNelg3MJAnOJgaMejw4cMwGo2YPXv2uI0IWQSJiCRk7bgiaruRyC1PcP78+WhubsbJkyfx9ttv45lnnkFVVZVvL+0FFkEiIglFabw7Icbbdp4MzRME4MoT/P3vf++6BgRWnuDUqVMRGRkJAEhLS8P999+PI0eOjNmPr1gEiYgkdENaOqKmTB21zeTrp+KGtHS/+5BjnuD58+dd/33x4kUcOnQImZmZ3r+0l7g6lIhIQkplCO5dstzj6tBB9yxeLni/oNzyBF9//XV8+OGHCAsLg8PhwDPPPIN7771X0GfgCfMEiYhE5G++nad9gpOvn4p7FouzT3CiyC1PkCNBIqIAkHJ7NpKzbueJMROMRZCIKEAolSG4Md3zd2dyIbc8QS6MISKioMUiSEREQYtFkIiIghaLIBERBS0WQSKiAOF0ONHT2IHuk2b0NHbA6RBvB1tfXx9Wr16N1NRUpKenIzMzE4WFhTh58qRoffjqqaeegtFodP0TERHhlixx+PBhZGVlIT09HampqaisrBT9Gbg6lIgoAFyru4SOjxth7+x1XQuJDodmQTKuM4x+oow35BaldOHCBSxevBj79+9HWloaenp6vDqezVccCRIRSexa3SX88O43bgUQAOydvfjh3W9wrU7YlgM5Rim98cYbKC4uRlpaGgAgIiICGo1G0OfgCUeCREQScjqc6Pi4cdQ2HR+fQYT+eiiUIx9CPRpfopRqamqQkpICs9kMvV6PiooKZGRkYMeOHTCZTKirqxuzv8EopfXr16OqqgqFhYVobGwc8eg0YCBK6ZVXXnH9ub6+HklJScjNzcWlS5dw11134eWXX3Ydqi0WjgSJiCRka+ocNgL8OXunDbamTkH9yC1Kqa+vD5999hl2796N6upqdHZ2orS01Kd39gaLIBGRhBxdoxdAX9t5IscoJZ1Oh/z8fMTExCA0NBSLFi3CsWPHxuzHVyyCREQSUk4OF7WdJ3KMUioqKkJFRQVsNhsAoKysDLfddptvL+4FfidIRCQhVVI0QqLDR50SDYlWQZUULagfuUUpZWdnY8GCBTAajQgNDYXBYMCmTZsEfQaeMEqJiEhE/kT7DK4OHcn1xWmibJOYCHKLUuJ0KBGRxK4zTMX1xWkIiXaf8gyJVsmqAMoRp0OJiALAdYapiNBfD1tTJxxdvVBODocqKdrvbRFSkVuUEosgEVGAUCgViEjWSP0YQYXToUREFLRYBImIKGixCBIRUdBiESQioqDFIkhEFCAcDgeamppw6tQpNDU1weFwiHZvueUJrl271u1narUaK1asEP0ZuFmeiEhE/m7erq+vR1lZGSwWi+uaWq1GXl4e9Hq94OcqLi6G1WrF1q1b3fIELRaLK05pqInIExxqME+wqanJFac0qLe3F9OmTUN5eTlmzpzp9jNulicikrn6+nrs2rXLrQACgMViwa5du1w5fv6SY57gUB988AESExOHFUAxcJ8gEZGEHA4HysrKRm1TVlaG1NRUKJX+jVvkmCc41JYtW7Bs2bIx+/UHR4JERBJqbm4eNgL8OYvFgubmZkH9yC1PcNC5c+fw5ZdfepyyFQOLIBGRhKxWq6jtPJFjnuCgrVu3oqCgYMxRrL9YBImIJDS08IjRzhM55gkCA4V427Zt4zYVCvA7QSIiSel0OqjV6lGnRNVqNXQ6naB+5JYnCACHDh2C0+nEnDlzBL37aLhFgohIRP4s2R9cHToSk8kkyjaJicA8QSIi8oler4fJZIJarXa7rlarZVUA5YjToUREAUCv1yM1NRXNzc2wWq2IioqCTqfze1uEVJgnSEREflEqlUhKSpL6MYKKvP4Xg4iISEQsgkREFLRYBImIKGixCBIRBQin044rV6rQ1vYRrlypgtNpH/uXvCS3KKWenh4sWbIEGRkZMBgMKCgoGJcFN1wYQ0QUAMzmcnzX8CJstjbXNZUqHv+Q8gK02nmC77906VJYrVZUVla6RSmdPn0aRqNxWPuJiFIaLHjAT1FKJpMJALB582ZYrVbU1tZCoVDgsccew7p167Bu3TpRn4EjQSIiiZnN5ThV92u3AggANttFnKr7NczmckH3l2uUUnd3N/r6+tDf3w+r1YrExERBn4MnLIJERBJyOu34ruFFAJ4O7xq49l3DvwuaGvUlSqmkpATV1dVITk5GcXExtm/fjtraWixfvtw1ShvLYJTS0aNHsWXLFhQVFY16TikwEKU09IzQxx9/HGq1GlqtFnFxcejs7MSTTz7pVf++YBEkIpJQR8fxYSNAd07YbK3o6DguqB+5RSkdPHgQCoUCbW1taG1thUajwYsvvujbS3uBRZCISEI2m1nUdp7IMUpp06ZNePDBBxEREYHw8HA8/PDDqKioGLMfX7EIEhFJSKXSitrOEzlGKU2fPh3l5eVwOp1wOp3Yt28fDAaDz+8+Fq4OJSKSkEaTBZUqHjbbRXj+XlABlSoeGk2WoH7kFqVUWlqK5cuXIz09HQqFAnq9Hps3bxb0GXjCKCUiIhH5E+0zuDp0wNC/kgemEDMMr4uyTWIiMEqJiIh8otXOQ4bhdahUcW7XVap4WRVAOeJ0KBFRANBq5yE2NvfH1aJmqFRaaDRZUCjGd8O62BilREREflEoQhATc4fUjxFUOB1KRERBi0WQiIiCFosgEREFLRZBIiIKWiyCREQBwu504siVLuy9eAVHrnTBLuI2brnlCV69ehVLly5FRkYGbrnlFjz33HMYj23tXB1KRBQAPmnvwKqG82i19bmuJajC8FLKDciP1Qi+v9zyBNesWQMAqK2tRX9/P+bPn489e/Zg4cKFoj4DR4JERBL7pL0Dj9addSuAANBm68OjdWfxSXuHoPvLMU/w66+/xn333QeFQoGwsDDMnTt32BmlYuBIkIhIQnanE6sazo+YJqgAUNJwHnlToxEyShLDaHzJE6ypqUFKSgrMZjP0ej0qKiqQkZGBHTt2wGQyoa6ubsz+BvME169fj6qqKhQWFqKxsXHE80OBgTzBV155xfXnrKws7Nq1C4WFhbDZbNi7dy8sFov3L+0ljgSJiCRU1WEdNgIcygnggq0PVR1WQf3ILU9w5cqVuPHGGzFr1iwUFBQgOzsbYWFhvr20F1gEiYgkZO7tF7WdJ3LME4yIiMDGjRtx8uRJVFRUYMqUKdDr9WP24ysWQSIiCWnDvftWytt2nsgxT9BisaC7uxsA0NTUhDfffBPPPvusby/uBX4nSEQkoTs0UUhQhaHN1jdCmuDAKtE7NFEefuo9ueUJnjlzBiaTCaGhoQgNDcXGjRs9rmIVinmCREQi8iffbnB1KOApTRB423CzKNskJgLzBImIyCf5sRq8bbgZ8Sr3hR8JqjBZFUA54nQoEVEAyI/VIG9qNKo6rDD39kMbHoo7NFF+b4uQCvMEiYjILyEKBWbHTJb6MYIKp0OJiMYBl1tMDIfDIej3ORIkIhJRWFgYFAoF2tvbERsbO+r+OPKf0+lEb28v2tvboVQqER4e7td9uDqUiEhkVqsV33//PUeDEyAyMhIJCQksgkREgcRut6Ovb+Tj0Ei4kJAQhIaGChptswgSEVHQ4sIYIiIKWiyCREQUtFgEiYgoaLEIEhFR0GIRJCKioMUiSEREQYtFkIiIgtb/B4RFGY4AoxtiAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -34,38 +39,22 @@ "metadata": {}, "output_type": "display_data" }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "name": "stdout", "output_type": "stream", "text": [ - "(16000,)\n", - "[[-0.25317189]\n", - " [-0.25317189]\n", - " [-0.25317189]\n", - " ...\n", - " [-0.14649218]\n", - " [-0.14649218]\n", - " [-0.14649218]]\n" + "(80000,)\n" ] } ], "source": [ "########################### Experiment Settings ###############################\n", "random_state = 29\n", - "working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.\n", + "working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results.\n", "simulation_method = 'linear'\n", "n_features = 1 # The number of input features of X\n", - "n_grps = 8 # Number of batches in data\n", - "n_samples = 2000 # Number of samples in each group (use a list for different\n", + "n_grps = 80 # Number of batches in data\n", + "n_samples = 1000 # Number of samples in each group (use a list for different\n", "# sample numbers across different batches)\n", "model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline'\n", "############################## Data Simulation ################################\n", @@ -73,129 +62,32 @@ " simulate_data(simulation_method, n_samples, n_features, n_grps,\n", " working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',\n", " random_state=random_state)\n", - "plt.tight_layout()\n", - "plt.show()\n", + "# plt.tight_layout()\n", + "# plt.show()\n", "print(Y_train.shape)\n", "\n", - "random_group_offsets = np.random.normal(0, 1, n_grps)\n", - "print(random_group_offsets[grp_id_train])\n", - "Y_train += np.squeeze(np.array(random_group_offsets[grp_id_train]))\n", - "Y_test += np.squeeze(np.array(random_group_offsets[grp_id_test]))\n" + "# random_group_offsets = np.random.normal(0, 1, n_grps)\n", + "# print(random_group_offsets[grp_id_train])s\n", + "# Y_train += np.squeeze(np.array(random_group_offsets[grp_id_train]))\n", + "# Y_test += np.squeeze(np.array(random_group_offsets[grp_id_test]))\n", + "s" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb',\n", - " random_intercept_mu='True', random_slope_mu='False', linear_sigma='True', linear_delta='True',linear_epsilon='True', nuts_sampler='nutpie')" + " random_intercept_mu='True', random_slope_mu='False', linear_sigma='True', linear_delta='False',linear_epsilon='False', nuts_sampler='nutpie')" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 4, "metadata": {}, "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -203,21 +95,21 @@ "
\n", "

Sampler Progress

\n", "

Total Chains: 1

\n", - "

Active Chains: 1

\n", + "

Active Chains: 0

\n", "

\n", " Finished Chains:\n", - " 0\n", + " 1\n", "

\n", - "

Sampling for 2 minutes

\n", + "

Sampling for an hour

\n", "

\n", " Estimated Time to Completion:\n", - " an hour\n", + " now\n", "

\n", "\n", " \n", + " value=\"1500\">\n", " \n", "
\n", " \n", + " value=\"58\">\n", " \n", " 375800.0180.003
\n", " \n", @@ -235,13 +127,13 @@ " \n", - " \n", + " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -250,7 +142,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -259,10 +151,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 50, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -274,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -286,14 +178,10 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5367d8f840af4551bd83b9c02e9b05d6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Output()" - ] + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
      },
      "metadata": {},
      "output_type": "display_data"
@@ -301,9 +189,12 @@
     {
      "data": {
       "text/html": [
-       "
\n"
+       "
\n",
+       "
\n" ], - "text/plain": [] + "text/plain": [ + "\n" + ] }, "metadata": {}, "output_type": "display_data" @@ -315,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -327,18 +218,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ecd32eb3521a473cba91608f3f0d2398", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -349,6 +256,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -358,18 +278,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2d85af8e3b1a4c46b6be990b16991288", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -380,6 +316,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -389,18 +338,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "611ab6569ff040328353ffbd973f7e0e", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -411,6 +376,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -420,18 +398,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "60eee6c3c6ff4f6ea2a272f59cbc4eca", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -442,6 +436,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -451,18 +458,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "43eac13b81734f20bf91b8c9a700066b", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -473,6 +496,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -482,18 +518,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d0fbb98d97764f1bbde9823805438275", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -504,6 +556,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -513,18 +578,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "58059d001e0e4555b975382dcbb7a98c", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -535,6 +616,19 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stderr", "output_type": "stream", @@ -544,18 +638,34 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa65f3f89f942658491d560d2569198", - "version_major": 2, - "version_minor": 0 - }, + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], "text/plain": [ - "Output()" + "\n" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, { "data": { "text/html": [ @@ -568,7 +678,1940 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEiCAYAAACPwherAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBxElEQVR4nOzdd3wc1bn4/8/MbF/1bluyJMtV7h2wDaabbopNQi+hJKEkJNwACZfwvTchjfxSySWFQAIEkwSSEMChmG7jgpvkKqv3Lq20fWfO74+VZAlJtmR16bz90svaaefMSppn58w551GEEAJJkiRJGqfUka6AJEmSJA0lGegkSZKkcU0GOkmSJGlck4FOkiRJGtdkoJMkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6KRx5Tvf+Q5r167t8/bf/e53Wb169SmvH6hbbrmFG264oeN1RkYGv//974esPEmaiGSgk4bV2rVrURSFZ555pstyt9tNZGQkiqJQVFQ0MpUbBXbu3Mn1118/rGUqitLt66GHHhqUY6empvLss88OyrFOxdGjR1m7di12u53MzMxuv3fSxGAa6QpIE09qaip//vOfue222zqWvfLKK8TExNDa2jqCNRt5iYmJI1Luyy+/zJo1azpeR0REjEg9emIYBoZhYDL173IVDAa55JJLWLRoETt37mT79u3cddddpKenc+655w5RbaXRSN7RScPuqquuYufOnZSUlHQs+9Of/tSlCa/z8unTp2O1Wpk/fz5vvvlml/V//etfSU9Px+l0ctNNN+Hz+bqs13WdRx99lNTUVCIjI1m7di379+/vd51//OMfk5SURGxsLI888gjtc6ELIXj44YeZMmUKNpuNadOm8fTTTwNQVFSEoii8/PLLLFq0CJvNxjnnnENpaWmv5XRuumzf/x//+AcrVqzA6XSydu3aLu8bwC9+8QumTZuGw+Fg+fLlvP/++/0+v9jYWFJSUjq+2gPd7t27O+6IMjIyeOyxxwiFQh37fe1rX+soe+7cuWzatKlj3dq1aykvL+fWW29FUZSOJuW1a9fyne9856Tn/de//pXly5djs9nIycnp98/yzTffpLS0lGeeeYZ58+Zx++2388UvfpFf/vKX/X5/pLFNBjpp2EVGRnL55Zfz/PPPA1BeXs62bdvYsGFDl+22bt3Kbbfdxn333cf+/fu58sorWb9+fUfTZn5+Ptdddx1f+tKX2L17NzNmzOgIMu0ef/xx3njjDf7yl7+wZ88eVq1axfnnn4/L5epzffft28e2bdt47733+N3vfsevfvUrnnvuOSAcaF988UVefvlljhw5wh/+8AeSk5O77P/tb3+bH/3oR2zfvp1QKMSNN97Yr/fru9/9Lj/84Q/ZsWMHHo+Hr3/96x3rnnnmGX7+85/z1FNPkZuby0033cTFF188KM2/9fX1nH/++Vx88cXk5OTw7LPP8uKLL/Lkk092bBMfH89LL71Ebm4u9957LzfeeCM5OTlA+C590qRJ/OxnP6OyspJXXnmlX+X/93//N9/73vc4ePAg06ZN6/fPcseOHSxfvpzIyMiOZeeeey7bt28/hXdDGtOEJA2js846S3z7298Wb775ppg9e7YQQogf/OAH4gtf+ILIy8sTgCgsLBRCCHHttdeKDRs2dNl/5cqV4pvf/KYQQoj/+q//EitXruy2/qyzzhJCCOH1eoXdbhc5OTldtpkxY4b485//LIQQ4rHHHhOrVq3qtb6PPfaYsNvtoqGhoWPZt7/9bbF06VIhhBA/+clPxLnnnisMw+i2b2FhoQDEb37zm45l7efYXqebb75ZXH/99R3r09PTxe9+97su+2/atKlj/Ysvviji4+M7XmdmZorXXnutS7nnn3+++J//+Z9ez+nzAGGz2YTT6ez4Ki8vF48//ri4+uqru2z7wgsviKysrF6PdeGFF4rHH3+84/WUKVPEH//4xy7btP8OdNbTeT/77LMd6/vys/y8O+64Q1x11VVdlr3++utC07Re6y+NT/IZnTQizj//fJqamti5cyd//vOf+fGPf9xtmyNHjnS7+zn99NM5cuRIx/oVK1Z0Wb9ixYqO5qz8/Hy8Xi+nnXZal228Xi8FBQV9ruv06dOJjY3tUsbPf/5zAK6++mqefPJJ5syZw0UXXcT69es566yzutXp88c6cuQI8+bN61P58+fP7/g+JSWF+vp6dF3H6/VSWFjItddei6IoHdv4/X5SU1P7fH4ATz/9NGeccUbH6+TkZHJycvjXv/7V5XmdrusEg0EMw0BVVZ577jl++ctfUlRUhM/nw+/3k5aW1q+ye7N48eKO70/lZylkqk2pjQx00ojQNI3rrruOb3zjG9TV1XHBBRdQWFjYZZuTXaiEEF0u8J/X3rHl/fffJyYmpsu6uLi4Ptf1RGVkZGSQl5fHm2++yX/+8x8uu+wybr755i7PgU60f1+YzeZuxxJC4Ha7AXjxxReZO3dul306N9f1xeTJk5k+fXqXZa2trXzhC1/gv//7v7ttr6oqH330EXfccQc//vGPOeuss4iIiODee+8lGAyesCxVVbv9bHvax+FwdKkL9O9nmZyczOHDh7ssq62tHbEOP9LIkYFOGjE333wzP/3pT/n617+Opmnd1s+ePZtPP/20y7Jt27Zx5plnAjBr1iw++uijLut37tyJ1WoFYM6cOVgsFiorK1m2bNkp1zMvL4+mpqaOC+zOnTuZNWtWx3qn08k111zDNddcw/nnn88tt9zSJdDt2LGj4+4kPz+fxsbGLvufqqSkJFJSUigpKeGKK64Y8PE+b+HChbzzzjvdAmC77du3k52dzf333w+Ee0fm5+d3eUZpNpvRdb3LfomJiVRVVXW8rq2t7fK6J6fys1yxYgVPPvkkra2tHXelW7ZsYeXKlX3aXxo/ZKCTRsyCBQuoq6vrtSv7fffdx5lnnsmvfvUrLrjgAp5//nn27NnDSy+9BMCdd97JT3/6U773ve+xYcMG/vrXv5Kbm8vSpUsBiIqK4p577uHLX/4ygUCAJUuWUFVVxWuvvcb111/f7S6oN5qm8aUvfYn/9//+H4cPH+YXv/gFP/vZzwB47rnnEEKwcuVKNE3jH//4R7cg9uSTT5KVlUViYiL3338/Z555Zp+bLU9EURQeeeQRHn30USIiIjjzzDNpbGzknXfeYcWKFZxzzjkDOv5Xv/pVnn76ae644w7uuecebDYb+/bt4+jRo3znO98hKyuLI0eO8O9//5sZM2bwi1/8olvASk9P58MPP+SSSy7BbrcTHR3NmWeeyXe+8x1uuOEGEhIS+M53vtPx4aQ3p/KzXLduHVOmTOG2227jscceY/v27fzlL3/p1nNXmgBG8gGhNPH01BGh3ec7owghxHPPPSeysrKE2WwW8+bNE2+88UaXff7yl7+ItLQ04XA4xHXXXSceeOCBjs4oQgih67r43ve+JzIyMoTZbBapqanihhtuEJWVlUKIvnVGWbVqlXjiiSdEfHy8iI6OFt/61rc6Op+8+uqrYvny5SIiIkJER0eLCy+8UBw+fFgIcbxTxV/+8hcxf/58YbFYxFlnnSWKioo6jt+Xzih5eXkd69977z0BiGAw2LHs6aefFrNnzxZms1mkpKSIK6+8slsd3nvvvV7PERBvv/12j+v2798vLrzwQuF0OkVkZKRYvny5eO6554QQQhiGIe69914RExMj4uLixLe+9S1x3XXXiZtvvrlLfWfNmiVMJlPHz8Xn84nbbrtNREdHi7S0NPGXv/zlpOctxMl/lj05fPiwOOuss4TVahXp6eni97//fa/bSuOXIoR8YitJQ6GoqIjMzEzy8vJ6bf4bah988AHr16+noKCgS4caSZpI5Dg6SRrH3nrrLR555BEZ5KQJTT6jk6Rx7Hvf+95IV0GSRpxsupQkSZLGNdl0KUmSJI1rMtBJkiRJ45oMdJIkSdK4NmY6oxiGQUVFRUdyTkmSJGliEkLQ0tLC5MmTUdWT36+NmUBXUVExaJPFSpIkSWNfaWlpnyYwHzOBrn2S2tLSUqKioka4NpIkSdJIcblcpKWl9Xny8jET6NqbK6OiomSgkyRJkvr8GEt2RpEkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6CRJkqRxTQY6SZIkaVwbM+PoJEkaWcIQBPw6fk+QgDeE3x3C7w0R8IUIBQxCAZ1QQCfY8X2n/4M6ekggDIGhCwzdwDA6vxZdXndQuvwHbeOmPj98StUUFFVBVRVUTUHV1M+9Dn+vaJ2WdXmtdixXNAWt7Rjt+yqqgtbt9Ym3Ubt832mZ2vNrRZVTGw4VGegkaQIL+nXcTX48rkCnLz/eTq997iB+Tzio0Uv2SkUFzayiWRRUs4JiEihmwGSAZiBMBkIN/49FYCgGotOXrugd3xsYnQ7c9r9oC3AoXRaDAgJUVBShoorw/4pQUYz275Xw/yEFgiqKoYSPZygoBoi27zEAQ0EYIHTAAMMQ4f91EJ0Ccm/vw0AoCt2CY8eA6M7/9RTsO9Yrx79XQIjwvJDCaP9fhJe1/W+yqNz6w9WDfzKjjAx0kjSO6SGD5hovzbUeXPU+Whp8tNQf//K5g122VzUFS4SK5hQIe4ig00cwyosfH37hx2/48Bt+/LoffzCIHgqi6wLNMGESZjTDgskwYwqYMfnMaIYZkx5epgmtIxgdD0ymcBBqf43a6/MU0REABQLRdkEPRxwdgVAEQtExMDAUHUMJYKg6uqJjKDq6YmCoOoYSXi/a/tc7fR/+MjBMeqfXx/fp2B+d9piiqCqaooCqoKKiqSqqqqIpKoqioikaqqJ2fGmKFl5G+HtrayRayAJmHRERDK8zNLq8GwodwT78snOwU9rfluPrjLblQiCUtiDX8c/o+E5VFUAGOkmSxoCAL0R9uZvGKjdNVR4aqz00Vrlx1fkQRvgKqJoUbDEqRIYIOj24I1poNVy4gx58QT+BQBBT0II9FImjKRJ7bQT2YCQqDqyA9fOFihBmw41FeDAJPyYRxCRCaOiYRBCNABoCDQVNCU/XpBC+EKuKAorStqztNWr4dedbFUH7TVv49iR8xT++juPrBAZCgCEEIDA6Lu5tdzaEL/gGIFAQioIhQCgKQpgxFDMGCgIFXVHRUck322hWTUQIwdSgQFFUQmgIxYQQGrpqxsCEgYZA6d6m2g/xJgWbAj4B9SHR4zIDQZnJwK0InEIhNaSitgU6gYHSw8eEE9XIUAJ9qptuCHYUNlDT4iMp0saKzDi0MdTUKgOdJI0xHleA2tIW6kpbqCttpba0heZab0dQsMdoKLFBPHEuXLFNNPub8fl8qH4rkd44IppjcASjsOAkjhTiAEV4sRpN2EMu7IYXm3BjUxTMmgmTZsakWTBp1rYvGybNilmzgRJHgChC6IQUAx294/sQOiEMgoTwEEBHR8cIByDFQBcGhiIwRPgOySCIoQiE6P6MLvxt2wVdgBFyIgwzqhJCNblRFYXwfWH4n4YaXiba7qLa/lfR0NrupDAUjgoNG1YSUEjBIKToqIrCTkPhj6g0orAQjXgUjiFYBaxBaysrXJ7S8b2CAewVQeqEzlShME0BRQhCRgAhDAxhIDCoCWkcCEYAMMmsMt+uYe8UOEKGjopAVY9foj0EeFWt4VB1NbH+Voqtkbwbm8r9FQfI9jYgLE5CUZM7PigIRKc7v/b/28Ni+AOFIUIn/X3bnFvJ468dpLLZ17FsUrSNxy7LZt28SX39tR1RiujyWzV6uVwuoqOjaW5ulpM6SxOGMAQNlW4qjzVRkddExbFm3E1+AExWFUuSgcfeTJPeQLO3Gd0HUb5EYnyJmAxL21FCmEN1ROl1OHUfTgQ2kxmLxYnVEonFFEkrTnwAagiLyY9PDeDGSysePMKLXwkSIERA0QkqBiFFEFINjD5+qFeFgirCd28KoIhwYFAEmILRJBkx2IUVnxKgXmlGmFtBCV+ahAAlGAnCjBKyovoTUYzj95fTrAY2aystWjN5ajkhtVMznUJbQx3hps2274uNWEzBLL5MJEmd7oI8IsQ2tYbHhZM1wsQD2IlXVAwEVWoTjcJLmeEjzlMJ/mYqVBetjgVEeBT8ATfbFB1nwjzuU+xdjuvGx+GWI9R7GgiZdfzaaSRqVjLNKpMt4e0638m2X5Z7mrTY8Lfi3/tnQpV70FHQ2m5tDUWhYkoa9XPOQIlMwWpoNOPudN7h90MXghJhp0Ux4RRBLvnStdS1+kmKtLEsPYay0hJaWlpwu90cawzw648rqDYiw3esnSjAb25YMiLBrr/xQAY6SRpFDN2gtrSVirymcHA71oTfHUJRFWzJAre9kcZQIx6PF6snkjhvCiYRDmiK0URUsJJovYVIwG5xYLPF4LDGYzFH0Kr4aFG8tOClCRfNuHEHHKiedNROgUNX/HjtFShtd0aaqRWz2YtVMWPDghUzWttztWDQhm5omFQDi+bHr1vQdQ1FDWLS3EQoNlSh0hqwUqsbKKofxVoHqkAPRJHkT2e+3drlbsZrCPZ7A5Sb8hF6FDpmhBoiRrESF4rGL6A+BNk2lSyr2tbs2fb+CUEFbvxCQQhBbaCQJqOcJHMKiZbJROLAr5txozKt7W6pp2DiNwzqtSY8ih+X4uWwqQKP4u9YbxYa80JpzA2k0xjyUBMMUBiMZLJZZbmz+3HDTaaCDwINaJqfGEsIO2b8SgibMOPERooR09EMeSLtl+zKI28TrNpHbFM+lXOW8Vn2NDzm45dzp7CyxJ+BRXegK1BrauAVRw45Rhqtnul8fnTZVLWB0y2l2OnenOkWZrYHp1JixHVZPinaxsffOuekzZi6IdieX0dBUREOJcTCaSlkZqT3KWlqT2Sgk6QxJBTUqSlyhe/W8pqoKnAR9OuoJgVzgo7b1Eyzz4XSaiXWl4SCiiCESW8kMlhHpDAwWSKJMEdgs0bjVRQCqo9WvDQKLx6lFY8aRFdM4ecxCqhBC7ZgDOZQJIrubKtJ5wuV4PNPdgxCuKOO4LfWMSWQRrQ/BT1kB9SOZ0h1IaOjqWySWWGeXcPRpTlOUB402OMNoeMl1exkhaPnoACwUy/mkL2UoHb8wusQVk4PziQtlIjW3gdDgSq1CQ8+vEqwW+AQbR0yqtQmvPixY+0WVAwElWojlUojTaqbKrUJn9Kpo073twQATajM0icTKexYhIaPIA6s3QJXvlrNJ+ZDBBS9198FmzCTpacw1UgAwEego67Qtf7JejR+QyfHB0pEMfstxT3/GIFzg/NJNxKpUptw46NIbWCrvgW9NpZakc2BhGmkak2cbc5v+1l0r1t7lHgvmNUt2P3ljtM4PSu+1/PanFvJb/7xITMDx3Cqx99Ti93J+ssuITs7u9d9eyMDnSQNAcMQVOY10drkw9sSxOY043MHsUdacEZZEAp4WwI4o6wkZ0VTnd+M2+XH7jBTXdJE9afVmEOCiClOklekkL+3jor8JtyN4Yu4ooESoeMXXoI+A2vAgYYJgY6CF1PIh1ko+E0xGIp2SufQ3rHBqir4DdHxf+fOD58nEAQtzThNQaaoFmarMVjVnh/t+3SDqkArkZpGnNkRPq8erppCCDyGgUMNdz5pDzIVSgOtqo8IYUMRCntNReEderh4LwllEiXslKuNFGk1BHsIIO2BwypM3e7IbMJMqh5HQAnhwkuT6jlxr41TYBcWzgjO4qhaQalWf8rHNwkVAejK8WEXNmFmeiiFAq0aj3qCDiUCrJjQ0Lqcv2aYcDbHseSzD1Fai3jr0nWYtBP3pREC3Fj4u39Bp2ZMg/su1pidComORJYkLUFTj/9+bs6t5IkX32GtOZ/OHUTb64YCGzdu7Hewk4FOGvXag4bb5ccRcTxIdP7eGWVl0oyYtu7Pp3ZMT7O/bRxYCFWBSTNiUFSF1nov+XtrcTcHsNo1psyOo7HCQyigM2l6NHPPSqW20NUR1Fx1Xo5sryLg7f3TeG8mmZVuHQ28hiDHq1MZ7Pqn11Ovu/7ovD+AFYE3VEu8SWW6IxGr2nuA9OlBPmvYSZmnEEWxolim4Uy0UOeoJ6Ac77BgERrpeiKTjbgudy2d74hQIMWIwcAgRyuhVfFhERqTRBx2YcFPkFbVh4JCCINytZ5Qp4v4SfVyd9WvfU7lGP3V+Uc4FGW1H78vx+7lfBXDRHpBJUXTE/tc7Gb/TKpENKbIXKzJr6GamzvWJTuSeWjFQ5yXfh66IVj9g3dZ69uBta01oad6OewRfPO/HuhXM6YMdFI3nYNA5wDS2/L+CAR0tv0tj6ZaLzGJdk6/ZgYWi9Zrucd21/DBC4f7FDRMVpW02bGYLBqg4Iy1EPCGaGn00VTlQQjR0R29pd6H6Me1crD1FKQmmRWWO8LvRY9Nc55wsOspGHr0IPtbK6gI6KimKSSYtS5BrON7YZCseciwRWL+XCD7fPCZZMQyyYjt8TmQgaBKaaQVL+VqI8Wm2j4FH02oRBl2mlUPhjImLiXjx2AE6/4Ey3aV5XwSHUNl9ubwrj30jP3p2p/iDC3m679/i3XWIyc95E033cy0aZl9rkJ/44EcXjDGGYag4kgjpUcbaK33ExFnI3V2LFNmxqKqCvl7avhoU15HTz0AZ4yVGcuTyNtZ02356g3TsTnMlOU1ogiYPOv4sdrLaw9e+7eUUV3o6ti/7FAjuR9WkJQRQdqcePa9W0oocOrRJ+Q3KNxXf8r7D4eeg1SA/a0NLLInA92b7xRFQRcGk5wuHPiJVSzUA34l2PFMxq6aWBk1lZDQqdGa8bWtSzKiqVabqFQasbUFr3gjiu2mo9Qq4Z/FJBGLlwCFWk2X4LOXIhDgNMx4lSCgYEbDLEx4VP8pBSpdMWjU3P3eTxoEg3GXqNBpfGLf2AKtXFhcwXtxdkomebusax/S8MMdP+Qr0/9AqnHy4QsApXnV/Qp0/SUD3ecM5d3PYMvfU8N7fz6M39P1l2n35mKsThNzzpjE3rdLu+3nbvL3uvw/vzvQdeGb4WOdfcNsgG5Bsyc1Ra3UFLX282xOnRAGRqgchBsUJ6ppCkC3ZYrSc9NI57uxuqDe637TrCpOBWxth3GoCtFa998Bu2pmZVRyx/OnCrWBcqWeOrUFExpmoVGmNeBXgt32DZ8QOAwLJjQ8qr/rndXnrkntwavzsnpO8N4r4NbayxX4CeGnbxcjaZxq/yAmxEkf0imhACZPCwArDsVRmlLeecKW8GYIqjxVNBtHUTuGuJyYKsynUvM+k4Guk/7e/ay5dgZZi5NGoqrk76lh89O5va73u0M9BrNT4XeH2Px0Tqclo2dGBD2QR9DzHojOF/f2P5rOgcSGapmDokYhsEKoitmRqcyMmkm9ydPRm215yIEraOMzSzWNWh0WypgfyiRLmYKiKFSpTbTioUirI0AQHQMbFszCRLyIwC4seJUAtUozFUojAVXv/9ulgEfrpYNBT8caPT8OaazrLdi1Nbdbq0s7BpxH+EwkN1ipiu/5g29CjJ+AIx5Vt2CovT+jUw0rGekZg3QCPZOBrk1vgeNEdz+bn85l3V3zhj3YGYbgw5eODmuZx5vyT/2q2tOdV/vdkhAGerAMoZeGf/lNqSimKQi9EmG0IgwPimoHJQIFgRAepllUHFYfVfZZlAVKmGHPJkOdQp65libFjUkxERnUCPlbiAvZUIBocyzRlkSs5nlsM+fxF20boc499syAnY4/SjcGH1qO8qE42v4G9KqA6lN+byRpKJiERoi+fdiy1FagRMbht9u7rVNCAazVpZhbmrost/t77+CU7EzirqunsPuZOozowz13CAISjFlMmRXX0yEGzbAHury8PG6++Wbq6uqIiYnh2WefPaVxFIPJMAQfbco7pX0/fjmPzIWJw9qMWZnXhKe5b3PUDRohugUi1ZzWrTmwt4AV8u3E8H8GnQajCjT0iOkIkxklUILmaSEyJhPN7MAuijB7D+HTW1FQSLKlYTcpeKx+MNsQWjQuxcs+UwshRQHS2Y+b/eJopz+mQDhoAQhf2x9WWfhLoX93R/KuSRqD5ofS2GMqOnHHlbYmSUt9JYt278VssVMTHUXelCQUPYQaCqJ5Wnrc3Wvt3qlMQSHZkRweapCi4T57McVbFNxR+RidWipUw0qEK4sLb1k95NfPYQ90d911F3feeSe33HILf/vb37j99tvZtm3bcFeji8q8ppM+d+pNa6OfyrwmpsyK7X0jQ4firdBaDRHJkH4GnKCr98m4Xd3reqK7pc+vFzhQEID3pM+voK150P02cHyuO92/HTCj2ZaR7FyJlSYsRiPeYD5evZl6XznxtlSSzWYcJi+Y47DFrCdkBKnzl3JIFBGYlEGo422YCQJaO/2+m0Uk2aHZWLFQrNZRodaePOCcKFDJYCWNJ+0d5ntpalRCAfKPvULWpPMpjmwipPXQ0/lzTZK2YIj4ploSamqpMYXwWXoLEQK3Tacm1kfnP6z2Fp9vrfhWx3i6a66YRV5qLFv+MglPoA5DDaAaFmKdSay5ZeawtIgNa6Crqalh9+7dvPXWWwBcffXV3HPPPRQVFZGRkTGcVemip8AxaPsf/Bds/ha4Ko4vi5oM634I2Zd321zoOp5dnxGqrcWUmIhj2VIUrWtQdEZ1nUc+5D9KyPsuiM49oJxotgUoagxGsBgjeAx6mNonTAUlKtwsqDlRlCiSbMnYTBFYCeIlH68tmVhLIk5TDAD1/gq0qESqIzTq1L3YhYUYw4lXnQpAvJhPJHZijDgmGeEPAeGu7vWUqk48akbv71mboKKzz1xy0u0kaULSQ6CZuj9X6whe1WiOi3H5ZhLtCdFi/ieB2FgwHb/sdzRJuhqxBUPEucMfZi0pKay+6HLeefcNemtzzJ5cxIeGQnWnCQSSHcl8a8W3OC/9vC5VnbE0iazFiSPWoW9YA11paSmTJ0/GZDo+7c/UqVMpKSnpFuj8fj9+//EA4nK5GKjegsjnA0d/9br/wX/ByzfRLUujqxJevgnjymdpLknCl3sMoQao85dT/8lHmOvqiXP7UABTSgrJjzxM1AUXHC+vaCcWXwsBawxB70fo/l0oKCTY0rBrEcRbp3Rs2+AvxqO1UBcMhie2BXRHJJjMxKgxxAat2DQHPt1L0G7HZo1jsiUNRVWpVBppVH1EiDnMagtYKgqFag2HzM0YStdu5WVaQ7e3YB/FaG0zOxgnG5cl77gkqbtQAM3dihIIhpsSdX9Hc2IoMgZf8lQwH+/dqOgazqYEbNoaFFO4pcYWcJFYEaCsdi+6IxJhNqN0bpJUFM68+jqmxCR0uTY6Yr1s+cdmWkPHr3GRJj9nJxcww1rPlaWw22al9vQvkzjr0m4zo3SmqsqJW76G0LA3XX5+TFFv49WfeOIJHn/88UEr1/XWW1R//wlCVVUdy9qDyKTzzscZYz1B82XvDdwRseFPJt0YevhOrsdUxIL66rNwP6Og2nUgPH7EFppE9eRmymOOYg2EmOIT2A2o+N/vsVAIYi68EKHr1D7xBDNDyeydfha6fxdTHDNZEn8uNlNkD/P5LQXAE3LxvucDKuLMYAr3SvQCLmFlWiiZYlM1bsUPNJJDY7ca76MYk9BI0+Mp1Gp6eZ96pvdn1gtJGk9O1mW/nR5C8ftQAz5MzfWAoGxSiKqYFoKhJqJN6cyr34AzFIuulyGMUgJOLwemHGNfxmsk+BKZ5JrKjHILUc0mXPZ89kzNxWxq4SpPGXXuIj5IsiMMJ5NrQjhdxy/9kfEJnH3zncxYeUa3as1YtoKs3P9HuSea1pCFCFOAKY5m2m/ENGC5zw9Tz4OU5YPzng2BYZ0ZpaamhhkzZlBfX4/JZEIIwaRJk/j000/7dEeXlpZ2SjOjuN56i/L7v3a8Tbtd2y/glJ//jNrERb101zc4HuS6/8L22uuy8CN47tIe61NffRaeqG+2VaH7jBmbW/5NVZwV3XT8k5HD5+PSG24g3e2h5OabEcBb87JIiZzJqqT1FKk1fGrJawtWYU5h5bTgTDKNJLZrR8kxlXY/hVOZpmg4pk+SpNGkp+bBUBACvvDzdk0DQ6C2NKLpIVQ9hBIKcDS+lGjVTqzLiaZNIogKmo4INaIpFnwmN5WxjexJrWNWWRQxrRp2i49Pszy4TcefmytCACqTXFk4glF4zC6qIo9hdHq0nhIK8WB9I7GGQa2mkajrLPH5O3IUbGERT0dNxqt5mFRvI7UpBUWz8+0nv4faW58BQ4efzQu3QvX4oV0JP4r5Ws6A+h3016ieGSUpKYnFixfz/PPPc8stt/D3v/+djIyMHp/PWa1WrNaBNSlCuLmy+vtPdA9y0PHLW/39J5j+7jusu2seH72Yi7vl+CYRaj3TbR+T51uDu21WcYCISFh9Xfcg156J13TgID19vjF0Fbfl9nDfiB5mzChUqilPdHTbz2O18vLf/salWVk4gQanDUNTWBJ/LkVqDe9aehgagZ93zTnMC6WRa+plTJ1C/wOXDHLSaGfooKhdg5NhdLoOCPC1otWVQ3QSKCrC20hrRBCfw4TTp2HzqihohAL15CdWYbdMxWFE4FFaia2qJMIPiUqAxmQvzViIVQMsCmk0mjR0Z4CZ8VU8GPCjAV4H/DQuhnKzCZshyAiGqDVpGEAScGurzjJLHYsdArviw2hvEmwLWAt9fvbYrOywNYEGyz0+ljT42WezUqNqJBnhoNZTqBFCId99Dv7Wy/hSpYGmgEkBTVFQgkbvQQ7CwWvdD9sewbRfLNq1vbfrfjCsQe5UDHvT5dNPP80tt9zC97//faKionjuueeGtDzPrs+6NFd2IwShqio8uz4ja+UKMtUGKl/6KW4jFqfayCTLIVTF4PTI56kMzDm+/AsPoC7sGuQ6Z+I9TXXxUg+TArgaF6JG9DxmxEDwqaVtmMPng0nbH+wH5eWsUxT8ZhMJtlRspkg+tezvZR9AEA5yJwpOMnBJo4HR1sQtBAgDgoHwXZMjgo5fUqGD3wdBH5it6CYQIkAw1IwRqsesaJj8KgRbsZn9+KKd1FptCD2Ix1RDlDmII7IFlPARJ0/RWe4Ld8DYabPRatKoMptRgHl+P99saMIO6MBuS8HxO6WUnoMKnXOQdur7ZQe+3dDU42kLAS3B06gJfg2Xtgu79Seooq1JsNM2K7x+Vvq6Pl5Z7vMjhIrS6fGALix4jWT8JNIsZlBqnINhUdHigvhFgADhJLpBJUiIEKtO9nPJvhw2/qmXTnU/6LFT3Wgz7IFu1qxZwzqcIFRb26/t1KhkplgPdFuvKkbX5VHJXdZvzq3ky8/v7vi8s8OYTYWII4UGOncsCum9522qUpu6ND32pMXno3HWTKxlJdi1iJPvI4OYNBDG556vdm4ZUZROTXri+Id9YUDID6oSvqsSoBitWIwAGmClBc3qxqxFoAonfhHAGiphKmXMDARo0S28FmdhX2oQRYHTvH5O9/lY3n7HcipXLS1cRQJAL9OnnuHr/e+o41kUPfRB7OUxXEAoNBBLjUigmWgMFJYpOTiV472jW4WNN8W5HDHNRJg+BWC2uJQLlPeJ7jSVm4sI/sNZeLATQSsReHDjoIUISpRJTKWSCNy04qRYmYLQOg8XOgyEmz81w0AzBJoBmg7mvj4+z74cZl8yqMOkhtO4nxnFlNi39BMd26WfEf6kcrI26fTjD251Q/D4awe7bG2g8njwJn5j/hmGoCPYmbTeJyn20rdhDpYNG4j43+9R5mvu8z7SBPD5oPR5QqCKIEa4m104wbRiAgQqggg8pFHOJGqJEB4CPoEz0EiUyd+lA8JJioD2w/anuqa2v7a2/eYFQZSDUCwYworfSMeveFEVHxDChAdFCWIIMwIrmuJBYCIoolAJoipuFBS8xhQ8RhpuYyox2n5UJYDPiMdrxBOpFaFjpkWfgkkJ56NrCE1DIIg15WOlEa+IoUHPxEDFqrTgExHU6WnEasXYlBZ8IpJaPZUErQQrLViUVvzCgU9EUqNPbcvbJtquDYJ/i3NIMJViV1rwCCe1+lQEGlmEs3AoQkEoS3iLxSRppdiUVgIikjo9E6uiYUNBQUVXNJyKRjQmMhQTZhZgVsyYMLNYactP0TYJpVBAYKBjEFIMQugEFZ2gFiJ4olx2n6dqkLmm79uPIuM+0DmWLcWUkkKourrn53SKgik5GceycO/EU2mT3lHYQGWzj8/7j7GCLwe/xmPmPzGZcNf7qNh9uFwNKLbYbs/o7PTtmWTiGWcQ//OfUfvkj1HT5IS8o05vzzyF8bnPTqLTxkqnZaBi4KQFEzpBNNxEoAI2AixlD2YMmohCQWEyldhwk2zUEGkEQQVVUTAUFRfRvK+vYrW6nSilDkUBF05UBB7FQjQeVATNONhPGt6QlUAoQIPfAj4rDtWMMHzUi1hCRjQ2sx9VUbGYWhCKFQUrAo0QFlqM2VQZ5xFUBHblIJrSSIuwESSESWnCLWzoCKxK+M6jnFSCKOiKgYFAVwRGp6AQvkCH3xqhdVrevgzR8bZ1nppO6bxEDX+FX03qWBZ+PTv8zmud9tLav4s//lMxKW3fJ7YdOYAiJqEwqa0cgwpSO+qgtC1VxPF6dCzDTCszw6+FgrAIBAKj7cxEp/OuIe34MsLZJUTbdjoCQ2n7H4GhGB1b9qcVxy9MXNz3zcescR/oFE0j+ZGHw70u25taOlaGfyOSH3m466DsfrZJ17R0D3Lt/mOs4G3/Mlaoh0miiRpiWOit4gZbbEc+tXYpRgxOYcWNv9cJUCOdEaSnp6NmZnLmuedy6Dd/x1ljDTdf9rJPR7juZf3x96PX0+h5v7HeLPr5czCMtguOig4EBZgVCHcZaG8KMlBoGxcI6Ch4hBk3NnTFRJUpGXNEIjZXIWmhcpxKEK+icVhEU++Hc2pcJEakM8WZQqTawDGtnBrVTbWIpJ5IIqOiOW12GksmT6VxbzP5e2qwABGZreRGbeVjbQtveQzWF9lYUBDEJrIR8WejRWXSaIkgT3VRadRTSSONJi9BVQcVcsik1dxKq+bCFvAx2eVlaoOH5BYbjlAsmj2FSc5kLPZEbJYYzFYHHpsfN37qFR8u3Lhoxa0E8CkhfKpOAD08T2h7eh8NYF+nNzSSkFAJYidIDAYaQlEQihZu0lRVFEUL/69qqJqGoqjhWXra8gy2f6EoqEpbuGhfriptf9PhmX+EEG0tqAJEW1AQbd+LTmHSaAuWov1/o+M17fu0NcUe/1502qa9mbYtsAjo0sml0/ouy0Wn9YhwT0pFabvra2vmhfA5KUr4d05R2i5TStv3bcva3i9NM6FpGppJw6SZMZk0NJMJs8mExWzGYgl/b7dZcdhsRNitRDhsRDrsRDqsOKzjPgQAwzy8YCAGmnj1ROPoOg/G7qKPU3dty6/ni7/7tF/1ubOhnOvsKZjsxwdQGsKgWK093oPy85MRKLBxw0ay53adG3TPm9v456f/6XkfYH5oKjmmkvAhehheMFVPoF5rOenzwc8fV4FuKTo60wXoqFhOkGYmfN3RQNG7No0JQGi4hZlWNFqEhQZhY4raRJziQwX8qPiFhobASghVUQgKBT8aVlQCqNQLO35hwqEGcAsTlrbhIm5hoUSPIEn1EWkSWBxRXHHWYq5ZPo3PihupafGRFGljRWYcWj9mb/B7gnzwl6Pk7azGn17L32N/yWWHvZxTvBDn1HW4nVZylEJKTU0YQJMWQ1LaNM4+bTGnz0qltqSFXa8XUpRTjyUWytJyeNP6EjE+LxsPW5hfnIQWcxrOuDlotmgq1EYKqaRGa8Hbln4nhKDR2kC9rQZLwM2iGi8LSzxE+VMR9kxM0VNxOKdgtcTQovpoVjzU00SD0kKT6sOtBtE/NxFwQKh4saBrVhSTFc1iw2KzY7fbcTodRDojiHTaiHDYiXKGv2IiHETaLURYTdjMarcWDEk6VTLD+An0ZXqtU6EbgtU/3NJj82VvFMAkDP6cZSa9vgahBvDGJGApjKNIreVT89FuY+LOP+McFl24ssfj/esbv+SAsxm/erwpUxEW6oMZlBpxuNVKVphLMHVKrqkJE1OD07EGY/lQMYgyteIkSLzio9FUSbDXfGkWioIZfGREkai6SFFcRCk+IvQgQQRNmoUyxYShOHEGErEYLTitOpGxUbgsMcTRwrRoE/Mzk1l32nwECn/aWkBJSQnxFoPMSQkYEfFYNY1jFXUcKa3B62rC63bh9wcAgUMJ4lCCJKstba1TKpo4/gA+3Kzz+Yu1RqvqxBaTRFpaKkvnTmdZ1mQsJrXbKZ6K6iIX//ltLm63j61Zf8fUvJU7P5tNdMbV1DsUdmpHcWl+WoSNyNRZXH7OaSyeloKiKHhcAba+cowjn1ZhjhPsSX2bT61vsD7fxvm5CZhjziAqYT5eq4k8pZwitQ63Kfx8RTcsNNlcFEYeIEAdF5QarDhmxm7MRI2dgyMmC6s1lnqlhRqliSqlgTrNg1c5njrFLzQ8ih3FFok9IoqoqGjiYmOYnBTL1OQEpiZGE+Mwy2AljQoy0I2Qz/e6PJlJ0TYeuyybdfMmdVnuza2j6bV8gs3+jllOIpwRzL58Kc75vU9++pPv/hhV14kybEQqTuKNKFyhGMoDTVi91UxxH6LB1khRYixuqxMzdrS2DtJ23UxiKBKPmEwJDmp1nZC/keRQEVHWEg5OKqLRaWGl/2wSq6ejt1gpTPRzWHjRdA+pajOZ+JitpzBTpGK01uIpe5c9k3J5ZqGf00JXMrfgLAhpLL84g4XnpqGdYnAxDEG1y0dBZT2l1XVU1zXgamnFHwgQDAQQQqC2Ne3Y7TYiIyNIiIlm+tQU5qQmEePsWyLI/srfXcPbfzyIP8bFP5N+zNc+MjM17gv445L5WDtIi+anUY1hwbKVfPHc5R1NRkIIDnxUwbZX89EJkTPtXXaZ/8Wde2zMr12GI/VMdGc0R5RSCky1+NQQimFCC8bSENXEjri3cASa+cIRC9nFCWhRy3AmzMNsj6dKbaSYaiq05o78diGh0KI40SLiSEhMJj11EjOmTmLmlHhiHEPz3kjSYJOBbgR1Hkf3eSlRVr64YioZCc6TNokJQ+AvbMZoCaBGWrBmRoefR5zA//7xX9RWlmPyNxHZdieoCIVow0ayHkkqyaQYMej+FtyuQoINuVQ5i9iRHklldCSxgSQig5EoCjh0M+l6AlliMtEhM811+wjWf8B/5tbyr6wgawNXMatgNcKnMnN1CsfsDRw8nIvTU4VZMYgPOVhsZJHgN+MqeYedidt4foHgIvcdJOTPIG5SBOfflk38lIiBv+kjTAjBnrdK2PZqPnWTC8jjN9yTswLntEvYYc6n1NRIkxLF8tVruXbtIkydun37vSHe+9Mh8vfU4ppWwr8jn+KW3YKFzauJSjuHSquX/WohjSYvhmHC4UtAVWM4mraT3da3uDLfxnkH4jDHnElk4gJ8Fo0CpZJ8rYZWLfw70CKsGM5EUqakMicrneWz00mJtss7M2lMk4FuhLXPjFLV7KXBHSAuwkpKVP+f9ZyqQMggt6SWPYcLKSwto6W+BrO/mYi24GczzEwKRTGNSUzSY/G6K/DV5eLz7eDdbD87UiLIaJ1Hgi8WVdUxGypZehLZRjqauxl36Vt8mrqfF+canO+7mcn5C4iItnLuzXMIxWr89d0dlBzeT6xwYTNMLA1lkeZz0FyymVezdvBZxiSuLL0HxWXltCuyWHRu2kmD+GglhGDHa4XseqOIo5lbmVL4GueJm2iOT+Rj8yHcmEjMXsFXrjwb++fSndSVtfDm/+XQ2uLl/awXSanezRcPLyMm43KKrS3sNhXgV0P4jRgSWyZhN8exJ/0tcpXN3LnXTnbdUpypZ2E4YzislJBnqiGghggIFbctkbSMLFYumMXKWWmD1jQrSaOFDHRSN/6QzvYjZezMPUp5aSm01BKleEFAnO5gmpFClkhBb63DU7WdSusOnl7mwarOYX7NGWhKC0ILEhOys9SYToJPw1XyFv9J387bM6LYUPk1tJpIFp6bxunrsxAK/OOTXD76+BNiA9XYDBMrQzNJaA3RUPwiP1pdziJxK5ML5pGxIIHzb83GYh97vb92vFbAzteL2Jv+JufkfsbcxLvZHVFDkamOJvtk7rt5A9NSYrvtV3GsiX//ah8+p4t/J/6EBz62MSnlOpqiHGw1HcGnhGi1pDDDPw291kTl9Fzedf6Ru3dYyPaeQ9SUVVRYPOxVC2g2+fALDX/kFGbPns2lqxYyOdY5Au+GJA0fGeikkwrqBh/lFvPJ7hxqy4uIDjaiKYLYkJ05RhoZoThcNXtpcb3NL1bVY9izOaP4YoJqLSFrMw7dzHJ9BkluaC76Gz9beYRk+5XMOXYmk6bFsO6uedgjLAgh+Pf2Q7yz5T1iA7XE6Q7WBOeiV+fwbsTf2T5jNufn30J0rJOL7p5PbMrYuUDveqOQ7f8qJCftTa7cc4yUzJvZYjtMgxogNvsM7t9wbo938CUH6nnj/3Joiq5kv/lJ7jtwOvbMC/nEfIQaUwuNlkTOnLOKhg+aCdp9/CvtKVYfKeOCitVEpZ/PMWs9+7QSgqpOgxZL1pz5bDxnBZPixn4zsCT1lQx0Ur8dq2zkH+/vpOTYYWJDDWgozAqlME9Px1d7kFrXP3nyjGaWiBuYVDSd5sgyhLmOaN3GKj0bU20xe/QXeWVhMpcU3UOEw8ElX1nQ8QzOMAR/emsnOZ++R6Twkh2aQrYnlqriZ3lytYdLar6J1e/kkq8sZHJPKY9GmUNbK9jyp8McSH2bK/cWETv9Wt6y5NCsaJy/fgPnLZ7R434lB+t5/df7qYsvJtj4W67wf5GmxCQ+Nh2mFQvTl65hiSmVHa8V0JxSxscRv+ChjyYTn3ETFY4gO03H8Ck6Lc4pnHvmai5eMXvYEldK0mgiA510yoQQfHKwlNfe/Qi1vgArOjNCySwOZeKu+JQPov7N23OmcEXhPQQVL2XOoziVVqaFElnqTaWxcBM/PK2U85oexOGN5oqvLSYp/fjPqqHVx//34r9Ryg8QY1g4OzgPf9EWnpz3Ecv83yC6KYUL75hP5oKEE9RyZJUeauC1X+6lIGEnFxzcQ+T0DbxtzaVJi+COW29iTlrPU87VlrTwyk8+oyq6gIjqZzjP/lX2RTZQYKql2ZnGg7dtpPjDanb/p4Sj07YSUfEP1jeuR5u0kPfNB2hWfTTZJ3HVJRdw1vzMYT5rSRpdZKCTBkVJnYvfv/IOofIDWDFYEEpjpieahsIX+eGqCs5u+Qb2+jhaZrfQUrcPp1A5OzQPtXQ3v858k7mhB4n1JnP5/YtJzuj683pjx2HefeNfRAkPp4dmEV9dxV8jX8QefTeJNZmce9McZp02qZeajZz6ilb+/qNdVDiOsfLYu8RMuyYc5MwxPHzvHSRGd0+vBOBxBdj0/R1UizJiqn/HaXF38aGzmFrVQ8ycM/j6xvPY+e9wp5bPMl7jnNw9LIi7k7xILzmmUlyKk1XnruOq1fNkb0lJQgY6aZDlVzby27+9ibXuKFGGhbWh+Yjy3fw+9R8kW+8mpXoG6Rcm8vb+LcTojSwJZpJa5+bv1ueJirifOG9Ktzs7gDqXhyd+/zKRriJmhFKY74pki/c3VE3dQFrFfM67JZtZK1NG6Ky783tDvPz9HVT6Kpha8QLpaTeEg5wphkfuv4OEqJ6DnGEI/vmzPZSUVKG6fsXq2Nt433GMOjXIaeuu4rLT57LrjSK2/6uAfWmvc83uQlKm3cz7tqPUqR6MSdl848bLiHXahvmMJWn0koFOGhJv7DjM22++TrRoYVEwnYwmwUe+31OR/gVSK+ex+osz2ZTzCZbaQ2SEEljsiuNfwf/DGnMPCfokNj68gojYrpNWG4bgxy/+B3fedpIMJ2vcGeyp/TWHpl/O1KqFXHDbXGYsT+6lRsNHCMGb/5dD/sFKDO9TnB57I285DtJoiuLh++/sNcgB7HqziO3/zKfO9DSXWq7ivYgCGhTB+Vdey9mLppO3q5q3fn+AA1Pe5ur9pURlbeAdSw4uRWHF+Vdw5ep5w3imkjQ29DceyAE2Up9cvGI2/++/7iWYnM0eUzE7Yl2sjX6QuUdfo3jSHj556Sh3n30e8QvWUqDV82F0OZda7ybY/DSuYDNv/N9+QgG9yzFVVeFbN6xjwXnrqVS9vOs8xqLke1ly+C3KknN5+48HKNjTt3yCQ2nPWyUU7qujWv0TqyK/wHv2I7QoNh74yu0nDHK1JS3seK2Akoi3uYR1fBhRTIMiuOKLN3H2ounUl7fy7nMHKU3Yx/r9RdiyruQN6x5qNTvX3Xq7DHKSNEhkoJP6LNJu4Xtf3sjUlRdSrLWwOeIQcyd9maWH3qY6Jp/Nv83l+tOXs+zCa6hRvXwcWc7Fli/RFPwdNWXNbPnTIXpqQLhmzUIuuPp6alSD/zgOMSP1ThYefZOKhMP85w+5VBxrGv6TbVN2pJFt/8inIOYtLg+u4ZOIUlwIrr/5JqbER/a6n6EbvPOnA7hsVVxRH8FnsS004ueCq65l5ew0QgGdzb/Podlay5l5O4nIuoZ3rbk0W+L59te/wvyM0dNsK0ljnQx0Ur/dfvHpXHLtTdQrCv+xH2RG6l3MKXqdZnMd//71Ps6fP4PTLg4Hu48iy7hMWc/RiGfJ21XDgQ/LezzmWQumce1Nt1KvmviP/QAzptzBnPzXqI8s5fVf76O+orXH/YZSa6Of//wuh7qoAq4sVzkQr9Ogell7xUYWZJ44EOW8X059mZtZtVupnDKZSrWRWWdezNqF0wHY9o98GmtaSax7lZjMq3jHmkuTOZZv3/cl4qPsw3F6kjRhyEAnnZIzstO57pZbaGgLTFmpN2JuepamFhfvPHuQi5fP4bSLN1CneNkZ08wN9YsojtnKR3/Lo6nG0+MxF2dN4vYv3UajauZt+0FmT/4Skypeoslcx2u/2EtrY9+zQwyUrhts/l0OLr2ZhWUf0jR1NsVaLVOWnsv5S2eecF9va4Btrx3Do31C/ORV5JhKUFPnc/15ywCoKmxm/5ZSGtTXmZewni3WgzSbonnkvi8RHymDnCQNNhnopFO2IHMSt91+O42qmS22w6yO+CJVynOUHGhg/3tlXLJyDnPPvpQqtYmClGguKW3GrTXyzrMHMYye+0DNSk3klttupVEx8Y79MAsTbkU0/47mQDP/+sVefO5eUgcNsk9fzaeqqBnD8wIJqZewy1RAIH46d1y26qT77vx3If6gj9V6DNusBXi1aB66dT0Q7oDz7p8P4rKVcWFwBh85CnFj4etfufWEz/skSTp1MtBJAzI7LZGbb70FlwJbI8u5KrCWsoj32fpqHk3VHq49ewmOGSs5bCrHm76ISU3/oaqgmb1vl/R6zOypSdxw6600KQrvO49xrv1GKo1f0tDg4s3/208oqPe672Ao2FPL3ndKKXK+yhrbRXxkzcOtRfGdO6896Tg2V52XnA/LSPZtoyDRgo8QN974RSymcEqkQ59U0FThZVHjQY4kKrTg57Jrv0BqfPSQnpMkTWQy0EkDNjc9mTMvu5p6xcP++CCX1qm4TY28+6eDCEPw4PXr8EZnsN2cR3rimdRbt7D9tXxc9d5ejzk/I5krvnADTYTYGlnJhuAGDtp/RUVBI+/88RCilzvCgWqu9fD2cweoisnlmvpUdkbX4Qa+dNtNOKzmk+6//Y18ArhIiZ3OMa2KyNkrmdfWsSTgC/HJP/LwqzswTZ5PgVZDwsI1nJGdMSTnIklSmAx00qC4cNlspq44nxK1jtopGaQ1bqEq38XhT6tQFIX//vL1+BQH2+2lnOeJwau0svWVYyc85mlzpnLGJVdTq7rZHdfKbQ3nsTfm9+Tvqebjv+X12INzIEJBnTd/m0OL2siakoOUTk6gVmlh6QWXMyv15NOSueq8HP20mln+w+x1VBESDu7ZeH7H+v1bSvF7gqwgkp2WQnzWZL561dmDeg6SJHUnA500aG6/5AxEyhz2moqYnLyaFtNnfPzKEfzeEE6bmUuu2UCL4qMsOYbUlq3kf1ZLZX7zCY958cpsZqy6iDK1kcNJFm4vz2Z/8t/Yv6WMve+UDlrdhRB88OIR6ipaiGh6GXP6Wg6YyrBkLObK1Qv6dIxd/ylEiGZInEyT4mH1pZd1NFkGfCF2vV1IbGgnBfEKQSH40s0b5JRekjQMZKCTBtW3brsKnxrBp7Yi1vhVfB4/n71ZBMDqeZlYMxdzyFROStICfKZiPth08mbIGy9YQdy8NRwzVVGRmsZNRx0cSd7C1r8f48inlYNS78/eLObwtipKrC+wJOZSPrEcxW1J4r9uuqxP+/tagxzaVkmWXsg+axkhWxLrls/pWJ/7QTkBb4jUqEkUaDXEzF3J9Mmjd/JqSRpPZKCTBpXDauaqazfiUQKUJ0cTFdzK3i3FuJvCGc4fuP5S/Eok223FLPZVUl/i4ejO6pMe9/4N56KkLmS/qZjWjKVccbiC4qTdvPPcIY5srxpQnY/urGL7vwo4krCZq1sXsi2iHA8m7r/rekxa3/5E9n9QihLyEEiIJUCQazZc0bFO1w12vZvPZGM/uc4GDMPKl68+b0B1liSp72SgkwbditlTsaQv5KCpjMzITAKGh+2v5wNgNWtcsfEaPIqflqRJ6Mo+tv7raK/DDTp79Lb1eGIy2WY+innaRaw++imlyft559mDpxzsSg838O6zhyhN2MPV+V7yk+w0Kl7OvvyaPveENHSDPe8Xkk4BB80V6I7JLJo+pWN9wZ5aAs2CyJg46tQWFpyzrqNJU5KkoScDnTQk7r/+EnTDSk5EA9MC+zn0SWXHgO/T5qSjx2Sw31zKIsWEpz5E/u6akx5TVRUe/8r1tNiSeN9ykMT0L7D46FuUpISD3b4tpf3qoFKcW8/rv95HTUwBa/I+I5B5OkdNlUTNOf2kg8I7K8qpJ+QyCMU4CRDi6msu6bJ++1t5JHOIw7Z6hHBy9VmL+nxsSZIGTgY6aUg4rGYWnXsRtaoLS3wqumjls7eKOtbfccN6DCEojTfjFLlse/1on4KU3WLikXtuxaVFssV2iKwpt7P48GbyU7fz8ct5bPnTIQK+0AmPIYRg35ZSXn9qHzWxhWSWvEJsxpVsNR/FHZHG1zr1lOyLHe/mkaIc46i1FszxLMw6fjdXX9FKc0mAyEgrjaqbReedLzugSNIwk4FOGjJXnbmQkBZLjrWCGaE8DnxUjrc1AEBaYgyOGUvJ06pIt9tpqQxSnFvfp+PGR9r56p230qxYeNsengT6tNwP2D7z7xzdVcVL/7ODvJ3VPTaH1pW18q+f7+Xjl/MoTPuM+LJnmZNyM+/ZDtFiiuHRr9yAqvY9ELU0+KjP82GLNOFW/Ky55MIu6/d/XEwUFeQ7WtB0K+tXL+zzsSVJGhwy0ElDRlEU1l15OW7FTyghHhHycuCj45M6f3Xjhai6iWORXhziCFv/3be7OoDMlNjwVGGqibfsB8lKvZMvbi3h7zP+h0ZnFW/94QDPPfwJ7z57kO2vFfDxy3n89Qe72PS/O6isrOe9eX8k+/DrnBFzL+/bj9GChfvvvpUoh/XkhXdy4NMyIqmhyN6CSbdx9qIZHet03eDQtgoSra3Uqi7STlst7+YkaQTIQCcNqdXzMjFsSRywVDBVHOOz9wowdAMIN28mLV5FudZAmg0ai30nHVfXWfbUJG65LTwJ9Fv2gyRlfYn/+SCLrcrj/Gfp/9E8pZSS0hpyPyrl6L4KGs3VHFj0Fi+kPcBd7zWyJPF+tkQco1ExuOb6G0hL7P80XDlbi0iwNlKrukhduapLICs50IDJE6Am0sCsq3zxgjP6fXxJkgZOBjppyF121aX4CEJsJKFmg8J9dR3rbr50NZquURZlYKWYXe/m9+vY2VOTuO3226hTrbxu20tw1jq+VfAl7nm7hs98T/LTtHv42dx7+P9m3sPzzodZsm8LT35yEfHT72Sz4yB1isHFG65n2czUfp9XfXkrem2IpkgFs66w8fzTuqzfs/UYyVoZRVot1tQ5WM2yp6UkjYRBDXSPPPIIc+bMYeHChaxYsYItW7Z0rDMMg3vvvZesrCymT5/OU089NZhFS6PY8llTwRTLYWsNyRxl55a8jnV2i5moOUsp0mrJMHsp3deItyXQr+PPTkvkm/d/mQZbElssueQmKaRlfouv593EM/84nWf+No1n/j6PJz++kjWO/6Zu2jxes+2hRrVw9fW3sHpe5imdV87WYhK0Sgq0GrT4jC5zYYYCOhU5zRiRCgLB1Vece0plSJI0cIMa6NasWcPu3bvZt28fv/vd77j66qvx+cJdyp9//nkOHjzI0aNH2bFjBz/60Y84fPjwYBYvjWJnXnoxbsWPPdJM3TFflwmdb11/LpquUhWtYtNdHNjac3LWE5kUG8GPHrwT2/TTOGxq5GXbDvYlgSf7QrR5d6DPu5bSqWm84tzLdlM+rugMvnHfl1k2c8rJD94DYQgObS/H5PARUgzWXdZ1AHjxgXqidBclVhcWHGSmxJ1SOZIkDdygBrqLLroIuz2cOHL+/Pnouk5dXbiZatOmTdx9991omkZcXBwbN27kpZdeGszipVHs7EXTMelWih1uoqgh95OyjnVRDivWjPnka1VMNlWw+72CU8pOYDFpPHTDOm6966sEkueQa/LwniWXf1l3sdmyl53mSqodSSxdt5GffP0mJsdFnPL5VOY3Y2oJUGsPYg+ZWJTVNWDu3Z5PtLWeRrWVtNNOnsNOkqShYxqqA//xj38kKyuL1NTws4+SkhLS09M71mdkZLBr165e9/f7/fj9/o7XLpdrqKoqDQNFUZiyYhXFn20h02pj/8fFnH7Z9I7OG7decwFPP7mf1mgLoXqDssONpGWf2l3QjMlxfO8rG/EFdXKLaymtrsdpt7JkRioJkbZBOZ+9nxSQaKpkn9pATEbXIQOGblCZ20RiFJgNhavOWTEoZUqSdGr6dUe3Zs0aEhISevwqLT0+k/y7777L448/3u2OrXOPtJN1I3/iiSeIjo7u+EpLS+tPVaVR6AsXno5FV6mPBJpDVBUc//CSGO0ERzL55loSlUJ2vnfiFD59YTNrLJuewpWr5nLBkumDFuSEISjcW4vhDCeAveKitV3WVxW6iA61UGpuwmyK6lMeO0mShk6/At1HH31EXV1dj1/tgeiDDz7g1ltv5bXXXmPWrFkd+06dOpWioqKO18XFxUydOrXXsh5++GGam5s7vjoHUmlsslvMqAkZFGl1JGnl7Nta0GX9WZdcgE8J4ogQVOS29LtTynCpLnJh9/qotHmwG1YyUmK7rM/5rJAoWxOtio+s1WtGqJaSJLUb1Gd0H374ITfeeCP//Oc/Wbiwa3POhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvqSx76JLzyOEjikiRMFntR1j6iA85s6iWyize3GKJo7sGpwUPIMt97Mi4i211KouYhcu67a+cE8lHkcIi6FwyepFw19BSZK6GNRAd/vtt+P3+7n11ltZtGgRixYtIicnB4Abb7yRWbNmMXPmTJYvX86DDz7InDlzTnJEabxZmDUZm26hzObB6vVSntfUsU5RFOLmL6dSayLZXMOeT/o3pm64HPusgoAzhGYoXHlB144mrY1+LI1+Kk0t2BQHNsuQPQaXJKmPBvWvMC8vr9d1mqbx61//ejCLk8aouPlLqTi0jUXmavbvKCBt9vFOJ1+4ZA2/yt1KS5SKtzSEq85LVIJ9BGvbVXOtF0ujn4rkFuzCRkKUo8v6goPVRFsaKFG9ZC09Z4RqKUlSZ3JmFGnYXXXhajShEIowKN5b16VjUozThhqRQr6plnilioPby05wpOF3dG8F0ZZ6GlU38Yu7N1vm7jmGYQ+gCoWLzuq+XpKk4ScDnTTsEmKcWIWdcksLDo+H2pKWLuvPvOh8AkoIm9NNzrbiEaplz3J2FrQFMrjknJVd1gkhcB1upsHqJyKodbvbkyRpZMhAJ42IlGUraVTdRJvryd3ZNZitmpeJPaTRaNfRa4PUl7eOUC278nuCBIr9NFj9OEMmkmK6DjhvqvYQbXioUpuxTpk2QrWUJOnzZKCTRsQV565EMxSCzhB5e7s2TyqKgpYyjVKtgUStiv1bR8ddXVFuHXFaA1VqM5ap3TOQHztQidnailAEy885fQRqKElST2Sgk0ZEtNOGw7BQY/FgqgvhbvZ3WX/BJeegY6A5fBzZVd7nPHVDad9nxzDZ3QhFcPaFZ3ZbfygnH58thE1XWTYrvYcjSJI0EmSgk0ZM1LzF1KktxJjqKMit6bJuQeYk7LqJWnsArSlAQ4V7hGoZJoSg9lAjLruOM6gyLyOl2zb+Y83Um73YhRlVlX9akjRayL9GacRccv7pKAIMh5ecz7qPmbNnzaNCbSTBVMPBXSM7M05jlYfYgIcKrQktOrnb+tZGH1GGl0a1FceM7BGooSRJvZGBThoxk+OjiQxpNFqDNB9xdctYcMXFZwEgnAEO7SoZiSp2OLq/HKu9mYASYv7Z3af1KjpSg2IPpx46Uz6fk6RRRQY6aUSZkqZSrTYTa7RQV9a1d2V6cizOkJkqqxelJoirztvLUYbeoX2F+G0hrLrK2Utmd1+fk4/fEsQRUpmVljQCNZQkqTcy0Ekjauk5q9EVA7OthcO53ZsnnbPmU6M2E2eq4cjuihGoIei6QajQQ53Zi0OYMWnd/2waD1XTaPbjMLQRqKEkSSciA500ok7LzsSmq/jsOnn7irqtv+iCNSiA4vCTs7Nw2OsHUFPoIlp10aC24pg5t9v6UFDH6Q3SqLRiSc0Y/gpKknRCMtBJI0rTVOxYqTa1QokXvVM2A4CMlFicIRP1tiD+Ev+IpO7J3VeEavMAcFYPz9/qSlswWz0IBRacKZ/PSdJoIwOdNOJiFizGpXqJUFuoLW7ptt6UmkWl2ki8Vs+xfdXDXr+CPaV4bDrOkMrM1MRu648eKSVoC2ExVJbNyRj2+kmSdGIy0Ekj7uwzl4MAxe7l8IHuvSvPufAsDEVgsreyb+fwpu4JeEOYav1Um1qwmHqeu7Jgfz4t5gARQaXH53eSJI0s+VcpjbipybFEhFTc1hDH9nV/Drdg2mScQY1mu0HzUTd60OjhKEOj9Eg9URYXbsVP0rKVPW4jSl3Uq61Y7BE9rpckaWTJQCeNChazg1pTK2q5t8fpvrT4yVRojcTTRNnRxmGrV87eAoTNhyLg/NVLuq0PeEPYCBFUdOIXLR62ekmS1Hcy0EmjQsLiZbgVP06Tm6ZqT7f1y845k6CiY7G1sH/X8DVfVubU0GINERnSSIhxdltfXdqMYvUBcNrpi4atXpIk9Z0MdNKocO6ZS0EAVh/HDnUfL7d6QRb2kIrHYVCyr3ZYJnlubfQR6fZTpTVjikzocZujecUELDoOXSMtMWbI6yRJUv/JQCeNCsmxkUSGVLxWnSM5Bd3Wq6qK2RJJhamZCLeXhsqhn+S54EA1NmszQUVn+ppVPW5TnnOMFlMAR2jIqyNJ0imSgU4aNayKhQbNg+9YQ4/r085YhUfxE2lt5PDush63GUy5ewoI2QKYDIWzl8/peaOyVhpUN5bI2CGvjyRJp0YGOmnUcM7MxqV6cepB/J5gt/UXrVqEyVAI2oMc2j20yViFELgON9NoCRAR0rBbzN220XUDs2KgKwYpy5cPaX0kSTp1ppGuwGDRdZ1gsPvFUTo5s9mMpo38HI2nnbWS4oLdaFYPFUWNZGZ3nRw5wm7BoZups/owl/vxtQaxRXQPQIOhocJNtHBzVHWRkDK9x20aK91gCc/UsmKpTM0jSaPVuAh0ra2tlJWVjYos1GORoiikpqYSETGy48BmT03Crqv4rSEOHyjsFugAnLPnU5n/GXNNDRTk1JB9+pQhqcvh/WWYrS0IRbDs7DN63KYgv4KgOdwRJSUuckjqIUnSwI35QKfrOmVlZTgcDhITE1EUZaSrNKYIIaitraWsrIwZM2aM6J2doig4Qwous59ATjFs6D5A+/zzzuBPxz5DsXvYtyt/yALdkb2FWG06Nl1l+ez0HrcpPHQMtzmIIyQ/YEnSaDbmA10wGEQIQWJiIna7faSrMyYlJiZSVFREMBgc8SZMc2wiNe4a0msCCCG6fXCZNimeiJCGy6bjO9yCrhtogzztlh400It91CZ5sBsWVLXn43vzKmmM8JBgkb93kjSajZvOKPJO7tSNpvcu7fSV6IqB1ezD3dRzpgItbjIVWhMxejNVx5oHvQ6VBU3EaC6aVDcRc+b3up3FZxBQQkTMmTfodZAkafCMm0DXX7oh2JZfzz/3lrMtvx7dGNzmp2AwyOOPP87s2bOZO3cuixcvZv369ezdu3dQyzmR7du3s2jRImbOnMm5555LZWXlsJV9qlYtmYMiwLD6KSuq7XGbxeesJqTo2Owu9n/WfczdQB3YVwRtaXnOPue0HrcJBXQUS3jOzcWnLRr0OkiSNHjGfNPlqdicW8njrx2kstnXsWxStI3HLstm3bxJg1LGrbfeSmtrK9u2bSM2NjzG6rXXXuPAgQMsWrSoy7a6rg96k6EQguuvv57f//73rF27lp/85Cc88MAD/OUvfxnUcgZbtNNGZEjDZ9HJO1zA7MWp3bZZs2AG215R8dkNqvZUwXWDW4fCvWXYbToRQZVpk+J73KahqhXdHMRsqMyamjy4FZAkaVBNuDu6zbmVfPn53V2CHEBVs48vP7+bzbkDv+vJy8vj1Vdf5ZlnnukIcgCXXXYZ119/Pc8++yzr1q3jpptuYtmyZezYsYPNmzezZMkSFixYwFlnncXBgwcBeP/991m2bFnHMXJzc8nIyACgqKiIhIQEvvnNb7Jy5Urmzp3Lli1bANi1axdWq5W1a9cCcNddd/GPf/xjTAzBsAmVJs1HfU73lD0QTtZq1RxUmlzYW/w9zo15qnzuINaGANUmF2ZL771QCwrL8JvDOep6e4YnSdLoMKH+QnVD8PhrB+mpkbJ92eOvHRxwM+aePXuYPn06cXFxvW7z8ccf8+ijj7Jr1y6ysrK44YYbeO6559i/fz933nknGzdu7FNZ9fX1zJ8/n+3bt/OHP/yB6667DrfbTUlJCenpx3sLRkZGEhkZOSaaLx2T0mhWPWjN/l63mbTidFpUH1HmBo7sLR+0sksO1xFhbsajBJi0sudmS4CSA3m4tSBWY/hSBkmSdGomVKDbUdjQ7U6uMwFUNvvYUdjzFFT90bmDR35+PosWLWLWrFnccccdAKxevZoZM2YAx5+lzZ8f7vhw/fXXU1ZW1qegZLFYuPHGGwE47bTTSElJYd++fd3qAIyZcYZZZ4SHFZhNOn5vz5NIXnTWUjShoDsCHNjVPYfdqdq3Kx9h86EKhXNXLep1O19+Dc2KF6tD5qCTpNFuQgW6mpbeg9ypbNebxYsXk5eXR2NjOG9aVlYWe/fu5eGHH+5Y1nlwdk/d6CEcqEwmE7qudyzz+U5eN0VRmDp1KkVFRR3LWlpaaGlpYdKkwXkGOZSWzM1EFQqGJUhNac+9KmOcNpwhE/UWP8ESf68BsT+EIajJbaTZFiIyqBIf2XNGcQA1EJ76Kzp77oDLlSRpaE2oQJcUaRvU7XozY8YMrrjiCm6//Xaampo6lrvdPc+4f/rpp7N3714OHToEwEsvvURqaiopKSlkZmZSWFhIfX09AH/+85+77BsIBHjhhRcA2LFjB1VVVSxYsIClS5fi8/l4//33AXj66adZv349ZvPQTJk1mJw2CxEhFb9Z58iR3u/WrNNmU6M2E6c1UnygbsDl1pa2EBv0UK260GK6z8rSTg8aqFr47njusoUDLleSpKE1JIHu/fffR9M0fvWrX3UsMwyDe++9l6ysLKZPn85TTz01FEWf0IrMOCZF2+ht1JhCuPfliszen6311bPPPsv8+fNZuXIl2dnZrFq1infeeYcHH3yw27aJiYn8+c9/5vrrr2fhwoX85je/4eWXXwZgypQpfPOb32TZsmWcffbZxMTEdNk3Pj6eY8eOsXLlSm699VZefPFFnE4nqqry/PPPc//99zNz5kxef/11nnzyyQGf13CxGdBiClCe03uS1XPPW41QQLW72bvz2IDLPLinBKutiZCiM/us1b1u11jtxrDomIXKjLTeA6IkSaPDoA8vaGlp4Vvf+hYXXXRRl+XPP/88Bw8e5OjRozQ3N7NkyRLOOeccZs+ePdhV6JWmKjx2WTZffn43CnTplNIe/B67LBtNHfgAaovFwuOPP87jjz/ebd3KlSu55ZZbuixbt24d69at6/FY3/nOd/jOd77T8frzx+ytnNNPP73jed1YY4mOo85bR0xF73nnZqcn4wyqtNh13AeaMAyBOoCf3dHdpUTadSyGwtqlvf9eFhVXEDDpOELqoM/KIknS4Bv0v9IHHniABx98kISErhmZN23axN13342macTFxbFx40ZeeumlwS7+pNbNm8RvblhCSnTX5smUaBu/uWHJoI2jkwYmZdkyDEWE0+CEeu/ZaIpOokJrIjbUSlX+qc+S4m0JoNYEqDG7sQsrFlPv4xqL2npc2nTZ41KSxoJBvaN78803aWpq4pprruHf//53l3Wf7+6ekZHBrl27ej2W3+/H7z/evdzlcg1aPdfNm8T52SnsKGygpsVHUmS4uXIw7uSGU0ZGBnV1A382NRqtWJrNro/fBEuAhko3iWk9ZweYe9Yatr75V2y2JvZtL2DyjCWnVF5BTg2xpgbKVDdTs3vOVtDOk1dJs8PDJHvvnVUkSRo9+hXo1qxZ09Fh4vP27NnDQw89xNtvv93r/p17Fp6sq/sTTzzRY3PcYNFUhdOzep71Qhp5SbGROHSNoEWnoKCcxLSemxLPXjqbXf9W8dsNqj6rRVwnUE7hA8u+Xcew2L0oAi48p3vWhM5Uj0HIaRA5ffia3SVJOnX9arr86KOPqKur6/GruLiYyspKVqxYQUZGBn/729947LHHeOyxxwC6dXcvLi5m6tSpvZb18MMP09zc3PFVWlp6amcojVmOkMBtClKQ03tHE7NJw6bYqTK3Yvd4qSzof/OlHjJoOtJKky1EREhjSkJ079vqBqo5/CFtzspF/S5LkqThN2hNl6tXr6ampqbj9S233MKyZcu45557ANiwYQNPP/00V111Fc3NzWzatInNmzf3ejyr1YrVah2s6kljkMVipw4PtvyaE26XsHQ5BXveJ8NSw75thUyevrhf5ZQeaiBWd3FMbSIytvvcmp0113gxzCE0oTAnc3K/ypEkaWQMW5exG2+8kVmzZjFz5kyWL1/Ogw8+yJw5c4areGkMisyeR0AJYQ3oJ9zu4rNXhGdJceoU7qo9YeeVnuzZegyLrQldMVhyzpoTbltWXk3ArOMMaZhkj0tJGhOGLHvBs88+2+W1pmn8+te/HqripHFo8crFHDm0HcUSwtcaxBbR82D3hCgHNsNKpcWDs9FDcW490xYl9qmMUFCnfH8zcdECm66yan7WCbcvPpKHRwthC8oel5I0Vkzcj6SGDoUfQc7fwv8bJ75r6K/RkI/ummuuYfLkySiKQmtr67CVO1hmTk3CYqjoFp2a8qYTbhu3cDn1agtx5kp2fZjX5zIK99URFWqh0tSKyRRx0nFxrsMlNKseLGZLn8uQJGlkTcxAd/Bf8LN58Nyl8Pfbw///bF54+SC59dZb2bNnD9u2bePAgQPs2bOH22+/nQMHDnTbtvNcloPp7rvvHtbAOthUVcUZUvCYQhwr6DllT7srLjg93HwZoVJ90E1rY9/mK935Xh7R1hpaVC9TTus9W0E70RwgqOhETM3o0/ElSRp5Ey/QHfwXvHwTuCq6LndVhpcPQrAbDfnoAM477zySksb2FFU2AS2an6qcoyfcLiHKgRkHpZZmoqhh33snDowATTUeGo758TlVzIbCFWuXn3Sf9hEyGSuX9qn+kiSNvIkV6AwdNn8LTpSRbvNDA27GHA356MYLa0w8LYqXUHnLSbedesYamlQPCeYG9n9YSvAknVj2vl9MlFJBqaUJsykKh/XEE17rIQNhAkXAvBnpJ9xWkqTRY2IFuuKt3e/kuhDgKg9vN0CjIR/deJC0ZAkooPUhGe6VZy/FrCu4oswIb4Cc98p63dbjCnDwwwoSLM20Kj6mrTpxb0sAV70X3axjN0xE2OUzOkkaKyZWoGutHtztejEa8tGNF4sWh4egKGaDwElyztktZoieQqGpjikcZMcb+fhagz1uu2tzIYRaaIjSMOsql65ZdNK6lJZV49d0bEPzSFWSpCEysQJdRPLgbteL0ZCPbryYnBCNzdAImUPUVpx81pMLL7+QACG06Gj8AR+f/L17D8za0hZyPigj1ThCoVaLlpyFzXLykTbFh/PwaiEshhxaIEljyZCNoxuV0s+AqMnhjic9PqdTwuvTTzypb188++yzfO9732PlypVomkZsbCxJSUk89NBD3eYL7ZyPTtd1YmJiesxHl5GRwZlnntll38756FpbWzvy0QFcfvnl7N69G4BZs2YxY8aMjkSsY4kjpOA36RwrKGXKSeYnXTYzjTeVCI7ZGphcX8jhbTaSM6KYd1Z4xhOfO8ibv83Bp5WhRCZgUMoVl5/Xp3q0HCnBpXhJtcgZeyRpLFHEyWZXHiVcLhfR0dE0NzcTFRXVsdzn81FYWEhmZiY2Wx8yg7f3ugR6zEi38U+Qffmg1XsoFRUVsWzZsgFnMOj3ezjM/u/h/8FrtpISk8EXHzh5J52/v/8ZOe+/xhp3BluUUia7VjH79BTip0Sw791SXK2tTG99jwNpMTSb7fzPo/f3qR7P3/drjsXVMmfKbK694wsDPS1Jkk5Rb/GgNxOr6RLCQWzjnyDqc3nnoiaPqSA3kVgjY3ApXkIlTX3afv2axYRwst9ew3mVTeROf5Nj+6r49J/5NNqrqFCfxEieTavi49zLL+lzPdoffaYt799cmpIkjayJ1XTZLvtymH1JuHdla3X4mVz6GaD2nmxzNBrP+eg6i1+4kOKdW1D7mOhU01RWX3wpn76+CV/aYi7+7O88du59BM0Ki4o07g1+mfeiywlZE1m7cHqfjqnrBrQNLZg/M2MAZyNJ0nCbmIEOwkEt8+RdyqWRt2jZfHbv3IJigqBfx2w9+QeSdSvm8N6HaexsyefCtOv5zRubIVSKedIV7E0K4kHn6mvX97kOLXVeQqbw0IJIh3xGJ0ljycRrupTGnLSkGKyGhm4OUl958oHj7f7rrutoVR28YzuEf/Y6HHO/zr5EnRKtjrTl57A4a0qfj1VaXk3AJIcWSNJYJAOdNOopihLueWnWyS/ofRD458VH2rnl1pupscayxZLL362fckxrIjp7DbdfuqpfdSg+fAyPHFogSWPSxG26lMYUq2HQaglSevAInDOvz/tlT03iyYe+wquf5NLq8bF8Tjrz0vs/TrL5SDEtipcoi5wRRZLGGhnopDHBEhFFTbCZ+IL+d74xaSobzhzYIHrRGCAUZ+CcMnVAx5EkafhN2KZL3dDZWbWTNwreYGfVTvRxlo+uoqKCCy+8kFmzZrFgwQI2btxIQ0PDsJQ9FGLmzsdQBGpgZJoO2ydVS122ZETKlyTp1E3IO7p3it/hBzt+QLXn+JyWyY5kHlrxEOel922WjJO59dZbaW1tZdu2bR2pel577TUOHDjAokWLumyr6zqaNrhDGzRN49FHH2X16tUAPPjggzz00EP89re/HdRyhsu85fPZv+8jFDMIQ6Cowzefp2EIhFmAgHmzM4atXEmSBseEu6N7p/gdHnj/gS5BDqDGU8MD7z/AO8XvDLiM0ZCPLjk5uSPIAaxcuZKCgoIBn9tImT45AbOhoptDtDb5h7Vsd5Mf3WRgN0xEOUbfzDGSJJ3YhLqj0w2dH+z4AaKHeS4FAgWFH+74IWennY02gMHjfc1Ht2fPHmbMmEFNTQ3Z2dm89957zJ8/nxdeeIGNGzeSm5t70rLa89H95Cc/4dNPP2X9+vXk5+d3zHcJ4TvGX//616xfv/6Uz2mkqaqKQ1cJmHQqyuuYFZc6bGVXVtYRMOnY9fGTFUKSJpIJdUe3u2Z3tzu5zgSCKk8Vu2t2D7is0ZKPTgjBV77yFWJiYrj33nsHfF4jyaob+DSd4mOFw1puSX5h29ACOYhOksaiCRXoaj21g7pdb0ZTPrr77ruP0tJSNm3ahKqO7R+3RTPhUn3UHcgf1nLrDxyjVfFhMY2tKeIkSQob21e+fkp0JA7qdr0ZLfno7rvvPo4dO8arr76KZRyM/7KnTMKvBDFqPcNabrC2laCiY0sYWJ5CSZJGxoR6RrckaQnJjmRqPDU9PqdTUEh2JLMkaeBdyEc6H90nn3zCL3/5S2bPns3KlSsByMzM5NVXXx3wuY2UyUuXkvdWMcpwJ5ZqS2yevHDRMBcsSdJgmHD56Np7XQJdgp3SNlLqp2t/OmhDDIbaRMlH167e5eaXP/0xM1xJfOFHd6OZhqdB4vmv/4pj0XXccc/XmJIQMyxlSpLUO5mP7iTOSz+Pn679KUmOpC7Lkx3JYyrITUTxUU5sugndrNM8TM2XoYCOYRKYhcrk+OhhKVOSpME1oZou252Xfh5np53N7prd1HpqSXQksiRpyYCGFIyEiZKPrjO7DgGTTklpFXGT+pZLbiCaat2ETAZ2Xeuxw5AkSaPfhAx0AJqqsTxl+UhXQ+onq2HgtgQpPnyMRSuGPtCVVlTj10JY9THRwi9JUg8mXNOlNLZZrDZcipeWI6XDUl7Z4aN41CBmIdPzSNJYJQOdNKZEZGSiKwa4AsNSXmteKa2KH6vdPizlSZI0+GSgk8aUaSuWAgzbpM56cxChCCKmZgxLeZIkDb4JG+iEruPevoPmf7+Oe/sOhD6+0vS43W5WrlzJwoULWbhwIevWraOoqGhYyh5K2dNTw+PozIKALzT0BYpwQE1bumjoy5IkaUhMyM4orrfeovr7TxCqqupYZkpJIfmRh4m64IJBKWOk0/TY7XbeeecdIiMjAfjZz37GAw88wCuvvDKo5Qw3h9WCwzARMunUV7UwKSP25DudIiEEmAEBc6bLhKuSNFZNuDs611tvUX7/17oEOYBQdTXl938N11tvDbiM0ZCmR1XVjiAnhMDlco35uS7b2UMCn0mnsLhsSMvxu0Ph9DzCRKTDOqRlSZI0dAb9yvfUU08xZ84c5s2bx4IFCzomITYMg3vvvZesrCymT5/OU089NdhFn5TQdaq//wT0NBlM27Lq7z8x4GbMvqbpefTRR9m1axdZWVnccMMNPPfcc+zfv58777yTjRs39qms9jQ927dv5w9/+APXXXddlzk1zzvvPFJSUnj55Zf5xS9+MaDzGi3MQuBWA1QcODKk5dRWNxHUDGwyPY8kjWmDGuj++c9/8sILL/Dpp5+Sm5vLO++8g9lsBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bxJ+XZ9Vm3O7kuhCBUVYVn12cDLmu0pOl55513qKys5Nprr+V///d/B3xeo4EtIooWxYe/cGgHyxcXl+DTQlh0ObRAksayQQ10P/7xj3n88ceJjg5PlZSUlNTx7GnTpk3cfffdaJpGXFwcGzdu5KWXXhrM4k8qVNu39Dt93a43oylND4SbMe+4445umQ/GqujZcxCKAN/Q5oerPnAUtxrALG/oJGlMG9RAd/DgQXbt2sWqVatYtmxZl6aykpIS0tPTO15nZGRQUlLS67H8fj8ul6vL10CZEvuWfqev2/VmNKTpqa6upqGhoWO7l156qSN9z1g3a2n4zhdtaCOQr6QRrxLAFh0zpOVIkjS0+tXrcs2aNd1SzLTbs2cPoVCI/Px8PvzwQ5qbmznrrLOYPn06F198MdD1TuNkSROeeOIJHn/88f5U76Qcy5ZiSkkhVF3d83M6RcGUnIxj2dIBlzXSaXoOHz7MHXfcQSgUQghBVlYWzz///IDPazSYMTUFTSgIs4HfE8TqMA9JOcKvgxNiZmcPyfElSRoeg5qmZ968efziF7/gnHPOAeC//uu/cDgcfPe73+WSSy7hlltuYcOGDd3W9cTv9+P3+zteu1wu0tLSBpymp73XJdA12LUF4Sk//9mgDTEYahMtTU9nT37ne8TpEVx4x41MntZ7p5+BeOFrvyIvpo4v3no3s9JThqQMSZL6b0TT9Fx33XVs3rwZCF88P/jgAxYuXAjAhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvgZD1AUXMOXnP8OU3DVbtCk5eUwFuYnOGjLwaToFxUMz56VhCAwTaEIhKzXp5DtIkjRqDeqA8a9//evcddddZGdnoygKGzZs4MorrwTgxhtvZOfOncycOROABx98kDlz5gxm8X0WdcEFRJ57brgXZm0tpsREHMuWogzyoO2hNhHT9LSzIHCpAapyD8PZCwf9+K0NPnSTjt0wYdLGx/hDSZqoBjXQ2e12/vSnP/W4TtM0fv3rXw9mcQOiaBrOlStGuhrSKbJFRVPhb8RX3HDyjU9BRWUdfs3AGpLpeSRprJMfVaUxKTp7LiiAf2jGuJUcy8erBbHI9DySNObJQCeNSbOXhIcYKEM0xKDhYD6tih+LaWh6dEqSNHxkoJPGpOlTEtGEijAb+NzBQT9+qM5DSNGxJ8velpI01slAJ41Jmqbi0DWCJp26qoFPJtBN26QryQsXDf6xJUkaVhM20BmGoPxII0d3VlF+pBHDGNxOByOdj66z2267DUVRaG1tHfayh5JNDw8xKCwsHvyDm8JNotnzpw/+sSVJGlYTMh9d/p4aPtqUh7vp+IB0Z4yVNdfOIGvx4IyZGul8dO1ee+21HufRHA8sQJPmpzL3KJy3ZNCOG/CFECaBxdBIiok4+Q6SJI1qE+6OLn9PDZufzu0S5ADcTX42P51L/p6aAZcxGvLRQTiFz+OPP85Pf/rTAZ/TaGSNisGt+AmUDu4Qg8aaVoKajl1Xx+2HBEmaSCbUHZ1hCD7alHfCbT5+OY/MhYmo6qlf4Pqaj27Pnj3MmDGDmpoasrOzee+995g/fz4vvPACGzduJDc396Rlteej+8lPfsKnn37K+vXryc/Px+l08tWvfpXvfve7HdkkxpvYuXNh94cQGNxm56KScnyajkWOoZOkcWFC3dFV5jV1u5P7vNZGP5V5TQMua6Tz0f31r3/FYrFw6aWXDvhcRqvZS+YC4SEGgzhlK5UHj+BRg5iRY+gkaTyYUIHO7TpxkOvvdr0ZDfno3nvvPbZs2UJGRkZHU+fcuXPJyckZyKmNKtMmJWISKoZZH9QhBp6CGtyKD6vTOWjHlCRp5EyoQOeMsg7qdr0ZDfnonnrqKcrKyigqKqKoqAiAAwcOdNw1jgftQwxCJmNQhxjoniBCgcgZswftmJIkjZwJ9Yxu0owYnDHWEzZfRsRamTQjZsBljXQ+uonCGjLwmkIUFBaTNj1hUI7Z/nx2xtLBnyxakqThN6j56IZSb/mH+ptLrb3XZW/W3TVv0IYYDLWJnI+u3e8e/h8aLSYyojPY+MAXB3w8XTf4y7eeosBZz7e+822s5gn1WVCSxoQRzUc3FmQtTmLdXfNwxnRtnoyItY6pICeF2WJi8Sh+AmVNg3K8ljovIZOB3TDJICdJ48SE/EvOWpxE5sLEcC9Mlx9nVLi5ciBDCkbCRM5H1y523gLYuQWCg9NDsrSihoCmY5NDCyRp3JiQgQ7Cz2GmzIo9+YbSqJa9eA67dm5BMSm99l7tj5IjeXi0IPaQHFogSePFhGu6lMaXjJT48BADk4G3ZeBDDFyHi2lRfFislkGonSRJo4EMdNKYpqoqjpBG0BSiurJxwMcLNfjRFQPHlLRBqJ0kSaOBDHTSmGfVDXwmnYJjA89i0P4Hkbp08CaJliRpZE3YQGcYOqUH9nPokw8oPbAfw9BPvlM/jIY0PYqisGDBAhYtWsSiRYv46KOPhq3s4WRRFVpVPzW5J57H9GSEEIj29DyzMwahZpIkjQYTsjNK3vatbHn2t7Q2HO+xGBGXwDm33MmMlWcMShmjJU3P1q1bu0w3Nh7ZYxMod1cRrBjY7CgeVwDDbGAzTMRG2AepdpIkjbQJd0eXt30r//rp97sEOYDWhjr+9dPvk7d968DLGCVpeiaKuLYPDpoxsB6X1ZWNBDQde2hsDTORJOnEJlSgMwydLc/+9oTbvPfcbwfcjNnXND2PPvoou3btIisrixtuuIHnnnuO/fv3c+edd7Jx48Y+ldWepmf79u384Q9/4Lrrrusyp+batWtZuHAhDzzwQK9zbY51Cxa3zUlpNggGTv1nV1RYiFcLYRnkZmxJkkbWhAp05YcOdLuT+7yW+jrKDx0YcFkjnaYHoLi4mF27drF161Zqa2t58MEHB3xeo9GU+GishoZu1mmobDnl49TlHKNV9WNRJ9SfhSSNexPqL7q1qW/dz/u6XW9GQ5oegKlTpwLgdDr5yle+Mm47oyiKgiOkEDDpFBSVn/JxAhUu/EoQe/zgTA4tSdLoMKECXURM32ZC6et2vRkNaXoaGxvxeDwAGIbBpk2bWLx48YDOazSzGgatWoDS3KOnfpC2yVDiF8qsBZI0nkyoXpdT5swlIi7hhM2XkfEJTJkzd8BljXSanv3793PXXXehKAqhUIglS5bw85//fMDnNVpZHBHU6C3EF9ac0v7CECha+E54znyZh06SxpMJl6anvddlby5/4JFBG2Iw1GSanuP+/tf/kHNgG9Prk7nhl1/u9/4tDT7+8cTvKbE38Mjjjw54zkxJkoaOTNNzEjNWnsHlDzxCRFzX5zCR8QljKshJXWUvXwCAqoGh939C5vKyWoJmHbuuyiAnSePMhGq6bDdj5RlkLV8Z7oXZ1EhETCxT5sxFVYdm0PZQkWl6jpuZlhye3Nms01zrJTalf1nWi/LCQwusg5TuR5Kk0WNCBjoAVdVIm7tgpKshDRJNU3GGVAJmnZKSKmJTsvq1f/2BAlpUHwnahP2TkKRxa8I1XUrjl1U38GhBCg8d6/e+os6HTwliT5k8BDWTJGkkyUAnjRsWs5Vm1UvL4bJ+76sQ7pM1ZfnSwa6WJEkjbFADXX5+Pueeey6LFi1i9uzZfOMb38Awws88DMPg3nvvJSsri+nTp/PUU08NZtGShDNzGkFFR2ntXwJWvzcEJgECFs6bPkS1kyRppAxqoPvmN7/JFVdcwd69e9m7dy9vvfUWmzdvBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bx0gQ3fWX4bkxVw+Pi+qqmrAndEsIusxZI0rg06E2Xzc3NAHi9XoLBIJMmTQJg06ZN3H333WiaRlxcHBs3buSll14a7OL7TBgCX34Tnr01+PKb+nVh7IvRkI+usbGR66+/nhkzZjBnzhweeuihYSt7JMyfMRVVKAhLuOdlX+XlleDTdOz6mBhSKklSPw1qF7Of/exnXHbZZfzmN7+hsbGRRx99tGPaqZKSEtLT0zu2zcjIYNeuXb0ey+/34/f7O167XAPLNdaZN7eOptfy0ZsDHcu0aAsxl2Vhnzc48xyOhnx0t912G6tWreqYIqwvk0SPZTaLCYeuETSFKCqoYlHytD7tV5GTh1sL4uhfi6ckSWNEv+7o1qxZQ0JCQo9fpaWlPP3009x4441UVFRQXFzMiy++2CU/WueBuCebkOWJJ54gOjq64ystLa2fp9Yzb24d9c8f6hLkAPTmAPXPH8KbO/BxaaMhH92xY8fYvXs3DzzwQMe+7XfX45lNF3hNOscO5fd5H1HuwqV4sUQPbI5TSZJGp37d0Z1s9vtf/OIXFBQUAJCUlMRFF13EBx98wDnnnMPUqVMpKipi+fLlQDiFTPvs+j15+OGHu1ykXS7XgIOdMARNr534Atj0WgG27HgU9dRnx+hrPro9e/YwY8YMampqyM7O5r333mP+/Pm88MILbNy4kdzc3JOW1Z6P7ic/+Qmffvop69evJz8/n4MHD5KWlsbdd9/Nrl27SEhI4Ic//OG4ntgZwGIy06j6sB2s6NP2Qgg0AUIRJCySPS4laTwa1Gd006ZN48033wTCM/Vv2bKFefPmAbBhwwaefvppdF2noaGBTZs2ce211/Z6LKvVSlRUVJevgfIXNne7k/s8vdmPv7B5wGWNdD66YDDItm3b+OIXv8ju3bv5xje+wWWXXUYoFBrwuY1m9mkz8CoBLN6+JU9tbfSjmMPvydJl2UNZNUmSRsigBrrnnnuO3/72tyxYsIBly5ZxwQUXcM011wBw4403MmvWLGbOnMny5ct58MEHmTNnzmAWf1JGy4mDXH+3681oyEeXnp7OlClTOPvsswG48MILCQQClJX1f4zZWDL3jHAzr2oO4m72n2RrKC+uI2QJYdM1JidED3X1JEkaAYPaGWXx4sV88sknPa7TNI1f//rXg1lcv6mRlkHdrjed89E988wzxMTEACfOR3f77bdz6NAh5syZ0yUfna7rHfno4uPje81Hd+ONN3bJR+dwOIiKimL//v0sWLCgo+PPlClTBnRuo92C6Wm8IVQMS5DS/DpmLznx+R49kI/HFMIxvm90JWlCm1AT+1kzo9GiLSdsvtSirVgzB/7JfqTz0bXX4Utf+hI+nw+bzcbf//53zGbzgM9tNDNpKhFBBZ9Z58iBgpMGurrcclxWH1FCThIkSePVhMtH197rsjfxN8wZtCEGQ03mo+vZ/z3yPTwmE1H+DL70w96fAwtD8PxX/0R+ciGZidO4+as3DWMtJUk6VTIf3UnY5yUQf8MctOiuzZNatHVMBTmpd5aUVFyqF5sriB7qPe1OU40HiyX8HC/ztBXDVT1JkobZhGq6bGefl4AtOx5/YTNGSwA10oI1M3pAQwpGgsxH17NpZ6yk5N+FmK0eaktcpEyL6XG7/KOVGNYgqlBYOrdvg8slSRp7JtwdXTtFVbBlxeBYlIQtK2bMBTmpdysXZKEJBcMS5Mih0l63y8vJx2sOERlUcdoG1gFJkqTRa8IGOmn8slvMRAZV3JYQx3YX9biNEAL34SYaTF6s6vjuoCNJE50MdNK4ZLE4qdNaUcr9BP3dB483VXtw6H5aFR+OmcM7nlOSpOElA500LsUvXYpPCeIwtVBysL7b+sN7ytGs4XGNy1Yt67ZekqTxY8IGOsMwKCwsJCcnh8LCwo4EsYNlpNP0HDx4kEWLFnV8ZWRknHDuzfFmzRmLQIBq9bB3x7Fu6w/uLkS36lh1lezM8T/ZtSRNZBOy1+XBgwfZvHlzl9Q/UVFRrFu3juzswZnvcKTT9GRnZ3cJqvfcc0+P04yNV5Pjo3HqKj4buHKaCAV0TJbwe+xu8hMq8dOYHMCma6jqhP28J0kTwoT7Cz948CAvv/xyt/x2LpeLl19+uSM9zkCMhjQ9nfn9fl588UVuv/32AZ/bWKLaY6kwNREdaubAx8ezGex+u4g4rY5axYVtupzIWZLGuwkV6AzDYPPmzSfcZvPmzQNuxuxrmp5HH32UXbt2kZWVxQ033MBzzz3H/v37ufPOO9m4cWOfympP07N9+3b+8Ic/cN1113WbU/OVV14hMzOz253keDfzzDPxKUEiLLVsf+MYoaCOrzVIzodlaHY3KHDOeatGupqSJA2xCRXoiouLT5qp3OVyUVxcPOCyRjpNT2fPPPPMhLubAzh/5VzMhoLfacLfGuQfP93DKz/5DD3kxmVXcAY1ZqUljXQ1JUkaYhMq0LW2tg7qdr0ZDWl62hUXF7N161auu+66Uz6fscpmMaGZoqk0txIf/Dc1jfXUB+rJ9G+jQmvCiB/fmRwkSQqbUIGuc3AZjO160zlNT1NTU8fyE6Xp2bt3b0dWg85pejIzMzvS9AC9pukBuqTpaffHP/6RK6+8siNV0ESTuWoVzaqHpJgF/CP+m3xsewQSZxAgxJnrzhnp6kmSNAwmVK/L9PR0oqKiTth8GRUVRXp6+oDLGg1peoQQPPvss/zxj38c8PmMVdesXcr/fvAOR5wuvpe7AUwRfDClBkwxnJ6dMdLVkyRpGEy4ND3tvS57s3HjxkEbYjDUZJqevnnhrU/J27qZ+cGp+JQAeaYqVl36Bc5fNnukqyZJ0imQaXpOIjs7m40bN3Z7c6KiosZUkJP67gvnriCQNId9phKOaNVYpi3nvKWzRrpakiQNkwnVdNkuOzub2bNnU1xcTGtrKxEREaSnp4+5gcMyTU/faJrK979yLf/ZlYfFrHH2QpmSR5ImkgkZ6ABUVSUzM3OkqyENowuXzRjpKkiSNALG1i2MJEmSJPXTuAl0Y6RPzagk3ztJksazMd90aTabURSF2tpaEhMTJ9TExYNBCEFtbS2KomA2ywSkkiSNP2M+0GmaRmpqKmVlZRQVFY10dcYkRVFITU0d9AwKkiRJo8GYD3QQnslkxowZBIPBka7KmGQ2m2WQkyRp3BoXgQ7Cd3byYi1JkiR93rjpjCJJkiRJPRkzd3TtPQNPlmZHkiRJGt/a40Bfe4yPmUDX0tICQFpa2gjXRJIkSRoNWlpaiI6OPul2Y2ZSZ8MwqKioIDIycsiHELhcLtLS0igtLe3ThKGjgazz8JB1Hnpjrb4g6zxc2utcUlKCoihMnjy5T1M3jpk7OlVVSU1NHdYyo6KixswvQDtZ5+Eh6zz0xlp9QdZ5uERHR/erzrIziiRJkjSuyUAnSZIkjWsy0PXAarXy2GOPYbVaR7oqfSbrPDxknYfeWKsvyDoPl1Ot85jpjCJJkiRJp0Le0UmSJEnjmgx0kiRJ0rgmA50kSZI0rslA1wfvv/8+mqbxq1/9aqSrclLf/va3mT9/PosWLWLRokVs2rRppKt0Uo888ghz5sxh4cKFrFixgi1btox0lU7qmWeeYf78+ZhMplH9e5GXl8cZZ5zBzJkzWbFiBQcPHhzpKp3QfffdR0ZGBoqikJubO9LV6ROfz8f69euZOXMmixYtYt26dWMiZdgFF1zAggULWLRoEWvWrGHv3r0jXaU+efzxx/v/+yGkE3K5XGLFihXikksuEb/85S9Hujon1djY2PF9eXm5iIyMFA0NDSNXoT544403hMfjEUIIsXfvXhETEyO8Xu8I1+rE9u7dKw4ePChuvPHGUf17cfbZZ4s//vGPQggh/vrXv4rTTjttZCt0Eh988IEoLS0V6enpIicnZ6Sr0yder1e8/vrrwjAMIYQQv/zlL8X5558/wrU6uc7XildffVUsXrx45CrTR5999plYt26dmDp1ar9+P+Qd3Uk88MADPPjggyQkJIx0VfokJiam4/uWlhYURcEwjJGrUB9cdNFF2O12AObPn4+u69TV1Y1wrU5s4cKFzJkzp0/TD42Umpoadu/ezQ033ADA1VdfTWFh4ai+2/j/27mfUHb/AA7gb4xWYweMNj3mT3JAMYoLLkopOeC22H3aTXbQygWFyw6Six4cpURzkCIHSflzIXmijKKIuUjK53v49l1fv3zn2e+b7+fZ0/t12p7tWe+tp8977fPZp6Wl5Z/vgPS3rFYrOjo64lsTNjU14eLiQnKqr/0+VsRiMUNfywDw+voKv9+P6enppLeBNPY7k2x9fR1PT0/o6emRHSUp4XAYlZWV8Hg8mJ2dRV5enuxIus3NzaG8vDzlBjsjikajcLlcsFh+7vSXlpaG4uJiXF1dSU5mbuFwGJ2dnbJj6NLX1wdFUTA8PAxVVWXHSSgUCsHr9aK0tDTpc1Nmr8vv0NzcjNPT008fOzw8RDAYxMbGxj9OldhXmRVFQSAQQCAQwPHxMbxeL9ra2qSWnZ7MALC5uYmRkRFDfOZ6Mxvdf7/5Cv5t9luNjo7i/PwcMzMzsqPoMj8/DwBQVRWDg4OIRCKSE31ud3cX+/v7GB8f/38v8H2/pqa2nZ0d4XA4hNvtFm63W9hsNpGbmytCoZDsaElpb28XS0tLsmN8aWtrSyiKIo6OjmRHSUp/f79h5+ju7u6E3W4Xb29vQggh3t/fRWFhobi8vJQbTIdUmqP7ZWJiQtTX13+Y+0olVqtV3N/fy47xqbGxMeF0OuPjcUZGhnC5XCISieg6n0Wnk5EHtN+dnJzEb2uaJgoKCj4cM6Lt7W2hKIo4ODiQHSVpRr8uWltbPyxGaWxslBtIp1QruqmpKeHxeAy/8OuXWCwmbm5u4veXl5dFUVFRfEGN0SV7fXALMJ18Ph8aGhowMDAgO0pCXV1d0DQNmZmZsFgsGBoaQm9vr+xYCVVUVOD5+RlOpzN+bGFhATU1NRJTJba4uIhgMIjHx0dkZWXBZrNhdXUVdXV1sqN9cHZ2Bp/Ph4eHB9jtdqiqiqqqKtmx/sjv92NlZQW3t7fIz89HdnY2NE2THSuh6+trKIqCsrIy5OTkAPi5J+Pe3p7kZH8WjUbR3d2Nl5cXpKenw+FwYHJyErW1tbKj6VJSUoK1tTVUV1frej6LjoiITI2rLomIyNRYdEREZGosOiIiMjUWHRERmRqLjoiITI1FR0REpsaiIyIiU2PRERGRqbHoiIjI1Fh0RERkaiw6IiIytR+1gCl1HQZKowAAAABJRU5ErkJggg==", + "text/html": [ + "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling: [y_like]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAUMCAYAAAC+y6wJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dWH3zsz23elVZcsyd24F1wBY2xjejUJCcVAAgkBPkgjJEAgCeT7IIUSEgiBhBAInYQSOgZjwGCwDe7dli0XSbZ62T7lfn+stNJa1cYGE+Z9Hj32zty5c2dWmt+cc889R0gpJTY2NjY2Nl9ClC96ADY2NjY2NgeKLWI2NjY2Nl9abBGzsbGxsfnSYouYjY2Njc2XFlvEbGxsbGy+tNgiZmNjY2PzpcUWMRsbGxubLy22iNnY2NjYfGmxRczGxsbG5kuLLWI2XzpuvvlmZs2a1ef2t9xyC8cee+wB7/+sfPvb3+aiiy5KfR44cCAPPfTQITufjc1XCVvEbA46s2bNQgjBww8/nLY9HA4TCAQQQlBeXv7FDO4wYNmyZcybN+9zPacQotPPDTfccFD6Likp4ZFHHjkofR0ImzdvZtasWXg8HgYNGtTp987mvxvtix6AzX8nJSUlPPbYY1x22WWpbc8//zzBYJBQKPQFjuyLJy8v7ws577PPPsuMGTNSn/1+/xcyjq6wLAvLstC0/Xsk6brO6aefzoQJE1i2bBlLlizhiiuuYMCAAcyZM+cQjdbmcMK2xGwOCV/72tdYtmwZO3fuTG375z//meZW67h96NChuFwuxo4dy+uvv562/1//+hcDBgzA5/NxySWXEIvF0vabpskvfvELSkpKCAQCzJo1i9WrV+/3mO+44w7y8/PJysri5z//OW25saWU3HjjjRQXF+N2uxk8eDAPPvggAOXl5QghePbZZ5kwYQJut5vjjz+eXbt2dXueju7EtuNffPFFpk6dis/nY9asWWn3DeBPf/oTgwcPxuv1MmXKFN599939vr6srCwKCwtTP20itnz58pQlM3DgQH71q19hGEbquB/96Eepc48ePZpnnnkmtW/WrFlUVFRw6aWXIoRIuXlnzZrFzTff3Ot1/+tf/2LKlCm43W7WrFmz39/l66+/zq5du3j44YcZM2YM3/nOd7jgggu499579/v+2Hw5sUXM5pAQCAQ466yzePzxxwGoqKjgo48+4hvf+EZau8WLF3PZZZfxgx/8gNWrV3POOecwd+7clLuxrKyMCy+8kO9+97ssX76cYcOGpQSkjVtvvZXXXnuNp556ihUrVjB9+nROPPFEmpub+zzeVatW8dFHH7Fw4UL+9re/cd999/Hoo48CSRF98sknefbZZ9m0aRN///vfKSgoSDv+pptu4ve//z1LlizBMAwuvvji/bpft9xyC7/73e9YunQpkUiEH//4x6l9Dz/8MH/84x+5//77Wbt2LZdccgmnnXbaQXHJ1tXVceKJJ3LaaaexZs0aHnnkEZ588knuuuuuVJucnByefvpp1q5dy/e//30uvvhi1qxZAySt66KiIu655x6qqqp4/vnn9+v8v/zlL7nttttYv349gwcP3u/vcunSpUyZMoVAIJDaNmfOHJYsWXIAd8PmS4m0sTnIzJw5U950003y9ddflyNGjJBSSvnb3/5Wnn/++XLLli0SkNu3b5dSSnneeefJb3zjG2nHT5s2TV533XVSSil/9rOfyWnTpnXaP3PmTCmllNFoVHo8HrlmzZq0NsOGDZOPPfaYlFLKX/3qV3L69OndjvdXv/qV9Hg8sr6+PrXtpptukpMmTZJSSnnnnXfKOXPmSMuyOh27fft2Cci//OUvqW1t19g2pm9961ty3rx5qf0DBgyQf/vb39KOf+aZZ1L7n3zySZmTk5P6PGjQIPnyyy+nnffEE0+U//u//9vtNe0LIN1ut/T5fKmfiooKeeutt8qvf/3raW2feOIJOWTIkG77Ovnkk+Wtt96a+lxcXCz/8Y9/pLVp+x3oSFfX/cgjj6T29+W73JfLL79cfu1rX0vb9uqrr0pVVbsdv81/F/acmM0h48QTT6SxsZFly5bx2GOPcccdd3Rqs2nTpk5Wy9FHH82mTZtS+6dOnZq2f+rUqSkXU1lZGdFolKOOOiqtTTQaZdu2bX0e69ChQ8nKyko7xx//+EcAvv71r3PXXXcxcuRITj31VObOncvMmTM7jWnfvjZt2sSYMWP6dP6xY8em/l9YWEhdXR2maRKNRtm+fTvnnXceQohUm3g8TklJSZ+vD+DBBx/kmGOOSX0uKChgzZo1vPTSS2nzY6Zpous6lmWhKAqPPvoo9957L+Xl5cRiMeLxOKWlpft17u448sgjU/8/kO9S2uUQv/LYImZzyFBVlQsvvJCf/OQn1NbWctJJJ7F9+/a0Nr09hKSUaQ/vfWkLEnn33XcJBoNp+7Kzs/s81p7OMXDgQLZs2cLrr7/Om2++yZlnnsm3vvWttHmXno7vCw6Ho1NfUkrC4TAATz75JKNHj047pqMLrS/069ePoUOHpm0LhUKcf/75/PKXv+zUXlEUFi1axOWXX84dd9zBzJkz8fv9fP/730fX9R7PpShKp++2q2O8Xm/aWGD/vsuCggI2btyYtq2mpuYLC56x+fyxRczmkPKtb32Lu+++mx//+Meoqtpp/4gRI/j444/Ttn300Uccd9xxAAwfPpxFixal7V+2bBkulwuAkSNH4nQ6qaqqYvLkyQc8zi1bttDY2Jh6eC5btozhw4en9vt8Ps4991zOPfdcTjzxRL797W+nidjSpUtTVkVZWRkNDQ1pxx8o+fn5FBYWsnPnTs4+++zP3N++jB8/nrfffruTuLWxZMkSRo0axQ9/+EMgGUVYVlaWNifocDgwTTPtuLy8PPbs2ZP6XFNTk/a5Kw7ku5w6dSp33XUXoVAoZU2+8847TJs2rU/H23z5sUXM5pAybtw4amtruw3n/sEPfsBxxx3Hfffdx0knncTjjz/OihUrePrppwH43ve+x913381tt93GN77xDf71r3+xdu1aJk2aBEBGRgbXXHMNV111FYlEgokTJ7Jnzx5efvll5s2b18l66Q5VVfnud7/Lr3/9azZu3Mif/vQn7rnnHgAeffRRpJRMmzYNVVV58cUXOwnUXXfdxZAhQ8jLy+OHP/whxx13XJ9diT0hhODnP/85v/jFL/D7/Rx33HE0NDTw9ttvM3XqVI4//vjP1P/VV1/Ngw8+yOWXX84111yD2+1m1apVbN68mZtvvpkhQ4awadMmXnnlFYYNG8af/vSnTmI0YMAA3n//fU4//XQ8Hg+ZmZkcd9xx3HzzzVx00UXk5uZy8803p148uuNAvstTTjmF4uJiLrvsMn71q1+xZMkSnnrqqU4Rrjb/xXyRE3I2/510Nanfxr6BHVJK+eijj8ohQ4ZIh8Mhx4wZI1977bW0Y5566ilZWloqvV6vvPDCC+W1116bCuyQUkrTNOVtt90mBw4cKB0OhywpKZEXXXSRrKqqklL2LbBj+vTp8je/+Y3MycmRmZmZ8vrrr08FcrzwwgtyypQp0u/3y8zMTHnyySfLjRs3SinbAxSeeuopOXbsWOl0OuXMmTNleXl5qv++BHZs2bIltX/hwoUSkLqup7Y9+OCDcsSIEdLhcMjCwkJ5zjnndBrDwoULu71GQL711ltd7lu9erU8+eSTpc/nk4FAQE6ZMkU++uijUkopLcuS3//+92UwGJTZ2dny+uuvlxdeeKH81re+lTbe4cOHS03TUt9LLBaTl112mczMzJSlpaXyqaee6vW6pez9u+yKjRs3ypkzZ0qXyyUHDBggH3rooW7b2vz3IaS0Z0ZtbA6U8vJyBg0axJYtW7p1yR1q3nvvPebOncu2bdvSglNsbL4K2OvEbGy+5MyfP5+f//zntoDZfCWx58RsbL7k3HbbbV/0EGxsvjBsd6KNjY2NzZcW251oY2NjY/OlxRYxGxsbG5svLbaI2djY2Nh8aTmsAjssy6KysjJVONHGxsbG5quJlJKWlhb69euHonRvbx1WIlZZWXnQEova2NjY2Hz52bVrV4/Jrg8rEWtLaLpr1y4yMjK+4NHY2NjY2HxRNDc3U1pa2mui68NKxNpciBkZGbaI2djY2Nj0OrVkB3bY2NjY2HxpOawsMRsbG5vDlbZioTYHF4fD0WWZpr5ii5iNjY1NL4RCIXbv3m1Xkj4ECCEoKSnptlxTb9giZmNjY9MDpmmye/duvF4veXl59vKfg4iUkpqaGnbv3s2wYcMOyCKzRczGxsamB3RdR0pJXl4eHo/nix7Ofx15eXmUl5ej6/oBiZgd2GFjY2PTB2wL7NDwWe+rbYnZ2NjYfAVom89LTetJmfq/lBIpJYZhtv7oGGYCy9TJys7F6XR+MYPuA7aI2djY2BwCTEuydHs91S0x8gNupg7KRlUO3OqQUmIaFrpuEE/EiURC/OEPd/PiCy+iqApOh4PikmKuu/ZHjB4zqvWg5D8i9X+Z2i7oEKTSuk9IQEoEIKSChkJLQzU5BV1nzFiyZAlXXHEFkUiE0tJSHn/8cYqKig74Gg8EW8RsbGxsDjJvrK3i1pfXU9UUS20rynTzqzNHccqYnh/yUkoM3SQciZCIR7CkDtIEC4RpIaSFkPDDH11HOBLhzX+/QFYwC4HgjQVvU75hO9OGT6JVuhBCYJomqqq1bUmdSyQbpDbJ1v+bikRXTHRFosWj3Y5z3rx5PPTQQ8yaNYs777yTa6+9lqeeeuqA79uBYIuYjY2NzUHkjbVVXPX4cvYNxt/TFOOqx5fzl4smpgmZlJJoJE4o1IhlJcCyEKaFYlmoUkUTGqpwoQoNRahIIdhcvpXX5r/FJyuW48oJEhJgCZj2tVOxBNz/5DO8+vwLZOfmsXXTJn7x+9/S0tzM3b++DdMwyMgK8su772TIiJEsXfQBd9z8C5597z0sBJvXb+D7532D19dsoGLHDi6aOZ3LLruMRYsWEQqFuPfeezn++OP55JNPcLlczJo1C4ArrriC/Px8dF3H4XB8bvfbFjEbGxubg4RpSW59eX0nAYOkx04At768nuOPyKeluRHdCINpoRgGqqXiEA404UZRNCwHRDWThGaRUAS6omAKBROVt8o2UjJkMImiUmpb+xdYKK0/plD45OOlPL9oIQMHD6auppozph3Loy8/z/DRo3j52X/xk29fyisfvYcqEyhYOK0wYOG2mlCkiduowmVW0tDQwNixY7nzzjv5+OOPmTt3LmVlZezcuZMBAwakri8QCBAIBKiqqqJ///6H/ma3YouYjY2NzUFi6fb6NBfivkigqinGW8s3MK3Ag0u40JSkaEXcJmHNIq4KEoqKQbs1o2KgSR1NxnFIA5fVjIKJy9iFZVns2L6DH1/6Y+KxGJOOnsKRUycxcepE+pdkYSUaWPXx+4wYPYIjhpUgE82cMfdkfn3dDezduQ30KFJakIigSNASBkKCPyrIiHhwOp1cfPHFABx11FEUFhayatUqoHNk4RexGNwWMRsbG5uDRHVL9wLWkXDYgeoOEnIaRDWFuHBg4QYkThI4ZBSn1YQl45iWgZQKEhWkQJEwfvgIdpSVIyoS5GbkkZOXx3uvfMjT/36KtxfMJxAPkOXOIjeSD4A/lolTOsmO5KXGIKQgK5ZDo9mE0AWZ0VwEEqXFjZAKDiMHYYW7HL8Qgv79+1NeXp7a1tLSQktLy+ce2GGvE7OxsbE5SOQH3H1qJ/Nd7PR5qHf4MYWK22rBbVShJXYi47UQD+OM62REHOSEcsgNF5ATyScYzSUjlsPokkmccuLpXPvTn9PUlEAIJ0JoRKOxtmiNjmdjysTJrFu/hq1b16Ng8p+XnqVfUT+K8nMZVFrCzt07aG6sRhMGz73wFAjwKDoexSCRSPDEE08AsHTpUvbs2cO4ceOYNGkSsViMd999F4AHH3yQuXPnfq7zYWBbYjY2NjYHjUn9g+T7HVSHuk8UnJvhYmyJD4dZg25FkZYKUsWvK2h6LgIniGQIvEQkowdJflYwUYSFAvzt7j9y571/4LRzjkdVVIKZQfJyc/nxVT9g85bNKFi4iQGSfjkBHrz7Xq764eWYpkVmRgYP//kBBAn6FeZw9eVXMueMOZSWlHL0tGmARNcsLI8gJyeHrVu3Mm3aNEKhEE8++SQ+nw+Axx9/nCuvvJJoNEpxcTGPP/74ob/J+yDkYZTRsrm5mczMTJqamux6YjY2NocFsViM7du3M2jQINzuri0t07Sord2L1GMs2tTMz97aDdBlgMdNZxVw7LAsvCa4436EdHcwnJL/UTHQhIUiBAIBUmJKAxMr2acCQlPRnBoOpwPV4UDVVISiIIRy0LKLlJeXM3nyZGpra3tvfIB0d3/7qge2JWZjY2NzgEgpqa2pxkxEcOjgUv3MHOvjFwEPf35rJ3Ut8VTb3IDGD2cWcFJxMSLiRECrpSVxCANNgEAgLRMdE0NIVKeG2+fF6fWgKPbsT1fYImZjY2NzADQ2NBGLNuCIW3jUABGfpMKlEBMepo1wccxQFyvK62kOQYnDw8TCwtaMHQKBhVMYqELBskx0aaA7VHzBAE63+7DJ0zhw4MBDaoUdDGwRs7GxsdkPEnGd+vpK1LiBV/hIeFQqPEnx0kjgNatJGAlcpsbxOf0RORqtNhZOoaMKBdPSMYSFM+jH5886bETry4gtYjY2NjZ9QEpJTfVerHgYl+lEcfqp8VqEFC8aBl6zhoQRx2U4yYjntwqTQBM6TkHS4hIm7uxMfF5buA4WtojZ2NjY9IKuG9TWVOI1BW41g8aASaPDiUTgtRpI6GFchqtdvITAJRKoCOIygfS7CWRl28J1CDgkM4XxeJxrrrmGYcOGMXr0aC666KJDcRobGxubQ4qUkn8/8ySxlkbcugPpCbA7qFLvCOCSEbREBUo8QW44H3ciaV25hY5HJDDQceb5yBlQRCDbtrwOFYfEErvhhhtQFIXNmzcjhKCqqupQnMbGxsbmkLGnso4n/nkTJXs1HMPG0uRXCXuSrkOPUYU0ICea3bquK2l5KUBCMQgW5hJQBOxYDKG94C+AAceAsv+Vi2165qCLWDgc5h//+Ae7d+9OvXl83mlIbGxsbD4Lzz3zb3at+A9Da0uITxxNg1vBaalkRutIyBg+w4vDDAACp0igAXGhEyzKI6BpsP4leON6aK5s7zSjH5zyOxh11kEZo67r3H777Tz11FOoqorT6WTAgAHccsstTJgw4aCcozfOPfdcFi9eTFVVFS0tLfj9/s/lvB056O7EsrIycnJy+L//+z8mT57MjBkzWLBgQZdt4/E4zc3NaT82NjY2nzfSksTKGgl9uofHb/89TW89x8ToTBbMKeLfARVPJExGSyPuUJyMsECNxxEyilfomFLHVRAgp7QItU3Anr0kXcAAmquS29e/dFDGfOmll7JixQo++ugj1q1bx4oVK/jOd77DunXrOrU1TfOgnHNfrrzySlauXHlI+u4rB13EdF1n27ZtjBo1ik8++YT77ruP888/n5qamk5tf/Ob35CZmZn6KS0tPdjDsbGxsemR6Npa9vxuKbV/W0Pjv7Ywq/loZuV9j1em5LAiksOsxW+iWPvm3rAwzRYsryRnQBEOl6t1s5m0wLotxgK8cUOy3Wdgy5YtvPDCCzz88MNkZWWltp955pnMmzePRx55hFNOOYVLLrmEyZMns3TpUt544w0mTpzIuHHjmDlzJuvXrwfg3XffZfLkyak+1q5dy8CBA4Fkxo7c3Fyuu+46pk2bxujRo3nnnXdSbU844QTy8/M/07V8Vg66iA0YMABFUZg3bx4A48ePZ9CgQV2+Hdx44400NTWlfnbt2nWwh2NjY2PTLdG1tdQ9vgGjKZ62XZMqV6/J4sz3/t3j8fFwS3r5kR2LO1tgaUhorki2+wysWLGCoUOHkp2d3W2bDz74gF/84hd88sknDBkyhIsuuohHH32U1atX873vfY9vfvObfTpXXV0dY8eOZcmSJfz973/nwgsvJBzuOrv9F8FBF7Hc3FzmzJnDm2++CcCOHTvYvn07w4cP79TW5XKRkZGR9mNjY2PzeSAtScPLZa1pdtMjBxUENbHdqHGdnmIKTcNAj0XbN4T29u3kfW3XAx2jHcvKypgwYQLDhw/n8ssvB+DYY49l2LBhACxZsoQJEyYwduxYAObNm8fu3bv7FHTXUz2xw4FDEmL/wAMP8Pvf/56xY8dy9tln89e//tUO7rCxsTmsaNlUh9WU6CRgbcTNvlkbafNN/oK+nbyv7brhyCOPZMuWLTQ0NAAwZMgQVq5cyY033pja1jHIQkrZZYi/EAJN09KuIRbrvSba4bRc4JCI2ODBg3n33XdZs2YNK1eu5JxzzjkUp7GxsbE5IHZur+TNp//SYxuP2rdIO1XtEDY/4BhkRr9kYt8uEZBRnAy3/wwMGzaMs88+m+985zs0Njamtnfn5jv66KNZuXIlGzZsAODpp5+mpKSEwsJCBg0axPbt26mrqwPgscceSzu2u3pihwt2xg4bG5uvFO8t+IAVbz3ApJZjINC21cSlrEOhAYss4tZoct0leNRAT12hahoOtyf1ORaJEp/0EzIW/gQJ+0hZ66dTfntQ1os98sgj3HbbbUybNg1VVcnKyiI/P58bbrghJVZt5OXl8dhjjzFv3jxM0yQYDPLss88CUFxczHXXXcfkyZMp7T+Ao6cfi5Sk5vp6qid21llnsXz5cgCGDx/OsGHDUkUyPy/semI2NjZfGf7x0F9ILH+P4dpsHppt8eOVY+mvf0CW429ooj1buyFzadS/xzazkE+bFzLxgkvpV1iAQ00Xn2BBEe5Wt10sFKJxb3KOybXzHTKW3YkaqU61lYF+iFMP3jqxg0lTNEFlYwzdtFLbHKqC3rSH4489xq4nZmNjY/NFYlmSe+68ntyNuxnU72R+PcPNRnUoJzjvxdu8mGhCp8QHSquxpFJLjuN2AjPvJyN4Bc26kdafqmkEcvJSAialpKWufRlRvP/x1JTMxFm9AiVai+XJxew3hdyBQ3oMFOkNKSV63MQyJYoqcLjUzzw/1RRNsKMu0mm7blpUNMS6XCxwOGGLmI2NzX818WiC++65htLNAmPE8fxsciG52yu5+oNfUxeVvMYIAPxanOMLyhiWUYcQyYKVrnW3MfDKZWwr30FmfgEOTUNVVRxuT5p46LEoppEudCgqicL29VdYEj0WxenxHtB1xCI6ofoYltlBVgTgSIBqgrRaXZiitbqzgqo6cDidOB0ONE1BUdPDIKSUVDZ2H8hRXNqfD9Zs6zYw5HDAFjEbG5v/Wmr2NvDY337C0O15bDyqlAeHjWD0thXMfOvNThZRyHDyUsVIzmJDUsja1nRVrkCIHJxuT5q7qyN9zYjR13aWZRGNJohGWjDMOMJUEEYXgSYSSDhRrBYEidRG2fqvISS6gIgQSCGwFAWhCBAKinCAw5/mQuwK3bQIx0387sNTLg7PUdnY2Nh8RjZt2MbrT9zCqJrhvDknwDOFRzM0sZYp77/BviEXSQQgWbh3MEMCdSnXIpE6cOT0eC5V7VugRnftTNOipamFeCKElAaYFoppolgCBw5MpecAE0v1gysBQiKkQJEgpECTCqolEFIipcQyTCxMTGkgZYSwokMvwSsAhtWz0H2R2CJmY2PzX8eidxez6tX7GRudyqOnaMwPHsOR0bfRVi/GF+/JLSZoMdxURDIp9TUlN3lzQO/5fA63B1XTOrsUO/asqiSEA0drLF08ptPcXI9lxcGwUE0TTTrQFCeacICqEneZxIVEjfXiypOCOoeXhNZVO4mKiYqJJiWaBQ5LwWW48egajT33DICmHJLVWAcFW8RsbGz+q3jumWepXfQCoxzHc8+pKku9E5nS8gyU13Di5lnozO+1j4bEaEp9HyUzz/c7Enbs7LG9EIJATl4qOrErGhUfe2vDqEj8SgTVSgZTOKQLnwxgORTCToNmDeKKQkI4kLhwJyyy6N0Scun1CKK0zoohhECgglABFSk0DKERV52YqgYOwCNRWnR6ilFXsfC5Dt8SMraI2djY/Nfw1wf+gPPTpQzMO4Ffz/Sx1TGESQ0PkrvVw5Rt56GpW3ozqgCwOAMplyD2Y02X2+8nSBEtdTWYhoEpTdaH11FnNOJ1FdHfOQ0FsJQYLY4WhGibH0tQSwRTy0YqfhRMnDKOx2pCyjjCAsjtdD5d1/njn+/ihZf+nQw2caoUF/fjJ9f+kNFjRiGFxBQmhmJiCoElZGuKLROHsFAVB4riwnB50GPdS0GmjHUZ1FFZWcmll15KeXk5LpeLESNG8MADD/SYz/FQYIuYjY3Nlx4pJffc9XPy1+/CO+gEbjo6nzolm9G19zBiw2AGV80kW6smIEx2+DKIhrsv++RRA2S7xxCf+TjuUadBH9IwteH2+3H5fLy+5XnuXPEnamL1qX157my+PfJKJvXrKtuFiWrU4LRaSAgdCweaBS4THLqni/bww5/+D+FwmFdfeItgZjKT/Ztvv86WjZWMH3Fs66xf0sQyTQtF1VrvlQnomFqYuCOBpSRQHA4swweyg2ALgfSoGEbXZpqqqvziF7/g2GOPBeCnP/0pN9xwA3/961/7fL8OBoevo9PGxsamD+i6wR9+fw391tVgjJ7BTccMIKJ46L/nDo7+9EgGV82ixFGJYuxm5u0XcdzJF/fY38ScOShCwcqe3GO7fZFSEorpPLv2ea7/6JY0AQOoidVzx4rbWVq1tNs+DKGTGy4gJ5JHRiwHl56LoHNU4rbtZbz25ivcc8d9BDOzcAoDr6JzzkkncMnXvsbzzz3GBd86hx9cewUnnTmLVauWsvDdNznh9BnMPnUG55z3Nco2VuOP5bB+wQYuOvFsCnSLDFrYsfUTTj16DKqzitqdy5g4YmyXpVgKCgpSAgYwbdo0tm3btl/37GBgW2I2NjZfWsItMR689/sM2upl+9RR3Dt8DNlWHY5df+X0lWfjiw1hqGsH1cYezv/TT3A4nQydfDShDypYXreAqNmS6sujBpiYM4cSX7LihhJw9nkcjeEEFY0RdMvk/nV/7rHto+sfZXLhZBTR2YawhImuGbhMgSYMVEi2k2BISbKGtGDNulUMGjCYrGAWqpYATWIIkVzfZklM1eLjZUt45423GDJgEDU1tVx44kxeeep5xo4cyzMv/psrrv42i99ahNI63yaEC6/pJDPhQ5UqueE8wtFaGhoaGDt2LHfeeScff/wxc+fOpaysLJV6CpJLB/785z8zd+7cPt+zg4UtYjY2Nl9KKnZW8+w/fsYRu/vz8cxcHimdyiBjM/Gdz3D+iktwmLmMcZezU6vjontuSM3ruAZlMqDfWPp5h1Eb203UDOFR/eS6S1LComa6cA3K7HUMlmWxu7qORsMBwMbG1dTHOxcA7khdrI4N9RsYnTO66z6FiQpY0kA6FJxeBx6/D6U1PF+Pm3gCTjSnQl7/DIQQlJWV8fWvf51oNMpxxx3H9OnTOXbGDKbOSCYaXrzqE46cOJGjT56FZZrM+85FXPuLn1GxdzcKBgoSr2IgkajCBCRCOFDMzG5LsRxzTLJvKSX/8z//QzAY5Pvf/36v9+xgY4uYjY3Nl45Vy9fx7r9+w6iGcbx4oocX8mYwNr6YcPm7XLzyclTcTHDvoKogwcU3/jTtWKEIgmcOoe7xDeR7+nfZf/DMwclFwd1gWRZ1tTWYepQWKyO17KwxXten8TfGGrvdp0gVb24Qt8/R5X6nW2Pa0VPYunUrjY2NZGVlpUqxPPLII7zyyitA96VYFFXF7fMhhCCntJCGeAipChw5HsJNLURjIUDiFQYepeslAx0DPX7wgx+wa9cuXnzxRZQvIBTfnhOzsbH5UvHma2/xwWO3MSZ0DP84LZMX8mYwKfwKbF3KvJWX4URlgnsX4fF+vn7jlanjLMtk17rVbPjwPWpFJVkXDkfNTHcZqpkuci4aiWdM52hASIpBbU0N1VU7EeEwqunDEgpeBBkICl09L4puI+gOdrldkSoO04Wi9rwu7FCUYglFI2QX5fPy26+jaCquAj+mU/ZYiuUHP/gBW7du5YUXXsDp7Lv79WBiW2I2NjZfGp549B9EP57PcP8c7jjJySrXaKY0/xNfWYzzyseT5VlIELBOOZljTj4+ddyWJYt555G/Eqpvz8buz87l+G9dTmneWKyWBErAiWtQZrcWWEtziEZjD6oOTsWN6VaIKRqDdZU2m6kgeCT3uvKpjld32QdArjuXsZnjsehs5fjjWaiqgqMP67K6K8Vy/fXXs3LNOnTTIhQz8LnUPpdiGThwIMcddxwADpeTjNzsbkuxfPjhh9x7772MGDGCadOmATBo0CBeeOGFXsd+MLFLsdjY2HwpuP9Pt+FftY7c4hP4vxmZ7FZLGFP/IGdvbGFe/FP8agdXXkY/OCVZ9mTLksW8dPft3fZ71rU/Z9i0rotUSkuy8d11hD0higsL0JxeBKJ1vZUgQ3o61Q1bUP0uP1vz827Pd8vo25iRNwtTmIScDSS0KKoAXzQHl+klI8+D29u1K7E3uiup0i/oJtOz/5ZSeXk5kydPPqxLsdjuRBsbm8Ma0zD53W9+hrqpAnPwMdx4XCHVah5HVN/Jhat0vqu/RY3iYQ3D2U4JFgKaq+DZS7DWvcg7j/S8bmnho3/FstIT81qWZP2LW3j3pwuILapHk048IkCm9JIhPWRKLwGZXL+1r902J38Wvx97O/mu/LTtea78lIABqFIlM55LnnSTZXhx4f7MArajLtIpoa9uWuyoi9AUTXRz5Jcb251oY2PzhWFZkqotjYSb4/gyXBQNC6J0cOetXrWGF154FomXaJ4X9FpOXtrMlqyNTCk7llGeF/gj36FZtCexzaCFU3iXUZRhvfJTwvVH0HXC3yQtdbVsevjv9B87Ae/kSZStquPNv68GUwEU3JrFOEtgyi7rNHfJnPxZzMqbwZuNK4jF6sh25DI2OB5VdOEmjOZgqhGC2c4DFrDeSqoAVDbGyHA79qukysCBAw+pFXYwsEXMxsbmC6FsRTWLntlCuDGe2uYLuphx3jCGHJnPkiWf8PrrL4NU0hTDk4gzfs9gMtUoL6kzO/XbjJ9n5RkcEVuD1RDDm9GfLMNP3ApRG9udKlTSkcqH/gaNIaoHzWDNgPMQ+zipJBCzJG4Jjj5qgCpUZmcNJ252UUIlrXMFIZU+Z8LvinDc7FNJlb2RBH6Xhk9VDtv6YPuLLWI2NjafO2UrqnnjwbWdtocb47zx4FrGn5HPgmUvAlonk0e0bqh1R1Nb9m0Bki3acHx71iDYhdW6kPmovDNYXreAisjmtCNcuoFEsLng5B7HHbEkmlPBUECzwGvKHi0yp9SJ97C/jUzCOC034OpD6870tVTK3pjOXtPEoQj6uRwEHV9+CbDnxGxsbD5XLEuy6JktPbZZOn8VUnQWsBQCpBB020AIpMOF6U26GaNmCx9Wv0hdrIrp+XMp9h6RbCcl7oROdjhGY3AoCXdWSiS7QgJ7XIJKj8JOn8LWgEJzl+VPwJIWluzbI1YjgWjYDtHGPrXvdHxf12e1NtMtyY5ogka9+9IxXxZsEbOxsflcqdrSmOZC7ArZx8zxvSG19DmmFfULsKTFkTlzUlI1qrIOAcScfYuIVqx2d6QhBBXeroVMEQqaEuzRUkti4hCt81lNu+mxLko3+FwqDrWXx7kiYJ82lXGdwyhA/YCwRczGxuZzJdzcu4MtKA7MrbYvwkgvvBI1W6iL78SnZdDfV8CZJRsYFqhlyRGCv5wW6lOfVhfryPZ6RKeZtoRhUrv8E2IL30Rf9SnSNDsdB9CidDjS0iERQkqJYYTQ9UYMI9Sr0Agh6Bd099hGuju/GOiWJNzLXNrhzpffIWpjY/OFY1qSpdvrqW6JkR9wM3VQNmo3i4Z9Gd0LVJFDMNaj4lJyeEa6CBPvwWMoun+4S4kwEqiRlk67XMofcCvnc0q/anxqHW/O9HJXqR8hy5hc2YAvEezWpWgqdFk92RCCesJkSQ+KUGh6fyH199+FVdu+6FnJzcd71bW4jp2d7IukgMWEQhg3fpLWmG60ENMrkFa7AAvFgdtVhMPRns9R13Vuv/12nnrqKVRVxel00q+klO/84GcMHTmmfXCKSAqY1rXNoh+gJRYOhzn++OOJtZaqKSoq4oEHHmDgwIEH1N+BYouYjY3NZ+KNtVXc+vJ6qpraQ7yLMt386sxRnDKmqFP7omFBfEEn4cb0dUtFDsEUb9JaEAiO0o9ggWMN+64mlkhq3bX0c7tJNPiTuzpG2rU+lF17d3UpRQG1jhzH7ehWfywBd/YLJg9T4MOBz3PS5stSi5n3pdnbvZvTUECxFEKLFlL76+s77bdqqwn97w3wi9/iOHY2taqVst4MVKSEmOZCNzvnX5SWTjS6E+ifErJLL72UUCjERx99RFZWsp7Yyy+/TNPecgbPOIqQYbBXN0BVMM1kUuGucBxglKLH4+Htt98mEEjOO95zzz1ce+21PP/88wfU34FiuxNtbGwOmDfWVnHV48vTBAxgT1OMqx5fzhtrqzodU1s7n9zxj5JUp3ZX1lhPq4C1PlQHWfnM0cfi6xCxV+Gt4I3iV3m/6H2ezprPxwUfE1XTzy2MBO6KMhwtjfucWRLQYpT4mgBwKDtZ7naxV9NSIrg9ZzXzj3iYsDP9WEtImr0KsR7i6zULpGlS++e7um0DEHngDwjTxNFh3ZmQTuqMASR68aLG4lVIKdmyZQsvvPACDz/8cErAAM4880wuuugi/v3043z73Ln88uoruHDmsaz99BM+fHs+5884hm8cM5XvnHYyZRs34FAEyxa9z+TJ7bXT1q5dm7KmysvLyc3N7bKemKIoKQGTUtLc3PyFJAC2LTEbG5sDwrQkt768votVV+3G060vr+fEUYUp1+KevW+wbt3VuPOh+JgG9q44HyOaTY4m8HThfhxk5TMgnkdF/VIWmS/z8Yz0QpOVvkoqPZXkxnKZVJZPXp2CGmnpwoZKjnJ2wTbaTmMhKKOEklABMTVGrbsWRFLIyrPXUNQ8BK+egS/DwUD393A7unYyOkwD1TRQzQTRNRsxa7vPmwhg1ezFWLsSz5ETcSPQpEXcykbRYgil63mz1FVYOqYZZsWKFQwdOpTs7Oxu237wwQe8t3QZWskA6muq+drUyfztldcYNnoMrz77ND/79sV8smo11b1YYnV1dT3WEzvhhBNYs2YNeXl5zJ8/v8e+DgW2iNnY2BwQS7fXd7LAOiKBqqYYH2+vg2wXb5VV4657jImagiosAiUr8PdbSaR2GJnVk6HypC77EVKyeucanvxa67n2feYqUOupZdHQBs7dVYxAoAkTQ7Y70AJanNkF2xiWkXTVrWcobzCL5liAaa3dRtQIq3JWUemrRApJZeZWAIqcRfiMzg96p6Hjj0dQW92XhkMj1rC7D3cOrPpa8lCSD2ChYKkQ60XA2pAyGRbfcbFyl/XEjj2WSaNG0qgbfPDpJwwfO5Zho5NzZXPPv4DfXXct0dqea58BvdYTe/vtt7Esi9tuu43/+7//4/777+/TdRwsbBGzsbHpM5ZlUrFhHaHGBsprTYS0kF1UKO7I9z4toy6v1U/m/CnZspZLeJgpLEEoEl/+Zhya0q2IvVG7mNVD6jBdke5PIiDiMdmbHaeo3s2YzEyOyFhMyHDi1xIUe5tSFth6hvIsZ3TqwmN6OKr6KD7O/5hKX2Vyo4QsIwOfqZEbtah3JCsoOw2djFgXZU+yszpv6wIlO5eO8SEK4EajL9kNhdA48sgj2bJlCw0NDb3WEws6NEpcDryaSn+PE4cQyYwdJIVQ0zTMDpGTbYEaPY8hXdQVReHyyy9n2LBhn7uIHVIH5q233ooQgrVrO6/Mt7Gx+XKxZcli/nb1d3j21z/ntT/dQeWTd/OtXY8zJLytx+Ma9okoqCebe/gpy5iW2hbN2oTuqkeSHu69M7yJptCHSEfXdbL2JeoyKfYewRHBKyjyaIzIqKHU15TmQnyDWa3exX1zISY/j68bDzJpAQKcV5fM4uEzYWiLRf+wRUYsgqBztg513DhEXte1yNpQ8grIHHdkp+3CdCOsntfHCcWBqvoYOnQoZ511Npdddhm1NXWYhoVpWIRC6csEpJRYMYNpE6awZtUqqrZsxq+pPPPMM53qidXVJa3Uxx57LK2P7uqJ7d27l/r6dvfu008/zbhx4wjFDBojCUIx43NZg3bILLHly5fz8ccf079/15VTbWxsvjx0V87Eb4Y5tfpNXs8/mTLf4E77pVvFytqnBIhQQFr8k8uYxDIULBCS6hFP0G/VNanIQEtaLKt7G4FgijINpWkv9VoT67xbsUTXD0dvXGVizhxApV6/ggT/IWJm4VMbKHJuYIfoRzOB7sP2EXhNL7mxXFRHNZfv+S4T5HBapIluxVEt0FAQyr4FWFqPV1U8V19D5JZbur2X2Vddi1PrLFYC0GI56N7u59RiEY1Q0w6EhN/936/4471/5qijpqAoKsHMDHJyc7nm6ivZurWMRDRGvKIZBYUs6eDh3/+Red88H0tAMDur13pibXRXT2zjxo1cfvnlGEZSrPoPHMQtd/+FbbXtQvpZysD0lUNSTywejzNr1iyefPJJZs+ezSuvvMKYMWO6bBePty98bG5uprS01K4nZmNzGGFZJn+7+jtpBSU7IoGQ6ufR0nlprkUJ6BOysQo8nY5RpOTIBpPvxp6lwLWOaNYmJBJ3xTHkrr8EP26qozvZ3PwpE3Pm4NUyWvu0qMr9lPl58/nUtZOyuJK0hyT4YipXfnQUJxTNozJhsSZqEuvwdHOJZnIzFrDS03v15QnafI6OnMH2lnzWyxWM/uY36VdYgENVEUJgOpygdm8D6O8vInrffcgOGeDV3Dxyr74O/4zZ3R4ngQYliuUMoyk6bi35fJSWQEa8CN2DgooQCgKR7taTydTGSWtW4FRcyEQEK1oPssN8m1BRc/NxFvR+H/paT6ytDEx3DMjxditkn7We2CGxxH75y19y0UUXMWjQoB7b/eY3v+HWW289FEOwsbE5SFRsWNetgEHSggiYIfrFqqjwFAMQ9DupHupPEzBhWZRUlTO1qpG5exxk6RC3huBWxzAgs4JIv9dYE2nkHdciCqxsCuMK0/PnYmKx2ruZiuwVULKYgYEmjhZwNNBoCD7Z05+WpgGM3JmBis7KxnVs0z0oWjGig6jGZQbbo7PBs7rXa5bGNNa3ZLG8+kW82enuQSklSiKO5aRbIXMcNwPH5ImYa9Yg6+sR2dkEx41E82dhWTEUs3N2jRYke5EYlhNiyQe+iiSo6qiaRHeB7hGYioKFwBJJAZcIHIaBIiVSgFQEpWFnUsAiXQRuSBOzpoq6WCMikE0wmF7+Zn85VGVg+spBF7GPPvqIZcuW8dvf/rbXtjfeeCPXXntt6nObJWZjY/P5YUrJx40hqhMG+U6No4J+1A4Pm1BjQ5/6uX5mP+TgCeQH3Lz68XweKshL7Ru2bR3Hf/gqGeFmAPaVEX9tnONDFXwtYzWz5XJeih6LLzGDd1zv8MiQBdS2rdtqgmDIzdwMnSHNLmRYY5q3hoy9U9lYuYNqs4Xq2M5kW+HH4Z2N4hyK7mzCUhIIy4FiOrGURNcuRQke6WSVzMBXP7/HoAFFT2ApavpCa2hdbC1RBCjjxqK6TJx+A6kY6CRFRUgVLZqDaniBpIBV0Dn9k4mgznQiXRpoAhUTFQNFWqhSRzNMnAlJx8xVEjCkghap79RfR7yhOGGrjupoE0J1kpNbgLaPm7Mv9cT6WgYmHDfxuw++3XTQe3zvvffYuHFjygrbvXs3J598Mg899BCnnnpqWluXy4XLdXBypNnY2Ow/r9Y0cvOWCqri7SmOilwO/m9YMafnBQHwB5MRdwJBrrsEj+onanauzXXk8P70G17IPXdfz9BNVWSfO4R6l4Nh29dz9vynehxHyHDyUsVIJkd3s7E5n5ARppY3oBZmV/lYMirOzsJk6ZWMCh/ht7Ipi3V8fK2hkyrJEFHrHWI5e5CO9nEKs/W4fae1WpscYwxndXwVsX3yLnZCSrAs6FgHrHV2RujJOEPVZeLK6NyPFGZy7iuSj2J42dvlart2lGgcxVUNUkGiYiFwWCousy3BsWgNRlERCKJmlIDsJWRfWjgVHy5TJZGIULtnB0JzkZNTiOboewLmvpaB6Wu7/eWgi9gNN9zADTfckPo8cODAbufEbGxsvjherWnku2vLOz0+98R1vru2nIfGDOT0vCDFI0czNH8SI11TU3NTABGjOVWbK5CTizOrmHt+fxX9tygYI2aDoxlhBjnlvVf6kMk9WQPsk/qSTnu8MZXZy/NYODFpxcxentepTVuc4L7n0aJhvOUriRf0x8hIirFUWtdZSQ0p2kuR+HAxTR+GCwchLQbeQJe5FzuiYGGlJXSSCD2BaA1Zd/p7LnViuOswQx6MXkRMSpXMcD4OqSCEigRMpZlkBkaBEE4U090hVZabkM+LO16PZkS77bfWqWB4FTLjXvwxhXg0RN3eHQinl7zcAkQf3Ix9LQPT53Ix+4m9TszG5iuIKSU3b6noMdvGL7ZUcEpuJon1DUz0ndCpRIhHDTA9fy4fVr9I4ehpLLr3PiY1jmLJ0RoPDh1BXtkeitaX4Y73LATtdP3AFAgkkqnrslOeu31zZ4jWcXcVMygMHXdFGTGGJIWstbGUgl0iTtQZ5Yh4CZP1ASxxbCEs4oAXBgxH6AmcPYxfmD40CW6lGd000DssilYdVmsUY/dIxcRQ68DsfX2ZJbTkvZAxpNWCYnS0bBKgChDtc21SUYl68vBEa7oVMk2JEhVB9riduFwxgm1iFm5mr7EDjzebzGDPQXZtZWB6cik6VAWf6+CU19mXQy5i5eXlh/oUNjY2+8nHjaE0F+K+SKAyluDhlbuY89JuHHRe4NqWRf6YgrkouyxGK7UoWQ0UVWSzMl7F9iqdfNGE0WrRfJYpfYHAH+/5cdVD/Uwk4Nq7EyMQTM5hCUDVKZUuiLuAEO861nXqQ2oOEsH+yJ6sCOkkZuYiZAN0XK7ci4C1oYm+1H4GrzDRrDgxs6uSMRbSbAJVIPYpYxNzZeHvQsQsoWBIE+LVeDQHhhpkr9tPoytGTiyAN2YSb6qhzoiQk1vY7bjaysD0FJ3YL+g+JEEdYFtiNjZfSaoTPbu5lL1RHOsbeC2xl1PxddtOCIFHWUzQ8Vc0kQwA2MtQJtYez3CnD5wQzUhaNK69O7tIyptcgFzpLiKievGaEfrFqlB6ca/tL4KkRaZGWjB9GSmjct/nqiWgKjOXiNOFNxGnqCl5TVLtzoqwOhybCbRHA1oG7ClLEG228GQo5A9ydBkF6COGAwO9h8exA0Eg001zQ1OP1ynNFoSWLmJS0TBVF6qZLpZxVzb+uAeflCRcjTRrtXg0DV3NptLjwu+KkBcOYkZ7X2ie6XEyICcZhdjRIvs81onZImZj8xUk39n9n76yN4pjZTKyLacX+8mtLCbH0b4IuruUTlJzECseAvtkl9/qHcSinGMJaf7UNr8RYkbdBwykFqk5UuJzIO/xlhDsLhpI2BvAF2kh2zAwpEBFdhKw7XlFfDhkHGF3+7IAXyzKGRWbAZGqNi2EglNxETejdEx6JFAwHV4wYlRtCrHynQZiLe0PdG+mwpSz/PQf2y4yhoSEhH6ijh2yoNvryEcgLRPTaH/50HWdP/3lAV545RVURcXpcFBc3I+f/vgmxo6etM99UFMzd1JRMJx+nC4nitRJ4MSVyCIvIYk7GtEde/E6vISVIJGAJDsSpjdn52WXXcY//vEPmpubEQ4/hmWhKUkX4qGywNqwRczG5ivIUUE/RS4He+I6WJL+tQaBiEle7W4+qXWiCwUQ1PVoEZkEHX8FkhZNKqVT24aOCAFSEi8oRWtpRJAUsNfzT+7Ua0j18XrBycx2lDFATYb3Cz2Oa89OtHBzsuBlF6ORgOkNpISvrKCUd6afTsjfXkjSE40wY9saBteml4jZllvE/FFTO/UZdrn5cOhYzlUNTIcLTB0prVYBo9WFl5Fy4WUoMZZtU1j/n841wSJNFu891szMizNSQtZoCrKFICgiDGAvlTInZZG51ThOxSTD0vCbHgyZPuf0o+tvJBwJ88q/niWYmbzG+QveYdPmDZ1ETM3NwaFlIzQHii8Z1h8LhYk3tOBJBjYSkw5cehZ5uiTkbsChVaCpGcR7yY358ssvp4RKCHFIwuh7whYxG5uvGIaRYNWbr3FN+Q4+qBEc0TCSjHjbe3o244TFOx6drU6TPUoDy2mmABdFVhZKB/lwKevQRC2WVKiMj6TcGkpMKWaAcx0F3griToUdsoTG5kJAASGQDhemN4ASCbEo59hkR10JHpIleimlSgOKAKk5iZUMxdVqye0bwKEHgsQL+iMdSbdVd6IUdXuYP2oqJ61fmhIyC/hwyLgexxLXnChIpCIQaZHrFtJsBDWIEC40K07Zmz2vq1r2UojSkR5UPYuo2pB6CGeKCBlECGluLLeFEO2iFZcqmtYelbmtvJzX33qLTxe9lxIwgJPmHI9Qs3j6X0/w4svPkZubx+Ytm7j/gftobm7m5z//OYZhkJWVxV/+8hdGjRrFggUL+MmPr+X9l98GIVixcQsXX3YeSxd/yobqDZx70lwuvewyFi1aRCgU4t577+X4448HkmVabr31VhYsWMDDDz/c43UfKmwRs7H5L8WyLHbs2EEoFMLv9zNgwAAWPfkIn77yIrL1rT658OUtdNckHN7jsJA0qBZjRCOTnNtxKwmWt/bnky6O0o9gkJUPgEIDZbGjWNT8HcJWMqtFJiCUEoZn/J0h7g9pcrp574jhbK8bRkNdMZmZ1WhDolTWZ6W5EDsjiOBirxWgSGlOuhMNHSOQhenNwFVXhWhdx6UHgklXZdt104soScmHQ8YysLYKheQcWEcXYuehCCwhMFQVh1ARZpSE04WlKCiWhTMRR5rNKFo2e3bqxFt6nm+MNFns3OBi4AAP2RhY3ibCpkCxJKaiIlWjc4CJMNHNPWguF0ZcsHbdegYN6E9WMLhPSxUhkkK+5JOPWfDqIiZMHUNzqIFRo0axcOFCxo4dyxNPPME3v/lN1q5di6qqaE4H/pJsGvbU4BYGCFCki0AsSH1DQ7f1xK6++mpuueUWMjsI6eeNLWI2Nv+FrF+/njfeeIPm5ubUNpeqInZswiH3DYWWmPFPqFcsns+fRo5axyxn58z0YeIscKxhjj6WQVY+OxL9WdxyHZZRAXIjCB+KVkzYyuaNxp8xzvsyA11LOW3TGq4dfRL5wzczTvsQgJaqicn1yWmjIJks2KVC3ERpSOBsqccd2gFCSc2NoSjECgcgVQeYOmYgCxAp06wvohR2e6nKzKW4qZaIs28JFyyhEHc4CPkyk5k6WlEsk4xQE27DpLY5A+jsStyXSMigRUQJ6AGcRga6uw7dEQHZFkvZNU6/jhF3tl5Gu9SV79jJd6+5hlhM56hp05k66SimTTmaCVPH4PY6eGvBEiZMmMDYsWMBmDdvHldffTVVVe1uVUVVySkuZFd1FSDxCh1NmN3WE6uoqMDpdHLGGZ3nQD9PbBGzsfkyYpmwYzGE9oK/AAYcA60P1vXr16cylHckbhjQRXAFJB+bgegKCsNZHBusBbQurJhkw48dm+kfy2VJUwvxltdAhlJ9mL58FO84NKU/qyJnsjpyFj6llotXPcvZx9+AZpmMqq0ns6GYUl1ht2YhBZj5bvSRmdBhPsUZjdG8uR85jY72IbRGObortxMtGEB1Zik5Snrevr6KUls7b6JvIe6mIoi4O0dqWopKY0Y2wZYYbr+jiyM74w4kv6uwiOGUfpzRfOJGM9LTc6ooFAvVn8ERR05iW/kOGpuaCGZmMnDAIBa89j4vvv4ib7z5Ot5MJ9m5mbi9yfFIKbsMsOiqnphhmiiqish0Ind2vQxDCMHChQt55513GDhwYGr76NGjeeWVV1Ji+Xlgi5iNzZcMueZFIo/eiFHXgOY28eYlEMF+cMrvsEacwRtvvNH1gV0EV6R2AQLJCZGlxPKGd39ykbTIPmQhkeZPkuMBEjlFJLILQNOARqARxXTibx4K8WyW1l3FvKU7ofoydkWTZz4faBYWLwxS2Tkh2OlUCbeLN8cdkzZ/1Rbl6K4oQ9RUkRNPQFFx2nF9FSWldZlBUVMtvliUsMvdWbgBpESRkoTWc5h4s89FXqmKJ+Ag2tL9GjxPhkZufy8IsJAY0sSBioZKT4muwvioIxfTo5E1fiIzTz+Da371a+7+/Z8o9GYDEI1GUTWlU9qoo48+mu985zts2LCBkSNH8vTTT6fqiZmmmaonlpOTk6on5ssMkFWSn6ondvHFF6fVE7v//vvTCmAKIVi3bl2qGOfnhS1iNjZfEizLZPPdP6fqpbdxhN1kh7OSNag8JgUTG8hovoQds/6c5kLsRIfgCq2LlEpS65slsbt5Gyqt81GFA6CL4ywlQXNwPRmNo3DFsxmwI5N9lyR7paRhlC81tn3Huu/8VUch9m1dQwAP7Q4xi8zManKc5bybmECLw9etKAVCTVRs09kSGI4HndJ19Wyc2C+ZlWSf8iYIcJgGllB6DPO3FIHuVJhwYn8+er6s23ZjT05P52RhAWqPBTHD+KgmfcHx//7lr/ztzt9z1lkn4RAKWRlBivoV8vObbmTDhg1pbfPy8njssceYN28epmkSDAY/cz2x9lskMc3kWjLDCCGl75CH1XfkkNQTO1D6Wj/GxuarxpYli1nwwJ8IR9qzNbgTBqMqaylsSm4rnt7IjiPG81z06F77c1dsw9GcdF21haYb/kz0YG6PdbLa8OzYhFTV9oCK7h5aEoSpkl1zFIpIf0ibiS2UZZbxzFkX9nq+M1d+QHFTetSfZ8cmBokSdpRm487dwpChy3C5klkjljGNe/hp57G1Pu7Omv8U/Xbu5NHSeQzVNc6OONlY7OSNSW5CnnZB9sUinFGxhXPHjSQweBiiF1dlMGziSUh2b2pg5Vs70ywyT4bK2JMLKB6Z/mzLtLw4WldxRTJ2odA5ce9OBmD2YHMolqQoJMkpPrgC0ls9MV1vIhavQlrt1ykUB25XEQ5H34I9Dst6YjY2Np8N05Is3V5PdUsMffdWtj92J4q00h7IMYfK8gEFTNwBhU0h9q4I4C/eTY/1Q1rpGNnXMTS9dyQOJYoSaSEytJsIwLQTgdRMIvpTeJiG6hyWvL7EFvTwy4SLxvXprF3Nc0nNQSwRYmrQhz7qvbR9U1jCD+UdPCYuo572emC+eJTZS99m+Pb1ABRHq5ijJytSj6zQGVRTw8ZBlWkZOzL8foQc2adxKq0xMyXDsxg42knN3j3EWoxUxg4hTGKxBKbpBAkKAq1DAuFmK5egsjetzyjuHgUMklZgIkP/XC0gXW8iGt3Zabu09Nbt/fssZJ8FW8RsbA4z3lhbxa0vr6eqqT1gwV96ETPqPmBoZHt7w1bX2vp+ORQ0hTEiGoU1NbiLIWp0k0tQSjB1LM1BPKeIRF6/vg+s1bWWo22k0RvYD+EDqRrozS9jmUejuqagRxYC4OslS3wbXc1zCUOnNr6L/kcsTV7rPhc8VSxhklzGOn0s6yuPhkYXRU31+HZsSrWZaWwlIIemPlvWToqbGjudS7VMFGn1uPRbsSROI9lCcUTQ/LUUBTTSH7MWHk8L0WgA03Dik+7UsA0BDYofdJ2gUk+btvUmYG3UGY344woZrtYq2K1uPikNhNBQ1f230rqrJyalJBav6uKIdmLxKjQtw87YYWPzVeKNtVVc9fjyTg/LkOrj9fyTObX6zU5CFnM6qPd5yPeUEkejkhay8LcuCG5/gKTyBWpO4sWD2zfu85Cx6Jw/UAEwDTx7diIdg0mU7J+733S6Ed4AMvIRZmwFkBTokqpy/KEmQr6MbuevfPFoKodh2zZhJFAjLXiLwpiexm7PqwqLcY5VjBuwiniBl22bJxDb0C6cp2nrWJk4pbVbCyuyGujfZV/eRJywq/vQ/cyIlbrbDm/PUYZudxilJQNXh0dw1AKQyLgLmn0Ip46CjlM16TXvEyAw2RPeQ8AZwDCaO7v50NC0Qtye4GcWFtMMp/XdFdLSMc0wWo/rAT87tojZ2BwmmJbk1pfXd/2232p1LcqZzuBIeVqC3GLvERTPuAKHO8ibgRW8OXgRGcYgRjYUMLC+JeVdFF31vM/DbFtu1/kDp5etZvqGMobmnMQid/dBC51oFUk9rx86dEgEnBQxRUrmfPgq/znpgq6DKoDpZWvaPaSt27TmZhI5RZiDI0Bnl1ZXOF0RRoxdTFnTCOp3ZFKVmYNRqFEb0uhfayD1CtRwNUIvTAa47HNvnKaBGg0TcnuwOqRiUjHIoRavN4YeycaSCkLpPK9lmhqWVFCEhaoaOFQTTAcWELUkpoSCRhNFOol5ki5QYZm4og1oGQaGqtJtuRppIKwYOhCO12Al9nZqIzHQjd1E9ybwZmSnwu8PBCl7XtC9v+0+C18ZEXv073+itn4nDkcOwYxS+g8YyZFHjiQz2/tFD83GBoCl2+vTXIidEIKQFqDSXURJrBJICtj0/LkAvJ2vcNPYsZjacTQBu0ogEDGYtWoDxZGNyYCNHt7Ae8ofOH/UVCbqg1je8GnrWPpwQV3EjHWVCPiI1srPC/bJc+iPhpi+ZTWDGmvSOxECPSeZgilh9OzS2ucwpIS90/J5dOrlhN3tf/uBiMmJS6sZsjFZsiVWPKRLUXUZCdwNLeiqhqUouDxxFE1iohJTHLj9NbQkArg7nNcwnMTjXqRUO4zFRAoDVULEar9P+1ZvkYpKzJNLTlMLe7Oz6LpiGnhDYQzhw9B0TL22x69HddfRXOOBPA5YyITom3T0td1n4SsjYo4VKygJZ2LIzehiORs/+jcrX/WRyPSietz4/Edw8onfYODQgs91ctTmq4spJR83hqhOGOQ7NaqbexCwDkTU5MNXIJiYMweAhQUObpjgBtJfylo8Ki8fNYaT1kc6Jb3tSF9SNT00PJuvLY33JW4k/dgu+ooVDkhbq3bE9vUMqKuifPhEwh5/uxvT0FFDjaA6MP2dgwSamguIxn1scw6kSWQRpIERbEBh36wkST4R07jf+YNO21s8Cs/PHM7Z8VEcsX09VJR1EfAiEXocYZo4TRNUqA3kY9IuBCoGWY52V6JhOInFOrvTpFQIS4kidZQ+PIZV6aGoZi812TkYHaJHVSkhahCRHpAeSECFbpLtbsDr6LoQplBMFC1GqF7B5dEO6Hmnqj6E4ujRpSgUB6rafRmfg8VXRsQi+cWU98+nIOygX4uX4U0ZOKMxWvbWUB+vImx+xCsbPiCWF0D15jHzuIuZOGWkLWg2h4RXaxq5eUtFWmHK3F5y7gksjsgqY5C/gkCDj9zwsRj4MYE7R7ZG7/VlrVUX9CVVU61HS6Vq6hPd/e0IAZqDRE4RrrqksOqBIIl+g+nX0gihDjWzNAdmMK/rfoBtucU8ofyZFiWQ2pYta7mEh5nCkrS2Fgr/5LKux9Z6n94+9kxc8SgRbwBvpIWipjqcOXkIQ0fEY4jWumJSUdAdHhQTTGmBBKcFilBoVvJABZ9sYufa3USam/FkBMkbPAxFaXfuIsFS4yhG749hqWh4YwaDqyqJZeRiONxE4gl+98c7eP0/z6GoKg6Hg37FpVx57Q2MGD2WfGq7FTIUEythocdNnAeQdV4IgdtVhNMZZPTo9uv6/e9v4Jhjkhn03a6iz+X5+ZURsTfHZLMoq30RnyoNiqxKSmIhBjYXceSeIRxdkUFzVQXV0c0sKfsl77wZxJMxlPPP+x9yC+11a/+tSEsS396E1ZJACThxDcpMW4x6sHm1ppHvri3vNENV51dxuhREvLMVMTF/FReMeI5sd2NqmxYrQ2ycx0p9GtXuHuyjfXIFdsX+pmral26DQXpqYxg46+qABPGC/qmx9pXu3J/1ZHMPP+VH3JEmZBsZSb3I7dQ+hRCEfQGePes7qU3+UBNfW/0+01pdo1JVkZoTlKT9FIyGkVKgmC5U2f44LV+3lU//8wiRxsbUNk9mFpO+dh6l4ya2ng9AYgkTRXa/0Dl1XZ4sfJqTAAKpSy770VWEwyEee3E+Ga2JgN9963XKNm9gxOix1MeyUiJmmiZqx8KerQurLfPAlwm3hc+/9fZT+LztFuv+rhP7rHxlRKy2ej0l4WfwOLPwaLk4HfnojkHscg9gqbeYp4tUcsbXMDLSwMS9ozl+SwGhyp3sKVvN4zuvwizIYcb07zDlmHG2dfZfRHRtLY0vl2E2tZeVVzOdBM8cgmdMDw+8A8SUkpu3VHQZvCGFwBgZTBWkbGNi/ir+Z/zfO7U3XA1Ujr+P3TvzgdG9nrtboZKyz6maGrwBKjJz00Sqp2CQNhdmd21mq25GVucgHemBCL2JYs/uTwWkxT+5jEksS7kWG/sS4rcPIV8G70w/nbO0GBrJbCf7IpBINYZlulGkxo61H7Pon3/q1C7a1MAH/3iAYy+9sl3IACks6IOIRVQHjVgUo1C+vYy333iF+UvWpgQMYNaJpwLwn2ef5I2Xnqe4wM+WzVu4444baW5u4dZb/4RhWGT68/jdbXczrWAi7777Ltdddx2ffJJMI7Z27VrOOOMMysvLU4udv/3tb3dZigXA7zsCj0d8plD+z8JXRsQu/nQIYXUk0cBm6vyN7MmoYKe3AlN5nXxnA/n+QaieSWz0juGDIQX8Y3ATE0N1zN5xDEdt81GxcSWfbv9f3n8/hzFjzuXkM06wxexLTnRtLXWPb+i03WxKUPf4BnIuGnnQhezjxlCaC3FfBoe3MaRpNct8EwlrfgQWF4x4DujCSGlNyKsUvkZfRMybiHUZUo8QrfkDI8kQ8m5C3RGC5QNHsJx2kQJ6DAY5cf1SGrwZfDJwRJdtXpl5OuaKlQzosFysZ1GsIDOzmspgTi/uT4V6ctkoRzKKdQBkyoa+BaSk9dNaT8zlQXe2BsR3kxjZUmMYlmTZfx7rscvlLzxD8ZgJKRdcs7uBjGgequx+cCaQEMlXn2okK9auov/AQWRmdS/MK5Z9zO8X/oexI/Kpqalj6tRzeOWVhxg2YDrP/usVvnf1t1m/cV2vt6Curq7bUiwAs2fPRtd15syZw//+7//i832+z8WvjIgV+DyUx8bhaxlPZkuCIXsspkkXlmVgsZuKfu+xonAZQnud4QEnPv9MVvqn8t6YLPqPKGf2nv6ctW4KTds3s3vbg9y1+l8cMXIuZ55zqi1mX0KkJWl8uedQ8caXt+EelXNQXYvVCSOZULYhAXETXGqy/IgQDNu2jrPnPwVALst5dayXoS4rzYXYCQHDXEvJi8epcTp7zBU4aP1S9PzSLhcpK8DQ6t2sKh3Wbah7R9pEymW0WrDdzDG9NWpK0jLqcuzJNu+PGs68JTtQ6D1C8kTzDaaqlQToWxBMR+trULycgNpCi8O/X25LhMBUFHTNgdbtPF/yn5ptm4k2NfTYXaSxgZptW8gfegQSiSHihJx1ZMa7f2Fq6RC2qCOxSC/Fsqt8Oz+54hJisRiTph3DhMnTOHLKUQwbWgrE+eSTNYwdO4JhA6Zj6V7OnftNfv6r69izZ0+vl99dKZZjjjmGHTt20L9/f8LhMFdeeSU//elP05ICfx58ZUSsxXQy2VODJUyilk7UgnrDSzM5qAxh0J5SBu4RGFac5swFLBq8EpfzdSZklRLxn8SjJcfxQnETxzbUcOHqc9B37KBi+z+4a/0LDBtxNmd9/XRbzL5ExLc3pbkQu8JsihPf3oR7SPCgnXfH9kZc7+1Jm/eSLgVjRAbHf/gqACXeI8jql8ObvqfJ9va+zkbB4uqqjdwyYFy3AnT84tdwNTfiaG4gPGx8p3B7C9iaX5r80GV1Yzpvk5J4F+619ON6+Ztona9bUzyE0RVlvVRYhre0U3mLUwnIJvrChsqpVMrhuGMGgYoEc/ov5sWBJ3VtkfaC1Yf20Za+jSva3AhAREvmekxoUULU4o9nQYc0VCZJAYuJ9BeJ8WPGs3P7NpobG8kIBikdOIhn31zEf559kvcXvAmAz+dFxr0k4n70SCbSdGPpXiSSuDOOlJKIaaGqalopllis9xeEtmdd//79W8/l43/+53/43ve+16frP5jsV7Tsl5kz//cCfHP70TjSoCaznnpRiU+WM1bdxmR3LcPdewmqDSiKn2DLmZy96lt89+NrGLtOJbbjBYbu+SmD45/yVtZULp85iKdPyaS0ZC5jdw2h7o1/cvdvrmDxe8u+6Mu06SNWS88Ctr/t+sIba6v444vrOwVuiLjJhE+W41E1srJGcnT+2RRaBQA0m3170I6s3ctZ61bgi6c/gPyRFs6a/xSD9+5Cz8gi3pZxfp8Hcio6cT8tlIPFR0PH8vjRp/Z5DC0EkkLUXf5yKRHS4p3i6bxQchpPDT2Lfx03m4EDV/Ej7iC7D4Ur90XpQ650T0bfghk8GUFEcjYttS2qRalz11KvSBoVSb0iqVGtTgIGMHzQEE496TR+9dPv09zULpzRSDj1fxULUyokLJgwcRJr169h1c51VAdVnnr9dfKKiwllZKHnF7GttRQLkCrF0kZbKRYgrRRLQ0MDkUhShC3L4plnnuHII4/s0/UfTL4ylpgvmMWYmTMYM3NG2nbLNClfu45lLy5Aq9IZ54gjNJXdukodBQyuuJCBuyUtvg9YcMRSirwvk5tzCguDM3nvOMmMpiYuXH0WBeXbWL3r93z0UT5nz72eoSO6Tl1jc3igBPqW96+v7TpiWSYVG9YRamzAH8yieORoJEoqG4ciLUbXbiM73oIVdFGYncDn1okFBrMLeNZazNT4EHJ1H0UbBqEfuwXN09D1s12CFc9gYShEv1CEeXU7OwRExChqrEXRHEQH9FAjjL5HJx5KYvuRi7EteCMZqm6luyzbIgn3sQIbyOIefsopvMIs3uZ5eV5rX72IppQoloVmmiC0Ho3LvMHD8GRm9ehS9AazyBucTITcMS2Y17LQRIyEEiIifd3maXQg8CB49O4HuPXe33PxWXNQVI2MzEyycvL47tU/pGLr+vasLgKy87K4689/5gfXXIVlmQQyg/z+kaRY5RT14+Lv/5CJkyYzeEApx00/Ku0FobtSLKtXr+aKK65ACIFhGEycOJE//vGPPd/LQ4BdimUfYuEQC//5b5pX76XUUUxMMSmL55CQHhR0Ytpm5o/6iFrfHvJyT2KdZzYCixPqP+WST3Ooq17JLv8ujJJSLvnWTeTmfz5hpjb7h7Qke363tEeXoprpovD6KX2aE2tbuLxtyWIa/vUoeqi9ppc/O5fiUy7gmo8Mjqlcw5WrXyQv1sTukmI+nD492ajTg1Qyav12GgLn4h6wieLpDyS3CoWNjKSRLIKygeFsYNP6GdTVdfPSlEqY2PM1VGTm8vKEY3u9zsORgGyiRbT/nQlpJQWsD+LUlzYliuRPLp3S/BJUd2v77ivPUL52FR///c/ddtkxOjEiQjjV5HKDjrkzElKlSubQROfFwl6thUKHDsLEVOIkQhox3Y0lFJyeBNJygVTSBimBel9GWrqsfXFInZHhbe1HKQ7KGy0mH3t8t6VYDgaftRSLLWI90LhnD6//+Umyap1kurPYntBoMPOSYqZs4+3R77PXv4e8vNNY7Z5NgGZOr1rL1z/NYVf9h1QWtKD1G8X3rrgOl/vA85TZHBq6i05soy/RidI0eeHj5fw6JgiUb0oFZnSWJNimjeCaT5PzXlIIXjnzDKKe7qIBQbFcZNdMRSDoP+BTNhy5iUec56etdQokWjh6y/oes3H0BQt4YtrJ3Vc3Poy5St5DNvWs3nEctUYBHw0de9D6VqTkysoEcwc7yC4oQnM6sNSuX3zimoOQK5lXsXr5EjY9/Qjxhna3pTeYxcRzWteJSQCJEougIMlwxnGr7fOfrbvZKfPbhUyYKFojQo2R57BwC4g3OjH1dmESqsSRITtkCUl+lwlVo8nTeyLeIdGd+M32BdLluyqZfPol1Nbuv/u1r9gi9jlgWSbvPv4ctYvL6e8pZoeuUGsUoKATV8p5fcy7tGTW4c39Omud0+hnVvD1HduYtTpAedNC9vZXKBg8mwsvufiQLqK12X+6XifmInjm4F4FrHn+fJ59/hVu/ualCMvie0/eRSDc3OVLugRcusnx68tRgOr8PBZ2WGvTHf7mwYwW2VQXZ3P9hNaQ8i4CN05av/QzC1laZGBX0YmHqbjNsBbwbf3vLPv4XLbklbJg1JSD13mrJfYXj0JJbgHC4cLSOgc+xDUHze50q0laFg1bNpBobCDL66HfgEHJsPrW2xmQbnQ9TMJK9hd0xjoJmY5gs5oBwkIo7Wv5cjQLrwLxZgdmPH2NmSuYQAotLV9jTHPQ4u49BVT/WCVZRkvq/AmcmMKBmt0fp9N1SILX7KKYnwOKonL8Jd+ES2Dl2+9i/ftjJrstdhiCGmMYc1cPpMW1ipdGv82ozNeIZ5/PvYNn8EbpZuZtPIZJmwy2736Vu3e/z4QplzDn5ON6P6nN54JnTC7uUTn7nbGjef58dv7ox/zx/5KLWkv27CAj3NxtewEkHCoNPjc54RjRTmucLAIZ1UQd0JTIoKUxj6nSyzHOIjy4uX5k6x/3AaaV6g0LcOk603fuZkW/XCKO9vH5ST7UQhw+L5YdWaTMYYVzCicPWoS3vm+LtvtM6zqxZkcyDIMusrJLINRFiRahKGQPT67fU6SFaP39UBD4pBsXGg4tQCKRFLEW3YlLMVJfsQCcSHwiTERJ/2ZTv55W599TaQk0VwJNSyQz51sKUnHT0oVrcl8crdcXxUUTASzU5AXW1aMoCpmZmXg8PazP+wKwRWw/mXDCLCacMIs1Cz/AfGYRk9ywXVew4pO5cPl4ajIW8tKwp5mQncHe4HncMvYIJg9dzmWrTqOwvJKynfeyYsXTnHHmdYwYPfiLvhwbQChiv8LopWmy97bbWTNkODVZOUDfizvGHck/OU+s3WWTk7OTAUM+xecOpbaFY0GGbpyHr9rFp1nqAaeVast8EXa6iDrdeBJRCpx7GJzYhpFw09SUz7bc4k6LiwOyiem8zySWMYKky3WjHMk6xvKi+EafrvWAOIDQd4AQAZ4rPY0TW5bgi0UPrltUCEwBYYfEa4VApuep1FWtx7kmAEsoOBQvPgM01JS1rggVTXFiWAlMqaBbarJ+WAf2nYhQBUjhpkVqmELFSbpwiw5rylTVQFWhIZIBnp7urcQhDXxmlCguGug8l29ZFg0NyYCVw0nIDrqIxWIxzj//fNavX4/X66WwsJAHHniAgQMHHuxTfaGMnX0sY2cfy/pFH6E88T4TPQab415k84lc9sksyotfYk+/+5icN4LNgbn8cJqXWSPCXPrpOTRvWcP8B2/itdJSLr30ZrJyD8833K8CUpo0Ni4jHq/G5conGJyCED2nAKp94AGMvXupKx2S2lbi3dWn88U1hcqgH7e7EJep4M8vZ+So9zq187kaqRr/Z8Sqa6hVjupT3/tGGHaV+aKNtiS5qh5nvuOcTvtbCPAGZ6RlhB/FOkawgffkbBrIOTTuxbZ6KW3/38/jPjhiHMdsXs2CUVMPWBC7o8XrJeLIxB+P4jL0VP99WT+WHKKGo4uYQ6WDAJpdOKM75nexFC+WlsMeWqMkM0GxTDJCTbjiUYQqUR3tSzgMS6U+lkXE8CCiJtLb1SM/Wd6lX7wagCbakil3fV1NTU243e7DZl3sQZ8Ti8VivPPOO5x6ajKTxX333cdLL73E/Pnzez32cJ0T6wuLnv0P9e9sI9uTw8ZYNrp0YcoYK4c+x/KcnRTnz2K192RcxDh97yq+uTyb3TWLqSgI4Swew+VX/Binyw7++Dyprn6TzVt+TTzenrXAKfIZnPtT+o0+p0uXYvP8+VT84IcArBw2kh9f+0uENLnHuoq9T2ahhzW6/uOXrc+K9n1CURh98SZUl9H1s1aCFsumYe0fuHJq75PyZ6z8AEFSzJo8/vZUT92lkSLpKgwR6KaNRTb1/JGr0kqbLGMa9/DT7vv+rHxG8XEn4gzfs4Ot+aU9p6bqIyWK5PYMhfzS/ojWF4WMWBiXngAh+hw00T9s4esi4W6zXo9hJedks53RlCWWnBODLc7k0gOheNG1gm77DzbXk+kPUB2NoSompqUSM/dZOqEpSI+adn8d0qBfbC9BM0QcB3Vk93otOTk5uFwHZ1nGYTcn5na7Oe2001KfjzrqKO65556DfZrDjhnfPBt5rsUr9/6D/pt24HD52BQrYnLZhYwvq2XB2Ffol/E+GXnn8EzBsbx7yh7OLR/F7FVeti9/l3tvv4J+Q0/k/Hnn28EfBwlpmkQ++RSjpgYtLw/v5EmpUhrV1W+yZu3VsM+bccKqZmP1Twl9WEH/Yy/ANSqb8vJytm/fDlLivP9+soRAlZKxWzeSV1/LcMdGcv11aMckKH+rmH0LFwog190fj+onaoaoje1GIskfvxfN3UNGDgGGp57hrCc/NplqVzdh41LiMHQWjpiU/tDuSQxEcn1VSPTwstiaf3C9HIWCpJEsMmUDk8QyfsQdPMSVnefJDob18xmPjzmcrCodxonrl+LW48RGh3lLO6XnvvfT+gu5PDgNHdF67xXLxFL2seAtibYrhBLSET4NT9DbYTKrrYmZEjBVWDiUdgED2KNprfskCS2n5zFlZlHq91IVFcT0ruupYVg4I1CS58OQEocQeGJRFCOEBMxevBBtdMzw8UVzyKMTL7nkEnJycvjDH/7QaV88Hiceb/fnNjc3U1pa+qW0xDqSiMV47va/0K8+k7Cisj1RioJOxLGJl0Z/iJIVJZF9AWXaSIbrm5i3vpFhWxLsiH5A7eAAQ0eezdlfO+OwMde/jDTPn8/e23+D0SE3nFZYSMHPbyRw4hw+XHxcmgWWhgQtmoXzowt4zx0mZqY/ELREggkrV6HqOi/POQ+ZZTE4dwXjM9+mpdxLxeIC9HDSqi72HsGEnONpdlpEiePBRUZCYWX9ArLOfQXN3c3DpgNFq6/kE+tYfjahm+CO1LgPrvusDZ9sISw61+uaxDLWM4r1cgyVFLNKTiKhfvGLpoFkZv54lKs3PsaE8fNZxrSk6HYl2m2LppMfOuV67MoSA8iMhnCayZeQhJQ0BdrzNDo3NuB9axdqS7szUPE78M8oTpt/DemNXUYnJkgKWEtrQIdU3JhaUdq4dF3n73fdwRv//leqntjQQQO5/sabySwZ1u2tGZDjJdOzz8LyaCNmw04MlP2yxBoaGrjmmmtYunQpmqZx9tln89vf/rbX4ztyWIfY33777bz88sssWLAAr9fbaf8tt9zCrbfe2mn7l13E2miureXF//sbwyilwoC9Rj8EOnWBRbx4xBrys4NUBs+jWhQyJbqCy1ZqeHbtoUL/hPrBQUaOPpfTzj7JFrP9pHn+fCp++KPOKYla72Pw9v9hfWbnl6o28mrjyM2FvKCfnnZcCinZERzMB0eMocXb/uaaEdW5IPwiM7KeJrHIR/baSehHnM7Hji2EO4RH+ywXU/0KxuS/9ul6Spddj+kI8/KoDTzi/GbPNbEOBZ3yMSYf+m31uhYbx/Jn7UfJfYfZ7+rM6sV8L+8uAAw0/s73WMIxxEW7xdomygD/5LJO97c7EQvEwriNpEi5w2HiDgd1mdmoW1rwP78N6NqxnHHqQLQjnMRlCMMwMHSVZkeALDWGgkWLI9QpGtFSfFhaftq2n19+GZFwmF//+QEyWrPZr18wHysS5oyvfYPKxhh66wuYaZq4nQ76Bd2dBawNKYnWV9MYM1oXi3fdTFEUCgoKEEJwzjnnMH36dK677joAqqqqKCoq6vrAbjhsRezOO+/k6aef5u233ybYod5NR/5bLbF92bl2PYvu+w9DPKVsjrtpsbJA6mzr9x/eLt5Gaf4YNvrPJoGLGc3LmbfKj1K5m93mpzQOzmbEyHM4/exTbDdjH5CmydY5J6Dv2UO9z03coeHSDbLDseTfpBCIvAwqflnTZebQvNo4o9eHuMv6LhHh6/KhvC2niPmju19PddW6f/ONPz9P7Rk38I5ve2u7joOEvLztjBj1Qa/XoyR8FKz/NlXjkxkgDKFxDX+lhYwvVjCkhYcIx8p3eVuchuwlOu8LQ0p+xB1AZ4HyyWZO4VXm8nxqzs9C4U1O5XFxWapdXyyxQHMzmmEgLUndS80QsrrNTiUCAv/VGam/Z0MqNMb9uHQNaek0edrzH7oUiQokhJuY2i+1fUfZVs479mjeXLeJzOx2y2mI14VfU3nkkUd4+umnyc7JZcOGDdx59z0koiFuuukmDMMgKyuLv/zlL4waNapTPbGPF3/EN877Jks+XsKu3bs49dRT+eY3v8nSpUsJh8Pcc889nHrqqWzdupU5c+awffv2DhWr95/Dbk4M4O677+app57qUcAAXC7XQZscPJzpP2YU8x4YxdJX3yLw8ioGeyJsjGUxpOprDKyM8snw58gI3kpR/iw+zDiBD2YIZjY1c/HKc+hXvp3KbX/nrrXPU1A6gwvmzUNz9M1v/VUk8smn7I42s2FMf6Jqe6CMO2EwqrKWwqYwsroJ51ZB4oh93t+kZMTmENutEiJK1xP1FvDh0B4yrUvJE4NPYOqInaz1VbZu36cTAYlE3wIO5K6jqRnxZOq4zQxPS7H0hSEUovh5S5zxRY+kVx7iKkJ0/j7D+HmO8yllV6oCtILFyfJ1XuMs6nuIwFSkhcNMltURloVmJMXMqDYQoZ5dxLJFYu4y0AYkfz81YZHrbqZOVRAJL4oFLk0SVCVa6vRRdmJgogKCjatW0X/w4DQBcygCn9ouJh988AErVqxg2LBhVFdXM2rUKBYuXMjYsWN54okn+OY3v8natWs7jc+fEUBRlNSvbUNDAyNGjOCWW25h06ZNnHfeeZSVlbF+/XpKS0u58sor+eSTT8jNzeV3v/vd554E+KC/Pu3evZuf/OQnNDY2Mnv2bCZMmMC0adMO9mm+lEw9/UTm3n8tzcMkpWInw90VaMLNUZvn8a2ll6GVbyB3102Mji7k3cxJfG/mIP51cpDS4nMYVzEM871X+eP/Xc5f7r2bUHPf6il91dj23uMsH1hIVE1/P4s5VJYPKGBPZnLBp9qgpWbPLSnYWD8UbV0Qhy6JiM6u7zZ6zfYuBM3eLDZ9L4Y7d0u3LhnNEU9Lwm6g8Tqn8wjf4XVOR5cauq5RoVZjuNuLOR5IdeKvNEIQapvP66oCNJJ/chlWh0ehMxbkxL1hesIfjyJavzxfayZ3ALOPa61lqLMDLFOzCDsiZKCRq3UUsCQ51JL2C9Wxnti2bZx71GSGDh3CvHkX0NTUwFFHHcWQIcllIEuWLGHChAmMHZtMyTVv3jx2795NVVXXWV6EEOTm5qCZAqfTyRVXXEFBQQEzZ85M1RPTdZ2PPvqICy64gOXLl/OTn/yEM888E8PovXzQweSgW2IlJSUcRpmsDjuEonDa/3wrGfxx2/2MMSVNQmFHopRT1n6LuLKDt0YvpND/Frl5p/B21izemWlxTEsL564/lUG7W9i5Ywl/3X0FMjeb4465jMnHjLHnzQBr7YssXrUBcNJJPVqtpBWlRfRzSEY2DSDKG3y6ZxxPbfo6TfFMPnVdCUBAdP8A62u292aXl2NGvceG9TO7SM5rMWToJ6lhPcVFvMpZyA6RYU/wLU53vMQFAx9PO3IPhX06v80+dPvSkYzA3GCNZLi5karySVRHLuKZcf26bg94EjFcrZGJvnAYh64jXRKpggj27ZEq/J3HowlwCYnX1XVuRh9h8tlDHbmMGD+enWVlNDc0kJUVYNIgP0vfepPHn3iO1xfMR02YeBwa1ZU7QFMJhyJdPiOEEGia1mU9MYfLRU6/5Dycy5WeckoIwYABAyguLmb27NkAnHzyySQSCXbv3v25rgs+TB3Z//043W4u+N9rGXvz6dRTyWRXBXlaLQ5rKGes+TYXLP06ZvkKinb9jDGRt1gaGMMPpo3hrtO8GONnMj06m/7r4ZPHb+Wu27/HQ3/9Ky2N0d5P/N+KZVLx71sJGS66NX+EQKqSV4dM4qFdRXz85ok8sOpSGuJBJmVvI0uEEAIGUEEGLewbfg/gTfTtVTtLJDMbDB6yDEh3L2VmVuNyRVIC9gpzkfv8KUoUXmEuT3FR+yWi8A4ndl9Dy+aAaRJZaJpJ8dBP+MfYnqNA45oTkYjha2lG1XT0YolRAGYuiNESEej5hVJkCNTSrsXOrSQzcnSHjzD92cHIgV5OOm0Ov73mUjIa1+ATLVi+BmppQXcIDLcTVXHit/y4YoLxRwxi+fLlfPTRR0gpefrppykpKaGwsJBBgwax/QDqiU2aNImMjAxWr14NkJpTKy4u7vH6DzZ22qkvmGBBPpf86Ua2r1hN2V9fZZIbdhqCGmMkc1cPIaZu4Z1Ri8nwLmBkzjS2+k/kxgm5DBu9mZlVgzhtw9G07NrOnq3v8Lcti5A5GRQUTefrX/s6nsB/53yjZUmqtjQSbo7jy3BRNCyIsmMxoaa+pX769uZXycltwRSS6dGlPNjvAoLjJOFFToyYiuY2OSXvXZ5VzgBMMjNrcDqjJBIezCar57RGrQuER7ABIcDtjpCZWU1TU7sF5XQm3U8GGq9yVnJjN/Nrr3A2Y1jNaNbyIl+j4fOOTPyy08dlB0GSLx0bGUmD0vN6LEtRkJoH4Y5i5qS/UAhF4D7RQ/T5SDdHg/sEz2cO0tJkjFv/+Gse++MDzJkzD1VVCQYzyM3L4cIf38S2TZsJawoVmQpew0mJYyh/vfterrj8u5iWRVZWDs8++yyQFJ3rrruOyZMnM3DgQI47Lj23a3f1xAAeeeQRvvvd7xKLxXC73Tz33HM4HJ9v0gY7i/1hxvoPP2blY+8y2N2fcl1QZxagkCBBNR+PfIP1/j0UZw+j0T+bbdoIArKJac3rOH2LmyG7HVSFN1FvbaIhz4vMDpCTO4XTTjmb/OLgF31pafS0ELmnfWUrqln0zBbCjR1C1oMuTp2+kcT7t/LsznE9njdzUDODplZCsP3XXmkA9388BJe2uVQEzn5D2HOypHlsOU53u4Ubj3t5tfp8nittXdDfQ+h5G+vXz2CVPpnKYC5ubxOlWZvJ0erYxHAWiFP7dL/8srn7zBo2XdOnemHpWUk+ZAb3ix+lNekqOrEoYuB27YBuYqz0jQlib8WQLe1WuAgouE904xjRdYi7IaHeFORrvT+Sqw1B3BKoQtLPkd6+WlcxhIaqeDEULwlcCCQ+K0JOVEEkdBIygulykpdfjKp275ArLy9n8uTJh3U9MdsSO8wYNf0oRk0/ilXvLEI8u5hJHtitW+w1Spi54RKOscJsGvwiH+U8xdBAjIyME1iccTRvT/YzeEIZE+vyOaFsOKP2mlRu3kTjhld4es0bxHP9aJ58xo4+lenHTsHj/+KstK4WIitZWWSedSZqRiaNzz6LsXdvap9WWEjBjTdSK4dR/voOSgTUaoI6QyKFSdTxCYtXrOVsbxNuRSdmdZ36KXNgMwNPrOi03QpC5FtRvP4R+CtG4hg4g/CAbcTG38e+jxunM8I5JQ/DLsk7pUfRQLtllE09l/BwmoAtYxoPHHEFMUfHaMT9D3QKEei9kU06fSmKieASHkbBYhnTeIxL+9S1pujdChiAY4QT7QgHYksGtCgoXg2lv8Dwdy8GjnqB5gAz0LNL0ZAQb81eb0pBTErcHdoH4xnopiTqjKMrMZyKiaZmEFH8hH0KfrdFbiSIEQtTu2cH/sx8fP7eM9wfrnxlLLH7//QLopFq0PxoaiZ+fzEjjpjMuLFH4M86fJJZ7suqd95n3b8+ZLCrPzWWwc5ECQoGpoQW30IWHlFOtauK4qyRhL1HsUUbg4XCUGMrE2v3MGNnJoOqXdRHdlMb20qLo5pQ0I+V6UK4s8jPGcfMGSdSPCivxzeyg0W3C5G7wBSCNUOGYyoqg9RCSgefhdJBDHQzxi6zjA3eKHvVBr7P33ly85iuRUxIRl24FYev+zyFSiyHprV3U+MS6CPuZ5hjKYroHC4tJZimAprCW5zMXgopYA8n8iYa7ZFZhzzHoE3XSKtT1o2ucMkIZ/Af5vI8nzKl2+9qX0tMk5JBsRYMT02v53BE81B1H6YWwfDUIUUX6ZoMUBsESqvBH8p24PJ3X3G81hBEO5Rgaast1kaipQDLcCNIVri2RJgWdwxd0XFoAaJKBgJJTiKCPwwxEULxBMjNy+/ibIeew3ax84FwKEXshasux2GUEDWb0a0mErQQdSaI+33E/R40rwpakML8iRw/6wQKS7MOK2ErX72WRX97iSEUE1Ik2xMFGNKJgo5u1bJx8Gt8mhPHcO2lKONImrzTKNNGYgmVIquS4aGdTKg2OGZHAd6WGPXxKhriu4lQSdivEg34ET4V4fThdhUyoP9kRo0YTb+SHFw+7aDci7aFyB0tsO54f8IUlo4azyWvPU8/zwDcU5ORg92NQ080UdnyGh837+xyv78ozNCzut4HScHZdzFsQDZxKX9lGh/vd3sLhSv5O2HbBfj50pZCaj/ueZasRcfZrbt2XxErjlj4ZZSEr/ffY2e4ECksdG91t23UWlAiyfMKhxfhycZyxjuJniGh0UwXMCBV5RkAS0FpLkzm3ZQSXTqS2TeQSHRaPM3oqoGiZRMTXrxWhIIQ6EYzhttFfkG/z/25Z4tYH7n7jpvYMLCQ3KgkP6xR2OJhUH0mzlicsN5AU6KWkFFNhCrCAQfRLD+qz4PXM5jjjpvLqLEDD4uMGbUVlbx+z2MUhgP4XJnsSKjUm/motNYjEltYN+QDVgZjSNde8vwjsTwT2OkaRYPIwSET9Dd3MiBcw7AGgwlVQQbUe4jHG2nR62hO1BIzq4lqTSTcDhJuNwmvC9WloDg0pOJFVT04tEy83izy8mO4PTpuVyEB72QCfj8+T3LiWloS0zSTiUUtg/DSj+HX13e4GoGaOwzhykTGmzBrtwCS9ydM4e0p07n1b/cAAv/Jv0G4e36pkK0Prw+rX6QisrnT/uCQJgaeUNnlsT1aTFJyBi9yAY/3uf3pvMh4VnK76JxSzebQ4pYRYnRRAbsjXaXR6sFyaxOxwpJS+plOMgyZrHoc2NW1ZdWKJQWOUDGWv6rHdhjgqBQIhxfFl5fehxpDKibCUtmrtBBS0yOQ950T83j6I/ASaWpGjyRwSBVFUUlIMKQDkFgiRoO7BUXxEBcZqMKkMKEjomESbpWCwpLPVcjsObE+8vHgTD7NOpKwaF+575AJCq09FCSiFEWyGNCUxfg9R3FkvYuW2mpqd+8mbH7Kuxs+5NXcTNRAgMKCaZxy8unkFHwxgSe5xf24+I7rMQ2Dhf98FnVZOZNcFk0k2JXIATmSyWWDGS9VTLGRbf0XszrnA1T1BYYFNDI9E4g6h7EyYxjvZObCQMiy6uhnxCmMBihu8TCocSgjq7PIiKpgxIk2tBAxmokYzcTNMKaswVG6goLhCq4WP0aiiWhwM3LnSKq2DqahQaHWqoTWd0Ak5KpF5FfW0ZZVTSs6Ete481A87RkHrGg90TXP8udzL+beO29JtssdltamO4RQkNLiyJw5VEa2IPcJjzciXf+qWyj8k8vaOumyzSvMZTBbUxZWj+2F4FU5l42M7HXMNgcZaREnvWBl5zZdBHv0MWVWblyS0fp7JQAtmtOjhVVvguWuIF/0YidoyTqbiqvz77liusFMLvbItRyE1PQ53aDaOh7FgdtVhMORzOaSkZuMsJRSEm5sQjZH8YpkaZcWPFgJV2udMhMTqBBOgh6BPxpm755dFBSWHlaeqJ74yohYaO9WvI2vEHDE8Dsz8DjycDlK0R2l1DoLWeceTjTHB4Mhz6pmYKyZIU1FjK0exLSKbCJ1e6neXU7L+ud4fMXL6Ll+nN6BnHD8hYwcN+Bz/8JVTeOEyy6Ey2D3xk1seehFihNNZHsKaLBi7EzkocsxjNw5jOE7VEwrQiTzfdaU7qTRsx1VqWeAJ0625wiEaxhhRzErA8NYkJkHJclzZMgmssx6sowEWQk/OVEXmfE8poajjNt7Ko617X90EhPRNtPtAVOatJhN1KhhUFV8eMjL2EuMT9CKjky5Bzsi3Fl4p1zB6TvryG+sT25zdU6xJLGIZm3CcDWhxTPxNAxHoCCEgk/LINddQk0svUhlaI+XREjrNCe2kZE9J9RtbfyQvIoETrYyrPcEvEJQJof33Mbm4COULlb27dvmwP9OVYu0lbWq4YVIfie3n7BUQoaDKAm8Sh8dXU4NsW8plw4IwCFVPJaLqBJHExr53ix8qhPLUEC6kaaC1GSnRcn+rCD+rCCxcITGuhCNXZ1HShoNDcvrIzMSpnrvbgoKS/s29i+Yr4yIXbB6FI3GCaDUoPs3UpNRw66snVS4d5JQIniVegq9CkH3cHANZ49rCJ8WTuDpIpXAuCaGx1oYVdef6bvGM65GpXbnDmpjm1i49ae8mh9E9eUyccJcZsyagqp9vmvIS0YM5+I7r0dKycaPlrDp3wsZQIigJ48WGaVK99Fs5uAPncZxG+IcLZ1YVhjTuYYdxevYHFxNzPEJimiiyNFC0JuP11GKUPNJaLmE1Gwq/YU0BLKZsVdy5YauFvymX/MOtZpK9ztoopEQPnZQjLefi1M9mfjGnQd0nt8SQiCRXFiTASiouUNRAukZsVvyP6F6xBPJVEytaLEs8jfOI1A9GYlFoF8Uj0tDiwdpqXJTF60kx1WC2OVkwwiTRrII0sAINvQ5jVNE+HmAH/apbevF9L2tzeGNlKgSPPuIGCSFTG3xprn9FNNNjXMvEklFZTU1sRg+n5vi4lyU7qYkLK3HaMc2/HoGTilwKJJwKMFv/vgHXvjPc6itpVhKSvpzyy2/YtrRUzod6/J6aGk2wOw+t2Oz4cDpd+MOR6neW0V+QfcZ6devX8+FF16Y+tzY2EhzczP19fW9X8hB5CszJ/bKD//Ajvj41k8SjQRCWBjSgSUl0mzA8K5je9FmNgUVqrUWpLOOPH9/nO5xVLtGsVsZgBQKxeZuRrbs4KgKhanluYQjleyNbKLJsYfmgiBKZgalpbM584xT8fi7KXtwiJGWxYaPlrDi5Q/wNEGBoxChKdQZBjVGJlEreX81YkgEhnQgrTBS7KIlezk7s0NU+1QaNIuQkiAhwkjRwpPlNxLUg4huc3RDs/o6xdqjZIpQalsTft6Qs8jelMXIgef1On4r3oLiag8rl1ISKviUyvH3JTfskxUewL9nKpGcdVjO9rRRWiyL3A3ns7BQ4/6iMWlWVLasZTZv8Zy4oNfx2HxF6DRfJilRJH/xKAwvKMWt9fz3LAFDmHywewkrF60kGmqfw/L7PcyePZ5hw/bJaGGBc48bxd97SrFmwigxMDXBVT/+AeFwmD/e+WeCmcmXsTfffp2WUAtfP/c0FIdGMCsbhyOZViqqS7bVhno5A+DVyDciOCNhlMwgway+vehdc801CCG49957+9S+DTuwo488+cP7GCjzUFWBJUziVoIWC5pMD81mFrL1NUgTMSypYloSi3KqCxexstCiwtGC6m4k3z8awz2eba4xhEQGmbKR0eEtTKqOcdy2QpSmeqoiW2hiO025PmSOn8ysI5l71nnkFn5xC7gjzU18+Nyr7Fm+g6DhIkvLw6E5aJFxGgyNBjOILpMT4gIDTSSQUmDgREqBtKLkqnFmBNvLo3fl1nMrH5Hr+E2yn47Pgv9n787joyrvxY9/zjmzJ5mZ7BshgbCGfVcQV1SsS6lyqXUFae2iXa6tden1d/W2F+29Xq+trVVbt2qv1dYVrYgLWFEWkUU2IQQI2SfbJDOZ/Zzz+2OykpkQYAIJPO/7slwmJ3POGZL5zvM83+f7bf+fyj2XIY287ajXq+kqgbR9nc9tbhrFofN+TsTcTMz42d5MWUPmK8Z3jbb0PdH0aSlGIkZ7MogFHwFp6O6TEdp1fyuL0wE7/tc0kvFiItTjg062X+Oe8iATplgozBveI4j17N/d9ff1FZtZ897HcS/zyivP6hnINDBWSsj2YX1OKaroNEtekj2t7K5t48KvncvW9btIdfZeS/vr317kjZV/JT0jnX37y/ifhx/B3ebnvvv+DTUSwe5w8osV/0PxmHF8vn4dj/zyPl76xxoADh7cxQ9uuI5tmz6novQrLll0NUuXLuWTTz7B6/Xy2GOPceGFF/Y4XzAYJDc3l48++oipU6fGvYdYRGJHP33rf3+A191M7f4DlO8to+lQM0GXjyTNSJ7ciNWQiqToePQgjWEzTWQgMYZ81wiGuXQiGkSMOygt/IIdzrXYlJcosmdhts1mv20Kn43M4akRAcYF/UxpGM4FB6cxsUGlbv9+miIf8pc9awlnJGFJLubiBdcxpiQxGUB9VbfozmZ3cPGy6+jYyxlo8/LlmnW4PtuJ3ByhgEbsxlQMBhNhwni1CD5NoU210KbZUZUkrMaupJh403pFpRZ8Deei0IxZ3oXUvs8qmuQLaYVVNNO3WM8thS3oxj4q90ux096dNBCMl60myaBr7QH22NrTC4PQ0f7tOr4ep8nnt3mCGXzOV9p4POECSrZ/i2nNOnqKRPeCZioajcZGMsKpSN3eQiOSiktuYMOnm/q8jLVrt1NcnNc1tShDW6oVCGHX47foCapeMELIlMyOXRsYUTgyZgBrv1k2bt7CZ+9+ROHwfKobqljyzSX88eWVjB4/gXdef4U7v7+M1z5c3/s7VT+gU2e1oBhtNDY2MmnSJB5++GE2bNjAokWLKCsr6yw9BfDaa68xYsSIYw5giXDGBDFJlklJSydldjqjZ/ecL9Z1HU9DAzs/WY9rUwXGoE6J4sFqdBCQgrjCCvWRLIzqDCYfmMAE3UBEa6Yh+z0+z9+GbvyA0ckSjqTZ1Fun8udhk3khX6U4coDJzZnMLx/BOTVW6g8fpCGwm/f33cFb2Q4MthxmzfgGZ50z9bh6hMWqfGHIySH73nuwX3JJ9N7iBDlLUjKzr1jI7CsWdn5vOBDg0Jc72LNhC37PTpL9NdjdCsbmIpT0caQFNUgagydrc9e0XjcRczP7J4Jv+zWkuGaiUI/T+BRWJfqLIklgs+2kqbURTGkxg3i85+4zgHFE2ns37j56QkUvSiaIGIWdScwEuj7Y0LvSSom0C0y7KGAKCuM5srGIgowKlFmqyYqY8MlmVEL45SCuSlePKcRYPB4/VVUNFBR0pdMHzUaajDaCIUgLRdfgOuiaiu5vwhz2EU5ORlWi0+zdf38OlR/glu/dRCDo56zZc5k94yymzzkb49QxtEaC7FhbyuSSCYwbPx4VuPwbS3jw3+6kvq7nXjcFsIeS2gM71NuMmEwmbrzxRgDOOuuszlYsc+fO7fy+Z555huXLl/d53wPljAlifZEkCXtmJnOvvoq5V0cLsmqayqEdO/ni7Y+JVLZRoviwmuy0aH5qwil4pUxyG67lqgaNiBbGZ1/L5sL9hC3bGW51k5kyHa91Bisz5/Balok8tZJJrXbOqprLWeVptNZUUuffy859K9jwvh3JYSM5pYQFC77ByNG5Rx2lxat8Eamriz7+m0cBjhrkujNaLDiKmnB6niJJcnc+rrd8Sdq+FOzN56Gj4Rr3l/YX7sgXEtDBNfb/SHZNRyWdxvC9pOkPIkseNFKRaaYq9CH55iUxpmP6eO4+9Jn2fqwjq34WjBWGrmv4KyP0gz0SfGR6JztEzC1xnyMjkoZXqaJZCSIbnPjkJCTNh99fEfd7umtr6/mhTJNtjPTqdC+DqErQZJIweppRZI2ILRlF1cBgZNKEKRw4VIa7pRmnI5WiwpF89O46/vq3v/D+R6sASE4yoehhmg3J1FkMRAwy6UD3TQGSJKEoCqoWza5M1cLUBP3Imowp3Ei8/tTd35/Ky8v57LPP+Nvf/tave080EcTikGWFkVOmMHJKNBlEjUTY8fE6XO9txB5sYLQpSESOUBMx0BDJIdl7GQt2hThPkwmZtrJz5HYaUt4kw/gkOfZxRGwzWeecwnupyaROaGJCWxMzaycy/0A2sqeFOtchWiPreHfPP2nLSMFgdZKbO4cLz19A9jBnjx8aXVWpW/Fg7NJNenSHVM3/+3c0t7vXl7sHuSMDmcv1Hjt2/KDX96j2EDUzn0XanoQSTuoxzdeLBBFrE/7UvdiaxwMaTZG76J565XSGQe29nuZP3dv3c3fTfe2rBcfR0977SwSwoa3PdS8dCY1L9VUYpKM3bjQE43fQ7p7ubtUC6Eo6umLFZC+EGBVejpSU1LX2o+kKWb7etUxlPbo3rcqRicfYlRapaBp5Y4pZePHX+Nef386j//V7HA4nAD5/R/X8aMdpLdSKSW5izswJ3L9zFxtrDjCpsJDX/vYWWTl5ZGRlo6oq1RWHScFPVm4G/3H/S0iAvc0JoYOdrVhuvPHGHq1YOjz77LN84xvfwOl0HvW+B4IIYv2kGAxMveh8pl50PgBN1dWsefF1OOhhsjGEYjDiiqjUhLMxR+YwZ98UZugGItIhDgxfw9aMNdiU/2OEIwejbTZ7bFNZNyqTPxQHGBUKMd6dxZzqEZxVbcdbV4PLfwDvnr/yt82v4nemoCRZSU4ew4xpFzMq3Nhn6SYJ0NzuXiMdoHOkUbfiQVIuuqircryusm/ff3Q9wZFP2D7Cyihd3K/Xq+tTbO/tBlr6Ng6M+7+eASvgwFg3tV/PHWvtSxCAzhY2sbIMAS7nLcyBFHQlhGZsi5skZAikYW3ue6+fQY/+7kS6nScjvwBLcgoBb/y2QCkpVvLzu352DYHoxuQ4v3ZkB3U83bqbqLJMc7LMf/3mCZ743//msm9chCIrOBxOMtIz+eH3/5XS/XtRdBPpvgw0yY9i9/HQ4w9x77dvIaLp2O0pPP3E06SpPlLzHdz5059y4fy5FBUVMW/uXCQJZF0h1Z9BWlpa3FYsuq7z3HPP8eyzz/b5Wg2kMyY7cSAFfG188vKb1G0+RB7pJJkcNGkBKkMZhHQbCkE0XSGiN+LKXsXneUGqjfWkpRhJsc2k2TKBcmUUEclImtbIGP8BJjb4mVOZQX6zEY+/loZgJW2Rw7RZgwRak1i4ZXO/r0+XdEKjdFSHjtIiYdovY0gfQ8aP78I2vQTzCAfulo1s2Xr9UZ8r86tvUT/upaMeN+zzO0lqntDr8R5rXr3fYzrfd3plGbZP+YiiusLxkHSVy3mLH32l4vhqBh77GuoueKf9i90ObP85TC9bRPqBq5CQiaRIeC5I6pWdWGmqwy8HUQ056HLXGltV6T42rXwj7rV0ZidqClo4HVvQdtTrL0+S8Sk9L1TRIatFPaJ3q46RMEZZRtM1QroBDZmOclNuqxdZkQkZ0tGRyAz4MfuChMwqmVnDkduLgPtaPajuAHsP13Lp18/vbJg5EER24iBgsSV1Zv5pqsrW9z6iYfVmhtFKmiUbD36qQna8Wjb59deTX68R0YJ4HB+ybfh+ai07yTC5yE4egWKdSrl1PBsKh/GnQsjSainytzKqJZ+pdWOI1KbxUfgwCzl6EAsWa2gp0PIvEbT2rR7JdTNw7L4eYzgN3xcqvi92oDhMlE77kl59R2KIGD3IoaT4n2Lb1U76U+cG5A59rXl1fYCW+JzZvCDd0mtP1w08y4sd6ZXxUqhFYDstmXU/QSl+5l4s8/S12PD16DCg7hhG6KuDOGZ/F3lbEfXjj5gRaP/xaRz1Bi3DPibrq+ux+o9IBCOaieiXg0jI6LKlx9fzR49h9pWL+HLNhz1GZClJyZxz1jSGZ+cTdEuoYRnFRL/Wfw0aR2yGllAlsOTasKigqTqyImE0Rw8K+f14m1sxRFQMkoEQENGtpPksBI2tqKZaJFM6dZYk0hSdFI9Kfd1hMrKHoygyNnsKbn8IqxTu78t9yoiR2ADSdZ2D27az/pX3SWqWyTbnEpIj1ISMNKrZgIaBEGHdgEY5VXlr2ZalUmt0Y7H6SLeNRTePo95UTJVcgI6M5eMa5ECE595bQXqgJcZkXbRetZoKrv8Id83mSdEAlrf99va/dltj03V8aV9ROevXx3iDxP8FbP+pytt+O8mu6fhT99KWtpum4pU9DjtyxOUhhd/ys/Zr7p0GLYLUmem7+m/IoLFzDfRF6Zajfs8v9P9HCbt6PJb+v0bSRv66s6C0jkbjyLdoLH4jekCMUVnOvjvRpsyhMG84ZoMJCagx1uNV/KiGLHQ5dnarrqk0VFVhbmwg3ZyMM82KLPf8jbUoSdgMR+8VV2eRaDL1/m13+FqwRILoEtEC5ZKMQbFitzswmY3R3+0WD4GWNsyyiYAmoWFAJ0yTrRnFlIJfSsER8ZLaGiFgDpGZXdiZ/h8JhzEMcKdmMRIbxCRJYuS0qYycNhWAhsoq1r7wOvLhNiYbw8gGhfqISl04kwjFjKgpoKgGVE0lbPqCA8N2sdf5ORHDR+QYm7Bps6kKXoImKTwxeRH/tun5GBl+0d+81sWRaADTJazusRgCTrL2RkvEHFltQ5IkrM1jMPhTo59K420mhn59auw8TofqCX/EMM4WM2Ej1tqW1J7aG29P1zGlLQqnjQwaOwOShsw/9KtoIi128d72bs3j2NPtMVBajFjdY3sVlG4Z1r4xOc6iVEPxG6S1NzKNSCoNhiY8hhCa0jOAZYUaMegRqs1ZgIQkK2QWDEfOH0ZGkwtN713JXouRFRlLJM6Ht2TNgkUzoOs6GiqqFkGjhWZ/C7pRQZYtpKdnkuS00+ZuwdDiR5Y0ArqJdF8mLVozNnOEFkMqusNLaouOq66c7JxoPdiBDmCJIILYSZQxLJ/F90RHQn5PK2v+7zW8X1YzUm4lxZyBXw9SFzbRSCamyDlMLJ9JySEFVdNQpQNsyKyg1laGZPCw0ZbCs0kLuHnr+yjurh9wNTUawALTdJLrZpD11fUYg0evAi+jkLX3+uh6VaxSBBD7l7wvEmAMEjH0rrUYb1+X3ldF8X5WGxdOIzECkozGTTwT/fk5so1K+wedjm7N0ceif2Qf+i7WWeN6PP1RM2Il0ExthC3NNFrT8ZgtIDnQJQtH/gKkqG0kq35aDCm0KV3rXIoajhnAgLiPHykS80dfpz5JR0ZGRseggUmVsYatWCMykVCQiOajIXwYDEbS0nKwOew0VbuwqSH8ugFHIBWv3oLN0kyrkops9+Bo1XC5qsjOHtavazvVRBA7Rawpdr723aVA+7TjlzvY9PqHyHUhJhn8mIw2WrUADRELzWRwOC3E/uHrsHXbu1I72kTdNWFM+yWUFgnVEU3gQO45ddhfKa6ZZLw6jqaLvupcQwNOfPBzxPf3p/1Jn8Ta1+kpTiWNHgGp3Sw28hP+OzqSp9va6REblyGaaZi197pogWhjz9WTvvaCdSdJGimKm4icg48j1+Z0jHqEJDW6ydmo90zfV7T4gSqihdB0FVmKX+wgLHNEUkeUSQ+goKIjE5FkgoqJVsUAJjAQxqoq2EMpJAUlQv42mlyHkUw2MvOy8XvbMDf5CKOQHHTi01uxWd24DU6UFA82j5/mpiZS047+AfhUE0FsEJAkiZFTJjNySnTvRSQUYvN7H+Jadxhzi04kYyurR/2j1/d58IMMoTE6aDqm/RLWL2RUO2TVRjMN+yrUG4v1SyPZa4yERuk05ZqpnOAkf1LV0b/xGBy1/Ul/9LMFvTB02GjDR1dps1gBqbtZbIyWidJ7Z7ECOMovxO6a1Zkq70vdQ8TcghJwYHWPQUbpcy9YLOk04iOJrk9m0WmLLH9D5wxGWOr5tqr2UQ8RwBfxkGx09nq8Y0Kk7sgtZLqKMdKKrAbQpOgSQvRYFaOsY5DNINtoU2x4rApmSwBHyEqKXybY1kpdpBxHai5Jeam0VDdilHRsITtttGK1eWg0JmO0SigeN6HkFEymwT2lKILYqaapUP4ZeOsgORsK52IwmTjryss468rLCEci3PjMrYxqnI7P2EqNvQy9vcnegZBMc0QiZwc4/2bonFZUMsZgPOf4PkFZZizDv+MVduPno/ypZFu95PNqwm4X6Hf7k1hsupfz+JB3uSKBVyScUu2bkH/Pt9mvjzlqJY3uZLReyRsdNEN0ZOTJ+oL6I/YlGgKpZH51HSmuGRgCqfELSx/BQAQLgc7u0bKmYfe2EAlqNEhJWE0R2hRr+22phD1fEAy7MAYMJJtLkGKMuEJagFa1FZvBjqFHxQ6NVtmDxR/GGEhBk0zIuoQpoiORAiTT/aJ1XQUpQMjkw2fwItOMxWAhojhwmZNpMQXICKRg9UfwNFRhsDlwFmTRXFGHUYKkkB2P1ILZFsRltZKvQnN9JVl5RYO6QaYIYqfS7rdg1V3QWt31mD0PFv4aSq6ibKuLj17axfyW63C692MOteJOmsvKqVs5kLkDHYndnxkp+WvPRaxYjST7S7KkYpv9XVZOtfJxloH7d+1GCXyIanYnLKfCedQSwPH5pGTe1a9KzIUIJ0+8ShrdNiGbCMcNSMfDk78eT/76I/ZRRUXMzdRM+T3S9tvJ+irOWnAcWYF6WsLJyJqGKdS13qvqEt6gEXMwQKvvU9oOP4QWroteC2BQMshN+x522zm9nrPF7MOltJEWNGONGNA1EyHZhCIlIyNh6Dbyk9CQ0IiEw/zv7/+X1956raufWP5w7vzJXUycMBldVwma3YQMDVgNCmElnSqrGbupjQyvnaCnhfpwgKzheTQdrsUoSaQEHbTIzUQsqbiSDeQ0m2lqqCU9M3ZfsRdffJH/+q//QpZlJElixYoVXHbZZUd/ERNIBLF+UnWdDW4vrlCELJOBs5zJKMf46aTjOWqDIVrKVpL12b+RrYaYTtcWEL21hsb3vs2nh3/CF/szyWrwMO+Lv2EJujufZ8YOJ6+cW8A70w8T3a/Zc9JQD7Ye/41KOr7UvdxR38KdVUlk1k+g0Xw+jaPeOP7nPMI49pCit+CRjj/YijWxIaR9bctIiDA958YkdC7nTb7FiwN7DTGSknQd9k14kvf3nkVKVSHzsg5jNR19x5EalLGE+ijy63obT90vOTJ6RtQGKup/RUHmv3UGMk2GoFnG4QObP4Skd+0rM0kKEUsKkska/Q3XdTRdRUdHQ+f7d96Gr62ND15fSaojFVlS+McH73GgdBdTJkxAlQxYQulYQuCXGwlb6rAZk2hVnAQcIXLa7Mh+L3W1lWQPH0bT4ToUJBx+Jy1KMz5jBs32CE5v7OLbTU1N/OAHP2Dv3r3k5uaybt06rr76alwuV8zjB4oIYv3wTr2bfyutoibYtfEv12zkV6PzuTzTeZzPMRV56vMkN7/IcM8G7m5sZrJV5csxaUjGCMk8zXklIOeC5jPAtq71H3PQzY3vuzH7ZTK6VbfpqMyhD3ND6h6szWOjmzFj9P2SYuwwi9UCpSWUjKVlxLG8XJ3iVd2Q0VjGU/xWj7EfrD9EABtc2qcD9TjJCR1rWzP4nJ36BNZxPkEsjGUPl7AKQ6868QkW58dFkiDZGKYufQtsTGdv/Rgm3LAfg0WN/yOmS0RC8X/+dF2lruFxYg7/2lU3P4GSNherZkJRnTh8QayBht7Xp6sY/W7CRh1jWiomm61zn1lpaSn/WL2KiooK0tqTLzRV5YrFV+D3+PjrSy/wxttvkZGewZ7Sffzn/f+Nx+Pml/9zPxE1QkpqOv/2yKOcXVTI5x9+xL89tIKtW7fRUuFi194DXL/8Wj7asYE9lW5uOP8cbll2S69+YpqmRZvVeqONNt1uN8OGnfyMRhHEjuKdejff3nmo149kbTDMt3ce4k8Ti44ayLqeo+d8haak4km7nbAryDspu2GMB474hdac4P5OBOmPBqzbZHSgKclCwGhg7i7Q8SIB/qlat8ocFTTxawyBVFJqzsKTu6HXesCR1TTitUDRTF58mTv68Ur1FGsPWEfVjRQ8qBiYw6dsZN4xP7dwChxlOvCHPEKK7sFNKnbcSEALzl5rW5PZwWSO/edpIC04kIu3Lpq8UPlJDkUXV8VNgNVDfSc5+II7iai9A1J3aqQByVOJwToLJLAE+55eN/l9mJN69h/cunUro0aN6gxgALKiYLPbsdntJGU4WL95Ix+9u5pxw0dT39jA7AXf5NWXVjJmQhEvvv0Sdy69iVc3bCZkNSHrUO+qIj0vB9O+vUg6WLwGLFoTzU3NMfuJZWRk8MQTTzB9+nTS0tLw+/188MEHfd7LQBBBrA+qrvNvpVUxP1N1hKP7SqtYmOGIO7XY8zl6HjP64B4u/PQd7L4WSq6LTk/0epr2DZctiyO4DznZk5tJwNT1z1aak8741Gr069t6nTtibqa56N2Yj1dP+R1522+Pph33twVKP9cM4u0BayItWo1DjKQGN11HQu+xZy8ZDxEMBOhZ5y8ZD9/mibgZhENCYwiIBqeWg3YOvQ/5c+swJXd9oNQ1CHkNyDGqZnQXUZv6dUot4sIqh5DCIaSj7BXTw2G0Nh9Kcs/KIN2DWllZGddccw1+v59zzz2XefPmcc455zB7/lw0TePtNauYXDKRKePHElaN3HzZMn511wO01Byk2WhFkyVMfo2mpnoMdiuSBGbVgs1viNtPbOLEiTz++ONs3ryZsWPHsnLlShYvXszu3bsxGE5eaBmQM5WWlnLzzTfT0NCA0+nkueeeo6SkZCBONaA2uL09phCPpAPVwTAb3F7mpXaVjlE1nU0Hm3B5AriMxHyO0Qd28fXV0UK6ybm+Hr8wvUigpcH+s1IIVPecsgmYZIKLgtGyh/HKYPdRlb6jJFS/WqD0I/b03dtLjt0+Rhg82tevfsj/dI6sOkZTALv1EvYwEYASdjKe3UfNIBxQoSSGbb8NX9qeXiXNjkbXIdxmwFvbMzC3HLTTciiF5BwfBlsEgyGXcQuMqCkyYV1HlhQ0PfY9G5T+ZQUbDQ4iRo3kJAsR39GP1yM930OmTZtGaWkpzc3NpKamUlxczLZt23juued4++23AUhOjm5XkGWZ5DQHitmApoewSjp+3YikS0jhNmxKhKAGwWQrprY2PG1edMAkhTBEYhcnliSJ1atX43A4GDs2uoXhyiuv5JZbbqGiooIRI45vCeJ4DEgQ++53v8utt97K0qVL+fvf/87y5ctZv753G+zBzhXq31x99+NW7azhgZW7qW3xMSa1jJRsP+OHF/AV4zvXDCRN48JPoxW0JcBg6995DDa1V2BIzvUfNQDGe7yj71d/N3z2x1H3gIlR2OByxLzZ0fZmTWQnE9l54ueNGLFXn0PEWk/AcRDN1HsmIXp9xC2DpgPPt4RRk98jzW/ncr8JoyXUr9rQHZ+lqj7LBj3WN0h4a6IjH1ta1xu5rklIZh16F6GJHmueiEnJIqTWE29dzGzKYfjYS5EkBdUb576PIBl6TmOOHj2ar3/96yxfvpxnnnmms5dXW1vs5zv77LNZvnw5Lp+b3LRM/vG3V8jLzWNMyjj0XJ3q8kPsa/Mz3prESy/8GUmWUfUIZikSt5+Y2Wxmy5YtuFwusrKyWL9+PZqmkZ+f3697SpSEBzGXy8WWLVtYvXo1ANdccw233347hw4doqioqMexwWCQYLDrp6G19QSy6gZAlql/L0/Hcat21vD9F7cwLWs7d5z7KmkWd+cxjaTzgr6MqpZRFNQextZtRBLx9e88sY7rbwCM+5ztyR6JciJ7wISTrP1n8Cz9E2awud97sxIh/dDlZBxYBMAO91oOWz4ic3Ij9uFtvfewxwlkpQ3D2BZowqYcIGNvGlXVmTHXs2IN/sNtBqo+y6bloL3vRpoxtChhLBYT5iA9RmSypGAzOinOuos9NT+jayqkQ/T5x4z5f537xeQkG5LRiB6OP+MjGY3ISb1HRM899xz/+Z//yZw5c1AUhdTUVLKysrj77rvZs2dPj2MzMzN54YUXuP7661FVFXtKCs///ilkNMY6x3PL97/NdeedS15hIefPnI2mRXDkZ3C4uoL09PSY/cSmT5/OPffcw/nnn4/RaMRoNPLKK69gMvWjHUYCJbyK/RdffMGNN97I7t27Ox+bPXs2Dz/8MOeee26PY++//34eeOCBXs8xEFXs//TEQ7R4apDlZMymDDLSi8gfNoriEcNIy0zBZOkdIFRdZ+b63dT5g+TXHCLJ56HNlkJlbhG6LCMRzVL8/OwS0OGchz5ggryKa2e9AcT+Rdqz+zwaG4dHvx4OYa47jNHbTMl1+zEmReJ+igy3Gdj9f6PQkKnMLaLNlkKSz8M4djHmyvLjfl0KPr8LS/NoSi/+DqAf116wI7ss96fCuHCSxXij7uixNSDp7X2MoORQMqM+/i3oEj7VwzsVT3QWrkbWKJqiU5RTgNGXhSHgpH7cX3tMd8vBFLL33MjKyp3U+yvIajKjtJ/MMaK113pWIGDDtamAkNuHwaYS8bVPIepS5+syrbyOgFFhT35mr0u2pWUw/VvLyMvJxqgoRIxmkCyYNBOyHkFCQ5EkrIql85YbPB9SVv9fhCJ1nc9jNucyZvR9ZGVd2uP51ZYWQhUVcV9KU0EBiiNxHzQ7hEMh2mqaUTGiotBsayJsTkdBJbc5QNAcxh/QmDlzJg0NfSernIhBWcX+yN3d8eLkPffcwx133NH599bWVgoKCgbikrDvKCU1kElYbSasH8Yjr+NLo8YWs4mwxULYYkI2SyhGBV1JwqA4SE7OZXFYJrT5A+xtXaPE1iQ7a+ZdTunICfxydD6KJPH2W+9x6a6nmfPN7UCM5aD235eRxZ/T2DgMkNENRgL5xVBVRtVn2X1+iqz6LJt9RRP4cN7leJOjP9CyrnJh7aeMDDyOYg7H/iDZx5tJR/daX+pXIB3fZ5nYleij9dzE1OFJFjelLvpvezv/g1tPo46cHj22BuIyoP1HKlZrkz1LO6fwtjZ+2BXAdB1UCeO7LaRPuwLF7ESSJFJcs3psEbE0jcGvtmGsWksuPXt5daxnJeX4MKToeFLH0tKajdXrY8bGj9mbk94jMcoSjlBS3UhOSxs6cCAzlaBR6eNnV8akO5F0HaMURpElJF0hrIejdTxkC2iQkXIR6cnn0xLchmpuxpKci9M5K2bFDsXhwASEa2t7jMgkoxFjTs6ABDAAo8lESl4anuomdCScvjRa5SZ8xkya7GFSW0LUe7wDcu5ESngQKygooLKykkgkgsEQbRFQUVHB8OHDex1rNpsxm48sDDYw6vNyKSvKIsM/jKw2E7meZDK9VozhCGooQMDfhj/ixa96CEQ8hLVyvNp2TCE/zWlBGuwq1qBCdpOZlLZWrlr9EjWTJ1O61cRjrUGCe3aQk9vW5/qUJIHF4sPhcNHSktMZ2YLZBbj3uyl/Hwrm1aAkdU1RhHwmKj4fzg6phH0XT2ISX+LWUxnZ0MAv9/+OvFA9rnQTO0pSom8MsarPx3kzsa1XaPRvQi8+vtqIcSvRi3Ypp4STRsbqX7Gd6QSkrumnNBr7XOfqIdaHnqCEcUMmvrMaMZj62EPVTgtLNOxOJXVUa4/fh+6FeNvUVrY2fkiVb1/n180RlQlVDeS0tBHa/less7+HrutIkoyteXz08tojZI/g1+seJNpqkqAGiryHyPDsIaO+AVnXyWv20pRkIWg0YA5HSGsL9KiCWFLdwNbCnLj3ZjHYMEgRVD1MRNfAbCA51UFy+xSaruvoQRVd05FkiUzzef0q2aQ4HMh2O1qbDz0SRjJEpxAHutyTYjSSnJdGW3UzOiZS2uxgd+NRUrEm6WQrKi5X/YBew4lKeBDLyspi2rRpvPjiiyxdupRXX32VoqKiXuthJ9vH45184pzXY0OmQQ/j1N04tBbsYRVHWMcZNJPuTye9TaF8/0o2jKnFZ+1KgbX5FebsTqOwzkbBjt1kGjNwhaJTBsZ+rk+ZTN12+0sSutFMcXobC5Q9JH8Rwu0wEjRJhEMWVoYvpmJUMuflf8w3eKvz28wpKkpKGzRCVmOIibs87BlmR3V2PbXcDNbNMv5ZWsyq9K0X1iM3P4GpJvY6VrzNyh1f6zsLUfT+GihG3c9yniKVppj7sTTkuEVx45FDCvmVFooqKticZaHRbsHXYkfabsFbk0R9RhZ2OZXR5+yNO+DTwhJ129Ko25oJukTNpqzODL+Iz4jVPQaXXI1f/T8aApWdhWtBZ1uxm4ixGSt5ZLe0EanZSs3OZ3GOX4zN0DWV5FM9vYJfXzYUNnHtOm/nRIMEpLfFrkARNjsIF17MsFQLrtZthLTuVTkkFMWMnGTCYk9GMRpjBhhJkpBiLE30hyRJvdLoTwaD0Ygtx4Fc14Jft2D1mtBS/DSareQHdZoaqsnIOrnJGsdiQKYTn3zySZYuXcqKFSuw2+08//zzA3GaY9Ls2ktGy8skmS1YjE4sSgYGQzqakkZYScVjdFJtzqIlxUlAspFX+Tbhyb1HKD6Lyprp9VywJZPCOhvVw53I+2uR6H+CRijUs5XDeEpZlLkFiP6SpbZEpxQ0QlyT/io78u294kHQJLOzJAVpt4esxhDZTSEsX3o5WOdAdYDSImHaLyHpEilv6ngXqniv6Gg42fU8mhMCzv41rEzSW1nIOyzitX5kIbavzou2KQl3FW8wn3/2eKz7y9xXUdzuWrDzKefylX88BZ+UckHdRkoNo/EeNlHps9PZFjwJpKCP8MEkfKFighc0kSZ1/cwEQiYOHByJe6MNm7/bG3+3DD8AL5W9rqHNEmFTSROHc/yAwq4RdbizxnDhhipSyjaw01eKt2ASVkMyftXbI/j156dq2yidJqfMT1/Ten1Px8es8uGzSE4fhtuRRpsUIWyFvFHn40i3kpaTgXNYIQGDkbT83B5rNqcTo9lM2GnF6g6AaiYUaCVkNdOYbCDdEzrVl9enAQliY8eOHXQp9ddtHYtXOxvdcpDWlAoabV4aknw0masIGlQCUghd8pMseXEaQuhqKPo7HGeP1caSJgrqrFT6VTomSr21NkJeQ58JGsGgjZaWrG5Pp7GQtdH//8gBDVA6Kin2L2v7VOS+4iQyG0NIgGNYgJE61G1xEPF3pXg1JoP3Qi1atS7eXrKO32gp/jRhm2TnVb7Fe/rlzOXjWFcVmwhkUX2tWR25EBrnOEdI5/btxaim76CavHjLD1CTbSd57GaMtqPv9Qv7ZZpKnez3jqbCPxybr43za95B1nUqcXYeJ+s6I+qaSAmGMYcjONsCyMDGOZfx/s6zqJkcxIkbN6l8ZRqPPk5BGq0yrLacpLZWiirLGFX+FdZgV1DzG1UO5Hpps6lM9I2hIJxPutlGk15KRoMHRzCZ6fWjUMwGdp6rktLowhz00xYKUB6uQtK6RpMemx2jGsYS9MdtRO43q9SlBalNl/mfq+GW1Tpp3m5Zwc40sn76r4z9xiKUPjbndiQenO5s9hTc/iCmYIjkgB3N6KbNkIbZ5B/UOcdnTMWOLIuCL1gE4SLSmyJkNUc/XWi6gooxOteuBdF1LzWpW1k5sXf/rk4S+KzRX5BLN33GnvxMdEC12jm8dRTF53wVN0HjQNks6Fa3sFCvwiF5Y36sdDuMBM199CKSJIIWBbfD2Dl6sxcESMkP0FZv4rXkC/nbsIksMz+LI6mPINIevND717DSSwqr+9sKRQSvqI4fgF4/GCoWgr0qYcT7AfrF7iApzePRfE0Ed7xMS9su/v6Nqzjk+S0Tmj9llG0TU5K2YzZ1TYGH/TLN+xy0lqd0ZuUl0cq4I/Z7+S1J5J09n7lWG/Izf0at61aqLCeH7HvvoeSSS1hGnHqiNgv/75ILSDMacIUiHG7cxro1DxJsbekMKNlJOdw1+y4WFC7o/L6l/Xj5NE2las8uWpubKDdYCRSOwrhnG/ue/N+Yx0vAkh/8goVFZup99WRemsm0B6YQ3LKNSH09hsxMbDNnICl99/o60zizM2g8XIuMQpLXhppcTYSTk7dwvM6YIObWzcy0NICkESZCQFcJaODXDPg0Kz4tGU2xIWGjNal//2gRJUhhQytfjRqJN78I3WjGr0NodzbFxZswW7o+hQaDNg6UzepMr4fo+1IS8bN/gqb+BYCAUUIFtljM1CsKmarK9OwgN7GKKzyfETQE2M3Rtyw4yuazvriZJvkoDSs7Ui2Ffuuo1r5Y/yvv65dyOFBMUluQCZVlWI0aNaFzqVMzMEea0dPcfFA0lVZzV2AzRsIUehv5ONXPtvABGpKaGDXSjNVbQJarmWTv2yT5PBhqAuxmNMk5Poy2SGc6ua7Hbo9qSLZjm3k2+dNmc/GsGRiV6FuCfsPN+DZ/EfcN//JMJwszHH13dsi+gNvHncsW15ZoILFlMj1rOspRmkTGIssKBROiTWMndDyYexGlSVY+eu4pvE1dKeAp6RlccPOtjJ4zt/f9zpl9zOc+XonofNGXcDjMihUreOmll1AUBZPJRGFhIffffz9Tp0497udNHZaFt7IeTbdib0vBbIxfauuFF17g4YcfRlVVsrOzefbZZ2Mm8Q2kMyaI/ct/LaPuwEG2f7GN+toGtJYAxlYNkyrhxES+bMYiJ9FgUdltbuzXc5ZUtVE9LJ/WwjE9Hm9sHE5jQz4Oh4uktnLktmm0+qfgth9AVrrml9swcUhNjfuvYAr2L1BUf+zk4ZEGVo/oeqLsSIS7G5u5yNdK41GKlnYwf9YAhmuhPxVjxAirXwx6iLl8wnKewkCEQNBGUZmXlMZm0KGNXBR3CbnBdJyKlxdn/hodjaK9o8lvnkFLyjC2jivGb0tmf2ou+1PBnpXOJbs+YbicSYUjlaKWSvTqQ53nTEnP5NxvLueAZKKxqZGCtHTOnzaJTze9Q31dFdawwuj8EhzpmeSPn4AcI6hIikLSUd7wFUnqUW4t5jGywqycWcf12vXH6DlzKZ41h6o9u/C6m0l2psa9p5MpEZ0vjmbZsmV4vV7Wr19Pamp0wm/lypXs2rWrVxBTVRWln6NOWZZRHDbMLQGCmhWTEntN7KuvvuKuu+5i69atZGdn8/zzz/P973+fd95554Tu61idMUFs/4GDrFq1qqsqiAHsRXYWLlzYWdcxEg7z6KOPktGWgTVixa/44+6xcnrh7L0B/nHF9OhjvRa0FFpacvCo+aS552EEXgsmk6x4sEph/Bip01JQmMAdyl+R0Xs8RWuFhYatduRCDc1J/I2jzWDeqbB8B7gVjU1jo5+aXIrCHVkZPOJqIFxnB68Ud62u43mUjfvJZgeMmNj/F1boSdfJaAkyulqjuC5CYUOI5HQbVSnX0Kp4cHtS6ZhOljUzya3FmILpAHxS/AqarGHzK4wrc1Pc+CmRiMzZn0vRDe5JGTjU0RS5c5D1uUgZZq5bMpoRU9JjvomPO+LSLp7/Lyf3tThJuo/SBoNEdL44mtLSUl5//XUqKio6AxhE6xdCtJrHX//6V7Kysti9ezePPfYYLS0t3HvvvUQiEVJTU/nDH/5ASUkJa9eu5Wc/+xmbN28GYOfOnVxxxRV88ckGXBX7Oe+qi1m2bFmvViw7d+5k6tSpZGdnA3DFFVewbNkyGhsbSU9PP6H7OxZnRBDbvXs3r7zySq/HW1tbeeWVV1iyZAklJSVUVFbibWtDQmJK4xQ2ZG2Iu8dq+WqVpowM/LbYBTIBkCQ0g4bNVM5erQCfpDPC5SIt6KHJnIIrI5mIZOCPkcv5ruHtzmWQ1goLVZ9GfzAdf5Np/k4k7nU4/m5A0SU0YOn7Gp+PltBlCV2SkHSdX6elcknZFKwHjIyb9FnctTr73w1IukTJxpVkXnUJ9c40MdrqS5wX8ppPvZRUdS8hJOOrH4tePwYFHT1jO7a2LExqEsaQAwkJXffgklZTcLiaMaXZjJLyueiy+RQPt1NVH8ZrziM5LZ3csSXUlXloaw2SZDeTO9qJLEevYTC9iZ/JEtH5oj9itWI50rp169i6dSujR4/G5XJRUlLCmjVrmDRpEn/5y19YsmQJO3fGr4OZmp9FVW0VTU1NMVuxTJ06lS+++IL9+/czatQo/vznP6PrOuXl5SKIJZKmaaxatarPY/7x+hsUtHrwWLvSZ/N9+ZzlOovt6dvxG7rWtqyqlX/5zMKcffWUD7fGerpefMl2svdv47l9r5IZ6Cq2W29x8MTkRTyUdx0A3zG8g6zp1G3p2KEvYd0mwR8N3XqFRcnN0QBmbW+WKQMZHhhfobO7MPrLoUsSaY3FtOWMpa0Z9uw2Ujzqc8zmrrLZIZ+J6k8zsZR6sBFA0XVuf+V5/v3Wfz1zswqPVksvxnpgij/CpVsCjK+KXQNPkkJUyTJq0yjsrWuYu/gaUvNHk2Q3k12cQs3eETGnw46sX5M/djDniQnH2/niePSnFcvo0aMB2LhxI1OnTmXSpEkAXH/99dx2223U1NTEfX5ZlrFnpsdtxTJ37lz+8Ic/cOONN6KqKldccQUOhwOjsX/LF4ly2gex8vLyoxYW9oZDbPn5nShpadBtLjnfl0+eL48GSwMBJYBFtZARyGCm6ws06rEG+mhR3k1a2R6mfvl/vR5PD7Twb5ue51ezb+ahvOt4KO0mrtHX823/yz2Os26TsWw3Ehqlozr0HnvAep3L0+0NVodif/syuCRF1+oah+FwuDCZ/ASCVvZqo1GVRvxjyrlg21YUXWf+ts189+9/5dmrFhEy9y9Qnzba6wkWs59n9VvxSL1L/kg6TDtYx0hXCwGDg7Y2E1PrdZK13v8eJlqxaF/S4GshS2/Dag9y0Q+/0yvpQIykTg/H0/nieBxLKxagvfJJ7M3ZBoMBVe3KZg0EYm8GP/L7AK6++mquvvpqAGpra1mxYgXFxcUndG/H6rQPYh2ts4/Gb7GSX1pKy9R0WpPoDFgSEpmBrqKgdrudKbfdRu1P7iCjvgGrz4ffau3xqV0DahwZ+Exm0txNTNj1N6D3spbcfux3d7zJ+pwSQuMzqdnRuwApgKRLmEuPPiqyd+tNlBHIwIT1iBPLtLTkcCAjl0/HT6bNEg1S7wBPNTdy/Xsf8+XYc/lsfNLpH8B0nWSfhwJ3A5Ku4wj4mFBVSrrDhclo4Huhv3K4bSFes4WqdCOSrpDeojCrLIRBM9FGOu9bw5Sa/WxIgWERiSRV4rzADkZq+ykeVczkH/2QurKRgyrpQBg4x9r54ngdbyuWPXv2MH78eP76178ybNgwcnJyUFWVgwcPdq5lvfDCCz2+N14rFoCamhpyc3NRVZW77rqL2267DVtfSywD4LQPYt0/jfRlb3YLD10p0Wjf1PmYNWJlSuMU8n1dJVcWLlxIWkkJu3+xA+eKZ5m+ZQufzpvXOfV2ICOXT4u7gsOUfbsxReL3DJKBLL+bklAlX1iH0+g8semilm4/P9ZI7OoCBzJyWV3SO/Os3pnGo9/8Rv825A5l7dOBF+3exPjDYYyqjUBSNbocoSPIy2o06WJMMDrlM/0AgEqIMB6jm2HWEM8bnLja6xnpEgQNcF7bNkzNn5K76PvM/NblgBhlnUnOciaTazZSGwzHXBeTiGYpnuXs3/tSX06kFYvT6ezME8jPz+dnP/sZM2fOpKioqFe3kXitWCCaIXn48GFCoRBf+9rXWLFixQnf17FKeCuWE9Hf0vvHQtM0Hn300fhTirpOveEA/yzYGv17j8X66B9nuc5ivGF8j0xGgHUv/Ddp//kMVcPy2TJ9OruGF3cFh/bnufDzT7nvmd8d9TpXfnM2j5z/r8iaxku/+CEZ7ibi786I7/7rZHYXyki6ToY/k3PrzuvxdQ34y5xLaTNbTv9gBTHvxxwKct6+bYx01ZFRPy+aXIFO2NSCJoeQNVNn0kXn06DTYHAx1rcZpzGN4pRZmA0WtqPSiE6S6ifS8CE1/ipmL1rK/GsvO9l3KgyQeK1C4unIToRY3cRISHbiyXLo0KEzsxXLYCLLMgsXLoyZnYgercK2Pf3L6N9j1X0C9g/fz+OLH8d4RHfVc2aMpWYiSDuryK6u4fkVv+v1PI2O/o2s8nKjdRo1WeZ3S27mgaf+Fw16BDIdUCWJnaPG0ehIJb2lmUn7v0LRo7XkGlNgT4EEOuR688l0T8AvG7Fo4c5foBpHRucoMaahFMA0DeQ+Qn3757MZB3ejt9dyzHM3kOduQAbsrSWdgUpCwhRyxn4adBzsIFj/AdVANdA8ejs5zuHMGHkpTXU2GkIeHNmLWbJgNoY+ShgJp7/LM538aWJRzH1iv0zgPjEh6oz4bSspKWHJkiU994kBVp8Pe/VGWkb2XXG9IdjA6s//xmVzvtm5nqHueoMtK7+LZ7iJ3J3J7CoeS1OMgLVj1DhczrSYIysdaEyy4HcqJNlcpKsuGuUMPpk2m3+/9V+5/ZXnyXI3dR6/es45PP31a6lP7UpfzWxu5LZXnufcbZ/z5NRLSa9KZ2ZEI6nzM2AYXW9P75XAZxrcJWT6RdexBv1cv3E1tY4Mqp0ZNNuSqXFmEuh2f0lBP/PKdjCyvqbHP6+kmUhpHYU5eJTKJNGToQX34/J90P43iJhNpJ1/IxfM+BqSpDB463sLp0q/KpoMAUVFRQM6CkuE0346sTtN0yg/eJD999yDqbaOjPp6PhsPv/360Rfa769xk1I7jhHfeoDybC8PfXQHdYqEpOn88Tcqn0+cy6+W/zDm987fuokHnvpfdLpGVrWOJHbnpRMwdY3u9CSJN+d+k9KRJSDJyJrGpP1fke5upiy/gPK89oTrHlOe0QA8cc02QqqBC4xlvQ6Brlm1KkcGK6ee089X7BQ6SoPHS3ZvYmRDz/RgTYcaZwZhNR+b6iW3uRlzyIHFl4dq8sSdKox/CRqRwBeogU96PH7Fv97D2LPmHf+9CUPKsU4nCsdGTCceQdXUuLXaZFlmRHEx6d/+NlU//gkAqf1sXFqgB5nl2MRbf7yDP47WqItuUkeXJd6dJTG2Nn4F8SNHVrWOJLYUZnd+XZPaKzLYkpm2ayNJeNlWfBaaLLN9TAnoOrZge9przN5dOjvnTWZe2ZdUhzLIbWmIXeBDh+ZGGUMgSMRsOjVThye45pYU9DNv/45oADti87cMjKqykOx1AA7oNkZS4kwVHskQ3k8o3EJWaxW1SftRu2VC91WTTxCEU+O0CmIflH/AQ5seos5X1/lYti2bu2ff3aNqtv2SS+A3j1K34kHGV9SS3qrTmELMN1dJ18lWVWYEgwBckF3G9t3TOZzt75ywe22uzJOPfUVmcyP1ztSuXlrdfDJ1FjtGTeMX//c5zcpbRLvCS+wbUcKH8y7Hm9y1Hymlzc1l6uu8K18FksK5uzbzz4l91J+TJDArfFoyDYCkgJ95ZV/2GKl03Fqx0sjevS7qJw/r+8VMtPYR1ILdm7CGw7SZzPhMFursqVSmZRPutt5oCQU4p3R753F+kwVrKICj3sWYinRCqQb8MXoHWtuGkewdeZyXp4Pmwet5iyl1NUi/cJNnzcUhL8PIKJEeLwiD1GkTxD4o/4A71t7Rq2W5y+fijrV38Mj5j/QKZCkXXYRv8xf8cPP/cT8f9BolSO1vvIvqk3hbPZss3Mw2fMVYuY3sJjO16dHApssSf1oocdsrz3P/rf8aneLrHsg63sC3B/DnNxGujL7s+0aU8OYl3+p1Lx6bg3dZBJKEIRLBeIwDlzazhdUls2NOuVkllWvcX7D5kIfNI0riPEPida5PHXE9VPXcV2cLBcltaYiZmWlvnIjJmIbJCzZvEQFbNaoSQFHNWHz5yMeVz9nV8j7sW8OI+mbG3HYNKbMuxOmchSSJoCUIg9lpEcRUTeWhTQ/1CmAQzSyTkPj1pl9zQcEFPdpAdFTqXlBfj+ep1Ty/UKKhW98tR0QhUHcl/+05u/OxXBq5wvYB1uDeHueJFt79gp+98L88f+XNPZIv7D6NS7b6oiWJkqOJGpok8eG8y9sv5Mgpwq5WJxd+uQHzsb43t3//p8WTKGqoifnWPv3wPvbkjoifan884tQTnHloD9MP74sbYmQgv6WPxWM9WizXFE7t9j0SNl8+sqkVLWSnP31+DYBD9tOoyiB1S3DRPWieD5nWtIfp9/x7dKQuCCdI1XQ2HWzC5QmQlWJh9og0FHloJXYMBadFENvi2tJjCvFIOjq1vlq2uLbEbAthyMxkzj6dc1sCNF7mpV5ROBgezcOtP0M/4q23llT+mLyEXP1lYFuPr20aK/P56C08/fEaXk26h9bkyST7NYY3RJA74qseLdhZmVvUYwqxl/ZgEDaaGN5UjSUUJGA8hnUsSaLNYqPGkREzQMjAvLIvo/vajpJE0VfXYUsowOi6SsyRMHtyi3qk78cdfR2L9ktIbi3uuW9LB01tBlKJFcB0zYcaLsOgB3CYcjDqjbwhudHTk9l/6ULuNjnIr6olVFVGptVLwcTrSZ49SzRJFBJi1c4aHli5m5qWrhJOuQ4L/35lCQsn5ibkHAPVT+xYLF68mM8++4yamho8Hk+P4hKlpaXcfPPNNDQ04HQ6ee6553rss02U0yKI1fvqT+g428wZGHJyCLpqmdrUjGQJMT/07fYA1vMNMvqYTq1vIUn6diSpa/Qn6TrZOsy49TGqKiZS/cbhXucKtM2izfAlXlv/in8eyMpj0+hJPVLHj0VfKfUjG2q4ZPemHhVGujOHQyBB0Nj1HLagn5KaQzj8bb2m/qYf3tuvacE+HVGtv6NdSfd0eF0LoqmNKMY8QGdW0v/hkGvx6w4sciv+cBCjVs9BLZ99HvD7wasksbvoW/zujguZm5bSnupcCMw51isUhD6t2lnD91/c0rsVS0uA77+4hT/cMD0hgWyg+okdi+9973s8/vjjne1Yuvvud7/LrbfeytKlS/n73//O8uXLWb9+fcKv4bQIYpm22PUG+3ucpChk33sPVT/+CXVbnFScnU0NfbQSkCT0iBPVNwJD0oHoQzpkBDK5Zcy3OWybwpULhvOnD6qJeMM9RhBVBpnNafOZ4NvXr2suzzqxXUi2ULDPr49sqKGooSa6CbpbEkVSexCC/q1XQT+mBY+kSXQNUdvpCjbvMBTV2isdPrp2pYFkbA9gGpc6HmaUdT2qnoI3chURfRyqksaa2lIqffs730g+ST+HX183h/npid+6IQgdVE3ngZW7+2zF8sDK3VxcknNCU4sno5/YoUOHOit2LF26tFc/MYAFCxb0vjjA5XKxZcsWVq9eDcA111zD7bffzqFDhygqKjru+47ltAhi07Omk23LxuVzxVwXk5DItmUzPWt63OfonrH41d406EeSmx6Jjqby2vKY3jQdc8TMvuq9NP3tU1KB4txp7PMUoUty5xvxfoNKmWUkWhtImoYuSX1P5cFxfz0p6O8MRH05WvA5psB0DOzuaPPNsMkNgDHkxBRyxt3DFa2crRB9O9CZn7SOLONw6kOXE9QmAQptEQ9bGz+gyrcfAK+SzJa8c7lz6TcSNo0jCPFsOtjUYwrxSDpQ0xJg08Emzi4+/p5bJ6OfWIfGxsaY/cQ66ifGUlFRQV5eXmf1GkmSGD58OIcPHxZBLBZFVrh79t3csfaOzjp4HTreEH8+6+c9kjpi6chYrHx3Paxr6fNYgIu9cxifNQ/Xweh6XH5FJdO3bMHm72jRsoYci4ntU75BXeo4qiUDX5gsgMT+YePQ+yqZdLS1r46v63rchIp5+3ccZ75eAnT8E8TrJK2ZOwOWOXRsRY+tksREq0Ka8SJau+3j+o3u5zVFJcc+DlvScGSbncsWzOX1BWPFgrpwUrg8R29jcizH9WWg+4l16KufWH+vD7qygBPttAhiAAsKF/DI+Y/E3Cd21+y72Pny63zR9gpGs4RkMIOSgkG2YTTaSbalYbYmI8kKsqwgSTJOE7hDR7ZT7qBjI0RqoAHXnmiKuFc2YTQns6dgBFNL96DoOpXthYH9NoCvSAEWa0ZeD01CPeaUw9gmVZZxIDM/TkJF9amrhajLIGlxO1Intxb3/lrHIboOupcUWcJhSKbAKCFLEkEkLBKkG6QevyA6ELIqLLp2GosUiQZvUGSDCadEVkr/Knr097h4Bks/sXgKCgqorKwkEolgMBjQdZ2KigqGDx/e31vst9MmiEE0kF1QcEHMih3h/a+RZJyKL+LBH2klqLai6XVEpAARKUhI0tDb/w/gQnMhr9kvBo7M3It+fY6xAlnu3XoFIK3VzQ2r3yCU0Tv7MEkKM99wkC89mVT3te7WT0WNtZx9YGfsdavjCWDx4vaxfL8mk14/l7C5Ca99P5oS6vyyrJlJah2JyZ8CUu9fro5Pa8VGL5NSev7A67oOEr2mGyUg75oxFI/tTy1EQRg4s0ekkeuwUNsSiNuKJccR/YB1IgZLP7F4srKymDZtGi+++CJLly7l1VdfpaioKOFTiXCaBTGITi3GSqPfMCWdLUUWnCFI89tI9+diDxpwBA04AmYsESOyLqHoErIuU6xDph7gpbCRVr3rZTLLfiZY9jBcjXAgPT9mX66mFAe/veZmLtm1iZGNPYfrkgSFSjO2Bhervfl4k+xx17Sk9l1uR1vzOvo+q36WetK7/Rlj9HTU4NZ+nL11HDIy5mAGpvr0Hi1ODEE7EhJh30oAjLYLQOrK1JT0NkYYvCTpbg56Wkky2HGrPl5TDHitefwIC1ndLkRxmHFeORLrRBHAhFNPkSX+/coSvv/iFiRit2L59ytLEjJDMBj6iV111VVs2bIFgLFjxzJ69GjWrl0LwJNPPsnSpUtZsWIFdrud559//oTvOZYzpgDw4ld+RWXqWDyKEzepqFL/4ndxXSU5ZZ9SmlRH2NSIYjuIhM7Cw5fz2qyraDNb+wwy129c3WtdKi3tMPn2raz+6uKuih0x1rSmVJSyvWB03K/HqsgRUz+DkKyaMfszCVpdPUZPkmqIjprkbgtQWjRZRZfVHt9/ZDp8r0vRdVKlLUyzPkWyEiTTAhtafk2bqpGkmBhpzeT9SAPPqk3YVB8+xUa1JbezlYoMXJBk5dtThzGtJAvzCAeSmDIUBtDxFAA+GfvETgbRT2wQkWsOE2rZhCz5SJU92MwKZoMNg2zDJKcgyUYkvX1fmCQjIaPrYdRgE/vyo5XhDe3vlRn+DNwpw2iz9NGGu4/Nxl5vOuEsBxNc22G1zofzruix8TnZ72Xuwd2MbKgh29Pca7qy35uIdZA1E0mtxbTZy44ITEbM/kwUzYKsGZE1c2c6e5J3RK8GkUDnY5JqxBR29ngsXnX4js9IkiRhxMsFjj8w2vZZZ3JlY/heRif1rOP4jimZKmL3PPvF5eNZOm+EWOsSBrWFE3O5uCRHVOw4Cc6YIHZ16QwawiPQNT+63opkOkzYUk2bxUObKUhYCaJL0a1LuiShSaCoGp/mlkezurv97FlUS7/7csU6LhSy8dVX5zF82ibGrNtN8aGvqMotos2WglnXSTeaOte0uu/jOqZNxJ0JFNG+Web6jKMGnA7xGkSaQs4eQanjsb5IEgw3bWFK0nsMM32BLGkAqGTgDt9KQOvKcNJ0nXpJZztq7+chupYgApgwVCiydEJp9IPBUOgndsYEsWTFS1NERldSgBTQ8jH7dKy+CFmoSO1vrkDnXHal/QCBgt6bkgNKAJu/703EHWJvNo6eoc47EWaUEdxmZHj1QXSgbdTkaPzpNn0Ye82r7wyMIytd9NW5+JjoHsK+taAHQEoC3QeAwbYQWelZhcQitTDN5ibLOAv0WTSGdyHTjEYqQW0C0U8HURo6kgS/ofeCeKLXEgRBOH2cMUHMYzUzPlyKSbGjyCYkWUOXdCJ6mLCuoXXbXaYTXXZy26piPleDpYEZ9RUkBXxHXROLv9lYIhhMwlGk8FTBDeQFasiRW5hkjJ1d1PO5o9+PdEQga78Bm7cQW9vwfjV+7C9d14kEPkMNbIIjw4yUgiRbAZ2xlg8ZZtpBstKIia8T0rtGWkFtco/n6/6yBS0Gsr8xmuuUCKVHrCXkDMG1BEEQTo6EBrF7772X119/HZPJhNls5qGHHuosT3Kqfeuh2wEIBwM0V9dweG8pza4G2hrbCLb60cNae08pHa3jT7n3tBYAEuxI38bcspG8H6uAbsdm47KjbzbONjfjtLRQJeVhki3AgaPei6QbsPiyCdrq0LolW8iaqXP6sP1COLF8+fZn0TXCbe+ghUtjft1oO58UpZlz7M9QbNlARO89VdjrHkw6lmIF6+RiFIelM0FjIYi1BEEQ+i2hQWz+/Pncd999WK1Wtm/fzvnnn09NTc2gaultNFvIGjGCrBEjjnqsqql88Oq2mBXyq5Oqwfsa5+8J8fnImT0SL4yRFrJcrzGy4eh7QcxmH98a9yqPb1+Ov5//HCnu8ZhDqSR5R2Kf8ieqtxiwOZ0YAhehh7tn8XRMjPYvAMTbsxVuexstvL/3tcsak9IlRiS/gS5dRpJ0DvWhq3pNFeq6ju5vJnzoTZyLrydp3ow+swpPh7UEQRBOjoRWJbrsssuwWqNv5pMmTUJV1T4XBYPBIK2trT3+G0w6yllJSL1m0NCjgSxr7+t8+2+Pcc0HL7Pwn2+SV/sgzpofE4qswaf4YtZy7HgCs7kNh8PFjOwv+cGUpwkaVdp0I3E3PejRNPaOtS0JCX9pKsbWZtQaBS2UwpEX2t8NFDF3Wugewm0rYwQwHasc4rujPuXc9HWsl+dynz4Wv3Ye/vYaht0uGUmClPOzGPn6H0m/6SIsxU6RFi+c/jQVDn4CO/4e/VOLM7NznMLhMA888ADjxo1jwoQJTJs2jUWLFrFt27aEnqcvixcvJi8vD0mS8Hq9Pb72ox/9iKKiIiRJ6leNxuM1YKX1nn32WYqLixk2bFjcYx588EEcDkfnfwUFBQN1Oceto5xVurFnfb+koMwFWzIprLNhamtlbM0Wrsx/nV9MmEW0EBVsT98O0DuQtQeMkcWfd7ZymZH9Jf917gPkDt/Z/tiR3xP948i+Wr46DZCim4aBI0ddkiR1Bihd1+PXL9P9hNtWEvK8Qsj7DiHPKwRbno4ZwAAuzt2PJGdQEb6be7Tp/JMIv8BPwxHXbXCYSb+hhNSrzxa9uoQzx+634NGJ8PwV8Ory6J+PTow+niDLli1j69atrF+/nl27drF161aWL1/Orl27eh3bvaxUIn3ve9+LGzQXL17MunXrKCwsHJBzdzimzc7z58/vtRO8w9atWzuD0IcffsiyZct4//33GTt2bNznCwaDBINd2Xutra0UFBQMyGbnE6VqKm+t/TPrPnqdFFM9Myc1EWkzEfEZMNgipBc6GDv2PizbJF77/U94boFMo10iry2PKY1TsKlde8qkcBCz6zBTF32OwaL2ygtpaCigbP8sQqGuKtG9NxJrJMuNeN0vEJKGYUpZctR7kAmhahqS3DW9q2s+IsGtRyRs6NgUC1PSFrKt6SP8qqfzeJtiYU7GcIYlFxPUSvgFIf5Jt3U5YAoKd84dwfQJ2WIzsjDkHfNm591vwSs30Xv6pv33YMmfoeSqE7qm0tJSpk6dSkVFRcxK9ierFUvnnUlSr6aYHYqKinj77beZOHFizHs5qZudP/nkk6Me8/HHH7Ns2TJWrlzZZwADMJvNmM3H1+zxZFNkhW9cuIyvn38TVXt24WluRCmqwZ6ThMWSjdM5CzTYv2IBc2p1Zu1T2VMg0ZxcgdNbSUYgncN5OdRaFRSfBwmo/CSHooureuWFpKdXkJZWyZ73LiMcmoukmTCFu7coiY6+zrE/g2Yp5W1X369zhwvtvydDGcY/m+dyuG0nmtaCFqmi5y9bdA1tWvplDEsay7CkMTQEKvGrXqxKMhmWYciSTIWm8RsCbLdK4O/67myHhe9eWcJckUkonIk0FVbdRe8ABp3r06vuhnGXw1G6avRlsLdiOZkSmtjxz3/+kxtvvJE333yTKVOmJPKpBw1ZViiYELv4ZdvmTURqa6PH6TChQsOWGcJgUYkQIKfSwbvD2qf3JImWg3YOvQ/5c+sxJXdV0wi3Gaj6LJvw4YPIRgWj7YIeo5lkubEzExALzFV3szl4+VGvPVlpBGkOs5xFzHAMZ497PftaGwhpXensVsXO9PSLGJYUDYyyJJNljRbi1dFpRec+2tiGigb85bo5yLIkMgkFAaD8M2it7uMAHVqroseNmH9CpxrsrVhOloQGseXLlxMMBlm2bFnnYy+88ELnC3e6i9TXAxJKxmhseVZSi6qwWXd2bqRW9W1obZPY2dBClc+BLsm0HLTTWjGGpMwyDLYIEZ8Bb60N9OgPqBbeT7ClDNmQT5YtifMz1pNr2tNZ+QJglnMDe+obaNPSiL3MGZ16zDXtoTF8PRANThNS5zHeeXbMkdaRmYpatBQxvybAFlQkorXgzipOF0FLEDp4e2cyn9BxcQz2ViwnU0KDWGlp7H1Eg4Wuqvg2f0Gkvh5DZia2mTM6kw00Taem1E1ba5Aku5nc0U7kfr45R8Iq6z7ejG/tViZe+iCyNTrEbwZag/WkGR/ErOxDkVqZkPwpE5LBE7bxcfM17GtqJElJwVvT19BcR4tU0uzVyM3bxZGXJUsa8+1Ps8r9c6JTjd0DWXTqcV7KM2iktae/d//e6EhL13W0SIDw3nfRDUaMYy5E0bp+POrR+Q0B/klEVNAQhHiSsxN7XByDvRXLyXTGVOxoXb2auhUPdk73ARhycsi+9x7qM6fyycultLm7kkySnGbmf3M0xdOyej2XrukcLnPx/pq3aHFvQ3f7GN2SwfTkK7tnlwNglPdikvf1WvdKNvi4PPMFpjvuIayexd/Lfwf0/QkoqMlU+RwUJPXsOq3r4DSV0mTZSEFoFG1aVxX5ZLmReSnRqcfG8L3ougzE2A8mQXNqM9qSc5m0+GIMBgPBgy1s3e3iT9sqWdPmp2PsJypoCEIchXPBngetNcReF5OiXy888am4wd6K5bbbbuPNN9+ktraWBQsWkJyczP79vfebnqgzohVL6+rVVP34J703TUkSrowp7JzwbeJtCL7kOxOwpCl8vvkLKqu2EA5VoHpD2Jo9JHvAaSgm2zqS3KRRKMhHlHpSyTEvR6EhXmUqVD2D2tDTfOJaQ3XbF0e9l6/lfcV4R32P5wA4EL6bi7XJXCxt4gdsxKopJMnN5Jr24FctbG+exw7fcA44pvJNSyFZ3UZrss1A6tWj4/bkUjVdVNAQzljHn50IMTuKJSA78WQRrVgGAV1VqVvxYHRO+Miv6VBavDhuUQsdnVV/2gTKX7D6QqRrDpIM+WRY8kkyZ/JViYePCjyoOLlne+9MI7O8C4MU/x9fksAgNWCWdzE2ZUy/gliyIdTj7xopNId/iFmbyxTaeE+fzfvMZLa8hyypGc07n9JgNl5DMtVZ0b5cH9PGyyRjsBpJmZdHyoXD+0yDFxU0BOEYlFwVDVSr7uqZ5GHPg4UPDZkANlSc9kHMt/kLIrW1McdZbucogpbUGF+JkpCQ9CRKDN9ELQiyJ6uZ9elhDtgtHDKn0iSPQtEjXFdV2fk9uq7TGNEJ6GBXVNKNco8kjFgs0kYyLMuxKik99mT1pJNiCJJv6zmV2BS+i6A2FYD09rvUkNmgTYgGZmP7f533BPfMG0l2SY7YwyUIA6Xkqmgaffln0SSO5OzoFOIJpNWfCqIVyyAQzRiMLWjq35Tlo1NS2FgUrbVo0MMM0w4xIvA5w0NfUddaSn3LNOCbVIc0dvhVAp0zCBPZ1PYk8+1PR9Ph40g2vElQn8D09Iv41PVGjCOiT3hB9oHOpA5dj/bkCmpdmZ+N7cdl6RI/lMz8liD13aYzcmwm7r96oljLEoSTQVZOOI1eOLrTPogZMjPjfs0c6l+txhT5K2a07MITLKfF10wokokeSWJCo87Cyusx6KM4ZFPZ7u894mrT0ljl/jkLnf/VZyBzGp9iWNLTzMtaxJbGD3uMyFIMQS7IPsBoeyPQtQ7mDt8KKGjo1KOzXY8AEt/TzVwgmTgXI9tRabYqFM0bxjkXioaSgiCcXk77IGabOQNDTg7hGFOKTvd+zIFmgmZnzJ5gOjo+o5dm72cU1kYoaCwgyf0vyFIehvb6hipmFCnILn+YXqmJQDTdXWNd6y2MMG+KObUoSWAgujY2LGkyebbR0b1bEQ82Qymjk18iuVufse5dkTv2b/2GAEm6xLXhVoaHKigfl8W0+edwSYpJTBsKgnDaOu2DmKQoZN97D5U/+nGM/A2d0fv/xs4J30FH75FZ2JG0aQslc+WOG5EllYhuRpcVZCKkGRpJN4RIlmzUBnxU6sP7uAoZr5ZJTWg8+ebexTm7jmqO/tlt79b6mn2sqZ1Gvq2FAls6w5POAXkWHQGzTdN4PxRhhOrje4qX/XoFcx/8ITZ7StzzCIIgnC5O+yAGYL/kEuqmXoRzzxdYgu7Ox4PmVOqyZ0ebJMeo/g5gknw4lRbsSpgU2YisGfGFm3CpbuqcRoZ/fSKpWj6Vz8YujNxdmxY/iQRAo+fX/Qc/YuKX75KXZCFoNNBocbNywU4q7WVcUjUZU9toGiMSEyyVtIXdWK+Ywk2X3tjPV0UQhIGkaipbXFuo99WTactketZ0lCGW2DEUnBFBDKB2xHjU1LGktDajhENgSUZNG06hLFNAHegSXtVERFcwoGHVA6i6F5/uo0X1U2+RUEdlM/n8GeSPGYMkd+2zqtrb3K9rsMmxj+tK0uhZTaNq3Dhem/8tGv3p2JKa+SrlEwqaZObuuoJWyUq6wcVUc5hDyU38y3/djtFkOv4XSBCEhPmg/AMe2vRQj4a62bZs7p59NwsKFyTkHOFwmBUrVvDSSy+hKAomk4nCwkLuv/9+pk6dmpBzHM3ixYv57LPPqKmp6VHFPhAIcO2117J7925sNhs5OTk88cQTFBUVJfwazpgg9q0HbwMgEg7T4nJRVVpGW6uHgM9HoC2EQVFIchhJcjhIzUons6gQS1Jyv2qE5Y52YnOY8LUEibXhTEfHbG4i17Sn15TmkUka0cd0PKYw3z5vGLKUy5iWv7KvvoYlmxeSEpqALKmUWKuo9tcw7PtXMXfC+BN7cQRBSJgPyj/gjrV39Ooj6PK5uGPtHTxy/iMJCWTLli3D6/Wyfv16UlOjszgrV65k165dvYKYqqooA9DP73vf+x6PP/442dm9y2jdeuutXHbZZUiSxO9+9ztuvfVWVq9enfBrOCMqdgwUTdP5+KMNbNnyCkptMsa289sjVLe1tfb/PTz1Fb7hWMW0g61YQl3JHRG9K0kjemT0O34+1UqjcwONtW9xds0oxh/6Okgm8o2VpOohWkbLXPmjZYOqEKcgnI6OpWKHqqlc+uqlPUZg3UlIZNuyWXXNqhOaWhxK/cQANm/ezLXXXhuz7JSo2HGSaarGxk93sOHzv6F6a0mpaqYwXMiwlJHsynPhbk7DEujaXewzt7I57zMmHnCwpfUJ9mbuZ7h5G7maD19rPimGC7DR9Q9UZ5Z4eqyfRuVxQofgxi9vwqTlYJZ9lFjq2R+q5Px//w7OrPhbBwRBODW2uLbEDWAQ/ZBa66tli2sLs3JmHfd5hlo/sd/+9rdceeWV/T7+WIggdhS6rlN1qIEP1/yDhsataB4PKXVucoKZ5NgmoWTmsGpsHb/LtvKVaRxOtYnZldsINpYRwcj0ShvnH7gIXTJgkdoo9jhobZjMO3m7SXMfZqT5AJWj7GzKzOOgJQXMq6mo/5TLd08hv+EidIwUmw+jhb1o8wq5cbFI3BCEwareF7+4wvEc15eh0k9sxYoVlJaW8sQTTxzrLfbLGRPE/vHWm5QfLiczcxTFRaMoGJ6L2WyMtluRIOALU1fXQFVtLZWVe2h270OPuFH9YaxNHpI9GoVyIdnWGchpGawb4eLlPDPbbAUEpLGMiOxjesuTVDV+hdeXw/wDZ2FWx6FjwKJ4GGP20BpoZnNSObJSy6hDwzANP4dHZobZZJvCiMg+jPWPklabxvKd30cmGbvSxChDgFKji2/++keY+lN8VBCEUybT1r8Zkv4eF89Q6Sf28MMP89prr/HBBx9gs9n69T3H6owJYnVr/05Sk4ZbWcN6o8Q6swmtfU5alyRkVcUQCiNHIljCJvLIJMmYjcOUSbIliwPj/GzOd/NlupU9lmH4pTFkaHVM8H1AU+vHhNqSGdGUwmVlt2GUk1ExkSw3U2z20exvYp8jSHPaPnLKQhSlXsKrF7XwZk60lNXM1ueodh3gqj3zcfqmA1BiqaIx0EDqTedx45yb4t6XIAiDx/Ss6WTbsnH5XL0SO6BrTWx61vQTOs9Q6Cf2yCOP8NJLL/HBBx90Xt9AOGOCmM1UgG/KCApbU3C2mTGoYdC0aOaFroOioCcb8Zt0quytlGZ4OGyHapuFgxYnDXJ0WJ6vljPBtxpP2waaPBGMwUyu2TcPS2AeigSabCTLWEW+wUi1v4qavGTK1X2kHHQxSZpF+VQHP5uQwkHDFCYH19FU+ya5riIWln0PSbKQaaghWwpRl+njmnv+tUcqvyAIg5siK9w9+27uWHsHElKPQNaxF/Wu2XclZL/YYO4nVllZyU9/+lNGjhzJBRdcAIDZbGbjxo0nfN9HOmOyE6//+//wYfpFAJj0AE7djUGPIKMjoRGUzHilZHxS1xDcovvJ0mpIDx1AD+yiwbePSMDBiKCdWYeySWm5CKNsRMWMgSBF5jrsuoGySAWjLpvJZ3s/wlB5iALPcJy5U3hqVitrU2aRo9eQ3vRnIo0SX99xKWZ1GEYpRImlmUP+Shbccx3ZhYUJvX9BEI7PMfcTI/Y+sRxbDnfNvith+8ROBtFPbBCpdpcxXv8nVkMmspKOpqShSwZ0ZEBC1kPIWguorYTURjyhSjy+CGEtDS2STEkzFFUsQlEnYpR1IphAlsg01pBnkPEFW6g2tjDpe99k26o3+OyzF8mrsVCQdjmvXdjE27l5+BnJjLbXqKz7grkHJpPTFE3cKDIdxqQGCUxycv0t95zql0oQhBO0oHABFxRcICp2nARnTBC7ZpuRZoeDhqRWGpK8NJkOo0rRwb4GmHQJW0THEdBIb5PIbpqPwT8RSUpDkXVkNCJYkGSVTGMt2QYJPaJyWK0mNG8M865cxvPP/5GX/vwfZB0OMSnlfD49O8h/FzupUiYyMbgBb/1rJDfmsXzPD5AlG3almdHGAHupYfGvbhf1DgXhNKLIygml0Q8Gop/YIDJcGYXSOIbspjAAmq6013+PzlNLaMhoIGnoukIECyjRx1OVejKMQVIkK4Gwh0q1npaJuVxw3dVM0Yz8+bnfs/nXPyDzcJDxSfM4MNnIv0+wscs0ixGRfUxwPUDQbWTxritICo1DknTGW6to8jeQfO1cbpov0uYFQRCOxxkTxHRdYpLVhV9XCWgSfs2IpsvRvA4kFEnFLEUwyxoWScImmdE0iWDEjUtz40qSybhgJjPOuxqD0cj+ryr5w5MroL6GzFqNiclncXiSmV+PN7DFMpl0vZ4Zzb+jurGOhWUTyHRfgI6RXGMlaYSpzw5x9c9F4oYgCMKJOGOC2Pjrz2bPp5/jdXnQvGGMqoyMhKRHs4ZUScMra3iMMkaHmYKJIymZOxtnTk7nngi/J8gLf36Rxrr1mGtayPekUWg/n53Tw/z3aANfWKbgxM0MzwtU1O9klGsEXyv/AUgmkmU3Y8x+SkOVnHvfctJyetcaEwRBEI7NGRPExsyZwZg5M47pe3Rdp7aimbf/8QqtLV8iNXpJcwUoMU0mI2UUH5zTwOMFVvaappGmNzDD+xcqXNvJbMnn0n23oUg2jHKYceboni/p/Anc+PUbBuYGBUEQzkBnTBBbv249VVWNFBeNYXhhLo40G5IigRYNVj5PkMOH69h/oJSqqu0EAuWoviDWZg/2FonRxtFkW+dweLzO30d52eRMp0Eex3D1ANPdj1PZWEZ6ax6XfvUDDHIyuiQz2lyFFAnQPMLA13/4EzF1KAhnEF1V8W3+gkh9PYbMTGwzZyANQCX5M90ZE8S+fPv3KPVtrDdKfGI2E7aYQJI6ysxjCIUxBgIYgxoOLYU8wzDSzHmkWLLYM8HLu4VedjhtlBmKMRNkTPALcrx/oKElyMj6dC47dBsGKQlNVhhuqsKh6xyy1rP4vtuwJA1MuRVBEAan1tWrqVvxIJHa2s7HDDk5ZN97D/ZLLknIOQZzPzGASy65hNraWmRZJiUlhccee2xAruuMCWK5/uFYCieT6jVjiISIBALRemJISJKEIpvQk824s8PsS2vm88wgB+1WDlnsuOQxGPUQIyNfMb31GarcXxIK5nLe4RwyG65EkWQ0yUCBqZI0JMqkaub8/CbOGZZ/qm9bEISTrHX1aqp+/JOuZoHtInV10cd/82hCAtlg7yf2yiuvdJabeuONN7jllls6q3sk0hkTxF6bm8aqrHGd1TocqoSsa+iShI6ET7bRJKfil6LlVBQ9Qp5WQV5wD3mBl6ht3U8gnMMYt4lLy5ZhIA+QkSWVYksNSZpMGdXM+un1zC0cfmpvVhCEU0JXVepWPNgrgEW/qIMkUbfiQVIuuuiEphZLS0t5/fXXqaio6AxgQGe7k5PVT2zBgvjVR7rXS2xpaUEeoOWUMyaIVformOZ+DEXJQFPSCSlOdCQkPZpknxSpJletR1Mb8IdrafbVEQmlE1FTmNwg8bWKW1AoQJE0VEykKE0UmnyEQwFqTG4uv+Nm5oqMQ0E4o/k2f9FjCrEXXSdSW4tv8xckzZl93OcZKv3EbrrpJtasWQPAqlWr+n+Dx2BAgtjatWu56KKL+M1vfsPtt98+EKc4Zhft9FGb5qEhqY1G02ECiooeDWMAWDQZexgy21RyWtJwNF6JzDAUOVrGU5VMmCQfBaYGUiULVYFKGvOSuPyHSzFZrKf47gRBGAwi9f3rE9bf4/oyFPqJ/fnPfwbg+eef58477+Qf//jHMd/n0SQ8iHk8Hu666y4uu+yyRD/1CZkYnkx6RbT1iaYbUDHSUa0DQCaMQgQkHVU3ockGQMOhNJJtDJAsWWgK1FGv+Bh389eYM+XaU3MjgiAMWobM/vUJ6+9x8QyVfmIdbr75Zr73ve91tntJpIRPUt5xxx3ceeedZGRkHPXYYDBIa2trj/8GiqZrjDA3kmtsJNXQRJLcik1uJUluIUl241DcZBsbKTI1MMnqYoa1gQnKQUxaOa7kerKXT2Th4z/kxkfupmjK0XvpCIJw5rHNnIEhJyea+RyLJGHIycE289j2rB6pez8xt9vd+Xhf/cS2bdvW2aKlez+xESNGdPYTA+L2EwP63U+stbWV6urqzr+//vrrpKen9zn9ebwSOhJ79913cbvdLF68uPPTQF8efPBBHnjggUReQlw5F41j//ov0drCmCIKaZKxR7+fkB7BQwSPVSE518nUBVMZPmE8sqg6LQhCP0mKQva990SzECWpZ4JHe2DLvveehOwXG8z9xFpaWjqnN2VZJjMzk7fffvuYR3D9cUz9xObPn9/rxemwdetWrrjiCt5//32ysrJYunQpM2fO7HNNLBgMEgwGO//e2tpKQUHBgPQTEwRBOB7H00/sZOwTOxlOu35in3zySdyvrVu3jpqaGmbPjmbcNDQ0sHLlSurr6+OOtsxmM2az+VguQRAEYdCzX3IJKRddJCp2nAQJm04855xzcLlcnX/vz0hMEAThdCUpygml0Q8GQ6GfmCjmJwiCIAxZA7bZ+bnnnhuopxYEQRAEQIzEBEEQhCFMBDFBEARhyBJBTBAEYQBomk7V3mb2fV5L1d5mNK3fu5n6JRwO88ADDzBu3DgmTJjAtGnTWLRoEdu2bUvoefqyePFi8vLykCQJr9cb85gHHngASZL6VafxeJwxBYAFQRBOlrKtLj55uZQ2d9c+2CSnmfnfHE3xtKyEnGOwt2IB2LJlCxs2bGD48IHr7DGogljHvuuBLD8lCIJwLEKhEJqmoapqjxqD8RzYVs/qP+7u9XibO8iqJ3dyyXdKGDn1xGondrRiOXToEHa7vfO6vva1rwHwzDPP8PLLL5OVlcWePXt49NFHaWlp4b777iMSieB0Ovn973/f2YrlrrvuYuPGjUC0FcvXv/51ysrKOHToEHPmzOGmm25i3bp1tLW18eijj3a2Yrngggs6r+nI1ycYDPKDH/yAF198kQULFsR9/VRVRdM0vF4voVCo8/GOOHC0ehyDKoh5PB4ACgoKTvGVCIIgRBUWFvLEE0/g9/uPeqyu6Wx7Ofa0Woe1/7cHt1qBJB9/Cab333+f/Px8ysvLKS8v7/X18vJyPvnkE1588UV+/OMf09TUxPXXX88TTzzBqFGjePfdd1m0aBEvv/wy+/fvx+fzsXXrVgD2799PKBRi69atVFdX09jYiN1u5/HHH2fHjh1ce+21vPHGG1itPbt3bN++HZutq4v9Y489xrnnnovb7SYUCrFnzx7C4XDM+2loaODyyy+PeS8ejweHwxH3tRhUQSwvL4+KigpSUlISXmOro6RVRUWFKGmVAOL1TBzxWibOQLyWoVCIuro6ioqKjlp2qmqfm1Db9r6fr00nO2Uk+WOcx31N+/fvx2azMW3aNCDaimXJkiX4/X7mz5/P3LlzmT9/Pl//+teB6DTjjBkz+Jd/+RcgWgX/f/7nf8jJyWHUqFE9nstoNGIymZg8eTLV1dWYTCZ+8YtfIMsy06ZN4ze/+U3nc3Q3ZcqUzsr569ev5/Dhwzz99NNIkoTJZGL8+PFMnDix170EAgEOHTrE5s2bMZlMnY/ruo7H4yEvL6/P12JQBTFZlhk2bNiAnsNut4s3igQSr2fiiNcycRL5WgYCAerr61EU5ajrSgFv7JFGrONOZI1qxowZlJaW0traSmpqKmPGjOnRikWWZVJSUjrPIcsysiz3OqfBYMBsNvdYM+sYLXU/VlGUHp2ZDQZDr+fq/vqsW7eOvXv3MmrUKAAqKyv52te+xp/+9Kdebbo6njs5ObnXh4S+RmAdRHaiIAhCgiTZ+1cLtr/HxTPYW7HcfffdVFdXc+jQIQ4dOsSwYcN47733BqTP5KAaiQmCIAxluaOdJDnNPbISj5ScaiZ3tPOEzzWYW7GcTMfUimUoCwaDPPjgg9xzzz2icn4CiNczccRrmTgD8VoeayuWsq0uVj0Zf0/Uwu9OTFia/UDSNI3PP/+cyy+//JS0YumvMyaICYIgHI/jeZONtU8sOdXMOUsSt0/sZDiV/cT6S0wnCoIgJFjxtCxGTMmkptRNW2uQJHt0ClE+gbT6U2EotGIRQUwQBGEAyLJE/tjUU30Zpz2RnSgIgiAMWWdsEFu7di2KovC73/3uVF/KkHbvvfcyfvx4pkyZwuzZs/noo49O9SUNKaWlpcydO5cxY8Ywe/Zsdu/uXa5IOLpAIMCiRYsYM2YMU6dOZeHChRw6dOhUX9aQV11dzebNm/tVreRUOSODmMfj4a677hqQPQtnmvnz57Nlyxa2b9/OH//4R6655hoCgcCpvqwh47vf/S633nor+/bt4+c//znLly8/1Zc0ZN16663s3buXbdu2ccUVV3Drrbee6ksa0tra2vB6vT2qaAxGZ2QQu+OOO7jzzjvJyMg41Zcy5F122WWdNdQmTZqEqqqDfiF4sHC5XGzZsoUbbrgBgGuuuYaDBw+KEcRxsFgsfO1rX+ssV3fWWWdx4MCBU3pNmqZSsetL9nz6MRW7vkTTjl48eLDQNI3Dhw9TWFh4qi/lqM64xI53330Xt9vN4sWLefvtt0/15ZxWnn32WYqLiwe8dNjpoqKigry8PAyG6K+hJEkMHz6cw4cPU1RUdGovboj77W9/y5VXXnnKzl+68TM+eu4pvE1dH+iS0zK4cOmtjJ4zNyHnCIfDrFixgpdeeglFUTCZTBQWFnL//ff3asVyrKqrq0lPTz/qXrvFixfz2WefUVNTg8fj6aydCHTWmuxIm7/nnnv45je/eULXFctpF8Tmz5/fa7d6h61bt3L33Xfz/vvvn+SrGrqO9np2dBz48MMPeeCBB8Rre4yOLHQttm2euBUrVlBaWsoTTzxxSs5fuvEz3npkRa/HvU0NvPXICq66496EBLKB6ifm9Xppa2sjPz//qMcerZ/Y3//+95hFfxPptAtin3zySdyvrVu3jpqaGmbPng1Ey/+vXLmS+vp6HnjggZN1iUNKX69nh48//phly5axcuVKxo4dexKu6vRQUFBAZWUlkUgEg8GArutUVFQMaAPB093DDz/Ma6+9xgcffNCjLcjJomkqHz33VJ/HrHn+KYpnzUGWj78AcEc/sYqKis4ABnSOPp977jn++te/kpWVxe7du3nsscdoaWnh3nvvJRKJkJqayh/+8IfOfmI/+9nP2Lx5MwCff/45119/PatWraKqqopvfetbfP3rX2fXrl34/X4ee+yxzn5iCxYsOO57SJTTLoj15ZxzzsHlcnX+fenSpcycOZPbb7/9FF7V0PbPf/6TG2+8kTfffJMpU6ac6ssZUrKyspg2bRovvvgiS5cu5dVXX6WoqEhMJR6nRx55hJdeeokPPvgAp9N5Sq6has+uHlOIsXgaG6jas4uCCX0X0e3L1q1bGTVqFGlpaXGPWbduHVu3bmX06NG4XC5KSkpYs2YNkyZN4i9/+QtLlixh587e5bEyMzM7W7HY7XZaWlo455xzeP7559mwYQOLFi2irKyss35iX66//no0TWPOnDk8+OCDZGaeWDPQWM7IxA4hcZYvX04wGGTZsmVMnTqVqVOnsmPHjlN9WUPGk08+yZNPPsmYMWN46KGHePrpp0/1JQ1JlZWV/PSnP8XtdnPBBRcwdepU5syZc9Kvw+tuTuhxfek+FV1WVsbUqVMZO3Ys3/nOd4Doh/bRo0cDsHHjRqZOncqkSZOAaHCprKykpqbmqOcxGo1cd911QDRhJicnh+3b++6ZBtEPuNu3b2fLli2kp6dz8803H/M99scZNRI70nPPPXeqL2HIKy0tPdWXMKSNHTuW9evXn+rLGPKGDRs2KNYTk539q9DR3+PimTZtGqWlpTQ3N5OamkpxcXGPfmJAjyQLXddjNhqWJAmDwYCqdmVOHrlFRpKkXl2c+9O0uGNa3Gg08pOf/IQxY8b0/waPgRiJCYIgJEj++Akkp/W9dSclPYP88RNO6DyDvZ9YW1tbj+t66aWXenWCTpQzeiQmCIKQSLKscOHSW2NmJ3a44OZbTyipo8Ng7idWV1fHNddcg6qq6LrOyJEj+fOf/3zC9xyLaMUiCILQh+NpFRJrn1hKegYX3Jy4fWIng2jFIgiCcAYaPWcuxbPmRLMV3c0kO1PJHz8hISMwoScRxARBEAaALCsnlEY/GAyFfmIisUMQBEEYskQQEwRBEIYsEcQEQRCEIUsEMUEQBGHIEkFMEARhAOiaTqDMjW+bi0CZG11L7G6mcDjMAw88wLhx45gwYQLTpk1j0aJFbNu2LaHn6cvixYvJy8tDkiS8Xm+PrwWDQW6//XZGjx7NhAkTOvvmJZrIThQEQUgw/84G3CvLUFtCnY8pDhPOK4uxTkxMM96BasVyLPpqxXL33XcjyzL79u1DkqR+1Wk8HmKzsyAIQh+OdTOuf2cDjS/G7sEHkH7D+BMOZKWlpUydOpWKioqYlexPpBXLzp07ueKKKzh06FDnZuelS5fyySef4PV6e7Ri6SBJUo+mmB39yCorK3vUcIzlRDc7i+lEQRCEBNE1HffKsj6Pca88cMJTi/1txXLfffexefNmiouLueGGG3j++ef58ssvufXWW1myZEm/ztXY2MikSZPYuHEjTz/9NNddd13cGo0dysrKSE9P51e/+hUzZ85k/vz5fPjhh8d0j/0lgpggCEKCBA+29JhCjEVtCRI82HLC5zpZrVhMJhM33ngj0P9WLOFwmAMHDlBSUsLmzZv53e9+x7XXXkt9ff1x3WtfRBATBEFIEM3TdwA71uPi6d6KBehsxXLPPfd0PpaoViyxHK0VS2FhIbIsc/311wMwZcoURowYwa5du45+c8dIBDFBEIQEkVNMCT0unsHeiiUjI4OLLrqI9957D4Dy8nIOHjzI2LFjj+t++yKyEwVBEBLEPMKB4jD1OaWoOMyYRzhO+FyDuRULwBNPPMEtt9zCXXfdhaIoPPXUU+Tm5p7wfR9JZCcKgiD0YTBmJ54sQ6EVi5hOFARBSCDrxAzSbxiP4ug5Zag4zEMqgA0VYjpREAQhwawTM7CUpBM82ILmCSGnmDCPcCDJfSdEDDZDoRWLCGKCIAgDQJIlLMXOU30Zpz0xnSgIgiAMWSKICYIgCEOWCGKCIAjCkCXWxARBEAaApmmUl5fj9XpJTk7urGIhJJYIYoIgCAm2e/duVq1aRWtra+djdrudhQsXUlJSkpBzhMNhVqxYwUsvvYSiKJhMJgoLC7n//vt7tWIZKIsXL+azzz6jpqamRxV7t9vN+eef33mcz+fjwIEDuFyuPosWHw8RxARBEBJo9+7dndUwumttbeWVV15hyZIlCQlkg7mfmNPp7NGc8+GHH+bjjz9OeAADsSYmCIKQMJqmsWrVqj6PWbVqFZqmndB5SktLef3113nmmWc6AxjAlVdeyfXXX89zzz3HwoULuemmm5g5cyabNm1i1apVTJ8+ncmTJ3Peeeexe/duANauXcvMmTM7n2Pnzp0UFRUB0YodGRkZ/OxnP2POnDlMmDCBjz76qPPYBQsWkJWVddTrffbZZ1m+fPkJ3XM8YiQmCIKQIOXl5T2mEGNpbW2lvLycESNGHPd5+ttPbOvWrYwePRqXy0VJSQlr1qxh0qRJ/OUvf2HJkiXs3LnzqOfq6Cf28MMPs2HDBhYtWkRZWVln/cSjWb9+PY2NjVxxxRX9vr9jIUZigiAICeL1ehN6XF8Gcz+x7p555hluuukmDIaBGTOJICYIgpAg3Xt4JeK4eAZ7P7EObW1tvPzyy9xyyy39Ov54iCAmCIKQIIWFhdjt9j6PsdvtFBYWntB5Bns/sQ5/+9vfmDx5MuPGjTvWW+w3sSYmCIKQILIss3DhwpjZiR0WLlyYkP1ig72fGMDTTz89YAkdHUQ/MUEQhD4cT7+rk7FP7GQYCv3ExEhMEAQhwUpKShg3bpyo2HESiCAmCIIwAGRZPqE0+sFgKPQTEx8LBEEQhCFLBDFBEARhyBJBTBAEQRiyRBATBEEQhiwRxARBEAaArqs0N2+gtvYtmps3oOvq0b/pGITDYR544AHGjRvHhAkTmDZtGosWLepRPX6gLV68mLy8PCRJ6lVK67333mPGjBlMmzaNiRMn8vzzzw/INYjsREEQhARzud5jX+l/EAzWdj5mNucwZvT/Iyvr0oScYzC3YtF1neuuu441a9YwefJkDh06xLhx47j66qtJSUlJ6DWIkZggCEICuVzvsWPnbT0CGEAwWMeOnbfhcr13wucYKq1YOkpitba2kp6ejtlsPuF7P5IYiQmCICSIrqvsK/0PIFYhJB2Q2Ff6SzIzFyBJxz8yGuytWCRJ4pVXXuHqq68mKSmJ5uZmXnvtNUwm03Hdb1/ESEwQBCFB3O7Pe43AetIJBmtwuz8/4XMN5lYskUiEBx98kDfffJPy8nI+/PBDbr75Zpqamo7rXvsigpggCEKCBIOuhB4Xz2BvxbJt2zaqq6uZN28eALNmzSIvL++Y+pD1lwhigiAICWI2x18fOp7j4hnsrVgKCgqorKxk7969AOzfv5+ysjLGjBlzXPfbF7EmJgiCkCBO5yzM5hyCwTpir4tJmM05OJ2zTvhcg7kVS3Z2Nk8++SSLFy9GlmV0Xefxxx8nPz//hO/7SKIViyAIQh+OtVVIR3ZiVPe31+gU3KSJv09Ymv1AGwqtWMR0oiAIQgJlZV3KpIm/x2zuuXfKbM4ZUgFsqBDTiYIgCAmWlXUpmZkL2rMVXZjNWTids04orf5UGAqtWEQQEwRBGACSpJCaetapvozTnphOFARBEIYsEcQEQRCEIUsEMUEQBGHIEmtigiAIA0DVdTa4vbhCEbJMBs5yJqMcpdKFcOzESEwQBCHB3ql3M3P9bq7ZVsb3d5dzzbYyZq7fzTv17oSdY7D3E1u1ahUzZ85k8uTJnHXWWQNScgrESEwQBCGh3ql38+2dh3rV66gNhvn2zkP8aWIRl2c6T/g8g7mfWHNzMzfccAOffPIJ48eP5+OPP+b666/vV9X8YyVGYoIgCAmi6jr/VloVtxELwH2lVagnWChpsPcTKysrIysri/HjxwNw3nnnUV5e3lmiKpFEEBMEQUiQDW4vNcFw3K/rQHUwzAa3N+4x/dHffmL33Xcfmzdvpri4mBtuuIHnn3+eL7/8kltvvZUlS5b061wd/cQ2btzI008/zXXXXRe30HCH0aNHU19fz4YNGwB4/fXX8Xq9HDp0qN/32F8iiAmCICSIKxRJ6HF9Gcz9xBwOB6+++ip33303M2bMYO3atZSUlGA0Go/rXvsi1sQEQRASJMvUv7fU/h4XT/d+YqmpqZ39xJ577jnefvtt4NT2EwM499xzWbt2LQDBYJCcnJzO6cVEEiMxQRCEBDnLmUyu2Ui8t3gJyDMbOcuZHOeI/hns/cSAHqO8X/7yl1x44YWMGjXqmO6zP8RITBAEIUEUSeJXo/P59s5DSMRqxAK/HJ2fkP1ig7mfGMB9993HunXriEQinH322Tz99NMnfM+xiH5igiAIfTieflfv1Lv5t9KqHkkeeWYjvxydn5D0+pNlKPQTEyMxQRCEBLs808nCDIeo2HESiCAmCIIwABRJYl5qyqm+jBMyFPqJicQOQRAEYcgSQUwQBEEYskQQEwRBEIYsEcQEQRCEIUsEMUEQhAGgajrryxp5c1sV68saUbXE7mY61a1YqqurufTSSxk7diyTJ09myZIlNDU1dX69tLSUuXPnMmbMGGbPnt1ZcDjRRHaiIAhCgq3aWcMDK3dT09JVwinXYeHfryxh4cTchJzjVLdiURSF++67j3POOQeAO++8k7vvvpunnnoKgO9+97vceuutLF26lL///e8sX76c9evXJ/QaQIzEBEEQEmrVzhq+/+KWHgEMoLYlwPdf3MKqnUcvuns0g6EVS3Z2dmcAA5gzZw4HDhwAwOVysWXLFm644QYArrnmGg4ePDggVezFSEwQBCFBVE3ngZW74/YTk4AHVu7m4pIcFPn4Nz73txXL1q1bGT16NC6Xi5KSEtasWcOkSZP4y1/+wpIlS/rVpLKjFcvDDz/Mhg0bWLRoEWVlZZ2lpyA60vv973/PokWLAKioqCAvLw+DIRpiJEli+PDhHD58uDNAJooYiQmCICTIpoNNvUZg3elATUuATQeb4h7TX4OlFYuu6/zgBz/A6XTywx/+MOb1dRw3EEQQEwRBSBCX5+htTI7luHi6t2IBOlux3HPPPZ2PnaxWLD/60Y+oqKjg5ZdfRpajIaWgoIDKykoikUjn+SsqKhg+fPhx3G3fRBATBEFIkKyU/hWw7e9x8QyWViw/+tGP2L9/P6+//jomk6nr/rKymDZtGi+++CIAr776KkVFRQmfSgSxJiYIgpAws0ekkeuwUNsSiLkuJgE5DguzR8Rfy+qvU92K5dNPP+Wxxx5j3LhxzJkzB4ARI0bw+uuvA/Dkk0+ydOlSVqxYgd1u5/nnnz/he45FtGIRBEHow7G2CunIToTY/cT+cMP0hKXZD7Sh0IpFTCcKgiAk0MKJufzhhunkOHq+Iec4LEMqgA0VYjpREAQhwRZOzOXikhw2HWzC5QmQlRKdQjyRtPpTYSi0YhFBTBAEYQAossTZxemn+jJOe2I6URAEQRiyRBATBEEQhiwRxARBEIQhS6yJCYIgDARNhfLPwFsHydlQOBfkxFaSF8RITBAEIfF2vwWPToTnr4BXl0f/fHRi9PEEGez9xH70ox9RVFSEJEn9KjR8vEQQEwRBSKTdb8ErN0Frdc/HW2uijycokC1btoytW7eyfv16du3axdatW1m+fDm7du3qdWz32oiJ0tFPbO/evXz55ZcUFhZy9913d3598eLFrFu3jsLCwoSfuzsRxARBEBJFU2HVXRC3GQuw6u7ocSdgsPcTAzj33HMZNmzYCd1nf4g1MUEQhEQp/6z3CKwHHVqroseNmH/cpxns/cROJjESEwRBSBRvXWKP68Ng7yd2soggJgiCkCjJ2Yk9Lo7B3k/sZBJBTBAEIVEK54I9j66a9UeSwJ4fPe4EDPZ+YieTWBMTBEFIFFmBhb+OZiEiEbMZy8KHErJfbLD3E7vtttt48803qa2tZcGCBSQnJ7N///4Tvu8jiX5igiAIfTiufle734pmKXZP8rDnRwNYyVUDc6EDYCj0ExMjMUEQhEQruQrGXS4qdpwEIogJgiAMBFk5oTT6wWAo9BMTiR2CIAjCkCWCmCAIgjBkiSAmCIIgDFkiiAmCIAhDlkjsEARBGACqprLFtYV6Xz2ZtkymZ01HEdmJCSeCmCAIQoJ9UP4BD216iDpfV43EbFs2d8++mwWFCxJyjnA4zIoVK3jppZdQFAWTyURhYSH3338/U6dOTcg5+lJdXc2yZcs4dOgQZrOZcePG8cQTT5CWlkYgEODaa69l9+7d2Gw2cnJyeOKJJzqr4yeSmE4UBEFIoA/KP+COtXf0CGAALp+LO9bewQflHyTkPIO9n9itt97K3r172bZtG1dccQW33nprwq8BRBATBEFIGFVTeWjTQ+gx+ol1PPbrTb9GPc37iVksFr72ta91Fgo+66yzevQaSyQxnSgIgpAgW1xbeo3AutPRqfXVssW1hVk5s477PEOtn9hvf/tbrrzyymO+z/4QIzFBEIQEqffVJ/S4vgyVfmIrVqygtLSU//zP/zz+m+2DCGKCIAgJkmnLTOhx8QyVfmIPP/wwr732Gu+++y42m+3YbrKfRBATBEFIkOlZ08m2ZSPF6ScmIZFjy2F61vQTOs9Q6Cf2yCOP8NJLL/H+++/jdDpP6H77ItbEBEEQEkSRFe6efTd3rL0DCalHgkdHYLtr9l0J2S82mPuJVVZW8tOf/pSRI0dywQUXAGA2m9m4ceMJ3/eRRD8xQRCEPhxPv6tY+8RybDncNfuuhO0TOxlEPzFBEIQz0ILCBVxQcIGo2HESiCAmCIIwABRZOaE0+sFA9BMTBEEQhAEkgpggCIIwZIkgJgiCIAxZIogJgiAIQ5YIYoIgCANAV1XaNm6i5e13aNu4CT3BleTD4TAPPPAA48aNY8KECUybNo1Fixaxbdu2hJ4nnurqai699FLGjh3L5MmTWbJkCU1NTZ1fv+SSS5g8eTJTp05l/vz5A3ZdYp+YIAhCH45nH1Pr6tXUrXiQSG1t52OGnByy770H+yWXJOS6brjhBrxeL88++2xnJfuVK1fS2trK9ddf3+NYVVVRlMSm99fV1VFaWtpZyf7OO++kpaWFp556CgC3291ZqeONN97gP/7jP9iyZUuv5znRfWJiJCYIgpBAratXU/Xjn/QIYACRujqqfvwTWlevPuFzDPZWLECPUlMtLS296iomitgnJgiCkCC6qlK34kGINcGl6yBJ1K14kJSLLkI6gZHRUGnFctNNN7FmzRoAVq1adXw3exRiJCYIgpAgvs1f9BqB9aDrRGpr8W3+4oTPNRRasfz5z3+moqKCX/3qV9x5550ndsNxiCAmCIKQIJH6/vUJ6+9x8QyVViwdbr75ZtasWdNZKT+RRBATBEFIEENm//qE9fe4eAZ7K5bW1laqq6s7//7666+Tnp7e5/Tn8RJrYoIgCAlimzkDQ04Okbq62OtikoQhOxvbzBknfK7B3IqlpaWFa665Br/fjyzLZGZm8vbbb8ccDZ4okWIvCILQh2NNAe/ITgR6BrL2N/D83zyasDT7gTYUWrGI6URBEIQEsl9yCfm/eRRDdnaPxw3Z2UMqgA0VYjpREAQhweyXXELKRRdFsxXr6zFkZmKbOeOE0upPhaHQikUEMUEQhAHw/9u7++Coqnxd/M/uhjSGkDTmHYQkxGDohJDw7gsqLwfiKJ5csaIHUiDgiXfEmvGHpUZrcMjIBK2iuDOjhwvcQV4Kbw4ooILXxMEJiEMCZBLEJCoxJBlCCB0hnaaDtJ3u/v2RSUsn3U2n9+qwt/N8qqyps3vh2uv8wde193evR9JqMXzG9Ft9Gz97fJxIRESqxSJGRESqxSJGRESqxXdiRERB4HA4cbHehC6zFcPDdYhP0UOjEf+d1L86FjEiIsEaqo04tqceXSar69pwvQ6znkhBclaMkDlsNhuKiopQXFwMrVaLkJAQJCQkYO3atcjMzBQyhy+tra1Yvnw5mpqaoNPpkJqais2bN/c7laOwsBBr167FV199hfT0dOH3wceJREQCNVQbUbKlxq2AAUCXyYqSLTVoqDYKmWf58uWorq5GeXk5amtrUV1djZUrV6K2trbfWLvgQE4A0Gq1WLNmDb799lucOXMGCQkJKCgocBtTVVWFiooKjB07Vvj8vVjEiIgEcTicOLan3ueYL/bWw+GQd1CSGvLErFYrVq1ahU2bNgXluKlefJxIRCTIxXpTvx1YX5YOKy7WmzD6rpE+x/mihjyx1157DXl5eUhKSgp4nf7gToyISJAus+8CNtBxvig5T6y8vBynTp3Cs88+K3udN8MiRkQkyPBwndBx3ig9T+zo0aP45ptvkJSUhMTERLS0tGDBggX45JNPAluwDyxiRESCxKfoMVzvu0CFjexpt5dD6XliBQUFaG1tRVNTE5qamnDHHXegtLQUDz30kKx1e8J3YkREgmg0EmY9kYKSLd7fNd2XmyLkezEl54kNJuaJERH5EEjelafvxMJG6nBfrrjvxAaDGvLEuBMjIhIsOSsGSZOieWLHIGARIyIKAo1GktVGrwRqyBNjYwcREakWixgREakWixgREakWixgREakWixgRURA4HHacrz2Dr/92FOdrz8DhEHuSvM1mQ2FhIVJTU5GWloasrCzk5OTg9OnTQufxprW1FQsWLMBdd92FjIwM5Obm4sqVK67fExMTkZqaiszMTGRmZmLPnj1BuQ92JxIRCVZ/4jj+umMrLFd+6uwLuz0Kc57KR8qMe4TMsXz5clgsFpSXl7tOsj948CBqa2v75YnZ7XZotVoh8/bqjWLpPcn+xRdfREFBAbZu3eoa8/777wclQ+xG3IkREQlUf+I4PtpY5FbAAMBy5Xt8tLEI9SeOy59DBVEsg4U7MSIiQRwOO/66Y6vPMWU7tyJ52gxoNIHvjNQQxQL0nJbvcDgwY8YMrF+/HtHR0QGv2RvuxIiIBLnwdW2/HVhfVy9/jwtf909fHiglR7EAwOeff44vv/wSVVVViIyMxLJly2Sv2RMWMSIiQSymDqHjvFF6FAsAjB07FgAwdOhQPP/88zh27NgAV+kfFjEiIkHC9P4dM+XvOG+UHsXS1dXldl/FxcXIysqStWZv+E6MiEiQ0RPSEHZ7lM9HiiMiozB6QprsuZQcxXLp0iUsWrQIdrsdTqcT48aNw65du2Sv2RNGsRAR+TDQqJDe7kRvHl39qrA2+2BTQxQLHycSEQmUMuMePLr6VYTdHuV2fURklKoKmFrwcSIRkWApM+5B8rQZPd2Kpg6E6Udi9IQ0WW31t4IaolhYxIiIgkCj0WJMWsatvo2fPT5OJCIi1WIRIyIi1WIRIyIi1eI7MSKiIHA6nLA2dsJx9UdoRoRAlxQBSdP/1AySh0WMiEiwH2q+h+lgA+ydP7quaSNCoF+YjNvSo3z8Sf/ZbDYUFRWhuLgYWq0WISEhSEhIwNq1a/tFsQRDa2srli9fjqamJuh0OqSmxOM0VgAAc8NJREFUpmLz5s2uQ4mtViteeOEFlJaWIiQkBFlZWdi9e7fw+2ARIyIS6Iea73F599f9rts7f8Tl3V8jMm+CkEKm9DyxgoICaDQanD17FpIk+XXYcCD4ToyISBCnwwnTwQafY0wHz8HpkHdQktLzxLq6urB9+3YUFRW5DguOj4+XtWZvWMSIiASxNna6PUL0xN5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy/ud9Bwb57YwoULAfREw0RGRmLdunWYOnUqZs2ahc8++yzwBfvAIkZEJIjjqu8CNtBxvig5T8xms+HcuXMwGAyorKzE22+/jSeffBLt7e2y190XixgRkSCaESE3HzSAcd4oPU8sISEBGo0GS5YsAQBMmjQJSUlJqK2VHwbaF4sYEZEguqQIaCN8FyhthA66pAhZ8yg9TywqKgpz585FaWkpAKC5uRmNjY246667ZK3bE3YnEhEJImkk6Bcme+xO7KVfOE7I92JKzhMDgM2bN2PFihV4+eWXodVqsXXr1qA0dzBPjIjIh0Dyrjx/J6aDfuE4Yd+JDQY15IlxJ0ZEJNht6VEYZojkiR2DgEWMiCgIJI2EYcn6W30bsqghT4yNHUREpFosYkREpFosYkREpFosYkREpFps7CAiCgKHw4Hm5mZYLBaEhYW5TrEQRclRLCaTCQ8++KBr7LVr13Du3DkYjUaf5z0GgkWMiEiwuro6lJSUwGw2u66Fh4cjOzsbBoNByBxKjmLR6/U4ffq0a+yGDRtw9OhR4QUM4ONEIiKh6urqsHfvXrcCBgBmsxl79+51RaDIofQolr62b9+OlStXyl63J9yJEREJ4nA4UFJS4nNMSUkJUlNTZT1a9DeKpbq6GikpKTAajTAYDCgrK8PEiRPx7rvvIjc3FzU1NTedqzeKZcOGDaioqEBOTg4aGhowfPhw15jeKJacnJx+f768vByXL1/GI488EtBab4Y7MSIiQZqbm/vtwPoym81obm6WPZeSo1hu9M4772Dp0qUYMiQ4eyYWMSIiQSwWi9Bx3ig9iqVXV1cX9uzZgxUrVgxsgQPAIkZEJMiNhUPEOG+UHsXS67333kNGRgZSU1NlrdcXvhMjIhIkISEB4eHhPh8phoeHIyEhQfZcSo9iAYBt27YFraGjF6NYiIh8GGhUSG93oje5ubnC2uyDTQ1RLHycSEQkkMFgQG5uLsLDw92uh4eHq6qAqQUfJxIRCWYwGJCamhrUEzsGgxqiWFjEiIiCQKPRICkp6Vbfxs+euv6zgIiI6AYsYkREpFosYkREpFp8J0ZEFAROpx0m0ylYrUbodDHQ66dBksSeJE/ciRERCWc0luJvx+9HVfUS1Nb9f6iqXoK/Hb8fRmOpsDlsNhsKCwuRmpqKtLQ0ZGVlIScnxy0CJZhaW1uxYMEC3HXXXcjIyEBubi6uXLni+r20tBRTpkxBVlYW0tPTsXPnzqDcBz92JiLyYaAf4xqNpfiqZhWAvn+19pw3ODH9vxATs0D2feXl5cFisWD79u1ueWJmsxlLlixxGxuMPLFLly6hvr7eLU+ss7MTW7duhdPpRFRUFMrKypCRkYGmpiakpqaivb0dI0aMcPv38GNnIiKFcDrtOFv/O/QvYHBdO1v/OpxOu4ff/aeWPLHecx3NZjMiIyOh0+lkrdsTvhMjIhKk5x1Ym48RTlitF2EyncLIkTMDnkfpeWKSJGHv3r147LHHMHz4cHR0dGD//v0eDwmWizsxIiJBrFaj0HG+KDlPrLu7G+vXr8eHH36I5uZmfPbZZ1i2bJnbOzNRWMSIiATR6WKEjvNG6Xlip0+fRmtrK+69914AwLRp0zBq1Ci34icKixgRkSB6/TTodHHobeLoT4JOFw+9fpqseZSeJzZmzBi0tLTg22+/BQB89913aGhowPjx42Wt2xO+EyMiEkSStBif8to/uxMluDd49BS28SlrhHwvpuQ8sdjYWGzZsgWPP/44NBoNnE4nNm3ahNGjR8ted19ssSci8iGQFnCjsRRn63/n1uSh08VjfMoaIe31g0UNeWLciRERCRYTswDR0fN4YscgYBEjIgoCSdLKaqNXAjXkibGxg4iIVItFjIiIVItFjIiIVItFjIiIVItFjIgoCOxOJ/7WcRUHLnXgbx1XYRf8NZPSo1hKSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzLH8uXLYbFYUF5e7hbFUltbi8zMTLexwYhi0Wq1WLNmjVsUS0FBAbZu3YqOjg7k5eXh2LFjmDBhAo4ePYolS5b4deDwQHEnRkQk0MftJjxd0+RWwACgzWrD0zVN+LjdJHsOpUexNDQ0ICYmBhMmTAAAPPDAA2hubkZVVZXstffFIkZEJIjd6cRv6i/4SBMD1tRfkP1o0d8oljVr1qCyshLJycnIy8vDzp07cebMGeTn5yM3N9evuXqjWE6cOIFt27Zh8eLF/c5o7I1iWbhwIYCesx3b29tRUVEBADhw4AAsFguampoCW7APLGJERIJUmCz9dmA3cgJotdpQYbLInkvJUSwRERHYt28fCgoKMGXKFBw5cgQGgwFDhw6Vve6++E6MiEgQ44/dQsd5c2MUy8iRI11RLDt27MChQ4cADH4UywcffOCKYgGA+++/H0eOHAEAWK1WxMXFuR4visSdGBGRIDEh/u0L/B3njdKjWAC47fJef/11zJkzB3feeaesdXvCnRgRkSAz9WGI1w1Fm9Xm8b2YhJ4uxZn6MA+/DoySo1gAYM2aNfjiiy/Q3d2Nu+++G9u2bZO9Zk8YxUJE5MNAo0J6uxMBT2liwJ/TE4W12QebGqJY+DiRiEigh6P1+HN6IuJ07k0M8bqhqipgasHHiUREgj0crUd2VAQqTBYYf+xGTMgQzNSHQeuhuULJ1BDFwiJGRBQEWknCvSNH3Orb+Nnj40QiIlItFjEiIlItFjEiIlItvhMjIgoCu8OJk41XYLx6HTEjhmF60u3QatTV2KEGLGJERIKV1FxE4cE6XOz86Qin+Ihh+O1CA7LT44XMYbPZUFRUhOLiYmi1WoSEhCAhIQFr167tF8USDF1dXZgzZ47rmKr4+Hhs3rzZdQJ+fX09li1bhu+//x56vR47duyAwWAQfh98nEhEJFBJzUX8cneVWwEDgLbO6/jl7iqU1Nz80F1/LF++HNXV1SgvL0dtbS2qq6uxcuVK1NbW9ht749mIotx22204fPgwvvzyS3z55ZfIzs7G6tWrXb8/88wzyM/Px9mzZ/HSSy9h5cqVwu8BYBEjIhLG7nCi8GCdzyiWwoN1sDvkHZSkhDwxjUaDESN6PiFwOp0wm82uA4CNRiOqqqqQl5cHAFi0aBEaGxuDEsXCx4lERIKcbLzSbwd2IyeAi53XcbLxCu5Ojgx4Hn/zxKqrq5GSkgKj0QiDwYCysjJMnDgR7777LnJzc/1KWu7NE9uwYQMqKiqQk5ODhoYGDB8+HAAwb948fPXVV4iOjsann34KADh//jxGjRqFIUN6SowkSRg7diz+8Y9/uAqkKNyJEREJYrx68xiTgYzzRSl5YocPH8bFixfxxBNPYN26dR7vD+jZrQUDixgRkSAxI/w7wNbfcd7cmCcGwJUn9sorr7iuDVaeGNDzaPE///M/XTEuY8aMQUtLC7q7u13znz9/HmPHjh3gSm+ORYyISJDpSbcjPmIYvDXSS+jpUpye5P0xoD+UkCd26dIlXLlyxTXuv//7v105YzExMcjKysLu3bsBAPv27UNiYqLwR4kA34kREQmj1Uj47UIDfrm7ChI8R7H8dqFByPditzpP7JtvvsF//ud/oru7G06nE8nJya6iBQBbtmzBU089haKiIoSHh2Pnzp2y1+wJ88SIiHwIJO9qML4TGwxqyBPjToyISLDs9Hj8myGOJ3YMAhYxIqIg0GokWW30SqCGPDE2dhARkWqxiBERkWqxiBERkWqxiBERkWqxsYOIKBgcdqD5OGC5BITFAgn3ABrtrb6rnx3uxIiIRKv7CPhDOrDzEWDfyp7//UN6z3VBbDYbCgsLkZqairS0NGRlZSEnJwenT58WNocvXV1dmDFjBiZNmoRJkyYhOzvb7ZT6X/3qV0hMTIQkSX4dNBwoFjEiIpHqPgL2LgXMre7XzRd7rgsqZErPE3v88cfxxRdfICEhQfjcN2IRIyISxWEHSl4GfCWKlRT0jJNB6XliAHD//ffjjjvukLVOf/CdGBGRKM3H++/A3DgB84WecUmzAp5G6Xlig4k7MSIiUSyXxI7zQel5YoOFRYyISJSwWLHjvFB6nthgYhEjIhIl4R4gfBTgK1EsfHTPOBmUnic2mPhOjIhIFI0WyH6zpwvRW6JY9htCvhdTep7YqlWr8OGHH6KtrQ3z5s1DWFgYvvvuO9nr7ot5YkREPgSUd1X3UU+X4o1NHuGjewqY4dHg3GgQME+MiOhfkeFRIPVhntgxCFjEiIiCQaOV1UavBMwTIyIiCiIWMSIiUi0WMSIiUi0WMSIiUi0WMSKiILA77DjVdgr/79z/w6m2U7DLPPS3LyVHsVy/fh05OTkYP348MjMz+8W0iMTuRCIiwQ43H8YbJ9/ApWs/nZEYGxqLgukFmJcwT8gcy5cvh8ViQXl5uesk+4MHD6K2thaZmZluY+12O7Rase39vVEsvSfZ/+EPf8Dq1auxf/9+AEB+fj4eeughSJKEt99+G/n5+UE5IJg7MSIigQ43H8bqI6vdChgAGK8ZsfrIahxuPix7DqVHsQwbNgy/+MUvXGcszpw5E+fOnZO9bk+4EyMiEsTusOONk2/A6SFPzAknJEh48+SbmD1mNrQyPnxWWxTLn/70JyxcuDCwxd4Ed2JERIJUGav67cBu5IQTbdfaUGWskj2XWqJYioqKUF9fj9///veBL9YHFjEiIkHar7ULHeeNWqJYNmzYgP379+OTTz5BaGio/wscABYxIiJBokOjhY7zRg1RLBs3bkRxcTH+8pe/QK/Xy1qvL3wnRkQkyOSYyYgNjYXxmtHjezEJEmJDYzE5ZrLsuZQcxdLS0oIXXngB48aNw+zZswEAOp0OJ06ckL3uvhjFQkTkw0CjQnq7EwG4FTLpn3liGx/cKKzNPtjUEMXCx4lERALNS5iHjQ9uRExojNv12NBYVRUwteDjRCIiweYlzMPsMbNRZaxC+7V2RIdGY3LMZFlt9beCGqJYWMSIiIJAq9FiWty0W30bP3t8nEhERKrFIkZERKrFIkZERKrFd2JEREHgtNtxrfLv6G5vx5DoaIROnQJJ8EnyxCJGRCSc+dNPcaloPbrb2lzXhsTFIfbVVxA+f76QOWw2G4qKilBcXAytVouQkBAkJCRg7dq1/aJYgqGrqwtz5sxxHVMVHx+PzZs3u07Anz9/Ptra2lyn3b/11ltBuS9+7ExE5MNAP8Y1f/opLvz6eaDvX63/PG9w9B//IKSQ5eXlwWKxYPv27W55YmazGUuWLHEbG4w8MYfDga6uLrc8sc8//9yVJ2YymVzHTX3wwQf43e9+h6qq/gcf82NnIiKFcNrtuFS0vn8BA1zXLhWth9MuL+VZ6XliANzOS+zs7HT7TSQ+TiQiEuRa5d/dHiH243Siu60N1yr/juEzpgc8j1ryxJYuXYqysjIAQElJScDr9YU7MSIiQbrb/YtY8XecL2rIE9u1axfOnz+PdevW4cUXX5S3YC9YxIiIBBkS7V/Eir/jvFFLnlivZcuWoayszBX3IhKLGBGRIKFTp2BIXJyriaMfScKQuDiETp0iax6l54mZzWa0tra6fjtw4AAiIyN9Pv4MFN+JEREJImm1iH31lZ7uRElyb/D4Z2GLffUVId+LKTlPrLOzE4sWLcIPP/wAjUaD6OhoHDp0yONuUC622BMR+RBIC/hgfCc2GNSQJ8adGBGRYOHz52PE3Lk8sWMQsIgREQWBpNXKaqNXAjXkibGxg4iIVItFjIiIVItFjIiIVItFjIiIVItFjIgoCBwOJy5824Gzp9pw4dsOOBxiv2ay2WwoLCxEamoq0tLSkJWVhZycHJw+fVroPN50dXVhxowZmDRpEiZNmoTs7Gw0NTX1G1dYWAhJkvw6pzEQ7E4kIhKsodqIY3vq0WWyuq4N1+sw64kUJGfFCJlj+fLlsFgsKC8vd4tiqa2t7ZfbFYwolttuuw2HDx92i2JZvXq1K4oFAKqqqlBRUYGxY8cKnftG3IkREQnUUG1EyZYatwIGAF0mK0q21KCh2ih7DjVEsVitVqxatQqbNm0KykkdvbgTIyISxOFw4tieep9jvthbj6RJ0dBoAv+LXQ1RLK+99hry8vKQlJQU8Dr9wZ0YEZEgF+tN/XZgfVk6rLhYb5I9l5KjWMrLy3Hq1Ck8++yzstd5MyxiRESCdJl9F7CBjvNG6VEsR48exTfffIOkpCQkJiaipaUFCxYswCeffDLwxd4EixgRkSDDw3VCx3mj9CiWgoICtLa2oqmpCU1NTbjjjjtQWlqKhx56SNa6PeE7MSIiQeJT9Biu1/l8pBg2Uof4FL3suZQcxTKYGMVCROTDQKNCersTvcl+Jl1Ym32wqSGKhY8TiYgESs6KQfYz6Riud39kGDZSp6oCphZ8nEhEJFhyVgySJkX3dCuarRge3vMIUU5b/a2ghigWFjEioiDQaCSMvmvkzQeSLHycSEREqsUiRkREqsUiRkREqsV3YkREQeBw2HHh61pYTB0I04/E6Alp0GjEniRPLGJERMLVnziOv+7YCsuVnzr7wm6Pwpyn8pEy4x4hc9hsNhQVFaG4uBharRYhISFISEjA2rVr+0WxBENXVxfmzJnjOqYqPj4emzdvdp2An5iYiGHDhrm+/XrllVfwxBNPCL8PFjEiIoHqTxzHRxuL+l23XPkeH20swqOrXxVSyNSQJ/b+++8jPT1d6Lx98Z0YEZEgDocdf92x1eeYsp1b4XDYfY65GTXkiQ0W7sSIiAS58HWt2yNET65e/h4Xvq7FmLSMgOdRQ54Y0BP54nA4MGPGDKxfvx7R0dEBr9kb7sSIiASxmDqEjvNFyXliAPD555/jyy+/RFVVFSIjI7Fs2TLZa/aERYyISJAwvX8ndPg7zhul54kBwNixYwEAQ4cOxfPPP49jx44NYIX+YxEjIhJk9IQ0hN0e5XPMiMgojJ6QJmsepeeJdXV1ud1XcXExsrKyZK3ZG74TIyISRKPRYs5T+R67E3vNXpYv5HsxJeeJXbp0CYsWLYLdbofT6cS4ceOwa9cu2Wv2hHliREQ+BJJ35ek7sRGRUZi9TNx3YoNBDXli3IkREQmWMuMeJE+bwRM7BgGLGBFREGg0Wllt9EqghjwxNnYQEZFqsYgREZFqsYgREZFqsYgREZFqsYgREQWB0+HE9QYTrp024nqDCU6H2K+ZbDYbCgsLkZqairS0NGRlZSEnJwenT58WOo83XV1dmDFjBiZNmoRJkyYhOzsbTU1Nrt+tViuee+45pKSkIC0tDXl5eUG5D3YnEhEJ9kPN9zAdbIC980fXNW1ECPQLk3Fbuu8TPfyl9CiWgoICaDQanD17FpIk+XVOYyC4EyMiEuiHmu9xeffXbgUMAOydP+Ly7q/xQ438lnWlR7F0dXVh+/btKCoqcp2zGB8fL3vdnnAnRkQkiNPhhOlgg88xpoPnMMwQCUnT/0Befyk9iqWhoQGRkZFYt24dDh8+jNtuuw1r167F3LlzA16zN9yJEREJYm3s7LcD68veaYW1sVP2XEqOYrHZbDh37hwMBgMqKyvx9ttv48knn0R7e7vsdffFIkZEJIjjqu8CNtBx3ig9iiUhIQEajQZLliwBAEyaNAlJSUmora0d4EpvjkWMiEgQzYgQoeO8UXoUS1RUFObOnYvS0lIAQHNzMxobG3HXXXfJWrcnfCdGRCSILikC2ogQn48UtRE66JIiZM+l5CgWANi8eTNWrFiBl19+GVqtFlu3bg1KcwejWIiIfBhoVEhvd6I3kXkThLXZB5saolj4OJGISKDb0qMQmTcB2gj3R4baCJ2qCpha8HEiEZFgt6VHYZghEtbGTjiu/gjNiBDokiJktdXfCmqIYmERIyIKAkkjYViy/lbfxs8eHycSEZFqsYgREZFqsYgREZFq8Z0YEVEQOBwONDc3w2KxICwszHWKBYnFIkZEJFhdXR1KSkpgNptd18LDw5GdnQ2DwSBkDpvNhqKiIhQXF0Or1SIkJAQJCQlYu3ZtvyiWYOjq6sKcOXNcx1TFx8dj8+bNSExMhMlkwoMPPugae+3aNZw7dw5Go9HnocWB4MfOREQ+DPRj3Lq6OtdpGJ7k5uYKKWR5eXmwWCzYvn27W56Y2Wx2nVnYKxh5Yg6HA11dXW55Yp9//rkrT+xGGzZswNGjR3Hw4MF+v/FjZyIihXA4HCgpKfE5pqSkBA6HQ9Y8Ss8T62v79u1YuXKlrDV7w8eJRESCNDc3uz1C9MRsNqO5uRlJSUkBz6P0PLEblZeX4/Lly3jkkUcCXq8v3IkREQlisViEjvNFyXliN3rnnXewdOlSDBkSnD0TixgRkSA3ZniJGOeN0vPEenV1dWHPnj1YsWKF/4sbIBYxIiJBEhISEB4e7nNMeHg4EhISZM2j9DyxXu+99x4yMjKQmpoqa72+8J0YEZEgGo0G2dnZPrsTs7OzhXwvpvQ8MQDYtm1b0Bo6erHFnojIh0BawAfjO7HBoIY8Me7EiIgEMxgMSE1N5Ykdg4BFjIgoCDQajaw2eiVQQ54Y/7OAiIhUi0WMiIhUi0WMiIhUi0WMiIhUi0WMiCgInE47Ojoq0Nb2ETo6KuB02m/+hwbAZrOhsLAQqampSEtLQ1ZWFnJycnD69Gmh83jT1dWFGTNmYNKkSZg0aRKys7PR1NTk+r20tBRTpkxBVlYW0tPTsXPnzqDcB78TIyLyIZDvmIzGUpyt/x2s1jbXNZ0uDuNTXkNMzAIh96XkKBan04moqCiUlZUhIyMDTU1NSE1NRXt7u2t8L0axEBEpiNFYiq9qVrkVMACwWi/hq5pVMBpLZc+hliiW3iOxzGYzIiMjodPpZK+9L34nRkQkiNNpx9n63wHw9IDLCUDC2frXER09D5IU+M5I6VEskiRh7969eOyxxzB8+HB0dHRg//79CAkJCXjN3nAnRkQkiMl0qt8OzJ0TVutFmEynZM+l5CiW7u5urF+/Hh9++CGam5vx2WefYdmyZW4HBovCIkZEJIjVahQ6zhulR7GcPn0ara2tuPfeewEA06ZNw6hRo9yKnygsYkREguh0MULHeaP0KJYxY8agpaUF3377LQDgu+++Q0NDA8aPHy9r3Z7wnRgRkSB6/TTodHGwWi/B83sxCTpdHPT6abLnUnIUS2xsLLZs2YLHH38cGo0GTqcTmzZtwujRo2Wvuy+22BMR+TDQFvDe7sQeN/712vMIbmL6fwlrsw82NUSx8HEiEZFAMTELMDH9v6DTxbpd1+niVFXA1IKPE4mIBIuJWYDo6Hn/7FY0QqeLgV4/TVZb/a2ghigWFjEioiCQJC1Gjpx5q2/jZ4+PE4mISLVYxIiISLVYxIiISLX4ToyIKAjsTicqTBYYf+xGTMgQzNSHQevh1AySh0WMiEiwj9tN+E39BVy02lzX4nVDsS5lNB6O1guZw2azoaioCMXFxdBqtQgJCUFCQgLWrl2LzMxMIXP40tXVhTlz5riOqYqPj8fmzZtdJ+CXlJTgN7/5DX788UeEhoZiy5YtmDRpkvD74MfOREQ+DPRj3I/bTXi6pqnfeR29e7A/pycKKWRKzhPr6OhASkoKjh07hgkTJuDo0aNYtWqVx1Pz+bEzEZFC2J1O/Kb+gtcgFgBYU38Bdpl7B6XniTU0NCAmJgYTJkwAADzwwANobm5GVVWVrHV7wseJRESCVJgsbo8Q+3ICaLXaUGGy4N6RI7yOuxml54mlpKSgvb0dFRUVmDlzJg4cOACLxYKmpiZMnjw54HV7wp0YEZEgxh+7hY7zRcl5YhEREdi3bx8KCgowZcoUHDlyBAaDAUOHDpW97r64EyMiEiQmxL+/Uv0d582NeWIjR4505Ynt2LEDhw4dAnBr8sRSUlKwadMmAMD999+PI0eOAACsVivi4uJcjxdF4k6MiEiQmfowxOuGwlsjvQRglG4oZurDvIzwj9LzxAC47fJef/11zJkzB3feeaesdXvCnRgRkSBaScK6lNF4uqYJEjwFsQCvp4wW8r2YkvPEAGDNmjX44osv0N3djbvvvhvbtm2TvWZP2GJPRORDIC3gnr4TG6UbitcFfic2GNSQJ8adGBGRYA9H65EdFcETOwYBixgRURBoJUlWG70SqCFPjI0dRESkWixiRESkWixiRESkWixiRESkWmzsICIKArvDiZONV2C8eh0xI4ZhetLt0GrYnSgad2JERIKV1FzEfW/+Ff/xfyrw6/8+jf/4PxW4782/oqTm5mcV+stms6GwsBCpqalIS0tDVlYWcnJycPr0aWFz+GvFihWQJAkWi8V1rb6+Hvfccw/Gjx+P6dOnu07NF41FjIhIoJKai/jl7ipc7HQ/g7Ct8zp+ubtKWCFbvnw5qqurUV5ejtraWlRXV2PlypWora3tN/bGsxFFO3jwoMdzGZ955hnk5+fj7NmzeOmll7By5cqgzM8iRkQkiN3hROHBOp95YoUH62B3qD9PDOiJaSksLMTGjRvd7s9oNKKqqgp5eXkAgEWLFqGxsRFNTU2y1u0J34kREQlysvFKvx3YjZwALnZex8nGK7g7OTLgeZSSJ7Zq1SqsXbsWERERbn/m/PnzGDVqFIYM6SkxkiRh7Nix+Mc//uEqkKJwJ0ZEJIjx6s1jTAYyzpdbnSf23nvvISQkBI888shN7w/oiYMJBhYxIiJBYkb4d4Ctv+O8uTFPDIArT+yVV15xXQt2nlhZWRn++te/IjEx0bW7SktLw1dffYUxY8agpaUF3d3drvnPnz+PsWPHBrxmb1jEiIgEmZ50O+IjhvnME4uP6Gm3l0MJeWKbNm1CS0sLmpqaXO+6amtrMXHiRMTExCArK8sVzbJv3z63YicS34kREQmi1Uj47UIDfrm7ymue2G8XGoR8L3ar88RuZsuWLXjqqadQVFSE8PBw7Ny5U/aaPWGeGBGRD4HkXZXUXEThwTq3Jo/4iGH47UIDstPjg3WrwjFPjIjoX1B2ejz+zRDHEzsGAYsYEVEQaDWSrDZ6JWCeGBERURCxiBERkWqxiBERkWqxiBERkWqxiBERBYPDDjQeA756v+d/HWJPkld6FMuvfvUrJCYmQpIkv85oDBS7E4mIRKv7CCh5GTC3/nQtfBSQ/SZgeFTIFMuXL4fFYkF5ebnrJPuDBw+itrYWmZmZbmPtdju0Wq2QefvyFsXy+OOP46WXXsJ9990XlHl7cSdGRCRS3UfA3qXuBQwAzBd7rtd9JHsKpUexAMD999+PO+64Q/Zab4Y7MSIiURz2nh2Y10QxCSgpAFIfBjSB74yUHsUymLgTIyISpfl4/x2YGydgvtAzTialR7EMFhYxIiJRLJfEjvNC6VEsg4lFjIhIlLBYseO8UHoUy2DiOzEiIlES7unpQjRfhOf3YlLP7wn3yJ5K6VEsq1atwocffoi2tjbMmzcPYWFh+O6772Svuy9GsRAR+TDgqJDe7kQAHhPFcncJa7MPNjVEsfBxIhGRSIZHewpVeJ/csPBRqipgasHHiUREohke7Wmjbz7e08QRFtvzCFFGW/2toIYoFhYxIqJg0GiBpFm3+i5+9vg4kYiIVItFjIiIVItFjIiIVIvvxIiIgsDusKPKWIX2a+2IDo3G5JjJ0KqssUMNWMSIiAQ73HwYb5x8A5eu/XS8VGxoLAqmF2Bewjwhc9hsNhQVFaG4uBharRYhISFISEjA2rVr+0WxBNuKFSuwfft2XL16FWFhYbh+/TqefPJJ1NXVITQ0FHFxcdi8ebPreCqR+DiRiEigw82HsfrIarcCBgDGa0asPrIah5sPC5ln+fLlqK6uRnl5OWpra1FdXY2VK1eitra239gbz0YUzVueWH5+Pr799lucPn0ajzzyCPLz84MyP4sYEZEgdocdb5x8A04PR071Xnvz5Juwy0x5Vnqe2LBhw/CLX/zCVdxmzpyJc+fOyVqzN3ycSEQkSJWxqt8O7EZOONF2rQ1VxipMi5sW8DxqyxP705/+hIULFw54nf7gToyISJD2a+1Cx/miljyxoqIi1NfX4/e//31A67wZFjEiIkGiQ6OFjvNGLXliGzZswP79+/HJJ58gNDQ0oLXeDIsYEZEgk2MmIzY0FhL6FwwAkCAhLjQOk2Mmy5pHDXliGzduRHFxMf7yl79Ar9fLWq8vfCdGRCSIVqNFwfQCrD6yGhIktwaP3sL28vSXhXwvpuQ8sZaWFrzwwgsYN24cZs+eDQDQ6XQ4ceKE7HX3xTwxIiIfAsm78vSdWFxoHF6e/rKw78QGgxryxLgTIyISbF7CPMweM5sndgwCFjEioiDQarSy2uiVQA15YmzsICIi1WIRIyIi1WIRIyIi1WIRIyIi1WIRIyIKAqfdjq4TJ9F56GN0nTgJp+CT5G02GwoLC5Gamoq0tDRkZWUhJycHp0+fFjqPP1asWAFJkmCxWFzX5s+fj4yMDGRmZmLWrFlBuy92JxIRCWb+9FNcKlqP7rY217UhcXGIffUVhM+fL2SO5cuXw2KxoLy83HWS/cGDB1FbW9svT8xut0OrDU57v7colr1797pO6vjggw+wYsUKVFVVCZ+fOzEiIoHMn36KC79+3q2AAUD3pUu48OvnYf70U9lzKD2KBYDbUVOdnZ3QaIJTbrgTIyISxGm341LResDTQUhOJyBJuFS0HiPmzoUkY2ekliiWpUuXoqysDABQUlIS2GJvgjsxIiJBrlX+vd8OzI3Tie62Nlyr/LvsudQQxbJr1y6cP38e69atw4svvhjwWn1hESMiEqS73b+cMH/HeaOWKJZey5YtQ1lZmeukfJFYxIiIBBkS7V9OmL/jvFF6FIvZbEZra6vr33HgwAFERkb6fPwZKL4TIyISJHTqFAyJi0P3pUue34tJEobExiJ06hTZcyk5iqWzsxOLFi3CDz/8AI1Gg+joaBw6dMjjblAuRrEQEfkw0KiQ3u5EAO6F7J9/gY/+4x+EtdkHmxqiWPg4kYhIoPD58zH6j3/AkNhYt+tDYmNVVcDUgo8TiYgEC58/HyPmzu3pVmxvx5DoaIROnSKrrf5WUEMUC4sYEVEQSFoths+Yfqtv42ePjxOJiEi1WMSIiEi1WMSIiEi1+E6MiCgIHA4nLtab0GW2Yni4DvEpemg04r+T+lfHnRgRkWAN1UbsevU4Pvhf1fjLtjp88L+qsevV42ioNgqbQ+l5Yr0KCwshSZJfhw0HgjsxIiKBGqqNKNnS/y/sLpMVJVtqkP1MOpKzYmTPo/Q8MQCoqqpCRUUFxo4dG5S5Ae7EiIiEcTicOLan3ueYL/bWw+GQd1CSGvLErFYrVq1ahU2bNgXluKle3IkREQlysd6ELpPV5xhLhxUX600YfddIn+N8UUOe2GuvvYa8vDwkJSUFvE5/cCdGRCRIl9l3ARvoOF+UnCdWXl6OU6dO4dlnn5W9zpthESMiEmR4uE7oOG+Unid29OhRfPPNN0hKSkJiYiJaWlqwYMECfPLJJ3KW7RGLGBGRIPEpegzX+y5QYSN72u3lUHqeWEFBAVpbW12/3XHHHSgtLcVDDz0ka92e8J0YEZEgGo2EWU+keOxO7HVfboqQ78WUnCc2mJgnRkTkQyB5Vw3VRhzbU+/W5BE2Uof7clOEtNcPFjXkiXEnRkQkWHJWDJImRfPEjkHAIkZEFAQajSSrjV4J1JAnxsYOIiJSLRYxIiJSLRYxIiJSLRYxIiJSLRYxIqIgcDjsOF97Bl//7SjO156Bw2G/+R8aAKVHsSQmJiI1NRWZmZnIzMzEnj17gjI3uxOJiASrP3Ecf92xFZYrP3X2hd0ehTlP5SNlxj1C5lBDFMv777+P9PT0oMzbizsxIiKB6k8cx0cbi9wKGABYrnyPjzYWof7EcflzqCCKZbBwJ0ZEJIjDYcdfd2z1OaZs51YkT5sBjSbwnZEaoliAntPyHQ4HZsyYgfXr1yM6OjrgNXvDnRgRkSAXvq7ttwPr6+rl73Hh61rZcyk5igUAPv/8c3z55ZeoqqpCZGQkli1bJmu93rCIEREJYjF1CB3njdKjWABg7NixAIChQ4fi+eefx7FjxwJb7E2wiBERCRKm9++YKX/HeaP0KJauri63+youLkZWVpasNXvDd2JERIKMnpCGsNujfD5SHBEZhdET0mTPpeQolkuXLmHRokWw2+1wOp0YN24cdu3aJXvNnjCKhYjIh4FGhfR2J3rz6OpXhbXZB5saolj4OJGISKCUGffg0dWvIuz2KLfrIyKjVFXA1IKPE4mIBEuZcQ+Sp83o6VY0dSBMPxKjJ6TJaqu/FdQQxcIiRkQUBBqNFmPSMm71bfzs8XEiERGpFosYERGpFosYERGpFt+JEREFgdPhhLWxE46rP0IzIgS6pAhIGs+nvVPguBMjIhLsh5rv0fbmSXz/f77Clf/+Ft//n6/Q9uZJ/FAjrtNP6XliVqsVzz33HFJSUpCWloa8vLygzM2dGBGRQD/UfI/Lu7/ud93e+SMu7/4akXkTcFt6lIc/OTBKzxMrKCiARqPB2bNnIUmSX4cNB4I7MSIiQZwOJ0wHG3yOMR08B6dD3kFJSs8T6+rqwvbt21FUVOQqcPHx8bLW7A2LGBGRINbGTtg7f/Q5xt5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy92HTTsLU+soaEBkZGRWLduHaZOnYpZs2bhs88+C3zBPrCIEREJ4rjqu4ANdJwvSs4Ts9lsOHfuHAwGAyorK/H222/jySefRHt7u+x198UiRkQkiGZEiNBx3ig9TywhIQEajQZLliwBAEyaNAlJSUmorZUfBtoXixgRkSC6pAhoI3wXKG2EDrqkCJ9jbkbpeWJRUVGYO3cuSktLAQDNzc1obGzEXXfdJWvdnrA7kYhIEEkjQb8w2WN3Yi/9wnFCvhdTcp4YAGzevBkrVqzAyy+/DK1Wi61btwaluYN5YkREPgSSd/VDzfcwHWxwa/LQRuigXzhOSHv9YFFDnhh3YkREgt2WHoVhhkie2DEIWMSIiIJA0kgYlqy/1bchixryxNjYQUREqsUiRkREqsUiRkREqsUiRkREqsUiRkQUBA6HA42Njfjqq6/Q2NgIh8Mh9N+v5CgWk8mEzMxM1z/jx4/HkCFDcOXKFeFzszuRiEiwuro6lJSUwGw2u66Fh4cjOzsbBoNByBxKjmLR6/VuxXTDhg04evSozwOLA8WdGBGRQHV1ddi7d69bAQMAs9mMvXv3uiJQ5FB6FEtf27dvx8qVK2Wv2xPuxIiIBHE4HCgpKfE5pqSkBKmpqdBoAt9D+BvFUl1djZSUFBiNRhgMBpSVlWHixIl49913kZubi5qampvO1RvFsmHDBlRUVCAnJwcNDQ0YPny41yiWG5WXl+Py5cseT7sXgTsxIiJBmpub++3A+jKbzWhubpY9l5KjWG70zjvvYOnSpRgyJDh7JhYxIiJBehsbRI3zRulRLL26urqwZ88erFixIqB1+oNFjIhIkBsLh4hx3ig9iqXXe++9h4yMDKSmpspary98J0ZEJEhCQgLCw8N9PlIMDw9HQkKC7LmUHsUCANu2bQtaQ0cvRrEQEfkw0KiQ3u5Eb3Jzc4W12QebGqJY+DiRiEggg8GA3NxchIeHu10PDw9XVQFTCz5OJCISzGAwIDU1Fc3NzbBYLAgLC0NCQoKstvpbQQ1RLCxiRERBoNFokJSUdKtv42dPXf9ZQEREdAMWMSIiUi0WMSIiUi2+EyMiCgKn0w6T6RSsViN0uhjo9dMgScE5Sf5fGXdiRESCGY2l+Nvx+1FVvQS1df8fqqqX4G/H74fRWCpsDiXniQFAaWkppkyZgqysLKSnp2Pnzp1BmZs7MSIigYzGUnxVswqA+zkSVuslfFWzChPT/wsxMQtkz6PkPDGn04nFixejrKwMGRkZaGpqQmpqKh577DGMGDFC6PzciRERCeJ02nG2/nfoW8D++SsA4Gz963A67R5+959a8sR6z3U0m82IjIyETqeTtW5PuBMjIhKk5x1Ym48RTlitF2EyncLIkTMDnkfpeWKSJGHv3r147LHHMHz4cHR0dGD//v0ICQkJeM3ecCdGRCSI1WoUOs4XJeeJdXd3Y/369fjwww/R3NyMzz77DMuWLcOVK1dkr7svFjEiIkF0uhih47xRep7Y6dOn0drainvvvRcAMG3aNIwaNQpffvllwGv2hkWMiEgQvX4adLo4AP0LRg8JOl089PppsuZRep7YmDFj0NLSgm+//RYA8N1336GhoQHjx4+XtW5P+E6MiEgQSdJifMpr/+xOlODe4NFT2ManrBHyvZiS88RiY2OxZcsWPP7449BoNHA6ndi0aRNGjx4te919MU+MiMiHQPKujMZSnK3/nVuTh04Xj/Epa4S01w8WNeSJcSdGRCRYTMwCREfP44kdg4BFjIgoCCRJK6uNXgnUkCfGxg4iIlItFjEiIlItFjEiIlItFjEiIlItNnYQEQWB3elEhckC44/diAkZgpn6MGg9nJpB8nAnRkQk2MftJkwtr8Oi0w34ZV0zFp1uwNTyOnzcbhI2h9LzxEpKSjB16lRkZGRg5syZQTlyCuBOjIhIqI/bTXi6pqlfGEub1Yana5rw5/REPBytlz2PkvPEOjo6kJeXh2PHjmHChAk4evQolixZ4tep+QPFnRgRkSB2pxO/qb/gI00MWFN/AXaZByUpPU+soaEBMTExmDBhAgDggQceQHNzM6qqqmSt2xMWMSIiQSpMFly02rz+7gTQarWhwmTxOsYf/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy92HTTsLU8sJSUF7e3tqKioAAAcOHAAFovFdVCwSCxiRESCGH/sFjrOFyXniUVERGDfvn0oKCjAlClTcOTIERgMBgwdOlT2uvviOzEiIkFiQvz7K9Xfcd7cmCc2cuRIV57Yjh07cOjQIQCDmyfWKy0tDYcOHcLEiRNx//3348iRIwAAq9WKuLg41+NFkbgTIyISZKY+DPG6oT7SxIBRuqGYqQ/zMsI/Ss8TA+C2y3v99dcxZ84c3HnnnbLW7Ql3YkREgmglCetSRuPpmiYvaWLA6ymjhXwvpuQ8MQBYs2YNvvjiC3R3d+Puu+/Gtm3bZK/ZE+aJERH5EEje1cftJvym/oJbk8co3VC8njJaSHv9YGGeGBHRv6CHo/XIjorgiR2DgEWMiCgItJKEe0eOuNW3IQvzxIiIiIKIRYyIiFSLRYyIiFSLRYyIiFSLRYyIKAjsDifKGy7jw9MXUN5wGXaH2K+ZlBDFIkkSMjIykJmZiczMTBw7dsz1W319Pe655x6MHz8e06dPdx04LBq7E4mIBCupuYjCg3W42PnTEU7xEcPw24UGZKfHC5lDKVEsx48fdzviqtczzzyD/Px8PPXUU3j//fexcuVKlJeXC5+fOzEiIoFKai7il7ur3AoYALR1Xscvd1ehpObmh+7ejFKiWLwxGo2oqqpCXl4eAGDRokVobGzkKfZEREpmdzhReLDOZ55Y4cE62Y8WlRLFAgAPPvggJk2ahNWrV7uunz9/HqNGjcKQIT0P+yRJwtixY/GPf/xDxqo9YxEjIhLkZOOVfjuwGzkBXOy8jpONV2TPdaujWACgubkZlZWVOH78ONrb2/Hiiy96vD+g5yT9YGARIyISxHj15jEmAxnnzY1RLABcUSyvvPKK61qwo1gAYOzYsQCA4cOH49lnn3U1dowZMwYtLS3o7u52zX/+/HnXeJFYxIiIBIkZ4d8Btv6O80YJUSwdHR24du0aAMDhcGDPnj3IysrqWV9MDLKysrB7924AwL59+5CYmOiWPSYKuxOJiASZnnQ74iOGoa3zusf3YhKAuIhhmJ7k/V2Wv251FMuZM2fwzDPPQJIkdHd3Y/LkyfjjH//o+nNbtmzBU089haKiIoSHh2Pnzp2y1+wJo1iIiHwYaFRIb3ci4DlP7H/nTRbWZh9saohi4eNEIiKBstPj8b/zJiMuwv0v5LiIYaoqYGrBx4lERIJlp8fj3wxxONl4Bcar1xEzoucRolajrjwxNUSxsIgREQWBViPh7uTIW30bP3t8nEhERKrFIkZERKrFIkZERKrFd2JERMHgsAPNxwHLJSAsFki4B9AE5yT5f2XciRERiVb3EfCHdGDnI8C+lT3/+4f0nuuCKD1P7Fe/+hUSExMhSRJqamqCdg/ciRERiVT3EbB3KdD3zA7zxZ7rubsAw6Oyp1F6ntjjjz+Ol156Cffdd19Q5u3FnRgRkSgOO1DyMvoVMOCnayUFPeNkUHqeGADcf//9uOOOO2St0x/ciRERidJ8HDC3+hjgBMwXesYlzQp4Gn/zxKqrq5GSkgKj0QiDwYCysjJMnDgR7777LnJzc/16zNebJ7ZhwwZUVFQgJycHDQ0NGD58OICePDGbzYa5c+fi9ddfd10fLNyJERGJYrkkdpwPSs8TGywsYkREooTFih3nhdLzxAYTixgRkSgJ9wDho/DTmfV9SUD46J5xMig9T2ww8Z0YEZEoGi2Q/eY/uxMleAxjyX5DyPdiSs8TW7VqFT788EO0tbVh3rx5CAsLw3fffSd73X0xT4yIyIeA8q7qPurpUryxySN8dE8BE9BeP1jUkCfGnRgRkWiGR4HUh3lixyBgESMiCgaNVlYbvRKoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRaLGJEREFgd9hxqu0U/t+5/4dTbadgl3nob19KjmK5fv06cnJyMH78eGRmZiI7OxtNTU1BuQd2JxIRCXa4+TDeOPkGLl376YzE2NBYFEwvwLyEeULmUHoUS35+Ph566CFIkoS3334b+fn5+PTTT4XPz50YEZFAh5sPY/WR1W4FDACM14xYfWQ1Djcflj2H0qNYhg0bhl/84heuMxZnzpyJc+fOyV63J9yJEREJYnfY8cbJN+D0kCfmhBMSJLx58k3MHjMbWhkfPqstiuVPf/oTFi5cGPB6feFOjIhIkCpjVb8d2I2ccKLtWhuqjFWy51JLFEtRURHq6+vx+9//Xt6CvWARIyISpP1au9Bx3qglimXDhg3Yv38/PvnkE4SGhg5wlf5hESMiEiQ6NFroOG/UEMWyceNGFBcX4y9/+Qv0er2s9frCd2JERIJMjpmM2NBYGK8ZPb4XkyAhNjQWk2Mmy55LyVEsLS0teOGFFzBu3DjMnj0bAKDT6XDixAnZ6+6LUSxERD4MNCqktzsRgFshk/6ZJ7bxwY3C2uyDTQ1RLHycSEQk0LyEedj44EbEhMa4XY8NjVVVAVMLPk4kIhJsXsI8zB4zG1XGKrRfa0d0aDQmx0yW1VZ/K6ghioVFjIgoCLQaLabFTbvVt/Gzx8eJRESkWixiRESkWixiRESkWnwnRkQUBE67Hdcq/47u9nYMiY5G6NQpkIJ0kvy/MhYxIiLBzJ9+iktF69Hd1ua6NiQuDrGvvoLw+fOFzGGz2VBUVITi4mJotVqEhIQgISEBa9eu7RfFEiySJGHixInQaHoe6r311luYNWsWAGD+/Ploa2uDRqPBiBEj8NZbbwXlvljEiIgEMn/6KS78+nmgzzkS3Zcu9Vz/4x+EFDKl54nt3bvXddzUBx98gBUrVqCqSv7Bx33xnRgRkSBOux2Xitb3K2A9P/Zcu1S0Hk67vJRnpeeJAXA7L7Gzs9O1WxONOzEiIkGuVf7d7RFiP04nutvacK3y7xg+Y3rA86glT2zp0qUoKysDAJSUlAS8Xl+4EyMiEqS73b+IFX/H+aKGPLFdu3bh/PnzWLduncesMRFYxIiIBBkS7V/Eir/jvFFLnlivZcuWoayszBX3IhKLGBGRIKFTp2BIXBzgoWAAACQJQ+LiEDp1iqx5lJ4nZjab0dra6vp3HDhwAJGRkT4ffwaK78SIiASRtFrEvvpKTxeiJLk3ePyzsMW++oqQ78WUnCfW2dmJRYsW4YcffoBGo0F0dDQOHTrkcTcoF/PEiIh8CCTvajC+ExsMasgT406MiEiw8PnzMWLuXJ7YMQhYxIiIgkDSamW10SuBGvLE2NhBRESqxSJGRESqxSJGRESqxSJGRESqxSJGRBQEDocTF77twNlTbbjwbQccDrFfM9lsNhQWFiI1NRVpaWnIyspCTk4OTp8+LXQeXyRJQkZGBjIzM5GZmenxxI7CwkJIkuTXOY2BYHciEZFgDdVGHNtTjy6T1XVtuF6HWU+kIDkrRsgcSo9iAYCqqipUVFS4jqcKBu7EiIgEaqg2omRLjVsBA4AukxUlW2rQUG2UPYcaolisVitWrVqFTZs2BeWkjl7ciRERCeJwOHFsT73PMV/srUfSpGhoNIH/xa6GKJbXXnsNeXl5SEpKCnid/uBOjIhIkIv1pn47sL4sHVZcrDfJnkvJUSzl5eU4deoUnn32WdnrvBkWMSIiQbrMvgvYQMd5o/QolqNHj+Kbb75BUlISEhMT0dLSggULFuCTTz4JcMXesYgREQkyPFwndJw3So9iKSgoQGtrK5qamtDU1IQ77rgDpaWleOihh2St2xO+EyMiEiQ+RY/hep3PR4phI3WIT9HLnkvJUSyDiVEsREQ+DDQqpLc70ZvsZ9KFtdkHmxqiWPg4kYhIoOSsGGQ/k47hevdHhmEjdaoqYGrBx4lERIIlZ8UgaVJ0T7ei2Yrh4T2PEOW01d8KaohiYREjIgoCjUbC6LtG3nwgycLHiUREpFosYkREpFosYkREpFp8J0ZEFAQOhx0Xvq6FxdSBMP1IjJ6QBo0mOCfJ/ytjESMiEqz+xHH8dcdWWK781NkXdnsU5jyVj5QZ9wiZw2azoaioCMXFxdBqtQgJCUFCQgLWrl3bL4olWCRJwsSJE6HR9DzUe+uttzBr1iwAPZ2Nw4YNc3379corr+CJJ54Qfg8sYkREAtWfOI6PNhb1u2658j0+2liER1e/KqSQqSFP7P3330d6enpQ5u3Fd2JERII4HHb8dcdWn2PKdm6Fw2H3OeZm1JAnNli4EyMiEuTC17VujxA9uXr5e1z4uhZj0jICnkcNeWJAT+SLw+HAjBkzsH79ekRHRwe8Zm+4EyMiEsRi6hA6zhcl54kBwOeff44vv/wSVVVViIyMxLJly2Sv2RMWMSIiQcL0/p3Q4e84b5SeJ3bjb0OHDsXzzz/v9ptILGJERIKMnpCGsNujfI4ZERmF0RPSZM2j9Dyxrq4ut/sqLi52/SYa34kREQmi0Wgx56l8j92JvWYvyxfyvZiS88QuXbqERYsWwW63w+l0Yty4cdi1a5fsNXvCPDEiIh8Cybvy9J3YiMgozF4m7juxwaCGPDHuxIiIBEuZcQ+Sp83giR2DgEWMiCgINBqtrDZ6JVBDnhgbO4iISLVYxIiISLVYxIiISLVYxIiISLVYxIiIgsDpcOJ6gwnXThtxvcEEp0Ps10w2mw2FhYVITU1FWloasrKykJOTg9OnTwudxxdJkpCRkYHMzExkZma6ncphtVrx3HPPISUlBWlpacjLywvKPbA7kYhIsB9qvofpYAPsnT+6rmkjQqBfmIzb0n2f6OEvpUexFBQUQKPR4OzZs5Akya9zGgPBnRgRkUA/1HyPy7u/ditgAGDv/BGXd3+NH2rkt6wrPYqlq6sL27dvR1FRkeucxfj4eNnr9oRFjIhIEKfDCdPBBp9jTAfPyX606G8Uy5o1a1BZWYnk5GTk5eVh586dOHPmDPLz85Gbm+vXXL1RLCdOnMC2bduwePFitzMaH3zwQUyaNAmrV692XW9oaEBkZCTWrVuHqVOnYtasWfjss89krdkbFjEiIkGsjZ39dmB92TutsDZ2yp5LyVEsNpsN586dg8FgQGVlJd5++208+eSTaG9vl73uvljEiIgEcVz1XcAGOs4bpUexJCQkQKPRYMmSJQCASZMmISkpCbW1tYEs1ycWMSIiQTQjQoSO80bpUSxRUVGYO3cuSktLAfTs2BobG3HXXXfJWrcn7E4kIhJElxQBbUSIz0eK2ggddEkRsudSchQLAGzevBkrVqzAyy+/DK1Wi61btwaluYNRLEREPgw0KqS3O9GbyLwJwtrsg00NUSx8nEhEJNBt6VGIzJsAbYT7I0NthE5VBUwt+DiRiEiw29KjMMwQCWtjJxxXf4RmRAh0SRGQNP2bK5RMDVEsLGJEREEgaSQMS9bf6tv42ePjRCIiUi0WMSIiUi0WMSIiUi2+EyMiCgKHw4Hm5mZYLBaEhYW5TrEgsVjEiIgEq6urQ0lJCcxms+taeHg4srOzYTAYhMxhs9lQVFSE4uJiaLVahISEICEhAWvXru0XxRIskiRh4sSJruL81ltvYdasWTCZTHjwwQdd465du4Zz587BaDT6PLQ4ECxiREQC1dXVuU7DuJHZbMbevXuRm5srpJApOU9Mr9e7hXNu2LABR48eFV7AAL4TIyISxuFwoKSkxOeYkpISOBwOWfMoPU+sr+3bt2PlypWy1uwNd2JERII0Nze7PUL0xGw2o7m5GUlJSQHP42+eWHV1NVJSUmA0GmEwGFBWVoaJEyfi3XffRW5uLmpqam46V2+e2IYNG1BRUYGcnBw0NDRg+PDhAHryxGw2G+bOnYvXX3/ddb1XeXk5Ll++jEceeSTg9frCnRgRkSAWi0XoOF+UnCd2o3feeQdLly7FkCHB2TOxiBERCdL33ZDccd4oPU+sV1dXF/bs2YMVK1YMcIX+YxEjIhIkISEB4eHhPseEh4cjISFB1jxKzxPr9d577yEjIwOpqamy1usL34kREQmi0WiQnZ3tsTuxV3Z2tpDvxZSeJwYA27ZtC1pDRy/miRER+RBI3tVgfCc2GNSQJ8adGBGRYAaDAampqTyxYxCwiBERBYFGo5HVRq8EasgT438WEBGRarGIERGRarGIERGRarGIERGRarGxg4goCJxOO0ymU7BajdDpYqDXT4MkBeck+X9l3IkREQlmNJbib8fvR1X1EtTW/X+oql6Cvx2/H0ZjqbA5bDYbCgsLkZqairS0NGRlZSEnJ8ctAiXYJElCRkYGMjMzkZmZ6XbsVGlpKaZMmYKsrCykp6dj586dwbkHfuxMROTdQD/GNRpL8VXNKgB9/2rtOW9wYvp/ISZmgez7ysvLg8Viwfbt293yxMxmM5YsWeI2Nlh5YpIk4erVq/3OgnQ6nYiKikJZWRkyMjLQ1NSE1NRUtLe3Y8SIEW5j5X7szJ0YEZEgTqcdZ+t/h/4FDK5rZ+tfh9Np9/C7/9SSJ9Z7rqPZbEZkZCR0Op2sdXvCd2JERIL0vANr8zHCCav1IkymUxg5cmbA8yg9T0ySJOzduxePPfYYhg8fjo6ODuzfvx8hISEBr9kb7sSIiASxWo1Cx/mi5Dyx7u5urF+/Hh9++CGam5vx2WefYdmyZbhy5YrsdffFIkZEJIhOFyN0nDdKzxM7ffo0Wltbce+99wIApk2bhlGjRrmKn0gsYkREguj106DTxaG3iaM/CTpdPPT6abLmUXqe2JgxY9DS0oJvv/0WAPDdd9+hoaEB48ePl7VuT/hOjIhIEEnSYnzKa//sTpTg3uDRU9jGp6wR8r2YkvPEYmNjsWXLFjz++OPQaDRwOp3YtGkTRo8eLXvdfbHFnojIh0BawI3GUpyt/51bk4dOF4/xKWuEtNcPFuaJERH9C4qJWYDo6Hk8sWMQsIgREQWBJGlltdErAfPEiIiIgohFjIiIVItFjIiIVItFjIiIVItFjIgoCOxOJ/7WcRUHLnXgbx1XYRf8NZPSo1hKSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzLH8uXLYbFYUF5e7hbFUltbi8zMTLexwYpiAYDjx4/3i2Lp6OhAXl4ejh07hgkTJuDo0aNYsmSJXwcODxR3YkREAn3cbsLTNU1uBQwA2qw2PF3ThI/bTbLnUHoUS0NDA2JiYjBhwgQAwAMPPIDm5mZUVVXJXntfLGJERILYnU78pv6CjzQxYE39BdmPFv2NYlmzZg0qKyuRnJyMvLw87Ny5E2fOnEF+fj5yc3P9mqs3iuXEiRPYtm0bFi9e7HZG44MPPohJkyZh9erVruspKSlob29HRUUFAODAgQOwWCxoamoKfNFesIgREQlSYbL024HdyAmg1WpDhckiey4lR7FERERg3759KCgowJQpU3DkyBEYDAYMHTpU9rr74jsxIiJBjD92Cx3nzY1RLCNHjnRFsezYsQOHDh0CcGuiWPLz811j7r//fhw5cgQAYLVaERcX53q8KBJ3YkREgsSE+Lcv8HecN0qPYgHgtst7/fXXMWfOHNx5552y1u0Jd2JERILM1IchXjcUbVabx/diEnq6FGfqwzz8OjBKjmIBgDVr1uCLL75Ad3c37r77bmzbtk32mj1hFAsRkQ8DjQrp7U4EPKWJAX9OTxTWZh9saohi4eNEIiKBHo7W48/piYjTuTcxxOuGqqqAqQUfJxIRCfZwtB7ZURGoMFlg/LEbMSFDMFMfBq2H5golU0MUC4sYEVEQaCUJ944ccatv42ePjxOJiEi1WMSIiEi1WMSIiEi1+E6MiCgI7A4nTjZegfHqdcSMGIbpSbdDq1FXY4casIgREQlWUnMRhQfrcLHzpyOc4iOG4bcLDchOjxcyh81mQ1FREYqLi6HVahESEoKEhASsXbu2XxRLsHR0dOC5557DyZMnMWTIEPz7v/873njjDQA9J+0vW7YM33//PfR6PXbs2AGDwSD8Hvg4kYhIoJKai/jl7iq3AgYAbZ3X8cvdVSipufmhu/5Yvnw5qqurUV5ejtraWlRXV2PlypWora3tN/bGsxFFWrFihescx6+//hq//vWvXb8988wzyM/Px9mzZ/HSSy9h5cqVQbkHFjEiIkHsDicKD9b5jGIpPFgHu0PeQUlKyBP77rvvUFVVhdWrV7v+bHx8zy7TaDSiqqoKeXl5AIBFixahsbGRUSxEREp2svFKvx3YjZwALnZex8nGK7LmUUKeWF1dHcaMGYP/+T//JyZPnoz58+ejuroaAHD+/HmMGjUKQ4b0vLGSJAljx47FP/7xD1nr9oRFjIhIEOPVm8eYDGScL7c6T8xms6G8vBz/8R//gaqqKrzwwgtYuHAhuru7+90f0BMHEwwsYkREgsSM8O8AW3/HeXNjnhgAV57YK6+84roW7DyxhIQEjB49GrNnzwYALFiwAD/++CNaWlowZswYtLS0uAqa0+nE+fPnXfljIrGIEREJMj3pdsRHDIO3RnoJPV2K05O8Pwb0hxLyxKZMmYLw8HCcOXMGAFBZWQmgJ9olJiYGWVlZ2L17NwBg3759SExMdL1rE4kt9kREgmg1En670IBf7q6CBM9RLL9daBDyvditzhPrvYenn34a169fx7Bhw7Bv3z4MHdpzev+WLVvw1FNPoaioCOHh4di5c6fsNXvCPDEiIh8CybsajO/EBoMa8sS4EyMiEiw7PR7/ZojjiR2DgEWMiCgItBoJdydH3urbkEUNeWJs7CAiItViESMiItViESMiItViESMiItViESMiCgaHHWg8Bnz1fs//OsSeJG+z2VBYWIjU1FSkpaUhKysLOTk5OH36tNB5fOno6MCSJUuQkpKCCRMmoKCgwPXbr371KyQmJkKSJNTU1ATtHtidSEQkWt1HQMnLgLn1p2vho4DsNwHDo0KmWL58OSwWC8rLy10n2R88eBC1tbX98sTsdju0Wq2QeW+0YsUK3Hvvva4TPW48i/Hxxx/HSy+9hPvuu0/4vDfiToyISKS6j4C9S90LGACYL/Zcr/tI9hRKj2IBgPvvvx933HGH7LXeDHdiRESiOOw9OzCviWISUFIApD4MaALfGfkbxVJdXY2UlBQYjUYYDAaUlZVh4sSJePfdd5Gbm+vXY77eKJYNGzagoqICOTk5aGhocItiqaysRFRUFN58801kZWUFvK5AcCdGRCRK8/H+OzA3TsB8oWecTEqPYhksLGJERKJYLokd54XSo1gGE4sYEZEoYbFix3mh9CiWwcR3YkREoiTc09OFaL4Iz+/FpJ7fE+6RPZXSo1hWrVqFDz/8EG1tbZg3bx7CwsLw3XffyV53X4xiISLyYcBRIb3diQA8Jorl7hLWZh9saohi4eNEIiKRDI/2FKrwPrlh4aNUVcDUgo8TiYhEMzza00bffLyniSMstucRooy2+ltBDVEsLGJERMGg0QJJs271Xfzs8XEiERGpFosYERGpFosYERGpFt+JEREFgd1hR5WxCu3X2hEdGo3JMZOhVVljhxqwiBERCXa4+TDeOPkGLl376Xip2NBYFEwvwLyEeULmsNlsKCoqQnFxMbRaLUJCQpCQkIC1a9f2i2IJlo6ODjz33HM4efIkhgwZgn//93/HG2+8gevXr+PJJ59EXV0dQkNDERcXh82bN7tOxxeJjxOJiAQ63HwYq4+sditgAGC8ZsTqI6txuPmwkHmWL1+O6upqlJeXo7a2FtXV1Vi5ciVqa2v7jb3xbESRVqxY4TrH8euvv8avf/1r12/5+fn49ttvcfr0aTzyyCPIz88Pyj2wiBERCWJ32PHGyTfg9HDkVO+1N0++CbvMlGel54kNGzYMv/jFL1yHDs+cORPnzp2TtWZv+DiRiEiQKmNVvx3YjZxwou1aG6qMVZgWNy3gedSWJ/anP/0JCxcuDHi9vnAnRkQkSPu1dqHjfFFLnlhRURHq6+vx+9//XvaaPWERIyISJDo0Wug4b9SSJ7Zhwwbs378fn3zyCUJDQwNb7E2wiBERCTI5ZjJiQ2MhoX/BAAAJEuJC4zA5ZrKsedSQJ7Zx40YUFxfjL3/5C/R6vaz1+sJ3YkREgmg1WhRML8DqI6shQXJr8OgtbC9Pf1nI92JKzhNraWnBCy+8gHHjxrl2ajqdDidOnJC97r6YJ0ZE5EMgeVeevhOLC43Dy9NfFvad2GBQQ54Yd2JERILNS5iH2WNm88SOQcAiRkQUBFqNVlYbvRKoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRaLGJEREHgtNvRdeIkOg99jK4TJ+EUfJK8zWZDYWEhUlNTkZaWhqysLOTk5OD06dNC5/Glo6MDS5YsQUpKCiZMmICCggLXb/Pnz0dGRgYyMzMxa9asoN0XuxOJiAQzf/opLhWtR3dbm+vakLg4xL76CsLnzxcyx/Lly2GxWFBeXu46yf7gwYOora3tlydmt9uh1Ypv71+xYgXuvfde14keN57FuHfvXtdJHR988AFWrFiBqqoq4ffAnRgRkUDmTz/FhV8/71bAAKD70iVc+PXzMH/6qew5lB7FAsDtqKnOzk5oNMEpN9yJEREJ4rTbcaloPeDpICSnE5AkXCpajxFz50KSsTNSSxTL0qVLUVZWBgAoKSkJeL2+cCdGRCTItcq/99uBuXE60d3WhmuVf5c9lxqiWHbt2oXz589j3bp1ePHFF2Wv2RMWMSIiQbrb/csJ83ecN2qJYum1bNkylJWVuU7KF4lFjIhIkCHR/uWE+TvOG6VHsZjNZrS2trr+HQcOHEBkZKTPx5+B4jsxIiJBQqdOwZC4OHRfuuT5vZgkYUhsLEKnTpE9l5KjWNra2rBo0SL88MMP0Gg0iI6OxqFDhzzuBuViFAsRkQ8DjQrp7U4E4F7I/vkX+Og//kFYm32wqSGKhY8TiYgECp8/H6P/+AcMiY11uz4kNlZVBUwt+DiRiEiw8PnzMWLu3J5uxfZ2DImORujUKbLa6m8FNUSxsIgREQWBpNVi+Izpt/o2fvb4OJGIiFSLRYyIiFSLRYyIiFSL78SIiILA4XDiYr0JXWYrhofrEJ+ih0Yj/jupf3XciRERCdZQbcSuV4/jg/9Vjb9sq8MH/6sau149joZqo7A5lJ4n1quwsBCSJPl12HAguBMjIhKoodqIki39/8LuMllRsqUG2c+kIzkrRvY8Ss8TA4CqqipUVFRg7NixwufuxZ0YEZEgDocTx/bU+xzzxd56OBzyDkpSQ56Y1WrFqlWrsGnTpqAcN9WLOzEiIkEu1pvQZbL6HGPpsOJivQmj7xrpc5wvasgTe+2115CXl4ekpKSA1+kP7sSIiATpMvsuYAMd54uS88TKy8tx6tQpPPvss7LXeTMsYkREggwP1wkd543S88SOHj2Kb775BklJSUhMTERLSwsWLFiATz75RNa6PWERIyISJD5Fj+F63wUqbGRPu70cSs8TKygoQGtrK5qamtDU1IQ77rgDpaWleOihh2St2xO+EyMiEkSjkTDriRSP3Ym97stNEfK9mJLzxAYT88SIiHwIJO+qodqIY3vq3Zo8wkbqcF9uipD2+sGihjwx7sSIiARLzopB0qRontgxCFjEiIiCQKORZLXRK4Ea8sTY2EFERKrFIkZERKrFIkZERKrFIkZERKrFIkZEFAQOhx3na8/g678dxfnaM3A47Df/QwOg9CiWxMREpKamIjMzE5mZmdizZ09Q7oHdiUREgtWfOI6/7tgKy5WfOvvCbo/CnKfykTLjHiFzqCGK5f3330d6errweW/EnRgRkUD1J47jo41FbgUMACxXvsdHG4tQf+K4/DlUEMUyWFjEiIgEcTjs+OuOrT7HlO3cKvvRor9RLGvWrEFlZSWSk5ORl5eHnTt34syZM8jPz0dubq5fc/VGsZw4cQLbtm3D4sWL0dXV5RbFMnnyZMyfPx/V1dVuf3bJkiWYOHEinn76abS3t8taszcsYkREglz4urbfDqyvq5e/x4Wva2XPpeQoFgD4/PPP8eWXX6KqqgqRkZFYtmyZ7DV7wiJGRCSIxdQhdJw3So9iAYCxY8cCAIYOHYrnn38ex44dC3C1vrGIEREJEqb375gpf8d5o/Qolq6uLrf7Ki4udiU+i8buRCIiQUZPSEPY7VE+HymOiIzC6AlpsudSchTL+fPnsWjRItjtdjidTowbNw67du2SvWZPGMVCROTDQKNCersTvXl09avC2uyDTQ1RLHycSEQkUMqMe/Do6lcRdnuU2/URkVGqKmBqwceJRESCpcy4B8nTZvR0K5o6EKYfidET0qDRiP/gOJjUEMXCIkZEFAQajRZj0jJu9W387PFxIhERqRaLGBERqRaLGBERqRbfiRERBYHT4YS1sROOqz9CMyIEuqQISJr+p2aQPCxiRESC/VDzPUwHG2Dv/NF1TRsRAv3CZNyWHuXjT/rPZrOhqKgIxcXF0Gq1CAkJQUJCAtauXdsviiVYOjo68Nxzz+HkyZMYMmQI/v3f/x1vvPEGAMBqteKFF15AaWkpQkJCkJWVhd27dwu/BxYxIiKBfqj5Hpd3f93vur3zR1ze/TUi8yYIKWRKzxMrKCiARqPB2bNnIUmSX4cNB4LvxIiIBHE6nDAdbPA5xnTwHJwOeQclKT1PrKurC9u3b0dRUZHr4OFgZY2xiBERCWJt7HR7hOiJvdMKa2OnrHmUnifW0NCAyMhIrFu3DlOnTsWsWbPw2WefyVqzNyxiRESCOK76LmADHeeLkvPEbDYbzp07B4PBgMrKSrz99tt48skngxKMySJGRCSIZkSI0HHeKD1PLCEhARqNBkuWLAEATJo0CUlJSaitlR8G2heLGBGRILqkCGgjfBcobYQOuqQIWfMoPU8sKioKc+fORWlpKQCgubkZjY2NuOuuu2St2xN2JxIRCSJpJOgXJnvsTuylXzhOyPdiSs4TA4DNmzdjxYoVePnll6HVarF169agNHcwT4yIyIdA8q48fyemg37hOGHfiQ0GNeSJcSdGRCTYbelRGGaI5Ikdg4BFjIgoCCSNhGHJ+lt9G7KoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRabOwgIgoCh8OB5uZmWCwWhIWFuU6xILFYxIiIBKurq0NJSQnMZrPrWnh4OLKzs2EwGITMoeQ8MZPJhAcffNA17tq1azh37hyMRqPPQ4sDwSJGRCRQXV2d6zSMG5nNZuzduxe5ublCCpmS88T0ej1Onz7tGrdhwwYcPXpUeAED+E6MiEgYh8OBkpISn2NKSkrgcDhkzaP0PLG+tm/fjpUrV8paszfciRERCdLc3Oz2CNETs9mM5uZmJCUlBTyPv3li1dXVSElJgdFohMFgQFlZGSZOnIh3330Xubm5qKmpuelcvXliGzZsQEVFBXJyctDQ0OCWJ1ZZWYmoqCi8+eabyMrKcvvz5eXluHz5Mh555JGA1+sLd2JERIJYLBah43xRcp7Yjd555x0sXboUQ4YEZ8/EIkZEJMiNGV4ixnmj9DyxXl1dXdizZw9WrFgR2EL9wCJGRCRIQkICwsPDfY4JDw9HQkKCrHmUnifW67333kNGRgZSU1NlrdcXvhMjIhJEo9EgOzvbY3dir+zsbCHfiyk9TwwAtm3bFrSGjl7MEyMi8iGQvKvB+E5sMDBPjIjoX5DBYEBqaipP7BgELGJEREGg0WhktdErAfPEiIiIgohFjIiIVItFjIiIVItFjIiIVItFjIgoCJxOOzo6KtDW9hE6OirgdNpv/ocGwGazobCwEKmpqUhLS0NWVhZycnLcTo8Pto6ODixZsgQpKSmYMGECCgoKXL+VlpZiypQpyMrKQnp6Onbu3BmUe2B3IhGRYEZjKc7W/w5Wa5vrmk4Xh/EpryEmZoGQOZQcxeJ0OrF48WKUlZUhIyMDTU1NSE1NxWOPPYYRI0YIvQfuxIiIBDIaS/FVzSq3AgYAVuslfFWzCkZjqew51BLF0nskltlsRmRkJHQ6ney198WdGBGRIE6nHWfrfwfA00FITgASzta/jujoeZCkwHdGSo9ikSQJe/fuxWOPPYbhw4ejo6MD+/fvR0hISMBr9oY7MSIiQUymU/12YO6csFovwmQ6JXsuJUexdHd3Y/369fjwww/R3NyMzz77DMuWLcOVK1dkr7svFjEiIkGsVqPQcd4oPYrl9OnTaG1txb333gsAmDZtGkaNGoUvv/wy8EV7wSJGRCSIThcjdJw3So9iGTNmDFpaWvDtt98C6Hl/1tDQgPHjx8tatyd8J0ZEJIhePw06XRys1kvw/F5Mgk4XB71+muy5lBzFEhsbiy1btuDxxx+HRqOB0+nEpk2b3LLGRGEUCxGRDwONCuntTuxx41+vPY/zJqb/l7A2+2BTQxQLHycSEQkUE7MAE9P/CzpdrNt1nS5OVQVMLfg4kYhIsJiYBYiOnvfPbkUjdLoY6PXTZLXV3wpqiGJhESMiCgJJ0mLkyJm3+jZ+9vg4kYiIVItFjIiIVItFjIiIVIvvxIiIgsDudKLCZIHxx27EhAzBTH0YtB5OzSB5uBMjIhLs43YTppbXYdHpBvyyrhmLTjdgankdPm43CZtD6XliJSUlmDp1KjIyMjBz5sygHDkFcCdGRCTUx+0mPF3T1O+8jjarDU/XNOHP6Yl4OFovex4l54l1dHQgLy8Px44dw4QJE3D06FEsWbLEr1PzB4o7MSIiQexOJ35Tf8FrEAsArKm/ALvMg5KUnifW0NCAmJgYTJgwAQDwwAMPoLm5GVVVVbLW7QmLGBGRIBUmCy5abV5/dwJotdpQYbLImsffPLE1a9agsrISycnJyMvLw86dO3HmzBnk5+cjNzfXr7l688ROnDiBbdu2YfHixejq6nLLE5s8eTLmz5+P6upqAD0HFLe3t6OiogIAcODAAVgsFjQ1NclatycsYkREghh/7BY6zhcl54lFRERg3759KCgowJQpU3DkyBEYDAYMHTpU9rr74jsxIiJBYkL8+yvV33He3JgnNnLkSFee2I4dO3Do0CEAtzZPrPc0/CNHjgAArFYr4uLiXI8XReJOjIhIkJn6MMTrhsJbI70EYJRuKGbqw7yM8I/S88QAuO3yXn/9dcyZMwd33nmnrHV7wp0YEZEgWknCupTReLqmCRI8BbEAr6eMFvK9mJLzxABgzZo1+OKLL9Dd3Y27774b27Ztk71mT5gnRkTkQyB5Vx+3m/Cb+gtuTR6jdEPxespoIe31g0UNeWLciRERCfZwtB7ZURE8sWMQsIgREQWBVpJw78gRt/o2ZFFDnhgbO4iISLVYxIiISLVYxIiISLVYxIiISLVYxIiIgsDucKK84TI+PH0B5Q2XYXeI/ZrpVkex1NXVITMz0/VPYmKi21mO9fX1uOeeezB+/HhMnz7ddeCwaOxOJCISrKTmIgoP1uFi509HOMVHDMNvFxqQnR4vZI5bHcViMBjcCuZzzz3ndrTVM888g/z8fDz11FN4//33sXLlSpSXlwu9B4A7MSIioUpqLuKXu6vcChgAtHVexy93V6Gk5uaH7t6MEqJYbmS1WvF//+//xcqVKwEARqMRVVVVyMvLAwAsWrQIjY2NQTnFnjsxIiJB7A4nCg/Wec0TkwAUHqzDvxnioNUE/uGzv1Es1dXVSElJgdFohMFgQFlZGSZOnIh3330Xubm5foVU9kaxbNiwARUVFcjJyUFDQ4Pr6CkA2L9/P5KSklw7wPPnz2PUqFEYMqSnxEiShLFjx+If//iHq0CKwp0YEZEgJxuv9NuB3cgJ4GLndZxsvCJ7rlsdxXKjd955x7UL83R/QM9J+sHAIkZEJIjx6s1jTAYyzpsbo1gAuKJYXnnlFde1YEex9Gpubsbx48exePFi17UxY8agpaUF3d3drvnPnz+PsWPHDnClN8ciRkQkSMwI/w6w9XecN0qIYum1fft2/I//8T+g1+t/Wl9MDLKysrB7924AwL59+5CYmCj8USLAd2JERMJMT7od8RHD0NZ53eN7MQlAXMQwTE/y/i7LX0qIYnE6ndixYwe2b9/e7/62bNmCp556CkVFRQgPD8fOnTtlr9kTRrEQEfkw0KiQ3u5EwHOe2P/OmyyszT7Y1BDFwseJREQCZafH43/nTUZchPtfyHERw1RVwNSCjxOJiATLTo/HvxnicLLxCoxXryNmRM8jRDlt9beCGqJYWMSIiIJAq5Fwd3Lkrb6Nnz0+TiQiItViESMiItViESMiItXiOzEiomBw2IHm44DlEhAWCyTcA2jEniRPLGJEROLVfQSUvAyYW3+6Fj4KyH4TMDwqZAqbzYaioiIUFxdDq9UiJCQECQkJWLt2bb8olmCoq6tzO2rKZDLBbDbjypWecyF/9atf4aOPPkJzczO++uorpKenB+U+WMSIiESq+wjYuxToe2aH+WLP9dxdQgqZ0vPEHn/8cbz00ku47777hM7bF9+JERGJ4rD37MC8hrEAKCnoGSeD0vPEAOD+++/HHXfcIWud/uBOjIhIlObj7o8Q+3EC5gs945JmBTyN0vPEBhN3YkREolguiR3ng9LzxAYLixgRkShhsWLHeaH0PLHBxCJGRCRKwj09XYjwdkaiBISP7hkng9LzxAYT34kREYmi0fa00e9dip5C5iGMJfsNId+LKT1PbNWqVfjwww/R1taGefPmISwsDN99953sdffFPDEiIh8Cyrvy+J3Y6J4CJug7scGghjwx7sSIiEQzPAqkPswTOwYBixgRUTBotLLa6JVADXlibOwgIiLVYhEjIiLVYhEjIiLVYhEjIiLVYmMHEVEQ2B12VBmr0H6tHdGh0ZgcMxlagd2JSo5iuX79Op588knU1dUhNDQUcXFx2Lx5s+tgYZFYxIiIBDvcfBhvnHwDl679dEZibGgsCqYXYF7CPCFzKD2KJT8/Hw899BAkScLbb7+N/Px8fPrpp0LvAeDjRCIioQ43H8bqI6vdChgAGK8ZsfrIahxuPix7DqVHsQwbNgy/+MUvXEVt5syZOHfunOx1e8KdGBGRIHaHHW+cfANOD3liTjghQcKbJ9/E7DGzZT1aVFsUy5/+9CcsXLhwwOv0B3diRESCVBmr+u3AbuSEE23X2lBlrJI9l1qiWIqKilBfX4/f//73A1+kH1jEiIgEab/WLnScN2qJYtmwYQP279+PTz75BKGhof4vcABYxIiIBIkOjRY6zhs1RLFs3LgRxcXF+Mtf/hLUmBa+EyMiEmRyzGTEhsbCeM3o8b2YBAmxobGYHDNZ9lxKjmJpaWnBCy+8gHHjxmH27NkAAJ1OhxMnTshed1+MYiEi8mGgUSG93YkA3AqZ9M88sY0PbhTWZh9saohi4eNEIiKB5iXMw8YHNyImNMbtemxorKoKmFrwcSIRkWDzEuZh9pjZQT2xYzCoIYqFRYyIKAi0Gi2mxU271bfxs8fHiUREpFosYkREpFosYkREpFp8J0ZEFAROux3XKv+O7vZ2DImORujUKZAEnyRPLGJERMKZP/0Ul4rWo7utzXVtSFwcYl99BeHz5wuZQ8l5YgAwf/58tLW1QaPRYMSIEXjrrbeCcl8sYkREApk//RQXfv080Occie5Ll3qu//EPQgqZ0vPE9u7d6zpu6oMPPsCKFStQVSX/4OO++E6MiEgQp92OS0Xr+xWwnh97rl0qWg/nDQfuBkLpeWIA3M5L7OzshEYTnHLDnRgRkSDXKv/u9gixH6cT3W1tuFb5dwyfMT3gedSSJ7Z06VKUlZUBAEpKSgJb7E1wJ0ZEJEh3u38RK/6O80UNeWK7du3C+fPnsW7dOrz44ouBLfQmWMSIiAQZEu1fxIq/47xRS55Yr2XLlqGsrMwV9yISixgRkSChU6dgSFwc4KFgAAAkCUPi4hA6dYqseZSeJ2Y2m9Ha2ur6vw8cOIDIyEifjz8DxXdiRESCSFotYl99pacLUZLcGzz+WdhiX31FyPdiSs4T6+zsxKJFi/DDDz9Ao9EgOjoahw4d8rgblIt5YkREPgSSdzUY34kNBjXkiXEnRkQkWPj8+Rgxdy5P7BgELGJEREEgabWy2uiVQA15YmzsICIi1WIRIyIi1WIRIyIi1WIRIyIi1WIRIyIKAofDiQvfduDsqTZc+LYDDofYr5lsNhsKCwuRmpqKtLQ0ZGVlIScnx+1k+WCqq6tDZmam65/ExESPHzMXFhZCkiS/zmkMBLsTiYgEa6g24tieenSZrK5rw/U6zHoiBclZMULmUHoUCwBUVVWhoqICY8eOFTr3jbgTIyISqKHaiJItNW4FDAC6TFaUbKlBQ7VR9hxqiGKxWq1YtWoVNm3aFJSTOnpxJ0ZEJIjD4cSxPfU+x3yxtx5Jk6Kh0QT+F7saolhee+015OXlISkpKeB1+oM7MSIiQS7Wm/rtwPqydFhxsd4key4lR7GUl5fj1KlTePbZZ+Ut0g8sYkREgnSZfRewgY7zRulRLEePHsU333yDpKQkJCYmoqWlBQsWLMAnn3wy8MXeBIsYEZEgw8N1Qsd5o/QoloKCArS2tqKpqQlNTU244447UFpaioceekjWuj3hOzEiIkHiU/QYrtf5fKQYNlKH+BS97LmUHMUymBjFQkTkw0CjQnq7E73JfiZdWJt9sKkhioWPE4mIBErOikH2M+kYrnd/ZBg2UqeqAqYWfJxIRCRYclYMkiZF93Qrmq0YHt7zCFFOW/2toIYoFhYxIqIg0GgkjL5r5M0Hkix8nEhERKrFIkZERKrFIkZERKrFd2JEREHgcNhx4etaWEwdCNOPxOgJadBoxJ4kTyxiRETC1Z84jr/u2ArLlZ86+8Juj8Kcp/KRMuMeIXPYbDYUFRWhuLgYWq0WISEhSEhIwNq1a/tFsQRDXV2d21FTJpMJZrMZV65cAdDT2Ths2DDXt1+vvPIKnnjiCeH3wSJGRCRQ/Ynj+GhjUb/rlivf46ONRXh09atCCpka8sTef/99pKenC523L74TIyISxOGw4687tvocU7ZzKxwOu88xN6OGPLHBwp0YEZEgF76udXuE6MnVy9/jwte1GJOW4XOcL2rIEwN6Il8cDgdmzJiB9evXIzo6OuA1e8OdGBGRIBZTh9Bxvig5TwwAPv/8c3z55ZeoqqpCZGQkli1bFvhifWARIyISJEzv3wkd/o7zRul5YgAwduxYAMDQoUPx/PPP49ixYwNYof9YxIiIBBk9IQ1ht0f5HDMiMgqjJ6TJmkfpeWJdXV1u91VcXIysrCw5S/aK78SIiATRaLSY81S+x+7EXrOX5Qv5XkzJeWKXLl3CokWLYLfb4XQ6MW7cOOzatUv2mj1hnhgRkQ+B5F15+k5sRGQUZi8T953YYFBDnhh3YkREgqXMuAfJ02bwxI5BwCJGRBQEGo1WVhu9EqghT4yNHUREpFosYkREpFosYkREpFosYkREpFps7CAiCgKnwwlrYyccV3+EZkQIdEkRkDT9T80geVjEiIgE+6Hme5gONsDe+aPrmjYiBPqFybgt3feJHv5Sep6Y1WrFCy+8gNLSUoSEhCArKwu7d+8Wfh8sYkREAv1Q8z0u7/6633V754+4vPtrROZNEFLIlJ4nVlBQAI1Gg7Nnz0KSJL8OGw4E34kREQnidDhhOtjgc4zp4Dk4HfIOSlJ6nlhXVxe2b9+OoqIiV2GLj4+XtWZvWMSIiASxNna6PUL0xN5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy/ud9Bw3zyxhoYGREZGYt26dZg6dSpmzZqFzz77LOD1+sIiRkQkiOOq7wI20HG+KDlPzGaz4dy5czAYDKisrMTbb7+NJ598Eu3t7fIW7QGLGBGRIJoRIULHeaP0PLGEhARoNBosWbIEADBp0iQkJSWhtrZ2gCu9ORYxIiJBdEkR0Eb4LlDaCB10SRGy5lF6nlhUVBTmzp2L0tJSAD2FrrGxEXfddZesdXvC7kQiIkEkjQT9wmSP3Ym99AvHCfleTMl5YgCwefNmrFixAi+//DK0Wi22bt0alOYO5okREfkQSN6V5+/EdNAvHCfsO7HBwDwxIqJ/QbelR2GYIZIndgwCFjEioiCQNBKGJetv9W3IwjwxIiKiIGIRIyIi1WIRIyIi1WIRIyIi1WJjBxFREDgcDjQ3N8NisSAsLMx1ioUoSo5iMZlMePDBB12/Xbt2DefOnYPRaPR53mMgWMSIiASrq6tDSUkJzGaz61p4eDiys7NhMBiEzKHkKBa9Xu/224YNG3D06FHhBQzg40QiIqHq6uqwd+9etwIGAGazGXv37nVFoMih9CiWvrZv3+71N7m4EyMiEsThcKCkpMTnmJKSEqSmpsp6tOhvFEt1dTVSUlJgNBphMBhQVlaGiRMn4t1330Vubi5qampuOldvFMuGDRtQUVGBnJwcNDQ0uI6eAvpHsdyovLwcly9fxiOPPBLQWm+GOzEiIkGam5v77cD6MpvNaG5ulj2XkqNY+v62dOlSDBkSnD0TixgRkSAWi0XoOG+UHsXSq6urC3v27MGKFSv8X9wAsYgREQlyY+EQMc4bpUex9HrvvfeQkZGB1NRUOcv1ie/EiIgESUhIQHh4uM9HiuHh4UhISJA9l9KjWABg27ZtQWvo6MUoFiIiHwYaFdLbnehNbm6usDb7YFNDFAsfJxIRCWQwGJCbm4vw8HC36+Hh4aoqYGrBx4lERIIZDAakpqYG9cSOwaCGKBYWMSKiINBoNEhKSrrVt/Gzp67/LCAiIroBixgREakWixgREakW34kREQWB02mHyXQKVqsROl0M9PppkCSxJ8kTixgRkXBGYynO1v8OVmub65pOF4fxKa8hJmaBkDmUnCcGAKWlpXj11VfhcDhgs9nw4osvYtmyZcLvg0WMiEggo7EUX9WsAuB+joTVeglf1azCxPT/ElLIlJwn5nQ6sXjxYpSVlSEjIwNNTU1ITU3FY489hhEjRgi9D74TIyISxOm042z979C3gP3zVwDA2frX4XTaPfzuP7XkifWe62g2mxEZGQmdTidr3Z5wJ0ZEJEjPO7A2HyOcsFovwmQ6hZEjZwY8j9LzxCRJwt69e/HYY49h+PDh6OjowP79+xESEhLwmr3hToyISBCr1Sh0nC9KzhPr7u7G+vXr8eGHH6K5uRmfffYZli1b5npfJhKLGBGRIDpdjNBx3ig9T+z06dNobW3FvffeCwCYNm0aRo0a1a/4icAiRkQkiF4/DTpdHID+BaOHBJ0uHnr9NFnzKD1PbMyYMWhpacG3334LAPjuu+/Q0NCA8ePHy1q3J3wnRkQkiCRpMT7ltX92J0pwb/DoKWzjU9YI+V5MyXlisbGx2LJlCx5//HFoNBo4nU5s2rQJo0ePlr3uvpgnRkTkQyB5V56/E4vH+JQ1wr4TGwxqyBPjToyISLCYmAWIjp7HEzsGAYsYEVEQSJJWVhu9EqghT4yNHUREpFosYkREpFosYkREpFosYkREpFosYkREQWB3OvG3jqs4cKkDf+u4Crvgr5lsNhsKCwuRmpqKtLQ0ZGVlIScnx+1k+WCqq6tDZmam65/ExES3sxxLSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzKHkqNYOjo6kJeXh2PHjmHChAk4evQolixZ4teBwwPFnRgRkUAft5vwdE2TWwEDgDarDU/XNOHjdpPsOZQexdLQ0ICYmBhMmDABAPDAAw+gubkZVVVVstfeF4sYEZEgdqcTv6m/4CNNDFhTf0H2o0V/o1jWrFmDyspKJCcnIy8vDzt37sSZM2eQn5+P3Nxcv+bqjWI5ceIEtm3bhsWLF/c7o7FvFEtKSgra29tRUVEBADhw4AAsFguampoCWq8vLGJERIJUmCz9dmA3cgJotdpQYbLInkvJUSwRERHYt28fCgoKMGXKFBw5cgQGgwFDhw6Vt2gP+E6MiEgQ44/dQsd5c2MUy8iRI11RLDt27MChQ4cADH4Uy3vvvec25v7778eRI0cA9DxujIuLcz1eFIk7MSIiQWJC/NsX+DvOG6VHsQBw2+W9/vrrmDNnDu68886A1+wNd2JERILM1IchXjcUbVabx/diEnq6FGfqwzz8OjBKjmIBgDVr1uCLL75Ad3c37r77bmzbtk32mj1hFAsRkQ8DjQrp7U4EPKWJAX9OTxTWZh9saohi4eNEIiKBHo7W48/piYjTuTcxxOuGqqqAqQUfJxIRCfZwtB7ZURGoMFlg/LEbMSFDMFMfBq2H5golU0MUC4sYEVEQaCUJ944ccatv42ePjxOJiPzA9oHgkPv/V+7EiIh8GDp0KCRJQnt7O6Kjoz1+b0WBcTqdaG9vhyRJAX8Ize5EIqKbsFgsaGlp4W4sCCRJwh133OH2cfaA/jyLGBHRzdntdths3o+UosAMHTpU1gn7LGJERKRabOwgIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLV+v8BXmEUwcDse4sAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -593,7 +2636,7 @@ " label='Group' + str(j))\n", " # Showing the quantiles\n", " resolution = 200\n", - " synth_X = np.linspace(-3, 3, resolution)\n", + " synth_X = np.linspace(-4, 4, resolution)\n", " q = nm.get_mcmc_quantiles(\n", " synth_X, batch_effects=j*np.ones(resolution))\n", " col = scat1.get_facecolors()[0]\n", @@ -621,7 +2664,7 @@ ], "metadata": { "kernelspec": { - "display_name": "dev_216", + "display_name": "dev_215", "language": "python", "name": "python3" }, @@ -635,7 +2678,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.7" } }, "nbformat": 4, From 4a7746d052d031c766125074de41b31c2c80a3e2 Mon Sep 17 00:00:00 2001 From: matei4501 <154380373+matei4501@users.noreply.github.com> Date: Wed, 9 Oct 2024 17:27:13 +0300 Subject: [PATCH 16/68] fix anomaly_detection_auc print fix anomaly_detection_auc in utils.py to correctly print n_features instead of n_permutations --- pcntoolkit/util/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index ac855315..1a9afc48 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -1457,7 +1457,7 @@ def anomaly_detection_auc(abn_p, labels, n_permutation=None): p_values[i] = (np.sum(auc_perm > aucs[i]) + 1) / \ (n_permutation + 1) print('Feature %d of %d is done: p_value=%f' % - (i, n_permutation, p_values[i])) + (i, p, p_values[i])) return aucs, p_values From 7bbe9cd21d5535ba80e65a0f0570a0d3e6d4f770 Mon Sep 17 00:00:00 2001 From: Augub Date: Thu, 10 Oct 2024 16:09:14 +0200 Subject: [PATCH 17/68] suppress warning --- pcntoolkit/model/hbr.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 8fff24e9..50a9f967 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -226,16 +226,15 @@ def get_sample_dims(var): with pm.Model(coords=pb.coords) as model: model.add_coord("datapoints", np.arange(X.shape[0]), mutable=True) - X = pm.MutableData("X", X, dims=("datapoints", "basis_functions")) + X = pm.Data("X", X, dims=("datapoints", "basis_functions")) pb.X = X - y = pm.MutableData("y", np.squeeze(y), dims="datapoints") + y = pm.Data("y", np.squeeze(y), dims="datapoints") pb.model = model pb.batch_effect_indices = tuple( [ pm.Data( pb.batch_effect_dim_names[i]+"_data", pb.batch_effect_indices[i], - mutable=True, dims="datapoints", ) for i in range(len(pb.batch_effect_indices)) From faeb44ca827ab6833c8683e42969f300d36763e5 Mon Sep 17 00:00:00 2001 From: Augub Date: Thu, 10 Oct 2024 16:10:31 +0200 Subject: [PATCH 18/68] Suppress warning --- pcntoolkit/model/hbr.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index f95e3e85..d9872cbc 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -226,16 +226,15 @@ def get_sample_dims(var): with pm.Model(coords=pb.coords) as model: model.add_coord("datapoints", np.arange(X.shape[0]), mutable=True) - X = pm.MutableData("X", X, dims=("datapoints", "basis_functions")) + X = pm.Data("X", X, dims=("datapoints", "basis_functions")) pb.X = X - y = pm.MutableData("y", np.squeeze(y), dims="datapoints") + y = pm.Data("y", np.squeeze(y), dims="datapoints") pb.model = model pb.batch_effect_indices = tuple( [ pm.Data( pb.batch_effect_dim_names[i]+"_data", pb.batch_effect_indices[i], - mutable=True, dims="datapoints", ) for i in range(len(pb.batch_effect_indices)) From 531f58be8ba51b50ba71551a463e65c5529e63c5 Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 11 Oct 2024 16:23:27 +0200 Subject: [PATCH 19/68] Reset priors to narrower versions --- pcntoolkit/model/hbr.py | 43 ++++++++++++++++++++++------------------- 1 file changed, 23 insertions(+), 20 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 50a9f967..0543c60a 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -246,24 +246,27 @@ def get_sample_dims(var): "mu_samples", pb.make_param( "mu", - mu_slope_mu_params=(0.0, 10.0), - sigma_slope_mu_params=(10.0,), - mu_intercept_mu_params=(0.0, 10.0), - sigma_intercept_mu_params=(10.0,), + slope_mu_params=(0.0, 3.0), + mu_slope_mu_params=(0.0, 3.0), + sigma_slope_mu_params=(3.0,), + mu_intercept_mu_params=(0.0, 2.0), + sigma_intercept_mu_params=(2.0,), ).get_samples(pb), dims=get_sample_dims('mu'), ) sigma = pm.Deterministic( "sigma_samples", pb.make_param( - "sigma", sigma_params = (0, 2), - mu_sigma_params=(0.0, 2.0), - sigma_sigma_params=(2.0,) + "sigma", + sigma_params=(0., 2.0), + sigma_dist="normal", + slope_sigma_params=(0.0, 2.0), + intercept_sigma_params=(0.0, 2.0), ).get_samples(pb), dims=get_sample_dims('sigma'), ) sigma_plus = pm.Deterministic( - "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma') + "sigma_plus_samples", np.log(1+np.exp(sigma)), dims=get_sample_dims('sigma') ) y_like = pm.Normal( "y_like", mu, sigma=sigma_plus, observed=y, dims="datapoints" @@ -286,11 +289,11 @@ def get_sample_dims(var): "mu_samples", pb.make_param( "mu", - slope_mu_params=(0.0, 10.0), - mu_slope_mu_params=(0.0, 10.0), - sigma_slope_mu_params=(10.0,), - mu_intercept_mu_params=(0.0, 10.0), - sigma_intercept_mu_params=(10.0,), + slope_mu_params=(0.0, 3.0), + mu_slope_mu_params=(0.0, 3.0), + sigma_slope_mu_params=(3.0,), + mu_intercept_mu_params=(0.0, 2.0), + sigma_intercept_mu_params=(2.0,), ).get_samples(pb), dims=get_sample_dims('mu'), ) @@ -306,15 +309,15 @@ def get_sample_dims(var): dims=get_sample_dims('sigma'), ) sigma_plus = pm.Deterministic( - "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma') + "sigma_plus_samples", np.log(1+np.exp(sigma)), dims=get_sample_dims('sigma') ) epsilon = pm.Deterministic( "epsilon_samples", pb.make_param( "epsilon", - epsilon_params=(0.0, 10.0), - slope_epsilon_params=(0.0, 10.0), - intercept_epsilon_params=(0.0, 10.0), + epsilon_params=(0.0, 2.0), + slope_epsilon_params=(0.0, 3.0), + intercept_epsilon_params=(0.0, 3.0), ).get_samples(pb), dims=get_sample_dims('epsilon'), ) @@ -324,14 +327,14 @@ def get_sample_dims(var): "delta", delta_params=(0., 2.0), delta_dist="normal", - slope_delta_params=(0.0, 2.0), - intercept_delta_params=(0.0, 2.0), + slope_delta_params=(0.0, 1.0), + intercept_delta_params=(0.0, 1.0), ).get_samples(pb), dims=get_sample_dims('delta'), ) delta_plus = pm.Deterministic( "delta_plus_samples", - np.exp(delta) + 0.3, + np.log(1+np.exp(delta*5))/5 + 0.3, dims=get_sample_dims('delta'), ) y_like = SHASH_map[configs["likelihood"]]( From d388d4bac45e20a2de97c035402ea7afc08f5b4d Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 11 Oct 2024 17:10:48 +0200 Subject: [PATCH 20/68] More changes to the priors --- dist/pcntoolkit-0.30.post2-py3.12.egg | Bin 0 -> 306489 bytes pcntoolkit/model/hbr.py | 23 ++++++++++++----------- pcntoolkit/util/utils.py | 2 +- tests/testHBR.py | 8 ++++---- 4 files changed, 17 insertions(+), 16 deletions(-) create mode 100644 dist/pcntoolkit-0.30.post2-py3.12.egg diff --git a/dist/pcntoolkit-0.30.post2-py3.12.egg b/dist/pcntoolkit-0.30.post2-py3.12.egg new file mode 100644 index 0000000000000000000000000000000000000000..69167a632d26aa8504e33decb5180cf35523ffc4 GIT binary patch literal 306489 zcmZ^~b8seM^DZ1~W7~GJv27<$Y;0_7Y}>Z+#M#)k?Tu~o?E9Us&Ut@-oT~1ssj2Dd z?(4dz?wXmtlw`pn&_O^zU_kgIWVIU7G{;0iK|mtFKtNFbofVgqWRO;nP-Ie){oe<+ z@l$sF%*esl9&my}CU<0v%EIEw^D@WZX8iBVL%d2X@qlc!$ql=D&WoVCRQ` zoO1FgN@xIgJye4FBee>GSnk3^?rMK^PPVcOppSKHz-^Wo^M)}*2vM2JN@qeysheC! zV+Csyca(MFg;a!yPF{)BEtxvy&pskxNyrn25_rvCnzjJ1W5tPh_Gz1Et3{i;OExlH!WduPmXm`XeGEBm%t0 z)+5gRGFt|RAlia;=!tPUv6AM`KZ*wOHj*go+gvX>WQ|_B?s|g1Hu$1AqAoo%4o89~ zPU0DIIkZ&L5(1t>@ydk@ohB0WrZu2dl> zpI|^TIOax_%*L(;gB%NrFgni>D(?XXz;GT@YxnbrUD-ICraS6r88AuR!F@cXII;7J z7ng-d!@^^e3Av?OsV{-=3?*5)K`duOak#|I=9y0?;ey~QBu z=hkArj#oj@wniaihq$;Sb_x&5ZbbZI0gFPSw%ydTkU&LiPIw|C5>|s1;W5f0X=V z2ZZ3isWCNkFtal?vorB9u(7nWcK#1X`(PmdH#$m5QtQ8?G5$N+&fbN=)6#*#+31(q z|A_j}1Gpvq7Vi7+>fC?+Kcbw>99=D)%>KVz1ktjH1H|x<&jPY0x5{oI9qAD4>ag|9 z)gp>JrCBZMIQ&*f1*JH&R5ERYyABdR#;H#F6|Yps7HP>-`q>8*^v36YP?gu}4Fkqn zb(#pL7@(pE31F5|*r0;!B#=HWCfvBApwu{Oju&ZYMpx6Yj|9t}j%HjlPg?Z22C)8b zoBt`eTjO~G;a{;o{yFA9|3B;3#oocd#>~yk=0E7rNlnv@&CHBV)BpW%oZ!5qw46!m z<~jZa+Wh}Fa4@lRvA4Iewsc`KFtD_hG(QUcln69N)IvC>41X=aN_=|c7v z$1f(u>LhAF6wU34R$lyxzmfgS{fHoSAki5At6IiDSuL~Zr`5RjK6kbj;0k817g zootOiwu7S|bEITXItglkY{dedUyFVlL!Q^~ks zO1a}5oaf~QaO8vw49Z_M4HtqaInoeH7H)t~1Of}$Vz9iVgy2nb0Uo*f6e$qkKg=?8 zle}Cl)dL}PcJ1erj2)gMOIqA6K=FQH2DDytE@TuOpj}q^A)7@ z;sEw9TVfq^iKUH@?I(e5pU;-x_N7FEpKq@#D?Qyo5or8GJoZmdPnfr?Quh`tDSQa^ zOrrQW_;JF-udgqnxqUO|d<1@s9FBSBj(&c5U)|uykql6SwdOQ8k|KmvNI^4cy>j-6 zY$Z?OqQ-Qf%)(aWy%g=_7Fv996RfmXp`)Py>GHhY!aOS23koh`%`hP_@KAyNR?wnQ z5ddOzKstI~R3zzL|M;GK0#(%s=@=s)ae-*soVGBz=7`|WR$_Y2#+`uQDSg#f4tecp zj$!D(#PLz|WsA(^%*l2$P|!$Y=c!*HzlLf+jDCfqlj;&_G}dJ2qg>F;Qu`wG(`%_q z$D5z(?a=>d+A?xC-@;JzTXrr*)0>Edld^!q^ogu`&6IKYeJHh1w#4|e@vWCjXp#x z2?d_zf+H~Em-G0J(qea@MOVCozKU&kA_R>y%SjJEN;ax2>XXG5pPr%X zb3tl8Hf1>#nh%>R;h@?--+$PqU-tV&T-oI(Y>?C#a+6KPE-=bHVUq59+__gbNs1Rv zfSTpE{(+f?J3$F-zP~X-N?la}$Pa|Lz?o)u9j1`WC}WwUCfNc$XkAe$*KolLs%d}m z(;;g26#WC@0R0;8h0|EXD@?X}vSRqvb-LAra0U#IOqp&73ktd`GxCCs_!_%XIhIV%r95Y{x~qni|W#blk}sMc((G29L8Yd@tfFQ#zU z9(#WriKrp9ex&E6(Pj)D-7BQP2`;_3=dHd_tXWU??UA-sB2Bu5k6zMf4w_`Neax2T z7M06tawGu47={oMHnmd%hl4ZZG_l8za!oV>p1SI4x~?f49L)XxpTCeR`iKXGd z{Mt-(>uZ!udbK2N0vjt7Sw4}Z1S^$l&Lwz0mQkZ`W4)%t6uzXTNg@T?Do~gG6i;qKkX{Y#=aKr}F*HmI4c$>8yJEqmZqqmQCQ8~vt&PFRZ zL*-1#43jNzQFQ#1Vj=-d8>S>VZ@u_12KlL0WaQS|teLvASI)53(PttSfh)#DI7a=S zidoUc@AA$5dbWZuurO^fW|l8)irEd6^6*{vr2ahfVz#W8j2ZiTr-5`Sm3xc#>zjXK zq5?>jvdp@EiU|@myK&}l&_`R9H!A=G<~DvHhd9tKDn;eUu!??_;CMNJI*Bju)G~M& z(#xYF()O^7vEBH2qHQT#?jq(pgMQ8O)uNCv3Lk&nDlUHtt97)KRAcd)Iniz5)j+1y z*o7YQ$ov0^^#bF^9nzWAdV;+8`wO8fe8BG^{_N%N+JrNCn?AFMN>j$CucAsBwU>*+ zgLK^Ucg3)<1wo>@Wk;V-Lrg$%jqptmBR}HeV5C`eVe$*ydy>cKQ7gE9a~x9Gyh6d@XNSd^)L?2Km~qx0&3 zXWn*RXI~H1-gOoe(RZxh+|vRtR;7CF$`AcUW$N&RR~fE{R3Ol0#X zJ8ob(0Kbp))dcM?qa<}CE0x;tsvp*rnPa}hy3=sEnR9&^j91LXjw^6`zX3{_WJNbf zrt}r^!yq+OK0Gx3vhVMd8EemhC%^?GtsnR^?>Gx+WmQ>wA+h)aUn7u`7v^r*l{A@H zdz(?6c@LGK!WcJbpqDoNQ`jMG@Kl6WgYVZ7_4u|{ukmi|c9c^gRT{32^uw93trB^eK3}p?mmBAGcur%21@y)kdu%E8&w*89lsvZ6 zemFk<+AnblRMrzvw4}{<)y{F{ADC5DfeD}`jAR<|r9^IL`6QrN7`w@EXal%|aWav( zs62HGw_IHF__*6FOhO8bjxFwy?l52kg=kKv-H`t2vgROa+Ly``5NpDrsns{e$8W`yZ|$|~qh$jkyx z>rXivA09N*yAQUA1c7ItEg5&nUve(;y-PtqU*Op&LODb=__IQ>98JQ0ua6aet0J8D ztE6(sjVw}||L@@?BZ-P8Pz=o;q7$=e=AL0dh@LJfVyA2_i|9{~;RWt~qaBjHy1oa7%viCa`zGAnSRms+hUIktg0K1-E?2BJ zMyvXM{f&S*+2ZA2CCVJu27C~o1vr#deI8z(57V?qkC%hNK9km**f*2T)gqy89&WWC z%ZWneOG~M3ZhOX1ezHwl^@f6sU(w_Ti|~dEGndr0h2h97kG$Y9KgYs8fptLn>DA-? zfI(@EuGz0}N4JX5l^LMVGB`dZj-Rhh4!f6!JW#Pqoj6#gdc_@;QpVj7k@wy_=N5p3 zcMq3st4DUm$0D%8VlwWElxEK(1?%9W zuK{xm(1y^wf@b;@VJ2P5VpgZ*3u8niL@I%!7Ol;UFM}u7u$ZjX7&h2aL-9lKU?IwW z&SMR)rglDeBz^xLWZX>-iFlapv$l<=Wzor}95c1SBI?l0I&SjmuXMH%Opt^~y>Zl6 z=Mhe57zcDCJ*y<_=1)6ZSlT*sc-VQd(ajlFJlb|J2|wssuUW9gOA~s@ChfA@bY4C4 zz;O+r_vA0tQR6H;+Bl+lMEKnbzePEC1s!Cr%WZEmxTH&JIc=qMJ}@{ZpLY~xD74M{ zg<_zHGNG-7*-4~2by>t+tGd+iEb$G>RVRIkW#R}Rn_}!{ud1L5NB>z zQGd@owO+j1X?WqMTcxROgdo0c<^uFCm7IIOATI4h0j6=TU{8DfK2{)SAy?=Jmz}Mx zHW`{6P_|(gbTHrwWHZ*zsp%(iEz=meS{(&t8dRn`0S16|r&t*U_(xGU%d?*qYKTYS zKC8Q_wBFI>~}lMJoRH#^PgJ7Xk0Ig;pDPE z)}#m+vLlhut>EvKO0z^{LRHoy01rFx=V!B#(hM;&`P*fWo-O65e?lmt`r&*-mxzo@ z5&}0l&8CtFWK7SZcEfnGeQKR!qxWt{Xcwc$mL3*v_ecDo7>=r<%`}*gC&yV{EQ*Gg zL$*R1O4LV&gM>IBxIS9_dGT?=sZFs)+a6*M(xq|m^VaLc1&Bd6N5WpK7>=>z3#ltb zE8Y5LFV-HE&SGlJHBA9ua}a}q2W{~Ik5yqPNd{^Q@s1#K+*eQ$yRW`yh%hv6(vf_a z%`E$ij{2m?tZ|kmnWPrNGg}537D6lCY&PEOrWu8xhKE; z0jrc1f^#v?M^__l`bw$T2)n&8mMUT{i+|_Aqd!i&l?m-%+=Klz3X>3nok$sQ?MC#v zV?pjfG@0*1`K5fjNLx`vKbg2^SzR1%?hv(SQbo@!TZYZo7vfRR7+gDw>(>E%g`*oA zI~l{SexAeN-r(rWz%pGTPD@jJAvk$gjRs{VLX2|H3B*S4uL6||fY{1<66^IjM3qj7 zVx4o%t#c9=u*_s1gx18psHiGHwoX6h_DPDXHyGSlv~Z8AI#%$YHkKO{*A3zKE~XSV zq(wzowWaLm1g`p;HKFpY+UfQ59bJ}3?ERKZuyB;&o8qK1t*cYBEdlaJ_P%O6-d^T zO>NEl26-02@#v4kPIe-W%y`(nuT<*qcef4<)AA1TZE|j0$MRzze2A)DhfZgS^TMAZ zl{m@XuVxhip3syW7PLonV2!_p_E)e+8z;#hkK#srEt*W}#<8^nF5s($hMl5S{i;@X zOc0>H9v^j8dQjGm;;^#RM5r(=@p9W1S>ztsP@NSv;xXj^nzE7Ua&Gx6aHniNyq92? zI}zqO#(>IywxKY%fy@g}_GiGk5fJsu_7F&jK-&-B4uPgPNfOzP^$ok_l14 zLR`%d^{`o!(|#R(fgCI-v9X=tr7N@w_QoEcNC{V`1a?=p8vJJPyG8$E?frYk8vyaN zOY0=gXbwM*AbF3WPFzNpxY!}HR&B&_2yKFaqM_gKmOh-Vy~5S`)SLbw+W>mAH=*@+ zm9)wja|0F8*5JjRca)z{>dGVK@jaoT)1 zYC089&8+Q5eocj=NwEnSYOjbdpP8NtqmPd=FCRQH9(+`43HouBuR}f03moS(i&8{iP&;au_yI97v_CUdTfI;S|b`pR+=j@{6KMM5{JG zt^J}FxSpz(?|>%t;)sl(T~x+C>4msc%;61Jyww=d>$pcG7$((OWSrPnJWy9oX}h`% z609O%3>q;oji5Dn+nBj6zPjttYUKUv_5p51pclHpMI0B!i&v*A?a!H+j%%vlbkju; zKCsQ!Z)@IQ#d7sPV*CPN`HaCTkt~cW27X3=r*MZNy@qs1wM#Rd4hMLQaT}|D>q5f6 zDk~DM%QHEv1X=^8m?^ah@KNS@ux~nxZc?(H;ULTmsYlLpA;IEIDqzvzf3vG?lM|UD z%vSqK7T_MTfTOs{1S&^N6PBg&U7txmJ<|6< zq^rM#T=|;PI3zt|3LR{k!oX^m2;D8n1&pAWF21;BFNWa=QjKsl zp$;I)YTh2tQgidESo-ZuOeGNeuGsJuCZQ}qnyqIZT@U=LlOaP-RC~6t_D26w|GR=)})VC z8;thLe0FVsd<<;MeATzQ2WwTYRsx^n-S1C~u(yeL_DKpYzx#zlR?0_pf9gL5VYxy4 zz9d6ipnuwDR&jLS!Fv;BVK>|DLx@yXd-3l+Y}|R3Wfx^Rtij)lBiA`H>Kc%}8#yDx zT6Gxs6Sid2KByV;7q#h1oG<%W6-RVI@ZKg#M8{+2-#6mh&`$&XE}!S4WAg!$+z(+= zxVuR_l>Bd!H-AhP5-%?f?+U8109^LeTg}>`AMD|5luj^?$Ty=^^v^a0TQ-5bBWkmi=l=9r5sFeF5z|x+{G(0m)s0eKt@@uu%-4wzGC0p|O{FXF+Vv(6C+JNWpGf8+Vf-^gD?A|^KW`Wjqc(up2IH7L#FnVZu_y;NxjQ)#^Qhbz> zNhoL9L@Fa`0Yry0C+=#JIh+;v;m!lT*E}M@^4kdtRwdxaz&*u+;5N z_h?kE8FDIOvv1LVwxVGew2C>}mPQp#(>PQ|PhS>mNS$Sdc2XsQF;~tkv5rV23T@@DmTOpENXatJqk?lOMx%0^JWj5euxXVi4q1v0 z@lZp|w!;&sEqP6CRo}wKpr;CCTXxF0)bSAn0j1_Y2=&WtS8)#*}k(MvF}wX>|B$%r8`iv z>f#|!SN@R0Q}M75sV;vfwL>pwfa#}8e|o&o!F+W#*JyP5ZTrfT?L5ifD2?VoQ7B?0=KEi7)jSRaKcZ98 z7f74Y6^M@sVaHJ(>dx;`tGi>9e)$mT4J}(1*sXg9+atMZcU1+VB)7;;!`)vzEVrfM zU@cgN(!Lwy>`C9aeDNILR^D@5dUfL}tW1J+N>s_vwr%+g*X@hT(ZW75r9nHWm=zTe z^I>S^1gE%8TJ^BYc5|R1$;PzIF9X)woS)aO+KzcZyH6(%5w&iR6bz58yHB>ucFj|! zPB$I)QE|6mAub|Pd~ok~9BMeTQDOWS(Cyt-n)qNaxoJS$%~OoBD9ni6t7;#N4ChM6 z>xDbJ|04b}iREl*J6%GW#w#NawuEiy5AT6~$=Rpn5KD34PVHQicALQM-nn06(;9sn z>-P>*?@Jg>xF>`oX5UiE9wW-1)d}-I-rv1DCh>ZAwoKFt&xr9b1M-aLP(S=F_sKeO zaFoB6Nc8zj93rC`Fz+hDc3T9j`{I0uGSxCm)BU76>PmsjBzXjb9t`B7;9Ey$h>4592A)HtNOc z{LFpDyVubhT+`1^G3*|coNZc+)s%UfjL*TUq1<4kArjR}`iPlDX8UZ~+5@>RL0Aj- z5q%;FQ&$Q5OQ#x+ zT{aHuW`gI$_Gje=xye2o-LS~`*KZa9LIfBL{*IkxWsP=^#aFrdHH6`16*mo#a$XL& zZ86;juINPM!Ljj!F{ULbPQa<0Y;$w%SW^p5$sa>&EGoJ{Wrc}Hx3+njvIFn3bW3fP zC~NK=9bs(cGj=}PbZ~Ps`{gczH&3_{LrA9(`g{3i_vRh0MVn+Be4QCiSZ#zH_kf}XC#yKOD$D!au_FZh(K^Y^1yiftMMDmX z6M+SqjfN8o9!IqgEZ!I%tx7VPPH05!kx4Qr-F0)jinO5($FLX0A1mc$6gHe*?Rnb| z9y8nUuAYHLKFS+7cy2)F(u(+`b)4MO1ibVu-e*%UJ38<6`imlLoF3W@yas&4cl_n( zaD8wiDjDBobQW-FxH*SxZDP>A0-Sa?k>ZP20w1%Eee!&b9c2h0d zQeCe1GxGrDVXQ5!^S2Dl9@+)Y{B7Nb3EGIke%(xk9K?*YMY}oaLek%84_Q}t)_{tf zbpFRPO9jGV!zakw#r^UHoc}m94 z6>kTEi8RG>x0J&rs+2@;@fl;l@<3O$1*xNdH;>MabG)x;dLnataD$y{uae#svDp-= z^VcHvp~I!~Z=PiMv#cMi&4c~xN7|`hx>dxAaoX}HtJG{%uR-2g5%IF~VOl;Q-j7*U zl_tPu5)o|~4?i(eAFX@kLB$Vzha2jQo&fy)%8y1^9mYZ}xOZgB3!djnkH-iyN_v8D zr8Y}v#l5m3bYek<_cpx)nrBybNu8%>-13oei0sYu&JmdywAXQY4<9i+P6j!h$>IXG zJxS!@pG?2`VSG{GF(PEV_}~b_jkXdg1!JEe*Hzt-WbA zLB0zQa?I*=Rp(3JBFf#Ic=mS!_ecXCJEdmv*f(x`JXZGDZ1;6N`MMc?FcMGw}i6Jm#?^wnqu-MWv2{#WpIG&12kzTx-kBO ziyl@K9Us`n^G-N5us8{)xOZ5bw$t*h$QlSWgDNG&S?6G55ZAym>gq`VPr(4IqoQlI+@ z6(vf3D%EfOV!_y+?82dj!#Ybmd-adpHKscZ^eZUGpyn>H?nLuxW0v@daX(QE*4!#Q zo^Egy(MfzIv}G)8JgE75HdE8fHtYB@c4QB@h5H8&-N3E%RzRb9qiui~lg)dG#JQ-<#q9a&}>{G4YR_9~ep2Ojqp)Pa{51o`(-;THMi!k<%$5)?tcmOWc2tNKv!H~!i?RanMfqN2>>{%b7E_tEcogk*f|#BtjhFkjsn)fhg! zV$N<;2{X*aDK&OfOik%~JEOy+e*p{U(T_bXw^bW^~=uN4X%SF^xsYCoLcvJ2i>vhh#pvB!bO&4YBA~#Yc%(B8m?;d;C zBz}-F(tAM{$FfBqE6=VvaJjlzpZg*(5FZ70Ls?SpE(LEMiKA zR_0v*7V_8TYc;;dNaGbA8H2%FKYf?Q21^VB)k3pG+%i(XUoXi^$D`E*>`OIhF;j;` z+}=p_i6F%e6TAxonJtcmSr#*3DK&gzIXyA8R~8mX_*?6GyN3_4)(P9CO5hN&sbjyR z*CoRqBYef zAun<%_u=!`5%3XS@5WeX%hu@Cv=vL@v=y6if!g7N+*wNZ<0fB(mGw3U($O)D!#{s> z^4PI$Gk@BDF2yo>n-MMo^h=;DDm6_x@V9mTNQHd`f~z9B6TDaJZOlW8c9cfDI&|pO z%D1H-bszWmkR&xOt>LFpiv3ZVk!(DVYF6kHr{l0n~vle$F^R5|V`Qk*jr>k^gayD74LtTtu)+w!0xLE~?-B0ZA2x zuxEdm$;qKy2xMPWG8i`!9u|u77L*p9D>I5&-SPOflQ?;?o=gf3Y5uZX!S<9XrsjDYYQCUGk}8td>EwefEfsa~UB(!=?8C9aGp za*gbcXVHpc?K_5yk`67nhedwCwC~NpjYuQt;NrYXu1||p@uxoWR z=bwalb=Xb`)q?Zv=B(O3ns4y>oPURF>@B?!h|?{lOI1rBccIknXUpsCW0A@YLuk+i z?Z)cM3_Pk1aecykzy3!0230?fd7pcp1}(cAfBym@)|)9Z*chnAVgE4SOs6^(Yp~tn z-#6CIEZZTvUB^9rvpDwJJDPU6}29G;ctlRSo@scV#sM~FIk$BX#IV0 z6z7X;@IdxnVBI}7oX$0a?D8DXpRwSPwI$1)rIn#t1D%lB9aU{GI<~(qu%=nmEF5R8 zXrtFA@t4a6Iau>B(Y6&f>-PxRnkgWe>-+0!LPWME^k^kFv!|M0K>H}wAjDRPmz?aUk zuObEvyYC*dpOB{x&zve3R)sG{`7hsA`Iy+2HundUp#`8_gf)zv34Ds zZ$Lf>ZBRGJ@NbsqFdO^)oZ`WObbr88<1E>^*2ioNk*}tI1#M05ymF)l6-g}gC4i2a z8p$8VT^m`iE(Hp0KJqpYe<-~Vd0NlE$GQJ$O67h6MoKmyu9EG-_U)8D6Y&e(3a(ea z+S`7;fKCzpX5q6iow@9v`)L2Qdt7Hzs4eSPgCOXtdD=}0RX5IWz6 zilZU`G9DqVVhtRJx|;a;3BF)sxR_R}K-~P&w%lKWqeeHo>s4c!^ca4hvs}S@KH+fx zHzyuEm-Rh4ly@$y6mgwG9dMKkx)aK0&@ZTwo)RwY7G9uG&+g=hBm@b$EV%Lu`uIgs z>8P9ogy(!p{LUk8{XD0G`6L-qF;yTF8IHQ>H4Ym|lNMs{OoFq}SVw&`lh?fKmA#ZD zb^rCxaS0!IXC~*O`mx7dzK2YB)R+&$LWr;_7xnOX$-iLHCaA6#QaRH9UDPZ z?ga04ZT#@?Xz!C(`IPQfwqDMCZTIYoDz_RJirj@&qHp5O;zM^^%rRby)o4WB_{A_7 zS2D~kEC+${LM4LxtR(5?J|0Y@yu>eJ*8bbAxhjk;lSE=7a7@meJ%siJns$k&GF4r| zg;Rm&)MXhDXgvnTnweOMd@c%nT{h!(792$qQIz$kVR(=o=-2cb4uYrQne+GVa z&h7U(P`|Hw0v`+OlGpD{babtIdl}l>2DT}-iKU+rkAJ8Q6`F8(6401kGQ9Qdz)N>g zzorz2`Ep&8rczH&#tnER6z+JlPeKrFH(E#)Q6<_exZ-zRx@^byt@+cNw z$Qe9>!;dNUd*!Qks;o+*-_Odfp}8JwC^S%jD}$K@p4Z^f%73?}6FM_@Y>cIW%&ya zK;9SmZP|hzwDuDc74X$Q@P${@OoeHA>~DxjzIW;6Eyb={4u(n65MO!IH>$F<&4>2m zTd!zke=6vu)iFnS$e>OaqH7nKjqh1#Fy-;H1kCWZ3)_hMp5BHH?gt({TTZ4~4@v1C z@$HeD8Ew;yi`3aF##4`FHFZ-MHAK&IArfkx1=lNroBO6TW*9t1q>=Y6KYC;jYMt#3 zJ_aP<4T?~Ef@bp(ax*i*#-*vjgoAU3$ztkxW@VLNDQ#16(#U0u__!KSjnF){(vci2 zVl`Z53OF3#O8Pj#Hjdfx-@5;WMY+cIht4#l(JRz->v!v|&9A`gI0_r{`cF>q<^Y-{BTB-$#@4n?;Jf^WTh>E4+?s=>BM_flkY zpt^o1kGeY#g<RT@~3wl zwB&rfxfl#TkvUS>G&q#8gYM{MOb5SC1ostFpH8I-wNusm%z>96uVxfnUhf9WDCe(% z4$IJD;Eu+LIG8yzL=t}fZGp2HNsNlHIt$flW+L}gD^@(6+4Ag8ror0Xsh12I>&yal zn^=cvBbMxR;^OInh~X^Fp$Kf6Q0W1hMAy52qQ3+Z^P4UsZ2G8lEe*DP@u^eo@1tHs z^p0ZHJ4VvmPbR~CkVV-s9z<^vmTPR(X}?S-w>+axik9;;QA~!Q$+D7dXov-n>80dN zCuR?Pom?ELL3Ns>CkehC$sHHkWaMRpe%9IZ-o_-%0aOuaM5roRVP?K zB$r?qm{dLrqDFLlB2xBZ((sNA^-@*VnSQTv=}xdvyfdT|s}MA(QS5aD;wscluTv+4 zdQTYvu~EHkw7za7vpDT60BYvo#Gi6F6^3|twQno)JOP%bY-gxn{bQ_SFm-yrx;0EH zdX3nh(lBRXOtX~A94I|*f6Yj?XHLR!(bl&xdEYsJ9Zi$uqnCaw;8nTk+F^wIRO%u& zai8a0)be+bP6ueYIG5G6gKu9Zu_GjEJ!4~?JpGV63S0O#HKhHzNHuSYi(k;<AmH+taD`S_>G3%zgctI4fDD)>V@8o-{__2j~pqarDQ4V~xba@tY^n@=u*1jz&# zOWJT#>;B|cx6p;z#3(?NQ6sss$mkMYJ)ekY4*Iu3aN{1(pLSmr5>Ty~c(5s-TP^LG zN5PLliOpKT-B-JBI*20SdU*ZOrS9}4&xgX#-dW1I@=QSX8CV{e*PorRJx0KpGhdB+ zK9)*HF)oSi?0&$c``vu2?*+2f~s=bOkE zb)kmcnY(E*^koa#yarQr(#KYJ!4~U_e`jj`V~;g=avE zI+kU7xYBq&D0RgTiREe~0pDfSH#(l6ckZJ&CAsHP(@m%#@zb@A>aI?cN@{ zfGu69!sE)L4R-K>g?B0PaDH15TIavbLI#(%Q1RV{v8osEoI`!(G$lINg0L`Nc zdBV@+3KpgSRTKyw-<`&}h?V@7{Jjc{?{rI~gm{LfIsJ!m!mbVu9E`jTvXNEb7RBUA zDTRnsYT>LntR{oqV?IgR#bFXh4wefB`*ptd_zFBDhjt{`x4MWT}_}fPluJypFXKbw$i}Y2zVtRo1Nf!o~!F`b0i^uR5GSQBU1v z_uoUN=4AdlZQ>=vB@dEjj)he-E@EC8{B~(WC%wFo{$1!X(}6)7pzL5u7!4Z}s_0Vd zSW$=ZQ^=jBX4E(yQG_82*pA9W$GP8pKJE@^#w6I!T|HUQ4fVFrTaBU20_^nb0Ash@ zO?I5ltr)v~PvIMpnC!wBd4>^nNUTn*qpH@@&~-2TpRfq^l2W{u0{VP(OU&i} zYKhO%kbF-aT-ooLA~mg`JyN9Q(}m14$Ag|^GW+Rdep@+=dA_UCjHbB*mp;4pmX4ET zem;M@$+WQ4t~e0UE`S0-xyFpxP_o)NlMmRVxI;_U)^eSHwg{##(o5l@`NZP7^|Cx2 zkBI(Ks6Kg^0v)Ev~A-x;bl>TD)(tB3yPUXvjqX5 ziU_15c*J+X-6;LH8$mjET$|9PJ7lFw2ScM9v*#agOvpUAyVPEHn}ZD&;5t2#Ajbe# z?oT0;xM<`MlrM=G6w%UIy*VKq}*^24M{? zQKq6%Jy1KoG*mN^x`pT|s>H#vHYK0tJ=21-*^%hUTKdeqg<0L-3768FE39Nks``|6 zx_2=tnTx(}(e&~9LqFHpJ}|A!8g1w2pY#SUVhDq9SJt;om5z%OJx588#?uhB4;xg! z=0)6;6%XkmGLl!|(FS<3B0ULS&w6RCv9*7#_)DY)nrO^d@`*w89}F|=^Im&1HKDf@ zuhupR@q^~YNSd23`y*1O5L=2QAG;Pk7~~QJ7@e+5b;PaaRRRqhkP_N zSF;ZF%w!j1vCyh-N7}sCfrAdAhHf!5KU|b!NnT9}?SOh**7Mp$GGOlB)%Z)|iy5k8 zNDl!1ZdJjJNY5HmrV=0=cfq`A=%AFzwxr3=7{dhr3R_u! zd++$|?nt*p{gx^kawNNZAaGa!iUqE`dcGI;YZBH*>XG%m_A{|ffh90s$rALqOx#1n(^1Pi|uf#w$&Pz#sEFy@~0W&Bi z`?PcwH|E8WMjAG){s4Gy^10n3eAg-^^M{pVz_{uH^#j>WR^isKqz_O>U4jF#@JgsWAEGE+QrRMyW_5yzVKM9L<|rDB{NO0$?llDm*G5f zSN_Ck+*TS1BK-NNr{KQDW5qwkDM26T4cc;;RkUZ8Kwf`YO1!xzyzi(U5Z04f{~!bC z=|}GsLg8)sT<0#d$Ay~1v#Za06IVv^d)f_=7BaV*eEX#RnqwXm3yddh@at?a=f-3a zX0q#K9w0-pJF(SeT{Q<@nj-UC)eS=Qt91RP21JZ0M+VxBoSnXmOTPOQP@mp)C}oY7 zOb`aw?0%nH+?1kAtx?2>1e|mI9o=i&OVWtX>x2MN=VyZK6&21y*ge7k2~Pv*tvoFO z$v^P)J-^V6#zv0IsfzG`F5*|ve=AhJK zlF)8|bInC=XE+7_wjWGnrBZ;q?pQsq=JHSW_(eS5^YdHb*XeyW{oy{j@4|_;x10SP zrs=J!^SBlwzYllNao$c`!BbWF^=rZDnV$ZiLwC9s;T@&Jild7&BbAc$bYq3O#a1+Vq0H94oTORl7tpB=nU?P_e0TKKZXBJsW#`@Zk4oP-ckfyJg?lxysC z7^=jxCs1!88Yb6RGfA#bd~$nQHy@;td9~LK;;7db7xh75-XPmye80|#5mIHlO&t?! z0_oe2Y*Hp)oN$KH$VTrUoyL|eQJqMLL(KXxuxz^EMWzeW&3@SV<%rWDHIjFke3H7t zRe(d%M6P&HrfZVFIt?>&O}y9+AN?=N-Z5B|pxx5kw!P1`ZQHhO+qP|%80DYde?g9k^D(1fE|OF17GoT80tqPLG&J($KI^X;Ptzv z)j^iY0NxBCi;+`LfTCQFW|&7b4%ov4iq)vorMnG(0eOIkCmX$jSD-hxTg&AB zP?&Ou!R#@)4SJG7)_6J z=+WG*=dW|OkrWEz2l~>QB@XRF#D>QFTC#gb{m{A(`GMo+G2RahQ&U=>GgRJv(uB=^?SQHbffG2L=#s65G|&QcN;m4-hH5-ePh;5c{-g#D8RKqDf6J(^_8YA zS(8nHH*l1JRnww8HoX4zL^R$vq%7!F$**~XV)iBRNG&ZgrNWEO&(9#eO>BcgCh=ZS zn)v%lxhnweuL6NMapY2mq5`4km1z!_kv5v=yuuxQqJSY@8Pc(<-lDC!3HmoE z2xpr#*{MmW*AFk8JUF_a1TW4F=Gzz7F}-9DDUC+bTi>ng#$vGBV@-VNg013U&$<-zLAL=Yq(aqX~{91YX;17=~63T~UeVSeG7%k*~7?*X`O zNdzBFI@qFVh8Ry|fc117+gAg|T&U@@T-dZv^si$PvGN>K-jv~ZwmbriAHa_YUfa3Y z9V$pCOSv`-jO*Hap8+=Dx(b)Hf}UIR1_%5cZD;evPylR?KBIZHw+r9^7_7lWkm#vE zTm1T!Vxe)UEOw=-g(P+wJ4a4Oy+~BLEc>pzn1b1THf~%Z(z|6=S>d+)k1=AT43rh-wI( zqxIe$R4iiNtUxSZ35TU5zBH+!#u+uxzI?xUz^?EeQz8=hAY7?fQ526z3b!c_#(?*P zM;t)+?>FS9c<*@kO@v8K%~2_`_p*sV^Ckifv`AZGiem~~LC!_}9A&tZB8Q2PX-;xw zJzOR@Vg-)Az#kThUp;7ge{>=`6#n8c&YIG840VhT;S9V74nRlTATgotlMta4rN1EW zS)o*AVv}zMXaif&kXp-v*^+CT?5iNA>}CH}vz#kQ_zsHh%lSJhO_51_kr8E()BD7% ztEsriHl(G-C8kwwmJ`foMrOre+a1a{i?ef3U^vp{Ch5dxT#_()MPZKKF}e^5;8%W3 zr|RkrFw0?j84jwvzlro>Dd-qspo|CpZ~^N=EeS8du1%X)8M4$-CG~e1QoCd$v%Vvq zvo?(t{FcLD9L29J9Y-3yrAb~wfpjW<8l@={$$V-PoEc>$b&uN=G&0p=r;leX%5y&; zCZ0-%ffEHSIpmQwNh}B!J_7}kVPlS(qbU`O<8YpmY3*|+ghxa?1=w^M%;q@M%p5Pe zt-32}lFYo#Rk~=QP=IRK(s6gaNVH=VjJs+T6fZ~kJ$90lN9ol2%zx$1fyHn&AKJ2H z(rS$HFiKRx2J&Q^f_lIa3HZDQJPV(f8^kdCE>EX5`im%TRKF8y9lmycy=u+7b}(=P zd=u#3N`=w0`@)a*ue4n?(2CZRNr6dCarIHi*uMKA_^0m8{M>%Sg1(pgf36OHGVg!x z-G7bM62dwtM4uDD?n!R(U@Na*uFT~TltncT3g=>2QY-c=6hWZ?#g=Lm<=bPbyqFLl zLCu|iQK+3{jedS^Zf-W)53MAjWspsoaSxbk4P9`9`k+AIPm%gRp;OD!5mC#`_WB&W zH2J*#`LsT6Io>IVHBzP;{G?!b4R~X3`zx)@7Sed&xq0LP#7|Hk(jw!A2Eg;GAU~Vk zfncWCS=wBzOjP&e6JrCwvpJ8i1j?zP-Y|-LI6yb$19bA^Uztlcy-?}N31genF*5aI zR<6zBBsi)i#cW<0tkq(4Q?{*eTv=_am3Ic<@%59#ZR$0i4IQt&c%IGoj0*QUQq;EH9eTIQ0c9Vr(&lqH-4qzYXmmz%C)d2*GwNTnb#(KdRETuL#vd+hg$@^ElrGB>vTA zad+f3`Snq?)xrst!<|nOdphL(2lGTPveFU5?Xzb%L((&;f_1-c;H@oJn~3C z9e;dl%{hG=(1HH|xHh}hqR3FU6&-=asdyirvpCOhuH!If>Vdf-?d5Iy5I-Wgw$B*@ zwNCPF>>KXom5nN+25xPP475ZS51X!EHUs9^5$-{e%%Le;7NeDsvqWFDddvhpmKX%v zx-hacN?+sK`U$&Hoz_B)k4gqt!@*WeGZ8;H!p-vh%anARWLW6j`kAkqX(GZwpQNFazByz$)i4eV-Dz`x!(RWMYRQ>hkxa}bxK@E ziI5W1^+m^hPBmIE+~ZXKQ7=NDeTFuv3vZQ z65#6~6IY(Mv@4b^SBbmD3fW~8L84g>NiU@AQsJ+ne=10d%7=1zhwQkK>hvL%HXB^v zo!593g}(AG9uY{9T|_;aqyyKP5e!h4pS!G=8X}tWs?3NG($|%9yy=40%IWT9;z4Vb zxZ|rAtE(J(fD%HZKQ_gw16laEC{^2wQrk}iEgjJDyqvgVnOnr>!)E7Fr#UK>% zYWuU432&0Cg(uZ&Y}D#NdATy%Lz^F!32T{hiX>xx584qWL|kYR1z;+FTa&j!)vy~s zpluYu(8%L1{=IqNH0iWgn3XI?0_*^5^qse^)>Q!(#6i<6ug$RtSuyyi?z2uN(e%Cz z6M{r$1{WfxlIn}eP6k4EchSoWDq1V)sX)}JNDgswHZDx5bf{piN^E}Yt7>!?{sGqH z@#fUzT_@(fToo1?2XZYiK&Dy~3^sz4n*Q|{tqK&;SqCd=3q!Q#&sUy1Jy)x&Y|Q)N zjNE!@4XbbG>s49q^>Zz}$YBCyK|)4t;@?ku|e!9~doZ|R6*O?8j?_(p|vmL8vIgn9^@S)rn! zO+H*WZz1>`!es1EWr~VCG^U@t81u#D9NHXXqqsJ#vR<@O&anmc+J3t1H5Gz*%Z3}F{yu-l_Lm|{vJ*GUe=>;*LtolX!T)u4zf!0>FhvfD+!wSs( zz$D)_hCqQkBu*fGUchDockU==G6%K3bp5qS84#0RIFvsa#v}QqLN#d!c}5D78h7_m zaT9f1I}hu+5nk`-NhgDs#ZWBC{X^{dF$f^v+BV@B{gesq8uk9e+LBD7Zar2sL!lw8 zr1~X_btmLX3zR9gdMx4m-Wij0&2v4K)0`i@V@HY8v0iJ~ygE zWR7V*2XRHGW1TqTZ z>24$2CXw3#m7Nj9~sd`eX03*{FaIl`H`ef%8aSK-^)?GQ`!mek~Ss9 zwNpRD$@P4{%#Vo$nJ4*~a&Wwe#y@&CsW_OqqAzYlB-1)Z8TgVD4o7{?i5Kf24M)MD zM540>91IuEyLrN2$WAt8wokIS<~tb`T_qyx#8icr$lMC0!=;i3AElFMzmt#LW5HmwZ7@rgz!$Fjo!D z!z(vQDndPAH5Lx~WHq)a)mI(jvjR3#xOebGsFZ7#_deL8-Mfi4u|`}X#$c2fnW$tpS5D2!-8G)uI-=kT}IepMeIEy6e4;r^{g0`egk-9q+Xs! z92II_z~VL=rDpssrL*@hUo{Yyz+O~Df}v&0aVW=2yud`$Oa_gud*Sd^7*t|$C@axC z#;#(DLmq2iU)W)~ML-h^aV`Zr=$!XX|0C!67sx7uv5$%y8(T87fAVelt}xR~o`x?| z%R&8FX!UW8#KN@;5H+NlhlSZdj2TpALp@)m_y~$8N|-~exl!d~J;@CQdq!O^xSvrR zoZZcrnG0fpx$RLF4nN?;6M2*1-Zi$`6();KUb11+2_naW+|J|f#}p61RZg{*{eDyg!yeKqyrzyFOfAr#}q$YV3Ee>IB;VMq^e>u6=lI)6%g*sn_50v`bR|i?+4zy0+p%sV{h$L?x_*!+vW%~cd7MdB|3L>|C=b+W~BNVeb=B< z`R}+uE8!8n0|BjrP=JdOT9E1r|9O?R@#d)XI%)*^Z6pRWbOUOKLHCx-tEe9HP^(7RnkS-2U_vZ>c?uw3087Zy@Rla4E zzzRt(X%vzKa#qfx@IP{A?p(~OSk(()E;Fr3rIe9u3N8AO5Ly(aSM^UoTspW45AG=) zKJr^<(N6U^wWhrU9?z~KN6W2q>;7hB*qirNH1|O(f+bg&bwUVASKm2ix!Gk@Bn=uy z1ly~OZYWYEXW2%F`W6VC_}Tj*^Zd7zk!tjk5%}Nc;KKBm}4+b_51GOG%AbCG&xgzcpKy;dWsG8N5xpu@$H$Pi>+~vKQ9!$w7Yy5koIwp6(So zpY*iM&_{G!PqDN!T5Ra<-#o*J4xl0k0cw>*b1E?|)uomMC)Q9f`pApCxy#?knJSYu zWc{K375By%7z`shT9#qSOI(#e9fF0ZaHUp^%+edRokUt$org<+ zD{hVM8CLg9T-qA*ZpC1&Y7Qi7{Z{KU$tqiUB;6$vw)XkQ9Smwa z^whvEHJF5Fd5P4gIyi{329M~oaB@GQqn(EE7K}%cgP4lV76Vi@xpYh@&QvGFntXaE zELC*r?LQXa0;E2uIO-tpQ~+b^Kk#4@h=;}W?oA$vj>fDS9LmhOqt5-k**09_3g~gC z0>e%Pn1*7bTkF5Y*r3uc6uv7!3KlF*=v7tEAVi)HWItK}?2&p{0wo=u_cKykMzrm+ ztGRaN_^k$-b{lElf?Y++s^nqkRiv|g1_iZ*EsIEpScJ%AGjNwuN=Bq7$D#MYitZr{ ziQsx`v{WUAjk#fVY*&a9b;gQW7TM_XllFm5`OnGgpoWQsb3&$-x{3k%bH)Sdp!u~h z=pu9MI@gnuGO=na`Vxnfw3=8?AJf>CZ8O1!jfx;KxoIwmGU}Ps1`0WZWy-wllJSMVDr6yK&yLsQ;a3q{DZJk4OObi>h`k)fEs1!bPb$JkDa=0e%`* z@pWXdDK&XXiY+XbbzK+sp^4`{kRCF9d=zTnB&gduL5^736R#@Yl8C?*6fG%a|6=DK zWe&-$)uE(4At~W%1c!-6bx@4)$p5%q25unGsj(fYy1}3m7^ma z$MWMbFeKYN9w!SQAf$G#DY|Z_Y2T^tK>@PNN-TQ2zmMwAJK&#A#aFIrqWTtR{ffTg z4vy;73Z%tv2gz$j`#?sIhFZ(!b0cp}i9sbu{$1%GRp>M3)+#QXKYw18sX2{X&l6#I z+f=-I-Qj#UoTP)PMMCK%Ou&3QWf!7-+`fE2ZaxpsN7?XneZHs1kH*Gr^h|-x)m69~ z`?50^TPUa0#7k{XLr|aX+g;}??(PI>KjpT|NMcdz`JXfMrlE1$+z+# zf5$iOL5x!(IG#?Az1I9r_1ss6ECO-@3Y~VY=`yji^46eHkV>BiN9*Ck=}?=J1|jDL zgKa~Lirw(|I;XEDJc`b+GF<5ed#9wQIf@l4+qPF1L75S*m73=qxU*cku#zPi(1z(LrSZ%G#|B6<&bsSa6(dTlv-2U^+NDydMfN+|K| zfuTM3?!w zA||yEMok2~P`g@etT?v*o6hpYXJppt7vnY?Rfh;7SjQr#mVf}sna1cSw!eUyihZTw z!kL$MMgKl+2j?oI&%eH5f%wmQ2l*n!62ZB>12t-Qq%`Z?ZT=v9E9C;^hr%FLcCS!v$Kzj zeMOncn-k%Rj*d=#{rlq1-euoE>o_>03z|k<=yyBug;{)3fM}mN*i^YLB5Ah^6Av#= zPBtq8E^g$>P8k<6OJ5CQKX3`<)kF>E38vp@cGrT;=H#h)WwQgilFe4Z&B|o{aG%h? zv%e3c#!oyQ{I((&E>-t4tkWk^UOLv?X$zqvLpk=!QL-bz@_xfva&=qD?9Xjb5jb1O zyQ%ofAY-%$ETIAutgOYB1e2xeWP>5rFhvJf{!R~p_t+4Sx7EfC3q2`G#y$|Djyzra zf|5S-A;H_pFe|$QnJ8hVKt5vJKC*b9e)7XJBZLQ@%1J!tEC2M#!XL8}8rz?pm_o$HWCLnp~H-jqTqS|y-0U8G znNQV{LK9lzzrq_Dbg@>89k0BNUWL@J#BY0hBkql6M%N-N+_5K`JxHRPYmRgZWHvG z619JM$_ehrA9tKf(`eN1i>-#2I*^4hu-*ZelUla|Z(nUfI~dP)GlZG}>a6AFJQke< zmGbWbRve`8=$%2Gm<{yq*D7@$lA!93pwE#r~`POje1dp3>x`618f^I-4^4O+1TRNS5>&{WTL%JO)6m zXhC~@k@fw39!;}b>jxyp)xRj}qG?uU2ZKYkRgk1aV^kTTMo>GBPF9`9Oi5r!l4FOr zg;9fLwd5V6fUy9#%E1l3-0F*ezrfFv0;IX|FOx;R-j#jz!xret0S6gPApnPX1qjH3 zi{}xNVw^lDtN&+uM%s02*$sR1qX(Jc70Y>}oQ!VaoRlS2i44iB3G%Y?Mf~nniOdSCV6C zIbMWWq9Ce|U^`sw`1!Av)>=cSl^?vcIPtSM;X6Iiqp|#(rn5APKKc6g@1J&aro6Ni z?-yhDA1G$(#CcFGP5re|dl{q@1@34e;c)2|S#Rb1 zG!S=#EJe&hv=lAyU;ge@Ls*_TKmAMTn30`M?40Y_edRSQL79oBo;8MGAp4i(vbG<< z@_gsmelKpXe(Y;{I9Id0H@%p*cyX_Cu2Cr^VLBDAMIM!d4jp%=ZNxD>`NJ;kf$;&A zl#uW5QL+JyKstOJ=T7qIkld!MtYhZC;Vyy*4)3iO zDo1?CgP)`Dy)(t~`Bn)}E9()xe)?KLvi^PJ$ zKE$~~<}*=hZ%)A5uMxUXeWy)WZbTuWgIQ`@I;l>RdrjSAxhHO*(vnuvh`B?VIv@xp zLtwbotInaE(|Pw>6ApjZo8vTG!51Pca~NI9%p5%(%T|T#WLW&ch(;ld?)vG8ac6)5 zIsqYyWR3-{Tnaaz71E(V*B^|R37swc7m1F%nu9Vs7-UehA`|lhJHA+2+Mp6d_&~|) zY-5|-HPCpy7F&li?LuLGdkW`YUV%1mX6a$leTm`N^La5F_)f4*%mwvP zNl|l9&5#Z}PzxPn8*$-oDZ-O$x(RA`fTiDIU133qsT5o#0$NyIa46OXF2v&7tFifs zA}jx5lYtwAB;tc%-DydP5Uh7k4lzqrwwsQ?C$U3EI*}%8WtP05At@ zA^<#;@)jKT4^^2oZ<7KawP8;fXtW=-07@~d;3`hyT=oG1g*!e<_V_g3arE5eSIdvg zD@oeEvJ9QV?KuOt`>4MgeU}qk$jeB}ahD|UVl`MskR*<^q5nM#ct6Lb=X2LD;Z5&R zZ}eye=!JdfEbQyt^Vjvy+hu_HachkKR6p{@o#_^K03j8C)#qYHx21_V$U@I98({X4 zZqSeLRE~Z%lT@2Mdk(UO@boKxPxSS{(+iM{+V57YFwcFyZ!omxvNz%dGy|4{*Wksl zE)sr@u;`>~sveYxW2sP@ELi?S2c#Im7FE9d128`uY?bf%TL#%wOlwqf1^m(p>7}sS zI*iTy0QU!&QcywWIFpPTE3_erBu{6j*YkCH)9rT=!F+0PtfU-T9k0jlwFWaaEWk>? z`|IZIyS0|L=c9xIMAOW?w%7O5hKQVmoF?lNmpao_jqh?|&RomBM)7hutij>Zc!j#P zZMlztE-VVaYk>-8Vic5#kZfXJS{<&`Xg@X1e1FNB1c@=#$@6XE!+jVT9{eiMj1BuW zYdbF@7W6lHvKwMa6=+i*S3a4#Zoik8`g0NkWzIQ7vjqQpm5gqXQ^WLQplv!k8-~oB z%Obzc*{#*Mp*BtG94x<`b>$tMWZ6F9VQ-=+ewHjXtM+q=F(~^N{J(pR6qbx12LCY| zu&MuFWC3T#e_#tI7e~|olwN86+8wr_{_^;Np61mhD>+Ma00t@8wYgr~^JAg3YNb(g zVKfPES`*I~AF=oJ`sTihM2&Mf zW~7wM%E}JE+kF5E+`nqlE(hmqQ5Mu!OkBq36kTSs(+%rTTz-boE`dAnqPsb1T>gps z+cr5B)TGG@b*pz4ssH2bC|UGl;IddIIpuaBL)nw`QW{hBu$%Ln6v9%RK8==XYP4)k z>fFxSf@oD)30A1GVh(WwS*Fc*mT@BYbc6Jnu!z`-(0q`9iKDVPU$W`yQyH2 zW@TaJ;<&K3EgY_NZ>xkDjbin8TWCsko(r7Ov*M~3O+?}m) zi5j#5dd6JDi0~goS3*syY~4)B;n?bV^P$~cpq#X)sLPL?`v>1*tNLY;e&Sbtq;wW_1j$2~t!$bRY!Vq+qIQ!ZTiZK?E*^+NqMU;jB|E4l>PnuM%<2 zj-{9h9w4PnLlZ&b%gi9qMg;hODN-!?T8$wJD(|@b-G6_}8bSpam8>T!WdE);Z>Sea zwJ$9%+>dL4(Wx#|wT~>=qYobCaa*liEz|Hx8v!k*%GwbhN4$M|+!PDms@DaIQfUT^ z%~@8U;YX?{Z|`;AlipG^e`L5*KGCwWxC0`!k-H8w3R`hXSMK$x@F1Eolh16M)@_4d zZK~^d5xBCR^O_l2Q3w0o7(?jBOuL8#TmmGnv-?4^RXg-EXqFeDa7eh!mo0GW_+k$i zogOY0vcJuguTh!>UL(2VFD7#tkYE`!CZ@P0C*v1l6igGl6K_d+oO4<-PAcoPQuD<# zl#N`#KF!C#{KLHECxMmBdT=rSGjbCRw)k` zRiwgGMjXE19tIb?RHjxbruJBI;981!V?cb3RfJsC*31@jr;TSOR~1Hwi~vWOrQ0lJ zUvJ$1Ifb|}3G;f7a;W9pqS_m{cYKD3%Z+`GJ8at~zP;{ZIGs6{bcfg90-GeUk)6#3 zZACj8I_vYeg%?j)_dz*V4M&i6zY_i=e#H+UmQOlEn0A~qU;?=Tf@X8TF1>wSosvPm zw-U52ajf^3D84=9D*YFjBhC97>1-fghv|+2^e{fYiMlE=FGKj&zd1=y<1-vj4v!(c zRIxrQxef?2%=V&6y9lyuku0n|;+(#rq0~|jV1dw%)*(P$I2SEBgwi>YtceB}h7=}D zs`yveJh)Svrdm;W9NA@vyxzq?TRtV+V>H>}UT!J8&o(yEOgw0WG2{Xtvi(UhiroHU z(OTu|K)K7nS*$aS=kG=%=F{=|qQi?dn2*4VbIbPtj3*OfzU_@%9WzoYhXK42;l9B~Qe1kw!%U3*%C!AEUd->sz_q+7 zj~d~mi4z{#wPXZFsRbuoRD3Wyueb8blEPAr>pj7FwfD*Vp+Cf@MH0}H63r(52L``* zH%BJ%te&fO*TrO?lLMOs_B4ExnL{X&Il#e+*YNuzgR!jYAy|*bjm3FeNnYaqgl@93 zKoa(=ghMm;i@;2&|BI8P^=v%z>jXIM)~oaRUM_9m*-{a`5*E;eJe0>Fm~qTvBy^t_ zAy-2Sm5#SKZ5AN^7t%)qGNhydH!BJz0j9pIDbS^3qLo~U%kEMZjIO*) zQ{Ui1IB(eTyjDV{D*%~Sd_){;(Fy9)Y#0N&a=ACjq0@P}rN=ozDL7f0 zL@PwW>&i3v2mSSoJt;w^p!Z(mbkd!{ZxYev?`T0I6Us}ns|v3jN3CDhb&5uSlpppf z<7R*Je6%H2MrGDyya=*X_Oa`-&Rj|@bk$b97<_@Tmb*fJF1-RCCNTG^$~h1RtYC42 z?L$8fW-RhcJ1f*7HjSQ$FgK<={AMqyj&={p`V(R8z(@oM0xPXWOe84>-~WAhPR-11l#S;0^Vr3Q+K}Z&JZ6Ica)+8 zM04@nsb-wtXcKBSfQ%HY=72l0*_jS zx}2C!)(AwZ%@;&3%~6SYNiLsQ*%d@RuEl+ZUtkHABxvP8W+Yv5Sc6OidEQ6!(}+2~ampp*?Wtt4Smq{A1UZ^Nnu@`DQ`Q$H zZzg?Gm+}7jvfuGIYPh2tDf(Eo5!oII%nFc0`Sh09FX8kxvk=M_ugPmHqMUm z9{E|C`YYsB;_M;oB}d92pcHRXM6~^AC1aaXY{@Vc`LIevAd`bi$O7}=uCzsM#ShrI!W+2C9nABCuRGTn%7;9hoG4KL0CL)+t;&sIuuF&9K zcTh1^_j%-T%HSp=H9da>>pd%_arhm@$D%c<{rh$~7i&^WDhJ3S&w&|JG|@~o%sX^D zRHeqF3_*Ze=^cf^ruvIjN3hYnD!2cbzrmNcq&lmsmyfy-j8oR5`@7Z3-A<>npxU_r z&k6&aU@;@5mHBOmM^Z&D4EpNL;V=$h28+T*QgfzT<0D8LrnJ}6XsiZy?k6hIp`BzIfK>-ln2?KCWxt$Z{vEwfGqxTf@i5~ zhyWJ;75}-A46N|4?Cl0;+xIC6f=_N*Wti{NTDMaH3h*0u(q$l3JTua#G@$z(L5T+& zllnE{`S|pF8eEzeR3vaAKgK5^{L)=dkVr2+fu_wHuy>`F7MX!D3emtB!s%mtG}-qW zaoA^h+hUi9(7$PNx5>|xDxf{-@*FF*CxLDkk75HE^Uq!Ls)NYg+_elCCR4DEY+(0>9xB-y`;l4JUyGO zXpiWtX&u@jNGCSPMI74Lzgk$|?xudbU^Iqv92Wwy_8w6aA3=BKLTh7~3IxMDEC>wd zUf&Jdwm?hnxJ!(ry zec$Y0+s*GYBaHhoCs^z^HqkJ+48zTnH}A+5BS`aTha!BzYO4hS&KwpE=ipI1H!x16 zrt+q$B1U3g+?tnl-hogj;n1Qlfj0okdg1W!9Qp3kC7!GZmp1^evTuL!5SrqxlBnPxQe{k40dQXJ z!WV;C_GM;nwqR8)SVxa1<}1+ONqbd5&`I;yjE#M&OdU$s^YmrZx?w=WO4gA0^p1eiH&v361mL2U){Fd0RD0t{vyo2JD*DYWOMW zR;u1g*V%l2%}@ComCH8G4UT%Um0~s#N|KF4Gkaw0NsE0-stJsdl(rQnVab8{V(dCk-dkrxt%Qy z69ePF?Vu6Y^yK6)07&(}kWUW&4+dZ){lJA>8UG>YP?S)V5$sUy5pq#cgiOdW(?~<0 z#=im9C*-E|nV@5)5rziFWyZ_KUgHo;731zvjYZ@vbj58=KMG2^%gi( zFqDaUkXixukP6FK=&2Uq|mRnxFqp7R*h7$rW(@VU+v- zBbeOGtkk45-O7L03-DQ}9zXuAZ)$ApEg>c(;TRY`s7{>74-rcq<$psL{ztI!V}F}R zZ2*8dP(T3s|FdBK3uE~IknE}((phWN6+b*I1fU)Xpxz$5EvT|hJh?0dMdUiUd9A_x z(utop9z+Ca3AilecR%XmoH(x&145%jHV7r;1D3hf|Cw1(09s zhNIZe;V%u+cP`*RcGfnI>G)2CB^t+O^q{)Jk8SA)ZIaEV?}z(JqVOq;9VYORpn(V++Ohc8cu zS~M1E^tY&UE>{kp!3CR4`sXxqsxP#pQXsQcuS-E*uYN&YF9LGAvk{pvrr&ppJ44O8 znYtfp&9_;>kEQm&FB{>2%dNp66gNEo(ve`Kq&-ht?Jz9BMgUfSGaTLUqktxlZfIto z9k4rV(5~p66=1JS8*FRfu4xwl|E**5UdXDY2;l%VTDxm|k&!#8iaR1L1&U9!f?WDp z%TY^_;1Oj73Suwl`$1y#_4E`=3m+2=^pODI7-I?dNo((#3d|Yum>)1vWbkgZ3#2~n ziRFVNgQd${K^f1rwO7T+TCR}l)0O#hv<&~<;wU@BtwUtezl~_%fjUnti4WS!Y z%7P5Cb(D{u`xx_~vl}Eum-cDK1d&J${wx3im!>Gt1z$ zZSoq_tsR$+fno2Z?Hf*l(r%24f#cW>R=OiAc=nP&F|tsJx7Y39Oo}4ra^GY2qH1V^l|&(r@S(FWnhV$0@cA%(e|eJZ6@FL|=|b`K}-o9kwbk zeQv-DrwvBJT{=1N_wGGP3ggPlH~P4ZJ?W5mGn75l_!}SS3yDi54om7CU-8#==d#2wZZI)Hqoy=NZI>S0mbenfm=Jl=31{>&8Oow&r z+-)NZcZ+rZNvE;>oAs4`;KTv8-J6%pp>y2TF+B+6eH%A(k?qKJGc=%&P8o+xg&>u2;8@rh_R+FLc#V@RJJ<;*0i=D&;u2I%9hL8lIG$YG zo>cGM!$3iKr?F1n-Kz4rE$rJibCt<=vp=kRALlmMx=mQR{SRwP5d7Ts4zNK9X|Oy3 z?Jvsy{d$e_2CZ>^I3OT9zD8zZa$-ITy{9+;JGOy-YEQB?1j!`i8jE5({iFZyOA%FZ z@Dp5~GzIGLB49cR3HZB~U0bN)T5&Q85Qk$QzGx$Ju|9?{2EHJqdw^qJ)fy_^RW0k& z>vB&&#Vh*`cX+4IPYL8{{Hj}JeQ|Ml@w|lem4%&aOf<6`9H7Eote(?nCXcx87Mr$A zQmYb}@V_EMd;3R3SO0dLuh)=%6VWG=dhvXn6s-eCDfNW-O`^2iF|3uQ_sWfiwifDw zaJXu7t)N7fAeUu%Og3dvT2Z@dj2EzDE6c&}p7kDkE#Vyb)tZXSgNqLQ7ilU*t3aau z8I$sJsT6UeE~kBb5frsUPxl_gBIAm+_)iWb zwL>af0n7WF+ibPsJ=$>Dtf3dePY+9M1Tq|;ZMV^k0d*lt=!Q4_sR5CT8f^BP-q*eI z;TMRw9s>k09GM7sOZ#kejF+yKL4oY^6b4{uN_g5v08D zB5#dgb}`=!sOzz%v>$^&7!w8oW+!=i)J;o~bro=qQjYH=uHIN8Ey;gD+rOk5u(V}B zlAg}O3HtXbl5JhB`zT|JP1ku-;vOT1qOR2OlF^qhX4-bEH@e1*xgXJD`k?;E#on-paB3| z{e53~)*!P)`~4e&-n(Q=;0&xm{bgXv9X1w*GeYYf1Nw-^5APVZtV3IVAobWa1Yu8B z`3yXiEsIVNTX$k(!Ttve`p{%pd3yn{lAxysm<9M$Q7nuTY`pU(mzX$r$W}jR!7>gu zM{wG0`9W8~aeLXeFMWrQlgwZ@@2tP}Kn+{S$~4(9FV51dws7)^^C5?}5NFt}I!@a? z=OlNq4-7VEMiQJ-QW)u1<@RZI;r4O^UFF)T;EM+%`{!LT&9V{%Y>H4BwCL(=l43fC zNfZ=)K&DP@R%;wAH{gHCN}R~jDaZiB3VGw%nX3;YfHP1gECc}UYGpD*HqihS3<3PV z0K$b7pfeF73W!Kbv2Xwo7fD+PE$E?2#sTA*QYIgmNdQ|Z#>a>Ob+XLL8$A#Uz4dn{Sqvm)oUmCywJW{$rkjdqC(-@>q(JAc=%zp9i3}%$gA4N52s}^4 zUzMB(!aht6DnQ16z8g+n9$_!-BoXl=7${IXW;99@W++I{?dw8CP*f%bXAl`TT!NI#a5epnt3KE9#=xwAmsWf<0tiIE|^0{)KPR@*mtm^_P>Uw*_ zBsfyWB<~nY=v0MGFTP6?B$l78Zip3D%7`7vh{^NTF#=VV9JE!i=Tl~%zcY#zt?b;U zU+1YR-n#N}^ZI=m?0V}7s_-o~mMre}a(F%Ra!7@G5vJg=(lC=a(=d@GIxgEKxs986 z%xA20XwPNLwa`#)tiYat!#cqVyf>yU+3=t^q^s|52YnVuFLIIVlDu12~?dDUv)oMlIftUgf zB*X6uSO=c0fO@)_iu|C)*DB5B$XWW+7wICRg@!`*JOaMLVbyjpov1&f6ym926m=D` zf&Mbg0y~f8Fnv=*dg}yPvRsQfosVU3x^>M4-+%gGYy$gLEwjSXzk8w=QMaWtdqkLh z{a3SS2EH4+2Q!5XwIiNo>&Jfgi?=UnK4iW~u)Cse1a-xJn(42)&W|*4Y6|i(e+jw? z#dwH(c`TK|$Rh{41e=eifk1-a(mM`KX zU8no=Q2PRPhNQdAaJJ_IH^hXz0g%jL68iUIfh1?lc__1gRl^tRz?OVn_lIc3S=z82 z>f^&y^xwrQ)*-u6mlE+;0mT!5j=QHOsp{5B@;z;u#s^ewG0>QJo{f)cywmO+d20BC095>Eh8Mu+-w!SWl`+6)b7X zHcX?7&--Z=c(12v(gRAQh!Pc|q+{FsGx*DP$`#T;mudi|qC2{W{eTqTB}vKMX;OOk z*0w1y@|VM#Q$UJ0JWIwZGI8T-9Ao$AD+S7yQj+{Uc|WFWMH*=y7y%C?hzAY%VzIvVp}4;U1z^6-b%D=&Y!X z_8}o)+n^J!{@_B!=5zVsLXKVr!s)c_%Ba&%X$a7+Jq_U}ri3=#ZC4s>9kCLFp8UG|WW=>R2Nb?N2C~|1^22;NqF7`dtb~wj;kPd`i>c0ICrEUW#*mf>!{A# zhZU@Opw=vvL%1fqH(V*PXEG(bIqD)@Db=9cf71#!JgYG31Cf1 z3i$w*^?+L`sqZ=gmQ~X(0J-&8gs_&9bZT=a!tq*ms{y2Q^@x^8I&dqOM~)I&a7@-t`5oLa?6@F@BZlQ zXz2S1ZADPRzXrAXI%&Zr^cS~wAFSt;2a zH|`EfgBNBMf;eu?-U_P{x=KKl(H7Ca*Af|w>|U@&+kb?`T4S=s{Rv}7mh4H5F8IAj zd88>u#D1^_)_r>cw@xRFwZWb>O9e+o6#r36Y%sQa@!C@BPn?epORgX9OIB8YcxvHP zl!&z?DtE6|cEl??l2tWP{lbeMo?AE<>t4bVm7S}V2jZ0nzL1Hnhk`vJ!|VwlB4ri9 z4HS56wr^c!nCU}Hv?0Ed z37T-AHCU}QUBw7yM?8hXj0_hCa&bvO={e$c%3YX=D_3gmjk zusmK)AzKb^#-k*2?&|z(y~rHq4XH%48kI*(D#7Z9!zZ*J!~CqmNNA2erWeSg0JA3* zQYJ8S=3G+pNY1GRw--6$*1Al%;l4Dj%7NcrW*W3X0RrcbxZ8J)wzuJw z9-Y+0hu&+o)%yH|qZ6zv1ZV!pf(d1S^95V2XR--R1nC@`%>}7!7hAJs;!g@GSg63b z;T_M&fD{{)bq)pC&w(`18Up7y4Gh*HE-*`H$Y`?lP&yJHWJn*FOwrZZ1ci6d=OS(h zS1JoS@01@bAbeB9!|q#%r5Q-+ca&Ps<-r-f9+eX@IxBXjrE4MIGB9s02ib7?oHtwp zaNl2;T-;5#hWuUv=^r6%n#lRR>1bibIC zG>nxVZ6IR~aZ2vG<(!xtcM))mNl9+|T2oj*nzj8PRpA-Zg`#AfPcTaR^?zP~y1T2d3NCT(^A=4RIQ# z6Y$~_p{Xw=j>K=lBs6JO^P8Cnz@%K3kEtBjEz0hSDL*BFmmGQu4JYdY^IbJUz|5oH z07<_F|9wBhkglRuBvURc%T}beq+GWQ<}Z3vFehm&m{mN@G;$KMdoq>G_O6=>g1u|T zf>mQ}+*lj6CXB5?#k$O&0)ZCRu?uC1GutZU6d$y2HFw@=?a9g>1M&dA&d z+-Z;Oiw?(pi{lCN{>LvRO~t>GV6svMPW)E)gX43@ADo#x6Df!uiyd7&oygz&xSD}m zmn&uhYYOds)vPMi^%n8q=G@H(NkobwYU;7%dM*31EaQ!F0UZ zsj}e7!}Yu^cR7>JZ7BO$HNzC#f>h&rI8g!97-4({+{oh7@bGD};M36fG^B=T-?_aR z&TcIFOnwy$DWGcLATiO12sgcl1+?504mXonx`mFPoze+zGIL7-9cN2MVx)w>!5_#A z=y|GvJfW?7b}?c>6F>`@hl8caZ;Jh_rPG)#GZ(c9!%uwrCRrbhBZhZ6l(99sDl`|0}@%N>X+A$QEUlu(_-J`JAB%QAZZ1jq448#w~KxZ^+RUXy)ZOB9J4GY#$z_9Q#v_wYvYGnv@#6s6Y)=Xp|Wo|7y}uQ^`M<;3lz7%xRi{c>(JA7K9- z7TB9B5{t;aV=oBQO(3sZ#NLNd3v@E@k)FO9J^240!i)ws*+TYBS36LD@p(Wk7;9=@%%) z#z2t{8qVmGkU1goT^*?cYXu*vyqkx%x;vmRum38O6K~-8;OrgyUMB9b|0XjHw`74G z6i9PrrZHbbs<#x10{eG>ZzMAfj4wPsAwKM9+VM_R1`n$?LI)0f?egogl^-~m-m<8? zL*$_y%r6h6%K=I|Odj3=hQoe0OY4E{=OYi1hqw4f9~77$3VoAVxGWO97mP}BQv0a! zV|phda0Jbiz~~z2x^sl=g7n;}rhXY-P!f;kMJB1pqs){8(6Y=o<}&@ws|3AY=$m_B z>{@0j-h^A&5rH>41iHa@cFP=rZZryy3zXJ=r<)tC$+C~cZ&ii{lCdl z_*()L7L!u4f~+LVNjqrqTvB=G1it58C3(^xWMCe3d@NzghSJKd`!G1NiOHP1B#+X) zyf2ArriCZ#d8C#9^#>eHe=gndTtTndE9qa`oxOK9%H=7~A%S`QDSRK0*0K%r`Xib3 z2Qpkk&9k|g>77&b?A|T~@9|C~>!*xM^AbU*jG2lc zROUQIHj^(1nK>ewfNUAJ2YUsK8iAufI10wK73%IL#sp!h5VeSW*iA7E&4Ph{A@RLB zIy}oErx^%@?HKLw2BTSQaO~sEV3E0`i-V-}-foZ0>v17%=uI!Q351GAA2Q!0D62^? zV@&CqbP|5|(A2n-uuXDaft*=pt$8|k)@vz*WGC8&4Mwt}?B z1zK~^1rSoA;T(jZzDehh%LZLHC)|)EI#9|@w||sUwX;sLY)BM95#hb*qv|20XFIrfO4-NLIIw*08d<$tMd@& zAk20u$jw^1-5XfZbMQFNcDe@JAP_T;*KZs2`bX2l#XP^OHI@HsdP#4LJF{bNZJLUm zIayPgHg~b+V6r<{(|+ySbe(1x_H`YnX$x-W4HsoR(P_KLSd-AEFSMc3VcR($rY1AfuK3wxDwXcV!; z?SVNtF2ezg7StMO)>31urR`rF4K}u?@&9UgHu*ITwwejIXTo_4+yU%0gm;jBZrV_> zO{ti6n04OBOe4u^+gFFbJcZd&6323q4 z!(15k0w@9R7Qkr#O&4SU^qqi1e5L_hCb~%qA3YWlV2GZCJ$=eWk63PBh6fElJ23%R z*qF_kCXJ-#?U3W6@Uep66L!2|Kh9~UZ4=Jhw1dj<6f!Ynr(Y95>fDp#8N;uSmJ-_N zY=UoER_kgSX+m5WLUHmkhe6-as0;L5YWSq$8X!+_o?|$2D{q09d+-7kxG8KPB}yrn zKAw`o&XLMxyH`pI<}Z^eB{wRiq%blVWzB`iPRV+m<33j^2Ze6%Ipmag1M+i7_io^9 z(!MgjKzL!8Gxj?UX9Li~q?d9rxeP9s9O9J1Gl0C~eJQzb6fkz&m6D7O5-EkB7<8fN z47>WgVCLf=8f|n952J|%Ot#xjdfa~ZxO*B64WM^|?uMK~?2D3=ir2SOIaE(h<+7c6 z+B)bOxCXx~1Abz_@0vhgQfPw5f8$Gg11R!Q6n&*X#?23@iFQit9sWv5@u#`(>;UmY zSjT@MLLM|SH<%~iBCfzEG4U_qn-9Tdx`J&4^ohR>=9Rvw$w@DYUk6(SM#)eh3p@g@ zABib=f$KfuCcNBYoBTGsyaI7jZDgBn=jeX+ zr4&p6NWf18_zd{HV9NNF^%(8T#5jNlH*Ib*G=d; zMU0{Bgwr$PLSZXW{Ei`LnhQO9;4+$k`?>^-zed2YrUcxgCWhe!Zq*T^FjKAzaMDG< zEWIKWZsOJeF@o*@OH( z`dqwR64+%VpueP49@oggxOW74TM^x;$iZ;}`B4$`@KFupOLzv*sP0Q)!^mBUn1HYH z;H!zDiJ^gM>I*}-QEga(1LWTZvf{cmG~o6OdqFQ792kaQhg8lmkPX}g*)_n-TR>d~ z2Vejqk2fV79``!^DCTEM>IJn=xQd0Ps68j18-v=c4HfY|IY>fJWPd@6&#|_O+&zkPu1)01T{MN__h!xCK)icS>@x z)twSg3=?+{-_iT&6y~BD9z}MP!#nTb7_=P*NrRw$QHx_YKs{h26l7zZLl0R{w<DlRUT?9|)>Ssk)DLs0i$7T zc-EQH;gxy!>t^dhFNTjLl;tx=lg5GvopYUGPjoC{+&6P(-DnOMuNE}M3mT(CvDQSv zp15((%$a97T*1Q$T_Zr0XMUiZQ-=3Pa}s&YGbfWO{r%3_&d_iePpB$pdO!|?^+DlW zVfak6I-zfwIkhHN1y3d9mUr9Y^3tTKEV3tVas-teB6%Wj*UU)>cJepwyju~Mmn8E` zBIbC0O)&Sb<$3QK9$Mxt4@>4tBDYowcC9It_Z72>kaa~-_#bjax*lxi_?J19VRoc8 zuB=;;)-x8%#}kU;nXWZ`MdUURDOdDU4J6CCe@nPoNpN* z(ZPwhx;Th!4Utr-;rmd_Z0AhRxxaVUpQuWc2Gbi(P_e@K!q7zAP#HX$R2i35WoyMv(OXN_L~-}*+2GNT zbxmgowLRE3x9{~IMD$N|!imwR4hnll8%sxhvu8bFT(_*9`d& zYUgUhy^)^qp@g9>cocBPXbocz<@53gHm{6yeRzD~c(iNbRMhv$?Zw+m`b9Ecxj$hz z04UZMyt_N1=Rgug&C7)?vE#AMg#J)4=c!tYyf(YSzVP0teMQ{>7?qJWi$MthTzINC zN93{m75$!I&YHmz#=L{ev2 z)>W*TiXOZ&_e#W?Fx7>`Fl-C);MUx&HxEX-o*1i=1x0Uny-Pfto}Uh%jTh9-bwABB zEt^lQ4q|@nbm}x356BNA1JqWwl>rgt_dAZC@W@;t{d`aPAB!onN!I; z1L#9K{mhAVxoTN%S<5p#(9CH-XUeMx%0TNCl)RG@)clp+8thstvp>8we=C|Fy&2Ud z%Jv4&hV4((#m^)nLji!yD+rq(7S9()obQya>KsAIIuM?g*&9J=Qj-_b&%PAun!OSf zr#*md*1`uj=5B-sBjs=YU{)QJ1*g_51sO>i-Tlk6mqX`6Q(;$#oEwO?tY{j8VwnCC zL>6*|Ukr`UodYtUX#j;N^mK?E!-}FfsmQypo7IKID~h6ZAm^5Yan->!OG$V%VW|O4 zo?pD0Ul-4>i?&2B{74^tadB@Vzdd*irB}!Et0UK=hL6riO$)aY`MW^6+PtbRiK{{W zpQ~%u^G%__x9uU<+zFV4_pq+YU$!2Ks}8}U+zCrmMUk~q|&t0xKxS~FkB{^x|AM6cv z0<_#6;JCpOy8doOc<`N?Red>VRv6f*3e-`*;EVSBUPWy1cWYMEooo8S@a{;}M;IVg zx=`UjDDnC6PFFN&j54g-JLekLSUmJ^)`DW-c5BA$EPSdFjL-p84^a&-6b&7q2`0nKSM<7q2{*j(NShE&~A{V(#pE zMb(Fg77m3ZAo=>-v2c6nbUe@Y*ZGCv(RgWV(oz(+)T|d(E*I^JU3pynWcP`+@`j}C z7#I{Pj$_Y6Sjlm0y{hKJmlj_7uz#UHhQ-SNp!(D5KdAq-ezo;fy!BL~^~`7I^CkGb~CW}j8FN>UCs0zF1&qV70)`mS{8J8Hh)~?&CB7@QL z==sH}h&yiE6_x?Em)fAW_`_G`UwL?S{wnM^F+;5DQ&aTH;(?{YL`hFr44~{)kqZ>p zBUcu5VOi2v^`7&Q;giC}!pKD2)(%oiZ4m*|F?RDyxuo<678ZY@5S2T^UC9H7mahN!Somzz9xrYHL}QCD#*5oxJx_}F zeJ%kYkmzzy`9aVdToK2DIxJha6oy@IkV()6wSDoTzGPM7YE?(Pssq&KL(PIFIvBGj zZ0$>3U?8mC3&!c{!}GlWPj&r=R~N3vT4UD}Rr|ud$(qgxv0Bp^ujxz{+ar5`6xZ%f zHnyQ(@O3H&OxMr5!j8AqAhV+>CXHQKGAwod*c7|+sV-i7c&)e;MqP_^M~G-^)Va7j za(m%yqPP_zXyYT8SO2H~a0e3^DxRGN^R~Lr35iIdUt`cOtsf+H8m$Xo>_Q|xT&vQfy!(W0SbadGas%{Ni zBkfT+803}liZ;Mt`5)_-l%Ia@@#SPuarp9k&T#+y!B|bQy7lj5Vom#(N|B}@dlmpC z0i)pO3X#T$3P?iVv-i5fopEz@R2=R2QCGBcQM)8w>RKB46&1|1YyxBUy3Q2T{KqdrbLN+PAJ~FTPKvOYz_Tr)PFhj&ijzOhGoy+i(ahYUP?epp82%F}%9psywJwYwny+P-$|krY{d?PPckYjvN4{JFAu z+{tk^q*NdW&n0sNJ>_z7Wtyj4Hs3rIuHMo&Ps4*zkTRm(&jy7M3i2Qn5gpg^yv#NY zvByDTB0n2s57%XQm$ANV!eQ}P%jR63?Zig!G8kZjwL2!2Lf$8={8G zk!-!7KZzdIMm-`5Xuy9h_^%s*zDyiufmr5DJCJJHBAi!FK+nr71tI0$<>9#>yKLSxYz8p0U7x zn1w9B3widPh5jz)ji9Bkn$(ebF!(1aCFP`oEWnH2%_R%{Jq*O7;_TL)cdQrD|BY5! zFpaj-Dsg_w1SIKoL*=kg^by7mB1;4k#v+IpfCPo3pmS~rT+Rl<$cS3P&$MX-6UJ^s zIN${z4I4>4Tks6$_=qqTE|58ZpYm-$P%|<~)NtW9C{EQ5dcEUmh%S%1C}SF4K^}-0P00TMFAw2`3mOPDy2J=5YFI;b$Iz}c=;Q6fhRyZia1>p z@f2Q=qG=b)?G5Us{|jDNWfG+b5>Wc^birT2mJ+`_of2P}CjK9o^8djL(#)vAa7t*P z9s}C%ZmIgn!|2NtXiT3=f>a;X8Jdrcnv67sL~KtyZ{N&GPQBqu7~5ygB!$%*oR&mb zxv{zS;U8Y>@XhXFKg$srO&R;pR6s_{tRqa`#L+C68DU@N)hGu?2H+dOLyVQ<(& z7eZBYitzQ7T>DISQmR>%=EtS^p$jWgYf`HI?Q?g}g}PUymUX#q*|;w*-?wHg2-hZz z6+uN(V_MZz#5EO>u7sui-n#kxit6tBzkmh(H~@=mzBe0BC}xFw+} z35p>ON5WVMaB#c0ADxehnGIv{Yc0XS;O^Pnq{6tWD2yu#!+U?Os6;qHt+d8a%UeU? z@;66*p(zF2hFd1~NK54WLR(b&Xed_x@yLo|&zi;zcL(2gMhuaz1ygu*{yb_ZN>MnNNdEousfode>JXYkG=#hLGjmO5PrjcwAOrM6o ze&A-wxHN!mfma|-4#^%c;8XMPnmD|-r8}o~iyT5B|D?Ei;|dzg7TGEkPhk1QYcJ$owH*tQxRJP1~ezI2-6)Ssf7F%+>v3&n?Q+2Oqv2EKw^r> zJUVB7_MCUv-IzeBM|{T|DD}6nSlO2B5rwd;Kc}UwEMVjHmKw4Q^dWdx3;4(Fx3GIU zyof1w(mrO%q~RNGd(`T@w>E(Y1%fgG=*z_&a4*tl0F(;E!J*D6q#~;k7O@CG3C4&S z#@t|b!A4vt4^(*egKwYEZcsg2dgT_QO(hFi15hTIOO_$tG_i3Iiqf%oeh6r32J-mA*P(=D z@*WY$izr|rgm$mW*mw=u>1-m)H>>Z?xU&&EiOq;Z*u5x{G#IQHK7E2DsV5T)S#qb8 z$S=jVQD1$J3?7L?-ScuAvg9_T7az`UiJH{uILdf~?48sX9R>J#4B`=95? zD$Fr~2sU^&SOM+|#d%?)kJ#zxBegrgcR4eSmGd&%XT6pkoodqi-Mtmi>uLgKj~L8D ztC?>JQAC=_LKNG9lLDbwGDR#mRVa=c_l@Pne*%5XNLKsw{#Q8qU@yL-zhijR#`Nrf z!;=9qBEs9>!yfHszR>{(uY^6k64XQiFK!fuuv^GtfJII^9(8=IU?IU9m_97MC=$#8 z;rDV82q^erN#_24DCeG*-v8g{{6t3Y|DSbUbEO?Ew9#+Z3Ewtye!Uwt1qjQ@VdN&c zapxa8ouwU;b|#Z!Q#W0@PMnwS*YnLy^P6S;Ui}-+H{G%G zE9Zfm?J(4BxZ!?n4_br~McwYS^|0<_&?%MnSr-b358DGe@K8D_#PiFrt*4N`7DPNg z4!}5BZm{8AI9aoW8*nrPH z4Y-HyZSdY!3)wz}q|!giRegY|RvP=pyn_R7oXPLT`R}0nM5m290!z>ahD$EIZlbvhPPjo?n=a-<6#>|6u4JLx;bq*~T(2S8^E zBA-6w%IEk8@M*oWJ)hQ#+jVJ$-m3lC+*GeXuh7hD1J*M9g2$ghEg{9sl#=T>uuWHtOcIa^ z)YzP#ACysMymL(Ny};B0sb_Joi^|}-1!Snnb`FmC6kgO(xo^!^)WO<5o=a(ZX8Tv_ zbeBD1kf(bRP{dvOs;JM)`TkJ^!4vnqQy$z-DFdPQ@2k8sUMJ4_c{VjQr6hf42d2dX zb(HE4>IA3rUtnpq4c?}^0;ME;53!XJVepY~;Y1WBL+?rA5xhXpN#b9@%OAqa3cUPJ zBIMSW?i{%&6>?2o6jNZ(Uu(MT7<>Gg&n9pbgG0(4azM2|^gD9U4uo7n6Hgfl7j8UP z!5qYIAEl2(>Pcv!z|#;S_2f|zqpcLuQNo#5N;)#`9i()ONcjjo35kCTFaMi}(M8Hx z5&dJBC7%|F0k3Dk93NO$tj`$OJnPs_)Jl&Ai z6M6al9A16_FVK4rx%WBhc*;$r*F+l5e5gh=!HXGV_+`P;I*AoN7BJdL=p0H*B~KhV z6(^?`PFIgYk7al;26Qkb;KX^O&zv5XV89ri=;tCvF$!JQh`)yyC}t@G)!%8~;sF#l z0(muxuiPX=7~S5!I?+xX&M2MgUoe*h)TzENM>^FWjPuc|P3YTZP9-(Q`~9>1VMU}e zp{beaP3kT5`^tpA8N6rpsqTbvZ+3kuKwCFg7rq)jl`wS7oK6}{Vb!X&K5ng#9*r3i z*7mre9V9a<+=Q}d<|yYu=1iz;Gd&r!uu582Le~HtWt2hJ4@q>S^`V6J@Ur4C)HBM9 zKIn#?OCR4`kG)jyz7kXtHE7CdE`L6U{~-|valj@ zHeT2oJe{-_&z^h=9YUH{)Vq?F5{RS}DvD$=b|Ew~I1v{X}+I4vB-RlR!El*U%$vpiV z_O~uP=%4EkHOBL7!LD_^;eln&64uWZ0s)b0mgNO&=7Mnbo7ZMlPt67IRz7shJLon! zvv4L>xb)(mUi>WoPp-rd_9a_(e=fle?Md!E3V(aBWbYYxa~AtTgjMyyYtcD)wY-1@ zRZsQi(DxJiieL_GslBs%L;aDW<^0Bks)_Qvvd&sVo#F2<8|o9e4V3#8RMOXluPy8A z5{mknE>;tr)L6pOxTa)PQxn(JM6raXZdQy`#1tQrjMGq3UmU&^*O#yA8{+zg=y}i& zX1hV1gYb|+(1_KmdG=W;U{wnerOJpiiY*L9+hav5ii1dt{Q6a>EJlt~fN_`SE4Bw7pXrwi4kQXr2YcSohq^-fv!?(8i2Y46G8oNY7>!}EcS;55WZ-5`Bvr;Is4B zE0$!jmp^TY7oL1v4KB#;;e4p_P5HAnk-q%d9+4ssdh99kLzlws5kutClKSV0W9xbO zp~2wvvZ4SGqc$w7NQ%GE^dQ^W6zr2 z_@HF2Bz!%gw+Fk|z_3;Q3#(&J8p1*?Yo^jL@#fW#IBBv#A%6D)bOm|%>inzGx|r){ zLys$e>W=R@{#iwQ&)K!Q#;EgSD9Rlz$+koA_i(c7IQ%^Ug}C%266jM{NX+>#_0RW5 zv1s`x)r-}i)GyYr)^*40x)XIhkI%>JdY4O%hm^^pl81Zd_dMJ`zyIOE`GZmYM=eoj zw0+SMt4kCe42j=p2{}XUZz!H=L4KBl18hAz!nDas=k-gzaS zR~zhl%J|Iur7C~^(o^I!QyFcIl`k1q%m-$Vvni>X-Y+GXfs#Wo`3{V%J}* zjEp~vA$l2z%=u(>>(cRGNifYZY(3u^E)P2+`ekFqvby3aA21UvbZ}X1`}IXB{CdRo z$0&=8KPxtW?~vsGI3ycT$cOl6Kd=@VKQtkW44JS+25WULV9&tXwC0dGxESrY>A{@@ z-Klvt1X6B~>$VKf;hmu)6Y@>ic+B7p%vXfVcbWxGQfaXW3vV#Ld7eVP%kKzA0rGGO%RdHk&6 zS@u*1^1*)-UK23#AZmFdC~FrZNFS$z;+?=mVx%-pQ(h1#@U`pb!8ejxQim*AYWTW$OhncSd1*e^x1q_;S{H06 zjc);fj-1Au1uXz-Jr~kwt^r?Rc()61hCBZI+o8B-`&0r7gshUR%xF*6Fp=vSFE`X4 zCqO;{E1;cIen-AdUMsWL0?e$tz9o8Uwod~ozH0(hbP3=ryHk-iemMel>`LJOw54axL#XO(93D1Pvcr)tyEHLdnn1(DcyLm8;Szz|?V4BGK znH;iVMoKo$h{>kAd>i}@t~JE4rwZ8D-6_lLDZ>(>-gBn{-}|nVl(9CFPzJ;^;*j`W z2+R@oAz3)f&JqO9AiLujJD!=!+TGPW>SXP7D!J03oz9)QO>>seCwSDe7J^mj`2mf8 z18Ce2J*+pUaC0h1Chv*Nyc7*A#Hnl$$d)lXrILFcTkvUTyvf8rA_eo2nS4KcmKc~@ zSCUm^A*p`GL83`lV?9+26qmgzbrNv~) zqeHCKT&pJoVnl==eh+(egteM$6_E65vK2^s7thj7k5{4*?AUWikb?jHXXowRX{QOd z`3G1S_9UkXoUkxg1Mk25<=#2-K71r zho%U^o)P3dx9j(8qk1}V0p_!-URIKQO)B8@ssvd*Jtev)tUciYFm&XNI4204H z+7?Oz+XoRBC)_9uep5m^Dt+DMEFApt+h)8-e^Knxp&wQX!_YMM4OqddV2zAx)LJFtt6x&IL_H*89N zZlVkt9H~JMob=N}TuOtUm?0{qM~^_}MhNc|m6QiZ1b)hN_hsq>18p$zDZq4(KdsAh zp9Qy%It$CjRmXQ5j1spT(v*UsBbCe2K$F9imQwS}=2^sX#&FOMj<7=xmcvU0y!_9Q z2f0m5^Eg_Nty)S3#(5VVyB?W(y(SU~N76u6ZO9}H8J{6jwMs0DAsez`gM03RhHS`O zjSH-SOxV~+8YvU=F;2HvL$NigF~)=nny(Qx@R2iJdxPob+ptw5a!~dC-l?HcM?24M zjSKhAS+Jo&q!AX@gfRwfoEaOkOnhIUU+iKG+KAdLGQTmt2QpgY0hLFni+yfUtIMw0sS4q6QCIpyhAi#t0RR9^6o@tcO@x!?#o} z6d^QP_~3T=_HE!cTEjJC^d&42iG1x!WDVCTQt4T9v{j`&uC!A@nkhT8up~V7wi?;^ zys)A;pHyg{<%o1e@8Xd?AMRh+|Ng;5X-iz&lGGQy>yPw)czWUV`)3nnt#N%T$P==J z%%R-i_==(kVK}*>I0Z1Q=c+@p*NT&QB_HHRhCjTvaP9qxguOkU*N%b#pIuS+CDn%Y zLfgZ-`MSu}SWlvGU-0yr(e$8WuH(VMxr33S6=Nfe6|I<4go}QjSM^LGQfd%RwK3#> z?Of7S_Cb3z=M&YU>SIl!Vo%((Ck^$+@bHYiUqbKTTl-PL;lHM}-^Q{wK5u1vxWPUU zu-{w^?OK*?yJ9s7Q|C+{j2+*XkQcq{i_6QC1vSw<@q(71b~A&yr~kP2fIGGQ%WmKI zErgljjOEnk(Dm7~tLlol8U}1pSA&-Zw-1f_Q}4*eX;Y42bT29b^8sHkDFi?2Qo5jKIq^@9D zSG5L1;nzoBik*r#9$LB{Z#=S+*Ck}TH3F@*hGYHE4iSqtbtUS$p`q4MEP3n&cyk_G zuiN#xOx)4(g-Bf53NGfhIT%J?Z-xb&k6vHA7^_@Tt>pCxqW@FLm5;h^!!KHWA>UT}qfcgU6FP>$0vgn!8+kFo_}qM{h1ScLSM9 z=D!SM75761Sj%a1(~8LTsQsg^==EsNV$Cy=%-WEwZ%8&Y(xK>&CwCo9Hg|oV3tj-? zs_H*ifji2~^qE$qHp2d_vxd(;(K(=@r+)r>t0f2HB?puF)(23j2g z|CCHLjUSzlVbM#A1u@V!4yT!DnrlJZ8%?uEk%=ZKM5_l9ox2Tr(@f;t&VNmwrwY!O#Z7`GjlUnRcEbp zQ5RL`)cc;j_p{u!*lx%ttYKD=1ize47E=AUrZ{u#zC=&rCyYVgwTKQ*&$FPOxv$-z z#rG|qzWL$WmOp7$ZI z$H7+}TY_n|uo!Z%Nzidf^A4i~8V(tEhv7)Yns4>rI*|;|X&A`xqe2!pX?GQRv7s&8 z%d3E4Y(Yl6~)v^O+;qlBQs%^N?^_yL-XFFAWjmiu7na*@;@~3^H<|j0OXi z(BSN)GHs7MmmVAaIW3@<9zUi(({Z>YOv_04&d}dd-ZVci<#dG%sOfC#hX<{aXoUp4 zqDv+l7I!+hj8(4Ky^Rl>{Bp?r>$xUcRVEBm0%Jn@e}3)R{23v(lLI}ShGlmUhDxrK zpec};cqWZVB3Kxcm<2<{iOT`Wu~h2Gl-9W`Ksn9QJTnT3SvL2&@m;E6wL4I(?nh)^ zTS);(t~cu~gNfM+ceO?OpOf-05jX#^tFNmaBh+2!d1x|J&RT8XbntP@_2XYy8#ZJu zpyEWM91Y1kQN^(%*)lS{g=Aw#L|)m{+7(B?{grDz^>1zkJT)C?s^q5%#L&kdV+qWK z)z8AQ&ITRa59y1Dm0r@DBzIgt5p&vW5>;P5$`?+&7w<+H;B_dV{Tbca&Z{T`fii&1 zQD?)&odyOf^QYq?3Id|QI~&hHNQ=6OK;j37uYvYu!EeMP3x87*7!Y7#x%QKtHNI)n zN%m6!9}rrjfyHGQnEw@EZ#T0voD~uHfRY^BHFBI~gQg?T12Mq4mxXKRMWX_mMwA81 z;H=(Tb$^VzOwkco?m-4`a11PXsnkh|!MyWz+OlnzZHZU7^jWH><+aTCLbs4{Dr3W( zPwziSVsGRs1<0H+XV8$^t_>}an=Iwm-@Tk!ez-r0LJo3|2xcmjRx8ExW6`a~C%ACk zU=^e*Wuwp{aaMBZpp_mrA|a9Q{=&i;QVg~NaovJ#$P=d=4WK)r|zTi}ns!_tmAOu3Hfk+}zq`ax>N>jmEh&81g>f8Wu9#qa) zR`h~GObYGfBtLW-H;f`GCjWQZGD#G5IHtB*p`e*HmHL@x40V|}_Rqnx(uCqdMia#* zEbl?86<4Y!%8(AU6}$MhV$Y+TkW`WyQcdKEipZ4QeMaIN>7Ers_rKf3&u7+S>kZ?a zbUC@Xh>8dWbhK&;$>v&sq^xzG0vBUv^irssjho8=8q%i_2V_3j9Fqi--_=Z&2%< zA8MwxK{cUQc5cD7Vvq4D;70CLUWVQHqw4k6YV&h%(q!|RK)~yuf{dGHEP;|F8a2ec*kg~lyiR$-{9_~)S*F70@zg+^4 zQJQo7$8fIv(x!XtAZFp4#<*H}w*D_2f~DD&^x7v2_#W$WJf z?Jz8CdTdSE_*Wz$EBa>CZ&2)`ps_UzN?Pu@BNmWFem*aY?O!N$jg*1Uefh?RJ*?>G)S8PyyUQ8z7w)BmEv#BY-@)ab$2b7 zu64kp8@DLK6C0gIR!N!QsxuqLN~ZpdMR?8?k{e+MF~Z7sifaSO_QdO9N_-2zxka5%CO9Z<4cQkbJKEa z?O|aS0CjyL;P!2WTQC445-M@4U|K1tQyxP_^x1!bHaPVgp4zQb_;rKbp0wUlvojFB zsOyBkD#xS;VDAc|a>~Dl8F2&%bawAL(v%aZ8m|&s3<72NRSCym|J3Bj_w#GgRyR&g zMJx7IQ}bH9hLpv7gDzt6*p)aiAVwJj8t+OEY+k&%KPNVTXSyk2jAtbLf#v1t$6txz zjjxG+eJnA6gnLE*h{Q~P^Q}Cu{Sef0vTd>jg#HO^5JahDGFp-AA+39I9adrc`pM_`)8fg7Ip^Z!Lv5;D zx!3rcR>g!(h;tI9$3%#0>k6BsP*N5uPg8vr&gTnLcFV&h4&q8ph$4n&Zk-QiZf34N zA8R{4CvHUX(;`Uj9(H3h1C8#1PM9V1Fth>mK#jv~t-Bio`4Q6h;R(sOvwX^T1}UqC zXBZ%kpTvYFGkkB!Q*~y2T4V$KAVyxDsf8C=cKmR!Vs6fGuG#%tMycJETB7sRq-%s_`3FN)(Q zsMht%KU`@QUdIKm+BZ418C}j_wGwPU%xwWmvAGtx=071;VXhHbPjoA!jyljJj=bS+ zwpbz?gE|{Y=9%sP)-C2-kFBoZ46?`-Rfx|j)}!W7*dvC&I)*WYiN%qyAXi+{MV(%c zMrLOK&c+vC6+jB1m6zyjWP_mzPdXCM_G#TOWdxF&urhz+Um52%Q`0b}#FXBByzT_L z1i!jp&wG>oTj}oBd8Ph%kvK?S*4ar%;>8pl4MDQh!xuc(p{fom49~v_l-Ic&QHU%U zbTT-HhBi=*%YS4ZHnC;BsIUw{7%i-X9I)O=QT}@{seCWCFZ_r!`FkV0J`ekbC$RxR z*my#*2$nni3wLjCvQ{=6@m&9(n9+ri!pzmP|Idyxj9)`&Q^{J*@4nV{{8=o(I?V0U2+d%OkubMH)9JjQ~uOeXEF~0@=6oL#TCUKq$HHu42*x2l)a`@Qn z<*CKjWn=daDFz(W{5uk(Qq1SQ+Y<}~IBrO7si_9x-BhUhf|F}0-+67Z{3NM%-cqg{ z8Lkj?b|?!2m>mAHzRFF~!t!e-@=L|FKBM4c=9fT?yf|`!khD0qV(=o7Oc|i)X)kI(C%)i$RcqJ+74kQgf>M zSo{&Pin3nvjFK9Mo^n{em3bnPtwPY)C@uXUY-jhv44!7jNnfsFC?Y}iP1C&VrAku% z57rn(OX7^^+*A@Dq>^eBLpOKhBz!b|xdEVT$d>xcTA&xqX?E`MGz(T6Pcmx+$cT@AgWxb7>{iNF)zCN7r)JFz-) zN5Vet3d5q1hr0212{zME9Q%Q0QD)mw!wsRpiv(*cZl_IJmYu(wZ`stiJQd?5CoosX99K{@|2z}UHB-m1=yv3Djb0e` zvJfNRwx^9m)kPSrq0S7Rj9tnwwD>?$<1WowwDfi9b>ayIBYnAZR(O&{Fr7h8NJFN1jDaf6Hy+q_tD=)TZ^ zqM@74et{gNDOPl0EI^II{|0z;P~%aB)AO0dp^P^Fq1??yy$^68{rK%%`uS^<*!`4? zhsWpv2;9Sc_;~NPRQq3#S#{E#*HNX$iqaj7y!wRoixUG~3l9I;lv~O+k&F^;K?yAy zVav@@$CvVcE6e#bH3LDC^Dt~3@MrA!dSZZiVQ|ZI{T@U${CKEm>lR9&*6BSzg`>`q zXgPN85$)8Q?(TO~-orr%XH=>N4$-3#YVdkkH?Qt$yHR4702lKH9p8{ z;Ln2BhKnW_M_eH}GL!Kg?+bcRD7Mv~nC5&VZXO)P{UGutGh{<2>Ifp7reoQP?NSA) z>(*nQ-$E2G5WHgjE#?Hjjm*sgY=v#sfFtHY1N9c*cNjA2{6`s@M5XsixTR^YL8K49 z>oK`0qYXk074$OZjPI8tji!*3M~Fty#X9-l7UPR*?4H~;t0NzM7JIhoD{>{Rob^|= zkC$610;4mdM16BP>xNi-XQau}$83&I*_=o=q8|Q9aQMj`_iTi`mw!JZTFA~m`l3V8 zeKdKQ$>795Kx;}sK+OM-0ChcCdAk3Vp?>9MCI3sUUB6}Vw;hqcI}})g zyQW_+PZXn%zF{3a+v@7z-=kH@OxwC3-9{X1G~~pNbeyzT3`3@lu+25rXK9g4G5nK%3s z?wz;k7jN%(+<)wC+5vtuFF0UAQXj~Nx$#MI!|P94(1?P^NFa>FV3N0&Wr1eL`L{WU z*KekLZn0~O%)>h1roe7f3}$|ny*YbG8NpT@fQGaV$w?IZsX8e$)0xn<=7jHtegP*N!$gqT3qF)(}gp3xRDBr{d@0jVHZHxEjZ+W^FtEA@H zqEORd*_NT}d-o_F)ny}>=Up{9#9h|}L-f)g0PrpvGBs%Hee06M{vxGg7=X79Sapus zvb6eNtJy2Z^<67aOx*(KE&!;lF7VJ+U|}3Mb%0kg5raMNxit%on!L9Ciepz)eb_!C zc?j84mVn=OaFynsN+uow1?Z~KFUnEJ(20Fn1EQLRy5N>^-qzw&pR{oLmG{(rIB!W- zQ)gF}W7iQuGn5CkT!>iv@q{>-RStO9)y9NYzCkjn0VOEjyizOy^vvJPz{+jdNeT07;W$d0RNn~TEax&7EY7-}!zn#&i+qCs zL6n!~0G3ZG!k$VBl_)?XTVI1aamiGj2RABDJB5F02|7XSJ~Fy&Qd#s1qBxnHKTH@G z1G(#0+Q|>jyhL(T4N+2Kj4w+x3f`SPZ6AgAH4E%I^zqcc#Q|u=v>p_)XyoVo2lA|l z_gxUPxRgHeUDq+G|LQ$4$qJ~I)32xSr6@koHLgf&=b`|Y!v>G|iMO{07+=V92FS!^ zp((+gxHYgyVtipdxl#Z&NA(|eR{ehJWzn`QSLo?Pxa*T^CAq9;M3ETf2@alsy^x31 zA7Jj-Uj&3&Pgk;C7YWh0dH#7E)jgN>sQ9wSGVMWu-z+j3^uQ?GYh*MWRbh z)+=uCT(kj{T~+)5iavg@R<)dJnrokx-7T~78&mcDoJ$qgClX_SFMnOX^L=IR4g#<)( zj9~@0e6^87LG>#JL`|XO0nyJ0dragE^}h?c>;2l)jl8r=1$msVz5O{w6E_vMM$zl&1EF+d*M~P@oQ_Wy!)J4uK(srnYn^Z7O2lHdm#w*2D4#6;FZ<*GzidrO}P< z13Uo2Lx}sE2Q8{N3Bl)V4@-QySGz5-KpRa3hT5G@pIV57*FHF}!XOyP++vqW1^mWD zH5Qy;pxPCyWHoA!8g~MQf-QGQ-+yX%y@10DF{}b=cF666E?V)0IGUIp z24Dx!8y%V`JjIiHDbEGV;`@Y20MzjVkHG8XEz}m}@h^3U@gI-{zfi%@fB4RQu|n=E zDA|5)CB4kQkG7Du8#a^t+^Rzf!ZB3npULz7Bnl{$-Rn1&v7~{q)mVA>HkR?ES-Yvh z+?Ga1b{1cnEBpcRq$pNd%N{1(b`)$h*8}k)gihWZ)5TTC5Q)@8nO%OG?K?^_SMcU4 zXS#u-VWmYBi+m=_`yenQtgi}Fo)B*`u(&fG5sJ4K<)cL`BM6JYSR^pFv&39NgzHFI zjOW#v%&GbKhxq(hO?6K|Y~JT@hs@FdzZt$knCz^1UP=%KqvrH*Qq{2h5>i@sF&{cV znclVV2NXR@`CGtqx3tzrzuO`v>BeaMC3pf++O^8`XliM4c~f;Jmi8LP>?-}z{bcp# z8Bd#mhK+aBQllGeLZKK(yB(-<%xI^-$d>S~41$m0F3|P$>R|qg;NaBQF``&P7B%)9 zOuU5l6D*k{Ui&_Q!x``EkOPf$H(qGS_4ceAFt zV^OB~#2X*qFPIx51VPkJEMdq!(cCB2cfcL@`KNR7MiB1Vl9!xNOCkdwZ?##>qAX`2 zAc)UE^GB4q+DJ20GI7up4$1mg&bo4QbPp%R92695m<1~UEX1#7yI1XZ=DrJ`L_5Z5 zI~dPg?%)6+eZGz}>eaQ*2!FJf#MerY+(S=F-3T<14#7wRtM%bND#|@~1PNPQi3Ra; z5KFL>6Aqnvy8@tSHpOdRCeINHZ-0RsHEZFukvkoF&3I!pZh3{oSRC=lconQ<6QpF{ z7?Y>r^1cW7A7yjAU|liXS^f;Q(6JuLK+iQ6m6DgNYQ)T1Vw^5c?Ulf1Cu|P{3l%~0 zbjLl1hw+YNHF@a@BWpBYCS1a+oX z&c_X<=Bi;*!h4%N=I!KmisT#GQY=uirxw+clCm0*3c?nCD7lw=4gHF%IdPZV@r0x$ zkEviD*+%K}(cr$3WaCVeOUc3QV{5VGVd6->6%Y94Yw1a2AIP$UV#$HCH?C04H}~yJ zF5_S<*O`ncLNM`(7-axoLYdOen1pbb*|O|-7GDMg!KrNnj}i5R)ZTh_jFl%fvG7=` zolrPMW&*4&?L}l%iFIW96BCarz*llz0q37%%I)v2t@VAT?b*&@(1t7FOo^r=q^Nnu%|n z)|>Wf#!26{BwwwuRd}EMR3Uf;qDBB8G!{U_|MnsA~6&Bm^1cOL7-aWyh{H-K^x=Jc-`m}7bWpf;s!_#Tjz zcPE6+PT(3aQTD7&;sso3yalWc>0^k05V*d;%tII7fADtp(X^v&ye4uitnF-r0tcC6 z(!De#V@9Ux8_ES3?iaciZmXi8bS_Edb-FhqF3O89y2J| z@Go-jn^W#H?71mxleMMP_f(%*71Ej7A@qvnk{V;4n&T6&Wo!>qLH>0_%jeEQdY(&d zC~ds3rA|Npn=)Vs@Z$gkJZDX|?%%JMu$MlX2=ws$9cUpI%>{fQ&X47c`%-tyo1u!n z-y|k!N#3cgjH*@-9r@yElUI;coTc}eP_BrUh2;FxO1jq^`kq=gWP^GCwqx5z3SS}x z@^zzr%}#hFt2Il*E=gt8^Y(R_a&W3yR_joyCG@H`Yoc`e7y66RE4*3*cc#V}OY3m! z%;26@f3txumANFea{o5}P<4vyeTS^5oLCa|?LpR)PN63;aB$`9T*=D|I}F!9nwB>i zvdDXZeeS0yO3u-9h9igL3%?>@>sQ)N!OHQ$0cHtlGW&+x=-J6~n`|e8qr55p8W6S4 z?Q4!JVXH0)bEIpryEWM?7q`XlQoU1TSx74g93Iq8U9~NaS2g@N8`iw$gw^yZtYtiw zXzegt(LP|yu<}BfQYl&3B=bOdfBu&A$V^U4ogwnLVoO-z3q9nXm*{5wwo=g=Yjr_n z$&@nm0+y)Iiy%>iW_=SCMpe+0hJ%5HJ$s{h{B3u<*;v$!u z#+bvto8o&5uY-JJP1!5w;qL^nUS3>jyKU<7M?{LndG`ft zZ{-hhDFRDvm!9fZ{ZrwQj-GCQ9CWo43qmzFTHHJfL3+`4SJzQjZ^T9$`AY0O-Hp*( z_6r$4Bf~c9!{0q}A9gM+PkL_bkHfqlU3BEwmDfGi;2|xp6jF9>dsYxg8$wdMEV_j! z&A->Hb@OQc` z@ls5DKt2?a)IGk25c^LGczzlZW9M?>!vr{ zMS5YKm*v+C(OtdCiQ;Y<&0wwX19Lia6t)0#tS9L9h3-{TG;SDhe~ETVu!(&{dlmGn zPz!hk=buCB$bu%HdZ8TwF{M{nl$txNTtI$3g1t;{V1WJm5cju=X%zYSW5t0pZa>c7 z_z}rg+7%4QaBdBUOZ+mAQ<*1Uu6zE@n??^O*#o1vr*hVZJRJf2ST$941YGs%19oHe)dajptlp~;NCWZSd>Ugy+qp^em zqZaa3?mW2~7sL&X?PMuYVCr2eb(MK-nw-_Xp~+V2C^d1e8E5s)**|~O!F?#%u3Axp zW)+2ZLtNooFLeb+!nb7u@8H1oLhGpzCA5}fFw{A$41)vp0SnRan57wJx*0LkAgdw5E;5icPPBE@OG3~K9p$$@|L!uoLg0Br%39#!F60b%ADk-sYTlOsz7BS z;%tHY)`{r-)JX)kNrn2&1NVC#lKI@GW@tYF1a+gVXZ|Tr0@CgNK}lIw@a~AVs2<0D z3l`X5Plad}4l!I5ufo!O%${hQ#ln48Zpx(OFlHV!I|wYm0C0u4Y#;W4$#u7i#!I9Ae0lxpcm!pa+v zzH!a`13989s$MNOM;i8nI?TY;Xj`|YscLFqfvOC>1@slDCt6U{G!};o252nJ-UwHL zFp>Fzr3Yn!lxl~f{ZxS9)oC}OQOZ)9wkDhSK#H$%p^xykeKJ-pyzhl12Uu7)~7ji$vid(a{pL9uI zmkGfG;)LsdLr{M@oJ8lm<)Bwt+U$H#k^P|VRO`l7Ol*ZM^piqP*YW?A{8TO`uk-RQ zN)LP8b^hGQdG2XSJZ9-l($6&!M@oZH-s||M>d3z^rmK$8rn7T-d*XgguOTloaZV{E z@IN3+j1h-nDxfh(?1Nj2XyZ@n(9Z6Z<<#n8!C|KTZnBZ?>noQI)4Y?X`1kd?aX^&s z%K8J^DK}$!f;~rMVP}n8l{~JYjH+a1NDm3F*Z-C@9bkE;P%wgP_T{)|9+-I#*peQ* zCN(5|m_@@tmn81@5=|pONvXDUMwUS@ERPsZLe@Ygrq=Ysqhau|ux_n>TkEd7BRtLH zxXGVJn`32aAC43MfI2U+1h3Scs)ahafimD!P>~RBN>sSgrh%$_mT~<7ToAWCN!$K2 z)ZutZ9z(5cBfa756VX62k3?%`2&SzB6zid4p!-aSHHpmaDtq-@)x@oQFbcu=;12UJXM>om!KgYRira7n2{m!E1FJ) zn~L~Xhzp`C$)i`9!AST0Eh}LuU}VBEn(Z~W#0SN1s_byxVcuaKAhHo7@7Q-9{^j!E z0#unt#?fltb<%#JIh=l6s30>2ztu@sX2`PC=R}}otCjMOrS$7?F{TFp>MQzC4P~@~ zpgw`pG)9)-X#>!PE^Ry150z*I$0p|F9G~S#R_X<8=I9F4zge;LKKuvV4HhWd>)ZIG zFsrkzp~0+h|1+#L4H*+s6iZ)ps;^o6NwDO7w?3kr4-LiT^F4XT`McuR>|u@w`Ja_A zkQG2XndnO6>d2`p{Slp&Px*&3<~jFJV{Xj3>t-vPFD*y^={e@hrd7vAv-S*&D+sW& z*zD4FV$a`y;}C7>z%At1`l>-Btkh{1Dmh1XIc*HVqLEbm!u(Z;hSKpClAl6>JvZKq zdShWQ1*A{2ofs2-9x{|Z94HK(J10H;Va}B>M^P^8I0~m&!M4CU=Fv%POvTZWSJD;_ z2_*B5Nfw-*dP9x4u+%YfcZEMCE9e3w$UnrQkfp4E-ke`H4>tO%Ffw|Fi|=zPG7kDY zbN=)!@L$hM1qs2t1dUtPT2*F}Zr%!uxB_aCRs%!apr7VGd+>Xm_JX)H@E`|>IN06` z1up45n{EVMdOb8o8Glso{}e_~y*zJk{aQ-d=?|9kIb7L(oT`KCLvTguu>J1VtQY0ZMq zx%)*qBFJZnPg|fgz0te_^6u##6^idbZ)9!^&$`Y#mZX+v1bg^LZeY_v$p_%Q=Z3wZ zVb$@!kDBCagLSzla5*u##{j-pxSCgwe1*dTJVWS1$DV^tiT)!Yi|Y0 z?~o85eZ(N`DlS6Z1)h99K8Rc3d?1Ob|0pYcIJ{h4i_CPf-*mTm?e>)~>m&V-cFqpJNQ^1kt=N z2zB=jNu^um>GT`7-Tte7#zE8cC}1Gn)mgs%asm2EyHx$GMeP4CYVuW_1d$R4xaGA6)cq9J4?uRwk_A_D)tfhkLCJ=D5R96&VXLri$W%cpO7?4TKB8ECy+5jWe+(C4Gi&sOjNtOGgK*HAzb9N(x@;m0ZTnhWh-O@~(nvg&*RO zAhrxn=}JMSPx-|%=V#wlK3rn(V5Qt<&T_Lqr^tGM1aPYOuv9DxClyE4JBw)GPl12g zC)^=sv3X07aC2;pcc*_oiNOU<*n_-kjcj zPTq=H+WH_Ab+#M1KbwKiec|O;gJejho!nLv!lW0W(@c+4-M!ZgnG{6gGd+VjckM^V| zQ~_;1ysf${6*&zK?rv796c~h0NY2f;&&_3ShY`q$e~7l)z+MK(@wK| za)EkD5p9yotrcI!*0e{k+H5FOn;xt8E9BLVGC+eg7Ch|tcagu-b29ZR0>}E6om-ES zm(8kL5-GL%S%o^I5{u5`OZ$$>&8NpS@0HF~0`uc}+i0a7Lv8n8#n{?qcDpLLc%eKg zR@Efrt27kp=m3v+NGI&612|!lND+4kVRsjUJf}V+Dk}{|Mw356qAC!=G}pD=WOz=vT2p^Vu2dOH1k&{RSiNj5p*cqyS;~6 zm>s%2HALH@E-;E^Qejprsr?Mg=wSLoN<|MB2YZztv0Us~V(43D{Y@|W+XOOw|5@CD zTxk=Vjt_m z^CvC+iXa{T+hHL3`0Y4&eJDP;pEthWwWN+$+da&GY?;b_3zPWhPx^hApG+_bmCCzH z{^dB~xUpKWvI;?Ss4|(T=C61*hWU`XMoNHc1?*ScGZ1s|qGcQ1<`6uTB+iey1LBr_B+MOU(hZi^poDYZbMwt+wA%CtUR z_be{FF<}0ue;pP1$|~x)sSX1ya|QeAg6JYSY-vQ@J3qXof7xm-qC{K-Rtfl$Nc-Z022084Ib8oP{d;P8KjveHh z+KvNkcCZ!4cz(I%WSR}k2mwdSBT$-PGJtE zP(0+c)WGj=$P>F9GmpL^s#_Usq&)l_FBP;Ozj3eZ~j4Q@@6RfOnyN zH$w#t1QW(-0kT@eFdjuAyi-7rj?3R}WN-7t%%k!tLoz1u24 z!W&g-6^*tkVhf0DT}O|&tkL6sRw&%d(zxC5US1jS4ScOOV`0{GgB~iNOECwEVD0>Id6tOMl}P2I}fQkycFb=ndt#!wZpC}c4S)OyNE+sd&Kw}43tFC zzBHfv7-0q^X4)G z2{?+4|9XA{dsPYp`(aes=KZ`Xd`?zHH?p z-UAtmYky=z=Dfa17g+EEcE2&vwCi8Lm1c9+e1u279~n$7`4tDgAHxJ@eMppE&*Ew9 zmjWsgw4--5L2EjKE_`g@=zN`e*dSh-_-AUP^P#d|O{nx7r67O9vM(2ma_oe8xDEOo zQ#@TMjz@y?wpfo>?=)a96O~2+_T-8*vW;4|Bp-1Y$H%KZ-FGcm^j91i8U#%lYxh;r96ju(LPO}YzaEB{RYqE>98{Gg^Pv@`VP_;}~#1OBx?X)%6 zN3|Buts0uog^1c)?$#%hLFSEa7ErW2jvW^f#>}g7zZ`j3dN4L;j8;?k4{6!{Bsv$% z_mc`$Mr!GmXtq6#k}x#;P+U2->Yz>i>xGPLb9iT>9;Ej$WDiPq+($sM{6(h^d}X?8 z%YH_Z5I7ExFYFfv1pGBRvT76btGJ1@(mSuP(DfeZNo%^lm%|shTi`gRKrfO3?L!G# zob1c*^b0%w6MyWJ7w`d^@bZV`;w9`;swi4;y;~T;E4q!ObIG|$ zQeR)M+wGP9c7Jror1zy(ts3mVb3}IZ_W2Du@P&i=X&ioX-~@o{2#?1Kmor#+)xZt) zLB5Tgj)>FaA?2eMl^fH5_LQ8FoKtdD4avE0aC}tGQpqd5uR`HfF};P6}M~kE42&LG)TG`dPpv3>*?fku;@_6F7G@AalrWtH>Y3ncdkY z!=)JPbSXuPyq+DL{YiejLD)8rx|8ErToOODOQzrK2!^DsunxEY2A2OR@hCHUm$e1O)2}fk6>C z$`%p}n^Lat6gY|nHYz~5L?4cOR{?sS>Do_B#!``ilgNW9YuFr`w%BQylrKuPC-fV3 z_ETv5a7ALsRhmWA(g2!lO}`IKGMU##GC1Q5S5o>MgT@EBT(1tOqEVxaDd@4hb>3K; zAjkCY!)gGlvGiPG1KvpJm|Y6ZYc!>&HIWt-ODJ0+Ck0|S3TH&Hh}|c=U;T|hsf0i& z@2~7ex~LwTQdYZ4p%`Tvr~8i%?GI|%|-U76|bGM)2d=6Y;2of!jPwbyikW`XpvzR9o|GK#3V-c6qG-igFJ8O!+g>uf|JQ?VIn6YFrkxI;cDmdSD^N z<|n1q#do}ZW5j#UZxc!=YMVS8r=zHDlc(;Y-gsM&5 z1gBSAx>3Ps0iPS@=8kD%NKlM|n|e2EwnI`=o+LBNac+@U(8Wgb!;VwZ63`+ysxmx+;1L1|Gx5>8~9}uG4F!| z-SG=V4CaxOt^;TpWzgv{--&>MA4wOcAT9B4!g&WOhUjgtFMTLgF6jOdI(I?VMVK+k z6gzH45N$&qfqeB7o<3**hv=K>Zytg-_s!44V5q1-c3@B#Mwkl=DK=hVn^VUyzg&+h zeF(Js*H0d|fH3^=6KHT~%-s@+8?0L$*wsbu2)zw(cAKrWo zBxd3z<2LDiq@5$gik zhaSA(Jq(^y1FOj8_3r)av9Qbu@NN0Mxrp=MLtG#E3jy>oF_0yrc?=CkXy)&OA~Q*` zhe!SlAZ3NK%q!h)H|L>eMecs9<6yTJd{_pMOi0(p$uM)W;M3%FT|w)Zd8DUpP*Uh# zf~!ouGjE^x>L+=4x%sB~MPS$mpa$CV8c-slbWkL{^l!bDv33sI6Zug%=^5}Lor@G` zV^_i=6arnG7u5n`x?Elv9D&==vAHBv0ZI*vEZ=7=k7NfRb995J4}lCbSZLf~%RV#8 z_K~yxMS-2NV5X(whU*8pA^>vI(Uva?de#fEyJ22F3RfUl2qM&2a6dF0Skhk%0t8iC z$gqUPAmgnOB$%KW5H9_0{N{Mz`Z-UbUP@)lu7iOnVh$j2GeU$I358l`frMfAc#M6D z=y5TIP{p^_Oo4>a*$+=J=W0{}tO`!(brFHx7CT9y0a59rw^amnC~;)@*%HvYPz4zx ztWI-M#qDMk$$~_{o!w_=8nfO&jobxy?-EJ#%7hG{!I+aUO=gM1o3p8%C!BkjZMzNEw75btJkJmx>5`X z5D5`ybRDt-Q#ZUrgz>|%u@~`GZtBB+_q~+F)nqW`E=YM_`Mh^;>Tvyv<#>tJ_$adp z=#|O9l}V{D1f+Ks+;cgf<2E-(&Yaer4el~0f5CkMx2nuAeY%4o4w7uv14`cat#n^S zFfo__10a0hg2T&MSNm7i?jpn3oNz0j2FDl>^kox&oIQ*<`6P34;OKD&rEL7A5CX!<3Nj zEi+Fl2p{|OQn2HwQBXO3>_+kn-Bab0ig^-^peWF#!_3Q8-Rt#IfLJ)O!|HkEVt$fFF0aXnZH|J*Aspt3p%f@_@wQ9eYu zI)7c|ehtKW2>YKo5)%&A$=m9$!$%5-Suv2mAR~aREISXvgS?i!--Tt?4*X`vbH+?m zr3XSvZOnH!>5hZLkhYi%0jm_g2!rc=Ym8}NH0IrNkOoR?4dK2XubWkN5mnrfW{6D- zIe!Ii9c6@sY=ojiGi)tt9&-5g*qM(J!9kQTz4EyX=I)ufD2Pb73WA@rUpXrZ zTXGHH_BfgyK#)@9{#BPnX{p8Ai-retu^JJxWKps|=qX~-xc7lc5bmHxtF;4~8+x0T zZ(LXrT73>yyQG6yX<2CJvwAO1Rbjhn&Igh!1}r{Q0!MADvBW6y4=B5wVcvB|8N8pS zjXl&3E)d30YMp(^UE%~4uEm*`1#>veG^NZiT=TIfgERxb{3vBy23}RS?Z4>y#u!na z=*zM7#x~#Bwr$(CZQHhO+qP}LvAy%#l9DEDF zd&$D6@vAS*uC&xGNB4OXqM=Y2Z%ZVR28+1^H%iu=dpg6M$KnW(x$4yblM97 z;m}6AnXzWaSyj2|MG#|*TdX1tFoS4h{Zu zW5YFH{NvU;l!+Ty$dXDACz${WDR>n2{gvZSrl$8_7;*iSt%KO0YXqe;Prcn z741nN)JhwD%gtOf1c+df&VU@IHprYj$t zMGqbGqs&UATrH5|I*)kkv(I3qq+M8vwmgRSr;oSkOZVh?o0j@$>uagD>QLYOloPyR zR#-LhVd^)*MxqldPd%Qo4GF^3o6U=rE58cmRWfQT<3kH*%|$RejtxK&Q}-p8UHM)c z+E^`p%gpunmY~h0FURI3dx)O{^q6!<*4e$Zkrpj`UF{|tA_L)Sd(F*-KH0|>XEOX` z>Pme|%k>N}HT$P4D?`>Xn`?s45HH0jjDNBYbk;IdrO*B)G=)wU43ei8_0y7hiwxW$ zltqS!R9}G|T16EorGCmdtmV(D!%AvRFcaGOTdN6nh)@Q@x%$YQ!uXL9|Xhj&gP97T@+G zfQ&i4UIAN^aBppb>W-NL#w-;yT1$a+tJ=?S^;=ehQ9Y5wrKQcFNVQ6OU~9SfF6hou z1CoWzBf^Dddtv6OEc>#t$j_FV0KdL*-2XD~F@zZk04M>LV)gK~^Z|i5K3z1sv`W6`OtC4nW=I=uJ#`qYa*l z{Ufe=H@IOr`|u4Ip-uRKOVHhvOG)72>_PAte<3*U>742kx$|#uqNVAk(m4zPzBU#xuU$z?`*|o+giZ9^`B1@^!=Vb)5xzwJfz| zSR$L;7vyc~XTVvCehx68BS4A|rnxMso~KUVPo*=5JooAV4hJoYPka60K>RWTv~-0o zH=w)l1Mm#!vuJxtih%I!7mzV;URh=#K^m~PJcn4FbjQa@qTB?syr8Sr#r=@8QK?98 zrflip)J2MNH+=n1vK5d9Nv|b9hFMNlKo?|ic}!iY-u-fMic+4xrwg;VL~w37nfNRQ zWHHhLU-R3s@cf?nR2?4olcV@VK^r6u+|n3*@nO&f1{i~IW-A$q85!AGd-igX2-MR3 z7&{+f^bmW7pMOkdG2_EmkvsGk#8Fiel;&)ZzYZhc!x{6}i{#7$b~35ur~Am`FZjd^ zlLd@V&SI{D3vW1cWMDsP0V$D{^rHJI&AXvOcOUnh_sj)31Q)9JheGf~xHf!uMz1N6~9+0eFlDLnaWeKV-D4@_dSaeE2_H{G>rk?C2Z42R6yH|~k> zgP2AQOEx$+KAr4E_Z!1&%1xlQ;YtdpOpqKSVVKnC+u=d@QjJg_lhci&`aF0_PdeVX zhmv@M4u=-*oTIPb z`N2R!@D1Rs~crFVO$)-Dc8-ir$_O*R`2x=Y3~UN+G^mAACI zms;V%Y`f<@8b3r_i(HNY6t|xHob0ya92LCytn{ZNk|?<9{+d8>t_>uJ8f1|hPgd?Xo}3!Q*P|v?(z{N}O`uB< z?P}dI7~@nLN~zOoo`BIECtEoad9hTx!dger8?MvRZLtOLP7FI-1f9;Kkp}mZ_0$tI)k*OoL!h+L zyz15Ua^vhPfmzIGQGHnG^RSuMuwhQr#Hl=wIepf`nW%bs+WOqwZtXBk#<|;?DbAN- zQ3KC=gympBZe^x2chQRoL%9dh>ef`?kph8YJIJ4ZPx|aT>0G_HO#j^QeL0!vUsl9( z-f{F@n1q83T)-LO4>x%I^GUpf!$i>fO$_tb4N@1=y$xQbf!(lu*)@<7ma>$`;{BE( zagw(AtAza@UrqhZyfVX`nZRv1uAFf>CuVQ7^} zbl2H##F6dM4lDpOW1`J1xLh1~EKkuGis@MtjmM|*d> zZEv805>f}y4!mi@%@Zk8Bp|P8oP!@f&d|U$Pu{<k+9wY0O_|r#S{JQB;xlE z$me~~&n|E;;r>tm_X0t(nOsZ>ND~*4v9m{jV5Q=s>UeM=pAV-%c_Bk0gViRy)Cw^i z0ZsHSg<8#Tch`I8S}!UjDkD>3#nqbo7PJOQ%b+XMzIL3?aKZ}YeUdeXP-;k#v)%!X z`>(a>r&+Ah;{cb53>X?r(>@m%S)e}TaY1qsrnQ{vb$EQP*gk~eND;Es>Eh;IbbxrN z#X=jbJZVtc(yRgh=Z4Z)k_7i8P=ww(Y3NLPlXa*VE+r7s+me4y)g&o<0EKVI(L)1& z02fxvow)~MR!N(lYJ_x?`R~P3E{mtgcq7mNDR1o+o1A6wM4N);hQFRY+8jP&+V3Fi zl&?Ox<)1{oF?I#`;>*!1eTlFb?E-6Kxkp6gc;5o4VI%<} z?5QG_XOgoI<~tXcOgj9;2PQ`rImxmZGoygy*noNzhYXrgp|9(DmuROX&Jj#8a$4fk z=KhGi{v~qK>Z%U0wEDsa8Y02<2vt3_7&k?`WYJPFsHfN@5ay;elW(zJu9n_bJoFyH zM0cB?m>@6>c|kY`8nWqrK*6cb!SL)9C~aIx=|MmNwU%5HI2!W&nhj$S03&`y)yJft5fVfb#eXnh_|Xl z@B8~)$~|@Is7Xd=E{>L3?WLW%@*`f#jRYKlvUMr2tI&(m+^ThbDS5&>#daps)N|8;6Z}=!>%s z?)E$ySlG6_oEk|xenC{4GT&>Go!cp`TOf0fzcgjL1E5d8Fz#R2f@`tQFKj0s8uNVQ z7e@adEZj!Qj^7cL#?0dv_W3_BvyA~z>0cPqFU-TE*!&l^9uEyS2mX8%0Bmm72TJ|u z4}#WYvLBH08}{n|6ZRBpt+@tpw5GW=8_ES$jpuRDXPoxDXq(MM=#7QB-*_)rL(-Vd z4uFE^dWN_1GNN_yW#mLa!`bWy1bW)_^Z$P2=+}vUZwG%vQJS+n&fn=`n3(ngWIBlY zLABM}@*aMJvdZY#4_$O#-j?SGjplUS5BlpwzS;4SETbWWn*a5y-Na2#~t)32kTqmjJ4l*BvgzB{1MP5x<3d-(swVm z0X>gV|A~%Q7**l>T-|Gix`wG{W87@qNCtVN&s^Dq=yo>F?KU=R4`#WVjC@R}?Q%4s zP*RbFomA`WRSNYC_NhiINGx9{Hes3RcMwzPj%DDu9mt_##x95ogeKa$S|+mDSy6_1 zDNiFX`AOnz_xg}8wQ?il5D_AZPQ0VVT=5UmH^|K0>|;E_%mFXKyOf?(`!hB9W%x5O z*L@LafT6|Q$V-kk%(-%rNZ(l=+v4P6Z@~##B+?miZ(KPC@Wi9gFe_@KLuHE{=jEo% z1akE-lTUGS3$eHqu&KM7iuswd3IB+(y#H38x3RgC)`|L`U9T9M5@&-QT6=V_HZ@0| z%h#MzEUe=1^I38Q*q$b7xVE#FVcDpR5dcy`YcE#7U zz1|gs?sb&XKp8rHbPOh`Ypy^ms@2zjVCJ^f?gp_0c(M}*v939+LmpaaYFsh19&F#)TJa;Whrl*tZD>O=zhDdC1na-5MmFzCBA;JbiA(nV-}|c&NfXSx@B0 z#WxN4hd4nBZ;F7M0G=y7o+$uq)_}MQgXA86Dl7FLzL$8T&3IYjt(XX54_);UMqVnC zNsO0|!O4Kq!Q5zzBHzv=f!PWye;$%9B&P=*Wu1^>$ij$Qp?`paOd3ii7$i^w5(|m8 z_@P0bk(lmn0H-|KRT3+cqLs4ZOTG=d4Ap20! zk8MJkL(UuUyh0w{^X@5eu2gS+86H7*@m)1Do!luq!j&$Q4Xpbp0iDWhQuaU2HbIIq zp4>i0YLFXUgh)KOylf}w_X;-jrEnntiyq_)tT)F-i#$I~rwpY(7Vh10H8;Kwo{zUqWzj=uZ3cV5G;Ey zVC=?WK%m@65FX`@bV@E8l5c!%AUV7TMGrc2YUGF_9>5&CL39eb2$)p~GP-{7S894I z@Q9GF1azMe6>zs8DERE{yPlBCu`o>|^s-?YLKL!KUI2u2z}E33Gc4nQwlf~x4`XGk zOaGdDk(K(_KxG7GWM<`j&?V2GW`SaYLne)S@Hq^Lg~^%`Mau$^8VPoh$uOX&rsNgz z$G8XZVgn2jc6QLV+M9-_u$V!JCKFk@ipUwoJ3Z>!*eNVPvPkVWATh{~mp=0;oI>a! zVP~!7(Fiy|gQU}L0&_9Te8Cdmxs%*2I3O}K5!!bq8PV9so$M?kJg@|`f@fUiB%frZ z?GGG#=w-k)SILJUKt19V^IRRc#>^Re>^7v>+!3V`0gHJk{o-?k5h|R}O9P{|)37~6 z$Bn%JYx_m?9d1!b$Y4&L=sE?Q&T#T4UkAQXd7{vffj3R))eVoHQ(gsC72H>*;}bi6Ww+& zGht?Sybx-;ZTVevEZe!SpHuYI>@wo6r#!;ed2>uZqu&CB+dO{d7PUVzLvk+IY-9f1 zc{Ta!+Og^wY2&(e5jG_vyWNgGTiwg?NJmDivgRm@#`(nIc=oi$Dt>~1!HH)C2g*uM zhkJ>}Jy54}3t$_1Yj`V9hwl-kU&4R33KzjrHEgMZX6P&&9o1|h-c6A}?#PO5Y#H-+ zL>}eJ7`s_=G`Ebd^5MjiRY$X@p}+uY^DrfbWVwUHby}fc?QcOvTQOu08qHJnri1Ow zc3Pxb!3rlR<+7Cg3pbLY6O+xQCZ^s~%kjvKj{eo#WRB*2ozr%_@236aA9e)mj>UQd zQwg}5XGW6H!x$p{^^Sf-+@Dm9l|3y+WcrW-u{YqrOlJ1fao#h3(?t#2W|57<_U8RU zD;ol?a@5&sD7;`@xE&63_6HkyH+oLnoHlzx!f?03L)TAACPkkhk_*0hl_fzU3)nm` zfUe6FXg!COkl4DJ&rRl5i=Ap{JayNTZI@jK(U>mifyA((c-4a1EqB9XtXpCf0i_&) zBvrf4D;3QnH?G!e4Doj||MREh2{m(7uGUP^dG|`jzu~7VUd0le^#@VOP9xdcUe3z9 z6)_-(GZkOUsYEX=2PuRKDA}J*cvNF7M-9slR!Vxw& z&@a`eXxlzlE0%o7pf{h_6O~fJtK1lh^LVqosMoroC$pHUJuMp_^Ok&N+;lH>Cjrck z7=|>FQNAWM?jR>&DhK0jW_Sw64^rg^dJ&kaI{FbCs*Y z@O`GxV%zH-MIYrG^*Oo?DY~OatJP-*Z`_hZRnzrMx9;-VYLglFL?gUs;aXbtTke*> zsm#Msbm9$;kMG&cTu1j_%X>PRB+ldUr-d6V1AmVCdRO|o_XJ+aP z-%8fHvy?iMmB#lLh0u3hHO2ZX7P=hI?D9w}R^tS}`l~vJAK9)PiR{=Bn^-<-pM?{# ze^o2cJz2-}&k2$Sb&>|VoTBh1e2Tusx;c<*@uE_(f0n#}j_S%#kLFI=&O7%b$5h8W zN5EHzBu5k2lSH9ZCejL4l;>_9AK0m6PUfBwZZV@uH0>EcxZouHo`K<4QJ3qSZ`rKm zk(xL*x{AKbH#)9~SF)C)8aduQw%qN`K`dKnp1gJT;40Muk4sKMPCRLMzelQVx2S*k zm%)`O6YnN=+`ji^VMSSn)%1<;n;Kn6_m#p7W zy<304$#~f6E5cP@hM_-rnX!REP?vd{HgYQ>e(qQocTa9x**`yW2Yo-Y$9dneZOmZy z``bu)6)>HLBe7HkDpS92t7S6`OLaeLx5X>bv{^ds|!%v_@2b{V+Xy0Qk5C@@Pi3Kgz#uOF-owha!|!e)``0A3{TYo$d=0U*JYFV~4ka z^^YA;49Rs}mB0C({Gpikb7DQNnMX3;4{HqfG)WA}4JkAIYBT7S>XfJZR0q+u;HhJ7 zPJWxR8?pK??GS^Hz!)0dHx)(*tE3LvPa8_Wd4+0D?Z%mO7OoTfu2wyj1{#N znx3MtD>=1yfk7r$?qf(@?HrZK%TgtjvubEmOVF=&I9Fb$Fkz6mP29 zXotV^QvWlk++3}Ir(X`ePVcMR+hH&9perzvwA|r!KRud=cQe-n5nX9iRl5%6GM1#=!E0kg;C}L^bCzuAAG?6igvF?=47TQk$i2z~L~-U?Fo^z|GiYqY zH*jaoC7B@1;k-9K_mE%zh~bPm>rdVT=dP?}Q1;FpOZ(erNtSAS`TVKIe-+`3@-xRHb*YHe6BUKSm{`V$Fr{2pgMZTFQu8F^qO^`K&aHg%@ z!#*upGj;N2GTb@%y5qWnrVHV2R3n!DcvKB5Yf?!G04SM;PFwM!wz9Tja4_CxMGLAk zqyg4(oT$94=@F7tA%$B(50kQz)%t9@cOy%Ae?n_z|MU8e)>oVoV39Fpgw_|bq6Lzv zh1ORc;4h|KRrALre%JGxti@AzY4O_VmyG3&dH3s~p~US}qL0@=(yr$Q_4jL&(t@W3 zaE^!hjd|#&;cfMcQ~UklqRp*ULTvFr=>WVYw(zO$Pbk3?9Xq3I;h?GRu$~PUzrr;v z78p$gXe&vRdQoC;#s4N_|^E8YfbyN zB~`R5)l<>=xpvsBKdo7+2wxC^P>2>BLhjw>+;Fu~@$x(8eZsYx1C)|+E+7{|Wj|PK z{9`)hD7rG^tLRn)HGEu(J%La-|n1)FFNik7__h`%?%tfRDh&pc1t6C5Txya zc5UP!?^zrAzH#U+^zXT;>nL6P{y^&`arTLU&{g2*6#=0?!O=1N_RPhiQkzK^Wu4fz z2|wG+9ztsyWjMFg}5P>F=xX5ee1`85xUZ4E$-cDl`l_J^oO5}z&)a<+>SkN9fTn?2{JyB zXNRnhveYq1^FBeX21OF2#mgLjU*0NHFA$SSC+YavW}|QOxHy_?HfwfmCYXqF&YWke zPNQlvfI7W_8^=(l$$4gcP@1o+D3^d(EWRct2{SDkTtBihkvmagg(dPKT>U4aud&w#0 zyR91MQ8LqtluGJlh%|=<0GttS9%jRGHf;p{({{sk-%6&F&^l1SN81I)6#vH!-Vkwl z1xKeljLZ^HlTZM3vlEf1-<*yQ=9d4{VS?JP(cg1y6Q@qD~$i0CX#*Vd}%qmyc2#9%lr ziO@8 zzZ2Fcp?RYDjD94p*N=wcNTX)(@C`Oy$2C1afZ0Eg^_Xrh7&w`JA*uV%#3)qL@;o>@ zyr=*eCop3-Pr8rtfV^FhNxfgmniH&A&9~~U^L79{ znk@A3?N1dzd#b0yN+k6Y&uYd$ihHKuA$g|gm_^L7d#Wf{5{6Rgy{siq7ab_Wp>r+O z#o1R}Fu9_3Ew%_AF+^5m2rSlX?s!w*FZ}AehVB9B*xF5v0kLf5>^URv_9 zoL7bRoh?9}W%+0>d?`khmSvUFlx7&0?m-HvV}JQ=OWz8xJwr*#x?uVb@3c7XU*N;O zE^;1H#ItRWf1AtXBOW3#BZG-^($ezw-3Dgi(cbvmmFUz?WsSm-fVIMV@68Pp9r}A* zg*V{qOVCu!Aj`WdCEzs36a%*&X_F?jTNruQQDqVW&#a)yi!zpqYCj5!OX*uz5@|O& z0Dw52%<;C=p+)tZ&H9qjp9*-m=@*W{I~x0qRKaO=rJr5b!Fwpiv)f9SlemnfV`*wHO7a0%M#b(ozTiNY+*A>uA76v|H*ZdqX-Y-3qMJK>Xpe z(>Z|Y+Wz&658+zc?Y~C&;1lUzCm|#1zTL5sfjN=PqCzL+AL%FWhX>;Kw|AJ}WIV=r z=rBH`Ii^;{a+DYnt+Nz*nE=y={`2gQBYsL&2Ooq(e+EoRA51{nTA$K&JZU#70c&Wk z?M$CC_|h|?CR3LJgdbBCY!wg9vu%aaRAg;!lnLK&N;`wg4#+Ji7Zq5uUxDbvxbjI| zrY1=PGGPdv=QDC)K$)nvN6K#rz6tsPbZPH3m;m2FW!VoV50{IAbq)4vwFTg}w_ZQL z44(Ui&m4b@-c#gN(C;*3?Ar9^-{K>^Ibo)`igIyTQCYz(Oj9`KO*P{D=9{eRad{cf zI6va%Lya)5z>F`S*vQu99Srpz-!>#9rr}o4CsbGiEZFHKKIp zkM$)92=Ka-Z+w@p=O)9rPiM3#kKUsI$DfPgXF^&NYP_1ghtyjHH3xG%T>8?z_Nzaw zP}#3}glY#>;J&>u9Ebix^jv5CH2!K;k| zSBCD;n=UXs;CU8H>|wO$bHUKJF(D-999?jR?NkA~4&EkI>KDe<#qo;rTn-`iDgx2n z^jh}TM%xK!?6WDW4aLd-wUudJrtW=pX*@i|R}xK9=UPPIo!4hAOk-2EhLPp%sqia} zc5Li@4S=u59NxME{h@0j1GH3OHFOq@EGR7~j%vQHjH`zncS{PSkh=V&?xrl5MV6N9 z)IaEi%fH%8awyaY5ZS2UPR6>x(F>Y@ora?mI1X_EN6&WXI>1| zmvot1(i{m2pt{3jZyn7mRT)ocQrZ?nJpth?;%+^xB10)|D)FZgX{Ne9C?YLs`sO#$ zxxPZ=NSzXdLj1OBqWMj9dVdog$~A$)??EYLaT}pbr<(0s|M7h zdi2J;vIS6;vG5I zV#0xr{iblV9y0NL|3;lQITM7gKm~ZY^0hi3a-^vu3=Y&YwS9Xvw>OCT%h=q%&Lr8u zdS=*JXockqebDlF-0{ULAFguv$H>$PVuZTS zc#VtS)^WX<2vLpnLIcH6_N~}QhfvR7%4;@4wg;Kp*^@|cN{@Cs>e^KPzHP?-$EofbmOBziknFjm%93PggHuT{^3A0a!mf=uiAID z^7F(5#pU5GVW`<7TMV+7E!i!ywPpehzN*HGCv3W9)*hJA3#to~Af+bd=ce)#R;vAD zZ&nDVXf6f@MY!VPKTRS+Q<0uJC9Y)IJdyQpids&#(f2<`CFM_#$85){3q{W-P@ojn-I+!CAeG3D@FIH3; zTV*r01k%H*ix*ZeY}94~7ue7xl^g|3CE7+A$HQn}cs*kc~zK=J0*9ksd5ihko zW_^A0FPf+}nzrBjah%O)`5d1gKWHm_A37NKHPT-e%o0BP?G0$?B(?5e1-pWU+7jVO z`UUf9k#ZvKwty@WAEWslya?oElU%V@oWNX0GAAak(^{jXbe>o6aW@CB#H}wFuQ7wA z9V2n;exk5Wk9c@D%KgDe_O$;!B@%TxAZ*AAV+zno@xODKy@ops0sw<@dQ^aN%(`;&z-kNIdpdP!FzJHD2Cd-R6=)y~ZlQG*6TAmj0{-{M?%tSAudSU0UG@NJ?OzbMe=SXW6B9G;vpCSV{QAw%FBveyzZsyTjnGxL0& zgM#o^9Sx1aKL}~4Dsk+wx~<@`jmjCR27P0M?0Dt~3=5KaJcI=D2Nq-Np$%U%j+PuX zNpGtSmWaBfST1Ic;Y_fD4b(%mXeaqhJKaOI-?gb<#0xV8%hy*x)k7%BdQ#RR#c<<0 zdZ}o%tms!w)?RR;RjOuQU@p_ z=P~$X0T`i-^C6&T4%!n*_7><2{g>G^rzz)e?!Q3_(K*Yy-}>t)!e=1E3AL)W89uia zg+{^hI(KnYVGYXbSnKEQ3Yr0rFGP)V@G2Eo|>!o-5id4_=nJsoNBxp%Yd?ko+P$9u-kdTgDg+K+M% zSsVJOuy<&FyUJ=?UA`aN?}7uL6?jp7u?SGSN`2sDn8%n^+*Rn+ZEY4Qh}c^8K4w zc`CWl(MqT@IdvGkpS*#g#xeH%_}+S}e~^7Zmws7T9jK)VC9JI;Qz^b|558%k!hzMS zg{vn~?lN7UFoS3*;JG_7Vk)*$zt8;QL5R1QQfNvKHHZ1#VV=?^I;=WtiE%R=Y+ZKF zyh=T%mB!Ql8Y*wwE6yeaENiBcOd1)v6(=rd4ww?1j2){D?vBPRqQnF$uz0Y=N*VEcm~lkCYteH-n`!lkatP5K6gER+G` z9xDsD7w{Y(Cp5;KJ{(qyMXGJk*jg5T!}t^J^BWGM$wwuTlHtFxR}BUY`F^OtwU zz>!u4yfR}{PxNqdQ-6Rol?sSY2ixARJoys~y$t%1B@9AufWoHvTDGR_Hp3xQY-*US zzVny)SXygwf(pPwLci#uC0$@)6kB}$EzW>S%^JzWd2zC+?N2Wzp;w&xwYk~(H40Gw zIbIdYPYBB$iR-ba(*s{D3xcWL?x=z!1s3elBPY=5U!qt0$TDi@OF|OwJTSZDlUT*M z=X2m7ZijS-bMQ$7XKrLNbBJ_?Awpmb_DLzW6PI0YoBr9_j*kG6pf98%|0@& z>tk#L;*lgO1J}#6p*Cbui?AX!uWwqx#8CQ1v!b|A6R#ynH zjf615SXOCwSyt%gP)c-x!W1qbkdQG*0f%>Z%gXMRf)t1#6EPEY*By+!WJDgOl!8FE z^mtSE63>V)`HXOCR?zwg0Ha(7?*?xj$VAI6e}vC61&m*S(Ia{$X0DlFT_-7{lq;dsOm1>E*2wF}jlt=6XN z(?zfw$d_-6#h~;n*?YQTni4E^){H^Z9sA#EdM^e=L{4*`7sQ z`kuwX6jfo*8>uQWRW3Y=lUHWYXJnzR7aU~_K;;)4W(>fZ zwn7FJ0I)aIQ`~j8gs~8j&Lc>y!EVVb`tW1bOmN{mKiHAma;yfr8H|6rVEI!~O*qvE zUu^}RN+N1bAZOV`9;MSLN*8wBJ;Accc4cPvjp!yM7)%#d0vW zl?dG8rr0bVX1!QU9*iYRR5)KWR@)X|9mP}vBB3gjhbcXk6(nBefDFWyD?xWRO@8Z6 zRHYaGB^k@;t0w9w2B74!3V>P!>3#rT2>agA?`9cE714XA?Ee5Dv6(FA}H9$D$^-v~IR9zJRfYbZO0 z?_}MSfUFsHkh-|kc%&jdd&gfFVKET*vf$c_esedu4tSfXJzDZO&l%A8H*fay!dLbw za$8#Oq+PVyX(=5NF~A*WzHX>&urus{nbbLcaPRpQkEU)M>n%P>1G8nwC!Vlkxu;b= z@D-F@3UZE8;G=&@t(h6a`j((x_K0nIV^N2^wL`b}y+cqxn2J6z^7vM z-DTjk!6a4fe$ynlnls|JGt-9>FttAdEP;ojx6|VECKMn6sm&)1Ge9i02lXy$A(||+ z=5&_VhV`JlA+`Y_dL+1(y)lQ*x(es6NtuDjd9de-c{TohtsjMVfXffhk|ZcHr@_@SPy1&t#up>p%&57uxSlRpj1rT ze7-NobtB@72rBEqeGN<&}Z|Fe2*PN%xJ%uIGdH&6}Rm#x3OBHxN_Q-;)isE|zx!8o8k3xPr7~rw z*=Q~ZL2BlNK^*?Lmjn?!U6G|0;jv;@;lw3n6cynJThl@4r2Ykb(bg0rn3h!6o-js< zfJLmMv@e`;gh_s0V6UlS^)qfpRm*-3;`*ezl>Ho3tLJqBi~H^eUwATzspStt#OIV> z*!~}4%iJ_z1NV8pgj`hMg!*UtuYJXSAXkaEdUxOf0{B4G7kindq0$^RW}0%hFSoJC z8eYNZM3KUW<5^}2r}PLV*gKG-`5$010FwD~9EnHy9h0~d| zOF-bU0(U9oAyAw~qB>xfaMxHxGGL|tFr>j<(?`a6&T}?`X4zd0Wbl{Fe#N7IBRqL0 zzD`c`EBTwII5d)n)jH-c4&-;hH2R#}JeOjcinzUnxEWi#fm^=V>v6E^a6GJb+&7=( zU9NURddw%AoHODt@0l(m&HuVzNo_i9!Rp`+-xK3du8_qr$YL(v8As+j6>h>5Gpvoa zvyV@|<@}SmUu>_hPci5+?~K`m1GaG)W@%|`+YM8RDKt2-?t0rK?S;JI;rwUWDezIw z7&JQ#3lNtbJe&C^#?)QrM6DMcvfhiYLvIxLs}L|e8wMoMst(-<4@U(AjW zIc0;sK5-xj9Wtmbp3hAv5lI%q=ntrQ5*GN1o;gt(HY*Q}NZ-9f!!JQ<@eJcsh$g5$ ze*a3JbMv)IWsZ>!W>O13iVdG3EEB(;54jB@0cMs?kh>UxOnZ*pTxpJxlfa+K4@3c^ zbgfD(tTcoI>OKfP#bYhIEYW(A6nL>4&=8);DKJbZ zF+rP66hsPpy=FsFLRcC?E?>v_gzPb%i*bVUXn} zT@im#kOwNhsA<>;uu+G@$~Z!V0ZrJ$(92X1ZiMBMETCd5PsG>O0xVG5B?aV+1?u2M zh5%|A`uWgpC7CJ-l0~GHCP~CkLTJmJh^fT>!eRxfPWzxIC^zU9zlK$5u=V1VoICm@ z&e;6P%g{Ce0F;Y>4-!H{+ztTq!@!Umr%&$6Q}CaI2n#|L7pReKCG_23W%>hg-x<0W zowO;qWhd0JwK6}yGd~iZpUUY9O+?f=8mj*y5`YGDZ=)`xk%91ab*NYYTM02v)EY4$Sn{lq`nmm;gnJanwVCZOw2f|oWqI45cX?y~4aGBnX z&}(PC`Gkh5BW8cz@K~;y9C=iIF`SA@`~7+>Wj*U*{gsN@x%e|?_18VH%fYF{^~9j+ zEVH>Hh@m!0*kU#a5G=gD+nB0~fKV^3;{P)@$R{k8tYwgYQc0Q_R4&;rx9j zID6HV`ribb=36a7q!t0)cxK zZS={rJlFu1V0kHbwZ@o2X?k9r*skt61vi>E{1{hc;xDjsM+dwUfiNB`arGFS1L80Y zV*VX$ei$@8SDYgeb{8(hEGSU{ zK$^0Be6m^oC43n0Pe42AE;>Repn@clia&zXLxl& z!V&};DD);dK7-$NOos^V?iZUXn+CNzu_ujuZ^3B@EUgeCtgLOzI8ha>QA4gJTiH_Tz#Y`EWxR>*BGX`VD9 z#iFl$OUojb1;_ABtWDX3Hi#(k-w}Bgl~hQq*=6PVagWr7nV6__i_6P^~kkT}GhGCuvC5%{9=0op!mmr_wRB-6H%?MG9F0Yw4KCW)V z8jjJjS6{aSSB#XJ&t48DTL&I)NBDIV)#xFg^ zHJqWU>4%rs3+wZ*W(i$3+I1ykpq>>kC-YdMi`}d-rDUoZx;ix%6K$OYW8_aWn}NK&6e8Hwr$(iJ+^Jzwr$(CZQHi(zAu@idnTRC$NpVA>t|I4cy22|Xoj;DkL!v}vs2k*jXif&f55buYVTsu68ffb?Hz!zO9Qu(pY6xi zq9L(k6RoBJ0y+A@#2t#BAs$#62IR`xc058sJw3@vG?31lviyh#bQl zS4Ia+-34`44f}q5M-mRd;6UluN^+mthrpivEJW7$BRuEPG$`t^yz{L@n?L$z{q8DQ zE_aniC5TN&8IpV}Ul0Uvml&Cy1LHEod7t=0 z`yDD=WRcq`vXskNt6|_p!Inc-ec=(fU}hEX$h-yhEH&i#d4m)3>Z2;{PsT8d#5)f< z`$pVTuASqe`4dQHMGxnV481rH&C)nP+T&ZjdOT`AHX>I$Q9BgqyxaJ+d$cxl?yqt< zdRDp&PuTIv?T;^3dtL3@gS7LpR(Xscn;o0S56vmJb9p@`WTn<5)c2@JdQG*>k$I z>+p*NW71*t9!T`VB%=w;!X{|gc}sGE%nz@-0$q85iy~bgNoGORCp_J5uNk$kte{nA zRFV7DBljIp%`@U2<2&M$aUD@!c|Zs8PbVyQpOCfW>~jqiplR%P3<|mHyWG4&4zd@W z+)h)E%=qj7?x;dHmYO#jm`&HRJ8{Sw?~4oMBWnn-hYVX53O3_Ckm#bQiWqzMtFp@r zF8BWZ6MQb9ba5~g9}a)?XTijmK1M%YojJtUpeL!g7(7(CbkxS`^p~w7(Kmhx-~lH3 z)}%ce2|@PAGfvCu_FU-WXDo=Dm%y=KPp)NLFcSs>o18^V;56PL0=V_5n5DHnB4U0s zN88uKYnrWvrx*2ExS;}sQEt8%7Xlgbk4N-{*rNq#+UPlp#)@v2w|CLS9;mq*bX4IV zF)t*Y;<9pUa*N4OKtf0~dyu_CB@d-PF@e5dC_<7%Z|&iE(0BP|FqVii;=-rZWciNl z8VYIfxC+(l?StfK%_gRW8}=J~>s;IL& z`zhxY${)|s+rYnCF`aT39jTd|sV~*_(`B+6-(mREG`*|)SDIc}hS*zv^WLSrQs5}5 zm#Wy$7^5laLYJ_sR;pc>IfXXE@~+o=&xKH8wYggC>GoX!h9tO2fdz5o?&Ql}jn|@@ zB}TJTmzFA{t|hh7befl|6BP$j-whG(HSIO;-;SS(P7%Er9S9Ri&Le3orsr4pZ};hg ze{|Xls5M(_I*7San5~gk#K$CTPq48F z_qutn-ZlJ2ox^s%kn2T}0zO(ng?$nT6HHD__C}qO-XgOJHJ)$puB`v}omuy-xDYlA z>^L$6(l80^V&+^vzfDpfAEeQ1llaus9NETbmI%WzqYERJ(+LraBy=i7p-d6nItkS# z$VC9?bm(-AmRs&s(QTboFO@rZRrE|@xFktWr#LOO^ly_g_n9zju9L@n_zws{%h?$g zihpI;t&QA7#?n+%>Hj!QRR|y=2I?JLd5$^gD8U68G!*M5(~V zi(o11 zzo}9d2O(I(Tn}b)7(-2%B1*-s2u;t~WRGiYm8#Zl4h=~ZyS~Ep!+5a5P83ONgrs?# zNXcT{*o6c0?3#>70_Q?7HbSSDu|1pNH7KwwtPvNKSDPNl6uN+A<6|rIO>2IsQiQ5% zgKzi8R#Uy}q=y0W5{>%vb}ytBsdBO2u>h(Wt4#8e$000_MMoR(FiBS z>T@tebM0^ktJ&1Ucs^NAT1gISBYy;xs&Y&j+U-vHh>tp)XZ&&olOGs~xZ6^5o+j0D z21&Wc;2B1AI?n;Ocd-*}Yn)}s;tvX?%G~4%1Jv6Ka#c)?C$vcOdu2%)-Rae>n&tIS zGQ%Z`o8{zsJRDn&5;+3yXwW{!Imrnugx|eHJ2AV)^j6{LdO1+ zgupxDGi~Y)T_)J?^+8o}22dL}X4kegojkDLpDLjZuXjPNvhQD^4ZhzvR2&)DK~6g& zLAe&#AYP8@n=up?m*Yu z{o4GFV?o?$c1JIhd&qXaR8lzWsYx z2_TYth%t7gWsmN+#fxZFI@tROItlYGAVd|dYTX#(rtT__NDw6n!#kAj9MDpaRs^DyrF3^Bp>BZ;Uj`=?u zwL6h9n+Iv9nt4D+)Twm?C8Pf|tbuCuxgs^b;tq`or>$y7)P)2~6d5FoN`=-)-@Tat z@d7Dbzhw;JZ)g#I)Dja)0xFT3LMbs8DeUk0NlKxKU}%T!i7H9KTaO_)fgUDEzErGS zc@`+(XIO}U2jc6#L{NB4=rA<G?IswgnD2I!vaV-yrrtN{a>U#!veq)asFThRQzD|BRxnD-IDA4jI+wU^Tf{o& z5pJ_34-M<8SFUE&ytdtX%=a5nHyu>P##=^NuVA*4jiFiO;HSeU}rtmD+@yGb4BbqQd3nds$Rmq~_=cbA_;bvu{X!U!MMc11!4 zryiyzE;(-o&@8v@NoQ-=nM!ILK7C*Paev-M|IS4Xu;1&X)>KKaE_-;h_*yPvJ1ooP zXo6*I9o|eRf#&TDCUdH7I=p}i4&Awx9G`(JL98{t+MK(uv25Ym$v*4;fYb||TfV;# zK2&B7tir@XGCi4{&6d;2^7LG9q#0!Pr*terT=-hrQkq~YrB3ZvYAM8O-VqiH$o$rb z8X{yZ;Z!KK=}P*SXh+#-+CAjyOek8LtU8;U#uaZNt9ZVMml%l?`Bd%bN{L9ucr0e9 zRQ1{&SubS2nbGRdV_ZWbI)b^&g<=__xyp@lwuT`vM3V< zT56lqYyWe?#kQk<^>seU=flz1O}2O^`7bV^3NGbo3>a#@?YrbLgvr}v{?Y!{;Jx}$ zYH8tIH^G(jW-d3UlgN0DO(iV^{d=bz1miMx6Ulp*C=o}(<7Q1mWcn2|u{2@Y5tu@; z;xNR$*uZlm>81@dx&>&UCl(7$j)rv?Q_cKB z<3fA=#iHb;IqH=^DkeKXA~}Ub7Ep3hP-^1wI|e!RqDwycX3C=2wAkLZa<-*rsi#N5-m3V?Z3_7^Ec2E~o2@itAqPv)L$BN`{Ils|Rr)rN zbU^#D478V)u1L-jEo{EZ_h+Tl_8a=7OR~3Kb~EJ~M&kWrX<#Yzw&W9a(pTgA@FI7K zHe0>eb6)51Ab6`~f;pc?KXx;9GDCqrx46(XU1+^#$X{vK;B;ZVb825}w&%#M!`J?S z))7Cpg@=Upg-&2~9{aDHg6yP}vTOQ|^N4qBxw`*qGsm%{t`4QHu@2P}3rX@*yNG-8 z`mb$_gOdQ}RlmdXjMJ{dX?A0;OO6|Vzl|RXEsb0jpdN)Yc{j~8P3P-S*)IFUY8J_w zpZM+XvPL+Y30;qX-t-R-Hd)RsSpSHETg|IAQ->zKbw)|aISgB|_;6A7BkIBl#ei70 z5{-X6eG&TJX!RaUo1Wk6dceyPpr_HI$`uQS^Cs(U%mw!97w561LI6S_o zHv^oC>HPx2R(9~CxV#TVv78P?yR9P4aIha_M-cLU1WLg0@(mQQ2D$h${+s^7MqZMc z@hsTr2lxf6Hp^Zx&hC)Ews||OZ=#E2()~qtbKqFykO}6M&0>{DtU<}ap&O}E!v*r z^cHX8s(g-p(9Oj2Hh}b4j#=wEwI+DtJtYoVdLL;xe+yAcCm8EO%QLTk=Oy_WhyO%W zyu(ZnO)wi~uc21TzCwU9d8!ci^SDBA0G=d+1C%iSxJOe|4FKnlG z%tRU9PUW*y65TI&y=uKiG}}bm<2&+cBGO4LR7wwG9)7uY?7Kd-faB&plR@C{c&gsXi1=#D-YTQ-;ssetaM4MG@b(E=oGBMFjY?weIt z6Y+>5;@*VrPD}yn_`&r3E_SAb(*~`&b*rALRD~%MYE7l$Ds_^^f{=N_^2P>q=qbDM zt7H#z+Q{Pq4}Gor0*jCaO&=-;%qg2|GaA%o?#bZpTDN#0kT2zOoJ0fqvg661dRJ*$ zsH`J^H10dD{sxXoNaaUvv~$0H)0iz)3HemxpSb0e&m!uR^=!L!7;HMu?sg=x?`kN z^WB|iG73C4V44*7Y-RTpySfB5&4HaATyNha_l7BVnlV63+O*>UKo^x=D3h`}5eSom ze7DgA81g14t(*Y0f5T9bam5i1^1`^cBYW{GtOm2?E!u#za1T`?02k^FBV|8SmU3#V z>oQw@S~&wWexQVJqVrwI@KKNe44mRc02+;;s&MiXmb`}w52*-){s^AP4=qXtAL*x( zO~K++`mcW~3PDZ70uUgE{c29g<0`%JC1RNdx)aHSG~ES&+hjy!x@% zhD0R^VM4SXtHvU@76=)XQ?DdU`smY2V}a-8pmW!Oi1J%EY-ZAcr#~ZMRFORW$EX7F zj)l=~r&a(opVUtBb~H>Rs^lY~;iZUrfS>_Vuxy~^2QfiXym;&8V^&NefOg!~|Cr*@ zo3}#_NtMbnb5prTa0Qy>#Yc@E<}=}71L5|&IRIoKT#uRMO_i!TP<;4ZFXNS5#g&NE z28>0D-4MVZ(a}%HJ&Ho1fONiVe_pfA`JFok^NhZtI^~(2sP=xJu?Zu zcWLAFL57Ghz(V^Ck6Dw>Kkt!?ez$!v{HiKhwBP$xoE^S(rEix6m?`qKZf6)q0mH6v zL21IWFZqzQwc3bD)tFiQTOK_JGs$WdL~zLR$6H4b@bGWSh2jN-L1x|?L&}%@kvz68 z-p*N9fuUT4CUl8uC?! ztOI+1n)*?6I7J(h^r#_Kj!vmH`34Qh59r}YD|uwKt{$0Nu!QAgW)E5%CN(~b12h3U z)v2DgCQkgzq7bDW6&K_V;BUNNp<2U{4lx{!5Ss*+Y$;4;8$dZTs_lIYL9mLPorB1{ zoz6g2}LPG;BYwqk`;Yklh2l=)*^4(VCH&>?DNSy~gyKVo71Ag1S5aXq$e4b1*q z3n@jIXTjCFr(N=+eg#OyieH20=sVK3F<>%PUk*ABdvHpQTNkpTq@Y_dC1tqI1Wx3A zDCdR)!v(S*KCF%>436d)D>BP6nIjX#M!9iSdU@=$=yefx3zgVy<#E|_Oz!E2z4YANQdw7!Z zbsyi&>5usv@W5nzIz}9 zmbMWa>K|8{SKL$!X32&BG8C4fY(cYX{SHX~-~!Ckyz29ts#8gM5_#2{^i9D)q*DVS z!DOFk!>O;JwI4E$(6rPeksF%H7(gWWRQ4zD)gjb4K?=JGnBWiG61c$4 zPA$GtaC=c^u4ar&%b|Co=rnaQuFdf`3wGCV;S!y}#Q0c8_lqLxLBhk)PT0POxg>K&y;9wh|AlL4T0-|p?v+saeFKyg zK;94KGA+Ay{2N00gB^TXm|0S>h#KO^%)i3UM4Vw$qFW)593no=aJW}4jy3D3GZ>CM zymXLOBWfijz$UxA>k~942F67!DQoi@P%6m!jFqlzJLa!!Xl$?)wMTduh)Sq8vdvF0 z7qXHlyL)OTAy#Sz4R{$M#v59Q0R&s8M;sMNFDMLC5}!Nun$B_$~m6xSbo=nU}h>6>uKLeUBSuI;$}7_Uy&_hG1`OCHvj-RJSe zVy}s5F0byqd|l=BhPE+p0KY;BxoTOv=R!fei^T9_DW0Y)h@ zNm6=Ij+X1o$DK*kQszm~2;$QYzx9U^z^XJqE+{YBm)d!U*s-2~HWb+8^Zn&;Vxw54zl?}BozTFCrm)2o!49Sp*u z&U``WLHbkl)ZNSbcZXTBi@ba8vX#*KVs($$)%w+$HUr{vXt@6r_lux;c}3Xs0F}ZB zP0AZp$FfQjC?AI4;1E@5lFNv4+2+{JBC42M{I}+09%NsTBK;nHT$0|Bwboo~j%FT! z!QETcIGK!$g7a6W2u9VAZy#%LqB4j=I;}RPnz%<)H<=A&7g$YzV&pfUKP(MOi4BGk z)sHS#;xqoSAKwhmV!wvUTi}ft2eG>_fi3>ku~ve+a|NprdQf(lJ$xpu>epD|_hvX~Vrj%k~dPEP3>oIUlxm zJ5yxbYK+qV6sLJcPodcHq&Mr}1~to?e7^t$<~pm_pAf!aTuMc=sOdU%Jq)9KJrzx7 z@Lw*|CbmBjnVXbWJ^xfu9maKz^4~{OW96xA>TcFomUJx5K8MWh@GP(qTxURV)4S!knGp9!L8bES!Sgaoxl>v^i^ z*EO0dG%}YKZp80MbgWp>iK$5kihhzgBk7>I z`W(Mqtwt+vP!4}w_O(o*ODssbJTkS?rsrhT2pw6Xy3}lLlDSNDTsj1fH4>uCc0}Dw zxi8$v)+{OZnr%v6j6u3)+7cO5my9(&bC6LVr8`5p}J=7 z+6x-(xM0e0h^IQE2FVdtPT@Wpc=RS`ykG?EZ}tH{!NbCRgM_mo-u<;nJryk3?Oeo~ z4ylr^8cZ%p{a_b&5&3aC4wQlVEv8(^}qO^LEYfbK?(n zxI`xeOZV01{@~fi-JTrVCqqvm{O(#4_!JN~5yHDvQtM-Cf|6Nlk^0{-$Eb#Cxk{8Yc=M!K^greoQq;I#aQ_X~dBUaC$(EB`%l<*?fq#ef ze}&e%x_0h{`i5r4y1M@j+zsvAoy=@)XqXrn|AB5puIb6iVE~Y7(W>(T{tpIVM7@B8 zTu{Furx4^2enUmBgetnq{O)K+sj`H+(pA6|%^oTTn11b#Oz^3m8 zIm+oNiFrB6acbK6Ng3%Gx|%r_<|U>j8R`iZrg=FTxm7yx8LIKw+3^|bc{vGciK(g8 z*x1>rN$P+9A*!;jVg1C+T!oB83)LY&W;i2lhOm48^!WID+(2;ztT^ERK`Z>H_fkOA zg&ceU07W?f0OtR1@BfEl_y%*a<$L-zmrSvqZ#jY+PoefioJ=tu zmp@{EaYLM)IWu#SDv^$NaFt3)TM3%6Vl_%om*)y(;=!_FcI;F$9_^!O>#s%&?VJSc z^lXR27FNWt=fvy_e9qmw2}Shu=Q*r%t*sb0Q7j@kHFS;ftEjBh>8|j2-l=@mQNHY5 zw=x0pvBh19^?t$@_`=D5$7q-pGrR9Sm0a%GUw5p)W|RKuQs&4vog9==i+v)gQ)_}!Cis)D^mrvV6p;p zF53dVfZ7sI6Z)Zj1=|9Y)4485zCEZSurZ+`bdkM$P0a2I)xS#!fz*FKf)zQ+v7@B* zf;^T@g1_C1pR9G`K73E2!NpvSjjdd<%{;!ET!XROh$5QsRs;OcVSKrAsMC@y9OFXy zfb{&?E2N^k$SU^;n84o1iSh^ycz=!_8RL6@&P-4GPQ!=?>OF3%uAuK8P&V#4QL^8t zrf&?=M|W;?5{&h%a{|=((5OaF!Q4tOnHBYGjCHa{Z%kah7X1l=h%Ofoc>}IB6v+Rj zJ}h@ZS{%;z?0X*3zfFyJdHpiNl7+kmSy`kkAhyJe$M9mH)1}?i?S=Q+U?iy*sIU3=BYdDF@tK z_F<{Fz^qx?YuGCLQ`h;S`mFFjrlYM~mF`k7v4MBsUSFUjKues}KEE6y2Hc5}W@}HR zR-P3qRII_;IFgUMx@V2FB)~wA5&iCSh@S3J2Qz8hPkOdaU!D{cFn*x$E63~dLJ5Bi zw`~Fpq~3er6b_2XIuy1U&*JeONsJ55&d?B?^qYVI8&(G{3|uYu3@QjN3M@bie~Xuc zD)so3B_R_ncC8uoCnyy^95FUKXq{6Rr}k%jX6U)8lf!xggQr1+Sc}qCzw5j|gb#M%`1{kcTiW#}m zG`bmNQur^N(^wFdWJphAPbz_+0&tn3E} zz+O|yyJ&kJ9!dF|)6q9k_!gBQ6Oh97*!kO6X~(bSx<2=0R-S)`I&AynfzNLIl%%GO z+JQEJKhU6phH5o;c|&!lq0BXTXBH5836;lM7V60ls5s42mzR(*_k`u?)(1DH^x| z?FcA?nIZuBu=Tl{{~Z>0oIJsIVhk9aO%;f)LaTWv<(R`h;dVE|+)s#J*Pjr5f((qK zV5KL(M;(>wW5WkQotC@<&np7{2~q|czY`_uS5u8r?rmxN=VyrGdRejDc~c{&qk*it z{b@K7)k*5E56Fo19MnwB`PCLu$7vAHG8&U)D7JB+&h50jkYK-B+n%X-b22OxiKepU znWCX^^YV5Mo*C)6@`59G&E-?e)_mKZ+)bucDS!Z}G4_%9+xv!!#Quw+MP zh_2BogV@PydqO8VhYbZo;xyAjKJKX*46P-ER#3@~PC<@>N%A1%?S!;b#msOgr5PX3 z8ELT`N(74m&k0C|6@x(#U=tG3JD=JUt)tJ{EfCOxERL0mRqG<(891T6TgD^NcVqU! z`|sbwyRnWTk6^J)S~yV{hO6cK&pD`u8I>AmmX96jp#n0Lc_L%uJ8 zgf82v@ipy7e>Z#y(oBQ=qO^wFC`Gs?Im2v*X3(Kw= zj2=XjtQxp>*!(8=wx0*iCvOm$KhB?>N3Ek`eG}3-4pU&9(`X=Z-cS2T|=R@uZPjYY}@7BR;?rNnu_6zNNe z7lI|o<3FOpTPFM|Qg)!Xjni>FVl^q}g|%uA=MPhaR$3e7Ik+OW+a|ZWV6wh!#{O2U`LsP#M zQ#dIm8mZDm$Y+4x#!W*He8QZZ{P>F+VuNNXEdD*fJaM>0_GYYcWcPmboM+XB`RDy@ zU3@Sv6ejc~Eax)+PG)x6k{2O50W=&gY?WIld&-VLg`ckBy@8H>ID7w{K6b+KG3mK5 z3^M>0DwdFgG+F$M!cEMQaH#IeN(m{-aat{#QKfbXx(0LBI7^w~Ta-iJStOKo;!oqh zZPZN0<(eg)RtpcEawp1USefH{<;C!*MnuYL$zqXe>6h9J4aOOZGDEvm2G@k6iT@rFR8;9~pwrtKR{+m1q&(PqC!@IBI!(M#f;` z5G%2hQUIS~^2TNDBLw9UpV z8#-(zUqDFT0Jk5Z;8RNo&EYRQFLbBZdaluh743N@xTux2$yO62@7L&Mj7X;a7(A(q zTTM(2g>R~VBmWr^(owsT$fIyaN@chf)$SF8pmd-E@+ z5u@1q`wS4*U8Pi!mmD7B^=_F)@Rx?6ayNh%;6@sO;qE%mq#bmn(5BcmLH383GD=9y zc)w^NLQBW1qR6k)()vVv2PBa!C%pwS9WH#z9FLT0ZtGe7IJ!|CP^*xSj|}XPY2>-k zCo}w^gXGzIC=@+YBT0BN$n@c&mnq$lS6xEh^};&|4th+f93$g8%)a2!Sx73kh(qx+WWpg%B>$SWj%E?;%wzH?UdUQb+H38$T zhH%nmV|{p_DEEHK3b0y`Ig4za1z@r>Z*LAUZ1;4~8rBHvV0nohe(#g!8PCKu2(dFI zDR%6w0XVU^Vl<8|m(NF^`04A3EDHX?|c*n*2I1g?F%+GV~ z2nbJ@FWjl5{66J$(d_Xlbh4N{jK?}>__eWTOe0b;;9+qaQiqfW0Ld798y5I>JFFA4 zVh+hTcj~SP_jkv-c$~{9>){^5dKTl|PA3lITQy_O)#;Y^6*tQQF6)}nm5Z;Rw;$I& z6>q&JKdzpeGKm)Imuk)~hL2X%&yMbYQRyxv*Ev9i%FbvI(Ka9At>fdx51Y<0r*5qy z%SCDrH8uEJq7;Ay)>^VGZz1e%TUyWph{coY5yb+)n8KM6k>sGI9n~IJVXFZWRv_Qz zM$xtx!pjUeuBfe39NGC6^;Va>YC-~ctK^(YUB|<785K^Eu$X0*BLLZ#k@~07h~AazjM2B`{-G;D=;;chB<^7x zqJt3AB%?)mwiNO<3WI1SFd^F{_|xv*;)so+bcdhzvRFQ3rw)N$M4brI8%^AsA)c!_V& zr*jFgo|DFo{C|Q#=FuJ;%|=gAlHVXD<2aQBk=fP!g^)+!T^HGq02C2f*>|ERxa{A} z=EwpN#tZq2t=dN3)nZbw1y$r?_r}M-a{Y2s^o0|I0?p$7vO|LX;gkd<{r5e`qYCru`fzEWoJ$s+{_YVFi z$OBPKf*a&ewy8_38uPN*g6EK2YAbA(avl~f#wDuMT4w$S+S|FCr zWn(_*zH`!6l}_nYkkr@9pxmpth3A?Ro+s7ZJUS;b{82&6;}o2)yZ+#==&Zz9b^UrH zc;l#@#NvEmVI7XzT$Rjkz^{)yaC^c`8_+VlzKWrlqJ-7mDA{~M=}N6~ExTf^n?1S4 zEHZsH+qe}6Dn{f{;kVc4J`nBJxhQ*93>wGy8%t7M;Go8hr*Y!o#qNauvsd{U$cqL8FAH`2vnmQwOfEbbX|HsiLF4Sl z^43hPalk$Un$v_M(!M!5E*k^JiMQTI{ybz`v~-I|#>`Y$*KBNT49W(i;#b*hZmTF! zN=x_kS%uuE8a{sEC0|mX3~zlaXuG_8wcCN&A+X^pGpI9LZOq#s64Ka`)nM6XUN)Sz z;5~QwYZfox(=}QskM$UC@G__O&#{!L4h9D2qVM=)(LO~p9b67hTamDTk|KpdNxU`N zSCBcd-~oAeshJ>T`0_h9g=#$&i*=74y``f^c4wp>9`{0K28azqQ*q%+h)j&z>)rKEM+Hd z=^x3`PoxvbO$pAXfp?>i&2CEs#R$ClLQ`b;&We&b4JsBoRd1Vr|AGNg zN1ZpAy6X|E&?s%&sF{h+6lqtt&WL;(&|I!WfPBuppQSr@I{Hxavf@R7?_TOuTFNaq zmtMlwtg`fs_VRg}zQpQEtzK(BlwQEn!m_{|oGkhOJr*X$7-|saboa(Uw||HM#oa3w^Op2i87Y|4zey9>ui@ zF&A>aP7mBZbBFGK;&)XU^>XdvVu)*D7XDnJc^P0Eo|DnM*q^=-pKGm#S~&^^9nEMY zIkxHtJdc`3?7SbL&affJm29{LzXeH!-G-=T!Ifpf)w%hc%!do*b?|ocsdmI)=BQhs zPcz?nM;EQ5l0A;4DNV34Ahfm&KVPwqnI@@`tUK5IF*dAXQ&e`<)QCg%MAOl&+(@n1 z_?H^+5-qGK9RTnx_Vb6cD_mJcHMK)DVy%h1;=U_RpooL?*Br@5R?j1Vc2uyBy;bm4U zt3uOI`QpuBvArGlRJuLwM=C}9o9ja3OpUe3)v1aZ<1JjXA=m$xTGr{^lAbpWU9*|h zqCjP1^6%K(2$=6cT67uOE%zBA7$>fUmn03Z79zG>d2yY*Dr~b-_{Nv0WZhF1fzkNr z@Iz?5tr@MZIEkTthLmBoNIWIWh0=umUn1q0g|y^1tOiBMG z#RwD_P0VwnO4Mw}_>@OW3+vWOOL?`&d23O)wX(V8>RoiV(pF@%p<-K5dotVEXk2;^ z-L4>`#njW{nzU<7D~ch!vZGyBcUz0mdOl*K01qc}B6hSgpd2OMv z?@Xtx^Nr1Tmi99v%ruu&lf$XZruFJ*$pPJJmE60kRxYGk?nG&g9G_0^gzv;NAlev# zGCrksrzG(18l|#@N;#y8MEux=wMw~U#Y}C25>2v%$~dd&?6NqsFVfLJ1<$d0mOOLK zKEZ-*+$42FlSb2}RcjgF84;y9Y;0*@t(r#*v%XG#o1qWg^oB`1!O`09fo zJ1270P-9i98L=2*aw&>W*Wd<#rKG(E+Ix>B({jzEC0POZrWvxhcJPtGPN83OL>ME3h4O< z(f{MSUCn)8-kAMN2oLq^M(~xVUHS*0i`*+0ZteF*R;)4T;(ia@f}P|@=qCe=d6TL6JONbX+EBD$gio441&od2L?-R`b3bdi)n&xhDh>BH_v%IAL>a$DmfZ zeSK@hfxzDq2^cBMA$kgl;h07lSl5iC33tZm^BuWo5}+| z@Os0EUjp34vISZH(qUyZNkqxvR8 z)uxg+P!$W=;_Fh?v_&|UQ%0HBXlFT&RCfS1!h7)s3f@$%g!O??s-SdT@PwwzJ%B6*nCsChs;>ME$GC@YR|bx_5cpR9_N0F<&Np}vaap6xi;|< zt!c{|9*WhRrfQarT>G}Z!q)sv&MQ10K2a0&(=MVL0ADPQz{k_W)72_Z#g*>Kr-$I< z^JCSUZM7ep3q9MC$2BmKwHF>j@y+|*Ql}E6JBwOXt&e|1%j4{5u5RO%q`C`@wr2g6 zq-IBfH%6vsv4QGD3sguVk9tQEdxzwz4X?r{DVXQG&aar*@5OL3Q6L_k1_xsj=i7lQ z?t{%SrDJ~_9y?WHh{)qYJBpa9)1IS~A%|kj*Ym?RL*j_YZlVL;WanA-nL9}PnHXNj zMM9udc4bW%d7YjL;JQ7LG?rG5v#9S?*j zv{lv{Ec{j3tPd5Y*c$12ty8*ewEUy5AUWFiJOjz?C{}S*rjapN3zrKB*r&g&{Oyr+ zzqg@bi{}sDz-F&V1nhN={DD1-e#4aJLCO$+Ne8WB>tVf)sYS#~f!wXtJYevU#z8rF zJ$QKOu9I-85rX}_Osmya5V46wE$;(gljxy|fd_rKBk}GJC3sxp95=Nw0IKtYjE4W9 zn~0Ic8e5dj1ehSTm6@6L9b`Z4G1h*&1RVv|ke!SB5>1<(e*@CNd?_eiA?SvLQElL* zjBU5wWiUu$dDXPivhhSEqw+Hrso?FGXTS=ZjlJUM9+QOsiwf&c%JV4Z51c>AIh@z? zWJuaIeMIf(Ti*k1a_lfh{O@ZfgxQSi@Glzq8}fXe^d^r)9^HjF!TJK1J>>nrM>p`w@$&{h{kz6d2UCuwYRe{QHEJn3?h6{ znW)Jv`vRQ=9sGKO)<0>(oVGA#;pgc63gu)FcIqtUFIFOYl<=* zgWKy56vu~E(oH#wgl%)x$%Or$N}NFANLRMY ztV5(ICW{sH*QS5u&QW}YhHob-%M@0#*}UiUs6zhondRw*=5&P|%px))=0pSfl;48Q zgVnSzMAzR3YdU5;mR*>p(o=4~inFL9xCyI!ySD8C-Zi zM_8QM%DwUO&;Fv^sNOUN9ESvZXZ3`jV(&U*zw>nL(BxX*^34G$f}Fj84a# zM)O|tMp@BQjdLiM{aN;T+BMz^4T>)OKf6bJ_FWTJ@-ZHSIGOv9bszS&x zvoQqwq_v$5W0n;gJO;TBXG8vp+x5HaM#SG>Q-Rl-K(H{5JMu41#8aDs*bM{7_R_b% zIb-Urgy`_X#AAJ9svJ6QCKjIoiK||7W=EWCP|UB~So1{Em#%OvIG;PbwW$ft+@-=c z2+{f+bBJR_y?r~)7N7fk!3BU#=++T?Nk};-uckLs)aj|7s;<~FnjH#UF{GJ0*K*h& z^LrC9g%nb&klW9_x0)RwL*1@h*G}dsHUzA^f!=C{;nVW7FKzryApkG>cEi7lx$O-UH>n2BIU{I%RsYw)hVX9shC~rQq8lc#%{MZfXtV6%2sX5+8a+ zNlw0cxev^_cLbcCWry$_5C1K3J!zxN!7#0lfw^H@ndkwWDGnq2cn6uGll(%GyvhgI zFdy0aQ)FO!f0tpy={d(l(^qZBtA`jet^KM#aktFWfj(QrurXLOyz}DIrz0OQl93Kv zDaCol{OW=<{Q5Vjhzr2P9odFy`--LUl1$|y-pGYV$U%&j3a^(2nFq2a8u#XBvQawU z1j=)noiwbJ9r|~gOkd0V7hUfdBudz9>9%d#=5E`zZQHhO+qP|Y@3w8**v;EtOx&0= zGv`!A{jOh?nU(Ka&+6z=7(;iZw(wh86Hev9BH$@LjPh-aboQBF2Ut%kj&bI;tO+RY zO0o8R@_Ar4CVluI(YPPs_$#o{YwnO3qj%LRFk?jO#=W5(bSMNe2XRO{e%~{XQrqX9GtI~1&GbbTp-Aw_7_RaltwzC4O2`GU}5CvDy4wdy}NTau;}@|fjWzPEKj)v--{7S%6YNxR*At+KmV68 zgFc`!Vg(ogU=$hv0PX+OJJ{G6n^@D!%KwTva#XkNHdzt;R`nd5@Q6qo4a=_UG4K9V z>)^MtQq=dFfDLFg3keruBs$W5J#$4ar5(H8KwuNxez>`D-(Q4vDOPp)wYM7`05men zg}9??4}6-!Z4whpSY>QMFQltR!9{#~E@&8z@_iobs4Ciatqw#|a z)U$|4U4mk+%H^;@0nVKi#QYPo!3)Zza%2mgOE>JF4l)0mRJ(?y3y}%9e8&q>OQ&&n z2YD!^0ro?R2{OQ1q*)|NAsi@aGFqqt(5~1DEZDvm8ZX~ujSh^Qj$Ueb^bc0W>-zY5 zp~RTV`wb;XB|K4|fRekcM zYf)cDz%r4EN}Ngois@MvwUI)GVzo$|><^br*-HSlsLI+Y0iHikT{h|mu*%PD!{V3k zDkaw)tq_lvt{;|Ex}>Xj7kp7HN@$EWd1_kC z7D2*(MrJV8MGNQLqI9qsGS`CYRI+6L7;8$*z6tYyWKOp58sFCodVC zQ)LF<-3`?BqVzrJ!YQwp$#|i!oO3REzF7%quC_VqhLmG!01(8Y#NPQ6#m3!`?O#C+_; zXbqwF3exGlK{Yf*NM@*zxZtxJrn4H{RE6l3>8vkJ8OzE;Q-WBXe^O(KqaK-b` zwwx%N%qE7J7;{5r_^N>d0heFgNCdW&>OSVl!Se3Ztl)Me1Pos zEARIVYE?rbgC%Ks1izOUSDWtZUlq+$;JsKMb6Q0xk1RBLG}M}598QhAorbxcnJOlb zm75B-Z#y!D&n<2)Ix+=X0r$1I2KoJ8l^}rP^kM6_5@^Bz0Q|?QWp8BbY-eX}W#LT! z|5pOV-%`+{s^C<_ir{;yW}Sm>4*_^u+v9nWHKUW2R+^F3TZ$)YW-Nw`APkhZzv>ne z951u=uKPEtMRNk>29R_cbhXyUaTWg0l)s1g}NY?kITTdb=cNmGpMi1j0mPb{&q`ZJ` z?8Ih2<9YJ|C0b^VcVldPM zaVFJ%%e(T|vG^O11sOt7mcZEMP}0iji)104QXNhCLBzmwzCW@NcVdABL&k~xcG+oN zJczq?x$``m^36)1%v`gnUvrkXsEEb!rEg&fnq^B=-Xk$zVS;GACV`$Ls_jl+I-Bri~pOomn zS})^T5TAfZ zV@FtAH6W-$y`k=^ldgNdEV{P_?9ufS@#hoh2D69tL1{nF0soUXMC7k^*8={wnR*45 z_$w$`O@*ig3mZdx<|=4Qu!efv9YoQal)331ER&Y>b0oTcl9xVEyE|S47OlYei3Bjh zhYQ0JyZ6GqT|C`Ibj9E26DPXMJXDXTJZ_<=T0s%%WleTna>E03Mhdn)ZR@N;N`}g0 z`TFTuhFQ!!|3kw?QaMHIt-THcbh#0ThV?Y50rPOZ$r*cR=8Jhhu$p98a54<(M$MN8 zl6&Uf>5%;CZgKT%K89*%7c#!T754P=+bRmRqS z^{sP>=<)k6Qb@W$DGkI0?t?}M0DxRl0DxZ(=>J;~l*9#;#D7b|wWdwnChIR8S5JT) zpXzqwLbHpf8LZVj5xCZ^V-n0o6J^a7RI|`Vha`cJv~Iib=gU<5BBZg~l~scPTo_^n ziGvAe2IhC3XT*U6=bLL(cj6#^B>HD3YbdH~PZsgot(`(I8pL75^gy4>B%&^0et}Hi z-u`CGO!i2kCzm@ZK0qIVtTJw_fCf36!iN#KH^77-@tFQMy?8=Uv4dEGtes{_pVC7# zGDrL&1(%rbw4amg2TZ`okysuCW?#ZMJ%wwj>O!bIF3?A9s&O&u>@BT7mf4*1@j3AUn|` zD{qv~T!~w)pTO+%F=J`EPdm|2Qh-#*=u+=vP*gxhupohC#gg$V?EUTVd29Z?!MUN` zpF4I9G8!`abVVA{NyfOj=U{q?22`+q#_;{0#)`#bBUKemVA@Ir(g z@&*ta9z_9oQR_%AKd}Krh9?7sQt{kmT2+|3K;t3`|NJZGwnDJ2T;-xIH?A2rY=o#a z6#i}nC+qw}OY0rd!%=5p|I z0RQ1v3kRxCJdF&fs6E=W&_a&3uL>osLLbFk)_lRVm3y!OVpwrBo-%F>NPvArq$a>x z?Uptw{Cmt8k?v|zfncHg^XaN96*Z5l#G3Iv?GQT;*zCHcFIF~9K^0ajHq9e2BY@|b zDIJcRv4$9}OwS%QlG|i^8IY>*Tsog?<{8l-v=|1qgD~jFPBxGZ({{&&qj`AX!iJF_ zbGqXyoh~mCiGbbIoS(DE2<%;=A;M%8XW?jOY?U{~YpUMX8M+*E4OvQ&ViavU6yemE3>z%&^EY=>Gh)wfn;3_-=i=JUZ$rIT7lSuPyEbR1W zv{+f1o-Tt*X*@I?=;RxaEkCrZlkid7DkkC+BWNOa!1>QaT_g)&_b5Obz&_@fdL7*7 z=h*3Qf^cMzxdu#l5}&_!Llqi%{Nhw0?>}$?;aI0@OHuk*DLUkee(COHR~C^uTGq?}h+&Bos)zn2+fFm2u(5#!DfwE`p$gvM)hacOIUc#O zrDGBGv!h;R5KT<3Bkk^K(rtWCt_lzoVRk5G-96=5Ef~0@lH0LfASu3wIM{?&V;( zSB?(n=I<4}zzR1gDBPy71XON{ONSk{M0)&G?b|Dcoge#I>^iGyX9djO`yID@V7Y^= zQstn923~)!vK63lFLZt!2Pp|+@rBZdCE~hLnSz5J@K-D^gC5A`azaR)Lbz2#qD0*vBf3e<^7S#(L)0uw{B*MNR2OE78Ve z%FHGm36r`ZYAEc=(}pU~+IHEOx>2a)vpZL{Ygp=ep6WGY+j0gXKkt?V~**&=} zI3`iRYhj+p#B`nTaCw2F&R1>&DpLgcD9o=SX2_S%nJ?w1P@2ZxW7cm_FR4Hl9L79h zgWRqxKh~C*FD~)dQFX)0NV(>>4?|aV+sDFj@oyBs6yP*#`E$*}xQ6R$5^>kSs>uZL zhm38*iX?|`w}jk0dgdcSBA(WR_@kgMFFEEbdJ-3v0x>jbeAq<+vRT-a$(YsHWPLkT zU2!;eG)(!uAA^AGhY=WmniK4Y#RvNlBpZ|FUa5%U2T?(xSQ3f`A%xkN!Ln4gVFD?y zUi53Ls>%;i(+GIE?FHixAn!<6l;#aEubunftV(Cfg2vCn7);mR*HK=gYFzq)f9&9D z{1FdR4oA_u<@XJaC6{p&HBocV7Dq$v2YhV@Nt>XW;Dai`yVHi(H#t_An)r*hhe3{G zG_OosI}3yck9EQ>h-Zx3qGS}$zMj~kTi@*Pk!yjo^Gw(k@0~R4KR4G-VVapi{nOYM_b;$FkL?`~ejj;`Bf4+z zQR&bLg!U6OeKEV$77Ezsvm1!}jNWuGljtXWGJ!EY4ZbQw ze_o01z(a2V7&ezSw!^22cfA*gmmp@^yLHcWZkFX%9$|( z88}j9+)?g$Y{;iV7i;`?B#iv;A?(bAOw6^()F$33_4pTO#L5v~Ix$_tBLhB-G{#;b zXUh@dN22o&eqt?8&&Mtnr#ZS=O(YrEp5@yKWVf2^*2mTNm`vP;oRy#dGU)sVC6OukW&aB~2XOy=aQ?eN z=YM8XNLEYJ(n-pkN(v#$((@xzNJ5vMXXo_@1e|v*Dv@W(E{$-4su- zt?OE@b#~*tc5%V?Ob`i5$|nWG{EgCiZ}Naf(1q@4b+b}|TysCUch6;Dnx2q5>@Pax zii&3F0KeJM;}S-e?f-Yqq0U|^qN;@OHu?D4E$04s5@RpYuy2IS4x+6D?G2&IujKE@ zu}rRH1C(E=3pF?^+D|f1d3X2SWfF`GYIVrD1l}uzZe<{mBjXHt;48?OLoAs1ZNiV% zdyFsy77AXA%s{f%?zJPNEr1~1ZS2lwyJysFKhEO_gzvEej3#4@h*>=}Yx8!FMW&Yy zBR$F5Zj9+YmaNZ}O#nPwmO9bf_v_S%^OH~ltT&}S^!k$(&{o<+YF7lfBV7wOg^@hJ z;EF?4O57cS(2wcA$2{*-H8tQ-nfDxp31TgrQW)m|6FRM0qI}k=yZx@7v+*m6)ZKnj z$Mvq}v_8GYX(v^MyY`ql$s>E56}t92wKt*hQH=|+;A6BgA70^HlI2A53Qe`D0d8Fp zXuy|8%8-gxB@vVSwNe!X!0XlV`gQzsc6q$MEaMYcJdFO0^}FM~i>Nmbs1P4NV;h69 z##sz~L~1b6m30TM@m}_!9b9Y ze8<1f=T}nvQ^?u?Bytbo-gIE_62zpm{6<_9VeK7rWiN;NH&D``Ul0N7a8@MaYmaWV z9n;;iZ`i68wobkmIRFHz!>&oaLA<%vWXA$BYauH7=`oE$8;E8VRIl@5iV4BEH&EkD za>`+&IT~S_MDjGPk40i8>6Ss>Po#9On4ogp<6R++bECY(;sIo$lf*eGmF-*lS6?Kj zpH}^FhOv7c7PfxLc%KVt{S|#kuiDS;EEJQ2Sn_WeR`KZ7KKkZa;50p->C5>j(`#&9 zi-+4Gt|pO49=_{gYZ&(q3diSV2z3{($Ll%a)1JG+Q=W)ewev8Mdf(XHx<)bVD3L5S zfuKq#GG^uM81`BU+n;?{X?I|152xW~JlSR$;~ub1^B*Xk=J%TAZzpGk^#(@yo!s$v0vLtOM?w1I5KZHt z+_%=;dI39qp-{e__582A^?2U?Hah_bO~as)M2rOgQ`R<^V3E(Yi%yj7U-Z>|tVGAt z={uD4g^y97G}}W=+>%2E#C*;%Vs=Q&mCQX_j%l42Db+@j)bLG^#hA{x5+X3P)1;Sh_o@{`p*u zz_c_WffCRf6Xq&0HummoxFHt;by7Q0R$u;}rNS(b>59nL*lUzwJPeFu#QTEJnfkQvmFPfu4W;egBb|!sC1%@VAMA zVhwFWOv)^%ZMgvV>b*T7rF_^_Hd75Z-xxnv}Dgw8VRi932xgu zK9}i=j$;HP>rUn4qAsOth5Q?eU`wvxV)bcB8SMq34dhlE>6A?@CvC=u@N%7W)q#B; z4&NdbhqmhOMbVjp^^LabjV}4(hl3$caQrobpe`*}(tdEZW{{FO-}pbG@%4`I?Jqyx z4TPgBN@K3zcr~dRV%G~;-GWy$vp)1CQCYah+>P;R-zsx`<5ztAVHBJ|d7cpKFocJ9 zNYwYfwm<5god+q8Lv=!<=Qnu1q>Q$oyRZ9g1cz(rCn_q-;76F)tERmzLcCI_^?8(a z-1$1Sqb^?VoLU!=HG(apK$i{u1NHT@<(wH9 zj7r5c)cnfu<;%5t@7&c$#nbq|pH#6U1vliwNa|&Rh_|#(7z3P>662p}UY=o|X|bOE?j)X4X$;W%m`!Lv_<45C-g5+mDg!pd|8#rQwbw zIQF#SB1`9R?KklM?Fao&fBd-sTVDJnH_fR05B<^5z{AAJ(ZuXOZHoK$m$l@$`>0kw z0WPIGmUUF{rN87pu442no zyEKuiL@#1fhNp1cI*tOQ;G?nD?ftrPxr7J+d@Y$ZgMrItMJlp~&^9yUnv_f6k4ZV1 z`+B5cy(9Hn06L^zi6Emc#4`KlW8kfQCni^T`4n_9m~SMIru~Va>~(Gwrk8%*RqROj z5kT2q%eMCH+B0s~$QVTV(THerB51`p>v1YiFdPkJzofukJ0=iGQ@9i%4@jM4tsL3m4w?n& z51?-6QPRSwa|N3U{GgNu(jjQ{Nz=vk?E#Ao*y=+?@74Pu<&$q+|Kz|z9gi<2ldktt zX~}^08U&SOX(ruZsXH|41_hd#fM@T`uLQ9fG*Iy8GprF@Am&e2F^V5w&peR3Id=bcw8jvTfCOoI5(69e5~eRP z3|K1}u#LhA1YTafkz^Xgu8DqPFXga45?jb$^2#Ld{>fz!i^&|9wOat2Bn>ByPoSkm z(&~!cL>gc-b$3DQVXpsnDx?1fOzW9ZA;x%S(0B@dm1kBuRi@4=W5n3+gI=E`o1~`|2eqzpklL zcCX)7=^qCp;)}`<_ROXz%$}Tu58ppLqHOz5ms^Kt6YEOBmU{i*kF^eD2*JQXzJI7S zui2_C`sWs|{=wzUAt zsau$t8YJaQQS5&ZZj32$%i36D>Z?1kn`{V1ptJVmqZWibjL)#{ zrUn)o_c{}A9%m5t5p!xFXV_>YB3`I%O_vc_jtv-Vw*`(0pBmPO=oO8&X+X?cSZx_( z9{9xDpIcYH!G_wfd1LG>vC4!E3iL}CBvRROaAUzb7)Hi$r3epXNn^q2RjEIoBk~6T z6rR$84h-@cp+#7%)VXmJU1nD-vGox1v8bfsp|Q#F(t*2sKVu|av_u5@lMggCLu?~r zhzes7UE%_{c9)zE7}71PVE40Q{-V)iY;XsBXh7UKq!8kNB9BrOOb)So&;si${pBRm* z0`~cc>X<$ezXK5hCME?XRy`cdnab&jts!-E)b+5Ht_)6(P(g+uG zfc$Ef$wA=bLj+$eJ0|$0*_6Q7hCrma{^+72BOvx98%5%BlV#zKlRY6o-=t8upCx#D z>Ki=Yz|&R3J;NANy?T&+Y|6p%uSp<^Kek5@hYp2vkq4exUgvaE+TpXjioKBRO`6Sn)dY^jf_d&=Bw11D%4%`@iq?X5wk$%| zABL=fJb0x7%vWCnG7BlKk&LGZ#<`RK{RdUuGwcl;N9${m&|Pk|JtH$a1Yf++oGN_bpcd{jF}(JOCk)x-&XK2Ky_SSbp^3lIrzai~xA z_(Xt`ya_3oqn_i%H?JzJmu6L+AJI{H3}c|Em8hO9lQrnOr4he%6(7!Qv_k~LyyvQb zM_dJO=O%h2nGfKSaEatxkV>GTdf5UE(X$`)0r9n_qc;HYZMV9_yvuLxeo^^eVa8(f z4Mc**yu3OGcY@pJGcS>zLQX&)Zb@04ea6+j6#^x--F;AZJ4GJbDfy{xg3e4!6%~|) z(=pSftC~S~KBaNZ$^xQLVuZVtDI1o^eA;jn#klu^LI31Vgy4XEs&znAd96^u0 zmt2^Fg77QND|d6o16X1ka1BqvnFGD|fICjnae>G;cHD!?feqc|7u?&=!bF%MV=bzjlCh9_+%Sg>QW%kjK8cHiZ!t$R3c#>T8Ru=jp>I4(efRD z{o~YgdO{DiDmcFr7$V1KPW@v6#P$w4ke3bK2br`-D}WZ@!@)83{6KKYW7Ro}bPjsg zzq4;oXTffM4lAaigz|kqvsg=5S;V(eNrUE{LbArm&N?PXdr?$g=M__&c=Ro$zs`Qh z8`V5cDK%>WgMHyd`N5XSx^dbn9d?5-v09RWS(*^inycc(6#o`W^UvkC zaeYUInd;YU3bmT75mDteLRT4+yV19G8`FEFi~?At zT_##6*(20_Fh?M9>zmL+!~+KfG{ z$DWyiB=obp#ijsKR=&w5f+T{&96+!f+Ef2Ppr=eKl1ia)-&OH8(h3 zC#;ZR%jhog!_RWtvU)eeWWac-m6!mz{_ThN0GuKMBW*%qe}Q(TV^w}1B>Y~gJ*$p1 z)#~$5il&~5OeP#|v-D+zkA}iS_c>b*q5;rN0gVgJ5jMpOucr+vwXIh{^9-K$g^~13 z`s+ZA0qhAuuWBXQw!VyjZ>ZLeqC+-bfC@K@P;RX!w2x$Od z(?vETfyE6ajQyvK%c!Nyv61a&!`98Hq$!{%a*|1Ml2F4J@jd$H`n0R>gg% zWV9;+Y54L=zW99nGo&$=?Vy)Uv34&=BV~fpop&JfGKM{mSG7A!wogl9({w3RRL??BLH1YlGa>|BKiL~9aaXi=Q(>Es{vj#*`>06G%hJ~#=GQ%qd=!u73UuCU9AH_yAX`a^) z(E>`3F=24Qp#zyaRPTJ*vL_*}N`c*;e@J={cbaWhEPh}JM)&+1mt66D=@jx6isp@- zqdwTbEG-gfG5WMtoDUeALN~8HQ+G3@vPXJ>`|`SGlhdf)|73U1Uu-<+$@B=#9VRS0 z61(2ARK56i5aV?JFS?^+dU*hYP7u6?s3)z$a;<1cN)7WYkP>=E_TEnYcthUd{RiY` zvInP~EqXRHh7|(AdWTDg{@{vACY{Q*kMA#*^+TgjC28%U>YWZ#eP(526VosPYjZ5s zjS-0NR&1NKbX{xQmp=7YtgZnTo=x4np0z_7V2FJ9a6O8@Uuz)&3F4w_GMLl1{*0SV zzRbH1T|*l5tZmZMM^Pp%{ME69{lv~#dhK#Kd(EveD4+wCd{Ar@lETDh+4R(um{LD=8o9_1Rbyb!<5WV9Sb>M=ho9rw;|-*0;L8|ujL z(Zhz$@%1pkkE}vE3&=+~{k>D{=aGT4pV$MOO}BHr;Ht(tjqk*korA5oj^t1Ou@?(z zt3^bu+8#76;Xk`vVu9FqD_|wPY1`W^2|A_CBORo=fvVVPJv|$90~a2W;bIIvUQRld zOvhw9A5B9%E+GKH!J7!qMxQkRcg=|I4qJJkbusYIxBKhTddz$lvr7RIr!^k$gH{!w z^y{#TF+S#WSyl)ZKLpEY8csqOLQNQ4Q=kZCRSggqcNgH+t=hl{C(#nwhSK`VZxOP zk?u!07yzG#aNPE9$FKQ5fJLXe5P4;ukC~hvDoCEn1LV(lq}H-J6>`qS9$h`w(;bXr z2N6S)izhIo>@(nHgXsNxYe4OCknrY8jk3a5Gtd@#*R66>Jjmn3ithaf#Q-gVDdM}V0$1dk z?h%*C9U$<hUREV>y`;MjHj{Pq8SfBxbUjRtH<0$t_bab>kWr> zrF8--niL{AWd2}N3C8NO4X=g3UFxrthzM#*IR!F5P!y~l#>**O+Y*+VoDHuT`HCB2 z0LM-&T&=FIs-CS_C25Z`*Cj02;SH*3O54a?1rt8^-$TO~#AQ#NiDK}P*7n}=bC&yy z4i+iF*>Jn>FWKASqAioj|E%`9AvoVZNyprnS4bH)4)*lDut?$!hHGx4pL5WcE8I)c z?{W%E&y5)DrfKkOY9$xoTGFZX41;{2@q0KGBl-~S1P_c-N%__Zlg~W02ey!+h?Kgp&$ndt4`sn^&`HC?$2sZ{=v#h};- zUx?A>%x;0thg)lm@I1+koYXXM`>Vx4w-(18b2p+t7*)Vu)2yUY6~NaxT9Hb>(513W zy#YoD<(*e+b`9_v!i4|n2K$6OPB(o;_b9V^T&u_$L>kf0{X+lF+EcPqpJHO|_5$K1 zWt9r$dC$mM196h(OSzFx5vJV|DC0uw>6Mc?ypTnAI$?kyb^IvY1@X1Gx~1#jysS~V zFPRrNQx>fM)$82uyCSq%wDO>igXA=-!neoy#5c?_-1a)@Ad>%gK!Hdqp+gSH#;X85jq^x{( zBvoEQxBzj2BMjYDQsJKEXX+_FP==Aty!F?YK6|sC-o1aosMSj|*^LvLQ}+-(5ogKq zX@hoz4Sm;NwQN02#W`D^?3unZeSLTQI_noaz|ftfB5{i9U;E(9jHPnyDmYHqQ42~` zR-FGB=R5(Shd^g6(iB}n41^!jlpaMj+Z5L=c@b%L5ohiCR8dMQWk#8{9By+`T|N$P zDQ;s|IENyh_fMr}93?$#uMR|f=ysg9tQ*C7nkXKAmY>sMi)~VHUnm-z(jO#%k!HR7 z?_^CTNS4B*uZH2J{#s0WBbL=x792^`(AR>=NLYnbTlRBfNt9OP;4}r0cls>+e z{eXB&U;_7VOgLStFm+6}G!EJ)KuF!xmGMMnMtT6unWpGH0R~OCk#mz5yUS4hbwa`d z5KIQN?zCxw@w%Zj>tb7negnCYdye`6e~54b1l883zbnYg36Wo2Mk31ti1kx!3W-z`)X>-W(?5}bDTc?87iyML&r32k5P!Gg#hk_R4|t6iDIrN{lFA2GTlVtE)yab zFAQShi^5=7gt*4Utp(^>!t-0HSWpT*NbNWf4nW0&e;a#P-r$?1R(&I4F4?jM4*T&q zMy{FuUFy8<5K+Ro7R52!++35r@qm=Z^vPbL!4>K>2{w;xDFOac5i28=;5;_%Y~E>hvN0q&8Zwcn@HTrSC2FyzQ0WtztCE#e+{HFxX)WsX!UFU9qkB-f5G)o zOMe*&kw$N{dTM~$pq?Wla$FrewJIaf(71LalCCN>BxnCtY;ykb0g%Al7Rfk#c{4Nb zHWeLS#j_=^k|h)#20OY2OSBLMNoPO@`-=Q&n_iLH>fISR==@0rDKLe#?^pm4t1ylh zk!)R_4z~n#-~Nu9t;M0u#3>rNlD$#9fuO1BIDC$K9TaG`j9WbzULCN0*Qm;4s!3|} zBd&3CvNJj*`j}qgA_8G!3DfS3iMDRv**zBD?J13OKM0E6HFNZAdQRLtBK0i8&?)*% z)DuSnrdahC6+vGIHXzH|)26K&oE_j3s05|8olF(d1x*U-E+D3hf-z1y)Cdx~hz{=X zHx$MrYlQZE;E3jFXTT$9{gro^CNn=6V)}kQJ##&|{~b2RNQ7udnx8p;Ur3O$0tT8m zhmPoJgcHSmdlDgg^-$Bh&*gpFLp7`-NHc-M*~ho_QBdq@1l%1|w#;}PJTk#q>-rtI zFEog=p6@!X#?P7g7nI>VI;b7;15_kYYr!Sa<=fxWeiWe{Q=Ic9*Q<|Pc07MID6qe$8tbcM zE?hWIB7V8ATT~_(3ZPYXoUp@$KgvOH5guckx4cx~jgE znZPZCMxG>KC76l-qy#JrdyYbKM6%v1lxyuPk}Gk!sJ)WqZ@ErPIi3ByLI&6cNP@05 zjqC2;U$-NZ;bQ_U&(Y}7kW_VEoy4dTEoPLjRu`j20kIAf8mviP3sX(bU_zO~^KvcN z4}#;Gowj9C<(sgh6edQJMt#P_4B6zm9}TwwUuv#ZfaCaQ&fG{nhty(3Th>RKIh-ZU zZAdH3WjGu+lt)xHb)@Qzm)2^UgOGa}yhYmgY3XEFfr8`KhWb=0xm0fx)^^vXuu(Yt<9xWCnnY5TWEE6TZw&1 z8p`Kfg-w#u0mpc5ulvbZQ4)grubi$G5?ykK9J@_5a7kc|1hNVf)`LU)l{kQMcHFUun$UaN7cPOO<;Hut1O{m}MFuM;FMtPw zlKCL6g>_^g(6h)x=J0jr#6O}RDIR;Qsg{yrlmu6*lJXqc;Or&(R~tg%+LQu>jpHcF zu5S#j2aETs8N4nyD&);Hzo)&o%Tvu`iJDIb9mfW=95o}duB~Lww}P{)e!}Nxa!Uu? zBrsWeTv{tYiNiAVw=vp6dJt*y3|`>n{|%HJS}~=JmAK1{_-jFp(c$|??3a(D1c{kx z?D>hFYl6d+cy@4gCD(9cpldi-nrxy`%@i0G=k`yOg9Y=XFufiNtt@|g{K13nTZMi< zM6iX%;_tonoLMW6xO&ji{W$8&Bcf!XN^TkCQ2;6xl}e36e_iJa6nb(zX5OP@M4unDVcux_i^WR(uqQ5Xp2a^5CJJ{9xmZALF?w`sI`Dsg$P@KcE>gS)~J zrc+?w#`fgaFY!}q?pd!Pb4q)Ikh`=*HPpS%&BRF%eaUiqnVcqS8}RwCh%S##hFz^k zTGRS{M^9hZ6{UVP4^|$tGCz!MCho?2xA}4JNbairsi>4}8b_RtMCDl!8i2H10%A_am@Add1e?&L zKL6vOm)H2~k@T-PtP3Rs&i*67#J%l34MI(b!={V&ImE3e6!8}Y4+G?5Bvx+X_TtW( zoZXBy1)av+s_s^K>;nN80A%#B8P`dh;OPi>K>#Hxy3i`Tvt)bP-ogzy$*vwaspDCcwp-Z=>(%mEm; zy>YwW`JUMHuD2mQ7B%OJN_(gSZlTq}UJGyPXhji|wk2`cw{Y=9#cXkuE95t5MFp9{ zp-y%pk%aI^b?1wp(suLRYm!O+Le=XKHn8S_hA~N2-n;U;ljZqwvzJ*|e3K>@!_d@@OM+z@s!ExQ|jBjTV|)q3Dazgp)@;j*2)txYqm@TG$}wjwPIU8NoE0kf{N~0A+YW~={(YHE@f6N^f-iB=4vN) zdt=)lMYryo>k*<2!5VvE*-%Z7cc)-6bdQLXBA1=c`nlX63SYx-=5(%q8WSDUB3FWO zlj72MPB#*-weI#3&p%7xWir>1Wo8@Q_d3$K31aO>%=TkpF_1mLTYmxZFD)TIvCv=V zQ;3gpba6jXsCmM8$a)`nZ9Go5BQ&X3p_P}m4X#;kO@A_}u42Z=*WAO+`E9U4+$ZfN zWo2$6+T=8z=-@n-cqU?t4`DX2Vf4@DY@VAM+{zei#V{uylwfpBc~C(YtIR5H_GaH` zgE?E(?>JZs8|RQ=pW0GZ9w_A(oYYHQp@hg!E!*0eD-+>#-kxvRdn9*mBjshZt|S=)hFbwpoHZ2Kp_f0A;vypf**?KXHIwdagp`C1m! zA%@3)dyu1q5)#5OWHjb;g6y>_TuhNC!%oA1bG+p-)5eacq61%TRoF9#GZMN z%1ADCph5JxJliJLv@R_R6sA>&CyJJRi>8kkyX8phO=b#o6_~%4HY53PR%Nf)n9zn0W?>7|FP~_`NEB?;A5ekA|wh=uI?!0}t>Mu6lKmpHWR_6UQSajPz(4 zzHE}N&kqlN`&mu0Wlk?H6APKNi9~WcHLeps>orN2^hx{ZMVIuVL-a|PRr`9gGv7Sh zfW?l<%GN);QqQ-}Zf#kJ*-a)I)`{oN9aV0mS+YsiO|*YG*Hblghc>-+%|!61TgG{f zQ{H*$SFA*jsWtY-90w#@-BYHm=9M*<9}cscrP)4hzVI@Qj`cN;E}U|0)m>c4{H|Fy zd6r}!YP?&v?M~iIyXNgIQ`JN${mPERuFz=`zlrpCicKq2O=90FvBRZEl-|m2`CJnW!n=13VzdyR#zK*UrvzmM#bUG(iToTMIzK2%3by;Tf zi3<%?%3MelvQ#!*Qkit6KjlHsS2=ScR@_`#@%DaD9GworDfJujW)`Tb3_;h2Sf|k! zoqN!5GfvkgUp06j_+=(DRs6q~h+-7XlxWsG?_RpT{rV>Kn-kO03RhhcmZ(!{7C1|0i)bGt9hoG_>V7WycDKlw zBPAN7Pvm*C%B=Q!;Vm)%A*q_cS~w1V^c{k!#;ubNC}QF#OuKP<_CzGXr1OS~CG@?m zKFjAwILRGTl~v~{=>b* zdIqhzTQ~j(yfo1U{8r_~g!!Cw)mp~)8^PoBzULR3P^t7LJ3Tgd4;UFd-B5g^HpHw5o-9HUt0&A(3v{#Ik<6_MPdL;dzktn@2r{LiQotag`0H zna;AHo{$1ev6Ub#3m+K4=FX{0+Fyv=MG@3(@N?J62NAXUvpv$Ewhvv^^Lv5)pt?(r zY#rbRDvWm6hc>FCyB97E@q6dSD*n>NSy5e2=1pp4&8C`xlQq@)5t! z+qP}nwt2?3ZQHhO+qP$N^Djvym6zDnwZHDQ-e&xN%JQ2QDlh3Q@L1U;WA^beQP%A> z)t3lArqZ?6zO|cXQlGj%MloO&m+%?OLqz9*lB{Q(+Ae37hgDg_oozfVVl`b!t@=|% zLT^P{STuLtnsRg7Sawp|+IkqE01WkxoiQqLey_Chz9c{6RgVg0T-6W&;%Z`cZf|t&ifugAF@35&PR-}Lj*)89Y>q0HC=`lz1eW58fZM<+3sy$?Di{s230mSm3zS2cPc)1x+U8)T6W9shg zTvT|40JPm6(Cw@mkM-#@ppcn*2G*`J^WFj1h4c~uF4V)Y%|vnmnvumLOB>QQRYF*8 z3mqX&aHzU1xJ=QEAGqdNFMPqxgKYM9t%AYd_2K6PWK872a}z+~gX~^l6&Z13X5cKq z@`R5r}L zJ+1OZM)inTy0~W@NC?jp2m}t$dh<;)w>ZG?-3x5clrtZpLk|V}&Thg{JFc!``O)uN zF0YOH8bXbJEUDKwQ(gN{A`9Zek=GenBuJ-ELH%2BlHv@#W?RMk> zKzjE=h|&WEuJB5YA+rGQLczrQd*U%{6j2o{{6|u>)5&Um$rZfJAmx5xmV_moT-#QK zvZJ^DnEjVVlfFMZyX3`()pUw9t7r>O z=Frp)+~1`AwanDUrsq?4bh0_SZk+UiX(y?T>my<(rJ9HwoU^=U8b z9c_cGM_7J0wB*0di;sg@n#T`*^yf1tV&05b;T`c4Zo+`qkhncmGwp_v6vv!}=}(W& z$RiT!cb5t2)LH!|nw_g2rD6)$1h>Z*q3&IN^fM%3~%0>W)GDchIB_ZdX{bLsFo&gJz7tz{)6VD@MkWM zW_E3tO-yZySIVkHHCKo$g;C*7)%hrz2?@j&ri>00d(UyokdC;D+BA7F*y9CmRhdt& zJo-lIC6Fpi9h{7ZqG=-!eZh?p^ABp|x0@e!w&U6QbnEzICl~vvIfP6LUF&s4fMU4q zZ0pMez`{^M>R2%1o&%TjArX5%$R}V&2{-+JLerSGCcwX{umWx)5@G{`y7@vDQz8Zk1wzTk)gQKC=Cf*W;!{H>0_&3+V)ZewtZuB@ z0s6}}`?J-7>y7&`bY2Ee5R-_j=CO9`Kv6#*#F|+gu{-(Z73xo2+Z%QTrgou1`4s-W zPo~VDW$k#|Y6b=}@`eh=Wa>QX%$d8}ON!qk1vjI-{y<`us0dqDc9$05)! z3%(Hlm|%_hDNR$U`58n#@a3ZlU7`EXh}ujsAS5Qiofu9lST5*?{9bh)QCL|@PMuvD zH3>4?TJ(rcIrLIb1SlIuU8g0NeFVfna8Z=CkNZMVVW)|I0R2w-8DhY9k!Zuf^xni` z2LMBVzOmLOwt{M0=I1T&$)fY$Rc4B-GT?xST~*S!xl?<&Iy(zb%PTy9pDi5ovcyh- zVx^#_XHD>?2Z6THueVOFiqcJPLUixgGMa)0N0)YGafK#WUxKjyga+w9xoU9|knGgf zwCSIC*C(}U+o6;#%fEMwQcx47(=q-E`-GWN)km&DGZ<4tF-#QBbC90&OIb=qa01VV zOIUsn3P&^jE51hlRz+fLBZUZb>XE;VdhCgLVONOaMOb?ZP*F-866T~ol0bQ>MY3auWtG> z^CaEk*X@3Y;G-`iNiI6}jZ!04lQ+kWx>e6=t~+5H><+vMY7O~VwRIQyqAWcLCU0eX zWG_d%tN6Vr(1gf%2NHoH7T8>o=qx#&G{Xe1A3H={x+#vtpL-b zPTf@h2|#*+Z3MixUkbVR0BpBLQ|n^4$K&C4Or1Znus?m?McENqJ|^?FaIz(57eZ)n z*vqn{@k&E8arUept7L>Oj?uAIT*A0UlHz)b}-N#eT zfnj0OBvmqObq|-?kzz4*oqnH%1e*8{EO-PiEbGfMh)e)R_>Fb$`i|ow+-Yioqq|3t zXb~D=YQhMmix5FfzO2=ns-wUH?s(KxY0`IeFZnn71X^VtxEl z*Vp@_5!vv_9suo3so%C~OChy;oPRd)7GA&Sf>bGPJb=R7;shv32@yZ@Yw@R$vxx~P z@!?`Y9wj^3IHd@u!i6!~6>Zty3w#|{jE*s0I8fncmG#X^HJ`XyoqB4)kbNza_5-~C zZ)~5E>?Q!2tV%?B5wx5~P3NPNmX(qP+9)TLAbTr-NAT?dO&ZLr+QiuVql2D5Y{)Cgs_SR4NSkxh&;q@K7sG!QHy1 zmSg;IfW9sv+B<(PB{j9BVv)=^n4+`efbT3K2yVEkiVuFyiWMy-$G-KKvE(jmAs~Ri(b@jI zAwBrChvc&t>-r4fID(7tC44d#MN1Ko5Ph4bnzwsp`?a3Vo1fLPoQR{mpKl@`A(QOy z=r86Nx-sj`ZL&A$zwM@>ggGRVY0^?Yqe>$O1!i*vMdpCznh44Wc!q_h$ZAAjSF#OT zCq}tixK4v(LuH%Hz zRAbbh=4h;Q9)eC)!48cZyNh@j4;McpveU<${|dlP9Y zo-KBR5MVU@wTlBAtrf`LR|9G`d{TepG0yUa(l-d%M0q56cFz80hiroLxaG}y{N=PD zroJ%1PgN&hNzUqZ!dj(pKx(l3@$bSN6QHPW&gUfg1aII{F~apd$aRC%UkRmu#LyeM2Kk#8fuy@(oM0mlp@dNY;KTPqjD zLM*YfRxJ8W00q-NhUV}F7@BfbVb=~~@dG2PIU}H9ZkQoPe}9T9%(r-E87+tnBa6s|HI9Zm~Q?s^#L_fJ5ygo0ux?rr~y8 zR%k74WnSN}PIljGu~2X|KvM^Auttn~1HEMm<9;prJ5L14)?MsyT->vQ)J*h1!DE*; zAn75oQ8-%En;6(^jpWp{AT%adL^1OrG96;+&(*9=$sty~$lY{X)3%Zq(rDq(PLlyV z9tnj=^9N9Kwfuv+C|C{jb9id18kLfqK%~L82uqO_J@CwN3;>O?tPLVrJTaiCiJ=-| z`;iXyUmZWN&wd+z^GgYM`9ALy$Di4D!<`@3jRrQt@64akH>qfn>%DAHfpt^{*oF-H zg@CYAqnehX+>i>!$LsgnZ z+Q=Dbj@$r(Lg1gS-oVvcFC(P6HO$wXHvnvLwqTWP&4;yGDs`WghI_m`w2zjvw`HoU z$5eh&;EXeADDAI&17cgBQ8g`6HZud62wbGO&y4CsUy6@MNnRfQb1l(KK~KY(t&)Ot zCLL`FjYCJf-c#E@DnIpOo=PXJ`n(JB4>f*5daARjOD?gNUUIxwTYZVrul2+fG!k19 z3&6SAag_AF_%mgcMEszDV{a9iKsBD4d&eK2!D#o5yX38YX(4iG^|mI~(#9(~o+C3# zdoZliv-63}G`e`^{)r18E^cI4X>o1jcN(*kEL5M%m~n`h?=|JSCM3h##$h}=$0dIM z9J;vy%Z~MBVYtNgd)2~Zqz^GbkZ(@)Fg+-zXv(XON%wcq6UtVD(&Fg)3yyL(Qt?Ue zo^rw!F<_x>a@WZ>X~_R11TVrzZruDd@G=kQQXH}1MU{vAM|CsTKWewG2_Z@1($8Uc zUw~(oWR<634xi`@9{He5a~?7iH7r^%LcnoZLk)%nlmMbF1H&f{C15pLd9HL&Q7Q;9nNnj zZre#QvfDQc-*NM9b{pBVGP{f5HNBrU$y_6KA1SMV!S3* z4d_4ks}F5$jdvrKks!&;My5=OBt#IuAjyT*osbGV`jOm}BMv}@5XMQUjZOwR6{Z%{ zmmV;F^`1I)t5&JCD~UZC!ER12=P=Qky1LC|j%9zW$^$|=94UI4&)#D@BLL4QY3F_f zXlVquCHj0XSogUwiz(r|mh)>gvGW{AT&ca{(gZ56>P$Z4@D2=&+lcR3SHm4X@f{oq z<(agVD{80V;wipzDX_T>14sU6(yOAot5S@VUj%*wma)_6JY1LpNUTG+>F0cusWV?k zrVXV882!&mJk(&GM}!I;H=JsUm6R$kgww5XpW_F`zf~*EUd8Yqu^C>awcD; zA}Pa8-K=N&;Sp|Ls5X+RAM@YWk`)6R0>-T2-6k@O2qht1@ zuo`uRMF0RRpsAt*!arg>aT#$ci-fYu1d+%4D`?G$HiE9L6-bIXz=x3&Ma}TjPm>&ZSD7XYb{At!~b%qb)$B z{HY%*;7=udQ?@8>7`G*L^)R=yizZM8>==l{coiv+gmhtRJUX2111QEO`|Wc1beCX0 zxA)9nCWP$`)ZD7B#&z2h6GEBYXA$$DG4%sS{CP=SsM}!CcefY_j z2CU@q%VU>}-mp=u(tj7QFc5%J76Y0(aELenbyI=wRe<@k;O%E_1W&Q`WNNK|4!56@}Rc(j_9v#+Qpj^OU>xNoAbFFFv z2RBjZnRhi(5;<0tUKDH&=Yzfr^}(=;^47$Pqw-wJTdE$Mu+K1EU0!87L#{a*u*^hw`HtrQ)>@*!xw-I*UWJuGR+ z($Whp^5`wbz4*2QLKr!-koY8_ASu$1+Ub-U&J4IhK;gz8W?U*;plCmE)dGJ&jq8Uf zymG>9bM+iuMI|=_g-!A~|)Cs52l^ZLycv7EQy^9GJpbz6=W&oQ=5W_O_*TL5N z8c*hr&X+x2!kG1lAK_2k?;Y%|U?BLg}mG0L2X6XK>9~ z#E=iU-m2rqvrZd9u1_fq@C!$r)}2R6_<}hMEX_--c#V{}<23ExgZOQ(Dc!XqB3Ee8 z*MqE0d}9R|a5hI5fMC^_(zbqRSza~t^r~dkMn&$zGZ17IV&C@q{0j_$BdwKLw}DAd8OCflVY8?bwll1OGyNNSLAwg~#$bz=o5Mc1K! zZz7%D2M-W0iQcQ^*iR#??#NfXA~&Qni3$r3xkm>--p$-_GD|BgSGpDnOa9 zJnHWl4N&-u3Ua&|MJ+gaCf7G7jY~ogQnH;SY3hfG4S;xq1l`{ZVDo*`guWeude`atNRmQ7iU1v*lq zT+{EDz6bRT)zcsVF$dr(F4(3dZ**?}DnqCi|46jZjW-Q>kSGSQ)d7ytJRpLTlx?k$ zsuC;h{{lO^+7TLw8F%^b?;n$#hJm;<_n}y_XHHAp^+ZWyuZ}c9qd$C+vDRQ7x~^%( zr(cdX)+iMiUg&xtrK~=bF+YM`%>+F_oqFq;{Gz`Z42(0^m}rxY%}h0n`c#}kRp_7uI#+B6$)$>Ki9jK?N<;Ih`}upHGnuV_7U?oO_$ z{T|$Ujkv{Z&vxYGdRdWVbab!4xta>h@AZ|MJ=f&ywgi=qdtPn&(d(T*$JrO;qo3+e z?=-3JaMyOL!B%W*hgg@@ZZdTf{u&!fl%4Xkbxk|-Xh(o~{3^0gqPvg{)`oeQzTADF zb7UAGE(u?Ha$ev~t___ExgMZ>h@EvXV)q;?b=i0@Zs4|1@zOT0g&xW>KPB1}tZ(xa zta9)oTK2=Lz0S|t=~7j4JrvG{I+dLo2<5Rx;Xj8>*O|L0j39zJ4jA?laB)0%280kt zk5dovw~qHxnD_p*&_nM9Q4{LhzbRf_#rQD;((H8b`p8rx%nq@KR5PhAqBdVYN`LJ1Z;h)ZBrEF6dw`d2 zy6nT8)cV|80}Om#&&zK+uJ@+{>-X-D6P?%LQT(K>R->E0bgoCj(CN88+HTR%f?3!|r+0hh zarW7*Kok5P>ssq^2xJ2s-(1b$Y^z6(-%0RduS_1YEPS5?_E}NKH?^`lD7BPjwYAb; zg5M$a`7dhqU6WKQA#&r8bN9cM^S6dp|ENHJ1tOf}86T=IL;k~ZH1$0Vd zVxmJY!hnn9ir_JW99Vwdp}o=Fw~vmbRrph{L2YzX&9xRhV-9E7+)9U&bEWwXso~5a zlQs?eZ%Qg%n2aEE)<_ezo2o@hRUT>{1o~2;Y%=tL_$(=vaA__?l-k({?idXWD~eN< z5s0}ew^6xQJ@={<6ejWuoUWn#kmOJ$C6hILduyBWEe00lg%xS1-nnJ{c;jGG z{Y)AI`)Q||#3Dek-Rb(Hb)ooqgjfg0-NhUvb#qTw7-a# z7t}4;A^-7VAC)=}d@}fjdUp)@rUouY)zbF&bIG=MYlN}}v}2l3UwQY(MvBh&E~e6=Y%IbKFjz9f&Ep` zX(Z;nw>RE11jeC8*AV)pCYDJ_4k38s8Zcv&gh+G?k+t2vZC;lWZa~$+N2t4gSa;hM z#gBZV046c5mP@|b$al1>-e4f5y{VSzcIXyQy|Jt;$5hc(en%}WrL3tw(XEIfbPfr3 z!>tAHKd)79U0{2>){y1IMrqVH37!yPRff{BhDE`L)b^a1N7Z|1WQf^m#Jyvj`-#dm z2j1;{Nl}rFeCNi;64W3f9v7G?Sf?t7-pY z6Tq^6UlkA!JQG!`C|u#uoocV9iMV?XP1}1Yg>D=iqDaI z@?lh!DUJ*2q~*iKGE}75w#ODbl91+5yQ2j?2ms~)d-cUmSPw;^7P9t&_?=c$917V) zJc3vaYjsWLk=HS%=%^n(ZVG%hXNqt4MS)zxWeCSRa7hWH8*f4YV)SdQIIZBo6CRW7 z5Kmty$n$h!R%is6|DrE5(} z@Du4|Lz7>-vTXI3zgU$;r{mO|E39=qL@H^-{=yGdM}2S{pwY8RbEBO^PNf5p$-sG< zZdMY7yWpL=RcqmU2-HavA>oB}!;xlU3)M-dSrgUTvyhA!V?h-7B)`K_xv2uY4!j;N zQux(e-7$O|B;mailWz+~&&{OmfE_ldd@Gz&?MVkiXd4inzu7>@RJ`n@?S@9CvSBGhlUK`8UW0wx!i zxsfv_&_L^cmzcDqbsL>%$zA<-=E}{L*&Gd@EesPyAPegXobL^nE31Qc*i2jx%UO!D zc_ZF%=ZM6QOCw83!6@c^XuG6$b zoE3gmC(zdyU$%Yd$l2lO8!ak0AU$uN4(fi=IwE#8+e5VjSWzc{fZRpXssV8Y=1Na7R$aZY6fGB>2F|H$wof)p{Ug?=_nC$8gWYq+CP z`#eFf_=HHa9zLUimNb+#Z(!9^Ck&M?R7Lx!*7j}5<>Vlcd5jA45JJmd>tZjI5G7fm zat(VVpyUGPz!h6}!;JzM*Mc?EjsF|a_Byn+8{W0##bba2)dgNKU0D`)lVWfr0q&B?_n-dTHoe2H{OSlV^;p^vwSaM0SlnX6N?3}? z()hn;;!{~AH?X;QoJRUhO3JK!#*}2Ai{kQa=rfY){)H{AEoo<`Vue+0e0FYHD2)ir z71IT1Juvatj`yU!diS~a(rqhpIki#H?CO-%Q@m!+hJs=)%#@2v2a{}rtaI&B~!I7rSAfa!z=4Up?fLGpRx*)34j<;1UYW8qH?G zZ$_2qT_+`Zw#qKEp&I_-i3`l@5VFl(Jx%K%R6gTPz^j1(!Ozwb*ST<5MU5E#}lEl(?v^z z1(>f0X_?3<(6UPp(zFRJX#JatXf$klql~rx@Nf%p`DuF~J~XB?_C&`5TXiOkk{heS zIglMW!+0a&3rsPJr&>8A863Y9Ul3EZlFc<+yFy+p%dr?8W8I4_A>teD{6s*7Ncx*6$X z`%EiZvB~2UudCsVkWUh_J-@AGh<(SY z@WgIM$}^iSMshUwH0I^Tn`fbUAExKBP#B=?K*>8|y%#5o%Gz*lEsh=RdoXpgiva(FKC&g%DBkn0T^C z7j8p(W)!3F-BozshVwfI+XNRpG!(lyvFD~NCbGeL80QI}3mgMsg3}$pa#eC;*sg=% z4Qhb@rG*%cixhzZ2W!qTat%TehiWSLZ@jJ;-4Zv=BW6>9Cla3WOCbvO2scoz~&fK4n! z_5-El_VMYcJ9?(LlX^2L+FIwE`4ubww3cbx8iOTsK+gpe&AQzfX3KqyzhmtK6Zs}A z1@yHGrNIojnc|TPvvHCZSM0LAL6#@)i^Bu=tsE%x#;ps3L44ejtt50wahf#nf?PWO7%Dlw>l;(^rh$ij5eUa`y*gR?Pz zniy~K1Ws;45&S-0;qI|1TDqOEbc3jT^RRSXPU-geY?Y}MHe8xvt{1w-B2@dO%m z;}W%F<1GtTFNRwjKg6G>!fb@s5$~*~ZC;5XAp`wzV=9@E0{6!V>Dlwh_|u=C(hQZF zzkWnRUy(9hA16p?Yi{nB|9>Ao*Hmgkw?YB{7~}mv3f)d-hW{11OEeYjw>Xge-s<)_ zIYgXrS6&M=`UCKlif^X$v`oC)227QM8z{2EWh#raMFxJ}vj{08{zL0`m4&S%P8_fg zW&DT8keT4stZNeXRIuqG^U;@3O%!re9Mo>0>_929@lcz@Zy$X~@Fs-&DkM@tR$Q)= zs$lC{uxOsBSUsL{i_F-c|+e?v+a4NfW&{V*Ag`uGEr5#k&H{JaaIh>4x;Z(y(*nI3{rB zG&T;bn!S4>gIt-8tAnPpz-!k=0&fGXCK9r*Uupp2uEzCXu17yX>Pdu7QbG#K8L9T` z&_ePA?G#(5s35tLnvyBPiM-_`PIn}b3T8;kd}z@GqC$pUnQ;q{O&bB`Ns6wmlqH(A zRCTb(3*0S&#xUN(Nn2K8*jda+WWP)-aaId6(;jpNn-KCGh!_D5o=3C~;0-RQD7k$)d}G`TwE}o`?VZmn zlW#2ldFkRfqZ{}*3euaZQ1j6ci8qILtSm|Y;+L-EwXgrbV_~%{=Z=^~*~|BskyIjy zAnh7DKiW&s9xA;w*|@IgEb^m#r5~Qa0@wUacCu+dkHQcDqj5&f&$+Wt&+iM)9NMvVHW)0txPSZLwkX`C}6S^o7&m0pm z(cfGGVmvJIdz+`+e!p}+bShG$%mfRvY5OIUu%lSutQc4;<}m$1zA${ztu{wDn)Ny~ zvFuPXe2o(ial(_jNGMuVOq%E#@LlEp4iiJoMp^tOarHVk7cw;T(E06q?bcJJ{31Iy z0W~3B(bf7pC!I_$b3qBz8!Z7l3%v#&-H@@QEI?>f?aV;Fgp52I4$Z@{1zPPp`waYb zl9G~W*&ouI5FeCuT06D|HJ`0|(eo8a3i$pB1)K^L4aThkah;xGdznkQ$4lYiyNd9n zH>Jfoz&k~x%}XRD6^p1k^L|sg)N?G_zH}9827JF%zvu_E_8PLiS(`Ewyd&YO)p|27 zJ02UI%%}A!E>jpOD0L-EVf7vL>r=mA#*5m5%Zn~t2AaGJ5y$l2Bi`2|ZIux6eJ`RE5krT$hE9cQ&8CLzd8FgYb4UI%$K)(@) z`h^}m-3BW5@4B%mD`vrTSt};h(wc(qqVRq%JN67u&FpwxvvYDs) zb*3+h-kp@umd*1zc{HD)gt{@`8H?=+27o;uJs!+g2J>rTz(1~bS;1XgW>Hgi0%tHHlVZBkm>g5cu)EDCtSz!Z@@s~cI{>zE(>!9CGbM4LH zer9DQ@dRaKE$E<63Q_2qYZ~lsTAb=vfCvCLL~XQ{C@_YM9lKQJ#2q$oBTk^z?hN|5 z(>6wcpCa^9HzEo75O6y_80rOn_-J16W2c{%4ZFTEWSfQI0^Z&m4|vQ&FL{`JM1npuZScQZK)T1RylVz`#SV6!B2Kia25Bu4VfKQ=r@y zvdSKGGnRkMmml#}Y+RI>-2E2UP+rwH+IIbqcYS0Bao|Jy+w3hxt6)|%gvB~cUWZN!4wX(DK`VtNJ;7L+H zkwM}u;Ae=zsp1CI?+Pq7Br~vPYf8R7UwHtn{EFv+fU3G`f?QCrTC|Qn(k`z;=wMHSSUE1voQf#LV0r}Ynnp*P>P|++0Xw+>2r{isI z5TWw@yqEUBH*hSj7K;#;Fj=M@v|@kAZziVq;2A_@WZSLnOvfO#_iOburUq3~j`FBxiHHb0CtTou6Y&q!b$>2)m(TGHWT^E7?B zHB69KEq&8%fk75VHJ}-fPwRw-BJ}uKze)|Q6t`=>z0g2%Rk%JY1@mo3&xCe0%qnJS zH-F+i0&Z>jVdc6$F_f=sz#Kj#RE#&b&Uz4XrElajS0(E6`~5y@y8si}>nl~QImPv{ zS^C4Q%&z0`?xAyTF`p;-gx;7wqh_?cFJQBE4A&AxdRxdc+RLE9HdG_t@N7+${)*JY z3pH^$!}8z^Y_{)-{r3$OYj=xZacRdkJh)C@F4woeV-KswirdQW?o$NVqTo2LCwdIC z)Hi-Uh273q|8UVA>~%pe7^4zmhX#08?(V!#m=P1lXs^zhj_a;O!Pk42#b+Lq?fT7R zF;7U=vI=Z?_?Q zO<2~sy+_~kD%dCOPtz^SeCKVx_B)I0)hMQ}2GpMvAArffBW&kqLt;HkeSYqV6l!76 zV#-m+)!}d6AK*v_iT%W~aacDrza&k!P-jv!A^;gjepXr_?VeQ-V`YQqjAcuw`mPa5 zLG!IHCx-%Jc+z|p{*6|CmkYZ9)z1)$5L+~Qn7H5nWxK~4A+5=hL_9SL1prWs0suh& ze{*x_>pOTF8yZ`f>g)ecL8`HXr;CNX9W65>(|-xjxJ5%(23s91mzzKL;T;@?3?Y0# z@*K=uyWf(4P1@*q%bEDE3^+rRE|ssAif42G+rDpX!CJdiENKG z-Q);e{RK`ZU7n2B+KrJw$}4Q@QMUplf&?n9F;5}^sZ;_7oQ)5vE!>BtOqYdPuDnhn zQH-j&Kc!d$auut>sPV<$22RnXI#Q*!W!9NcP$Is#O-Nax&U|Y6X#UavXjZ4F5U5)4 zDJYE`w3SfQt{sDfk5I)B;f0G)G*ZMAnob^t4C2352Ng8VC-@M?N}7k3i-Z#V=)_sp z;Jl8KU|QCYT%|^^P8@~nmta9sX5~g%4v$9=YQ#V*E;r*kf}bKZpMn6#1kt*<>Y{Rz!ab<6^n9^S(pymhmMRSf`C#JWtU3&@a!S6{r*ob4ICp<=mC@8NOg6!jleSI^pfl*QdBgIMr5Ny94#MDE4`3#rM36-;1w_UQ zw+65>p(xFWtSmL?ale9WH6Z#D=`N2{M2sXPJrIC;@KMJmQr;EaAW^JemCMWEN^0wD zQhN(BF5ox+5rsmriS3?AY3VpE_Nijuy42mxu-?gQdMO?cDk8jF&vCuh!x(RSGu`@9 zb35IHKf@7MDiw+$-pP`xcG^0CYi^IL=K2?T^OrsE2%I*5F8fGU62v5#pV^yC5?_oY z^D?2nu%vyF!?{I)IiX=m`LKWj-&+Hj$O1Ci=A93Wuc_9(Ecw!yud<1Z5_(WbUnYih`5UBnYs~f z>q(d1a9s}7(0ZM1q-=b7!qxky*?*E>d?sdA+xaz33FUHPOS|cHm6OzbFQ*XdWy=hH z8YkWRrD^En^VP=pYw$zIS3Ht>nWfY!Qb0A!*%`B(K^4YiUJwCLz(#UTmx9d_0{_~7 zKnH3-A$O{0pUDZ8VtSNr3_*ao)9xhYg9Rc_y73bZY*rrV2seBTujTL^=(R>gl1viJ zs_j+!*p0`EN9>@1QL6Bc8P$&F0A8;@O!DmLCT}Qg_!onm9^=T*WV%|~z)KIP#V;v~ zi3@o6M32Sn2fqknvTL`Iqy}kmC~jQwk-^H}DW0rSZnDGml{QLb_iXA3I0ozrIk2>* z2UYHagt*}d7$WJmGA9#u^`nD3Bhe>Ox>0h8A|^VvDWPun9DTA#W{#qnsOs(1I6mkF^vg+|)WyVno6*FP@K>q0P3(!ASHad#m zhWPRfb@Cmc%V{zXlUJ$Sd(&k#vOv4L%hnPN z6pZ5>@5WhP%qJ)PSx*vEIt{DRI3FJq=YWY}r`g=)2q9zXUPt>@NBdIpwR72?2;)d* zX7k6{*y<+YrRMD<=T~2!!-S;}3G2(UBjtyVKzpn0s~B!G`{`|gRo7XcGP7PX;6_<* z=3w|)+8phRx!(WY;*Za@X=W&v9AM^WV)3Et*NhwIMfOwa@X*r@W#+Qe zn2t3a+Oh!^XugohBtqhSO@Mf9k~+ZW)EmSFdn+20Dj$8yiWMrfn;QI0nTG~*;3N`Ki^C86 zl$%#`+#kEPgX5EwXj7aMK6_B2J*LMSMnbN!)IN`PmbMk8xTzRNhFJ21=X$KQ4G*-8 z_!-JXQ%35;P$N)}So-Yaqrh)prsHK}$>`5$Zjs3+6I0Te?{zR_V`})=f7rTkH@)tr z6i-1?>EW*L~#@-n_(N>9pJA@O%u5tSjzwdt02&n};>EwoW90Mj1a|tM#ul z8R-9j^e;~uV)eCBUv^8HKcj+3?E8_*B$a=;d{iMR1y5>|N=nHvqQnR2DV4CP+U!wF zD*Ch;tUtWv5PAR*yFr-ujUoWez?f2&`pYclU<@K;FK4TN8zK_D1?t2RjT@rw1bQss zH%zvq(-4=rz|cST@_`;gpx+K}5X|l_vmUCC$y+R6Fav8Vm<^p9#-W84m9s_<;8F%n zX+L&zPj&rmJFK;wQ#rK4LS0vC*4d_?n7?!04bHY~zM9%h(}I)5`H!*Bz0h!+!qasp zJ<#=LMbvSmCQ_sKb-tdI;P_iTdJGuJugSmEEY23vHd|B^NFd@jI(Kef<{@zWxXxq3 z3H#_N4EvTgb-L1EwYpC#T~5;>iV~Mb4dBvcE)+Rr_oIPLECe$hV*|YJiU4~JNdauN z{d>|b{K32f-KprjxKZB9LoEMffsjymOJ)!3jN!s!IiLDJBe7>=qG<1bkyz+I4-muu zKN2hbpP6_>!`eo94Y%)%@A~RWJ)6T(!r}0rf)yTM*u6x6kQ9;_#6=X8#1!4=+oTCD=)zn*W2ba|jY8T())Fwsza@-fi2qZQIsv+qP}n zwr$(I{YEeDd4ux?e@$vs8BtNIR%U){UG9#EI7$qkB9xy|28O_#wjnT)FTY_HC|E*7 z59FN@V{tGHlD^bC(9QzIVs~kU+i5JmHEPJ62?k=nL@ycw{a=6ZRVc=tKWdmX*c7&M}Q7F1M?%Wu8Bk}vcTtw+0Qmzaa!J5KTx9tO0 zNu(LcRT#KO>7R}Rfx#1W7aasIg;wU>=b*x{KeVb9mjAH9o||t_y0)_nv-Q|e?qlBj zIe|}wzOzP)G)71XmiZR_I6>8^LkWfD?v|M9hOuhgkggav8pmzMRctdkSv_fGboV4O zn!%JX@0T>XzC1>nq7Tck1EB*YmpPqVF6N)W4<0EsJ4|dleV*6Xj9x{Y2-+8YN*-KH z*T0c)%O{o>e`Qhh@EQDLOl>u{QW#=*_cyM;AYlEOhae)+q6gN!a=qRK1=N(`_^li( ze|De<&bsZ9o`F*&CgBb~{xc<66_)56T<|WZ4LRRsGJ@qynZL3dh!nY=0-ziLFrsk6 z-`c`4&8a=V)dQ4;L8EEF;mz4UvH3}>XtE3Eb;3F#zrTIVN?KPrXEPW$^?h-T#2xb? z===DVjYg3!Yi2pFB~j6AX-!I|)EPz-q)ayM1l42dG+|wLr%)Y$>$M(ZNN?fiU&bP~FJo37byj|J6A}OVD6cwk0Bcauka(>a?VpQ=wt_7mc`{2-IzOE%)Cxh zu`JfnilOlg%%jC2?iAMRC?)mE%#I%>FH<+)w|d3p!qpby-PzS14AUl4&8_UFW%Iek zG-~I(O0;A$=CiU9n`j6Z-6fehQAte%T<@@s6h;yKT3f7IINEc#T5r3W%i&u3$>+xJ z6oNn?$P6wL=(J$#4sD#ngQJKG9_;`uyL0!3#JCUp5xS)MUIM5jOy77fEWs7omx{B} ztoGORSbu$e(_=6VO#t0zI}Q=t5n|G_uXWGz!;q@fCMr!)ddY<8Fzb@`$f-QSl6MLObAa_H8|o;_oQ9wMJ|RFSNu@cs@uF|ZVeng6r9T!7*0-1OFB1FRHU zB9tQs;l4f)mm#tursskbWF0@_r`r@clm{8~fy}rgM@H2b6L2$GjRKG^k`RbnprUMq zk`hBv&>gH$J_IVU33v$#(6=Y7JSB~gHVJV3_=5Udrh;E;M&>?t0^5p8yR-Y!Le+kn z04YBS*;4)?eLrwr+h2})TrgmuCpEW^+v(207!}|uK6OB~X63wd2Qbzl97}vG*M-)YVsBF@|BEe&LJ znbqW6^XOg0Y5JWTlBL6YrRsa=d-9p+{+YkYRjh0=0)Kp3%NzM@FJSH z(el{@b+fBsvB_d5qt12oIr=Dh$LhmLbA3Bwx8B6kfNhMJETx&+wK~;PWfhmXhrP_- z{{tg{Lmj3#kUWo&e(H{^zZ8+z2HVYtYybH~M5(d--DSF<4w`(Ji|{$rhj*snLN4kH zU?-4>U33lw>QWM^J5N`e6gPo-;j<{o?1-L*# z=nY0jZZ|TI3F*jAB8<=oa|nf_e8e0?5phmu{&^ETJYD)V~koMwT{QLIdf zyyxQWRyo}u$LJD+#EkXu94EWr z!JA{HCk-A10{kySmItD`R{q5hT(5R1sHVMrKyR7a9KU>MsV|T_Z;Xbo^W}pt?z2w6 z^W)3ErOYTB>{I1RbT58ZA$1gEy)g7ZeGCCxduAHTqPtM?{LM~qx(K@Xgg{Zd4rugO z8VLAJn#M>Ntz85FhsfILYYTbNj4218cWLcU5p#ijDE+`l^7p|sC0&& z-ABx60>|i>3foomOZDZ~P@t*frtouixFZzRdh@1y<1qd)@gCdvQ|>?pc}_>h0^8)L zDRb`$Cs#CiwMY6T*0J~EMjzy2rO&~nGKX>HX<3$?^s33W^T*A@a!1$W zd;O)PJ88jGWjgx<+t=sl(*3Q`bBMEZ{YEoPNVS4?EJRX$+0K~DaGN@V)t7o3f*PbA z%yNHGw0h8dO;7Y>W4`rx)hkeQSD|{bOt(X!1f4TQyCPc9w^HP!(hZf1*bgoV#oP;3 z>LpjIv?gaKp;2oi$LsHr23tb9Rx|Z*^33+1pT{ev6;^Mi3RaSG6AmOq^&b1+?Nmwm z%={yFf`4 z^TGRMbIsSDtrF#%vuA_xQ8ngwgn)biuSWaE`(IwEWTF@-c^q0A#2;fIsYKXXdD`AN zxnYr4KSAO2zklg{3T6b7KbL$KY(Nue}%Q=U3;bPk3-4MVco=aLMtPd zK`g|!k;cM+>D=T3|LVu~>&EO2sLf#Y3YlBV9}jN_$lphr^%@*;a51UcInwghk9vN(&NC+xfz5#=N7H zErDtBPk>O(P`lWkA};LOr7Qc+Ttu^d2R0L1+r1sj^W zJm>locfSwXF$VX4ohh;5N;a$W28zC_2lJv1fI_`+RjUM{Bg_2>e|$F|V!{afr=Z)< zev#)!jT&8aa7Ns1s3WzTcq2|sXz19e@Ha@nfF4a2bYM63fEEmV2+5qQoCIl6s4e{;Y(Mt*{lM-; z%(0Y2uziL(R~8&(*HH`&uiX4Wjth#_7SpqE^8F0~RoHh^Yo}OI`O@#I9zDRJkKt8@|BiI;uBiM*?ReMxMHBjtDD&UoTz^Ph` zHZk6?1%}Q64@4zzu!1+tU};h$C`XsYnLIE;k<_$(m=UBiCB{^#A$c>1osk6!ExArv zhjKk{GonWZ!>Pe=%s(yuUX2+lu`&&mS<=!sQ98I&BgeAiQ(LTfU!ln_S>#q8v=^DU zals**$GQ;Ma|QI?1yC6g3q5?rbo0noAu437eS0{P4qU(%L&mH2snoiezuXq)Auya|(j4Y-Uh=+P*I^yJBgrS~6Z&0BJCN4Ojo424hukWi~KH{jktH)PN5~<7k&>OLl?w3gx_C5mkR>^@T zmVlEqM-y$9SJU zBiOLpUyLj49~g3;iv|H%PM^p-jMSPb5NPXkoOfh9`DzVa9xw`<&Z#~5hUoZgIrkso zU8A0$A2Lp})dfi#iCQDiZWfP;qc%62^UcRLud7K_sOsd43{%hJx3+^7m(l7j=>Bct z2xjc}hIUPx8fm^bwIk^t(4B-y!w(IO}nc#S%iYjfEx-ngg;l%J4 z%QwFrHJEu9BvpK)wbji)2vXTijFS>z)D4`2)6BpFUdJ&@&GKQ$Ik&PnnID|`nvcE^ zNW=e~P^%KvS2_A$bk1bHZC{Wc^7>Um4%ZAw5=9Kpsm4k;X3Xe>j ztcL0IrZosfmE~`^_`XHITa_A?%O^y%2s#bWhLb;V_&KulJPXUw!``tu%dJ)EZcdq`uT? zT<`vsVP+O)9^^AKgV56^YwKQHe>WI1vNv3<3#_jCf3d(X&3b(q3(?&0Dh2Pr?}>MK zswj6kibZjekQ_ySL&k-qi6a$-_2Ota{E;Vt9~)FoM@%rLrV9CES0RsT(HstDE=1mo zeuJjS+YB-$VA?}yh>BM0$E}FSgnsRTPrI(~Vi)E)5k68{#yo&V9 z)45tz-tvc%uW~eazbdI0WuK|nFB3+t8&m?7&RoOA#Ms&anMPbEaxn zec8n0*uc>LK=b_53BiVY@-LO)zo#TF(SIf(fL;>fyLT@2Y$wO8_{$m4b>?@f{zl{ON5&e z`6&D(aEY>pa>++rR!h#(2;=~fYxXovzen2Fx7w-=dspU~l1uP7kSu+~)PhqT;a|oV z?LFhMmX4QJV(Y+enfF~5aM1hj!g!=E25#ax;YAJ1fHV^AFTwU@ChS#^7dG(~3S{}7 zupIT+tsHgG5uN_dpZuh7npD0$weUeTlnp-OL@9%0H&WX2=wx=%5Co_wf-p+>{7xMy zlijI4|872-_1kG3C)-r6ZnK&+uFlh~zi*q?+ur~BlAUqC>^_HIwdw0$)W#19g3sOP zCBn|pt`4}}qHHk|RSkeMgX3SRnZ+U=LHSjs6Gr)JIVH17fCcb+88Dri;B5l=AK2cY z+slj3INFiIS%M1j8tD|5R}f;e`)MayHWSg3aSI33uy;y&q%HNs*eeyol%T4>3Hq-4 zJyM4^B=-C^KiokC{@$7_s9%P|ll&snmVX^^Wm^SpCLut83J-8YF91t$lT%i;tIj4o zPfcUni>G$?hbC#zo9@cDWY4XUYm>FD&+pSpC+Ga#>+$;*EoQ}&V#c-wcXNHB;@ z(oAZItry6==DCV12C24I0kFrU8tN|APE?TZ4lGwb{h3IQKBNZGld0*C0(i{6p@;5#H!{IV(`50tU_6GWs(ZJmVfop7-#2#V_nIhs zmAE%f=q|49P`JL!P8H4H^Ji%bZK^wPCRGtl&TYeKto6&XSG4_>@I6Z(HangrbUD-D zP%)PpgE|P3yyu;Qb8uwK)JsI3FSDMaba+#E-!?T`JypBgJQ08DTyD)=^jCu2B(H}r z*R*DoxF)t8mX2S`SRX1c*X!}E2%t_{D(hWNW%Z!AuwaLgAx2r|JRX(Foy|B6`ND+) z`q;4$4S*ycCn+mjg6E^*eFCS_xBj}jg@J^ETD4v4Pdu^J=}X3bG%fYpehu{1@Trh| z-&cf(;oE(-&;s>wssPs+C}>8nsPyi?3eg3q9r_{CIfI{X940ZO&nvCz4m)`tnN55B zRLL1%q&X8GFD@VxAyt$RQ;Hm1^*-(|0WoDAKx|j{>-FSf39{w&ZVO;({(A6CjZk5z z9O~6qAX~%Q!gUsIpU7INUg3l%f7CK$rLso3Gq~kzZ9@c^0%mR)K~g!pFH)H&o~|CW z@83tDtG!v_C#tjI;m50qp!?%c2}oCX}bLBY(po5?&n`>$86#gebx`S z#Js`~;MVS2?F@M25)%>iP(;0Cs!BzRd<20e3!*d$^5iQ-$K{xRP>$V>XSfivWybFc zPUWEI#8WYW63 znRyeJ6$3cV>RX-^vb}Y$GjWvcrI}YJSbagx#(5$;KHY_|aH*2!=L}1F``rsJs2WmB zI%2ev4XQtb)wqit>lf1&j)HI3hlq2J9oDPF@CHG-YX~F&(pe(!fItwcr&Vv>a5luup64wDL++VpW&77+;j ztRNZ4PTsc|gv7fKpn%_Y@iK^4N3lQ1oiFszja+)PlE`jic&}85Vx8)UfwN#bjG7f? z-#+D`xA9*Y2#g5OfT84nLBA(@sF+gCY6^k_Z39M4N{-FY6M*`7WzgUwT`h7u_>hi3 z9XYr!>rOdDUmFwPALi%lA#C`r-P|Jz;2Je+QL;GrV#oK{n?TvKq7 z1$4#XptV*!_BC;fhJ?lPDf=nP6*}A2z2`8FPYIg!=}H0Y7s;kT6#b)WB>khT65wHz z`AEj&03@$bs{&A+L8)+YV@T!+Mp*>kulcj;f&^5*oND!!x*o>BZZHb*N{PZ92wp6{ z4E0bhl2A!Pv`Q73yP?SyW{Zqq zMF8?%Si7fIzTY;LWKa(``1<#phoOXIc&Mf$>f~#E(Grg{-AHr+DMoS^8u`X)p~(90 zhQoY-YlPKKyHSXPzr%`5j~4|!^5_cfBFjW|G6{5|CdJLWxs$n<3D-_jZMX9CYl@Ye z4V~?cp99&E25;7MSNx8{Ta!A=OGu~Bzst?G!vGFe<0f6JOpDHoK3A-RA$I2g`l^32 zZZ!(N#GNGGc#M0>g0NpfH!gEaZ`Dca&dDH|&2B2TY^aRMrfzY|)-`2J8cmEV;gvH+ zjVG(~3LvhJJ26I+B$*oYkt$;j7YwD4(8Kr<7WS~-l)t-MGTuKfDp^nS93|bh@Ns4L z&Bx)H>C5a*G=_ENFUZe{iZ`OGPQyB1uquTgxi?y9h=DZ{pFnROkzP7Qgo`_TK&B?C zEs=$SVgiP8KnEXxEE}GBfu)^dQbKXg&pSsmSrH664;S4?08 zWL}s^Z$V4wdQ6uci!@zqCh8-wz22rLK1?l-hMV!2zG{y|CZ=e1b_iH;UTZ~c*tBG> zS9CqBkDE5l@|xR%wm9i<(>NHno|d6s3DChyz)FB`Q{mRyP*=YUb1aI;cAmOd?Ai!? zb7yBMR$S0BJ5B`a8?aZu4wP5Df4~D(!Aw7@v$Jm6kW#d@c};u_-s8?p-tqp_U)%=R zxxqI7tSp}Bf2c-?bB4~!a_fCg_2JD0;LWc5psWi!;WH;gjD#q4g18a$mDz>Wo%;0? z=b!JjquXpq_@IUMo|6mQnc9`2*=P@Kuv9g|i4dDM;C5L+1S6TQ??Zw}DcC0`SM*>| znNx?5z^npLjSnjyw3N;6EaORpfI~nlVlA5mU~pzdZ3^x~YlnC=l%~+e&@7ax@2iMs-GoZ2}JUlvQ8kINxaIY??vKBFil6N$=0j z>}XM(r?*wBw-yUMmMoo6Y+Rk)Y?6^o;nmhLB6ZWIDY)Qy0|hj_v@|!}(P8HCqKz#5 zGV3ahV`JDdAI%w+sQ2OF5#KSPZZ>i+LWP^}n%0l5WoX}RoPC%g-SoJ88D>TL0Oa#3LiisULg5ggd12u>36kP+t~zJq<_q zd($g7S_eFEcOpy1I}-L0kpuhH7OGn4@CW*Twi%b^LOPmTVvrAIWXI?}7|RYD)Hc@Ouh5{xGf2IfEb=|WG#qILeOm7^Kz83>H#A#> z(5R%XeixN)NVM+#mmdb-<2#=GQy4oPTW&j8{?K>>Z`nM(@Is6A#Z^jd ztlhzOz1c@TgxQ+JBH7rYMk<+Pi!B)bm1WVOfJnW+b`;e0tIdf1xKm$(Pj7`TCEc49Uxc7qAD%xXiznKhF6CEAj)&9x1*n z%P?ofTV`s=cxO4BqbQLLnO7@jE>~e}@*R0yQz)vI@GmavOMhXdyAwfG=r^v-MsHdT zPAP)`ql(70^dmkgF)b=DHmzf4T*6ADHn+d41n&K!4Pijyx(F|E+xCrN>3W4zlF(56 z0g6Mu&3aMqz{3tF4k7`8KiF68?zVSlXD?CBD`t9I7;3g)86Bx&GO zWUGlFYtmw43Pzhs+_Mx9IMcQ$RZS?wP^sCJsihR{rC+Cir|0ReNvkt!2ZTezf$H=k z5a840^6?|Ws-wCc2Z1>E&|wHIbNxnc0|!{}6$7bC&#)DMFH91 zAwNgAgG#dnbmDYp^ZpU~!yS-r7%&%_iz}ubvWqlKB&lq~^Ru#y{`B7J?VZVrQ})zQ zt@kUty1SdZLxjJNhrMlLOm#<5LqP(&skTRXd}AFyp6h-y2clZF58Ry@jYbJmS zBVQgCpPBIZZbTB9Z?f&R+FyE-Xe)nm3!|fuNw!RBrC0O}+!jfvYR+bQ^`KTi+dn=3BIrXSXm{ufHSd5UW0GQgoHlQ8BzpcH*>Abbczx46!Z6r0iXAkYyjb)hS0Q z4m2u8k<}{9;zG9GQuEO&Cljfi3@KO1Ny__5%gQ6Fqr|BOVmwiCeOwpi=yAu$M=Hec zvxXZO-&c37>>ugda-tk#^*$6M68C zP!gy6-iRt2UNlU1Ws7#NVTcAr`k@(-ujaDExwF7s7)?4sq+E$UyRCj1Q0kVSe!Zfk zOZ+mTTp4y^_$p7r9=;!rv{i6l$E!yA@odV^e^MSitFPY?8r?>ih`>~x+GaArZLn(} z*1G=stmI%p=3+isH)0HH9QSZB7;M+7MxjG? zl@py+7*)3>F?uq2N@Y71`Ds_UT~9dF*xGNzg-T533gs-=^r<)tdQLb462 zw>k9yv^;}`OW5&Ncy-PCVfXl&z4<;y^TNdw(1`8xA!7-K7~acNCOdQoji`k&qkp3fl#3Z*#P);b7$S;=&_)n%X#RqeE>BtpjYKhlf8L1A*7|K-Ao3fcsXGyZ*jYe%O zA{;pSUOq!M>drnkREr_#+X7Q3m;LJlp%|*%sQU*dvwA4wj5Y~zU?_Uqr1MB~*i?tO z!l#PxR;Qp}t)RcR@ z6&F<2?0MY2<2iqQe?2(3gPtA)P44L>h4-SL8J@}X-nPiG{WSSW__}*QPiY)Kmt=a~ zsw*rgFYmc*UtnH&wfhPDib(qB*L9_Cd{JPntIAuQz4Pq$!u1h#5@zb}&6wJFlaks~ za;oS=_SM-1oFfn)-5h*O(p6rbaqPS?+=M)|uq1ixnkDz-B{_fH>o5D6268bM@r+5LAWy8 zP*z8`)3*JzGEb$u+(Y9zeQgVG!}VLaQ!|tKWRLs#aGCk_^KKRYcI(Bpi&c9EnvzSk z4ZCSZ1Q(7seY=@8w(3`g4OxKo2nk-pEjSC`UF~x>6n<%wUkN{RTm^|8YR!sKB*k)M zmgr$R#HK6WhQJ{jLhB9Bvj|~JXs`E6T}0TXg2H7VBVo#7>%uNRVM{LB@sW1E9_ zxbe(IRf|M)TSB6BvKKnPjAQtR#F%DJfZ}L&l4bNEE@4YZuX4AEvgOFO=;3lt#43Xy zqq26I3hGOQ#OAcRB&SJdc0A7d^`Ylm_vkE8T>ye zPP}-YTY{yK*?HIkqW+EkLQ$S#D}K37b%^{&t_^^Xim_iHqxSeC^mXO4kgdFsh0v3U z1CwGH8v159gWdeI&){&=mZax!8J$`a`FL;6!GemB%@?Cwr710s0(*{ z6kw<+xqG@b4P-&r^wW}Guf{O>dblMi9+0`a#>^SD{)H_%H|8ceOU;IDHi(iIf_>w| zjdM*v?WLZd)0PAg`kPG|njH$j2nmGh52n4G#{yTyneRq1}nq;fiMDnR`vv z#7g<>?pGJ4J4cE@LHy*25CJQ8ZONgyM4_;KgB8R*n-X`+q6S^U zoK@b>s~&LFBlp>E=GAl-XY5YApfU}<5Si!*7w|3C`h|$5!4`)jkOxrw+ocQ9YeiK0 z?U&r@_3+mg=5;BxmkG^Qm3T;kSCcu9VD5 zV~B!Ck_99!w*TRWjt)@5;t`moBI=z~w5F88dOlBl0UPH&nV5&5m=DE_ZyzK+#!=Qg7vkqS!LDu+3b{s?NKq0&RTncSH zB}e@4{S=ujPguh>$i;!WF6ENjjp&%+*4=gvi3hh=4VinZ;T|Qim&;TTpl%cCRdnUV zd0MJ3Q`%v)cur!V=Hwocz$4{{CHVWaRFX}1RTs&(h)HoU-J18xo$`s*Nv7fR>Lx$&Q%R-^p4`KWIVxOHK}A!UG8-`tDwZ(Q~GLMkI+j)uxBq5YQ` zAtW+ECZ-M%3nVM?fmh8RY}W=MqgbbHi7z>uU^pXY%&u^$rf{jxvoY?b#EbL;Apw-K zz88l!_3Y+jiM@Z`FU%EsA+|3ozmwP3uW`oe!iOp+4nK+N25ro$-=v7T{M?WyJ565u zQqRZtN9wZia}}e5>N_>Whh^bq?GzQwR7)c|#f3a7mkxPVP4fYW?YOK7?;4vLkpS!h zw-*41VE2FVsbk3z0K62Y&Jbc_{2u`kKNRbjK?{MR^niM>LR;m@PYv%#z%FI|yr7I= zMww^lL%MK%XD9Mz@Clk$Jt5oWNhjY0d0KL@O$e#)TZsZ35;4&hi6#NCAqPCQ2m(t9 z{a7sG-bzzM{Xbdx=IC{(v8l{5ziEVs<_D3!Ih8Jh(d9 zKjGDC)YYPPB%K&XHg57#r`h##W*^;6f1jBGWd*l^k%E!+=6E}UnLxj3*GyaWj@|LT zom2K{G3;iT+a73n8RYF8ZQ)E9G7j74_PWdNfa`8`kx44O*uCI5p1F0-+PyBRAxx0= zQeVJHF}ps_=l~?+aX&bGjP8go5eeN=c!|$%StPTbg4{sdb^*EM^aXjInfgWda(BAV zc#o)(nac94*X_Esw^+`3LH$tNM-)pX6w|G4d~1GpT*VOTj^K`<;l$LCz&A;@+%23S zm3Y1_blt_!K9pc~Uf>y=k%ZIU6xeqHp>tRJ*ihieIs=*kgoYNI`j_#C^;SX;>`4PD zzI^Xh=JRPM)`P-U$j>supgS>0onImN(&Que0G7gn#7cO`f;i)!!$%d$NblQ=I4THv zE6&oqrWYyr2%qY@;)6or3Hb^GDug5ZvqGc@F6>w;HJ%s6}>XcQvYy~e*D{R&F9he;y@w+^-r&DYlhw))OB6l+Lx+>^Vk8?NKbotLZ|FJDVWRD|1)2im7o-%cTfA2BhX z^2e_;;Z|w{CjJB-gUn8W_)~SjnQ$to&&o%Nn$q3s`?3*cRi=Y=Dh-_K=d7@2swOueq}TuY<*8%PgeABefRZ3;T@89^D)8fYny zu7hp$kd@a?pB7sbB#dc~udePnpJdotT#Aiwn2nvjU$Qo8JZUw#*?oAt%BLTINL1rF z_#rCu=91k?uQsqNjdgyL-AZ2v+_i@Wd>Qm(P2P5T%;i(O5%G z#}7c1^E~%}olZ**5H2RGWZfkBgk32dC@9M3J9}vm_EL<)hq*<7u^C-8EhRMBXA&uW{36^S_*=sywztf9k*wHMhi zV6&!IeT!*>V<|)JO}k-xEbw@YRDd=b;BlGU(iUaH_sZ=$izRj5NQe2!=?(=&_V&daVp%WsnvFwAHwi z2DRn5lZLhRxRZVWtn@@sh=shfG>>}Z7K&WEpZMNYtG#@qV0;4A5UJxy+E;8Mc72;} zJ1PxQveK_5eGthI&}gSG{NUPBAx50<)|Dv0L1T!*+^*cm4yT&#oZ|B^UypUEln=p+ z+n~;hh1(8y$vhrUG^xby9Ki#}-k-61KMfwMf^S2kh7v})W z7&rkLM>jN^8<6XwmvE?}c)xUW`dxhhE~{*otNAEMFD4s`EIWF z<`tyf$_5AL2ImGqCeG$gUu3k4l-p+?U++sb>#BdA$_RbG0YL9MnTcE0#8I&L{82hH zQ15TtqH}(HH*ny+x50u&vm9boXjZgm{Bm+Fsj`}vp_LD{3X&=bH1@!FVwG1O$vTp! zrEpeb)4!&&`0-$>IV$@Ds4VI;IP}6xW=YftR7=4}BI6Y+GGxspKvc78@*yWtb-WAB}|x?B?>sqeVp$^+j15#KN*1uVSKbNpv_7 z_z-2hGnQ}(#+b5v1uv?qfD8iVW^kKfC1K#rNs2)4soB(ZMfB^BIm-;s^8s(Xu4Kkk z+sstnIuool`Wa9Ew zuifefqL4ZHHD;qkGJdy$$XMxeIp650I(jIEZ#xv!^e#YjkmK;j4GXqn6e%o!+h)gI z|Imk1nvqZ=<5SOu^Qv${;4;<-J6Phk55QeGDuIe)!cOZ8pH;VdDIqHLVC#m zFf8BdyI9!&M&exIGsh9s*kBPb8jPP85bGo4?r&Fa`Xi14+jC^n=Jke{yxi;JUdgPw z8Xs;>*z{+xu9BEC>9!>-AV98(n?&qYT`eA+og@mi&=v--)fICcwm(+1G$<9mAR%uj zU*w$zj8eEWz2iJv&yA#ZI++il=IQUk^@UFKN;^CC_r1h12R<4H0t!CR`y)uG-z}jo zz|`(ZfS8maBEXR{eRu7yBU9d$HS5BlIpDQk;9>4ro9cfW@jtqEeKwq0TRmZ{L|b30g=cJ9B^5ZDNU_ z7M45$@aVT;#l*#GISfIJeQPb&hf0nBu|`QM70e2D0#4NRP!lvpqZSQ4Fv2?7EVj}w zIhVqd8Ice(`TN$*hY~6)JR{$$tSHPF$WA7bn}<`fNRFe?iqeg2&e@8hU^g4UsL~Er z-Bqt@ifcN)Dq)EZo+qcHW$X*HzK}+w_j_ZbE-}nVk9<~8Bs_&!Za0}Y7$Gf>Z01lL zc(=^Z=141KS)yu><=gyP2n*~#=c=)lWb2L*+UXjZ;hriMDWWz$w$`$q^`(MRs6MF5 z{SF7WpL@)}NtCn^nEN|ATRq!bDSkb}-A()ccE00kXd68`Yw3Qxh8Ld|8AC^V-=?uO zOaeRSo>rw_m-`X}C8|ElPr@@_*+K_(u)QL{bN*_smmPJp8pf9Ot=8Q?R1CKokx_r% z51Z_I8c$z`o`wTsu;5MZaYHrHbtTYP`Obum{q9GH?oY$)blb-OXM#R_VChLWNR6L^ z&rY2#*U1|87O+WBTiO9-g3$!W#+Q5O%p+pUkV|l%ec1oZ4TYyzpjoQCUuShWKKnmS zTS9)si6$3lO5`_sCphSp>&iQ~G)=6d-Y*0seNC7ElBY!wrWkx#9wdYS* zgICMZ(iZkvAHszP||Wa04DJsqcO>$L4}z@(%R(r>uSF>XE#F43m)t))IrWsr~7y zl_G>peu9(DM~OdDpPlz;v${5~nGv~E^eEn>n ziNgE5FDkWsbpW(@2m%|yDu4qM@fd@Ivah!;y5SfK+eCQ8b%?&$7aI5Y9+OxY4ZS^Q zuLhd6f#H~mil*D*sHv=r6LlFbMht1R77t|yWc!or+e4Y4Fo zi{iKg?Men_YPl$7KpZdos^|IHl`{C;+j^Nm%LzY1e>ZvKq+`QH+c`FXL`Rsb%CF9#*ZuDd< z%9>4bCqU0rgP0OT8v3;a9e_PT)0gBUYlO;H5ALuE<3+w8e97U=5lA~S`$woGaH8K? z!dDl><)Rz=aCR~|E?K#(*wh7rFu(K z)kAj{>O~-HMNGn6p#4qB9QInA{=%o#1sJ749xm27ZVN__xyU?t7riP`3^L4#{-o4+I zyeX|EuH;l*il_kD>%q(U7*}mp zUWu!7sS@x_gQ1V82IDHKV)YOd&&N5x<$*wkqC0g zVaJCdRuPZ~LS#-31jHjneKIBwKfW0dn21wtSwW0JwcZTqrv#y6j1FJ~nI;e>Z0+qz zK9<2&y>U2Tk>{fbS2qLlmNcr}<+UXbQ%NPLNsy^%B^{*-vR%1|JBw_?AU19W_P?iY zVX&LJ*ukAb(P&asfsU3x?LkZK%P{lB{u<#lY+h|-bgl(r({>m?Ox(sV#F92$Ft+gV zr5LngR*-!8(DUIcq^164B=i*m^Jay1~rS) zTI3t%aVReSQ&4Cc_I9A|yXw_(`I+$I^B3Qim;@({LLygUie-*cVtxLz3F*kNq?+>%$9t2Qj8Yynk>3bt5EQ9 zRQ(OK!-hHKVvP~<{6eq9`cLNmOc4U#DuI|{L-tLf*@JtKF!kR_+B#;d2`;SyCBqzW z=bTvfjo9Bz?`qbSk*x|iBN7mJp%yDStgPnw|3N|4eTIo-kJ&jz)IB)@4IVGxO|V?0 zS2PZr{bMwA1>rEvawc{KDHG6euelp*8ra<>;Xca0oUO)Z*K?Wa@JB}*O!vAhaDkuq zv}+9*lqTe)H^}~44?2Tk6-PGpC0GXQC`Hh_3;ALI=~m5;Uc-f4<6ChR^iox2WSUM#v+M7U z-^cEKf7T5(pv~)kdpDGY&k%9h<`PkvPmQmT4}C)^t9R_ntR4?cpIP% z(Dr>W#aCEQrL6WVAfCWv-K$YeX8G@|q2y`)SlHsh^K4uAY&&Hou~;nEJjG-rZ*77S zO|*arTCGqG&07I4*~j`#y`jme`;oukv5)d=X!I+=_^h7HQ)TV08o0oE1~~|mHh5SY zSJhUd0jJS|YK$2Zfuqa&^?B~7u<{RlUXCnjr7X$B2U1JVErtIL>PF1Xv>)5@*Q$0> z1IpLy;lSDHnN}LFhfQ}I2aun*QfA0k!m+xWcJKVx>S}$)winCBz@J_}*I44nm(N)F zOv*cT_K#IZ+CN_<>hm<`yj1NLx^z2P(368T!XMX(T zv%0G>AOd6_hgSCZP@r5_>G@lgCl9E9hk(mv?|Ep}J00{yHF4XUfiHy7)$zI-VZO3a z4u0ft!igK<5%F>!1+JSAv1(lHMQQ8#`eI+?&85JqeGPfb00-7&j3-T zHv>|;mv<`}R!J~nmuK^T^l_l6Ry(E$S)i*_fp#6!A!V7Ob1iu{)}qZ>bFVCI-7Gzt z>FB5GE+OQNY7yK$u#ay&M|*^d(qv0*M~))Me7c}i{K;k<*x*b?8EHpTN8VhoD+~pq^Citpl ze{Bc#*g--?e)TGYtyBPc(^ea!-_c;J5gJ~GrQ7J|JDT0L-$Q>$ShHTwoswEZBj4O| zZr$TSF@%Cg39)nw%f>}q44R^;l)C7)7#;$Ek`~q1=)Q;GBf#|N{U%ABHH~4Yuc1BK zm@Z*TB&9vtx@TcnAl4f9Z>#Ci;+PT3@5i7)p_a@Hq!PO{ai|#0!cC?Y;N8{r7;8cx zG>Wekt4R1T?qv8^Dcv=XpyI~FD1t%Ew@kcIzJZ5;=q2n|5KK6A@KLmKkV~fHlQ~DW zFYXKH;u81>3*X6NJF2@<$f+KqO*D>AJl!ZERWLe!*eZX4o4brs<`WS4Or%lM`Grwq z1c5muNrec;dju6F7cz2G6RNSkAyRS)TF>C{?Vn~+{UYU2Zs;YWa;1b8HPFN5`&V`a zJ|%A*^^mv|BJ!8Gyq!XIHpWRq5Djsp627iw_3E{wrc>rJDB#Nn%Sfg2*qeuPa#p1S#G!k6nDO?2o%|^~A|`q& zf(g;-X}hY{=hw<}hwIlA)fo*8^%K6EE2T6H!%!n)I!L_vB;!69FAC&*I&uo`_j{>f zYLb?Hn@zZ!RD#>_@EApEh$ffU`D95{1k+8{P1P*(p6(Hb@MRzpx@P+rL`2COL_^tax&}q_E&q}qC=Q+|E zBbi!ngLx&k4q!3-=vK4^!Ay^zy z*iNauB-Zsnsk@eIB}rrlj7^!4*(pi>De-Pi8jLSxXG)4+8T zj`XdiY**UgxIYG|xI+>$@~bt}vJu3&QIS33BTXRT2XIHYDK^H{dxQpT%+dulC+d}T zLfLZtG4=)MHh)@`B#xE}M9bf7x5b%Cgg?(Re?2jDwh0+KoQqfZNRnfpj@89tmrm7# zY5*eVsQrNl|0OUS^bI4gPNHm>m)&{j^dF*7oh6_O$v0I7Rc#FF3qk9SP0|NueycbO zP@#U{{581!BifDII`hXS#0@%oiLN5rOheeetB;CS`#2?SMo?ytaj=pOf~`##ccl4d zUxKc-aHgc%>Z!^6D8ENqh*DSJ<^GV~4!Xf2#D_J+k`y9&h}sr_y(=NdTF!-4i0!(7 zorzR_@&&pSohoZ(3?ojI6%~l^ex^Ke16%&njK=J3`Y==|wuzI*WDkbs?!1K~1r7KLErB zJF0ns{6d}#OvbH+P-zpa@TNmmD56{ha8$%jR^i< zg@(GmcvvwSC;2MiwWxuvWSv~LA&4JWMQwMj#9ceB(ZU+&)=ODKs}ZXmQE6qF$TZe) zdSzZecenfQW^qzlZzJhuuqUk8;P#>|=rqxy)T54L+q_o4R`32*xGy`t>Rvm))|k}# z2VMvA^8(~VM$COA$yEVsjZ`YvpjivEu*BIw`DuAb|Ed0^bVHj(cN>YqX2X02wJr2Z zX;txF(ki=2KCvc}0bf0xvRI{2l7!VkX0d~agPfCCBV&>?wyqnt6niX>JsA!i88uy) zS3avtjKfQ$<(30Gke^K0PshbcSP%E(t^NIIyYNA~@zrdm13WE{AT$?Z#QyP9L8`C< zH0xV+nQrBo^eUIqbH!?N@z~JVtJYX%>{I5ou*{34UBj{dfbVTYVikLnMXfre26e;~ z@zu18m)5{`%f9UTOZCPJ+2uz*;&$7Q=)CV^grR@t*D2`gj^>6O>7MnI{i zPo}I0;nnKsamUF(tbHW2>R8Ut%M7aQrz^RZBe9AlyBx_qRY4(ZfeMctFD@7=C~g>P za37Ot0$1EyWt0?(vQwi|BfG-6c)kwq_G-R~3itq#_(&ill^L3=79_t$jf&JHxGBFW zQw!x=5psa^T0w4XDe#J#O;NGc*zF8oq3wD5S3zY3^CD7(2WRVo&@yc1V{BSQ&!)9p z9Ye1=*)kdcZ)Sv+wyo}ckkF31#+IYYjZ+)&Cj<&bm@osy= zZCjT0dDP|7ROcYGkW67Esluvbt7+4@)1=+x=(E&j*68Vj_2S%ag>GfXR@YY7;LD+eN^_rgVa&kd0e}_s+>@}k==scf`pX7eJ14s zOOy$U=ny#Vd|x<3%`dm{$F;WAIn(KZ>Q>$e$ow4HO4ua}D@>6vdQxREu<~4%Rgd)D zY_=!%Bu14+W#MLJBOLSvVZ}-d^jJB-4r|rivrA85t=3&M)E?v{hE7 zVWDFkY(3L<6@;uFi;T@(^4V*VEhqXfhD`mxrC-*~7*cZ}mVn{wiMqLS)uI!@8d~Ab0Sgx*r=;<1wU2H5_6fi2MC!GcN+Cdgy53 z@s=wKC%>+UxLmFkG1&HfImyYah;jKAOPVTanr&DUrzYKfA$H^bYByTVt@D2MpzmTd2_B)&LAr zC?nr`v9yzJh9mh;9M!{<&Un)<ma?UU&EB2=y0pEs5TOCI*6%UIbTd$Y!TJFA4UhB1A4h*) z+c_CU$JoIRY=w1Z{``rES&e2QZXsKt3EyDD)E79$D8-%v%pETuNAxitJoE?U-UVPU zvQD>IxIbKB;bI)Ehi2uhRcq?fDITE!6ue7(!=L(}dcTbkzk0a)tui2|FQ8x793V`) z?c2jih)SU{!kv)2ESb@7@75h&T#QEsu|!FIc-8b7Ap$XL5z`$KFMEmO-YYpysZ3jtfPSP)Tk)R$@I&p#wjPX<5JTkUzkIwzC|hUxok%ko(gGG;Rj6qB9x-{lO4$Rh0K?(0a19mbsE~1qinX2V1c9 z^Zn@EW!qSgoJ)ei45y)?33SSJ?f+8g{P&^)?;^|o4``m|9zW=Ld?SbQxmLdV2c?5L zA9`PZne)tV1uy;CEKGj=1tbbnGhSp)ffm&VugleV^TMrPzt3xrkB||7HVX`$6Ga&E zOPxOrVcWycg?=iwN{2WzKQJG-Pp1}ITNX+#QpZ!Ev>h6 z{Uz@q;3NM^K&ry)hlxbP+5UU6q?|da@G7Ak#F4s5WP@Lui5g3lw&uA;*Gs;2J;~BW z=#0y8zLlG?x#V(*LFRRmDP>@>shA-%)-L&4gU&`Kxur&1+m0*4oa>DqBBZ(lZxuIN z&INB>F>xzQ38c0N4%>(QO}dgAi?DFq3`JPsN%N_vsM-m(&OpK9F!MB3(7P$f{Y_zy z6e14aF?6cePc=qc13MO1m(Gzm61$g(S-!29SjAI+=|kSZ&wHtP`K7yg|Ha?Vs&>DU zyTx>QTJJTh9micL8|O#8z4%W7aLeZl3JpkDxE}6#HMdT|rwRk)3bzw^G)*rVcF`g} z%@R0{fCDeo+2JL+V;oe22?0)?-2ERMsZ+s7c>O2OUN&Ms%Ye-z`X27Yq#?Vtuh@9n z5m6yNHF~q#-VS8&x{mRp5pqQ^ctfg~f=~O16w&9~?88|yv(XNlM8h z#2aNID=NisHd8cd_l+=M^@4b{YG@UMm+*Q zUyyf!X(Xa8r-l>8+1Qr-8gr#Mw{02%mf({w9pMH0XSGU$=nOj@sRoFA|3pm_-b7^8SmJ|t1QsH?gVj%w0;l1S9ck8_}=L{SO`Y>>kKa;O5P= z!S|8AAftG?XhtBCOlHBho)H!bLLo$3lzjq}gmbyvs3}miFmDkai9-yz)#8~U8nJq# z5z1YFDQ@XT{ULU4rZNLcKc#1ZvQ*&&C5>Y{+hs3=D~T@g%pf|-{pg6owv(mHRD85J zU7+P%$M@MpI{jjQ7EVO>pp<3jY#5Ds=PV5z0?#M+U*-+xfHsSLMOCu_MNJ`O<^fP(cr;U9L#)!_Y0pQ0r+PwTqY{kJ4qmI zX{Cl%WffGh96^^RXEUb^sbpSeViWAVwW0@@|3|<+e;pD`Hr8Xa+!3&R*j&B1GyrEN zhL{NYsX~q~3B+XDByUHBK5~6<i0WJK^l+jX7<*P7@rtvKMk zep)BG*5g@+1*0VF}Z-req&22FzuH-_Fxh zxs&@k@OM@ZbP8(bYhbUQ?^moiv6LdVR|ZJn#cZZPT@B94YLNQt$LAOes}jeK;mjI# z9_@hDd*1UCJ{ty#ft+|VKmbU?w1{#6+CnxU+oMCA_ux3$aQNX99to{hF#kY^ELLU( z%G1ye!!gg;6om27wB$e*#kLz2bWt_&tiTMIJ;b_Ta*iw~aZB5cQDj5beB!|?<78n*}U?V2dt!v`7j_tg0Z1iuNQFT95M5@89Mg5E7xiB z0_>(?$1l{_{I$KAzyWs^9vZodrr}k&mTE(kgc)i;+}5^7DkjLa0Y!& z@9`l`y*@GS7`8wyYO9jMrUo*kfP?hwGM&HaW*vhF+?0!m&R-#M&X)&9NwgN2hnnvi zzsSXONF867%r}YF5lQPLPc!*QCLr&)n=_w+344}yhg}J|IV7)ro?p?)ws$%JrDh65 z&g<0G=5*hJfpU;>>QaDlj**kxVb^yCQ{3%_k$fhD2x)ngckRD*gCz28Q6|Kb9Qffv zLiv$qhx=lT*xY?8nq0o6MlE|!EdH`e{hr!abe3ds<$bqI{-nG}qj$YZ$QXc}A(0AO zrWT@zvJpUA8mdwdYI9qVuQx5*SQVm)p^Y8hVjCH#wOL%Gm7$XzsoetT0(9G3xU;Ix zG?`R=QW9Qyfg(pAr$bNN3x!%PgZ#dnL2vaAZ|mLS_h!DuSZG4`dMp2h9}9TW&8+#n>89 z1-=oZjQU?MsLuVIY(!c=SrIl?a_X8ynG?p!C|FU? z;ETs!{*j`|IM^0D9qo6wUUxNbyHd`%Qm%zw_N{}hWXgd=46BJJ-yJxO(pOL(ORZ`V zk|{l($FXRo{ThiKE*Zqs#R=uNFU!tL>Z+z_d;7|8^$N_1C}vzak@*CrmJq(O$c|@M zVIc!Y`_S67{QgP2kJirZHT`Ibv2z{T&V2`t^`la;d9VYi+3r*@H`aS!btn$HuO!;n z2!dy)9|lhu(C;Vl)u-^`WRarH*KR^ZLOOSkglmO0UY>T^zAJF0iD^17{tLb#d2dCQw?6kLR~p$%OIF1 zp;!i&^wN+>B=!jx3KDqbX-h153MXuvs6I z!J&6rq18Ui23ol>+*o^S+iJqsGT-}qi9JY;cF$a)IX=^S^F4~04f?S|daT;pYO+e4 z=MYEDJrW)^oRL&}*?9Ac;CzcxD?Ofq2H=r|HM(Oq`0YdSS_R`eVvacR7s^L9WbMWA zS|#Hq61E(Ns@`Q2hb*$^Y>L_<$U{HSmt>`QmW5E?p)DxK)q-pJ0vd(U^iEfm-ht~W z6`Cp80+rk7Q!5r}Fju;jBAM?FBpMl<7ACqSHD4+7qOSbyvliV(!ju2J)Z35`}#uJ%6UVX2ACd5zYIzQb0Hmn&tbuKZqWOxkk1`?<1K?DF-@Ub55xn#35_4hCkSE^K5Zx@drEE21G3IzW=+ky1_ zjfBwhiBDg^M|=VVR51Z{ZgwpwpFz0T(~Guvhl1DsUjGKYLPJnjDvWRUStQApX`fA_ zygpni+Lug@Uktc1Hsn(?7L_x4>5o($$;!2yYo+MUfr$!ucOk<~Jz!d$3j}sQK?r#W z@Hr-YKORFAa(6nffN5<$>Pq>@rLC_{&2LuE_rhK-*N0)@Y_ZPZg98PANc7A%>}Mz5 zT47_G;-n)@TQ|^dLpHA|#7vjgkFsfITjW8<6X=NP?FQa4v- zSX5{O7+q*-o9c3;H;9N-bU9v}FVEax2FBi!+$J>D$k!W)Y;N4k!Y&jgE+P{glV@aS zr0Fs)-Y~P*KJOAUSmHBsiVQZv^*8esc=4}-<~DH_0==T)p$1e{O6>e|41IvPPO%Pv zXVm22BfV`%RJ2u$4TQ5aG&+%>?L;caBC|;&TBk5w%Lv$ z1@P=M=*5gm8_8$&_ks~?@KjmT8+Ynr?WmIVva$EvP4d@teQ~-TQkhA8c}VBOy*-E+ zcWHAPCWHn`yT!YKkg*YO`cztXOCb0UY+KD;It^N*-|x1sU4uZM%p|34TiI4`TpyOy z>v55>NMq8OjT&SvPu4kj6$kiacx)ALj zJidH-u?xgwY!<){1*MWjJ(PkKSmoHpt;LmAgrQav=BxASs^PvXdF&s{LlJw@B!jYiKf<@evzRJWA+{Eu3KWI?QMq z#5mJ#L7T$OW7Iq*)5nzN8Ip%+Zrbf4fEso+wo59t{c#s;g6a7My z-bQax%!u9D!Ec_F1hUF)n$MpnfRFA1^D%2}k_}&JQ4*DUj(-GSw>Cvz!;}Uu6D>`$ zhIgl{_um^S2&{&!Au;+ca2awlX}wOuh?xNDi3A9$=4hCKaBtmABTW?_`|7~kR}HHp z8BCkHTB`FW;fNFU-@?rMy1t5_{3u{?AlgprDzaUZkN_O* z5Fzk%Zt&tko4CgTDu*#j09uiK_xNc+3Z#>(0>M<1L$$_7BYwhlDI;h`rb>m~bru1@ zye`jjj-lhZS%`}0V=%R3tSpwY%v!wX6XV(_NPsXb2DC+wQ8XCVV`@`U{vfU#lR+p1 z8{x+53H}=hYLGFZx-|SJM8po=xxtYK*WnhUC3N*KLbnZSm4Q{yc`bzn6!1*AMlSN~ zs4=t&SOvV6fb#4lQf@%34^p4748xOPp2SVJmW;C+_^Mj_*wn^y9sD-50Q@|ASRE)4 zJ2)JS_C@u^dvJ);w-~&fk59cmH`T4FeK~vy_Of4kuw>WSYACnN_C`X@AYUhSnQ z2gPZr{`^7*I_w0Vj1!p)34qnP&6nWZLhVYNW0O$h{Cgm%-ciQB?*3HV)X3ZceU+hp z^#lzK@&E!Ux6e%e+IaJkG`$RSwNm^f1-n%~FC_IWqyam|Cxc?y*X`&CP_*DDGUo@M zTI6Nc%Ab?SiPX<-g9~PkbF?FEk4+Lzj&%2n|4cYDq*Jn!=SMC#1~K_a>t#UqQL>xpfuS{;6+uCul> zLPq4uP;K%>BoI%Nxx!GwG_kGiX zL*7F!z6RdD-2HT{KAVn}N5fX-Ph3hYo%1Zsm1w++3nE_pbH?;@XYFZ*bVG7Oo%_FV zkR2Zq3p;HT7}FW^O2g8AFTY~Qiq zW7yQ<&dzOfJ#n+{D_>9U({kVLOs_lDyMj!`f%}ZR1{g)gX{!FX zl225B4w1^s5!69gwnqL9V&I>(x4NXYc~l^N{CxysFa^9odc@%6xx-k$daf+^NG0mrv06|r5Et3TQtR_W^VzB|6K8$+8~#7*$BJTQ zm~yMf^*++72?_<9MghsIT;ZVvmfC?1+w&#e)spx4{eK`#|NQAij;abtnGNJt>5VBS zQ$TQ(@)qA+D%>n0qX@JNbk!N;%+J@M!6=K$#QgOz$K`=+U=VqiEIm^q)s%D70?3L_ zk}8|tBWYVzZE@1-)A&Mv`<0CYnuRK_P_->NOo=$So@kJ1A^&MaxFb)=!=L>b)3M$i z=Jwt9LW=<;AkyxV(8t~MV|S#9i?2;c2m(J#`#kPJ6AIN7NZ2yZT$R6OITVhv-zts% zwN=Pur?;upY^WyV7*Q%kUaqVbX2>c(Q`edd3Mp8)8WdgGxwfVX;3yDV7>+xIg>s@3IV3$C-P1_5TO>=@FF+$N`F2|fU zidQHgpJs%eB4n*BR@W=Az$d*>$_u9Qr>2)y(r#0Rznrc3AeP9{9z#aB5J&eyFwibT z$e_SfcrxjYnw)M!FKo&Aj;nPN5SJlWFi*k3pM_%wOCl7-w)Tj9s^7F}yw%iodm0d? zw3eS`x2t4F?1JOyPpT}ix4yk*Ti+@Dh!=lNP6=Z_VZt6yfPichcIN4cX#9@{cP&42 z=S0ofK?8Ee1sogJfIr4H*A&aFRgHr7LX?f+r*?mX*LHz;b zLV;5~lgc(O2%*{I=4PA`pR6(sD=k1$#afE9W#}{ov%+^plIBm{;^z!JWnH@+ec$@6 ze?gSxH5X+8fWv9>vsdju*JW?2JT%|@`iYW{>;^ZCnA{B+`=5}6{zcO>M+Uv*jgHK8 zx=i%8m2F%&6EE|TNPQ+yl1;X~_dsXB8do zXD=lJ*~@h=mMx@KEhUyMBAz`p6>+@{ubVl`hpE?{Dq;RSm9evadM*&?j!I6>%)aMa z5zHQxl;F?74JLK2o{7)LqY-}8<avnmT23-JGz`93JzEJCTRGG_I2W4bc@=Ec%D`q~)IXnjFj>TsM`+Kq-E+kkS2{SOJ@{m0 zTA^>yF=_=^PPMPiRl)BtWC2iFM;GfZ`Ugmvg=+wuVH$$dGd_$eoEmZw2T70@w4(n% zARD5*9-qVsn7?0`%^HqyBJr4K_Ygh4uFAJC$NW=7|1snfRV1x4{a&Pt)BPCVUhXdrGZinwH|bFD9LLr*0v=H9l~9AU=ZGsAiySJmT}`^ z+(OEKSPt+pX>7rS+@A!3bK9Ys zuIXCYuxfOqs|P^?$|SN*t5C3{m3snQ%;1RR zI@C4HXSGpYem&av6yL%!@*qe{f+@piV(jEm)(PZRRlUFa@J`=rJ6J$;JKMyh586>H zcth6noo+v%2RSkE0sGzZ1It8F)63&Lw3B% zYCZknT3Cy`a$M%Nh&^!Nc!jE4T}@$%cr&}Xux^r)Po|(jWiE6|$Rva(A>~8!>ek2J zVU3uMaJXHB#~N4x@Af6)U4E7h6U0{CK$khj;WH$!FCx?do{w-H#I{RvlmSE>oM&(l zH%&xwotLt(SmeD+T<+f2yC-;zo)m}@8FWTz>7Qvs&_7j}5~%+afQM@j5A3}Ry_CPj zx@6K+5~WOdw5`u7T(J4BK?zKBQaA7ixELs@meO9*X42voIi##`=p5Ojw7TaLZ66q&#&K*84*1zqU1^+tf;VoO`oF<^f+9?bv&;3d8 zfY-}Ss&!}Z0FS7loXGl61ppT1Ftw#?N8LY((0Ghp;Bu#g@kElu@aJQzvddmxzY5L> z4?_gG^Cz?4lxV1f5?>s*F*vfkoI#n9*pU7TDv=lyG-A-SrG|}a`d*ReG!9qY<@`!I z8aB=2mr`skLh1G6bRW~>467MkKgxQm`g2>I5g#v&Ca&uaD?81qj;*h=2sv5rGtPM0 zN?qE@L{)JcUdquAJLh()za=Y-lKsD@S%aDj=*22mXT60y**6t++m#RJzBSMk8`@N) z_#PpUbmmPN4l%|`uBCE2e4v)&p5b!_PGzrl^Jn*sA{399{{ard7HC2JordHmE-Ra-kdvq1=d zfSXE1wtfjvFZhy$s3>Tg!%VQ;u3pjMD^LV?KJ$r!sMLUtgD?Vkpm`r1oG=gDSi~bF zZhP8J1myW#6}v;m!y&XE1~RVJEOY=)0nIKLdeR)bIWkmRhT~$GIlkdYv?2Hnr~LNc z1!1@JxhIlI*=gyXX1eXS;%WjNO@>yImZPoegdn{WaDAL_!kKkU1p`zB0t z=<)&2)$@$G*<`eL_9g)%>nvtVC84Rxmt1U7$FX(-k$AXf)MbSfOYcC?8wIR#v1fm@=sNIre*Ht z1fLV!DL2bUbz7;`{iX7AtFlgcA731rVzI!f_6IfbV1}$qT2{-KNvpuE>f3tO-?W(n zl_ixj#SZLgCiyo)HRo*&@Ax+vR=FtrhYOt$U5ec4q|(RQASRS@&wEgib(A$jr!r|{ zfn@2jR8tv8;}GSNg!5Hv=d{H0scy3wG#}0U;^L+M$jM1p1`*E0M??w0uVuqTxUhK%qaJ@Q#bOIs z2dMO+N~_8$ia(Ods`!Y;F{_w6iR9Rjyku3Yk5n8udoFZ!v>Iw`?vxv9e9FDO4&~Ps zc+Da-j;$HAx|nz~9jyr?x#ol3eNdL*-`@e%v=)_7c+$#S&F!kr(ui3Wqn( zn=aNm^-4!7a}!R2(&<=nF(X3IN)Jlq70bpN7h-0<8t)cIWGQ~tAI)cKB{ML+EWWm% zaU|ujh2_;Fi6$fS&xvIQ)96gokH)c2p1iZaR4e+2pc`F@^{k(=(h0UgM^$+H_6l2D zLe{(fVR+h2>^6ov_veE&yYA0Bs#e|hg?Eg!bx*=2Z^q_)HjNO0j>7*$u!|dOr@BaU z7Q3|OlWQt^bUWmE^uGE_URHK0Eu;o|D_D!B3}a7CBe?JGZN79qYK{^c)*><@#K+j; zSd~yN`08jH-?)bT+6oVS3WGL{x^_b4?O z214yXmErW-C*#qSez*Kird1+8Zdn%MP6*%wPJ!$Irf&*q7MsPpP#G6)(F94p!bWyM zXc2#~qVDKW0ue6@Lzw)(OMNJqZ3ZaL2~k+e-3BbD6g1NLIaIwoO%fud0ZgHqP!Bzo zu@!0SnyMf^hj>X!v78zVzLk~=AcbWdMZ4;FN2<#-ldFq93;eVOPSf@FmSr9B!xMSv za95MOmD_fccw%f%=eY)L(9znk*odqH@0z@f6avhZYCNj2U3IP&tJp1;)#;gByYrKjJ5`)t5l z2saU6+?}MDbu{042DAW@6SKN-$N_PWu_QrkD$qJa=@%u*P+J%}be;F? zTS`)+^iL~6QNi>A*jaP{hV$TGgxNDnO`Owi*|EDfw|dC;>$K%s`Ns|)c!~~dzD<;?u*h`)hL}bZ z(>e-^2s&^xl)j!1!KIh7G)hYRL#5dqMlyM?hF2l0iJj1=a4cZD`JZNu863Y~6Oay5 z>jWZh?VV z*I|R-VgHO9_OYndV^BDviMvcL zyzIttni&TCA?D)X%b;}HqOs`K)07=?8#D z(^J4HzNxh%25%8!BeRpu|KK#3S+A+5>J+Cu?@V^^C%! zqCo_-3G;3p;YNp@#h04i)qPjv179GgeoEr>#1;oo8=Ud{zs@BYB`5*CnEUbcgcd#Jej>h%_%u_DlOxv$O_D9dsLi}T?OXR)^W&!FSE`pdh$bWXO;gBu@^-pPnNG-P7i#vw zNFBE2-*qrp&0;^>KQrJ}j<7DYhjSTSRcOEmolpbtR_Aq0$rGGQiG{U?uRVY3N60+^ z9Y`);L1sE&pV30-h_FHEsVuNwq~hAkp?rILU@ZS}$}z`+j@%JhWd2Y=_444tYD0mJ zfK+`J@^?8G)F~H7gr7qym6_g}hmF4GLjuGOB$;7hK7g;k1$ZNc-OKbMcMYl0bfZJ& zp-E^&lQHLzPBjo{#LJt?h)ulaSaVywhsETm3bUay0-4KM`fZ@JI25}K$|+l7cP zw{gCU@2k0)xRO@ukJmM=8Qz;>2vz%O=o<^E(rxhX|offlWeCNh0gK`6}iYBA6Z2}j~aM#J`sZg_l*}~T& zIveYb3e=RPO*tbznE=dF-;dLV-`Zrajw(h^4&=+4wg1u#hji(jj|(9P1*^q=$YKLA zaizpD0r*fAyy8_}Rm(1Nv+tC1cWmoSdV>}iKTVYK`3hmLEcomeB&LGbFMunhN^hue-MuiriLI zZP{B_V@Uup(jOsWDEbAraXXN0f zoHw#ZajlA6U?NJk_dMRSlLz||CJ9pOKT{-#OFXYWDHb$absh2C*)=$<$JV-l7c(uz%JSacU^=n9Ha#*ZCg+azKs0 zDsNkIY>hC>Mb6n*W?s2h)Q~J{0PuZ!(U~gR649lLOK1Hv{(HsilEv%dqlpWtVpl}J zqO?v-hEy>d(Zd^yN+p9KzG0zhzA0s2AEDF5&S>Y{!PvpMBe5g#&UbsDnM7H#xCy#a zQW`xNk)^xK+zWqyz+avi{6Dw;_~pq9FYG_u3tE1GB8RtD{ppyjHJR1mD9HI=V3K!& zcu-FMC;Ts9+}L9D1?3=+!N?w zC;9DujKvH}j7|(Ci*ZP8Gl6K^-(Xq z87|Syk0`u8I!o`POOX^V|Eov$nx3wHKw>1bZ)9a`FJE79d1GN?Xk}ktFKA+NE@N2X!EolO-{`$g=JmayEw*mc z_g>%m&s}f)oF#>)rG#~p)? z@ruC;9Ip3Qj#mvxb`L|_k0}Zy~Fb4{& z5W-wItP+J)31MwGtQv*Y2x09wtQLjUdE37&=R!Mhs1t?Oi$XhbXafpu6oq!-&?XeR zP87PHYNMJFz8etUE$Fv&2a@Qiyy1L#dXK?kWx9IHYJCx^W*MMihr8>WL3 zLBB7QQ4DRao)B3PcNNtixt&foW zxSlpd6lY5c(}b-81e*i|Lly#G8TdLC*=uyaP*D|7;MfnJDe{K{OI~~uQ)w4?U`~0N1Veby>Hm#cMb<=UdsB9VHRDpAWU^ukH8JHX&V$fWNo*y7XvVk9j7%871urjCwP&z(htq?hBxY=Tb(4;DjbT!(Q5qvSn0g zLY@nR(eK2BH$Y|7Lu^SI^?vrnWz3LgGD=*ZjEcoOqaQ&tWRmu}5&ju1%EHc*4C%`# zP)V22({t%kMoD@7VGlpM00sUPA);hKk>^4%CY<8GUu++m^!cgvLlmli*SKdm7`oKi z-QCsQ>7mEBY+COf9bG>$90&)4{&T+Y`tcwtXZ_d^-8C_l(Q_4WkNCp$dIWhL`WJc| zJ+2VT7Q$+~-ZIw`tDkGTax85rz0&{CSUS7&r^dP{xnwT6c46kitmpU0Sa(b@H~Pg_ zqYBBuw8b_Xp3_H_4{VOu#<=~)PR7<8)uwa4mMo>$^>g}Ie|&1bIc3=%RW2Fqi-u~( zP#ybJ{9ww^7A4b~l0}V!(Kuc&zgc&qE>V&=n5yV`PqT5^N|>C>WrV?=RM;NDC?1xH zhPj^L)|R7qZ3&aY_$T>M9~RP|+e#3$9j!33i0rJADEQ0fA&H1=nhdK8W4IMcE5wLb zs6JSs&}@}}9o7r8)gVza&`mPC{`3*oRKv1SRM%IGuzJZ51`#F1L{xlvbF!;u1xhh3 zgox((A%(a^sTD>+$?nL7HAVre!Z4!R0PiBK4-W}$eK?IKPiQ1aj|=O9b28)$jN;E# z=i^6SI)r)j*i&D$R6tp+&;95+J40QfQp0>r5YZOaw*lIYYI>W@C_I-CfzxCZ;VHCa zD4G4DK>u87x*p&KUX5qmqB1k& z2;Gc=Lolqk2~KxGx)Oe>3aRN`D0~kjzD~e|U9k`vL$v?5UVXjkp1L+|EaIk>^@bBbM{TIIIu` zumq`RC(3jYm>fGHTZ`;V=9S}#CX0|j+(%^DslPgjN9=$sJE5`!o+2Y?as!jV$D*ae zikAu^qP(nuMTBEN6eBX|_=qARy9^Uwan+6pwj2}epAp=IWcf}s(t$4v1jl`79CKbrm(4i;SnmDX|#oZoF=k!%S34O(e7(o zXSV)UWcK_$wIgjXe!=tA((9FTmCF$v*e8KO7D`+aIJNwb+-5V;km=H z-npZ3GJf!uHfe23>DsRxSTdNd_0ROrdSWGCeD=ygn26o8-k4|3_fw-2fpS#Dx^F0= z@-Os8C!#(nS>X4pDw7 zf~JjV*_lfzvTXS%Ihvin+BG2PC}mE1UEt7KWm3wV5_M2wQB35IiwWStVIvo{f$U0s z*dpXBEzEb;E`cK!J@{TaMSN5U5!oHpw-r1Tv|_38YE6ZOb@gnS1iT6fc-hgW$8{2f zo3oXYrR&*NjwsQa2Hv1e?`TDJ`bZE^jdVFR(&HMvEUHoUN2*bc2%lO>d~$1I;ORn6 zO&%jBs(~@v3aADqT!WWHHE@2U8dQt$XjmH$N&FupA0AU;{LL8uYogiFB!w$w$qL77 zrY#ZD8bxWFCDIxqMwr1uOPEkgG>K}|Dp?~Vs*{PI{RjsCg<|iNN{-PdhJ)J4nln;u zxSf9MSE!w8*Qy_-{OE0ypSPer?6^IKMB~1#5YFo3{$+&Cw0YVxU6NOu4k?TfHfB76 zm64LmNYJ`dCRv-u%8P1Ko>LpgQ>;yCUTwP8z^D|jNYb@=th~9knIc^koPJ{LhO@b8X9HE2bh?@+By|gb#J42rF2|r>##r!9J?r?(6Q(!+K$Q#b(Y`MHU z_!ky7%dK+obCQFKXb1bVDqJzXJ94oP2a!zdbt0~|c=j=me`JT#2Mq9}w}Ta?#V`>6 z?g@n^fh|VhhES|`1j&S0zsw=;3;Qm3ov0E0PAmzF!H>{hFBL@X!@XpY5YQ4Am(Q*j z^av{)`~EW;2tWTv^hX1AXBl)7^X3^<05S0%KPx}WGP3c>j56dK9rw88bU!3MN^op^ zMm@%+MOh)xCCiB$_Dl|sO=Z-R0UyW(KX;?xpDS6YN`LU8m(D0BCnmh~Z8?1c@|_ei zYsR=t8Re*F92Jdnc>EJ%o{VD18wO0ChqNyU8B{(todb&&G_VVF6+D2{)4+>m45OaO z5LRiQqpL8S>Hx56*y`x$Vdjnyg-<0yAoEaAXuAP(q?7=pQfosPI^Zyp$oQ=`eG06i zbPyUFqpn)AmtTK=?)li^ueiT8^v1}ok;DuCG#I5sx<`<=j?Em4DPmN-FJ*8c5zEkh z_28nRmNC@6PT#zA<5EJMs@sqp}DP?J$>3ztCrAw`|y>m@5Yi#mH6;s-jELj&npXg4UyuEpT z6i{(b z+W-Y1;EU#Z##|q7NtxS3MeLs29k(Y&7ZeL8-c~bRd+%HKB@O!?O2phnV2>va$3c7VQ|68W!0P#?`SWkJFs<8D)*VU1j)xL4ckTDBhm(fG0^l;o_3^p! z_~FFKRN028KKp$lRkj{|qfv8c=FsfUcok#qNEtfOu;EMHF}EXavBzFYY@I)GdnZ$~ zW#Qbrhm+60@Mp)EJuj@tWj50?Av2m*G=!~;OPnsNN1#2ojxlBHbKk30v`WaJG@6zT zgsv=Bc~9H;F|mtz6W#O2?zX(!`%XKv>G*x?K+-VqFpK$#___JR3!b-*G0mvOvluUH z0DI+(5f`9(^lNuGFKR7W$RYhcwUVm&;lqOW}?KcXnCnXn^K}OW53?XM&U|Pdf!ds01Ln$Tn=BtJJ zh-(^dZ)7W0Qmu+Ng6Wh9#Ud!Bzg)CbE`_KrbF!=3@qUX&P*5q|WbSfbeijsC%cw5+k5_4tgs{7?J2_8!M`>>eZ?$2giyTG8lW(m}u{pX$IRf5EI_MksjKWs?xYrY!r1Lh( zJ>lUow|8X3I}8RikpH+SKaO^C(c*l=!N7=bG_*q;=7Wv6oDfzs;0}#>XfNf)I1gc^ zNIZva|3m*R@O2h9==B05CqgEY4;oh)w+!L7e z`2ABIPV@|3ga)7|0|DOVAOs2^-0Gkjp?o8_{4i^paM2eY3r>a+R-MDa@d=+Fa{0nt zIrCuR`$7a_h*d;@PY)8v#4g~$s+6a^v5+>j~4r5ebn zX-@!&-R_JIkemqm0^v}`$OVS{!3nQBQ^I}vK%p?~od~;;eC-Q(J+%8a;gV(KsI4+; zuJ=MPu$@;}N!mQ>4ZB&{-%a_(Lzk<;1ZWo$&OQFnp02#uG|Cb>jvjw^g-Gj5XJ3e& ziXEKYdr#k(w$`PMw%O_UsrbR9z3rZ{oefErw3F|@zp`;dFl>~oRyHMXEHXM+g{o`qm##>_T30)+>A zC{qeh^TO;{msJp4hF-H>lnt+7lS@SzIY=DZSoL)nFi~U-Y!sJJ$9{q0CR555oD*M` zg`N{$%6<7KLqaK_mHRpD!e&%cZfHf99G9HY1cyRi`hu6DzW_MMGpbWZdQTl0;(mh} zHT&C>+kQ>Ze&2)~s*F{lmh>D{>v!St6?l9V9$#a-0kYvo#_XL4`TW5Ek7h>A1t2_3 zd>mIR8`}bTp^j|Xc`-(8WG6I$ivR_pxC+aAp~cx$e2cSR;ug<|7qxg!cq#WKYVn`L z8Zx>O|E2c2R3aVdAHW0fp?@D9(C!1S%8UWq@$Lr;KQB$cgopicSl8&^fp@KkqTF~o zvAW8A1h2$Y^r5+dCsRfpIzQ?4UiM~`cty-8!;=UZ)?5k9C^9xNoj}8r@}ZSFQWycV5ceDX8c@$7N);}n*$F^_qb;w+n#*?L8=gJ zRG@YJGZMN+Ia(0uKSgiv!s4e<;KgsHn$VSjl}7A%V)J}UO1tCA{uPB*XYG_$85tVhX zhvGepjXRje9jUsV_bYZiGOCTH_YFkl?%CcIJyBx4uAWn;ZDotLPR7=m@G!Ow^W}_f z8xCq`Z0(6&#@3atSogPTMM>$h4rP2FKs=Ib8+B3HeN7#hQd(zsF?whG$US|>Qi*l3 zq@F3MPg|6E=~#jYxLi zj0cxx8lz>UlxS*OYIJ>f^nE#5u{YX}0F>IKnxu7Ox@mp7r6=8ns&_w%imwykh%h^e`ydRdcG@^Jr?6-6)GI*vMnKSLEgJ(r$+Frk6)|8o|hn7nTi~Ylk zazfX{XdD0j0~4AMADYouQrq~8P#szk{&;`;vwP(~s^9hO4&9Gyj#<&izuTdN=U(M= z8uhS{Wgkfew~8AT4tDcNhppn{U4r;<{jr-~|}l&_J4YD$H^G+F{l zYZ~;erL^cGutXAxmC*oZ;daV&yTDpA`&{ zoS>7EUyy7Dpin(MG?sW+)Y<4s+Jl+Ot~|MHpmS)d^Esz4Ffj>oMws?pf~?OuIXnIk zZnFVrXmaRmzTh;)W$$)gKv6+#1BpZp1Sz+eJi!d-*)J+=KPQ{{sQl8pbYd|Dj?;L%l@@FQ3K~B!i|R{G8Wtmv@aa?BI#<%d8+Gpm-Cp9wYki(*_ClZ z(4$QRdqgclxP?ftU&Z!Qgj-}_kG=#5NX(H9(3@C>Qa%)#K&%6FhZ~HkG0{g7j3VUq zkKhkheBp?*#*Nq#U)b%wY(S%~i~qWWiVA_27>Oy?@~GmfCS6${Z@#e}y_(bIwNb^F z46K@8EXa|3JxsVBVIkral1?uFfzWiP$9y5!v&Wn5YzzVFicRYxgX*8tJfE<~GL4?BmNMQF0N!PDG{cPW}Tv9Z=QPHaA&q?*v54AJ(82vhsasQS2YjIS`uVp)0^9FZ%dVJiXL7nwO#L;>x$RM zUx-)F_uenvf(lZx1<47kEqWkrF6C#Jc#lz-U9| zYQeM)#;n9?qHlA*(@Gf_USa4(MmINGHp3anRn4;_iaSENXa)(e;AjFR%W6_1lDn0s z3bd-l(s8<0xyK^sbgl4r2uY^weDGZIjZco_;|-i?h|k%2y!SbmlV>=19U?n*1Uo05 zduD?xU2MbnLR?9Z4YvkwBF1uQ`6aE!`Q$(hduT+E z9tY&dV3ODpX)j`ULf$}_EjdTs%^A=kRxsql2dDYAmBs~i&{&Y#;XH*32VFA{nO8Um zCs5b=E@O_8OUzmPbvgUIBOcU|&;Sk3bnZWN_*CcqhOWY8xHpek6%UzEmx%OdRBQr1OP)?Y(Jzy8=sQE*s z`0E!TSUBF%RQGO^zq3ub-=H2A(|kSm@6i?IC$-9oPJ$xth+hk7S%mnEB4-7bSXXma z;MF+{>0@O)-y?bCY?V00Dsk+w6;+W~^(r~BUBn$NzuSf=h0r&Y4*tth3Q9i;LV{q% zTm&NC(VHddcOsI9^dyg|NLZjyMt~!A2xVIRF(I3ZLe@M1WQRnU#Br6gHHBgPNbDnC ziDTab+Ou^McnZ7zA@Zs{TrWVB*v}0MyU9`}{$UsY7EudF$g*LA1q@{w5e_It)Devc zs>B{JRWh2j5-NRN9?{;hW^Dr^y2o$Jh!!7{l(hIc+bNY^bT;~%3Zh6!5(e&PHx!1U zUTDMzWgZ(!M1M(k3D0Ay zNHHIGkY|IWcp%Zi@d-M30nujm27*Cc}eHCTSuu|;T?Ab4m zJv(<1p^cE}r6?cfp#08r-l>ad5TKqKog8Ni!5}9*Ax@ZdiyF`yph95Ikx^Y@T`p*0+p`y5 zS%t%1g4^Vzx55KEYcRs7LOm8{?FY2*1oM?p#>nq`;~1Agif7KK*uh3GLI_w&h?<5x zo6%E~*le>?1SQOZw8;O|kO(`g%D0pp)dY zE2?16GF?`A-9P7#?*tQcd&Tva=U$GtG4{@Mc@@@$9A(Od@MgyDN|)F0S++7|?dh8O zn=jvZInl+`Y+o^JDou!GKZ;rQWgFpajh&4u?rW;jdh@kiGrN+G9Vz|Jw9Rq-=-kmo zTPtI0U9_!dZ0qOMjBVSZZ8u}v9X*(~mVXx+(JcSidF zo58ukMY{{3vuNMQ*f%cPcQW>!i}rntecw;*`)A3t)rPI#&%S4MEj6?*HuNwJJ>Qr8 zK=Zcd$BlQrKWh7n;pEBZ|J;{+aWL8YQfk}F>0Q0=Zn{7C^5WnSGdPr_yvgB_)FABj zjgUSv9h_K^lZ`Yvd+b5i_SwEH{)rOC){bhlXlr3?EsM4;#@3ZM|DLUTSx=N5AeSu! zYAlRxCu-D1`_}vRtq47f?YeGGw`gf)EC@u((w;caST@|Zv@gqvvTYCe8a_cDP&?s+ z9Z5~ahg(tmGsdmIzDeK*Ebff$y8nQmhg`j@c zN0h&ziYO`7D66nHL?i`@Y2|8VOdCW7_>!m2DYYQ*8l+Qv28=VcXl!XB`XWAFvO=)& zNqg#*UMwDPZTp3iYZLmdzWzuY7LE)6rj#;Au_^&U>i7bs!lSIcFoqvx zQbG`AL}Q0<2lG=cZT%XhSt90$Wke2B7thmNE z+nuZFdqI5kdm9R1qaI_;>2^4u;hdKVeT~Bb8sB_;<7JEN0vqdrV89ET(J!^I)|)M_ zbU3l#k;_!`E%QkTO});ZPHbHW6=GR(JOD#p1PT~+How;sz!QcyLdd#`;^l6UrGog3 z^3#>a{yo8oH`#4WPGYhNn7Ff;Hf0P7$}s0s6NHY}E<|Kp7Pp zvM{E__Sl+Te$V(2<=Jz&2DpE&kgP#AA8nR#8}@&9g-AR<-}{Fz;w{BolSw!IMFOm- z6&WR3x`w?OoA*)}iAG2oU;$D_(7e2Y6tl|0_KHFL+?d?;jzl9PBdLy$LiPSmCRRvpSb* z?~DeG;lSkh#8gHBLxz40Ff0`bWp@EsY2oUTQ2-QLgF1}<1tdI2@FEe?Ymq5zqY*7@^1Y* zZGR&tO9sdX67RdQI*wH~c*bNOSND$DM~^e$z32@2!rsSK#pkfp#aLtSY6yKCgNR=y!#uUa`Rr3w zo_~@ox4^3foH_h~Gl;eG03nPBAQZjI#z+oVCIG)pvh*Gk&n0;L2LiYiwqe{zl=4o5 zv9g-}-{A3p;55}PH4WDx(BM*-t^~S`6aDWwiHg}f;39#sp#N_IyZe+fbr96G`3^r3 zx5SM>cQD{agWL^+{IWx=l@-T0fhB`#ArWGr z3cgO}(xwqPcJTo%%VVk*VJ6{c8ID^BX~}S1HeAxo zoi{6!v3CfFU^}H?Q?fg15%kqDK|(J@qV&9}noNX^>?vR)%fUv5#ccJ6T!Nnd6-Q4s zp5GSJ)5G3?mj*d&6`sDB(six<6TJ8F5eV(*$H2+?KN?BRb4)uRTz14aj;O)7asvfv zP#~X%!d3Npzyb?bpH1`lM4ati1P8hoRgt~PEdNwy2fydNw(nKGRr#*% ze(6B;0Jgh%SY3Pb=#8UkgL%==#2A|5XBb1*qG1bT*pf1ATQuxo3_H@667UZYBjJdK@? zpTBQ$MSGVVl{d9FwDHdQ@`dyF9lcQ_3{+_;d31K#HV<52`C8_R> z9#5Msvz^KMo}{@aspq!3|N_vj=1mW7{E$)fcr7$(9Z7o!XJ`ssqP`+o}gGJ4a zOvT29!}lxtc(HOXoc`hzmdcz@j&iK8-d`vGVV!dS#$2ILpd8@Z=cDh1Wp}!ycf!Qf zpvY-3gY<4q00|pd2vn?gN-UzhBX}Q%>%KgTWDbKL&Qp(JrVMppVD$qOPr}8s^Em`3 zZ>PqGxw5jmM&KQRHHP{1wo5UU+38jLNZ>VL#tvXTmP^Gh2zV{Pt3uYU0(;F^WxoRw z73_Ct1&0uqjXC}yz6djYh~Riw$(@ayshh7yTB=Xi5=MNo`Xch>p&H(ShKNgBT8*i)lx~>S3}9F_EdSt zPfOr}5<}^=<1@#BE!56w)3&Dg3C7lvAQ@X*@sCH~e(-PPDx+yxPLy`7SO{ZnYy|5> zIOi%$j+)npZjRm&%$}8r8iZ%|2@M2D1H4yhbz&Xa&$+H zOSR6Mz8k)TasK@GF1~ef;rv^d-zD$Y9!+Yh(&n}9XF{h>qK z*QUwgIDvb^G%F@6?n6m@i@oFqgaTg+3wJPcu{mA_l#-`;SJ6R;CPh@!##K|!aUcU>jS#x?s)Qwjsu#U66tRuZu1PriB<`(-xz=AfX z==OPs6Z~{fhB<{0#t|hAV+XWZS|wz|q@)194vxsNe%kUq17e`;*@8kk_e9qEVjYR! zFY;1|1Ou)@ScxEMlOG=QA?gJehK(X>S#an8qA@WW@!(V3JTt;;+{JXVy8t+X74&m= z(-kcut1)7a3OiA|TpaVE_QiF?{UFf|xkYc-u$F(DtQ$u-$%`8#uSt2*%pLf^dKXOn z3c5=mZp&z#A9Bev%27HvIf3{5Ga7{R5L}W+|D53Ok7kVo4#A_H#C8C9Q$gmroKbV5 zm9=I6JAyZ8$JAX16xs}rI-XXuY8z|{ub>f9E;B2Q;j$IbUm0Dt-Pv+9Xe5W>kOsCM z$QZd#&cCu2z__8QG8#S<&JfU)Z#-kf&Zbet-Jx^72{vsA?9emh1^OQlv=Atcow%;VR$fv~^G6818p#15PKQDye}sGaH7?uCOZa?*ByjA|aXcBBn9_QteD zLnC8oM6?=3x>_C)WJNFeK7n52)^yjlg#%32-VfwNWz8~#MUBfi!2?@aRQvB8>!L@1 zzPHY`#w_lt;fBWTyo@DKwROw!n$d0}F#?H^Z96gk-uDjWPqd)Gs@l2wPsooSl z4jUAj8=81qVkB9=Ipx?A?O(E2#0aFLfayz?iQETdu%1`W7m0|PGk0Lxrb1nh=^vrFi6 zw>zVAgJ3@Chj)Y9eSXs8=VH`uHx(RqyXk*RH26F zJT}6k4<2w*1xw?sI`Cco;Q@1%m(j~>#QO@XQu9HZTv_*lPNlSdU@1{rA2nN*jt|

uRrsS_F2Nl?TE+UHHM0ZN&(qxp+0bRNLU+{X+ z>%2&N;EF=$u-_93arR;bS6H%(N2f@!H3FVcDT$j$F^OVzVZIS3oV`LT9k+OLP=Xh{ zv_I(Kjug7xquwwgKjUt9mKb7{b0`Q}GIqs;i%7a#!fIMY_F}aua98+@n4Rhm z_`*JqAEa66H9R;u8|$L1l26DJD#(=GtzZ>~uo86SjMEO0={(Eruu6(TMFBpKhsL_! zGs>y}Jed9?qKx3vqAigz52RzS9pUv31?&-EQv9G~&Sks+w16*xIuy?j2W|QM(pKl< z%YPAz)|bQBiHm9>#$ zuc4IVYbdjqC}vkLRo0XsqAYU#p_I~BmiH@Ia)<3gPQmdTrNCBfa*CW*2b2*tMN-O2 zNSpP0A+2Utu4X|PQAbGBDiY!_s|2{C=C{MpdM(hGz@1UnmxzS#0@@tWAc)Sw7`Rxh zsH?ul!Z1p3a2Kk2f?R@=Ia(FbP`Xi)D_1j0;1+C_K}$6i=8SOO)ul=rB_pzLl7FQ7 za&9}cejHeoKBDoFUna#6^UX`9$bxIqNa5JoKPL+n>5>ds5mK1t$O`k|8^*8z2{)o= z#cGanNZ*{!F?QS;cHS~yL>sd(11(_@*bdPG4lEx}P!N?CJP2??Dv0>(Vkcqq|CGrb zuZeiN1a81ZV%at4usf_)_^>-Txq`#)k?h$X*;#Q)VWbG-d~ik~wXR8Spl8)+@~onB zb(ho#x|A^$R*XrWVR?+LGjP~`3g1?s0PTP_qYH&SbQpUYqyL1!w-W(}&MN<*q>O4Z z;5$F*rQe1REw}67rLhAumog&{PfldiK|h7h%43o&M<6go3_(jk({ru?EU+I72LEv7 z5~RQEVhN)_VRP?o6DKtw+7$XU!Cu_f)G~K`_HgVpoEv*}?$!9K_sh4YYn_X=TbbIe zi?zF%+T9COs`fxkzEs!nt)4fw-`buyx!BpqboSjn#dP*BcB1F0#m+NK=b2RFi>bQ7 zq+>8$)i682ifvgXN&wfA271UEonXy~pN~S^30#|%F$70O;N(C4qGuo)-!EomZ+F5w z+FL;;-A3~K1J=SAfQgV__D!&GArIU1a34IYkHI!Fz-(at0(TPq61+W+dywTwaQqo~ zU``}0pgTlj$9!yzqmU-+npOb~I%>_DD|F94BYB53OahQ(xH=KXK36oOU+N^*?aB5{-$TxM{Y3 zsk$v)SqmE+>FUPC>JFy5BURm%u53)#uS>Hwq46oEx_d>hswtgSd`-JtN;oQK6=`ev zqSbZJ>PlDD#TynIb~5Pys-3faa57{2+;-LvTS9%`x?#TWd;M?qFK#-*Y&!C8?fp$> zP?lulreworrfM_J5bOEf9cgDzT=9nCmLYMParVq_`rh`pwkMs37B1X#9-8g@8p2r| zpLSG(<><1Utlye$YWo2Hc5i+kerNl>+W%ocNtnv6otZhqn)iJ9VCNx){7)6iLq@gq zy(AZi;+rj3)JI`e;=X>9ls@4{o27HJ6tmdH6|h!#f?|4i(u>w#?*(rmA!79qp$YG> zZ^Sp8yP;c*6w(~D(3647Cv6-Fqk;%fAQDC=XK@0f|(<7;=N(C z1{RVzA9V@T%P3B2$GM0_OhKh^p=`B)%1T1GT-_(m26f5`(3DG-T@cXwU$BcVbt&g! z8NEnJbGd{UK!l)9SWkBn+}@|fc5P~ADrs&?YWkAReJS)bH>LIFMScA}eLXj8VyEWz zBn|Zs*sr9an!EP$5NQ3_D#JPE!+_cmc=W^LD9K4dc#WZb5}LVZNba!+3l6M=uMzLd z6iUsCp-SocV8;gK)<+a+Qr56}AZ3nHjVIHOs)^NZrJ7QpmHay>iO0r|=w42T#wx3P zu(5)Ag&mF9mnJnYx~*c5F20WjEX1>ZAtG|AJ>9Ut^hhx|BHQq+XLW_xQXDG)1$GKC zaZ>xwgj>IQ3f{YhTfhckyILIuv2-*?R2j{2dYAP|E(n5zTi9C`?Z!%pHqtko2<;(x zZ?yvUN5jIM*wQW%Mf}>N6Dncs+28kEL2#Z0=PGwu=a3|9ZjOGv+;Gjd8KQ{1VrCGQ$ zs>B*RKDefBv8J1;>HdVBL$GK;v!#!1+qP}nwr%^~W81#Rwr$(CZL7~8-5oDp5Bd#i zvM057L{?SqtX%7}8+g&$v65Z73|bv`kp`cJW^dDF<)Qc`V{^D8>Man_D{0`bHfi*P zmw~6MK4~-Vf=^Z5Zlu{+h3vc+)xXz76*Rt+s()mnwoo6l)7o8{vptvSK=iYIMe$i` zk62{jA8)|3+GpKl@1)tRM_6z*yW1MV&_;&P4bLX)?6~hZIFwlrWOi?KHx4yhSQ^m4 z?p(%r?`L92Uj*2S(rMcp!CcMxuQp6j<(uPUUUj(H9Ba(ah1VNfTwn~eiwc7qpGvgu zFkkxZ$Rt(McP7A^7+zMrw2bZJR40vbVIcGoC3j_oZ&Omc31(!;atpoBI{nbzPaHOO zT4;$1YQ;NJ7Xc%$g#{>e)0rDbI!-5WR6sfU1#DW;wTO+{j$0uxn1K}e>JA?yFQrQj zVn&X%J?7j$pdG9wm>AB6Yh!Xk7j~< z4Z1@fQJ40QtljP#^77tf2A@hwscgy$9&`Xvl{3WbjTCWL0dc3j)Qg#sWdFg#T3%Kf3&8V->!Pn^`wOWLqJ{K@p^-kp{*WCT^AY#}JkLJ=P-=)#8lV1k6vJa30lt-hW^u@UTkYCo%<0 zeTjUh64OV;j#j=qNnFB(yz%`i2ESk%lJD8;KFaB-6`N6bh%WRpMUMnveC}9I~(kg6n+q{uufN4m$CE~ZU3$DeeHf&JvLPmR-)cm z??o$M$xe{9p4=X#r=mx*M%9s3%Tes3Cp76kjDHN%I$Rl=kkwmM8&A4As^`s) zAj!m2@>SVmGakbSOPx6nVol>$LdiOPB<`EnZv}FGCNV(jUmv==v_qih2NfdL;!$jk zUC@@WuKop{$K&iF)@{~L@KamK#lITO92sqLbLusvbi$4;TP=TgW4I%y{>C*`qX$^5av z7p+UB2qg=>WiX@_Zga-dWX(3n8plgXtmQajw;Y6)%VPxU*$!-?bXSXh5ba_!+9xh! zK(u%Mx*hoRdsUx>UjqFC(1zC;=%PD;OEL1(x7P7~|Dg^)`^hAEX@%OAYCWSDUeGU4 zRO6vqpwjH+h;D4d=zYr$IJ;4e8qEjUCSkvAsTL2HKK%ENa;c>QSoGaY54H%pw=VhN!|%KS>Xw!T-lcTf@GHO6V@2(&p_ek8r~7B ztJ8`q%t8cROf5J1On6<7bK~<5sPDf22KmxY_c`VQQ#I%{LCHra2BawZ&~dqj_)Ty! zRGwN*l2V+qfiEPKn?O;9QkP0TipGwWRI)kOrAiw%tWh<2u+bQ{oJZ46 zc6Z*7^Wp%R7NmzIg{ffBTW1xDvcSzbgy&D#Nefc}jBLK(q}&-qP0p~E`!|DE%G1DQ zaxHM`T>F*>M8{S>@tL{^^`9z}8pw&C%vy;o0uAtWHX-W_MP@AVNieS8@1G6^Mn=^~ zzmRGyp2RMQaFKj_8gCod;9x`Ihk;pJQyF_MwHi}Hw2q+OCl1d`s?yE~gW%GujR0bz zwS5izvOsZl;iQ@9A#Iz5A4!Vpd3#0g@sL8XLZSIuo}}X%pyiz9!}H|gB|F+LYt5+FfvP1Vkr3k!Q*WVR((r03y z_(4DNda{isIeLd9B-6(vW)BGM^6S~~%`EJJkm%1J=kgl~0_8{g3mWC$bAYjK8mPF2 zT=R_$^z~_5C3j{5xsjY7WQ%-<5d`~(_`Z0Q&^{OV{&_%k44W;cjl>N+p(QqL0Ixwd za;D9@wl-RX{v?c?C1m$%lE1Exe0Xbm9p?D@Y42#|U=W9`DnhwQWepHD(|q;oc*cXGS5V?hP4VYdGc&> zH$YW!Y@H~@5(!(1Xo6*e!sbOnW63A6(8bwAfF75-N_)T(5mQl8e~}8ayrTf!5hei4 zeteh7tGfYeq_&x9S8^?MB;?gv&&X9zh>!2AxS*EGsNfjW16U16ZXhbgdvkRXleVz- zN<0t{Yun3_QiCoZA5R=|8o;8rsGx^n6j}2anB14r8W<#Y27yQ2C~jYh$tnn)MhcVG z%TO~b3QX@#G>K8d9e4grlV#1oCO9bdv-1OYNJi#k-B^6r;u56!}W8& z(=CtObStnXg`y&a8VnIdTPXRKEIaeqm-3^#lulO<*lht~yjbL+lWVQkHjh(v8=I9T zS(Pvc(m$3r6GNx8Te@UCM(k+v`Kq> z<{rs7(rlKhHOn%kMoR1ndbikZ))~y%{o=I5E4pA5`x|DcDTwL=!aausGch)lAq(@q z)6O~3!qe{~Jp}gF>C}<&%|yVQIT8W@{1^WZ954(UM1xJ3av3li$QR8^Jl9c5+K({M zSMBBKi67?WXhm;K=SSTtqNG^R%41|YqK?!zqS9}ZdX_7F{D?D1KzCdm3(Mu*!!wDG z6vRYM7j1u%Nz1tjs7(0TiVUQgRAHVa>3O9#tF2x3Q+`5|&R9Eyks5^oDF?-ZD360= zy-3K2QFv5Et;lf6I1*-|P#-z~4pA7!P1@^$1t(16n&}-)Wj_P>3~MMMfA z4bJ8V+KynR^?nlpWU9;9OC`8X?5^xCcj!nZ$f3vD3DMkWF~vBc1;a)6=Z#~0(o=l7 zEGi?@q;B*qB)QyOM5&xEiUal6#{Z=LAJ?ItyrueNfN_GP`|B)qVn%Q9;I4<^_!o%#&h zx~V~eP-bf(i10&NfKVX>m)D`_`rn8SIeTiSS;WZNl2XuGCmf#ohD|s zW_QCm_Q?k;^JHN1Qp;+=M6x3q#8{A-Xnlpn4A(u7>50uxyVsBhJP!ulZU5dsi;W0@ zFwF8^cJh~r@oQKBugL{dz-JG~6BPRFNKPIb5XP0HWHy5eW{fh_$a!l)h??Gn&G5W;9f|z~ z0_OOv>0l0`M>s=o>YaTle%@<)L!=oO%&&qCA(SOs^e=5m-9>=3{@FD(Qf%w6==pE; zRmEfuN}gSYkHyBRI}pas5Kt3Ki724n?v#V55^@Cdzdc@3A0C)K`_WkqSzYd{vmxPsW!pQxGwqOe85}+b zw^PRKF-5q^?5ON0b(X_(j62a9+ZoH^Aes%P*97}@*5`K5Tc?rkOiLFhaC`_wS*iib z;d5<@4(RbV+Zj|F&tEzCHoo2$@Xy^{FI!V(+2m>U$a4dh)<>bN{l|or68h)FA2|2; z+)2Jq=S$P>dvu*-Lo`4YA^06ASzp*QG}Wh*^%8gOlkFrN- zh`<}E(4o4^(bZA#2wultSZ0}*4fmvCXWgpDawpR9wWu-ffT zy6uKgWcZJ0gKQuFCFXj}?LQ#Dt*y=TK$-wLz$68exe4Vg+dU@nj;I4M!`+awYfiRU zCBhDMe8lO?)?36dZ+clol`d}Qz`XG^o~WX=zie$HHa(9RkB_qW_3db{By~Ani}7C9 zVpDV^d7)Oc_B?_T}aOwqd- zPu)&$-c^jD)`RZiYOiKK0X;yJ5f+jACqF~ttsz02CG|-&${!u^mWj``Qw2!89!;%0 zUn89lO%2ICK0;fXV(4>GTJb10#&V*@q9^rJ>e>5@eEw!x{@;!*BI^nA*^l=-?H35~ zKM(DVTt8}wM%T3(i>nF#_;qfPA_*MCW75T`L6=~PqCrI6R(!49<}lXza-sk!my9Ti zKL@#{@G8pZVF~UD(G<*X0lwnoHdCq*O6Q7FymFRt5}Kq@H*AV{#N);^P+eL{^Fc}( z5kfVHMJxqL$N3D_qLj20MMV^oT#DmJN%e&kG9?tIlv0{nC}zI9CHdWPTw2w|m9=mK z@mFDYF|w;6l_*Dv9K&*Fl-#KkJ|!~wOD)xk)rhGTKoB+SqDN{qiq(+G6US7@$=VHK zmS)Y3h)hOE$*LV>Naa~hn`H=ecMjExVw9?slfmz-2I_lSyW3dF z{&I(MO@Gye3kj7#sU-@LtfjGnb1d|Ltzf}bNdcQE=O3+L1$>*ZgmqiMDz)&?F4*Nj z$~fn7$_8GSj3j8S1J8q29SsSXnzOdOgU7-Y17 zDJwH<5ry#?rMsPQyIP2+dx$&rM%U=}KeMwofWKVK3x(HnHR#~+&w}uf9j{@-oNtbm zBbPt%AT@A(qG#+J&}vvL;wvTfYnd8!vBy+?#LnfO_G$<+?B&1B+CW;^joj+O=+H03yN!hN36aXv z6867(2EKe^YFlY~1k);d-Rck7#pLS8omAs^j zi1{8oNxFZSN0xL@z6BJf&{AtkDDPy7<7!FuO%#(;`AKw1^QtJvDFQ~($#s$ zmEN#Y4RWKVsB;ZDBgLyzL=n1lRPF~@N6ipzIQdTORf<{_0(H`&rnY(oH0Y@#WK@gu?*9CA0oHw59cvNX_vYMpW7u$-`k^fXZK}t zJk>9ta6UvHmzvPAu>!j8=4BTZA0S?>zs{1}P)2HK7UGTekrK+a`amHG=lun)U2#3? zjb@Li$Nv=4lZfUcSHRw~Vf!QM_!aIjI6IslKAqH()s21vYba0nk1f`6xzS48fx%g& z!Qv)=urvRp6CcaP67*cdbKseGhB<#Gh)t~c@oGWUj$+d0J38SyuVdGVjt8>7+aoun zuO~3?!1FxeU4A_Iq+a)_e~9pU5ZHIW^!dP#Qe3#?mi{IbyLG5z4jqUz_tR|t>UCjz}6o%lg0w6gM1X33)bO_@d1D1`2M-% z7yTL9;oTg-=NQa;1Xz4R;eitjHq_@=M&df@IxX7t+u^L)VMl{e!h{6@?aYh2vH!Wl z|B3g*W%3E^O#xX$PMR42&I)YJSiK(eN*s(_2T20(Bh>`Ito5G8LN62h6qJ9J5gTf@ z6NBvWk0Nr(fip+B75s6Q_@v+U-)i^+hPTTBh)*(VK~~(qEkGe*u5wA=EkIxJlrI>2 zLsz_aC?yuFd++sW2f|nY2Lha`cr*7$Vqf}+$G{8axDJ-xw*)B`?&5wy2G_l;BA>lJBh}}(To&erBH4C$8!MtFB@)yinV zzU7Q43!?~O+mTSC9!i`(!63GCz$w0@duWh{! zXQv5`tX8IQFTmgU#3d$w+CeE!L~3=M2wboQ08@LKfW}+AqB~?IUPX zX!g zZ+|{U%ag|xTCtT>YFG0FM${z>9vbJHDev)^zKZ>Faa-LUjw{&pWUXmp4+|SyAOQ#L z+z&FaX9{hqUla{Chy!S>dzk*#b5hmFPs#dLJVr-oquMWSmuIigXGt#MOC{sWQQ0`0 zpp{d4&x~Sw+g+vG%d%d}s9s7@ji;yv4Krv?@8&NL#O_7Vk_KC7`cD70 zo|)#s=0?Jo#$5i>vgb`}-$b)WAJw%Lf6h6H0mp9?E0b5QvH}FQ!}T^C*`nuju+YNC z`^UtPrs>+D{9Homz@v0Y-+7XwT5VbmXmNl!)Es_Ls{7R@Y4XG8Ukl08lC*2KrL^n1 zQSK9S%CO5+dt(7zwJDA*wN}wW5{pVrTG;S)V-Z{e2&S}id$DFxAtGs+HXGuvFTe-% zf;24ld~2$qcV~G;*l~8f!Be+BOQ-JQlemu)TnK;S9Fn`5fpHz@jo; zMuZEtVnsKJg)xnGr@cyM#*p`9rT#Sl+)ymax@u~pjNv!h2LJD{gV@1h)FOs7&{Eyxy|?CUtoe@ zG%`O!jiADEgTkuV9O6?n!-e9&;Pi+*2_5P5)>eqo+Vd=;?3DdwcN2D#WG5qIipQB9 zc!cqWp!mOlxj1p#_}XdwU-cR6hT;}}KF)|euKe?3&qlTtSB?nllH&oCSQGhjrp-j-dto4f6Xv-q>EbkBdA%ljL;qpjj>A?02}^3rF% z$$1ZHyz_+QAYjt9n1Um{+Dh8((va$9v&xt%Hxkb~4C=CHE|+c9d}c(BM7xS>_0n#dX}}=a2mg(t?^>$V}hgfq_?l-!``HVf%m`dOcwXu%ZRE_;o16 zj7Av(5a2nJr1Z1-hK^}4?#RBV^5ID`Gf?RiP1Tnu@_WQIt3ooXR34l;x1}E)+Dcy7R4J!^xSZny!%<0_D|}2g(CGRxV{8 z=`BZ>`la(tL}-Q^)+;rIH6}sysSnMYRE+OXX&3|atcV6pVlULV@Hq1cO@~dQ*)4^U zNV<)s7jn@GO>!`QzT-rhrv~|dXw0e0acP!nm?}0crrCbZ(4ZT%oSqQX@t3d%+e!@Y z?7WyBIQV6_0(uoT4O5yqh?adf)^jxdm|mY_57_J3$2(nxvsH5^BJ28l?VP+zM`LSs zc#Ji0yiMKgWXwyXkNu3UOFHAyCxV&X8>q%Noa1dK;4|T`&m>$LM`Hm;m|_kV+O_<> znZU?}9ln0HaM~0q?kEB>w1+N+$hgD!?-ugcWwkvKY)pRuj(BIAOdt{YWOV(kt|r+L ztU;#r{w6-+aSZGcj(?bDQ0y5mqPB`4gJJR4;%#R@^S>41w98HTSv5;OQ!tKLsHbst zy-Dt08Wxg;zX-e68Olr%rk94Md0VO#Ce=@UdNgJhg^YS76@=xF78e30AVa*25i#-JYT}t!H;7E-%uE#pR!P3qyYCb2Q5junq4be z1H8BPqHQ2HgJR~~eY&A0gOqX{-qk@oF(I?hvgI^?KwowIi4#ID^aUE_>8;tUr2?xt z#3z4u9Dg&A$M|$GX#DL}Eo7g-UPt%fYh#6snAxxlf^Ko+PcVXOp$)JJ$XapmX z2eOB}h+@J`4bp|N=@8ZBckC?q1h*S(SmwPix&sY=W~Mi!htY%FTHQwuiX@Wz4<}N= z2BP*Z8x^mKn=N3?U<`$%*Z}Z`q9s{WIk%K1vvQx|NY<#+=4yQ7r*eGR%z+H1A@RW( zTAvo(=1tWo^2*5Q;?GzQ@Yfnpjf|QC#jmv&ZAL!n0stc{ifrIMge|ja|5@lo>_V*b z-J`jucHNYB&d|r&{ISy86(KB=bDWkf=Sb=V=Zjh3A?{|EY^S4Jn)q#*(46IXtp=N! zx!v2D0cQ96bk+1pUzNd{*HgNevTnUtIIC2)ASF*HI^mw9g@tr&h@P}rITdSC=6Jcb z%i5VYTNmeV+KFUN--VUjj!f@T_yNWsp8BDpXx%Vy&%qU&d2W+E0!6Y)_5RcL6~Cz$ zh_h|pH)Sx!Cvqt)Gaq}{)OL62@{P`*DE?S>PZFcpaYf-Dzdh;!G)jd~6x`lV1Q~t3 zMYm2qMERU&zA*3{Q3R~VY3~O446RJr`iP<|uXFP9zz*#^&#(asCzk~jeoGwbdy7od zy!EgX|Kp|J!V0XPK9HoEQ;OjM=l`A8%mmn;rVCYjquKHG`nlHq^rTF}7fxbjvaG7J z^l$U{v~m~2#cj8dnKa(f4gt6L*vh0#ib)K$s^f+s-l05%!=*Ko~YsoP}jez!;ey3R{?c`08(X9b>a_RP+_cYx*7#5|3*d>!jewPSLg(~x4 zmSwAlQ2hBQGx2ramhz7F^`!Jl^Af}syDjf)&XXMPYu;GxA2lVVpuQXODU}*~U3R|Mm-8A#ARQR65V z>>hDdcDiJ^TYrbe3w)T5e18cHtw|dL3Ic(yjglhy!&Cg!Gv`&&tRXri8o&5P1GFew zvoUzbf7YN@uc8q}d>~Slh*HSb0rQg?d5yKCm7wpDt3)2uF^JbnW2>&`lfRg<$v+7g zZXu8j@d&;_#`%Ff;_fgoxAE};VS=4=-w^WdjDZ0N2K|qeeESC={(J*Z_qRdc`9xTL zp}`h#cn)*GJR@L-Wpjx9Ur@*ghjV=bX~rHI>fj4`5EG!Fpd-{#2)A>AKnoL1O_Z{y z?jhUq)Sc~{R>t}^02wnL9Km!a0U_wvXAjXXH1H_MSixqPG!yUvN`L>MY(hov@xdMA zTpgSehQKrM3d;S%%u(jr0K>?EBy_TUL^z2IpfM1-9lx6mq<9DrhxY7_zAhF&mCG>A zhuPgrPiy907Grmv$1TMqj9~JiM@O|#kAr>@`#8082c!dx6XnFjEr9cJrxNA&h}@l+j2o zy|?}+SP3dnf7st$IXmr718q5uv_w~4?`J>PCs88}(Sdygg$`q89k3(YBfFq&+6oX= zJP?@Yuc4NcVT#;;!$J(u=(8swFxoIL0n8HQA^I|`;{scbArCJ_aT_X0`Rs3<&EGRuLQc=jZA-gCUOf1WqLzp3#;+5B42o?P8|KSdG$@~mrzUSzKJ_9?F@8YWPtpc@O;7Yf307MW_Fzv_ z0QO1mVttv4zRZ1@lrO{kx5f7vz5Jze2>2?bqwrKn8h_g0WO)QhMrRsa9BER%oRPP7 zhy$*P!Xe-#Owu5wNi0wn1JFsCupp>J)Jhx&UV(##jdLcoF>*Bf1RfaTF|=ArlM< zh(xx`#t0k)`SoE=Nj^J+MrIlKand?rGhUHYk^~6}x}B}ROS*Ui{Rui6LSZ2k<-_ho zgW_>zWpj#g9o#PM*2bQmuW@dJ3*seil?d9E`C#1d{f3zl5-0WS32?%^x*Ri|-aVaQ zxe+koB3|mq#VY$b>%4v3=WoN`{5(yo+f}ZU@MBzW8E84#dkZ|utdMysrRjS&0z9|s zmr{7rt0iyJjE{w+m+R+@%Z!b?$BHG7+10#)2er8G9%By2MkI>)0>w5<>8#}v;#k3F zY6ec$yi}H={H{hX?GX;{96GK!REgiG+7Gf6RXg4zA6W=P&!F(=Vp0y*HJfn3)BHBh z<8zJMe%JN_)^^xQ7V_N>8#(F%YQBM-)yK}BqBmaqP9Ady4T-d#lYhP)Sg91Rl$WvQ zfS0GqbYdUkrWR6A*J~eLG|A{sAV>vEy~DYKME#ZG(WoO~ahn+l2UNm;iLbcmod-sZ(Qsct{2C{Va7R zF;f*g;8-}OZXi?(%ELra0V6?haQ$EkP1M6FCgi*OO~!wgo1tL5{j-X<|5n*T^sT?5 zG9hBXnTNCu#CPcHVwZHhAGjEGSyYoK*PMDPo$8{dljbZtG@4nL?t0I&YVK(?-03u> z#bS$N^tf{dQzNU!zFusPjB!^&YV0%ZvaBXo&r`;!t~aPh(&Q_udzgHE&OL_p+{*_ZAI8w7%^_hPFt#%6P?6Sm( zw?zCbL4@?;E}i~XfTak!5rVjKHb$e*#zA><{#}~eTfAL8Qt_!Lc6HtER5aA6crC^m z_+y`hIsEQuvjk7cfn&X9dq<39TT4yCRs1-46B{OEtZNYC3jgngT`W>{4*_zk3bW*1 zJZ!n}1is)~33s~AufVPX4&9H)O4TvB>bj>2k6&OXe_kD)(YKN_hr6zY-hUGY%kK#e zJ&UzgrHM-lxJ%9*kE_8Lmfwf$i~iIh%a8<4H zfg-%(IlWY{P)3E6X#58(W22p=*mVxgkW%;)|IUe?1**&_Y$KR2e1lo=W~R$m;Pe9KV9zIR@H`d zWq)M>WhJD`P}FfTFMW>IgPCp&mW$aPu)Ctp@NSjb$d|&}rC!5}C&^0wLgtZDymY{) zH7O*ss(G@2;k;P#%aP!v<1GFx2{tKS#@uv00}-XbID@Az*c?WcL8OqQ#|26&+(@A$+QI z_%ZjrFvIuL9q2i-Hb?*Jm=7dKw(^WRI?53V5f0h2LZrTxio9c}h=7En03pEToE_a2T(O^eT)%f&w|qb8#+uNq0(B)RYR)*jw<;7vYLjH_%PakOFgxOtg< zmTh|TxP6X#;buPWzSFX<`1!TAD`LZw;^yOZ1m@1nfSg9`hnL~rJjs~v3Xf2=8kz6) zPq9vKctq|+_GxNA(SF7)>7;l zGqNVy$SUMd>(B6BCb^j$jYj5QYH{ZLgpoF1D{hAxnc5q*T#Xg4ntke%RJpqMqnfMq zb7B2lv@2asn@JMRHAYjM8|11?L^`ZJEq_e4G3DSPI(+N&%~k~+c)+P&CwmAiGPA0; zDjJ6h>n8Q+N5$uIbJ&?ZRpYNhxJPA3GH4G&Mb_k^6L2dp*H1#(8oAz@v!?26+0*xR zPVBo%@_J(R-VWJQ?IG4S)98$ES*|Y*4eG?4rg^15U`OSwln07ST<4ydppXCX=&8~o zbN-~?EIrVVHHniyc1^MRk_{%F6Mt6So^(c>=#=zm+5HKY54RwPDNS-+EWLrfFH&T^ zo5(;GTL$W2@3?RzovXBx>i0m~h!9n+sY5%E7f4FPmp@GOe_QsM{A+Dq@&59bD@N|R zFT|>8ZX&rW_4I%whVKa2SxvpDdT#T~83k`ld>CduJ&_~Qc_bSGAJ{Ng+!Yb|n!8sy=SPNcxa!P_Z}vvL<{JMM&w&c3 zw<$j&t0_OEThvN28bFN)K?xH=g2a&kb1Edn^zlw4DA$T|z^&MFbQ>0nEnxBr#{x#% zeHn0jTAL`<`Mdq78~WP|;Z~IfVnE#5o?fA<;D`(%(qyWg%t@ZIoq6Gq?FJp?<04Iu z832t}%wnAgGXa4}(C8&R@h7dsB3`n$W>uAGyukbbZ^BBCm6DobZg7F6`1N%f4r!Q_ zX}PHp^7k>>0S2DrI0f?Z@Hu}z?`BuDRBs#i-2XX4cgI7sjtyJVHCj_-uu&bkHCc&3 zZb+sEdwjoGKrf~%q~EFTZ1`S&Z!2zVc)4`nY3&eqX)!fR2p8k@aw!(aze8g6^ zFXZmE-Zg9eJ&Zk>r^SMtz{g{sqF;3Jv+#1TeskijHD~J?ofCBN8@wr|x-W;~@7mV4 zQ6ybp8oX@Ia*VgOQ*>eX(7|53AC@fF}F&aFXBmyvV`oU0_bI9i0(9`GpDrb!z;6WRD(8S9?0yU}I2BZ(L+JGVmVRL%5IFDN1K4Z)l5CdQD!k zP+o6s#ezMRk*Bkk8awH9?vF>;=!s~ORe12kwPl}EH7QPJ)Q3~i|KzgeB6iNJVLS)SY8y(=Oo^1 zPU>QnKsP&HKR|E-6700kpLiT*OR3b3>`)I@$dB(x2o%araC0GGK{yf8;eZAPgJ|4F z!zB>T*Nh}8d?sb|Di!LD#_upw2I|Gd6DfH_jDupT*ERu11(o{>VYbSoEFpM$L6QJ> zZpccaC2_~qw7xoPOlK(r0&YcRdSmPq8HSh>){2{{aF!mn=7L04Wf|PJk&Zmy6zD%6 z-h&eN6U+=X?3|VAA9<_?BH|;XzsI>_1J@9>>T zvln5`?MdMY-Q9QJ`6l)Yy)75j-$P!sJ~b%0l=$lKJ;V&MQ}5IcVn#C`K*1a(AR@YPbY|b82`E!}}@v5VH@0fG2N8lGhNI#uvPFP`}A?GTyNWX=*vh zpCRVj?-QuQRZ(LR^*ZeUNGY+}ZYF)4D zVgnk{d@rg!<=%{SJA9m7^>X==(M{7c5^&OZS~&OxY*>LUS3^ aL1=&5(viwJg?Ma9JGxk#q<_NA6>#!{uo(1R)I<3Cm9XE;C5 zeaIyEX0*_s$jISf_0dj~IfyWg_%=pPQkk(T17Gjf?z zGkX4F06qEk;vl=qni%#PTHWQij-7>L5Ef$#-i!>tE*-&cb#nFE=hYy|MAq4{;L;aL zQ1^r|_vT%((+E<-Yxj$&nYrz5v7H$67gCx((3O5bFpZ4e1-+7xjHw(`p^ZS%eC%@` zG)}cs1=vEQZtCahOxH$Q;c{i>Wwp`&-{?x51oPbF!F3Y?Z;wgNJ|Z-EOC+C9 zD|1hS(JS`dtPjidR6V8b+O9SG`fPr-ugQ1V1+7&V+B^+ct*v)UQ4dS@@{!Al0^N@& zIV5V68tK4uJJbk7dhfzYL90|X^@V3H7bWs0rhZT zid*MTdUz%QYj}w(6JkDk^s#V)qWajXw8_2;>DIOA(cc7AqMIaI3s^T zZ9j0E-(J!Vb{H@4qX?1s{rUS3L!);80RC688p>NjQ}i6;faSMz9sN7Veuu+<@o4Sr zooo$VEZt1?|1X)=($3OFU!TswQ<{2wMs-$sbdq+Io=S0af_^+&o}OY~Y5+w}ibigT zDko6YQ&EeEZ7+(XvRqo4$vL78;J?pX8i60G0t5iC0}22@{{Nr%KkuP$Waw=AJ8_fB zgxv-MLgxiF+F2jczjI(13=5-I1eWGNg3xUcEv>bnxATOEs~&nuMK>D~N-qlf{L;1b zH9|_dXfp71GoQ4z#3`B)sYsq0pq~o zK4TqS1j~$JCgjPY^o_nrchz9cBi~?izV4PRl*F_Z*AdWVSH(f98)7u7D^gVnqJHpu zhT-H0%)s)g0Urum#ldy|lXbh4p;dz-Nxol{lWUe|L=6R4UPlKv1OrAnm+UrzF0z61Oza<7lP!GtSE5vQtov^_wr<5g~0{7ylq5_(isTMS0a zg2U)p=wW9R?z1B>NEePgycoDKpuL+MZ~R(L(OKC<|Lyt~#!7~&gYd4>AZpL1^gWA! zma2Q^&Y&?vX3GBLEyg9N&gw91bbF7b=XsJkK+X5G#)W9K1{ciolaaTX649^EdOzKn z75NqM@Y$!r-DEGGnv#j`FnE0TTYr%iG8o6B`>|X4v?M@>fyve(X&RvhHcr@uKVe5O zFLkr}MvC)4fl6$OjsSkE4GBL*2mJp%Ft7E5mP(-j0GR3i#|81f1JlOoH!g>?Y-10a z5x=kX`>uU!eNK>_zFPloY)b>-WUz%!ueuaOpfPEjbEtx`I<{8l8{O@zXU8x z)HicHIB?wHm{Je0iVEcLgHsT^LUc9#tlSX6+toHy%a!>`kvQD zl=N-VErAkO1@|X^VHXW3PQ7!iUZl>cgY58VA{059yUB@6!0Y3S7{OWVeh0(yc~VMZ z@T-Q#eqL1m#dHR>E>F&5rijSqaIg>f_6-gW1d-Bx1h@h#IUyD{{*qrDZeKVl-w*;v z`<}eMQyU4wgUD(V5U80H)_2wf7N9nSMq5}>88QZZuVxg9&GMAVb;J^aHkqKUwAsf! zDceV@L}WBT61GmO@;$f+V6kjbZZwkV-L9A9* zuV*T;gfV5SpbTwGLVpAif8MlgH3@#py0IX`q>KLsMvp|no*Ou3lXi`0HozcO zK#5UBPCl+eBQcci8enqWbKEa(c>W1KCdVR!RWVv8c-jK6f~!brp6xEO!cd!2VUoJc zEgZ(DZwyc`-J`nUI@_@67PMVBJ1;E{Mr$Z1BoUjQZPXA0i=EJ7to)Ep)my6pb}d>fX{NoaPx1iMpk9&1u4v_;w*FdgFqj)0ND4694~cJhI62ZEZ+=x-OI!)2e{)-l1f@LJs=dIo zeA-Z7N&V}YGz;&5K=hk{{Oe=fcrxLzg-x)JE0m2qqG}JHc_!hpn06d&Pb?HBiAuBi zo>pc69jm{vZt;i5l=u?+-?rnQb=icO2xP!+x`jfjHOXan1x<@msYR<5#Eu5u3^vj1#z5_z|L`ZuSx$M znf*N?`lz)`lfTT8P+z>%|9U9{;pEjTT9yClYb7|F8n2TACG={Fn|w_R_80CFkb`BT zxv|>w|9N$e)A$ECQA$I$C1byZ2-`VOpTnDF`~&B8K~VR0(GoZ?TfhC%_rEB6ryx(F zrroz~+qP}nwmEHE|2C#=o72X$ZQHhOW6v9L;_Pqlixcm;sGGW}h^(qyxpF=Ed!7P2 zA5||VQ)8Kx20jFIcA?ml2NMN_TCYN>KtgxVi#Z&bgTF2Ep{H0Q<8rxlY`w3Dv?nu< z>3F@lcD1|Ph|mo3Ns~;gJqW5BC{rnA9VW=Vj?8?;Q^%|w!<2$@QEg;2%-aQ(#MNC6tQ?rH8}E^3jl;E)=Cct=b=YHqL+Bp>d2C zMs!STZc!4ABC?)SKaE+D0P#QVQ$Ga*vmA^*mbAqkvD;O{=L@$x>5b30?$BdKSuXE4 zz>jG|o>S|~Nbk(14rk+=S6#3?oGn$?Gz5C(%sWCm<+~)fnuN{r5}~WLeAXx-R}Ct?J)g!1kb^Rn_lEZK1NmzqAIKLJ{P~OS ze)gLWb|XboH`@HI?uzn$mtoei9a(R?H>;i_Q_d>;r5w7vwL%sk;QaUfJ+igXE35&e z(*u9jx?SuWcv+4la22Q!zag~}C}V@$m??Wr*6l(JCgN0rPO|P`a&68`Y`6)4w?av? z_ndk0R`hs9cxK(50cMbVgflcI&a*|ZJM?e$b7N`^4A)nmVr2juKmHC-b7^;^I3oyt z-mB}b7r16~Z}%#%A)=kvBDAZyU;Cz%sLTFg10(66KY3w<1{&-zOykNDE{;Y@TckV) zBi!HuqUHgaJo-io%p>Os68I7PLW*~tk8AqnIzEB#3%B1PsHGe!j|nN#ToTYSW_t2- zDyC>jQqSH;6a#>+HVf|1-6xmf-+?1wfB)`u0JWC-vRcmPX>nQIiZY_ zpp0zCgRu_PamOUkYxbt6fYs2FZkH)C#60~qoQ#_Dsrz-hDt=tgU`x-|G(o{a%KEFz zX*}HZs|3@Hr*0fOPc@C^;Yxf)vUI$6_ag6P{oZ zeBrfr6-1;jZK*>+5b+YlDz6Qi-f~NbTl@$RCRo_d3AO9u4cx8Q&r6!;i%>eZ5HKUu*8eh{52-Jc2B*cG(A9}%`SyX?@QSUez`snb*tmp$MKp30WY@xX zf;DnbGjP*>ixd}xS&T$!>5?zcWz^8YxYp;S@FES!D%kf6i{!uoj4<7CjJPrcubtjD zxas>GoPi)@nAZAm6oDlb5FJd(?{)k(WyLFl0CH&=-LwB2ygOG@@q5Zy((^!Dk!#^9 zkOAv*SV4e){VHLEWDru9`Smr~1B3^GH)Qb|!wK~YA;Fj60bw%!WP4VQ8{*#J6ywAI zB6K5$PoxJOM@ar%G{7m8^-(g%llRe<^E8muA)>}TfWX%BOJsNTQ>=2>?8ER5-C2oy zK)RiFRaL@@Rh3obfVbPF8FAu0`)o_$*k5DbTBfiAXG1ck)*%qW>f2nW)%?ZodPsW{ z4}qjn-2b_4w>?Y49!v8zaC|OF@;qEStBY(#>ojq-vtv@o&o=hz;Yl)`BP5RBIMN1& z7{8kv2AM(S+(o9~SM*Xp^M0GjX?{&@*!%0k(yXxHUp(tiPwwn~0bNA)5R(o9e5`n~ma z#+7nQ$H^UGT_-X6O$yIjy3sS{5cI# zizIrE9XjR^l}~uv-Ch1h-lo64N7FF#N_x53u4=am&5bwJ2gRcfXkmu5hkA-wV|sncW z`lY>M&?;^Ce?)QXF1NF^VFEDbDYU3c%Mt0ULCX~xr#@Wi>c&S&141`hr!uJO{xO@K zZSu6_Df_|nY_y4Tw&Cre@(%FKl9#HkBD=9*5rIXvFmHJ|5LMFra&PO7hA<{Imer-T zA}bi`Z=_y2U7#6vO$`I_zN=zFdBKY6c5PzK1>CJhk2us!XDV>Y3k}!3@z=uU>2}*0 zS9GlNoJKAB-Bz(>_f1BbG*!&OJP>N)e&vX>Hdw~e@r5O*_oCDLWU8>9xXN97j*>bu z=uQ*MT75!d9_~vR_UH>#yl@gOtXydj) z`XJJZi&dk5g%AU!WGCoyD6r*bUcsBhC+ONSDq_1jV(SmjAv_d>9Ph}$_i@7(%P#wS zkzLR7N*3^p1R(EH{$sZQEsr_N4VRd2(z@6@$z<@J#fH zsWXST8R9TMn$(X2VrGtXp<|OcN94rt;MzO(s1=?T&ckD1Kb-ldgTGUMTpS^p(&gQZ zGGg5UE`&5(lqevG`7MVj`%T|du$dXz{`uOFh}|~$F;^uswwg~;mJ!x zGkx_JxU}hr{!HVrqSri1m$kaY8jOfjcnFT^KbmWg8kn2sMtU@FVo=#>?(i#W73J`@ zJG(%iUt*ZK`Sc8b!=&=p#?WW{s4N9T;3;hmM0m=f#4% z@s1*G1!Usw$d6-uCZkBHpS=CYm2vvNWbh}Vdl8KeZlsO?D+ud5h~oSoY@NAu1?Pxr zk%WwgP1}q@*^MFa>^OV+lRX-3=VsyoQ~gM$B>(@>m(mHA)$S$}?!CeW0)qDW?^2?r z$$wJf75|3w#&F`zdnELi&}=D|vb42})=+iQg|xzWEUi0-dm{~+6r8wND>kT9p~`pc zSN>Q1)peT@1gA=auR>xIfo){^+1d5k2b)Bkz8|-PhqMGB3b) za#cEv}dp0x%*2K-u-S3>Jk_`yKaoTG;Y zgSCIsv`RVT{iK;f=edCDp3Qgejt#=fi_(LK5-TShi7-d{_>_s24wAi2Qzv*RDr#7z zkHz|&E%wbJVNX-$h7D$kV1YM59pW43fh^Td05f+T`XYn%lI!`X6msN$!S=l)|J>%* zonHF~w|ehj^yk^4o^m#wdDh$vs8S^3vu((%kGnd`Hh7+6$O6mRK|MI~?w~BW} z&BLQJB1Gc{tjhOgM8XU{7v`X?GGy-B2{Znbnjs%=GfZR|Z8W)>#w!Fs?cJrO zZ9z6FKO!)8QkGy!3a$&xF6N^m19Qg*E{Y_AR~}bIBHBzW|CSiko-Ts}DDNQE*`=D9 zOo_&KS;BLP2hAJ;=?e zv8ih#;o`f6NKgr&W_2tSw5z!6hd@q`=%7SB8MHFyY7-58|L$F=Tw`sRf%DTu5s9FK zN2yFl%dt^Xiw$yA?#EXf0r%gQ58rxEz)t6~?6N6+DGXv?1Bzrz;^K03f2YmUO=!{Kuq%-8j+G!(lrDl2U8hkC?B4RLnhZ+ z7`VDTR7{>cK){|(PNNfP`qzO)xt`dC*7=6#_^?-}>|ZdsS5KWA>dRNGOPp97n_L(% zLq%8RxFT5s$qhPK%wLR~PZ!8^QY@?U%s3cY$uWk$FGEo`8VBW{@$7T)JGt$a@l(IE zq=c=`Q-u~KgSNGa3+YBe4p7cV9kWh1cEBy zR4Wn&qz(QR+yE3*Uy*4VmPW}pLD&&o`kdzYH&d#Ngc-I2a33oRK8jh%A8oJ|9Hh5@ z6HSMQU_kXJz5adlu_<~yGV6o`K1fth?Zk?I9^m%d17bARpeOIhw31UiWKgOIJZW@g5ISqo`5iu}r6+Kt&5s zP$*GfqdiYaAg&4L+Xj%5Op&Q`rpmi&LJ?Z5q5g4D>x__QQ<;8KvfNyH3Yb5*=<_iT1@M99g@IBzlI3=IxdLTrzxUyE<#sp) zAcu@PVa$I1MTI8JL;Ea@EXOcUBZ(GZQts1XyT^&2?t9&e|4K;}sSy_ou5nri5C5S2 zJ2T=I2nyzbtDpb72WB5;d5|k7XYxC&9pc9iA|kc-`P$6Ns9D-m_&V|t_@OWO$egPbOi+T1MBdhvczedTppKA_N_xg6`T)w1{w z&HIjj!jB`j{svD#{H$Fl$}WX<89QLItx`EUan1L(ry zjs)?aKtf2~-fc)4Iux(k`w4Bi=?ZxT8FtZKyK&idMQOGV1BusNHBYf^0($&g3tyh* zq43X?U26qC?UvEbt`mHY+}WZq{J2<-DT>;OsH zJCkSEVL(I>sXnWKO6Vp0gI}X__YE|GL+Rz+!Gz7MCUZT^-mMXYgcoYygLY7YcA5dc zIX_78Lj_vSz>Gw@0S8ZbIm#nkRiLI|I!g=NYC7Zlaa8VG+^Q;yn31Bi1s#6?ak~|8 z^@Tf-JDKQ^GNCoiT2Z1bY9gv*D=9G3FW(|)U52HRT<~*iVOZr02Rp`$zIg+fdAJapaJ$KPpN~ zW3+E(>B``W4Ybz>*jV78{Ub=5oD2y-FG*b<@A2cSB8>b>(B~8!O_wi3UDRBV)t6*C zg18jAj9_Ot!UbT9B9QyrLABJ>n?+$-_@QF$1-D;#HgS-0R&QT?k%R4!QFuvj3LRR4 zfo@<(AnqQ{YP?JGaZccJYPQTeT!XCx)G+6pP;X!uUxV9W9AMb*uCyJ#ArJ#$z|pw9 z?Xi6XXm@+!3$Bj!HMjj$TjP%S7_L)bn+lQ)ijdr!$l+UVZZ^l;OS;kL!n=ZNXN66^ z$VSE=Jxo$1sev3pudMIb;u$eKgaUomK^{;rNx5&N=&kh^LIkW5ryMABw;_Ke+=>w) zK}~U?+&FL+fS)l;mK1+oS%r^hM%w8uD=Uig8#=z+0cv6a5_TO5P2}6gra}th_~;+k znI}0v{CZi~E141DMelH~G6i0lvAA?xy;R19R#o$h%1=DUydKnLW{T5tG*+ODi9mvX zaL570-exWo-&~fqizweWZyN}-wf=PA&cEQ+-w+s1^CT~Aj$;1YA4=y%kr}7LL*qkX z^I1)>)H$&RrT7hDXBWnI9P;kTuRrc1HmSQMNxvoB-d4Bl_D0s5_Yd zrhfeiK{U@d+v15q#X^ICdz3IHq)|{7r9gCHoA)n9M?-m=98gqgqXbR89En*k1+qou ziLNE5#jg3iOfS#vtvGD2IbMg!-qOw%__Hkto;AWqG>EpIxRaZ~o7Cy(OVr1gJ}Zz< zqryBj{Ox0<;rVjv5LA!-YUVPJ!>f1?ufa!cJ-_xf-9#0BeSCE4uftoAw8C;wov*{` z*~_gpP0!PGC#~we8s7Dmq?`6a^1!R5IZrdQ#=v1{xKPo178GPp*z$9+{cN1228*70J&Em2c~D z_naqZy4s5wMzf!qGYfWhdOxfe{lTbwEr;@}H`&oAF|dp+#ZQorO#;ayK zmx}FrA*?;8*NQ@?@S0=b8A=+Tj))qy6=sd&#XVBo9-N6_$qMy`JNwJW${08OJX<=) zPa2q`yUxP}wWcg}PoXtyb$d6%gK_pxLbn;64tOmkOo`$+Yw}y&%gRPiO^;lEeN{Fa zfo=L#S?O%PBWw8hWV%(v@s?f(^wKAg86{v++sTM|H@(mpu=iDynIJ#eFM@^x9l~Gu z{Rq#du|7Cjly0!pH4Xoqg~hG%UMe^twVL1I^QU=^78}_KJ*7Zv*5&?LRde-{r$yYM zGYcRGvO9V+n_yT7pITwLFBNLL#S;J?(VJEeM6#d;QVxBis8MN@cM)c!KTJ^Z{p#EUDYgnu}kRtUnI8Jf-p2lVLFMQ|`>Hqi3mD+){9 zvaJW3SFm}jI@N;4{2faEau>+xv_mHXh*E(!ySPuOLd{e=FM4fMOh+Rp9ans+{XKCK79pgVC=KR#n0TZaTg736(|*i1>w4>@y(O|5=(1*S;iW$)G;3{+VBpputnD#kb*Zj^ zl{aUH!&|B6@CDd8Asd6nU9VwpPJyGFg{mj$=L0PTh2=0!@|3W2Ayn)+;pda7Rrre% zpB%ga^*rCH7wN2cZ-$+^nN?kzmGZ@Iu>wDd1Z7G;< z@|ph=i=!Xuv5}w6;#83)WK(PBM$7Hn1U9hszFgq2R_ZjxCAS%s0fac?(8k%PU+!;1i8f85;J#Pq#58m& z2fXbQduOl!1M};mY26a-lV+So*<+E%9y1vdC0_;{hr8*R+6HDZaOo|+<@4q;NptL{($3YY{gLYE&eq)#KO5d8 z6HfJ!29Cpr|HIzRYbE$bRF*f8iZ2E1SJ1jQIV)v70(cx61eq-!W-c6pUg@FBG;1ObXLv zIyIk8Hp4Pv)1D?}S8E&Su>kLJQH^J88A|Q5Wgzp=jtW3bKi=S9exLTF{}d)Lb;Zr~l}UrUkXe!qtI zr4zS}&(iK9tEb4%%~x%Q>G0z^2p>Lgo^sz~B(^^cE_E2F+$S1BiG(YZI^NQU9;-6M z5iMFT5o2I@^f&%y?_)NhF`jrg2prkR1StKU*3UGOV*c|!qU-bSg0K&=q7ipzHF?*p z#5_k>CA1~~3>u#vcd>$50wKmGY!7!Wo1wPfgG2N!sC>{{A9%7cn%NLMyVf)ND1D5k z{~c;2hQNb3(=Xv#OC!Z-w-0{E$(=rjx;wzU#*b!++zq&&!4nU>GJQruKMd~oV-b>K zw8?61_dvdas8>F!7Z#_uh2|do7DkDqf$LPr(qh?P``{fGsteHL@rl_giy zozUUjar0W23Qc#S>>sDiH^`Y+%;#vbSooFEc{A^TvWr{CR14gDT~PF+=9b@PnsgGY zD;bY^CKakO>Df{araSahTUiw$v!jl$*&g{IU$r7qJ^NXslR@^1=TnpdWd2u&GrzIX zERJ)Q?Y|YiEAPInPEfS8WRt?j4!k3nO8o(KS2v-H&EMh5R*rS2_=EYF(*VSKe`i7Xq0 z(v)O8+TPot1b}8S6bbYTX0kHPj&MymmExYRereO0OPzFy&VPl(<#U! zLJGzDv9<_{Hx~~2UJFxbFJ`Dt&6Lc{sNvhgr%EGP{Z6W>%4m8~ztv~Z;I=^+-6+hW ze6$qJeeG0Ibn4rWnPA5y^F}Nng~U{Q0d_@KBuLg9hDcET@gA*hy#wmpT#_H zx!-t8bj?<(en;5D5P6o@_8Lv6+)-%Ah$B)IQ=4uo6rEuoXkjF)y*$G?S?xImc~N`& zn(2aa|K8?)K``;8{Vh{&$--;1X_~*=Irh;^dY zVlGN}cuNe;!vIY?rNsa_5wnjAv;%0n# zaBt2D`Hw_22-q{sO_2?G4ufL651DYCdf!#FERw;?_3WZm9Ft;)(oN(kL4Dp~Wm)04 zSN(5VTYw7dB{jsTTzADeyIkTz+!_-J70@q0oHCoyRyjOn`0wI*->Gq`A%OY)o}8K7 z*5#511fb>Urbw4r2MFD@EBH<|3K;XbxfZM( z1yytyuD0R@#8G$R;H{VxyDbH;Yl7F5;!MfqjKzr$JTajz$xmt8X(xFAyR|6L#U_6e zG6en74b$b&Yg+iOm$1U{6JI4P^D>xsGC16d`9_ge0POVmL^R-g1%8&0Bo{w6Q&;(V z%OI-NA%Yian}A^bd#QgNQTZxZqUj~lf{<*tu|nk|NPvA&J+MG)X3&cl>fHS$@?Hly z_xEHDkOResL|kkv)2Pp$ba`|$pa_w>yAx&m50L?T zR&P6sdT}6T5MzA}bG_9pER5J49C3DVY`mOjTQa=-h|7(9FcjUrK&_%9Xl3lj3>hZPj29X7EAY%F;I@;~b36Dz zfmo-I`~I#R;Jf+6)tf{EbO#2Z0K`;d_du>BMwuH4w77Eu9P7?hfR(0e%f;gVN<1J@ zg8czmZ`$+^1XGF)ogpjoaG8m@Oab6hHko3x%YUC{T*qeTCKj$Y6CAO)#I5H(-wEe5MRphT~l(`SwVI>4_F=)vXgt4^IZGW8|ueOzHDTIx{f4lfYSV;c4fNi8gmv@YH%L5S~ zS>(HJ?EP2uhp?1;#I1b)>2ars>z=Wyuld^O<8Zo(^GcJP=QNIfMb1Sz{b&b`XW2KS zlXB~PUL}0h_GY>&`0-&y!1ksxy@%k7@c%qRpSs~BZqh*5u#@0o+g|J~19K>{v z12;oOoTlmX!XXTe{CrBI`D!m<11Qjdi#2<%lfU@$(SeaAqr3HB9~>2tY;1`GgHcj( z?9o<6!)bKrmo!UL?stHLgkmlq_E$Dbg_e|w@OEjo-Z0|fXEvPyy&-+-Lr>Df+dg5@ zTpSyy^jV@*>W)hVw&Vrdb^?)>1&ypW5>mJ9zFGp=kw~9zy$T zZ$?@R$p$%hL1M&Uw~AByI!^ifG7OrD$iCQJ&c6|Wegs`V%aHwT91<@==FCX#L2$ib zeY}QIme0~1KclQA-6?!;trtImGn`g*#XHc!Quo?6R6l}h`5&0ZFqayCPh`{d#b zA#f_`)AL+=tUa6lP&KwlEiRJVvJ+_yks&A7nI*Zwvsjw%-e|!4Tdd44i>{Cp|9%(B zzs7By?@B6$e(Al|5Xy8%5m%aY%7-}w-btmq#`NR`Oj?`e^ld;VlehK~H)IC<{}9t^ zv-l6aJ$xWH@7>2BS!_iS=vd(hONSC%-)o$#nPhSy1lzb8k3a%3G%m3lN{M^zU^%d? zIMpO|5mG6?Xpe?G@>XTuYRbX;aDln|RTLxEKDZ`HG?0v251OzfV~paf4wC=Slcv$h z64%to3B}X=f?0~8Cv4HvQD_BCB*RGDK@Uo2dMhV)PB4onRa0(NXAY4ClcquIt20Hp zrh<5gwj8@bgBgtP=hMlX9Sc5si1`%~iKK1ZN74*ht_11oXmCX6W{>R#3z|xlcRdP_ z-c~;swk-7(bb%(C6`Xe+K=aC19yYT>f;de41bcIsXPzoU?y(r;0=Gs>9}d+Icf%9E z!}KkLIc}RkOHxOZm&OV4Z6WJ%R5HNT)Y|FNK{(jsIsldD?h>7#O{GT^r2qkj#T_6A zeV(xOfZPM>Jgy$Jlw=OWC_bX2zg!_-5PQWrCtm#%)SE=7qc{o>x&Li|)6*~wk@L)? zAEnTK#@lvYx%ot?|17_`{1`HcLWL9xN&)tDG9%;hj*bsE+1RBd z;6y$p>i4-DOSpbOzeR6nli!C)7l2ZcZe_9!plD$;=8V$4&ptdFD7L`pp}y**sLryg zt4kXQJtKdpYz*Xi3oR{3V&{LmUq(7Vw?8=ap_Cs7+JnNnfwioZQs2BF))2T1##4Ecss1wcZQ(DM;0^*ktpzX5Z+Y zZh1?!b7ifI(U{tH*g*ZfJ+G8MPrgIffKORrsfs~F2rSkLB@9GXPzR=UmIkb>)CsCv zdjcgQsS=#3d-yq`^MdJC;NW9-9;H0LQcBJ6e{B~`!165glkZ%b5a`^ek$dUaI1MS$ zxBp@0;p1Ib8)0&_S=_ZTftwPf9!ib?_4rKF%-wp`^bG!tKJW#<`dFz%ROKUwlJ=@I z;qfSjwM#5!*0)o9PP5rE%r~lilNcEuGN*eNsh+cm&J>^X2$D0!@lg`@93$J%JA~EL z{qhEdfTA~O^V$Uwv)U-codusQ2Y{@T2~ZnaDec=U5s<=9DYL((P`z zVLm`qB?^X5<JA=iS0tQ-va1II3BKba-Y49_omxe`(D1ETHJszC@! zKH{NP-5eOgML1K}t%puQPSJ#YE6%9a&5FK_3iP5~3$z)Zyn2xqb{ivRRh zUbuWtE)-RPkhkr`_*HWxP6PPOvhCU_H84%;2a60ENInsNH@|#Zv_aZx)F}^*rLCVf zi1Vu{l@Lxq#7Y|_^*wV9zq(+P3|ZgJcANnA0?Fl^Ebucu?D;ZS0<~Y=DK+Abkffb9 zG2cSBOmGwC59(0jxnev?xv{IMnigoOzOo}7XWVhgS}gj|QTr;!Or^DMWr#TlFL*<- z-U51Zhlq-}wz0yar4bf9GUhnym@WPgv+a_sxPe-Kj=rI`D(&2{`hl6qIpV3%2|&@q z+SgtjtA7or*_@_CL`3PTv(sxffkmvIb1BH^(kYs9ca5pGVcoEq7Qt~NZgI*G%oETh z!oM`JSJiK_oxi(BfXJDMJ&8BW>nEK1Hh5R)v!e_mT!0IRlJHsKByto9B?JEawLKYOLIl!yv!O-GUv)Kp)l$|ItZd{|OZgK9_P3*=Dtbp^5y z^tlUzF{c}i2FGgd`Uh5;P z89u;I|C4A8j}d^RLEDS*i_Er zzgzWyWxavY1Q4ddO=0urgW`^|gMDD4e;8LHuqK^PM=@0(K)Ks$~v!~msL)<{N`FSVdvZWVg*@tAVn$UICyiI&v zw&6_uSx-^GG!`$D*%M6C^z^iG_^*^e%AP`;um3^Y`_BNQyNOCc;Xe&4>wl?X{SR=@ z(W_cR*5QBysry0`ZZp`dmllm50&3RPaI|2J2rANu5rjU*mV>1{F`0ASaEF*$rh(3@ zOB^1oU^HWouiGK4BoT77p@BK3pAHo8r-Vg`mI3Z6a?_Ez(Al73SF+~HYtc>$U!(mh zt&n?>p6TBfoTO+SH^5Mcz2BbskM{StJ5(naL!+^Js5sa^yZYreCKZj^&0>)XP}a|g zHDL^`wj0|CHV6j-%LBys+@)up3NzvNhl7QMvJR*n=PLNkj;S~qX}5z%n^L#M>PZ57 z>c+(ymFA^qf0S<68ZcfXk+nVaqhDR_I%u(~X!A;X9QX>GxGg<(Ne%51%4F_W>SM}f zxbT5=UOTXKl%$dOktR;K#fc%oO&;b=I(q@e?){Xa zc|2r;ATT%0vV<)qU{7ge#S~PXUL{QE%cZy($i%>yTkgGUex^`v3uv|atuKbZkwXQZOB)* zC!2Q6DxXKq(v?1GGzRJ0mv5q%^l4aSJ&THeEvsqSpICAxXKQMUQk0ZN#M|fSaoyF# z^8ER@+Jv&9o}^CI)Lcwbrg?!XUG@0XjsRQPTMb`D@s_dL{3++r)KGocJfXcmexS9% zy!ewfHz{^}UMTHlMnf+0C^)0kyMG zbx4vXvld%gF015S_|PG$-$`n)?_mvRw$SL;aV=|Z4n5pOoOdW)6{X>rrk?oyYQw~4 zQ5GEWryJn`q^Uj!M)JXgj|QW3U_@c!&TrAXB)I=5?DV659t`^X^v8q;n_WlHq-uPV z4O>DIM)Zbp;IdAMVnEWss2=zl=l50Fa{=2h6%O8*QO0igPa;l=MjRuJ}lFr9Cu>uSuUV&L2Mw#t}@g+=q&3<_< zbQD_9aR;DR&J9rZMKSTS|4{_!n>_Ak$V#r|2h%#JoHoT?Ob=Z1Bv|mGW{bK0B|Cf01|mcM1M~N8ZrT(aY4>)Y9D0kkQca z{~4Ayb@Xzzbg-vqWoG&JK1}7~_!S13kR(RlER=OpX^U6Igd<>-Rf!OGhn+cywN|AM zxgz+1$k{D+={AYx=auG&?Ied*MUY7^rWT?fwI6azX?wi|U^g%?^KNT9djPG%og(n; z3HeaugYDth$}??o*Qz^S0R*$XUJ(TIvtA(ta}m7^(}|2h3D_A)H7k)#!4iVb26y$^ z7%7WU7rfoCe%CrQZ8om2bRjd2A$bx`yq|7feioqc@-|KwfrBFp0HQFDip4j*?` zs;ORWdpi2rnDQGK1I?^{jD#W7mzbLoBVpy;_GW$Qry<64gzhfRzyC^eXz~mh`OLLS z_)zW}lmGeu4b&Py0Us?zcnT=7RtNGX2*?6Z-E1{J*IH|5t=dG~{hj zCDC%%)&w`4PG_I9dPs-Fn@8 zYrvtZ-0!P=?0eyjD#0!?Of*>w5CBrZ334F6NvaHDvJ?0OE02K@4a^A+F+rkG=9 z0!E!TwDq9^-g<`~z*cuzoogulwE;byqSEn!IQwtr*4#GSQak)QR)>c@wLt^0idFx2 zX(WXil$H>97y%+Wfvs$SZC;coGti0vmPZg2V?4|%p(eDVDa5=2nb3xYmsmd&_^ggW z6`R`mcO5OFHd%}A-@8Rd7+f?)Tk};CncQp3SSJ`-ZrPF2#JL8_c1HunumPDj>5O01 z8CHjqXw^zYsj2uw&55`z_~Ii25(KoO@+c4GL?PR1-^%qeA+7{6bN?IC$+4RIHsbQ^uGI>ytXl8j!39VdW0fr(suQ zE;`E%lpXCINn83jV_jW#tOVF=dZWkq6D*2Y)5kK~6=^Lk8mwsjW(B9?71oFFlImq9 zz`bKaPc-~fr5-5R;1kYUFtChKxu}eCj;grHfh-6F5lxG52~bV)L@JVym;`Rda}owB zFy$6B+yV78xk5uSfKcIEXrdT8tZ(o>TQvkr$~u+d&AR&|?>^MX8g3mV_#4Rq{3hva z1u4{ttd}C1aPkyCId+Xg8k_Z1+$lLv;y%of#Ui|6@F*?;o`W_xib(bvWbJ%Rav~~(u&TYTp?DSZ=wqsM8CP^#zfrv5I65{o?X?8nl zF`_S_Q9C*Xa%quL12-Hk>-=}VfuCmgf+Z222{&)TASnK}_R@@?!win{3Rj2N#%z}b z9Y?qC|4CgbCk%luFUQH%mKUe(tUJ<;?m-0VP$O4>8*&)QWW>^3-imHAwCmYgWx;I2 z%Ghx!`SPA2)P31rZGU+g_CrLD@YuBRJ}cObi?ipf@(1F2x7NQDIr06O;xTVyc>Y7C zv{bPrub)>b8`_77-!c2blJiMcOlE~l%%h*ohmBCOEfgg`mmGwF9yq`ag4#4R`v@ZWiKc_j=lo=<@^AJJ5Z?ozS^ZkZ16c;EwOoCezdO-y-mJg;Pz%4B~ z8|(i46g25BV%WVgkafVjf*4LfA zDcrW-wsn&vIsADeAtMJ0x8kxWe(3Aa-N@c0H?KLnkd3IHSTard;sTkG1w-jVCn5SN zV)z%wUh9%-OYoId8*y2-24xkLBkX@WNy{tj&DB%b>Z-I7&G1n#wC^vw(U_bf57A36 z;80%L<5t9dnGS_KyY5A4e)ak(pdF@2P>IQsAgyejlkFz9% zOVypXe(zCNCGDIb&$k#SRB$*jm#t_1@5fr;FT_2IceCf3&)B#thK31R5tu%18W|`N zPuLLqz+3#fJ%-a(@IrC{u&nFb+Mlh&fV(x;2U1!1tDk=k%ReoPaEGOkLP7EqoxY4H z{5z~0F5M2z4uFZHTv`6K4~8fGD}C#&X0$bc`%D8`Tb*0Yi^&aqxtn%ucACY}1N>k3 zhfn!8_IIo9fe~5w#kqXGJPie6HDStifFJLeh33^)NiU34dgQOg5TZ z^fw!~*)NG16p1bB zQR!ygL(QA60qj^Y8TaheI*aQrm;Z3xT?lu$HGd4$&4+t$P9$AT{kE{4b>*HGFn4x7 z>0^y$v0~;t;i3+J@xsmFscb-S)Ru=Ef$6~K_qS|OiEk1jfR;~i3M2uc5e<*03sLc|oUJX?G)6z^wPL19-2YJsstO;f)*5Ortqi zn`fF5g94YauLPpY?M7PT^5G>lD9jVX~IL!Ls_lQg?)#0eX$(ZBVpe z1E{uA5oB7kCdH&l$OOrf!b3PwP;in%L6cUjp4lY7CEey_^iA`D4-&V3>bkt58_zfs z3-rf^FLKPH?d-srI94!g0hQGUgbnvK&ih7#LrF;52o4J{CjLWqD*QQz(1H9D-I&1P z8x1MP>fIyFMs!uHm&Y&Ok3ud+fz6VepP@z9ADbZL5=Mba=M|f2{0cRcs2MPhCTUhnPYH-#Ts4mtp;d-$ zF4H-dh1{-l1KJhh8^jlVYBh7b%hI%~Sl9~gm7m@&d!c@-kvde-B-;fOHZz&|e3fUt zld@V{yfSc8wcY2Gev#JMjU{F`WrMWSK~u^c2+y>u5R z1fz{zCRMfck%hc2aUXlRG86Txc3t*Jlx|&P`vU!QUAc|2x`1791?s*&NSt@vsz37` z|Gl#vW1jDSQFcy2n!wr?ZriqP+qP{_+qP|M+O}=`Z`+=>-P3o@+r8)QR;5yTPbx{R zz1O$0Sm$x(4d3T1&S{P#6y5KA(hea_r`|xnjnuSTN(QIDlo~S}mEPmUd8d7-b#g)( zN&&{D36-{KIcj-LOlw6*r64dw6~_3oIT8)}KZ4LW`PU*-wWQ$Y&6s_EKq?z2_4A)?>$ zsgLmlj1DOPyn!_}23m6kY@)MNH;pDKQ!BZGvKfYh)WvFw(&8PKRN!nR!qrMX@zfez ze&xDZ{Q}~(;=@zwIBE7vg^bsl8O0M>6?;>7Y7u=%{=J$J#&w;=k6~2m>xl0m@KSIs z8XhI#Jl{TbXwfOGi@=_$)V3zY^Ua9;o)5SmRXiy*jip$L9l>DrqPsO!W+MyNs^L8- zTx1e8I+p3gAudsj1CXo^RC5uLcJ0D$Zh`}8Y@Q_KQcS}_TyAvaG38IJKwLU$CsS0X zaP&8OXE7q~(~u}AAWSmx#Z;jrpj5{st3{73NfkOEQfaE7=ur!)pstt+uz^5isl8aS zq!KQgIiQ-c6agZ!0^gm|11K`|BUCf0!EjPjR6S+EP|pc4Nme`)W`u6aw{AH3dl53R zrYI;tViMCNWtI{d9&iEGP*EQFj%*v25Kf{;`GBNNuZtM6=(yZTPAY+E)VxCV10X;F(53rU|@(|4K_{eTC*(R zhuY-UA?P}@IQ}jX%#k1mZYqR%%u6(9eso+}$ANw)6{$p2z9o4C7GrA?ibSK}x8x{l zAbLM@I`ROb?)N}KDZ)kKNInu-;a%y_6`Cro*Yx|`k`5&k6cOiv0}@Z+dRVl~9H0#m zia;QtO{698iD+@JHepq@T(GnmmI38`SjF97j{X5BX!}4s=wfVGG*i@}7c0`)7!?oX zetw!m)*^&XF*fQ`^ylPGiyXDbz}VYdi2jhRBunKirIv~r%52&2xA=2~-MA=?d6qG9 zisS})HXufD>i9k?6rpA^NRJ$CSis28PJ=>T_KNGrFPjr`&|1hf=kjA@*N+o;Cn25 zISCPu!ALu!ufd`v@Ni7{Mlf;MrC>{=ENW{U2%AKZtVl>6;CpX@L1;L7ltw6}MrDF9 zDW)YksTL6U5L=|UEKK>*BKC@xPz3SJB72NETIGbV9a8LZFhXy(OBpn>KIOTgTa_c>i z&vtl6^7ijO+&)(1sD+5zd86eWCz{m#@@{XRZl7){hTVWCCRPr2E^L!9F%ox95*y#stbjrLYMHTQJzj0l3h4(0)Mm6V!GIem%s4qnH8 z`?GomwbLtzB~gmD;4$pqV`a@wwSUa!ysT%vFFHrl|L*@?{#wq@)w}s#T+Hz82g; z^n>L}uiL_EZg{F}w9jZ#8%K~gzx9oySAN>VWfv4he#bdrburt)(vR)VhzNC>{i(G6 z_!=Jf<)x;V-^FIf-?F**5&APz-;Z(4$v)@}alG%WfcS%}Ycunbt5>Lo_r-4WH>@P5 z9=^8bc=)B#svFg>Tbi|!dRrUdhm2PM;qQSXP})JgtxE7iz;#aE$H|Li1R>s>7eYw{2Y(!* zgN1K?U;ZN=7`w-g^L71hPQO;*gFt7x!=)5rovv;HVdBQl^aovo{sK*so+zTyrA%QE z*s|sW#^-lRKUdbPXU0&>!HM9MH^K}eI$!G_;^W3JU2R#>zBVf>cPEaer0VDLh{u;r zb|2ZkB(UhLKuHYvy^BWc*P+j>Ep3lAnj|+ueGj~8pB%z>!Z*$yer*TEIUlnHr3xD` z5Xpx`kHWl}r(c)fw4xgy0$kM(aeZu!_B8?aH9F1j8aNuFmt#Ratvr6u#QEGWf3Bux z8T~(=$_?ATESGe8Pp|ab2{xWM1TK8%v$#KwpN^JF9+<%=hC?P__4>av$TK-e+}gF~ZmIr#m!XYBkO#UntAQ%P@83lW#9X z9R}R6;Ogs)o$TLN5AkaJL7jHneBtRt&A#E`)-s5k=^<0s;jgF#F2=btb9|y*e(fiR z;Y-_t-H1zgjsJUhJI$e!b(lN4VBOcg^Jjl-XV*vcchzHV_*){ar?%{kw$=Y3pgWc< zKg~>m?Oh|hG19SN$58eIj&EvY7aEq|sIT^wQgieE?OnEFEjBKhcq@&UW4Xki+8+t* zz0{Y|e~Y~qHS_nXWo#(t)MXi%f$xgiT!RI5O&Oh1HsxR7GTd>(+xTLGl@u3sLh8N% zE0vMnzf-_;4YJg9p$91l;6l63GV_~SyE2yq7b=@3P^KBW?1^2Sxm_kSAd_%5R(>a7 zGGLl-wCPeo&}W<~KNZU0(wIO3V37G}B$Y!6c1CXPT2a*Qr>__Kv8hJADoSe6fnAd- zHK^&z0-=S{49wVtD^O2J*uoQDAg7+x(!R`&q~k(&N-$6|GL`FwpoSgPK)#6T=g{jQ z%V45FZ}e<~PDFP}!6;k|gd!Qvj%}=tUA_Ew8}D8gzY-t+)mXXMn{AfKBg9D=*+=RQ zki|3uhv9*R&Hvf#sZgadiV;F9&2Nh%F|lGy52K{_!qLiW^Y_PuTt8=EcuQde8Jg6{Wp~LYvm&vEs!uzB8p50YC9h0$yIS?FO?r7VAy*Ts;bUmjac0N2C)ltc zn0!sRu~>Amg3G8>2!(;iZUxKJC?Pt<93q{OdOq)=H3;0imYK>M&drLIB8;6<4N~iz0>;`Y z=qQJgww)0tEe|_xRu<sc=JB{GQlBJHuiDUmPTsIH1uSZeyh_%a!`fug_vO2C zvEb^rmY>OZ@VhhN+WFKmofw$TB{_c$Y@91i`fb>%Ee$bmsIK}z_F+CPmBLZm$q-Vg zjHPC^34#fsi}bz*)}B_KI@S=swbQ1{$>hFi{sJc=y9Gs3lAwH;l)jBNZ3mqp0TS=@fYOMj zLNy-3UJl(Sp8=<|!X}YT)EMJTozPDf>ay;V$=XB-PW6Fe zoX+?$43uF4<352&JfP>^pey}@wwC(UExBnhdV#L8B`73D#ay}Cn#$lOZ&6=#Z39zi zNka{k3Loc#--ALYHy*+rArLrJ{j?)0c;n_N^TKP0v+#P^9l=w$cGx)%<_piTXL{2c z`q{Q$+JVjV#L%5#4V(HY>lACLUJtj>=Wo?n_ix`G_PZLNJAcn` zv2t?0y#9K9J-ZrT0_&2P;N^cj%g-n^H$L6y_NBGi$Z)Xras4w`Is8qB>N$}Z-=eX#5BZmP>u2XtMISon;mEQ}Z1_=$GD9E?^2gr66W zWNjheg8 zFLa>myW{QJZhRKMI=pJnZ0nx44@=JqF8r?ad0lDNyuI&L3M<_PV;Shud7Cg;Zmsm9 z86;TYxfR#Glm>Tm|4eN1a`qk&obk6Ct-E?*l%=0yoH^Hh)2Y=hc*oTincgA(TdNTz=8^trX+>g>3W< z>g|NRCk6LXA5CuhZH=;@@$Alc0YIGM^l442hsN#?uI>-?jwXsK=cO1jVK6+AO|3HG ze#Se;j^^L&vK&|asrEL$!`>^sYHv;ITr6iB1#d659iJ`qd#mv;>p0Pl5YPSzgkyv= zt%g)M{YFk@fMXj!*rCOz!zYPaM%_!@h1$F7Uz%a`a=IR50f!=gk4G_il)&8i)<1`U zWFCkA42HGU;vf|=>M1IgU+ZGj)G3}ik?H!FJ+Ie)_j{e~Sxy|O{r%E?A0!kdCMJX~!MQHWBCb44r}WlS8@ zEg}QPH8jLOC@&-j>nfbw%y}ND()kr{`@58<8RcQlfJF5`n+5HYS8=9 zNApwL$P70B_=nj3kWe1T7v5K~;B5!56i5pUC6Nl0bi;c2qL&gB)fesShw4)jW`y zg)?V`H-+hnpBovkjTDDq(RTW)JjYZVi>_=ybTEFaBt^Himi-f*%DxO~RBtKCO9k$y zx#QU>Tc$BXh!xFT{}7GS)P{wSc(ck8H@zKoSGc#Qbe4+TGC|Z5g3HH{IOScCz_SxW z%(#SWCO(=x_w{QKgFh!EumKA;88tMSRg}oI=pKZ$#wpn;ho>5vEX2IS>MJjmlT`FL zY>Mp!076gstwD5wfzsyLF56#lrZI_8S(wX)m(9mfG>+VeapTD% zsjJpIGu0|aDIvGE=ple?4VjjY;%!nFQRoGF>u|^)6!8Up4eM&JClp0@caLVo`X2^6 z+Tn0pyuhBFe6=8yI_D0#N=W|#V=X>YgMLrea7o@aR2c^d<2m*-sm%$AyfOXK8Oo%~ z4A0dVL)Vs3t2$1aBIm?aEy_+&mJp;lt(IApm+yBh%&l|6PmbL2w65S;K93YV!H=gR z#T!O?krj6t!kVf>1Ym(;Mi?B(qagCe7UCi~pi)LI#w=aTXCF8=vnK+B}cj-*i2n?pgK0gIPHk`+(*Voxkbk8{l=cAu3BcLpe{?B zh_>3v^|Ke;5%Q$}ye8kUfPho{cy>Cs!=4eoO5y{v>|J7hd3*XhrZ8-NvGJs^_0%)SX9GhQ zCI9M=q0OgPP%o-iTeBZ?bE0f3L0dYT-; z*+m&iw(`YHra`9(>y&8Y0GsZN_}aUl5up8ocbVSX-K*{;Os;1$-nM}6>eo7fIDGwo zBj&mGsctMDGh6`IYoqP+5zjhzVR% z0f@K@O2m8uA|=TBJwZ4ZJLuX|ILGO`L4k=hyU1L4J(ySb9u`rsWS`**_C+bslNfKe zI{87wi(j(A5>dM%L!S3mM^>}XGI~vV{&y0l{KC89sesqexKRy@Xlh0w*d$VP5l>|H zhH#Q{85+$OqRoSt%*sN(vmJ*HOyRZ{9xYo6RYMG`3+v-c?sw>|t@>4EK3nV+xvAyqfUJE}fp%m{_taRVbkLB`HY)(=$NfYoR!;_|$hh5T`1Y4=lR2oiFJ zEDhI#ee5VSW=nT{gY!!_$#L)7VkV|g)PDwOB)Q7IamD7z~2}-Z`8`Q3$3vhZ@xL(G`)DeBP1GNpM zb29AY$f8zzhQCIBy6G=RtYK=EZpUr`?ft+R>^^`HzXWBWb&nZ~Xu%+)tuhadu@-W| zc%Tx5{>rUG+q7_b7=56_(%(-FhGD_EdG)3d9?|QZ=+8x?9w?6-J0XlSMLt6OmPn}& zW{pI33^xg?i@7^ycHDX;9#;0A#ARX2pSIef3vA@@FMkr?4__m~ae`zQA@I!i~Uym=8}4^K<3( z7D&O9HAMt!xr^G}8E}=KN0odyb>TUSKP$-_R)Jn-frWV~+@N^_aRgdQ3DWOyJq#Cu<8y&PE4MR_6le2~8lL&6z_&t>PE z1|=%$>eutmuA&?~49hBBL{9gB0)CnsVeb~!3W6?le!XKJjJ=z>jGrpb{?_4f{aNod zeO27yeJ*gQJ-X9*o0u(pHhQ}OIP%v*@UFh!@d=ItIA_`E8x8Lo-2@&O-ETFod~lV` zE_t1ge|Fl2_Z2}SAdY4XUsTV(|5tnBe=6n5Tf0jXEI>f!QUCv+;C~33|Me5R_JelB zTXQpd-KLxylupD#0)hkuAp*(+kya)e6itHqordE0;4|8w@bV-E=)(BHQvVEuz9?w7y#t(^*pm}V2-DbTV` zG_hJmDjE(K290}_=-@>7*IPtw29pChd%TO+6j~di;p_mt0bzH%Bw$IIUnY$D?h3~< zQSLG?F0d0qerE-r7CsFzEv>IxL88ZfUP#UB-yBgjv=Xv%97n2#T8Cdl{yL|m-{Ieo zR|dB%9qraD+-P6-qAP*@K8VqF3~$|#Mjv*G&<0m0(1urMR})d|8A9;XtZqy0+oq_U zO>Hj=J38LTKgZ!8Nb`m(sP$$WmmCq3YWsyjzgL+b0t(r0sn6( zFP~R$pO;s+*Qe*3`xp0Dz5_?TQL;l*I+zoFEmOLD{fC$`IiyF#NNRp=! z88UV}WHGX*iD?L`uy7xzQ_3Khua2p2syy5{;IJ3zC_F?C%3irY?+Nf+L{4)_f?2Jyc+zvIpt_K-#7wrnI?u+eiM-RB1nC3McIQ&-G3wy zs4odnO-R45hm}le>@GW29eI-_e-{f%Fv=0c= z0Y#Q0TmuLfvWf-}1!XG12?<>w$beZSmj>u0RP~43siQ;2D;KC@cyXZ^7l>$whGckg z64z6XQ8jStG(Z2o9qJ(*p=43)9n;N@zX&}7F)SE>;dY6MY@s7VZaRr*B8($!4~-5?fQ}u5rC{CTn*1fS?fpcsd6plr@oIlHX5m{1T16BNY9$td1;j57vLco#H zVTysooFLvo)4(B}1QNUn(gP!yMMio-oa|_aL%|f4W-+mn?}Ntqq(=YXqNYZ~?=gty zM~$C9vLVziKZ4IeYA|)?Gyfpaf>pF{61)pP(Up~myip0j6y1dH?HzsFhA zG(<%{zWh5oJ3tekc=Lw)u4pkXO+{o!#R~*jFtPS`sLuWngSMG6AIwRcZCDWkWjS*v-7-Bb`x5Qm%IlJ7-`&vn;nkD^9=N}J1vw_Jqb z^DGAgwa{E~Fo?oQ3%&XXX9tYNKxde&d%uD}V+X_##IaR=((JJX`VKl5#3DzEo(iGt z1U$pQTEt}xAWBS$z9^!;(#XTMG5)a4u*b)W5IlExBfL2SBN%Nr?o&m-K~tm#ax5sk zx_j^kxxfp&fD}0uJf2VmAdesrLm~8#IAcHcm?-BW4N~O;YL)ZEC#!DR_JMh%PSqc> z!2-aZ@NEl=VtV%BYveI4$k#>!*Ea5)=j} zm=aKQG3T)2Np$5&04N0Uj>TkHSuO@Afhj||B6Q)oJVhyF?_jZFAg00?Wx_-wa=yCt?brBXB`&$P5Z&sy8jKRvSZ*r9!*M$8LpzQRsALY*M{|J1*@)RMlM<{ry6MI1tZNl(Vim zSFe0%7UxD|9ZaC{Fg!|#fuE@`;Jc0&1$ZaQ%D@*o>4Y5E3}mhB(mrz~*#z9^G_DqR zyW#Lw_{(LErZRZzoV7|j<63LGRqsYSd8~9dqjjxM2(0zh%4?(FxXbQF*B$ELeGqt< zml_8ZF+4T{E_N^m(7IjHp5!^fnq%n>C~49@YTfL;KoqH|r{T#iJAj=j-fM{vT~` z{mm?>>+?v}wTC+S)$6>1x`nS#TL6&T0VB2bSOdgw@04)ELjRS9$*i(e3bYVj_t$!o z?Zu(wDmNzKd%t_<+P?%UHjJG&pXx3Qy#-wE*0>1?_}zpb{4n1fb-)`?iHM00W3$3* zYee*X!1Px^7;=|wMvK;2gw^=^{I=J#eiRq8L|;FKWv$+O5l3@^qdFXTNe%X52=;6c zIc-4*$X1SKsMj7Bn}T1aHb2rVG?E1Wnin{1zb7bkZw)0O@ps5#i!TSb+N80@SA&=v zq_IFR2hM+(=Z_}Gu@~5l@b<`JkHmDDdI62S>(yw$Z)mV(-l$$D@ zL?=5m|I&71EFie6>n^@K!O#7L6MGxO;ddOt9^4Sz`S=B%b+*Hb;b%Mamv z7+IY!B#gpoMAk zK9(=8V%>gxJL64ABC_ijgomJ#BI~Cej(H0>eGv_4_76Fw!yQFfQpk}etLQwXESg$~ zwbR(GCUFvP%XZd>W44#g3!2wB{Y1QOh8=;X2M6F-Ly;86PfB8^$vC7z)a0nxz_*cL znTPRcBP@Jrd^gWHr8wOF2scgWF)RRk+EUoyCF|?956N}wwT(Ohjtfij{}Gw1gTpKq zkrJIERnvJVf|Zq&R-H>O4%y2n{Z%SzqmZ=4)=EP8su;eD?$|WpC?77yCF&f9DAP`B z#Xw^=T5a(r>v}@ArbyCCledQmq<=ZdP;hYJWz-BWOh`GZCB_m(laVeb&5*g%avO{| z?mOi{dYPad615gY1e;O3=kjf~B|F(hzUGjp41`ILO^;3!0fe|l$h@^!pqPQ#fwDve zx!6;o!q@dhZIvQD!mo%yn`TcKF(n2@15dQI~EY-SOdBdi!_$r*}`^ zQQH;v_<9|^CNr(LQ|}2hcKszHpHg>c~^ji&E@IB3n zf&L`v9&wIiUZ%&JyYr=O?A8y{cbk?!TnAg)7&I!~$Y7g&4o$||0FuRB`71#;C^o-n zIbbT{x%}+^sFj^`#QVPfF4aVw#h1|*`*rk%>XD1jZG9Utwv{*4@&rK8^K-x1P>Vaa z*0HzKt?+OE>;8R6T~PjGS@xXy(Do8<-;@_fYH(8b5Z%x=hjOJ+$(Nd zzu!mg60AII8tgZ$DC`;LG^P(m&Y7WMlLb!R$A0L#BTjbR)<@eVJ?3g?uq5USonElX z*!#fm&0fSS`#Zwpb2k*_NdK2wfZI-4Exx2Q@RZYMrGgtOem_e-mF#J3QTWb?9Z?r|qCC*{niYyM!`Aui-h=&BA1Zc9BN zd0=iAlv(y4TuEx}bGYT48j78S?Dc%nR^SZYQC>=lC@5Ac{w0VhvhNYuVWdA|w5=*6 z93uSDW@FA$r{^Z!wj@Hs7q9m3Qn8_XMcO{r^Eq+$k!@t-T`cMP#dJ8LoZfb zOk}I}$+4{PLeMEq!(fWv8#p8+^m0dEjGfLf}K4F zriDf`*pn6D_6qh~G1yCGWIS6f9|Mb&CO9fa71mH-PQG46AUEd-lEwhvqK9!$G@9mq z%U5}{hizwpB1@sGD9f1`C}-x>lkDEU$qLd-=+fxVyLimY;H9iz#zaf>Sv>QTa1!6w z1=+C#eiQ;Cm1BUF2p5G;znq@VyI4*t2lxaZ*GzUxEQ7z#CJujAV#QMzPjj3fb$SLT zOn8|NMk1}9)lfD46KQZDD>`NP=FXZ0xtwEd2L=NNq>v!e3+5~L)|bf2?}41?}A^1#K6S7v4f5!kFFind! zk&z6_LMv1e%|fQ0f*Mm$+%Xa%(1 z269;)36b#-hR7<|RqV@CjgiBQzR7@sb7<~8_btDP$d);;)zDwo$noN43?A=!xttAY zS$z60th`~?J-Ci`cGo>lZ|T~%?%3*{2fQ9%r^I}>D>5#?O0sMrmg&b8yjQiCw7c$X zHA!wa{kr#Zn*Q6Z4*7S}*4F(C8^e?_n2bbRV?ZHoI}NaUrIwUq$`wyV?C& zX9xIRoYFqq<9AiPQCtXkoq#$C(>dSucyS}JY4vO0@T+OO>fXWV`1vi-lZU@rjg3^- zwD?h0(;|mUL+`TKQ@FUe%3(n#Xj}>|63|m3B@LUN+gNwMDzm>n0kgyaN)yvGq%w+z zc?sqgWak~dZ)<*S2%h#A{v(D>S*s1(X9T-`;eyAtTC>fhN@|*>vHsP4#4-M%J9Cfq zVtL+$FXCT+W9GSe4uuJtaRP3WSyp%WP}F2%=xhi`9PyjbZZ*k`ldDpnwK7}6t$BWK zehn375nR~>X^}cpH`CbEyREeaI@AtTrAR}Bh6Xjg@uLhZs^Z$RF89ZGhZ_b3xDA=U zs7sIuZ@nhEb*BlAXx)8Noy4wXo$8sSO281MasZC{nyTOTt|y5GlnS445VvuueICQGPj!9rTN%`?4BI^V+H2JlnFhih|?~OB% zN5$!Bwt{N$8~1d=5PP}ZyL->uzVnd7A>&~A@tkUqFIs+9L);%!GmQGM+*}@o1|34u zL!3V=e1hSa%MZRtj7OfGkr}L>#MxU_17vS^fD}oPb8q|XM_x01dr#>^AEACa8`rBl zYh9p-5LX=*`8Z~$Nunp13S4J6ic2>+l1v8m=dQ&!ceP9G=!)lSn~G-&LhlP$M)T~K zs5(3D*4<^_>KBV^k=t%adqSXAf5#|=_E+<4p?Zhz+e-4rIQpV;m(@Cmq3t4 zvpU;2#O_}=ER`zhhQM6H8k8>LCKH<0f&C)); zb-|`MZ-4o@>DI!VK9zFU1*_K0dD>7_rmP1wbHe=|1{^{CN9mn9{`-APTAcs*H8v@j<9`IjJS!j) zb3D=@&&g|h(K1wdueBrtdsFrI5XUXXe0?MNr9@o)xE|-^gEhVcxyS9}3{JWkPiNL^ z@2HJL>FT}o(U}9@b7h#6A}B4u4xa9J7{Ij_^Zu+5@hS3j+CgbGiOsgFhTm!?Z5Hvm zF32aTrZd2|BZQj6XfbN@D8)%3t1PFv6AfDGw8nO?VRVLWB_?nGA$Z1S$|8QBn6J(3 z`i+eEydwh|TAA-C0t^GZ^Yqk5m?**tkzB{wIWLl?2a1Y3HF3)&&7lLFlvKw6yzwCt zoRUx+_zoqwDM)(Pqrx_lOj7a~=z^Zj4`2P0c7=mwlB1AA1J_DWTE4gd%Lw)0PAyO@ zu<&pB2`fiK5sO9D1@Q@*u6+B!dzxlfw>OWY4Y5I&4}%_+WeA+1kVGncco3B^6CJdV zG4ESfMQP@mf(NjcoyW_D32(D{{E}q@#9#ifKv>T*z$dobp064#M$I&H7lc&RL4xIS zUK;2Jhd3`{O3FoQ60C$tR0q+?+wkfJ&_%PPZU-yixaxyf zRGX5TMfk5=qyLjurbeW{N8H7eAv;wUKNBZ3>5$IoOLHwqrGY<{isx@svZJ`mNbP6D z(J}3K-}{k~sb<=R(`--BLAAD8Q+;(&*{P}tnES2IP~D;I+-tVmrIaUQF~zg`miKaF z(35D-mrjlAX~y0ut6^Qq0;q8rmG7KJUglrZSZIAt0dYY#YWh)Ho`0to{p&83z6$=r zE=pOKMSp}*wT}n~>jl5A=L_#SmQH8ggvQFMfvsW*u>ny5Yv*_i7Irb=K>equBj2_* z^w$F_Qx9Ga)rn{GZ(AX%@U-qb?6#gMG0+(cy=Z84I2mSEGRaYr7_|BDT{!Lj8d|`A zW>bCCDy*BdFu>pYgBwnTpLZM$IljUh@SjR7RijBLBb!)eR4o~9TSR>ty*nXXacCg% za8XYRS*7$dy8YlFeLrysrW1-~)vY^+j|64Rw+6{RJ;-}B%y>M{s58EXhe9-G+F|It zGm?8G2(yAXXa=-6;|d93GkUQVzU^`0#Vx|D2MJWCdFFy+k-~FxZS|uvyX%UH4rgbY zkOnUXG_!CKy*2HAQ3FSgFevha^aLdttnB>ZX~z8%`JOM5(tlUq&ZsNuk9d#X=rnte zo@56{i5AfW%opQ9GvfiPY2xqWemD;h1*iIUp|#A0#TMBWwzq4Fi!7)G)`XtaUb9i5 zPVFPo;=!8%w93tToZYs5^ZeT{dGC9vuFr~&Z>=(SB2_QnRrkGi7rWA@c@Zxhiv;uP z_OkZpFALSS_JC2TTLBrtg7Yy`*O!r{0xKNFrA1c2(Bl~EThA#Szt6+pm)?!0)B0yX zf1dpYW%{+@CVe{pyFQQp>d%0sB?Gd49IZxRk4h8v@7IBs1U=I~zs==MR|M;9>?f9} zPO-PwpC>PLq9|xJ+B0<>6m*1g{ojCv^v)I-7FOe<@%L*Z9NK&K5i zajg*&(On{vTT93^UDi+4H&Z+;iAeE}lhX0x97m3@@5BVWfW!I;kDfHut!jwH`30%8 zpfBh~^O9qe9H@KCG*Po%C-I4I7ZF_hIV`;PCSRM^mN>8JZilg;4k>i2_e%8bijQh2 z($XSd>))>K*7cqVGJGUVcU9rLuEcBWcA1R({mgk(J814b5~6;OYxINNS_6V!5qmuL zcW;25UWHaqq&3?ab4T#}=Gk^iW`f~muYCgcd_H#tA9j;krvf2YpIRT@6-#s6W9s;` zAy0oSmPCkl{H1Dma;d#g_!~&Q5p6Fu^YR(x9d^J2g*?t5tJ3w!D^^s>PsbN^-OcrO zZ1|-(UCVtGOWJd1IuwFXns^^ll@>;I^wfWjV_L;hmslaTUEl%oq+>42b{{n;#*{s3 zSjv=qs&!4Y)i+Ig=!TSOE|t#K_xn|hM!A%eHeoMyf|AD#z|Q;Y3!OORXf8PyL)S%|%h1Imp901p z%7ARELJ@l}(~4k#T(25HHW%C2K}mYX4ai*cnbwhd$n;7zsWmMAMVCamMyoFe+r)wH z0WzvkU^|IlJHWFVQXwc6G}h8m6lE{Iv>E+o)dhdJk`wW?(aPkC4ATi6#-~(P)&SRZ z$4h=8HLq4;6X(7*wO%%M8PlTo(G^CITbjgkn;I}(Ba+~-vTsKV;;_VT@w;Akw^E7n zm@$=%{zzV2M*Tu!ETsiVeR_@R&%&sD_DcD^#r*o^b_6O!1wH@~_y{@*+=$5cMIBCrueZL2VIGJ&5 zj~>btZb(ip_cn@N zAg=}>PC06uK@-G>_sfE(`csWa?ulpu_|h1Qco$q(5M|Ec%KYX0C#G#YC%0avHeS}l zpk)1(2lmQ&U9+`NoDIM>Q9B`+4NbMiLPlNo(uVm5BgTD`kl*7q=lCAaS~GqDd2Tt+ zVw5StNqXg>nk+zZA0W}?W;_tdLxMH^GC({A7v@$<%>960wZux8OzBP({c&ar-N@3x zJZ8fM3KN_HmanDZ9+R6Gy!)e2D()3URZ+55cvL@~vy^-y@F6Jpb$}=+;(qG12bn-} z)~4(nin=)nV&7z{`Kd!35Eq6L{4yh_K+?xE-;eS3Qml+OpVzO*Z8WbGRPh34%gB4c%h< z=?lN}S+4R^k|IrgM^v8pX7LNjE>2OyKk)dw)-d)fNdqD(FZC)CUs!HHXP0)0qDGXM zf^URHQNiO_F4U8V503!B@@UPC3JqKXE$>Q2mJk>VkvZzlpI3k>OuiO(_(f)am2@pmqGWyjPwOBV{j6AZ`{KgMS&tQV3*+WwPu=kL5s-9TfSUf>auOywrzFUwr$(4F5CW>ZQHi(n!Ym;GjYF|m-}?iQ$C!?eR9Rl zwSVh*%jqTZdVA>0Z3~j0P2)o9IM-K2uzh0Ts5>Opjoa3ZhHU5=xZZoW=7J+|gU|1K zS(;t1<7s_r<+}MfqS_~8S-9Xqp=Hu(z;#PZNW=v2(7>vF%>ihrY4EC1n_KD-ptq3) zX#K3ZAhn87-<3klE!p=JFac~z>D-*GTDm=a9ew{)-3%)%EsG~F>D-SBt1j(s%jsay zY|R2t26IYdHMwn<%G%5-QEi&bhXHJU%bI!6k#c&=s-)~m(3>tUd<_aN+C83h3r&9I zbd9LQ{*AT*r9LnFgmXWOygyKg-vI+EiBy`;Dmxr5UnF$vD@tDlUK`$HhLY

czMjk9qhhKy(lK8VBkb%98~k1t?Va~xQ%{*HD?;iW*Ad0JJG{QFpO2SwN3^mp zEzXhJTxk=Q>d_^ki62KBd~5^cESsxM=AJuGxmIVY^&d?d50jwOJb6CvSPw8WHRHc9OvR7umj^U?POdqf?l(}+W_D|T6bYW42Vcm{i0Eo}QUi$^A+I_po`p?(j^ z&PKZ%zSlxIq-5<940zl=zfSH?2&b z-(89B+F(iN#~kG_O*Od%_HAnwskFytqGnp?RT+oGF0dSMUaQ}j=IF1h*BGpGYr^k^ z5#f|&Jaad1JENpVTA4PPGN~h$TG+@{r^+5xk1yO zSPVrE;QREYFs)@zF#nC%`;@#o?hI5e(vPdjw_b!E7u*qkXYMkIk#W_P;cs5!O`HtP zB8fN~^FyZZ2}pChyRW?yqCv!A``+0Iz+$=;cdIsD_+`3bE19p8UN5=lAq1OI87pq%kpvvlG4&*itaPsCOq&T4ILNceHr zCLAoUTyYm1*fZ-$r7hchw%&aDhNC6hBad7OMT6!wM&rfGf-Z%NB)u;1uv1&LaVVDj z;HE=ghOOwiz2)ciV>olwJtPeSV3PH*SZVR2z=npdm{VjiYalINdylm?dgvPVF+AwD z_RwkRaQN=^254;6?-yOV#8E_T0Z)A&UKXZKhp6|l09HPefBjf*Yi=~tQJk0esIO6} zwa@{m`s(gDt^pVS9{G2gJ)%25;|Kby?l_GYTy&LPT+HmuJwC2v%IluBO~N!+5*u8H zGWr8+jlP*b9-Y;_2Z^%_&|oCuK=R5`!MEF}0uP);o%IkP*3KLVyLzNF=m&+nTZ5&q zgokXgN(UdocR%38T%Hv_POmgobuT=+J<#DcW*ofq~t&obEyof<{A6Aq%|2K24+$f zEPpin?c>gYa%Pgb8pC*lfaVtm`Y$oE*Pn>fJ(Q8%O;pRZv+fQ*+n=L1Q3UulX=II=Zqy}Z_9Y~v*A$7L71rmw_w|h4&4AW@rL&d&ct1uqyh&6qBrHWHF zE1km$j;|_Wd54LfSV2cIhbwBdiw=%Cw2Sm)zf~qIDA@#}`xalFF$`cQJii7tIT;Zl z$Ijk2+V*I;v0p%>14B?_&_XD2umoHKcKdq$M8+zxjDk$yYmx>_Xjt!<-?h6B>h>DH z6AV254fgJzFK((-cpJ=Y&0ptnx*VNWS*&R~y6kLrTW!=b>TzV>hfmwQ{QD@V**(q| z_fr#?CpAqL>U-skSZ3d2WW&^HFD-m=4WVtWde*R|Qyr+TaLtolKyhYv`l|shDkS=lpJR# z(ib`!oe|^zB`3oc{Ge#SA~lP3Okzy;NPFdowupz#-JzLFBU$)011lYB=DF)vE5cmq z<}*8U=Lea$)0=>oD84S*eyC{k)xTH!+}-t4{q?}Rvuj6cOJ>WL06eq2=3%10cAb9J zBQ}HE^ZdElm&|Fj<9cLXZ>9-way73xUI#k;OZ}x;dNE!u6t-M&KLGWH4mgA3=#Sr^ z6cw8v#WIs=$IND_Yucv7&ZqlBWOh?^GrbSRdY-Pu*4tY|ZMBp_>pB?-e9KB~M({!c zg%487@uZpFG0^=WeUjElE-NWLFGa9Ax+Evnk#MmcOd0(#bPKiD6NL41*Zqod9B0w< zg*w#PNOvRIA0ez9lAUhEuy!i8v1pf~IfWCYd+g2^Jad=UNV;Ip!ZXO*8q3WFqn8 zx95VOeLY`EKi%bi<>CJGsja%Am-`Zd_tWn%w~*xUGL4n0bG;_b#DL&FGL%>nZS_Hu z)68jxyt3~!wivH*o^yjJt^Kcql8so^kob<8&UUooI)f{dRbhg*0z+ub+rOW5k4bR6 zZ{~0A5Kg~;CreVJm?HfgvbR#LIo>*?6)7a81Ve`iG z+W20c%+j#lC)-Hm3H;rb>4!#;5>{$u4 zXEA@7FCh_$;cKBG!-C_j05h@~Ts3b0Vne}qx)KgYPts1@3*>FV6h0?}?B)OfW$i&8 zO+{l2>je4mk1Axl;`9wE26$)`S=OyzkuG2FnMe{?(#P_>*D}Q1di?vOj+NE2W(r7c zsYSc1m8JQ1YaP4tMx*I7n(&lpV>o)C%C2gh6r`yZ1 zPAc-D^&n|s!z*Qlp+c4NK`O}Wwyd;DE2ZVP3UDsvt=~`QEuA_KYE$f)$MSTYb*p)6 z-FD^2K_zx8MjfVGcWVn1tZ?P>Gb=Prrj{M(FHx*M(g%i5%(u$ty1VMQO&rs zk-`>3a-2LXWH+nWjk)J4OHT_As4M*7-SMKnU%%jwqygGD>#oK*ch8cAwf*8Ejdu34c$SEZprG|Y5ou*KdP zf3r@877r>sIWr9CiI{OJ%`auRl75RKD)FCvciZZadOW5hSe_zDKPHYyk;vDQd2l)H zb)<2#q40EKhJ=9At7+N2j|nnh%d#*h(25j%a_V-=mn)Hx>;Dl2m!bO>DZ=3$-Kft5 zrI+h$JMI5xeN${WKcbULHoA~VwpMki*nf{I4?eZX;Elx`UcOka#Ts4vOTeV?MCC}V z>}uZP_YX7SsK?pd&@3=r=1&)ui<)r)PP`{xFAKAo0wSm1KYf1diyB&D4JV2kJ~R-bg{2M#kbK8w5>L>u^Gp4a?dP785~e(;Xv;J2oG3DgWg|-!vX%r28ORN zd5PM?MKJh~g^4;rRBKK)NkH(51E-{jNvgS2enoeWW|Te>5)HVC1B&wZ)hyHI`mQ7! zkqISdkZ8;{?-xjs+joRZuY^Z$(v}x5lpil;^EZmIH_F#Him10Y!s8!=OWlT!3sd-+ z>wGM@p%;bk4%}Ou+|S|tGjWjA799shSs~ZoZT*4({u;MAR`}MG1=YB9o~92w^?udl z>U*PcId(JImJi41!}El8V#@veE}z3{Vi-s!?Pud`uUc5+>S-&01AVvo76==4C|Ygm zbV`Ygn~ioO+e%o;6@F&Rce%yC#sv8L<(Xez#= z^^jclpy_@c^|e%iOv2;!d@4$Xqyy!@HV%!>e59opLe4%y2Nd174!lEPfrBS6$<-c$ zU0Leju%OOjSpQ4fLYwTY-?gb}`$S56gLNrzP4C?DGh%+Cq=edvPBg<>_ zsl|OpuQEPUOs3DVV$@9FD;(iP*_3+V{;MRXKAR9n{j`K z!Y3KUfsZ0g{Zp8Trq1kR^8(2&Kcj_#j5tqWL^Rk6%e;CHm(17@knAyU_6)tO2OOg& z`kZ8FyYF3EeTOe$V~XoH=rq1R=E0F6`kTiud9ewEj7LPzm?)2FU!e8+;p+?n;F>i) z$*>};^-s9CSGX6FrcF*05T54d!Yl~KL#tQebGLBV5TL{;FG2D`bKRtw;0Du z|H%D&Kol8-UjAS(zEisWU~pA&*Fyh98GB8&iliN+St^Y{)($s3_nxPQJb?+@i>eK!}|JiGva4 zTlUp0{tik|pm0R%PQalsBN(2uW=DeLzknK+2NwrKY!fKpsnY3rJuNF4XSX>GGm{{b zKy5c+8&@-9tn}KVKd-Adg%#9JX2)*-H zZ?gy(chWDMFSLa6EXv=dp^6Vc7G?+sP{lLKh*=17U*7olkzrVOm!Uh;;9{ZNG6LhH zJJ+3oH}2s7N}#!TDg1)6yyrQ9U@Ul*6ph;)M{P<&{E?A_?UX#pMEAe$(O`Vzs*0{HT|*H zEbD2Dt=(!6FyV&3%L!vL2@_OH8uX^o24vK3b=uPao(z011~M9iE6VNOwjWK#@uW_5 zQQTJj)fmAKQ!WK@3c%!q;8w#SsNV{vN^rDPnwLFb4|A$1WbL zQ=h2{KnXudHou{G+-7ejAeaq` z5*vkO4qU}K5b=KbQX$=b%vqbU2`fqZivF7Yi_kmB0lG&4BR(d)-@lsxLNDX**y9fT zp<=XKIwq}{dBQoKZ|%~2`r`*^JRo!C}^Sc}vO4Mj0Dn~HLZp;m~A#&*Wj zHBOcpd>V4D_b7EaQ;*kID!5QNs#T;t)Eu53thf0pfC3Tm-F0zmkx# z!}69Ntpt!RLuwf8dP2N%J`K%SnXU&^OhRA?jPN!hL)c&pZd==%vmh0vLlRh^!{UJi ztoU2Q_K{G6$9x;;XPl1A4FqrR7O}^i7|{e1iu8R72>AZnLT{aCcW(ZpzVN~&;*`hE zQ&^_33!9g#lN#g6nnzO{%cPI$xN_i{Kl4tQ;xI+2GpUowB;{{=?RzShkO|R+ynlOi zk8`iG&tz&c^tfBumQu{oiO4v`@5@2Qn()G8$sy|1f^^PJ&XtR4$=cEQ~Ne zfr}$ z8`&w4>zM8HVwaUW(2f6`F#Ef8?Qcn7`m-7qOeQ1RXZ877BEsI97yOKhkk>=5OZ5Ty zKYzsWbolxk_vy#Sfr+T#3w>y?jEju+GGJkSN%xXp@-{(#iNL6W6=FT04|hFd>)AsK zNRBPPs&OP;UxLq~9z%x=_$le)P)`b$7bHPQePn;b4r?5EN=5M$hl0SuVN>SZ=gg0g z>iXoa`)d?T1`HTQ|q@yCYb@Seig_l;U>3JG}6pvr%|jxCfh1@E30L!WS%rr zxVwzIjgvjB-*>8k+eO^xP^EZCKXkHz*Xq2v`Cwy9mjM@WjBGuIxmw>uuRU} zaf&3xoBT&eADU<;h=Yu3RFC__mQgN%%B)n&q%`p&xMJfDVl*H%Ql>3;38{X6%O0Hg zCi6?UBwesffLc3Lj}q$)9S3zH%$HLjCNtL$wTCwf+F~Sx^)?`dnsY&Xfm(ArvoSoL zX(0IP1gaQ17aY06I8q$Gl%(FJcKU&wjUpO{$M_E_GY|vyD&EP9*q+GO9C)VI+bMg(TpF@JSVk+bPQzj}vRJPacyErNpu% zrtnCB2_vaZSw<;4xLZKw;hsucWUkKt`}Ql1Q4__}63Euzy2(cUFQ`7N7;vAr%h<3RVT=!-z^q@f7ia1^Hs&^xeM(dpJu5 z6j z_0lG%CI12Y>IMiB49DltMFKm!2@m!^Yi(gK&vF;OSLWTvHaW|*T$xU;@(mfS$nERH zi{G65qh{@D+K~5}*U3t3KBngv?NmfZxmKW1!&a&;w}h$fya1$6kxwT zWn{YYDv&F;@%`)}GZj)L2T7RzfXsybE2u(y551*|B1>ot_{+-IaJdjj1At`pyJmeR zz*?ylwl?yKt(=~tnPUx4h1&s=L!I4#cGZbVjg>|@vof8{;&8mUEjT54T99B&IT;GO zTxCv7xegGP%5`RGg4Z>;5S3#LTnaT>tCUb1=-&3e@kH}yZQpp2Z9bo1zTOqa$M8&mGlrcb97^UPS$>WmK zQcD%tgZ8D4-_V*Ax6n)TGMsOb`6&|AlEhI@UM*27c$cuEFB!vFX9F&|h2~xUt2B>$ zyq}{be-5QV)sbU}_(7?gctd|BSC41;r5E__*C-{GkSt|_TWx8Q{lSO(wxA)k2hc`Z$=^A}>GW|qL@?K`z9 z4zM!t+tbgCab&c{P;2kDqE3pQ84^!vZno@C?TvKcnY1*6pC;6c)(+G}*UBy4LwYff zQdg*R(r@TIXS8KD+qkNpgJ;}E^wk1#cK?Lk{pazcOKLi^42OAjnWSMTlL$anot!`` zls~L)>-cGbO#L<2KHbqfu-eW~U?qKVjx%)|Y~*9!->pXL!@Z-4;gpBxcqtnhApX<6 zr2e__@NMI--P~7yDY~ep1xj_ky7e+eY1ML9)^n>j%rBPHhp~IfnZt^)$g%M;scXdc z!}~VKqb0h87AoC4t?gQ7P1IT}PR~-b2mtVi(S(zX{~N;@#MS$2PEj@hR_&ggl*=TF z``}t|Dp)W=a$jz?LLu{E6W@7urCt(pc*ZEbHF%NA2iHrJ?iZ}}+=61Ar+W8uerKHG zCEVW!!!@te%1${#E@^_Fu2)e*8VXkwjP#3y06ADj64c;QV3a9{UE~g;+2-fnVDl?s zi+T#u3+mLGSuPB+0z#&I$4C2GIp|YC%rM;~iF93g$&obUvY20vZvdKEs?z*g!>jjL zwt@k`@m< zVU)wcufQ>p0{jr}LgiZVinH>wGQp@#G~!TP&nyEGbnq1Z&@jWF0demBM!NzB;uuBH zV^C_IG|+9keM}SHa7Q4PU<0GIMCQWI=>Z=B`4@jj75kLTmHJ>|o(2pcR75J6W_PI4 zAx3*C-JOX~195nvQTELhoF0o|?3&$CV+M;V&C%}Ker-YU2LB2&_K#wSCrIwUyF|y8 ziwAx}zyrIIjDb348Q*id6qeZU>OQ@V5p?gVpuvUjpOaf4Vbh zkG)NoPoEX;Y$rHzm`yPs8w)2+a)gV>*K9I>98M;U6*6~&aZU3vIuU7KA5C=KUtB6P z%ahWmQ(O7Io_^l7ACxDAP<4BVm$;gh+y{tQOl$IKb1G-JEI&-Y2k&*1?iDle*i5hC zoZ#nra#&gI+sINf8EI$r)~2Ks65E!VdG51MLnv_Rb1}H=eiAFk(JVKaSgxbnVAlXP z8@Dm-mX}5WSjxQR5h2&n7kz`dJU5SX_!e?$ z@rBXrG1(jBE~Q`j`8+Ld{9OLZcn1aljsxmZsjgTPW)4$IfywEi@auW+Iv0I0(8!ZQ zJ$Dg*tFjq};JV6aH=E~$;f-p}X=lCgoqtrj$f|Dj*8(8D^T_{R?6Rw{^CZyJYx9Kl zwC;OYSOv^5MwL`l*4$e_Z&QtWW_rjwowM9%W;uB1 z?PMQsWAt$3Zq-HY)Lk%5+ntUzU4IYd!aL(<`dLilaZKZL_#Oqv@$XJN^0@$Dub1v% z4%Sj_yeC?uId&RyUaWhXj&*J}wyj?TyFYdzalKy%x1COdjPP?`k0LJjl0Ns6)N}71 z!oE63@*I4wO3>WkcA-E|6&7RY8^@;8a;Lbkk$KgrEl+5jQWsOz0rbvh*nrpJ8X2P( z(&PKN2>^YbZ|%!f#86~VM0e$p>e#f(*XHw1GP~?S`+A23!}~>|-jA%whqL^&PL@mS z?RBbX>x-r8RHxfC48+-Jh%gK;jQGx`_gKH(dQSN|a~FB*&F%;BP0S(HxpGWx_P2x2 z_=I{>aZp;*4bB&*@7QGPO?T%@(6C<4_vzdS-|c3egY`I;$upw#dk#C zOw+5cH^#}9SIG+*Kq;>D1I;k)^kNCFy!x!UeYp9of#q#x+L?5x&13IQ+Q+}kl%H?Q zYf6XF%l-IvBJOb0rJS|aliuBLaU8HBj}KNc^E~tTv)*-VimBGTmx}G=S>wK3JQh;H zV&0h(6${yW&*0-c%nd7gK&rYM9dd%h*>0lz6EY@eY51q?Miskof&xFSoY*pn$7OuZc zE5xp^ga|taP_g|=k=QWUs;@+SuxXof{|^SdfX+_0&`*`N$Fa6icKqd~L#{nNj5^NZ z18yRefl9?x8D#-2U6x-uu30(Qin{OWa#MoX1nAyn7Ep^cndh>|qRF7iX&UIxZvwBy zk5?)!F!Eu%;+&8$VpN@%m~!&~{5Z`!!WV1yI9n{ANZqIpGkLP1FQo3N+<6d9Xu)?$ z&aC~&pPN9UHKKOQa_ytB+Ex8aH#Z693v3hi7RvgR`@B6)9nW|VdSiA$_R#ULcnS~i zjJnyJfE@5Jf(IJ>ROd@&q!LnDUQHHl!Gocp*F0rH!)N&Q zL7eS=9AleEU%!V?4LE)+EaPZhYJK{-0pF<^Ife2y>Doo&Bx$Z(DL z;e%=oW{(R3LIW9Tv@~HsEvEHfVe7h21M5cxcB1kjpB0_|FbI==6&|MRMS>uUGc=SM zvG59d!lN^W2{=aRY2$cWgd9$5O+6FsDEw6^{@8dxh@}+E5CCo9kqo`}v9`d5dIjk7;E+ z&Rpr@@;2b`dG9Z`esJyf@S0Y9`C2G{SC1u|xsOHjKh)|BfyH0LB1E$4H0iHUn^~D$ zIG{7;0BVY7 zTgJ3nuFrL=l3%a`qleJrPO;e;YP}h6dNIZUAiw`vt60Nj=58>-ert$uen#&n~NK#JP@t|vl*3eTu+mn7BQuh9Orm4>&cQp&&rheY0 zF4>-$5JWBg^fMsr_;_i^460t&Yd(j!W%c}b+0fF{vt!kMbzun0b0dJx2&SAIAz~4V zZ3aPTg8}hy&m%H&aLPx9mF%N*t8+UdB+k~^9dRL>hv|CouEP#*&LB)l!oj}~xGIYQ zT9Pi|G{&-m59ejy^|34{Tj)zqHy)=N!-@u4eI$J zF;}(=>x$kUC-?{Ezr&F;!!3I;|G|-mk^kpNy#LB5|BnmFVvQ{)`Hff=I>lMnG7hO(=6pu<{X}eLTgS!ea^RE$b=0kRd3sP%T z)LxlY(Y*Vc2`_S@&1GaP3wej5CCALj+F2U0o@kuTjN{WC+q~3Kf&lCw`Pu3V^;y+# zWakiRiJ$xl80q22KW>I3BixOZY$t7|Zm|@~aqd}6lgUI4O4tLAP&Gw`qi=X9y zbFVj+g4UwHD5V7|0!O=IBq=>(#bB~3Az7!2E(TP;b_#B|i&}bZ>?xtP3Ef+hK_cpq z3qJZymBVhmIENY@n-T}=esURaMTa0Jsap8T_d3fh+p}$>jfxcrN)o3-89&A53udIb zO4z$T!6%BDUMd?+_QV#CJHajU@dOK($WJB$soXXD3A0{I$GtPCVf+xf+L;nTn>kqs zS=!rYr8F}hp25E|V-f3#S>Xe>Bk9|i{EWi3v>ID$B6wK{tCQcK%cigZm+oIQPpDIm z^iPB$Bpmg6J2yt7C&ZcNR>x^L&%>mnd?sjtLv)efp>SKvDcO9*2Hcf<=SxOT)R zm2EFV^lGrES>PQ(i4!Sx)qe~ptQqpx+FBO@*ytz)hpgJfXxAaQ*5Jk}G1sOj4@Ovh zrVz*o86MelC;*Apb5>)nYuV))n_7-R%Hm&RH5l&6=@wHBx12UO$&@%-$T?2cxz5%5 zf|-x%F3=Dfb0^1D!$(F(~P}tm(O=FTGY6B$2j#?{O)A z6uAY%C4V36!2--jNkRYEIkqH}v)$;@jMF5Cabc5Qa+Mgu#VTexcjc|$=5m%J=+rld z#+1A_6bFh~q6d%@>h1Ap4h3pUWd+ZEHWQE|A&MJ+%9yh{2OfY6F-0PW$RxvMVAf@) zzBBycFF|I2j^!vuTyPA$B-?g;%{JvA`j7~Z)wgJm9?-FGLplR`2qs!AP#Fun9XP8m z$W?xcE$=WPe~?;ls<~ckrEj;36S@!keYrF|@`5%WYLnS6-O<%LJjw)sd8Q3&91|K# zFwPK@Pc2=qAdvM$(o(GEbl((^-YRp^IT{$!FgtpGXqkSi>F#ME)t&3hg-m+*D$Q$w zI~3K3p7(^~J@0f|-!RLpfcfrusQPjImiry@9PoD9 ztArrBq8`h0v+dpUFMIR4_a^T9`c&w}SHtyKwd(7+PwyXK)bD3uP5uXIqq)sw!)A{? zL0!k)_aY;t2L5=1&wZ`^?s|wDow|Qz&qPYcVtT~Fc`{Op-B1)~N)O@@wyHQH|xfZPmtO);+tL8Z}C^P33eD zHD9HfV89>X(5)$z1<_r)f#Ia&(9?2H$`KNs_p>Lq_qmRRqS0)(nL$|XO4ZCg{FhG6 zkXeFt2=;E+6D?7&l_Evnm(tXvfTXy` zQ=NO3o&}KU!lVv4G9c@>WxX8OCYx9M7A$dS{aVqXeqL${3$N?cLp1|mNql-Q0peDp zCn2xC;s=j_1F8f;h==?tITprTrC~$_&9qTVD%*w?Oarg6$i4W9X;>Mt6+UKfenw^h zpc&H&$k2LM0-@Xc;9)TYg}PL`knV7OxWw~yymPJyyb`oTh2Y?X>_!UDgwWgnWwuUMB0#<r|#8jD(9NX1%Bwa zJHdIhLw(EeRdXLU&iwBOyV@gew|?u>eGmNqU3FnH68G+d00HTP0|5#C4_#m`&KA~A z|EarTk|wN>1#w2qT%QwG$f{{uhLnOtE#t{Vv;?(+QM`%%s-R>^uQ@L`kMZqame8wF zi2g-Mzyb3*{RXnKFDHS4_kb>;T_vUYPldDEI_%n3H? z?jTF?Edb;V+1iOHLUey7kH&l7_1m&4i)LX7$hH~9L6P#XLZI(tOG-6l&-3RJaQWFMS8QxUu ze%e`kdULwzaEsDYy@-iBC+Eb+DrFS2#OiBk`J4zfwFbx^fV(QR7!UL3)RC$+=+8H; zH+UXY&24-`*;oN{op%!IbT4#t3hr6(Qt!WrAel7e&kgw$R}TKO;Egx`sO3{uiG#4? zcQ$>Z>?ei#Xynl#d7id&sA3mj_f?b!89L#+;(RliJVY=3F^4aa5~qe5q6@QRVlYXBw%x^V!LgQq>&m zN(R$)i-FU}PN?DwSH>PoFb(CVmcOrw?ZOilz9ss(UWr23V6d+PHUac;>Up+iuJ}ub zcU|B}Z0(->;UX(HOCJIfHPG5YKlz^6Dl$7bP~Y&!7!Xi{8xLQckwFV{%kQ@f+FV?CVd2q2|xSgTca&JOE`NBkY^?F zG;><>iAPRBFK3Wc_n&WMkaP{4?_`j`4QCDl79&_DV#J`Ex;x58)mc%mRs|-OlCCxGH zNK=o`sLm>nPSTFjQz=r=j!jY?gZ#&G73-+KS2?(99TFgI*BMxS)_7!~kXk}cL8KNNl;)D59+i3V-KxhfOX>mv|blE_YG zaSDsy6a8#E9rt5KCKA~x=L=YYF>*RxzX;b}Fp*0(*s3T$kPs5pj%y`UpoIi35UCc> zKs+}kUrSzZj1-Jj@){(fEa}HA8dL4|0#lXnpl!<-4=MLCi6p2VT~j6SnQnF+$*5|U zGu3CSczFw*QYq82P^;MohE+aW=as&busf<){2gcVLa|Itqt2D}{kW^``8ox|&I4Mf zvx00$RwaYZEz3l8)LDMhXTbRlxl=D@GvO(w(P)wSZqA@_$NF~mk=HHXrUFuQ;*5(d zAmhP;jqnOwhtE-_XwIEongF>7_J1zR4#Q3 z-xX6J5rhWhUYRE#qlBm!4!blamNcZ$}mJfF2s<%sbVHA`KgQ_1;kg_x)9@Iz}TuhYC!?KNMegnkKg`7AdGLBdqwX{RU1Ns&M< zqiMkyZRw?UGeCLjpyME53Yt=f;$HY(cff3dlas=fj}=6OTV>cy}bi^&VXooB77S<4M% zH54jkY|mW}e`tI8UAiv=Y>Xp;jok8&O>AYKogmNPuo70KYaABjw#3MH;%QY|oXwzt zW9im(v^#^0;22v(e{YV?xp2rsh+QGyxBKuUhDQJ*)l;j7cT(!r1+RRm1`@`yaMi1V zodevxGjfHqV)6C^zbOs+vH@|*4mHijAp0+}YC9uAGIo*eSLsh*#uznx3_IdbV~b&H zkGRoFP|))SZCHW&FJNanqA?}tOT{o!`I7#{IM$AmT+qTlN)yk~-ILkhHe=BiA zhj~3=rpf&!f+WD=T&edw!}a(yaz1To9!*|n;qLf`e_1|MOd@BbpxWJuLArBEvIbwP z55xD?M6r5n_>;loPTKl+hAxK$MuFg@-b>}6ZVUe->(|q(@3XQ%;#xCP&B4RyaA8gB zae(Uyqv!H^pI9Fd!y?fix=2Xj5raNDbZ}MoSw!VF9$>nv`2~5`Bhr&`aA4r*9C5rP z6l)VST#7`*cVYdF>OV5shx7QE*zqOgu;42&K&?@{g(v@ok!?vJU<{6px(w90sKHrj zAJJcM2dJ)RPOSHCH#BA+5K2tJUe~hr1Sj`apVI+DYuNhyCG-n2!HN5AA+7I%&roNb z&bxU!crbi92G|&;G=;qj0v6TY!1V7C1slA{hy6*x^%N&ss_>>9uY*~KhpM_|RHMLH z2dtSv^-xN>CBaGi81arYmgrWUYb#8E;^kK(c3Z9zE0tyh%2WLq+r?A*s5i=Tt509I zd%b*sGanvzEL|1@NOt;jxNGvOFdQeBjMB*R@p-Lw2}yHXI_-l+o6=-yYb#>_j)#RI7f`a=)%XpMd>xPQv%973oT zz{GVwqC>mXSf+z~0kY9=eT936M}ak?$uX1W?;e?@i2a^f$a`xu2*_WqCTbtOdo=Y8 zT-ur*HZXTLc*tT9LVgd4TII!?AL3vSaMvs*16L#sK?Y zH>XK6-d`WQP4jMicNrIJ`T#$He?tx2pCSX(&Pzn{q5YE#mxKha14 z)oc1XzCI_?=&x-#;Ah%m`TRAMy=#5qMULb5X&pU$z%XtCNCY*|p#1bGcN18n)XU1q zdpM%yCjqeO?x|%gv*hnMtnT6>cVo`)NEj#?g zbQTSqIhR+Ni}Y}UZ)Tl3ExeV5Y1SQ&3D7euM@TV5bIcdjgJIil-+7>DH{4ykUy**S ztpzbLuttafICADTMj?#-@ZaG7PvJ<0No(#E?NTsv00DK(0s&$CeL$vfRN~yTi%xJ=oqAs@^yPhYYSphfY zxYdm8E!^BeqB{x{Xw?u91qzyRBIJcLL!DY_&YVaRZB!FlHIu}Z_{^D$qS2RU6-UK0 zyQO9Csg*TL>H?|5$}aH0%3~;!(?Ay$bt)fT?UbQEYAMs%;ue-mP~~;go$>9Pi^Y?N z0*9g*a3U_0wRc$+iPp|@7e%^q%$nj4EEOtNbJjJDae2Ic;2EG2mFG;ED+0&+Fl$v3#`l@)+gt9XcO3* zz9(K9JZDMzu)4z9cBN4g{M0L8IBGldvfb(Z{RO`xv-A0Q@V^Kn%5W#gdg?C!4FVg64* zbKcb-nai4aLyeczt*xjN!D%VX6~|7>#T#cd6^WBPxcoCrQjqNiaCp4=y))%xFjU4T zqM?K`PI71x@r^=qk)Gs3qK-rkdGnT971eR0S69do7R^F1RWN&7iHEo)KYmS^nc?vh z#c!d4r#QfpG$dvDSo7mYO|?$lNku5knKb@t=N!Q4NP-jv#R>IgP{LNqS`&)M5I{U2 zNkyN!e0#WR$!v~6%F+}0Zf%5ikS*LE1O*MztpNVs5X(kQQ7Us#X9K_wG0ME<7;^q$ zOfr#RHU-FQ)v3n9yw&*qIVA>D8O*@Xe~hUP1f?uR;IfKP027B9cU6T}NfN{wkqmKa zeQJRuzsgudFQx_nKk{4s8Ze~u*`R$#_&9-vS{l-J*+pgQA}XtAksRa1XA86wtrf-} zuy0fgKf~Sni^)HFq-=>U;6i>-P+B3hm*AodFBcyk|#gZ@V6 zxgj{6 zabV|U6_6l#$D1g8U>$EDbp9IZSuxt;hLT0F48&jmMSya^yQDRC#)J1WZr&eKnAZoZ zA=Cvq$4Nl^`XXZ8*zO;Sa33%l>x8oExKx$-v4mjNNQ56Ijq*QGMaJm-Mlwyed@NSz z4`i`V2#5ygi!hsX)wc!x^51akHj~G!lb;D+QAaVEmXuq0z&}WC%q4ls*U7{tmB?_w zl|)`rMPgm?jWCib* ztwdNU_!*4Irc{Gb%VOCe_;f@?nUtAH?TRzPG(R3Kl3zH~B{v9=JXb`^AE=4Om5Nft zNGOz>t}DiW2C!!cP!9rlin+7apU1xvfU=byBit}ViR)b9+CyloGT?wN5mq@d3KYf| z^wHk)J?3NYKua3CpSPa=Pv;=H~m ze?7RQcHu|&c;ldd1a2vjxl;yk6Y8Wh{|P8YW+-J)WQc(3J|$q6DSr*Wv;z-NyFO&O zdJ@K`1VkywlAv2HrN1kqR=|s#j{+lNFbzoz6ed{Ki)=fkYHygtE-`cyFue(ZNSasVzSkpECOWSS$USai{YB zEOrbsg>B2Rb8Br)YkvQ%DV7q9C_oIi5)H(sX#PrVrgF9Q_Je;#jWHl0NjRtivqu!D zi?#BWG9ems@v;!0GH*h;l&5*{j9exXFDnxRg68RB>T z=3Bd+n)InhGvS=chSgatM@)Q>?$#DWBL|H&Sn3@vDCI$%wF%u?B6O!W#?*@Sh~xc}xPi zQMvnw5}g?ICO=9tP}s3LS*VTZ{?jS#40kXC5wED=|9E5(n!1?f>e8NN{7U1FH89w z2NNgNqh%Dih+UxyV3A}TEf&O@HU~+NFqx83$0mKD9?#NQy11H>IA}!L*ZrdxlBuWO)T{rewy!VOR2K4&`eg`Qg;`2T)|JMH&RKTO!+lyxA zC0NUk?Gea|ePz+pT4LO_1-L`ZYnP5SdQwa&=hf=_D5H8@;KL6$u`cyRKC;l1Dqln@ zA7Ix4MVLTF*=~mAOnhoe*3;HO>r%{^pt3@JVm5qrM$#UyZ|e8U@e$>qu0LS7dFVy? zJV?&%y~1Tvf=V$};h4^r@Gb-=56_i;D|*JiHRr#E$z)6hd3d)>z?$TarM7 z{c_egEZDk<(-M(sJY_W3QF1KR>Z^IcJVSC`S(jsif{yOh3TVZ@JQ@1ONo&pD!t)B;D$ zITqdY%22A8M?B`!!tu&)ej$8r8uvWA{o za32HFy2yd6B{i=iIa^^;l{#f9DYV{^833TR#)x6PcMz1 zr*cYG5$34myfyHcxuwHqym34r_(cal6jQ{7YF$`4m`L;3CkvPD^OVHgvqP61}NL zMzr09SyQ}NSeee_%3>6C0~apJalji-7~fM(CdiiKi1yv1#kN%e3PE)Rf}pN@o;)$q zXlq{^tXE^!w+{$T%~l&3BYpFe;Ks_`NFoVI>U^`+IQ!YiG2Ki9gAH*wA0hzdhz?Pe zw8T6U<~5TpZC-vnEg7r-;I zF5HaWG}YF*z3a}L^Sj=Ace$)1zBs5b6BZtl3o|gAlVV(TbaB!xt?J@PLglyQI=`@m zqmMagh^W)P90`&GUkQbKd7fVl7|tkC$}D(16c#B*ndF^YYlNcrTuNNqr=8{!u*ECc z?;xT{+Qb3`G{m5T{9erLRM8k(hhz(FP)<$gU631>(16V~&JhvG|gpMtO;%2+D zY(m#RVGGowwo*f(SkWA_z+)4#H*c#|J;IWH1N-udV^gw;pGOz~Rv7tFSBg}szDFX( z;vX@m6)AZEkf?;AtSxBZ$lADWe?;kj4WS0mos$w1-=O?ir26lTZXBm|5y#P^Xrt`1 zZ5tSh%lOtL7Ut_q4|Ts+v|o<}s7#A^#b_Dw=*+iQRycm5jOELVv(Oj!tlD@$r2SLw z%@4oI`n7@R9874Apqv4S%MJC~;1J_!EwG5e9qI@Gtgx>3PEm05Ilqk@0|6hQg6Wpl z&%FZ@)ge{hf?r-P=twX%5zD&i+YBFawx=`Sb=10$@6) zSLh-_3p{DCyji2Z`cjF7kEg4r7lvxvI8E{;6`HRMuQF+%9Qdc?(LUu*7}*eApXaml zI|=jqzw10sESX|)$|_yZA?{Ys^B`PDZfyh&SRRB_mwhDv>3VcXlpnUSE>F2~ zI$PG2M-^h~$vX-Xu-7NA7dOU=3aW#Z38c;c(`TrD52~36(xgRwD%e1sM77w(!)`ER zVPxP~_v~D+ngs)t94h}bp#+#YuWThn&5xo-m zy3}D_EFPEDC3PlUid@%@1Gj13@-5<(bc+DC z@U>C)sI++!EP}}2ba|z`$2;i4{?5d7T+=H&dddJ*xWOd~IJ5=9dBB4=8dkM3*p|<( z%5l#3>aOJTvW9xm&$4`6Ec#PUgly`&C@{Xx4A)cY8)ezKhI$)x3~mfCz$|Z@MXH^- zaW>-43%Wf~HhSkJ8^zaNHgcy`HVk)sTD*P7M@+BP>0G%lHbGPaP zCoR-dFCVF26wvAT7nU}QSgLpDgD^@pIdSU=q0 z^u(@fp4F@CLT5w&5Y%=H&z2M6Fhod$^nfp=T}%~~S%g}sc#7jPIXmfrdMm*7-x-sx zSLpO&1`6IYjCz+z3y2MrBIiwexx-=bf`>iunz~LTm|^Kkz6^khy&YN0-Keod8#sD%l%OHro{qD<=C(=jG@e7RNrF zWZq7`THC!He3jVFp!nBH`0nAHuHR^fz1b0{j?nJjQaiWW4faB>#N)9O z9Ak$Kvfg;F`t86OZmLCNS|Un`rMOh1XZ?od*0{{jG}+Hupz2C(jnYw5e#(C>TlS(z ztH>YeQMQa3m@a9`CND{BN~9bk@WU4EAn_sm{-W;cVe@B_n|kjB7!rI05%-=#+J&9@ z>)P2&W~(D}9zDS+1)B(La$IKqVRhxL=(|f!4?QKkyEA{*ez5FsKBe9Tw3=^B+|$^B z>{_VdAwXW>{q&4Um7TONvq_x*nGThXnpk3g1M*&~f5JTK7oMSN@&!AlKA@cRB#y~8 znt4JJNds~x(H4#Pa|Tsl26{Ew5j}@Sg23K{wUlkB?E@sgpNnIV_cJ0nw2AE0`Jysd z_MQw>bP4rj^spiW_Q1IVx`Xqmv7w;4UJM>6L}_*$TpnK}Tg@JC8Cfj$t@-^+@7{3br)1;$jD)^^DdSrHe+m20*%EG>oZDFQBBdy`VS$Q2I$CN}a!G!fR|F>)P&J zt#6T3y?wJ=^YB1w6qqRfwx?ZM!J%+*ZnJKeO$8GIJzg>D&?a&6@Y>TVPDpR)9oIq! z9|32%#O*fR+43!`AEIqQPZ^OM0eqh`b{IXJjl&VXa#15dc1amDuq+6)1)E*2{iVHZ zN$3)?Tal4xJZ@ihx%cN?TK=%3H9h=0Ll@fHyLO|vQn?FjO&=U>kTEXHeFk{l8#ZsA z`-}SpAwu@MOS!ac4N#qh?$9UHmo%dUnc_q%sHH0NfNXM}tB}HnRx)KFeGK~Aj4o<$ zH{m+lt2%!qjeZc)1~?l?C{M#J&}B=Ck^9%h zPLAIUF}%6IsJ!8DT(8l-d`gbl8u=cPCHr&Q^GaO9a6Ima|7jSK& zfN3ES8DO~9p(WJqVPvkT>L-pxxC*YomAm^T2BPM>VR{3t4(Aqmc`~{PT zrM@9jO*48>6v*FK2P4*aOHQr%Cw2L?$;F*y@aAU$J5<)#)Y|&z2aRzQ5(!|su%nV% zbYcEpYV}m5d?>WNqhKGwK zmB}3E!x$gAb&`r$Ezu1?LY+-aMN1;ZE?=MBNkmtOaYHYDyv-I_K@u5N<5lg)U1ASF zs

!mWMR#|EFrqHXMdjkA)qk8?laz3RhLe1Yu42P*FtV(0w%D3$h2r&Z^nG&7){6 zi+l^&S6(6?!C01y;H`ufr(_r$=LQV{0@AZNkXv=ZcjICO(@Ay2;YLoGLFrHT%DIHa z{k&AP{q;?Kb#O3eTUA-M1NoOp=&j`%&|yv(J7lR{b9Uy+qNKFku$~H#=4`vqtcpPi zsV_tB0$$wL_^Q?1ae9|cQd<&9FyzlzGrfya?lo8TEkk;|hHX#uU5}wR-3w;k?O6za z3)yo}ccYF41uE2WC}CmfBB#(AD^0(0sP4Q(7x3?P>$k5bs2x#@>mtg>37aaeHHkg? za@8YqCQDn%=yGSY1JQJ~wn_?58T&R_kX*kVQ z?A}c$!D{+xMhGoI8}LJ|NVV0AbSjh$R+lRa7<oc^#TQ&g5jd0L+urLhwf|n4M_U z7&=pT;)^l+v?*@=L*_h=(zukSfpsFx&XO~Dvmg3CD*>Bipj`CFj@yx1-6$EEtkuv$ z`roD-m{aEYH!^lXm6O1go;QzRAe;JNTwHiX;PDiRPS|0snoID(xI=T5qn7z3wZpGJ zj*7!_RxksggIFy5V_Fv)`b6( z@yt8m=!Ui~1*)HBomCg5xHP@=je&P?V$DIkZ?p!SrTx(X9m%o;euj62SPQn#m>oFnn3I$6)>iA2y9AX2&~J_sA_X zS+v?@{=6VqWO6t#ws&vZs3@fX9 zO9vc_yY5GdXv-4%Fv5h%)i+50V717~EePb?O+DhsW9G$RVU|M0`0B{4)R=Oigd%?c zOe!Xy};z=Px{4;Du`ocwzf#l1A-jFzK4hW`D=Z@_Q9 zzmCY2GLvCJZG_PWGactOHJ^Weu{P6Jl5gVfmM;Vdq@?fr@KIXOzTz&<8VYWRrFQZKjH6v? zUwYuqNguM_ka=LjCtO8$F6h8Pm*}ER<@8Hokz}Kbq(E5_=i>+K@bFRlD4zL1MI;mh zCT!Tdl9*?@zH-BbNXMX^j+9isTY=_AMUAevpK)O`%Dtktv66D6qKVRXypgsX2(tv02_N5z_Jf2 zvjH7Ts?}7ehQKNraLxv3r0Q7cr0?jkqB5!nY|YPDF#G7uw-={91kD4Og5XXRBoGh9b z^8Lc=Iw>@ym{I7TG{}}}VeRc02WC2uJvBf<74G z*ZW8Q%^Aq6R!Ee@A{-ieq%H0zVAtVB`UVw1u2f)@x^d+<@6G+dPdm$jSv!}AZWGoTy*fvf=$}V0#?kPfX5sxF%O5k zHwE&yFwuP+Td>rBm1x?ARKaB&S`J9jud7zNi1dZ4VXOZviUKVG|K@-A(gU${OVg$j z%+$8=QV~YFRVGJwWkuvnsBU9^M`6gUeCEFxDy?y~WPnezX%k#W5t}KR|6^~)6o6js zLI$?{n2*!Osp9|W^XKI4^FjQXK=-`DKEoN#)cbd&vWbqUt*I{A7KisE9IDF`Qc$E$ zsp@yrn+slZfyoE2)$jOAig1hg!xaNh9LgpWCVaq4>f;Gj07VVt%`YI~xB7E@QR6cZeWVsN3eZ7(aq5X7gr!>&Ts~ zvkjic_Kn%^o{2Zbz9uGHzB`};`SRXjMRj|^5E5T~6Wn2`HwQL1%$6+KbLE7&=Q^NK z{U%52Q%CP27ma?ie9K?Q=$cg@)pt#;9X2neOV>gEPn9vjCRBsY?hQoQ&2=k_U$bTN zKOow}b0l*4B$=!9`w_eCG`x-a#uB($;q@)O)TqsbLNDksgvsVvewnZ4G}(|B2GzMS za)~1&OdP%T2RMfX)<14IJ%Nju??lMK62U?caFAWWekD(oW7l-+9zRz|bSKC9#c((a zxb7u8%YJe%oGrmY&x9KtH-;v9%s<_Vl6~2XCo<%VQKo^1%Eto8%h}K9-=mB>BZc?n z>bHgBuCI3ZAu($PZz$SsV&0-1z#Gjx*2Fg>g%v8*2FltlNoZ%l)|VXbik;WpjhCA< zu-y&*T@8NC5STw+j11_V{JI7Y*($zOg*xpo%z<5k9oQJcg)fdE^!PMAGvv;y%%g{v zAFyRE?c%fqWhZp80KOdt62`y)y5#|TF_%qWRnqhbk$Uv1Q!_yCx26F4oTUrWrO0=5 z%_)U-2R}$4Isa^r#eMg(zr-JMby zKkn6uG+2Ti*Nr;Eoen17G&p9kRrdfxFmr!!7wTx0==jy5F~1DkZ84UiJrmfY*ES~G z_B1V@$XB;{RI3`xqdXF1QQGfx|DJT&$?j&lnFe_s>iKYfYq0;VIJZ*zB(CTCF@mU* zevT9RhR=WRiYt5X;tM^z~`w=PCNXGwe4rO8MnM^=8-+mCP zFFo4C6f2wWwl(;tXMwv9emy91hSCAzJ-B73r zp}oX~6)16f%rCPTHu~J8Bu))gbMpdZXqB+(-1$e{u+4Ko;DJ;Rwx+btd~yZjuUDq% zmZ8p=^}|l$#iPZmRph(& z2Y*;~I$9sAOr%Q4m;Mw_mb(yBaTkyWq&&2{-rUN|SnNG+7_q{`iu)M*A7jfl5r>$A z0rp(*LiASFi}M3Jm+W!CvJ&L;VXvOqzob)}O>_P90k`A(HEglyI*T+O-NUkJXy<^6 zFkBII*VSx9l}qJNHtl5orwqxWX#eDl@5 zF|Nh(p@Mk(xO+PR`o{=>7D7fgp%?G?x72Pd}B#Si7S`>8Nb=GIP9 z!rrnhJrouT4&>Zxp!L#F(&_2}`qKX*(ir3qW@$18!0<^}?V(wGGm3Q{uqDI3ld$0f zBRv?#(>?f<sQR^0dpz31535U zQlB)M4}Z-^oN$^7$oj7J<09(A1iey*a1b8?0axEbIA%Mw#Y&)A=)~VO(mt2dvGuZL zBo2}V0fVvCLmHDCE`scdD|@<}WE+h6;+TIII>1fD05Rl*CyxGCE_Lk)+5)Y{ zOr#FDa6bI$@eFtCjEb&h^UNEFBVndqnTdfTcPSTZ_Y+sGr_T?QpY``W6KG>!yjHXg zS;RQb#1<4hX&Yi$ht2ljlkN$Vzt-*mUJBZ{@7e-DBGazBZ?Hdk`$BxC{@q%9Dw7kR zTgSQiw}Y`NG=mHEcRb>CuH|d>T?S8A|B6j7zkCx0<71!t^P#yjrg{reopAAB$V%yJ zH?lN4!f_aE9hS!TYRrbs-UV9T;IKR@!zX7cCw4s>OY}Z~%_k29nCcR8^R;VczD-op zjr(ouIn;LH9X!9J_Po*g90rKT#z%g_a(@GCgQbv;&_ozXG@~7{m_*u8a#lyae_vI zpU3xHs_{C$B_Tg0x=3LAr;^sW6z0#_8{zzoYlv5g9es_cRw3xhR($Qi5Y|%KD>=LZhn_diBC1 zP`sPoIkmNwpRiIF7cK167l~YvEU;wX$Sf%5H_z(X=oHB%t#KzPOcOgoCxfd8fwHtB ze)eO6>nxC+paAy3z-ZDm1#+%*&iEEHkVAV`ocPZvqX&rng?p}3Jwq+-f9pP#heKw z-`fC(aC$ejyYr|8pN+BYbmK8Ow9W1f9U_PNzCFpqCeBvCRPuV+tt`Q;fpD^cf$hr$ z?i~o@FCe4K&ifTnju>~Xv}?z)LTQnq5JtwF;J_l3fCU=dH{D<&2D#L)qhIbbbZr>1 z@U*4}aajvQD6<~6l5CV!JAe2hNM|)I1)YBTOE)^I=(`%6{lISb=|3dl8Y1{C%#0&R zw}cNYL2qx6j1C<=sK!B4=Bl;k%XY|Yv5BCcBu^~nm|Bh3Uy1TPcadSKmvVLQPexmt z#CM*9>E5h+2!CWC?p=Ze*!v)3w4&OwM=}F>UV}%6JL6;P%w2Sl9*XQnb039t z1e`8%FecSOyUY=>AZJ#7wD|COLFy8#Q3Y>mVg5#8jW-fm&2w;w!IhKf`_f4st? z%|FlBqy;T_N{s9Exzf*~E3lH*q9u{i+|F zPc_VskIP&Dl&L_wxn(h>z3x!9{q2ggB)xajaDb~3eH}4(Y*acwqpgu?^<^H_gYu8{ zK+ER$UaFnoFkjfiI(xZfcd(Ck5NLD zw+_z=FR9glmc;UqzgcT4{ZbTBXq4j&slGMZ3(-n{UMd6>IqVP3)@q`_x;^f>WqyK!2(bM=}e;1~OH69$eXV}E)??>01)Gi|Ic|4lR zN!dmSqA=+p*HzM|FUJUH+GFHOL7C&_*)F>?vO`fPm+q9hv>CFE2Or?a>X%zs3YwF@ z62>m&tm3w^GBKwes27eK{6OWjg!4V;sO)}OQ_QDYUlRI^82%$-li9*r44GYcq$tn=zdSupu% zc~ymOU$Mpl`)YA574*e2F1%11N@*8~#g3gHadA8;MypARR{cfN(b;c%ie*c@$VAmI z>^v~0wufMHG2(fB9o#4$HP0(9&`Lp}?oSpPR}JPlKl}zz$Ev&auw9NM?fw(rxA+ni zYq3jNwspr~oVmoVbbbWCUHvvIaGpF$K?1h7{CSmi#$`oDj%+|uckvE53|?W5G9y>Om_Gb(q=@>ht4Z? zl8>J7im716q2;eT*{(fs<$jc$P9Df7g0Ce(9w_&%UNGAGl0UfUzmMx9)jmg3Y%kg4wnk=ya*28N0brV?~XNe7G=eDHc_#;uG$Xy1xX~rgD)V(!#7M znc_ZprA2WlcEyP6cE6AyC*GfUXYIVKdwMZ=flLAu*`ihpzX=q zX^X80o#{TpZX2|WS!ev^VX49lPmhQ&ckM;+g+7$Bc;YBsqO-z=hJn0B!Vchy8mz`Q zSP9mJvxL*8cSm9G$@afFCCh$IJ}=rWIWu<)wH0ngS^qDgzvyW_6L|mKGI{(ev+<>W zFgV{%4z_TDqU7DrHN6nsLt9Gq+tc#ku{3KItX3$g9)k*Slz*6}_N}f<@(qM|XZlzX zS^SogUUqI$oTvv~c%!hxD#9IS>i)wrkTYZVl66L!O4z$hSi+w0B##sFt&VO1%X$~pP7@>_GTn7Ct7WL zLEO6QX$awoQa-~Qn0~dEk`*>N(+iAbzB02$sK30sl@2G2Kob9#CM?C(Fe)~uq1>Je zvW}sM)uWE+i?w*i5VN;&bk26V_+fO=t?EVJzE-rrn5+&CEL0+Y7v-lz48sI-g}>!q z<@n@Hpx*D;o&Z(#8vO*6xh-e3@pKHJY{BzZ2@+K#^iboFi_ywO&1>z}`}gMp6r5VM zYoesve>lj>IiBP1M~A$TWL8)-q#c`ub@H6HRlJ4Lyg+5+OONNxKeY)QFe(d2g-Eh$ z$e=J!^blP+^TEuFjo>IF3Y-#>j3>quF?hOoS^i9czvqHO%&yY5M_ma~GJHmeLYLSt_iq_+iJjs=@* z{sGKp23TSk&DbE(E@he07ybe5M_>zKi&RVO=>GCh7sGXZk+@Og$;5&Jc_Lh>9y8f5 zy>Tkm7tL`8^nOu?5T6hj`bG?Zcl8UTtORQiNUtE6I6R|b*Ts)a@TQzy(ms{brvUzh zGKRL@LVypKTqE`+Hl}U)Z`INb&z3yxde&D2B7EmSlITwZNy96v7k-TLCYdoTr?82J zaU5i50YeFJrZUGkvQ%W3Day?z;s`{btT0gJZvLvsxWD7uS-CW%l{Fy7g&5z`LDvs? zYB?NVB~lE~%e0Lf#3RCQD(l`tC3P?1_fBB-y%)5fI+^kvyhmSJBcXX?;}iFFj@bBC zIHdKPhRyeGnEs#nxo zmFyQYN|Ely8f=z%y5!3@P%E^qKP?zN2;04lBE1K04cqjbI@uSX5HGzKN%{ntdvf4K z1*Ji`Lgj#8nA>apBk%Jh&9aHLk>_lh{n6oKLGR`WeQ-J~&M=q;7^8IxxIL}Q3$eEx zK1`f{Mq~-!s1~2DtGsPLBB16|kC6)_)A_^il|l}uR9{y4h{*#y^+Do1D%d%Bb4nIE ze2+r@!eYfR?GMfW>|V#(p5#|Iod>wVt?|9V~eG>OEA zq*SANaDtjPAN@4?+fo!>?7nmlnf`{ZpK!>8c31~$ODW0Bm?LznH#XaT$8nEl!pt^6 z{exKkFjhXLu=T6C`ZtZUodbU2jhOta=kB-Cg;%tpkTct-xC#EVQDOS$j^X>_O$>ts zXUi2t{Dt%Bq*79G`BdNRC?>8k45|ct67n2i6`#7(od7qNBFeD-Y6cW9JRT=LRwNE%})tF=%KE)C=9Bkf_xOyBxLJy2FAT zJ|CVu**h><;RpOX96&Xgsr+G-Vw)oHoG+Vv`4uzF$J$D-+S-x{^|hg!1PDnuZ{1J8 zhpct%8vS{ebCj9;BY7yGZo)|oh8bRWv^k*OM@`3H}#pgEx zOVb18p>6+%^?4QMrv}HNIN+^6C4v4)gTOC&do=)+SN(wm`9dH% z_I(zw2Eebj!U2<968ZS+3ZuH?);cJ-_h(DH`%bNNLzf_FokJD;W0uTg?AU z(NIs%-owbi$lOFv?>|_D|ABqunwgp!0RX8Ht-c`Q|6~A0(hpqB1N9$v4n+w?8N~_J z9wiqQ4V5I7IZcb^H;@_CsxBeP;281Ely1X_Ob-yG!sHEd{%MqDK*Fz6llO=kB4y(% zVJ2It4F@*I`p5Z3I09xOCO+Z;J0M~u0RR7h5C1)MSD!c!HaY-690LFV%l|R-f8Y=Q zW9ku2Eo+x3VJ*6>;Ob7?{NFj-4k0lrrtzig4 zSEXR<=*a3G)R0mZB@l=eW41|M`4gJ2MxS+bMQ3E!!hA3+>Ug#>xcQx1psrtzp{zfX zvWqvgfPbA%w@>-ne!chnX8W*UG=Y5iwretRY>3185KQM=Kwem`y{;jw(L1 zpvua*(d=&2X(Y@cbbmM*RL7bKt~}t3f$a`h>XM9Ny3uws-EqfF!_YIWDh3Z z9!c1E&&YGLiwaP>I+ndY&Lj>aF&!C^Li+kqCPQJ$yM>=n;1=4bVF(Aj#KjQOAhB^T zFqPifYc^%8HJdY~lN?vfZKv0PBV> z(CuzOgd-M11I!@tkGa);9x=KeuxuC*<12i`Ln_JMEQ7!Wg zpV8@pAdvOUU!J&%xX>qr*LHeGdW(f{-&H$@%gd{p0evW zbDDZGVXTOli$`lmRu&xtqZ(|#^2?l85iKqF96ZIz%W-Bj+L}Qb@q!(~9>PAtUc!0? zgd-p_3W}UVhLY)>ou)5p$ETC)Snz6_u#WYl&4C{Yg;;CF$k|Vtz}}$b_zsX1zNO_D zYv5Ygqm~p!3wM`MdYeZGFYR()Ky8Y&*)1M5h9zejP_GmYVc)kK zKaym4Ymkl^r>xC&aZlQZ9+34<6NCIiX3dm?akGCs0*i6`mJJc(;ij7l5i5fq?hOrV zs(3Z>cuK{vD666w*7#LMj~|-(iX}yXEbAw^m)tGyQxR%Q>l1)WJANgJ`ZK z`Mf+02xQrUaFj(Yjyj4~L$B`pZlA3P8qp+CRFtZGt9Uy3H(ay5f(y{}-&;b6tc5@*?2x{+b>O2MOjMOH9nvr}vjtEf6bZeJe)l|my1RVDI( zdSh1?${i&H6O3krLQp)2*DQ2@Y0;f`=Zgl%T`YVFqu#~Q!m5y@s-srv`PYPj?i9a7 zh^{OaWI?ZCKKo+vP8-?dA!3LJ_fb$<=6~|bA8?uXAHtFbXBknXl$f!CYOzk&W+xZB00PKu^N78WD@IlNE9(pS4ME5?FCfG+0r0u=-VpUxQ zfjP#4dhpenoC$GsxOt>u)%cII{fN0 z>2eIsT%S0nLZnpFLGMDWi!66M4HY&T?dBOwEp%>)2vyPXs%@nu9nO=xj>?ORu2#uH zUuXY9b5ZLmm$?nv;aW+tSZ~=*vS3fI;YA6d>E?B?UzyLSvXYG+t`iZ39(fz1^Bp<_ zSB2eLySzlUZe$fPy>b;6UBk+{Tcum=Tgt_e>8a<=zQNF}_;r6TvdM@|us$+BwyrH; zSZEmkqwN66Yi=Q{J)`ca^u?6AgUZK|Xn~=PH^YoGtBM~1bEd9zU82%TVn#1oJN90V z;=}S_=;*wVyYMC^4#Em^u%x#XJQ~mHymQp)#Od?iY{)!?4!0>?zn~oe2R=X0JJ3_0 z0Z>hi7`Kt1POgIJt?XZ*=n(J|4vPkOref+T|C|(AoiuzR9dcJZw<1lhpMZ$uCt5SaD zP;cuwdH`Gw4FQI#Rfv-Huy?OTWHRcoL{mHDIqqy&9oByiRy`)HqJTBp3?Me1I1y7x zg2ZnD+EhKAi6jpQBtTg2sL((Op$H@|B+h>d)d{twKwYH|X&hkeh*bpLp_~08P!(uf z_EUls;`q>5n@mrtR6umO?oXi=*h;6c;fG?^4d=OT zGH=_ONoM@W(A~@St*-Sf?s%I^IT_Qc(7`eV)R=|Q^?+gZNe8(n<@a}dOih!|Okw~< z;QN0az=!=Eqo}dQOQu>3I8|tXx8I%>#gwh+4!${CU$&|i zUEtbj$qEuQa*2p|^T1L=EHaDyxS1>~WrCNlN+k2-W_`fr0%Xv7PEgbOHqktnd4XNdx(LAGJTI#a;WNf08SLt-PUku7BuxU}eyUjgwzafwif z&;Qqg1Co`l?N41>+4nK9tTVu}xaycW_F_u)fnmw8?8)?=xW}Cg50{~bij?ae@|#dD z;TPYUa9P$-VIUAi`oLfaPb;**H(jJkjYX=&ZCRFESN3v|AMGiScAl3h?;gGEjj1D;=4J zBhfRP=)<~htk;YcdQG#wx0SvIW5R6g ze@TZ;1@f(^zHOaot=;;~7VXlOwQD;fU!@j($1nX?v6k;tK1SYZVW2D+K3(V%rbwF% zoMPe%{?RgwG42RDr*^s~CS1;-;w8msqueZ_DSA->9mw*@EIQV42zJ>3sD<}??V`sY zaM@*b{%OibyM0jH=?VnxvbHSD=96ulLKal`NCaaTSv})(PtO2v2+knqIqmRxFkX>a z5u#lom(8H~V%NK2Wp%*r19fG_KNA#X7K+)&!Gt1EBh%xqpiH~@n=+>;2;@Rv(r4U- znZ*_k8@VA5Yl{70&%1{Ogu&-f$sjhkU+4_;2cidJ!waMF(Zq24Y*yFyOES4P$!2uD z;gf5|>Unq6ogkCsJ!40Bbj?^Bq1KEwvEy&LBQ$WU*zxF%d2iI47|t47Ax2j{|8(@} z#Qx+^vNzq>x2o&URaxfeqH~G4)QhRp>6U$~RYSSv_T;J5P^vfGu_x2KclmOr`Cy#8 zzdkm`Ksa)USa`)2FmF=0nqcLVf^{dsr_m%WbN!jY&2R%ep z-Gd#3zB+tvv!4es18mYyVx-2CufsxtKm8Vk4*4pwrUEKc@hXfvRJ@vJC#gBLPgg=P zJXeM=z))XlR#1qJ_|I`S zfLnyVj}3~)vxP|!H`x?yM4oI`Dm!D8bEC)a#XMP-USU@*(b`a1Bhk6wMQp&9XvOf* z9{;3FyKV-SNSVATqI~&9&mHkNyyLv%Xs9v2+DpEZLeg81QAB1aOuV!E-J!RKa-8N? z$9#9RJ7#**7S(-ClbyB76s_3OSN~!y<*AU;URr7I=cQ{RZpzm6~j- z{axGfuV}LRBpE&ppw(Pob|`qifN`5zlWd|bYW$ijqS-$fnj>Vc8ZsIK?Uy>>r}`Sh%b-;__Vsg>NxNvD-6YLl&p46 zIov)`W{?l@l#N7}7rf(u$`#kdF(U7u0JMy~f@u6?4mM~6l0{jI+;!I-o*9715>YUQ z3K$oI4(Bz+dH5=hz@AB&3V3Bk04;4*ijhRfS8)}-R{Vkcc#+j0c(+%{B-&9FjRbjJCa;PJpIfaJz_|+bn<&gf_@Ce} zh85R`-ZXzEdS?FF=(FLG`)pNg?-S(sqS>kVAirbqWJ=-!&G!CHuGtH zPo};n#jez*>wB{G$Fjy}fG8ME^Vg!+5_`}=Lh{n$kyOnGjZ2NogG<|%g>=)QtnqM! zUNhCj#D&@TY|<2$J~4GhhSzGF5{Evi?T(Ra9i8v?yxo)9{wqg%aCo_W`ND_0An@^E zdf;Sc$4Iv0R7{g-Ph3iL{-o+FnyBl6UNUznp~H*~ z2DH#HMrj!G>dUkk2*}j6>wvkCX~iuRDcm+?aggVPpThIED89MaFrcV+PAr^?pGpiS z9JkMBb?s@UeKSlgj@c*Qpg|?y_v1&8r-H?BrKTfWS_HH@e1cPQgaL~~BhKS1Gkmd& z=BN#Mv=#Eu`0^%!XN?LY4F;blpVuN=^8A#``n{6rbrdL#+h;xN_W_~71ZV)~J%n+f zb^4I;gqR!gYe%i zlaA7z&-_S!Pxu8qe}_hL9FOGJdO~lUABqmey54*mAm0AP{mH?1gm-7&o_YIVws~hp zw=;ZlO{0wr$H?eN>{9e_LY39DhL2Z@%V~6x@o0VQWQJ?l@(`pr!%yX@^%JH9B^3|i z@KDk`J;#(CAi(xn&RJmVoyI=X#}i>nQk6WWPtbrV%gdJKt#o`yfxap(I%aeQ|3R4hA&z(<2<*9Xd@Y~um{4VNJN6^g%uA{Yb^lqra&5|EzKnFA@vDl`KJ zW!m9%3bVKZlpg@bga@{6%5@Xln2H2vs386gBse#r8xG1CdckB8fRFY!Udn2oK_-ty9+8?GrPwwq16+fTq1n`9(0fv!bl> z&3FT|1+?UJLl~Jl*?_|XV!-8eJ3KO*4=CNQ4!E7yJTBSfbp!(*f6(I|9|+8%5F{y2 zI^aPs4j=Cj!9wsd6PWcng}+9{>q_^!2e2PyK)Fe0*%Xg%0HdX+J^^7vi~7Rk{u5@oJCL8W3B!NP)h>@ z6aWAK2mn2aOIfAy7}gzm001^H0RS-o003}fZgg*NY-?$BFLiWjY%gD5aCu{4V`ybx zUoUlZX>4;YV{mzNXm4&UGchtQaCu|wy$N_6*LfgV)%OiF?t@2x;DH8l5a1170tntD zC=!$?LZaY8S2fUNA7E7jAdrRvIrg|AF<~Rt7d9+q*t9jHW=u!mjAljUSku|vv9gm% z&}vvjDwzE^8SR(Ilg-kS9LJv7$-e*9(bebzKw5I*eBVG~b=5omcmCIV|NGy6a5`-S z`m^t|_W#~2LHrj&^=FoTKfR|Xh#Le$Fl2xTl075|@4A4lM~8p)J$n3W=rN*SeZUkn z_n2`SL%papEvjz!fa$DZuaMKw;3`;|><}6iM)ldy4UI zNwBo1ObRRSsldOLJ(cL!5~vJT^;F?FYoI!~s%MpyZgtNZ^lJ;O4N^Un6lUqM;NO~_ z8uV)qtP9rm)Jk#dgByA_l7tn$9Dz;2x}G|cVCyb@iOBow*}^!#LiDsSdl}bP$eva! z7P6cy}lCA1BPR-(`4qb~vDOKox99n}y z*L_Ft3vy-Vq&qK^pj0eRZX6n(`5oR-b z9>x99&NQI#V<>+k`aRAxp_mi6tY%c!7Nx9{sCQaWic?H0O3}q^MbFbH*ESUPG_xIj zondyM=UHYadUi9r(DNL#8$F+4I+!+;>RDzF`Z_^dV>2k7)4fh>0JKET{@p1 zwnWMc8YvrYpHYy^^bmZDRFW`G!fZT07=auLi^>86rtMU;lg)p2uk3ULfM+ zwHHT-tNIJX2LhUv^PNWyhkUP+dB@PLf?Xm?&BjI?Tw(=fiQy- zTlv9&Kg0&;KJ-x#q%X6*9NW*aJdX-TL6+_as!#v1)9BsFg}uG>khhojhB+1mn7!eU z&)?5`b*cs%(Lb2CpB^TG9z{qwB1&9Rrz3Jli6Jl75d>ErMg7C*zN(8DlwLLE=kn<) z(Q|wWm<)+ybrGWi!;+tBiM)Eq8`VY0F(Z^C*Kb^}f@ago7uCu5GH!@CvvrA*3^@iZ zm0~-Ii^V97F-k;@W2jzHz1ZTY!Kd2`WgDWpF(*K|R%$@8-Gs+LA4AZ5r-PX%c-R#z!sn4=;CEY$I+M=GJDIXfkA&&i`8V2=~ zIt$ewCC{m~G?1v@#X-oOJ>nRIha##;Fyapcr~!IdHTqP4=h6Ru+2^Ut?5 zP^}jmsOPsfP}|^ldjqxO;zf^=+>3Fz7vT5emexIoa)|LV463E6fudUBf#0?@U2IT# z3;jJ$Z54yjV>f!V?8r;79pZMNM=QK-MG2%jd<-?@IbA_8vLxSZ^$2D zn)?_(A888G-Y|c)v8AP{rIF@>JGM2m{r$~@UNou0fy@3#^H9Vezz@D@a8z*TbrM&D zAUB|Y{0;P&AU@khSnRQu>pLfR{#rDC*h&w zoSd{xv@h5k*Xt(h;_Ww%OdUzIPaRK^$xXMcv&Hop+vbUb3l7)yW0S|?bi)1W>4`%N z&Z2lrygxxt`9E}02vkL7;>@%urhlb9HWWKL>72JXu)sUi=l6ORrw&~X zg(E!1{XQ`d4xsAT5HlD?go;OWECA$WC=@|x8V-3`k65P1#Fe5d3l>xcKS+C7&H<%uEEQ=>MWQrGW-RN_JhK#BFPJPy zkcpOzW%We+yxlQzlv@WALp_Lg>EEY}0VYP&bcrPL{uq+U4x4$2G`L^_n#4wU;&Wb#jT={8Lv4#1uQ7dE2ids=5b}_~~ zCZ$cbkS>azQR4&^HN3ngQmjCgm0#jgi3U`|VpRYMU51H`2#%gHkK03ks;X6)R;?nH z%DYj9p%Mx0q3@{r)1c9xRryedNUls(Z;cdD!ySuKh5^;~bG7*MwlT6gKOTv&Zi09L zjnBAa+=u+gB*9Q1XUHkP9vU>TB#S6kWS*d!>j8j zyt<1v=nowcbwwR=JEnBk90n9O?#TA-q8i(}k-EXyajiG4Sho#J)x$^1EzE`O)seXT z5yIo3pF^ZZr1?*CETYXU7KeC$e@M|DKm?*O=|^PR8y==PKUO$+#G2_oBxfQ0LZR>6 zP$-1dL#l%wMNp6u0ko6msH_gzB&r*^g&@5VQCFb)K1zY56gtEs9>K6a1d37Bpn(bx zg2sZxL*5?&DI7`fUUm?HQDD^h{8v#X*5_lrNM#mPm;fJEvLYsfR2IZ+#CnQ+j=efa zhoG`lco-F}Km*xY5|<@GH;)fK*Cw|qr?(a-!{xM5kum7Ag{|$6?Te z0VL7L0|G6O(1rGT!@*!!0mI}>Dh$obhR|dSOBxaCFsPwY5U*54RfAxdVFS2n3aCMZ zrl>|x7f69JMlc%I`J0f2B=&{eI6jQ}jtve*M#Z*BIN_00Bn}ZU0xK1q2R%M!;H?Nf zZj*um6be|&GQd0=+al**VR-NeAl>pgZX<#t7(f~D6bt&n@E})$Lja=$-5?`aI}zZ+ zpwkPMNVpeknWE%qN7TlPx*&x92?jLZkxIjdIW&_5lQ@sLa;PfsSi#iI!h{g4EP}vt zkj3^a9T;K{aa@?g@}OYEIvQ3-JOvyuaKWk&Bf*H#R&c1XSFp(AD_E6zB$zIb&|E(+ z_8WAWKz4DfF*uwY`bQxB0?BhtD3mWC6q!|_zZ9X8T}2|>D-tB`6pErD-&!5Wu8(#Q zj-u;rlWlQdg3j2fiOzYuTl)59?CT~vAF7q5kIeR1`>&0>w(ds5R72Xl2I*GUk53+d z^<<3vk%_Rl7hHwcLzAI5`fm15_b0EUYLdR!!>KE?t6T1obFQ{Y{X@yQlS$)$oZAsR= z*`2EV){C<>+cFi~Q3O)33gebn_rF>6R^_eAw7q_zyz<8A)M#>GuDm&R6cn&h1Vy6| z1hcgK#?h&x3Hr_AQ%E|jcJ_&+SEo9v9W$F9t;*_f)C4#tlCCQ4{PgYJ#Km`hm#PxWMRC;5mVo#-jHbCuL932$=u z?CQpu_Bq!Mu@jte>j&n_1qYQZNk-C+9jRgTh>=qId1oQ&=(?%8RL$?Sr=qFTAJp&7 zRPRgI?@gYWZcos^-8oyoH(k9iQ?!59ao|4vnVu{-Mk2@#taLuI61IZ)##h$L#dpuG z+lrOp_^Mbq?O5|8Jy}~nzpf7deoBx9n{llm?@vFm6RY-Pt^NB{!O=!n&SEa8lvsJK zz?(}^asniA^060nb;_bH$&in`sH=ibJ{ENH380hOHO8{6Zd|WjB91j6?Li+kN;0dW zY%}_-%)0y%u`1TFY^;|0PB4Z$Mp?33AuXv+o0a9&q2s0~k`~8oqV^`esq3$$!)0T& zbU5@MESWR9Y$=aFE(~7&&T6`!t0ttlc(1MrlCX6u_?D=dK|OG(SSz=dW+nF_z=ghw zT3|_k+#0oZ6CU$eNA5xjKNPI1yV^MBq3Y|YRu5j12ktzKq|&g+`Dv<^5f}R;_SuDb z<=7G1A`(v>q(i{ny%KC#Orwzm)TThg+>`MmnU@1r9$-WLkpYnrx1z_#c%9FV`5We% zm@RUk407!RFwr1OhXm6wg6qAESgJq33VPH8LC=IE0(s736UeIqIVR{rR|Oq|{)Nyx zGbWHhL3b5>j*TI{4)Q!q#>LFZ!Cx6dA_vn8DY!48pnK>ae}u$L$wgSK6QhV$AzEm* zt+1N6a*Bse*Y)$0=U+ZN(Gkl>{%cTVq2wxn9-svGZcZ;#v_nYnWB%3O2%Y*k05@ZkG3bC#16?ei9EtbNj` zdie-JDW5DyH7c7bOSls))5Xd5IrqkIUb(aG?fTpG$?>#%`#thr>&!^TdSIesVTtsq zqSTp`Ib+>2(ecpXio4@2H?~i0Pq=RuPZxi^ZE988u{x2Cx_3~7%GI?uP#vB;HNL$Kc0jwRdg_#@3Fq!kNvV*2uSzE-$)=IFM9&U{ z+fWk5A7rskPRn#(Tq4M}${S{VKEKzGh&G=OW|VJT8q8qhFeoLe^@y%8DCmn?pS#oR z$4a4ZC;&QR2(HJvJ4; zdzt`N$6w(hTsOR$Y0irn=>P}hivx-&=)H_j(9?Z9aJ+V`baBTZLf4KsT?hKt9zwq% zL662*(DiUgBSmkTY_D+f%;Ul+_|MTlo)B4I6JfPw^(`ch+w9lQ0>g@*Nt~H;u1#Cl zPISy$ZTW!@t@dku*ZU{?U+cT!oAM>jCf(D|q}+35n=`J4w6y`UJw}Sy*^g|F>l-IG z#*5;8Q{{;(bGDj^gE#_dOm^q>`pNou_p8lsblf~XeLQ*P^;2n^=g!%;&)+^jbLO7= z?la$hF>T$0*qFt6-8N}^)q%GcA^t&9C1Tz z_pG5LpJyriWG@idj*W!9FrZ+XTOPVQir5`pF$K_X%!71M9k!yWy%eQTY#$d@w(~v_sA}QL56Rc8g12+z-EyD&*5a zsUzD^MobGMi)ms0sPS0f#mg@ptd%h*{`;UNV*%H+`tM%>}(2U;nZr9yeVh}j}a zJ99>o8$w|wG?Do21jgr$L_uMEdt&?4z6V7c(nT9mEwe=%GDVFu#&@lEt@p0XSTkGN z(?#uRSNp_~hxVe0E)fZgs#$B1k>Ev9aMQmmL=7*`udr#Xk7^2GqJW2m5qU$|xB?`@ zV?#2jAZdsnj9wM5Au2J3i1Mx_>VVh~)xlFONXR4si8dgr8N?JAy}zh3O^eIK+8&r{ zsmnDf<=PgDdr@;Y@k`h@d38jh*#D!~B!j2APoAU@0-ZuXb-(Y%4m zRzrRVY+jnGieelFCX6G8+tp zd0w0zOBJI=+a(}oIp1H2q~PHJEG^4MHYScm;%Y>cnz6vF4}|*#-JsuN;W!B7A<(K! z3c;4`XThp;hTyo+tBSD8UkHf>1GIz(vM0AuS|?JI0PbZJv<8@KgD5Pw5|*M_^XjB$ zcHK@SoK{rfmH(>LGjBhC`}uqB+b`a)nJe#%ITp$)ZuqDCNo#8R+k0;BnYnU%|9x_< ztRrSexeAM}k4%ol`8Uqqe0KWTWcwZ6+s50*TgPUs>GiuatJ~7$ZTHyw?0doY>GZzS zv)$)r&wnZ1{iXCiI$ciBmsjQGv!~bZ$*kU+F5mkjJz24D{;5OnJJL^~Y|o_+JU9Eo z#n~@iPQP$DeINkQL2{mte5NN0hsl`XQ6b?doH+5B`Ee>WU$HuAoOY(jbh#&WW~TD? z#dP@|0J(R*;~+ph1Q1Oaq9{|S1!CYpSf=S7E6&Hubby@qADDWuY zM|fF9Wk#K!!jO}~ppn9ulft+>|6EijQW7%M@=i#Td(e!oW(f@*!V=PU=b8` z^qa<=Q74jctn@piY&I{i%tz>mpO5&x%327R1oJ%0i>$><2mF1Uxa@#vDjcamAH&k# zIWJn+`a|Bp5Ch~Jj$L5hba{x2gu$poBJg;z+ut_?fEuX5zz_!S=M-5=G}dN^{bE@F zLyDqU*lOmfIvy-^=m;Aa&C+w(wmC#ymE@dU*-ECV_{a#zRoV8y_OO@p4?=VJx*jRJ zN<@-a+Es=3EN1xGz8eh>Q6qkSAlrMk9Bw6*-}XFoPy@v?;;-CG5Tbf#MF|dpVJ>Q} z=5T%J@iAVg0R`@3AZZ_i-sCZhi#rO#64!S0e1ze=@OcFixwvN`lne>FU<>-!ivDdy z|F#J_zC|!V-2{_ZN5LZ3OR#0@h+=UaQCd_-LFZ+7SU$}aQA9RYu~d(9uc7E;z|vxv zrF}-hrh{eD5_i99kGD^{CfcR_fVey1p0ifN{(vJ!$90oT{LJKqSJymVfc<*eWLca{ zkaO0mi4IthIXk%x_7J9uC)?sz67DHJZLdyrB+2PRX?x8?=Yq39Twsb{nd(l|B-*EI zr!FL0l4ovhO}SGow~KFWPF-xovp1fddN$Gi^$UqBQ_p9dHK^pFhEqhrV(J)`>y(PLor=xJmOjIm$mLj>t7 zWRHn8Gv==->*qZd^lednThX^w^=%uqdF+DaJk1Rv^kwN)%9=QQQuy2!#`%E%G8^y@ zgu@Iqf)WGC@r46{@CbU#BKui?Sd_cZg*m#9s%zcSvfG169-6$e-CH97K=S$#dWgrS zdV^dTNu<1Lfp;Jh8RXlVn@2`Qns`{3_98K!LjqkY<`gBp|>x5BmMh-CK6; z-nwJUE>z&wEiJpY@5oB7?STLV4U|lLM0-AQeOGP)B_2b|TegO5P5o@7H`I$s5?|+` z8l@vgD&c=H_Xtl;ZXeE~^qIT_UWXLZMx_UQem1~Rjr)~8@#F*YhlWL1=mnL;Vwm~K z7%>sUa{gh=Ff{4}IeW9Jk=QDE;ad(L&gC6q$K=R!FhQ|A*MujiYOO$1p6gXYM~T~H zmq#y(`uY$eXBN4G!9#_w-@Osk>1`hw>(jslpvsEu$MGJEL2q8G)hU^ysQbyGo~dJ{N?)mi$DzNr;Qm5- zNJ-g^T~oUfoi|TSpPDPKhfU~)dB^5Y_2_rDpdLx`g(cU=C&ycM=zON~Si}aobY$Qq@JvKstMfz=p+EcvD(}gj{Tp0(+6zKz+ACG7g7n zL;tO^E1;GbVGc>8Q-!;-opgVen#%Z_yTO$s2a2|-2vQ%IA>-wTy5Nv#rmSo^)bXvJ zTzV)8X2GF0M5z`RCxX#R4;zS2XVb|AXeGtZHicd;L0RR*VCfhFGZDUx>STG0NUA_t z29|m)%flA6N)i^^sCo+T=Y3LYRJcYj*(!Xd1&%bd~?RJCI$wHMP)ZC zrz#VziJ^>pL(HTYR=!!A?EBWHJ6ls%zP)3%23trv!4Q)Et&@@+U6{Y`^L<=!?9D}s6hhX`VSmy!9cPG$W>W6lx+j1Cfu_z((n0uc+WEl8zeP8z^R^ z?y9GmxhhqO``x^5)-k>@yHXFv_q#c@=mNpGw>O07Pj9ba>+MB~_fP=d9lgC*hUkD4 zWA5!`!rtCq?zbUl5*{EMaDZ9d+j4`sci{0I8MxRJza>9l-Y0rjj4&^hU?0di3@P-X7VO3?q$uaTtCR3x?vf z)rHRddnd+;* zx{UN#M9AChS+5mHLez=pf^U7TiKS zhAgOv661Psfxsout4AkN=TUe!WN}$AiBcB#Z=kjYak5DjhN&=Sl`HJ~eW+;(uIWb( z*Y(4bhvO};9*dC=3kqYFd^Gs{b-t~WCDCigwL_KPZv@zfz#7|`^4fFOTF zXrZYxnuYRc;x#p~d>Bi--~F9M{Uw(DPJY=CB+@`AoAG@g5Tp?I)-$E(XgouVZgoYNEaPHMUw)(ZafaA1f{B;nP4SQLw_~1=}C%kz^+#_Wwa(guxRPb1=vy^9_41 zXjGD#Ri^ISZ1{&TmAVM5m)c#ip;y}yB{x@3ul~Tk5g*!Uey4VZc{g}Bm}%`y7k0uC zj>Gr}$6-VPO5$fGuf9=qvuwI7X-v|$ESXBrY=LLi;#r0;>?b4(TMZketTuwR8a>#+ zMh)Ty0yZB<`k727NbUo%b8@j%AZdZ@6A4?^vx17WIaD3tTY%=*;pWd56hA0fn=V+J zG-V1lO&VfktmUD@87Jd4Q~JpxNM2ll;yq!*kiv-f3=EPnuG}zgPSva|;rkFC59Fri zH4PKN0#(z14*ul|t#i8K?#XB3^yG<^={fgAty{_1S$|ed)nioA77&vK158`a zC&n$}EqXL#Mb=^@B;vA|vq=5zgIUC1#JxQ4Dth2rlXk613};*$WBP}7SG?wxT?>Up zH%wEe_?53)V_?l(=#E)F(-TD{;{MLptKR6l>6`W?&%EwWZB4IfO1qn8+-Y~~j5l4l zJJ!AgJ5sEIg@4*1)5}N7)FRVLCswrbFgkJYzmUT*F2dvWy!{;X+d-yEk@EHkr@eT8oIiXL`)8=H&v^`U}{!Q+!;akHg?@asc z{(I!@%b87W_paRE`rb%-(~)%Hky!gmy!S=o@rLqo2M~rFTLoB@?gX0V(W|;s69L3d zyr9vES>`HrBI7HDE^O57LSU@VPCgrNfAvCQYtlWvGwrNZD@tA5Ul94+@;}LsM`~_q zLfoL@5X`AL6++a z2mD@&#&LL+LFS%t6h|fJ*U=4BpSX}Md+z8PrE)nafUoOA{8NHA08F%zqE!pB&+r)b zfWnkHKd%^L;B8J8{2Vk;UF;BIr056LgS*UAEiJq7zUR*DnwV&BNQ1MH2nVhP6l0CP zY?#UlVaPjxN~R;K%}B)RQN6cNZ4^Hm#I^C}#O=p%;w~%V!B9X>{9YWd@aRSHeF%07 ziVw1U80wJ&ybl3~$N)PS(Td%RV+R9tWK@b>)NlZ>rHMKk9$|-BPIe|340GUkAvBC6 zkq};e6n&4t$r?I^oD(&vtjC`O_cr z`}|(Kq0zD<3r^l*X2SlaFxTJQvZbj7{WV`|YT3DMOXKdHEnAxaOw*Q@)@|FHt}bd- z+Y&QMHK8_B>>%$Cpecj8Nj0@ZZ?%%aiQL6zr;tv9PSK00?WG1tvh$_-nDDT z_9qwR{)AXolq=6gbw!-pty_6f;*W@b+C_8!B}dq|wj- zK6(c)+z*JQmNg0&b+zvZbnqTxN!=Fp+>yy6@%A@#H*M3lWXtQ$bjgMknJ)2U9Q8}C zb|~WI7uj)-+ij@J2zkXsqvN>0fybX~brF{FiWhYe$a$xrm)ch9rPt2h=$YzCl3%}= zY?^-8AsicizbSF!Q-h-%97A8aDG9^^3pfjrV<*S(w41qvpbld(q%9zH=}%0Az{PD_6m5>uzkC+LWk4iqfU&ODXs3 z!F1K;6rHYW&J=A)ySBWu?%hpyH{GkbN8fLG&-Y$^ru9(Td1z%p^RMJbwN52yRwF^P z4GWr9W639F*<~3;(1a}7dsg*Co}g()LMDksO#>D+jabwacdT?s$i(}7qCpxv_EWWK z8VGhESBegZdC~LMAlQ^L*i8mL^DFxPMQmANp#G3-qC?R`kuVtPf^+oICh9Pl%8K54 z^X$qH`&U(@u5MFS!r#Ut*RX?wY>1HYKkZ#5(}sUUNk0%huB#a;_9=j4`zxwXC0mMmFr@LYp(gya`a=v zJD}H`e^I(7c4(ovJYh^4rX88$4YAI7N8$BTubfJpd$77Gy}Bv0dP~}|<=0O^@bSsx z4;-u0j@1d~2aehwnTfKs%MjuKDT;sNdTrMpoIOh%8C|yX)!tv1TeC)!Xk6v>$au-B zkyiR0H>r%h^yoiRuCx2=X30CI8J|4VMa>|lP3f*#4aB$wg+LA`7TC1g;!?E*wofck zt`ByBkE4p}&Ji5+2Z8EYx^xsx50Hq7e~VaNwWbu+PV{5kcqmbN>xu zZL;BDuU8})E6?DE4EpG#&%;Z#0T;CO#vB0kozbUVXIUd>zuJ3ob)NvEv_=uS&d-+Iz1)y}5I){1B2@ z%a4$MUViA2p4hN4K9o4~^{eyv%UOctSQPirQIR;Fc5IBDd{|I?{iRo4S|}`yGl`C* zIaM-O*o3%L{LCvO^QD!d*>++iQ@UwN_fYyq$ugyNQ@Tf$L}k;XDx$C`X8q|W6Q#I#s=Eh}xni z`JgxnUU3ZK!6gY%OsaT zE^hN!F^Y2k10GKiY6KN59E(l68NmPyNkmu>u{{oz==TqVv}rAvL%kyBAz>Q?@Rfr# zI8Fx-Jv|X;o~9m#U(Mzd{J@CJiiEWKgvg3 zM@ho)pu&@`@MJ1BryZMPN9P^I@hg)jCyzWb0zR3D3M%GUsG!~~dDA~*c-MBZWztnyg8l&r~!{ z86QgD8&c(&ik2xO5Pc;IGRG^cy3s$?pP-ZFnKI9m{-N~kP43K;ZJyFUss;>QLlhRrY(M>^5&(1H zSHz?1I?RE}y;z_7RDQsOR1Bv~M$4y#HsktFDvFFnpVU1Zif8}LBWnsxjDI;7PbxeYQuXa*u#6~nyvx`#84xJ?@ zlQ{=RlpVP!Au6Ei<>XwYQ$;CN3%@F5Q2%miRIj}dQz@oZAdC{sqHpdGfjXFwPz;R| z3{Y#)AG0OYD|VN7#1jnc<&|4E(1{{=fD2~LeQd1Hx#g*=D0BZF@MecdDoU%c&Q?-^ zeyj@>)rmu|+dzGTgOmH_OUuAk1~IOlSm&=FMzSjWXd4#PLPvrn%Lzo(mh!ncQKIc& zR_P=qM7?sp1aneY%EgTmyU^T)#;fNb6>F`Ui?K*TiyD2p-y&}yT70bzH1zN2M@VT{ zaIcH~k4bqksqTGweM}hye9S@6ML6`2UA#Ib81Zn9xs*Y{-+v}Aj{P<9_h?WM>E1E9 zBep-M|F0eX$Xyn{l30JUak}wCcU`P~-dzg5KNIa!t79GT0p}fBrdFYkqLO%DeB-Mp zktSW_`6;f&m)mRFYsuTXt}f9G%e1tuQ#qMWbqh%8@gCF_WK*EJHbiwR%*LwEip<7J zF*T&gK{I7_o+F>c0RxFg9y{;B76knyjMK{nQ3HBY-3-L2R#!qc2I&Hf39gEXnx$NZ zD9PaWs4fSZMRjygV}5A~IZ;?m%F!6cttxTH%2?&_?fCi$?bV>D5!c3|UX>!@8XNSV zoS#(plh#QuD`U&11vk94L<_-_BS?n0fI`qbu95Cmw9}_yPdk?*0gK@mpYIO!bMrN<6*|?1vi)$vg}A917y#1_W;a&11x=_)+u|%=Zr?9kNAmdl^5XSzOR>{i*OlO(8Vothrg)z%orqbYCORl)q^&kViY-rfeg+t)tu8nG^ z01&oQkk~y$hdCTA-*MrU$C1yM8vsNT8mq-%#LG;?TzFJ9P(bnw!TBQ*HU#5)ZXg__ zdFp&P;FHe;j_JJ&C6KnRvCxI^5bEKP5T$B?ynrkEx`vwqX`aoVSQr0lYnuD~p=M~k z4cz#_kzMSHG<#Xg=~GYlc0F^d_uSF5huS;4_qEu@oa$`0u}UdpeoBEvwM2a&kR$&4 zz^N>PF3bx??*PIytf>eF7#_iJDGX9ac#sVVHfS~rSC-(Es82k0xRh0m#)4gimx3!7 z#{`RvIzr*%aTN+hoayxrz+HL(%7)X3<%#cbxhfBLtBT-UI1o=O4AiQ8Yo8*tKs-=4 zt{JuY&w*LN9^wS?Sp#7-f9>eYM`JI}8CHQ$Ay>MhX{IDyv3<6D$E=|Q?kT94HP_Cs zYM8BVoV8ReSe!`FDL6*{m>{jkL9;L06tm5jwxGwVjj5{is;#rt+fc%X1yzaebODvz zpDt*b=}Z^wnsx1-ID%BFvI=0}H(r=}A=xxjckh{WYe%N^;6&Gg)fo#VymQudN&h_D zptdS)Sv9-5adyj7>D5o&-CwjtG`J!Cxz2@*+i+Bndzgx5Kn2Tp^A`Fb}jy=oKMoEu@-iAJN*%m+47X;;j1_IrL zX|cqhuv;;SDTzF3NHM0mg0jh2|9EcsAV+T~SO;?%W_be@2=_~GK{goXMjI$*NOW_O zuTjalGCaM`E?A78I}^l00uQ*GVdIi+oBX~X}k*}aI^ zi0pR52=RO_Sh@9e;s|+UxuGeK)Yc7hsB)Y?FzTVs$rQJNs-qctFaquuyH8Ok{B%wT zb#@4D>Ooax#Kw0CQ6gV4Jc)?#ehBFjWAkcm5KEq8rJ69LD^(F^4H|!c+}U7744W*X00lvTCx>hyvDDl z5SrRumNFSta<~$Tbi=RUCCMxlO_y9z6N8lUuj<6hI24%X6}&B&vnivnaEaZ9F+>&q zW>j|ssNiT^*nw!OdFlSt>X)kAx@q~MSLy~{`LVZ$e_W>M$#9^^tw@zB)HIv|=Tm7-%EPSmLY1G@Mu6}(jcA&IivB@r}Ai5~t z@*B^^$OY+Kg*Q?2jWdb$Q~pc=6*E96crJ{*Ivz937Zk_a6Q-%-@e{KUiN9a-zOn9R z-E>`YTgvdZ?Y3>E<+d|jyFF92BU83>wqRE-3^G>pis6x+aFu=LAY2vKUz~g~(VlUx z0k=->iBtKjE(%WmP{c`c8JyHF5i8=PK@%qpxlVRfn6^AlDt^avw*pi+`He-mrG=9u z!XPc2w5))W7WEv)y0(my7Vv-a1UPAVVw|+BfRjqyV08j;as_-e^^;NJo8)&)zX972 zZ;0Cv+#V8d&EW;9y}+RMk&^A!A{6BIL&O1iDEP;*1m1|imR#)+)d3H{LGB>Db;3hI zLGBPKZtREqcuhb5Mfpg`ftR8hkN2=zKbX2iZE#rS(EpTuXJAwzA*+LK3>5lkkP?hmgiBw;^tF6Lu1HZ`5>5) zB89ItH=to*ZtFzLy_3YEgT)q(9%ci*t({yK0^0!tw^bTAd?6kh2)h&Clt*Ltci#r}JOXtuCPXV_xytU0y?WMAy^J~0M%~Je#I*FH73iQcN_Lf1wknV2HD_A1P*WPx zqJ5gV5zSNRTaGJy9<%bi%ZLtG?k_UXF` zk7;a^;u&i=e3cFGqMpPn2RhNu(M=)?dCzheQ#0wW(+3Qv?CC;AC5^1-1 zt0&w5BN+O^;Q%J)g8p#lS;0i}7#b$|;O5g~5e!h4VD>RwZ)AWI%%Q;`ez6RS^q9vq zU?>3BzXxglGA|N!AnzJ3sGTS)q8Q--(~ID8FQS4@07k*tLpWVpa(!%a?D|WSFTKIt z9G)IdGOtGy!AwEJ#8J3-abR*F9=S0#HI{L$n>ex{8KigKI6ieeX}oi8&e1w?2q^ll z8~dmBCu`Eh>pygEK(xKAGEtXo`6iv*HrsduwvMDu5i;9dmHA0QcZ#YC0bEK@Apd9MNi$1FSTEdT#OY}dD52j#4 zvddK~`<+&~?8By9SZp<~(BJ0h;yWL7V+V2^+xh4KkA16o;o|5~3fv9j6?j-;teWDe#*Mt#jNQhDT!NfxT7C5AJNN42O$Y$SP`O;=EFUYB`P{FI6w<} z#vc?4#M^j#6`U~_vYER&fhwp>i*UX$yyuAs+wjEg3fojEVl&U73PSshV`b<~wKKe(v^jGyR#y{b|?! z`y0~EBS?R-lqYtiEj1v~6`3(aB2ZcRq4PQJ8Vpg#v%%;9c zNc={y2g3bu%%GP>DnEAGVHL;=qOt%|rC@`|0E;9tUeI}2^e=$@{Rz6EK0z1g)6(MI zYKPI-^*0Cm#QiXB!D|>2L#?)nj=ykK#B|d6u-CR>|Dk6R-1NC*%k>_w~sp@WZX6GM9%_k zh;ie^zd-2=S7?pKE;mEs8^~nx>xK(_v0>gmmHjOlEyNcq8O1Ao7!#vgp(G8PSjFZT zV7L(s^Bv2#rT%*XjmUV>c=32ioD4lcb+F<({P^c+kBzaz#Q|cC#rpOu()0@OG_KiQ z3`@Bylzyv_^OU^O4kFs@QJVGOIe|BevUTlm;&X>e!jZp?#5&OAOG2nc@do6TcMOnjZ&OUu>#qc-(z3I zT*Bhs@(@;-PpUDpN2-++C8|?j1(#Om!-$qJ1!^7*wlA9LP^;zMu2QGAX{Ih#r_L+E zu3dsczZ^LwIJ8Spr(Rrw3cJ>5SW3Q0$wRtrxgz|cgkhFjFw@U2Ttqhz2f?V<8znq z_&nvu_1FFt>WvEA8-MwEdqXu>)@#J8FOk`pA0M^KW38qMTD}LKq|d*|-u|5Jvp;tG zo?uLKM$>TZ8XC8d}Qh z(3j=OTKoA%l3AraS92~uBA#fzDsBDw`}A|SNppTK*`_BLzeOYWe;L$Vr6E6m)T-#W z))i9Pm6WOz+LxL%QreW1wiQx3l#~ut$}RaRSAgSG7NJacRx8}c`MF@aG-0};M(&T7 zurm04tR-z#pl-{DD$7qKvBa)u2ZB+qg0VxRX4a@PcjiRP0Xw6G(w9v;9?!Tnk=+WM za`kMxvo?EL@meREH`zM0<=26sqJ^&$zpXw-mQBA`BYll#%KiB%RXvnV_tbLfuKgjb zW5jjbA4EEo9G&?&E*;4a%PuMMrICY5%A?DrL^V4hhptfKDJ?k6I(arRwJJ;TipXgt z-_!Z|BHc>tISr@^21F|&T}sMl^HbhgpB-nIC5%I5ZT|V%wc!`gF4r$XyEgs;+GYJE zXxFA+K)dX}1nsK(1+>fdOVBRQFQ8qHFQQ%e(n%*=I~jFF3w&nfn5<-oW3{Z4_jO}fud*2$Ai;u!X zymXN?Z1Kw1IV)ztkQ&T_;TKG4d8yJ=-6pY2@ZOWH0s2CvZ<34OR!xR0Y0;1v+-A%-|VQIe65GFY*JkYABZ;W;OD|t?juW1_R+p z8`TjG2jG$^Ux4n1><}vXI1=m6EV|HIfp{497jr>!Xw1XGUbrBXZKJwblo@(d43=+e zQ_YoSYKLb`8+8s%8S%1KJb}U#%`j+Y41|MW-pevHTv^&HU(^LNWdIyDX~r!&pt8*0 zBJgPPEmuNr^r9AtO;XP7oErigbJU)?=frEX8>kEN3z`kRen$R6@d!b2H2#%i@rO6e z`oyEj{=fT&fB1)wVPDNd3WfoH|A1f;5kfUpXLQ;sMjCz$)|_FZ5rzvvt_aHqxZ)LJbJj;+$$Kd6EE;e zIK~PUOHB)*a>=pw7(|=0FT-y0ufgLhu)AHo%=k-p_+<`YgP1YX5lltE=srOAu>tWM zEjY9ob40j479W%tyc`g8BYh~5WsnO;!rpKI#q!zMF}pNZ@P|#D7-GZ)b;JcF!qXsM z`Hm3}u76}1!RF`vA-IRwE7{rLt$Q=10nbLT<|!E9OEAJSB0GcQ` z)WnU0OELwrS1?OsBbcSJ5KQ6#2_|to1cw^01-lB5Ik-7eG+O!}y>wcg6S4 z8K{rU?zrcT?m2VKLS19ZcgLA2*>T&MZ28R#DQC<&Te9QfCQqt0#m%%PUrHO+PaKJz zkNXn7d1_sDQ0+RcgLUm zz`lB+Zs&YeZL)p3A>~e2)z6H*e`da{;*HjuyQg>G+&{fPQ@uG|ws~g#efoXoGo#+) zN;@{h4#y9FTU>Be;F#w3?&NnM%QeecZOz3Juy_p4@` zPG(9^Efkg9@JxAbG*2}rYm)vM@>U?du65>krs%+r^kmsnWbE+6(&}%tC$1zqr(Q^Q zAV_zL-mbh|`SzOIYcihQ>C)YQ(DB`4?;U%v_f&fCsrUP4&pwmc`z(OnIJGh1e&g)T z3)2^FzBv72W_4q_vT=rdr{mp2cMsjQ-fO?>yl?uWEAQ9bk9^OO-f}Wsc`{RU3YEIA zi~JEmmUThd6_u06=AFgyu@9UzUsQX_R(<14l1!YN3MAX7!eVnCc-qpQwtFr2ycrK_ zWXF6_#W&!3=8~y~WKp`P_RYSx{I~pXg>Hp18+W9Ob^x%QABlxMD5^y%k{v01rl{dZ zMqOEB?C>KKQCT&4>?3f4dmbF$UcioTFTi<1tMj^j(jGsS)K8tBv#g)D6kK;ry5hr$ zU}7}oo{r9zH_TZYwSrT8y1aGHvUT3#y6&8Gq6u~(d1d;A#KqaN&2yFpt>Bb5UDh&Z zX@%28*i%5lpCYFNsWa&{O&ND{%rtK)d0?qdTdEU>llzj#QuM8pv#TJ-yruYor7CTy zO6*8_Qth`Il8v*~Tjng-q3W^8W0LDWI_b_hYGdR>d*N(J!w2>T@WRyo>hU+$-SkX* z9#qw%>6^MT-?HuA&igIzwLRE#BE9Ft`|asHU61rc_2y3rvifOq{%kku(du(B@XmAO ztH&QYir|j2H;QgnPFFst^rS02DSCd()_WW8yWjJCxB0#1_iNH^ClQFMdIX}Xi=2P@ z3<6Pg7K1oT{`xW0)2`y#vMnDtw`f-B4|Lx(y=R&)bidYd zZZ;tDP&DJ7Z`?97a_`FBu?IVkq<0>9pG@yO{u%1dljMBYY3SFdF_@=S)vUO=YI;>l zH$%=hG|%`D68YZ^-wofV(>so$oK?rk`ICT(RTveWUD*n3opWx@tH2+u`|if~HfGzo zHCdi=->UkZ_SBVBXS${(UEPu?X-yZlqSo%&Hs98MzvjLA2W`jGZO7klNw=MX%AUq0 zoz|-39~6DJ?7g!4q%$ZPxOTAAc<<`DtbI1&u1!HX0|;ZkW-nW zwtJm(&i4D~a)E%qwNxY@NQVXx#D8|*+cxKX>V9V~kY_U$4JjrcNc%5QO%UHlXn7>@ zLTU#>k3H`jX6+|u4JUv4$$33dy7MQ4I_S8xv*Tw!F{$4=&|5oxYe#QSNnx`}*enX; zVR`Bgt^WOnhvjXT^!mTlw_PgK|Ci>rORM$&cXivPdi`IS+b-?Y|Mk|k%X<9}^~Ot1 z^A8J+m#WM^Ty4Cx$^655Cd~g;Z@la<=U84VM=}`0(uZl5b|A!HgMIGn zOXSnA5oYw*QUBOVM>#a%X_#utOKO_t5m_5%UDgOr>+qRsBP5$n%cfe#7;(Ezs)fdE z4lP41b9O7^@ms}Mq@%mpUeY?Q_Qbt3Zcx=$K$lF4M&;V0w3Tcg$a z`J#qPt29FOj6>cG(=xMRoQ&&Efy!~GT!NOFLLpj>33ALzlMvI{z_b)xqZN+6O7()Ak1-nP`0ZpOm!+n@URNv3x^^YnC@UJUODpU zx$lDBs|$?aOoCmN2JZ~1{7f!@FU&b81Y8}tWboL^hUy1iS~h4c)`LC^})IT&;2W` zyNjn8xM!d&E6+xH#jJ+WfIldhuA=U|%!{X2@nVS;AE!VaF%%5(f+OPZABgk@=+W>{ zgnI+(ZboAjw>>4N4N{(kMm@j1g`IpOJ- zPtTUDPjM5c=M1eY=8oLgy}u6fpHk(IpGtK=_T~kH=%wb|SGwR8LAf>*KY!!m)Wu{= zx^zRPVB;M_>ipZiw|g^n`{oS$r9=r`^2`qmo6y$-LrL0DGG{20Abs_C{+UhXwCyA7 z%15&lm$dqR>;aG=hlx1JeYGFGeUrqFY_;t0Rd>~4D^->E2(`^eoV?g0u_N=i#j3hC zSSi=K!nqDo^Z_T{Pk@-65fO2-Oz_8TS%|6wTQ-pygO6!UdKaAq8MmwK>+Q?g@v1CO zD!~c|rPi=nR_zkn8Ee!5HN|Hws|{dzTdI-6u3|2a*M8eSllI#`NBgx-1zDq(e)5h( z(`rdez|u#Z{pt$>73*)t88v6EsI#*)YVqmEOlnKxIC*H76zOE2da;PP&(vDehn9nR4xa zBYH0r-yf6K7CsTJEywC* z#n^InE{+y2S7S7GPE22mqgb7a7U6R|=nK=)f+gu_@z0GN))leC`UTL@u`GVnV%PJU zrz_O+CtHr|am%>?_U1d5uz=BB86f&?dHo-ueBHHX$!@2T{ymfA5zr4l z0EZ&}fIl*tbq^Q`Q-LteAdSrDV>$4{d6;8aeuzU~RFI|lA=xD-1v{-YPj$-Lie!gy zECg=s@;v%UdE2t?@!+ad>8@At!mEg6hLK+)HG=-9#k)qKdQCZ-kl>Y1wkYz4yn!Kx z&AEbgQ`b=NS(b}zQk%g*0CsYY+JcR7ykQPs0R}g8VduRp1CDw-VGq^M4qc__NPy;> z)Ns2|CEHPI@Y%=tkh&!1RqT6y4vAjzy&gD1etHzAc}NaCjbhU{p;!ae#*7qu?%1))9dAj1^t+RP+VX%TxLgk4$j&LrlCPJ zuUNr^=9HI?h?n_bH!j$m3!LI$D=NW;s>?-qFa{Qk*kLxdAG_=+5zNw%qfVCbTX5ze zB)+{zaH!{*Kn4W8HyjYXUh2UyEF2&bZR@ZHK0T_XU}i*9C+utk-+2c&c7<5MhRed; zD(EAAG*@r{>M9;qQYno;aSgN_u)No&U_`G}d(MdFfeR@I{J%C}BdEQE&2fFzQK zOmxf_mrk5~Xm&j!$l_DvCj@ChPXpK{#K?!Pg6sX0{qg>cYfaLfcCCx)7s}Qqoe#>I zCJ)EjWBemsxwCSiy!z|Ial=O?Wj9Vtok&_!2X7V3wmzMvo}RC7zE^zz+-G{S^aL3v zKPs<&<6x3Z*4#2A>6HGKFSDvKQ{EIeEL5*e8s4(rvVP0{VRb|N;QR*9ThHBkF6I5! z#dv3;B;lQ|_)V}XS=IQkumta>cg_{o{Noo`wF(R)l98E%Gu!8?cE`<<--p^gTjI%BJ&Pw) z)jwLpODf(dPMk?x0k<>BGq<+AzBW_hiIeliRSEj0Z`$|zK)QJ2d{uSg$aMYG!H4MO z@U$m>a3Ocv9ZFM&7EinCwQuT^?MeDpXR7Shi5d4y%iWR;wIfr#Gj5r$uD!W$df&f1 zfM(tLhE(^hQ!};c_1oh|6Wzag3Z~p9u1uFc_1_+q{rp+$o-ixEe*SyrL&ax|x_`fW!&#&5`)kV2>@t3T zM=^T-|LuJXP+M7+*n5(mK1hImfcO{$<|hL(!u*Vl-GH&N-Nwdtdp$iLMj!#Q0pTZM z1Ch7cRPRKrJ!7%sO^fN-SR|7&PC6NScanB*r84fSO-=7^wu)!5ZAG@Tt{PXRHdUKd zgJ);DlS*>Wz3)9eAz?f{nXV)?{kh`Zci;VSUl%Xt+X&7i>xOV2OOv81mQPGD?!`T+*VLNk9rg_+@MrEQ*!?_kFa~v_i*U30y z8jvrkT=d%zPfYeU^`^q5Ceg&uFN1!C;LvhJ5-712Hk;zBV&H(urU)bbRHAXy+8pdKd>olXBLiFwZ1I$rN)1hYiu>Vu#!{ zxcA8nVFdNoCRC7gla%4RoYK>jni1*DLc9v-!&e*Y9bYGgJNr;QtanIS6?&XTbYd-{ zpS{!magUqz+0v#YeOiE+=8YnNQc4*{8g-AT-EqVjf&2p|300HqAnsj;2}GYj{I!%W zNWAHkk7!;-`X&*t*qKyy5Tjly_n2H-C5w<*x4$-NL) zz>>vtw@ehaEwCv_z%d=#^K3RGIVkZdctTGS`7M{!D8_yJ77%nGbe*RX)l^AMP_eGI z@S)#gWp;Qhd8W;Mq%GzU>fe2w(;mlRzFVTk)-_!#I%;$$=yZ3PS^-zV<@xrp0kFS} z{X6(UPVpKh4X`KqE|Y@R*6$?2^|tAcBCS6ey^wFISM(hy`7Vn0MR$F#P?> zS0puOPz?*vnH0fX_%3u*8k#UuPk)vA#1Tk50Kep0$qnM)VuiP4FEU8vC2upRfuY&N zp5Oype8Ib9Ng1-FhD^#hO_l#8e7jZu2IuDD1e?wuEgFKFO;_>_@5fj%UdO z+{CfPW8tpvIU|O!Yw1|jTp1bof$zPhAGY6XU+wzf*!#!8Na2C`Cxsssa?K~Abtj`W zudkU;ZOZAg({xDjj(SlYHY{qNZ(rdLhTp6BVeP%zRmTTy@3-A|yx;La@e|EQ8gAe5 z=$;eN>XU0#=)d$ze_#8lipsA^sHmIJSvU^Wb>s!_-4BD1DB?O zj7JDuE?%bt^f_v~Zv({T&bBr1@00ax6VB!;#m=EV?g?xYppiPP21I( z()Wx3aSFGsKlv>`wu~3WtllL@tgD&mp+9A*fCiQ~3qtb%a^k#pPA6RDw3&YTmsD&fJE|6_IiU zRF0AC-nH^}F1uY)wPne&__c`Z?%49!s`&%U`xdTxKWFY(q@M||BUMXfTwd+UdF%+; zeQ)r-|Hm^Q&V0;#_!igD&zVn$=x4d6N4dKn=I(x0ToR%~hItJA80Inb=gYRjxxq7e6;bu>!6dv}cz92H^Jf6}5MDVm+?(^l z3UF(@cp_rHo4=gTnQIU{8wot;QV2Nl>+tkaHfOF{QT$MOPq{LE4?VP?ayg`&HY41l zstI5px!bqg#}(Fd=7v?p2kQ6LoVh&&R*d*#IVIfzE6w;Y>b-ZEE9~IR2kyImJoe$( zgXs^wocUCUjwQi6BPWr=>6A3OQepX5eE>;i6i{a&5 zl!VNBMJ@`HW2`CdXv#(`ljK-3CmE?^ZVZm3pM4>g>gLgy!5BIZd5cA1KSYz^^i{#G zL=!no_KGJF=D42k$Z_55BNbj;ytr5rsk~de%u`@oMGL2IMKxEGns+B_2F~pH7vRjE z|3Au^B`{~Eql~7PO_WHS#$JIqwaE$X^Y0N9oF@Uh)a<_jSo^n-d_eJ{NX(A21yHmQ zl43~y6}*622*<9H@yXi&SCIcU^{nkcth{PdZeiLsnvKk9db8HV7&iB0qolNqF_6#U zqs&$!-_wxWllj3{4dQczx+UkMD0E@nP_axVD&vwWJ#U9EH0gN(@B_L;Cs;nBl}bm1x?Itp{{2Ivd{@%jO|HY8lw^6YB6fHkG@$H z&|cTw+=cbaY4|s(U;b8BCU5;oW5l;~nT$t;_bwII#8$gBMb!1|z{|^KVU6${zo?I! z^bsn_6a8yqjc_eKqjCe;0Yye1^eUH*kLH%MZHa8YMDDgFa!84!*1szkVqw0lJd7nx z`&u^HD5*mab&SYT%b*o7koe>Q9F5#%#Hk6hZhF6HN07<3s3XfM@mUmCqPUuwuO8f_+M zaTQ5$ULKG0j5w-5-pg7+Sjnsa507~gi;6P}%D-1AnaSujU?z53u3{2@18m$$JRQQYk2?KyTk(fEiTR&3NE+HtV% zVYlZhue~rLQ4|)vc-AJhK&Dvlu-oSo{H)^Yuv@{N_Ey`xy)+Xp%WxISsF)#Y`AyH>x|J>vmalm3*xPy5i@nhDn98+1eMgQWHv z&?7*-C(#GRN~Im}S!;XyeKw+IAejs77?YIl=dD*nBYQliWEXiYWnQ^d9J;j@YgWLl zTpROXwRz|U6zS~;O@ow2#xOK>l zovONc+Zya&kXM<<)pa{TiGSMX9Cdd{tXt4{>ZKajq_dskB1u(K@noWjs+Hs+c(9S$ zu8p}_qS@hON2fuhnW%9P3mq5g;JEi%s$bpIdOEDmA)j{~B11}5?vG{wz7!{{La#fl zuWwNi$5Spb{SgKwt|V5fCv$2Z=*plQ#Hj}5vf;|z;` zl+LT8=+`DAis|d1*sbynvz{rxZ!Q~f!(;=RVmm@Kb9%HuqxMPfh-bz+j<%eac!|Z1 zWdE1oSeE#&-35$uDI{emnR9^3{W%^6iR!&?dKfSygcY7mqDwpM{Z4Du$XrwUC&G9I zq*rfcrzf$M#XyhMZnw`F(=eQM&b$|Z2n-OCy+1UU3p(qA<97dy-`aGj+Hu|{iz|J8 z7x?jL!q@c40&$w1(@gtE8rmCto>5d#0X|9MYWL)@7mz($j6V1q;DLq4*i4PFVq<*e zIAg97#)x1^ZmlwzFYp7qBuuVChoqXf>_^00H-^;Bl4xLz?%oDltNM zjRMmGy#0K{d_cy67Z|sb9UhA_!{c6`n=OEEocJYgco5G5?a_oInD;;~2C1n&NWbtPf4v%rJIQ99Ozn@6@D|y#uX8P+}{H=cMj= z?5qVtc3dNFU2J=pD|_XiO;{!aqK(?g^V1TBLAE!a4LrDfpe7{Tr!wo+j5U*v~H zKL9#$?U2(q*5jR+0H?ZgwAR%NJL8&?3fZw-2P6*3AD9xn;@AP7d}M z>d@yPUAl^`8WM*nwSG-i@T98d?wiYRuI8*)9p0p9^9h=(IvhR^62NPV*WS6lc%6jE zz5BK0udUi2R7R_gtrzrd$f>--wW`BGbpn6$Ldn}mg!>-aPpoTB&UeQO3fC0o=f>i2 z-y>tyf-*=4_kmYH!ModUulSrf#Y4Qx&h+ zUYW=Oy>`{2>b53kvEIp9%86QPR}7q`Zl!BwXwBjXF@btSS?=dUxf2rdN zoA1+{Wq*iyR$Uj8y~8Xrq2X{_Xq?mUj-}_+)QdUop$Sf3`5bh&kH-p&!aWh=-Mr3gRiG=n=y^rq)|aalyS zy6-{pdhw~ykywfKPXAJWw4^@N8#7xVMEUL4V=zh{NiU6UD!h>7^=Mb zg__z`cIU*>iOBTI!1BzhY&j4uX%6*1`~PMjd-jI9-|1cK4et(L3)geznpk>Hy<@fa z-l_WoT-_n@)l9g7GuJ*h7p@hZitQ?m$RlU(zOnqq%Dz?gN+(yff32hge3c$ReaJhQ zFjCpO9_e;-IaEw^kuH(#gD?RJx#wReW z*B*2|@O|9%-~df)dd3wbbr~|)rlU~4i=uH7|zBF?9*_qSt#crb>M6#6Q!7QS(+4^ z1W`#OizZRBUDP-Pk{2c9A`c5UQW-oT3Gd-f3b=6%sY8BU7LaXoXD*kNW3I~s@@>j7 zl5$GKLo2o^rxfnJfO`c6B+>%nD)%Kl4&Z!-&#&8(uO#_U2hVM)h#&sAl9+VH)l;*6 zHv~|RQ|N4+J=GJ>I@8nd_j<=Kd;B&PdOz;;W0&rK2S-xQ6#i@w6f?km+6g$_w1dL) z;9y)aH9IjJ&zc&Z6e?lZetZVS~dH)UN85$%kplnkxmM1u_?a_E!n#9!R_TbtQwf z^IAL33RG>@%VZBuuw`Zu{f)@~xdz{`7koz`9_6YBn-%c#1ach;iu_~l3Brhb!73dU zp7Iid3g-~9M*z}$$TS$`b>aYXR zZ=Z6Fr1HLRc33BYWtrMxjL`a|5aYs%{R4t;L!RBnHBJJ74BXgcGMbFQL%{@1rN0+q zYw+A}2R875E=^BN&DxzT>zqxA3eu6X7CvC;!22PXcfZNU-Gct7+01?RvU zqR`yn6nhc94Z=RQ;eDK_pt5srD}X2?A?d?c-ql3)6%hv_mpEPJeD5=@e*X1zB|x>X zRf=TWYf0hzJ^6LT4q8%*q%O>L=9efd^@%6CwLL<8{m0<{Dd|fHbSOZk`MWZZuS&fK z1(<*e<9OLTeY0eTmSvKb)!X&178BC5!wkCn+OZ>Bp^v8^oBe{z?mm5fQd?U>X7 z4b~nxrr1e4Ne$zNZ$ZaHf~4@M$S;SX2UgzB-HgrkCn#=SokyPMQ}`nOD?zHEl4}zvn?nB3w6+b zaI+KBegTmXkts-ethH|YsNL#lY;3gg(Xu>#t8?7v<$FQ`QB6z}j5syOn`MbkBuFpO z)|H|(yaO|!wO zBU-dcSTyX6B>56y;L%CXh-Vmr<={wZWTwfPAgu;1*Oc4u5y1exg5!>tzTl@pQ>M5P!)`5iszjI{1YyQd;ZT7A9 zh4#=usOLuK{1K32%q+}=4Pp6>>+^jO3CHoBi$VH{u`HroVg7}4)v)5ar;Qq$gNoq5 zg6f&p!f7i7O|4y#+-N~#5ZlLeev)Sk(NBov<56)VSKRm`)9QskE{+y=hSagr%E(2o z)E?44DXm*Mc|Y$@t~@Be@BgqkTG|^DHKO*s$f8P0@3bzpMrv2iua@8YEv}+DTHJD< z=8E^n4B*AWPyyU%Ww0+auyFD@u%GQQlQ}dIxwzt7{_2|1fnJ-M5VM-SFHub8ol9yuW*~yi^S}BRwopYs$uIO%n5Qp_WA% zIOBsW#sED^lcVT8SyH7);vz8FS|(S6Y1B75o^_(tWmmbp-6SI79zF{wfT!fg9aNp%mo;iTwhMg?>6TD-gBf~X4 zjD`RGR>u)5-r|DXzjp>74@v(-PHSiK+d=-@+Q}(|8Nf2Twz0kiops6Q)_O;y&6awA z;RZT{IE%Pl54fX))-jslix5PMDPWhQ-qlp^>bIxjz%KN{ZnwMo0T=d5aN#z?OBoxn z<2j3_*v^)N)~SkM9xP(kk_#DPrOdb|ru?%+!Y%jA46-LdwycaRNquqIxRX6c3+}n) zD3@630fkUYqZEqA&b@#hvP<>PY^(_D}S- z1x1h!I%4?+L3ywzWC$MpJ#9ix8TKTUlr9(WSBMQaMYW}Ciqg+EG?cj>GwdH2yYtkU znb!~nTUsO8)XA*^n^x-CRQP?F1SXSyp+tH^yJRkTkzhwa&oW|;lFw1yJZe+V{cF6g zZ)Dmbqi#RmAhT}Y-bt_3$-fb9!l!+rOD-NtuS`QwR5*WmcMVVr6oWT#H<}8Gf@Qy# zx4nnbHK?%~d?Mrcm?Uq~TO(ZM&8e-mvwJ6P9sF6!{t*T0rEsDhMO+w;fydyT5ogA| z*W4`IBqP4R^wm4=g*qUKUXi;V9rY$0f zoTqknT)vZZBZ(IUAUa18?OO#QCAul>M`~&+F1vgc@u)xtun^fdWk%?eEIj`VW}+C+ z1beo1`8MIvi8WWMwELM?4k&IzU4kAejUs$GKDdDdV=DN$wk`&pL{D9SDqTJ>doa zpKf4ZQm((RbfoM90@$OZwY9^414MvCw7`&M!;v9DmWxA5;>EEsar#PJF~T~BGiyR7J%GQO}P}Pmj?>7;J^&hZzr z#WY#Lt`NP@i%6RTVJ506MF=)SUQDA64lNXfj&N$rd{<1Xo9{~(Oo%XklztT%o=X-G zsSCWAau*0Jk_K0@RD_ABh$~o3@$y(bvH&A4t8#}PC?sW7J2+5AY(*zX2z~dU!IMv{iK$$6S`iNU$$iX0ZKm%x$f3?3=lCRNrZDQn4968t%D=vo^dcTw14MiA$ zLkBv^hldF-!N4~@1fSy`glpV07}NM*`nGTm#8L$k6#^3<2+a`URf7mjMhq0fUEj^& zbfxpXu`De*s(~vAU0H1T&ewuCBAQqx$OsICEZlYDt)K$Jv0YfW5E?-52bS^{zY?k8 z%(j(Y&g_V0Hw9%+blJfxq_TzCa4(lr9@SL@>6ls@oDTUH0^uQuyy@U_D>-%Lf*i~s zixQQc3pkT)AHW}{QIaH`Ls=3z=U7(sDki7Ki{3KBFwHjG&>~utQ&BJCT`IDK3a#`? z~b~p>s2v)?Zxi6XNv37 zz18$Lr|q?QGQU&({1PWaPuc?1izStBdrI}P=4hws=}GGK&Su*vIUS2W5C$7DYWqj&_yO-@Q$NXVjMk`iHI(;8lTgB(!)qz&gG|nw zLl}EiaqZWWom}sz-bTr+3K>|&TAg4y&r~rZG#cMnU%K#1Ja5Ed#!RYO zkJBx=?o&P$(W-ee{jN(7?{L>B(PzHP4xHzH)JV5C);`fZCb`KhoZQv=hEf_O@3`rf z>tX$W$ao`0?~%MhBbg*AX50JS@m89Ri#faV&esm+I;lixwxs->@m_OizO4l+&%ZZ2 zw=dpI_u2Fh)|t+XAg7u$ha)Pq`Vt1undU4%cxFtc>8(mPw(Ml?@ho%HDTVD1F6`9H zOL!?;U6NV8Y(U9@db@?6z%eu_G-mW($}6;x3GFNmGD}NYG^oZ5r*wtH{Faishp8gQ zi?P4Pid&Xi**?r0kqNP@wOjf`-9bHCR@^zRLgPw)%|I-dcVR~G81M6(GR08s;+&&8 zfoF!%J~LD;FFEKjs~or`i4F;Cy^0hiqGsegxsOt4&6wwaee)S|_vAGBHqDi{!p?3C zFN{lmDYt94bltU@xGpo_6|6C_V%6M*O&w-cT3L@6PrX{-IsH*xH|Jn#QEJiAR}Yv& zw>S5y{^d_L_D`u(atLjy(`k^b#@vW7)N0cl+wQ_$!YQb>54t&LbLVM~)DnY&bK3@D z8|NkMU;G%O%x64oFtYCPmoG_cO?TJ(+lFl_eKutH%FeLk{#6a)inBj`%INUYUR^FO z@qQhq^kZynP#|Bk|D)-hYtA;K$@~vFfAuA6O&j2CKj1GnGih^l9FsPyI|zrSvkY?$ zi%X+V<05L52Tca!OKNBYsj5E~HY|^f_Heh2FsqAo{lM~bm;2mkw)#KfM%8=8mfVj@ zT%?{E8TY~HzYBPdx4KJvumg!cN3*5-yg32=T?!I^#=YL1uAtWF@KEgF*rPmGRsPNG zpHC2OSR|*H%5+Mo-Be0&+++2ySiX_@v@N2@^5{b|Ww&=xUZb)*BoD18KYXf)^SuAK zk>`2ReZHGnY(#5%aYGMbMKG*2jA~xpT-{Gyf&`l+? zzbv<|Bepf%ppJt=S(Htn;K>-&s` zNNk!#?&jqD%+oD}r(HhzH0(*p9@Ia@!nQe$#26$RTe!NQ2Ug;m)p8CRKI~K_C#5?tmy*F#qDeK2gUmj24XtrNlNzF<$uCVsrd5v_}0tUlHXp@*K1NrizhPxLiw=9#bnxsUgZc+j+D? z%*jqne2&B%@Vm+~kVU+m2QS^deuEeU#fw9b0{C=%aoO-Y>rI=qZ5=i`>N?qdeIs~$ z$n^Cf2^`m#f*=?=zPM~U_;lhp&e3(t25X!Sb0<@fkb-((AOVhne-14fKMr2GY&r1p z1i_a`BT{^c6dx9zOrq>y2%-|5HhD}&DIrjHlTj2ZQ+pSQrp+Mu5e2pBupNzy1V@j9 zjYO~~Bk0875E7mEoffc1%iTUS%7NpuV9y16d~w+Zl9LQ#QfYWHF_cIav}Ag?jR#|C z@f~AukPJ4G!2k@J4~0pkl6R1px_CT^LSo|aIyBZ~Q((ph%yqMHa2^gM(v%J)!-q=o zBl$A~5ITG9JctMQPcCag&~PsV%>$V6#bqagcu!J;LZt^0n50mm00h?K*h*S`@k|IR zwSb_7;{@=^WwXG~dkcf$9h?L>urjJ=e8i7tAlYxuB_l|Rm z??4R*)8bWvru7gJG$tM79V3M9Cjfy%owsUV{A-|!Hb`Dwgi0L@1Z47WmQRFC;AhJx z#}9_@J(qL^nEL<9&_TeJLVgGzkEIB9eb1ht_uC+-NlFaTL$Ei7{*e7G$Rg+-R}Iso z)F7x02SJ7idhA`%bU6AV1ek5rma5wTLB(|tWQGvX!T$*X6KNqrj0;Dn_{#za8d(Dg zcxlXBY;xvK4)3>onSu`2#TmERF>q1AwTWzeHm(S|FM&xQQKu?(|I}ys%j6-b5(7bt z5dPo@Mfs7)L=sgj4MK7|C>v$||v{C&`_Ye5S}cF(T;2nj({Um{ueyKVzB z*c#6V9s$PI8G`-cb%IdF76Es{Elc6f+HRfQ1|YF^!>+GP%o(yLTKIu7Lh?G`U|lTQ$}eX1Tz8)%tS_Pc8L&@KTUvP7;ERT z)Vhd}sSTVxCKxgE>p~a--gE&7?CNs`9D57E7k#rxB`9KfxB8(CEuFzOLh!F@ir`PAwFnVuhxcep&Vry1z&ps{ zFng5<5r}*jA%>dr@i+!t9()4?EeTpHLd--Vh!D}2^z@4tn4?QUeIfJcbASjDph85z z&3CYmrr|-k%@Di-oH-x@4wsGydYa?eGCZi{y&wq4EKTYYL5FK<3OZb+*01J2g-6Fh zu+{ zb&z7`S`-*sz}xE)!me%jX<^^ec#7hKO^Z#^%C7;FEf%ySq-k#0Uz7&&TZFJkDb$Q} zU>^5^X@?XRhW|BTaN>&)=G@+SR~<|}V!WU*HtE-d{X~Z}qVZ^}!EMfI69j=_JF&QI z$;@9921-SQVVt Date: Fri, 11 Oct 2024 21:43:36 +0200 Subject: [PATCH 21/68] Tests with new priors look good --- pcntoolkit/model/hbr.py | 20 +++++++++--------- tests/testHBR.py | 45 ++++++++++++++++++++++++++++++++--------- 2 files changed, 44 insertions(+), 21 deletions(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 296b68dc..7ee500b3 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -246,11 +246,12 @@ def get_sample_dims(var): "mu_samples", pb.make_param( "mu", - slope_mu_params=(0.0, 3.0), - mu_slope_mu_params=(0.0, 3.0), - sigma_slope_mu_params=(3.0,), - mu_intercept_mu_params=(0.0, 2.0), - sigma_intercept_mu_params=(2.0,), + intercept_mu_params=(0.0, 10.0), + slope_mu_params=(0.0, 10.0), + mu_slope_mu_params=(0.0, 10.0), + sigma_slope_mu_params=(10.0,), + mu_intercept_mu_params=(0.0, 10.0), + sigma_intercept_mu_params=(10.0,), ).get_samples(pb), dims=get_sample_dims('mu'), ) @@ -258,19 +259,16 @@ def get_sample_dims(var): "sigma_samples", pb.make_param( "sigma", - sigma_params=(0., 2.0), + sigma_params=(10., 10.0), sigma_dist="normal", - slope_sigma_params=(0.0, 2.0), - intercept_sigma_params=(0.0, 2.0), + slope_sigma_params=(0.0, 10.0), + intercept_sigma_params=(10.0, 10.0), ).get_samples(pb), dims=get_sample_dims('sigma'), ) sigma_plus = pm.Deterministic( "sigma_plus_samples", np.log(1+np.exp(sigma/10))*10, dims=get_sample_dims('sigma') ) - y_like = pm.Normal( - "y_like", mu, sigma=sigma_plus, observed=y, dims="datapoints" - ) elif configs["likelihood"] in ["SHASHb", "SHASHo", "SHASHo2"]: """ diff --git a/tests/testHBR.py b/tests/testHBR.py index 1d312548..6c569b22 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -8,7 +8,7 @@ This script tests HBR models with default configs on toy data. """ - +# %% import os import numpy as np from pcntoolkit.normative_model.norm_utils import norm_init @@ -22,13 +22,12 @@ ########################### Experiment Settings ############################### -random_state = 34 - +random_state = 40 working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results. simulation_method = 'non-linear' n_features = 1 # The number of input features of X -n_grps = 2 # Number of batches in data +n_grps = 10 # Number of batches in data n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) @@ -46,15 +45,13 @@ ################################# Fittig and Predicting ############################### nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_intercept_mu='True', random_slope_mu='True', linear_epsilon='True', linear_delta='False', nuts_sampler='nutpie') + linear_sigma='True', random_intercept_mu='True', random_slope_mu='True', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') ################################# Plotting Quantiles ############################### - - for i in range(n_features): sorted_idx = X_test[:, i].argsort(axis=0).squeeze() temp_X = X_test[sorted_idx, i] @@ -62,14 +59,14 @@ temp_be = grp_id_test[sorted_idx, :].squeeze() temp_yhat = yhat[sorted_idx,] temp_s2 = ys2[sorted_idx,] - + plt.figure() for j in range(n_grps): scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,], label='Group' + str(j)) # Showing the quantiles resolution = 200 - synth_X = np.linspace(-3, 3, resolution) + synth_X = np.linspace(np.min(X_train), np.max(X_train), resolution) q = nm.get_mcmc_quantiles( synth_X, batch_effects=j*np.ones(resolution)) col = scat1.get_facecolors()[0] @@ -77,7 +74,20 @@ plt.title('Model %s, Feature %d' % (model_type, i)) plt.legend() - plt.show() + plt.show(block=False) + plt.savefig(working_dir + 'quantiles_' + model_type + '_feature_' + str(i) + '.png') + + for j in range(n_grps): + plt.figure() + plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,]) + plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,], color='red') + plt.fill_between(temp_X[temp_be == j,].squeeze(), + (temp_yhat[temp_be == j,] - 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), + (temp_yhat[temp_be == j,] + 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), + color='red', alpha=0.2) + plt.title('Model %s, Group %d, Feature %d' % (model_type, j, i)) + plt.show(block=False) + plt.savefig(working_dir + 'pred_' + model_type + '_group_' + str(j) + '_feature_' + str(i) + '.png') ############################## Normative Modelling Test ####################### @@ -98,3 +108,18 @@ ############################################################################### +# %% + +for j in range(n_grps): + # Showing the quantiles + resolution = 200 + synth_X = np.linspace(np.min(X_train), np.max(X_train), resolution) + q = nm.get_mcmc_quantiles( + synth_X, batch_effects=j*np.ones(resolution)) + plt.figure() + plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,]) + plt.plot(synth_X, q.T, color='black') + plt.title('Model %s, Group %d, Feature %d' % (model_type, j, i)) + plt.show(block=False) + plt.savefig(working_dir + 'pred_' + model_type + '_group_' + str(j) + '_feature_' + str(i) + '.png') +# %% From b7ebe5a4d28f178e51ed943bc4862f3a65a3ba5f Mon Sep 17 00:00:00 2001 From: Augub Date: Fri, 11 Oct 2024 21:55:46 +0200 Subject: [PATCH 22/68] Mutable coords are default in pymc now --- pcntoolkit/model/hbr.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 50a9f967..e9d6c5e0 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -225,7 +225,7 @@ def get_sample_dims(var): return None with pm.Model(coords=pb.coords) as model: - model.add_coord("datapoints", np.arange(X.shape[0]), mutable=True) + model.add_coord("datapoints", np.arange(X.shape[0])) X = pm.Data("X", X, dims=("datapoints", "basis_functions")) pb.X = X y = pm.Data("y", np.squeeze(y), dims="datapoints") From 694d5d1326a77c36eb4f9de3ac351752feb0cea7 Mon Sep 17 00:00:00 2001 From: Seyed Mostafa Kia Date: Mon, 14 Oct 2024 17:48:59 +0200 Subject: [PATCH 23/68] Unbiased kurtosis calculation --- pcntoolkit/util/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index 1a9afc48..0ce281f6 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -350,7 +350,7 @@ def calibration_descriptives(x): s1 = np.std(x, axis=0) skew = n*m3/(n-1)/(n-2)/s1**3 sdskew = np.sqrt(6*n*(n-1) / ((n-2)*(n+1)*(n+3))) - kurtosis = (n*(n+1)*m4 - 3*m2**2*(n-1)) / ((n-1)*(n-2)*(n-3)*s1**4) + kurtosis = (n * (n+1) * m4) / ((n-1) * (n-2) * (n-3) * s1**4) - (3 * (n-1)**2) / ((n-2) * (n-3)) sdkurtosis = np.sqrt(4*(n**2-1) * sdskew**2 / ((n-3)*(n+5))) semean = np.sqrt(np.var(x)/n) sesd = s1/np.sqrt(2*(n-1)) From 091980eb96162c6a96fa2c99142a3369f8db039e Mon Sep 17 00:00:00 2001 From: Augub Date: Tue, 15 Oct 2024 15:03:02 +0200 Subject: [PATCH 24/68] Add multicore support for Torque jobs --- pcntoolkit/normative_parallel.py | 28 ++++++++++++++++++---------- 1 file changed, 18 insertions(+), 10 deletions(-) diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py index f6a957e7..cd058e8b 100755 --- a/pcntoolkit/normative_parallel.py +++ b/pcntoolkit/normative_parallel.py @@ -112,6 +112,7 @@ def execute_nm(processing_dir, cluster_spec = kwargs.pop('cluster_spec', 'torque') log_path = kwargs.get('log_path', None) binary = kwargs.pop('binary', False) + cores = kwargs.pop('cores') split_nm(processing_dir, respfile_path, @@ -165,7 +166,8 @@ def execute_nm(processing_dir, job_id = qsub_nm(job_path=batch_job_path, log_path=log_path, memory=memory, - duration=duration) + duration=duration, + cores=cores) job_ids.append(job_id) elif cluster_spec == 'slurm': # update the response file @@ -211,7 +213,8 @@ def execute_nm(processing_dir, job_id = qsub_nm(job_path=batch_job_path, log_path=log_path, memory=memory, - duration=duration) + duration=duration, + cores=cores) job_ids.append(job_id) elif cluster_spec == 'slurm': sbatchwrap_nm(batch_processing_dir, @@ -254,7 +257,8 @@ def execute_nm(processing_dir, job_id = qsub_nm(job_path=batch_job_path, log_path=log_path, memory=memory, - duration=duration) + duration=duration, + cores=cores) job_ids.append(job_id) elif cluster_spec == 'slurm': sbatchwrap_nm(batch_processing_dir, @@ -300,7 +304,7 @@ def execute_nm(processing_dir, if cluster_spec == 'torque': rerun_nm(processing_dir, log_path=log_path, memory=memory, duration=duration, binary=binary, - interactive=interactive) + interactive=interactive, cores=cores) elif cluster_spec == 'slurm': sbatchrerun_nm(processing_dir, memory=memory, @@ -316,7 +320,7 @@ def execute_nm(processing_dir, if cluster_spec == 'torque': rerun_nm(processing_dir, log_path=log_path, memory=memory, duration=duration, binary=binary, - interactive=interactive) + interactive=interactive, cores=cores) elif cluster_spec == 'slurm': sbatchrerun_nm(processing_dir, memory=memory, @@ -985,7 +989,8 @@ def bashwrap_nm(processing_dir, def qsub_nm(job_path, log_path, memory, - duration): + duration, + cores): '''This function submits a job.sh scipt to the torque custer using the qsub command. Basic usage:: @@ -1005,10 +1010,10 @@ def qsub_nm(job_path, # created qsub command if log_path is None: qsub_call = ['echo ' + job_path + ' | qsub -N ' + job_path + ' -l ' + - 'procs=1' + ',mem=' + memory + ',walltime=' + duration] + 'nodes=1:ppn='+ cores + ',mem=' + memory + ',walltime=' + duration] else: qsub_call = ['echo ' + job_path + ' | qsub -N ' + job_path + - ' -l ' + 'procs=1' + ',mem=' + memory + ',walltime=' + + ' -l ' + 'nodes=1:ppn='+ cores + ',mem=' + memory + ',walltime=' + duration + ' -o ' + log_path + ' -e ' + log_path] # submits job to cluster @@ -1024,6 +1029,7 @@ def rerun_nm(processing_dir, memory, duration, cluster_spec, + cores, binary=False, interactive=False): '''This function reruns all failed batched in processing_dir after collect_nm has identified the failed batches. @@ -1051,7 +1057,8 @@ def rerun_nm(processing_dir, job_id = qsub_nm(job_path=jobpath, log_path=log_path, memory=memory, - duration=duration) + duration=duration, + cores=cores) job_ids.append(job_id) else: file_extentions = '.txt' @@ -1064,7 +1071,8 @@ def rerun_nm(processing_dir, job_id = qsub_nm(job_path=jobpath, log_path=log_path, memory=memory, - duration=duration) + duration=duration, + cores=cores) job_ids.append(job_id) if interactive: From e35c95255a34b16129c24a8855dcdf0cafbd5b1f Mon Sep 17 00:00:00 2001 From: Augub Date: Tue, 15 Oct 2024 15:03:24 +0200 Subject: [PATCH 25/68] Add missing likelihood in Normal model --- pcntoolkit/model/hbr.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py index 7b2a4c8e..23b73e0e 100644 --- a/pcntoolkit/model/hbr.py +++ b/pcntoolkit/model/hbr.py @@ -269,6 +269,13 @@ def get_sample_dims(var): sigma_plus = pm.Deterministic( "sigma_plus_samples", np.log(1+np.exp(sigma/10))*10, dims=get_sample_dims('sigma') ) + y_like = pm.Normal( + "y_like", + mu=mu, + sigma=sigma_plus, + observed=y, + dims="datapoints", + ) elif configs["likelihood"] in ["SHASHb", "SHASHo", "SHASHo2"]: """ From 411c47c6cc78706e3454f6c60bf819ae9ead6e0c Mon Sep 17 00:00:00 2001 From: Augub Date: Tue, 15 Oct 2024 15:11:22 +0200 Subject: [PATCH 26/68] Correct argument name for cores --- pcntoolkit/normative_parallel.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py index cd058e8b..6b92b124 100755 --- a/pcntoolkit/normative_parallel.py +++ b/pcntoolkit/normative_parallel.py @@ -112,7 +112,7 @@ def execute_nm(processing_dir, cluster_spec = kwargs.pop('cluster_spec', 'torque') log_path = kwargs.get('log_path', None) binary = kwargs.pop('binary', False) - cores = kwargs.pop('cores') + cores = kwargs.pop('n_cores_per_batch') split_nm(processing_dir, respfile_path, From 7ac7e29df2b2cda4d01b6a3fca99654f7479452f Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 16 Oct 2024 16:37:09 +0200 Subject: [PATCH 27/68] Initial commit --- conda_recipe/meta.yaml | 45 ++++++++++++++++++++++++++++++++++++++++++ requirements.txt | 7 +------ 2 files changed, 46 insertions(+), 6 deletions(-) create mode 100644 conda_recipe/meta.yaml diff --git a/conda_recipe/meta.yaml b/conda_recipe/meta.yaml new file mode 100644 index 00000000..9cd1a2c8 --- /dev/null +++ b/conda_recipe/meta.yaml @@ -0,0 +1,45 @@ +package: + name: pcntoolkit + version: "0.30.0" + +source: + path: .. + +build: + number: 0 + script: python setup.py install + +requirements: + build: + - python + - setuptools + - numpy + run: + - python + - pymc # includes numpy, scipy, pandas, arviz + - six + - scikit-learn + - matplotlib + - pytorch + - cpuonly + - sphinx-tabs + - nibabel + pip: + - bspline + +# test: +# imports: +# - your_project_name + +about: + home: http://github.com/amarquand/PCNtoolkit + license: 'GNU GPLv3' + summary: 'Predictive Clinical Neuroscience toolkit' + description: | + 'Predictive Clinical Neuroscience toolkit' + doc_url: https://pcntoolkit.readthedocs.io/en/latest/ + dev_url: http://github.com/amarquand/PCNtoolkit + +extra: + recipe-maintainers: + - AuguB \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 58c3f61e..271c759c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,13 +1,8 @@ -argparse nibabel>=2.5.1 +pymc>=5.1.0 six scikit-learn bspline matplotlib -numpy -scipy>=1.3.2,<1.13.0 -pandas>=0.25.3 torch>=1.1.0 sphinx-tabs -pymc>=5.1.0 -arviz==0.13.0 From 47bcb4b186690e78a026dfbf58502cab9d1fd755 Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 16 Oct 2024 16:39:52 +0200 Subject: [PATCH 28/68] Remove unnecessary requirement specifications All removed specifications are also dependencies of PyMC --- requirements.txt | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/requirements.txt b/requirements.txt index 58c3f61e..ca1a2cda 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,13 +1,9 @@ argparse nibabel>=2.5.1 +pymc>=5.1.0 six scikit-learn bspline matplotlib -numpy -scipy>=1.3.2,<1.13.0 -pandas>=0.25.3 torch>=1.1.0 sphinx-tabs -pymc>=5.1.0 -arviz==0.13.0 From 5d25556e083bdd92ed6b48a7a5ffdb9b174ee530 Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 16 Oct 2024 16:52:59 +0200 Subject: [PATCH 29/68] Reset requirements Will wait with this until after next release --- requirements.txt | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index ca1a2cda..58c3f61e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,9 +1,13 @@ argparse nibabel>=2.5.1 -pymc>=5.1.0 six scikit-learn bspline matplotlib +numpy +scipy>=1.3.2,<1.13.0 +pandas>=0.25.3 torch>=1.1.0 sphinx-tabs +pymc>=5.1.0 +arviz==0.13.0 From 5d901165880a640e0eb368813436204c1e122bf2 Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 16 Oct 2024 17:05:00 +0200 Subject: [PATCH 30/68] Add pyproject.toml --- pyproject.toml | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 pyproject.toml diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..6f7873fb --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,25 @@ +[tool.poetry] +name = "pcntoolkit" +version = "0.30.2" +description = "Predictive Clinical Neuroscience Toolkit" +authors = ["Andre Marquand"] +license = "GPL v3" +readme = "README.md" + +[tool.poetry.dependencies] +python = "^3.10" +torch = "2.4.1+cpu" +pymc = "^5.17.0" +bspline = "^0.1.1" +scikit-learn = "^1.5.2" +matplotlib = "^3.9.2" +nibabel = "^5.3.1" +sphinx-tabs = "^3.4.7" + +[tool.poetry.group.dev.dependencies] +pymc = "^5.17.0" +torch = "2.4.1+cpu" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" From 56f0a6c9c4a31596c7c12fa82f2bc1538b7e7e48 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 17 Oct 2024 11:31:49 +0200 Subject: [PATCH 31/68] Cleaning up the project --- .github/workflows/ci.yml | 2 +- .nojekyll | 1 - MANIFEST.in | 1 - PCNtoolkit.drawio | 909 ------------------------------- build/lib/pcntoolkit/configs.py | 9 - conda_recipe/meta.yaml | 45 -- pyproject.toml | 25 - requirements.txt | 8 - setup.cfg | 3 - setup.py | 25 - {pytest => tests}/test_sanity.py | 0 11 files changed, 1 insertion(+), 1027 deletions(-) delete mode 100644 .nojekyll delete mode 100644 MANIFEST.in delete mode 100644 PCNtoolkit.drawio delete mode 100644 build/lib/pcntoolkit/configs.py delete mode 100644 conda_recipe/meta.yaml delete mode 100644 pyproject.toml delete mode 100644 requirements.txt delete mode 100644 setup.cfg delete mode 100644 setup.py rename {pytest => tests}/test_sanity.py (100%) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 66f16af3..50ec6bd5 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -30,7 +30,7 @@ jobs: - name: Run Tests with coverage and save report run: | - coverage run -m pytest pytest/ --junitxml=report.xml --html=report.html + coverage run -m pytest tests/ --junitxml=report.xml --html=report.html coverage xml -o coverage.xml continue-on-error: true # Continue to the next step even if tests fail diff --git a/.nojekyll b/.nojekyll deleted file mode 100644 index 8b137891..00000000 --- a/.nojekyll +++ /dev/null @@ -1 +0,0 @@ - diff --git a/MANIFEST.in b/MANIFEST.in deleted file mode 100644 index f9bd1455..00000000 --- a/MANIFEST.in +++ /dev/null @@ -1 +0,0 @@ -include requirements.txt diff --git a/PCNtoolkit.drawio b/PCNtoolkit.drawio deleted file mode 100644 index 5bf3ed1d..00000000 --- a/PCNtoolkit.drawio +++ /dev/null @@ -1,909 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/build/lib/pcntoolkit/configs.py b/build/lib/pcntoolkit/configs.py deleted file mode 100644 index 98b56f17..00000000 --- a/build/lib/pcntoolkit/configs.py +++ /dev/null @@ -1,9 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Mon Dec 7 12:51:07 2020 - -@author: seykia -""" - -PICKLE_PROTOCOL = 4 diff --git a/conda_recipe/meta.yaml b/conda_recipe/meta.yaml deleted file mode 100644 index 9cd1a2c8..00000000 --- a/conda_recipe/meta.yaml +++ /dev/null @@ -1,45 +0,0 @@ -package: - name: pcntoolkit - version: "0.30.0" - -source: - path: .. - -build: - number: 0 - script: python setup.py install - -requirements: - build: - - python - - setuptools - - numpy - run: - - python - - pymc # includes numpy, scipy, pandas, arviz - - six - - scikit-learn - - matplotlib - - pytorch - - cpuonly - - sphinx-tabs - - nibabel - pip: - - bspline - -# test: -# imports: -# - your_project_name - -about: - home: http://github.com/amarquand/PCNtoolkit - license: 'GNU GPLv3' - summary: 'Predictive Clinical Neuroscience toolkit' - description: | - 'Predictive Clinical Neuroscience toolkit' - doc_url: https://pcntoolkit.readthedocs.io/en/latest/ - dev_url: http://github.com/amarquand/PCNtoolkit - -extra: - recipe-maintainers: - - AuguB \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml deleted file mode 100644 index 6f7873fb..00000000 --- a/pyproject.toml +++ /dev/null @@ -1,25 +0,0 @@ -[tool.poetry] -name = "pcntoolkit" -version = "0.30.2" -description = "Predictive Clinical Neuroscience Toolkit" -authors = ["Andre Marquand"] -license = "GPL v3" -readme = "README.md" - -[tool.poetry.dependencies] -python = "^3.10" -torch = "2.4.1+cpu" -pymc = "^5.17.0" -bspline = "^0.1.1" -scikit-learn = "^1.5.2" -matplotlib = "^3.9.2" -nibabel = "^5.3.1" -sphinx-tabs = "^3.4.7" - -[tool.poetry.group.dev.dependencies] -pymc = "^5.17.0" -torch = "2.4.1+cpu" - -[build-system] -requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index 271c759c..00000000 --- a/requirements.txt +++ /dev/null @@ -1,8 +0,0 @@ -nibabel>=2.5.1 -pymc>=5.1.0 -six -scikit-learn -bspline -matplotlib -torch>=1.1.0 -sphinx-tabs diff --git a/setup.cfg b/setup.cfg deleted file mode 100644 index 9b914123..00000000 --- a/setup.cfg +++ /dev/null @@ -1,3 +0,0 @@ -[autopep8] -max-line-length = 120 -ignore = E226,E302,E41 diff --git a/setup.py b/setup.py deleted file mode 100644 index d37cd554..00000000 --- a/setup.py +++ /dev/null @@ -1,25 +0,0 @@ -from setuptools import setup, find_packages - - -def parse_requirements(filename): - """Load requirements from a pip requirements file.""" - with open(filename, 'r') as f: - lineiter = (line.strip() for line in f) - return [line for line in lineiter if line and not line.startswith("#")] - -requirements = parse_requirements('requirements.txt') - -# Note: to force PyPI to overwrite a version without bumping the version number -# use e.g.: -# version = '0.29-1' - -setup(name='pcntoolkit', - version='0.30-2', - description='Predictive Clinical Neuroscience toolkit', - url='http://github.com/amarquand/PCNtoolkit', - author='Andre Marquand', - author_email='andre.marquand@donders.ru.nl', - license='GNU GPLv3', - packages=find_packages(), - install_requires=requirements, - zip_safe=False) diff --git a/pytest/test_sanity.py b/tests/test_sanity.py similarity index 100% rename from pytest/test_sanity.py rename to tests/test_sanity.py From e708f37940bc917ab0fd35f59decf5c152454dd2 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 17 Oct 2024 11:43:40 +0200 Subject: [PATCH 32/68] Update gitignore --- .gitignore | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/.gitignore b/.gitignore index ea6f81b1..fcc7cfa6 100644 --- a/.gitignore +++ b/.gitignore @@ -83,3 +83,10 @@ dist/pcntoolkit-0.27-py3.11.egg # Basic test functions for SHASH tests/test_SHASH.ipynb +dist/pcntoolkit-0.30.post2-py3.12.egg + +dist/* + +dist + +build/* From d870519e14a5e70f104805ba68d1baf4e382f2e0 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 17 Oct 2024 16:35:59 +0200 Subject: [PATCH 33/68] Add pyproject.toml with poetry backend --- pyproject.toml | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 pyproject.toml diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..1466e7b4 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,26 @@ +[tool.poetry] +name = "pcntoolkit" +version = "0.30.2" +description = "Predictive Clinical Neuroscience Toolkit" +authors = ["Andre Marquand"] +license = "GNU GPLv3" +readme = "README.md" + +[tool.poetry.dependencies] +python = ">=3.10,<3.13" +bspline = "^0.1.1" # Install with pip +nibabel = "^5.3.1" # Prefer Conda +pymc = "^5.17.0" # Prefer Conda +scikit-learn = "^1.5.2" # Prefer Conda +seaborn = "^0.13.2" # Prefer conda +six = "^1.16.0" # Prefer conda + +[tool.poetry.group.dev.dependencies] +sphinx-tabs = "^3.4.7" +pytest = "^8.3.3" +ipywidgets = "^8.1.5" +black = "^24.10.0" + +[build-system] +requires = ["poetry-core"] +build-backend = "poetry.core.masonry.api" From 8054cba2bd3ea03db5a7649cbf0201f826d19966 Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 21 Oct 2024 11:45:48 +0200 Subject: [PATCH 34/68] Add ipykernel to dev dependencies --- pyproject.toml | 1 + 1 file changed, 1 insertion(+) diff --git a/pyproject.toml b/pyproject.toml index 1466e7b4..991ae576 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,6 +20,7 @@ sphinx-tabs = "^3.4.7" pytest = "^8.3.3" ipywidgets = "^8.1.5" black = "^24.10.0" +ipykernel = "^6.29.5" [build-system] requires = ["poetry-core"] From 9211ebaf0fb23482b33de59eb02d693233bf6cbe Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 21 Oct 2024 11:46:00 +0200 Subject: [PATCH 35/68] Add poetry lock --- poetry.lock | 2636 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2636 insertions(+) create mode 100644 poetry.lock diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 00000000..fd9e155c --- /dev/null +++ b/poetry.lock @@ -0,0 +1,2636 @@ +# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand. + +[[package]] +name = "alabaster" +version = "1.0.0" +description = "A light, configurable Sphinx theme" +optional = false +python-versions = ">=3.10" +files = [ + {file = "alabaster-1.0.0-py3-none-any.whl", hash = "sha256:fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b"}, + {file = "alabaster-1.0.0.tar.gz", hash = "sha256:c00dca57bca26fa62a6d7d0a9fcce65f3e026e9bfe33e9c538fd3fbb2144fd9e"}, +] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "arviz" +version = "0.20.0" +description = "Exploratory analysis of Bayesian models" +optional = false +python-versions = ">=3.10" +files = [ + {file = "arviz-0.20.0-py3-none-any.whl", hash = "sha256:5ec4f2ec180a8305ff3d1108c29e189944ab939663eb5bc3231ff199a1a5dc36"}, + {file = "arviz-0.20.0.tar.gz", hash = "sha256:a2704e0c141410fcaea1973a90cabf280f5aed5c1e10f44381ebd6c144c10a9c"}, +] + +[package.dependencies] +h5netcdf = ">=1.0.2" +matplotlib = ">=3.5" +numpy = ">=1.23.0" +packaging = "*" +pandas = ">=1.5.0" +scipy = ">=1.9.0" +setuptools = ">=60.0.0" +typing-extensions = ">=4.1.0" +xarray = ">=2022.6.0" +xarray-einstats = ">=0.3" + +[package.extras] +all = ["bokeh (>=3)", "contourpy", "dask[distributed]", "dm-tree (>=0.1.8)", "netcdf4", "numba", "ujson", "xarray-datatree", "zarr (>=2.5.0,<3)"] +preview = ["arviz-base[h5netcdf]", "arviz-plots", "arviz-stats[xarray]"] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "babel" +version = "2.16.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "black" +version = "24.10.0" +description = "The uncompromising code formatter." +optional = false +python-versions = ">=3.9" +files = [ + {file = "black-24.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e6668650ea4b685440857138e5fe40cde4d652633b1bdffc62933d0db4ed9812"}, + {file = "black-24.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1c536fcf674217e87b8cc3657b81809d3c085d7bf3ef262ead700da345bfa6ea"}, + {file = "black-24.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:649fff99a20bd06c6f727d2a27f401331dc0cc861fb69cde910fe95b01b5928f"}, + {file = "black-24.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:fe4d6476887de70546212c99ac9bd803d90b42fc4767f058a0baa895013fbb3e"}, + {file = "black-24.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5a2221696a8224e335c28816a9d331a6c2ae15a2ee34ec857dcf3e45dbfa99ad"}, + {file = "black-24.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9da3333530dbcecc1be13e69c250ed8dfa67f43c4005fb537bb426e19200d50"}, + {file = "black-24.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4007b1393d902b48b36958a216c20c4482f601569d19ed1df294a496eb366392"}, + {file = "black-24.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:394d4ddc64782e51153eadcaaca95144ac4c35e27ef9b0a42e121ae7e57a9175"}, + {file = "black-24.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b5e39e0fae001df40f95bd8cc36b9165c5e2ea88900167bddf258bacef9bbdc3"}, + {file = "black-24.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d37d422772111794b26757c5b55a3eade028aa3fde43121ab7b673d050949d65"}, + {file = "black-24.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:14b3502784f09ce2443830e3133dacf2c0110d45191ed470ecb04d0f5f6fcb0f"}, + {file = "black-24.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:30d2c30dc5139211dda799758559d1b049f7f14c580c409d6ad925b74a4208a8"}, + {file = "black-24.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1cbacacb19e922a1d75ef2b6ccaefcd6e93a2c05ede32f06a21386a04cedb981"}, + {file = "black-24.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1f93102e0c5bb3907451063e08b9876dbeac810e7da5a8bfb7aeb5a9ef89066b"}, + {file = "black-24.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ddacb691cdcdf77b96f549cf9591701d8db36b2f19519373d60d31746068dbf2"}, + {file = "black-24.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:680359d932801c76d2e9c9068d05c6b107f2584b2a5b88831c83962eb9984c1b"}, + {file = "black-24.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:17374989640fbca88b6a448129cd1745c5eb8d9547b464f281b251dd00155ccd"}, + {file = "black-24.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:63f626344343083322233f175aaf372d326de8436f5928c042639a4afbbf1d3f"}, + {file = "black-24.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfa1d0cb6200857f1923b602f978386a3a2758a65b52e0950299ea014be6800"}, + {file = "black-24.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:2cd9c95431d94adc56600710f8813ee27eea544dd118d45896bb734e9d7a0dc7"}, + {file = "black-24.10.0-py3-none-any.whl", hash = "sha256:3bb2b7a1f7b685f85b11fed1ef10f8a9148bceb49853e47a294a3dd963c1dd7d"}, + {file = "black-24.10.0.tar.gz", hash = "sha256:846ea64c97afe3bc677b761787993be4991810ecc7a4a937816dd6bddedc4875"}, +] + +[package.dependencies] +click = ">=8.0.0" +mypy-extensions = ">=0.4.3" +packaging = ">=22.0" +pathspec = ">=0.9.0" +platformdirs = ">=2" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""} + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.10)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + +[[package]] +name = "bspline" +version = "0.1.1" +description = "Compute B-spline basis functions via Cox - de Boor algorithm." +optional = false +python-versions = "*" +files = [ + {file = "bspline-0.1.1.tar.gz", hash = "sha256:3be5490cd7ea81e7a08820d4d1d1b602f91991f429ce20c49800dbf226213f08"}, +] + +[package.dependencies] +numpy = "*" + +[[package]] +name = "cachetools" +version = "5.5.0" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc"}, + {file = "charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99"}, + {file = "charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7"}, + {file = "charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67"}, + {file = "charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:dbe03226baf438ac4fda9e2d0715022fd579cb641c4cf639fa40d53b2fe6f3e2"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd9a8bd8900e65504a305bf8ae6fa9fbc66de94178c420791d0293702fce2df7"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8831399554b92b72af5932cdbbd4ddc55c55f631bb13ff8fe4e6536a06c5c51"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a14969b8691f7998e74663b77b4c36c0337cb1df552da83d5c9004a93afdb574"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcaf7c1524c0542ee2fc82cc8ec337f7a9f7edee2532421ab200d2b920fc97cf"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425c5f215d0eecee9a56cdb703203dda90423247421bf0d67125add85d0c4455"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:d5b054862739d276e09928de37c79ddeec42a6e1bfc55863be96a36ba22926f6"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:f3e73a4255342d4eb26ef6df01e3962e73aa29baa3124a8e824c5d3364a65748"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f6c34da58ea9c1a9515621f4d9ac379871a8f21168ba1b5e09d74250de5ad62"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:f09cb5a7bbe1ecae6e87901a2eb23e0256bb524a79ccc53eb0b7629fbe7677c4"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:0099d79bdfcf5c1f0c2c72f91516702ebf8b0b8ddd8905f97a8aecf49712c621"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win32.whl", hash = "sha256:9c98230f5042f4945f957d006edccc2af1e03ed5e37ce7c373f00a5a4daa6149"}, + {file = "charset_normalizer-3.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:62f60aebecfc7f4b82e3f639a7d1433a20ec32824db2199a11ad4f5e146ef5ee"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:af73657b7a68211996527dbfeffbb0864e043d270580c5aef06dc4b659a4b578"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cab5d0b79d987c67f3b9e9c53f54a61360422a5a0bc075f43cab5621d530c3b6"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9289fd5dddcf57bab41d044f1756550f9e7cf0c8e373b8cdf0ce8773dc4bd417"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b493a043635eb376e50eedf7818f2f322eabbaa974e948bd8bdd29eb7ef2a51"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fa2566ca27d67c86569e8c85297aaf413ffab85a8960500f12ea34ff98e4c41"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8e538f46104c815be19c975572d74afb53f29650ea2025bbfaef359d2de2f7f"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fd30dc99682dc2c603c2b315bded2799019cea829f8bf57dc6b61efde6611c8"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2006769bd1640bdf4d5641c69a3d63b71b81445473cac5ded39740a226fa88ab"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:dc15e99b2d8a656f8e666854404f1ba54765871104e50c8e9813af8a7db07f12"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ab2e5bef076f5a235c3774b4f4028a680432cded7cad37bba0fd90d64b187d19"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4ec9dd88a5b71abfc74e9df5ebe7921c35cbb3b641181a531ca65cdb5e8e4dea"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:43193c5cda5d612f247172016c4bb71251c784d7a4d9314677186a838ad34858"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:aa693779a8b50cd97570e5a0f343538a8dbd3e496fa5dcb87e29406ad0299654"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win32.whl", hash = "sha256:7706f5850360ac01d80c89bcef1640683cc12ed87f42579dab6c5d3ed6888613"}, + {file = "charset_normalizer-3.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:c3e446d253bd88f6377260d07c895816ebf33ffffd56c1c792b13bff9c3e1ade"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:980b4f289d1d90ca5efcf07958d3eb38ed9c0b7676bf2831a54d4f66f9c27dfa"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f28f891ccd15c514a0981f3b9db9aa23d62fe1a99997512b0491d2ed323d229a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8aacce6e2e1edcb6ac625fb0f8c3a9570ccc7bfba1f63419b3769ccf6a00ed0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7af3717683bea4c87acd8c0d3d5b44d56120b26fd3f8a692bdd2d5260c620a"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ff2ed8194587faf56555927b3aa10e6fb69d931e33953943bc4f837dfee2242"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e91f541a85298cf35433bf66f3fab2a4a2cff05c127eeca4af174f6d497f0d4b"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309a7de0a0ff3040acaebb35ec45d18db4b28232f21998851cfa709eeff49d62"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:285e96d9d53422efc0d7a17c60e59f37fbf3dfa942073f666db4ac71e8d726d0"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d447056e2ca60382d460a604b6302d8db69476fd2015c81e7c35417cfabe4cd"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:20587d20f557fe189b7947d8e7ec5afa110ccf72a3128d61a2a387c3313f46be"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:130272c698667a982a5d0e626851ceff662565379baf0ff2cc58067b81d4f11d"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ab22fbd9765e6954bc0bcff24c25ff71dcbfdb185fcdaca49e81bac68fe724d3"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7782afc9b6b42200f7362858f9e73b1f8316afb276d316336c0ec3bd73312742"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win32.whl", hash = "sha256:2de62e8801ddfff069cd5c504ce3bc9672b23266597d4e4f50eda28846c322f2"}, + {file = "charset_normalizer-3.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:95c3c157765b031331dd4db3c775e58deaee050a3042fcad72cbc4189d7c8dca"}, + {file = "charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079"}, + {file = "charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e"}, +] + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "cloudpickle" +version = "3.1.0" +description = "Pickler class to extend the standard pickle.Pickler functionality" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cloudpickle-3.1.0-py3-none-any.whl", hash = "sha256:fe11acda67f61aaaec473e3afe030feb131d78a43461b718185363384f1ba12e"}, + {file = "cloudpickle-3.1.0.tar.gz", hash = "sha256:81a929b6e3c7335c863c771d673d105f02efdb89dfaba0c90495d1c64796601b"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cons" +version = "0.4.6" +description = "An implementation of Lisp/Scheme-like cons in Python." +optional = false +python-versions = ">=3.6" +files = [ + {file = "cons-0.4.6.tar.gz", hash = "sha256:669fe9d5ee916d5e42b9cac6acc911df803d04f2e945c1604982a04d27a29b47"}, +] + +[package.dependencies] +logical-unification = ">=0.4.0" + +[[package]] +name = "contourpy" +version = "1.3.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7"}, + {file = "contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589"}, + {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41"}, + {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d"}, + {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223"}, + {file = "contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f"}, + {file = "contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b"}, + {file = "contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad"}, + {file = "contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1"}, + {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d"}, + {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c"}, + {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb"}, + {file = "contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c"}, + {file = "contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67"}, + {file = "contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f"}, + {file = "contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06"}, + {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09"}, + {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd"}, + {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35"}, + {file = "contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb"}, + {file = "contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b"}, + {file = "contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3"}, + {file = "contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b"}, + {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da"}, + {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14"}, + {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8"}, + {file = "contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294"}, + {file = "contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087"}, + {file = "contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8"}, + {file = "contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8"}, + {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6"}, + {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2"}, + {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927"}, + {file = "contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8"}, + {file = "contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc"}, + {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2"}, + {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e"}, + {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800"}, + {file = "contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5"}, + {file = "contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779"}, + {file = "contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102"}, + {file = "contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb"}, + {file = "contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4"}, +] + +[package.dependencies] +numpy = ">=1.23" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.7" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, + {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, + {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, + {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, + {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, + {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, + {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, + {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, + {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, + {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, + {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, + {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, + {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, + {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, + {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, + {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, + {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, + {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, + {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, + {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, + {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, + {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, + {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, + {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, + {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, + {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "docutils" +version = "0.21.2" +description = "Docutils -- Python Documentation Utilities" +optional = false +python-versions = ">=3.9" +files = [ + {file = "docutils-0.21.2-py3-none-any.whl", hash = "sha256:dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2"}, + {file = "docutils-0.21.2.tar.gz", hash = "sha256:3a6b18732edf182daa3cd12775bbb338cf5691468f91eeeb109deff6ebfa986f"}, +] + +[[package]] +name = "etuples" +version = "0.3.9" +description = "Python S-expression emulation using tuple-like objects." +optional = false +python-versions = ">=3.8" +files = [ + {file = "etuples-0.3.9.tar.gz", hash = "sha256:a474e586683d8ba8d842ba29305005ceed1c08371a4b4b0e0e232527137e5ea3"}, +] + +[package.dependencies] +cons = "*" +multipledispatch = "*" + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "filelock" +version = "3.16.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] + +[[package]] +name = "fonttools" +version = "4.54.1" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.54.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7ed7ee041ff7b34cc62f07545e55e1468808691dddfd315d51dd82a6b37ddef2"}, + {file = "fonttools-4.54.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41bb0b250c8132b2fcac148e2e9198e62ff06f3cc472065dff839327945c5882"}, + {file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7965af9b67dd546e52afcf2e38641b5be956d68c425bef2158e95af11d229f10"}, + {file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:278913a168f90d53378c20c23b80f4e599dca62fbffae4cc620c8eed476b723e"}, + {file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0e88e3018ac809b9662615072dcd6b84dca4c2d991c6d66e1970a112503bba7e"}, + {file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:4aa4817f0031206e637d1e685251ac61be64d1adef111060df84fdcbc6ab6c44"}, + {file = "fonttools-4.54.1-cp310-cp310-win32.whl", hash = "sha256:7e3b7d44e18c085fd8c16dcc6f1ad6c61b71ff463636fcb13df7b1b818bd0c02"}, + {file = "fonttools-4.54.1-cp310-cp310-win_amd64.whl", hash = "sha256:dd9cc95b8d6e27d01e1e1f1fae8559ef3c02c76317da650a19047f249acd519d"}, + {file = "fonttools-4.54.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5419771b64248484299fa77689d4f3aeed643ea6630b2ea750eeab219588ba20"}, + {file = "fonttools-4.54.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:301540e89cf4ce89d462eb23a89464fef50915255ece765d10eee8b2bf9d75b2"}, + {file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ae5091547e74e7efecc3cbf8e75200bc92daaeb88e5433c5e3e95ea8ce5aa7"}, + {file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82834962b3d7c5ca98cb56001c33cf20eb110ecf442725dc5fdf36d16ed1ab07"}, + {file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d26732ae002cc3d2ecab04897bb02ae3f11f06dd7575d1df46acd2f7c012a8d8"}, + {file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:58974b4987b2a71ee08ade1e7f47f410c367cdfc5a94fabd599c88165f56213a"}, + {file = "fonttools-4.54.1-cp311-cp311-win32.whl", hash = "sha256:ab774fa225238986218a463f3fe151e04d8c25d7de09df7f0f5fce27b1243dbc"}, + {file = "fonttools-4.54.1-cp311-cp311-win_amd64.whl", hash = "sha256:07e005dc454eee1cc60105d6a29593459a06321c21897f769a281ff2d08939f6"}, + {file = "fonttools-4.54.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:54471032f7cb5fca694b5f1a0aaeba4af6e10ae989df408e0216f7fd6cdc405d"}, + {file = "fonttools-4.54.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fa92cb248e573daab8d032919623cc309c005086d743afb014c836636166f08"}, + {file = "fonttools-4.54.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a911591200114969befa7f2cb74ac148bce5a91df5645443371aba6d222e263"}, + {file = "fonttools-4.54.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93d458c8a6a354dc8b48fc78d66d2a8a90b941f7fec30e94c7ad9982b1fa6bab"}, + {file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5eb2474a7c5be8a5331146758debb2669bf5635c021aee00fd7c353558fc659d"}, + {file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c9c563351ddc230725c4bdf7d9e1e92cbe6ae8553942bd1fb2b2ff0884e8b714"}, + {file = "fonttools-4.54.1-cp312-cp312-win32.whl", hash = "sha256:fdb062893fd6d47b527d39346e0c5578b7957dcea6d6a3b6794569370013d9ac"}, + {file = "fonttools-4.54.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4564cf40cebcb53f3dc825e85910bf54835e8a8b6880d59e5159f0f325e637e"}, + {file = "fonttools-4.54.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6e37561751b017cf5c40fce0d90fd9e8274716de327ec4ffb0df957160be3bff"}, + {file = "fonttools-4.54.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:357cacb988a18aace66e5e55fe1247f2ee706e01debc4b1a20d77400354cddeb"}, + {file = "fonttools-4.54.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e953cc0bddc2beaf3a3c3b5dd9ab7554677da72dfaf46951e193c9653e515a"}, + {file = "fonttools-4.54.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:58d29b9a294573d8319f16f2f79e42428ba9b6480442fa1836e4eb89c4d9d61c"}, + {file = "fonttools-4.54.1-cp313-cp313-win32.whl", hash = "sha256:9ef1b167e22709b46bf8168368b7b5d3efeaaa746c6d39661c1b4405b6352e58"}, + {file = "fonttools-4.54.1-cp313-cp313-win_amd64.whl", hash = "sha256:262705b1663f18c04250bd1242b0515d3bbae177bee7752be67c979b7d47f43d"}, + {file = "fonttools-4.54.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ed2f80ca07025551636c555dec2b755dd005e2ea8fbeb99fc5cdff319b70b23b"}, + {file = "fonttools-4.54.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9dc080e5a1c3b2656caff2ac2633d009b3a9ff7b5e93d0452f40cd76d3da3b3c"}, + {file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d152d1be65652fc65e695e5619e0aa0982295a95a9b29b52b85775243c06556"}, + {file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8583e563df41fdecef31b793b4dd3af8a9caa03397be648945ad32717a92885b"}, + {file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:0d1d353ef198c422515a3e974a1e8d5b304cd54a4c2eebcae708e37cd9eeffb1"}, + {file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:fda582236fee135d4daeca056c8c88ec5f6f6d88a004a79b84a02547c8f57386"}, + {file = "fonttools-4.54.1-cp38-cp38-win32.whl", hash = "sha256:e7d82b9e56716ed32574ee106cabca80992e6bbdcf25a88d97d21f73a0aae664"}, + {file = "fonttools-4.54.1-cp38-cp38-win_amd64.whl", hash = "sha256:ada215fd079e23e060157aab12eba0d66704316547f334eee9ff26f8c0d7b8ab"}, + {file = "fonttools-4.54.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f5b8a096e649768c2f4233f947cf9737f8dbf8728b90e2771e2497c6e3d21d13"}, + {file = "fonttools-4.54.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4e10d2e0a12e18f4e2dd031e1bf7c3d7017be5c8dbe524d07706179f355c5dac"}, + {file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31c32d7d4b0958600eac75eaf524b7b7cb68d3a8c196635252b7a2c30d80e986"}, + {file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c39287f5c8f4a0c5a55daf9eaf9ccd223ea59eed3f6d467133cc727d7b943a55"}, + {file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a7a310c6e0471602fe3bf8efaf193d396ea561486aeaa7adc1f132e02d30c4b9"}, + {file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d3b659d1029946f4ff9b6183984578041b520ce0f8fb7078bb37ec7445806b33"}, + {file = "fonttools-4.54.1-cp39-cp39-win32.whl", hash = "sha256:e96bc94c8cda58f577277d4a71f51c8e2129b8b36fd05adece6320dd3d57de8a"}, + {file = "fonttools-4.54.1-cp39-cp39-win_amd64.whl", hash = "sha256:e8a4b261c1ef91e7188a30571be6ad98d1c6d9fa2427244c545e2fa0a2494dd7"}, + {file = "fonttools-4.54.1-py3-none-any.whl", hash = "sha256:37cddd62d83dc4f72f7c3f3c2bcf2697e89a30efb152079896544a93907733bd"}, + {file = "fonttools-4.54.1.tar.gz", hash = "sha256:957f669d4922f92c171ba01bef7f29410668db09f6c02111e22b2bce446f3285"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "h5netcdf" +version = "1.4.0" +description = "netCDF4 via h5py" +optional = false +python-versions = ">=3.9" +files = [ + {file = "h5netcdf-1.4.0-py3-none-any.whl", hash = "sha256:d1bb96fce5dcf42908903c9798beeef70ac84e97159eb381f1b151459313f228"}, + {file = "h5netcdf-1.4.0.tar.gz", hash = "sha256:e959c3b5bd3ca7965ce5f4383a4e038ffcb55034c63d791829bd33a5ac38a962"}, +] + +[package.dependencies] +h5py = "*" +packaging = "*" + +[package.extras] +test = ["netCDF4", "pytest"] + +[[package]] +name = "h5py" +version = "3.12.1" +description = "Read and write HDF5 files from Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "h5py-3.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2f0f1a382cbf494679c07b4371f90c70391dedb027d517ac94fa2c05299dacda"}, + {file = "h5py-3.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cb65f619dfbdd15e662423e8d257780f9a66677eae5b4b3fc9dca70b5fd2d2a3"}, + {file = "h5py-3.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b15d8dbd912c97541312c0e07438864d27dbca857c5ad634de68110c6beb1c2"}, + {file = "h5py-3.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59685fe40d8c1fbbee088c88cd4da415a2f8bee5c270337dc5a1c4aa634e3307"}, + {file = "h5py-3.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:577d618d6b6dea3da07d13cc903ef9634cde5596b13e832476dd861aaf651f3e"}, + {file = "h5py-3.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ccd9006d92232727d23f784795191bfd02294a4f2ba68708825cb1da39511a93"}, + {file = "h5py-3.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ad8a76557880aed5234cfe7279805f4ab5ce16b17954606cca90d578d3e713ef"}, + {file = "h5py-3.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1473348139b885393125126258ae2d70753ef7e9cec8e7848434f385ae72069e"}, + {file = "h5py-3.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:018a4597f35092ae3fb28ee851fdc756d2b88c96336b8480e124ce1ac6fb9166"}, + {file = "h5py-3.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fdf95092d60e8130ba6ae0ef7a9bd4ade8edbe3569c13ebbaf39baefffc5ba4"}, + {file = "h5py-3.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:06a903a4e4e9e3ebbc8b548959c3c2552ca2d70dac14fcfa650d9261c66939ed"}, + {file = "h5py-3.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7b3b8f3b48717e46c6a790e3128d39c61ab595ae0a7237f06dfad6a3b51d5351"}, + {file = "h5py-3.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:050a4f2c9126054515169c49cb900949814987f0c7ae74c341b0c9f9b5056834"}, + {file = "h5py-3.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c4b41d1019322a5afc5082864dfd6359f8935ecd37c11ac0029be78c5d112c9"}, + {file = "h5py-3.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4d51919110a030913201422fb07987db4338eba5ec8c5a15d6fab8e03d443fc"}, + {file = "h5py-3.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:513171e90ed92236fc2ca363ce7a2fc6f2827375efcbb0cc7fbdd7fe11fecafc"}, + {file = "h5py-3.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:59400f88343b79655a242068a9c900001a34b63e3afb040bd7cdf717e440f653"}, + {file = "h5py-3.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3e465aee0ec353949f0f46bf6c6f9790a2006af896cee7c178a8c3e5090aa32"}, + {file = "h5py-3.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba51c0c5e029bb5420a343586ff79d56e7455d496d18a30309616fdbeed1068f"}, + {file = "h5py-3.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:52ab036c6c97055b85b2a242cb540ff9590bacfda0c03dd0cf0661b311f522f8"}, + {file = "h5py-3.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d2b8dd64f127d8b324f5d2cd1c0fd6f68af69084e9e47d27efeb9e28e685af3e"}, + {file = "h5py-3.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4532c7e97fbef3d029735db8b6f5bf01222d9ece41e309b20d63cfaae2fb5c4d"}, + {file = "h5py-3.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdf6d7936fa824acfa27305fe2d9f39968e539d831c5bae0e0d83ed521ad1ac"}, + {file = "h5py-3.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84342bffd1f82d4f036433e7039e241a243531a1d3acd7341b35ae58cdab05bf"}, + {file = "h5py-3.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:62be1fc0ef195891949b2c627ec06bc8e837ff62d5b911b6e42e38e0f20a897d"}, + {file = "h5py-3.12.1.tar.gz", hash = "sha256:326d70b53d31baa61f00b8aa5f95c2fcb9621a3ee8365d770c551a13dbbcbfdf"}, +] + +[package.dependencies] +numpy = ">=1.19.3" + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "imagesize" +version = "1.4.1" +description = "Getting image size from png/jpeg/jpeg2000/gif file" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, + {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, +] + +[[package]] +name = "importlib-resources" +version = "6.4.5" +description = "Read resources from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_resources-6.4.5-py3-none-any.whl", hash = "sha256:ac29d5f956f01d5e4bb63102a5a19957f1b9175e45649977264a1416783bb717"}, + {file = "importlib_resources-6.4.5.tar.gz", hash = "sha256:980862a1d16c9e147a59603677fa2aa5fd82b87f223b6cb870695bcfce830065"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +type = ["pytest-mypy"] + +[[package]] +name = "iniconfig" +version = "2.0.0" +description = "brain-dead simple config-ini parsing" +optional = false +python-versions = ">=3.7" +files = [ + {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, + {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.28.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +files = [ + {file = "ipython-8.28.0-py3-none-any.whl", hash = "sha256:530ef1e7bb693724d3cdc37287c80b07ad9b25986c007a53aa1857272dac3f35"}, + {file = "ipython-8.28.0.tar.gz", hash = "sha256:0d0d15ca1e01faeb868ef56bc7ee5a0de5bd66885735682e8a322ae289a13d1a"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5.13.0" +typing-extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx-registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing-extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +files = [ + {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, + {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.12,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.12,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, + {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, +] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.8" +files = [ + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, + {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, + {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, + {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, + {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, + {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, + {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, + {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, + {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, + {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, + {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, + {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, + {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, + {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, + {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, + {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, + {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, + {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, + {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, + {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, + {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, + {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, + {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, + {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, + {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, + {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, + {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, + {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, +] + +[[package]] +name = "logical-unification" +version = "0.4.6" +description = "Logical unification in Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "logical-unification-0.4.6.tar.gz", hash = "sha256:908435123f8a106fa4dcf9bf1b75c7beb309fa2bbecf277868af8f1c212650a0"}, +] + +[package.dependencies] +multipledispatch = "*" +toolz = "*" + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "markupsafe" +version = "3.0.2" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.9" +files = [ + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win32.whl", hash = "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a"}, + {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, +] + +[[package]] +name = "matplotlib" +version = "3.9.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"}, + {file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"}, + {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"}, + {file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"}, + {file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"}, + {file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"}, + {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"}, + {file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"}, + {file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"}, + {file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"}, + {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"}, + {file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"}, + {file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"}, + {file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"}, + {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"}, + {file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"}, + {file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"}, + {file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"}, + {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"}, + {file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"}, + {file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"}, + {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"}, + {file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"}, + {file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"}, + {file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"}, + {file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "minikanren" +version = "1.0.3" +description = "Relational programming in Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "miniKanren-1.0.3.tar.gz", hash = "sha256:1ec8bdb01144ad5e8752c7c297fb8a122db920f859276d25a72d164e998d7f6e"}, +] + +[package.dependencies] +cons = ">=0.4.0" +etuples = ">=0.3.1" +logical-unification = ">=0.4.1" +multipledispatch = "*" +toolz = "*" + +[[package]] +name = "multipledispatch" +version = "1.0.0" +description = "Multiple dispatch" +optional = false +python-versions = "*" +files = [ + {file = "multipledispatch-1.0.0-py3-none-any.whl", hash = "sha256:0c53cd8b077546da4e48869f49b13164bebafd0c2a5afceb6bb6a316e7fb46e4"}, + {file = "multipledispatch-1.0.0.tar.gz", hash = "sha256:5c839915465c68206c3e9c473357908216c28383b425361e5d144594bf85a7e0"}, +] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "nibabel" +version = "5.3.1" +description = "Access a multitude of neuroimaging data formats" +optional = false +python-versions = ">=3.9" +files = [ + {file = "nibabel-5.3.1-py3-none-any.whl", hash = "sha256:5c04c7139d41a59ef92839f1cabbe73061edd5787340bf2c9a34ed71f0db9d07"}, + {file = "nibabel-5.3.1.tar.gz", hash = "sha256:aec1b75dcf6bd9595a9196ff341b87957c69fb21bc5e38719463478dad83000a"}, +] + +[package.dependencies] +importlib-resources = {version = ">=5.12", markers = "python_version < \"3.12\""} +numpy = ">=1.22" +packaging = ">=20" +typing-extensions = {version = ">=4.6", markers = "python_version < \"3.13\""} + +[package.extras] +all = ["h5py", "pillow", "pydicom (>=2.3)", "pyzstd (>=0.14.3)", "scipy"] +dev = ["tox"] +dicom = ["pydicom (>=2.3)"] +dicomfs = ["pillow", "pydicom (>=2.3)"] +doc = ["matplotlib (>=3.5)", "numpydoc", "sphinx", "texext", "tomli"] +doctest = ["tox"] +minc2 = ["h5py"] +spm = ["scipy"] +style = ["tox"] +test = ["coverage (>=7.2)", "pytest", "pytest-cov", "pytest-doctestplus", "pytest-httpserver", "pytest-xdist"] +typing = ["tox"] +zstd = ["pyzstd (>=0.14.3)"] + +[[package]] +name = "numpy" +version = "1.26.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, + {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, + {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, + {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, + {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, + {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, + {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, + {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, + {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, + {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, + {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, +] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.2.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pathspec" +version = "0.12.1" +description = "Utility library for gitignore style pattern matching of file paths." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, + {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "11.0.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947"}, + {file = "pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488"}, + {file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f"}, + {file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb"}, + {file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97"}, + {file = "pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50"}, + {file = "pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c"}, + {file = "pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1"}, + {file = "pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc"}, + {file = "pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b"}, + {file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa"}, + {file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306"}, + {file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9"}, + {file = "pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5"}, + {file = "pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291"}, + {file = "pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9"}, + {file = "pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923"}, + {file = "pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9"}, + {file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7"}, + {file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6"}, + {file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc"}, + {file = "pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6"}, + {file = "pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47"}, + {file = "pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25"}, + {file = "pillow-11.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcd1fb5bb7b07f64c15618c89efcc2cfa3e95f0e3bcdbaf4642509de1942a699"}, + {file = "pillow-11.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0e038b0745997c7dcaae350d35859c9715c71e92ffb7e0f4a8e8a16732150f38"}, + {file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ae08bd8ffc41aebf578c2af2f9d8749d91f448b3bfd41d7d9ff573d74f2a6b2"}, + {file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d69bfd8ec3219ae71bcde1f942b728903cad25fafe3100ba2258b973bd2bc1b2"}, + {file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:61b887f9ddba63ddf62fd02a3ba7add935d053b6dd7d58998c630e6dbade8527"}, + {file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa"}, + {file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:73e3a0200cdda995c7e43dd47436c1548f87a30bb27fb871f352a22ab8dcf45f"}, + {file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fba162b8872d30fea8c52b258a542c5dfd7b235fb5cb352240c8d63b414013eb"}, + {file = "pillow-11.0.0-cp313-cp313-win32.whl", hash = "sha256:f1b82c27e89fffc6da125d5eb0ca6e68017faf5efc078128cfaa42cf5cb38798"}, + {file = "pillow-11.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:8ba470552b48e5835f1d23ecb936bb7f71d206f9dfeee64245f30c3270b994de"}, + {file = "pillow-11.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:846e193e103b41e984ac921b335df59195356ce3f71dcfd155aa79c603873b84"}, + {file = "pillow-11.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4ad70c4214f67d7466bea6a08061eba35c01b1b89eaa098040a35272a8efb22b"}, + {file = "pillow-11.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6ec0d5af64f2e3d64a165f490d96368bb5dea8b8f9ad04487f9ab60dc4bb6003"}, + {file = "pillow-11.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c809a70e43c7977c4a42aefd62f0131823ebf7dd73556fa5d5950f5b354087e2"}, + {file = "pillow-11.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4b60c9520f7207aaf2e1d94de026682fc227806c6e1f55bba7606d1c94dd623a"}, + {file = "pillow-11.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1e2688958a840c822279fda0086fec1fdab2f95bf2b717b66871c4ad9859d7e8"}, + {file = "pillow-11.0.0-cp313-cp313t-win32.whl", hash = "sha256:607bbe123c74e272e381a8d1957083a9463401f7bd01287f50521ecb05a313f8"}, + {file = "pillow-11.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5c39ed17edea3bc69c743a8dd3e9853b7509625c2462532e62baa0732163a904"}, + {file = "pillow-11.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:75acbbeb05b86bc53cbe7b7e6fe00fbcf82ad7c684b3ad82e3d711da9ba287d3"}, + {file = "pillow-11.0.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2e46773dc9f35a1dd28bd6981332fd7f27bec001a918a72a79b4133cf5291dba"}, + {file = "pillow-11.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2679d2258b7f1192b378e2893a8a0a0ca472234d4c2c0e6bdd3380e8dfa21b6a"}, + {file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eda2616eb2313cbb3eebbe51f19362eb434b18e3bb599466a1ffa76a033fb916"}, + {file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ec184af98a121fb2da42642dea8a29ec80fc3efbaefb86d8fdd2606619045d"}, + {file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:8594f42df584e5b4bb9281799698403f7af489fba84c34d53d1c4bfb71b7c4e7"}, + {file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:c12b5ae868897c7338519c03049a806af85b9b8c237b7d675b8c5e089e4a618e"}, + {file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:70fbbdacd1d271b77b7721fe3cdd2d537bbbd75d29e6300c672ec6bb38d9672f"}, + {file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5178952973e588b3f1360868847334e9e3bf49d19e169bbbdfaf8398002419ae"}, + {file = "pillow-11.0.0-cp39-cp39-win32.whl", hash = "sha256:8c676b587da5673d3c75bd67dd2a8cdfeb282ca38a30f37950511766b26858c4"}, + {file = "pillow-11.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:94f3e1780abb45062287b4614a5bc0874519c86a777d4a7ad34978e86428b8dd"}, + {file = "pillow-11.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:290f2cc809f9da7d6d622550bbf4c1e57518212da51b6a30fe8e0a270a5b78bd"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734"}, + {file = "pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316"}, + {file = "pillow-11.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5bd2d3bdb846d757055910f0a59792d33b555800813c3b39ada1829c372ccb06"}, + {file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:375b8dd15a1f5d2feafff536d47e22f69625c1aa92f12b339ec0b2ca40263273"}, + {file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:daffdf51ee5db69a82dd127eabecce20729e21f7a3680cf7cbb23f0829189790"}, + {file = "pillow-11.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7326a1787e3c7b0429659e0a944725e1b03eeaa10edd945a86dead1913383944"}, + {file = "pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "pluggy" +version = "1.5.0" +description = "plugin and hook calling mechanisms for python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, + {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, +] + +[package.extras] +dev = ["pre-commit", "tox"] +testing = ["pytest", "pytest-benchmark"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.1.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.1.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ff34df86226c0227c52f38b919213157588a678d049688eded74c76c8ba4a5d0"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:c0e0c00aa18ca2d3b2b991643b799a15fc8f0563d2ebb6040f64ce8dc027b942"}, + {file = "psutil-6.1.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:000d1d1ebd634b4efb383f4034437384e44a6d455260aaee2eca1e9c1b55f047"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:5cd2bcdc75b452ba2e10f0e8ecc0b57b827dd5d7aaffbc6821b2a9a242823a76"}, + {file = "psutil-6.1.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:045f00a43c737f960d273a83973b2511430d61f283a44c96bf13a6e829ba8fdc"}, + {file = "psutil-6.1.0-cp27-none-win32.whl", hash = "sha256:9118f27452b70bb1d9ab3198c1f626c2499384935aaf55388211ad982611407e"}, + {file = "psutil-6.1.0-cp27-none-win_amd64.whl", hash = "sha256:a8506f6119cff7015678e2bce904a4da21025cc70ad283a53b099e7620061d85"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6e2dcd475ce8b80522e51d923d10c7871e45f20918e027ab682f94f1c6351688"}, + {file = "psutil-6.1.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0895b8414afafc526712c498bd9de2b063deaac4021a3b3c34566283464aff8e"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dcbfce5d89f1d1f2546a2090f4fcf87c7f669d1d90aacb7d7582addece9fb38"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:498c6979f9c6637ebc3a73b3f87f9eb1ec24e1ce53a7c5173b8508981614a90b"}, + {file = "psutil-6.1.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d905186d647b16755a800e7263d43df08b790d709d575105d419f8b6ef65423a"}, + {file = "psutil-6.1.0-cp36-cp36m-win32.whl", hash = "sha256:6d3fbbc8d23fcdcb500d2c9f94e07b1342df8ed71b948a2649b5cb060a7c94ca"}, + {file = "psutil-6.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1209036fbd0421afde505a4879dee3b2fd7b1e14fee81c0069807adcbbcca747"}, + {file = "psutil-6.1.0-cp37-abi3-win32.whl", hash = "sha256:1ad45a1f5d0b608253b11508f80940985d1d0c8f6111b5cb637533a0e6ddc13e"}, + {file = "psutil-6.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:a8fb3752b491d246034fa4d279ff076501588ce8cbcdbb62c32fd7a377d996be"}, + {file = "psutil-6.1.0.tar.gz", hash = "sha256:353815f59a7f64cdaca1c0307ee13558a0512f6db064e92fe833784f08539c7a"}, +] + +[package.extras] +dev = ["black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pymc" +version = "5.17.0" +description = "Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor" +optional = false +python-versions = ">=3.10" +files = [ + {file = "pymc-5.17.0-py3-none-any.whl", hash = "sha256:1f6614589ab9095e79a98afb8bf173ea9810b4439591649e282708e3589c95e9"}, + {file = "pymc-5.17.0.tar.gz", hash = "sha256:3b7810f770c7aeab3087e289fadc97252ad423f3aa3f42b5715648f13df2aab7"}, +] + +[package.dependencies] +arviz = ">=0.13.0" +cachetools = ">=4.2.1" +cloudpickle = "*" +numpy = ">=1.15.0" +pandas = ">=0.24.0" +pytensor = ">=2.25.1,<2.26" +rich = ">=13.7.1" +scipy = ">=1.4.1" +threadpoolctl = ">=3.1.0,<4.0.0" +typing-extensions = ">=3.7.4" + +[[package]] +name = "pyparsing" +version = "3.2.0" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pyparsing-3.2.0-py3-none-any.whl", hash = "sha256:93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84"}, + {file = "pyparsing-3.2.0.tar.gz", hash = "sha256:cbf74e27246d595d9a74b186b810f6fbb86726dbf3b9532efb343f6d7294fe9c"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "pytensor" +version = "2.25.5" +description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." +optional = false +python-versions = "<3.13,>=3.10" +files = [ + {file = "pytensor-2.25.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:23ffac5ce99089abe3b6e1ae0c957f3af2a382209fb5894eb42acba0e01b96bf"}, + {file = "pytensor-2.25.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29754160a84ade77b63e1690aad8306da3b8f6f8e35c8ac5d36d1b19066b5f8d"}, + {file = "pytensor-2.25.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:51ea5083ec4760e6cfda48422d1b69e88d1b68e0f9a4aca41b0a89a4f38a1da7"}, + {file = "pytensor-2.25.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:343000f352c12ec36f5307d5c9ff7d8aba6dfa651be8c26b824d75cbad29d776"}, + {file = "pytensor-2.25.5-cp310-cp310-win_amd64.whl", hash = "sha256:50264e6365578ee15298f23578ddc00cec4f015c1cb77dafbb6c3216b11f689c"}, + {file = "pytensor-2.25.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a97e769900718fea3a0efd2a4c452775786ca3bd7966c6510e89a1356e516d55"}, + {file = "pytensor-2.25.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7f6a370a99095850949798ee0ada38ace5132172fcbb4272398e687de5b417"}, + {file = "pytensor-2.25.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:930429bdf5cee35868a06a9d075f2fb40b3471708a61bea62cfafd21aaa0811e"}, + {file = "pytensor-2.25.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:78686d9e26b26da2f0824f1f5a297f153b948a93c46e527d43d7337fe31e5afb"}, + {file = "pytensor-2.25.5-cp311-cp311-win_amd64.whl", hash = "sha256:8a7b9dc112e3cef8e05641da9429a46fe1cd9d3b3bf11763c3500bc941c49fc7"}, + {file = "pytensor-2.25.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f15cf74eff5e53854f9e74ac4991ae850e48641ccbb211200d214c599b76d691"}, + {file = "pytensor-2.25.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c99f2aed904178c59fac57f5a760b547f7c1c14c20d31e41721fbebf9e47cf1"}, + {file = "pytensor-2.25.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0c973a8a682854eb47378db33cfb5bc63ba5a868b5749fe79b2846e6795ff46d"}, + {file = "pytensor-2.25.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:16344b21bd70eb689c7db7ab91eec556012c08e9ad8a7cbeb42812d53f89a64e"}, + {file = "pytensor-2.25.5-cp312-cp312-win_amd64.whl", hash = "sha256:5edaa549903a8be02e6dcf56110d5cf523b6249460c455138e36686928a6c5a7"}, + {file = "pytensor-2.25.5-py2.py3-none-any.whl", hash = "sha256:92271932118e4d9e6528eeba1cdd0e9e8f2d05d8493eb394da2cd8cf09c8836e"}, + {file = "pytensor-2.25.5.tar.gz", hash = "sha256:f8b9f7d637104b2fc7fdd9c50219cc639744b718572c034b7cb8fe8f5051da92"}, +] + +[package.dependencies] +cons = "*" +etuples = "*" +filelock = ">=3.15" +logical-unification = "*" +miniKanren = "*" +numpy = ">=1.17.0,<2" +scipy = ">=1,<2" +setuptools = ">=59.0.0" + +[package.extras] +complete = ["pytensor[jax]", "pytensor[numba]"] +development = ["pytensor[complete]", "pytensor[rtd]", "pytensor[tests]"] +jax = ["jax", "jaxlib"] +numba = ["llvmlite", "numba (>=0.57)"] +rtd = ["pydot", "pydot-ng", "pydot2", "pygments", "sphinx (>=5.1.0,<6)"] +tests = ["coverage (>=5.1)", "pre-commit", "pytest", "pytest-benchmark", "pytest-cov (>=2.6.1)", "pytest-mock", "pytest-sphinx"] + +[[package]] +name = "pytest" +version = "8.3.3" +description = "pytest: simple powerful testing with Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pytest-8.3.3-py3-none-any.whl", hash = "sha256:a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2"}, + {file = "pytest-8.3.3.tar.gz", hash = "sha256:70b98107bd648308a7952b06e6ca9a50bc660be218d53c257cc1fc94fda10181"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} +iniconfig = "*" +packaging = "*" +pluggy = ">=1.5,<2" +tomli = {version = ">=1", markers = "python_version < \"3.11\""} + +[package.extras] +dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rich" +version = "13.9.2" +description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "rich-13.9.2-py3-none-any.whl", hash = "sha256:8c82a3d3f8dcfe9e734771313e606b39d8247bb6b826e196f4914b333b743cf1"}, + {file = "rich-13.9.2.tar.gz", hash = "sha256:51a2c62057461aaf7152b4d611168f93a9fc73068f8ded2790f29fe2b5366d0c"}, +] + +[package.dependencies] +markdown-it-py = ">=2.2.0" +pygments = ">=2.13.0,<3.0.0" +typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.11\""} + +[package.extras] +jupyter = ["ipywidgets (>=7.5.1,<9)"] + +[[package]] +name = "scikit-learn" +version = "1.5.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:299406827fb9a4f862626d0fe6c122f5f87f8910b86fe5daa4c32dcd742139b6"}, + {file = "scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2d4cad1119c77930b235579ad0dc25e65c917e756fe80cab96aa3b9428bd3fb0"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c412ccc2ad9bf3755915e3908e677b367ebc8d010acbb3f182814524f2e5540"}, + {file = "scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a686885a4b3818d9e62904d91b57fa757fc2bed3e465c8b177be652f4dd37c8"}, + {file = "scikit_learn-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:c15b1ca23d7c5f33cc2cb0a0d6aaacf893792271cddff0edbd6a40e8319bc113"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03b6158efa3faaf1feea3faa884c840ebd61b6484167c711548fce208ea09445"}, + {file = "scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1ff45e26928d3b4eb767a8f14a9a6efbf1cbff7c05d1fb0f95f211a89fd4f5de"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f763897fe92d0e903aa4847b0aec0e68cadfff77e8a0687cabd946c89d17e675"}, + {file = "scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8b0ccd4a902836493e026c03256e8b206656f91fbcc4fde28c57a5b752561f1"}, + {file = "scikit_learn-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:6c16d84a0d45e4894832b3c4d0bf73050939e21b99b01b6fd59cbb0cf39163b6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f932a02c3f4956dfb981391ab24bda1dbd90fe3d628e4b42caef3e041c67707a"}, + {file = "scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:3b923d119d65b7bd555c73be5423bf06c0105678ce7e1f558cb4b40b0a5502b1"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"}, + {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"}, + {file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"}, + {file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"}, + {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"}, + {file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"}, + {file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"}, + {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca64b3089a6d9b9363cd3546f8978229dcbb737aceb2c12144ee3f70f95684b7"}, + {file = "scikit_learn-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:3bed4909ba187aca80580fe2ef370d9180dcf18e621a27c4cf2ef10d279a7efe"}, + {file = "scikit_learn-1.5.2.tar.gz", hash = "sha256:b4237ed7b3fdd0a4882792e68ef2545d5baa50aca3bb45aa7df468138ad8f94d"}, +] + +[package.dependencies] +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" + +[package.extras] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-design (>=0.6.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.30)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] + +[[package]] +name = "scipy" +version = "1.14.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, + {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, + {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, + {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, + {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, + {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, + {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, + {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, + {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, + {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, + {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, + {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, + {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"}, + {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"}, + {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"}, + {file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"}, + {file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"}, + {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, +] + +[package.dependencies] +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "setuptools" +version = "75.2.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-75.2.0-py3-none-any.whl", hash = "sha256:a7fcb66f68b4d9e8e66b42f9876150a3371558f98fa32222ffaa5bced76406f8"}, + {file = "setuptools-75.2.0.tar.gz", hash = "sha256:753bb6ebf1f465a1912e19ed1d41f403a79173a9acf66a42e7e6aec45c3c16ec"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "snowballstemmer" +version = "2.2.0" +description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." +optional = false +python-versions = "*" +files = [ + {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, + {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, +] + +[[package]] +name = "sphinx" +version = "8.1.3" +description = "Python documentation generator" +optional = false +python-versions = ">=3.10" +files = [ + {file = "sphinx-8.1.3-py3-none-any.whl", hash = "sha256:09719015511837b76bf6e03e42eb7595ac8c2e41eeb9c29c5b755c6b677992a2"}, + {file = "sphinx-8.1.3.tar.gz", hash = "sha256:43c1911eecb0d3e161ad78611bc905d1ad0e523e4ddc202a58a821773dc4c927"}, +] + +[package.dependencies] +alabaster = ">=0.7.14" +babel = ">=2.13" +colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\""} +docutils = ">=0.20,<0.22" +imagesize = ">=1.3" +Jinja2 = ">=3.1" +packaging = ">=23.0" +Pygments = ">=2.17" +requests = ">=2.30.0" +snowballstemmer = ">=2.2" +sphinxcontrib-applehelp = ">=1.0.7" +sphinxcontrib-devhelp = ">=1.0.6" +sphinxcontrib-htmlhelp = ">=2.0.6" +sphinxcontrib-jsmath = ">=1.0.1" +sphinxcontrib-qthelp = ">=1.0.6" +sphinxcontrib-serializinghtml = ">=1.1.9" +tomli = {version = ">=2", markers = "python_version < \"3.11\""} + +[package.extras] +docs = ["sphinxcontrib-websupport"] +lint = ["flake8 (>=6.0)", "mypy (==1.11.1)", "pyright (==1.1.384)", "pytest (>=6.0)", "ruff (==0.6.9)", "sphinx-lint (>=0.9)", "tomli (>=2)", "types-Pillow (==10.2.0.20240822)", "types-Pygments (==2.18.0.20240506)", "types-colorama (==0.4.15.20240311)", "types-defusedxml (==0.7.0.20240218)", "types-docutils (==0.21.0.20241005)", "types-requests (==2.32.0.20240914)", "types-urllib3 (==1.26.25.14)"] +test = ["cython (>=3.0)", "defusedxml (>=0.7.1)", "pytest (>=8.0)", "setuptools (>=70.0)", "typing_extensions (>=4.9)"] + +[[package]] +name = "sphinx-tabs" +version = "3.4.7" +description = "Tabbed views for Sphinx" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sphinx-tabs-3.4.7.tar.gz", hash = "sha256:991ad4a424ff54119799ba1491701aa8130dd43509474aef45a81c42d889784d"}, + {file = "sphinx_tabs-3.4.7-py3-none-any.whl", hash = "sha256:c12d7a36fd413b369e9e9967a0a4015781b71a9c393575419834f19204bd1915"}, +] + +[package.dependencies] +docutils = "*" +pygments = "*" +sphinx = ">=1.8" + +[package.extras] +code-style = ["pre-commit (==2.13.0)"] +testing = ["bs4", "coverage", "pygments", "pytest (>=7.1,<8)", "pytest-cov", "pytest-regressions", "rinohtype"] + +[[package]] +name = "sphinxcontrib-applehelp" +version = "2.0.0" +description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_applehelp-2.0.0-py3-none-any.whl", hash = "sha256:4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5"}, + {file = "sphinxcontrib_applehelp-2.0.0.tar.gz", hash = "sha256:2f29ef331735ce958efa4734873f084941970894c6090408b079c61b2e1c06d1"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "sphinxcontrib-devhelp" +version = "2.0.0" +description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp documents" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_devhelp-2.0.0-py3-none-any.whl", hash = "sha256:aefb8b83854e4b0998877524d1029fd3e6879210422ee3780459e28a1f03a8a2"}, + {file = "sphinxcontrib_devhelp-2.0.0.tar.gz", hash = "sha256:411f5d96d445d1d73bb5d52133377b4248ec79db5c793ce7dbe59e074b4dd1ad"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "sphinxcontrib-htmlhelp" +version = "2.1.0" +description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_htmlhelp-2.1.0-py3-none-any.whl", hash = "sha256:166759820b47002d22914d64a075ce08f4c46818e17cfc9470a9786b759b19f8"}, + {file = "sphinxcontrib_htmlhelp-2.1.0.tar.gz", hash = "sha256:c9e2916ace8aad64cc13a0d233ee22317f2b9025b9cf3295249fa985cc7082e9"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["html5lib", "pytest"] + +[[package]] +name = "sphinxcontrib-jsmath" +version = "1.0.1" +description = "A sphinx extension which renders display math in HTML via JavaScript" +optional = false +python-versions = ">=3.5" +files = [ + {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, + {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, +] + +[package.extras] +test = ["flake8", "mypy", "pytest"] + +[[package]] +name = "sphinxcontrib-qthelp" +version = "2.0.0" +description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp documents" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_qthelp-2.0.0-py3-none-any.whl", hash = "sha256:b18a828cdba941ccd6ee8445dbe72ffa3ef8cbe7505d8cd1fa0d42d3f2d5f3eb"}, + {file = "sphinxcontrib_qthelp-2.0.0.tar.gz", hash = "sha256:4fe7d0ac8fc171045be623aba3e2a8f613f8682731f9153bb2e40ece16b9bbab"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["defusedxml (>=0.7.1)", "pytest"] + +[[package]] +name = "sphinxcontrib-serializinghtml" +version = "2.0.0" +description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_serializinghtml-2.0.0-py3-none-any.whl", hash = "sha256:6e2cb0eef194e10c27ec0023bfeb25badbbb5868244cf5bc5bdc04e4464bf331"}, + {file = "sphinxcontrib_serializinghtml-2.0.0.tar.gz", hash = "sha256:e9d912827f872c029017a53f0ef2180b327c3f7fd23c87229f7a8e8b70031d4d"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tomli" +version = "2.0.2" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, +] + +[[package]] +name = "toolz" +version = "1.0.0" +description = "List processing tools and functional utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "toolz-1.0.0-py3-none-any.whl", hash = "sha256:292c8f1c4e7516bf9086f8850935c799a874039c8bcf959d47b600e4c44a6236"}, + {file = "toolz-1.0.0.tar.gz", hash = "sha256:2c86e3d9a04798ac556793bced838816296a2f085017664e4995cb40a1047a02"}, +] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +files = [ + {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, + {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, +] + +[[package]] +name = "xarray" +version = "2024.9.0" +description = "N-D labeled arrays and datasets in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "xarray-2024.9.0-py3-none-any.whl", hash = "sha256:4fd534abdf12d5fa75dd566c56483d5081f77864462cf3d6ad53e13f9db48222"}, + {file = "xarray-2024.9.0.tar.gz", hash = "sha256:e796a6b3eaec11da24f33e4bb14af41897011660a0516fa4037d3ae4bbd1d378"}, +] + +[package.dependencies] +numpy = ">=1.24" +packaging = ">=23.1" +pandas = ">=2.1" + +[package.extras] +accel = ["bottleneck", "flox", "numbagg", "opt-einsum", "scipy"] +complete = ["xarray[accel,dev,io,parallel,viz]"] +dev = ["hypothesis", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-env", "pytest-timeout", "pytest-xdist", "ruff", "xarray[complete]"] +io = ["cftime", "fsspec", "h5netcdf", "netCDF4", "pooch", "pydap", "scipy", "zarr"] +parallel = ["dask[complete]"] +viz = ["matplotlib", "nc-time-axis", "seaborn"] + +[[package]] +name = "xarray-einstats" +version = "0.8.0" +description = "Stats, linear algebra and einops for xarray" +optional = false +python-versions = ">=3.10" +files = [ + {file = "xarray_einstats-0.8.0-py3-none-any.whl", hash = "sha256:fd00552c3fb5c859b1ebc7c88a97342d3bb93d14bba904c5a9b94a4f724b76b4"}, + {file = "xarray_einstats-0.8.0.tar.gz", hash = "sha256:7f1573f9bd4d60d6e7ed9fd27c4db39da51ec49bf8ba654d4602a139a6309d7f"}, +] + +[package.dependencies] +numpy = ">=1.23" +scipy = ">=1.9" +xarray = ">=2022.09.0" + +[package.extras] +doc = ["furo", "jupyter-sphinx", "matplotlib", "myst-nb", "myst-parser[linkify]", "numpydoc", "sphinx (>=5)", "sphinx-copybutton", "sphinx-design", "sphinx-togglebutton", "watermark"] +einops = ["einops"] +numba = ["numba (>=0.55)"] +test = ["hypothesis", "packaging", "pytest", "pytest-cov"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.10,<3.13" +content-hash = "c429aa38c33951c68b15a3f1ca4089b8589d0acf180a8ae10355bacf33a89704" From db9544c650f99127f5937d57860b2a0c52056a94 Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 21 Oct 2024 14:21:24 +0200 Subject: [PATCH 36/68] Basic tests check out --- tests/testHBR.py | 6 ++++-- tests/testHBR_transfer.py | 4 ++-- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/tests/testHBR.py b/tests/testHBR.py index 1d2ba679..cd4d2bd2 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -1,5 +1,7 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- + +# %% """ Created on Mon Jul 29 13:26:35 2019 @@ -24,7 +26,7 @@ random_state = 29 -working_dir = '/' # Specify a working directory to save data and results. +working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results. simulation_method = 'linear' n_features = 1 # The number of input features of X @@ -47,7 +49,7 @@ ################################# Fittig and Predicting ############################### nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True') + linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True', nuts_sampler='nutpie') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') diff --git a/tests/testHBR_transfer.py b/tests/testHBR_transfer.py index 029ad6b1..1b0cfa57 100644 --- a/tests/testHBR_transfer.py +++ b/tests/testHBR_transfer.py @@ -26,7 +26,7 @@ ########################### Experiment Settings ############################### -working_dir = '/home/stijn/temp/' # Specifyexit() a working directory +working_dir = '/Users/stijndeboer/temp/' # Specifyexit() a working directory # to save data and results. simulation_method = 'linear' @@ -86,7 +86,7 @@ print("Now Estimating on transfer train data ==============================================") nm.estimate_on_new_sites( X_train_transfer, Y_train_transfer, grp_id_train_transfer) - print("Now Estimating on transfer test data ==============================================") + print("Now Predicting on transfer test data ==============================================") yhat, s2 = nm.predict_on_new_sites(X_test_transfer, grp_id_test_transfer) for i in range(n_features): From 53d9dbc797db10c609454535c040060e6e737570 Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 22 Oct 2024 13:48:48 +0200 Subject: [PATCH 37/68] Add numba and nutpie dependencies --- poetry.lock | 156 +++++++++++++++++++++++++++++++++++++- pyproject.toml | 2 + tests/testHBR.py | 8 +- tests/testHBR_transfer.py | 7 +- tests/test_blr.py | 13 +++- 5 files changed, 177 insertions(+), 9 deletions(-) diff --git a/poetry.lock b/poetry.lock index fd9e155c..5108b93c 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1132,6 +1132,36 @@ files = [ {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] +[[package]] +name = "llvmlite" +version = "0.43.0" +description = "lightweight wrapper around basic LLVM functionality" +optional = false +python-versions = ">=3.9" +files = [ + {file = "llvmlite-0.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a289af9a1687c6cf463478f0fa8e8aa3b6fb813317b0d70bf1ed0759eab6f761"}, + {file = "llvmlite-0.43.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d4fd101f571a31acb1559ae1af30f30b1dc4b3186669f92ad780e17c81e91bc"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d434ec7e2ce3cc8f452d1cd9a28591745de022f931d67be688a737320dfcead"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6912a87782acdff6eb8bf01675ed01d60ca1f2551f8176a300a886f09e836a6a"}, + {file = "llvmlite-0.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:14f0e4bf2fd2d9a75a3534111e8ebeb08eda2f33e9bdd6dfa13282afacdde0ed"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749"}, + {file = "llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844"}, + {file = "llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9"}, + {file = "llvmlite-0.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9cd2a7376f7b3367019b664c21f0c61766219faa3b03731113ead75107f3b66c"}, + {file = "llvmlite-0.43.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18e9953c748b105668487b7c81a3e97b046d8abf95c4ddc0cd3c94f4e4651ae8"}, + {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74937acd22dc11b33946b67dca7680e6d103d6e90eeaaaf932603bec6fe7b03a"}, + {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9efc739cc6ed760f795806f67889923f7274276f0eb45092a1473e40d9b867"}, + {file = "llvmlite-0.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:47e147cdda9037f94b399bf03bfd8a6b6b1f2f90be94a454e3386f006455a9b4"}, + {file = "llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5"}, +] + [[package]] name = "logical-unification" version = "0.4.6" @@ -1409,6 +1439,40 @@ test = ["coverage (>=7.2)", "pytest", "pytest-cov", "pytest-doctestplus", "pytes typing = ["tox"] zstd = ["pyzstd (>=0.14.3)"] +[[package]] +name = "numba" +version = "0.60.0" +description = "compiling Python code using LLVM" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numba-0.60.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d761de835cd38fb400d2c26bb103a2726f548dc30368853121d66201672e651"}, + {file = "numba-0.60.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:159e618ef213fba758837f9837fb402bbe65326e60ba0633dbe6c7f274d42c1b"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1527dc578b95c7c4ff248792ec33d097ba6bef9eda466c948b68dfc995c25781"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe0b28abb8d70f8160798f4de9d486143200f34458d34c4a214114e445d7124e"}, + {file = "numba-0.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:19407ced081d7e2e4b8d8c36aa57b7452e0283871c296e12d798852bc7d7f198"}, + {file = "numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8"}, + {file = "numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8"}, + {file = "numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2"}, + {file = "numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404"}, + {file = "numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d"}, + {file = "numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347"}, + {file = "numba-0.60.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:01ef4cd7d83abe087d644eaa3d95831b777aa21d441a23703d649e06b8e06b74"}, + {file = "numba-0.60.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:819a3dfd4630d95fd574036f99e47212a1af41cbcb019bf8afac63ff56834449"}, + {file = "numba-0.60.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0b983bd6ad82fe868493012487f34eae8bf7dd94654951404114f23c3466d34b"}, + {file = "numba-0.60.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c151748cd269ddeab66334bd754817ffc0cabd9433acb0f551697e5151917d25"}, + {file = "numba-0.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:3031547a015710140e8c87226b4cfe927cac199835e5bf7d4fe5cb64e814e3ab"}, + {file = "numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16"}, +] + +[package.dependencies] +llvmlite = "==0.43.*" +numpy = ">=1.22,<2.1" + [[package]] name = "numpy" version = "1.26.4" @@ -1454,6 +1518,45 @@ files = [ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, ] +[[package]] +name = "nutpie" +version = "0.13.2" +description = "Sample Stan or PyMC models" +optional = false +python-versions = ">=3.10" +files = [ + {file = "nutpie-0.13.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4c731b6b32f51407ca973aefdcb0241c6dadfebcf47e781557344d28d346c0fa"}, + {file = "nutpie-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b69e62c4d25e62e670ef31244e65556ed562650dfbc56a068972e177c5e5e291"}, + {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a7cfe73f29769f7185e677587755ba63818e9334d161a69216c8d6cefd9d66b7"}, + {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0202a5b2352b065a269dd1467cacd4b9ef4020665373e4d12eede232425eaea8"}, + {file = "nutpie-0.13.2-cp310-none-win_amd64.whl", hash = "sha256:fa2f5f46fad31d9cdac486510a656a7e85df470662ffcd6c3c84534eb7d24c28"}, + {file = "nutpie-0.13.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:024fb04ddcaa2ce8a2cf6864bebe68acfb68518f6199c6d3de0c6b9b49d1ac75"}, + {file = "nutpie-0.13.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:225f17a15e33f731db43c55f821b988df2781568e2dc6f22ae9798e259386009"}, + {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:1a7a5e7012976327485349b581ae762cd6e60bb1805f9d323e0eed2d945c73a3"}, + {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be1635cdd6ec19cc541e212ee95e11288dda7a234a2ae7f70c2c91fdaa677fe0"}, + {file = "nutpie-0.13.2-cp311-none-win_amd64.whl", hash = "sha256:d7d297a975737ca997890cae284adca74e429567503596cbf66a37640faf4f10"}, + {file = "nutpie-0.13.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1656a4e45981db30d9ca850e889c10ac69c3e327a994607924c2db1dcefb49c7"}, + {file = "nutpie-0.13.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:57b6f6640996d88b290285acdcf7978bf9f6257c2a80d38eb5d1903e11bb0301"}, + {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:e1419e53a5ce3bfba39157cb1381eb18f1835bd1b73312d485e1f543f9ce3748"}, + {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6d29babf3773544692153799b3579f9de1e084a06fd2dcc851e97bef4c92768b"}, + {file = "nutpie-0.13.2-cp312-none-win_amd64.whl", hash = "sha256:5b6f45e2e475eee1519f18b6cbcd56ef225dbcaeb6f35e248d829467097ab385"}, + {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:db240a317b1ded7eddf2ca8e2b4bcfcdbd4624256655aac61625c8f7d5ca39d0"}, + {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2100024275ec6ba6de899188a3a2111f4b68aee7bfdbd4e4eb02ed4c922a9f22"}, + {file = "nutpie-0.13.2.tar.gz", hash = "sha256:f14282e2ac045c67a9b262a865b02a243178c55b541b236b21dfcb0c3678bcea"}, +] + +[package.dependencies] +arviz = ">=0.15.0" +pandas = ">=2.0" +pyarrow = ">=12.0.0" +xarray = ">=2023.6.0" + +[package.extras] +all = ["bridgestan (>=2.4.1)", "jax (>=0.4.27)", "numba (>=0.59.1)", "pymc (>=5.15.0)"] +pymc = ["numba (>=0.59.1)", "pymc (>=5.15.0)"] +pymc-jax = ["jax (>=0.4.27)", "pymc (>=5.15.0)"] +stan = ["bridgestan (>=2.4.1)"] + [[package]] name = "packaging" version = "24.1" @@ -1783,6 +1886,57 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "pyarrow" +version = "17.0.0" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyarrow-17.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a5c8b238d47e48812ee577ee20c9a2779e6a5904f1708ae240f53ecbee7c9f07"}, + {file = "pyarrow-17.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db023dc4c6cae1015de9e198d41250688383c3f9af8f565370ab2b4cb5f62655"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da1e060b3876faa11cee287839f9cc7cdc00649f475714b8680a05fd9071d545"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75c06d4624c0ad6674364bb46ef38c3132768139ddec1c56582dbac54f2663e2"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:fa3c246cc58cb5a4a5cb407a18f193354ea47dd0648194e6265bd24177982fe8"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:f7ae2de664e0b158d1607699a16a488de3d008ba99b3a7aa5de1cbc13574d047"}, + {file = "pyarrow-17.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5984f416552eea15fd9cee03da53542bf4cddaef5afecefb9aa8d1010c335087"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:1c8856e2ef09eb87ecf937104aacfa0708f22dfeb039c363ec99735190ffb977"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e19f569567efcbbd42084e87f948778eb371d308e137a0f97afe19bb860ccb3"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b244dc8e08a23b3e352899a006a26ae7b4d0da7bb636872fa8f5884e70acf15"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b72e87fe3e1db343995562f7fff8aee354b55ee83d13afba65400c178ab2597"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dc5c31c37409dfbc5d014047817cb4ccd8c1ea25d19576acf1a001fe07f5b420"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e3343cb1e88bc2ea605986d4b94948716edc7a8d14afd4e2c097232f729758b4"}, + {file = "pyarrow-17.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:a27532c38f3de9eb3e90ecab63dfda948a8ca859a66e3a47f5f42d1e403c4d03"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9b8a823cea605221e61f34859dcc03207e52e409ccf6354634143e23af7c8d22"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1e70de6cb5790a50b01d2b686d54aaf73da01266850b05e3af2a1bc89e16053"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0071ce35788c6f9077ff9ecba4858108eebe2ea5a3f7cf2cf55ebc1dbc6ee24a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:757074882f844411fcca735e39aae74248a1531367a7c80799b4266390ae51cc"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ba11c4f16976e89146781a83833df7f82077cdab7dc6232c897789343f7891a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b0c6ac301093b42d34410b187bba560b17c0330f64907bfa4f7f7f2444b0cf9b"}, + {file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c7916bff914ac5d4a8fe25b7a25e432ff921e72f6f2b7547d1e325c1ad9d155"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f553ca691b9e94b202ff741bdd40f6ccb70cdd5fbf65c187af132f1317de6145"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0cdb0e627c86c373205a2f94a510ac4376fdc523f8bb36beab2e7f204416163c"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d7d192305d9d8bc9082d10f361fc70a73590a4c65cf31c3e6926cd72b76bc35c"}, + {file = "pyarrow-17.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:02dae06ce212d8b3244dd3e7d12d9c4d3046945a5933d28026598e9dbbda1fca"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:13d7a460b412f31e4c0efa1148e1d29bdf18ad1411eb6757d38f8fbdcc8645fb"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9b564a51fbccfab5a04a80453e5ac6c9954a9c5ef2890d1bcf63741909c3f8df"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32503827abbc5aadedfa235f5ece8c4f8f8b0a3cf01066bc8d29de7539532687"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a155acc7f154b9ffcc85497509bcd0d43efb80d6f733b0dc3bb14e281f131c8b"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:dec8d129254d0188a49f8a1fc99e0560dc1b85f60af729f47de4046015f9b0a5"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:a48ddf5c3c6a6c505904545c25a4ae13646ae1f8ba703c4df4a1bfe4f4006bda"}, + {file = "pyarrow-17.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:42bf93249a083aca230ba7e2786c5f673507fa97bbd9725a1e2754715151a204"}, + {file = "pyarrow-17.0.0.tar.gz", hash = "sha256:4beca9521ed2c0921c1023e68d097d0299b62c362639ea315572a58f3f50fd28"}, +] + +[package.dependencies] +numpy = ">=1.16.6" + +[package.extras] +test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] + [[package]] name = "pycparser" version = "2.22" @@ -2633,4 +2787,4 @@ test = ["hypothesis", "packaging", "pytest", "pytest-cov"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "c429aa38c33951c68b15a3f1ca4089b8589d0acf180a8ae10355bacf33a89704" +content-hash = "243443b42aa8bbd9d52455e147000ebd4e1065e8de68e79fa93254d3e4e951fc" diff --git a/pyproject.toml b/pyproject.toml index 991ae576..bc33c1d7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,6 +14,8 @@ pymc = "^5.17.0" # Prefer Conda scikit-learn = "^1.5.2" # Prefer Conda seaborn = "^0.13.2" # Prefer conda six = "^1.16.0" # Prefer conda +nutpie = "^0.13.2" +numba = "^0.60.0" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" diff --git a/tests/testHBR.py b/tests/testHBR.py index 8929edb9..ebe8405c 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -25,13 +25,11 @@ random_state = 40 -working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results. - -working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results. +working_dir = '/Users/stijndeboer/temp/HBR/' # Specify a working directory to save data and results. simulation_method = 'linear' n_features = 1 # The number of input features of X -n_grps = 10 # Number of batches in data +n_grps = 3 # Number of batches in data n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) @@ -49,7 +47,7 @@ ################################# Fittig and Predicting ############################### nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True', nuts_sampler='nutpie') + linear_sigma='True', random_slope_mu='True', linear_epsilon='False', linear_delta='Fals', nuts_sampler='nutpie') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') diff --git a/tests/testHBR_transfer.py b/tests/testHBR_transfer.py index 1b0cfa57..29ec9c96 100644 --- a/tests/testHBR_transfer.py +++ b/tests/testHBR_transfer.py @@ -1,5 +1,7 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- + +# %% """ Created on Mon Jul 29 13:26:35 2019 @@ -26,7 +28,7 @@ ########################### Experiment Settings ############################### -working_dir = '/Users/stijndeboer/temp/' # Specifyexit() a working directory +working_dir = '/Users/stijndeboer/temp/HBR_transfer/' # Specifyexit() a working directory # to save data and results. simulation_method = 'linear' @@ -54,7 +56,7 @@ for model_type in model_types: nm = norm_init(X_train, Y_train, alg='hbr', likelihood='Normal', model_type=model_type, - n_chains=4, cores=4, n_samples=100, n_tuning=50, freedom=5, nknots=8, target_accept="0.99") + n_chains=4, cores=4, n_samples=100, n_tuning=50, freedom=5, nknots=8, target_accept="0.99", nuts_sampler='nutpie') print("Now Estimating on original train data ==============================================") nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') @@ -108,6 +110,7 @@ color='gray', alpha=0.2) plt.title('Transfer model %s, Feature %d' % (model_type, i)) plt.legend() + plt.savefig(os.path.join(working_dir, 'transfer_model_' + model_type + '_feature_' + str(i) + '.png')) plt.show() diff --git a/tests/test_blr.py b/tests/test_blr.py index 59be02c2..afaaad58 100644 --- a/tests/test_blr.py +++ b/tests/test_blr.py @@ -10,8 +10,9 @@ from pcntoolkit.model.bayesreg import BLR from pcntoolkit.model.gp import GPR from pcntoolkit.util.utils import WarpBoxCox, WarpAffine, WarpCompose, WarpSinArcsinh +import os - +workingdir = '/Users/stijndeboer/temp/BLR/' def create_noise(type_noise, N, parameters=None): """Function to create different noise distributions""" if type_noise == 'exp': @@ -112,6 +113,7 @@ def create_noise(type_noise, N, parameters=None): plt.fill_between(Xs, yhat-1.96*np.sqrt(s2), yhat+1.96*np.sqrt(s2), alpha=0.2) plt.scatter(X, y) plt.plot(Xs, yhat) +plt.savefig(os.path.join(workingdir, 'linear_regression.png')) plt.show() print(B.nlZ) @@ -151,11 +153,15 @@ def create_noise(type_noise, N, parameters=None): mod = (0.5*(1+lam*yhat + np.sqrt((1+lam*yhat)**2 + 4*s2*lam*(lam-1))))**(1/lam) plt.plot(Xs, mod, 'b--') plt.legend(('median', 'mode')) +plt.savefig(os.path.join(workingdir, 'warp1.png')) + plt.show() xx = np.linspace(-5, 5, 100) plt.plot(xx, W.invf(xx, warp_param)) plt.title('estimated warping function') +plt.savefig(os.path.join(workingdir, 'warp2.png')) + plt.show() # estimate a model with heteroskedastic noise @@ -181,6 +187,8 @@ def create_noise(type_noise, N, parameters=None): print(hyp) plt.fill_between(Xs, yhat-1.96*np.sqrt(s2), yhat+1.96*np.sqrt(s2), alpha=0.2) +plt.savefig(os.path.join(workingdir, 'linear_regression2.png')) + plt.show() print("Estimate a model with site-specific noise ...") @@ -232,6 +240,8 @@ def create_noise(type_noise, N, parameters=None): yhat, s2 = Bh.predict(hyp, Phi, y, Phis, var_groups_test=sids_te) + + for s in range(n_site): plt.scatter(X[idx[s]], y[idx[s]]) plt.plot(Xs[idx_te[s]], yhat[idx_te[s]], color=cols[s]) @@ -239,4 +249,5 @@ def create_noise(type_noise, N, parameters=None): yhat[idx_te[s]] - 1.96 * np.sqrt(s2[idx_te[s]]), yhat[idx_te[s]] + 1.96 * np.sqrt(s2[idx_te[s]]), alpha=0.2, color=cols[s]) +plt.savefig(os.path.join(workingdir, 'linear_regression3.png')) plt.show() From b25bc6ee1190f3a896d9d74001f9fb8b794fe033 Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 22 Oct 2024 13:56:04 +0200 Subject: [PATCH 38/68] Changes: - Add nutpie support for HBR - Add pyproject.toml with poetry for dependency management - Clean up the project - Tune HBR priors - Add multicore support for torque through 'n_cores_per_batch' kwarg - Adapted readme.py --- README.md | 24 ++++++------------------ requirements.txt | 0 setup.py | 0 3 files changed, 6 insertions(+), 18 deletions(-) delete mode 100644 requirements.txt delete mode 100644 setup.py diff --git a/README.md b/README.md index 51c7d474..d76af7c1 100644 --- a/README.md +++ b/README.md @@ -27,16 +27,16 @@ source activate Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option. -#### Install other required conda packages +#### Install PCNtoolkit +Using pip: ``` -conda install pip pandas scipy pymc +pip install pcntoolkit ``` -#### Install PCNtoolkit - +Using a local clone of the repo: ``` -pip install pcntoolkit +python -m pip install . ``` ## Alternative installation (on a shared resource) @@ -69,18 +69,6 @@ https://pytorch.org/get-started/locally/ If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip. -#### Install other dependencies - -``` -conda install -y pandas scipy pymc -``` - -#### Install pip dependencies - -``` -pip --no-cache-dir install nibabel scikit-learn torch glob3 -``` - #### Clone the repo ``` @@ -91,7 +79,7 @@ git clone https://github.com/amarquand/PCNtoolkit.git ``` cd PCNtoolkit/ -python3 setup.py install +python -m pip install . ``` ### Test ``` diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index e69de29b..00000000 diff --git a/setup.py b/setup.py deleted file mode 100644 index e69de29b..00000000 From 5898249156d4c4413d5c827c6298d33e997ea833 Mon Sep 17 00:00:00 2001 From: Augub Date: Tue, 22 Oct 2024 14:19:39 +0200 Subject: [PATCH 39/68] Update README.md --- README.md | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/README.md b/README.md index d76af7c1..af6078c1 100644 --- a/README.md +++ b/README.md @@ -27,6 +27,12 @@ source activate Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option. +### Install nutpie using conda + +``` +conda install nutpie +``` + #### Install PCNtoolkit Using pip: @@ -69,6 +75,13 @@ https://pytorch.org/get-started/locally/ If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip. + +### Install nutpie using conda + +``` +conda install nutpie +``` + #### Clone the repo ``` From 00458df05b76fba16bb28f34c706d8472c32d3b8 Mon Sep 17 00:00:00 2001 From: Augub Date: Tue, 22 Oct 2024 14:30:02 +0200 Subject: [PATCH 40/68] Set default argument for multicore on HPC --- pcntoolkit/normative_parallel.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py index 6b92b124..d5b95c60 100755 --- a/pcntoolkit/normative_parallel.py +++ b/pcntoolkit/normative_parallel.py @@ -112,7 +112,7 @@ def execute_nm(processing_dir, cluster_spec = kwargs.pop('cluster_spec', 'torque') log_path = kwargs.get('log_path', None) binary = kwargs.pop('binary', False) - cores = kwargs.pop('n_cores_per_batch') + cores = kwargs.pop('n_cores_per_batch','1') split_nm(processing_dir, respfile_path, From bdb6bfabe8d70d338b01cf943ddea673ef48dfd3 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 24 Oct 2024 12:23:07 +0200 Subject: [PATCH 41/68] Split KvOp and SHASH --- pcntoolkit/model/KOp.py | 34 ++++++++++++++++++++++++++++++++++ pcntoolkit/model/SHASH.py | 37 +++++-------------------------------- tests/testHBR.py | 2 +- 3 files changed, 40 insertions(+), 33 deletions(-) create mode 100644 pcntoolkit/model/KOp.py diff --git a/pcntoolkit/model/KOp.py b/pcntoolkit/model/KOp.py new file mode 100644 index 00000000..f4b8a654 --- /dev/null +++ b/pcntoolkit/model/KOp.py @@ -0,0 +1,34 @@ + +# Third-party imports +from pytensor.scalar.basic import BinaryScalarOp, ScalarOp, upgrade_to_float +from pytensor.gradient import grad_not_implemented + +import scipy.special as spp + +class KnuOp(BinaryScalarOp): + """ + Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv + """ + nfunc_spec = ("scipy.special.kv", 2, 1) + + @staticmethod + def st_impl(p, x): + return spp.kv(p, x) + + def impl(self, p, x): + return KnuOp.st_impl(p, x) + + def grad(self, inputs, grads): + dp = 1e-16 + (p, x) = inputs + (gz,) = grads + dfdp = (knuop(p + dp, x) - knuop(p - dp, x)) / (2*dp) + gni = grad_not_implemented(self, 0, 'x', ' Grad with respect to x is not implemented for KvOp') + # dfdx = spp.kvp(p, x) #TODO Implement this + return [ + gz * dfdp, + gni + ] + + +knuop = KnuOp(upgrade_to_float, name='knuop') \ No newline at end of file diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index d9139d67..13f84457 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -7,50 +7,23 @@ from typing import Union, List, Optional # Third-party imports -import pymc as pm from pymc import floatX from pymc.distributions import Continuous -import pytensor as pt import pytensor.tensor as ptt -from pytensor.graph.op import Op -from pytensor.graph import Apply -from pytensor.gradient import grad_not_implemented -from pytensor.tensor.random.basic import normal from pytensor.tensor.random.op import RandomVariable import numpy as np import scipy.special as spp import matplotlib.pyplot as plt -CONST1 = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) -CONST2 = -np.log(2 * np.pi) / 2 - -class KOp(Op): - """ - Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv - """ - __props__ = () - - def make_node(self, p, x): - p = pt.tensor.as_tensor_variable(p) - x = pt.tensor.as_tensor_variable(x) - return Apply(self, [p, x], [p.type()]) +from pcntoolkit.model.KOp import KnuOp, knuop - def perform(self, node, inputs_storage, output_storage): - output_storage[0][0] = spp.kv(inputs_storage[0], inputs_storage[1]) +from pytensor.tensor.elemwise import Elemwise - def grad(self, inputs, output_grads): - # Approximation of the derivative. This should suffice for using NUTS - dp = 1e-16 - p = inputs[0] - x = inputs[1] - grad = (self(p + dp, x) - self(p - dp, x)) / (2*dp) - return [ - output_grads[0] * grad, - grad_not_implemented("KOp", 2, "x", "") +CONST1 = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) +CONST2 = -np.log(2 * np.pi) / 2 - ] def S(x, epsilon, delta): """ @@ -126,7 +99,7 @@ def numpy_P(q): return a # Instance of the KOp -my_K = KOp() +my_K = Elemwise(knuop) def P(q): """ diff --git a/tests/testHBR.py b/tests/testHBR.py index ebe8405c..2d3baf9e 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -47,7 +47,7 @@ ################################# Fittig and Predicting ############################### nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_slope_mu='True', linear_epsilon='False', linear_delta='Fals', nuts_sampler='nutpie') + linear_sigma='True', random_slope_mu='True', linear_epsilon='False', linear_delta='True', nuts_sampler='nutpie') nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') From 159e9d16ada2daa2e8623c9fe512de2be26bb13b Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 25 Oct 2024 13:36:05 +0200 Subject: [PATCH 42/68] Refactoring SHASH --- pcntoolkit/model/SHASH.py | 465 ++++++++++++++++++++++++++------------ 1 file changed, 325 insertions(+), 140 deletions(-) diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 13f84457..441f952d 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -3,126 +3,93 @@ See: Jones et al. (2009), Sinh-Arcsinh distributions. """ -# Standard library imports -from typing import Union, List, Optional +from functools import lru_cache -# Third-party imports +import numpy as np +import pytensor as pt from pymc import floatX from pymc.distributions import Continuous - -import pytensor.tensor as ptt +from pytensor.tensor.elemwise import Elemwise from pytensor.tensor.random.op import RandomVariable -import numpy as np -import scipy.special as spp -import matplotlib.pyplot as plt +from pcntoolkit.model.KnuOp import knuop -from pcntoolkit.model.KOp import KnuOp, knuop - -from pytensor.tensor.elemwise import Elemwise +##### Constants ##### CONST1 = np.exp(0.25) / np.power(8.0 * np.pi, 0.5) CONST2 = -np.log(2 * np.pi) / 2 +##### SHASH Transformations ##### + def S(x, epsilon, delta): - """ - :param epsilon: - :param delta: - :param x: - :return: The sinharcsinh transformation of x + """Sinh-arcsinh transformation. + + Args: + x: input value + epsilon: parameter for skew + delta: parameter for kurtosis + + Returns: + Sinh-arcsinh transformed value """ return np.sinh(np.arcsinh(x) * delta - epsilon) def S_inv(x, epsilon, delta): - return np.sinh((np.arcsinh(x) + epsilon) / delta) + """Inverse sinh-arcsinh transformation. + Args: + x: input value + epsilon: parameter for skew + delta: parameter for kurtosis -def C(x, epsilon, delta): - """ - :param epsilon: - :param delta: - :param x: - :return: the cosharcsinh transformation of x - Be aware that this is sqrt(1+S(x)^2), so you may save some compute if you can re-use the result from S. + Returns: + Inverse sinh-arcsinh transformed value """ - return np.cosh(np.arcsinh(x) * delta - epsilon) + return np.sinh((np.arcsinh(x) + epsilon) / delta) -def m(epsilon, delta, r): - """ - :param epsilon: - :param delta: - :param r: - :return: The r'th uncentered moment of the SHASH distribution parameterized by epsilon and delta. Given by Jones et al. - The first four moments are given in closed form. - """ - if r == 1: - return np.sinh(epsilon / delta) * P(1 / delta) - elif r == 2: - return (np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2 - elif r == 3: - return ( - np.sinh(3 * epsilon / delta) * P(3 / delta) - - 3 * np.sinh(epsilon / delta) * P(1 / delta) - ) / 4 - elif r == 4: - return ( - np.cosh(4 * epsilon / delta) * P(4 / delta) - - 4 * np.cosh(2 * epsilon / delta) * P(2 / delta) - + 3 - ) / 8 - -def m1(epsilon, delta): - return np.sinh(epsilon / delta) * P(1 / delta) - -def m2(epsilon, delta): - return (np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2 - -def m3(epsilon, delta): - return ( - np.sinh(3 * epsilon / delta) * P(3 / delta) - - 3 * np.sinh(epsilon / delta) * P(1 / delta) - ) / 4 - -def numpy_P(q): - """ - The P function as given in Jones et al. - :param q: - :return: - """ - frac = CONST1 - K1 = spp.kv((q + 1) / 2, 0.25) - K2 = spp.kv((q - 1) / 2, 0.25) - a = (K1 + K2) * frac - return a +def C(x, epsilon, delta): + """Cosh-arcsinh transformation. -# Instance of the KOp -my_K = Elemwise(knuop) + Args: + x: input value + epsilon: parameter for skew + delta: parameter for kurtosis -def P(q): - """ - The P function as given in Jones et al. - :param q: - :return: + Returns: + The cosh-arcsinh transformation of x. + + Note: C(x) = sqrt(1+S(x)^2) """ - K1 = my_K((q + 1) / 2, 0.25) - K2 = my_K((q - 1) / 2, 0.25) - a = (K1 + K2) * CONST1 - return a + return np.cosh(np.arcsinh(x) * delta - epsilon) ##### SHASH Distributions ##### + class SHASH(RandomVariable): + """SHASH RV, described by Jones et al., based on a standard normal distribution.""" + name = "shash" signature = "(),()->()" dtype = "floatX" _print_name = ("SHASH", "\\operatorname{SHASH}") @classmethod - def rng_fn(cls, rng, epsilon, delta, size=None) -> np.ndarray: + def rng_fn(cls, rng, epsilon, delta, size=None): + """Draw random samples from SHASH distribution. + + Args: + rng: Random number generator + epsilon: skew parameter + delta: kurtosis parameter + size: sample size. Defaults to None. + + Returns: + Random samples from SHASH distribution + """ return np.sinh( (np.arcsinh(rng.normal(loc=0, scale=1, size=size)) + epsilon) / delta ) @@ -134,35 +101,144 @@ def rng_fn(cls, rng, epsilon, delta, size=None) -> np.ndarray: class SHASH(Continuous): rv_op = shash """ - SHASH described by Jones et al., based on a standard normal distribution. + SHASH distribution described by Jones et al., based on a standard normal distribution. """ + # Instance of the KOp + my_K = Elemwise(knuop) + + @staticmethod + @lru_cache(maxsize=128) + def P(q): + """The P function as given in Jones et al. + + Args: + q: input parameter for the P function + + Returns: + Result of the P function computation + """ + K1 = SHASH.my_K((q + 1) / 2, 0.25) + K2 = SHASH.my_K((q - 1) / 2, 0.25) + a = (K1 + K2) * CONST1 + return a + + @staticmethod + def m1(epsilon, delta): + """The first moment of the SHASH distribution parametrized by epsilon and delta. + + Args: + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + First moment of the SHASH distribution + """ + return np.sinh(epsilon / delta) * SHASH.P(1 / delta) + + @staticmethod + def m2(epsilon, delta): + """The second moment of the SHASH distribution parametrized by epsilon and delta. + + Args: + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Second moment of the SHASH distribution + """ + return (np.cosh(2 * epsilon / delta) * SHASH.P(2 / delta) - 1) / 2 + + @staticmethod + def m1m2(epsilon, delta): + """Compute both first and second moments together to avoid redundant calculations. + + Args: + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Tuple containing (mean, variance) of the SHASH distribution + """ + inv_delta = 1.0 / delta + two_inv_delta = 2.0 * inv_delta + + # Compute P values once + p1 = SHASH.P(inv_delta) + p2 = SHASH.P(two_inv_delta) + + # Compute trig terms once + eps_delta = epsilon / delta + sinh_eps_delta = np.sinh(eps_delta) + cosh_2eps_delta = np.cosh(2 * eps_delta) + + # Compute moments + mean = sinh_eps_delta * p1 + raw_second = (cosh_2eps_delta * p2 - 1) / 2 + var = raw_second - mean**2 + return mean, var + @classmethod def dist(cls, epsilon, delta, **kwargs): - epsilon = ptt.as_tensor_variable(floatX(epsilon)) - delta = ptt.as_tensor_variable(floatX(delta)) + """Return a SHASH distribution. + + Args: + epsilon: skew parameter + delta: kurtosis parameter + **kwargs: Additional arguments passed to the distribution + + Returns: + A SHASH distribution + """ + epsilon = pt.as_tensor_variable(floatX(epsilon)) + delta = pt.as_tensor_variable(floatX(delta)) return super().dist([epsilon, delta], **kwargs) def logp(value, epsilon, delta): + """Log-probability of the SHASH distribution. + + Args: + value: value to evaluate the log-probability at + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Log-probability of the SHASH distribution + """ this_S = S(value, epsilon, delta) - this_S_sqr = ptt.sqr(this_S) + this_S_sqr = pt.sqr(this_S) this_C_sqr = 1 + this_S_sqr - frac2 = ( - ptt.log(delta) + ptt.log(this_C_sqr) / - 2 - ptt.log(1 + ptt.sqr(value)) / 2 - ) + frac2 = pt.log(delta) + pt.log(this_C_sqr) / 2 - pt.log(1 + pt.sqr(value)) / 2 exp = -this_S_sqr / 2 return CONST2 + frac2 + exp class SHASHoRV(RandomVariable): + """SHASHo Random Variable. + + Samples from a SHASHo distribution, which is a SHASH distribution scaled by sigma and translated by mu. + """ + name = "shasho" signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHo", "\\operatorname{SHASHo}") @classmethod - def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None) -> np.ndarray: + def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None): + """Draw random samples from a SHASHo distribution. + + Args: + rng: Random number generator + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + size: sample size. Defaults to None. + + Returns: + Random samples from SHASHo distribution + """ s = rng.normal(size=size) return np.sinh((np.arcsinh(s) + epsilon) / delta) * sigma + mu @@ -171,41 +247,84 @@ def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None) -> np.ndarray: class SHASHo(Continuous): + """SHASHo distribution, which is a SHASH distribution scaled by sigma and translated by mu.""" + rv_op = shasho - """ - This is the transformation where the location and scale parameters have simply been applied as an linear transformation directly on the original distribution. - """ @classmethod def dist(cls, mu, sigma, epsilon, delta, **kwargs): - mu = ptt.as_tensor_variable(floatX(mu)) - sigma = ptt.as_tensor_variable(floatX(sigma)) - epsilon = ptt.as_tensor_variable(floatX(epsilon)) - delta = ptt.as_tensor_variable(floatX(delta)) + """Return a SHASHo distribution. + + Args: + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + **kwargs: Additional arguments passed to the distribution + + Returns: + A SHASHo distribution + """ + mu = pt.as_tensor_variable(floatX(mu)) + sigma = pt.as_tensor_variable(floatX(sigma)) + epsilon = pt.as_tensor_variable(floatX(epsilon)) + delta = pt.as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): + """The log-probability of the SHASHo distribution. + + Args: + value: value to evaluate the log-probability at + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Log-probability of the SHASHo distribution + """ remapped_value = (value - mu) / sigma this_S = S(remapped_value, epsilon, delta) - this_S_sqr = ptt.sqr(this_S) + this_S_sqr = pt.sqr(this_S) this_C_sqr = 1 + this_S_sqr frac2 = ( - ptt.log(delta) - + ptt.log(this_C_sqr) / 2 - - ptt.log(1 + ptt.sqr(remapped_value)) / 2 + pt.log(delta) + + pt.log(this_C_sqr) / 2 + - pt.log(1 + pt.sqr(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return CONST2 + frac2 + exp - ptt.log(sigma) + return CONST2 + frac2 + exp - pt.log(sigma) class SHASHo2RV(RandomVariable): + """SHASHo2 Random Variable. + + Samples from a SHASHo2 distribution, which is a SHASH distribution scaled by sigma/delta + and translated by mu. This variant provides an alternative parameterization where the + scale parameter is adjusted by the kurtosis parameter. + """ + name = "shasho2" signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHo2", "\\operatorname{SHASHo2}") @classmethod - def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None) -> np.ndarray: + def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None): + """Draw random samples from SHASHo2 distribution. + + Args: + rng: Random number generator + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + size: sample size. Defaults to None. + + Returns: + Random samples from SHASHo2 distribution + """ s = rng.normal(size=size) sigma_d = sigma / delta return np.sinh((np.arcsinh(s) + epsilon) / delta) * sigma_d + mu @@ -215,81 +334,147 @@ def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None) -> np.ndarray: class SHASHo2(Continuous): - rv_op = shasho2 - """ - This is the reparameterization where we apply the transformation provided in section 4.3 in Jones et al. + """SHASHo2 distribution, which is a SHASH distribution scaled by sigma/delta and translated by mu. + + This distribution provides an alternative parameterization of the SHASH distribution where + the scale parameter is adjusted by the kurtosis parameter. This can be useful in scenarios + where the relationship between scale and kurtosis needs to be explicitly modeled. """ + rv_op = shasho2 + @classmethod def dist(cls, mu, sigma, epsilon, delta, **kwargs): - mu = ptt.as_tensor_variable(floatX(mu)) - sigma = ptt.as_tensor_variable(floatX(sigma)) - epsilon = ptt.as_tensor_variable(floatX(epsilon)) - delta = ptt.as_tensor_variable(floatX(delta)) + """Return a SHASHo2 distribution. + + Args: + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + **kwargs: Additional arguments passed to the distribution + + Returns: + A SHASHo2 distribution + """ + mu = pt.as_tensor_variable(floatX(mu)) + sigma = pt.as_tensor_variable(floatX(sigma)) + epsilon = pt.as_tensor_variable(floatX(epsilon)) + delta = pt.as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): + """The log-probability of the SHASHo2 distribution. + + Args: + value: value to evaluate the log-probability at + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Log-probability of the SHASHo2 distribution + """ sigma_d = sigma / delta remapped_value = (value - mu) / sigma_d this_S = S(remapped_value, epsilon, delta) - this_S_sqr = ptt.sqr(this_S) + this_S_sqr = pt.sqr(this_S) this_C_sqr = 1 + this_S_sqr frac2 = ( - ptt.log(delta) - + ptt.log(this_C_sqr) / 2 - - ptt.log(1 + ptt.sqr(remapped_value)) / 2 + pt.log(delta) + + pt.log(this_C_sqr) / 2 + - pt.log(1 + pt.sqr(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return CONST2 + frac2 + exp - ptt.log(sigma_d) + return CONST2 + frac2 + exp - pt.log(sigma_d) +class SHASHbRV(RandomVariable): + """SHASHb Random Variable. + Samples from a SHASHb distribution, which is a standardized SHASH distribution scaled by sigma + and translated by mu. This variant provides a standardized version of the SHASH distribution + where the base distribution is normalized to have zero mean and unit variance before applying + the location and scale transformations. + """ -class SHASHbRV(RandomVariable): name = "shashb" signature = "(),(),(),()->()" dtype = "floatX" _print_name = ("SHASHb", "\\operatorname{SHASHb}") @classmethod - def rng_fn( - cls, - rng: np.random.RandomState, - mu: Union[np.ndarray, float], - sigma: Union[np.ndarray, float], - epsilon: Union[np.ndarray, float], - delta: Union[np.ndarray, float], - size: Optional[Union[List[int], int]], - ) -> np.ndarray: + def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None): + """Draw random samples from SHASHb distribution. + + Args: + rng: Random number generator + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + size: sample size. Defaults to None. + + Returns: + Random samples from SHASHb distribution + """ s = rng.normal(size=size) - mean = np.sinh(epsilon / delta) * numpy_P(1 / delta) - var = ((np.cosh(2 * epsilon / delta) * numpy_P(2 / delta) - 1) / 2) - mean**2 + mean, var = SHASH.m1m2(epsilon, delta) out = ( (np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var) ) * sigma + mu - return out + return out.eval() shashb = SHASHbRV() class SHASHb(Continuous): - rv_op = shashb - """ - This is the reparameterization where the location and scale parameters been applied as an linear transformation on the shash distribution which was corrected for mean and variance. + """SHASHb distribution, which is a standardized SHASH distribution scaled by sigma and translated by mu. + + This distribution provides a standardized version of the SHASH distribution where the base + distribution is normalized to have zero mean and unit variance before applying the location + and scale transformations. This transformation aims to remove the correlation between the + parameters, which can be useful in MCMC sampling. """ + rv_op = shashb + @classmethod def dist(cls, mu, sigma, epsilon, delta, **kwargs): - mu = ptt.as_tensor_variable(floatX(mu)) - sigma = ptt.as_tensor_variable(floatX(sigma)) - epsilon = ptt.as_tensor_variable(floatX(epsilon)) - delta = ptt.as_tensor_variable(floatX(delta)) + """Return a SHASHb distribution. + + Args: + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + **kwargs: Additional arguments passed to the distribution + + Returns: + A SHASHb distribution + """ + mu = pt.as_tensor_variable(floatX(mu)) + sigma = pt.as_tensor_variable(floatX(sigma)) + epsilon = pt.as_tensor_variable(floatX(epsilon)) + delta = pt.as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): - mean = m1(epsilon, delta) - var = m2(epsilon, delta) - mean**2 + """The log-probability of the SHASHb distribution. + + Args: + value: value to evaluate the log-probability at + mu: location parameter + sigma: scale parameter + epsilon: skew parameter + delta: kurtosis parameter + + Returns: + Log-probability of the SHASHb distribution + """ + mean, var = SHASH.m1m2(epsilon, delta) remapped_value = ((value - mu) / sigma) * np.sqrt(var) + mean this_S = S(remapped_value, epsilon, delta) this_S_sqr = np.square(this_S) From f3732b56359e1323d85f920bab870525da234a86 Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 25 Oct 2024 13:36:24 +0200 Subject: [PATCH 43/68] Refactor KOp (Now called KnuOp --- pcntoolkit/model/KOp.py | 34 ------------------------- pcntoolkit/model/KnuOp.py | 52 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 52 insertions(+), 34 deletions(-) delete mode 100644 pcntoolkit/model/KOp.py create mode 100644 pcntoolkit/model/KnuOp.py diff --git a/pcntoolkit/model/KOp.py b/pcntoolkit/model/KOp.py deleted file mode 100644 index f4b8a654..00000000 --- a/pcntoolkit/model/KOp.py +++ /dev/null @@ -1,34 +0,0 @@ - -# Third-party imports -from pytensor.scalar.basic import BinaryScalarOp, ScalarOp, upgrade_to_float -from pytensor.gradient import grad_not_implemented - -import scipy.special as spp - -class KnuOp(BinaryScalarOp): - """ - Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv - """ - nfunc_spec = ("scipy.special.kv", 2, 1) - - @staticmethod - def st_impl(p, x): - return spp.kv(p, x) - - def impl(self, p, x): - return KnuOp.st_impl(p, x) - - def grad(self, inputs, grads): - dp = 1e-16 - (p, x) = inputs - (gz,) = grads - dfdp = (knuop(p + dp, x) - knuop(p - dp, x)) / (2*dp) - gni = grad_not_implemented(self, 0, 'x', ' Grad with respect to x is not implemented for KvOp') - # dfdx = spp.kvp(p, x) #TODO Implement this - return [ - gz * dfdp, - gni - ] - - -knuop = KnuOp(upgrade_to_float, name='knuop') \ No newline at end of file diff --git a/pcntoolkit/model/KnuOp.py b/pcntoolkit/model/KnuOp.py new file mode 100644 index 00000000..c9f54fe4 --- /dev/null +++ b/pcntoolkit/model/KnuOp.py @@ -0,0 +1,52 @@ +# Third-party imports +import scipy.special as spp +from pytensor.scalar.basic import BinaryScalarOp, upgrade_to_float + + +class KnuOp(BinaryScalarOp): + """ + Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv + """ + + nfunc_spec = ("scipy.special.kv", 2, 1) + + @staticmethod + def st_impl(p, x): + return spp.kv(p, x) + + def impl(self, p, x): + return KnuOp.st_impl(p, x) + + def grad(self, inputs, grads): + dp = 1e-16 + (p, x) = inputs + (gz,) = grads + dfdp = (knuop(p + dp, x) - knuop(p - dp, x)) / (2 * dp) + return [gz * dfdp, gz * knupop(p, x)] + + +class KnuPrimeOp(BinaryScalarOp): + """ + Derivative of the modified Bessel function of the second kind. + """ + + nfunc_spec = ("scipy.special.kvp", 2, 1) + + @staticmethod + def st_impl(p, x): + return spp.kvp(p, x) + + def impl(self, p, x): + return KnuPrimeOp.st_impl(p, x) + + def grad(self, inputs, grads): + dp = 1e-16 + (p, x) = inputs + (gz,) = grads + dfdp = (knupop(p + dp, x) - knupop(p - dp, x)) / (2 * dp) + dfdx = -knuop(p, x) - knupop(p, x) / x + return [gz * dfdp, gz * dfdx] + + +knuop = KnuOp(upgrade_to_float, name="knuop") +knupop = KnuPrimeOp(upgrade_to_float, name="knupop") From 0013ea71d1b575d40122f1db7791cfaabd0cb6b8 Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 25 Oct 2024 13:36:58 +0200 Subject: [PATCH 44/68] Add tests for SHASH classes --- pytest_tests/test_shash.py | 100 +++++++++++++++++++++++++++++++++++++ 1 file changed, 100 insertions(+) create mode 100644 pytest_tests/test_shash.py diff --git a/pytest_tests/test_shash.py b/pytest_tests/test_shash.py new file mode 100644 index 00000000..2e81460a --- /dev/null +++ b/pytest_tests/test_shash.py @@ -0,0 +1,100 @@ +import numpy as np +from numpy.testing import assert_almost_equal, assert_array_almost_equal + +from pcntoolkit.model.SHASH import SHASH, C, S, S_inv, SHASHb, SHASHo, SHASHo2 + + +def test_shash_transformations(): + """Test the basic SHASH transformations (S, S_inv, C)""" + x = np.array([-2.0, -1.0, 0.0, 1.0, 2.0]) + epsilon = 0.5 + delta = 1.5 + + # Test S transformation + s_result = S(x, epsilon, delta) + # Test inverse relationship + s_inv_result = S_inv(s_result, epsilon, delta) + assert_array_almost_equal(x, s_inv_result, decimal=6) + + # Test C transformation + c_result = C(x, epsilon, delta) + # C should always be >= 1 since it's sqrt(1 + S^2) + assert np.all(c_result >= 1.0) + # Test relationship between S and C + assert_array_almost_equal(c_result, np.sqrt(1 + s_result**2), decimal=6) + + +def test_moment_calculations(): + """Test moment calculation functions""" + epsilon = 0.5 + delta = 1.5 + + # Test compute_moments function + mean, var = SHASH.m1m2(epsilon, delta) + assert_almost_equal(mean.eval(), SHASH.m1(epsilon, delta).eval(), decimal=6) + assert_almost_equal( + var.eval(), SHASH.m2(epsilon, delta).eval() - mean.eval() ** 2, decimal=6 + ) + + +def test_shash_random_generation(): + """Test random number generation for SHASH distributions""" + rng = np.random.RandomState(42) + n_samples = 1000 + + # Test base SHASH + epsilon, delta = 0.5, 1.5 + samples = SHASH.rv_op.rng_fn(rng, epsilon, delta, size=n_samples) + assert samples.shape == (n_samples,) + + # Test SHASHo + mu, sigma = 1.0, 2.0 + samples_o = SHASHo.rv_op.rng_fn(rng, mu, sigma, epsilon, delta, size=n_samples) + assert samples_o.shape == (n_samples,) + + # Test SHASHo2 + samples_o2 = SHASHo2.rv_op.rng_fn(rng, mu, sigma, epsilon, delta, size=n_samples) + assert samples_o2.shape == (n_samples,) + + # Test SHASHb + samples_b = SHASHb.rv_op.rng_fn(rng, mu, sigma, epsilon, delta, size=n_samples) + assert samples_b.shape == (n_samples,) + + +def test_shash_distribution_properties(): + """Test statistical properties of SHASH distributions""" + rng = np.random.RandomState(42) + n_samples = 10000 + mu, sigma = 1.0, 2.0 + epsilon, delta = 0.5, 1.5 + + # Generate samples from SHASHb + samples = SHASHb.rv_op.rng_fn(rng, mu, sigma, epsilon, delta, size=n_samples) + + # Check mean and standard deviation are close to specified values + assert_almost_equal(np.mean(samples), mu, decimal=1) + assert_almost_equal(np.std(samples), sigma, decimal=1) + + +def test_edge_cases(): + """Test edge cases and boundary conditions""" + x = np.array([-1e10, 0.0, 1e10]) # Test very large/small values + epsilon = 0.0 # Test zero skewness + delta = 1.0 # Test unit tail weight + + # S transformation should handle extreme values + s_result = S(x, epsilon, delta) + assert not np.any(np.isnan(s_result)) + assert not np.any(np.isinf(s_result)) + + # C transformation should handle extreme values + c_result = C(x, epsilon, delta) + assert not np.any(np.isnan(c_result)) + assert not np.any(np.isinf(c_result)) + assert np.all(c_result >= 1.0) + + # Test moment calculations with edge case parameters + mean, var = SHASH.m1m2(0.0, 1.0) # Standard case + assert not np.isnan(mean.eval()) + assert not np.isnan(var.eval()) + assert var.eval() > 0 # Variance should always be positive From 1679ec57bef97df136d7f303bf1ad38bba2d923e Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 25 Oct 2024 13:37:26 +0200 Subject: [PATCH 45/68] Formating --- tests/testHBR.py | 117 +++++++++++++++++++++++++++++++---------------- 1 file changed, 78 insertions(+), 39 deletions(-) diff --git a/tests/testHBR.py b/tests/testHBR.py index 2d3baf9e..0e19ac5b 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -10,47 +10,65 @@ This script tests HBR models with default configs on toy data. """ + # %% -import os +from warnings import filterwarnings + +import matplotlib.pyplot as plt import numpy as np + from pcntoolkit.normative_model.norm_utils import norm_init from pcntoolkit.util.utils import simulate_data -import matplotlib.pyplot as plt -from pcntoolkit.normative import estimate -from warnings import filterwarnings -filterwarnings('ignore') + +filterwarnings("ignore") ########################### Experiment Settings ############################### random_state = 40 -working_dir = '/Users/stijndeboer/temp/HBR/' # Specify a working directory to save data and results. +working_dir = "/Users/stijndeboer/temp/HBR/" # Specify a working directory to save data and results. -simulation_method = 'linear' -n_features = 1 # The number of input features of X -n_grps = 3 # Number of batches in data -n_samples = 500 # Number of samples in each group (use a list for different +simulation_method = "linear" +n_features = 1 # The number of input features of X +n_grps = 3 # Number of batches in data +n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) -model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline' +model_type = "bspline" # modelto try 'linear, ''polynomial', 'bspline' ############################## Data Simulation ################################ -X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \ - simulate_data(simulation_method, n_samples, n_features, n_grps, - working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian', - random_state=random_state) +X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = simulate_data( + simulation_method, + n_samples, + n_features, + n_grps, + working_dir=working_dir, + plot=True, + noise="heteroscedastic_nongaussian", + random_state=random_state, +) ################################# Fittig and Predicting ############################### -nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb', - linear_sigma='True', random_slope_mu='True', linear_epsilon='False', linear_delta='True', nuts_sampler='nutpie') +nm = norm_init( + X_train, + Y_train, + alg="hbr", + model_type=model_type, + likelihood="SHASHb", + linear_sigma="True", + random_slope_mu="False", + linear_epsilon="True", + linear_delta="True", + nuts_sampler="pymc", +) -nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl') -yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl') +nm.estimate(X_train, Y_train, trbefile=working_dir + "trbefile.pkl") +yhat, ys2 = nm.predict(X_test, tsbefile=working_dir + "tsbefile.pkl") ################################# Plotting Quantiles ############################### @@ -61,35 +79,47 @@ temp_be = grp_id_test[sorted_idx, :].squeeze() temp_yhat = yhat[sorted_idx,] temp_s2 = ys2[sorted_idx,] - + plt.figure() for j in range(n_grps): - scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,], - label='Group' + str(j)) + scat1 = plt.scatter( + temp_X[temp_be == j,], temp_Y[temp_be == j,], label="Group" + str(j) + ) # Showing the quantiles resolution = 200 synth_X = np.linspace(np.min(X_train), np.max(X_train), resolution) - q = nm.get_mcmc_quantiles( - synth_X, batch_effects=j*np.ones(resolution)) + q = nm.get_mcmc_quantiles(synth_X, batch_effects=j * np.ones(resolution)) col = scat1.get_facecolors()[0] - plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0) + plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0) - plt.title('Model %s, Feature %d' % (model_type, i)) + plt.title("Model %s, Feature %d" % (model_type, i)) plt.legend() plt.show(block=False) - plt.savefig(working_dir + 'quantiles_' + model_type + '_feature_' + str(i) + '.png') + plt.savefig(working_dir + "quantiles_" + model_type + "_feature_" + str(i) + ".png") for j in range(n_grps): plt.figure() plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,]) - plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,], color='red') - plt.fill_between(temp_X[temp_be == j,].squeeze(), - (temp_yhat[temp_be == j,] - 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), - (temp_yhat[temp_be == j,] + 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), - color='red', alpha=0.2) - plt.title('Model %s, Group %d, Feature %d' % (model_type, j, i)) + plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,], color="red") + plt.fill_between( + temp_X[temp_be == j,].squeeze(), + (temp_yhat[temp_be == j,] - 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), + (temp_yhat[temp_be == j,] + 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(), + color="red", + alpha=0.2, + ) + plt.title("Model %s, Group %d, Feature %d" % (model_type, j, i)) plt.show(block=False) - plt.savefig(working_dir + 'pred_' + model_type + '_group_' + str(j) + '_feature_' + str(i) + '.png') + plt.savefig( + working_dir + + "pred_" + + model_type + + "_group_" + + str(j) + + "_feature_" + + str(i) + + ".png" + ) ############################## Normative Modelling Test ####################### @@ -110,18 +140,27 @@ ############################################################################### + # %% for j in range(n_grps): # Showing the quantiles resolution = 200 synth_X = np.linspace(np.min(X_train), np.max(X_train), resolution) - q = nm.get_mcmc_quantiles( - synth_X, batch_effects=j*np.ones(resolution)) + q = nm.get_mcmc_quantiles(synth_X, batch_effects=j * np.ones(resolution)) plt.figure() plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,]) - plt.plot(synth_X, q.T, color='black') - plt.title('Model %s, Group %d, Feature %d' % (model_type, j, i)) + plt.plot(synth_X, q.T, color="black") + plt.title("Model %s, Group %d, Feature %d" % (model_type, j, i)) plt.show(block=False) - plt.savefig(working_dir + 'pred_' + model_type + '_group_' + str(j) + '_feature_' + str(i) + '.png') + plt.savefig( + working_dir + + "pred_" + + model_type + + "_group_" + + str(j) + + "_feature_" + + str(i) + + ".png" + ) # %% From 445dfabb018f6cedca7c7893fc08945f73389736 Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 25 Oct 2024 14:08:51 +0200 Subject: [PATCH 46/68] Correct call to as_tensor_variable Refactor P and m1m2 Add grad_not_implemented warning for P` --- pcntoolkit/model/KnuOp.py | 8 ++---- pcntoolkit/model/SHASH.py | 54 +++++++++++++++++++++++++++------------ 2 files changed, 40 insertions(+), 22 deletions(-) diff --git a/pcntoolkit/model/KnuOp.py b/pcntoolkit/model/KnuOp.py index c9f54fe4..35e93302 100644 --- a/pcntoolkit/model/KnuOp.py +++ b/pcntoolkit/model/KnuOp.py @@ -1,5 +1,6 @@ # Third-party imports import scipy.special as spp +from pytensor.gradient import grad_not_implemented from pytensor.scalar.basic import BinaryScalarOp, upgrade_to_float @@ -40,12 +41,7 @@ def impl(self, p, x): return KnuPrimeOp.st_impl(p, x) def grad(self, inputs, grads): - dp = 1e-16 - (p, x) = inputs - (gz,) = grads - dfdp = (knupop(p + dp, x) - knupop(p - dp, x)) / (2 * dp) - dfdx = -knuop(p, x) - knupop(p, x) / x - return [gz * dfdp, gz * dfdx] + return [grad_not_implemented(self, 0, "p"), grad_not_implemented(self, 1, "x")] knuop = KnuOp(upgrade_to_float, name="knuop") diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index 441f952d..a64317e7 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -9,8 +9,10 @@ import pytensor as pt from pymc import floatX from pymc.distributions import Continuous +from pytensor.tensor import as_tensor_variable from pytensor.tensor.elemwise import Elemwise from pytensor.tensor.random.op import RandomVariable +from scipy.special import kv from pcntoolkit.model.KnuOp import knuop @@ -190,8 +192,8 @@ def dist(cls, epsilon, delta, **kwargs): Returns: A SHASH distribution """ - epsilon = pt.as_tensor_variable(floatX(epsilon)) - delta = pt.as_tensor_variable(floatX(delta)) + epsilon = as_tensor_variable(floatX(epsilon)) + delta = as_tensor_variable(floatX(delta)) return super().dist([epsilon, delta], **kwargs) def logp(value, epsilon, delta): @@ -265,10 +267,10 @@ def dist(cls, mu, sigma, epsilon, delta, **kwargs): Returns: A SHASHo distribution """ - mu = pt.as_tensor_variable(floatX(mu)) - sigma = pt.as_tensor_variable(floatX(sigma)) - epsilon = pt.as_tensor_variable(floatX(epsilon)) - delta = pt.as_tensor_variable(floatX(delta)) + mu = as_tensor_variable(floatX(mu)) + sigma = as_tensor_variable(floatX(sigma)) + epsilon = as_tensor_variable(floatX(epsilon)) + delta = as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): @@ -357,10 +359,10 @@ def dist(cls, mu, sigma, epsilon, delta, **kwargs): Returns: A SHASHo2 distribution """ - mu = pt.as_tensor_variable(floatX(mu)) - sigma = pt.as_tensor_variable(floatX(sigma)) - epsilon = pt.as_tensor_variable(floatX(epsilon)) - delta = pt.as_tensor_variable(floatX(delta)) + mu = as_tensor_variable(floatX(mu)) + sigma = as_tensor_variable(floatX(sigma)) + epsilon = as_tensor_variable(floatX(epsilon)) + delta = as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): @@ -420,11 +422,31 @@ def rng_fn(cls, rng, mu, sigma, epsilon, delta, size=None): Random samples from SHASHb distribution """ s = rng.normal(size=size) - mean, var = SHASH.m1m2(epsilon, delta) + + def P(q): + K1 = kv((q + 1) / 2, 0.25) + K2 = kv((q - 1) / 2, 0.25) + a = (K1 + K2) * CONST1 + return a + + def m1m2(epsilon, delta): + inv_delta = 1.0 / delta + two_inv_delta = 2.0 * inv_delta + p1 = P(inv_delta) + p2 = P(two_inv_delta) + eps_delta = epsilon / delta + sinh_eps_delta = np.sinh(eps_delta) + cosh_2eps_delta = np.cosh(2 * eps_delta) + mean = sinh_eps_delta * p1 + raw_second = (cosh_2eps_delta * p2 - 1) / 2 + var = raw_second - mean**2 + return mean, var + + mean, var = m1m2(epsilon, delta) out = ( (np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var) ) * sigma + mu - return out.eval() + return out shashb = SHASHbRV() @@ -455,10 +477,10 @@ def dist(cls, mu, sigma, epsilon, delta, **kwargs): Returns: A SHASHb distribution """ - mu = pt.as_tensor_variable(floatX(mu)) - sigma = pt.as_tensor_variable(floatX(sigma)) - epsilon = pt.as_tensor_variable(floatX(epsilon)) - delta = pt.as_tensor_variable(floatX(delta)) + mu = as_tensor_variable(floatX(mu)) + sigma = as_tensor_variable(floatX(sigma)) + epsilon = as_tensor_variable(floatX(epsilon)) + delta = as_tensor_variable(floatX(delta)) return super().dist([mu, sigma, epsilon, delta], **kwargs) def logp(value, mu, sigma, epsilon, delta): From 76340afc5889d0472fcb50ae7135ca2784abe946 Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 6 Nov 2024 16:30:13 +0100 Subject: [PATCH 47/68] Fix pandas backwards compatibility --- pcntoolkit/normative_model/norm_base.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/pcntoolkit/normative_model/norm_base.py b/pcntoolkit/normative_model/norm_base.py index 7839e740..268d421e 100644 --- a/pcntoolkit/normative_model/norm_base.py +++ b/pcntoolkit/normative_model/norm_base.py @@ -1,8 +1,10 @@ import os +import pickle import sys -from six import with_metaclass from abc import ABCMeta, abstractmethod -import pickle + +import pandas as pd +from six import with_metaclass try: # run as a package if installed from pcntoolkit import configs @@ -53,7 +55,7 @@ def save(self, save_path): def load(self, load_path): try: with open(load_path, 'rb') as handle: - nm = pickle.load(handle) + nm = pd.read_pickle(handle) return nm except Exception as err: print('Error:', err) From 104f28d3527a757de4af88d13d4ea91dbfaadd6c Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 8 Nov 2024 16:17:31 +0100 Subject: [PATCH 48/68] cmake dependency added --- pcntoolkit/regression_model/blr/warp.py | 1 + poetry.lock | 228 ++++++++++++++---------- pyproject.toml | 1 + 3 files changed, 133 insertions(+), 97 deletions(-) create mode 100644 pcntoolkit/regression_model/blr/warp.py diff --git a/pcntoolkit/regression_model/blr/warp.py b/pcntoolkit/regression_model/blr/warp.py new file mode 100644 index 00000000..0519ecba --- /dev/null +++ b/pcntoolkit/regression_model/blr/warp.py @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/poetry.lock b/poetry.lock index 5108b93c..165a1724 100644 --- a/poetry.lock +++ b/poetry.lock @@ -380,6 +380,36 @@ files = [ {file = "cloudpickle-3.1.0.tar.gz", hash = "sha256:81a929b6e3c7335c863c771d673d105f02efdb89dfaba0c90495d1c64796601b"}, ] +[[package]] +name = "cmake" +version = "3.30.5" +description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cmake-3.30.5-py3-none-macosx_10_10_universal2.whl", hash = "sha256:c518d174cde8c5bda3dc9c906af2e1ad54448019d9a9061c5d85331c67bbaa60"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:085728e950e6096014c99fc46361fbaa508863157bafe0ecf6dc232c16098456"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:437e9f885cf576f47b45974a92239d7c86da91e99e62ecf1aa8be454703dd1a6"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3a662e22dba1288b678daa5544a62a05da1992e0b654e799217e22bc7e5194a"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dbedacaba2daa40726569590762d775246325b609753d7af888dc7eda49c7bd"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a5c113428aa9f3b4b2ce2e6dc1b932cfe3991be04d215c5ab51c078eae3e674"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9edd4065dbc67a6861255f05135249a3f042f1e09a73c608f84a1a0c6a60a266"}, + {file = "cmake-3.30.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db049e551e2f0562b3b225ac760888ee38b8ade62d74213f3611420e6b22f36d"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:f9b351ad3b0bacd04fe73a35b71bf603416b0441d295c13881e56eba6ec01b4b"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_1_i686.whl", hash = "sha256:c37f41ac7e7a806c91d16cd3efcd696635634bb63e0d9007582373f5a81c4fa1"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:e4fd409b3455a01fe80860503be4c1b34e2e12cc5433921c7aed1102a3870322"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:4a1ded0183a75bd71ee275ef976e8eb97b4a5f4b58e09c90c1734c509acb7d5a"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:e2fd43ab522695e0ebbb6dfc6a1466daeb66c57f7f4aade02fe8c5a61acc2828"}, + {file = "cmake-3.30.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:6161031b0c89f3f60b82cd5e1dd8cdef47b0a057f9a5349e18bf1507ac4b2402"}, + {file = "cmake-3.30.5-py3-none-win32.whl", hash = "sha256:3ee3ab9b4d3fcdb9360104ef2175a47e145693b365983dcd8ccb5d58b1d0ab7f"}, + {file = "cmake-3.30.5-py3-none-win_amd64.whl", hash = "sha256:dddb1c82e69c8cf79a314f57c2cbb1b3c152758fa0997a5f5ddf8fc8207c994a"}, + {file = "cmake-3.30.5-py3-none-win_arm64.whl", hash = "sha256:ef454176664c941da91197feb91b68cab91ef0354ab0c4d7bfb70e069cb700f1"}, + {file = "cmake-3.30.5.tar.gz", hash = "sha256:2815a2b4dde61a78648a2ff4318d2d303eb41600c4bdb32fcb237b4746444ed2"}, +] + +[package.extras] +test = ["coverage (>=4.2)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)"] + [[package]] name = "colorama" version = "0.4.6" @@ -522,37 +552,37 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "debugpy" -version = "1.8.7" +version = "1.8.8" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b"}, - {file = "debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9"}, - {file = "debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55"}, - {file = "debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037"}, - {file = "debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f"}, - {file = "debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0"}, - {file = "debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2"}, - {file = "debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211"}, - {file = "debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706"}, - {file = "debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2"}, - {file = "debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca"}, - {file = "debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39"}, - {file = "debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40"}, - {file = "debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7"}, - {file = "debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba"}, - {file = "debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa"}, - {file = "debugpy-1.8.7-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:4b908291a1d051ef3331484de8e959ef3e66f12b5e610c203b5b75d2725613a7"}, - {file = "debugpy-1.8.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da8df5b89a41f1fd31503b179d0a84a5fdb752dddd5b5388dbd1ae23cda31ce9"}, - {file = "debugpy-1.8.7-cp38-cp38-win32.whl", hash = "sha256:b12515e04720e9e5c2216cc7086d0edadf25d7ab7e3564ec8b4521cf111b4f8c"}, - {file = "debugpy-1.8.7-cp38-cp38-win_amd64.whl", hash = "sha256:93176e7672551cb5281577cdb62c63aadc87ec036f0c6a486f0ded337c504596"}, - {file = "debugpy-1.8.7-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:90d93e4f2db442f8222dec5ec55ccfc8005821028982f1968ebf551d32b28907"}, - {file = "debugpy-1.8.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6db2a370e2700557a976eaadb16243ec9c91bd46f1b3bb15376d7aaa7632c81"}, - {file = "debugpy-1.8.7-cp39-cp39-win32.whl", hash = "sha256:a6cf2510740e0c0b4a40330640e4b454f928c7b99b0c9dbf48b11efba08a8cda"}, - {file = "debugpy-1.8.7-cp39-cp39-win_amd64.whl", hash = "sha256:6a9d9d6d31846d8e34f52987ee0f1a904c7baa4912bf4843ab39dadf9b8f3e0d"}, - {file = "debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae"}, - {file = "debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e"}, + {file = "debugpy-1.8.8-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:e59b1607c51b71545cb3496876544f7186a7a27c00b436a62f285603cc68d1c6"}, + {file = "debugpy-1.8.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6531d952b565b7cb2fbd1ef5df3d333cf160b44f37547a4e7cf73666aca5d8d"}, + {file = "debugpy-1.8.8-cp310-cp310-win32.whl", hash = "sha256:b01f4a5e5c5fb1d34f4ccba99a20ed01eabc45a4684f4948b5db17a319dfb23f"}, + {file = "debugpy-1.8.8-cp310-cp310-win_amd64.whl", hash = "sha256:535f4fb1c024ddca5913bb0eb17880c8f24ba28aa2c225059db145ee557035e9"}, + {file = "debugpy-1.8.8-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:c399023146e40ae373753a58d1be0a98bf6397fadc737b97ad612886b53df318"}, + {file = "debugpy-1.8.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:09cc7b162586ea2171eea055985da2702b0723f6f907a423c9b2da5996ad67ba"}, + {file = "debugpy-1.8.8-cp311-cp311-win32.whl", hash = "sha256:eea8821d998ebeb02f0625dd0d76839ddde8cbf8152ebbe289dd7acf2cdc6b98"}, + {file = "debugpy-1.8.8-cp311-cp311-win_amd64.whl", hash = "sha256:d4483836da2a533f4b1454dffc9f668096ac0433de855f0c22cdce8c9f7e10c4"}, + {file = "debugpy-1.8.8-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:0cc94186340be87b9ac5a707184ec8f36547fb66636d1029ff4f1cc020e53996"}, + {file = "debugpy-1.8.8-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64674e95916e53c2e9540a056e5f489e0ad4872645399d778f7c598eacb7b7f9"}, + {file = "debugpy-1.8.8-cp312-cp312-win32.whl", hash = "sha256:5c6e885dbf12015aed73770f29dec7023cb310d0dc2ba8bfbeb5c8e43f80edc9"}, + {file = "debugpy-1.8.8-cp312-cp312-win_amd64.whl", hash = "sha256:19ffbd84e757a6ca0113574d1bf5a2298b3947320a3e9d7d8dc3377f02d9f864"}, + {file = "debugpy-1.8.8-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:705cd123a773d184860ed8dae99becd879dfec361098edbefb5fc0d3683eb804"}, + {file = "debugpy-1.8.8-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890fd16803f50aa9cb1a9b9b25b5ec321656dd6b78157c74283de241993d086f"}, + {file = "debugpy-1.8.8-cp313-cp313-win32.whl", hash = "sha256:90244598214bbe704aa47556ec591d2f9869ff9e042e301a2859c57106649add"}, + {file = "debugpy-1.8.8-cp313-cp313-win_amd64.whl", hash = "sha256:4b93e4832fd4a759a0c465c967214ed0c8a6e8914bced63a28ddb0dd8c5f078b"}, + {file = "debugpy-1.8.8-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:143ef07940aeb8e7316de48f5ed9447644da5203726fca378f3a6952a50a9eae"}, + {file = "debugpy-1.8.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f95651bdcbfd3b27a408869a53fbefcc2bcae13b694daee5f1365b1b83a00113"}, + {file = "debugpy-1.8.8-cp38-cp38-win32.whl", hash = "sha256:26b461123a030e82602a750fb24d7801776aa81cd78404e54ab60e8b5fecdad5"}, + {file = "debugpy-1.8.8-cp38-cp38-win_amd64.whl", hash = "sha256:f3cbf1833e644a3100eadb6120f25be8a532035e8245584c4f7532937edc652a"}, + {file = "debugpy-1.8.8-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:53709d4ec586b525724819dc6af1a7703502f7e06f34ded7157f7b1f963bb854"}, + {file = "debugpy-1.8.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a9c013077a3a0000e83d97cf9cc9328d2b0bbb31f56b0e99ea3662d29d7a6a2"}, + {file = "debugpy-1.8.8-cp39-cp39-win32.whl", hash = "sha256:ffe94dd5e9a6739a75f0b85316dc185560db3e97afa6b215628d1b6a17561cb2"}, + {file = "debugpy-1.8.8-cp39-cp39-win_amd64.whl", hash = "sha256:5c0e5a38c7f9b481bf31277d2f74d2109292179081f11108e668195ef926c0f9"}, + {file = "debugpy-1.8.8-py2.py3-none-any.whl", hash = "sha256:ec684553aba5b4066d4de510859922419febc710df7bba04fe9e7ef3de15d34f"}, + {file = "debugpy-1.8.8.zip", hash = "sha256:e6355385db85cbd666be703a96ab7351bc9e6c61d694893206f8001e22aee091"}, ] [[package]] @@ -852,13 +882,13 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.28.0" +version = "8.29.0" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.28.0-py3-none-any.whl", hash = "sha256:530ef1e7bb693724d3cdc37287c80b07ad9b25986c007a53aa1857272dac3f35"}, - {file = "ipython-8.28.0.tar.gz", hash = "sha256:0d0d15ca1e01faeb868ef56bc7ee5a0de5bd66885735682e8a322ae289a13d1a"}, + {file = "ipython-8.29.0-py3-none-any.whl", hash = "sha256:0188a1bd83267192123ccea7f4a8ed0a78910535dbaa3f37671dca76ebd429c8"}, + {file = "ipython-8.29.0.tar.gz", hash = "sha256:40b60e15b22591450eef73e40a027cf77bd652e757523eebc5bd7c7c498290eb"}, ] [package.dependencies] @@ -1410,13 +1440,13 @@ files = [ [[package]] name = "nibabel" -version = "5.3.1" +version = "5.3.2" description = "Access a multitude of neuroimaging data formats" optional = false python-versions = ">=3.9" files = [ - {file = "nibabel-5.3.1-py3-none-any.whl", hash = "sha256:5c04c7139d41a59ef92839f1cabbe73061edd5787340bf2c9a34ed71f0db9d07"}, - {file = "nibabel-5.3.1.tar.gz", hash = "sha256:aec1b75dcf6bd9595a9196ff341b87957c69fb21bc5e38719463478dad83000a"}, + {file = "nibabel-5.3.2-py3-none-any.whl", hash = "sha256:52970a5a8a53b1b55249cba4d9bcfaa8cc57e3e5af35a29d7352237e8680a6f8"}, + {file = "nibabel-5.3.2.tar.gz", hash = "sha256:0bdca6503b1c784b446c745a4542367de7756cfba0d72143b91f9ffb78be569b"}, ] [package.dependencies] @@ -1559,13 +1589,13 @@ stan = ["bridgestan (>=2.4.1)"] [[package]] name = "packaging" -version = "24.1" +version = "24.2" description = "Core utilities for Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, ] [[package]] @@ -1888,52 +1918,55 @@ tests = ["pytest"] [[package]] name = "pyarrow" -version = "17.0.0" +version = "18.0.0" description = "Python library for Apache Arrow" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pyarrow-17.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a5c8b238d47e48812ee577ee20c9a2779e6a5904f1708ae240f53ecbee7c9f07"}, - {file = "pyarrow-17.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db023dc4c6cae1015de9e198d41250688383c3f9af8f565370ab2b4cb5f62655"}, - {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da1e060b3876faa11cee287839f9cc7cdc00649f475714b8680a05fd9071d545"}, - {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75c06d4624c0ad6674364bb46ef38c3132768139ddec1c56582dbac54f2663e2"}, - {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:fa3c246cc58cb5a4a5cb407a18f193354ea47dd0648194e6265bd24177982fe8"}, - {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:f7ae2de664e0b158d1607699a16a488de3d008ba99b3a7aa5de1cbc13574d047"}, - {file = "pyarrow-17.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5984f416552eea15fd9cee03da53542bf4cddaef5afecefb9aa8d1010c335087"}, - {file = "pyarrow-17.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:1c8856e2ef09eb87ecf937104aacfa0708f22dfeb039c363ec99735190ffb977"}, - {file = "pyarrow-17.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e19f569567efcbbd42084e87f948778eb371d308e137a0f97afe19bb860ccb3"}, - {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b244dc8e08a23b3e352899a006a26ae7b4d0da7bb636872fa8f5884e70acf15"}, - {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b72e87fe3e1db343995562f7fff8aee354b55ee83d13afba65400c178ab2597"}, - {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dc5c31c37409dfbc5d014047817cb4ccd8c1ea25d19576acf1a001fe07f5b420"}, - {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e3343cb1e88bc2ea605986d4b94948716edc7a8d14afd4e2c097232f729758b4"}, - {file = "pyarrow-17.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:a27532c38f3de9eb3e90ecab63dfda948a8ca859a66e3a47f5f42d1e403c4d03"}, - {file = "pyarrow-17.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9b8a823cea605221e61f34859dcc03207e52e409ccf6354634143e23af7c8d22"}, - {file = "pyarrow-17.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1e70de6cb5790a50b01d2b686d54aaf73da01266850b05e3af2a1bc89e16053"}, - {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0071ce35788c6f9077ff9ecba4858108eebe2ea5a3f7cf2cf55ebc1dbc6ee24a"}, - {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:757074882f844411fcca735e39aae74248a1531367a7c80799b4266390ae51cc"}, - {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ba11c4f16976e89146781a83833df7f82077cdab7dc6232c897789343f7891a"}, - {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b0c6ac301093b42d34410b187bba560b17c0330f64907bfa4f7f7f2444b0cf9b"}, - {file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"}, - {file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"}, - {file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"}, - {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c7916bff914ac5d4a8fe25b7a25e432ff921e72f6f2b7547d1e325c1ad9d155"}, - {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f553ca691b9e94b202ff741bdd40f6ccb70cdd5fbf65c187af132f1317de6145"}, - {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0cdb0e627c86c373205a2f94a510ac4376fdc523f8bb36beab2e7f204416163c"}, - {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d7d192305d9d8bc9082d10f361fc70a73590a4c65cf31c3e6926cd72b76bc35c"}, - {file = "pyarrow-17.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:02dae06ce212d8b3244dd3e7d12d9c4d3046945a5933d28026598e9dbbda1fca"}, - {file = "pyarrow-17.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:13d7a460b412f31e4c0efa1148e1d29bdf18ad1411eb6757d38f8fbdcc8645fb"}, - {file = "pyarrow-17.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9b564a51fbccfab5a04a80453e5ac6c9954a9c5ef2890d1bcf63741909c3f8df"}, - {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32503827abbc5aadedfa235f5ece8c4f8f8b0a3cf01066bc8d29de7539532687"}, - {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a155acc7f154b9ffcc85497509bcd0d43efb80d6f733b0dc3bb14e281f131c8b"}, - {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:dec8d129254d0188a49f8a1fc99e0560dc1b85f60af729f47de4046015f9b0a5"}, - {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:a48ddf5c3c6a6c505904545c25a4ae13646ae1f8ba703c4df4a1bfe4f4006bda"}, - {file = "pyarrow-17.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:42bf93249a083aca230ba7e2786c5f673507fa97bbd9725a1e2754715151a204"}, - {file = "pyarrow-17.0.0.tar.gz", hash = "sha256:4beca9521ed2c0921c1023e68d097d0299b62c362639ea315572a58f3f50fd28"}, + {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2333f93260674e185cfbf208d2da3007132572e56871f451ba1a556b45dae6e2"}, + {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:4c381857754da44326f3a49b8b199f7f87a51c2faacd5114352fc78de30d3aba"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:603cd8ad4976568954598ef0a6d4ed3dfb78aff3d57fa8d6271f470f0ce7d34f"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58a62549a3e0bc9e03df32f350e10e1efb94ec6cf63e3920c3385b26663948ce"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bc97316840a349485fbb137eb8d0f4d7057e1b2c1272b1a20eebbbe1848f5122"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:2e549a748fa8b8715e734919923f69318c953e077e9c02140ada13e59d043310"}, + {file = "pyarrow-18.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:606e9a3dcb0f52307c5040698ea962685fb1c852d72379ee9412be7de9c5f9e2"}, + {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d5795e37c0a33baa618c5e054cd61f586cf76850a251e2b21355e4085def6280"}, + {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:5f0510608ccd6e7f02ca8596962afb8c6cc84c453e7be0da4d85f5f4f7b0328a"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:616ea2826c03c16e87f517c46296621a7c51e30400f6d0a61be645f203aa2b93"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1824f5b029ddd289919f354bc285992cb4e32da518758c136271cf66046ef22"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6dd1b52d0d58dd8f685ced9971eb49f697d753aa7912f0a8f50833c7a7426319"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:320ae9bd45ad7ecc12ec858b3e8e462578de060832b98fc4d671dee9f10d9954"}, + {file = "pyarrow-18.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2c992716cffb1088414f2b478f7af0175fd0a76fea80841b1706baa8fb0ebaad"}, + {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:e7ab04f272f98ebffd2a0661e4e126036f6936391ba2889ed2d44c5006237802"}, + {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:03f40b65a43be159d2f97fd64dc998f769d0995a50c00f07aab58b0b3da87e1f"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be08af84808dff63a76860847c48ec0416928a7b3a17c2f49a072cac7c45efbd"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c70c1965cde991b711a98448ccda3486f2a336457cf4ec4dca257a926e149c9"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:00178509f379415a3fcf855af020e3340254f990a8534294ec3cf674d6e255fd"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:a71ab0589a63a3e987beb2bc172e05f000a5c5be2636b4b263c44034e215b5d7"}, + {file = "pyarrow-18.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe92efcdbfa0bcf2fa602e466d7f2905500f33f09eb90bf0bcf2e6ca41b574c8"}, + {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:907ee0aa8ca576f5e0cdc20b5aeb2ad4d3953a3b4769fc4b499e00ef0266f02f"}, + {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:66dcc216ebae2eb4c37b223feaf82f15b69d502821dde2da138ec5a3716e7463"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc1daf7c425f58527900876354390ee41b0ae962a73ad0959b9d829def583bb1"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:871b292d4b696b09120ed5bde894f79ee2a5f109cb84470546471df264cae136"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:082ba62bdcb939824ba1ce10b8acef5ab621da1f4c4805e07bfd153617ac19d4"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:2c664ab88b9766413197733c1720d3dcd4190e8fa3bbdc3710384630a0a7207b"}, + {file = "pyarrow-18.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:dc892be34dbd058e8d189b47db1e33a227d965ea8805a235c8a7286f7fd17d3a"}, + {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:28f9c39a56d2c78bf6b87dcc699d520ab850919d4a8c7418cd20eda49874a2ea"}, + {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:f1a198a50c409ab2d009fbf20956ace84567d67f2c5701511d4dd561fae6f32e"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5bd7fd32e3ace012d43925ea4fc8bd1b02cc6cc1e9813b518302950e89b5a22"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:336addb8b6f5208be1b2398442c703a710b6b937b1a046065ee4db65e782ff5a"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:45476490dd4adec5472c92b4d253e245258745d0ccaabe706f8d03288ed60a79"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b46591222c864e7da7faa3b19455196416cd8355ff6c2cc2e65726a760a3c420"}, + {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:eb7e3abcda7e1e6b83c2dc2909c8d045881017270a119cc6ee7fdcfe71d02df8"}, + {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:09f30690b99ce34e0da64d20dab372ee54431745e4efb78ac938234a282d15f9"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5ca5d707e158540312e09fd907f9f49bacbe779ab5236d9699ced14d2293b8"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6331f280c6e4521c69b201a42dd978f60f7e129511a55da9e0bfe426b4ebb8d"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3ac24b2be732e78a5a3ac0b3aa870d73766dd00beba6e015ea2ea7394f8b4e55"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b30a927c6dff89ee702686596f27c25160dd6c99be5bcc1513a763ae5b1bfc03"}, + {file = "pyarrow-18.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:8f40ec677e942374e3d7f2fad6a67a4c2811a8b975e8703c6fd26d3b168a90e2"}, + {file = "pyarrow-18.0.0.tar.gz", hash = "sha256:a6aa027b1a9d2970cf328ccd6dbe4a996bc13c39fd427f502782f5bdb9ca20f5"}, ] -[package.dependencies] -numpy = ">=1.16.6" - [package.extras] test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] @@ -1964,13 +1997,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pymc" -version = "5.17.0" +version = "5.18.0" description = "Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor" optional = false python-versions = ">=3.10" files = [ - {file = "pymc-5.17.0-py3-none-any.whl", hash = "sha256:1f6614589ab9095e79a98afb8bf173ea9810b4439591649e282708e3589c95e9"}, - {file = "pymc-5.17.0.tar.gz", hash = "sha256:3b7810f770c7aeab3087e289fadc97252ad423f3aa3f42b5715648f13df2aab7"}, + {file = "pymc-5.18.0-py3-none-any.whl", hash = "sha256:e2c1f478ae855395e345edd1ea7fb5b8d65fb34babd22d31af9ee409f4252cf1"}, + {file = "pymc-5.18.0.tar.gz", hash = "sha256:6e3c2235fa24198a3b1b929b1466cd36c65709822eb48821fb5b0e3684b5fd12"}, ] [package.dependencies] @@ -2261,13 +2294,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rich" -version = "13.9.2" +version = "13.9.4" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.8.0" files = [ - {file = "rich-13.9.2-py3-none-any.whl", hash = "sha256:8c82a3d3f8dcfe9e734771313e606b39d8247bb6b826e196f4914b333b743cf1"}, - {file = "rich-13.9.2.tar.gz", hash = "sha256:51a2c62057461aaf7152b4d611168f93a9fc73068f8ded2790f29fe2b5366d0c"}, + {file = "rich-13.9.4-py3-none-any.whl", hash = "sha256:6049d5e6ec054bf2779ab3358186963bac2ea89175919d699e378b99738c2a90"}, + {file = "rich-13.9.4.tar.gz", hash = "sha256:439594978a49a09530cff7ebc4b5c7103ef57baf48d5ea3184f21d9a2befa098"}, ] [package.dependencies] @@ -2401,23 +2434,23 @@ stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] [[package]] name = "setuptools" -version = "75.2.0" +version = "75.3.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-75.2.0-py3-none-any.whl", hash = "sha256:a7fcb66f68b4d9e8e66b42f9876150a3371558f98fa32222ffaa5bced76406f8"}, - {file = "setuptools-75.2.0.tar.gz", hash = "sha256:753bb6ebf1f465a1912e19ed1d41f403a79173a9acf66a42e7e6aec45c3c16ec"}, + {file = "setuptools-75.3.0-py3-none-any.whl", hash = "sha256:f2504966861356aa38616760c0f66568e535562374995367b4e69c7143cf6bcd"}, + {file = "setuptools-75.3.0.tar.gz", hash = "sha256:fba5dd4d766e97be1b1681d98712680ae8f2f26d7881245f2ce9e40714f1a686"}, ] [package.extras] check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.12.*)", "pytest-mypy"] [[package]] name = "six" @@ -2740,13 +2773,13 @@ files = [ [[package]] name = "xarray" -version = "2024.9.0" +version = "2024.10.0" description = "N-D labeled arrays and datasets in Python" optional = false python-versions = ">=3.10" files = [ - {file = "xarray-2024.9.0-py3-none-any.whl", hash = "sha256:4fd534abdf12d5fa75dd566c56483d5081f77864462cf3d6ad53e13f9db48222"}, - {file = "xarray-2024.9.0.tar.gz", hash = "sha256:e796a6b3eaec11da24f33e4bb14af41897011660a0516fa4037d3ae4bbd1d378"}, + {file = "xarray-2024.10.0-py3-none-any.whl", hash = "sha256:ae1d38cb44a0324dfb61e492394158ae22389bf7de9f3c174309c17376df63a0"}, + {file = "xarray-2024.10.0.tar.gz", hash = "sha256:e369e2bac430e418c2448e5b96f07da4635f98c1319aa23cfeb3fbcb9a01d2e0"}, ] [package.dependencies] @@ -2755,12 +2788,13 @@ packaging = ">=23.1" pandas = ">=2.1" [package.extras] -accel = ["bottleneck", "flox", "numbagg", "opt-einsum", "scipy"] -complete = ["xarray[accel,dev,io,parallel,viz]"] -dev = ["hypothesis", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-env", "pytest-timeout", "pytest-xdist", "ruff", "xarray[complete]"] +accel = ["bottleneck", "flox", "numba (>=0.54)", "numbagg", "opt-einsum", "scipy"] +complete = ["xarray[accel,etc,io,parallel,viz]"] +dev = ["hypothesis", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-env", "pytest-timeout", "pytest-xdist", "ruff", "sphinx", "sphinx-autosummary-accessors", "xarray[complete]"] +etc = ["sparse"] io = ["cftime", "fsspec", "h5netcdf", "netCDF4", "pooch", "pydap", "scipy", "zarr"] parallel = ["dask[complete]"] -viz = ["matplotlib", "nc-time-axis", "seaborn"] +viz = ["cartopy", "matplotlib", "nc-time-axis", "seaborn"] [[package]] name = "xarray-einstats" @@ -2787,4 +2821,4 @@ test = ["hypothesis", "packaging", "pytest", "pytest-cov"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "243443b42aa8bbd9d52455e147000ebd4e1065e8de68e79fa93254d3e4e951fc" +content-hash = "6679b5416e0514a42c49c46585cc45ce6d0a6a69d458565976c497bc5a4ca507" diff --git a/pyproject.toml b/pyproject.toml index bc33c1d7..1f1740e2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -16,6 +16,7 @@ seaborn = "^0.13.2" # Prefer conda six = "^1.16.0" # Prefer conda nutpie = "^0.13.2" numba = "^0.60.0" +cmake = "^3.30.5" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" From 11e2c49bf5e0d046fef98b4b35dbbebcec6fc354 Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 12 Nov 2024 11:23:42 +0100 Subject: [PATCH 49/68] Remove nutpie and numba deps --- pcntoolkit/normative.py | 68 ++++++++----- poetry.lock | 221 ++++------------------------------------ pyproject.toml | 5 +- 3 files changed, 62 insertions(+), 232 deletions(-) diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index 14a35643..26612c27 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -11,25 +11,38 @@ # Written by A. Marquand # ------------------------------------------------------------------------------ -from __future__ import print_function -from __future__ import division +from __future__ import division, print_function -import os -import sys -import numpy as np import argparse -import pickle import glob +import os +import pickle +import sys +import warnings +from pathlib import Path +import numpy as np from sklearn.model_selection import KFold -from pathlib import Path + +try: + import nutpie +except ImportError: + warnings.warn("Nutpie not installed. For sampling with the nutpie backend, install it with `conda install nutpie numba`") + + try: # run as a package if installed from pcntoolkit import configs from pcntoolkit.dataio import fileio from pcntoolkit.normative_model.norm_utils import norm_init - from pcntoolkit.util.utils import compute_pearsonr, CustomCV, explained_var - from pcntoolkit.util.utils import compute_MSLL, scaler, get_package_versions + from pcntoolkit.util.utils import ( + CustomCV, + compute_MSLL, + compute_pearsonr, + explained_var, + get_package_versions, + scaler, + ) except ImportError: pass @@ -41,10 +54,15 @@ import configs from dataio import fileio - - from util.utils import compute_pearsonr, CustomCV, explained_var, compute_MSLL - from util.utils import scaler, get_package_versions from normative_model.norm_utils import norm_init + from util.utils import ( + CustomCV, + compute_MSLL, + compute_pearsonr, + explained_var, + get_package_versions, + scaler, + ) PICKLE_PROTOCOL = configs.PICKLE_PROTOCOL @@ -953,14 +971,14 @@ def transfer(covfile, respfile, testcov=None, testresp=None, maskfile=None, return # testing should not be obligatory for HBR, # but should be for BLR (since it doesn't produce transfer models) - elif (not 'model_path' in list(kwargs.keys())) or \ - (not 'trbefile' in list(kwargs.keys())): + elif ('model_path' not in list(kwargs.keys())) or \ + ('trbefile' not in list(kwargs.keys())): print(f'{kwargs=}') print('InputError: Some general mandatory arguments are missing.') return # hbr has one additional mandatory arguments elif alg == 'hbr': - if (not 'output_path' in list(kwargs.keys())): + if ('output_path' not in list(kwargs.keys())): print('InputError: Some mandatory arguments for hbr are missing.') return else: @@ -972,7 +990,7 @@ def transfer(covfile, respfile, testcov=None, testresp=None, maskfile=None, # or (testresp==None) elif alg == 'blr': if (testcov == None) or \ - (not 'tsbefile' in list(kwargs.keys())): + ('tsbefile' not in list(kwargs.keys())): print('InputError: Some mandatory arguments for blr are missing.') return # general arguments @@ -1208,9 +1226,9 @@ def extend(covfile, respfile, maskfile=None, **kwargs): if alg != 'hbr': print('Model extention is only possible for HBR models.') return - elif (not 'model_path' in list(kwargs.keys())) or \ - (not 'output_path' in list(kwargs.keys())) or \ - (not 'trbefile' in list(kwargs.keys())): + elif ('model_path' not in list(kwargs.keys())) or \ + ('output_path' not in list(kwargs.keys())) or \ + ('trbefile' not in list(kwargs.keys())): print('InputError: Some mandatory arguments are missing.') return else: @@ -1319,9 +1337,9 @@ def tune(covfile, respfile, maskfile=None, **kwargs): if alg != 'hbr': print('Model extention is only possible for HBR models.') return - elif (not 'model_path' in list(kwargs.keys())) or \ - (not 'output_path' in list(kwargs.keys())) or \ - (not 'trbefile' in list(kwargs.keys())): + elif ('model_path' not in list(kwargs.keys())) or \ + ('output_path' not in list(kwargs.keys())) or \ + ('trbefile' not in list(kwargs.keys())): print('InputError: Some mandatory arguments are missing.') return else: @@ -1427,9 +1445,9 @@ def merge(covfile=None, respfile=None, **kwargs): if alg != 'hbr': print('Merging models is only possible for HBR models.') return - elif (not 'model_path1' in list(kwargs.keys())) or \ - (not 'model_path2' in list(kwargs.keys())) or \ - (not 'output_path' in list(kwargs.keys())): + elif ('model_path1' not in list(kwargs.keys())) or \ + ('model_path2' not in list(kwargs.keys())) or \ + ('output_path' not in list(kwargs.keys())): print('InputError: Some mandatory arguments are missing.') return else: diff --git a/poetry.lock b/poetry.lock index 165a1724..6c2d0551 100644 --- a/poetry.lock +++ b/poetry.lock @@ -380,36 +380,6 @@ files = [ {file = "cloudpickle-3.1.0.tar.gz", hash = "sha256:81a929b6e3c7335c863c771d673d105f02efdb89dfaba0c90495d1c64796601b"}, ] -[[package]] -name = "cmake" -version = "3.30.5" -description = "CMake is an open-source, cross-platform family of tools designed to build, test and package software" -optional = false -python-versions = ">=3.7" -files = [ - {file = "cmake-3.30.5-py3-none-macosx_10_10_universal2.whl", hash = "sha256:c518d174cde8c5bda3dc9c906af2e1ad54448019d9a9061c5d85331c67bbaa60"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:085728e950e6096014c99fc46361fbaa508863157bafe0ecf6dc232c16098456"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:437e9f885cf576f47b45974a92239d7c86da91e99e62ecf1aa8be454703dd1a6"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3a662e22dba1288b678daa5544a62a05da1992e0b654e799217e22bc7e5194a"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dbedacaba2daa40726569590762d775246325b609753d7af888dc7eda49c7bd"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a5c113428aa9f3b4b2ce2e6dc1b932cfe3991be04d215c5ab51c078eae3e674"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9edd4065dbc67a6861255f05135249a3f042f1e09a73c608f84a1a0c6a60a266"}, - {file = "cmake-3.30.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db049e551e2f0562b3b225ac760888ee38b8ade62d74213f3611420e6b22f36d"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:f9b351ad3b0bacd04fe73a35b71bf603416b0441d295c13881e56eba6ec01b4b"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_1_i686.whl", hash = "sha256:c37f41ac7e7a806c91d16cd3efcd696635634bb63e0d9007582373f5a81c4fa1"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:e4fd409b3455a01fe80860503be4c1b34e2e12cc5433921c7aed1102a3870322"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:4a1ded0183a75bd71ee275ef976e8eb97b4a5f4b58e09c90c1734c509acb7d5a"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:e2fd43ab522695e0ebbb6dfc6a1466daeb66c57f7f4aade02fe8c5a61acc2828"}, - {file = "cmake-3.30.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:6161031b0c89f3f60b82cd5e1dd8cdef47b0a057f9a5349e18bf1507ac4b2402"}, - {file = "cmake-3.30.5-py3-none-win32.whl", hash = "sha256:3ee3ab9b4d3fcdb9360104ef2175a47e145693b365983dcd8ccb5d58b1d0ab7f"}, - {file = "cmake-3.30.5-py3-none-win_amd64.whl", hash = "sha256:dddb1c82e69c8cf79a314f57c2cbb1b3c152758fa0997a5f5ddf8fc8207c994a"}, - {file = "cmake-3.30.5-py3-none-win_arm64.whl", hash = "sha256:ef454176664c941da91197feb91b68cab91ef0354ab0c4d7bfb70e069cb700f1"}, - {file = "cmake-3.30.5.tar.gz", hash = "sha256:2815a2b4dde61a78648a2ff4318d2d303eb41600c4bdb32fcb237b4746444ed2"}, -] - -[package.extras] -test = ["coverage (>=4.2)", "pytest (>=3.0.3)", "pytest-cov (>=2.4.0)"] - [[package]] name = "colorama" version = "0.4.6" @@ -941,22 +911,22 @@ test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] [[package]] name = "jedi" -version = "0.19.1" +version = "0.19.2" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, ] [package.dependencies] -parso = ">=0.8.3,<0.9.0" +parso = ">=0.8.4,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] [[package]] name = "jinja2" @@ -1162,36 +1132,6 @@ files = [ {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] -[[package]] -name = "llvmlite" -version = "0.43.0" -description = "lightweight wrapper around basic LLVM functionality" -optional = false -python-versions = ">=3.9" -files = [ - {file = "llvmlite-0.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a289af9a1687c6cf463478f0fa8e8aa3b6fb813317b0d70bf1ed0759eab6f761"}, - {file = "llvmlite-0.43.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d4fd101f571a31acb1559ae1af30f30b1dc4b3186669f92ad780e17c81e91bc"}, - {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d434ec7e2ce3cc8f452d1cd9a28591745de022f931d67be688a737320dfcead"}, - {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6912a87782acdff6eb8bf01675ed01d60ca1f2551f8176a300a886f09e836a6a"}, - {file = "llvmlite-0.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:14f0e4bf2fd2d9a75a3534111e8ebeb08eda2f33e9bdd6dfa13282afacdde0ed"}, - {file = "llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98"}, - {file = "llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57"}, - {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2"}, - {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749"}, - {file = "llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91"}, - {file = "llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7"}, - {file = "llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7"}, - {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f"}, - {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844"}, - {file = "llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9"}, - {file = "llvmlite-0.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9cd2a7376f7b3367019b664c21f0c61766219faa3b03731113ead75107f3b66c"}, - {file = "llvmlite-0.43.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18e9953c748b105668487b7c81a3e97b046d8abf95c4ddc0cd3c94f4e4651ae8"}, - {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74937acd22dc11b33946b67dca7680e6d103d6e90eeaaaf932603bec6fe7b03a"}, - {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9efc739cc6ed760f795806f67889923f7274276f0eb45092a1473e40d9b867"}, - {file = "llvmlite-0.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:47e147cdda9037f94b399bf03bfd8a6b6b1f2f90be94a454e3386f006455a9b4"}, - {file = "llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5"}, -] - [[package]] name = "logical-unification" version = "0.4.6" @@ -1469,40 +1409,6 @@ test = ["coverage (>=7.2)", "pytest", "pytest-cov", "pytest-doctestplus", "pytes typing = ["tox"] zstd = ["pyzstd (>=0.14.3)"] -[[package]] -name = "numba" -version = "0.60.0" -description = "compiling Python code using LLVM" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numba-0.60.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d761de835cd38fb400d2c26bb103a2726f548dc30368853121d66201672e651"}, - {file = "numba-0.60.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:159e618ef213fba758837f9837fb402bbe65326e60ba0633dbe6c7f274d42c1b"}, - {file = "numba-0.60.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1527dc578b95c7c4ff248792ec33d097ba6bef9eda466c948b68dfc995c25781"}, - {file = "numba-0.60.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe0b28abb8d70f8160798f4de9d486143200f34458d34c4a214114e445d7124e"}, - {file = "numba-0.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:19407ced081d7e2e4b8d8c36aa57b7452e0283871c296e12d798852bc7d7f198"}, - {file = "numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8"}, - {file = "numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b"}, - {file = "numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703"}, - {file = "numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8"}, - {file = "numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2"}, - {file = "numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404"}, - {file = "numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c"}, - {file = "numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e"}, - {file = "numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d"}, - {file = "numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347"}, - {file = "numba-0.60.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:01ef4cd7d83abe087d644eaa3d95831b777aa21d441a23703d649e06b8e06b74"}, - {file = "numba-0.60.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:819a3dfd4630d95fd574036f99e47212a1af41cbcb019bf8afac63ff56834449"}, - {file = "numba-0.60.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0b983bd6ad82fe868493012487f34eae8bf7dd94654951404114f23c3466d34b"}, - {file = "numba-0.60.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c151748cd269ddeab66334bd754817ffc0cabd9433acb0f551697e5151917d25"}, - {file = "numba-0.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:3031547a015710140e8c87226b4cfe927cac199835e5bf7d4fe5cb64e814e3ab"}, - {file = "numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16"}, -] - -[package.dependencies] -llvmlite = "==0.43.*" -numpy = ">=1.22,<2.1" - [[package]] name = "numpy" version = "1.26.4" @@ -1548,45 +1454,6 @@ files = [ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, ] -[[package]] -name = "nutpie" -version = "0.13.2" -description = "Sample Stan or PyMC models" -optional = false -python-versions = ">=3.10" -files = [ - {file = "nutpie-0.13.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4c731b6b32f51407ca973aefdcb0241c6dadfebcf47e781557344d28d346c0fa"}, - {file = "nutpie-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b69e62c4d25e62e670ef31244e65556ed562650dfbc56a068972e177c5e5e291"}, - {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a7cfe73f29769f7185e677587755ba63818e9334d161a69216c8d6cefd9d66b7"}, - {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0202a5b2352b065a269dd1467cacd4b9ef4020665373e4d12eede232425eaea8"}, - {file = "nutpie-0.13.2-cp310-none-win_amd64.whl", hash = "sha256:fa2f5f46fad31d9cdac486510a656a7e85df470662ffcd6c3c84534eb7d24c28"}, - {file = "nutpie-0.13.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:024fb04ddcaa2ce8a2cf6864bebe68acfb68518f6199c6d3de0c6b9b49d1ac75"}, - {file = "nutpie-0.13.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:225f17a15e33f731db43c55f821b988df2781568e2dc6f22ae9798e259386009"}, - {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:1a7a5e7012976327485349b581ae762cd6e60bb1805f9d323e0eed2d945c73a3"}, - {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be1635cdd6ec19cc541e212ee95e11288dda7a234a2ae7f70c2c91fdaa677fe0"}, - {file = "nutpie-0.13.2-cp311-none-win_amd64.whl", hash = "sha256:d7d297a975737ca997890cae284adca74e429567503596cbf66a37640faf4f10"}, - {file = "nutpie-0.13.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1656a4e45981db30d9ca850e889c10ac69c3e327a994607924c2db1dcefb49c7"}, - {file = "nutpie-0.13.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:57b6f6640996d88b290285acdcf7978bf9f6257c2a80d38eb5d1903e11bb0301"}, - {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:e1419e53a5ce3bfba39157cb1381eb18f1835bd1b73312d485e1f543f9ce3748"}, - {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6d29babf3773544692153799b3579f9de1e084a06fd2dcc851e97bef4c92768b"}, - {file = "nutpie-0.13.2-cp312-none-win_amd64.whl", hash = "sha256:5b6f45e2e475eee1519f18b6cbcd56ef225dbcaeb6f35e248d829467097ab385"}, - {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:db240a317b1ded7eddf2ca8e2b4bcfcdbd4624256655aac61625c8f7d5ca39d0"}, - {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2100024275ec6ba6de899188a3a2111f4b68aee7bfdbd4e4eb02ed4c922a9f22"}, - {file = "nutpie-0.13.2.tar.gz", hash = "sha256:f14282e2ac045c67a9b262a865b02a243178c55b541b236b21dfcb0c3678bcea"}, -] - -[package.dependencies] -arviz = ">=0.15.0" -pandas = ">=2.0" -pyarrow = ">=12.0.0" -xarray = ">=2023.6.0" - -[package.extras] -all = ["bridgestan (>=2.4.1)", "jax (>=0.4.27)", "numba (>=0.59.1)", "pymc (>=5.15.0)"] -pymc = ["numba (>=0.59.1)", "pymc (>=5.15.0)"] -pymc-jax = ["jax (>=0.4.27)", "pymc (>=5.15.0)"] -stan = ["bridgestan (>=2.4.1)"] - [[package]] name = "packaging" version = "24.2" @@ -1916,60 +1783,6 @@ files = [ [package.extras] tests = ["pytest"] -[[package]] -name = "pyarrow" -version = "18.0.0" -description = "Python library for Apache Arrow" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2333f93260674e185cfbf208d2da3007132572e56871f451ba1a556b45dae6e2"}, - {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:4c381857754da44326f3a49b8b199f7f87a51c2faacd5114352fc78de30d3aba"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:603cd8ad4976568954598ef0a6d4ed3dfb78aff3d57fa8d6271f470f0ce7d34f"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58a62549a3e0bc9e03df32f350e10e1efb94ec6cf63e3920c3385b26663948ce"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bc97316840a349485fbb137eb8d0f4d7057e1b2c1272b1a20eebbbe1848f5122"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:2e549a748fa8b8715e734919923f69318c953e077e9c02140ada13e59d043310"}, - {file = "pyarrow-18.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:606e9a3dcb0f52307c5040698ea962685fb1c852d72379ee9412be7de9c5f9e2"}, - {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d5795e37c0a33baa618c5e054cd61f586cf76850a251e2b21355e4085def6280"}, - {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:5f0510608ccd6e7f02ca8596962afb8c6cc84c453e7be0da4d85f5f4f7b0328a"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:616ea2826c03c16e87f517c46296621a7c51e30400f6d0a61be645f203aa2b93"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1824f5b029ddd289919f354bc285992cb4e32da518758c136271cf66046ef22"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6dd1b52d0d58dd8f685ced9971eb49f697d753aa7912f0a8f50833c7a7426319"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:320ae9bd45ad7ecc12ec858b3e8e462578de060832b98fc4d671dee9f10d9954"}, - {file = "pyarrow-18.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2c992716cffb1088414f2b478f7af0175fd0a76fea80841b1706baa8fb0ebaad"}, - {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:e7ab04f272f98ebffd2a0661e4e126036f6936391ba2889ed2d44c5006237802"}, - {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:03f40b65a43be159d2f97fd64dc998f769d0995a50c00f07aab58b0b3da87e1f"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be08af84808dff63a76860847c48ec0416928a7b3a17c2f49a072cac7c45efbd"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c70c1965cde991b711a98448ccda3486f2a336457cf4ec4dca257a926e149c9"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:00178509f379415a3fcf855af020e3340254f990a8534294ec3cf674d6e255fd"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:a71ab0589a63a3e987beb2bc172e05f000a5c5be2636b4b263c44034e215b5d7"}, - {file = "pyarrow-18.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe92efcdbfa0bcf2fa602e466d7f2905500f33f09eb90bf0bcf2e6ca41b574c8"}, - {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:907ee0aa8ca576f5e0cdc20b5aeb2ad4d3953a3b4769fc4b499e00ef0266f02f"}, - {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:66dcc216ebae2eb4c37b223feaf82f15b69d502821dde2da138ec5a3716e7463"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc1daf7c425f58527900876354390ee41b0ae962a73ad0959b9d829def583bb1"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:871b292d4b696b09120ed5bde894f79ee2a5f109cb84470546471df264cae136"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:082ba62bdcb939824ba1ce10b8acef5ab621da1f4c4805e07bfd153617ac19d4"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:2c664ab88b9766413197733c1720d3dcd4190e8fa3bbdc3710384630a0a7207b"}, - {file = "pyarrow-18.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:dc892be34dbd058e8d189b47db1e33a227d965ea8805a235c8a7286f7fd17d3a"}, - {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:28f9c39a56d2c78bf6b87dcc699d520ab850919d4a8c7418cd20eda49874a2ea"}, - {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:f1a198a50c409ab2d009fbf20956ace84567d67f2c5701511d4dd561fae6f32e"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5bd7fd32e3ace012d43925ea4fc8bd1b02cc6cc1e9813b518302950e89b5a22"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:336addb8b6f5208be1b2398442c703a710b6b937b1a046065ee4db65e782ff5a"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:45476490dd4adec5472c92b4d253e245258745d0ccaabe706f8d03288ed60a79"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b46591222c864e7da7faa3b19455196416cd8355ff6c2cc2e65726a760a3c420"}, - {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:eb7e3abcda7e1e6b83c2dc2909c8d045881017270a119cc6ee7fdcfe71d02df8"}, - {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:09f30690b99ce34e0da64d20dab372ee54431745e4efb78ac938234a282d15f9"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5ca5d707e158540312e09fd907f9f49bacbe779ab5236d9699ced14d2293b8"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6331f280c6e4521c69b201a42dd978f60f7e129511a55da9e0bfe426b4ebb8d"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3ac24b2be732e78a5a3ac0b3aa870d73766dd00beba6e015ea2ea7394f8b4e55"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b30a927c6dff89ee702686596f27c25160dd6c99be5bcc1513a763ae5b1bfc03"}, - {file = "pyarrow-18.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:8f40ec677e942374e3d7f2fad6a67a4c2811a8b975e8703c6fd26d3b168a90e2"}, - {file = "pyarrow-18.0.0.tar.gz", hash = "sha256:a6aa027b1a9d2970cf328ccd6dbe4a996bc13c39fd427f502782f5bdb9ca20f5"}, -] - -[package.extras] -test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] - [[package]] name = "pycparser" version = "2.22" @@ -2434,23 +2247,23 @@ stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] [[package]] name = "setuptools" -version = "75.3.0" +version = "75.4.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "setuptools-75.3.0-py3-none-any.whl", hash = "sha256:f2504966861356aa38616760c0f66568e535562374995367b4e69c7143cf6bcd"}, - {file = "setuptools-75.3.0.tar.gz", hash = "sha256:fba5dd4d766e97be1b1681d98712680ae8f2f26d7881245f2ce9e40714f1a686"}, + {file = "setuptools-75.4.0-py3-none-any.whl", hash = "sha256:b3c5d862f98500b06ffdf7cc4499b48c46c317d8d56cb30b5c8bce4d88f5c216"}, + {file = "setuptools-75.4.0.tar.gz", hash = "sha256:1dc484f5cf56fd3fe7216d7b8df820802e7246cfb534a1db2aa64f14fcb9cdcb"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.7.0)"] +core = ["importlib-metadata (>=6)", "jaraco.collections", "jaraco.functools (>=4)", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24.2)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.12.*)", "pytest-mypy"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=24.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (>=1.12,<1.14)", "pytest-mypy"] [[package]] name = "six" @@ -2655,13 +2468,13 @@ files = [ [[package]] name = "tomli" -version = "2.0.2" +version = "2.1.0" description = "A lil' TOML parser" optional = false python-versions = ">=3.8" files = [ - {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, - {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, + {file = "tomli-2.1.0-py3-none-any.whl", hash = "sha256:a5c57c3d1c56f5ccdf89f6523458f60ef716e210fc47c4cfb188c5ba473e0391"}, + {file = "tomli-2.1.0.tar.gz", hash = "sha256:3f646cae2aec94e17d04973e4249548320197cfabdf130015d023de4b74d8ab8"}, ] [[package]] @@ -2821,4 +2634,4 @@ test = ["hypothesis", "packaging", "pytest", "pytest-cov"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "6679b5416e0514a42c49c46585cc45ce6d0a6a69d458565976c497bc5a4ca507" +content-hash = "83eae095eaf77b411c3945404211e299478b3374ecc52808f5b289f703bb3646" diff --git a/pyproject.toml b/pyproject.toml index 1f1740e2..6981a939 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,9 +14,7 @@ pymc = "^5.17.0" # Prefer Conda scikit-learn = "^1.5.2" # Prefer Conda seaborn = "^0.13.2" # Prefer conda six = "^1.16.0" # Prefer conda -nutpie = "^0.13.2" -numba = "^0.60.0" -cmake = "^3.30.5" +scipy = "^1.12" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" @@ -25,6 +23,7 @@ ipywidgets = "^8.1.5" black = "^24.10.0" ipykernel = "^6.29.5" + [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" From 8f3b8ab32e4434807fdde6a3d5ae52b52048019f Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 12 Nov 2024 11:27:16 +0100 Subject: [PATCH 50/68] Improve warning --- pcntoolkit/normative.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index 26612c27..9d885315 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -27,7 +27,7 @@ try: import nutpie except ImportError: - warnings.warn("Nutpie not installed. For sampling with the nutpie backend, install it with `conda install nutpie numba`") + warnings.warn("Nutpie not installed. For fitting HBR models with the nutpie backend, install it with `conda install nutpie numba`") From e595ddea4c9614b6378716397f2ad0929202e75e Mon Sep 17 00:00:00 2001 From: Stijn de Boer <19709783+AuguB@users.noreply.github.com> Date: Tue, 12 Nov 2024 15:18:37 +0100 Subject: [PATCH 51/68] Created using Colab --- notebooks/pcntk_colab_dev_env.ipynb | 4501 +++++++++++++++++++++++++++ 1 file changed, 4501 insertions(+) create mode 100644 notebooks/pcntk_colab_dev_env.ipynb diff --git a/notebooks/pcntk_colab_dev_env.ipynb b/notebooks/pcntk_colab_dev_env.ipynb new file mode 100644 index 00000000..82b831e6 --- /dev/null +++ b/notebooks/pcntk_colab_dev_env.ipynb @@ -0,0 +1,4501 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "name": "pcntk_colab_dev_env.ipynb", + "authorship_tag": "ABX9TyPhmRD2D0nfPuaeSc4uS/Q+", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "## Install condacolab, which will enable us to install using conda\n", + "## Outcomment this cell after the kernel has automatically restarted\n", + "import os\n", + "os.environ['PYTHONPATH'] = \"\" # Need to clear the pythonpath to avoid some errors\n", + "!echo \"pythonpath: $PYTHONPATH\"\n", + "!pip install -q condacolab\n", + "import condacolab\n", + "condacolab.install()" + ], + "metadata": { + "id": "WtVP1BD3eKjV", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6e4a9a86-d761-4bf8-80fa-6ed748d9000a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "pythonpath: \n", + "⏬ Downloading https://github.com/conda-forge/miniforge/releases/download/23.11.0-0/Mambaforge-23.11.0-0-Linux-x86_64.sh...\n", + "📦 Installing...\n", + "📌 Adjusting configuration...\n", + "🩹 Patching environment...\n", + "⏲ Done in 0:00:16\n", + "🔁 Restarting kernel...\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Check if condacolab works\n", + "import condacolab\n", + "condacolab.check()\n", + "\n", + "# Install libraries with optimized dependencies (BLAS and Rust) using conda\n", + "!conda install pymc numba nutpie -c conda-forge\n", + "\n", + "# Install CPU only verion of torch using conda (go to https://pytorch.org/get-started/locally/ if you need another version for your platform)\n", + "!conda install pytorch torchvision torchaudio cpuonly -c pytorch\n", + "\n", + "# # Install the pcntoolkit\n", + "!pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cb4xm679kxnE", + "outputId": "0985fdde-0fe6-44f6-cb29-d38e393f9010", + "collapsed": true + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Channels:\n", + " - conda-forge\n", + "Platform: linux-64\n", + "Collecting package metadata (repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "Solving environment: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", + "\n", + "\n", + "==> WARNING: A newer version of conda exists. <==\n", + " current version: 23.11.0\n", + " latest version: 24.9.2\n", + "\n", + "Please update conda by running\n", + "\n", + " $ conda update -n base -c conda-forge conda\n", + "\n", + "\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - numba\n", + " - nutpie\n", + " - pymc\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " _openmp_mutex-4.5 | 2_kmp_llvm 6 KB conda-forge\n", + " arviz-0.20.0 | pyhd8ed1ab_0 1.4 MB conda-forge\n", + " atk-1.0-2.38.0 | h04ea711_2 348 KB conda-forge\n", + " aws-c-auth-0.7.22 | h96bc93b_2 103 KB conda-forge\n", + " aws-c-cal-0.6.14 | h88a6e22_1 46 KB conda-forge\n", + " aws-c-common-0.9.19 | h4ab18f5_0 221 KB conda-forge\n", + " aws-c-compression-0.2.18 | h83b837d_6 19 KB conda-forge\n", + " aws-c-event-stream-0.4.2 | ha47c788_12 53 KB conda-forge\n", + " aws-c-http-0.8.1 | h29d6fba_17 190 KB conda-forge\n", + " aws-c-io-0.14.8 | h21d4f22_5 154 KB conda-forge\n", + " aws-c-mqtt-0.10.4 | h759edc4_4 160 KB conda-forge\n", + " aws-c-s3-0.5.9 | h594631b_3 107 KB conda-forge\n", + " aws-c-sdkutils-0.1.16 | h83b837d_2 54 KB conda-forge\n", + " aws-checksums-0.1.18 | h83b837d_6 49 KB conda-forge\n", + " aws-crt-cpp-0.26.9 | he3a8b3b_0 332 KB conda-forge\n", + " aws-sdk-cpp-1.11.329 | hba8bd5f_3 3.5 MB conda-forge\n", + " binutils_impl_linux-64-2.40| hf600244_0 5.2 MB conda-forge\n", + " binutils_linux-64-2.40 | hb3c18ed_9 29 KB conda-forge\n", + " blas-2.125 | openblas 15 KB conda-forge\n", + " blas-devel-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", + " brotli-1.1.0 | hd590300_1 19 KB conda-forge\n", + " brotli-bin-1.1.0 | hd590300_1 19 KB conda-forge\n", + " c-ares-1.34.3 | heb4867d_0 201 KB conda-forge\n", + " ca-certificates-2024.8.30 | hbcca054_0 155 KB conda-forge\n", + " cached-property-1.5.2 | hd8ed1ab_1 4 KB conda-forge\n", + " cached_property-1.5.2 | pyha770c72_1 11 KB conda-forge\n", + " cachetools-5.5.0 | pyhd8ed1ab_0 14 KB conda-forge\n", + " cairo-1.18.0 | h3faef2a_0 959 KB conda-forge\n", + " certifi-2024.8.30 | pyhd8ed1ab_0 160 KB conda-forge\n", + " cloudpickle-3.1.0 | pyhd8ed1ab_1 25 KB conda-forge\n", + " cons-0.4.6 | pyhd8ed1ab_0 14 KB conda-forge\n", + " contourpy-1.3.0 | py310h3788b33_2 255 KB conda-forge\n", + " cycler-0.12.1 | pyhd8ed1ab_0 13 KB conda-forge\n", + " etuples-0.3.9 | pyhd8ed1ab_0 17 KB conda-forge\n", + " expat-2.6.4 | h5888daf_0 135 KB conda-forge\n", + " filelock-3.16.1 | pyhd8ed1ab_0 17 KB conda-forge\n", + " font-ttf-dejavu-sans-mono-2.37| hab24e00_0 388 KB conda-forge\n", + " font-ttf-inconsolata-3.000 | h77eed37_0 94 KB conda-forge\n", + " font-ttf-source-code-pro-2.038| h77eed37_0 684 KB conda-forge\n", + " font-ttf-ubuntu-0.83 | h77eed37_3 1.5 MB conda-forge\n", + " fontconfig-2.14.2 | h14ed4e7_0 266 KB conda-forge\n", + " fonts-conda-ecosystem-1 | 0 4 KB conda-forge\n", + " fonts-conda-forge-1 | 0 4 KB conda-forge\n", + " fonttools-4.54.1 | py310h89163eb_1 2.2 MB conda-forge\n", + " freetype-2.12.1 | h267a509_2 620 KB conda-forge\n", + " fribidi-1.0.10 | h36c2ea0_0 112 KB conda-forge\n", + " gcc-13.3.0 | h9576a4e_1 53 KB conda-forge\n", + " gcc_impl_linux-64-13.3.0 | hfea6d02_1 64.3 MB conda-forge\n", + " gcc_linux-64-13.3.0 | hc28eda2_5 31 KB conda-forge\n", + " gdk-pixbuf-2.42.12 | hb9ae30d_0 516 KB conda-forge\n", + " gettext-0.22.5 | he02047a_3 468 KB conda-forge\n", + " gettext-tools-0.22.5 | he02047a_3 2.6 MB conda-forge\n", + " gflags-2.2.2 | h5888daf_1005 117 KB conda-forge\n", + " giflib-5.2.2 | hd590300_0 75 KB conda-forge\n", + " glog-0.7.1 | hbabe93e_0 140 KB conda-forge\n", + " graphite2-1.3.13 | h59595ed_1003 95 KB conda-forge\n", + " graphviz-9.0.0 | h78e8752_1 2.2 MB conda-forge\n", + " gtk2-2.24.33 | h280cfa0_4 6.2 MB conda-forge\n", + " gts-0.7.6 | h977cf35_4 311 KB conda-forge\n", + " gxx-13.3.0 | h9576a4e_1 52 KB conda-forge\n", + " gxx_impl_linux-64-13.3.0 | hdbfa832_1 12.7 MB conda-forge\n", + " gxx_linux-64-13.3.0 | h6834431_5 30 KB conda-forge\n", + " h5netcdf-1.4.0 | pyhd8ed1ab_0 46 KB conda-forge\n", + " h5py-3.12.1 |nompi_py310h60e0fe6_102 1.2 MB conda-forge\n", + " harfbuzz-8.5.0 | hfac3d4d_0 1.5 MB conda-forge\n", + " hdf5-1.14.3 |nompi_hdf9ad27_105 3.7 MB conda-forge\n", + " kernel-headers_linux-64-3.10.0| he073ed8_18 921 KB conda-forge\n", + " kiwisolver-1.4.7 | py310h3788b33_0 70 KB conda-forge\n", + " lcms2-2.16 | hb7c19ff_0 239 KB conda-forge\n", + " lerc-4.0.0 | h27087fc_0 275 KB conda-forge\n", + " libabseil-20240116.2 | cxx17_he02047a_1 1.2 MB conda-forge\n", + " libaec-1.1.3 | h59595ed_0 35 KB conda-forge\n", + " libarrow-16.1.0 | hcb6531f_6_cpu 7.9 MB conda-forge\n", + " libasprintf-0.22.5 | he8f35ee_3 42 KB conda-forge\n", + " libasprintf-devel-0.22.5 | he8f35ee_3 33 KB conda-forge\n", + " libblas-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", + " libbrotlicommon-1.1.0 | hd590300_1 68 KB conda-forge\n", + " libbrotlidec-1.1.0 | hd590300_1 32 KB conda-forge\n", + " libbrotlienc-1.1.0 | hd590300_1 276 KB conda-forge\n", + " libcblas-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", + " libcrc32c-1.1.2 | h9c3ff4c_0 20 KB conda-forge\n", + " libcurl-8.8.0 | hca28451_0 396 KB conda-forge\n", + " libdeflate-1.20 | hd590300_0 70 KB conda-forge\n", + " libexpat-2.6.4 | h5888daf_0 72 KB conda-forge\n", + " libgcc-14.2.0 | h77fa898_1 829 KB conda-forge\n", + " libgcc-devel_linux-64-13.3.0| h84ea5a7_101 2.5 MB conda-forge\n", + " libgcc-ng-14.2.0 | h69a702a_1 53 KB conda-forge\n", + " libgd-2.3.3 | h119a65a_9 219 KB conda-forge\n", + " libgettextpo-0.22.5 | he02047a_3 167 KB conda-forge\n", + " libgettextpo-devel-0.22.5 | he02047a_3 36 KB conda-forge\n", + " libgfortran-14.2.0 | h69a702a_1 53 KB conda-forge\n", + " libgfortran-ng-14.2.0 | h69a702a_1 53 KB conda-forge\n", + " libgfortran5-14.2.0 | hd5240d6_1 1.4 MB conda-forge\n", + " libglib-2.80.2 | hf974151_0 3.7 MB conda-forge\n", + " libgomp-14.2.0 | h77fa898_1 450 KB conda-forge\n", + " libgoogle-cloud-2.24.0 | h2736e30_0 1.2 MB conda-forge\n", + " libgoogle-cloud-storage-2.24.0| h3d9a0c8_0 735 KB conda-forge\n", + " libgrpc-1.62.2 | h15f2491_0 7.0 MB conda-forge\n", + " libhwloc-2.9.3 |default_h554bfaf_1009 2.5 MB conda-forge\n", + " libjpeg-turbo-3.0.0 | hd590300_1 604 KB conda-forge\n", + " liblapack-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", + " liblapacke-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", + " libllvm14-14.0.6 | hcd5def8_4 30.0 MB conda-forge\n", + " libopenblas-0.3.28 |pthreads_h94d23a6_1 5.3 MB conda-forge\n", + " libpng-1.6.43 | h2797004_0 281 KB conda-forge\n", + " libprotobuf-4.25.3 | h08a7969_0 2.7 MB conda-forge\n", + " libre2-11-2023.09.01 | h5a48ba9_2 227 KB conda-forge\n", + " librsvg-2.56.3 | he3f83f7_1 5.6 MB conda-forge\n", + " libsanitizer-13.3.0 | heb74ff8_1 3.9 MB conda-forge\n", + " libstdcxx-14.2.0 | hc0a3c3a_1 3.7 MB conda-forge\n", + " libstdcxx-devel_linux-64-13.3.0| h84ea5a7_101 13.4 MB conda-forge\n", + " libtiff-4.6.0 | h1dd3fc0_3 276 KB conda-forge\n", + " libutf8proc-2.8.0 | h166bdaf_0 99 KB conda-forge\n", + " libwebp-1.4.0 | h2c329e2_0 90 KB conda-forge\n", + " libwebp-base-1.4.0 | hd590300_0 429 KB conda-forge\n", + " libxcb-1.15 | h0b41bf4_0 375 KB conda-forge\n", + " llvm-openmp-19.1.3 | h024ca30_0 3.0 MB conda-forge\n", + " llvmlite-0.42.0 | py310h1b8f574_1 3.2 MB conda-forge\n", + " logical-unification-0.4.6 | pyhd8ed1ab_0 18 KB conda-forge\n", + " markdown-it-py-3.0.0 | pyhd8ed1ab_0 63 KB conda-forge\n", + " matplotlib-base-3.9.2 | py310h68603db_2 6.7 MB conda-forge\n", + " mdurl-0.1.2 | pyhd8ed1ab_0 14 KB conda-forge\n", + " minikanren-1.0.3 | pyhd8ed1ab_0 23 KB conda-forge\n", + " mkl-2024.2.2 | ha957f24_16 118.9 MB conda-forge\n", + " mkl-service-2.4.2 | py310h22455d7_0 70 KB conda-forge\n", + " multipledispatch-0.6.0 | pyhd8ed1ab_1 17 KB conda-forge\n", + " munkres-1.1.4 | pyh9f0ad1d_0 12 KB conda-forge\n", + " numba-0.59.1 | py310h7dc5dd1_0 4.1 MB conda-forge\n", + " numpy-1.26.4 | py310hb13e2d6_0 6.7 MB conda-forge\n", + " nutpie-0.13.2 | py310h4a6dfd8_0 1.2 MB conda-forge\n", + " openblas-0.3.28 |pthreads_h6ec200e_1 5.5 MB conda-forge\n", + " openjpeg-2.5.2 | h488ebb8_0 334 KB conda-forge\n", + " openssl-3.4.0 | hb9d3cd8_0 2.8 MB conda-forge\n", + " orc-2.0.1 | h17fec99_1 1006 KB conda-forge\n", + " pandas-2.2.3 | py310h5eaa309_1 12.4 MB conda-forge\n", + " pango-1.54.0 | h84a9a3c_0 438 KB conda-forge\n", + " pcre2-10.43 | hcad00b1_0 929 KB conda-forge\n", + " pillow-10.3.0 | py310hf73ecf8_0 39.8 MB conda-forge\n", + " pixman-0.43.2 | h59595ed_0 378 KB conda-forge\n", + " pthread-stubs-0.4 | hb9d3cd8_1002 8 KB conda-forge\n", + " pyarrow-core-16.1.0 |py310h6f79a3a_1_cpu 4.2 MB conda-forge\n", + " pygments-2.18.0 | pyhd8ed1ab_0 859 KB conda-forge\n", + " pymc-5.18.0 | hd8ed1ab_0 11 KB conda-forge\n", + " pymc-base-5.18.0 | pyhd8ed1ab_0 326 KB conda-forge\n", + " pyparsing-3.2.0 | pyhd8ed1ab_1 90 KB conda-forge\n", + " pytensor-2.25.5 | py310ha549d7f_0 9 KB conda-forge\n", + " pytensor-base-2.25.5 | py310h89e8f5a_0 1.7 MB conda-forge\n", + " python-dateutil-2.9.0 | pyhd8ed1ab_0 218 KB conda-forge\n", + " python-graphviz-0.20.3 | pyhe28f650_1 37 KB conda-forge\n", + " python-tzdata-2024.2 | pyhd8ed1ab_0 139 KB conda-forge\n", + " pytz-2024.1 | pyhd8ed1ab_0 184 KB conda-forge\n", + " qhull-2020.2 | h434a139_5 540 KB conda-forge\n", + " re2-2023.09.01 | h7f4b329_2 26 KB conda-forge\n", + " rich-13.9.4 | pyhd8ed1ab_0 181 KB conda-forge\n", + " s2n-1.4.15 | he19d79f_0 341 KB conda-forge\n", + " scipy-1.14.1 | py310hfcf56fc_1 16.1 MB conda-forge\n", + " six-1.16.0 | pyh6c4a22f_0 14 KB conda-forge\n", + " snappy-1.2.1 | ha2e4443_0 41 KB conda-forge\n", + " sysroot_linux-64-2.17 | h4a8ded7_18 14.8 MB conda-forge\n", + " tbb-2021.11.0 | h00ab1b0_1 191 KB conda-forge\n", + " threadpoolctl-3.5.0 | pyhc1e730c_0 23 KB conda-forge\n", + " toolz-1.0.0 | pyhd8ed1ab_0 51 KB conda-forge\n", + " typing-extensions-4.12.2 | hd8ed1ab_0 10 KB conda-forge\n", + " typing_extensions-4.12.2 | pyha770c72_0 39 KB conda-forge\n", + " unicodedata2-15.1.0 | py310ha75aee5_1 359 KB conda-forge\n", + " xarray-2024.10.0 | pyhd8ed1ab_0 795 KB conda-forge\n", + " xarray-einstats-0.8.0 | pyhd8ed1ab_0 33 KB conda-forge\n", + " xorg-kbproto-1.0.7 | hb9d3cd8_1003 30 KB conda-forge\n", + " xorg-libice-1.1.1 | hb9d3cd8_1 57 KB conda-forge\n", + " xorg-libsm-1.2.4 | he73a12e_1 27 KB conda-forge\n", + " xorg-libx11-1.8.9 | h8ee46fc_0 809 KB conda-forge\n", + " xorg-libxau-1.0.11 | hb9d3cd8_1 14 KB conda-forge\n", + " xorg-libxdmcp-1.1.5 | hb9d3cd8_0 19 KB conda-forge\n", + " xorg-libxext-1.3.4 | h0b41bf4_2 49 KB conda-forge\n", + " xorg-libxrender-0.9.11 | hd590300_0 37 KB conda-forge\n", + " xorg-renderproto-0.11.1 | hb9d3cd8_1003 12 KB conda-forge\n", + " xorg-xextproto-7.3.0 | hb9d3cd8_1004 30 KB conda-forge\n", + " xorg-xproto-7.0.31 | hb9d3cd8_1008 72 KB conda-forge\n", + " zlib-1.2.13 | hd590300_5 91 KB conda-forge\n", + " zstandard-0.23.0 | py310ha39cb0e_1 399 KB conda-forge\n", + " zstd-1.5.6 | ha6fb4c9_0 542 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 466.7 MB\n", + "\n", + "The following NEW packages will be INSTALLED:\n", + "\n", + " arviz conda-forge/noarch::arviz-0.20.0-pyhd8ed1ab_0 \n", + " atk-1.0 conda-forge/linux-64::atk-1.0-2.38.0-h04ea711_2 \n", + " aws-c-auth conda-forge/linux-64::aws-c-auth-0.7.22-h96bc93b_2 \n", + " aws-c-cal conda-forge/linux-64::aws-c-cal-0.6.14-h88a6e22_1 \n", + " aws-c-common conda-forge/linux-64::aws-c-common-0.9.19-h4ab18f5_0 \n", + " aws-c-compression conda-forge/linux-64::aws-c-compression-0.2.18-h83b837d_6 \n", + " aws-c-event-stream conda-forge/linux-64::aws-c-event-stream-0.4.2-ha47c788_12 \n", + " aws-c-http conda-forge/linux-64::aws-c-http-0.8.1-h29d6fba_17 \n", + " aws-c-io conda-forge/linux-64::aws-c-io-0.14.8-h21d4f22_5 \n", + " aws-c-mqtt conda-forge/linux-64::aws-c-mqtt-0.10.4-h759edc4_4 \n", + " aws-c-s3 conda-forge/linux-64::aws-c-s3-0.5.9-h594631b_3 \n", + " aws-c-sdkutils conda-forge/linux-64::aws-c-sdkutils-0.1.16-h83b837d_2 \n", + " aws-checksums conda-forge/linux-64::aws-checksums-0.1.18-h83b837d_6 \n", + " aws-crt-cpp conda-forge/linux-64::aws-crt-cpp-0.26.9-he3a8b3b_0 \n", + " aws-sdk-cpp conda-forge/linux-64::aws-sdk-cpp-1.11.329-hba8bd5f_3 \n", + " binutils_impl_lin~ conda-forge/linux-64::binutils_impl_linux-64-2.40-hf600244_0 \n", + " binutils_linux-64 conda-forge/linux-64::binutils_linux-64-2.40-hb3c18ed_9 \n", + " blas conda-forge/linux-64::blas-2.125-openblas \n", + " blas-devel conda-forge/linux-64::blas-devel-3.9.0-25_linux64_openblas \n", + " brotli conda-forge/linux-64::brotli-1.1.0-hd590300_1 \n", + " brotli-bin conda-forge/linux-64::brotli-bin-1.1.0-hd590300_1 \n", + " cached-property conda-forge/noarch::cached-property-1.5.2-hd8ed1ab_1 \n", + " cached_property conda-forge/noarch::cached_property-1.5.2-pyha770c72_1 \n", + " cachetools conda-forge/noarch::cachetools-5.5.0-pyhd8ed1ab_0 \n", + " cairo conda-forge/linux-64::cairo-1.18.0-h3faef2a_0 \n", + " cloudpickle conda-forge/noarch::cloudpickle-3.1.0-pyhd8ed1ab_1 \n", + " cons conda-forge/noarch::cons-0.4.6-pyhd8ed1ab_0 \n", + " contourpy conda-forge/linux-64::contourpy-1.3.0-py310h3788b33_2 \n", + " cycler conda-forge/noarch::cycler-0.12.1-pyhd8ed1ab_0 \n", + " etuples conda-forge/noarch::etuples-0.3.9-pyhd8ed1ab_0 \n", + " expat conda-forge/linux-64::expat-2.6.4-h5888daf_0 \n", + " filelock conda-forge/noarch::filelock-3.16.1-pyhd8ed1ab_0 \n", + " font-ttf-dejavu-s~ conda-forge/noarch::font-ttf-dejavu-sans-mono-2.37-hab24e00_0 \n", + " font-ttf-inconsol~ conda-forge/noarch::font-ttf-inconsolata-3.000-h77eed37_0 \n", + " font-ttf-source-c~ conda-forge/noarch::font-ttf-source-code-pro-2.038-h77eed37_0 \n", + " font-ttf-ubuntu conda-forge/noarch::font-ttf-ubuntu-0.83-h77eed37_3 \n", + " fontconfig conda-forge/linux-64::fontconfig-2.14.2-h14ed4e7_0 \n", + " fonts-conda-ecosy~ conda-forge/noarch::fonts-conda-ecosystem-1-0 \n", + " fonts-conda-forge conda-forge/noarch::fonts-conda-forge-1-0 \n", + " fonttools conda-forge/linux-64::fonttools-4.54.1-py310h89163eb_1 \n", + " freetype conda-forge/linux-64::freetype-2.12.1-h267a509_2 \n", + " fribidi conda-forge/linux-64::fribidi-1.0.10-h36c2ea0_0 \n", + " gcc conda-forge/linux-64::gcc-13.3.0-h9576a4e_1 \n", + " gcc_impl_linux-64 conda-forge/linux-64::gcc_impl_linux-64-13.3.0-hfea6d02_1 \n", + " gcc_linux-64 conda-forge/linux-64::gcc_linux-64-13.3.0-hc28eda2_5 \n", + " gdk-pixbuf conda-forge/linux-64::gdk-pixbuf-2.42.12-hb9ae30d_0 \n", + " gettext conda-forge/linux-64::gettext-0.22.5-he02047a_3 \n", + " gettext-tools conda-forge/linux-64::gettext-tools-0.22.5-he02047a_3 \n", + " gflags conda-forge/linux-64::gflags-2.2.2-h5888daf_1005 \n", + " giflib conda-forge/linux-64::giflib-5.2.2-hd590300_0 \n", + " glog conda-forge/linux-64::glog-0.7.1-hbabe93e_0 \n", + " graphite2 conda-forge/linux-64::graphite2-1.3.13-h59595ed_1003 \n", + " graphviz conda-forge/linux-64::graphviz-9.0.0-h78e8752_1 \n", + " gtk2 conda-forge/linux-64::gtk2-2.24.33-h280cfa0_4 \n", + " gts conda-forge/linux-64::gts-0.7.6-h977cf35_4 \n", + " gxx conda-forge/linux-64::gxx-13.3.0-h9576a4e_1 \n", + " gxx_impl_linux-64 conda-forge/linux-64::gxx_impl_linux-64-13.3.0-hdbfa832_1 \n", + " gxx_linux-64 conda-forge/linux-64::gxx_linux-64-13.3.0-h6834431_5 \n", + " h5netcdf conda-forge/noarch::h5netcdf-1.4.0-pyhd8ed1ab_0 \n", + " h5py conda-forge/linux-64::h5py-3.12.1-nompi_py310h60e0fe6_102 \n", + " harfbuzz conda-forge/linux-64::harfbuzz-8.5.0-hfac3d4d_0 \n", + " hdf5 conda-forge/linux-64::hdf5-1.14.3-nompi_hdf9ad27_105 \n", + " kernel-headers_li~ conda-forge/noarch::kernel-headers_linux-64-3.10.0-he073ed8_18 \n", + " kiwisolver conda-forge/linux-64::kiwisolver-1.4.7-py310h3788b33_0 \n", + " lcms2 conda-forge/linux-64::lcms2-2.16-hb7c19ff_0 \n", + " lerc conda-forge/linux-64::lerc-4.0.0-h27087fc_0 \n", + " libabseil conda-forge/linux-64::libabseil-20240116.2-cxx17_he02047a_1 \n", + " libaec conda-forge/linux-64::libaec-1.1.3-h59595ed_0 \n", + " libarrow conda-forge/linux-64::libarrow-16.1.0-hcb6531f_6_cpu \n", + " libasprintf conda-forge/linux-64::libasprintf-0.22.5-he8f35ee_3 \n", + " libasprintf-devel conda-forge/linux-64::libasprintf-devel-0.22.5-he8f35ee_3 \n", + " libblas conda-forge/linux-64::libblas-3.9.0-25_linux64_openblas \n", + " libbrotlicommon conda-forge/linux-64::libbrotlicommon-1.1.0-hd590300_1 \n", + " libbrotlidec conda-forge/linux-64::libbrotlidec-1.1.0-hd590300_1 \n", + " libbrotlienc conda-forge/linux-64::libbrotlienc-1.1.0-hd590300_1 \n", + " libcblas conda-forge/linux-64::libcblas-3.9.0-25_linux64_openblas \n", + " libcrc32c conda-forge/linux-64::libcrc32c-1.1.2-h9c3ff4c_0 \n", + " libdeflate conda-forge/linux-64::libdeflate-1.20-hd590300_0 \n", + " libexpat conda-forge/linux-64::libexpat-2.6.4-h5888daf_0 \n", + " libgcc conda-forge/linux-64::libgcc-14.2.0-h77fa898_1 \n", + " libgcc-devel_linu~ conda-forge/noarch::libgcc-devel_linux-64-13.3.0-h84ea5a7_101 \n", + " libgd conda-forge/linux-64::libgd-2.3.3-h119a65a_9 \n", + " libgettextpo conda-forge/linux-64::libgettextpo-0.22.5-he02047a_3 \n", + " libgettextpo-devel conda-forge/linux-64::libgettextpo-devel-0.22.5-he02047a_3 \n", + " libgfortran conda-forge/linux-64::libgfortran-14.2.0-h69a702a_1 \n", + " libgfortran-ng conda-forge/linux-64::libgfortran-ng-14.2.0-h69a702a_1 \n", + " libgfortran5 conda-forge/linux-64::libgfortran5-14.2.0-hd5240d6_1 \n", + " libglib conda-forge/linux-64::libglib-2.80.2-hf974151_0 \n", + " libgoogle-cloud conda-forge/linux-64::libgoogle-cloud-2.24.0-h2736e30_0 \n", + " libgoogle-cloud-s~ conda-forge/linux-64::libgoogle-cloud-storage-2.24.0-h3d9a0c8_0 \n", + " libgrpc conda-forge/linux-64::libgrpc-1.62.2-h15f2491_0 \n", + " libhwloc conda-forge/linux-64::libhwloc-2.9.3-default_h554bfaf_1009 \n", + " libjpeg-turbo conda-forge/linux-64::libjpeg-turbo-3.0.0-hd590300_1 \n", + " liblapack conda-forge/linux-64::liblapack-3.9.0-25_linux64_openblas \n", + " liblapacke conda-forge/linux-64::liblapacke-3.9.0-25_linux64_openblas \n", + " libllvm14 conda-forge/linux-64::libllvm14-14.0.6-hcd5def8_4 \n", + " libopenblas conda-forge/linux-64::libopenblas-0.3.28-pthreads_h94d23a6_1 \n", + " libpng conda-forge/linux-64::libpng-1.6.43-h2797004_0 \n", + " libprotobuf conda-forge/linux-64::libprotobuf-4.25.3-h08a7969_0 \n", + " libre2-11 conda-forge/linux-64::libre2-11-2023.09.01-h5a48ba9_2 \n", + " librsvg conda-forge/linux-64::librsvg-2.56.3-he3f83f7_1 \n", + " libsanitizer conda-forge/linux-64::libsanitizer-13.3.0-heb74ff8_1 \n", + " libstdcxx conda-forge/linux-64::libstdcxx-14.2.0-hc0a3c3a_1 \n", + " libstdcxx-devel_l~ conda-forge/noarch::libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101 \n", + " libtiff conda-forge/linux-64::libtiff-4.6.0-h1dd3fc0_3 \n", + " libutf8proc conda-forge/linux-64::libutf8proc-2.8.0-h166bdaf_0 \n", + " libwebp conda-forge/linux-64::libwebp-1.4.0-h2c329e2_0 \n", + " libwebp-base conda-forge/linux-64::libwebp-base-1.4.0-hd590300_0 \n", + " libxcb conda-forge/linux-64::libxcb-1.15-h0b41bf4_0 \n", + " llvm-openmp conda-forge/linux-64::llvm-openmp-19.1.3-h024ca30_0 \n", + " llvmlite conda-forge/linux-64::llvmlite-0.42.0-py310h1b8f574_1 \n", + " logical-unificati~ conda-forge/noarch::logical-unification-0.4.6-pyhd8ed1ab_0 \n", + " markdown-it-py conda-forge/noarch::markdown-it-py-3.0.0-pyhd8ed1ab_0 \n", + " matplotlib-base conda-forge/linux-64::matplotlib-base-3.9.2-py310h68603db_2 \n", + " mdurl conda-forge/noarch::mdurl-0.1.2-pyhd8ed1ab_0 \n", + " minikanren conda-forge/noarch::minikanren-1.0.3-pyhd8ed1ab_0 \n", + " mkl conda-forge/linux-64::mkl-2024.2.2-ha957f24_16 \n", + " mkl-service conda-forge/linux-64::mkl-service-2.4.2-py310h22455d7_0 \n", + " multipledispatch conda-forge/noarch::multipledispatch-0.6.0-pyhd8ed1ab_1 \n", + " munkres conda-forge/noarch::munkres-1.1.4-pyh9f0ad1d_0 \n", + " numba conda-forge/linux-64::numba-0.59.1-py310h7dc5dd1_0 \n", + " numpy conda-forge/linux-64::numpy-1.26.4-py310hb13e2d6_0 \n", + " nutpie conda-forge/linux-64::nutpie-0.13.2-py310h4a6dfd8_0 \n", + " openblas conda-forge/linux-64::openblas-0.3.28-pthreads_h6ec200e_1 \n", + " openjpeg conda-forge/linux-64::openjpeg-2.5.2-h488ebb8_0 \n", + " orc conda-forge/linux-64::orc-2.0.1-h17fec99_1 \n", + " pandas conda-forge/linux-64::pandas-2.2.3-py310h5eaa309_1 \n", + " pango conda-forge/linux-64::pango-1.54.0-h84a9a3c_0 \n", + " pcre2 conda-forge/linux-64::pcre2-10.43-hcad00b1_0 \n", + " pillow conda-forge/linux-64::pillow-10.3.0-py310hf73ecf8_0 \n", + " pixman conda-forge/linux-64::pixman-0.43.2-h59595ed_0 \n", + " pthread-stubs conda-forge/linux-64::pthread-stubs-0.4-hb9d3cd8_1002 \n", + " pyarrow-core conda-forge/linux-64::pyarrow-core-16.1.0-py310h6f79a3a_1_cpu \n", + " pygments conda-forge/noarch::pygments-2.18.0-pyhd8ed1ab_0 \n", + " pymc conda-forge/noarch::pymc-5.18.0-hd8ed1ab_0 \n", + " pymc-base conda-forge/noarch::pymc-base-5.18.0-pyhd8ed1ab_0 \n", + " pyparsing conda-forge/noarch::pyparsing-3.2.0-pyhd8ed1ab_1 \n", + " pytensor conda-forge/linux-64::pytensor-2.25.5-py310ha549d7f_0 \n", + " pytensor-base conda-forge/linux-64::pytensor-base-2.25.5-py310h89e8f5a_0 \n", + " python-dateutil conda-forge/noarch::python-dateutil-2.9.0-pyhd8ed1ab_0 \n", + " python-graphviz conda-forge/noarch::python-graphviz-0.20.3-pyhe28f650_1 \n", + " python-tzdata conda-forge/noarch::python-tzdata-2024.2-pyhd8ed1ab_0 \n", + " pytz conda-forge/noarch::pytz-2024.1-pyhd8ed1ab_0 \n", + " qhull conda-forge/linux-64::qhull-2020.2-h434a139_5 \n", + " re2 conda-forge/linux-64::re2-2023.09.01-h7f4b329_2 \n", + " rich conda-forge/noarch::rich-13.9.4-pyhd8ed1ab_0 \n", + " s2n conda-forge/linux-64::s2n-1.4.15-he19d79f_0 \n", + " scipy conda-forge/linux-64::scipy-1.14.1-py310hfcf56fc_1 \n", + " six conda-forge/noarch::six-1.16.0-pyh6c4a22f_0 \n", + " snappy conda-forge/linux-64::snappy-1.2.1-ha2e4443_0 \n", + " sysroot_linux-64 conda-forge/noarch::sysroot_linux-64-2.17-h4a8ded7_18 \n", + " tbb conda-forge/linux-64::tbb-2021.11.0-h00ab1b0_1 \n", + " threadpoolctl conda-forge/noarch::threadpoolctl-3.5.0-pyhc1e730c_0 \n", + " toolz conda-forge/noarch::toolz-1.0.0-pyhd8ed1ab_0 \n", + " typing-extensions conda-forge/noarch::typing-extensions-4.12.2-hd8ed1ab_0 \n", + " typing_extensions conda-forge/noarch::typing_extensions-4.12.2-pyha770c72_0 \n", + " unicodedata2 conda-forge/linux-64::unicodedata2-15.1.0-py310ha75aee5_1 \n", + " xarray conda-forge/noarch::xarray-2024.10.0-pyhd8ed1ab_0 \n", + " xarray-einstats conda-forge/noarch::xarray-einstats-0.8.0-pyhd8ed1ab_0 \n", + " xorg-kbproto conda-forge/linux-64::xorg-kbproto-1.0.7-hb9d3cd8_1003 \n", + " xorg-libice conda-forge/linux-64::xorg-libice-1.1.1-hb9d3cd8_1 \n", + " xorg-libsm conda-forge/linux-64::xorg-libsm-1.2.4-he73a12e_1 \n", + " xorg-libx11 conda-forge/linux-64::xorg-libx11-1.8.9-h8ee46fc_0 \n", + " xorg-libxau conda-forge/linux-64::xorg-libxau-1.0.11-hb9d3cd8_1 \n", + " xorg-libxdmcp conda-forge/linux-64::xorg-libxdmcp-1.1.5-hb9d3cd8_0 \n", + " xorg-libxext conda-forge/linux-64::xorg-libxext-1.3.4-h0b41bf4_2 \n", + " xorg-libxrender conda-forge/linux-64::xorg-libxrender-0.9.11-hd590300_0 \n", + " xorg-renderproto conda-forge/linux-64::xorg-renderproto-0.11.1-hb9d3cd8_1003 \n", + " xorg-xextproto conda-forge/linux-64::xorg-xextproto-7.3.0-hb9d3cd8_1004 \n", + " xorg-xproto conda-forge/linux-64::xorg-xproto-7.0.31-hb9d3cd8_1008 \n", + " zlib conda-forge/linux-64::zlib-1.2.13-hd590300_5 \n", + "\n", + "The following packages will be UPDATED:\n", + "\n", + " c-ares 1.24.0-hd590300_0 --> 1.34.3-heb4867d_0 \n", + " ca-certificates 2023.11.17-hbcca054_0 --> 2024.8.30-hbcca054_0 \n", + " certifi 2023.11.17-pyhd8ed1ab_0 --> 2024.8.30-pyhd8ed1ab_0 \n", + " libcurl 8.5.0-hca28451_0 --> 8.8.0-hca28451_0 \n", + " libgcc-ng 13.2.0-h807b86a_3 --> 14.2.0-h69a702a_1 \n", + " libgomp 13.2.0-h807b86a_3 --> 14.2.0-h77fa898_1 \n", + " openssl 3.2.0-hd590300_1 --> 3.4.0-hb9d3cd8_0 \n", + " zstandard 0.22.0-py310h1275a96_0 --> 0.23.0-py310ha39cb0e_1 \n", + " zstd 1.5.5-hfc55251_0 --> 1.5.6-ha6fb4c9_0 \n", + "\n", + "The following packages will be DOWNGRADED:\n", + "\n", + " _openmp_mutex 4.5-2_gnu --> 4.5-2_kmp_llvm \n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages:\n", + "mkl-2024.2.2 | 118.9 MB | : 0% 0/1 [00:00 WARNING: A newer version of conda exists. <==\n", + " current version: 23.11.0\n", + " latest version: 24.9.2\n", + "\n", + "Please update conda by running\n", + "\n", + " $ conda update -n base -c conda-forge conda\n", + "\n", + "\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - cpuonly\n", + " - pytorch\n", + " - torchaudio\n", + " - torchvision\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " blas-2.116 | mkl 13 KB conda-forge\n", + " blas-devel-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", + " cpuonly-2.0 | 0 2 KB pytorch\n", + " ffmpeg-4.3 | hf484d3e_0 9.9 MB pytorch\n", + " gmp-6.3.0 | hac33072_2 449 KB conda-forge\n", + " gmpy2-2.1.5 | py310he8512ff_2 199 KB conda-forge\n", + " gnutls-3.6.13 | h85f3911_1 2.0 MB conda-forge\n", + " jinja2-3.1.4 | pyhd8ed1ab_0 109 KB conda-forge\n", + " lame-3.100 | h166bdaf_1003 496 KB conda-forge\n", + " libblas-3.9.0 | 16_linux64_mkl 13 KB conda-forge\n", + " libcblas-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", + " liblapack-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", + " liblapacke-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", + " llvm-openmp-15.0.7 | h0cdce71_0 3.1 MB conda-forge\n", + " markupsafe-3.0.2 | py310h89163eb_0 22 KB conda-forge\n", + " mkl-2022.1.0 | h84fe81f_915 199.6 MB conda-forge\n", + " mkl-devel-2022.1.0 | ha770c72_916 25 KB conda-forge\n", + " mkl-include-2022.1.0 | h84fe81f_915 745 KB conda-forge\n", + " mkl-service-2.4.0 | py310h9263142_0 56 KB conda-forge\n", + " mpc-1.3.1 | h24ddda3_1 114 KB conda-forge\n", + " mpfr-4.2.1 | h90cbb55_3 620 KB conda-forge\n", + " mpmath-1.3.0 | pyhd8ed1ab_0 428 KB conda-forge\n", + " nettle-3.6 | he412f7d_0 6.5 MB conda-forge\n", + " networkx-3.4.2 | pyhd8ed1ab_1 1.1 MB conda-forge\n", + " openh264-2.1.1 | h780b84a_0 1.5 MB conda-forge\n", + " pytorch-2.5.1 | py3.10_cpu_0 88.1 MB pytorch\n", + " pytorch-mutex-1.0 | cpu 3 KB pytorch\n", + " pyyaml-6.0.2 | py310ha75aee5_1 178 KB conda-forge\n", + " sympy-1.13.3 | pypyh2585a3b_103 4.4 MB conda-forge\n", + " torchaudio-2.5.1 | py310_cpu 5.0 MB pytorch\n", + " torchvision-0.20.1 | py310_cpu 6.9 MB pytorch\n", + " yaml-0.2.5 | h7f98852_2 87 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 331.6 MB\n", + "\n", + "The following NEW packages will be INSTALLED:\n", + "\n", + " cpuonly pytorch/noarch::cpuonly-2.0-0 \n", + " ffmpeg pytorch/linux-64::ffmpeg-4.3-hf484d3e_0 \n", + " gmp conda-forge/linux-64::gmp-6.3.0-hac33072_2 \n", + " gmpy2 conda-forge/linux-64::gmpy2-2.1.5-py310he8512ff_2 \n", + " gnutls conda-forge/linux-64::gnutls-3.6.13-h85f3911_1 \n", + " jinja2 conda-forge/noarch::jinja2-3.1.4-pyhd8ed1ab_0 \n", + " lame conda-forge/linux-64::lame-3.100-h166bdaf_1003 \n", + " markupsafe conda-forge/linux-64::markupsafe-3.0.2-py310h89163eb_0 \n", + " mkl-devel conda-forge/linux-64::mkl-devel-2022.1.0-ha770c72_916 \n", + " mkl-include conda-forge/linux-64::mkl-include-2022.1.0-h84fe81f_915 \n", + " mpc conda-forge/linux-64::mpc-1.3.1-h24ddda3_1 \n", + " mpfr conda-forge/linux-64::mpfr-4.2.1-h90cbb55_3 \n", + " mpmath conda-forge/noarch::mpmath-1.3.0-pyhd8ed1ab_0 \n", + " nettle conda-forge/linux-64::nettle-3.6-he412f7d_0 \n", + " networkx conda-forge/noarch::networkx-3.4.2-pyhd8ed1ab_1 \n", + " openh264 conda-forge/linux-64::openh264-2.1.1-h780b84a_0 \n", + " pytorch pytorch/linux-64::pytorch-2.5.1-py3.10_cpu_0 \n", + " pytorch-mutex pytorch/noarch::pytorch-mutex-1.0-cpu \n", + " pyyaml conda-forge/linux-64::pyyaml-6.0.2-py310ha75aee5_1 \n", + " sympy conda-forge/noarch::sympy-1.13.3-pypyh2585a3b_103 \n", + " torchaudio pytorch/linux-64::torchaudio-2.5.1-py310_cpu \n", + " torchvision pytorch/linux-64::torchvision-0.20.1-py310_cpu \n", + " yaml conda-forge/linux-64::yaml-0.2.5-h7f98852_2 \n", + "\n", + "The following packages will be DOWNGRADED:\n", + "\n", + " blas 2.125-openblas --> 2.116-mkl \n", + " blas-devel 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", + " libblas 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", + " libcblas 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", + " liblapack 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", + " liblapacke 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", + " llvm-openmp 19.1.3-h024ca30_0 --> 15.0.7-h0cdce71_0 \n", + " mkl 2024.2.2-ha957f24_16 --> 2022.1.0-h84fe81f_915 \n", + " mkl-service 2.4.2-py310h22455d7_0 --> 2.4.0-py310h9263142_0 \n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages:\n", + "mkl-2022.1.0 | 199.6 MB | : 0% 0/1 [00:00 Date: Tue, 12 Nov 2024 15:19:22 +0100 Subject: [PATCH 52/68] Created using Colab --- notebooks/pcntk_colab_env.ipynb | 94 +++++++++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 notebooks/pcntk_colab_env.ipynb diff --git a/notebooks/pcntk_colab_env.ipynb b/notebooks/pcntk_colab_env.ipynb new file mode 100644 index 00000000..0dc879ef --- /dev/null +++ b/notebooks/pcntk_colab_env.ipynb @@ -0,0 +1,94 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyPhmRD2D0nfPuaeSc4uS/Q+", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "## Install condacolab, which will enable us to install using conda\n", + "## Outcomment this cell after the kernel has automatically restarted\n", + "import os\n", + "os.environ['PYTHONPATH'] = \"\" # Need to clear the pythonpath to avoid some errors\n", + "!echo \"pythonpath: $PYTHONPATH\"\n", + "!pip install -q condacolab\n", + "import condacolab\n", + "condacolab.install()" + ], + "metadata": { + "id": "WtVP1BD3eKjV" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Check if condacolab works\n", + "import condacolab\n", + "condacolab.check()\n", + "\n", + "# Install libraries with optimized dependencies (BLAS and Rust) using conda\n", + "!conda install pymc numba nutpie -c conda-forge\n", + "\n", + "# Install CPU only verion of torch using conda (go to https://pytorch.org/get-started/locally/ if you need another version for your platform)\n", + "!conda install pytorch torchvision torchaudio cpuonly -c pytorch\n", + "\n", + "# # Install the pcntoolkit\n", + "!pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" + ], + "metadata": { + "id": "cb4xm679kxnE", + "collapsed": true + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import pcntoolkit as ptk\n", + "\n", + "### If you get an error about a cffi version mismatch, bright the site-packages version of cffi up to the dist-packages version using the following line\n", + "# !pip install --upgrade cffi==1.17.1 # works if dist-packages version is 1.17.1" + ], + "metadata": { + "id": "AAtKC6emj8Rn" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "JZlmznTwoH_t" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 887a972d510e2934131438972a64843b23483ca0 Mon Sep 17 00:00:00 2001 From: Stijn de Boer <19709783+AuguB@users.noreply.github.com> Date: Tue, 12 Nov 2024 15:46:41 +0100 Subject: [PATCH 53/68] Created using Colab --- notebooks/pcntk_colab_dev_env.ipynb | 4558 +-------------------------- 1 file changed, 114 insertions(+), 4444 deletions(-) diff --git a/notebooks/pcntk_colab_dev_env.ipynb b/notebooks/pcntk_colab_dev_env.ipynb index 82b831e6..6d5f5408 100644 --- a/notebooks/pcntk_colab_dev_env.ipynb +++ b/notebooks/pcntk_colab_dev_env.ipynb @@ -4,8 +4,7 @@ "metadata": { "colab": { "provenance": [], - "name": "pcntk_colab_dev_env.ipynb", - "authorship_tag": "ABX9TyPhmRD2D0nfPuaeSc4uS/Q+", + "authorship_tag": "ABX9TyNfYdKn7+C4d4WSym/CFRMQ", "include_colab_link": true }, "kernelspec": { @@ -30,4469 +29,140 @@ { "cell_type": "code", "source": [ - "## Install condacolab, which will enable us to install using conda\n", - "## Outcomment this cell after the kernel has automatically restarted\n", - "import os\n", - "os.environ['PYTHONPATH'] = \"\" # Need to clear the pythonpath to avoid some errors\n", - "!echo \"pythonpath: $PYTHONPATH\"\n", - "!pip install -q condacolab\n", - "import condacolab\n", - "condacolab.install()" + "!pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip\n", + "!pip install nutpie" ], "metadata": { - "id": "WtVP1BD3eKjV", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "6e4a9a86-d761-4bf8-80fa-6ed748d9000a" + "id": "vIbnkHN9ydb3" }, "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "pythonpath: \n", - "⏬ Downloading https://github.com/conda-forge/miniforge/releases/download/23.11.0-0/Mambaforge-23.11.0-0-Linux-x86_64.sh...\n", - "📦 Installing...\n", - "📌 Adjusting configuration...\n", - "🩹 Patching environment...\n", - "⏲ Done in 0:00:16\n", - "🔁 Restarting kernel...\n" - ] - } - ] + "outputs": [] }, { "cell_type": "code", "source": [ - "# Check if condacolab works\n", - "import condacolab\n", - "condacolab.check()\n", + "# %%\n", + "from warnings import filterwarnings\n", "\n", - "# Install libraries with optimized dependencies (BLAS and Rust) using conda\n", - "!conda install pymc numba nutpie -c conda-forge\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import os\n", "\n", - "# Install CPU only verion of torch using conda (go to https://pytorch.org/get-started/locally/ if you need another version for your platform)\n", - "!conda install pytorch torchvision torchaudio cpuonly -c pytorch\n", + "from pcntoolkit.normative_model.norm_utils import norm_init\n", + "from pcntoolkit.util.utils import simulate_data\n", + "\n", + "filterwarnings(\"ignore\")\n", + "\n", + "\n", + "########################### Experiment Settings ###############################\n", "\n", - "# # Install the pcntoolkit\n", - "!pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cb4xm679kxnE", - "outputId": "0985fdde-0fe6-44f6-cb29-d38e393f9010", - "collapsed": true - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Channels:\n", - " - conda-forge\n", - "Platform: linux-64\n", - "Collecting package metadata (repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "Solving environment: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", - "\n", - "\n", - "==> WARNING: A newer version of conda exists. <==\n", - " current version: 23.11.0\n", - " latest version: 24.9.2\n", - "\n", - "Please update conda by running\n", - "\n", - " $ conda update -n base -c conda-forge conda\n", - "\n", - "\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - numba\n", - " - nutpie\n", - " - pymc\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " _openmp_mutex-4.5 | 2_kmp_llvm 6 KB conda-forge\n", - " arviz-0.20.0 | pyhd8ed1ab_0 1.4 MB conda-forge\n", - " atk-1.0-2.38.0 | h04ea711_2 348 KB conda-forge\n", - " aws-c-auth-0.7.22 | h96bc93b_2 103 KB conda-forge\n", - " aws-c-cal-0.6.14 | h88a6e22_1 46 KB conda-forge\n", - " aws-c-common-0.9.19 | h4ab18f5_0 221 KB conda-forge\n", - " aws-c-compression-0.2.18 | h83b837d_6 19 KB conda-forge\n", - " aws-c-event-stream-0.4.2 | ha47c788_12 53 KB conda-forge\n", - " aws-c-http-0.8.1 | h29d6fba_17 190 KB conda-forge\n", - " aws-c-io-0.14.8 | h21d4f22_5 154 KB conda-forge\n", - " aws-c-mqtt-0.10.4 | h759edc4_4 160 KB conda-forge\n", - " aws-c-s3-0.5.9 | h594631b_3 107 KB conda-forge\n", - " aws-c-sdkutils-0.1.16 | h83b837d_2 54 KB conda-forge\n", - " aws-checksums-0.1.18 | h83b837d_6 49 KB conda-forge\n", - " aws-crt-cpp-0.26.9 | he3a8b3b_0 332 KB conda-forge\n", - " aws-sdk-cpp-1.11.329 | hba8bd5f_3 3.5 MB conda-forge\n", - " binutils_impl_linux-64-2.40| hf600244_0 5.2 MB conda-forge\n", - " binutils_linux-64-2.40 | hb3c18ed_9 29 KB conda-forge\n", - " blas-2.125 | openblas 15 KB conda-forge\n", - " blas-devel-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", - " brotli-1.1.0 | hd590300_1 19 KB conda-forge\n", - " brotli-bin-1.1.0 | hd590300_1 19 KB conda-forge\n", - " c-ares-1.34.3 | heb4867d_0 201 KB conda-forge\n", - " ca-certificates-2024.8.30 | hbcca054_0 155 KB conda-forge\n", - " cached-property-1.5.2 | hd8ed1ab_1 4 KB conda-forge\n", - " cached_property-1.5.2 | pyha770c72_1 11 KB conda-forge\n", - " cachetools-5.5.0 | pyhd8ed1ab_0 14 KB conda-forge\n", - " cairo-1.18.0 | h3faef2a_0 959 KB conda-forge\n", - " certifi-2024.8.30 | pyhd8ed1ab_0 160 KB conda-forge\n", - " cloudpickle-3.1.0 | pyhd8ed1ab_1 25 KB conda-forge\n", - " cons-0.4.6 | pyhd8ed1ab_0 14 KB conda-forge\n", - " contourpy-1.3.0 | py310h3788b33_2 255 KB conda-forge\n", - " cycler-0.12.1 | pyhd8ed1ab_0 13 KB conda-forge\n", - " etuples-0.3.9 | pyhd8ed1ab_0 17 KB conda-forge\n", - " expat-2.6.4 | h5888daf_0 135 KB conda-forge\n", - " filelock-3.16.1 | pyhd8ed1ab_0 17 KB conda-forge\n", - " font-ttf-dejavu-sans-mono-2.37| hab24e00_0 388 KB conda-forge\n", - " font-ttf-inconsolata-3.000 | h77eed37_0 94 KB conda-forge\n", - " font-ttf-source-code-pro-2.038| h77eed37_0 684 KB conda-forge\n", - " font-ttf-ubuntu-0.83 | h77eed37_3 1.5 MB conda-forge\n", - " fontconfig-2.14.2 | h14ed4e7_0 266 KB conda-forge\n", - " fonts-conda-ecosystem-1 | 0 4 KB conda-forge\n", - " fonts-conda-forge-1 | 0 4 KB conda-forge\n", - " fonttools-4.54.1 | py310h89163eb_1 2.2 MB conda-forge\n", - " freetype-2.12.1 | h267a509_2 620 KB conda-forge\n", - " fribidi-1.0.10 | h36c2ea0_0 112 KB conda-forge\n", - " gcc-13.3.0 | h9576a4e_1 53 KB conda-forge\n", - " gcc_impl_linux-64-13.3.0 | hfea6d02_1 64.3 MB conda-forge\n", - " gcc_linux-64-13.3.0 | hc28eda2_5 31 KB conda-forge\n", - " gdk-pixbuf-2.42.12 | hb9ae30d_0 516 KB conda-forge\n", - " gettext-0.22.5 | he02047a_3 468 KB conda-forge\n", - " gettext-tools-0.22.5 | he02047a_3 2.6 MB conda-forge\n", - " gflags-2.2.2 | h5888daf_1005 117 KB conda-forge\n", - " giflib-5.2.2 | hd590300_0 75 KB conda-forge\n", - " glog-0.7.1 | hbabe93e_0 140 KB conda-forge\n", - " graphite2-1.3.13 | h59595ed_1003 95 KB conda-forge\n", - " graphviz-9.0.0 | h78e8752_1 2.2 MB conda-forge\n", - " gtk2-2.24.33 | h280cfa0_4 6.2 MB conda-forge\n", - " gts-0.7.6 | h977cf35_4 311 KB conda-forge\n", - " gxx-13.3.0 | h9576a4e_1 52 KB conda-forge\n", - " gxx_impl_linux-64-13.3.0 | hdbfa832_1 12.7 MB conda-forge\n", - " gxx_linux-64-13.3.0 | h6834431_5 30 KB conda-forge\n", - " h5netcdf-1.4.0 | pyhd8ed1ab_0 46 KB conda-forge\n", - " h5py-3.12.1 |nompi_py310h60e0fe6_102 1.2 MB conda-forge\n", - " harfbuzz-8.5.0 | hfac3d4d_0 1.5 MB conda-forge\n", - " hdf5-1.14.3 |nompi_hdf9ad27_105 3.7 MB conda-forge\n", - " kernel-headers_linux-64-3.10.0| he073ed8_18 921 KB conda-forge\n", - " kiwisolver-1.4.7 | py310h3788b33_0 70 KB conda-forge\n", - " lcms2-2.16 | hb7c19ff_0 239 KB conda-forge\n", - " lerc-4.0.0 | h27087fc_0 275 KB conda-forge\n", - " libabseil-20240116.2 | cxx17_he02047a_1 1.2 MB conda-forge\n", - " libaec-1.1.3 | h59595ed_0 35 KB conda-forge\n", - " libarrow-16.1.0 | hcb6531f_6_cpu 7.9 MB conda-forge\n", - " libasprintf-0.22.5 | he8f35ee_3 42 KB conda-forge\n", - " libasprintf-devel-0.22.5 | he8f35ee_3 33 KB conda-forge\n", - " libblas-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", - " libbrotlicommon-1.1.0 | hd590300_1 68 KB conda-forge\n", - " libbrotlidec-1.1.0 | hd590300_1 32 KB conda-forge\n", - " libbrotlienc-1.1.0 | hd590300_1 276 KB conda-forge\n", - " libcblas-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", - " libcrc32c-1.1.2 | h9c3ff4c_0 20 KB conda-forge\n", - " libcurl-8.8.0 | hca28451_0 396 KB conda-forge\n", - " libdeflate-1.20 | hd590300_0 70 KB conda-forge\n", - " libexpat-2.6.4 | h5888daf_0 72 KB conda-forge\n", - " libgcc-14.2.0 | h77fa898_1 829 KB conda-forge\n", - " libgcc-devel_linux-64-13.3.0| h84ea5a7_101 2.5 MB conda-forge\n", - " libgcc-ng-14.2.0 | h69a702a_1 53 KB conda-forge\n", - " libgd-2.3.3 | h119a65a_9 219 KB conda-forge\n", - " libgettextpo-0.22.5 | he02047a_3 167 KB conda-forge\n", - " libgettextpo-devel-0.22.5 | he02047a_3 36 KB conda-forge\n", - " libgfortran-14.2.0 | h69a702a_1 53 KB conda-forge\n", - " libgfortran-ng-14.2.0 | h69a702a_1 53 KB conda-forge\n", - " libgfortran5-14.2.0 | hd5240d6_1 1.4 MB conda-forge\n", - " libglib-2.80.2 | hf974151_0 3.7 MB conda-forge\n", - " libgomp-14.2.0 | h77fa898_1 450 KB conda-forge\n", - " libgoogle-cloud-2.24.0 | h2736e30_0 1.2 MB conda-forge\n", - " libgoogle-cloud-storage-2.24.0| h3d9a0c8_0 735 KB conda-forge\n", - " libgrpc-1.62.2 | h15f2491_0 7.0 MB conda-forge\n", - " libhwloc-2.9.3 |default_h554bfaf_1009 2.5 MB conda-forge\n", - " libjpeg-turbo-3.0.0 | hd590300_1 604 KB conda-forge\n", - " liblapack-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", - " liblapacke-3.9.0 |25_linux64_openblas 15 KB conda-forge\n", - " libllvm14-14.0.6 | hcd5def8_4 30.0 MB conda-forge\n", - " libopenblas-0.3.28 |pthreads_h94d23a6_1 5.3 MB conda-forge\n", - " libpng-1.6.43 | h2797004_0 281 KB conda-forge\n", - " libprotobuf-4.25.3 | h08a7969_0 2.7 MB conda-forge\n", - " libre2-11-2023.09.01 | h5a48ba9_2 227 KB conda-forge\n", - " librsvg-2.56.3 | he3f83f7_1 5.6 MB conda-forge\n", - " libsanitizer-13.3.0 | heb74ff8_1 3.9 MB conda-forge\n", - " libstdcxx-14.2.0 | hc0a3c3a_1 3.7 MB conda-forge\n", - " libstdcxx-devel_linux-64-13.3.0| h84ea5a7_101 13.4 MB conda-forge\n", - " libtiff-4.6.0 | h1dd3fc0_3 276 KB conda-forge\n", - " libutf8proc-2.8.0 | h166bdaf_0 99 KB conda-forge\n", - " libwebp-1.4.0 | h2c329e2_0 90 KB conda-forge\n", - " libwebp-base-1.4.0 | hd590300_0 429 KB conda-forge\n", - " libxcb-1.15 | h0b41bf4_0 375 KB conda-forge\n", - " llvm-openmp-19.1.3 | h024ca30_0 3.0 MB conda-forge\n", - " llvmlite-0.42.0 | py310h1b8f574_1 3.2 MB conda-forge\n", - " logical-unification-0.4.6 | pyhd8ed1ab_0 18 KB conda-forge\n", - " markdown-it-py-3.0.0 | pyhd8ed1ab_0 63 KB conda-forge\n", - " matplotlib-base-3.9.2 | py310h68603db_2 6.7 MB conda-forge\n", - " mdurl-0.1.2 | pyhd8ed1ab_0 14 KB conda-forge\n", - " minikanren-1.0.3 | pyhd8ed1ab_0 23 KB conda-forge\n", - " mkl-2024.2.2 | ha957f24_16 118.9 MB conda-forge\n", - " mkl-service-2.4.2 | py310h22455d7_0 70 KB conda-forge\n", - " multipledispatch-0.6.0 | pyhd8ed1ab_1 17 KB conda-forge\n", - " munkres-1.1.4 | pyh9f0ad1d_0 12 KB conda-forge\n", - " numba-0.59.1 | py310h7dc5dd1_0 4.1 MB conda-forge\n", - " numpy-1.26.4 | py310hb13e2d6_0 6.7 MB conda-forge\n", - " nutpie-0.13.2 | py310h4a6dfd8_0 1.2 MB conda-forge\n", - " openblas-0.3.28 |pthreads_h6ec200e_1 5.5 MB conda-forge\n", - " openjpeg-2.5.2 | h488ebb8_0 334 KB conda-forge\n", - " openssl-3.4.0 | hb9d3cd8_0 2.8 MB conda-forge\n", - " orc-2.0.1 | h17fec99_1 1006 KB conda-forge\n", - " pandas-2.2.3 | py310h5eaa309_1 12.4 MB conda-forge\n", - " pango-1.54.0 | h84a9a3c_0 438 KB conda-forge\n", - " pcre2-10.43 | hcad00b1_0 929 KB conda-forge\n", - " pillow-10.3.0 | py310hf73ecf8_0 39.8 MB conda-forge\n", - " pixman-0.43.2 | h59595ed_0 378 KB conda-forge\n", - " pthread-stubs-0.4 | hb9d3cd8_1002 8 KB conda-forge\n", - " pyarrow-core-16.1.0 |py310h6f79a3a_1_cpu 4.2 MB conda-forge\n", - " pygments-2.18.0 | pyhd8ed1ab_0 859 KB conda-forge\n", - " pymc-5.18.0 | hd8ed1ab_0 11 KB conda-forge\n", - " pymc-base-5.18.0 | pyhd8ed1ab_0 326 KB conda-forge\n", - " pyparsing-3.2.0 | pyhd8ed1ab_1 90 KB conda-forge\n", - " pytensor-2.25.5 | py310ha549d7f_0 9 KB conda-forge\n", - " pytensor-base-2.25.5 | py310h89e8f5a_0 1.7 MB conda-forge\n", - " python-dateutil-2.9.0 | pyhd8ed1ab_0 218 KB conda-forge\n", - " python-graphviz-0.20.3 | pyhe28f650_1 37 KB conda-forge\n", - " python-tzdata-2024.2 | pyhd8ed1ab_0 139 KB conda-forge\n", - " pytz-2024.1 | pyhd8ed1ab_0 184 KB conda-forge\n", - " qhull-2020.2 | h434a139_5 540 KB conda-forge\n", - " re2-2023.09.01 | h7f4b329_2 26 KB conda-forge\n", - " rich-13.9.4 | pyhd8ed1ab_0 181 KB conda-forge\n", - " s2n-1.4.15 | he19d79f_0 341 KB conda-forge\n", - " scipy-1.14.1 | py310hfcf56fc_1 16.1 MB conda-forge\n", - " six-1.16.0 | pyh6c4a22f_0 14 KB conda-forge\n", - " snappy-1.2.1 | ha2e4443_0 41 KB conda-forge\n", - " sysroot_linux-64-2.17 | h4a8ded7_18 14.8 MB conda-forge\n", - " tbb-2021.11.0 | h00ab1b0_1 191 KB conda-forge\n", - " threadpoolctl-3.5.0 | pyhc1e730c_0 23 KB conda-forge\n", - " toolz-1.0.0 | pyhd8ed1ab_0 51 KB conda-forge\n", - " typing-extensions-4.12.2 | hd8ed1ab_0 10 KB conda-forge\n", - " typing_extensions-4.12.2 | pyha770c72_0 39 KB conda-forge\n", - " unicodedata2-15.1.0 | py310ha75aee5_1 359 KB conda-forge\n", - " xarray-2024.10.0 | pyhd8ed1ab_0 795 KB conda-forge\n", - " xarray-einstats-0.8.0 | pyhd8ed1ab_0 33 KB conda-forge\n", - " xorg-kbproto-1.0.7 | hb9d3cd8_1003 30 KB conda-forge\n", - " xorg-libice-1.1.1 | hb9d3cd8_1 57 KB conda-forge\n", - " xorg-libsm-1.2.4 | he73a12e_1 27 KB conda-forge\n", - " xorg-libx11-1.8.9 | h8ee46fc_0 809 KB conda-forge\n", - " xorg-libxau-1.0.11 | hb9d3cd8_1 14 KB conda-forge\n", - " xorg-libxdmcp-1.1.5 | hb9d3cd8_0 19 KB conda-forge\n", - " xorg-libxext-1.3.4 | h0b41bf4_2 49 KB conda-forge\n", - " xorg-libxrender-0.9.11 | hd590300_0 37 KB conda-forge\n", - " xorg-renderproto-0.11.1 | hb9d3cd8_1003 12 KB conda-forge\n", - " xorg-xextproto-7.3.0 | hb9d3cd8_1004 30 KB conda-forge\n", - " xorg-xproto-7.0.31 | hb9d3cd8_1008 72 KB conda-forge\n", - " zlib-1.2.13 | hd590300_5 91 KB conda-forge\n", - " zstandard-0.23.0 | py310ha39cb0e_1 399 KB conda-forge\n", - " zstd-1.5.6 | ha6fb4c9_0 542 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 466.7 MB\n", - "\n", - "The following NEW packages will be INSTALLED:\n", - "\n", - " arviz conda-forge/noarch::arviz-0.20.0-pyhd8ed1ab_0 \n", - " atk-1.0 conda-forge/linux-64::atk-1.0-2.38.0-h04ea711_2 \n", - " aws-c-auth conda-forge/linux-64::aws-c-auth-0.7.22-h96bc93b_2 \n", - " aws-c-cal conda-forge/linux-64::aws-c-cal-0.6.14-h88a6e22_1 \n", - " aws-c-common conda-forge/linux-64::aws-c-common-0.9.19-h4ab18f5_0 \n", - " aws-c-compression conda-forge/linux-64::aws-c-compression-0.2.18-h83b837d_6 \n", - " aws-c-event-stream conda-forge/linux-64::aws-c-event-stream-0.4.2-ha47c788_12 \n", - " aws-c-http conda-forge/linux-64::aws-c-http-0.8.1-h29d6fba_17 \n", - " aws-c-io conda-forge/linux-64::aws-c-io-0.14.8-h21d4f22_5 \n", - " aws-c-mqtt conda-forge/linux-64::aws-c-mqtt-0.10.4-h759edc4_4 \n", - " aws-c-s3 conda-forge/linux-64::aws-c-s3-0.5.9-h594631b_3 \n", - " aws-c-sdkutils conda-forge/linux-64::aws-c-sdkutils-0.1.16-h83b837d_2 \n", - " aws-checksums conda-forge/linux-64::aws-checksums-0.1.18-h83b837d_6 \n", - " aws-crt-cpp conda-forge/linux-64::aws-crt-cpp-0.26.9-he3a8b3b_0 \n", - " aws-sdk-cpp conda-forge/linux-64::aws-sdk-cpp-1.11.329-hba8bd5f_3 \n", - " binutils_impl_lin~ conda-forge/linux-64::binutils_impl_linux-64-2.40-hf600244_0 \n", - " binutils_linux-64 conda-forge/linux-64::binutils_linux-64-2.40-hb3c18ed_9 \n", - " blas conda-forge/linux-64::blas-2.125-openblas \n", - " blas-devel conda-forge/linux-64::blas-devel-3.9.0-25_linux64_openblas \n", - " brotli conda-forge/linux-64::brotli-1.1.0-hd590300_1 \n", - " brotli-bin conda-forge/linux-64::brotli-bin-1.1.0-hd590300_1 \n", - " cached-property conda-forge/noarch::cached-property-1.5.2-hd8ed1ab_1 \n", - " cached_property conda-forge/noarch::cached_property-1.5.2-pyha770c72_1 \n", - " cachetools conda-forge/noarch::cachetools-5.5.0-pyhd8ed1ab_0 \n", - " cairo conda-forge/linux-64::cairo-1.18.0-h3faef2a_0 \n", - " cloudpickle conda-forge/noarch::cloudpickle-3.1.0-pyhd8ed1ab_1 \n", - " cons conda-forge/noarch::cons-0.4.6-pyhd8ed1ab_0 \n", - " contourpy conda-forge/linux-64::contourpy-1.3.0-py310h3788b33_2 \n", - " cycler conda-forge/noarch::cycler-0.12.1-pyhd8ed1ab_0 \n", - " etuples conda-forge/noarch::etuples-0.3.9-pyhd8ed1ab_0 \n", - " expat conda-forge/linux-64::expat-2.6.4-h5888daf_0 \n", - " filelock conda-forge/noarch::filelock-3.16.1-pyhd8ed1ab_0 \n", - " font-ttf-dejavu-s~ conda-forge/noarch::font-ttf-dejavu-sans-mono-2.37-hab24e00_0 \n", - " font-ttf-inconsol~ conda-forge/noarch::font-ttf-inconsolata-3.000-h77eed37_0 \n", - " font-ttf-source-c~ conda-forge/noarch::font-ttf-source-code-pro-2.038-h77eed37_0 \n", - " font-ttf-ubuntu conda-forge/noarch::font-ttf-ubuntu-0.83-h77eed37_3 \n", - " fontconfig conda-forge/linux-64::fontconfig-2.14.2-h14ed4e7_0 \n", - " fonts-conda-ecosy~ conda-forge/noarch::fonts-conda-ecosystem-1-0 \n", - " fonts-conda-forge conda-forge/noarch::fonts-conda-forge-1-0 \n", - " fonttools conda-forge/linux-64::fonttools-4.54.1-py310h89163eb_1 \n", - " freetype conda-forge/linux-64::freetype-2.12.1-h267a509_2 \n", - " fribidi conda-forge/linux-64::fribidi-1.0.10-h36c2ea0_0 \n", - " gcc conda-forge/linux-64::gcc-13.3.0-h9576a4e_1 \n", - " gcc_impl_linux-64 conda-forge/linux-64::gcc_impl_linux-64-13.3.0-hfea6d02_1 \n", - " gcc_linux-64 conda-forge/linux-64::gcc_linux-64-13.3.0-hc28eda2_5 \n", - " gdk-pixbuf conda-forge/linux-64::gdk-pixbuf-2.42.12-hb9ae30d_0 \n", - " gettext conda-forge/linux-64::gettext-0.22.5-he02047a_3 \n", - " gettext-tools conda-forge/linux-64::gettext-tools-0.22.5-he02047a_3 \n", - " gflags conda-forge/linux-64::gflags-2.2.2-h5888daf_1005 \n", - " giflib conda-forge/linux-64::giflib-5.2.2-hd590300_0 \n", - " glog conda-forge/linux-64::glog-0.7.1-hbabe93e_0 \n", - " graphite2 conda-forge/linux-64::graphite2-1.3.13-h59595ed_1003 \n", - " graphviz conda-forge/linux-64::graphviz-9.0.0-h78e8752_1 \n", - " gtk2 conda-forge/linux-64::gtk2-2.24.33-h280cfa0_4 \n", - " gts conda-forge/linux-64::gts-0.7.6-h977cf35_4 \n", - " gxx conda-forge/linux-64::gxx-13.3.0-h9576a4e_1 \n", - " gxx_impl_linux-64 conda-forge/linux-64::gxx_impl_linux-64-13.3.0-hdbfa832_1 \n", - " gxx_linux-64 conda-forge/linux-64::gxx_linux-64-13.3.0-h6834431_5 \n", - " h5netcdf conda-forge/noarch::h5netcdf-1.4.0-pyhd8ed1ab_0 \n", - " h5py conda-forge/linux-64::h5py-3.12.1-nompi_py310h60e0fe6_102 \n", - " harfbuzz conda-forge/linux-64::harfbuzz-8.5.0-hfac3d4d_0 \n", - " hdf5 conda-forge/linux-64::hdf5-1.14.3-nompi_hdf9ad27_105 \n", - " kernel-headers_li~ conda-forge/noarch::kernel-headers_linux-64-3.10.0-he073ed8_18 \n", - " kiwisolver conda-forge/linux-64::kiwisolver-1.4.7-py310h3788b33_0 \n", - " lcms2 conda-forge/linux-64::lcms2-2.16-hb7c19ff_0 \n", - " lerc conda-forge/linux-64::lerc-4.0.0-h27087fc_0 \n", - " libabseil conda-forge/linux-64::libabseil-20240116.2-cxx17_he02047a_1 \n", - " libaec conda-forge/linux-64::libaec-1.1.3-h59595ed_0 \n", - " libarrow conda-forge/linux-64::libarrow-16.1.0-hcb6531f_6_cpu \n", - " libasprintf conda-forge/linux-64::libasprintf-0.22.5-he8f35ee_3 \n", - " libasprintf-devel conda-forge/linux-64::libasprintf-devel-0.22.5-he8f35ee_3 \n", - " libblas conda-forge/linux-64::libblas-3.9.0-25_linux64_openblas \n", - " libbrotlicommon conda-forge/linux-64::libbrotlicommon-1.1.0-hd590300_1 \n", - " libbrotlidec conda-forge/linux-64::libbrotlidec-1.1.0-hd590300_1 \n", - " libbrotlienc conda-forge/linux-64::libbrotlienc-1.1.0-hd590300_1 \n", - " libcblas conda-forge/linux-64::libcblas-3.9.0-25_linux64_openblas \n", - " libcrc32c conda-forge/linux-64::libcrc32c-1.1.2-h9c3ff4c_0 \n", - " libdeflate conda-forge/linux-64::libdeflate-1.20-hd590300_0 \n", - " libexpat conda-forge/linux-64::libexpat-2.6.4-h5888daf_0 \n", - " libgcc conda-forge/linux-64::libgcc-14.2.0-h77fa898_1 \n", - " libgcc-devel_linu~ conda-forge/noarch::libgcc-devel_linux-64-13.3.0-h84ea5a7_101 \n", - " libgd conda-forge/linux-64::libgd-2.3.3-h119a65a_9 \n", - " libgettextpo conda-forge/linux-64::libgettextpo-0.22.5-he02047a_3 \n", - " libgettextpo-devel conda-forge/linux-64::libgettextpo-devel-0.22.5-he02047a_3 \n", - " libgfortran conda-forge/linux-64::libgfortran-14.2.0-h69a702a_1 \n", - " libgfortran-ng conda-forge/linux-64::libgfortran-ng-14.2.0-h69a702a_1 \n", - " libgfortran5 conda-forge/linux-64::libgfortran5-14.2.0-hd5240d6_1 \n", - " libglib conda-forge/linux-64::libglib-2.80.2-hf974151_0 \n", - " libgoogle-cloud conda-forge/linux-64::libgoogle-cloud-2.24.0-h2736e30_0 \n", - " libgoogle-cloud-s~ conda-forge/linux-64::libgoogle-cloud-storage-2.24.0-h3d9a0c8_0 \n", - " libgrpc conda-forge/linux-64::libgrpc-1.62.2-h15f2491_0 \n", - " libhwloc conda-forge/linux-64::libhwloc-2.9.3-default_h554bfaf_1009 \n", - " libjpeg-turbo conda-forge/linux-64::libjpeg-turbo-3.0.0-hd590300_1 \n", - " liblapack conda-forge/linux-64::liblapack-3.9.0-25_linux64_openblas \n", - " liblapacke conda-forge/linux-64::liblapacke-3.9.0-25_linux64_openblas \n", - " libllvm14 conda-forge/linux-64::libllvm14-14.0.6-hcd5def8_4 \n", - " libopenblas conda-forge/linux-64::libopenblas-0.3.28-pthreads_h94d23a6_1 \n", - " libpng conda-forge/linux-64::libpng-1.6.43-h2797004_0 \n", - " libprotobuf conda-forge/linux-64::libprotobuf-4.25.3-h08a7969_0 \n", - " libre2-11 conda-forge/linux-64::libre2-11-2023.09.01-h5a48ba9_2 \n", - " librsvg conda-forge/linux-64::librsvg-2.56.3-he3f83f7_1 \n", - " libsanitizer conda-forge/linux-64::libsanitizer-13.3.0-heb74ff8_1 \n", - " libstdcxx conda-forge/linux-64::libstdcxx-14.2.0-hc0a3c3a_1 \n", - " libstdcxx-devel_l~ conda-forge/noarch::libstdcxx-devel_linux-64-13.3.0-h84ea5a7_101 \n", - " libtiff conda-forge/linux-64::libtiff-4.6.0-h1dd3fc0_3 \n", - " libutf8proc conda-forge/linux-64::libutf8proc-2.8.0-h166bdaf_0 \n", - " libwebp conda-forge/linux-64::libwebp-1.4.0-h2c329e2_0 \n", - " libwebp-base conda-forge/linux-64::libwebp-base-1.4.0-hd590300_0 \n", - " libxcb conda-forge/linux-64::libxcb-1.15-h0b41bf4_0 \n", - " llvm-openmp conda-forge/linux-64::llvm-openmp-19.1.3-h024ca30_0 \n", - " llvmlite conda-forge/linux-64::llvmlite-0.42.0-py310h1b8f574_1 \n", - " logical-unificati~ conda-forge/noarch::logical-unification-0.4.6-pyhd8ed1ab_0 \n", - " markdown-it-py conda-forge/noarch::markdown-it-py-3.0.0-pyhd8ed1ab_0 \n", - " matplotlib-base conda-forge/linux-64::matplotlib-base-3.9.2-py310h68603db_2 \n", - " mdurl conda-forge/noarch::mdurl-0.1.2-pyhd8ed1ab_0 \n", - " minikanren conda-forge/noarch::minikanren-1.0.3-pyhd8ed1ab_0 \n", - " mkl conda-forge/linux-64::mkl-2024.2.2-ha957f24_16 \n", - " mkl-service conda-forge/linux-64::mkl-service-2.4.2-py310h22455d7_0 \n", - " multipledispatch conda-forge/noarch::multipledispatch-0.6.0-pyhd8ed1ab_1 \n", - " munkres conda-forge/noarch::munkres-1.1.4-pyh9f0ad1d_0 \n", - " numba conda-forge/linux-64::numba-0.59.1-py310h7dc5dd1_0 \n", - " numpy conda-forge/linux-64::numpy-1.26.4-py310hb13e2d6_0 \n", - " nutpie conda-forge/linux-64::nutpie-0.13.2-py310h4a6dfd8_0 \n", - " openblas conda-forge/linux-64::openblas-0.3.28-pthreads_h6ec200e_1 \n", - " openjpeg conda-forge/linux-64::openjpeg-2.5.2-h488ebb8_0 \n", - " orc conda-forge/linux-64::orc-2.0.1-h17fec99_1 \n", - " pandas conda-forge/linux-64::pandas-2.2.3-py310h5eaa309_1 \n", - " pango conda-forge/linux-64::pango-1.54.0-h84a9a3c_0 \n", - " pcre2 conda-forge/linux-64::pcre2-10.43-hcad00b1_0 \n", - " pillow conda-forge/linux-64::pillow-10.3.0-py310hf73ecf8_0 \n", - " pixman conda-forge/linux-64::pixman-0.43.2-h59595ed_0 \n", - " pthread-stubs conda-forge/linux-64::pthread-stubs-0.4-hb9d3cd8_1002 \n", - " pyarrow-core conda-forge/linux-64::pyarrow-core-16.1.0-py310h6f79a3a_1_cpu \n", - " pygments conda-forge/noarch::pygments-2.18.0-pyhd8ed1ab_0 \n", - " pymc conda-forge/noarch::pymc-5.18.0-hd8ed1ab_0 \n", - " pymc-base conda-forge/noarch::pymc-base-5.18.0-pyhd8ed1ab_0 \n", - " pyparsing conda-forge/noarch::pyparsing-3.2.0-pyhd8ed1ab_1 \n", - " pytensor conda-forge/linux-64::pytensor-2.25.5-py310ha549d7f_0 \n", - " pytensor-base conda-forge/linux-64::pytensor-base-2.25.5-py310h89e8f5a_0 \n", - " python-dateutil conda-forge/noarch::python-dateutil-2.9.0-pyhd8ed1ab_0 \n", - " python-graphviz conda-forge/noarch::python-graphviz-0.20.3-pyhe28f650_1 \n", - " python-tzdata conda-forge/noarch::python-tzdata-2024.2-pyhd8ed1ab_0 \n", - " pytz conda-forge/noarch::pytz-2024.1-pyhd8ed1ab_0 \n", - " qhull conda-forge/linux-64::qhull-2020.2-h434a139_5 \n", - " re2 conda-forge/linux-64::re2-2023.09.01-h7f4b329_2 \n", - " rich conda-forge/noarch::rich-13.9.4-pyhd8ed1ab_0 \n", - " s2n conda-forge/linux-64::s2n-1.4.15-he19d79f_0 \n", - " scipy conda-forge/linux-64::scipy-1.14.1-py310hfcf56fc_1 \n", - " six conda-forge/noarch::six-1.16.0-pyh6c4a22f_0 \n", - " snappy conda-forge/linux-64::snappy-1.2.1-ha2e4443_0 \n", - " sysroot_linux-64 conda-forge/noarch::sysroot_linux-64-2.17-h4a8ded7_18 \n", - " tbb conda-forge/linux-64::tbb-2021.11.0-h00ab1b0_1 \n", - " threadpoolctl conda-forge/noarch::threadpoolctl-3.5.0-pyhc1e730c_0 \n", - " toolz conda-forge/noarch::toolz-1.0.0-pyhd8ed1ab_0 \n", - " typing-extensions conda-forge/noarch::typing-extensions-4.12.2-hd8ed1ab_0 \n", - " typing_extensions conda-forge/noarch::typing_extensions-4.12.2-pyha770c72_0 \n", - " unicodedata2 conda-forge/linux-64::unicodedata2-15.1.0-py310ha75aee5_1 \n", - " xarray conda-forge/noarch::xarray-2024.10.0-pyhd8ed1ab_0 \n", - " xarray-einstats conda-forge/noarch::xarray-einstats-0.8.0-pyhd8ed1ab_0 \n", - " xorg-kbproto conda-forge/linux-64::xorg-kbproto-1.0.7-hb9d3cd8_1003 \n", - " xorg-libice conda-forge/linux-64::xorg-libice-1.1.1-hb9d3cd8_1 \n", - " xorg-libsm conda-forge/linux-64::xorg-libsm-1.2.4-he73a12e_1 \n", - " xorg-libx11 conda-forge/linux-64::xorg-libx11-1.8.9-h8ee46fc_0 \n", - " xorg-libxau conda-forge/linux-64::xorg-libxau-1.0.11-hb9d3cd8_1 \n", - " xorg-libxdmcp conda-forge/linux-64::xorg-libxdmcp-1.1.5-hb9d3cd8_0 \n", - " xorg-libxext conda-forge/linux-64::xorg-libxext-1.3.4-h0b41bf4_2 \n", - " xorg-libxrender conda-forge/linux-64::xorg-libxrender-0.9.11-hd590300_0 \n", - " xorg-renderproto conda-forge/linux-64::xorg-renderproto-0.11.1-hb9d3cd8_1003 \n", - " xorg-xextproto conda-forge/linux-64::xorg-xextproto-7.3.0-hb9d3cd8_1004 \n", - " xorg-xproto conda-forge/linux-64::xorg-xproto-7.0.31-hb9d3cd8_1008 \n", - " zlib conda-forge/linux-64::zlib-1.2.13-hd590300_5 \n", - "\n", - "The following packages will be UPDATED:\n", - "\n", - " c-ares 1.24.0-hd590300_0 --> 1.34.3-heb4867d_0 \n", - " ca-certificates 2023.11.17-hbcca054_0 --> 2024.8.30-hbcca054_0 \n", - " certifi 2023.11.17-pyhd8ed1ab_0 --> 2024.8.30-pyhd8ed1ab_0 \n", - " libcurl 8.5.0-hca28451_0 --> 8.8.0-hca28451_0 \n", - " libgcc-ng 13.2.0-h807b86a_3 --> 14.2.0-h69a702a_1 \n", - " libgomp 13.2.0-h807b86a_3 --> 14.2.0-h77fa898_1 \n", - " openssl 3.2.0-hd590300_1 --> 3.4.0-hb9d3cd8_0 \n", - " zstandard 0.22.0-py310h1275a96_0 --> 0.23.0-py310ha39cb0e_1 \n", - " zstd 1.5.5-hfc55251_0 --> 1.5.6-ha6fb4c9_0 \n", - "\n", - "The following packages will be DOWNGRADED:\n", - "\n", - " _openmp_mutex 4.5-2_gnu --> 4.5-2_kmp_llvm \n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages:\n", - "mkl-2024.2.2 | 118.9 MB | : 0% 0/1 [00:00 WARNING: A newer version of conda exists. <==\n", - " current version: 23.11.0\n", - " latest version: 24.9.2\n", - "\n", - "Please update conda by running\n", - "\n", - " $ conda update -n base -c conda-forge conda\n", - "\n", - "\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - cpuonly\n", - " - pytorch\n", - " - torchaudio\n", - " - torchvision\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " blas-2.116 | mkl 13 KB conda-forge\n", - " blas-devel-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", - " cpuonly-2.0 | 0 2 KB pytorch\n", - " ffmpeg-4.3 | hf484d3e_0 9.9 MB pytorch\n", - " gmp-6.3.0 | hac33072_2 449 KB conda-forge\n", - " gmpy2-2.1.5 | py310he8512ff_2 199 KB conda-forge\n", - " gnutls-3.6.13 | h85f3911_1 2.0 MB conda-forge\n", - " jinja2-3.1.4 | pyhd8ed1ab_0 109 KB conda-forge\n", - " lame-3.100 | h166bdaf_1003 496 KB conda-forge\n", - " libblas-3.9.0 | 16_linux64_mkl 13 KB conda-forge\n", - " libcblas-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", - " liblapack-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", - " liblapacke-3.9.0 | 16_linux64_mkl 12 KB conda-forge\n", - " llvm-openmp-15.0.7 | h0cdce71_0 3.1 MB conda-forge\n", - " markupsafe-3.0.2 | py310h89163eb_0 22 KB conda-forge\n", - " mkl-2022.1.0 | h84fe81f_915 199.6 MB conda-forge\n", - " mkl-devel-2022.1.0 | ha770c72_916 25 KB conda-forge\n", - " mkl-include-2022.1.0 | h84fe81f_915 745 KB conda-forge\n", - " mkl-service-2.4.0 | py310h9263142_0 56 KB conda-forge\n", - " mpc-1.3.1 | h24ddda3_1 114 KB conda-forge\n", - " mpfr-4.2.1 | h90cbb55_3 620 KB conda-forge\n", - " mpmath-1.3.0 | pyhd8ed1ab_0 428 KB conda-forge\n", - " nettle-3.6 | he412f7d_0 6.5 MB conda-forge\n", - " networkx-3.4.2 | pyhd8ed1ab_1 1.1 MB conda-forge\n", - " openh264-2.1.1 | h780b84a_0 1.5 MB conda-forge\n", - " pytorch-2.5.1 | py3.10_cpu_0 88.1 MB pytorch\n", - " pytorch-mutex-1.0 | cpu 3 KB pytorch\n", - " pyyaml-6.0.2 | py310ha75aee5_1 178 KB conda-forge\n", - " sympy-1.13.3 | pypyh2585a3b_103 4.4 MB conda-forge\n", - " torchaudio-2.5.1 | py310_cpu 5.0 MB pytorch\n", - " torchvision-0.20.1 | py310_cpu 6.9 MB pytorch\n", - " yaml-0.2.5 | h7f98852_2 87 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 331.6 MB\n", - "\n", - "The following NEW packages will be INSTALLED:\n", - "\n", - " cpuonly pytorch/noarch::cpuonly-2.0-0 \n", - " ffmpeg pytorch/linux-64::ffmpeg-4.3-hf484d3e_0 \n", - " gmp conda-forge/linux-64::gmp-6.3.0-hac33072_2 \n", - " gmpy2 conda-forge/linux-64::gmpy2-2.1.5-py310he8512ff_2 \n", - " gnutls conda-forge/linux-64::gnutls-3.6.13-h85f3911_1 \n", - " jinja2 conda-forge/noarch::jinja2-3.1.4-pyhd8ed1ab_0 \n", - " lame conda-forge/linux-64::lame-3.100-h166bdaf_1003 \n", - " markupsafe conda-forge/linux-64::markupsafe-3.0.2-py310h89163eb_0 \n", - " mkl-devel conda-forge/linux-64::mkl-devel-2022.1.0-ha770c72_916 \n", - " mkl-include conda-forge/linux-64::mkl-include-2022.1.0-h84fe81f_915 \n", - " mpc conda-forge/linux-64::mpc-1.3.1-h24ddda3_1 \n", - " mpfr conda-forge/linux-64::mpfr-4.2.1-h90cbb55_3 \n", - " mpmath conda-forge/noarch::mpmath-1.3.0-pyhd8ed1ab_0 \n", - " nettle conda-forge/linux-64::nettle-3.6-he412f7d_0 \n", - " networkx conda-forge/noarch::networkx-3.4.2-pyhd8ed1ab_1 \n", - " openh264 conda-forge/linux-64::openh264-2.1.1-h780b84a_0 \n", - " pytorch pytorch/linux-64::pytorch-2.5.1-py3.10_cpu_0 \n", - " pytorch-mutex pytorch/noarch::pytorch-mutex-1.0-cpu \n", - " pyyaml conda-forge/linux-64::pyyaml-6.0.2-py310ha75aee5_1 \n", - " sympy conda-forge/noarch::sympy-1.13.3-pypyh2585a3b_103 \n", - " torchaudio pytorch/linux-64::torchaudio-2.5.1-py310_cpu \n", - " torchvision pytorch/linux-64::torchvision-0.20.1-py310_cpu \n", - " yaml conda-forge/linux-64::yaml-0.2.5-h7f98852_2 \n", - "\n", - "The following packages will be DOWNGRADED:\n", - "\n", - " blas 2.125-openblas --> 2.116-mkl \n", - " blas-devel 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", - " libblas 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", - " libcblas 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", - " liblapack 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", - " liblapacke 3.9.0-25_linux64_openblas --> 3.9.0-16_linux64_mkl \n", - " llvm-openmp 19.1.3-h024ca30_0 --> 15.0.7-h0cdce71_0 \n", - " mkl 2024.2.2-ha957f24_16 --> 2022.1.0-h84fe81f_915 \n", - " mkl-service 2.4.2-py310h22455d7_0 --> 2.4.0-py310h9263142_0 \n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages:\n", - "mkl-2022.1.0 | 199.6 MB | : 0% 0/1 [00:00 Date: Tue, 12 Nov 2024 15:56:33 +0100 Subject: [PATCH 54/68] Created using Colab --- notebooks/pcntk_colab_env.ipynb | 263 +++++++++++++++++++++++++++----- 1 file changed, 228 insertions(+), 35 deletions(-) diff --git a/notebooks/pcntk_colab_env.ipynb b/notebooks/pcntk_colab_env.ipynb index 0dc879ef..9b5ae128 100644 --- a/notebooks/pcntk_colab_env.ipynb +++ b/notebooks/pcntk_colab_env.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyPhmRD2D0nfPuaeSc4uS/Q+", + "authorship_tag": "ABX9TyNpr04OpO9Ta6c7GFsTKsic", "include_colab_link": true }, "kernelspec": { @@ -13,6 +13,89 @@ }, "language_info": { "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "76210a49be1144d58d8ed3b02aadbe72": { + "model_module": "@jupyter-widgets/output", + "model_name": "OutputModel", + "model_module_version": "1.0.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a868d75a2c2849bca3edd651767b54f1", + "msg_id": "", + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "Sampling chain 0, 0 divergences \u001b[38;2;23;100;244m━━━━━━━━━\u001b[0m\u001b[38;2;23;100;244m╸\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m 25%\u001b[0m \u001b[36m0:32:20\u001b[0m / \u001b[33m0:06:35\u001b[0m\n", + "text/html": "

Sampling chain 0, 0 divergences ━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━  25% 0:32:20 / 0:06:35\n
\n" + }, + "metadata": {} + } + ] + } + }, + "a868d75a2c2849bca3edd651767b54f1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } } }, "cells": [ @@ -29,14 +112,7 @@ { "cell_type": "code", "source": [ - "## Install condacolab, which will enable us to install using conda\n", - "## Outcomment this cell after the kernel has automatically restarted\n", - "import os\n", - "os.environ['PYTHONPATH'] = \"\" # Need to clear the pythonpath to avoid some errors\n", - "!echo \"pythonpath: $PYTHONPATH\"\n", - "!pip install -q condacolab\n", - "import condacolab\n", - "condacolab.install()" + "!pip install pcntoolkit" ], "metadata": { "id": "WtVP1BD3eKjV" @@ -47,45 +123,162 @@ { "cell_type": "code", "source": [ - "# Check if condacolab works\n", - "import condacolab\n", - "condacolab.check()\n", + "# %%\n", + "from warnings import filterwarnings\n", "\n", - "# Install libraries with optimized dependencies (BLAS and Rust) using conda\n", - "!conda install pymc numba nutpie -c conda-forge\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import os\n", "\n", - "# Install CPU only verion of torch using conda (go to https://pytorch.org/get-started/locally/ if you need another version for your platform)\n", - "!conda install pytorch torchvision torchaudio cpuonly -c pytorch\n", + "from pcntoolkit.normative_model.norm_utils import norm_init\n", + "from pcntoolkit.util.utils import simulate_data\n", + "\n", + "filterwarnings(\"ignore\")\n", + "\n", + "\n", + "########################### Experiment Settings ###############################\n", "\n", - "# # Install the pcntoolkit\n", - "!pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" - ], - "metadata": { - "id": "cb4xm679kxnE", - "collapsed": true - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import pcntoolkit as ptk\n", "\n", - "### If you get an error about a cffi version mismatch, bright the site-packages version of cffi up to the dist-packages version using the following line\n", - "# !pip install --upgrade cffi==1.17.1 # works if dist-packages version is 1.17.1" + "random_state = 40\n", + "working_dir = \"temp\" # Specify a working directory to save data and results.\n", + "os.makedirs(working_dir, exist_ok=True)\n", + "simulation_method = \"linear\"\n", + "n_features = 1 # The number of input features of X\n", + "n_grps = 3 # Number of batches in data\n", + "n_samples = 500 # Number of samples in each group (use a list for different\n", + "# sample numbers across different batches)\n", + "\n", + "model_type = \"bspline\" # modelto try 'linear, ''polynomial', 'bspline'\n", + "\n", + "\n", + "############################## Data Simulation ################################\n", + "\n", + "\n", + "X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = simulate_data(\n", + " simulation_method,\n", + " n_samples,\n", + " n_features,\n", + " n_grps,\n", + " working_dir=working_dir,\n", + " plot=True,\n", + " noise=\"heteroscedastic_nongaussian\",\n", + " random_state=random_state,\n", + ")\n", + "\n", + "################################# Fittig and Predicting ###############################\n", + "\n", + "nm = norm_init(\n", + " X_train,\n", + " Y_train,\n", + " alg=\"hbr\",\n", + " model_type=model_type,\n", + " likelihood=\"SHASHb\",\n", + " linear_sigma=\"True\",\n", + " random_slope_mu=\"False\",\n", + " linear_epsilon=\"False\",\n", + " linear_delta=\"False\",\n", + " nuts_sampler=\"nutpie\",\n", + ")\n", + "\n", + "nm.estimate(X_train, Y_train, trbefile=os.path.join(working_dir, \"trbefile.pkl\"))\n", + "yhat, ys2 = nm.predict(X_test, tsbefile=os.path.join(working_dir, \"tsbefile.pkl\"))\n", + "\n", + "\n", + "################################# Plotting Quantiles ###############################\n", + "for i in range(n_features):\n", + " sorted_idx = X_test[:, i].argsort(axis=0).squeeze()\n", + " temp_X = X_test[sorted_idx, i]\n", + " temp_Y = Y_test[sorted_idx,]\n", + " temp_be = grp_id_test[sorted_idx, :].squeeze()\n", + " temp_yhat = yhat[sorted_idx,]\n", + " temp_s2 = ys2[sorted_idx,]\n", + "\n", + " plt.figure()\n", + " for j in range(n_grps):\n", + " scat1 = plt.scatter(\n", + " temp_X[temp_be == j,], temp_Y[temp_be == j,], label=\"Group\" + str(j)\n", + " )\n", + " # Showing the quantiles\n", + " resolution = 200\n", + " synth_X = np.linspace(np.min(X_train), np.max(X_train), resolution)\n", + " q = nm.get_mcmc_quantiles(synth_X, batch_effects=j * np.ones(resolution))\n", + " col = scat1.get_facecolors()[0]\n", + " plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0)\n", + "\n", + " plt.title(\"Model %s, Feature %d\" % (model_type, i))\n", + " plt.legend()\n", + " plt.show(block=False)\n", + " plt.savefig(working_dir + \"quantiles_\" + model_type + \"_feature_\" + str(i) + \".png\")\n", + "\n", + " for j in range(n_grps):\n", + " plt.figure()\n", + " plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,])\n", + " plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,], color=\"red\")\n", + " plt.fill_between(\n", + " temp_X[temp_be == j,].squeeze(),\n", + " (temp_yhat[temp_be == j,] - 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(),\n", + " (temp_yhat[temp_be == j,] + 2 * np.sqrt(temp_s2[temp_be == j,])).squeeze(),\n", + " color=\"red\",\n", + " alpha=0.2,\n", + " )\n", + " plt.title(\"Model %s, Group %d, Feature %d\" % (model_type, j, i))\n", + " plt.show(block=False)\n", + " plt.savefig(\n", + " working_dir\n", + " + \"pred_\"\n", + " + model_type\n", + " + \"_group_\"\n", + " + str(j)\n", + " + \"_feature_\"\n", + " + str(i)\n", + " + \".png\"\n", + " )" ], "metadata": { - "id": "AAtKC6emj8Rn" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 129, + "referenced_widgets": [ + "76210a49be1144d58d8ed3b02aadbe72", + "a868d75a2c2849bca3edd651767b54f1" + ] + }, + "id": "CuoBYP1g2I20", + "outputId": "ca033c81-ab9b-4cda-938d-73e19c7360ca" }, "execution_count": null, - "outputs": [] + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/pytensor/tensor/random/op.py:84: FutureWarning: ndim_supp is deprecated. Provide signature instead.\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/pytensor/tensor/random/op.py:94: FutureWarning: ndims_params is deprecated. Provide signature instead.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Output()" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "76210a49be1144d58d8ed3b02aadbe72" + } + }, + "metadata": {} + } + ] }, { "cell_type": "code", "source": [], "metadata": { - "id": "JZlmznTwoH_t" + "id": "L9gKL8bz2Jj4" }, "execution_count": null, "outputs": [] From 06ad20dc77c8e60b7c677a15633e562a6bb6af6b Mon Sep 17 00:00:00 2001 From: Stijn Date: Wed, 13 Nov 2024 18:02:21 +0100 Subject: [PATCH 55/68] Add nicer entrypoint for normative and basic cli testing --- pcntoolkit/normative.py | 66 +++++++++++++++++------------------ pcntoolkit/util/utils.py | 4 +-- pyproject.toml | 4 ++- tests/cli_test/split_data.py | 67 ++++++++++++++++++++++++++++++++++++ tests/cli_test/test_cli.sh | 18 ++++++++++ tests/profile_trendsurf.py | 5 +-- tests/test_normative.py | 7 ++-- 7 files changed, 128 insertions(+), 43 deletions(-) create mode 100644 tests/cli_test/split_data.py create mode 100755 tests/cli_test/test_cli.sh diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index 9d885315..a46a3942 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -110,71 +110,62 @@ def get_args(*args): :returns configparam: Parameters controlling the estimation algorithm :returns kw_args: Additional keyword arguments """ - + args = args[0][0] + print(args) # parse arguments parser = argparse.ArgumentParser(description="Normative Modeling") - parser.add_argument("responses") - parser.add_argument("-f", help="Function to call", dest="func", - default="estimate") + parser.add_argument("respfile", help="Response variables for the normative model") + parser.add_argument("-f", help="Function to call", dest="func", default="estimate") parser.add_argument("-m", help="mask file", dest="maskfile", default=None) - parser.add_argument("-c", help="covariates file", dest="covfile", - default=None) - parser.add_argument("-k", help="cross-validation folds", dest="cvfolds", - default=None) - parser.add_argument("-t", help="covariates (test data)", dest="testcov", - default=None) - parser.add_argument("-r", help="responses (test data)", dest="testresp", - default=None) + parser.add_argument("-c", help="covariates file", dest="covfile", default=None) + parser.add_argument("-k", help="cross-validation folds", dest="cvfolds", default=None) + parser.add_argument("-t", help="covariates (test data)", dest="testcov", default=None) + parser.add_argument("-r", help="responses (test data)", dest="testresp", default=None) parser.add_argument("-a", help="algorithm", dest="alg", default="gpr") - parser.add_argument("-x", help="algorithm specific config options", - dest="configparam", default=None) - # parser.add_argument('-s', action='store_false', - # help="Flag to skip standardization.", dest="standardize") - parser.add_argument("keyword_args", nargs=argparse.REMAINDER) - - args = parser.parse_args() + parser.add_argument("-x", help="algorithm specific config options", dest="configparam", default=None) + parsed_args, keyword_args = parser.parse_known_args(args) - # Process required arguemnts + # Process required arguments wdir = os.path.realpath(os.path.curdir) - respfile = os.path.join(wdir, args.responses) - if args.covfile is None: + respfile = os.path.join(wdir, parsed_args.respfile) + if parsed_args.covfile is None: raise ValueError("No covariates specified") else: - covfile = args.covfile + covfile = parsed_args.covfile # Process optional arguments - if args.maskfile is None: + if parsed_args.maskfile is None: maskfile = None else: - maskfile = os.path.join(wdir, args.maskfile) - if args.testcov is None and args.cvfolds is not None: + maskfile = os.path.join(wdir, parsed_args.maskfile) + if parsed_args.testcov is None and parsed_args.cvfolds is not None: testcov = None testresp = None - cvfolds = int(args.cvfolds) + cvfolds = int(parsed_args.cvfolds) print("Running under " + str(cvfolds) + " fold cross-validation.") else: print("Test covariates specified") - testcov = args.testcov + testcov = parsed_args.testcov cvfolds = None - if args.testresp is None: + if parsed_args.testresp is None: testresp = None print("No test response variables specified") else: - testresp = args.testresp - if args.cvfolds is not None: + testresp = parsed_args.testresp + if parsed_args.cvfolds is not None: print("Ignoring cross-valdation specification (test data given)") # Process addtional keyword arguments. These are always added as strings kw_args = {} - for kw in args.keyword_args: + for kw in keyword_args: kw_arg = kw.split('=') exec("kw_args.update({'" + kw_arg[0] + "' : " + "'" + str(kw_arg[1]) + "'" + "})") return respfile, maskfile, covfile, cvfolds, \ - testcov, testresp, args.func, args.alg, \ - args.configparam, kw_args + testcov, testresp, parsed_args.func, parsed_args.alg, \ + parsed_args.configparam, kw_args def evaluate(Y, Yhat, S2=None, mY=None, sY=None, nlZ=None, nm=None, Xz_tr=None, alg=None, @@ -387,7 +378,9 @@ def estimate(covfile, respfile, **kwargs): # '_' is in the outputsuffix to # avoid file name parsing problem. inscaler = kwargs.pop('inscaler', 'None') + print(f"inscaler: {inscaler}") outscaler = kwargs.pop('outscaler', 'None') + print(f"outscaler: {outscaler}") warp = kwargs.get('warp', None) # convert from strings if necessary @@ -670,6 +663,8 @@ def fit(covfile, respfile, **kwargs): outputsuffix = "_" + outputsuffix.replace("_", "") inscaler = kwargs.pop('inscaler', 'None') outscaler = kwargs.pop('outscaler', 'None') + print(f"inscaler: {inscaler}") + print(f"outscaler: {outscaler}") if savemodel and not os.path.isdir('Models'): os.mkdir('Models') @@ -1546,6 +1541,9 @@ def main(*args): # Executing the target function exec(func + '(' + all_args + ')') +def entrypoint(): + main(sys.argv[1:]) + # For running from the command line: if __name__ == "__main__": diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index 6e49becc..f04ae211 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -126,7 +126,7 @@ def create_design_matrix(X, intercept=True, basis='bspline', N = X.shape[0] - if type(X) is pd.DataFrame: + if isinstance(X, pd.DataFrame): X = X.to_numpy() # add intercept column @@ -149,7 +149,7 @@ def create_design_matrix(X, intercept=True, basis='bspline', else: # site ids are defined # make sure the data are in pandas format - if type(site_ids) is not pd.Series: + if not isinstance(site_ids, pd.Series): site_ids = pd.Series(data=site_ids) # site_ids = pd.Series(data=site_ids) diff --git a/pyproject.toml b/pyproject.toml index 6981a939..9a082e4a 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -23,7 +23,9 @@ ipywidgets = "^8.1.5" black = "^24.10.0" ipykernel = "^6.29.5" - [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" + +[tool.poetry.scripts] +normative = "pcntoolkit.normative:entrypoint" diff --git a/tests/cli_test/split_data.py b/tests/cli_test/split_data.py new file mode 100644 index 00000000..b522700a --- /dev/null +++ b/tests/cli_test/split_data.py @@ -0,0 +1,67 @@ +import argparse +import os + +import numpy as np +import pandas as pd + +# Import train_test_split from sklearn +from sklearn.model_selection import train_test_split + +# Import the StandardScaler from sklearn +from sklearn.preprocessing import StandardScaler + +from pcntoolkit.util.utils import create_design_matrix + + +def main(): + + np.random.seed(42) + + parser = argparse.ArgumentParser() + parser.add_argument("--input_file", type=str, required=True) + parser.add_argument("--output_dir", type=str, required=True) + args = parser.parse_args() + + print(f"Splitting the data located at {args.input_file} into train and test covariates, responses and batch effects...") + df = pd.read_csv(args.input_file) + cov = df['age'] + resp = df[['SubCortGrayVol','Left-Hippocampus','Brain-Stem','CSF']] + be = df['site'] + + # Standardize the covariates and responses + cov = StandardScaler().fit_transform(cov.to_numpy()[:,np.newaxis]) + resp = StandardScaler().fit_transform(resp.to_numpy()) + + # Map the batch effects to integers + be_ids = np.unique(be, return_inverse=True)[1] + + # Get the min and max of the covariates + xmin = min(cov) + xmax = max(cov) + + # Split the data into training and test sets + train_idx, test_idx = train_test_split(np.arange(len(cov)), test_size=0.2, random_state=42, stratify=be_ids) + + + # Create the design matrices + mean_basis = 'linear' + var_basis = 'linear' + Phi_tr = create_design_matrix(cov[train_idx], basis=mean_basis, xmin=xmin, xmax=xmax, intercept=False, site_ids=be_ids[train_idx]) + Phi_var_tr = create_design_matrix(cov[train_idx], basis=var_basis, xmin=xmin, xmax=xmax, intercept=False) + Phi_te = create_design_matrix(cov[test_idx], basis=mean_basis, xmin=xmin, xmax=xmax, intercept=False, site_ids=be_ids[test_idx]) + Phi_var_te = create_design_matrix(cov[test_idx], basis=var_basis, xmin=xmin, xmax=xmax, intercept=False) + + # Save everything + pd.to_pickle(pd.DataFrame(Phi_tr), os.path.join(args.output_dir, f'X_tr_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_var_tr), os.path.join(args.output_dir, f'X_var_tr_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_te), os.path.join(args.output_dir, f'X_te_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_var_te), os.path.join(args.output_dir, f'X_var_te_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(resp[train_idx]), os.path.join(args.output_dir, f'Y_tr_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(resp[test_idx]), os.path.join(args.output_dir, f'Y_te_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(be[train_idx], os.path.join(args.output_dir, f'be_tr_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(be[test_idx], os.path.join(args.output_dir, f'be_te_{args.input_file.split("/")[-1]}.pkl')) + + print(f"Done! The files can be found in: {args.output_dir}") + +if __name__ == "__main__": + main() diff --git a/tests/cli_test/test_cli.sh b/tests/cli_test/test_cli.sh new file mode 100755 index 00000000..6390fe3d --- /dev/null +++ b/tests/cli_test/test_cli.sh @@ -0,0 +1,18 @@ +# Assign the current directory to a variable +export testdir=$(pwd) +export tempdir="$testdir/temp" +mkdir $tempdir +echo $tempdir +export data_name="fcon1000" +export model_config="-a blr warp=WarpSinArcsinh optimizer=l-bfgs-b warp_reparam=True" +echo "Downloading the data..." +curl -o $tempdir/$data_name https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/refs/heads/main/data/$data_name.csv +echo "Splitting the data into train and test covariates, responses and batch effects..." +python split_data.py --input_file $tempdir/$data_name --output_dir $tempdir +echo "Fitting the model..." +normative $tempdir/Y_tr_$data_name.pkl -c $tempdir/X_tr_$data_name.pkl -f fit $model_config +echo "Predicting the test set..." +normative $tempdir/Y_te_$data_name.pkl -c $tempdir/X_te_$data_name.pkl -f predict $model_config inputsuffix=fit outputsuffix=predict +echo "Also doing estimate..." +normative $tempdir/Y_tr_$data_name.pkl -c $tempdir/X_tr_$data_name.pkl -f estimate $model_config -t $tempdir/X_te_$data_name.pkl -r $tempdir/Y_te_$data_name.pkl outputsuffix=estimate +echo "Done!" diff --git a/tests/profile_trendsurf.py b/tests/profile_trendsurf.py index 3877122f..3e0efefa 100644 --- a/tests/profile_trendsurf.py +++ b/tests/profile_trendsurf.py @@ -1,11 +1,12 @@ # NOTE: must be run with kernprof (otherwise the inmports get screwed up) # import pcntoolkit +import os +import sys + from bayesreg import BLR from line_profiler import LineProfiler from trendsurf import estimate -import os -import sys sys.path.append('/home/preclineu/andmar/sfw/PCNtoolkit/pcntoolkit') diff --git a/tests/test_normative.py b/tests/test_normative.py index 666bce49..4a4b8e29 100644 --- a/tests/test_normative.py +++ b/tests/test_normative.py @@ -4,12 +4,11 @@ @author: andmar """ -# import pcntoolkit -from normative import estimate +from pcntoolkit.normative import estimate import os import sys # from pcntoolkit.normative import estimate -sys.path.append('/home/preclineu/andmar/sfw/PCNtoolkit/pcntoolkit') +# sys.path.append('/home/preclineu/andmar/sfw/PCNtoolkit/pcntoolkit') # wdir = '/home/mrstats/andmar/py.sandbox/normative_nimg' # wdir = '/Users/andre/data/normative_nimg' @@ -26,7 +25,7 @@ covfile = os.path.join(wdir, 'covariates_basic_n500.txt') testresp = os.path.join(wdir, 'shoot_data_3mm_last100.nii.gz') testcov = os.path.join(wdir, 'covariates_basic_last100.txt') -estimate(covfile, respfile, maskfile=maskfile, testresp=testresp, +estimate(covfile=covfile, respfile=respfile, maskfile=maskfile, testresp=testresp, testcov=testcov, alg="blr") # , configparam=4) # cvfolds = 2 From 48a796b555718eec803b1657f56f19c91d31f093 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 14 Nov 2024 10:34:55 +0100 Subject: [PATCH 56/68] Set read and write permissions in test_cli script --- tests/cli_test/test_cli.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/cli_test/test_cli.sh b/tests/cli_test/test_cli.sh index 6390fe3d..d46e4195 100755 --- a/tests/cli_test/test_cli.sh +++ b/tests/cli_test/test_cli.sh @@ -2,7 +2,7 @@ export testdir=$(pwd) export tempdir="$testdir/temp" mkdir $tempdir -echo $tempdir +chmod -R 766 $tempdir export data_name="fcon1000" export model_config="-a blr warp=WarpSinArcsinh optimizer=l-bfgs-b warp_reparam=True" echo "Downloading the data..." From 33b746c722b02fd2880c5432cf0d928e8f401d87 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 14 Nov 2024 11:00:42 +0100 Subject: [PATCH 57/68] Remove print statement in normative --- pcntoolkit/normative.py | 1 - 1 file changed, 1 deletion(-) diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index a46a3942..436f6064 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -111,7 +111,6 @@ def get_args(*args): :returns kw_args: Additional keyword arguments """ args = args[0][0] - print(args) # parse arguments parser = argparse.ArgumentParser(description="Normative Modeling") parser.add_argument("respfile", help="Response variables for the normative model") From cabfb5aeb99cca1cbcd442e10b0c32f8ffe66171 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 14 Nov 2024 14:39:01 +0100 Subject: [PATCH 58/68] Fix bug in create_design_matrix --- pcntoolkit/util/utils.py | 30 +++++++++++++------------- tests/cli_test/split_data.py | 41 +++++++++++++++++++----------------- tests/cli_test/test_cli.sh | 3 +++ 3 files changed, 40 insertions(+), 34 deletions(-) diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index f04ae211..19c6f553 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -1,26 +1,26 @@ from __future__ import print_function import os +import pickle +import re +import subprocess import sys -import numpy as np -from scipy import stats -from subprocess import call -from scipy.stats import genextreme, norm, skewnorm -from six import with_metaclass from abc import ABCMeta, abstractmethod -import pickle +from io import StringIO +from subprocess import call + +import bspline import matplotlib.pyplot as plt +import numpy as np import pandas as pd -import bspline +import pymc as pm +import scipy.special as spp from bspline import splinelab +from scipy import stats +from scipy.stats import genextreme, norm, skewnorm +from six import with_metaclass from sklearn.datasets import make_regression -import pymc as pm -from io import StringIO -import subprocess -import re from sklearn.metrics import roc_auc_score -import scipy.special as spp - try: # run as a package if installed from pcntoolkit import configs @@ -175,8 +175,8 @@ def create_design_matrix(X, intercept=True, basis='bspline', Phi = np.concatenate( (Phi, np.array([B(i) for i in X[:, basis_column]])), axis=1) elif basis == 'poly': - Phi = np.concatenate(Phi, create_poly_basis( - X[:, basis_column], **kwargs)) + Phi = np.concatenate((Phi, create_poly_basis( + X[:, basis_column], **kwargs)), axis=1) return Phi diff --git a/tests/cli_test/split_data.py b/tests/cli_test/split_data.py index b522700a..01506913 100644 --- a/tests/cli_test/split_data.py +++ b/tests/cli_test/split_data.py @@ -21,9 +21,12 @@ def main(): parser.add_argument("--input_file", type=str, required=True) parser.add_argument("--output_dir", type=str, required=True) args = parser.parse_args() + infile=args.input_file.split("/")[-1] print(f"Splitting the data located at {args.input_file} into train and test covariates, responses and batch effects...") df = pd.read_csv(args.input_file) + + # Select the covariates, responses and batch effects cov = df['age'] resp = df[['SubCortGrayVol','Left-Hippocampus','Brain-Stem','CSF']] be = df['site'] @@ -34,32 +37,32 @@ def main(): # Map the batch effects to integers be_ids = np.unique(be, return_inverse=True)[1] - - # Get the min and max of the covariates - xmin = min(cov) - xmax = max(cov) - + # Split the data into training and test sets - train_idx, test_idx = train_test_split(np.arange(len(cov)), test_size=0.2, random_state=42, stratify=be_ids) - + train_idx, test_idx = train_test_split(np.arange(len(cov)), test_size=0.2, stratify=be_ids) # Create the design matrices mean_basis = 'linear' var_basis = 'linear' - Phi_tr = create_design_matrix(cov[train_idx], basis=mean_basis, xmin=xmin, xmax=xmax, intercept=False, site_ids=be_ids[train_idx]) - Phi_var_tr = create_design_matrix(cov[train_idx], basis=var_basis, xmin=xmin, xmax=xmax, intercept=False) - Phi_te = create_design_matrix(cov[test_idx], basis=mean_basis, xmin=xmin, xmax=xmax, intercept=False, site_ids=be_ids[test_idx]) - Phi_var_te = create_design_matrix(cov[test_idx], basis=var_basis, xmin=xmin, xmax=xmax, intercept=False) + Phi_tr = create_design_matrix(cov[train_idx], basis=mean_basis, intercept=False, site_ids=be_ids[train_idx]) + Phi_var_tr = create_design_matrix(cov[train_idx], basis=var_basis) + Phi_te = create_design_matrix(cov[test_idx], basis=mean_basis, intercept=False, site_ids=be_ids[test_idx]) + Phi_var_te = create_design_matrix(cov[test_idx], basis=var_basis) + + print(f"{Phi_tr.shape=}") + print(f"{Phi_var_tr.shape=}") + print(f"{Phi_te.shape=}") + print(f"{Phi_var_te.shape=}") # Save everything - pd.to_pickle(pd.DataFrame(Phi_tr), os.path.join(args.output_dir, f'X_tr_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(pd.DataFrame(Phi_var_tr), os.path.join(args.output_dir, f'X_var_tr_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(pd.DataFrame(Phi_te), os.path.join(args.output_dir, f'X_te_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(pd.DataFrame(Phi_var_te), os.path.join(args.output_dir, f'X_var_te_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(pd.DataFrame(resp[train_idx]), os.path.join(args.output_dir, f'Y_tr_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(pd.DataFrame(resp[test_idx]), os.path.join(args.output_dir, f'Y_te_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(be[train_idx], os.path.join(args.output_dir, f'be_tr_{args.input_file.split("/")[-1]}.pkl')) - pd.to_pickle(be[test_idx], os.path.join(args.output_dir, f'be_te_{args.input_file.split("/")[-1]}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_tr), os.path.join(args.output_dir, f'X_tr_{infile}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_var_tr), os.path.join(args.output_dir, f'X_var_tr_{infile}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_te), os.path.join(args.output_dir, f'X_te_{infile}.pkl')) + pd.to_pickle(pd.DataFrame(Phi_var_te), os.path.join(args.output_dir, f'X_var_te_{infile}.pkl')) + pd.to_pickle(pd.DataFrame(resp[train_idx]), os.path.join(args.output_dir, f'Y_tr_{infile}.pkl')) + pd.to_pickle(pd.DataFrame(resp[test_idx]), os.path.join(args.output_dir, f'Y_te_{infile}.pkl')) + pd.to_pickle(be[train_idx], os.path.join(args.output_dir, f'be_tr_{infile}.pkl')) + pd.to_pickle(be[test_idx], os.path.join(args.output_dir, f'be_te_{infile}.pkl')) print(f"Done! The files can be found in: {args.output_dir}") diff --git a/tests/cli_test/test_cli.sh b/tests/cli_test/test_cli.sh index d46e4195..d1645981 100755 --- a/tests/cli_test/test_cli.sh +++ b/tests/cli_test/test_cli.sh @@ -1,3 +1,6 @@ +#! /bin/bash +set -x + # Assign the current directory to a variable export testdir=$(pwd) export tempdir="$testdir/temp" From d45fb14f24b1a24672bb47e0b6ed59c180baa6dd Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 14 Nov 2024 14:41:16 +0100 Subject: [PATCH 59/68] Update gitignore and remove temp folder --- .gitignore | 9 ++++++--- tests/cli_test/test_cli.sh | 1 + 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/.gitignore b/.gitignore index fcc7cfa6..c877c0c6 100644 --- a/.gitignore +++ b/.gitignore @@ -83,10 +83,13 @@ dist/pcntoolkit-0.27-py3.11.egg # Basic test functions for SHASH tests/test_SHASH.ipynb +# Dist folder dist/pcntoolkit-0.30.post2-py3.12.egg - dist/* - dist - build/* + +# CLI test folder +tests/cli_test/* +!tests/cli_test/test_cli.sh +!tests/cli_test/split_data.py \ No newline at end of file diff --git a/tests/cli_test/test_cli.sh b/tests/cli_test/test_cli.sh index d1645981..92aa890b 100755 --- a/tests/cli_test/test_cli.sh +++ b/tests/cli_test/test_cli.sh @@ -19,3 +19,4 @@ normative $tempdir/Y_te_$data_name.pkl -c $tempdir/X_te_$data_name.pkl -f predic echo "Also doing estimate..." normative $tempdir/Y_tr_$data_name.pkl -c $tempdir/X_tr_$data_name.pkl -f estimate $model_config -t $tempdir/X_te_$data_name.pkl -r $tempdir/Y_te_$data_name.pkl outputsuffix=estimate echo "Done!" +rm -R $tempdir \ No newline at end of file From aa15085cd61c65e6eaaaf30334b056ee77db58a1 Mon Sep 17 00:00:00 2001 From: Stijn Date: Thu, 14 Nov 2024 16:31:15 +0100 Subject: [PATCH 60/68] Small changes --- README.md | 4 +- pcntoolkit/model/SHASH.py | 29 ++++---- pcntoolkit/normative.py | 5 +- poetry.lock | 135 ++++++++++++++++------------------- pyproject.toml | 1 + tests/cli_test/split_data.py | 5 -- tests/testHBR.py | 8 +-- 7 files changed, 85 insertions(+), 102 deletions(-) diff --git a/README.md b/README.md index af6078c1..64fc232d 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ using the download here: https://www.anaconda.com/download #### Create environment ``` -conda create +conda create python==3.12 ``` #### Activate environment @@ -57,7 +57,7 @@ conda --version #### Create a conda environment in a shared location ``` -conda create -y python==3.10 numpy mkl blas --prefix=/shared/conda/ +conda create -y python==3.12 numpy mkl blas --prefix=/shared/conda/ ``` #### Activate the conda environment diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py index a64317e7..c00585a9 100644 --- a/pcntoolkit/model/SHASH.py +++ b/pcntoolkit/model/SHASH.py @@ -6,7 +6,6 @@ from functools import lru_cache import numpy as np -import pytensor as pt from pymc import floatX from pymc.distributions import Continuous from pytensor.tensor import as_tensor_variable @@ -71,7 +70,7 @@ def C(x, epsilon, delta): ##### SHASH Distributions ##### -class SHASH(RandomVariable): +class SHASHrv(RandomVariable): """SHASH RV, described by Jones et al., based on a standard normal distribution.""" name = "shash" @@ -97,7 +96,7 @@ def rng_fn(cls, rng, epsilon, delta, size=None): ) -shash = SHASH() +shash = SHASHrv() class SHASH(Continuous): @@ -208,9 +207,9 @@ def logp(value, epsilon, delta): Log-probability of the SHASH distribution """ this_S = S(value, epsilon, delta) - this_S_sqr = pt.sqr(this_S) + this_S_sqr = np.log(this_S) this_C_sqr = 1 + this_S_sqr - frac2 = pt.log(delta) + pt.log(this_C_sqr) / 2 - pt.log(1 + pt.sqr(value)) / 2 + frac2 = np.log(delta) + np.log(this_C_sqr) / 2 - np.log(1 + np.log(value)) / 2 exp = -this_S_sqr / 2 return CONST2 + frac2 + exp @@ -288,15 +287,15 @@ def logp(value, mu, sigma, epsilon, delta): """ remapped_value = (value - mu) / sigma this_S = S(remapped_value, epsilon, delta) - this_S_sqr = pt.sqr(this_S) + this_S_sqr = np.log(this_S) this_C_sqr = 1 + this_S_sqr frac2 = ( - pt.log(delta) - + pt.log(this_C_sqr) / 2 - - pt.log(1 + pt.sqr(remapped_value)) / 2 + np.log(delta) + + np.log(this_C_sqr) / 2 + - np.log(1 + np.log(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return CONST2 + frac2 + exp - pt.log(sigma) + return CONST2 + frac2 + exp - np.log(sigma) class SHASHo2RV(RandomVariable): @@ -381,15 +380,15 @@ def logp(value, mu, sigma, epsilon, delta): sigma_d = sigma / delta remapped_value = (value - mu) / sigma_d this_S = S(remapped_value, epsilon, delta) - this_S_sqr = pt.sqr(this_S) + this_S_sqr = np.log(this_S) this_C_sqr = 1 + this_S_sqr frac2 = ( - pt.log(delta) - + pt.log(this_C_sqr) / 2 - - pt.log(1 + pt.sqr(remapped_value)) / 2 + np.log(delta) + + np.log(this_C_sqr) / 2 + - np.log(1 + np.log(remapped_value)) / 2 ) exp = -this_S_sqr / 2 - return CONST2 + frac2 + exp - pt.log(sigma_d) + return CONST2 + frac2 + exp - np.log(sigma_d) class SHASHbRV(RandomVariable): diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py index 436f6064..1f160e84 100755 --- a/pcntoolkit/normative.py +++ b/pcntoolkit/normative.py @@ -18,7 +18,6 @@ import os import pickle import sys -import warnings from pathlib import Path import numpy as np @@ -27,8 +26,8 @@ try: import nutpie except ImportError: - warnings.warn("Nutpie not installed. For fitting HBR models with the nutpie backend, install it with `conda install nutpie numba`") - + # warnings.warn("Nutpie not installed. For fitting HBR models with the nutpie backend, install it with `conda install nutpie numba`") + pass try: # run as a package if installed diff --git a/poetry.lock b/poetry.lock index 6c2d0551..4607f4a6 100644 --- a/poetry.lock +++ b/poetry.lock @@ -423,76 +423,65 @@ logical-unification = ">=0.4.0" [[package]] name = "contourpy" -version = "1.3.0" +version = "1.3.1" description = "Python library for calculating contours of 2D quadrilateral grids" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7"}, - {file = "contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41"}, - {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d"}, - {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223"}, - {file = "contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f"}, - {file = "contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b"}, - {file = "contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad"}, - {file = "contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d"}, - {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c"}, - {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb"}, - {file = "contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c"}, - {file = "contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67"}, - {file = "contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f"}, - {file = "contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09"}, - {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd"}, - {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35"}, - {file = "contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb"}, - {file = "contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b"}, - {file = "contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3"}, - {file = "contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da"}, - {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14"}, - {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8"}, - {file = "contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294"}, - {file = "contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087"}, - {file = "contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8"}, - {file = "contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6"}, - {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2"}, - {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927"}, - {file = "contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8"}, - {file = "contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2"}, - {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e"}, - {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800"}, - {file = "contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5"}, - {file = "contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb"}, - {file = "contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595"}, + {file = "contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697"}, + {file = "contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f"}, + {file = "contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375"}, + {file = "contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d"}, + {file = "contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e"}, + {file = "contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1"}, + {file = "contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82"}, + {file = "contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53"}, + {file = "contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699"}, ] [package.dependencies] @@ -708,13 +697,13 @@ woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] [[package]] name = "h5netcdf" -version = "1.4.0" +version = "1.4.1" description = "netCDF4 via h5py" optional = false python-versions = ">=3.9" files = [ - {file = "h5netcdf-1.4.0-py3-none-any.whl", hash = "sha256:d1bb96fce5dcf42908903c9798beeef70ac84e97159eb381f1b151459313f228"}, - {file = "h5netcdf-1.4.0.tar.gz", hash = "sha256:e959c3b5bd3ca7965ce5f4383a4e038ffcb55034c63d791829bd33a5ac38a962"}, + {file = "h5netcdf-1.4.1-py3-none-any.whl", hash = "sha256:dd86c78ae69b92b16aa8a3c1ff3a14e7622571b5788dcf6d8b68569035bf71ce"}, + {file = "h5netcdf-1.4.1.tar.gz", hash = "sha256:7c8401ab807ff37c9798edc90d99467595892e6c541a5d5abeb8f53aab5335fe"}, ] [package.dependencies] @@ -2247,13 +2236,13 @@ stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] [[package]] name = "setuptools" -version = "75.4.0" +version = "75.5.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.9" files = [ - {file = "setuptools-75.4.0-py3-none-any.whl", hash = "sha256:b3c5d862f98500b06ffdf7cc4499b48c46c317d8d56cb30b5c8bce4d88f5c216"}, - {file = "setuptools-75.4.0.tar.gz", hash = "sha256:1dc484f5cf56fd3fe7216d7b8df820802e7246cfb534a1db2aa64f14fcb9cdcb"}, + {file = "setuptools-75.5.0-py3-none-any.whl", hash = "sha256:87cb777c3b96d638ca02031192d40390e0ad97737e27b6b4fa831bea86f2f829"}, + {file = "setuptools-75.5.0.tar.gz", hash = "sha256:5c4ccb41111392671f02bb5f8436dfc5a9a7185e80500531b133f5775c4163ef"}, ] [package.extras] diff --git a/pyproject.toml b/pyproject.toml index 9a082e4a..5ede1693 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -15,6 +15,7 @@ scikit-learn = "^1.5.2" # Prefer Conda seaborn = "^0.13.2" # Prefer conda six = "^1.16.0" # Prefer conda scipy = "^1.12" +matplotlib = "^3.8.1" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" diff --git a/tests/cli_test/split_data.py b/tests/cli_test/split_data.py index 01506913..bb2caa98 100644 --- a/tests/cli_test/split_data.py +++ b/tests/cli_test/split_data.py @@ -49,11 +49,6 @@ def main(): Phi_te = create_design_matrix(cov[test_idx], basis=mean_basis, intercept=False, site_ids=be_ids[test_idx]) Phi_var_te = create_design_matrix(cov[test_idx], basis=var_basis) - print(f"{Phi_tr.shape=}") - print(f"{Phi_var_tr.shape=}") - print(f"{Phi_te.shape=}") - print(f"{Phi_var_te.shape=}") - # Save everything pd.to_pickle(pd.DataFrame(Phi_tr), os.path.join(args.output_dir, f'X_tr_{infile}.pkl')) pd.to_pickle(pd.DataFrame(Phi_var_tr), os.path.join(args.output_dir, f'X_var_tr_{infile}.pkl')) diff --git a/tests/testHBR.py b/tests/testHBR.py index 0e19ac5b..db875fa2 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -35,7 +35,7 @@ n_samples = 500 # Number of samples in each group (use a list for different # sample numbers across different batches) -model_type = "bspline" # modelto try 'linear, ''polynomial', 'bspline' +model_type = "linear" # modelto try 'linear, ''polynomial', 'bspline' ############################## Data Simulation ################################ @@ -62,9 +62,9 @@ likelihood="SHASHb", linear_sigma="True", random_slope_mu="False", - linear_epsilon="True", - linear_delta="True", - nuts_sampler="pymc", + linear_epsilon="False", + linear_delta="False", + nuts_sampler="nutpie", ) nm.estimate(X_train, Y_train, trbefile=working_dir + "trbefile.pkl") From 749b19416172c30be06a8c4d570725f65050130d Mon Sep 17 00:00:00 2001 From: Stijn Date: Fri, 15 Nov 2024 11:46:43 +0100 Subject: [PATCH 61/68] Update README Update CHANGES Fix delimiter issue --- CHANGES | 15 +++++++++++++++ README.md | 4 ++-- pcntoolkit/util/utils.py | 6 +++--- pyproject.toml | 4 ++-- 4 files changed, 22 insertions(+), 7 deletions(-) diff --git a/CHANGES b/CHANGES index 169180f0..99fa20b5 100644 --- a/CHANGES +++ b/CHANGES @@ -87,3 +87,18 @@ version 0.29 - Addedd functionality to compute SHASH z-scores from normative.py - Updated requirements - Basic pytest continuous integration framework implemented + +version 0.30.0 +- Minor bug fixes + +version 0.31.0 +- Major changes: + - Move to Poetry for dependency management in pyproject.toml. + - PCNToolkit must now be installed using python -m pip install .. See the README for complete instructions. + - A CLI command normative is automatically created, and can be used instead of python normative.py. + - Nutpie can be used as a sampler for HBR by setting `nuts_sampler='nutpie''. Nutpie and numba must first be installed using conda. +- Minor changes + - torque jobs now support multicore jobs via the keyword 'n_cores_per_batch' + - Backwards compatibilty improved by using pd.read_pickle instead of pickle.load + - SHASH classes have been refactored and improved + - HBR priors improved diff --git a/README.md b/README.md index 64fc232d..f18f7801 100644 --- a/README.md +++ b/README.md @@ -30,7 +30,7 @@ Use the command that you get from the command builder here: https://pytorch.org/ ### Install nutpie using conda ``` -conda install nutpie +conda install nutpie numba -c conda-forge ``` #### Install PCNtoolkit @@ -79,7 +79,7 @@ If your shared resource has no GPU, make sure you select the 'CPU' field in the ### Install nutpie using conda ``` -conda install nutpie +conda install nutpie numba -c conda-forge ``` #### Clone the repo diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py index 19c6f553..cd245746 100644 --- a/pcntoolkit/util/utils.py +++ b/pcntoolkit/util/utils.py @@ -1078,14 +1078,14 @@ def load_freesurfer_measure(measure, data_path, subjects_list): data = dict() a = pd.read_csv(data_path + sub + '/stats/lh.aparc.a2009s.stats', - delimiter='\s+', comment='#', header=None) + delimiter=r'\s+', comment='#', header=None) temp = dict(zip(a[0], a[col])) for key in list(temp.keys()): temp['L_'+key] = temp.pop(key) data.update(temp) a = pd.read_csv(data_path + sub + '/stats/rh.aparc.a2009s.stats', - delimiter='\s+', comment='#', header=None) + delimiter=r'\s+', comment='#', header=None) temp = dict(zip(a[0], a[col])) for key in list(temp.keys()): temp['R_'+key] = temp.pop(key) @@ -1137,7 +1137,7 @@ def load_freesurfer_measure(measure, data_path, subjects_list): else: tiv = a[' ICV'] a = pd.read_csv(data_path + sub + '/stats/aseg.stats', - delimiter='\s+', comment='#', header=None) + delimiter=r'\s+', comment='#', header=None) data_vol = dict(zip(a[4]+'_mm3', a[3])) for key in data_vol.keys(): data_vol[key] = data_vol[key]/tiv diff --git a/pyproject.toml b/pyproject.toml index 5ede1693..d370c791 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "pcntoolkit" -version = "0.30.2" +version = "0.31.0" description = "Predictive Clinical Neuroscience Toolkit" authors = ["Andre Marquand"] license = "GNU GPLv3" @@ -10,7 +10,7 @@ readme = "README.md" python = ">=3.10,<3.13" bspline = "^0.1.1" # Install with pip nibabel = "^5.3.1" # Prefer Conda -pymc = "^5.17.0" # Prefer Conda +pymc = "^5.18.0" # Prefer Conda scikit-learn = "^1.5.2" # Prefer Conda seaborn = "^0.13.2" # Prefer conda six = "^1.16.0" # Prefer conda From 3e9c7c74a35d79095cf97ce1512aa1ed4810825d Mon Sep 17 00:00:00 2001 From: Stijn de Boer <19709783+AuguB@users.noreply.github.com> Date: Fri, 15 Nov 2024 12:35:54 +0100 Subject: [PATCH 62/68] Created using Colab --- .../pages/apply_normative_models_ct.rst | 1020 +++++++++++++++++ 1 file changed, 1020 insertions(+) create mode 100644 doc/source/pages/apply_normative_models_ct.rst diff --git a/doc/source/pages/apply_normative_models_ct.rst b/doc/source/pages/apply_normative_models_ct.rst new file mode 100644 index 00000000..ba552baf --- /dev/null +++ b/doc/source/pages/apply_normative_models_ct.rst @@ -0,0 +1,1020 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2d8fb4c8-4360-4fdc-b0a2-e1c2e22bd8f9", + "metadata": { + "id": "2d8fb4c8-4360-4fdc-b0a2-e1c2e22bd8f9" + }, + "source": [ + "## Using lifespan models to make predictions on new data\n", + "\n", + "This notebook shows how to apply the coefficients from pre-estimated normative models to new data. This can be done in two different ways: (i) using a new set of data derived from the same sites used to estimate the model and (ii) on a completely different set of sites. In the latter case, we also need to estimate the site effect, which requires some calibration/adaptation data. As an illustrative example, we use a dataset derived from several [OpenNeuro datasets](https://openneuro.org/) and adapt the learned model to make predictions on these data.\n", + "\n", + "First, if necessary, we install PCNtoolkit (note: this tutorial requires at least version 0.27)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "f606eda6", + "metadata": { + "id": "f606eda6", + "outputId": "dd209f94-142d-4043-81da-e4bceaee19f0", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting https://github.com/amarquand/PCNtoolkit/archive/dev.zip\n", + " Using cached https://github.com/amarquand/PCNtoolkit/archive/dev.zip\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: bspline<0.2.0,>=0.1.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.1.1)\n", + "Requirement already satisfied: matplotlib<4.0.0,>=3.8.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (3.9.2)\n", + "Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2)\n", + "Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0)\n", + "Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2)\n", + "Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1)\n", + "Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2)\n", + "Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bspline<0.2.0,>=0.1.1->pcntoolkit==0.31.0) (1.26.4)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (1.3.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (4.54.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (1.4.7)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (24.2)\n", + "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (11.0.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (3.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (2.8.2)\n", + "Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5)\n", + "Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2)\n", + "Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0)\n", + "Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0)\n", + "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0)\n", + "Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2)\n", + "Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5)\n", + "Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4)\n", + "Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0)\n", + "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2)\n", + "Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0)\n", + "Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0)\n", + "Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.0)\n", + "Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)\n", + "Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1)\n", + "Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9)\n", + "Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)\n", + "Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3)\n", + "Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0)\n", + "Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2)\n", + "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1)\n", + "Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0)\n" + ] + } + ], + "source": [ + "! pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ddd7b3cb-b018-4ed4-8b55-15728d8c5411", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ddd7b3cb-b018-4ed4-8b55-15728d8c5411", + "outputId": "d3d408d4-9c55-49d2-cae9-e3a500e168e3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "fatal: destination path 'braincharts' already exists and is not an empty directory.\n" + ] + } + ], + "source": [ + "! git clone https://github.com/predictive-clinical-neuroscience/braincharts.git" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b1849f76-b17d-4286-bf57-50ff56e81bf8", + "metadata": { + "id": "b1849f76-b17d-4286-bf57-50ff56e81bf8" + }, + "outputs": [], + "source": [ + "# we need to be in the scripts folder when we import the libraries in the code block below,\n", + "# because there is a function called nm_utils that is in the scripts folder that we need to import\n", + "import os\n", + "\n", + "wdir = 'braincharts'\n", + "\n", + "os.chdir(wdir) #this path is setup for running on Google Colab. Change it to match your local path if running locally\n", + "root_dir=os.getcwd()" + ] + }, + { + "cell_type": "markdown", + "id": "b2227bc7-e798-470a-99bc-33561ce4511b", + "metadata": { + "id": "b2227bc7-e798-470a-99bc-33561ce4511b" + }, + "source": [ + "Now we import the required libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ff661cf2-7d80-46bb-bcfb-1650a93eed3d", + "metadata": { + "id": "ff661cf2-7d80-46bb-bcfb-1650a93eed3d" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import pickle\n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "from pcntoolkit.normative import estimate, predict, evaluate\n", + "from pcntoolkit.util.utils import compute_MSLL, create_design_matrix\n", + "os.chdir(os.path.join(root_dir, 'scripts'))\n", + "from nm_utils import remove_bad_subjects, load_2d\n", + "os.chdir(root_dir)" + ] + }, + { + "cell_type": "markdown", + "id": "78719463-28b2-4849-b970-cfbe2f07d214", + "metadata": { + "id": "78719463-28b2-4849-b970-cfbe2f07d214" + }, + "source": [ + "We need to unzip the models." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3b1d4d4b-68ab-4bba-87f5-6062995805d0", + "metadata": { + "id": "3b1d4d4b-68ab-4bba-87f5-6062995805d0" + }, + "outputs": [], + "source": [ + "os.chdir(os.path.join(root_dir,'models'))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d4b7b2f4-c514-4d4f-a6b0-9461e1b20831", + "metadata": { + "id": "d4b7b2f4-c514-4d4f-a6b0-9461e1b20831", + "outputId": "87f49919-54d4-4b2f-a959-28060596ced9", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Archive: lifespan_57K_82sites.zip\n", + "replace lifespan_57K_82sites/Right-Pallidum/Models/meta_data.md? [y]es, [n]o, [A]ll, [N]one, [r]ename: " + ] + } + ], + "source": [ + "# we will use the biggest sample as our training set (approx. N=57000 subjects from 82 sites)\n", + "# for more info on the other pretrained models available in this repository,\n", + "# please refer to the accompanying paper https://elifesciences.org/articles/72904\n", + "! unzip lifespan_57K_82sites.zip" + ] + }, + { + "cell_type": "markdown", + "id": "802b1da6-04cc-4310-af81-f50d38c3e653", + "metadata": { + "id": "802b1da6-04cc-4310-af81-f50d38c3e653" + }, + "source": [ + "Next, we configure some basic variables, like where we want the analysis to be done and which model we want to use.\n", + "\n", + "**Note:** We maintain a list of site ids for each dataset, which describe the site names in the training and test data (`site_ids_tr` and `site_ids_te`), plus also the adaptation data . The training site ids are provided as a text file in the distribution and the test ids are extracted automatically from the pandas dataframe (see below). If you use additional data from the sites (e.g. later waves from ABCD), it may be necessary to adjust the site names to match the names in the training set. See the accompanying paper for more details" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f52e2a19-9b63-4f0f-97c1-387f1a1872a2", + "metadata": { + "id": "f52e2a19-9b63-4f0f-97c1-387f1a1872a2" + }, + "outputs": [], + "source": [ + "# which model do we wish to use?\n", + "model_name = 'lifespan_57K_82sites'\n", + "site_names = 'site_ids_ct_82sites.txt'\n", + "\n", + "\n", + "# where the data files live\n", + "data_dir = os.path.join(root_dir,'docs')\n", + "\n", + "# where the models live\n", + "out_dir = os.path.join(root_dir, 'models', model_name)\n", + "\n", + "# load a set of site ids from this model. This must match the training data\n", + "with open(os.path.join(root_dir,'docs', site_names)) as f:\n", + " site_ids_tr = f.read().splitlines()" + ] + }, + { + "cell_type": "markdown", + "id": "3aab54a5-2579-48d8-a81b-bbd34cea1213", + "metadata": { + "id": "3aab54a5-2579-48d8-a81b-bbd34cea1213" + }, + "source": [ + "### Load test data\n", + "\n", + "**Note:** For the purposes of this tutorial, we make predictions for a multi-site transfer dataset, derived from [OpenNeuro](https://openneuro.org/)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "262d429a-160b-4ba3-9ba4-9acc195bc644", + "metadata": { + "id": "262d429a-160b-4ba3-9ba4-9acc195bc644" + }, + "outputs": [], + "source": [ + "test_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_te.csv')\n", + "\n", + "df_te = pd.read_csv(test_data)\n", + "\n", + "# extract a list of unique site ids from the test set\n", + "site_ids_te = sorted(set(df_te['site'].to_list()))" + ] + }, + { + "cell_type": "markdown", + "id": "c636509a-8b12-43f1-811c-08cb22640be2", + "metadata": { + "id": "c636509a-8b12-43f1-811c-08cb22640be2" + }, + "source": [ + "### (Optional) Load adaptation data\n", + "\n", + "If the data you wish to make predictions for is not derived from the same scanning sites as those in the trainig set, it is necessary to learn the site effect so that we can account for it in the predictions. In order to do this in an unbiased way, we use a separate dataset, which we refer to as 'adaptation' data. This must contain data for all the same sites as in the test dataset and we assume these are coded in the same way, based on a the 'sitenum' column in the dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "53551023-aff6-4934-ad2d-d77bc63c562d", + "metadata": { + "id": "53551023-aff6-4934-ad2d-d77bc63c562d" + }, + "outputs": [], + "source": [ + "adaptation_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_ad.csv')\n", + "\n", + "df_ad = pd.read_csv(adaptation_data)\n", + "\n", + "# extract a list of unique site ids from the test set\n", + "site_ids_ad = sorted(set(df_ad['site'].to_list()))\n", + "\n", + "if not all(elem in site_ids_ad for elem in site_ids_te):\n", + " print('Warning: some of the testing sites are not in the adaptation data')" + ] + }, + { + "cell_type": "markdown", + "id": "4f73e30e-c693-44b8-98c6-52b71b577ea8", + "metadata": { + "id": "4f73e30e-c693-44b8-98c6-52b71b577ea8" + }, + "source": [ + "### Configure which models to fit\n", + "\n", + "Now, we configure which imaging derived phenotypes (IDPs) we would like to process. This is just a list of column names in the dataframe we have loaded above.\n", + "\n", + "We could load the whole set (i.e. all phenotypes for which we have models for ..." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "b48e104c-cbac-4ae2-8377-cd3ff80162fd", + "metadata": { + "id": "b48e104c-cbac-4ae2-8377-cd3ff80162fd" + }, + "outputs": [], + "source": [ + "# load the list of idps for left and right hemispheres, plus subcortical regions\n", + "with open(os.path.join(data_dir, 'phenotypes_ct_lh.txt')) as f:\n", + " idp_ids_lh = f.read().splitlines()\n", + "with open(os.path.join(data_dir, 'phenotypes_ct_rh.txt')) as f:\n", + " idp_ids_rh = f.read().splitlines()\n", + "with open(os.path.join(data_dir, 'phenotypes_sc.txt')) as f:\n", + " idp_ids_sc = f.read().splitlines()\n", + "\n", + "# we choose here to process all idps\n", + "idp_ids = idp_ids_lh + idp_ids_rh #+ idp_ids_sc" + ] + }, + { + "cell_type": "markdown", + "id": "280731ad-47d8-43e2-8cb5-4eccfd9f3f81", + "metadata": { + "id": "280731ad-47d8-43e2-8cb5-4eccfd9f3f81" + }, + "source": [ + "... or alternatively, we could just specify a list" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8b74d75f-77a5-474a-9c9b-29aab1ce53a2", + "metadata": { + "id": "8b74d75f-77a5-474a-9c9b-29aab1ce53a2" + }, + "outputs": [], + "source": [ + "idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness']" + ] + }, + { + "cell_type": "markdown", + "id": "56ee1f7f-8684-4f1c-b142-a68176407029", + "metadata": { + "id": "56ee1f7f-8684-4f1c-b142-a68176407029" + }, + "source": [ + "### Configure covariates\n", + "\n", + "Now, we configure some parameters to fit the model. First, we choose which columns of the pandas dataframe contain the covariates (age and sex). The site parameters are configured automatically later on by the `configure_design_matrix()` function, when we loop through the IDPs in the list\n", + "\n", + "The supplied coefficients are derived from a 'warped' Bayesian linear regression model, which uses a nonlinear warping function to model non-Gaussianity (`sinarcsinh`) plus a non-linear basis expansion (a cubic b-spline basis set with 5 knot points, which is the default value in the PCNtoolkit package). Since we are sticking with the default value, we do not need to specify any parameters for this, but we do need to specify the limits. We choose to pad the input by a few years either side of the input range. We will also set a couple of options that control the estimation of the model\n", + "\n", + "For further details about the likelihood warping approach, see the accompanying paper and [Fraza et al 2021](https://www.biorxiv.org/content/10.1101/2021.04.05.438429v1)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "62312b8e-4972-4238-abf9-87d9bb33cc10", + "metadata": { + "id": "62312b8e-4972-4238-abf9-87d9bb33cc10" + }, + "outputs": [], + "source": [ + "# which data columns do we wish to use as covariates?\n", + "cols_cov = ['age','sex']\n", + "\n", + "# limits for cubic B-spline basis\n", + "xmin = -5\n", + "xmax = 110\n", + "\n", + "# Absolute Z treshold above which a sample is considered to be an outlier (without fitting any model)\n", + "outlier_thresh = 7" + ] + }, + { + "cell_type": "markdown", + "id": "42bc1072-e9ed-4f2a-9fdd-cbd626a61542", + "metadata": { + "id": "42bc1072-e9ed-4f2a-9fdd-cbd626a61542" + }, + "source": [ + "### Make predictions\n", + "\n", + "This will make predictions for each IDP separately. This is done by extracting a column from the dataframe (i.e. specifying the IDP as the response variable) and saving it as a numpy array. Then, we configure the covariates, which is a numpy data array having the number of rows equal to the number of datapoints in the test set. The columns are specified as follows:\n", + "\n", + "- A global intercept (column of ones)\n", + "- The covariate columns (here age and sex, coded as 0=female/1=male)\n", + "- Dummy coded columns for the sites in the training set (one column per site)\n", + "- Columns for the basis expansion (seven columns for the default parameterisation)\n", + "\n", + "Once these are saved as numpy arrays in ascii format (as here) or (alternatively) in pickle format, these are passed as inputs to the `predict()` method in the PCNtoolkit normative modelling framework. These are written in the same format to the location specified by `idp_dir`. At the end of this step, we have a set of predictions and Z-statistics for the test dataset that we can take forward to further analysis.\n", + "\n", + "Note that when we need to make predictions on new data, the procedure is more involved, since we need to prepare, process and store covariates, response variables and site ids for the adaptation data." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "07b7471b-c334-464f-8273-b409b7acaac2", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "07b7471b-c334-464f-8273-b409b7acaac2", + "outputId": "a1de6a82-4430-4e11-de5f-b2874dd3c5d9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Running IDP 0 Left-Thalamus-Proper :\n", + "Some sites missing from the training data. Adapting model\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Evaluating the model ...\n", + "Evaluations Writing outputs ...\n", + "Writing outputs ...\n", + "Running IDP 1 Left-Lateral-Ventricle :\n", + "Some sites missing from the training data. Adapting model\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Evaluating the model ...\n", + "Evaluations Writing outputs ...\n", + "Writing outputs ...\n", + "Running IDP 2 rh_MeanThickness_thickness :\n", + "Some sites missing from the training data. Adapting model\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Evaluating the model ...\n", + "Evaluations Writing outputs ...\n", + "Writing outputs ...\n" + ] + } + ], + "source": [ + "for idp_num, idp in enumerate(idp_ids):\n", + " print('Running IDP', idp_num, idp, ':')\n", + " idp_dir = os.path.join(out_dir, idp)\n", + " os.chdir(idp_dir)\n", + "\n", + " # extract and save the response variables for the test set\n", + " y_te = df_te[idp].to_numpy()\n", + "\n", + " # save the variables\n", + " resp_file_te = os.path.join(idp_dir, 'resp_te.txt')\n", + " np.savetxt(resp_file_te, y_te)\n", + "\n", + " # configure and save the design matrix\n", + " cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt')\n", + " X_te = create_design_matrix(df_te[cols_cov],\n", + " site_ids = df_te['site'],\n", + " all_sites = site_ids_tr,\n", + " basis = 'bspline',\n", + " xmin = xmin,\n", + " xmax = xmax)\n", + " np.savetxt(cov_file_te, X_te)\n", + "\n", + " # check whether all sites in the test set are represented in the training set\n", + " if all(elem in site_ids_tr for elem in site_ids_te):\n", + " print('All sites are present in the training data')\n", + "\n", + " # just make predictions\n", + " yhat_te, s2_te, Z = predict(cov_file_te,\n", + " alg='blr',\n", + " respfile=resp_file_te,\n", + " model_path=os.path.join(idp_dir,'Models'))\n", + " else:\n", + " print('Some sites missing from the training data. Adapting model')\n", + "\n", + " # save the covariates for the adaptation data\n", + " X_ad = create_design_matrix(df_ad[cols_cov],\n", + " site_ids = df_ad['site'],\n", + " all_sites = site_ids_tr,\n", + " basis = 'bspline',\n", + " xmin = xmin,\n", + " xmax = xmax)\n", + " cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')\n", + " np.savetxt(cov_file_ad, X_ad)\n", + "\n", + " # save the responses for the adaptation data\n", + " resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt')\n", + " y_ad = df_ad[idp].to_numpy()\n", + " np.savetxt(resp_file_ad, y_ad)\n", + "\n", + " # save the site ids for the adaptation data\n", + " sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt')\n", + " site_num_ad = df_ad['sitenum'].to_numpy(dtype=int)\n", + " np.savetxt(sitenum_file_ad, site_num_ad)\n", + "\n", + " # save the site ids for the test data\n", + " sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt')\n", + " site_num_te = df_te['sitenum'].to_numpy(dtype=int)\n", + " np.savetxt(sitenum_file_te, site_num_te)\n", + "\n", + " yhat_te, s2_te, Z = predict(cov_file_te,\n", + " alg = 'blr',\n", + " respfile = resp_file_te,\n", + " model_path = os.path.join(idp_dir,'Models'),\n", + " adaptrespfile = resp_file_ad,\n", + " adaptcovfile = cov_file_ad,\n", + " adaptvargroupfile = sitenum_file_ad,\n", + " testvargroupfile = sitenum_file_te)" + ] + }, + { + "cell_type": "markdown", + "id": "75210821-ccb8-4bd2-82f3-641708811b21", + "metadata": { + "id": "75210821-ccb8-4bd2-82f3-641708811b21" + }, + "source": [ + "### Preparing dummy data for plotting\n", + "\n", + "Now, we plot the centiles of variation estimated by the normative model.\n", + "\n", + "We do this by making use of a set of dummy covariates that span the whole range of the input space (for age) for a fixed value of the other covariates (e.g. sex) so that we can make predictions for these dummy data points, then plot them. We configure these dummy predictions using the same procedure as we used for the real data. We can use the same dummy data for all the IDPs we wish to plot" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "2d0743d8-28ca-4a14-8ef0-99bf40434b5b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2d0743d8-28ca-4a14-8ef0-99bf40434b5b", + "outputId": "e8957652-cfd0-4a4c-998b-463c356bbaed" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "configuring dummy data ...\n" + ] + } + ], + "source": [ + "# which sex do we want to plot?\n", + "sex = 1 # 1 = male 0 = female\n", + "if sex == 1:\n", + " clr = 'blue';\n", + "else:\n", + " clr = 'red'\n", + "\n", + "# create dummy data for visualisation\n", + "print('configuring dummy data ...')\n", + "xx = np.arange(xmin, xmax, 0.5)\n", + "X0_dummy = np.zeros((len(xx), 2))\n", + "X0_dummy[:,0] = xx\n", + "X0_dummy[:,1] = sex\n", + "\n", + "# create the design matrix\n", + "X_dummy = create_design_matrix(X0_dummy, xmin=xmin, xmax=xmax, site_ids=None, all_sites=site_ids_tr)\n", + "\n", + "# save the dummy covariates\n", + "cov_file_dummy = os.path.join(out_dir,'cov_bspline_dummy_mean.txt')\n", + "np.savetxt(cov_file_dummy, X_dummy)" + ] + }, + { + "cell_type": "markdown", + "id": "126323a3-2270-4796-97c4-94629730ddf7", + "metadata": { + "id": "126323a3-2270-4796-97c4-94629730ddf7" + }, + "source": [ + "### Plotting the normative models\n", + "\n", + "Now we loop through the IDPs, plotting each one separately. The outputs of this step are a set of quantitative regression metrics for each IDP and a set of centile curves which we plot the test data against.\n", + "\n", + "This part of the code is relatively complex because we need to keep track of many quantities for the plotting. We also need to remember whether the data need to be warped or not. By default in PCNtoolkit, predictions in the form of `yhat, s2` are always in the warped (Gaussian) space. If we want predictions in the input (non-Gaussian) space, then we need to warp them with the inverse of the estimated warping function. This can be done using the function `nm.blr.warp.warp_predictions()`.\n", + "\n", + "**Note:** it is necessary to update the intercept for each of the sites. For purposes of visualisation, here we do this by adjusting the median of the data to match the dummy predictions, but note that all the quantitative metrics are estimated using the predictions that are adjusted properly using a learned offset (or adjusted using a hold-out adaptation set, as above). Note also that for the calibration data we require at least two data points of the same sex in each site to be able to estimate the variance. Of course, in a real example, you would want many more than just two since we need to get a reliable estimate of the variance for each site." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "cdd68cc6-212b-4149-b86a-24e842078e1a", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "cdd68cc6-212b-4149-b86a-24e842078e1a", + "outputId": "43a33a06-cffb-4bab-9bd1-293cc8e65d48" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Running IDP 0 Left-Thalamus-Proper :\n", + "Making predictions with dummy covariates (for visualisation)\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Writing outputs ...\n", + "metrics: {'RMSE': array([0.55690777]), 'Rho': array([0.]), 'pRho': array([1.]), 'SMSE': array([0.]), 'EXPV': array([0.])}\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc1f3+fc9W9d57s2W5d7lhigMBQ4A4FJPQgmMgCRAIEEoIIfnx0JI/OJSEZgIB07uxAYMBN4zBuFu2ZVm9Wl2rtkU7z4vbZ2dXkm2VldXO57rmWml2dnZmZ+ac+3zbUVRVVSGRSCQSiUQiOeXoBvsAJBKJRCKRSEYrUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSiUQikQwSUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSiUQikQwSUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSr1BTU4NbbrkF2dnZyMzMxMsvvzwg3/PUU08hMzMTdXV1XtvnVVddhauuuspr+5NIJJKeYhjsA5BIJIPH+++/j3vuuQfvvvsuJk2a1K99Pfzww9i0aRNuuukmREREYOLEidiwYQP27NmDm2+++bif27ZtG66++uoefcehQ4f6dYyjlbvvvhsffPCB639/f38kJCTg4osvxpVXXgmTyTSIRyeRjG6kEJNIJF7hu+++w6JFi7Bs2TLXulWrVmHVqlUnFGLp6el47LHHPNY9/vjj8PPzw4033jhgxzvaMJlMePDBBwEAFosFn3/+OR599FHs3bsXTzzxxCAfnUQyepFCTCKReIXa2loEBQX1+nMRERG46KKLPNa98MILCA0N7bJe0ncMBoPH7/nLX/4Sl156KdauXYu7774b0dHRXT6jqiqsVit8fHxO5aGelNbWVvj5+Q32YUgkXkHGiEkkkhNSVVWFe+65B/PmzcPEiRNx/vnn491333W9//777yMzMxOqqmLVqlXIzMxEZmYm7r77bqxatQoAXOsyMzO9dlwWiwV33303Zs6ciRkzZuCee+5BW1ubxzbvvfcerr76asydOxcTJ07E4sWL8frrr5903zabDf/617+wZMkSzJgxA1OnTsUvf/lLfPfddx7blZaWIjMzEytXrsSqVauwaNEiTJkyBddddx0qKiqgqiqeeeYZLFy4EJMnT8Zvf/tbNDQ0eOwjMzMTTz31VJdjOOuss3D33Xe7/rfb7Xj66adxzjnnYNKkScjOzsYVV1yBLVu29OJX09DpdJg9ezYAoKyszPWdN9xwAzZt2oQlS5Zg8uTJePPNNwEAJSUluOWWWzB79mxMmTIFl112Gb755huPfW7btg2ZmZlYu3YtHn/8ccyfPx9Tp07FjTfeiIqKii7HsHv3bixbtgwzZszAlClTcOWVV+LHH3/02EbEBObl5eH222/HrFmz8Mtf/rJP5yyRDEWkRUwikRyXmpoaXHbZZVAUBb/61a8QFhaGjRs34s9//jOam5tx7bXXYtasWXjsscfwpz/9CfPnz3dZXZKSknD06FFs2bKli+vRG9x6661ISEjAH//4R+Tk5OCdd95BWFgY7rzzTtc2b7zxBsaMGYOzzjoLBoMBX3/9Nf72t79BVVX86le/Ou6+m5ub8c477+CCCy7ApZdeipaWFrz77rv4zW9+g3feeQdZWVke269evRp2ux1XXXUVGhoa8OKLL+LWW2/FnDlzsG3bNixfvhxFRUV47bXX8Oijj+Lhhx/u9fk+/fTTeO6553DppZdi8uTJaG5uxr59+7B//37Mnz+/1/sDKK4AICQkxLWuoKAAt99+Oy6//HJcdtllSE1NRU1NDZYuXYq2tjZcddVVCA0NxQcffIDf/va3ePLJJ3H22Wd77Pc///kPFEXB8uXLUVtbi1deeQXXXnstPvroI5d1bevWrVi+fDkmTpyIm266CYqi4P3338c111yD119/HZMnT/bY5x/+8AckJyfjtttug6qqfTpfiWQoIoWYRCI5Lk888QQ6OjqwevVqhIaGAgCuuOIK/PGPf8TTTz+NpUuXIjExEYmJifjTn/6ElJQUD/dXSkoKtmzZMiAuxqysLDz00EOu/xsaGvDuu+96CLHXXnvNw6125ZVXYtmyZfjvf/97QiEWHByMr776yiOI/bLLLsN5552HV1991eN7AVoN161bh8DAQACA0+nEc889h/b2drz33nswGNjU1tfXY/Xq1fjb3/7W6wD5b775Bqeffjr+7//+r1efc0dkmjY3N+PTTz/Fl19+iczMTKSlpbm2KSoqwosvvojTTjvNte6hhx5CTU0NVq1ahZkzZwIALr30Ulx44YV4+OGHsWjRIuh0moOlsbERa9euRUBAAABg/PjxuPXWW/H222/j6quvhqqqeOCBB5CdnY0XX3wRiqIAAJYuXYrzzz8fK1aswEsvveRx7OPGjcP/+3//r8/nLpEMVaRrUiKRdIuqqli3bh3OOussqKqKuro617JgwQJYLBbs379/0I5v6dKlHv/PnDkTDQ0NaG5udq1zF2EWiwV1dXWYPXs2SkpKYLFYjrtvvV7vEkpOpxMNDQ1wOByYOHEicnJyumx/7rnnukQYAJc158ILL3SJMLHebrejqqqql2cLBAUF4fDhwygsLOz1ZwHGVc2dOxdz587F2WefjccffxxTp07FM88847FdQkKChwgDgA0bNmDy5MkuEQYw8/Lyyy9HWVkZ8vLyPLa/+OKLXSIM4O8TGRmJDRs2AAAOHDiAwsJC/OxnP0N9fb3rvhLH+MMPP8DpdHrss/P1lkhGCtIiJpFIuqWurg5NTU1466238NZbbx13m77uu6Ojw/W/n58f/P39e7WPuLg4j/9FokBjY6NLBPz444946qmnsGvXri7xYxaLxUM8deaDDz7ASy+9hIKCAtjtdtf6hISELtvGxsZ6/C/2e7z1jY2NSExMPOH5deaWW27B7373O/z0pz/F2LFjsWDBAlx00UUYN24cAKC9vb2LuIyMjHT9bTab8eyzzwJgBmVCQgJiYmK6fE9351deXo4pU6Z0WS8saeXl5Rg7dqxrfXJyssd2iqIgOTnZFYsmxORdd9113PO1WCwIDg4+4XFJJCMBKcQkEkm3CIvEhRdeiJ///OfdbtPX4PtLLrnE1SkDwE033XTCEhfd4e4Kc0fEDxUXF+Paa69FWloa7r77bsTGxsJoNGLDhg14+eWXu1hc3Pnoo49w99134yc/+QmWLVuG8PBw6PV6PPfcc664Knf0en2fjvFEuAtVAJg1axa++OILrF+/Hlu2bMG7776LV155BX/7299c2Y/33HOPx2fc667p9XrMmzfvpN97KjIkxfn/6U9/6hJvJ+icFWk2mwf8uCSSwUAKMYlE0i1hYWHw9/eH0+nsUQfeHSL2pzP/+Mc/YLVaXf/31jrUE7766ivYbDb85z//8bCebdu27aSf/fzzz5GYmIinn37a4xyefPJJrx9ncHAwmpqaPNbZbDZUV1d32TYkJAS/+MUv8Itf/AItLS248sor8dRTT+HSSy/FggUL8N///tfrxwfQ+lhQUNBlfX5+vut9d4qKijz+V1UVRUVFLuEurndAQECf7y2JZKQgY8QkEkm36PV6/PSnP8Xnn3+O3NzcLu/3xC3p6+sLAF2ExowZMzBv3jzXMhBCTFip3K1PFosF7733Xp8+u3v3buzatcu7BwmKku3bt3use/vtt7tYxOrr6z3+9/f3R1JSEmw2GwAgKirK4zf1psA5/fTTsWfPHuzcudO1rrW1FW+//Tbi4+ORkZHhsf2HH37oEav32Wefobq6GgsXLgQATJw4EUlJSXjppZfQ0tLS5fu8OX2VRDLUkRYxiUSC9957D5s2beqy/qabbsK2bdtw2WWX4dJLL0VGRgYaGxuxf/9+bN26Fd9///0J9zthwgQAwIMPPogFCxZAr9fj/PPPH5Bz6Mz8+fNhNBpx4403YunSpWhpacE777yD8PDwbq1N7pxxxhlYt24dfv/73+OMM85AaWkp3nzzTWRkZKC1tdWrx3nppZfir3/9K26++WbMmzcPBw8exObNm11ZqoLzzz8fs2fPxoQJExASEoK9e/fi888/x5VXXunV4+mO66+/HmvWrMHy5ctx1VVXITg4GB9++CFKS0vx1FNPdXHBBgcH45e//CWWLFniKl+RnJyMyy67DABdtg8++CCWL1+OCy64AEuWLEF0dDSqqqqwbds2BAQEuOLZJJKRjhRiEokEb7zxRrfrlyxZgnfeeQfPPPMMvvjiC7zxxhsICQlBRkYG7rjjjpPu95xzzsFVV12FNWvW4OOPP4aqqqdMiKWlpeHJJ5/EihUr8OijjyIiIgJXXHEFwsLCcO+9957ws0uWLEFNTQ3eeustbN68GRkZGfjHP/6Bzz777KTis7dcdtllKC0txbvvvotNmzZhxowZ+O9//4trr73WY7urrroKX331FbZs2QKbzYa4uDjceuutHlNKDRQRERF488038Y9//AOvvfYarFYrMjMz8eyzz+KMM87osv2NN96IQ4cO4fnnn0dLSwvmzp2Lv/71ry4LKQBkZ2fjrbfewr///W+89tpraG1tRWRkJCZPnozLL798wM9JIhkqKKqsjCeRSCQSLyAmcP/Xv/6Fc889d7APRyIZFsgYMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQULGiEkkEolEIpEMEtIiJpFIJBKJRDJISCEmkUgkEolEMkjIOmKDxM6dO6GqKoxG42AfikQikUgkkh5it9uhKAqmTZvmlf1Ji9ggoaqqaxlpqKoKm80mz22YIc9teDKSzw0Y2ecnz2144u2+W1rEBgmj0QibzYaMjAz4+fkN9uF4ldbWVhw4cECe2zBDntvwZCSfGzCyz0+e2/Bkz549UBTFa/uTFjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQWJICbGioiLcf//9uOiiizB+/HhccMEFXbZZu3Ytbr75ZixcuBCZmZlYuXJlt/uyWCy49957MXv2bEybNg233HILjh492mW7HTt24PLLL8fkyZNx5pln4vnnn4eqqh7bqKqK559/HmeccQYmT56Myy+/HLt27fLKOUskEolEIhm9DCkhdvjwYWzYsAHJyclIT0/vdpvPPvsMJSUlOOOMM064r1tvvRVbtmzBAw88gH/+858oKCjA8uXL4XA4XNsUFRVh2bJliIyMxHPPPYdrrrkGTz75JF566SWPfb3wwgt48sknce211+K5555DZGQkrrvuOpSUlPT7nCUSiUQikYxeDIN9AO6cddZZ+MlPfgIAuPvuu7Fv374u26xYsQI6HfXjW2+91e1+du7cic2bN2PlypVYsGABACA1NRWLFy/GunXrsHjxYgDAypUrERoaiscffxwmkwlz585FXV0dnn32WVx11VUwmUywWq147rnncN111+Haa68FAMyYMQPnnnsuVq5ciQceeMDLv4JEIpFIJJLRwpCyiAmB1d9tNm7ciKCgIMyfP9+1Li0tDVlZWdi4caPHdosWLYLJZHKtW7x4MZqamrBz504AdF02NzfjvPPOc21jMplw9tlne+xLIpFIJBKJpLcMKSHmLfLz85GamgpFUTzWp6WlIT8/HwDQ2tqKiooKpKWlddlGURTXduK183bp6ekoLy9He3v7QJ2GRCKRSCSSEc6Qck16i6amJgQGBnZZHxwc7HJ3WiwWAEBQUJDHNiaTCb6+vmhsbHTty2QywWw2e2wXFBQEVVXR2NgIHx+fPh9rW1tbnz87VBHnJM9teCHPbXgyks8NGNnnJ89teKKqahdDT38YkUJsOFFYWDjYhzBgyHMbnshzG56M5HMDRvb5yXMbfriHNPWXESnEgoKCUFlZ2WV9Y2MjgoODAcBlMROWMYHNZkNbW5tru6CgINhsNlitVg+rWFNTExRFcW3XV1JSUuDr69uvfQw12traUFhYKM9tmCHPbXgyks8NGNnnJ89teHL48GGv7m9ECrG0tDRs3bq1i/mwoKAAY8eOBQD4+fkhNjbWFQPmvo2qqq6YMPFaUFCAcePGubbLz89HXFxcv9ySAODr6ws/P79+7WOoIs9teCLPbXgyks8NGNnnJ89teOFNtyQwQoP1Fy5ciMbGRmzdutW1rqCgADk5OVi4cKHHduvXr4fdbnetW7t2LYKCgjBt2jQAwPTp0xEQEIBPP/3UtY3dbse6des89iWRSCQSiUTSW4aURaytrQ0bNmwAAJSVlaG5uRmfffYZAGD27NkICwtDXl4e8vLyXJ/Jzc3FZ599Bl9fX5x++ukAgGnTpmHBggW49957cdddd8FsNuOJJ55AZmYmzjnnHNdnly1bhtWrV+P222/HFVdcgdzcXKxcuRK33Xaby/9rNptxww034KmnnkJYWBjGjh2LN954Aw0NDVi2bNmp+mkkEolEIpGMQIaUEKutrcUf/vAHj3Xi///973/Izs7Gp59+iqefftr1/ocffogPP/wQ8fHx+Oqrr1zrV6xYgYcffhj3338/HA4HFixYgPvuuw8Gg3bKycnJWLlyJR555BFcf/31CAsLwy233ILrrrvO4xiWL18OVVXx0ksvoa6uDllZWVi5ciUSExMH4meQSCQSiUQyShhSQiwhIQGHDh064TY333wzbr755pPuKzAwEA899BAeeuihE243ffp0vP322yfcRlEU3HDDDbjhhhtO+r0SiUQikUgkPWVExohJJBKJRCKRDAekEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSkEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSkEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSG1BRHEklfcDoBm42L3Q50dHCd0wkoCrfR67kYDIDRCJhM/FsikUgkksFEdkWSYUNbG9DYCFgsXBoauFgsFGAOh6cIU1V+TlG46PWATkchZjBQjAUHA0FBQEAA4O/PJSCAi14/mGcrkUgkktGAFGKSIUtLC3D0KFBTA5SVAbW1XGe3U2QZjYDZTEFlNlNEGQwUW8ISJlBVirOODgo2h4P7qq+nJc3p5HZ6PeDjA/j6AuHhQFQUEBJCsRYScqp/AYlEIpGMdKQQkwwpGhqA8nIgPx+orASamiiS/PxopYqLo1iyWjWBVl1NS1lTE8WVEFzCMuZ0Uqz5+XERVq/AQAqtyEj+bTBQsFmttL4VFQG5uZroo9VMh/Z2P5jNCuLiKM50MtJSIpFIJH1ECjHJoNPeDpSUUPSUltLVaDJR5CQn8/3Dh4GNGynQ2ttp8QoJAcLCuMTEABkZFFkiHkyn0xYhrlpbtaWiAsjJoaWtrU1zX8bEACkp/O7kZFrIHA5uU1mpQ0FBAMrL9S5LWUICEB1NC1poqIw9k0gkEknPkV2GZNCoq6PAOniQ1i2DAYiIoKDJzQU2bOD7Oh2QmAikpwNz5tAypdNRHIkgfREfZrdrrsbOMWI6HYVacDC/SwTuG40UYCLov7KSwvDrr4GqKu7Xz4/fn5oKRETYkZrKnVsswM6d/H5fXwqzxESKuYgICjMZayaRSCSS4yGFmOSUU1UFHDgAHDpEd2JoKJCURNG1di1QXEwr08SJwE9+QutYWxvdjg0NFHCKomU/mkx0Lfr4cBECS7gMhatSZFW2tdGq1tHBv4WQA7hfs5nfPXMm96eqFFz5+cCOHTocORIDg8GI6Ghg/Hhg0iS6OO12oLkZ2LVLE2bCqhcdTRdocHDX+DWJRCKRjF6kEJOcMmpqgH37KMJaWihefHyA9euB7duB2FggOxv4xS8oZJqaaJ0CaJEKDKT7MSSEVjE/P0189dbqpKoUYFYrRVl7O92VIoC/vp6iqrqaQk6nozhMTe3AzJlViI6OQ0ODGbm5wCuv8FjDwyngJk2isLTZKOC+/57fFxBAN2pKCs89IoIWOolEIpGMXqQQkww4LS3A3r3A7t0UJlFRFDerVjEwPzsbuPlmrmtooFvQz4+WskmTKFiE+PKWNUlYvsxmuhM709FBYdbUREFWX09LXm2tgqoqMxwOBb6+wJQpwPz5tMIdPUo366uvMnkgLIzCbMoUWsNEgkFREYVdUBBdmImJfD8igtY9iUQikYwepBCTDBgdHRQm27czMD4igu66F1+kyFm0iNYvkSnp58esyORkirXQ0MFz4+n1tMAFBmrrVBWore3A7t2NCAsLQ2MjxVd1Na1fOh2F49y5dI1WV9P69/LLFKAxMcDkyVwCA/kbFBbyNzKZKMzi47lERFDIycB/iUQiGdnIZl4yIDQ26rF+vQ75+Vqs1KpVjO867zy6+UT5iYgIipP4eIqPoRpDpSh0JUZG2jFmjApfX8aFicKy1dUUlLW1tH7pdDyv+fP52fJyiq5NmxiblpREa9mkSRRiFguwfz8thz4+jCdLSmJ8mQz8l0gkkpGJFGISr+J0Avv3K/jmmxD4+ChISAC++AL48Udg8WJmHdbUULQkJABjx/J1uLrkjEa6FSMjgTFjGNvW0EBXZmUlLYFVVbSYmUx0w551Fn+n4mJazD7/nJ/LyKAwy8rivi0WYMcObuvrS2GWmOgpzGQNM4lEIhneSCEm8RoWC7BtG7B9ux4dHUB7u4KHHwZmzAB+/3taimprKcayshicP9KEhCjBERFBYWa30wpYV0dRdvQorYBOJ2PezjyTAtVuB44coWB97z1avsaNozBLT+f2FgvdvKraVZiJGmbSYiaRSCTDCynEJF6hpATYvJkFWYOCVHz8cQjsdj2uu47WnqoqZgtOmEAX5EgTYMfDaKRQio6m+Gxr04RZSQmFaXU1XZeRkUBaGhMIWltZzuObb+jS9fHhbzdlCmPoHA5NmHVnMZPFZSUSiWR4IJtpSb+gKxLYsoVxUR0dwL/+ZcTEiY3IznagsVGP6Ghg3jxawka7MPD11QLyJ05kRmZdHd21JSXMthRV/hMTKd5E/NjBg8Dq1bSqBQYytmzKFFoW7XZPV6aPD7eJj2eSQFgYxdlwdQFLJBLJSGWUd4uS/mC1At99x87fzw/44QfWCfvVr+woL7ejtVXBrFm05Pj5DfbRDj0URcvMTE4Gpk2jEKuro5WsrIyxZu3tdDlmZABTp1LMNjQwvuzNN7lNUBCLy06cSMujmNR8715W/hdFb2NimJkaHk5xJq+LRCKRDC5SiEn6RHMzpyDKyaEIeOklWl+uvRaoqFAQHm7HokVOpKcP9pEOH3Q6uhNDQxkX1tGhBf4fPaplZAphlpUFzJpF92ddHaeF+vhjbuvrC2RmUpiJa9DaCuTl0YJpMDBGLSKCyRJhYfyMmBZKIpFIJKcGKcQkvaa2lvMwFhTw/yeeAH76U8YmWSzA9OkqfH0tiIuLHtwDHebo9bRchYfTGuaekeleKqO9ncIqMxOYPp3CrLlZizF7/XXua8wYWs0yM2kha23lPo4c4fcZjXo0N4egoUGHxESKs5AQ7k8ikUgkA4MUYpJeUVnJKYkqKhjXtHo1cOWVdFP6+9NCExXlRF6eNK14m84ZmQ4HXZnuwqy+njFmOh3dnRMmUHRZrRRcO3cCH37IODLx/vjxdFs2NgKVlQb8+KPiqmXm709LZ3Q0hZl0Z0okEol3kUJM0mPKyoAvv6QVJjeXpRauvZZWsPR0YPZsWlDa2gb7SEcHBoOnxayjQxNmtbUUZiL4H+BsBampFFI2G+uYHT7MOm9WKxAebkBUlC/mzPGMMztwgEVmhTszPJziTGRmhoSMnixYiUQi8TZSiEl6RHExRVhDA8tUNDQAl15K99a0aVzM5sE+ytGNXq9ZrUTtsaYmCrO6Ok2Y1dZqdcwWLKBbGQBKSx3YsUPBhx8aUF9Pi5hwZ2Zk0EXZ1kar6JEjTDbw89OmZoqM5HeHhvKzEolEIjk5Q0qIFRUVYeXKldi9ezcOHz6MtLQ0fPLJJ122e+edd/Diiy+ivLwcqampuO2223DmmWd6bGOxWPDwww/jyy+/hN1ux2mnnYb77rsPUVFRHtvt2LEDjz76KA4cOIDw8HBcccUVWL58ORS3eXZUVcULL7yA119/HXV1dcjKysI999yDqVOnDsjvMNQoLqbVxGJhFXizmfNEqio78nHjpEVkKKLT0VoVEkJL2PTptHC5V/6vraWb2eEAVFVBRkYbUlMd8PPTo6WFguv771lk1umk4MrKojgLC9PKZuzaxX2YTFoSQHw8RVlYGMWavEckEomkK0NKiB0+fBgbNmzAlClT4HQ6oXaTwrVmzRr85S9/wY033og5c+Zg7dq1uOmmm7Bq1SoPYXTrrbciLy8PDzzwAMxmM1asWIHly5fjvffeg+FYMauioiIsW7YM8+fPx6233opDhw7hn//8J/R6PZYtW+ba1wsvvIAnn3wSd9xxBzIzM7Fq1Spcd911+Oijj5CYmDjgv8tgUlpKS1hjIzPyoqLYCfv4cHLrlJTBPkJJT1EUiqSAAGZKTprEQH8xV2ZpqYo9e4C6OgU1Ndw+Lo7TUPn40PVZWkpxtnUrBVhQEIV4VhbvBUWhlbSkhG5PgHFm7lYzkRkqrWYSiUQyxITYWWedhZ/85CcAgLvvvhv79u3rss2TTz6J888/H7feeisAYM6cOcjNzcUzzzyDF154AQCwc+dObN68GStXrsSCBQsAAKmpqVi8eDHWrVuHxYsXAwBWrlyJ0NBQPP744zCZTJg7dy7q6urw7LPP4qqrroLJZILVasVzzz2H6667Dtdeey0AYMaMGTj33HOxcuVKPPDAAwP7owwi5eW0hNXVAR98QHdXSgpjg+bPZ00qyfDGx4fXMSYGSE52Ijy8AVFRkWhvp9VMuDNraijEzGYmZJxxBi1cDQ1anFlFBd2jKSkUZllZFH02G7M4d+70tJpFRmpWs9BQaTWTSCSjkyElxHQnaYVLSkpQWFiIO++802P94sWL8dhjj8Fms8FkMmHjxo0ICgrC/PnzXdukpaUhKysLGzdudAmxjRs34uyzz4bJrdz44sWL8dxzz2Hnzp3Izs7Gjh070NzcjPPOO8+1jclkwtlnn40vvvjCG6c9JKmuBr76ih3wxx9z6p3kZHbYp51GMSYZeYg4M19f/q+qFFGNjRRdVVW8N6qq6JbU6SjQJ0+mSLPZgKKizkkAnlYzVaWLtLgYOHSI++gcayatZhKJZLQwpITYycjPzwdA65Y76enpsNvtKCkpQXp6OvLz85GamuoR5wVQjIl9tLa2oqKiAmlpaV22URQF+fn5yM7Odm3febv09HS88soraG9vh08/eou2IZhi2NAArF+vQ1GRgs8/NyAuzom4OBXR0Sqys53w8ztxZqQ4p6F4bv1lNJ6be3ZmejrFVVMT0NiooK5OQUUF3ZltbdqE5HPmqDjzTIqs6mrgyBEd3n9fQU2NAqMRSE1VMW6cExkZqiuLs76ers+ODgUGg3os1kxFXJx6LDtT7bPVbDRet5HCSD4/eW7DE1VVu+iL/jCshFhjYyMAICgoyGO9+F+839TUhMDAwC6fDw4Odrk7LRZLt/symUzw9fX12JfJZIK5U0pgUFAQVFVFY2Njv4RYYWFhnz87ELS16bB1ayBKSsz44YdABAR0ICCgHQaDHbGxzaiudqK6umf7Ki0tHdiDHUTkuZHQUE423tqqQ3OzHs3NBtTUGFBebkB7uw52uwKdTkVoqBOxsU6YTE5YrTqUl5uxdasZH3xggsOhICzMgZSUNqSktCMiwgGnEzh6VIfCQj2sVgWKAvj4OBEQ0IHISBtCQzsQFORAUFAHTKae16wbas+bNxnJ5waM7POT5zb8MHlx4t5hJcRGIikpKfAVfqBBxm4HvvlGB6tVh9JSHYKCgGnTnIiPD8CCBU4EBfWsUn5bWxtKS0uRkJAwZM7NW8hz6xlWK92ZwmpWWQm0tNBqJubNnDxZha8vLVxVVXocOeKLb7/VuUpnpKWpyMx0IjNThY8PrWYtLbSc0bKmIjCQVrPYWPXYTAC0mnUerLa1taGwsHBIPW/eYiSfGzCyz0+e2/DksMhE8hLDSogFBwcDoDUrMjLStb6pqcnj/aCgIFRWVnb5fGNjo2sbYTETljGBzWZDW1ubx75sNhusVquHVaypqQmKori26yu+vr7wGwKlyp1OTt596BCQn8+yBqedxuy6hQtZAqG3+Pr6jrgHUCDP7WT78LxnnE5mWVKcaaUzGhq0WLMpU5iJ6+PDzMsjR1hI9pNPmCgQG8uM3XHjmL3b0cHtqqqAwkLuw9+fFrqEBJbQEHXN3M9tKDxvA8FIPjdgZJ+fPLfhhTfdksAwE2IiTis/P98jZis/Px9Go9FVSiItLQ1bt27t4sctKCjA2LFjAQB+fn6IjY11xYC5b6Oqqmv/4rWgoADjxo3z+M64uLh+uSWHEvv2sV5UWRk7v/POY2D+ggV9E2EDjdXKOLX2di52Oy0mDgc7fYeDHbWIJ9LrWZBUp+Or0cjgcpOJHb/4WzIw6HQUSGLcMmmSu9WMoqyykmKtpobXMDKSwf1+frRwlZczCeDVV/kZf3+t4GxaGq+pzcb4te+/Z7ya2cwMzZAQHdrafBEQoCA+nuskEolkKDCshFhiYiJSUlLw2WefucpcAMDatWsxd+5cl8924cKF+Pe//42tW7di3rx5ACikcnJy8Jvf/Mb1uYULF2L9+vW48847YTw2s/HatWsRFBSEadOmAQCmT5+OgIAAfPrppy4hZrfbsW7dOixcuPCUnPdAU1QEbNlCl8+6dcCSJVqJirCwwT46uqNEh93QwI66pYUdud1O0aUo7HhF6bnOAxb3knSKom1vNFKAGY3s8IODaUHx82NHHxjIv2VZBe9jNtOyFRVFQaWqnlYzkaFZXU2BpSjMzhRWM4uFVrNNm4A33+T77gVnQ0N5b9C6pkNJSSCKi/Wu2Qfi4zWrWXAwxbpEIpGcaoaUEGtra8OGDRsAAGVlZWhubsZnn30GAJg9ezbCwsJw880344477kBSUhKys7Oxdu1a7NmzB6+99pprP9OmTcOCBQtw77334q677oLZbMYTTzyBzMxMnHPOOa7tli1bhtWrV+P222/HFVdcgdzcXKxcuRK33XabS9SZzWbccMMNeOqppxAWFoaxY8fijTfeQENDg0fR1+FKfT07supq4O23gYsvZhmB+fM50fNgYLVSbNXVMYuuro7Cy+nUthGdtZjCp6WFHa77Nt2h19Nt5utLoRUSwk5YCK7KSlrSFIXbiomvRdag2azAYtGf9HskvUdReO8FBQGJicDEiRRg4lrX1bFWWVOTZjWLjmYmp7CaiUKymzfznggKYkHajAwgOtqGxET1WCIAByCq6lk6IypKmyZKWkglEsmpYEgJsdraWvzhD3/wWCf+/9///ofs7GxccMEFaGtrwwsvvIDnn38eqampePrpp10WLMGKFSvw8MMP4/7774fD4cCCBQtw3333uarqA0BycjJWrlyJRx55BNdffz3CwsJwyy234LrrrvPY1/Lly6GqKl566SXXFEcrV64c9lX1rVaKsOJi4J13gHPPpeiYO5cxNqcSm40iqLycx9PYKKbdYacr1re3s5yCiP0JDKQLy8dH6ziF9as7K1hHB61odjvPv7kZKCjQRJ0QYWFhjEkSFpPqanb8HR06WCzBKCnRueKQxDRCI8RLPaQwmXh9RUho57pmR496Ws10Os57umABr0dDA5CXB3z9tQ5FRbHw8zMgNVWraxYU5FlwtqOD3xkYSNd8XJwmzPz9B/OXkEgkIxVF7W4eIcmAs3fvXthsNmRlZQ1KIKOqUoRt3Up3ZFwc5yOcO5fun/7EIra1teHw4cMYM2bMCYO+VZWxQcXFFEO1tRRfLS20auTnc5v4eIqi8HBaqdwtViLeS69nB2oyUagZDNo5qCpFlLsA6+jgd4nF3cKl19O6VlfHY6qp4f9GIxAT44C/fx3GjAmGn5/Z5d4MCODxxcZqxUiHW3xqT6/bUON4VrPWVl57up6taGqqQFRULCoqzMjL4z1ntfJaZWZSmCUm8jNtbXR9CnHH7EwOUIR1NDCwf8+Jt2htbcWBAwcGrS0ZaEby+clzG57s2bMHiqJg0qRJXtnfkLKISU4dhw4xS/LAAf6fnMwA6okTB75z6ehgUkBeHl1Jzc3s+PbtY/ZbaChdST/9KQWSTqe5EkU8j58f15nNXEQgfk9QVYovIcpsNr62t2uTYlss/J64OB6D+E1qapzIzzeisNCA9nYeR1oaO/DGRp6TXq+5M+PjNevdCGuLhgzHs5o1NGixZmVlCurqjHA6Ffj6ArNnA2edxfumtpbCf80aWthYcJZxZpmZvM9aW2mVPXKE94K4FxMS+L3h4bxfZCyhRCLpLVKIjUKqq4Fvv2X81Y4dwPnnU/jMmDGwAcsOB4XXgQMUYlYrrV67d1OkjB/PBeD/ISF0D4l5CP39vdPRKYpmSTueOHI4KA6bm9kJi/kWWcHEeqyQqB4dHezof/iB7xuNzPRLTqZVpqCAvymrxFPYhYZ6TiMk8S6KQmtVYKAWa9bQ0IFduxoRHh6O5ma6wRsbKb5VVdQ14zWx23nd9u8H1q6lUI+N5X4mTKDgslppfSsu5neK+zUxkXFm4eG8zlKYSSSSkyGF2CjDamWGZHExsHo1cOGFFAezZw9cjJPTSQG2fz/Fn8UC7NnDzi4zEzj7bHaeAQEMvo6PH3zXj8GgdeYCVWWHnpPThNDQELS0UHz5+/M3FFmbtbVATg47e0Vh55ySosUrGY1abFtMjBaD1GnyBokXMZuBsDAHMjJYRNbpFNM0MdmjooKvDQ202AYFsY7euedSTJWVAbm5HMA0N1NUT5hAcRYdzefKYqEgdzop6IKDee2jozVhJjMzJRJJZ6QQG0WoKrB9O3DwIPDppyzUGhYGZGcPXK2wo0fpcszPZye3Ywc7vWnTGJNjNmv1oqKjPYXPUENR2MGGhTmQmspq705n10mxAwJoFREuzbo6rcwCQHdWSgoF26FDdK2Jz7jHmElhNnDodFqSRXIyMHUqLaBCjFVVaYkAVisF1NSpTAIwGrn+0CHg9df5maAgWnMnTgSSkmhRbW7m8yaEmbCYRUdTyEmLmUQiAaQQG1UUFgI//khrlAgsnzlzYDIkrVYFO3cqyMuj4Ni1i1a4GTPoAhJuo+RkCrHh2iHpdF1LLghXZn09rWJ+fvy9J0xgh15fT2G6eTPFcVISl9paimR3YSZcs6GhMitzoBFlTeLiKKrsdi3OrLpac2eKOYyzsoBZs3hd6uspzD7+mALOz4+ZmZMm8R4Xgn37dm1i9JAQXnchzEJChkbwv0QiObVIITZKsFjoVikqootw8WJtuhhvoqpAcbGC774Lgt2uQ1ERrWBTpwLnnEN3TVoag6H7OTvUkEQEcgt35YQJWgJAQwOtgaITnjiRwqyujiL522/ZYScmsoOuqfEUZsKVGRIiY8xOBUajlgSQkcFrIyyfdXUM3m9ooEgDeF+LOLPWVgqzL7/kdmYzn7UpU2gNFdnB33/P/Yrg/+RkCvCICIp7iUQy8pFCbBTgdALbttE9tmYNpy9KTPR+cH5bG7B3L7Bjhw55eT7Ys0ePhATG2QQHs/Bmevro62CEMIuPp/gVrkwRm2Q2U1yNH8/YtPp6CuatWz2FWVQU45RE8H9YmBb8HxLCddKiMnDodJp1MjUVmD6d17K+nkt5OQVaXR3jzOLjtazL9nYKsy++0MT4hAkUbikpTAhoaGAMJaDFEAqLcUSEFN4SyUhFCrFRQG4u3ZEbN7LziIpicL43C1RWVjJQOT8f2L5dh4KCQCxY0IGoKD1SU9khDYXpkgYb94y+hARaxUSpBSHMTCYK1/HjaZUR2XlCmIkYs6go/t4Gg2ZlcxdmctqegcX9WiYl0drV2uopzGpq+LfTyWszdqxmMTtwgAkzR49yHxMnch/R0RRmFRW8vmKezrg4bTLziAhed4lEMvyRj/IIp7GR1rDcXLpC0tIoxuLivLN/p5Mj/e3bmQX59ddAWpqKWbOakJERiqlTaRmQlpru6a7UgrvFrLKSFjMhzESMWVGR5sqMi+NnY2KYnSrqroks1MhILTBdJgAMLH5+XOLjeS3b2iikhciuqeFrRwfF2/jxvFZNTXRDv/02tw8JobVs2jQK69ZWPsP79mkW1ORkxnkGBHjOIiGRSIYXUoiNYJxOWqmOHKFAOv98rYK4N2hrY/zX3r20uB04wMr8EREqAgNbcdppwSMyDmwg6Rz8P2mSZ1ZmZSWDw0NCeB31ei3Lb+dOZviJIPD4eK4HtDiz8HAtzkzMsSlF8sDh68vr0J0w62wxc48xq6tjCZSXXmJ8Z2IiRZmIK2xuZuKN0wkYjXpYrcGwWhWXK1MKbolk+NBnIdbW1oZf/epXuPTSS3HFFVd485gkXuLwYQqkr77S5o+cPt07Lo2GBuC77zhC37SJDf+iRRylZ2Z2oKWlXXYGXqCzK3PCBC0rU1SNDwig1WTMGG5vtdLd9d137NDNZgoz4dYS1f99fblfMX2U2QzY7VKVDSTHE2buE9zX1VFgiaxMo5HviQKzisLA/2nTGKvW3AyUlxuxcaPOIxtTTGIuszElkqFNn7tkX19flJaWQpFP+JCkqYkuSfcpjGbOZIfdXyoqGK+0bx+zwiZP5mg+K0uzthUU9P97JF3pnJWZlcVAcFGctLaWWXzC1SlcVmIan02b2MlHR2uurfJy7len08NiCUFVlQ5JSbSYSavZwOIuzIT1U8xxWlpKa1lrKy2lc+ey+LGqegb+BwQYkJDgizPO4HVtbuYAbOdO3ieRkRRs0dEUZkbjYJ+1RCJxp1+2kdNOOw2bN2/G0qVLvXU8Ei+gqnQZHjnCAP3zz2eHnZbW/30XFDA2ac8evs6fz8DxqVPZsSsKhYHk1OHjwyUqilYxu53uLBFnJupaRUSws9frKdwqK3kdW1tpVYuPV+DjY4TJpKCoiJ2/nx+FWEyMNp9iUJCsaTZQBARwSUriM9XUpE08Lyxm7e28FuefT6FVXe3Ad9/p8L//GdDays/OnMn4s44OXv+CAgqw0FA+p/HxvKYBAYN9xhKJpF9C7He/+x3+8Ic/4M4778Tll1+OxMREmLvxR4UMVNl2SbcUFWkuyexsNszTpvWvaKqqMlh461a6vPLyOGnymDEsg+ENS5vEOxiN2rRJqam0gLW0UJhZLOyY6+spqjIyeG07OijMjhzxw549eigKLSgJCZ5WM6NRK50h3F5CnMkMTe+iKJpVMi2Nz1l9PYVZRQWvV0UF0NamIDm5HWec4UBAgB5FRSyg/MEHtLhNm0ZhFhysxZZt385rFhenzWoRFjZ8CytLJMOZfgmx888/HwCQl5eHTz755LjbHRD+McmA097OIpE5ObSMiHpH/Zk6SFXphty6lRa2piaKsPHjmW4v6xsNbXQ6z3kzhTvTYuG1rKsTE5qrMJlaERLiAx8fPZqaGIN26BC38/GhuzM+Xos1Exma/v7anIrBwRRofn7SpelN9HqtdEVmJq9hbS1QXu7E9u0OtLUpaGykWD79dFrMWls5KHvxRYrxjAzGnWVksETGkSMMX/DzowszPZ2WsqgoWR5DIjlV9OtR+/3vfy9jxIYYe/ey4/z6axZu7a9L0unkPr/9ljEpJhMnQ54yRStAKhl+CHem6HydTqCmpgMHDlgQFBSCxkaKq5AQ3j+Kok1onp/PiePtdgqvxERazUSFeb2eHXtQkDapeVAQBZpM4PAePj4UxWFhKkymJsTERKOlheK5tJSWT4eDVuuZM/ms5uVxaq033uD1mDmTi15PMV5UxGc8LIz3RVwcBbZ0RUskA0e/utGbb77ZW8ch8QLV1YwN++47ZmQlJ1Mw9dXd4HQCu3dThK1dy0576lS6SDIypLVjJCHKZkRF2V0TmluttIRZLHSJVVdrwd/jx/MzVis7/u+/p2VNr6c4SEigVaW0lPeJyaRN4yNcmkKcSZdm/1EU/p7R0RTOdrsWW1ZSwteWFrqVzz6br/X1fL4ff5yfnzoVmDOH18RioQVcURh2kJKi1arzZiFoiUTi5TpiFosFfn5+0MuW9ZTjdFKEHTrEhvdnP2PD2tc6XqrKRnrzZoqwmBgKsFmzKPAkIx+zWZtrEdBizSwWLjU17OxFZXmnk+JMFKLdsYPlGQICNJdmfX1Xl6aYwkeIMzlVU/8xGvnMxsSw5InFQiFdVcX2obKScYFTptDC7XDQhblyJd2Z48YB8+bR0tnaygzMH3/USmMkJfG90TZdmUQyEPRbiO3duxcrVqzA9u3bYbfbsXLlSsydOxd1dXX485//jGuvvRbZ2dneOFbJCcjPZxzX+vXMZBwzhq6FviBiwrZs4RQsCQmcEik7m42vZHTSOdYsM5OWl+ZmWs6amrTpekQck6qyk6+uZh2sqiqui4rifRUX5+nSFLXNhEtTJALIOMS+I6xlQUFsE6xWiujqak6dVVdHwZyczFI0RiOr/H/8Ma9XSgqf/XHjGJe2fz8HacHB2nRbsbEUaRKJpPf0S4jt2LED11xzDaKjo3HhhRfinXfecb0XFhaG5uZmvPXWW1KIDTDt7cyC2r2bHWByMq1hfY3fOniQlrBPPqElY9YsuixiYrx62JIRgCiJ4J4129amiTPh0gwOpkXM6aQwaG7m+k2bWBzYaNRcmjExzAYU+xexajExWhZhUJCsh9VXzGatdtnkydo1Kimh8KqpoQi+6CLGhpWUsCbh228zJjA7m+2L08nadPv3UzzHxzM5KDaW94O0akokPaNfQuyJJ55Aeno63n77bTQ3N3sIMQDIzs7GBx980K8DlJyc/fvpkvzuO7okJ06kxaEvHDlCEbZmDTu+7GyKsL7uTzL68PXl0tmlKcRZbS2X8HB23KrKberrGVO2fTsHF4GBWtHZ8HCgsJCdu9lMcRYRwftSiLOAAFl+obfodPxtw8Np8RLlTcrLgbIyCjOjkbNmBAZSpO3cCXz+ORMy5sxhsD/AWmUHD/I6xMbS+hYbS1EnRZlEcnz6JcT27t2LP/7xjzCZTN1mT0ZHR6OmpqY/XyE5CXV1bBg3b+YoNT2973NJlpVplrDgYDayUoRJ+ou7S1O4th0OdvpCnFVX0+oVG8tEAFWl2/PoUcYuVVdrLs3kZAal19VxACIKzwYEeLo0g4OlS7O3iOuUnk4xXF3NeLKiIooyu50W8kWLeP127AD+8Q+K49mz+Z7BQCtabq52TTIy6IaWokwi6Uq/hJjBYIDT6Tzu+1VVVfDz8+vPV0hOgAioz8lhIzlnjjZpcG+pqaGb6LPPmOE2bx6tYVKESQYCg6GrS9Nq1RIBGhspwkJDGRje0cFthMXm4EEKOKOR7vPERN6rlZXcrrNL08dHQWOjHg7HKT/VYYuoG5eYyEFedTV/+8JCWjRtNi3Yv72douyJJ3htZ81i+2Ew0Lp25AivhxRlEklX+iXEpkyZgs8//xzXXnttl/daW1vx/vvvY9asWf35CskJKCtjja9vvmGjl5nJwNneYrHQErZ+PTu3c86RgfmSU4/ZzCUigv+rKuPNROHZhgaKgagoduZOp1bbTEy9ZbczfkxM49PUxPc6OvRoagpGSYkO8fF0m8rCsz3HaKR4iovjNFm1tdrUSbW1vE7jx3M+TJuNlf2ffJKfnTGD7YmvL0VZXp60lEkk7vRLiN1yyy248sorcf3117uq7B86dAilpaVYuXIl6urq8Lvf/c4rByrxpKODLsm9e9nApafTGtbbGBmrlYG4X3/NUet559HFkJAwMMctkfQURaFI8vOjKxKg+Gpu9iyhERbG+9Vm4/s2GwXbjz/yfUUBIiMVBAaaYTZTnO3fT2uNvz+Fm8j6Cw2ViQAnQ6+nGI6Koviqr6dFvqiI4qy1FRg7llaxjg5a7Z99ln9Pm0ax5ufX1VI2ZgxFmQz0l4w2+m0Re/755/HAAw/grrvuAgA88sgjAICkpCQ8//zzGDduXP+PUtIFMTXJpk3AueeyVpCwJPQUUXtswwYGSJ93HgNv+2JVk0hOBaLwrHv9KjHJuXBpVlfzWUhJYSya0wk0NDhRUGDAN98Y0NJCy5uobRYZyZgmRaE7TtQ2E4VnpdXs+LgH+2dlaZPMFxdTnDU3s8Ds9Om0Xu7ZA7zwAgeAU6cyBCIgwNNSFhenVfWXc9hKRgP9riM2d+5cfP7558jJyUFRURFUVUViYiImTpwopz8aIKxWmv6//56NXEoKM556y4EDrBW2fj1wxhl0IWRmyg5HMrxwn+Rc4O7SrK8HKipUGAxt8Pf3h06nR0cHg/3z8zWXZmioNl1TTQ2fD3ermRAGYqJzWbfaE0XRrkNmphbnV1zMciTNzYz3mzyZ2+/bB7z0EuPLpkzRRFlpKctiCFEWF6fAYpE/tmTk4rXK+uPHj8f48eO9tTvJCcjNZSexZw+wZAkbsd5OO1JWxg7ok08owGbOZNkLmf4vGQmIEhoi2aS11YmcnCaEhYW5CprW12suTVWlIKipoUuztpbPQkwMt4mNpaAQMwIEBNBdGhmpWc3kfIwaiqL9LmPHwjWBfHExrV8tLfxdJ07ktvv2AS+/TAEtRJm/P7fft08PiyUUtbU6jB9PcSaLx0pGEv0WYjabDW+//TY2bNiAsrIyAEB8fDxOP/10XHrppTDLWX69SksL3YlbtzJoNi2t95N6NzWx5tgnnzCoOTubsRsyLkYyUtHpAH9/J+LiVJdgstu1GQEaGmi9EQWRRTK4sOrs2UOREBysVZI/epTbmEwUZuHhWqxZSAiFhLQuE+FOHjNGE2UlJRRlFgtdxBMmeIqy1lZaz2bPVuFwdKCoSIeCAu4nPl5zX/Z1GjeJZKjQLyFWWVmJX//61ygoKEBkZCSSj01CePDgQWzatAmvvfYaXn75ZcTIkuxeQxRvLSwELr9cm5Kkp9jtwA8/sCCj3c7pkGbMkPWWJKMPo1GLbwJoFRNzaYraZnV1tHqNGcP3bTbPSc5NJrrbEhMp4g4fpjvTz48CIS6O+xfzaEqLc1dRJtyX7qJMTCq/fz+wapUBdXUxmDFDh9NPZ1uVn88SJoGB/O3T0vhby7kvJcORfgmxv/3tbygvL8eKFStw7rnnerz36aef4u6778bf/vY3/Oc//+nXQUpIQwNH5lu30oI1ZkzvsxtFuYv9+4Gf/5wiTAbESiS0xgQEaJXhxVya7lazqirGQAmrmdNJd2ZuLrBxI/+PidEmxS4p0dyZQpiJOCoZZ6aJsoyM7kVZXByQkeHA0aNHUV8fj//9j2J58mS6L318GOSfk8P9JCZytgYpyiTDiX4Jse+++w7XXnttFxEGAOeddx5ycnLw2muv9ecruuXrr7/Gk08+icOHDyM8PBy/+MUv8Pvf/x76Tq3aV199hRUrVqCgoABxcXG4/vrr8Ytf/MJjG5vNhieeeAIff/wxWlpaMG3aNPzlL39BWid/35EjR/Dggw9i586d8Pf3x0UXXYRbb70VJpPJ6+d3PPbvZ4NfXc3K1hMm9G6EXVzMuLAvvwTOOosiLD5+4I5XIhnudGc16zzJeWgonyOHg+9bLCwsK9yZQUG02MTHMxDdfXLzuDha3EJDKcz6Oj/sSOB4oqywUEF9vQkxMSomTuRvtH8/8Npr/K0nTdJEWW6upyhLSZGiTDL06ddj7+/vjzD3VKVOREREwL+3UeQnYdeuXfjd736H888/H3/84x+Rl5eHFStWoK2tzVVCAwC2b9+Om266CZdccgnuvfdefPfdd/jzn/8Mf39/D+H44IMPYu3atbj77rsRHR2NZ599Ftdeey3WrFmDwMBAAEBjYyOuueYapKSk4KmnnkJVVRUeeeQRtLe34/777/fq+R2P2lpaszZt0rIbRW2lnmCxsF7Yxx9zNDlrFoNoJRJJz1EUbRqg+HiWbGhv10pn1NZyoBQZyefL3Z25eTO3CQig1SYhgYJNp6OIcBdmYWF0Z45Wi5m7KDt6tAPff2+BXh+OmhoK4ZgYYOlSTZS98QbFmxBlJhNDOPbvl6JMMvTplxBbsmQJPvjgA1x22WXw7RRk1NLSgvfff7+LBaq/PPXUU8jKysI///lPAMBpp50GVVXx+OOPY9myZYg4VkzrP//5DyZPnoy///3vAIA5c+agpKQETz75pEuIVVZW4t1338Vf//pXXHLJJQCASZMm4cwzz8Sbb76J5cuXAwDefPNNtLS04Omnn0bIsXSdjo4O/O1vf8MNN9yA6N4ooj6ybx8zJUUF697MJ9nRwTphn33G+knz5jEzaaQ18h0d2qKqXAB2norC89XpRrfVQeJ9fHy4REZSOIh5NBsbtWKnISGaO1PMofndd3zfz08TZiIBQFjMRJ0zIcxGY4xZYCCQlGTFmDFO2O2e2ZfNzXQBjxunibI33+RvfzxRlpAg3ZeSoUW/uqRx48bhm2++wXnnnYeLL77YFaxfWFiIjz76CMHBwcjMzMS6des8PnfOOef0+TsPHDjQRdwtWLAAjz76KDZv3oyLL74YNpsN27Ztwx133OGx3eLFi/HJJ5+gtLQUCQkJ2Lx5M5xOp4eFLCQkBPPnz8fGjRtdQmzjxo2YO3euS4QBdL3+9a9/xZYtW7BkyZI+n09POHqUQmzTJlqyxo/3rJl0Mg4dYvzKgQPApZeyuOJwDM632xkf0tbGjKrWVq3Kuvs6q5WL08mOS6/nYjCwUQ4MZEabnx9f/f216XV8fPjb+PiMzk5P0n/c59FMSdFmA2hs1OLMxBya7sJs+3Za1MxmCoXERK4XMwwEBlJERERoMWajLSvTPdBfZLQWFWl1ymJigMsuo0s5J4eirKHBU5QJ96X4PYUok9mXksGiX0Lsj3/8o+vvZ599tsv7lZWVuP3226EK0wQARVFw4MCBPn+n1WrtEpcl/j9y5AgAoLi4GHa7vUucV3p6OgAgPz8fCQkJyM/PR3h4OII7PYHp6el49913Xf/n5+d3EX9BQUGIjIxEfn5+n88FANra2k66zQ8/6LBrlw6KokdaWgcSEzvQg48BYMO+YYMen35qwIIFDkyY4ERgoIr29n4d9glpP7bz9n58ichga2xUjnVeCoqLgbIyHaqrFdTW6tDaqm2rKGx8jUYVBgP/1um0gGqnU7OWWa2Ka55CYS3z91cREqIiLExFRAQQFeVEVBQQFqYiMBDw81OPlSPo/7kNVbxx3YYqg31uJhMtW8Jq1toKNDUpx8pmKAgIUBAbS2taRwdQU6Ngxw4FNTUKfHyA1FQnEhKcKC5WoNMp8PPj/RoXpyIgwIrWVl2P2pLhiDivzudnMlFIJSSImDIFxcUKqqoUNDdTrP7852wPDhxQ8MYbejQ2KsjKcmLOnA4oCpCTo2DXLiAwkL9lSoqKmBgVISGnRuQe79xGAiP53FRV9WrB+n4Jsf/973/eOo4ek5ycjD179nis27VrFwDGcrm/BnWyO4v/xftNTU2uOLDO24ltxHad9wUAwcHBHtv1hcLCwhO+X1NjwDffhOCrryIxfXo9AgKaUFnZhsrKk+/bblfw/feB+OCDcMTGtiIxsRF6fQsKCvp1yD2moqKiV9s7HEBjowH19QaUlxuRn++L0lIf1Naa4HQCvr5OBAe3IyTEgQkT7AgJccDHR4WvbwfMZhUGgwqdToVOpwksgRBeTqeCjg4FdjtgsylobdWjrU0Hi8WAxkYDKisNyMvTo6VFD4dDgaIoCAhwICzMjqgoG2Ji7IiM9ENhYR0CApzw8+uAr69zRFkmenvdhhND7dx8fGgZi4pS0NxsgMWiR02NAaGhBvj46JCUhGOzAJiwYYMJFoseAQEdiI+3IjraCpMJ0OlU+PmFYPfuRkRG1iAkxIGgoA6YTOrJD2AYUVpaetJtEhOB0FAdamuNqKoyorjYhNZWHQwGFfPnO2AwqCgs9MWqVX5oajIgLa0NU6Y0w253oLjYgI0bFfj7OxERYUd8vBUREXYEB3cM+PN9sn5gODNSz82biXr9EmKzZ8/21nH0mF/+8pf485//jFdeeQUXXXSRK1i/c8bkcCElJaVLfJ07X3+tQ2WlDtHROsycGYLTTw/qcRX93bsV5ObqYbXqsGSJA6edZu51Bf6+0N7ejoqKCsTGxsLnJOXGxVQzFRUK9u5VsHevHvn5OnR0AJGRTqSnqzj7bKergrmvrxG+vgb4+Ph4NdbL4dBcmlargvZ2FRYLY3jKyw2oqjKipCQAe/YAVmsH/P11iIsDkpNVpKQ4j9WLUhEURAvaKUym9Rq9uW7DjeF2bm1ttAZz7kYFDQ0K2trEfapHVZUZe/fq0NKiICzMgfDwJmRkhKK93YjKSlp4YmKAmBhaeYdzfFlbW5srnOREbWV3CEtZSYmCykpaysaMAWbMoKXs8OEAfPddMOrqFIwb58TcuU6Eh6tobFSQl8epsaKjVaSm0lIWEeHd37GtrQ2FhYUn7QeGIyP53A4fPuzV/XmtK8vLy/OorJ+RkeGtXXuwZMkS5Obm4rHHHsNDDz0Eo9GIm266Ca+88gqijs1nIlyNFovF47NNTU0e7wcFBaG5ubnLdzQ1NXm4K4OCgrrsC6BlrbNbs7f4+vrCz8+v2/cqKzm59/btwDnnANOmGXo8sXdlJbBzJ8tVXHABMHOm3pWCf6rw8fGBj0/3D2BLC4Nt9+zhMebmMrYmLQ246CK+hoXpEBx86iZcDgjofr3NpsWg1de348CBWjgcESgvNyMnh7F7TieFoigumZGhxZ2IcxgunOi6DXeGy7n5+GgxZgCfl4YGDgwqKxkLNWYMBzKNjUBengHr1/vA4dC7qs43NLDArL8/78HERE75FB4+vO5Hga+vb687dF9fZpdPmuRZ0b+igr9ldDTjZhnQr8Mnn7AuXFYWi11HRHC7sjLuKzKSv21sLH9Lbw0GT9QPDHdG4rl5ex7tft9GX375JR555BGXCBMkJCTg7rvvxqJFi/r7FR7odDrce++9uPnmm1FWVoa4uDg4HA488cQTmDJlCgAgKSkJRqMR+fn5OO2001yfFfFcInYsLS0NNTU1XQRVfn6+R3xZWlpal1gwi8WC6urqLnFo3mTfPmD3bjac6elceoLNxvnyPv6Y2ZEzZw6demH19ayKvWkTC9O2tLBD+cUvmO4fHj70Cl2aTFyCg4HQUBVGYwvi4sJcQdjNzewcCwvZyH/1FfDhh1oMS1oay40kJWn1ogICRl+gtaTviKQSMRVQczOFVm0tUFysQlFa4e/vB4NBj/p6DuA2beI9OGYMMzbLyhg7GRBAIRcXR6ERGjq0nreBwj3Q32KhKCst5e9SV8eYsiVLtID+Dz+kKBs3DliwgAOtujpmbJpMWrscF0dBJ2fzk/SVfgmxDRs24JZbbkFcXBxuu+02VzD8kSNH8Pbbb+Pmm2/Gs88+i4ULF3rlYN0JDAzEuHHjAAD/+te/kJCQgHnz5gGg7zY7Oxuff/45rrnmGtdn1q5di/T0dCQcK0e/YMEC6HQ6rFu3DpdeeikAWrk2b96M3/3ud67PLVy4EM8++6xHrNhnn30GnU6H+fPne/3cAHbsBw4wxf2ss9j49nQwePAgi7Y6HBzVZWUNfqdfW6sd1/btzFiaNYszBMTHD7+aSXo9O0YRYjhmDOfsFFmcdXUUZfn5FNNffcVrEBnJLK1x42g1i4hg5xAYOHxdR5JTi3sts8REYOxYJ/btsyA4OAxNTWw7hBVIlHvYuJEWoeho3nfiefT1pRAT1rKIiOGZUd1bxO+XkcFntqqKgqysjL9fcDBw8cUUV3l5HNQePUoL5Zw5tIi1trI2nMHA9is1lW1ZTMzxresSSXf0S4j9+9//RmZmJlatWuVhely0aBGuvPJK/PKXv8QzzzzjVSG2Z88efP/998jKykJ7ezu++uorfPTRR3jhhRc84sR++9vf4uqrr8YDDzyA8847D9u2bcMnn3yCJ554wrVNTEwMLrnkEjz22GPQ6XSIjo7Gc889h8DAQCxdutS13dKlS/Hqq6/i97//PW644QZUVVXhsccew9KlSweshtj+/SzgKkZwwkVxMqqr6erbsoVTGE2ZAgxmSExDAxv8Tz/lHJexsRx1TpzIBmsYhOv0GJNJm74mOZmFc8XchXV1dMUWFXFEvWMHLZdBQby2mZkU2xER7AQCA+Uk7JKeodMBgYEdSE7mhOZ2u6cbMzwcrqB/i4VWoO++4+fS03mvlpby/g0K4jMaH6/NkTnYg7iBRkxrlZ5OcVVVRddlcTHb08BAhnf4+fF32roVeOstPqvZ2WzL7HY+0z/+qE1KnpxM4RsWNvJ/Q0n/6JcQO3ToEG677bZu/b9+fn74+c9/7iF8vIHRaMS6devwzDPPAACmTJmCV199FdOmTfPYbubMmXjqqaewYsUKvPvuu4iLi8ODDz6I8847z2O7++67D/7+/vh//+//oaWlBdOnT8d///tfj2zK4OBgvPLKK/i///s//P73v4e/vz8uueQS3HbbbV49N8HRo7SGbd0KLFzIumE9GaU6HGwMVq+mCJgxg2JnMLBaGXy/fj1dJDExwK9+xUbLm7EVQxm9XnOHxMfz3Fm2gB1lZSVH4IWFFKrvvMMReEICR+qTJ/NzwcHcx0gSrZKBw2jUSmWMHct7rq5OGwxER7NNcTjY1vzwA9+LiOCg7+hRDgT9/bkuOZn7Cg8f+c+tKK6bmsp6i0eP8jktKqIoMxqBM8+kcKurA3bt4rPr68v2duZMPveHD2u/YWQkwxNiYvi3HGBJOtOvx8psNp+wfENjYyPMXnacZ2Vl4e233+7RtosWLTppjJrJZMJdd93lMT1Sd6Snp+Pll1/u6WH2i5wcxof5+dFSkpras88dOQKsX8/A8gULBmcKI6cTKCpS8PnnofjuOxP8/BgMO2UKR9rDyf3obVivjIuoBt7WRiuFcClVVbHR374dWLeOVouoKN4DEydy1B4SQnHm7y/dmZKT4+fHJSGB91BjI0WEsJYlJtJa1tLCe+/77ykWxo7lfVdYyAFCaKhm5RkNLkxRWiQpCZg6lUJMPJ+1tbSCzZgBnHEGs6137QL+/W8K3MmTaS0LCODnCgtpcQwJ0aZaio4e3e2hRKNfQiw7Oxv/+9//cNppp3WxSO3evRuvvvrqgMVQjVRqamgN+/ZbiqmeWsOamjiX5IYNNKMPhkvSYqFpftUqA0pKwnDWWQ6ceaYJCQkjfyTdF0TFdD8/NspjxrBBF8KstpadZWkpG/8ffmAjHxTEDnHsWM2dGRjI9TJgWHIidDqt6n96OgcC9fVsd8rLKczGj6fIKC8HvviCc2kmJ9NKW16uJa7Ex1NQREVpsZIjFZOJ5xsfz7a1tpbWssJC/t3ayudx5kwcKxQLvP46RW9aGuNhY2P5e2/fzn0GBrLmmcPh65ppQbaTo5N+XfY777wTS5cuxS9/+UtMnjwZqcdMNwUFBdizZw/Cw8O7TDMkOTEHD7Kkg8mkjUhPhqoyIPyTT9i4zpx5al2STicbpI8/phVn7Fhg6dJKzJsXidDQU3ccIwEx1VJEBBtwh0NLABDzFor4lc8+A9591zM7MyuLFg7hzgwIkFYzyfHx9eUSF0dRLyYur6hgbFNqKu/BmhqWw6mp4b05dqw29VpgIAcSIuA/NHRkx0Tp9TzPqCiK1oYGWr1KSvh8WixaeRFfXw6ivvsOePttPo/Tp3MxGIDiYh2KiwNRVqZHdDStZbGxdGHKeTBHD/0SYomJifj444/x3HPPYePGjVi7di0AIC4uDldffTWuv/56hJ/q4lXDmPp6xhVs3crMnJ5mSpaUMHunpAS47jq6vE5VQ9jWxri0l1+mu+OSS4Bp0+xoa2sf8a6LU4HIyBI1ylSVo2+LhcvRo5q7ZNcuZmeqKhvylBR2BmlptHSIeDV5XSTdoddrySZjxtBVWVenif+4OG1C85ISWuDFgDElRatZFh7O/0XNspHsftPptN8sM5ODJhFXVlLCv318GOsbGMhnd88e4Nlnaf3OyNAhIYHita2NbmFV5bbiGY6MpPiVMaIjlz4LMavVirfeegtZWVm49957ce+993rzuEYlubkcYer1PbeGWa10B65dS1fm5MmnrqM9ehRYswZ47z02QldeSfeF08lGSOJ93OPMxKjbZtPqmTU0sNMsKdHEmc2mWT1SUmg1FTXNRBr/cJwJQDKwiPssMZGuytpaLqWlFAdZWRRmpaXA558zziw9nW1AURHvubAw3mujJVBdZGCmpbFtrqnRJiZvaKDYGjuWsWVGI3DggBPffx+EL74wIjKSsWiTJ9MqXlHBuF+DgQOohAS6RiMiRkfixGiiz5fSbDbjn//8J+677z7MmjXLm8c0KmluZrmKLVvoWszK6ln168OH6Q4MDqYVLTFx4I/V6WQDsWoV45bOO4+1ziIj+f4InDN6SONeNiMpifWjWlu10hnV1czOLCriaPybb9hpisZdWM7CwxU0NRkRGsrGXjb0EoHRiGNTJrFtEsVky8oo6NPSKPirqoCvv+b9l5pKUVZWRmEREsL7U7jeRrqFx2z2jCurr+ezWF6uVfYPCgLmzGlCSooP2tvN2LcPeO45tqEpKRRmmZkUwgcO8Pn18dFmSoiJoSgLCxvZlseRTr+a2jFjxnSpqC/pG3l5DPB0OjV30sloaKB7YPt2YOlSxisMdDyQ3c7ve+EFNhbXX894h5HeqA4n3K1mUVG0UnR0UOy3tDAOSBSwLClhYsinnwKqaoK/fxzS043IyODnoqO1grP+/rKxl3i640SV+poauuMiIii2HA6KDlEaIyGB21ZUaMH+SUlasP8ImwGnCzodBVN4OENHWltFXJkT27c70diowOHge7NncxBUWsrB+ccf87nLymJbK9yYu3bxd/b11YRZdDS/IzRUDqSGE/26VLfddhtuv/12ZGdnu6raS3pPezsfuO++o1l63LiTZyGpKj/zySeMJRMP6EDS2srR7vPPs5P+xS/4KjvnoY9er817GRfHRr2zS7O01I4DB9rQ1GTG559zvcGgBWKnpWkxKyIRQJbQkAj3dmoqBUJtrRZXFh/P+6yhgRadqirPYH/3DMz4eN5ro6EqvZ8fM1GjolT4+zciMjIKzc20llVV0VpmMtHLISowHTrEAVNlJZ+/iRNp/Q4O1mJ1nU4OikXtQlFQNixMZlQPZfolxF577TWEhIRg2bJlSEhIQEJCQpe6YYqi4D//+U+/DnKkk5/Ph6y+nlatnljDyssZoF9VBfzsZz37TH+or+fca++8w8DTCy7gQy4ZvnR2aY4Z40RSUj1CQvzhcBjQ0MD7rLiYr7t2Me7FZPIUZ0lJFGeBgVKcjXZ8fWn9Skig9bymhktpKV2S7e0U+IWFTEry9+fAs6qKiUqisr/IwHSbAnjEotfTipWQoNUWrK3l71ZSwra3tZUC9qc/5W/W2so+4733uF1AAAfkEyfyN2tvpxuzo0ObXzQqiuJMlC+R06oNHfolxHJzcwEAsbGx6OjoQFFRUZdtvD1L+UjDbucDs20bH6QxY05u2XI4WK7is88YoD9p0sCOdo4eZU2cdeuACy8Ezj5bplaPRBQFMJtVjwytKVO0eLPmZq06e3ExY85+/NFTnCUlaZazsDDNWuLnJxv90YbRSFEVG0sLrKhXVlJCUdDaSsFQXEyRr9czHio5mWV8RFmM6GgFFoseqjrYZ3RqcBezU6ZoNQWPHuWz19hIsSaEm58f/8/NpYfk6FHuIytLm0rOZuPzeuiQFroQFKRN/C4ys/39B/vsRyf9EmJfffWVt45j1FJcrCAvjyPEq66iq+9kFBZy8mwfH1Zvjo8fuOMrLwf++18KxWuuAebNk/Fgo4nO8WZpaXR/uIszUXi2uJj35g8/sOE3mdgJuLs1hTiTlrPRhcGgTbuUmakF+5eW0hqUmUlBX17OAZ/DocXKmkw6tLYGo6ZGhzFjeE+Fho6Oe0dRtJCCtDRauBoaOCASgf91dXzeYmO12mV2O4XZF1/QRWww0HU8bhy3MRr57Ap3pl7PZzI4mPsJC9O+199/ZNeFGwr0WYhVV1ejrKwMISEhSOnpjNQSD1QVOHhQwY8/MmYiPV3LPDweojLz5s2c1HsgA/SLihgPduAAsHy5lnItGd3odFqafnQ071shzkRCgBRnkuPhHuyfkUGLj3tlf/cMzA0bgOZmAyIiAmC3Kygr02qVpaaOjlpl7gg3Zng4BZXDoU3wfvQoRVdDA0WtqEMmyhmVlDDLXsyWEBpKAZyZyWfSbqeoKylh36TX09oWGMj3w8K0WoSy5I136bUQs9lsuOeee1zFWwFg3LhxeOqpp5CQkODVgxvpdHQAeXkK9u0DLruMYuxkIw9RriIhgWUuBipAv7AQeOYZdqS//S3dn6OlsZP0HndxBmiZmp3dmscTZ+5uzaQkbdomKc5GNu4Wn/R03ic1NRQUIgOztdWBggIHduzQo6FBy8AsKqJQCAuj4IiOpvgYTdmCBgN/JzFhu8NB12V9vRZG0NTE59DXF5g2jeEsZjPXHznC/qSqiuJLZFmLjGmnk1mxVVV8nhm+wH2FhPB7Q0O1Z9/fn+9JC1rv6PUtu2rVKqxZswYTJ07E7NmzUVxcjPXr1+Ouu+7CqlWrBuIYRywOh4Jdu3SIj+eNHxt74u0bGlh5ec8e4Npre+bG7AuFhcBTT7Ex/O1vGWsgO0JJb9HrtRgxQXeWM1GAtjtxlpjI+zwxkY2+zNYc2YgOPSWF90ltLVBcrEJVrcjM7ABAMZaTQ3EQFUUBUlxMURYays+KArKjzWpjMGgWM0ATUg0NXCortXpmDgdjxNLTGW5iNFK8FRYC69dzW6dTmykhOZnC2NdXs1gWFXEbgALNx0cTx76+OlRV+cDXV0F4ONf7+o4uodxTev2TfPjhh8jOzsbLL7/sCsR/7rnnsGLFClRVVSFaptL1GCHELriA1rCTdSwHDzJAf8IEFvobiNo7RUXAk0/yIbvxxlM7XZJk5NOd5axzzFl9vVbjrLCQrngpzkYffn5cIiOdCAhoQmBguCuTNzqa7jeRgfntt7SqjR3LuDNhsRG1yiIjR+fUXjqdZnFMTmbwf3s7rWYiCUDMj1lfz2cxIYG/o9nMZ66hgUJ3zx7OoNDSwv1GR2viLDGRIsxq1abGam5WUFUVhCNH9PD31+bRFYkCQUG8vj4+mogzmbTvHawwGFVle2O18rdqb2dIUFsbf6e6Oi1L3Fv0WoiVlpbisssu88iGXLx4MZ544gmUlpZKIdYL7HYFQUFap3IiqqsZMF9cDPzud3wAvE1ZGd2RlZXDU4R1dPBh6ehgg+J0an8bjdpDP5zOaTTQOeYMYF28tjbNclZX1704M5u1mLP0dHYi0q058jCZVMTFqUhLYyZgbS3bRBHsL2aTKC5mJq+PD8VESYkWhJ6QQFEWHT26swN9fLhER9OaqKp8xpqauNTXU5yJ4s8OBy2PSUmaWFIUbcaOH34AVq+mYBHJPTExQFSUDnq9gpAQFaGhjEFzOLT5S202eGTCGgxsp41G7W8fHwpo8Sre1+u1Rafjoiiei9i3qrIPUFWtP+jo4OJwUHC1tfH4W1v5t8PB47XZ+Cr2pdPxWCIivHtNei3EWlpaENSpdkHAseGtzWbzzlGNEux2HaZM6UBmpv6E6l9VOQflp58yS3LCBO+PFqqqGJhfWEihNxRFGN0UfPjLyvhANzZqZvemJs1MfjzEg+TnpwX9ikXM4RYbywZ7tLk1hhI6nZatCTB2TIgzd8tZSQmXI0c4ULHbeX1jY9lxpKZSpAUEKGhoMCAqiuJtqN3bkp5jMnUti8Eq9XSJjRvHDrSkhB4EgIIjJYUCvXOtsqCg0X0/KIo2EIqL4zpVpShpauKz1tTE31i0s+3t3CY2ls+YcG0aDPycmLmjqCgAP/xgcIk0nY6WStHeui9GoyaQOjo065rDoa1TVfS7jIm7SBP/GwwUdUIA6vVsJ3Q6/i1mIzl6lK/p6YpXSzj1yVt7vNpgsmZY71BVjuJPZt0qL+cclM3NwGmneb9cRV0d8NJLrNR/441s3Ab7Ura30xW7bx9fjxxhg9sbxEOk02mjL+EGa21lUHA3pe8A8PxFAURR0yct7eRxfJKBw12cRUVx3bRpXcWZqHF26BCfG4cD8PExISQkBmPHGjBmDK+nyAILDJSW0uGK0ch7ISqKAqy+ngO2khLGi4mkkfJyzgpitXJdaqpWq0xYe6KiRk9ZjJPhXrbGHbtds1JbLFxqaynOLBa2sx0dfJ5SU1WEhlqQkOALPz+9KzZMJBPU1vIZ3baN/9vtnt8lZggICNBehXvT3Y0pFpNJu3burx0dmjVOvNpsWj8g2g8hPBsbeS5iUK+qvE/Cwigg4+IAHx8VgPcajD4JsT//+c+4//77u6y/8cYboet0FyuKgh9//LFvRzfCMRqdGDPGecJYL6eTAmndOoqwzEzvNhTNzcAbb7DK9Q03cIqlwWiIVJWd5/ff09Sdk8MHyB2djkJIuBiioji6Cg7WChIGBHBU0/kcVNXT9Cz8/bW1WhVr4e6oqOCDWVXFZccO9z35Ijw8BRkZeowZw/T7ceP43ZJTz4nEmZi+qa4OOHLEjkOHnMjJUbBlC+8tYQFITqbIjo9nYxsQoIkzyfBBr/fMIGxs5HNdVqbFi3V08Jn+7jt2usnJFGa5uVpnm5LCe0lOfN8Vo1GrzO+O3a4Jm5YWPn9Hj6o4eJCNeGur5uYTmZeihI2wpAmLlHAzilkYLBa+trZqYk/sS/xts1FgCYuZu1tSp/Pcv3gVLlrh+oyMpEAPCeG9oNd7ujDtdgr5gXD89fo2+/nPf+79oxilGI1AcvKJ7awlJRzJmUx0S4rOxhu0t3OKjLVrgauvpuvnVJeoKC5mraCNG3mu7kRGMh5k/HjNtdDXzlFR+MD1JGBXVdmIl5ZyKSvjcebnU6jV1ppQW8uRnCA6moJM1OXJyJBzuw0W7uJM1DmbMMGJw4drEBLiA7vd4IovKi4Gdu5klpjTqc3Rl5zMaxgfrzXMAQGyjt5wQafTBENGhjboKi/nurg4drC1tazqX1enFUQtKmI7ERrK+yA6mqJsNAb79xSjUUsKELS1OREZ2YTUVAZ+iqD39nYt0UIsIjDe4dAWgbB2RUZ6ejncY8PcY8QA7dXdBSnixIRnpHMcscPBzwnhB1CwGQxayY7ISJ6jt9v2Xguxhx9+2LtHMIrR61WEhR3/fYeD1rANGzi3Y2am99wnDger87/1FnDxxawtc6pGf+3tFF6ffspisQKjkdmgs2axRpqIVzjVKIpmYZs40fO96uo2fP99DVpaolFcbEJuLgWksJ5t2MDt9HqtknVWFpfYWOn+Gix0OsDPz4noaBU+PuycRZ0zMequrmYnXFpKkf355/xseLg2ek9P1+ZADAyUyQDDAUXRsvRSU7WwhKoqCrPYWLaH9fV0lW3YoE1MXlrKwZ+YmFxkYMop3nqOwUARc6IsQ2HdEhYn90B54Uq0WrnY7doi4seEuBJ0jgETCMEmBJbJxMXd1SkSAoQAdHd9in1VVXn5N/Lu7iS9wWA4sTWsuBj46iuOzGbM8F7xVlWlu+3554FFiziR7KkITK+uZnbN2rXaiEOno/A6/XRa/ERMggjUFKORgcBq5YPs/h1WKwNSW1p4LMLl2NCgPfQREVbMmdOBgACuF+6PsjLGsuXlcX1eHpdPPuE+goLYmaelMctrwgTPBl0cj9XKzgLQTOuiSGJ3ZnGTids5HExCCAjgCL+2loIwNJTr3c9RmPFFo3S837i732ik4F7nLDaWHW92thYDIwJ0CwrYIX/6Ka+LmENRuLWSk7UpYaRLc+jj50c3ZVIS728xj2NpKa1fNhuFeVERXZh+fhTuooaWiCtLTKQoCwuTxa77ixA/fclmdbdwdXZNAp6ZlHq9p+VsqOBVIVZTU4PTTjsNL730EubOnevNXY9IdLrjCzExGfiWLcCSJd4t3pqXB/zrXxQDP/vZwNQjc6eyknFoX36pxX1FRXHeyoULeW7unbxoHK1Wrg8P974I6O47AFq3cnLYCYtq3wAbZRH7oNf7wm6n4CkupujR69lQjx9P4WO1UngeOsSEg8JCxqTs2sXl/fcpsNLSKMgyMpjyrSg8BmGyB7QgVX9/HoN77JwYbdrtmgiLiuJ3lpezUxGxbCLRoLZWS1cPCtKyR3vyG400MdYZg0GzhsbH83rOn69dD1FTqaiIs1xs3crfPiiIsYupqdpvHRqqBRnLjnpoYjbTyhUXx+dQTEwuRFlrK+//sjLG6drtvMapqYwrCwjgdU5M1FyYUoifWoTAGs7PmNctYmp/c0tHESdS5UVFtIZFRDB2y1um8Koq4D//Yed7+eUDN0USwE78nXc4t5kQD5MmAeefz4YrJIRiwOHw7OCFVSgoqPv3vUF33wFQgKkqxY2IFQMomkwmjpzj451oadHqy5hMWnxDSwsbdaORIis7m59paeH1bGhgI8+Ch5rVTCASDxIStDn5wsN5HGYzv08EvAprWUcH309I0NLMGxt5bcvKtExRcY5WKzuLo0cp2oTVq3NDdiquw3DAZNLmRkxK4j3sngxQXU2rWVERC4uuXcvrEhmpWc3S0/ksi3gz2VkPPTpnYIpgfzHdUkYGn73qataxa2jQKvsXFnIgFBSkCbvwcF7voWZ9kQw9pGtyCGKzAbt30yx+6aUcfXmDlhbgtdc4ov/jHweuFENbG7BmTTi+/toHVivXzZgB/OpXtDAIS0tTEzv2zrFpwg12vPe9gft3tLaysRWFH8vKeA719Xw/IkKrtqyqwOHDJowZwxGwyOKxWBjMHxdHUebvrwV9Wq1sjMeM4f/BwRQ9CQnc7vBhWslKS9n4NzZqZTVEfItIBhDWtrY2LflAr9eO22Ti8QYH0yKmqvxOVdV+R7OZ56YoPL/QUL7H/Sqw2SgUxG8kpjoJDvZuIUyRCSUsecdbN9RQFK3qe1QUBffMmVoJjYYG3k8FBVpF8rY2/nai8KxIBHC3mskOe+jgHuwvnlvhwqyo4HV0d2Fu3cpnMSOD74k6hUK8i2zO0TiQkZwcKcSGICI2LDqaAsYbHZLdDqxZw/1ef/3AzFOpqnSl/uc/PqitZYrR+PHAb37DV4Fwcx0v9uhk73sD8R0iQLu9nb/z5MnAnDnA/v3MpLNauf7ss3k9SkqYNWky0TIyZw5dFKJGUVMTG+PAQHbAzc0UNZMn0zqWk8P4PCFGly6lwDIaeU1sNk1E5eZSlAhxlpvLY/fz4zbR0cAZZ2jTluTlUTA1NzPJID6e4s5g4DrhTg0KojAAtFo9AEf/9fWGLvV6Ghu14FmTyTv3Y3Mz3bbt7fyOzEyu77xuqIqxzuj1WkB4XBzvd/f0ezGHX36+ZjXT6zkYSktjZ5+czHtSxJrJ0glDB1HwNDmZz25dnRYbGh3N50m4ML/4gs9LYiIH0YWFfJZERm5srHadJRLAy0IsMDAQDz/8MDIyMry521GFsIZ9/z076ZQU7+x3507g1VeB887j6N3bmV6VlZwe6YcfAEBBeLgNy5apOPNMc7cjfdHRH4+Tve8NzGY2mO3tHLUWF/P3T0pijJXNRjGQm8vtzGa6ATMy2lFf7wOLheLp8GGuHz+e21osFEvNzdp+nU6OjkXBQ7FtZSUbeIuFguzIEcbNTZ0KbN7MQH9/f819efSoVq+nooKWNKOR3yOqilsstLbFxPDv6Gi6pNvaNMuLTsf3m5r4v6iT4+/vdGUjmc1aUH98vOc++ktrK39392MTtd46H+9wRdQpiohghzx1qmfh2dJSXu/Dh+GqbSbqWI0d65mhGRIiS2cMFcxmrbL/+PEcqIjJ6yMjKaptNl7jnBwO9vz9tSm4RGmVkBAgOlqBxWJEfLwsjzGa8aoQM5vNss5YPykupiUmNpaxYd4IpC8upkiaPBlYvNi7GZKqymlEnn+eHafBACxZYkd2dhHS0xOGvLslOFgLunefjDo+nlYJUegxJkZzl5WUmBETowW4x8RwtJuby1dRa6Y3+w0MZKccGKjtNzaWHXFTE61eF11EAfXhh5obs76enfuRI1wohIGXX6alJSyM+xDTkADHd/0ajUBLiw5hYdo6MT9nVZVW/NAbHG+/A/FdQ4XOVrMJE7TCwhYLzzs3lxbaDz+kKBUZfmPGUGTHxWlFjKWba/DR67X4wTFjtHlRq6tp1U5I0OpmlZXRI9HeriV2BAfrYLEEo6xM7ypULfYnp1gbPfRLiG3duhX79+/Hb37zG9e6d999F08//TRsNhsuuOAC3HXXXdAP53SGU4jNRgvHDz8AV1zhnYm9LRbglVcomC691LszxtfVAStW0HoHcHR4661AVJQDJSXDI2kjLIwWwuZmiiVR1y0zE7jsMlqsYmI019k55wAHD1owbpyva6L29HSKpOpqijDh9u3Nfs89l6NqUbPqRPu94gotqzM6miPxQ4foThUdeXs7R+PuBAWxsxg7Vsv8cs+EjIgAmpsdHrEsAQE8RhGT5i0L1fH2OxDfNZQRcX5RUby+s2Z5Th1TUECBvWED8PHHFKhJSbyGmZkU9n5+gM02xEc8owRh7UpMZOhCQwMHS+XlWsV/u53raBHXQ1VDkJmpIDmZz6gokSEmKA8Lo/iWruqRS78u7VNPPYU4t6qbhw4dwl//+ldkZmYiKSkJr776KiIiInD99df3+0BHA8XFjC+Ij+c0Lf21hjkcbLy3bQNuvtm7c1Tu2AH84x9sUIxG4JprgJ//nCPE9nbvfc+pQIxAOyOq5LsTHw84ndYuv6XIjOvrfhMTNQF2sv3GxHARiCytM8/k/x0djGXLzeVy6BA79KYm4McfuQjCw9mpZ2QAyck6+PjouozE3S163qS7/Q7Udw0XjEbtvklOpiVUTLpcX8/rmJdHt/WaNbSaxMcbERkZjtmzdUhNZYB5SIi0mA02RiMHUJGRfMaEtaymhgMxZjl34OhRCxyOMPzwA4WbKDwbF8dnwddXiy+LjNSur7RvjBz6JcSOHDmCc845x/X/Rx99hICAAKxatQq+vr64//778dFHH0kh1gPsdsaG/fgj8MtfescatmcPK+effz7dkt6gowNYtYp1wVSV8Sx33+29WDZJ/9HreT1SUmjBA2htLShgPJIQaMXFtLps3coFMANIR2ioiowMeCxRUTKrbzAQGbHBwRTqEydqNeBEAsChQyr27AnEtm1GmM2aK3P8eHb2ouOWMWaDi7u1TJScqax0Yu/eduj1qqs8Rns7LWgbN/JaR0byWY6NpbgWZTJiYzVhFhwsr+9wpl9CrK2tDQFuw9dNmzZhwYIF8D0W3DFp0iSsXr26f0fYDevXr8ezzz6LvLw8+Pv7Y8aMGbjjjjuQ2Mmk8M477+DFF19EeXk5UlNTcdttt+FMYTY4hsViwcMPP4wvv/wSdrsdp512Gu677z5EdZrUcceOHXj00Udx4MABhIeH44orrsDy5cuheKl3KilhwVNvWcMqK4Fnn2Vj/NOfeses3dwMPPIIa+gADPy/8UY58h4OmExdLXFtbXR75eaKoHEnSkoU1Ncr+OEHLd4MoKuksziLjZXT+5xqdDptNoD4eAqzuXMdyM2thI9PLMrKfHD4MEvffPopn82UFE6xNX685uoKCpKursFExJb5+alQlBbExXWgrU0rfSKC/h0OuqnLyzlQt9u1qv4xMZprOyCA/0dFaQWJZa264UO/HsXY2Fjs3bsXl1xyCYqKinD48GFcd911rvcbGxth8nLE4bZt23DTTTfh4osvxm233YaGhgb861//wnXXXYfVq1fD59jdt2bNGvzlL3/BjTfeiDlz5mDt2rW46aabsGrVKkydOtW1v1tvvRV5eXl44IEHYDabsWLFCixfvhzvvfceDMdaqqKiIixbtgzz58/HrbfeikOHDuGf//wn9Ho9li1b1u9z6ujgnJLbt7PIalJS//bX3k5LWGMjcMMN3okLKykBHniAAadmM/CHPwBnndX//UoGD19fduRiPs32diuOHCmFw5GI4mIfV7HZoiJ2Bjt3chH4+Wk1scSSkCBdJqcSRWEnHBlpR2Ki6srMbGqitZMWMw7yPviAAiwjg6JM1MILDZV1zAYbs5lWrZgYJmW0tGjxZZWVFN1iVo2mJiZ27N/Ptj40lH2GSBoSJWbCwrhOZN0GBsqB01ClX0LsZz/7GZ555hlUVVUhLy8PwcHBWLRokev9/fv3I8XLPqs1a9YgLi4ODz30kMsaFRYWhmuuuQb79u3DzJkzAQBPPvkkzj//fNx6660AgDlz5iA3NxfPPPMMXnjhBQDAzp07sXnzZqxcuRILFiwAAKSmpmLx4sVYt24dFi9eDABYuXIlQkND8fjjj8NkMmHu3Lmoq6vDs88+i6uuuqrfYrO0VJtodurU/hXNVFXGj6xbB1x3XfdxR71l1y7g739nyYGoKOD++9mYS0YeJpOK9HQVU6Zo62w2ijEhzPLyWA+rtZUDiL17tW3NZmZrCmEm5mKUbpNTQ3cWszPO0KrEHzpE9/Q77/C6ivilCRN43SIi2LFLa8rgItyY8fG8NqJQsLCYJSRos2W0tLCszebN/DswkMIsNpYizH3S7ZgYbV7U4GBtDlvJ4NIvIXbjjTfCbrdjw4YNiI2NxSOPPIKgY9UhGxoa8P333+Pqq6/2yoEKHA4H/P39PVyCgcdMPmJ6pZKSEhQWFuLOO+/0+OzixYvx2GOPwWazwWQyYePGjQgKCsL8+fNd26SlpSErKwsbN250CbGNGzfi7LPP9hBcixcvxnPPPYedO3ciOzu7z+fjdDK77dtvgQsv7H9sWEkJ8N//ch7H2bP7/5CtXw888QQf+AkTgL/8RZsIWzI6MJloPRkzRlvncPBecxdnR45whH7gABeBwaBN9SMEWlqa7OxPBTqdVjIjMZGxok1NFGbl5bxOR46IGEF28OPGcbvERK3TllbOwUNRNHEt4gSbm3kNGxpoHYuLo6B2OPgMVlUx3rihQasZGBdH4e3vz2fS318TZ8JiFhRES7cUZ6eWfgkxg8GA2267DbfddluX90JCQrBly5b+7L5blixZgo8++girVq3ChRdeiIaGBjz++OMYP348pk+fDgDIz88HQOuWO+np6bDb7SgpKUF6ejry8/ORmpraJc4rLS3NtY/W1lZUVFQgLS2tyzaKoiA/P79fQqyw0IpvvjHAz0+HSZPsMBrVPmcdtrUBL79sgF6vw3nn2QH0fV8A8P77BvzvfzRlzJ/vwB/+YHfNq3girMfmNRKvIwl5bhqiqOVpp/F/pxOoqFBw5IgO+fl8LSjQoblZcdU5W7eO2yqKivh4FampTqSn8zUtzenV8iruyOumIeKKYmLYqTc1AQ0NCkpLFRw6pMP33+vw2WfKMdezExMndmDsWPVYYLjqldqGvaH9WIPTPtzSsXtAX8/NaNSmTUpPp3XMYlGOzTWrICJCQWqqVkC6qQmorFSwZ4/OVZ8uNlZFZKSKsDAVZjP36esL+Ptr1zoggP8HBPQ+prDt2PQd4nUk4XSqALynVodduObMmTPx9NNP4/bbb8ff//53AEBWVhZefPFFV72yxmMzNQd1milb/C/eb2pqclnT3AkODsa+ffsAMJi/u32ZTCb4+vq69tVXvv22Dl9/7YNZs+oB1KGgwNmn/agq8O23gdi8ORqXXlqO9vY2lJT07ZhUFVi9OgJffMHaC4sW1eHCC2tQVdW7/Rw9erRvBzAMkOd2fESNskWLeC/V1RlQWuqD0lIzSkrMKC31QWOjAaWlCkpLddi0SftsWJgdCQlWJCa2IyHBioQEK4KDHV4bocvr1j3CpRwXp8OsWXo0NOhRVOSDoiIfvPmmGQ6HDhERNqSltWHMmDbExNgRHOxAYGDHKYs7qqioODVfNAh469yMRlq+IiIUtLTo0dqqQ1OTHnq9Eb6+OkRF6eB0KrDbgcZGAw4cMKC+3giHQ4HJ5EREhB1hYXaEhDhgMqnQ6wGz2QmTyYnAwA4EBzvg7++Er69YOk4q0EpLS71ybkOJsDAHAO/Fv/dLiN1zzz0n3UZRFDz00EP9+RoPduzYgT/96U+47LLLcMYZZ6ChoQH//ve/cf311+P11193BesPBzo6FBQVxcBsNmHRomBMmtR3c0BJiYIvvzTizDM7sGhRRJ9jcpxO4MUXjfjiC94a115rx8UX+wLoebCZ1WrF0aNHERUVBfMIS6mU59Z7kpIY+6hhR0ODHfn5OpfVLD9fQWWlDnV1RtTVGbFnj5aNHRysIi3N6baoiI5WeyUA5HXrPR0dTNJoaFCPuTHNOHLEFzt2KPDxATIynJgwoQOZmSqiooCwMHVA3M3t7e2oqKhAbGzssGrfe8KpOjenU7OaWSxAfb2C2lqgvV1Bezuvtd2uR0ODEXV1OhQVKbBa6ZIOD1cREaEiLAywWFQYjVzv4wOYzSoCAxlXGBiowteXmaAsnNCGyspSJCQkuCopjBQaGnK9ur9+CbFt27Z1Wed0OlFdXY2Ojg6EhYV5/QI8+OCDmDNnDu6++27XuqlTp+KMM87ARx99hMsvvxzBx2ZTtVgsiIyMdG3X1NQEAK73g4KCUFlZ2eU7GhsbXdsIi5mwjAlsNhva2tpc2/UFhwPYtMkH8+frMG6cuc+NWFsb8N57fDAuvFB/QveO1cq4AeEq0uvporDZuGzYwGwcRWH9sTFjjGhoMLomIe5NO282m+HjM7IeQIE8t/4hitLOm6etc5+qScScFRcDjY0Kdu7UY+dOLVBJZGyKuLP0dAq+k8UyyevWO/z9tUy+efPYdtTUsOTJgQM6fPihATYbXdQTJ7IAbWKiNqm1N61lPj4+I/banYpz8/OjK1MgAv0tFsac1dVxEROYd3RwG5EocPgw33c6NdeouM7Bwex/FIUxpSYToCg6NDUFIzPTH5GRZtfcqxRw2jKcMjmtVv4+Tqd3g+j6JcS++uqrbtfb7Xa89dZbeOWVV/DSSy/15yu6cOTIEY/MTACIiYlBaGgoiouLAcAVz5Wfn+8R25Wfnw+j0eiqN5aWloatW7dCVVWPOLGCggKMHTsWAODn54fY2FhXzJj7Nqqqdokd6w02mw5WK5Cd3X0F9p6yeTOwaRPwu98xq/F4WK3s2LZsYXJATQ1dRwYDH47GRooxgGnthYVMnU5N5XQ9kZGeU+IMJjYbz8du1+IgHA6+dnSwsVDdZlnS6/nA6/VcDAYuRqPn0l8XmNXKkSfA/dnt/FvE1TgcnoLWau267nj7FdvZ7fwOMfelCNw1GI5fUb2uTpsW6WT3mvg9Ox9Tc7Pn957oGPtyj/j7M0jcvfiw1cr70D0hoKCg+4xNk4k1s9yTAlJShsb9OhLw8dEEdFYWy9fU1zNpIyeHpU2++ILXMTOTVtCxY9luyLkThx4GgyaiBB0dfLaam7V2pa6O69rb2TY4nVp9s6YmPpcNDXxfUXifUKDp0NHhi4YGxTWQV5Suba6og+bnx7/FepNJa6NFey3abtGe9wdxHrQG8m+7XetTxNLSov0eViuX+fO9m2w0IDFiRqMRV155JfLy8vB///d/eP75572277i4OOR0mkSvrKwM9fX1iD8270xiYiJSUlLw2Wef4Sc/+Ylru7Vr12Lu3Lmu7MeFCxfi3//+N7Zu3Yp5x4bmBQUFyMnJ8Zg/c+HChVi/fj3uvPNOGI/5/NauXYugoCBMmzatz+diteowa1YH0tL6fkdVVACvvgosWNDZ/dMVh4MPTksLHyxhPWht5c0oRFhkJEWMmBC6ro4PkOhoT2XHJh4EmtW12jrV1XxtbOQDIh4ah4OLuwgTiIfXZOIDLyaWFpWqw8PZYYgMJfcRnK/vyR98q5WZaNXVmgAD2JCEhvJV/K5iYu/aWn5OrOvut7Vate0cDp633c7jio+nuK6s5P4zMmgZct9PXR1r1Il5L2fOPL4Ys9kU1NTwersfU3MzSx+0t/N7MzM9xZj7MZ7oXHqL2dy1EK17xqawoB05wntEzBog0On4e6SkGBEWFoLp03XIyupfiRgJnyVRODQ1lXNkNjTw3j94kNmYYo7b1FTOuzhpkjap9Wiexmooo9dr7Z877e18vkRbLKbcam3VBsWqSnFjt7OtrqsDjh41o6REf8yKpAk1IQD9/dn+inZWuD3FgFiILveBtE7nOagW4kysVxQuog8Qx+UuvNwH7O7/dx7Ii9e2Ns1y2NgITJ+uIDTUe7/7gAbrjxs3Dh999JFX97l06VI89NBDePDBB3HWWWehoaEB//nPfxAeHo7zzjvPtd3NN9+MO+64A0lJScjOzsbatWuxZ88evPbaa65tpk2bhgULFuDee+/FXXfdBbPZjCeeeAKZmZkeUzctW7YMq1evxu23344rrrgCubm5WLlyJW677bZ+1RBzOoFZs5xw8572CrudLkm7HbjggpOPOA0GCg5x87e28ibT6zUrjpjrz2jkw6UobDjdhdlAYrN5pmXn5bHO2tGjfBDczyM0lB1+erp2TmJuNvFgiodRjHKsVm1SZWGWb2mhoG1q0hoUnY77Cg2lCV5YAgIDFVgsRvj783cxm7VGw+HgA2s08mGur+c2RiP37etLS2NTE7cF+H1BQdq67sSLw6FtV1jIxiApib9PfT3PISREG8l23o8Qq0lJFG3NzccXYmJ0GBHheUxiRBwdze9ta/PsTN2P8UTn4g0MBi0h4Oyzuc7ppBh1t5zl5fHcCwuBwkIDgCi8/z63j431tJylp8OrDetoQ2RixsayzI0YMBUU0GopCspGRvL9KVN4/SIieO8OJ/fUaEQIpc7thnDViaW1lc8c21gVlZUtCAryhaLoPdrilhataG1lpfZZm01rT4Wb08dHc3eazXwVFjO6QLm4izDxt+gDhOASgkwYHux2noPNxvatvZ3tY0cHj0FVPcuHBATwnjUah1HW5Lfffuv1GLGrr74aJpMJb7zxBt577z34+/tj6tSpWLFiBULdWtILLrgAbW1teOGFF/D8888jNTUVTz/9dBcL1ooVK/Dwww/j/vvvh8PhwIIFC3Dfffe5quoDQHJyMlauXIlHHnkE119/PcLCwnDLLbd4zCLQF4xGFs/sayO0Zw/w2WfA1VezgzwZYh664GDGfOTnc+QqprI56yytoGxwsGZqjo9Hn2LEekprK0dPZWV0cRw5QmHkdGqTH0+YwIY7KkoTXeKhFA9mT39HVdUsZ+5maKuV59zURLdtWRkbiaoq/k6trYDTaYLJFIO4OCMSErSpRkJCeBw6nWa+Dw7WhI2wiDU1eQpas7nrus6I372piUKno4PH5OPD/VosmkWsuzTz4GCuLy4++aTaen33xylGreJ7Oz/W7sd4KgR7Z3Q6bfLzhQu5TlVppTtyBDh40I79+62oqPBDdbUOFRW8xzZv1vYhRL0QZunpfK5kTaXewQBv7fecO1crRLp3Ly2rGzZoltUpU9geRUXxM9KFOXwQcV7d1ZZsbOxAbm4TYmJCoaqaaGtupghrb2fbKNrIziElop0W74vF4dAEn92ufcZ9cbdoKYqnVU1Y09zFnGg33ePWhAgTn+kcyuJNFFXtzonTM55++ulu11ssFvzwww/IycnB9ddfjz/+8Y99PsCRyt69e1FT44BePw4BAb0Xq/X1rHDv78/YsL7o3XXrgMcf59/LlgGXXtr7fXQHS2eUIDEx8bgBqDYbxU5hISv3HzzIxjoyko3zpEkUXiEhmhXvVHfuHR3aSE9Yz8rLrdi1qx4WSziqqow4epQNg68vjz06WiueKOJihLAFvBcj1tamxVY0N1MAiZiP48WICdfk8axh4rpFRydCr/ftNkbM/XtPdIxDLS7L/Z602Xw93Jp5eRTd3bWEAQEUZmPHaktk5NASZz153oYKNptnwP++fZy1weHgIHHiRA4G4+MpygICeH4FBQVITU0d8ufXW0bzuQmrlFjEoFiIrfZ2zVolXt2tWu6Cq/PSGWEpE8IK6OrqFO2We0iKGOSLQb94H9gDs1nBpEmTvPJb9atrO54QCw4ORmJiIv72t7/hsssu689XjGiMxr5Zw5xOYO1axsnce2/fRNj27cCKFfz7kku8J8JORkMDO73t2zmJbU0NG+CFCxm7FBNDK4+//+B3dnq9ZkES7uMxY5xISKhDdHQw7HajK9tITPtTVkZhabfTihQTw2rlaWnalCPC9avTaSOwk+G+ndnsKYROZuUCKL56mhAi3AGdOdn39PRcBpugIGD6dC6Ctja60dxdm0VFFJ+7dnERhIZylgF3cSZnm+gZJhMtX1FRtIKdcQafn6IiirJNm4BPPqEIy8riNYqPZ00sZ99KLEqGKHq95tLuKd3Fd3UWZYCnGHMXYe4WLve4M5FI0FO8fS/2S4gdPHjQW8cxKumrS7KkBPjoIxbM7MuUSPn5wP/3//Fm+slPaA0bSJxOuohyc5mxeeAAO8PZs5kSL9Ldh4tLQsSPuYuV2bO1hAKLhTFtQpwdOkQXmNPJDjs2ltl8Y8Z4JgcMl/Mfifj6ciLs8eO1de5zbIokgIICWqO//56LICqKgiwzk68ZGTIh4GTodFrAf1oanyHhwszJoZX8228Bg8GEmJgYzJunw9SpWva2fF5GH8LFONIYdpX1RxLumR09xWrlhL1+fsBPf9p7MVdTQ5dmWxtjM/7wh4GzPIkA6v37gW++Yac2diywfDlLFMTE9M2aNxRRFG2i3pgYiqy5czW3YX09MyqPHKE79ttvgU8/ZaMSEUFXTEYG3bHCaubvPzIbneGC+xybIg/IauU1FMLs8GEOjI4e1SZeBng/JCRoFrNx4yg25OTnx8d9ouvJkxkDxCxMO7ZvV/DBB0a89ZY23+KMGdxWZmFKhjteEWJ2ux1VVVVoampCdyFnEyZM8MbXSEB33jffANdf3/ssr/Z24IEHKMYSE4H77huYjkFVgYYGAwoLdfjqKwqQGTOYVJCRQeExGrKk3CdcTkhg3JvI2uSccHRlFhRQnK1eTYFsMjHWLDGRHXhcnGe262C7bEczZnNXy1lLi2Y1O3SIr0ePUqCVlADr13M7o5GiLiuL1zUry7PApkTDZKLlKzISSElxIiWlGn5+JlRV+WDfPuC77xieERLC33HmTK1t8XYhWYlkoOmXEGtqasKjjz6K1atXw+5eOOkYolDqgQMH+vM1kmPU1wNvvMFOoLfly1SVMWF5eWyo/v73rrVivIHFAuzcqcPq1ZGoqjIiOxu44QY2krI8gBZHFRFBC4nTqSUCNDbSgijEWVER3V8Oh5ikl65okWEmrGaiorVkcPD3p3V5yhRtXUODZjU7dIhLUxNdbu5lECMiPIVZRoZ0uXVGpwMCAzuQmKhi3DiKLlH2ICeHv/H339N6nJHBYP/Jk3Fs2iX5e0qGPv0SYnfffTe+/vprLF68GFOmTOl2Am2Jd1BV4OuvKaTuv7/3VX3ffZeWNL0e+POf2al7E5uNVp1164Bt24xISWnHn/5kx7RpZhnIfALYyXCJi2NnbLd7ujQrKmhVFDWZvvmG90NwMD+TksIOSLhoOsevSU49ISGMeZo9m/+rKo7N16gVPC0ooHV60ya4Jj43GlnyQQgzIbql0NZwd2FOmqRlYebnMwzigw84YI2Lowtz1ixapKULUzJU6ZcQ27JlC6666irce++93joeyXEoLwfefx8480y6rHrD9u2AmGnqxhs9p5DxBjU1wMaNwOefU1DccIMd0dFVmD49UQqCPiAq8YeG0gI2dSrdysKlWVdHa0BJiWe8mSi+Gx9Pa1tKihZvFhDgWXxWcmoR9fji45kgA9ANnZurCbMDB2gVPXiQy4cfcruwMIqyCRMoLNLTZeygoHMW5oIFfD5KSvh7/vgj26WgIL4/YwZj9kQhWfk7SoYC/RJiISEhSO5L2p6kVzgcjB/q6ADOPbd3jUdVFfDooxyRn3ceK/B7C5uNLpcPP+Ro9Pzz+R2RkU4UFzu890USV12byEh2xO7TblgszEotL6cwKy6mZbKlhWnZkZEUAMnJtAyI8iB+fjLmbDDx9fV0aaoqBba7MMvPp7DYsoWL+Jy7MEtJGbRTGFJ0zsJ0d2EKwfvCC7zf09I4IJ06lfGYoaEjJ3FIMvzolxC77LLLsGbNGlxxxRXQyejIASMvjxaPyy9Hr6ZDstlYpsJi4Sjwt7/1XqdbV8fq2J98wg7+L39hw+brS+uNZGBRFE1IRUfTNamq2jRHwnJWUsLOvLiYbk2rlRa3iAgtISA5mR2RwaCgtVXnmt5DcmpRFIYMxMbS8g3wWcrLo8tt3z7GRLW0ADt2cAEAg8EHCQmJmDrVgKlTKdBklEjXLMyGBg5YCgr4O376KUM2oqIoaKdPZ03D8HBa0GSXJjlV9EuI/f73v4fNZsMvfvELXHTRRYiOjoa+G3ON+7yNkt7R1sZ4h8RE1tzqDS+8wJFgQADjwrwRtOp0smP/8EN2DD//OS1h3o45k/Qe9xIaYsorUd+suVmbiFeIs9JS4Kuv2LHrdEBwsBH+/pHIyNBjzBiKtcBATfDJoOdTj48PRcLEiRyIOZ20eu7bp4mz2loFhYW+KCzU3JnJydrnpkzpeTHfkYrRqGVhjh0LzJ/PZ6G8nKJs3z4+C35+fH/KFFodIyM5SBkOhYolw5d+CbGqqips27YNBw4cOG5mpMya7B979jDG67bbelcgcuNGujMB4E9/6tlclCfDauWxvPkmG6x77mHMhTTpD126E2ezZmmT2zY301JQXg7k5jpx6JCKXbv02LCB2wYE0GIgitDGxDDuTIgzmbF5atHp6FZLSwMuvJBW0OLidmzaVI+qqkgcOGBAaSkzbouKgDVr+LmkJM0VN2mSNuXWaMS9rExKCi1hIuD/0CG6hN94g0kzIoFmxgwOhsPC+Dl5z0u8Sb+E2L333ov9+/fjhhtuwOTJk2XWpJdpaqLomTyZjUFPqazUpi+6/HItc6s/NDQw7mjtWo4mr7iCjZhskAYWq5UdgpjvDKBoqq7maD0u7sTbdrdOUZiNKfYxbRqX2bMd2LfvKKKifOB06lFdTctZYSE7qK1bGafo40P3TUQELS9JSVrcmYg9k0HQpwZFAaKjVWRnW5CYGAIfHwMaGjSL2Z49mmu6uJihBAALB4syD5MmDe1sQpsNaGtTYLNp2cDHm9e0uZkWYD8/7ZxONgeqjw8HGDExbGfPOovPR2kprWW7d7PtExmt2dl0/wYFeSbCnIiaGrahISF9rx3X3bNssdCi7e8v3dHDmX4JsR9//BHLly/HLbfc4q3jkbjx7beMD+mNW7Gjg8H5ra1sVK66qv/HUVEBvPcerWGXXw787GeyJtipwGplYVCrlQ1vVBRjXNatY3ZdcDBwzjkUY91tC3RdZzZTyHXeR3g4Owq7XQeTSUVSEjvo7GxaVhoa2CHqdJowKy9nZ+9wUHiFhfE74uJoPRCuTSHOZNbmqSEkhNmDCxbwf4uFgmz3bi5FRYyTKihgqQedjgJDJA5MmMDrNRSwWili6usNHoKntla7r8PD+drczPuyvZ3iKjOToqW7bY+HXq9lLKel0XosMpNLSjjIffNNPgthYRyMTp5MF3BsLMVZ50FITQ0/b7HweZg3r/dirLvn22bj89fWRq+EjA0cvvRLiEVERCB4NNu4B5CaGoqfOXN6lxX12ms0rfv5AXfdxVFgX3E6OZ3LqlU8nrvuYscs4yVODXY7G97gYIomu51WrMZGxrHk5nLkHhfX/bZA13Vmc/f7CApiwx4Q4ITNpm2rqtpUP42NtBpMm8bOXK9nVq7RyH3k57Oz2r4d+PJLfr+YMF1Mfh4TQ6HgnrUprWcDS2Agrdjz5/P/hgYKs127KMzKyjhV0+HDDF7X6yliZszgtc7MHLxr5HDwXvT3d8Ju5/8A7+ugIHoNHA7eq62tFGHR0bwv29oo/Lvbtqf4+lLUhYZyYJKbS4HW2srfr7gY+OEHbpeRwW0mTqRQElbihgaKsLQ0PiMWS++FWHfPd0sLzzE2loPl1lYpxIYr/RJiv/71r/Hmm2/ikksugb+c4dZrqCo7spoa4Kabet4I7tvH0RrAOSRjYvp+DB0dbKz/+192nH/5Cyv6y0yiU4dwQTQ28lUEHAcHs0MIDtYsk91tC3S/rrt9GI0UXM3NOkRGatseb7/BwewY0tM1S5soRCsSA2pqaNEtLqZw++EHbmMysSMSZTXi4mipcE8MkPXnBo6QEGDhQi4Ar5MQZnv2aBXrc3KAV1/VZg4QwszdHT7QGAy851padAgL0waWZjOFldmsrRP3TVUVX319NXdk5217g6jFV1qq1Svz9+e9X1vLe72hgUL2k0+At96itUwE/UdGclB76BDX90Usdfcc+vvzHCsq+DpUrJiS3tMvIWaz2WAwGHDOOefgvPPOQ0xMTJesSUVRcO211/bna0YdlZV8oE8/vediqrUV+Oc/KeLOPpuf7St2O7BtG/DKKzS7L1vGWCDJqUW4INzjQuLi6Eqsr6eAEp1id9sC3a873j6iooCmJrtLWPV2v+6FaAULFvDebGnREgOKiynQyspYUb65mZaL4GB2WrGxPKbISGk9OxVERDAu6qyz+H9lJbBzJ8tj7NzJ6/Ptt1wAXp9p0xjkPnXqwMaXienAmpsdiIjQ7rXw8K5xXwEBtN4JV504ru627Q1hYaxJ1tzMfYoM1Lg4PgdCLIr7u6KCouvIERaU7ejgMSQm8nerq2M73ZsZR7p7Ds1muiNFTJy0hg1f+iXEHn30Udffr732WrfbSCHWO5xO4LPP6CY655yeW6BeeIENaFQUq+f3FauVGZevv04xd801WryR5NQjGlx34uK6t0p0t2136463D7MZ8PNTe7SP4+23MzqdFtAssjZnzOD9LcSZxcL4l0OHaDk7cADYvJkdmJ8fO2IRexYVJa1nA01MDAszn3cer0Fenla3LCeHQqOigok7Oh0tP8JalpXlfbFsMgG+vqpHnOzx7j9xr7nT03v1RISFdS0B0nm/IhMzKYkiVUxRVlpK63NBAfDyyxx0JCZSNI4fr4PTaXYNQoTFuTu6Ow8xPZpkeNMvIbZ+/XpvHYfkGKWlbOB+8pOexxFs26ZNcXPHHb0rc+FOeztdou+8w4D8pUtlUL5kYDCZuIj7a/x4usrcrWci7uzIET4X+/ZxoCACqkVZjehoirOQEHbCfn60iEjrWf8R8WKZmcyUbm1lYWAhzEpKtCmZVq1i2zNtGi1IM2f2PUNwuGM08p4MD2fs2Jw5dCvW1dEinJvLWMrPPjNCUeKRnm5wzZQg4iiDgk4szCQjh34Jsfj4eG8dhwQcfa5ezRH+mWf2LMPMYtFKVfz8532fR7K9nWLuww+BSy8FLrlEjrQkp5burGczZ3a1npWXs+MvKqLrp7GRrp7AQG3GgJgY/i2sZ3o9YLfLlM3+4ufHhJ3sbP5fXa2Jsh07eH02b+YCsEyGEGXjx49eYSGmKIuO1ubEbGoCKips2LWrAbW14diwAfj4Y1q9EhOZIDNlCgcbwcFcZFHlkUm/hJjEuxQVAV98AVx2Wc8tUc8/T8tBYiLQVw9weztj0lavZnmKSy+VgZ+SoUN31rOzzvK0ntXVUZyJmlk//qglBtAyYYCvbzBKS3WIidFqQAnrmSyr0TciI4Gf/pRLRwcD1n/4gb//oUNamYx33uFvPXWqJsxGa8iDe5Hl0FAVAQFNCAsLhs1mRF0dy2Xk5WmeDqORSS0ZGbSYJSTQYiYKK0uGP/0WYgcPHsRrr72GnJwcWCwWOJ1Oj/cVRcGXIpddclwcDlqjwsO10ebJ2L6dwk1RWHm/L6Mlq5UP++rVwK9+BSxZIivlS4Y+na1n6ems+eRuPWtqYqd24ABQVKTg4MFA/PCDEYrCjkyU1YiN5XMXGsr9yaK0fUOvp7Vn3DjWL2xspJVs+3YujY2eQf9JSbxmM2ZQYIxWa4+i8L7z8WEc5IQJvIdFjFlJCYXZnj3A+vXcPiaG1sZx41gWQ2RjBgb2r2SRZHDo1yXbtm0bfvOb3yA4OBgTJ05ETk4O5syZA6vVil27diEjIwMTJ0701rGOaAoLOYn2VVdxtH4yWlqAf/2Lf198Ma0EvcVmo5D78EPGf0gRJhnudLaeTZjAoPO6OjsOHChBWFgSGhp8kJOjTf4sEgP8/TXXpnvsmUgM8Pcfva61vhAczBCLM89kElJenmYtO3hQq/b/3nsUIVOm0FI2a1b/Su8Md4QwCwigMBs/HjjtNLp9Gxvpmj98WKthxjprFLZpaUyYEFORiYLK0uI7tOmXEHvyySeRmJiIt99+GzabDfPmzcMNN9yAuXPnYvfu3Vi+fDnuuOMObx3riMVupxiKjGS2TU/4738ZnxEby8zG3uJwAF9/zQKOIiZMijDJSERYzyIiHEhNVeHjw+KmbW2a9ayxkeLg8GGW1di9mwMVg4FiTGRtxsVRrAUFae6l0WrJ6Q0iu3LsWFreLRZPa1l9PV1x27Zx+4QEzYU5duzgHvtg4+7KjIlh4sS8eZrVt6aGA/miIlob16zhZ6KiWHYoI4MW4/BwzSUv3fFDi34JsZycHNx8880ICAhAY2MjALhck1OmTMHll1+Of/3rXzi9P0WtRgGFhayndPXVPQuQP3RIm8z3D3/offp+Rwfw3Xcs/nrxxYxJkyJMMtrw9eUiMvumTNGK0grXUEkJrWYlJdo0NYDm2oyLoyUiOloTZwEBUpydjMBAlsc5/XRay/LzNVGWk8Ms2dJSDlBNJh9kZMRj3jw95s07tQVlhyqilEV4OF2U06czZlJYzSorafEtKaFLs61NKwidkEDL2ZgxmktTxEtKd/zg0C8hptfrXRX1g4KCYDAYUFtb63o/MTERR44c6d8RjnAcDuCjjzh6mTHj5Nt3dABPP80ssbPOYvBrb1BVjvZffpmFX5cu7Xu5C4lkpNG5KO348Swl09KiibOqKsadFRdzrr9NmzTXppgtICWFgiE4WFrOToZOR6tNRgbbo+ZmFpIVwqy2VkFOjj9ycoAXX6QXYNYsWssmT5Z15AAKKBEjFhdH9+T8+dpMFw0NFGdFRXRt5uRwvV5PMRcfzwFFRgb7oqAgzR3v4yOtZwNNv4RYUlISCgsLATAoPy0tDV9++SUuvPBCAMA333yDiNFaSKaHFBYq2LSJ7sWeCKI1a+g+8fcHli/v/ffl5gIrVwKzZzMeTZaokEhOjF6vFeuMjaVrSMwYINxDtbWsd5afT0vEtm0cZIlkgvh4Wi6iozVxFhAgA6u7IyCAMVGnncaB46FD7fj6awuOHAnDgQN6VFSwzMPHH1M4T5qkCbOEBCkaBCaTVog2KYmitb3dc1Bx9CjFWUUFXOUzAIqwqChtjti0NAo290xjWavPe/SrGTj99NPx3nvv4fbbb4fBYMCvf/1r3HPPPTjnnHMAAMXFxfjjH//olQMdqaxZo+txbFhdHacdAliqorfFVsvKgJde4mj9N7/pWil6OKOqtEp0dNDVoapcBDqdtuj1cs5MSf9wz9oUgeVz5mjuISHODh2iODt4kEkBTieFmOjgUlNpRROxO/7+8t50R1GAlBQVP/lJPX796wB0dPhi924GqW/f7lnH7LnnKHRFJubUqTLkojOinll4uLbOZuN9KwYW9fXsKyoqaD3bt4/rAW2mi8hI/tbJyXwVCS1i/9JK2Tv6JcR+97vf4eqrr3bNL/nzn/8cOp0O69atg16vx4033oglS5Z45UBHIg4HsGWLAdde2zNr2AsvcCQzZgyweHHvvquuDhCzUP3+91rBzOGC3c6Goq2NS3u79ndrK8twOJ3a4i7CBGL0ptdr87WJyYHF3yaT9rf7JNcSycnoHFQNUJy5l9OoqtLqa+3aBXz1FbcLC+NnkpIoziIiNFeT7NQ0/P0ZqD5vHp/x4mIKsh9+oJu4qoo1ET/5hM/uhAmaMEtOltay7hCZxu5zX6oq21jR5gr3ZlkZrWg1NRxgrFvHfkxkeoaFaTMKhIXpoCj+sFgUhIRobapoY43G4dm+2u3ev4/6JcSMRiNCO5llLrroIlx00UX9OqjRQnu7HuHhao+sYbt3M8tRUYCbb+6dSbilBXj/fSYFPPDA0J/Au6ODnZYIPK2p4d9WKxsFp5PbiJpRbW38u6ODjYLdzlen09MSpih8FQ2Bry9dQyYTGwmDgdsIkWY0cpQn0sBFMGt7u9Kt0JNIOuNeiiAmhhmA8+fzvnUPrM7J4fO5ZQvr+hkMdA0Jt1B8vFbnTMwUMNpRFLZlycnAL37BdmD3bk2YVVVR7O7axUFsZKSWiTl1qoyNPRGKorkf3VFVtsPuA2Eh0qqqaKEU82s2NRlhscTCYDBAp+O+goMp+AIDaQUOC+N1CQnRBsRCGBoMnoter3kzvOHVUFWtLxF9h/tit/NcRT8jXLk1NcCvfqV41doqIxQGEZtNwdlnO+Dvf+JW1W5ngD4AnH9+79K5HQ427Fu2AHfe2bd6Y6cCi4VWu5oaPtAWCx9yu12bo626mg+EovAh8vPztBoYDBRP4lVsJx424b60WrnU1XHEJ0Z+Qlzp9VrnGRSk1eLhPvVobg5GSYkOUVHsHIUVJCBgeI7wJKcWna5rYLWoEyVcQ0VF2kwBO3fyOQgMZIxacjKtZlFR7NjkPUd8fWmBnDOHz3JpqRbwv2cP249PP+Wi17MtFLFlqanSWtYTFEVzPbpb0AC2szab1r42NdlQWFiFoKAYtLWZUVvLNrexkYKmoEATcx0d2v71es16JjwW4lX8LQSb0cj/hXVNiDZxLd1DVjo6tEG63c6+RBxreztfxWwdwhLY3q55WMS5+/uz7qY36ZUQu/rqq3v9BYqi4BUR2CTxQKcDpk1znnS7995jGnJISO+mMVJVjgw/+YS1e+bNGzrxJ6qqjTDKyhhPIywEVVW0ErS383gjI9nppKay49HrtfRt8fB1N5ISQgzwHPGIxkI8lGKdzcaHzmrlsbS0sFMsL9fmM1QUPUymQJSV6Vz1pAwGraEIDvas1xMYKDtKyckxGLRszcREBlaffbYWb1ZdzUzNvDwKiy+/5LPBgGoDQkICMXmy4orXGe2xZorC3zExkXPwtrdTjAlhVl7Oycv37mXcbHg43ZezZnHS8oCAwT6D4YdO5xkfFhSkQlWtSEx0wseH7afdzsVm017FIgbEwo3vLoasVvYRQji5iysRFywG3J1RlK6LXq95Q8Sr0cg2PCaGr4GBbM/dExREPxMUpALwnnLvlRBT++CP6ctnTsRVV12F77//vtv3Hn/8cZx//vkAgHfeeQcvvvgiysvLkZqaittuuw1nnnmmx/YWiwUPP/wwvvzyS9jtdpx22mm47777ENVpErQdO3bg0UcfxYEDBxAeHo4rrrgCy5cvh9LPIZTZ7DzpA3/0KPDGG/x7+fLeNRAFBcCrr7LMxcUXDw1B0N5OkVVcTMHV0MBzLCmh6AkOZpzMggX829eXnUpICONmRDFCMTIS4qsvl0KM4MQiXJ8is6ipiQKsvV1rDJqbO1BQ0A6n0wd5eTxmVeUxhoWxIxVmdiHOxLELcSYtZ5KeIDq1yEgW5Jw923Pqm+JiIc4U7NwZhq++MiIkREsCEJluwqo7mjM0fXz4+82ezf/LyzUX5p497OTXreMiis9On05RNm6cfF69gaJo7XVP3MLCgtWd6HL3cAivh5hd0dmNbUMMStzDVIR7U7g6hTgTblB3y9rx9uctevVovvrqq9799j7w17/+Fc0iheMYr7zyCtatW4e5c+cCANasWYO//OUvuPHGGzFnzhysXbsWN910E1atWoWpboW3br31VuTl5eGBBx6A2WzGihUrsHz5crz33nswHGu1ioqKsGzZMsyfPx+33norDh06hH/+85/Q6/VYtmxZv87FaDy5Ney//6UAmDSJgqqn1NYywzIxkYViB3tyWNFxFBXx2MrLGRNjsbDjmDxZq18TGkqXjRA1A2VV6jyC6w6nU0sIaGkBamudyMlpgo9PEGw2Tbg1NvK8RKacqMoeEcHzCA/3TPsWQa3CRRUQION+JCfG3aUZH8/5GRctAqqr7cjJKYfJlIDcXDMOH2Y86Sef8F6Lj9cqrEdFac/UaK5rFhcHXHghF5uNljEhzEpL6RY+eBB4/XX+hpMmacIsKUm6MU8FQhyNBobdGCkjI6PLuttvvx3z589H2LF6DE8++STOP/983HrrrQCAOXPmIDc3F8888wxeeOEFAMDOnTuxefNmrFy5EgsWLAAApKamYvHixVi3bh0WH0tLXLlyJUJDQ/H444/DZDJh7ty5qKurw7PPPourrroKpn60ZidT1YcOaQH611/f84e/vR344AOKgoce4oh6MHA6PSs8V1Yy5qWsjOJrxgyagYU7JiZGG8EPlYZOp9NiwJiyrcJobEFGhhOKQiEplupqLe5MmNVramjx275dc7W6ZxaJJABfX5FppAkzf//R0xBJ+obZTLGfmGhFaqoTp53mOfXNwYO0mu3cyQmjjUY+Z8nJrIcWG0vLc1AQ9zUaMZnYFs2YAdxwA5/XHTv4m+3axUHW999zAfh7T52qCbPelhGSSDrjNSHW3NyM5uZm1xRH7sQN4JwUO3bsQGlpqUt0lZSUoLCwEHfeeafHdosXL8Zjjz0Gm80Gk8mEjRs3IigoCPPnz3dtk5aWhqysLGzcuNElxDZu3Iizzz7bQ3AtXrwYzz33HHbu3Ins7OwBOS9VBZ5/nn8vWsSSFT3B6WRhvs2bgTvuoHviVON0ArW1BlRU6FBRQeF14ABjsSZOZNZYZCQ7g4QEjtKHWyfgnlXk7sm22zVhJmJ7amo8A0Dr6tjY797NTlNRNKtZRAQ7xs7iTLg0peVMciL0et4/wcEc3Eydqrkz6+o4ENq3j7Fm337Lz0RH05WZmUnrmfj8aLWYRUUB557LRUy/tHMnxdm+fXyev/ySC6BNMTRtGts3WW5E0lv6LcRef/11vPzyyygpKTnuNgcOHOjv1xyXTz75BH5+fli0aBEAID8/HwCtW+6kp6fDbrejpKQE6enpyM/PR2pqapc4r7S0NNc+WltbUVFRgbROaiYtLQ2KoiA/P7/fQsxqtXa7/ttvddi/3wyTScXSpe1ob+/Z/nJzFbzzjgkXXODAzJkdOM7uB4zaWmDfPgf27w9Efb2Kw4c7EBgITJ/egcREID5eRVqairg41dVgCfffcKDt2IG2neCA3QVaRoa7OFOOiTPlmOVMQWsrXSMNDQqqq4G9e3WwWCjEQ0JUhIWpCA9XXdXYfXxUhIYCYWHqsUxN1WsV2tuP3WTtPb3ZhhGj+dwMBq3CekYGsHAh0NioHAsXULB/vw5HjuiwdatybLJoJ1JSVIwd60RMjIrgYBVBQYMXJyXayOO1lQNNQgKXn/2MYSIHD+qwa5cOu3frkZ+vQ0EBrf7vvQcYDCqyspyYPNmJiROdyMhwnvB3G+xzG0hG8rkx9n2QgvU788Ybb+Dvf/87FixYgP+/vTMPb6pM+//3JE26p3sLpYW2CGVflYKUIosom44iCM4oiuI4L8ILo/5QRkAdRxhHB0ZxA9HXdWZccKlUREFFsCDKUpZCoS3Qlm50S5ek2c7vj5snJ2nLUhqaJr0/13WutCcnJ+fJ2b7nXmfMmIE1a9bg3nvvha+vLzZt2oTIyEjcfffdrtrWZlgsFnz99dcYP348As4HQYnm4zqdzmlZ8b94X6/XI7iF/j4hISE4fPgwAArmb2ldWq0W/v7+9nW1hbKysmbzzGYJb71Fxb7Gj6+EwVCBi+hcO9XVanz4YQzi4w0YPrwUhYWXjkFzFQ0NKpw+7YuCAppyc0Oh05kxZEg1unSxoHt3I2JjTQgLs8BqxWWNpyNTWFh4RZ/z8xNuWAn19SrU1alRV6dGZaUPwsN90L27Co2NEqxWCbW1NP/QIS1qa9Ww2YDgYCtCQiwICbFAp7PAz08+n/RhRWioBf7+NgQEWOHvb4Ov75UlyhQXF1/R5zwBHpuCry9Z2nv0kFBXp0ZNjRrFxVrk5PgjO9sPO3dqoVIBkZEWxMY2IiHBiIgIM3Q6KwIDre1umW3pWukOwsMpXnf8eKC2Vo2cnAAcOxaA48cDUFWlwaFDahw6RD+ORmNDUpIBvXoZ0KtXA7p3N7b40NRRxnY18MaxRUZaAbguYr9NQuz9999Hamoq3nzzTVRVVWHNmjUYO3YsRo0ahQceeAAzZsxAdXW1iza1Obt27UJlZSWmTZt21b7jahMdHQ3fJn65zz/3wblzGoSFyZg7NwD+/peOtDeZgB9/VMNkUuPhh32QkNA+VVstFnqqzs9XIS8PyMpSQ6u1YcSICgwcGIQBA0KRmEhP1N6AwWBAYWEh4uLi4O/i/imibIZeL50vZCuhulqyuzQtFkCv98G5c74oLZWQlyfBaqVUakoKsCEsTMnWDAyUER5O71MDX/miZQ2MRiOKi4vRtWtX+HmZf4XHdvk0NlJcVFWVDfn5Eg4d8kVurj8OH5agVgNdu9qQlGRDcrKM6GiymAUFXb1yGY2NjSgrK2vxWtkRELUZZdmCs2etOHhQhcOHVThyRI2aGhWOHw/E8eOUJqjVksVswACaunc3oLKy446tLXT0/dYW1Oocl66vTULszJkzuOuuuwBQlX0AMJvNAIDg4GDccccd+PDDDzFv3rw2bmbLfPXVVwgNDbUH2wNk0QLImhXlEKWu1+ud3tfpdCgpKWm2zpqaGvsywmImLGMCk8kEg8FgX64t+Pr6ws9PuaHX1AAff0x/33efhLCwS9/sRb2wnTuBxYuB5GR1uwS7nztH2UYnTlAMRW0tFVNMSrIiOLgWY8eGIDrau256An9/f5cLMVHqwhGjUYk3EzFnIiFAiDPRfaCoiFLxrVYK+BcJAWFhFO8jesGRa1NJQiCXp/Kdfn5+TsekN8Fju5z1KGVkBg8GbrpJOcboYUuFo0eBHTto2e7dqdxDr14U+yliHF19DWp6reyI9OxJ0+2303X59Gk6J7Oy6FpZUyPh4EE1Dh4ki5mvrxaJiRoMH67FsGEa9OrlfbF5nrDfWktbS1c1pU1CLDg4GNbzFdSCgoLg7+/vJG4CAwNx7ty5tm3hBTAajfjuu+9wyy232EUgAHs8V15enlNsV15eHjQaDeLj4+3LZWZmQpZlpx81Pz8fvc+Xrg8ICEDXrl3tMWOOy8iy3Cx2zBV88AEF1/bsSUH6l0NhIfDJJ8DEiRT/cbVFmNlMwb6HD9MF5uhRClQdNoyqhCcmWlFWZkALnl+mlTjWkhKYTM2zNSsqlBIbTcXZwYMkzgIDSZiFhjrXOhPVooODVdDrfeHvLyE8nG6mnbn2FEOImMcuXSgYfeJEqv9XUUH9HQ8dAn74AUhPp+OqRw+6DiQkkOAPCemcAezUsJymW265sDA7diwQx47RtV+jIUHbvz9Z2vr1o9+P8W7adJnt1asXjh07Zv9/8ODB+Pe//42xY8fCZrPhv//9LxISEtq6jS2yfft2NDQ0YPr06U7z4+PjkZCQgC1btmDixIn2+RkZGRg1apQ9+zEtLQ2vvvoqMjMzcf311wMggXX06FE88MAD9s+lpaVh27ZteOyxx+yCLyMjAzqdDkOHDnXpmAoKqPYPQMVbLycGo76eSlUEBAB33331sw+rqiil++hRYPduSnufOZMuGIMG0cXaYKCsQObqoNUq1i6B1aq0yBEFP0VLKNHKQ6+nm2d5uVLrTGRsUj9NFWQ5EAUFKuh0imVEWM8cK0x35qrtnZ2AAJpiY0mYTZ1KwqykhET/kSN0TTKb6QEiKYmEWVwcHWuiG0Vno6kws9mAEyeM+OknPYqKInD0qBo1NXRtPXpU+VxcHF1fhTiLi+s45X0Y19Cm0+GWW27Bf/7zH3tJiIULF+K+++7DDTfcQCv38cHLL7/siu1sRnp6OmJjYzF8+PBm7y1cuBCPPvoounfvjpSUFGRkZCArKwvvv/++fZmhQ4ciNTUVy5Ytw9KlS+Hr64s1a9YgOTkZkyZNsi93//33Iz09HY888gjmzJmDnJwcbNy4EUuWLGlTDbGWePttOjlTUijt/FLYbPQkeuAA8MwzVPrgamGz0dPc/v3Ab79RfaLrr6faO8OG0cW2M15cOwpqtWLpEsgyiWK9ngSasJJVVyu1zkwmEm0VFUBhoYSSEh18fNTw9VVa7ohm06L3W0CAIt6Ea1O4PfkG0bmQJKXIbHw8XQvEg0BBAZV8OHaManCpVCTeevUiYRYTQ8drZ23HpFIBPXrIUKmqER8fDF9ffxQVkQg7coReCwrI41FYSFX/ATrv+valiv/CJczeB8+mTbfOGTNmYMaMGfb/hw8fjs2bN2P79u1Qq9UYPXp0szISrqCmpgY//fQT5s6d26Kvdtq0aTAYDNiwYQPWr1+PxMRErFu3rpkFa+3atVi1ahVWrFgBi8WC1NRUPPnkk/aq+gDQo0cPbNy4EatXr8aDDz6I8PBwLFq0yOVxb8ePU10flQq43IL9+fnAl19S+6JBg1y6OU40Nirm9F27yHw+ezbFjwwdyheBjookKdYLR0Q5jbo6eq2qIoFWVWXDmTNV0OmiYDar7U3YDx+mZWWZBJkQZ+HhSs9Px44BIkZIiDRvi3lhLoxarRwfSUn0sFZdrcSX7dtHD47bttExEh+vCArhNu+MbkyAzldRKkPYAvR6xUJ25AiQk0MPVLt30yTo1o1+w+Rkeu3Z0/NqM3ZmJNnVzSCZy+LQoUPQ6804d64v/Pz8sWwZXaQmTqRCrJdCrwfWraO/V65sHuTtKqqrabv27gX27KEn3tRU4Npr6ULb0pOswWDAiRMn0KtXL5cHtLsbbx2bLAOVlQYcOpSP6OgkmEx+qKggkeZoPaupoWQBUai2sZGOgdBQxUoWGkriy8+PbgZBQUrHAEcLWnvWpTIaDcjPz0diYqLXBQ570tgMBjqmyspIWIjisg0NdIwkJpILrkcPOo5CQgCLxYCCggLEx8d3+PG1FqOxdWMT8blHj5Ioy8kBWqpaolaTC7R3b0WY9ejRvuKstWPzJEJDsxAQIGHgwIEuWZ/LnEn19fXQ6/UtNvm+mpX1vYGsLBI7Pj7AH/5w6eVtNuDbb8kitnr11RNhRUXkhvz5Z3qanTqVsiKHD79638m4B2E9Cw+3IDFRhtCYVivFmNXWKhXahXtTNEc3mci1WVlJrhSRHKDR0M1VuExF42mRJBAcTOJNtHkSAo1d3N6LsJzGxpJFXVT8LymhsIfsbOrvaLNRvOk11wB9+qhgtVJDc1/fzu3+1mjILdm3rzJPrydBdvy4Is6qqoDcXJq+/pqWU6nI2paUpEyJiXSOdubftCPQpkteY2Mj1q1bh08++eSi9cKuZmV9T0eWgf/7P/r75pvp4nMpTp0CvvkGmDGDnnauxjadPElWsG3b6Onq978nEdavn/sqbDPtj1pNwdVN68CZzeSuFFNNDVnJ6urIumE00qsQaMeP0zKyrLgwhcUjMFARaL6+9F2irZMQZwEB3NrJ25AkpZ1SYiJZ2YXFNT+fXJjHjgE//qiBJHVFUpIPBgwgV2ZEROfNxmyKTke/3bXX0v+yTOeiEGcnTtCDtF4PnDlD0w8/KJ8PCSGLWWIiibPu3cllzL9t+9EmIfbUU0/h888/x8SJEzF8+HCX1NXqbOzbRzV5tFpgzpxLL19fT600uncHbr3V9UGuFgu5DPbsoV5qycnkLh01ir6TYQAS4yIWyBFhJRMCTcQHOfbarK+neRUVlAAi+m0KC5kQaL6+9D1CoAn3p6N7MyCgcwZ6eyMaDSUcRUbSA2ZaGh0/BQUmZGZWoqQkGtu3A198oYi3QYPIBSfc4izWcb5NFU2ixKYs0/mWl+c8FRWR+N23jyZHoqMVUeb46i3FuTsSbRJi3377LWbOnIlnnnnGVdvT6fjgAzIvTZ/uXI6gJURD7+xsckm6+oQwmegpdOdO4KefqDn3hAlkCWt6w+1IWK1kobFaSUjabHThEV5ySaJJpaLJx0eZ2CTvWkRdsqbHshBgwsUpMjXr6+k9ETtUUUEi7dgxJf5MiDPh3tRqFYHm59dcoIkCtbxvPRvhxgwLkxEUVI3IyDDU1/ugpIRqcB05Avz3v3Tui76ugwcDXbvSMREUxMeAQJIUkTtihDLfaKSHISHM8vMpvKCmhuL4ysqAX391XldQELmWu3alSfwdG8tuziulTUJMkiT0E/0dmFZjMqmQl6eCvz8wa9ally8qAjIySLT16ePabTEY6Inohx/oxJs8GRg3DrjuOvebqC0WpR6WcHuJrD9RI8tmay7CHMMVVSpnMaZW06S0A6LJMQtQvMdZf21H3FQdS6yI8hrCelZfr7gyRYKAwaBYzwoK6LWl+DPR+FwkCdANXCmP4OMDmEx8h/BUJIkePKOjFTemKCp75gwJs+xsimf18VGyMQcMYDfmxfDzI69HcrLz/JoaOt/OnHF+LSujc1XEojXF15fKklDLNQ202ggkJakRG0s15aKiAC/KcXIZbRJiEyZMwM8//4zZs2e7ans6FQ0N5FO57bZLV082GqlUhSig6koTfH091fn54QfKYpo5E7jhBjL7t3fgtCxTLEN1tRJ3VFFBN2QhuISFy8dHEVQAPRmbTIoYcxRlajXdpH18lBg3s5nG7ijixDZoNDT5+tKNXNzw1WoJFRU+6NKF3mO32JXjWF4jOlqZL8skwhxj0CornQVafT3dFCorKQamqqp5/FloqOK6VKvVqKsLQVGRCtHRzWugcdyjZ6HRKDf2Pn2AMWOUbMwTJ8hatmsXPbgGBZH7cuBAspoJ1zcnhVwYEbs3YIDzfKORsjTFdPas8ndpKV2jRRwayYvmbh7HOoTiPHWcmp6b4kGqvWjauUTELVZUKA+KzzwjuTRUp1XDaxqQ/z//8z9YvHgxli9fjjvvvBOxsbFQtXBnCuUUuxaxWCQEBcmYMePST+p799K0cqVr3YR1dRQPtnUrnTx/+ANZwpKT28/E3NBAVo/ycipcWFNDwgtQhFNjo3IylJXRq8WibKMk0U1YBHULy5ewglksdBFpbKRXq1WxmMkyiTRRmFLEPoWE0OeNRsrqIheoCpWVIcjPV9uDyiMi6GIvPs9PfG1DkpQLcUyMMt9may7QRIkN4frU65Xj48wZupACQGCgGlptACoqVAgPJ0uAWq1YPsW+FCU2OP7Ms2iajTlpEh0XJSVKcdRNm+j8j4yk4PTBgymLUFhUeV9fGj8/ski2VB7UYqFzr7SUruUlJWacPl0PgyEYlZVqe6cP8TBVVHT536vVOp+XIn5U3B9EqIl4gJYkul7YbHTdFn87zjMam091dXSMXAqL5fK3/XJolRAbOXJkswKqsizj6NGj+OSTTy74Oc6avDC33WZBYODFH8fLy4HPPwfGj6cCqq6itpZE2Ndf08lz990kwq5CDd4Wv7u0lG6WJSX0vyzTiW4y0ZPWqVP0niTRxTI2liwnyckklNRqOiHEidYahEATFjVH96do15KVRRdzsW6KsZCgVqvR2CijoYGWzclRrGgBAXQzj4pSSjMEB3O8iitQqeh3DApynm+zOScIiJIIQqDV1QHl5Vbk5VlRVSUhN5fmq9UktoXo1umcEwQc3Zvie7lAbcfHMRszIYHK7QirRkEBWf2zs+nBVlT7v+Ya8gAIa+nVaFru7fj40G8pqlUZjRYUFJQhPl5p+i0yqWtq6NrZdBLzHcNQALoniC4g7YFKpVy3HR+4xWtYmAzAdQdIq4TYggULXN51vDOjUgFTp1oAXFiIWa1kXrdYKKvSVS6UujqqzJyRQReoe+8lEdatm2vW3xImE5mwT5+mC2JtreJmPH2aArTr6ujA792bkgUiI+lzwsWo1SpxXH5+ys1RFA8VwkpYwxytXlarEtAvLGPihG9spBuvTkcnmqMY1WppXXo9PcUdP65Fbq4PjEZab1iYEriqUtG6iotJIKhUtN6gIBJnERH0HeIk56fwtiMumk07PFgsSuzZuXM2HDlShcDAIBgMPnb3pog/Ky6mOCOLhW4oIgFAJAhoNEoiQnAwXZB1OucSG7wvOyZNszFHj1a6SeTn037PygK2b6dztXt3KtMjHvg4vsx1CItWfPzlLW+1KqEIjmEJJhOdq2YzTeJv8SquveJhW/ztmLAlzmcxieLToq7hxc5nVxfGbZUQW7hwoWu/vZPj72+9pCUnN5cyJR96SHnSaCsNDSTCvvqKnkDuuYesbV27umb9TamuJsvXiRN00xOxW9nZVOfGz4/cBLffTge42UwnQWAg3ey6dGm5rpQr4wYcxZmogWUwkFisrKQxULaeDRpNPaKjA+Hvr4aPD10YhHVv1y76vFZLbo/YWHKv2Wxk2XQUZ4GBJM5EWyBxEeAUfNcgBFVoKBAeLkOSGtCrlw1qtWI9q61VSmzU1Sn7XMQm5uXR/pdl2PtvitgWkcEpjkfh0hYN0gMDOfasI+Lnpzw4DRhA1z4RX5adTa7MrVvJlRkWplT7795d2f9sFW0f1OqWH7K8jVbfyvr27Yt//OMfmDZt2tXYnk6Fn58N9fUXfr+hAfjsMwpGHTfONd9pMJA7MiODbkD33ksXIsdYHFcgigoWFpKYrK2lG2NeHlVeDwigjMzRo+mpR6VSRFe3bkrfueDg9nERiBiDwMCW3xfxSWVlVmRl1SAmJvL8/0psWlwc1VvTaGj8xcVkQcvKImuaSkUX/27dyAVitSpZgJJEN4jAQBp7VJRyARIWGcY1aLUkfsPDlXmy7JyNKwR4RYXyJF5bS/u7qopu2Ho9fZY6EtAUFuaccUsiULGAiubpTMdAkpT9Eh9PoR+iaXlJCV2rjh6lMhkWC1nVEhJImMXHOwtyhrlSWi3EZFlusY0R03ouJTB++YUsRqtXN2/cfCWYTFSaIiODbijz5lGdMMeMtbYiy3QB27cvCGaz2m4q3ruXvvPaaykWTbgZReBsly60Ha4Y59VAxCepVEBVVSP69pUREKBk+NXW0gVc1N8pL6fxRUcDQ4YoLtOKChJnv/xCy8kyia5u3eg3sNnoJnD8OH2vMJuHhyviTLg2uVaW6xDJHv7+zueDzeZsPRPJAKIemsGgZPeWl9NN22Ih4SxiSkSMma+vEkMYGam4NoOCOMGjoyD6poaGkiXsuuton1dUUNzqwYN0br7/Pj1ARUcrwqxbNxZmzJXBCbwdlPJyID2dqto3rfFyJZjNVCdsyxayUs2bR5YwV4qwc+foRnTsmBqFhX7w8SHB4edH5TAiIuhCJ2I14uLIEufJaeSOGX6O7aksFkWYiRt1SQldoENCqFeciFXQ6+kif/QovVostEy3bmRBi4wksZeXR+sW7YCCgmj/iYu/uKl78u/Z0RCW2qbFkxsbFXFWW6vEmokYlro6EmznzlHSSUODUpxWWM5E94CAANpvkZE0T+xLFmfux8dHsXb26gVcfz15Eqqq6Dp68CCFXPz2G4n2qChqE9SnD13fRBIICzPmYlzRJZsD9q8uViu1FzKZgDvvbPuN1WajgNRvv6WA+AceIEvY5fS1vBzq6khEZGfTTai4GPjxx1AkJKhw++10EdLp6AJ1zTV0gfL2C5PjBVxgs11YnPn70+8D0P+iXs+pU9TpQCQTdOumZI+azRSbJmqrORYyjYx0ztjkLDDXIhJGHDsICOuZEGfV1c7WM1FuQ/QBFNWAgoMV61lYGO1HR8uZY9YmizP34li/rHdvaiFUU0P7tbCQwhBOnKAHUGHt7tGDHrxEqQxhzWYYwRXd4l977TV89NFHl7WsJEl45513ruRrOi2nTwPff081vVwhlo4fp+bdv/0GzJ0L3HijawL/zWaK/8rKopuLXg/s2AFER6tw000ViI2NQVwcXYR69rx0Cydvx9HtIRA3byHOKipInOn1dNHv1o2ewrVaspSVlNAF/8ABpUZWdDTslavDw2l9ubn0nsgOErFnIulBTHxDcB0Xsp4ZDLQ/RXHIsjJ6FckBlZV0/pw+rfT7E7FlQpyJwsKiNIpwT3PfP/ei1ToXlk1LU0plCItZbi6wfz+dv2FhJMj69KEHL39/CQaDChzt07m5IiFWX1/fYuFWpu00NlI2Y7duVJSwrZw6RaLup5+o/MWkSXQhaCtlZSQGcnNpm3/8kW7qM2YAarUNNpsZEydaMWDAhQPgGeebt0jpFnFnQpxVV5Plq7KSbsjR0cCwYUpnAVH37MQJuvibzUpmmIi9s1jITSYK2Yo2To4uMR8fCTU1aphMbHlxJSL2zDEhprFRiTnT65UsTZEYUF5O59jJk7R/RS29iAilBIpIEgkMVKGx0Q9arYTISNqnnHnrHhyFWXKyIsyqqsjCfeQInafp6STCAwI0CA2NRr9+KvTvr1iyOcSgc3FFu/qRRx7B9OnTXb0tDMiFuH8/VdBva8puaSm5tb75Bpg2jURYz55tW2djI7khDx2iG0RWFt38p0yhp/cuXYA+faywWKoxcGCXDht835FxjDtztFw2Nio37poaElalpXTxDwpSXJsajVIuo6gIyMykZW02peZZly50QxcuUJuNugbo9dQ1QNzwRVkNUZLB213K7YVwbTr23jSblf0rkgIqK5Vm6UKcZWfT/lepRDKACmp1MIqL1fZipKKgsBD5LKzdg2MNMxFjJtzW5eVAVpYFBw5YsXevD777js6vLl2oVEZyMv0tzkF/fw4v8FZYc3cg9HqqoD9qFNXVauu6du+m8hejR5MQa2t/9rIycm/m5dGN/ccfqcdbWhpdaIYOJTckICM7m23trsbXV3naFgjXprh5i3pIVVVKY+yBA+kCrtXSsqWlJJ5/+YWsL7Ls2DXAB2FhMiwWEnGizp3I3hQFbx2LmbJAcw0i09LRhS/EmbCOlpbSTVzs83PngOJiCbm5ATh2TGXP1BU3f1GvTjTMFjFKXK/OPfj4KPXmEhOBAQNsGDKkFGFh/qivVyM/n6xmeXn0AGWzkRDr2pWyM3v1ouNDWM34vPMOWIh1IH76iS60jz/ethOssZHKRXz6KQWU3nYbCbsrfZqyWinIf/9+eorbvZvmz5lDN/oBA6hEg+iB2dBw5dvOtI4LxSWZTIo4EzWxSkqUQPC4OCAlRXFv1taS8Dp2TOkaAJDoi4lRugI0NFDhWllWEgREtXlhQXMsaMo1s9pGS+JMWEaFODt92oqTJyvh7x8Do1GNs2dpXx86pNzIo6IUF7QoihwTo3QIEO2dmPaFClfb0K2bDD8/arN00020f0VIQnY2dQDIzKSsd7Wa9mW3bpT8FB/vbLlmceZ5uFSINTQ04K233sLvfvc7xLkiEKkTce4cZTVOmUJZNleKzUbuws2b6YScPZtq4Vzp0299PVnBjh6li8IPP1DGZY8e5AobMYLM6Gwy71iIGm2Ori9ZVirHC4EmmqhTj0Wla0BAAHUNEMHlhYVUCLihgfZ1ZCTdyKOj6Wbe0EDLiKBjEYMWGOhcM0u4XLkG2pXT1DLar58Nhw5VIyoqEiaT4rIW2Zvl5Up8kiisLIRZVJSyT8LDlV6LwsXJtD/i4SY6WmnJJCyg1dXUHu7YMRJnX3yhdPKIiiLLWc+eijgTopuTcjo2rRZi7777LnpeINCooaEBr7zyCoYPH85CrBXYbFSuwmYDbr21bT3rcnKoPcfp08DixRSTcKUnYUkJWb9On6bA/JoaEnZdu1Ij3UGD+Cnak5AkpR2PY+C4LIs2TVYcPFiD6OjI842yySITGEhiW5YVC5oQaAUFdIwYDLSuyEg6PkSMksGgxKABdMMQVjlqnqvU0eI4mCvHz09Gly70+yUnK6VSxM27pISsosKSVlxM844eJYt3aKgirIXbKySE/hc1z7hxvXtwtHrHxZEHYuJE5YGqqoqs1Dk5dD6mp9ODkY8PnWNdu9L5m5CglEIJCKBjhd3THYNWC7ERI0Zc9H2uut96zp4lS9PMmW1rNVRcTOUjMjOpYGta2pUF/MsyZWvt2UPbtm0buR7HjaMntFGjrl5fSqb9EW1eVCqgulrpGmCzKYHijoVLz50jAR4cTJZRWVY6B4gg84ICOg6FQIuIoMBj4eI0mWg5UQNNrVayC0XZBmGpERMnal8+jqVSunenhyajURFmotG5EGulpfT/L7/QcsHBJMKEoBZxZsKdKQrP8j5xDyL+MzycBNbQoc5Fhqur6dotxNkPP9B8SaL9KCzaiYl0LReNrkV7LhZo7QvHiLkZi4UsWKGhwM03X/l6amtJOG3eDEyfThmSVyLqzGaqfXPggBKXMG0aXcyvvZbKJrCZu3OgUrXccFf03XQUaBUVJND8/elC3707LatWw+7iLC+nm8PevSTwZNlZoEVF0fkg+m/KMt1whJtTVKUXNw3h6uSbxuXh6PICFKtZdTVZy4qLybriWAfr6FHav6JsinBpigb1jsJMp+N94U6aFhkeMoRqRtbVKQ9UpaVUPqOoiDwdv/5KD0UqlRJLKNo2iZZqwrXp70/nI1tFXY9LhZhKpUJsbCz8+E592Zw5I+Hnn4GHH3Yu9NkazGYKpP/iCzJbT5t2ZWUqDAZ6Ij50iOJJzp4lV2RSElWQFuURmM6N6LsZFORsGXXsu+nYOLu8XGmALQQaQAJNxDBRf1L6X5ZJdIkaaJGRJMyqq+kmIrZBCAtHgeZoQeNG6RfH0WqWkEDzGhpIjFVV0U1bFGqurKTrgSg6q1YrrkxR+0pkZoqkDRZm7kejUbI0AcpqT0uja31DgxJ7VlZGNSHPnqWMzV9+IYEmrOVhYbRfo6LIPSos1uIc9PWlsAPe31eGS4VYeHg4tm/f7spVejWyDHzzjRo9elBA5pVy7BjVCjObSTgNGtT6pxa9nqxf2dmUvRkRAdx+O5U+GD1aOZEZ5kI41j9zRJbJ3dW0/Y+4yYeFkYtzxAiy0mg09AQvgs4PHiQrjSwrqfxCAMgyrS8vr3kmZ0iIIhJ8fCTU1qphNnNNrYshYgi7daOHusZGpbdiWZnS9aGmhixmRUW0f1QqEmYxMUp5BeHeFNmaLMw6BpSpSZNjKZwJE0icGQxKo/uKCioKXlJC+//0aQpVsVoVkRYcTGI+LEwR5zodoFJJqKzU2DtCaDQk1tid3Zw2CbG+ffvi+eefv2Bx14yMDDzyyCPIzs5uy9d4LRaLhIMH1Vix4sozlIqKqGhrVhawaBGVJGitJaCyksTX8eOUNHDddSTARoygidOhmbYgSUr8l+OFH6CnbkcLmnBhVlfTU3d8PCWG2GxkQTMYSKCVlACHD5NAkGW68HfpQjeCyEj6zqIiuokAgNWqQnV1CPLyVPZsUhGULsptsAWtOb6+isDq04ce9kSleOFqFt0fhDA7cIButtHRyv4QFjPhygwNFTdrNw+QseNo6XY8T2WZztOGBnqgqq+nSbivS0sVwXbwoBJ2AGihUnVFaKjGnjUdEqL0whWFhkX4gY9P80nEnrbncWK10mQ2K69iMpnoN7j2WtdmFbdJiF0qMN9qtXKD8ItgNKowYIAVQ4Zc2VFWV0fxNlu2UK2w8eNb33tOVN/PzqYnnRtvpCfhMWOoACzvPuZqotU2r5MFUKyYEGfitbycLv4REeTiFHFkKhVdHB0rz1dU0HqCgoSVRgIgwWhUXGyAYkHz9VUsaE2L1XKrGYWmleKFy1gIs+JiJeasqEgRZmo1CTNhIRNZgKLDAwf/d1wkSYk/awmzmc4/MQm3Z3m5GcePV8BiiUJ9vfp8zTt6gKqvV85fSaL97uurWLPFg5u/vzJfJBOIhAIfHzoeVSo6viRJmVpClumBTpbp+iIms1kRl3V1tO2NjTQOg8F5TGKbN2yQXOolavMl5kJCq66uDjt37kQY+7QuiMUi4c47rfD1bf2juNVKTx8iLmz6dHIntAZhTTtyhCxi06eTJWzcOOdYHoZpb3x8mjdIB5ROAmIS8UvnztFTfGIiXVjFBb6xkURZURGQmxuMPXt87GU8HC1oooRHU4EmYtBENwHhZuEsTkKtVoT0NdfQdUkE+587R6K3ulqxmIlG2MKVKcSZsJgJYSbKLPCDYMdHo6GpaVKP0WhDXFwNevQIhySRNclxMhrp/BSxapWVdJw4CqJz52jZxkZnq5QohyPLSu1CQUvHzIWWEa/CKifOeSEGRXmdsDClxl5QEBAeLgNw3cHZaiG2bt06vPLKK+cHIeGxxx7DY4891uKysizj7rvvbtsWejFarYzeva+s3EduLsWFmUxU4Z5aC10+RUXUoujQIQrMvP12SoEeN665+4hhOgoX6iRwoUSBsjK6gMbG2tClSw1iYnzh66uG0ai8/8sv9CrLdAEWAk2cBwUFdL6JJ3fHMhsREUqcTHAwF6pVq5WyCtdcQzdMR4uZEGZVVYrFTAgz4coUMUYiHjAgQEJDg6rZzZTxDERizeXEZja1VonJaqVXm03522ql/8UkrFXC6iXWJ85bUSZHpXKe1GrFstaSe1SjaW4VF0LQVbRaiA0cOBB33XUXZFnGhx9+iNGjRyNBpNycR5Ik+Pv7o3///pg0aZKrttXr8Pe3XlHwakUFWbL27aO4sBEjWuc+KSwkEbZ/P8WWzZxJPu8bbmi9a5NhOgKXShSgYrXViImJhMFAoqC2lrIFGxsVF6fJRAKttJTc/kKg+foqWZzCOlZdTXGVAF2sRScBUXtLxKB15vgz0Zg8PJwyuZtazIqKlJizCwX/h4erYDLpUFqqQo8eSoHZpvua8XwkSbGwdSZaJcTeffddjBkzBsuXLwcAGAwGzJ49G4Pb2qH6Cvjss8/wzjvvIDc3FwEBARg4cCDWrVtnL52xfft2rF27Fvn5+YiNjcWDDz6IGTNmOK3DZDJhzZo1+PLLL1FfX4+hQ4di+fLlSGpSpyE3NxfPPvss9u/fj8DAQNx6661YvHgxtG2MYvfxaW4yvRQmEwmwzZupHdLYsa0TT0KE7dtHLslZsyg4f+xYbmnCeB8iUSA6GoiLM9mL1QIk0BxroYlSG1FR5Jp3FGhWKwmH8nJ6eCkpoXlCoAkLGom+5hmcwr0pYqGCgztnF4GmFjNHYVZe7izMioroerV/vxoWSxhyctSIjaXfOzhYKXESFkauTM6GZTyVVgmxVatWISwsDImJiQCAzz//HNdff327C7HXXnsNGzZswEMPPYQhQ4agqqoKmZmZsFqtAIBff/0VDz/8MO644w4sW7YMu3fvxl/+8hcEBgbiZoeqqc8++ywyMjLw+OOPIyYmBq+//jruvfdebN68GcHnHd41NTWYO3cuEhIS8PLLL6O0tBSrV6+G0WjEihUr2nXcAD2Bf/01XfinTWtdX8qzZ6ny/m+/UUDzjBnUAmnMGG5VxHQ+hEhq6op3FGgiBq2sjG743bpREgtAAk2WlSzOvXtJTNhstGxsrBKcXldHJTYAegAT1jPRQkiIs6CgzlXioakws1gUYSaq/Z87Z0VeXg2MxohmWZldutCk09E6unQhURYSwsKM8RxaJcR0Oh0qRDoS3NPOKC8vD+vWrcOrr76KsWPH2uffdNNN9r9fe+01DBo0CM888wwAYOTIkSgoKMBLL71kF2IlJSX45JNPsHLlStxxxx0AyO06btw4/Oc//8H8+fMBAP/5z39QX1+PdevWIfR85LDVasXTTz+NP/7xj4hpS0+iVlJSQi7JEyeAJ56gemGXS2kpibBff1VE2JgxVKi1s5mBGeZitCTQHBumC4EmGqaLCvMDBjjXQSstJavOnj30WR8fRThcyHoWGEiWM8eSD6IGU2dA9EeMiKCsTIsFKC624sCBGvj7h9kDumtq6MGysNA5K1P8viEhJMxiYpSkD37YZDoqrRJiKSkpePnll5GdnW23GH3++ec4ePDgRT/35JNPXvkWNmHTpk2Ii4tzEmGOmEwm7NmzB48++qjT/ClTpuCrr75CYWEh4uLisHPnTthsNicLWWhoKEaPHo0dO3bYhdiOHTswatQouwgDgMmTJ2PlypXYtWsXbr/9dpeN7WI0NlJM1zffUGB9a5p5i5iy334jd+TMmSzCGKY1XKhhumM/TtG3sayMrGSiD6DopwnQuVhSQudyaSm9FxJClrYuXUiAVVVRkWYhzkRiQFSUEsQeHNw56vv5+NBv0qNHI3r1ssHHR6n8X1JCk6hjVlREiRWOlf+7dqVXUZokOlqxmLEwYzoKrRJiK1euxHPPPYddu3ahoqICkiRh165d2LVr1wU/I0mSS4XYwYMH0bt3b7z66qt47733UFtbiwEDBuCJJ57A4MGDcebMGZjN5mZxXj3P9/zJy8tDXFwc8vLyEBERgZCQkGbLffLJJ/b/8/LymsWW6XQ6REVFIU/4GtqA0Wi8rOUOHZKQnq5B9+7AxIlmhITI9obKF6O2FvjxRxX27FFh3z41br/dguuus2HYMJs9HdjVGM5vmOFyNtDD4LF5JldzbGp181IbFouwnknQ64GqKgllZYCfH9Uf6tVLgizL8PGR0NAgo6xMhVOnJPz0kwSTicRXt24yYmJsiIqSUVEhITubrqe+vvL5uDMZ0dEytNpG1Naqodd7334DnPedv7/ixu3enWJmKQtTQmkpTTU1JIiLiyXk50v49VfpvDCj36tLFxnBwUBEhIyoKBmhoTJ0OvcIM3H9v9z7gCfhzWPTaNxYviIiIgIvvvii/f8+ffrgH//4xwUr618NysvLcfjwYeTk5GDlypXw9/fH66+/jnnz5mHr1q2oqakBQGLJEfG/eF+v19utek2XE8uI5ZquCwBCQkKclrtSiouLL7lMRYUPtm0LQ36+DvPnn4VaXWvvuXcxjEYJv/0WjKysQBw4EISJE8sQF1eP8PBanDzZ5k2/JKdEWXMvhMfmmbhjbGq1UgTVaJRQV6dGfb0adXVqVFb6oKHBByEhKvj6qpCYSPFP1Pxcg7w8LXbt0sJoVEGjkRETY0JEhBnh4Rao1TKsVroZaLUh+OWXeoSE1CAszIKgICuCgqwIDLyyzOyOSGFh4QXfU6nI+hURIZ0XpT7o0sUHPXpoUFurRn29hLIyLY4f1+KXXzRQq2WEh5sQGWlGWJgFwcFWhIRYEB5Ov11wsBVabfuF3lzOfcBT8caxJSVZAbiukGCbCrquWrUKQ4cOddW2XBayLKOhoQH/+te/0KdPHwDA4MGDMX78eLz//vtITU1t1+1pK127dr1ok3STCThxQoVff9Vg1iwLpk/vgsjILpdcr8kEZGaqUFIi4fBhH9xxhwVpaRFISwu76k9+BoMBp06dQkJCAvy9LGKWx+aZdOSxWSxkwamtJWtORYWE0lKgrk6CwQC72JJlGWVlGpw9q8Lhw2Rp8/EBoqMtCAzUo2fPAJjNGpw9S5YzPz8ZgYHy+WbN8vn6a7LHFUo1GAz2kJLW7rvGRnJjVldLKCmRUFYm2V3IRUUBOHtWwsmTQuQKCyS5gIXFkdzB8lUJ/jcajSguLr7kfcAT8eax+fjkuHZ9bfnwbbfdBoDiso4cOYKKigoMGzYM4eHhLtm4ltDpdAgNDbWLMIBiu/r164eTJ09i6tSpAIDa2lqnz+n1egCwuyJ1Oh3q6uqarV+v1zu5K3U6XbN1AWRZa+rWvBL8/Pzg53fhM/zkSWph1KcPMH26FvHxl16nzUYBrFlZVKpi2jRg3DgtJk68/LgyV+Dv748AL62JwWPzTDrq2Joa3UUHAdFgW2RmRkdT9wDH9jBnz1qRnS0hM9MPtbVqaLXUo1PER4mMTZWKYtxEcoEopxES0r7XhSvF39+/1ULM39/ZZWw0OseYlZU5l8s4fZri9zQapSyJqPwvmlqL3yww0HWC9lL3AU/GG8dms7n2SabNLY7effddrFu3zi5W3nrrLYwaNQqVlZWYPHkyHnvsMXtWoiu45pprcObMmRbfa2xsRPfu3aHRaJCXl4cxY8bY3xPxXCJ2LCkpCefOnWsmqPLy8pziy5KSkprFgtXW1qK8vLxZHJqrOXeOguyLioDly4Hk5Mv73JEjlEr/zTfUf3LsWCrW6gkXW4ZhnDsIxMXRPNE9oKYG5y1nVN7Bz08G0IDISB00GjVkmURGQQEl6BgMVBYjPp5KaoSH0/sAWdSCgpSaXCKQ3Vsbcvv5kUDt2pXKkBiNSm/MpsKssJA6KuzdS/FjjpX/HZuYh4Up2a3e+JsxV582CbFPP/0Uzz33HKZOnYrRo0dj2bJl9vfCw8MxcuRIZGRkuFSIjRs3Dps2bUJ2djb6nu/rU1VVhSNHjuDee++FVqtFSkoKvvnmG8ydO9f+uYyMDPTs2RNx569qqampUKlU2Lp1K2bOnAmArFw7d+7E//zP/9g/l5aWhtdff90pVmzLli1QqVQYPXq0y8bVFIuF2g9t3QrceitVz7+cDMe8PGD3buC774Bhw4C0NGpbFBR01TaVYZh2wLF7QGysMr+83IrffqtGVFQUGhqorENoKAmvESNoGZOJRFt+PlnJLRayiAlxVltL1w5RADc4WMRceXeWoWhp1aULCbPGRqUFU2kpTUL0CovZvn30O0VGKtX/hWiOiqLfLDiYfjPOSmcuhzYJsbfffhsTJkzAiy++iKqqqmbv9+/fH++9915bvqIZEydOxMCBA7Fo0SIsWbIEvr6+WL9+PbRaLe666y4AwJ/+9Cfcc889eOqppzB58mTs2bMHX331FdasWWNfT5cuXXDHHXfg+eefh0qlQkxMDN544w0EBwdj9uzZ9uVmz56N9957DwsWLMAf//hHlJaW4vnnn8fs2bOvag2x/HyyaEVFATffTE9hl6KsDMjMpHph0dHAxInAhAlwaZd4hmE6FtRWyWzvGiAamItm26L5dkQEuTUtFrKE1daS1efXX+naodVSJmJcHIkM0d5Jo6EHuagoxQIUGuqdLYZ8fRVx1acPZZU79sosLlYskmfP0nT0KLmKw8LoNxLV/oOClJpwQqgFBHhWfB7TPrRJiJ0+ffqiTb1DQ0NRXV3dlq9ohkqlwvr167Fq1SqsWLECZrMZ1157LT744ANEna/AeO211+Lll1/G2rVr8cknnyA2NhbPPvssJk+e7LSuJ598EoGBgXjxxRdRX1+PYcOG4e2333bKpgwJCcE777yDv/71r1iwYAECAwNxxx13YMmSJS4dlyO1tdSI+NAhYOlSpZL3xairIxG2axddhH/3O3JHtmO9WYZhOgCSpPS4FG5Nm42uK0JUFBeTtScykgSHaJRcUgKcOgX8/DNZ0WJinK1mOTmUBRoQQGJMuDpDQ73TnanRkLiKigJ691ZaMlVVkTtTtGSqrlY6AezZQy7P4GDls8JKJqxmwp3JFjMGaKMQ0+l0LVrCBCdPnrSLI1cSHh6Of/zjHxddZsKECZgwYcJFl9FqtVi6dCmWLl160eV69uyJ//u//2vtZl4RskwxXl9/TS7FyyncajaTcNu7l1og3XsvibDznagYhunkqFRKkHmPHsCQIYq1R1jNiopIIMTHA6NGkaDT64EzZ4CffiLxERBAVrNu3eiBr6CA1h8QQMKia1cSd6Kumk+bo5A7Fo4tmXr2BK69lgQqZWaSEKuoUNyZhYXUCWXvXvo9hYVMtLbSalUwmwNhNkv2bgqBgd4naJmL06bTJC0tDR999JHdJejIiRMn8PHHHzcrhspcnOJiiuGwWqmCfrduF19elik78rffyCV5xx1UNX/AgPbZXoZhPBNHa0+vXjSvvl6x9pSWkustJgYYOJCsZhYLzcvNJRFms9E1Kj6eXHKiZZOvL4kK0c5JuDO9Lc5MkhS3Y48ewODBlBwhBG5ZGU0i+1V0A8jMJIujn58P/PxCkZentjczDwoisebYg7QzNojvTLRJiC1evBizZs3CtGnTMG7cOEiShM8//xyffvoptm7disjISKfAd+bimEyUOv3TT8D8+dRL8lIn36lTFOOxbZuSHXnddXzSMgzTekQygHBpWixKuYfycrKahYeTtd1sJgtReTldh/bto2D36GgSJbGxZBVyjDMTmYdhYTR1sJJuLsHfn6auXYG+fZVG5kKcnT1Lr3V1QGmpFTk5VhQUSMjKos+HheF87TcSr8LNHBWltLcKCmJx5k20SYjFxMRg06ZN+Oc//4mvv/4asizjiy++QGBgIKZOnYpFixbBfDV66HgpublARgZZsy4n07GykuIRdu6kC+ekSdw/kmEY1+Hj4xwjJcvkiqusJJF19iwJs9hYctMJd+apU8D27fR3aCgJt27d6P/jx5WyGRER9FlvTgBwbGQOAMOHUxkSspjZcPBgFbTaQBiNPqipIQtacTF5OurqyE0ZFqb0GxXiLDCQLGchIYpYY7emZ9JmD35ERAT+9re/4W9/+xsqKyths9kQHh4OlUqF1157DS+99BKys7Ndsa1eTU0NBcgWFAArVwKXKlFmNFJc2O7d9LT60ENkEeMyFQzDXC0cXXEJCSQqjEYSZpWVJCDOniXL18CBJNwMBrqu7dlDsWgBAfRZIcxyc8myFhhIYqNrV3oVmYfeiGggHxYmQ6WqR1IS9f5t2jie+pWSy7esrGVxJmLyAgPJSibmC+tmYCDXkOzouDSU8mpW1PdmZBnIzqaaYVOm0JPlxYJcRVzYnj3kyrzvPhJhXS7d+YhhGMal+PmRVSs2lqz5ZrMSZ1ZWRgHr0dGUnSnLFIJRVERlH4qKyILfowdZ9evqqHSPY2ZmRIQEvV6LmBj6Lm90x6nVSmFdgaMwq6khF3BFBf1GdXVKAdrDh0msAco6wsJgD/7391dEbkiI8n9AgPfF7HkqXpbT4pmUlFCAvkYDTJ586ZIT+fkUF7Z9O7UvGjuW3AYMwzDuRqMh4SXEl82mVK8/d46sY5GRwDXXUFKSzUZWtLw8SjgClASAmBggP1+FigodiorUiIwkwRcRQWIjJMR7XXEajbNLE3AWZ7W19HueO0fCrL6efuPycpqysyk+Ta1WslhFW6uAAEWQidIjYl5AAAleb/1dOyIsxNyMxULWrZ07gQceuHS2Y1UVuSS3b6fK+ePGKbEZDMMwHQ2VSin5cM01QEoKiYiKCpoKCkggJCSQ0ABIXIgHTqNRjaCgQBiN1AS9qIjW6e/vXDJDxJmp1e4c7dWlJXFmsZAQE25MkVghxJmjYMvJIeuazUZeFxH8L6xowo3p54fzzc4Vgebnp7x682/sDliIuZkzZyR8+y3VpLnhhosHq5rNdGHas4f+vvlmCs5n8zLDMJ6CY5xZYiI9SNbXkygTRVJLS8nyNWIEYDJZkZdXh/r6AGzbRgIjPFzJzCwpoXWKkhmxsUpQe2io9ycv+fgoYxWI2Dwh0OrqlDi++npKFqiro9+8qooskkeOKEI4KEjpnykEmRBovr50nxLZm2Ke4+Ttv7mrabUQO3LkyGUvW1ZW1trVdypkGfjtNwnZ2cBf/nLpAP1jx6he2K+/AvffTyKMw/IYhvF0RFB59+5UbNZoVIRZXp4NZrMJQUE2DB9Oyzc0UN/HzExaJiiIhFm3bhQ3JYRZUJDSsig0lKw+neHBVZKUhADH9ng2myLChCATAq2hgcSbaI9VUUEiLjeXrGhWK92z/PyUwrPBwfS7BgRQiyxfX3qlSQW93h8mk4SgIMf5JNTE5GkuUKvV9etstRCbMWMGpMv0g8myfNnLdkYsFgnbtvlgzBgy11/sKaKkhKozb98O3HgjNfO+5pr221aGYZj2ws+PRFW3bkDPnjbExFQhOjoGBgNdC4uKyB3Zty8tbzKRi/PQIXrf15dizOLiyCWXna2UzHDsmRkWRiKis6BSKaUuHJFlEr8NDc4Ws+pqEmENDVQjrqGBpqoqmk9CmQScLNO6NBoRZ6aGzRaGQ4fUCAkh4eYowDQacnFqteTydHz18aH3xKvjpFLRqyQpr5KkCDohOcSr2C5ZVibR0kvEKNps9LfFQq9WK1kHLRZ6NRjo9zEY6He44QbXZqK2WoitWrXKdd/eyTGZJFRXS7j1VjKnXwijkUTYrl2UGTlpEseFMQzTedBoZHTpQjf4/v2VQrMVFeTGLCxUYtDEDfbsWeDkSXpPkkiUxcXRZ0Qts6YlM0JDycrT2a6tkqQUonWMPwNIpAgRIqxmBoOSzSlEWmOjspxeD1RVySgtlXHunIQzZ2g5IYQcv1O4PIWlTFjNhJVNWM2ECGtpchRfF9p3jt/tKMSaCjKLhSbH8ZhMJMiEWB0xQnKpN6rVQuy2225z3bd3chobVZgyxYLBg7UXPfEPHaIA/fx8YOFCYPRorgvDMEznxbHQrGNmZkUFWcDOnCFrV48edJOVJLKU5eVRjK3FQg+/cXH0cJufTzf0wECKiRLNzEVzbm/rmdkaVCrFzdlUpAH0+xqNzaeaGiuOH69CSEgALBYfmM0kZoSoMZvJ+lZfT9Y3s5nET00NfV6Iu6Y14YWYEgjLmGMCQdP7qfhfWLsslouLNo1GiX0TQlE0cdfpAH9/GYDr1HonPrzcjyQBEyfaLqqsCwspJuzHH6n3ZGrqpctbMAzDdCYcMzN79QJGjiSrjGNmZmgoCS/R0LyiggTY1q1044+MJHdmbCxZ0xzjzETPzNBQpRYXQ4hivE0TzQwGGUFBdejVywZfXxJgJhOJK/G3EGYmkyLgHC1Qjq5CMQk3oqOrUSwL0P+SpLznKLaEYBNhQEKMObo8m7pFRbaomHx9Xe/OZiHmRvz9bYiLky/4vsGg9JEcOpRKVXAzb4ZhmIsjSSSYQkIoCeq665wzB0VmZteusCcA1NVRa6affiIRp9NR8kDXrmRlkyTFnRkRoSQACHempwWdtycqlWJZulxsNhJYwoJlsSgirKkgE25FwNkFKXC0fol4sqaxZo4CzHFqyWpWWnplv8OFYCHmRrRa2wXLVYjq+ZmZZLqdMoWe8rh+C8MwTOsRQeqOmZmiA4BozRQT49yaqbCQQkNKS+na262bUh4jN1fJTgwOJquZKJgqyj0wV45K1TkyXAEWYm7Fx+fC1rDCQmDfPuo/OWcOmdMd218wDMMwV46fH1m7unZ1TgAQHQAKC0lc9e1L78kyCbLTp+nabDSSKzQujtZRXEzCTKMhwRceTsJOCDOdjh+kmZZhIeZGLhQoaDBQvbAdO4DBg7mFEcMwzNXGMQEgOZmEl17v7M6MiqIEgJEj6f36euWh+dw5EmFxcWQ5i4igrE3RBSAwkISZsJqxMGMELMQ6IEeOULmKc+eAuXOpujTHHzAMw7QfjnFmiYkUS2Y0kiirqqLCsUVFZDXr10+JWyopoVgz0QElLIzcmV26KMVm1WoR+K2CyRQAWZYQHa0kAnS28hmdHRZiHYziYmD/fuo9OXMmcP31dHIyDMMw7sXPj0RVbCy5M0XZDOHSFFazpCTKDrTZyGpWXEydUYqLyZIWFaXULquvD0BlpcrecFt0AxClM0RDbhZn3gsLsQ6EyUQibMcOqo1zww3skmQYhumoOJbN6NmTsjNFEkBVFXk1iorIVSlizQCqlVVUBBw86IOzZ0Ph76+2W82io+k9kaXp70/iLDpaEWci8YBdm94BC7EORE4OFW4tKgL+/Gc6qdklyTAM4zk4JgEAZAGrrVUsZ2Vl5L6MiwOSk60oLq5AdHQM9Ho1ioooQUuvJ5EVE0MCLCpKqW2mViuNt8PDKeYsOFhpws01zjwPFmIdhMpKCvj84Qdg+nRySXKWJMMwjGcjSYqLsXt3mme1klWsuNiKAwdqERgYhepqICGBakaK+lhVVeTOPHCArGuyrNQwEwVmAXpg12iUpICoKAppEZazwEAup9GRYSHWAbDZgIMHySXZowe5JPv0cfdWMQzDMFcDtZqsWX5+MoxGA/r2tUGrJXFWU0PWs7IymhISKJNelNCoraUyGnl5JNLMZoohExmf4eHkVQGUWlxCoEVEKK5NUQ2fkwPcDwuxDsCpUxQbduwYsHgxZUl25t5mDMMwnQ0fHxJKjv0crValuXZNDVnFSkvJsta/P4kwUYG+ooKE2/799LfNRu7K6GhlvQUFSpV50U/Rz4+8L8KCJvpKBgTQeyzSrj58u3czBgOdOD/+SPXCRo7kXpIMwzAMWc7CwpzDVGSZ2jHp9TQJ61lVFdDQQMkCwnrW2EjirawMOHGClgXIChYZSa7N8HCykonWP5IEaLVKw+uQEFouIEDptyj6L2q1LNRcAQsxN3P8uIS9e+mJ5qabgEGD3L1FDMMwTEdFkpTg/G7dlPlmM7kt9Xp6FYkBej098BuNZGEDKEO/ulppfF5aSqJNlkl0RUQoDc4DAxWBJppja7WKWHNMFPD1VQSczQY0Nkr2HpDMhWEh5kZsNglZWSpkZgKzZ5NLkgMqGYZhmNai0SilNBxpbCQLWm0tvdbUAOXlJMSMRsWCJkSawaC0eTpxgl6FSPPxUdyYIgEhOJgEmiwrWf4UWqNGZWUocnJU0OlI0AmXp0ZDk1arvPr40N+i2XZHqBgg3L5mM4lXMalUrg0fYiHmRsxmCT//LCEpCUhLo6BMhmEYhnEVwkrlGHsGkPCqq6Opvp4mYSWrq1NEmugYYLMpblFRiuPECVpeCDWALGM6HeDnJ8Fi8UNDg+TUBN1mUyxsAIk4Mfn4NLe6CdHm66sINbVacaU6/i1o6i4V2ybLNInxiMliaS62jEaaZ7XS+0KsWizAhAmuLRPCQsyNmEwSTp5U49FHqX1GR3gCYBiGYbwftVpp4dQUs5nizerr6bWhQamFJixpJhMJMBGPJlyQjY20fFUVUFAgobBQhWPHSMCJgrbCeiYsZIGBJLSEu9PR9anVKoVrHd2ckuRshWs6v6XYNSHIHP8Wr0LMyTJtp+MYxWQ0kqv3+utdGxjHQsyNmEwqpKVZMWqUqpk5mWEYhmHcgUZzYZEmkgAMBudJiBQRo1ZXZ0N4eD0iIoKhUvnYLWpCTEkSfcZgIOEmxE5DA7lGxTobGkgYtiSiHBHCy1GAiQxRgRCNYp6jCHNc3jFzVCQpREQoXQ4CA2UArhNjLMTczLhxVvTrp3H3ZjAMwzDMJZEk57IXLSHLQHW1FVlZlejRIwoqlbN1yWgkC1lDAwmuxsbmLkDhEgWcLWGOQk68XsgK1tTqJVyiwkXpuD5hWXMUb8L1qdEorlMRz+ZKPE6Ibdq0CU888USz+fPnz8ejjz5q///jjz/Gm2++ibNnzyIxMRFLlizBuHHjnD5TW1uLVatW4bvvvoPZbMaYMWPw5JNPIjo62mm5ffv24e9//zuys7MRERGBOXPmYP78+ZDamLfr52fDtdfKHKDPMAzDeA2SRG7FoCAboqPJqnQxrFYlKF5MQpQ5TkKgickxhkt0IxCWN0erWdN4NNHH03ESQkv8LWLThPgSk48PcOiQa38vjxNigjfffBPBwcH2/2Mcim9t3rwZy5cvx0MPPYSRI0ciIyMDDz/8MD744AMMGTLEvtzixYtx8uRJPPXUU/D19cXatWsxf/58fPrpp/A5L3lPnz6N+++/H6NHj8bixYtx/PhxvPDCC1Cr1bj//vvbNAat1oaEhBZsrAzDMAzTSRACqbMaJTxWiPXv3x/hFwiseumllzB16lQsXrwYADBy5Ejk5OTglVdewYYNGwAA+/fvx86dO7Fx40akpqYCABITEzFlyhRs3boVU6ZMAQBs3LgRYWFh+Oc//wmtVotRo0ahsrISr7/+Ou6++25otdorHoNGI3OAPsMwDMN0YrxOBhQUFODUqVOYPHmy0/wpU6YgMzMTJpMJALBjxw7odDqMHj3avkxSUhL69u2LHTt22Oft2LEDEyZMcBJcU6ZMgV6vx/79+9u0rSIThGEYhmGYzonHWsSmTZuGqqoqxMbGYtasWXjggQegVquRl5cHgKxbjvTs2RNmsxkFBQXo2bMn8vLykJiY2CzOKykpyb6OhoYGFBcXIykpqdkykiQhLy8PKSkpbRqHwWBo0+c7ImJMPDbPgsfmmXjz2ADvHh+PzTORZbnNMeKOeJwQi4qKwsKFCzF48GBIkoTt27dj7dq1KC0txYoVK1BTUwMA0Ol0Tp8T/4v39Xq9U4yZICQkBIcPHwZAwfwtrUur1cLf39++rrZw6tSpNq+jo8Jj80x4bJ6JN48N8O7x8dg8j7aEJTXF44TYmDFjMGbMGPv/qamp8PX1xTvvvIOHHnrIjVt2ZSQkJMDflSV6OwAGgwGnTp3isXkYPDbPxJvHBnj3+HhsnsmJEydcuj6PE2ItMXnyZLz11lvIzs5GyPkKdLW1tYiKirIvo9frAcD+vk6nQ0lJSbN11dTU2JcRFjNhGROYTCYYDAb7cm3B398fAZfK7fVQeGyeCY/NM/HmsQHePT4em2fhSrck4IXB+iKeS8R5CfLy8qDRaBAfH29fLj8/H3KTEr35+fn2dQQEBKBr167N1iU+1zR2jGEYhmEYpjV4hRDLyMiAWq1Gv379EB8fj4SEBGzZsqXZMqNGjbL7ddPS0lBTU4PMzEz7Mvn5+Th69CjS0tLs89LS0rBt2zaYzWandel0OgwdOvQqj4xhGIZhGG/G41yT999/P1JSUpCcnAwA2LZtGz766CPcc889dlfkwoUL8eijj6J79+5ISUlBRkYGsrKy8P7779vXM3ToUKSmpmLZsmVYunQpfH19sWbNGiQnJ2PSpElO35eeno5HHnkEc+bMQU5ODjZu3IglS5a4NFiPYRiGYZjOh8cJscTERHz66acoKSmBzWZDQkICli1bhrvvvtu+zLRp02AwGLBhwwasX78eiYmJWLduXTML1tq1a7Fq1SqsWLECFosFqampePLJJ+1V9QGgR48e2LhxI1avXo0HH3wQ4eHhWLRoEebNm9duY2YYhmEYxjvxOCH25JNPXtZyM2fOxMyZMy+6THBwMJ577jk899xzF11u2LBh+Oijjy57GxmGYRiGYS4Hr4gRYxiGYRiG8URYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJjxdi9fX1SEtLQ3JyMg4dOuT03scff4ybbroJAwcOxC233ILvv/++2edra2uxbNkyjBgxAkOHDsWiRYtQVlbWbLl9+/bhzjvvxKBBgzBu3DisX78esixftXExDMMwDOP9eLwQe/XVV2G1WpvN37x5M5YvX47Jkydjw4YNGDJkCB5++GEcOHDAabnFixdj165deOqpp/DCCy8gPz8f8+fPh8VisS9z+vRp3H///YiKisIbb7yBuXPn4qWXXsJbb711tYfHMAzDMIwX4+PuDWgLubm5+PDDD7F06VKsXLnS6b2XXnoJU6dOxeLFiwEAI0eORE5ODl555RVs2LABALB//37s3LkTGzduRGpqKgAgMTERU6ZMwdatWzFlyhQAwMaNGxEWFoZ//vOf0Gq1GDVqFCorK/H666/j7rvvhlarbb9BMwzDMAzjNXi0RezZZ5/F7NmzkZiY6DS/oKAAp06dwuTJk53mT5kyBZmZmTCZTACAHTt2QKfTYfTo0fZlkpKS0LdvX+zYscM+b8eOHZgwYYKT4JoyZQr0ej32799/NYbGMAzDMEwnwGOF2JYtW5CTk4MFCxY0ey8vLw8Amgm0nj17wmw2o6CgwL5cYmIiJElyWi4pKcm+joaGBhQXFyMpKanZMpIk2ZdjGIZhGIZpLR7pmjQYDFi9ejWWLFmCoKCgZu/X1NQAAHQ6ndN88b94X6/XIzg4uNnnQ0JCcPjwYQAUzN/SurRaLfz9/e3rastYvA0xJh6bZ8Fj80y8eWyAd4+Px+aZyLLczIDTFjxSiL322muIiIjAjBkz3L0pbebUqVPu3oSrBo/NM+GxeSbePDbAu8fHY/M8XBkb7nFCrKioCG+99RZeeeUVu7WqoaHB/lpfX4+QkBAAZM2Kioqyf1av1wOA/X2dToeSkpJm31FTU2NfRljMxHcJTCYTDAaDfbkrJSEhAf7+/m1aR0fDYDDg1KlTPDYPg8fmmXjz2ADvHh+PzTM5ceKES9fncUKssLAQZrMZDz74YLP37rnnHgwePBgvvvgiAIoBc4ztysvLg0ajQXx8PACK88rMzGxmZszPz0fv3r0BAAEBAejatWuzWLD8/HzIstwsdqy1+Pv7IyAgoE3r6Kjw2DwTHptn4s1jA7x7fDw2z8KVbknAA4P1+/bti3fffddpeuKJJwAATz/9NFauXIn4+HgkJCRgy5YtTp/NyMjAqFGj7CbFtLQ01NTUIDMz075Mfn4+jh49irS0NPu8tLQ0bNu2DWaz2WldOp0OQ4cOvZrDZRiGYRjGi/E4i5hOp0NKSkqL7/Xv3x/9+/cHACxcuBCPPvoounfvjpSUFGRkZCArKwvvv/++ffmhQ4ciNTUVy5Ytw9KlS+Hr64s1a9YgOTkZkyZNsi93//33Iz09HY888gjmzJmDnJwcbNy4EUuWLOEaYgzDMAzDXDEeJ8Qul2nTpsFgMGDDhg1Yv349EhMTsW7dumYWrLVr12LVqlVYsWIFLBYLUlNT8eSTT8LHR/lpevTogY0bN2L16tV48MEHER4ejkWLFmHevHntPSyGYRiGYbwIrxBiKSkpOH78eLP5M2fOxMyZMy/62eDgYDz33HN47rnnLrrcsGHD8NFHH7VpOxmGYRiGYRzxuBgxhmEYhmEYb4GFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwbkKSZVl290Z0Rvbt2wdZlqHRaCBJkrs3x6XIsgyz2cxj8zB4bJ6JN48N8O7x8dg8E5PJBEmSMGzYMJesz8cla2FajTgwve0ABWhMWq3W3ZtxVeCxeSY8Ns/Fm8fHY/NMJEly6b2bLWIMwzAMwzBugmPEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzE2pnc3Fzcd999GDJkCEaPHo3nn38eJpPJ3ZvVak6fPo0VK1bg1ltvRb9+/TBt2rQWl/v4449x0003YeDAgbjlllvw/ffft/OWtp6vv/4af/rTn5CWloYhQ4bg1ltvxSeffAJZlp2W88Sx/fjjj/jDH/6AkSNHYsCAAZgwYQJWrVqF2tpap+W2b9+OW265BQMHDsRNN92ETz/91E1bfGXU19cjLS0NycnJOHTokNN7nrjfNm3ahOTk5GbTCy+84LScJ45N8Nlnn+F3v/sdBg4ciJSUFDzwwAMwGo329z3xmLz77rtb3G/JycnYvHmzfTlP3W/btm3DzJkzMXToUKSmpuJ///d/UVBQ0Gw5Txzf999/j9tuuw0DBgzA2LFj8dJLL8FqtTZbziXHpcy0G9XV1fLo0aPl3//+9/KOHTvkjz/+WB4+fLj89NNPu3vTWs23334rp6WlyQsXLpSnTZsmT506tdkyX331lZycnCyvWbNGzszMlJcvXy7369dP3r9/f/tvcCuYNWuWvGTJEnnz5s3yzz//LL/wwgtynz595Jdfftm+jKeO7fPPP5f//ve/y1u2bJF3794tv/fee/KIESPk++67z77M3r175b59+8rLly+XMzMz5TVr1sjJycny119/7cYtbx3PP/+8fP3118u9e/eWs7Ky7PM9db99+umncu/eveUdO3bI+/fvt09nz561L+OpY5NlWX711VfloUOHym+88Ya8Z88eecuWLfLKlSvluro6WZY995g8ceKE0/7av3+/vHjxYrlfv35yRUWFLMueu992794t9+nTR3788cflXbt2yZs3b5YnTZokT5w4UTYYDPblPHF8+/fvl/v06SM/8sgj8o4dO+S33npLHjRokLx69Wqn5Vx1XLIQa0def/11eciQIXJVVZV93n/+8x+5b9++cklJifs27AqwWq32v5cuXdqiEJs0aZL85z//2WnenXfeKT/wwANXffvagrhAOvLkk0/Kw4YNs4/bU8fWEv/973/l3r1724/BefPmyXfeeafTMn/+85/lyZMnu2PzWs3JkyflIUOGyP/+97+bCTFP3W9CiLV0bAo8dWy5ublyv3795B9++OGCy3j6MenI+PHj5fnz59v/99T9tnz5cnn8+PGyzWazz8vMzJR79+4t79271z7PE8c3b948+bbbbnOat3HjRrl///5yeXm503KuOC7ZNdmO7NixA6NGjUJoaKh93uTJk2Gz2bBr1y73bdgVoFJd/NApKCjAqVOnMHnyZKf5U6ZMQWZmZod2x4aHhzeb17dvX9TV1aGhocGjx9YS4ng0m80wmUzYs2cPbr75ZqdlpkyZgtzcXBQWFrphC1vHs88+i9mzZyMxMdFpvrftN0c8eWybNm1CXFwcxo4d2+L73nBMCvbt24fCwkJMnz4dgGfvN4vFgsDAQEiSZJ8XHBwMAPYwDk8dX3Z2NkaPHu00LzU1FWazGTt37gTg2uOShVg7kpeXh6SkJKd5Op0OUVFRyMvLc9NWXR3EeJreDHv27Amz2dxiHEFH5rfffkNMTAyCgoK8YmxWqxWNjY04cuQIXnnlFYwfPx5xcXE4c+YMzGZzs+O0Z8+eANDhj9MtW7YgJycHCxYsaPaeN+y3adOmoW/fvpgwYQLeeOMNe8yKJ4/t4MGD6N27N1599VWMGjUKAwYMwOzZs3Hw4EEA8Phj0pGvvvoKAQEBmDBhAgDP3m+33347cnNz8cEHH6C2thYFBQX45z//iX79+mHYsGEAPHd8jY2N0Gq1TvPE/7m5uQBce1z6tGVjmdah1+uh0+mazQ8JCUFNTY0btujqIcbTdLzif08a76+//oqMjAwsXboUgHeMbdy4cSgtLQUAjBkzBi+++CIAzx6bwWDA6tWrsWTJEgQFBTV735PHFhUVhYULF2Lw4MGQJAnbt2/H2rVrUVpaihUrVnj02MrLy3H48GHk5ORg5cqV8Pf3x+uvv4558+Zh69atHj02RywWC77++muMHz8eAQEBADz7mLz22muxbt06PPLII3jmmWcAkOfgzTffhFqtBuC54+vRoweysrKc5h04cACAss2uHBsLMYa5CCUlJViyZAlSUlJwzz33uHtzXMb69ethMBhw8uRJvPbaa3jooYfw9ttvu3uz2sRrr72GiIgIzJgxw92b4nLGjBmDMWPG2P9PTU2Fr68v3nnnHTz00ENu3LK2I8syGhoa8K9//Qt9+vQBAAwePBjjx4/H+++/j9TUVDdvoWvYtWsXKisrL5hh7mns27cP/+///T/MmjULN9xwA6qrq/Hqq6/iwQcfxIcffgg/Pz93b+IVc9ddd+Evf/kL3nnnHdx66604efIk1q5daxeYroZdk+2ITqdrViYAIOUcEhLihi26eojxNB2vXq93er8jo9frMX/+fISGhuLll1+2x8V5w9j69OmDoUOHYubMmXj11VexZ88efPvttx47tqKiIrz11ltYtGgRamtrodfr0dDQAABoaGhAfX29x47tQkyePBlWqxXZ2dkePTadTofQ0FC7CAMobrFfv344efKkR4/Nka+++gqhoaFOwtKTx/bss89i5MiRePzxxzFy5EjcfPPNWL9+PY4ePYovvvgCgOeO7/bbb8fcuXPx/PPPIyUlBffeey9mz56NkJAQREdHA3Dt2FiItSNJSUnN/Ma1tbUoLy9v5mf2dMR4mo43Ly8PGo0G8fHx7tisy8ZoNOKPf/wjamtr8eabb9qDUAHPH1tTkpOTodFocObMGXTv3h0ajabFsQHosMdpYWEhzGYzHnzwQVx33XW47rrr7Jaie+65B/fdd5/X7TdHPHls11xzzQXfa2xs9Nhj0hGj0YjvvvsON998MzQajX2+J++33NxcJ/EMAF26dEFYWBjOnDkDwHPHp1KpsGzZMuzevRtffPEFfv75Z8yaNQuVlZUYPHgwALj0uGQh1o6kpaXh559/titmgIKLVSpVswwNTyc+Ph4JCQnYsmWL0/yMjAyMGjWqWSBkR8JisWDx4sXIy8vDm2++iZiYGKf3PXlsLXHw4EGYzWbExcVBq9UiJSUF33zzjdMyGRkZ6NmzJ+Li4ty0lRenb9++ePfdd52mJ554AgDw9NNPY+XKlV633zIyMqBWq9GvXz+PHtu4ceNQXV2N7Oxs+7yqqiocOXIE/fv399hj0pHt27ejoaHBni0p8OT9Fhsbi6NHjzrNKyoqQlVVFbp16wbAs8cHUBZonz59oNPp8N577yEuLg7XX389ALj0uOQYsXZk9uzZeO+997BgwQL88Y9/RGlpKZ5//nnMnj272c2+o2MwGPDjjz8CoJOvrq7OfrKNGDEC4eHhWLhwIR599FF0794dKSkpyMjIQFZWFt5//313bvolefrpp/H999/j8ccfR11dnT1IEwD69esHrVbrsWN7+OGHMWDAACQnJ8PPzw/Hjh3Dxo0bkZycjIkTJwIA/vSnP+Gee+7BU089hcmTJ2PPnj346quvsGbNGjdv/YXR6XRISUlp8b3+/fujf//+AOCx++3+++9HSkoKkpOTAVBF848++gj33HMPoqKiAHju2CZOnIiBAwdi0aJFWLJkCXx9fbF+/XpotVrcddddADzzmHQkPT0dsbGxGD58eLP3PHW/zZ49G8899xyeffZZjB8/HtXV1fY4TcdyFZ44vqysLPzyyy/o27cvjEYjtm/fji+++AIbNmxwihNz2XF5pQXPmCvj5MmT8ty5c+VBgwbJo0aNklevXi03Nja6e7NaTUFBgdy7d+8Wp927d9uX++ijj+Qbb7xR7t+/vzxt2jR5+/btbtzqy2PcuHEXHFtBQYF9OU8c2xtvvCHfeuut8tChQ+UhQ4bIU6dOldeuXSvX1tY6Lffdd9/J06ZNk/v37y/feOONHEokpgAABb9JREFU8scff+ymLb5ydu/e3aygqyx75n7761//Kk+aNEkeNGiQPGDAAHnatGnyO++841RMU5Y9c2yyTEWUH330UXn48OHyoEGD5Hnz5sknTpxwWsZTj8nq6mq5f//+8vPPP3/BZTxxv9lsNvnDDz+Up0+fLg8ZMkQePXq0vGDBAvnkyZPNlvW08R09elSeOXOmPGTIEHnIkCHy3Llz5X379rW4rCuOS0mWmzTQYxiGYRiGYdoFjhFjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhLoMPPvgAycnJmDlzprs3hWEYL4KFGMMwzGWQnp6Obt26ISsrC6dPn3b35jAM4yWwEGMYhrkEBQUF2L9/P5544gmEh4cjPT3d3ZvEMIyXwEKMYRjmEqSnpyMkJARjx47FTTfd1KIQq6qqwmOPPYZhw4bh2muvxdKlS3Hs2DEkJydj06ZNTsvm5uZi0aJFGDFiBAYOHIjbb78d27Zta6/hMAzTgWAhxjAMcwnS09Nx4403QqvVYtq0aTh16hSysrLs79tsNvzpT3/C5s2bcdttt2HJkiUoLy/H0qVLm63rxIkTuPPOO5Gbm4v58+fj8ccfR0BAABYsWIBvv/22PYfFMEwHwMfdG8AwDNOROXz4MPLy8rB8+XIAwPDhw9GlSxekp6dj0KBBAIDvvvsO+/fvx7JlyzB37lwAwJw5c3Dfffc1W9/f/vY3dO3aFZ9++im0Wi0A4K677sKcOXPwwgsv4MYbb2ynkTEM0xFgixjDMMxFSE9PR2RkJFJSUgAAkiRhypQpyMjIgNVqBQD89NNP0Gg0mDVrlv1zKpUKv//9753WVV1djd27d2Py5Mmoq6tDZWUlKisrUVVVhdTUVJw6dQqlpaXtNziGYdwOW8QYhmEugNVqxebNm5GSkoLCwkL7/EGDBuGtt95CZmYmUlNTcfbsWURFRcHf39/p8927d3f6/8yZM5BlGf/617/wr3/9q8XvrKioQExMjOsHwzBMh4SFGMMwzAXYvXs3ysvLsXnzZmzevLnZ++np6UhNTb3s9dlsNgDAvHnzMGbMmBaXaSreGIbxbliIMQzDXID09HRERERgxYoVzd779ttv8e233+Lpp59GbGws9uzZA4PB4GQVO3PmjNNn4uPjAQAajQbXX3/91d14hmE8Ao4RYxiGaQGj0YitW7fihhtuwM0339xs+v3vf4/6+nps374dqampMJvN+Oijj+yft9ls+OCDD5zWGRERgREjRuC///0vysrKmn1nZWXlVR8XwzAdC7aIMQzDtMD27dtRX1+P8ePHt/j+kCFDEB4eji+//BKvvPIKBg0ahL///e84c+YMkpKSsH37dtTU1ACgAH/BypUrcdddd2H69OmYNWsW4uPjce7cORw4cAAlJSX48ssv22V8DMN0DFiIMQzDtMCXX34JX19fjB49usX3VSoVbrjhBqSnp0Ov1+ONN97A3/72N3z22WdQqVS48cYbsWDBAsyZMwe+vr72z11zzTX49NNPsW7dOnz22Weorq5GeHg4+vXrhwULFrTX8BiG6SBIsizL7t4IhmEYb+S7777DggUL8OGHH2L48OHu3hyGYTogHCPGMAzjAoxGo9P/VqsV7733HoKCgtC/f383bRXDMB0ddk0yDMO4gL/+9a8wGo0YOnQoTCYTtm7div379+PPf/4z/Pz83L15DMN0UNg1yTAM4wLS09Px9ttv4/Tp02hsbESPHj0wZ84c/OEPf3D3pjEM04FhIcYwDMMwDOMmOEaMYRiGYRjGTbAQYxiGYRiGcRMsxBiGYRiGYdwECzGGYRiGYRg3wUKMYRiGYRjGTbAQYxiGYRiGcRMsxBiGYRiGYdwECzGGYRiGYRg38f8B+FHpxU0YOrkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Running IDP 1 Left-Lateral-Ventricle :\n", + "Making predictions with dummy covariates (for visualisation)\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Writing outputs ...\n", + "metrics: {'RMSE': array([4205.49266088]), 'Rho': array([0.45898577]), 'pRho': array([5.62632393e-25]), 'SMSE': array([0.81397727]), 'EXPV': array([0.19814613])}\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1aklEQVR4nOydd3hUZdr/vzNJJr33kEogECAQehVpgjRBimJBEURc209XfXfXd4u776q77roqoC4gWLFhQwURxYIgIEqTXhJI72VmMn3O+f1x+8wkZJLMZCbJJNyf65orZc6cec6ZM+d8z33fz/dWyLIsg2EYhmEYhul0lF09AIZhGIZhmCsVFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBQoxhGIZhGKaLYCHGMAzDMAzTRbAQYxiGYRiG6SJYiDEMwzAMw3QRLMQYhmEYhmG6CBZiDMN4lKqqKjzwwAMYPXo0+vXrh1dffbWrh+Q19OvXD2vWrOnqYXiUAwcOoF+/fjhw4IBLr1uzZg369evXQaNimO4DCzGGYfDhhx+iX79++OWXX9xe11NPPYXvv/8ed911F55++mlcddVV+O6771wSIEVFRejXrx82btzo9ngAYPPmzfjwww89sq6OZO7cuZg0aRJa6zy3ZMkSjBs3DhaLxePv/+mnn7JwZphOhoUYwzAeZf/+/Zg6dSpWrFiBefPmITMzE9999x3Wrl3bZWN6++238dFHH3XZ+zvL3LlzUVpaip9++snh80VFRThy5AhmzZoFX19fj7//Z599htdff92l14wcORLHjh3DyJEjPT4ehrkSYCHGMIxHqa6uRlhYWFcPo8OxWCwwmUweXefcuXOhUCjw6aefOnx+27ZtkGUZc+fO9ej7tgej0QhJkqBUKuHv7w+lki8nDNMe+JvDMIxTlJeX4w9/+APGjRuHQYMGYfbs2Xj//fdtz4v0pizL2Lx5M/r164d+/frh97//PTZv3gwAtv95qjbogw8+wG233YaxY8di0KBBmDVrFt56660my0yZMgXnzp3Djz/+aHvvpUuX2p5Xq9V44okncPXVV2PQoEG45pprsH79ekiSZFumcar01VdfxbRp05CTk4MLFy7AZDLh+eefx4IFCzB8+HDk5ubi5ptvxv79+13ensTERIwcORJffPEFzGZzs+c/++wzpKamYsiQIQDa/kwAew3X9u3b8dJLL2HixInIycnB7bffjkuXLtmWW7p0Kb799lsUFxfb9tOUKVOarGPbtm149tlncdVVV2HIkCHQarUt1ogdPXoUK1euxMiRI5Gbm4u5c+fitddea3MfbN26FQsWLMDgwYMxatQoPPTQQygtLXV5XzJMd8HzsW2GYXocVVVVuOGGG6BQKHDLLbcgKioKu3fvxv/+7/9Cq9Vi2bJlGDlyJJ5++mn8z//8D8aPH4958+YBAFJTU1FRUYG9e/fi6aef9ui43n77bfTt2xdTpkyBr68vvvnmG/z1r3+FLMu45ZZbAACPPfYY/u///g9BQUG4++67AQAxMTEAAL1ej1tvvRXl5eVYsmQJEhMTcfjwYfznP/9BZWUl/vd//7fJ+3344YcwGo244YYboFKpEB4eDq1Wiy1btmDOnDlYvHgxGhoa8P777+POO+/Eli1bkJ2d7dI2zZ07F3/605+wZ88eTJ482fb/M2fO4OzZs7j33nsBOPeZNGbDhg1QKBRYvnw5tFotXn75ZTzyyCPYsmULAODuu++GRqNBWVkZ/vCHPwAAgoODm6zjxRdfhJ+fH1asWAGTyQQ/Pz+H27B3716sWrUKcXFxuO222xATE4MLFy7g22+/xe23397itr/00kt4/vnnMXPmTCxatAg1NTV48803ccstt+Djjz++IiKtzBWIzDDMFc8HH3wgZ2VlyceOHXP4/GOPPSaPHz9erqmpafL/hx56SB4+fLis1+tt/8vKypL/+te/Nlnur3/9q5yVleX0eAoLC+WsrCz55ZdfbnW5xu8rWL58uTx16tQm/5s9e7Z86623Nlv2hRdekHNzc+X8/Pwm///3v/8tZ2dnyyUlJU3GM2zYMLm6urrJshaLRTYajU3+V19fL48bN07+wx/+0OT/WVlZ8urVq1vdprq6OnnQoEHyb3/722ZjysrKkvPy8mRZdv4z2b9/v5yVlSXPnDmzyThfe+01OSsrSz5z5oztf3fddZc8efLkZmMS65g6dWqzfS6e279/v21/TJkyRZ48ebJcX1/fZFlJkmy/r169uskxUVRUJGdnZ8svvfRSk9ecOXNGHjBgQLP/M0xPgVOTDMO0iizL2LlzJ6ZMmQJZllFTU2N7TJgwARqNBidOnOiSsQUEBNh+12g0qKmpwahRo1BYWAiNRtPm63fs2IHhw4cjLCysyXaNGzcOVqsVBw8ebLL89OnTERUV1eR/Pj4+UKlUAABJklBXVweLxYJBgwbh5MmTLm9TeHg4rr76anz99dfQ6XQA6DPYtm0bBg0ahIyMjHZ9JgsWLLCNEwBGjBgBACgsLHR6bPPnz2+yzx1x8uRJFBUV4bbbbmsWwVIoFC2+7ssvv4QkSZg5c2aT7YmJiUFaWprL9hgM013g1CTDMK1SU1MDtVqNd999F++++26Ly7R33Var1fZ3UFBQs3RYa/z8889Ys2YNjhw5Ar1e3+Q5jUaD0NDQVl9/6dIlnDlzBmPHjm1xfI1JTk52uNxHH32ETZs2IT8/v0ltV0vLA4DJZEJ9fX2T/0VFRcHHxwdz587Fl19+iV27dmHu3Lk4dOgQiouLcdttt9nG5epnkpSU1ORvIZLUanWLY7yc1rZHIIRdVlaW0+sFgIsXL0KWZUyfPt3h8x0xS5RhvAE+shmGaRVRtH7dddfh+uuvd7hMe4vvFy1ahOLiYtvf9913H+6//36nXltQUIBly5ahd+/e+P3vf4/ExET4+fnhu+++w6uvvtqk2L4lJEnC+PHjceeddzp8Pj09vcnfjqJBW7duxe9//3tMmzYNK1asQHR0NHx8fLBu3bpWo02HDx+2CSvBrl27kJycjMmTJyM0NBSfffYZ5s6di88++ww+Pj6YPXu2bdyAa59JS7Ma5VY8yy6nrWiYO0iSBIVCgQ0bNsDHx6fZ80FBQR323gzTlbAQYximVaKiohAcHAxJkjBu3Lh2raOllNS//vUvGI1G298pKSlOr/Prr7+GyWTCSy+91CTa4yiF1dL7p6amQqfTtXu7AOCLL75ASkoK1q5d2+R9Vq9e3err+vfvj1deeaXJ/2JjYwEAKpUKM2bMwNatW1FVVYUdO3ZgzJgxtuc98Zk4orXUobOIz/Ds2bMujS01NRWyLCM5ORkZGRluj4NhugtcI8YwTKv4+PhgxowZ+OKLL3D27NlmzzuTlgwMDATQPA02fPhwjBs3zvZwRYiJqEnjiI5Go8EHH3zg8P0dpeBmzpyJw4cP4/vvv2/2nFqtdsq93tE4jh49iiNHjrT6uvDw8CbbPm7cOPj7+9uenzt3LsxmM/785z+jpqamiXeYJz4TRwQGBjpVW9caAwcORHJyMl5//fVm+7y16Nv06dPh4+ODtWvXNltOlmXU1ta6NS6G8VY4IsYwjI0PPvjAoSi57777cODAAdxwww1YvHgx+vTpg/r6epw4cQL79u3Djz/+2Op6Bw4cCAD4+9//jgkTJjRJs7XGvn37mkTMBNOmTcP48ePh5+eHu+++G0uWLEFDQwO2bNmC6OhoVFZWNnv/t99+Gy+++CLS0tIQFRWFsWPHYsWKFfj6669x99134/rrr8fAgQOh1+tx9uxZfPHFF9i1a1ez4vzLmTRpEnbu3Il7770XkyZNQlFREd555x306dPHVmzfHkaNGoWEhATs2rULAQEBuOaaa5o8//DDD7v1mThi4MCB2L59O5566ink5OQgKCjI5iXmLEqlEo8//jh+85vfYP78+ViwYAFiY2ORl5eH8+fPt9i2KjU1FQ8++CCeeeYZFBcXY9q0aQgODkZRURG++uor3HDDDVixYoXL28Qw3g4LMYZhbLz99tsO/79gwQJs2bIFL7zwAr788ku8/fbbiIiIQJ8+ffDII4+0ud7p06dj6dKl2LZtGz755BPIsuyUEPv+++8dCsNevXph3rx5WL16NZ577jn885//RExMDG666SZERUXhsccea7L8vffei5KSErz88stoaGjAqFGjMHbsWAQGBuKNN97AunXrsGPHDnz88ccICQlBeno67r///jaL/cW+qaqqwrvvvos9e/agT58++Ne//oUdO3a0SwwJlEolZs+ejY0bN2Ly5MkICQlp8nxMTIxbn4kjbr75Zpw6dQoffvghXn31VfTq1ctlIQYAV111FV577TW88MIL2LRpE2RZRkpKCm644YZWX3fXXXchPT0dr776Kl544QUAQEJCAsaPH9+ucTBMd0Ahu1KpyTAMwzAMw3gMrhFjGIZhGIbpIliIMQzDMAzDdBEsxBiGYRiGYboIFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBPmJdxOHDhyHLMvz8/Lp6KAzDMAzDOInZbIZCocDQoUM9sj6OiHURsizbHj0NWZZhMpl427oZvG3dl568fbxt3ZOevm2e3C6OiHURfn5+MJlM6NOnD4KCgrp6OB5Fp9Ph1KlTvG3dDN627ktP3j7etu5JT962Y8eOQaFQeGx9HBFjGIZhGIbpIliIMQzDMAzDdBEsxBiGYRiGYboIFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBQoxhGIZhGKaLYCHGMAzDMAzTRbAQYxiGYRiG6SJYiDEMwzAMw3QRLMQYhmEYhmG6CBZiDMMwDMMwXQQLMYZhGIZhmC6ChRjDMAzDMEwXwUKMYRiGYRimi2AhxjAMwzAM00WwEGMYhmEYhukiWIgxDMMwDMN0ESzEGIZhGIZhnKChAdDrPbtOFmIMwzAMwzBtUFYGbN8OmEyeXa+vZ1fHMAzDMAzTszhzBvj+e0CrBVJSPLtuFmIMwzAMwzAOkGXgl19IhPn6ApmZnn8PFmIMwzAMwzCXIUnAwYPAvn1AWBgQG9sx78NCjGEYhmEYphGSBBw4QCIsNhaIiOi492IhxjAMwzAM8yuSBPz4I4mwuDggPLxj349nTTIMwzAMw4Bqwn76CfjhB4qEdbQIA1iIMQzDMAzDAACOHycRFhPTsenIxrAQYxiGYRjmiuf8eZodGRYGREZ23vuyEGMYhmEY5oqmuBj49ltAoei42ZEtwUKMYRiGYZgrlro6EmENDUBycue/PwsxhmEYhmGuSIxGSkeWlgLp6V0zBhZiDMMwDMNccUgSsH8/cPo0kJEBKLtIEbEQYxiGYRjmiuPECeDnnykdqVJ13ThYiDEMwzAMc0VRXEw2FeHhQEhI146FhRjDMAzDMFcMWi2wZw+g15NzflfDQoxhGIZhmCsCq5VaFxUUdF1x/uWwEGMYhmEY5org5Eng2DEgNRXw8enq0RAsxBiGYRiG6fGUldEsyfBwICioq0djh4UYwzAMwzA9GoOBivO1WiA+vv3rkWXAZPLcuAAWYgzDMAzD9GBkmWwqzp8H0tLavx6TCXjrLUCnU3hucPBCIbZr1y4sXrwYQ4cOxYQJE/D//t//Q2FhYbPltmzZghkzZiAnJwfXXXcdvvnmm2bLaDQaPPbYYxg1ahSGDh2KBx54ABUVFc2WO3ToEG688UYMHjwYkydPxvr16yHLcpNlZFnG+vXrMWnSJAwePBg33ngjjhw54rHtZhiGYRjG81y6BBw+DCQlAX5+7VtHRQXw97/T76GhcusLu4hXCbEDBw7gvvvuQ58+ffDCCy/gsccew+nTp7F8+XIYDAbbctu2bcOf/vQnzJw5Exs2bEBubi7uu+++ZsLowQcfxN69e/H444/j3//+N/Lz87Fy5UpYLBbbMpcuXcKKFSsQGxuLdevW4fbbb8fq1auxadOmJuvasGEDVq9ejWXLlmHdunWIjY3F8uXLHYpEhmEYhmG6noYGmiUpy1Qb1h7OnQOefhqYNQu49lpqDO5JfD27OvfYtm0bkpKS8OSTT0Lx65ZGRUXh9ttvx/HjxzFixAgAwOrVqzF79mw8+OCDAIAxY8bg7NmzeOGFF7BhwwYAwOHDh7Fnzx5s3LgREyZMAABkZGRg1qxZ2LlzJ2bNmgUA2LhxIyIjI/Gf//wHKpUKY8eORU1NDf773/9i6dKlUKlUMBqNWLduHZYvX45ly5YBAIYPH45rr70WGzduxOOPP955O4lhGIZhmDaRZeDgQaCoCOjbt32v37cP2LoVWLGi4zzHvCoiZrFYEBwcbBNhABAaGgoAtlRhYWEhLl68iJkzZzZ57axZs7Bv3z6Yfq2i2717N8LCwjB+/HjbMr1790Z2djZ2795t+9/u3bsxdepUqBr1N5g1axbUajUOHz4MgFKXWq22yXuqVCpcc801TdbFMAzDMIx3cOECcPQo0KuX61YVsgx8+SXwxRfAffd1rPGrV0XEFixYgK1bt2Lz5s247rrrUFdXh//85z8YMGAAhg0bBgDIy8sDQNGtxmRmZsJsNqOwsBCZmZnIy8tDRkZGE1EHkBgT69DpdCgtLUXv3r2bLaNQKJCXl4fRo0fblr98uczMTLz22mswGAwICAho1zbr9fp2vc6bEdvE29a94G3rvvTk7eNt65509bZptcB33ykhSUqoVDKMRudfK0nAzp1KHD2qxB13WODr23SmpOzZEjHvEmIjRozA2rVr8fDDD+Nvf/sbACA7Oxsvv/wyfH6Vs/X19QCAsLCwJq8Vf4vn1Wq1LZrWmPDwcBw/fhwAFfM7WpdKpUJgYGCTdalUKvj7+zd7T1mWUV9f324hdvHixXa9rjvA29Y94W3rvvTk7eNt6550xbbRLMlgnDwZjNRUI1wp5ZZlYPfucOTnB2Du3CpUVzdfpn9/Kzwpn7xKiB06dAj/8z//gxtuuAGTJk1CXV0dXnzxRdx1111466232i12vJn09HQEBgZ29TA8il6vx8WLF3nbuhm8bd2Xnrx9vG3dk67ctvx8BdRqJXJzAQfxmBaRZeCrr5QoLVXirrss8PNLcricj4/GMwP9Fa8SYn//+98xZswY/P73v7f9Lzc3F5MmTcLWrVtx4403IvzXaQ8ajQaxsbG25dRqNQDYng8LC0NZWVmz96ivr7ctIyJmIjImMJlM0Ov1TdZlMplgNBqbRMXUajUUCoVtufYQGBiIIG+y+PUgvG3dE9627ktP3j7etu5JZ29bQwPVhQUFATExzr9OloHvvwd++gm46y7A37/lojJPz5r0qmL9CxcuoH///k3+l5CQgMjISBQUFACw12mJui1BXl4e/Pz8kJKSYlsuPz+/mR9Yfn6+bR1BQUFITExsti7xOrGc+Jmfn9/sPZOSknpkpI5hGIZhuhPCuLWoiAr0XeHQISrMv/NO4LIqpA7Hq4RYUlISTp482eR/xcXFqK2tRa9f92pKSgrS09OxY8eOJstt374dY8eOtc1+nDhxIurr67Fv3z7bMvn5+Th58iQmTpxo+9/EiROxa9cumM3mJusKCwvD0KFDAQDDhg1DSEgIPv/8c9syZrMZO3fubLIuhmEYhmG6hsJCaujt6izJCxeAd98lEdYVGWKvSk0uWbIETz75JP7+979jypQpqKurw0svvYTo6Ogm1hH3338/HnnkEaSmpmL06NHYvn07jh07hjfffNO2jHDmf+yxx/C73/0O/v7+ePbZZ9GvXz9Mnz7dttyKFSvw6aef4uGHH8ZNN92Es2fPYuPGjXjooYdsos7f3x+rVq3CmjVrEBUVhaysLLz99tuoq6vDihUrOm8HMQzDMAzTDIMBOHCAZjxeNv+uVaqqgP/+F1i2zLXXeRKvEmK33XYbVCoV3n77bXzwwQcIDg5Gbm4unnvuOURGRtqWmzNnDvR6PTZs2ID169cjIyMDa9eutUWwBM899xyeeuop/PnPf4bFYsGECRPwxz/+Eb6+9s1OS0vDxo0b8Y9//AN33XUXoqKi8MADD2D58uVN1rVy5UrIsoxNmzahpqYG2dnZ2Lhxoy0VyjAMwzBM13DsGHDxItCnj/Ov0emA//wHWLAASEjosKG1iVcJMYVCgZtuugk33XRTm8suXrwYixcvbnWZ0NBQPPnkk3jyySdbXW7YsGF477332hzbqlWrsGrVqjbHxjAMwzBM51BWRr0kY2MBXydVjdUKvPQSMG4ckJXVseNrC6+qEWMYhmEYhnEWi4XaGDU0ANHRzr1GloFPPgGCg4ExYzp2fM7AQoxhGIZhmG7JmTPA2bNAaqrzrzl8mCwu5s/3vBVFe2AhxjAMwzBMt6OujqJhoaHOW06UlwNvvw3cdhvg59ehw3MaFmIMwzAMw3QrhGdYZaXzhfYmE/DCC8CiRYAbPuweh4UYwzAMwzDdivx84MQJIDnZufSiJAHvvAP07+/azMrOgIUYwzAMwzDdBoOBWhEpFEBIiHOvOXyY7C2mTXP//S9r2OM2LMQYhmEYhuk2HDsGXLpE0TBnqKqiurBbb3XNcb+ldVksnq3wZyHGMAzDMEy3oLzcNc8ws5n8wubPd68uzGymdKgsAwEBng2JeZWhK8MwDMMwjCOsVirQb2gAkpLaXl6WgY8+oshZdnb731erJdPYPn2A4cPJu8yTcESMYRiGYRiv59w54PRpwNnOgidPAsePA7Nnt/89KyqA6mpgxAhg0iTnTWNdgSNiDMMwDMN4NVotFegHBgIBAc4t/+qrwJ13tq8uTJaBoiJApQKuvhro27fjzF9ZiDEMwzAM49UcOQKUljrXF1KSgNdfpwhWTIzr7yVJQEEB1ZRNmAD06uX6OlyBhRjDMAzDMF5LcTHNlExIAJROFFT99BNQXw+MGuX6e0kS2VzExZEIi4tzfR2uwjViDMMwDMN4JWYztTEymYCIiLaXr6sD3nsPWLLEOdHWGCHCkpIomtYZIgxgIcYwDMMwjJdy5gxw4YJzBfpWK/Dyy8DMmUBYmGvvI0RYQgJw1VVAVFS7htsuWIgxDMMwDON11NdTmjEsjIrm22LPHirMHzLEtfeRJDKITUigwvzIyPaNt72wEGMYhmEYxquQZeDQIXKydyZFWFkJfPYZNfR2ZXajLAOFhWQQO3Fi54swgIUYwzAMwzBeRkEB8MsvVK/VVq2X1QqsX0/u+UFBrr1PURFF3CZM6Nx0ZGNYiDEMwzAM4zUYjVSgr1AAoaFtL//NN1TI37+/a+9TVgb4+3fe7MiWYCHGMAzDMIzXcOIE9XV0xr+rqgr44gtg3jzX3qO2lloVjR3b8T5hbcFCjGEYhmEYr6C6mmrDoqMBP7/Wl7VagY0bgeuuI8d9Z2loIJuLkSOBzEy3husRWIgxDMMwDNPlSBLNkqyrc84R/4cfaDblgAHOv4fJRCnJwYOBgQPbPVSPwkKMYRiGYZgu58IF4NQp8gxra+ZjXR2wdSuwcKHz65ckmiGZlQUMH+664WtH4SXDYBiGYRjmSkWnowJ9P7+2Zz5arcArrwDXXgsEBzv/HoWFQGIitT5yxpess2AhxjAMwzBMl3L0KPWUdKZw/uefKcWYm+v8+isqSOCNGePcTMzOhIUYwzAMwzBdRmkpcOQIEB9PzvitoVZTL8nFi503btVoAIOBImEJCW4P1+OwEGMYhmEYpkuwWCglqde37WovScCbbwKTJwPh4c6t32ymaNjgwUCfPu6PtyNgIcYwDMMwTJdw+jRw9iyQmtr2ssePk73F6NHOrVu0L8rMpP6TrrQ+6kxYiDEMwzAM0+nU1QE//kjRLX//1pdtaKBo2I03Oi+oSkupbdHIkW2vvythIcYwDMMwTKciy+QZVlNDtWGtIUlUFzZmDBm9OoNaTa8bNaprGnm7AgsxhmEYhmE6lbw84ORJmiXZVoTr7FlqeTRhgnPrNpuBykpKR6aluT/WjoaFGMMwDMMwnYZORylJpRIICWl9WYMBePVVSkm2NaMSaFoXlpPjvXVhjWEhxjAMwzBMp3H4MFBUBCQnt76cLAMffkiRLWdtJ8rLKRU5YoR3mba2BgsxhmEYhmE6heJiMm91xjMsP59mSk6d6ty6tVoyeh0+nIr0uwssxBiGYRiG6XBMJuDAAfrZVgG92Qxs3AgsWeJcStJioWbeAwdSWrI7wUKMYRiGYZgO5/hxKtJvyzNMloHPPqPm3M60PAIo0paSQm2PukNdWGNYiDEMwzAM06FUVJBdRVQUNfZujeJiipzNmOHcuqurgYAA8gsLDHR/rJ0NCzGGYRiGYToMi4VmSWq1QGxs28u+/DKwcGHbgg0AjEagvh4YOtQ7+0g6AwsxhmEYhmE6jFOnqJWRM22Mdu4EkpKA3r3bXlaWKXrWty/Qv7/74+wqWIgxDMMwDNMhVFc738aorAz45htg9mzn1i2sKoYNA3x93R9rV8FCjGEYhmEYj2O1Aj/9pERtbdttjERKcsECqvdqC52O0pLDh3t/C6O2YCHGMAzDMIzHyc8PwJkzSqSltT2T8euvqZA/K6vt9UoSNfTOznYuhentsBBjGIZhGMaj1NQAJ04EITRUbjPCVVEBfPklMG+ec+suKaHC/KFDqU1Sd6cHbALDMAzDMN6CSEmq1b6Ii2t72ZdfBubPdy4lqVbTz+HDgeBgt4fqFbAQYxiGYRjGY9AsSSUSEkxtpiS/+YYK+fv1a3u9FgtFz3JyyLy1p8BCjGEYhmEYj1BVRWasoaEy/P3lVpetrAS++AK47jrn3PCLi8kCIyen+7nntwYLMYZhGIZh3MZiAfbvB+rq0GZKUpKol+R11wFBQW2vu7YWUKkoJelMCrM7wUKMYRiGYRi3OXGCjFudmSX53XdU45Wd3fZ6zWYq/h8yBEhM9MxYvQm3hZhWq8X69euxYsUKzJ8/H8eOHQMA1NXV4ZVXXsGlS5fcHiTDMAzDMN5LeTkZt0ZGtm3cWlUFbN9OBfrOpBiLioCMDGDAAI8M1etwy4u2rKwMt956K8rKypCWloa8vDw0NDQAACIiIvDOO++guLgYf/zjHz0yWIZhGIZhvAuTCdi3D9BoqN1Qa1itlJKcM8e5lGR1NUXOhg+n1GRPxK2I2NNPP42GhgZ8/PHHeOONNyDLTQvzpk2bhn379rk1QIZhGIZhvJcjR4Dz5ykl2RZ79lCN18CBbS9rNFK92dChbTcL70ysVs+uzy0htnfvXixduhR9+vSBwkF8MSUlBaWlpe68BcMwDMMwXkpREfDzzySU2opYVVUBn30GXH992ylJ0dA7K8s5a4vOQK8HDh+mn57ELSFmMBgQFRXV4vMiTckwDMMwTM9CpwN++IFSk61IAQAURVq/Hpg71zkj1spKICKComFd3dBbloGLF4EdO2hWqKdxS4hlZmbi4MGDLT7/1VdfYUBPra5jGIZhmCsUWQYOHgQuXXIuJfnll1TI74wk0OtJ5A0b1rbA62j0ehJfX31FadL0dMDHx7Pv4ZYQu/3227F9+3asX78eWq0WACDLMi5duoRHH30UR44cwbJlyzwxToZhGIZhvITz56k2rFevtoVJcTE56Dtj3CpJ1EuyXz+gTx+PDbddlJeTgDx8mAShM9vaHtwK+M2bNw8lJSV4/vnn8dxzzwEA7rzzTsiyDKVSiYceegjTpk3zxDgZhmEYhvEC6uooJalSAaGhrS9rNgPr1gE33OCcEWt5ORAT07UNvWWZhOaPP1JkLiOjYwSYwO3M629+8xvMmzcPO3fuxKVLlyBJElJTUzF9+nSk9KRmUAzDMAxzhWOxkFVFZWXbVhWyDHzyiRJ9+lBKry20WhJuw4cDYWEeGa7LmM0U6Tt6lISjM2lXd/FICVxSUhKnIBmGYRimh3PsGDnop6W1HbEqLFTh+HElHnig7fVarUBZGZCbSxGorkCvpyjYyZPUoqmtaJ+n6OK5CAzDMAzDdAeKi0moREe3nWbU64GtW2OxbJkFfn5t5/WKi4GkJBJiXdHQW62movzz54Hk5M7tZ+mSEOvfv79Dv7DWUCgUOHnypEuvYRiGYRjGe9DpgL17AYOBitZbQ5KAd97xwaBBaiQktJ1jrK+nGqwRI5xz2/c0tbVkNFtURJE+P7/OfX+XhNi9997rshBjGIZhGKb7IknAgQPkpdVWXRhABq9VVQrMmKEF0LoQM5vJ6HXUKIpEdTbV1cD331NatCOsKZzBJSF2//33d9Q4GIZhGIbxQk6fpuL1lJS2zVWrqoB33wXuussCjabtdYso1KBBnhmrK1RWArt305jT052fpXlZN0e36aLJoQzDMAzDeDsVFWRVERwMhIS0vqzFArz0EjB/vnOF7qKh94gRgL+/R4brNFVVJMKqq52beCC4eBFQqz2bGXRLiL3++utYsWJFi8/feeedeOutt1xe70cffYT58+cjJycHo0ePxp133gmDwWB7/uuvv8Z1112HnJwczJgxAx988EGzdZhMJvzzn//E+PHjkZubizvuuAN5eXnNlrtw4QLuuOMO5ObmYvz48Xj66adhMpmaLbdlyxbMmDEDOTk5uO666/DNN9+4vF0MwzAM010wGKh2Sq0G4uNbX5asKqjgPju77XUbjVQbNnQozVDsTKqr7ZGw1FTnRFh9PbBpE/Dhh0BgoGdDYm4Jsffffx+ZmZktPt+nTx+89957Lq3zpZdewv/93/9h1qxZ2LhxI/72t78hOTkZ1l/bnf/000+47777kJubiw0bNmDmzJn43//9X+zYsaPJev7+979jy5YteOihh7BmzRqYTCYsW7YMmkax0vr6etx+++0wm81Ys2YNHnroIbz33nv4xz/+0WRd27Ztw5/+9CfMnDkTGzZsQG5uLu677z4cOXLEpW1jGIZhmO6ALFNd2PnzlLZrqzz83Dng0CFg1qy21y1JlJLsiobetbVUE1ZZ6VwkTNTHrV5N4122zPO9L91aXWFhIW655ZYWn+/du7dLQiwvLw9r167Fiy++iKuvvtr2/xkzZth+f+mllzB48GD87W9/AwCMGTMGhYWFWL16Na699loAQFlZGd5//3385S9/waJFiwAAOTk5mDx5Mt555x2sXLkSAPDOO++goaEBa9euRUREBADAarXir3/9K1atWoX4X28BVq9ejdmzZ+PBBx+0vefZs2fxwgsvYMOGDU5vH8MwDMN0B86codY+ycltzyJsaABefhm44w5y22+L8nKywBg+vHMbems0FOEThfltiTCNBnjrLVpu+XLnmpW3B7ciYn5+fqisrGzx+YqKCihd6FHw4YcfIjk5uYkIa4zJZMKBAwdsgkswa9YsXLhwAUVFRQCAPXv2QJKkJstFRERg/Pjx2L17t+1/u3fvxtixY20iDABmzpwJSZKwd+9eACQ2L168iJkzZzZ7z3379jlMYzIMwzBMd6WigqwqAgPbrvWSJGDjRmDSJOdSjMI9f8QIIDzcI8N1CmG/ISYHtCVNLlwAnn8eGDgQWLiw40QY4KYQGzJkCD766CNbw+/GaDQafPjhhxgyZIjT6zt69CiysrLw4osvYuzYsRg0aBCWLFmCo0ePAgAKCgpgNpvRu3fvJq8T6VFRA5aXl4fo6GiEX/YpZ2ZmNqkTy8vLa7ausLAwxMbGNlkXAGRcZvWbmZkJs9mMwsJCp7ePYRiGYbwZvZ5Sd/X1QGJi28t/+y0V6Y8a1fayFgtFowYN6lz3fIOB2jLl55MIa82iQpKAXbuA998HliyhsXZ0z0u3goL33Xcfbr31VsyfPx+33347+vzaKv3cuXN47bXXUFlZiWeeecbp9VVWVuL48eM4e/Ys/vKXvyAwMBD//e9/sXz5cuzcuRP19fUASCw1Rvwtnler1Qh1IOPDwsJsy4jlLl8XAISHh9uWc/Y924ter3fr9d6I2Cbetu4Fb1v3pSdvH29b5yFJwPffK3H6tBKZmTLaSvgUFACff+6H3/zGDLO56XMiW9Q4a1RQoEBCgox+/SQ0mn/XoVgswI8/KnH8uAIpKTIkCS1ul9kMbNniA5MJuPVWK/z8HC/rafsKt4TYkCFD8N///hd//vOf8cQTT9jMXmVZRnJyMl566SUMHTrU6fXJsgydTofnn38e/fv3t73HlClT8Oabb2LChAnuDNcruXjxYlcPocPgbeue8LZ1X3ry9vG2dTznzwfgwIEwxMSYUVoqtbqswaDAhg1JmDGjBLW1ZtTWOl6uqqoKAFBX5wtJUmDAADUKCy2eHrpDJAk4dSoIp04FITbWhKqqlhVUQ4MSW7fGoFevBowerUVNTWvrtcKTHSLdXtP48ePx5Zdf4uTJkygoKAAApKamYuDAgS678IeFhSEiIsImwgCq7RowYADOnz+P2bNnA0CTmY8ARbYA2FKRYWFhDtOlarW6SboyLCys2boAinKJ5cRPjUaD2NjYFt+zvaSnpyMwMNCtdXgber0eFy9e5G3rZvC2dV968vbxtnUOJSUKVFQo0adP27VekgSsW+eDSZNkDB0a63AZk8mEqqoqxMTEQJJUMJkUmDBBQr9+0R0wesecOKFATY0SAwbIrXqg1dQAmzf7Yfx4C7KzfaFQtF4QplTWeXScHpF0SqUSgwYNwiA3rXH79OljE3OXYzQakZqaCj8/P+Tl5eGqq66yPSfquES9V+/evVFVVdVEUInlGteE9e7du5m3mEajQWVlZZN1OXptXl4e/Pz8kJKS4s4mIzAwEEFd0VyrE+Bt657wtnVfevL28bZ1HBoNcPAgCaz09LaX/+orSs9NmNB2/ZSvrwrFxf4YPBjIyem8FkJ5ecAvv9DszKiolpcrLaXJBrNnAxkZTkz5hOebkrtUgnbw4EEcPHiw2d9tPZxl8uTJqKurw6lTp2z/q62txYkTJzBw4ECoVCqMHj0aX3zxRZPXbd++HZmZmUj+tVHVhAkToFQqsXPnTtsy9fX12LNnDyZOnGj738SJE/HDDz/YolsAsGPHDiiVSowfPx4AkJKSgvT09GY+Zdu3b8fYsWOhcmauLsMwDMN4IWZz09mEbZGfD3z5JXDDDc4VsZeUKJCYCAwb1nkirKwM2L+fxteaCMvPJ9uNhQs7d/LA5bgUEVu6dCkUCgWOHj0KlUpl+7slZFmGQqFoIqxaY9q0acjJycEDDzyAhx56CP7+/li/fj1UKhVuvvlmAMBvfvMb3HbbbXj88ccxc+ZMHDhwAJ999hmeffZZ23oSEhKwaNEiPP3001AqlYiPj8e6desQGhqKJUuW2JZbsmQJ3njjDdx7771YtWoVysvL8fTTT2PJkiU2DzGAemw+8sgjSE1NxejRo7F9+3YcO3YMb775piu7j2EYhmG8BlkmE9YTJ5xreK3TAf/9L3DLLUBAQNvrV6t9EBEBjBzZdnskT1FXRy2ZGhpaF5YXLgBvvw3cdBMQE+P8+s1mmgDgSVwSYq+//joA2KJA4m9PoVQqsX79ejz11FP485//DLPZjBEjRmDz5s22+qwRI0ZgzZo1eO655/D+++8jKSkJf//735v5fP3xj39EcHAwnnnmGTQ0NGDYsGF45ZVXmsymDA8Px2uvvYb/+7//w7333ovg4GAsWrQIDz30UJN1zZkzB3q9Hhs2bMD69euRkZGBtWvXujQRgWEYhmG8iXPnyDU+NrZtYWW1AuvWARMnAr16tb1uoxHQaHxx9dWSU8t7Ar2eImEVFa2nWM+do8bkN91EqUtnsFqpJZLB4PnInktCbFQjoxBZljFgwAD4+fnB34PdOqOiovCvf/2r1WWmTp2KqVOntrqMSqXC7373O/zud79rdbnMzEy8+uqrbY5r8eLFWLx4cZvLMQzDMIy3U15OfmEqFRAZ2fqysgxs304O+6NHt71uSQKKixVISzOgf38Pez20gNUK/PQT1Ya1Zth64QLw3nsU1WtruwVqNfWnjI8nI1pnooGu0G6bMrPZjFGjRnk8KsYwDMMwTMeh1QLffUcCIymp7eVPnKDI2cKFzhWqFxcDcXEysrN1ndLCSJaBY8eA48cpWtdSS6aCAmpZdNNNzokwiwUoLKRI27Bh1D0gI8Pzxfrt3kUqlQoxMTFcrM4wDMMw3QRRnH/pEtC3b9uioqoKeO01YOVK5/pI1tRQ/8iRI2U0NLTuReYp8vKo1i0mhtoyOaK0lLbjxhtbL+AXaLW07cnJNNsz1rFLh0dwy7j/+uuvx9atW7nfIsMwDMN4ObJM6bvjx50rzjcagTVrgPnznaul0uupWH74cCApqXNSkhUVFK3z82u5d2VVFVlULFzonEdaWRlFCwcPJouOjhRhgJs+Yv369cOuXbswZ84cXH/99ejVqxcCHCRPp0+f7s7bMAzDMAzjJqdPAz/+SLVObdU5SRLwxhvAgAFAI4/1FrFagZISWj47u+U2Qp5Eo2l7hmRdHU0ymDOn7TSsxUJp1chIIDeX0pyeTkM6wi0h9tvf/tb2+/PPP+9wGVfsKxiGYRiG8TzFxVScHxjYcuSoMbt3U5px3jzn1l9URMJl5MjO8Qszm0lUlpa2PENSqyW7jenT2zaq1espEpaaSvVgbjbNcQm3hNhrr73mchsjhmEYhmE6j9pa4NtvyXrBGePS8+eBzz8H7r/fOdPWigogKIhmVHZGgwBZBo4cAc6epRouR8LPaKRI2FVXUS1ca2g0JDoHDKB6ME/PimwLt4TYaGfmsTIMwzAM0yXo9TRDsrS0bUECkCBZtw64446WC98bo9XSe1x9NaU8O4Pz54GjR6l2y5F7ltVKhfkDBtCjNWpqyKg2N5eW7Sz3/8a4Vaw/depU7Nq1q8Xnv/nmmzb9vhiGYRiG8TwWC82QPHsW6N277eiW0Qg8/zwwd65zospsJj+ynBznRJ4nKCujlGRAABAW1vx5WQY++oieGz269Rqv8nLahtGjgUGDukaEAW4KseLiYuh0uhaf1+l0KCkpcectGIZhGIZxETFD8sgRKmRvyVtLIEnApk0kqgYObHv9kkQeW5mZwNChnVPUrtGQc75O1/Lsx2++IfPVa65pWXjKMk0s8PUFxoyhbejKKiu3hBiAVmvEfvnlF4Q5kqwMwzAMw3QYJ0+SaImPb7tuS5apJsxkohSjMxQXU2pw9GjH6UFP07g4PyXF8TKHDtFjwYKWo1uSRBMLgoJIhLW0rs7E5Rqx1157zeamr1Ao8OSTTzZpuC3QarVQq9WYM2eO+6NkGIZhGMYpLl6kGZIhIUBERNvLHz1Kou2ee5wrzq+qogjbmDGdM7tQOOeL4nxHY7xwgcTksmUtR/+o9RLtk1GjOt4fzFlcFmLR0dHo+2syuLi4GPHx8Yh3kEwOCgrCwIEDcfPNN7s/SoZhGIZh2qSigorzLRbnmnMXFwObNwO/+Y1zzvlaLT2uusq59XuCCxeAw4dbLs6vqKDWRTffDAQHO15HYxE2Zozzzb47A5eF2Jw5c2xRrqVLl+Kee+7B2LFjPT4whmEYhmGcp74e+PprmgmYmdn28mo1OecvWeJcZEsU5w8dCvTr5/54naGiglKS/v6Oi/N1OnLNv+66lsWVEGGRkZRK9SYRBrhpX/HGG294ahwMwzAMw7QTvZ68woqKgD592i4+N5lohuS0aW2bnQIkZgoKaN1DhzqXwnSXhgZKmbbknG+xAK+8Aowd27Kzviw3jYQ502eys/FIX/Tz58+jsLAQ9fX1Dp+fP3++J96GYRiGYZjLMJupJuzsWYqEtWXDIEnAyy8DWVkkqpyhsBBITOy84nyLhSJhxcWOhaKwqYiLA4YMcbwOIcLCw2nc3ijCADeFWEFBAR599FEcO3YMsuy4wadCoWAhxjAMwzAdgCRRv8Vjx5yzqZBlYOtWet2UKc69R1mZfZZhZxghiOL806dbds7fsweorARuvLHl6F9JCU1YGD0aiInp2DG7g1tC7M9//jPOnj2Lxx57DCNGjGCrCoZhGIbpJIRX2M8/U+G8M074P/wAHD8OrFzpXHqxvp4ibuPGAQkJ7o/ZGfLzqTg/JsZx9O30aTKqveOOlqN/5eW0P7xpdmRLuCXEDh06hFWrVmHp0qWeGg/DMAzDME5w/Diwbx8JlpCQtpc/cwb45BPg3nvbjpwBVHdWVWU3Pe0MKispJenn53gCQUUFsGULcOutLadIKytJZI4Y0Xni0R3cKreLjIxEaGiop8bCMAzDMIwTnD0L7N4NhIbSbMC2KCsDNmygKFJLFg+NMZupvionBxg8uHOc53U6Ks6vr3fcYknMkJw3r+Vtrqmh+rLhwymt2R1wS4gtWbIEn3zyCaxWq6fGwzAMwzBMK1y6RK18fH2dS7vV1QHPPgvcdJNzyzeeITliROf0YLRYgIMHaVJASkpz4WexUAum8eOB1FTH61CrSawNG+bcTFBvwa3UZHp6OiRJwrx587Bw4UIkJCTAx8EnNn36dHfehmEYhmEYUAH6rl0UsWrJsqExOh3wzDPAzJnOiRNZts+QHDOGmmt3NKI4/9QpimL5+jZ//qOPKM2Yk+N4HQ0NQG0tRcL69On4MXsSt4TYQw89ZPv9n//8p8NlFAoFTp065c7bMAzDMMwVT0UFGbaq1UDv3m0vbzYDq1fTrMGWBMzllJRQunPcuM6ZIQkAeXlUnB8d7Vj47dlDtWo33OA4RWow0PODBgH9+3dtA+/24JYQEz0nGYZhGIbpOGpqKBJWUUGF822JDauVvMJSUiiy5QxVVVTkPnYs+XN1BsI5v6Xi/NOnaabnsmWOU6RmMzUC79+fxGZnGM16GreE2KhRozw1DoZhGIZhHFBfTyKspIREWFtiQ5KA99+nlN706c5FiER91YQJzqU8PYFWS8X5Go3j9xQzJJcudTxD0mqlCQUZGUBubvOUZnfBI9rRZDLh8OHD+Oqrr1BTU+OJVTIMwzDMFY9GQyLs0iXnXPNlGfjqK/LiWrTIuQiRTkeWD8OGdV4PSbPZ7pzvqDi/8QzJiIjmr5ckaueUlER1YZ3h9t9RuC3EXn/9dUyYMAE333wz7r//fpw5cwYAUFNTg9GjR+P99993e5AMwzAMc6XR0ECzIy9ccE6EAZTG27uXokjOLG80Umpv8GBqFdQZ9VWyDBw5Qr5mjpzzrVYSYa3NkCwpoZqyESOcs+PwZtwSYh988AGefPJJXHXVVXjiiSeatDmKiorCmDFjsH37drcHyTAMwzBXEjodibDTp0mEOZN2O3QI2LaNXPOdme1osVBUKSur82wqABJghw9THdrlkSxZprRqUlLLEwzKy6nl0ogRjqNl3Q23hNgrr7yCqVOn4plnnsHkyZObPT9w4ECcO3fOnbdgGIZhmCsKvR749lvg5EkSYc644J88Cbz7LokwZ1odCa+wtDQqzu+s1F5REXDgAHUCcOQH//33ZEMxebLj6FxtLf0cPrzzJhR0NG4JsUuXLmHixIktPh8REYG6ujp33oJhGIZhrhgMBuC776h9Ue/egErV9mvy8oBXXgFWrHDOckKWqeYsIYHSf0FB7o/bGWpqKHVqsThuwn3qFBXvX3+949o2rZbStbm5VFfWU3BLiIWFhaFWyFMHnD9/HrHe3m2TYRiGYbwAg4EiYceOkQhzJkpVVAS8+CLZO0RHO/c+RUXUImjCBMeWER2BTkcirKaGGpRfTlkZpSRvvNHxdhsMQHU1eYV1N8PWtnBLiE2cOBHvvfce1Gp1s+fOnTuHLVu2YMqUKe68BcMwDMP0eBqLsIwM50RYRQXw/PPAzTc739y6pIRSlxMmOI5KdQRmM0W6Cgup+P7yaFdDA7Uvuv56x8JQeIVlZQEDBnQ/w9a2cMt148EHH8QNN9yAOXPmYPLkyVAoFPj444/xwQcfYOfOnYiNjcU999zjqbEyDMMwTI/DYKA+i0KEOVNoX1UF/PvfwOLFzvt+VVSQCBo/norhOwNJosJ8MUPy8kkHFgsZz06c6LhJd0/xCmsNlyNikiTZfo+Pj8eHH36Iq666Cp9//jlkWcbWrVvxzTffYPbs2XjvvfcQFRXl0QEzDMMwTE/BaFRg924ljh51XoTV1AD/+hcwfz4V8ztDdTVgMlHros4ybAWAU6cUOHIEiI93PEPy3XdpPAMHNn+tLJMIS0ggj7Pu7BXWGi5ry4kTJ2LWrFmYM2cOBg8ejOjoaDzxxBN44oknUFNTA0mSEBUVBWV37DPAMAzDMJ2EXg8cPBgKrVaJfv2cExp1dcDTTwNz5zpvvlpXR+m/ceM6t76qqEiFoiIlwsNpluTlfPMN1Y7NnOk43VhaSqnKkSMdv76n4LJaSk5OxhtvvIEbb7wRM2bMwNq1a1FQUACAvMNiYmJYhDEMwzBMKzQ0AN9+q8SFCwFIT5edEmH19STCZs4EsrOdex+1moTYqFHOv8YTlJUBx48Hw8eHJgZczrFjwM8/k3O+I8lQVUW2HSNGOH59T8JlxfTOO+/gq6++woMPPgiVSoW1a9dixowZWLx4Md544w1UV1d3xDgZhmEYpkeg1VLbolOnlOjVy+SUCNNoSIRdcw3NHHT2faqryXNr0KDOK3KvqQH271fCYFAiPl5u9vylS8CnnwJLlji256ivJ8f/YcOAxMROGHAX067QVa9evbBq1Sp8+umn+OSTT3DnnXeipqYGTzzxBK6++mrceeed2Lp1K3Q6nafHyzAMwzDdFrUa2LmTitczM2WoVM2FiqPXPP00mZwOHuzc++h0VJw/dCgVuXdWokqrpRZL1dUKxMebmj1fXQ28/jpwww2ODV11OorgDRkCpKd3+HC9Arc/mqysLDz88MPYtWsXNm/ejMWLF+PkyZP4/e9/j/Hjx+Phhx/2xDgZhmEYpltTU0MiTPSOdMYxv74e+Oc/gUmTSFQ5g15P9VVDhlBUqbNaFxkM5BVWVASkpMgOG3mvXw/MmQM4shg1Gkk8DhgA9O/f82wqWsKjGnn48OH4y1/+gk8//RRTpkyBXq/nXpMMwzDMFU9lJfDFF5SW69vXORFWV0cibNo0imo5g15PXmE5OVRf1Vl2D2YztS46f568wi4Xf2YzsGEDWWdkZDR/vcVC487MpKjflVRq7rGPyGAwYNeuXfj000+xd+9emM1mJCQkYPbs2Z56C4ZhGIbpdpSUAF9/TdGezEznIlQ1NZSOnDXLsbWDIwwGeq+BA6k43xmx5wkkiQrvT54kLzA/P7LKaPz85s3ULcBRI29JIpuKlBSK4HXWuL0Ft4SY1WrFnj178Omnn+Lrr7+GTqdDaGgo5s2bh7lz52LUqFFQXCmxRYZhGIa5jIsXSYSp1STCnIn0VFWRT9icOZSmcwajkVKCgwYBY8Y416PSE8gycPQobF5hl/ugyTKwbZvdSPZySSDLJB5jYymC50zD8p5Gu4TYTz/9hM8++wxffPEF6urq4Ofnh6uvvhpz587FpEmToOqsI4BhGIZhvJQzZ6htkcVC0SBn4hIVFcAzz5Ctg7M+YUKEDRgAjB7deSIMoEbdP/9MfS4deX3t2aPEpUvATTc5FqFlZfS6ESOca1jeE3FZiE2ZMgWlpaUAgBEjRuC6667DjBkzEHal7kGGYRiGaYQsk0/Wnj1Uo5Wa6tzrCguB1aupbZGzjvkGA6X1srOBsWM7133+/HmqCwsOdtwj8tSpIBw/rsRttzlOx1ZV0f4ZMaLz+l56Iy4LseDgYPz2t7/F3LlzkXBZl1FJklBWVoaYmBiOijEMwzBXHFYr9Y3cv58iPI5mBzoiLw948UXgllucF25ChA0YQOnIzhRhBQXAvn0kpKKjmz9/5owC+/eHYflyC/z9m6uw+nqqIxs9uvP6XnorLguxTz/9tMXnampqMHXqVGzatAljx451a2AMwzAM050wGkmc/PQT1UtFRDj3ulOnFNi8GbjjDuqr6AxidmRXiLCSEvIKs1iAXr2aP19QAHz8sS9mzKhAYGBzJarVUs3csGGOZ1BeaXh8Yqsst21OxzAMwzA9iYYG4LvvgBMnaOagM70RZRk4fToQ333ni5UrHUeWHCFE2MCBnVuYD1AN25495AmWkuL4+ddeAxYsMEOSpGbP6/Vk6pqT43wNXE/H404dPEuSYRiGuZKoqQF27CARlpHhvAjbt0+BXbsisXKl2WkRptPZfcLGju1cEVZTA3z/PaUVk5ObP19fT15h8+Y5TsmaTEB5OZm1Dhp0ZXmFtQZHxBiGYRimnRQV0czIsjKgTx/nDFQliYTb/v0+WLiwFKGhzuUjtVqKOOXmUoF7Z/pt1dYCu3dTgX1aWvMZoFot8NJLwPTpVONmuqy7kcVC9Wx9+tD4O8totjvg0V0RHh6O119/Hf379/fkahmGYRjGq5Blsqf4/ntKt/Xt61yEx2IB3nmHWhDdeacFlZXN03eOUKtJBA0bRo/OFDL19bSdZWXU//Hy7dTrSYRddRXth8uxWmlGaEYGNSC/0gxb28KjH6Wfnx9GjRrlyVUyDMMwjFdhtQKHD1NfRX9/5wvOjUZg3ToyLb39dlqPM9TV0WPkSIomdVbvSADQaKgmrKSEImGXizCjEfjvfylC58h8VpJIdPbqRSLscsNXxkUhtnbtWpffQKFQ4N5773X5dQzDMAzjbRgMNGPw8GEgLg6IjHTudQ0NwHPPUcRoyhRK7TkjxKqr6bWjR1NdWGfWVWm1FAkrKCAR5qh/5MsvkwDLzW3JNV+BxERquRQc3GlD71awEGMYhmEYJ6itpZmRZ8+SMAkKcu511dXAf/5DqbuRI51/v4oKqrUaN44MWztzLlxDA0XCLl2ibb08FWq1Aq+8QvVgI0c6FmEVFSpkZsoYNerKdc13BpeE2OnTpztqHAzDMAzjtRQUULG6KMp3ts4pP5+MWufPp9mCzlJcTBGoiRPp/ToTnY6ifvn5LYuwN98ku43x45tH6WQZKCtTIDjYihEjJKejhlcqPG+BYRiGYVpAksiWYu9eik45W5Qvy9SD8b33gGXLnDdqlSSaiRkcTJGwtDS3hu8yOh1Fwi5coGiXIxH21ltU6zV5csv9IwMCgN69GxAdHdU5A+/GsBBjGIZhGAcYDNSq6PBhSq05cpF3hCQBn38O/Pgj8JvfOJ+Ws1op8hYVBUyYACQmtn/s7eFyEXZ51M9qpRmffn7ANde0LMJUKmDoUAl6vaVzBt7NcVuInT59Gm+++SZOnjwJjUbTzElXoVDgq6++cvdtGIZhGKbTqK6mQvWzZ8lB3hmTVoAK2F99lQrd777becNVs5lEWK9elO5z1uDVUzQ0UNSvNRH27rtUCzZ9umMRVlFB6dSRI4GYGBn5+Z0z9u6OW/MvDhw4gMWLF+Pbb79FXFwcCgsLkZKSgri4OJSUlCAoKAgjXalMZBiGYZgu5sIF4LPPgPPnqT7LWRGmVgNPP01F/Lfe6rwIMxqpKD4jA5g0qfNFmJgd2ZIIkyRgyxb6ee21jkVYZSX9HDXKses+0zJuRcRWr16NlJQUvPfeezCZTBg3bhxWrVqFsWPH4ujRo1i5ciUeeeQRT42VYRiGYToMsxk4dIhSij4+QFaW8zMVL12iovxrrgGGDnX+PfV6JYqLFcjJob6RgYHtG3t70WhIhF261LIIe/992jezZ7cswiSJRJij/pNM67gVETt58iQWLVqEkJAQ+PxqMCJSk0OGDMGNN96I559/3v1RMgzDMEwHUlcH7NxJoiQ8nASFMyJMloEDB4AXXgBuucU1EVZXB9TW+mLIEBkTJnS+CFOraSaosKhwlI7csoVq5VoSYVVVJMJGjuz8iQU9BbciYj4+Pgj+1aEtLCwMvr6+qK6utj2fkpKCCxcuuDdChmEYhulA8vLIJV+08PH3d+51Fgvw4YfU6uiee4DQUOffs6wM0OsVGDy4ASNGRHV625/aWhKdwjHf0ezId96h3+fMaVmEWa3kqp+e3uFD7rG4FRFLTU3FxYsXAVBRfu/evZsU5n/77beIiYlxa4AMwzAM0xGYTDQrcvt26qfYt6/zIqyhAXj2WXrdXXc5L8IkiYryfXyAq66S0KePoVPd8gGgpoaMaVsTYW+8Qf+fObNtEeZsiyfGMW59/FdffTW2bdsGi4WmqN5xxx3YuXMnpk+fjunTp+Prr7/GjTfe6JGBMgzDMIynqKoCduygqFBYGNVHOSuILl0C/vY3YNAg4PrrnW/AbTYDFy9SW6QpU4CMDLnd428vFRXAN9/Yo3+Xty2yWIBNm0hYtmRRUVnJIsyTuJWavOeee3DbbbfZ6sOuv/56KJVK7Ny5Ez4+Prj77ruxYMECjwyUYRiGYdxFkiiVuG8fped693Z+dqMkkXDbto1mRTrrKwYAej255ffuTUX5ERH0v86kpIR8wurrSYRdLrLMZmDjRjKfnTixZYsKWabCfK4J8wztFmJmsxkXLlxAREQEFI0qGufNm4d58+Z5ZHAMwzAM4ym0WpoRefQoWUz07ev8rEijEXjtNSqwv/9+5/tMAiR8qqqoafeIEZ1flA9QFG/vXhJ/qanNt9tgIBGWlkaO/o5EWHk5/X/UKFrHlcpldqlu0+7UpFKpxMKFC7Fz505PjsdGQ0MDJk6ciH79+uGXX35p8tyWLVswY8YM5OTk4LrrrsM333zT7PUajQaPPfYYRo0ahaFDh+KBBx5ARUVFs+UOHTqEG2+8EYMHD8bkyZOxfv16yHLTcLEsy1i/fj0mTZqEwYMH48Ybb8SRI0c8ur0MwzBMxyDL1Dfx00+p7VBiIpCU5LwIKy8H/v53imLdcYfzIkyWgdJSsogYM4YETleIsPPnqSbMZHI8G1SnI+uNPn0c944EaDuuZBFmsVBEc/9+z0cy2y3EfHx8kJSUBJPJ5Mnx2HjxxRdhtVqb/X/btm3405/+hJkzZ2LDhg3Izc3Ffffd10wYPfjgg9i7dy8ef/xx/Pvf/0Z+fj5Wrlxpq2cDgEuXLmHFihWIjY3FunXrcPvtt2P16tXYtGlTk3Vt2LABq1evxrJly7Bu3TrExsZi+fLlKCws7JBtZxiGYTyDXk8zIj/7jNzy+/alPo7OIElkTfGvf9HMwalTna8js1opCuXvTyatQ4c2r8fqaGSZ+mTu3k3jTkpqvkx9PbBmDdlPjBrVXKTJMqU0/f2BsWOvPJ8wk4lE/Lff0uPCBecFvLO4VSN26623YvPmzVi0aBEiIiI8NCTgwoULeOutt/C73/0Of/nLX5o8t3r1asyePRsPPvggAGDMmDE4e/YsXnjhBWzYsAEAcPjwYezZswcbN27EhAkTAAAZGRmYNWsWdu7ciVmzZgEANm7ciMjISPznP/+BSqXC2LFjUVNTg//+979YunQpVCoVjEYj1q1bh+XLl2PZsmUAgOHDh+Paa6/Fxo0b8fjjj3tsuxmGYRjPUVhItWAXL5IICQ93/rVGI80crKgA7r3X+X6RAKX5iovJYX7MGCA21uWhu43VSinYn3+mzgCO3PqrqoB164Bp0xyb10oSibCQEBJpzjYu7wmYzXT8nDlD+8nfn7bfz8/LhJgkSVCpVLjmmmswY8YM9OrVCwEBAU2WUSgUNgHjLH//+9+xZMkSZFw2HaOwsBAXL17Eo48+2uT/s2bNwtNPPw2TyQSVSoXdu3cjLCwM48ePty3Tu3dvZGdnY/fu3TYhtnv3blxzzTVQNarUnDVrFtatW4fDhw9j9OjROHToELRaLWbOnGlbRmzzl19+6dJ2MQzDMB2PwUCNug8dIkHSt6/zMxsBugC/9BIwbBgwb57zUTCAashqaoABAyjK5EotmacwmUiAHT0KxMQ4FpHFxTQ7cu5cxx5gkkTLRESQCOsKMdkViO0+c4bSsYGBJKh9fOi4+uUXoF8/BTwYe3JPiP3zn/+0/f7+++87XMZVIbZjxw6cPXsWa9aswYkTJ5o8l5eXBwDNBFpmZibMZjMKCwuRmZmJvLw8ZGRkNJlEAJAYE+vQ6XQoLS1F7969my2jUCiQl5eH0aNH25a/fLnMzEy89tprMBgMzcSnK+g7e9pMJyC2ibete8Hb1n3pydvn6rYVFirw448KFBQoER8vIyKCxJiDSpdmSBKwe7cSX37pg8WLLUhJkdGomqXN15aV0TVn2DAJ2dkyFIrW64k64nPT64GDB5U4c0aBhAQZAQEkzBpz4YICW7b4Yv58MxISmj9vtQLFxQrExMgYNkxCaCiJEFcw/PoCg6sv7EJqaoAzZ5QoKFDAxweIjZXh40P/37fPBxcuKJGWJiEgQAbgubCYW0Js165dnhoHADoY//GPf+Chhx5CiIMuq/X19QDIxb8x4m/xvFqtRqgDd73w8HAcP34cABXzO1qXSqVCYGBgk3WpVCr4X+byFxYWBlmWUV9f75YQE4a4PRHetu4Jb1v3pSdvX1vbptcrceZMIM6eDYQkKRAfb4JGQ4XyzqDVKrF1awwUCmDBghr4+sooLXXutRaLAmVlKkREWDBwoA4BASbk5zv3WgAoKipyfuFW0GqVOHYsBCUlKsTFmVBXJ6OurukyZ88GYs+eCEyfXgqFwory8qbPW61AebkKsbFmJCY2oK5OarYOVyh1did2ISaTAgUF/rh0KQBGoxJRUWb4+MjIy/PBjz+GobbWD1lZ9Zg2zQhfXxmABMBzBX9uCbFerpioOMFLL72E6OhoLFy40KPr9WbS09MR2BXTaDoQvV6Pixcv8rZ1M3jbui89efva2jZJAvLzFTh2TIGyMiWysmSXasFkGThyRIH33vPFtGkW5ObKUCgSnX69RgNUViowcqSMESMkl1JWer0eRUVFSE5Odvtzq6oCTp9WwmxWYNgwuVkqVpaBH35Q4sgRJZYvtyAoqHnXG5MJKC1VYPBg2pbg4PZ3xjEYDCgtLUViYqJbwYqORJaB8nIF8vIUKC9XIClJRlgYTWD47jsflJYqMGqUFenpMpTKEMhyCLRaQJar2165C7glxATl5eU4ePAgqqurMWPGDCQkJMBqtUKj0SA0NNRm+NoaxcXF2LRpE1544QVbtEqn09l+NjQ0IPzXb5dGo0Fso4S1Wq0GANvzYWFhKCsra/Ye9fX1tmVExExz2e2SyWSCXq9vsi6TyQSj0dgkKqZWq6FQKGzLtZfAwEAEdUURQSfA29Y94W3rvvTk7XO0bbW1VAt1/DgVUQ8c6NrMRJ0OePNNe0F+RISTzq6gi3hZGRV1jx0LDB7sfHukywkMDHRLiF26RJMSNBqqh7u8pk2SyLqjqAi4/XbA37/5TjIYyDG/Xz9g+HDP2WwEBAQgIMD7bg4MBuD0aeDsWdo/mZkUDfz+ezqeRo+m7gc+Pj4wm+lYM5lo4oKn+4K6JcRkWcY//vEPbN68GRaLBQqFAllZWUhISIBOp8OUKVPwwAMPOFUjVlRUBLPZjLvuuqvZc7fddhuGDBmCZ555BgDVijWu2crLy4Ofnx9Sfp1X27t3b+zbtw+yLDepE8vPz0dWVhYAICgoCImJibYasMbLyLJsW7/4mZ+fj/79+zd5z6SkJK9V+gzDMD0Vsxk4dQo4eJAukMnJzltSACSizp8HXn6ZLrjXX+9aQb6YURcZCVx1FbX58fRMOmeQZRITP/5IvzsyajWbgc2bSaAuWeJYqDY0UEStf38gN7f9grK7UFEBHDtGRfmxsTSh4tw5anmVlQXccguJLaORlgVo1mlaGhAf73wnBmdxS4i9/PLLeP3117Fy5UqMHTsWd9xxh+250NBQTJ8+HTt37nRKiGVnZ+P1119v8r9Tp07hqaeewl//+lfk5OQgJSUF6enp2LFjB6ZNm2Zbbvv27Rg7dqxt9uPEiRPx4osvYt++fRg3bhwAElInT57EnXfeaXvdxIkTsWvXLjz66KPw+1Xibt++HWFhYRg6dCgAYNiwYQgJCcHnn39uE2Jmsxk7d+7ExIkT27HXGIZhmPYgyySAfvoJyMujGX2ObBdaw2AA3nuPLry33ea6JYNwyc/MJJf8qCjXXu8pzGbgyBF6tGRPodORW35qKglGR2Kzvp4egwaR878rs0u7GxYLfe7Hj1N0KzWVJje89x79vP56sjgxmSjaKctke5KWRoKto3zg3NrlW7Zswfz58/Hb3/4WtbW1zZ7v168fdu/e7dS6wsLCMHr0aIfPDRw4EAMHDgQA3H///XjkkUeQmpqK0aNHY/v27Th27BjefPNN2/JDhw7FhAkT8Nhjj+F3v/sd/P398eyzz6Jfv36YPn26bbkVK1bg008/xcMPP4ybbroJZ8+excaNG/HQQw/ZRJ2/vz9WrVqFNWvWICoqCllZWXj77bdRV1eHFStWOL2vGKYlDAa68/L3BzjAyjCOqaujyM/x45RC6t3btRSRLJMlwSuvUOrt/vtdu7AKTy2FguwccnI8HxlxFp2OjGZPnwbi4qhB9+VUVlLEb9w4Sps6EqtVVXTuGT6cUpKuRAW7GxoNRcHy8khsxcbSsbRrF3m9ZWfTZ1xRQYItMZEinXFxHb9f3BJipaWltsiRIwIDA6HVat15i2bMmTMHer0eGzZswPr165GRkYG1a9c2G8dzzz2Hp556Cn/+859hsVgwYcIE/PGPf4RvI7mflpaGjRs34h//+AfuuusuREVF4YEHHsDy5cubrGvlypWQZRmbNm1CTU0NsrOzsXHjRlsqlGHai8FAdRsGA4mw5GQWYwzTGKMROH06ED/+6IOGBrpAumKuClC04513yNh12TK6uLr6+pISSkuNGNG1LX7ISoHqwlJSHKcRL1wA3nqrZY8wUd/m60siJD29a1KrnUVxMUUOq6vp+DEagbffJkF/ww2U1q6ro16kcXFUZxcf33mdENwSYtHR0a1OTT1x4gQSE52ffXI5o0ePxpkzZ5r9f/HixVi8eHGrrw0NDcWTTz6JJ598stXlhg0bhvfee6/VZRQKBVatWoVVq1a1PWiGcQGjkURYVBSdYE0mFmIMA1B0Ii8P2LdPiZ9+CkW/fq6nISWJWvy88QbVgt17r2sXV1mmyJJORxMBhg2jNGBXUVBAvQ5ra0k8OUoj/vgj8NVXwM03O05XCsPS0FASlY7aHvUURCryl1/os0xOpr+/+IIihVlZdA4uLqbPddgwEredHel0S4hdc801eOedd7BgwQKb75cojt+zZw8++ugjTt8xTCuIdGRNDf3sqlQHw3gTJSXkjH/uHCBJSqSkGBEX55oIq60lAabRAMuXu+4MbzJRtDo8HLj6asezETsLSaLJCT/9RL87imBJErB9O01CWLbMsaO/2UyiQ0T2HAm1noJOR1GwCxeoljAwEPj8c2rgvmgRRcGqqkisZWSQKHOU4u0M3BJiDzzwAA4cOIB58+ZhxIgRUCgU2LBhA55//nkcOXIE2dnZuPvuuz01VobpcYh0pMlEIoyjYcyVTHU11fGcPEmRiuRkQKmUUVjo/DosFuC77+iiO2MGzQJ0VUBVV1MBe2Ym1U91VUE+QBHzQ4eonik01LF4MhjIhkOlApYudRz1MxioZU9GBjUg7yrR0RlUVdE+KyujVKRaTTNHMzOBBQvofFtcTJ9r//60TFfWx7klxEJDQ/Hee+9h06ZN+OKLL+Dv74+DBw8iNTUV9957L+688062d2CYNggIYAHGXNmo1SS+fvmFanWSkux1YEajc+uQZYpgbdpE0a//9/9c7/NoNtM6goKACROogN3TnlGuUFtLRfl5ebRPHG1PVRXNjMzNpd6WjgSFRkNR955uTyHLVDt35AhZcvTqRQL2u++A6dNJcFVXk1jv25eiYN5gu+f2RNWAgADcc889uOeeezwxHoZhGOYKQaejmX+ikDo2lsSPq4XjDQ3Ali1kzrlgAUV9XKWmhoRPRgbVCrla0O9pLl0iEVZTQ/YJjgThmTNkvTBnTssF91VVFA3LzaVG5J1VgN7ZWCyUvj1+nCKD8fHAJ59QAb7wTyspoVRzdjaJNG+ZoOBWMO62227Dvn37Wnx+//79uO2229x5C4ZhGKaHoddTCnLLFioslySKTkRHu3ZxtFiAb78FHn+czFUffNB1EWY2A/n59HP8eHJT70oRZrEAR48CX39NAjMjo7kIk2Xa7o8/Bm691bGhrCjKl2Vy/h80qOeKML2e6ueOHKFIqo8PRQnDw4HrrqNUZEUFCdqxYynl7S0iDHAzIvbjjz+2OnuxpqYGBw8edOctGKbHwH5hzJWOXk/F5EePUr1SeDgJMFcFgixTuu6NN0g03Xef67MZZZmicGo1eZLl5nZ9FEyrpW4BZ85Q/ZKjvpVGI0XBjEYqyneUZjSbKfoTE0PRvfj4jh5511FXR/VgRUW0nSUlFAmbMoVmQFZU0OzS3FwSrN4oRt1OTSpakZWXLl1CsCt9Jximh8J+YcyVjE5Hs9eEAAsLoxqd9lwUq6vJE6yyEpg/ny62rqLX28cxcSKNpStrwQASED/+SOPq1cvx+aGykgxpBw6kyI6jejC9norU09NJhPXkovzSUhJhNTVUQ7d/P9UZLlhAsyRLSkhcDxxIotRbcVmIffTRR/joo49sf7/00ksOfbg0Gg3OnDnDbYAYBuwXxlyZaLVkQXHsGEUm3BFgej2l4n7+mQqvb7jB9ZlukkT2BUYjReJyc7t2RiRApqInTypw4gSdFzIyHG/XL7/Q9s+dSyk2RzGQ2loqzB84kJz/e3JRfn4+WZyYzSS2PviA9tuNN5LwF22oBgzw/nOty0JMr9c3aWfU0NAApYOjJigoCEuWLMG9997r3ggZpgfAfmHMlURdHRXOHz9OEayIiPYLMIsFOHAgFIcO+WHsWOChh9r3/VGrSQzGx1MtWO/eXd/SR6sFjhwJgVbrg5gYx30vrVZg2zaKKN5+u+OuApJEUTAfHzKuzczs+m3rKERR/i+/0Lk0KIiihAMGAEOG2FORQ4Z4byryclwWYjfffDNuvvlmAMCUKVPwv//7v5g6darHB8YwPQn2C2N6OrJM0aazZ6nGqa6Oiu+zstonCqxWSjt98IEvoqNV+M1vzIiMdD3EI+qlVCoyMR04kMw8u5qiImDvXiXy8gIwZIjkUGCp1cBrr5F4XLrUsZO+2L6oKEpFutHMxusxGCi9ffYsTc6orQU++giYPJlSk2I/DBrU9fV+ruBWjdjXX3/tqXEwTI+H/cKYnojFQqLi9GmK2hgMVI/THhsKwN6WaMsWEnK33mqB0ViH4GDXDJ9EA2edjuqlhgzxDpFiNlOk8OhRwGBQoFcvo8PzwtmzwLvvAlOnkt2Co33Z0EB1Y+npPd+kVaMhYX7xIgnT06eBPXuAefPovFpeTj1ABw7s2jZU7cHtYn2BVquFVquFJEnNnkvqyc2sGIZhrkB0Oroonjhht0lISGj/RVCSSMi9+y5Fr268kdZnMlGkwxXq60mgxMRQqq53764vxgeoNOGnn2g7o6OBmBi52bZZrdQV4PRp4JZbHNewyTLVQBmNVAs2aJB3bF9HUVVF+62igiJf33xDx9ySJSRG6+tJrHa1AW97cVuIvfXWW3j11VdR2EoPilOnTrn7NgzDMEwXI5pg5+VRnU51Nc1OS05uf2G4aO79/vsUXZs9m2ZCtieaZjBQrZS/P6UhBwzwjuiIEJk//0wpW9FY2mRqulxtLaUik5LImsJRKtJiIWEaEkKNq1sq3O8pFBbSftPpyPD33XepTm7ePDr+VCpKyaamdt/94JYQe/vtt/G3v/0NEyZMwMKFC/Hss89i2bJl8Pf3x4cffoiYmBgsXbrUU2NlGIZhugCDgS6IZ86Q47teT5GaPn3aXwwtSTSj8oMPSODNmNGyO3xbWCxkZSBJVKiek+M9NUJaLaXUTp8m0erIfFWWqfh861baD336tJyKrKgge4thw7p+xmdHIo6Po0dpXwQEUFF+bi61aiovp+0fPNi7rSmcwS0h9uabb2LChAl4+eWXUVtbi2effRZXX301xo4dizvvvBMLFy5EXV2dh4bKMAzDdBaixuriRRJg1dUUoYmNdS/KZLXS+j78kETctde2P5ohSZS20mpJnOTk0Lq8Ycag6Hv488+0HxMTHfc1NJkUeP99H1RVAbfd5nhWZONU5KBB9Oip1hSAvY7u5Ek61mprSaRecw2JrrIy+pwHDfKOiRfu4pYQKygosM2g9Ps1MWs2mwFQQ/BFixbhrbfewvLly90cJsMwDNMZqNX26FdpKUW/IiMpkuMoVeYsFgtFhrZtI0EyZ077W83Isr03ZEwMcPXVFAnzFlsYnY4iOSdOkNhsyRusoECBzZvjMWKEjJkzHS/TOBU5dmz7o4bdBb2ejhNRR3f6NBm1Xn897Z/aWoqI9evnPZ+3u7glxEJDQ2G1WgEAISEhCAwMRFlZme354OBgVFVVuTdChmEYpkPR66n4OS+Pojj19ZRGi4lxHMVxBYOBZrd99RXVRt10E0XV2kt9PUWHwsJImPTr5/4YPYUsk4g9dIjEU0uTF6xW2h8//+yDyZOrMWBAlEMRptXStqakUEouMrLDN6FLqaujovziYpoZ+fXXtP033kifu1JJ+yE93Tuinp7CLSHWt29fnD592vb3kCFD8Pbbb+Pqq6+GJEl49913kZ6e7u4YGYZhGA9jMFDEq6CAog+1tRS9iYoi81V3LnSyTBfOr74CDhygovlVqxyn3ZxFq6ULdXAwWTX07++4F2NXIaJgp07R9rdkJlpVRT0yExKA22+3oKbG3GwZ0QFAlu01UT0l+tMSpaWUxhVRznffpZ+zZ9MEkbAwSj07Mr3t7rglxK677jq88847MJlMUKlUuP/++3HHHXdg0qRJtHJfX6xZs8YT42QYhmHcpLH4ys+n9B5AkZbMTPddyCWJ1v3ZZxTVGDUKePBB9/zzGhqA4mJ/KBQKDBpENgXR0e6N05OIWrDDh2nfthQFkyRg717gu++AmTPJUsPcXIPZPqPYWCpE79WrZ6ciL29X5O9PRfkjR9IxWV5O9XU5OdQkvifilhBbuHAhFi5caPt7+PDh2LZtG77++mv4+Phg/PjxyMjIcHuQDMMwTPvQaKi4ubCQCu/F/KmICPfrvgQmE6XjvviC1nf11ZROcieqJmYIKhQKZGQYMGWKFamp7o/Vk2g0FAU7fZpEbEttk2pqgM2byXB1xQpK+16OLNOECJ2O0q2DBnmH9UZHYjZTBPH4cRLrWi3VEF57LUXAKitpnw4c2LPNsD1m6CpISUnB7bffDgA4f/48Pv30U8ydO9fTb8MwDMM4wGqlC7qY8VhaSmlCHx/PFN0LhKfYV18BR47QBfOGGyiS404ER6ul9apUlJJLS7Oivl7rVl2Zp7FaqZ7u8GHa1wkJjmfvSRKwbx8ZkM6Y0XIPSLOZPqfQUKp7a6m4vyeh19Nxc/48HZfHjtFj0SLaH1otidH29ijtTnhciDXmyy+/xOrVq1mIMQzDdCBaLVBUpIJarURZGUVgdDqKIkREkKeWpy7sJhNFgb78ktJoo0e3vxF3Y9Rqqp8KDKT0Y1YWFWwbDPRcV2Iw2PvEarW0/efP233BHO3bqirgnXdIoLUUBQMAtdoHRqMSffpQ+q2nF+QDVAf288+Uvo6NBXbsIGuORYvo2A0IAIYPb/+s2u5GhwoxhmEYxvMYDHShr6qi+qSiIh+cPx+BuDjFr61zPDuT0GqlWYC7dpElQ0YGMHcuRYLcLeqvq6OLb3AwCZGsLPdmVXoaUbOl0VB6t7ycRFmvXo69vKxWmu3344/A9OmtR8GKihSwWhUYMcKK7Gy/btmex1WKiiiSWFdHNwlvvUWzIHNzKYobG0vHgTfVAXY0LMQYhgFAFxytVgmDwXvsABjCYKAUWHU1XcjKyihKZLXam8knJxuRluY5o09ZpvfYuxf44QeK6IwaRSk2d6NfViuJr/p6KsAeMYIEizc6xRsMVEwuauzS0ykN64hLl2i2X1oaRcFaqmuqraV9m5QkIzRUg6ysyB4vwqxWamT+yy/0t48P8PrrwIQJVIxfUdGzTFpdgYUYwzAwGIDiYgXKy1WIilIgKKhnF8d6M7JM0ZfaWhIrxcV0kVKrydxTpaJC5tRUe4Njo9Ez6TtZpiL5gwdJfOl0NHNvxQqqX3I3TWQyURRPr6eIx4QJJGzcsbXoSEST7sOHqd4rLc1xOx29HvjkExJrc+aQsHC0r0wmiq4FBZH4TEmRUFho7fgN6WL0ehJgZ87QZ33+PNXOzZlDgkyt7t5Nu92FhRjDMDAaAYNBRliYFQaDDJOJhVhnYTRSmkYIr6Ii+r2hgYRRQADNnmssvDyJLJPg+uknEl8aDRXJL1hAosMTtWVaLUXzAKr76tePtqeluqmuRq+nmZAnTtDYMzNp3/v6Nv0MRI/ITz4hYTV1quOJELJMn6lGQ2Ju4EASogZD521TV1FbS62Kiotpm7/6ivbD4sUkwJRK8oXr6c3LW8NlIfbKK684veyhQ4dcXT3DMF2Avz8QEKCAWu2DXr0UPd48sqswmSgdV1dHj9JSihA1NNBzCgWlZUJCSLB01GwxEfk6coRc7+vrSXxdd53nCvsliS7CdXUUAcrMpGbWSUmembXZEVitlIY8doxqwSIjW05D1tYCW7bQa269tWVzWYOB1hUaCowZQxHAKyHqI8tAWZkKJ074QK+n4/rNN+kYGD+eorwxMVQP1t2bdruLy1+Hf/7zny4tr7hSJS7DdCMCAoBevWTU1JjQq5fM0TA3kWWKqqjVJHLq66muS/hE6fUkugIC6AKVmNjxTZytVrKFOHiQPL+MRroozp7tftF9Y/R6iuwZjSRORo2iaEd0tPdGPGSZJiOcOEF1YP7+JJgcCWGTiWaMHjkCTJlC0T1H+040JDcaSYQOGOBdnQA6ErMZOHFCgSNHghEfT/vgo4+AyZNJdFVW2iODV1o9mCNcFmK7du3qiHEwDNPFUApMYhHmIkYjpVo0GhJetbUUAdFoSHQJ9/TAQIoMxcXRhb6jRYks03ufO0fi68wZev+BA4GbbyZR4CnxJUn2KJ9KRcKub1+yH/DW9KOgpoYE2LlzJFZbEsWyTJGyzz6jfbhyZcuTFkSPyOhoSlmmpvZ8XzCBRkM1defOKREUZMXp0wqcO0dNuy0W2jcDB9Lx4a2R0c7G5d3Qq1evjhgHwzCM1yLLYlYpXWi0WhJclZUkvvR6e72Pj49ddEVGdm6PQKuVIm9HjpDXVU0N2Szk5ADTppHY9qQAbGig9zCbSdgNG0aiw5O+ZR2FVkvi9ORJ2o64uJad7EtLKQ0ZEEAitiWvL7OZ9r+fH+1zb2pI3hkUF9OxV1MDREbKeP/9CERFKbBwIQnTkBCyqejpbZtcxaN6VKfTYdOmTZg/fz6Sk5M9uWqGYZgOx2Sii3JDA12ohdAQdVwGA0XAABJcAQEkumJjPS9ynMFqpbTnzz8rceBALNRqP4SHkxfXnDk0Lk/XmZlMtE8aGkhkpKRQHVWvXt4f/QJINF+4QG11amooahUf73jZhgbg00+pf+b06S1HtiTJvk+SkykN2dI6eyJmM01uOHmS/pZl4M03/dCnjxaDB/uhosIXiYlkTdHd07MNDfRd96TA9rgQe+GFFzB8+HAWYgzDeB0istXQQGlD8VPMWNRoxAxSurgCFN0IDLS71KtUXXc3L9oXnTpFj0uX7PVMQ4ZoMXhwAEJCPF9sZrFQ2lGtpnRSTAzNdEtKIu+v7hDdMBqp/uv4cSoUDwtruTek2UwzSHfvpgL7adNaTqOJNGREBLUnSku7MorxBWo1RV8vXqR9+ssvlMKdMcOM+noz1GoF+ven6GB3nQRUVwd8/z156h0/Drz/vsKjnncez9DKsuzpVTIMwziN2UxRD53O/qiqUuKXX0Jx7JgSkmQXW+J05ecnZo6SsPD37/r+dpJEAqigwC68amvpTjwjAxgyhGY5qlSA2SyhpMTk0QudxWKfbKBQkNAYPpwiX3Fx3ae+x2wmwXr8OKUNg4JaLsSXJEqt7dhBBfYrVrQc+TCZqBZQpaKap379en6T7sbIMlmtHD1Kx2VICPDxxyTGFi8GyssV8PEBhg6VkJnZPcR6Y8xmYP9+YOdOasckbswAzx/73eSrxDAMQ1wutMTvoli8oYGEltFoL5Q3mxWoqQlAWpoCoaF00fAGsSWQZRI+NTXkPn7+PNkomM2UXuzdm2Y3xsR0rACyWEh4qdV04QwLI0PX5GT7JIPughBgJ0/SjMiAAEottuTzde4c+YFFRVEdWHi4Y/FgtdpnQ6amku1HXFzHb483YTTSfj19mr5DBgPNipwwgaKklZVAXJyM8PAGJCeHdysRVllJEzJ27iSBKejbF7j6aoqQxsTIADy3UR79SiuVSiQlJSGAp10xDNNOjEa7uNLr6dHQYPffEp5bjYUWYI9q+fuTgPD3b+o8X1hoQnx814sJIbrq6ujif/48kJdH2xQcTDVXffqQNUJQUMcXvRuNtG+1Wnqv8HASXyLy1d1O50KAnTpFxeP+/rRPW0oXFhVRJEehoP6ZcXGOBZjoi1lfT8uMHEnr9RYx31lUVVHUsLiYJi3s20cdBa6/nva9RkMu+ampEsrLu0/XgPPngQ8+oHS09ddhR0ZSbeC0afRZdxQeFWJRUVH4+uuvPblKhmF6ELJMF/7GkSxRqyUucnq9PaJlbXQeV6no0Vho+fp6d8rDaqXtKCqiCFd+PkVnLBaqO0tNpZqiq64iEdYZF3Vh5qpWUyTDz4/SjtnZVGAeG9v1YrU9mEyUxhURsLYEWFUVRcDq6sgRPyWlZdGr0dDy4eEkwDIyup9AdReLhW4YfvkFtn6077xDx/DcuRTNDQ+niQpJSfZJLd7OuXPA5s2UhhTk5ADz5lH0qzNS8G69RXZ2Np5++mnMnTvX4fPbt2/Hww8/jFOnTrnzNgzDdBMaC63GYkujsUe0xMxDk8kutBQKunAKoRUUZBda3o4sU/2I6CNYWGh/aLW0bXFxFGEaOpRSjJ2dFjWZ7F5nkkSiLz6exEdsLM0c7A772hEGgz0CVlbWtgCrrga2b6eIzqRJNMO0JQGm11Nhf0AAXZz79iWH/CsNtZoEWF4eHTtlZVS4PnUq3RTV1JAgy87uPvvn/HkSYPv20d9KJTBxIrBwIX3OnYlbX722CvOtVis76zNMD8NiaTrjUAit2trmES1R4KpU2kWWSuV9NVrOIEkkHBsaSGQVFdHP0lISOgDVcMXHU0Rg1CiKEPj4dH7UThhnajQ0Nj8/GsugQTS+mBi6gHbn07NWSzP1zpwhsRQU1HINGEARre3b6fOaMIEEcUsCzGikdfr40EW5b18Sq1cakkRRxl9+oZuokBBg2zbax6JXpNVK3mAZGd3j+3zxIvD66zQrFqBj4OqrqS6wI9OPreH2PVBLQkur1WLPnj2IbMn5jmEYr6Wxn5Z41NdTNEGrtUe1LBZa/vKIVncUWgBdVCSJBExJCd35l5bSz7o6es7fn8RMfDxFSaZPpzRjVwgugcUCaDQ+KClRQJJoLKGhNDswMZFERFRUz7BVqKmhFO+5cyT+xXa2dKxVVgKff95UgLW0rNlMAkyW6aLcty91CXD3cxX1jKKOsTug1VKa99w5+l5rNFSQP3483WjU1tKxlZ3dPURqXR3wxht0LEgSfaaTJnWtABO4LMTWrl2LF154AQCJsEcffRSPPvqow2VlWcbSpUvdGyHDMB2C1UonW2FcWlmpwLFjITh5UgmzuamflizTRSQggC4k4eFNi+G7C8ISwmKhCIkQWaWlZEUgLC0CA+niEhNDMwZHjKA6Kl9f73CMF15oDQ10gZdlBSRJgV69ZKSlkeiKjOweBqvOIEn0ORUVUURDq6XPIyOj5c+jspIiYOXlJMDmzGl5WYuFljebSVz060diwxOftYiuGY30nfH22aeyTJHe48dpn4SGAl99ReNfsMBebjBgAAlVb/cGM5loMsY779C4AWDcOGDZMoqgegMuC7GcnBzcfPPNkGUZb731FsaPH4/09PQmyygUCgQGBmLgwIGYPn26p8bKMEw7EPVBIlWlVtMJtrbWPkPRagVMJiWqqwORlqZAWJj3+Gm5gkgfGgwktCoqaFvLynxQUBAPi8XXFt0ICyOhFRtLka2pU+0F894gtgQiFSxq7iTJ3iy8b18xs9GKqqo6DBoU02PEFyBMWBU4cCAUsuwDhaJ1J3whIr74giIgV11FheStCbCqKvqOJCRQvVhSkmfr5cRNTXg4RZXNZu8VYg0N9iiYry/tlzffpAkK6ekUjYyLs0/s8GZkmUxYX36ZzgMAfV/uuou+796ES4fb66+/jquuugp/+tOfAAB6vR5LlizBkCFDOmRwDMM4j5g6LsRWXR2dgBrXbckyheRFa56wMLs5p9EIBASYWmx63NWIonjR1qeiwi60KivtF1SAxFREBEWFoqKAPn0kpKfXoW9fFQIDfaBUemd9lMXS1LpDpBlF38qBA2m7IiLosxMRSb0e0Gh6jpl2fT3VJp09C5SUKFFX54fsbBlhYY6XlyTytPryS/pcJ0wg4eCMAIuLszco74gIr0hH1td7bxRZkijaePw47ZfQULJxqK4G5s+nc4tWSwKsb1/vnzFaUgKsXQscOkR/x8RQBGzKFO+6yRK4JMSeeuopREZGIiMjAwDw8ccfY9y4cSzEGKYTaWw/IJzPy8vpblX4bskynXACA+kRE0MnT288CQF2kSVc74W4qqwksVVVRcJSLBscTAJLpOAyMylSIrbxcqFlMskoKbFApfKOCJ8skwgQn5dIiQrRFRpKXmJRUSS4wsN7fvNo0bA8L49mQarVtO2pqTL8/c0OL/5mM/DTTyQaoqOBGTNabzhuNtsFWHx8xwowgUhHemuNmEZDUbALF+j40+splTdkCE04qa2lfZud7Zl6uY7EbCYvsLfesk9SufFGYNEi7xaPLgmxsLAwVFdX2/7mdkYM07FIEt2JCo+t6mq6WGk0FDWxWJpGuKKivFNwCZElollCYImf1dV04hRiJDLSHs3q25f8fMLC7DVa3rZ9rSE6ARgM9BATHFQqElcxMXShDg8nARYWRv/35gueJ9FoKBpz7hwdC1Yrfe6iLY6IcjZGp6O0008/UdeBG29s2QkfIHFfVUXHoBBgSUmdF50SRsPehNVKgvfECbqJCw6214Jdfz39bGigzgHdIQp24gSwejVtE0AzOe+/n2xjvB2XhNjo0aOxZs0anDp1CqG/moV8/PHHOHr0aKuv++Mf/9j+ETLMFYIs20VXXZ29mFyjoRNi44hJUBDdpXpDmqNxNMtkalqbJX7W1dn7OgYF2aNZ4oLbOGLXnUSWQETyxASHxma0YpJDSAiZt0ZG0u+NWy1daZjNdENx8SKlINVqOi5a63wgy+T9tWsXCbdBg4Dly1ufkKDX0/GoUFARfp8+9LO7eqZ5itpaSkNevEj7r7oa2LqVmpYnJdHNUmwsibD4eO++KdBogE2baDYkQIL8rrsoDenN426MS4fjX/7yFzz55JPYu3cvqquroVAosHfvXuzdu7fF1ygUChZiDOMAk4lOiLW1dLEoKbG38BG1QcHBdMGOj+/alJqwdTAaKQ0qZhuK2iyRWhMtcqKjSXD07k3pjcYzDrvLyfFyhNAUgqtxiyURlfT3t0fywsPp8wsJoZ+Bgd132z2BLFPkpbiY0mAiQhUVRcdJS/vGbAZOngzC++/7QqUCRo8GZs1qWUyJG5qaGoo6pqfT+uPju6fI9yQmE+37kycpqqhSUV/FoCCaEanT0XE9cCDtM2+Ogsky8O23wLp19rKFGTOoUXtLtYTeiktCLDo6Gs8884zt7/79++Nf//pXi876DMMQjS8ONTUkuioq7IabSqX9oh0b2/l37KL/ocmkQFkZ3SGXl5PYKi+ncYqIXHS03dohLY1+Dw7uvtEsgdgHQmAJ93+R/gXsKabgYEp5RETQ78HB9kjllRjhag2NhoR7fj4dTzodHedtpQZra6n269gxP8TGBmD2bAvi431aPMYkiSI59fX0efTvTyIsJubKFsAAHdulpfb2TyEhlMI7coTMTCMi6HNKSCDrjtjYrh5x61xejJ+aCjzwAEVJuyNune6feuopDB061FNjYZgeg7goVFfTnX9hIV1YtFq7/YC4GHXWhVuWKbJlsdC4ioooOlFcTJEtk8kXRmMioqN9ERdHF7A+fchzRzjEd3ehZTI1f4iaLYCEgehpGRVln50YFGSf+CDE1pV+cW8NvZ4u/AUFdHyp1bTPoqIoNdgSFguJhb176TXDhwPLlplRV1eP6OgAh8ef2WyfqBIRQW2kUlPpmGVIYJ06RZEwcbPx7rtkYrpwob1sIDeXbqy8odyhJRwV4998MxXje/O428ItIXb99dcDAEwmE06cOIHq6moMGzYMUVFRHhkcw3QXJIlOaCKSVFhIf+t0dMEWM+Hi4jo+xSiK4kURdEkJ/SwttacQw8NpLHFxJLTi4gDAgvLycvTqlQSVygumFrqAPaJHD7OZHmICgMWiQGWlPxQKBYKCSGhFR5PICguzT3YQj4AAriNyFb2ejv3iYvvxL2xEWjNelWV63Z491K4oOZmiNAkJ9BpHxfoApfBrauj7FRMDDBtGNzY9yUfNHcxmikKePEk3hYGBlMrTaimFJ8t0jkhPp2J8bxeux49TMX5BAf09dCgV4yclde24PIHbp5rXX38da9euhUajAQBs2rQJY8eORU1NDWbOnIlHH30UixYtcnugDONNyLK9oL68nE4Oor5LqaRoV0SE59y5HdFYcF26RI/CQhqPaMUTF0e1MQMGkGFpUFDLrXhMpq6P8pjNJKh8fe13uJJkF1aNH+ICLbzRfH1JYPn50f4PCyPxS7VZEkpL69G/fyQiI0loeYONRXdHp6PjraSEjr36evp/RETrPl7itT//DPz4I312ublkwNpahFjMuq2vp2M5I4PeR3jhMU3TkKWldPwXFlIab9w4ErhqNd2I9OtHEUpvjnRrNMDGjcCOHfR3eDiwahUweXLXn688hVuH7gcffIAnn3wSs2fPxvjx4/HYY4/ZnouKisKYMWOwfft2FmJMt0TMfvP3pwu3VgsUFChw/HgQTp5U2lrMKBR04Y+MpLohT58cREpRpyPBJ0RXaSn939+fTqaJiWRkGR9PYsSbT64Ci8UurHQ6ErZ6Pe1DYVh6ucgKDbXbPAQENH2Iz+ryNIVeL8NqNSM6miMm7iDL9s4MIsqqVtNnFB5OKcHWBK7JRCat+/dTjWT//lQkHh7e+vFqMChQUqKAQkHfs+HD6bvGrYybUltLUcX8fPqsjEbg00/pc1m4kD4ri4Wc5dPTvb8Y/5tvqBhfCPyZM2mm7K+mDT0Gt4TYK6+8gqlTp+KZZ55BbW1ts+cHDhyIN954w523YJguwWAgY8nSUhJbRqNIPfqgvDwEvXsrERPT+t2kSJGJuiNnaOy1lZcHnD9PJ9WGBhIjCQkUZRs5EjYHfG8VXCJVeHkUS9g6APbIlxBOoaE0W0s0XRZtlhoLLY58dC5Wa9Nax4oKOh59fEhApaW1fgxaLHQs799Prxe9O1NTW3+d1UrfuZoaBRoafDBggGyzn+AJEU3R6+lcce6cfTbk11/T/6+9ls4rDQ30WfXtSxFLb6akBFizBjh8mP7u7sX4beHWKe3SpUutNvWOiIhAnZhXyjBejizTHWVFBZ3Qjh61F90nJlKkKSNDhr+/EYmJcqsXA+GnJYRYTExzMSbqmqqrqZD2/Hny9TEYSHSkpNAJaMQIuuB5kwARkSwhtERtliTZlxEiSwgpUZMVHGwXVeIREGCvFRJRyMRE775j78k0NNDxW1lpT7tTCyz6DGNj2xZRhYUkvi5coO9Obi6JgtZuSkTXiNpaOpYiI4HcXAlmswZDhkRyNPMyzGbaz6dO0ecVFES/nz5NnmCxsbQ/Y2Opj6aou/NWzGZgyxbg7bfpd5WKivEXLuzexfht4dapPSwszGEkTHD+/HnEevs8WOaKxmAQTaFJBFVV0R2lsGoIDqaLiBBSRqNz6xURoJAQSmlaLHQC1OkoNXPmDAkvg4GWSUmhu9WJE+nvrj5ZivELCwcxu1CYsvr42GcX+vvbRZYwKL08VahSOZeyTUy0i1cWYZ2H0Wi3VhGzaDUa+syCg+lC3lYUymKh6O2hQyS+oqKoTc7kyW1//gYD3fAIa4uMDPpOxMcDkiQjP9/aY+qBPIEkUdTo9GmK2vv7003M/v0UNVqwgPanUmmfDelsVL6ruLwYf9gw4L77ekYxflu4JcQmTpyI9957DzfffHOz586dO4ctW7Zg4cKF7rwFw3gUUWRfXk41LgUFdMKyWu0F9qLOS4gPUZ/kCiJ6dfo03bEWF5PI8/WlC0xmJt2xhoR0TdG4MGdtbFCq09HMQqNRicBAe4Pi8HD77MLGswr9/WFbzlMXSSHgmI6lsZlwWRk9xA2Dvz+liKOj274hMBrpGD90iIRBXByZgU6a1Lb4Mpvpu6fV2sV8bi5FbRrXABkMntjinkNlJd3MiVY+DQ1UB5aURA26dTraZ/36UZo/JKRLh9sm9fXkjP/FF/R3RAQV40+a1HOK8dvCLSH24IMP4oYbbsCcOXMwefJkKBQKfPzxx/jggw+wc+dOxMTE4J577vHUWBmmXVgsdPIqL6dalYoKOvn7+tKXviXvHBHxcQZRTH/mDPU8u3CBLlLCXX7aNHsRfWdhtTZ1gTcaSYAJB3yRFgwJIfEZECChslKDfv2iEBnpZ7N06MkpgSsFvZ5uQETqXZj0iuhjaChFI9v6rIXlwfHjVL9TX0/p89xcYPbstr8vFgsVjGs0dAxGRZFgiI+n37s6EuzN1Nbaa0ZFZH7XLrqRu/Za+r4bDFSD16cPCVtvRpJoJuQrr9DxAPTcYvy2cEuIxcfH48MPP8R//vMffP7555BlGVu3bkVwcDBmz56NBx54AGbRA4RhOhG9nu7yS0roxFVTQ1GAoCC7rYQ7d1uikPjUKXvPNsBeDDtpEr1XR19YhEmpmOHZuKm0SB8KI83ISHtUSxiUNnaC1+tlnDtnRGqqzLU43RirlcROfT0do2VldBFvaLALr5AQijw5c6NhMtHx/csvdIOhVFLqcOpUSlm2FdEV4kurtc+uzMmh9/eWfqnejEZD+/3CBfoM/fyAAweotnTCBPoOG40UjczM9P46MIBqcF94gaKpAB1P991H0dQrEbfLf6Ojo/HEE0/giSeeQE1NDSRJQlRUFJRKJV566SWsXr0ap06d8sRYGaZV6uvpolNQYPc0kmW6u3LXwV4Ir6NHlThwIAZ1db7w96cTSHY29b7rSLd1MRXdYLA/RGG8SmV36k9JIcEVFNS07Q5f7HomkkQCp7JSgfz8AFRUKG3pPr2elgkIoGMhKcm5CR+SRBf548cpuqtWU8QqK4vS6aI5e2uYTCQgtFoSamFhdJFNSKB6Sz4e26ahgW4iz5+nz8DPjyYQFRRQ/9YRIygKHxhIwrZXL++a0OMIrRZ47TVg2zY6zoKCgKVLgeuuu7J9/Tz6sbGjPtOZyDJdMEShfXGx/cQvDCXbe2ISRqnHj1M/tuJiElppaUB2tg65uYEIDe2YM4fZTBdR8RCCS9RkRUbSxaxxU+mgILpAXik1FVciFotd3KjVFOWtrKQLtlqtREVFCBISFAgPp2PD2SbXoivE6dP0KC+n4ywzE5g+naJWzlwkDQYal05H37vwcGDwYNjaZbH4cg6djuq/zp6lm0k/PzoPXbhA4mvwYHtkbOhQuvnydjsPWaY06ssv2xt0T5oErFzp/SnUzsDL9TPDNEWS6OJTWkonJlHvFRBAAqW9YXlJItFz+jQJr7w8Wk+fPnT3mZpKJz6TSUJJidEjJz5Ztke3dDp73YevL10Iw8LoYhgRQWIrJISEl7efdBn3EJ5PWi391GhookdNjf14kWX7cRISAoSHy/DzMyIpSW4z3Wi10rpOn6aaxspKWk9aGhmlilqxtkS9GKdGQ8duYCAdqwMGkPCKjGTx5QpCgJ07R6lkf3+7OM7NBebNs6d3c3LonBQU1NWjbpu8PAVeeYVS2wAJx3vvpW1iCBZijNdjsZDgKikh8VVZSRej4GA68Scnu75OWabIU14eCa+TJ+l90tLI7XvGDM86sAvRpdPRQ5ROioL45GS6eIm2PKGhHOHq6ZjNJGR0Orvwqq21N7A2Gu31fiIaGhHh2MS3pX6MIqVdUGCvM9Jo6AKeng6MGUMRK2eEF0DHsFZrt3gREz2SkqgOsS2HfKY5er0Sp08rUFhIn72/P6Ukjx0jwTVvHh0fskwiNy3N+2dCArQtmzfH48ABf8gybdfNN5O1RncV6EYjfX88vf9ZiDFeidlsbyB84QJFBEwme+Ps9ogkq5XWc/iwfcZXQgIJr+XLSdh56iJCdhD0EI2nhfVDRgYVOTcWXd31xMS0jkgzi2NBr6f0XW0tndDFJIvL6/2Cgyll40pqXUzcEAbBFy5Q2l6hoOMtJYVm10VEtNxv1NH4RSsvs5kupmFhNBM4JobEV3eIyngjWi1w7pwCP/4YCpVKiYAASkeeOkXnpOuuo2MGoDrUtLTuMZvQaAQ++gh4550AGAx0or76amDFCjp3dydEl5O6OgoA1NbSdzgx0bPv47IQO3HihNPLVlRUuLp65grGbKYLR3ExFahWV9P/wsLaV2wvolCnTtlNJgMC6KQ2f77ztS9tIawrGhroSyrLdEENCqJIV3y83YcrLMz7C2oZ55EkOsb0evtPvd7emFqrtXu1idZOCoXdhy08nH66ehyKRuglJRTtysvzQWFhAnx9fREeTqJryBCK7KpUzt9gWCxNhZePj91gNS7OPvP2Si6sdpf6ekpB5uUB1dVK6HRKnD+vRF4embEKAaZQ0LkqNZX2ubcjy8B335EnGF36FUhL0+M3v1EiN7f71FOYzSS4qqqoBEajoe+Fn599prkwtvYULl8SFi5cCIWT+RJZlp1elrkyuVx8VVXRBSssjFIeroovq5UiaT//TDOMtFo6keXkOOdz5NyYFaittbf3USrpyxkZSamDiAjYCqa93c2aaR1hDXL5Q6OxWzIIoSXSzaJ+S1iHhIS4Ht0SiIbvdXX0HSkqokdtLV2oo6Pp7jwnR8LgwVVISopDYKDzKqlx5NZspjEGB9tvICIi6MERW/eQZUrV5eeTCNNq6bxx7JgSeXmRGDZMtqUglcruFQEDqI5t3Tq66QUoWrp0qQnp6YVIS0vp2sE5gaibFCUwWi39T9j8lJWRcK6spO/Ctdd6Vte4fGp46qmnPDqAxnz++ef45JNPcOLECajVaqSlpWHp0qXNxN+WLVvw8ssvo6SkBBkZGXjooYcwefLkJuvSaDR46qmn8NVXX8FsNuOqq67CH//4R8RdFhs9dOgQ/vnPf+LUqVOIjo7GTTfdhJUrVzZ5P1mWsWHDBrz11luoqalBdnY2/vCHPyCXqw3bhcVCB3ZRkV18WSyw3cm7Il5EDcyZM+Stk5dHF74BA4AbbiBx5E66UZYpwiFqeQwGBerq/BAWRlECcbESMxj5vqN7IDoLiNRg44coQNdqm7d4EjRu8ST6L/r5tf9YE83eheAqLqYLgui5GBREEam4OJptFhlJokm8n8kko7xcbjVSJQw/RYpUkkgoBgXRsRwdTcdyWBhPCPEUkkQ3hvn59JmKiPnBg3TRHzxYQmJiPQIDI6FUUkQsObn7CLDiYuD11ykSBtBxc8MN1BsSsKKwsCtH1zYaDX0O4ubGYrH7P168SA+rlUTx0KGUijeZAJVKBuC5k73LQuz666/32JtfzquvvopevXrh97//PSIjI/HDDz/gT3/6E8rKynDfffcBALZt24Y//elPuPvuuzFmzBhs374d9913HzZv3txEGD344IM4f/48Hn/8cfj7++O5557DypUr8cEHH8D311vTS5cuYcWKFRg/fjwefPBBnDlzBv/+97/h4+ODFStW2Na1YcMGrF69Go888gj69euHzZs3Y/ny5di6dStSUrxf7XsDVqtj8RUW5rr4EtYSP/8M/PQT3cmkptK07rlz3YtCSZI9zSgKkgMD6cRI7UIk1NTUIzc3CuHh7X8fpmMQDcgbt28ymYD6egXOnw9CaakSJhNdEM1me/Nyi4VEtOg6oFKRsFKp7CLL19c9oS3ElvC7Ky+nR0WFfcZsY8E1YQKd+EUhvSvvLYSmSJWKXqfCb653b/sNBNcoeh6RNs7Lo/SW1UrC/uBBEsPDhtGDIi8yBg+WkJFBN3PdgaoqYPNmaksk6huvuQZYtsxuR+GtramsVopsFRfT91CnIwHp60uf14UL9D3MzqbriSzbU5N+fnTz7ekbFa+qVnnppZeaeJGNHTsWdXV1eOWVV3DPPfdAqVRi9erVmD17Nh588EEAwJgxY3D27Fm88MIL2LBhAwDg8OHD2LNnDzZu3IgJEyYAADIyMjBr1izs3LkTs2bNAgBs3LgRkZGR+M9//gOVSoWxY8eipqYG//3vf7F06VKoVCoYjUasW7cOy5cvx7JlywAAw4cPx7XXXouNGzfi8ccf77T9092QJLv4OneODn6TiU7+rqYdLRY6oR04QLOJZJkMJmfPdt4vqaUx6nR2A0xZpi9heDh9EYUjvZgNRu7zFk45diIWS1NRdfnvjWceis4CQmBZraJvqBLV1YFITFQgKIhOuiJtKESWu0iSXQAJj6/qavopxJY4vqKj6dGvHwmuwECKsrXnOBZ1XXV1PrBYFFAq7XVogYGUuoyMJMEVFkbvz5HbjkGrtc/urq6m/5WW0g1jaCiJL39/+sxCQoC+fSVYrRpkZoZ3ix6rGg3w3nvA1q32mbqjRpEA6927S4fWJjod3fgUFNBnI2p5y8tpkoSPD0Ukr7+ezhuyTN+h2NjmaXohPj2FVwkxR4aw2dnZeO+996DT6VBbW4uLFy/i0UcfbbLMrFmz8PTTT8NkMkGlUmH37t0ICwvD+PHjbcv07t0b2dnZ2L17t02I7d69G9dccw1Uja6qs2bNwrp163D48GGMHj0ahw4dglarxcyZM23LqFQqXHPNNfjyyy89vQu6PZJEF53TpwNx8iS5fBsMrrvbixlgp0/bU44REfRFueMOWl97LiayTF9IjcYuvIQNxsCBdHEUBcl8seo4zGZ6OCOuhI3D5dErwF6P5edHJ1I/P9iElvgfQKk7f3+TUz5bjpBlegjvrJoaOplXVdl/itmPvr50/ERG0nGVlQWMH0/jErMV23NsCZHXOKUK0Dp9fBTw95fRp4+MuLimvnNsJ9GxCGPpwkKq/6qvp31+/jx5Z6WlAZMn03GtVFL9VFoazdi2WmUUFnq48rsDMBiAjz8Gtmyh4x+g8o/ly+mc7M2IdH9hIZ33/f3pPHLsGKUjBwygG3pZpu+l6EIRH0/Xg86YFexVQswRP//8M+Lj4xESEoKff/4ZAEW3GpOZmQmz2YzCwkJkZmYiLy8PGRkZzSYK9O7dG3l5eQAAnU6H0tJS9L5Mxvfu3RsKhQJ5eXkYPXq0bfnLl8vMzMRrr70Gg8GAADduZfSiD0k3RhSilpQokJenQGGhhOLiUCQnW5CQYERCgn1ZcfFwhIhOHTmixMGDStTUKJCcLCEnR8L06XQBFR+pKy1MRXG1TqeAJCkQGCgjPJwuWhTxkpsJu5bC6uLz6gmf2+W4u21Wq11IkbBSNPm7oUFhE1c00UFhE1iNZxQKcUUP2SaqRPrAWesFq9W+XtOvt+/ip6CxwLJY6CJaW6tAba3C9nt9vcKWpgZoHKGhdAyR0JIxerRsizSJiNTliBRHW1gsjVOrtI8av7e/v/24pa4KMnx9DaitVSMpKRgBAfbb9Zb8xboThl+/jAYvy3WZTEB5uQKXLilQVqb49ZiWcfy4D4qKlMjOtmLGDAk6nQJqNX1eycl03gkIoGPT+OsJ0djaibELMZmAL7/0wZYtfqiro4M6PV3CrbeaMXy4BIWi5XNlV24btelSoLhYgdJSBYxGqusqLlbi7FklwsOBIUOsv/qB0U1McrKM+HgZ0dFyk4CBo+3z8+viGrHO5KeffsL27dvxu9/9DgBQX18PAAi7bC6v+Fs8r1arEeqg2jE8PBzHjx8HQMX8jtalUqkQGBjYZF0qlQr+l4VywsLCIMsy6uvr3RJiF0W36G6IVqtERYUKhYX+qKz0g07ng8BAK8LCrEhPlwCUoaqq9XWQ+FLi5MkgHD8eAp1OifT0BuTm6hAdbbbdzYswvzNYLAo0NCih0/nAalXA319CcLAVcXFmREZaEBZmRXCwFUqlOJnSwxWKiopce0E34vJts1pJNJlMSphMCpjN9p8GgwJ6vRIGgw8MBgWsVgUsFnpYrU1PVD4+Mnx9Zfj4yLbfxd+OIqXCdFd4cbmCEFhWK42voUEJrTYAhw8boNWa0dCgREODD/R6H9s4FQogMJCOjeBgK0JCrEhIsKJPHysCA6VfBZbsMKIlarGchQQo7UOzWQGzWQFZppUqlTL8/GSoVBJCQqyIjqb3DwiwP0SkT/SaFOMvLS11bUd1I7xl27RaJSorVSguVkGt9v31RtQXZ89S6KRPHw1GjLDCalVAq5UQEWGGr6+E2FgLGhqUKCiwIDCwaRTM26yeTCYFfvghHF9+GQW1mmRCTIwJs2dXY9gwDZRKKjlxhs7cNpr96IeyMhWqq31//W7LyMsLQmWlCpmZWowebYAkKQFY4e9vRkKCGVFRZvj7yzAaKbXcFr17WwF4LtTstUKsrKwMDz30EEaPHo3bbrutq4fTYaSnpyPQkxbuHUxDgz3yVVysgFqtgL8/RQVCQuhiYDQaUVFRgbi4uGYCFrAXLB88qMShQ0oYjUD//hJuvFFCTAygVAYDcL5qVVyMtFoFDAaKniQkyEhMBOLjZURGyjYTS3fR6/UoKipCcnJyt/rcWsJspjs+kwmoqzOioKAcEREJkGV/aLUKW+0ciQVaXpLo5CYECfnryDaPtMZpQU+ldxtHrkThc309RRrUagU0GvvvjaNXgHClt0Kh0CE2NgBJScpfU3eyrUbMHslSAnC/cp3Eq33ygNh/NC4FfH1lBAfTnXVICKUyQ0JkBAYCAQGyzfzX2bSiwWBAaWkpEhMT3box9Ea8YdssFop+FRZS9IvSczLKynxw/rwSKSkSrr7aCoVCAYUiDJGRMlJTZcTF0UzWqio6FqKjKTUp0uNtnSs7G6MR2LHDFx995GuLgMXESFi0yIKpU63w84sAEOHkujpv28xmoKJCgYICBaqqFFAoaB8fO+YDsxkYOtSKq64CFIpgREUFIS1NRkKCjPDw9p2jfH3PenT8XinE1Go1Vq5ciYiICKxZswbKX89G4b9OU9NoNIiNjW2yfOPnw8LCUFZW1my99fX1tmVExExExgQmkwl6vb7JukwmE4xGY5ODSa1WQ6FQ2JZrL4GBgQjycmtqg4HuEi5epFqtujq62MbE0GzFlg5kf39/2z6zWCh9uX8/zXa0Wqm24JZbqJZGoXBNJQmHcuG7ExxMLVt69aKTXVRUx3p4BQYGer0QE4a2jc1GxU8SLfS3EAt6vQ8qK0MRExMIlUplmyUkjAzF754y8xTCSkS+hAmqGJtabf9b9FcUx5rosSjqoGJiyIJB/E+IQJEmNJstKC9XIz4+sElNaHuwWu31ao1nXjZOl4t6NT8/u5FvaCh+FVpNf3rSHDUgIAABAd59XLaXzt42WaZzXVkZ2U/U1totRo4coe/RgAHArFmA2axEYKAvEhPpHBQb2/RzFQX6YpLI5fj7+3fp56bXA599Bnzwgb0pd1wcsGQJcM01Svj5tf8705HbZjLZr01VVfR9r6+n+q+ICGDcONHRxAeJiXSNSEhwf5Yw3Yx6Dq8TYgaDAatWrYJGo8G7777bJMUo6rTy8vKa1Gzl5eXBz8/PZiXRu3dv7Nu3r5mhbH5+PrKysgAAQUFBSExMtNWANV5GlmXb+sXP/Px89O/fv8l7JiUl9bi7T4HZTLN9Ll2iotPaWvp/dDQ1wnbm4mE2U0px3z46cSmVZDFx++1w2frBYrGbaAqvl/BwOhHGxtKF2Mv1bIcgDDlFakx4ntXX21voCKElZvqIu0UhFEJC6G9JkqFSOdc4uiWEsBLO72o1ndjr6mg8dXV2kWWPENnFdHCwXUzFx9OxFhZGokWptAur9ha8tzX2yycFNH40trcQMy39/Og4FGMWjvmNf/IM2+6FXk+lCoWFdnsDg4Fmfufl0XGZm0ufryyTwE5JoQt8Sw74VNvXqZvhFFotCbCPPqJzBkDbsWQJMG2a93YBESnEvDy6NimV9FkdP04TIWbMoGtUeDiJr5QUujn31glYXrWbLRYLHnzwQeTl5WHz5s2Ij49v8nxKSgrS09OxY8cOTJs2zfb/7du3Y+zYsbY73YkTJ+LFF1/Evn37MG7cOAAkpE6ePIk777zT9rqJEydi165dePTRR+H3q0Tevn07wsLCMHToUADAsGHDEBISgs8//9wmxMxmM3bu3ImJEyd23M7oAoQrfWEhnXSEy31kJEUb2vpSimLkoiJg585IFBb6IjCQTlp33ulao1RhpKpW04lQqaSTXFYWzWgR5pPePCNMpPyE6Wd7aBzVEg7oQmjV1TU1JJUku0ARZqNUWO5cm5vWGkc3jlyJSJUQVUJk1dc3nYyhVNojVqKnZmqq3UbB379p1KojTpJCXJFAVdpO2kJcNZ6GLtKsIr0qIlZCIIr96e/f9HdvPgYZe9cDMeHDERYL2YyUltL5T622ex/+8gt9N9LTgbFj7d+p+HiKfjVONXYXKitpFuTnn9v7WSYmAjfdBEyZ4r0CzGCgGZAiM6NUUrDg7Fm7nZFKRdeHzEz6fLqDN5tX7e6//vWv+Oabb/D73/8eWq0WR44csT03YMAAqFQq3H///XjkkUeQmpqK0aNHY/v27Th27BjefPNN27JDhw7FhAkT8Nhjj+F3v/sd/P398eyzz6Jfv36YPn26bbkVK1bg008/xcMPP4ybbroJZ8+excaNG/HQQw/ZRJ2/vz9WrVqFNWvWICoqCllZWXj77bdRV1fXxPS1uyJJJLiKi+lgLi+3e305Y7QqLs5FRcDevcDJk0BQkC9SU61YudKC8HDn8y6Ool5RURRFi42lL1d3CUAaDHRSNxrpxJ2Y2PrYG/f4E4KrpoZONiKlKISSLNsvKv7+JEhVqvaluIT3lbgQXbzoj4ICJTQautOsq0OTmisxvTskhC5GISF2J/DGkSshsDyNqBET6UEx47LxT6DpeH19AVlWwGpVwtfXniIMCrJHrESE0N+/6U+me2M02j3c/P0p3SbEmCTRMd7YW0rUH548Sd/fjAxg5Ej6XgYF0TGRnU2irDv0f7ycixeB998HvvnGPqM4LQ1YvJgsNry1h6heT9eYixftqdPz5+nvQYOAOXPou5yQQAIsKal7fX+9Sojt3bsXAPCPf/yj2XO7du1CcnIy5syZA71ejw0bNmD9+vXIyMjA2rVrbREswXPPPYennnoKf/7zn2GxWDBhwgT88Y9/tLnqA0BaWho2btyIf/zjH7jrrrsQFRWFBx54AMuXL2+yrpUrV0KWZWzatMnW4mjjxo3d1lVflukEVFxMka/SUrrYhoa2LRjE681mqpvYu5cEXGQktYCYOhVQKCwoKWlAYGDb+UfRIFmvpwt3aCiZXCYm0p1mRIT3hpNbQ/hiRUTQicNspv1qNtOJXpjIajQkhEUdlMFgj9I0FlsxMa630BEiy2wmUSc8r4TAq69vaqcQGOgLH58QJCTYexhGRJDYujwt6CmECGxNXInlxHv7+NhtLBpHrgIC6GLZWFgJd3xJsqK4uB59+0ZekSnsKxXhVRceTse76KpQWUniq6qK/jaZyIQ1L4+W7d+fLvCyTN+/hAT6f1xcxzirdySyTCm7LVuAH3+0/z8nB1i0iISmt0Z1dTqKUF68SJ+fLFM/y/Jyamqfk0Pf+eRkMpSNi/NeMdkaCln2dB9xxhl++eUXmEwmZGdnd1qxvlpN4uvCBbq70GjsLt9thW9FT8cLF0h8nT9PUarhw6lOq/Hdh8lkRElJCZKSkqBSNT1jSZI96mUy0QU0IoLuyuLivD/qpdfrce7cOfTt27fVYn2dzl6/YDbTiVuk70Q6UYiLy+uKnD2RCKFlMNAFRTyqq+khUg4irSucocPD7T0FRSSNCtqNKC8vR3x8fLPPzVlExKqxmLr898YolcKQtKkpqxBVYpKAEFaimXbjiQTOpFEMBj3y8/ORkZHRI4vZe/L2ubNtRiNdtGtqKKql19N3UjQ5v3iRbkYDAiiSEhdHx3BgIJ2LROG9SGe3VGzvzrYVFhYiJSXF45+bxQLs2UMpyNOn6X8KBZkLL1pEYrMjcWfbGhrsAkxkSE6coN+HDaPPJCyMSh1En9TOvGGXpGPw91cgJyfHI+vzqogY43kaGkh85edTLl2ttufQk5JaP3iF+Dp9msTXpUsUJRk+HJg3z/k6ApOJ3lejsRe3ZmTY6yvcbczd1RiNFN1Sq+mnEENiVidgrxMLCCAR5GxtkRAwYvZWRQX9rKqi/SrMT4W4ioqyt2YSDvPuRrEaF7E7eohlxPuIaJUQVsHBsNkxNE4FOhJVnpyVyVy5yDJ9/6qq6NxXXk43LEolRcLOnKHl+vShJuoi3R8VZT8vXd5do7tEwWprge3b6SH8F/38qBfkwoW0fd6KRkOfT0GBPUtw/DidZ4YPt3eryMigm/eIiK4esWdgIdYD0evtU3pFTt3Xl04ybfVlFEXyJ04AP/xAIi4lBRgxguoInLlIUoG5EmVlCttdJDkZU4g/NrZ7FFA6Qq8n88YLFxS2+pP6errDNpnsQiQwkE4aiYlt77PG6cPGzaCF9xBA4jUqii4QAwfSPgwIcK9lTmMbBlHQXlXlB7NZAR8fu12EUmkvYBcCKyzMXmclitcbpwJZWDGdjSTRd7GqiiL+VVX2yFdhIUXzLRaq7xo/3v5dDQ+nm9LYWHjMb7ArOHsW+OQT4Lvv7OeNyEiy15gzh373Vurq6DMqLLSXbPzyC51bhg2j842YsZ+S4trEr+4AC7EegigOLyigE46YHRYVRSH31k4uIr115AhZTVRU0B3HuHF01+HMiUmkHEmUKKDV+iA5WUbfviQeRI1Td0LUr4nC9fJyoLraB4WF4YiIUNqiXIGBdBJv3ILJEaJ5dVkZCeWSEvrMRAuNsDC72MrNpZ8icuZqxLAlnyvRzFYIrMY2DCEhQFycCb17y7a0paOHiLIxTFdjNtN3U4gvMbnEZLKfCwESX2PG2FPh4eF0kxQbS9+57iq+zGbKVmzdSrVTgv79KWsxYYL3nndFa7zCQvrstFr6LE+csHuAhYbSZ9SnD9WBebl1Y7thIdaNMRrpon7pkr0eSZbpzscZ8aXTAYcOkclqTQ0d7FOm0AHvzIVfWBmIlGNICBVMRkdL0GjqMWxYdLcpjDYY7P5WdXUkkNRqEmPCQyowkPqVRUebkJrasteW1UrrKyqiR0kJiVuzmT6TqCg6uaSlAaNGNS2Gd4bGrX/Itb2poagoaBcRKX9/OiYa2zAI+4XGP81mCfn5DcjIkLy6To+5stHpKOVWWUnfLVFv2tBA4uviRTruMzJIiAhbktBQinyJcghvtWhwhpISYMcOYOdO+yxCX19g4kQSYP36denwWkXM1C8ooO0Qvm2nTpE4njTJ7iPYty+lUrubPYirdOND8cpEiC8Raq+poQtzRATd9bV2chGtgA4eBA4cIAHVrx8wcyalDJ0RAiJKpNPZ7yxzcux3l8HBgF4v49w5q9dGTSwWuxdWfT3tz7o6OpGbzXbRFRRE+7XpRAR7bz+RUqystIfVi4vpM/Lxsc+wGjiQBG5jawdnxiiaZQvBJeqxGvtdqVQk7IShqJhl2bj4X7TwaQtXGqkzTGdBLdF8cOGCAjU19H0TjeOrq0l4VVTYi7eplQ0d/2FhdG4SvoPdWXyZTHTTvH07ZS8EkZHknzVrFp0LvBWLhT6nS5fsNXvCNql3b2D6dDqHJSZSUMATDvjdhW58WF45GAwkFgoKqPBUiK/wcIqqtHawShKJjgMHaOqyXk/F3Ndfj1/7Orb+3rJsNxA1GOjkFhlJ4isuzp6S81ZkmUSjsGuorKSTQUODPSUoZui19sW3WGg9588rcPJkGNRqX/zaWQsREfTatDQyfAwKck5wWSwk2oTgaux+7+NjF1Hh4fYWOaLgX4gsV2ZZMkx3QJbpZqeujiInhYVK5OeHIThYCUmiKHN+Pn13RNuagQPp+yZunhIT6TwVFtb9vx9FRWS8+tVXdvd7hYLqdmfOpKi6NwvMxpkbYReSn0/blZVF2xAeTpmYjIy265h7Il788V3Z6HSUHisqsqcdAbvVQ2viy2ql5ffvB376iS74gwYBN9zg3DRfq9Ve72Wx0F1KUhIVScbF0V2Xt35RLBa763tdnT110dBAIsfXl6J2kZEkZhztC2EsKyY7FBTQ5+HnB8TFKREYKGPiRAvi4nzg69v6vhBRM+F+3ziyJcSWSmX3TBMzDBt7Y3nzSZZhPIFeT9/X2lo679XVkRgzm6nZ9rlzIdBqfREQQOehkSPtk0eCg+mGUBTbh4R0/xrGhgaynvjqKypaF0RHU/ueGTNIsHgzWi1w6ZI/zp1ToqGB/j59mrZt0CCavCWuZ+npnW9B4U3wKd6LUKvtdw4FBSQoFAq6W2irxZDVSpGe/fup7kuppKjV0qVwqsO8qPcSUZ6wMMrPJyfbPVu88UsiTuB1dbT9FRX0hTcam6YYWyrIFdYQwt6joIBeGxAAWwPfoUMpGqVUAmazFeXlOsTFhTaJBEoSiazGLYdEUbyoyRJeXqGhdo8s8ejud+0M4wrie1tf39Tny2Si/xcX00OW6eYnPt6IYcP84eensqUcxU2h6CzR3bFagcOHgV27aMa6aBemVJLwvPZain5587lCkuizLCoCLl3yQWFhEGRZgXPn6KYzJ4cEV3Q0pSNTUrpnhwJPw0KsC5FlSpWJ6IuI3vj60smld+/Wv3RWKx3wP/xAd02BgXSgL19OF/u2hJPBQCfChoamFhOi3svbCu1FyqK21n7nXFtL4xc2GcHB9CUXfQwbIyJdFy6Q8CoooBN/UBBF/Hr9//a+PEyuqkz/rb3X6q7eO+nskM5CVpYISQDDGgwy4gABHBgY1yejI+oM6PyAYcQZ5NFBR0VxFIdBHTdwNICMYBhRSBhHIlEWsyed3tJ7dXdVdVVX3d8fn2+dU7erekt1V1fnvM9zn6q6devWPXc55z3f8n5zpaMrLs583i0LiEYdCAZVtikJl66CrxMuLvk6WIynVp+BQSYwvIFxmW1t8kqLV2+vkLHmZnmeWNVh4UK6+BMYGophyRIrWe2huHjmWuUnitZWL37xCzd+9Sul+wUISbn0Uokvra7O3fGNB9GoqlPM0I+mJgf27y9FQ4MTGzfKdaupUSWIZmsG5GRgiFgOEQ478eSTLsTjKrNtLP94LCauypdfFlHC8nIhTx/84PjU8RnvFQ6L1aeiQszEMzHeK5FQ1i6WZGKiACDHSrep3VrIrNDjx+V8HT4sHb/PJ1a+efNS47nSIR5XdR6Hhihg6kAw6EZpqQOBgJy/0lI59yRcsynAdLRafQYG6cAyXsxAbm+XCRBlJShO3Nws21ZUyH11zjlKr45W7KoqoKAgjr6+fixaVD5rsnnb24EXXwReeMGHw4cXJtf7/ZI1eMklEj81E70QOnQvDt3JBw+KVWzxYmDDhj4sXhxIuh9ra02oRTqYU5JDJBIy+xtLaG9oSFJ7d+8WS059vehMXXHF2IOiru8ViwlhqKuT7CKa9meKqZvxXT09YilsbZVjD4eVm7GkRJUcIcRKJR0C68V1dMg2tbXS1quuEtKaKYieNehIuixLxXAVFYm1TLKuEujqCmLZsvJJm9TzycJkr9XHck0GBoD0L4z/oZJ9d7eQLtZO7epSIsWJhBKW3rAhlXiVlwvxYnIK77NIRFWoyGd0dQG/+pUIrirNLydcLgvnnJPAFVe4cO65M38iNzws17m5Wcn8nDwpfa/PpwSnS0steL0hnHuuH3V1M59U5hKGiOUQLpeV1v3HTL99+4R8tbcLmVi/XrIdx3pQM+l7zZsnD8h4YsamA3RL9PSo0j39/TLwO51CGsvKMOIhlnR2mXkdPChWr3hcOviGBhFurK5G2kB6Uf2XhcV+AaWnVVkpgwGtXCUlQgD5/5GIhWg0PmnLYb5ZmEgW+/pUFqfB6QmddOlZjaGQCg/o7ZVJUFubbOP1yrNYVSV9ELXtWHmCzxozgmcbensl6P6Xv5RSPazs7HBIGMnGjVHMn38cy5fPnfE1Qvv7lfuxu1uuL0NqFiwQ2ZBAQPq0xYuBQCCOtrYwAoGZMd7MZBgiNkMQj8uM6f/+D/jtb6VzW7JEzNQNDWNbrRjvFQqpIs+rVgmJqamZGSWF6JagSj07a+pulZaOLPpN8dL2diFdBw7IefJ65bwsXCgdADW6dJB0hcOyUCeLGltz5sj/UYOrpGTqXbP5ZmEiWcwXC55BdkD34uCgLIzLDIWUi7GvD0ldLz2ru7JSrCIswUV5GGp5lZZOz7OWK5w8KaEju3dL7C4laQBgxQoRXd28Wc5HJBJHU1Mi887GAEMmsl2MnIjFhGy3tEh/HQxKX3zkiPSvjY2SzFRRIRP9efOEXLtcSh7IYGwYIpZjHDjgwN69Yqr2+eRBveGGsQthZ4r3WrlSzP4sj5NLRKMyi+ruTiVe0agM6kw714+Ts+4jR4R0US8oEFBijVVVI8vssEC5TrosS2luzZunhE9p7cqFdScfLUxMQjCYfYjF5HkZHBSCNTAgE53+fmU5ZhkhZiZTy6qsTJ6pRYuk3yEZ8PlUAXpOcPI9uH40wmNZEiO1e7cQsAMHUr8/80zgoouEgNXUZPeYurqUdZ1JSqcKy1JJFc3N6tofOybXf9488TpUVspYs3ChTPhnW/3H6YQhYjlEMOjGs886sWaNWL50F1g66Ppe8bgSIZ0/XwhNZWVu473YYbe2OrB3bwlee82ZFCol8aqtTZ0JU2354EFRWG5rkw6bWVPnnJO+E4/FUuNQANlvYaHEc9HSxdn3TAkQnU4L00Rj0YaGpE4o5TsMZgd0y3AoJK/MPqZFmqW8WG2iu1sG+VhMnr3yciFeS5aorGKSLhak10lXPkwwxot0hMftFk2sPXuEfDU3q+0dDplQX3CBLPX1U3NcFIT2+8VSNTx8av1JKJRaMD0YlBiwY8ekP1i6VOL6OCmeO1dZv2YzLEtNVgYH5f2CBdntu2fI8HR6oqQkjptvjsPrzXwZhobkgRgYkAe8tFTpezGwNVf+9+Fh6cy7u4VMMbg+FHKip8eXVEnWiVcsJjEGf/yjEK/eXum8588XEzfV7XXiFY9L+2ntsizpCAsL5RxQ54yka6YPAhOxME02sH+isWjcvqvLA79fKfcb5AekvqkDPT1KViUUUtqAnLBQ6663V03qenpUrGRJiQqaX7hQVW7gPVtWJgNxUZHKFJ6tLkaChMfhkGD7AweA116T80d4PJJAdcEFko1dXj71x0XrXDAor5OZbLJMVGureC16e+XzsWNCOhYuFGteZaWa9NfVzW7piUhErm0wqArKc9Ifj8s2c+dm9z8NEZthoMuR2YJut3R8Z54pD0B1de4egnhcHlS6Gkm8olHprEtKZMB3OCz4fNFkZ3T4sMweDxyQtgUC8oBfeqnK2iSZ1F2MoVBqwe3SUgkCZZxJaensJgunEtg/0Vg01rMsKUkk61vO5nObbyAZGBpSmb2RiExQ+vuB3l4nWlvLUFrqSsZVcgJHCZj+flUQvqxMnp/qankWWWWChKu4WKnUU3y4qGj2Wz90WJZkAu7eLZavw4dVsD0g5+bss4V80XI/naB1bqIxYvG4mjy3tEj/IKWkJN6vvl7iixnismCBjD3l5bMz6N4uCs5YyHhcDAKscKLXKs22h8UQsRkACo0Gg8rlWF0ts4+qKhUTNd2gjhcDcik4G4mo4Ho9xiuRkAHi4EEHfvvbMnR2uhGLqYypd75TBgDd2jU8LIMFZxyAKu+zaJFyMfr9cl5mY0eQCacS2D/RWDSPRywbAwNOVFfPfKvibAGlV/RFJ1zMUKRllK8Mpu/vl9e+Phc6OsrhcLjgdKqsY7rna2oUkWKxeBIuv1+V1uIy261cmdDVJer2r74qr0xCIBYuFPfcuedKzd5cE9PxWtc5iabsRE+P9A1NTTKhLiuTQtsXXKAC7znxnylhHdmCnq3f1ibXnMSLz0RdXXptymhUxkAmfmULs+wU5xcSCeDIEQd8PukMGxslky9XLsdEQrkq+MAGgzJjcDqlU9ezGhMJ+e6Pf5Tl6FEhVjU1TgQCcWzePIxAwJUkXrR2MfOKMzlmVNXUyHnw+2dWXNd0IJ0L8lQC+ycai8btg8HYjJfUmOmgRYpWRvur/gwwsYTfDQ/LK2UiqKHFz6xTCiiiJbGXFioqQqipccPrlRqoJNdFRSp+i8krnOXnmkjkGqGQZDaSeB0/nvp9QYGETJx7riwzXeFeByfSXV0yiWbmK/W/3G6J+VuzRvpfVheprp59MaIDA8oKSJkkTmzpjuezYFlKIqmlRRZ6f6hIcNFF2R2cT6OhbubB4QDOOSeBefPkQZhul6NlqazGri6ZHTEL0+FQ7gnqeMXjMiC8/roQr6Ym2c/cuWLx2rhRHuDh4Tja28MoKvInBxyWAuIgsGSJzLzoIpnNMQdjIZML8lQD+yea7SjitZYhYRosixUVFGGKxUZ+DoeVSz0SSf0NX6NRpbmlZ/gyEJjQa6TqtVKLi4VYORxKj4v3hdebQH9/CAsWlCTFUBnndzpNaMZCJAK88YZoNO7bJ/0Y434AObdnnimajevWidUrn6yDJBDpyFdLi9wLCxdK2aSqKunb586dORJH2QKNCp2dQqI6OuTZY5y1XkUmkVCxy0ePSnxcKCTPXkODeKY2blTJcGJttgBkj4yZRzSHKChIYO1aa9pICGs1dnfLrODoUVVoFxgpoMqH+rXXpMPiLKqhQczYW7ak1nQcGpLtg0EH2tu9iMUc8PuVyB8Vs0tLT++ZuN36NZoLMpvSEfmk6J9NsKONRBzJ2EsSJfvCCgu6izAeV9/zvQTHp1Zj4EJLVzgs/8/ngwkmJEjMOKTOFl2KJFi0arF0Fl2GQrzUq8cDRCIJNDVFMG+eNeusGaeCwUEhXr//vRCvAwdSiRcgMVHr1gn5WrNGrkk+gUK6DLrXS8KRfC1YIGWTGHTPZK98a+toYPJYR4eQqt5eeTYLCpRGpdOp+oNDh+R+OH5c1tXXCwnfuFHGLE5gGHIzOKgSXhYtyu6xGyKWQ0yH65Fp6l1dqbEBfX2q0HdNjSr9098vgrJvvilWmsJCmUGtWQNceaWakTMzi/51y1LyEfPnW6iuHsTy5eWoqTm9rV12pLN+TYe2WL4p+hOJRGYipL/yfbp4KyFhLpw8WYayMhdcrtTfkEjp5EuP02LnC6Q+s17vSELEUj2FhcoaxQB5EiuXS7bX3YT8PfepW7xOp7jIU4FlyT3+5puyvPGGDLa6oCog9/6qVVJjd+3aqZOXmEoMDal+va1NxX+1tMg58HgU+aquljbPRvIVi8k5IPniRLaoSMgUJyWUSdq/X+6JSETOx8qVwNVXyzNIkhYKibEiHFaknc9qRYU839me7BgiNstAFWyaplmKApCbhzElHCiOHBHidfy4kLCyMnmAV6yQNGxmizidcoNylgGo2o8LF8pNTzdjPJ7AkSNDqK01s3M70lm/mG06lrVqLIvWaN/nQtF/NNKUbr0eR0VSxO/TLdzWTqT0fah9uRCJVMDrlZhFZr/RAqWTH91aRcJESRWdVLlcqQRLJ1c6keL3+nI6W4SzhaEhsWiQeL355sjgekBlAXKpq8ve/0+lqr0OZtPT4nPypFK5b2mR/t7vl757/XohDPX1slRVzS6xVUputLeL5llfnxAoCoR7vSp++dVXVTWWQECI1623qjGNlq7ubqWZp49rFRWp5e7ozmxvz26bDBHLc+jlR5qb5YYbHJQbkcSLEhGxmGzz+uvSaQ0MyA02Z45oxTAdGpAH3bJUnEFhoWxbVaXcjGVl6cVW7aZ/A4VM1q9MLkgSC8sSEqxbtABFvIDRLV6TsbrZiVO6hdvQgqSTH50wJRIjSZXd+iSWKzXA6YTKbtUA5L6zW4+4ML7R7aY0QxwDA/0IBMrhdrtSSBTjPvT90crFz9w202KI1dQikQBaWhw4dkyRrsOHR/Y1LpcKnVi7VpapCLCfKlV7HRTY7e0Vqxc1G9vaVJUSyo9s3qzIF2UnZpMnYmhILH4kX3od5fp6eQYpy/HGGyIQnkhIAtyVV8oY5/HIfgYGxHo2PCzPd0mJuBpraqTPYLLYdFaCMEQsz0BXY3e3snilI15OpwxgR49KfBfNsZWVctNdfbVSyO7vVyVOOGgODanYgiVL5MH2+2fXw50LTCQAX3cnxuNyXaqqpHNmJh0HgqKizBaveFw6LV3+g6rpetB5f78Tx44V49gxZ0qQuk66SKzsJIrWLF1igevTkShgJIlyu+V/KL3AJA6Kijoc8h2Jk51EuVyp1i2+yn4T6OgYQENDKYqKPCkkTH81bsDcIx6XgfLgQem39u/34tChJYhERrLdQEAC6pcvl36tsFD6qUhEBt+pCkDPtqo9kFq2jhafvj5VRJ1WmPp6IZhz5khfT5djRcXskp2JRIR8tbXJWNffL32J3y/ngMaFY8eEfJ04IX3GmjXAe98r27EaTWurbOv1yjbLlkk/HAgI+cp1QoYhYjMYzGrUiVdPjzyszEDUiVcoJLPEP/5RXI7xuMyOFi0Crr1WbkCnU9br5U6Gh+UBDgTkoaZvnZpC+RBLlE8YbwC+7k7s7JRrx9i+UEg668JC6YCKi2VAOHxYftvaquKfSJJ0Cxddesz2k/cu9PYG4HS6MTys6gzqYruAfE5HokgsGYBOMkTrE8mT/qoTKNYZLSuT46NLhb/XF901qO8vEyIRC05nDHV1xl0+kxCNSljEwYNqYX1ZBSFgXq+FRYscWLZMkS8RkJatBgak7+vtlftvKmO/sqFqD0j7e3rcGBpyJIPsaQFrbZU2lZcL6Vq8WJ6Hujqx9NTVjdRlzHeEw4p8NTcryYjSUjkHDods84c/KFf03LmSbHH99dLfUBC9s1P6B79fzh2JayAw8wirIWIzCMxSpIgqVY+Z2q67BwG52Vgq6MQJuUnnzhXidf75KgAxFpN9tLdLB+dyyXeBgMwM6GacbnOsgQKtkLpFiSb0vj65Lj5fahYfXSOJhHzPGoJ6jBXJtmWlWntIpvTF5bLg8yUQCCRQXOxKujB10mNf7BYonXiRMOnWq3QL77npcPcY5AbxuPRnR48qiYCjR2VdOotpQYFY4s88E5g7NwqfrxXnnluDQCCzSd7hkEG3pkYmEVNp3Zysqj3djcEgXW0uHD1aikjEha4u6ffdbplAr1kj/XkgIEs8LkKrQ0Ozq8j2wICSmWhvVxUg/H4xDDgcMibu3i1j3fCwENF3vEPOTyKh6mImEkqXcu1aGSt17cuZCkPEcgjLErMzTbCcAVHHi0GD1dWybXe3pGDv3y83rM8nD2ZjY6qUBAfg7m55eJnNRbE+v1+IV1FRrs9A/mEyhbEZ+0SCFAwqQVuSZN1yxQDSvj5xTXJbQFmyEgm5JyxLiIwuicDsVb9ffsNagWVlSsSTBIkkStqSQE9PH+bMKUBRkWdEQLrdlZftuKjJDm4GMwfDw2LNOHEilXCdOJFZjbykRGK6liyR1zPOkL6KwdTNzXE0NSXQ0yN9Vqb7wu2WierQkLxOtX7aeCzbrJrCQuodHcpV1t4OdHS4EI36MWeOAwsXAps2Cemqq1MxS2Vlcu70GNCZZtGZCCwrVeuMfRytV/PmyTatrcArr4iFtKBAiCkD7SmVdPSonIvSUkkwq6vLfQ3mycAQsRwiHHZi1y4ZzahcTwHV4WF5UF95RRXHLi6WmK1zzlElGFgZvr9fbmhA6RItXSoDG9Xqc+0Hz3ekK4ztco2UO6BYJ8vTkGQx5byzU62nDAhTpen+0zvbggK5dpWVKm5KDyKn1UonY9Qn6+uTeyocllm2358afK53VqJFNZRTLaps6qYZTA0SCSWH09wsJIvvaZVIh4IC6b+4LFyoMtMyDZqcrBQXJ5IxjZnuj5lA5KNR6YsplN3ZKROvkydl6eiQ9lDJft26OIaHu7BiRSUaGtzJmCU70TpVcedcgxpfeomlcFj6Mb9f7oHhYSFdb7whZL66Wqxa27ax/BrrqiqRYyZj5Lv13BCxHMLhAGpqLBQVyU155IiKkYhE5IGkFgwzH4eHVXzQ0JBKty0rE+LFrI/TXTQ1W9Az+bq7pSRVV5cH3d1OvPWWkCdWD+DCYsssS8OsRyqiMxjd5VKyH0VFKq6KtQAtSzouQLY/4wzZlvFYuixCumutu/oKC1UwPEmcgUEmcNLR3i4LY5ZaWmQgTY3hSoXPJxYtO+GiXuFEwHt8cNCJioqxrVzTTeQjEUW8Ojulj+jrk/MlkzYhppxgr1olxKGqSiZGhYUJ9Pb2obExMObkJ98mKeEwcPKkB8GgM0lIYzFlra+qkm3eektl8S9cKIKqixdL30qJDsaJ0VpaVTW9Rcj1CTOrxGTT4mqIWA4Riznw/e+70NEhA2ldndyI69fLwKu7GTnTZG1G3oxUqz/dCmJnC5RR4AMWicjD39urskiHhlRH29bmQkdHJRwOdzLpgRmNVHAuLlaxfKWlcm0YQ8WYPb1oenFxegmGUEgGvoKCyWWB0UIQCsmxU5KktlYCmfOpUzfILjiZ6+hQREsnXen0uHQ4nXIPzZ0rS0ODek8F82zA55PnaGBgGFVVub1n43Fl5Q4G5fwxnlfcjHLenE55rufMAc47T86HXfaH2eeRiIVQyMpdo7IIxjhTYqOlxYWmplJUVjpQVibnxOWSseyll8TgAIhL8d3vlu/DYTm3x45Jv8es2Jqa6ZHkGB5OnURTpaCvLzW8ZMuW7B6LIWI5RCLhwNq1CTQ0qKwxZjOyI2RmZEODck2VlRk340TAWoD6jIadKUvecGCiYOLAgKwDlIhnSQng8ThQUBBHdXUCVVUueL3yYJaWqjIZFRWpOlT64naPLQRJ8m1Zpx7z4vMp9w5V2hlzlmsiNp2CmKcL4nG5j7l0dqpXvmc1jLFQWCiknQvrEjY0yOfpqmEpMY/WtPZ57Is5ILOEUF9fKukaHJTjq6sTj8TcuWKpIXHgRHmq7u9cly3TK7e0tkqfGonQemehujqKsjIrKaPU3S2Ea/Vq4Ior5B4i4Wlqkn60oUHixKqrhYhNlWdnaEiOlwstmvSAJBIqqYnWSIZ2ZNujYIhYDuH1JlBSYqGjQw1IRUXyAFdXp9ZmnIpsxlw/xNkEawRysVu2qJ7c26uyloJB5WJhjB7ddgsWqLiMggK5NmJ5HEZvbw/mz/fB7/ck63dalgxc44lVGM3FYM8c9PulMzgVssIahzxOCp2OF1NBmEyG5PgRiShZg0xLT48P3d2LMTjoSsYZjgX2NSRZOuGqrZV+53SwsjPOltp8LBY9MKBU7EnCHA5VO5cSEoGAnC+9v54OkpqLsmVDQ8oK2NYmryT1xcWKOLW0AL/7nQsHDlSjqMiNZcuArVvlfLFvbm+XvrWsTFyOtbXKQ5BtDA+r8YBkurdX1Vp2OOTcMcynoGD0MXe8z9h4YYhYDpFIOODxSHX3igpVImg6RFPzsfYgLVu0YEUi8lD19Kj4rJMn1eDU16cUmAEZeFiqoq5OTN4lJUozrbSUBZRl+5ISIQgMqvf5gJISC+3tUcydqwLay8rGZ2EYD+xCkRQh1EFrXVHR2CnsJFHV1ULAeB7Gutb8nWUpwppNwjQVgpgzHdGoCjhOt9i/48AxWjyWgvNPiwwggYByiVVWqvf8PNuU18cLXUORpKu7W843XbXd3dKnJBKq/NiqVWLtZm1elr6hyHUuCOt0lC2LxVR/ymQDCohLfyj9Sk+PWLwOH5ZzOWcOsGxZAmvXnkRtbR1iMVcyxIblg+bMkXtxPLF/E0U4rCYvJNPMTgdUQlumcY+VQAYGhLR1dqoKNj09wGc+40hmpWcDhojlED5fApddlpgy9efRQJ0qWkoCgZkxELKj1AkXM5DoJqBbgB0ELT0Ohzzk7CDr66VdhYUqfovEixmGzEjUTc26BYjJESQMmQJqqfdWXHxq8Ve6UCT1cwBFgmIx6fAiETmWxsbMZGyyVicSBmqWkTBRbDUb90m2BDGnAwzUJdlnFQr7+9E+M0t2svB6ZcArL1cJHnxfXg4UFQ0hEmlFY2MtqqsLTaIOlIufCwVTObh2dMi6YFC2LykRgrp4sUyOy8sVcWW/MpO0FidTtmwsMNOaiv4kMJwQFheL5SoYVJUPgkE5V8uWAdddJ+eI5/vkSQ9KSx2oqZEi6ySx2ZROoleCJKm1VY0XFCuntU7KnanfJhLS33V3i7Bwa6uq40kJKVqIly1T3qrycgtA9tj3DO7+Zj9YRDgXoJZLW5vcbA0N0/vfDJDXO0pmHA0MKLM3AyVZTYDZM4yVmzePA5Esfr88dDrRYjbieM+13XU4FmEIhZSuW3v72GRlNFefnoIfjUpnpluNaAmsrZX/CocVEbPvd7JWJ/13bW1KZDibauVTITXA+4pJF/oSDDrR0lKKt95yJSsO6DGDXPTEDf3ezJYrgi5w3sMc3DN9Jvkay+oi0iNRlJefftnSelgCSW93txqcOXFj/I/TqeK4FiwQywyz+AIBOf9csnUupyIMJBuSFtTjoju2o0MlKVGXrapK1pF4dXfLvdnYCFxzjfR3kYiadCQSsm7+fAuDg0GsXx9IqYBwqqCAq15xhiEoPC/FxRKvp/fXnFCdOKEWSj4FAmKlW7lSYteYWGC//izxZlyTBlmBwyEPS12dEpDNdmdBMUO9nBLjCwYHVSYfH6hgUJGtkhI161+8WM1mSkoU2dKJ1lRYVUhs9DgtGagdiEZTrWMOx0j1+kz7HMtKRSLodqssIn5mBuaxY6lu7HT7nazVSf8d28j6fafambKCAElPOtI01nc6gbJvl7mD9AE4NRZJ2RGS/vG850JiVVQ0cywq+QTLUtddT7ihhUsnXAxVAOT+raxUmlSsmUtha4YqTOV1mcowkIlIWrCWZTCoLF6M8aLlqKhI+ty+PnEzHj8u57O4WJIRrrxS+mKKTjOjvLRU+unqarF4iehqAgcORJP952TBbEwmBbDiTCgk+2WIRnW1uoaJhIxlJ04IeTx6VH7vdgtBW7xYlPkbGlQ1EP5Obxvr5bJfoQj2nDmTb086GCJ2msLjkZt3aEheIxHRB9LjIsb7gOuldCTj04E33yzB73/vTFqLmK3V06NU4qknU14uKcyVlWrQomhpcTGS4qks/jwdGBqSBz4clmPhgyexAm6UlKhOsKhIOgFqv41mdh8eloe8oGBsV18mq1Fxsayj7AX3a7d+FRdPzupEUz4zx4JBuTcsSzo23aI0FnGyk67xxTudOlhdgGTd50sAiKCszJcs38TYQJJ5+2InVaxcYTA1sCwVB0rLZDgMdHU5ceRIKQoLXcnsRZKJwUG5JiRclZVi1aipkX6EpICD9XjiI7ON6YjlyvS/eqxhe7uq3MIYr8JCOT9tbcCBA5K5ODQk523pUuCqq+Q8RqPSt1M30e+XAHsWGy8ry17fTPcoBWBbWlIrzhQXKyMCn8fhYWnjoUMii8GxrL5eLHc33CDvWVGEfRj3q5eKY99QUiIel0BA7hu99vKJE9lpK2GI2GkK3axtWUoVu6IifcyYPU6GwqXsFKlHJGrSHvT11cHtdsPjUSWVGhqkOCszi8rKlBtRt2zpdRRJxqa78wyFxOpEK1d5uRxLOpVvn0+I2ngID4PfT55MdfVlclfaZ7yMO/J65RxVV8t1ZCd4/LiqZzc8nOqysb8f+VqAwcEliEadGdXRswlKepDM2kmRTpZ06+do5CkTYY9EhtDUdALz5s1DQcFpGKU+QxCPqyoTOmEnYWCIAjW6JOHGg1isEl6vG36/KgG0erXc+1Rmpz5XcbG6R2YCcZ6KWC47EgmV7MF+ubtbkQzGOzEbsKlJxUQBYiVauhTYvFmVluLYEI/LOV+5UhHbbBYbj0RSEwLa2lSMqr3ijMOhrFYHDojV7uhRFZ975pkiCLtkiaq1HI0qDwxDXHg+CgslHpCWUrqkOS5lQktLdtpOGCJ2GoODPIPdKyqEUFVUKFO/LvvQ3S0PLjWJ+vrkIQXkxmU8y/z5cVhWN+bPD6C62pcSIM/OYLTZEy0n05VRl44EDQyogsROp8z+6BYcr8p3uv2mK0xMtyKDS+kCZXKC/sq0cT12ifUqaWmcPBwA1IXROyu6NlmXkm42u2vY61XWBzuh0pdYTO4hXuOamqlJWzeYXtAyS7LFV7rEBgdV8k1PjyIOLEwPyH1QUSHLsmVAIDCMcLgDZ5xRhZoaX5JoFRbKvTbTNRWzEculI5FIFRxlKSXGjwJyTvjs9fQI8WJFBGYtrlsHXH65IjaWpSzpc+ZIHCr79GwJhjOwnnGnra3S9w0MqL6vuFgmmDxPw8PSxr17xdrV1iZ98vz5Yu269FIhUiw3NzgobW5ult/T5VpRIZny1OMk8ZoJiUIz4BAMcgG6Exmk2damZlGcobCzpNnW7ZaZUSAgMw+9gLg+MDsccXR2BrFoUdmkahZOZ0bd0JB0BvaMRxbSLimRToIma7vKN8+jnt1YUSEDS1OTnEPq1DClurU1VamZg9GpZNURnEHSpaYPWPp7Dgh0/RYWAi5XBH19rVi0qA6BQGHyPAByfk6ezEycJpqhSd2efMiaNFCDNAvTk2CxBBhJAS3lzEaklWZgQAlkut3SZwQCSqiaVSgYF8p7VZIU4mhp6cPixRU5q4F6qphILJcOhjKQeHV3q7guvdQOn6FoVAWiDwwIIVuwQGKiNm5UFqJ4XLZnmbU5c5Slq6wse1a7WMyBri6lhdfSoiyfliXHV1Ii/a4uas7EgOPH5beBgJCuK66Q9tA7QQ/BoUOyP/Zp9fVK481ezWAmwnR/sxgUKtRdUCRYJ0/Kw9rUpKwxlqWESSlOumaNzIxcLiV2R/FCzrjsMyUSucliKjLq0mFoSKx+zc3y8OoZj3SlDgzIa1GRnKf2dgeOHi1Ec7MrmXXa2SntZWwDZ3eTgS7BQTM5LUwMLKasRkGBkD7KdOj1J3nO0lnlMpGmSMRCU1MMFRUjzfJjkeOJZmhO1zU2GB3MArMvLOXCvoPyG9Tm00lWOCy/cThUvBYzPuvrJf6zuloRLZZks1tJM1m2spEkkg9g5iGthkw80BNR+Kwwc7C1VU0k3W4hVAsWiNu2sFBZupxO6RdKS6X/rqhQk+hsSUnE4+re6OsDmpqceOONcpSWupKehcJCFVjvcMh909IC/Pa3EgrS3S3HuXixWEOvuUaOk4kGg4MyZiUSqSSuri7VbZpv/YkhYrMAjAWiu0ovO9HcrDRzurqUC4Azh8JCMdeSfBQWyg3d3Q0sWiQEjBYeDrJVVVPvRprsDHK8GBoSEnXkCLB/v7JY/f738h0zOfWZvaAAwPi0Phj0Tg0bmvidTiEhLpfEZlC9n0R3PDM3O8FKR66A9IRrIgkDhM8n159CsvbtJ2PFnOprfLqBLqZ4XK6xvugEy17ui25DEiv2I5GIIliA3LecFJSWKisKrVm0ruqJLFwmKiEzm0ENRyY27d9fiMOHnUnrYiwm23FiFYnIxJkaV8PDSnKooUFqE9NCZFnyOxKemhrpe/x+lSWajWuQSCjhYV36YnBQ7isAcDgcACxUV1soKVEuxt//XuK6WlrkWOrrJT5twwYVM0srK0V23W4lsL1qlbzSbZqvVlIdhojlCZi+rQfMB4N6gVWlfNzbq9wADHSsqpKZKW9emp+ZQROJSGdKoVDGctEKwxlYPriRIhEV8EtTPhd9nSJX44O4/SwUFUVRU+NGRYUrGRPFgGGPR2myBQLSUSUSKoMROPXSPumsXOksUtzWbqXKlDAw1n9SYZ+p7vakAmPhmjwYFG1fhodHfqaLMDUGy4mWFj+8XlfSkqUnaDDuMhpN/V/GAZJg+f0yOWA2MycSXAoL1bVnogWTLgzJSoVdUJZWLgaii2vXiZ6eAtTWyvXt7RVSwwxHllSaO1eC5Tdvln2zf2fmI4tqM0wkm4r/lCHiwhhhki5a6oqKlMckkQDa2y00Nfnw1lsutLXJvVdeLmEtF18sE31WMqGL8cgRmaAyM3L5clWzk/fjbMQMH1JPP3BWpHek3d1CsFpaUq1b9LP7fEple/ly9UCWlyspCD37TM92oSWlo0N+PziYKiDJQdXjyf0gy2D10QiWriE0HnCmRSHHmhp1vtxulQZfWiodwtGjEYRCJ3HGGTWYO1dMVzwvQCrJ8niUeORkJSV00gVIR93WpoL+SaI4wNrJcjorFX9bXi6dPWfgo2E8rsfTwcJlWTLIxOPyykX/zPfpXnkeSab0mCvdUqULy+qkiwuTZNRxeZBIBFBS4k7KbRQWKut1cbFyd9MtqMtysJAxq0zo72ciwZopdXLTVQKh2Civo05+mYhDGY62Nhc6O8tRUOBOZgbW14sKPSdN7IdJmCk8q4cvZOschMMjSRezL2npIukqLZWxRkgX8NZb4jZsa5N1paVuBAIurF+fQGNjakxtKCTeGlpZ/X4haDrpKimZmffeVMAQsRwikQCamx2Ix1XKcWur3NQnT6rYI926FQjIzb9ihQqcp59fj7eYSLBlNKoUhxmAP52DLC00nGnpS1eXej8RgsX4qYoKVc+sokLOF9+zqHFfn2pjYaGcc7dbAkXnz1dq3NQAcrsTSRFEu7SGTrKAVEFWxjkwM8iOTO5GFqYF5N44dixVH4mDO0V6dddhOtLHY2tultlnX9/YcSIzsSSRToRIkDJ9Docd6O52w+NxJIOC9e1IluzuPLsVisSJ2lA6OeKiuwK5cF06MLZKl/Pgc0xlc06kdJFY3q9yXaPo7m7BggVzUFRUkHRrMWaQi9ud/4PbdNfJ1ckWiTIz/wYGFFGOxxVxYp+mC5HyGS0tlWOuqQGWLBnG4GAPqqqq4PO54HYrksy+Slf6z1b2IsuYcenrU+WMGPMHqHuRXhWOE/v3S//R2SnHw9JQF18sGZmWBfT3D+PIkUEUF5fi5MlUS9eyZdI3nY6kKx1mQHd6+mJgwIVPf9qT1HxioHxZmTyAK1cKMWJ8kV0G4lTdASxvEYuJcF1vr/wPSUA2LGDxuOqIOjrSE6zOzvFZZYDU1PZ0C0nXRAJQKZCqkyfGUEUiKvaFRcXb2rzwetOruOuEdWhIJT54PCp9PxZTMQ6jBdAPD6tg3a4u9R+xmHwmseP/9vaOjPfKRKBJDkpL1fvRJEXsrkePR7nLmORBMqOToNHe23/LhcTI7pqzZ+uR3JD88LM9PkrWuzEwUAuPx5NineK+xwLJEjPNeA5oNSKJovgwCRUHMmqlcTv770iauH8u+v/p7+0aTpGIhSNHIli0yJoVMTOjIdsCqZlKYw0MqGdWJ9l87uNxFVhPOYb+fvnO61V1KpcuVYKnLleqaKjLBYRCYaxcmUiSLrqAs6HTRTkHZl3q2o90VzOYn31Vaak8g21tko3Y0iLv43E57oYGIVvnnCPjEyeC4bC8b2lRbauujmH9egt1dSp7MVtkcjbBELEcwrKAJUsSqK93JclWaenIbKKpKL3BgZ/qxYwPAVI7IIdDzOXpCkuzWCoDNUmu2tu9aG2dh/5+H3p6MG5x0EBApbJnWqZikMlEnurrU92zDFwuKLBGtXAMDEinHA6nEll2hsxUbWiQgGcG0Ntdf3o9UFrvolHp5GkJ9XjkGhw+rNrhdqtitjx+3TrEwunRqHS0tbUkJQ60tPgQDDrgcikSo1uFKMjJYG7dHaeTI50Q2eOb0pGssWq3sePWCQqJiceTuo4kqbBQaZs5HBYGB0OoqvKgqMiVXE/Xlr4vfR/6Pp3O1MFUf7Wvy7Te4NQxUYFU3rP2Cg98Hvv7UzNFOVFg1jktRiRcurWIXom5cyUspLhYXX+ScarX6zI/XCwrgQMHBnHmmdak5RUSidQi84ODcpwsJRcOqzI9zGotKJDjSSRkctnUJNb29nY5Py6X9H8LFgAXXSTvqVlId3k8Lv0Y3ZRLlqjEDb8fcLvjOHSoD8uXz8lqke/ZCEPEcoji4gSuv34Y5eWeaS/Uy8y5WCxVlwaQh5VaQPTjJxIqkFQXdE0PFwDVqzBLkDPE6mpFrPT1U6E4PRHYrVKZsgO93sQI1xwLlrvd0rH19sp+zjpLWa14rulGZqc5PKzcGF1d8h2PIxKRY+jsVBa0khLVuba1yRIMSgdIMqETJZb0IDkaGlKxYYmEXibJi+Hherjd7iTxSffqdEqnTPJD66zuBmMSg+4W0+U1dMsQA751SxC3dTpTSZCd7HDhcemfXS61PhYbxvHjXVi8uCRpbdC3Ncgf0B3JiRGt7rSWcqHbjc8K3cskWiQVduFkhkDQ1c/423nz5BnT71Xd6slt7XVGR1P4Z9zVWEhX2YTZ8dQkjERUko5+bGVlSJaaY+hLZ6d69uvrZVJ43nnSN3u9I92twaDKxFy0SImi6jVU7W2cSCjJ6Q5DxHIIp9NCcfH01U8E5KHq6hI//xtvSBoxOyo+0L294xcX1U3wVVWMMYsC6ERjYwXmzClAefn0tnGyGCsgvahIBoDBQQuBgAziAwPSqb36qtIPKyiQ7VpbVVYRyRClAqJRRUgodhgKKeKkFzmmdYzEQrce6dYkBtEy0YKvlBYg8QFkv+w86+pkAHE4YujqakNDQx2Kinxwu5XbkLNovRJAWZm0p7ZWOuh0BCgTUZpuAhSJAIWFiaSb0GBmQ7dQDQwA7e0eSOUHRUiYfcgJRjqSxe109xzhditZh9JSZflnn0xrNicLugQEreaM58rGPcU6m7r24+CgKvWkF6EGVFwhJznUMWT2fGeniksrKRGr3bx5ojEWCKjC2LTwsXwQY76YFMD4tEyEy+DUYYjYLAKtVnQR6jFZ+mJPYc8ExrzU1MisqbZ2pKuQLjMdkUgcTU0DmDcvMGPjVezuMao00xXodCrXLGeb4TDQ0eFES0sR9u93JwvH0lLodquOnvFQJKB0D+ouMJIm1nZjbNHcuXJeScC8XpmxVlUpMuVyKddAV5fsu6JCXAkFBWJ5IymsrVX/43IpEcVQSDrYhgYKuiZw5MggFi0SwpIpKJpklcWBpzpY2iD/ocfvkWTpyQzMpiMR0V3boZALHR2lKC93wrJSt9P1E+mK56SFsZ2UlqH1hiSLBItubBIyey1TJkScKgGhe1TXcOvpceCtt0pw4IAzhXzSsuVwKKLldCotLr0/j8eV9a6uTp73xYtlcux2q3NJMH6rpETF1eo1FrOZhWkwPhgilieIx5WMhT3Ynes4+I4HxcXycNPdtWiRCtJkXNrixbIdK9DPROiB3HpwNuNC2NGz8+MMU682wM6RAaecZROM7XG5AK/XDaAI5eWOZAddU6OC15cskTRsxo4UF6tangUFsi4Ukm0LC6XTDAZFWZruzo0bZVA4cULF4c2ZIwGy9g6SsS5AagZnebkq21RamvobxorQ8pYJmYKidddQruUDDKYXeqyf/szZ39uD3/m9/qwyS5XPIn9DwkKyEo+7EI2WweNxJcuOUZKjtlaRB042dG0zTnhINNLVPvX5Tt1iT2u6PeCfWdMMjrcTrVjMie5uL+rr1USOYSF6OSNamisrpc21tRKTxn7Z3l+xjYWFqdmXRUWpmnDGujUzYIjYDEA0OjKLUA9+7+zEuIPeHQ556PQYLD0miwH5TU2icMxSRcuWqeDUw4dVXEFJyfTFbqVTA9fr2+mEqr9fOiu6HHQ1cD1egkSDHQ6L4dKlwI5KF7RkYC2z3Biv5PUCoVAMTU0tWLCgAbGYO1mzja6D8nI5lzo50TWPYjGxuJHcMOakvl7F4jFoNxyWa0+BRMb06eQnXVYkdYr4v5z5E+y06+pGzzobLSj6dNAMm03QM1FJpnS5DruFWJfrUOKjKq7QLu3BGCYu+m/1bFfWrdUtV3pdSWpKsVZqSQlgWXH09nZjzpxqFBe7UuqkcjvdhcglG0KzrFagLzpRpN4W28xzxH6HYqe0rDNujWLcXV0uDA5WwOdzo6BA+mtmfi9YIP2E1yvnWHfv622lSDdFXEmy7NI6BjMXhojlEL29btx6a8EoQe+p4IyIsVj2DENKXYyl8cRC1C6XELzaWkV6qAzPgE2nUzqNiVo+4nElgWEvsRKLKQLFGBAWBtYJFV0P7LwJmuv1gNjiYlWImuZ2ZqAyK45kQs+Es2fF6bCLRg4NAYcOWQiFXOjtlUGirk7cfMXFYg1LR2zYYbIjB1LJjccjVsdwWDpQ0ZdT9dQA2aanR1mzKGeiZ3vqZI+WrM5OWRcIqG3Hm3VmLF/TA136w76MJhSrvw+FHGhqKkBfn/NPyQmprkCdbPG3OuniPUOikU4WRN+GxABQ0h66VAdfdckdTnz4POoJHEyO0WOuOAlKJBJobu5FY2NFUuPwVDJQmVGsk0X9My3nDPS3n0dmVAKq0DaV83WiFQwq0ulyqdqO5eXS5zY2AgUFcXR0dKO2tho+nyuZnML260kAJJ06aR0tEcAgf2CIWA4xPOxAX588RQx6H20pL89OCjzN4mecIRk0tOpQSd7lUvIVdXXKlZcpzoMzRNYG6+tzobW1Em63O0UhnO4/DiCAtEef2ZJI2fXC/P7UbDs9A0+XG8iWREC6+KiBAfypVIcDXV0qm5ESEaMRG31/LFuiz1jnzVMz6ZYWCfSnAG1dney/p0c63gMH5H+rqlQ5Jf1Y6W5uaVHZZLGYiuWaCMGaDZYvXbQ1FlOWRw6oE3lv10QbbV2mMkV2q1Q6EmYnZ3ZXu50cRCIuBIOVKChwwbJGWrlIqjih0QdvXUzWntFKUsRFF5PVJUMoIWJ3/ZF0MavWbmHW458yIRy2MDgYT1p87LBbzu2iuwyCp5RDODwynEHXtANSXaZ6piIJGgkWoKx4tErNmaNcpUxc0WO92G5JoEmgq2sAy5dXIhBITQKg/qDB7IchYjmE3x/HQw9FMHduQdqg96mAXsi3tVXIQzwOvPSSdCR9fdLhdHbK4E43BEUPdfcf1+saT9KJuAB4UF0tJILq4NXVQi6YDl1RIfupr5f/1olVrjWXWJi3sFBe7TFyXq8cczisOlc7ubLvT4+3srsLOdCxk2fhdRZWBuTct7UJMfZ6hWgFAvJe3zctZtQKA1QbRnNpEnZykY6M2NcDI9en23as9Zn2rxOSdOKx9vX27aNRJ06eLENVlSuZDZqpfXbiRDdcOmvUWDUi9ePTiZe+XTqk6wvsEiCpMh8O+HwJlJdbyQHcLjhbXDxSMJaLTr7sorOZtNrSaa1Ntg9jP2Of7A0PAwMDDhw75kMs5oDTmRo/RouV3a3K6wSkWr3s8aDMrNSzxCmsrZcQqq1NtUaRPNJNqEu06IXR9Yon6QhqKJTAm28OYvlyy2htncYwRCyH8HoTp6yEzYEik6UqHFZZfSwjpM8MQyE1a9Q1m5iZV1ysYhDo+quuVm5QPTaDHVE8HsWJE80444yFKCkZOaXTrUOVlTMz604XUy0sFMsTO+SBASsZJByNCmlKR650ZHIH2i0hw8NIupb8funISc6AVE23aFQC+mmZO36cnbtSuOY2FRViHaOMhk4kVIyPE+3tfrz+ujPp3s5EumjR1EmJ3f1lf5+pTqO+Lh3xsluJRnPlcTuCxCCR8CAWq4TX6x5BFuyfdYmN0bTL7IKutPKkU8RPV25IJ1bpJD64/9GIDz/HYsNobu7AokWFKCrypBxXukXXaKPVZjLQXZuMy7STIhIlvuriqnocGcmYTsrkd050dJSitNSZ4kZlP6cHyYdCaqLJ+4D1DHWrOy3N1MZiJqHTqYgrzzEtg7rqfbqYNC65nkQa5B8MEZtB0Dsru2md8gpMXdbFB/VUbns8FSAdBs3dTqfM1MrKxEpVWCj7jMXEMsVA0cJC2TdrGtbXp3cLpIOIkFoZY9VmeuwRCQDLTTH+g1mGXm8CHo8jGXDb0qJiRdzuVPKhX09eHwYpc9CxEw0OLLyO+mA2NKTKHrlcwP/+r9JNooXSroBN2QyKX+oESbdoWpYHsVg1PB7PCNfVaBiNoKRTm0+3jhaXTCQnE4nQLTz6e7qDSHBisWF0dHSgrq4GXq8vRfOM/0MXs17KyK6Sbz9+/X/0faY7L+m01EZbJqLGHw5b8PkiKQrt6Uiv3cpnt/BlstqR9DA7kPcbf5/J/cp4LD1g3x5/psdn6eELikS7MDRUDr/fleK2I/Gh5YkhDiRD6epsUoBYD2rnxMhuDdTj1AwMphKGiOUQQ0NO/OhHrmR8lU6oOGgT7JT0OI2SEiEKDQ3SGVVVKXFN3Uqll71pbxeXFSBur6IiKSI9OCjfBQIqxmFgQPZJ92U2cSqxR7pFxN7pj7ZeHzT0wUC3KOqDQ2enDAwkTv39QCjkxsBAFfx+V1LclAMSCZCeTWYf7OxIR3J0S0g6ksGBiq4OBvUCqRlVHMS5nV70mZIXXq+QbbFkxtDefhL19TUoKPBlJCk6IeFx6qTGTkzYRjtx4ft0S6bv2abRvtdfeY6HhuI4dKgHS5dWJUUpT8WNli6GjPdmutixdO7PsWLN7CTdTpj0jMVQyImmplIcOOBMlqcay7Ko7ytdsXJ9fbqsSl33yq5NqJ9bBp/r/RGJD/sqPXNSr9TgcgGJxDA6O0+ioaEeRUWu5P3u8ykiVVAwsrKD3fLIfRoYzDSY2zKHiESceP11VzIOoaZGxSXU1Ij7z14oWA92ZcczEXCGyvgsn08ERE+elA56yRLpaIuLZfvx1nPLBJ382AnSaN+lc7PqgwS3ZxYXrT/2DKh0v9UHsUzgYK7H4yQSgNfrRCTigcvlSM7A2cnbZ9YcdPidvi/ddZUu/kYnOjqx6e0F9u+XAWhoSArDV1ZKuzo65LWgQLld0llsmHQQCIi7eu5cIfSRSAIHD/bgzDOrUFCQOW4LGD2+a7Tv9X2Mtq2enTbWf461jbhdHTh2rAjBoBNeb6qrlNvZyUo6l2om0jVajFs6q5F+3+txaemsS+lin+zkKhp1Y3CwBh6POyVuTbcsKctnKlGiO87u7tSD6vVYM/1+Z+yZnpFM8q5PHuy/0d9nymLmMUSjcRw+3I2VK2vg9xvXn8HsgyFiOURZ2TA++9koSkoKs5rxNxpKSmQAJgkjmaDwZySiZo1MjXY4lI6Z7r6wW5CUNIUTLS1+/OEP0iC6G/T0+EyEyW6hslvi7BYWfaCwd/C6fIVdxLGgQA0gelaXPT5EV6Pv7gYGBmLo7m7F+vUNKC93p1iNeHz6q/29PQBdfw+Mvp4DrGTJyTkMBmX//f1CpouKxFXKmLV0cVksUcRr7ffT0uZEa2s5XnvN+SfZgNRj5ns7KdNJCgmAPYjdfgyjxXrZLUJAKgnKtK39+1QrkgfhcP2fBHnT/06/RhO1lo22/Xjdknb3q+6yJeHR1+nvLSuO/v4gamvdSauRnpGYzhWru3ft5Mv+Ola8WaZ1pxqDBkhoQEGBBa/XkDCD2QlDxHIISjdM1EVnn/FmsjaliwehhpcoVku9Sb3wrZ6FZCdMo1mXdAJiWR4MD1fD6/WkzIZ1kkRyRC0svZyIrg1GQVn77JkdPv9TX/R1fK+OTb2mCxDXB3y7m1GytBzo7XVj/35HMvCd26Qb3HXrnl2wVndf6m6mdIHvXBgryIBk6ozROkjiynMzmqvMfp4sy4NotAZeryctoeT+0q1PRzT0dXr9Sb63uz7TEROu12PI+NtM5MYeyyXXexjd3UHU1LhRUODKGPOluzTt7s9091o6dysJfKZ4udFi4eznzt7GTG2OROI4dKgDjY1lKC4e2aZ0sWd6Ww0MDHIHQ8RyCInZciQtLplcc0y17u9XKdd2C5OdLOnBtXTlkYTYBxXGFelkSVen9vtTYzJ0KxqJJEmS0wlEo1E0NzdhwYJ58PkKkv+T7v/tIEFKzZqStuvEhUHodrHJdPEudmFKPfg9HSFKZ8FRFiEPYrH6ZED7aAOZTjwyWQt0t5AeF6bHyOiuSkovAOpa6aRUkgmUpU/fp/293VISi0XR3NyC+fPnoLCwIOPAny443b7OHiM2GpmZ6PpM2472XTgcx8GDJ7F0aVnS7Z5pH5liz4DRY9tyiVDIQn9/DHV1MDIIBgZ5BkPExolDhw7h/vvvx969e1FcXIxrrrkGH/3oR+GlSWIS6Otz41Of8iSJgJ52T7CT1wUQ7VYluuH4WVdd1jOD9AFTHywJPZ7EHhejv1IWo69PxSXpJCgcdqGzM4DiYtcIF6adYKWLgeF/2c+D/T3PjR5rlc7Voi8MbrcH8KaLg9HPNWUJhoejaG09gQULGlBUVJDiwtRJTqYYL/v5z2RVGe39RNeNlziIplEPli+vm3WDeSgE9PQMo6bGEBUDA4OZBUPExoG+vj7ceuutWLhwIb70pS+hvb0dDzzwACKRCO65555J79fnS+Dqq+MoLnYls9r0wdQe8GsvGpvOxTUwIAHddlHEsVxio5EfOwlyOEYKSuqBvQ6HA5GIK6XMiT3QVyeSetyWLphoD9xN53ZK58bKtIz2fToXUGay0ofly+eYAd3AwMDA4JRhiNg48L3vfQ+Dg4P48pe/jPI/yZzH43Hcd999+MAHPoDa2tpJ7TcSceKJJ9xpCQ/BdXpgrW7pSZeyzcDedNo4VIe2138j+dFdZum0nEaLPVHxKlEcPHgMy5YtRUmJJ+N2BgYGBgYGpzsMERsHXnzxRZx//vlJEgYAW7duxb333ouXXnoJ11577aT2GwgM49FHh1BcXDgq6bEH8k50mW6EQkBpaTypDG9gYGBgYGCQHoaIjQOHDx/Gu9/97pR1fr8f1dXVOHz48KT36/NZaGwMobAwTXDYJJFJOHQ6EQ6HU15nE0zb8hOzuW3A7G6faVt+Yja3zbIsOLKYoWOI2DgQDAbh9/tHrC8rK0NfX98p7fvo0aOn9PuZDNO2/IRpW/5iNrfPtC0/MVvbdiqJenYYIpZjLFy4EIXjLeKYJwiHwzh69KhpW57BtC1/MZvbZ9qWn5jNbTtw4EBW92eI2Djg9/vR398/Yn1fXx/KyspOad+FhYUomqWBVKZt+QnTtvzFbG6faVt+Yja2LZtuSQAwuWvjwOLFi0fEgvX396OjowOLFy/O0VEZGBgYGBgY5DsMERsHLrzwQrz88ssIBoPJdc8++yycTic2btyYwyMzMDAwMDAwyGcYIjYObN++HcXFxdixYwd+/etf44knnsCDDz6I7du3T1pDzMDAwMDAwMDAELFxoKysDI899hhcLhd27NiBz3/+8/jzP/9z3HXXXbk+NAMDAwMDA4M8hgnWHyeWLFmCf//3f8/1YRgYGBgYGBjMIhiLmIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjuCwLMvK9UGcjnj11VdhWRY8Hk/WC4jmGpZlIRaLmbblGUzb8hezuX2mbfmJ2dy2aDQKh8OB9evXZ2V/RtA1R+CNOdtuUEDa5PV6c30YUwLTtvzEbG4bMLvbZ9qWn5jtbcvm2G0sYgYGBgYGBgYGOYKJETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMEZtmHDp0CLfddhvWrl2LjRs34sEHH0Q0Gs31YU0Yx44dwz333INrrrkGK1aswLZt29Ju98Mf/hBXXHEFVq1ahXe+85144YUXpvlIJ46f/exn+NCHPoQLL7wQa9euxTXXXIMf/ehHsCwrZbt8bNsvf/lLvOc978Hb3vY2nHXWWbjkkkvwz//8z+jv70/ZbteuXXjnO9+JVatW4YorrsATTzyRoyOePAYHB3HhhReisbERv//971O+y7dr9+STT6KxsXHE8rnPfS5lu3xrl44f//jH+LM/+zOsWrUKGzZswHvf+15EIpHk9/l4T/7FX/xF2uvW2NiIp59+Orldvl63X/ziF7juuuuwbt06bNq0CX/zN3+DpqamEdvlY/teeOEFvOtd78JZZ52Fiy66CP/6r/+KeDw+Yrus3JeWwbSht7fX2rhxo3XzzTdbL774ovXDH/7QOvvss6377rsv14c2YTz33HPWhRdeaH34wx+2tm3bZr3jHe8Ysc1TTz1lNTY2Wg899JC1e/du6+6777ZWrFhh7d27d/oPeAK4/vrrrTvuuMN6+umnrZdfftn63Oc+Zy1btsz60pe+lNwmX9v2X//1X9ZnP/tZ69lnn7X27NljPf7449Z5551n3XbbbcltfvOb31jLly+37r77bmv37t3WQw89ZDU2Nlo/+9nPcnjkE8eDDz5oXXDBBdbSpUutffv2Jdfn47V74oknrKVLl1ovvviitXfv3uTS0tKS3CYf20U8/PDD1rp166xHHnnEeuWVV6xnn33Wuvfee62BgQHLsvL3njxw4EDK9dq7d6/10Y9+1FqxYoXV1dVlWVb+Xrc9e/ZYy5Yts+666y7rpZdesp5++mnr8ssvty699FIrHA4nt8vH9u3du9datmyZ9fGPf9x68cUXrUcffdRavXq19cADD6Rsl6370hCxacTXvvY1a+3atVZPT09y3fe+9z1r+fLlVltbW+4ObBKIx+PJ93feeWdaInb55ZdbH/vYx1LW3XDDDdZ73/veKT++UwE7SB3/7//9P2v9+vXJdudr29Lh+9//vrV06dLkPXj77bdbN9xwQ8o2H/vYx6ytW7fm4vAmhYMHD1pr1661/vM//3MEEcvHa0cilu7eJPKxXZZlWYcOHbJWrFhh/c///E/GbWbDPUls2bLFet/73pf8nK/X7e6777a2bNliJRKJ5Lrdu3dbS5cutX7zm98k1+Vj+26//XbrXe96V8q6b37zm9bKlSutjo6OlO2ycV8a1+Q04sUXX8T555+P8vLy5LqtW7cikUjgpZdeyt2BTQJO5+i3TlNTE44ePYqtW7emrL/qqquwe/fuGe2OraioGLFu+fLlGBgYQCgUyuu2pQPvx1gshmg0ildeeQVXXnllyjZXXXUVDh06hBMnTuTgCCeO+++/H9u3b8eiRYtS1s+2a0fkc7uefPJJNDQ04KKLLkr7/Wy5JwHg1VdfxYkTJ3D11VcDyO/rNjw8jOLiYjgcjuS60tJSAEiGceRr+958801s3LgxZd2mTZsQi8Xw61//GkB270tDxKYRhw8fxuLFi1PW+f1+VFdX4/Dhwzk6qqkB22MfCJcsWYJYLJY2jmAm47e//S1qa2tRUlIyK9oWj8cxNDSE119/HV/5ylewZcsWNDQ04Pjx44jFYiPu0yVLlgBAXtynzz77LPbv348dO3aM+C7fr922bduwfPlyXHLJJXjkkUeSMSv53K7XXnsNS5cuxcMPP4zzzz8fZ511FrZv347XXnsNAGbFPUk89dRTKCoqwiWXXAIgv6/btddei0OHDuE73/kO+vv70dTUhH/5l3/BihUrsH79egD5276hoSF4vd6Udfx86NAhANm9L92ncrAGE0MwGITf7x+xvqysDH19fTk4oqkD22NvLz/nU3v/7//+D8888wzuvPNOALOjbW9/+9vR3t4OANi8eTM+//nPA8j/toXDYTzwwAO44447UFJSMuL7fG1fdXU1PvzhD2PNmjVwOBzYtWsXvvCFL6C9vR333HNP3rYLADo6OvCHP/wB+/fvx7333ovCwkJ87Wtfw+23346f//zned02HcPDw/jZz36GLVu2oKioCED+3o8AcM455+DLX/4yPv7xj+Mf//EfAYjn4Bvf+AZcLheA/G3fggULsG/fvpR1v/vd7wCoY85m2wwRMzAYBW1tbbjjjjuwYcMG3HLLLbk+nKzh61//OsLhMA4ePIivfvWr+OAHP4hvfetbuT6sU8ZXv/pVVFZW4t3vfneuDyWr2Lx5MzZv3pz8vGnTJvh8Pjz22GP44Ac/mMMjO3VYloVQKIQvfvGLWLZsGQBgzZo12LJlC7797W9j06ZNOT7C7OCll15Cd3d3xgzzfMOrr76Kv/u7v8P111+Piy++GL29vXj44Yfx/ve/H9/97ndRUFCQ60OcNG666Sb8/d//PR577DFcc801OHjwIL7whS8kCWa2YVyT0wi/3z9CJgAQ5lxWVpaDI5o6sD329gaDwZTvZzKCwSDe9773oby8HF/60peScXGzoW3Lli3DunXrcN111+Hhhx/GK6+8gueeey6v29bc3IxHH30UH/nIR9Df349gMIhQKAQACIVCGBwczOv22bF161bE43G8+eabed0uv9+P8vLyJAkDJG5xxYoVOHjwYF63TcdTTz2F8vLyFGKZz227//778ba3vQ133XUX3va2t+HKK6/E17/+dbzxxhv4yU9+AiB/23fttdfi1ltvxYMPPogNGzbgL//yL7F9+3aUlZWhpqYGQHbbZojYNGLx4sUj/Mb9/f3o6OgY4WfOd7A99vYePnwYHo8H8+bNy8VhjRuRSAQf+MAH0N/fj2984xvJIFQg/9tmR2NjIzweD44fP4758+fD4/GkbRuAGX2fnjhxArFYDO9///tx7rnn4txzz01ai2655Rbcdttts+7aEfncrjPOOCPjd0NDQ3l9TxKRSATPP/88rrzySng8nuT6fL5uhw4dSiHPAFBXV4dAIIDjx48DyN/2OZ1OfOpTn8KePXvwk5/8BC+//DKuv/56dHd3Y82aNQCQ1fvSELFpxIUXXoiXX345yZgBCSx2Op0jMjTyHfPmzcPChQvx7LPPpqx/5plncP75548IhJxJGB4exkc/+lEcPnwY3/jGN1BbW5vyfT63LR1ee+01xGIxNDQ0wOv1YsOGDfjv//7vlG2eeeYZLFmyBA0NDTk6yrGxfPly/Md//EfK8slPfhIAcN999+Hee++dVdfumWeegcvlwooVK/K6XW9/+9vR29uLN998M7mup6cHr7/+OlauXJnX9ySxa9cuhEKhZLYkkc/Xbc6cOXjjjTdS1jU3N6Onpwdz584FkN/tAyQLdNmyZfD7/Xj88cfR0NCACy64AACyel+aGLFpxPbt2/H4449jx44d+MAHPoD29nY8+OCD2L59+4jBfqYjHA7jl7/8JQB5+AYGBpIP23nnnYeKigp8+MMfxic+8QnMnz8fGzZswDPPPIN9+/bh29/+di4PfUzcd999eOGFF3DXXXdhYGAgGaQJACtWrIDX683btv31X/81zjrrLDQ2NqKgoABvvfUWvvnNb6KxsRGXXnopAOBDH/oQbrnlFvzDP/wDtm7dildeeQVPPfUUHnrooRwf/ejw+/3YsGFD2u9WrlyJlStXAkBeXru/+qu/woYNG9DY2AhAFM1/8IMf4JZbbkF1dTWA/GwXAFx66aVYtWoVPvKRj+COO+6Az+fD17/+dXi9Xtx0000A8veeJHbu3Ik5c+bg7LPPHvFdvl637du345/+6Z9w//33Y8uWLejt7U3GaOpyFfnYvn379uF///d/sXz5ckQiEezatQs/+clP8G//9m8pcWJZuy8nK3hmMDkcPHjQuvXWW63Vq1db559/vvXAAw9YQ0NDuT6sCaOpqclaunRp2mXPnj3J7X7wgx9Yl112mbVy5Upr27Zt1q5du3J41OPD29/+9oxta2pqSm6Xj2175JFHrGuuucZat26dtXbtWusd73iH9YUvfMHq7+9P2e7555+3tm3bZq1cudK67LLLrB/+8Ic5OuJTw549e0YIulpW/l27T3/609bll19urV692jrrrLOsbdu2WY899liKmKZl5V+7iK6uLusTn/iEdfbZZ1urV6+2br/9duvAgQMp2+TrPdnb22utXLnSevDBBzNuk4/XLZFIWN/97netq6++2lq7dq21ceNGa8eOHdbBgwdHbJtv7XvjjTes6667zlq7dq21du1a69Zbb7VeffXVtNtm4750WJatgJ6BgYGBgYGBgcG0wMSIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGIwD3/nOd9DY2Ijrrrsu14diYGAwi2CImIGBgcE4sHPnTsydOxf79u3DsWPHcn04BgYGswSGiBkYGBiMgaamJuzduxef/OQnUVFRgZ07d+b6kAwMDGYJDBEzMDAwGAM7d+5EWVkZLrroIlxxxRVpiVhPTw/+9m//FuvXr8c555yDO++8E2+99RYaGxvx5JNPpmx76NAhfOQjH8F5552HVatW4dprr8UvfvGL6WqOgYHBDIIhYgYGBgZjYOfOnbjsssvg9Xqxbds2HD16FPv27Ut+n0gk8KEPfQhPP/003vWud+GOO+5AR0cH7rzzzhH7OnDgAG644QYcOnQI73vf+3DXXXehqKgIO3bswHPPPTedzTIwMJgBcOf6AAwMDAxmMv7whz/g8OHDuPvuuwEAZ599Nurq6rBz506sXr0aAPD8889j7969+NSnPoVbb70VAHDjjTfitttuG7G/z3zmM6ivr8cTTzwBr9cLALjppptw44034nOf+xwuu+yyaWqZgYHBTICxiBkYGBiMgp07d6KqqgobNmwAADgcDlx11VV45plnEI/HAQC/+tWv4PF4cP311yd/53Q6cfPNN6fsq7e3F3v27MHWrVsxMDCA7u5udHd3o6enB5s2bcLRo0fR3t4+fY0zMDDIOYxFzMDAwCAD4vE4nn76aWzYsAEnTpxIrl+9ejUeffRR7N69G5s2bUJLSwuqq6tRWFiY8vv58+enfD5+/Dgsy8IXv/hFfPGLX0z7n11dXaitrc1+YwwMDGYkDBEzMDAwyIA9e/ago6MDTz/9NJ5++ukR3+/cuRObNm0a9/4SiQQA4Pbbb8fmzZvTbmMnbwYGBrMbhogZGBgYZMDOnTtRWVmJe+65Z8R3zz33HJ577jncd999mDNnDl555RWEw+EUq9jx48dTfjNv3jwAgMfjwQUXXDC1B29gYJAXMDFiBgYGBmkQiUTw85//HBdffDGuvPLKEcvNN9+MwcFB7Nq1C5s2bUIsFsMPfvCD5O8TiQS+853vpOyzsrIS5513Hr7//e/j5MmTI/6zu7t7yttlYGAws2AsYgYGBgZpsGvXLgwODmLLli1pv1+7di0qKirw05/+FF/5ylewevVqfPazn8Xx48exePFi7Nq1C319fQAkwJ+49957cdNNN+Hqq6/G9ddfj3nz5qGzsxO/+93v0NbWhp/+9KfT0j4DA4OZAUPEDAwMDNLgpz/9KXw+HzZu3Jj2e6fTiYsvvhg7d+5EMBjEI488gs985jP48Y9/DKfTicsuuww7duzAjTfeCJ/Pl/zdGWecgSeeeAJf/vKX8eMf/xi9vb2oqKjAihUrsGPHjulqnoGBwQyBw7IsK9cHYWBgYDAb8fzzz2PHjh347ne/i7PPPjvXh2NgYDADYWLEDAwMDLKASCSS8jkej+Pxxx9HSUkJVq5cmaOjMjAwmOkwrkkDAwODLODTn/40IpEI1q1bh2g0ip///OfYu3cvPvaxj6GgoCDXh2dgYDBDYVyTBgYGBlnAzp078a1vfQvHjh3D0NAQFixYgBtvvBHvec97cn1oBgYGMxiGiBkYGBgYGBgY5AgmRszAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEf4/+txDXonufQvAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Running IDP 2 rh_MeanThickness_thickness :\n", + "Making predictions with dummy covariates (for visualisation)\n", + "Loading data ...\n", + "Prediction by model 1 of 1\n", + "Writing outputs ...\n", + "metrics: {'RMSE': array([0.08652435]), 'Rho': array([0.77666469]), 'pRho': array([2.97430261e-103]), 'SMSE': array([0.40227749]), 'EXPV': array([0.59789079])}\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHPCAYAAACstvVvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADph0lEQVR4nOydd1hT59/G7ySEvUE2CCqiiBv33ts6W7dWW7VVq3ba/mp3rd1La63W0Var1larde+BC/fee+BC9k7y/nG/hwASCCRkwPO5rnNBTtZzTs64n++UaTQaDQQCgUAgEAgETyE39wAEAoFAIBAILBUhlAQCgUAgEAh0IISSQCAQCAQCgQ6EUBIIBAKBQCDQgRBKAoFAIBAIBDoQQkkgEAgEAoFAB0IoCQQCgUAgEOhACCWBQCAQCAQCHQihJBAIBAKBQKADIZQEglLSvn17jBs3ztzDsHh+/PFHREREID4+vtjXtm/fHtOmTSvR5x88eBARERHYuHFjaYdotfzzzz+IiIjAqVOnin3t8OHDMXz48BJ9/u3btxEREYFff/21tEMUCKweG3MPQCAQUCDcuXMHzZo1w6JFi556fsWKFZg+fToAYOXKlahdu7aJR6jl4MGDGDFihF6vvXDhQhmPpmKwZMkSODg4oF+/fuYeikBQ4RBCSSCwEOzs7HDw4EE8fPgQlSpVyvfc2rVrYWdnh8zMTDONTkvVqlXxxRdf5Fv3zTffwNHREePHjzfoszdu3AiZTGbQZ5RH/vzzT3h4eBgklIRVSCAoHUIoCQSlIC0tzeif2aBBA5w6dQrr16/HyJEjc9fHxcXh8OHD6NSpEzZt2mT07y0p3t7eeOaZZ/KtmzdvHjw8PJ5aX1JsbW0Ner9AN2LfCgSlQ8QoCQTFIMXYXL58Ga+99hoaNWqEIUOG5D5/+PBhDBgwALVr10aHDh2wevXqUn2PnZ0dOnfujP/++y/f+v/++w+urq5o2bJloe+7cuUKXnnlFTRu3Bi1a9dGv379sG3btnyvSUhIwOeff45evXqhfv36aNCgAV544QWcP38+3+ukeJ/169djzpw5aN26NWrXro2RI0fixo0bpdouieTkZEybNg3R0dFo2LAh3n77baSnp+d7TWExSklJSZgxYwbat2+PqKgotG7dGm+++WaRMU9ZWVkYN24cGjZsiKNHjwLQ/o43btwodhwA8O+//6Jfv36oU6cOGjdujKlTp+LevXv5XnP9+nVMmjQJLVq0QO3atdG6dWtMnToVycnJua+JiYnB4MGDER0djfr166NLly745ptv9N5v7du3x6VLl3Do0CFEREQgIiLiqVijrKwsfPbZZ2jatCnq1auHCRMmPLV/CotRyszMxI8//oguXbqgdu3aaNmyJSZOnIibN2/qHI9Go8H06dMRFRWFzZs3A9DGSh05cqTYcQDArl27MGTIENSrVw/169fH2LFjcenSpXyvefjwId5++220bt0aUVFRaNmyJV566SXcvn079zWnTp3CmDFj0KRJE9SpUwft27fH22+/rd+OFQj0RFiUBAI9mTx5MipXroypU6dCo9Hg119/xY0bNzB58mQMGDAAffv2xd9//41p06ahVq1aCA8PL/F39OzZE6NHj8bNmzcREhICgEKpS5cusLF5+nS9dOkSBg8eDF9fX7z44otwdHTEhg0bMGHCBPz444/o1KkTAODWrVvYunUrunbtiqCgIDx69AjLly/HsGHDsG7dOvj6+ub73Hnz5kEmk2H06NFISUnB/Pnz8frrr+Ovv/4qxZ4jU6ZMQVBQEF599VWcPXsWf/31Fzw9PfHGG2/ofE9qaiqGDh2KK1euoH///oiMjMSTJ0+wfft23L9/H56enk+9JyMjAy+//DJOnz6NhQsXok6dOiUex5w5c/D999+jW7duGDBgAOLj4/HHH39g6NChWL16NVxdXZGVlYUxY8YgKysLw4YNg7e3N+7fv4+dO3ciKSkJLi4uuHTpEsaNG4eIiAi88sorsLW1xY0bN3LFmz688847+Pjjj/O5Nr29vfO95pNPPoGrqysmTpyIO3fuYPHixfjoo4/w3Xff6fxclUqFcePGYf/+/ejRowdGjBiB1NRUxMTE4OLFi7nHX8H3vPPOO1i/fj1mzZqFtm3blngcq1evxrRp09CyZUu8/vrrSE9Px59//okhQ4Zg1apVCAoKAgBMmjQJly9fxrBhwxAYGIj4+HjExMTg3r17CAoKwuPHjzFmzBh4eHhg7NixcHV1xe3bt7Flyxa9961AoBcagUBQJD/88IOmevXqmldffTXf+nbt2mmqV6+uiY2NzV33+PFjTVRUlGbmzJkl+o527dppxo4dq8nJydG0aNFCM3v2bI1Go9FcvnxZU716dc2hQ4c0f//9t6Z69eqakydP5r5v5MiRmp49e2oyMzNz16nVas1zzz2n6dy5c+66zMxMjUqlyvedt27d0kRFRWlmzZqVu+7AgQOa6tWra7p165bvMxcvXqypXr265sKFC4WOv0ePHpphw4YV+py0/95+++186ydMmKBp3LjxU/vhrbfeyn38/fffa6pXr67ZvHnzU5+rVqvzjXnDhg2alJQUzbBhwzRNmjTRnD17tlTjuH37tqZmzZqaOXPm5HvdhQsXNJGRkbnrz549m/u9uli4cKGmevXqmsePH+t8jT7o2r/SMTFq1Kjc/aHRaDQzZszQ1KxZU5OUlJS7btiwYfk+Y+XKlZrq1atrFi5c+NTnSp9169YtTfXq1TXz58/XZGdna6ZMmaKpU6eOZs+ePaUaR0pKiiY6Olrz7rvv5nv/w4cPNQ0bNsxdn5iYmPu9utiyZctT54NAUBYI15tAoCeDBg16al21atUQHR2d+9jT0xNhYWG4detWqb5DoVCga9euWLduHQBgzZo18Pf3z/cdEgkJCThw4AC6deuGlJQUxMfHIz4+Hk+ePEHLli1x/fp13L9/HwDjU+Rynu4qlQpPnjyBo6MjwsLCcPbs2ac+u1+/fvliWqTvL+12AU/vv+joaCQkJCAlJUXnezZv3owaNWrkWsbyUjDoOzk5GWPGjMHVq1fx+++/o2bNmqUax5YtW6BWq9GtW7fcfRofHw9vb29UrlwZBw8eBAA4OzsDAPbu3Vuo6w4AXF1dAQDbtm2DWq3WuZ2G8uyzz+bbH9HR0VCpVLhz547O92zevBkeHh4YNmzYU88V3LfZ2dmYPHkydu7ciV9++UWnG7i4cezbtw9JSUno0aNHvn0rl8tRt27d3H1rb28PpVKJQ4cOITExsdDvcnFxAQDs3LkT2dnZOrdTIDAU4XoTCPREcgnkxd/f/6l1bm5uOi/u+tCrVy/8/vvvOH/+PP777z9079690EywmzdvQqPR4Pvvv8f3339f6Gc9fvwYvr6+UKvV+O2337B06VLcvn0bKpUq9zXu7u5PvS8gICDfY+mGn5SUVOrt0vWZiYmJuaKjIDdv3kTnzp31+vwZM2YgKysLq1atKtLtWdw4rl+/Do1Go/N7JRdocHAwnn/+eSxcuBBr165FdHQ02rdvj969e+fexLt3746//voL7777Lr7++ms0a9YMnTp1QteuXXOFqzEoze918+ZNhIWFFerSLcjcuXORlpaGefPmoUmTJqUex/Xr1wEgX7JCXqTjwNbWFq+//jo+//xztGjRAnXr1kXbtm3Rp0+f3IzQxo0bo0uXLpg1axYWLVqExo0bo2PHjujVq5cIXBcYFSGUBAI9sbOze2qdQqEw+vfUrVsXISEh+PTTT3H79m306tWr0NdJForRo0ejVatWhb5GijP5+eef8f3336N///6YPHky3NzcIJfLMWPGDGg0mqfep+smXthr9aUsPjMvHTp0wPr16/HLL7/giy++0Pl9xY1DrVZDJpNh3rx5hf6+jo6Ouf9PmzYNffv2xbZt2xATE4NPPvkEc+fOxYoVK+Dn5wd7e3ssWbIEBw8exM6dO7Fnzx6sX78ey5cvx4IFC4x2/JT1vm3VqhX27NmD+fPno0mTJoWeC/qMQ/r7xRdfPFUCA8h/Po0aNQrt27fH1q1bsXfvXnz//ff45ZdfsHjxYkRGRkImk+GHH37A8ePHsWPHDuzZswfvvPMOFi5ciOXLl8PJycnQzRYIAAihJBBYJD169MCcOXNQtWpVnS6k4OBgAIBSqUTz5s2L/LxNmzahSZMmmDFjRr71SUlJ8PDwMM6gy4CQkJCnsqF00bFjR7Rs2RLTpk2Dk5MTPvzww1J/p0ajQVBQEMLCwop9vZSJ9vLLL+Po0aMYPHgw/vzzT0ydOhUAxUOzZs3QrFkzvP322/j555/x7bff4uDBg8X+bhJlUVsqJCQEJ06cQHZ2NpRKZZGvrVu3LgYNGoRx48Zh8uTJmDVrll6WqIJIx6yXl5de2x4SEoLRo0dj9OjRuH79Ovr06YMFCxbgq6++yn1NvXr1UK9ePUydOhVr167F66+/jvXr12PgwIElHp9AUBgiRkkgsEAGDhyIiRMn4q233tL5Gi8vLzRu3BjLly/HgwcPnno+b1q2QqF4yrqwYcOG3BgmS6Vz5844f/58oZlMhVlL+vTpg3fffRfLli3Dl19+WervVCgUmDVr1lPfodFo8OTJEwBASkoKcnJy8j1fvXp1yOVyZGVlAWAcWUEk4Su9Rh8cHBwMcnsWRufOnfHkyRMsWbLkqecK27fNmzfHt99+iz179uDNN98sVcxVq1at4OzsjLlz5xYaVyQds+np6U8VVw0JCYGTk1PufktMTHxqnKXZtwJBcQiLkkBggQQGBmLSpEnFvu7999/HkCFD0KtXLzz77LMIDg7Go0ePcPz4ccTFxWHNmjUAgLZt22L27Nl4++23Ub9+fVy8eBFr167NneFbKmPGjMGmTZswefJk9O/fH7Vq1UJiYiK2b9+ODz/8EDVq1HjqPcOGDUNKSgq+/fZbuLi4lLhaeEhICKZMmYKvv/4ad+7cQceOHeHk5ITbt29j69atePbZZzFmzBgcOHAAH330Ebp27YrQ0FCoVCr8+++/UCgU6NKlCwBg9uzZOHz4MNq0aYPAwEA8fvwYS5cuhZ+fHxo2bKj3mGrVqoU///wTP/30EypXrgxPT080a9asRNtVkD59+mD16tX47LPPcPLkSTRs2BDp6enYv38/Bg8ejI4dOz71no4dO2LGjBl466234OzsjI8++qhE3+ns7IwPPvgAb775Jvr164fu3bvD09MTd+/exa5du9CgQQO89957uH79OkaNGoWuXbuiWrVqUCgU2Lp1Kx49eoQePXoAAFatWoU///wTHTt2REhICFJTU7FixQo4OzujdevWBu0bgSAvQigJBFZMtWrV8Pfff2PWrFlYtWoVEhIS4OnpicjISEyYMCH3dePHj0d6ejrWrl2L9evXIzIyEnPnzsXXX39txtEXj5OTE5YsWYIff/wRW7ZswapVq+Dl5YVmzZo9VfspL+PHj0dycnKuWBo6dGiJvnfs2LEIDQ3FokWLMHv2bACAn58fWrRogfbt2wOgy61ly5bYsWMH7t+/DwcHB0RERGDevHmoV68eAG0Pv7///htPnjyBh4cHGjdujEmTJuUGfOvDhAkTcPfuXcyfPx+pqalo3LixwUJJoVBg3rx5mDNnDv777z9s3rwZ7u7uaNCgASIiInS+75lnnkFqaio+/PBDODk5FWn1LIxevXrBx8cHv/zyC3799VdkZWXB19cX0dHRuS1a/Pz80KNHD+zfvx9r1qyBQqFAlSpV8N133+WK0MaNG+dWsn/06BFcXFxQp04dfPXVVxY/ARBYFzKNsaL9BAKBQCAQCMoZIkZJIBAIBAKBQAfC9SYQlCEPHz4s8nl7e/sSuWAE5Yv4+Ph8Na0KolQqC61zJRAITIdwvQkEZUhRsR4A0LdvX8ycOdNEoxFYGlIMky4aN26M33//3YQjEggEBRFCSSAoQ/bt21fk8z4+PqhWrZqJRiOwNI4cOfJUGnxeXF1dERUVZcIRCQSCggihJBAIBAKBQKADEcwtEAgEAoFAoAMRzK2DY8eOQaPRFFvaXyAQCAQCgeWQnZ0NmUyG+vXrG+XzhEVJBxqNJncpb2g0GmRlZYlts0LK8/aJbbNOxLZZJ+V924y5XcKipAOlUomsrCxUq1YtX7fw8kBaWhrOnTsnts0KKc/bJ7bNOhHbZp2U5207efKkURtJC4uSQCAQCAQCgQ6EUBIIBAKBQCDQgRBKAoFAIBAIBDoQQkkgEAgEAoFAB0IoCQQCgUAgEOhACCWBQCAQCAQCHQihJBAIBAKBQKADIZQEAoFAIBAIdCCEkkAgEAgEAoEOhFASCAQCgUAg0IEQSgKBQCAQCAQ6EEJJIBAIBAKBQAdCKAkEAoFAIBDoQAglgUAgEAgEAh0IoSQQCAQCgUCgAyGUBAKBQCAQCHRgY+4BWDJJSQps3SpHaCjg7Q14egL29uYelUAgEAgEAlMhhFIRZGTIMWWKLQCKpKpVgYgIoE0bIDQU8PEBXFzMO0aBQCAQCARlhxBKReDunoO5c7OQkWGP06eBs2eBHTuAP/8EZDKgcmWgbl2gXTugVi3A3x+wszP3qAUCgUAgEBgLIZSKQKHQoEoVDRwcgIYNAbUaSE0FEhKA27eBmBjg9Glg3TpApQKqVQOaNwc6daLlyd3d3FsgEAgEAoHAEIRQKgFyOV1tLi5AcDDQrBmQnQ3ExwPXr9PatHkzsHgx4OYGNGoEdOvG13l70wolEAgEAoHAehBCyUCUSsDXl0uTJkBmJnD/PrB3L7B/P/D224BCATRuTNHUpg1Fk0AgEAgEAstHCCUjY2cHhIQAQ4YAgwcDjx8DsbHAli3A++9TNDVpAvTrB7RsCTg7m3vEAoFAIBAIdCGEUhkik9F61K0bl8ePgQMHKJqmTqV7rlMnYOBABoMrFOYesUAgEAgEgrwIoWRCvLyAHj2A7t2BBw+A9euBnTuBZcuAGjWA3r1pafLyMvdIBQKBQCAQAKIyt1mQyRjT9PzzwIIFwM8/sy7TnDlAx47AW28BJ04wy04gEAgEAoH5EBYlM6NQADVrcklKoltu/Xrgn3+AevWAZ58FevYEHBzMPVKBQCAQCCoewqJkQbi6Av37A/PmAbNmsQ7T++8DXboA330HPHxo7hEKBAKBQFCxEBYlC0QuB2rX5vLgAbBiBfDHH8Bvv9G6NGoUUKWKuUcpEAgEAkH5R1iULBwfH2DiRAZ8DxsG7NnDgPBXXgFOnQI0GnOPUCAQCASC8otFCaVdu3Zh2LBhaNq0KaKiotChQwd89tlnSE5OLva9f/31F7p06YLatWujd+/e2LFjhwlGbDocHYFBg4CFC4F33gGuXaObbvx44PBhIZgEAoFAICgLLMr1lpCQgDp16mD48OFwd3fHpUuX8OOPP+LSpUtYsGCBzvetW7cO06dPx/jx49G0aVOsX78eEydOxJIlS1CvXj3TbYAJsLUFOnRgI96DB4GlS1ncsnlzYNw4oGlT0SpFIBAIBAJjYVFC6Zlnnsn3uEmTJrC1tcX06dNx//59+Pr6Fvq+H374AT169MCUKVMAAE2bNsXFixcxe/ZszJs3r6yHbRbkcvaQa9oUOHYMWLIEGDGC1b5feol95oRgEggEAoHAMCzK9VYY7u7uAIDs7OxCn7916xauX7+Obt265VvfvXt37N+/H1lZWWU9RLMikwENGgBffQV8/z2QlsZYpvHjgePHhUtOIBAIBAJDsEihpFKpkJmZiTNnzmD27Nlo3749goKCCn3t1atXAQBhYWH51letWhXZ2dm4detWmY/XEpDJWHfpm2+Ar79mttxzzwFTpgDnzpl7dAKBQCAQWCcW5XqTaNeuHe7fvw8AaNWqFb7++mudr01MTAQAuLq65lsvPZaeLy3p6ekGvd8cREYCX3wBHDwow++/26BPHzm6d8/BuHEqhIRocrfJGretOMrztgHle/vEtlknYtusk/K8bRqNBjIjxp5YpFD65ZdfkJ6ejsuXL2POnDkYP348Fi5cCIWJu8aq1TJcvXoHtrbW6b/y9gYmTwZiY52xfr0X1qxRolOnJxgw4CE8PIDr16+be4hlRnneNqB8b5/YNutEbJt1Ul63zdbW1mifZZFCqUaNGgCA+vXro3bt2njmmWewZcsWdO3a9anXurm5AQCSk5NRqVKl3PVJSUn5ni8N8fE2+O676ggLkyEiQoMaNTSoVEkDd3dmn1kLERFshbJhgxwrVvjh0CEfdOx4F5MmOcPLq3z1RklPT8f169cRGhoKh3LY96U8b5/YNutEbJt1Up637dKlS0b9PIsUSnmJiIiAUqnEzZs3C32+yv+XqL569Wru/9JjpVKJ4ODgUn+3g4MKvr4yXL1qi/37gYwMwMYGCAqie6tRI6BGDRaFtLMr9deYBAcH1mHq1QtYsECFlSsr4cgRW7z0kg369mXPufKEg4MDHB0dzT2MMqM8b5/YNutEbJt1Uh63zZhuN8AKhNKJEyeQnZ2tM5g7ODgYoaGh2LhxIzp27Ji7fv369WjWrJlB5jd7ew0mTVLBxobZZElJwK1bTMc/fRrYtIlZZb6+QK1aQOvWQFQUXV5yiwyTB5ycgBdeUKFu3WvYtSsc77zDBryTJwONG4uSAgKBQCAQ5MWihNLEiRMRFRWFiIgI2Nvb4/z58/j1118RERGRK4LeeecdrF69GmfPns1936RJk/D6668jJCQETZo0wfr163Hy5En88ccfRhmXjQ0b1rq60prUrBmgUgHJycDdu8ChQ8ws27mTQqN6dSA6GmjbFggNBZTK0n93RgaQlUVXn7198ev1xd1dhddfV2HIEGDOHGD4cKBbN+DVV4HKlUs/XoFAIBAIyhMWJZTq1KmD9evX45dffoFGo0FgYCAGDhyIMWPG5FqG1Go1VCpVvvf17NkT6enpmDdvHn755ReEhYVh1qxZqF+/fpmNVaEA3N25REYCajWQmAhcuADs3w+sWcMmtn5+QIsWQMeOjBUqiWjKyADu3QMyM+na8/enKNK1vjRUrQp8+SXH/Ouv7CM3fDiLVhZIJBQIBAKBoMJhUUJp7NixGDt2bJGvmTlzJmbOnPnU+oEDB2LgwIFlNbRikcsBDw9Wym7aFMjOBm7eBHbvBmJigJUrgcBAWqO6dgXCw4uPC8rKohhydwcSEviZ9va615cWmYwtUKKjOc5ly4CNGymW+vcvf/FLAoFAIBDoi0UJpfKEUklrTdWqbC1y5w6wdatWNFWtStdc1660CBWGrS0tRgkJ/CtZo3StNxRbW/aN694dmDcPePdd4L//6I4rZy3zBAKBQCDQCyGUTIBCAYSEAKNHM7bp6lVg82ZgxQrg99+ZPdetG61NebPn7O0porKzKYYkq5Gu9cbC3R144w2gTx9g9mxW+H72WeCVV4A8FRgEAoFAICj3CKFkYhQKut3CwxlrFBsLbNsGvP8+4OUFdO4M9O4NBATw9fb2hQshXeuNSXg4W6Js2QIsXMgsvxdfBEaOtK46UgKBQCAQlBYhlMyIvT3QqhWX+/eBDRuAdetoaWrenPFBdeuat9SAXA506QK0bMng9G+/pTXsjTdYTkAgEAgEgvKMhVb7qXj4+gKjRtHVNX48yw5MmkQLztq1tD6ZEycnBncvXEj34LBhwP/+Bzx8aN5xCQQCgUBQlgihZGHY2rJw5aefAjNnMibom2+Ysr9wIUsQmJPgYODzz4Hp04Fdu1jpe+FCxksJBAKBQFDeEELJQpHJgGrVgClTgB9/ZNbZ8uXA0KF8bE5LjkwGdOgALFrEzL3PP6c17Phx841JIBAIBIKyQAglK8DbGxgzBpg1C+jUicHfgwcDX39NF525cHRkJtyCBbQoDRoEfPQR8OSJ+cYkEAgEAoExEULJQsnMBFJS+FfC2Zmp+t9/T1Gybx9jhb74gnWazEVoKN2Dr78OrF8PPPMMA9LVavONSSAQCAQCYyCEkgWSmQk8eADExfGvJJYk8QQAPXsC333HVP3YWAqmmTPZ2sQcyOUsVLl4MSt8v/su8MILbOkiEAgEAoG1IoSSBZKdTVHk5sa/0uOC4kmpZOr+N98Azz8PHDlCwfTdd+aLYXJxoWVpzhy64Pr2ZQyTJPAEAoFAILAmhFCyQJRKpuAnJmpblBQmnvK+vnNnCqbBg4EdO9g25eefzZclV7Mm8MMPLG+wYgWrfG/aBGg05hmPQCAQCASlQQglC8TODvDxAfz8+FcSSwXFU0GUSrrkfviBLVH+/ZeCadEiID3d5JsBhYIxVYsWARERwMSJrA11+7bpxyIQCAQCQWkQQslCsbNj8LbU+60w8VTUe599lllyTZsCf/zB9P1//zVPvSMvLxan/Ppr9rnr0YNiLivL9GMRCAQCgaAkCKFkRRQUT8Xh5MTYpR9+AGrUoGvu5ZeBQ4dkZnGBRUdTvA0YAMyfz78HD5p+HAKBQCAQ6IsQSlZGYWUDisPTk+1Hvv6aQuudd2zx00/+uHZNVnYD1YG9PWtCzZ/P+lDDhwNvvSVqLwkEAoHAMhFCyYrQVTZAX4KCKErefjsL9+/b4uWXlfj+eyA+vmzGW9xYPv6YrVAOHWIw+m+/idpLAoFAILAshFCyIorKfCsJUVEaTJp0B0OG5GDrVsYvLV1q+pghqRXK3LkUSjNnMmvv3DnTjkMgEAgEAl0IoWRF6JP5pi9yOdC5sxrffw80awbMmweMG8dq36aOX3J2BiZMYO0lhYKlBD78EEhONu04BAKBQCAoiBBKVkRJMt/0xdGRAd/ffsvstDffBN5/3zwtUcLDWZxy8mRg82ZW+v73X1F7SSAQCATmQwglK6OkmW/64ufHitr/+x9w+TLdcfPmmb7+kmRRmjsXaNyYwm3MGODaNdOOQyAQCAQCQAglQQHq16dVp2dPVtQeOxbYudP0Vh1PT+C119gAOCGB4/n8cyAtzbTjEAgEAkHFRgglwVMolayo/f33QEAAG9xOn26eitp16rD+0+jRwF9/Ab17Axs3CnecQCAQCEyD0YVSeno6Vq5ciaVLl+KOOQJdjIhGU7FvyJ6ewNSpwHvvATduACNH0iWWkWHacdjaMhtu4UIWznzlFQaeX71q2nEIBAKBoOJhY8ib33nnHZw8eRL//fcfACArKwvPPvssLl26BABwcXHB4sWLERkZafhIzUBCgg0++0yJkBAgOJj9ygIDAQ8PxtJUFOrUAWbMAFavBlauBGJigPHjgebNTTsOLy/gnXcY5P3LL3THDRvG/nEuLqYdi0AgEAgqBgZZlA4ePIhOnTrlPv7vv/9w6dIlfPXVV/jvv//g7e2NWbNmGTxIc2Fvr0ZgoBpxccC6dcBHH1EgvPQSa/788w8Dn0ta+NEaUSqBgQOZHefjwyDrTz4BHj40/Vjq1aNbcOxYZsX16EG3nChWKRAIBAJjY5BF6dGjRwgMDMx9vHXrVkRFRaFnz54AgGeffRa//vqrYSM0I3Z2agwerIK9PaBSsa5PXBxw9ixw/TqwahWwZAl7qlWpAkRFMVMrMLD8Wpy8vZkdd/AgK2k//zytOv37G1bXqaQolWz827EjsHgxY6hWrwZeeUUGG4OOaoFAIBAItBh0S3FwcEDy/1cFzMnJwaFDhzBs2LDc552cnHKft3YUCsDdnUuNGlynUrGVyLlzFE///gv8+Sfg6wvUqgU0aULxZG9v+PdLlbilopO61pmKJk2AunW5vXPmsFDlyy9r942pkOKoundnOYNhw+zQsqU/3n8fCA017VgEAoFAUP4wSCjVqlULK1asQJMmTbB9+3akpqaiffv2uc/fvHkTXl5eBg/SUlEoAH9/Lu3bAzk5wK1btLZcuADs2MGCjnXqAC1a0GXk4FCy78jMZC+2Bw8Y1OzsTNdXVhaLQmo02nWmFkv29rQodegA/Por3ZL9+3Ods7NpxxIRAXzxBbB+fTZ++cUZffrYYeRIjqmk+1wgEAgEAgmDhNKUKVPwwgsvoH///tBoNOjSpQvq1KmT+/yWLVvQoEEDgwdpLdjYAGFhXAAKnNhY4Phx4OuvKR7q1gXatAFq1y7eVZWZyZT8K1fYtqRyZa53cmJs0L17tKikpDDA3NRCSSIkhNW8N20Cli9nsPfYsUC7duznZirkcqBDBzV8fW/gyJHq+OMPBf79F5g4Eejbt/y6QwUCgUBQdhgklGrXro0NGzbg6NGjcHV1RePGjXOfS0pKwpAhQ/Ktq2h4egJdunBJSAAOHACOHQM+/ZSxPs2aMcYmKKjw92dnUwS5uNCC9PgxG+JqNAxc9vSkGAsIMG18UGHI5UC3bsyEW7SIJQU6dmTgu6+vacdiZ6fByJFqDBigjV/680/GVjVtalrxJhAIBALrxuCwV09PT3Ts2PGp9a6urhg5cqShH19ucHcHunbl8uAB3XJ79wL//QdERtLK1KJF/ngmpZJWqKQkWpG8vCiKbG1ZoTolhY8DAsxnTSqImxt7tbVpQ8E0ciSDvZ97zvRiztub1b2feQZYsAAYMYIu0tdeA6pXN+1YBAKBQGCdGCSU7t69i7t37yI6Ojp33fnz57FgwQJkZWWhZ8+ehYqoio6PD4XDwIHAmTPAnj2sC7R0KdCqFS0zvr4UP0FBFEnZ2RRbUr0gHx+62zQaWkgyMy1HLAGMx/r8c7ri5s9nsPekSUDNmqYfS7VqtOLFxlK8PfMM+8lNnMgMRYFAIBAIdGGQUPrkk0+QlpaGRYsWAWC5gBEjRiA7OxtOTk7YtGkTvv/+e3Tu3NkYYy13yOWMVapdm6657dspmtavB6KjmclVrRpFUmYmX2NrS0EkiaIHD7QiyRwB3UVhZ0crTrt2rKo9bhwwYACb3Do5mXYsMhlLNzRsyFiqZcvoEh04kIKpHOccCAQCgcAADCo4efLkSTTPU5559erVyMjIwL///ovdu3ejWbNmWLBggcGDrAi4uwP9+rGI44gRFEDTp7MSdUwMhYVUDkBCElBubk8/Z0kEB7Nf3OjRFCmjRwO7d5tnLAqFtpTACy9QnHboAHz2GQPmBQKBQCDIi0FCKTExMV/6/86dO9GoUSOEhIRALpejU6dOuCoacpUIGxu6rSZOZCyNmxsDkd99lzFNGRmMTcrM1NZPSkzkX3MHdBeFXM74rC+/BMLDKQDfe48B6ubAzo4FK+fPpxt07VoKpq++YkyYQCAQCASAgULJ09MTd+/eBcAst+PHj6NVq1a5z6tUKuTk5Bg2wgpGZibFw4MHjEcaMwb44AO64Nato3hauJCVwQG62/z8LM/tpgtPT4rAt99m+5chQ+gGM1f7EScnBpwvWMDYpRUrgE6d2KpFWJgEAoFAYFCMUvPmzfH777/D2dkZBw8ehEajQYcOHXKfv3z5Mvz9/Q0eZEUiJ4diydWVlo2cHAZ0v/ACcPcuq3/v3cvgaCnGxtTFHY1Bw4bM9lu5Epg7l664qVNpbTIHrq4UpQMGULgtXcqlf3/gxRdFDJNAIBBUVAyyKL322muoUqUKPv/8c8TExODNN99EcHAwACArKwsbNmxAs2bNjDLQioKNDS1DSUn8q9EAqakUT15etHq89BLdc1u2MJNs2TKWC7A2HByA4cMZHySTUah8/z2Qnm6+Mbm5Mej899+5ryWX3Pvvs/inQCAQCCoWBlmUvL29sWzZMiQnJ8POzg62tra5z6nVaixevBh+fn4GD7IiYWdHQZSTQ5GUlKTNavPy4uLmRlfcs88yQ27tWmDbNqBzZ6B3b+twweUlNJSuuA0b2Ng2JgZ45RWgZUvzjcnVlUHnzz0HrFnDelcrV9ItN2YMe/iJwpUCgUBQ/jHIoiTh4uKSTyQBgL29PWrUqAF3d3djfEWFws6OsTNSfSRXV/7NydE+Z2dHl9uzzzJTrm5d4J9/gFdfZWaZpWbA6cLGBujVi/3aqlcHpk1j1t+jR+Ydl5MTMHgwY5imTmU7mf79WURz40ZWTBcIBAJB+cVgoXT37l2899576NKlCxo1aoTY2FgAQHx8PD755BOcPXvW4EFWVAq64Wx02P+cnWn5+Ogj9pn75RdmyR08SKuUNeHlBUyYALz1FkXJ0KHM+lOpzDsuOzuWFZgzh337lEoKp549gdmz2UomLxkZDAbPyDDPeAUCgUBgHAxyvV2+fBlDhw6FWq1GnTp1cPPmzdwsN09PTxw5cgRpaWmYMWOGUQZb0cjrhpNEU1G4uzODq1s3uolmzmTQ9MCBQESESYZsFGQyoFEjoFYt4O+/Kfx272ZrlBo1zDs2uZz7tGFDxiytWMFq37/8wlim4cO5r+/epUiyt2cwft7WNAKBQCCwHgyyKH355ZdwcXHBpk2b8OWXX0JTwHzRpk0bHDlyxKABVnTyutr0xccHePllWmUSE1mz6IcfWHLAmnB0pPCYOZMCZexY4LvvWEfKEggKoqtzyRIGgF+5Qste//7MmJPLKZaEe04gEAisF4OEUmxsLAYPHgxPT0/IColsDQgIwP379w35CkEeMjO1GXD6ULUq8MYbDEo+f54B0osXW1+GXOXKwP/+xyDqLVuAUaMYh2UpbkVnZ/aOmz2brrnQUPa469uXIu/QISGWBAKBwFoxyPWm0WhgX4RPIT4+/qkgb2siPl6JadNsERBA60G1aqzz4+Fh+rFIhSjzZsDpY2WSepzVrw9s3gxs3QrExCjRvLkLKlcu+3EbC7mcdaOaNqUF55NPKJomTqQwsQTkcjb9nT4dePgQ2LED2LWLJRy8vZkxJ7lB5UZJoxAIBAJBWWOQUIqMjMSuXbswdOjQp57LycnBunXrULduXb0/b8OGDVizZg3OnDmDpKQkVK5cGcOHD0f//v0LtVhJPHnyBN9++y12796NhIQEBAUFYejQoRg8eHCptktCrQbOn1fg/Pn86729aa0JD2dD25o12ay2LCmsEGVJ3HFKJdCjB9CqFfD332r89ZcPLl+WY+RI8xV5LA1ubnQrtm1LwTRqFF1do0ebvtFuUVSqxIzEgQOBO3dYVX3XLuCPPyi427fnuENDRZkBgUAgsGQMEkpjx47F+PHj8f7776NHjx4AgMePH2Pfvn34+eefcfXqVbz33nt6f96iRYsQGBiIadOmwcPDA/v27cP06dMRFxeHiRMn6nzf5MmTcfXqVbz66qvw9/fH7t278cEHH0ChUODZZ58t9fa5u+fg9dez8OiRLW7cYMuN27eZsv7oEbPKAIqQWrWYol+3LtPbdWWolRZ9M+CKw9UVGDxYhWrV7mHfvmBMm0ZLx3PPmcdSVloiI9naZf16VivfvZsVtM1Ze6kwZDJaI8eNY3X1c+foNvz3XzbmrVEDaNeOpRHCwoSlSSAQCCwNmaZgBHYJWb16NWbMmIHk5GRoNBrIZDJoNBo4Ozvjgw8+QM+ePfX+rPj4eHh6euZbN336dKxfvx6xsbGQF3IXefjwIVq2bInPPvsM/fr1y10/bNgwKBQKLF68uFTbderUKSQlZePRo5qwt3fIXZ+ezqDdy5eBCxeAEyeeTg13cqK7q3lzIDqaFaiNQWamNr7I0TG/RUmqs6RPdlxGRjpu3bqFoKBgHD3qgLVrmX7fpw+tTpbcXLcw4uNZnXzHDqBBg2x06XIZ7dqFwsFYO74MyMoCzpyh+/DQIbpVq1Sh0OvVi1bKwn6HtLQ0nDt3DjVr1oSjo6PpB16GiG2zTsS2WSfledtOnjwJmUyG2rVrG+XzDLZ79OnTB507d0ZMTAxu3LgBtVqNkJAQtGzZEs4lbEJWUCQBQM2aNbFixQqkpaUV+nlSOQIXF5d8652dnZFWBlHLDg6syhwVxccaDa1Mx49TNJ04ASQn86a9Ywdvdg0aUDQ1b85Gt4aQnk5RlJ6ujVMyJH6pRQuOb+1aurIOHABGjKDFxlrw9KQ7rl07YNEiGT76KAynT8sxfjwtaJaIrS3jxurXp2g6fx7Yvp3Lb78Bvr5AkyZAx478K+q2CgQCgXkwioPI0dERnTp1MsZHPcWRI0fg6+urU3T5+/ujZcuW+PnnnxEWFgY/Pz/s3r0bMTEx+Oqrrwz+/kw9UswqVaL7qlMnWmYuXpTj4EE5DhxQIC5OjoMH6ab78UcNGjdWo23bHDRooC7SfZaVxQw3mYzWI1tbICGBQcJubhRj9vYUamlpfOzikn99cdsk/ZXJ2PqkSRPg779t8L//KdCxYw4GDFDBza0ke8u8hIUBb7yRgdWrU7Brlx9271Zh0KAcPPNM0fvaEggP56JSAbduybBjhxzHj8uxfr0MGg0QEaFBdLQa7dplQqEA0s3ZEK+MkLZJbJt1IbbNOinP2yZ5t4yFwa43AEhJScHdu3eRlJT0VC0lAGjUqFGpPvfw4cMYPnw43nrrLYwaNUrn69LS0jB16lTs3LkTAKBQKPDuu+9iyJAhpfpeQOt6O3asZFaxvGg0wL17tjh50hnHjrng7l2tmcfZOQcNGyajSZMkBAfnF2NZWTI8emSDBw+UUKkAb+9seHvnIDHRBvHxNgA08PBQoVKlHNjaapCVJUNCggI5OTLY2Gjg7q6CrW3pflaNBjh50hG7dnlAJgM6d45H48bJVhc7k5oqx7ZtHjh40BV+fpno3/8hate2vgtCQoICFy444MwZJ1y54oDHj5VwcVGhevVU1K+firp1U+Djk23xQlAgEAhMia2trdFcbwYJpSdPnuDjjz/G5s2bofr/HhN5lZz0/7lz50r82XFxcRg4cCCqVq2KBQsWFBqfJH3HlClTcP78eUyaNAmVKlXCvn378Ouvv+Lzzz/PDTIvKZJQunOnCuyM1GX22jUZduxQYPduGyQkaNVueLga3brloEULFezsaCG6epXWo+xsxjyFhjIGyd4eePIE8PPL747JytLGKBWXgZeZmYkHDx7Ax8dH57alpwNr1igQE2ODOnVUGD5chaAgCylcVAQZGRm4d+8e/P39YW9vjzt3gJUrbXDokAJNm6rw4os5VlUWIS85OcDFi5nYsiUZd+5UwtWrSqSnMwi/Vi01GjRQoWVLDSpX1lhdnBnAme3169cRGmrZ8WWlQWybdSK2zTq5dOkS5HK5ZcQoTZ8+HTt27MDw4cMRHR0NVyMFhCQlJeHFF1+Eu7s7fvzxR50iCQB27tyJjRs3Ys2aNYj4/z4dTZo0wePHjzFz5sxSCyUJOzu7fMHchlCzJpdx44BjxxjIu28fcOmSHJcu2WLhQtYK6tSJsVDZ2XS72dvTrSaVCPDx4c0xr8YpTYuMorbN3p7tUNq0AZYtk+Odd5To2ZMp79bQjsPe3h729g6oWhV4803GkP31lxzjxyvRuzfLChQSEmfxREYCSuVNhId7A1Dg+nW6dc+eVeD335WYNYvCumZNoE4dxqBFRPB4sZYyBA4ODuUuuFRCbJt1IrbNujCm2w0wUCjFxMRg5MiRePPNN401HmRkZGDcuHFITk7G8uXLnwrSLsjly5ehUChQvXr1fOtr1qyJv/76C+np6RanlhUKZsNFRzPuaNMm1tl58IA92v7+m881bUpR5OqK3FghfTPbjEVoKPD66xR1mzYBR45QQDVoYJrvNwYyGYOmo6KAbduA1au5PX37AsOGUYxaIw4OWvENUETfuqVNKli7Fli4kNvv50fBVKsWkwpCQ3lMWYt4EggEAnNhkFCyt7dHYGCgscaCnJwcTJkyBVevXsWSJUvg6+tb7HsCAwOhUqlw4cIF1MjTMfXMmTPw8vKyOJFUEHd31jAaMACIjQXWrAGOHuX/sbG8ufXrB4SE0MJkDmxs2Gi3aVM2gf34Y2ZjDRsGqwr2ViqBrl2B1q0pllatYh2mwYMpmqy4iDwAiudq1bj078+CqY8fs5TFiRP8u3QpW63I5UBAAF9bpQrLWVSpQmFujW47gUAgKCsMEkq9e/fG1q1bC63MXRo+/PBD7NixA9OmTUNKSgqOHz+e+1xkZCRsbW0xcuRI3L17F1u2bAEAtG7dGgEBAXjllVcwYcIE+Pj4YO/evVi1ahUmTZpklHGZAoWCVo+QEODGDZYW2LePtZo++4w92jp3Ztd6Jyf9SwAYEw8Pug1jY2n1OnaMIqN9e+uyTDg6AkOGUDRJhR9XraKlrHNn/hblAbmcGZmVKgHNmnFddjZj365f5+93/Trw33/AokUUVg4OQHAwRVN4OAuoBgezGr01uFwFAoHA2BgklLp06YLY2FiMGTMGzz33HPz8/KAo5C5Tq1YtvT4vJiYGADBz5synntu2bRuCgoKgVqtzA8cB1ktatGgRvv32W3z11VdITk5GUFAQpk2bhmHDhpVyy8yDFINUvTpdJSNG0EX033/A3bu8ma1dyzim3r1NL5QkGjWiC+fvv4FZs+iOGzGCY7YmPD2B558Hunfntnz+OS1mI0fS6mRtmX76oFTSkhQQQBccQIGUmAjcuwdcusTlxg3W1PrhB4pgOztam4KDKebDw2nt9POjgBYiSiAQlFcMynrL6+oqLHjKkKw3c6OrMndZUljhSIAFLbdupWhKSeG6SpWAQYNoASmpq0SqzB0cHGzwtl24wKrYCQl0Xz3zjPHbt5SEjIx0XLt2DWFhYSXetps3KZj27WPQ9JAh7I1nSYIpPT0dly5dQnh4eJm7lVUq/q4PHtDydPUq+9bdv0+rlFTP1c6OFidfX8Dfn+KpRg2gcmUepy4utFQVZ3Usz5WCxbZZJ2LbrBOLqsw9Y8YMo0eXV2QkcZQ3YDs1lTfqAQPY3uLwYWDDBt6ofvwRWL6c7i9zuYwiIoB33mHMz59/Mhbm+edZ/NHaCAkBpk6lte7vv4F33+X2DRnC7L/y4pLTF4WCx6OXlzZgXCIzk1aoBw8o5K9f5/9XrvAY/eMPlqwAeCx7elJMSa5AX18eIwEBfM5SK6gLBAKBQUIpb281gXGws8vvUsvbDNfRkTfspk3pFtm4kTen778H/vmHLqMWLUwfL6RUAgMH0pWzdCnw1lvsV/bcc9YZIC2VFLh2jfv1ww8ZszNwIIPYrXGbjI3kivPx0bbzkVCrgYwMWqPi4ynqr1xhI+n4eFruEhNZRT5vgoK9vR0UimoICrKFry8FlIcHLVRBQRRabm60UNnb83ewJGufQCAonxgklLZu3YqOHTsW+Zovv/wSb7zxhiFfU6HJa2XKyuLNx9ubMTS9egE7d9L1desW8MkndHk8/zyDcE1NYCDw2mssI7B+PWsXjRljXX3j8hIWxu25dYuC6csvGVTfqxfdjE5O5h6hZSKXU9Q7OtJiBLAPX14kMZWSQtH05Alw82YOTp9OgVLpgKQkWqpSU7mkpfE9ACcCCgUFk4sLxZOHBxd3d1qrAgMptFxcaK2SmkgrldaVeCAQCMyPQUJpypQp+Omnn9C6detCn3/vvffw119/CaFkIJKFSXJlJCVxnZMTSwd06UJX0T//sLnqW28x4PqFF2DyKtRyOUsJNGpEAffuuwyWHjLEuPWKMjNpjVAqyz6oPTgYmDyZMWFr1tCt9Oef3O+DBtGqIigZecWUtP9q11ajevXHCA/3RN7wq+xsiqrUVFqhkpM5Ybh3jwIrMZHL3bsUXikp+YWV9H1OTvnFlacnhZWbG8WVry9FlSSunJy04kogEFRcDBJKffv2xaRJk/Dzzz+jmZR/DECtVuONN97A+vXr8d577xk8yIpO3iBvmYwXdmmGDPCCPmIELR1Ll9KaExvLbLSePVnvyNQxIN7ewIQJwN69TME/epTWpYYNDf/szEy6HKWgd+lGm53NAOSywtcXePFFVidfv54lHFavZsD3gAF0QQlrhfFRKrm4uOiXWSlZX9PTtcIpKYlB6Pfv8//ERGb2nT5NAZaSwvfk/f3s7QFnZ547UtFXLy+KKy8vrdXKzY3rpCr6wh0oEJQvDBJKH3/8MbKysvDyyy9j3rx5iI6ORlZWFiZPnow9e/bg888/R+/evY011gqLVDbA1ZUXeVvbwq0oHh4UJ337AvPnM3trzRpg+3aKpZ49TZuRJpNRRNSuTYvXJ5/QBfP887zplZbsbO4PNzfe8CT3TGYmm/pmZZWtWnFzYwB9//7Anj3MSHz5ZQZ+9+zJwPpylkRiVdjYcHF01GaOFkdBcZWcTDF+/z7/SlasW7e04is9ncebhJ2d1g3o7a1dgoMBLy8Znjyxy80OtLMTologsBYMvm1+9tlnyMrKwtixY/HDDz9g/vz5OHr0KL777rti45cE+pE3oNvOrnixExAAvPceY4TmzmVQ8s8/0woyduzTwbelJTNTv5Yq7u60JtWpQwvM5MnaPnKlQXK3JSbyr0ajFU4PHnBMecdYVi46W1ugQwcW3Lx4kW1ofvgB+OUXruvbl0Hg4oZo+ZRUXEkxVunpFFGJiQxav3WLAeuPHwNnzlBcJSUBGRm2yMpig20HB36Hjw/PVT8/tpQJDuY6Ly+OQ1imBALLwGChJJfL8dVXX+GVV17Biy++CAcHB8ydOzefK05gGIWVDdCHevVYEHLTJgYh37zJmKEGDWzRrZsSwcGlH1NhNZ+KG1ejRkwzX72amXoHDjCOSt9Zv4TkbpMEEMCYlMREihdJKBXmoiuLeCaZjDe6gQOBtm3p9jx4kC7HmjW1jY5FCnz5IW+MVXHHb3Y2EB+fhZMnr8PdvQri4xW4do3C6vJl4NAhxlplZ/NYsrXNL6SCgmiVDQykqHJxqXilKgQCc1IiobRw4UKdz9WtWxf79+9Hq1atcP78eZw/fx4AC1GOGjXKoEGai5QUBVauVCA0lBcob2/TXaQKWmsKlg3QF4WCwdRt2jB+ifFCChw/HorevXMwciRQmrqFBd2BOTn6jc/ZmW7AevXYNmTyZLqxuncvmeWl4P6QhJNKBdy9S39IQRdddnbZBX5L3xUczH0yeDCtC1u20MI0dy7LOvTsyW0XJQYqDkoljwlf3xyEh2sKPd+ysmiZevyYRT0vX6bIv3aNQmr+fFqxFApehwIDmagRFkYRJbWZEceVQGB8SiSUPv/882Jfs2nTJmzatCn3sTULJZkMuHRJjkOHtPVe3NwomipXZkxKSAhv/sakNNaa4nByYiBy9+7A3LkqHDqkwOrVSuzdC4wfX/L6SyV1BxYkKor1itatY2uW2FiOo7RtUCThlJGhXVfQRVeW2UsFv8vOjm1eatXiDTAmhvFMb7zBAOBmzSiaatQQLhaB1ork5cUWRnnLKajVdPE9esTMvnPnKMJPnmR8XHIyX+fuTutT1araPn0hITzehAVKICg9Jbq9bdu2razGYZG4uKjw9dfZkMttkJjImd65c6xCHBsLbN7MC5BUZbhuXV6kDA3kLa21Rh8CA4F33snChg3xWL3aH/fvy/HJJ3SLvfwyW1DoQ2ndgXlxcGC2mGRdeuUVBkgPHFh68ZCZCaSlyXItSXlddGVZRqCgOzDvd7m4sAFv165AXBywbRszEteu5e/RogUDwMPDhWgSPI1U2sDJiRO0vFENOTna0gjnztESdfYsBVRqKic/3t6MlatRg423w8N5nov+fAKBfpRIKAUGBpbVOCyWvA1BfXx4oQE4y3vyhL3OTpxgMG9MDGeGYWGMTalfn+0aShrMa6i1Rh+iolLRvn0mVq92wF9/UfiNG8dq2gMH6mfCL607sCDVqtEFt2EDBdPhw8DEiSWvASXFJD1+rISrK28ExhqjPujzXX5+wNChdM1dv86Cobt3sxlvQAAFa+fOPH5E/R5BcdjYaC1Redta5eQwqFyyPF25wond77/z2uXuzri6GjU4wYuK4vFXxu0DBQKrxKBb8K1bt3Dp0iW0b9++0Oe3b9+O6tWrIygoyJCvsUjkcl6cmjfnotHwwnT8OAN5N2/mTT8wkBewJk14k9RHNOmy1uibZaYvdnbMPmvfHpg9m2P//XeWE5gwAWjQwPDv0BdbWzbUbdiQ++3VV+kmHDFCf8GQnc1YD2dnNbKyyjYmyVDkcs7yq1ThjevaNbrmjh5lSQcvL+7/1q25T4zt3hWUb2xstJM7qXaZRsOkh9u3gVOnaHmKiQFWruR1xcmJx2NUFNC4MSvq+/ubt8m1QGAJGHQKfPHFF0hJSdEplJYsWQJXV1d8++23hnyNVSCT8ebWoQOXrCxam3btAvbvZ1+20FCKpmbNGDdQFAWtE2URtyQRHAx89hnHOncuXYzvvMM4iXHjOPs0FUFBwEsv0T21eTNw7Bhjl/QpaaBUUnClpMhRqZL1WGTkcrpsq1blzezOHYqmU6docZLJGA9Xvz7QooUsX8VpgUBfZDKKoYgILhJpaXTdnT7NY27PHjbbVqsZVhARoZ3sVatGl7YoeSGoSBgklI4dO4aRI0fqfL5Zs2ZYvHixIV9htdja8uJSuzYtG+fPM25gxw7WM6pRg5aoOnV039DzWpAKxi2lpRnXuiSTMbW9USNaldas4ViPHKFYat/edBdHGxum1DdowFIC06ezGe3zzxcd/yW5SJOSssusFEBZI5NRLA4ezOXJE7pOjh1j4PvixbZwdAxDo0Y2aNuWbhNvb3HjEpQeR0cKoGrVgD59KNZTUli5/OBBXrv++IOlRmxtaXWqVYtZnPXqUTgJBOUZg4RSUlISnIroDOro6IiEhARDvqJcoFRqRVNGBmNwtm5lyq+nJy0FbdvyhidR0ILk6qqNW5LJWMgOML51ycmJFpz27YFvv6VL6Msv6Y575RXOME1FpUqssxQZSZEwaRLFUsuWut9jZwc4OmqsUiQVhocHSzu0aUPBfeFCFrZsScGdO/aYOZPlEPz9uY+aNOGNSwgngSHIZExAiIrSWnJVKtZ9OnuWk6djxziZyskBfH1t4ecXhM6d5WjZkrGFokyBoDxhkFDy9/fH0aNHMWTIkEKfP3LkCPxKm+9dTrG3542+ZUsGHv/3H1uNbNvGi1K7dpyxJSUxa8XTUyuOpLilrCwKpbLIipOoXh348UfGLyxZorUsjRrFnnKmSjeWyZgVFhXFC/M333B/jRlT8kKV+mLKhrslQakEqlXTQKF4grAwd6hUSly+zJvWpUsMCs/KolVNSiaoW5dxcuLGJTAEhYIxln5+nEQBLEtw7Rqwc6casbE2+O47Jb74gkK9Vi1ahFu25PVMZNgJrBmDhFLPnj3x008/oU6dOhg2bBjk/5/brFKp8Mcff2D9+vUYP368UQZaHvHxAUaPBoYPp4l740bgu+94MYqKYkwTQCtP3sKTNjasq1KWWXEAP3fQIAqVH35g/MLPPzNuZsoU7fhMgZsb91O9esA//zBL7rnngB49jJtSn5nJYNeUFAZQBwU9LZYsRUg5OVEI1a3LxykpvHEdP8408Z9/pgXT0ZG/VbVqQHQ0Y04qVRKlCASG4eLC0IHwcBXatr2D4GBHPHrkgP376S6eN49WaVdXCqdGjWg5r1LFsiYgAkFxGHSLHTduHI4cOYIZM2bg559/RlhYGADg2rVriI+PR+PGjfHSSy8ZZaDlGaVSa2U6dYqBlNu2MVW3cWNmf+W9sBijhlFJCA4GPv+c6fu//sqYhQkTKFQGDTKttaJ2bVq71qxhW5bYWIrN4kSbvuImJYWBrfb2/OvhkT/rMCWF1jyNpvi2KKYWVM7OWhcvQOuSVF/n0iVaBdev53Hj7s4yFmFhvNlVrUq3qrA8CUqLvT1rNIWH83F2NicdsbG0ei5axNZFXl485po25SSscmXrSbwQVEwMEkq2trZYsGABVq1ahS1btuDmzZsAgDp16qBz587o06dPrpVJoB/Vq9PFFRdHV0psLFPGmzdnfR0pTdyU9YEAWh969GAczOzZzORbupQZMlOmcMZoKuzsWOupcWPgr7+A11+nmBw0qHArSUl6vmVl0QqjUOSP85E+48kTFvgLC+PrdJUgMFWfuaKwtaWADA0FunWjuEtOZlbd2bPA1at0Y0qxJnZ2jHeqXFmbJh4cTPevSBEXlBSlUivGn32W58qtWzzmjh2jlXrmTFrQmdFJ8eTvL6ydAsvCKE1x+/fvj/79+xtjPBUe6abq4cHMuJQUuuR27gT27qVg6trVfHV1vL2B997jWH76iRe+115j3FJxWWnGxs+PonLvXlrgDh0Cnn1W9lR18YI931JTC7f0sKo3RUFaGmN7pFwF6TOkmLH4eP5GumbCpuwzpy8yGd0grq6MYZJITaUwv36d4un2bRZRlVo7OjnR2hQYyJtYzZpsjeHjw+NQBI4L9EGp1NYOGzaME43r11mW5NQpnsPZ2RTqjRszFqpuXdOWJxEICkPMEy0Q6YYqWSQ6dgT69mXm19atFAYtW9JKUETSYZkhkwGtWjFeaP58YNMmtuM4eJDWJVMUqsybFVi3LmNv1q0DfvjBFuHhvpgwQeuOy9uHDaBVqDDXWXY214eHUwj5+mqfkz4jI4MCzdOT+16X+DFlnzlDcXLS1nHq0IHr1Gq6GB884M3s1i2KqQsXWBA0J4fHgYcHXSl+ftyXVarwRuflxRucCOIV6MLenpPBGjX4ODWVbv09e4ADB1it3s6ObromTZjoEh5u2eeSoHxSIqE0fPhwyOVy/Prrr7CxscGIESOKfY9MJquwtZQMoaBFwsODrS/69gX+/Zfi5MABVm7u1Mk8rQdcXICpU5m6/v33wP37LFTZuTMwdmzZWr0K1pVyc2NGXv36WVi2TIk337RFr140+eftw5aZSaFUmKUnrxjy8MgvQovq5VYYJX29pSGXUwx6empvZACFZEYGheT9+7RAPXjA1PGLF5nFmZnJ19rY8P0eHrREenpqXXuVKnG9szP3jbBKCZycWEW8YUMeZ48eMexgzx7gt9/oqvP31waFN2pUuhZRAkFJKbFFSZ2nLLBGoyn29fq8RvA0uiwSjo4sRNirF/D336xevX8/LQFt25onlqRBA2ZYLVzIeJfNmxk4PHFi/gaepUFX2xZd/fAiIjQYMSIO585VxoYNCsTGcn81a6bdj2lphVt6ihM3JY0L0+f1lpJBpy8yGUV5YCCXgtbDrCz+Jk+eUDxdu0bLVHw8Cxju2kV3snQZUSgodj08AFdXG2g0vqhcWYGQEPYe43rk9u4TsVIVA5mMIqhLFy7Z2Tx+tm1jVueGDXxNjRqMa+rUidmc1nAOCawPmUYomUI5deoUUlKyodHUhL29eTpFJifTHO3kROtNXqQbbFoaXSHbtvEm37073VBFzbIyMtJx69YtBAcHG33bTp9mSvCdO3zcrh0LWJamem9xbVtSUrj9jo5a61XebUtLc8A//zB2KTqaFqfAQP3EiSkETGkCvjMy0nHt2jWEhYWZ7bg0BLVaW9oiMZGC6vZtiqmHD7Nx924KZDIXZGTYIC2Nr5eOZVtbngeurjye3N35V3L9eXnxOHBx0VqqLMVNk56ejkuXLiE8PBwO5azzrDm2LSmJcXS7d7MUwYMH/P2bNOGksUkT4xReTUtLw7lz51CzZk04mjIA0wSU5207efIkZDIZauftFG0AYn5moWRm8uYh3bBtbfOnqee9wY4axYayS5cyZmjvXrYi+P9qDSYlKopB3n/8QYvXjh00n0+YwLimkly4CrrX8hbWzMzkOsniVJig8fRkZe9WrdgKZfJkzk6HDCnaLWiqjDVLDPgua+RyCn8nJzwVdJ+RkYNr1+4hLMweSqUNMjIohlNSOGmIj+fvkpzM/XXnDmOmUlO55OTk/x4HB61wkqxSHh58XKkSjw9JVLm4UHDb24uMK2vA1ZXndatWrBp+6xYTXg4fBqZN429YuzaTXzp2ZPydsEYKSotRDp2UlBTcvXsXSUlJhbraGjVqZIyvqVAUdRMt7Dk/P+DVV5nC/8cfTLtt1gzo3bv4BrzGxs6OlbNbtqR16fp1YMYMXrQmTNC/orYu9xpQtIgqSEQEM/N27gS2bGF6cv/+zB4s7OJpKgFjTQHfpkah0Aqq4trmaDT8/dPTaWFMTeU+ffSI7r+kJG1ZhAsXtK/RJawk4SRZrFxdecxKFivJouXoyN9NCCvzolAwcWPUKC4JCZyc7dypjW2qXJnXw86dmYRijiQYgfVikFB68uQJPv74Y2zevBkqleqp5zUaDWQyGc6dO2fI11RIirqJFvVcRATw0UfaDuAffsjYpYJFK01BRATboCxbxmXfPprJx4+nebw461JRhTWLElGFYWPDmWXTpiy6+NtvvJAOGfJ0nI2pBIy1B3xbCjIZ959SSRGjD2o146nS0rgkJzM4/eFDunulwqPFCSvJIuXqmt8VGBLCCYq7u0hvNzXu7iwt0L49z63Ll5ktvH8/r4murgwYb9+eyTA+PiIgXFA0Bgml6dOnY8eOHRg+fDiio6Phqu9VSlAsRd1Ei7vBymS8ADRpQvfXf//Rn9+rl2lS9/OiVLL1SIsW7NN2+TLw1VcUKa+8wu0oCl0B0aWtTu7szEy4Vq2YPfjRR5xhDhnCYp/SZ5tKwJi6cKiAyOV0s9nbay2ueWtLFUSjobBKT9darO7fZ8mEhAQKrZs3KbAkV6AUsG5jAzg720KhCEZIiE1ueYmwMFrL8pZSEDds46JU8netWZO/YVwcEBPDSdsnn/D6UasWrwfduvE3MVUfS4H1YFAwd/369TF48GC8+eabxhyTRWAJwdzG4tEjtvvYu5dCqXv3dGRmlk0wd1GoVGyy+8cfFCGOjnTRdetmPPdFSQLVMzM5y9y+nW6Zdu1YCK9SJf2+S2ppAmiDhw15nT5YezB3UZSXbdNotL95YiItVNeuZeLSpUTIZB5ITlbmugMlK5Wtrda95+9PoR4ezv99fWm5slQXn7UGqicnM4Nuxw7+TUhgHbAWLXhNiowE1OryG/Asgrn1xyCLkr29PQIDA40yEEHZ4e3NGJ3OnYEFC4AvvrBFnTpuGDTItAUBFQr2h2venNalc+fomtu9m4HWAQGmGwvAm1TlysCkSRSRR4+ypEHnzsCAAUVn6knNc+/epRXAz4/tPvIGm0sFLCXLg0bDbZQa7VpbaQCBfshkWmuVtzcDievUUePatUcIC3OBvT19uVlZ2iD1uDiWUnj8mFbXw4cpslQqfp6np7Y6emAg0+IDAynqRVHP0uHiog0Iz8xkP8QtW+im++037u9GjWwQHu6EwEDTdh0QWBYGCaXevXtj69atGDp0qLHGIyhDatcGvvgCWLEiB3//7Yrbt5Xo14+uJ1MSHEz329q1rL104gTw0ksMxOzdu3jTt67aSiVFen9KCt2UnTrRLL99O12DHTsy6LuwDLnsbL7P3p4CKD1dG/SdN2tOpeLN0NaWNzypfQpg/l5wAvOS14oUHs4btoRU2PPJEx4nly9TlF+5wnIXSUnaz/DzY0xUSAjdSFJBT9HgWH/s7JixGxVFl+mtWxRN+/fL8c8/lTFvni2aNOE1oVUr/a3OgvJBiYTSmTNn8j3u2rUrYmNjMWbMGDz33HPw8/ODopC7XC1TdkwVFIlSCfTvr0aVKjexe3cV/PQTK9wOGMDUaVOhULCEQZMmwHffUSzNnUvr0tSpvOgXRnG1lUqCnR0DO/PWYurShRfCzZtpkt+2TSuY8mbKKJV8/c2bFG0uLtqg77xZc48e8YaVlMSbn6cnX1cRSwMI9Ecq7OngQCtk3smMRkOR/vAhj7/Ll+k6PnOGJUIAHpv+/swGCw+ngAoK4nEq4qCKRi6n2HzhBWDIkGwcOnQVcXHVcPCgAu+/z/1Xrx47EnTuzP0q9mn5pkRCqX///pAVOCKkEKd9+/Y99XqR9Wa5uLurMHlyDjp0UGLxYgY1d+/OTBBTBjP6+7OUwYYNrAF17hxLCAwdCgwc+PRYSlIWoDh01WJydKSI69SJgmnbNlqZOnTgehcXrRUob4NdibxZc87ODNSVrEh5+8OJ0gCC0iCT8Rh0cWFMTdu2XK/R8Hi8f59upCtXKKL27uVkQKmk6AoLo3iqXZuCwNVV3Oh1QbenCk2aqDFoEK8XsbG8Hvz0E/D113SDtmnD0iwiGLx8UiKh9Nlnn5XVOARmIjqa5uY//wT++YeVtZ99lvEPpkImo0hr1Ig1T2JjgUWLeIF/9VXeDCRKWhagKHJyeGOxt+dfN7f8osvJib31Ondmb70tWyic2rbleltbiqqCViF9suZEaQCBsZHJtHWgqlbVrs/JkQLKgVOnaIWKjaVVShJPVaqwnEe9ehRPIh6ncFxdOWHq0IHu9tOneV1YvhyYM4f7vXVriqYaNUSRy/JCiX7Gvn37ltU4BIVgqmBfe3vg+eeZ9fXLLywO2aEDT3ZT3sArVaJla9s29o67fJmB1s89BwwapK1OXlRZAKZwy5CVVXyQq0ZDwfXgAV9bsFK0hJMT0K8frW3btjG1eMsW1mRq0YKvKaxvnBA/AkvAxoaByb6+PGYBxuHEx9PqdOoU+6jFxvK8s7enWIqIYJZs9eqMgxKWkvw4OHBy16gRrzsXLwIbNwLr1jFpJiREK5pq1RLXA2vGIL07YsQIvPTSS2imo/PpgQMH8NNPP+G3334z5GsqJKZqo5GX0FAKlX//ZRr/2bO0Lkn1hUyBTMaYoAYNgNmzGVy9dCn/vvqqtvGlFISdmKiNL8rMZEzQkyc2uWn4Re0zmYwzRB8fBs4W5X7IzKT7okEDFqu7cAE4cIBNXmvX5sUwKEj/7TTH7ysQSMjlzMjz9macIMDJx6NHPLZPnWIW6Lp1FFW+vrSW1KxJK3RoKIWCgNjaaoPBVSrg6lWKpp07WQ7F319bq6l+fbHvrA2DhNKhQ4cwcOBAnc/Hx8cjNjbWkK+osJgr2NfGhoHLrVoBv/5KH3zr1nQ1mdIc7+kJTJ/OCuOzZnHGO3UqLTvDh3N/XLhAgWNvTwElk3G9k5Ma2dlP94YraIWysaG1KDOTf4sykxeMjWrZksuePRRMn3zCuI8uXeiaK+63EsHcAkvDxoaWIz8/xtwAdC/duAEcOUIL7/LljCV0cKC7rlYtoF49GWQyCy3yZAYUCl4LwsO1GXQbN/I68ddftIhLtZoaNSq676TAMjDYg1owuDsvN27cgJNoqlMqzN0HzMeHzSW3b+eM6Px5ZsbVrWvacbRqBdSpQ5fAjh20dO3fz1ICajUFVXw8L+iurtxPqalyeHpqhU9mJnDvHuOQpGaskrVJ3+rehcVG5eRQoDVqxP1z6hTLHSxfznF37667T5m5f1+BQB8cHBhrU6MGH6tUDBY/e5bxOTt2AMuXK6HRVEFEhBJ16/J8qFFDtG4BtBl048YBY8eyxMPWrXTfr13La1bTphRNzZoVXbtNYD5KLJRWrVqFVatW5T6eM2cOVqxY8dTrkpOTceHCBbRu3dqwEVZQLCHYVyZjrFKDBvS5z56ttS6ZUv+6uQFvvUVLzQ8/MBX6008poGrXpthRKLiPvL2BlJQceHtr91laGi/udnb8mzdoW99YIl2iShJPYWF0SaSnU1zu3cvWMVFRbL4bHf10DJO5f1+BoKQoFAz+Dgigi1yjAe7ezcLu3Q8QFxeAPXvYNsnGhudEVBRdezVrChEgkzFJZuRIYMQIlnfYsYNW6VdfpWW8SRNapVu3Nn0zc4FuSiyU0tPT8eTJk9zHqampkBdSW9/R0RGDBg3ChAkTDBuhGcnOluH2bRm8vOh2cnAwbRsBXTdxU1d09vBgZe9GjZiNdv483XP165f9d+elSRPWWpo/n6bskyfpFujWTRtfZGsLODhoniq2J5Pxom5IGnTB36NgHSaAv0nnzhRGp0+zPtTXX3N23agRxV5oqPazhEASWDMyGScQ9eqlISxMBTs7tgI5f54xTvv3A6tXU2BVrUqLdPPmjHusyJl1MhknSs89x+XxY06udu5kyIFczljIzp05WRUFLs2LQb3e2rdvj//973/o0KGDMcdkEZw6dQo3b2rw8stRcHSkK6dSJbptoqJYXdrdnZYVU9YgMUYQsCE9tZKSGLu0Zw9jdPr2NY+PfdcupuMmJPBxu3asv2Rj83Svt8xMmryleKaAAOMIlLzFLwGtGFOrtW7BpCTeJA4cYFbR48ecabdpwxm5rlm2LjFcXvqhFYbYNuukqG3TaFhd/Px5tmW5eJGWFCcnuufq1aPLKSzMMlPpzdHHLiGB14sdOzgZVKspMDt1orXJ19c49xzR601/DBJKJSUxMRGTJk3CtGnTEBkZaaqvLRWnTp1CcnI27t+PxKNH9jh7li6fu3fpvlGpKJQqV2bQXv36NKuWtWhISWFfKCkI2M+v5N+p70W7KMvV3r10x7HSt+mtS5mZrAuzciXHAlCYjB6dCX//m6haNSjftuUN5gZK1wKlYEB4aipFq6srjwmAF7G4OF7c7O15Q5Bcdvfu8fX797OWjUpF12GbNpw9SteqosRwRb3hWjti24haTaF07Bgb0V6+zMmEtzfPhcaNaY318bGMIpjmbviblESBuX0791dGBifq7dsDPXvynlPa/SSEkv6YVMNnZ2fj0KFDSExMNOXXlhobGw3q1NHAwYHp31L/Jan2TmwsA3i3beMN28WFwb3R0TzpK1UyvqvOVEHAxVmuWrZkjNCvv9Ky06oVM9JMFbtkZ8dZ6NSpDJqeNYsi9quv7FCzpj9eeYXP5xU3UoZbaVqgFPa+vAHeDg68YMXHay1XcjlFlPT5jo60SA4ezP/PnuUxNGsWf8eoKO7H6tVFRpygfCKXczLRtSuXnBw2lz5wgOfDd9/xeA8N5eSrVSvGN1XUdHpXV4qi9u05MTt2jPebBQu4ryIjtXGjwcGmDQ2pSFigsdNyydt/ydeXYghgjEpcHDMZDhxg5lN2Nq1NDRrQYuDnZ5yD2FRBwPqkr7u6Uqg0asRtPn+e/vY6dcpmTAWRYnwaNGCT3QULgG3bNDh3zhmvvqrBsGGMa5LGLll2dLVAKarZbmHvy2stkixV0hzAyYkuB6l1SWF95Zo355KQwHiO48cZrK5QaANh69UTGXGC8ouNDUVRaCgfp6dra5TFxLBbgIsLz4VGjZgh5u9fMQWBk5O2LEl6OifpW7cCK1ZwslqtGu81/fqxdENF3EdlhUUJpQ0bNmDNmjU4c+YMkpKSULlyZQwfPrzQHnMFuX//Pr755hvs2rULaWlpCAwMxEsvvYTevXuX+bgdHXlgVqkCDBvGm+WZM1T+27bxZK9WjTftli1pZjYEUwQBl8Ry1bIlRePChbSOtGpFd5wprblSu5GAgExs2CDHw4e2mDePLUfGjGFAuo0Nx1RYC5TiLE26WqcU/C3c3CiGbt2isE5I0O6HwvrKAXThSrPGhATOGo8eBVatYiCs5Npt1sy0jYsFAlPj4MDJQb16tOA/fEir69GjTOT48UeKqgYNeN2pqNYmBwe6KRs3pgX77FnGNK1bx2SXypVpaerfnxZqS4z/siYsavctWrQIgYGBmDZtGjw8PLBv3z5Mnz4dcXFxmDhxos73PXjwAM899xzCwsLw8ccfw9nZGZcuXUJWVpYJR6/FzU1rLUhLo2j67z/e9JYvp7lUqj5tqS6Vklqu3NyAKVN4gVu8mEGbQ4bwQlZWFLQA+foCdetqUKnSXdy8GYB162xx4wbw/vvc13360KcvNQHNaznKazGKj+dzBcsIFFdzSRqPg4P2NWlpXCc9X1wzX3d3Bqa3a8d4tLNnKZzWrmU/Pj8/JXx8KqFTJxnq1q3YmUOC8o2UGdajB5fMTDb73buXySQrV/J8ioritbZpU4Y7WEJskymxt+f1rUED7qOLFymapKrgfn4UTf36cV8JC3XJsSihNGfOHHjmKR7RrFkzJCQkYOHChXj55ZcLLUMAAF9++SX8/Pwwf/58KP6/IZGutiqmxtFR2w8oNZWBvOvX07/s6ckTvHNn3YUJzUlpLFdt29L1tmAB8O23vOH362d8QViYBcjZmX56lSobTZqo0LcvC1Xu3s3KwufPA888U3imniRs4uMpZACKmbyWpaL2R97xSHWbMjL4Pf7+tHjpauary+Xn7KydNWZnM3j94EE1zpyxwzffKHNddDVq8DgKDRUXQUH5xc5O2yZEo2EM5cGDdFnPmgV88w2tr1IZjqpVK15/Ojs7Wvdr1+Y148oVCqZDh1gV3NOTlrh+/UzbmsrasSih5FlIha2aNWtixYoVSEtLg3Mh6V0pKSnYsGEDZsyYkSuSLBUnJ1qSOnRg4PE//9DHvG4dLTHdu/MiYO2+ZU9P1l2qW5czmgsX2HYkb0dzQ9EVa5S3jpKrKzB5Mt1Wy5czjmzpUoqmSZPoDpXIG6AtbUNRlp+ixiNZpMLDKZ5UKt0WKX2Dy5VKXthCQlRo2jQOLi7BuHbNAefOUXz/9x8tWVLrhIYNaX4vWE9KICgPyGScXPbuzSU9HTh3jnFN69cDv//OMiDR0bSm1K5d8ayvSqW2qvqLLwLXr2tF0/PPA46OdqhePRAjR8rQunXF2z8lwaKEUmEcOXIEvr6+hYokADhz5gyys7NhY2ODYcOG4dixY3B3d0efPn0wZcoUKA2cYqenpxv0fl14egIvvMCYpn375Fi7Vo4PPlCgalU1OnVSoWlTdZnd5DIyMvL9LSukjJXFi20wc6YCbdvm4JlnVEbxl6tUnFU+esQLgkpFC07m/xc1kv6qVMxEnDoV2LvXBlu22ODCBRkmTdKgQwcVhg7Nzhf3Y29Pl1fBzy3JeOztedF59EhbpFT6DIVCmz0J0PqUnMyA1eRkvreogh3Sdjk4ZKJ+fYpAtRp48ECGc+dkuHRJjs2b5Vi5kuMPCtKgShU16tZVo0oVjUW3lTDVcWkOxLaVLTIZQxoiI3ku3rolw969chw5IseaNXK4uGhQu7YazZqpER2thpeXfp8rXf/L6j5gSgICGA4xaBBw+7YM27fnYO9eW0yZooSdnQqNGqnRowfvPdZeRV2j0RQb11wSTFpHKT4+HgMGDMDXX3+N+noU3jl8+DCGDx+Ot956C6NGjSr0NevWrcOrr74KJycnPPvss2jbti1OnjyJH374Ac8//zxee+21Uo311KlTSE/PQny8aXwZGg1w/bod1q/3xIkTLvDwyEaTJklo0iQJ9vYm+4nKBLUaiIlxxaZNnnB1zUHPno/g759j8OdmZcmgUlF82Nrq3kd5X5eWpsDq1d44csQVAGBnp0bnzo/Rrl0ClEpNiT63qO/JzuZjW1sNnJyKHltCggI5OTLY2Gjg7q4q0XcWhloNxMfb4PZtO9y8aYf7923x5IkSGo0MHh7Z8PfPRGBgJqpUyYCfXxYcHKz7+BIIdKHRAAkJCpw+7YSzZ51w65YdABlCQ9NRq1YqGjVKho9PToWLa5LQaIDHj21w7JgzTp1ywtWrDpDJgJo1U9G8eSKio1Pg4aEy9zBLha2treUWnNRoNDhw4ACysrLQsGFDnZag4oiLi8PAgQNRtWpVLFiwQGd80tq1a/H666+jU6dOmDVrVu76b7/9FgsWLEBsbCzs7e1L/P2SUHJ0DDN5obG7d4FlyxTYvl0Be3ugbdscdO+uNlqNooyMDNy7dw/+/v6l2jel5d494PffbXDsmALt2+egVy+V0WMIMjMz8eDBA/j4+MCuCJ/Z+fNy/PqrEpcu8bjy8VFj1KhsNGumRna21kVmawtkZeV/bGwK+3xd36nv9hUkORm4c0eGc+fkuHNHhgcP5EhO5kzc21uDoCAutWqpERhIy5Opbx7mOi5Ngdg2yyA1FTh9WoYDBxQ4f16OlBQZKldWo1EjNdq0UaNaNU2+a1J6ejpu376NoKAgsxScLEsKbhtFExAbK0dMjBynT8uhUgFRUWq0a6dCx45qqynNcOnSJcjlcssoOPntt9/i6NGj+P333wFQJI0ePRoHDhyARqNBQEAAFi1ahJCQkBJ9blJSEl588UW4u7vjxx9/1CmSAMDVlZaBpk2b5lvfrFkz/Pzzz7hx4wYiIiJKuGVaHBwcTH6CVK0K/O9/wPjxzHRau1aB3btZwr5nT+P5ku3t7U1aJTgsDHjnHWb//fOPLa5cYeq+n1/R7yuqvpEu7Ozsity2evWA779ndsjChcCDB3J88YUdIiKYHSf1Y3N1pSuuqBiiguMr6XgL3lsyM4v/zuK2r7DvqFSJ2w3Q6vT4MYv9XblCcR4Tw3g5gK5APz8GooeFMZ7L15eZgFlZZVvHy9THpSkR22Ze7O1Za6hNGx7Dly4Bu3fLsWsXs+gCA5k80a4d3XjSpd8c9wFTkXfbHB2ZENOvH0vDHD0KbN+uwPz5SvzwA+MkW7cGevViORxLLTtgTLcbYKBQ2rRpU74+bxs3bsT+/fsxdepU1KhRA++99x5+/PFHfPnll3p/ZkZGBsaNG4fk5GQsX74cLi4uRb6+Wt6I3EKQYjqsES8vYOJExjH9/jsDdrdtY7+f7t2fvsFaAzY2wIABzExZvBj44ANt+m9heri0lbT1QS5nYH2LFswI+ftvBp5//jkD0Xv2ZHxTUWn9Bccnvc6Q8ebkcOZrb8+/ecsUFKQkoqzgaytV4iJ5wTUaXhzj4phhd/cuA0APH+Y4ZDImJLi6sp6TJLxCQpDbOFogsBaUyvxxTTdvaoOdV62Sjm8FqlRxRFBQxavX5OamLVWSlsYCl9u3c9/MnQsEBfHa2bs3k5DK8/4xSCjdv38flStXzn28ZcsWVKtWDePGjQMADB48GH/++afen5eTk4MpU6bg6tWrWLJkCXz1yJkPDAxE9erVsW/fPgwbNix3/b59+2Bvb1+skLIG3N2ZpTV0KAXTqlUUTH36MA3WGlPCK1cG3n6bmX+rVrHW1AsvPF2Ms6hK2sbC3p5ZeT16cP9u3gycOMGGlK1acb1EVpbu+ktJSbyg6DPeogSORqNtk2NvT6tOYUgiLTVV2xpCl6dbH8Epk/FYc3dnpowEY55Y/O/iReDqVRbGvHKFzYk1Gr7X1ZW/X6VK/PzgYAaQenryMy21ZphAIJXaCAvj8RwXR9F0+LAc69YF4c8/lYiO5vU2OpoW14qEoyMLJjdpwmvg5csUTVLZARcXPte1KwvjenqWr3pWBgklGxub3KKOGo0G+/fvR58+fXKf9/LywpMnT/T+vA8//BA7duzAtGnTkJKSguPHj+c+FxkZCVtbW4wcORJ3797Fli1bcp+bOnUqXn75ZXz66ado27YtTp06hQULFmDMmDHlqtmfpyfT3YcMYZ2i+fMpmAYMYDq4tR2YSiVbnjRsCPz2G/Dee6xz1Lmzdlt0VcQuC6T927s3BdO+fazBFBNDc7NkPE1P1wqNguNzdKQAKmq8xYkWSXT4+DA7TtfvKlmesrIoXADd7jBDBKdcTgHk7U1ze96xOzlxDA8f0o336BGXK1d4bEoGXZmMF1N3d+5nySIVHMzHbm6ilIHAMpDJtD0Z+/bNxtGjN3HnTihOnFDgo4943Nerx2tC8+aw6EzSssDWNr8l7u5dFgA9eBCYNo2vqVOH1qauXTkptlQXnb4YNPzw8HCsWbMGvXr1wpYtW5CQkIA2bdrkPn/37l14lKDnQkxMDABg5syZTz23bds2BAUFQa1WQ6XKH4Xfvn17fPPNN/jpp5/w559/wsfHB5MmTcLYsWNLuWWWQUYGb4K2tvndbC4uwEsvsXDiwoXAzJl0nwwezBuZtVGtGmOX/vmH8UunTgGjR/MGWrBHmimsEmFhFG0XLwKLFtFPv2MHrSeSYJLcYYXVR1Iqi3aHSaLFzo794Bwcnm6XIjXwdXLSfZGxsaGISUjgxVqt1i2AjCU4C9teNzdajurWzf9alYrfl5jI7bx3j2NNSGBsyJEjjMVSq3lzUqttIZdXhre3Eh4e/FwXFx4H/v4UVi4u3CdOTtZpSRVYHx4eKjRooMbAgTx2Dx7k8vXXLHJZuzZjnlq1gt5lB8oLCgUnO0OG8P7z5Ak7Cezcycnm99/z2tC4McNF6tWzTmFpUNZbTEwMxo8fj5z/79HQoEEDLFmyJPf5fv36ISAgIF82mrUgZb15eUWaJYgvI4M3FumG6u9PsVTY+rNnaV06dYr9wgYNKronWEZGOq5du4awsDCLC748exZYsoQ30gEDOGPTZX0pzH2VkZGOW7duITg4+Klt0+XuKi4Y+8wZnvSSgVOhoN9+0CD66UtKZiZ/w/v3KRAqVeLFpKgxSRTcvpQUfo5arW3Sa4x4JlMhBa4nJQGPH2fg4sUnkMm8kJFhi6QkWqukRWowDHAbnJ25uLhQTLu48LGvL49/SVQ5O/OvOevRWvI5ZygVdduSkzmJ2rePxS6ZIUbB1Lo1LcKWTHp6Oi5duoTw8PAyucelp9NNv2cP99O1a7zeRUXRPde1qzZpxticPHkSMpnMMrLeWrRogVWrViEmJgaurq7o3r177nOJiYmIjo7OF+wt0J+sLN5E3N05i8nOplAqbH2DBizhv2kT8OuvwKuvMhC5d2/rm3VHRjLj759/6Ps+fJgnVEBAfpdRSYO8db2+sGDshw95kjs48Htr1aLV7vhxZiGeOMGK6tu28YR/9tn8MT2FfXdegSJZYdLT+Vd6Pu/488ZA5X1cEGdnrQVLoyn69aZoplxS8lrl/P01cHNLRnCw+1OJCtnZFEtSgc7ERP5OSUkUWvHxDMZNS+OSlaV1Wcrl/C0lYeXszN/Z1ZX/e3lpRZYkqoTFSlAcLi7aDLrUVFpSYmKAX34BfvqJ1w1JNBWX2VsecXDgPqhVSyqKy3104ACwbBkwezbFZHQ091OTJtxPluimM3hI1apVKzRg2s3NDe+8846hH19hsbXlDSQhQevOKWq9XA5068aTctEiZnAdOEBzaIMGZtqIUuLoyEy/2rVpyZk1i5l+TZtqT6KSxtykpdEs7OGRX5gUzDADeANWKnkDzhuELHU1P3uWLVEOHuRsct8+jlXK5subvadLoDk6akVSYa6wkghBaX1ZZQdaAkqlNtC8OKTK55JoSk7Wxk5JAfc3bmiFV3q6NiAd0P4+krUqr7BycdFaq/IuIr6qYuPkxB5qLVvyeDpxgvGNv/4KzJlDsdCiBYPBdSVnlGfkcoqgbt24pKdzYrN7Nyeg27dzchMQwPtV27b86+NjGcLJoCGkpKQgOTkZ/nl++fv372PZsmXIyspCly5dUKdOHYMHWRGRsp2kejXSDFvXegknJ2DCBGbE/fQTMGMGT95hw57OKLN06tZlTakVK1ga4eZN1l0qLIhaOpmysoD0dBmysrT7JjOTwjI1leLH11f7+oIZZlILEZlMdyuRyEjgww95s/37b57kp05xCQ5mjZGOHbWB3YUJOl293yRKKgRNkR0oYYkuvLzIZJzNOjjoFzOi0fC4SUvTWqcePqTwTEjQWqskYZWToxVVCoVWVBW0VPn6cpHEtlpdllstsBQcHDipa9qUgl0STYsX09oUGcmQgnbteC23tiQcY+DgwNIrERHaa/Dly+xbeeYMvSPZ2QxtqF+flvsGDSi2zFEWx6AYpVdffRW3b9/GihUrAFA49ezZE3FxcZDL5VAoFJg/fz6aNGlitAGbCnPHKBkDjYYH3uzZvOj37s2buEplfTEFR47Q7XXnDjPlWrQoPLbozp103LoVh+BgPwQGOsDOjje4Bw/4msREnmxSDFdqKrM2pPgvb2++Rgoe9/cvXgw8esQg9PXr+T6A7+3YkZYwB4eSW3p0WZR0xWCVZb0pfcZlDIqKL7Mk1GqtqEpI4LH14IHWDZiSorVmSVl/Go0KCkUGfH3t4O1tk5v5FxxMMSVl/lmju6+ixiiVlMxMTqZ27gROn+b1JjKSIqBDB9OLprKOUSotajXPq6tXef86fZoTlcxMniM1atCC364da7h5eDxtdbKoGKUjR47gueeey33877//4sGDB1i2bBmqVauGUaNGYc6cOVYplMoDMhlnLvXrMztuxQr6iJ97TmbWwNbS0LAhq8KuXKkNrB4xIn89k5wcmnTlcg3S07VWlbxCys0tf2HEghlmjo5aS5C+FhNvb9aAGjyYcUtr1wK3bgFr1nCpV4+iqWnTklQWL9ziVJjFrKjXGxtTWq4sFblca0Hy89Mdn6bRUCwlJQEPH2bjzJlE5OR4IyWF5ROSk7moVDxXbW35G1aqRJeDvz9TqyUhZY0iSqDFzo7xONHRPIdOn6ZoWrqULrqaNSmaOnasuJYmgOeXpyeX6GitxenOHcasnj8P/PsvE5jkck42IiIonho14r7L60o3BgYJpSdPnuQrCrl9+3Y0bNgQ9f6/T0KfPn2sMuNNQq2WISODNyRrPmgdHICXX2aA9zffAB9+aIuGDb3wwgvWVd3bxQV4/nmeEEuWANOnAwMH0roE8ORITgbu37eFUql1nRUlIvI+JwVDS+KppDg5aa12x45RJB08SFF3/DhFWocOtDLlqdOqk4LB15mZtF49eWIDZ+ennzdFsLYp61pZO1IlcycnwMNDAweHFAQHe+Q756SaW0+esMjhrVt09Z05A+zdS+EviShvbwozPz8gPJztNnx9y3dF5PKKnR0nfw0bakXT7t0Mcl6wgDf+Fi2EaAK47W5uXCIjuS4jg5btK1fobbhyhTG5X39N8fTttzIEBBhvDAZd5lxdXfHo0SMAbD1y5MgRjB8/Pvd5hUKBjIwMw0ZoRhITFfjuOxv4+9OaERzMH8vdnTNqa5vhhYRQKP39dzbmzHHGe+8pMWwYZzHWdCJGR3MWv3w5C1WeOsVUfaVSig3JhrNz/m0qSkSUJhi6qDgdmYz+9AYNePPbuJHVvuPjmc33zz+cPXbuzPgxfav85uTQb+/kpG3ca2prjqksVxUFGxvt7Llq1fzPaTR0DT9+zNn0zZuMnTp4ENiwgS4KpZICyt+fS82aPM8rVRIi1looKJrOnKFoWr6cliZJNHXqJESThL09JwqBgUxg0mg4qYiPZ+Fbe3sNAOPtKINOpfr162Pp0qWoUqUK9uzZg8zMzHzlAK5fv65XGxJLRaHQIC2NinXjRro9FAqaxQMDWSixWTPO6ry8ys46o6vwZHHPFYZcDvTsqUZAwDVs3lwd33zDk3DkSF6srQVnZwZ2N2hAt+JHH7HVSGgobyyOjiW7UZTEpVSSOB0/P2DUKLZIOXyYx9HBg6y7cu4cA+4bNaK/vUmTorOnbGx4Y0xNlcPT03w3QkssM1Aekcm0Lr7KlelGl8jK0gqoy5efFlDOzswgCg7mdapq1adrdQksDzs77SRLEk179rBUyoIFnLC3bMlJVkXMntOFTKYNmwgKYm05Y2LQpfb111/H6NGjMWnSJADA888/j/DwcACASqXCxo0b0apVK8NHaSbc3FSYMycbCoUyN834wQPWyrh8mdWaly/nwV21Kl1CLVvy4uThYRzlr6vwZHHPFYeLixrTpqnQrRvwww/AG2/QKtOhQ+HNaS2V+vU541q6lBeT8HAbREdr4O1dsptCXpeSTPZ0T7e8lCZOR6HQ9kp6/JiZctu2semsVGLA0VGbYly//tMWSzs7Wg9SUnJKvH2C8oWtrdaKFB2tXZ+WRtF0+TKzMs+do3UiO5vvCQhg5fmICAqogADrs4xXFIRoshwMynoDgOzsbFy5cgXOzs4IylOmOCUlBQcOHECNGjXyrbcWTp06haysLNSsWbPQfnFSbMGjRzyAt29nXEpcHF0p9epRdNSuzZtbaUVTUhKzsqQCk4GBWldNUc8VRcFsh9RUpq3+8w9LzY8aRdO9tcEK5Tm4fDkHXbvK0LevXYmsLpmZvNFIfdN0WYuMmfl14QKtTAcOME5FwtGRwd8tW9Ikr0/lcWtHbFvZkJPDCd6NG6x4f/s2r1M5ObQ8BQdTPEVGsgVSSa9XIuvNtGRk8J4TE8Owg6Qkiiapt5q+xS0tNevNGNy/fxI2NsbLejNYKJVXihNKhZGSQgvPjh3Ali08iJVK1gPq1IkzvxK0vgNQNhYlXSfI8eMMhnv0iNWmu3SxDOtSZqa2blRxcUNXrqRj2bIUnDrliZAQBYYO5U1AX6RSApK1yMen8MBuSVQBhvWgk77P2ZlC++xZduSOj9e+xt6eYqlJE6BOnXQkJwsxYW1Y2rZJ4un8eVqf7tzheQ9QKFWuzIDxunUppIpyCVuimDAWlr5tkmjatw84eZKlTSRLU3GiSQgl/TFYKKWkpGDp0qU4ePAgHj9+jI8++gh16tRBQkICVq1ahfbt26OyPik+FkZphFJeVCpeiHbuBNatY68bW1uq/p49GXSpbzXfjAzdBSaLek4XRZ0gGRnA3LlMw4+OZnNac1qXMjO5HyUx6OOjW5SkpAA3bqQjMfEWMjJCsHu3PU6eZJXXZ57JXxagqO+7d48CxslJdx0lY1mVCvscpZIuk717OWt88CD/e0JCMtC8uQLNmytRtap5e5gZE0sTE8bEGrYtLY3WplOn+Pf2bZ5TTk6cbFStSkt5lSr5Jw+WLiYMwZq2La9oOnWKlvHwcK1oKuieE0JJfwyKUYqLi8OwYcMQFxeHypUr4+rVq0j9/z4Q7u7uWLZsGe7cuYN3333XKIO1JhQKHpiDB7NAYlwc6+usWQNMmsSLTYcOLOdeXMVsqWJ0SZ8rDfb2wOTJDC7++mvg9dcZu2Qu61J2trb+UWIiH+sSJEolxWdKihxhYRq89RawaxfrR506xWrldesWn7Gl0XBbi5pCGKuekK4sMqlH0tixdJccPEhL06VLwM2b9rh5k6nEzs5079aqxbimKlVEVoygdDg60hpRvTofS/25zp2ji3j3bl6/bG2ZWVetGs8nK5wHl0sky3PDhhRNZ89SNK1ezYSXqlUpmrp3r5i95wzBIKH0xRdfIDU1FatXr4anpyea503LANCxY0fs3LnTkK8oF8jlDJocN46ZWufPA3/8wRv4H3+wqeKAAbzwWIKrCwDq1KFlad48Bg6ePk3rkj4tIYyJ5G5LTMzf264w7OwYr+XgoPr/v5xJNW3KIpXz51NISGm2hVmBpKayPj5FCyBJ1MTHFy+qiqOoLDKZTHvzGj4cuHs3HVu3JuLq1Uo4eVKBlBRWr92/n6/39NT2pKtXz/I7mAssF6k/l58fJ04A4+guXqTl4sgRtpoAbOHhEYj69RVo3JjHqrOzOUcusLfXBoJLomn/fgrdxYspmho1UiAiwgaFtGoVFMAgoRQTE4ORI0eiWrVqeJI3EvX/CQ4Oxr179wz5inKHjQ0QFcVu9NOm8cD9809aDqKjgf79mS5uCTVQ7O1p/WrVCvjyS+DNN3mzbtPGdFYLyd2mb4xSQgKQnq5AQgKtPZJ4mjSJMT6LF1MANmxIS1/Bz9O3oKKdHT8/IYFjk8uLH19R49a3LpGnJ9CsWRKefdYNSqUDTp7kBfDKFc764+OZWLB9O19fqRLdvDVraoN1RZaToLR4eGizNwFOYC5cyEZMTDZOnHDCtm08vqTMuoYNeVO2psK25Y2Coun8eVqaNmxQYNGiKoiIsEGrViyvEhAgLNKFYdDtOCMjA55FFN+R3HCCwnF3ZxuOwYN5s5s/n+KpWjUGU7dtaxkp4PXqMStuzhxg1izOJocPp1AwBfrW7cnOZlq/s7MaWVn53XSZmbxgT5zIuLHduylW+/enQM3bOV7fgorZ2YzhUCqZki01Py0JpY11yspiHFx4OOt4ZWZyGx4+5O9z/Dhn/g8fctm9m++zteXxJYmniAjDsjIFFRs3N6BOHQ08POIRHOyEjAwbXLzIwOK9ezkRdHTkcRoRwazakBDLsZxXNOzttdbmxMQs7Nx5DzduBGH9elrdw8JYG7B7d/5O4rpADBJKVatWRWxsLAYNGlTo81u3bkWkVHNcoBOlktVFW7ViPMC8ecDnn7M20IABdBWZe0bm5MR4paZNGbv09tt0xTVsaN5x5SVvjFKlSlrLSd6AcFtbWpL69AFWraI43buXwjQwkK8vSUFFqadQQdebvlYiXbFORb0/K0uGR4/4vZJlSybja0NDaZEEGJx78aK2uOW5c6wFdvYsFwk3N1qaqlbVLoGB5SdIXGA63N0phho35jnx+DHjA8+eZdPo5ctpFa1Rg9eO2rVN784XEDs7oHr1DHTpooJMRot0TAy7CCxdymtJ06aMow0Nrdji1iChNHLkSEybNg0RERHo1q0bAECj0eDGjRuYNWsWjh8/jh9//NEoA60IyGR0j3z7LQOqf/oJ+O47FhgbOJCFxcxtYWrZkvFL33wDfPYZT6IhQ0zXb6qoUgGSmy4pKTtfdlzBgHBbW16sX36ZVrslS4BPPqFQ7d1b//gKR0dac9LSeIOQsuoyM9luIimJIiYkRPfvVpirrzgrk0rFbfL21hbILKyEgaOjdvYI8MZ1505+4XTjBvfJsWNc8u7LsDAuISFMEZdaY4hZpkAfZDIeo+3acVGrefwdPUoB//PPPCZDQ3nda9yY1k7hGjY9dna8rtepw2uLJJq2bWPSSOXKFE2dO6NcZdrqi8HlAebMmYNZs2ZBo9FArVZDLpdDo9FALpdj8uTJGDt2rLHGalIMLQ9gLG7epGBas4az/GHDeNExJIbJGGmhGg0LJf7wAy+GL76ozZYpK/QpFVBYOm9x78vJYd2rf/6hD799e2b56XPBLszyc/8+A13lct4coqMp0nRZiAp+RlG1nDIy0nHlym04OARBJnMwuOBlVhbF0uXLjHO6epWLrhaN9vZa0ST9DQhgwK+hVk9rSKEvLWLbniYtjcfd0aP8+/gxj/mICMbT1K9ffEZwWWNN5QFKij7blpPD32bPHrrz79/n+d6oEa+RNWroX+bGlFhcHSUAuHv3LjZv3owbN25ArVYjJCQEnTt3RnBwsDHGaBYsRShJXL8OzJ5NwRQZydimRo1KZw41Zv2MBw8Y6H3oEGsVDRxYdjPClBSWWZAsQ35+T1t/dJ38+hStTE0F/v6bmTzOzvTTN21a8n18+zYv/k5OzBKqX58Wt5I03NVlUZJuSr6+wVAoHMqkMa1KxVpSV67wuLt5k13t79zhc7rw9NS21fD35wXV359Cz929+P0oxIR1Yoxt02gYS3f0KC2d16/zfK1cmckvzZrRkqFrgqhvUdqSUtGFUl5UKv4ue/cCJ07wOufmxolgp060XFvArRKAhQql8oilCSWJc+fomtuxgxePMWMYKFkSjF1oTK2mT3vBAo5l/Piy6T1UWotSSXn4kLEUO3bQ9dSzJ+sU6UtKCi8kcXG8cIeGUih5ehZd7TsvumKUSnJTKkk2nT7k5FBA3bhB4XTzJi+W9+5xm4tC6nLv7U33nY8P/+Z9rFCk4/ZtISasjbLYtsxM1gw7coRuusePOWGIiuIEsXZt7SSpJEVpS4oQSoWjVrN9VkwMLU3XrmkDxdu1oxu1pF0ojInFCqXU1FQkJSWhsI8LCAgwxleYFEsVSgBnXwcOUDCdOMFaQS+8oH9QZFlVZL16FfjiC5pqhw7luIwdz1LczNGYF7Zr11i64fBhugOeeYazWn24f58WGG9vjlku51KURUkfYaPvTcmY/ej0ITmZF857955e4uN5YS0Oe3sNXF2zUamSAl5eCnh68mLr4YHc/z096Z6xthgJIZRKj0bD4+jgQU4Ub9/msVyjBgte1qrF46soS3NpEUKpeDQatr85dIjXyosXuV7KcmzfHggKMm0wuEUJpczMTMyaNQsrV65EgtRJtBDOnTtX2q8wG5YslCRUKuDff4Eff6Slon9/VtEuLlakLEvXZ2Yyk2zZMrqtXnzRdGUEgLK5sJ0+TZfcsWM8+Xv31sZj6RI3BYVK3sw0Q1qi6HtT0rdnnSnIyeG2SaUKHj3i2PI+TkzU//Pkct4U8wopDw+69zw8+Jy0zsXFMkSVEErGIzmZE8Rjx+gezsykOGIRRWbTGeuyJoRSyUlKYqbjgQMUtklJdMM3bMhuFDVqlL2LzqJamHzwwQdYvXo1OnbsiIYNG8LNzc0ogxLoh0IB9OvHoLqffgJ++431cl54gW45c2Qn2dkBEyawIN1XX7GkwLhxllVGoKRERTEbZ+dOBrDPnMmZbNeuvBEXJm6kx1Lj3OJiJ4zVEkVC38KZpsDGhtmBvr66X5ORAdy5k4GLFx9CqfRFSoot4uMZ4yX9ffKEBT7Vau3j4pBElSSeJDGVV1BJ69zdLaPQq6BoXFyYfduyJZMRLl1iHbqTJxl07OPD87NlS96URRadaXF1ZU/TFi14Tbt2jb/PsWPAf/9RJEVFcSLdtCnDNCy99IBBl4UtW7Zg4MCB+Oijj4w1HkEpcHIC3niD1qQvvmCNo9atGSsk1QYyNdHRLFL5448sI9ClCwPQzV3eoLTk5FAsvfMOT/p9+xjEHhLClFkfn8LFTXo6Lxbp6UW7vzQaWgjj4/l7GnrDLknhTEvA3h4IDNRArU5HcLBKp1VUpaL1Ka94io+ngJKE1JMnfE1iYn5Rdf168eNwdn5aPOX9P+86c9c2EzDjSuqLqFbTLSe56LZtoxiuXZs35Dp1LCfYuKIguUhr1ODv8/Ah3XNHj7Je4Pff09pUpw7vWbVr8zezNAy6HMtkMlFQ0oIIDma6/p49FEwvvMAstKFDzXOjdHWlsKhbl1W9L1xgZezQUNOPxVAki1BSElOXu3ShS+6vv9gSJTiYNaUaN9a6evS1EmVm8nmpGa/UekVfdLn/SlI401pQKOhyK6IhQC4qFYVTXhFVUFBJ6yRLVUoKl1u3iv98B4fCBZWHBwPUpSB1c7k8KxpyOScuISF8/PAh3T9nzjDo2MGBlozGjXkOmzIkQMDfx9eXrVJ69ODk8epVIDaWBUm3bKEXpGpVBoW3bMnJqSWcPwYJpQ4dOmDfvn06K3MLTI9MRmXeuDHFyYIFvFi89BLT1M0xnp49+d3ffQe89Rarjffvb/nm1rwU1nMuOpozoHPngA0b6PrcuBFo3py/gb7uL0lQSVlxJXGZlmXQtrGz5kyNQsH9oU+Sg1rN2JeCVqm8Lr+867KzeaFPT2egcVE4OgJeXnZwdg5EcLASfn7arD8fHynjzxhbLMhLpUpAr15cEhJoxTh2jNdFhYJlVqKjea3UR3gLjIuDg9YaqNHQMnz+PH+n7dvZNF6pZNeAWrXoygsP18Z7mhKDgrlv3ryJKVOmoFatWnjuuecQEBAAeSF3P3d3d0PGaBasIZhbH27eBD79lKnu3bszXsjWtuyCuYsiO5v9hH7/nX3GJkwwfvsCcwZf3r5NH/zevXzcqBErf7u5FS02SiJ2CgbOllXQtqmz5gDrCXjWaBh7pstKFR+vDVRPSir+8xQKzrSl2lNS/SmpkKclFvTLi7X8bhKpqQwGP3KEGbpqNZMzGjbkzThvkUsRzG0eVComeZw9y8DwK1eYSSyX03pfqxZFbkQEBXHBc8Sist5q1Kih/aAiJJ7IejMvajWwdi2Dq9VqYPToDAQEXET16qYVShKnT9O6dPMm3YOtWxvvsy3h5E9MpGVp926e3LVqUTBFRuq2oulrvSl4UyorQWOOrDlru+HqQ0YGBdOdO5m4ePEJVCovPHmixMOH3L8PHnACoQuZjCJKcilJS3CwZbgkAOv+3dLT6ZqLjWVQeGYmrRbR0XT9uLiY/3pSVljCtVJfVCpe5y5fpnC6eJF16nJyGNwfGsrfrVEjWqCAk1AqLSTrbcKECUUKJIFlIJezBlCbNgxA/uwzW9Sr54vXX9f6801JVBSF0q+/Mqbq2DFauspLcKybG5vudu7MYmw7dgCzZnGmGh1N0VTQyFraeKK8QdsaDf9K6w3BxoY36bg44wSXV1Skli+VKqnh5ZWE4GA32Ntr07DUat4ApBpUBf+mpfE3iItjnZq8eHvz/A0N1TY1Dg6umL9Vad3EDg48J6Oj+Rlnz3I///MPa6hVrWqD4GBXODmZ51opIAqF1k3dvDmvdcnJPC/OnGGs0/79wOrVPKd+/FFm1EQmUZlbB+XJolSQzZvT8b//ZUGjccbYsQp0726eeCGNhin3s2dzxjBlCk2ppUEqRKlSpePuXe0syZitDfT9rMIqBT94AKxbx3ix1FRamVq1opWpJDc2XbN3Y1uWMjN5s87I4M0+IEC43gyhNNum0dA6efPm00t8fOHvUSp5Q69aleJJElBlaX0y9+9WFlbVrCzGHsbEZOPUqWwAdqhRQ5HrnvPxMcrQzYo1WZT0QaWi9TsuDggKOglPTwuxKB0/fhz1pNbkOli6dCmGDBliyNcIjEzLlhp8++0VbNgQha++UuDgQcYL+fmZdhwyGcvdR0Yyc+x//2Pg9/DhJQtuzStMNBogK0v21PrCWhuURESVpE1CdjZfJ1UKzs7m63v0oDg6e5YxEj//zHR0KTU2OLj0QYrGrsMkWaZ8fIzzeYKSI5Nps+nq1Mn/XEoKBdONGyx7cPUq4zjS0vj3ypX8rw8KYhxORAT/Vq1q+bFP+mLsYx/gvqlbF4iIyMHVq7eRnh6Cw4cV+PtvWpqqV9e658zduFdAFApt1qk+nQBKgkFC6cUXX8SiRYtQS0cjrLlz5+K7774TQskCcXDQ4H//y0GfPrZ47z1W0B49mi46U1uXfH0pkqpVAxYv5kzu1VeLLlCYl7zC5MED7U2+MMEiXUBL2h+qqM8qiCS8EhP5V6nUvl/6nm7daFnasoXxEXv2sOZVnTqcsVaqpP/+A4xfYNKSClYKnsbZmROMvNVZNBrGxF25ohVOV64wRur2bS7bt/O1CgWtTZJ4iozk8WeNkRRlfawy80qDhg1paTp7lpbhlSvZ4zIiQiuajJ2cIrAMDDqkGjRogNGjR+O3335DRAGfyddff4158+bhhRdeMGiAgrKlUSP647/9lvFChw/TBVbSG7WhKBTAkCG84MyZA0yeDIwcqV+/uLzCxNZWK5QKEywSJRE+xX1WQQorJSCtz/t+X19g2DBu98WLjGU6cADYtInWJalQnj6/hbELTFpbwUoBzxM/Py4tWmjXJyTw+Lp4kbXMLl7kcXjpEpd16/g6Nze6hCMj+bdaNeuoam3KY9XWljV+6tXTxjQdOMBU9iVLWFixWTMuVpjsLdCBQTFKWVlZGD9+PM6fP4/ff/8dVf+/Y+iHH36IP//8E1OnTsW4ceOMNlhTUp5jlNLS0nDu3Lmntu3wYWD6dKZlvvQSiyqaY4aZng788QeXOnWAV15hZkNRlDRGqTQdxwv7rJK674p7bXY2szr27qV7LjGRbpPISLaF8fBIx+3bIo7H2rCkbZMsT5JwOn+e/xfMvrO1pbVEEk+RkYU3m7WkbTM2JWlCfeoUrcPnz9P1ExVFwdS4cfHXL3NQ3mKU8qJWn4SdnYWUBwDYGPeFF17AtWvXsGjRIsydOxf//fcf3n33XQwdOtQogzQHFVEo8TlW9V6yhFlbEyaYb2Z08CCtS3FxrOgdHV38e0py8hsa6F1SsVXS78vKYkbHnj0sqfD4MeDllQMfnwS0b++MGjXsrWLGry/ihms+srKYen3mDK0kZ848XQNKJgMqV+bkpX59WjydnS1/2wyhNNuWlsa+cwcP0mJnY6N1qTdoYDltVIRQ0h+jZL2lpaVh9OjROH36NADg008/xTPPPGPw4MxJRRVKEjt3Au+/z9nnxIn0v5uD+Hhg4UJg1Sqm1Y8dW3QQqilP/pQUijjJfefnV/iMGyidBSsvOTmMN9m9OwuHDqUjPt4Zjo4KhIZyxl+3rvUHlYobruWg0TCm6cwZrXi6cyf/a+RyBoVHRWXD3/8+Wrf2gru75W9bSTD0d0tJYWHLw4d5/jo40G3XqhXFkzld2kIo6U+JhNLmzZt1PpeUlIQZM2agY8eO6NixY77nOnfuXPoRmomKLpQA3vw//hj491+gb1+KFHPsCo2GLULmz+esdupUxk8UhilP/pKIn5KIqqJITEzH5cvX4eoainPnHHD6NN0mKSnM9qhShaKpenXLbC5ZFNYmJkpCedi2J09o2TxxgkvBfngKhQY1ashQty6PwZo1rT+zzpi/W2IiazQdPcpMRTc3WuZat+a+MrV1WAgl/SmRUKpRowZkMhkKe0tR60VlbstCX6EEUKSsXg3MmMGAyddfz59pY0ru3GEZge3b2b9p6NCnM1xMffIbUluppG66zEzg5s10XLt2B2FhgQgJcYCdHddfvswL8PnzwLVrfK+fH10lkZGsWmvpwaXlQUzoojxu2+PHUiuQHBw7pkF8fP47va0trSYNG9JtHhRkfVl1ZfW7xcezUe+JE7TceXvTLde2Lc9VU2QeC6GkPyXKevvtt9+M8qUC60EmozWpaVPggw/ohhs6FBgxwvQzoMBA4L33aC357TeKgldeYV8sc6FvRW1dmXCFoUtUZWczlsTZWY2sLG2mnp2dtrkkwNiSCxdY8VwSUFlZFErBwbwQ16jB/SbS/gWlxcsLaN8eaN48G7du3YKtbQjOnbPHiROsSP/kCV1Ohw9zguPjoxVN9epZTgsWc+DpqW3Y++AB2x2dPMmM14AA7qe2bVl13drEZXmkRJfJxo0bl9U4BBaOvz/w00+84M2axRvx1KmmFyk2Nkypb9oU+PFH1lsaNIgXHHNUFy8J+ooqXaULlErO0lNS5KhUSbdQdXVl2YdGjfg4JYV1dU6e5N+tW1kSws6OVqeAAGY3Va7MUgSik72gNPj6alC5Mkt6aDQshinF55w+TUGwYQMXhYLupuhoioKqVS3//C0rfHyAAQOA/v1pNd+zh+041q7lORkdzcK8AQHmHmnFxaD5ZEJCAuLi4vI1x83LhQsX4OfnBzdrC5YQFIpCAbz8MnvGvf02MH48s+I6dTL9rKdaNWbnLVrEom9nz7JoZmnifiwNpZL78+5dbo8kiCTrUlJSdomCwaXq31J15+xs9hE7d46C99YtrdXJ1pbfERAAhIVxRlupkuVk6gisg6wsHjc9e1IAZGRoM8GOHuXxd/o0l0WLaO2MjuYEyJIyw0yJTEb35ODBLC9w9Sqwbx+wbRuTWapW1Yoma0/csDYMEkqfffYZrl27hhUrVhT6/Pvvv48qVapgxowZhnyNwMKoVQtYvhyYORP49FP62V96yfQixc6OzXSbNwe+/hp47TVgwAA5/r+cl1Wj0XCGXTDsz84OcHTUGJQtI/UDCwlhrSyAtavu3qWr7soVtsc4dYrrpVYalSpxqVKFF3Qvr4p5QxMUTWG91+ztGeAdFETxlJjIgObjx3n9SEigpXPrVh6ftWuzbliTJqZvrWQJyOWcDFarxozXixe1Vqa//mL4QfPmLDkg7BBlj0FC6cCBAxg8eLDO59u1a4dly5YZ8hUCC8XBAfjwQ23s0vnzdIPp6GZTptSuzXpL8+cDixcrUaWKL155hRdla0Qq/Ofnp1/VcGPg4MAZa16RmZ1Nd8nt27xQx8VRQB0+zJugTMaLtLs7Z7iVKmktUB4eopp3RUVX77W86wFaovv04XF25gytTQcO0Np09CiXOXN4TDVuzGtNRETFcw3b2GgLfmZmcl/FxtKSvnixtsF248YVO+6rLDFIKMXHx8PDw0Pn8+7u7nj8+LEhXyGwcLp1o6n83XfZdkQK9Db1xczBAZg0CWjUKAtffaXAW2/ZYuhQxktYW+xDSdqllPU4AgO5NGmiXZ+Vxf5h9+5RQD18SEF19SqweTO7eMtkrEbs4UEh5ebGz/Hz42NXVyGkyiu6eq/pWq9UatuCjB1LYX7gAFPpz5yh5en6dbYJcXNj7F3z5rzu2NvzMzIzK0a7HTs7bneDBtrClrGxjB2dN4+TxrZt+Xx53g+mxiChVKlSJZw9e1bn82fOnIGnp6fen7dhwwasWbMGZ86cQVJSEipXrozhw4ejf//+kOkZBLNo0SJ89tlnaNu2LebOnav3dwtKj68v8PPPDPaePZs3z9deM48fvW5dDd566xb27YvA4sUKHDnCi6++DXYtgZJkyJkDW1utgMpbLV2jYaPfR48onK5f599Hj+jSO3yYrjzJnejkRMHk6krx5OIih1zugJwcGby9+byDg8j6sTZ09V7TpyebTMbMzOBgYOBAIDmZQuDgQR4/iYlaF52dHY+/xo1pCVUotN9haedMWeDoSCtb06YUn8eO0Qr33XfannTt2lE8lacK/ubAIKHUsWNHLF26FK1bt0aHDh3yPbd161b8888/GDRokN6ft2jRIgQGBmLatGnw8PDAvn37MH36dMTFxWHixInFvv/hw4eYPXs2vEQLZ5OjUNCi07o1A73HjqWFqU0b04/Fzk6DsWNVaN+ejX5ffZVZJb17W4/ZXt8MOUtCJmOcmrOz1l2SF5WKN7onTxjDcvcuRdTjx/x74YICjx97Y/NmJWQyCio7OwomJydaqFxcaFXw8WGKtasrbxhOTuJmYEnoOn5Lely7uLAEQfv2FFhnztDaFBNDER4Tw0Uupwuqdm2+1lrd7qXF1ZXX2jZtWKPp0CFamz77jOdj/fpAx44sC2JtFnZLwKAWJsnJyRgyZAguX76MGjVqIDw8HABw6dIlnD9/HlWrVsXSpUvhKjmliyE+Pv4pC9T06dOxfv16xMbGQl7ML/zmm29CJpPh7t27cHR0NMiiJApOlp7kZAZ6r1gB9OvHgGvJRF7WpKen49KlSwgPD4eDgwMyMujH//NPBkCOGcOUW2ulPBeJy8hIx8WL1+DlFYbMTAckJtKtd/8+j6mEBM6ck5L4OCtLa52SyymWJNHk7KwVVt7eFFeS4HJ0NL2lqjwWnJQwx7ZpNLRS7tvHBtJ5q4TLZCw90KIFXXSGlDCx9t/t/n0KyzNnGF/o6clyDJ07A/7+6bh+vXxeS8xacLIgLi4uWL58OebPn48tW7Zg06ZNAICQkBC8/PLLGDNmTIluxIW56WrWrIkVK1YgLS0NzkWkVR0+fBhbt27Fxo0b8dprr5V8YwRGw8UF+OQT+sk//ZSB3m+9RSuDqbG3p1Br1471n954g3FVQ4ZYn8WmIqBUarOkiiI7m26+lBQKp4QExkw9eUIRlZjIG0NyMl+Tk6N9r40NxZIkqhwdtULK05PHryS2nJ35vJiFWxYyGQunhocDI0cyU3PfPlpSLl1iuZCzZxm3U6WKNkOsohVw9PUFnnmG1vTbt7l/Tp9mLKGPjxKVK3vh2Wdl5SJTuCwxuC6vo6MjXnnlFbzyyivGGM9THDlyBL6+vkWKJJVKhY8//hjjx4+Hj49PmYxDUDJkMtZPiY4G/vc/ipWXXuJJa44LVfXqwDffACtXAr//zniH0aM5uxJYH0ol45r0acuiVjM2KiWFwunxY86079/XCq3r1/l/QVGlVOYXVVJclZOT1lKV13olKp2bByljc/hwWiH376dL7tQpJhlcvQr88Qdjn1q3ZpaYsSdulhxQnjf2q29fFgPdt0+No0cd8dprtggN5cS2Sxfriuc0FRZ9Wh8+fBjr16/HW2+9VeTrli5divT0dIwaNcroY0hPTzf6Z5obaZtMsW2VKrGC9qxZNvjmGxscO5aDiRNVZVZzqbhte+YZoFkzYMECBT791AaNG6swYkQOSpBzYFYyMjLy/S1PlOW2KRQUNW5uxcevZGVJokmGR4+AuDgZ4uJkSEmRISkJePCA/6ekUIRJ7j9bW9a4opjSwM1NA09PDfz8NHB0zEZGhhzp6ZlG3zZzk5mZme+vuXFxoWupc2eK4NhYBQ4cUODYMTlu3ZJhyRJgyRIgKEiNFi1UaNlSheDgwiNQ9N22rCzG2UkJGN7elt0Q2N8f6NkzEw0bPkBGhh9OnLDHzp1yrF4tR2ioGg0bqtCmjdpqC1sqlRoAxpuRlyhG6e2334ZMJsPHH38MhUKBt99+u/gvkMlKVXAyLi4OAwcORNWqVbFgwQKd8UmPHz9G165d8fnnn6N9+/YAgOHDhxstRklgPGJjnTBvXgBkMuD55++halXzXVg1GuD4cSesWuWNR4+UaNcuAa1bJwiLgEBvNBogI0OGlBQFkpMVSEiwwYMHtkhOtkFysgKJiQokJ9sgPV2RR0yp4eSkgrNzDlxcVHB1VcHPLxNubiq4ueXA3l5ToVxDpiQ9XY7Tp51w7JgLzp1zRE6O9p7i75+J+vWTUb9+Cvz8Sn7dT0+X4ckTGzg5qZGaKoeHRw4cHEod/msWcnKAGzfscOaME65dc0BamgLBwRmoXTsV9esnw81Nbe4h6k2VKhlwdlYaLUapREKpffv2kMlk2LhxI5RKZa4wKfILZDJs27atRINKSkrC0KFDAdBa5OLiovO17733Hq5evYqffvopd924cePg6OiIb7/9Fo6OjrApxd1PEkqhoaFwcChfgW7p6em4fv26WbbtwQNg5kwltm1TYNCgHIwYoTJq/Ed6ejpu376NoKAgvbYtPR1YskSBv/9WIChIg0GDchAVZbkXuIyMDNy7dw/+/v6wN1WEvIkor9uWkQE8eJCJS5ceIzvbF/fv2yIhQYb4eBni44HERBnUarpH8lqivLw0qFxZ8/8ZfhqLzerLzMzEgwcP4OPjAztL8znpIDUVOHRIgZgYBY4flyMnR6tOQ0K0liZv7wy9ts3aLEpA0b9bdjZw4YIMsbEKXLwoR2YmEB6uRqNGajRrptbL5W1OlMqLsLeXm0comYKMjAw8//zzuHfvHpYvXw7fYhymw4cPx6FDh3Q+P2/ePLRu3brE4xBZb2WHSqWtu1SvHgO9jWXiLZj1pi83brAK8N69dM2NGEG3oSnJzCy+dlJ5z3qriNuWkaGNm7pyhRXQ79/njffJE7r3pCB3b2/GkFSpQveJl5f5yyJYe2ZYSgozw3bvZh2ivDFqoaFqREXFo2dPZ4SGFi3eLTlGqTD0/d0yMxnrFRvLGnlZWYz5bNKEAfKWGLZg7Kw3ixJKOTk5mDhxIo4dO4YlS5agWrVqxb7n3LlzSEpKyrduxowZsLe3x6uvvoqIiAi4l0L+CqFU9hw/Drz3HrOV3nqLmSmGUlqhBNCVsncvW6HcusWq3gMGmKafWWYmrW1SfyxdTW8rqpiwdkq7bWlpPC5u3uRN6u5drYhSq2m18PamaKpcmY2M/fxM28rC2oVSXpKTGQi+Zw9Fk0qlfa5GDVa9bt3aMsVBSSnN75aezlIDR46woXZGBkVT48ZAy5YU7paARZUHyEtqaiqSkpJQmO4KCAjQ6zM+/PBD7NixA9OmTUNKSgqOHz+e+1xkZCRsbW0xcuRI3L17F1u2bAHA8gEFcXV1haOjI5rk7bsgsDjq1WMG2ldfsUhlnz7AhAnmM1nLZMyGadSITX9XrGDKcb9+LGJXlvFL2dkUSW5upuvvJrB8HB2ZnRUayhu0RHo6LU9XrzId/tYtYNMmupQUCt6wfH2Z5RQRAQQEiD5g+pA3EDw5Gdi1Kwtbt2bj4kVHnD8vw/nzwC+/AHXqsORIixambwZuThwcmMkcHa0VTUePAn//zazCatX4XMuW5St7zqBLf2ZmJmbNmoWVK1ciISFB5+vOnTun1+fFxMQAAGbOnPnUc9u2bUNQUBDUajVUeWW+wKpxc2Nz3Vq1KJjOnaOVyZyVde3tWZulZ09g0SJgwQLehJ57jiKqLIJtLaW/m8A6cHCg9SgsDJCaIqjVtDRdv05Xya1bFPrr17MOlI8P285IqfR+fuI4y0tB15mLC9CxowoREXfg4hKMgwcdsHMnr1HHj3OZNYvXhLZtaVUpR6F1xZJXNGVmsm7V4cPAv/+ywG9oKAVl27YU7NacpGCQ6+3tt9/G6tWr0bFjRzRs2BBubm6Fvq5v376lHqC5EK4303P5MvDxxzTrTppEoVLSk8sQ15surl8HFi4Etm9nxd9Bg/jX2Ce+iFES22ZsNBqKp6tX2dLi+nW68TIyeFP39+dNLDKSNzY9myjkozy43jIzGScmub6lfnGFbVtcHLBzJ5fr17Wf4eDA+EapKa1kgbbU2KWy+t2ysmjllGKa4uMpymvXplU0PLzsBbpFud62bNmCgQMH4qOPPjLKYAQVm2rVGOQ9axaLQx49Crz+uvldBqGhtHoNGEAL0/TpLFQ5cCBPemNhjf3dBJaNTMakhEqVGHwLUIzHxdFtcu4cb2p79vC1vr6MdapenVYnb2/jTghMLRr0/b6cHL7W1ZW1l3JydL/ez4+TpUGDgGvXtKLp/n1OprZv5+e0akXXnNTguqI07LW1pYegVi3GeF2/zsnvmTNsZuziwueaNAHq1i2dODc1BgklmUyGyMhIY41FIICDA9uM1KvHho5jxlCY1Kpl7pFxRvTVV+xk/ttvjKtq0AB49lmKPIHAGlAqtVWau3bluoQECqajR2nZjY3lTa5SJW2cU0QEH5dWOOmy2pQVJfk+SUglJfGvvvGIkvtz1Ci2atqxg9lzCQnAunVcPDyYqCKJgvIulPKiUGhdvRoNxaQkmmbP5rqwMF7fW7UCQkIss12QQUKpQ4cO2LdvHwYNGmSs8QgEAIBOnShMPvuMAd7DhrHliLlPIpkMaNqU8Qj79wNLlwLTprE7d//+vJlYsy9eUDFxd2esTaNGfJyRwVIFBw9SOP3zD9d5ePDGFhnJY70kWU4lsdoYg5J8nySkSmvtkhrx1qzJdk0nTtDKtHcvSzxIoikoiEHg7doxwL4iIZPRGtejB5eUFFo0T56kuFy9msdhzZq8vkZFWU52YYlilAoGbCclJWHKlCmoVasWnnvuOQQEBBRaQbs06fnmRsQoWQbZ2UzXnz2bJ8477xRdc6ksYpSKQq1mDZZlyzgbj4oCevWicCoLUSfieKwTa9+2zEy6UA4eZNzJ1as8N319gYCALHh43Efz5t4ICCi6Ho+lWpR0YWgcT1YWA+p37aIlJW+zB6ncQJs2FKCmxpJiy1QqNu09fpzH182bXBcQQEEeHc39pa+bzqx1lGrUqAFZgemy9PaC6/Oib9abJSGEkmVx/DjjhG7cAF57jTOywjC1UJLQaHghXL6cwqlyZbo1Wrc2brkDa7/hFoXYNushI4Ouur17gePHc3Drlgr29jYIDVWgWjW6zitXfvrYLyxmqCzjlgz9bGOKidRUWqG3b+f1TP3/HUHkck6s2rWji85Ul2RLEkoFSUujRfPUKcaB3bvH/RUUxPi5hg0ZH+ruXrgF36zB3BMmTChSEAkEZUW9eowL+vpr4IMPaL15+WXGNFkCMhlnPQ0b8gaybBkz5Vau5IyxRw/rCFoUCPTB3p6u8bAwoHXrbNy7dwcPHwbhzh0FzpyhGHBwYAXxWrVoafX2fjphoaytTJaUIOHkBHTsyCU+nu6mHTtYuPHIES52dnTtt23L60lFLd/g6MjjS9I5CQkUTFICwo4dnJz6+jLZJjKSS0BA2dThK5FQmjRpkvFHIBDoiYsL8P77nH3NmMG6HW++SdOspSCTccYjVRxfuZI1mNat44Wvd2/eXMR8Q1AeUCp5Y1KrgehoDfr14+P79xkQfuIEsHYt8NdfLEUQHs6g5ipVKApMHbdkKXh6ssBunz7AnTuMZ9q+nf/v2sXF2ZkBzu3bU2yaOz7TnLi787pfvz4fJyfTPXfmDP8uW0YrlL09xdI77xi3BVWJg7lr1qyJL7/8Ej179jTeKAQCPZHJgGeeoeXmgw9oVRoyhFknCoW5R5cff3/Wg3r+eWDjRmDDBgq7atU4q2zZsmIVqBOUP6R2O0lJ2fna7vj5MVavVy/G5Zw/z1idM2coAhwdmQkVEcHzRPqssqx+b6kEBgJDh/I6dvkyBdOuXbQ6bdjApVIlWpnataPIrOhIJQakbOjsbODhQ+4/xs8ZdyZa4sNSo9EU2qZEIDAlQUFsYvvzz1zOnGHNJXMERRaHszNrMPXrxxn2qlWsx7RkCa1M3boJK5PAerGzAxwdNTotQba2rNBcpw4f37/PoPCjR2ltysykWIqIYIxOYGDFtJ7IZLS4hYcDL7zAbLAdOxgH9vAhrXJ//UVXkySaylObEENQKmlJCghgXKi7uwaA8S6oFVC/C8oLSiUtNu3aMdB7zBjg+eflFuWKy4sUtFm/PuMy1qyhyf3NN3nxa9GCF0BLFHsCgbHw9aULundv9gs7d47WplOnKAy8vSmaGjak9dVcvR/NiUKhvVZMnAgcOkRLU2wssw8XLeISGUnXXKtWbAclKBtKJZREQLfAkoiKYqD3998Ds2crERnph+nTLSfQuzC8vOiSGzmSN4h164D//uOMMTKSAeDR0Za9DQKBoTg4sGhrgwaMc7p+nW6nkycpnpycaGFp0IDnhbmr9JsDW1u66Vu2ZO2hvXspKE+eZJzm2bO0rjdsyEljs2bCpW9sSiWU5syZgxUrVuj1WplMhsWLF5fmawQCvXFwYOHHRo0y8e67thg/3hZTpvDCYcm6Xi5ncGvdukwf3ruXZf7nzmWX8tq1KZrq1hUXP0H5Ri5n/I0Ug/PgAVurHDsGLF6sfb5uXVparLA8n8E4O7PsSNeu7OG3axctTVeu0Op06BCvE82a0dJUv37FjPsyNqXahampqYUWlhQIzE2zZhrMnHkNGzfWwocfKnDwIAO+rcEs7eQEdOnC5fFjzhp37gS++45xIJGRQOPGMri6WrDyEwiMhI8Pq93378+MuMOHWaNszRpmk0rd6Rs2LLoIbXnF21u7f27e1F4v7t3j/zt28LrXujUnjGXRyLuiUCqh9Nprr6FXr17GHotAYBScndV4990ctG1rixkzGLs0aRIvGNZyofDyYgD4gAEMft25k66IuXOVyMqqjKgoGzRvzpuEl5f1bJdAUBpcXWkhad+eaeAnTtD6unkz8O+/LG4ZFcUWLD4+5h6t6QkJoRt/xAhtz7ldu4DERAbMr13LTEQpCLxyZXOP2LoQRjlBuUQmo2Wm8f+1d99xTd/b/8Bfn0DCEAIie7hApiCCCCjiwC3VqnXXRbUOuuzSttfa3lvvtf7a2+GqrdtqK24QUFBsrSi4UOu6CoriRhEBGTI+vz/ONwQUWjGRDM7z8chDTQK83yQmJ+d93ufdGfh//4/6GkVEAG+/rRvZpZrs7IBRo+hy/fpj7Nx5F5cvO+GXX4BVq2gHoI8P7Rhq27ZpFr+ypsPUlJaWQkOp9cCff9IHid9+o1q/li0V2VcKDpqSJ8+cy8igoOnQIeD2beo39Ouv1JohLMwQrq6GcHHR9Ki1HwdKTK81bw7Mn0+fpBYupH5LM2dSHyNdzMK0aAF061aAqCg7iKIUp08r6zj27KHlO1dX5adre/umudWaNQ0yGWVVAwOpl46iT1NqKvUuU3yICAlpelvpDQxoQ0inTnTkTFoaBU3HjlFNU1aWFILQBj4+VYiIoGJxc3NNj1o7caDE9J4gAH370ifMb7+lwOnAAeCddxp2+rm2MTWlN4CQENoxdP06LUdkZNAOuo0bacnC1ZVqOfz96c1C2xpzMqYOUik9x/39KWg6f56CpsOHlUFT+/aUeVVn12ZdYGxMHxZ79KB6rz/+APbtq8S5cwY4c8YAZ84AS5fSh6sePYDg4KbRIf1ZNThQWrduHVxdXV/EWBh7oSwt6QiUiAhgwQJa03/tNer0retZF4mElhzGjqVLaSl1qE1PB86cAbZto74rlpbU3LJdO3pDcXbm3XRM/0ilyiaXNYOmQ4co89qqFd0WHEzHiTQlcjmdPRkR8RinTt1CVpYLDhyQIjubfj+HDtGHsC5dqCasQwf+cNXgQKlz585PXZeZmYmcnBw8fPiwzq95+eWXGzwwxl4EQaDmbB07AosWAd9/T5+u3nhDv44GMDZWHhQJUGM/ReB0/jxtKd6yhV4A7e0pePL1pQZ/trZN9zBOpn+eDJpOn6Z6pr17KfPati29HgQG6l79oqqsrCrQoUMFxo6V4soV5c65u3fp97N3L5UvdO9OReDu7rpZsqAqlZberl27hg8++ACnT5+u91gTQRA4UGJax8wM+OgjYOBAyi5NnUpHjERF6WeTRxOT2mcjVVTQAZz/+x8Vw/7vf8Dq1ZSJMjWlJToXF3phbNeOgid9/L2wpkUqVdY0lZXRMvVvv1HLge3b6fkeGEjZVlNTTY+2cbVpQ5dJk6iJ5f79VKLw4AGwYwddnJxoaa5XL/p7U6FSoPTpp5/i4sWL+Pjjj9GpUyfI5XJ1jYuxRtGhAzWzW7eOmjympgLTp1PWSZ8/ORka0vJDq1ZUvwXQtuucHAqcLl4Erlyhws/iYlras7ams5ScnemICScnWrbgpTumi4yMlDV+xcWUbf3jD+CXX4CYGMDTE+jYUWhyBc4SCdVytW9Pr4UnTlAGOi2NPlxt2ECXdu0oYAoP1+1az2ehUqB04sQJTJs2DePHj1fXeBhrdDIZHUL50kvAV18Bc+fSDpAZMygoaCpMTSkAqnlWXkkJ9XHKzqYdRVeu0HlTiYlAZSUt3VlZUcbJ3p6WMVq2pBdOuZy7AjPdYGpKS0s9e1Kx88GDVAS+Zo0UguCMgAADhIfTxoimVK8jlVIdV3AwBZOHD1Om6cQJ4NIluvz0E33g7NmTzqvUx2NmVHoZa968OcybWrjN9JadHbUQGDIE+PprKvYeMoSW48zMND06zTAxoQ7IihPLAUAU6cypW7eoI/ClS5SJysqiQtDSUrqPsTEVj7doocxGtWlD/27enG7X9SJ6pn/kclqSHziQ+pZt25aPK1ds8fXXtFvOz496ODk763fW+UmmprQRJiICyM+nZbn9+6nmMSODLosWUVDVowe1JdCXbLNKgdLo0aMRGxuLcePGwaAphdlMbwkCZZM6dwbWrwdWrqQahgkTgMhIzpAA9DsyN6eLuzv1pFIoK6PjV3JzKQt17RplpG7epCW9hw8pEyUIFHxaWlLQ1Lw5IJdLYGhoispKAXZ2dLuREQdTTHOsrYE+ffLRpk1z5OYaIjmZlqNTUqiGz8+Pdofp+9LTkywtgcGD6VLzyJScHMrGHTxI/3eDgijL1LmzbmeaVHrZb926NaqqqjBkyBAMHz4c9vb2dQZMfRVFEIzpCJlM2Tpg6VL6pJSYSNmlzp2b1ifJhjAyosyRoyOl42uqqKBM1L17ykDq1i3aYUOBlAFyc22xfbsUgkC/42bNKCCzsKAlPrmcMn+2tvRiLZfTfTigYi+aiwv9/580iTY/7N1LWZXdu6leJzAQCAjQ7YDgeTg4UEuSMWMoq7x/P9V63b2rDJoUPa66dqWaMF070FilQGnWrFnVf//yyy/rvI8gCDh//rwqP4YxjbG2puNPxo6l5bgPP6SU8pQpdEwAe3aGhvQCaWlJbQhCQ2vf/uhROc6ezYKNjRtKSkxw/z410bx7l4Kr+/epRqqwkOolqqqUX2tiQhkoMzMKquRy+jn29vQYyuV0m6kpB1VMNRKJ8piQx4+B48cpOIiJAbZupZYcwcH0Z1NqsyEI9P/azY1eHzMzaXPMwYP0//joUbooisUVtU+6UAeqUqC0bt06dY2DMa3m5kaZpSNHgMWLaTdIeDhlnVq31vTo9INEAhgbi7C3/+tWBBUVVGReUEBLeXl5lJm6d4+2Mj94QBmqCxcoqFLUTCl+hqlp7aDKwkIZVNESYO2girOHrD4ymfLcucJCyqQcPAj88AM9j3x9aSm/Vaum9TwSBMqytWtHGbhr15RBU1YW9bI6fZoKwZ2cKEvfuTMFUNoYXKoUKNXVfJIxfSUI9AmoUycgORn48UdKxUdEUOG3Lnwy0geGhsoaqb/q5SKK1GDw0SN6EysooKDq5k1a+lMEVZcv020FBVQ/pQiqZDJlQGVurlzqs7enot4nl/6a0hshe5q5ubII/M4deo04epSCJ0dHWnrq1q3pdQIHaCdsy5a0PHf7Nu2eO3KE6hZv3KAeVtu304eTgAAKmgIDtaf2i0tTGWsgAwOgf3/qIRIbS40aJ06knR6TJoFP49YSgkDBjkxGmaK/UjOoUmSqbt+mJYP79ymgunePPg0XFFBGS/F1UikFTIrMlGKXn7Mz/VxLS+38lMxeHDs74NVXgXHjaFfo3r2UUdmzhzZABAVRN/Cm1tQSoA8aQ4fS5dEj2i135Ahd8vOVdU0ABVf+/vS78vPTXP2XyoFSbm4utmzZgnPnzqGwsBBVNQsHQDVKa9euVfXHMKZ1ZDLglVdo50dsLDWtnDCB2v2PH089V5huqCuo8vOr+76Kpb/8fLrcuUNZKUWR+oULdH1REQVSoggYGckglTrD2dkQ9vZUANuyJWWmrKxoqZEzUvpHECgwcnevXc/0yy9Uz+TjQ7vm3N2bVn8mhWbNaGkyLIxqDi9dUgZNmZm0ZHftGr2+SiT0e1IcfOztTf9fG4NKgdKFCxcwYcIElJaWok2bNrh48SLc3NxQUFCAO3fuoGXLlrC3t1fXWBnTSjUDpsREOnx2yhRaphszhuoUuHhYf9Rc+nNxocf3SVVVVHCuyERlZlbg5MkiVFSYICeHPkUXFNB9JRLlrj4HB1pObNNGWTPVWG8G7MWqWc/08CEFTIcOAd9+S7s4O3SgXWEODpoeqWZIJMqGt+PH03L5qVPAyZP0/+XGDfoQcuEC8OuvlKV1c1Oeaenj8+J206kUKH399dcwNTXFjh07YGxsjC5duuDjjz9GaGgoEhMT8dlnn+Grr75S11gZ02oyGbUTGDSIXgTXrgXeeov+E7/yCtUn8Jte0yCRKOubXFwAT88qeHjcQ7t2zWFiIkVVlbJVguLMvZs3aanv1Cl6kxBFWpqxtqalHAcHei45OlJQxT29dJeFBfDyy3S5fp1aDBw5AuzbR0FyYCB90GqqjW4B+iCiyDYBlK3NyKDA6eRJqjc8f54uW7fSfRwdqYD8008FtS5rqnyEyZQpU+Do6Ij8/HwAqD4cd8CAATh+/DgWLlyIn3/+WeWBMqYrDA2BPn2oyDsjgzJM//kPsGIFMGAAZZ50rY8IUy+JhOqa5HI69qVbN+VtlZWUbbp1i5YiLl6kN9NDh4C4OAqgFP2kXFzojaFtW/q3vnRCbkqcnSkDPWkScOYMFYHHxQE7d1KWJDiY/mzqdW42NnQuZd++9H/g1i06vPfsWfrz6lX6sHHzJn3QsLFR389WKVCqqqqCtbU1AEAul8PAwKA6YAIADw8PbFWEeow1MRKJ8qTyq1ep6HvrVqpP6NoVGDmSUse8LMdqMjBQdiv39lZeX1VFSzY3btDW6kuXqDbq4EGqf5FKKevUqhUd6NquHQVPRkaamwt7doaGyvqbR4/ocT1wgA7rtrBQLs25uHA9myAoG9sqTgYoLKTM7KVL6v/AoFKg5OzsjOvXrwMAJBIJnJ2dcfjwYQwcOBAAZZz4LDjG6M3rs8+AWbOAHTuAbduAqVPpDS0yknbQNbWOvqxhJBJlANW+vfL60lL6dH3hAgVQmZm0jFNaSs8pRc1T+/aUebKy4uBc2zVrBvTrR5c7d2hp7uhROk6pZUvaQh8aypnpmszNqXVLp06ApaUIQH3RpEqBUlhYGHbv3l3doXvMmDFYsGABcnJyIIoijhw5gsmTJ6tloIzpAwsLaiUwbhydwL1xI7BkCX1qDAmhLbOenk1zBwx7PsbGFAi1aUNLuwAFSTduUC3Hn39SHce+fbSsZ21N9/XyoiUdBweundNmdnb0mjF+PGVMkpKo3cCuXfRaERpKOzT5MXxxVAqUpk+fjkGDBqG8vBxSqRQTJ05EcXExkpKSIJFIMHPmTEybNk1dY2VMbxgaKrvR5uZSs7XERCA6mlLr3btT4zoHB06zs4YzNqb2FK6uwPDhVNNRUEDZprQ0esPdvJk2HJibU8bTzY0yFa1aca2TOpWVUY8uqVS1ZdCaR6eUlgLp6ZRhWr2a2kv4+VHhc5s2/JqhbioFShYWFrCwsKj+tyAImDlzJmbOnKnywBhrKmxsgNdfp+NQzp0DtmyhVPvGjfSi2KsXNbPUli61TPcIAmUzFTVzAL2BX79Ob7inT1MH6R076E23dWvKVigCJ65zej5lZXRWYVkZ/Q5tbdXzuzQ2pg9T3btTQ9SkJHocv/xSeSB1eHjT7AL+Iqhtg+ndu3eRl5eHli1bwrQpthtlTEUGBtSTx9cXmDOHdjnFxtKn/h9+oGWSsDAJbG15XY6pzshImXUaO5aW5W7eBI4do3qY33+nTGezZsqluqAgqnni1gTPprycgiQLCyrELy9Xf9DZogX1axs9mjKGe/fSESF79lBBf0gIdbb+q/MT2V9T+em+d+9efPXVV7h69SoAYNWqVQgNDUVeXh6ioqLwxhtvoLeiLJ0x9kxMTKi9QEQEvcD+8QcQHw+sXGmIwsI28PU1RHg4faK0t+fiXKY6AwNa9nVxoVq5ykqqc0pLo47SSUlATAwVk7u7U7apffum3evn7yiW2x4+pD9f5Bb/mgfRvvYaBby//067bGNi6INWeDjdzq8XDaNSoJSSkoI333wT/v7+iIyMxOLFi6tvs7Kygp2dHbZu3cqBEmMqsLCgnXGRkcDNm2XYuvU6zp1rg5gYOphX0aCuVy/a1cTLJEwdDAyUh5mOHEktCLKzact6RgawahUd5+LoKIWtbQv06SPAy4szFzUpltvUUaPUEDIZHY3SpQt1hz9wgLJM33xDy3F+flQEzp6NSoHSkiVL0KlTJ6xfvx4PHjyoFSgBgL+/PzZt2qTSABljSpaWQJcuhXjttXKIohQnTwIJCfQiuGULNSJs3576rXTqRDuc+NMjUweZTHluGUC9fqhBYhXS0kxw7JgM5uZUFO7vT8G7rS0XFhsZafbDS/PmdGLA4MFUk7ZvH7WPSEkxgpWVPbp1k6B7d84M/hWVAqVLly5hzpw59d5ubW2N+/fvq/IjGGP1aNaMAqKuXemTfXY2LY+kpVHLgdJSqifx9qb7+PjQi2ZTf+Ni6tGsGXWN9vOrxP/+lw25vB2OHzdBerpyR52TE9XchYZStpO3sGuOINCy6qRJ1J4kI+MxYmPLsHdvMyQkUPF+ly6UbWrqXcCfpFKgZGJigpKSknpvz8nJgSV3xGLshTM0pE/ybm7AzJlUE/Hnn7R9+MQJYP58Sv8rzgsLCaHME2ecmDpIJPTcGjGCLiUltIMzJYXqmxISlJ3GFUdyyOWaHnXTJZUCfn4izM1zYWtrhowMExw6RMupxsb02tCjB+1+5A9WKgZKwcHB2LFjByZOnPjUbbm5uYiJiUHPnj1V+RGMsedgYaE8UFIU6fDVM2doJ92JE8DChVRzYmtLu558fGipxNmZO4Qz1ZmYKFsRVFXRks/evbSF/fvvKbBv145u79yZAnZ+Q9aMZs3oGJDevakL+G+/0a7HBQvo9cHfnzaN/N9pZU2SSoHSO++8g1GjRuGVV15B//79IQgCDh48iLS0NGzatAmiKCI6OlpdY2WMPQdBoF5NPXvSRRSB/Hw68uLgQfrkv307sHIlFfA6OVFmys+PMgD29nSKPb+RsechkVBBeFQUXfLylM0SN28G1q+n2/39aVeWo6Nmspzqagypy+zsgFGjqHg/KwvYv5+CpuRkWjrt1IkC26ZWz6RSoNS2bVts3LgR8+fPx3fffQdRFLFy5UoAQOfOnTFv3jw4Ozs/8/dLTExEbGwszp49i4KCArRq1Qrjx4/H8OHDIdTzKn337l2sWbMGqampuHbtGszNzREUFIR3330XTk5OqkyPMb0kCLQMEhqq3PlSWko9dM6epaWSc+doR11xMX36t7OjNzNFAOXiQoXlXMvAGsrKio5aGTCAnl+nT1OBsaLhpbMzBU1du9LST2Mc5/OiGkPqKkFQLuVPmgScOkWBbWwsfajy8KDle1/fpvF7UrmPUrt27bBmzRo8fPgQV69ehSiKcHFxgdVztARds2YNnJycMGfOHDRv3hyHDh3C3Llzcfv2bbzxxht1fs3Zs2eRnJyM4cOHo0OHDnjw4AGWLVuGESNGYNeuXc81DsaaGmNj+sTYti3w0kt0XXExBU8XLtAL5cWLVCy+YQP12JHLqS7F2Zm6N3t7078tLXmLOHs2pqb0hhsSQkvBFy5Qo8T0dCAujp5PiqDJ1fXFNbpsjMaQukoqVR42W1REy/epqXR0ikxGjUi7dqXgSV8bkaptWhYWFvDz81PpeyxbtqxWYBMaGor8/HysXr0aM2fOhKSOfGxgYCASExNhWOMRCggIQI8ePbBjxw5ERUWpNCbGmipTU+WnyshIuq68nJZOrl2jYvH//Y92250+TbucRJFeWK2tacnO2ZmyAm3a0PKfhQUFUbyMx54kk1G20s+PAvFLl+gon/R0OgfR1lZ5NIebm3rflBuzMaQuMzMD+valy7171NDy6FFg8WK6rX17enxatdKvTSINfqqdPXu2wT/Ex8fnme5XV/bHy8sLMTExKC4uhlkdC6PyOrZO2Nvbw8rKCnfv3m3wWBlj9ZNKaRnOzo6Os1AoL6fGdrdv0zEKFy4AV69SAfn+/fRJFKAXT0tLOnbB1pa+j5sb1UWZmgIlJQIqKzUyNaZFDAxou7qnJxWDX7lCwVJaGtXL2NjQsRzdu1OmSdXlOU01htRl1tZ04PLw4dTB/bffaNl+wQL6/+3rS5kmFxfd/2DU4EDpr+qFniSKIgRBwPnz5xs8MIXjx4/Dzs6uziCpPleuXMH9+/fh6ur63D9X4a/aH+gqxZx4brpHm+dnZqbMQPXvr7y+tJROrr9zR8DNmwIyMwXcukWXK1cExMcLKC0FqqqkqKhwhZWVISwtK9C8uYgWLUS0aAG0aiXC3l6EpaUIMzNaKtSlnjza/LipqjHm5uhIx3JMngxcvSogKUmCtDQJdu+WwN6+Cv7+VejatQqtW4sqZTIMDSkrWlpK/y79v78o/tQn6pxbixYUMA0bBly5IuDgQQkyMiRISZHAzq4Knp5VCAmpgpOT2ChBkyiKANT3gwSRvuMz8/T0hLGxMbp3746wsLBaS171GTp06HMN7tixYxg/fjxmz56NSZMmPdPXiKKIKVOm4OLFi9izZ89zH9D7559/4vHjx8/1tYyxZ1NVBZSVCXj0yAAPHhji/n0DXL9ugrw8A+TlSZGXJ0VBgQEKCw3x+DG9A4oiYGRUBTOzSpibV0Aur4SFRQUsLStgZ/cYFhaVMDOrhKlpJYyMREilqr15Mu1EbQdkSE2V49Qpc9y7J4Wt7WN4ehajU6cC2NhU8OOuQVVVwNWrRsjIMMPFi6a4d0+G5s3L0bZtCXx9H8HB4fELe3w6diyCXC6Fr6+vWr5fgwOlmJgYxMXF4fjx47CwsEC/fv0QGRmJTp06qWVACrdv38aIESPg6uqKVatW1VmfVJfvv/8ey5cvx4oVKxCqwmE2ikCpdevWMNGzytSSkhJkZ2fz3HSQPs+vvrlVVlIDw0ePgAcPBOTlAdevC7hxQ4J794DcXAF5eQLy8wUUFKDW0p2pKWBuLsLcXISlJWBlRVkpe3v6u1wOyOUiTE0pSyWVvphlgpKSEly/fh3Ozs56+bhpem5U0yRg924J0tMNcO+egJYtq9CxYyXCw6ue+yiV0tJS3Lp1Cw4ODjA2Nlb/wDWoMedWVQVkZQk4dEiC06cluHlTAkvLKnh5VSEoiDKB6qw5s7O7iGbNJGoLlBo8tJEjR2LkyJG4c+cO4uLiEB8fj19//RWOjo4YNGgQBg0aBE9PT5UGVVBQgKlTp8LS0hKLFi165iApJiYGS5Yswfz581UKkmoyMTF57qyUtuO56S59nl9dczM3pz/btKn/6yoqaMmkuJjqpR48oDqpq1epAP3uXSo8f/CAinYrKujrRJECKrmcfo6FBW1hb9GC6jCsrek6S0u63cTk+Zf9TExM9C5QUtD03Dp2pEtFBdXGJSRI8Mcfhti1i86nUxwSa2HR8O9tbGwMY2P9fNwaa26+vnSpqqL/h7Q8R8ctmZhQA9KAAGp+q2qfpmctD3pWzx3D2dnZYcqUKZgyZQqysrIQGxuL+Ph4rFixAm5ubvjwww/RrVu3Bn/f0tJSTJs2DYWFhdi0aRPMFa+QfyM5ORmfffYZ3nrrLbzyyisN/rmMMd1maEgvsGZmVJgL0LbzJ4kiFe0WF1OReV4eBVPZ2cCtW7Sb59o1ICNDuVVc8XWUoaKgysKCgikrKypGt7Oj/lSWlnQ/Xaqh0ieGhtRSwN+fAudjx+gIlV9+odYWvr60M8vfn9tYaIJEomxFMn48bQBJTaWds4rWIy1bUiF/UBDtntX0Eqpakl2urq6YNWsWBgwYgH//+984cuQITp061eBAqaKiAu+88w4uX76MDRs2wM7O7pm+Lj09He+++y5GjBjBncAZY39JECiIkckoqHF2pi3pdVFkqR49Au7fp2Dq8mXqL3XvHgVYJ05Qp/OKCgqmAAqmrKxod5a9PWBjI4EgmEAmE+DgQMdG6GvPGW1ibKw8yqewkLazJyUB331Hj0FAAJ1pps89gLSZIFCvrFdeoYvijMqjR2mHY0ICfRhp25ZaQ3h6KrPLjUnlp0ZOTg7i4+MRHx+PzMxMuLi4YMaMGRg2bFiDv9fnn3+O/fv3Y86cOSgqKsLJkyerb/P29oZMJsPEiRNx8+ZNJCcnAwCysrIQHR2N1q1bY8iQIbW+xsrKCi1btlR1ioyxJqpmlsrOjppqPkkUqVnho0eUnbpzh5pzXr1KAdW5c8Dt24bIy3OGTCaFoaGyRYKdHQVqXl60s8vamt7ANf0JWh+Zm1M/sMhIIDcXiI+nLe3z5tGbdVAQ0KsXZQd1fTu7rqp5RmV5ObWFOHyY2o2sX0/XKc6nDAigpfjGOJvyuQKl+/fvIyEhAbt27cKpU6dgbW2NAQMGYP78+So1nUxNTQUALFiw4Knb9u3bB2dnZ1RVVaGyRrXmqVOnUFhYiMLCQowZM6bW1wwdOrTO78UYY+oiCJS5MDam4KddO3qhr+nhwzKcOPE/WFt74u5dE5w/TwfF5uQAKSlATAzVbhgaKpt1urjQ93Jzo4DK3JwDKHWxsaGjOSZOpDfj2FjgwAFg507KXnTtSj2aeGlOc6RSqi1zd6d/FxRQg9uMDAqc0tPpekdHamrr7U2B0/PUoP2dBgdKUVFRSE9Ph6mpKfr06YO3334bISEhz1xw/VdSUlL+9j7r16+v9e9hw4Y9V/aKMcYai1QKyOVVcHUV4esLREQob6uspGWhe/foINJTp2iJ78wZaq5YUkIBlK0t1W60bk11Nq1aUWDGtVDPTxAoMJo+HRg0iJZ9UlPpzLmYGMDb2xAeHqZwdKRAmGmOXE5Zv6AgyuLm5SkDp8xMyjxVVlKd4JdfClDnXpcGB0qHDh2CsbExfH19kZeXh3Xr1mHdunX13l8QBCxbtkylQTLGmL4yMKClOEtLyh7160fXiyIVnN+9S28Ex47Rkt7+/coMlIUFZZ7c3Kg42dWVsiV8BEfDPH5Mb7JdulBmwsKC3oDj44ENG+yxZ48UwcG0NNemDWf2NE0Q6EOCYicjQBmny5epKLxhTY/+XoMDJUdHRwBAdnb2M91f3dv0GGOsKRAEqr9o04YuffrQ9ZWVVPR69SoFT2fP0tERsbEUPLVoQVknd3cgMJD+bmHBb+5/RSajY0vy8+nP5s2BgQOBnj0rcOjQFZw/74bUVAMkJVEGKjQU6NaNftdMO8jlyt2OVVXq7czd4EDpWZbHGGOMvRgGBrSjzsqK+gYBFCA9fEj1NgcP0rLdvn3Ar79SwOXkRDuGAgMpY2Jry1mnmoyNqaBbcdZbzWU2G5sKdOlSiRkzqDB/xw66bN5MO7F69KA/+Xw4/dWoGyKLioowf/58TJkyRS3nsDHGGKNsUfPmdAkIoOsqKmh315kzVHdz6hTt8nr8mAKldu3oDT4ggAKppv5GryjIr4+BgbJpYnExtRqIjwe+/pp+70FBQO/eVEfGCyn6pVEDpdLSUuzYsQODBw/mQIkxxl4gQ0PKkjg40LKdKFLReFYW7bQ7eRJYt446IzdvThmngADKOjk5cZH4XzE1BQYMoMvNm5RhOnAA2L2b6sTCwqippVyu6ZEydWj0FlsNPFqOMcaYGggCvXErjvoAKDNy5Qplmo4eVQZONjYUOAUHU82HvT1lVNjTHB2BmTOBadOokHjnTlqW+/VXCjx796blTm5oqbv4oWOMsSbK1JTO1vLxoX+XlFDGKSmJCsSXLKHO5E5OtEzXtSs1x7S01OiwtZKBgTIILSigGrHdu4F//pOCqZAQagvxjAdOMC3CgRJjjDEA1GCxfXu6ALRUd+4cBU7p6fTGL5PRjrqAANqarThXjynJ5cDQocDLL1PGbvt2ytrFxtLvtlcv+v1xbybdwIESY4yxOpmb0/JbcDDtrMvNpcLwffvozX/1asDGRgpHR1sMHiwgIICzTTUpGlq+9x4QHQ0cOgTs2kVnzVlY0O+1Tx/qhcUF4NqLAyXGGGN/SyKhZaNhw+hSVkaNMLdurcL+/Ub44gsppFKqberShZbpHBy4tknB2JgySb16AbdvUwF4Sgpl6Tw86MiU0FA6V5Bpl0YPlLgBJWOM6T4jI6ptatOmAgMHXoa1tRdOnjTFnj3Ahg3A8uXUKDMoiIIAV1feSadgb0/HpkyZQrsPt20D1q4FNm6kXYe9e9PyJjcJ1Q68640xxphKBIFqlV5+mS7FxcodYL//TjvAHByo0LlnTwqw1HkWl64yNAQ6daJLfj71ZUpKAv7xD+qo3rUrNbRs3lzDA23iGjVQsra2xoULFxrzRzLGGGtkpqa0yyskhBpfZmbSUtPBg7TUZGZGu+giIqiomfsNUW3XuHHAmDHAhQtUAxYbC2zZQgFm795UCM5tBhqfyr/yrKwsbN26FdevX8fDhw+fyhgJgoC1a9eq+mMYY4zpIENDqluaM4cKwm/cABIT6XDf+fNpOU4RNAUGcjG4REJ9l7y9gaIiqmNKTKTflZ0dBZ/9+lGvK9Y4VAqUduzYgY8//hiGhoZo06YN5HV8LOClNsYYYwAFAS4uwOuvA1OnAnfuAHv3UiCwYAGds9ahAxU8BwVx0GRmBgweDLz0EpCdTVm5334D4uIou9SnD2XkuPbrxVIpUFq8eDG8vLzw008/wcrKSl1jYowxpucEgYqaX32VLvfuAcnJQEICsHChMmiKiKCgycJC0yPWHEGgwvhZs6gI/NAhqmf69ltq4RASQsepODhwm4EXQaVA6e7du4iKiuIgiTHGmEqsrak+Z8wY4P792kGTout1374UNDVrpunRao6JCQWPERG0jLlrl7LNgLs71TKFhND9mHqoFCh5eHjg7t276hoLY4wxhhYtgNGj6XL3Li3PJSQAX3xBheJBQVSn4+vbtAMCJyc6Y27yZDpyJj4eWLkSWLOGdtINGkSZKM4yqUalQGnOnDl4++23ER4ejoCAAHWNiTHGGANAbQfGjqVM0+3blEFJTARmz6YsVHAwLTu5u9NyXVMkk1GzytBQ6p6ekEDF8h9+CLRqRS0ZunenZTrWcA0KlKZPn/7Udebm5hg3bhzc3Nzg4OAAyRMdsgRBwLJly1QbJWOMsSZNEKgGZ+pU4LXXgJwcYPNmyjbt2gU4O1NH8IEDgZYtm26zRhsbYOJEqvs6c4Z+N1u3UjPLjh0py+ThoelR6pYGBUoXL16s83oHBwc8evQImZmZT93GnbgZY4ypk0RCmZL336cC54sXKWjat4/+bNeOsigREU330F4DAyqG79CBmlnu20dB5bx51GYgKMgAHh5NNJpsoAYFSikpKdV/Ly4uxrhx4zBy5EiMGTNG7QNjjDHG/o6BAeDlBXz6KS3HZWRQk8aNG+nQ3o4dgf79gc6dm24RuKUlMHw4MHQocOkSLV2mpBhg27bW8Pc3wKBB9HtqqkuXf+e5a5RMTU1x48YNzhgxxhjTCkZGyo7ghYWURdm2jZo1mptTDc/AgbT01BSDAomE5u7hAYwf/xhbt97C2bMu+O9/qWdTSAgtzdnbcwF4TSoVc3fr1g0HDx7E6NGj1TUexhhjTGXm5nTu3JAh1Nhy82bKpMTH0zlq3bvTzjlHx6YZFNAxM0V49dUK5OZKsXs3FYDXbDMQGtq0dxUqqLRAOXPmTGRnZ+ODDz7AsWPHcOfOHeTn5z91YYwxxjRB0djyzTepo/WOHbRTbtcuKnp+7z06iLaoSNMj1QxBoHqvadOAtWupb5WTE7BqFV33/fd0Vl9VlaZHqjkqZZQGDRoEAMjMzMSuXbvqvd/58+dV+TGMMcaYygwMAB8f6sf08cd0SG9MDPDVV7Rs16ULHRni4dE0D59V/A66dKE2A4oz+ebMoaNnunUDevQAmlqPaZWeCtHR0VyjxBhjTOeYmlKn7759aWlu2zbqPzRzJuDqSgFBjx6aHqXm2NgAEyYA48YB589TNi4+ngrlfX1paa5Dh6ZxzpxKgdKbb76prnEwxhhjGmFnB8yYQYf1njtHO+a2bAHWr5fB1dUeo0cLCAkBjI01PdLGZ2BAB/C2b0/Lk7//TnVMX39NBeBBQbSr0MVFf3tXNcHkImOMMfY0AwPKlvznP8AnnwBxceVYs8YA8+bJ4OBAGaZBg6i5ZVNcTDEzo/kPHAjcvEkZuN9/p3P5WrakJbuePekIGn3CgRJjjDH2BDMzYMiQKrRrlw1TU1Ns326C3buppqlDBwoYunShJbymRhCo4HvqVDpn7uxZCpp276bdhd7eFDB16qQfvx8OlBhjjLF6CALQurWITz6hHXKpqcCvvwJffklBQHg4tSFo00Z/l57+iqGhsgP4o0fA4cPAnj3ADz9Qryp/fwqavLyoWFwXcaDEGGOMPQNjYzoWJSICuHWLskvx8VTo7ONDh/M25cNnmzWjIu/evWnXXHIy8NtvtJRpZkbdv3v3pmJ5XWr4yYESY4wx1kAODsDbb9MuuaNHgQ0bqOfQjz9SlmnwYMDNrWlmmQDaNTd2LDB6NB1gnJRE7RjmzqUapoAAoFcvav6p7a0YtHx4jDHGmPaSSpW9h+7epSxTbCw1tPT2ph1hPXoAcrmmR6oZigOMp04FoqKAK1doaS41lYInOztatuvZk4Imbcw0caDEGGOMqYGtLfDGG8D06cCJE9TpevFiYOVKatbY1LNMBgY0fzc36vqdmUnBUloaLdNZWAB+fhRYtmunPcencKDEGGOMqZGhIdC5M11ycynLtHMnZZm4lokYGgKennSZORPIzqYu4OnpdIixkRFl5Lp2pR5Olpaaa8nAgRJjjDH2gtjYANHRlEFRZJm+/x746SfKMr38MtC2bdPNMgEUNCkyTVFRVCh/8CAtzy1bRufMubhQkBkeTq0JGnMHHQdKjDHG2AtWM8t09y6waRPtllNkmSIjKQho1kzTI9UsAwNq6Dl6NDBqFJCXB/z5JwVOx4/TLsNmzQB3dyAwkOqbWrR4sbVNHCgxxhhjjcjWFnjzTaplUuyY++Yb6j3UowdlmVq3bprdv2sSBAqCFOfulZUB164Bhw5Rdm7jRmDFCsDamrJRHTtSvyZbW/WOgwMlxhhjTANq7pi7fZuyTLt2UT2Tnx8Vf3ftqj1FzZpmZERF3u3a0YG9hYVAVhYFTn/+CaxZAxQXA0uXCnByUt/P5UCJMcYY0zB7e+rLNH067QLbuBFYsIAKvnv2BIYPBxwdOcukIAjUcqFjR7qIIlBQQD2bjI1FAOr7RXGgxBhjjGkJIyPaERceDly/Tlmm+Hhg+3Y6DmTYMCAoiLqEMyVBoPYCFhbAnTvq/d5NuM6eMcYY006CQDu93n+fDpxdtIiOAfnsM2DcOGDJEvUHBKxunFFijDHGtJiJCdC3L9CnD/UbiomhWqatW+kokBEj6E9t7GqtDzijxBhjjOkAQQDatAFmzwZ27wYWLqTg6KOPKMu0YgVw/76mR6l/tCpQSkxMxIwZMxAeHg5/f38MGTIEW7ZsgSiKf/l1oijixx9/RI8ePeDn54dRo0bh5MmTjTNoxhhjrJE1a0a74lavBnbsoG7fe/ZQdmnOHODkSaCyUtOj1A9aFSitWbMGJiYmmDNnDpYtW4bw8HDMnTsXS5Ys+cuv++mnn/D9999j0qRJWL58OWxsbBAVFYWcnJxGGjljjDHW+CQSOgbkk0+o6Puf/6QA6Z13KMu0bh3w8KGmR6nbtKpGadmyZbCysqr+d2hoKPLz87F69WrMnDkTkjp6vJeVlWH58uWIiorCpEmTAACBgYHo378/Vq5cic8++6yRRs8YY4xpjqUlMHIktRI4e5Z2yu3YQcFScDAFTp6eTfu4lOehVb+umkGSgpeXF4qKilBcXFzn15w4cQJFRUUYMGBA9XUymQx9+vTBgQMHXthYGWOMMW1kYEANK+fNoyzTRx8Bjx4BM2ZQo8ZNm4CiIk2PUndoVUapLsePH4ednR3MzMzqvP3y5csAgLZt29a63tXVFWvXrkVpaSmMVWg4UVJS8txfq60Uc+K56R59nh/PTTfx3LSbiQllmAYPBv78U0BsrAF+/tkAy5dL4eVlj0mTyuDtrV9ZpqqqJtRw8tixY0hISMDs2bPrvU9BQQFkMhmMnjhKWC6XQxRFPHz4UKVAKTs7+7m/Vtvx3HSXPs+P56abeG7az8SEDpqNiDDEwYNypKZa4I03jOHoWIYePfIRElIAE5O/3jylC6ysKgDI1Pb9tDZQun37NmbNmoXg4GBMmDBBY+No3bo1TPTsoJ2SkhJkZ2fz3HSQPs+P56abeG66qVOnEgwalI2HD9siKckUSUlmiIsDunSpwujRlWjVStTZLFN+/kW1fj+tDJQKCgowdepUWFpaYtGiRXUWcSvI5XI8fvwYZWVltbJKBQUFEAQBFhYWKo3FxMQEpqamKn0PbcVz0136PD+em27iuekeqVREt24y9O0rw61bQFwckJhogOnTpXB1peNSIiIAXZt6QYF6D8TTunixtLQU06ZNQ2FhIVasWAFzc/O/vL+iNunKlSu1rr98+TIcHR1VWnZjjDHG9J0g0IG706YBv/5KvZl8fYEffgCGDgXmz6eO4FVVmh6pZmhVRqmiogLvvPMOLl++jA0bNsDOzu5vvyYgIABmZmZITEyEp6cnAKC8vBxJSUkIDw9/0UNmjDHG9IaxMdCtGxAWRofy7tpFO+cmTADc3Slw6tGDGl42FVoVKH3++efYv38/5syZg6Kiolrdtb29vSGTyTBx4kTcvHkTycnJAAAjIyNMmzYNixYtgpWVFdzd3fHLL78gPz8fr732moZmwhhjjOkuxaG8M2YAkyYBx44B27YBixfTJTycuoC3batfO+bqolWBUmpqKgBgwYIFT922b98+ODs7o6qqCpVP9GWfOnUqRFHEqlWrkJeXBy8vL6xcuRIuLi6NMm7GGGNMX5mYKLNMN29SE8v4eCAqCvDwACIjKcukYkmw1tKqQCklJeVv77N+/fqnrhMEAdOmTcO0adNexLAYY4yxJk8QACcnIDoamDIFOH6cmlcuXQr8+CMQEgK8/DJ1/5ZKNT1a9dGqQIkxxhhj2s/ICOjShS537gA7d1I9U3Q04OxMGaaXXgLs7SnA0mUcKDHGGGPsudnZAa+/DkyeDFy4AGzZAiQlARs30u65yEggNBSQyzU90ufDgRJjjDHGVCaVUmDk6wu89x5w+DAVgH/9NZ0/FxICDBlCS3O61LmHAyXGGGOMqZVcDvTrB/TtSwXg8fFAQgLw9tu0HBcaCgwaBLRurf31TBwoMcYYY+yFUBSAK5bmsrJoaW7fPso2OTvTbroBA6gdgaEWRiVaOCTGGGOM6RuplJbd/vEPWpo7f56KwPfvp47grVtT0NS3LwVX2pJp4kCJMcYYY43KxAQICKDLBx8AZ84AsbFUBL5hA9CqFRAURMt3Li50f03hQIkxxhhjGmNmRoXeISFAQQFw7hy1GkhNBTZvBqytKaDq1w9wcwMsLRu35QAHSowxxhjTCnK5Mmh69IhqmvbsAf74A/jwQ0AmA9q3p07hAQGAre2L30HHgRJjjDHGtE6zZoCfH13efpsO6T14kArBly8HiosBBwdqR9C9O+DqCrRoof5xcKDEGGOMMa0mk9EBvG3bAq++CuTlAZmZQHIycOQIMG8eIIq0i+6TT2i5Tl04UGKMMcaYzpBIKBCytqYluseP6RiV8+eB338HKirUW8DEgRJjjDHGdJZMRjvjXFyotcCpUyIA9QVLErV9J8YYY4wxDVP3jjgOlBhjjDHG6sGBEmOMMcZYPThQYowxxhirBwdKjDHGGGP14ECJMcYYY6weHCgxxhhjjNWDAyXGGGOMsXpwoMQYY4wxVg8OlBhjjDHG6sGBEmOMMcZYPThQYowxxhirBwdKjDHGGGP14ECJMcYYY6weHCgxxhhjjNWDAyXGGGOMsXpwoMQYY4wxVg8OlBhjjDHG6iGIoihqehDa6MSJExBFEVKpFIIgaHo4aiWKIsrLy3luOkif58dz0008N92kz3N7/PgxBEFAQECAWr6foVq+ix5SPHH07QkE0JxkMpmmh/FC6PPcAP2eH89NN/HcdJO+z02d792cUWKMMcYYqwfXKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGOMMcbqwYHSE7KysjB58mT4+/uja9euWLhwIR4/fqzpYTXY1atX8emnn2LIkCHw9vZGZGRknffbvHkz+vXrB19fXwwePBj79+9v5JE2XGJiImbMmIHw8HD4+/tjyJAh2LJlC54831kX5/b777/j1VdfRUhICNq3b4+IiAj85z//QWFhYa37paSkYPDgwfD19UW/fv2wdetWDY34+T169Ajh4eHw8PDAn3/+Wes2XXvstm3bBg8Pj6cuX331Va376dq8atq+fTtefvll+Pr6Ijg4GFOmTEFpaWn17br6nBw/fnydj52Hhwfi4+Or76erj92+ffswYsQIdOzYEWFhYXj77beRk5Pz1P10cX779+/H0KFD0b59e3Tv3h3ff/89Kisrn7qfys9NkVXLz88Xu3btKo4bN048cOCAuHnzZjEwMFD8/PPPNT20BktOThbDw8PFN998U4yMjBQHDRr01H127dolenh4iN988414+PBhce7cuaK3t7eYkZHR+ANugJEjR4qzZs0S4+PjxUOHDolfffWV6OnpKS5atKj6Pro6tx07dohffvmluHv3bjEtLU1cv3692LlzZ3Hy5MnV9zl69Kjo5eUlzp07Vzx8+LD4zTffiB4eHmJiYqIGR95wCxcuFLt06SK6u7uLp0+frr5eFx+7rVu3iu7u7uKBAwfEjIyM6svNmzer76OL81JYunSp2LFjR3H58uVienq6uHv3bnHevHliUVGRKIq6/Zy8dOlSrccsIyNDfOedd0Rvb2/x/v37oijq7mOXlpYmenp6inPmzBFTU1PF+Ph4sW/fvmLv3r3FkpKS6vvp4vwyMjJET09P8b333hMPHDggrlq1SvTz8xMXLFhQ637qeG5yoFTDDz/8IPr7+4sPHjyovu7XX38Vvby8xNu3b2tuYM+hsrKy+u+zZ8+uM1Dq27ev+O6779a6btSoUeKUKVNe+PhUoXjxqukf//iHGBAQUD1vXZ1bXTZt2iS6u7tXPwejoqLEUaNG1brPu+++Kw4YMEATw3sumZmZor+/v/jLL788FSjp4mOnCJTqem4q6OK8RFEUs7KyRG9vb/G3336r9z768JysqVevXuLUqVOr/62rj93cuXPFXr16iVVVVdXXHT58WHR3dxePHj1afZ0uzi8qKkocOnRoretWrlwp+vj4iLm5ubXup+pzk5feajhw4ABCQ0NhaWlZfd2AAQNQVVWF1NRUzQ3sOUgkf/3Q5uTkIDs7GwMGDKh1/cCBA3H48GGtXm60srJ66jovLy8UFRWhuLhYp+dWF8Xzsby8HI8fP0Z6ejr69+9f6z4DBw5EVlYWrl+/roERNtwXX3yB0aNHo02bNrWu17fHTkGX57Vt2zY4Ozuje/fudd6uL89JhRMnTuD69et46aWXAOj2Y1dRUYFmzZpBEITq68zNzQGgulRBV+d3/vx5dO3atdZ1YWFhKC8vx8GDBwGo77nJgVINly9fRtu2bWtdJ5fLYWNjg8uXL2toVC+GYj5PvlG5urqivLy8zjVsbXb8+HHY2dnBzMxML+ZWWVmJsrIynD17FkuWLEGvXr3g7OyMa9euoby8/KnnqaurKwDoxPN09+7duHjxIqKjo5+6Tdcfu8jISHh5eSEiIgLLly+vrpfQ5XmdOnUK7u7uWLp0KUJDQ9G+fXuMHj0ap06dAgC9eE7WtGvXLpiamiIiIgKAbj92w4YNQ1ZWFjZs2IDCwkLk5OTgv//9L7y9vREQEABAd+dXVlYGmUxW6zrFv7OysgCo77lpqOpg9UlBQQHkcvlT11tYWODhw4caGNGLo5jPk/NV/FuX5nvs2DEkJCRg9uzZAPRjbj179sSdO3cAAN26dcPXX38NQPfnVlJSggULFmDWrFkwMzN76nZdnZ+NjQ3efPNNdOjQAYIgICUlBd9++y3u3LmDTz/9VGfnBQC5ubk4c+YMLl68iHnz5sHExAQ//PADoqKikJSUpNNze1JFRQUSExPRq1cvmJqaAtDd5yQAdOrUCYsXL8Z7772Hf/7znwAo+75ixQoYGBgA0N35tWrVCqdPn6513cmTJwEox6yuuXGgxHTa7du3MWvWLAQHB2PChAmaHo7a/PjjjygpKUFmZiaWLVuG6dOnY/Xq1ZoelsqWLVuGFi1aYPjw4Zoeilp169YN3bp1q/53WFgYjIyMsHbtWkyfPl2DI1OdKIooLi7Gd999B09PTwBAhw4d0KtXL/z8888ICwvT8AjVJzU1FXl5efXuEtY1J06cwIcffoiRI0eiR48eyM/Px9KlS/H6669j48aNMDY21vQQn9vYsWPxySefYO3atRgyZAgyMzPx7bffVgeA6sRLbzXI5fKntmEDFHVaWFhoYEQvjmI+T863oKCg1u3arKCgAFOnToWlpSUWLVpUXZelD3Pz9PREx44dMWLECCxduhTp6elITk7W6bnduHEDq1atwltvvYXCwkIUFBSguLgYAFBcXIxHjx7p9PyeNGDAAFRWVuL8+fM6PS+5XA5LS8vqIAmgujlvb29kZmbq9NyetGvXLlhaWtYK/nR5fl988QVCQkIwZ84chISEoH///vjxxx9x7tw57Ny5E4Duzm/YsGGYOHEiFi5ciODgYEyaNAmjR4+GhYUFbG1tAahvbhwo1dC2bdun1iwLCwuRm5v71BqnrlPM58n5Xr58GVKpFC4uLpoY1jMrLS3FtGnTUFhYiBUrVlQXKAK6P7cneXh4QCqV4tq1a2jZsiWkUmmdcwOg1c/T69evo7y8HK+//jqCgoIQFBRUnW2ZMGECJk+erHePnYIuz8vNza3e28rKynT6OVlTaWkp9u7di/79+0MqlVZfr8uPXVZWVq0AFwDs7e3RvHlzXLt2DYDuzk8ikeDjjz9GWloadu7ciUOHDmHkyJHIy8tDhw4dAEBtz00OlGoIDw/HoUOHqqNNgApPJRLJU9X1us7FxQWtW7fG7t27a12fkJCA0NDQp4rktElFRQXeeecdXL58GStWrICdnV2t23V5bnU5deoUysvL4ezsDJlMhuDgYOzZs6fWfRISEuDq6gpnZ2cNjfLveXl5Yd26dbUuH330EQDg888/x7x58/TqsUtISICBgQG8vb11el49e/ZEfn4+zp8/X33dgwcPcPbsWfj4+Oj0c7KmlJQUFBcXV+92U9Dlx87R0RHnzp2rdd2NGzfw4MEDODk5AdDt+QG0i8/T0xNyuRzr16+Hs7MzunTpAgBqe25yjVINo0ePxvr16xEdHY1p06bhzp07WLhwIUaPHv3Um7G2Kykpwe+//w6A/mMUFRVV/0fo3LkzrKys8Oabb+L9999Hy5YtERwcjISEBJw+fRo///yzJof+tz7//HPs378fc+bMQVFRUXUBHwB4e3tDJpPp7NzeeOMNtG/fHh4eHjA2NsaFCxewcuVKeHh4oHfv3gCAGTNmYMKECfjss88wYMAApKenY9euXfjmm280PPq/JpfLERwcXOdtPj4+8PHxAQCdfOxee+01BAcHw8PDAwB1Q46JicGECRNgY2MDQDfnBQC9e/eGr68v3nrrLcyaNQtGRkb48ccfIZPJMHbsWAC6+5ysKS4uDo6OjggMDHzqNl197EaPHo1///vf+OKLL9CrVy/k5+dX1wnWbAegi/M7ffo0jhw5Ai8vL5SWliIlJQU7d+7ETz/9VKtOSS3PTVUaPumjzMxMceLEiaKfn58YGhoqLliwQCwrK9P0sBosJydHdHd3r/OSlpZWfb+YmBixT58+oo+PjxgZGSmmpKRocNTPpmfPnvXOLScnp/p+uji35cuXi0OGDBE7duwo+vv7i4MGDRK//fZbsbCwsNb99u7dK0ZGRoo+Pj5inz59xM2bN2toxKpJS0t7quGkKOreY/evf/1L7Nu3r+jn5ye2b99ejIyMFNeuXVur0Z8o6t68FO7fvy++//77YmBgoOjn5ydGRUWJly5dqnUfXX5O5ufniz4+PuLChQvrvY8uPnZVVVXixo0bxZdeekn09/cXu3btKkZHR4uZmZlP3VfX5nfu3DlxxIgRor+/v+jv7y9OnDhRPHHiRJ33VfW5KYjiEwdkMcYYY4wxAFyjxBhjjDFWLw6UGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGN6YcOGDfDw8MCIESM0PRTGmB7hQIkxphfi4uLg5OSE06dP4+rVq5oeDmNMT3CgxBjTeTk5OcjIyMBHH30EKysrxMXFaXpIjDE9wYESY0znxcXFwcLCAt27d0e/fv3qDJQePHiADz74AAEBAejUqRNmz56NCxcuwMPDA9u2bat136ysLLz11lvo3LkzfH19MWzYMOzbt6+xpsMY0yIcKDHGdF5cXBz69OkDmUyGyMhIZGdn4/Tp09W3V1VVYcaMGYiPj8fQoUMxa9Ys5ObmYvbs2U99r0uXLmHUqFHIysrC1KlTMWfOHJiamiI6OhrJycmNOS3GmBYw1PQAGGNMFWfOnMHly5cxd+5cAEBgYCDs7e0RFxcHPz8/AMDevXuRkZGBjz/+GBMnTgQAjBkzBpMnT37q+82fPx8ODg7YunUrZDIZAGDs2LEYM2YMvvrqK/Tp06eRZsYY0wacUWKM6bS4uDhYW1sjODgYACAIAgYOHIiEhARUVlYCAP744w9IpVKMHDmy+uskEgnGjRtX63vl5+cjLS0NAwYMQFFREfLy8pCXl4cHDx4gLCwM2dnZuHPnTuNNjjGmcZxRYozprMrKSsTHxyM4OBjXr1+vvt7Pzw+rVq3C4cOHERYWhps3b8LGxgYmJia1vr5ly5a1/n3t2jWIoojvvvsO3333XZ0/8/79+7Czs1P/ZBhjWokDJcaYzkpLS0Nubi7i4+MRHx//1O1xcXEICwt75u9XVVUFAIiKikK3bt3qvM+TwRVjTL9xoMQY01lxcXFo0aIFPv3006duS05ORnJyMj7//HM4OjoiPT0dJSUltbJK165dq/U1Li4uAACpVIouXbq82MEzxnQC1ygxxnRSaWkpkpKS0KNHD/Tv3/+py7hx4/Do0SOkpKQgLCwM5eXliImJqf76qqoqbNiwodb3bNGiBTp37oxNmzbh7t27T/3MvLy8Fz4vxph24YwSY0wnpaSk4NGjR+jVq1edt/v7+8PKygqxsbFYsmQJ/Pz88OWXX+LatWto27YtUlJS8PDhQwBUAK4wb948jB07Fi+99BJGjhwJFxcX3Lt3DydPnsTt27cRGxvbKPNjjGkHDpQYYzopNjYWRkZG6Nq1a523SyQS9OjRA3FxcSgoKMDy5csxf/58bN++HRKJBH369EF0dDTGjBkDIyOj6q9zc3PD1q1bsXjxYmzfvh35+fmwsrKCt7c3oqOjG2t6jDEtIYiiKGp6EIwxpgl79+5FdHQ0Nm7ciMDAQE0PhzGmhbhGiTHWJJSWltb6d2VlJdavXw8zMzP4+PhoaFSMMW3HS2+MsSbhX//6F0pLS9GxY0c8fvwYSUlJyMjIwLvvvgtjY2NND48xpqV46Y0x1iTExcVh9erVuHr1KsrKytCqVSuMGTMGr776qqaHxhjTYhwoMcYYY4zVg2uUGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWj/8PrvnTaUStvGUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "sns.set(style='whitegrid')\n", + "\n", + "for idp_num, idp in enumerate(idp_ids):\n", + " print('Running IDP', idp_num, idp, ':')\n", + " idp_dir = os.path.join(out_dir, idp)\n", + " os.chdir(idp_dir)\n", + "\n", + " # load the true data points\n", + " yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt'))\n", + " s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt'))\n", + " y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt'))\n", + "\n", + " # set up the covariates for the dummy data\n", + " print('Making predictions with dummy covariates (for visualisation)')\n", + " yhat, s2 = predict(cov_file_dummy,\n", + " alg = 'blr',\n", + " respfile = None,\n", + " model_path = os.path.join(idp_dir,'Models'),\n", + " outputsuffix = '_dummy')\n", + "\n", + " # load the normative model\n", + " with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle:\n", + " nm = pickle.load(handle)\n", + "\n", + " # get the warp and warp parameters\n", + " W = nm.blr.warp\n", + " warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1]\n", + "\n", + " # first, we warp predictions for the true data and compute evaluation metrics\n", + " med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0]\n", + " med_te = med_te[:, np.newaxis]\n", + " print('metrics:', evaluate(y_te, med_te))\n", + "\n", + " # then, we warp dummy predictions to create the plots\n", + " med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param)\n", + "\n", + " # extract the different variance components to visualise\n", + " beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy)\n", + " s2n = 1/beta # variation (aleatoric uncertainty)\n", + " s2s = s2-s2n # modelling uncertainty (epistemic uncertainty)\n", + "\n", + " # plot the data points\n", + " y_te_rescaled_all = np.zeros_like(y_te)\n", + " for sid, site in enumerate(site_ids_te):\n", + " # plot the true test data points\n", + " if all(elem in site_ids_tr for elem in site_ids_te):\n", + " # all data in the test set are present in the training set\n", + "\n", + " # first, we select the data points belonging to this particular site\n", + " idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0]\n", + " if len(idx) == 0:\n", + " print('No data for site', sid, site, 'skipping...')\n", + " continue\n", + "\n", + " # then directly adjust the data\n", + " idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < X_te[idx,1].max())\n", + " y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy])\n", + " else:\n", + " # we need to adjust the data based on the adaptation dataset\n", + "\n", + " # first, select the data point belonging to this particular site\n", + " idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0]\n", + "\n", + " # load the adaptation data\n", + " y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt'))\n", + " X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt'))\n", + " idx_a = np.where(np.bitwise_and(X_ad[:,2] == sex, (df_ad['site'] == site).to_numpy()))[0]\n", + " if len(idx) < 2 or len(idx_a) < 2:\n", + " print('Insufficent data for site', sid, site, 'skipping...')\n", + " continue\n", + "\n", + " # adjust and rescale the data\n", + " y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp,\n", + " X_ad[idx_a,:],\n", + " np.squeeze(y_ad[idx_a]),\n", + " Xs=None,\n", + " ys=np.squeeze(y_te[idx]))\n", + " # plot the (adjusted) data points\n", + " plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1)\n", + "\n", + " # plot the median of the dummy data\n", + " plt.plot(xx, med, clr)\n", + "\n", + " # fill the gaps in between the centiles\n", + " junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.25,0.75])\n", + " junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.05,0.95])\n", + " junk, pr_int99 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.01,0.99])\n", + " plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr)\n", + " plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr)\n", + " plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr)\n", + "\n", + " # make the width of each centile proportional to the epistemic uncertainty\n", + " junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.25,0.75])\n", + " junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.05,0.95])\n", + " junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.01,0.99])\n", + " junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.25,0.75])\n", + " junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.05,0.95])\n", + " junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99])\n", + " plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr)\n", + " plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr)\n", + " plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr)\n", + " plt.fill_between(xx, pr_int25l[:,1], pr_int25u[:,1], alpha = 0.3,color=clr)\n", + " plt.fill_between(xx, pr_int95l[:,1], pr_int95u[:,1], alpha = 0.3,color=clr)\n", + " plt.fill_between(xx, pr_int99l[:,1], pr_int99u[:,1], alpha = 0.3,color=clr)\n", + "\n", + " # plot actual centile lines\n", + " plt.plot(xx, pr_int25[:,0],color=clr, linewidth=0.5)\n", + " plt.plot(xx, pr_int25[:,1],color=clr, linewidth=0.5)\n", + " plt.plot(xx, pr_int95[:,0],color=clr, linewidth=0.5)\n", + " plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5)\n", + " plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5)\n", + " plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5)\n", + "\n", + " plt.xlabel('Age')\n", + " plt.ylabel(idp)\n", + " plt.title(idp)\n", + " plt.xlim((0,90))\n", + " plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)), bbox_inches='tight')\n", + " plt.show()\n", + "\n", + "os.chdir(out_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "135dbebd-f563-4a2a-9f44-f96757fb4b0b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "135dbebd-f563-4a2a-9f44-f96757fb4b0b", + "outputId": "6aabc7ba-2896-4a35-932d-bd843f90b8e5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "centiles_1.png\t Models\t Rho_predict.txt\tSMSE_predict.txt ys2_predict.txt\n", + "cov_bspline_ad.txt pRho_predict.txt RMSE_predict.txt\tyhat_dummy.pkl\t Z_predict.txt\n", + "cov_bspline_te.txt resp_ad.txt sitenum_ad.txt\tyhat_predict.txt\n", + "EXPV_predict.txt resp_te.txt sitenum_te.txt\tys2_dummy.pkl\n" + ] + } + ], + "source": [ + "# explore an example output folder of a single model (one ROI)\n", + "# think about what each of these output files represents.\n", + "# Hint: look at the variable names and comments in the code block above\n", + "! ls rh_MeanThickness_thickness/" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "fe1cac10-01f1-42fd-a4b7-cf08ce0d64be", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fe1cac10-01f1-42fd-a4b7-cf08ce0d64be", + "outputId": "cd83ef21-0698-4183-9b90-a48a1f90f465" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 436 436 11115\n" + ] + } + ], + "source": [ + "# check that the number of deviation scores matches the number of subjects in the test set\n", + "# there should be one deviation score per subject (one line per subject), so we can\n", + "# verify by counting the line numbers in the Z_predict.txt file\n", + "! cat rh_MeanThickness_thickness/Z_predict.txt | wc" + ] + }, + { + "cell_type": "markdown", + "id": "88d2dbc0-e82f-4af5-91eb-dc8aa60f6ba7", + "metadata": { + "id": "88d2dbc0-e82f-4af5-91eb-dc8aa60f6ba7" + }, + "source": [ + "The deviation scores are output as a text file in separate folders. We want to summarize the deviation scores across all models estimates so we can organize them into a single file, and merge the deviation scores into the original data file." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "e3fb0ced-ed44-487c-86b8-07b9fc04d64e", + "metadata": { + "id": "e3fb0ced-ed44-487c-86b8-07b9fc04d64e" + }, + "outputs": [], + "source": [ + "! mkdir deviation_scores" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "571f549e-9edd-4f8b-a6b3-d76cd23609f0", + "metadata": { + "id": "571f549e-9edd-4f8b-a6b3-d76cd23609f0" + }, + "outputs": [], + "source": [ + "! for i in *; do if [[ -e ${i}/Z_predict.txt ]]; then cp ${i}/Z_predict.txt deviation_scores/${i}_Z_predict.txt; fi; done" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "9f63da6c-91e8-4852-91a7-a4e8bc9d9f31", + "metadata": { + "id": "9f63da6c-91e8-4852-91a7-a4e8bc9d9f31" + }, + "outputs": [], + "source": [ + "z_dir = '/content/braincharts/models/' + model_name + '/deviation_scores/'\n", + "\n", + "filelist = [name for name in os.listdir(z_dir)]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8791195b-09a9-4251-8fd7-35e80a028d2f", + "metadata": { + "id": "8791195b-09a9-4251-8fd7-35e80a028d2f" + }, + "outputs": [], + "source": [ + "os.chdir(z_dir)\n", + "Z_df = pd.concat([pd.read_csv(item, names=[item[:-4]]) for item in filelist], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f1054959-dd17-4c1b-b1db-56cf849ecae2", + "metadata": { + "id": "f1054959-dd17-4c1b-b1db-56cf849ecae2" + }, + "outputs": [], + "source": [ + "df_te.reset_index(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "6ab00be4-d9c8-49aa-b407-f69946ca2d6c", + "metadata": { + "id": "6ab00be4-d9c8-49aa-b407-f69946ca2d6c" + }, + "outputs": [], + "source": [ + "Z_df['sub_id'] = df_te['sub_id']" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "9f6185b6-d9d7-4651-bbab-2cfba6c46963", + "metadata": { + "id": "9f6185b6-d9d7-4651-bbab-2cfba6c46963" + }, + "outputs": [], + "source": [ + "df_te_Z = pd.merge(df_te, Z_df, on='sub_id', how='inner')" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "ae932714-60c3-4a36-8b72-cd9086a25761", + "metadata": { + "id": "ae932714-60c3-4a36-8b72-cd9086a25761" + }, + "outputs": [], + "source": [ + "df_te_Z.to_csv('OpenNeuroTransfer_deviation_scores.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "9c97bd6e", + "metadata": { + "id": "9c97bd6e" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "apply_normative_models.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "braincharts", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "vscode": { + "interpreter": { + "hash": "f65f66140ab2d9a57fedc58a3b7e1d01f34d12111107cec87dc46b07c8179a15" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file From 700e8271af69303142471ff2a8bd3190e7b7a275 Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 18 Nov 2024 09:56:14 +0100 Subject: [PATCH 63/68] Move numba and nutpie deps to pyproject.toml --- .gitignore | 6 +- doc/source/pages/FAQs.rst | 2 +- poetry.lock | 303 +++++++++++++++++++++++++++++--------- pyproject.toml | 14 +- tests/test_test.py | 0 5 files changed, 245 insertions(+), 80 deletions(-) create mode 100644 tests/test_test.py diff --git a/.gitignore b/.gitignore index c877c0c6..ddd329e6 100644 --- a/.gitignore +++ b/.gitignore @@ -92,4 +92,8 @@ build/* # CLI test folder tests/cli_test/* !tests/cli_test/test_cli.sh -!tests/cli_test/split_data.py \ No newline at end of file +!tests/cli_test/split_data.py + +docs/autoapi/* +docs/_build/* +docs \ No newline at end of file diff --git a/doc/source/pages/FAQs.rst b/doc/source/pages/FAQs.rst index a8879d36..efe98bd0 100644 --- a/doc/source/pages/FAQs.rst +++ b/doc/source/pages/FAQs.rst @@ -5,7 +5,7 @@ Frequently Asked Questions Most of the questions we recieve are about interpretation of normative modeling outputs. -The PCNtoolkit develoers have written a protocol for how to run a normative modeling analysis which should be helpful to you if you are just getting started. +The PCNtoolkit developers have written a protocol for how to run a normative modeling analysis which should be helpful to you if you are just getting started. Rutherford, S., Kia, S. M., Wolfers, T., ... Beckmann, C. F., & Marquand, A. F. (2022). The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5. diff --git a/poetry.lock b/poetry.lock index 4607f4a6..9c91ef44 100644 --- a/poetry.lock +++ b/poetry.lock @@ -626,59 +626,61 @@ typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "fonttools" -version = "4.54.1" +version = "4.55.0" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.54.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7ed7ee041ff7b34cc62f07545e55e1468808691dddfd315d51dd82a6b37ddef2"}, - {file = "fonttools-4.54.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41bb0b250c8132b2fcac148e2e9198e62ff06f3cc472065dff839327945c5882"}, - {file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7965af9b67dd546e52afcf2e38641b5be956d68c425bef2158e95af11d229f10"}, - {file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:278913a168f90d53378c20c23b80f4e599dca62fbffae4cc620c8eed476b723e"}, - {file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0e88e3018ac809b9662615072dcd6b84dca4c2d991c6d66e1970a112503bba7e"}, - {file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:4aa4817f0031206e637d1e685251ac61be64d1adef111060df84fdcbc6ab6c44"}, - {file = "fonttools-4.54.1-cp310-cp310-win32.whl", hash = "sha256:7e3b7d44e18c085fd8c16dcc6f1ad6c61b71ff463636fcb13df7b1b818bd0c02"}, - {file = "fonttools-4.54.1-cp310-cp310-win_amd64.whl", hash = "sha256:dd9cc95b8d6e27d01e1e1f1fae8559ef3c02c76317da650a19047f249acd519d"}, - {file = "fonttools-4.54.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5419771b64248484299fa77689d4f3aeed643ea6630b2ea750eeab219588ba20"}, - {file = "fonttools-4.54.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:301540e89cf4ce89d462eb23a89464fef50915255ece765d10eee8b2bf9d75b2"}, - {file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ae5091547e74e7efecc3cbf8e75200bc92daaeb88e5433c5e3e95ea8ce5aa7"}, - {file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82834962b3d7c5ca98cb56001c33cf20eb110ecf442725dc5fdf36d16ed1ab07"}, - {file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d26732ae002cc3d2ecab04897bb02ae3f11f06dd7575d1df46acd2f7c012a8d8"}, - {file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:58974b4987b2a71ee08ade1e7f47f410c367cdfc5a94fabd599c88165f56213a"}, - {file = "fonttools-4.54.1-cp311-cp311-win32.whl", hash = "sha256:ab774fa225238986218a463f3fe151e04d8c25d7de09df7f0f5fce27b1243dbc"}, - {file = "fonttools-4.54.1-cp311-cp311-win_amd64.whl", hash = "sha256:07e005dc454eee1cc60105d6a29593459a06321c21897f769a281ff2d08939f6"}, - {file = "fonttools-4.54.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:54471032f7cb5fca694b5f1a0aaeba4af6e10ae989df408e0216f7fd6cdc405d"}, - {file = "fonttools-4.54.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fa92cb248e573daab8d032919623cc309c005086d743afb014c836636166f08"}, - {file = "fonttools-4.54.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a911591200114969befa7f2cb74ac148bce5a91df5645443371aba6d222e263"}, - {file = "fonttools-4.54.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93d458c8a6a354dc8b48fc78d66d2a8a90b941f7fec30e94c7ad9982b1fa6bab"}, - {file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5eb2474a7c5be8a5331146758debb2669bf5635c021aee00fd7c353558fc659d"}, - {file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c9c563351ddc230725c4bdf7d9e1e92cbe6ae8553942bd1fb2b2ff0884e8b714"}, - {file = "fonttools-4.54.1-cp312-cp312-win32.whl", hash = "sha256:fdb062893fd6d47b527d39346e0c5578b7957dcea6d6a3b6794569370013d9ac"}, - {file = "fonttools-4.54.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4564cf40cebcb53f3dc825e85910bf54835e8a8b6880d59e5159f0f325e637e"}, - {file = "fonttools-4.54.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6e37561751b017cf5c40fce0d90fd9e8274716de327ec4ffb0df957160be3bff"}, - {file = "fonttools-4.54.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:357cacb988a18aace66e5e55fe1247f2ee706e01debc4b1a20d77400354cddeb"}, - {file = "fonttools-4.54.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e953cc0bddc2beaf3a3c3b5dd9ab7554677da72dfaf46951e193c9653e515a"}, - {file = "fonttools-4.54.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:58d29b9a294573d8319f16f2f79e42428ba9b6480442fa1836e4eb89c4d9d61c"}, - {file = "fonttools-4.54.1-cp313-cp313-win32.whl", hash = "sha256:9ef1b167e22709b46bf8168368b7b5d3efeaaa746c6d39661c1b4405b6352e58"}, - {file = "fonttools-4.54.1-cp313-cp313-win_amd64.whl", hash = "sha256:262705b1663f18c04250bd1242b0515d3bbae177bee7752be67c979b7d47f43d"}, - {file = "fonttools-4.54.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ed2f80ca07025551636c555dec2b755dd005e2ea8fbeb99fc5cdff319b70b23b"}, - {file = "fonttools-4.54.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9dc080e5a1c3b2656caff2ac2633d009b3a9ff7b5e93d0452f40cd76d3da3b3c"}, - {file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d152d1be65652fc65e695e5619e0aa0982295a95a9b29b52b85775243c06556"}, - {file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8583e563df41fdecef31b793b4dd3af8a9caa03397be648945ad32717a92885b"}, - {file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:0d1d353ef198c422515a3e974a1e8d5b304cd54a4c2eebcae708e37cd9eeffb1"}, - {file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:fda582236fee135d4daeca056c8c88ec5f6f6d88a004a79b84a02547c8f57386"}, - {file = "fonttools-4.54.1-cp38-cp38-win32.whl", hash = "sha256:e7d82b9e56716ed32574ee106cabca80992e6bbdcf25a88d97d21f73a0aae664"}, - {file = "fonttools-4.54.1-cp38-cp38-win_amd64.whl", hash = "sha256:ada215fd079e23e060157aab12eba0d66704316547f334eee9ff26f8c0d7b8ab"}, - {file = "fonttools-4.54.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f5b8a096e649768c2f4233f947cf9737f8dbf8728b90e2771e2497c6e3d21d13"}, - {file = "fonttools-4.54.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4e10d2e0a12e18f4e2dd031e1bf7c3d7017be5c8dbe524d07706179f355c5dac"}, - {file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31c32d7d4b0958600eac75eaf524b7b7cb68d3a8c196635252b7a2c30d80e986"}, - {file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c39287f5c8f4a0c5a55daf9eaf9ccd223ea59eed3f6d467133cc727d7b943a55"}, - {file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a7a310c6e0471602fe3bf8efaf193d396ea561486aeaa7adc1f132e02d30c4b9"}, - {file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d3b659d1029946f4ff9b6183984578041b520ce0f8fb7078bb37ec7445806b33"}, - {file = "fonttools-4.54.1-cp39-cp39-win32.whl", hash = "sha256:e96bc94c8cda58f577277d4a71f51c8e2129b8b36fd05adece6320dd3d57de8a"}, - {file = "fonttools-4.54.1-cp39-cp39-win_amd64.whl", hash = "sha256:e8a4b261c1ef91e7188a30571be6ad98d1c6d9fa2427244c545e2fa0a2494dd7"}, - {file = "fonttools-4.54.1-py3-none-any.whl", hash = "sha256:37cddd62d83dc4f72f7c3f3c2bcf2697e89a30efb152079896544a93907733bd"}, - {file = "fonttools-4.54.1.tar.gz", hash = "sha256:957f669d4922f92c171ba01bef7f29410668db09f6c02111e22b2bce446f3285"}, + {file = "fonttools-4.55.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:51c029d4c0608a21a3d3d169dfc3fb776fde38f00b35ca11fdab63ba10a16f61"}, + {file = "fonttools-4.55.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bca35b4e411362feab28e576ea10f11268b1aeed883b9f22ed05675b1e06ac69"}, + {file = "fonttools-4.55.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ce4ba6981e10f7e0ccff6348e9775ce25ffadbee70c9fd1a3737e3e9f5fa74f"}, + {file = "fonttools-4.55.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31d00f9852a6051dac23294a4cf2df80ced85d1d173a61ba90a3d8f5abc63c60"}, + {file = "fonttools-4.55.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e198e494ca6e11f254bac37a680473a311a88cd40e58f9cc4dc4911dfb686ec6"}, + {file = "fonttools-4.55.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7208856f61770895e79732e1dcbe49d77bd5783adf73ae35f87fcc267df9db81"}, + {file = "fonttools-4.55.0-cp310-cp310-win32.whl", hash = "sha256:e7e6a352ff9e46e8ef8a3b1fe2c4478f8a553e1b5a479f2e899f9dc5f2055880"}, + {file = "fonttools-4.55.0-cp310-cp310-win_amd64.whl", hash = "sha256:636caaeefe586d7c84b5ee0734c1a5ab2dae619dc21c5cf336f304ddb8f6001b"}, + {file = "fonttools-4.55.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:fa34aa175c91477485c44ddfbb51827d470011e558dfd5c7309eb31bef19ec51"}, + {file = "fonttools-4.55.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:37dbb3fdc2ef7302d3199fb12468481cbebaee849e4b04bc55b77c24e3c49189"}, + {file = "fonttools-4.55.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5263d8e7ef3c0ae87fbce7f3ec2f546dc898d44a337e95695af2cd5ea21a967"}, + {file = "fonttools-4.55.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f307f6b5bf9e86891213b293e538d292cd1677e06d9faaa4bf9c086ad5f132f6"}, + {file = "fonttools-4.55.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f0a4b52238e7b54f998d6a56b46a2c56b59c74d4f8a6747fb9d4042190f37cd3"}, + {file = "fonttools-4.55.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3e569711464f777a5d4ef522e781dc33f8095ab5efd7548958b36079a9f2f88c"}, + {file = "fonttools-4.55.0-cp311-cp311-win32.whl", hash = "sha256:2b3ab90ec0f7b76c983950ac601b58949f47aca14c3f21eed858b38d7ec42b05"}, + {file = "fonttools-4.55.0-cp311-cp311-win_amd64.whl", hash = "sha256:aa046f6a63bb2ad521004b2769095d4c9480c02c1efa7d7796b37826508980b6"}, + {file = "fonttools-4.55.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:838d2d8870f84fc785528a692e724f2379d5abd3fc9dad4d32f91cf99b41e4a7"}, + {file = "fonttools-4.55.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f46b863d74bab7bb0d395f3b68d3f52a03444964e67ce5c43ce43a75efce9246"}, + {file = "fonttools-4.55.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33b52a9cfe4e658e21b1f669f7309b4067910321757fec53802ca8f6eae96a5a"}, + {file = "fonttools-4.55.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:732a9a63d6ea4a81b1b25a1f2e5e143761b40c2e1b79bb2b68e4893f45139a40"}, + {file = "fonttools-4.55.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7dd91ac3fcb4c491bb4763b820bcab6c41c784111c24172616f02f4bc227c17d"}, + {file = "fonttools-4.55.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1f0e115281a32ff532118aa851ef497a1b7cda617f4621c1cdf81ace3e36fb0c"}, + {file = "fonttools-4.55.0-cp312-cp312-win32.whl", hash = "sha256:6c99b5205844f48a05cb58d4a8110a44d3038c67ed1d79eb733c4953c628b0f6"}, + {file = "fonttools-4.55.0-cp312-cp312-win_amd64.whl", hash = "sha256:f8c8c76037d05652510ae45be1cd8fb5dd2fd9afec92a25374ac82255993d57c"}, + {file = "fonttools-4.55.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8118dc571921dc9e4b288d9cb423ceaf886d195a2e5329cc427df82bba872cd9"}, + {file = "fonttools-4.55.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:01124f2ca6c29fad4132d930da69158d3f49b2350e4a779e1efbe0e82bd63f6c"}, + {file = "fonttools-4.55.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81ffd58d2691f11f7c8438796e9f21c374828805d33e83ff4b76e4635633674c"}, + {file = "fonttools-4.55.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5435e5f1eb893c35c2bc2b9cd3c9596b0fcb0a59e7a14121562986dd4c47b8dd"}, + {file = "fonttools-4.55.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d12081729280c39d001edd0f4f06d696014c26e6e9a0a55488fabc37c28945e4"}, + {file = "fonttools-4.55.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a7ad1f1b98ab6cb927ab924a38a8649f1ffd7525c75fe5b594f5dab17af70e18"}, + {file = "fonttools-4.55.0-cp313-cp313-win32.whl", hash = "sha256:abe62987c37630dca69a104266277216de1023cf570c1643bb3a19a9509e7a1b"}, + {file = "fonttools-4.55.0-cp313-cp313-win_amd64.whl", hash = "sha256:2863555ba90b573e4201feaf87a7e71ca3b97c05aa4d63548a4b69ea16c9e998"}, + {file = "fonttools-4.55.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:00f7cf55ad58a57ba421b6a40945b85ac7cc73094fb4949c41171d3619a3a47e"}, + {file = "fonttools-4.55.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f27526042efd6f67bfb0cc2f1610fa20364396f8b1fc5edb9f45bb815fb090b2"}, + {file = "fonttools-4.55.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e67974326af6a8879dc2a4ec63ab2910a1c1a9680ccd63e4a690950fceddbe"}, + {file = "fonttools-4.55.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61dc0a13451143c5e987dec5254d9d428f3c2789a549a7cf4f815b63b310c1cc"}, + {file = "fonttools-4.55.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:b2e526b325a903868c62155a6a7e24df53f6ce4c5c3160214d8fe1be2c41b478"}, + {file = "fonttools-4.55.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b7ef9068a1297714e6fefe5932c33b058aa1d45a2b8be32a4c6dee602ae22b5c"}, + {file = "fonttools-4.55.0-cp38-cp38-win32.whl", hash = "sha256:55718e8071be35dff098976bc249fc243b58efa263768c611be17fe55975d40a"}, + {file = "fonttools-4.55.0-cp38-cp38-win_amd64.whl", hash = "sha256:553bd4f8cc327f310c20158e345e8174c8eed49937fb047a8bda51daf2c353c8"}, + {file = "fonttools-4.55.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f901cef813f7c318b77d1c5c14cf7403bae5cb977cede023e22ba4316f0a8f6"}, + {file = "fonttools-4.55.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8c9679fc0dd7e8a5351d321d8d29a498255e69387590a86b596a45659a39eb0d"}, + {file = "fonttools-4.55.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2820a8b632f3307ebb0bf57948511c2208e34a4939cf978333bc0a3f11f838"}, + {file = "fonttools-4.55.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23bbbb49bec613a32ed1b43df0f2b172313cee690c2509f1af8fdedcf0a17438"}, + {file = "fonttools-4.55.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a656652e1f5d55b9728937a7e7d509b73d23109cddd4e89ee4f49bde03b736c6"}, + {file = "fonttools-4.55.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f50a1f455902208486fbca47ce33054208a4e437b38da49d6721ce2fef732fcf"}, + {file = "fonttools-4.55.0-cp39-cp39-win32.whl", hash = "sha256:161d1ac54c73d82a3cded44202d0218ab007fde8cf194a23d3dd83f7177a2f03"}, + {file = "fonttools-4.55.0-cp39-cp39-win_amd64.whl", hash = "sha256:ca7fd6987c68414fece41c96836e945e1f320cda56fc96ffdc16e54a44ec57a2"}, + {file = "fonttools-4.55.0-py3-none-any.whl", hash = "sha256:12db5888cd4dd3fcc9f0ee60c6edd3c7e1fd44b7dd0f31381ea03df68f8a153f"}, + {file = "fonttools-4.55.0.tar.gz", hash = "sha256:7636acc6ab733572d5e7eec922b254ead611f1cdad17be3f0be7418e8bfaca71"}, ] [package.extras] @@ -1121,6 +1123,36 @@ files = [ {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] +[[package]] +name = "llvmlite" +version = "0.43.0" +description = "lightweight wrapper around basic LLVM functionality" +optional = false +python-versions = ">=3.9" +files = [ + {file = "llvmlite-0.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a289af9a1687c6cf463478f0fa8e8aa3b6fb813317b0d70bf1ed0759eab6f761"}, + {file = "llvmlite-0.43.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d4fd101f571a31acb1559ae1af30f30b1dc4b3186669f92ad780e17c81e91bc"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d434ec7e2ce3cc8f452d1cd9a28591745de022f931d67be688a737320dfcead"}, + {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6912a87782acdff6eb8bf01675ed01d60ca1f2551f8176a300a886f09e836a6a"}, + {file = "llvmlite-0.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:14f0e4bf2fd2d9a75a3534111e8ebeb08eda2f33e9bdd6dfa13282afacdde0ed"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98"}, + {file = "llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2"}, + {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749"}, + {file = "llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7"}, + {file = "llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f"}, + {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844"}, + {file = "llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9"}, + {file = "llvmlite-0.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9cd2a7376f7b3367019b664c21f0c61766219faa3b03731113ead75107f3b66c"}, + {file = "llvmlite-0.43.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18e9953c748b105668487b7c81a3e97b046d8abf95c4ddc0cd3c94f4e4651ae8"}, + {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74937acd22dc11b33946b67dca7680e6d103d6e90eeaaaf932603bec6fe7b03a"}, + {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9efc739cc6ed760f795806f67889923f7274276f0eb45092a1473e40d9b867"}, + {file = "llvmlite-0.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:47e147cdda9037f94b399bf03bfd8a6b6b1f2f90be94a454e3386f006455a9b4"}, + {file = "llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5"}, +] + [[package]] name = "logical-unification" version = "0.4.6" @@ -1398,6 +1430,40 @@ test = ["coverage (>=7.2)", "pytest", "pytest-cov", "pytest-doctestplus", "pytes typing = ["tox"] zstd = ["pyzstd (>=0.14.3)"] +[[package]] +name = "numba" +version = "0.60.0" +description = "compiling Python code using LLVM" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numba-0.60.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d761de835cd38fb400d2c26bb103a2726f548dc30368853121d66201672e651"}, + {file = "numba-0.60.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:159e618ef213fba758837f9837fb402bbe65326e60ba0633dbe6c7f274d42c1b"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1527dc578b95c7c4ff248792ec33d097ba6bef9eda466c948b68dfc995c25781"}, + {file = "numba-0.60.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe0b28abb8d70f8160798f4de9d486143200f34458d34c4a214114e445d7124e"}, + {file = "numba-0.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:19407ced081d7e2e4b8d8c36aa57b7452e0283871c296e12d798852bc7d7f198"}, + {file = "numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8"}, + {file = "numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703"}, + {file = "numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8"}, + {file = "numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2"}, + {file = "numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404"}, + {file = "numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e"}, + {file = "numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d"}, + {file = "numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347"}, + {file = "numba-0.60.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:01ef4cd7d83abe087d644eaa3d95831b777aa21d441a23703d649e06b8e06b74"}, + {file = "numba-0.60.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:819a3dfd4630d95fd574036f99e47212a1af41cbcb019bf8afac63ff56834449"}, + {file = "numba-0.60.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0b983bd6ad82fe868493012487f34eae8bf7dd94654951404114f23c3466d34b"}, + {file = "numba-0.60.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c151748cd269ddeab66334bd754817ffc0cabd9433acb0f551697e5151917d25"}, + {file = "numba-0.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:3031547a015710140e8c87226b4cfe927cac199835e5bf7d4fe5cb64e814e3ab"}, + {file = "numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16"}, +] + +[package.dependencies] +llvmlite = "==0.43.*" +numpy = ">=1.22,<2.1" + [[package]] name = "numpy" version = "1.26.4" @@ -1443,6 +1509,45 @@ files = [ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, ] +[[package]] +name = "nutpie" +version = "0.13.2" +description = "Sample Stan or PyMC models" +optional = false +python-versions = ">=3.10" +files = [ + {file = "nutpie-0.13.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4c731b6b32f51407ca973aefdcb0241c6dadfebcf47e781557344d28d346c0fa"}, + {file = "nutpie-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b69e62c4d25e62e670ef31244e65556ed562650dfbc56a068972e177c5e5e291"}, + {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a7cfe73f29769f7185e677587755ba63818e9334d161a69216c8d6cefd9d66b7"}, + {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0202a5b2352b065a269dd1467cacd4b9ef4020665373e4d12eede232425eaea8"}, + {file = "nutpie-0.13.2-cp310-none-win_amd64.whl", hash = "sha256:fa2f5f46fad31d9cdac486510a656a7e85df470662ffcd6c3c84534eb7d24c28"}, + {file = "nutpie-0.13.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:024fb04ddcaa2ce8a2cf6864bebe68acfb68518f6199c6d3de0c6b9b49d1ac75"}, + {file = "nutpie-0.13.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:225f17a15e33f731db43c55f821b988df2781568e2dc6f22ae9798e259386009"}, + {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:1a7a5e7012976327485349b581ae762cd6e60bb1805f9d323e0eed2d945c73a3"}, + {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be1635cdd6ec19cc541e212ee95e11288dda7a234a2ae7f70c2c91fdaa677fe0"}, + {file = "nutpie-0.13.2-cp311-none-win_amd64.whl", hash = "sha256:d7d297a975737ca997890cae284adca74e429567503596cbf66a37640faf4f10"}, + {file = "nutpie-0.13.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1656a4e45981db30d9ca850e889c10ac69c3e327a994607924c2db1dcefb49c7"}, + {file = "nutpie-0.13.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:57b6f6640996d88b290285acdcf7978bf9f6257c2a80d38eb5d1903e11bb0301"}, + {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:e1419e53a5ce3bfba39157cb1381eb18f1835bd1b73312d485e1f543f9ce3748"}, + {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6d29babf3773544692153799b3579f9de1e084a06fd2dcc851e97bef4c92768b"}, + {file = "nutpie-0.13.2-cp312-none-win_amd64.whl", hash = "sha256:5b6f45e2e475eee1519f18b6cbcd56ef225dbcaeb6f35e248d829467097ab385"}, + {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:db240a317b1ded7eddf2ca8e2b4bcfcdbd4624256655aac61625c8f7d5ca39d0"}, + {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2100024275ec6ba6de899188a3a2111f4b68aee7bfdbd4e4eb02ed4c922a9f22"}, + {file = "nutpie-0.13.2.tar.gz", hash = "sha256:f14282e2ac045c67a9b262a865b02a243178c55b541b236b21dfcb0c3678bcea"}, +] + +[package.dependencies] +arviz = ">=0.15.0" +pandas = ">=2.0" +pyarrow = ">=12.0.0" +xarray = ">=2023.6.0" + +[package.extras] +all = ["bridgestan (>=2.4.1)", "jax (>=0.4.27)", "numba (>=0.59.1)", "pymc (>=5.15.0)"] +pymc = ["numba (>=0.59.1)", "pymc (>=5.15.0)"] +pymc-jax = ["jax (>=0.4.27)", "pymc (>=5.15.0)"] +stan = ["bridgestan (>=2.4.1)"] + [[package]] name = "packaging" version = "24.2" @@ -1772,6 +1877,60 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "pyarrow" +version = "18.0.0" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2333f93260674e185cfbf208d2da3007132572e56871f451ba1a556b45dae6e2"}, + {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:4c381857754da44326f3a49b8b199f7f87a51c2faacd5114352fc78de30d3aba"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:603cd8ad4976568954598ef0a6d4ed3dfb78aff3d57fa8d6271f470f0ce7d34f"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58a62549a3e0bc9e03df32f350e10e1efb94ec6cf63e3920c3385b26663948ce"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bc97316840a349485fbb137eb8d0f4d7057e1b2c1272b1a20eebbbe1848f5122"}, + {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:2e549a748fa8b8715e734919923f69318c953e077e9c02140ada13e59d043310"}, + {file = "pyarrow-18.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:606e9a3dcb0f52307c5040698ea962685fb1c852d72379ee9412be7de9c5f9e2"}, + {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d5795e37c0a33baa618c5e054cd61f586cf76850a251e2b21355e4085def6280"}, + {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:5f0510608ccd6e7f02ca8596962afb8c6cc84c453e7be0da4d85f5f4f7b0328a"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:616ea2826c03c16e87f517c46296621a7c51e30400f6d0a61be645f203aa2b93"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1824f5b029ddd289919f354bc285992cb4e32da518758c136271cf66046ef22"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6dd1b52d0d58dd8f685ced9971eb49f697d753aa7912f0a8f50833c7a7426319"}, + {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:320ae9bd45ad7ecc12ec858b3e8e462578de060832b98fc4d671dee9f10d9954"}, + {file = "pyarrow-18.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2c992716cffb1088414f2b478f7af0175fd0a76fea80841b1706baa8fb0ebaad"}, + {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:e7ab04f272f98ebffd2a0661e4e126036f6936391ba2889ed2d44c5006237802"}, + {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:03f40b65a43be159d2f97fd64dc998f769d0995a50c00f07aab58b0b3da87e1f"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be08af84808dff63a76860847c48ec0416928a7b3a17c2f49a072cac7c45efbd"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c70c1965cde991b711a98448ccda3486f2a336457cf4ec4dca257a926e149c9"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:00178509f379415a3fcf855af020e3340254f990a8534294ec3cf674d6e255fd"}, + {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:a71ab0589a63a3e987beb2bc172e05f000a5c5be2636b4b263c44034e215b5d7"}, + {file = "pyarrow-18.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe92efcdbfa0bcf2fa602e466d7f2905500f33f09eb90bf0bcf2e6ca41b574c8"}, + {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:907ee0aa8ca576f5e0cdc20b5aeb2ad4d3953a3b4769fc4b499e00ef0266f02f"}, + {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:66dcc216ebae2eb4c37b223feaf82f15b69d502821dde2da138ec5a3716e7463"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc1daf7c425f58527900876354390ee41b0ae962a73ad0959b9d829def583bb1"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:871b292d4b696b09120ed5bde894f79ee2a5f109cb84470546471df264cae136"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:082ba62bdcb939824ba1ce10b8acef5ab621da1f4c4805e07bfd153617ac19d4"}, + {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:2c664ab88b9766413197733c1720d3dcd4190e8fa3bbdc3710384630a0a7207b"}, + {file = "pyarrow-18.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:dc892be34dbd058e8d189b47db1e33a227d965ea8805a235c8a7286f7fd17d3a"}, + {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:28f9c39a56d2c78bf6b87dcc699d520ab850919d4a8c7418cd20eda49874a2ea"}, + {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:f1a198a50c409ab2d009fbf20956ace84567d67f2c5701511d4dd561fae6f32e"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5bd7fd32e3ace012d43925ea4fc8bd1b02cc6cc1e9813b518302950e89b5a22"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:336addb8b6f5208be1b2398442c703a710b6b937b1a046065ee4db65e782ff5a"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:45476490dd4adec5472c92b4d253e245258745d0ccaabe706f8d03288ed60a79"}, + {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b46591222c864e7da7faa3b19455196416cd8355ff6c2cc2e65726a760a3c420"}, + {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:eb7e3abcda7e1e6b83c2dc2909c8d045881017270a119cc6ee7fdcfe71d02df8"}, + {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:09f30690b99ce34e0da64d20dab372ee54431745e4efb78ac938234a282d15f9"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5ca5d707e158540312e09fd907f9f49bacbe779ab5236d9699ced14d2293b8"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6331f280c6e4521c69b201a42dd978f60f7e129511a55da9e0bfe426b4ebb8d"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3ac24b2be732e78a5a3ac0b3aa870d73766dd00beba6e015ea2ea7394f8b4e55"}, + {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b30a927c6dff89ee702686596f27c25160dd6c99be5bcc1513a763ae5b1bfc03"}, + {file = "pyarrow-18.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:8f40ec677e942374e3d7f2fad6a67a4c2811a8b975e8703c6fd26d3b168a90e2"}, + {file = "pyarrow-18.0.0.tar.gz", hash = "sha256:a6aa027b1a9d2970cf328ccd6dbe4a996bc13c39fd427f502782f5bdb9ca20f5"}, +] + +[package.extras] +test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] + [[package]] name = "pycparser" version = "2.22" @@ -1799,13 +1958,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pymc" -version = "5.18.0" +version = "5.18.2" description = "Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor" optional = false python-versions = ">=3.10" files = [ - {file = "pymc-5.18.0-py3-none-any.whl", hash = "sha256:e2c1f478ae855395e345edd1ea7fb5b8d65fb34babd22d31af9ee409f4252cf1"}, - {file = "pymc-5.18.0.tar.gz", hash = "sha256:6e3c2235fa24198a3b1b929b1466cd36c65709822eb48821fb5b0e3684b5fd12"}, + {file = "pymc-5.18.2-py3-none-any.whl", hash = "sha256:c8ff5648d16f258fd28da51db4c3feff0f538bdfe3be4f2c85021e310e5cbc3c"}, + {file = "pymc-5.18.2.tar.gz", hash = "sha256:7879b3b7ee9dcab85b1d54d465acbdbb4b0f4a7dfd1fcb868a88362935519133"}, ] [package.dependencies] @@ -1814,7 +1973,7 @@ cachetools = ">=4.2.1" cloudpickle = "*" numpy = ">=1.15.0" pandas = ">=0.24.0" -pytensor = ">=2.25.1,<2.26" +pytensor = ">=2.26.1,<2.27" rich = ">=13.7.1" scipy = ">=1.4.1" threadpoolctl = ">=3.1.0,<4.0.0" @@ -1836,28 +1995,28 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytensor" -version = "2.25.5" +version = "2.26.3" description = "Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs." optional = false python-versions = "<3.13,>=3.10" files = [ - {file = "pytensor-2.25.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:23ffac5ce99089abe3b6e1ae0c957f3af2a382209fb5894eb42acba0e01b96bf"}, - {file = "pytensor-2.25.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29754160a84ade77b63e1690aad8306da3b8f6f8e35c8ac5d36d1b19066b5f8d"}, - {file = "pytensor-2.25.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:51ea5083ec4760e6cfda48422d1b69e88d1b68e0f9a4aca41b0a89a4f38a1da7"}, - {file = "pytensor-2.25.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:343000f352c12ec36f5307d5c9ff7d8aba6dfa651be8c26b824d75cbad29d776"}, - {file = "pytensor-2.25.5-cp310-cp310-win_amd64.whl", hash = "sha256:50264e6365578ee15298f23578ddc00cec4f015c1cb77dafbb6c3216b11f689c"}, - {file = "pytensor-2.25.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a97e769900718fea3a0efd2a4c452775786ca3bd7966c6510e89a1356e516d55"}, - {file = "pytensor-2.25.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb7f6a370a99095850949798ee0ada38ace5132172fcbb4272398e687de5b417"}, - {file = "pytensor-2.25.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:930429bdf5cee35868a06a9d075f2fb40b3471708a61bea62cfafd21aaa0811e"}, - {file = "pytensor-2.25.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:78686d9e26b26da2f0824f1f5a297f153b948a93c46e527d43d7337fe31e5afb"}, - {file = "pytensor-2.25.5-cp311-cp311-win_amd64.whl", hash = "sha256:8a7b9dc112e3cef8e05641da9429a46fe1cd9d3b3bf11763c3500bc941c49fc7"}, - {file = "pytensor-2.25.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f15cf74eff5e53854f9e74ac4991ae850e48641ccbb211200d214c599b76d691"}, - {file = "pytensor-2.25.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c99f2aed904178c59fac57f5a760b547f7c1c14c20d31e41721fbebf9e47cf1"}, - {file = "pytensor-2.25.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0c973a8a682854eb47378db33cfb5bc63ba5a868b5749fe79b2846e6795ff46d"}, - {file = "pytensor-2.25.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:16344b21bd70eb689c7db7ab91eec556012c08e9ad8a7cbeb42812d53f89a64e"}, - {file = "pytensor-2.25.5-cp312-cp312-win_amd64.whl", hash = "sha256:5edaa549903a8be02e6dcf56110d5cf523b6249460c455138e36686928a6c5a7"}, - {file = "pytensor-2.25.5-py2.py3-none-any.whl", hash = "sha256:92271932118e4d9e6528eeba1cdd0e9e8f2d05d8493eb394da2cd8cf09c8836e"}, - {file = "pytensor-2.25.5.tar.gz", hash = "sha256:f8b9f7d637104b2fc7fdd9c50219cc639744b718572c034b7cb8fe8f5051da92"}, + {file = "pytensor-2.26.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bcce400cb435309c00af2dba8eaa8825f651eb4e39571966c141bb616ff17b5b"}, + {file = "pytensor-2.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89da00c829a6107f275894f75219d48c18916e48a0946b77d8a1bebd4fe995b6"}, + {file = "pytensor-2.26.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f95bc45f2f2644866b4e603d85edbdc984e609d52877e6ca9381caaa641a1b03"}, + {file = "pytensor-2.26.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:acc6e799fba9cbf7e544c17e33c976d4e7230c87a322cc69c35b710ef720087b"}, + {file = "pytensor-2.26.3-cp310-cp310-win_amd64.whl", hash = "sha256:8c63279b86001029a38e82facc3b1d4a8b24723c1fd7263e3590886f3b2c2923"}, + {file = "pytensor-2.26.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8e41d3b68d6dfabb75c99cd6cb579c9fb9c95f02c40fb5561f39fa7a4b8f6fc6"}, + {file = "pytensor-2.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab08350715554bb53be83d3be75283bb8890caf72e97b122b4fae76244950d3f"}, + {file = "pytensor-2.26.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6b6985fb9cca966231d654d4396b293f1e33dd78a4bbb274af9f18e19defd5c3"}, + {file = "pytensor-2.26.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:06362f848cb576e378fd2ff00caf79365aa44c0fe2473d68be1de78013925518"}, + {file = "pytensor-2.26.3-cp311-cp311-win_amd64.whl", hash = "sha256:ae418d65b752a8bac50c0a401a052854ff85c509a51c70d7c6539299a75c1ba3"}, + {file = "pytensor-2.26.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:65b6b327cd8e39440b6c090d6c7ff85192f3db99f753b76cb5483fbf3212304c"}, + {file = "pytensor-2.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4954fbe7b45077063166c83e100d36ad461df283c2222d0d15dc523ac312609"}, + {file = "pytensor-2.26.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:131141f7acbbe80bfa48895269ffcf4d572a0e01ebee81ef6b4f6f1042d88a59"}, + {file = "pytensor-2.26.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c124fb425bd5867c6b206cb0b8d458ab1f983b180a63581abf9d07369b90e792"}, + {file = "pytensor-2.26.3-cp312-cp312-win_amd64.whl", hash = "sha256:cce401c6020991767a2fde1d9dc7dda30a8289fc002552bc604e53623c92b8e0"}, + {file = "pytensor-2.26.3-py2.py3-none-any.whl", hash = "sha256:447ce88dd75a71dbb7158f9ccec0ffc7dc8fdb379f334ebf870003c977e4346f"}, + {file = "pytensor-2.26.3.tar.gz", hash = "sha256:703cfdba1d66b84a1739f50abdd7c18d25f788a85f2d07ed9b5bc66c929fb2fb"}, ] [package.dependencies] @@ -2623,4 +2782,4 @@ test = ["hypothesis", "packaging", "pytest", "pytest-cov"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "83eae095eaf77b411c3945404211e299478b3374ecc52808f5b289f703bb3646" +content-hash = "5b075d3de7d6307785d93bb28f9af1d879f19bcacc1093929d6cf8a252c75d48" diff --git a/pyproject.toml b/pyproject.toml index d370c791..eb1a87e0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,14 +8,16 @@ readme = "README.md" [tool.poetry.dependencies] python = ">=3.10,<3.13" -bspline = "^0.1.1" # Install with pip -nibabel = "^5.3.1" # Prefer Conda -pymc = "^5.18.0" # Prefer Conda -scikit-learn = "^1.5.2" # Prefer Conda -seaborn = "^0.13.2" # Prefer conda -six = "^1.16.0" # Prefer conda +bspline = "^0.1.1" +nibabel = "^5.3.1" +pymc = "^5.18.0" +scikit-learn = "^1.5.2" +seaborn = "^0.13.2" +six = "^1.16.0" scipy = "^1.12" matplotlib = "^3.8.1" +numba = "^0.60.0" +nutpie = "^0.13.2" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" diff --git a/tests/test_test.py b/tests/test_test.py new file mode 100644 index 00000000..e69de29b From e9928203a503ac5539389be5ec415f5a38c3ae5d Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 18 Nov 2024 14:29:18 +0100 Subject: [PATCH 64/68] remove numba and nutpie from pyproject.toml and add numpy --- README.md | 2 +- poetry.lock | 159 +---------------------------------------------- pyproject.toml | 20 +++--- tests/testHBR.py | 2 +- 4 files changed, 14 insertions(+), 169 deletions(-) diff --git a/README.md b/README.md index f18f7801..a3699197 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ using the download here: https://www.anaconda.com/download #### Create environment ``` -conda create python==3.12 +conda create -n python==3.12 ``` #### Activate environment diff --git a/poetry.lock b/poetry.lock index 9c91ef44..ca8e0876 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1123,36 +1123,6 @@ files = [ {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, ] -[[package]] -name = "llvmlite" -version = "0.43.0" -description = "lightweight wrapper around basic LLVM functionality" -optional = false -python-versions = ">=3.9" -files = [ - {file = "llvmlite-0.43.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a289af9a1687c6cf463478f0fa8e8aa3b6fb813317b0d70bf1ed0759eab6f761"}, - {file = "llvmlite-0.43.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6d4fd101f571a31acb1559ae1af30f30b1dc4b3186669f92ad780e17c81e91bc"}, - {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d434ec7e2ce3cc8f452d1cd9a28591745de022f931d67be688a737320dfcead"}, - {file = "llvmlite-0.43.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6912a87782acdff6eb8bf01675ed01d60ca1f2551f8176a300a886f09e836a6a"}, - {file = "llvmlite-0.43.0-cp310-cp310-win_amd64.whl", hash = "sha256:14f0e4bf2fd2d9a75a3534111e8ebeb08eda2f33e9bdd6dfa13282afacdde0ed"}, - {file = "llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98"}, - {file = "llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57"}, - {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2"}, - {file = "llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749"}, - {file = "llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91"}, - {file = "llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7"}, - {file = "llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7"}, - {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f"}, - {file = "llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844"}, - {file = "llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9"}, - {file = "llvmlite-0.43.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9cd2a7376f7b3367019b664c21f0c61766219faa3b03731113ead75107f3b66c"}, - {file = "llvmlite-0.43.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:18e9953c748b105668487b7c81a3e97b046d8abf95c4ddc0cd3c94f4e4651ae8"}, - {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74937acd22dc11b33946b67dca7680e6d103d6e90eeaaaf932603bec6fe7b03a"}, - {file = "llvmlite-0.43.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9efc739cc6ed760f795806f67889923f7274276f0eb45092a1473e40d9b867"}, - {file = "llvmlite-0.43.0-cp39-cp39-win_amd64.whl", hash = "sha256:47e147cdda9037f94b399bf03bfd8a6b6b1f2f90be94a454e3386f006455a9b4"}, - {file = "llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5"}, -] - [[package]] name = "logical-unification" version = "0.4.6" @@ -1430,40 +1400,6 @@ test = ["coverage (>=7.2)", "pytest", "pytest-cov", "pytest-doctestplus", "pytes typing = ["tox"] zstd = ["pyzstd (>=0.14.3)"] -[[package]] -name = "numba" -version = "0.60.0" -description = "compiling Python code using LLVM" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numba-0.60.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d761de835cd38fb400d2c26bb103a2726f548dc30368853121d66201672e651"}, - {file = "numba-0.60.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:159e618ef213fba758837f9837fb402bbe65326e60ba0633dbe6c7f274d42c1b"}, - {file = "numba-0.60.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1527dc578b95c7c4ff248792ec33d097ba6bef9eda466c948b68dfc995c25781"}, - {file = "numba-0.60.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fe0b28abb8d70f8160798f4de9d486143200f34458d34c4a214114e445d7124e"}, - {file = "numba-0.60.0-cp310-cp310-win_amd64.whl", hash = "sha256:19407ced081d7e2e4b8d8c36aa57b7452e0283871c296e12d798852bc7d7f198"}, - {file = "numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8"}, - {file = "numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b"}, - {file = "numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703"}, - {file = "numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8"}, - {file = "numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2"}, - {file = "numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404"}, - {file = "numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c"}, - {file = "numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e"}, - {file = "numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d"}, - {file = "numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347"}, - {file = "numba-0.60.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:01ef4cd7d83abe087d644eaa3d95831b777aa21d441a23703d649e06b8e06b74"}, - {file = "numba-0.60.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:819a3dfd4630d95fd574036f99e47212a1af41cbcb019bf8afac63ff56834449"}, - {file = "numba-0.60.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0b983bd6ad82fe868493012487f34eae8bf7dd94654951404114f23c3466d34b"}, - {file = "numba-0.60.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c151748cd269ddeab66334bd754817ffc0cabd9433acb0f551697e5151917d25"}, - {file = "numba-0.60.0-cp39-cp39-win_amd64.whl", hash = "sha256:3031547a015710140e8c87226b4cfe927cac199835e5bf7d4fe5cb64e814e3ab"}, - {file = "numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16"}, -] - -[package.dependencies] -llvmlite = "==0.43.*" -numpy = ">=1.22,<2.1" - [[package]] name = "numpy" version = "1.26.4" @@ -1509,45 +1445,6 @@ files = [ {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, ] -[[package]] -name = "nutpie" -version = "0.13.2" -description = "Sample Stan or PyMC models" -optional = false -python-versions = ">=3.10" -files = [ - {file = "nutpie-0.13.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4c731b6b32f51407ca973aefdcb0241c6dadfebcf47e781557344d28d346c0fa"}, - {file = "nutpie-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b69e62c4d25e62e670ef31244e65556ed562650dfbc56a068972e177c5e5e291"}, - {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a7cfe73f29769f7185e677587755ba63818e9334d161a69216c8d6cefd9d66b7"}, - {file = "nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0202a5b2352b065a269dd1467cacd4b9ef4020665373e4d12eede232425eaea8"}, - {file = "nutpie-0.13.2-cp310-none-win_amd64.whl", hash = "sha256:fa2f5f46fad31d9cdac486510a656a7e85df470662ffcd6c3c84534eb7d24c28"}, - {file = "nutpie-0.13.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:024fb04ddcaa2ce8a2cf6864bebe68acfb68518f6199c6d3de0c6b9b49d1ac75"}, - {file = "nutpie-0.13.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:225f17a15e33f731db43c55f821b988df2781568e2dc6f22ae9798e259386009"}, - {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:1a7a5e7012976327485349b581ae762cd6e60bb1805f9d323e0eed2d945c73a3"}, - {file = "nutpie-0.13.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:be1635cdd6ec19cc541e212ee95e11288dda7a234a2ae7f70c2c91fdaa677fe0"}, - {file = "nutpie-0.13.2-cp311-none-win_amd64.whl", hash = "sha256:d7d297a975737ca997890cae284adca74e429567503596cbf66a37640faf4f10"}, - {file = "nutpie-0.13.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1656a4e45981db30d9ca850e889c10ac69c3e327a994607924c2db1dcefb49c7"}, - {file = "nutpie-0.13.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:57b6f6640996d88b290285acdcf7978bf9f6257c2a80d38eb5d1903e11bb0301"}, - {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:e1419e53a5ce3bfba39157cb1381eb18f1835bd1b73312d485e1f543f9ce3748"}, - {file = "nutpie-0.13.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6d29babf3773544692153799b3579f9de1e084a06fd2dcc851e97bef4c92768b"}, - {file = "nutpie-0.13.2-cp312-none-win_amd64.whl", hash = "sha256:5b6f45e2e475eee1519f18b6cbcd56ef225dbcaeb6f35e248d829467097ab385"}, - {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:db240a317b1ded7eddf2ca8e2b4bcfcdbd4624256655aac61625c8f7d5ca39d0"}, - {file = "nutpie-0.13.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2100024275ec6ba6de899188a3a2111f4b68aee7bfdbd4e4eb02ed4c922a9f22"}, - {file = "nutpie-0.13.2.tar.gz", hash = "sha256:f14282e2ac045c67a9b262a865b02a243178c55b541b236b21dfcb0c3678bcea"}, -] - -[package.dependencies] -arviz = ">=0.15.0" -pandas = ">=2.0" -pyarrow = ">=12.0.0" -xarray = ">=2023.6.0" - -[package.extras] -all = ["bridgestan (>=2.4.1)", "jax (>=0.4.27)", "numba (>=0.59.1)", "pymc (>=5.15.0)"] -pymc = ["numba (>=0.59.1)", "pymc (>=5.15.0)"] -pymc-jax = ["jax (>=0.4.27)", "pymc (>=5.15.0)"] -stan = ["bridgestan (>=2.4.1)"] - [[package]] name = "packaging" version = "24.2" @@ -1877,60 +1774,6 @@ files = [ [package.extras] tests = ["pytest"] -[[package]] -name = "pyarrow" -version = "18.0.0" -description = "Python library for Apache Arrow" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:2333f93260674e185cfbf208d2da3007132572e56871f451ba1a556b45dae6e2"}, - {file = "pyarrow-18.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:4c381857754da44326f3a49b8b199f7f87a51c2faacd5114352fc78de30d3aba"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:603cd8ad4976568954598ef0a6d4ed3dfb78aff3d57fa8d6271f470f0ce7d34f"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58a62549a3e0bc9e03df32f350e10e1efb94ec6cf63e3920c3385b26663948ce"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bc97316840a349485fbb137eb8d0f4d7057e1b2c1272b1a20eebbbe1848f5122"}, - {file = "pyarrow-18.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:2e549a748fa8b8715e734919923f69318c953e077e9c02140ada13e59d043310"}, - {file = "pyarrow-18.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:606e9a3dcb0f52307c5040698ea962685fb1c852d72379ee9412be7de9c5f9e2"}, - {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d5795e37c0a33baa618c5e054cd61f586cf76850a251e2b21355e4085def6280"}, - {file = "pyarrow-18.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:5f0510608ccd6e7f02ca8596962afb8c6cc84c453e7be0da4d85f5f4f7b0328a"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:616ea2826c03c16e87f517c46296621a7c51e30400f6d0a61be645f203aa2b93"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1824f5b029ddd289919f354bc285992cb4e32da518758c136271cf66046ef22"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6dd1b52d0d58dd8f685ced9971eb49f697d753aa7912f0a8f50833c7a7426319"}, - {file = "pyarrow-18.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:320ae9bd45ad7ecc12ec858b3e8e462578de060832b98fc4d671dee9f10d9954"}, - {file = "pyarrow-18.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:2c992716cffb1088414f2b478f7af0175fd0a76fea80841b1706baa8fb0ebaad"}, - {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:e7ab04f272f98ebffd2a0661e4e126036f6936391ba2889ed2d44c5006237802"}, - {file = "pyarrow-18.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:03f40b65a43be159d2f97fd64dc998f769d0995a50c00f07aab58b0b3da87e1f"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be08af84808dff63a76860847c48ec0416928a7b3a17c2f49a072cac7c45efbd"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c70c1965cde991b711a98448ccda3486f2a336457cf4ec4dca257a926e149c9"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:00178509f379415a3fcf855af020e3340254f990a8534294ec3cf674d6e255fd"}, - {file = "pyarrow-18.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:a71ab0589a63a3e987beb2bc172e05f000a5c5be2636b4b263c44034e215b5d7"}, - {file = "pyarrow-18.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe92efcdbfa0bcf2fa602e466d7f2905500f33f09eb90bf0bcf2e6ca41b574c8"}, - {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:907ee0aa8ca576f5e0cdc20b5aeb2ad4d3953a3b4769fc4b499e00ef0266f02f"}, - {file = "pyarrow-18.0.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:66dcc216ebae2eb4c37b223feaf82f15b69d502821dde2da138ec5a3716e7463"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc1daf7c425f58527900876354390ee41b0ae962a73ad0959b9d829def583bb1"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:871b292d4b696b09120ed5bde894f79ee2a5f109cb84470546471df264cae136"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:082ba62bdcb939824ba1ce10b8acef5ab621da1f4c4805e07bfd153617ac19d4"}, - {file = "pyarrow-18.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:2c664ab88b9766413197733c1720d3dcd4190e8fa3bbdc3710384630a0a7207b"}, - {file = "pyarrow-18.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:dc892be34dbd058e8d189b47db1e33a227d965ea8805a235c8a7286f7fd17d3a"}, - {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:28f9c39a56d2c78bf6b87dcc699d520ab850919d4a8c7418cd20eda49874a2ea"}, - {file = "pyarrow-18.0.0-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:f1a198a50c409ab2d009fbf20956ace84567d67f2c5701511d4dd561fae6f32e"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5bd7fd32e3ace012d43925ea4fc8bd1b02cc6cc1e9813b518302950e89b5a22"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:336addb8b6f5208be1b2398442c703a710b6b937b1a046065ee4db65e782ff5a"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:45476490dd4adec5472c92b4d253e245258745d0ccaabe706f8d03288ed60a79"}, - {file = "pyarrow-18.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b46591222c864e7da7faa3b19455196416cd8355ff6c2cc2e65726a760a3c420"}, - {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:eb7e3abcda7e1e6b83c2dc2909c8d045881017270a119cc6ee7fdcfe71d02df8"}, - {file = "pyarrow-18.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:09f30690b99ce34e0da64d20dab372ee54431745e4efb78ac938234a282d15f9"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5ca5d707e158540312e09fd907f9f49bacbe779ab5236d9699ced14d2293b8"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6331f280c6e4521c69b201a42dd978f60f7e129511a55da9e0bfe426b4ebb8d"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3ac24b2be732e78a5a3ac0b3aa870d73766dd00beba6e015ea2ea7394f8b4e55"}, - {file = "pyarrow-18.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b30a927c6dff89ee702686596f27c25160dd6c99be5bcc1513a763ae5b1bfc03"}, - {file = "pyarrow-18.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:8f40ec677e942374e3d7f2fad6a67a4c2811a8b975e8703c6fd26d3b168a90e2"}, - {file = "pyarrow-18.0.0.tar.gz", hash = "sha256:a6aa027b1a9d2970cf328ccd6dbe4a996bc13c39fd427f502782f5bdb9ca20f5"}, -] - -[package.extras] -test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] - [[package]] name = "pycparser" version = "2.22" @@ -2782,4 +2625,4 @@ test = ["hypothesis", "packaging", "pytest", "pytest-cov"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "5b075d3de7d6307785d93bb28f9af1d879f19bcacc1093929d6cf8a252c75d48" +content-hash = "8e68c8be0ee075c1bd72557f1e774ccbdb8fb0635317d234a79487e0577d1061" diff --git a/pyproject.toml b/pyproject.toml index eb1a87e0..266a05a0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,16 +8,15 @@ readme = "README.md" [tool.poetry.dependencies] python = ">=3.10,<3.13" -bspline = "^0.1.1" -nibabel = "^5.3.1" -pymc = "^5.18.0" -scikit-learn = "^1.5.2" -seaborn = "^0.13.2" -six = "^1.16.0" +bspline = "^0.1.1" +nibabel = "^5.3.1" +pymc = "^5.18.0" +scikit-learn = "^1.5.2" +six = "^1.16.0" scipy = "^1.12" -matplotlib = "^3.8.1" -numba = "^0.60.0" -nutpie = "^0.13.2" +matplotlib = "^3.9.2" +seaborn = "^0.13.2" +numpy = "^1.26" [tool.poetry.group.dev.dependencies] sphinx-tabs = "^3.4.7" @@ -30,5 +29,8 @@ ipykernel = "^6.29.5" requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" +[requires-python] +python_version = ">=3.10,<3.13" + [tool.poetry.scripts] normative = "pcntoolkit.normative:entrypoint" diff --git a/tests/testHBR.py b/tests/testHBR.py index db875fa2..cd4e833e 100644 --- a/tests/testHBR.py +++ b/tests/testHBR.py @@ -61,7 +61,7 @@ model_type=model_type, likelihood="SHASHb", linear_sigma="True", - random_slope_mu="False", + random_slope_mu="True", linear_epsilon="False", linear_delta="False", nuts_sampler="nutpie", From 0c083b24fcd83ecc37b70448046eea90e40c7e19 Mon Sep 17 00:00:00 2001 From: Stijn Date: Mon, 18 Nov 2024 14:58:19 +0100 Subject: [PATCH 65/68] Update README.md --- README.md | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index a3699197..04ba245a 100644 --- a/README.md +++ b/README.md @@ -23,16 +23,17 @@ conda create -n python==3.12 source activate ``` -#### Install torch - -Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option. - -### Install nutpie using conda +### Install nutpie and numba from conda-forge ``` conda install nutpie numba -c conda-forge ``` +#### Install torch from pytorch.org + +Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option. + + #### Install PCNtoolkit Using pip: @@ -65,6 +66,13 @@ conda create -y python==3.12 numpy mkl blas --prefix=/shared/conda/ ``` conda activate /shared/conda/ ``` + +### Install nutpie using conda + +``` +conda install nutpie numba -c conda-forge +``` + #### install torch Using the command that you get from the command builder here: @@ -76,11 +84,6 @@ https://pytorch.org/get-started/locally/ If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip. -### Install nutpie using conda - -``` -conda install nutpie numba -c conda-forge -``` #### Clone the repo From 6a86683d90d4bc8591aa683350b54349aefab0a1 Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 19 Nov 2024 13:54:28 +0100 Subject: [PATCH 66/68] Replace doc notebook .rst files and update installation instructions --- README.md | 2 - .../pages/BLR_normativemodel_protocol.rst | 1533 ++++++++++++-- .../BLR_normativemodel_protocol_15_1.png | Bin 13275 -> 0 bytes .../BLR_normativemodel_protocol_16_0.png | Bin 0 -> 19471 bytes .../BLR_normativemodel_protocol_93_2.png | Bin 28250 -> 0 bytes .../BLR_normativemodel_protocol_97_1.png | Bin 0 -> 41759 bytes .../HBR_NormativeModel_FCONdata_Tutorial.rst | 1885 ++++++++++++++++- ..._NormativeModel_FCONdata_Tutorial_10_3.png | Bin 0 -> 143042 bytes ...R_NormativeModel_FCONdata_Tutorial_9_3.png | Bin 78758 -> 0 bytes .../pages/apply_normative_models_ct.rst | 1644 ++++++-------- .../apply_normative_models_ct_27_1.png | Bin 0 -> 67166 bytes .../apply_normative_models_ct_27_3.png | Bin 0 -> 62973 bytes .../apply_normative_models_ct_27_5.png | Bin 0 -> 59930 bytes doc/source/pages/installation.rst | 15 +- .../pages/normative_modelling_walkthrough.rst | 654 ++++-- .../normative_modelling_walkthrough_22_0.png | Bin 29709 -> 0 bytes .../normative_modelling_walkthrough_22_1.png | Bin 29125 -> 0 bytes .../normative_modelling_walkthrough_22_2.png | Bin 29391 -> 0 bytes .../normative_modelling_walkthrough_22_3.png | Bin 30697 -> 0 bytes .../normative_modelling_walkthrough_22_4.png | Bin 25341 -> 0 bytes .../normative_modelling_walkthrough_22_5.png | Bin 26189 -> 0 bytes .../normative_modelling_walkthrough_22_6.png | Bin 26741 -> 0 bytes .../normative_modelling_walkthrough_22_7.png | Bin 27756 -> 0 bytes .../normative_modelling_walkthrough_23_0.png | Bin 0 -> 59333 bytes .../normative_modelling_walkthrough_23_1.png | Bin 0 -> 57692 bytes .../normative_modelling_walkthrough_23_2.png | Bin 0 -> 60751 bytes .../normative_modelling_walkthrough_23_3.png | Bin 0 -> 60649 bytes .../normative_modelling_walkthrough_23_4.png | Bin 0 -> 50217 bytes .../normative_modelling_walkthrough_23_5.png | Bin 0 -> 51525 bytes .../normative_modelling_walkthrough_23_6.png | Bin 0 -> 53373 bytes .../normative_modelling_walkthrough_23_7.png | Bin 0 -> 54104 bytes .../normative_modelling_walkthrough_32_1.png | Bin 9492 -> 0 bytes .../normative_modelling_walkthrough_33_1.png | Bin 0 -> 20978 bytes doc/source/pages/other_predictive_models.rst | 415 ++-- .../other_predictive_models_16_1.png | Bin 16613 -> 0 bytes .../other_predictive_models_17_1.png | Bin 18179 -> 35783 bytes .../other_predictive_models_18_1.png | Bin 0 -> 39366 bytes .../other_predictive_models_32_3.png | Bin 39660 -> 0 bytes .../other_predictive_models_33_1.png | Bin 0 -> 69309 bytes .../other_predictive_models_33_3.png | Bin 37977 -> 0 bytes .../other_predictive_models_34_1.png | Bin 0 -> 66810 bytes .../other_predictive_models_50_4.png | Bin 70420 -> 0 bytes .../other_predictive_models_51_1.png | Bin 0 -> 117982 bytes .../other_predictive_models_51_2.png | Bin 80282 -> 0 bytes .../other_predictive_models_52_1.png | Bin 0 -> 135015 bytes .../other_predictive_models_55_0.png | Bin 26855 -> 0 bytes .../other_predictive_models_56_0.png | Bin 24851 -> 47682 bytes .../other_predictive_models_57_0.png | Bin 0 -> 42041 bytes .../other_predictive_models_72_0.png | Bin 27737 -> 0 bytes .../other_predictive_models_73_0.png | Bin 26035 -> 51001 bytes .../other_predictive_models_74_0.png | Bin 0 -> 47698 bytes 51 files changed, 4549 insertions(+), 1599 deletions(-) delete mode 100644 doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_15_1.png create mode 100644 doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_16_0.png delete mode 100644 doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_93_2.png create mode 100644 doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_97_1.png create mode 100644 doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_10_3.png delete mode 100644 doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_9_3.png create mode 100644 doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_1.png create mode 100644 doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_3.png create mode 100644 doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_5.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_0.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_1.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_2.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_3.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_4.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_5.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_6.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_7.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_0.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_1.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_2.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_3.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_4.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_5.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_6.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_7.png delete mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_32_1.png create mode 100644 doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_33_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_16_1.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_18_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_32_3.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_33_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_33_3.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_34_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_50_4.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_51_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_51_2.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_52_1.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_55_0.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_57_0.png delete mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_72_0.png create mode 100644 doc/source/pages/other_predictive_models_files/other_predictive_models_74_0.png diff --git a/README.md b/README.md index 04ba245a..eddeb9ad 100644 --- a/README.md +++ b/README.md @@ -83,8 +83,6 @@ https://pytorch.org/get-started/locally/ If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip. - - #### Clone the repo ``` diff --git a/doc/source/pages/BLR_normativemodel_protocol.rst b/doc/source/pages/BLR_normativemodel_protocol.rst index 479b5163..8e5e8975 100644 --- a/doc/source/pages/BLR_normativemodel_protocol.rst +++ b/doc/source/pages/BLR_normativemodel_protocol.rst @@ -1,27 +1,24 @@ -.. title:: BLR tutorial +`Predictive Clinical Neuroscience Toolkit `__ +====================================================================================== -Bayesian Linear Regression +The Normative Modeling Framework for Computational Psychiatry Protocol ====================================================================== -The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5. +Using Bayesian Linear Regression and Multi-Site Cortical Thickness Data +----------------------------------------------------------------------- Created by `Saige Rutherford `__ -Using Multi-Site Cortical Thickness Data - -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/BLR_protocol/BLR_normativemodel_protocol.ipynb - - -.. figure:: ./blr_fig2.png - :height: 400px - :align: center +.. container:: Data Preparation ---------------------------------------------- +================ Install necessary libraries & grab data files -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +--------------------------------------------- + +Step 1. +~~~~~~~ Begin by cloning the GitHub repository using the following commands. This repository contains the necessary code and example data. Then @@ -33,33 +30,28 @@ your computer). ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git - -.. parsed-literal:: - - Cloning into 'PCNtoolkit-demo'... - remote: Enumerating objects: 855, done. - remote: Counting objects: 100% (855/855), done. - remote: Compressing objects: 100% (737/737), done. - remote: Total 855 (delta 278), reused 601 (delta 101), pack-reused 0 - Receiving objects: 100% (855/855), 18.07 MiB | 13.53 MiB/s, done. - Resolving deltas: 100% (278/278), done. - - .. code:: ipython3 import os # set this path to the git cloned PCNtoolkit-demo repository --> Uncomment whichever line you need for either running on your own computer or on Google Colab. - #os.chdir('/Users/PCNtoolkit-demo/tutorials/BLR_protocol') # if running on your own computer, use this line (change the path to match where you cloned the repository) - os.chdir('/content/PCNtoolkit-demo/tutorials/BLR_protocol') # if running on Google Colab, use this line + #wdir = '/PCNtoolkit-demo' # if running on your own computer, use this line (change the path to match where you cloned the repository) + wdir ='/content/PCNtoolkit-demo' # if running on Google Colab, use this line + + os.chdir(os.path.join(wdir,'tutorials','BLR_protocol')) + .. code:: ipython3 + ! pip install nutpie + ! pip install pcntoolkit ! pip install -r requirements.txt - Prepare covariate data -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------- + +Step 2. +~~~~~~~ The data set (downloaded in Step 1) includes a multi-site dataset from the `Human Connectome Project Young Adult @@ -88,8 +80,8 @@ depending on the research question. .. code:: ipython3 # if running in Google colab, remove the "data/" folder from the path - hcp = pd.read_csv('/content/PCNtoolkit-demo/data/HCP1200_age_gender.csv') - ixi = pd.read_csv('/content/PCNtoolkit-demo/data/IXI_age_gender.csv') + hcp = pd.read_csv(os.path.join(wdir,'data','HCP1200_age_gender.csv')) + ixi = pd.read_csv(os.path.join(wdir,'data','IXI_age_gender.csv')) .. code:: ipython3 @@ -98,8 +90,8 @@ depending on the research question. .. parsed-literal:: - /usr/local/lib/python3.7/dist-packages/pandas/core/reshape/merge.py:1218: UserWarning: You are merging on int and float columns where the float values are not equal to their int representation - UserWarning, + :1: UserWarning: You are merging on int and float columns where the float values are not equal to their int representation. + cov = pd.merge(hcp, ixi, on=["participant_id", "age", "sex", "site"], how='outer') .. code:: ipython3 @@ -108,29 +100,348 @@ depending on the research question. .. code:: ipython3 - sns.displot(cov, x="age", hue="site", multiple="stack", height=6) + sns.displot(cov, x="age", hue="site", multiple="stack", height=6); +.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_16_0.png -.. parsed-literal:: - +.. code:: ipython3 + cov.groupby(['site']).describe() -.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_15_1.png +.. raw:: html -.. code:: ipython3 + +
+
+ +
\n", " \n", + " value=\"1500\">\n", " \n", " 58150000.0030.02511
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
agesex
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
site
hcp1206.028.8374793.69053422.00000026.00000029.0000032.00000037.000001206.01.5439470.4982721.01.02.02.02.0
ixi590.049.47653116.72086419.98083534.02772150.6119163.41341586.31896590.01.5559320.4972831.01.02.02.02.0
+ +
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ - cov.groupby(['site']).describe() -Prepare brain data -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Preprare brain data +------------------- + +Step 3. +~~~~~~~ Next, format and combine the MRI data using the following commands. The example data contains cortical thickness maps estimated by running @@ -139,7 +450,7 @@ was reduced by using ROIs from the Desikan-Killiany atlas. Including the Euler number as a covariate is also recommended, as this is a proxy metric for data quality. The `Euler number `__ from -each subjects recon-all output folder was extracted into a text file +each subject’s recon-all output folder was extracted into a text file and is merged into the cortical thickness data frame. The Euler number is site-specific, thus, to use the same exclusion threshold across sites it is important to center the site by subtracting the site median from @@ -147,7 +458,7 @@ all subjects at a site. Then take the square root and multiply by negative one and exclude any subjects with a square root above 10. Here is some psuedo-code (run from a terminal in the folder that has all -subjects recon-all output folders) that was used to extract these ROIs: +subject’s recon-all output folders) that was used to extract these ROIs: ``export SUBJECTS_DIR=/path/to/study/freesurfer_data/`` @@ -157,14 +468,14 @@ subjects recon-all output folders) that was used to extract these ROIs: .. code:: ipython3 - hcpya = pd.read_csv('/content/PCNtoolkit-demo/data/HCP1200_aparc_thickness.csv') - ixi = pd.read_csv('/content/PCNtoolkit-demo/data/IXI_aparc_thickness.csv') + hcpya = pd.read_csv(os.path.join(wdir,'data','HCP1200_aparc_thickness.csv')) + ixi = pd.read_csv(os.path.join(wdir,'data','IXI_aparc_thickness.csv')) .. code:: ipython3 brain_all = pd.merge(ixi, hcpya, how='outer') -We extracted the euler number from each subjects recon-all output +We extracted the euler number from each subject’s recon-all output folder into a text file and we now need to format and combine these into our brain dataframe. @@ -173,12 +484,12 @@ recon-all.log for each subject. Run this from the terminal in the folder where your subjects recon-all output folders are located. This assumes that all of your subject IDs start with “sub-” prefix. -:literal:`for i in sub-*; do if [[ -e ${i}/scripts/recon-all.log ]]; then cat ${i}/scripts/recon-all.log | grep -A 1 "Computing euler" > temp_log; lh_en=$(cat temp_log | head -2 | tail -1 | awk -F '=' '{print $2}' | awk -F ',' '{print $1}'); rh_en=$(cat temp_log | head -2 | tail -1 | awk -F '=' '{print $3}'); echo "${i}, ${lh_en}, ${rh_en}" >> euler.csv; echo ${i}; fi; done` +:literal:`for i in sub-\*; do if [[ -e ${i}/scripts/recon-all.log ]]; then cat ${i}/scripts/recon-all.log | grep -A 1 "Computing euler" > temp_log; lh_en=`cat temp_log | head -2 | tail -1 | awk -F '=' '{print $2}' | awk -F ',' '{print $1}'\`; rh_en=`cat temp_log | head -2 | tail -1 | awk -F '=' '{print $3}'\`; echo "${i}, ${lh_en}, ${rh_en}" >> euler.csv; echo ${i}; fi; done` .. code:: ipython3 - hcp_euler = pd.read_csv('/content/PCNtoolkit-demo/data/hcp-ya_euler.csv') - ixi_euler = pd.read_csv('/content/PCNtoolkit-demo/data/ixi_euler.csv') + hcp_euler = pd.read_csv(os.path.join(wdir,'data','hcp-ya_euler.csv')) + ixi_euler = pd.read_csv(os.path.join(wdir,'data','ixi_euler.csv')) .. code:: ipython3 @@ -221,7 +532,7 @@ inclusion is not too strict or too lenient. .. code:: ipython3 - df_euler.groupby(by='site').median() + df_euler.groupby(by='site')[['lh_euler', 'rh_euler', 'avg_euler']].median() @@ -229,9 +540,8 @@ inclusion is not too strict or too lenient. .. raw:: html -
-
-
+
+
- + +
+ + +
+ + + + + +
+
@@ -363,6 +807,13 @@ inclusion is not too strict or too lenient. df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'ixi':-56}) + +.. parsed-literal:: + + :1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)` + df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'ixi':-56}) + + .. code:: ipython3 df_euler['avg_euler_centered'] = df_euler['avg_euler'] - df_euler['site_median'] @@ -383,18 +834,19 @@ inclusion is not too strict or too lenient. brain_good = brain.query('avg_euler_centered_neg_sqrt < 10') -.. warning:: - **CRITICAL STEP:** If possible, data should be visually inspected to - verify that the data inclusion is not too strict or too lenient. - Subjects above the Euler number threshold should be manually checked to - verify and justify their exclusion due to poor data quality. This is - just one approach for automated QC used by the developers of the - PCNtoolkit. Other approaches such as the ENIGMA QC pipeline or UK - Biobanks QC pipeline are also viable options for automated QC. +**CRITICAL STEP:** If possible, data should be visually inspected to +verify that the data inclusion is not too strict or too lenient. +Subjects above the Euler number threshold should be manually checked to +verify and justify their exclusion due to poor data quality. This is +just one approach for automated QC used by the developers of the +PCNtoolkit. Other approaches such as the ENIGMA QC pipeline or UK +Biobank’s QC pipeline are also viable options for automated QC. Combine covariate & cortical thickness dataframes -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------------------------- +Step 4. +~~~~~~~ The normative modeling function requires the covariate predictors and brain features to be in separate text files. However, it is important to @@ -407,7 +859,7 @@ their own dataframes, using the commands below. .. code:: ipython3 - # make sure to use how="inner" so that we only include subjects that have data in both the covariate and the cortical thickness files + # make sure to use how="inner" so that we only include subjects that have data in both the covariate and the cortical thickness files all_data = pd.merge(brain_good, cov, how='inner') .. code:: ipython3 @@ -433,13 +885,15 @@ their own dataframes, using the commands below. all_data_covariates = all_data[['age','sex','site']] -.. warning:: - **CRITICAL STEP:** ``roi_ids`` is a variable that represents which brain - areas will be modeled and can be used to select subsets of the data - frame if you do not wish to run models for the whole brain. +**CRITICAL STEP:** ``roi_ids`` is a variable that represents which brain +areas will be modeled and can be used to select subsets of the data +frame if you do not wish to run models for the whole brain. Add variable to model site/scanner effects -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------------------ + +Step 5. +~~~~~~~ Currently, the different sites are coded in a single column (named ‘site’) and are represented as a string data type. However, the @@ -451,17 +905,689 @@ variables (0=not in this site, 1=present in this site). .. code:: ipython3 - all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site']) + all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site'], dtype=int) .. code:: ipython3 - all_data['Average_Thickness'] = all_data[['lh_MeanThickness_thickness','rh_MeanThickness_thickness']].mean(axis=1) + all_data_covariates.head() + + + + +.. raw:: html + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
agesexsite_hcpsite_ixi
027.0110
127.0210
233.0110
327.0110
435.0210
+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+
+ + + + +.. code:: ipython3 + all_data_covariates + + +.. raw:: html + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
agesexsite_hcpsite_ixi
027.000000110
127.000000210
233.000000110
327.000000110
435.000000210
...............
168747.723477101
168850.395619101
168942.989733101
169046.220397101
169141.741273101
+

1692 rows × 4 columns

+
+
+ +
+ + + + + +
+ + +
+ + + + + +
+ +
+ + + +
+ +
+
+ + + + +.. code:: ipython3 + + all_data['Average_Thickness'] = all_data[['lh_MeanThickness_thickness','rh_MeanThickness_thickness']].mean(axis=1) + Train/test split -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------- +Step 6. +~~~~~~~ In this example, we use 80% of the data for training and 20% for testing. Please carefully read the experimental design section on @@ -501,11 +1627,12 @@ Verify that your train & test arrays are the same size Test response size is: (339, 6) -.. warning:: - **CRITICAL STEP:** The model would not learn the site effects if all the - data from one site was only in the test set. Therefore, we stratify the - train/test split using the site variable. +**CRITICAL STEP:** The model would not learn the site effects if all the +data from one site was only in the test set. Therefore, we stratify the +train/test split using the site variable. +Step 7. +~~~~~~~ When the data were split into train and test sets, the row index was not reset. This means that the row index in the train and test data frames @@ -540,9 +1667,11 @@ which sites to evaluate model performance for, as follows: # Create a list with sites names to use in evaluating per-site metrics site_names = ['hcp', 'ixi'] - Setup output directories -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------ + +Step 8. +------- Save each brain region to its own text file (organized in separate directories) using the following commands, because for each response @@ -557,6 +1686,7 @@ variable, Y (e.g., brain region) we fit a separate normative model. X_train.to_csv('cov_tr.txt', sep = '\t', header=False, index = False) + .. code:: ipython3 y_train.to_csv('resp_tr.txt', sep = '\t', header=False, index = False) @@ -580,12 +1710,25 @@ variable, Y (e.g., brain region) we fit a separate normative model. .. code:: ipython3 + # Note: please change the path in the following to wdir (depending on whether you are running on colab or not) + ! for i in `cat /content/PCNtoolkit-demo/data/roi_dir_names`; do if [[ -e resp_tr_${i}.txt ]]; then cd ROI_models; mkdir ${i}; cd ../; cp resp_tr_${i}.txt ROI_models/${i}/resp_tr.txt; cp resp_te_${i}.txt ROI_models/${i}/resp_te.txt; cp cov_tr.txt ROI_models/${i}/cov_tr.txt; cp cov_te.txt ROI_models/${i}/cov_te.txt; fi; done + +.. parsed-literal:: + + mkdir: cannot create directory ‘lh_MeanThickness_thickness’: File exists + mkdir: cannot create directory ‘lh_bankssts_thickness’: File exists + mkdir: cannot create directory ‘lh_caudalanteriorcingulate_thickness’: File exists + mkdir: cannot create directory ‘lh_superiorfrontal_thickness’: File exists + mkdir: cannot create directory ‘rh_MeanThickness_thickness’: File exists + mkdir: cannot create directory ‘rh_superiorfrontal_thickness’: File exists + + .. code:: ipython3 # clean up files - ! rm resp_*.txt + ! rm resp_*.txt .. code:: ipython3 @@ -593,11 +1736,13 @@ variable, Y (e.g., brain region) we fit a separate normative model. ! rm cov_t*.txt Algorithm & Modeling -------------------------------- +==================== Basis expansion using B-Splines -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------- +Step 9. +~~~~~~~ Now, set up a B-spline basis set that allows us to perform nonlinear regression using a linear model, using the following commands. This @@ -615,29 +1760,29 @@ al `__. .. code:: ipython3 # set this path to wherever your ROI_models folder is located (where you copied all of the covariate & response text files to in Step 4) - data_dir = '/content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/' + data_dir = os.path.join(wdir,'tutorials','BLR_protocol','ROI_models') # Create a cubic B-spline basis (used for regression) xmin = 10#16 # xmin & xmax are the boundaries for ages of participants in the dataset xmax = 95#90 B = create_bspline_basis(xmin, xmax) - # create the basis expansion for the covariates for each of the - for roi in roi_ids: + # create the basis expansion for the covariates for each of the + for roi in roi_ids: print('Creating basis expansion for ROI:', roi) roi_dir = os.path.join(data_dir, roi) os.chdir(roi_dir) - # create output dir + # create output dir os.makedirs(os.path.join(roi_dir,'blr'), exist_ok=True) # load train & test covariate data matrices X_tr = np.loadtxt(os.path.join(roi_dir, 'cov_tr.txt')) X_te = np.loadtxt(os.path.join(roi_dir, 'cov_te.txt')) - # add intercept column + # add intercept column X_tr = np.concatenate((X_tr, np.ones((X_tr.shape[0],1))), axis=1) X_te = np.concatenate((X_te, np.ones((X_te.shape[0],1))), axis=1) np.savetxt(os.path.join(roi_dir, 'cov_int_tr.txt'), X_tr) np.savetxt(os.path.join(roi_dir, 'cov_int_te.txt'), X_te) - - # create Bspline basis set + + # create Bspline basis set Phi = np.array([B(i) for i in X_tr[:,0]]) Phis = np.array([B(i) for i in X_te[:,0]]) X_tr = np.concatenate((X_tr, Phi), axis=1) @@ -657,8 +1802,10 @@ al `__. Estimate normative model -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------ +Step 10. +~~~~~~~~ Set up a variable (``data_dir``) that specifies the path to the ROI directories that were created in Step 7. Initiate two empty pandas data @@ -674,6 +1821,8 @@ these data frames will be saved as individual csv files. blr_metrics = pd.DataFrame(columns = ['ROI', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) blr_site_metrics = pd.DataFrame(columns = ['ROI', 'site', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) +Step 11. +~~~~~~~~ Estimate the normative models using a for loop to iterate over brain regions. An important consideration is whether to re-scale or @@ -693,70 +1842,69 @@ arguments that are worthy of commenting on: :: - alg = 'blr': specifies we should use Bayesian Linear Regression. - - optimizer = 'powell': use Powell's derivative-free optimization method (faster in this case than L-BFGS) - - savemodel = False: do not write out the final estimated model to disk + - optimizer = 'powell': use Powell's derivative-free optimization method (faster in this case than L-BFGS) + - savemodel = False: do not write out the final estimated model to disk - saveoutput = False: return the outputs directly rather than writing them to disk - standardize = False: Do not standardize the covariates or response variables -.. warning:: - **CRITICAL STEP:** This code fragment will loop through each region of - interest in the ``roi_ids`` list (created in step 4) using Bayesian - Linear Regression and evaluate the model on the independent test set. In - principle, we could estimate the normative models on the whole data - matrix at once (e.g., with the response variables stored in a - ``n_subjects`` by ``n_brain_measures`` NumPy array or a text file - instead of saved out into separate directories). However, running the - models iteratively gives some extra flexibility in that it does not - require that the included subjects are the same for each of the brain - measures. +**CRITICAL STEP:** This code fragment will loop through each region of +interest in the ``roi_ids`` list (created in step 4) using Bayesian +Linear Regression and evaluate the model on the independent test set. In +principle, we could estimate the normative models on the whole data +matrix at once (e.g., with the response variables stored in a +``n_subjects`` by ``n_brain_measures`` NumPy array or a text file +instead of saved out into separate directories). However, running the +models iteratively gives some extra flexibility in that it does not +require that the included subjects are the same for each of the brain +measures. .. code:: ipython3 # Loop through ROIs - for roi in roi_ids: + for roi in roi_ids: print('Running ROI:', roi) roi_dir = os.path.join(data_dir, roi) os.chdir(roi_dir) - - # configure the covariates to use. Change *_bspline_* to *_int_* to + + # configure the covariates to use. Change *_bspline_* to *_int_* to cov_file_tr = os.path.join(roi_dir, 'cov_bspline_tr.txt') cov_file_te = os.path.join(roi_dir, 'cov_bspline_te.txt') - + # load train & test response files resp_file_tr = os.path.join(roi_dir, 'resp_tr.txt') - resp_file_te = os.path.join(roi_dir, 'resp_te.txt') - + resp_file_te = os.path.join(roi_dir, 'resp_te.txt') + # run a basic model - yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr, - resp_file_tr, - testresp=resp_file_te, - testcov=cov_file_te, - alg = 'blr', - optimizer = 'powell', - savemodel = True, + yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr, + resp_file_tr, + testresp=resp_file_te, + testcov=cov_file_te, + alg = 'blr', + optimizer = 'powell', + savemodel = True, saveoutput = False, standardize = False) # save metrics blr_metrics.loc[len(blr_metrics)] = [roi, metrics_te['MSLL'][0], metrics_te['EXPV'][0], metrics_te['SMSE'][0], metrics_te['RMSE'][0], metrics_te['Rho'][0]] - + # Compute metrics per site in test set, save to pandas df # load true test data X_te = np.loadtxt(cov_file_te) y_te = np.loadtxt(resp_file_te) y_te = y_te[:, np.newaxis] # make sure it is a 2-d array - + # load training data (required to compute the MSLL) y_tr = np.loadtxt(resp_file_tr) y_tr = y_tr[:, np.newaxis] - - for num, site in enumerate(sites): + + for num, site in enumerate(sites): y_mean_te_site = np.array([[np.mean(y_te[site])]]) y_var_te_site = np.array([[np.var(y_te[site])]]) yhat_mean_te_site = np.array([[np.mean(yhat_te[site])]]) yhat_var_te_site = np.array([[np.var(yhat_te[site])]]) - + metrics_te_site = evaluate(y_te[site], yhat_te[site], s2_te[site], y_mean_te_site, y_var_te_site) - + site_name = site_names[num] blr_site_metrics.loc[len(blr_site_metrics)] = [roi, site_names[num], metrics_te_site['MSLL'][0], metrics_te_site['EXPV'][0], metrics_te_site['SMSE'][0], metrics_te_site['RMSE'][0], metrics_te_site['Rho'][0]] @@ -764,40 +1912,54 @@ arguments that are worthy of commenting on: .. parsed-literal:: Running ROI: lh_MeanThickness_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_MeanThickness_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) Using default hyperparameters - Optimization terminated successfully. - Current function value: -1162.792820 - Iterations: 2 - Function evaluations: 47 - Saving model meta-data... - Evaluating the model ... .. parsed-literal:: - /usr/local/lib/python3.7/dist-packages/pcntoolkit/model/bayesreg.py:187: LinAlgWarning: Ill-conditioned matrix (rcond=1.15485e-18): result may not be accurate. - invAXt = linalg.solve(self.A, X.T, check_finite=False) - /usr/local/lib/python3.7/dist-packages/pcntoolkit/model/bayesreg.py:187: LinAlgWarning: Ill-conditioned matrix (rcond=4.51813e-19): result may not be accurate. + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/bayesreg.py:196: LinAlgWarning: Ill-conditioned matrix (rcond=1.15485e-18): result may not be accurate. invAXt = linalg.solve(self.A, X.T, check_finite=False) .. parsed-literal:: + Optimization terminated successfully. + Current function value: -1162.792820 + Iterations: 2 + Function evaluations: 43 + Saving model meta-data... + Evaluating the model ... Running ROI: rh_MeanThickness_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/rh_MeanThickness_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) Using default hyperparameters + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/bayesreg.py:196: LinAlgWarning: Ill-conditioned matrix (rcond=4.51813e-19): result may not be accurate. + invAXt = linalg.solve(self.A, X.T, check_finite=False) + + +.. parsed-literal:: + Optimization terminated successfully. Current function value: -1187.621858 Iterations: 2 - Function evaluations: 47 + Function evaluations: 43 Saving model meta-data... Evaluating the model ... Running ROI: lh_bankssts_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_bankssts_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -805,10 +1967,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -578.945257 Iterations: 2 - Function evaluations: 46 + Function evaluations: 42 Saving model meta-data... Evaluating the model ... Running ROI: lh_caudalanteriorcingulate_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_caudalanteriorcingulate_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -816,10 +1980,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -235.509099 Iterations: 3 - Function evaluations: 75 + Function evaluations: 69 Saving model meta-data... Evaluating the model ... Running ROI: lh_superiorfrontal_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_superiorfrontal_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -827,10 +1993,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -716.547377 Iterations: 3 - Function evaluations: 91 + Function evaluations: 84 Saving model meta-data... Evaluating the model ... Running ROI: rh_superiorfrontal_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/rh_superiorfrontal_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -838,17 +2006,19 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -730.639309 Iterations: 2 - Function evaluations: 45 + Function evaluations: 41 Saving model meta-data... Evaluating the model ... Evaluation & Interpretation ----------------------------------------- +=========================== Describe the normative model performance -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------------------------- +Step 12. +~~~~~~~~ In step 11, when we looped over each region of interest in the ``roi_ids`` list (created in step 4) and evaluated the normative model @@ -917,7 +2087,9 @@ can organize them into a single file, and merge the deviation scores into the original data file. Visualize normative model outputs -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +--------------------------------- + +.. container:: Figure 4A viz ~~~~~~~~~~~~~ @@ -937,29 +2109,21 @@ Figure 4A viz plt.figure(dpi=380) fig, axes = joypy.joyplot(blr_site_metrics, column=['EV'], overlap=2.5, by="site", ylim='own', fill=True, figsize=(8,8) , legend=False, xlabels=True, ylabels=True, colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)) - , alpha=0.6, linewidth=.5, linecolor='w', fade=True) + , alpha=0.6, linewidth=.5, linecolor='w', fade=True); plt.title('Test Set Explained Variance', fontsize=18, color='black', alpha=1) plt.xlabel('Explained Variance', fontsize=14, color='black', alpha=1) plt.ylabel('Site', fontsize=14, color='black', alpha=1) - plt.show - + plt.show() .. parsed-literal:: - +
- -.. parsed-literal:: - -
- - - -.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_93_2.png +.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_97_1.png The code used to create the visualizations shown in Figure 4 panels B-F, @@ -967,7 +2131,8 @@ can be found in this `notebook `__. Post-Hoc analysis ideas -~~~~~~~~~~~~~~~~~~~~~~~~~~ +----------------------- + The code for running SVM classification and classical case vs. control t-testing on the outputs of normative modeling can be found in this diff --git a/doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_15_1.png b/doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_15_1.png deleted file mode 100644 index f641b263bc634a4b6b1bfe812d44d28a220bbd87..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13275 zcmc(G2UJwsw&ej-6h)p2qA1`MP%=so$tnsINY1fDBu9x7il8D&yb_ftnWCTyBxe*s z0TGEM83Q00$(dfq+wb>(zu)T~{X02^Lnuxa=j^@qTr(`6sj0}*(lF5=2ttcdxT%34 z6x;AO?%)A$~UN&7EDW9UX-D1^ESe&sn*;I*AJi{I{R;J33nm#IlAy zLy&U_=H_*+2Z^&o-bPwIyL-PxOY76I=EJjF+C_QMyv4$8AGN9j{Etw5oTp>`Xnj_#;)qa# zuM{gCYlNP6TXH*Z^V&=ad3d1Jro>=Bg5(N2>N3J}Bu3OzBlXBZ9|Sq#{~y2fF*f#> zknp~u6d0IUXLI@L7wkm)#MRXE^roRn5trSiRhhnj{v1!_rx<&8toFqE=4N^2V{Y^Z zO)#A`3_$;gWO)EYSvR!;^4W3^*QJ;T9m?zzZ{ zYZ$_+cyUBnL~Px&LoCQ8n%%~K{bc|AdH=t?YIJfPkH>q>RZMgjS*qTWm!D4dp6ht` z?8M46sZM-(XLZ0)#Om|85}O`Hk73Vj6Q5tVj4NH6Q?Vu{$tIp-3~p217(T;Nt-aly z5?eB{W&J9Gl#9ge-~HAYQgZ*hoZHM7^{y;sP5Ajrk1m#rpI;@2j`y<7W$QGvMP@*u^WCb^QsuUPy@f%Yczmb*uG!b)7#tj$A{;eb5--)OX(EIsJoBx zN>f7+o$lScY1`Y|cJ@-A8#3J8-QAoiYPYkWCX?ct?`in>ROja# zl-Nv>Nh!4(<7bkjasACH2N7g#OebVDPlxa+Q7nCQ^bV%;%_HiVloZluW*O`{$o1il5kv7LtW?BhM<-0rFMe-K%sHkq_ z*{t2n)~=OX10kF7x3lhUVIuqN_}!HM_#+_GSNS=dD|27_TjI}?Iii|>k^1f}s#{t0 z$)rd)#a$-0oHCm*3su)2JipM@)wS|7J%XE)Q^958Q%u>~*t4Li9)eP(PsLEoM~fnR zZ*^=)qlTT#WZfGqlV!UFzTmUL6gluoua?(lqek7Q)4Z`a^m#WLiy6z6!_2>`m>Fqb zZu&HVG5g4PqJ3hqzV5-VG`aAz_z*?`o5o-U_pY^Dd&a^gdzQK?U$J71dlSBq!AWy) z(m0L0j*i$}nJ#?K($$eJU*h!jhKR%97YFZ~Hy``pa3y|wzE!K$)smT+nOxl5Exo

&Nut|`rL7Avjdg`M-hMZ3f_goG&I7dZ}-g(Rq4VbX}h`>%cjJO*yhRx9aY3& z3J)(vN7Ik}_`!MQN^kGUGiP{08q>51I(_|%i;K%&gIIHw6RzYMmJwZKpne=anrm(f z)GSAq+V!RJ8(02(8+aJ~5c|Ui531e19m;O~?cFn`t4^Jlk08qB3+RjO3^P~`vLJiDmYn9)p`L_oi+QOKIZ657`PN2 zED?5JyYZAn%EhqDgk`CeiQN!71RhyDK<9=~GWC*3mh zk9ge7hB#f^CLH;Hcz^%5mcXCHGqSxr*=11aieH@_$c9bjxp+}tDUM%zYjt*Z(`~k2 zyKZl{s$p6lPL1F8cUE`%moHy>jm78|0}_vokLQ}V#>R`g<))>jC2r~?h?6Bh?KYcy zIH#DHJ}r|lS`M{ab5+N;uGse8Zg@glWE=AIX~9-SL4jJjTv(^7%uYrStFPXhH*dVw zhCE{a{PPu^%(fbUw@1qag47RH2rndv*k%dTZEL_a{l(T%O`)eX?~a^ttX8k_UaOtj z?ImGJ^R-(lOXF>t=pn$%N3cu{*HlGDMhe^Z=F#Ls-&XzFSx~HP z!R5=B4Jw>7WmAfag+<_rOiWDNXZZ|@)!f}n!9A&7>KE?R#+HMaIBqMqdmkmbmUzM zU>fg|El=mOW!{&!!~NPWL`B??ZQb2SteKzw%5P>A1Gx77RQl@&H%A5Z3hL)3YH?dO z3!`u1W&COn&@yGjiwNw|MI|Kg$jHb9kr_*1t74~c?a6H#rl}>}D^LCjWJXuXS_j#6b!W3-!pFK7* zv?=lN+Levc;8zm0m+fu5;(Eb#!!;u73HV2W`(FLDaFd zBuTbL8IL34b0!$*5s@TOs@UB|=yhr4UM zJpzM*rU5fi)C*^k%Jtis#?l--STIZQUYiRJ5AXfa9A)p(Z&-LYkmm4V!27FlKGFy> z7|=@PH#b<}F5|cGhB`81VZjOg++)X%*$kE!YG`P<&JBufY;555i!9;=&4VjlC-1Hq zu(Gm3T__Y;v~|8VZ@qUVp(pLu;hOEmR-4bSu4m#dz~_dwQtgetd89iuTX5Fk<&#?0OMGcTj z_95k`BdPu~EY)9Qzb~xjOtOeyX1-w=bR35F`9 zREe(Qj5fj04HSA+ygG&W58yusO(crB$n_9(Ngs^AiN`D#Bz5cwB{HrP~M*VhH z$o)0mWwR4uXGEvSSUS< z+VJG=))lMI*EF+L^1skfAlE94g%*Nn&tysCHb2;ua9_9}2Om=0@K#blKwx8QivVm) zg@+zNqK8DN>MYvgbM=d|*sUi!Gb=a76Bv#k|F--VL9R7&^`zAdIMxm6yTMvsYl#u}TF&7&DnCc)u_+sBZB=rt+i?$M0H)PK(h8`YR-iFtuoj2)?I$_2G@ z6$9UU%nx%6yHW$QCBfRKNaOAm>Ir)-TLB$Ys@qvjfUf*?0e-C7QDUph!OmV@c_f<$ zZW|!#1KgMnL3^Ooo~ICNU|`@mO^MW-?=Ge6<>=%aObwKg2uk=%nKav%&6+;6hD_vB zBDvv!s1n6|#+6!MzkY3^-M;_5NsMq5L5$wEx3~9jXa#GGSVP-YHNBEhV%2dTx7d79 z+;cJG_Jt^i%E=2TBUhDLiOy)9SZHWyD6#7k#ApDrvrj^4l)ry)FM$#6YUN&h41ZV;YOab1MyTgdmpa-=m72VLIWKS92&T~ z2gC&tP`PGzb6RE3$Xq?QUR6P%oanO7+fRj*KLR3!2L|S~F&0PK5`osyJ6Pf3)<7$o z16$!f0PGTADGL^Ga<*)wl(`L9kQ%(F=i^HuxEY5M$C26_GV-@LwMW|%#kx}YWMr`D zK1pvc$U@z#QXM#wQ}7K6IikM)8nd{og3Qix6tsYrnmT3)_n+`7@xs=Tfxu9pK!XmORl zC*O)4gQ}g`GIq;PiCiuS$?c72@8$ecNJOCZzRK<1L7cNq}j>2V+V^jUUvP&irsq zPnCzGe!dRJg$p*nzBTq&dlrFMP|wAooh?!;U5*w6S;wIsan;EQA;mjTK<={!Lrx8} z3?)i%aPnTgs{blk6&DxhP_v?g(U6mqdq$!?csAx2cRj|NI-r#fywpQXnMs z_4UW{2E`QJ9?QU9-yIMV6fE|bH$f2}?w9x{9AC}|C@i!hjjP;y^2>&ELB9N4|MlGf zU>nw!Wx+Ee%l{J}Y++SiF_qwPEB^5;Ds;LfnR_&omHzl80P@ypZc^)G;UEoiz z4f4@t+}_!7BO7~I!^trywtC)6G$t%fv;#>u$i>#xKA~fE@F-&O(8#TqaT@h6n!3i( z+Q#!afw0zB5{4QB__v=H5q~AQ#2^XlSa z!u*E7w(u9s?`&^r>HL%=Vb8O;w@I$cg=0i>s5v8BtWq;p3)EM21Vc%P{cgv&eiu0r^-^V%ns5KZvFso*?%%(k_rv3LTI(cn+pK0)_6P-XKqs}VwlZ;n;;#~rf7 zH3MLW1CT#G#wP4Oqqj2IB@fc92dx>5xa-e9WBClTV3mwl=ne>aueA*(h$x!O~f2dNOXp6XvsXA~6`JE23Oa=)T7kx)5q?zw;ee%QzEU{jzHJGjy4fm8#b8@N1rpxU>_fDSFJK*|r2K-EY}frF zMkYJgNW5gpw|k&OyHjO@ru+2)Qb7FfIy3G^{4X|t`0yDxQ%|YAVTt{K4z%eWIDIpl zdHO|ixUE$XviYuCvt_nl3QYTpEFdM= zxbXAWdsbZlxmikVWbO8%5{OnM6zI$Ee|Oznw%(a_^y?}#d*5RGT_k&%ijvZGcY9;H zzYl;YxTf6~qmm+>54UeKQj6=a^Q(h1Q0zLX0l+_;IuDKtP?HQO4K8-}n>(8;U1kwd z7qHl^h(7^5bWJ>egNK6y(V)~0kJrrR=H{NNgueVr7*2NTM2g?=>Jt2(Vy_h&sf`~| zD9<>_Z}-6<$=PG)brNP6=p+kmmHnVDHnx;$MCoSb+u7mEs; z>hWW{d}V`a%o4=;?H1@CuC07!Mr#SI;5@*tqdv}gHa4Z1GL)&D7Lo%1D^1w?m>}Bz zwSn>ENmwRzgEEJtCr3`FT}<)OuxwA(zH#G5ppOLH=v6p-#ak5ss+CS(AHIJ5y4bqw z0sxuK#}}7N3k00Ugsl2Y?QK0mHaAzMr-@Z_os3u?^*JWe>Gic?Z<71mARgMKamffQ z720s1P;um)anv{fE`+B&bH(c2(_PLLzoaM)@17T&Y^ zMY9LBQcm~g6F}W|lp05Zch{Y#FBHTT2_N;FpSsVym<^Bt%z6U5KzQ})THW?y2+#~- z{~DkMUnw6ud&b~~mvLFI{pVK!piPzma;KNtWytL^dwIY*I6+XMJOH;gl)b+GKpXDU zsFD7nl$3EKJrmPZ0iUq2R<>$N>9qHIW{<1OhYueH&G!6`HKhzYdqMHoF1~b8N_X_8 zSM2Qz@9S8Ac4wF9cGoIjU=4f{i<=?pdcHqJZaO8wYG$+oY)<*vvu7xxfjXG^^xZID zr|MC+W9^0<_0h8hN$+LgX?ExLc2$8z`c+Jq&v{Sk5_FUg9Xh0_puoA75Gw}^2YiExf6P(idTdC z%NjM*=Gy)E7%n%Ji~n8EYPiFecYk=!hB|sct2seJK>74nd5~Zgm%o@r^le_T?z{;m zL;<*HKfZ%c)f(4&Pq1%=iy$Z^nJviB#`I%sOw3Lwq0POB2B@DvDONo}$l@FVJKHSa zx{)-;yAde3Vd8=@thgO7i~(%zS{!Q?0RtH%3J*88V%d;;f^nV1T)8ZII<_~KR$%Wr z1qC&Lt*C=X(rWx@fZDf1%NHyHdz)GX_y>-yJ$bENbNg0sKhZ}DsV_-nF8)L`9W1}k zBkXjQQ|5@RD&5`LA^<>>2Q7_^62E=>)?%cIF_P&dtGPBL@;LT+Pjz!8NqTn9 zJrPIQEj;IF0k@!th&HrHlyxi}K7iEIR^UcOVHH5G^|r+DXsfB+vBd(ts;;S-C2mE8 zh4oB!WtRXAFdV3GnJD(%@k00dLKI%Z7Q9pAavw!MfY!(iaKe=$(ISL)ifR)k!Fx~H ztrveZGf83?Aua=va zm)E@onsB<4=V*J91bJ?PPI~=XBs~j@!{KdU$edhU82ID$HIPv&TZK7{Mam#TX19FE z7U$zr44MY*2H@UD_1Wn_-&tO46=3vUI}b9v5nS`6O20Vj-4);Z7cWjVzI$g>gjG}f z6Kz$eg)E}Wgdt)&QYI4w3aRCP6fvQZOAE@r!1lU_Hz@+$a7#|kW^HarB{%oMKJXF_ zTpOiAjG7GY+;=-PmTS8FvqMo?nXkvzp=$O@W>%KCBon#M$TwRG@xSl6@xt|6lBKah z1NMm|cAUJqx!FQ4b5)<3oy`Z*5VIlG8qD_l7q(9<=#otGKYUQYZU1`jj3!SnvNo4RpwaN}y~QvgoZU0K!uQs`!)E(*jW%^VXmq?_mk0Z?(>g=X^b zEH=>f!BlZ~!$hL%!rk3hWEm41djYe#F_B_y)aG{#%w4Tlejr={L78NHt9RG@_5c9# zo&WxpkHDwV#7Ft1;4O47!C6UzW}<&lHQCk88eLC@ui#$BUp9L(S2@k!`2M|8WU}9` z=f?WF)#mafKQUZlmI5*QU~q?voHWOsdq99yvtn%tvXxwbPJ!C>w0u5Z-rHT-s$`kn zUv#Kofam2|+lpp@^>BI_e9%C*_Y(L(a1c}?i|@R7cz0`gsz<5DYvuLMU@gv@S@J=_ z$9a97+mlqt9pv9O_#eK^>-3<~aTG8XWc*U*S&?%JxfXMCv?@SpoRTBI-i~Rs3JgMHik*%+3zi7(%b*b05e~@y!L}vu||?6`m-QlG$BPr=+4nsgKmJcPDZI z6wG4|gU|HqX}y3T*pOhnekA6DYg@Xf@>k~P20X~BC7KKMEOvM1{iabpSa9dMc^vw_ zg`9ej>H`cXPH28xg(^gCBH(E+DJd!0f5S7>5NKU~x1XO=Un}lM>hm8Aif!lR@s3SQ zFb>oLnE`X6@2yFs*V-H(n3Xu7(J}hq;5js=hcBe~EMg$R`9LP?&JL83HC3fD;UxY; z7FW~M-mVH(m!guA%PmkG<@+NJ`b0HnfZ;^|PXee%FJREhyx*Q75RP6T<2^a*Y>?3? zMc$B=Wj0}DV#=-YW@c6L=7U7doG2z-oFzN(mo+RqH#Ro**~BQJXdtP=F{)WUHPxK8 z{Tsb#Q;uF};nL-%9A1`V>!5km6Rz0X$#?)zqr&+Sopeq{27Ars6rrW9Eyi`@>8>Iu zks^D6up-MMEj=r~mFd5FYnp6TqXuV4<1g38JvMGu0>rky*-wLLcb$0=t&K4Y4Q}`= zy}{m=6rYlWDTEVz=qy0W`=kbePRPYzS+9e<&Sb}fTO64I4t!9pMNwZVGgQywm-@Jj z1cyot*y5495;0gbj01!M|CP|)4{^dp7Up%-XLz*uZ;M!WvNP&{`knT?IZDSYUi>a-!Uzxh<27HimS_aemE6eo=_?iDzxc=hp~-{) z`EuwZuSWp#`hm#Y;?y-nUEP=`@#AJTMVG+pDzUl4S*|NUJ}o~KFe$C<40!$O=4J&HYQ12$WfeVnS2nH z62a@ae^aUMBK_H)mgKm?{gQM65rVB{Kk!aFc0um*UobHyO7|zi#T<>QBTx1+#1j|? z>dsx1&6YN{BR74aOb)82K9ZFY=;r1f?gR+OeK-WnUi3C-bIX_JiC5Q-8a=b!pqM!K z-@h=Vh2a?`XfL@X#Qf5xm5*(zXJEd>O*x_*Q%qT_(|%06#J5n^8zVo#fxCZjVX3om zF>X?rcn}-TOG?4Z`9D++_oL&;U-roA+$B2Qq7DtNCw)`g{5Cq`^4O4C`s?&?aFv#- zbDN@{ude^J>?oDP)2_qegVs6}3pe*kbKk;bpWG&RLMFa{e}!1M0dqxH9_8q>gFafp zkt%%M>nZP}?LQ+_{w+60b&pZ>wA5WCW#FP+&Hbwcwh6((DZQ(a_uPI?t90#gD8H}L z47;W+4;SvnE>-G%oZ9K+{lsI<%3*wZbnfsTcd$gD_WiDYSR+pN+<~O5J*D_?k8GxZ z-0*r2s>Y;|D=i&M94XhveuyQ%TU$NsdR?TEEiW;pdR6O+1pcZj~%6L6?m;`Xs$(GPo;7nt!R6O~D3b^EEgj z%Oji1%TmQHZdIW$Lt^Uk?9o?g$JTS48kM`My3XH3e^NYOx9ol6O@J>{*SOJ6txdS5 z4TZl9+d_b1{e~+-lpEDOuaf~hF0h_-^OMo@qxB}Y@_IO}S(BY4%tjTVp1JYoRnm>@ zS@WiXvhmIVDRFVxK$N*TIBtRaXVYJdzo3$s17joQmBL#7X>7zBF5yEpNA-G+dgu)H zoZ8rsWMqmVwCvxF=F)@|J&|P+3g)v%~P#<^Td#*-69Z>w2w=V#}8tBi}CS<|r zz+?&8qzhyKSOnv5X((Pf(~sZ#x#o6wreDwOj-595LKlcv=wkc#?fX(v2DTIkUKm5k zr15c_7xX=`y82x8)%QIu6X{y=kV$+kL(d#$YxVL*&S%nSF1X&ObXL7jh81S-5zAM+ z4|JDqN!9jC-`*8ruyd~FF~ejdG)vpeBV7a8Gke50-#x*fem_D_=LYcu0f>Rubbi@P zKLBdR-bTt^M~FbJmB%u`tUCRgTZb7~NiFvT#fnj}841Z8PZc}JfEzJ1+t7Ji?-pJy zX55ccUjPav49_7eE9(aCQPAr0vMc898y2L#AXjTt)V^N}GI4dteT}yud$j}e{!$t@ z!+K$1A<$W{?_%=#1O!xBeb-YVwN8iSuPhLUz$IJJIF=0VH1r_u%a>6$j>@jyJpFVu zgM!vTx(!I8=G91xDrFf73iqSiDYkKpzu481RTXdFExZxQUK4PGs$BZk1B#Veq-nBJ;{6! z**|~&93ARuxYAVaqoJuOV$;nzQF}%o)dOI}aWwDEQO{?Kv4QtzOS8%c{71UZD%9n#}{7$XLq0Zl8Qzf z;P|3GJ8JyEG{NMs_q=wJxEs5%@1N~|{vk_GPygFRfdq>zF<+eytDz2tL0yPU;Dmyz zDjBGrx!_Cms_Tyq^p#$28Y=?(OKR~0TjgX{f-p>)p@9o<3=~zRD z4lsSu_mvHMDFOeeggFJ{?L&hD;NNv;tFjuGJ6%Wp9~dfFTv}R5+1r*!XCYu_Od7Mz zl73uYoqNP*DXhot%0LOs{=5TA-(?!;pSkUs%Xc5IfJOG&!rZ*Cf7oviXA5&fZZPE) zqeIH}p2BD6fyvSPhwKwQR#??4`_TJ+<`xzP60Se*;6Q^B`$^!<^}-tK!4#LheUW8* zDa?&^d;R!u?4s^uA6SQ0VK7FqyWFMfKKs2XtY{c2z89Dkp{Hg3GB=&(W@dMm@)?K* z`bz%mq*=%BY#j2H{tB0DP-!zPJp&NzfF&_q)Gkfvj+fGgxk6QvUItc%rmAS@52IgPkOcWg zsN-|HlU9w);dRtB1vKWItfQMgL`&=T^UQCuy{2P>ONLoA=}z#yg&l{h@0JNQjV(dQ zI0cS3YC6k>o=P=ztkH(7T-(|C^Ja9>yLeWx zX)G!#DjnQ$R1l%#BkYqfRimk*60Vb{mkQ;KbqUqKTw$n4?ar2&>fw-MZ0vrUN& zfZ0@E(M7XR#YVAh!ODL(a|bz)yQVWbb7#DU(tHkG=Wg#;oUl{lyLN^>=i2ejY8#l}>fu(pSR2_eC zTkujs8=4loLP*JHRIUcaQ#!zM?ARYzEOvIJZiFZWune83k^e@6IUKW?#=Gh;r3nCS zu~p0n{XmK6f)8|!0_q6z6qLE7s{JQam@-atL5WI zEk(uP{IJXXDcQ+hiZE+~PNkxTzWqq8F%)wb3{c^ZvB@b!!uVh=inQSpb865DR=QMW ztTz_NP;b2)Gtq;CsSu_sb}vBLp&maM#Q5mjp&_Nhv7M@zNRE1kVp#xI5q>e~R8sKJ zNih37HrkSyH!^V@6TE^FcBU*KpemxR1P7-oWS%N_FKF5{ul z*|PxwZQ%jkcK}N>K>VURjS4kX3j<0R)z;>1)Wm`{R)Yp{;4DC51NI`3n$<@wLUQrx zP+RD_l$`lrGvKHy`v;%rKRPI=)Az3~kldkkdJP5x6<|8^1*DU1UCN?(7-e7* zvIvESXgck^yX}eEmN3Gk4$TXVlDIUpP?E3-;&PVd6FX+aZ?EPguih(Ay_^yfhA`a$ zgT!56aC?^1A`+64)K0GfX>7sSsDv}qU0^D^v5Br_Z6}0MMChlQjx{T>8Lg_MX$WJ` zzyVxjXxcZZ=~%iUV}M~fw7FN+kCfUcG=(!0V7TmO05yvmfXC|G5CO(lhX8H7U^9(Z zo>P>w@gUiP32kUE3R)$bc(*YfJ7zjm=9tn0qxvJB6U@ImA-Kct;N(}qq?B!ITU!Y* zfe!Hp3wH>OcMGTMKqjMCt+Wc%xxUS&7{y-=qPzMsB_##MQP{a)@B$D)++!{gmW>kw z^ARcRs2{ob>sJS~r&$wdOeDYt$N|3;$^xROgEt-nDIJiKzFnBr>g%OOf}JAia`v^x z36SCDv%!hN7ZiMUFqD&f!afOv0_+EL%6rHirsvS<4q)x2rN7dItvwbC;^ZJaxs? z0kx99t@}rz2p}nG1kv5%>h8RLF*uTMiP#4Z%F(HEm~yB}_knrf@9!hfnSjz#n2A!1 zL<>U#j5pl|F`xQoIP}1-%stp)bx1#c+^g~h^FaIh^?+D@V;k}=8vel4yt_T{DGddM zr;$-nZeQQ-4_f=!)~2naqqEW5=RRUeG_zKA|=IfdU}4IgxaxYO`+;`c6ls53)f+={~9dT=2#pS9T4T< z;J`x=9J6zuqMQq6{1Rarfzcovf?!nD5|At$Ckemt#ezSaeUA6%_2T?t2uo8&J-=2~HA%xutTGc;n8){{p##s?q=e diff --git a/doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_16_0.png b/doc/source/pages/BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_16_0.png new file mode 100644 index 0000000000000000000000000000000000000000..34ac58742a93861ab391248a0aeaaed921ff1d79 GIT binary patch literal 19471 zcmd742Ut|;wk=w=2{9{*ia>*)WK1X^K}Ep=B}tYbC?Xlj8CnHfLC}(5AWF_bkPMF@%Ql?OTE5(lx-736tG;^N|eu>zg*04QqdBxU2-`bFJPT$tb%+l7(*x+}2Lu(sj zON&DSA_52be!psKYh@!UC}{rgCkR+t8ws+>FK@<0)>xgXV;k@se@I6pEZH z_0$O!$B@A`Cr6d~uEo)6jz?xUZ>FC<K=~KSMTzAwbs4bzXEsj@Xzp^WB5%`5jwdazs}y;v<|;&*;Xv4P+r*5VGJny zng7|L-wNB7omsikJ|_Bdevh`h`}X>j3v%4tk1|`FHp-qWcYLz8+g#wv?%`GIO$=l!VX|(zJG79CQ=*^4xw1*qmcHmd66d8HX zzD@uAhnBSuQASFxOD#9d&#-rYnuN#}mX>b$rWm?f=fA+QdYm zC~nQz{oB9xmj5pqx&P{IZ0#J}5O7O>$LAuKoG;zo**3lM%*X7{1`FsY4}Q+BPt`fL zez&k<$!y#3+;w`|F> z>N+_;@@iv6MTK(ro4fUCdXjf{9+HlXj10@w!Q?nTRJhrB^X7{6tP-uGP7n5;V_;@Z zsf|-GtqkJ-oN4IOkgAg;V)Kn_|NitdEdc=x;?tcsMBV3de_Ou1KGRSxCOZ0RZS1+v zg-*|6&pvv3i^Vzq^?-m*z6vf8tiL0_KQXB;UTF`ri1jJUlKJOH%$gz$D}xf`Lq%B% zvD+z**A@6~?O!K#;J|^$VosUQE!q{g)bHlez5)hZKw!een4`;6xg z_9--sc9+)|ySbRR<|-wrrPRcpdoo@lC-`pvx^v+YI;%JA=4u!!XZ5JlTbxm+;y_XK zxhF@A>l0N!=U$8YoMV|5CF5^W5x~t-;(*W34aeheU>3dFmT%`g-E~VfO}B{MaQW&D zbh0tfYHSE}x0Gl@B-a~S{pR)q<)-d+9vecj@G z$0C)sYW*&iWF0fJ}b(P%s+GS@x8w$cHn>#tuD*Bc1w$9ikgr~-I;yzAs;ax%%zhUE?V@PyG+MI z{}2!}($`U6xgxi>W6#2Z`{{*&q>#aJrMEgBdc~=+zDFx=jUHiq!!*JdzOhttVLB>E zP)~rm>(G_6_cO=GZK=wqPTj1X^fF`=)J;|?c$uF%^79$j!OWn_-aKVT$3HJrs|Oym zF{7s&anQ0DebEt|_OoYHy6iyvx0jB~!@6qOreAukeY{`)`q&$9RXOcZvmHd)LRZmF2P{|#E`Qf#~N1ex2$C@{V+`k|BDN1JG{i8!B9mPdgK7?o{ z%PT70%Y63C@L6+6*gio)1?5lKuTPvfK~qV!_p;Lo3?FW1wL*5t34fNTaYMk;M}3!G z(NTrbe|&@oYwsRBbO^)CHP}(2m!g$j<1$>Newp7Ya%9Ac8Y8I5#mAe>8)%szvaa6Wb@*y$mV3D$Gbiu`HfX0sVRJ-u?vb93f${K1=4pIBHZHrQ5>^ZL10FJB>n1+KTMZ(e*-6}x8Z z-m5t0&Ye3oU&?&yAnkTu+a8r%K9cl@kZHr!nrJF5`uq2**!UtT z#|$eNvP~O5j5=Yzdav90^!4jgh*F6NY_jLh)i*ygLV`T(GX|NSKac+lY0PBAQ5#dejDOSf0QbpZnvgE@h2D2=r zrKRsz4>Y7CDM-$%{Oql6L`Ja12YY#YC#t9E?h>(%M&uY8*M4_CQsX7HFeKj%i zEfYg+7vdDc1twZuriN4%6%}tA?o$Y>D|GsqWmvf#@FZTh$hp7ySsaONd(S=2wN=1$ zjcf>CQ)=3nTJO8_5Ko(gfPg%5F=vn_U(gnRY=R4Wq>hda`+vjYp}*9sO!ShVE_ z7P#Y5d(S?MNKWQ!12lLnYL|HZ`gQUcC38K3T6xwn{x5eT7f_e1LR^q6DR7X&r^!e!O*qil}f-ak4mv2o3sPboR= zi7evI-%D4s))l+Wj?WCFnSOeD+E3KU$;r=u(LsD^T+7Qbb^;ThERNca8U)Gpa$#`d zMn*R26h2J3{#(I?51RGKC)9d+8HM?e{_s{lf5_C8wIXUS(2zgS&>=quyT{tctJJ%t z(hrrEmO78U+b85ae$~9ASf{VA&#$?ScX?{n72eU)yVO@1I+)!L`j0?@$5WjGi z`FfgmzoO#EKw5EBR1~uzRuboPeleCEJK}-pT+)Man$^+sw>qV6Z4i+t2BzQ5x_ZTm z?~hGW?{i@3MIrTm?PV)Sy@R*>2$?VZubUiO`>Yj?v|Ks zK%KP}fxMj5`I(8N>tWbOFG5Xh>D-5lrm}4Nlw)FJw~K^5ew@gt=c+W&m=?@2KkDzn z*I+-=S!(hz;tyb%$b|E8JV%eJ)5sPgf9K|=BG=Xpdn~$CcMz!1T47{=OW0*HdDVv9 z-=_<$9K3Z3>=Q2JSon2EN#Cvc{wa!+D!DlKEQn9@Db^>isHm3RK!d8hyq_QQvDmpe zSArM5yuR(H*};p9X)^hvd6$q$fW-Xxc~WGp5=)AEp(Y)ok zd|GqD`F(Da%|<9A!k(KoKgCFMA3Uf$)$WppDd-)$@C8rR$tT=n$qfWsafYX5(x;_l>`BAE-k<2-`SG|W-}bm3Z+)(Pyw%1cI3;KEbtQd3 zpxSSiHd+#Pw*EXn)>A0Q%l>o|1Sm)l5W7`qG&Zq3D@y{F) z{&3M)nQfB@X%CeGQ`g8VD5xVDsOoOPmAPUoPL2fYxhK4Te-^MhK2cx|UJZypS;@8? zMFyu_5Q9h%R-A;}jIjBo9o`2I9<=SN;l#kTSy%E0_H*IvPJwOor8{@-1j4ete+dO& znV(2)l+4Dvtdhm-!6an2rk-TWwd^Rq*PK4t2bO7<+ID>^Y`v6bP)vQI&_4Y|{kM3Yi8qr0J!F zgoGR%xWKm^l|)BAPW@n&gRl22HYi!Ic92}=ei1FFZZ~L?AD9P(sp!cF_tiCN^I#}GN z^~-;$rD(;dCaG=9dqd-tt4q0%!(I+nl>#3-&ZoIv9pY4~|YuxbZGgX%E zQ4b&Pi0e()N+Ag!E1twstUr)U1sb8eRpF9);2&sh7Qq}|H*dbZ@~rP;q!gHfdn5+V z{|sMLDX<@Gb)qqx71R#xg{kf&!O@pd0I72o|&p_ zVv;yH*b;||ieYW~;(#}k#m6B23*$eYRhxjI$^ZG`7$)s(+yq#GOJohuuU}t($zMEn zcBnvM{jS4`Cr-dLb!{0}`UOhhMkcx@2Q53#2sowu{e?*DejKWxH6_!vj$~BuFR@A_l3X6^`ABl@CqCrH%#3 zV6mxVF`Wm`RS!5#FL_J#F`|PU&DzE$@X3=4SLR>t*M6YVyxkb(tfGd-Lojt(swD1> ztXaNlog!$nEQ>Z#f>#P0h8s`=PoR+OuM{j%>HQEoF;p9!Hx~Z>Tet zVVkwQ-g!g8%JgQlig)jnWMySlbr7##7}X`5m)R&b;z_tR^UqmSJ-3O#H@-XfAl8Eq zy$Y_=qCoA&s`VW8?+rKfs2Z|4g4)CyS1)p&NbIL!4N4>dA!7__GgHHY)Sd-%=dR4# zHTGZgyS$k=sMt(4e0TRV`FnSQyx`>IG+vnd_4uIS9b^{-tDbixAx#Gq78WX3f<@y@ zXf?gQHu$V|q2njxQ1|&6ZZR?KBTvp@toelYw+v1ySN9}oYi(_PZr)?z(zO4S*+Ye@$COyQc@2D zKrN~p4jp$x>*L3d-*0XN9oRQo&MMgW%c5l7zUr|MGz@OCl(y~MnE;}hT9d5#tPb#l zS|dKy8Wj?EB*q;$Gy8Dcl)^E_rL+iljKS=?ELQ9zs2V;HkI z5H#OG>D7S0teoF+_s>7+<_Gi^Ya|y&H8H2R)Y6>rda(~-hl;G zH`i=Etp9RFT#ve*TQ-uBYN}1y>(}2O8HI6AWt-mNX<;T=Enc9tSh{Pxua;0K9Mp;a z`t!E7Sp|ZK3zXc~{7Y$hrdM(?0o)M}KYz*@%}`Ohx)Ki$1Sl=QSKIO)oJk4JE!=H@ zWwLAkMNe|)z{3^$ec3&f&!3-2^O%<-+_L@P=N>-^f(it#8SkA2wE2{KtvetrEHyoS zzxc?DVv&Qxdd=_9@(~`6!;IZ^FD`{m)AC4OYoE#oi4zxROK^g{+yei=dC4l zhoc5a4ZE3fV}8xdQwZ}v?H$AtUskg1l@E!BSo6KvD4gHnNpHAE@k?`@o_M`Yw<73K z{lm1$g8cZ8XOZS^W$V9M1#ED^1G}xVZ3y$-fM}OxKd1!+tecUMv2Ac4o>FG|muA+N zBq>?>sxf=@ij)(V<5zWT?;W(5&Z76~td?BVrj4WM;Sm!nY#ju>av0h}(fnkKR*`e| z!gRT$S~4j%Spq^H#~fljSk$&&C6b>1RucdPLNg-KB)wjIdKLD7de?KD=y^=_>Rw^U z67KHqCKy~V!Mc1qQ;bO;-m=Yt0I@_nfS&pJVGs3_C$9_W7RCej5Eh20WOH+Os-t2d zVU2z%BWo8GGIv2+YJ5Bwi4OUwz6f}fX+s$3Lu{=DTT~Y#$5<66egXJH7BvQT_)zhz z#ogT^%8*uA3QF*lK8%8i*r5aw72iXk#*L-;`ufu6fRs62FJjf{iIOf3MW&A1L_Iwn z-N%ee<%CrrIs#d$K6M>=HgV*ftgOR$7D5yQPt>5&%`&Oy36*fu0?gyL58b*?{win+ zBJDv5Baoe0(p}rKXd;N{Xe-xl2W)t|XG$ZoXA>J6TgCh2Ip;^Kmi91ZuE74_jpN{OWONbgSo|T7s^|MJ_jcY|CPzD|di9T_}i$I#GGobnIV+RKJJxs77vb1r&I@e_auVQ`BR@HLnGDKpuij zFiKy1rR_pA_s;c@u{$fuFGM4e%tpvf8`TUQqd(VDk zvMlV%8bmHTeD&k+Zohhh53ZBK1QLuIB%qVHZ22mNUrX7GJEW*K5?m=wK=4|iK*_dg zkaslq^>4Rbo2XY0b`;ycUy;yv(d=@9tqCXDru~i$DWXCM2nve5zegs>RP!|ojKdJE zkgyT~zGen3k<$IVy}bI~Fj>|S7*7iS*4%47CR2n%LyiLt@(Gn{7D6Jnf;u5TpeqaE z(aXxq8BHBPd(Qu=_6WjEAis^H1|-Vx%w&tD9pEFch=`_w#INXeH*&JE(I0bia74fE z_9{5Z@GYD-n5Pbv%*#gZb@iMHdL`}|rn%?6PNri!5>XlQCCL;(t{+jR#REf;i-FK1 zk|-7h5?nI(`Pi$SFa8j9olYk=g=$iEkdI9#EJ!ccDw0Ib7K?(Ex{|Du04E>EdMY`o z(7e@A-|aSZn;HKEwTpv_1kB%HUwVBdNnVKW+!l&l7Ra)DN322u;;v7kfA z-=TbK6VVzHB%!7tJ@;X(r(TN-Z)0T@geC{nWrt*-@oV`;vEQkvL-aB<2VV-k2b$(- z5MXD2IU3N7yxuot0eCTe6L><%qE&;IWmFwTpCbuM@^-oTktdg$i6qV2R#KxPyh2VH z7i4bHLA`;D{Dl?B02tXAGu7XclU6XR8~d{KJ0Sh-9^hh3Ik&Pp?L(M&5(bA#%LnCW z(DEVlnB0>1d~^cE>x-#Y`xbLrwAWfj=y?$*&5xQjDSolJV%m_bq^0%vq?D8$IL+Lc z@Wmtp{}G)?Jf$IZGimoXnreQ?;c zfluh_$K$jtmnn;)$yKMQTZ}bX&M-y4!v}o@bPW<%y!MYZm_-K>irq1$8U>Gchym8fCu zGJx~NGUmlCAT048SmBS%Mq;@|(S#aeyKHlFv)}D^m@m`0=~0$}oJzJ_QQlVRlq}89 zFCCP7zkXFoYzv&=t^6PI;J-?ic<|uKfeo*gZc_hfz~lZ$ajLvedEPM9uU-;1EiKOp zG!1$a=n!aH@Y3Sw*IxC!^{ZP`ux7Lh>{E!mjcC*dw2d?iftm1BwjFL$flaAc4KrX! zgw|0+75da#mB_z6n zvADRp`B+?a=&?AU>um|VRCs69ki4MR+yCIoFz*_zC}iJ+)7w>}q^vMRm$S73A3lt~ zdGn@0kC){G#Gz2cU$y8Ti01b=+{Qo2lzj$SWeSW)`|4;+1R_@%j2D5r$d8;`H(Maa2*6bCJ$t0UfSyNqNa~cwwM_g# zyz~QZThH9nQ5|{I#zx`*Bt20H!PZcH062)@Pr9cOI}an&l=nis&LWHvNQxxTCSZvI zGcz-HoBko=yF=+q%MXz9(J0DPi6wwYelQe}%}js`&Qk%CTr|;ep~u;n)Jlnr5dFa1 z`Z4cJ4G0g{`#K#sJ1-lYBXJ?~@@oc_<*N!}Zn`!yyNX_(doJPd*N z*_Q|(XM2W-4M@^S;A@;F%pGyk|o6RPY(}V;%R;EHaj^p+p(yd zFn~lG;hgwy4E_H<3m+{Sq+b#!M4~*%^@`w6xPDUbVnKq@kPLAJ#$IU}Y#%xqGi_3m zv^L!7(r#qMeHwFf0W;wW0UigMTXeW{JV#dDDeQC43D3bZ(XU$0lFk&v3L`6)pyX9-p!=Wx8s+ zm#mTUAS$mmBx_>+oKe`4+KpMlRU@rY4r; z>mfubQCyL@FbKjDx_~IC0s03m)HEQY<9R#HmvyZ#Z1bW|NL&b$^w7md4jLbjJ4COEVTEM+~5sbQyCl*o2i8Zh~>>+-T^FJ@&8|P3MKPDkj{I(Y{!aZSP zer_(yarBEp`QKtzUbf}Xwhhq&zZ|t#`*Ord4Xu6SV{ilQvT=wp?ORm1X$5!UoVs?a>xRTV<)RdKJ$!bZcGNVYn4Uj*j5{xP8 zJP}J*>P4tOP;Y@64G|}97?gvSp7~m%$SP*`ugCpq(`wuZr3W9N?OkA zkoT@m-`jM1Eu+9yY%*Fj$g5+&rE^U5)yiPo(xMLrYhr36X4qC7+x$O(*WoC06Z2hg zn$;f(K~lS+{~}qD!V}3XrXl45(EAW6-|y77Ju~v>K#?!c8OF=QBm1|=OlmxMT%9uq z$Tjwy_v(Z@^*h*4zv}Mp?gCTUcQnF2{QcF#IUJz zI7>To+A(ix_TuP^he5GfqtaEcmXNcfH}^?s`Zs)-0XMSoh_U!YqWWkRI%crAj+_9; zdM3Y6{4ocjT3qjX~di9EPKA-O?hnJz39a+dsXIZbu=mm>??d?70R|aDy z&o19Z^{$4ie;=kRrEOr9;G+`P^zL#|KsYKS9`)PifZKl|JP=xxj*By!3XN;`%Fqpg z*xu5nK;LQ>l_J zz*2eYmj49sjFHa6iiw{nSMzQMGdt7*UbWS(yEn(~6 z5aMQMKM65Mndng^9*gXjKD@}RM5@0E@68M}b>LVom`_pU69qQE+wWMRl?<+FrFwT` zDaci*gJv-;tKlAh|L_3Z#lB1~* z?9GcWmM|GG1qPOt0;*qm29}uzqha8UlF^kpI>QAZ&BUHep9G`(#Z~( zqawqZ+?=h!N1r~!-El>|dv(}P<#I~ImETt^=S+Y5w8VF`O`YlISC6V*#*3=+&L2E( z9(qGj6g|0LkzI;WBIH|E*2296)uv$C&UcHus=3npzAE?XMfo0}1o#0-=qfgt6)9az zdf86#`~^_?f~n$RioesnN7|GTj^}5v2>;!=$#=`MdUPU`iE`-Ttu2�{y?@#CRP z9IQ=6%i{Z*B3B$2lA)9K3KZH}dDgtDoR8IYnO+=4R*FuVGeBZ1)6dSIqS-&vbb3?FmfZ;edX^g3OOg-|dHst-qQdPqurPTaksrOS9io%{1QM-6tV)NcyTD4Yy zXW*`N{le^@!^7B}a54{pe3Z}s7*pcpdyzgBh*;MHZ8WE2C%g%CBR4lRT)+QRhI<_SdL6iEW4d1_2LJ?TXo|?MeVxP z{eC<1-~M_0*J_Q>pl5p-Der;LRZgDMs~s4eNVa$s$@^BlrbO3T>&L*Q6%?!WY&$%w zxlLm=3}P9V78E7?e8bs{*JlMO5wAI@wc2G%GCYn~ZkEx6_q+Zp^p#u1Ih3DPp@9 zy4kZoEx9Op@K<5m))9`ARw5i697J~`eu99&z!*^eNuVl8umZRn%zoW5F8uk~-knx!;AkN&7z;Cvl>-pYbG}^?8dz@e3^7wE zF*bJLm+T*%IA?S~R_p2tx4F@B=PoZs1}3H?kQu=mM$l&oTZ68IJ+K%g)HH$^w=Zz< zE;Y!Ti|bT=Tr0Ye-5>w^vu{D_w2F1- zdGm+z2SA>%25K0A7xgo*LE_UX6GtRHZaAtSun%yRld6{V^X~iQ%a{AqArX06{tnQ{ zz`#MxYz|4g4c?honGxZ#_>WCLPN4&a0|w1D*ZWDN*`7=HME^ty|lt_LVh6VgW74L=Uz0_Qxe7iu3 z1I{rvwiC3vG`$j@K{V=7w58|-%D}Lrt85<#R3%ZGH|p;V2VP6$i9gsH6UNxzgM9ymj)p-CLU#N{SK5<~I=pCcVfJ%@LmI07e`qdH0-0UdMwBR(O@B2vzIuES z|N7^tkz_JiNUH=>0I&_V=ADNFvKEXI%r)i^)#XXs*0B53F=FFxF}iZ4KYVd6j=11} z{JCI9AS5}d=3&ZK9c_zPV)+kTdUJ;MG%5=8xSoOdo0c5&_CifokGTwjyCFE8K6NS{ zK#A~D#H8)%`BX9!1UT^x)+ed+!g&hr1Ph30L$%xaS0}ZmRnRWnnT7QX|c=)QhQAQBwE|^}xIvNMD zCn$(d1gH8=*$+ORvkyb`ryI#&aTKY-VIM!X1jg!7Z8X@YaXB@e=ASX>IM0 zPtVOST*C9HTC>I%LYHX%)5qr!4Bw{Y3eX2lZ%^#7><~h;%^m@P54k7+eL=TvX@#|(fYGFI4J&nmoieBU@xy9<Y-!!oU_*S#TR=-o z8yFa5*c0xOJlR~=Mvsv*C0#5qMjb(Qd&!siSi>|(;!y94Z(1B+|E)TZ3TJ7L$%Bv( zvn{VgKVQCmS$R~Ca+DpwMr{ym6rz&zPbi97y4^wb^i|tUa zLd}NG08#$o`lMhEZm{1l4)}F18L1)s=)lRt+hBn*fF_W3;yp0AQE=B@c$u(q4{UuxS@g-}UL)nFipG420wgN_8kIp|<|81l4_nZP=e>c6zy9qU? zR&uLB2H7x>5$|)qCO38SB5Ux22i?=cD5pk8A)2BUVEJ~?sEX)4L}0Y*e6h@ba&zEM zcqjT{GIaiOd!KE+s(PSS@aW{Zyu3Wp|G|*}H;Ab9*FR$w!c!rpeup=y5eg+t4SfcK z^yLLhW%JR$%I4GkFK0S_pK>U%y^9G%_OH zR>Z=Hoe{Al!>-=Y(cx*7e){poSv*~~>o04nwOP0-7ql1}19};<-1M7Kf{WKlsd$5h zLpB48od&7(T}MaB`y;+Nme`l}u5)O5C7Loh0guN-9MnV}FPmKnagKQb_V$|hQ2D`F+zDLmG8lMsOYxGl=o=x}9x9Yl1Vjmm}ZP4ZN!C2f0 z=>7IhRykqd_Szhk0&D8ZLQCKb;zwk0{vOF*vW0(r_uvzBF*38RUcK5B?m9m`^P{E> zXQ3FA-a)J-VxSc6$4VQ7a7-*yyDvl&?Hx`9JVpbW1#D5ZvQO-^d~t}bRDugy0y=ja z(7}i<440}9k!KpAq+GY2OU&kga!b3D%IWPu1atBkV6wwp$KF}zTq<-s-<7*$Qaf)J zTaEuR^nQTBU~L|pWFJKAI0SzUtdUX>)Mmc;2r{s;rjfvo1WBwx=qrhUKZikc?FWp; z3A)Jx@U)Ru0Mh0IyKWz30N&BtW5oAaval;Ut zD9`nr4aOM%=*o^+FTuC^g>JQI37!D{LjosV1}5!=c~N{YOB0f%9{zHo^&zUIM){7e z61%bKhZL0EiKa{b#?@iscVL)6vnw2Vng(qUcB#Q0gKArzRDE+?uBor%*n!HMQzwic zW-z1slB6M<18bq-ni=>3+73%S)g4xxy(Rs{*3WaT_U0y!27PVXb$2vXg5-c#`|FZ5 z51p2g3D$^%^h*TDQ)$ zf5f64#D5s%63^g40!?33D(4oSAc=+HWco%JMoEV+E*=X}0{mf92D9HGht_MiIE*0x zbADh+hH0y&C)m6W-r)IA>6q8$2ct)$?;o+d7!PV~)kmZBdj}|+arGxcUd8) z+1S^2Ad4PG@kvPNuHDXekApNN&=0RL>;pjr;&dO}ec z-|hr_p3Bq9k$agZ)5$u3J)j8Y>ZLN`R}Uj0KM7<**BxP*f|~XMU_&CWfln?Kme$WEGuKzYd$2DX4J*V-1(2?UNhba$R3}#S)gB8`*ra`MEfPZt5*0C0T!nqV9}cP7N#g2)mMuPr7D&K9 z(yt7=R2(q!Rh;_|le?uQ?r+x|mN;B<39wP4@lX+4s+Now=Emv!hh>x@g9Gbcjo9y_ zM6eSm3j>fW4X#9j8Zm9a4NG665azMqMEKXT&)9b4n^C9)O-W=ir;(ZX665O@_tk6is$rslV9Rp9nnT zB;unVjZ=4)Sk=&j0GB>1z(#eI!zzjuBZxW0?zwMAOVE$knpb;`54aBwMOrkhS=-mX zpw$5fA)w~Hwh0rplf@BYJA|7xM7O|d=WE1K6*NmVUw~6|$Hq6yMyRBPHq)>&3-)Wc z>73CTNqb$0CdH~ z#3aB`)>FbwIUa~_&KVIQMt)eQzB_J`r=cW8hT!liV@G(x7eAE0GO6idW~L`S_To9u zGD-VE{_g97C>&DVuNWBxC$Uf>`oVck2cW(pNQRiTU<@WEE|1PK6oZDV% ze#7D=-(zASe)Qkoi6I-n=-v7A&yR2zM%}x2&%h4Svk!C9g`CvxZhR*1-o3G}f9mDk z{31(;0$Y)rMuvvmhYx2RY+FrH*($bU^$U16e^%3?AxsDF@QkTERJxc16pvU)i$<#c z(Dy4eu+8e#dLZmyaQj*E))`TbPoN3A^E{RsKUMbZSt!jG8Dm7qf$>++z7SO+sW3T= zfx1sOY-OB5H;QkF^Uq4 zwqMU$ARz){4ja6tL$Q_g`Z-L1_sR@DLAgE*|2GOaSsD@zvGbmLxc>wZaMHx_g$C$y z zbALh{`Ufgo0*RG^>{W@48#k(>rIPS8=%OZlD~GPUR|G+VSe$Rr*bbL#nB$i<<@uLT za+XinSX=L&a9^D5Aa=}a18&PHt+!TpQ>H^8<;h}G)vacAjUbJYkRVWH)tl$E#VSQf z8>2jwZ-H>44J1n(oA9c!Kq%sZg`7Zfm@o)6L(SjqCkGGhK9EZCtZw7?QPS8=kLaT_ zgLK!BAVa<#2J1CJAzXqb&w=9UvVZG3iuyyePY}6;+&^(Y7qu}{Ja47%-9cF>=`Qyl zKs`p|XmkBpr8~5q^5Oxe<*Xr)+)QK1LJWupVO`Jr;PwQIr%wV*rla7ge|mcD#9&Kf zrT9vU;}+234=cdEj6=$oBLR)*f(UM+zg+`}-Oi^GfuhgSek-L@pR7F?)(EjSjwi(Jf%$XACC=Jy!?>ixB=7;m7hP_#h!SIbAm`$9Ha?rY@Ecds8AkaPM=&$SVS`G~tJP2+}4 zO~S;1Afup5s3$`o%#`tQB|-Ja?%$5NjyKCKR~?;_3l7t}%4x#ld@E;@3 zG5{|blyBRx+!U7L`m%aq!$Kdlzq%Riu@_{ujAp+F}8_z zZ>95Lu~Qm7fJW2<+l!8kxlk=DW;lWMNrq~ysXKJM;Fl3(%4sZ>w`lI4ar+1UcVlTG zKF953$!|Y-S60&a-Jg2&e%ZdsNAXT{U@aWlKwDTJKGQCHFa_6fy6!s*bDOqO5`I(~Y~OPurOLk~=pKcL<`HLy256D*Ybz+aDWE$y4}kNx9np{*ZWEJH6=G8STD5yA~#S&yeZ0 z9xn0L(b2InhkdnS(V-XU&uY|sCum})wl$dHE4MkSs_+)^_Y6_8&b#H~)r${zOIDW$ zzaTAv->ntd;$E?Ef4cYb5~KAJ%hdSyic!=_KP)0Ckx)(Yfsds>2~j1 zwON0J#MQ@}tz_pZIWp6;&0%su2WnNx2RGkC+qXe0$7qmOUj=ZUy{Ul8%F0%jd>$DY zL7@A$+8qS(2MTRisZ`4lsh_Y1U)M*Tosn8<;v~kEWOR4)gHFfoSGl#dwL21?%kE@w zr9!&??oRu>_r6{W3%i}cW~Yta_|7}gr^uQyv+s(`;@oa9$=+sW`;KO22M_}uSCIWajoucQP6 ztn<>!iZw>^(Mt?0e|fWPZA}DbuY+G-$Bv&R0x0$vE~!11bbQ|Ms+xNbPS_;QfZ= zflXI?otmLDRN4LF5xbl>zutS(8R7VG z-=MvtvALOI&e(_3q5b0ZlEdPPFaET|tUMffHeJjb zoL2t3t%SR@faC9|oh(0E+u5@2*>ZzB8fT#&F*Kr18_|O6ApBY0ji-mh0qNiUxjHdQ z?YptP<`wlUD+nASwvyk**a<}59kt>WrMqDM{&;0%==X3T>s^WfS-Ia9JpGdwYX;)4 z>9Aq(!${wS2TO-q|qV_}XmbH4`k2gEY5SJhMif77iZ{vM8 zK{{#At3R8%+&T`YO; zWDs`w|N9MgYkc+Z;n?pv!Vuh&HFf*=EuE{K>J|Wf^FqR3ypsp(AeD)OYmnZ0lPo$cOVbY z^Q$DBdbRB|tcgwhdp!Qfg)p==ntWAywf)ucs4*tM&~=O-NcwAGVPXGLnX4K4q1|}* z>aHNs$dC8o!Tx@otn)Ku6Cj9>!~Q3(SmAB*UsF?4J3cLbD`Cn^gddNr(hA$oMxJf; zg%kORdt9x|CwKfU$efEv)O1*=Q$+kMdG~ALgTrEza~?8%WykINRMjG%2j9_}4;_9& zmCEe)>9aYxe@C8Gn)C!?G~H}}B|u01@F>Sfa6j64kF~eI?^9^RqLLP@%^q^~+Xs&) zHq6bZ-MGxKnJ`x3_Nl7qAs>fv8#$i%U;K`fkmsu)F%K*?yZRhaMZc`Jo?={bn^rlw z@oj&fDPT_t2QgoO%-$uo0BUqw+-$P^-WWQ|Ro*@Pk(ca&XH7I(FNol8uP1@s^xG3z zvEf9lmp7>(fcpTfwHr5nJoZ`X1v@>R>wI*d{1A*Uo~Kl3!$=rTkB`0zKpX*L2as6d zpHZ^$2R5#b>viKsBcR|H*m+iSvrd^-qctZ-t;g%NSq~f)9k+YN7mrtd|E@m2-}3k$l`FcO(n0JA-MRv95ZLuKp6wV=suCd7fee_yY+4F%#xfu|8V^wI|vO= z20Z|Tn&adk-S~dI5>+n-2{RirJg>9?#)0&E2Y?+4B;9>hueh|dr^a#=j`MJ*y;^d` zqy6xQp-jKN)ar1^S|weGV9v;s2Bc$=bkE=3O~A>4fOhaKA^t?*?Z4YOXOPG)?;dWJ z-ic^`dtJV_Tfn1R88fBZ_ONugkTHN>HdEIH`gfC+0*Dtp=lUL) z(*@1#%PA{k0VZ7WDJ!yj_MF-VK)i09HNjE)m9e37KMC9?v~~K|`y>C$dw1t(ABrJ;X7#LcT3RTR4P6vF#l>T^LDHvkXhINNazcWboUZp@|48l# z9;EZ5_Io_fLZGi)7I@ygNeD5*q7SH`eIkPn@;`5|WJ>j)`(N|(Fpygog@78l%?Gf> z9ic{sNqaPj~dYyEm^lHVg zbMBDN_oTau?pPsC0XdSCvj;GdXo&|kiQ7MU8V?7x6B1O%o&O{}j+TU1|4_cTpJV>Q zRUr%%00N<_rtFg^9mGg>a2YW`DyuTf@9_rm;nLBtS7AJ{^Mi zK|HzI4PetMTm_oy0_m#Sv^P}ZDp~W=&i1HcYv}fDm`~+B+dGomFMvLD zbo!$Of5SKp8vZV9vlqbA_oAuf<;_l3?1b+&uh(Jy+zH6Y6f!UgEs^Dk{xv`IP}5bv z#~r`W2QT?OS_I*<`Kdv#Q**l zNt!M;*f*UHP&qF-59R=-vp-iUucD$dp%0_reP;s5c@uy@=MlCddcyG4ezLd0_=qdl z1A-quZ8Iku2FgW}u65iU_3lVq2^W_}*j6;Z>*|Nmef>$QpihrVPZ4~jz7j0kJK z2*7pV`A}##KjCD9?qAc+BfL70_;)k05%H{|i^g*)!0)!mFVIr2xV*d{UY&>@HRTm0 zD_#was`=e&{Z}4L?DPU!ESk@73N%=|qE^nD?u7X6dkRAKx555}dRuP5wlX0Xd*3S8 zd9!Y?I{;-j1I+&EvuFD^zj?=nkYdHo&;fA@g7aX5Mu&btu>I9Ooh3B=d%Qy{-+|XY zfhbr`WBhZg0Mn(ol6wst+kX~S%6DMzcz^mkC4c&Ocf2t`<=A)C`R`-8@7b^y$Q3>) z{cBBtt(^h}K?mFtp`vB4RAOJ)q4iMU{(eVtkgW4s&KDrwOW+9KDm&7W-@PYddDRs~ z!FvLdZFXB5HJPy&10^Np3E)8{fPp<+CQ_6}a9FV(#Sx)f3Cb+RAkJ?IX3B&pKvyC0hYC>zsB~K%e>ED#;a+?^r zyStxF$yjkemUo7bp368f$4_V32iudiQX~DtQwwwqI6jp{JLc z&Sw)Z2GC*a;cDgi)zR|een+hMWlFll$CepB6~sUFC=HVGi%Pz~ERz-4S{sVlBN#i+ zzEpyO3B*wvGW~JuaYyDNoK|?lsb9H4;|S26{%dXRA+YaJcwJl5-rhcUb=CMqccfya zyGY`KP4D$NUN30OB8GUl$WrV)WwiVJb* z|La?YFavm1er*VYfPg?)Y3i@=>D`7$vJ_~u$hzI1B4rtYDF6TRzW?_u|Nr_45#lAr zz8>0DF;1;d#FC%rkqqQuR;q1<)MO3jtsgEEa4b=TAZCAma#FcN6Nx3c-JkFB^XLo) zEADgJ%F3;bD+0Uz^*WKtVp8u9mUik^i+j(EM%Bf@Yn=tX*BQzAlJ9RqqL`-f!* z{jReIjk5QzTqD9@umR#;MT~PV?Y1Tc|A1V1rAGDTxc-ranUq;MD6}AYEkC&59m{}9 zOFfwUL;`JL8r_m9aCnLQ^=$HBUeAV3PASry5)|4WfMuqfSjw*3_9Rf+MKQKK8pDft z^{vDfo3E+7Ix&I~rdaDhtT?C5E79?=i7ak}tkk`LFzFCj@l)>f#HTsvWo3%kBJY22 zrt=YuDp6xwIL|s;nyVX;$q}Gia@=>yl@Fy7M&Jw0r%EeBk0u@hEb2sDzE`@j^8H^Id#ocVfo}J^A{r zz?CqrPH%FGh{1n6IN<7A?g_P}c(|kky)8ztmTXog@U$H;p1YL2s+s{|1>Ljd;JwnS zdcKpX)OqoB=a&rfJ(0O21=44>2`Jy-HlyuT4A;;>SxnRH&HS;OG_Hu8fO_eDiX85*T5=rZ6)qH;vtk@cOK#JGvT=92NdsblXT$c2IQ$!_Cy}ZrwjottF zB^Cax_px%Mn#;r|Ai)YvAatF~>h^!w3wvs-a7~1Yi~9GTIHW?Z%Fzz%Ne0y?XZtvg zOONeJQbxuaGT=Ty6w$BKC-3td4I93(h3~09Hk=OBkS5W>q^YE}>IXjKs%UvhF%W3P znFz5lfL%6nW+Z2Q;b#&t6P~%2?{pp9|9O(kpFwV8QDZTupCT(A0~Z7d2ogWTj5s`1 zE-1WoRLFE07Nrrb`!u3U+K<#{u}1cNf#heeg}#P&6`~A`?5My(`NC;IrrVBtPizr0 zoRNH9R+H=e)V{ZLXKl+9>#LMVK_GqCY4&it?r0+C;ClDkCVYpzo2#wqUR!J#tm0;8J#>$v6sUzl4BIj#U#Y)P2gZ&Ln0V zg|=pKv9j{speYp-!A4>tf@WZ!5`0AW?w-1g%H1LQlm>hiy!IrbbjmvjHgJ{5*=mpqJ7d`g%Mn*Kf14##;Ne4fOu_tNEX%J1y*P~x5sH|0R_Jba< zgD>lI0+qF;&lBG$!rfHO474z*(opF#fCVlXXwDl$Vn0-^ILS@35Hoz{Z#oKw4UGZ8 zrLH`T)B^k#qq{j81d6IAR{qUIl(M7etK8rAUbe-gP;=QTQB$v;hQo$v_*${Dd$e>= z>I3edhaRfw*ixpZ2YZi0?|U(56)?~lR!^VK|4i$qd*jhlW6}M7n1b}u!@}uEu_N%_ zmywZO4A_hwS^aHxf7L_Dh1JR5Qf#g?0a`2Cx1nXGrm{we?g%urI>dZT?gK7QMF+I1 zvecl^kU=L+L^BF3#pRL3q~)B?g!8(|U7-s?{+-d8Q8iNw>TZ25LJv(m3VKab6krjK z3Sl+``%`L;ud^^rjrq9vCtI&Dv=FDT$@&Qinn`*UCNY8z0-aN{^BA6LnI6H#KniUqHEN}E9WnBxQJqBLMmw>>p%IRm{H=I?=%9rt0Ew1#siAfBo3Ihwo$VQCPdXf znrC2ip#h5d`Ew(`PBcGM3so#_ghmt!xr;EoWM1Yp#scwnIq0SUSaKwbV+`qEOg=jz8WQ|$!=b0vJwn@n15FKs_S!Qa zIuM-WGKN7A_Z1{LbhZd71HLyu7GbR+@uUwGf8vujvawa)4`$`Ba4A)Si28yqs78`KJF_2nr;5n#3Q+ zFQhp+R_Fhc7NP*%q=dhi!q-(;?8l1iCBjV*7x^NcI47nF<9Q>&6|6wzzfp`})JqLy zkqu#5FV7T(k=2IxjErQaLTo%T=x%+=cU_%NLbO=49avcyU2rKH@zAU zT=g(xWSj$VD1i6}=DK(ghdnCuc`-a3W*D%RKg8sYk+BH7d%>B_KeEdOb_xdaRAc+3 z|CQH4e&3vt0vjUnVt0w`C287|w_p@<4%K8K&QyH` z-Nf{5i>BS`PYVpdUX^=@A^6LI5(iVd|rpD!C`tc8zRhJDuTET zumFY}!O0-br4R*_$x_O)5>T+g4N>aYsXD&8-fx#p(!t{CzH6tS{$d`m*OQcpp z!j!%7uzZ!)QF_K)X<(%|NNX?c7gI$ymTNJ#TP zZb*NKC!P8W8?(MS-2GGsoHUta*pQZ(ecZyMFtB`cf#@KL6p-UtsH$+J`Rrx3JZu4N z1WO~zpd*8b2u;X~D8wnI%wqkYM2H8@JZ|A-D6yqo@rGGopW0xbQX0tjOSGaEh0Fvh z1|G@MP$&{GCz!#_1#RT>7Du>AglP4qQuzSN& z#!2FLLLl7W1C_TpHs}5A=UqZW=!@L{&&XT~qQZVB9>deJkP72!kkt6FS-HrRC{COV z4yyWjSsLFG5eO6ahL57ev+zBVhH)kdtWJ@`{Ro!KPo_m2pdR=H@+9uNKJZvJVdj_r zn}8))>P0^d>l22l`V65o( zOQeP=nAI!v4n(l2Fvl@2Qq|N+u+u)^&84{uMyLb?pdH!QAE-z~`-m#fk;$FIhV2Qo z->dvp8G`{|iNdZ+0CP7TMTaDv@(H60IZ)Q#9xjNaJWG8-ZUHm!8mL*4HHi`Y;@2$d zKt_4mzY_-=QUpd(LJv?CFrnf{$o>*N57rM^>np%kW=yr*znCJ#x3+}uUEY*PAbHQB zYkTeWx`yHoM@k@;SvV{`_z5c)$%Oup^Qy(nx(!kw9C7}8e~-=OpP?|_f#A{;ODX6k zlkXdk67`Ybf$hRP(ut~3uK(%jGrrVQODR*N28~flLVUYEpnE1@ygpRB8_Q|}5X5;v zy`S+ByO|n0x0T1^(Tkc}09LU9p%p+BV1y?45(S*8dr7 z(1b{UOlgP7EeL1+jJe?Ji{^7cNw|ev)@2lz107s8ncfmoB#35#JqNG#h4k1Uu|F^L zCK^pq7sdoRg&c@NtZ0z_V>r(%blC&G-L*c;U`U`MQd`otn&%S%w*QvK0876_4^aQ% zzgnkioSFm`8+8{0w&`+O=ZRp%xA2^A?TnZZ_-v#cq9_B*MaTP~ZOGo-o3vC$U-@!eh6+|{H z7yVL*jb01!lSC&J+5m!wiMe}I{zO^}g*kU!t*GTdtXuK^WCQJEOnE$>v40Zs@ zU^2yBLg9q9e04$!BGO)vjt_x77}=Hq_c^JWP?YYgC6%Z+X=e68M<_1+aX!JrNgj$a zT0=j@U;eEWGZ?>$17o_*MDM;zrXS#hoD3V$cjgcxWhy%-dGnX(2$gR_Ao$URQ@<%+ z+G^n+mJ=W&I$LNqccS29L9(A>@~QN5561Lju&VS7N_@g*p%cYTh^2@PPZ(i92qj?$ zd76vxRqEvRaED1v=w?1HNg}@g+_&x;CQ4h;YI9qf_jn$Rw90tGx_!B9d^0yb%N{=l zW4o;+L~*nvKVhp1ITMQc`Cv0Pnh7~$FdzqpQv*y7{J}|YtNV1ii8}I3UITe#MC_zd zzUsX<$$Q+oCj=AV!GOm4;Hgb�wUsa>Y z=K$YgvS07Rz-Hz9P|Ch~VO?C}&|7omnODw?Jza-+o6;?X7)fe}05Nnr-4!~%w-NfZ z$5foAKRL)e!V0|W&-<={qk@okx`a82;Pl4pfGfnX%r+m|o3rQ9_U}@_txg_+>YZML zLs|c9biL3Ho$3H{mL!#yY6^O6vg6&R@BK4(uq{NpuGdb8Qpz)3MXGhJgf7prCW6%I zW0H-R{kIDt7N%%Qq51DUc}qP6H*zO3!q2%gGRChBDdt$ZkoMTL zexn!s!G{vTSY_S)?qFUYPkg`4W?p6geU-a8XGQ03mebzf4X5vk7@&tS^Bn9zVW)+% zs>E>VwR(6|xT57fRIyjf_()o|oDOTdTwW-pt~FgcwJ_xBv4wHA%JLTeMNb@2GR*Rq?njQkX;f_ivpj|qFKvq-BAE}JcvDlP^{wdyafG^ON4V*q zF2kGl7Svqd;0dGlhARhap;A>v2ShP+r}BzW0xhK>+3N~9${OE&nJ;K)LE?;NSUUR| z>3okt#BHh>vdpXzzEKy0g^u7hfK&B+etvQcUZy>i6rY&g#2cktt?%WcvnU z(LW~XMU7qut+gG%3x9lUR&zF6UG#!$o46LrZ@a&!AMfw3){dQaV$!Eza?@V+zW&Qnw%&ODGOhgplZ+pXFp;{iv=AzS8C%4aR*Bm1m zsb9?-;eLUDg%m6}iLVpgMP7;7OKs#>Gb>LM=M(CQ-3=DN)DT+DG77s$7(^)3e%*uxHO%t|^W7QDjWZ#Oji7_nL8<2B8?+b&K#p#+#Ovenm4 z;&%`qgAwoyN@GjP*nVx~^gWI6x71I$2*V?YbYi!n*F?nHag?g!9UvfP2WdNO|M$x> zC!D?%9?o#xBv+dP84YA&hLi9AIHj9{$vSbrBz6VfP~qb;<6}7EU~bX%hWCO}=0(4K zpZQo7Q_qsBAz?72jh1BM(S{9?h8lyMeKb+`43w{uIpi~hOXysUA&)f{f6-^=`duo zp6_{2H}Y$)#mG=unx);Bc>`d9;j(aQ$?zy)0kdbuX@&IUu(f4DfhR?-dt6y*RDtug zc^LI*i-!Q+R6*C1(oo3Wg{m5dCv>w*k$_O9tA=S?%plx?$JSF=&Sql#RYRtJ^PEa>;lcQ⋙nw{!!fXbX4buAzdnZKwKG|Xx$~dUz2 zp9e6aD&K*@_C@+Ub0&AQ)<^-LinLZc-TrGjFxM^BXuNKn)3d+~?i4Y~z?i_bzV05j zppRX4iNkt+26a*njL7ty;d9$%Thea0M6m_c&dbs>)YkPt3?U!}R>3PT9b@XlzL$1K z8*p)Jzrf^v02v;N%a5dON@My7*$z2ouMw zKg`D@jg&Dbc)8%SEO)w)_8X)IYBGz3sOb46SsjwPM!Bj_By*`v-MJ_R_!!L1kHNS7 zPV4F*QK+5dS_>*89&%S0I3ekfq)7Vk^Q5LP7fj;kYl;X|ln-=2Z~{?qLC#hO_1M5Q zi)~|+L-)i>yO=k|N8MDevkb(Wd;wpnOOK=&Go_7i=CafsflDwm5SSwgEHb+ju>l+N zfhKS!4Gyr?uOm%sWC{H?tj|)611R7BdV;ZE#uY&gH0E)NO;s(NijVj~APi(X9F~bO zXXerP>(yl%YeyW}Gx6BR(6zoCLOm=Is;XaHpkQzjZ8X2}rQDY2Bnpxcgll|~!@?mG zJKgb~4LP;q?>*VHAz`J9Is2%T`}13kiNJcGHFLdj;Ji+(iO8w(NyZaVhvbhnmic+8 zERY-J?^-TR)hi-BfthD|VCwv*h#A%9se_pw4_F(`zc%SUG;8Z=j^{ULc1Fv3; zy2=7RsSPNc4gGhChs#2!eXQpz+LnT@NFAgn>43zPNGdqeOzSo?H9mHV006S{xxBgE zK6?!y&%?%EmzHKXGr$fF_5isWn5@C`kPVO$8MFDR+3U0}rMMhC?zB!0`W7l{%KfS! z*+w_-f1Va@f33u!1$WFzr{ZZ~ny6Enxqv`6B1%7AxUeR40(XhYJ|~y^U-2%4 zG|_4r=+=0p%$UB88&_RugZbOnUA)LuDcwe2x80X+Pw0at4+tL6g$lIm+7>EgUQ;_k z6i)J$z$5Lf|1vF%46%NXPXBc{C#Ka?2@y<*&M=v35=&GBYOV+;1@E$_5mNF7$cuum zp12Ro^2f)B`6gLk2|+3JLI#rI+;Ni5VxEG2>YKs6aa!#4Kq6p}_uEC7h-ywd@15kt zZ#EBLqy*l8sP2$t)r2A4)erO48m|jY`{S2S8VA9CsEZp4kqT{c3fQcHFG#^h&v5<$ zCMB9kQTI}E>jv2kgSq;Xdp!v5ppQ+~Xgq8*h22x%%|Hmhn2N%f1_nz5b?Jzcrjw;5 zrLmtS4W4hFv}G;o<7wqXUIW47%&gv908D3XzkY^U z{#O;0FrfFon9|*WM<@~4q2eB)u*a=SnRQyb>Y1Vr%HDgCCYr>v^}H)jh9atikD5%t zZJ09ob9mE*Uh`Q>Y2CyRlgXjqU(`oeT??vte;(Vca#Z8(b%^x^?0 z(;yA@H$>ON$6EvUu-J5M$~OyE2@PccQ-#b|%y=;tk|ifI~GhW;EaorF_*Vs^7QzdDx2b53Z8f;5e6m6$zsJij$OSvF*VKF9*ba2YSfK3i#3Mj=Az1yohJp)V|K(V{ zb+Kgv2c_s2<*VF!HVaP*K1APScNlP6hZpHWMxdFg)oktE6qO#%e0*5dip|cQai{@E z=*;Uzc!neD4VOiZ2bhQo{EMQ&B?}E}r(B+AJm{D8LAh=XRgz`3YuPB6$sb?JX9h%X zGB^!ADx*U(qurSI;qABO0`>5bcR1R|j4*IfYnfr0%(M1F7&J8j6m77UzdU3`+Gv@)C zSvUl};Yh%*sh)dOFfdP2o2F1l<)XXQ$yM1Jv@aLnBS7@O_8L_#qc${nB7t>Z6hISg z$qk>R379IVcH<0y)4hQu_epnw5QZJy$8IhrA{&Ls=_plTeh3_}-^91R6ta=p@>oas z@&#luCp;0j04%9PJu3v}JGx|`E#mJqfE?@Z1aDr;Zz&f^%AhluQIx%P?*gYFxAhG! zk|WRBhTaMD?_2nWx%-bdAv~81Zw+-&(EYPeFWdg*PR#3Y>!(6db7(~RFdyf^@8A9( zTbt|Whsjm#0KwxlrMag+;tFL0ZNjE~C*#TpPAc2UA(XI9C!N->+!eXlIZ{hNVURYa zg;yHL3+BLB0)>gz8*D$sga5qO_&2p~1VKw2LV3+ux!x>_JK$u-D@R}*ea5&WfQX1= zs%qr+?8^J}Hr-vJj~9dh9}|teMoMA$tt<`r=>hBy;upBcxy+I&fIsE}ZnXdkcJcU{ zdVTHvCJ*rIfJ}Z9=ZBOHz|lDD6)c*f=iPH{h|q_o(Q<7l#y@tudp?vUhc?`%IW-3%2hcD#{4GR-jHDt3= zg7OxKep$OHHsai?HRP2$Y5<7AKJbNsaGT+aYPXZw6FH4Z(lP0^b(A+FdW4Tq8(fq- zz(c(q(GY340UaNStp9R1sSQ92`<5z{h|2v!Xw5^rQ4=zQs{A}1cpOt=-z-iT0Jx`) zz{T(*q?Dh0MHfNn4UZ<4%jVboK-Op$H_LggT%}wF9QQu?&65nXs>1aemtEt&+>&@> zM}J*>@R-#jl3>6AK#ODM5gj?))TXr z(NeY&bp~p#?5Lw0Mm7M~8-CQHrtLj|>gM;6rV?duxJpYSflqVvd_7Z31JPhj|38e; zeVyu$uAFImh(NvCPE>QVCOv&F7C#K%Sdsx7K8*;REgrY;<4Ue&5?SwWFV;iv;^XkW z{;irREyFCW6i#EXSM7&KRr?F{fLQ>N5}LAmilQL$2dqDeCnfs;hpUIlPs1JV-Q}@; zchji^R0g9}nN1OBWjAe>?MQ8@fIf~NpJV;7k2W>}Nr$soxQi&Px=;xILZ>60 z7T@}F0RMTc05~d2D#q=$@006}CsdKEJ1@=ciEK1pggN;S4iX_qv6Sc4iU*cvL<3_3 z;$#O}jA=dnuH4Vu3sI;!;t%`M3bS)&V@r(=j-}k1+@F10dv?W`{H#Jl6CAr#2QVY} z^#J@HNl+Mhn$|y7TDm&sy`Qsxf5#+}ZkkdoJ|82#NOizfzyt!7K9j#Wx(TF6)EP!0 zNLAZXWaHbFU?+c-BG_#$XqU05vdfF;P(LY9-G21cCOc!raWc|5h2>*=@%8^Sz~NVs zb~T6i2o5Pwj|~cP2espMU2iVTeej1P|RL9?pXO&$OibMi6Gex0gj&eM~I~*ty^8lAy2wz(8&Y-I-E4YsX`tY?i%6Jt(`(L^Fe&-(M?4Xvy~E_n7MvC?N3F1_ zRYVM=(!Gk3mNOT;-=98$1_10O{Uk+@jlOm9VO?utZXej6NCK)0ORr*ecs{munvXFc z-Ps)tM6Hd0p-w53-xp)|zQATWGAed;$^T}sK zChcemSmp|U$v~_8gjV@~8Il+rUUTO^#oR;EJDOqB1lnLbxW9mskQlddd(!kUID{}! zmg|g`W}}~|cZrz`QOK6EtJAry#Nbj=+904&cbE@uXjJ>D@!}qAv5M#V4!y&vs}I(w zkJQS)0g{JuKn|UE{Avp0Fp995XxipMwDNGa)tX>o2Tcn@Z)!fd^ZQCX$5u_)#sON1 zDB#RDT9QjdC4=oye;iQtZYBdAvS?i2BSnHJ&HF2gA)sR+T)2MGvwN*O{{%?GsY&SNt=N>V?GI#<@$X3Iy zc_OHJq7urO35v+v+y);XBo@^&DW2}R1-SVMbV!O_=j9^Lo~PDNu4W(h0eb$rvRKCa zBRnT7^;~k+7gxNmZpEGhntVdhE5p~@U)4WOH{os{=?sx0fCVS$)|bK4k;Z__E)K%ZGp?JE#tPk?RRbsr!(5Q)w8-}{u4VPo#JMmY!#qy zg{rM19W9Ba1CHuZgtc-7ELK{GV&&zGRM0@OYb;02)oiSAkz6pKP<rnc*2@q8x({&N;kn^ zHNCKN=JI@d+&IKK#mFT5pyB;ngBTCsv4!jqI-QV_Z-D&cV4OaV-rxKKzaE~ zd;ZogLSbp46#qD0r#~jG%LPriy@~-C2-FAPbH8_6Rj7a3EevL8{g4?&0#rHpL-(@V zfp%GSlm1z<4ny*=@R=?a>jp_}m$pv#V+&PJ?RS5N z7o5pyCO!Uz5rN~pSO_VFA%bt0yXzoSVR_jN%Kj%^f0*M|(pb{0+cNk~g&fO#zAG@ryB>uAn8DOfJ@HoBvc4ritC^ zURHT*JytMKGP0v#M36n$*PBLY>*VvMLy*ROR*f)O#wbVn}#Li@k`SBGfVOCzB5Z!HXcPIJWbyuDsXO|+n zW*USO&!ys%l#gFN?OS<#{y@{Kn8_B=)v!%`R)rcL0Uh`}q$g!TUZjPd zJllbeMl|V;R6YiJ$j;cI31ZVK*#biYA~OcA3i3~V{<=Q_NvfPV_~+<1dSPA#Z5}w; z5gQ>I0Ee%edMfmhQQiHKGX_>-;2y>cRGVy;U`T#n8`&KFn5!#HNeQ$T!Jj8;lxST} z@o&-!P25$eEth0oJq&GfXuD&JmA(cCWF56DT#rYmDCBo{% zZvmdb03E=Pa{;LdN`cq%P}S^xRQ}_7=<4GB-J1cQpfh-E%$Emt9KWWBLK8Fy zWlVfrF?S7Z3JoYT6}Q+W+|$XFjSV8*BG7ILrn)>F9fK!|r00}{ahL4=@3R1o)ndKF zPrcjOfB&Khc(bLY7^FqA+HfA*Uo$t`rQn3XK|r%S8y)8KN2+z%GD_H3L%xL9G@GGM zt;@}=@qU`POs|cGXJlGF+}gVIs=nKxkTHR)d>^*&Gk`2G%bMfFz=5+~$7U%c&8yz(@SK>I{}r@%Mtvu& zlwE;^$0M2N9l7dDfNpKI&#*Hmpg|OG3s=)>2h1OO+|_Y1`CdVv)PCrf;G07`;4=UI zB0cIeLVzXOy1H%@Z$LI&?@uquyvOs;CC^4WMMEa^c7_Ok|w zgMj3B>6Xq={zb0Qzab|VVi3=s2B_x^!Kc*`qe-3K2ezP!IN{H%<3Wk$_(KjJ^XK8?=A zW=rQVY{JjF?qjWT-WZUX+aL#x3mQ%ev4%RNK%|Qqyjb>=tqJPLt@Ag%c~;I8gb zg~`r%hC+d+&{{Cje>eTXH5!Z<@k?DkLBS1how)zw)pFSGbkRntRi^aEkK%=|QUk%w zBog>#C}3r;&nRdX91WbiO`DdW6JG%CM)JX%(IuG!WzgY48o@NfZv zw35l)w!Q_Aa5@Nf?hia=$S2??5Pib%>gA$i7`PhW=6!ww?!;n)yK3z4Pj6WL*XX&U zp^<)b+m-d(Mm>)^!q$vWdWn#Gz@3^ujpFb7^gicY=V*~RivjBa=jQR$X2Ai&F$&jc z!991kC7A6JVYG&!)Dj8~Iy&Fe$O9bAAAHK5(?*?=)VEfnjFZYFC%)rr)Fl;LcO6OB z>fjDN1eaC}20q3DyQ8B6en(xz^C;@zz|OGA3E@LK{K{(EN57n$oS~s1_~$#E0`1ZB z@ezL&u$S@h5SXnnGB_R>vfu$^W-j^rBMSP{YIHB{cXA&BC=_p9`nD1oR&)`*o_Lw$ zMZ8h^Ls7>rJaAL<#q*`Gw0vh>|Gs+ES--s}{FmK8+!Oii z*OCriCMNU)Q4~SoX5SjPs3+y%0KZy{<#zm=1`UrE3ND2nEPlG(Evgc~AmqzX4SOOV zldYB|0r7`lsaxv_5%M@7|LynhWXw1Uyqu5;(NU3omw#X!=0bfj9DbE;nPoU?yDe#rlM! zXW3=#hmZtt5x20dA@0$i66HN)|QFAQ!Mp5l?}{ zR(gETlBC<2$Qo>R-Pt2iec4{t|C!79!Uk6(qyFPKmZ?>44m$@#J{3QXxPWDc!Ndu# z?y{!mTgcykl6ET%a?x2opQXDU>R%YY1|N13_vH%;X%jxs`Fk{_f1sIJVkBx0 zCbrG)pME0&OA{&he@Z*cs3^O4;SZ^FO9&#}p@LF^3zA_5YM zbcqN^N(~{Uq#!T|0s_(lN}cQW{eOAaIv>tiXRT*FqvJjM-f``#_TIm3NULTb62sj< zkr;8V2@a#!JDfmECgZIeRF@6YX1=^1D86+8bqS3|rw{At>Xy7)o~-vn6*OK^o7GAp zDeyYtW7bfs83pMd>YVE*U2x~v86Pm`&?P1z$ui6@^Vz)37TqqIp>jZIy*pCEBPrR7 z-&`55B0;ssa4mIx3IC;2c-?yBIX$ydp06YmgVxX!C6XeR^L9BZ%(c(R-52e6xfDE_ z0CK?k5U2z%+&X7nZA~pH`}+?Tbb4t*GQ{Me<+)y@ndEqrB``(nxt-b z=ILm;?J+pXNK!EtMOYcPUFgq(|DLpbbgtii?$7vPaM0-ez3~%)a2R=}kq zl9MSfluoH{70Z-g<>AHBs~NCIwasbP7hd*ir0tu$WMkL-b;nd`x|7{T<2kVQm9*l@ng zqbxQK>7Qm>m^nF>qsN==5OF9^Q~%df!>5MK!a}sXJD2^HEY?2KesD%cdM3~*!Xy)WR*T{3<3S|pQ%$1zNRx*ZWx1V_%gAaZw zkg~k~RlfE^unX3g7kff7tetN&;KvJ-1mxd}lQ~q6s)NGPUcL%{N#U={K$;p{7&C~jdy?*>66P0L)TIb$zWCnY7AvD16m1|YX{mY1_e#U4z0oHZv`&IQ_Ad$2DS3ip zDP;7dsk4H&;Q+c|t{e7m`YklSPfbF&<`s0`#HZJf8Oys}n&3AvBaLt0N=*-LVK9A0 zPQq$DZ{kP1dsJgKG`RCVdFueT2Nt6o}-1yJ2Ro2CE8XH2qSZ!WD!>nz?*G1asj_ZEzs;B0le6USUP&B4BZZ_3hp40nk&L%>r6gVE8jR;7rfvCmdE{R}@$ zFfGP_nJEcbMEWlNX-N8064Lck61U~DG%jbwy{^tC%`KN7>yQA9tkz04p zKu3rI>B^10Y?GTu7>{(-eI_O!ZjNY5jo0&m!)MdXLc_LrtnLpXRJ1tbv^crUm@Bh?&HDpapEBsJi zXBkfDyiAIlW_!k_L+|t$7t`s2PRKPBiA!3ipVw2r`ZLD}gXvNCNg><0wh_m+TJx!# zT8Q5fgz|PG8FY-s%@p-zHz*?~{H|BlK%V~ZtexM|X>oR)c0r~&O@y9#Yhh8QT29{V z+gIs>3Rxd$YHfUOb%HW(nig~Td75DYN&Bla1I)vsplWWf1&Yf z6h4?=J^$Gc>wq%>O1@Mlo?b_)xFCYRk(ddJ$oN;ozgDnAE6x|vsE$i!zHjCCl*eF< zAPKN<)3o(Wsfz0f6rxsaY=ir`DJ&}fZvq#n>l*WPUFqrQ^>fK<}kuh7+M#D3PU zCXiVUj&iI%bfNC*7B8!@cGC`JVoWzKY_GXC&>yjdz0b>Api+@f>}B&Mej)VV`$eNQ zBC20_m^HpQ{z&g9J%g;MSN4}Iqb`H3j!Nf92RWXB(TvaXZcMk`LlDDeK$51yMdd%t zcU*FxCJ`TuS>NsCBvKu3*0-5Wgvv)>huO5TNmHFX`%&v0yRIfPs5r&LRi#Kub3c)| z@NlJ7H%+Byl=5BO=9`a=Lzy<@oSkI}t98L?pV5f9;AJfvBMnZEZaJ{4ze>Qlpikut z6}bMy30Fn^7Ubn!pS5FYHZhAS+M`RGWNo4FiPCtD(Kh0^Z>BqgykAGZW6{J!+}KF& z&tC>8{dkVyqq+&+eUGTs&tQuRL`93L14I~h7}HO3cDtbO3nh13ow-%!u&4g)dG)Hg z0S3e0FgUAZWFnf`=eS#q2C$hJ=;iB)E2+ILYvKP2q3zxGKAEGzR78{Z?G-+F;!5Fl z+YuFXTq7Npv$iTzba(?U@bh30uO zX7{P;h+0j=^5CD8Tqdb{K66fbOHho{B~$tDCB#_Z$*>TO7UGB`jZUW-{9*5 zLhceLa(6>$vObkpXC&NM@&(;zWm-%LcC*^& z;8c@PD4fNnb#p(Znz4C&L{eZFGP)G9;V{hm>Ds}hxF*wqGA|*J#7z%*86wu+_TgRm z7K)+ND>;`ujd@}MaW&d-;@cX#cLbB?7tFvG6SL3*Maiu9!R{&a4Dm~6()80i=gyjl zIgOUfleUGPE$`;x%@&M=r!j(ws`+uY;};y(^D;5We9fZ(YvPd5d5SLRVE(Op$H>W6 zh!4YG!k#@}!Qy1f+9QU@qAg-Xa%=E?DHH>41SJP7f>e)PjSaJZ&v z_$TnorC?y?sfCOrK8WwbkCgX^V_?uj*kiub@vo!Sk4CND4itG8x)t!ve~U7yFh?_juC}D@N|bM;S5S zXZE1}nsBs=6sCCVt~jR(bIgX@(|@!09M0v-XGfVUZ}{hCMjxFN7PFOxskeS6O~w}7 z1;Dre0&UJHS={_}i!(l)+S>mf zoP`Hd@;PnYyr*O>&Om{%jm%M_uFgnPyQ8`M;DTIxaCkUBBwAC}HVnbWa|zL2UdxA? zC&+{*-o6B0457y;ZU4~Wg-3S17{7<)4!e}0C(8x)pKld*;wm8QrN zeb-u{K@3KNgC;alunUCnM;ISH`zz|g>-0!}WGmRpIojBry|k3m{OEf!18X9YbTSAI zUyI9^;EuVoc|(-T6O571YJCw207n%{L1)FOkrUl&P=12wqkmsZ!`GK`3_(2yucY>6 zt*J&JUC1CGf`1eL_0F@7F5xC9-N4L95YgTkU3h6LSmpauSK9KqdF8oaM#zGJkB-wO zhd_@sBOJY(#NTTTGhK(WMT?IwxjWNPg#P^s@$X-5yLr;^G{{GEILNb43j3`KX{rsA zr~j3F|C7rXO_+#r&x>&Q`Vj-C>82Y{?T>7_{3UJ=wH8uL%xdDAl6PPRCgNOpt--GY z8(w=TMcTQu#c2sI?18Oq7#}DhdGq)lI23p_-69S6`dCXutI=e84Krid)hr6(`F#QC zX-IQvLM?)Nur0kkJeoSgYSZ@+DGP=7p<%4R*Hz(+48j}a|Lc#4P&~$tGK3S}8n$Dh zhIS$sKan~r0OW{>NIV7uhBjr9&c%CGmRU(U5&~d`cv$@nzm#uuiRV}hS9MJF3+i5T zsN)u#7osb8$T$z>gM4I`1;rj`Vqmxk>)~pk3qQZ5e7M&q%`Y_9Z2GAj>WLYGU0>%y z(6p7NkGiucsyz*k*}B&Jd$AU5CP+1!Y}Tqz4r9999A7GRqLv@zLIcj6(ZCQ<$9B0` z?buJ~b);`*+FFDr=I9}} zfJTfMA~nLHOhVuYj24|YlVf_C(Q-}SNto&Xy(Sj_h6tp;?1h*MVfJ1t=55w!lNeIv zl4cjf%V7Ayoob&s3loz9-gPBPu)G@>2Us^Y*td}XOs&}PwAgFZyl&fRz7-;EL0S(1 zIKjvonuzVNgQ`5PY>s@9w+HPF+gBoSGFDyw0u8aKE>*3}cAWsz|PR$Xf#X*KyL7((P6%BS6SmGboDUoQ;aZZ5p;up|4pJvoRGiqwB z_Nw9dfJ!dU8D*+i%Bu#}<&oy6Kn8{~JA)Iuq-`oFyp2pA*HXx9Ms;I!34F9zXcQJR z!KmBZ(gIu^@gnou6F}IssQ>W2+LaGs&&0*idn|s*=^bC3IqRy(OZInymzgzLb^2*g z1Wf%LLHD^?>hQsZ9=TC~Cpn7&ifSFRg{zGwIUeFLW#I!h6 zTd;7`6EQv0Di+(c@4x@sAD8yXvyN&ktu5R&7ma+_OY*cwJWqIH7gX<5Ct>rPMl$4a;!qG4q z{Jj$RSx3lHXaFh(!GSR|D>ZBR+$}U}4p4H34tCFZ-1dp0Mc}~$gobD7zs-X1 zWIH-E5$2fx-!0e9Lq$(43HvYQpy%+5)~~geJzqn-J!Tj8|7 zlN|#7rv+O%1N0iPv**sOk2z%c{8~e%i>CMThhE4z(sOa$%lM+KsCZJ*>v!uKzGWRy zc)kTldlTeh&E#u*w?#iV|KrMyPE}Uebuw-(jnDxoOCIt`N(OK~ltGsGKAjL9w{mMF zi&%f<-5Wqr>uNB|F|O5HK@7hLa&qwh@NuP_>dt4U^Cue)2)8(uyyRO#5KV)9?5^7HfMTxUp2 zEb1e-wme>F3nH1IVF^xj*kI^*@*j9*B|7XBI@8;kq>y_P3=B*3~rc|7By-w6P+ zJw_&<#4YmI1L2vOrxB? zxV!cH`^mPpw#pK}J;FT%s|HzMlRED+D67@U`rYX#bS`VtsxXmZekq~bu+fC>X>8##cdIKpVT9w#R!`yW6DB9)>H zA>N$ty9^a}*AeysB_%yxQ&U5*hyS53T?$&mhjE|JBrBO; zRK8hm6EZzNKeG1tV(VA{nPfb_WDPegz0D93Je2M@Oq$S!K4c$XZ%j zl9H3p0PC%zudmdSWTGk2e}i9@-b#kUx?=2CeX)?-xD+TLweIHjMD8u{r2~~~irluS=wzlbxG2PzpEMMK0;V^(aWKhBPZkD6ag0C=N zQ9*!rmfG9`>Hl)c>-WSXGs#jnd6U-zO;b}xDS=wsV+|X9kiET5_}Um4$QG^fCMQR> zOrT`0Ga&!X$PxoReGmXlN#F^D5SfsenC=`!B|k2;ygCZO*7Z2?DOTM zbKN84Sp*@dyuYRf+M#w%j%KbTptGlk3{?lKLp8GTaR4DH??s#p(h*Z9yhVO3Jv@)Th7zo>n>9R3Spalzw0OW6?dtR+mFqN{a5@ zxA%`si%T|AN=v1(v$L(vrxqU6HH^>C&5b3i6uUJgSd`)bxb{ms(X2V~fEZ=|(c@DP z5lMfAgC5X6p@Ozk4gS>u2MUDMDXEllmR`bD|5&ojZ=al!=Ho0%z5dGeZrEj@VvjZf zcu5OsZxUdPFL)@Bl95@%-+-l@YS(UD{o1m~SnPw-7;%na1aM5{I1Akxhq$QX+G~it zKUktNLDza89qb^TXz;) z%I|+ypyrh8$D1VW75_E~y4%MRnn(_S`NDN6v)2PC6u{E&n&m2wCnqHlU8-DCsVQNG zzC>BAe5<5g0ui$Te&Gvwcfp4JjjPMwDhpLtTx1>gavE^N1uB-J$=6Hx1oa3MC~@G?n7~nRINAo@yt`c*xZ;v(PF?aV5z5R44yv$(g!;pWN@z7T0}~UIIg_CI zUY5yW$J52eR25@pD-ME*6sQ8OKi}h4DorI&MzsOvF>_k4mXlvX>*-03(PF?EvO}ke zeY>7vOEi=rmDDXd!jLGmXZzD-8!jn$hTIYGM)3Q`2QAgEKU|Iu{olNO`*GXk!Q8Ka zu`+8C!td`-0k_EwMDjd0@k~O7grVFGR3G804!~refXFplNuL%KE$GF$vEJC$0v#v~ zsxyj95itSH0LYI3$h6i_bd^|<9dof#i0+e}x$82F+f zI*$mPry!yG&Ue0+(M@N0pq&v`I z2OQIaCDD_H7y=}m4;fu*PrgC7tg*QbsSrobt> zKD@rU`NXui9afhL9~#$ai@N)Q*kSo{HrvvVLP03G0&4!FZorO&X$z|9>&LZhsD;sH z0eKhL$M2=C>gknkY-##`2n3xxP-3pgDep!qARs`PQ%HyCjRE|D;43+9_M04^6Aui{ z%%}^8OmjlZ%A_$G8aAV4)&##S8}|>EzkUGZ7Y*%a;N)ChyA=Z_&Ba9;@ohX|Rm%IQ zWTsPDL_(s{(l@{m1n}{bCtz3U5Ql?ivQexi+Y$)@fKzA<1a6ax+d9!qu77rSt+o~h zz!M76&8?7<5)t_Xi>CdsHrJ`GKMyJ~FE7v2urV!-6LGWv=U75;l+$znpoe{FI1S|F zYQG&x#BJU?tCt~mR<(dhO@_r?6-*V;=6Qcs9 zNb~I!3SiyQ2rd&0DDIiaHGMuA2%6TII95#zV^~hYAb~)RXy>qBJB#K|!$#K+srV<7R?K-;b^AU-Xdk z-4cdi#&dZTzh?J%G;J{%Sx4UNQ@M-;BHrsWqBqD9zC1Oz^2Fi6!QRdp`z~hTq$>ca zJO*Kg+{0bzgoK2$2TR6LY-gI!MVFB1Z9n~F)dW7mGKqSI-*0)Czcb*^gWhNZn(&d; zM78UyyWSFMi-`!R6RajKjz_IO|C$iEk6?fBgZbCiHa40eh~oSyvp$RXd89D?pobrV z;C6I%p}}R8hWj1B8}6`X_R>)?S^DUoL&Yj-1vXYwTRRxU8GOugk43}I{q`H3*A5cW z(xL!RO780F>J8lj(H_!G415~XuVa-HjI2n~R+GO?^2yxkKMjs6&iba25%YPcQLDyT zMXM&1_|111#wrg{p8~y&&CPWHt#Xx@mv?k`Kk2kX1HDt)d(CPeE;&&2-CDpmXq*o^ zcVIZK7##GgFKKpm7CV*9n}jPA^C__WeES^Oi;x#D*k*tJ%mxPl>>Xmi5b%GenGSK< zQsT8-T|8X%00Sc|EF1*04Msuw;jRmEr2&j}ft!+Ey4ZgL3{H25#xV)aF8_;jU-q)Z%tq2nkpbOf3>RBTLjk1P5t)7kIdJFCDZIY|#h~4z^mG z{VPI!pESrL$${OZ5e5V0sd>vT(EmqQ_DpDZMY4Yy<+3Hl_aohB~l&vI0 zU&%qx=4F06_mvJ#z~u^_nP4#4F8Xer8^3n*2#k|7NLbzw7Jm4)>t6cotR1r04vh+m zjip1>2so<>oK-M6L90oXS$!gYj~${!yd2Q@oWmlbqRl|Uj)Ib#ySu3%v(OB1>KpR` zyjWV`IdSBJaKSG{seOC$Qt-} zrxg@9a4}phU^kG+YmWdSV;k()aM@ZgfNlg6OqnccUao#)TpEemmb(q$DLzyaJVI4I3pY312}ghB$tGJJzV;u@IN3FC1J{ zRHRUu`|c3@V!5KKyCafN@!Vls7!?zfdf&=}J-9eP3w9tCv?!F;ZAAK~!@WC{XH&Ex z;4SqG?E58@{S!Tr+Kw?QMDDjh+}W0QaM#E9Q4wq^2|NmbQ9K3%=2iVz-w|dr%znZu zcu0|ra50QD8}*%`g6m1!e0+T62-UyA|0Ee18KIDSadB}0F0zQORQ|*9r|U*BxZ_zc z+PgpicU_&l7&gwDw5Ox18(LL$0W@4FEf@Bv4p7_+Bc+znxI!6FZVv$<@4dCaU|MxQ zI$hC=S6aH?Ld|^q9Dx5#W3Pc-gvpDC0q^MSeAH&6>f=+RR-5rVtg8W(EC~vuuAXI! zi&+>dyitksHdb+^rj}&|9mx1|WhMHCg-_1#gZmTJM5#TY5YY3es7&$H4c^ewqChVH zumy1XXoUmaw<_mY*bQaX8qNUmO6C1R!~EsI5^A+1+glLeA(uHImiqdKrHPtzV9z+r zHo;<-!4(n9aN7cM!vpM-aRnpoTLq$&JNyIOY-ZTQvoTZ z1Z!pVy3d!2zY%#gR&qSpR>N!8%3bhir^z~Y_z^P7QhWE z-XpB9e}b7?W{aa$dbmpuzIzK?DPuPI3ZgA5h)duur?V&o?A_Vfxwg4kxTy@%AD5W; z1STuC^p#R!M)*rA+Hipc>BP?9i3zi?(*6C1D9D7ifu%p=HmfOaQid9@a=xsgK@LW2 zt}GT@k%zFY3=D27=$*3r-#=ml&m9XwuAKr+jqHBAa)lB$o(b(kgzf&3OU$?kc+jN4 z!{>t$#e)we=d-~Nm$9Ix*Co)y{kgy9>V-iE zAck#k>gW_`vcfZI@9&P#Lb!(%+h6PD3`s^x&_!M!xsW(n()?ra`}Zt-Xt_)$?nw%$=OA>|fsI6Xz4U zbYga1d=)g~5r$ssz6gqIYGOUHx+1bz~CH%Q>Ws|5eI4;`M28hI6x zHTUf`?A50kVc(8*#A>ThYaq4i0K=(>_&G`>kRq ztWbxUMws;OC$^Q_$p`QKo1W!%MX?#W&j!|Pb@I5*2GYeW?h$fI`y1C{bl`%+Z*&bQleKQin@)Cic87DK zwpyGt0}tp7GsNm<$^X9p;fh%3@t=xOqkNvCFV7c{#*Qtt9BU>ly{~)hCMp#oa9jMR z8kN$A!O`h<;cwgK4_8!?d5EJj#Nf`#AT4R2%SvYKDqj4NB15mvUb=13#CIY#Bkh%T z5ZLJAMqD{!aAYKl;r5Gm0kV^M1a4koT5{9jC132ID)LaXez&4n+tf52qAv@~AsvrE z;{LTp|M@fYL2N1~%zJ^gW;HKg*u0ZQL|Aw^liw$|0U|8)(4BG30dtWuwg)9`fX}Hc z)#Rc_Y-xytNJKxm*sp7&uJVPL_Hfq2J>;nys9vn0sTp}A{Eg9Oh|aQ&@lkvzv!v*% z`QF+@Hi$7;Gvj~pA@0NRMB_<9O-)VDp__Q*Xd@1L7>PKbRzQ+rEu1!HWDB2GYYebV z3w$ZcXIG3_&Nn{Eo7#%0T8>cUQx~8gde3m%rCVfldBnh8TP7K?hD~zsSpXR%T$VrL zR+4cFI!_$~@1=e;+DW7PaQw$I*o)-cIhRpGx0QL8(=SHb@uQZ9J1eBY%{9kcUD#Yz zpU3EtLdkhM&sm=avkoesjR2M*kENt+aB_Z8&Ex4)++K8t*~62G9V~W*1hM}bx1)OM zvar{<{D6PJYx>A&(y5Er;&{P+w8-!<8+pi4|HqtPlZ{FpOks31KDuf!eHi2EseyH|^1!zi78Pxe|Dw_hE~Wkpb*KU>$@+8Tb!Om?pRXuTE_)dg|UogivA z-rlPhv#6XP+I^eMbipS1uKpc=+X!QUIMTy( z8RJShI&Ld(N5!A+o#Lh~juWK!X9A2kX(V!Ef`Wp=Po=E}*z9M&1!mX(IX>7{t+54T z(oqCUD@+B_87)ux>`kWQB(HQs^xkpu3cV`r*_wRxTdZ+KVGA&`&Qf^QW2z%8eYOU& z)oEb#uh6+#t5Iml%~DF~osXkKLkkL9V5!lcKbH-C4;EPwUUSo@fhyji48B+IY}%XC z2e~zqizV)gCb=h{9xoyG$eK6cPnJrO=YVsEK5SMj# zuL*2bWTQM+qq@LPh;5}orh~XgY;(i`P2s0LfSRZ+`-?g3P-M=1xP0vP=cgc*H*S;V zw0{EZ)cy|LpDtgI1n6Y;xIX#Cab6+TXRmg8O<~LE^l;S6X0!VSueie3NO4+6$WYK+QJN-v0q-Y)8@s;cr@N=7z7NF+2KT(KX_ zQa0j?-G)UV0qZc{OOmW6*udARx>d7J0~+V=up)zF8;=)_ZiLexOzkzEo`gTEg-F!o zlVtjptrRyGc<(v}G7mejQVvxcuK~vXbk|EzX9c@MogRK6$Ss%;!hs0=}?CZA^}jufo5^A{X#L zhaD+4MmW{}?oGxRI(4vf)Dtok<8Ziev48Nnta@}ibpCyv`pFLq8D|YUe8sL8cmD0} z9M(2JCB64+-q5B00i-C}`1Fu#)ML){b8c?O(IDbvFcO!9nQlZboU-ulPrsV5 zn{sPBGW=^)(FD9_z&{i$GJky5Y>c-dTyAwq*uA;h(3`E2v>KPS@;8G#Jw4$;e2ktn zLi9hhu0t2qs#G6C<~_u{D)t=Cuk+ac{o&YvkA`##0K4vV8;J|6a^IYb+t)GU<*NF)hl}P4zg~TI49aVeHUEJk^H4IbxO&r`1(1D+7`DHdeeLun=gDbAX&l z938cXtNDsfS5)dy9g!T#I~`3cILV~SN>TgP_Y7buJdJ{QsIngB?k&BgI>4Z#7aVXD z_bm#LL~?2~G+e+nt1Eeh`gOlI;Oh>X2jX~^QuSa;*ZRW=pNZfs5Rk`Imh34yroXGZrOBd8-z$bfCBE&xu@do zD=|2~VvqZ6FQqVLeB5H3xK&?Ozh(zgnDcwZiQTz#C(HAB$fXVjj(Rq_;wM*r&g5`{H-5C8!z3v zeVO0rkD4rPJ&ymcrv zpn-7D?sS|K@D^5t^LDqGSFGWyILPU~U>TRzE;5omMgIDo^6P`!K~LI)i{08nnX~JU z@B5#2i%tJg*qQ?NnzU74a`v>}`YJAC9+=~{g0XR>Z5#)=T{q*}VCq=tz=7DC4>BjXh| zs)vVf!jTwh+~ub6=i!3HYzTk&4{U!bvK({ zlr)}o0$S%_(W5pKm3FHbjE+q5DCC;3{gjl?lH_zhrSC>Sc$eK&oyS7T3{>_h!IPqN z`7o5@xqE`YpiEM~TsoMgMCuwJbn3VaDvPZcpJI*K$+1rxL5UvEv01r>?CssEM#DfZF-hYh^x1uOA(nyZ2bKrj@2qBaOt8w5(wa=+jJpEvbRR?l-|#N zR8SzU?ygVfU*!8T^BxhalFgoU>`q{Pp@}7jb!}}eBFO(#w>Ba}BRBl?6ptkoSEX{y zyJA*q&_#m)@*J=Z2Xc$!aE1htg9NfP&_ZYYG-5nBE-TljsQTgPQ|IpX(OqDR@>f0X zHv)r?Qo4z4X2GdJz$Rc*DSaLdu-I2+T$o&cyaOacLsc3Z70QC(v&xbD@gwebuV;1t zdNL3<;K4ch`HGX1lcq(BSqU!(@c0qlXF(r?r|)W87tCWr0b8HXh>&^vV{^_|BM#lT0|~5M zX=k(jyZf+-(l-Tx-UH?qh>YU;*r+lNXSg5>8S43^qZbtTh{pttZ-|*O2F206Es2rS4 zi3-AOL!m@4Z<|h1CLjG;GKi7w-CRYZ2l2hRd6^!>J!W8Qu`Bvt*7D90-fs$L{;JjYqYD(w8CAG`{D(?v#c0t$joOSABgwwUJMB1|HQ90VuMx z^PgBj!>fuoDaW@2ur+!ch@Lq14uTG!X*&b44O$W9$WvT+aq@n@FR%B%)8pfL_!1S7 zfsdw$Aej$(H7+Z9{9bbjfpncO%0Sjg;oadGz|t;9CPUX@ZO@&4c`Ux2YrtTI4>NN@S7$1MQ2H#M4g4Zd&1j{$ZyNHd!=r#qi^lm z(SMk~bGVa@D17~zupavHp&D28PJfuMRuOs?<^Vq)IUpiwd7dP0iWWSrb~3YRxiY=q zDmXkiKF+OB0}Mg+P%_DKbFRg-rsz4NZ-LvZSJrqGtocK$^E4IO0>ubmIj>riuXJ50 zETN~^Lys1ZqNKeZP7x%!O?e#VHy-9k`c^^=nB{k(jrM8=ji&Ro^IOZ4%+nyOc#7+` z-YVwzQ?bagms z9wvSCoC}$LOX%R<3+YHf5n48f&@Z>_*OS`=z^MR~R*)N14;B#>UDZrJjAC1XPGw9l zyP{#^u1U#DIl<#)dBi|xG!Hc6JIm=|d8w(gAaXWe^#WBzRTY{A(BWbIafxZ0%d`&^ zTUSUF=r?sEb~<$$oPLma0eQZmfQJPuO!C3@k_}KVyp=qm@Q81%^y1s#!K>cV{crcG zP3RAyMdMSb!HyWH)_OKr^j_^oN!M~#_%5)r^h2NV(096-5^+o65IAi5-D?g5y(%av z53|~?4bzkRf%jym4@as(G)Ch9&Y;p}`vjB#g%6)lv*q_$QN)J2)yYNtogS6w+A75! z{cMxT%GJ!~PVPm++yL>=htJV)bPu_7H}}%n&fIy;3P{bA*<=#fZ@$+e#)a_||F--^>L*?r>` zzSkvT!&EP!G%3&@hVdhw`Z?O-K1$@ioZYW4n;F+e@mNyaXapFFyguq`K2Zs|R-EK= zz;e3ZhM%(yO-$tf9gGlBN~O3<$!wjVP*I6;!qP1gy#s+GS@&pkWwvC2XN`+7Xc4(DlmwnjHeRQ>mcb+u z?@?BTLztFHZi#u%in3TOQy0z-qfht4PWuKj73HTsV#X^J@su$aPcqRnX!m*m)M%@C zAT*=UW37bqs#ZT$!O!ldj;8iPJstL*PC7J`!@xtrVa9I?Lc_YrpO|$ofBw$+7sqtm zqA_kULzNji+dOD@Mk6xhS$wqc(|`)!lf&@FBy`Pqty{4#Hs5$fyVx`OcTbW*=^>#p zZKE6~LE{I}uU*?g=VT0_gcxnew!RN1G;BUixIqC3|hqXwTB;7_s?QHPM9`2B*vnoV!6{bxpOKtykpFJ*@B3 zJ=_l)k@x+AI9e&1*p|ZNW}~)lD#yDF)CB{pNZk5z0C?!qX%3~!YoJ#dKUA4+|DU16 z(ooy!eSA}ri>j(ygsIRNI4No86M5i0)~fzWI}Gj!v&YwX?4&B;x-sVdLgW4J-YEtO zYvgK@ka=hO-7;ulzIiRD2KVe&F|5h3h)M;|Dj_EVFVcBJq>AH-LC*L^4hJvP5`OH& zA#DMpE=@j;4liIK@+T7n!y&ZD6pDImp}n@VbD8f!m+>lo28;JDjI#A&GVwDld`cDv zU-h&!3shpXwz*@`!{l>mtX0O3jzye*10xgkKxIQVW**`(X~MqI5W-kj z;brsN=Ov$DUh(h*^Sw|Pp9?vrZJ{gv7y0PNh;aA*aZ$qsF^Vlcr~C ziZQqP!;r_O_-+g8bG(pw2)-FWk69!$AKW*Q3S!|YhE5$2ec?_ho&_v(AP(L>DK_$H zHCkKTfC=`fg!@Jce#o^7EmK*1e7x|TJ2`5c8TrKx`uJuC#>T2Eh|_I^YV{u&4a(Y$ zl|D$`|IXopJ6Ph0?XrS#{vqIh8cg9}-Z1p90^DLf1f0MabYb!)$cQW~h#TpNk z?IvqnhsG|nY(ST%LqfsSSJi;!tzUO7)|8VAi0H`RYuJBY4<;V8tD1Z@&Omkwqvo`e zqdhbX-cIxJnxv{d3J3_WwzeL?d-ViAorR{XT2lr~WF0u`A(N~{L=g20KfH$8zYK_9 zgy(Pvh7<%}NecFf;7rEVZ-x?Hh6w!;@S;X?9uBJr?lR9f@c;d)tlC5G{gcRMkhTTwT$h_KR>Vt>XEN>|(6 z{UED3i}0?m<|z!dRAIqIT6wN{RNf4{WsE*cK(Im7m7H@S#@yP=>jm3RqngybcKg+dW)E{`trGuS z%T_K&bMQ@cz)V=)<@36pFD$f1^qw55M)i1&J4)pa%jeq9Kogf2$ z>#%5v$Y=e=Tvc;;pMTQ4>z0Addv`+$89EZnRZ?IVh239A2cTRFi%)0#9+=yc;|ivSrp+eQ64u{`XWxHw-@2pBf*pJVlkG(A<4 z+Onl`{l?vAN^4xj&*jRP$(H3Wjt`4|(%dJTh#MzymKcd0+-lAh(t#MrgBDo3qg1I- zI`N}xXxI!cBfW0k>ZHWQk(4J*t$ifm%F)oTBypRzv~GE7AzQ_y67RqEhuKkBp4miJ z49lCa>cAySQI@y)2p(E)%i-x#rM0yl>!~7Hk@vHrm!GN{gx#zt;x!0b1xt(E*iYwf zaYBXe(sC^9vNMaL%GWIyZKEB@G!X_vsgIuhIlWK0XC|E6G!l+`dVvQ#Jsbi%nZ^gb zx~iK0>4Uo{^IIDM3$5>YNCC^025h|((+BjiKZljEh5nV$vQ@}tl?ULC5<5j6itn_Q z?_!USsEA>klHuukT+nsqcM|$Fh@zRZFQ;*#QCVWdL&@AxDH4$T-4JvV9;)LLaonDm z6J`0i)voqY3PhG2I*Znj`lY(Q1DyRC%vQB zt2kHbd5JzR3ByhQtcSMDe-=Li1nsl>Bl1G*62_fwaZTJ>7fm*)NB%@N*4Nh!dJ_>U zhP_oms&CXRyZaTAiAWzVmkAFuIvP{nxDJ!Q|ulbTrB z>a**cH5mee8A{NC5wx(e$um1TQY|lGFWSAoqI04=*f&*Fu=^_0{BpITx|>w-TGGxA z1en}^p10KT`uqG)0%v=8dExh?g+jl=E3t05C1>ql=z9)ydS#v(5EA&U-Ua8i*93*` zMB5X4HP3#L(9A?{P@mV;|16f*RIa%bcQ#_^pKhCn>4m7X&2^A{5Wi;EwAHvVF>8BR zcGAa7(stIo-Fe7Xk)4g82IrU49yg0P7MWBf$4`k>3f6(cePm|YIS3BncFl;W5oA4%8JI* z#S3NPxyN1gV^U*qiK0vjmkWKC;+W7~d4jfsBh&;0myXrhmE?jw%h<;*B1IDn=7eq; z5arGlBqmfA8uP8+vOem$y`o5=ylKb$BlZ~1(EU0eZpdpt`YnY$aCszxd5orLsmPuG zMR^&7Lj9CTc^##>Whc|DAujJ#Yl*%Wl?w+cJIgPTc+(TT%!>o4^|vIJT|z@w z`Iq0?5t+w55Gde@*YQg9fwDFv>5t$>Suu`J$MNayC6svjo~C#XXh=ymU9uZH#Fed? zkIgx!?KUOeFv(wNZii$whYjZRVscLm8OF?IejeS+P0Wrac|JZ6$Kv*eB9Q11TdKld zx;Qa+yMO~Vy7SN=$?@=jh(N6uT<#r|+HB4Qg295jZZFD9q{V)Bkzvr&-nTM88{&{o zs0{BWO=nf}V{%X(VcU3-py%dha6tXyFFHiLU7^B*ds&PDSw^l#&xVr8gYCMfsR#eq z5jDKjUR93!DZ0}9knKzWyN`^96Qr0 zBVBeouQjF7Ucbgv+)zM#*@pZ-Wk^eSP^-A|LQ86kjpP$s~ z#rFt11}F2JO#b|YWQ>};Fve>+HY3#1NXL*yoqLH}gAfa~Y72~%21fdgD(5zf?d6(d zkf*d??#C#teB+WG%Ss)2ofx4fAD*HoI1wr2p+nf!*Z(@PD4uq=mI<;cpz{&?R|fj5 zR8|?~Kg>K6!e;Gi7Q)4quM^1>lv6dUPWO2um;3+;uJD2%A`FyGqF_c9yu;KiZ0P zNuuJt#AhxN+?Ael;OCCvkh44acj)=5>hI|8l3@}8KhN(W2yQ6Px%_$?weRBxuJE@P zeKxU#D=<=z2y%2w-lr$Z$tOQw4P6oup;D`yImGY6c^d*U!sL-%fCn+}?jD_{)O?Ph z*{XY#D%={%5d+t)ucV}_a(&kb9ngCM z*KBgc3ii`)cm%n43oN-Yh~)BzYogL24~Ljx7YzxF)yGg7_I_r5OO2l~OW`>90tf7n zp*x}-ga07*hmH03k!SHefN?|A_^-GXr1*8D}6 z{QZP%K&PSLsj7sEqAJ+w4A@B!L_K=;sdTE;g^Y$E@O20_?7$cj-y;-jYD zc9uD{GF_B;Hi+x`I#XMV48&#V9_%c8e@>Hl?1vI4&IgK%lgTBOZ{5nrnaPHyu#e8) z6(Jy~2n9ohyGmi%@BA`Q3CQ)&x^GLKv0n>jM*}d?uheC`pio#5*<+}P&H-I%HY7SFw&<71M^K)7{_m%&GH0}`Q!6T^zi0W^}20XKkmrt;ps(w1S>wi{BA@37^Oiqx4LTqS8)vtO0+|l zgcm&$%Ru-iU>!m-*Os3abJzD4wLs2){1M)x z$+tM~$}>#242GuZP5BWLsO6u>ZA62Sul%4s=D901-%h;;sD@v|I4&!-M^|OR_mn(~ zl$69Bp9W7hxhajwu^YXE&5dWsvPiAT3_2aB&VXX~H-d|$7*-Yf6tbwk3x(bc=Ee5^ zwJ-jI($H+&zw>SkeQJ`bsv7nYM*xlb_z#4LRpZXcmPIhJn1u+zw(YyM1VdG3J<;=r zhQvXc&Y@IXm4`s;-hq_b$kJ;GF*3BQF|VRJoWIb)65pS&?6(S&SIBRZQXTU=ytUR| z>7fr|Ufv|7oF*edIw2S7mFR{p{RgU}fW$NiD$7alY!q{rl&5EX%+(4Fpo2(b^hX?< z(yxXL%4S7mI2AFT$vV7)$Kh@;yqJfDrT#7Mck_==cDBH^zb_rnCb%?d$5RN=wnb)- za3+5T0c|XoE=*@^p|(Ofh>wfTay(vo+MV z_;uQffBd)0^>{oMgwXpYOpax+8d_`8;y;{{fGD)R zT|yUd(cJNToK&TEf&nwhukWY-0f<6KAM@x#@9Ok(;BLs#1@I{Jcw-DfvTdJ8mvAPj zjfj>@{IC*n6N`DQbEfQ*2p$w#VbXCOGW0)h^144ZGi>bosz<}5!;HTUYJCp>Y)>r{ zW8s<2_v!ATVo)E4NTEAdLq6Bjxhy@$V{~Kw(VXuYi0038VWmQ3xg6m-U$<(h5|yRq zIiGFQfPjTF+RWzW@j()49$C9jUhB51%YBVnD&d6`)(7gW2e;~`++}YX_;4FRIpwnD zYL&Hxz0bhj=J8;h%VYl8DR!2AMtB@M3-;-ZOr2umy^$Y?R`B^{{NFdZm)t{2{hx|R zsY+aB#mCCU^El4@f_bhai(dDN_626__Cs=T8h*#jEfguA;q$x)LTK*jc^pW88Ibu& zNqO@|5jR!uol?tsQi8k6P$+D{ux@oJ*JMkrzuyk^Cq&(ZI!|1emTn6H=OxUMkXx_K zigKj6px-HJy9Yrx4!|RtWtAh=v{7VDrARkKQz`uEH=Yg+1IU*GW%D7!Kj!=dA>k{R$qgsmtX4&$3_#C6rv+@XcsfsIbe7 z|6S9>UB~tD3+Bc46X=cLmT2cq6uc!8V$MYTsUFH2eurBCXv}ttVb|4+u}|$6VXjCo-@K(45Y10`ybbg;Wgk%GVW%%AXSxq~w8amq9oF z2a4_1!roUC@R6-0hJSXjF9eYn3E}h$!bVF3A0aGGp)|^LY$e0ljMYWie0Vg~{y>Y2 zdeE~8T%oy9pS>*fxgN#dnZJE3=R21v?WybgI{9WJ|HuIm$$1IlJ&;0&sGx>wv6|~C$?O5cJt%D#{6!0z>eglGVyQ2;@&z|bfdY~kpE18@l zNMQumLYo$1ejZnGBidP{{eO3i=5_D9Y&mDl6G65KiDHd^Ft?5;n0Ho$HQdo`Fb$9< z?>KiO0sQW>Gqnp*JUY#oFI+o)iq^&F@NzljK zGs(Zf``VDE7eHEuZl13Z$ZiEQCJ|!Z79plzV9t1e6Dn{bhu$-Ock)hg)R~x6!XS4@ z?*I8#??zGlqWb_rp+0EG4ch%{^2kRaNNSi{PQ&88*ei$xYJ3(YkfKs$EB%KGl%}+A zJ;2kUcmUdnc5&1k6I@8hO-$E972#7B8i2<)G&iCwEbY4=zc6IDsmg+X*Qi>Zsw0tS z)bzoZCoMvu{(pUwx6%0_;!PH_=lWZ*GC<7FX_uo+_#Dm{5ZeK9bmi2Lxv{+80BTM~yub*a~lZvNex zifR3UIusR@y9!|!=CPXfW_fz+=S-I=O}6$c(kV}Gbw!!Sm7Z?2PPj^Y6mhgUE>^>d zu8`TIRy8m4j*ljcLgaEi8@-!B%sGmnMYPpp=8`(w$ZNXj2yr|mu!Nj!4-US|MIS_S z{%5J3X3;!%+>bo$qp)#=k-@q3z;-Q>@-!Yc-B3Ur1-$~uj>2c9kY{OZ>%x#&sTGhOM_G{IAOskEnc z)8;8kPe(Py{k7p0?bfjKn~`lPJ6$ieE2GQ<$qj4f zo?R10a6sxpL2ws)4V9V`As&qDb7hNh6fO+U{^yx+QwndF(9WO8gmQCJ#RqmP4E(*@ z}BvrmTvnl-<-F$3%p*x=Qh)s^rj5MA6O2qnk-$Hl;U|O&FByNVplBSRTN& zs+xHZV&J@D&=*2g?=Mf^j(3+J3<_)}q;(>m^liSuEID9MW+zC!`TlByMW)f#*2SHs zum;&IbIt+!-P&6O7GHlqrTG9r9J1I_J#{$i8FAg}ql$`OM(R>iR@TQ?wlZnPxD6|2 z@n4!{si*gY<0W0Ui!U!bILAhmls~QV?BOTC{>v^w^TC9S95a_bbvWm)fy}$cwcy6( zSL`oq5R_5-Qa`OZSYmNlZP}i{$`O@zT+b3}PQ>21EU1M|FKT7*UZKced=@Kna^S|9^uwyN z{9&WwnN>yuA2s2)I-a)c1S1LeTf=tzMGRAK7 z8S-9{W?S$z0+vnd4`~cawWZ6;nr;v-vwmE`Vm>)U%F5RZ^-5ItrW&5EX!T&6@_M$G zUZJZks(7M*Ji(qdP0@#{PLp*IJZq?AS1kFqAU*4Iu6qov)DT}YJ?Tj!(l+3-RGIPt z(+9Gft6v)^q@6I27t0Rf<6n^B?*WB;6CiVK-6H)wTDyLy$c!=QoQBJ7Sv$tnU(^F~ zZiRh8!z4emG|oyJ3QoFiQ$eI*_rBxxyaIaurw=nL9fsRIe1l%<34e3GFG)-~ds1@z zm@hkvjaqNgWAM4TkT}+b;?R&njSl<~lA2rpXS6^^POk3Dsk*_fE-e8|bX8+waZJFZ zZ>(nImWTY_WaZOMU47=ZBm7<-_`OU7>he*UPDSU0VDR<|rsIBgtF6h1{LpzK_|hO8 zp94aS+_k^AR_LR2NcV7pS)wl! z)srKof0pQh#gQR_wcJe%H^$xi{J!CZ<4e7F;(uM*sU@39)Q#bq5W*%TOXnL&bnm}t znVWQCl1DAA9AC`p6wuQm2nhu7-dGr3_D1X8((F_G^I57lvWbXLySR)m=@ijFbyg3 z&V+G~g_kO^UbPFR{oa{b7ETI(L{A(f{d0F6L!K`Y=8uW2g5iYgd3+Efqkqj>P@oGY z_iiu$7;E!KDFwQxQXf=lUOV64XcLE0Fu7UReuC}Z%xEglSIj;%ydWSNbp62%*~ya$ zc8QSzw43;y0NQtZob=_|oOfy#w&MOp&M@^2lPvv!Mm&>LieXfI6g$*?iC-(cwe=%D zK`BJtVEooISM4E5b46)IS1}9*JK8W~a(+P{ba>v|l|RXCIQG>E9}#_IR_jNUk9FBA zJIPfyF8cIrmT687%<{5H7AFz)0}znMUCygkeH!qvgQ#G6vmQ}#ie7`^)@>;4`ZW0-^%Yz$BI_O=-R+KCOvuuOS_i%1m)04yZhLMD4lLpxwDd>Khwy!HKkJ zz1FUpk@3uG<_Wg|U)|&RM0V#QCK>)>FQA)hU!&Sg32ECamBmBTCy?8TLRLL&+O(o;8$`b`*J|JXMU)6MdC3e|ghB0fg`y=ZftGjt-13^5kDOoF52gO*YgCkd%k*nH z*Diq~Ki|i%FzBn^rBMeJXhrOWdN=qUMLbnqRdBGRicU?vo&%_9Gd~^x+fYq>+5K1} znJ(e^=IZHJ%k#K99QbBap|ANP^oFV-ZA8a(WaF!Ap{sEmq8(g)m1S3dB$vT;u$5&K z&toEsd*Dw;c5=3{@z>XLfkMQDjnDFT39QCobVCn zJOU3zK9vp0)SGSj2z{rr&rDU2gId+}e&Sq7`E+K=k1cU|%1LY;<2TuL~$kQ7I5--P051^QI^eGn*BePieZ&@*6Q*$EJ?n8)ElH9oT<9+lrl^OBHmaqJ-8Pm z?`DQ$rDkcywiiNlPeByNgi2`b_hA+$RC(KbZLiD(F~CiB(M|`tHVu zjjGFJS+!Rx;W3k9dyWlH4>YqL4o!_?+_>&OxVCTl?eFMsm=^xi}zAwIn7O5+gS$@wris zw@&tc66?O{99eEMSE2iBtsZr$=Gn(lF;;l`y*J(Pw3?|`?oKTp8h%~soBd4zKQins zx6$_RBGazZycTdorhJ$@K4Q!9vNz1rjq;hGubrN3)W6-EP|$$-1dz~x*HwsE$HQ}f zo_LNyhwz;<3uh91VX=2@U>08|{JA5$F7MQmJn0f9H!ri*esFRfzA^w!Mwljyd%h9s zOQ#Bh{iP=bd66%xARr!NU0TW=y9t>Qtq%M{EdGd_wgPMIY3Yc3k48NireB zq8l+WnVsfiqhW6+%GW=WDUj@yO|xJDuP^+!^ZnU!F>@PcqtLOaxqSE_EA6mEN=}h= z%ttIT^EP-CE;Dhhu7m>2sX^zf^agr@H^0ZaJ`6fZL#5UNdTpog_J&rUMww5ik2Qh5Zq&6Yn^-Pw}wha%@9l<(0veQVTQRWu}fe%}wkFw2yeiALTB z40I2&lD~<<;v@f;RTbzg=gtS)P5N|cm=Cy^$Zi5_FrE!c(Wh|1i{b>LyuXfRzks__ zZ`PwN4Bn`=d4E;}lgqnm%d%5TGxWLbD*Y;kh4~TwaSeFjD}wXxa;14xGFKl*en_Fo$C|N?@-( zF-8!cAu!={gp$V`K!*9Y%%sZr=$~Uj8Q^VuQyl{%wDE1g$({q!J_4-C6xcbxr%2zIjXJl_Rx8ML~A!~bFITGpmJwxMFbu~ z#7ugjg|fEO(u6T~Iug;E+fxATXJ}v=JRjp6R8vWiu3$#`JczC}E%kaz=0&$Wh!n6` z_NUuk>3lWr@rOrq@O&an23vU}-J-J*l07%V9cfFgPX6s5tIYlR>@g64c{i@FR*O!= z(nmv=GpY2dm9P(@A<2J5c<2xVW9Wwo#5cmo>qhk2oMz~TiCC^!^P_9rqq6~qA@Z8z zRSCQZ{MhgP#Iw$DyV78ybU3Dpr>UgrExi{s`0l>HzJNu3jif1Fj^SS%V(5sjto&M= zK8S=1u**}xHH)aLxI4A}JaJh=s{F{rAUlIq^jn*gRU-J#dj%PcCEzo+8M8R?Wnr}> zFe)7Y=+!QsudF1dGc{zJ-&O+e#jH1)iW_*VX@^$qK!7p!ogFj%_ zke;Y*d#L9Uf8AYx!n$dDbz@3H4K<(N()ADMj71G6lhh#?T7i%_GQ^K}kuta92ezN) zSRIeU?GjcoA8h91q28TQdZX!p-7&qgaQWv}z$zru7eH9mjW&81QECv^9L|K@yKX@F ztK=RaA#0A2UEAT%FoXGLx;zT-S%jlhOX;7n)}L%bp|>RN&Qe0fzT7=ognC)CpK{3S z{UU*{!K}u!b_|w=p#Ne9$0-ZG@73W*^*hvF%XhsqcQtHu*7s^@QaDM8<(-p%6}WJ> zJ>%CRHwqWzdt19sv_RL-(9obuBCaV1Qz@c zne^N@{qdgzlO|yn>ftg7mi)#mkgBz8az}f8izLxtaKYQkn$j1bjiHZy+N4d_)W`=dd%4q?QAHIwevIM- z)zAn(%P6tzgs8a_;xP{Y;GB{C2qo$I;Ng`?#wA0B5r0E8+U~Rr z5C_^thBcu7#p4Y#Z+xv?PA0XQMOpyY+PJS$@E)E6JCH&)+Fo00pL@pN$^}D)+$N11 zZNAB#m)@Sm_D%NkM4MGmV{L{@eQK5mtR#A}jdBFQqA)vvazgtV&en!+>TJ+_Cd0C? zEE=OB+`QZ>au=^1C8$qBGjzL5Od*1l7fdWg7B^g*fX?nZE|Bk&I@dtT5V$@}j9z4((p{T5Rz zP@cQBF1u>Ew95jz*>&jt*+7+cp#0x2y!`a({z(7b5NTWm_odG+brq^!ugdYxPEx-+bTe<4%L;m6hL({QPyHcJ@V{5VTf@N=~a2w3vxriQ* z&cROv)WV;fXtLO~x=U_p_P@>$Es$Bp^Qd+ZM3HtFXYm`U`i<>0{&A9tYx{xu@ zP~Gg!eptcAM6ujdi_+n1J7AfyeZn`H|Bf%IsArcDXcjZ;{(J$HUL7e_9#tjXtQjub zgjL1O67@n$%k!4q+ebr=iI<4p2QGQUA1&NmEF;#R`Ucla65(`NLgu5+M`(6tV2FPK zCj!^P%x`<}CN;vZSni+p#S0s( zrg}Z$PWp{I+iJ5Onc&jjG8py70&L_84R0Czu9QhZqZ!AS&=mPtJvq)d0E1>?KJO43h*I=>G6D9(c*eZeW3HM|LT||Y6~re z5MM~l*R4r`nXm0@5={}(v$v!@r@6&{A@BD8@Np{RtM@*aoR(?}F&%C4X!7luLMg`{ zSp7=*PQg8>*4st&?{DA+x9{)&IT+}E{?uf`1Y#lso?x96n8g{8Ir#P$=;b8V@y$OBWv~Nuy`lTQChZy$RZFuhC)j@u|_!Ubg0H6y%!bT+ zG6y}@rhR^4G}Pung{14QZF(zmj!*|8#3k-)6AcPS^g(JOFLL&-@qXL|gm%5MVo&$v`r|R#;x%7YnH6I@@mir9;Q^91G#{W22=h=Ji zXy<6RG3PgP^h)BS{aualO9?7>*KG&G<&{A;$_>oqKrJ!E;h(4a9-P;UwH!nD+_=>J^kaVtnrrP zGIIgM>N3Pu3vWc3uwIn49BVU$HCV;ljZal;-_Cx6Wa8 zJjh#; zz9vGLCAVaK*p_BDT>i$l?yeKa6mYpLLjIaf2YzI$07TuqeDS*mOJkhlZ zOgtafhpR2-U@9oM?xafmzU(i2BoZX?z;)hff&5Jd`UWb2;N0mqj=A;s9@?LlqiUef zjC4vrI?Yzh{LZZEs+4=|AH0#W{t;SiCx;Yz{asXX_B~ZlZofb5_T&jT^ZAey66^|M zm$@G6*neSiu7%{+r+mB>cfCp)+r^g_8;dG&FhZGCHV18CR^mk+MCT_BC9|!CiPI@j5Vb5TGrC&IzuDm)2?OV zEo&CY#ftBXmA;Ye6Z|=vjq4T+yDtYMY9_b5NNBBI$@3}G7l`pnOr{J= zOHnE0&7ie5Y6B@3EigUNdtk?AQdvyLgx@FeiogghWr;TZDp3Z2RpNsA_{yF3sV<`a zx9;OT^W^*eJ+~)ey%}J=8zX0bp($+qwr3UPf56(LtK4>BBwajn)}mwJ9Y@t{m^p;= zzyZj*1XnX8Y)7;e@dfk-Wza$_a>As)#GqTby@8YV=foU*xQy|5pAJ+4J&t}&77yAs z^U>eO(*!~MDLRdLT{o*f2 zo)M1$@1p!&*{f}>IwF=V@HGF^t%s6$%3w?-e@g^WZ~DXP2{(Nw!12S;dG#pyCoxxf zf=i3`LcJDn-^#45AQ*#~aCaxELWXK<1+{Ed@A`-;Jc-Q+CNd_U41LM_3>6$SH@M24 zF(>1#JZ_k$$4Eu7|4eBwxT_clxff+jLx2;SlYxUYH1Avd$duNB@#nmX92_HAie-$G z#t#r35lZ0iZgoiY+kI+BZ-MU!d`bml8j|P>E{4ZbxAR8I8JD>3qSoQ0FUbAAX^r^I z#DXl?Qx9NIg~>Ij34O(9Z!-e;xVMLiWMB7%ZjW*f6{e0jCs>i-Omf++3kT01*8Ki` zqZJgVcqE1iuzRr&C^&@QB!e#5%q7X1x~n4e(zVQfK}q-7FICX%sB#m7RZD|Z6WRX0 z5*=hrr48ev5@$f%PTL2AW5E=%jS(Bu;eHw?G-#4VsQ?zE{u7#*rltSFudUe(=3BYW;tOq?DpFj6dV=)5qz!-x!IhHLZhKhbr~(TD2fg~ z7IPo z8F(rGXBx7?p1v+5y_8q;@dx0!cuO|o-^1DTU(w1oW`I43uy!|Aj=UIpWBQNge52WBGKwJupC`2{Om?8IX?b3fi2Fx|*(xw230kzR(AHE%-fFBmGk(d7&x>ab(`N+&o+9YIo8<_fK2_pGp<+5xqflCa}O+j{+vt z6pWZ>UsM&taLtUcKdE|2Neb22W4B=6k#i%Urx#B z@^nVOmAq<@U0bRT^97p|QG3!?C0@1h@3Nq0Ue}89B>3b&dVnV|oD^<-=|IVI$S1dq zneE8vBB8eHY+_{Fj6evkffX3^5VnhuGycOfU087O;F>w}PB{_x0p3wSI_)M;?RFmZ z72nwXZ%jlRj3BYaB8TcTbyYI?=T{pbqWd!B+|m0R2L+ySxVp3Pwhlb+39!58;w2+-Eiv zLbZ|*;!6{HbIu`fG9<;f)rK3h5&lRrOa`i8{&w=`3+U`4%3huhBu zeOq|LQ!0z6>Et3;M}>Hr|w$sI(AF|+!bb0AFqU4gxSKe8efdPL=OPd zgRkjV^?TDJ09z(6i5I3_o->4w?e5@OiN%nJgOda(Ou$eV+Gm*0V-z1=i<=}l7AWYa z$Y06l03UX{xCu`z#%f~pqbz4!ff0u==xg4qJA(r4yf4zY*xmqI+Z!zKEy3k!dKj1) zr;a-k5i%qFW@bf|DZ$9ql@>0(_Z72%(0X7l13tRResj0+R!!5>C7H4vgt-uoU#wuh z65h50_zf~|C-rA~&nSAd?&%szn#?IukP-IJ^eNw!prl8Rw7{-8;~VwZ|13dio`}97 z4@0O!BwPOsJ{zl|?Z@O+!|LTKIY>Bh#8<10S*_trh7Y8A@N%ets|!;FIX?XsLUBR5 zj&@ToQC0~^#hG214;t*sae}>F&(%OdkJQB-Z>Y;B^`yBc4v7GoSHA_2^Y)Z5bS)Z1 z3);MpNn0vqX0wGlooLo*lXhCfYtylXEF``3>C;?TVTp4`4nK-41wB^w%%xVX0lHQoPhii$Nw2cS7Bdi zC$QCfDvMo~a=HJF9f9MH>aAve|`;YMAc)l$o*IE*b*qG)0o%W8eh= z5@eDr=7k_Kq9QtQZPk;ms6(1WeP55e$ zunx{o?{EB$PAohU>AZ@)1e>pzUA$xL#m0RT*1L(p8-wG!q+hv>wfyL6Z6onZ+Ho-r z5Q175r0HKXs)en@z_2sO0)-S=H`)3C_VbVM27yHgR*&1pf^aUSI!S}QtxgMxwCx-A ztvZmL$*#Ty$vtNDHFiRCn)LZqn3%mwF4$qQxo1BImJ{*?KNX^K-2f0OeQoJ({UegA zh2-%4 zaOlDOdy|;qiO9%~+7SGxHbKEr{jmn9R0Q4H0ckI~d+vy8(M;kPXV?0lA{_u{9?riv zq!R3n3%xHzulnhw@qG_95v?lF`PDXhALU|wH;^2i_7odQYVqNEG<^Py7&a!e+G>Av zPRFlDS+v4|HH~UDwD}M|KVx48fC>n#BFW4YKZbIeA7O%3#@_I5=DF&t@fhNoOI2zw zL!l}=vxfmk~Qu>Aw@SQUY8m`7c2mHPjEC`?R{Wv z*0V~VOmA!TF&zD`+~B-bt!$aJnd}-9iCJr{{#JSLe#RInjfTMVMnCR6h4nHiIoZyFk(S{%Ya9%Tn_}#fJzsFcSB;{DW(y346WT6#WHi% z1Dpx4Qa~T%Zfc_G2{F`Zq7~^*|2t+4$KW{#$&2m0rR&ZzhJt&^K{xD!iMQ03gTkzJ zf{1UFE>`MZ(zV0s51l?yDAi&`_hT=s5`Z-L1s|{E#ZXuvVPdn%L&!o_@?x7qHgfv? z6>q`tjz6WABRsS=%MkQ>d$FNDIE^6D_4g}M)o2LUIliV_wYDNW$!QLfqO-NygdXOw z=q_b1t}b6}GOxb8(j^ZTDJ}onb6K3aJvAA3hGb0HEU}_AWoR_k(MA|fBQhEHprNO^ z)W6@gWN<~9`z#zc!&pBktD_oyofB>^q?M6<9T$wm%Z6GR@jkiW11h~7NI>RC{Yvp( zG|6^qIL#zaq))QL7Hx#;+{H(1k5;9~gVG5EyLAK_L@%A6Etud;akz;*vZGbZjb2ev zeA*9NngV^#hm0+!41u3-a{6i8S+uX|cz|J}eb=da*lg@Pavf5xJx$RN>Qzs?!gjf# zUg6v4f{*4cE4<$4=K}s>$;zf(juMs5pU7K_jv$Y^0URWLCNmaw4H71c_$knFnSi|KAsvDJvGQ0zeC)3P=bsNsvp`aCUbz0Hw$i|qmoXoHEMjbf+8e}3R%hxtRJ zgR>#&$=V+R|cNi4db6$2`R->-oteM>t~y7Y;1rO)d|+2<5+T(tS4{z1~E`%o10!s%gT`(JF$Oa(0e>C?y5Gmk8mJGmb@)UPeZbLPSf{#}azN4vCR0$~TE)1q7V2&68j8VH+4mnV5eKO?v?R0PpK0?(bL2 z+JCu2Lu>}&(xp+?v>SsY$R-n=?1HmpQtWo|VErYSx({sP`}g`5SES_UsD7|&F&`NX zm&s4_x(Kg*7bKUdh&+ePcl4gQ=g^vdD?<9SN3Si+!9W~4bIkQG$z>%(fB0&9)S2{a zTFMLw^S36B;$|XD^+gdfHP*H6kekyo1eyQhuL@kt`^5q^%&d<<8G{I6T z*U?5mJ7NJBiD!-GFl&iQwGj9T@!*qNii2NxA01{X zL7cVusBj{^pTozC2+*^+#4XqhlgpCUcET)?_9fN!zuhFSToH$4Ep~AM&zpC+Vk?=m z*2?ef9;s)va`YoV{_mgUtj(m`Zo~HvJHS>*?Fl4$1>sk8?8Bu?nxVO;khjea!ui^D zin>dXkW-F6cf`*e^&A^#@PN)@q^K^BiT||fvzGGojxr8LQmw z<0#AkiZ#97L011>aOSrdz5XgqC~xUjm7VyxJ#)n`1>7CldaZ9)FC(jgGt%u8OTA*Y z5V@TvZm4fQeJUzZ^n%7urrp#n2MPP(A%QK=BY^4&JI~;6ZWfo5AqQxR!SqLbT0tk9=hhk&L25TUSv*F8@W+iS`k`ci)$^$NA!N@0L91JXw4Gg2J0=DH>ftj zbK`9zH=7FF>n7(ib4|?;*7WR8A~iuAF6ie?|F8#5QJe&=hF0DQMG2#JnMDs`6qcsvkg#P0=$zkm7rnz9aCANH&6L^2Y zGT^$nj!rl)Ot_$330LYY^VfNhyj4>fO+ih)CVBV>H$}eGzOhyYpfh)MWpqKko%_oD zqJk@z5Om_x;j?zJJ!BZ$fBo14z>@wIsf=L>MKBG2yM`D>cr`bZmxXw5b;3H=(5^E4g zGT-~MAmaDU_?1#?l}anU`f9Jpe=aTcjWBV%$8-4>0jJHsV4lE48^rp>R^O6&SKM_u z%cKQwJ$9T-^(i~o*Y^)nyltv~38aS+&YkkM=$?qiSaGLE`6j>y>Vpk*71%H~ws6XJ zlM70>o|dKyr^2_;)jFlSR(eKCj!Q(rKcBxf4QJxT|U%npbQbY&lK+6F7laK>F!XO0_y;4DKl zmI29<0spG|$2ya}NG>=XYMuC+v7e1FL^$gEO7)x{Xu9=l?TYCtOp5*q_`SdpD+K_7 zVE<@JlrLl}mBZnNAKYo3ntDq;HH0vHh1b^N#~Z;~t_KAsZJC`y4U`CmHcGTyhw?GE zHmQbW3XN6g8FUv45C22#w48-Ts_l=%Z z@y}x|IfG}L)Hql7lEh*_QU#(P2b}4q@2PW9+qySam0fo7{^5CTzoTi|&wTsK zCU$)_R8X<@KQ@JwWj!2lLLV>k;!{z}x`Vk7VJ7|SR=2dYMQn3F($-vnYe&kmC1-TG zC5sxs9_>FJW)umT!jTc>d0D}dRf#c|SCznIU!YtYb=N&F{vuy8L6k>x#DT=Xhc$k@=>?1Z%Wx;LzhaT<;3kKN-om zO(UOkr@=yWz8x40yten|T>o`47Sk}TpAxHeSsq#nBKkBo^Z4RHZlKBBR%G5*YTeI_ z6fWIcvWnx?4-|NpoCFYrp2lKX)kx)0t<|o;O?WH>i}nu7aMIT~K>@NIua>Qs?p4yx z+b*EdQST7&0-D7N0n}M|%I{i}eJ|<8l2n4rwwg-B@}k;$hA++EGv0!Ot|b~#COPXU zazvFw*_iyC->JQ(-^6FwKa$M1$aaw|Y<@naz4uKphST2#2kG_6EN^qrb&<15y5QsW zn&32hz7W~q%jG;Pbc1m7Kbc#Z;1ds-D3UOJ3A`EJ*Ai%b+h%AWRJL9n0X0X32EdmP z8g1iJC-v_BGHXBH2;WBGpkDIL75$V4KEzPb63+4Av*i7eu$kg{QN6TQeA6>l9@|4x z_z=Eu_(NbTs&7fLgqh$WUO$B>UqeZhl8-uoUu7@bNmi&i z#`cj}FR8DaqE~lX0Ui?jlPqlE*;y;0b4TP*j==9Um^@H+gRHFb4TfINN zl{?QqP$Jwpntb^MTlWDN4>26I*Q#2EkZsQ;zPUN+=P7A67AW}qD9!um?|io0-!sVD zA^UYlV9tLCMHDcTL}4ap&cC+G7me+;)p%k5fzsi+)s?*&OVhccd(mz3kh#S}FpQ8@ zAf}&%7(00C+0;`C(ZC`3^u=_f#(eV?TXsod2R1NFe${>OtSylx!g0KlDnb=@v^z{t zva@}KeC5ei0>r>Qieor^o$Eu6)olO^s=YKZNdn7Gj5&EkV|#Yo!6WFj{AB={ZT|AA zHS`N!6wFAi4z@$T&IUc_<@9}_zKfgm1U~g4z*NLC*zYAWlw;EId}|}Mpk_`|KGyti zsbPPa;E)vq5(R*!@zQJRwM{y=V>Ei=Nq@&4ZWJ~b;(WZyRxept2 zQo82&F?$C|Nrf#o`s^lJ2{=f6HAKH>8)Y+CC`^9un=RT`ewuM{Jy>hm+?fhl=uQy_ zhn34~_rFF3^t<1sI-M)U{fXxq@aX&ZHW#oxJ=dfKj}O*2fo4n@B`e&7eiu?10vm~G z`T6o_s{ux7;6YPL!F1=BkLN(6fUNp@eV`fZ2U>1o58#Ibj~#P6Gbz9)6kamLaeoneibeXW9hOys&kC7nyG>cB})h zQ1av$&*Z(@P_ETVnPbAPGoXm4Tq$WTm?nM@f- z%AiR^#&xM+Gaz0@83}<^*S*aIsO3{^z4k|Bn8Jf37>e0tX=!Qq##THtfeUXQ8YB$l z>TTu(j;DR(CTuNc*NRGk>VurMnN`o$)tX!n04B@|j)ZskrH+@rs93JJ1U zX#TqQxxD`Ip~rcMp8atWAUAJpIR52NAGJ_*(sYBweG(VA66c{e2HNw5L#IrxeAMoZ z2=EpzNOHOMNJsC&hcHUJ4pxt+qik+y=ZqWDb1$@Y%B*@8p*f8DzW(enaJy&9a#l*9 zWSASngLUeOGv=G~*u74ty40;LM-Sk#?g83WP{h6CLw<(e`TUOyuYKikKTdc<=vBZ7NMt5^w_T14^1LyG_ zy_cfvFpDJA^jLeNPtzqY*d)f6 zAAh|v@n%aTenF&evC4rW&!~*uwuH7 zjErZX6xRFOEA+d2jjstJ<(SCNo!&S;^g5n+<%;$CO`3FjE1uA!9y2qUeG=flEnzH|0_n_}`YL&giX`l7ld zho&Ma^a#cdFkdOrx*nCDbt#@14Kt7DQn+e1@DB^Zf1`7|PW$*af1xZ_5){&yJpYdrk96F5{O3>S=9QtX?)|_ADbQXbF)?L4 zhY~szNO(ALyV1G}w)>sOpFqF|?UxH`rWFE6ZueiWnCy6co1Uz7TL*{smT7B01kSn#Klm58i*%kqmMj8_&4rO5OULAZ6Li0%k#||u9Vf2k9 z;3)+HZqlk?U|dhybVK>z1(sIup4k9s@yl(8g+fZ!gf`TkOjdB9p~r~mW7ZR=UYZ_4_t$DEl2Ts0W9;gGDC5fZPiqM})U zJmyL(3%0~%gW_$ zy1ZY<`wv8S8b~&P?p22#czDSICH}Z1_Rghb>;fzJ0CYFe{FhyeD4-=E?S5Z}i+`6L)TtfLB(Ds*0d&9#|74fY`dgFcP1t}w|e1W*r1}- z`tsg1Ns_vdx~R$}90YqEypXQrBfZOh+0rW12b`I+G9q6H5I~&4mMniC&AhhKi_P5!VNiCCzpI%=_xkmCkZ7o*GRwdUfwz+c!s%_X4kXSk!QpajH8VrWS+ z0Cw^Rxvp;DB00T1UxiVq$q5|IL~0d}+w|SLYh(5c%9~s9o>jM@SlIx;1!Tl$=54B3 z8|c4$;NySIx3aDCBCE3RWXLxmPR$su#lK>`T^&)(u!DOy7Z5mGi&oewwf&~-tB4qf zCLoPF?|FqmO&|zLsCW621@Y}QGwsjx+L`X1YbX;|5CesL?xtB1@nUw8nitFs3N?x{ znJt@OS7z!!)rPfJ)ibDTv#JUU-1{J+xQh2o`@h&QKwk_LiX>adg`nvMgmIb-7?_I` z6I!6ECH)W32q;{FLYa9g6x}#YHlJJ1gCvWfwY*xC@@j6VQxic3&pFr5J1tnSTxk+m z98)tf4dUfC!HkvK?eK7ouO7MQk03GSXUI%b<}d={<6;-o-T|=^)-FruWpe&kylU{I zjNx53q|y2X=b82S`L}@5M3A}<+x@2e{C*aWxoi#e-XJYd$kf)7Ihwmh-1|mIHN0#e z;B8_5Vz_`rd*1DjuV<)tLOM)sNZy0u^DfNIOr{*S=OH7|to1zCzSQKJ1u8n}4+a!pT!H(wuMGt8yzG$#9>-PNY1gg=rQg+M1yuIe&cl0|YNBP2I?V zhJ;;8$JJQdkND1D^L>5z+?#M%g%q6*9Rqp)XVS@0qzaR~4d&X)j&7R(ke4`o;U?sN zgVPX%UP#TFxOm*5)X zSU(>emGUFk6lH*oq5Fw6cDszNm#VjimDXE&70&_#h}(oaTuT2z>5wcIkayBVL=8Fd z{^Ibn-2c>&h5BMEsew6$abYPqyZl}TuG`2Vr^zUM5K$l$J%hs?H$VsJ3t)*EKye+A zpo@?*g-afz-wXvuo7>GO6o@=$bxI0o9V7vFli}e1BCl<0j}!)Kpe24Bu~PB8hM?5-ATFki;>O$vjkO>E{SL|OoCm7e@XcKkyxaq1>wRk zw?qx8eaKb7V>D0)4AREaVwvz1v{T0uI2#=LHL?IxIoT}^=AEQ*eCBq(5Oi8m24E72 zYBt2KQvKaZta>;rZ5-Ucor9Rddes`JLoxd zuwJX7t=f>hMg9(|hD^}y-3AaRgD<@t^?F&Vyfdhe-(L%Lf@-qcIl1`|*Lw)`5jk?O z0=jp&)c_ zdvEOEszHTF)>2%E*;Lg@G8$1x&Apxj_|G`k1%;>v0Q8TGP(@^odjfZK81vtEl* zPgMZV16KO=`P1wG2N8CKx@Y^7?T?T~C`^|aF5NFJ188#)pw}@<5FWLTsoI3XVMf67 z1M^pBPcuK>i=#Xi!SQ*oXs8y$Tq6{RvVF8_obT@Yf2b(KoKCzce7JK~E902-gU6A=1|v*cG9*B;?b{YJQK={v0Fg2HbqmfwQy+QA z-gdS~1O2KNvoR>9!bCU6>J@q%U=-{9K8+7T*x$A4NgWnid%7EsMA;410O+)`SW9pR zM$r!HPX#KWioTB39eDbPP6FJYjPOI%^xkV3#@R_+V8?R?=p{dFT|1GIMW!8G5%agF z9a?NDbL;Q?LT$2SIkYxm44VPQt;zA&X|FGMXfS(iR*+U$^)jw7FcIwv)f<)ab|A-@{lX*u*!7fQLI!zM^M-T+veg$zch8G<|?u$Wwh5&~ALVuwE% zjaDxZ@61Kg@`l2@-(5>-{yo(MRh4C>C{nD@m%+~(&bjm$UEv3C;`3cRlgexa(L^|s z`~XUCQHqFsDOcG&HxN*PuVAwYkETK#xHZL>1h#Y&Y!iM5Z3!qlXWR$ot>n{SY|I&} zlZ=->sI=OZvIB~@`E^J~lM&-ZbVV}VgJuy7pV?KS%xC{DP%=ldFX_SbV(#s^k`9;e zSAY~^Z`}kz#{gJ-BXiz_{sv zVSoU!4%o$sdtT0R)>(XH3blM_5y%VfV7j)aioRG<~njOP$N?PcHtUJbXw z+}{NX=KnEEvhD-CrS}I|nSHdvGYcSsNDZjO_xDyR<^(o3QMLh)W6Xn_8{e)k7|)MZ zAHWQrM^9R)o5uX?FA#mOANUKZZ{twj1Z5kG6u4bJn*Xiw7iStKa%)z4G7_G4$E}8~)30K6c-_}9vQ2SsX zQT27f)}w@@G+eQqtj;keTj&X!vuAi@4`O{S8=v77r(su?(k%9VRNsxi2sm8Uo`8 zUsB_DQewLhC^f(u&32;Ry}1CFWe!L?U0Ph%)n)QF({t!7c|!H?XE;Pqh_t-7bjhUG z<>YHtfxD8Qg{mY{#?+x5OkjoSle7K>(Ea`KfV&2+5tt|aY~z8Gd13`>J$}XupI{JG zYcuO7wLfq^lAplPZ-L}VTmV)K;as#N2Sh1C4t2}17tU#h&CL11pUon`cSKep=dFq^ z!K12QGhM8L|0y%?ARy&ZgBk{qOz5=@b!n(5KvV(3lQV#sy#sU>U43HujsJ}USZUPe zLQ;;k{`ZI`{~q$BMBZv#H6U7=J05zxxn0}~FXN_wmqq?s7Op=MaNC2E+Kh7L^Ymv< z^x1lD<(UVb^OXAJ-q4$D&pjrcyAfnU#PBbZ#iWD*r2ouUQ zOo2ZHDX^+t4Fa;8;8`MQ4FNeCCI2LvqGPL>rpf>m3GiT)TOtV113O&+h$q|lh`@6ZezCniTs!qah!;+P zm^6@EUTNngCm#C0DQIA*{d_3T?_|Amd?2!SU#!OXZqo#a`u zwv!c@M@bgR;mcgy#hfOJRkLsOL6izW&ika@1{N2 zG5?*jDqxD0mSDIKj5iL0w$UKQPqw|-7@WT>LU9WVLMYlb1)Q7YkX*w`7<}1P;F$qz z4b*dP%pS6pTDs-N`z$y~!!J9y@Dl@BG5E5c>z|)uhoC|aT{dUvkkP3HwjU&&HzpI> zBLi+lKtLz?5|ry10<#1U@EE+lw|NjI45j*AuvIYGKwt3QpgYQ32Bm<|CU)pc0ur_4 zM!3NSBn3pyx>1x4irfZafxHFIX(LlDlmtb4WAS#rZjruL*%thu3arG!~bmd5N zCRWO@Geriz$ioK~mP>s=r-OO%9=8T=LHQ)ZAx#gd7DeGQy^-5x%t=lMoaf;uNwHP` zG|{|&cl@AwQlDgOz2@vbIKj~C!W*EK;y^+*a(m+^Zf>cY8(Z!H+`x~bU_q&ZHP&#L z07aVAe!$R+(uH{?K+G%WJ=g5GPV^kc-k+vrz4`{+5dp}dPIx<-#fnR(JZ9@;BsV5dEz0Ya^e#p{*Ogvvrh}TF41=t^vHelu;02{b8a+{nO?*)(npyn443!NMm zvDfeu($0(RzJPhUpPcCI{0?p&+M=_s#$4eU zeFlEThjikDuR5--)kdzf1v3tL0LMjNMnw*3YeM?rrMn`@0wK2DYXdl^;QS%Yfap5| zgjLY;11N`Fx3c9S-V!nO$saZhVkEU%hylpaR~*nhwBRYteM|tGvipx1(}BLJCD(1XzJ1ML3IozEjsEuu3dH@;E~zhbVRI}!mT z50oiEfeu)WC0o0uL>o6}8({l-f4sgE4b{>B-GUU&Rv8XQOuaaOOWDFr9nevwi?4Ep z|H>EYc^Q!iF6q588a2MyFwIdozhakxRGXQK27e!{&IR@5K|t>Dbw|IS;?{*dh)hea zaxnl{lTaHV#g_u#9vyEj3$f-@9pmn}iTTTa(Um5Xze4zpHgZ(Hf$$bjhg`T+f1ZT0 zY>|A&&2&}v{P0S{*ddkkoY}$|ExJBGMzbDcPCve{b;fxA;Ar&@=@em{xBX1a_5w}U zRPrG)u{XMGX=h0bxW6*5>_vSnchJ}GCvPfYaH zCpmoAceCK?lEQ6#g56dT^fDG)(qkFrY$y=7ystY#edf&TM+!CXL_Mnkn_F=Gx-ezq zO{_aeNsa^U1yF=v>L9`+Yl6O|5AH#Pa> zy?q=n@cfKd6XTS2FYRcpTL|0Q1$1OXJkq~`;w306i?O;_=Gm$Mvzn@ia_(67bLXXeY4#qF18A!-L(p47#)Ez?4eiX%ksW z*P)Rh{yS>^oHCKPJGR87+C)-PEfx#m0q}3u>$OY;;k%dgw1oeLNldot&mtqdj~_oG2y~ilhHihDYDa5! z-6}F-VqzvbmXkYNltu-QJodLF4GgZr7*`>=*x1&F5ABHY5V<4~T0K2Iei1**Rwn~% z>obu#%}$c&gsU=^TBt34c5h-lLb#2Z3BNTrGjMVee>Uwng>1}Y2}qgboNw&Y-%9Da zK171PM@fy}0>IXqEc5F09HrXtK7HaIJBB3bMGA_uVlKL&n&?6>RJPv%xJNcO;Xtm-v% z$3~D-r%rt`?_=V#93U*WooI$U=QRc2481M|FEyMu{BI3tB^i$_2lDQ}cu`_gi}w9S#Gpg=DqsQ-r19(5iy4A)$_70;fNse=Fn46YD*Uu7 z@!{Y?d2w;$@1{3OW_lu*;#E^60v!^#D`au`f zxR{R6HIbn34irWI5PHVow<7unW1J5=r08F?kpEAYs4_5Q(49sfbP>z$`Ty^;|6h#I zTRVde5w2NWw1RIlfF{Y06cqd-BgwVPtOB1Vc~C%?wb$DDp0jl-Dk?>$9n^~x_4I>< z`u_R(9K$8%zQ4ZuPeJQDZ<%z~&mK>nFaVUm7ZUj}sb}CktZr<4%Th|6oSE6~o>Hb} zY`)6JN2a8tG`&SnN$Ia$`s0`kL(230#}5fBEB4>Nf3HHHdUVUPu&^NBl5Z%kUA>z8 z;P4sU2hOwccxoXHkd!WRTG9LV?b~Ew{ZS+QCk{e%<+cPgyXLX`^Jr&hCt^fVt?=gG z2Z21AMNiI%04&08`!jUUtf;J1b9I+dCT$VDeValmgsusCw1!4RyecW-`}60|m)6$v z&>^rP`Mxi=ML+Y;;o+#Ekg$R?tQSM2s-$u#Gz#^aDxOcFG86GmNT3Z03VNTEM1riY zu6_Xw#;?W2$8&Wsd2f=Fucl>Y;v$PnOQA_gA&rd>5V1nN+STc3{V2geRGhtkf8ozx zuv?)Krf+;a4H+dR?#a=5_UplC(IGbev%{}inw!r;KhyN(DL{XGDl044_!*Iw@#Mng z%YkqbsW@`Yes{ST3{yR$Q{^}diy?J)&;GQgpsQ^Z%UPSV6o)r z(acrPf4h}ZVfpg?5DPQ&1urkJ9y7k)&rcNvTsN`;0?5e8TRRi(r9%hBk3D9_Ab}&7 z@7=nk;<~lSLjCUHSrR&SIJFcPLm|i73hghiCnhGM7lMF&IC7JTNd^{8GPUPB^bVYc zww4SGVF?KwNgi7+iOXpYn(5N20I}AN4!N8l%kmaXN?NJ=lWivwD9)x#EawvR3uETS9JrA4%gMz}Y+_9P6t9|y%r)F!| zvdWoVr|gFry_#@z3;|<{0d!(Thqm~$NX<1wMm>BcB_QD3&?iIRZ%s|o>grK8`w91) zi~&{ATj$}1KGgX81r}CTUbDh)mN=wdw>A#9Cl)+472@w2V(N@qh;?^CFR)^_i%r@k zQhOflZ!IzM@bo0RPq#(Fd;YZEOzJ;GqBjO~Z0DHtA3pTEzYEfm3uaBwX_`0Rd5&8q?e#p^B~uo=KsK6+@%D9M-rY`a6U4Y8G@Sqp<98G>4IC#pla*z-j29hJ)wQf!?=KEWd z51<<&_OMk!r~D)6+Or51ukpFqJGM3$5ywT%pCcowSy|^G72eI(-rCv#y?PM@TB7@f zhlk(aZw$=X%{GG zb3cJZ!nW7nsi`TVdCj&;IT+??eiu4cMSo)27lox0_1((zrQU({F|8dPO@X905yWF} zgGXB`T{*>RWgPK_H>+2y$VPMig6(XwwKO^DU7%Y{y|lkQ;Waqsq^a$up`lS?Ggj4W zq;iR|<%=>*U{28bBz;EE%XDrBLMtn)7lm(vf;QUNrypnhq0&61LVrBrb*#I+*Pw3` z>B?d7+t&2=)Rcq%IhWsoH)ZlOIb@}!dpxppgeW;5ch?S>@l9`eK!0P_QZB8DcvvJx zNhztXU0o!g(`QF3Z}}0^28D?1ojZU2JUR87Fzm_e#gbT_U@pzv?`XOT(g#5;24Ak* z>ND{D5j4JGoR2FII9@MiyKxc(9ek3K=*Qhwgb%=O!QQ4&;ci;%YHt^R@Zgks!Q(*C z@rZYM`JI}YnvHpuP3w6egV8XeNo8EB9wUVYL zBW6se<*|=eJCPvV&Z`D;anQ48VSvNIN~W5Ed+p{P{dyZ)A(a)F zB))}(Ts5_|YmEe4R|Nzv(|aB8xO;eXc+$Es7~LhYcxY&N4cf#9R#e>WFVMXLXg!wo zaP=I|$iN2FaQ!5oubv7jXmx9=xt**2EnxQynu5rw1ni7sx@tZd1G;8#%$JLy!eyNa zdSSl>;k7tYPO?&eETZSWCP^An{KPpoB!*?zJYdW4LUROr?(9uw#)U}tyN@LI2kJO; zty{PLZnXwSg&AQIT{q_q+ag$yWzp4dk5^XmTB%gYXI_e^d`lLJ$0NxESzuecNwKv& z_C~wZ!mu@raTc4aQE8MLXdj~t$6>mtsHg!NR3oGMFPQ`d_flF+STpXDWUI2G3)YvZ z*aAQp)OK@O|N9F@cw6vxx-P+oowyjVLKpNzD_*EdGq%f=Wp~ys^k=7T`{r0Dg@!8q zC8;X&kZeiklL@{r`C{>>(zYNAOSZCg&>ph=;u_>UhMY7VzXe%89( z$;;12w*?`cP{nZb7WWJ%v$-K>y!w$CX{ndXjt? z;R0QOt6tfEe}B!StSG`hCd|m-e8e-l-f>fh={EA(C7D{-8h36vIy$1#0-1y+(GM2_ z&Ox{OQ^+hRve)}I*c@^?x5Xmf{Z5d#Yf~-nw#L$BDaWEUWh}kG02vd1$a)K8Equ%G zKds?agTwx@AL9Nywy4a_I@jqN1lpzq7Y@3PE=t90}ho@Quzs^YS62x%;WnNQFAR zSxlmBQB+u%R^MZj9Qo4JbcT+Oj+`#8w_o*t*RQ7shKfxHl$Dhc1e)OXv8gPUihW-M z>p!5rz8)-zxv}bUntP6N5)xpt84nid_Ey?IMK$>I-x9uM;E++idw3lbZ&+9uVcV@+ zx6(nYqNV_>pWWXdmoHwdbXrNY8ZMC*5*9|S6#x~!3+CYAQ4(}qWQO~i-(J2R&7}`! z4h*_2h@9=)*qAODD|yA3kz)~ zpjC8UMyeq-|7F~Zq2S{#9QF-N00ee?3yeeGvUt3VcQ`Zmu|^n8O=dVf=x|}?iY*5V zWJ2=)$G8J~`1{V<6eBCEOo4uV!AN3K5*Jtl;TNwzoZYhSocRcIRe!XX3&#?Ass;u; zu5;I-;L>A<2ch2z{g}hz;w-!CFBP6)4Yl)Rydf#0pwP@#SmOiBc&g%frr`JQCu76K zaJ^=|r*M2i!sc+kX3>M~zD!w`A);)R5QLh$nQ-w=4vtaz3(#Fdo!jY{I-!zZ2b0#(N&BO~JZ>et!W zWStJM7W@yy#n)i6G`=cv=f}Q%SzYb+x|tia&}lrpD^_6Z>7uqCo$rL_J`s2-XPzBr ze^0OP>G);45x^l>fM0+>P+`XD{C%Vk)Ww7)nUbVTIlvX$9R1cQwK6|L`i-_DK~ zjMUe+t%tu%OwhyYJ!VPGA$0M{enufrua+7*F@FKkZ20u4|JKro5%hzn;(79Fxt*_h zV`+pE*1BaLoBMoYRw*ql4Rt_ZdY#vrC_Ai5LP*@1kd$lPQe)u2nmsLbrmfB z{80yKC-yjz|!&!#7a_OOHn~Q;k8$TdU5RCBQV!@{)8)D zxN_wUI8YE3AP2(~lZ!R$`FKW1NC4!$L!!JqG^J{%Vgp?sm!{VnZXM@tOXWhI=MRhJx=Jl&ruPiRBIG7C;GlHjTK5wY{9sIBq`@TxFQk~GTl`UmTzhA4VY688L-|!U7mp%J2+VH z%Ah0m-Y?%nw*hPt?oCWi=`qiUgajf=N=gv7qZQ9_x3;#v2j9EL+sIHa0PVXqYFr_6%s6=2FW+Zt$g0(*R`iSCFnyCP2bxGfH*) z_HA@=^}G%p;L~&ar|jo?8PQ-8oRUvPMfV}H=H0up77`THD9cs*3O$75<8%<=njNdY zQ)V^va@^NQvZEb6I|Hi?dXvj?R#Mjr?2kjJ5J@Nhf zqdeVeiV)GGyUii=A%Lz<_B`C%ftn8r-GPaORxhB|W8<8dl)9!3Rj_ z=_TroefU5H?%R0?=nEq7#de5pgucO_W)wQ+kel8se<7=-1zWeBcK0_WY4CI@j!G+_c z@mific{{seKC^BySXZvr*48j^nDceYDXv_(BH%C|p*L1(KZB1bU(h@e*hO>KJK`*_S^yZWHbt>O5OwnTtFbIno=$-A~K$A1Mv!H7neZrIv@+6QLelH z`HWa&W8=nf&Gxw4DKQET?X>b*5ca3U)bq7XJ|%%SIJVH=uln51E(~Ox^n(XJdbJQ* zBS2yV9dho|OBfHqjt`Y&i-`v*b>qgj-p{=B5T)yz665!Oaokf{;x0Enax=sei2Df^ z-Ba}syLzcebE9XVA>kz95)i-}TB_09a7_51^PX>>w>#)+_{relA|jK@katZsC@Cto zh{cC3EiDg@-`ZhkW7Er<1=^VYu(HcvaDr&Fn-lOKB!KKGI^jophZ|tq#>U5YtbLF@ z?XPlh6rI}X6+6bdQS6$dO4vq>B!=fLovHAy@bNl!tmruFAW7+tiIJbo!f4?NqE4D#8vgJNnrh1enL19lzwbk zmmnq@1#ie;7@V!Gd$vSRg5tWv64F2(4>6gPYiVg0B*3$ZcfF6!Po1hJ9W?@(P*wlZ z%w3`4L-y(u96(U-BQYM!uwk#;*L^K5e{^QBH%>M`zrWHi>(RJiL2P<);)idl1AnHN zov0>!e3s{qJRf?qIC9qU`t|E8(-n6k##;Uecr7R`bvf?SH$R1KDHffF0=<0YO5pPB z;KL}1YE*QzOw5&*fS%Od`*N$@5cC;Auvo)Utp!|nH#c>d9UqAo7Zx&a+_;7+*n6(G zdSIQ?W=W3ESeKtus4tDyAsEc>hXc?L59ViPlA;%_#e23y_9|dJ9VPnur-}UJv@|tv zD1rdqwARNho7jgN8yhEw^%V(%YvLz5^@&CxqWJ9`fR^Ar%4k6EP%eO&wa2qXWbflx z+o9m#9qX&Z8)La=@=5U%i5v*whwE2s>)6^coM1b^XL3hoX4GKxz{OA?93k7iGCV>f zcfWxj360Ez4-I!P6);x_CkO_r2tL)luzoB4YT4xc3!3nnSyMT;XT%JY6yjbWhQ~eV(x0_>3zpoUr~Y=%ba1X7@GMGiTE}$TJpA zIk5`7>S_(OEoO;$Zb$O%%a+qpI3xe^aQsUx8=PhI9yuRUQ&ZvODv*XyeGP{Fx&HrD zHYaT5C-}EOcehtoa65AMoaurIW+Khum?<9zD~MIW*%9(7IIh0kW9Bc=flG7oHP`xZ zC41#vU~<^;sxS6?d1*q@vhEVGYaE}XG^U1;HC^`M)(e->9?sHktH7p*X zVR0)MUkX|;5Xu4>fe3p(IyuQft}{Jdbo(}a`*tPpAqqRp=92tjlhlUl8t2-9;#C)y zZ~s$YfBMqfS4YDK#iFYm6*5UV777S@jNVVg9q6Bas)8E3A`~*L!Us68qF#jLp)E(= zPd%;MNK+Y#nb3#dJoO@d7Z+v?F@g*(c3Fnv3W8|xW;++_pkw`h4EYvAL~q~uHl6_N z_iyQX-4%1=RJ66Vt&`#!2LGkfHC;Z}`N^_60hwX`wY1M$vR+?bKPr`SQLuqH(?^jQZD_u` z%U)AMsa#wh{D#c0JgwoTFFO!)y7|zw^TACcNTHa*#&T_4T~$!7n+!J1(9jS^9&Lfc z#ilIq$i4?(Wq`zega;Y&ygbW44tx=zM!@^Y?vQ7tn^8k47(*n*l(YlQW3*V)I@=Js? zgxuMkXB#p{zBwMdkbY`dUW6aSMG_Q{3Cz z+ot7VZ-|D?MDg%t?S7rnARNWC6yVghe;XMaySlh=?B`pw$U9-!FF-$u!30hZHzZJG z{KCQ_7}w-A?l$XenA>8c3N0NSm0s;J+0TS*w!$a)70mX<#YG7}!?A~Z4-pvo?N7vF z%Q{w2Ye`X0_M&~vLJ_={!|*X%y1PHewwi*g{MAo*C&LrtZ1_&_GOU`__ +====================================================================================== -Hierarchical Bayesian Regression +Hierarchical Bayesian Regression Normative Modelling and Transfer onto unseen site. =================================================================================== This notebook will go through basic data preparation (training and -testing set, `see Saige's +testing set, `see Saige’s tutorial `__ on Normative Modelling for more detail), the actual training of the models, and will finally describe how to transfer the trained models onto unseen sites. Created by `Saige Rutherford `__ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Adapted/edited by Andre Marquand and Pierre Berthet. - -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/HBR_FCON/HBR_NormativeModel_FCONdata_Tutorial.ipynb - +adapted/edited by Andre Marquand and Pierre Berthet +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +.. container:: Step 0: Install necessary libraries & grab data files ----------------------------------------------------- .. code:: ipython3 - ! pip install pcntoolkit==0.26 + !pip install pcntoolkit + !pip install nutpie + + +.. parsed-literal:: + + Collecting https://github.com/amarquand/PCNtoolkit/archive/dev.zip + Downloading https://github.com/amarquand/PCNtoolkit/archive/dev.zip +  \ 64.9 MB 15.9 MB/s 0:00:05 + [?25h Installing build dependencies ... [?25l[?25hdone + Getting requirements to build wheel ... [?25l[?25hdone + Preparing metadata (pyproject.toml) ... [?25l[?25hdone + Collecting bspline<0.2.0,>=0.1.1 (from pcntoolkit==0.31.0) + Downloading bspline-0.1.1.tar.gz (84 kB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.2/84.2 kB 2.3 MB/s eta 0:00:00 + [?25h Preparing metadata (setup.py) ... [?25l[?25hdone + Collecting matplotlib<4.0.0,>=3.9.2 (from pcntoolkit==0.31.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) + Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2) + Requirement already satisfied: numpy<2.0,>=1.26 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.26.4) + Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0) + Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2) + Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1) + Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2) + Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.4.7) + Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (24.2) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (3.2.0) + Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (2.8.2) + Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5) + Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2) + Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0) + Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0) + Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0) + Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2) + Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5) + Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4) + Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0) + Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0) + Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.1) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1) + Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9) + Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3) + Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0) + Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1) + Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2) + Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.3/8.3 MB 55.1 MB/s eta 0:00:00 + [?25hBuilding wheels for collected packages: pcntoolkit, bspline + Building wheel for pcntoolkit (pyproject.toml) ... [?25l[?25hdone + Created wheel for pcntoolkit: filename=pcntoolkit-0.31.0-py3-none-any.whl size=114835 sha256=40635c10c24ccf2c319ee965aaf1038272cd5578f14d9cb3dd14598ddab31d00 + Stored in directory: /tmp/pip-ephem-wheel-cache-f502unec/wheels/9e/c4/29/3bca3a5facf8ef69b8622461d8520d24a19d3745aefa093d1e + Building wheel for bspline (setup.py) ... [?25l[?25hdone + Created wheel for bspline: filename=bspline-0.1.1-py3-none-any.whl size=84482 sha256=150d24f295ccda92c9789d421e52c3858d43c66874deec4a463a87b4e5533448 + Stored in directory: /root/.cache/pip/wheels/3c/ab/0a/70927853a6d9166bc777922736063a6f99c43a327c802f9326 + Successfully built pcntoolkit bspline + Installing collected packages: bspline, matplotlib, pcntoolkit + Attempting uninstall: matplotlib + Found existing installation: matplotlib 3.8.0 + Uninstalling matplotlib-3.8.0: + Successfully uninstalled matplotlib-3.8.0 + Successfully installed bspline-0.1.1 matplotlib-3.9.2 pcntoolkit-0.31.0 + Collecting nutpie + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (5.4 kB) + Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (17.0.0) + Requirement already satisfied: pandas>=2.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2.2.2) + Requirement already satisfied: xarray>=2023.6.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2024.10.0) + Requirement already satisfied: arviz>=0.15.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (0.20.0) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (75.1.0) + Requirement already satisfied: matplotlib>=3.5 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (3.9.2) + Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.26.4) + Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.13.1) + Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (24.2) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.4.1) + Requirement already satisfied: typing-extensions>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (4.12.2) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (0.8.0) + Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2.8.2) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.15.0->nutpie) (3.12.1) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.4.7) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (3.2.0) + Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=2.0->nutpie) (1.16.0) + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 16.5 MB/s eta 0:00:00 + [?25hInstalling collected packages: nutpie + Successfully installed nutpie-0.13.2 For this tutorial we will use data from the `Functional Connectom @@ -47,7 +151,7 @@ First we import the required package, and create a working directory. .. code:: ipython3 - processing_dir = "HBR_demo/" # replace with a path to your working directory + processing_dir = "HBR_demo" # replace with desired working directory if not os.path.isdir(processing_dir): os.makedirs(processing_dir) os.chdir(processing_dir) @@ -65,9 +169,13 @@ color coded by the various sites: fcon = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000.csv') + # extract the ICBM site for transfer icbm = fcon.loc[fcon['site'] == 'ICBM'] icbm['sitenum'] = 0 + + # remove from the training set (also Pittsburgh because it only has 3 samples) fcon = fcon.loc[fcon['site'] != 'ICBM'] + fcon = fcon.loc[fcon['site'] != 'Pittsburgh'] sites = fcon['site'].unique() fcon['sitenum'] = 0 @@ -86,6 +194,390 @@ color coded by the various sites: ax.set_xlabel('age') + +.. parsed-literal:: + + :5: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame. + Try using .loc[row_indexer,col_indexer] = value instead + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + icbm['sitenum'] = 0 + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + + +.. parsed-literal:: + + site AnnArbor_a 24 + site AnnArbor_b 32 + site Atlanta 28 + site Baltimore 23 + site Bangor 20 + site Beijing_Zang 198 + site Berlin_Margulies 26 + site Cambridge_Buckner 198 + site Cleveland 31 + site Leiden_2180 12 + site Leiden_2200 19 + site Milwaukee_b 46 + site Munchen 15 + site NewYork_a 83 + site NewYork_a_ADHD 25 + site Newark 19 + site Oulu 102 + site Oxford 22 + site PaloAlto 17 + site Queensland 19 + site SaintLouis 31 + + + + +.. parsed-literal:: + + Text(0.5, 0, 'age') + + + + +.. image:: HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_10_3.png + + Step 1: Prepare training and testing sets ----------------------------------------- @@ -122,15 +614,42 @@ then displayed. icbm_tr.to_csv(processing_dir + '/fcon1000_icbm_tr.csv') icbm_te.to_csv(processing_dir + '/fcon1000_icbm_te.csv') + +.. parsed-literal:: + + sample size check + 0 AnnArbor_a 10 14 + 1 AnnArbor_b 19 13 + 2 Atlanta 12 16 + 3 Baltimore 12 11 + 4 Bangor 10 10 + 5 Beijing_Zang 91 107 + 6 Berlin_Margulies 9 17 + 7 Cambridge_Buckner 96 102 + 8 Cleveland 13 18 + 9 Leiden_2180 5 7 + 10 Leiden_2200 11 8 + 11 Milwaukee_b 18 28 + 12 Munchen 9 6 + 13 NewYork_a 38 45 + 14 NewYork_a_ADHD 15 10 + 15 Newark 9 10 + 16 Oulu 50 52 + 17 Oxford 9 13 + 18 PaloAlto 8 9 + 19 Queensland 10 9 + 20 SaintLouis 18 13 + + Otherwise you can just load these pre defined subsets: .. code:: ipython3 # Optional - # fcon_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_tr.csv') - # fcon_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_te.csv') - # icbm_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_tr.csv') - # icbm_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_te.csv') + #fcon_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_tr.csv') + #fcon_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_te.csv') + #icbm_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_tr.csv') + #icbm_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_te.csv') Step 2: Configure HBR inputs: covariates, measures and batch effects -------------------------------------------------------------------- @@ -160,7 +679,12 @@ testing set (``_test``). X_train = (fcon_tr['age']/100).to_numpy(dtype=float) Y_train = fcon_tr[idps].to_numpy(dtype=float) - batch_effects_train = fcon_tr[['sitenum','sex']].to_numpy(dtype=int) + + # configure batch effects for site and sex + #batch_effects_train = fcon_tr[['sitenum','sex']].to_numpy(dtype=int) + + # or only site + batch_effects_train = fcon_tr[['sitenum']].to_numpy(dtype=int) with open('X_train.pkl', 'wb') as file: pickle.dump(pd.DataFrame(X_train), file) @@ -172,7 +696,8 @@ testing set (``_test``). X_test = (fcon_te['age']/100).to_numpy(dtype=float) Y_test = fcon_te[idps].to_numpy(dtype=float) - batch_effects_test = fcon_te[['sitenum','sex']].to_numpy(dtype=int) + #batch_effects_test = fcon_te[['sitenum','sex']].to_numpy(dtype=int) + batch_effects_test = fcon_te[['sitenum']].to_numpy(dtype=int) with open('X_test.pkl', 'wb') as file: pickle.dump(pd.DataFrame(X_test), file) @@ -186,6 +711,536 @@ testing set (``_test``). with open(filename, 'rb') as f: return pickle.load(f) +.. code:: ipython3 + + batch_effects_test + + + + +.. parsed-literal:: + + array([[ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [10], + [10], + [10], + [10], + [10], + [10], + [10], + [10], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [12], + [12], + [12], + [12], + [12], + [12], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20]]) + + + Step 3: Files and Folders grooming ---------------------------------- @@ -226,12 +1281,399 @@ and output files will be written and how they will be named. respfile=respfile, tsbefile=tsbefile, trbefile=trbefile, + inscaler='standardize', + outscaler='standardize', + linear_mu='True', + random_intercept_mu='True', + centered_intercept_mu='True', alg='hbr', log_path=log_dir, binary=True, - output_path=output_path, testcov= testcovfile_path, + output_path=output_path, + testcov= testcovfile_path, testresp = testrespfile_path, - outputsuffix=outputsuffix, savemodel=True) + outputsuffix=outputsuffix, + savemodel=True, + nuts_sampler='nutpie') + + +.. parsed-literal:: + + inscaler: standardize + outscaler: standardize + Processing data in /content/HBR_demo/Y_train.pkl + Estimating model 1 of 2 + + + +.. raw:: html + + + + + + + +.. raw:: html + + +

+

Sampler Progress

+

Total Chains: 1

+

Active Chains: 0

+

+ Finished Chains: + 1 +

+

Sampling for now

+

+ Estimated Time to Completion: + now +

+ + + + + + + + + + + + + + + + + + + + + + + + + +
ProgressDrawsDivergencesStep SizeGradients/Draw
+ + + 150000.3415
+
+ + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +

+
+
+
+
+.. parsed-literal::
+
+    Output()
+
+
+.. parsed-literal::
+
+    Normal
+
+
+
+.. raw:: html
+
+    

+
+
+
+.. parsed-literal::
+
+    Estimating model  2 of 2
+
+
+
+.. raw:: html
+
+    
+    
+
+
+
+
+.. raw:: html
+
+    
+    
+

Sampler Progress

+

Total Chains: 1

+

Active Chains: 0

+

+ Finished Chains: + 1 +

+

Sampling for now

+

+ Estimated Time to Completion: + now +

+ + + + + + + + + + + + + + + + + + + + + + + + + +
ProgressDrawsDivergencesStep SizeGradients/Draw
+ + + 150000.3315
+
+ + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +

+
+
+
+.. parsed-literal::
+
+    Normal
+
+
+
+.. parsed-literal::
+
+    Output()
+
+
+
+.. raw:: html
+
+    

+
+
+
+.. parsed-literal::
+
+    Saving model meta-data...
+    Evaluating the model ...
+    Writing outputs ...
+
 
 Here some analyses can be done, there are also some error metrics that
 could be of interest. This is covered in step 6 and in `Saige’s
@@ -249,7 +1691,8 @@ training and testing set of covariates, measures and batch effects:
 
     X_adapt = (icbm_tr['age']/100).to_numpy(dtype=float)
     Y_adapt = icbm_tr[idps].to_numpy(dtype=float)
-    batch_effects_adapt = icbm_tr[['sitenum','sex']].to_numpy(dtype=int)
+    #batch_effects_adapt = icbm_tr[['sitenum','sex']].to_numpy(dtype=int)
+    batch_effects_adapt = icbm_tr[['sitenum']].to_numpy(dtype=int)
     
     with open('X_adaptation.pkl', 'wb') as file:
         pickle.dump(pd.DataFrame(X_adapt), file)
@@ -261,7 +1704,8 @@ training and testing set of covariates, measures and batch effects:
     # Test data (new dataset)
     X_test_txfr = (icbm_te['age']/100).to_numpy(dtype=float)
     Y_test_txfr = icbm_te[idps].to_numpy(dtype=float)
-    batch_effects_test_txfr = icbm_te[['sitenum','sex']].to_numpy(dtype=int)
+    #batch_effects_test_txfr = icbm_te[['sitenum','sex']].to_numpy(dtype=int)
+    batch_effects_test_txfr = icbm_te[['sitenum']].to_numpy(dtype=int)
     
     with open('X_test_txfr.pkl', 'wb') as file:
         pickle.dump(pd.DataFrame(X_test_txfr), file)
@@ -270,6 +1714,7 @@ training and testing set of covariates, measures and batch effects:
     with open('txbefile.pkl', 'wb') as file:
         pickle.dump(pd.DataFrame(batch_effects_test_txfr), file)
 
+
 .. code:: ipython3
 
     respfile = os.path.join(processing_dir, 'Y_adaptation.pkl')
@@ -294,6 +1739,11 @@ and testing). That is basically the only difference.
                                                 respfile=respfile,
                                                 tsbefile=tsbefile,
                                                 trbefile=trbefile,
+                                                inscaler='standardize',
+                                                outscaler='standardize',
+                                                linear_mu='True',
+                                                random_intercept_mu='True',
+                                                centered_intercept_mu='True',
                                                 model_path = model_path,
                                                 alg='hbr',
                                                 log_path=log_dir,
@@ -302,7 +1752,375 @@ and testing). That is basically the only difference.
                                                 testcov= testcovfile_path,
                                                 testresp = testrespfile_path,
                                                 outputsuffix=outputsuffix,
-                                                savemodel=True)
+                                                savemodel=True,
+                                                nuts_sampler='nutpie')
+
+
+.. parsed-literal::
+
+    Loading data ...
+    Using HBR transform...
+    Transferring model  1 of 2
+
+
+
+.. raw:: html
+
+    
+    
+
+
+
+
+.. raw:: html
+
+    
+    
+

Sampler Progress

+

Total Chains: 1

+

Active Chains: 0

+

+ Finished Chains: + 1 +

+

Sampling for now

+

+ Estimated Time to Completion: + now +

+ + + + + + + + + + + + + + + + + + + + + + + + + +
ProgressDrawsDivergencesStep SizeGradients/Draw
+ + + 150020.477
+
+ + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +

+
+
+
+.. parsed-literal::
+
+    Using HBR transform...
+    Transferring model  2 of 2
+
+
+
+.. raw:: html
+
+    
+    
+
+
+
+
+.. raw:: html
+
+    
+    
+

Sampler Progress

+

Total Chains: 1

+

Active Chains: 0

+

+ Finished Chains: + 1 +

+

Sampling for now

+

+ Estimated Time to Completion: + now +

+ + + + + + + + + + + + + + + + + + + + + + + + + +
ProgressDrawsDivergencesStep SizeGradients/Draw
+ + + 150010.4015
+
+ + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +

+
+
+
+.. parsed-literal::
+
+    Evaluating the model ...
+    Writing outputs ...
+
+
+.. code:: ipython3
+
+    output_path
+
+
+
+
+.. parsed-literal::
+
+    '/content/HBR_demo/Transfer/'
+
+
+
+.. code:: ipython3
+
+    EV = pd.read_pickle('EXPV_estimate.pkl')
+    print(EV)
+
+
+.. parsed-literal::
+
+              0
+    0  0.438215
+    1  0.439181
 
 
 And that is it, you now have models that benefited from prior knowledge
@@ -311,19 +2129,12 @@ about different scanner sites to learn on unseen sites.
 Step 6: Interpreting model performance
 --------------------------------------
 
-Output evaluation metrics definitions
-
-=============  ==============================================================
-Abbreviation    Full name
-=============  ==============================================================
-NM             Normative Model
-EV / EXPV      Explained Variance
-MSLL           Mean Standardized Log Loss
-SMSE           Standardized Mean Squared Error
-RMSE           Root Mean Squared Error between true/predicted responses
-Rho            Pearson orrelation between true/predicted responses
-pRho           Parametric p-value for this correlation
-Z              Z-score or deviation score
-yhat           predictive mean
-ys2            predictive variance
-=============  ==============================================================
+Output evaluation metrics definitions: \* yhat - predictive mean \* ys2
+- predictive variance \* nm - normative model \* Z - deviance scores \*
+Rho - Pearson correlation between true and predicted responses \* pRho -
+parametric p-value for this correlation \* RMSE - root mean squared
+error between true/predicted responses \* SMSE - standardised mean
+squared error \* EV - explained variance \* MSLL - mean standardized log
+loss \* See page 23 in
+http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
+
diff --git a/doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_10_3.png b/doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_10_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..1d5d934276f56f6ddd3c4cc588e5e3febf2f4a1a
GIT binary patch
literal 143042
zcma&O2{@K*+b(=7GGwkqnL-hwG#Nr9B9*bokTG+}kPMM|2niLDOl8Ozl2SyJic*LW
z8cZ1~B1Qjxs^|H?cdhSRYuUDUd+^@f?(4eF^EmeDI3u(UsxdLFVW3bbOzQhobSRXi
z!}#A@x@Gtce{54H{v+eQ*T7xZ`MCQj^OM$;1Lp27j?V6mb{71e)+gQUoKI|(ke1ji
z&Ts4P?&2mZDe3g@3nZLR+DL9MDbL57(7Wt2bfZvM%*p?#aujdaQK%>sbrmH&uawU{
zrw#P1f6`7)Bq@bCaayS-yb6vXfz*}*D`wPj2C#){+KU#P#`})QG8zYT!
z6MwAX&=HlW>|+E!c}_u+rO7^&mk7yr0`z|vZw)IYy`y!-WCnLn4A#dq=!_xkng
z%XyZ?nQpUvL9r;A%^fxWd$~t1rKQFC|DIp1kzHD`XI<-ZCDzGqx0c%O?q9hh|GsGb
zrKeve9{hgz`t{0+ii)Cf&42%RSzcBawMI5OUb%V8
zmfSIy@TrIG?Hor6jg{2ZpXjb1HkOWA{FLs2@7N>MUEI~T??M}uFo@||n)>fU=M>;w>8Mms`w`#UVkdO4ZPeu6p`;d^Io4uZI(dTq*|mN6-xI8iu~tejqxBI8D$gpxp9O=BbN%asXR~%k>WYb6wZSb^-eBioy0;YQk-$VXAD-+y=#zgbG^VK|%M
z>%tpZS!RRHso{~4%6fV$nYpC{XqI!>b~95nQ)O2z=Mdkmqr=`+X1A15>H9;f!uegy
zG5`5h_}H_fMGq!xY58)-4J#bEI3!Ka?TzB-|J-?tj*+qcspNxmA3l6w@Hmtr&8Dud
zj^Ew<>a$T?Jh-Sx(sQCWy1riJ9IyPEx=^M)zP`WWALzBx{ax--oF_xrZ~0dTG%c&R
zly+r)lqQwQFE%{9=0*A*DvFYl(&OjPADvxF`?~2_nj&9Ml}FHx8^YHQrbY^?#at_%
ze6X5uMeXn?}wY$g_=+FR?;B&)w6s`pr%a=r6Sw`dbs1HCN5&ZBhgfu%
z>}%Pi;ydD0aNF<8z~1`CM$5^*S_(x_Q1IT5Pgk&7wZx9}W-{$g>^^R7o!fi|D@`;p
zFY)xOx5ry5ilX8JhQZ`*c1whXh1*>5;L^23T<|_0K7Q;+-5TmD&+n2qx$C)CN2hhg
z=o#)i#xZx?1|PnCyY}$m!<%>RY`iM(bN=GR!(*~J-skM)D1YkPNyAfoY1cZkQa0dc
zt)oXH@mBfG8xuA539T$tH8?ahqq5S#=1bd=&+5X9e=Epbcze73oe|MZ
zn;zk>lz4ry5E2r~QLt%FQF`AHU0$&-c}JJ}{{6Z}Obc&HELkH|Tuz+|3kjiFv-8Bc
z%1Y^SpMimazTsiR_m%Gl1~!}3P#Ae+S313|*n8{vbC==P>@^)~v5i;%)J`c*9+QGT
zk*%t#C(N_IwbD?Sr7Ydu%UkX5YHMp(x(za`#&GAh$1_ois=u$n$D90k>DWki>K4le
zJ;Sh)k}aVud@)$o>m(&vR&3C$xuz6^x(`YBAhOnX1vnR!`WijvrUhA2^g~dFW49;$ke>S2H;OlwGku&f#NY
z+RRL_!PHRO4K%W|rq$m1`%=!9e)xesD(&ZYSbNj>
zj*f@l!(jT$+w9mC=7t2le0&6DW!K#G91Fa1#VGpy)h(9Gx^6qi*3|5t{rR)5ww7us
zE%QxRzbUW4(o&Cw(c*jec0IO|`ta$~!-o$u{eRYw~Ax!TJ-MXQxm4MKYrArmzY$!*P@2&TQ`MeI(L=POGrqZe`4h|
zT5#KCX1vG#_BR)!2fr8OeEs~^#qD#MoiuNoc78C=(cIj;dHeQ9Si$G7T*ZpQ_k>xXglmZ=+FL8kPw9%A-s2QLbTv3G
zj!pF(XS%2S`t>w&r^Z##nKCjmT>5IL#0`pfzxSk=jl9k^C^nk5R{saPcN1D
z{q+2WDjpsa(|{%w!lE#{+oPq_`e`w0jQG(qI-8cOd(F)FP0#$W77`XdlH)T_AF)qE
zL)px%Z^eTvfq_d%M_Ie`go?2-_sNqdC)+n6P&W{A{2fR5xP5f?nt}z1sqNK@og~E
z==O=psj2$cxw@_&9<#0F;8>WUW1tZb6zu=_F=X{IUpBPEI$)0NCuk|3o+Sn0TT)?)
zOG}qf@M;T`M^bI}OI8OLJy=+Sx7*tg^sZy||7){)kE^_JVX>eOb>G>FB~oHuw~Sln
zB=wgsUk=^7lozWmtFONClHgWx?wk(=ra$gHD|TV_Tddn-mEKtvELCgPpFdT7Gv%Vm
zJuf!=BLYt-HIE^zhDx
z1IaZ{o~V0t-*K}MS;=6G_W>xbbbY_9%5yBw^H4{jNnAq0RDD&xg_Tt>GmmUej8VBg
z&HnvQ8KzrbZ2?4oT)Zk}mwq~}Ni@LTImVSKyJ&75JKt~7BgQ~tdj1^LRJ#o)PFr_8eY(qcUVRLeuGI~YkrkjHuAGaU}-Z0*^~d*)z#I0rvA~R+E=f>Ra)L=FGKochUoUOB?j9hjD!kXPY)}1PG2`E>vF{UAMd^s6ep;bH*K}F
z#-XS>6j$i`hx9GQmD{;Fp$`rce|XW-Wae
zehk|7-jnh5^({U#?~RVD=R-5oX!qh86{%s^J#~1BSYUPES`=ercw{mTUs?QM)89hk
zf|gF2aUP-xqzKZ|UY`3gvU4-}qY1c%HeZ4T5ge;9N7vii
zOEzwy$=$wBpT6srTuDy0XiC^P`{4IaMfb6;Rp=E!$ZvJq)K}3rHMRdJs{8u&D}VeG
zlr!Aws4nKgB(3{Za+GPB54=L-2cKSiD8Rq__gS(i;*>MU72NaG#8CX-Iq)
zHTpQ;zxRW9N)x+#%cb%aB5@r0({4rTyiNV%Qz{%(R5hj9j~SOAF;Z!M+{^p@)r~Dm
zfA+yQUoP8K#ubr1XO4GrPvPnG1|77ry_}_6Za_`FyX%%sr~O1{=jPJ#klZv$>Mg%7
z2$7q`!xll+vD!f{(mVZ7nu0Vyd3MM3LuoO?uWpRWWXwfj<6YtBaJ#adyf{PFcC4$s
z(*O6F?2el^Z%%O^m~Z$?!g8*Zpw-pPii@TEEQS
z-ybk>Bzu#TxMr(*k>6gJaMUSo%XU-^)ZaDMKpRcyIHvHTS!u
zoziZf7^#&4`04T-Vw0t;8ID#s(t{`x3b56tSw&qvV#ND&?62zwuJjEIEJ@M~z1{1*
z{M1A*4J9}@xUc5yQiBS|q`U&`gWVFBEI&MsBZML%f*zc$#IaK<^$cH@f46X|X!cXT
zXPcHR39#NT*6!@w;BxtUw-8pMpXNDR%22v_qbK{tSxKd$>(%b9-@lK&eVL~(
zR(bcX<@ysUJ!Op!aqJaPZ0
z1b(CNtHrw+D@3XWjV!bN;Q1}#kBL49GSec8P+B7mG#yW2~
zmd|{4@%=+yB?~H9}CdS5_Pk*&??5Wbp7yf_qCJ$B{?4aE$tZ09>)vfd_VW{N!J-&Q!)ef{_}?!tvYU_NvzfMDfa+~?cZNF|8qv$*!bq{N1yj8N(-mHcHwhd+~5Z~Y1-aK-mdz%
z4R3xHEs8W9RaI5O@ALHYCsED?ckaA>)Pq~zd*z-`Mx}T6{n%Em3VE6#-(pJ5h`ro6tDYm$UyVQ<2XUvuCk2;-?iPz
zKT>4ReaPDB(W6J{`!7k%_64!%4MMKjR(OSRZM?fqo!_%Xe7vLlwgZcgu8-9!D}7l>
zlK=|7FT3qf)aLngwaZ$WlU5-#{iZ%++wlR1#>b!TU1UsP5^6O{$xauPk<-1Zzj
zx~AepPb6T38NhK~|F>ipSJ&Dv?;Bk|HmxFyrm2YmD%YDzS3zv)r64|zfYibVQv&ky
zM|I`pxHyV)^SAj
z4-eBD85w0|XZKgn^w#AU-H#*-CRNtsVS&-@*WPWpCs-4jnhw+D-~G4k8JT}sCYpJ)
zhezw!?s27o@vM-xp2d4N{-5nGQ+DCroG?edq!yZ4?Q1Gs*@G`TzdNWL%FIjiIq+4B
z`P2=D%2*k!AGWp%(*r)~cim2rb^JNd@lA49Mzx7gs^eW%t9|Hk+5fz5N6EgM(@yQ-
zj649x;(ynKO4hM|G{8TNVX+7O2QgDA*f8AR-;c7i6ouyV=g*t5S^xsSM9ge5saiQc
zJ`Qd1?5$f{6@E?b0p=Z9XYuDv1bTAYgyvB;IpsXXV|e63QEHY#{-mR$tEu*x;q_@j
zjgHOLy)l3luLjKu|Ew6Qo@SbYNo?Go9?52Rte|k5mxrgolbef+UQSLfMb?8svU*A<
zdxoH3$R>||&%gUkMKMP8@R~H^Ry<=o_=TO^88)`z3rf$`Tb@6sp+G#6uh6_CVd66K
zdLsm!r4*nmzF*(pI)kG-XMc=}j68qo(v9zb#N*Zw!&}E|8yjylN&OM}_U+sEV!!5;
zGJ9xNG2fd9k-{
z-74e-zQxy7^L6Xiu~I8dmsC`!LURJx`l;uElBhM7f?L@7>Q(+TpPU7$%R+vi-<0gr
z)U1c1m@mG1?b@i~;>{2d*l!$4YrxGc_L({HELHAy>(^J;59}dIrQ2B7c9Y;kq{gWn
zy`J#Yb;4`c$xP4py
zl-y5)T)m94GQA?F3!fMT)cJOv;0A>&2B;yVQ~zSBjN67#rnRBknX0u=r;6@h4#QPxhsry_7RBqXFOZ1F-FjZ8HeC1yT{l=auST7I?4V&aP-tW$D>>WwiCA$Gvr
z8fY9~^p|BlL;)c~KYw@6D>s1LL&R;-vBdbt!VW_Et&9d11pFy=4va2OaE^rly@T4fIP
zrTEsZAc#b!Ui~yF(yq!L)%SYe`Typ*fB!x>wY2Z-=9LUI59{jsM@AU%hGkA~ITYuo
z;>YjnweBmB;J%?Jy5-C-uU}uEN`~W)qu{KV*eD_rurF)jgpxQ%{)ix1`589k+6xac
z((wM6zrStktZgwuR=`WH}@1UGJ^2h%cma7I3$bo%y*?n-StA4p~oQD>F{xG=8SMhA8j2>F`q
zB($Y_Uz@~;D!RqGX(gowZxop3zreM2hvROnk}r=|ALHM=ne~$7vBO4#4up=E*|H^X
zcL-IDUbAl3F77Kkof}5l^82BOK_Rigjz=-vd;3IB+5Gkkq4wL=`LL1i|6cI=}!AKb>oH8ec0OCRchX}T#OyZ7M
zLY=w{%m+s(Oh5ndI*3Sqb5m55n})ZR`TzPti|01^rI9axBz3C|v-iw6)3uv3^5Wu*
z{tG{ZWlxPWQf%9AaxwEMoP#oRQN4;Pr%lMOEl;09piKF<(T*auef#Jr{F^o%C>Zo@
zILF0GO||v-vzqDA4s!>GC~`jl!{!)>SR5Yip4InZV}ioaz5Im#N{GvQ&!FY$pKeN(
zJ5_x0qsA2UHZXS5i3y?w;}e9qf;A+vX;WKQLe~zbuABu&XXm0dI=?6Hd^IUVQ`Ulw
zqA@}R(P-Jwn-W2YEw4wWzkSo4{{iqKA|j%-e(WOv#LGexxq@A^@~KDp#utQ2N=ob-
zfk0+|eQO~i>8OY(S;zu;o3dFxopH!dx&G|gvlkFG+rD6{0fZGFf4+vAme%s|`E{4&
zeReEax|IA9Qasck12Lza04LKnO02JAp0?;$Fn7dXPD;vMNJ&d$p}eW~*$H>#b(6Xf
zd-UjrvHZ5bG-=3OwW8warkOGz^nF4P0iFmX-R9J_5|}4!{dhbE@1d@b-C_aClmRkdN)`?A`!a$+`~(z%Y7$>DZav
zQiav4SHm!&g|QS|UcTK*D(UdRwyj(1eoj1yja6LWgko>onnizqc3}C+l`GA_5n`(k
zi6&Zn{qSTK01L|hwtO!qm2J!jEp;u1<
zTaxoe22JC4CH&Qktz5*HEaCr8CUL|DR3h{r7nn;(Nxc2Z4hNM`&8ZIpi!Dt>C5z?%
zRW1Gx{PJH-S-;j%k!<6b!1xb&i%F{C@}E+)vGb+%b$Dh
zuErJ|>L^NUe(QG>PBB9WWPbilW*1Du(7;h3mo{lEeD!vbfYzsR$G9bK5#!ix_*f+F
zm~w_%?!nx0e--1J=Awm%4Z~{ZzaF`G@NMEgAr}{y05o{WNSi%I^oZfz+1W`6fLC_S
z`sqa|%*2J+?Dk1BAt51WJZ-xJ2T`2ECen-gjTJlV}{`iJJ@DUM!s%-_jIH3)a?k_L$9BH92~R+xUzkj
zK?A}{MbXJ!3DdCBrGLrAO-7;H9oqYV!F6I4|2zHJ!>=_<9o3=^NMo{*&%Y1Wq_p2$
z*-;+gF=?n?o?~4h#6$oBa(;K;UXmK9q1dHg`KHNTj=`3+u+-F4<_Aozt0lOPge53=
z-Mvw8a&cMCL6H9DDS&Fp+A)WOIoTqUsmZER#@;GH`%ls@ReF7EC`3|Gl0U3kv5
z^>|KGRb{0a>H(=OpzZNtSC!5_e!OpAwhpDH*u0MT21L|`?(hg;YZ7246Dl|*0IejG
zh@(H_4Sa_NZ`yuTwn!t2-9
zg584*>7?GOs0f84i&msJxMqiAINFx&%<^kT8-=QwxBL++`FDMa&fu?kTuXKR%>6m0
zbEHY;B#(d8Prc@F^q}tXGI{>UfmN5Q_n20o9HaIpfdTmOg{F%$r3YmPsq&k%NVzZINh-9}$|
zT9BT*N8F?JjJ7tLl$6x@xVW=fSwbWSAkD
z+9h!EQ?!tm`T4cUxATpRqS5SF4jw#61P}PfhHv||nEq=GGc6lqNQ?nl5K6$FPI}5e4O>efjv_pxTFw)CkQi0~1}f;T
z{iCB%d%~D&8yc=x)CnxD5lUrD){z+O_9hQIPZuaEO!vmYHcw8gYY?nzo1!9=jvGj$
z5b6z{18PZFavY-S|1+Ozt*u@tU)SOb$I`n
zML;dB)!DF=rP&&AdgG;0nZ?B=AkYJ+blHu*54ngl*e7Tt9JjjGCp7qF@eXSDJjA~~
zXy;jR_$j%gY;5vk
zt-^P&#u%QV5;o!CXPH_TuU+b>kEsCG}}`1rE4UQ25(rq*)vABIChCoY83k97xp>Sl^l=6um
z^#yAuJPwXFOv8r(R7+i;bG6MUGoL!;>Z)X5zzJ8CDpxNOrb{2TuWr;Z#5s71XF+38
zl8WK;(gg-UpcYn$O-xK2Io+fPF8S#Bm7QN8VAa6?rLgkwL=$y_{0+zsp#A4BT*$~9
zM3Vqbk@Nh#8??h5eH-O|0D`~$SOHkkU;A0C=w9IZ{TFkpv#trlK3;Z!HOjm_SI}xc
zko+gCQZeX*#`=Nr?njbIr&v!7N_=4XUPT_TcglzNYQ+xfoL`;a>B*(}|J>lYiT>5;
zj6!=!MLsZ1)hLclX24HyH>sB`Qx;7eKubo44np6=^U{Kz^WGB~B}PR>#b47M$B67W
ziM-Z(SaFm90MV(5cYJW5(8afXYEF#;o_Sqa05_Zno3kJ>Ul7^KZGMN1AHU(iL(u6G
zbk=Yc0m6~BL{{3*_|FaBxV-DM6hug(IWY3>;>^y@rUW3dLaNjX;e#s5%1ginqu~U1
zNVm^5^%j5aqnKUZ8fwkzzTy8=ikI
z+f#nnH-vXet*6>!MMr$|=>Lo=2GD#+Fb!hjv**vvPn=*D6BC1On8(D_p?776)1ui6
zTi|h1(-I14qE209+D!Xt1F$#kyH%kNoBGdt5U&DgGtWg{MurP&g(^U-nYlR?_*t7@
zY*ZWC66Ljp-?ob6`lIhkgj2)I4i@TJsDAa(+fi&nznijo>krvLM=Msv6Z!I_BwzaK
zHf~$~-xA#qgM)P)9ji&M!X>Ssz$yBztps`Z6vtLP>d~FUB8Br=2&~pzMs)a1j^g
zGg&+A?4gU#BIWz(VszQjaXb1zO5DC+yniMZ1IZdfe8n}UU;5qy$LaL9<11IKLMV|!
zIhZ1yuFZqn@en3RiA@VHCzrk^m2*#32%K+==gHf>p#4x$!dUnUwQt5YT(`Sf-#@OB
zwbbxY_8-H1IxJqz;j&Suo}sF}(^BEsc3HazIXQG(TwISIKPGWP;y6QJB9{h7;%sy@
z(=tZR0Cc!@+qbWRd~g}I@WTAevDEr+{=aAZvA;Owy|)4K730&8zF6Zg->Lrt!r7Pi
zv5FScBW=(y^yQ6y41#RizRqC-qW=QU+7FfD&248sRJ$zKn+WDL0tJMk{(w(#y*u-B
z)0yA%Gxm?vf0ID$QJaop?;!U)BNAdAVTs#!j(1&VzW6J@S=&_cHM9v%dp`{g(ZQN=
zA9+n2f*LS%I$}K~Cl6q&5Tb7CH?8mG~GxO6&V7HU7C-GYpetzCc
z(YkVDK^o2FYi4)
z$V1X%$Za}Ik31yM4=JOyVaz;vV_NQod5cDZrzKlldjt*Dx9*h9qF)%OcW=^`JoIF+
zN@meJ&uBb3`kLmsoV%#enEW8~vrTJjpJbLdd%q|zC@WhDHT~hsOtmk)J`?i#CM1M|
zJ=pi*Lom!#Gvok>kEpa^2z6c=g0uPYfUHXajID2vwzfjJ9(^Uej$$1Ug0{
z36kwn+~0M*UhkQFXG}Uxzgjk&L*{&DXwdF$LB#B=*VK5=T6BxWXCisbboiq4lo$6n
zs@nP^qORC|*b2oCw!wp&o_7YpEz@hXv#gZUKXmvo2h1DM>fQR^=32(H&(rc{6W{o+gK
zkP*nadN<8$h0KHNyRRDEloh_XJ=ps9r_EnVb00k>Zy!Fw2R|#Xaa_2!zTmk!0f3L)
zqFf!^*zud2*?(UnjKJG;0{%{O(MJ7?Pkv1EiL9Eozod$4B9Kb_Gvqt<8w2@CY`C1`
zkQ1;ML2LSr3kwVA7zO2Cj7;(F8Qys!+ixqg%w>MKvsXmpd7JLyrz{r}5~2>|&rxV^
zZ-NkY
zC)((%t}n(4$`0geWo%wgOG9rcqWR?IQ@RHbQQ%7m%FFY>feS&D3_b10`?<&{vEL?5
zAfN0JSq;;NRRI#9!fDH`hHr`rvCE?;)`!^%xG7Liw9Rn7WzFJW+SjG^C%#ZNd}iQ)
zmH4^F=i3Ked`90Rlv+Vy_Wnx`A3ge5;;JayU5#2DFMKEzv1TIF
z=IRR9gHshAtM*<6Ca6YK8SFkdN$+pJJCnb#+PV)J{We|pBV6^Rc`IB>G?zr=YaUv}
z{)t->9yyVCJ=zP&0O6TKPf&s=fPM|~9Sn2?7gkV2WM9FJ)7aOQUS9+jX5X`@?A@z>
zxB8Ic{7QThq^*`9T@it+%`7V`>zZMKhmXpmjP6b88%*;Ljfz^1v}@7f!s239xGzK&
zW?!*li}#c*vHPKV+kf2Q_$B}fh=7CyGsFm0*u|vrGjdC_B6wWuGf^FezgE`uMZW`C
zG?%F%Z6pU)K`MC!733^d6as@wDe%goGBO0XcX_d5?bkgFSq{WeI4y0z{I;23-VN$F
z%F~7C*iNmMPYu31H_Vf)#=fGwyOjkcH_8v5ITR5Ysk7b}_&5mKD&FsX97|78%-hEGh%+2NT90T~{k#*OSn{m-8V#4DKGL}$7T3!EL2}lA=
z(`$1v!kU)@5V%Z7za{R4M``gfCyPU}+VVC7)=Mo9Ijqe7r0jZ|Q^0P|K4a_8BoLNy
zRQqkz+vKFAbi~B--lJ11Z-_SsNP67T5{6la3dc^Jeg!!D<+An}P+lo-E|O0)6>&eafIbRaRb>9NgP@JD={HK
z@8<&GQ}`nbVqaU77>phLK^F$ueI0J<-BS~)nwpI0VI)}(p~v*S7ZV%wg+P9Gv+nLv
zh`(RKT-SLolyah
z3K3|$)l>!SC?@{GbD*BS+!9xb;fdY3dU>YXNWf5T0XnFX#3ey7vE_KD0n4W{a&neP
zE27&n5=#v#>+2+;)VjsgLil5|*WU*!_U_$FP$JAg;JwZ8M*)~KaewfH=}^$fhv1fV
zr_0UFg=zW-F~>=yrALIWCWGKhl-|0fFIKA91c8d!aD;O}?YcM9>+|^8Ghd79iRu~N
zg@vEann_YL1aKfIg^)FU--D|Fa{g8}Ht(@3c57%b9KLDr<;^9UL_08-P)4pmRJyf<
z+M;X>ynoNe%Nqj?Xek8_5dp|q*RK!2UVHPvUvby2U3opB>EO1D-ELW?uj|{qp_8s}
zhlXsWWn~|NNsvrO#0ud_K-Y&T)+pZ6UX%P7=?FY>%x@JhFE0_=u>P6yY^vc(6_=D~
zuWyb`{_hg~xTM0u!r9>)X~mX}%p_KcT(wTYxas}DyJ2CphYO7(5FxsT;RtB4M~t!x
zW!sC6#gdER^P6HL(?LjI5bL`9-CbjeMvPm)a3$5Q%(0Ul`1ExS)1D0?e5sqY8b5yg
zsI(z|-OimI*B15=Bp{F{_AivgxWL+uoS2^xJLA4NL_#jJNTR+tf5p|+XsML{g6~b!
z>NUvq=8tLFo9HXfB!5Ux0R<#q%fh1GuDK4LodNVuT0g%x#qy8ljp
z4GdIR6CoKd)Ax45cb66Xs(LNd4<2l|clw*l&+ks#>{_YGRbgRWzx{o5>EG18$}-3Q
z$WpF(in|oZfIw~qv^?t2PntyD2{rxYfuKlrY1SB_H
zzbLTi>I(>%SY9}>8~IJCx`$_*DhmDo7bAu(PGPh9PJSBUL;6EXM>6#?wh1o955tlo
zi}zljb?t`XWm((gjQ(aThdTQQ1_IH>?R}3e&aUk~c(B>>Ddew*t*xaEC0uzVXvj*9
zefio`_1|9BR&lQhsed>
z$9s(4rt9aS0PH(-C`@w$9_nklz-x1yTwLku@f*lM3hYCBxotrWZ9Pok$iPB^MDWz`
z$31tY0H|xocTV$h%WnnZBmndLAV+?4gf)|S=K~qddye*77DdMABpMFD0g)OFK@G0#
zI`-j;v@gK=m~awDq%)&Z8QmCjAY+P5Yj*?(1?_PP)5(R?0enG6
zJY6I<36Ft)Y>qT_IZv1FMhOX3;2{s4oj$Eh;rtwRXXeUiX&(x%e)?C*pE8(P;XKg(
zNvIqq#fLkOD$8Z)@tgKPVrlXn;ulGnMB?ueAkqMYL29>grHj&yu`?Kt1JVNg@ER-c
zAgWN=iJmn?KSD~JLfL;&{481(Fjn8^&*w0#K*81K$u@;uRNK3^wx@>&mB9-#inf+k
z0N%gm(IcAZHQNz8S;6mbr9Ff~ZvmDDh!6y%hJuyuX~If<^JqB(1bivH>t_FjUm9U|
z)l^k8@L%jv>OxA?K6@2sN4bmoBnG;GYG+UX@?cGg*N*fYaUEOtB(8ou5lTnjj>u^Z|!}^nF
z4&;_ha!
zMndf7$Tdj&FYF><5h_W4{2>KxF(cf6s9KhgWZ;^sVt1LI{3kX&MyO6Z^1IgQJk>eCi`0@Ex3m&Pj(E9c35G4UEuE%Q2n@?5v3_eC=
z4uoT}Uix9L)CJNkCmt-8Ar;XDKl44gM7ai7?|kpeG6<9|Loe2$T&j3DK_>^XCc&|&
z`+h%(`BjM}!aH$e77crt=88>Di)Fs!IQlYakv@VicK;vO=Q
z*sre#aJRXL0wc*x7zRd2bNq@hJG7n51?COjYEjsusd=s|JODV88}e5JOkoBJlG=|#
zmam?~<0o89|BTwlWh}gmm|8~u7BX7;u?J@^?{LD96it&VhqzG%BN;x)dybsR`;gV9
zT4H248&DoEHOFUO^=XjoCNc#YfLxyVvHRSp8H5}oniT{Lh3BoQe+IA~v*Qh@@uZYc
z0o)q>cF=juHjiIwFL4>N@4RJVo
zk5ed}4_$S1E_BIY7FG29ehrPh7e@28)x@jLgPDuXXfYn!M7T*zs#+zLttK#;Jt{1L}+gAMhb~J+0W1iY7NW4>2Xa-
zWO~$5@pa-9(EKX)GbPJ-!XYFR>zGp0(_^xI@J#Q$)8t1L0qqbHrdpq;c;)hCz5G=RL4vuNiC8R~!<8*BUusX=`1wvyd|D$$7$fo-Eezq+8f-XQ
z-&S1li2!u(H+AyQyF_l#L(YbyVeu$(6uQiX;w*RF35y*Y8zVt~5F15&?2xX;wl@7tFW$pf``$h9
z=OZ!xC`3ofrC26TkAM2KY{iOr;S>Hda0o1G18KZ4YvhXgyJ!phclYI+(-c`&ufD|4
zl2=s!%N!_bgicAQrqutNC?USfl!WvQF`$HXw;hoy9D$&Jv81?|#0EWD7a~`Q@n3rS
zvcyvD7e30qg9lY1315^v7K6}KCb|bn9AJM(BP>UYJ>EJZU_rLP+WsjEA?{ACr_Rzfps7kc^0#>W>}!GEwV=*?TO`;CqB5)HPi8_E7s7tveH?oc=-rbLegz+B6^gea<
zTFhZjHp@-u8TcLJBLd304W>Jac}KL<)l9_WYrJ!47j;X4APASND_81SCjpkHj$P`#
zX}C2-!EX)tN23~_9~r_RY9twHK%01h-Xm^UN{yx$eCg6^u+PBBNtc51-!Ikp`jIpz
z8A`Glp@G}p>**k~ULav+ou$^cZ!0!gSXgYv@I<*3RQX!42{J%Y=KPKqWDAZgJi?N^
zXF1xL#hCxRdF%miZ*T8Vd%;@J@a-e&{+JOU`ARYcLL3xy%P+{W)jiH}{Nw?_=Xi5U
z#36+r)S%!s`0QWMKJ(kQph@{oy;Pe;Z|ei|K)t*5(0Jh_NH0kOl5sJVWIeG4pa4NA
zH^359R8-KqR3UEx1bTdTJG@HCu&0e}B>dkrnZg$)o|m^YpbCm?Umbb(5v%%If^XiGmvx#6Vo|_w7I<$XnU+MTD+3xTp(jwl4iC$NkJh2!o7vfs63fWBnSyXW
z6{Wtup19novi38YIJ*KUNQ;M0!Iu*PhJdD~CV}eoD>jfQR&2BzQps41p-D+xDXFPn
za2N)^qT;cCgKD59kOPPg^+%D;Z+iUkq-OFq`ajlr11iUoY#qZO=jgJCzsH|&CE&wL
zUy|n7yO+y;Fe*~YRl@aVGy62g3dnpvVk03*NroY#c!yQZP=ZJT8z7#Dp~l83qU(T|
zRMA4s?d&3u)i(5q1*?Z+wAt!0D~0G9fI5?14n^dc4q^e42r@)y`5lL04Fcnmm=7tN
z&_%+qSyc)&m6WJRafJif50i@wBB6@tcc9mwL(J?Z4i;ew<3Kd(ZVQ2L{NlG})$MdXRHvTYEY
zF@XP`oUVejOi`5$q+v|V*5XMnqtLOiG@f6#hjq;whMhZil7m@DY6%rW+rYrU?k;Kv
zQPAP|zsOW$d3I$d3vS*KFd5g6ddUScpy`m82P8
zbk04%?e8KpOL(r-l9Lh4zIX5N<0mp_Rim$V*uUM*HRAWLY^gWqOR9
zSJ!Z3-@rLToLpc28xfgdb(B~?M_K1aETv}R6p}^t;?^e5UFjcQ3`rJ8WN*dQql%M-&`JBth5HGm+Dj3+1
zTIq$YYb6TPEY#2SZ$3IYIZ;tieaT1(Ip>5NcQXqT&5Bb74mT139P3&yClg$8RkI1)
z2z189Br==|GA2cyGr}Td2u-7P?KazMo@xAanl))u*!gtO5ccNY(dyn5y042BP5^bB
z)}msfEiV-J#;!bN1IiG*h;TB{1_rz8Q}*D84|h%U+mP}lpRT4Vo+ZerGBIf!zeCfEOPBm
zW@IA)dm4UY0Hslay8}^pq-Fb%4Qs$^2*O@7NAp;tI0~dtVph9^Okv_Urkx5%tuW-j
zh+n`K``5!G`bp}gL5}y(C^n3szGs~Z95;DGC7pAsR3<&?MNF&h}l2fQFn()|w^Vm8i|H}ZxbqUPeb3`j#gTsUV
z%LsR-Y-#EDKAo@J<$FH}v8$E2U!j+~yW1&5BWwHLW_=K{y?#Qnk#!(5CIh0cEcF({`FFeq`C8+u--<~d5PWoua%35O;hNZB=4O#_Une;lE46*>9Eh|`-c~&dfPw|xuxuAoXNt&JV
zJXla4fBAAa!t*tlZ2JEFJLe8Z&J(@&a;p}GTxQ^*k@O7)o`{x#f-CwuDLy`k%;Mol
zH+;cUqXh-ZtWx+hr*DQf3G4r?=7u^W=jsrMkB7yOhp|Oe@EULxVGrN|aqtD9yW}?E
zd0QZt=!LmRv4Zzt9Hic%dcOphue@`|9E1|%L%S_31StHNF`7$ris_UTZZgA1iWKsCY=|vBd!~tW%UQaO}`qA5JfLV(f__`NxMyVV6=Vozh^(_
z2p$pLBKSjAbnTl$YJSS)Bwrq-9a7V^|uqTOkuOh&P_!xpswuo_&hL>v7@8s<;xP~SYMBGJaQZn5fR|m#i}zn
zsf_##2b1(-;B>-K$qFZ<+?kn~4JBG_7&!#S14ox55$rnfCUTS#7-0YS_`(~XU-R?O
zH_kE)VuMD3p^i!!lg%&CT5@w>q=3$}=VaI4aW2dLhasy9+qS7chsO(GhRlkXv5$0;
zGYRr-S7N=UC9=)l0lF^E)O!fVPqL$S?h{ajSh098Sy2PBNg*?Nzc6=2@HURGV?df0
zzIcAmrKBW!3dU?+_w
z=j1i#&N0Hlsl`~Au&WquCM1*xzrHTVr4g#^$^%J|g8ZPL%+|PlS>A>((8vk8!LC6e
zT}mMr0`EBB#*IN;g}w8-`Rd*{PpZom^Qc%SWK5bIv6tBUZAgF?4nzp#wm*^g4B5WZ
z``x59*6?TMWZ}S@B@{LFrMsLBU5D=Mz|Im_w@zuS8^x#uGlC>jo96qK9$3=l$5(3-
z(11}NG8;D*1RI(Sg%(CH3yg+9WPV`Hnp;?8h`!1{BI!Qf%>|xX56p5FwT_(D^#&0U
zBI6_fB|m+OtQ{hhlZjv@9JcoQLQD?qb#d8D;pgY4KpY?ym(1?L6gPv0%_--3)Be7^ewq>t+W59*z!!@r
zOjQh$#0^Gs?fDj;o|LAAQq8WN!W3)zA9YQ!h|di>zN~!n#-Plh%V_!C}$2yfCKu+0YFKm>Ghj2q12EAryxU{gELb|OC^4Qq9Px-aX?xc
zA0d&y=O_G051{PExoHR_Ta<8O?6d(PY$EhnqLUmw9W$qjbG{O*ueHjdwjg@N1(w}r
z`ix&eftPsV5Dg#-e#{SU!QpJTY+4Fk6rde%zY$2tet6jpWP2b)p^4B_9DqXs5Eq;r`9fsv!wSo+LsyE~_!I-Ui`}SuE0&kjE
zb}->7>hKJH{8-!B`6Jh2ea76LLcIZ$r_#v%<{dBST8xrMo$jtix?@iKO*=d4?}D7>
zbc~YF@ODF|Nq}agG)Gs2Y2k3h<{D7bXRaM45)uC^^5qDer)p(LCdX
zF;p11VG+E70#4)z1G~d($!^is(+f`D6E?D0Ss<^-(`L|2Zy=FjdArrhM0~gE=JZMP
z3<7)0uY*Re;;8hQl9j)L3Rcu?AA}I=4hZ%bl`r&k#(5~qn7QfDe5xA{sCZm4&aFT9
zVKlK&BwwX7WBbg2%Dhp)dSG(fiIA|e5f|>$(HZdPR{N7n_k{dj9aEq1@t&oMtn(e_ltS*^3)Qu;<
z%24BUPCTHz_OQE(>d0t>xIuJotGX1PvjI1hijwi{r|tQKrRn?9tF9-6YYmvwhg3)8
z{Xw@CoUchlD72<9UE475s>@n05gdTBa^nmB{v9ewGk6;O?Y-m#r3_i%O177RvIdux
zzMhf@DE%>rGdM2(N{wRXIPOhO;Xt}kftdcW(jFg~6GFZ+(0j{J1(a&V=pGp#+PXNC
znMX^6F?oT}6X}cSRJ&(zalqt-=u;f%N<=O1h_I_BgwZmDaAV?QuTD3Wv7A2#L&&{~
zJ$d?`I+g{57i8G%!GJdIyFsSUsn2iD;)G56o!4%xL@ory8pm~#wofV!IjFA#BY@FZ
z+;y;Y0l0`Wx&b+(?r!69Z!8f^+A@OXzv=AkMoV|Bkk8S@y{zf(-BdbKINJFW#6`EQ!v{ef2ol2sF&{k9m
zrLC*>U61S1aLN09p2v9{uh(r};+N_`!qr64_~4TFUYF59;a~Wjmjv5NKpWsOorpw!eM$W{3K8
zHHODRFtH%0R^H`R8%CS
zJk+pnfO!9aH*OiF*G2#cN7vV{H-OYKKyyh}=k8;d36n)3dKvugQRAweh_qcviVNV!
z1ST#nE^ht3E->KjR};6}f^PtWRSN|k
zNpyf|l%Qg$7AX`IO2jKt_u9=3s13xMzls5kFd&!I>`TEe#
zo|BWalL9W)guJNn?zbq~igCqB&Oi@``tf;`=K^}Pvihu)b
zY;s9eL==f0g4COYjUp8U_>6Agh6&tAzx+Cb3Kdd@A*Z(JS
zbh)IYkw@~sYT~xG#0rpH2cTkyJ61htpfT~0rU;TI!Ju9C?tVFTyuFZGsiKedxYIhs
z^8G7YEiI?D`9tbymKejS6xxPGf18K9dVVfOC|ypH>zfG36t|
za-|LQ+k5-&eu<#2G5d`jvE~4-Y0GQfIJ=4v8l$LIWSuT66ruYyWjXN=^BRBKaYZpU
zdjk8Sb$t$xvq>LN!&|5p=s?nv92*Mwy5*2gJ5
z`dC>M3XZ-1+ncKwbqSajPVv(?UJ(STdL;ygCIj?930cb+7#UBpi?4nrSpEKeT>2Rt
zYond7$pZE^NE&VGN
zb#A+(nyqbQH|Z|^6wg(7nAYFu^2z@znYeIa4?#DHM+l0{?a9$EUZ_ad2L=Qn$BIf%
zPp>f-@a-FP&Pmn47td=YijjCKgjq!jI#^pP!_tFC{QPsNB0(a{fy#cb=(U{sA(S|1
zb8jP10g};Z>xCC0XX>Bo0}(-(<~F5-SgXIen%kzO3Ow3|n#86AgV~KDEsE_HcC@so
z`>R!o$UfrSiG4n9l)EfR3A$qPqycYAE#Z}Vx7*=yZ$B}RV)NXdEb^p^>1r}CJ=&bkD-coiZSA*gMtWv3|i3pLh2fX0YaJZAQJGfDqV
zOPiZ+MRATaH-)6>MR-(hz=Hz6ys8nTTZs;x``mut#G*9q6BvYqtR@cW1r4`T)e{o<
z&Hm+`Z|JF1N~)jKy7-?Sn7gM!Q}mueT|g=c#~@43xg2ZvOv<9bpq0!i7j
zb*l%IYF`0C&iwkMXbs{uNw^ZiL?R)-2D=UdMgP%baf*V&dl1b
zq@pVR^l2*r9Fbo^{(1;bSAaNC{TNLcGLqDEZQ=t90o>Ejf|+#|(ZTHTTrDE1NIzil
z0iq1~;+&=De~s^GNjgVcAbiEyliof)bE9s=vBL8C7els>Lpjuni1fGhT$|Q&_>Cj6
zbDBIw4M4=@|C^%RPoo-fHVO3=PE1MkYCj-FF~DwswrPG$gK8O4;`it}4;&;HiTLEc
zI1jNCu|~-OGu}*-#>2#P18fV*=Y$$CITQ+sY$5?>qwNBa)Jr5)L32z&`2SA00%6(t
zj$l^=Tc|Nln8nHf_DD32umAVm@@8_>|ejwF)nNizKx`_Io_$B|dti48w
zh5hX}bB!2}JH1L)-sGH%BMKq=X)M9>T^;>TP2M~TJ#uFHNDAN5%Rsgu*wlPqcAx#s
zd#vPV@VCwDe~)_I9gKw20}9%b#>UK&9|MC4>(|$wT{zoVQ^@SZO6%hy88SCp0xv%{
zhoBmv)o4O_#R`}IOG?P5%jluBxMLO>`1>g)UU^xa2kxKhj%_s_QSK{ki1_8+b>((^
z<3)YJMMFIoQf9-n_kuPku37-*pop-o?&j>KoQN~!KHt7BXpoKC(M@vgzYYC*D(;ju
z%U^z3>-5{6B&S%vwp&4q14Q*?Td8==B6GF4@yo`>x=fLa+Rdd6Ch1%{PG^_CYtK%+
z5EVRHD4A9pI8t5xCa#Q)R5t%q_QTcH@!`dUy~HylSp04+_F*1zH)(hoP_pcsNAh{%
z$maOlp92>+WUN_331&~q*_2mUXtK{PFv~o#K;gDxv!y@ph>qIfKEg+V@R4S6NPRU-
z5s#ZmkNv%}G|FD+^7DSpPYdVl3&ZI|BK~#+s@JFgX$GE;;St__8Ivp^1xqMUs6lyA
za~uF0P~ju6W(n;u=U6yijYWFDM`ATpwX5FpHefeKA!3GzWE={wi)HgjJ-cBHJP=?+&s$81BARns>{6+m%%wdf9pzc8z34)}PX$<=lBpXIA%V;>W-|teHP`_kn~V
zWFN*w)W2}lh=14v_+L2m*^)X<&O>2ZS);eE687SF+mmVGbgI?K`jcN)s%MinLs{n?
zu}0xf<(g4DOKy*T$a+{-N}+n~2-P%ID94%DD`yp3e-=aw>^-c;RHf|anNozQcX0oue{>H%+@*Noay8&oW?-b(2aL))3zN?{sQ)OEB5M1t0-Pc
zf8?Z_tdlwTP&z?fLF<^tV}(bFAI~*ny`?o(M%TO6_y2?7@)Gq7L$1VZSy^U*%QSG5B7!wZWF&tF5io^kU)T+d;G=*l)po$4^h4l#uX41&FT)
z3rF&9LySN8_riD*~ae4QU>BDnkCN`7<8`D*&{iLS@$Qrm%ojm!8S
z&?z(UdBzt|yw`uS?oXikps*1Q(0U4?biU}a(Pt>mRmo=S5%$LU@Hzpj$u)jY*FJ7r
zA)ik<(BZJ|I4lUzrVvHo1p|ZS6c{zj00;WQ0Tx%Gp<(?-qkiKQR*kOa9oI|O?|%a$ItiaOFDz94!UeBTi#L1H-U65;=?Z~J#|ok$
zUHbfdgxH>7tyg)6suNd+h*ZK&p*4egc0Glhtt3?pPz<80?S`5*;!scvDzxcaM}n5gqjmx)GwAMyNT3LNGH>?GL=YiBTKa_t}vMd{4jjnK%Lr2(dv#
zzBq(cChb+Z5Q>T%Cm_zt(e{ZW3Po~yE6ja@Cj(t;mVI@ucS6UeVHEyPrEStrCH?>u
z`5lka%F7MkXD=DtB`RDILyqC)S+6(tb|{HGeWdH4`_5|)!$(LGbt7?<{}DpXFT&E+
z1(wjSvQkip1iRw>sYqS&>{Q626D?2aWhpR1aGB~h#B-3C?*JA3@z(lmBup@mR2;W
zn4LibaDTy5|KC#h2)&Wr~IB}Kv
z>$v=+J0?H|{u&b019NW=q!CgOLgL=uz`c&IxMXZ>0Av(Sp3~^f0VRMiBPwz0Vcbbc
zTzWE>=k8l0M*1-%?ID5h!CnCxgcK(ym;uB_d<*64zy1I5nyw_gMMfrGtqr;o)xvF*
z8z^)MP>IHh1iSHG51zY+^C$XYrLxt;Hrb2}{fnmS5!<$=yLDHvnRHr%QRuJ>HAR6w
zN#DZgT%VsK%DyMUnnTPN2mn>ld&wkQd!zTxqssxZuAo4PDA6;&u&@B$f4$c!cQP>n
zItg@wB>IuOM=;;gst!;H=hzSJ0PK1j-V{XBKEw8wp#SZFatq~h^u+7V36e@_&X0Ql
z`k#m3`yh%aCvc%C1Xcdt5Fe;HJ8?=B?}V5eA^!CgG&eWry?#9bQP=iL;D+HMQ4SsN
zT-T1k?9`{C8xapQ$rqfbKpxT)Of*qa?=KH)(oB68%-^(cqrZ>3(m}kVvxXKa9X7lw
zqO@9@si;<&6iHj4Kuxvi5Cj#lAD)R58r_R{2EIaHo-q5JvYD3l4zcP0&!SZ9u*!G(
z`P%2<1e1V>h)(9!j?(+@Ma?#nr
zU}i7>E;ylK`5WD%YGOA6Avd7kgk&sP*>!SzKVpvlHis(ghgRLFuR22pFd*UFd6%3k
zP>p}eFwtKf;>Ozg^Sl%**vmN;L#b`qOf!FeYvQ}=RBzXaz&QNl{OQ&D3w1k}?0JM`
zDad@U81OrPgy>FjwVw@|HT!G-QMP=I7@Pfew+ZEn*NfLN+9k`9pc%H8b7=
zC)(Y^bt@_8!iAA-_slnuMMsrdN#c5+>y5I1Z?g9?;S1`x>1;14EFRv{#rn8ENOZ{T^}2qH%Sa9r%}
zwI>=&BYp{<`a7yYNsarnMm!bOGGw^>O%2EY?D}?lo1E*`zfi|r#X|3w`JSnP!5ghP
z$HY^rqL%m%Z4cV`nCKAeSNQK-qj^5--h5B_>Q(Huv)2bGChbuhC~%s%!<@p+!$S@U
zijh~o#B-%EUuwcC5?;Y%J{thvnFwKxq$+ISTsFPZ&>58g;?%n~zH)iO&XBoAbv>{Y
zpcv_iQ;&db2!$adg0MXwC9ao|k)&41YK$}?^SdCAA*~VF%dKo|{^-CLLh~ISjdOD0ke0Unck&b41MkG_9P^d54nav1
zi$4z7>`*XTo7Z32y7r;;{e-#PW~NO>ib$Lb4Nq#cQ7rW{cwTX6o6Ye3-^mr+^ZeKD
ze4`U=3~?IB&#>hJk6V9#QS0(s<$4N25jLBdYPgVMSow4W=ZYlvN;T`6nj>KzUtZnU
zb*}X?*~+rIVZUUfwtZS&U&QVGZzY2ABkYPQf;yIc9Zd?$iLldE+%nJv#{YqAL1gf=
z6(=N>*GeALeKR`zq;)NcIipu(;%GDeI6s-bWaO@E`lq1~z^noDJL<8iEdLHjljY%I
zd%B)u4Oe>ho%pAgh4(xUKYD5_mDsl-wZ^1D?W{RQWhEhwlAmtON(O~-Q4PDu;2cG|4tDJN%h=3
zm+7vkr_Oc9b0y;I9IWy#An?PjQT0!Yu*E<52YYBI+!8w(m4X8WqZ1Mg0e;8(*@bDfJd={{lgZYK<+%Li`MJyhXL;b+
zhE?A_84Ya_ezj9e(qezPnW%T;$+jVOW!m-25fr2krfAI#%}8DP7HxhOj@^Hzm1O#m
zqucLqUebBbq(($0l>uFs7QOzWe*V;fqffN5Z%Q>=02GyEJK28e_b+u%D!Lmc``?6!
zEv?LrOuug40V=Iblauzi^zOKD$A`y?@%cZ(-BmXcyJ>$*V*k6M_hSi1GTcfX$;ewO<#1$u{h1~Gl_qgvK79dvwAkuUF6YNEAJ=(?=TQ-0nX{_A0U@+bfQ
zq94%pe>##T2i6x-gd$)}W(iM$kti-d+oBsqXQnMocn1vig)Nc=?zCxfc7F@Cg=)-q
z-b=MvHR!%uEYf%QydK^dGZ$F?N$#tQ7PWt{(9fWC2iKjmQS$TiEP1$>b@I684Lmau
z3ZQZ@>koN^hqYny#oWIW($aSqS4908No9ZPdNrMQWrt#cmsVKd;fMZzrFQVP-|$jz
zY%kV^UElej
zl_4hm8GiiNCz4eFIgsi!@;mksb_B8`;xNQJC&HU#sD-I_&`+jbo3$Z95U4ZR)L!0z
zunh0N?wNQC^)aGn%6|=Pm}Dq3?6^-#5E2j#6*$QzBPz4MeauFHs;eldLU#Q-o1)@6
z=Mfl)(07qBk0@Lg5VC0UtHW=UsAgkN)!*J7^vP~95Buz6s%P@OjyWo|n^zi~dt9;p
ztA*Nw2*bmj89H14GGznnmabju-O&wjF>Ua<>u1vm35l(F$xo&Ai1<{y`}|k`rF2{w
zi1d#X6smC{nm1f1+&=G*Q5$-oaVGp3x=i}oIi}_D$
z8{yL^Xx@>GIeuEzT{i@mZ^l)K~8#r1ssP38=D
zsbD+Py)t%H0Q)Y!+7{E>aP@e$G}CR{A-T+{4B{`W)
zB$}}ooCFk@xqo!~As~=GPo8WAa^Y0?_VlSq-=uiRSQ}L^TLEH31QRV^!RB)yJu_2P
z>l!=QO6XB`XA(`L+2_<{FaWAf#fT|@hJn8gayw7xjg))lKX6%h9k1Voq-d9SJ^p(#
z_e}e|J9(&iq~zqkx*J4M{kyx_8J?xrW|F=#%%9^lzV?e-OPO*)y?UrEi1z@$B%1^F20woJ?iuQhL(TCI$O`m)hxw`6tUTIgnsE
zm2(FEJI@Izth}+#%XxPEq0c$HB0WJ0P9Es#BI`}j;h#kRT8q<&Y!<|v{(@{3XUtBmZ^>9rSsikeT5(|6
zIO90$cG>^RnbGvtAdB?g*+Wt=J1GGquRy4qpY-0^%t}y`ERih#IqpTf@X?U(98R(G
zn_r*6;Lg?OR-YL-zOpcMs$MPblqSScgjeZ*5vV4TCZ)9*@#@r9Y9cgss*;Z7JFmZ^
zlHHym{fYfEob;o^($~#2C^;F78ksw_?fX-PJkB$H1;I`<1Z$KOSt=N33SM7A@yNO-
zG`Z5e_Rq~)
zd5G>}xk+2f7Ujv7mX#%KrYo6fTrz*sc&z|v9I3f~hgaR3=PTy;hVEmI)8l973K48n
zpU^s3$M-i~nlw*iZ)vG^wzQQt)X<*j&|O)S*A}r|M7rqd3)X|HnJtWdeqJhcTsxnf
zk-$DmwEDfL8Iq$bBX4-YTbH*FhwV=|`UCp~=OO3TeZ)v`003#g;?q^)N3IV)nVnGm`rJd{=bT!&c}=gt>BfY_0&Vof$1~?x?6R+K
zjFDXW7d%iVH9)r=oUQH;K>}eLOrQdrytVK27>W|F+Lg3clW4TZlSeiM2Mx0
z_UD4tIwPw}P90Irw>S_Snb>hc`*Zs0b*EdVk%10jv5rw8&UDQ^f6O1JRMbHQypj#1
zH`l@JlN*@Cm7Y8PFC|Dyf{6ULs^&)3ua&%ZLCfb8)ko)MPhFL+DB9HJPs`=bfJmZ9
z)l#3F>!Mq#znELY|Bl^0=mW+iLIVkXt7gw7;<-MMV2Y^XCgfIADudOY{4}>rc_h&3
ze*X7osx~FHo9e8+icffwO|$PUo=z*EY&^}poyL*^Nh9mo_IF8Pr^E8}-#O6V)qk;?0`7f&A0Y%)d|`-~UKycQXiQHsGP4PIk&Ph_etd$5?dj
z%YWvsZ`gq?I3&UOmFfMM#9~t|+~J^6!-&6GxrwRrp&TJvd?l0aa(63Ry{4K(8fiTO
zJKySMPjx%LIcS$@Mzv?Y-)iW`EKAdsPYJsy&tPVSq&LpyeLmJ`C?7(1Hbveft?uIF
z@_O6#s{MP7%CP~kWSfz0{(wiZXHT5&p{G204nL&F;(hw7*!}|*iPgL&-wZ6Zw7p_g
z^Lmc`gRLgRa!d4584mh-bJL$)&3Th)wcYV(6Y#bD<(6&bOOvT$vhgYs`pb9nv$ZA2
z!wtsD8doueAqNaJ17j)A2ubyN_LV05J-c!}$)<#cd5C=nc`-T@)6-IyFJCslBhFjK
z6h0U}_;Pv5dPK=4ZnRFR>d@l178&>;($tCowmQa($0#S(9!y`KvVTOE1|P(|(k~XE
znBMGFw)xa@GregF{SlgJuIRIC*Wjz4H-6NnS_9f7LCY9WW!u7jAD3ZNet>Li!?;NI(P>Q5Oh5l9yHoIWRmZRNcJgGQ&c
zXe#eH{ySceOoCG;qw=a`KJoX?FU!rzf8HJ&sneMJ$$dQ
z+LaM2AXNPWuad9=y5Pir3;6}%LMRjf)m-qilY!glhCam=b$1&;d7?!7Jb)f{sKKNO
zfuHHu-*62zDEGT{g=xNjrKzArHt&4416o=pvi0!~wn+JZT;s+0fBk0!**KQl$I
z6aYTHjV=Z_f5gmhloBVYb*QgcdXsR4Ooy#cA{Extoe5dtod1e$4`&{P_yZyK
zWK`2Q-~+Xsh=7Tu;SQ&3=Tzrr#%tv3W8^|(T;vW#KU~gk)G0od6y*_F%@xJv!86+J
zUh#lYuzTHv?W}uG&i${?s2{AqCnvsna|N?dwCdr9?$K;I^>#9Cy^D*|TSJ-U1M7p&
z*33^DJZYcr{l?T3&>vwN(Z3BnZTr<8Z-g8?K!2QuaT242)4CKyG)N;+;q*p!SBPZA
zVcCZ^X!Q}EK9{LseN51x!2je6MV&Qzx(rmBxN_xx7GG3X-cWMXix;<0X_Al?8+a)f
zf7}uK?A;F@;TuwU$Xtd#XoRSH7BC1WcOWK=BzhwP&f@;q>&QrVpb{B)8IU~5p`$|L
z7cbBU`fK+}qBmD|tbDU#?qe9;{A(%6yvC)%go5^@W-IYo|7_**3XZpN@^H)1Z
znHuN1m_EK3QfRblo$1ipX|GdF;W+PjOLHEhLhA8kU*K+jpd}J
zzasBhACssH7UzbLGP!l{-YR%hW;({MzXLqugcM+nT$_UwXfR`wlYP<*Ig>T7eZ9Gw
z5P!K)`R9TUBf;Z@@O$UGk3~obAtXB~U)+{lA$F|+7g!9cl~PGF4Nl=H7Yq9>BG&);
z+0Zx5xb-U|MMhG=@ijHEgT-$g=-z>TL~6iBDDWKK
zfjy}pP5k9!Sz;vX$c!&AJlvZ}=FDTRo4{Glsi|SU%_>Zi+awv~4@SWsYlX|8YzPQ8=_3+;AVi(oABv?t}~I(+iF0vn>msbP&L+;JaxT_bqTUkZ3lV?a{de_PYi-
zQ|GaUutR;rLj(7ll9pE6M4%_%{^0!e?t6rDqlUyxUVPeYTA9JAtJ^wk^pd?saF3xw
zZs`W+b1^oI<-<1Dy6x%pI+-ekBZAt@?jKt_b4iWk(DR#*Ui}g|C~$8;#(%hm<9TZ2
z?H^cajz>K>$O936r{crQAJJtx_wd+80QmWoZK>Cm2HOKdBE+#hhPi%$$5|uCYX8!F
z=aQLA4U2qe8MXl^s(ZTb?6Vlp1j!}<*aPmHjE^ywE?!hpQ~RdI)&`{}5zRrgaqDb+
zFYr_IaRCap>4K?NQ*GDDMheuUoE){?O+IDXz8Hw$?ygGmAkB9~@Td|4@1|8xoYD<%%ce(|sjV)3q
zZQ%TdESNmA=AJziI0vMGDG=SEPCyZ6us@Jw#NlH)o*642X6&+nl*2R(N?iQiFUDit
zed_k6eWOh?^S=g4!JN+Y1}d7leAf!_^DA~+{J9SlT?@j$u${bZZf;KMUuS;u&tlCg
zh|;2c7Ij#k(wOEN?=^bb-c0YX%cf@>Cmg+^%*5_drsvG__B5;Lo4baUuf^SRx9SUc
zD0^TB|B<7Xp>h1eKIea5&d;vNbjDVo?GeZN9#=2J(3I%X?a$=^82JSM#CZMTq?0q
zceHDb`kI!D-Tm>O;y78Yia2!wlun{K!Xz`C2xI
zbnL0RY^)}2$7JXaPmzW6($UU#-}%eA9&N{!9e?^Hx0o^W@;3Gjq0_7<^Jeb(==2)!
zg}whMeDnFsZQdMrzn3jKxbz(Kyk(&#OxtA4=d!WmrEZdJ?J~)sW8YO|D+Y(Gzp&~u
zOB?;`7)kMPDBrL=Mj^9d6%w(w@3@V%MaPFn>d}4a`jv0wTX*qX=v((rC~wOai;lXF
z$Sq1~&VNuhG}+tR3y$7V#?buGfW;BhPKzR~g&ns8?ynR-_U8GS+&=1jk%^)Y&u>-9
z+10b?cw4BY$c+YCB&WPSe=zw_ZdZZTX`Zl;_#qd#cGg}dAsh}f8xLW(?y5L&DCpyk
zzU`V)QCF_l_k>v%=_68@?)dIEyZmuYR&(_EB)|EpTgT(r6WU`@Z|-fcX8uL#Y!xjh
zr#-82f7sr8if7kg6RFys$-2Bi`Q6Ga=T#jhit+R!0Y9neP6V)8-pxOJ{6~PUT#hij
zr0~&Y<|{`xn!s~A@K8$_4;qs}Cg<57WWrY1hu
zvUfGDU&zqgD|9lsEMatu^|6xQc&8$I*Z)4+yDaq}m)3yI|_;kv^Y
zoeKE#G{zk&dlnK8-w3u;INyDXP3BVa+dr$$y>^$ERATe;WrKsR#DOZ7+w_ZGw`R*2cr_ir9H%Z;
z(W}W#y7ON1wTG?NCVdm*l&kj6N3r$R!3cdeJ6s~
z#<3bch#S8CcKpQ-kH4>o!MJ|q^OJxzkHQn<&=RJlt65ULS#F;~tjKAjknsIIteouo
zSJi%Zr`(+yDy{X4pNZ$la*s=Bw*6kBW|OGU+D%b#4ZZD@La*n!N^jeVgR%Us_YGbJ
z&+I90>Ask8rbV)uy%DEpIm;m`nf-N)heAyGju>@(?$o52EbpdB6%AwzIe#bJ8=7NvDCL4pUFPl+U^}BqG%YJc$I%vR??W9Yy
z0a=u&olMB$*Ew~osV3^Up@YD^-FqLE^ZPNajc=t9yO^F{9^bQEc~zc5L(ol=25TRYn(gZj
z9$i=+aNObmKHQ@!T%X!xP-~Lu@Ges`>GEq*BHJC#Zns&FGXdvd8(n9rzDKD^N!E`l
zo*Gz%PRq!6b&NwV5~-F*W_z^#<`t?y7&Z`=0?fIj?pI6EH4oVw!1Pe|Afmb+?B=}}
z`}BI~#Dq=$XDy3dPsHm8X&VBrk`6efp%KzyC=-C2f>MsuN{g`e!Ya{BZ<*F{mq}-H
z-kN9$gAXs6m`>b0^Fl)LN%wO9bt3C7GF`y;9&Qw=5D6JcKANlEP`R7s5R+X-w@&$>
z@ubc7M;vxK*p!ZF=lG$;ulf_7Sr_FiDvN+_ga@S3VaynrgVL;;94)l({eG=rt^Bm
z>)-b(T<87etHoTN8#QTez?3)!4i1GQ7(Xh$SzFLP$8VZ;%(!%k?pvE9&*vX*cbweD
zEfnZD%$l3SQ5(QZhp^0-EstTSAfu75xw^v5*9DVVYclEcgrHS4s)A&A>L#cO-Vz8p`@ep
z5uK;EZptMj=};dHV1n*Z2J;y4GTWVpl5l_ac)Tg@Tv~MW)lEr5^d3Sn@WVE_{qETZ
zWk2JQBM&e-C7;}v?mYnvb~YOG4nL>dwKSG~85CXbTiGO5_&A%kUA9T|ot^{i=TF*y
zvWtH1JU#h5IMAi&AR}X`!cD0EZe_-Z(i#5;{D3mqN3OI+3@vL
zjUx5I34i}vUqo+w6`MNvYiijkQSM0jt#*M&0#Wr`S{eN!NbQ12amw+c58+&Bn@Z&}x6YWz0DZ<5xnu8pceMAAdQ>Hw4KZgfh8L
zZ)uJeIRW>3J}ZPH0nrn_K!0et)1V=QJm4)x*{?4~h5zCG`)6_Q&(=Dkd_*)zy6e0{
zG55J5m~*h{P@RC#`8+ye$4*y%B<>j?jgWYRE+5;SoIffE%nA6@YSP|9<@{}v+l)uY
z)$2&SBNP8b7k-^XW=c2L7xcM)VHSB_Xy|SLS<9MPWIKHLv6!1E=r{wk8t^AsO*X2Z
zQ&#Spx-^3>+~$)!KkRmI<@r0xa8HJsej=_Y1R?Tz5U|DYh3*`mob1C3IKa;CT~abt
z_~w%u*>)e@%;)JLckOMZ+|h^I+UWQnZX=(M(Aa0RoG~#;sBA`<(pxjW6~VgS8l`m9
zJyJw9AD9K>@KMZFTzkcHPaI#%l6x|@s-IfUvO-I*Bpofo0ErS7-8-FMtu@Xchsgi-
zTUw#_bTM?_gj;b#RZTQGoL;eHXc+hB9eH##zv)uuQ2jKlsH6|eKu*&gTWA{%VKXF~
z8HO^zs#l4C=n_0kit_Rsv4em`%RsDrak}~(ww5fBFVHR6+aq|xCC&EZicP{NY;3p*
zv_kG1^yHY*SUq0sGcKv5qXO6wd5brXC4)jdfaqp7Am#(ZHj7L!^WDVgRUwaR>VBJ>sb%R8emw$$JCFa{${uewL~+c}F|4|K&9
zvk6BeT=RMo8MF*rzi60s0a^K`>v!Y+ei?DFhoVb`)fhi2Q!NG`&P-J|jY8HNv@zYsL&N
z(aQu}9Zq}qxyV%rRO2mGGEBFIJlH~F~rEtf%0LMSApdl5vc-A|2aR@cZjN9hN!qbx*!m_tJG$BXnjK#OLlwTGc;_2m1
zt(C$kmy%sCA6C;Ta+@+Yjf%K^3DqK%qVvNvX@AuA9o|~Wlgjnl*F;Ha|uVe8W6z8eo
z0kZ1Rmr1O)b~J9!`_-ZJP4~32sW$cK$M2dwnr)Q@17lZnKb+0*InP{_U3DTNExF|<
zx7C;P@4j$P2dna`>h(JBxe;p}9`eDgdv>9QQ7E@hUnJ|=l1Og^$j(z-Js7{yPF@UanEG;XinTLvg5vVb%upfCF#BNWPicfC96`3wtRqUtcl;?Hc@)nG}=rd9uvE5!eH!cT#{Q
zXXksR;V40fc`26c_la37M=~`Hvk3D)uB%d0SO3|hWqA}gE|!g2knztY8Miamjtfe>^P|piKFD4f}AepvyaHcdqz^*0sVf27zMwe
zptnHGEZFw0=E8su@WW)>`$)hqM1x&8wtE-9h4%dv5%bn#ZA1G6?e0Q7|Fd6gDFj1B
zxWUe3mv_c0?gLUp0!B-~HFr2G00du}t#QK?l#883u2tbev=BmMM*wpf<3?MJEdrZ)
z`bZ5x8mQH7=`0h_2>wu0!@|kwi$w(}k#In3H*B!`es0VQeogS2A1W%kUoS0i0=J6F
z$@#3Gd+ic)fSvevhKTA1QY=$aTZi-3IiHY@OFADGlkD^AOR&Ly`EwVCdOF5e)HXEo
z?hR~-61+0MG&LUl&P9cV{eyGq;Tt!_19Q^)OE+u`k$hULj}PVEBKwRl)H0C#ASGRTMT-M*kpMCDCVDnaY>;
zzcH#(wWU#drGHdYJ>vS@6|F9vRHm;GJ$}W;gQ%kj3?lzgwpFnf!8uwFm}E%$kxW3&
zU_zo<%_oygIF1Th4i0+D1eD>fC;+%a?DU1!S66-wHr@yN<#cQjE~E)Kb%>p39JeZa
z=Mt{$SxwCf)Q+>Co-URlbzBjn0q@r&CM6jml8o>r3N@YhmE>?X@Lr>B9GV3EhnTXD
zP@<9;`w$c_Fgh_GK3p-t+g=Cg6i{0^hI*4!HL{xz3=CK#iGDxA)DpOHoz4y26c#Qn
zKeR)yG)MaA74k2Sx$8&_JrS~gFsaCCanz!EtDM(>rA$^*M)Suj1+>5WKgEX3o?F(n
z{osT7+2f(DyS21ETOW0df7rH)DlOiUsnBKe08S9(L)U)VR{lLt^m5K;^-m`@x)dtd
zNNSKVQP|^u^t|T##A(HJLC>yqj;;6I#6sDosdqWu-QnN9*}06LUhd{1f8YA!(GT3E
zMT#t)Dr3U_!A6k}4^y9!mTc)QkO^+lGJckt6=7w$J<5Lfot-&3W}VI=VYfej4`QpW
zeq1*=U8_MV8@G;M%{zM3K5DTbtYa?jIoq6JgLonNh0!Yyf>7THeN;AJiZ2=kHBg<*`gv~8a3s_}TQ!2A>3%PcCuWIz=l|H-iqdyaPl%-Adl#Hyn
zuS^-p3?edCPYH2M{m_I3`OD&qx0_zn_Zx_BUJ5lS4;L)|+A0e)@Q{$E;&zUyQ2yGh
ztE04j$MwbdF$w4})2GeU$t~`BmE{?B_IyoQi8J-;Lx$bel*FNJ<}{O
z^_7|2+KqPS=Qs`p&G_zilIa;4j(Mxl(i(fUQe$xn)6aOr8zJ#@TB$=
zBgqcS`VD-K1hTjjRpwI#t}q$e>mmbCW&fz^FBQ+3NV?9&%CbG#p68aA%7v@n&n|bW
zPdC?ADn95tCVPzCVRxV*vu)gu&8JmQ-I%O&GDYoigtE+NiU%FIvc=LSVwrrBFUZ29d*CkQ1+d)H;CuYxFN(TFV?kC#k
zEUw-&eh{5-#f5XL`n#2p8-77u-)8oJTglvXU-K9Cw!C%G5{K@U{-G-vw2dQIYSE6H
z4h|hT-f!aOpOF)6{HUvYI9($81dnLz6?f|3G94b#-JXNpDcgp)$BR34J(lA9&GSA=
zoR$7={1%w`$3f2qrSma`T3LU8arGc*3<-9+OUes?BAJDc~re2a?KA(I@-%&;@M|qX=<2H*=o)0
zVoGIWxa56}d4KDb*T2|8&;-C1>+$A>WYm5>zNV=$y?-FYC#M3wc>dPJdRaLVBup?~
z$n;T2d9;6*1j~w%)whAKwx!hxZqyG5Ibh2(UvCs*%)n@2OK
zI$mDQ4;k`dI>e+E#;cyZ_S3k6jbf~8{Zs3Dmcpp_#<_39HY5Sq5l3sB^qAqi+F6)+
zKQHY4=X!*L(#U_TcT%sPO~-{<5e*9Jpti1@BbB5cg0{3x_hi7wGcA+bhsqasc(zpe
zaq~Qv3^B+o(+^*s!F2TC2-}Ob9vCVdu3P1q8A9F6_XppODW&;Y{XLY64ix1uJCD+N
zEybMddv$^zjl#qoa|V{Nt|;W3jlpQ7+n=^?cP@+ojtr7{uYVlbQcAXu!c_{{Itf9;
zV3%vTcNkyoPa92JZ&Kr~QxcuVtca0>Igf>nE?#^!*NXiE#=S>JAqIZ@(U=0vzqV&a
zl)k0Fo6~XU)t`4vB81dR!^Bj6_EE3!HTxo2mF5am{{&yk4CB~XZj=`wDcwIo==f?`SR=XZ`;}@9YNX4dE@dJ?)FtsS*Kx
zH6hKz0-O2U(Mj}OA9!knOP?EkoZTiq6h^ae0E
z3lZ9dFKSNY6c7-J?nPlBi??LyKrJgDi}#DOBZiL2XGcoEz3?ZOV^U_5nxjCv5C=h&0HEq=gBJM*`Yg|iFirr*3n`^AxrfMgSIkv(Tz#BRSQn@J#)g9)>zvm+ZhQdc-869ZJPNJz1sl>`20#f^Pp^W
z0IaDKDQ*k*F?Qi?*Kfp`!AaePOwnEx{)qYa0VHb;B6~R(_-IgcnANkKc;o*;^C*LZ
zgJcXF8ol%a7LS{7p@(8ptqmR^@K}#|O@mKHE?|NS_vKm!$g--$mSz?6ZK2!%R5}fn
z!!1Y}>d{B@Evnq|VG6M8Qh%PA@jU&*slK9xhiU89h3y?X)AqEGuzm=i?)lkBxZV2I=%Co0~Y(
zJEn-7(slCg82>%7dsNrudjO67=^Kuf;`C*_JCNP3mT12#s?o&D+k0}R)x9CmQ-9FKaCy%)PgQMp+TIN1z$@-S$pfiUl9nCzLR)opi-BuO=F40;&f_#>c^SE$M
zeL?D1!DM4=*e@Uu0s{!puw?{|A+jEGUpRskb#&-}n6A8l_ytn00D%g`AI4HT3D89E
zn!cN%HO5~H|Nc=5x6Iak`z(blxOV1z3pK?pFhIu)6d|+u-2pqlWZsd3YZP9@^p7``
zZ^*yMcDVKq^fuBmJ|bw6B4=ncf!zkVCd^u78#_+sJ8TR
zz4yNFV8fhIb#4z&=t2VLGDY*M3(jYmD%4)do%?fyJLLB2?25xl^?f{Z`yX;sAu(SI
znPPXZ4@fizX0%za>hRexr!A-5K101Hm|;ysdmCbN!PrhuWF)lE
ziD9x57GDo$e5BF^8tnq|>fpc!5dI%^5D$7|EYchdqnUAA8e19%G?fk*M)JYVn@B9Z
zAd`+9S(&1_K{m|8ic3j}&C6@mXLf~CU*Vk-aN)W_7ssOcQ6UfzZ8PUKbF3a`m;YX`
zDYPe{vmm5>^^R6VoK3D=*(;j5dEwhfdf&I9!nyUwFfAuuy{N7*x~}PXRLpIOs>k6m
zkryOmC_Iw#8;e%aesE)ih{|C;LvHVN21y9I4RzSe%7jGXGOc#NWaB@YlU7XzbS?z?E^GEW^O+8BC={~
z!REJJpsz!;)&G_Xtp=a*O2-mt;kBujOGk9_9^%0xC>A0=zAEjl?(FOwI1b692}EG!
zNc3x+*^2hzXds83MpF33AbI9>!5k|t$>kgEV)FW{Z)@zCa%k%P5H30}$}xFw-_doR
z5^E1yFh4kWaPzK`AG-U6?VtJe54v(OMt$wRbU{*bxmv=5BLmwNPUteM+B|iqe~IAs?}fBvFP;=l6V)DCB1KDNAHJE(YoW4jWf+ETKCEY*jBMr&g@C_O35xz
z(49V>#iU-kMP$?0lc%DX3fF`LHKZQYsHE%YxjV&U__@g@V03GW>FkP}<+oPnWFNrE
z_icvxPIurockt4-r`hjOEE}wECPj!_%05>Debvm|Omj}?b_->PO3OcM+Js`RMSW4VL`$cN5R!(Gs@LMDVgNjHto1xz7~{Kr7FaAtQn?16L)
z_##nTPQZr0{6BCf!o@C=3n;o=cYsNTBf;4`;OgdEPqTC
z2j1(25zATl_6U5^`n6;Iqx+A~ZpnMuRDHXNU!~j3E8n{Md|)huQg{RXb`GC#xo$37
z_CUzK$|iN-@QvH=dKBnbxELrmA_aNAt@5c6c-@fF^{Mr-ACJp8TSJo>HqU;Ik&v-Kta
zhpx8{sH*GQelbuHK}C=TQA$#2NdZAOA>AcXN{VzVf{0SmjevA_horD+Y1kkj(jd}(
z#!{d2zR&la^M?wz-n#eNYt1?47}xc?@&d$gZllSmxQ^D+r>xsI!udq6@N;{MwS{U?
zX!&vTI2}`lhj~$chc{U&9S!i6ukb)1rYMj(nLz7SaJ}gokXSme-$MOUK4~=wLaXkt
z@~KR#@)#}}qI!Z&Ad1`UIuw_N0Ck}Xv;lUw;8wp9B2rtPz|>kSdTrAg_j$8r!G6cY
z%ls51S(@?iB>DRry|AD&TxMW(zY!)(jOzn;5vju>-y1V#3-5)78rGA&m|LzH_&fS~
z&sj-iKdC;&|6SVI;^UGPL`WdYOZ!6KBK6zdNB4X1aCGRuC^ON9cSudImiPqaCxjH$
zHp0%Jslo*}ihZapYlqXM;%tre)q57a(w_0QE3@P=H!e`2NVvnzs5O`61$l4KhPG|2
ze3&au0ll;U#S$b2N+$QN4#PNLcwEds3Hp-5LaK~}p?o9pPzJ~$YiE@KGU9ewHs5mr
zZ!abPn&4)SIP!z7mCn{3rqY!xOXknqon&orseNrZ$QOBCNix4aTEx8=yCxk$t9eu~2z7#}<
zW0OC+I!XYCucyUbeFR;OrF)s1gBuZ*ft8#nRKPSSFDd!YJgDp?y?@0E&A6aB@8F;E
zzACZ4@VtWpRMh?zi%ln8C(%U#r~s;@?wTFn>QOPw@{!-ZF|0S
z&zqx~-8pVwRyMW4u1HZBW`&!s{bv}KjWOxT5w!eb{7_Ow<+YUFdnuY3rbc*452c=c
zLO1m(PwQS42G!VxiUMh1!l8HdsPk9>qZLv2_JU=VeovH}it^9Rx2;9~mX7~UjGoNM
zy_4O)DF`LpR~jMKoNR+HK0Z!5G$oPg(o#lQquC|iEv&(EO=7u@TSWZ2nFzcmt
zbMzZY-V49|?8co1V;s&m*)2ZUf!VC3w8+e_jqtzn-s+I?BBj9poU19=mVWkvru{BR
zkpZF%21ye*RUZP%5+nrK*?wRFL8!Pe%m5^pD^!n^cb-m3>2sh3OYSx<92RU1LmhP|
zN=viRZ4bbz1K9KF%R)hm!?pbnc9Qr@*~4niD-wSy`fx_t^Y}M8^}5x`~y_srt41+YkqO`JUbD?!X^~bN${td!+E^0!?Ns51o(^T8!U+-smXX
zlFU9ViU|G&Mu?wkYvTcS%?VBlD7==P&-18iX`#XMfOGls98_QQ{QS|dgWK}!wBqZ|
z_e0$?tn$NB>fG;kv*84t>0bAlfX}_y3Lsde=bxC0&Hi0T(Jf?T_626Nj&@t;YH<=4
zu2}sQzf}*pcAao*Q0Z-NJ(pG}m)uJ}UNYyJN$%Cb;9_}8y*75`db<|GPL)PVjaf{x
zu3`^W`eE2z?N6(~h+3|d@7k5u$5
z7KrH2X{o8BLb^51+(6Hw5OfTJfG0k;E{Ix$m`Z&pFC3kmPK8sw_UuvD_jYkf#`srJ
zB<<5Hl0RQ~zG`c)5uV}iN0(`J6U(G8uwcL=61|(_F3uO??x%ak2MZ6UvZzU`#eO_G
zUF&3lMVE8xsn{f$2&E8SZt$k0^-LPR#ef-C*%3`$_1mf;DrE5jw@0By3oJMlN!KM_
z@h+C%_i_K_?Z4eqHEkLDr^Dp=YiS_EnJz3M;tZh0$IUyy0`mn%3djcqhgLXW6hT6@
z41LHq$K>93x_M;>w`|>}POYx^+k*!Jk<1u}MHn<#(4it#bV2`q{Z-C^N7JXiazEbm
z)5Db~53$O|GP!m3SM!%^@GeG}ZK+t04Jn(Ii72NLht#=>G+R-p{iqXBINY}W9kG_i
zkEwNVD=%}|5x_vT_GbZcuNmKO+3gX(?BqHH3Z8MJLQLq0xiRdF5RMf9`cvbX#|grn
zFa>OdwB$Xowd{e0xB`m#bkIvd<{th!3=?NE(&B$R9yWwo7;4{9crE-RVu(++gOv%JH%(}+8SxIwlLWtKaHqBx{Fv@PH|4|P06u0rkf#8jpONBBI{5u}y
zBsAU*(XcECbTTVN-iHlro-<2-m69|Y1naW+*iVWdi^Iz4YM@gjVg=oK5bt&d{9O-o
zXaBEuk+$f#RG(V5I&$G5+RlC{31leK6E168j3_<$AYgQ}JX(S_iiHN9pkOTGyhu@O
zgW1m4&dym#D|!+AS!91c*`Akl(^&|-3zmV>zU6p1go8|+xn~}a}Dm-Q%Q&A_K(I}PcCx4%V
ziO_i5ab{*Eer}b@My^cct8rAJf0}knxP_oU2zB8&avLQWbEOkh3(-eTF7z~-o6>(&
z@61gwvV^!)95~Pt5))q|B5H;tL8ob7h6^|gv0Hv#xs59&5eRb+o)*jIb7vh@NfzK;
z&jMok2M9~j0ItVokernC>-TT5k#sdX2mk_$TL0i6|M(;Mtbz0a)4-Nnws@dTs}{CO
z7bhSdIp^KLFVC})6S<6g}aPy~MW<0|6+RfY{EZ(z(&}OZ?
zZ975LUFjl~p?LRRSIq3gOs9;5%igub5V&w_qbHDCn`q8o(QaKWoWZ3-2y^_TgRNCr
zcZp+A*|G^9D!FR>{LL5-hKjUr!VBH+gcp#eZ4c9G|J&zgAU-k%z!xlOKEQQ*S6iKr?-;G`7SCb~m7UAvxC|p2GeF
zP!k}Wd4XAj%4PX3xS;Idv;djf2CyZT&Mn&VLu&mO=w(j7z(8GD1c~SE?d|5Rz(%PD
zykQ{AXz@k=^03d{2_lopA0{B(*Rq*aJ^vLVFoHbpSioMx9QxFSOP7j|&aWdAa0sLV
z_sF?=7{zwNv8^3MO7(6#n1=utMAT{^B;0xC*O2F6s~6G-#L7H
zS=_W(ELkY3(-xl1q`D+hGYHu^sCMo7vDQh&T<#ti!Rc+kR&Oo=*EV
zX^@*De-q@B8iMc&(pxs_&s_fX^;Tfmu*%Tm0(C_`+2D8E~D~ASAsVgZH&*iorQhBy9k;Sjx-QmiJAS3{}|KqjqS_{ToraMB`
z$YS!#tUr46j)g3X2r(N&V8|w5e5SpaRN0tt!1a^{xi^AAmCu{ZPVrBuGFX*wPXKNK^#Vxl=8@E&10%~
zgJ}`b7d(q=FN8TcLjc|m;GQ7bHkzosEHn4nc(KG^jJms9zxhx|M-DK4pTX3#a+gZ<
znVQOZ{83hGhZ|^6Dk_0I?l@Vy`+*A+qOWVf3nxX=*#Nr=0&N%v@x?inNuf~I!{}AE
z5tbRH9}+dnOY-+02h$qXr+pn$RoQwu*=yPH?Yc`m{gx`|k9TRkZ5>rKkeg(eyDD__
zP6QJzEfTZ00nf%dI6+5Oq`SMj=b%6Mz1!oM6Lh-QuOqyL6<1gaR8&+tbp=3*`~Lk!
zCT8aKot^UtZ{FgV%8NOnb#nEgAITTk=SB@!JbP9bG2efv(E;Uf()?2N@P~gT>_fcU#ZM}t(!-mvUBvfhYND_wB{a>
zY0E60Y9%MYJ28*#AB$6awA-}wi<|;BoyWBEe>R$~>=J$L=iQ@spaaJQ&2hvI2*ME?
z;8?&X9|gHApz{(0&m$Jn2}R`4V6(CT@Z@Uc5?gh3b#%=tU>1LEY#2a{NG!h{0)h>K
zm9-4*awXTCs{3;t=$^;zhI9Zb9~>LI{Ob**dDiog$KELBR#8`vX>m#_ap{1Zhk1Zl
zeHi#IG>e+Xj0%jd=zQu9x$ZLf`M8b!aZn!bXu!jB`}u~d!8(c_w`Gj?-ka|+Ag8mq
z=Gk04qVUs80`Ud&j>c>R?Lmi0D~B@pcay=tV<#
z`1r;kj5%Df@<6yO#t3JO;t+jW}VWADRCq@BpyH1C)z-CE2LgKm5sNUzFEC+rEk1mP%
z7U~C#R5odm&da)Sa;|ZFGJW~5D*56j_t4YssDin`BIk__ikzL~2bA~o3p_ftqL282VrN$&3?0_lLV>~Z^Ug@mWBU{QJeHfs
zUk`7{{kAw!yEebkZlp6!x9Eu%jFAJL^Vx6WJM*>jxYq_iJ(E7ViDoKaM9Zn
z)b93c6Bu(D5NCZOed(~D=^{l*{H{T+xir&MRbE^n88fQ?h^5J=&Aql%Xqf0t%{oT^
z!MV?p8I|L|s^5RneE`Ct+F0!U=x@8JqBC2pi-ip>&iq2ccAT#1eZ;RJAm
zj3ZuEjj7demktd6A{oGM{Sf5jXBwXsR$igMtY>U_YgoGTk9?^7ay7v%kPj&aKR2A}
z5Czde)oC|+)U@N8yY_`kH$PX0o)S5ES4fGwdGFf#APWwdkygp%h%o
zTFq$BR#fd5pr7~8$*6&Eaq8b~{@!qMW7W7n`>qujqpMJTS
z--kP1<&JkP;IM}cdq4L1TIMnI@e$XNHq}?=Jbe#)-!bWpe+?2nWMu~@GqMuBJlwVZ
z(_H6Ug|*3|=nIaROK@mAepGYG@8Zg;G`E2-MM*|3_;bi=nR+Ek$j8Qad2O)A!a&X2
zd;RG9RhEhwQJ=`0I#;Au9fQ&)_CxYWkQtT(su$-eCD8j4A)AjR)P+g24
zer@cWxi4hSn0H)|SZ?^Ok|_AJA?L~Qj9$6juzXp|iwsSzfk{j^mtcJ@p0>^S{~YE7
za|MlfVq%VNfd%GSd`V>$vwv2V3&(~ftLC6>TS>_?4O8d%#tp7hc9uGN*W_EV6L252
zX{HY1)l-*XoILtva>(z8X3u(dV`FWrC@T??{D}Odg}Qk0%$s4gDd!3|tpe38D|bNx
zC{3y|kK;n=7@&V4@sEJp9o~
zMo(^Q8gq=n+D;)BInMaCEu_&FqEKxd@fcq|bEbQ!Ft1W5}witRvbr
z2PS`iTIi@XP&o;|_~rGHNv856mMEhPydExaTj+8yqX_?V88m;azjSzoct?Oe4dKb}
zM$AhEcAyDd)>aRWwT!&HInWxi86ai8o0||Qfmdo5vFT;A-iL325>%sQC0mg}n?-bD
z7ge7<%Hn+KQR3kfyf3LgO(y7Q#bjQ~n`S6nU0s>TyY4VE>dByTq@{F$4UE@Ab9i>@
zRMfZk!G`(g_)qm~m;5&Xo1GwJZegq}Pdvf4ms96T^bP<#ZU~s28hposhFRiePKFuiDmUzwGOi2GyAiShq^t&-M?>Po>z`Hfe*8kds4kX=s{zEVv3@rPiNU3HESH
z;}jZ{M56XH|$v$NAt*ikQc4}n2KQmfb)g}nJVKi(X1MNiDe46_{PaRb|FnXpm=A}Np1dlPr~M(sNc!<`NoLN;hM3lF=;
zM4}?C!WFR7DGg%tTaI3CvltWx6yAIOIp=bPY@`4CyBZJoQslgHFxn5T(=ty|2tAdU
z{uJM%iY>%2^PTV36HHw>cN<
z4-xX84-B#O7W)FxU4JTv+h6IGsy5{=U%Y6lq79^J0H)mf-&&kf2aIMh3v_mL!_xL-
zr|5mmOl86jH>c|6$w}`+3;I45NCb7EBPL{;2OV9j8luXR1X<5+25;T0G&rC@5>i0!vMRw+Ea)P3d-nsD30NccAF(Ykvxu_d~JdaIcV}F@xutp#WNLcw8
zR75XE7XJS%L+pE_;O!_iEa+r)vf|@4{Q4v?*Njz@zRkErZy1|PuiAVpy6jF2s}6~v
zMjxwMr5erznF*`&P!?Zc#R1RVrLSzM#)tLUx2htmtT^GlE>H85D_nSdh5uAh8^@c~
zOfQ2)5f-STZ8bo00|xB?YLUnG_NC%N+1oFG5CSgw$57o-yKP=YIO*pY9)CkV(
zfFCWliv!`tsTYWHgOt=4Qf1qlQWqD;52)yEDWNg~X!kp_+={nwRt*jghW13EzzH(^
z8To!T@fN&e#B+m>vUL-EJ-gdZWZ&E@XlLHN`cv!G>y_~Wp(@gQPMIq&Ku(07U41fw
zd(^Ot)peLgpvJ^T7!u>;8F_q0NVAW%ZIv!LxaBu99et|6MI|9)Zvs$v=;)eLGol$g
z=$}5V6wq#@MgMQT5?(u6el4lQ`@4*>#xfZBN`s2V+a(|W6o~j0~V{At?O{if>YOT@M=Oyc)A{{QHU~_K{VfaHQNYO
z5A2T<-{m~^uX!AdO{$le5`m5c(xFS5H6J#Fp=W51;J}TD`T@`x1q37omdEo1e@{2D
z-7k5UGuYtN`6@$6t7fz2M}v3xo9HG`RPnJ=qzx@;!0UtZvEYa2O+hr`zt-2M;Ez7tS{y+B7vdyx{gt
z6>7P4Awpu{^&5MO3W~4)F}XbLE%vFP!JhE1y|
zoU2H?Be{8h`*&%x^j1kaZr7BGf^n5TR`}T?a6aMVYHj%2jfcCxbqIDTMI~7RgTW|F
zA%k~1PX#Ox;!{sk$1q|qK+QB>vmG?Ei#98FS)tKQ;8mtw^!$z^`{0k}q50RQfV>v8
zg~Y;*2(Dd=ial^?0{co(7
zii0zdmz??vft2l24@41oMaMC8a(7{b^d-@`f##zrP=Blw_r1$)r{~=`TdPUA_H3H(
z0TC{pUIY0`KU=V&YWo01-=<-y>iJg*JXf&tfWAv)6nS_$NJaP2mK|djlX-V(OO#<$
zYthRXj1$wTla6*eI<8;A;k60;+F!fuG?c?hEm{xlOu_x|dY5J@r#82ZWdn3U5i=g9
z2Irvf*WBkI`a*44U7E1)&O1Z|=fO<}dF+s94T&>e
zXq6UFO2VQcKsZIkYe@m!y%GT)Fr18?08I*Z68@)<04RO30Wmi|hNp$M)b
zq99~$@^w;TS-#!%DhCywjqaS;{p#*0ja}BEIk&Du8|t1arm^b|6TBDSNHy*R`%dbA
z7iMw_M$`h62H#!UyhMrWohIK#O-p)+pk8HWo@RH$$&|!#o+$^YQx)B+Y+JpP0i_FC
zQxEUBe@aYoQl<>pMoehG&$Urq8I9gKwf53szm3>b+lirextNmDN!DYI(;7M_0TiQo
zPr)Pn{&3KkfMC|p*cjSVQBf#xhv?%?;sCx#%E*W=EG*0(J<1+dSLYF7sbMj`^d}
zwUiW>w(b+pzP_5Th3SQ?#RZ?uSS<#NWlP^btMc78^X&1i7&}T4s%!$B&>gpZTV0nG
z?#!&Lm9E*jxeaJF0ANo})Q&@)hD|ChD1(8B4EeZ&Y$=6jf)YkGw0K%;{4uixxyPN2kwV_F1y6
zrzTd9m|pVcX8a$v%q6GGN^(rI4n*GGF?>;5T#_@*n)s%6v~C3PHw0aO8c{^`%+l)M
z9_1D&Tk{gCZ+~hHAVQ}6-e6P!>XZ(f(~xNixFk!_OLf5af^70|q!9!)838eIE10}?
z$0m;@A%(VEXomvJ0b@rD10uoW-5C;p$+wqC8zA9XyEN+<{!j~4dhftj2d+!RP>tv;
zp_Hqijihq?ek$JM*a;+j(CVRvP!0}o;aTjJdOvQOv8sk_lIMZe7sPyQGTs
z6>XK8cyZ!V4)fzRc}7rU;r`?o(YvmaL1F*)?ag(H+Uj|=?yu$FTN-U>(Pz~LKjmh%
z&ZmgwmTmG={!!20oKzng?@|I~hu>hyYJgM9gq`Q=b8V%+$3K{frjD#bA4>bsHTMN_
zspD&3rJf}Dx10`0V}El0cb!BMTQRG*VzI_GFTJb(b=0xY7BGg6IHGvCX3jc`2+1qdnVrhrWutU
zo=rq&j+Z4AZOoOC5N}K{aT&DO*1wDXI)P*6E`6>BWkle7+B~gz9;JUCb$Dr`uK3`0
zG{`r#)aoRh{CiciS$iIK_JgTeYZV_E%&d>f1Q}I{F}xHn+39ieg+A}i7^A`j%$v+i
zD(?^tH%^W%ciko-VKNlW$EeabAdmjSMxWGizi;oU>k=8OFMi+Eqkg4lCLQ@I4(AX0
zyZ22a6fr^ow%|FOoVq?^EW-C$g>&IWL8Sm6wTD{9DjS-<&t5JcoCpkwst-9Vm+@&)
z9kv%eZyah4^!EqF#mQ=GQwR&^Xrb&Y;G`;MR`t`bYPlp9{X8DLgevBajtWRz49oQig4_?(PvfdEr=1n
zZ7lCzu~1e<)@(?b-i%~E9Zbj(j-NEa$Y+8KZhiJKN3w*^S3uhCs2262cA1Lsk)zsx
z0ZjfFbWO@8b;Oe7+%C8+zWI3O%w1v=eQ5(}G|L#CYVP-FQcf^!{}}~pKTX(7KTCPc
zUxKDvi@qT(P&z2}PffJ{`JsJ*@Pd(%Ncp3lQ-*#mg6-|@HyEGU`uIyje|p{-&J)N(
z26h~hOXs-A@Sst@g3z4eytPoy8XBaNt{Zr-Emt{fUQC^)4`IAPYiqfxYFZciezo&%
zj4bOaX_*R-?uiNEeTq6R{sr}sVRN4Kfrn-pzV_xH8MCUP!kt?>$(^me3b$G);tUBJ
zs-#H!1G9;Bu5rQc&bA&rT7Av^1z&ohbAXN{Feh1fZMwt$OP>)m%i90%8DF%tY1O$;
z@{jyZ#7_hHftTE7Aogs;Q6J`GFhz5y`_)5}Zqk=hneXtnXXFf=r*jth_2~U1cQU_M
zLA4BBh+Ia(_x5H*^cUj7#$5X5stQ=tujJA~Pd4#AY^jR+IdK3W#D
zrdnq-)U6G^d_o3vuSJ-@67{L0y$`J=7#1Ao9Dkp?lab*>1%R
z{}7F2)@GPj{rO%~iv0%@-q^
zMG`X4oL{HrCio-wsc#!#2Wr9##Z?*m`4BMX!rPQy3b71}j-R^|a@>`>%oB%-Fj8tX
zx2G|+GY+s!~Cq
z1M9yPeP;ej?K8wT^Iwf8NNHhiQPxA>#?;{Lx6lFSsxO-V|Y0sm)@AG()ZI~g<9A+9FF=+u7HfKTux5P!Kjpkd^{~}
z_MRnMN<{zbmC~I0Fff@?hSwY{^}~~~6kfB|%~qf_JrR28N7zulNR=1R0jc!#!ewJS
zoXO@mhr+jA8H(a*Sj;tjXj`YII7x#J*Nly~PHvCp{qwJ#hNkuD@RYUVWXaMcGm>^G
zp#bCs0;aK)rP*ryW~X^6#rZ#@$g;pOva|~?3b<;og6hX9^vUOQ9{rCV|7GJw1WGYLDCA^{;+^w+OuI2XxS|Im|walv!rkA-}&)bNSMC+#)j`*A#x
z&UIK?qvZe2Qrl~jCif=Be_Er&EZ?0$g2e!OI7@<%g8cnU1a)Yp1Q;)o&iR&I0!WSo
zpmGiltii0Tnm42TbkYpQ4_Y+=Hj)}%b#)0Vqm>%rsxRmb@fEtu`mNtN%Y1!Aa8~AG
z+RmVr0E_5(7VH`AO)2nAk+q?jHs&k;)*a8?FAHD!%ff>079CUO-@faiGnDp-86O0~
zV^kjC&_-$rP{b)|Elmh3i_XhH;{(`8w@-dEGwrNAnM
z6=_*p_Dq8V#SxbqcBlC1yXzVU*^kCElq_}1tYb53yPO2>VQG}cmI-sA30FELB<|nKJv;9%q~ilzr5`^~=)$3IX>uFT%D5^bA_ASm
zlXdt}(|Mlp!U_sT@FH??EhBpy_v)TqHGw7+0El|5CdS$F)Ik52>SARW=61lTF)Jav
zGtrMdZ{FH3wL`#fHXg+}(myy*73-9jlQq{7Wsa5U&emLZov@SE{UWWae|UN3Zw}`O
zrYKF3D<1v!*2n4aRnSBVQ)WBbyjAJjhWf7Cb?-tq+}4{T9Sv(myFb-)wbr^9;ovu+
zR~>_Q;t**y+4%&aQyn!|-Lo4$qMHEF#UFc6IP82&8*d3npVfU9;^>(R9?Rp-O=m-2
zY;V8G$g+&m&^TLYzQ@h>_jYJVshSPf3Zlh91w%^?vBe4=ZGJ0V@m?_kix6X&l&<3x
zc3BH(?UwB+17A2fY4feZbf8q=9)dxQyrX{_1_?BPGd)}n^e}`Dg@xb)(Pz|fLSz-{
zi|N20A|_N1D09N);RGF4`1!8w$TRQ-m?SPk|M}CYGkm|lb$88t;aL?ua}Mjpb{aK?
ztaT*8{j*x0BR<7F@oMt*^8vAmYDocC-IGO2i{*;Q`NM1H8jmDr(gsdh7So0p#XGLK
zNT!{=#`Ue1p!~m0q~XiS%@&HwtO(HJ@d_X{>A&^~)Nucw(q$HFtCdU62C(j}Z@5LT
zj0Ng*=~iF;q&jrxdEb2ng+CmTV8fCADG4bhMMX!jmVtR35yY~n=VL)Xfy!;O*WRU5
zB})~#b>fg;%j%ADFuD)RIUEH;*w7rtMMlQvAO!rwdj(XDy!LWsP3R5V>tGv$+NLYQ
zikE^}y)s)iqIT}bk55BOIxSFiBN4doRz$Gsm})SQ(E+`6QgY@V(!p#4RYQuMWDXPR
zE2@W12Hc6YcXu<2@o_3wqJzEaq@>fWF7>>W=AiYxSrXpaeTcRk5Ce1x1Q#I*ok*TM
zq>8*HIw|wCpf)V0NUmz0AiU_i?(ygaDN;NUMg%D{6A>6pi&k}K$9t;0;#_
zm_Gvp1IQf-mqY73wMjg9p&;U`5kZc`tOFlJ01H6UCg3{T-QR~JVgseac<=PCS6AB%
zE#i?9JXkJ5{w{s6U}@WQa$^C6;o8-!y+6+odTq-i+wdNnre@oJx{tFj99=V{zF9qJV
z=#SCSrd6+*kb+dLvY|niLQd~{k7xfgmhX=Hp7x-F+}PSmDJ{JYj|_snf^)Sxu%{>8
zcH+=0wTMvfvfwW)&OnrTP2)Cezp;dWm9u#s^%bzU*1!Yunvl>_U)>-yi-rE$+#2t(GLX)?f!t%l3~ElLQ2(HeE8LYqNg{
zqU4Xr{LE#w;`}QgD(83b#(yIQQ83Zf10e}?!LWh4U`6s;Q6Zk2+4e9HvK%kt0VE2C_+W*Sm19^O%;bK$K@5YDdjJ8n)p
z^|iahoCk-Sd3=d%>UjY#QUT|=)GV>{Iz(jp(pkVY6jOUL@@DmE^DPcZ11dN|ULoYF
z?9@8}x$J}FUU@Y&pAqw);HCQ6#*knLOC8V={Q$dlwMJJCiZsBVD66PU&CSidhyzN`
zYWWO)l>y**4B%pwwjy&dh-gAmDqaEd?HV~bGOQ?va3>6v4G__R$5nVhbA}GLF9F-`?R)#5ZxU50(<97%h(!?et+`-8;#p|
zj5XfEH6O(#Na-g7|BvRKqI&0b=U^5t$PG6PP%*?{@&~ILvI@g!z#ZmM9AL*n5P|qqf?r`~W%Wwh
zRQw3x{!KUGC^Lnv$ieyzx;xXXvRm4(1>;e5Fczzr2@u!?T+ahYi-H0s&Ew=4p+f$E
zjwaxNid*@x6J=3SbkKe*QMQhtJ$O(^V;zWCf845dp#GG|8mQDR&HiH{E)fX-3q8PW
z6qDiIPO!LdYJ5_0=~Aa~V;zBI3(M_c7=z4FKb#4Ee$m@yXCAP>69t+kt76TvO@O9X%8vt^K(Br_?p3rDl
zQ&V%7`?h5)P`#ik%*f6z?o5T2F64;MgZ$w9n(q81!N+~yzI`KwB;zN0Ut}IXrU%O<
z9KURU&FM?4Q~nehO&~5>4*zf_{pQVga6QEjxR)l@_LFWZL#zcJ^-l$YJb6Yiq+9Rd
z3enLuvpJPsS2B}wTjc8V#_g=Teq|y*_Rvw?>f)v(;t9&tb8xG0ad2Bgn@!17q#S8-
zx(w6N1|@FG+!L;O!??}X;ul4g$sws0d*j!AVY)>uF+ZYBc47a*-fBk>V)bq=&T`=7
zY*pNM>nF7xI9eV}iyJ_>&S}Z@mL{0DCY^Ru=U`q4-Vb)*$=UmNal;<-o-W}hNG`xa
zBxwDMk8CTiQu3sNd`d}8trZks?8cqZ5@0!nDbri@93pZv0FN&s1A~wiB!~eaS%NL~
zw7PLG(BIks#6=M=04Aadw;i1{w{K7?wt>=W7iQ8IaBye<^aKjULZo>Kcz+1QK!G$4
zQJ8z|e@kdm++hxCoty_xzI+y|iwI=5HNdKii*Pn!V=^1-#Ss(u23D=L9Ig2RV?2zm
z>qjb}JOMo2=d8~EXL-In>Qey$a)|u#(}3wpYvKS0;4;SIR9@)xj+M34Y(M`ZDV^fD
zq-O>8@B03p%&jjQ?qD0s^PIn2dSyw)Efx5_Q-1(x#gB
z?ub}y8(=-@ON*WA;P?@Bn$O}QeK+B&lA=++$-t>@=~j+|FElcB+&GvmA$2(-iGgj2
zmA?%R8pUsMC&Iy<9NcN`>HLb1Ix{#7c{R)I&cz=t|J|Zwkmf=D<3sMa8~K8(A-}rq
z*CHl{A-B_UZ#F^$;EBMwL>_TiSvzKJ5HSP@5}lxryD(WNVpY3G4}~cePz{nwOT$ad
zhF-$Ro8N5}=H6csPNq(r!TJP5;>CgK7(uUrIu@b}8oRp#VN$FBPYM_${{(qJ3aAro
zPGdiga4DsOXMgT<-{S>7CcRvI2ltS6BZzT^s~p&2Nk&kmhpP^CMPqprqznHc-aG6T
zGGFLY-*FdM&aqU#PF?fTTU>FH091I7AL9dT%3o64+&sIH>XE;>GOutp^Mf4xhtQKsL`8p(g6+JpsL1!jhsM^{G?gJnmhq;x?6j5lUo!?2Hc`6_
zaG)47P510E);=0{3HEWW9(MyWfHp|q5lD0gSOrvle|=!D&1Zc>?3F9V6UC@r+2OQi
zt#J;8P&WaqzvZ~#BArvHt+L35kDJmyL_E1@nugocdA}ep;96o0MVE$4B(r!l``}})d~bdt0zSwTfr}pt*zapR-+sCf
zAold>Z*%G49g_&Im``tvX7B4d;el3=+BX!;1cGTjM_l
z#pDso^d}mbB0{$bQp5@|&z|{mKmLQU8F(SYIUp*ckjM7W=u%TzF+0Jr70KYPWxm^oljI1|PK-c0j4(1k=%s^!#O~
zt?ljWsLGz%zw`GnIEMm{4yr*U31-CH{vB+&%|jAqh2xQ{6p@0YDj`pAG}rRSQ{GF!
zV9s$lz4fD(Y@k~bw&UC~zLnb_IbCajJ`Ly$M
z=kHyY%TSAW>E4rNE8xujg(ykF7j9FNry4((Gu_|&^+rC_7`gnkRON~nTjNaB=6Nc|
zS1>J8($qBNMLWPrz6i`JJd{A9vHaWnFDCM}xq$*^<2t!;N6wOlRwlOvcj{lQ4}hOa
z4PZo~tX7pftqYj#5k2=W(BeE)Qj~wNcehu7Tx5AHYfk}fn5WdlByEA7H)B&S=QcJQ
z?_bJgFn+*wqO|gzIq!|@Tv(Ty?)kk0)AM(4CH)zf&y{OtPDXM+R+!c`xnLHnNK;@K
zKKu6VMsyw`Vb6IM`&mJ8cTtQS{Is#%(&LAX3MZ^@wVyJEGA7lhO
z@0tTERk*rTq`9+z6a}T04;UvLdH4Y=mZK`2T^mXwaU1(5R_1y`1piG!B1T%YpPPBM
z5p}s-{<&vP=f((3?rv2sk@9YsDvFHyCVqbV?g{nJNiHgC>H|`zCH3ef7yNC5g_K+|
zC9C>Rn-1>c55jvRFKsFwjNzyJO&&tr#g-YapF@Nf21FS$c5Yi7%Sy?wX^GkOpj=76
zxoQ&+PDn&miXm^4KVFk^;$_fz#IK@uI?$xA)0mS!WM;V?#>8Ux@86HPBz1-V+TVG>
zRQ`?@(bXx1gA(v_M4*_}jr(n0zI>(HA<4VQof~vRN<)<02uDFm+7llzXHU(Bi29P#
zw1%uG$_|!T++9tn8$A>`GZ=%WL^Af)Gu)Ps`O&NQ{9F5CTMTe|7DznwBW53bliJ4%
zY}I>o>wa2Mo#acxDypc4hh>4rv()D|dRLN1kgW!qDC$ePome1_4HnqK8I37nRQg7j
zGMFR-lVP@n{lWHq1lgsoQO94i8=T92L2M}HoB#csfF^6w&@eAeO7F+KNl_cfJEnqn
zY|;_=1%yJ5OF3m&=voy(y2B*B9ER~@uCE}d1M1ZqPZpJ>OLqRJLLDm^>;R5tdPZjM
zb9?)d?x9v5@|D{o@@op?t9eE5_Jq6jFFWR6qM4j4ASZFL^IUNRP3VlzrJF1Dq8;rY
z>P!h!om=pzjq6Ty-%hBEbfgbAv#mVJEa&4~V;|snT$cd<@$u5R+eE=Rotid;bi^Mt
zqm6t+Qr1JsOU`C)ZQ}5Iiv_c{NN_uZl@5h(;b>;fCdm-|8$e`fPH^RBPf{po)E)UA
z_rb~i&rBsLv9ikRXpITI<|mAELMYM=+RED?#f38g0T3%_q2Pn<*s^xd7_y5l;Ni_8
z?Bl?@7sb+U+zyNAH}3ovWgWEMCGt?^Nn{Q~m2Bg3VdZya=J^T`K7x
zidi3Xq9VnS2pPGAO<-*3>JXpiE-46$k-Z?`r~+Jf+1y{Xv14h>dMoSs6lQwfVhHTH
z#o-BO^Hb@45lYY#){2atY8T~pR3hFZfP(IBf
zGDzruH3A44?h+0NeTrB~Iy*Jg_04S*h}CyyNd7Wm;qa&`5mk>)r4VG+bZC1Ve~#t&CXunF`Fn|d)Oq&$fX#znqss=V2y
zr<7F!Bo_aL*uao?7kd$eclp}VG*=~N9Hm*Y3?5u^f6ZTI2JokQ%c#JYFys3T{N=B4
z)u|4#^z7V=jw{1CXU#T9K7L<$Q7h!=ES@4%;-ElpzX+juh9!xongBb3gJnk+9>w`nFk*}1|=w+-J}Ke+gpO6
z13zXq!ZFJ`k%wINyfhS#2nr*}AewaG!as3fcSa&m_9yqYqO3t|sLXj7gQ(c4DCCSL%j
zCa_c8W@7`i?t9P{A!qw51bxSoL|%Gjs&oq)8XD$fr2zdG^SSv@PH_D}%q5vCl}RAx
z1f|H#pzx1HN$IMX7=KHOxrLX`le+ww_Q#%i99V5_@zDIr;86KKlqFzTX^Cx;TuKp~IUwE1p+PY6TSma>k#
zmBQ;r95A+x??9ywe9U2M|NLhHhjiUJPb2qZ#0{^Xwt|Ka&baw9UqOkmN-0
zKZ+*^yX``-9HQTaIEFtSDG1{*DbyZqk0FX*xE{aYe7^xLyOCpv
zHczB{%XmRY8Wt?b2Q`Gy5rke0rFH_4&iI!_wg)OBiq&Vb(F;1yt7C;LJvf}UMzFrh
z26HaWxGM4V9)+O%Y~6I2&0-~q`^9MOt>Y)20QBK$SraDeF9QopK5^T6X@9jvhpBt%
zS~0bmLh9RxvfZa6R6|k!gX*Mv-%@f0o=j+FVALdxE=`6&fY)Pd2T6Qhs(a19gh*Xg
zlm~P3s-Ao~U0qW%0+Un_)qaMD_3$Teoj$bBV2AzBl{a#lq&?HfuxxfMqB6b$eN%{
zX?_<<7sv$t01ioLL?UNLJ&&W3Z#(u=4cL~I3-pj$wGOtt`d6p$?V6FG9gq%nLp#{P
z^UWJyKffQ)-z)wAMD3>yUO2nEyFsC$P2daXbHhk8M`Wgf5G1Bb{Kb8?urJdMF$ysT7-O$c+4e&NAQ8P
zy$qr{)%J+-!iK||WdS!E0*QJuRFiiGVMG-Znr>{K6MsEX6Xjs0o$wKd^})14EHkj(
z0J^w)_=wHru};0AeQezJ=20oHnF4*usJqe|P0A5^mvFcLa8TV*NX8lvym}dG;@%zi
zfxDyaUlzg-(xv5qIr61))+3oJx<#mR%}0xUp#$8SIH3wN4R|(Ie0+KaxmoPzE?3KW}{1FRBFJThW?dl;cl-i
z){v!&>RjOX!NfaO!VTDEsnqe8=k=<#rm$_Dy3v(
z*@KS?_O;VGZ|{^e%}?mVeE8n#^}>zKBYUrHw)P+Yci`H4(oOsR2`y46UPnKm!T|;}
zBq4$KFT~NJc2kI%8CN45B_m_&EDT-1zCOkG@84@y4?@fMPE05AER^PWBfSv*xBz5p
z0L}|A4;v7nIv(#h)_u@-K?z?CJyhffZl42~KI=~IA*^5hN^-q*9vn-F6iVO>)08Q;>z|zX1S^RZ-7nv4(OO-|J2p?~;+utSQdvODlh^KCVQV;RE0#6b-
zH$juE0cihUp&K?2hD$8O*w0(HC;K76_d8W!-6uY^fD!f)dBeV)kId$q33{XIR_T|f${{H?Ki~YC3
z`+U!Ckr3b`Su53&$y3NG1C1*CA-M9NR!$yDa1*w$7MrV80-@dsaDk9JKmi}f6fn&?
z1KJEZ)*-hGkubv=1~IM3vs`4-&2!*9I8~_X|0S(p}Uf42=X^kBKhk|J|r+Jsc(^62=D2Bo-_ebjQ^YCKxrI$
z=8Y$*$J8}I35}Rv-UIplg-ewfdpx
z;J$X{Vpa=-;=J5w1mq_3ZWM>lv$MhsEIog)hRAgltkW>&hvYGM-yj>UY21T}473Ab
zS9uitBM8#zb*d{MSCNFroP^r-*Xu?*_)T-{rx0so0b$!l4!Rk|b+1SH<_f#owQwCL
z?Z+%SV(*235&S)L%8SfLI1uXxj4y!Jli>
zFQ}-KKsSNrcC!gMU6cSUbo+gkbv*RM_4hXykoZ?YNP@OM=-b%X*aQ15LOptdD&F|b
zmK%z0Z%@ixeER>e^%g)~tx@}^k^%w>A|>73Al)D(4bt5$-Q6H1UD6HG4We{+cSv{l
zeSe-}MUI{7YOV`w@rIo3Hr{GI`0)vd;l0UVUz&WcG)G)bLW0jw>u
zNS&YCr?O7qANL61H(ttv#`fXW1sPZ4SIDny_iM}SmYWz=A)djNRs@
zfibZjtpXIxDtoQ>@kW@cYB&G5Y*44d0FqbBugo1_aEWAV!jB5Q+yd`#uM^#lPfNAO-+n
z8L&VA6m2;WqalpSyE*LwlAd~Pyv}jKmlg&#AYd48;Uwz`vP~dSMBx3CQ&NUNm=Jz`
zP*JfLV6ZX0m>5+sHe5RXx>+=4kD)MG&nhEb`!6zV?_ga&|F*_TRvSOA)@fhmd}
zAaj&{sq_O(gXWL2?q--`
zQjUuXyep1GD6R??3j%6>BP*pIB#x;jQ-7ja^jWU&WVb)uEp1Z<;IHe*aly^u#`lM7
zim(;F&&%icMW3CeZ_vdew?J%B4l+u<`;hCM(v$S{o~Hgg?FXkprKYT^1(s!Xh@Xb1
zFYwdYK^$&$EIWD8^WNr2$^RIUUKJP5IgLy6(_ZSX6G*W(N{*T2nBa8$QbV~PR!U=-
z@^o#bMU;bi=?uJ5<^LJQLk}rW`T!5Wg+nnL@b>s0PM{&Nyr8-TvV-|pU5h{`pG0l9
zP>>_u9Yrt#lxl-OQ~-P>sleT)I_6Ye$r!-mY2p#A~^E@0-G1)T4ktQK+HfkGLZ%YhQ&jS1Xp!9btc
z{mL?mj{q<-Ofo&i939y}vAYTROF^M`zJudu0Z_LQurHRr=Bgmv=(LT&N^I57lA
z@hZ{3kJi2A!@L$KL_X8F?O(b9Qx_Xm#=!~g`8#4M;(z9HrSQvP87>=AbW=*HBddxI
z??C~eu^5seXgWCMQE{S&dHGsM;uRWZG-ntB3p0*A8;Kj-oN+m7+iB&WeGUHPZqWmr
zYYCfjX3vQRkcJ*MV=NSx?55ZlvtFAVz&=qtz}0~#Z%nxB!PMqRJ{ZixdEc#J#Z01d
zEOt2!C;_1-LBHq!nwtt6{@5}pVsb9&(Ah1ua!B!FpJwMeCcWNFVO-k6!ZEHM1R5@S
z1E;bPVr#iCiNN*XOGC8~B)$X;FfgQ6K;S4aaQq)z$C>gF&Hqdt7aorzK|3;k$*lu4
zR}fhTfG7+uOb7aNt(TfA%_hj3w}B*Sj`v$cgoA0p^d#idf}h2Mk10p)GrJB>J;0p8
zo6Y@DB945n3l8*#A1j+c#8R+FjiX7r=Zg
zq2+^Obi-QCa!oqua2js()^irkD~PM^NBGYNXLml9^ixsp8*&eFV~M|vktXRz(Rvv50sY5V~9PTitpfU*zvt
zhdTaZg)=3gjVA|iUYlDws8sQH{-lXp+|kZwW19GBlEDOQJ|Ju49Q?syM9CHl?kjjd(B)_R_s*3;Y0QqAG
zoee_kij76%dpHq>c%_^G9c}p2?r)5tiTCOmXNFOn0?V?=F5BsqX{K%_Rcn?1$y;G`
ze_g!$t`~Qk(}+nV^E81X*g-JVDiYI=SnAzzz>#-8N+A{t
z^WCq@w}KH!hz+H+(vY|D6BIi!KadW~mC4>dgVo9eus5+Nd>LzNdI;wQkP5UkqGaB1
zNlQs6+SAqWtnK34gOCHzbw#`P+p#zOgW>={WqIE;@^_P22AJ6dn;#;Q4)#jNZ*Zo@
zNgW5cP}76i%vE{6b=?h)Kvy6!5RWAFA8OdM8c}oT|5J`Ym^nK|meHhx0@}Ki%FE^t
z=8+=tm^m-LW%L_Y%|!@h{kZ9wu&#BXc{*ifYV|)voPbrGUe(wpe%aoM&GeszYy!5c
zL{+=q_=zYHs4zcC<}FNZfVttv#n)B1%tNaF?c|94DGsO%4=X(JazmzrEE(od&
z{8I^JtiBKvZ_wxxNyO4YEUT>+-XaRY?}X&`P4NDmew+u7UP#@qzBu!^u_gpJ@vtlb
zi?&9|`L!W>8Q~NrAb^dFVxskL%fvQpK)}B^Vhy#8(h|7O!D2D*`J*K>!w;n%EQ*2q
zFcwhdTgLB}$N(^}@@K)kVe+YsrtN2~ZSAin>2K`|+&m0G=H5*R(`L&VS8?q#k=e8L
zcjV9}peoQCY382VSSmYP#whO4fjm`+LWi1fpHhJL&i|Rq{c@nqnn30STTqzsh9~RG
zI?tskQDqPnS_k2^6u(T}(v!e`m0NL&dK+Y>5~e!TkGiTxV#sFj?3c7L1xOJNx7
zowdd`2k>6;5G>N@AEr#UJTwUWW;-l)2
z#2e9#CM;Q%UI<@7NZj5+81$V^`%#}p18J1SNo9Zw5TFz$G69DUl>4+jC@s!Gp`hjxxZT*Qqs>a3pb#c?pbwe6@j+D
z?Z-DHm|rt1z(OMEXQvD{>u^17f$7{5IxJkFG4a5z4sKFT`rL=Y5x`V&x5;Q
zj_e67!7oq-+;XAx&baA+|5=1CjvvW3^Jl*GlJtnbG8ly^l4xXUl)8|>`~Xab2;H_2
zf%UUfkMi5MB055q5)hN62BqvhU&2v42|zwVgSY}*cGrvp3$DW%h_+geh)V0dPKkgZ
zh=&}gg@;!p)le_sG!V;|V~=6IS$CH!ZYe|>)ieEy{%h10U7)CHP+=g6(?c(O>zN}?
zgrMywEH=xF+a|dIG-u4NX==}h-WfGCD`0yv-jYmz|C3@U-He9S#0tTrRYk0RG{}yt
z4Mm_cCraVz5_{XgY_#D-OA4c}Lm_5yvR{P+fVr`13Ene9WaW^@?gN)Q@zfQ6kGy%s
zz_?c#SL^IrkPL?n>;#)+_bpBGN0Oj9RFpN@kw^>#H_U=`CjVuP`cZ=+oTkv{hj&2|YHt<0l1e2hV~6tXM%=$s#yG-dk%?quf$!KauKA?rxi
zZ&Fxn?|p!vE7B$&wM`OviX58liA}m~-)Z5t`*en{CJFpE(U-QbEIr4|O5M9#H^j47
zoEEpf;9$0$=Mvw7{G0k^3&sES{~T!VrJtq18C_Z!T3P
zbij*Mpqej*sAO;Es97raKSj|GLLLhq#|2S|6xnN#h&|GTwJoStuokkgIEum3&I&0UQO
zN9zsfn5_(~i_KcR1qeHor;@^?fHl?JRfH-Ym4gM(^lxW8<(S1K^AoMW+Q{LpO|t?h
z$dZ2(@a?Z%tQUZfp`fAhzFE|&hlPiy^9a8w|By~)rU2ipDhkX~*i%2PT+xvW!)i!5
zlbFG;i>rNHOUn3pgzQT`!psGl{l)
zYqyIXU-dF_X69I+w~kFn_&a_63{>p4XPXjH+V-GD0ZGZDN3-BRMw1q4q3-~Uvl37o
zoSNH4x$tG7d4ae6B1rIjhk?NaqKseESugbie3Uey2}ua|%%;%e$a=ByBFDNbQ;J{G
z@=Vu5ij=i5H8L)Gbk*NRg06erz{dt$Q~g1mVmV0JvQBU_R!<>i8|5888XNA&f5{Dh
zU(%VN;D(O0&d@MuQvxeT_%WY&plT`hu{-d%iRC>4Su8Ef(e{RAh*TZvUZg5CYiATl
zb{xO)9m4EE=OS~|B(BX`9rV#@#)u)XoJ~E1UiC6|0mBC#k07=>_(>p`q!7Szxp
z-Zo@L#$RdY_XbJ6dhdq?1v*F0PkTv*ldsdxld-Y>KDxHARH%NGs`a&FSJud5yjnEc
zYda-V>OyZsE2Cz0(0p-6H(rHHfBuYeWc25>{)>iN0CLaDx(@1NrLt_qj23rr4K4jdQ9@11=>@YVEq4(S`{3
zL1`gOSI83qrfC9%Zz7<>B#RsEw)Z^_OyF;SA4i>6X5wvjr&lN{De#)lSelvX0oBC;
z;FEw61|<9yunk;5KF4f>9mxww7&Ex@h=74QfE1q|SDw>>q4YB+$X5?svc3i?e~z{e
z5XN~sWaIS*z_%bscRPpRkz?v4=f;b6*
z9|1r>S1D0GXnO^dBLK+P^5iT_OGmny^e-^72j7F1{6&b&*?jb6=e!+vK1|541n*Lk
z1%s}+#c7Wk8PX_*!+gh=Zy6#o8Q%5R>29MPsVE#r4NX6}vB?&+GCgs9dVha{;UE;|jr$8S<30Rbf6C
zAGYduY>oQVi)py$qkM+XwpMyWvgEr*YBeoN_;T_bovD>JNkMGbNUzh64uIXe1#
zvi3(XyTfm6J4`7GSn`UQ<3aiAz6r}7Unmoa*mZQ5dxxPGG&pBJ`#it0)88xT`>V4m
zZ`r0OfpdZ8oyoWQY%+<0qW68JWtTI=b9d9_C!bwKcT`T=43596{uGnQiJ2G<-5NJF7kqyuVDP_
ze8lB%|4QWvB5=7h!;-D0GQ@wi(4G&eZ^Mlg1B=73`U}gC@k}yJ6WsEoSJw;WvST&<cz_08=fSFMj$KL0A5n9
z#SMiT&AR8^Fq!OnCZ~Nv7E736eZNt4XDUmRnzmPL+OqXzTa`!uq*96*{#U%>X3_H$
zcdsjwv;^-wCJxMk32dh6T?YjeMSO$yY3Eqo5tRGHR?a#I|P;P0rOJHm@z_lE}y^-=!tsArJF_t@*Y`2oyQ
zwjuuN5KINV2Ki{U39m%FB@>wDHx?y`=@@FQ6?8)8ua54>B_3ReE00iIv*pp`Ri_u
z6_pB=^>;f1;_*Lx#ch*0_C43g38lqt*jm1KJw3J3Gnlq)TUqh4*&S6`n!%v}`xwes
zfZNduhwIUy6B!}3$rjY6Z|${vd!J${ZnC)ntNq;ec$!ArpAR%kc(#F
zrvx*`S3LL#laB>rx9GcO-PS4>%K~+=VS18$4NWn*y?ncbdY}5cCT{S9Ofm%3tAozX
z(SqHW?U3bS>eq~mc8S%3{xVHf_i8oyMQYTY-IW(WQ}0zu^p(ze@Ha}S-b5MADuk#E
zIlR$ECB$LDW@kDhfxM-TPjNUF*kcVbgutN$X#O%l?p`(};>!K<^#h4J5E?YDpNor%
zuARED_5k4|h%4y=N}$I(5nf(iP|S6%e9MfD71Gea#lyq%;vl4RvIapvx*dM75SSn0
zdImi4>xm@@41##$mY0@fw6wHFQAWR0DVDp)L;1dtp4Qf~Q@&E-bDnJ0;QE-J@Dlds
zfHPhgw&=x|!6Kzz#|MSB&a5MB!O)B5?(hd(M%PQ~NrlAxTC4)vo{1CsNsiGmvkhe7
zpJ8?3l*>DPYmd_dPyEydqDSKxo3z@JQ@e^a^{nUyvV;cH2ZS%V4blRQcsWi|b`76T
zQlr|Ccfs#;L)gdcb{JbPFR>IAe$uIj7-Hcv@%VzP`V~2~R28~JRK489JjPdgEvWJJ
zRwqjm83O|ng4-Ff5G$p0BOu#2JN41A0~09`on%>w%io$%ob>{r+>UboU?>fVSw3i4*3fJ=pCpfEGh~s%m2uV%V7<{%ptBmpxm|tPC%Nc=jc1a
z&aqyAyux?eC;JsRz58tN9qaLO3qbi2@_hZy9?q(xX&H;=?zHZt(lZg(wXIeZ&qupzA
zn&IE-6X_w8;;AEwf_K8a_O#gPxgJ`pM0U+tPsB$@{{tTT7R>LDGw+872R9*%0Dvif
zDO17sey{`Bb00|*&u>85nFD$Y42mip00%;7KCZ5=4o*%AKxNu~3`!qUxd(8;LUgWS
z*(X3jomN-J4s7^3fy`4#$WQeZ2bkLd;_i8Tg-2lKVt)E@e|oOHy9mba(=fXmD{&s9r3>+{H}VcK7H(#;;&H6-?j-ERZjL+)e@_T;vXv
zI8MQY1c+@cD=Pz(9IeBxS1@{<&gE%3&vzWc-Anc(J<05J!R?RM1l7yfcP$0m9c2U>
zUHc=?1ev^r>%?KUyi4p&w`e5EU3I%JEDv)wk${eDmd*JAH?;2#7|Q#$AzJ5cBYz?&GO;j2o5WA$G*zWrOETVR
zAi@^GVs-ak{i}IqIKZ}4Qc?otOk@{xOWj3wta;n5f|*ZZLOOP_9$Ck&0VbC=g>LrG+J
z#S~HTeP12;)V?y@>Rz-|m%f~W^UOqtaqO!-AE$m#x48KQU2Dr5@sUs&RwCPJ!AXCn
z94~&_xeOPjLZz+$+aK;i$4k{aJa%|g2G=AH4Z)u2xjO^GUOh+O%V
zi`z~_pZB+N>hrtZJwn2qDH#rz@2*WBWjt@fi>X`L*cz7kBrnFvnr1#A{LeEaaMb@m
zN!cv1pQ_v%qT}&8-vDDP$eGRNE11xoyZ@OGOV;!Z^($BU(=%j0fICSU1Y^kH;Nn6b
z;r3&y5snJWOR%9H(4(C7m6{!{`!038i&xUgi+3$)eWtb94BSwDsBU>1m2F`zf*Tgx
z5{qXUt4*FDP*U}AewMUVTD$MFTua|cp0li-2)(F~(a)^l86KG}&2xGqKLfi#p*0H-2R5_twjf(3ZW^QE)7mF+3-K6Alh;
zxf1ZeMS(_l@L8T$hrG-*_iL!-_t$vA&M;&OD3U@pBZCa-o@LrDd8xLO;FT54kb!9vN2cu|H};ybC}Hk|&BY^;`p-RKRz
zJxco~KYPL22ZSXnR`ISkX5^0vqPMn^3l`}0r_h~c?Js?}tyB6Z7}}5m-idF2OU=Jq
zX>QRgW!D9N6@)p9Xh^(c?s%7#Nt8}5!hml=8u|Vtod|u
zZRW?TN`0z_kD!|oCf|!e8}QX$s+m#vE4|)TthT(5{KnnpI1=(}%T3nC!{q>4b}KZ^
zhCx?h-uSP)W?^_V#$0xaB=ymns=;N|-o{Hl{oBI?8yXy?#Aze5)EXQKN1vlDQ?v>C
z5*$B&35cCPW7~z13@npJ=uAcDps*eL2hvVhp4N
z;i`;>{r=dv&yWb#W|6JpOqX|Le?{A8R(+GF?yB%rk$*KgkNBLEcGGp;j-5T`dvege
z?q)HofKt9{(N}Lpn$M)4s@I&p#H2QN9KNi6Nk)W78amz9FeTx%bX=e9;^H|o@z!9Z
ztu0a4zEPJ)Mkb~FP?#CZ*3z>xRZ~hqcYW!)acA}}L}yS&7K0~kRI_mU*4Bfa*3LJ4YXH(Od-`cgJs(t_iwYq@iDwf7ObT#n~Uy{#sY0s=vFZa$pXTT63u
zVs37Ynr0-ifDS)>w~Zi!Mz(jV>Ps`RU)oLwCqUU0MvGgx7f~>`_k)Jyb>uetXygDQPRzNK-l1RA(k=eMVoI^mNx?6n(Hho1DWf(@)wtH-ZnWA}
zr17qJ%f-r}4H0eVaJpwqNt`>juP7JD!a5KK{N9~TxWPq74@SWeS-iVE*+lO++(!|Y
zyKkDNcDawKr;+vtFR5IiI(XfAl7@QzJ@bR-S$`1squ
z{Vsqimh(1sNDKfGo`nWZ#6hM*3^NW
zIqdD68;80m>aclu0qSFfBDj_4Sih9-0h5z3#bJiuu2-xCvIz%!d1Xo
zU|&DFu15L?Dxycz!hNTgP1<#drh|L``BFWrww@K$^N7-lz(y=sSaDHzeY%1IG{{68
z{xvEc1dm;*JeiZv=S*_j0<;9)N|!5E9B?Klbw15it~&
zJxH2(li1}=dD4Y${c8AzFDnr4{w6lSoOxnwVx=`UF|h}*0Vt{OXg-^?6T54A@Bmjt
z>9$ib@6@_I>#4eo;rEl@@MS978Zau~J6U{u3~QU&3#o>_9(0lJN&PL|IK^WY87k~tg<}HiXv4k3XbMl+66+D4%=l8ZNH#rW(JYCGipHd-?%TY4|B9ST
zUS6JLoGqJEg5T)?YqcyllgBl-u<&V<2NV_OcKAA@lcP
za#AUw-X%U|WwUs9#!Drl9&-!l>n^LL#1Zd@!&m9@3DITOh1AnW^z4J@#o;qfjyWGo
zF9u~h9h%6#m|7e2g#D4UO1zHp=q{b>BqbL=kPeagO!OF+xp9VBe^aqbA)?Q%{#qGU
z)d#L5U9rzMR_=QVVjS
zG{qRHIV>Q;aE+zq-oIPsKMj>V*^H9~o}(P*;b^Zs-u*4Gx6sA`=!DSl9*Rg5R2}{R
z9l@WnqkHfg$jRcEEZ7AE>Lp2Qx^GWv&7Kb{#rr-!e6T~}!)EPXSIj@)eQGCt91t3u
zJ1vxFZs65JcN>HooLheH7T3}1-QDjoB-1RYe%#Bu>Qh3T}}Z*VaIe?3BP6z%zZh+&VLP^LLY=k<^O5aI^a
zsM)L5z|}Ma|DM?E)*1^V>%qV6L;Rl$v>a=RWw#vwcwz>4P=a4xSLOB@%S1t4*^X%}
z5rj;4j&CO}+X^l`sQd|(%$FUxT%o6<%PTB=RWPy3{~i-lTu+Y(v>iSicGA+40&OSW
z4wo0Y8Sa>|we8RXhnC%*XKI5}J-s_gf!T!@PBd@%8Qq#O-icn?D0rA}Da?9@q|+_c
z%;`VcRi+>E7)G5fuk`rkb15{@O)j7d#QF#RRSNw6m;8Ow(vvV~<$u}@OcQc9&*mCV
zTOQR{Po#p!UMpU0m7qH4b>)XA9}2y>@#TV7S3kJ?QDbHyIEmv-Mj0mQsD_01nPbe(
zc-;Q5H{0!B|K+>Nwb5_54e+`EeAojTL0Ly{Ms;*4pZAf|y3iXy?$i3)&fk_R9VCYZ
z0}=Zz`lYr>@b&Xl&rTViuj`R`bPgURUTuTy!^@MKjpA#q-!NGkGpFXtNj`g?iAgQS
zVb3=OD)dIx1&REbAG`AEP{@14?CWN51tr&i+}wpt}1?kmihRn
zg2{Wg`eoDrz%kOgq*}8*=!QCH(R-8F7TU+wbaVnbomkUe2)#A0UKRPRgz|9K8yz)O
z9L)IP;u~|s`>me6*=tK|Ji13*rZFd$lB0ey6JK@>&Q{F<^Q+>$th}vP*3Njw_S8=I
z`lMzD>>2-k{|J1LA}ft`L8+@lrCxHM1p!ftkP=U3+A$TUc1TI6zFjXV`Itp33+u<$
zo!_s6iv@%w=vxAt1;AGmNigC;Sf0BsY(Yh1dsHFy*5}5Zm`vT_yXR<<%KQ@-EdcOQ
zb%mOvFqJRpE`x-9gVjAT2H!zIeaD;ZvV}TRqWVeAfK1*FRQ|81mk5s|ym^hGBTuIs
ziwgEko9+|?aLgtnQ$L$@#Rd=vKlpPXB~b2R?0$%V0ch*%Q~9?V%gCq3&y;^m<-AJ2
zWfw^LeRHm9pmHk?_$|8~<&y11S28y<)%rWR%4W^!`gt*B$ZRqC-cdo(ra6oT{of72
zh!#Ss#i$p;de5C8q$ey71`&l?Z5bDTyiv^)8NSq}WY4S!#31W+%@}qGcN9;(09Ho-
zw$eW!QvwthK`qI>_8f2HTiHL##fJ8`M&if46<(HZ8mTdr8gEvIvbHd54Su?|zQk_=SYHRgsX)t_T0IGSm~uF?c{-Y$+(v4H6n!+et_Tt
zm$fq;_?6-3r>Orq?>pFrnjR*tK3;xA&4I=gRysx*@P#r(noTUiGtCazI;iYJmlG*;Sioz)&)r&zLC
zt*K5vfu&9XSYB?SVLm;ZEeVs?d
z>nN`eRc?pwRu=VE;+HN$q7jsQ>Hal0zY?x$T*6nptZFL%Qp7o2)4o3S)nE#8IWJtO
zP)@9c0S8%j>zs_E+CYe=Y)MLMalpgwsEF1Q%>n<wVgJ<8V$*ET6
z1A9M?Q+`EIj8p7*UPIaDAGFI&jXgJF{I>wyOp9~dZ`Q+8WIIsfqf#bS*Lyq^q2jN?=&DsE`O_UvI$p=(7#Sw>!U-qMJ*<5tXgAV@cPr{rlqt
z7~heU`S7CsYm8J^VX+&vOwONn-K4`C5!B0GHajY4G$CfMWhv>PMm
zrYH6U0ks^iZan?`^kNZ;a>6eGqo5pHWk!27XbcU
z(ij7pDzUjN=%-nLamj37cVWksrmROws7PbZ|9pc{6^24cq(=m(XUC1Tb<56RnhdAh0lCJYaGheZ!NT10+IYlh^tEn{kJ=(btp{~R%VZ&`Ms
zIN2*SFJYJ)N);G;=#
z(BeKac^daRj&LjX>v)~hS_Pv7YG&FWFEh<~B)#gb>MU;lO47a9K;_&ivf*KV6@yit
z@@T5sba>U3G-US1xcW8e;9rM>tFAv>?f)8VztfJNlS|xOTsJ_`H4K!FJ4Yy%2#|>j
zKQR*eD{>rw6FbgXDW~&ctmff|)pf%af6gSfzgi?(81TGVFCO@8Kj)b6T7$m07%rse
z7VUbVy!w+7!WT4y7clE{fNc(4dLGS%W)+&^j#Ri}T18E{
zU;O}fcYEPQ3epp9JA#h|W1z2@RPne6O|E%_&BJF>pT;LT60C}Qgb(Wu*Ek4BL+7m)
zLbaN&iuXw)Fu%UfRk+!GAk4f-f??sX#!<_>7*nbyIFzg>#cm+F-uGlV&U$=d-Rr4z
zlZOPk6m27Oxc^nc$6#V?*Qn{>-~gs0pM-^>!N?8x767wa7`;)8`l;pd(%qJ}kKv*k
zdCQnH%Zt+4oI~!9Z}yIgi(_>^=d?B^mr~ub%HueccaX{?Bl^$|ynFxtE^uC`l9c1?
z<)pZcCvRA`oAR%8>+Fq|vJqrtcQz!4z+{V$s0E*Ly_rGU=WH}mPD
zptGmP9#~^ZlcNJ_1BcGdZ%i?RNT`m04wHI}ow%d2AE;LnQK2)_*8Ab9yzcB2pVP3I
zy+EMta!;c{OvD<6Hee~uV+HShgG&@^4Si_`s>IC#GW)%CBPB&|_sYqMp@TsQ!y%nt
zu*e0ad!JTMrlDVAOoL2?qIys0GAOMoS{4S1RL`y+PuXGjqrpDSjPIYn3PU4}e;B0k
z;I9)!Dza}{b!nGLET!~t8ev%uhSQ?|$+fJZQ?aI&#c54@>e^dhUk^qN!eD__@i-~U
zSJB2Wk?2X6=cx{9OU-nDQEpOHv>_ogS}MHx`R~gUHrxSBG>U+KSW%W2WUT_9@VbiB4HAvY3)M)&pI>%hlyoe(H(51_%AuBuS;f97Y&)sn%WrX
ziR{qmz9VC2Mt?N>qOak-@+d{ULP?BsGOPdCe-VU2Vbz0bSGCR)ih$svt}av`B!w2q
z$#FW2+u`S4Tm%z^V^+>F8YU^vlSb$EQc9M=y63x(4D@&HdAE7WqC>;E^}tV6zD8GA
z<3r@;i@b%u(yEW|G!}(*%G{KyMh`+no}a2h7o6PGBO$BGS9gcY4{DqJ}`>5no7diyKQ*Rh@T_AHR&nUt_dd0|HoY$Us5
zn$DyIF&itZ*&+CxKfYFDLNePQBEY%#Gr_T~(WUkEMKo$d!bBgC1!{WnsZ=^*47W|9D!+F|S4?D-&+7!MQd*&9&Zo=90
zm1WM_w@AgsFP2%m4Z_LF@*@5E)nzPLxjqzLTXoekIP6yz43zKk@cEYeo|M8Z9
z2eTr$1OF_GlA2l{DD@5I@A$Mw4NBO5R?$%}{Rf){g&&c60^N{T<`#sT0kWKUc}{*o
zLxkbsIuH7tn3Qi`i%1c(s6ZZ9xpGkbrCnTaUP{`mSh415&9&HDg9GwE(_yp{ZxYuc
zp_@`jY79_+Va`lVc8rRdEq^>2KItwU{^6;kJX&ZqSRC=9vMfQ}MqvWoqUSIP3XbHq
zN9QUqSmg63!owKx2j#z2>u$4{>ZQX|(Na+~FLP?KsWuUyVVm?1=3@^!?CJ|nF|4tg`k#gu4xH{fHKsAoD`1HWtLVb`#R&cHlWJ9dN0w_qzgqOCl`s^m
zM+rHQ!a#C%*?3`M5uRUrzh0X3YEFvpmCXkSfUG=46|cU)n17ZJbd^lwm#^m@-wCaq
zh>w95kks<@@pGg6{?|AHC0OT_himu)-}q55xTFtb9by(n!Qdy6{K8x}
z>6sh~y|b(W{ap$h63aWbPUQK3kkn1yjQTNeN^OJMSp{N!C=GSOwL;y$3ze$JsN^l$_aDi83H^E3k#Xq8UwmwnmoDl{4K(VNo3lm5#VB%e$2DKr
zG^ylHH515Gmg1$x6v^~9Fqa-Gq*I?cWuUbFgDF%XRi1z-FZjA_smBz~yJ18#1+`q|
z@qaL61aW1d<$d?2=}}Z!nVi2XZ3w&eqLS0oe*;jN)^<8&M0{BaA+xaS
zG(A1VxXE*q_EX-;#O;B59qlg)UhmO+;-TK-u17vO~U;1~GeqwOz#%;SRNEAX2q
zLmF}--^WOXpUjt^m6UQ{?pDvM((z2+;LxBSiPr6$OAxe-{pe@zf`u(zZ0GNlrjK3c
z1atlaS1P5%+R-%!bUYJs-kEPagXIWn?9rU=M?dko$8)>YS$mLG*|d>Bp#n7AW|N-d
z%A#EWE*qbY{IFkp6;~d6lA|3^Ha{g8CEoh4G)9MAlDPYC49^WArZHZ4VqduMSgy3C
z?K~B*f3B&HNHBxC+g-WG&fq*gz`e*=u5Yf=kP=1zwCn+fjHO=TE13Vx~HR@5+
z68e(ZQd4f|wOP`2)sA25?|46Q+1ig@;Fn#|GaCdUB=yM}!Gm>I8Mq
zsY?wr35NosuWi*ClETpc&rt10w!Xa~6k06pTFRKzB#}*|r>=X;e7)e9*Xni+&w0YL
zi=G17y~%JcwSCp|7v;Z(^d{28jcvYc=i4!C-W?c24pHnWyobS|f(b5`!uXJRFU#TU
zD63wiQFW}{#v9+>DjsTfi*zz%fPdpTEKbbJY#dFHF7fWCNKE!X&q#rX;{9(eHcZDT
zu_;wp8`A5v4WfGA2rs*C$ngJPVgu{CqH{1fW=8V&%zwD?
zG@+B1P0iW1?eW3g6+>`zKz@-GF25EgxO)TGt6ACEekK{N#=SQ{%^nxe7MRI{G*A@aPOroGt$`b6SoVnim89W#
zw;(Y~tdKtR*nUa5Y7+hTIuXkG`S}(h3mN2^34!>Mh|U{a0KM!Sm>DheKL_O%a5Nxm
zE60$Al2J(YdOFa^3=NTzlga-yXA{ejn5eD&u{}^VZTO|Wpmq2hHJ_0`UE_S*f#P}w
z3gCoV!!P_!G;I!7Hl}ix8=Y-z;g!|rF{0A`fizIxWCo
z5mbzr2|Aq3Sg{>wou?fM5*kS~(&6Y{y~xk64F_xM8IAk;k(^~nBi0=N8Zq{K{7Zl=w5pT(r@V2uuxRbc^bjK5gPe;E`mAKTfGJgw
zpC1G|P9WWmnw;t8!jgz}plW%3JoerO!E%Nm-2UR~s>*R+1qgg)fe;*6i0Bbuf^amz
zzQ?rH>bUHv&FBrV$a4AzV^jPHY$~Js8oToc2;S9-sM@NkVu4#74m}4n<5b-5stjDH
zfQ|Xx^&h*hw~;Ro_?<$(Vp@hkDjNS>%G}9my~91ya^(e_A!xMQt9&?Z4-Z`2ddt>q
z5iRfnqO#8brGR9TVC_G?D-N96_@PQ
zx!o=}O((4vJ|E22{?G75H6Wj~73`7keC^x7c;#*L&8pKlV0-}+`~I;UakW-A$Jri<
zSP^yg`H(VUMn3Fe%VQTY8ze_n1ONQ`YGK)>3S(Iti$%tgtmd;CW#Rtq<32
zMbW|S>JWvp!~1+0z{!m->@gY5vitYohDmd(w$H`t8DFM5PP}#hFz2Nfx8Q{%O5-vg
z7d468zfb5j`aKu*!m7Nq6p~zl73qt5czC$=%NP33l?zRbW3oUndZeX%S873qs
z_!4Y91JFJb87x_I0QQErd*OSPjvHNKM6+G1tU7Gcox_*@OtT8eEq#RrGq~_X%^E^$
z;i=4=aW{&~?;XrWMH&MF!ur8ibOGIKab
zE8RW2H%1!%;*ncZI<6S)IfurOI%XKksxL5uVF29RjV=e@^UtSiUA>nt+~)7`3ogND
zjHQKK2MS9|!JdCuiEs*hPiLQa-$!6Z-7VkUz5NgCBK**VY&%n`CakEaIC=^g#~@CD
z^ElnjVNH+N_csB%{E}O7@vR~*jP+$7hga?%b`RB79OjB^G38$Z?p2*!=vSy
zzs$bbuO!%}&e_&zoMS;lNx?H-#mQ*LD(mQLoq5=Gms#!bSr;b{BGVT?GzS7SG^Q_~
z_D>lbn}ht;*V{JyH(FkQ#`dTW$E44--;-`)&R?@DC8Rcn{^T3K_w7B0sBFBPm$XJ|
z`7}d^RYiOETfu8u1^x8*Yv>S6){j8wNcaqhVg#i{=>%lvG2RGd}s-=)G&%+6xj
zeeP{mrHov7cu$pDmCQB`SX!
z_j&J(ApDg+mJ@$!DXbvtHB~3~G`3N;%c*`b`SopX$(xO|<@$@!<0TFE{@#?hPnYg_
z|2J3E(vb56sS&&v5buHGGxv$qxo%W96m>41aLp0%OYG80S5D7_mwZAxR%5VJ*QbUI
zKdiUW)p{NMwe_A`(o
ze;(!i;NREAaDl^=EDaJ;e1OwVP|J!XJAA1!V_R}>b*r03A(Pp=@xAakqhw@Uc9+22
zyT4VB7fZ`O_59oKaO1I%U-N2chf7N*ULzGTdA|JH=uD(>AE%aAjc^@mvRlR%bSnHT
zw09Q&DHMU{G?72&wdoXxV~>Fx@iToLNAvBR$uqjDy|=rYwEovo0(o-a)8}g=B!@yL!r^j8?
zQ%RW&*rt|D?X@$2DZSA^f*pwL*llVkF7`OG&)j%^I(~Km{=sbZ`zW0orx5MdGKenU
z_bSzWV2Uwu_oSQ5nq2aHZJCw9Y(V~ji+R(vU@&R-xxT0jb|A010Z&m5p7d71hU4#i
zc+$N39YK=$uc`e`^AKdUITdA$#DYj?3`~SdHLM9tUA431A0PW-eT@1{cDNoC$2lws
zjpx2nQ&Y>qIlk--tCI;XzY>tDmoq;R_EJ-s`myP0D<@rT83)0<7apf
z&)$u#B{lHvhQU*#3b@mCek8Pj?bRm{0^P6}`jEt3h1Vrb`|9NL!^pF#^-^RfFih)(
zSy>H_V+3y*z`6@8FTB%R5Zo{;eVsr~u*IS1U8
zvYva2sx9~(Q{sbHS1kYAW2t^w`}kjn1*0I()6%wYCT&HBwV)1wKKV%U+-3aN0JvI>
zG|3=0IaM&66A-sRqQKEHFxpEOG@xx;xipBZ(5p34Na4X#9AqVIP+l_WGtIbWvP5e2
zQ_lK(jG>l;S~vgp?BrLi@Fv4RW&M)aIm-x4x&e5F;TDpvu17MO-=y^ZreJv7m9vRp
z|5h!>5Y1~U4MZtO-T7$$iOg+fTMxWZ>BeMrvV_mlUv@i)>erA6ZW@bvzR5B^jh@*P
zB_(y1>BxdhSo`I`om&JI71)_+Nf;O7m{~hSw%SMh?>P_insxsf{2jrm(1p2&hcJ
zp8-zx%TpsKzn`SsF&8dKY-L({HR1jy!T%RoZvhom+qQp$fV3#xAt~LR(x4y;B8`A_
zN_Ps<0@4jqLwAETD2*`E-Q5k}HR|)c@B9B;OJ@e}doA~#y{~wbjSnIHYrPrNu*9>*X*!R0`vEb%Evr2$rK|*R_Jt;B5)vRv>?L`z0i
zu~kxvf%eKb8>0eoGjIXwwZPy%m;Pz-qe%5=B(0`5Dk^%Jt5wVd%{C>mxY1!uESVVKcRqoP1UL6Kc<2c74;?x$iN%NT39GjKKmN@>VhRj!4rRO|b+rjbI5+KS|i
z=DkwQJ*RXFR%*&S8|^b=q0>g+o=rW7#yt`Uys98IH@>AfCOH0mtB2<15#AW29GkMf
ze)$Fg`}D}r5m!Xb&+i9q_Vb``*u@GjtT(eZ3b4_{Qumd6fjI$V-9&;dE7r^5;8q)>
zd;Jyr!TNK`I%5^#IW#vKB4}37`?cM_`#%}@S=v}KA*TbFB|SQNf$bScY5XfhC|N|y
zazt3>+CfoLXY4t8s#ymA6^Ma{^LG!X6PMpH&3C+Zd}Oie{(F#g{ldmuVlvZf{^)Op
zYuF+*hn_V`SIhD{lo^=+vv?PqlL=Nh4I63(kpyb=I$6Jd(x}aOlGn_ge>#gzJvMfT
ztuUlP%CcJ|pwm}z^pm;nRS$RppMtY2_D4j9NIevvM+t>3jrB~iQJMtU2Q!O6E%
z%fqgm`(57)-DKIHkb@K2laQ>6{YlQj1Yu!3Xjdi2Y!m5h2Y7*fB8myBJ^Px;a9diW
zj48^>%DQj^lrV|n?T$;0VgJ%tuLBvM(%6=&Du;LL&2xvh+ENAwL!ZQLU%qywEb9_M
z!Ant__QHCjsfg-4mKwlY}s(G#Y$n(f4|!V=}8`)RgMKy9Q;-xXeJ
zSHI1?$z^Qt84bKrVMD(RE0TXgpu$Yl1KR3PpR$4jpE=atIH@I2!zw^A3{Dt=2&Q%yhX?Nn}5=5
zJG{-EBf_=e>8t=vs57XD@~QiNw17M78KwZN)8NDcLa)!=bg{hVAdshhuf?(L4}YPm
zc1g~y-X&i7UdT|Gw={=eoYqniVKix8GHT7uEZO`#S6PP`{!G?#xmoMcfbvz|owXTe
zNYs{;OcyfmTkbCLSUBHzNiwfFTJWWt?LIXep4I%d;JFM(_Xbs9EK;Ah@#egKmiNaH
zYi=HW>wJVVvf+q=ck}3CSW3n=*r0c_a70A?-KfKkALv=+;lMPFLmvN=$6?r~&i5F~
z7@%rFLFin*f(UYc`)zIJ2c9)X*0OX2ib`K%#nR8#jM1Ve&SuFp%RMDVH343HpaF|6
z#m!YqOY4i9tGgmsFqzIfcj5O#^zi0})Fri%1{zIY{`u6s=RDUJQ;Yhv{oC~QfAnkf
zt8lC&y$PTDaikHSd?qJtj5vZU2oCn70|VYz4Qz}*x{8`wW4@Fbyo=o%
zvCe5t3y$EzBKt-SG61zk#Rrf&p+Z!Vcvjc_Ax(}6n61Ze`@yWdpi6UKy7!%{Qu^83
zao9YQ?r;*07gEy+QLHTtm|^E)ZJhgT>sOWH+JEJ5k3i&G^pc7xg(p^{FRPf
z`s{(q4`~00n0Y?~A^EV>tlcaNTWUvid;pDNgI0;v;bDTi8+G^fMsaCgT?zl6YnPFy
zgg9h7L?fjpLEyuF)aZ;%vk3gR$3q%wa%R>BN*a7LENwV8Xc4Hs6LlFs3&;h9yzxdg
zhMbEk?Fk@Ps5J8P>yQcj%c!!Era8HxY8)#*SxeVQ`Gcu)R7AsW(~E?k4@(E8(%dOi
z!YmdaQT<8$We4nW4gjPmZ0Hwk=pD#Gk-~n%lv}Vv&TSGtig)o{aLb**kqk0_sts*~
zJZ~hHF78Pd{?MNkPUVTFLnM&j{oQC7+G3r;{Rs#X@TU1tUXqQ_HzH54uY93LQeamf
z&L8<`!OU^F#1!eITHBrNfptuch@_zc+G&X!u(R@4XQnmkdEtLSaYIloeSJ9VJ?B5Q
z5boTG6oMZ}t(pSKcZjWB5Y&}bcSScxc~Tx1M_o6|BhiDrp
z^Q;CJZsi-zBju13ZL&1(RBz=Yb4unuB^r^r=Z+TYzb{T)N)r~v1r>=+f$X9$+3}d-
zlc(gPi5sJPj@m}0v8(EC%$23CP{}Qde8`W?#=WPTv*$NGVPjrybNJ%+I!{(8SP)Z;J#GnD-qZMh_
zf0QDie;kGg#6$wd!-8^rR)*lF5d_7T1fO$zywlNfg4}X#CFE&%CbUwEh4p+3Wige8
zJ>{@V$YXyT;~6RcY_l$ZwYzurc2-hEMlH&%v0STZy>^OOyywey%@nhjMRn#u*QQl{
zL^=I1PW<lKQF!2f2S0!_FE+lb
zUs`JslC*KTvF{=_FP1Sl48a%u8=phgPKV!ivy{~RKBQtIFDdt4MA?E5WWiwGG4CvE
zUJJ#Qs%}iFp;p=DubzYn!u1Z?+G*6
z{5|tuPtcPgBD7)>nu(IZ?+BjzR={qPJ$1D=(->cA0kwO7Y|QF?`BVFMQzH1dIMe9-
zt3-gf*Ygn)AF~p*p^Ts0Fp^>D0S7E3j~c#5a~mPFw*ZK4>p->3hlD^Nq{1#=hCJ4|
zEN2+jVi1>uKopN0@CbfYX#eFA^a!i)^f-G|WhQFZZyLn~D+QC%mhvH+3LOw*g+r`gboAo|M;fL3*Fox-G_=dF%iuj2eF&>x
z0SV|M_XLoky0h~=j&nxK!hPW8JqmD@QB+Dto~z)RE0H~qe(tQTi2W-?Fd)kXXSS%w
z?DyA*1xOv1T34>amslQ5pWmH#KU~VHo$sIMX{Q!qtCw;aI5uTNlz|1v?of*NdW
z6LsgCo$J(Zy>np`i^$iGSHE7dNyG5=Koc`8}jlffMX
zZf>L3Zd-H>jaKj+*0tfIZ}>)rzZ7hy_>WXbytdsT{1{MwI_GB9?&0=IgxtIq%X02r1}TJp0a^EvrVL{=)j1#^o_Qs=C5M
z2j?I>S$kTOg~H0(ap)Va0CtUVf!Mk$x7Rhmj49adu2sApMp$C32yrHE4i+4M7P4Oc%{@6iqKyzd!a(!cfzwGB2T(TW<*3%
z#JtIU7@XPoy4a4l;IQ1nXyo(1Z(Za_)w{za-vp`jPYF^6HyE7J1TlnS9jy%@lIM0q*Q2I32xx=`wx8enGt;0w_mKyftp}We6R_km0@IzFZYF@7OoyI$~EAbP$P_WaA-b=%4
zr=Jb;?5KiEKUu6fk3_WFhIYg#!*aXg*YzWd!>ciO=BtG}{7wFv>aFat9c!?sEwb4I
zIM6uz>q6U2P(MWSI}FRphdC$=`eA+cw0P{9E7pIDP?nH9mPs|hjs#lT;GuMf_=-Z`
z6T|y^l*p23#3jbZ474mQd!nPJaiqt`?3Uu2^#ADbTyn52+OL5uIT=NB{M7O-sdteW
z6EtVl1-Gk_KQBjhew_num!y>)X5q3mW`h_pI(S`OD6f5WH}20&^0}IZ%027V%HA-m
zA!Bby;=53FEO8t6CYv))hUZ;fY#N>3G%%eZ_T-)Zein}{Ald_)Hlorx)nTJ8GnG}`-{im=8N^8k8E>p6e
ziF&Q!vc{ztS^s*v|Dod|dWeH%$soA)RFrovq`uN7kn=Y-Ih?%-TKVBzNYmVz&HT>w
ztALPW+R!-?^|>Q52QQ8GXu}>}F+9*QWRO6<#dpm1{Xa&f2F)2~(zz#JGZ5|!g|PN9
zCa=hAy+nwVMSVw}Fmg9ix4uhKN@($|FMY#!)?0Nlj|r-a}IeBIFqbz-6C##
z3<qa9ae+0Qy9?ZS^8geA_>ICq0bK^`2ld;+SU{FK
z+A1uC!Cb?;iIM!6+SlzptBHQQvB1lyo7(Z{r3@IOyWZ=2*!8`s@VQ+?Q2T7B)DzD`
zPei-YvND4}s>nX9A1CKj$ZUG1FWwGU$12F-@*-(sDYVh$@B#U==i{;uu&h~io7kBh
zoi%uYl7Akg>U>@ftZH{emu&zQaQuCe5b*Fh8y87~_jr@~%fHeoOA0U@$AFFeW|f>$
zOYaixkcxWV=&ThjBP8aRYVgX+YvF(-jel+)<(52<8pdgWs}lEWltbV-s3~YpyGZ*iwg1@O(P!k{u>L
zT`_UQwfJpq7s%YX$0Z6XdRsV}$G68TH`eEr5EPnsN5`P%kpzLzv=UuLtLH5At{LF7
z%F6wxTkYdZ^q1p`;YBwWiZeRp8a41ro7MX`jJ^P2pGI!eH;khV*0?
zZf&awgD>#SK7_t2?m0*y2R=?la&#=Utyqx|@3P((o10~^1Mk;X?mq)BdAlw>_CJeF
zQ_X}mv2!|%GS;E=3xu>0Ppg1(1r@4bF5fEA4oO2}OLJY$of-DpgsJ2SUofWWLF{rv
z(k9eNc9rAh`fk4P!?C;|OAU(8MTlskP6cy_w}r?4RvTOW*m|ipi;X>v7q8wDuN53>
zdtLg}@`wgtr%dsMr_`@J)OXohz1^Lc2IMCiX)53nl0sdZ_28;B?niO+_)EpvBBM1m
zqw7u+2l>(WOdD`uiwBf`H1}3C)mkUJx~$;IRat+v;jz(nNQQ-)u(}$S$&VK4gYPXi
zNZ2Mn?n1wQb(DL8dm&k(r())n83r&GuV#zo)?6_9>g8VFKa>SN$+8t%%)--V%4#@}
z*G?^DT>-B9fR42c%4+fRdL&>rRZ%UaOdfmbkWz~#k`^eO(B`DVW&t>=g0>leo
z+f?dk2VecL;pr?gYDZJp%?(n^PnL1(g%+HeWmh*7J!4PVw+`<`xI%Kw5i|%ed#OH5
zUAJGqKA#KSCA8n^c*{2Q^QR&3|AL*Q&E{R7auo43dbr#
z^z;m@&eN&+{HwcKKimbF5e044KVa~LA+5HGv~9P9N|@2wnTLf%R!;6+u358al2fbC
zG1k2FE-}0Ad-?Ce=d3Scnu06y#={%4z>=v0t%t{`@C}L=?gtbPN-88_z4?cOl8WSL
zlOmu~jRb;CK8Mw#a2=&4
zQ6lW!a8_!f0A76$*%TdyxLTBZLvMe|mPpUz*psyUx56Lq<0sJjWVVVwN}XN^7WxuI
zri+_xKO*Bo(VL0QkFRaLVicL5oJh|&UsQ}pbw4-PROEkc=r4r)kh&1fto6=r1KP6x
z4ivQc;r5Exaz{hk`A$)^^fKE2@~hsxUe$jVjwcc
z9Q}n0DX**?NK)t*F^IjD1sfxY<5@Bm>yR|Y%$tOk`GRtpI9g6)8rzN~Zt(IM5tcMA
zc_S6g`Z$aVa4-(e6o)b)zGo(oEZAEWCqVUhS3RwyYBis7xnNYj@1(j*3z>C-OBtN#
zC5X=u*(kfn
zM`6;x&Og*?0!sM8Mpi05smF5vDKT+}^IRV3^I8~V0|O?nJJM`qPl3mJVZe9-N}wYKAxTvH*5%zrnn
zr|(bMSifu%!9_dpgl2Ee?b`JFjq|~$tC;0Qh(C!@FyQ$de%~`lCrP20x4*8{C_nfy
zyuMX@PIu&nH}p3FRX1B5kfs>Vo;+4Ijlj~swWYiGVzTyu=IX#2w{`EW;0PXSl%5bQ
z+C26u(DiD@=iI!G&`44)na6j*{1p%#RH(=@{=^f}iMXmzT?3^K#aH1?OFt1J8x_NG
z%u&J4$rI3h+dFjm4XkOU&1b}pj*bip`qBq5?<5Sphl84~>_!7Ntv8~ZqOs1Aw8UZl
z%)?KTM&p!%lO>Rw@WQ}C`dE5#|9$Khuq1bf+h`F_?3{lA9FIrhv{_`wZU@jlDjf$7>Z5=jrl6`b$m_TU-^Z+Z|=c!D^ct>ufKc<-kE%~
zC)S+aV>LPV_Q<#Or)Ti_tqx|wOJlH$EcCu6;&@GmzWnxy|2V}Im80FS`p5`%wrJ0F
zPNT^Tcggl3woNj$V!J39;b5YP`@cTRPXLwSSz}QEz$_cZ#h9~hZ2wBe2OV#Om0vc8
z3tWn!y&>}E{_gcMl=w#a=P`{uV>Iz4m%v>_z4}TFxWU!4mir}06&I#iJON%}kT?TejmZv}20ZdEQk?z$$aYK#17qsQVH+y<
z#W+-FAyx97nTRL_$
ze414HtB`}%?ZS!+KSK!p_X;aBl%KqP`rpe>pOl8U&s&JtV!}lfM_$~H1{J!bCApEn
zvYSPMW-9*sZ%GcB<-1(!c#3{!aIl02M9yGuu0BC2(EyE9sp$a_**3&(3fXMCU4dl#o!H5)MizlE7;pRCSNh+{(3&D}_)Y%Qy
z0u!TERPgEYXza=-iE21S1!#lw^Ti#Hg^rA$-kz4GL=Dts_5W^|oyn-HzxCWd?%_{P
z-ca~?q{mk#G(BB18yokjvL1C~-V|gumYrTmkg+SXojMqnG(R4OV9gPo#i#xDrDpL3
z5uJJH9OXm09=B%z-2-(NAv+)k;0YMA2zj9AUj}6-X3sXD%J2ADTF{Zaw`rf`d!%ui
zKK5?|NpEA%6B_q3wh!*jr`|mdV})cb{V#KrSh*}lcUwvgvtm&LQ#{D8xBm%dx`b@T
zB0tcY@qg8(u^RqUH|PEa%CFhr`7b0ZwSDbkKzcKWhUhm8eAxHPVt4+a&le3VAhO1F
zD2IJ@!K5l?g0U?D
z0r6~4mpv(AOa47T*L4o3Z`6);NsJK{CA
z?ytC@RcaaPcj#bKnKT4#`Klwfr{zq_IH|dtA&r_V*Yy#O|M|+eGsio$hGl!(g)Z%gmYX
z`4frm{gNE*$6-Kv3p-)@K=-t1KE;O(EcCwJ)=LD*MY=Z`8RH-T#b*!-i?ja2Ok|i_
zTfXMB;6;9GkAq!R-E+MJMD>lGoiM`b$w_&D9|Y}IVB7@3y3Py0%{CrPk#9tMBl4_h
zHxUOHCp@uQ#NH)5rs_JB0ejXgad;B1Mr|JObJUqAggbOCA~ShKlR6_<`$d}TUdkk8
zvCt@|b=q?Goic7CGeh-%a>;pI%$g;j;4Bzzg0o5_$4)W=Z4^jeXoC)@K!@?$ka3@)8(JSE?r>f*Va!?o!T2Ra8{;%i$Je
z7r-F7{Gy`H%`j%}bqB%bbv4?!)0u_lwG29kd5kk)J-!qr-!j;Xs3j?xrYnv8Sv
z4PGo@`cS9kt>)OjJBp^0*}mpa8;koOpFEH>VQw&iwr^*`v&j1cq?W=PAB{}yX7ebq
zhlDN9YXKN*B#;&W4{qGFNRqOyVi?
zvsvdO&Vt~AQPKx&y7r+_MY&G>_eot^RF)Pb`t`XG-SWCQa@B0qNS29o%Il?*kgd(O
zdS^DWNRjS}HT?T>r5N8)`MzIMh7Sya8c{Ri7yE6tRQw6Tm|^?esk}etTD;$)yCtTW
zrgm7L{e8AnSvyLGanHBXb?61CaXL_tn5AJZJ
z2W`JO09SnATvlFJNU{~m9VUrih#X^r@PV2yuu28N#!vV36WharR4q4QT-Ax!81TVYw!H9x9k%Oy
z)sQxHnF!$Lq59M-s5t{%Jp2=f9W6v^VhLx9;P&<-b7gW@=Usp2i
zf9iCNQt}jfv|lW4OU6+|a|^5C!D9>{@X;Ndk-a7v08u#V6RZeyGw%MNL6>`J>CH*p
z?T2~LZO3FaShJAuxJqD}y;}y84CStFW5YCT(3n}Rt+@5I4OSfFqnq3Mu-&BGxck7j
z^(n{TtxE>Rf;AGhw5;w)y~P)yT*u+zmGxF{8LOvjf~u&GJwNp~&WKxiaLc{EcnPPr
zs;?;IINSV9hDgIWvd#8WR-!s*Yk@STE;}bf$d4A2pHI7+s`J7?IHi%3>xq
z%S|}D@TD#6SZn_tE4uU!rBv+@PkZ$Z>|2oq--~I4U#7!Y_e}@w=pIWr=^212
z3=*UVVB%f`tZ%W6EyA@tIXPM7T;D$A_n#%6pKB637@`aQ2LlBzeX?mJTRCqbCJ^0Wvpn%mPc%vS3
zcy1>bxC6t8P!lSbIXY#fEnWW@c(7#eUQvKFg1_3`*r?3g)p@ZzGOEe&pM>f5Q|hl@
ze#OkfuO#>ff-D9
z(vGjHt=$gU?nJ}TAv^DuxHAe~_SCeGM*E)#&~P5SEcmgm$%<505L-#hk|m&N$-#_y
zj2OB7J`;=AUMHbc(x(8&LG6vAG<=9|FnD}?QvlizU`H?2SK#2j^*p()@bL#*?U9=`M-v2IGzZh0`tvUNiU3bZB{@fD
z3Sice@yw=~NszU%Dn7peM3xs>tR$589kvU|i-t#H+@gj3SxNlnpRLpFB8JsL?S^X9
zj8$j5_<-rHOKZPo@!QseF&Lv8u&C$5cecQ)ngD)f`akUKE8k37^0WgX@{VsO?A3gU
zjWbO3%_dZ}CoA^uL(lgUJDv5$6kg0g|JHI{nz42F`Qeq-_lN2Zp1k_0v{NT2CC*@z+OS-7
z*$1*w=#n1#ia<*draQBM^x!!4cQ_XT%BX7O`VY2TmyDIjC_{z2m2eW93rO%2QORyA
z0v|v~y*R;Jdgy8MIhke$3aCncdkSs<1oQIcOQR1TU~?cIkqh@WxgO`|=YKZEqkW8W
z5)~Dd$z;7%WhNICkwN_Oy~$|KoOP~J@>+9hb=Xc#Yvm8pB2EhMByF~L{W*)F@pD7i
z^#P04!&FGEo3--DJJ0AW1nWnZWD%Wh&I&=orv)o!4&9UGHPu%!F@u+A#T1*;M7CE>
zL+bUJti$m)`ik!2q1XDV3l)t)fU#2a0;QSgF^u0nvcAsMcdD^ve8<)tcQ=AysQ$EI
z|CVXQ@i;K&f!FM$Px#Y6Dc7~nEc+a&xSmSy8
z;gLr0UaK5)1&0gubH&i|@;t*{Lg{GN^BSxZ9mOpBmgmQw%?xMX`JHQ_@l7Rrc=zQE
zdvjDnrSz<(R-RjP<&L2VXOa6+t}9fd${vCJ)L0x=^WHdGwG5O>SZ6$1gkl(
z%7oS1y|MnHC+MOz&m!PtdHe>%VS6kkzt!q$5rj_Eeb(M)9LY*zsGB?7Wa_^xJHH3h
zdQiGC8<;j>nC6hBQw^_!He`7Pg(Z-Hv7D)kf`NpoTf{->ms78iT$aqH1oFan<&Bfa
z$tD}}3g{tRJQD|Zkv3P>HmTi>Q{XIOBNrvrEWDANBs<&E>OUdQV|}z*ZQk`}`uH
z-dg1)DBB*i@k^caz0in@TD@bNpt#+Ty#zRa!7LyOB7XUjF;EFC3CcyOX)7mRj`KzO
zHcvXIZfh}{ry$FLx;P(;Y9d2??P@(XSm7c>T9F%&ReN#>U)1mrX8AFFYec5^-R2sj?rdxIAOSq8$q}2VQQr8JJ$@hOHOx;O=BFM
zy)@gY+Hc7(nJba8;PW9Savu!S(Ohf_h4Mq&8j0}?n`pnG)nzdNl+`G(uDp1G0YXUd
z>3yB1H}9at1c4kXSQPXi08Hzy8=}5DyGbWFIK4y;@$;%K2Z(S`)Xhyz4cl)<2aGI!
zuQ6SW)w4`s90|#aD22Yxum01#OyMZ9F#}%u<$}C47-nDW?l98G$mk$>{w8o|$I`m#
zuscdOTijNs0z^{I_GU>`wk4uz@Y&87eUL98SYSYMqsXwj$Yk0>V#spe8Ml&-TM$2P
z7Dv!aMj>1K%TXcb`uD~67c3MFq2m-6lwCG05{jNI3hJaLSTaFH83-%=>K9$>qImjk
z_%R9nEawk3%ZS2dM4gtIe>*2hiX_%;l(tN7z|ip&jdu7l+2_^zDFI_S%3Zle_p!fZb@f3yVTM7pn>=Cskh_L1;N(p|0$>{w_o|xUV
zRqgv~O#y&ww5~nJva+yXg5@@0xm%nk(kft$U0CUh0a)t`S-FP>+{79!9_uLhhI9FGD7)1dn0FwWyS3=|{>gt;y5GjuK&2zx#Ka}Dp9MR0
z1~&+e+~*;aws&4d)+-Z^BAG531{5hb+2{AmDldU_1GtdGI`a2twXFkS<$442T6+Pv
z{&i%jc6~I6luT1M@B_IoD~EWiBiAa^L-?L}menFC`wn
zf}LjT`c?c0Qi138_FSl_sLZ-ezgz7VJFNA>CR4h7(I0u8?;)E3d$kl!|A2?(ntf5i
zYl0O;FZYnt_7#^$HC1n*vx??lqduG^WS})b-1q?%?Ro9Z!=WYup!RG-a(GMP{LA;*
zr+HF4=UkG)iorE39i?h3VW-0pI);zzBp=WQrHwLBToj+NYZ(~2c(E%hx4G+Gg4u1H
z_VFeP!LH}>>+bQBA%X}FHLTXa5zaIAq<`TO!)&6A_a#~?svtsvf5>gK`;6LM_eUKm
zHDN7qaY|z$L3Vmx9y#%&EDC{(z0PC3=wFr_
zcD6R|$IK+05%f6x75qn_{*Ot(H_lE|@DWX)IG)~e&px7hLei|0
z*UeyS6i?S<&R|Zt(J#Cfb4JY1mjq4Mn&-w#i;CqK>9Zy2*;@ETbg+>$koYYh-Sr7k
z@xiI0j#`@Ge#4g%*5mJ16}cgn-u~TTN=<}eSgXR>sqO5jp(w>9G;H0*u#tVz)uQ4r
zk?aqegLav(V2nyAbHnuP*yt!f7zaFj2*%Tgnu*?j@D+a?Fkx=`ZQ>l*H*eut_7M7h
z{CEn&15207OG{vW&V%o1aota#5?|V@$`lW3wkgl5xWi;{n63kIg&_(YigZ5_1|_j!jFv$)*odcQZcf*>hE84F0x0NI1~|4=^)~CgAApf&RBO
zQSzDN@4y)}!4hdP{RL)s8V@_9f;n?%h9{y2Q}dWbPTRZD@8YW?dThK>RJ9fwfL|5n
z1O#%>Cy^k)yB{pk=>d$m`kPfYdtizLA7MYu&=V1sOBrr;K{eEz>dg<*GsF-%g9D->
zx?1xcHa*Kkh}%+$J0liiO&xNkU*!)H*eDl23z$a&OYDXni~<4;G?4EA)8)D?d5-~;
zH*v^w&px|c28e|j&c+^;AxoKCCk3BtjNo7v$oRn}(AVU_JXqS>1w`*BZ?r-IK|zfN
z@+{<-`<0m~iuL<=xU75#gpP?RltT0#-{xcmQD;mV7rg3w-m!T7&Lb_22Tt%{`4+Uc*tK{K7-vXML>GB
zqTo6`u)t_G#De1d-`zI{XpFgwZthl7|2;!?pY~{UqG|4q#qMKZQ$$ik+~a`N3)tSc
z)!jfLhSxm)iUOvw0re@UiuTPP`xG%Sg?88A3)j2@t(}5eWdB0UVDZCh-(+|Q;&@=(
zmu&zqUf1q&opYc&Cqo@)Ejh~NO0>sYPfWw%KjZujb^o!_=YU6n{|Bgi+QlCjF@p2w%ChS!^B9HC0%3c^62u1*E}UFkQ8Z?9^T%Mi+WjsN)SlCoh-y`U
zi8@y}r@-fV6WoMIsADA&Ny5;QYcjTwzKZF^_K_$d$d`tOSj80?3k{pKAAlt>Uoi??ba0GV{g?)nXv&;5Z>wvz6%|nyw(F?f%lkNrPKDS(j`@r*H*YF6
z#UrX|(i`hXW_FhL%D|maU!OC4$Nh_m!YSAjABqAy6@32>0k8p0bQ4-}pb5H&#(tGa
zwzEQ=FOUAFYm>m>n7Q%sE?8jnpqs?zmAX0sce;kQw(y_cFg5|3ZdgKwzq-mT=#meuStXYg}(vSs;k5XPq4QTrD^QU!LTbl&2LdM+WgICjW*tGRqff~&jlMDI1H
z(kIju6OY~qi^!#-P5jm1b}!KAb)x>Z>FQyzRaa7RZIx={wMnY~Ibl;R0?Qm|=BZBq
zS#`ggoaQ<1EV|KrMKW|N@!VnBkVGq$*Ilemtc@I+aGqQ!K7(~0XN7S02-7Y8OxXAW
zdRt;(a88BuzOLxaB330BfA?kLC77K<*vz$wz_h&h_lQBh+Eri@HlXg?^Q5Ff8i$pr1Cu+&|W_m|h
z-+QFK=a=6sx=znj;?n1OpqfcwMv0JF+0^ZMjzi7CW(-?dQ$wd7?ZlO?qh=BO5Evs8
zIGEid|4y*txZ99pn^|?blvJM6R&oz2pm9X03BGaJhg$5qcqb^O(q(atkQJ+wx7U(2
z+xvvAI&d)42_ZI++J3UN_Jg@O1OQ4PK)ekkCT2I2(bKoxV1AAgj?}PFL$FqW(^NEQ-AV|}MJ?e2Rm?{bS54%xxGqZ;rQQbHAX;WP7
zh}LfFM8H1GQuP=JiEc7756jETv&->)7a$A&3mXHIGYMrfPhTs$3m{H~7d(EAVy&+Y
zvTHIghT&DEGq0MR`%*;W!R`KeU%}|ZR`K1Q62%DQ(|CDpMeCj`AbYlt89e=Tpm$|N
z^P0ob=7B|)M@qw7|gnNqw%bKWfBa*y@nT@rKd5DanRej+I6AE7)HrX&fIehK2
zBiT`K5T|d0saw=NBiZo0QZS=G7I`}aPEe#|5Zx)<=bZu~CvrZ65bwHFJq4gwD*-98G!k
zH1bj;%dcifxX-E{`#-ZRiYy`Dw5c{#FJJX+F8@5!&W
zWV;_bJ}%!@Zs>JgEw?`G7bo`3PyluZAwiLzyS$_%BrEv<4M1%#j4chUa`ptVO!%`B
zze8A9!;s>dP)$wEa=HdHsDmnC84*fDF1-rA37OGT*vr2ehwFdv|NU_L2S7EVjI@we
zamj0XTJ=S9zTEi-)4Oa2U_S=ih<64Co8~s?)8sb6!Kd^MsKGI&nU=k$bTmrsM62IY
zm9okyKgm_9sS0kif88oR1Gf`M5!gw
zzkT2pwJhQ91hE-~%C!IY$TUhE!I6CjM^*tQ3g!FHfw3B7Aa>afCMK|ApIRV-HNh7F
z`C?t{z7Mo1Wei0gv?bWqWj*^7>U%Xi)wLKx7q?CWLYqLsfKdhezwqk&jBNsI`KUK*
zbzV>!q0nB{m>vF77WQS(F;-DTGaep~zWtyHlXI07MInyZ
zlGt9M)ct9xcTRC}IEb6<=+$%nruP*0V`9_n1xbKMuc{+oDi{x}U6=OK&-U0tIwkhi
zoOlnnCv@y`T=~7_x{4~r+1pVTf$wM~0raGy?Brb?VEmI`i@Hy3!c(g9;{&A$qmn1Z
z`%oC&6%6bhC6dq4psaiN*Y-tk%{^=}>9qMvekz;U;lm1ISH296PKn7tVy2q3%N0LP88MXcgglq`m7DKcKI%d_4WKyP=jCV>g)6
zc3n}?TPBT6TLOuQI$5Cy8OeMqH
zlE?rKg#ma*;Zt4xRa6S>#=-2a{-r9Wv9c#&qToPa32}=1Lkd8yoPR%1OMtV0mSFOiK<4n@MfPxUg2bv!6j+x34P?pNR@7|bD<^+Mok?5@t=N5SW%Zxw
zBK8F}aegh5e?98b$DykXgVx^pq!iNafux{w4+kS9L`M&T?1{gU#ouIdtBw|s52{*@
z&{88USMlS2Qmj{KK4WFbV6^9CWE{G`bOpjS5qGHADF6B1=};!LQ}&JEv&548yU3P=
zP9y7jzPeN|?)8RFir3)532bK6jl7RbP}O5`lX=nKfq|Wc03`Zn{1PllY#8!C7`D9a
zpN1qyfwaVYuK}i#W%}E1ep{^F63VWJPK{u=A+Gc;^^{R(NTSk=LxS70uZDdc$=|li
zE$sJZf3AY4Q(LaZ#Gn#v>kQ&;1wT?=ILq?ktuyr|;?Jasy@vf`85;^2c@9T#O_28I
z{>NxgD5gTOTVKL-DamN526AQ*rkjtXK1b;Yp+Ex)75-1^wEZyxVMFek}Oh>_cgjDq85Zq%svHh;=NCu
z+rkSO+;%Zlv!6LUg+Sz*MVRYGu4!ddaMSKv*PGH7-y8o<2k!t(FxR-TW@F7-(A@k6
z)otD5(?sM+7DkzEd~)gw5zmm2IRS0~N%cGA!7o_qBC}xg*E+8GriwPBO9a;{9P`fU
zcEnniVvyqX`@*M>U)V}1I-3R%PF4rmzN|AZ`Zwq1qvSo9a}&Ie3VjTQSZJRE+*+sQ
zMBr=xp-ujt>n+_(_hCB=Wug5-_fM_4b26?c+~%5%7w7X$1MB8a2y>9Ck#T&7mS*Mq
z$kr<@EvJX}yGW%C*9)DELv#aR1lCjq@JprrthZlvI6nz2W~P=0uOIic1!9)D2ifYc
z*Vl#CnYaP22RG|CmEombO3ooo*8o<7_X0*emZ4^nHO0}~)g9uL)##aubNLB2QRP}#
zpLRTWGPS>z1{9UgaeD_S92FKgi%GWQuzmthqD80a3{QmID3ae3nrPytZ;VCe9!w{m
zF0FyZ<}*VA)2gcSblJz83hJ`GE)+VuRzMwyE)qC4voY)bW2CGj16COKMh>WM=dX$9
z?xD4Q-bWkLNoiw!**09KdZJ-jjB;{dwOqi9P*vf08G1Swr>ZG7I(@(LTzJwUd&P?+>iS+@83dvas9+f?E&HB50C
z_1IhsU1kwf@vzzHH`eABR98EwMX~$u3j~9zk3_PD(oX0O5SH8;s$9RHJ2UHYXHsM93lJ*AF4YON#I2%K>0cg-1~C
zZzAVmw3LA?LEPS4#)_D&N_lTL2Cz5m+-f|->UQUQ{7pjH;M;nGhqv6k*zPSXsBo0>
z98>q-S9HoeTgg2KV+E6%?7SiV7=-S0wmnd+iYs;UR?#^>>GZZPRbhaSw~HNcL!
z?FlR4eKAM}{`7tU3`F30hrmwD^=9lc&&YUmoN&gR0?pYT8MOQtf0Aqkw?n*8_SR^^s&T7MC~uneB6-={Si
zeXtdYx`tqezMb!6vS|utBxy$SQn;DaC?-7->Lp$lq&DlDe}OC~%GeYc#imLi;E8T54)F
zHuHlfqQ^woI5@I~I$&PpONQ|aX^q31BYT_CxnGZuI2ebmKQC6~l)lb*{{}-m`ns?c
zY*EF_)8L`hj_vM>&Q
z_;D?qGnC>pXJh;7ecdeY7HdL+2nncIyNVSq2n5(;s8o2(IfKTDP4i7`N;Wgh1l{s^6!N48!&XZ
zHHjs#YZ#&E)QcXJgh43YW>$YLNZZs50eSD8@}39Q-uv$J%jkL+55OjcN>J%5>dB?}aRqX#3(nq-&e~Te=M&=%LGDGBLa~hgM
z>!8v6+-8yacSF&LHZx0`X;Qo0x%w1{6ypG7nu<2G&Jfh6djbe&NYB()a-A&c+kY{4?Wv*Vk~T2gJlm_2$d*
zP7wRuZS@a3S1yOS4y;-YEac65i=r$HxEIHgh
z1Eh5H!j<-`c$HYDlxhGav)!QsVmtELd#vMOpdDx@qCc!|DnU*Bzo6vxJngq?U%jfo
zaLHPic~ujc!|k2HCte7UqbW}2Z~Ug1eV}eZ7+yg#Vh$W*>kIeWdU_#HiTXElz!d_Y
zDb79sTque0?c%@MS_)how{X)IyR}tya~rR_sD-eQ0Xtw%t;JgpB-|hfo$t^!EEXQ{
z!U7t`Nq|qTHMf;+HBgsM`H;=J17ce(CyZ1}oJ19G!hkQwD}(gMVSCvtPh;%AbOzzj
zpDm-izAdw@|gE6U&a=NMgA;h*FB{dEC&VmvdTg~j74xnRq^
z=TovFi}|Qf9Fh58FGnHay{faVd-*836ATa$SnCGLn<1PufMb5mA4|;s*NW=q9DG#U
z$t0#Z2(Y>iJ~=(?6#S=b86=)4(lZ38^8#X{WV+Wi)f&bBTyycVF>nH%=BF#m$#iw&
zHr*FYcuPMvv&kfVpZEeaTw`c~yaK5Trp}fE@G}W84c6P~!E6#)9~6Jn0zk}43%C7B
zUpR2kNr^c9Mq<9WY8YH^XsUiq(^Gv#`py~y;e&saP2??Yex0rHxROn+|FIB#`RJED
zEAG~ha<0uBdLrTZY?ak3oyje3&6LD{a&0O_!j|tpVGFeZ734NAkyTVv&4n1*t(X@0
zgFF#`Q60E;}X9Av1*@VYqS0riGJ1fTqmN@oK+_R^#|aljuS-wp$ATvPpa@D0np=!Qwr%ZYrSwdIc;rPkXGR8*>kQ~
zy+AA=OrUIiWT)k14wN$NwSeT{Uvb8kwUw10RR-di&j

`?*+gN00yYtkKBCo!f070Hn*MKQ*=+1ZJe+raJ_P{CBYSrNzY;0QZ4* z^D|(I0z6VOpH)vUfYbm{BelM+E+RTQTH7f$I+}`!2{iyvm+YPSlWK|5wxA8v#^AGB$7SAIC2r372EHD#50X zR+?@mfaCxWtR>6aA8H&v^V&}F0~bTI!PfYb(g|zVg0!rH*&8rKRLh*jZ1f$HXIEMk zoCLcr>8oo&@)+v>i{E~ddv}~MP0)ulcuE4qevKQzd`mB+DOepklFR(%t^A1K)E~$s zaACk6ME3V1_X02;Ly1`~BFZmQQd5%vwDm(`8JL-`>8$MRo?sl43OK*c#3*rWCwaHp zx)t8~_S_CYbj2ktwX|tGnyGMdHB{AIxcp=FCjI>*?o0Q40?g-1gRoIqCh$6ty~_5F zTm=D{BnajGlI{p#z3lSx))~J%=Xuyz(gE1g{$l0vBQfDW6h#u{$8U>85ZU^0#wgD- z^-M;tB4D5i%;!Ojb==>I9(wT^i$5TQ&3~_2Awg^jk2!V(nk&nx>}mQ;*0=wM+$pmJ zMDDcDS(FeNQ1+30T!jd$ySx>#41e{%C+>J@ zZ2&G&&~YS|I;hL_5c_V!|K(japfHOjUXkGrRG|?1K14dsLtkHCd>UnPYRk?fci!S> zVO4R*L`_tt;t$VU6FhP^7IWRqIdVYxIkMshY3zLcIUxd7%d@e-9UlG=%Iv>?Pb! z5m9gOg*Sxb8#xsK-C4fkQg57w9ytK@%bcEhB4+P=71JXJc7Qd_!|q^%j=44@nwft0 zS**dFG^DBW%8driPs!H+8E`KzKU}4XB;$Fgh&5y1T>SHHBNj8$5Tb^vWgeUlSiKIc zl?Ka*{O4zCDd(}J&;x}V-yB5Nz~M(s0_25gRSi@pgr9G_mW+! z0XBg~4kF!G8)5?+erh9-SIE@(qxL`|Vy{VzMH%&~z6UM8EEAGJgy zT$N){V-_c`yU^FA4Xkay17$4Kk-@TVw-kh2 zN;4P-_Zl|nD! zKYZ-mv;oN$)Yx|Mt7l{*P4;C~Z~@ujplzbUUDzrmq56Lge#kNCvfWM)4?n1zr&{U% zBYXN_GR4RJe+-Zi!;V_m!6X0(6a<*U$UkGn)Q4{vMFC_s779y9tKd5-D_P3mI|?gf zi>FDtE9f{d<&so2Qj6b<#@g8xDUD2CcN7$Yho5(Gg`|&CPWm`NVI^1SGUp|MhFg`m znN9e=-Z=r(VZhE@gaV7Zq<9N(Y(5Jap*!Ox`uxG|OIV7TAdBWVgKX*rK8gxPu&eH{A5Zpwx7X4GbVW}ojXwdrPBfrM_j(?^>>3eNoJd2tJQa3+ZEtwkJcxyiJi&u z3Y;Lvvpis6NkJ%e9gz(&N2Hd_CoC(eTu^8)U4mZ>*LP8=j~>4z`iZv%_`y5j@CG`Go3!u`k=c+*DXB`0Pjg`hN zcbXV8x?b^+?4_YMg8<3Di0Z73)+SV|e@#cJWrW8mxx>j+8pt<*@h>&P+-up;rwmB) zMVXO&jp6qz80*}@%Bpp`5vXWigHz8O8JB`D02MLlc=@QXqx_vhfCl`%n_7cLNv<0L zC(gbbEAu_Q>}+w_pWql<43uEpS5={9{X_0hm|0vBZAK)>4|>iLlVkhOioIj~e`(p@ z&>eZDp7^>f0Oo)NMh2ZP$f5Y_y8kgfNWG1 z8ohXl>Zs+Ku{#XSbWi}5wa;6?4Rr-JT?H>xZv*e*E*y4W2JnXgZ-#&J@jOwszm~t9 z0=?H%8x&AXtC1IQ0g8&g9jkj+_t`4<+Z!=69zbsI$S3@`==k{fdn3Tc4AAzQ_*A7q z(NZ$S-BZS+@55}7>$%yLBD8F-QN&8>c){!_gA!38HY9p%d`2gB}bARo$i zec7iJ#US@$Z1kE1`w|l-61D_#EZ?_b=XIg>$d*-wyb;0*005eBmflj0v1jY0F9r(l z{*v*(69P~?pzO!wNet$-aXJhf+@X#A`m}5eu(2e2Ij5(2lM-qassCOXgilpPFGpHk zugCt1SOSm6wZ71lyUX{qyFlw@FWv5F`SRa;(fhwsbVt0>^2)6PJhIrF#PBr+O0w?M zoT{=IsB4=*%98?x9Q92g*6J_H?>(PM1ZG^mBy)uCkRXbuQLIhkU-JhD5UpQ9>Q-*sPj&_7zkM)f{sp1|Qc(l%SM{vr)D6KYSwrEXkDtV~dOuCXV3bx! zVv_w6o=4eAwjby;$pDaOg>{+Fp6y!w;D6RdA4i!W7lNXtE#k{xtpL44U_>fCqiG)h z7r3}lxTc*D&jX(Q<~bRN>jkm3&-{RFx0E$95tF@mn)%3vN3yvHA5?xtJ|p7~FZ;a5 zSia#eISRM4wgt9oEe2r#%{Tyz~nbE%yH}J5vxOs&58sR^7H-0i=mAJsQ%~0ESJNuXTcU zU15cxA(74Df}gwkyG?6ENn@x&wAVZ{(o$Xb-Fa+(38B+4_(Nuv^qf(_aq7&sr5Y?7 za5y2e$pQ7jXigtK%ro54pQ040uwrbw%dD zZ`H1wbfWnd#zPfY-(btUW79$s z`M#F+wV1L2`#s=25+4}&oFavBjpZBhK zVRg<4BEkVof?{FxKRk|?N>w%MhpK%u@x9_{Th^3wkEyQAul+!{tuKiP>Ki|ggG30p z{2v`hPG^t4dQ>-KzkHCc$o?|ZO7-sT38FSuCZ&qXjB(SfUIo2$FzAc_T0 zvxsjV#u7Pc&p`xnT^m$_iOiodKIPBV$Un|H={Cn(tPeB1JD{7r!k(n9Xx3YPyQAr{ zYQ;C9-J1Sh>FPgGuk^EAY@GJy?y_k(i~qomf_P{-fdC4%#e(^EKRB<;r0Bpo;dRvm4{Wj&@dDM1&8= zJG!V^j~u+FeSP$Ta3!6L^}&xn`a(O%&_2Q~u_KC@io)@+?i%=A@QIT8KC)%xZv_S% z9{h~PH`VBq>EhZG;JU1JjXfv2>ghDhqObhU#MHURm)>K`WTrMRTObjL3=Q@)MGq=sQ6S#mST6J2QHO|b`4+0h$ov{Krv4v56V#s~@87s~*Y)0h3`Ye3* zqfzPkEwVU>+`T7c=_f|aX&%CvlW_avbIPmHUI9z8Q?8wu%<~mXJ(CsDe9GmYlsD1>#Lgl-6eW8%2L7R?5 zV^xKB`EmW2fHxWpe?zO*9Sr)g{V>4?8x#TNvhUf?5}HkS^_#_YshEq3R}%4nm37=H zUJ`w~8@4&nen|JL_ABC?smPB$yRQiJU(b_^%ltX77}0LCP(;Ns*%M6r=(wtTHQt=# zW~~<@yFbW}R(J^y>FhqJ3-$}Fy6jB>-)sM+UsJZMP$ab(5EateH6rWzP=rb|=cKvetu^TH|ABS6g<*`~haMVX#oKu1v$uqqsS#R@H>)zm4=m!uRd?eqk zMKU7Y7p&fbYL9cmxzSIe6l5g?o~o1ERC@X{rLX1dx<&F1m*S1cC7f~e^k9kR{(QTR zc_(SC%|zivXUAxx0CfE`xcZw-P3G*zl&|M0&V)rcL?8GWc6x&TCEI@&oQ^9NZ{zIKe(10S~KsAZmpL6 z+^k3mqJYa6Wc-oQ1!_vrlGR%{OfC{bH?vzIU`Zb-vyygRT>&MD+UCqT@%kEJjV3xZ z$hk@x?qNN|4YFXFjO;N{hBKVugejiYPzy^gYn0#K$?s8vT`7a7GdWr1$WDBYj3nbW ze$RG!1bZdZZ%LCs#@kLR72-o@PZOLB#A$|Ul9L^1rt+7}!hx|eYEYELE;{_UQt zYbzVPcWWf2i=cgjRmHS&E!LsSURAcxQ}A4fahW)n61gAY~mE0X2)eZ zoc)tNGdJi9vRAPERM7_?2mM&%jm)x@-U26Fb&bv*%ZYBBjt>U-hxKXR>8B; zDJnuDv{e};9!~xMF4_2deH)<~a+T^Q-q+;o5gSieVg(mlu^wKh%~S5iT@(B_F->kK ztF0r}jRl>Z>-#ZHzBP!5j1#Z{Mz1sf-1dxI)nJ6(g)dMe-G^U(gnG6-oNFd$U<boYXZc*xH+iLkTiS=tDhj)wSeB*`tZ9{byGpT|99_7dOlc;b+yR0@&e3rWL(SJzNEc@%>!<@ zDljV*-B|4QsGo5!5>Wsh6QZ-OV91mL`zs6&a;=wF%}TE+sO&tTtf~x)A~|7-bu*l! zYPR&*UZW`S?+}K8`Cz};Hmt>#XIm7Q^~&Z!-d#Z@|KBy zVrrD}nC#_UhH(W0m(GHpmrER8s7bw6@wU(68Ew zDa3yv&(0M(9}`qrPVxVZa0NwQi*YvmJD1o(PLIfY?s6RlaEz+aiOQn;M6~z#BTq?P zpt@+SMhwygpW&QNzRlyg>_flYP_q79+;rDR7VymgH8>tpj;@s^icXfsNO{;zb2kSw z>BKBI2-~{k^raE;x{kFxQnowJ2H))eQO)G_9eEo?i{K1~S`Kb_S2&bFLj*h!XaXhY zb7F4_oe@IVLA-z{KJ2`hW2^orTifphBO?iwTcU*`wsffnVfy*7uHc;{>|lF&<3^gs zMfa7a0N?2aHvNfPo0K{r7QPLXO}dz@sD%FUyKL(gxX0V|si8gU8!YH4dJ`siaa&_& zoM>@|taWM0djszWb5-p{_AA$gDxAqef+%AkPCgtn(;V;h!>slNIV#>GPv7KtE~LH| zb2qGOa^gutHxhRl;J*H>NdL=2Rm2&K7OKqOS)L&+8QvLZVp!d*Mdjw9s0DHR5Y*>e zPEKUbyLOjOjSLL)z8O3@JP^;O5JyWn6CJNTlXYx#c|8$GS7Up;crGF#sp&_oNaXt~ zW|7^ei6r6ei<1ns=VwD@TuD1Qmb7u*C?J@6g?XzcXaoRHHfWNe7?LLh0YM)4b1KxZ z2Pfn`J?i^ly!odXjdK=Rx)JB`d{cgc;KCVWx%PKD`aHM7Y^)qm^uBrN_uUDyql4cp{k~a)le!B zD*GCVH1C*{PtDuAT_wt!0+x#E0Bpf)K_Z6rOTP_`C`Z`1Y*#q0;hT9+6P)G;d#UFW zj6|Ua&mv0$L+uXktnjlw|Hz&=YwgPvciXVpHj$w(7nRJjGTd=;+_ht`r}%wt`D_MCRg@1lYNbe5hzC$9wSESW+JZmNTu!C=xpD*G2G0~#bkGN(e|Bb2JJB`foc zR4(!Om&AA=wRS5Wcqr3{|7HU{-+|!sn_#5tI8O0*|JO9}@t@9~Vp>ro9G1(w!LBix zpBx=kXIiX`p2{!9a5^{UxMHiSV_*s{U+9*}0-3#gGcfuWmgh~MqWuadf7%k>MFG6>&Hy!Vc$ zSA*Ox7;j}6vw_1;UkZ6z)CMC9{-({li^Vo)f%F-!r2`MD6AI%GQI`&I(+k&rRk#9s z)B2yCr4Tnu^tnchm)md@&1yd#+Zok(a72-N<8FsAKIaJM-L)4IeyKjI`Qg|uG_?St z2bcnnLv@J21`sg$1(2ZR?LCpTjL4~p8FHxO>w?LyCvgHwUXAbEscv%(vI`Cr+500eq>Bs>*ZZ{`X`uxUj1Uyl_GA<^SRfn zG2~jEpExvmY`+7Vx}ncl&CRbnSY~3(ZCD9{e~dI*wKdN>spF0B%O}2xfB|AX{I|2J zx-}=a#kV_vpPO-`u9StmcBN)9sh$->*dF>$q1FrjzgmDmj0#cT&%Ir}Cfz+qU3U?_ zdYcU?K-RsW`aI!+@v!;)ZbRbk4Qv&-o4WnS|wK4q_g%#U*}+P~4|76+KGy){b23#U#XGKlZmIhj|DY zI$smWSM^L(vd9D82-!a!qq&Bo?1ueJOARo}rl0a-Y%rKO|kG zZt7K@Bc}_}YSIP<216WxD%rX&ERjxV3%}k#=xbyGOGNZZ=x*Dla1pvFj7n6dF#Q0c z*+m`kWBvjP;Uq*LV@6)I)CV^KSzSpd4hqijFT3p3-$=RbU5$}jsScIGeft5= zoIbRH7Jue-yQW6UmijxT%7ioLSNCY3R)opL#R$MU5UTr26ON-$)dzc?t(|g*c2ccv z#g)i+e)1BBuXgD#IV&#JTKwKzb_rq3yj;HC^#_rmEG&eeO`69eN+F^byfkinJm{7f z%IRi%4Vdk!85x~7W12SVK9%3D*z&MvqHcAOlwce467*P@N)$*Jx|#GRpt749@KN%{ z(MMQV)~g)XMVbvAygrkxuNMfbr!4sTu}w$~cTNLu3kb#h9!J7iuv9hs^bBVipvghN zWeVsBqoJeseypYc+KB_BYITh*dVlT?MI=$t?*D7!w2TxC$H8Kt73ykojV)8@Nhm=C z95-)b3@_snXQsE@^&{16awcv*sl&Ej_)bI9B$(!2FJekdxMcD`%KP;OqC$i8ne-VH z)U8Di@^4I<_p#OAzDd7*+h4SC7i8Rfa*60zWX_Tz?)%7@bm_w0{^*AUqxYNowHx%n z>6y%C{Tj^Zo}?*jcZ}P9Km|_E9{Ta9)0#j;?+n)}&Xkk185&S26pT`%^sIcdnp|Ek zXTW^A?{?r|Hbdx2q%bA~q{X`(oNmU9rZwI?jU-_sos)h46!)r7fcJA4B1Md0P*xhc zie{YigMz(2(ayDVWgtm^y3M|_>uUQrTc2q|yI$+_Vj(oFn;I@acn~~%I=xN(taZb$ z+#qt|61HT^`u*hcVabn0g60|~W;wgii6>~x*9R1*eff^;wosW8n5)Dhm6aaorpO-Z zo^`#B1ZLr06BGNs_gC@1PAu`xc|M@h_vK;-{{1$l2efgZ_s(Vr8CYSVJn9CE-^9Zk z?wxTtSp^sIBoy8!h>*EDER)pa3YZaL!U1n%05irnpL;QI|CKPLOuTy`OSa)-nx>;r zaoh?A@Pv&*vXC?_sJS3TI2j-1)k4*+!Tn+27`>?fYj`pYFGX5c#V&0B<^xfDd1zcLXYU5Htd_(t2-bL##*b&SDjd(F>H{9H=WIA%m%=GBBcHa}VKhV0;3 z!MOM8z<$cs1ZZd4e3?c3dhN?9)LRW-^cMr$WG{_3s=E5b1fKlIPslKyhnIq7-75#D z9mves(*vv(tZPr3?4VzszZtcNn!h}M$0j&nn1YJ%%tvi=S*ou25b6-HdTf~UbK$)Bjxp};TJ);%A`(Pb zNiK_5C(VmiiD#vxp*Nf2v*H_s7TD}5-pnX#pQsaS>jpNtB%TFj|*M!PA3@dYOSx9rYYoKJdpUh zz~oHzo<~4zoIDIQSrlD4V_XLI=ILAo)4WRa3$B0YcI)V zovZu*J?<%=FU*&M*VjQ8R{QQJLTxzJB%-k(<(y#Iwnw)iT}Rky6jWGC5L5sKMP&`9 z4yt{`!D_@ui6k>ulJovZDT4$4byPVNTr-==&JDi)wRp4^!4xNxUp^fep=2tP1iq93 zl<|l;@pqwa{+tNOpCpw`UWxkO?5nA3_d$su%)ZZ3IOpvL1YOG?7l zuAEO`IM=MequF6BPiNDOVT1M9`9e1(=8W~PsHri}s6A=-kG*`mv-0$gkkk+7O1TO4 z*Ewh9Je9lsdJO7HQ_rfe;4Z(*ofVp5QciW~$p!sB;Np~^sT%MNo=@>>o;LHrp}L+r zVWzvwW~DX@v#w$2c%j>!`(9pOMiWs_=#E z=EDTQM6K2;tSW!!c}C_v`_k&hkM^>fBq3e9?a8l9=3a0(jNf%Eoh)`-!)I=>;8R?FT0vH(J z<){fw{9bC5nkwx;AU@-;Dg>cXMBz>Jy^-U*?Oeon9_<|9O)=EU1GAV9fBfm<>_+*k z)m6e1NcjT>X)W81@MFxzx*N7!pw-uDpa|+MDR#>BdfUWk_~!MIM?axnr|3h%g1)&q z4Iu6}xxOCP(<7nHjGvN{a(|k4Y+n1*WXKwJGt1R>eDtHz-RKuls&B2|%hTN(2*0Y> zHE7+Y@@n_!l}Ey`Q`KYq^rUm@XeL2a$sSZPAGr%P=2U7OdtLmQUQ-xD%Tg~FQf35$ z?OmI0^6y{AlCnuB*Bwl@yiUi!`Z@sf)W))9i4j3-=Ch?X6uS`sw-F>gy(l}>@-)?A zL6^Y6Q7pty#R6PnlP&%NIEpArc?AUyhjn3qD5(58Pa!D;Fa+KjN~GdT^Bh>QQ;hcOGgecOjMO{f47I;wB+Qbonvt;Yufu592}g_ho6 ztwMuA$`$Ll1AcM6ZU6QJZQlDb^(LcopPoM1R5ag#-zA6BmV9cn3IG7U@O$q z%ge88CbNG0lr%M^IyycE2evI6flcS}JRbHk)z(%|R_H{SaKiVsb_R~CVDoT`^yX@? z97M0UIm5XUtm-y{EHSB;sI=Sm+Hn{MkCU0f4Y8A@yvtwjc=cWZiCD|p8d5_a!?5^y z#49_nIZ&E(0~LyiFG;~LPs2l7q035M zPisER4qWZXx|kbbDtN zJT~Bw{>Hl;b|lWryM3Bqje9r9@vwl8KJ6`*2)dARdP?4)NjNhSCTpw7>-T4#`9GP* zMf^tr)DUXe4QoF~EDV*!vM;B7SwYX!v=?;+8Qef4Co_0qn8iOE8n**ZC^DuyQcrKI zbC|ePQUaL?P`(dcus4eI)QG3*(?4(lgT9BoJPbPQsNYdKJn$6Me8ro9&AKBw`w}*V zS`rWs9pOb9UH994*0&mEiFYH#T_H!u|DjQP($N(PQo~L0%apf%G&_QM+OK{Vwnnje z|9mW=KA7zad}rmRi{{qmu5X6RcEZF2k%03j1~=Ukl+!T)19G_|Li2aUyj(q=x;q+9 zxC6{uRffv4px=zHQL%sT9qvEa;2^6*mn^0JK>+E`nLPhprBX-)iM%+ zOxFF(Z?w;Bnw$O_W~L^Gu4j3~0VfyK?myZw@g`(t8+^&8zL~1=Zp2L=qoi1$v+~td z%15>5yH9E)laNk|u&TYwDa$!m!Bae>jS>M$H-yqg%&h*8Q?6oeSv04V(};fp;*x=S zEF?>GObAFnfE^G)^3^1FtTXkeU)M%x&a$DU8?WxZ`kAFHHTXN@gd7$7Ue<6KdmXCg z5-X`R5xU$lju&Kmu_4j!{#=U?hT>|qvZse&-vk{6`l>99vr+pve~L=SCg+!#m))49 z)h5?1SaKvuNRe#xDL<{9-TA^EE1GYGTb=_$DST?S{XA>FfZZuzEG(g{jDF%S)OlUZ zwsn88ldVnR!iCp$pRyIL&GCHdP3s=h!)r!J3plVu>6}K_n z{fxj~_O>8&9rq4^>O+0Hd}Hkted&U*^FTnsQ(c*_t2)-`V)JU@|evrC%UUWf3TU%Sg&hgPvht=iBLl$jb1tq;q!c|5G zw(OrF+Fq#Nv#cg1kNLrZD}N+4-y;O{81eyc3ob7rv4K=6&wFOC8=i2m$_=QVrVO{0 z_t87RFPhxsov5;U{vmsPpsmxV=HA0qtlIdkN)ORUU?(b&5U41Hc5o+gR~9J&dWS67F9b93V-bfj4^SNfDuF6;oMWnj`jX<0QG znqw=p;IeKo#U`wk`(5KthS$!a=#w`< zM?tgi9DEJ{)KtCjb6Ml0{L^*#_RZ&muI=qkMdo&9us6s+^__QLE1S6YOKD2kgK-WH;r zaE8R(hsWp5J-IO%6X3po~?n&eW9{KYm9jhm}uex@*l)#0xOH1tZwxPuTy(}8ci3qR$1)v;4| z8CMcD>9V(%`q@ZXKi|;D(gBmc*bewfuuhZh>*u;{SwmLVVvU8;EL`3I&tim+Fy+`Rr6=@5k%L?g z@U;E!Ha0zv6&%u{mm?F<-58k#6(B{~By<9rJdb}Cx(1l4JA$&ZNL*vVpNGcA-db4D zLK)v2%>jbQ1AAkcfB@1tRzVqamcbm-(aT)hSSM97qUlJEh)J8rNqxMuMZ(mMF=nssR|9<;*k=Vs|9H@X5`}VQ@KWzTL6(HuhPysWgDze3x zcxseW?~#$;f3W&1@<4xvQ zZG6cxnGeXSPrLm(evhgX3j5D{k8z5S0~8#@pV3KIk9pL?$rcC)Ruw;4w*erCV_!vU!&O^!{xh?U|HeZx!w(*tb>JicYyOl(TrBg z%s7eqtq&b3RNA^94wUgm&)P`bA3~hb7V|B;^+Ci3FP=4rZGM^qKkVTB3D0Vsl8NrR z_O5*b*Jjei_|p~M-y2ttI<^~4$Q7@7X$|uHE^B7aV|<&&VrW2ra%vZ5G=B(Z?uX!n z=Aa={HRIN=Xcgq;rDelKB&kZIH7R2PFi;|I7(I!sbWdYblgv-WHtWMvK9k{*Q2vfC zJn;TQ0^eHL?`WpPH22@|?wVCfGvI-ER5I7xE7Ufc;b6X8PsUyFhSx1a${aIF8*1(+ zpd?55rYSbNFEf+OQubh&%BKn}g6W4l>;y6$k_ZvDi~|QP60N}?UBNn;>LvTw7kZfT z(>X^oflU&31mSd6@c@9*V(sllVj-K-0jYnrZES41kIq=rQ2|qApmxU~EIVHFR8io{ z-<$W8Aip!yr6?|zA_U`}+zakDxO#B1n38Vehg&+@Ro2xpm zBtl2&%DEBLas%rGE0S?b3yWbu%1IFwRMn&_Oqa!fZT5~jxvUw{c8#pacu^A{jcR)M z|Ar!;O91dL=j~1eWlT6Y5=}mdnwy6wlw@XhcGpg-%-YVbAMjC&vds0xX9Hhj=lI_0 z2>&@K{A6eM%9~ZHuMbF5;WoSYDmqUASUrEs1n4Eq1AGV)B+rRNXoB$u#Ir_`@m6`3! znh;$DL5ioa4fa~P4zU=M(8ZSSJJvs)D5r~?ittzLR}j3@&N&!l(}GVIA__u;fJ_=N z2tG^RCW`=SNub}@T&CY5be>$R%}m(1X98!=4$2K<_ZoiqEL^41wj6YtTqql~HZn*j z8=qHnLDUfl`N}YFE97E~u8m4&csZ0KQ?c({R?I_2I(-tDx5V_b?T6CG5)1B7klsYHF3}mzf^82WUZM^WEoa5Iy=lcpUMo zap!OE=}EPkxk=YhT|r&RFsraIA_44p8~oQl-?BayVE@%Z#Vo8y82+{ zH^1sRRI?i*oStJc-1DtfJ^|qTJl?JNBmKUJKYxKudyMCi!zzm|2%rI_Ap+gNw&Kp! zY9m1!IxrD-;Jc)6vx1JTiFO+J9x=C1g^j01i>J^mal?ZLM6%M-xO5Oomi!tR-E}~p z=kK5P=4WJL;_!AC$N+VPcIMbGqL7qz+A&N|Pt%RAh2Y&ivKyoF&P93q9lUBW)mig( zb;S)wCzW(?U;`Mos_N>&4GoJgjLex1vTJwckAI5vE=OC6*PB%YX~ZC5lMX}ZsWZOL z&VsphMteh+S5L`x1vZUYv%IBUFnFDO{>unIB_$=SDFnXra<9HQ>j*FWFD{Eh-)yD( z#hQaQc1}I37>ybTfiSrJk4NURew=p5RdaH7{yQdK!|g6x2(+CIS`QRHJ2@ZE7IFg2 z`%K=FOh^6rcMxxZ#D`lT(Q9;w@W`bQfE9rV*Q2=V zK0}b0!#ifF&s^SqzS@fOaCd&!&ibS7&Px~u=sc(qEFGH6Xk-0{Azm8(W8wsw z;QP(q1_VA7ZHV362BcO5{Miq>mfPqRJ(QMC!35$Y4U`%#*lxZ+@{%4e9AyXAQxid$!CImR-9mH|Jyce9lCrK} zGTKBrerc*NsF2-OdWr6$K-d!m3fA7;y}cSkKiWB*p#}3E&;INm2apm62CFczdg3MjArOR>~al#=pg|9DVi03^Qy zqB98zO=#eFTwhR0$%5Qu>Ud{+E@M11q5vpvJ19o`1viV;Mi;tq;Y-Z3Q-O1^ zA1|WEUOgqcAywR(fy{y<0q|dyF?8q;xB5(d1kUOA?q?5PCbd8FJ;qlVnhk#ZnBn!W z-1(ryl70VtHRfm3Q}vAH^YYt5_~OPI;fN!N9&bDtna&OT59ix`(78T?TtLyXog$p<*jk^%V%+fcCh7u)Qw2j zDe;EHgzp_}T}&jo0UQN%%Yz$o_y}8RCxIE>r_4Uw;^N}1l1zIP2-*k)pF_sipkK3| zxwvDErRFIy%J!2-8qoR#XMaiufu0EwEKZdl8{2%WwhptCa(=RY?8x@y7C~N+f zJ0H!kq+@_BBvN<_6Z)O|#@t?0ROUeey{-V`ZFG_TNG$j2FJsthWW&KMh|S{Yzi!an zf&Cyt_9MN2VfuOgckSiCcSJpa&8~W$HyjB9>EN>&o-`M-BEbM}zO_GPxKMZmRGI4o zs^35Z{OJg(MW2QI~gafXe|cYK8>hFqC61;E4Y zCv>nAD<=4EI2=f40$7wcfYfn-=>V&u-XE6 zrIB&o3%^;y;@m+@3qS&(nH}vXZNfEu<`z@0lVp%b6{t=m8yN~r3nZyVw-;kvzX1jw za=wuaSsenYPY<{7rjo=RejtvL{A>LkYbY3>m+tu3s+H|KSpyL+Q8l2eJL^VtsJ)yO zowQOHfW0vY97uN+XZBxm;>|%Sm2K@4!h`QOO05C#75Aq_UWGrkHh)0xDjG9$_Sv1b zcItiMC~(Ew`0Q?n!vLHw1ky1?=TG|D>$&9P-939VOjt|cr62NJNC{(UN8+wz?0HE( zz**^kGD!IzVYDPa_B;9mN3=q^G>DaB)IttkHy&=_=zyXhe+D=azTa=#!vr*JK^L`; zQ`zYUKpwGvmpwzj(h&`L1C+ZF+d-EG^Jhp`n2jeNvvSK5y1S)=w0ny7eYR z;jQ%5GMiu@YJFE|yZlaois&QIbNM8M$uFXuB+Tz}Ek)w(jWJI0G`XKMWrhte>=Ev4 zzk0`&mXPL#Z8eYa>t=;jLLl~B0YvjmuMR?>Bhyj^A;f0&R?sL3Co*QGk2OCORc-wG zoix0GJTQS9@dfEw8P)6_d?!VA9LQ|iP=N}7Z(_yqQqT?dh-8&8IZrUZrkhj!$typ; z;iNh>tXN|9OSSp{W6YA{%&Smd)}+;!_%i@=_n0WYFc?<|=o8Ch7krZZnY$Jl%qB+W zI+~?-eyu`UtzTT!qvQmVWdE|c=#iUrCJ@-RKP$+!LHr#fODHppv5 z6Yl)~8&|P>u3hxRD6T3;Qt<)i8t6n=O5rUAD==psprKyex8XY;BmFaR*MK`qKLtW) zEQ+Ml4Ruk&?P%X79rV66a+2s?k%LZ9J-LLabMTuT}ULV(!y!HfPP}z}x zylY?J7_yL~p`8i=V4gex6@fz%h2Nd+_I>K@mPKT^aH7kmmwT5KlT5CinB$8`p@?)A zLQ-V85h(UFg~Fh!z&=$})H4Pl+1rh zoKFDYd3DRY(PauSJRo3??{qRDBtVAf{#@p+B>Ct?R5XPyP6iWV8)4Ot3CBTesRis{ zGsqj0{P};-_7+f8Zfo1{qEtj038f{K5JXTKT__-pN-81iliX)5e&s!C zu&ZPNldC0a%KZ-)VNgcJ3Osk%Wal!ynCl`WO}|)nhCOJjcf9svVm!MP)pWcd?un>! zN4s+pt9@vChLQrH8vZ1xEivH7Lm=sqGSnq z%9fo8b7=MI;y-htCyrdAPjI%~5WSQ5lXtnV@@9cH7pr1&>&~{PIv!H1G)O(&bFs^0 z`a}kGCDCz*5Pqi&c)2Y- zX{k45Z-|VZq~89roLt`tnj@USP-Fdm(C#4x_{X*3*2>{F8wcEnWAJA0Z z+AFi%h~>(Jpi+Tiw(qNIPTXBvyBm)`^9FG6lA8?g2r0^ZFHbHj zU~Kjc_j~)DF}ZX_ocej`r>$^xz{YDn6#e<)DP!WI#fw-X3Y~niND!wsD zQ7K$sUijg)Y$`${>p#pP%exu%V<~4Z?uP}Ez%M;Vd#G=`_Oqw=wEIFaQrmvVDI2Im zFlw_{GqCemcJ+I?#rw6Z_a$9uhKJqHKrvuBA(qdp^~t;}QRqR)$%6OuJ{^hc`_{+E zfLpPERT9U2O0y8@$gOiK=7A%w*egmLAJ=9Ws$-%=d+Y}JNFSj65!rZ%y;4<(68%GJBts}1)%^H zxR?3a$4AlU$`XTIVa<&}J7x&57H&8ts~CSW{lNEbcv*C9y($o@GD@PkPJ7j-_%X15 zIg=;SI7#k3SB`kXCNKQ4??#S{{e?Phe82R+@K{zp+CEy<7M0)eYyytKbv|@@`n&5i z2a}{)8GG?KFRkzCy0$NEBk;+wAC1lwr`IIDqf4W88sr&AJ5RIUkQiMoOo~6RZ;##* z5B|jo7M!yh6XpKu{d8AmmZ?~9(cb+pmeyzXNskhRXAfynRojb)`F?HVo|*B#?8xzw z3r8+2HLE0gxFCyBz6tQ)-|1;RB{=bju4U9yy-K=GrKFaXe;XjXA0AT6nvqNM7s<<; z{U%)`zIyR5(uGRvF@nisPWj*k8RCU z66G^MFFSL7#w|V|d|7zLsZ%2;I8!sTXAk3Y(<7C^B|am%bG4!;!0O!6D8q}_S*K%H zc2js`15qA(R2D_@F|lanQYLT}6RGT_-UW5$@*S(*kbFnO8#L5#tPY#upP`z(`%o<{ zqfrY0E89k5820b?bo&kfsZbE8tVZ}ry#9M6Fqo?nr#VzgimiM70i8f-c|C~h#P4(+ z*6+(LKXCi1s@xPjoiwg-R_(hKjI;&)E4Y|_a-=)O$0X43OlS3QibTK8@&ksbN9uNm zzZ~J^^NSVm@2`joQ%3e%O`*pVBx=>g-KjmZe>jsF6hRtHQ~fmE(UHTe*YU zPyfOy#e`nr_Jtty@2NR_`LMdO>I2?_%>MibBz8E?$es4#rbDJlAm?HbIA(tsKp8RY z8Ah8<8OQINHfGrBy;HMiCQl{udWWY?waOs(Pb}IfVZm(it3u4ikmouQ=iG}A&E#$R z;VQc&qBWYnSfR_wBdBX~h0U<$pp;+#Xk95rB#tONZ_@yl78r3z^6lA29+0^T7M&^C zMUmvs_21xsNPGh9z+kOU(qXm&f$97!R(Q3u_XY^~U99n|>*Bifx~(f~?FZmDf&L+e zO>1)e)Qj{0hr2w_X@a^k=&2Y}kndfK_bR`M9XCe|WAF}}4z|nw=0#~-zyOJtmHDJB znAEOw*}PeD0Gu|e12}8ap~HtyiJB*y_v8m#ekYjme3Pe}K4sW9^ft4KanaE^fj2nE zXv>L+gOdIvM&nI65prnU92$bM%VmBcbX*ypBT{H$wSsDeanuM?7eh;gD3REUyAS*GBx3B}vip%VWN#dovVjGp$c#L_=k?c_RISn*OsyxM-j8p+kV_?!^oQ}fd4gWA0oftl=g z&pVvD)<6)#MLm{v;FMYS(k+>&c|gF52WZ&cRSpFUB=PkI5{ue&eY90)sWy*f95cGd zEu(WGSD3V3P}EOGqsTt0V`EQ{CqYKfto@toWBHZQPbLXRFaF3eNxTHy&)2C{zM_vw zTP*zW99Bfi)e>w^Ddeq?S{XVP0sVLNzUFpFl#y7Q8I1H|TNLM`7u#BX8ziX-1^M!w zIV|xoBYMQceiXK~rviL76_W{1QkzQyS@H;(3$Crf{4h|8RDyj3Szl5(@AzCJ$A!+TDTzcSeGrILyVAipB15bgJMWr8}v9kwp#MpKaPE9GE zv&o=W?fbR|tJEFLk@3zaSI-@W@>6cd&I4|Ik=~xH2P8VpGn4d3=#%)Bq-N|TRK?1* z;(2do#i-~pt7XNEzr9+S*{O487n0CyMzdlaRvOu9^V(WDjom-5{|p|B!K6Mvwt(?? z4J+xtC$rOp5PZt{2`fC*$3+*#xfsuDUE3`FG%N~T&)o!i;*O>VcU_}W(z4r-pdBnC z)FgEeQaKlJ_R)t+ktVd~u8Oi;YWh;$KTYXj%8PIE_JOX@XHjK-XXU3I1Gq*!3Q{@0 z+@F8y_m?pj>Y$#>F=kv)*uPR!Fi3Tc+m-s}HG#tG*$^hTz8@uTyyU{s89{&bnjb56 zGeP|wDCf*~`eg@F$AA7wmcsh=a@bo5^n>iVR#}tC(l?DGxeo1mTIo|z{O*Ve#S~v- z;)b&=1sHs{c27OWxzK=PL=<(YN+pR|L#}n_`F0@opH*b=W`%a zqeaex>j?H&_}tTNFH8g^ez{H;E6t1}p3u8kSr(1nH2{9t&)^ZPy#aU3U#_!6`fIyV zvfp9M>jt37Jw-870vGK@60@d+F1@@{R?OA%FV&&w@i`?bKPPHo)x@7`L_Hbn+Pz#i ze=1+pTVhT=i&PT0)Tr_&+N}T+N@4R6ir!?6OGlfx+;}LBKUE4(k2@W$&D@}?z9zNj zins8^_ssRe)v`AVNWKd>MEQ=TnwIHjdkrq%_`ohx13)yuqoDzo2Iw@O3z3KNg3oYs zd*168I#xC$b7pxe`jdg?HmAZ3aiWv|cJEq!E@HD)nmz!**_wZiO?y|--&rI2n86wNk3GIrtFPtSpf>b}<00d+#ldJRT*Z6xOA3~sSS&X&r$sKMD$=(3VCOwO>~)_>X{qqzM$HWn@=)5|KgHGILyXnl|t)quDh0w zIFGW-Nol*YW+7;~Np}lk)9qmihn?#E0nA&Xm>2*WHb&o8`z{eE@oRV|y6=lu+>TSH z-mL|uZYIf~m_!?gj(kdTf>UjbfQs-MSU4ao;K>}JV7~G;**Fnq{!n{?%ErsACw zlO&F1%v;MAQ)3NfyO!s$+o6u&aF7LBmwsYXzEhAd@r?(>R^}h7GmM-kO`n-GA?w^P}O^J8AsIOB6706}OwT_%p**u$CXcv=6G?wo4n#Ld(+g4_hgn-9|tLD-eAlfz=4VhEFxw;Xub zi;bmvibwD&-{_?)9PQK-ml<_0s5TQ~kNC?#mhC9a4s2zrc2cCt4#~d2Xw0I8 z#u>adiNult-T+ouc*iu3DD&HfvP|7S^Cm7X)b_jA#@p{76@@f44eywzb+CHdHXa>) zd$ki-%vZ|!s(S(Mgk(@wE~te8OLuiZCh>lL&$ITTs@|Tt=i-)9n%N@LcIAcl814gE z2i@6-EI+w0&eLWee}4Y5qDb7mwzv|sPpd;zPM1j*e;bhQ?Z$Y+Zm{A%646+!4m`#a z;a}G^`VILOfQ3)HFe9TQg9EUc8U`B$QKSx9Hf%}W1w0p@#TlxlJ6L|DZZXCu$DWlN> z_kL*>pt%7#;;Y*|*%g_+bi zySD1PDciT5tIT}yeO*H3y3S5a0p?=by940uhdh-sz(MQI8V+*0=8L@>XO$){!?XWf zB6a7pS#cg(MrNTmlnGGLCazNKAsMKotNTiN{5^g$)1v5+)^lVl!(k>U z_}*`}tg%ctVWw}=|Hg>5#Mki@f7cHG_mr|M>t^3LPHSghw}cG3mK|C4xfhlK>0;By zXJx3g56x^#w?h6pROWa`3=sn5=SE6mYKZf7KF9NZwZ?#>i7i5BfI>l#{jlTVm69ZN zGWzXuC zS7(Vn#EwnnBs@2a%q?xs&@VgTr#u*X6R#7TS4^Q^dC_Y7YzcfnKTEUr*d=OQRQnXa>6tEK>#IaT)c;Y%x�!{LBXG?V9Sv!6UDmZf{_5+nm@McR zJNI}#K-Xh2^j^h~m`7B(^RgWVCGM%d?5}=f^7JG@@d2~oZUvd9x4%EZQum!?TW6Oa zY2N=d`BsnK%uo`5?I4ZND+z~U_8(y!$(e)7;p0S`%F2&k zwdm}7M#r^d?Rp45FYn7Q&0pHMTszzcx_p_6ZIilOTb*-S;)C6}u<{R^NoY0 z9z2M0mw0k=qKKgv6ZPgXwxY6=KI~M-6ZpZ>`nK{s#}#z#jFP^{{j;yweQptsmU|81dK@b*r*w7ojX1p_|GZztGS$Sh zxdyi9@>>gfwJ=b?xKv^zU@>Bbuo|NV&l2xo>_DscRhhX!WbPj8n>p$o{OOuWW|0Vp z1_nHLd#lXC^=-FnS51%t$$J>A^(~BpMEC6SE5$;mU*O1qLp(;AgjaKbcpsfGFzMY0 z=9p^i^b0t^4DY#MUj^EYdpb4q%iq7b^8nvc4F; zWbv@)FltXqm#}-y^O!%>tZ>0kgW79d=&7s7^6sb#!l;Ko%X2w&s3MVng@8UOGcB@%GZ3)IuWLS$2sym)UYrKD){+R zIp>|lP#mu zG9zz5^E<6JB(d~36OLkiz7tVzrk-eja+^(mSCf)5R}Va05Je&?^W{IhbHIf4=nvB| zvrbBF2KTAy{bJDEf)XDtR>*|!Fn){NNyd?VJ;zt?x-G3fnCQL7FV(T1`)cXbd{W6y z*$Lg;*uOv^{HtR24QPrm86?`Uj;nR`oYXv}HF`qGbqK{f@iRStVBw5F-t027?2p9_ zvufcNc}mFvYUcs{viqzSw*y9Wzjp}bShxG~FChW}RZbLa}DQ`P_;o*94o4mDQ=C}%%iWp6}WC=2}f)Y|jN1fY)Trjy+!^>ARBHXC@#pk0Yib!CyC*`DVWV? z7v>u%=J-E%Z`h;QHV@5Gpm2({_NDylN1k=ypBE&=9mpp4Xm!>Mm!V~Iy~RJoJwHCo z4>@)-CN`OB;j$TSJL(^}t_ll#S1dg<`ugSzS_DFm(cP-Qb>B`nB|V>G`ho)S--bBe zE(cV?Gv!h(Vh!n9%3H~eT3_=!^DvGufjqayM>g~@4wv6vP>o#Xn|&nJc)O=qfNfIW zO-|fbH+!GygWxa$k5uqD+k-c3@;3wU%LZGDV%4sjdvkHYe>Gx0B&Sd6n@hEB z!9Lw{C5lV4K&5qPgo}6S=dlg64L!REoKgbG_9l7@N{pxTH)fQ~YwlizBQz!3I8?o| z@(=Npxa?G}eT6}g>q46aD(#2&bj5|km(>~HH9}rq?2y`X!(s1e*0~7-PM~Q1&}fvx zn(a0l8$O8B8ccsz9_d6ir(T*6F^^B-N|%MDx`=B=a0)1Lnp zlgj%v{FfOvd-3L(vI^#5vYeVmFAoA5R9YrSX_hazylm+}1>#D)FVI-lCG^GVq47R6$K&R5^t_L&RMKrt!NL8*{d-M*>t zr#zF&wZ~Q?_I}E5<0J0Z3f{<6ea+=_tn||1X{TnonBn2CXd`Ad9k!eH?kDX;q&-F{ zUt4d8i2tsNiimTu$wW>zbaZyrPFk^uh|uir?uMr`QpyIh$@kkg5wmI$QLlyAs2AR0 zIniZVK~udY<;%&ik;e2%W%H$t_WCGrgp~Wsx1n?t%L|wH3ytw{tBokR z!xENU5LAyzZ?rqarx_7Zv!Y}tg^dP2vSMjOk@EAOG@d z^xJ#$Iby7W_!7KYeqNyxjK>%*`0e$$1-`;N%;FrR&#w2kh$TE-zpTH!|IxZxkC8A9 z$CaJJZwu1n4@W@$Mn^*!k-tgKk494hfp2LmODZI`?!=*Kv|7VU8`fAV-TcqjOYIiX zfX|>^DANNi@_e%3XB)L;cV+2KgiHS|ND0qU5q(}$nZ=Gs*1Y$L2SAx>`+{JJoT7M> zG@9E>MwDFX;b~qiisfGtvXKXJ86?rFxc7eRWe}3Tjsk-7b!U47PpUqcQt1t9cK;4X z3UE_RUe8tL!UAqxTRgHZ(}`4-oWiSa_*}+d)#Y?#Ji)L}loB^YfJ}|z?sH{y_|am5 zYk-1UR9FY4& zsUFJ9b9TT}UaDT)rm`9rVeZ}!=%A?~;7n$#Ti}7XqTh?4MDNqBwE%>(hKl2BW*wMs+&B+UoBkV6vJqpL zj1L(KKOqD)4O%<336suy-$EysOshE#Xtcw5z)A~aa~wgEUXX_>8LE=;2WrSEUej@k z*BH?2dBLC4P;BQyG`Er4jC@6uh@g;qS27BHzCR^L+4Gy_GTEG$eYi0b3RGM!vK+-U zUT?j7k7kfRLW9twP>W7vX3Lgqsz*a&=^U!ml}YjP)Fp|mv&0GBgH`;IU4qnn7s%Ne z0PYuRtfQL`mHZv>ohGbG5xzP!d-$!9#C$o@qc)c(h$MrB*OV%<&frM02PCPIl9Ggt zGcmQ>bz-2f*E>{GwR9rw`28%CBwM}g##57eD(f=9VpNN{4A?t`Sf}xa_@*qrWxO9s zG@R?js+9#qx+|HebH)|+d1hAy=&2Ri6cpgdlA|dkxW?t}?H#+A7Oc^pWd91Ia&fvB zQ$dOl`WYo9(Yd@c8gnJ7l;*W)RzW1~Pi09R80i|) zHV#Cw?Y#)^5PkmjlhzNoh?%Ny2W3eP;Mk{~OI|&8MMZzJm6}KWmt^Us&7XLBIw@`AmuTZNi?6)2F&uR+YDc42`0y;^WRGYL zQOsr1;nBpadtF^ojBS)d;%{PLVGlB&pi6<0c5;#wUC-iwiudABSm)aj z&!18qAs<{g@9J;1yvxQk5S~<~q>gC5 zMt#-vX=Vw`U^cQ*i^mni>H=?C{M^2uTf2uDA5W=`HgjC4uI^o>qElF5L)!(or}Ze zwj{&V-vS~7=qucFj$?Q;(cjIae21z8hc$u{wRkVQZPfj!bd%}u^S9tM7Clu`hjTdj zbtYC-iJ*UAK;XiKBS0^M=ZhgJ`*63d%SI|^JY8XdXavC2xcG@u&tYG29t~j|AI)5~ zAPM>-KS|-eP?O4cDm7kLGh4cSWl~|*RfY7+(WB1`M-N@*H)o^go$6^N`=c}@G<%S^ z4=)3hprA5B#(CM)(9O*vOy6MkuFW(R$qpkoOIFLX|_nS>zBHm%w7yxc5Fdr2#6_eq+i9Wi$wUH9iYm>lwroXyQk` zU-wbL|AS`cFDTo-y0kkLx7^T^MfY0exgP<>kIP5au-2bsM3s^;1211R>T z=C>)d^K(9pk-i|PXISN(@Q5Tq6caus8G0UIJtsVij=;BvXS z?HS2V*#Omps_C)PKMpwU-Qt^A|FxgC{p{Ao!(NA{zXt)wfq|lQDYk#?(^r2)Xkl_$ z?!Ch)efB`LxJX~KcI#fj`lpNU+YI9B$7{E(U0*B3wdc8pAs0m>7wzqxwjY|b0@Pb) z-kSFNm*VpcK({*EJ+*$jttjR#)aD{S6*oU(%xq5xCkJ^iDv5XV1_Y}{VbeZ6-PDht zWxb*gKC$nJ&Tl-qb#kY_M>x0X%Xgyt?a@ye!wEsp>djTYI(*cc%8F@XYEa_70y-8X z&eGG&nW@04R(JJS_4eCH0Xc99_2Li7rqh3_E%=(@{BD3i^d4I zpklJe?;0mb5vdn^Yt(rm`GVEKF|IghX^YL0@&33WK~nB|&xPaa_iK@LrkxL$uY`~H zNV3CzQ=otYj+}ueDDvD7V2S|<+HG~(Hl-j3#1to#9!RDtfktt{rcQc^?X)$8282pBnE ziwCaa_wC$|-)RLZI@=qvn~(0Xz)~fhsyQ-$Q6WGKg5j}i7rlp%-+l5ssr5X{-f)wN zOYQfEHW4r;M}vG&1RT*=QNr{J-JF}CW%I<=eJyAUJxjL=Y+gsawMSXnT@r=CDJ=s2 zNCZn4G?0^X#rK;f4!f1lGCGpSr>CUmGL;6BptsN9Vu0q9l$tIWC?Tr6}BtQqye_SW5__M{Iz`e?dJOEF@*sT{OJ? zo7DW$;DFRTDmeqR7=yN2-f6}vy-9HXYM%O>RMk~Kx&F)FFG%r^+{s1_cV|HxhP3+r zAl2!hxmy>$4oykC@XA5+?A>c1U`!v@I12Jd5l_%+LHFYdEjpqB>YVbk%u7D27Ei%r z7!Hh;CtsbW@+kqxmk;`6$GZKw9`s?8FqZN6oqIF<;`{XcAU&j#v#S$*ylIUuUi77y z*T;R&npKnhdoEW@S(^KgMzG>*N8(N9vGGQ=`3w%~{oL57e^}V$EQ%%s?Je4Euk(w1Nt`sdU@GWr!TZXP57z zVerVreXQ<5z9i-$hlhUR#+}+o9mQw0kpl7kMB+O>t<5=(yxU?k!?nCLaqSv2mFAGmiArpxp0#Kqjs)+jj_?sEtWs8tWZ!w)ipa`&^65 z-|rZjOc7W^SGbc(#3)pl(6LXfoAk00z9;wv6Q%!m zb}>cLRbFznlJ2A9I9+YUoAWwz+81)TvpYwohWw`DHJ+zC;az#iV)DM*IhhNImSSfv z8s=V=xhaEgCir4^M+)d?6ZWnLI4Oh{ET{^Y%JjE&CBr@%L$1Sgj~ZX*I^l^@J0zd} z*nbr5?*}g93~K;xKwfL$v_#flWL(9(>m8|@16lQD)ohMSKhCN6(64?gP-sF3?LVi83B0Zm3R0e)^Hz<~sb$ru|~$ zbdJdApov_RH0l%+ee`|g0*z@3hjp-@Ysi|K=IX8Cy{$>V;0 zVKH#ig&pOhxRk?q(VwSY*4`X!c&BQ5{dMNXfloGnL|WcwW)W>fdyqevnecgJ^RD-O z+LS4jh$H5^eY&KlB0>8YQ*803yrW#L{bEM6*71kWPM=C0rj&)O1*;$xRw7ObjnT$R zO7_{bEt}ffS|B{r{Y|1K&ckh!)JuVg~!t`X-xipit;K4 zz6?%Qc@~tke1To;$MLz`;?25a56_2M>a75~SKo}1vQ{M2B9;_I$m zPGhPN@u?}0%VH5V!(GfkS&h4Y{GpPO)9I0`Wp*T;Xo$mrU+1T;D0H-t<6Y`&7ZrJL zSZUi@5=_9`6$v`Rta3_na#Om`SJ2BfA2y8GuovP=`yFZG&PQhU0PX-+d%eNtHkwNRK)_nK zw_skfhXG=eax>izH>)yw4a>xk!B7DLSJRLDZ|WTaaWv$OOlL;I$s24r|GR<@%g9vq z-duJ5om$-9N5V!XCgUJ+)12qFmPPw18g826<-kJF^aWN0zK4@L9s0YD-BjPsN@qj| zg8G6<2V?fFa%#}|;JfX?p}iNW3h;gVD|H1!L1^+tl<_xDEj13TQ-3vimthRjQb%rOIeQD>4@ zIapbf8w`KzCj6AIPIQHZ!(|SVFL^Lcyu7@<#g9i)4Xv%LKl-q5<>OlYi7-)S?C8k+KUO2v0S?sT4C19xy2QYJsfku@7V>U)-0xnMPk|-mYcZ zTRIH#bhB>z7?&xr3)VjrYsM@+?Y@|NifudxoLclD&i_ng-9;(EZob+P^Rr|zwe4LH ze2A~Z)@0OM=Z(dDNFm9;U}EwMF%gb45RS_bR07s=fWW`haWy*srHgPJEs)t!sxliP+NVEI{-Q{f`Fh_g8p*!L&- z-TlikRVPsv+dm)pjZL!tynOlc=3Mojsmn?$XUoTrpw~-~;J)WL=s5NAZLBa%rmR0! zR>`;;b<0up5I)XOobV}=Eh|t^CRbAzY>4@(br&i)tgPcFfS!=ilO1C-hy?C{`!qZY zK}2%qwO)jxjE?BP;_SqVKw!8!Y10W#lB=B#VTxn)DEC3zKv1Ufu*!u6* z5}&@`@lX~D2I~#JqZ^JW3R9SKxEN;juEcp(SDj+KXIZXzHYf{d?xTw!a4qX>>{*j( zO&>qrAd=>^g029MA72Hbo*?72mj}|ExRkf4%7%szy{XkVj7Xj$+u8J14KU#E%sPi5 z7Y7l{e?vqSnWD%4Q?%tAA_PaxmpkwKpx2cA2z-Wlh{H;i$=e_`8+MB4U(V@tS*)UwBje(vMuF3 zO1%J#bW>ej@IfsZHiH&M`$^ysktc&4rc357pvC3^xu6GsCQw zl-Tr;AIO&knM6i+v${}*kU@70$ZUGRk{A;zU^B5)l)TbW!Uj6geq2p|i(j6KTbl_F zAUJ#U?HXnU$D9Grt63f<)u@V}W|JdVv($4(HF#pslpsWmLb-XCZLdS&B<4*H4&1$3 z>)o^f=jV+a(pXJ4DuW754>(c(h>zi9etme}X6Jld&LJ@Lmv&js#|7Rg@X<`-3Z*&g zr+(thx#qu-;TqMj;vhDkHJ*g9DhhF%eM45fgb1d8H zxaz*%b5O1hOI9gkM2_+?IjY7dS?cBoCxYcar~`I8h07F{INn_MlwJuI@HjUeRTn)l z@rn;Z`Cq{F3}h?8jL?CA*gb(f*J^dP_AyoUK@E$y$a)~30ev2TV3}Rl*W(<+J*1{^ zv_P-`g8Y`dBY5Q6^QXRC=B=Chmkv!Wt4k+Gta|z<9j?JJX4d5VBVL4#jv~qV7RLd= zII&2h_U32`@&Sl+?RKHffd(5dBojj8Svpg-o`eJe@*1otxsQs;J>!G;`-t1q0~kZh zjrZI|$a}oN{e%~lWTBunWVp|8U91u;uu@Dn9lO;O3P7)?N1_=OR}E@Wl(76YZ=bWYu0xuk2Qoj;9;0La`Z z{W3`A@;&2&g#^ABK1hTiYE++^UMjLGC_zk)#+tIf@*Uo61V`=sg05oYRFCa%4Oekc z5T}|nA7NF{#yW1tvY~W{!~zGU!@K8Ll8*p~4{1bpHqLdRIOdZNqQegBM@<3ivW0pQ zA5;R#>3j~HYQwL?zYTJUw=$X=8m^I(hk63sJ+_HKLd366ErCcal@JSm^W(UKxP76X z#}RoqBF5Kk&%aZ!{raTa+}Ztwu094Hm6{NM<5*b*&mLgNQ3}$M3ES&&F;UD!HPGp# zt{&G4na*d}tJJ6SKG%M@c$OlOkOD4^#$H+hwH|-01=oV(R;&#@9JAqnKbt&S za#2{c6gWB_&`n4!BF+;yRrsQ|d?>DuSee$h2`9+a=7FIc`wcHwg4xS4h#2$P z9+9-lvm$uFIz9oZAj?=f(5;Y1%=sO@&fY?7+Y9_=I8Wd@NQVWGNgn%?f=)>-u?BA} zOy}PXwqLR*GNWo zA6Dh%A(sR%=mZ&_zc^cz51Kgyh>`^h5Pd#&l3LC$NFXe8IeD#__wZT3BW*=`Lj4PI z#gu_vLf5gyBD`!$QEe@g(>;BhFT?N=Ua{iodA@65he3z;dW*ngi5)6H+zG59lN$qn zaoSw-O$n*p8I#Y~s9}=Ajv{{|_hz0CVef2QRQ`=hebyO-_U*A*mGJJ`G5RIMK*8bx456*%Me2C^b zFkE*}_d)#I{N;SBMk^9B_~G6kA`!|tte1GZ%J?N=x0%wW9rSQ*v#Q`EzXtra($dmt z4955C!)F^deyj>Pi;N%NJbfllQ=t%c^nr`vR&;hjS-xmte{PzG;7 z^r3KEK7Re$M24%oAHu|}`T8p8%q@z72eK5{gna~xiVPXp^_|o_3q4;m^+fLU z^LIuZv%6{+kMkBAN0O_t0zsCfY@}3Auj<=-mItSAQ{t!wTcfSwaUfZX%&P+0>5H5H z7|RLXFACIWnlE;TaIBf^mHDg zzI^;yS0J#Vke5Ff!524fnan~84r8a+g%mo)Dhqp{9qmMPkkgP?^Y#4mRym~|TSR#L z=i8gt3E@5o?|;!D^in_bYRqnb$Xp@^|BNR0hFsk@@89t{h1${7U3J`}#j-jVW|ot= z4FM~!DE&SZXuLr~d_ScaO$gh8XQ;1e@azTm!$RH!8!-N*1 zD4q}N5PnZ@<`jT^gk6(rMlfR3=7u1t>KV@*{9UZcLq4XZQ{&(lL$D!`7wa|C9Q-1R zpY@3O!Tv(!+QBal#sf>03I4hEU>NWdKm7Fj>S*+G^Gz=ll5)eojA(z~pP%0`1lE9k zh06T7IIG|h>?w)7_fYMh>$NaLdgvv> znSWGuSOU@=R03i66e#2)l8-!uR(D_ls19``uH7zB>}Y;hj*$U4m1R5~T#FqSJ5jQ7 zzX6>p9wey0Vf2;HAyE|?J47zrKk81=#R;xQ!zTO>ECYfFg4yr@-H2Vg&zvU?5ROgv zufUKkIUGGSoIOwNXZ~vQd8l-7FoApKbP5}ry@I{9p!Oh+))(0%O?((UpnlA8SYt_|;3l@dE9hl+5-2mnrdallcJRBc^$YDmTmml+=w}Lr8-MuhQDW1u zVoxB)%QYDon|kkWw5+}B>yBsO2B~gTo<1~-HX!?Z#;Y={QQ^3~CMRyvlV81^cE+=M>YP({`{>K0pxo+}Xf407arpMV~~{KzqX&$v?7w z$*>jsT+%NB!RbxCXIU?r{qL(IvL}{6d*iCimCjsWLQyoPBm4%f+$3F zor=P6R!mI}27Dx$D`_*f!a>Cw8Rm_@c?)l!)2hk+Hkiqobo0UU7m}&49tylOy=lzv zA3vuXy;W~ysD0Rf1i`XgMYH@i#>tuFN(yo3QG1@-$OF+53YNqBZ2^RAvGQst(@>1< zoZ_S?xSkK{W*4!ON=1j2=!Y(dtd`WiVPnt*k@eGWBcV3ohqMBWJ=nm=ll=cR8vk2M zBp0}W4|ffjV!)XquuYSa!_bKc(Vbz79h2Z?J#c(r=ueCOQhhVWoCne~LM=9vH={SX zf~Io(J)QOa2T~3$(4PgG1N|0dYkUB?s?Og=@mT9AN2DuG%ky1EjXX1nlH-i6lyjMo zC^`rmSOrs|JJkruwu7LN4YB>JzCQYTZTMGc2#Ks)!BlMN;}oj`K0IU?c*}DTfkcc7 z7x`~neEH1*K^w&~I{r7DBYXxlKEQqkTloDtsDhzt_*FGWZdY4KfaOqA2M-8&L{D$% zst1}Cn|VvLEm{vjy$oqmrXott{_?$piU%@RToDH`C>1Ek0=6`XIST~=JaBQ;)PEly zPfaM4UUO&rZwLWni!XO(F;3+16(uEND=Vuz#RJP}{H}z}AxxxOk}6WWLXkY$UKJJM z6O)s#ii)TYlQIT%24THb_*>3gnQh3*=7ZvH#m-{6!|qy-<;)lMY^}Grka?3CF###z z&HkRMr^UlgL`crp_*1OUanQ&~NjdfO9M&fQLoO~8dGF$Ixa!)^pEc&ih8+nKC2QYw z&sT;tkIUS?&A7LwzkfVSGcUoW0wg@m&H1)>b_@!2GDPnovjukhIg-(Rvp5VHT~xHB zYuS$tI!4B(v};i|m88frg?NaZF5M!YOoqCz8Ls|KLF_5r0L}mTS?YJ};Wv4mkYPzXaih8{Ajn zcn&HKmHVG!&!17(0Cx*{1#n%Cm&Zy)BUw*GDq2-X=go{OWQP;KGwpq6$~W!dw^%1>4Y&3b7+6U6!YM{vq!r#3Mb}lp5^y`+#n_ZiNf`X8K4bcLI zhj^%os(wxKr<9kADWBuWNpKh=)N@`a1cosDS2B|xx3n{|KfH4xv1cOxUK{lhFAq@W zcg%w+)!W~3-+z3>Yjjm#R@P_3QnJ`TD>0}C5vTq zOPk{%hh2VUNbPd(Z6)s0?XN%He~NdQgjr1NG}WCMFph z)vi11j!fg$anVlB&X!ONJ0&5(P`$s4>FnLF_LTwF_$`A`67f&=dUcHVw~VRNv-+_#*~85Q>c_pK=R82!Ce2{yw5aQKP#X zBh7F`xg-pLK$xE6&bO26iD()6)s=(i@Gg;Q*M~sQZr}I5Y1qGC(5$tGI7dBAZf3Na)UZ)3XaU(`0*7`@a&Sh0RWYg{<#UlOKbcF)@fJSU~#~yiv?J zy4axp5D0Nzzka>ONU#>#m2gUJ5yD2|Lp6oCg9FR%UufEsoR-!&_3IRSk!fz}A!Kmi zNh~MsZzXCK7!$A0_fcXVbW+7%v_1qIf*&bf8yOijfMGS5B_T#3CPM4|eR6(KOi<6=EOy@!$<{95XfH^S+iK)@^Xzb4w2r=LZCsIY zi5&S`_x%m`<~;XZ(~mF3XpnJy%hC0XIcLJr(81d^MCjw=gBsP$c~@ROutQ5XK<7X37wAbOi{%@P3k=}yH>XoVHm&1oz@(~bYtLAl zwZ~r^PB{ikXcLfrZ^2`MO7h6^?eUIBcX#yn=iCkIpAv7jRsXv7F;0YZWD~Si5R(JG z6%6&6$ner_>r%Z77NaQhvYB+4H;z-_-ypSW#J`DqT;&gMO>BN# z^8HY1M#heKF}R=2;ACtKaxlw>joOvN*3F-6iyDW96q}>oq!s(TFzK)ZqBi#7Js}{h z9xv`lAuB8Ut5oTZ$cRgUzH=8Pr!tgn@KLaRz4iB2qF`f`z`m{Q0VCA=)Yq3Kpz2j_ ztC1I*Jc?p;N_hCi9GCE+Lx(2neM#GVNtq&XS_X>D!bzDVd5VjR+urfCfw>Gd6OQ}! z;Y?l&liTL2U+`?z_;`6=@avV3O~q(%jqLAjOad;<5!_xYtf~C|-2f9^y`5DZ1|FHh z)+dpXh!JOu#1`n}hCRkkMeO_Dd;@R9hHZ6cYOMG&xp6)2&6lCZml-a#&fsYSBhb1z zyZG+olyKfBO^KXCpe`- z2m1Rbkfjz?@b29NSb$-%r+Fz9QO)C_$Y30Ix7XZ4mQ92$bF>St@bU3Q>N_u-$9}T= zZjXB_eC!HH|BW~{({4>g$~Xle>(2<~wvW6$@?IKoEtoKVF?y1|N5XAwQT$OMOj3*^ z@?EL85*eroWWt99X!!J=BW7Nwy{#=A8HLpTs#KJinAo_;gD(@hBioUB>gud2al%S` zTwKqi`1KcwKf`^P3dYc;!jYo~7Cb`_bc(R=fDu9np}YmX2UaB8r-Uslw`a4gZrphB zNH}g1jObQoM#73?JltYWFoT#83MY|&?;{6aR2w@?dF2YABDhVAj9N7HT?>D0z`VR0 zSXd7hSn0@NZhJ=`#p{Cg+#&T)i^WGEuFC&irtBZy%kLQH|115LRsuEgL8~_2{Juws zds4OJ!#_IF8a~{-ff)&z%d2LjqodQxzk}ljU>RvLe551LumECc2B#zs2R7pR)_XpN zE;|>T*B{YKo`is?;h><=NK8!p>eVY8IN}(G9ma|MlKqhR_hpj@IYgve%~|MSC?p~> z9(t9rc6)8kb+{VZPauxKudUVPVP_0f>a zs7NAhR6Ze|nE-eu4z8!+(+LrIV<_w9=Hw9T111{5zW}^)>`hiKE-GHq^#o!R3VUwP z0mSjn_c|X*%zm@f9{Jy& z1s+X!G?-FsOk20KDL7(ZYoXfB*RZL;gSWB$bErs^1;ln0$Og@^QXD zZ_@3V890E;EFyN7>7JW!-@m^0Z8oU>^P6YWDQjK!VD|k#YBqBIF?RYuU%G%cPXQPE z12>+4`lO(ee$}c~;6nKSkN*EJYJscbA6*TPKgup&(*R0Gpu(V^U9N(GVbAj`>A-fx z_WO0xa{cU}^;vr=KZELb;Bv1HrT8phAMoWta6fIy>HYtI?|%%k7+70QoH>@-O@!3;Qn1J@O;=-khQ>z%{8>N z4u$Xk75WEQKy`lK0!&DggrKuuppomVF_4}SjRvtF{b&DZ@!;JO#@>SrK;Y@>=d#Wz Gp$P!$#Bj*~ literal 0 HcmV?d00001 diff --git a/doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_9_3.png b/doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_9_3.png deleted file mode 100644 index 193f9dbbfff7f1e7ccd36032029ad4c95f0501a7..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 78758 zcmaI81z1&Ew?Di=#X=BKKvF?TDd|QDX_RgRq`NyjN|%ImsFZYfDpFDc(k0!gbbVv# zIsf;b``+i{d33{Ov-VnZ%{j)e=JtOo^W@qU!Ye2g>YBKiupA17-UI(CFJZtl&K5RI z@NnMtvADt|_;S1S!ViAFY$c{@i$Yz!f&4@39rrkfCpqmzRP5v}4eT6sZ1hp)I(AlO zmUd>wx_2D(ZETG#Em#;HGCX{6$H>mkikp$~Kfhg&!$6C9IA+ zYbfcTo^1_I`FLqGJiSu-mjv2{7mDJ{(V_{M9p+zjdTrD?4x@HEd*`#6xmk=4h!V|W zt!YY`OFHyp;_T#FbLFgL#h%nkY6e8$x9^XOH@Po+rBsEO{Dl#APy`L>DOT#bzf zPS*53#&Legm)IQFcSm$`${G;oRWc_p1y^(lYP#8U@^eR($Z2+UVeq=8geY-Y0O4Wm)vgFL?Prr zsR0VYfyj{*!v1+L6Fb}AZ<3Yu@uS~NOQ^hxippfB*tyy1>BmRAYt}Y4S-;qRpGRsN zkH;}5y;@1b=qOPm(=rcJWT)ouvBC!vMr9YdL#=`}P$5+_^Q; zeC0e1aVaTGc!#n&6shwpPICx}WVyw-(^eBc+EA@4M_5>x-Qu^G2R|3irHxieCvb*& zd761Txq}J8bTl${a$Cf?B)i5kM%=w^wd-#1NTey4O& z?x}(jf6nww^RIJ)$uiBuK5CfAyuqA|KYjg7sJ^eMWL>|ZOPL9cMW#;NGzZO45 z(W@^G7gM2f)yoawRW&EOqaATsB5P$AA9`h5gJTEOcL&!*w~>a_3_PO6u)nJG*_7V(=;dj`;?S7@bNDSYG@>w zOFS9O(=?u}zLOPk>eW=WwD4xU8V74_( z#s{G%6HYVNs_d2?!@S~hSS7fKO`6kFZ5+gU16gx6v1RLdFQVj`%IzI<9g-(K&-jSg z&7N;e)DrkS5*NShqr+tNLogvR(R}RzUf{UKY*9BusOSEa@9|#!S?R4R!|tT}%*yEc2E$R*oT=v#aig{%;{~nZBg0;Zx zh$e>lmUTV>2Cis-n^w%VH=dE`FDs{4bbRQHkgN*X$6Gj-~C>Pvk$SoOJ@4-zAUkIY(kAxR&OuAX&~(Mm64KqvH9bZ zL*aWNUnS>gtnB`;Jt4Vtr|1^>#x5S`!cY{s~ru$M$(j+k4AlZ zbrJXGP2p$;&Bf7j#{Ak{!t!wk^)wp-rst@prl$R)BNpS{)GOt~rddHnx84PdI5}0s z#>J^k8Y8ulB0MQ6q`uzMJ>%{*6=wkoADz_L^xIlmuEGCQF+98gcwwtzR|1z%y~jyj zK)!bUsbP7drt_ad*Q&_N%R5wRs_dT8^W2!*7pZ+>w=(_kkm8t0{(lr94kl-DapKj{ zP`fi3y#+YRN`aywGm9&&p zDoh$h{>)8@%F4>rw6w73=oXmR?dI|t8X76C-+vvZ%ZS*WvvJua?)dz;I!0Bcb!pgk znT7(6mi(TN>~U}L8%Ing$$CmY^_j=q0s_gM@f^igQ;%WUV+cw}T&Z>4GZ-q+**`eI zAtRF=HtwC6n5fzQO845w=LP|R5r<2y&76d;uC8BTVDZj{%~py~CWlp(D*Kh@K*qXD z4eR68{y{;hLcUlX$pU1kKGs-HYjQL+wDTAkMQ#T+>io~1J^Rw!+?y$%VahLQZOy#3 zwT0YQvmqu1jf$r!j(r4~einiO#YI^+@!_1g3p@yK-WqBNxFRvbR`7oouZM2>!bKiA97wg&KHbL0BIdN}G(6ZH zwY<$?LA})zHwCS?R{AQzN!EoDHY-YtC;9V`BaG~29cO)Avw=AEVnVGR2 zH>`xBz0{L(5mkTCX*pEmY#Tfwt(S^>mFRl+<(am)hy4~3zEjhGExg{^iFpevqB}_a zh%Cb<5;s46qy8-E8WDSel#d*nqR$=zw6j`7te+j46||-+5c}jgC-{x`_Q}0eDtBy=5wTa zL;LtkhoEM6#B|JI)coy)OZVVlG~Bd6X1(TbnetRHPctQ;rs_oIqRbzBZfxxQ{{8!* z3Uxho& zMvs7`tTg~zzg7k}vi1*mR-oH|^bI1!yVWBtI4tg~U+of^Xm{!38>nqzCh*JW&{201 zMPH>Y5lef?aNmTAS6Qea%z?(e^b`&@+YIyj{9>vQJRe3R2_@zYyz8gB6S2Jwt@F;29j25886kCL*t*iiNcF7C_hz{R+yIPQ9xetCwa zrPSZ(DSfbr24<4$lHnoS3$7#cr7V``os3ImdB(e9M|G3{(WA^z^s) zLV!1ry0HE8=h9$4+57kJkR4EPte=Jc3JjjH3P0EJ<;&{0)DLJ#X1{VL zi+mn9kHVN>D;PP+Q!VyEJBRTNzzNcCsvQ~o(xoZb*xqtXy5UkMc0Egn8jrvz0-sNR zUAXGBRyw%vdA4ze_9iUsk&Vs6g|5U#m_ivzE&;b$3<@kK`A5s_pg-oQl?Ff=508it z0=VKI9NfedWP+R(46p64ZQ8`I&tx>!~&GBPsEBM)uTjklqG z7F*AV5)%`*c67|b;3D(9-vi^oKVZ>io=c}@{1MGNk(W>wca~-kA`}CZoA)L?yP@1VPRovYAW1^=SLj?NOlban;u(RZz&EkYF0(A zuA24s_FCE4dBWZWra-!yConZv55KmzH}>`6Qc+RCFmk#4GAjKU zoedocRYDERAa%-#;TM<2gI)EODisa*zS3kb7Ru6(Pp{T=q36xbwneN?*4K}DdtbhM z8Iz1Z0RSlgP0cAjxYKYJ7oinO0iFkD0JQ5eCgzK_@cYnf6?r@><8CW0|e;!eUGXl_GiF29c1k!@zE(k^eZ}|KQ}3_=JuOFvZ`>raKvh4 zs(E?+#|j<43-0Dc8IEI=E4S&wofaGO1||`x?jnl zjbrtPF~A`v?pPfz78e(v`gD=(yo4+}F`o-7G{Z6Hg~S|<%5Z#bx3Go=L4^A~dxnEr z8O*1GdI!%m2iY|AKGPtOETr9qKP!xB%4>Gy*Xt zB|Kn8sD`E{Z^dk-o+5oo8ylO&iCP|5=8>mz_1}YTv&68O;+-8Y2%rHWDO@>%QhSez zs@U_)gPelmV1Fjm8R{SbuM<59Hhid@$SXdCCH{J$KiZLlK#d$Y?iD|61iLL$3<@gOg3Z zTMpZW0MFq+T4fOpCiFIri%D;5XRMcc`t&-~EP>eA*aU9-ED86s?dbY1ZEgNAfD#fC z2th%;eEAZJOx?+@Ixw$AKyj#)C!q#2&B0|WPl5>08kDu&n@&%T5L||I9<7=f`2E0Q zWjrm((H}NBos&b`luhyQVR%9UF~FCDUwyJ|U0syG(xD*L)Yj6}eDKTnD=ub10rBPJ z;u;n$Bq1iIX2{#W6ap;>?Rgw!{eBapn3Pn`H15f<(LF>hnSB_dr3FRziKr;X{rmTw zoSfc7NBd@EPyxz>5sv2B9{nJ46%+*JwWEW>L*R%9FjVInpci(#1L9Gv22fwD-;SqV z{d1w)7CL~*WI2ueZ`H}>Hoy&L4UJV@pTMio{Rclz7IF2!8WJ z7^tWRs(&R<_E(=^T)3c9sIu6bb`>Ue-gd2~hKAEd?H&QY8z&4RCnqORilOY0QsX`! zkw83VfVsdG{ept-QBb6)b&r0(oo+nfh^2Ugl++?UJ$=BD5K2a`Uus6i%*KZH(k@W4 zgd{%S>6{0|wKbawOm(7xSJI~FHVnTo1+n(AHnyAQbN!YUlwq1a>v=E;mHYj!O-cFhpBmqXE&lV9*o?vdt}H+UO#~@=N>@dRZ_&cBgF^wo zS39hsKVKUul}h4`Wvttu_E~tQp%IjlBGC{BFqys@=l8M2#<@3l#PRBDyvv&{o^Q3Q zb8hamsjZ#C`UWa~#q0Rk4FKH}Seh_eIjY4NsOI^C*Pyr-brLJb!-Y?%lg^@6Qz&^^hZC63}f}O4(6g`QOUTAG?{Q+`^-uI8sV$%JM;}D(d{DlkFXD53Rv9WEy zJW-olTX#7*2@ts`M~M!QXabL8NNcMY%Hw23dvv|f`KN)$&-h8ykA;PnM8}D?m**~` zU|o590-;JS#qdqC(PJr+Z_nN%_f>iLlAZocKT<4ZWUv6LxE(HKyf8G3h>G%wh`Lbh!DR!TF|I7|Gb-DzR^< zR@)+Q;yVLSr34w-9FlBDgYCl+OVA+&)g6^7MUN0E^-x9<{%F}h-PTXx`A(M>wax|->1WuM@-9S}lTP|h*7~ccZ z*6B{ZC(iZjPbZhgm=yWUL_klx#raGI&Aqn5&yUq&DL!14V?(-Y?!_x(8wRR)`=1l{ z+~sX@$7lXjpRc zW@SYZ^o`qGHun$}jES+2^)_G>Tq>E8am$esV;Iis*RMC=%JM!MMwx+#>b#T|y*N@z z2kra?FeH>lh1E;#lVxSQU&#Hi=57zwk71+IG*^Bu8`t{b(! zIs|1-KqL{;%f$2sFDSHj6tzmPDmlr6{6i;xS)8bN{GAGbyx0X zktSyek1t3@$fQe?=lbeD7zLFR;9P50S2L?LrEF41ge<>mZXKd~dzPs@xQUOiTp9Y; zU+B{_Gq6}4D|QCd&9^>(e%u^P^aLh93=a>mrJHzoTJ{^u6Xnc(VkKhtd2jZH&_^8F zyl56IlUmM3R})UX92h|4JtN)az}ym_;2%JwXu1cr9?__VSnt3Gx7R8-?WwGLQYcsH43N zLzsH~ZUH{he@pE&quwcHjtkWBxYyFI?&C3P1vTluhaL-f1NZjr%aII}$8eiNfDe!F zM9UU_g!OqIU@g*eR&vWhH1&&*SFbdeP2l`AYFQtgoSaNA;0182*ltOV)brRH9UZ-5 zt!xxZ&d1FOD7kvS7JFcdUxo?G?YQpN>B?a+G7T$EIIbqk!g}xaQBJ1?fei?!?OM)D&C?hvui^WS8;q==FhcV zQ-SfXhmsJ>tS9<5&vn|LYN*~*z}wp!n(?8}&2LYunl!;Ap{Aw%%ql(MakPe^EvW1p zU}U`AwZYptT&g5t!>DWRn66*K(fOE{t`6bIXqT|D7aCrkQ>A3L0B@v!DGSLMw#@>gR1j_;_D(d%25_XsgD7>dRR=j ztmGcbyl?xqPTZTCsA*by>zjVZ2gw9Y)7<3OFea(uPjTp_)x_7EXqyoClU7Kigw+_& zap8adNS{*6oUrQIagFMtnyBlb>|-eXz4t!)MN#Ie`cbV5aSw?m(XV$^U@yHB@dozU zsQLg8B-$kasG#qdjaQX^b$4=gjfjXi*HF7Rp`ObNZcHbMYJd zE4RIBmTyk!kByImgnbn;B{?{vbAS$LYDa~>6546egD+5Ya(8!j{xdI0OU-axhIcb- z7}v{KSd>t}Y!|u|*Dp+>{>DKaJ7rID+l=hM2L%3rELs2r&>&GNQ1ifddjZutCSBaj z>;Vyn#cT-A`VUZD5EcdOM7woj%6Y*7f`UQOk`7n@vi4foMqVEUX^OTi^wHPft%@$@dQo)B~IE-o1N6O#p8s z930q*(ASO#5kVXE)oM*4uMjWSYOwnej*zW|K%1fA-vxoo!UMRSBv;u~jJz{qEXF-kuGYt$Wt6$rnZ9hAWnQYQsh52k; z@pYbWaCeTFnZ?*hCx&;vmX;k%x{rSkGg=Uq*6wNW=^eQ9SBktY1I{|@#OHl3+ zJOcJDR$E&eQ08xywuT-D?b-vY?@hy=^(=S#Q1bGQJy2hBrhrQbW7DUd*RKy?($Lt9 zZYe~OECAylm>*)Cp`>*$T2NU19u^8`=ei;m%0=tu)--IhXfeF6HT7!oU^X|eHh{8aQOSb z)TM#~<}p6z$wdCv?)*eQr1ew{v^^_z{t$_r9vHxqDfSe|ufvivp#Czs?wZ}WaU+J$ zmECoBHPbqoN;c^pR7aSG@xU5MoqnK!8~8MZ9~WK(gf4Al0)W+AGnw;jm_#D2iYg5a zO+{rT$Z~&6N1mm!&vVwsOd_Cpmc)5GP4lO|GM^ouUJp8YgEfK#ZcJXlLWda(mhQz! z(pQO*kqRk~M_8pXut}w$QghiYUWesX0}ebQL6!B^rB6@mqQK2mTiBz;y>+VziCGjI zV#BB)^@wA2;uei78Cx2;8eyry-6SXJWr?HP&)^{oz?86w84&)Pw{8tL1q1}B)O)y> z9!bf_G=rp7sMj*0t661t7i#psYCl?oN$E5&Vv11S$B+#14-H-T*)5O(>kLV&n2(kX z9}fSo^h(MnAgX`-UaEJ$IIXGa7n7amZ@am>=M&yP1z-T&lLGQ9;Oj+QBy+p&1qu_3 zK?gyV!+$20O)U(whKo6S+}fqTAc+2L94yxbzd^-`k$bH6Qn8fmrWr+z`NZ_ z5g8fzV{NUIF26?C)e?a7V5e=*2NC4`%PqA*Gf~bQqx;|uEuNe_nuh3Qo>|Sq-L=st zDk?*Y*7*4N&^<-kqv&Bly?5PPhd)E#1f$p&kwYCP-J|{dF7faGI0wkM10oyPr@t}; z3c=xeXE%GConJS7eDL%2>(@x)xpsqBMoo-%)Ss($t;NbLVV~sx46sUeOXU%&VE6CuDO?_}Vq=t`I~x2l8_U`~k|rd;Ql^ zUt4?oOupwycCHr&!QX79Y|pxu*K;dS`@0(2wLf5@urFU*AUr&LHQf$cLcbBAAdE-5 z=ACkY+@PyM2BxvC?J{KFu7GB3<#1|TP6Mv|=pLx54nJKO86Pm7ovNjL>DP&)M1-rl zx;n)=c6RnC=o08Z78hI7Bn1+;p6=!h;^N>uQd1*@axO#C+D=HR!sLgp1PT z#Xkb<7a35Gp(U4v8FFxNKz8ENl`B~e$-o)splNi(b9Cd4!n#G0JO8qt-X3Wc8(f3o zN#L^efjAJ%+Pu*^<$SGw4DO;LP>3)Z0F1#Pjf&bwGiqB@Q*v|1!HUt1qeSsIuIJc! zK)PujW)udJLjx*}O6#M8LW~|+myAqoP{vV1(hG=!4F;z!sJozrtyk@3i6<$hh5d1p zfXeiLG^z{NAwVp~t(g`U+j$^|8ekb9Q9ESu{zpkt%5y*bb(f0DmqtDv?*8bCMIr~( zes;4VL74s(Ga)>nNTthq-Ezjhk~A* zZah6d-wakLih$dWS~BXvdzgrJD+9qWt;T5iG!N&PL{Q@VglSr$;cQ=mF!kjCvQ^lcXSdJ!=&>#?MV_W;dV*J+86kc ze9{4t)ILn@Rm$(|lyKGqxKWFXi-$5P6Gs2o`TtkeD6Zxwk8A{+9#IRGIk{;wJ1{TJ zNg98k;NJlL00^6byGsd0^dhMfq6dPA@-%x7@+GAMhJOgj^W0zk-;H$Mvl;_apmdyj z)bXL0LR8X*F}!;F4ho3d3JV(mnua2oys6FisyDSdJ~s^qRiGCDGn2|RU};IK5NEj^EjkjRYNb{kchLn!a| zCGc@84364WbCo`P_y986eSqh{-QnJM{41|y$wPaDB;6o;3G#?io`&k0p~W&nF_pqy z3ni=pFEsiZSTD)F)LiXNL&qYEQ(WWU`_lpJM;~ZZT!#gUFahWau>zj_PeO=wzyWuI zCWAWOY{bsdu1^Bos#Sb4$IHie04YACvZ_Fq02I8OwPKhI|4t)ah1JV@x<7-o^{A+3 zxL?^P9ny*Ewqg+m){YG2&&w)!28GxGLlMBJXUWx+A@l(7M*-wuP}|$vh)h*~Jjdv~ zUb#@=v_+omzI(gYW#@B$|4!T*kHf0bN--pHfo=If=>=1T)9Q!US}`Dj-a2^!A!L z2Nhw1mCZZ-633JK_sPkx#RV1*hRSp0g(xdSIW=!uFNNj|Ypk8GA=PnX0udbN+M{vt z@g2u^K@r?t7%n!n1qq}GlqY0O2L=YNu^28SV?;t~2}H7f=aOW4=>;QnIEmJ{hi?G@ zHn7tCaS+=ePqOiSS+n@M?3k}zK`^iSSfVvq@1wvgBEqwA>s3b=h>11Ubg{7V#_ad5 z_OBOPPS$DEIQ3X4I6_||=5grQb+@x)-KhDAB_bk%g5VYcEzU9Nez^odjgQ@YP+O%%5)fjLz_3WT&kI7eE={h?>=U!Ywfc9aj+Ic__--!3 z>uIyi@Iyw%5~0}wf@s>`nu!IB3*rlC22fs!)#F=8T`{x!CBU&sH||ZBCQ{1Rx+Zvb zdg2Td>o&-A9OHKK-fQhaL>wW|Vv1h0-9UU=P)YORGl0&4u%icsdCcu+r?7~K_4-() ziGZWLL1gY1v;X9UQXYx#ZJeJw*)Ss5&)BHnx(pHkD-(p&AYM1 z?2bJ^Ouc#?f=L3OEe$Sn%0G7Z?rooEx&+Pi_HQHLV18oeAKSTlni|gH z(uXfEV)2?2h-S1C#iSop8OMD}H^w*@@sd%h@3;=j76IxwnT6bRAEf&_9!lG`gnIH{ zOg*=jXWJ$w$m8<+tY0|_IV>Q%W02iX4gg#+$iHVxZ#)x$X zhELnZ<;lZqT5Z*r;DIbT=Ya7mG)AqZGK5B{!jLOk!yOV76b!bl)Npg-g`N+V853a9 z(aU}SC51&rr&m`yfCaDS#R4lp>OROR5G$11pLuTymEyg6xy2YrT!{4vTH<>pTXV7H z8b5Z-6t1+UEvG)#Zmkqm%z`;Jc`m8G1j9Ik3W#i&kCbF)D~J%*^z*PRfz;0*!T-J` z=vvN1tSVCDS-HrPkCX80_?ou@MPeG@znaapLN%IHI#Z~ipb0PgjL`w31oLQjeOwZ> z6M%Q9A5rQSQ^6b)KfLi*LwUL(lmkE90TULHssE@UC?^otp-G{if!T|o>#O(-HFvw8 zk}a3O88`a(qPt`o$I<2Yv0_QjU9Zf8(~GUKVFV{4Mi6X{2<3IfyY%F8?OJ>ZBA@Ob zMR;9hh^=wq%pTaVU;K6#nY}711c3ctym)~^LOet#(vp%X5WKKk>h%WOuie2MlE$F@ z1A+Vtdj9Edc|95u;ro{+Wm}7zMFvz0v$25*6F9+Fz#eFuzkb0Vp;J+1WaoikmHzIX z7Z4$Yx`IN)EFA%IHWS22QKF%w?)}WO(&C!yT{@_%FYWqR&)gCnEE?P!;;O!iq|!LK zua)1t`F5!3N`M6N{SM4`vA#&>!jBSLaZaFx#_%{Y0OdmB@8Az;_Rj+{)rZvw9dMMP z4nnhIV`D>g?mUpZG(0^%Am*|;kEH4U-2x=ND}iQh0WxQK-r%)T1_}=eLhl{NtS@S5 zX#q*>srU4RNHSuRhJ>W?P?uXyCUtbA^L&$!rs(1G@_ktsZLYWH1(}g+jRdZ$)t?%; zVKNQsFpvjN_>ZCMlCT#aq#JUr9-FdH{(4Y|6^|t5Co^I8(5xlolRDRG)l`A{GhAg) zhh#Z8Ib#5=gy%ds>RBHf)3C9%Mbrco1mg^wUM{b z62Ti31jwV5UHaJ#5${1N@Cyj2vZy{g-K&R{;RBc-v9-FA1-d8UIa+@A8D&G?+?e#r z+f1}Q7B~eT^R}-W(~5FTHV2Aatr(`(OzoLy)$!>=x3I3dOrTQV1}A+tVq<&S+cI=m zddbS3DaI{YId=lljw-6Fi(&9gG%e#O0sr0S<{n{43J?FQxVU)D^-ns?{^;;z!&BD5 zq0C&Ob;s@WU;)yjPs?P?Ti@IT8TT#3uHbTE(lqzcBz4vXxmH=JHeCvPpqj(eg zSt1^X2aXfYRIv9%aH(}0QhZ#_+xH-g2C_09LXL=6EXJ#tVPQQM5&~HdRKM3$Nlxfq zAVI;tjFz*L$urP2KLdChU9QOz{Zuhw(&#FCJ+w z_&4633dx5u*~21DYxsFwLVKIRcnt>}T4OR(QL{et$E*pNtqpxJw1?Jfkn8Aumpc*L zwqja8Cv1UcKCTJ-CfbGWzST}GFdn`U;8|gWPj@;+9v?+-?3U8=sGjzu%7bv0tohYt$33A(%nKxRC!`ABpvfIe zK?L$zBIt8Uf}=O_N3SeCG|;)5Vc1>yGM3F_kXtyF);ADwiMJ>Xt7E`MgYUE4$X7B> z6a=GbXsLe>S$DYT2h)%H0TJFN*|~_@{ji-TX0)n0s;|mT|7VhE3D1*>tt`Z8No|wI z(G-GY(amJeXG>*r&bTS=YxBbAz|M>zSW{2)I8HhIZie$-{m9gee(-d8$X>xD?1fOQ z>$u=|JDp5G0-8N`A%xorOr(uXP5g_Cep9nA@E>Yum|ew6vmw1=+>$MXZoIG_fCigO z=3tKrN1b1mckbL*JaL10yyx3}nWY*9%9n;nx7pG)x;et&ilm$?vU_-`pSR-Y)*AX!rC_AKU z#z53_$e{5619t!L&;}y1OdwpSAGd~4ApFyHz0wzlLKK*RfQEg2`ePBhYyUf~Vy=CH ztL1r^qS;}3$VyL}t)TTxK?7rxFw8=Kkiji$qEdjnUzfZ$7i7g7NEpm%w}Gta~Fee=gAI(wQF_EZP)NMV%9wYfy?Jz`mZS zb)})Eeh#@|6qLSAkWr8%KbYRSJZ}q9Q(q$zGJ<#@rJDTZi!kh)z-|D7`sMXy+k_9WXVz9uKaw6%4gB%0wZUcNWJEJE;5H5Np_ zAm;q}^XGlUYSkf_o8N3W zhdp#U28o6cGRBj$M7U9dcmN)%>Fdl#*?}#Qu2-!vpunh50TBffv}QvEFF|oed4W3+ z0r75mSw6);%bcliVqh5F3N|3+XKhy!jIOlH^a769Z$dh#hG~pnKR~=f+f{2pOS{tr zagT=J<0r?EQ1}G22UH|IkmdliuV=9%(I#k0rSURo1^)#M${H0M*2mgF#zEXw*k5P> zD&wtrIR%9;NXQO|NZz5@)MxKw2o;{c!@?2)KJoajDr67Z0J}lqfz~&(xM+lLnf05? z_GrKM#&4fwo>SXej{AEfm_t9gILV56hTMjfa4Oc=N6#+{3k%TBm3*+tWT0uw@*mt& zRbHKa3&Ns>1p{zMbR-&G<_^*!Hze~QdBOyFfEjo<*gSWgn&g?q|J+|k*I_tTVf|~l zKM?kbRU_d60E{mnPr&9joi5VHl`0MsgcskC@d~3>ZFNAP?b>>(-0n*K$~xW|gqzT21oxJxU$J8-9yz(GWi z;c(L)?A6f=f*ru_g3jo}B_Hws%g<$lNMQs^fXGQr(7*DYaW z%pGcKYB#XsR4+IYaT*+F9D*E_m6g?8UbXhe9StZn%GPKf|KBMV5$%NTLwEwR3XM<5 z+`qsE9DtNS$iJmY;;R!mIyxdAZH+SvJoVy#HhE;n8U!k#(Z5p@Spls|rP_fWQnoFh zrZU8@AenO^AIzzfy~zx4V9T7q^#M;4HXTxwm<}SI>lVazpA%q!cBa!5aO+D`Q=!wA zF2*%Ng$erj^S63>KPr}l7FeF59lppYNE0DgAdc_*z?n=snK2db$?~nM%xUvq%FQPa zBqDdb`n^eDnh~J!(XK$Qtup{3)hat0S-zc{p8JhtVC$1JFm&blVf>C?vKV0c=nT<6 za9b^GDNxIWh%|_ZKu~mcmiraE5W<0kt$+xjGrefNo-UL4wZyoO({?_{JgE#4F^~r1 zwAOo<7*zm(r`1Px+TmRO?g*Kn7DnR<>nwvL1PL zPE9gSBU3K~!C|i;9-c&sVyydX=(sd{Bc^|c0bpYGWOd*P)AOoD3*1=isp{GWUTN(2 z-%VYOFgL(q0_7J#)KukcDF+cE^$zHiAEqrjXr2P?z19Re{xXj@B~12ZLD;Z&@o1M~ zydD>MV5G@>Hj(l^yMzDp=`;7mvo9={@3Q`r z&N^@OCZ*?=`7jl7j<3>fzZXsCY=;KcDb>86NXZ;3G4mgHGxC}yV<<8n4tM#wIP$e@ zwY`JB;rv6}t1-anAlx?KXacdLtC)>HIO-3A*N%WqK^&_Q!W)+w5TnDOBL+?I@4br= zybzd#OptxAqvrhhH-IquAzE`}`0lw*LbXridt%BevOA*OK_+;$dTWjs1eAgM#m@89P~M1?&4f3^={;^Tu9VX3fZM4MOoR#Rwf zI`5(SE-0SY3KoRKT=2F-&ei-gx|Yd2xR>LKX#?=NGV?%DN$@_=TmLS8wnX z?1IGf?<(pPJAFY0yOZ|CgK$5`K z`wWB!@!TM4eh0)=D0>jMLP5yM0QNqEK?y1_vR69qC@6}0t?HjFK(*rrCFHlE@iBRx z9-GvpH9r!uqqhz8{{-!yc(m+7V?&|2dQG})c7NqpxS`S_3S-p7mNsR9il%|p+yr42 zy>se66)6GX+rKzrrLNLNrF?wHswD(^=mYh#Ah3;K+oBNc7S9`<=<3dblhWUdwtK!GmlO=2JVC{_IXa*Zs)Ek z$f*Kpi-T?LKSxaStzj!B=wNHad$myMq8K!hJ;De_g&4C_;sP6CFeDCr;Z%{ZlkMEs zTN@s>YPX$rba215v~V~-c4bLQVQUo|mt4LWPhH~?{B4)SFP5)m?ypBJ`77M%TFuyn z?lsrn<`$KW{Hi@+_tJ@))M^i?IJIbrQMMeW5)Z#Oem=duuF3s56G7|Oueu6BKyce zd`|^6_SHq~hhUH_Fwf2Hp6x-*`zo;enIQa|HxW(-w&tjH@kx1%#2QXll&`NhLi@g7g+7DYBn zk6|NKczdpWxZIL#Fkd@=55&h79>?Si>G)>Ywh(mvFK}T{o7vhY0os6kr4qRj4Ja%o z=8~6a$|r+ju5Njy+~R1he8j~?Vr&MWGY*-tLn;_zF8Mph?D4_Ka!^T${EmB9II-OF zR#AeGNombm%`-Rh=!EDHD`$OLE=H2~`@(s$-6{0BeC#!OPI^*g6K~JaQEjbB%5xUj zgiF1Y{@A=oG9$96bD`9qtonEVvz` zaWnGGkqc}0i4QGy&yTt&d>Mfb3ot12^=C)*%<-Ka zNqq5$Rt)G3atcfYnDFTZ&7ox7aD9AvgU^`|KLu=nW)LKw0OE2xp*Okp`U7=mEk-iP zh7#~$1}e6ULMCYJ_c~HG)z-#;e8VD%J!|Gc&DPkRH}zOMuR@YXp*v@kpF}k`SQvyY zE|i^hDAr*nUs!K+zVIx*x1oPfiDl~Ib+ubl*tvZ?umz6h#*?2hzQ%>!&JPE z@ovBC(-j}6Q^rUb+qqJe=nQs=U#qR%z%?nAT)5_V*{;*ceU4Osh?~o@&?KQj^D*A_>d0<$YIp*M(m>&XMj0-Z*O&$a37@uiPNv7t>Pcf7sSz zdozIy+a+Riu!U^ljaoh&gVS|a)r|e9TUGVoR#%cco|j)&U!1Km)Ct`Q=LHf7DXrW< zR1(+>D$0_(I3FQia^8!ED|RfEO~uCM8+@{b@lrV6{jhNkxCjccB;plTVkRMw>4k(iaq!FTi#M&jYe zCKENzU=HV3M)%~r;PQP9ZlPphV|9%xVo|9%GC^uSRpsFajBqZR z0Y-ldi(bM=lUfS2$fAcf5d*A;W72J-VH0zcu?2Cf;)VSRG6#;73+_n{MkjT)E1Bg+ zrB3db>p70Cu`+kAd>7fj84Xi_P$tT@ggk^q@5$$tA!ZChMHihm>w3vKnhCit9Z53} z%`TXP{;J!uro8W)uf!+z$+>#`SKUsO>%R0V?O>dd)u=72lT(H$Rm~}6<*GHd`xVPW?Z4EHS3*ZYY&h7G5Bq&ZQ+mpq2n`+`bANNZ`1-{4n7cmYT68Mh zass9wq34&YP=5((;$vX$r{wrXLA|~7iP2;0>Vi4wj1W;kVi_lgyg<-?9&x3O%*xo& z^(yc*Cq^+?4^Lr$aA2oamD=V|f08zF^^~{tQ9fS1%{u1SV7b49nY=mjYn!kAT zEq&N1<;tT=kBAg6jj$5MlC9d3#)pSb!-VTFV4yP1n>wZ5kkRw) zs5Up7E!_HqJ%~NdM98i#i~#EqI2!Iw*n^K^DT3h3!WyLTBi_ChQBuMKsUHb}K_J8r zOip<<6UNa)U;_JFp`INO3A@d#dmf)b1N9Etqc5q8AK3oLM@Rf1$a4f3Kq(c|089u# z3Ppwu#d?zK`c!%S2|XCj>Du)ksp;v5b2}4XU)&fEfN?#KL$G+mc9no53a-4)RnG4# zr_dxHO_%2UfEwf4^U~OrAUfkTBL%hSBUV~^2{lFO%(fSwNo1|z3N!7GW~Zs{kxJdm z;JkRjJ7Jpm1~%p4{V>R~vLhc1ps%k_5G)EiB4_$%90>SbnA(2J2hQoKj2#a#=KO#px3 zHGJ#}XtT%fd-8XbsM@*IaGvP8vK(=ll9R9IZj5~)qNA{9%Qx+#MtW0=Mz!p*8S+T}aiSkdMU3$$0?z7uaAp|MDU!>Q2Fk=qT(q zS{mq_Kr?~Yz=jbV*vkt0rS{uoJ{0cUy#nXww-hI+2u5Vy1ycsykVI=HtDE(`~S zv`|C~%G0i24>DyXG%L%pc&6Wfy3xOsrIw%7Z(_*hOT`viuJV97;4>)aoOX*(6GN?u z8T+N9Y{l%evbCz1v51=4SOYabq4a*Do+ue%tT)$^kn`{alh zxfO}r7aezL*0Vun4?=7ZBx`%0^grOm4U$;)NmP(w07ZRktA*^`Q!Op{;2r;#8A$8O zYH200__N1%Ch)sgF*DAUQ36JBVQX4q4!GzXuAeCAN$yq3>*v9qJ%OzM9ABAe^9x9TU3yA4#HU426ka+KtTe&eU* zt_cDYX#T(iXZK?&d;uNv5w$!#?KE2}L%dLxu|*f7Onuuu7V_7edDLI29b4KHjoK`w z+S;_Ve=Rb+%%hu#43M3bE1cO>aMWSOJ*2%IZ`v($hz*SdervFMJk1)uTDWX){ zzS{B>5BlXh>aO<>lG2HM92OVlYcg*px8Cap%RdBd2C5IM|csm6)fS1#U^&o)zfswt4GV{xqO2)C{0 z2Xc__w5>2WjBX_27OaF^NzQ25YUdt5S2X2>Z&P}PBHMFBNb-KttcyET-tK>^i(Xd~ zV4=*8rmZDnpBA%fvxkcd$o!tT$@q&K^l&Z|ZIG7N@QL=S)z*jIh!MFxi3Js6uLpMW zUw+HF6d3qxiFfVi*PbNy_q4_2D8<-YYsR>1Kix)qqTpPhyuO(u4%go24j&sQSgV>& za$@1G$eyo^e_;kxCE*I8W$v9K`t=+ zb^vA|vIPwk*>qdOBi1HRrjbuF0@5nKF@r<~0d#i@Ve@@|w@^RcW`mWf3VE^*{U(~a zYPnHELn`^*Tk}!1ZaDl=kIktsJ$la`$@sZt8=mUYJ7&|W0lom#Xlnbbf{hlpT=oU6 zkEN|^GrUb{hozC>WUvZk(`R2iq-qMsVSCddUP!85cKA4>uMqTWK<@Ltw;n@aPNmZ3 zetR_I#nqJ05L!ztUx80rJ1+7Wjg|V4W&nTz(xZ;+yem5{pjf((=!|8P_=(KL`Kc?Y z?V4QVw#3(}7Y+SEy}q$~vzXko@nk&d!xO8U-hMr*P5=y{VFd)w@ z{NxF24gdcLd+VsGwy1BIk}v=TkwygRR6-<0LP|QN1O+5Tx=}y`q*0V^32BfHrIeI7 z92x}a?uKvfd!P5I_Z{Q=CR@QlVw~jfX4ahI!B6@1?gFko}2yhQ*^p9-SbO2EEJGRC5 z#~eVVef7rrt*zAqQhw{V#o6h4k=$ z@DVpq$vlnSt=;%>2~k9YZeyTo4fK5ADlLRem>?&21)Bu+nkyn$O7$-7vrk@VcXCVrree_dz~D zUeo9GYlcndcVS_3@V^2N;^(|NMuf-C&Ta}s8;H%`Ls=dTjfHM#;?Za%2Q-xVi%m6K zTMwHSC~5sMs^8*m!u2Py+Pv*gM{jdtbS{le7>TYG8umr4Q$E>ZfODLdaUx#uY#cjquOP?yW9#52|I|^4pEAs^0bj1R53reybCKnsJpib zFK;22%<-!I2@hR3H`KEfAsp-XDsPy76#!`iuTcgE7FN5#d6)miQ_VO=laL3aJ14L+0$GG_hCD= zfz1F=i_6saB6gS2!s}GPK7b4S@p!RJsUlo@j+g>y$+{ zaX^8ZSyomycnT7Qe>x916M$p@$%U6!RRv@3NI?Phe-$Nv@piAs=M2wKNRXtMZk+^3 zwJ0`Q@Rh92&=}`w^`xq8Pwl+urs)7Y%ax<$osLi(tc%5y5zL391ZBPcswS+B2Tidj z#EzkdcC|BT^zmkpwc)r^82e$SBLR_#w7yTQ!S>O;04HJICTH@B~$)fh-FI zt8pF_YM18L%%$+{^;Kh3*TQ0jd(}!`GX4xeZ%L>oJXFbD=R>1s+>XB_S26v@5XciX z%&8B-GW~zmq(PrW@ir#A*V~v&+{{MN&*o#(Foq8^MM_t##Ka<3cZK4%EH|?@ezhon zs(pUvZ7432-RDjyv0kkG^PZ2I{K=?iNj7o$LC!=+)qUA9Ev;jQFL9ekmTBoGOm{3K zInuUFE~l#T!j&p7$>|954$5Gjg};XBB-4z&aP9v5Kfl4==l{`1wM#*e!O(F)74TkVqR zzA$f|e*BMkP0RP=>y8s=D<*8m{1l{W!EYq#Ggr{hHio5-H9KZ% zu=BnC_lOAcP z^+YUZ!8P(??v0`awi&{(>KC%Zf$6rCE2}5e;|H5kke@)E4jV$A})1xZb9O9_HnEd&_{Bel~OL!-ogf#&+|( z?sZ9~nDm|~kBIG0yf>8Z=BDBM3O@`KCb7Vy$8mW}DBDmLK59#TW%%&aKBrOUrcY{u zKIwgW*K0K51p=3|3gC0yAVNTj16@546W$;^5(D}BSg6+=w8fPa+W&0SGX~^S<#|Y2 zJ@T~u*82EB0g{a#M+XU?Z+nHhK0v926_Xs6G`^9xIalSrXx$Wh8hDqj)4RqDYxSo8 z#&UPzef_q-o}UyY@+hM#>f82Cw}L;t%$30c)T~D;`xJQ8;V1i`f@ADm9UAKV}%G1s(5JV~;&}8f^ zZ2~cBQ?lp>Y&QVYCE&M>JrLa=dkFF@UN{xWd3?dt4Yu|5T5(3k=Gg-Uf-Pz)at@?i-P$p$dJ-J?!mZ1mRkV+O_xL1{d9dSwTwSN1{YXv#;)OBuT0cpq4) zxm`CzO#>ljVB8b|4ZR{*KWl485^HU7KT92}S}i5LWPcYLDxHU_ZvGbp=pHq28i^xv z2&#ymh!t>g!fkt7<_kZw04DS{vfJ2rEcKOIsUp?{>sGp$+6sJMH)IKi{-)?HOmu z0$+@O;;^uwWdF33biBxj(9khGp>93d#_?8uuf-=&_e1wlzShyv0X#JYl&>VWE0)K}fof11tz)ymbPaA!@kUEtdJb&0qV#FsBTU=NR{*gJr2D0orK!buZwS#2w{YL%O%q_EtpbO{ac&Aob%;m zg-B<+Lv`6{!M%F&Pd!Bz(fY_=Ifu<4{fo}ehmGti!-^_@>JiilQXbC(V>X~hGh&aa z5YTnoET_ocqV2*F|5kK6G)o`34mI&tUDIUSC#tI7 zp=QAF5W++JyDS_Wf1xPe)R_ahlB8CCiJ-#4EVs`ugzVgpn2h=G0dh}_Hewr20-*3j z78&Tr)jgeZy)M8bg*^5+U}d0!hD`R`SD2*jS#4UhS_6Em30Q z=}sES8+}seEzas6+<%hn0b7`D{aA{hcS?5!KnuZdL+5t{7>lhJ0mz5~vZ=-TyyttI z(c`mkij5WM<#2IvfVn@m7h|v5jNJfg3!d>n#57K-;ndXuQEq?KCZDLNAW3fED?^A% zKrpwEoQ0=NxL|NYI3_UBV_c>Zcn=tDsquF#*dws16+iJ{`hu<{22`8(dyZjW)qI@~ zxM7G0-#{Rh+U>MHUK5L?l|z84?O5e^K+r^(dO@P|49SqXZ~^h{8M^+t0Kz9fy?kd6 z&s~F6ATpsmORNBqi-CEc(WI%J03aLuA+R&evF3~g;^9HtT%7>#IX4t2K2>uXRFXJybm^Fsbkf|#eR93tVvMjS9G!9ywq(1B~bpxK(`xbb8O_curWjxSU(91*o94 zXA%`ngbEs#1yV+yo*Zlfpd1w!*Nz;w&}PA5jrirc<~4FOvNd+UIE6Kj(gRHm@?eLV z)+^!RtpAqzh{GNp`8W{0zA2#`|Cu`qc({@0<^@p9B4{dTeIU(Dw4DoP68t+OfVQGd z4+7!Nj;x>vTr#K;hJ;~@4O1!wD85TKvPxyV`U>)dEP^t~X>PK}v^`K@e1XoJSPZ*F z^T0SXJPRwpSbqT@Ln`Rl!6R6(MurK%s{I<4r0JxCnI7fp019#cztYA>v??o;(Kmic z=~?o7^W_u8VW3InNK&R{`;QK0Patay(WoJQ;O-$fO^^(|gbJFPVraG#1Yx8yQKq1;s%{+r4XZAaMXX zTfissKTwcQY~p=|;ev_$7o*`~N^+ehKs?(Zz6Pvw(9!U6&zh}#Mm0QHf&cL-RPOr#i5J80Msk&gfocRub z5eo|b{OE6cqDDC?`!W4;<}v2Iv(dUSddt|ebJ=2^t=S;Y^U+gV?lcwBfHm$KpV&$3 zC|qr(-~0&}Xh=GMA=!Z`8!b9Blf~#hODh zAQ>$KAiyz)%&tvY&{;D5yK(m2MYh_tdWt#*F-4~!zi*FXqX_x6-sW%#+4=D0h~Ib| zTQpS?DolKW7XZ$wNP%qe^9$Ld7R4V19=D=w#`a@vwT^6QozuJ&6yF58Y$?n~9{uxG zSJ*sqRCl8YZ6ZXuw#bk9eVvq)HsU=N(M8wpJ`6_|~fv*moVP(w-^C8SjL)|7!sO|q+&2VNJ-=CqWw)u?cuU|FZ>l#pI*Pyn+9H!8t>4lJ(}NP zlyk4bC=y38H>O*tOFFt7Q7_!GT>S5@DKDSb##c1t-6UGT7a6?k`-SYJdA&zHHZD=K zWLp7gqcQG8{sUl(Tb8^cq?dA`Z#JZFrl4o5L1`XRC#WGfHdVHzXPr!=vLEYv(v$Pa?c&d&32SarlH3A=IfgrVKVep$V?|2kaO zpBc+HM6zh=LUhY~nkQ^r^ylr@TIKfVVtwjk(YrnqN_{TZ|6WwV`FruvQNbJd534hI zw$ygQd5@q`5lkk212Rz|J22hEH8(fMZ;ioe3rOfemI!(^jnyiRv+<6!DlV1_CV}L; z*C--lNq=k~+$^@>JNTb;kNNt#2BM;hmal8IGq|VWEJ)zTV9?B76|FLSYBaeVFV384 zb2(r{h4>8s*{n9Eu3p>oT=P{x(#Iyt%>sbUB_7=#8h$r%e{ts6w^~MAxV)&%Yh%yl zdJOuWQWaeH{S5M-aMp^1n`bMQ__z(6-}-OAj$I}TIsRCrHZ$;9>JmNe&h)aFOSmTK zZCTZrvUZ~zSQHXnJ<&dd*6O6QYP0rLp+0hIrezt7ou0BTDyUEQveias8qZQvbujd#Uq0;B_3b;obh8TDRAHEAaXIYLKZ!SK+aJ2mw3ZqxS z$88ZmRy!+dyYFhSa^=~FoZ$zV^+;R(*U*5(fl5BT7j$}_5EWoK9t%P)z##$U0}K7g z@O@hVWFZ$No#i6AlyllS2Pj9wH|jv`Iy0Zc?u@^(y&L z@^y!8xuD1u>fIN_FGSO$X!>#U5BD(n22WmXRXnd|?E8;z&spl%N$vlCE^hEF!lPK$V3!fI;IgYzou~(p1#~H^6M>omvu?Pw13E6{R)gL_wPP4`k@by}85w-eA`4phF z3WkRG+XSV05;IxSiKw$;jZgWXu$)$bT&dR-F2&9k=EBu3*D^W7O;8+W)QVP zSAt|sJ$Rr=rGXT7;C{28;QIf^xuLWMF+Ac~D%V?$;t7WwQ^PuUA-nn6SzenFK6nze ztX%ZA3=-wa(pVa@*KwR^82o>mD5p$nlRl4+f5?T6zAnv*8yrA<{5rMKO|VT~@PUH- z4}bZ98W%;$=jRx+zankq|RiU^h1puS&RlXYe1ulJ~)R8ZzTAQ(U;HmTwnJwQ zFn2{L(3pET)wqEB?~F(HO>HyXzKyER##$lR0te^oT&YoO0pWGDWjWZDYF2d6v(w29 zQpbsnXW!o?rm=kTVB0a|c|A>1b+YkC2t96rX=A>-U-eKn5h_yW@$3ha<6_r_J52vK z`+sKeg;B1LlZ}DF4`kZw;mZF@6#S)k_qSTde@Ec=ozt4lCExuDPV+Q8PwmTZj*6a9 zAA7QPZ6VIyuGJmQoP85N?MGnmyQxsr0Fq|NId zldCK9XFk9Y$8i8Hf8NJ|`ZdaU#8YH|pNiF~p%ujzd~NUJT}6L_zZKl+lX0O}PWqQ%Y*OhF0r(FS%e;6O5o6--W*VZLvC zQqk6uoCQxc?;DqNrrugH#Q181vlKNV-ZvX{uNsP=`Td8Pxb=mg)3i_!Omf-X!uVHX zcrd&F{X6%sYQg*+r0$cmek9I@%>8^kPr`scR z$v>Sbl#>#T+V76m1>vaatyMS%F;0Qo6``CdNf zr%03-4vy!H6Yqxco z^4k_v{(#4%4p`3uH>7Ve8Pk%+Qm}sgx^$D^^Sw*tvX;kpzl*$6c|(jZNnrBEjhLbQ zG_lQy(?z`gw|Z?VY~eTAylbf0Tiw<2{M07e!=uxh+NB?oU{M_VS%ZIo@8l;a0}$&Q zL~0@4`IXWhf&IP=+%0F5KgW&2jhAoMkHj+a!&CvSx=q;qWqSD?r~fK43jU%WF|niG z2ZjYpe4o3fUUc<-dwtFEd4ZzrlNoFZPRg^%4~yNS^la#;sH5pCnGjAt9WdYPxQHd0 z0?7oRq%6!0+{@Bv;<+>pOn=$UfBGPI(Bm@FT?fg~d?tgw;b-}71z8rc$kFWWRq!Z4 z_7Svxc)oi1OsuRyNU9O!0QW$e%x||9L_h+OUi!4jkY)*7cwzA%k#3Ontz7)p1}UemR+HHsK%Z3i8-(r>+UCAN)aD z1o5JeZ^gaZUuVc`3(VoN|4kNDu7^kTPrrM(6IZ7?FP$*)(bBb7UO9?V>6==N?bH91 zx1XOs?c!zz;gf_Po?#*=6d=H&x*3d>$Z!&}kWBkaAL9Zl99(+@z(|ygPqBF)rD;%iYVi=i~X~tMvO{kLeklj8QQ;?#_1CNpZ?M?!;J{ zUY0GZ__52;$1%>roOy{{Z<+_Mq%e0G!X{+o4Zf{y?r|$o}@2UDW{3?a<^@>M>u8-o;^g)#?^E;jY0O z;M8~qwGCG>U{`>aOTi$yj*a3H%GJl1kn2*{_DC=m?oDrS+Iuz9SygG(IZbcT!3;Rb zGpgMwj+?uTKg8L~CR@nH62hP9z1~WBnHzW&Us!4lQG;AH%MU-<6o}86#Rsnx>~Z}T z4tcLJz`~iMLh4MWX&`vqRY0@ws{Wxyj9=PKw)Wmx&o;pt=SmUVWfax>`>t{C>K2h7 z`Pz0e>>I}^m=3MX-e_? zKdKuKZm!opDk=17JJH?HdgM}1mMJ2AGm-djT9ILlJ!6J&2z!sJp@xNBgyB>isrF>} zkozufM~|0sPFGTd5tm@;NrD%ir;Pc2;-fL4bCf3GYNbSP=qt&Q#e?25u^p=Z;pMiD z@ZrpO$$$0^NdCC^dod*QZgFsxe4i(kM1~!Zap*LHso1y6YzEOREBhRgfKv@|g+R@7 z4FVFOVY3u9%tMt}qSzoEL#R1;4>S*h~FAeC0FO>W>QcL!wB zgWzqsGiOn0Y;kN_;N`iEoVx|LX#}WxALbT_6xiKFG=PZYmE*eR;#VdKS@_rP(ExOz zz1Cv$@Eb~g>mT(`46-lIUE=V35V<^_Yn*J@6LP}=cK*YE<$Q+Bz4Hy#?GyVwCOJjt z=?4F@R2MeHB0tiVDhT?0?TNLu538OB6dd7d0+&ICXYDBJ2z_W`w2PHHq!x|0=DFnS zm04Vc5k{5+l#J(_0zvf^a@zFeu3>r>E(B!?+@{>)!d3zsn6eFG0h*aIHl^1@pS^rO z_Lw`Em$f`vw~ht(<)G*n@1md|%V>O?$=3iC&7@t7j!j z-)JBhX_?79Ji9hJ?iO6*06dU6)~fNpjLU^k2{_V5;$lle$(oVPNQ1m*4ZR=$-C~=ndIPvXWkW?_iTT{60X}1fBmM6N_uHJbU5oYO+N@B#b+I_#~%DpPNQvNKG*+CU$ zVSnS@&8=r#iWPJuBdO^Qg2K}>^rwXrH-B2Eitu2lzq$j$nWROUKWZdbh%>H<^p76j ziH&f+UqRsTNSKc6*$Zj9Qlr|Ukom>$;>kH|^IHZ*>>cp;LA|?o zM0$HFOQ}rM@KW8@!}OhFd$I+{qY=HUrDnOUl!8{Bgd2DVwSpm*ySJgc)e zfN7{4kixdW(m1iuqbuy`jT1BDW_LMn?Nt9)=NfesWnss4TKkKHIb#k?GS_0ye*Z4g zTUY{se^9qa-$?QRmD8W1R+FTWIi08eCGq*K-QA-dvmyDeaqHeJ(br8raumkD#3aF; zva`8~=wH8p#94OSA-&oGgYHS&mgV97f|w6|w|U-OA3RemJb%h%E0g~!h3iep)`(pv zmXp#!t0Gc#on&+~>J3UN5Qarv@lj&y1dO~-7wk{8$#$+ZDbBZ6pWe{Cx;C0n(|lp7 zAVc?Febu_Qf#{mE;FI)+f(w`&!?K>X>)Ns2ruUB%__X&y`H?id$De6->@m7>qJ~^! z^ar}^E>R2SX;pz;g{ucUMeRawP0y=~H*#Fp`8 zY47CKbPJJK1ge#O&~{1Oz8_StTizb#@N114Iub4}qk2W4sR6|RqaQN;WE*m3V6xlP z-T@r_5DD=E^klAcpUsgBRWI*u&=VkWra}ps1g^rxDp4o7M;Z^5?ai?`{kNAT_pVQj zZrs4YDq9ma(g;TjIxVs93VyQEVEkOX_2DSqy(cwh!opEbK`G3zH|)}7n!2eSySStZDDl<1X#F-gb%3BUKRk$bL*YHqjH^x);25jaKSgynmH~YXsUV zqP!jUlJWmkFSi(59K5dr%7&Pn{AaD(Hik+b3UL|3uw(F2RzXM)B=8Fu`JD127McT~ zY7b$a%maw6h7qKu5ZwxxVlfOz1#vx)Mub&p}GjYjyQZl!3Y%6TZp4N zT&|GH{XUwwa4L~PoW{N(w4pFHo~0KvaOZPW^sfX`1(^W}&=!v{lMASX6WGVdO8pn? z8@cm|7?fPy2}jivu7)EhJvgvZ#2@IPLpc4)ETKr;U)nS-)YQt+kG9p#6U4p=0qT&%Qhzu{g+wsIA|7-Yok;?m zb^s1s7-D=GiWww{3erut0HE>%HkLA^4l3ahJ^|k8Zb53 z?vyyx(uV7*>1la<8M#_Ws*yTX5SS=R=r_94VodQ)Z|I!O|5`Inhs1juTMZiPlZeK` z^GhrjFezWD(ilAW6>4X3cRw??$#O;S@}k(sOUDYHlr!T)@MKia!;?BA@68GtBAu(~ z$z^woqF9}0W)o9+P3ElZml%19-q*AdMr4w~BP;+KYo2%macjZ&E*OT$XDL|C1u>^w zfZ`wtUVym_R-Z$mhm<&w)Qq_S%Gxc2e0>&Fm+@P5%^qUk-FKIy0i4GCXM7Q8Y~!AF zRS4U;qy-R9%QiAJGJoK8qG?m8Aa^0T^xhp`wpFi+T`O5Kb;8dHk92?QW#<_0$ z#1tZv!$HAfU;?4{z|RIjJbpAB5Qt%a+KkCh5c0{WY6Wth)+(jNV)S5)UY8c)^k2BL zVpIKGjx+R&fbA8Vb*8bEo9OrFaFS{UInHYDu2CQLVHKe&eSeshx6#aR@0@&?)HK_d z)d*+L>aY#(#nDZ$yEV3|m;H6kC48B!>;EQVgRNwj&qy!7sE z=IHpcx0USLEWHY2-q^rBpaG?Qb=+eO`KV8R3G|6LVMwdKe5$yX}5CL8_ea@XGuEQ=;d*y z=eu5|)A1^wQh4I{UbjoPW_Y^59Xcb$hz)VO}k zIfQlBP|pn6tPSLlfcqePyB;tG^U<26l9CdA+ey$wAmFH~)rY0|)qntO!0w49MX)?^ zzv6^pL*uG+;9-(lvA$(x`1MAG6IGgwjdKdBbL@T35ZaWnF!@{Wu9UMTO;KRURayPw zp|SAOZ(vBKBdJ^1XnM3}>wslL#Xfh9-;McURV0mkcIN@$V9WO1sS1- z_o@HN(yynVa^MkGhw<3S#hKvAfbzB+go8@XS5qCWHUxqOFVdGaI!-xBt9DA_E0<1X zJkc;9xkPiDY=UWMqPD|D|LgptIl!Ft9mF#-O<#zqc-&7GG_6}s*UA}2^S%wy73Coh zEn{U(%}}C(yz-wB?Pv=ga{PuJp+9ZslG!F{Dht2ps^8J>hrbQPm<1>4&;BgFb@ zYRf~lDKF;>4YIZg#=_4EI#aKc?hEw)3m~R>eul&mVnY4Dp>Lh}eS=-OVXN{*t zYUmg0cY2_xoOAylY=<0CL(U*Bu}FpQ1sq=wXMr8?Z;`$xQX73dZ!P%>mPaoO9Nv|# zPx+tE3gIl>T7VhZ*5a&kUCnuG)WK8Ovs^HIu&P;tx749CpOS5SqEvM+$H~ItxaLSE7e*+m>Mg~6g0+#8 z@cqa;so&^1d(rK|pW3?{UsjfFld&>e+j%rmW#5CXZkMSBR3<#cf6!8Hf?>_Tmmst$ zswyvtgLNU`vOUFfSCr8e_}DC29c$c1j?KH{E4Qin7i%=@zNP!jEcsTb4(y4cKc+0} z(`*P#XUAp#X>hK=h1Q7f2KU!iGlx^bUNiRD=>XI#LA|KB*A-rAlNX#Z4cP3G+a`qd zqC~z`<>j3kn9Agu?Jpum-4*v&Vm^smcf*|NF0(a1EZF{%f4@6!Rb(*UJ5_pcB!5MJx;Rf_`Mx|Ah%yXWE0*yPahR%h z#ON+|#XKl*_tdo3yiI>V^O2D?YjbVuWw=*ME^V*nRL7R zJAIA|LI_}}%&8-j87}2#D%ba)U&|aVDsmYxT7I;w3~Ad*Y@Ye9?pAx!CPFLn;ZuFI zepu*#=v6J9^M-uN@yz0vjhIW7TF&xBR|GGY-t?wfsKNemChDE2AX;{Nqk6R5J-EUV zZY_)kxXkLY_P6o%CtR<;`u`(9BQle-&xTWF{+~~7={8`=j}(S5UIj@{x+aJ|xQDQ* z2&kC1O$f3+$X2dtp6gCrrXE42Pv1{gup|fM+=O1rgN?iQn&jAppT90$Gj4F@`QP~F zHn>)C-OC6Z#bYwu#|-KmoOV%nZveKrp6;Nty{e9re>nTs%dz{m?p^ZB?^j0g%28Os zZ$>PiKARNd%4D7ozQ6tAjA!cuG3f>PL#&IgwJOc>q59=g<3-j-ofSTXy&oQ`PfV=p ziMCL+L)8}(BL&l?0kc=S(>+R89{(>ExwvHxDI4lceSJ20&?#kW6eL^ZXgmO{p!TyC z;~^UiFM{G9gvZjLhXqBJ-Hy=RJ9i+K3e={jXzQDQI;yU%%tTk=h6_B zexgj|KGHA0tewfF(q5d6$#<*$u?|++I|+P7db4Cjvnn4Sk_qz!n_tPa-$$kGQtO<$n8ZJ6bE3Pa|Kq}oQ*1v2 z{Y|-*N0c3eSNY!X{|XsDbdog+#$Zi0!uC3sn2Xe-=Au(_CJDsde-msqb^KPjpUeH* zYwwwJi)wqRbmvm%)u$Q4JMj$TVwPyyGc9U`Zn7BRhdnLlURsmqcOSYm41#$Nt06iW zj9MTTICEO8#_BP8r0`(JDEa6r>6f9$?e(h5=2HSA!9AT zu15Z9W!-yUIE+rb8$_ybmywyg$gq2n-2wGStW{vD%}wV%xQzv(uNG2AoUIeI1X z0E@D*e1GdN=Qv?HF}ttg2+mI$-C((}ED zj`I1I%6xQzamITlN?4WtjW$=xYBw{)LD-?Z=IKLf4X1(h+x4st;WcTHarkf z+JgZJwCk-9me>yJd}JI>kI1&-&=HdN_{6U610-bGRxdIE;7EKh2E(4eL$gu|;wwa6 z`6J8#SX5|Lkg#~LHX(h8H!NT&B((tE`U}8W@N_=cNYYkrvH&f!bfb>3$jfx%>5pr} zQEALDxcDKAR=l~L07`$j&=DBWdLn%iTO&8r5PHDvVw#tK(X;zeQ?mNf9qRQQ^EzEI+0L<|bK21w*T5(tYp5kW!<6HT{)hbaNl zyl4jE(@B5wOhO*HCk#i#K%#X)>}oE#s9oHBSeiq{`}!z#xH4MpXTvHN z##jC?MX@xt>TCAoR!R}^Ex$JABn$emD;r?0Tqvme8>QfS>eRKigVHv-4H5XsJ#8Rt9Rj2Q z6w`B%dI;Kk`HBn%2;Z!}&&lf4D}7@V;v&^_b%W5$FlXKn>9n7=vD|O9F#SV&^Sa6+ zVGBi5;t<}xui`U>EZvcnO1x*&j|axsf(?zrs&d~PG>O+&}xQJ#I}I*qgN(SP)t zJ)Z1AW*@`0nVNfw|MU+ZdM`2mU(E}Php(+9tkexN{_vL53I`2t=uPN_)A$e$xuet% zCO(JDeJj`|5FX4+x+q*=wrklQD;ECc>tzK!%2Tq5FZ|AAg}$gudS93asZq4pfAuH- zh^5QvEhTWFty*XImV48xID3C?u#*Od2}Ku{L)NInxD&b;M9^F{D|hOF5-s9KhJRMU zUw9fB^!CA!lc2r?DEcQeyxpQynxL8a8klZ@I3me>FSQu;dv5WPn`eBkTU0 zZn>LZ5f!>PGWbr!~dJlW3 z%w$FO%PE;dMH%Xh;U(5?w;16-Nqct~pTq;x)S8x2R{8U(NC3kSQ)WVT z#e@ZuyZw#*Ocnp$-l261zVD}kT;7i_^FCNKV~#p+ZJ~SJGcNp7K&i#VlGA?UV9axE z;sIIQJKLVbrtEi*&%gU@d_VW_S8(@vz?~POSCOb(UlsA5?o4*!N5XQGl*1FagLJo2 zFrTTD%qk=^Z}yoU;i077CC`2xQ*AG`B6?XnBImAlnW(#cdT9)E+`X$uT=;vIrjeS_ z>@Bh3?iitm6krE1gDR1z*EC>Qce?;C4KwaK$iULnM%_rB;!e#*(} zjwN#vY)a!y8UI7!=9|ELzJ2+us&$ME)Z3SWrg^Fu?UQ7$p967R#G4%Jfl zHZcB`J;~WH%Fr6*nU=bKqq5=qt0@9YvOyR5d#>#}dATCbpX=@E36h8w?VjV7jGJS# zyTp_%td8Fs*W-40Q64RAw~o6YK!18@&a893W`UrP~$}h~{znbzf_ZWpzjB z{lWFo_VCw*p#+INc`dz`S^2DooqJu=gt2?QaZz;HpK(8_ZSpQZCqb+AWDeMK?tYC` zQq1|i@*1}-+{|KHM-jSntY{uyK6?(o8CksU$luHXbB4d@uY`5gMLir7BCM~+Ty~}_ z&T{o9ZjPHSw%xbi*uCPbb**H-Nm7m7>Zh32gZHC;DVp~N%4%Qpyt%E^P}~yrF^j;& zYC-DmS6)48J*zCguX{RmH#!tZN zE$WSf;W4@XvYcAdr}Go>PFpAH75-lRBte3yjuXM*^<}x2=+`lfmCHX1b$W`Hu1UlP zGuPUT3D>?EDG$UB$5T!YVCTesQR+whD4s@J57+NY&&98iqlxsl=`qNnuU8pZ$#2H` zKTFL1(dVq;#vJglAz+`LI_$ToF!jz8*W{0?TnC9-*rC70$W99Q`}Gf8t@=~xD%3-g zpHmk)JG0SVS<2hNtC9+4f1K>Rp3Opfu|>!?^%WuO^GxDtwkd35s+akEeUaJs)-AY& zhdw`9fgOE%*7<#w0)v3n3$t=S7+;pk>I&W)g*rb;6WuFD5vYxTHL>@KE$pnEGsfo+ zJUxqDpR+B; zse4{$YH{{dN@LE44Acic>vydUQa364rba9nHtizu%%5L1z2c-5R2=8_QcG)~aQ3{K z$fcUM;xMv!NKx_gUA`ss%3_&^taK{W0hlA#d)3-;Sf3ZBgu{y0o^O60$(UZDS0gJb z9e%)I+OWSe8p6K%M&LQ=jUw}8fotWGOGK-LVMLUP>FmvTp@RkL$-VE;H{xjajzk8` z`EY6Ns$O1B5-_b3HM{hLi<-ohqqS{nGhoow!_&6eb#-}~Zs^rbehTH$Kir%@QlH8S zq3q}`Kl@&X;>w*ABPZ@tWzAg7Hap@#4nGl5!FWu$xQce)4DzI;c$(d;A5(?LH)}o@ z6O!<9Hc-q&uXfhH@V8`J!M%3r;-ll;8J)iV2lyO|i*ZWnmTVdcZJ)Z#kOB`4^ub@-0>_syr< zW-lYI@YxlHFLYz-+3eV2GIZqG^YNR?DHFw*!2PGbGfgQ`?KMy!s;F<5vc^C z(P<8fyRr%JIGAVVqZGI>`K|(&V=WU(iL&w7aGCh1A>f8&$_O+N|zZ92lkp?pQkXtC5(U5U!u@Mv+P+? z_}cJ=#<#gw=##}M2LeB_;=RmqA^rG~?hlSh<-pyGog<%3yN)#FzHh#WA1rY`q81s{ zQnj-eyld01_sQ#pd9s$2C-1fByR~meZ=|pC-yT$yHgzRXkpJ3#)A52slz}#nY;LSJ z3+cSLU1Ik1YiwEjqq50{Hho*#dns-kvJW45h|o@ed$FK$I#_}OWTeS3+z}+I+l|;G zuA6xU)xpRpD`@VpiaZ#?R?x|o=&ZEu2D4f9W$XHY%U0v%fCBfn5>za~$_HoI{nqFl|f z5924zUpZBlN@x#h?xxxr>=v-uWc9js@OJtKTii8lebOyv9_kQeSbB$e@OSdnr~JKE zTCEkO^Z}Ba`P)0GCBD9UGdprgVgvk_WWMzO0x>WWOba&Uxo+Y0m4Qu2yd87wS2|g> z^Jy}9(e=C=45^U)0tD432;_i#xwQ>_!LgUvDM5dMr-2Y4EMlfKurbTSLcvfim>L-l zVr*y2p82~nrN8zu!m;eiM7-%LYo0h~sFV>ezxz_0V<@=xB|RvBaA%TJxJV7ERkK3f zeNEz(se7(R9AWFjZ4q7T6HT-);>wJ#e<*pf8 z=HWcI(UC})T*JU=!uY_Fv8tLLnT4YDctTLr&Ey4(2q>o*KHR2$!9oyPabR+Zp4>9W zB>T1oU&ZNc&Vq=2)oF}{77HmR?od8;|J6?HmGLL75fKp*Ha0dtXR7b#pSR9$+wUx> znsq1q0;bp%W`XAvqOU2zUJ;MzI9K9; ze?msaL*_3sO#+~etKVc&m1V_xdn!EjIsFf0M}5rALV}azMcY#H#Yj2rjg|LESAtC4 zR`1fqPv*^+_jnGGw3RS>$QxJ5E}35u=?jJ4Z1F|kY3)umR(fTqqV{`SZ>m~j4y4Dm z?cF1NS|1tbk)gsu+WTD9jFLC&x3~l^)AzK_H5yzE6_rL{{+eJnLR7s85I6-M>i7Xu! zAJOu6{^Y10nQJ-eZ*eYuZjWpZNk4M*v)NdBtQiG28Jc~Z=}j@b-K>|rbnE>UQ|d^a zxA@17_Wd{EKye4^PB0@O$0r8dj4u#v^LP8ZSTBqtwIA99n|+vT9WwO~{$b+qKG^sZ z(FP6ZGl-7>%ng8I?2jHcJ$2?iN$=20L1pY|nK7e!V&1N1-_ljc=i34a@GZo7#W>gI zv-98DeO=!$Rm~tUj%>VdMH@xO=IYWrXYc_)inQcBYag|8>yh(-pk zig2gS_w4>ZrrtWNs-WE)Mx>;XmJ*OIk#3~BJETjx8wBYT>6Y%2Zjc7)?(UZEZ}#(? z^PbN?*h{X<%Qb7ynwk6l)yuWD?S5Lv51wFj!(#LeZ_@5vp%7uAkct5G;3iMUu#Ctb zZ7!Qnsh0vIgcbFrhIMYy9}dvXq20iR#}KWsFfk~dkoj*D!IEXv)wTBBm-$*GyE}lc zz@dmR&mgWTRy;4?I zNA<0FpmaJR^o7RBo?qA>)l#F*{=3DTbLTYLHkQwy89iVm_F6$2Q!*f$pdv3cWx9k0 zJQH_!cqdr94D-guiO5$Pzz!9j|>0 z51=`Dzxue(Wh^~g3(m@e#M5GKt|o8OV))9qYJza<+B-snFmrqJ98PaN8$VSW*(wEs zM@c;b9}%|qj%K@gxd~IWzRE#-A3ymco^?5%f&X!4RZm*@tYP1gJ@Y{GcRI0%SNg8Y zl$19qezJ98N2cpJmvf#P#0(aNd&C6>WNG)1-D69KBiWIHF;NYjTZnNC_rq0^^&*$L!pOwCJPiVH=(6fmt3b6e0 zRvSha{0DYqF;nYX;OhQJ6BqrPEaTJoI@<>)x4RlW0Xf6Zue5_!gmaMjSpjk?3Oc-J=M+N0V(LZ46IU!J&khW$$KwW7jA}QFBEo~ zPW3qI-~c;-{-tlhh7Cne{UYX6bAL=u8#bF z8%Cm_f8e&?G>8bAN1}{q?-t)hM4;P-gLyl8el`%AP@_gbNuIo|AAxXzi9+Qx3rbJO z`(ocVZbPXh#icC8h1oFq^73mgdh{<2w(h!H?X$+A#CiExhQ4jMp301>+PAn@ike`g zm8RB{#_uMB-dnq%Lt9i&Cb0+9%ErD5i5#zYafFjKaJbPHtbHH``HB)WXSerC$8EvS zk7H*S#g;!GyEq~(hTF*}uV^PzeES5vCJQaUUYR9$Y!iR8DoSPa@CNzc59h4S+-!ez zqJ5A~g*k=VQT;x};Y1iGe1C(p7PC=gU({qt)`Jc1{S~Bf4UAhL9vI+A0xS!ohqe!H zJ8VAi^S5n^!f|@tf-I+q(80zLY~)5qDBFYXXX4>V>Zah!+_PSuRyQ-78}V!wf4-lE z^x%I!%ii{-i$1faufb*~qxzt)s*Qe-KuT$hN^6UZp>3v4N=QeI?=EZM+E#3V@#{RRXuA%AB;{6scU-b{Hno?30x_OJj~o z)L3B`7&H{XWM&&M{C0rK0FvMXPI2H|erathYoFqzg2^X@V2|>HIv|PQ@|0ar){PV1 z%}x!6c}4*P&xq|}tyIm{;N{q7^nCNZ$(oC=SzwJ~Cu)qSiJgwt)nW3}d0HCbj*hpp z{%<9K_Pj;YLnM{rP&wox|IHnQ>+7Zl4XLRz5v!y;1K2M^J2 zq6U8l`AI}j)$@OW=1dcW^FoRspi4z7O$R>D1ngE&YY@)O{{&7SmNzqgtTX}Hkq{Q* z8%)ZNmNWE&T5l;q4*lA$zzY|yt`i1i3oa}~_y&Zq4xkmz43Y^P92`J6uYUjY!QtV+ z=%^Vm76BMZHK3LY4tOCb$nvAZs6~n=N5{_+co;`MWTAr+=OY`q z39E!2xchI0-K3+DPHm3Gq#VEM%*|QRPz)E9QIOu4aGynn^zD8mAOAGghH<`>SkxMQ z85dtwn+tE%`hgKLP_KGr;;Ucyi`S+&4E|r`3-~Hw=q& zn8aU*B^%U9=lQivDU^eXCRY9$@Au?Ts;jg_4v~5GC)*WMno5zvRZ@;lb(kwu6Md8&S33huuEG$+~Hubeb4=FpGbCm3FoEpyLV=$ zWa>!JXUsn{VkK%T|A8;*GksnBWlP#}+Xh9wey7to27U7SUEBwD;PG`C_U-yU2yO|f zy}6xfp@xTtA+9Yz@KR|uO5FCK%b>V<z?R9?O_ABS~jH?ZJo?s0Jj}Qw72TsJv z$clboAQ>T8&4`{*GAWj&=*|=kN{z-DzFcF`xZpIIInwiwng!^YlH5h}!|^DVL-RP{|_Spz2B%#FpjxD(?$&Cejg&5g5uxIdH43Q z8ne{bSs=rdVNzFb+wiI6;gy`W1ji9|fy?oF2YM=~i-jH=MzKt&)a>_$cFi5)*DDKR zxGrA-pe^m(80CzHQ?I*pbH#3 zYkzD4b^I_;RL$2&>SfFyFPv&s&lC1Lya4NW<9}NNkd6z;EO}_ToRHRW(JUEQfSg5v z>noW3U0-W|#>8OE1;2PbJ94Lwb5L>OGB0Qpaz-;xNX!rshLDWVeYe@^iOBpn_$!qQ zU4VD%BKCLRw~AqN+f4cJ9FvSIgeVUAMoh~cnSg-^bZCQ5M#E{67jZnburc>Yi`}4O z0m%USAEz!XTwHkm-3rn+os6yco6Mb725I*fp3uj$krAXXFV4?5b&FiT_i%N~m7_(> zq-^Da|Jy;(WBT(od$u%!G1GIhnCUg>&lk-10Z1le<}O>cUDw4Bn}B0SvEf9B-R5u3 zQFpN%NxSb0IcsCo>z|af_SdJrxs$t!)L6O&EPVW8VD&7hs*2ejs)h5Ym>q)H1A*Oo z6wI_akbeSB;1E{=_iC5=%Z+d*)6L#UFJSEj1uEIIyWLDk{s8zRDAK%a1B}@gPp;62 zxJ67&DM3-F54L|&-#)>I#rX<70T5gTSs@N9+HG#Uz^VY~+5a(LPeC}fpvEZsI3U;oY5o8pHFmdFvaV!_SiGF50% z4?|*)8%uiZfRsXL$Hw(MHu_4!cZUPRGK7chmYb`mM`K~CKV2@}<3q&Mple{mlFx@> zBAkBS)Yv1)Mf{PCcf60JM6R2-NRAKBJLuc7#L@MOKvP#QeyZR$uaPq@aIkjTixT;c z?ho+zV2E29@GKiIkS78By=dNl2*9|^1b9_|SeG!s&iv@p0*<2~4jrV%`>q2vFyKN5 zgA|}j-xnWXhy__>A@W3guoZzv36dT7EpG1V)Jh>1U=ZIn(D$?(V#wN#1)=1a0Ia0o z;YkIa`z(gtA*h*?Km>1g()M5jddRpldQ+I_$9%vf<>{D+KJU?b%6011{}196NiLF} zQ7m@UwgS5t0f|j(>(q*1g5J}CdJ~ftDGVgm{uSr_nK(kaQ?={D%BR3C`vqG;{|d*aL)$&dfjso3e+BKz2M#P9HjviA zY%b+t22;xRdo#?6N5ho02uXMs>|QaTU1b20#DZokmK47h_U$@>PLTY6*d1V>fzH-EKhFL? zXtXUSWiQH%oDQqNFUF%9@OWD4kKB2Q8R&G>H9I|rYGjW3TaqzWuY$T^W1QYVp;}Bc z?A!ILEjCJ+kmLH?Yl^7HPGXdF&RRr7Qj}LQTgkeg@)J5*IIsP;If>$KL6^(JlXs?L zIGC123M6khsi9!OhrDNs?aNyewtphAX1fgJ!{2xFtfu}_pl*s9C(fMQ20iTkN@F2= zm&x(&KYFz{r!v+`_Rj{nE2ZXl|7rG}yU}R1{XKK0UCwL5af!Dnvl0ULOCt=dmo_(-MC5hxqzb$0`JJ`BlAnMIX}6X3=+W)Ooqij)iLX_ z%E|7N2ph3%F$9@bW;?Rva?M2_-(4-n1lX9t*zJtLe@qtA!=+S4P8KHl=!FU?ZNbsJ z(Gh`^up_<0+&`#Pg64ED-@X;!LuoJ&_pF{x-5sRztE0 zb(u(CHmL*zGUHEMBAFy?Q(=DmgpOYqHlnw%Fu<|mT7CKXb(F;~McsFp9^Fo_ADqpm z2jktm`J;?=pakXYnXBZeW@=b7lCEAOGELB5{^Rid`?}&8Eo#T~J?|tTWIXX;JUONo zyA_iF!_Fa}jrf~|2HqcXQnulA?2hLP8dt~&I5|Fk$o6Z8e(=-m*zAxMlytS0vVS(} zR_5;9$R5Gu$7AWtUiRQfmbqPMa;@op>Q3?8|FTL_|AEWNc3biCi? z)WlcehSVyxxPQZM=ZpJJ>U-LL%cl4?skBQyUJ7RZE`pfoWuVgFVF0>gZX6IvJd@~`YKx7NGfzw< zSn&7MUh7VAewC=9`e`BeN=wvf1=hL6wLeU}E`d!WAh8AM0Lls0X|VxIsl7_U++rK- z6oozy`XM~Ri`sWRfiHh{E(}Vh#X<^Hr(>M6!|>|ifByW)L+EDt6&mEb<#+!e{REYe zq}=3*Ql8A<;mx&EjJQ!ER5lF=BqQJ@q92sm{7>ip!&C8PU;YEjFra(j0-aoXJ;RZd zQFhE{&RxXgMpGE1FBIQE0hn!OFtsrvFrKZ2zzin=GxGQWx`)fJy{L>Ydh^<9^D!dr zhJ}&jmhDXfrQlC}i;aJNdMpkrqcyNGX(s*~9?;yJ#EFa1NpGICO2lBgWe|p?q%xxc z&^?7VobM`wINv9aad>Uc7d}0Go01|_dVHBi&Kr4;`mU3$+PUB|uu8y3_Uorn6BNT= z%Tn&YpWU2%^XEgX*9VF6Wd5(~L3-^k))ss`zVbfJG18nBg%(uZ8;^iB;iHK#PH>C1 zM$*B*mTa>apS@@<&nb#TE^8emqBe3B(PF~vD$CnBDrU1)9!iDhK4jS6xN`P|`zxW< zoMM!twtLCj}&_G7a@`d$WC22Rg2XGeRz0sL{+J@jx)nH#@%-r?r z-J3fVsC&F2e_#Djm$N7L_-A1C?=G&Kpo+Cu1ZcA3XmZWEO0m|9N@Q6YQ03xS*^UJX z5HP@_z*f}thL8tmz@}boQRH?b=PEwRcc%cgME%*y5K~Z`zlN2|zn#E$8^R^B%lir1 zyv^5w63SHH{!1Td;C2;EB)|lJoZI_i(&R==v&UHr!PJL>#K?iYjS86F^x4!aYide5 zramX=10$q!)X_%JF$eJq5Ykk3qv|uTJaTC%3^t<1WC(DRLWse-Y^X=y2t8R$$mW53 zOR*BemYwGkhQ%yoLtm$T(eMauFJ}(Q&-<=Y5EpxOSJar7@CZtp`EMIVf9nsWyC5kS z;KcaOuakTVR2i8n+Mc|!(K=tH)Z#OrI&%7}}toO1s&Af})qbYxmsKE_~LuEk{ zuI_Xf2U3oJnn=Ii(w79_HxlylyC8$cY$8_@;=;VwIb8xDM{sB+`Cf_@0 zV9Y8HQk)?w7C;VzBvIx`Cw>BDa9G&o;&g5tM8yaB=YTo6;q>&8{6FrAl5bzK-3dGV|B(|gOB8d?owNvFi2EO>k{Uadlz8N3nfh*N0?lC4+3wEA=ZfvUR5@e4Im^PCm;%9b5IKEt0CeoV{ysN=TQ)L(#FqlYS zAf+JkK=CZF>}3CBYbr8MC_52r=tL!U@7>hAkhEt@d{oRM-WB!FrEGTutJvZr7I_o} zpjXI(N7M?n#L!M<8TB|Yh5HfnaQ-Ev z=z&ZbSng1W2`@ymM)G_H57Mi+AXDTYkjBITJsYu`U^7qttmi)YpZ~n>vM5VSZ5vA}a9WnBmV}APlnbM-Z-QNA@ zwC{-wf0WgFOZmO$e#ZBxe}}8P=K%g)Rz~DAEWC0&T6OkdV!77pz|@@DtEX|kbBPP) zEO0B)RcZG|U(?2zF!PUkEF8s&;7$O$1btw1J)*gQO##lSe@Ikxv>B*cAkhK<)`UDG z04)KT7BnEtA_JbhimEEJ$ECS02H*cwn;oDxV}08Ma13UEh?1LDCqt4jyziartmcI( zzTC4{b^=pUhrKaUNEAppKoA+h7qKaS%i9N5MQmy;p~uGU^WzS>OBQJ=MTRD?)|z;T(BhZORa;+ng+RZeWWZSs-~Pnzr!adMQML$?{T_Im;4`-p4?Rl zUsyf9ayd9LSa{AD*ff?GmKrNrGq^NIK0VzlvarK1J|W>d2bC=#FZKc+ozM6z;rDL8 zA1@knOy1=D%V5!74vq1+x(IcoY4)Tfl5R4rEmTNjXY1p}J%s^-0)dW@q%O0t z2;68*Aq@+Vjs^&alT-Osi_z`K-B#?I=Wb0cfFS$U5UIp<8Mq@?Th1~9-{>LWOR7<2 z2n(_vUlzA5Gtuy@=^rD}v+>SWEnjNm9IQS25J=%(4f#ErufQ`&)99I3o5EEh-WF3_ z*2Vqar1j{rFc9HPm*gHSem;Defq|(3!tB2GXIm7oSc8J#Fl=wj*qeuo4}eh)w4Foz z54|1l8GQ?u(yprT=h@>CY!k>R<*Tr&ShuM(Z|GIuqW?F%TM57HDL!!sN zsnN!Onhl&xz(IRzcJ>0iM-Bj5f5&eIrcG__{gZ$XV5Yl)$JPM)Hbuq78=wWTF>jXH zbL;~44}Kj+T)6^B@GYQd<2YD>cL_v!Se7>ifjlz^DCqngnpprix#W3XxNh~ByVp{&slS1m=#9ittrcLh6-61`3Q zv42dWHe%oJ^%DRT>od8md$S}mTEjIp^P%?pu2PGsDW9bdXzAQew{c$~&oU9beNBX* zFC0a=?1c1hu|uNu{;s=mOWZr3PKf4ls|qkHCGOV{c)FY{c(@$p35Z~=ghm(g zqR&gC3@H4L-lh9Wg2tq;hqY{13$}$i&r5)s{k7XK7BUZ@;&T8~RxI(x4PZ5VmY+sD z|3g@%=>>$-N0JlT(jMbOM?dV4i_mvm}z?t27OMHR4LpfxI z%;yr9wqa;UKmcl-o}=@C$SFAU8m+mHQYE46n$?wnro9m=U&mrHGUh_?2JK5ig+LGw zU%J7eR*GOkROpX8JQ$=Ky!(_Y&Noi2Rj~B@^(mhhW<%P*f-u0oFn?p8Y9x|pC!p0z2iw} z$`Y=crHWM$c>6L`&^Fj}uYU7d1Z(2>j`3lLm+>!8aiSaA)Ed4$t3}j)@UZ)*BdlTO zr^-OlQJY7hJ1e_gPRuk*pDD9HRRCnpf7zM*HJvRqPSM0!APDM>LLlurSEtz?Ch8$0 zBtUC{U82gf(ypl{Y7mstTs2Ite~UMBO{g@O=$H6;NQ7X%I(yUa-6~~JkbM&Qqg!1! zl}ysN72QzKtc7_dVIpekQmX-_NOPEdu3QKIJ$y)#ac(u@?22n4)2bgI8#X{U<(ebY zjrttGJcHUu>p~}Uvdu6hA!)6OMj66YbS?e~`1xDI%@hhJ7?Q|In3%6kh)={=>NsuZ z-ua?rV2H<}B@MdX!n11;$fZ=By;8nwJHfp;qGYUJb*D>N+`!G<_2=nJ&Mr|42Qbcf zI$l{QG0~%-IijIZKyBw?sX6q$Dve1Ju5@K#g3@y)`UaX%2o|75c6!q+tjpX9Wuk&p zL#a;Vr(C)@<4=Lcs>A$DUx-MpuPuZe%?$~gztY;@9AMt2)m~!>V{Sr66SUTLYyN?6 z0Q*5F?OuFZB>9bLfM`iIc9pl?)=I?Et1d*g*C}QRys}2hme%D11$wcIQ}69n)u95W zWyRmV=11tJb)op-qKHB%J@(Me&gMqMm15=cBXsdf2_`D+=#TxfM$!~sK`-YHG zTz}A8V_#DEQT@XdsyNKFmh^t_CbI1_;>r+wZ2rGX%;dPHCFDwN&A4PSxztb5@he3w z8~4Q6`7622hVEmjJ=33e4<$OBRXD8sDM#P)G3WdrFPovu19_^8&I4*UhHm68qHBE( zq_qMHnD`qDQ3NF^pkNE^!pL}U8I1}OkmLACMRp(6YBu@B>ff;$4~KVzr}NeS!81!` za{4It4oNy}M!D(=b0bxor4w8HC=M&q%y>nHo}D1_nlt4A6~T>nkya|ynGI$p_1FcB z5T?6^Bz$>9UAjEiYG4O}{c9OhZrz_LY;C`JL&`>Xm~s!2^8uHG!P)VbEw$frDj1vB zYc*P&KT>3-*PNgr48qs&Q5%;Qrx?+VOT2b#)a^cJxH3AIP``^ponJdZkckF*EhK$F zNDqE#dp*{c2*Do6eSJeoIG?42UZf6MXsn(ehCA9}VRXcuC&$hA0y0v^S85K1AdE7L z>ne-sL_m@>ZnFOvOy&Vedjj|u2#Yldt$D~*FpvWH|BNa{hi z;dbW~{=Eina!o@ffGdID)gJ)4LDxfz>wfwH_uR?w)%in3Mb^<}<(lnmL^ZTB0)nc#N_DzcP zJ&t^@i~OnuYb2K5HcI@;W{W|RU#=xzn5 zx(C8C>$9ri%>Qx$l7umIL1S82>s>c?n7RIe+Z(7@KUtv=ra<%_p^#+;Ol0h^NiwBr zIlGn|hsd2akb2JjZJ@MAdvBMZKR50a!%S8L;d2^Wj3mu!PA1b{wD#hnhcz)SE-pAp zmUpb=#vLuxhHq@lBzF9$h=K>_!0Eh`cLJ0=7t^Xdl*ha6l8*D8s&m_8O<;vOgY}=7@4K3D(`5@ z_ei${^4VU&V+M8-f(FJ>Z(&FVEHW(PYs7E!3?yI#e?r^#5Td9qC9@jUKmDI13TQ7V zv*Zz>CW=qJ2nk0eGcYDp5cHWf2P89InG<)rEh2bSOl>gKBsyPVZeITi7O=TGK;wQB zb>n!7)%DqfXR=d=zbu_#2aUc$$IMwxdq?Bb_R(ZSfxd1`FZI7& zQy*y_C6T}l?1jpl9?6BijgeO3{zhU%p8^yyA#)NWpMrxd?63<$;e9Ha?OCCaD#0(( zg%VPYB@cCZoU8K_X(JRf6;&a>{3s{7aa=vt&ex8z2n9|M>1OfLRt&{=ZNwJ-^fcJj zn|cGXs-yoS2;1GOvnSV7FPIi8jr!rDRhyW!nL2AvwfZXm*VDZYXPZ0GSel3!hnK9o zjFLH}j+7XO`8G{P5^JgK`j<)Y>Ay9bbR~me-gQGgKL+Ixwv+WUk zVhjc|6t*PctUY_YLEx`_0{aE_zV`7U6@4S)WGQLmv3J@MonRSP;k25RV(P)l%1Q5A z$?UI=l%KI|P22A%sMyZGmQcg$rLKSAufVbWEM{(f)i*48kAJ@A)(@5R-hUHb9Hq|) zb-AR^YG@J%pzXc8tp}+2+I>cWxd6q^q-z9&XR?A zg1sr>XHH*e&*lVZ7hfnlw2!j^Jp~K~zQbTP^Ad-K_)UTGs^yYN?YB6$D3XGs@xDR} z3-%*gwi0#6v)^7)Vo@7wCU=TFr~4nh9BAwL+2WfMb$iR?WmTc?bqe^*P(TCL96o28 z&=op1FD_b=hU7IPoX>>!qLNoCL^m`=aftWt>>Wh@0$OfFBvX>0uN*l1_I}f>I!Wm0 z=Bsh(N!4>hSsfw}oQ9aEIXTG+vS~Hx_UH(dggh_Jd9XL0MnEmoRh`|*hm(JHK`I%oiqYW zM02w=BeLMIj&h#BSmpu|6G16D-}SR*ZoEC5m8ejI#$ZZm?0#fR-ckPMlCCi?l7moD z6&bHpkWNnes?~*0T*&f`cuqljXkf>Ew))<&%p1qk+x)_xfQb(?^U#v@r{;LGml9X} z6XTjhFKia>SNtgllbv{|mdYnsIo7oIY>e>`l1fOucszLwpo+o1uln_*-Afc-pc03+ zzP5|YVtzLBji+y%9CJVQQ$UT}2bHVG!eL@Gu4bW!NInx?CQLxB^XktPH^<)F)ou*g z&=%yf1nic{?!u5~ma}B^jr4>*^&DApl{7O*W3S&12dZFk2uQ?4R7G$BpbVC`{i^_t z++;esU-AU-sF}DIG{c*Yd)tn;PPUT2V1$4yaU%Gmlha{Mn=ji@!LM1-Isd^ADS2CZ zC=UaM?9K(WMX}fh{1dEo`vVk}wt?sb-z*ri7W3kGnyl5s zY$G?hjs7f#XEFxSPtXoAryjd`-XI11osL&1n!d4l+4y0Da(>N(YA-s}#k9eQ+-^pu zwPB9>-Z_4~_rV7q{hOFs>xp-wn3?z5%l{Zo8CU|j1DyGHBR~o3`F858YXW=PS~`sX zFPhrd>x7e7qY6|0$CrA~lt$;%=5Ng7bCzmw5M>I@KDwH6#|?MNj8mu26nI^guR#u~ zEn7g>XP|Pb^^9T*o^eV_udhiyz#~+r=FaY7K7Qum35>R+APjxY_Npue1{+Zn9`7yi z)eHA)RT?~Ii1vI#N-0eva5%F}Gs5}*WJY^hi9Os$tn7hiGDbvYS4}`)c21cWfM8;) zgg7i`O=jR&-FD+(_o(J*Yh{g9iPBkSIvmTz;`$bwhZZlAv!kQIdg)e-d4YL zz_QQm&1%WOV$&?3wI7`Hker&^A=e}f@zy?)(^|c`boS{g^IYBjt#tfUj4{6Fx*oDM zV(`Jphx?Xg3mgghl+{f8(~X9+*yx{)nPtC}spOPqMF1Wo90JA!fFi`_bD{&|obWLA z5ChklkN@*sroo8~aXk~@kz6)>p~~k(1C%Q@30YRbh-t!!Gh7s_?LPAec~rXT%J_Qr zi-rfZ3FlqA8(aIcAD?(Jm*3u)Wio~ z);2X{lr?W&)br#Nw|;DH7m-=w2>k ztmp&Si~uDn7+CB^TGT_p7%w0n!$wpvS^!_njbTHT0$k+JSf%>_^mGFId`_w}GvQ2K z&u^R4a-fw88N!r!uxB($XNH2fsXHB+b>f?;oa? zhWvHK#d!j+DGlOGbO7TX3%Dv5{$g`_N9)DalwmvCCQ z96#D$CA)c*%@^F5?@;K(k?#kutyaS4!}a9o<-aAgwJM&~#UwnX?n>o2P56;w4i!Eu zx6-2hXQUazXdQf5e>@@g(~xOQE^v)=xqDCoyoWERzMuB9XMPe@a0LCv9LUWZVfG?! zC#h|}UN{v;!NZvV6va5UfLZr~-Xi2IGVX4wMQ7ORca!A`)Y*QDnR}VgiBNeR%=(|~ z)c*q~#&VqE&|BxD)M3Xf$$y6LBQLawt+;9-5MgQ03XNrWen%Da7(~hc6=+ejjDp80 zZH(unHWzXE5U|0o(m()LS zMD|V|4V2oLBf|e=aYI`(8^UWGtGV?==3?3UeNEuZ|<^lK7MO8ox zL0y|*!5IcoROS4Ea`rzg+SM(Nsc*KEhteES<#%rykJ=wwih7 z-mm%c!nG&&`Y(G?DOaC@`M(WdX~Elk>IsN^V&tg;p$8Y#I*(Y00 z)6oUK24?e_MaU_(Kqo}`{pZ|_t+@(EspN4K8HtaJ_PgeGozD~LMyuQ2)&Zy*KyrEqgs0hHoT`a=wQ*Ke^Q8z7w zNJL@8VBtVy_VO%F%~M6Y;TSVQ`*R2N5GdL=9w})@@OtQKEd1HTUln=lw63LLPsFUG z(E_zJW=@ydQ3so#*cr3ZU|+MDcGv|GdD{TWK+)P8?2aTEEy9k&SA5OQzw9?g8JoiM z^4B@I+uMBx#nBuL_LA81c ztE$d5jmXT<(P)trVz$@Hrn^P@Ws%=RwR7ZBzWbAU1=wXZhuz~}E)3cwCSOlZ#(z@_ zK*u(V_|qrcXaD`W;q2VehBNGCxag&J+t(4%X%Jr=Ja#_N5&Hr=1-1CTR9-r3k5$Yo zcG()%Db=k4559IdLm?5BW*>X<;8sCLN2a(a?2wS^HFL>;l)Zh`PBLMthyyst2q_Sy zV*M^q9$xtqYV)%e6eC&ta~$c4qT$4h4+Hy9{Aec6HF zG|lngW%OSziru>rJP6<+5N>fgT=aJQSfNEI(pWvM7U-~F=f$Zz9m-+xg^k=&if4~( zBGory3We7LyEnX@wRM+f8hUyNF-eB&8}DiVuh2l|Eq5{hMpXo~4F2#<&uc%)5}%*! zJmodWaMAeK8p^-`=D?$8jc6{h6jQakfseBcCrXDiBnB=OF){*<&gF6W$BX>pdr*{^&29JZUU;N^EyOh)piKtelpS)XAaAaY9!$&Jnp+Bb zkx0m*0>>4ufqnh01P8#1dG@_t;o~pAZ@KWzY%~|+7;^K_$wVEumu((Yk5_^_b#@SM2*6&jb zH(GB68XDT>L973+A(fOJ^0aFA-UbEm&GL}pHfk-%?&*z>5N}zc*!;|Y>9eKdcekBC zVt~U^A6FY)R6HFRq_|@L+v~{5p}IOqHy{+Bxx)MJ_r*Ig+yZ}8cjH}*f0)%|_vH~M zLg@LzoG^0fw(FH`iCVa#pE;zs#nPHRD%Mb1!n4J?Tiz1pG#v7!&8nS0;%YS-EjlP) z$Gtq)SDX*dGs8`jNyRhsS7nDVJ)QSC8Extm4;G&gGpaJm3~d+&%xe#d4F?AXB)1st z>O`08%W-h<(9MY^C1GFGy6)zhXN2jb$$jVjeSvTnS`@;gs=BJGdZnwM6tXq;j2RGN zzt-W`K+7t~Nx0MD_c}(NP%hmpPh*yR-qrqZ)2^YJilF@453CdKuvJE~Q{s$TUmjN5 zdIi$nuoQYg1%96H0+$!7FW0rXRrWobodM%(tEVRh$A`9?JeSflZO`nhr*bl{B}IR0 z_f0nD@wz>d`Bgmm-w3PJkJ(QH_n@iwWX3JLk-k@ ztO`#WC2JeBwwfCgddhbNp`fBLH5gaXqDMScTZQT3{qldsmY(>}P<|mcAS@xILGvdy zmc0p#ipkW(ClO|lD!ruHG#d9+kGfLW&>$i)*!2p|vRmxNfb&5ki#OB#^VE_1tLe04 z;FzW&jfh<2@ry90`}PsFZ`=p=5na`uFdAr&+5HO3I53!*703JuuF{mCHyvTac9*u7v(=$0_^{;v z`bWsOs7#Lu^{k#m=7UWJL~^yMfh*^H+Vwud~LXLO<71@854EJ?>`JlHS(`A`AzU)h7Nv$v3Y( z2#pd{5wt`OR?XN$NWvM<$SmF9J~eA-*?53yRkw?z*I%EH-o)3$zI($VDaST3j9%^D zmuHD%cGOys5|msQ!rv^=dLo|1}|KetN*y*#eAXxjXDMSHs(o-+sewo6BvmiNv!jU|4u0=Lgt(!ofH zH{|1^5pWW5v__a}QQcQzK>{$pjDVQu=7uqch&^8?QhH>MkVxK*|A&)q^jNJTZ9{C> z3D4&2WP~r;7lO~@MQiXC`#M%zoC#Y*qv$312GG}4iW2dP=mCU%r6Fzk)Kd6k&@F}3 zgQEH$9T(riC}4?l^vWfh-xE}52)cDTqi?37GBre}U^hNHC zAK2+;$ZSIUR_`+x!OiZ!LEX3ggup0|qA#c5Z77QIVn-=LEjGsU<~$TT2GLnm__grG z3)KM@13_w9RrltOH&JIxcMeM}^BYrwwMQQTcvQk)_4SEiVTeGLQB;3rAfSP#p1%x9_D+9uDA$y<9MFyq$&BU|Bmh($TWqHaGDK_-H16 zX-Z3zkJHm@T^uEMEl(~qzef;iGc0~vR($X)o0_hQ>}dSs7{45y(kO^IqE#L? z9>>JGRNAIqP}J@c&XU6yHL%h~Db&$cwU@g0pXIKrVLxX4Ll{%L;vYRT+;A`ER&MEX zqrbY_;exDqy&YmPw2>bcanUq|#iWt^Kcf82cYLH;d!^4`NvHwMi!^0sV=2U+qsqfp zm9NU<2SZvGx>E#FZ}$-Q!@|P$+Tpui$8il|M&To)L9HPN@7d}8>T)JMu{WcREVcL> zdBnc4bC&*>%k%B7$c6s7c~VOC_e))YeZ6P5?Z-IT0C4L~@Xc>jU~VOQ#v6>{ItS=b zSa7L$Y!*LnN*FDyZN{(z-tLNbQN3d?jt;vXVD0|UYzR%Xjx zH}pBE%U6ZP9yt9KI9{YBxy3Fid2MaPyK(kQa>3v4?*}ZKbIMVBLvgz|12_*3p!Ao6 zZL++*h+kNhhHk`W{>hWq)|! zkmUE)Xx4~H$S_oQRjW0=mxtgy{$4@hEdJiSr8=f;T6;4imUfXdInz~(e^pbg`87KJ zVX4?DRJWFeL!hzjZ?WNOF6rVdCja*cG#?i=IE#x9l4i#8sKb!(>&X5>u}sU6FSV+l z!Hh8To^q?WVhrBmWt8CB-FyipzKGiWw7ym((i}ubW;5z$vvs8)S+j17j#d%O-@!df z=ED(r!xCGyswk67iKnUGLcALABV3#y|MzAc5o_B@zl8aO*t)aFy!~R--tN`aRm=1J zSOJ!(HPi*AtoVL5mS0Pat}nKgF$#bA6X%#RKVd z?fnU!-q&Tmn}0cGnWTisVwszEjT7(Yi5OF&jgG>ex$kk3NFFZ)CZBHA8#_;uj`Na&P3Mb>S>^iW^gW&0 zbDC(lFNzGJ3wZ?ZXu`dh8GiNVl%rp1e#~5FIK8kQ%;zLZFx*`~fmd?SzKD-VXUj6y zQvJS{Fqc!#Ii`FpIAQnq9x2yHq0;9ewO*IOx?WhgnLR^>Sd7{K=*b@~Bg%v@E8410 zD^L0{bTEDP=LTsVhu*Fz|Gr6zK%&~QTMi>8EFahn{Emn#H{2QA21{93{OGWcvShab z16C=aRr8J4nGZ1O)9^n%93yG_iH_wz3)x(nFQ}@rWSB{Nw^fIX6MfSWu5h1mINA_R zfXpr#%<6qYgS84OaNNQ-%BLAC)Ew1T>y_~J{lnE_VlwVapvli4^anMJCL`pmP-LBn zx_8J}R1>qJ*2foYZ;|^V{0^M^d2HT$(pipd)FA2M}AU4jGtQJK)7|m3W%` zevT0a`Fr1r`@X}j&s1%}DpCHOsCZlYDS4nIboOT!>GCWR9P}j<FV4~@U*FZ3HmJxtY$M?~n9z66WmAmPI*jMZ z;b4iTK#9Y{JB<=G^V=F@9O67PGKzQK=p2;mFaK%gbl4V$QYpNjd^VhAJLgtW5-I{v z*qv7bE6%%6xmF}JvyT$TZ+w^BO||xGi;Gj_Gt5|SY3oDH<>1fBkmmoOu6U+a)f?Fk zuHbb-UOUeYZL(iTv3z|z?pxEb$kF0Qi0QLIkZULwoQbMzcUoy*OC(*}CqzoaqbV}9 zoHi5s)@@TL-aL~C)DH_>ym_%MQQEjx5s2m}iCx2GNMtzSpT(TSzoUJkF=jhIs3?oP z5b4V8FH6AJc-oR*yBtMITOcCCnR~Tj2nIN%fK%KH(-~7(_G4U96uGKudvc8Ko4Snw?}8j? zEh9JHZt$c>B}549i&@aI#}o-s<(%Qj&K)<6B8HPQ6^gDSP{q)gT;dKgw6z6RUf^8g zo_KTyx1xmm2@)%SF<0^<$Pr^#B9Zjl5q!1{{!nE7F&LDGH%(wVS9akuR4&hOl)}k ziT0b=(`K4f@k}IdaN|E7G-D8Ac#7vLd6PS(hZ7&B98x$j*iWQb+H_xdndC-B*}-xQ zYkv3l50esKeN!G$D;j`_JVN8bTo_+#hTX(v2~Mn?TJMUynw;G4YKlIt4bd#pILt>*3T<|Z zI&6z!+IHaf&>ir=y+ym7ViwYufyn2%Zy8qEWj_e3joM#C72}5SmqYcniC2Dy8M?M; zFu3rzyA9DQkIwQ=gXyW5e5rEEwUYeLUCgLewf)*7CfN+t@$_NDJVpL^>NVjYi5PX1zqa=qJht4!}~eZm!ZlB9P>1S zyFFj`I#*UcV-ffJDFK}Gg+8UVl?SjvbR1sxmdU2;&?R+QQQQl>ZpISDhwY6CY4#T? z!IS4mCr>W8_kB6#(|J5mysyydRppPK-7VY2jWQX(sCd`l-(3Cu3|epM;;8Lyh$$~! zC$maD)%sQ3n#SeouzF!4>cLwG6)yaoFI@^e6E?<%|VB32%)&BLD zP~FMzzM$Upzdx}&*BpXxyCGzACZK7W!`}^sdrz3Xw_zOU>BWnnEEXz0>-U2tfG+LU z2;Ctl+kHsbQuxw`JAgZDcKVK%j@D;nsxZYV^^vt^7T^Bxh4Wgkt@}dHeA{JJENX-+ z>CBD0e(mq$KdjZ7AL?7mM#&nO`N3cseN6f9Q`SPykIX2zA1Mj8FX?PxtADozF1fVZ zey*RRug83TyUjGN(F`jpR}Qlxn?i0Kr0_9hD2qJ%d*@zv>$7z%v{u(XvZC(O(B5wA z@URo#{Y$4tE+X;KL6{e6kdT%q(W%>y7_#)Gui{*<`Ep7RAH3m8f;nr~cE^MB9g#-% z5({qg16#;4i|gMaQ6tp-DW&@F4K?xR3Q$wbHxWDEEJ+Xazc)FiqOs)>(|nMW5`)|P zos7*^`k-UoDj`|(-TW}zl|NwP>TOEJ%e|;*tfGgmycYxQubhZT(HWGnFJ`L0;Kkhz zd~_RHNL~q|&{`cl-`q-hQ&WQ8{>G{cI;AT!D<~+d{$T`A6#uH$ zwUtb;12lzb$Ax;wFaAHuzB-`FZ)q146r@{P1OX}O6qE+(?(Xi82I+3;?ohgs4(aX& z>F(yP?eCoLe&?RQ?mz5zZ{Aojv)-BKnVBWuxHUjAGaX}X-cm`UL+cIiDkQNew1lL- z()+s>jw6M=gJjBmJH9TVey{J#HW5Kkt$hL2bey1&8A`xQN*nTqIRB343-mI)hYbxF z4jyYMnWIs^PZmt2A}lA>4@BJ}#w$ToSk{6aNsGY*l`ccR)mhRgdkmI>U6Ww!g28bf=J~XxEhk&Kt;@VqDXW; zMMd4Ocu_^p<^Kgu3Aeq|kxG{Jx_I zp<#_(VwkO1D?7oUlIK<^X?hZ~yLG~!86Vb$&UXV-lZwmJWN5)n)p_I2ls+HxaLj<9axcd&!B413F(kR{s<%gI&z*nlu@ zPgwr`bnI2BfR63ckGC(K%+=CP3Ec071c58VNt9=`%rX9U?&#|5arNpXTv(vVX`%lv zV7aGdCS8%vkxIsS)0)kSxteK&>C3De3b=Zx@50XvXH*xtnmIvR3CH_`5LNEm9NN!C zwLWk3y<*?0DommnKY@*0>xzoZfRhflL+{YOEMM7L=z1topx7AvQD(SuRDd7Kh#j+3 zzGn?lN~m&?}HvFC-S z_4pmmdmKdNyzz+~Vd9UDZGjBkezq2IWcf_P&uTo&=^}x5P11k}+J_zCXV4(f*fX zfe($VFQ9_^x5kSjBada!&K5PRZw(b6A8_g)uYRojUwe7zyMUl1P}Xa{)8?d1C0c`> zdZ)sRyZ5+w!O4-=Mqy!}qsx~WSP}l>sg6Su7SDs`1A;;@NM(cC**w6;htQ>H1PEtB za;|N`#fQW1%gCE?)?S7{%mfqwmfc87}s5( zBP$80;KcbKyR*Ngyjx1f4i|_iH1&vut%DK6KXh+)!P{9`At@L(w9_zn&u=X7XlYRdNU z{wt`};9pck8Qc!`+`*#|4+scQ8P#f6{qrrBy&w10g`K>6awQ_P_5U&}uNQ-)JgFDZ zu|`Ju)u}=(4~!_CV+yZUukO}iJguxgfKm~oSJ2XXpMubX)AvCbL%~Hl%m5PasPBk4 z%oyR>=E*v>5?npGCpY^y-opg8;qyDucdz<4UF~7dCh~rpOG>63fuhv> z0A33EH)blMZb@?bIx~H}1&@My6%M?pr_ZxfwoenD9$osj$SZnbbZ%2P76vnM=Cgdn z&W6%B2ykyfn>cLNV0HzV(u;~9JHfRq6La?jKccg;Ps{EmeaoVZZP+YptB=Qeh;rs+ zn(}*f>kwh{-B&y$MV?0w3GA@GxMjL$7?2VBLnZX+j5yD&gXP8Lr}i7E2Ua7t$#E_c z+c4$h_T|b$9AQda0vLr{ed|bv7WQ@@oX4f}yU~iD>q|YpludvYP!~LDaXC*Sm(yTY z4%%Esc69JA5_*_7Y|&Jd9v$&IqSoqGP=F2gDK2`otn@1djU>J3hWW$q_A;!W!cXD6 z|LSme`-gX~;xd?fVq|>0I{H@5*@fJ>PE+E~7r>0!oH#(y1teFmqC8uXZ}yFK&de({ zJNFk$*dzGDZfLz=rn-@UwkK43PAx_ak4UaqbMBupKz2a#8qPYq$aeka>|~Fj=5_W} zcC){xgA$Y9>s&j1GuteUq+2RHyoys7MdtKPOqJJh8qID>DHM3E|9}Jin*69RcMLH> zeouqfsJtV>mCuc{#44Y6Dn^AhRT}yhF1?AHxrkoE$51nz47z~#*sqHze?Oh9S9hIx zM`~l1uZn!K@a^g>%oWf1usikD` z+7B6H3HRSg;^QVfgYS2VLlBjMy4G~40YOos`M|Czg_W^#ArJN~Twe>o_Wfu?9_A-% zqyy)JW?0lKw4}m>WX+%H@kPT9JskIyAPpY!7HrYC5EYz;AjT#{`gXJ}E_EBtK%%>N zTLfhFiSaM659hK&(5%Pt6-iQ(1a?J#q}2(uz&mW;^Kkxi&gzIbhCb+A0ac&>&rmCqZ=&I9LWeAyYp1N!)oUo1PFMz-xD}~G4HkK*Z2NGJ^R9|# zn0qA%KJP&rtJUrc$2dM~^&S8$fb?hD#$g*1yI4nw!vbUC5SmAbn85w7+G1+p!ghqk z%umLR4x3F)Ti0CB&^es;yeohyRQdG2=&wDT3Rj7yjNcBLQVXYYoM#eElGRDUHzBUSR)g` zVltK@A`=eMjnGa~*9~nFEH7$>myBNKuS|JV!$1|T*1n54P&t+i!&d5$Yw*}P@YD=? zC_wnD(P(v@4wc}85;O?pIbJB-yK+D0N#nk9Xc*RbZiMFBUFR{Yet5U-KC0J;Lo-1v z^Gllq>gh?!qkGy%lP@=lxPEDj!;SW}Z~A@c)9pO5sB;<-r2RQl#{s01cc;YcHkY4` zd1&0pm`qR-J9~fV#9?&==kX*ef8Ww~)(&|CSKlL!hXAWHH!(FeHZp=*`cX+}s zTg9MqPc=vE7l2A-v{3%9g&lnBlC|dO)u|s|xChjX;dWe0+Jn_L{Irq+_hIM58s5vj z!+IPg88cN;ycv5peKVFcLe64Ft_uTlxyd+bg3M-f|%!Oc|;U& ze7qzW2!1N0F^*mk_gfQx^Wy7XVauu9f+_v2a!DQcnrS|rGKSI4Yl==ZCD#dPiw&n2 z>u7&E1aGm9^!Hp63YWIjCgP(sI_MM;!H9GuBpN69dDFJ<%TkWZz?z|<(at0RDkS>V zxO~JXfHg%lxkOj~L9;qbRYH*?!fWL=;z>Sg{^SyltVHIgr(u1g&lyn6-GID3$9z5& z*6lHj$utP0q#sAk8@ExY<}^-@1Y^(kHPbT=gy(9$v!u!6GJf}b0#({-p}Omm)dXt+ zo)^r!odx@k{ok)wwFE8CtkO{{Ariw?qQC902Jzc#eyX5f;bCE6*`I3$VhqkTbX(g5 zuB{5pcUjv|>d@laVaD;Kj?{B}aUo#?l5m4r9Y_5eS2Mz@y)UYcZie809zJO=k2cCj z)rmnn6EDyD%Io>ED;-q^%Y<|wI70S1FpD3#y^*-THB&QrxX*)uMnVhmohSS>YF#9_ z)*DRZ6aGF1gHR{DWSikZGp#_y-|ovu7)Bh0X?!A&FbQLf%?uM^do(ft8&|D6Ut<5M z2g!avl5y~m}`$iu?i@5p&G!=MN1L zQW{bQ@C@ zc8!;tDKq%KBRm}x((`8uXk52lcH&Kc_DX-NUf0dEmGIkH8A<;IE znqk<@8D(pw7W2b#PQQ z+HhhG8!=(sh`^%nLE?J`7w-2JymxB_s#Lsbo~xZ=GXV+YMFBH3HS!_@V2L!Z|BWR! z@HJSja_ys(yeW_jR``yd1-?N!_xJC}ErimlqJM|x7ETraNgq?9GtpF6eaLV<9q`pq z5`K}6BCZXU>(+nfc9de=<;g|&!+6J+eevaAb~f4h&=V*0z!gcv9`$JXL|2{zn99vf zLrbT|I+?9&d;c=HLfma!3A4qiz|VBX1LDG1FxLhlF58O2rV6xJwk5fNe(aJB2|C+MO9{q!(cCRJSndJ)eE-h=Gsp(NG z5W6#$erovLNhDpy$7wI2W&TbL1RY=sKP9m&Tp!+a+6^ng*|TBEcd^US6mfK??0&b2 zJ4Yo*8Wwya9(h`_l4V`iyVs|VBBAtwH7{MF%2E-*|JUFpXyiXKm?k}?Bn6Ykm>udC zJW)aAb3T`WChS^WkvH;MPQ9Kmj?PH@!a~3PB`z^)(a+!Rhp-Yo*H#ja&hI>Sfr0O|i)AZfBf9?2Tug_px(og431p<#x^Y z{(N0S`4r2X+7XC#h9#X3N2U-~BDDf6>9I>>l6(YAzsT{fs2Zo^y9cOHI#r*d&ZpM} z!QVy&$LHl32R3AI-hz09^}G9k`bRT|Yo4c77-);w3w1R$F@ApjbKM-^@%a1u7YLHi zmSN!fFfy5+Ik3c>(9EF!HpD)KE(C&VaF_JXBxqAU2)kt$&Wo|@RTkxa5ov1=InTpr z%RU8Wctj_H-?#g1txGv@*SZoPwB;~oI>#)S9%&81P&!S%I{P8d;o>j4Ng01thiqC&*H>TqqcYv*2+kfz(8#C5SgqlRL#Y$t{*5!C>cx^ zTouT%mzr6gOAav9*y22|k!3tC_|{?!1A)}Fli|?zy3lo!P|mipYE9E1^Kv}?jF5J? zZlu8@UXN}J{BiLV#X{`femeag^Y1_d1+3|!9Oe5P+ahi&-QAP*>XG+dt&T^K^lxSo?_8 zg>hNF*WHsaeyc?A5^Zc;pd!)F?epI^6gn-{3pzUs%XjR$7Pz8(54%GJY1JXDmM=&FY+u;)Bo#HHH96=~<0 zqRvAM7_>zPUivUt24{tU7JRG`ysn}zldGU~!?p?O>_E_l7+Q{WWH(=1O-}HK=QF3j zrDSYZxns*^q!qxQFLX^k@lqaCF8hOQ^#wdOu@1uF0EYH`7K@BzbCxV|&dSDgNY(DT z%1zM5fZ2*h&;bs+H3U_h1Eyk%))!3y9|8fO3*CRk5B@Yyb7Y=OTTeB=p5x^?zG;Sh zUJ@L^XrBxPNH?9t6L#$xfJ4J3Cz4urySn79mXSUu9@j|7XJUs5bGi!Zw_3{0!}vr8 z-UMXyyYH?d?^MfZ3)lL!ZL_o&dJjJ}e6SSh;}TA)YhKq-&%7253SVKzar%Vx>lG%8 z$9YwjzYN#1glh``SkxCDnA<)>eIM=tkq(KMhpK`#oJ*xe&MlW`M+}aC=G{yd6@G*c ztWQ=FuSY47w(H+@PFvQr)Vd?|EE7X92tQzV!r{5Z# z4xBzWK$P~x(*=7mZ)BU}W?B~bA=5iRraCcU5t>fJ?)OOj9bh`UJlKdZ)-+?p=WB3z zN;-_mWKkv+lP8v4AMU`)H}v?kGK2lJT2t9A?vCdgeYgcl>X2F&C>ijh0*z}(RZ=jo z0U!bhOPHSarqKyYNdYBw;@R}22GNG8C*jRb=PYP{EI%OAG6Lr`F;dv9K@a`hokJuu zNnj5%uo<1Go*pSErYX*~*sf9?n;DJ1*aJjniNnr;Sga;3R9+N)R=>xB>zH$$7Bz9( zxpwWlyYQVHCdc{*#g9WakJepgzlGZnF5iU2JbUSaj{i-rltTJRne37-o>}jB%IzF} zj`iM%t}X=bInIJ$mBsb&n7r}x3KN}v=HJ1D=yyh1K)X1?mXD0C4i}kOSu0$x4!2RU z!pgg**MFA2+qUm6eVHnWedHD>arFov{(c;ukd7_+@FAw^Qb!@WQ+)QnLJ&qzgF~@e z_G2WP)mEC5+%TK8QKFSeT%^<`IS7n6V+W6O7mfjS$Be6hCQpik73EJ}r4_hn8A@ z03KcelzQr`-Q*5T>RiO)ZE-0OK zE=S8n&eN#Lt?h|S=}(^~sKmwz=i_?-RHQD5d^l6Ha4$O0xsv-f6+v5wcwW}N4Yghei_U!1O~B9 z2ZoS9ze`zTQFKN5rsD5M03!Rz9^n^Esd8*IP6YcwAD%Fzvn$3Bcdg`{o87Gs*8MjU4;N4lok|M1% z921c&SNPJHO#6vol>&@);^aE-ox?|n-2*{jRH(pS!0G^rL)4C!pawSboBLM=Yh7O0rVBv{X-iiHw?+5_bcJpWkv{K4G zq*jDh2d`Hj^NWgpjBClnI<(@qau*f-iZ0}aulI}6$j-{*QxfUf6#MY{mG!#}`Wj>S zqDD9ax6mxHRGQbp_c|yV<5rSiYSMxWMbVkUH>se^nJ$Jll?l^dZ(Ana^d7#)hF7v{ zwxE%S*W+y$o}&D`7ldemW*8zq$KlhuC9lwodo8iTD=1@`<`S7jDY>%O`iOWa*vlKb zj|T!v>K0EVyvu>KIEc~7EG+W_#-wjPTxQB6dhL;DH(vc&D~D1G$NO0q&Ya*)beKxx zlc0Zsv8J6HBwPU!J2yv^dYoMhoV3xYOG@v!k$?b60Q-b z^%(1Secx>q6uh%mii+B=;y!E%57i2S$sw68q40_9(C@+kGsCEjWbNE{i@t*571r8- zIqV7L45hs@mYX=2r_D4l!(wV?CTA#oM7+@3>VvQnC|{ybo9qpny??aa`z2#>c2Mny zTnRjFHsXipq1Foy;c6*Z6S_+nrNXmrAjp=LaPS?RGI4qWjVe7Dyp0R%ltgkj{SfsE zFec$KC-z{Y^u9p(Bw|^GYOB5uspp=VMRJ>TQoIV2V9qp(i+1M(L$D1@i+u*^^`_~w z@~d7F$o*<2SncIR>lYDT7S(h;Qh6Ny`9$%v`HF_nonjrGC$AqU=Q>sJ6Pg%Tl3Dz= zg(d629g;oU=$vYg_czD~n;w@}h7_aJiG6doX2j!JbSVOd5S@w?jjmOXCTmMY;@p)ITR{Z{tw|1j+T-Xf$}KM`D9=L5zDw~#(OyC@QlW5M z7o`|;w<|ZuP2Ns6z(NWPy}Nv|WN_@(6MAJ8V*JBIyZc-6d#%#Qz)4NLW@Fxf?1bGv zjd{(&Z9*H-7oE?l%9p*{pr}mk_iN!yNbvO;Q~9AEU$EyE?Xq2j%P3qtXXx=nah6b+ zXxf|1W7Ni{G zqO&5{>FgTwzM54lRbw15chS^S7ziRPmul!-zTz>WQs*yLK0#4{2&q4vb2whPP(?*N z$!*ivFi;*>SFGbzTQ7avW8~hXAmg;$xh9jQhlXu`vgx}8{B>2+`LhQlIynHrKzK)q z#qO$z^5+nr7QE=j_Dz|H7Q}B&&#+3{e`;jpFpUnI{wxDC+dq`bWde59+8Ro=dF$q!iJ}nn#2}6JvIBvlYo%=~Jp_XB z)AvG-JeE$!5dQKSe=)qVyQo0of5!sMndLFWXjpWAqy9B_Ue0MiDyO{Zbk%~`Xyx5q z9~JTVovA`Av+Q?m`7)m+iCzore6;CIFuAXhY9XD5>foD|`k5ef0)7W9h6ZQ&T(RQp zp3w8FJsvj4=BGY`MZM_KVQj;S;z4KYE~R81L#lhnR`eEEXvskg!sv;*XCvtZ|S zna#V5Y3gu6B&~@hk#3nTuRZPJYi_SoScIJxH&LfW$%Mfltm|!9S{5!eOE=O0S>ERu z9R@clD*Os=5E50s+-^?dh}>4wiL5ZH#)gMr`GSeTC9T4CajW}>($CR!tXOmRn%+PA zyXq85;Z+ZZj4V>9 zzR&)#v!huCLSfmy$uOs09?AD8uLfP-JutJdpe3R1H8(divj`^Dmtc>*O*#lm#EcWy z30iJ`EO(Y--gub!$cy?4AO=3Aq6+VR{QMb#kqRZ5&qVvFa@M#Z{2hN&MY&y;jX~@? zG5>-fjtH!@ZBP>~z~%_{4d$zp4&uiVSv1-K9wCKI`S(<_bx=v=%gvXT>`!*=m)z3) z8SJZ5QbEM3sJ=~nA4mBlvx`johP`8D)C{wB214UX8@Dt88!`Cx$6FMj9A>x8h$txe z)pQ%=s&Oi2#}h>ZM#xgg0rW9hx@PwuI)Xey;fw>_KAuFN+W{O;lO)cV#E8Rs1!~pW zt(uMixkqpXSI{E2LdTdi>C?z$7u#m*r^gz;y_cz<*OXP5;v>W>x11>eFeWiwty8p# zeRdqLV6Ih3X7e*y{qT1_ise>GP= zX{JbQp5qoKDoHBzUz2S}dc=8gCE_b1es|wzsrEoaD^#9~7}3VSNj-z3hCMoh@M~hx zfQ~k>k*mS=0)SV-fpUVV3()6O>yrO4ORFe8Z=xHLGaDxBPwIC;FW>C*rakddL*ajF z=5#R!R59eh36C!(*IJw@HM_Pxu`+p=L&1*eFWVIL^1}vwQr&?&iZn%6>12GmykG3c zjYPKeAP|LiFjT0`4YBaBm9D<>{lafsO;JY-uy#mKzh8J`N}Y)G?IqEK`=FouanLuh z<7vdx9;cp&IF>Ir^zD>kWLO&0=kDWj)1|MaW5i}g)k>5MUPx2$OcwnCElRrk)u4mz zXbg>=X9rxh9;8BeM+dZP-Hnfq{WI8OZ`9(`pEXi5ULY5aHqbLcjPZV-w-idxju`*L zW}*y6nr*$9bXlnimdKv=#<%reQy(dJ2xfU9YKnLsx^_CTaymg)qUOz- zb(8!we3b2v(eL*~93x}2EKWYov{?5TK;!LNHBZ!}-%cFEX4rYMWp)*HK;e`{3g%5W zbYXv$rn5|TDQ2&=iwfs0{>r*y6~5v4NYlk3eYpk6?8xZ;zrZ1f7(i}pAJbKPshCilExj_Ra+wh&( z^uEYZQbX9sLXggWMm4g?JgmQ= zK1N+4N9JL$wQ_QzBnl{J@B7)~yr{ORatO2j3^1>&pc1k%7A-eMn!8VxuRMi?_F?CJ z%PJ~5kzv(6n5*6$%@#It#pjC$03XxU(cEf8y7qg=-i+`+`*|+zD9#F4)W}2$euNU~ z&tFZ&m_ux&c3;-TYgLK z2i1)pZUVgH?~L#+NfR=ruDwyKNAVg>)EN`|Dw)R`*!tdosEhQDzm)WkokLDL<>MzI zAp?YQK?q_ZD>2RFiH`qpl1$==8Bxhwgt$BVR%KU&E-y-7?(@OHO#h}5tK6L%ZL-!Z z0o&_d#f`D;Z4=~#;4Y>5u*qWLp1s0nm`!O^ia$LT(j18p9+!Iy%yk+9DFAGwC_XLc zx-2ZJ$Bhd(HiLoTrvG}~jjp~gpE2{pi zh1a~{98#(uOaqa}*!L|_GPCXW5Kar5I&Tljw+W;nUrbA+k;aU_xcZ;BT2R4m6YBt= zRbfO>$7V4j;+;pCd^Rdz6t%jh+uO z$n`hf)ftjE*b0PE4l(y?SF+t5CtI&kxUOptbMuCyOy^d_zuGSE6nMS3_F89Di(}(h zI-lNOYUUbxvWPQi?Nzb}!r}e~Og7YDHlFTbWQFBm{}+k`A3qNkYL&08c&A{E%)ZUH z%*0nAJ1x0t$9()wDiIoHM@nq8*Q~0o_5YwQIfc^ne)7Ox9CM%Gy%~A+qJId@F?z%45Zi?+M4)IX#H~a~jeev{mZt0{ zWIj0|FmV6pVM@&(9bC2=_qQTz1xNbE>vi*UIKtEFf<&y#TpSyny+BJgBgww9fJSnn*R#$P7`P= zk)UM$HX4b+lEiuqj3OB+`$EP%SMd_()Iw+G_2QcL5IQ)a858=E(BIYF z9f`8WI7mK`Fu-WEfTWrJ1rE(CIQOV*t$S+zn55?CS?Z0wXqERcI^a;0z@IRin*T+v z8{urbZ1N%?m~tF#Ofgsq1ob!e`#nvm`hWRCiHnzY>6`wiP5V57YjbeDN9hNut;C~? z^^0!{3|46dcc?JE*=pO^%(Z_o{TxT%z=@(lB+??~3SZ&?Ec1ZJ=>UGM8t3MG$udVA zD%-cIlKih>dJjYM(-Rf$gXs5G_=J47dOCEnK|-V3oh_ryJ@}#@dJTH5#M(l0oKY5U}&{ z!JCEpV@CubiH6(pt3)>p*A;gg%6P?07 z1v`y4GP&3!TgblJ2`2t`KOi5lk zhQy8oI@tRiAaTuxwfJuY+{}x}7{0mC&xgjIRJV0P>>tGes9DbtNrr(rCiv|Q8Lw@Y zpHE(%C227p&+n1GL0ezJ>HR-Nfur|EK26Ve?foG=MClyVC=oZYgryHuRQQgi6VyZ zGT>1D=3z9rtWd2!C+$>8ODo-`r4qNw{d(vZf9bN+?-5k~++63!>&I<|=nk43z7Gr( zleeM2kI6nWJ)7M-VPH&hcIw`XYGm?}?u86@n2i6KIK#REs~t6)!n$^epk9rz$@J7z z7TB3^G`o%*o#V^PmoksHjpuY4cvyYlo@5=t+oI$8It2l^-s&JyXu*%!t3yWo;#4Dk zpBL44LEtZht-fWdX3WZQb0hDeTMCX z!~Ax@QSO`IfP9gyPG7ozqBpfqWT?4-l+f>XX_U%mvr6?60+nyzY#`kXnMK@^Pq{wn zH-6?4{f5Hho-vuHaxqqERy>#Ld)~e1tv|gSBOy2LJ28H4fj0;>BpuvPKGlD(OaxaB zx}g?++{-Kl1M^=obxz1kaa6^4FT<81upo=2_Xi$-PDXT%m~*7I_!*OefIxhbasAAf zpUbczs?E@6&1$;&+`4Xa`;|$6ndCVEg=ETS1qCRO{m>bN0V$r#E0SL%uQJMRy!oKa zTQkN6@pC{T2uQOKpIp#|XxCMxfH8Ak==Nto!iBX3X> zRmYI@15RY}qtb6a6fbRB;H0a`$<;ELU}Pp5^3eL}k?#;_)0tZ3*|;gPP|WF&oq^;O zVc4qff5>NSu!tZ4r!P4WUoP=NmZkQC5DuHlE;MQhU^gNwW1YDX!^k!#HHh-9Pn3N*4m+0j6r3l)@6pfji-q(c{ZSsK-Nz46- z=Wi1D0Jg#*HrjPXLZEd(Mi5+*oC7i$Yv&1TS*uCt6(%$}dz8y@NcS0|>rE|fRQG)7 z%@PV3L8$^XrgHty3&wGqA~|_@rOd#xgNj-2v5;lK$&1`w69QJc@in&m0u*Ib1k!SJ z2r>RY5cZd1IEU08xus!{(Nu8wHui)en9c!xx5f1K-VpEEpum9&T91*So$iz{BgHCk z7S=wFLUmbEpjfHIO}fMRkQf#XsF+$a7cnQ}eM%FH_u@OXOm41Y*oK~&FaHiQZ2S+~ zEUCn(LEa&9jiObxbv7U5b!CW@&CZrx6?}S%etYLaxw{v{Wp$G>28fLbRAX|};Qg5T)8e)t3(mXThY%4l7|I=tce)=f>G-ZCVVyinQFAXM4NnQkg_x@ zZ=3lVd(74b_kkDX&kvbh?DXus-X_0xL?Ibh!-(H6s7-u0l$`ZeB3{FN$QiInv8iG>svwsRIK$m_!E(21kqe0GUB%Gx$yKhf0o z_Q~ndEj~tlAGD8o%JWbV#1>(D9njDNKN2nHa4(`9H_#+xzkJ2THvlA*&2z~jkxj+2 zd9Uo3McD&E?5`4>L4)=3Y%CQcnIzt~m&mX#XD3%`fWLO<`?^%mXc63+YEFMK7(f8QN@|r2C?rp#9#Uc?0traK$Hrs^LRT_huu6SV{)BO7q$A8n^Z&BI zGNU7rlicEjxyUP2wh#);VqTqnFU&-a$%|yo3Ck?%4IGC*uyje_{U&0g%>bZ+alNKj zKpNEu$y0r%70OI#ASYtR$AL4((W(!lnkO0uP4gC@c^`p)Ej^MDhFB5e*%(<@cL!|q zDQRIL$We(>w$hKE1Axxu&*dgf7=)tBDIdnRss8hU(((cSBk6jm%OaxHHOA(oyL(OT zJ2=>&96LDJu*BXsOygK2wxD?R|FT75{@e`){Z_|DL)@nLLZ&v%QuW2PtQbL_Mb+de z^|eL%I9dN~n8q{>aq|)M?#7JKQ@_frE}boSSc2WQ=PDttFmw~?`T)myOWoWlPGxiT z&Z;M_aDrdrxK35ONKcZBsi%R2 z4nS7q;OTzA;~Q9@B%T{=Ipi)51nPx!^WdPTp*`rZ{GPH1yWaHs2(aHbueI4d2)13! zysjPx1Mor@7I29v*P1=gprL292YFtV!pmY5R_@>q<$Rd`b0%0qz`6I;d-Pv7%hqJm zBy9V*>##n_u{6~yDBm49`*M~a_+;8%ps9<(0O0b+vmbHq;n&JG$51T! z9$mrTUREsGfB$WI@=s-jT&WuBgUaC00;%LxBu~EH%+69jf>#~*kNUu1d_Hi!Irw&I zm(tJhF4+RS{(YeR*L%Fd78}I5`g`MT;utyFw4kR-%*-qQ#mjL9;OYyw&kYpcak}F_ z#iISh$9jFzurq(1U!ORnGbtGBT)Zw~aEDPM>|YA!0}H{#&b5BUmTCU7MniGiI-+qU zY+TBlw`+<4h-lv496j)u{uLC-I6t4n0Mr(>5F00U2Fq7mN3e7CP%V1K$I>g+N~Lm` zAnWo5B{P2)v(VfDE~Xwn;_Z~v3X z8vwQa*C`hAP}ypTtoimq4fPb8bh!z)Q;ksAK;+$uy!|xn9&oMUu%+c{(Y)fnYi0m4 z14QiR9HzNu@7)aihp{sB6%7fEgf>eB)jXKFpu2qi3rZNm7Q17eJ()Ro>E(_&XyF8v28 z#xS7s93hFKK8nZx5%00Hw?PFA5yA3#+*-wb$5Y^pR#uVn22zYH3YeJ@zC>OEAE~)9 z0to1h63HdaTw?+=&a|iH(y+`TyAtt`xV6fJL^5MokQr!Fii4MQ#6djH;ky929`Gi< z9cZI$jB^kQ1!_kEqdLUB4OxUKy}3L~M~>bv5YPz>Orj%*LLOUy(AQ{FXI+kY%sYz( zMr@!lwz(+qsvztZGRpYqW9(Nn3yM1*!ZJ0cboCXuO5Yg{-;}NaGG0>VmP+zymX@=` zj+pE!0PPbf$=pW-7x%US4|Q1k3WTSB1Fq9f^zSK$@?>|Nn)2}~QAn|fx8P;=&m9J? zQ^69dzn-roOg(IH#%+FoZfZh>=?f~jji%Ejnrq;cf9TYsShlF4v(~Sw%lHO)c3w@5 zqmU?p;lmIB`S5}b8znI?efdDqgdY&}@*lrvQ%bk}m-gn?ComkKGohg`j$PaUrxa)W z{x_DHkA_?AY+WlFsMP}lqTgU87`5ygJhqw%T}|AYqgu70u;N;^y}GCIXXneOgDqb9 z&`W@{D&^)|8vsasZrdx=z1Zy;H=|-M`;c&RGmS?eEYt|aGPm;jJLcOd-*eH;j+(J_ zT2OHd^4j+4rfN9@N!lGE#$=Wj|0Hb3OnrsKGuOX7+QPqLJ_flMkc0)*VH_9|G>~_| zYHpnAG0p|*I7O#Cg45IL{m5eSxaWzOnX zQMDMxK%@KFlQ;inR8<%8nc;wGd*--M^Ze&He(mPpdL78)TiY$R9Hk(2Xx|%j0?^#n z>}wV;;gP}}gTpJK6=ydLLsQ2@VAKG`#ajkdO2rssAO3HeQUfHp=x%Olo$2I@Z}s}K zkOY*qlN;eWih`E=Wfkq3ACb_49e0X}xLxdPYDwVYnI|+4cq;|Q<9g%s<;6d*2?0svx3|K@dUjZCC$O{`L zQ@b2I3Ww|k%O{{}Z{R@HlNvIuqS_lpg%4!13Rztkw2ldF?pKkI%9gxk9EzP8uP#aT!u*1>7NDA-)L#~~+5t+Q=}&@1tCANzDh!dV!i7=c z5H-k}1KA2vW@Z}E@E!_4bQlr1&_PWf{Te)kZ;;RzcR86@+m(bY%1??47fK901W+Cs zMIa6B3+*vu8Rs`wa5AcSYp=1cEN>B*FPO$C2C1r|B4|(oE#=zjll3cQ#y<(r4i%W1 zUvhLIo!a2gjQ9YVT5xJyH=m$PJhYit2WP~CcNV2ZtL92X%*Q8aL78x>VB7Pt+|Ke| z&_F&*nPxW}WMP|yq<<6@vgo1up7+*)l-pdyYaX-~yXA=<1%(GA1qG$&^Fi0y7}5$C z9ALVNiW(e8vjh_t%fJvv+Wfad<`zn$`lgU%?+^rM)dj(A<0vS&vrLv36+I?rQBDSD z(a0-Y*pgqp15Fo?SlToM+*OkH8?XK?Jz$9x7#k-{)q|S~FeCUxR_cojPzPs0c|K18 z!<#G`UJq}aZcNjJbPT1$SWN-CtaJN6MkFZ|Ok)F_+X;i034#ePYLLkw4-^!7f~Wwm zys!GZn7D1ER!=BNs^HW9pz04$V$fhJu&>#ze`Zmxx6&UUO^O>F!h@k)P4Y=aj==d(EX_w9U#?dcdsrg*=3z?;EYt>2w867!{2DFaK$`0|BdW9Hvh0#%jooAC4(?Ii9JOy{)ZKU_UcG zeSH|O%uEunfy4`Gkz<07WpNL8maEstZ#2fSEA)3H>K)CDtA@vS``m{o=Ti9(%*GET zjGo!gp2+pgR=LKIG-x22dt0!z_Lh&GjL7Bc87IB50JjGPXr2;VRahAr`8+*67x}kV zyi4~N??ffj=~6#OpghGkyMBVFUwyMElAf<&ujN{rse;92eg64}O?Ad&vKHKk0cp>d zbqVyWgCNk>krC-1C#rKTNAXP14g2Ridi%>x{k~6OLbo5I$t~MLVe7lqyt!A5a9uc; zou4xbh*{(`HgZin(-IOBc?t*Eg+=5?@kE?Qzo=;~{m#FdFg+h>$F5=-jK;A@Wc&#i|J!H!GKQY<^zM$Y?8}d}v70#np9B zQ*65G#L1q0`q~+9=S*Zv;qZyT<(0^XbI%%+NX=$_7I&+Cz12`Zn6`FYgdJBst^P~? z^q()AEG{g4hj#ROIP<@EC;M`b%HqGjf@f>D#1@NRV$P$$Tk%22s|4eY@yPb~zLU=$ z(kE+Ne(%O34H{LxbR+n4)ZAz%Vv5bp&5eY{*pGvvSi$v@d1xzY$js*CBySqxe z``L?#Uv&zlajvZtIYt(8ew&rJS?{n6SAAGsz*GkucBxSJu&*bY?nBPjne}J5)8#k2 z@~TB}&3Y$VR1JUbsi@b3$CBr`2W^G(LqJTnEp5TUE1>3Zy*E?Ga450+ltrxmdYAQy z#i}^*^OF&aV~NbVX+F`hqfTIa&NJ@%Jt(fjx&Gf6`OxgP#tDQ@2e9-awMpN%pZ1e# zBG)@U5jv^Mu9v6sN548BnR15+6gc;*@!l^VDp{F$n&uz`y4UlkQBFO0q8IC5s>ram zdox$n*G)Ah=gNg--Ct+DEBwr~C63QVPn`Pf>eDIWv_^e_SCKrXQ%O`(zyU$De8wNM z_%Q~D{X%EoPPV+XmGvv0?uUqva?%FTIcE%@OWt(9T%f6!o!$%Qe}2n=nSZl;j&>=@ z)m0uPcmFW$A#EQNontdIL?Q~?c)bhjcKItnbiL_vT#EqTNIqJgSqU@&y2xiN#^M#xypEpdB#Fz!+HCiV*tO>!tO6N4CG4gJn|`f@ zRBn$2+v^+yFkV8|i*X^>6Rui4S+nEt+N1kBZoADt?VOMcjUU)LdQ~hGAj)8Bb_rVj zt?sZ-(BH6d6p=gCO5LI(&R8@$$8HD6>EADfl9&4nZ9|Pm8^>oa6Iq;ysHaM|DzKRCHCBk8^a8z7QWVZzY~?!V-hGfVHw{&40hPtN#L{?Q0|#9 zDN(Ndl@UxPD*MiSOL{yBG&=x=hwacg`+ef}gX2mX9yDvf+6y`9V5Y?hh-_y=X}9wIkv4$hpzDa=kF_4gI`wCvA{M0bAhw~_;-N(Ck-1GnYyg%9#t*%hT&oE4; zO}s_+FdqD93l>%IBgfZDEYTt#ZZ4-XF!dbw_q>LKsXbsS>&?6R zvihURCIi96R8>Y>$V4-4TtGygTVJo(eJs0ig!)!RR!uq2K~~7eb@b~@+>4Iut8PN7 z)3S=RV6=RhH?8&FpAojkbM~^_?ckyzF#bg&t6M0Wc;9p4S<7H+7NLL=^zci?g+sec zVJj)c)uYpjVgXsv1fphY^1#-Dn$a&59@nk*PZM+(T{!b3@tLL=9Poe=d?JoqJKW>E(aiA>bTfCZKor0bro1DxiB*N zCDYgk!Bep0qsT;Qe;CoKyW-nx!3pe~%+0IrX7O3SQ>8upyRd<2dF3)yqi)QTObs3f zn$*uiCkiCn-?+N!Un|*klin^YjaFq9L{%InU$8w$GXQ-NqyDGC6aI4>dBjxyB&xJW zYsEOPlin2)rXJ-H`x`6tIwAvYO#1i#qsglC>=qZYyDV=rb-_|9Dr>g8sNC?o$C%c6 z90jWbGV!W%$qVQFUB~Tw;L3)%708{b|38HVymCZM(Sc!NG|64OU7sDGa8;sv_jn-q zovfPHs^+bzEXK?)PcCoL-El|bZOX$iN3%MZ^49=)>9Z!VPa0F+t9xTaA z3(C4O0a=`YK_=jiG*g!a%My6XGXz7LUKYB-8i+u%cq8?*jle4w-Nb_cm6ll0Q;gwfp}4{a*F&y?(#X`~F_l>uw$~XN^h#!0UZl$(P_UnX$<&HG9jM!Phd6}K!R^_q5ba7WVvOF^9)M+E`Yoh)n} ziB7^F>5yRAH0>6@Za#0e^o=KOsDobG9?e1S;}wjtKiuWkn-a*_GZ^pQJ1r$k$;_*R zG>5vgxL;9WkpS|9tS~}a5UdTRZ7B@KW=#-1zl+b)eJ8NrWwe?8wjyo@8 zP6CJ&d@2R=DSt&ZB(9L&`B13m>O{a6W_|10>%`||uB7f(`!=v}{N%AJY;cu=TN}iGgpr+h_J7dlzjX7j zLbC*)6d)X3_2ohK*)L5Knx?>zoWu}gN!&%}#(yYEMl%*d(j>7LM_6GusMx1BgoZ^n z(9@fU`Vy?HtDOGQ61O=ww*D*(EPvl?$)%>%Pb?h66~ON?Xc(0^sL^7sXmKo&jwOWE z54bewC|cJ_hR42H7mj`So|*rC58dBD8X5(t(h-g$Xlmx*Xa#nf0^7yZPGO%>u@}Vr z7;ptAGZ8fx`l_#|R7%f61c>??lxkZ%-1U7=_=i9TIJpf@hFe6k23s8;AcY?Qw;^%Y zg!cTv^m@zHAN-iU5c2iI*K$AkIsB@NyWEh1-IaY&R=xN<>z7q6`2c@drec;z zS$`Ih0aXITEdSee-9n+1FhJZcX*Er=0b}GPfx{={XJm;Ab{+#BAUq{_RD4u+i+776 z7qSqW;KQ@Wr`-Q~cOPKSZzMQXqg$q9N_$c5Ac&;ut)x-TT$P)#gh z^YioR4mD21cbSM8G0A_8{pwJOG%LE^uL>>0Mxxd<@#QrcD_5dJf*G|bTruX-kefv8 z@P|G6b4#V)rMS*NM~4zA7$6UW6=Ut?K{|uoY9~2awxCD&Li-`6{0kK;*ILH^3`u=! ziBAt0$%S4>%6zoAw-}A9y7HCgr!F-v80uce2q|GCJ7D3jxfa->J01ii&Or(TxVjHX zroD-xDh$;n_|U|bGGAN#1G=%T8=u&=T;VN*WR?@8khuS`o9~ujbW`}&L_6*%*ttun zU#PXQSA9m#jnGa2=A$Am!pfO!J+>~OiixnA|JZi%KKCXgyk+6UpMb&B%2PQMl-o9* z$7pu}@A-zDEG4^#!m$%*9hUCQ#RSqi*7tFnphvT z;g#;0(b_7UN#!M;h?VIjdl2tcp&5^lch&3nJvqNghCA3)QYymGyBa!B|Eui6MbZCC zLxwhjtXoX}yn_vV9i|-v%W{x-Pq7D0JS$UgAZi#&wOU`Oj;t@Jdh_aK;K5oANL+#r zRm?n@ogj`AH}snJI`2&-tHWUBb3jFt+f%Uk&%`v56wgZiK;c1$irh-=I|l>0bpTa| zY(bm9Lf#JO%uj$)_qRExY|e_}EGjpWZdijc)oAWWa|E3ggO7%F1yBXTf9G6>l|g{2 z96#1#*7q9{q*Z9HwB{6@McpZ37N#}1Wg1gw_;I}bB0T1Pi%PQkncuq`1a12vsyenjn?omwMEW*!Ywg@w99`o*>9V_y~ujzS|yjl=0.1.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.1.1)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.8.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (3.9.2)\n", - "Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2)\n", - "Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0)\n", - "Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2)\n", - "Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1)\n", - "Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2)\n", - "Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from bspline<0.2.0,>=0.1.1->pcntoolkit==0.31.0) (1.26.4)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (1.3.0)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (4.54.1)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (1.4.7)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (24.2)\n", - "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (11.0.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (3.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.8.1->pcntoolkit==0.31.0) (2.8.2)\n", - "Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5)\n", - "Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2)\n", - "Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0)\n", - "Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0)\n", - "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0)\n", - "Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2)\n", - "Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5)\n", - "Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4)\n", - "Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0)\n", - "Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2)\n", - "Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0)\n", - "Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0)\n", - "Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.0)\n", - "Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)\n", - "Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1)\n", - "Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9)\n", - "Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)\n", - "Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3)\n", - "Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)\n", - "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0)\n", - "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0)\n", - "Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1)\n", - "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2)\n", - "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1)\n", - "Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0)\n" - ] - } - ], - "source": [ - "! pip install https://github.com/amarquand/PCNtoolkit/archive/dev.zip" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "ddd7b3cb-b018-4ed4-8b55-15728d8c5411", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ddd7b3cb-b018-4ed4-8b55-15728d8c5411", - "outputId": "d3d408d4-9c55-49d2-cae9-e3a500e168e3" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "fatal: destination path 'braincharts' already exists and is not an empty directory.\n" - ] - } - ], - "source": [ - "! git clone https://github.com/predictive-clinical-neuroscience/braincharts.git" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "b1849f76-b17d-4286-bf57-50ff56e81bf8", - "metadata": { - "id": "b1849f76-b17d-4286-bf57-50ff56e81bf8" - }, - "outputs": [], - "source": [ - "# we need to be in the scripts folder when we import the libraries in the code block below,\n", - "# because there is a function called nm_utils that is in the scripts folder that we need to import\n", - "import os\n", - "\n", - "wdir = 'braincharts'\n", - "\n", - "os.chdir(wdir) #this path is setup for running on Google Colab. Change it to match your local path if running locally\n", - "root_dir=os.getcwd()" - ] - }, - { - "cell_type": "markdown", - "id": "b2227bc7-e798-470a-99bc-33561ce4511b", - "metadata": { - "id": "b2227bc7-e798-470a-99bc-33561ce4511b" - }, - "source": [ - "Now we import the required libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "ff661cf2-7d80-46bb-bcfb-1650a93eed3d", - "metadata": { - "id": "ff661cf2-7d80-46bb-bcfb-1650a93eed3d" - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import pickle\n", - "from matplotlib import pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "from pcntoolkit.normative import estimate, predict, evaluate\n", - "from pcntoolkit.util.utils import compute_MSLL, create_design_matrix\n", - "os.chdir(os.path.join(root_dir, 'scripts'))\n", - "from nm_utils import remove_bad_subjects, load_2d\n", - "os.chdir(root_dir)" - ] - }, - { - "cell_type": "markdown", - "id": "78719463-28b2-4849-b970-cfbe2f07d214", - "metadata": { - "id": "78719463-28b2-4849-b970-cfbe2f07d214" - }, - "source": [ - "We need to unzip the models." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "3b1d4d4b-68ab-4bba-87f5-6062995805d0", - "metadata": { - "id": "3b1d4d4b-68ab-4bba-87f5-6062995805d0" - }, - "outputs": [], - "source": [ - "os.chdir(os.path.join(root_dir,'models'))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "d4b7b2f4-c514-4d4f-a6b0-9461e1b20831", - "metadata": { - "id": "d4b7b2f4-c514-4d4f-a6b0-9461e1b20831", - "outputId": "87f49919-54d4-4b2f-a959-28060596ced9", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Archive: lifespan_57K_82sites.zip\n", - "replace lifespan_57K_82sites/Right-Pallidum/Models/meta_data.md? [y]es, [n]o, [A]ll, [N]one, [r]ename: " - ] - } - ], - "source": [ - "# we will use the biggest sample as our training set (approx. N=57000 subjects from 82 sites)\n", - "# for more info on the other pretrained models available in this repository,\n", - "# please refer to the accompanying paper https://elifesciences.org/articles/72904\n", - "! unzip lifespan_57K_82sites.zip" - ] - }, - { - "cell_type": "markdown", - "id": "802b1da6-04cc-4310-af81-f50d38c3e653", - "metadata": { - "id": "802b1da6-04cc-4310-af81-f50d38c3e653" - }, - "source": [ - "Next, we configure some basic variables, like where we want the analysis to be done and which model we want to use.\n", - "\n", - "**Note:** We maintain a list of site ids for each dataset, which describe the site names in the training and test data (`site_ids_tr` and `site_ids_te`), plus also the adaptation data . The training site ids are provided as a text file in the distribution and the test ids are extracted automatically from the pandas dataframe (see below). If you use additional data from the sites (e.g. later waves from ABCD), it may be necessary to adjust the site names to match the names in the training set. See the accompanying paper for more details" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "f52e2a19-9b63-4f0f-97c1-387f1a1872a2", - "metadata": { - "id": "f52e2a19-9b63-4f0f-97c1-387f1a1872a2" - }, - "outputs": [], - "source": [ - "# which model do we wish to use?\n", - "model_name = 'lifespan_57K_82sites'\n", - "site_names = 'site_ids_ct_82sites.txt'\n", - "\n", - "\n", - "# where the data files live\n", - "data_dir = os.path.join(root_dir,'docs')\n", - "\n", - "# where the models live\n", - "out_dir = os.path.join(root_dir, 'models', model_name)\n", - "\n", - "# load a set of site ids from this model. This must match the training data\n", - "with open(os.path.join(root_dir,'docs', site_names)) as f:\n", - " site_ids_tr = f.read().splitlines()" - ] - }, - { - "cell_type": "markdown", - "id": "3aab54a5-2579-48d8-a81b-bbd34cea1213", - "metadata": { - "id": "3aab54a5-2579-48d8-a81b-bbd34cea1213" - }, - "source": [ - "### Load test data\n", - "\n", - "**Note:** For the purposes of this tutorial, we make predictions for a multi-site transfer dataset, derived from [OpenNeuro](https://openneuro.org/)." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "262d429a-160b-4ba3-9ba4-9acc195bc644", - "metadata": { - "id": "262d429a-160b-4ba3-9ba4-9acc195bc644" - }, - "outputs": [], - "source": [ - "test_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_te.csv')\n", - "\n", - "df_te = pd.read_csv(test_data)\n", - "\n", - "# extract a list of unique site ids from the test set\n", - "site_ids_te = sorted(set(df_te['site'].to_list()))" - ] - }, - { - "cell_type": "markdown", - "id": "c636509a-8b12-43f1-811c-08cb22640be2", - "metadata": { - "id": "c636509a-8b12-43f1-811c-08cb22640be2" - }, - "source": [ - "### (Optional) Load adaptation data\n", - "\n", - "If the data you wish to make predictions for is not derived from the same scanning sites as those in the trainig set, it is necessary to learn the site effect so that we can account for it in the predictions. In order to do this in an unbiased way, we use a separate dataset, which we refer to as 'adaptation' data. This must contain data for all the same sites as in the test dataset and we assume these are coded in the same way, based on a the 'sitenum' column in the dataframe." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "53551023-aff6-4934-ad2d-d77bc63c562d", - "metadata": { - "id": "53551023-aff6-4934-ad2d-d77bc63c562d" - }, - "outputs": [], - "source": [ - "adaptation_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_ad.csv')\n", - "\n", - "df_ad = pd.read_csv(adaptation_data)\n", - "\n", - "# extract a list of unique site ids from the test set\n", - "site_ids_ad = sorted(set(df_ad['site'].to_list()))\n", - "\n", - "if not all(elem in site_ids_ad for elem in site_ids_te):\n", - " print('Warning: some of the testing sites are not in the adaptation data')" - ] - }, - { - "cell_type": "markdown", - "id": "4f73e30e-c693-44b8-98c6-52b71b577ea8", - "metadata": { - "id": "4f73e30e-c693-44b8-98c6-52b71b577ea8" - }, - "source": [ - "### Configure which models to fit\n", - "\n", - "Now, we configure which imaging derived phenotypes (IDPs) we would like to process. This is just a list of column names in the dataframe we have loaded above.\n", - "\n", - "We could load the whole set (i.e. all phenotypes for which we have models for ..." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "b48e104c-cbac-4ae2-8377-cd3ff80162fd", - "metadata": { - "id": "b48e104c-cbac-4ae2-8377-cd3ff80162fd" - }, - "outputs": [], - "source": [ - "# load the list of idps for left and right hemispheres, plus subcortical regions\n", - "with open(os.path.join(data_dir, 'phenotypes_ct_lh.txt')) as f:\n", - " idp_ids_lh = f.read().splitlines()\n", - "with open(os.path.join(data_dir, 'phenotypes_ct_rh.txt')) as f:\n", - " idp_ids_rh = f.read().splitlines()\n", - "with open(os.path.join(data_dir, 'phenotypes_sc.txt')) as f:\n", - " idp_ids_sc = f.read().splitlines()\n", - "\n", - "# we choose here to process all idps\n", - "idp_ids = idp_ids_lh + idp_ids_rh #+ idp_ids_sc" - ] - }, - { - "cell_type": "markdown", - "id": "280731ad-47d8-43e2-8cb5-4eccfd9f3f81", - "metadata": { - "id": "280731ad-47d8-43e2-8cb5-4eccfd9f3f81" - }, - "source": [ - "... or alternatively, we could just specify a list" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "8b74d75f-77a5-474a-9c9b-29aab1ce53a2", - "metadata": { - "id": "8b74d75f-77a5-474a-9c9b-29aab1ce53a2" - }, - "outputs": [], - "source": [ - "idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness']" - ] - }, - { - "cell_type": "markdown", - "id": "56ee1f7f-8684-4f1c-b142-a68176407029", - "metadata": { - "id": "56ee1f7f-8684-4f1c-b142-a68176407029" - }, - "source": [ - "### Configure covariates\n", - "\n", - "Now, we configure some parameters to fit the model. First, we choose which columns of the pandas dataframe contain the covariates (age and sex). The site parameters are configured automatically later on by the `configure_design_matrix()` function, when we loop through the IDPs in the list\n", - "\n", - "The supplied coefficients are derived from a 'warped' Bayesian linear regression model, which uses a nonlinear warping function to model non-Gaussianity (`sinarcsinh`) plus a non-linear basis expansion (a cubic b-spline basis set with 5 knot points, which is the default value in the PCNtoolkit package). Since we are sticking with the default value, we do not need to specify any parameters for this, but we do need to specify the limits. We choose to pad the input by a few years either side of the input range. We will also set a couple of options that control the estimation of the model\n", - "\n", - "For further details about the likelihood warping approach, see the accompanying paper and [Fraza et al 2021](https://www.biorxiv.org/content/10.1101/2021.04.05.438429v1)." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "62312b8e-4972-4238-abf9-87d9bb33cc10", - "metadata": { - "id": "62312b8e-4972-4238-abf9-87d9bb33cc10" - }, - "outputs": [], - "source": [ - "# which data columns do we wish to use as covariates?\n", - "cols_cov = ['age','sex']\n", - "\n", - "# limits for cubic B-spline basis\n", - "xmin = -5\n", - "xmax = 110\n", - "\n", - "# Absolute Z treshold above which a sample is considered to be an outlier (without fitting any model)\n", - "outlier_thresh = 7" - ] - }, - { - "cell_type": "markdown", - "id": "42bc1072-e9ed-4f2a-9fdd-cbd626a61542", - "metadata": { - "id": "42bc1072-e9ed-4f2a-9fdd-cbd626a61542" - }, - "source": [ - "### Make predictions\n", - "\n", - "This will make predictions for each IDP separately. This is done by extracting a column from the dataframe (i.e. specifying the IDP as the response variable) and saving it as a numpy array. Then, we configure the covariates, which is a numpy data array having the number of rows equal to the number of datapoints in the test set. The columns are specified as follows:\n", - "\n", - "- A global intercept (column of ones)\n", - "- The covariate columns (here age and sex, coded as 0=female/1=male)\n", - "- Dummy coded columns for the sites in the training set (one column per site)\n", - "- Columns for the basis expansion (seven columns for the default parameterisation)\n", - "\n", - "Once these are saved as numpy arrays in ascii format (as here) or (alternatively) in pickle format, these are passed as inputs to the `predict()` method in the PCNtoolkit normative modelling framework. These are written in the same format to the location specified by `idp_dir`. At the end of this step, we have a set of predictions and Z-statistics for the test dataset that we can take forward to further analysis.\n", - "\n", - "Note that when we need to make predictions on new data, the procedure is more involved, since we need to prepare, process and store covariates, response variables and site ids for the adaptation data." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "07b7471b-c334-464f-8273-b409b7acaac2", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "07b7471b-c334-464f-8273-b409b7acaac2", - "outputId": "a1de6a82-4430-4e11-de5f-b2874dd3c5d9" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Running IDP 0 Left-Thalamus-Proper :\n", - "Some sites missing from the training data. Adapting model\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Evaluating the model ...\n", - "Evaluations Writing outputs ...\n", - "Writing outputs ...\n", - "Running IDP 1 Left-Lateral-Ventricle :\n", - "Some sites missing from the training data. Adapting model\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Evaluating the model ...\n", - "Evaluations Writing outputs ...\n", - "Writing outputs ...\n", - "Running IDP 2 rh_MeanThickness_thickness :\n", - "Some sites missing from the training data. Adapting model\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Evaluating the model ...\n", - "Evaluations Writing outputs ...\n", - "Writing outputs ...\n" - ] - } - ], - "source": [ - "for idp_num, idp in enumerate(idp_ids):\n", - " print('Running IDP', idp_num, idp, ':')\n", - " idp_dir = os.path.join(out_dir, idp)\n", - " os.chdir(idp_dir)\n", - "\n", - " # extract and save the response variables for the test set\n", - " y_te = df_te[idp].to_numpy()\n", - "\n", - " # save the variables\n", - " resp_file_te = os.path.join(idp_dir, 'resp_te.txt')\n", - " np.savetxt(resp_file_te, y_te)\n", - "\n", - " # configure and save the design matrix\n", - " cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt')\n", - " X_te = create_design_matrix(df_te[cols_cov],\n", - " site_ids = df_te['site'],\n", - " all_sites = site_ids_tr,\n", - " basis = 'bspline',\n", - " xmin = xmin,\n", - " xmax = xmax)\n", - " np.savetxt(cov_file_te, X_te)\n", - "\n", - " # check whether all sites in the test set are represented in the training set\n", - " if all(elem in site_ids_tr for elem in site_ids_te):\n", - " print('All sites are present in the training data')\n", - "\n", - " # just make predictions\n", - " yhat_te, s2_te, Z = predict(cov_file_te,\n", - " alg='blr',\n", - " respfile=resp_file_te,\n", - " model_path=os.path.join(idp_dir,'Models'))\n", - " else:\n", - " print('Some sites missing from the training data. Adapting model')\n", - "\n", - " # save the covariates for the adaptation data\n", - " X_ad = create_design_matrix(df_ad[cols_cov],\n", - " site_ids = df_ad['site'],\n", - " all_sites = site_ids_tr,\n", - " basis = 'bspline',\n", - " xmin = xmin,\n", - " xmax = xmax)\n", - " cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')\n", - " np.savetxt(cov_file_ad, X_ad)\n", - "\n", - " # save the responses for the adaptation data\n", - " resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt')\n", - " y_ad = df_ad[idp].to_numpy()\n", - " np.savetxt(resp_file_ad, y_ad)\n", - "\n", - " # save the site ids for the adaptation data\n", - " sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt')\n", - " site_num_ad = df_ad['sitenum'].to_numpy(dtype=int)\n", - " np.savetxt(sitenum_file_ad, site_num_ad)\n", - "\n", - " # save the site ids for the test data\n", - " sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt')\n", - " site_num_te = df_te['sitenum'].to_numpy(dtype=int)\n", - " np.savetxt(sitenum_file_te, site_num_te)\n", - "\n", - " yhat_te, s2_te, Z = predict(cov_file_te,\n", - " alg = 'blr',\n", - " respfile = resp_file_te,\n", - " model_path = os.path.join(idp_dir,'Models'),\n", - " adaptrespfile = resp_file_ad,\n", - " adaptcovfile = cov_file_ad,\n", - " adaptvargroupfile = sitenum_file_ad,\n", - " testvargroupfile = sitenum_file_te)" - ] - }, - { - "cell_type": "markdown", - "id": "75210821-ccb8-4bd2-82f3-641708811b21", - "metadata": { - "id": "75210821-ccb8-4bd2-82f3-641708811b21" - }, - "source": [ - "### Preparing dummy data for plotting\n", - "\n", - "Now, we plot the centiles of variation estimated by the normative model.\n", - "\n", - "We do this by making use of a set of dummy covariates that span the whole range of the input space (for age) for a fixed value of the other covariates (e.g. sex) so that we can make predictions for these dummy data points, then plot them. We configure these dummy predictions using the same procedure as we used for the real data. We can use the same dummy data for all the IDPs we wish to plot" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "2d0743d8-28ca-4a14-8ef0-99bf40434b5b", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2d0743d8-28ca-4a14-8ef0-99bf40434b5b", - "outputId": "e8957652-cfd0-4a4c-998b-463c356bbaed" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "configuring dummy data ...\n" - ] - } - ], - "source": [ - "# which sex do we want to plot?\n", - "sex = 1 # 1 = male 0 = female\n", - "if sex == 1:\n", - " clr = 'blue';\n", - "else:\n", - " clr = 'red'\n", - "\n", - "# create dummy data for visualisation\n", - "print('configuring dummy data ...')\n", - "xx = np.arange(xmin, xmax, 0.5)\n", - "X0_dummy = np.zeros((len(xx), 2))\n", - "X0_dummy[:,0] = xx\n", - "X0_dummy[:,1] = sex\n", - "\n", - "# create the design matrix\n", - "X_dummy = create_design_matrix(X0_dummy, xmin=xmin, xmax=xmax, site_ids=None, all_sites=site_ids_tr)\n", - "\n", - "# save the dummy covariates\n", - "cov_file_dummy = os.path.join(out_dir,'cov_bspline_dummy_mean.txt')\n", - "np.savetxt(cov_file_dummy, X_dummy)" - ] - }, - { - "cell_type": "markdown", - "id": "126323a3-2270-4796-97c4-94629730ddf7", - "metadata": { - "id": "126323a3-2270-4796-97c4-94629730ddf7" - }, - "source": [ - "### Plotting the normative models\n", - "\n", - "Now we loop through the IDPs, plotting each one separately. The outputs of this step are a set of quantitative regression metrics for each IDP and a set of centile curves which we plot the test data against.\n", - "\n", - "This part of the code is relatively complex because we need to keep track of many quantities for the plotting. We also need to remember whether the data need to be warped or not. By default in PCNtoolkit, predictions in the form of `yhat, s2` are always in the warped (Gaussian) space. If we want predictions in the input (non-Gaussian) space, then we need to warp them with the inverse of the estimated warping function. This can be done using the function `nm.blr.warp.warp_predictions()`.\n", - "\n", - "**Note:** it is necessary to update the intercept for each of the sites. For purposes of visualisation, here we do this by adjusting the median of the data to match the dummy predictions, but note that all the quantitative metrics are estimated using the predictions that are adjusted properly using a learned offset (or adjusted using a hold-out adaptation set, as above). Note also that for the calibration data we require at least two data points of the same sex in each site to be able to estimate the variance. Of course, in a real example, you would want many more than just two since we need to get a reliable estimate of the variance for each site." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "cdd68cc6-212b-4149-b86a-24e842078e1a", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "cdd68cc6-212b-4149-b86a-24e842078e1a", - "outputId": "43a33a06-cffb-4bab-9bd1-293cc8e65d48" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Running IDP 0 Left-Thalamus-Proper :\n", - "Making predictions with dummy covariates (for visualisation)\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Writing outputs ...\n", - "metrics: {'RMSE': array([0.55690777]), 'Rho': array([0.]), 'pRho': array([1.]), 'SMSE': array([0.]), 'EXPV': array([0.])}\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "

" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc1f3+fc9W9d57s2W5d7lhigMBQ4A4FJPQgmMgCRAIEEoIIfnx0JI/OJSEZgIB07uxAYMBN4zBuFu2ZVm9Wl2rtkU7z4vbZ2dXkm2VldXO57rmWml2dnZmZ+ac+3zbUVRVVSGRSCQSiUQiOeXoBvsAJBKJRCKRSEYrUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSiUQikQwSUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSiUQikQwSUohJJBKJRCKRDBJSiEkkEolEIpEMElKISSQSr1BTU4NbbrkF2dnZyMzMxMsvvzwg3/PUU08hMzMTdXV1XtvnVVddhauuuspr+5NIJJKeYhjsA5BIJIPH+++/j3vuuQfvvvsuJk2a1K99Pfzww9i0aRNuuukmREREYOLEidiwYQP27NmDm2+++bif27ZtG66++uoefcehQ4f6dYyjlbvvvhsffPCB639/f38kJCTg4osvxpVXXgmTyTSIRyeRjG6kEJNIJF7hu+++w6JFi7Bs2TLXulWrVmHVqlUnFGLp6el47LHHPNY9/vjj8PPzw4033jhgxzvaMJlMePDBBwEAFosFn3/+OR599FHs3bsXTzzxxCAfnUQyepFCTCKReIXa2loEBQX1+nMRERG46KKLPNa98MILCA0N7bJe0ncMBoPH7/nLX/4Sl156KdauXYu7774b0dHRXT6jqiqsVit8fHxO5aGelNbWVvj5+Q32YUgkXkHGiEkkkhNSVVWFe+65B/PmzcPEiRNx/vnn491333W9//777yMzMxOqqmLVqlXIzMxEZmYm7r77bqxatQoAXOsyMzO9dlwWiwV33303Zs6ciRkzZuCee+5BW1ubxzbvvfcerr76asydOxcTJ07E4sWL8frrr5903zabDf/617+wZMkSzJgxA1OnTsUvf/lLfPfddx7blZaWIjMzEytXrsSqVauwaNEiTJkyBddddx0qKiqgqiqeeeYZLFy4EJMnT8Zvf/tbNDQ0eOwjMzMTTz31VJdjOOuss3D33Xe7/rfb7Xj66adxzjnnYNKkScjOzsYVV1yBLVu29OJX09DpdJg9ezYAoKyszPWdN9xwAzZt2oQlS5Zg8uTJePPNNwEAJSUluOWWWzB79mxMmTIFl112Gb755huPfW7btg2ZmZlYu3YtHn/8ccyfPx9Tp07FjTfeiIqKii7HsHv3bixbtgwzZszAlClTcOWVV+LHH3/02EbEBObl5eH222/HrFmz8Mtf/rJP5yyRDEWkRUwikRyXmpoaXHbZZVAUBb/61a8QFhaGjRs34s9//jOam5tx7bXXYtasWXjsscfwpz/9CfPnz3dZXZKSknD06FFs2bKli+vRG9x6661ISEjAH//4R+Tk5OCdd95BWFgY7rzzTtc2b7zxBsaMGYOzzjoLBoMBX3/9Nf72t79BVVX86le/Ou6+m5ub8c477+CCCy7ApZdeipaWFrz77rv4zW9+g3feeQdZWVke269evRp2ux1XXXUVGhoa8OKLL+LWW2/FnDlzsG3bNixfvhxFRUV47bXX8Oijj+Lhhx/u9fk+/fTTeO6553DppZdi8uTJaG5uxr59+7B//37Mnz+/1/sDKK4AICQkxLWuoKAAt99+Oy6//HJcdtllSE1NRU1NDZYuXYq2tjZcddVVCA0NxQcffIDf/va3ePLJJ3H22Wd77Pc///kPFEXB8uXLUVtbi1deeQXXXnstPvroI5d1bevWrVi+fDkmTpyIm266CYqi4P3338c111yD119/HZMnT/bY5x/+8AckJyfjtttug6qqfTpfiWQoIoWYRCI5Lk888QQ6OjqwevVqhIaGAgCuuOIK/PGPf8TTTz+NpUuXIjExEYmJifjTn/6ElJQUD/dXSkoKtmzZMiAuxqysLDz00EOu/xsaGvDuu+96CLHXXnvNw6125ZVXYtmyZfjvf/97QiEWHByMr776yiOI/bLLLsN5552HV1991eN7AVoN161bh8DAQACA0+nEc889h/b2drz33nswGNjU1tfXY/Xq1fjb3/7W6wD5b775Bqeffjr+7//+r1efc0dkmjY3N+PTTz/Fl19+iczMTKSlpbm2KSoqwosvvojTTjvNte6hhx5CTU0NVq1ahZkzZwIALr30Ulx44YV4+OGHsWjRIuh0moOlsbERa9euRUBAAABg/PjxuPXWW/H222/j6quvhqqqeOCBB5CdnY0XX3wRiqIAAJYuXYrzzz8fK1aswEsvveRx7OPGjcP/+3//r8/nLpEMVaRrUiKRdIuqqli3bh3OOussqKqKuro617JgwQJYLBbs379/0I5v6dKlHv/PnDkTDQ0NaG5udq1zF2EWiwV1dXWYPXs2SkpKYLFYjrtvvV7vEkpOpxMNDQ1wOByYOHEicnJyumx/7rnnukQYAJc158ILL3SJMLHebrejqqqql2cLBAUF4fDhwygsLOz1ZwHGVc2dOxdz587F2WefjccffxxTp07FM88847FdQkKChwgDgA0bNmDy5MkuEQYw8/Lyyy9HWVkZ8vLyPLa/+OKLXSIM4O8TGRmJDRs2AAAOHDiAwsJC/OxnP0N9fb3rvhLH+MMPP8DpdHrss/P1lkhGCtIiJpFIuqWurg5NTU1466238NZbbx13m77uu6Ojw/W/n58f/P39e7WPuLg4j/9FokBjY6NLBPz444946qmnsGvXri7xYxaLxUM8deaDDz7ASy+9hIKCAtjtdtf6hISELtvGxsZ6/C/2e7z1jY2NSExMPOH5deaWW27B7373O/z0pz/F2LFjsWDBAlx00UUYN24cAKC9vb2LuIyMjHT9bTab8eyzzwJgBmVCQgJiYmK6fE9351deXo4pU6Z0WS8saeXl5Rg7dqxrfXJyssd2iqIgOTnZFYsmxORdd9113PO1WCwIDg4+4XFJJCMBKcQkEkm3CIvEhRdeiJ///OfdbtPX4PtLLrnE1SkDwE033XTCEhfd4e4Kc0fEDxUXF+Paa69FWloa7r77bsTGxsJoNGLDhg14+eWXu1hc3Pnoo49w99134yc/+QmWLVuG8PBw6PV6PPfcc664Knf0en2fjvFEuAtVAJg1axa++OILrF+/Hlu2bMG7776LV155BX/7299c2Y/33HOPx2fc667p9XrMmzfvpN97KjIkxfn/6U9/6hJvJ+icFWk2mwf8uCSSwUAKMYlE0i1hYWHw9/eH0+nsUQfeHSL2pzP/+Mc/YLVaXf/31jrUE7766ivYbDb85z//8bCebdu27aSf/fzzz5GYmIinn37a4xyefPJJrx9ncHAwmpqaPNbZbDZUV1d32TYkJAS/+MUv8Itf/AItLS248sor8dRTT+HSSy/FggUL8N///tfrxwfQ+lhQUNBlfX5+vut9d4qKijz+V1UVRUVFLuEurndAQECf7y2JZKQgY8QkEkm36PV6/PSnP8Xnn3+O3NzcLu/3xC3p6+sLAF2ExowZMzBv3jzXMhBCTFip3K1PFosF7733Xp8+u3v3buzatcu7BwmKku3bt3use/vtt7tYxOrr6z3+9/f3R1JSEmw2GwAgKirK4zf1psA5/fTTsWfPHuzcudO1rrW1FW+//Tbi4+ORkZHhsf2HH37oEav32Wefobq6GgsXLgQATJw4EUlJSXjppZfQ0tLS5fu8OX2VRDLUkRYxiUSC9957D5s2beqy/qabbsK2bdtw2WWX4dJLL0VGRgYaGxuxf/9+bN26Fd9///0J9zthwgQAwIMPPogFCxZAr9fj/PPPH5Bz6Mz8+fNhNBpx4403YunSpWhpacE777yD8PDwbq1N7pxxxhlYt24dfv/73+OMM85AaWkp3nzzTWRkZKC1tdWrx3nppZfir3/9K26++WbMmzcPBw8exObNm11ZqoLzzz8fs2fPxoQJExASEoK9e/fi888/x5VXXunV4+mO66+/HmvWrMHy5ctx1VVXITg4GB9++CFKS0vx1FNPdXHBBgcH45e//CWWLFniKl+RnJyMyy67DABdtg8++CCWL1+OCy64AEuWLEF0dDSqqqqwbds2BAQEuOLZJJKRjhRiEokEb7zxRrfrlyxZgnfeeQfPPPMMvvjiC7zxxhsICQlBRkYG7rjjjpPu95xzzsFVV12FNWvW4OOPP4aqqqdMiKWlpeHJJ5/EihUr8OijjyIiIgJXXHEFwsLCcO+9957ws0uWLEFNTQ3eeustbN68GRkZGfjHP/6Bzz777KTis7dcdtllKC0txbvvvotNmzZhxowZ+O9//4trr73WY7urrroKX331FbZs2QKbzYa4uDjceuutHlNKDRQRERF488038Y9//AOvvfYarFYrMjMz8eyzz+KMM87osv2NN96IQ4cO4fnnn0dLSwvmzp2Lv/71ry4LKQBkZ2fjrbfewr///W+89tpraG1tRWRkJCZPnozLL798wM9JIhkqKKqsjCeRSCQSLyAmcP/Xv/6Fc889d7APRyIZFsgYMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQULGiEkkEolEIpEMEtIiJpFIJBKJRDJISCEmkUgkEolEMkjIOmKDxM6dO6GqKoxG42AfikQikUgkkh5it9uhKAqmTZvmlf1Ji9ggoaqqaxlpqKoKm80mz22YIc9teDKSzw0Y2ecnz2144u2+W1rEBgmj0QibzYaMjAz4+fkN9uF4ldbWVhw4cECe2zBDntvwZCSfGzCyz0+e2/Bkz549UBTFa/uTFjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQUIKMYlEIpFIJJJBQgoxiUQikUgkkkFCCjGJRCKRSCSSQWJICbGioiLcf//9uOiiizB+/HhccMEFXbZZu3Ytbr75ZixcuBCZmZlYuXJlt/uyWCy49957MXv2bEybNg233HILjh492mW7HTt24PLLL8fkyZNx5pln4vnnn4eqqh7bqKqK559/HmeccQYmT56Myy+/HLt27fLKOUskEolEIhm9DCkhdvjwYWzYsAHJyclIT0/vdpvPPvsMJSUlOOOMM064r1tvvRVbtmzBAw88gH/+858oKCjA8uXL4XA4XNsUFRVh2bJliIyMxHPPPYdrrrkGTz75JF566SWPfb3wwgt48sknce211+K5555DZGQkrrvuOpSUlPT7nCUSiUQikYxeDIN9AO6cddZZ+MlPfgIAuPvuu7Fv374u26xYsQI6HfXjW2+91e1+du7cic2bN2PlypVYsGABACA1NRWLFy/GunXrsHjxYgDAypUrERoaiscffxwmkwlz585FXV0dnn32WVx11VUwmUywWq147rnncN111+Haa68FAMyYMQPnnnsuVq5ciQceeMDLv4JEIpFIJJLRwpCyiAmB1d9tNm7ciKCgIMyfP9+1Li0tDVlZWdi4caPHdosWLYLJZHKtW7x4MZqamrBz504AdF02NzfjvPPOc21jMplw9tlne+xLIpFIJBKJpLcMKSHmLfLz85GamgpFUTzWp6WlIT8/HwDQ2tqKiooKpKWlddlGURTXduK183bp6ekoLy9He3v7QJ2GRCKRSCSSEc6Qck16i6amJgQGBnZZHxwc7HJ3WiwWAEBQUJDHNiaTCb6+vmhsbHTty2QywWw2e2wXFBQEVVXR2NgIHx+fPh9rW1tbnz87VBHnJM9teCHPbXgyks8NGNnnJ89teKKqahdDT38YkUJsOFFYWDjYhzBgyHMbnshzG56M5HMDRvb5yXMbfriHNPWXESnEgoKCUFlZ2WV9Y2MjgoODAcBlMROWMYHNZkNbW5tru6CgINhsNlitVg+rWFNTExRFcW3XV1JSUuDr69uvfQw12traUFhYKM9tmCHPbXgyks8NGNnnJ89teHL48GGv7m9ECrG0tDRs3bq1i/mwoKAAY8eOBQD4+fkhNjbWFQPmvo2qqq6YMPFaUFCAcePGubbLz89HXFxcv9ySAODr6ws/P79+7WOoIs9teCLPbXgyks8NGNnnJ89teOFNtyQwQoP1Fy5ciMbGRmzdutW1rqCgADk5OVi4cKHHduvXr4fdbnetW7t2LYKCgjBt2jQAwPTp0xEQEIBPP/3UtY3dbse6des89iWRSCQSiUTSW4aURaytrQ0bNmwAAJSVlaG5uRmfffYZAGD27NkICwtDXl4e8vLyXJ/Jzc3FZ599Bl9fX5x++ukAgGnTpmHBggW49957cdddd8FsNuOJJ55AZmYmzjnnHNdnly1bhtWrV+P222/HFVdcgdzcXKxcuRK33Xaby/9rNptxww034KmnnkJYWBjGjh2LN954Aw0NDVi2bNmp+mkkEolEIpGMQIaUEKutrcUf/vAHj3Xi///973/Izs7Gp59+iqefftr1/ocffogPP/wQ8fHx+Oqrr1zrV6xYgYcffhj3338/HA4HFixYgPvuuw8Gg3bKycnJWLlyJR555BFcf/31CAsLwy233ILrrrvO4xiWL18OVVXx0ksvoa6uDllZWVi5ciUSExMH4meQSCQSiUQyShhSQiwhIQGHDh064TY333wzbr755pPuKzAwEA899BAeeuihE243ffp0vP322yfcRlEU3HDDDbjhhhtO+r0SiUQikUgkPWVExohJJBKJRCKRDAekEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSkEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSkEJNIJBKJRCIZJKQQk0gkEolEIhkkpBCTSCQSiUQiGSSG1BRHEklfcDoBm42L3Q50dHCd0wkoCrfR67kYDIDRCJhM/FsikUgkksFEdkWSYUNbG9DYCFgsXBoauFgsFGAOh6cIU1V+TlG46PWATkchZjBQjAUHA0FBQEAA4O/PJSCAi14/mGcrkUgkktGAFGKSIUtLC3D0KFBTA5SVAbW1XGe3U2QZjYDZTEFlNlNEGQwUW8ISJlBVirOODgo2h4P7qq+nJc3p5HZ6PeDjA/j6AuHhQFQUEBJCsRYScqp/AYlEIpGMdKQQkwwpGhqA8nIgPx+orASamiiS/PxopYqLo1iyWjWBVl1NS1lTE8WVEFzCMuZ0Uqz5+XERVq/AQAqtyEj+bTBQsFmttL4VFQG5uZroo9VMh/Z2P5jNCuLiKM50MtJSIpFIJH1ECjHJoNPeDpSUUPSUltLVaDJR5CQn8/3Dh4GNGynQ2ttp8QoJAcLCuMTEABkZFFkiHkyn0xYhrlpbtaWiAsjJoaWtrU1zX8bEACkp/O7kZFrIHA5uU1mpQ0FBAMrL9S5LWUICEB1NC1poqIw9k0gkEknPkV2GZNCoq6PAOniQ1i2DAYiIoKDJzQU2bOD7Oh2QmAikpwNz5tAypdNRHIkgfREfZrdrrsbOMWI6HYVacDC/SwTuG40UYCLov7KSwvDrr4GqKu7Xz4/fn5oKRETYkZrKnVsswM6d/H5fXwqzxESKuYgICjMZayaRSCSS4yGFmOSUU1UFHDgAHDpEd2JoKJCURNG1di1QXEwr08SJwE9+QutYWxvdjg0NFHCKomU/mkx0Lfr4cBECS7gMhatSZFW2tdGq1tHBv4WQA7hfs5nfPXMm96eqFFz5+cCOHTocORIDg8GI6Ghg/Hhg0iS6OO12oLkZ2LVLE2bCqhcdTRdocHDX+DWJRCKRjF6kEJOcMmpqgH37KMJaWihefHyA9euB7duB2FggOxv4xS8oZJqaaJ0CaJEKDKT7MSSEVjE/P0189dbqpKoUYFYrRVl7O92VIoC/vp6iqrqaQk6nozhMTe3AzJlViI6OQ0ODGbm5wCuv8FjDwyngJk2isLTZKOC+/57fFxBAN2pKCs89IoIWOolEIpGMXqQQkww4LS3A3r3A7t0UJlFRFDerVjEwPzsbuPlmrmtooFvQz4+WskmTKFiE+PKWNUlYvsxmuhM709FBYdbUREFWX09LXm2tgqoqMxwOBb6+wJQpwPz5tMIdPUo366uvMnkgLIzCbMoUWsNEgkFREYVdUBBdmImJfD8igtY9iUQikYwepBCTDBgdHRQm27czMD4igu66F1+kyFm0iNYvkSnp58esyORkirXQ0MFz4+n1tMAFBmrrVBWore3A7t2NCAsLQ2MjxVd1Na1fOh2F49y5dI1WV9P69/LLFKAxMcDkyVwCA/kbFBbyNzKZKMzi47lERFDIycB/iUQiGdnIZl4yIDQ26rF+vQ75+Vqs1KpVjO867zy6+UT5iYgIipP4eIqPoRpDpSh0JUZG2jFmjApfX8aFicKy1dUUlLW1tH7pdDyv+fP52fJyiq5NmxiblpREa9mkSRRiFguwfz8thz4+jCdLSmJ8mQz8l0gkkpGJFGISr+J0Avv3K/jmmxD4+ChISAC++AL48Udg8WJmHdbUULQkJABjx/J1uLrkjEa6FSMjgTFjGNvW0EBXZmUlLYFVVbSYmUx0w551Fn+n4mJazD7/nJ/LyKAwy8rivi0WYMcObuvrS2GWmOgpzGQNM4lEIhneSCEm8RoWC7BtG7B9ux4dHUB7u4KHHwZmzAB+/3taimprKcayshicP9KEhCjBERFBYWa30wpYV0dRdvQorYBOJ2PezjyTAtVuB44coWB97z1avsaNozBLT+f2FgvdvKraVZiJGmbSYiaRSCTDCynEJF6hpATYvJkFWYOCVHz8cQjsdj2uu47WnqoqZgtOmEAX5EgTYMfDaKRQio6m+Gxr04RZSQmFaXU1XZeRkUBaGhMIWltZzuObb+jS9fHhbzdlCmPoHA5NmHVnMZPFZSUSiWR4IJtpSb+gKxLYsoVxUR0dwL/+ZcTEiY3IznagsVGP6Ghg3jxawka7MPD11QLyJ05kRmZdHd21JSXMthRV/hMTKd5E/NjBg8Dq1bSqBQYytmzKFFoW7XZPV6aPD7eJj2eSQFgYxdlwdQFLJBLJSGWUd4uS/mC1At99x87fzw/44QfWCfvVr+woL7ejtVXBrFm05Pj5DfbRDj0URcvMTE4Gpk2jEKuro5WsrIyxZu3tdDlmZABTp1LMNjQwvuzNN7lNUBCLy06cSMujmNR8715W/hdFb2NimJkaHk5xJq+LRCKRDC5SiEn6RHMzpyDKyaEIeOklWl+uvRaoqFAQHm7HokVOpKcP9pEOH3Q6uhNDQxkX1tGhBf4fPaplZAphlpUFzJpF92ddHaeF+vhjbuvrC2RmUpiJa9DaCuTl0YJpMDBGLSKCyRJhYfyMmBZKIpFIJKcGKcQkvaa2lvMwFhTw/yeeAH76U8YmWSzA9OkqfH0tiIuLHtwDHebo9bRchYfTGuaekeleKqO9ncIqMxOYPp3CrLlZizF7/XXua8wYWs0yM2kha23lPo4c4fcZjXo0N4egoUGHxESKs5AQ7k8ikUgkA4MUYpJeUVnJKYkqKhjXtHo1cOWVdFP6+9NCExXlRF6eNK14m84ZmQ4HXZnuwqy+njFmOh3dnRMmUHRZrRRcO3cCH37IODLx/vjxdFs2NgKVlQb8+KPiqmXm709LZ3Q0hZl0Z0okEol3kUJM0mPKyoAvv6QVJjeXpRauvZZWsPR0YPZsWlDa2gb7SEcHBoOnxayjQxNmtbUUZiL4H+BsBampFFI2G+uYHT7MOm9WKxAebkBUlC/mzPGMMztwgEVmhTszPJziTGRmhoSMnixYiUQi8TZSiEl6RHExRVhDA8tUNDQAl15K99a0aVzM5sE+ytGNXq9ZrUTtsaYmCrO6Ok2Y1dZqdcwWLKBbGQBKSx3YsUPBhx8aUF9Pi5hwZ2Zk0EXZ1kar6JEjTDbw89OmZoqM5HeHhvKzEolEIjk5Q0qIFRUVYeXKldi9ezcOHz6MtLQ0fPLJJ122e+edd/Diiy+ivLwcqampuO2223DmmWd6bGOxWPDwww/jyy+/hN1ux2mnnYb77rsPUVFRHtvt2LEDjz76KA4cOIDw8HBcccUVWL58ORS3eXZUVcULL7yA119/HXV1dcjKysI999yDqVOnDsjvMNQoLqbVxGJhFXizmfNEqio78nHjpEVkKKLT0VoVEkJL2PTptHC5V/6vraWb2eEAVFVBRkYbUlMd8PPTo6WFguv771lk1umk4MrKojgLC9PKZuzaxX2YTFoSQHw8RVlYGMWavEckEomkK0NKiB0+fBgbNmzAlClT4HQ6oXaTwrVmzRr85S9/wY033og5c+Zg7dq1uOmmm7Bq1SoPYXTrrbciLy8PDzzwAMxmM1asWIHly5fjvffeg+FYMauioiIsW7YM8+fPx6233opDhw7hn//8J/R6PZYtW+ba1wsvvIAnn3wSd9xxBzIzM7Fq1Spcd911+Oijj5CYmDjgv8tgUlpKS1hjIzPyoqLYCfv4cHLrlJTBPkJJT1EUiqSAAGZKTprEQH8xV2ZpqYo9e4C6OgU1Ndw+Lo7TUPn40PVZWkpxtnUrBVhQEIV4VhbvBUWhlbSkhG5PgHFm7lYzkRkqrWYSiUQyxITYWWedhZ/85CcAgLvvvhv79u3rss2TTz6J888/H7feeisAYM6cOcjNzcUzzzyDF154AQCwc+dObN68GStXrsSCBQsAAKmpqVi8eDHWrVuHxYsXAwBWrlyJ0NBQPP744zCZTJg7dy7q6urw7LPP4qqrroLJZILVasVzzz2H6667Dtdeey0AYMaMGTj33HOxcuVKPPDAAwP7owwi5eW0hNXVAR98QHdXSgpjg+bPZ00qyfDGx4fXMSYGSE52Ijy8AVFRkWhvp9VMuDNraijEzGYmZJxxBi1cDQ1anFlFBd2jKSkUZllZFH02G7M4d+70tJpFRmpWs9BQaTWTSCSjkyElxHQnaYVLSkpQWFiIO++802P94sWL8dhjj8Fms8FkMmHjxo0ICgrC/PnzXdukpaUhKysLGzdudAmxjRs34uyzz4bJrdz44sWL8dxzz2Hnzp3Izs7Gjh070NzcjPPOO8+1jclkwtlnn40vvvjCG6c9JKmuBr76ih3wxx9z6p3kZHbYp51GMSYZeYg4M19f/q+qFFGNjRRdVVW8N6qq6JbU6SjQJ0+mSLPZgKKizkkAnlYzVaWLtLgYOHSI++gcayatZhKJZLQwpITYycjPzwdA65Y76enpsNvtKCkpQXp6OvLz85GamuoR5wVQjIl9tLa2oqKiAmlpaV22URQF+fn5yM7Odm3febv09HS88soraG9vh08/eou2IZhi2NAArF+vQ1GRgs8/NyAuzom4OBXR0Sqys53w8ztxZqQ4p6F4bv1lNJ6be3ZmejrFVVMT0NiooK5OQUUF3ZltbdqE5HPmqDjzTIqs6mrgyBEd3n9fQU2NAqMRSE1VMW6cExkZqiuLs76ers+ODgUGg3os1kxFXJx6LDtT7bPVbDRet5HCSD4/eW7DE1VVu+iL/jCshFhjYyMAICgoyGO9+F+839TUhMDAwC6fDw4Odrk7LRZLt/symUzw9fX12JfJZIK5U0pgUFAQVFVFY2Njv4RYYWFhnz87ELS16bB1ayBKSsz44YdABAR0ICCgHQaDHbGxzaiudqK6umf7Ki0tHdiDHUTkuZHQUE423tqqQ3OzHs3NBtTUGFBebkB7uw52uwKdTkVoqBOxsU6YTE5YrTqUl5uxdasZH3xggsOhICzMgZSUNqSktCMiwgGnEzh6VIfCQj2sVgWKAvj4OBEQ0IHISBtCQzsQFORAUFAHTKae16wbas+bNxnJ5waM7POT5zb8MHlx4t5hJcRGIikpKfAVfqBBxm4HvvlGB6tVh9JSHYKCgGnTnIiPD8CCBU4EBfWsUn5bWxtKS0uRkJAwZM7NW8hz6xlWK92ZwmpWWQm0tNBqJubNnDxZha8vLVxVVXocOeKLb7/VuUpnpKWpyMx0IjNThY8PrWYtLbSc0bKmIjCQVrPYWPXYTAC0mnUerLa1taGwsHBIPW/eYiSfGzCyz0+e2/DksMhE8hLDSogFBwcDoDUrMjLStb6pqcnj/aCgIFRWVnb5fGNjo2sbYTETljGBzWZDW1ubx75sNhusVquHVaypqQmKori26yu+vr7wGwKlyp1OTt596BCQn8+yBqedxuy6hQtZAqG3+Pr6jrgHUCDP7WT78LxnnE5mWVKcaaUzGhq0WLMpU5iJ6+PDzMsjR1hI9pNPmCgQG8uM3XHjmL3b0cHtqqqAwkLuw9+fFrqEBJbQEHXN3M9tKDxvA8FIPjdgZJ+fPLfhhTfdksAwE2IiTis/P98jZis/Px9Go9FVSiItLQ1bt27t4sctKCjA2LFjAQB+fn6IjY11xYC5b6Oqqmv/4rWgoADjxo3z+M64uLh+uSWHEvv2sV5UWRk7v/POY2D+ggV9E2EDjdXKOLX2di52Oy0mDgc7fYeDHbWIJ9LrWZBUp+Or0cjgcpOJHb/4WzIw6HQUSGLcMmmSu9WMoqyykmKtpobXMDKSwf1+frRwlZczCeDVV/kZf3+t4GxaGq+pzcb4te+/Z7ya2cwMzZAQHdrafBEQoCA+nuskEolkKDCshFhiYiJSUlLw2WefucpcAMDatWsxd+5cl8924cKF+Pe//42tW7di3rx5ACikcnJy8Jvf/Mb1uYULF2L9+vW48847YTw2s/HatWsRFBSEadOmAQCmT5+OgIAAfPrppy4hZrfbsW7dOixcuPCUnPdAU1QEbNlCl8+6dcCSJVqJirCwwT46uqNEh93QwI66pYUdud1O0aUo7HhF6bnOAxb3knSKom1vNFKAGY3s8IODaUHx82NHHxjIv2VZBe9jNtOyFRVFQaWqnlYzkaFZXU2BpSjMzhRWM4uFVrNNm4A33+T77gVnQ0N5b9C6pkNJSSCKi/Wu2Qfi4zWrWXAwxbpEIpGcaoaUEGtra8OGDRsAAGVlZWhubsZnn30GAJg9ezbCwsJw880344477kBSUhKys7Oxdu1a7NmzB6+99pprP9OmTcOCBQtw77334q677oLZbMYTTzyBzMxMnHPOOa7tli1bhtWrV+P222/HFVdcgdzcXKxcuRK33XabS9SZzWbccMMNeOqppxAWFoaxY8fijTfeQENDg0fR1+FKfT07supq4O23gYsvZhmB+fM50fNgYLVSbNXVMYuuro7Cy+nUthGdtZjCp6WFHa77Nt2h19Nt5utLoRUSwk5YCK7KSlrSFIXbiomvRdag2azAYtGf9HskvUdReO8FBQGJicDEiRRg4lrX1bFWWVOTZjWLjmYmp7CaiUKymzfznggKYkHajAwgOtqGxET1WCIAByCq6lk6IypKmyZKWkglEsmpYEgJsdraWvzhD3/wWCf+/9///ofs7GxccMEFaGtrwwsvvIDnn38eqampePrpp10WLMGKFSvw8MMP4/7774fD4cCCBQtw3333uarqA0BycjJWrlyJRx55BNdffz3CwsJwyy234LrrrvPY1/Lly6GqKl566SXXFEcrV64c9lX1rVaKsOJi4J13gHPPpeiYO5cxNqcSm40iqLycx9PYKKbdYacr1re3s5yCiP0JDKQLy8dH6ziF9as7K1hHB61odjvPv7kZKCjQRJ0QYWFhjEkSFpPqanb8HR06WCzBKCnRueKQxDRCI8RLPaQwmXh9RUho57pmR496Ws10Os57umABr0dDA5CXB3z9tQ5FRbHw8zMgNVWraxYU5FlwtqOD3xkYSNd8XJwmzPz9B/OXkEgkIxVF7W4eIcmAs3fvXthsNmRlZQ1KIKOqUoRt3Up3ZFwc5yOcO5fun/7EIra1teHw4cMYM2bMCYO+VZWxQcXFFEO1tRRfLS20auTnc5v4eIqi8HBaqdwtViLeS69nB2oyUagZDNo5qCpFlLsA6+jgd4nF3cKl19O6VlfHY6qp4f9GIxAT44C/fx3GjAmGn5/Z5d4MCODxxcZqxUiHW3xqT6/bUON4VrPWVl57up6taGqqQFRULCoqzMjL4z1ntfJaZWZSmCUm8jNtbXR9CnHH7EwOUIR1NDCwf8+Jt2htbcWBAwcGrS0ZaEby+clzG57s2bMHiqJg0qRJXtnfkLKISU4dhw4xS/LAAf6fnMwA6okTB75z6ehgUkBeHl1Jzc3s+PbtY/ZbaChdST/9KQWSTqe5EkU8j58f15nNXEQgfk9QVYovIcpsNr62t2uTYlss/J64OB6D+E1qapzIzzeisNCA9nYeR1oaO/DGRp6TXq+5M+PjNevdCGuLhgzHs5o1NGixZmVlCurqjHA6Ffj6ArNnA2edxfumtpbCf80aWthYcJZxZpmZvM9aW2mVPXKE94K4FxMS+L3h4bxfZCyhRCLpLVKIjUKqq4Fvv2X81Y4dwPnnU/jMmDGwAcsOB4XXgQMUYlYrrV67d1OkjB/PBeD/ISF0D4l5CP39vdPRKYpmSTueOHI4KA6bm9kJi/kWWcHEeqyQqB4dHezof/iB7xuNzPRLTqZVpqCAvymrxFPYhYZ6TiMk8S6KQmtVYKAWa9bQ0IFduxoRHh6O5ma6wRsbKb5VVdQ14zWx23nd9u8H1q6lUI+N5X4mTKDgslppfSsu5neK+zUxkXFm4eG8zlKYSSSSkyGF2CjDamWGZHExsHo1cOGFFAezZw9cjJPTSQG2fz/Fn8UC7NnDzi4zEzj7bHaeAQEMvo6PH3zXj8GgdeYCVWWHnpPThNDQELS0UHz5+/M3FFmbtbVATg47e0Vh55ySosUrGY1abFtMjBaD1GnyBokXMZuBsDAHMjJYRNbpFNM0MdmjooKvDQ202AYFsY7euedSTJWVAbm5HMA0N1NUT5hAcRYdzefKYqEgdzop6IKDee2jozVhJjMzJRJJZ6QQG0WoKrB9O3DwIPDppyzUGhYGZGcPXK2wo0fpcszPZye3Ywc7vWnTGJNjNmv1oqKjPYXPUENR2MGGhTmQmspq705n10mxAwJoFREuzbo6rcwCQHdWSgoF26FDdK2Jz7jHmElhNnDodFqSRXIyMHUqLaBCjFVVaYkAVisF1NSpTAIwGrn+0CHg9df5maAgWnMnTgSSkmhRbW7m8yaEmbCYRUdTyEmLmUQiAaQQG1UUFgI//khrlAgsnzlzYDIkrVYFO3cqyMuj4Ni1i1a4GTPoAhJuo+RkCrHh2iHpdF1LLghXZn09rWJ+fvy9J0xgh15fT2G6eTPFcVISl9paimR3YSZcs6GhMitzoBFlTeLiKKrsdi3OrLpac2eKOYyzsoBZs3hd6uspzD7+mALOz4+ZmZMm8R4Xgn37dm1i9JAQXnchzEJChkbwv0QiObVIITZKsFjoVikqootw8WJtuhhvoqpAcbGC774Lgt2uQ1ERrWBTpwLnnEN3TVoag6H7OTvUkEQEcgt35YQJWgJAQwOtgaITnjiRwqyujiL522/ZYScmsoOuqfEUZsKVGRIiY8xOBUajlgSQkcFrIyyfdXUM3m9ooEgDeF+LOLPWVgqzL7/kdmYzn7UpU2gNFdnB33/P/Yrg/+RkCvCICIp7iUQy8pFCbBTgdALbttE9tmYNpy9KTPR+cH5bG7B3L7Bjhw55eT7Ys0ePhATG2QQHs/Bmevro62CEMIuPp/gVrkwRm2Q2U1yNH8/YtPp6CuatWz2FWVQU45RE8H9YmBb8HxLCddKiMnDodJp1MjUVmD6d17K+nkt5OQVaXR3jzOLjtazL9nYKsy++0MT4hAkUbikpTAhoaGAMJaDFEAqLcUSEFN4SyUhFCrFRQG4u3ZEbN7LziIpicL43C1RWVjJQOT8f2L5dh4KCQCxY0IGoKD1SU9khDYXpkgYb94y+hARaxUSpBSHMTCYK1/HjaZUR2XlCmIkYs6go/t4Gg2ZlcxdmctqegcX9WiYl0drV2uopzGpq+LfTyWszdqxmMTtwgAkzR49yHxMnch/R0RRmFRW8vmKezrg4bTLziAhed4lEMvyRj/IIp7GR1rDcXLpC0tIoxuLivLN/p5Mj/e3bmQX59ddAWpqKWbOakJERiqlTaRmQlpru6a7UgrvFrLKSFjMhzESMWVGR5sqMi+NnY2KYnSrqroks1MhILTBdJgAMLH5+XOLjeS3b2iikhciuqeFrRwfF2/jxvFZNTXRDv/02tw8JobVs2jQK69ZWPsP79mkW1ORkxnkGBHjOIiGRSIYXUoiNYJxOWqmOHKFAOv98rYK4N2hrY/zX3r20uB04wMr8EREqAgNbcdppwSMyDmwg6Rz8P2mSZ1ZmZSWDw0NCeB31ei3Lb+dOZviJIPD4eK4HtDiz8HAtzkzMsSlF8sDh68vr0J0w62wxc48xq6tjCZSXXmJ8Z2IiRZmIK2xuZuKN0wkYjXpYrcGwWhWXK1MKbolk+NBnIdbW1oZf/epXuPTSS3HFFVd485gkXuLwYQqkr77S5o+cPt07Lo2GBuC77zhC37SJDf+iRRylZ2Z2oKWlXXYGXqCzK3PCBC0rU1SNDwig1WTMGG5vtdLd9d137NDNZgoz4dYS1f99fblfMX2U2QzY7VKVDSTHE2buE9zX1VFgiaxMo5HviQKzisLA/2nTGKvW3AyUlxuxcaPOIxtTTGIuszElkqFNn7tkX19flJaWQpFP+JCkqYkuSfcpjGbOZIfdXyoqGK+0bx+zwiZP5mg+K0uzthUU9P97JF3pnJWZlcVAcFGctLaWWXzC1SlcVmIan02b2MlHR2uurfJy7len08NiCUFVlQ5JSbSYSavZwOIuzIT1U8xxWlpKa1lrKy2lc+ey+LGqegb+BwQYkJDgizPO4HVtbuYAbOdO3ieRkRRs0dEUZkbjYJ+1RCJxp1+2kdNOOw2bN2/G0qVLvXU8Ei+gqnQZHjnCAP3zz2eHnZbW/30XFDA2ac8evs6fz8DxqVPZsSsKhYHk1OHjwyUqilYxu53uLBFnJupaRUSws9frKdwqK3kdW1tpVYuPV+DjY4TJpKCoiJ2/nx+FWEyMNp9iUJCsaTZQBARwSUriM9XUpE08Lyxm7e28FuefT6FVXe3Ad9/p8L//GdDays/OnMn4s44OXv+CAgqw0FA+p/HxvKYBAYN9xhKJpF9C7He/+x3+8Ic/4M4778Tll1+OxMREmLvxR4UMVNl2SbcUFWkuyexsNszTpvWvaKqqMlh461a6vPLyOGnymDEsg+ENS5vEOxiN2rRJqam0gLW0UJhZLOyY6+spqjIyeG07OijMjhzxw549eigKLSgJCZ5WM6NRK50h3F5CnMkMTe+iKJpVMi2Nz1l9PYVZRQWvV0UF0NamIDm5HWec4UBAgB5FRSyg/MEHtLhNm0ZhFhysxZZt385rFhenzWoRFjZ8CytLJMOZfgmx888/HwCQl5eHTz755LjbHRD+McmA097OIpE5ObSMiHpH/Zk6SFXphty6lRa2piaKsPHjmW4v6xsNbXQ6z3kzhTvTYuG1rKsTE5qrMJlaERLiAx8fPZqaGIN26BC38/GhuzM+Xos1Exma/v7anIrBwRRofn7SpelN9HqtdEVmJq9hbS1QXu7E9u0OtLUpaGykWD79dFrMWls5KHvxRYrxjAzGnWVksETGkSMMX/DzowszPZ2WsqgoWR5DIjlV9OtR+/3vfy9jxIYYe/ey4/z6axZu7a9L0unkPr/9ljEpJhMnQ54yRStAKhl+CHem6HydTqCmpgMHDlgQFBSCxkaKq5AQ3j+Kok1onp/PiePtdgqvxERazUSFeb2eHXtQkDapeVAQBZpM4PAePj4UxWFhKkymJsTERKOlheK5tJSWT4eDVuuZM/ms5uVxaq033uD1mDmTi15PMV5UxGc8LIz3RVwcBbZ0RUskA0e/utGbb77ZW8ch8QLV1YwN++47ZmQlJ1Mw9dXd4HQCu3dThK1dy0576lS6SDIypLVjJCHKZkRF2V0TmluttIRZLHSJVVdrwd/jx/MzVis7/u+/p2VNr6c4SEigVaW0lPeJyaRN4yNcmkKcSZdm/1EU/p7R0RTOdrsWW1ZSwteWFrqVzz6br/X1fL4ff5yfnzoVmDOH18RioQVcURh2kJKi1arzZiFoiUTi5TpiFosFfn5+0MuW9ZTjdFKEHTrEhvdnP2PD2tc6XqrKRnrzZoqwmBgKsFmzKPAkIx+zWZtrEdBizSwWLjU17OxFZXmnk+JMFKLdsYPlGQICNJdmfX1Xl6aYwkeIMzlVU/8xGvnMxsSw5InFQiFdVcX2obKScYFTptDC7XDQhblyJd2Z48YB8+bR0tnaygzMH3/USmMkJfG90TZdmUQyEPRbiO3duxcrVqzA9u3bYbfbsXLlSsydOxd1dXX485//jGuvvRbZ2dneOFbJCcjPZxzX+vXMZBwzhq6FviBiwrZs4RQsCQmcEik7m42vZHTSOdYsM5OWl+ZmWs6amrTpekQck6qyk6+uZh2sqiqui4rifRUX5+nSFLXNhEtTJALIOMS+I6xlQUFsE6xWiujqak6dVVdHwZyczFI0RiOr/H/8Ma9XSgqf/XHjGJe2fz8HacHB2nRbsbEUaRKJpPf0S4jt2LED11xzDaKjo3HhhRfinXfecb0XFhaG5uZmvPXWW1KIDTDt7cyC2r2bHWByMq1hfY3fOniQlrBPPqElY9YsuixiYrx62JIRgCiJ4J4129amiTPh0gwOpkXM6aQwaG7m+k2bWBzYaNRcmjExzAYU+xexajExWhZhUJCsh9VXzGatdtnkydo1Kimh8KqpoQi+6CLGhpWUsCbh228zJjA7m+2L08nadPv3UzzHxzM5KDaW94O0akokPaNfQuyJJ55Aeno63n77bTQ3N3sIMQDIzs7GBx980K8DlJyc/fvpkvzuO7okJ06kxaEvHDlCEbZmDTu+7GyKsL7uTzL68PXl0tmlKcRZbS2X8HB23KrKberrGVO2fTsHF4GBWtHZ8HCgsJCdu9lMcRYRwftSiLOAAFl+obfodPxtw8Np8RLlTcrLgbIyCjOjkbNmBAZSpO3cCXz+ORMy5sxhsD/AWmUHD/I6xMbS+hYbS1EnRZlEcnz6JcT27t2LP/7xjzCZTN1mT0ZHR6OmpqY/XyE5CXV1bBg3b+YoNT2973NJlpVplrDgYDayUoRJ+ou7S1O4th0OdvpCnFVX0+oVG8tEAFWl2/PoUcYuVVdrLs3kZAal19VxACIKzwYEeLo0g4OlS7O3iOuUnk4xXF3NeLKiIooyu50W8kWLeP127AD+8Q+K49mz+Z7BQCtabq52TTIy6IaWokwi6Uq/hJjBYIDT6Tzu+1VVVfDz8+vPV0hOgAioz8lhIzlnjjZpcG+pqaGb6LPPmOE2bx6tYVKESQYCg6GrS9Nq1RIBGhspwkJDGRje0cFthMXm4EEKOKOR7vPERN6rlZXcrrNL08dHQWOjHg7HKT/VYYuoG5eYyEFedTV/+8JCWjRtNi3Yv72douyJJ3htZ81i+2Ew0Lp25AivhxRlEklX+iXEpkyZgs8//xzXXnttl/daW1vx/vvvY9asWf35CskJKCtjja9vvmGjl5nJwNneYrHQErZ+PTu3c86RgfmSU4/ZzCUigv+rKuPNROHZhgaKgagoduZOp1bbTEy9ZbczfkxM49PUxPc6OvRoagpGSYkO8fF0m8rCsz3HaKR4iovjNFm1tdrUSbW1vE7jx3M+TJuNlf2ffJKfnTGD7YmvL0VZXp60lEkk7vRLiN1yyy248sorcf3117uq7B86dAilpaVYuXIl6urq8Lvf/c4rByrxpKODLsm9e9nApafTGtbbGBmrlYG4X3/NUet559HFkJAwMMctkfQURaFI8vOjKxKg+Gpu9iyhERbG+9Vm4/s2GwXbjz/yfUUBIiMVBAaaYTZTnO3fT2uNvz+Fm8j6Cw2ViQAnQ6+nGI6Koviqr6dFvqiI4qy1FRg7llaxjg5a7Z99ln9Pm0ax5ufX1VI2ZgxFmQz0l4w2+m0Re/755/HAAw/grrvuAgA88sgjAICkpCQ8//zzGDduXP+PUtIFMTXJpk3AueeyVpCwJPQUUXtswwYGSJ93HgNv+2JVk0hOBaLwrHv9KjHJuXBpVlfzWUhJYSya0wk0NDhRUGDAN98Y0NJCy5uobRYZyZgmRaE7TtQ2E4VnpdXs+LgH+2dlaZPMFxdTnDU3s8Ds9Om0Xu7ZA7zwAgeAU6cyBCIgwNNSFhenVfWXc9hKRgP9riM2d+5cfP7558jJyUFRURFUVUViYiImTpwopz8aIKxWmv6//56NXEoKM556y4EDrBW2fj1wxhl0IWRmyg5HMrxwn+Rc4O7SrK8HKipUGAxt8Pf3h06nR0cHg/3z8zWXZmioNl1TTQ2fD3ermRAGYqJzWbfaE0XRrkNmphbnV1zMciTNzYz3mzyZ2+/bB7z0EuPLpkzRRFlpKctiCFEWF6fAYpE/tmTk4rXK+uPHj8f48eO9tTvJCcjNZSexZw+wZAkbsd5OO1JWxg7ok08owGbOZNkLmf4vGQmIEhoi2aS11YmcnCaEhYW5CprW12suTVWlIKipoUuztpbPQkwMt4mNpaAQMwIEBNBdGhmpWc3kfIwaiqL9LmPHwjWBfHExrV8tLfxdJ07ktvv2AS+/TAEtRJm/P7fft08PiyUUtbU6jB9PcSaLx0pGEv0WYjabDW+//TY2bNiAsrIyAEB8fDxOP/10XHrppTDLWX69SksL3YlbtzJoNi2t95N6NzWx5tgnnzCoOTubsRsyLkYyUtHpAH9/J+LiVJdgstu1GQEaGmi9EQWRRTK4sOrs2UOREBysVZI/epTbmEwUZuHhWqxZSAiFhLQuE+FOHjNGE2UlJRRlFgtdxBMmeIqy1lZaz2bPVuFwdKCoSIeCAu4nPl5zX/Z1GjeJZKjQLyFWWVmJX//61ygoKEBkZCSSj01CePDgQWzatAmvvfYaXn75ZcTIkuxeQxRvLSwELr9cm5Kkp9jtwA8/sCCj3c7pkGbMkPWWJKMPo1GLbwJoFRNzaYraZnV1tHqNGcP3bTbPSc5NJrrbEhMp4g4fpjvTz48CIS6O+xfzaEqLc1dRJtyX7qJMTCq/fz+wapUBdXUxmDFDh9NPZ1uVn88SJoGB/O3T0vhby7kvJcORfgmxv/3tbygvL8eKFStw7rnnerz36aef4u6778bf/vY3/Oc//+nXQUpIQwNH5lu30oI1ZkzvsxtFuYv9+4Gf/5wiTAbESiS0xgQEaJXhxVya7lazqirGQAmrmdNJd2ZuLrBxI/+PidEmxS4p0dyZQpiJOCoZZ6aJsoyM7kVZXByQkeHA0aNHUV8fj//9j2J58mS6L318GOSfk8P9JCZytgYpyiTDiX4Jse+++w7XXnttFxEGAOeddx5ycnLw2muv9ecruuXrr7/Gk08+icOHDyM8PBy/+MUv8Pvf/x76Tq3aV199hRUrVqCgoABxcXG4/vrr8Ytf/MJjG5vNhieeeAIff/wxWlpaMG3aNPzlL39BWid/35EjR/Dggw9i586d8Pf3x0UXXYRbb70VJpPJ6+d3PPbvZ4NfXc3K1hMm9G6EXVzMuLAvvwTOOosiLD5+4I5XIhnudGc16zzJeWgonyOHg+9bLCwsK9yZQUG02MTHMxDdfXLzuDha3EJDKcz6Oj/sSOB4oqywUEF9vQkxMSomTuRvtH8/8Npr/K0nTdJEWW6upyhLSZGiTDL06ddj7+/vjzD3VKVOREREwL+3UeQnYdeuXfjd736H888/H3/84x+Rl5eHFStWoK2tzVVCAwC2b9+Om266CZdccgnuvfdefPfdd/jzn/8Mf39/D+H44IMPYu3atbj77rsRHR2NZ599Ftdeey3WrFmDwMBAAEBjYyOuueYapKSk4KmnnkJVVRUeeeQRtLe34/777/fq+R2P2lpaszZt0rIbRW2lnmCxsF7Yxx9zNDlrFoNoJRJJz1EUbRqg+HiWbGhv10pn1NZyoBQZyefL3Z25eTO3CQig1SYhgYJNp6OIcBdmYWF0Z45Wi5m7KDt6tAPff2+BXh+OmhoK4ZgYYOlSTZS98QbFmxBlJhNDOPbvl6JMMvTplxBbsmQJPvjgA1x22WXw7RRk1NLSgvfff7+LBaq/PPXUU8jKysI///lPAMBpp50GVVXx+OOPY9myZYg4VkzrP//5DyZPnoy///3vAIA5c+agpKQETz75pEuIVVZW4t1338Vf//pXXHLJJQCASZMm4cwzz8Sbb76J5cuXAwDefPNNtLS04Omnn0bIsXSdjo4O/O1vf8MNN9yA6N4ooj6ybx8zJUUF697MJ9nRwTphn33G+knz5jEzaaQ18h0d2qKqXAB2norC89XpRrfVQeJ9fHy4REZSOIh5NBsbtWKnISGaO1PMofndd3zfz08TZiIBQFjMRJ0zIcxGY4xZYCCQlGTFmDFO2O2e2ZfNzXQBjxunibI33+RvfzxRlpAg3ZeSoUW/uqRx48bhm2++wXnnnYeLL77YFaxfWFiIjz76CMHBwcjMzMS6des8PnfOOef0+TsPHDjQRdwtWLAAjz76KDZv3oyLL74YNpsN27Ztwx133OGx3eLFi/HJJ5+gtLQUCQkJ2Lx5M5xOp4eFLCQkBPPnz8fGjRtdQmzjxo2YO3euS4QBdL3+9a9/xZYtW7BkyZI+n09POHqUQmzTJlqyxo/3rJl0Mg4dYvzKgQPApZeyuOJwDM632xkf0tbGjKrWVq3Kuvs6q5WL08mOS6/nYjCwUQ4MZEabnx9f/f216XV8fPjb+PiMzk5P0n/c59FMSdFmA2hs1OLMxBya7sJs+3Za1MxmCoXERK4XMwwEBlJERERoMWajLSvTPdBfZLQWFWl1ymJigMsuo0s5J4eirKHBU5QJ96X4PYUok9mXksGiX0Lsj3/8o+vvZ599tsv7lZWVuP3226EK0wQARVFw4MCBPn+n1WrtEpcl/j9y5AgAoLi4GHa7vUucV3p6OgAgPz8fCQkJyM/PR3h4OII7PYHp6el49913Xf/n5+d3EX9BQUGIjIxEfn5+n88FANra2k66zQ8/6LBrlw6KokdaWgcSEzvQg48BYMO+YYMen35qwIIFDkyY4ERgoIr29n4d9glpP7bz9n58ichga2xUjnVeCoqLgbIyHaqrFdTW6tDaqm2rKGx8jUYVBgP/1um0gGqnU7OWWa2Ka55CYS3z91cREqIiLExFRAQQFeVEVBQQFqYiMBDw81OPlSPo/7kNVbxx3YYqg31uJhMtW8Jq1toKNDUpx8pmKAgIUBAbS2taRwdQU6Ngxw4FNTUKfHyA1FQnEhKcKC5WoNMp8PPj/RoXpyIgwIrWVl2P2pLhiDivzudnMlFIJSSImDIFxcUKqqoUNDdTrP7852wPDhxQ8MYbejQ2KsjKcmLOnA4oCpCTo2DXLiAwkL9lSoqKmBgVISGnRuQe79xGAiP53FRV9WrB+n4Jsf/973/eOo4ek5ycjD179nis27VrFwDGcrm/BnWyO4v/xftNTU2uOLDO24ltxHad9wUAwcHBHtv1hcLCwhO+X1NjwDffhOCrryIxfXo9AgKaUFnZhsrKk+/bblfw/feB+OCDcMTGtiIxsRF6fQsKCvp1yD2moqKiV9s7HEBjowH19QaUlxuRn++L0lIf1Naa4HQCvr5OBAe3IyTEgQkT7AgJccDHR4WvbwfMZhUGgwqdToVOpwksgRBeTqeCjg4FdjtgsylobdWjrU0Hi8WAxkYDKisNyMvTo6VFD4dDgaIoCAhwICzMjqgoG2Ji7IiM9ENhYR0CApzw8+uAr69zRFkmenvdhhND7dx8fGgZi4pS0NxsgMWiR02NAaGhBvj46JCUhGOzAJiwYYMJFoseAQEdiI+3IjraCpMJ0OlU+PmFYPfuRkRG1iAkxIGgoA6YTOrJD2AYUVpaetJtEhOB0FAdamuNqKoyorjYhNZWHQwGFfPnO2AwqCgs9MWqVX5oajIgLa0NU6Y0w253oLjYgI0bFfj7OxERYUd8vBUREXYEB3cM+PN9sn5gODNSz82biXr9EmKzZ8/21nH0mF/+8pf485//jFdeeQUXXXSRK1i/c8bkcCElJaVLfJ07X3+tQ2WlDtHROsycGYLTTw/qcRX93bsV5ObqYbXqsGSJA6edZu51Bf6+0N7ejoqKCsTGxsLnJOXGxVQzFRUK9u5VsHevHvn5OnR0AJGRTqSnqzj7bKergrmvrxG+vgb4+Ph4NdbL4dBcmlargvZ2FRYLY3jKyw2oqjKipCQAe/YAVmsH/P11iIsDkpNVpKQ4j9WLUhEURAvaKUym9Rq9uW7DjeF2bm1ttAZz7kYFDQ0K2trEfapHVZUZe/fq0NKiICzMgfDwJmRkhKK93YjKSlp4YmKAmBhaeYdzfFlbW5srnOREbWV3CEtZSYmCykpaysaMAWbMoKXs8OEAfPddMOrqFIwb58TcuU6Eh6tobFSQl8epsaKjVaSm0lIWEeHd37GtrQ2FhYUn7QeGIyP53A4fPuzV/XmtK8vLy/OorJ+RkeGtXXuwZMkS5Obm4rHHHsNDDz0Eo9GIm266Ca+88gqijs1nIlyNFovF47NNTU0e7wcFBaG5ubnLdzQ1NXm4K4OCgrrsC6BlrbNbs7f4+vrCz8+v2/cqKzm59/btwDnnANOmGXo8sXdlJbBzJ8tVXHABMHOm3pWCf6rw8fGBj0/3D2BLC4Nt9+zhMebmMrYmLQ246CK+hoXpEBx86iZcDgjofr3NpsWg1de348CBWjgcESgvNyMnh7F7TieFoigumZGhxZ2IcxgunOi6DXeGy7n5+GgxZgCfl4YGDgwqKxkLNWYMBzKNjUBengHr1/vA4dC7qs43NLDArL8/78HERE75FB4+vO5Hga+vb687dF9fZpdPmuRZ0b+igr9ldDTjZhnQr8Mnn7AuXFYWi11HRHC7sjLuKzKSv21sLH9Lbw0GT9QPDHdG4rl5ex7tft9GX375JR555BGXCBMkJCTg7rvvxqJFi/r7FR7odDrce++9uPnmm1FWVoa4uDg4HA488cQTmDJlCgAgKSkJRqMR+fn5OO2001yfFfFcInYsLS0NNTU1XQRVfn6+R3xZWlpal1gwi8WC6urqLnFo3mTfPmD3bjac6elceoLNxvnyPv6Y2ZEzZw6demH19ayKvWkTC9O2tLBD+cUvmO4fHj70Cl2aTFyCg4HQUBVGYwvi4sJcQdjNzewcCwvZyH/1FfDhh1oMS1oay40kJWn1ogICRl+gtaTviKQSMRVQczOFVm0tUFysQlFa4e/vB4NBj/p6DuA2beI9OGYMMzbLyhg7GRBAIRcXR6ERGjq0nreBwj3Q32KhKCst5e9SV8eYsiVLtID+Dz+kKBs3DliwgAOtujpmbJpMWrscF0dBJ2fzk/SVfgmxDRs24JZbbkFcXBxuu+02VzD8kSNH8Pbbb+Pmm2/Gs88+i4ULF3rlYN0JDAzEuHHjAAD/+te/kJCQgHnz5gGg7zY7Oxuff/45rrnmGtdn1q5di/T0dCQcK0e/YMEC6HQ6rFu3DpdeeikAWrk2b96M3/3ud67PLVy4EM8++6xHrNhnn30GnU6H+fPne/3cAHbsBw4wxf2ss9j49nQwePAgi7Y6HBzVZWUNfqdfW6sd1/btzFiaNYszBMTHD7+aSXo9O0YRYjhmDOfsFFmcdXUUZfn5FNNffcVrEBnJLK1x42g1i4hg5xAYOHxdR5JTi3sts8REYOxYJ/btsyA4OAxNTWw7hBVIlHvYuJEWoeho3nfiefT1pRAT1rKIiOGZUd1bxO+XkcFntqqKgqysjL9fcDBw8cUUV3l5HNQePUoL5Zw5tIi1trI2nMHA9is1lW1ZTMzxresSSXf0S4j9+9//RmZmJlatWuVhely0aBGuvPJK/PKXv8QzzzzjVSG2Z88efP/998jKykJ7ezu++uorfPTRR3jhhRc84sR++9vf4uqrr8YDDzyA8847D9u2bcMnn3yCJ554wrVNTEwMLrnkEjz22GPQ6XSIjo7Gc889h8DAQCxdutS13dKlS/Hqq6/i97//PW644QZUVVXhsccew9KlSweshtj+/SzgKkZwwkVxMqqr6erbsoVTGE2ZAgxmSExDAxv8Tz/lHJexsRx1TpzIBmsYhOv0GJNJm74mOZmFc8XchXV1dMUWFXFEvWMHLZdBQby2mZkU2xER7AQCA+Uk7JKeodMBgYEdSE7mhOZ2u6cbMzwcrqB/i4VWoO++4+fS03mvlpby/g0K4jMaH6/NkTnYg7iBRkxrlZ5OcVVVRddlcTHb08BAhnf4+fF32roVeOstPqvZ2WzL7HY+0z/+qE1KnpxM4RsWNvJ/Q0n/6JcQO3ToEG677bZu/b9+fn74+c9/7iF8vIHRaMS6devwzDPPAACmTJmCV199FdOmTfPYbubMmXjqqaewYsUKvPvuu4iLi8ODDz6I8847z2O7++67D/7+/vh//+//oaWlBdOnT8d///tfj2zK4OBgvPLKK/i///s//P73v4e/vz8uueQS3HbbbV49N8HRo7SGbd0KLFzIumE9GaU6HGwMVq+mCJgxg2JnMLBaGXy/fj1dJDExwK9+xUbLm7EVQxm9XnOHxMfz3Fm2gB1lZSVH4IWFFKrvvMMReEICR+qTJ/NzwcHcx0gSrZKBw2jUSmWMHct7rq5OGwxER7NNcTjY1vzwA9+LiOCg7+hRDgT9/bkuOZn7Cg8f+c+tKK6bmsp6i0eP8jktKqIoMxqBM8+kcKurA3bt4rPr68v2duZMPveHD2u/YWQkwxNiYvi3HGBJOtOvx8psNp+wfENjYyPMXnacZ2Vl4e233+7RtosWLTppjJrJZMJdd93lMT1Sd6Snp+Pll1/u6WH2i5wcxof5+dFSkpras88dOQKsX8/A8gULBmcKI6cTKCpS8PnnofjuOxP8/BgMO2UKR9rDyf3obVivjIuoBt7WRiuFcClVVbHR374dWLeOVouoKN4DEydy1B4SQnHm7y/dmZKT4+fHJSGB91BjI0WEsJYlJtJa1tLCe+/77ykWxo7lfVdYyAFCaKhm5RkNLkxRWiQpCZg6lUJMPJ+1tbSCzZgBnHEGs6137QL+/W8K3MmTaS0LCODnCgtpcQwJ0aZaio4e3e2hRKNfQiw7Oxv/+9//cNppp3WxSO3evRuvvvrqgMVQjVRqamgN+/ZbiqmeWsOamjiX5IYNNKMPhkvSYqFpftUqA0pKwnDWWQ6ceaYJCQkjfyTdF0TFdD8/NspjxrBBF8KstpadZWkpG/8ffmAjHxTEDnHsWM2dGRjI9TJgWHIidDqt6n96OgcC9fVsd8rLKczGj6fIKC8HvviCc2kmJ9NKW16uJa7Ex1NQREVpsZIjFZOJ5xsfz7a1tpbWssJC/t3ayudx5kwcKxQLvP46RW9aGuNhY2P5e2/fzn0GBrLmmcPh65ppQbaTo5N+XfY777wTS5cuxS9/+UtMnjwZqcdMNwUFBdizZw/Cw8O7TDMkOTEHD7Kkg8mkjUhPhqoyIPyTT9i4zpx5al2STicbpI8/phVn7Fhg6dJKzJsXidDQU3ccIwEx1VJEBBtwh0NLABDzFor4lc8+A9591zM7MyuLFg7hzgwIkFYzyfHx9eUSF0dRLyYur6hgbFNqKu/BmhqWw6mp4b05dqw29VpgIAcSIuA/NHRkx0Tp9TzPqCiK1oYGWr1KSvh8WixaeRFfXw6ivvsOePttPo/Tp3MxGIDiYh2KiwNRVqZHdDStZbGxdGHKeTBHD/0SYomJifj444/x3HPPYePGjVi7di0AIC4uDldffTWuv/56hJ/q4lXDmPp6xhVs3crMnJ5mSpaUMHunpAS47jq6vE5VQ9jWxri0l1+mu+OSS4Bp0+xoa2sf8a6LU4HIyBI1ylSVo2+LhcvRo5q7ZNcuZmeqKhvylBR2BmlptHSIeDV5XSTdoddrySZjxtBVWVenif+4OG1C85ISWuDFgDElRatZFh7O/0XNspHsftPptN8sM5ODJhFXVlLCv318GOsbGMhnd88e4Nlnaf3OyNAhIYHita2NbmFV5bbiGY6MpPiVMaIjlz4LMavVirfeegtZWVm49957ce+993rzuEYlubkcYer1PbeGWa10B65dS1fm5MmnrqM9ehRYswZ47z02QldeSfeF08lGSOJ93OPMxKjbZtPqmTU0sNMsKdHEmc2mWT1SUmg1FTXNRBr/cJwJQDKwiPssMZGuytpaLqWlFAdZWRRmpaXA558zziw9nW1AURHvubAw3mujJVBdZGCmpbFtrqnRJiZvaKDYGjuWsWVGI3DggBPffx+EL74wIjKSsWiTJ9MqXlHBuF+DgQOohAS6RiMiRkfixGiiz5fSbDbjn//8J+677z7MmjXLm8c0KmluZrmKLVvoWszK6ln168OH6Q4MDqYVLTFx4I/V6WQDsWoV45bOO4+1ziIj+f4InDN6SONeNiMpifWjWlu10hnV1czOLCriaPybb9hpisZdWM7CwxU0NRkRGsrGXjb0EoHRiGNTJrFtEsVky8oo6NPSKPirqoCvv+b9l5pKUVZWRmEREsL7U7jeRrqFx2z2jCurr+ezWF6uVfYPCgLmzGlCSooP2tvN2LcPeO45tqEpKRRmmZkUwgcO8Pn18dFmSoiJoSgLCxvZlseRTr+a2jFjxnSpqC/pG3l5DPB0OjV30sloaKB7YPt2YOlSxisMdDyQ3c7ve+EFNhbXX894h5HeqA4n3K1mUVG0UnR0UOy3tDAOSBSwLClhYsinnwKqaoK/fxzS043IyODnoqO1grP+/rKxl3i640SV+poauuMiIii2HA6KDlEaIyGB21ZUaMH+SUlasP8ImwGnCzodBVN4OENHWltFXJkT27c70diowOHge7NncxBUWsrB+ccf87nLymJbK9yYu3bxd/b11YRZdDS/IzRUDqSGE/26VLfddhtuv/12ZGdnu6raS3pPezsfuO++o1l63LiTZyGpKj/zySeMJRMP6EDS2srR7vPPs5P+xS/4KjvnoY9er817GRfHRr2zS7O01I4DB9rQ1GTG559zvcGgBWKnpWkxKyIRQJbQkAj3dmoqBUJtrRZXFh/P+6yhgRadqirPYH/3DMz4eN5ro6EqvZ8fM1GjolT4+zciMjIKzc20llVV0VpmMtHLISowHTrEAVNlJZ+/iRNp/Q4O1mJ1nU4OikXtQlFQNixMZlQPZfolxF577TWEhIRg2bJlSEhIQEJCQpe6YYqi4D//+U+/DnKkk5/Ph6y+nlatnljDyssZoF9VBfzsZz37TH+or+fca++8w8DTCy7gQy4ZvnR2aY4Z40RSUj1CQvzhcBjQ0MD7rLiYr7t2Me7FZPIUZ0lJFGeBgVKcjXZ8fWn9Skig9bymhktpKV2S7e0U+IWFTEry9+fAs6qKiUqisr/IwHSbAnjEotfTipWQoNUWrK3l71ZSwra3tZUC9qc/5W/W2so+4733uF1AAAfkEyfyN2tvpxuzo0ObXzQqiuJMlC+R06oNHfolxHJzcwEAsbGx6OjoQFFRUZdtvD1L+UjDbucDs20bH6QxY05u2XI4WK7is88YoD9p0sCOdo4eZU2cdeuACy8Ezj5bplaPRBQFMJtVjwytKVO0eLPmZq06e3ExY85+/NFTnCUlaZazsDDNWuLnJxv90YbRSFEVG0sLrKhXVlJCUdDaSsFQXEyRr9czHio5mWV8RFmM6GgFFoseqjrYZ3RqcBezU6ZoNQWPHuWz19hIsSaEm58f/8/NpYfk6FHuIytLm0rOZuPzeuiQFroQFKRN/C4ys/39B/vsRyf9EmJfffWVt45j1FJcrCAvjyPEq66iq+9kFBZy8mwfH1Zvjo8fuOMrLwf++18KxWuuAebNk/Fgo4nO8WZpaXR/uIszUXi2uJj35g8/sOE3mdgJuLs1hTiTlrPRhcGgTbuUmakF+5eW0hqUmUlBX17OAZ/DocXKmkw6tLYGo6ZGhzFjeE+Fho6Oe0dRtJCCtDRauBoaOCASgf91dXzeYmO12mV2O4XZF1/QRWww0HU8bhy3MRr57Ap3pl7PZzI4mPsJC9O+199/ZNeFGwr0WYhVV1ejrKwMISEhSOnpjNQSD1QVOHhQwY8/MmYiPV3LPDweojLz5s2c1HsgA/SLihgPduAAsHy5lnItGd3odFqafnQ071shzkRCgBRnkuPhHuyfkUGLj3tlf/cMzA0bgOZmAyIiAmC3Kygr02qVpaaOjlpl7gg3Zng4BZXDoU3wfvQoRVdDA0WtqEMmyhmVlDDLXsyWEBpKAZyZyWfSbqeoKylh36TX09oWGMj3w8K0WoSy5I136bUQs9lsuOeee1zFWwFg3LhxeOqpp5CQkODVgxvpdHQAeXkK9u0DLruMYuxkIw9RriIhgWUuBipAv7AQeOYZdqS//S3dn6OlsZP0HndxBmiZmp3dmscTZ+5uzaQkbdomKc5GNu4Wn/R03ic1NRQUIgOztdWBggIHduzQo6FBy8AsKqJQCAuj4IiOpvgYTdmCBgN/JzFhu8NB12V9vRZG0NTE59DXF5g2jeEsZjPXHznC/qSqiuJLZFmLjGmnk1mxVVV8nhm+wH2FhPB7Q0O1Z9/fn+9JC1rv6PUtu2rVKqxZswYTJ07E7NmzUVxcjPXr1+Ouu+7CqlWrBuIYRywOh4Jdu3SIj+eNHxt74u0bGlh5ec8e4Npre+bG7AuFhcBTT7Ex/O1vGWsgO0JJb9HrtRgxQXeWM1GAtjtxlpjI+zwxkY2+zNYc2YgOPSWF90ltLVBcrEJVrcjM7ABAMZaTQ3EQFUUBUlxMURYays+KArKjzWpjMGgWM0ATUg0NXCortXpmDgdjxNLTGW5iNFK8FRYC69dzW6dTmykhOZnC2NdXs1gWFXEbgALNx0cTx76+OlRV+cDXV0F4ONf7+o4uodxTev2TfPjhh8jOzsbLL7/sCsR/7rnnsGLFClRVVSFaptL1GCHELriA1rCTdSwHDzJAf8IEFvobiNo7RUXAk0/yIbvxxlM7XZJk5NOd5axzzFl9vVbjrLCQrngpzkYffn5cIiOdCAhoQmBguCuTNzqa7jeRgfntt7SqjR3LuDNhsRG1yiIjR+fUXjqdZnFMTmbwf3s7rWYiCUDMj1lfz2cxIYG/o9nMZ66hgUJ3zx7OoNDSwv1GR2viLDGRIsxq1abGam5WUFUVhCNH9PD31+bRFYkCQUG8vj4+mogzmbTvHawwGFVle2O18rdqb2dIUFsbf6e6Oi1L3Fv0WoiVlpbisssu88iGXLx4MZ544gmUlpZKIdYL7HYFQUFap3IiqqsZMF9cDPzud3wAvE1ZGd2RlZXDU4R1dPBh6ehgg+J0an8bjdpDP5zOaTTQOeYMYF28tjbNclZX1704M5u1mLP0dHYi0q058jCZVMTFqUhLYyZgbS3bRBHsL2aTKC5mJq+PD8VESYkWhJ6QQFEWHT26swN9fLhER9OaqKp8xpqauNTXU5yJ4s8OBy2PSUmaWFIUbcaOH34AVq+mYBHJPTExQFSUDnq9gpAQFaGhjEFzOLT5S202eGTCGgxsp41G7W8fHwpo8Sre1+u1Rafjoiiei9i3qrIPUFWtP+jo4OJwUHC1tfH4W1v5t8PB47XZ+Cr2pdPxWCIivHtNei3EWlpaENSpdkHAseGtzWbzzlGNEux2HaZM6UBmpv6E6l9VOQflp58yS3LCBO+PFqqqGJhfWEihNxRFGN0UfPjLyvhANzZqZvemJs1MfjzEg+TnpwX9ikXM4RYbywZ7tLk1hhI6nZatCTB2TIgzd8tZSQmXI0c4ULHbeX1jY9lxpKZSpAUEKGhoMCAqiuJtqN3bkp5jMnUti8Eq9XSJjRvHDrSkhB4EgIIjJYUCvXOtsqCg0X0/KIo2EIqL4zpVpShpauKz1tTE31i0s+3t3CY2ls+YcG0aDPycmLmjqCgAP/xgcIk0nY6WStHeui9GoyaQOjo065rDoa1TVfS7jIm7SBP/GwwUdUIA6vVsJ3Q6/i1mIzl6lK/p6YpXSzj1yVt7vNpgsmZY71BVjuJPZt0qL+cclM3NwGmneb9cRV0d8NJLrNR/441s3Ab7Ura30xW7bx9fjxxhg9sbxEOk02mjL+EGa21lUHA3pe8A8PxFAURR0yct7eRxfJKBw12cRUVx3bRpXcWZqHF26BCfG4cD8PExISQkBmPHGjBmDK+nyAILDJSW0uGK0ch7ISqKAqy+ngO2khLGi4mkkfJyzgpitXJdaqpWq0xYe6KiRk9ZjJPhXrbGHbtds1JbLFxqaynOLBa2sx0dfJ5SU1WEhlqQkOALPz+9KzZMJBPU1vIZ3baN/9vtnt8lZggICNBehXvT3Y0pFpNJu3burx0dmjVOvNpsWj8g2g8hPBsbeS5iUK+qvE/Cwigg4+IAHx8VgPcajD4JsT//+c+4//77u6y/8cYboet0FyuKgh9//LFvRzfCMRqdGDPGecJYL6eTAmndOoqwzEzvNhTNzcAbb7DK9Q03cIqlwWiIVJWd5/ff09Sdk8MHyB2djkJIuBiioji6Cg7WChIGBHBU0/kcVNXT9Cz8/bW1WhVr4e6oqOCDWVXFZccO9z35Ijw8BRkZeowZw/T7ceP43ZJTz4nEmZi+qa4OOHLEjkOHnMjJUbBlC+8tYQFITqbIjo9nYxsQoIkzyfBBr/fMIGxs5HNdVqbFi3V08Jn+7jt2usnJFGa5uVpnm5LCe0lOfN8Vo1GrzO+O3a4Jm5YWPn9Hj6o4eJCNeGur5uYTmZeihI2wpAmLlHAzilkYLBa+trZqYk/sS/xts1FgCYuZu1tSp/Pcv3gVLlrh+oyMpEAPCeG9oNd7ujDtdgr5gXD89fo2+/nPf+79oxilGI1AcvKJ7awlJRzJmUx0S4rOxhu0t3OKjLVrgauvpuvnVJeoKC5mraCNG3mu7kRGMh5k/HjNtdDXzlFR+MD1JGBXVdmIl5ZyKSvjcebnU6jV1ppQW8uRnCA6moJM1OXJyJBzuw0W7uJM1DmbMMGJw4drEBLiA7vd4IovKi4Gdu5klpjTqc3Rl5zMaxgfrzXMAQGyjt5wQafTBENGhjboKi/nurg4drC1tazqX1enFUQtKmI7ERrK+yA6mqJsNAb79xSjUUsKELS1OREZ2YTUVAZ+iqD39nYt0UIsIjDe4dAWgbB2RUZ6ejncY8PcY8QA7dXdBSnixIRnpHMcscPBzwnhB1CwGQxayY7ISJ6jt9v2Xguxhx9+2LtHMIrR61WEhR3/fYeD1rANGzi3Y2am99wnDger87/1FnDxxawtc6pGf+3tFF6ffspisQKjkdmgs2axRpqIVzjVKIpmYZs40fO96uo2fP99DVpaolFcbEJuLgWksJ5t2MDt9HqtknVWFpfYWOn+Gix0OsDPz4noaBU+PuycRZ0zMequrmYnXFpKkf355/xseLg2ek9P1+ZADAyUyQDDAUXRsvRSU7WwhKoqCrPYWLaH9fV0lW3YoE1MXlrKwZ+YmFxkYMop3nqOwUARc6IsQ2HdEhYn90B54Uq0WrnY7doi4seEuBJ0jgETCMEmBJbJxMXd1SkSAoQAdHd9in1VVXn5N/Lu7iS9wWA4sTWsuBj46iuOzGbM8F7xVlWlu+3554FFiziR7KkITK+uZnbN2rXaiEOno/A6/XRa/ERMggjUFKORgcBq5YPs/h1WKwNSW1p4LMLl2NCgPfQREVbMmdOBgACuF+6PsjLGsuXlcX1eHpdPPuE+goLYmaelMctrwgTPBl0cj9XKzgLQTOuiSGJ3ZnGTids5HExCCAjgCL+2loIwNJTr3c9RmPFFo3S837i732ik4F7nLDaWHW92thYDIwJ0CwrYIX/6Ka+LmENRuLWSk7UpYaRLc+jj50c3ZVIS728xj2NpKa1fNhuFeVERXZh+fhTuooaWiCtLTKQoCwuTxa77ixA/fclmdbdwdXZNAp6ZlHq9p+VsqOBVIVZTU4PTTjsNL730EubOnevNXY9IdLrjCzExGfiWLcCSJd4t3pqXB/zrXxQDP/vZwNQjc6eyknFoX36pxX1FRXHeyoULeW7unbxoHK1Wrg8P974I6O47AFq3cnLYCYtq3wAbZRH7oNf7wm6n4CkupujR69lQjx9P4WO1UngeOsSEg8JCxqTs2sXl/fcpsNLSKMgyMpjyrSg8BmGyB7QgVX9/HoN77JwYbdrtmgiLiuJ3lpezUxGxbCLRoLZWS1cPCtKyR3vyG400MdYZg0GzhsbH83rOn69dD1FTqaiIs1xs3crfPiiIsYupqdpvHRqqBRnLjnpoYjbTyhUXx+dQTEwuRFlrK+//sjLG6drtvMapqYwrCwjgdU5M1FyYUoifWoTAGs7PmNctYmp/c0tHESdS5UVFtIZFRDB2y1um8Koq4D//Yed7+eUDN0USwE78nXc4t5kQD5MmAeefz4YrJIRiwOHw7OCFVSgoqPv3vUF33wFQgKkqxY2IFQMomkwmjpzj451oadHqy5hMWnxDSwsbdaORIis7m59paeH1bGhgI8+Ch5rVTCASDxIStDn5wsN5HGYzv08EvAprWUcH309I0NLMGxt5bcvKtExRcY5WKzuLo0cp2oTVq3NDdiquw3DAZNLmRkxK4j3sngxQXU2rWVERC4uuXcvrEhmpWc3S0/ksi3gz2VkPPTpnYIpgfzHdUkYGn73qataxa2jQKvsXFnIgFBSkCbvwcF7voWZ9kQw9pGtyCGKzAbt30yx+6aUcfXmDlhbgtdc4ov/jHweuFENbG7BmTTi+/toHVivXzZgB/OpXtDAIS0tTEzv2zrFpwg12vPe9gft3tLaysRWFH8vKeA719Xw/IkKrtqyqwOHDJowZwxGwyOKxWBjMHxdHUebvrwV9Wq1sjMeM4f/BwRQ9CQnc7vBhWslKS9n4NzZqZTVEfItIBhDWtrY2LflAr9eO22Ti8QYH0yKmqvxOVdV+R7OZ56YoPL/QUL7H/Sqw2SgUxG8kpjoJDvZuIUyRCSUsecdbN9RQFK3qe1QUBffMmVoJjYYG3k8FBVpF8rY2/nai8KxIBHC3mskOe+jgHuwvnlvhwqyo4HV0d2Fu3cpnMSOD74k6hUK8i2zO0TiQkZwcKcSGICI2LDqaAsYbHZLdDqxZw/1ef/3AzFOpqnSl/uc/PqitZYrR+PHAb37DV4Fwcx0v9uhk73sD8R0iQLu9nb/z5MnAnDnA/v3MpLNauf7ss3k9SkqYNWky0TIyZw5dFKJGUVMTG+PAQHbAzc0UNZMn0zqWk8P4PCFGly6lwDIaeU1sNk1E5eZSlAhxlpvLY/fz4zbR0cAZZ2jTluTlUTA1NzPJID6e4s5g4DrhTg0KojAAtFo9AEf/9fWGLvV6Ghu14FmTyTv3Y3Mz3bbt7fyOzEyu77xuqIqxzuj1WkB4XBzvd/f0ezGHX36+ZjXT6zkYSktjZ5+czHtSxJrJ0glDB1HwNDmZz25dnRYbGh3N50m4ML/4gs9LYiIH0YWFfJZERm5srHadJRLAy0IsMDAQDz/8MDIyMry521GFsIZ9/z076ZQU7+x3507g1VeB887j6N3bmV6VlZwe6YcfAEBBeLgNy5apOPNMc7cjfdHRH4+Tve8NzGY2mO3tHLUWF/P3T0pijJXNRjGQm8vtzGa6ATMy2lFf7wOLheLp8GGuHz+e21osFEvNzdp+nU6OjkXBQ7FtZSUbeIuFguzIEcbNTZ0KbN7MQH9/f819efSoVq+nooKWNKOR3yOqilsstLbFxPDv6Gi6pNvaNMuLTsf3m5r4v6iT4+/vdGUjmc1aUH98vOc++ktrK39392MTtd46H+9wRdQpiohghzx1qmfh2dJSXu/Dh+GqbSbqWI0d65mhGRIiS2cMFcxmrbL/+PEcqIjJ6yMjKaptNl7jnBwO9vz9tSm4RGmVkBAgOlqBxWJEfLwsjzGa8aoQM5vNss5YPykupiUmNpaxYd4IpC8upkiaPBlYvNi7GZKqymlEnn+eHafBACxZYkd2dhHS0xOGvLslOFgLunefjDo+nlYJUegxJkZzl5WUmBETowW4x8RwtJuby1dRa6Y3+w0MZKccGKjtNzaWHXFTE61eF11EAfXhh5obs76enfuRI1wohIGXX6alJSyM+xDTkADHd/0ajUBLiw5hYdo6MT9nVZVW/NAbHG+/A/FdQ4XOVrMJE7TCwhYLzzs3lxbaDz+kKBUZfmPGUGTHxWlFjKWba/DR67X4wTFjtHlRq6tp1U5I0OpmlZXRI9HeriV2BAfrYLEEo6xM7ypULfYnp1gbPfRLiG3duhX79+/Hb37zG9e6d999F08//TRsNhsuuOAC3HXXXdAP53SGU4jNRgvHDz8AV1zhnYm9LRbglVcomC691LszxtfVAStW0HoHcHR4661AVJQDJSXDI2kjLIwWwuZmiiVR1y0zE7jsMlqsYmI019k55wAHD1owbpyva6L29HSKpOpqijDh9u3Nfs89l6NqUbPqRPu94gotqzM6miPxQ4foThUdeXs7R+PuBAWxsxg7Vsv8cs+EjIgAmpsdHrEsAQE8RhGT5i0L1fH2OxDfNZQRcX5RUby+s2Z5Th1TUECBvWED8PHHFKhJSbyGmZkU9n5+gM02xEc8owRh7UpMZOhCQwMHS+XlWsV/u53raBHXQ1VDkJmpIDmZz6gokSEmKA8Lo/iWruqRS78u7VNPPYU4t6qbhw4dwl//+ldkZmYiKSkJr776KiIiInD99df3+0BHA8XFjC+Ij+c0Lf21hjkcbLy3bQNuvtm7c1Tu2AH84x9sUIxG4JprgJ//nCPE9nbvfc+pQIxAOyOq5LsTHw84ndYuv6XIjOvrfhMTNQF2sv3GxHARiCytM8/k/x0djGXLzeVy6BA79KYm4McfuQjCw9mpZ2QAyck6+PjouozE3S163qS7/Q7Udw0XjEbtvklOpiVUTLpcX8/rmJdHt/WaNbSaxMcbERkZjtmzdUhNZYB5SIi0mA02RiMHUJGRfMaEtaymhgMxZjl34OhRCxyOMPzwA4WbKDwbF8dnwddXiy+LjNSur7RvjBz6JcSOHDmCc845x/X/Rx99hICAAKxatQq+vr64//778dFHH0kh1gPsdsaG/fgj8MtfescatmcPK+effz7dkt6gowNYtYp1wVSV8Sx33+29WDZJ/9HreT1SUmjBA2htLShgPJIQaMXFtLps3coFMANIR2ioiowMeCxRUTKrbzAQGbHBwRTqEydqNeBEAsChQyr27AnEtm1GmM2aK3P8eHb2ouOWMWaDi7u1TJScqax0Yu/eduj1qqs8Rns7LWgbN/JaR0byWY6NpbgWZTJiYzVhFhwsr+9wpl9CrK2tDQFuw9dNmzZhwYIF8D0W3DFp0iSsXr26f0fYDevXr8ezzz6LvLw8+Pv7Y8aMGbjjjjuQ2Mmk8M477+DFF19EeXk5UlNTcdttt+FMYTY4hsViwcMPP4wvv/wSdrsdp512Gu677z5EdZrUcceOHXj00Udx4MABhIeH44orrsDy5cuheKl3KilhwVNvWcMqK4Fnn2Vj/NOfeses3dwMPPIIa+gADPy/8UY58h4OmExdLXFtbXR75eaKoHEnSkoU1Ncr+OEHLd4MoKuksziLjZXT+5xqdDptNoD4eAqzuXMdyM2thI9PLMrKfHD4MEvffPopn82UFE6xNX685uoKCpKursFExJb5+alQlBbExXWgrU0rfSKC/h0OuqnLyzlQt9u1qv4xMZprOyCA/0dFaQWJZa264UO/HsXY2Fjs3bsXl1xyCYqKinD48GFcd911rvcbGxth8nLE4bZt23DTTTfh4osvxm233YaGhgb861//wnXXXYfVq1fD59jdt2bNGvzlL3/BjTfeiDlz5mDt2rW46aabsGrVKkydOtW1v1tvvRV5eXl44IEHYDabsWLFCixfvhzvvfceDMdaqqKiIixbtgzz58/HrbfeikOHDuGf//wn9Ho9li1b1u9z6ujgnJLbt7PIalJS//bX3k5LWGMjcMMN3okLKykBHniAAadmM/CHPwBnndX//UoGD19fduRiPs32diuOHCmFw5GI4mIfV7HZoiJ2Bjt3chH4+Wk1scSSkCBdJqcSRWEnHBlpR2Ki6srMbGqitZMWMw7yPviAAiwjg6JM1MILDZV1zAYbs5lWrZgYJmW0tGjxZZWVFN1iVo2mJiZ27N/Ptj40lH2GSBoSJWbCwrhOZN0GBsqB01ClX0LsZz/7GZ555hlUVVUhLy8PwcHBWLRokev9/fv3I8XLPqs1a9YgLi4ODz30kMsaFRYWhmuuuQb79u3DzJkzAQBPPvkkzj//fNx6660AgDlz5iA3NxfPPPMMXnjhBQDAzp07sXnzZqxcuRILFiwAAKSmpmLx4sVYt24dFi9eDABYuXIlQkND8fjjj8NkMmHu3Lmoq6vDs88+i6uuuqrfYrO0VJtodurU/hXNVFXGj6xbB1x3XfdxR71l1y7g739nyYGoKOD++9mYS0YeJpOK9HQVU6Zo62w2ijEhzPLyWA+rtZUDiL17tW3NZmZrCmEm5mKUbpNTQ3cWszPO0KrEHzpE9/Q77/C6ivilCRN43SIi2LFLa8rgItyY8fG8NqJQsLCYJSRos2W0tLCszebN/DswkMIsNpYizH3S7ZgYbV7U4GBtDlvJ4NIvIXbjjTfCbrdjw4YNiI2NxSOPPIKgY9UhGxoa8P333+Pqq6/2yoEKHA4H/P39PVyCgcdMPmJ6pZKSEhQWFuLOO+/0+OzixYvx2GOPwWazwWQyYePGjQgKCsL8+fNd26SlpSErKwsbN250CbGNGzfi7LPP9hBcixcvxnPPPYedO3ciOzu7z+fjdDK77dtvgQsv7H9sWEkJ8N//ch7H2bP7/5CtXw888QQf+AkTgL/8RZsIWzI6MJloPRkzRlvncPBecxdnR45whH7gABeBwaBN9SMEWlqa7OxPBTqdVjIjMZGxok1NFGbl5bxOR46IGEF28OPGcbvERK3TllbOwUNRNHEt4gSbm3kNGxpoHYuLo6B2OPgMVlUx3rihQasZGBdH4e3vz2fS318TZ8JiFhRES7cUZ6eWfgkxg8GA2267DbfddluX90JCQrBly5b+7L5blixZgo8++girVq3ChRdeiIaGBjz++OMYP348pk+fDgDIz88HQOuWO+np6bDb7SgpKUF6ejry8/ORmpraJc4rLS3NtY/W1lZUVFQgLS2tyzaKoiA/P79fQqyw0IpvvjHAz0+HSZPsMBrVPmcdtrUBL79sgF6vw3nn2QH0fV8A8P77BvzvfzRlzJ/vwB/+YHfNq3girMfmNRKvIwl5bhqiqOVpp/F/pxOoqFBw5IgO+fl8LSjQoblZcdU5W7eO2yqKivh4FampTqSn8zUtzenV8iruyOumIeKKYmLYqTc1AQ0NCkpLFRw6pMP33+vw2WfKMdezExMndmDsWPVYYLjqldqGvaH9WIPTPtzSsXtAX8/NaNSmTUpPp3XMYlGOzTWrICJCQWqqVkC6qQmorFSwZ4/OVZ8uNlZFZKSKsDAVZjP36esL+Ptr1zoggP8HBPQ+prDt2PQd4nUk4XSqALynVodduObMmTPx9NNP4/bbb8ff//53AEBWVhZefPFFV72yxmMzNQd1milb/C/eb2pqclnT3AkODsa+ffsAMJi/u32ZTCb4+vq69tVXvv22Dl9/7YNZs+oB1KGgwNmn/agq8O23gdi8ORqXXlqO9vY2lJT07ZhUFVi9OgJffMHaC4sW1eHCC2tQVdW7/Rw9erRvBzAMkOd2fESNskWLeC/V1RlQWuqD0lIzSkrMKC31QWOjAaWlCkpLddi0SftsWJgdCQlWJCa2IyHBioQEK4KDHV4bocvr1j3CpRwXp8OsWXo0NOhRVOSDoiIfvPmmGQ6HDhERNqSltWHMmDbExNgRHOxAYGDHKYs7qqioODVfNAh469yMRlq+IiIUtLTo0dqqQ1OTHnq9Eb6+OkRF6eB0KrDbgcZGAw4cMKC+3giHQ4HJ5EREhB1hYXaEhDhgMqnQ6wGz2QmTyYnAwA4EBzvg7++Er69YOk4q0EpLS71ybkOJsDAHAO/Fv/dLiN1zzz0n3UZRFDz00EP9+RoPduzYgT/96U+47LLLcMYZZ6ChoQH//ve/cf311+P11193BesPBzo6FBQVxcBsNmHRomBMmtR3c0BJiYIvvzTizDM7sGhRRJ9jcpxO4MUXjfjiC94a115rx8UX+wLoebCZ1WrF0aNHERUVBfMIS6mU59Z7kpIY+6hhR0ODHfn5OpfVLD9fQWWlDnV1RtTVGbFnj5aNHRysIi3N6baoiI5WeyUA5HXrPR0dTNJoaFCPuTHNOHLEFzt2KPDxATIynJgwoQOZmSqiooCwMHVA3M3t7e2oqKhAbGzssGrfe8KpOjenU7OaWSxAfb2C2lqgvV1Bezuvtd2uR0ODEXV1OhQVKbBa6ZIOD1cREaEiLAywWFQYjVzv4wOYzSoCAxlXGBiowteXmaAsnNCGyspSJCQkuCopjBQaGnK9ur9+CbFt27Z1Wed0OlFdXY2Ojg6EhYV5/QI8+OCDmDNnDu6++27XuqlTp+KMM87ARx99hMsvvxzBx2ZTtVgsiIyMdG3X1NQEAK73g4KCUFlZ2eU7GhsbXdsIi5mwjAlsNhva2tpc2/UFhwPYtMkH8+frMG6cuc+NWFsb8N57fDAuvFB/QveO1cq4AeEq0uvporDZuGzYwGwcRWH9sTFjjGhoMLomIe5NO282m+HjM7IeQIE8t/4hitLOm6etc5+qScScFRcDjY0Kdu7UY+dOLVBJZGyKuLP0dAq+k8UyyevWO/z9tUy+efPYdtTUsOTJgQM6fPihATYbXdQTJ7IAbWKiNqm1N61lPj4+I/banYpz8/OjK1MgAv0tFsac1dVxEROYd3RwG5EocPgw33c6NdeouM7Bwex/FIUxpSYToCg6NDUFIzPTH5GRZtfcqxRw2jKcMjmtVv4+Tqd3g+j6JcS++uqrbtfb7Xa89dZbeOWVV/DSSy/15yu6cOTIEY/MTACIiYlBaGgoiouLAcAVz5Wfn+8R25Wfnw+j0eiqN5aWloatW7dCVVWPOLGCggKMHTsWAODn54fY2FhXzJj7Nqqqdokd6w02mw5WK5Cd3X0F9p6yeTOwaRPwu98xq/F4WK3s2LZsYXJATQ1dRwYDH47GRooxgGnthYVMnU5N5XQ9kZGeU+IMJjYbz8du1+IgHA6+dnSwsVDdZlnS6/nA6/VcDAYuRqPn0l8XmNXKkSfA/dnt/FvE1TgcnoLWau267nj7FdvZ7fwOMfelCNw1GI5fUb2uTpsW6WT3mvg9Ox9Tc7Pn957oGPtyj/j7M0jcvfiw1cr70D0hoKCg+4xNk4k1s9yTAlJShsb9OhLw8dEEdFYWy9fU1zNpIyeHpU2++ILXMTOTVtCxY9luyLkThx4GgyaiBB0dfLaam7V2pa6O69rb2TY4nVp9s6YmPpcNDXxfUXifUKDp0NHhi4YGxTWQV5Suba6og+bnx7/FepNJa6NFey3abtGe9wdxHrQG8m+7XetTxNLSov0eViuX+fO9m2w0IDFiRqMRV155JfLy8vB///d/eP75572277i4OOR0mkSvrKwM9fX1iD8270xiYiJSUlLw2Wef4Sc/+Ylru7Vr12Lu3Lmu7MeFCxfi3//+N7Zu3Yp5x4bmBQUFyMnJ8Zg/c+HChVi/fj3uvPNOGI/5/NauXYugoCBMmzatz+diteowa1YH0tL6fkdVVACvvgosWNDZ/dMVh4MPTksLHyxhPWht5c0oRFhkJEWMmBC6ro4PkOhoT2XHJh4EmtW12jrV1XxtbOQDIh4ah4OLuwgTiIfXZOIDLyaWFpWqw8PZYYgMJfcRnK/vyR98q5WZaNXVmgAD2JCEhvJV/K5iYu/aWn5OrOvut7Vate0cDp633c7jio+nuK6s5P4zMmgZct9PXR1r1Il5L2fOPL4Ys9kU1NTwersfU3MzSx+0t/N7MzM9xZj7MZ7oXHqL2dy1EK17xqawoB05wntEzBog0On4e6SkGBEWFoLp03XIyupfiRgJnyVRODQ1lXNkNjTw3j94kNmYYo7b1FTOuzhpkjap9Wiexmooo9dr7Z877e18vkRbLKbcam3VBsWqSnFjt7OtrqsDjh41o6REf8yKpAk1IQD9/dn+inZWuD3FgFiILveBtE7nOagW4kysVxQuog8Qx+UuvNwH7O7/dx7Ii9e2Ns1y2NgITJ+uIDTUe7/7gAbrjxs3Dh999JFX97l06VI89NBDePDBB3HWWWehoaEB//nPfxAeHo7zzjvPtd3NN9+MO+64A0lJScjOzsbatWuxZ88evPbaa65tpk2bhgULFuDee+/FXXfdBbPZjCeeeAKZmZkeUzctW7YMq1evxu23344rrrgCubm5WLlyJW677bZ+1RBzOoFZs5xw8572CrudLkm7HbjggpOPOA0GCg5x87e28ibT6zUrjpjrz2jkw6UobDjdhdlAYrN5pmXn5bHO2tGjfBDczyM0lB1+erp2TmJuNvFgiodRjHKsVm1SZWGWb2mhoG1q0hoUnY77Cg2lCV5YAgIDFVgsRvj783cxm7VGw+HgA2s08mGur+c2RiP37etLS2NTE7cF+H1BQdq67sSLw6FtV1jIxiApib9PfT3PISREG8l23o8Qq0lJFG3NzccXYmJ0GBHheUxiRBwdze9ta/PsTN2P8UTn4g0MBi0h4Oyzuc7ppBh1t5zl5fHcCwuBwkIDgCi8/z63j431tJylp8OrDetoQ2RixsayzI0YMBUU0GopCspGRvL9KVN4/SIieO8OJ/fUaEQIpc7thnDViaW1lc8c21gVlZUtCAryhaLoPdrilhataG1lpfZZm01rT4Wb08dHc3eazXwVFjO6QLm4izDxt+gDhOASgkwYHux2noPNxvatvZ3tY0cHj0FVPcuHBATwnjUah1HW5Lfffuv1GLGrr74aJpMJb7zxBt577z34+/tj6tSpWLFiBULdWtILLrgAbW1teOGFF/D8888jNTUVTz/9dBcL1ooVK/Dwww/j/vvvh8PhwIIFC3Dfffe5quoDQHJyMlauXIlHHnkE119/PcLCwnDLLbd4zCLQF4xGFs/sayO0Zw/w2WfA1VezgzwZYh664GDGfOTnc+QqprI56yytoGxwsGZqjo9Hn2LEekprK0dPZWV0cRw5QmHkdGqTH0+YwIY7KkoTXeKhFA9mT39HVdUsZ+5maKuV59zURLdtWRkbiaoq/k6trYDTaYLJFIO4OCMSErSpRkJCeBw6nWa+Dw7WhI2wiDU1eQpas7nrus6I372piUKno4PH5OPD/VosmkWsuzTz4GCuLy4++aTaen33xylGreJ7Oz/W7sd4KgR7Z3Q6bfLzhQu5TlVppTtyBDh40I79+62oqPBDdbUOFRW8xzZv1vYhRL0QZunpfK5kTaXewQBv7fecO1crRLp3Ly2rGzZoltUpU9geRUXxM9KFOXwQcV7d1ZZsbOxAbm4TYmJCoaqaaGtupghrb2fbKNrIziElop0W74vF4dAEn92ufcZ9cbdoKYqnVU1Y09zFnGg33ePWhAgTn+kcyuJNFFXtzonTM55++ulu11ssFvzwww/IycnB9ddfjz/+8Y99PsCRyt69e1FT44BePw4BAb0Xq/X1rHDv78/YsL7o3XXrgMcf59/LlgGXXtr7fXQHS2eUIDEx8bgBqDYbxU5hISv3HzzIxjoyko3zpEkUXiEhmhXvVHfuHR3aSE9Yz8rLrdi1qx4WSziqqow4epQNg68vjz06WiueKOJihLAFvBcj1tamxVY0N1MAiZiP48WICdfk8axh4rpFRydCr/ftNkbM/XtPdIxDLS7L/Z602Xw93Jp5eRTd3bWEAQEUZmPHaktk5NASZz153oYKNptnwP++fZy1weHgIHHiRA4G4+MpygICeH4FBQVITU0d8ufXW0bzuQmrlFjEoFiIrfZ2zVolXt2tWu6Cq/PSGWEpE8IK6OrqFO2We0iKGOSLQb94H9gDs1nBpEmTvPJb9atrO54QCw4ORmJiIv72t7/hsssu689XjGiMxr5Zw5xOYO1axsnce2/fRNj27cCKFfz7kku8J8JORkMDO73t2zmJbU0NG+CFCxm7FBNDK4+//+B3dnq9ZkES7uMxY5xISKhDdHQw7HajK9tITPtTVkZhabfTihQTw2rlaWnalCPC9avTaSOwk+G+ndnsKYROZuUCKL56mhAi3AGdOdn39PRcBpugIGD6dC6Ctja60dxdm0VFFJ+7dnERhIZylgF3cSZnm+gZJhMtX1FRtIKdcQafn6IiirJNm4BPPqEIy8riNYqPZ00sZ99KLEqGKHq95tLuKd3Fd3UWZYCnGHMXYe4WLve4M5FI0FO8fS/2S4gdPHjQW8cxKumrS7KkBPjoIxbM7MuUSPn5wP/3//Fm+slPaA0bSJxOuohyc5mxeeAAO8PZs5kSL9Ldh4tLQsSPuYuV2bO1hAKLhTFtQpwdOkQXmNPJDjs2ltl8Y8Z4JgcMl/Mfifj6ciLs8eO1de5zbIokgIICWqO//56LICqKgiwzk68ZGTIh4GTodFrAf1oanyHhwszJoZX8228Bg8GEmJgYzJunw9SpWva2fF5GH8LFONIYdpX1RxLumR09xWrlhL1+fsBPf9p7MVdTQ5dmWxtjM/7wh4GzPIkA6v37gW++Yac2diywfDlLFMTE9M2aNxRRFG2i3pgYiqy5czW3YX09MyqPHKE79ttvgU8/ZaMSEUFXTEYG3bHCaubvPzIbneGC+xybIg/IauU1FMLs8GEOjI4e1SZeBng/JCRoFrNx4yg25OTnx8d9ouvJkxkDxCxMO7ZvV/DBB0a89ZY23+KMGdxWZmFKhjteEWJ2ux1VVVVoampCdyFnEyZM8MbXSEB33jffANdf3/ssr/Z24IEHKMYSE4H77huYjkFVgYYGAwoLdfjqKwqQGTOYVJCRQeExGrKk3CdcTkhg3JvI2uSccHRlFhRQnK1eTYFsMjHWLDGRHXhcnGe262C7bEczZnNXy1lLi2Y1O3SIr0ePUqCVlADr13M7o5GiLiuL1zUry7PApkTDZKLlKzISSElxIiWlGn5+JlRV+WDfPuC77xieERLC33HmTK1t8XYhWYlkoOmXEGtqasKjjz6K1atXw+5eOOkYolDqgQMH+vM1kmPU1wNvvMFOoLfly1SVMWF5eWyo/v73rrVivIHFAuzcqcPq1ZGoqjIiOxu44QY2krI8gBZHFRFBC4nTqSUCNDbSgijEWVER3V8Oh5ikl65okWEmrGaiorVkcPD3p3V5yhRtXUODZjU7dIhLUxNdbu5lECMiPIVZRoZ0uXVGpwMCAzuQmKhi3DiKLlH2ICeHv/H339N6nJHBYP/Jk3Fs2iX5e0qGPv0SYnfffTe+/vprLF68GFOmTOl2Am2Jd1BV4OuvKaTuv7/3VX3ffZeWNL0e+POf2al7E5uNVp1164Bt24xISWnHn/5kx7RpZhnIfALYyXCJi2NnbLd7ujQrKmhVFDWZvvmG90NwMD+TksIOSLhoOsevSU49ISGMeZo9m/+rKo7N16gVPC0ooHV60ya4Jj43GlnyQQgzIbql0NZwd2FOmqRlYebnMwzigw84YI2Lowtz1ixapKULUzJU6ZcQ27JlC6666irce++93joeyXEoLwfefx8480y6rHrD9u2AmGnqxhs9p5DxBjU1wMaNwOefU1DccIMd0dFVmD49UQqCPiAq8YeG0gI2dSrdysKlWVdHa0BJiWe8mSi+Gx9Pa1tKihZvFhDgWXxWcmoR9fji45kgA9ANnZurCbMDB2gVPXiQy4cfcruwMIqyCRMoLNLTZeygoHMW5oIFfD5KSvh7/vgj26WgIL4/YwZj9kQhWfk7SoYC/RJiISEhSO5L2p6kVzgcjB/q6ADOPbd3jUdVFfDooxyRn3ceK/B7C5uNLpcPP+Ro9Pzz+R2RkU4UFzu890USV12byEh2xO7TblgszEotL6cwKy6mZbKlhWnZkZEUAMnJtAyI8iB+fjLmbDDx9fV0aaoqBba7MMvPp7DYsoWL+Jy7MEtJGbRTGFJ0zsJ0d2EKwfvCC7zf09I4IJ06lfGYoaEjJ3FIMvzolxC77LLLsGbNGlxxxRXQyejIASMvjxaPyy9Hr6ZDstlYpsJi4Sjwt7/1XqdbV8fq2J98wg7+L39hw+brS+uNZGBRFE1IRUfTNamq2jRHwnJWUsLOvLiYbk2rlRa3iAgtISA5mR2RwaCgtVXnmt5DcmpRFIYMxMbS8g3wWcrLo8tt3z7GRLW0ADt2cAEAg8EHCQmJmDrVgKlTKdBklEjXLMyGBg5YCgr4O376KUM2oqIoaKdPZ03D8HBa0GSXJjlV9EuI/f73v4fNZsMvfvELXHTRRYiOjoa+G3ON+7yNkt7R1sZ4h8RE1tzqDS+8wJFgQADjwrwRtOp0smP/8EN2DD//OS1h3o45k/Qe9xIaYsorUd+suVmbiFeIs9JS4Kuv2LHrdEBwsBH+/pHIyNBjzBiKtcBATfDJoOdTj48PRcLEiRyIOZ20eu7bp4mz2loFhYW+KCzU3JnJydrnpkzpeTHfkYrRqGVhjh0LzJ/PZ6G8nKJs3z4+C35+fH/KFFodIyM5SBkOhYolw5d+CbGqqips27YNBw4cOG5mpMya7B979jDG67bbelcgcuNGujMB4E9/6tlclCfDauWxvPkmG6x77mHMhTTpD126E2ezZmmT2zY301JQXg7k5jpx6JCKXbv02LCB2wYE0GIgitDGxDDuTIgzmbF5atHp6FZLSwMuvJBW0OLidmzaVI+qqkgcOGBAaSkzbouKgDVr+LmkJM0VN2mSNuXWaMS9rExKCi1hIuD/0CG6hN94g0kzIoFmxgwOhsPC+Dl5z0u8Sb+E2L333ov9+/fjhhtuwOTJk2XWpJdpaqLomTyZjUFPqazUpi+6/HItc6s/NDQw7mjtWo4mr7iCjZhskAYWq5UdgpjvDKBoqq7maD0u7sTbdrdOUZiNKfYxbRqX2bMd2LfvKKKifOB06lFdTctZYSE7qK1bGafo40P3TUQELS9JSVrcmYg9k0HQpwZFAaKjVWRnW5CYGAIfHwMaGjSL2Z49mmu6uJihBAALB4syD5MmDe1sQpsNaGtTYLNp2cDHm9e0uZkWYD8/7ZxONgeqjw8HGDExbGfPOovPR2kprWW7d7PtExmt2dl0/wYFeSbCnIiaGrahISF9rx3X3bNssdCi7e8v3dHDmX4JsR9//BHLly/HLbfc4q3jkbjx7beMD+mNW7Gjg8H5ra1sVK66qv/HUVEBvPcerWGXXw787GeyJtipwGplYVCrlQ1vVBRjXNatY3ZdcDBwzjkUY91tC3RdZzZTyHXeR3g4Owq7XQeTSUVSEjvo7GxaVhoa2CHqdJowKy9nZ+9wUHiFhfE74uJoPRCuTSHOZNbmqSEkhNmDCxbwf4uFgmz3bi5FRYyTKihgqQedjgJDJA5MmMDrNRSwWili6usNHoKntla7r8PD+drczPuyvZ3iKjOToqW7bY+HXq9lLKel0XosMpNLSjjIffNNPgthYRyMTp5MF3BsLMVZ50FITQ0/b7HweZg3r/dirLvn22bj89fWRq+EjA0cvvRLiEVERCB4NNu4B5CaGoqfOXN6lxX12ms0rfv5AXfdxVFgX3E6OZ3LqlU8nrvuYscs4yVODXY7G97gYIomu51WrMZGxrHk5nLkHhfX/bZA13Vmc/f7CApiwx4Q4ITNpm2rqtpUP42NtBpMm8bOXK9nVq7RyH3k57Oz2r4d+PJLfr+YMF1Mfh4TQ6HgnrUprWcDS2Agrdjz5/P/hgYKs127KMzKyjhV0+HDDF7X6yliZszgtc7MHLxr5HDwXvT3d8Ju5/8A7+ugIHoNHA7eq62tFGHR0bwv29oo/Lvbtqf4+lLUhYZyYJKbS4HW2srfr7gY+OEHbpeRwW0mTqRQElbihgaKsLQ0PiMWS++FWHfPd0sLzzE2loPl1lYpxIYr/RJiv/71r/Hmm2/ikksugb+c4dZrqCo7spoa4Kabet4I7tvH0RrAOSRjYvp+DB0dbKz/+192nH/5Cyv6y0yiU4dwQTQ28lUEHAcHs0MIDtYsk91tC3S/rrt9GI0UXM3NOkRGatseb7/BwewY0tM1S5soRCsSA2pqaNEtLqZw++EHbmMysSMSZTXi4mipcE8MkPXnBo6QEGDhQi4Ar5MQZnv2aBXrc3KAV1/VZg4QwszdHT7QGAy851padAgL0waWZjOFldmsrRP3TVUVX319NXdk5217g6jFV1qq1Svz9+e9X1vLe72hgUL2k0+At96itUwE/UdGclB76BDX90Usdfcc+vvzHCsq+DpUrJiS3tMvIWaz2WAwGHDOOefgvPPOQ0xMTJesSUVRcO211/bna0YdlZV8oE8/vediqrUV+Oc/KeLOPpuf7St2O7BtG/DKKzS7L1vGWCDJqUW4INzjQuLi6Eqsr6eAEp1id9sC3a873j6iooCmJrtLWPV2v+6FaAULFvDebGnREgOKiynQyspYUb65mZaL4GB2WrGxPKbISGk9OxVERDAu6qyz+H9lJbBzJ8tj7NzJ6/Ptt1wAXp9p0xjkPnXqwMaXienAmpsdiIjQ7rXw8K5xXwEBtN4JV504ru627Q1hYaxJ1tzMfYoM1Lg4PgdCLIr7u6KCouvIERaU7ejgMSQm8nerq2M73ZsZR7p7Ds1muiNFTJy0hg1f+iXEHn30Udffr732WrfbSCHWO5xO4LPP6CY655yeW6BeeIENaFQUq+f3FauVGZevv04xd801WryR5NQjGlx34uK6t0p0t2136463D7MZ8PNTe7SP4+23MzqdFtAssjZnzOD9LcSZxcL4l0OHaDk7cADYvJkdmJ8fO2IRexYVJa1nA01MDAszn3cer0Fenla3LCeHQqOigok7Oh0tP8JalpXlfbFsMgG+vqpHnOzx7j9xr7nT03v1RISFdS0B0nm/IhMzKYkiVUxRVlpK63NBAfDyyxx0JCZSNI4fr4PTaXYNQoTFuTu6Ow8xPZpkeNMvIbZ+/XpvHYfkGKWlbOB+8pOexxFs26ZNcXPHHb0rc+FOeztdou+8w4D8pUtlUL5kYDCZuIj7a/x4usrcrWci7uzIET4X+/ZxoCACqkVZjehoirOQEHbCfn60iEjrWf8R8WKZmcyUbm1lYWAhzEpKtCmZVq1i2zNtGi1IM2f2PUNwuGM08p4MD2fs2Jw5dCvW1dEinJvLWMrPPjNCUeKRnm5wzZQg4iiDgk4szCQjh34Jsfj4eG8dhwQcfa5ezRH+mWf2LMPMYtFKVfz8532fR7K9nWLuww+BSy8FLrlEjrQkp5burGczZ3a1npWXs+MvKqLrp7GRrp7AQG3GgJgY/i2sZ3o9YLfLlM3+4ufHhJ3sbP5fXa2Jsh07eH02b+YCsEyGEGXjx49eYSGmKIuO1ubEbGoCKips2LWrAbW14diwAfj4Y1q9EhOZIDNlCgcbwcFcZFHlkUm/hJjEuxQVAV98AVx2Wc8tUc8/T8tBYiLQVw9weztj0lavZnmKSy+VgZ+SoUN31rOzzvK0ntXVUZyJmlk//qglBtAyYYCvbzBKS3WIidFqQAnrmSyr0TciI4Gf/pRLRwcD1n/4gb//oUNamYx33uFvPXWqJsxGa8iDe5Hl0FAVAQFNCAsLhs1mRF0dy2Xk5WmeDqORSS0ZGbSYJSTQYiYKK0uGP/0WYgcPHsRrr72GnJwcWCwWOJ1Oj/cVRcGXIpddclwcDlqjwsO10ebJ2L6dwk1RWHm/L6Mlq5UP++rVwK9+BSxZIivlS4Y+na1n6ems+eRuPWtqYqd24ABQVKTg4MFA/PCDEYrCjkyU1YiN5XMXGsr9yaK0fUOvp7Vn3DjWL2xspJVs+3YujY2eQf9JSbxmM2ZQYIxWa4+i8L7z8WEc5IQJvIdFjFlJCYXZnj3A+vXcPiaG1sZx41gWQ2RjBgb2r2SRZHDo1yXbtm0bfvOb3yA4OBgTJ05ETk4O5syZA6vVil27diEjIwMTJ0701rGOaAoLOYn2VVdxtH4yWlqAf/2Lf198Ma0EvcVmo5D78EPGf0gRJhnudLaeTZjAoPO6OjsOHChBWFgSGhp8kJOjTf4sEgP8/TXXpnvsmUgM8Pcfva61vhAczBCLM89kElJenmYtO3hQq/b/3nsUIVOm0FI2a1b/Su8Md4QwCwigMBs/HjjtNLp9Gxvpmj98WKthxjprFLZpaUyYEFORiYLK0uI7tOmXEHvyySeRmJiIt99+GzabDfPmzcMNN9yAuXPnYvfu3Vi+fDnuuOMObx3riMVupxiKjGS2TU/4738ZnxEby8zG3uJwAF9/zQKOIiZMijDJSERYzyIiHEhNVeHjw+KmbW2a9ayxkeLg8GGW1di9mwMVg4FiTGRtxsVRrAUFae6l0WrJ6Q0iu3LsWFreLRZPa1l9PV1x27Zx+4QEzYU5duzgHvtg4+7KjIlh4sS8eZrVt6aGA/miIlob16zhZ6KiWHYoI4MW4/BwzSUv3fFDi34JsZycHNx8880ICAhAY2MjALhck1OmTMHll1+Of/3rXzi9P0WtRgGFhayndPXVPQuQP3RIm8z3D3/offp+Rwfw3Xcs/nrxxYxJkyJMMtrw9eUiMvumTNGK0grXUEkJrWYlJdo0NYDm2oyLoyUiOloTZwEBUpydjMBAlsc5/XRay/LzNVGWk8Ms2dJSDlBNJh9kZMRj3jw95s07tQVlhyqilEV4OF2U06czZlJYzSorafEtKaFLs61NKwidkEDL2ZgxmktTxEtKd/zg0C8hptfrXRX1g4KCYDAYUFtb63o/MTERR44c6d8RjnAcDuCjjzh6mTHj5Nt3dABPP80ssbPOYvBrb1BVjvZffpmFX5cu7Xu5C4lkpNG5KO348Swl09KiibOqKsadFRdzrr9NmzTXppgtICWFgiE4WFrOToZOR6tNRgbbo+ZmFpIVwqy2VkFOjj9ycoAXX6QXYNYsWssmT5Z15AAKKBEjFhdH9+T8+dpMFw0NFGdFRXRt5uRwvV5PMRcfzwFFRgb7oqAgzR3v4yOtZwNNv4RYUlISCgsLATAoPy0tDV9++SUuvPBCAMA333yDiNFaSKaHFBYq2LSJ7sWeCKI1a+g+8fcHli/v/ffl5gIrVwKzZzMeTZaokEhOjF6vFeuMjaVrSMwYINxDtbWsd5afT0vEtm0cZIlkgvh4Wi6iozVxFhAgA6u7IyCAMVGnncaB46FD7fj6awuOHAnDgQN6VFSwzMPHH1M4T5qkCbOEBCkaBCaTVog2KYmitb3dc1Bx9CjFWUUFXOUzAIqwqChtjti0NAo290xjWavPe/SrGTj99NPx3nvv4fbbb4fBYMCvf/1r3HPPPTjnnHMAAMXFxfjjH//olQMdqaxZo+txbFhdHacdAliqorfFVsvKgJde4mj9N7/pWil6OKOqtEp0dNDVoapcBDqdtuj1cs5MSf9wz9oUgeVz5mjuISHODh2iODt4kEkBTieFmOjgUlNpRROxO/7+8t50R1GAlBQVP/lJPX796wB0dPhi924GqW/f7lnH7LnnKHRFJubUqTLkojOinll4uLbOZuN9KwYW9fXsKyoqaD3bt4/rAW2mi8hI/tbJyXwVCS1i/9JK2Tv6JcR+97vf4eqrr3bNL/nzn/8cOp0O69atg16vx4033oglS5Z45UBHIg4HsGWLAdde2zNr2AsvcCQzZgyweHHvvquuDhCzUP3+91rBzOGC3c6Goq2NS3u79ndrK8twOJ3a4i7CBGL0ptdr87WJyYHF3yaT9rf7JNcSycnoHFQNUJy5l9OoqtLqa+3aBXz1FbcLC+NnkpIoziIiNFeT7NQ0/P0ZqD5vHp/x4mIKsh9+oJu4qoo1ET/5hM/uhAmaMEtOltay7hCZxu5zX6oq21jR5gr3ZlkZrWg1NRxgrFvHfkxkeoaFaTMKhIXpoCj+sFgUhIRobapoY43G4dm+2u3ev4/6JcSMRiNCO5llLrroIlx00UX9OqjRQnu7HuHhao+sYbt3M8tRUYCbb+6dSbilBXj/fSYFPPDA0J/Au6ODnZYIPK2p4d9WKxsFp5PbiJpRbW38u6ODjYLdzlen09MSpih8FQ2Bry9dQyYTGwmDgdsIkWY0cpQn0sBFMGt7u9Kt0JNIOuNeiiAmhhmA8+fzvnUPrM7J4fO5ZQvr+hkMdA0Jt1B8vFbnTMwUMNpRFLZlycnAL37BdmD3bk2YVVVR7O7axUFsZKSWiTl1qoyNPRGKorkf3VFVtsPuA2Eh0qqqaKEU82s2NRlhscTCYDBAp+O+goMp+AIDaQUOC+N1CQnRBsRCGBoMnoter3kzvOHVUFWtLxF9h/tit/NcRT8jXLk1NcCvfqV41doqIxQGEZtNwdlnO+Dvf+JW1W5ngD4AnH9+79K5HQ427Fu2AHfe2bd6Y6cCi4VWu5oaPtAWCx9yu12bo626mg+EovAh8vPztBoYDBRP4lVsJx424b60WrnU1XHEJ0Z+Qlzp9VrnGRSk1eLhPvVobg5GSYkOUVHsHIUVJCBgeI7wJKcWna5rYLWoEyVcQ0VF2kwBO3fyOQgMZIxacjKtZlFR7NjkPUd8fWmBnDOHz3JpqRbwv2cP249PP+Wi17MtFLFlqanSWtYTFEVzPbpb0AC2szab1r42NdlQWFiFoKAYtLWZUVvLNrexkYKmoEATcx0d2v71es16JjwW4lX8LQSb0cj/hXVNiDZxLd1DVjo6tEG63c6+RBxreztfxWwdwhLY3q55WMS5+/uz7qY36ZUQu/rqq3v9BYqi4BUR2CTxQKcDpk1znnS7995jGnJISO+mMVJVjgw/+YS1e+bNGzrxJ6qqjTDKyhhPIywEVVW0ErS383gjI9nppKay49HrtfRt8fB1N5ISQgzwHPGIxkI8lGKdzcaHzmrlsbS0sFMsL9fmM1QUPUymQJSV6Vz1pAwGraEIDvas1xMYKDtKyckxGLRszcREBlaffbYWb1ZdzUzNvDwKiy+/5LPBgGoDQkICMXmy4orXGe2xZorC3zExkXPwtrdTjAlhVl7Oycv37mXcbHg43ZezZnHS8oCAwT6D4YdO5xkfFhSkQlWtSEx0wseH7afdzsVm017FIgbEwo3vLoasVvYRQji5iysRFywG3J1RlK6LXq95Q8Sr0cg2PCaGr4GBbM/dExREPxMUpALwnnLvlRBT++CP6ctnTsRVV12F77//vtv3Hn/8cZx//vkAgHfeeQcvvvgiysvLkZqaittuuw1nnnmmx/YWiwUPP/wwvvzyS9jtdpx22mm47777ENVpErQdO3bg0UcfxYEDBxAeHo4rrrgCy5cvh9LPIZTZ7DzpA3/0KPDGG/x7+fLeNRAFBcCrr7LMxcUXDw1B0N5OkVVcTMHV0MBzLCmh6AkOZpzMggX829eXnUpICONmRDFCMTIS4qsvl0KM4MQiXJ8is6ipiQKsvV1rDJqbO1BQ0A6n0wd5eTxmVeUxhoWxIxVmdiHOxLELcSYtZ5KeIDq1yEgW5Jw923Pqm+JiIc4U7NwZhq++MiIkREsCEJluwqo7mjM0fXz4+82ezf/LyzUX5p497OTXreMiis9On05RNm6cfF69gaJo7XVP3MLCgtWd6HL3cAivh5hd0dmNbUMMStzDVIR7U7g6hTgTblB3y9rx9uctevVovvrqq9799j7w17/+Fc0iheMYr7zyCtatW4e5c+cCANasWYO//OUvuPHGGzFnzhysXbsWN910E1atWoWpboW3br31VuTl5eGBBx6A2WzGihUrsHz5crz33nswHGu1ioqKsGzZMsyfPx+33norDh06hH/+85/Q6/VYtmxZv87FaDy5Ney//6UAmDSJgqqn1NYywzIxkYViB3tyWNFxFBXx2MrLGRNjsbDjmDxZq18TGkqXjRA1A2VV6jyC6w6nU0sIaGkBamudyMlpgo9PEGw2Tbg1NvK8RKacqMoeEcHzCA/3TPsWQa3CRRUQION+JCfG3aUZH8/5GRctAqqr7cjJKYfJlIDcXDMOH2Y86Sef8F6Lj9cqrEdFac/UaK5rFhcHXHghF5uNljEhzEpL6RY+eBB4/XX+hpMmacIsKUm6MU8FQhyNBobdGCkjI6PLuttvvx3z589H2LF6DE8++STOP/983HrrrQCAOXPmIDc3F8888wxeeOEFAMDOnTuxefNmrFy5EgsWLAAApKamYvHixVi3bh0WH0tLXLlyJUJDQ/H444/DZDJh7ty5qKurw7PPPourrroKpn60ZidT1YcOaQH611/f84e/vR344AOKgoce4oh6MHA6PSs8V1Yy5qWsjOJrxgyagYU7JiZGG8EPlYZOp9NiwJiyrcJobEFGhhOKQiEplupqLe5MmNVramjx275dc7W6ZxaJJABfX5FppAkzf//R0xBJ+obZTLGfmGhFaqoTp53mOfXNwYO0mu3cyQmjjUY+Z8nJrIcWG0vLc1AQ9zUaMZnYFs2YAdxwA5/XHTv4m+3axUHW999zAfh7T52qCbPelhGSSDrjNSHW3NyM5uZm1xRH7sQN4JwUO3bsQGlpqUt0lZSUoLCwEHfeeafHdosXL8Zjjz0Gm80Gk8mEjRs3IigoCPPnz3dtk5aWhqysLGzcuNElxDZu3Iizzz7bQ3AtXrwYzz33HHbu3Ins7OwBOS9VBZ5/nn8vWsSSFT3B6WRhvs2bgTvuoHviVON0ArW1BlRU6FBRQeF14ABjsSZOZNZYZCQ7g4QEjtKHWyfgnlXk7sm22zVhJmJ7amo8A0Dr6tjY797NTlNRNKtZRAQ7xs7iTLg0peVMciL0et4/wcEc3Eydqrkz6+o4ENq3j7Fm337Lz0RH05WZmUnrmfj8aLWYRUUB557LRUy/tHMnxdm+fXyev/ySC6BNMTRtGts3WW5E0lv6LcRef/11vPzyyygpKTnuNgcOHOjv1xyXTz75BH5+fli0aBEAID8/HwCtW+6kp6fDbrejpKQE6enpyM/PR2pqapc4r7S0NNc+WltbUVFRgbROaiYtLQ2KoiA/P7/fQsxqtXa7/ttvddi/3wyTScXSpe1ob+/Z/nJzFbzzjgkXXODAzJkdOM7uB4zaWmDfPgf27w9Efb2Kw4c7EBgITJ/egcREID5eRVqairg41dVgCfffcKDt2IG2neCA3QVaRoa7OFOOiTPlmOVMQWsrXSMNDQqqq4G9e3WwWCjEQ0JUhIWpCA9XXdXYfXxUhIYCYWHqsUxN1WsV2tuP3WTtPb3ZhhGj+dwMBq3CekYGsHAh0NioHAsXULB/vw5HjuiwdatybLJoJ1JSVIwd60RMjIrgYBVBQYMXJyXayOO1lQNNQgKXn/2MYSIHD+qwa5cOu3frkZ+vQ0EBrf7vvQcYDCqyspyYPNmJiROdyMhwnvB3G+xzG0hG8rkx9n2QgvU788Ybb+Dvf/87FixYgP+/vTMPb6pM+//3JE26p3sLpYW2CGVflYKUIosom44iCM4oiuI4L8ILo/5QRkAdRxhHB0ZxA9HXdWZccKlUREFFsCDKUpZCoS3Qlm50S5ek2c7vj5snJ2nLUhqaJr0/13WutCcnJ+fJ2b7nXmfMmIE1a9bg3nvvha+vLzZt2oTIyEjcfffdrtrWZlgsFnz99dcYP348As4HQYnm4zqdzmlZ8b94X6/XI7iF/j4hISE4fPgwAArmb2ldWq0W/v7+9nW1hbKysmbzzGYJb71Fxb7Gj6+EwVCBi+hcO9XVanz4YQzi4w0YPrwUhYWXjkFzFQ0NKpw+7YuCAppyc0Oh05kxZEg1unSxoHt3I2JjTQgLs8BqxWWNpyNTWFh4RZ/z8xNuWAn19SrU1alRV6dGZaUPwsN90L27Co2NEqxWCbW1NP/QIS1qa9Ww2YDgYCtCQiwICbFAp7PAz08+n/RhRWioBf7+NgQEWOHvb4Ov75UlyhQXF1/R5zwBHpuCry9Z2nv0kFBXp0ZNjRrFxVrk5PgjO9sPO3dqoVIBkZEWxMY2IiHBiIgIM3Q6KwIDre1umW3pWukOwsMpXnf8eKC2Vo2cnAAcOxaA48cDUFWlwaFDahw6RD+ORmNDUpIBvXoZ0KtXA7p3N7b40NRRxnY18MaxRUZaAbguYr9NQuz9999Hamoq3nzzTVRVVWHNmjUYO3YsRo0ahQceeAAzZsxAdXW1iza1Obt27UJlZSWmTZt21b7jahMdHQ3fJn65zz/3wblzGoSFyZg7NwD+/peOtDeZgB9/VMNkUuPhh32QkNA+VVstFnqqzs9XIS8PyMpSQ6u1YcSICgwcGIQBA0KRmEhP1N6AwWBAYWEh4uLi4O/i/imibIZeL50vZCuhulqyuzQtFkCv98G5c74oLZWQlyfBaqVUakoKsCEsTMnWDAyUER5O71MDX/miZQ2MRiOKi4vRtWtX+HmZf4XHdvk0NlJcVFWVDfn5Eg4d8kVurj8OH5agVgNdu9qQlGRDcrKM6GiymAUFXb1yGY2NjSgrK2vxWtkRELUZZdmCs2etOHhQhcOHVThyRI2aGhWOHw/E8eOUJqjVksVswACaunc3oLKy446tLXT0/dYW1Oocl66vTULszJkzuOuuuwBQlX0AMJvNAIDg4GDccccd+PDDDzFv3rw2bmbLfPXVVwgNDbUH2wNk0QLImhXlEKWu1+ud3tfpdCgpKWm2zpqaGvsywmImLGMCk8kEg8FgX64t+Pr6ws9PuaHX1AAff0x/33efhLCwS9/sRb2wnTuBxYuB5GR1uwS7nztH2UYnTlAMRW0tFVNMSrIiOLgWY8eGIDrau256An9/f5cLMVHqwhGjUYk3EzFnIiFAiDPRfaCoiFLxrVYK+BcJAWFhFO8jesGRa1NJQiCXp/Kdfn5+TsekN8Fju5z1KGVkBg8GbrpJOcboYUuFo0eBHTto2e7dqdxDr14U+yliHF19DWp6reyI9OxJ0+2303X59Gk6J7Oy6FpZUyPh4EE1Dh4ki5mvrxaJiRoMH67FsGEa9OrlfbF5nrDfWktbS1c1pU1CLDg4GNbzFdSCgoLg7+/vJG4CAwNx7ty5tm3hBTAajfjuu+9wyy232EUgAHs8V15enlNsV15eHjQaDeLj4+3LZWZmQpZlpx81Pz8fvc+Xrg8ICEDXrl3tMWOOy8iy3Cx2zBV88AEF1/bsSUH6l0NhIfDJJ8DEiRT/cbVFmNlMwb6HD9MF5uhRClQdNoyqhCcmWlFWZkALnl+mlTjWkhKYTM2zNSsqlBIbTcXZwYMkzgIDSZiFhjrXOhPVooODVdDrfeHvLyE8nG6mnbn2FEOImMcuXSgYfeJEqv9XUUH9HQ8dAn74AUhPp+OqRw+6DiQkkOAPCemcAezUsJymW265sDA7diwQx47RtV+jIUHbvz9Z2vr1o9+P8W7adJnt1asXjh07Zv9/8ODB+Pe//42xY8fCZrPhv//9LxISEtq6jS2yfft2NDQ0YPr06U7z4+PjkZCQgC1btmDixIn2+RkZGRg1apQ9+zEtLQ2vvvoqMjMzcf311wMggXX06FE88MAD9s+lpaVh27ZteOyxx+yCLyMjAzqdDkOHDnXpmAoKqPYPQMVbLycGo76eSlUEBAB33331sw+rqiil++hRYPduSnufOZMuGIMG0cXaYKCsQObqoNUq1i6B1aq0yBEFP0VLKNHKQ6+nm2d5uVLrTGRsUj9NFWQ5EAUFKuh0imVEWM8cK0x35qrtnZ2AAJpiY0mYTZ1KwqykhET/kSN0TTKb6QEiKYmEWVwcHWuiG0Vno6kws9mAEyeM+OknPYqKInD0qBo1NXRtPXpU+VxcHF1fhTiLi+s45X0Y19Cm0+GWW27Bf/7zH3tJiIULF+K+++7DDTfcQCv38cHLL7/siu1sRnp6OmJjYzF8+PBm7y1cuBCPPvoounfvjpSUFGRkZCArKwvvv/++fZmhQ4ciNTUVy5Ytw9KlS+Hr64s1a9YgOTkZkyZNsi93//33Iz09HY888gjmzJmDnJwcbNy4EUuWLGlTDbGWePttOjlTUijt/FLYbPQkeuAA8MwzVPrgamGz0dPc/v3Ab79RfaLrr6faO8OG0cW2M15cOwpqtWLpEsgyiWK9ngSasJJVVyu1zkwmEm0VFUBhoYSSEh18fNTw9VVa7ohm06L3W0CAIt6Ea1O4PfkG0bmQJKXIbHw8XQvEg0BBAZV8OHaManCpVCTeevUiYRYTQ8drZ23HpFIBPXrIUKmqER8fDF9ffxQVkQg7coReCwrI41FYSFX/ATrv+valiv/CJczeB8+mTbfOGTNmYMaMGfb/hw8fjs2bN2P79u1Qq9UYPXp0szISrqCmpgY//fQT5s6d26Kvdtq0aTAYDNiwYQPWr1+PxMRErFu3rpkFa+3atVi1ahVWrFgBi8WC1NRUPPnkk/aq+gDQo0cPbNy4EatXr8aDDz6I8PBwLFq0yOVxb8ePU10flQq43IL9+fnAl19S+6JBg1y6OU40Nirm9F27yHw+ezbFjwwdyheBjookKdYLR0Q5jbo6eq2qIoFWVWXDmTNV0OmiYDar7U3YDx+mZWWZBJkQZ+HhSs9Px44BIkZIiDRvi3lhLoxarRwfSUn0sFZdrcSX7dtHD47bttExEh+vCArhNu+MbkyAzldRKkPYAvR6xUJ25AiQk0MPVLt30yTo1o1+w+Rkeu3Z0/NqM3ZmJNnVzSCZy+LQoUPQ6804d64v/Pz8sWwZXaQmTqRCrJdCrwfWraO/V65sHuTtKqqrabv27gX27KEn3tRU4Npr6ULb0pOswWDAiRMn0KtXL5cHtLsbbx2bLAOVlQYcOpSP6OgkmEx+qKggkeZoPaupoWQBUai2sZGOgdBQxUoWGkriy8+PbgZBQUrHAEcLWnvWpTIaDcjPz0diYqLXBQ570tgMBjqmyspIWIjisg0NdIwkJpILrkcPOo5CQgCLxYCCggLEx8d3+PG1FqOxdWMT8blHj5Ioy8kBWqpaolaTC7R3b0WY9ejRvuKstWPzJEJDsxAQIGHgwIEuWZ/LnEn19fXQ6/UtNvm+mpX1vYGsLBI7Pj7AH/5w6eVtNuDbb8kitnr11RNhRUXkhvz5Z3qanTqVsiKHD79638m4B2E9Cw+3IDFRhtCYVivFmNXWKhXahXtTNEc3mci1WVlJrhSRHKDR0M1VuExF42mRJBAcTOJNtHkSAo1d3N6LsJzGxpJFXVT8LymhsIfsbOrvaLNRvOk11wB9+qhgtVJDc1/fzu3+1mjILdm3rzJPrydBdvy4Is6qqoDcXJq+/pqWU6nI2paUpEyJiXSOdubftCPQpkteY2Mj1q1bh08++eSi9cKuZmV9T0eWgf/7P/r75pvp4nMpTp0CvvkGmDGDnnauxjadPElWsG3b6Onq978nEdavn/sqbDPtj1pNwdVN68CZzeSuFFNNDVnJ6urIumE00qsQaMeP0zKyrLgwhcUjMFARaL6+9F2irZMQZwEB3NrJ25AkpZ1SYiJZ2YXFNT+fXJjHjgE//qiBJHVFUpIPBgwgV2ZEROfNxmyKTke/3bXX0v+yTOeiEGcnTtCDtF4PnDlD0w8/KJ8PCSGLWWIiibPu3cllzL9t+9EmIfbUU0/h888/x8SJEzF8+HCX1NXqbOzbRzV5tFpgzpxLL19fT600uncHbr3V9UGuFgu5DPbsoV5qycnkLh01ir6TYQAS4yIWyBFhJRMCTcQHOfbarK+neRUVlAAi+m0KC5kQaL6+9D1CoAn3p6N7MyCgcwZ6eyMaDSUcRUbSA2ZaGh0/BQUmZGZWoqQkGtu3A198oYi3QYPIBSfc4izWcb5NFU2ixKYs0/mWl+c8FRWR+N23jyZHoqMVUeb46i3FuTsSbRJi3377LWbOnIlnnnnGVdvT6fjgAzIvTZ/uXI6gJURD7+xsckm6+oQwmegpdOdO4KefqDn3hAlkCWt6w+1IWK1kobFaSUjabHThEV5ySaJJpaLJx0eZ2CTvWkRdsqbHshBgwsUpMjXr6+k9ETtUUUEi7dgxJf5MiDPh3tRqFYHm59dcoIkCtbxvPRvhxgwLkxEUVI3IyDDU1/ugpIRqcB05Avz3v3Tui76ugwcDXbvSMREUxMeAQJIUkTtihDLfaKSHISHM8vMpvKCmhuL4ysqAX391XldQELmWu3alSfwdG8tuziulTUJMkiT0E/0dmFZjMqmQl6eCvz8wa9ally8qAjIySLT16ePabTEY6Inohx/oxJs8GRg3DrjuOvebqC0WpR6WcHuJrD9RI8tmay7CHMMVVSpnMaZW06S0A6LJMQtQvMdZf21H3FQdS6yI8hrCelZfr7gyRYKAwaBYzwoK6LWl+DPR+FwkCdANXCmP4OMDmEx8h/BUJIkePKOjFTemKCp75gwJs+xsimf18VGyMQcMYDfmxfDzI69HcrLz/JoaOt/OnHF+LSujc1XEojXF15fKklDLNQ202ggkJakRG0s15aKiAC/KcXIZbRJiEyZMwM8//4zZs2e7ans6FQ0N5FO57bZLV082GqlUhSig6koTfH091fn54QfKYpo5E7jhBjL7t3fgtCxTLEN1tRJ3VFFBN2QhuISFy8dHEVQAPRmbTIoYcxRlajXdpH18lBg3s5nG7ijixDZoNDT5+tKNXNzw1WoJFRU+6NKF3mO32JXjWF4jOlqZL8skwhxj0CornQVafT3dFCorKQamqqp5/FloqOK6VKvVqKsLQVGRCtHRzWugcdyjZ6HRKDf2Pn2AMWOUbMwTJ8hatmsXPbgGBZH7cuBAspoJ1zcnhVwYEbs3YIDzfKORsjTFdPas8ndpKV2jRRwayYvmbh7HOoTiPHWcmp6b4kGqvWjauUTELVZUKA+KzzwjuTRUp1XDaxqQ/z//8z9YvHgxli9fjjvvvBOxsbFQtXBnCuUUuxaxWCQEBcmYMePST+p799K0cqVr3YR1dRQPtnUrnTx/+ANZwpKT28/E3NBAVo/ycipcWFNDwgtQhFNjo3IylJXRq8WibKMk0U1YBHULy5ewglksdBFpbKRXq1WxmMkyiTRRmFLEPoWE0OeNRsrqIheoCpWVIcjPV9uDyiMi6GIvPs9PfG1DkpQLcUyMMt9may7QRIkN4frU65Xj48wZupACQGCgGlptACoqVAgPJ0uAWq1YPsW+FCU2OP7Ms2iajTlpEh0XJSVKcdRNm+j8j4yk4PTBgymLUFhUeV9fGj8/ski2VB7UYqFzr7SUruUlJWacPl0PgyEYlZVqe6cP8TBVVHT536vVOp+XIn5U3B9EqIl4gJYkul7YbHTdFn87zjMam091dXSMXAqL5fK3/XJolRAbOXJkswKqsizj6NGj+OSTTy74Oc6avDC33WZBYODFH8fLy4HPPwfGj6cCqq6itpZE2Ndf08lz990kwq5CDd4Wv7u0lG6WJSX0vyzTiW4y0ZPWqVP0niTRxTI2liwnyckklNRqOiHEidYahEATFjVH96do15KVRRdzsW6KsZCgVqvR2CijoYGWzclRrGgBAXQzj4pSSjMEB3O8iitQqeh3DApynm+zOScIiJIIQqDV1QHl5Vbk5VlRVSUhN5fmq9UktoXo1umcEwQc3Zvie7lAbcfHMRszIYHK7QirRkEBWf2zs+nBVlT7v+Ya8gAIa+nVaFru7fj40G8pqlUZjRYUFJQhPl5p+i0yqWtq6NrZdBLzHcNQALoniC4g7YFKpVy3HR+4xWtYmAzAdQdIq4TYggULXN51vDOjUgFTp1oAXFiIWa1kXrdYKKvSVS6UujqqzJyRQReoe+8lEdatm2vW3xImE5mwT5+mC2JtreJmPH2aArTr6ujA792bkgUiI+lzwsWo1SpxXH5+ys1RFA8VwkpYwxytXlarEtAvLGPihG9spBuvTkcnmqMY1WppXXo9PcUdP65Fbq4PjEZab1iYEriqUtG6iotJIKhUtN6gIBJnERH0HeIk56fwtiMumk07PFgsSuzZuXM2HDlShcDAIBgMPnb3pog/Ky6mOCOLhW4oIgFAJAhoNEoiQnAwXZB1OucSG7wvOyZNszFHj1a6SeTn037PygK2b6dztXt3KtMjHvg4vsx1CItWfPzlLW+1KqEIjmEJJhOdq2YzTeJv8SquveJhW/ztmLAlzmcxieLToq7hxc5nVxfGbZUQW7hwoWu/vZPj72+9pCUnN5cyJR96SHnSaCsNDSTCvvqKnkDuuYesbV27umb9TamuJsvXiRN00xOxW9nZVOfGz4/cBLffTge42UwnQWAg3ey6dGm5rpQr4wYcxZmogWUwkFisrKQxULaeDRpNPaKjA+Hvr4aPD10YhHVv1y76vFZLbo/YWHKv2Wxk2XQUZ4GBJM5EWyBxEeAUfNcgBFVoKBAeLkOSGtCrlw1qtWI9q61VSmzU1Sn7XMQm5uXR/pdl2PtvitgWkcEpjkfh0hYN0gMDOfasI+Lnpzw4DRhA1z4RX5adTa7MrVvJlRkWplT7795d2f9sFW0f1OqWH7K8jVbfyvr27Yt//OMfmDZt2tXYnk6Fn58N9fUXfr+hAfjsMwpGHTfONd9pMJA7MiODbkD33ksXIsdYHFcgigoWFpKYrK2lG2NeHlVeDwigjMzRo+mpR6VSRFe3bkrfueDg9nERiBiDwMCW3xfxSWVlVmRl1SAmJvL8/0psWlwc1VvTaGj8xcVkQcvKImuaSkUX/27dyAVitSpZgJJEN4jAQBp7VJRyARIWGcY1aLUkfsPDlXmy7JyNKwR4RYXyJF5bS/u7qopu2Ho9fZY6EtAUFuaccUsiULGAiubpTMdAkpT9Eh9PoR+iaXlJCV2rjh6lMhkWC1nVEhJImMXHOwtyhrlSWi3EZFlusY0R03ouJTB++YUsRqtXN2/cfCWYTFSaIiODbijz5lGdMMeMtbYiy3QB27cvCGaz2m4q3ruXvvPaaykWTbgZReBsly60Ha4Y59VAxCepVEBVVSP69pUREKBk+NXW0gVc1N8pL6fxRUcDQ4YoLtOKChJnv/xCy8kyia5u3eg3sNnoJnD8OH2vMJuHhyviTLg2uVaW6xDJHv7+zueDzeZsPRPJAKIemsGgZPeWl9NN22Ih4SxiSkSMma+vEkMYGam4NoOCOMGjoyD6poaGkiXsuuton1dUUNzqwYN0br7/Pj1ARUcrwqxbNxZmzJXBCbwdlPJyID2dqto3rfFyJZjNVCdsyxayUs2bR5YwV4qwc+foRnTsmBqFhX7w8SHB4edH5TAiIuhCJ2I14uLIEufJaeSOGX6O7aksFkWYiRt1SQldoENCqFeciFXQ6+kif/QovVostEy3bmRBi4wksZeXR+sW7YCCgmj/iYu/uKl78u/Z0RCW2qbFkxsbFXFWW6vEmokYlro6EmznzlHSSUODUpxWWM5E94CAANpvkZE0T+xLFmfux8dHsXb26gVcfz15Eqqq6Dp68CCFXPz2G4n2qChqE9SnD13fRBIICzPmYlzRJZsD9q8uViu1FzKZgDvvbPuN1WajgNRvv6WA+AceIEvY5fS1vBzq6khEZGfTTai4GPjxx1AkJKhw++10EdLp6AJ1zTV0gfL2C5PjBVxgs11YnPn70+8D0P+iXs+pU9TpQCQTdOumZI+azRSbJmqrORYyjYx0ztjkLDDXIhJGHDsICOuZEGfV1c7WM1FuQ/QBFNWAgoMV61lYGO1HR8uZY9YmizP34li/rHdvaiFUU0P7tbCQwhBOnKAHUGHt7tGDHrxEqQxhzWYYwRXd4l977TV89NFHl7WsJEl45513ruRrOi2nTwPff081vVwhlo4fp+bdv/0GzJ0L3HijawL/zWaK/8rKopuLXg/s2AFER6tw000ViI2NQVwcXYR69rx0Cydvx9HtIRA3byHOKipInOn1dNHv1o2ewrVaspSVlNAF/8ABpUZWdDTslavDw2l9ubn0nsgOErFnIulBTHxDcB0Xsp4ZDLQ/RXHIsjJ6FckBlZV0/pw+rfT7E7FlQpyJwsKiNIpwT3PfP/ei1ToXlk1LU0plCItZbi6wfz+dv2FhJMj69KEHL39/CQaDChzt07m5IiFWX1/fYuFWpu00NlI2Y7duVJSwrZw6RaLup5+o/MWkSXQhaCtlZSQGcnNpm3/8kW7qM2YAarUNNpsZEydaMWDAhQPgGeebt0jpFnFnQpxVV5Plq7KSbsjR0cCwYUpnAVH37MQJuvibzUpmmIi9s1jITSYK2Yo2To4uMR8fCTU1aphMbHlxJSL2zDEhprFRiTnT65UsTZEYUF5O59jJk7R/RS29iAilBIpIEgkMVKGx0Q9arYTISNqnnHnrHhyFWXKyIsyqqsjCfeQInafp6STCAwI0CA2NRr9+KvTvr1iyOcSgc3FFu/qRRx7B9OnTXb0tDMiFuH8/VdBva8puaSm5tb75Bpg2jURYz55tW2djI7khDx2iG0RWFt38p0yhp/cuXYA+faywWKoxcGCXDht835FxjDtztFw2Nio37poaElalpXTxDwpSXJsajVIuo6gIyMykZW02peZZly50QxcuUJuNugbo9dQ1QNzwRVkNUZLB213K7YVwbTr23jSblf0rkgIqK5Vm6UKcZWfT/lepRDKACmp1MIqL1fZipKKgsBD5LKzdg2MNMxFjJtzW5eVAVpYFBw5YsXevD777js6vLl2oVEZyMv0tzkF/fw4v8FZYc3cg9HqqoD9qFNXVauu6du+m8hejR5MQa2t/9rIycm/m5dGN/ccfqcdbWhpdaIYOJTckICM7m23trsbXV3naFgjXprh5i3pIVVVKY+yBA+kCrtXSsqWlJJ5/+YWsL7Ls2DXAB2FhMiwWEnGizp3I3hQFbx2LmbJAcw0i09LRhS/EmbCOlpbSTVzs83PngOJiCbm5ATh2TGXP1BU3f1GvTjTMFjFKXK/OPfj4KPXmEhOBAQNsGDKkFGFh/qivVyM/n6xmeXn0AGWzkRDr2pWyM3v1ouNDWM34vPMOWIh1IH76iS60jz/ethOssZHKRXz6KQWU3nYbCbsrfZqyWinIf/9+eorbvZvmz5lDN/oBA6hEg+iB2dBw5dvOtI4LxSWZTIo4EzWxSkqUQPC4OCAlRXFv1taS8Dp2TOkaAJDoi4lRugI0NFDhWllWEgREtXlhQXMsaMo1s9pGS+JMWEaFODt92oqTJyvh7x8Do1GNs2dpXx86pNzIo6IUF7QoihwTo3QIEO2dmPaFClfb0K2bDD8/arN00020f0VIQnY2dQDIzKSsd7Wa9mW3bpT8FB/vbLlmceZ5uFSINTQ04K233sLvfvc7xLkiEKkTce4cZTVOmUJZNleKzUbuws2b6YScPZtq4Vzp0299PVnBjh6li8IPP1DGZY8e5AobMYLM6Gwy71iIGm2Ori9ZVirHC4EmmqhTj0Wla0BAAHUNEMHlhYVUCLihgfZ1ZCTdyKOj6Wbe0EDLiKBjEYMWGOhcM0u4XLkG2pXT1DLar58Nhw5VIyoqEiaT4rIW2Zvl5Up8kiisLIRZVJSyT8LDlV6LwsXJtD/i4SY6WmnJJCyg1dXUHu7YMRJnX3yhdPKIiiLLWc+eijgTopuTcjo2rRZi7777LnpeINCooaEBr7zyCoYPH85CrBXYbFSuwmYDbr21bT3rcnKoPcfp08DixRSTcKUnYUkJWb9On6bA/JoaEnZdu1Ij3UGD+Cnak5AkpR2PY+C4LIs2TVYcPFiD6OjI842yySITGEhiW5YVC5oQaAUFdIwYDLSuyEg6PkSMksGgxKABdMMQVjlqnqvU0eI4mCvHz09Gly70+yUnK6VSxM27pISsosKSVlxM844eJYt3aKgirIXbKySE/hc1z7hxvXtwtHrHxZEHYuJE5YGqqoqs1Dk5dD6mp9ODkY8PnWNdu9L5m5CglEIJCKBjhd3THYNWC7ERI0Zc9H2uut96zp4lS9PMmW1rNVRcTOUjMjOpYGta2pUF/MsyZWvt2UPbtm0buR7HjaMntFGjrl5fSqb9EW1eVCqgulrpGmCzKYHijoVLz50jAR4cTJZRWVY6B4gg84ICOg6FQIuIoMBj4eI0mWg5UQNNrVayC0XZBmGpERMnal8+jqVSunenhyajURFmotG5EGulpfT/L7/QcsHBJMKEoBZxZsKdKQrP8j5xDyL+MzycBNbQoc5Fhqur6dotxNkPP9B8SaL9KCzaiYl0LReNrkV7LhZo7QvHiLkZi4UsWKGhwM03X/l6amtJOG3eDEyfThmSVyLqzGaqfXPggBKXMG0aXcyvvZbKJrCZu3OgUrXccFf03XQUaBUVJND8/elC3707LatWw+7iLC+nm8PevSTwZNlZoEVF0fkg+m/KMt1whJtTVKUXNw3h6uSbxuXh6PICFKtZdTVZy4qLybriWAfr6FHav6JsinBpigb1jsJMp+N94U6aFhkeMoRqRtbVKQ9UpaVUPqOoiDwdv/5KD0UqlRJLKNo2iZZqwrXp70/nI1tFXY9LhZhKpUJsbCz8+E592Zw5I+Hnn4GHH3Yu9NkazGYKpP/iCzJbT5t2ZWUqDAZ6Ij50iOJJzp4lV2RSElWQFuURmM6N6LsZFORsGXXsu+nYOLu8XGmALQQaQAJNxDBRf1L6X5ZJdIkaaJGRJMyqq+kmIrZBCAtHgeZoQeNG6RfH0WqWkEDzGhpIjFVV0U1bFGqurKTrgSg6q1YrrkxR+0pkZoqkDRZm7kejUbI0AcpqT0uja31DgxJ7VlZGNSHPnqWMzV9+IYEmrOVhYbRfo6LIPSos1uIc9PWlsAPe31eGS4VYeHg4tm/f7spVejWyDHzzjRo9elBA5pVy7BjVCjObSTgNGtT6pxa9nqxf2dmUvRkRAdx+O5U+GD1aOZEZ5kI41j9zRJbJ3dW0/Y+4yYeFkYtzxAiy0mg09AQvgs4PHiQrjSwrqfxCAMgyrS8vr3kmZ0iIIhJ8fCTU1qphNnNNrYshYgi7daOHusZGpbdiWZnS9aGmhixmRUW0f1QqEmYxMUp5BeHeFNmaLMw6BpSpSZNjKZwJE0icGQxKo/uKCioKXlJC+//0aQpVsVoVkRYcTGI+LEwR5zodoFJJqKzU2DtCaDQk1tid3Zw2CbG+ffvi+eefv2Bx14yMDDzyyCPIzs5uy9d4LRaLhIMH1Vix4sozlIqKqGhrVhawaBGVJGitJaCyksTX8eOUNHDddSTARoygidOhmbYgSUr8l+OFH6CnbkcLmnBhVlfTU3d8PCWG2GxkQTMYSKCVlACHD5NAkGW68HfpQjeCyEj6zqIiuokAgNWqQnV1CPLyVPZsUhGULsptsAWtOb6+isDq04ce9kSleOFqFt0fhDA7cIButtHRyv4QFjPhygwNFTdrNw+QseNo6XY8T2WZztOGBnqgqq+nSbivS0sVwXbwoBJ2AGihUnVFaKjGnjUdEqL0whWFhkX4gY9P80nEnrbncWK10mQ2K69iMpnoN7j2WtdmFbdJiF0qMN9qtXKD8ItgNKowYIAVQ4Zc2VFWV0fxNlu2UK2w8eNb33tOVN/PzqYnnRtvpCfhMWOoACzvPuZqotU2r5MFUKyYEGfitbycLv4REeTiFHFkKhVdHB0rz1dU0HqCgoSVRgIgwWhUXGyAYkHz9VUsaE2L1XKrGYWmleKFy1gIs+JiJeasqEgRZmo1CTNhIRNZgKLDAwf/d1wkSYk/awmzmc4/MQm3Z3m5GcePV8BiiUJ9vfp8zTt6gKqvV85fSaL97uurWLPFg5u/vzJfJBOIhAIfHzoeVSo6viRJmVpClumBTpbp+iIms1kRl3V1tO2NjTQOg8F5TGKbN2yQXOolavMl5kJCq66uDjt37kQY+7QuiMUi4c47rfD1bf2juNVKTx8iLmz6dHIntAZhTTtyhCxi06eTJWzcOOdYHoZpb3x8mjdIB5ROAmIS8UvnztFTfGIiXVjFBb6xkURZURGQmxuMPXt87GU8HC1oooRHU4EmYtBENwHhZuEsTkKtVoT0NdfQdUkE+587R6K3ulqxmIlG2MKVKcSZsJgJYSbKLPCDYMdHo6GpaVKP0WhDXFwNevQIhySRNclxMhrp/BSxapWVdJw4CqJz52jZxkZnq5QohyPLSu1CQUvHzIWWEa/CKifOeSEGRXmdsDClxl5QEBAeLgNw3cHZaiG2bt06vPLKK+cHIeGxxx7DY4891uKysizj7rvvbtsWejFarYzeva+s3EduLsWFmUxU4Z5aC10+RUXUoujQIQrMvP12SoEeN665+4hhOgoX6iRwoUSBsjK6gMbG2tClSw1iYnzh66uG0ai8/8sv9CrLdAEWAk2cBwUFdL6JJ3fHMhsREUqcTHAwF6pVq5WyCtdcQzdMR4uZEGZVVYrFTAgz4coUMUYiHjAgQEJDg6rZzZTxDERizeXEZja1VonJaqVXm03522ql/8UkrFXC6iXWJ85bUSZHpXKe1GrFstaSe1SjaW4VF0LQVbRaiA0cOBB33XUXZFnGhx9+iNGjRyNBpNycR5Ik+Pv7o3///pg0aZKrttXr8Pe3XlHwakUFWbL27aO4sBEjWuc+KSwkEbZ/P8WWzZxJPu8bbmi9a5NhOgKXShSgYrXViImJhMFAoqC2lrIFGxsVF6fJRAKttJTc/kKg+foqWZzCOlZdTXGVAF2sRScBUXtLxKB15vgz0Zg8PJwyuZtazIqKlJizCwX/h4erYDLpUFqqQo8eSoHZpvua8XwkSbGwdSZaJcTeffddjBkzBsuXLwcAGAwGzJ49G4Pb2qH6Cvjss8/wzjvvIDc3FwEBARg4cCDWrVtnL52xfft2rF27Fvn5+YiNjcWDDz6IGTNmOK3DZDJhzZo1+PLLL1FfX4+hQ4di+fLlSGpSpyE3NxfPPvss9u/fj8DAQNx6661YvHgxtG2MYvfxaW4yvRQmEwmwzZupHdLYsa0TT0KE7dtHLslZsyg4f+xYbmnCeB8iUSA6GoiLM9mL1QIk0BxroYlSG1FR5Jp3FGhWKwmH8nJ6eCkpoXlCoAkLGom+5hmcwr0pYqGCgztnF4GmFjNHYVZe7izMioroerV/vxoWSxhyctSIjaXfOzhYKXESFkauTM6GZTyVVgmxVatWISwsDImJiQCAzz//HNdff327C7HXXnsNGzZswEMPPYQhQ4agqqoKmZmZsFqtAIBff/0VDz/8MO644w4sW7YMu3fvxl/+8hcEBgbiZoeqqc8++ywyMjLw+OOPIyYmBq+//jruvfdebN68GcHnHd41NTWYO3cuEhIS8PLLL6O0tBSrV6+G0WjEihUr2nXcAD2Bf/01XfinTWtdX8qzZ6ny/m+/UUDzjBnUAmnMGG5VxHQ+hEhq6op3FGgiBq2sjG743bpREgtAAk2WlSzOvXtJTNhstGxsrBKcXldHJTYAegAT1jPRQkiIs6CgzlXioakws1gUYSaq/Z87Z0VeXg2MxohmWZldutCk09E6unQhURYSwsKM8RxaJcR0Oh0qRDoS3NPOKC8vD+vWrcOrr76KsWPH2uffdNNN9r9fe+01DBo0CM888wwAYOTIkSgoKMBLL71kF2IlJSX45JNPsHLlStxxxx0AyO06btw4/Oc//8H8+fMBAP/5z39QX1+PdevWIfR85LDVasXTTz+NP/7xj4hpS0+iVlJSQi7JEyeAJ56gemGXS2kpibBff1VE2JgxVKi1s5mBGeZitCTQHBumC4EmGqaLCvMDBjjXQSstJavOnj30WR8fRThcyHoWGEiWM8eSD6IGU2dA9EeMiKCsTIsFKC624sCBGvj7h9kDumtq6MGysNA5K1P8viEhJMxiYpSkD37YZDoqrRJiKSkpePnll5GdnW23GH3++ec4ePDgRT/35JNPXvkWNmHTpk2Ii4tzEmGOmEwm7NmzB48++qjT/ClTpuCrr75CYWEh4uLisHPnTthsNicLWWhoKEaPHo0dO3bYhdiOHTswatQouwgDgMmTJ2PlypXYtWsXbr/9dpeN7WI0NlJM1zffUGB9a5p5i5iy334jd+TMmSzCGKY1XKhhumM/TtG3sayMrGSiD6DopwnQuVhSQudyaSm9FxJClrYuXUiAVVVRkWYhzkRiQFSUEsQeHNw56vv5+NBv0qNHI3r1ssHHR6n8X1JCk6hjVlREiRWOlf+7dqVXUZokOlqxmLEwYzoKrRJiK1euxHPPPYddu3ahoqICkiRh165d2LVr1wU/I0mSS4XYwYMH0bt3b7z66qt47733UFtbiwEDBuCJJ57A4MGDcebMGZjN5mZxXj3P9/zJy8tDXFwc8vLyEBERgZCQkGbLffLJJ/b/8/LymsWW6XQ6REVFIU/4GtqA0Wi8rOUOHZKQnq5B9+7AxIlmhITI9obKF6O2FvjxRxX27FFh3z41br/dguuus2HYMJs9HdjVGM5vmOFyNtDD4LF5JldzbGp181IbFouwnknQ64GqKgllZYCfH9Uf6tVLgizL8PGR0NAgo6xMhVOnJPz0kwSTicRXt24yYmJsiIqSUVEhITubrqe+vvL5uDMZ0dEytNpG1Naqodd7334DnPedv7/ixu3enWJmKQtTQmkpTTU1JIiLiyXk50v49VfpvDCj36tLFxnBwUBEhIyoKBmhoTJ0OvcIM3H9v9z7gCfhzWPTaNxYviIiIgIvvvii/f8+ffrgH//4xwUr618NysvLcfjwYeTk5GDlypXw9/fH66+/jnnz5mHr1q2oqakBQGLJEfG/eF+v19utek2XE8uI5ZquCwBCQkKclrtSiouLL7lMRYUPtm0LQ36+DvPnn4VaXWvvuXcxjEYJv/0WjKysQBw4EISJE8sQF1eP8PBanDzZ5k2/JKdEWXMvhMfmmbhjbGq1UgTVaJRQV6dGfb0adXVqVFb6oKHBByEhKvj6qpCYSPFP1Pxcg7w8LXbt0sJoVEGjkRETY0JEhBnh4Rao1TKsVroZaLUh+OWXeoSE1CAszIKgICuCgqwIDLyyzOyOSGFh4QXfU6nI+hURIZ0XpT7o0sUHPXpoUFurRn29hLIyLY4f1+KXXzRQq2WEh5sQGWlGWJgFwcFWhIRYEB5Ov11wsBVabfuF3lzOfcBT8caxJSVZAbiukGCbCrquWrUKQ4cOddW2XBayLKOhoQH/+te/0KdPHwDA4MGDMX78eLz//vtITU1t1+1pK127dr1ok3STCThxQoVff9Vg1iwLpk/vgsjILpdcr8kEZGaqUFIi4fBhH9xxhwVpaRFISwu76k9+BoMBp06dQkJCAvy9LGKWx+aZdOSxWSxkwamtJWtORYWE0lKgrk6CwQC72JJlGWVlGpw9q8Lhw2Rp8/EBoqMtCAzUo2fPAJjNGpw9S5YzPz8ZgYHy+WbN8vn6a7LHFUo1GAz2kJLW7rvGRnJjVldLKCmRUFYm2V3IRUUBOHtWwsmTQuQKCyS5gIXFkdzB8lUJ/jcajSguLr7kfcAT8eax+fjkuHZ9bfnwbbfdBoDiso4cOYKKigoMGzYM4eHhLtm4ltDpdAgNDbWLMIBiu/r164eTJ09i6tSpAIDa2lqnz+n1egCwuyJ1Oh3q6uqarV+v1zu5K3U6XbN1AWRZa+rWvBL8/Pzg53fhM/zkSWph1KcPMH26FvHxl16nzUYBrFlZVKpi2jRg3DgtJk68/LgyV+Dv748AL62JwWPzTDrq2Joa3UUHAdFgW2RmRkdT9wDH9jBnz1qRnS0hM9MPtbVqaLXUo1PER4mMTZWKYtxEcoEopxES0r7XhSvF39+/1ULM39/ZZWw0OseYlZU5l8s4fZri9zQapSyJqPwvmlqL3yww0HWC9lL3AU/GG8dms7n2SabNLY7effddrFu3zi5W3nrrLYwaNQqVlZWYPHkyHnvsMXtWoiu45pprcObMmRbfa2xsRPfu3aHRaJCXl4cxY8bY3xPxXCJ2LCkpCefOnWsmqPLy8pziy5KSkprFgtXW1qK8vLxZHJqrOXeOguyLioDly4Hk5Mv73JEjlEr/zTfUf3LsWCrW6gkXW4ZhnDsIxMXRPNE9oKYG5y1nVN7Bz08G0IDISB00GjVkmURGQQEl6BgMVBYjPp5KaoSH0/sAWdSCgpSaXCKQ3Vsbcvv5kUDt2pXKkBiNSm/MpsKssJA6KuzdS/FjjpX/HZuYh4Up2a3e+JsxV582CbFPP/0Uzz33HKZOnYrRo0dj2bJl9vfCw8MxcuRIZGRkuFSIjRs3Dps2bUJ2djb6nu/rU1VVhSNHjuDee++FVqtFSkoKvvnmG8ydO9f+uYyMDPTs2RNx569qqampUKlU2Lp1K2bOnAmArFw7d+7E//zP/9g/l5aWhtdff90pVmzLli1QqVQYPXq0y8bVFIuF2g9t3QrceitVz7+cDMe8PGD3buC774Bhw4C0NGpbFBR01TaVYZh2wLF7QGysMr+83IrffqtGVFQUGhqorENoKAmvESNoGZOJRFt+PlnJLRayiAlxVltL1w5RADc4WMRceXeWoWhp1aULCbPGRqUFU2kpTUL0CovZvn30O0VGKtX/hWiOiqLfLDiYfjPOSmcuhzYJsbfffhsTJkzAiy++iKqqqmbv9+/fH++9915bvqIZEydOxMCBA7Fo0SIsWbIEvr6+WL9+PbRaLe666y4AwJ/+9Cfcc889eOqppzB58mTs2bMHX331FdasWWNfT5cuXXDHHXfg+eefh0qlQkxMDN544w0EBwdj9uzZ9uVmz56N9957DwsWLMAf//hHlJaW4vnnn8fs2bOvag2x/HyyaEVFATffTE9hl6KsDMjMpHph0dHAxInAhAlwaZd4hmE6FtRWyWzvGiAamItm26L5dkQEuTUtFrKE1daS1efXX+naodVSJmJcHIkM0d5Jo6EHuagoxQIUGuqdLYZ8fRVx1acPZZU79sosLlYskmfP0nT0KLmKw8LoNxLV/oOClJpwQqgFBHhWfB7TPrRJiJ0+ffqiTb1DQ0NRXV3dlq9ohkqlwvr167Fq1SqsWLECZrMZ1157LT744ANEna/AeO211+Lll1/G2rVr8cknnyA2NhbPPvssJk+e7LSuJ598EoGBgXjxxRdRX1+PYcOG4e2333bKpgwJCcE777yDv/71r1iwYAECAwNxxx13YMmSJS4dlyO1tdSI+NAhYOlSpZL3xairIxG2axddhH/3O3JHtmO9WYZhOgCSpPS4FG5Nm42uK0JUFBeTtScykgSHaJRcUgKcOgX8/DNZ0WJinK1mOTmUBRoQQGJMuDpDQ73TnanRkLiKigJ691ZaMlVVkTtTtGSqrlY6AezZQy7P4GDls8JKJqxmwp3JFjMGaKMQ0+l0LVrCBCdPnrSLI1cSHh6Of/zjHxddZsKECZgwYcJFl9FqtVi6dCmWLl160eV69uyJ//u//2vtZl4RskwxXl9/TS7FyyncajaTcNu7l1og3XsvibDznagYhunkqFRKkHmPHsCQIYq1R1jNiopIIMTHA6NGkaDT64EzZ4CffiLxERBAVrNu3eiBr6CA1h8QQMKia1cSd6Kumk+bo5A7Fo4tmXr2BK69lgQqZWaSEKuoUNyZhYXUCWXvXvo9hYVMtLbSalUwmwNhNkv2bgqBgd4naJmL06bTJC0tDR999JHdJejIiRMn8PHHHzcrhspcnOJiiuGwWqmCfrduF19elik78rffyCV5xx1UNX/AgPbZXoZhPBNHa0+vXjSvvl6x9pSWkustJgYYOJCsZhYLzcvNJRFms9E1Kj6eXHKiZZOvL4kK0c5JuDO9Lc5MkhS3Y48ewODBlBwhBG5ZGU0i+1V0A8jMJIujn58P/PxCkZentjczDwoisebYg7QzNojvTLRJiC1evBizZs3CtGnTMG7cOEiShM8//xyffvoptm7disjISKfAd+bimEyUOv3TT8D8+dRL8lIn36lTFOOxbZuSHXnddXzSMgzTekQygHBpWixKuYfycrKahYeTtd1sJgtReTldh/bto2D36GgSJbGxZBVyjDMTmYdhYTR1sJJuLsHfn6auXYG+fZVG5kKcnT1Lr3V1QGmpFTk5VhQUSMjKos+HheF87TcSr8LNHBWltLcKCmJx5k20SYjFxMRg06ZN+Oc//4mvv/4asizjiy++QGBgIKZOnYpFixbBfDV66HgpublARgZZsy4n07GykuIRdu6kC+ekSdw/kmEY1+Hj4xwjJcvkiqusJJF19iwJs9hYctMJd+apU8D27fR3aCgJt27d6P/jx5WyGRER9FlvTgBwbGQOAMOHUxkSspjZcPBgFbTaQBiNPqipIQtacTF5OurqyE0ZFqb0GxXiLDCQLGchIYpYY7emZ9JmD35ERAT+9re/4W9/+xsqKyths9kQHh4OlUqF1157DS+99BKys7Ndsa1eTU0NBcgWFAArVwKXKlFmNFJc2O7d9LT60ENkEeMyFQzDXC0cXXEJCSQqjEYSZpWVJCDOniXL18CBJNwMBrqu7dlDsWgBAfRZIcxyc8myFhhIYqNrV3oVmYfeiGggHxYmQ6WqR1IS9f5t2jie+pWSy7esrGVxJmLyAgPJSibmC+tmYCDXkOzouDSU8mpW1PdmZBnIzqaaYVOm0JPlxYJcRVzYnj3kyrzvPhJhXS7d+YhhGMal+PmRVSs2lqz5ZrMSZ1ZWRgHr0dGUnSnLFIJRVERlH4qKyILfowdZ9evqqHSPY2ZmRIQEvV6LmBj6Lm90x6nVSmFdgaMwq6khF3BFBf1GdXVKAdrDh0msAco6wsJgD/7391dEbkiI8n9AgPfF7HkqXpbT4pmUlFCAvkYDTJ586ZIT+fkUF7Z9O7UvGjuW3AYMwzDuRqMh4SXEl82mVK8/d46sY5GRwDXXUFKSzUZWtLw8SjgClASAmBggP1+FigodiorUiIwkwRcRQWIjJMR7XXEajbNLE3AWZ7W19HueO0fCrL6efuPycpqysyk+Ta1WslhFW6uAAEWQidIjYl5AAAleb/1dOyIsxNyMxULWrZ07gQceuHS2Y1UVuSS3b6fK+ePGKbEZDMMwHQ2VSin5cM01QEoKiYiKCpoKCkggJCSQ0ABIXIgHTqNRjaCgQBiN1AS9qIjW6e/vXDJDxJmp1e4c7dWlJXFmsZAQE25MkVghxJmjYMvJIeuazUZeFxH8L6xowo3p54fzzc4Vgebnp7x682/sDliIuZkzZyR8+y3VpLnhhosHq5rNdGHas4f+vvlmCs5n8zLDMJ6CY5xZYiI9SNbXkygTRVJLS8nyNWIEYDJZkZdXh/r6AGzbRgIjPFzJzCwpoXWKkhmxsUpQe2io9ycv+fgoYxWI2Dwh0OrqlDi++npKFqiro9+8qooskkeOKEI4KEjpnykEmRBovr50nxLZm2Ke4+Ttv7mrabUQO3LkyGUvW1ZW1trVdypkGfjtNwnZ2cBf/nLpAP1jx6he2K+/AvffTyKMw/IYhvF0RFB59+5UbNZoVIRZXp4NZrMJQUE2DB9Oyzc0UN/HzExaJiiIhFm3bhQ3JYRZUJDSsig0lKw+neHBVZKUhADH9ng2myLChCATAq2hgcSbaI9VUUEiLjeXrGhWK92z/PyUwrPBwfS7BgRQiyxfX3qlSQW93h8mk4SgIMf5JNTE5GkuUKvV9etstRCbMWMGpMv0g8myfNnLdkYsFgnbtvlgzBgy11/sKaKkhKozb98O3HgjNfO+5pr221aGYZj2ws+PRFW3bkDPnjbExFQhOjoGBgNdC4uKyB3Zty8tbzKRi/PQIXrf15dizOLiyCWXna2UzHDsmRkWRiKis6BSKaUuHJFlEr8NDc4Ws+pqEmENDVQjrqGBpqoqmk9CmQScLNO6NBoRZ6aGzRaGQ4fUCAkh4eYowDQacnFqteTydHz18aH3xKvjpFLRqyQpr5KkCDohOcSr2C5ZVibR0kvEKNps9LfFQq9WK1kHLRZ6NRjo9zEY6He44QbXZqK2WoitWrXKdd/eyTGZJFRXS7j1VjKnXwijkUTYrl2UGTlpEseFMQzTedBoZHTpQjf4/v2VQrMVFeTGLCxUYtDEDfbsWeDkSXpPkkiUxcXRZ0Qts6YlM0JDycrT2a6tkqQUonWMPwNIpAgRIqxmBoOSzSlEWmOjspxeD1RVySgtlXHunIQzZ2g5IYQcv1O4PIWlTFjNhJVNWM2ECGtpchRfF9p3jt/tKMSaCjKLhSbH8ZhMJMiEWB0xQnKpN6rVQuy2225z3bd3chobVZgyxYLBg7UXPfEPHaIA/fx8YOFCYPRorgvDMEznxbHQrGNmZkUFWcDOnCFrV48edJOVJLKU5eVRjK3FQg+/cXH0cJufTzf0wECKiRLNzEVzbm/rmdkaVCrFzdlUpAH0+xqNzaeaGiuOH69CSEgALBYfmM0kZoSoMZvJ+lZfT9Y3s5nET00NfV6Iu6Y14YWYEgjLmGMCQdP7qfhfWLsslouLNo1GiX0TQlE0cdfpAH9/GYDr1HonPrzcjyQBEyfaLqqsCwspJuzHH6n3ZGrqpctbMAzDdCYcMzN79QJGjiSrjGNmZmgoCS/R0LyiggTY1q1044+MJHdmbCxZ0xzjzETPzNBQpRYXQ4hivE0TzQwGGUFBdejVywZfXxJgJhOJK/G3EGYmkyLgHC1Qjq5CMQk3oqOrUSwL0P+SpLznKLaEYBNhQEKMObo8m7pFRbaomHx9Xe/OZiHmRvz9bYiLky/4vsGg9JEcOpRKVXAzb4ZhmIsjSSSYQkIoCeq665wzB0VmZteusCcA1NVRa6affiIRp9NR8kDXrmRlkyTFnRkRoSQACHempwWdtycqlWJZulxsNhJYwoJlsSgirKkgE25FwNkFKXC0fol4sqaxZo4CzHFqyWpWWnplv8OFYCHmRrRa2wXLVYjq+ZmZZLqdMoWe8rh+C8MwTOsRQeqOmZmiA4BozRQT49yaqbCQQkNKS+na262bUh4jN1fJTgwOJquZKJgqyj0wV45K1TkyXAEWYm7Fx+fC1rDCQmDfPuo/OWcOmdMd218wDMMwV46fH1m7unZ1TgAQHQAKC0lc9e1L78kyCbLTp+nabDSSKzQujtZRXEzCTKMhwRceTsJOCDOdjh+kmZZhIeZGLhQoaDBQvbAdO4DBg7mFEcMwzNXGMQEgOZmEl17v7M6MiqIEgJEj6f36euWh+dw5EmFxcWQ5i4igrE3RBSAwkISZsJqxMGMELMQ6IEeOULmKc+eAuXOpujTHHzAMw7QfjnFmiYkUS2Y0kiirqqLCsUVFZDXr10+JWyopoVgz0QElLIzcmV26KMVm1WoR+K2CyRQAWZYQHa0kAnS28hmdHRZiHYziYmD/fuo9OXMmcP31dHIyDMMw7sXPj0RVbCy5M0XZDOHSFFazpCTKDrTZyGpWXEydUYqLyZIWFaXULquvD0BlpcrecFt0AxClM0RDbhZn3gsLsQ6EyUQibMcOqo1zww3skmQYhumoOJbN6NmTsjNFEkBVFXk1iorIVSlizQCqlVVUBBw86IOzZ0Ph76+2W82io+k9kaXp70/iLDpaEWci8YBdm94BC7EORE4OFW4tKgL+/Gc6qdklyTAM4zk4JgEAZAGrrVUsZ2Vl5L6MiwOSk60oLq5AdHQM9Ho1ioooQUuvJ5EVE0MCLCpKqW2mViuNt8PDKeYsOFhpws01zjwPFmIdhMpKCvj84Qdg+nRySXKWJMMwjGcjSYqLsXt3mme1klWsuNiKAwdqERgYhepqICGBakaK+lhVVeTOPHCArGuyrNQwEwVmAXpg12iUpICoKAppEZazwEAup9GRYSHWAbDZgIMHySXZowe5JPv0cfdWMQzDMFcDtZqsWX5+MoxGA/r2tUGrJXFWU0PWs7IymhISKJNelNCoraUyGnl5JNLMZoohExmf4eHkVQGUWlxCoEVEKK5NUQ2fkwPcDwuxDsCpUxQbduwYsHgxZUl25t5mDMMwnQ0fHxJKjv0crValuXZNDVnFSkvJsta/P4kwUYG+ooKE2/799LfNRu7K6GhlvQUFSpV50U/Rz4+8L8KCJvpKBgTQeyzSrj58u3czBgOdOD/+SPXCRo7kXpIMwzAMWc7CwpzDVGSZ2jHp9TQJ61lVFdDQQMkCwnrW2EjirawMOHGClgXIChYZSa7N8HCykonWP5IEaLVKw+uQEFouIEDptyj6L2q1LNRcAQsxN3P8uIS9e+mJ5qabgEGD3L1FDMMwTEdFkpTg/G7dlPlmM7kt9Xp6FYkBej098BuNZGEDKEO/ulppfF5aSqJNlkl0RUQoDc4DAxWBJppja7WKWHNMFPD1VQSczQY0Nkr2HpDMhWEh5kZsNglZWSpkZgKzZ5NLkgMqGYZhmNai0SilNBxpbCQLWm0tvdbUAOXlJMSMRsWCJkSawaC0eTpxgl6FSPPxUdyYIgEhOJgEmiwrWf4UWqNGZWUocnJU0OlI0AmXp0ZDk1arvPr40N+i2XZHqBgg3L5mM4lXMalUrg0fYiHmRsxmCT//LCEpCUhLo6BMhmEYhnEVwkrlGHsGkPCqq6Opvp4mYSWrq1NEmugYYLMpblFRiuPECVpeCDWALGM6HeDnJ8Fi8UNDg+TUBN1mUyxsAIk4Mfn4NLe6CdHm66sINbVacaU6/i1o6i4V2ybLNInxiMliaS62jEaaZ7XS+0KsWizAhAmuLRPCQsyNmEwSTp5U49FHqX1GR3gCYBiGYbwftVpp4dQUs5nizerr6bWhQamFJixpJhMJMBGPJlyQjY20fFUVUFAgobBQhWPHSMCJgrbCeiYsZIGBJLSEu9PR9anVKoVrHd2ckuRshWs6v6XYNSHIHP8Wr0LMyTJtp+MYxWQ0kqv3+utdGxjHQsyNmEwqpKVZMWqUqpk5mWEYhmHcgUZzYZEmkgAMBudJiBQRo1ZXZ0N4eD0iIoKhUvnYLWpCTEkSfcZgIOEmxE5DA7lGxTobGkgYtiSiHBHCy1GAiQxRgRCNYp6jCHNc3jFzVCQpREQoXQ4CA2UArhNjLMTczLhxVvTrp3H3ZjAMwzDMJZEk57IXLSHLQHW1FVlZlejRIwoqlbN1yWgkC1lDAwmuxsbmLkDhEgWcLWGOQk68XsgK1tTqJVyiwkXpuD5hWXMUb8L1qdEorlMRz+ZKPE6Ibdq0CU888USz+fPnz8ejjz5q///jjz/Gm2++ibNnzyIxMRFLlizBuHHjnD5TW1uLVatW4bvvvoPZbMaYMWPw5JNPIjo62mm5ffv24e9//zuys7MRERGBOXPmYP78+ZDamLfr52fDtdfKHKDPMAzDeA2SRG7FoCAboqPJqnQxrFYlKF5MQpQ5TkKgickxhkt0IxCWN0erWdN4NNHH03ESQkv8LWLThPgSk48PcOiQa38vjxNigjfffBPBwcH2/2Mcim9t3rwZy5cvx0MPPYSRI0ciIyMDDz/8MD744AMMGTLEvtzixYtx8uRJPPXUU/D19cXatWsxf/58fPrpp/A5L3lPnz6N+++/H6NHj8bixYtx/PhxvPDCC1Cr1bj//vvbNAat1oaEhBZsrAzDMAzTSRACqbMaJTxWiPXv3x/hFwiseumllzB16lQsXrwYADBy5Ejk5OTglVdewYYNGwAA+/fvx86dO7Fx40akpqYCABITEzFlyhRs3boVU6ZMAQBs3LgRYWFh+Oc//wmtVotRo0ahsrISr7/+Ou6++25otdorHoNGI3OAPsMwDMN0YrxOBhQUFODUqVOYPHmy0/wpU6YgMzMTJpMJALBjxw7odDqMHj3avkxSUhL69u2LHTt22Oft2LEDEyZMcBJcU6ZMgV6vx/79+9u0rSIThGEYhmGYzonHWsSmTZuGqqoqxMbGYtasWXjggQegVquRl5cHgKxbjvTs2RNmsxkFBQXo2bMn8vLykJiY2CzOKykpyb6OhoYGFBcXIykpqdkykiQhLy8PKSkpbRqHwWBo0+c7ImJMPDbPgsfmmXjz2ADvHh+PzTORZbnNMeKOeJwQi4qKwsKFCzF48GBIkoTt27dj7dq1KC0txYoVK1BTUwMA0Ol0Tp8T/4v39Xq9U4yZICQkBIcPHwZAwfwtrUur1cLf39++rrZw6tSpNq+jo8Jj80x4bJ6JN48N8O7x8dg8j7aEJTXF44TYmDFjMGbMGPv/qamp8PX1xTvvvIOHHnrIjVt2ZSQkJMDflSV6OwAGgwGnTp3isXkYPDbPxJvHBnj3+HhsnsmJEydcuj6PE2ItMXnyZLz11lvIzs5GyPkKdLW1tYiKirIvo9frAcD+vk6nQ0lJSbN11dTU2JcRFjNhGROYTCYYDAb7cm3B398fAZfK7fVQeGyeCY/NM/HmsQHePT4em2fhSrck4IXB+iKeS8R5CfLy8qDRaBAfH29fLj8/H3KTEr35+fn2dQQEBKBr167N1iU+1zR2jGEYhmEYpjV4hRDLyMiAWq1Gv379EB8fj4SEBGzZsqXZMqNGjbL7ddPS0lBTU4PMzEz7Mvn5+Th69CjS0tLs89LS0rBt2zaYzWandel0OgwdOvQqj4xhGIZhGG/G41yT999/P1JSUpCcnAwA2LZtGz766CPcc889dlfkwoUL8eijj6J79+5ISUlBRkYGsrKy8P7779vXM3ToUKSmpmLZsmVYunQpfH19sWbNGiQnJ2PSpElO35eeno5HHnkEc+bMQU5ODjZu3IglS5a4NFiPYRiGYZjOh8cJscTERHz66acoKSmBzWZDQkICli1bhrvvvtu+zLRp02AwGLBhwwasX78eiYmJWLduXTML1tq1a7Fq1SqsWLECFosFqampePLJJ+1V9QGgR48e2LhxI1avXo0HH3wQ4eHhWLRoEebNm9duY2YYhmEYxjvxOCH25JNPXtZyM2fOxMyZMy+6THBwMJ577jk899xzF11u2LBh+Oijjy57GxmGYRiGYS4Hr4gRYxiGYRiG8URYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJFmIMwzAMwzBugoUYwzAMwzCMm2AhxjAMwzAM4yZYiDEMwzAMw7gJjxdi9fX1SEtLQ3JyMg4dOuT03scff4ybbroJAwcOxC233ILvv/++2edra2uxbNkyjBgxAkOHDsWiRYtQVlbWbLl9+/bhzjvvxKBBgzBu3DisX78esixftXExDMMwDOP9eLwQe/XVV2G1WpvN37x5M5YvX47Jkydjw4YNGDJkCB5++GEcOHDAabnFixdj165deOqpp/DCCy8gPz8f8+fPh8VisS9z+vRp3H///YiKisIbb7yBuXPn4qWXXsJbb711tYfHMAzDMIwX4+PuDWgLubm5+PDDD7F06VKsXLnS6b2XXnoJU6dOxeLFiwEAI0eORE5ODl555RVs2LABALB//37s3LkTGzduRGpqKgAgMTERU6ZMwdatWzFlyhQAwMaNGxEWFoZ//vOf0Gq1GDVqFCorK/H666/j7rvvhlarbb9BMwzDMAzjNXi0RezZZ5/F7NmzkZiY6DS/oKAAp06dwuTJk53mT5kyBZmZmTCZTACAHTt2QKfTYfTo0fZlkpKS0LdvX+zYscM+b8eOHZgwYYKT4JoyZQr0ej32799/NYbGMAzDMEwnwGOF2JYtW5CTk4MFCxY0ey8vLw8Amgm0nj17wmw2o6CgwL5cYmIiJElyWi4pKcm+joaGBhQXFyMpKanZMpIk2ZdjGIZhGIZpLR7pmjQYDFi9ejWWLFmCoKCgZu/X1NQAAHQ6ndN88b94X6/XIzg4uNnnQ0JCcPjwYQAUzN/SurRaLfz9/e3rastYvA0xJh6bZ8Fj80y8eWyAd4+Px+aZyLLczIDTFjxSiL322muIiIjAjBkz3L0pbebUqVPu3oSrBo/NM+GxeSbePDbAu8fHY/M8XBkb7nFCrKioCG+99RZeeeUVu7WqoaHB/lpfX4+QkBAAZM2Kioqyf1av1wOA/X2dToeSkpJm31FTU2NfRljMxHcJTCYTDAaDfbkrJSEhAf7+/m1aR0fDYDDg1KlTPDYPg8fmmXjz2ADvHh+PzTM5ceKES9fncUKssLAQZrMZDz74YLP37rnnHgwePBgvvvgiAIoBc4ztysvLg0ajQXx8PACK88rMzGxmZszPz0fv3r0BAAEBAejatWuzWLD8/HzIstwsdqy1+Pv7IyAgoE3r6Kjw2DwTHptn4s1jA7x7fDw2z8KVbknAA4P1+/bti3fffddpeuKJJwAATz/9NFauXIn4+HgkJCRgy5YtTp/NyMjAqFGj7CbFtLQ01NTUIDMz075Mfn4+jh49irS0NPu8tLQ0bNu2DWaz2WldOp0OQ4cOvZrDZRiGYRjGi/E4i5hOp0NKSkqL7/Xv3x/9+/cHACxcuBCPPvoounfvjpSUFGRkZCArKwvvv/++ffmhQ4ciNTUVy5Ytw9KlS+Hr64s1a9YgOTkZkyZNsi93//33Iz09HY888gjmzJmDnJwcbNy4EUuWLOEaYgzDMAzDXDEeJ8Qul2nTpsFgMGDDhg1Yv349EhMTsW7dumYWrLVr12LVqlVYsWIFLBYLUlNT8eSTT8LHR/lpevTogY0bN2L16tV48MEHER4ejkWLFmHevHntPSyGYRiGYbwIrxBiKSkpOH78eLP5M2fOxMyZMy/62eDgYDz33HN47rnnLrrcsGHD8NFHH7VpOxmGYRiGYRzxuBgxhmEYhmEYb4GFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwboKFGMMwDMMwjJtgIcYwDMMwDOMmWIgxDMMwDMO4CRZiDMMwDMMwbkKSZVl290Z0Rvbt2wdZlqHRaCBJkrs3x6XIsgyz2cxj8zB4bJ6JN48N8O7x8dg8E5PJBEmSMGzYMJesz8cla2FajTgwve0ABWhMWq3W3ZtxVeCxeSY8Ns/Fm8fHY/NMJEly6b2bLWIMwzAMwzBugmPEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzE2pnc3Fzcd999GDJkCEaPHo3nn38eJpPJ3ZvVak6fPo0VK1bg1ltvRb9+/TBt2rQWl/v4449x0003YeDAgbjlllvw/ffft/OWtp6vv/4af/rTn5CWloYhQ4bg1ltvxSeffAJZlp2W88Sx/fjjj/jDH/6AkSNHYsCAAZgwYQJWrVqF2tpap+W2b9+OW265BQMHDsRNN92ETz/91E1bfGXU19cjLS0NycnJOHTokNN7nrjfNm3ahOTk5GbTCy+84LScJ45N8Nlnn+F3v/sdBg4ciJSUFDzwwAMwGo329z3xmLz77rtb3G/JycnYvHmzfTlP3W/btm3DzJkzMXToUKSmpuJ///d/UVBQ0Gw5Txzf999/j9tuuw0DBgzA2LFj8dJLL8FqtTZbziXHpcy0G9XV1fLo0aPl3//+9/KOHTvkjz/+WB4+fLj89NNPu3vTWs23334rp6WlyQsXLpSnTZsmT506tdkyX331lZycnCyvWbNGzszMlJcvXy7369dP3r9/f/tvcCuYNWuWvGTJEnnz5s3yzz//LL/wwgtynz595Jdfftm+jKeO7fPPP5f//ve/y1u2bJF3794tv/fee/KIESPk++67z77M3r175b59+8rLly+XMzMz5TVr1sjJycny119/7cYtbx3PP/+8fP3118u9e/eWs7Ky7PM9db99+umncu/eveUdO3bI+/fvt09nz561L+OpY5NlWX711VfloUOHym+88Ya8Z88eecuWLfLKlSvluro6WZY995g8ceKE0/7av3+/vHjxYrlfv35yRUWFLMueu992794t9+nTR3788cflXbt2yZs3b5YnTZokT5w4UTYYDPblPHF8+/fvl/v06SM/8sgj8o4dO+S33npLHjRokLx69Wqn5Vx1XLIQa0def/11eciQIXJVVZV93n/+8x+5b9++cklJifs27AqwWq32v5cuXdqiEJs0aZL85z//2WnenXfeKT/wwANXffvagrhAOvLkk0/Kw4YNs4/bU8fWEv/973/l3r1724/BefPmyXfeeafTMn/+85/lyZMnu2PzWs3JkyflIUOGyP/+97+bCTFP3W9CiLV0bAo8dWy5ublyv3795B9++OGCy3j6MenI+PHj5fnz59v/99T9tnz5cnn8+PGyzWazz8vMzJR79+4t79271z7PE8c3b948+bbbbnOat3HjRrl///5yeXm503KuOC7ZNdmO7NixA6NGjUJoaKh93uTJk2Gz2bBr1y73bdgVoFJd/NApKCjAqVOnMHnyZKf5U6ZMQWZmZod2x4aHhzeb17dvX9TV1aGhocGjx9YS4ng0m80wmUzYs2cPbr75ZqdlpkyZgtzcXBQWFrphC1vHs88+i9mzZyMxMdFpvrftN0c8eWybNm1CXFwcxo4d2+L73nBMCvbt24fCwkJMnz4dgGfvN4vFgsDAQEiSZJ8XHBwMAPYwDk8dX3Z2NkaPHu00LzU1FWazGTt37gTg2uOShVg7kpeXh6SkJKd5Op0OUVFRyMvLc9NWXR3EeJreDHv27Amz2dxiHEFH5rfffkNMTAyCgoK8YmxWqxWNjY04cuQIXnnlFYwfPx5xcXE4c+YMzGZzs+O0Z8+eANDhj9MtW7YgJycHCxYsaPaeN+y3adOmoW/fvpgwYQLeeOMNe8yKJ4/t4MGD6N27N1599VWMGjUKAwYMwOzZs3Hw4EEA8Phj0pGvvvoKAQEBmDBhAgDP3m+33347cnNz8cEHH6C2thYFBQX45z//iX79+mHYsGEAPHd8jY2N0Gq1TvPE/7m5uQBce1z6tGVjmdah1+uh0+mazQ8JCUFNTY0btujqIcbTdLzif08a76+//oqMjAwsXboUgHeMbdy4cSgtLQUAjBkzBi+++CIAzx6bwWDA6tWrsWTJEgQFBTV735PHFhUVhYULF2Lw4MGQJAnbt2/H2rVrUVpaihUrVnj02MrLy3H48GHk5ORg5cqV8Pf3x+uvv4558+Zh69atHj02RywWC77++muMHz8eAQEBADz7mLz22muxbt06PPLII3jmmWcAkOfgzTffhFqtBuC54+vRoweysrKc5h04cACAss2uHBsLMYa5CCUlJViyZAlSUlJwzz33uHtzXMb69ethMBhw8uRJvPbaa3jooYfw9ttvu3uz2sRrr72GiIgIzJgxw92b4nLGjBmDMWPG2P9PTU2Fr68v3nnnHTz00ENu3LK2I8syGhoa8K9//Qt9+vQBAAwePBjjx4/H+++/j9TUVDdvoWvYtWsXKisrL5hh7mns27cP/+///T/MmjULN9xwA6qrq/Hqq6/iwQcfxIcffgg/Pz93b+IVc9ddd+Evf/kL3nnnHdx66604efIk1q5daxeYroZdk+2ITqdrViYAIOUcEhLihi26eojxNB2vXq93er8jo9frMX/+fISGhuLll1+2x8V5w9j69OmDoUOHYubMmXj11VexZ88efPvttx47tqKiIrz11ltYtGgRamtrodfr0dDQAABoaGhAfX29x47tQkyePBlWqxXZ2dkePTadTofQ0FC7CAMobrFfv344efKkR4/Nka+++gqhoaFOwtKTx/bss89i5MiRePzxxzFy5EjcfPPNWL9+PY4ePYovvvgCgOeO7/bbb8fcuXPx/PPPIyUlBffeey9mz56NkJAQREdHA3Dt2FiItSNJSUnN/Ma1tbUoLy9v5mf2dMR4mo43Ly8PGo0G8fHx7tisy8ZoNOKPf/wjamtr8eabb9qDUAHPH1tTkpOTodFocObMGXTv3h0ajabFsQHosMdpYWEhzGYzHnzwQVx33XW47rrr7Jaie+65B/fdd5/X7TdHPHls11xzzQXfa2xs9Nhj0hGj0YjvvvsON998MzQajX2+J++33NxcJ/EMAF26dEFYWBjOnDkDwHPHp1KpsGzZMuzevRtffPEFfv75Z8yaNQuVlZUYPHgwALj0uGQh1o6kpaXh559/titmgIKLVSpVswwNTyc+Ph4JCQnYsmWL0/yMjAyMGjWqWSBkR8JisWDx4sXIy8vDm2++iZiYGKf3PXlsLXHw4EGYzWbExcVBq9UiJSUF33zzjdMyGRkZ6NmzJ+Li4ty0lRenb9++ePfdd52mJ554AgDw9NNPY+XKlV633zIyMqBWq9GvXz+PHtu4ceNQXV2N7Oxs+7yqqiocOXIE/fv399hj0pHt27ejoaHBni0p8OT9Fhsbi6NHjzrNKyoqQlVVFbp16wbAs8cHUBZonz59oNPp8N577yEuLg7XX389ALj0uOQYsXZk9uzZeO+997BgwQL88Y9/RGlpKZ5//nnMnj272c2+o2MwGPDjjz8CoJOvrq7OfrKNGDEC4eHhWLhwIR599FF0794dKSkpyMjIQFZWFt5//313bvolefrpp/H999/j8ccfR11dnT1IEwD69esHrVbrsWN7+OGHMWDAACQnJ8PPzw/Hjh3Dxo0bkZycjIkTJwIA/vSnP+Gee+7BU089hcmTJ2PPnj346quvsGbNGjdv/YXR6XRISUlp8b3+/fujf//+AOCx++3+++9HSkoKkpOTAVBF848++gj33HMPoqKiAHju2CZOnIiBAwdi0aJFWLJkCXx9fbF+/XpotVrcddddADzzmHQkPT0dsbGxGD58eLP3PHW/zZ49G8899xyeffZZjB8/HtXV1fY4TcdyFZ44vqysLPzyyy/o27cvjEYjtm/fji+++AIbNmxwihNz2XF5pQXPmCvj5MmT8ty5c+VBgwbJo0aNklevXi03Nja6e7NaTUFBgdy7d+8Wp927d9uX++ijj+Qbb7xR7t+/vzxt2jR5+/btbtzqy2PcuHEXHFtBQYF9OU8c2xtvvCHfeuut8tChQ+UhQ4bIU6dOldeuXSvX1tY6Lffdd9/J06ZNk/v37y/feOONHEokpgAABb9JREFU8scff+ymLb5ydu/e3aygqyx75n7761//Kk+aNEkeNGiQPGDAAHnatGnyO++841RMU5Y9c2yyTEWUH330UXn48OHyoEGD5Hnz5sknTpxwWsZTj8nq6mq5f//+8vPPP3/BZTxxv9lsNvnDDz+Up0+fLg8ZMkQePXq0vGDBAvnkyZPNlvW08R09elSeOXOmPGTIEHnIkCHy3Llz5X379rW4rCuOS0mWmzTQYxiGYRiGYdoFjhFjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhGIZh3AQLMYZhGIZhGDfBQoxhGIZhGMZNsBBjGIZhGIZxEyzEGIZhLoMPPvgAycnJmDlzprs3hWEYL4KFGMMwzGWQnp6Obt26ISsrC6dPn3b35jAM4yWwEGMYhrkEBQUF2L9/P5544gmEh4cjPT3d3ZvEMIyXwEKMYRjmEqSnpyMkJARjx47FTTfd1KIQq6qqwmOPPYZhw4bh2muvxdKlS3Hs2DEkJydj06ZNTsvm5uZi0aJFGDFiBAYOHIjbb78d27Zta6/hMAzTgWAhxjAMcwnS09Nx4403QqvVYtq0aTh16hSysrLs79tsNvzpT3/C5s2bcdttt2HJkiUoLy/H0qVLm63rxIkTuPPOO5Gbm4v58+fj8ccfR0BAABYsWIBvv/22PYfFMEwHwMfdG8AwDNOROXz4MPLy8rB8+XIAwPDhw9GlSxekp6dj0KBBAIDvvvsO+/fvx7JlyzB37lwAwJw5c3Dfffc1W9/f/vY3dO3aFZ9++im0Wi0A4K677sKcOXPwwgsv4MYbb2ynkTEM0xFgixjDMMxFSE9PR2RkJFJSUgAAkiRhypQpyMjIgNVqBQD89NNP0Gg0mDVrlv1zKpUKv//9753WVV1djd27d2Py5Mmoq6tDZWUlKisrUVVVhdTUVJw6dQqlpaXtNziGYdwOW8QYhmEugNVqxebNm5GSkoLCwkL7/EGDBuGtt95CZmYmUlNTcfbsWURFRcHf39/p8927d3f6/8yZM5BlGf/617/wr3/9q8XvrKioQExMjOsHwzBMh4SFGMMwzAXYvXs3ysvLsXnzZmzevLnZ++np6UhNTb3s9dlsNgDAvHnzMGbMmBaXaSreGIbxbliIMQzDXID09HRERERgxYoVzd779ttv8e233+Lpp59GbGws9uzZA4PB4GQVO3PmjNNn4uPjAQAajQbXX3/91d14hmE8Ao4RYxiGaQGj0YitW7fihhtuwM0339xs+v3vf4/6+nps374dqampMJvN+Oijj+yft9ls+OCDD5zWGRERgREjRuC///0vysrKmn1nZWXlVR8XwzAdC7aIMQzDtMD27dtRX1+P8ePHt/j+kCFDEB4eji+//BKvvPIKBg0ahL///e84c+YMkpKSsH37dtTU1ACgAH/BypUrcdddd2H69OmYNWsW4uPjce7cORw4cAAlJSX48ssv22V8DMN0DFiIMQzDtMCXX34JX19fjB49usX3VSoVbrjhBqSnp0Ov1+ONN97A3/72N3z22WdQqVS48cYbsWDBAsyZMwe+vr72z11zzTX49NNPsW7dOnz22Weorq5GeHg4+vXrhwULFrTX8BiG6SBIsizL7t4IhmEYb+S7777DggUL8OGHH2L48OHu3hyGYTogHCPGMAzjAoxGo9P/VqsV7733HoKCgtC/f383bRXDMB0ddk0yDMO4gL/+9a8wGo0YOnQoTCYTtm7div379+PPf/4z/Pz83L15DMN0UNg1yTAM4wLS09Px9ttv4/Tp02hsbESPHj0wZ84c/OEPf3D3pjEM04FhIcYwDMMwDOMmOEaMYRiGYRjGTbAQYxiGYRiGcRMsxBiGYRiGYdwECzGGYRiGYRg3wUKMYRiGYRjGTbAQYxiGYRiGcRMsxBiGYRiGYdwECzGGYRiGYRg38f8B+FHpxU0YOrkAAAAASUVORK5CYII=\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Running IDP 1 Left-Lateral-Ventricle :\n", - "Making predictions with dummy covariates (for visualisation)\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Writing outputs ...\n", - "metrics: {'RMSE': array([4205.49266088]), 'Rho': array([0.45898577]), 'pRho': array([5.62632393e-25]), 'SMSE': array([0.81397727]), 'EXPV': array([0.19814613])}\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHPCAYAAADwPLZLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1aklEQVR4nOydd3hUZdr/vzNJJr33kEogECAQehVpgjRBimJBEURc209XfXfXd4u776q77roqoC4gWLFhQwURxYIgIEqTXhJI72VmMn3O+f1x+8wkZJLMZCbJJNyf65orZc6cec6ZM+d8z33fz/dWyLIsg2EYhmEYhul0lF09AIZhGIZhmCsVFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBQoxhGIZhGKaLYCHGMAzDMAzTRbAQYxiGYRiG6SJYiDEMwzAMw3QRLMQYhmEYhmG6CBZiDMN4lKqqKjzwwAMYPXo0+vXrh1dffbWrh+Q19OvXD2vWrOnqYXiUAwcOoF+/fjhw4IBLr1uzZg369evXQaNimO4DCzGGYfDhhx+iX79++OWXX9xe11NPPYXvv/8ed911F55++mlcddVV+O6771wSIEVFRejXrx82btzo9ngAYPPmzfjwww89sq6OZO7cuZg0aRJa6zy3ZMkSjBs3DhaLxePv/+mnn7JwZphOhoUYwzAeZf/+/Zg6dSpWrFiBefPmITMzE9999x3Wrl3bZWN6++238dFHH3XZ+zvL3LlzUVpaip9++snh80VFRThy5AhmzZoFX19fj7//Z599htdff92l14wcORLHjh3DyJEjPT4ehrkSYCHGMIxHqa6uRlhYWFcPo8OxWCwwmUweXefcuXOhUCjw6aefOnx+27ZtkGUZc+fO9ej7tgej0QhJkqBUKuHv7w+lki8nDNMe+JvDMIxTlJeX4w9/+APGjRuHQYMGYfbs2Xj//fdtz4v0pizL2Lx5M/r164d+/frh97//PTZv3gwAtv95qjbogw8+wG233YaxY8di0KBBmDVrFt56660my0yZMgXnzp3Djz/+aHvvpUuX2p5Xq9V44okncPXVV2PQoEG45pprsH79ekiSZFumcar01VdfxbRp05CTk4MLFy7AZDLh+eefx4IFCzB8+HDk5ubi5ptvxv79+13ensTERIwcORJffPEFzGZzs+c/++wzpKamYsiQIQDa/kwAew3X9u3b8dJLL2HixInIycnB7bffjkuXLtmWW7p0Kb799lsUFxfb9tOUKVOarGPbtm149tlncdVVV2HIkCHQarUt1ogdPXoUK1euxMiRI5Gbm4u5c+fitddea3MfbN26FQsWLMDgwYMxatQoPPTQQygtLXV5XzJMd8HzsW2GYXocVVVVuOGGG6BQKHDLLbcgKioKu3fvxv/+7/9Cq9Vi2bJlGDlyJJ5++mn8z//8D8aPH4958+YBAFJTU1FRUYG9e/fi6aef9ui43n77bfTt2xdTpkyBr68vvvnmG/z1r3+FLMu45ZZbAACPPfYY/u///g9BQUG4++67AQAxMTEAAL1ej1tvvRXl5eVYsmQJEhMTcfjwYfznP/9BZWUl/vd//7fJ+3344YcwGo244YYboFKpEB4eDq1Wiy1btmDOnDlYvHgxGhoa8P777+POO+/Eli1bkJ2d7dI2zZ07F3/605+wZ88eTJ482fb/M2fO4OzZs7j33nsBOPeZNGbDhg1QKBRYvnw5tFotXn75ZTzyyCPYsmULAODuu++GRqNBWVkZ/vCHPwAAgoODm6zjxRdfhJ+fH1asWAGTyQQ/Pz+H27B3716sWrUKcXFxuO222xATE4MLFy7g22+/xe23397itr/00kt4/vnnMXPmTCxatAg1NTV48803ccstt+Djjz++IiKtzBWIzDDMFc8HH3wgZ2VlyceOHXP4/GOPPSaPHz9erqmpafL/hx56SB4+fLis1+tt/8vKypL/+te/Nlnur3/9q5yVleX0eAoLC+WsrCz55ZdfbnW5xu8rWL58uTx16tQm/5s9e7Z86623Nlv2hRdekHNzc+X8/Pwm///3v/8tZ2dnyyUlJU3GM2zYMLm6urrJshaLRTYajU3+V19fL48bN07+wx/+0OT/WVlZ8urVq1vdprq6OnnQoEHyb3/722ZjysrKkvPy8mRZdv4z2b9/v5yVlSXPnDmzyThfe+01OSsrSz5z5oztf3fddZc8efLkZmMS65g6dWqzfS6e279/v21/TJkyRZ48ebJcX1/fZFlJkmy/r169uskxUVRUJGdnZ8svvfRSk9ecOXNGHjBgQLP/M0xPgVOTDMO0iizL2LlzJ6ZMmQJZllFTU2N7TJgwARqNBidOnOiSsQUEBNh+12g0qKmpwahRo1BYWAiNRtPm63fs2IHhw4cjLCysyXaNGzcOVqsVBw8ebLL89OnTERUV1eR/Pj4+UKlUAABJklBXVweLxYJBgwbh5MmTLm9TeHg4rr76anz99dfQ6XQA6DPYtm0bBg0ahIyMjHZ9JgsWLLCNEwBGjBgBACgsLHR6bPPnz2+yzx1x8uRJFBUV4bbbbmsWwVIoFC2+7ssvv4QkSZg5c2aT7YmJiUFaWprL9hgM013g1CTDMK1SU1MDtVqNd999F++++26Ly7R33Var1fZ3UFBQs3RYa/z8889Ys2YNjhw5Ar1e3+Q5jUaD0NDQVl9/6dIlnDlzBmPHjm1xfI1JTk52uNxHH32ETZs2IT8/v0ltV0vLA4DJZEJ9fX2T/0VFRcHHxwdz587Fl19+iV27dmHu3Lk4dOgQiouLcdttt9nG5epnkpSU1ORvIZLUanWLY7yc1rZHIIRdVlaW0+sFgIsXL0KWZUyfPt3h8x0xS5RhvAE+shmGaRVRtH7dddfh+uuvd7hMe4vvFy1ahOLiYtvf9913H+6//36nXltQUIBly5ahd+/e+P3vf4/ExET4+fnhu+++w6uvvtqk2L4lJEnC+PHjceeddzp8Pj09vcnfjqJBW7duxe9//3tMmzYNK1asQHR0NHx8fLBu3bpWo02HDx+2CSvBrl27kJycjMmTJyM0NBSfffYZ5s6di88++ww+Pj6YPXu2bdyAa59JS7Ma5VY8yy6nrWiYO0iSBIVCgQ0bNsDHx6fZ80FBQR323gzTlbAQYximVaKiohAcHAxJkjBu3Lh2raOllNS//vUvGI1G298pKSlOr/Prr7+GyWTCSy+91CTa4yiF1dL7p6amQqfTtXu7AOCLL75ASkoK1q5d2+R9Vq9e3err+vfvj1deeaXJ/2JjYwEAKpUKM2bMwNatW1FVVYUdO3ZgzJgxtuc98Zk4orXUobOIz/Ds2bMujS01NRWyLCM5ORkZGRluj4NhugtcI8YwTKv4+PhgxowZ+OKLL3D27NlmzzuTlgwMDATQPA02fPhwjBs3zvZwRYiJqEnjiI5Go8EHH3zg8P0dpeBmzpyJw4cP4/vvv2/2nFqtdsq93tE4jh49iiNHjrT6uvDw8CbbPm7cOPj7+9uenzt3LsxmM/785z+jpqamiXeYJz4TRwQGBjpVW9caAwcORHJyMl5//fVm+7y16Nv06dPh4+ODtWvXNltOlmXU1ta6NS6G8VY4IsYwjI0PPvjAoSi57777cODAAdxwww1YvHgx+vTpg/r6epw4cQL79u3Djz/+2Op6Bw4cCAD4+9//jgkTJjRJs7XGvn37mkTMBNOmTcP48ePh5+eHu+++G0uWLEFDQwO2bNmC6OhoVFZWNnv/t99+Gy+++CLS0tIQFRWFsWPHYsWKFfj6669x99134/rrr8fAgQOh1+tx9uxZfPHFF9i1a1ez4vzLmTRpEnbu3Il7770XkyZNQlFREd555x306dPHVmzfHkaNGoWEhATs2rULAQEBuOaaa5o8//DDD7v1mThi4MCB2L59O5566ink5OQgKCjI5iXmLEqlEo8//jh+85vfYP78+ViwYAFiY2ORl5eH8+fPt9i2KjU1FQ8++CCeeeYZFBcXY9q0aQgODkZRURG++uor3HDDDVixYoXL28Qw3g4LMYZhbLz99tsO/79gwQJs2bIFL7zwAr788ku8/fbbiIiIQJ8+ffDII4+0ud7p06dj6dKl2LZtGz755BPIsuyUEPv+++8dCsNevXph3rx5WL16NZ577jn885//RExMDG666SZERUXhsccea7L8vffei5KSErz88stoaGjAqFGjMHbsWAQGBuKNN97AunXrsGPHDnz88ccICQlBeno67r///jaL/cW+qaqqwrvvvos9e/agT58++Ne//oUdO3a0SwwJlEolZs+ejY0bN2Ly5MkICQlp8nxMTIxbn4kjbr75Zpw6dQoffvghXn31VfTq1ctlIQYAV111FV577TW88MIL2LRpE2RZRkpKCm644YZWX3fXXXchPT0dr776Kl544QUAQEJCAsaPH9+ucTBMd0Ahu1KpyTAMwzAMw3gMrhFjGIZhGIbpIliIMQzDMAzDdBEsxBiGYRiGYboIFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBPmJdxOHDhyHLMvz8/Lp6KAzDMAzDOInZbIZCocDQoUM9sj6OiHURsizbHj0NWZZhMpl427oZvG3dl568fbxt3ZOevm2e3C6OiHURfn5+MJlM6NOnD4KCgrp6OB5Fp9Ph1KlTvG3dDN627ktP3j7etu5JT962Y8eOQaFQeGx9HBFjGIZhGIbpIliIMQzDMAzDdBEsxBiGYRiGYboIFmIMwzAMwzBdBAsxhmEYhmGYLoKFGMMwDMMwTBfBQoxhGIZhGKaLYCHGMAzDMAzTRbAQYxiGYRiG6SJYiDEMwzAMw3QRLMQYhmEYhmG6CBZiDMMwDMMwXQQLMYZhGIZhmC6ChRjDMAzDMEwXwUKMYRiGYRimi2AhxjAMwzAM00WwEGMYhmEYhukiWIgxDMMwDMN0ESzEGIZhGIZhnKChAdDrPbtOFmIMwzAMwzBtUFYGbN8OmEyeXa+vZ1fHMAzDMAzTszhzBvj+e0CrBVJSPLtuFmIMwzAMwzAOkGXgl19IhPn6ApmZnn8PFmIMwzAMwzCXIUnAwYPAvn1AWBgQG9sx78NCjGEYhmEYphGSBBw4QCIsNhaIiOi492IhxjAMwzAM8yuSBPz4I4mwuDggPLxj349nTTIMwzAMw4Bqwn76CfjhB4qEdbQIA1iIMQzDMAzDAACOHycRFhPTsenIxrAQYxiGYRjmiuf8eZodGRYGREZ23vuyEGMYhmEY5oqmuBj49ltAoei42ZEtwUKMYRiGYZgrlro6EmENDUBycue/PwsxhmEYhmGuSIxGSkeWlgLp6V0zBhZiDMMwDMNccUgSsH8/cPo0kJEBKLtIEbEQYxiGYRjmiuPECeDnnykdqVJ13ThYiDEMwzAMc0VRXEw2FeHhQEhI146FhRjDMAzDMFcMWi2wZw+g15NzflfDQoxhGIZhmCsCq5VaFxUUdF1x/uWwEGMYhmEY5org5Eng2DEgNRXw8enq0RAsxBiGYRiG6fGUldEsyfBwICioq0djh4UYwzAMwzA9GoOBivO1WiA+vv3rkWXAZPLcuAAWYgzDMAzD9GBkmWwqzp8H0tLavx6TCXjrLUCnU3hucPBCIbZr1y4sXrwYQ4cOxYQJE/D//t//Q2FhYbPltmzZghkzZiAnJwfXXXcdvvnmm2bLaDQaPPbYYxg1ahSGDh2KBx54ABUVFc2WO3ToEG688UYMHjwYkydPxvr16yHLcpNlZFnG+vXrMWnSJAwePBg33ngjjhw54rHtZhiGYRjG81y6BBw+DCQlAX5+7VtHRQXw97/T76GhcusLu4hXCbEDBw7gvvvuQ58+ffDCCy/gsccew+nTp7F8+XIYDAbbctu2bcOf/vQnzJw5Exs2bEBubi7uu+++ZsLowQcfxN69e/H444/j3//+N/Lz87Fy5UpYLBbbMpcuXcKKFSsQGxuLdevW4fbbb8fq1auxadOmJuvasGEDVq9ejWXLlmHdunWIjY3F8uXLHYpEhmEYhmG6noYGmiUpy1Qb1h7OnQOefhqYNQu49lpqDO5JfD27OvfYtm0bkpKS8OSTT0Lx65ZGRUXh9ttvx/HjxzFixAgAwOrVqzF79mw8+OCDAIAxY8bg7NmzeOGFF7BhwwYAwOHDh7Fnzx5s3LgREyZMAABkZGRg1qxZ2LlzJ2bNmgUA2LhxIyIjI/Gf//wHKpUKY8eORU1NDf773/9i6dKlUKlUMBqNWLduHZYvX45ly5YBAIYPH45rr70WGzduxOOPP955O4lhGIZhmDaRZeDgQaCoCOjbt32v37cP2LoVWLGi4zzHvCoiZrFYEBwcbBNhABAaGgoAtlRhYWEhLl68iJkzZzZ57axZs7Bv3z6Yfq2i2717N8LCwjB+/HjbMr1790Z2djZ2795t+9/u3bsxdepUqBr1N5g1axbUajUOHz4MgFKXWq22yXuqVCpcc801TdbFMAzDMIx3cOECcPQo0KuX61YVsgx8+SXwxRfAffd1rPGrV0XEFixYgK1bt2Lz5s247rrrUFdXh//85z8YMGAAhg0bBgDIy8sDQNGtxmRmZsJsNqOwsBCZmZnIy8tDRkZGE1EHkBgT69DpdCgtLUXv3r2bLaNQKJCXl4fRo0fblr98uczMTLz22mswGAwICAho1zbr9fp2vc6bEdvE29a94G3rvvTk7eNt65509bZptcB33ykhSUqoVDKMRudfK0nAzp1KHD2qxB13WODr23SmpOzZEjHvEmIjRozA2rVr8fDDD+Nvf/sbACA7Oxsvv/wyfH6Vs/X19QCAsLCwJq8Vf4vn1Wq1LZrWmPDwcBw/fhwAFfM7WpdKpUJgYGCTdalUKvj7+zd7T1mWUV9f324hdvHixXa9rjvA29Y94W3rvvTk7eNt6550xbbRLMlgnDwZjNRUI1wp5ZZlYPfucOTnB2Du3CpUVzdfpn9/Kzwpn7xKiB06dAj/8z//gxtuuAGTJk1CXV0dXnzxRdx1111466232i12vJn09HQEBgZ29TA8il6vx8WLF3nbuhm8bd2Xnrx9vG3dk67ctvx8BdRqJXJzAQfxmBaRZeCrr5QoLVXirrss8PNLcricj4/GMwP9Fa8SYn//+98xZswY/P73v7f9Lzc3F5MmTcLWrVtx4403IvzXaQ8ajQaxsbG25dRqNQDYng8LC0NZWVmz96ivr7ctIyJmIjImMJlM0Ov1TdZlMplgNBqbRMXUajUUCoVtufYQGBiIIG+y+PUgvG3dE9627ktP3j7etu5JZ29bQwPVhQUFATExzr9OloHvvwd++gm46y7A37/lojJPz5r0qmL9CxcuoH///k3+l5CQgMjISBQUFACw12mJui1BXl4e/Pz8kJKSYlsuPz+/mR9Yfn6+bR1BQUFITExsti7xOrGc+Jmfn9/sPZOSknpkpI5hGIZhuhPCuLWoiAr0XeHQISrMv/NO4LIqpA7Hq4RYUlISTp482eR/xcXFqK2tRa9f92pKSgrS09OxY8eOJstt374dY8eOtc1+nDhxIurr67Fv3z7bMvn5+Th58iQmTpxo+9/EiROxa9cumM3mJusKCwvD0KFDAQDDhg1DSEgIPv/8c9syZrMZO3fubLIuhmEYhmG6hsJCaujt6izJCxeAd98lEdYVGWKvSk0uWbIETz75JP7+979jypQpqKurw0svvYTo6Ogm1hH3338/HnnkEaSmpmL06NHYvn07jh07hjfffNO2jHDmf+yxx/C73/0O/v7+ePbZZ9GvXz9Mnz7dttyKFSvw6aef4uGHH8ZNN92Es2fPYuPGjXjooYdsos7f3x+rVq3CmjVrEBUVhaysLLz99tuoq6vDihUrOm8HMQzDMAzTDIMBOHCAZjxeNv+uVaqqgP/+F1i2zLXXeRKvEmK33XYbVCoV3n77bXzwwQcIDg5Gbm4unnvuOURGRtqWmzNnDvR6PTZs2ID169cjIyMDa9eutUWwBM899xyeeuop/PnPf4bFYsGECRPwxz/+Eb6+9s1OS0vDxo0b8Y9//AN33XUXoqKi8MADD2D58uVN1rVy5UrIsoxNmzahpqYG2dnZ2Lhxoy0VyjAMwzBM13DsGHDxItCnj/Ov0emA//wHWLAASEjosKG1iVcJMYVCgZtuugk33XRTm8suXrwYixcvbnWZ0NBQPPnkk3jyySdbXW7YsGF477332hzbqlWrsGrVqjbHxjAMwzBM51BWRr0kY2MBXydVjdUKvPQSMG4ckJXVseNrC6+qEWMYhmEYhnEWi4XaGDU0ANHRzr1GloFPPgGCg4ExYzp2fM7AQoxhGIZhmG7JmTPA2bNAaqrzrzl8mCwu5s/3vBVFe2AhxjAMwzBMt6OujqJhoaHOW06UlwNvvw3cdhvg59ehw3MaFmIMwzAMw3QrhGdYZaXzhfYmE/DCC8CiRYAbPuweh4UYwzAMwzDdivx84MQJIDnZufSiJAHvvAP07+/azMrOgIUYwzAMwzDdBoOBWhEpFEBIiHOvOXyY7C2mTXP//S9r2OM2LMQYhmEYhuk2HDsGXLpE0TBnqKqiurBbb3XNcb+ldVksnq3wZyHGMAzDMEy3oLzcNc8ws5n8wubPd68uzGymdKgsAwEBng2JeZWhK8MwDMMwjCOsVirQb2gAkpLaXl6WgY8+oshZdnb731erJdPYPn2A4cPJu8yTcESMYRiGYRiv59w54PRpwNnOgidPAsePA7Nnt/89KyqA6mpgxAhg0iTnTWNdgSNiDMMwDMN4NVotFegHBgIBAc4t/+qrwJ13tq8uTJaBoiJApQKuvhro27fjzF9ZiDEMwzAM49UcOQKUljrXF1KSgNdfpwhWTIzr7yVJQEEB1ZRNmAD06uX6OlyBhRjDMAzDMF5LcTHNlExIAJROFFT99BNQXw+MGuX6e0kS2VzExZEIi4tzfR2uwjViDMMwDMN4JWYztTEymYCIiLaXr6sD3nsPWLLEOdHWGCHCkpIomtYZIgxgIcYwDMMwjJdy5gxw4YJzBfpWK/Dyy8DMmUBYmGvvI0RYQgJw1VVAVFS7htsuWIgxDMMwDON11NdTmjEsjIrm22LPHirMHzLEtfeRJDKITUigwvzIyPaNt72wEGMYhmEYxquQZeDQIXKydyZFWFkJfPYZNfR2ZXajLAOFhWQQO3Fi54swgIUYwzAMwzBeRkEB8MsvVK/VVq2X1QqsX0/u+UFBrr1PURFF3CZM6Nx0ZGNYiDEMwzAM4zUYjVSgr1AAoaFtL//NN1TI37+/a+9TVgb4+3fe7MiWYCHGMAzDMIzXcOIE9XV0xr+rqgr44gtg3jzX3qO2lloVjR3b8T5hbcFCjGEYhmEYr6C6mmrDoqMBP7/Wl7VagY0bgeuuI8d9Z2loIJuLkSOBzEy3husRWIgxDMMwDNPlSBLNkqyrc84R/4cfaDblgAHOv4fJRCnJwYOBgQPbPVSPwkKMYRiGYZgu58IF4NQp8gxra+ZjXR2wdSuwcKHz65ckmiGZlQUMH+664WtH4SXDYBiGYRjmSkWnowJ9P7+2Zz5arcArrwDXXgsEBzv/HoWFQGIitT5yxpess2AhxjAMwzBMl3L0KPWUdKZw/uefKcWYm+v8+isqSOCNGePcTMzOhIUYwzAMwzBdRmkpcOQIEB9PzvitoVZTL8nFi503btVoAIOBImEJCW4P1+OwEGMYhmEYpkuwWCglqde37WovScCbbwKTJwPh4c6t32ymaNjgwUCfPu6PtyNgIcYwDMMwTJdw+jRw9iyQmtr2ssePk73F6NHOrVu0L8rMpP6TrrQ+6kxYiDEMwzAM0+nU1QE//kjRLX//1pdtaKBo2I03Oi+oSkupbdHIkW2vvythIcYwDMMwTKciy+QZVlNDtWGtIUlUFzZmDBm9OoNaTa8bNaprGnm7AgsxhmEYhmE6lbw84ORJmiXZVoTr7FlqeTRhgnPrNpuBykpKR6aluT/WjoaFGMMwDMMwnYZORylJpRIICWl9WYMBePVVSkm2NaMSaFoXlpPjvXVhjWEhxjAMwzBMp3H4MFBUBCQnt76cLAMffkiRLWdtJ8rLKRU5YoR3mba2BgsxhmEYhmE6heJiMm91xjMsP59mSk6d6ty6tVoyeh0+nIr0uwssxBiGYRiG6XBMJuDAAfrZVgG92Qxs3AgsWeJcStJioWbeAwdSWrI7wUKMYRiGYZgO5/hxKtJvyzNMloHPPqPm3M60PAIo0paSQm2PukNdWGNYiDEMwzAM06FUVJBdRVQUNfZujeJiipzNmOHcuqurgYAA8gsLDHR/rJ0NCzGGYRiGYToMi4VmSWq1QGxs28u+/DKwcGHbgg0AjEagvh4YOtQ7+0g6AwsxhmEYhmE6jFOnqJWRM22Mdu4EkpKA3r3bXlaWKXrWty/Qv7/74+wqWIgxDMMwDNMhVFc738aorAz45htg9mzn1i2sKoYNA3x93R9rV8FCjGEYhmEYj2O1Aj/9pERtbdttjERKcsECqvdqC52O0pLDh3t/C6O2YCHGMAzDMIzHyc8PwJkzSqSltT2T8euvqZA/K6vt9UoSNfTOznYuhentsBBjGIZhGMaj1NQAJ04EITRUbjPCVVEBfPklMG+ec+suKaHC/KFDqU1Sd6cHbALDMAzDMN6CSEmq1b6Ii2t72ZdfBubPdy4lqVbTz+HDgeBgt4fqFbAQYxiGYRjGY9AsSSUSEkxtpiS/+YYK+fv1a3u9FgtFz3JyyLy1p8BCjGEYhmEYj1BVRWasoaEy/P3lVpetrAS++AK47jrn3PCLi8kCIyen+7nntwYLMYZhGIZh3MZiAfbvB+rq0GZKUpKol+R11wFBQW2vu7YWUKkoJelMCrM7wUKMYRiGYRi3OXGCjFudmSX53XdU45Wd3fZ6zWYq/h8yBEhM9MxYvQm3hZhWq8X69euxYsUKzJ8/H8eOHQMA1NXV4ZVXXsGlS5fcHiTDMAzDMN5LeTkZt0ZGtm3cWlUFbN9OBfrOpBiLioCMDGDAAI8M1etwy4u2rKwMt956K8rKypCWloa8vDw0NDQAACIiIvDOO++guLgYf/zjHz0yWIZhGIZhvAuTCdi3D9BoqN1Qa1itlJKcM8e5lGR1NUXOhg+n1GRPxK2I2NNPP42GhgZ8/PHHeOONNyDLTQvzpk2bhn379rk1QIZhGIZhvJcjR4Dz5ykl2RZ79lCN18CBbS9rNFK92dChbTcL70ysVs+uzy0htnfvXixduhR9+vSBwkF8MSUlBaWlpe68BcMwDMMwXkpREfDzzySU2opYVVUBn30GXH992ylJ0dA7K8s5a4vOQK8HDh+mn57ELSFmMBgQFRXV4vMiTckwDMMwTM9CpwN++IFSk61IAQAURVq/Hpg71zkj1spKICKComFd3dBbloGLF4EdO2hWqKdxS4hlZmbi4MGDLT7/1VdfYUBPra5jGIZhmCsUWQYOHgQuXXIuJfnll1TI74wk0OtJ5A0b1rbA62j0ehJfX31FadL0dMDHx7Pv4ZYQu/3227F9+3asX78eWq0WACDLMi5duoRHH30UR44cwbJlyzwxToZhGIZhvITz56k2rFevtoVJcTE56Dtj3CpJ1EuyXz+gTx+PDbddlJeTgDx8mAShM9vaHtwK+M2bNw8lJSV4/vnn8dxzzwEA7rzzTsiyDKVSiYceegjTpk3zxDgZhmEYhvEC6uooJalSAaGhrS9rNgPr1gE33OCcEWt5ORAT07UNvWWZhOaPP1JkLiOjYwSYwO3M629+8xvMmzcPO3fuxKVLlyBJElJTUzF9+nSk9KRmUAzDMAxzhWOxkFVFZWXbVhWyDHzyiRJ9+lBKry20WhJuw4cDYWEeGa7LmM0U6Tt6lISjM2lXd/FICVxSUhKnIBmGYRimh3PsGDnop6W1HbEqLFTh+HElHnig7fVarUBZGZCbSxGorkCvpyjYyZPUoqmtaJ+n6OK5CAzDMAzDdAeKi0moREe3nWbU64GtW2OxbJkFfn5t5/WKi4GkJBJiXdHQW62movzz54Hk5M7tZ+mSEOvfv79Dv7DWUCgUOHnypEuvYRiGYRjGe9DpgL17AYOBitZbQ5KAd97xwaBBaiQktJ1jrK+nGqwRI5xz2/c0tbVkNFtURJE+P7/OfX+XhNi9997rshBjGIZhGKb7IknAgQPkpdVWXRhABq9VVQrMmKEF0LoQM5vJ6HXUKIpEdTbV1cD331NatCOsKZzBJSF2//33d9Q4GIZhGIbxQk6fpuL1lJS2zVWrqoB33wXuussCjabtdYso1KBBnhmrK1RWArt305jT052fpXlZN0e36aLJoQzDMAzDeDsVFWRVERwMhIS0vqzFArz0EjB/vnOF7qKh94gRgL+/R4brNFVVJMKqq52beCC4eBFQqz2bGXRLiL3++utYsWJFi8/feeedeOutt1xe70cffYT58+cjJycHo0ePxp133gmDwWB7/uuvv8Z1112HnJwczJgxAx988EGzdZhMJvzzn//E+PHjkZubizvuuAN5eXnNlrtw4QLuuOMO5ObmYvz48Xj66adhMpmaLbdlyxbMmDEDOTk5uO666/DNN9+4vF0MwzAM010wGKh2Sq0G4uNbX5asKqjgPju77XUbjVQbNnQozVDsTKqr7ZGw1FTnRFh9PbBpE/Dhh0BgoGdDYm4Jsffffx+ZmZktPt+nTx+89957Lq3zpZdewv/93/9h1qxZ2LhxI/72t78hOTkZ1l/bnf/000+47777kJubiw0bNmDmzJn43//9X+zYsaPJev7+979jy5YteOihh7BmzRqYTCYsW7YMmkax0vr6etx+++0wm81Ys2YNHnroIbz33nv4xz/+0WRd27Ztw5/+9CfMnDkTGzZsQG5uLu677z4cOXLEpW1jGIZhmO6ALFNd2PnzlLZrqzz83Dng0CFg1qy21y1JlJLsiobetbVUE1ZZ6VwkTNTHrV5N4122zPO9L91aXWFhIW655ZYWn+/du7dLQiwvLw9r167Fiy++iKuvvtr2/xkzZth+f+mllzB48GD87W9/AwCMGTMGhYWFWL16Na699loAQFlZGd5//3385S9/waJFiwAAOTk5mDx5Mt555x2sXLkSAPDOO++goaEBa9euRUREBADAarXir3/9K1atWoX4X28BVq9ejdmzZ+PBBx+0vefZs2fxwgsvYMOGDU5vH8MwDMN0B86codY+ycltzyJsaABefhm44w5y22+L8nKywBg+vHMbems0FOEThfltiTCNBnjrLVpu+XLnmpW3B7ciYn5+fqisrGzx+YqKCihd6FHw4YcfIjk5uYkIa4zJZMKBAwdsgkswa9YsXLhwAUVFRQCAPXv2QJKkJstFRERg/Pjx2L17t+1/u3fvxtixY20iDABmzpwJSZKwd+9eACQ2L168iJkzZzZ7z3379jlMYzIMwzBMd6WigqwqAgPbrvWSJGDjRmDSJOdSjMI9f8QIIDzcI8N1CmG/ISYHtCVNLlwAnn8eGDgQWLiw40QY4KYQGzJkCD766CNbw+/GaDQafPjhhxgyZIjT6zt69CiysrLw4osvYuzYsRg0aBCWLFmCo0ePAgAKCgpgNpvRu3fvJq8T6VFRA5aXl4fo6GiEX/YpZ2ZmNqkTy8vLa7ausLAwxMbGNlkXAGRcZvWbmZkJs9mMwsJCp7ePYRiGYbwZvZ5Sd/X1QGJi28t/+y0V6Y8a1fayFgtFowYN6lz3fIOB2jLl55MIa82iQpKAXbuA998HliyhsXZ0z0u3goL33Xcfbr31VsyfPx+33347+vzaKv3cuXN47bXXUFlZiWeeecbp9VVWVuL48eM4e/Ys/vKXvyAwMBD//e9/sXz5cuzcuRP19fUASCw1Rvwtnler1Qh1IOPDwsJsy4jlLl8XAISHh9uWc/Y924ter3fr9d6I2Cbetu4Fb1v3pSdvH29b5yFJwPffK3H6tBKZmTLaSvgUFACff+6H3/zGDLO56XMiW9Q4a1RQoEBCgox+/SQ0mn/XoVgswI8/KnH8uAIpKTIkCS1ul9kMbNniA5MJuPVWK/z8HC/rafsKt4TYkCFD8N///hd//vOf8cQTT9jMXmVZRnJyMl566SUMHTrU6fXJsgydTofnn38e/fv3t73HlClT8Oabb2LChAnuDNcruXjxYlcPocPgbeue8LZ1X3ry9vG2dTznzwfgwIEwxMSYUVoqtbqswaDAhg1JmDGjBLW1ZtTWOl6uqqoKAFBX5wtJUmDAADUKCy2eHrpDJAk4dSoIp04FITbWhKqqlhVUQ4MSW7fGoFevBowerUVNTWvrtcKTHSLdXtP48ePx5Zdf4uTJkygoKAAApKamYuDAgS678IeFhSEiIsImwgCq7RowYADOnz+P2bNnA0CTmY8ARbYA2FKRYWFhDtOlarW6SboyLCys2boAinKJ5cRPjUaD2NjYFt+zvaSnpyMwMNCtdXgber0eFy9e5G3rZvC2dV968vbxtnUOJSUKVFQo0adP27VekgSsW+eDSZNkDB0a63AZk8mEqqoqxMTEQJJUMJkUmDBBQr9+0R0wesecOKFATY0SAwbIrXqg1dQAmzf7Yfx4C7KzfaFQtF4QplTWeXScHpF0SqUSgwYNwiA3rXH79OljE3OXYzQakZqaCj8/P+Tl5eGqq66yPSfquES9V+/evVFVVdVEUInlGteE9e7du5m3mEajQWVlZZN1OXptXl4e/Pz8kJKS4s4mIzAwEEFd0VyrE+Bt657wtnVfevL28bZ1HBoNcPAgCaz09LaX/+orSs9NmNB2/ZSvrwrFxf4YPBjIyem8FkJ5ecAvv9DszKiolpcrLaXJBrNnAxkZTkz5hOebkrtUgnbw4EEcPHiw2d9tPZxl8uTJqKurw6lTp2z/q62txYkTJzBw4ECoVCqMHj0aX3zxRZPXbd++HZmZmUj+tVHVhAkToFQqsXPnTtsy9fX12LNnDyZOnGj738SJE/HDDz/YolsAsGPHDiiVSowfPx4AkJKSgvT09GY+Zdu3b8fYsWOhcmauLsMwDMN4IWZz09mEbZGfD3z5JXDDDc4VsZeUKJCYCAwb1nkirKwM2L+fxteaCMvPJ9uNhQs7d/LA5bgUEVu6dCkUCgWOHj0KlUpl+7slZFmGQqFoIqxaY9q0acjJycEDDzyAhx56CP7+/li/fj1UKhVuvvlmAMBvfvMb3HbbbXj88ccxc+ZMHDhwAJ999hmeffZZ23oSEhKwaNEiPP3001AqlYiPj8e6desQGhqKJUuW2JZbsmQJ3njjDdx7771YtWoVysvL8fTTT2PJkiU2DzGAemw+8sgjSE1NxejRo7F9+3YcO3YMb775piu7j2EYhmG8BlkmE9YTJ5xreK3TAf/9L3DLLUBAQNvrV6t9EBEBjBzZdnskT1FXRy2ZGhpaF5YXLgBvvw3cdBMQE+P8+s1mmgDgSVwSYq+//joA2KJA4m9PoVQqsX79ejz11FP485//DLPZjBEjRmDz5s22+qwRI0ZgzZo1eO655/D+++8jKSkJf//735v5fP3xj39EcHAwnnnmGTQ0NGDYsGF45ZVXmsymDA8Px2uvvYb/+7//w7333ovg4GAsWrQIDz30UJN1zZkzB3q9Hhs2bMD69euRkZGBtWvXujQRgWEYhmG8iXPnyDU+NrZtYWW1AuvWARMnAr16tb1uoxHQaHxx9dWSU8t7Ar2eImEVFa2nWM+do8bkN91EqUtnsFqpJZLB4PnInktCbFQjoxBZljFgwAD4+fnB34PdOqOiovCvf/2r1WWmTp2KqVOntrqMSqXC7373O/zud79rdbnMzEy8+uqrbY5r8eLFWLx4cZvLMQzDMIy3U15OfmEqFRAZ2fqysgxs304O+6NHt71uSQKKixVISzOgf38Pez20gNUK/PQT1Ya1Zth64QLw3nsU1WtruwVqNfWnjI8nI1pnooGu0G6bMrPZjFGjRnk8KsYwDMMwTMeh1QLffUcCIymp7eVPnKDI2cKFzhWqFxcDcXEysrN1ndLCSJaBY8eA48cpWtdSS6aCAmpZdNNNzokwiwUoLKRI27Bh1D0gI8Pzxfrt3kUqlQoxMTFcrM4wDMMw3QRRnH/pEtC3b9uioqoKeO01YOVK5/pI1tRQ/8iRI2U0NLTuReYp8vKo1i0mhtoyOaK0lLbjxhtbL+AXaLW07cnJNNsz1rFLh0dwy7j/+uuvx9atW7nfIsMwDMN4ObJM6bvjx50rzjcagTVrgPnznaul0uupWH74cCApqXNSkhUVFK3z82u5d2VVFVlULFzonEdaWRlFCwcPJouOjhRhgJs+Yv369cOuXbswZ84cXH/99ejVqxcCHCRPp0+f7s7bMAzDMAzjJqdPAz/+SLVObdU5SRLwxhvAgAFAI4/1FrFagZISWj47u+U2Qp5Eo2l7hmRdHU0ymDOn7TSsxUJp1chIIDeX0pyeTkM6wi0h9tvf/tb2+/PPP+9wGVfsKxiGYRiG8TzFxVScHxjYcuSoMbt3U5px3jzn1l9URMJl5MjO8Qszm0lUlpa2PENSqyW7jenT2zaq1espEpaaSvVgbjbNcQm3hNhrr73mchsjhmEYhmE6j9pa4NtvyXrBGePS8+eBzz8H7r/fOdPWigogKIhmVHZGgwBZBo4cAc6epRouR8LPaKRI2FVXUS1ca2g0JDoHDKB6ME/PimwLt4TYaGfmsTIMwzAM0yXo9TRDsrS0bUECkCBZtw64446WC98bo9XSe1x9NaU8O4Pz54GjR6l2y5F7ltVKhfkDBtCjNWpqyKg2N5eW7Sz3/8a4Vaw/depU7Nq1q8Xnv/nmmzb9vhiGYRiG8TwWC82QPHsW6N277eiW0Qg8/zwwd65zospsJj+ynBznRJ4nKCujlGRAABAW1vx5WQY++oieGz269Rqv8nLahtGjgUGDukaEAW4KseLiYuh0uhaf1+l0KCkpcectGIZhGIZxETFD8sgRKmRvyVtLIEnApk0kqgYObHv9kkQeW5mZwNChnVPUrtGQc75O1/Lsx2++IfPVa65pWXjKMk0s8PUFxoyhbejKKiu3hBiAVmvEfvnlF4Q5kqwMwzAMw3QYJ0+SaImPb7tuS5apJsxkohSjMxQXU2pw9GjH6UFP07g4PyXF8TKHDtFjwYKWo1uSRBMLgoJIhLW0rs7E5Rqx1157zeamr1Ao8OSTTzZpuC3QarVQq9WYM2eO+6NkGIZhGMYpLl6kGZIhIUBERNvLHz1Kou2ee5wrzq+qogjbmDGdM7tQOOeL4nxHY7xwgcTksmUtR/+o9RLtk1GjOt4fzFlcFmLR0dHo+2syuLi4GPHx8Yh3kEwOCgrCwIEDcfPNN7s/SoZhGIZh2qSigorzLRbnmnMXFwObNwO/+Y1zzvlaLT2uusq59XuCCxeAw4dbLs6vqKDWRTffDAQHO15HYxE2Zozzzb47A5eF2Jw5c2xRrqVLl+Kee+7B2LFjPT4whmEYhmGcp74e+PprmgmYmdn28mo1OecvWeJcZEsU5w8dCvTr5/54naGiglKS/v6Oi/N1OnLNv+66lsWVEGGRkZRK9SYRBrhpX/HGG294ahwMwzAMw7QTvZ68woqKgD592i4+N5lohuS0aW2bnQIkZgoKaN1DhzqXwnSXhgZKmbbknG+xAK+8Aowd27Kzviw3jYQ502eys/FIX/Tz58+jsLAQ9fX1Dp+fP3++J96GYRiGYZjLMJupJuzsWYqEtWXDIEnAyy8DWVkkqpyhsBBITOy84nyLhSJhxcWOhaKwqYiLA4YMcbwOIcLCw2nc3ijCADeFWEFBAR599FEcO3YMsuy4wadCoWAhxjAMwzAdgCRRv8Vjx5yzqZBlYOtWet2UKc69R1mZfZZhZxghiOL806dbds7fsweorARuvLHl6F9JCU1YGD0aiInp2DG7g1tC7M9//jPOnj2Lxx57DCNGjGCrCoZhGIbpJIRX2M8/U+G8M074P/wAHD8OrFzpXHqxvp4ibuPGAQkJ7o/ZGfLzqTg/JsZx9O30aTKqveOOlqN/5eW0P7xpdmRLuCXEDh06hFWrVmHp0qWeGg/DMAzDME5w/Diwbx8JlpCQtpc/cwb45BPg3nvbjpwBVHdWVWU3Pe0MKispJenn53gCQUUFsGULcOutLadIKytJZI4Y0Xni0R3cKreLjIxEaGiop8bCMAzDMIwTnD0L7N4NhIbSbMC2KCsDNmygKFJLFg+NMZupvionBxg8uHOc53U6Ks6vr3fcYknMkJw3r+Vtrqmh+rLhwymt2R1wS4gtWbIEn3zyCaxWq6fGwzAMwzBMK1y6RK18fH2dS7vV1QHPPgvcdJNzyzeeITliROf0YLRYgIMHaVJASkpz4WexUAum8eOB1FTH61CrSawNG+bcTFBvwa3UZHp6OiRJwrx587Bw4UIkJCTAx8EnNn36dHfehmEYhmEYUAH6rl0UsWrJsqExOh3wzDPAzJnOiRNZts+QHDOGmmt3NKI4/9QpimL5+jZ//qOPKM2Yk+N4HQ0NQG0tRcL69On4MXsSt4TYQw89ZPv9n//8p8NlFAoFTp065c7bMAzDMMwVT0UFGbaq1UDv3m0vbzYDq1fTrMGWBMzllJRQunPcuM6ZIQkAeXlUnB8d7Vj47dlDtWo33OA4RWow0PODBgH9+3dtA+/24JYQEz0nGYZhGIbpOGpqKBJWUUGF822JDauVvMJSUiiy5QxVVVTkPnYs+XN1BsI5v6Xi/NOnaabnsmWOU6RmMzUC79+fxGZnGM16GreE2KhRozw1DoZhGIZhHFBfTyKspIREWFtiQ5KA99+nlN706c5FiER91YQJzqU8PYFWS8X5Go3j9xQzJJcudTxD0mqlCQUZGUBubvOUZnfBI9rRZDLh8OHD+Oqrr1BTU+OJVTIMwzDMFY9GQyLs0iXnXPNlGfjqK/LiWrTIuQiRTkeWD8OGdV4PSbPZ7pzvqDi/8QzJiIjmr5ckaueUlER1YZ3h9t9RuC3EXn/9dUyYMAE333wz7r//fpw5cwYAUFNTg9GjR+P99993e5AMwzAMc6XR0ECzIy9ccE6EAZTG27uXokjOLG80Umpv8GBqFdQZ9VWyDBw5Qr5mjpzzrVYSYa3NkCwpoZqyESOcs+PwZtwSYh988AGefPJJXHXVVXjiiSeatDmKiorCmDFjsH37drcHyTAMwzBXEjodibDTp0mEOZN2O3QI2LaNXPOdme1osVBUKSur82wqABJghw9THdrlkSxZprRqUlLLEwzKy6nl0ogRjqNl3Q23hNgrr7yCqVOn4plnnsHkyZObPT9w4ECcO3fOnbdgGIZhmCsKvR749lvg5EkSYc644J88Cbz7LokwZ1odCa+wtDQqzu+s1F5REXDgAHUCcOQH//33ZEMxebLj6FxtLf0cPrzzJhR0NG4JsUuXLmHixIktPh8REYG6ujp33oJhGIZhrhgMBuC776h9Ue/egErV9mvy8oBXXgFWrHDOckKWqeYsIYHSf0FB7o/bGWpqKHVqsThuwn3qFBXvX3+949o2rZbStbm5VFfWU3BLiIWFhaFWyFMHnD9/HrHe3m2TYRiGYbwAg4EiYceOkQhzJkpVVAS8+CLZO0RHO/c+RUXUImjCBMeWER2BTkcirKaGGpRfTlkZpSRvvNHxdhsMQHU1eYV1N8PWtnBLiE2cOBHvvfce1Gp1s+fOnTuHLVu2YMqUKe68BcMwDMP0eBqLsIwM50RYRQXw/PPAzTc739y6pIRSlxMmOI5KdQRmM0W6Cgup+P7yaFdDA7Uvuv56x8JQeIVlZQEDBnQ/w9a2cMt148EHH8QNN9yAOXPmYPLkyVAoFPj444/xwQcfYOfOnYiNjcU999zjqbEyDMMwTI/DYKA+i0KEOVNoX1UF/PvfwOLFzvt+VVSQCBo/norhOwNJosJ8MUPy8kkHFgsZz06c6LhJd0/xCmsNlyNikiTZfo+Pj8eHH36Iq666Cp9//jlkWcbWrVvxzTffYPbs2XjvvfcQFRXl0QEzDMMwTE/BaFRg924ljh51XoTV1AD/+hcwfz4V8ztDdTVgMlHros4ybAWAU6cUOHIEiI93PEPy3XdpPAMHNn+tLJMIS0ggj7Pu7BXWGi5ry4kTJ2LWrFmYM2cOBg8ejOjoaDzxxBN44oknUFNTA0mSEBUVBWV37DPAMAzDMJ2EXg8cPBgKrVaJfv2cExp1dcDTTwNz5zpvvlpXR+m/ceM6t76qqEiFoiIlwsNpluTlfPMN1Y7NnOk43VhaSqnKkSMdv76n4LJaSk5OxhtvvIEbb7wRM2bMwNq1a1FQUACAvMNiYmJYhDEMwzBMKzQ0AN9+q8SFCwFIT5edEmH19STCZs4EsrOdex+1moTYqFHOv8YTlJUBx48Hw8eHJgZczrFjwM8/k3O+I8lQVUW2HSNGOH59T8JlxfTOO+/gq6++woMPPgiVSoW1a9dixowZWLx4Md544w1UV1d3xDgZhmEYpkeg1VLbolOnlOjVy+SUCNNoSIRdcw3NHHT2faqryXNr0KDOK3KvqQH271fCYFAiPl5u9vylS8CnnwJLlji256ivJ8f/YcOAxMROGHAX067QVa9evbBq1Sp8+umn+OSTT3DnnXeipqYGTzzxBK6++mrceeed2Lp1K3Q6nafHyzAMwzDdFrUa2LmTitczM2WoVM2FiqPXPP00mZwOHuzc++h0VJw/dCgVuXdWokqrpRZL1dUKxMebmj1fXQ28/jpwww2ODV11OorgDRkCpKd3+HC9Arc/mqysLDz88MPYtWsXNm/ejMWLF+PkyZP4/e9/j/Hjx+Phhx/2xDgZhmEYpltTU0MiTPSOdMYxv74e+Oc/gUmTSFQ5g15P9VVDhlBUqbNaFxkM5BVWVASkpMgOG3mvXw/MmQM4shg1Gkk8DhgA9O/f82wqWsKjGnn48OH4y1/+gk8//RRTpkyBXq/nXpMMwzDMFU9lJfDFF5SW69vXORFWV0cibNo0imo5g15PXmE5OVRf1Vl2D2YztS46f568wi4Xf2YzsGEDWWdkZDR/vcVC487MpKjflVRq7rGPyGAwYNeuXfj000+xd+9emM1mJCQkYPbs2Z56C4ZhGIbpdpSUAF9/TdGezEznIlQ1NZSOnDXLsbWDIwwGeq+BA6k43xmx5wkkiQrvT54kLzA/P7LKaPz85s3ULcBRI29JIpuKlBSK4HXWuL0Ft4SY1WrFnj178Omnn+Lrr7+GTqdDaGgo5s2bh7lz52LUqFFQXCmxRYZhGIa5jIsXSYSp1STCnIn0VFWRT9icOZSmcwajkVKCgwYBY8Y416PSE8gycPQobF5hl/ugyTKwbZvdSPZySSDLJB5jYymC50zD8p5Gu4TYTz/9hM8++wxffPEF6urq4Ofnh6uvvhpz587FpEmToOqsI4BhGIZhvJQzZ6htkcVC0SBn4hIVFcAzz5Ctg7M+YUKEDRgAjB7deSIMoEbdP/9MfS4deX3t2aPEpUvATTc5FqFlZfS6ESOca1jeE3FZiE2ZMgWlpaUAgBEjRuC6667DjBkzEHal7kGGYRiGaYQsk0/Wnj1Uo5Wa6tzrCguB1aupbZGzjvkGA6X1srOBsWM7133+/HmqCwsOdtwj8tSpIBw/rsRttzlOx1ZV0f4ZMaLz+l56Iy4LseDgYPz2t7/F3LlzkXBZl1FJklBWVoaYmBiOijEMwzBXHFYr9Y3cv58iPI5mBzoiLw948UXgllucF25ChA0YQOnIzhRhBQXAvn0kpKKjmz9/5owC+/eHYflyC/z9m6uw+nqqIxs9uvP6XnorLguxTz/9tMXnampqMHXqVGzatAljx451a2AMwzAM050wGkmc/PQT1UtFRDj3ulOnFNi8GbjjDuqr6AxidmRXiLCSEvIKs1iAXr2aP19QAHz8sS9mzKhAYGBzJarVUs3csGGOZ1BeaXh8Yqsst21OxzAMwzA9iYYG4LvvgBMnaOagM70RZRk4fToQ333ni5UrHUeWHCFE2MCBnVuYD1AN25495AmWkuL4+ddeAxYsMEOSpGbP6/Vk6pqT43wNXE/H404dPEuSYRiGuZKoqQF27CARlpHhvAjbt0+BXbsisXKl2WkRptPZfcLGju1cEVZTA3z/PaUVk5ObP19fT15h8+Y5TsmaTEB5OZm1Dhp0ZXmFtQZHxBiGYRimnRQV0czIsjKgTx/nDFQliYTb/v0+WLiwFKGhzuUjtVqKOOXmUoF7Z/pt1dYCu3dTgX1aWvMZoFot8NJLwPTpVONmuqy7kcVC9Wx9+tD4O8totjvg0V0RHh6O119/Hf379/fkahmGYRjGq5Blsqf4/ntKt/Xt61yEx2IB3nmHWhDdeacFlZXN03eOUKtJBA0bRo/OFDL19bSdZWXU//Hy7dTrSYRddRXth8uxWmlGaEYGNSC/0gxb28KjH6Wfnx9GjRrlyVUyDMMwjFdhtQKHD1NfRX9/5wvOjUZg3ToyLb39dlqPM9TV0WPkSIomdVbvSADQaKgmrKSEImGXizCjEfjvfylC58h8VpJIdPbqRSLscsNXxkUhtnbtWpffQKFQ4N5773X5dQzDMAzjbRgMNGPw8GEgLg6IjHTudQ0NwHPPUcRoyhRK7TkjxKqr6bWjR1NdWGfWVWm1FAkrKCAR5qh/5MsvkwDLzW3JNV+BxERquRQc3GlD71awEGMYhmEYJ6itpZmRZ8+SMAkKcu511dXAf/5DqbuRI51/v4oKqrUaN44MWztzLlxDA0XCLl2ibb08FWq1Aq+8QvVgI0c6FmEVFSpkZsoYNerKdc13BpeE2OnTpztqHAzDMAzjtRQUULG6KMp3ts4pP5+MWufPp9mCzlJcTBGoiRPp/ToTnY6ifvn5LYuwN98ku43x45tH6WQZKCtTIDjYihEjJKejhlcqPG+BYRiGYVpAksiWYu9eik45W5Qvy9SD8b33gGXLnDdqlSSaiRkcTJGwtDS3hu8yOh1Fwi5coGiXIxH21ltU6zV5csv9IwMCgN69GxAdHdU5A+/GsBBjGIZhGAcYDNSq6PBhSq05cpF3hCQBn38O/Pgj8JvfOJ+Ws1op8hYVBUyYACQmtn/s7eFyEXZ51M9qpRmffn7ANde0LMJUKmDoUAl6vaVzBt7NcVuInT59Gm+++SZOnjwJjUbTzElXoVDgq6++cvdtGIZhGKbTqK6mQvWzZ8lB3hmTVoAK2F99lQrd777becNVs5lEWK9elO5z1uDVUzQ0UNSvNRH27rtUCzZ9umMRVlFB6dSRI4GYGBn5+Z0z9u6OW/MvDhw4gMWLF+Pbb79FXFwcCgsLkZKSgri4OJSUlCAoKAgjXalMZBiGYZgu5sIF4LPPgPPnqT7LWRGmVgNPP01F/Lfe6rwIMxqpKD4jA5g0qfNFmJgd2ZIIkyRgyxb6ee21jkVYZSX9HDXKses+0zJuRcRWr16NlJQUvPfeezCZTBg3bhxWrVqFsWPH4ujRo1i5ciUeeeQRT42VYRiGYToMsxk4dIhSij4+QFaW8zMVL12iovxrrgGGDnX+PfV6JYqLFcjJob6RgYHtG3t70WhIhF261LIIe/992jezZ7cswiSJRJij/pNM67gVETt58iQWLVqEkJAQ+PxqMCJSk0OGDMGNN96I559/3v1RMgzDMEwHUlcH7NxJoiQ8nASFMyJMloEDB4AXXgBuucU1EVZXB9TW+mLIEBkTJnS+CFOraSaosKhwlI7csoVq5VoSYVVVJMJGjuz8iQU9BbciYj4+Pgj+1aEtLCwMvr6+qK6utj2fkpKCCxcuuDdChmEYhulA8vLIJV+08PH3d+51Fgvw4YfU6uiee4DQUOffs6wM0OsVGDy4ASNGRHV625/aWhKdwjHf0ezId96h3+fMaVmEWa3kqp+e3uFD7rG4FRFLTU3FxYsXAVBRfu/evZsU5n/77beIiYlxa4AMwzAM0xGYTDQrcvt26qfYt6/zIqyhAXj2WXrdXXc5L8IkiYryfXyAq66S0KePoVPd8gGgpoaMaVsTYW+8Qf+fObNtEeZsiyfGMW59/FdffTW2bdsGi4WmqN5xxx3YuXMnpk+fjunTp+Prr7/GjTfe6JGBMgzDMIynqKoCduygqFBYGNVHOSuILl0C/vY3YNAg4PrrnW/AbTYDFy9SW6QpU4CMDLnd428vFRXAN9/Yo3+Xty2yWIBNm0hYtmRRUVnJIsyTuJWavOeee3DbbbfZ6sOuv/56KJVK7Ny5Ez4+Prj77ruxYMECjwyUYRiGYdxFkiiVuG8fped693Z+dqMkkXDbto1mRTrrKwYAej255ffuTUX5ERH0v86kpIR8wurrSYRdLrLMZmDjRjKfnTixZYsKWabCfK4J8wztFmJmsxkXLlxAREQEFI0qGufNm4d58+Z5ZHAMwzAM4ym0WpoRefQoWUz07ev8rEijEXjtNSqwv/9+5/tMAiR8qqqoafeIEZ1flA9QFG/vXhJ/qanNt9tgIBGWlkaO/o5EWHk5/X/UKFrHlcpldqlu0+7UpFKpxMKFC7Fz505PjsdGQ0MDJk6ciH79+uGXX35p8tyWLVswY8YM5OTk4LrrrsM333zT7PUajQaPPfYYRo0ahaFDh+KBBx5ARUVFs+UOHTqEG2+8EYMHD8bkyZOxfv16yHLTcLEsy1i/fj0mTZqEwYMH48Ybb8SRI0c8ur0MwzBMxyDL1Dfx00+p7VBiIpCU5LwIKy8H/v53imLdcYfzIkyWgdJSsogYM4YETleIsPPnqSbMZHI8G1SnI+uNPn0c944EaDuuZBFmsVBEc/9+z0cy2y3EfHx8kJSUBJPJ5Mnx2HjxxRdhtVqb/X/btm3405/+hJkzZ2LDhg3Izc3Ffffd10wYPfjgg9i7dy8ef/xx/Pvf/0Z+fj5Wrlxpq2cDgEuXLmHFihWIjY3FunXrcPvtt2P16tXYtGlTk3Vt2LABq1evxrJly7Bu3TrExsZi+fLlKCws7JBtZxiGYTyDXk8zIj/7jNzy+/alPo7OIElkTfGvf9HMwalTna8js1opCuXvTyatQ4c2r8fqaGSZ+mTu3k3jTkpqvkx9PbBmDdlPjBrVXKTJMqU0/f2BsWOvPJ8wk4lE/Lff0uPCBecFvLO4VSN26623YvPmzVi0aBEiIiI8NCTgwoULeOutt/C73/0Of/nLX5o8t3r1asyePRsPPvggAGDMmDE4e/YsXnjhBWzYsAEAcPjwYezZswcbN27EhAkTAAAZGRmYNWsWdu7ciVmzZgEANm7ciMjISPznP/+BSqXC2LFjUVNTg//+979YunQpVCoVjEYj1q1bh+XLl2PZsmUAgOHDh+Paa6/Fxo0b8fjjj3tsuxmGYRjPUVhItWAXL5IICQ93/rVGI80crKgA7r3X+X6RAKX5iovJYX7MGCA21uWhu43VSinYn3+mzgCO3PqrqoB164Bp0xyb10oSibCQEBJpzjYu7wmYzXT8nDlD+8nfn7bfz8/LhJgkSVCpVLjmmmswY8YM9OrVCwEBAU2WUSgUNgHjLH//+9+xZMkSZFw2HaOwsBAXL17Eo48+2uT/s2bNwtNPPw2TyQSVSoXdu3cjLCwM48ePty3Tu3dvZGdnY/fu3TYhtnv3blxzzTVQNarUnDVrFtatW4fDhw9j9OjROHToELRaLWbOnGlbRmzzl19+6dJ2MQzDMB2PwUCNug8dIkHSt6/zMxsBugC/9BIwbBgwb57zUTCAashqaoABAyjK5EotmacwmUiAHT0KxMQ4FpHFxTQ7cu5cxx5gkkTLRESQCOsKMdkViO0+c4bSsYGBJKh9fOi4+uUXoF8/BTwYe3JPiP3zn/+0/f7+++87XMZVIbZjxw6cPXsWa9aswYkTJ5o8l5eXBwDNBFpmZibMZjMKCwuRmZmJvLw8ZGRkNJlEAJAYE+vQ6XQoLS1F7969my2jUCiQl5eH0aNH25a/fLnMzEy89tprMBgMzcSnK+g7e9pMJyC2ibete8Hb1n3pydvn6rYVFirw448KFBQoER8vIyKCxJiDSpdmSBKwe7cSX37pg8WLLUhJkdGomqXN15aV0TVn2DAJ2dkyFIrW64k64nPT64GDB5U4c0aBhAQZAQEkzBpz4YICW7b4Yv58MxISmj9vtQLFxQrExMgYNkxCaCiJEFcw/PoCg6sv7EJqaoAzZ5QoKFDAxweIjZXh40P/37fPBxcuKJGWJiEgQAbgubCYW0Js165dnhoHADoY//GPf+Chhx5CiIMuq/X19QDIxb8x4m/xvFqtRqgDd73w8HAcP34cABXzO1qXSqVCYGBgk3WpVCr4X+byFxYWBlmWUV9f75YQE4a4PRHetu4Jb1v3pSdvX1vbptcrceZMIM6eDYQkKRAfb4JGQ4XyzqDVKrF1awwUCmDBghr4+sooLXXutRaLAmVlKkREWDBwoA4BASbk5zv3WgAoKipyfuFW0GqVOHYsBCUlKsTFmVBXJ6OurukyZ88GYs+eCEyfXgqFwory8qbPW61AebkKsbFmJCY2oK5OarYOVyh1did2ISaTAgUF/rh0KQBGoxJRUWb4+MjIy/PBjz+GobbWD1lZ9Zg2zQhfXxmABMBzBX9uCbFerpioOMFLL72E6OhoLFy40KPr9WbS09MR2BXTaDoQvV6Pixcv8rZ1M3jbui89efva2jZJAvLzFTh2TIGyMiWysmSXasFkGThyRIH33vPFtGkW5ObKUCgSnX69RgNUViowcqSMESMkl1JWer0eRUVFSE5Odvtzq6oCTp9WwmxWYNgwuVkqVpaBH35Q4sgRJZYvtyAoqHnXG5MJKC1VYPBg2pbg4PZ3xjEYDCgtLUViYqJbwYqORJaB8nIF8vIUKC9XIClJRlgYTWD47jsflJYqMGqUFenpMpTKEMhyCLRaQJar2165C7glxATl5eU4ePAgqqurMWPGDCQkJMBqtUKj0SA0NNRm+NoaxcXF2LRpE1544QVbtEqn09l+NjQ0IPzXb5dGo0Fso4S1Wq0GANvzYWFhKCsra/Ye9fX1tmVExExz2e2SyWSCXq9vsi6TyQSj0dgkKqZWq6FQKGzLtZfAwEAEdUURQSfA29Y94W3rvvTk7XO0bbW1VAt1/DgVUQ8c6NrMRJ0OePNNe0F+RISTzq6gi3hZGRV1jx0LDB7sfHukywkMDHRLiF26RJMSNBqqh7u8pk2SyLqjqAi4/XbA37/5TjIYyDG/Xz9g+HDP2WwEBAQgIMD7bg4MBuD0aeDsWdo/mZkUDfz+ezqeRo+m7gc+Pj4wm+lYM5lo4oKn+4K6JcRkWcY//vEPbN68GRaLBQqFAllZWUhISIBOp8OUKVPwwAMPOFUjVlRUBLPZjLvuuqvZc7fddhuGDBmCZ555BgDVijWu2crLy4Ofnx9Sfp1X27t3b+zbtw+yLDepE8vPz0dWVhYAICgoCImJibYasMbLyLJsW7/4mZ+fj/79+zd5z6SkJK9V+gzDMD0Vsxk4dQo4eJAukMnJzltSACSizp8HXn6ZLrjXX+9aQb6YURcZCVx1FbX58fRMOmeQZRITP/5IvzsyajWbgc2bSaAuWeJYqDY0UEStf38gN7f9grK7UFEBHDtGRfmxsTSh4tw5anmVlQXccguJLaORlgVo1mlaGhAf73wnBmdxS4i9/PLLeP3117Fy5UqMHTsWd9xxh+250NBQTJ8+HTt37nRKiGVnZ+P1119v8r9Tp07hqaeewl//+lfk5OQgJSUF6enp2LFjB6ZNm2Zbbvv27Rg7dqxt9uPEiRPx4osvYt++fRg3bhwAElInT57EnXfeaXvdxIkTsWvXLjz66KPw+1Xibt++HWFhYRg6dCgAYNiwYQgJCcHnn39uE2Jmsxk7d+7ExIkT27HXGIZhmPYgyySAfvoJyMujGX2ObBdaw2AA3nuPLry33ea6JYNwyc/MJJf8qCjXXu8pzGbgyBF6tGRPodORW35qKglGR2Kzvp4egwaR878rs0u7GxYLfe7Hj1N0KzWVJje89x79vP56sjgxmSjaKctke5KWRoKto3zg3NrlW7Zswfz58/Hb3/4WtbW1zZ7v168fdu/e7dS6wsLCMHr0aIfPDRw4EAMHDgQA3H///XjkkUeQmpqK0aNHY/v27Th27BjefPNN2/JDhw7FhAkT8Nhjj+F3v/sd/P398eyzz6Jfv36YPn26bbkVK1bg008/xcMPP4ybbroJZ8+excaNG/HQQw/ZRJ2/vz9WrVqFNWvWICoqCllZWXj77bdRV1eHFStWOL2vGKYlDAa68/L3BzjAyjCOqaujyM/x45RC6t3btRSRLJMlwSuvUOrt/vtdu7AKTy2FguwccnI8HxlxFp2OjGZPnwbi4qhB9+VUVlLEb9w4Sps6EqtVVXTuGT6cUpKuRAW7GxoNRcHy8khsxcbSsbRrF3m9ZWfTZ1xRQYItMZEinXFxHb9f3BJipaWltsiRIwIDA6HVat15i2bMmTMHer0eGzZswPr165GRkYG1a9c2G8dzzz2Hp556Cn/+859hsVgwYcIE/PGPf4RvI7mflpaGjRs34h//+AfuuusuREVF4YEHHsDy5cubrGvlypWQZRmbNm1CTU0NsrOzsXHjRlsqlGHai8FAdRsGA4mw5GQWYwzTGKMROH06ED/+6IOGBrpAumKuClC04513yNh12TK6uLr6+pISSkuNGNG1LX7ISoHqwlJSHKcRL1wA3nqrZY8wUd/m60siJD29a1KrnUVxMUUOq6vp+DEagbffJkF/ww2U1q6ro16kcXFUZxcf33mdENwSYtHR0a1OTT1x4gQSE52ffXI5o0ePxpkzZ5r9f/HixVi8eHGrrw0NDcWTTz6JJ598stXlhg0bhvfee6/VZRQKBVatWoVVq1a1PWiGcQGjkURYVBSdYE0mFmIMA1B0Ii8P2LdPiZ9+CkW/fq6nISWJWvy88QbVgt17r2sXV1mmyJJORxMBhg2jNGBXUVBAvQ5ra0k8OUoj/vgj8NVXwM03O05XCsPS0FASlY7aHvUURCryl1/os0xOpr+/+IIihVlZdA4uLqbPddgwEredHel0S4hdc801eOedd7BgwQKb75cojt+zZw8++ugjTt8xTCuIdGRNDf3sqlQHw3gTJSXkjH/uHCBJSqSkGBEX55oIq60lAabRAMuXu+4MbzJRtDo8HLj6asezETsLSaLJCT/9RL87imBJErB9O01CWLbMsaO/2UyiQ0T2HAm1noJOR1GwCxeoljAwEPj8c2rgvmgRRcGqqkisZWSQKHOU4u0M3BJiDzzwAA4cOIB58+ZhxIgRUCgU2LBhA55//nkcOXIE2dnZuPvuuz01VobpcYh0pMlEIoyjYcyVTHU11fGcPEmRiuRkQKmUUVjo/DosFuC77+iiO2MGzQJ0VUBVV1MBe2Ym1U91VUE+QBHzQ4eonik01LF4MhjIhkOlApYudRz1MxioZU9GBjUg7yrR0RlUVdE+KyujVKRaTTNHMzOBBQvofFtcTJ9r//60TFfWx7klxEJDQ/Hee+9h06ZN+OKLL+Dv74+DBw8iNTUV9957L+688062d2CYNggIYAHGXNmo1SS+fvmFanWSkux1YEajc+uQZYpgbdpE0a//9/9c7/NoNtM6goKACROogN3TnlGuUFtLRfl5ebRPHG1PVRXNjMzNpd6WjgSFRkNR955uTyHLVDt35AhZcvTqRQL2u++A6dNJcFVXk1jv25eiYN5gu+f2RNWAgADcc889uOeeezwxHoZhGOYKQaejmX+ikDo2lsSPq4XjDQ3Ali1kzrlgAUV9XKWmhoRPRgbVCrla0O9pLl0iEVZTQ/YJjgThmTNkvTBnTssF91VVFA3LzaVG5J1VgN7ZWCyUvj1+nCKD8fHAJ59QAb7wTyspoVRzdjaJNG+ZoOBWMO62227Dvn37Wnx+//79uO2229x5C4ZhGKaHoddTCnLLFioslySKTkRHu3ZxtFiAb78FHn+czFUffNB1EWY2A/n59HP8eHJT70oRZrEAR48CX39NAjMjo7kIk2Xa7o8/Bm691bGhrCjKl2Vy/h80qOeKML2e6ueOHKFIqo8PRQnDw4HrrqNUZEUFCdqxYynl7S0iDHAzIvbjjz+2OnuxpqYGBw8edOctGKbHwH5hzJWOXk/F5EePUr1SeDgJMFcFgixTuu6NN0g03Xef67MZZZmicGo1eZLl5nZ9FEyrpW4BZ85Q/ZKjvpVGI0XBjEYqyneUZjSbKfoTE0PRvfj4jh5511FXR/VgRUW0nSUlFAmbMoVmQFZU0OzS3FwSrN4oRt1OTSpakZWXLl1CsCt9Jximh8J+YcyVjE5Hs9eEAAsLoxqd9lwUq6vJE6yyEpg/ny62rqLX28cxcSKNpStrwQASED/+SOPq1cvx+aGykgxpBw6kyI6jejC9norU09NJhPXkovzSUhJhNTVUQ7d/P9UZLlhAsyRLSkhcDxxIotRbcVmIffTRR/joo49sf7/00ksOfbg0Gg3OnDnDbYAYBuwXxlyZaLVkQXHsGEUm3BFgej2l4n7+mQqvb7jB9ZlukkT2BUYjReJyc7t2RiRApqInTypw4gSdFzIyHG/XL7/Q9s+dSyk2RzGQ2loqzB84kJz/e3JRfn4+WZyYzSS2PviA9tuNN5LwF22oBgzw/nOty0JMr9c3aWfU0NAApYOjJigoCEuWLMG9997r3ggZpgfAfmHMlURdHRXOHz9OEayIiPYLMIsFOHAgFIcO+WHsWOChh9r3/VGrSQzGx1MtWO/eXd/SR6sFjhwJgVbrg5gYx30vrVZg2zaKKN5+u+OuApJEUTAfHzKuzczs+m3rKERR/i+/0Lk0KIiihAMGAEOG2FORQ4Z4byryclwWYjfffDNuvvlmAMCUKVPwv//7v5g6darHB8YwPQn2C2N6OrJM0aazZ6nGqa6Oiu+zstonCqxWSjt98IEvoqNV+M1vzIiMdD3EI+qlVCoyMR04kMw8u5qiImDvXiXy8gIwZIjkUGCp1cBrr5F4XLrUsZO+2L6oKEpFutHMxusxGCi9ffYsTc6orQU++giYPJlSk2I/DBrU9fV+ruBWjdjXX3/tqXEwTI+H/cKYnojFQqLi9GmK2hgMVI/THhsKwN6WaMsWEnK33mqB0ViH4GDXDJ9EA2edjuqlhgzxDpFiNlOk8OhRwGBQoFcvo8PzwtmzwLvvAlOnkt2Co33Z0EB1Y+npPd+kVaMhYX7xIgnT06eBPXuAefPovFpeTj1ABw7s2jZU7cHtYn2BVquFVquFJEnNnkvqyc2sGIZhrkB0Oroonjhht0lISGj/RVCSSMi9+y5Fr268kdZnMlGkwxXq60mgxMRQqq53764vxgeoNOGnn2g7o6OBmBi52bZZrdQV4PRp4JZbHNewyTLVQBmNVAs2aJB3bF9HUVVF+62igiJf33xDx9ySJSRG6+tJrHa1AW97cVuIvfXWW3j11VdR2EoPilOnTrn7NgzDMEwXI5pg5+VRnU51Nc1OS05uf2G4aO79/vsUXZs9m2ZCtieaZjBQrZS/P6UhBwzwjuiIEJk//0wpW9FY2mRqulxtLaUik5LImsJRKtJiIWEaEkKNq1sq3O8pFBbSftPpyPD33XepTm7ePDr+VCpKyaamdt/94JYQe/vtt/G3v/0NEyZMwMKFC/Hss89i2bJl8Pf3x4cffoiYmBgsXbrUU2NlGIZhugCDgS6IZ86Q47teT5GaPn3aXwwtSTSj8oMPSODNmNGyO3xbWCxkZSBJVKiek+M9NUJaLaXUTp8m0erIfFWWqfh861baD336tJyKrKgge4thw7p+xmdHIo6Po0dpXwQEUFF+bi61aiovp+0fPNi7rSmcwS0h9uabb2LChAl4+eWXUVtbi2effRZXX301xo4dizvvvBMLFy5EXV2dh4bKMAzDdBaixuriRRJg1dUUoYmNdS/KZLXS+j78kETctde2P5ohSZS20mpJnOTk0Lq8Ycag6Hv488+0HxMTHfc1NJkUeP99H1RVAbfd5nhWZONU5KBB9Oip1hSAvY7u5Ek61mprSaRecw2JrrIy+pwHDfKOiRfu4pYQKygosM2g9Ps1MWs2mwFQQ/BFixbhrbfewvLly90cJsMwDNMZqNX26FdpKUW/IiMpkuMoVeYsFgtFhrZtI0EyZ077W83Isr03ZEwMcPXVFAnzFlsYnY4iOSdOkNhsyRusoECBzZvjMWKEjJkzHS/TOBU5dmz7o4bdBb2ejhNRR3f6NBm1Xn897Z/aWoqI9evnPZ+3u7glxEJDQ2G1WgEAISEhCAwMRFlZme354OBgVFVVuTdChmEYpkPR66n4OS+Pojj19ZRGi4lxHMVxBYOBZrd99RXVRt10E0XV2kt9PUWHwsJImPTr5/4YPYUsk4g9dIjEU0uTF6xW2h8//+yDyZOrMWBAlEMRptXStqakUEouMrLDN6FLqaujovziYpoZ+fXXtP033kifu1JJ+yE93Tuinp7CLSHWt29fnD592vb3kCFD8Pbbb+Pqq6+GJEl49913kZ6e7u4YGYZhGA9jMFDEq6CAog+1tRS9iYoi81V3LnSyTBfOr74CDhygovlVqxyn3ZxFq6ULdXAwWTX07++4F2NXIaJgp07R9rdkJlpVRT0yExKA22+3oKbG3GwZ0QFAlu01UT0l+tMSpaWUxhVRznffpZ+zZ9MEkbAwSj07Mr3t7rglxK677jq88847MJlMUKlUuP/++3HHHXdg0qRJtHJfX6xZs8YT42QYhmHcpLH4ys+n9B5AkZbMTPddyCWJ1v3ZZxTVGDUKePBB9/zzGhqA4mJ/KBQKDBpENgXR0e6N05OIWrDDh2nfthQFkyRg717gu++AmTPJUsPcXIPZPqPYWCpE79WrZ6ciL29X5O9PRfkjR9IxWV5O9XU5OdQkvifilhBbuHAhFi5caPt7+PDh2LZtG77++mv4+Phg/PjxyMjIcHuQDMMwTPvQaKi4ubCQCu/F/KmICPfrvgQmE6XjvviC1nf11ZROcieqJmYIKhQKZGQYMGWKFamp7o/Vk2g0FAU7fZpEbEttk2pqgM2byXB1xQpK+16OLNOECJ2O0q2DBnmH9UZHYjZTBPH4cRLrWi3VEF57LUXAKitpnw4c2LPNsD1m6CpISUnB7bffDgA4f/48Pv30U8ydO9fTb8MwDMM4wGqlC7qY8VhaSmlCHx/PFN0LhKfYV18BR47QBfOGGyiS404ER6ul9apUlJJLS7Oivl7rVl2Zp7FaqZ7u8GHa1wkJjmfvSRKwbx8ZkM6Y0XIPSLOZPqfQUKp7a6m4vyeh19Nxc/48HZfHjtFj0SLaH1otidH29ijtTnhciDXmyy+/xOrVq1mIMQzDdCBaLVBUpIJarURZGUVgdDqKIkREkKeWpy7sJhNFgb78ktJoo0e3vxF3Y9Rqqp8KDKT0Y1YWFWwbDPRcV2Iw2PvEarW0/efP233BHO3bqirgnXdIoLUUBQMAtdoHRqMSffpQ+q2nF+QDVAf288+Uvo6NBXbsIGuORYvo2A0IAIYPb/+s2u5GhwoxhmEYxvMYDHShr6qi+qSiIh+cPx+BuDjFr61zPDuT0GqlWYC7dpElQ0YGMHcuRYLcLeqvq6OLb3AwCZGsLPdmVXoaUbOl0VB6t7ycRFmvXo69vKxWmu3344/A9OmtR8GKihSwWhUYMcKK7Gy/btmex1WKiiiSWFdHNwlvvUWzIHNzKYobG0vHgTfVAXY0LMQYhgFAFxytVgmDwXvsABjCYKAUWHU1XcjKyihKZLXam8knJxuRluY5o09ZpvfYuxf44QeK6IwaRSk2d6NfViuJr/p6KsAeMYIEizc6xRsMVEwuauzS0ykN64hLl2i2X1oaRcFaqmuqraV9m5QkIzRUg6ysyB4vwqxWamT+yy/0t48P8PrrwIQJVIxfUdGzTFpdgYUYwzAwGIDiYgXKy1WIilIgKKhnF8d6M7JM0ZfaWhIrxcV0kVKrydxTpaJC5tRUe4Njo9Ez6TtZpiL5gwdJfOl0NHNvxQqqX3I3TWQyURRPr6eIx4QJJGzcsbXoSEST7sOHqd4rLc1xOx29HvjkExJrc+aQsHC0r0wmiq4FBZH4TEmRUFho7fgN6WL0ehJgZ87QZ33+PNXOzZlDgkyt7t5Nu92FhRjDMDAaAYNBRliYFQaDDJOJhVhnYTRSmkYIr6Ii+r2hgYRRQADNnmssvDyJLJPg+uknEl8aDRXJL1hAosMTtWVaLUXzAKr76tePtqeluqmuRq+nmZAnTtDYMzNp3/v6Nv0MRI/ITz4hYTV1quOJELJMn6lGQ2Ju4EASogZD521TV1FbS62Kiotpm7/6ivbD4sUkwJRK8oXr6c3LW8NlIfbKK684veyhQ4dcXT3DMF2Avz8QEKCAWu2DXr0UPd48sqswmSgdV1dHj9JSihA1NNBzCgWlZUJCSLB01GwxEfk6coRc7+vrSXxdd53nCvsliS7CdXUUAcrMpGbWSUmembXZEVitlIY8doxqwSIjW05D1tYCW7bQa269tWVzWYOB1hUaCowZQxHAKyHqI8tAWZkKJ074QK+n4/rNN+kYGD+eorwxMVQP1t2bdruLy1+Hf/7zny4tr7hSJS7DdCMCAoBevWTU1JjQq5fM0TA3kWWKqqjVJHLq66muS/hE6fUkugIC6AKVmNjxTZytVrKFOHiQPL+MRroozp7tftF9Y/R6iuwZjSRORo2iaEd0tPdGPGSZJiOcOEF1YP7+JJgcCWGTiWaMHjkCTJlC0T1H+040JDcaSYQOGOBdnQA6ErMZOHFCgSNHghEfT/vgo4+AyZNJdFVW2iODV1o9mCNcFmK7du3qiHEwDNPFUApMYhHmIkYjpVo0GhJetbUUAdFoSHQJ9/TAQIoMxcXRhb6jRYks03ufO0fi68wZev+BA4GbbyZR4CnxJUn2KJ9KRcKub1+yH/DW9KOgpoYE2LlzJFZbEsWyTJGyzz6jfbhyZcuTFkSPyOhoSlmmpvZ8XzCBRkM1defOKREUZMXp0wqcO0dNuy0W2jcDB9Lx4a2R0c7G5d3Qq1evjhgHwzCM1yLLYlYpXWi0WhJclZUkvvR6e72Pj49ddEVGdm6PQKuVIm9HjpDXVU0N2Szk5ADTppHY9qQAbGig9zCbSdgNG0aiw5O+ZR2FVkvi9ORJ2o64uJad7EtLKQ0ZEEAitiWvL7OZ9r+fH+1zb2pI3hkUF9OxV1MDREbKeP/9CERFKbBwIQnTkBCyqejpbZtcxaN6VKfTYdOmTZg/fz6Sk5M9uWqGYZgOx2Sii3JDA12ohdAQdVwGA0XAABJcAQEkumJjPS9ynMFqpbTnzz8rceBALNRqP4SHkxfXnDk0Lk/XmZlMtE8aGkhkpKRQHVWvXt4f/QJINF+4QG11amooahUf73jZhgbg00+pf+b06S1HtiTJvk+SkykN2dI6eyJmM01uOHmS/pZl4M03/dCnjxaDB/uhosIXiYlkTdHd07MNDfRd96TA9rgQe+GFFzB8+HAWYgzDeB0istXQQGlD8VPMWNRoxAxSurgCFN0IDLS71KtUXXc3L9oXnTpFj0uX7PVMQ4ZoMXhwAEJCPF9sZrFQ2lGtpnRSTAzNdEtKIu+v7hDdMBqp/uv4cSoUDwtruTek2UwzSHfvpgL7adNaTqOJNGREBLUnSku7MorxBWo1RV8vXqR9+ssvlMKdMcOM+noz1GoF+ven6GB3nQRUVwd8/z156h0/Drz/vsKjnncez9DKsuzpVTIMwziN2UxRD53O/qiqUuKXX0Jx7JgSkmQXW+J05ecnZo6SsPD37/r+dpJEAqigwC68amvpTjwjAxgyhGY5qlSA2SyhpMTk0QudxWKfbKBQkNAYPpwiX3Fx3ae+x2wmwXr8OKUNg4JaLsSXJEqt7dhBBfYrVrQc+TCZqBZQpaKap379en6T7sbIMlmtHD1Kx2VICPDxxyTGFi8GyssV8PEBhg6VkJnZPcR6Y8xmYP9+YOdOasckbswAzx/73eSrxDAMQ1wutMTvoli8oYGEltFoL5Q3mxWoqQlAWpoCoaF00fAGsSWQZRI+NTXkPn7+PNkomM2UXuzdm2Y3xsR0rACyWEh4qdV04QwLI0PX5GT7JIPughBgJ0/SjMiAAEottuTzde4c+YFFRVEdWHi4Y/FgtdpnQ6amku1HXFzHb483YTTSfj19mr5DBgPNipwwgaKklZVAXJyM8PAGJCeHdysRVllJEzJ27iSBKejbF7j6aoqQxsTIADy3UR79SiuVSiQlJSGAp10xDNNOjEa7uNLr6dHQYPffEp5bjYUWYI9q+fuTgPD3b+o8X1hoQnx814sJIbrq6ujif/48kJdH2xQcTDVXffqQNUJQUMcXvRuNtG+1Wnqv8HASXyLy1d1O50KAnTpFxeP+/rRPW0oXFhVRJEehoP6ZcXGOBZjoi1lfT8uMHEnr9RYx31lUVVHUsLiYJi3s20cdBa6/nva9RkMu+ampEsrLu0/XgPPngQ8+oHS09ddhR0ZSbeC0afRZdxQeFWJRUVH4+uuvPblKhmF6ELJMF/7GkSxRqyUucnq9PaJlbXQeV6no0Vho+fp6d8rDaqXtKCqiCFd+PkVnLBaqO0tNpZqiq64iEdYZF3Vh5qpWUyTDz4/SjtnZVGAeG9v1YrU9mEyUxhURsLYEWFUVRcDq6sgRPyWlZdGr0dDy4eEkwDIyup9AdReLhW4YfvkFtn6077xDx/DcuRTNDQ+niQpJSfZJLd7OuXPA5s2UhhTk5ADz5lH0qzNS8G69RXZ2Np5++mnMnTvX4fPbt2/Hww8/jFOnTrnzNgzDdBMaC63GYkujsUe0xMxDk8kutBQKunAKoRUUZBda3o4sU/2I6CNYWGh/aLW0bXFxFGEaOpRSjJ2dFjWZ7F5nkkSiLz6exEdsLM0c7A772hEGgz0CVlbWtgCrrga2b6eIzqRJNMO0JQGm11Nhf0AAXZz79iWH/CsNtZoEWF4eHTtlZVS4PnUq3RTV1JAgy87uPvvn/HkSYPv20d9KJTBxIrBwIX3OnYlbX722CvOtVis76zNMD8NiaTrjUAit2trmES1R4KpU2kWWSuV9NVrOIEkkHBsaSGQVFdHP0lISOgDVcMXHU0Rg1CiKEPj4dH7UThhnajQ0Nj8/GsugQTS+mBi6gHbn07NWSzP1zpwhsRQU1HINGEARre3b6fOaMIEEcUsCzGikdfr40EW5b18Sq1cakkRRxl9+oZuokBBg2zbax6JXpNVK3mAZGd3j+3zxIvD66zQrFqBj4OqrqS6wI9OPreH2PVBLQkur1WLPnj2IbMn5jmEYr6Wxn5Z41NdTNEGrtUe1LBZa/vKIVncUWgBdVCSJBExJCd35l5bSz7o6es7fn8RMfDxFSaZPpzRjVwgugcUCaDQ+KClRQJJoLKGhNDswMZFERFRUz7BVqKmhFO+5cyT+xXa2dKxVVgKff95UgLW0rNlMAkyW6aLcty91CXD3cxX1jKKOsTug1VKa99w5+l5rNFSQP3483WjU1tKxlZ3dPURqXR3wxht0LEgSfaaTJnWtABO4LMTWrl2LF154AQCJsEcffRSPPvqow2VlWcbSpUvdGyHDMB2C1UonW2FcWlmpwLFjITh5UgmzuamflizTRSQggC4k4eFNi+G7C8ISwmKhCIkQWaWlZEUgLC0CA+niEhNDMwZHjKA6Kl9f73CMF15oDQ10gZdlBSRJgV69ZKSlkeiKjOweBqvOIEn0ORUVUURDq6XPIyOj5c+jspIiYOXlJMDmzGl5WYuFljebSVz060diwxOftYiuGY30nfH22aeyTJHe48dpn4SGAl99ReNfsMBebjBgAAlVb/cGM5loMsY779C4AWDcOGDZMoqgegMuC7GcnBzcfPPNkGUZb731FsaPH4/09PQmyygUCgQGBmLgwIGYPn26p8bKMEw7EPVBIlWlVtMJtrbWPkPRagVMJiWqqwORlqZAWJj3+Gm5gkgfGgwktCoqaFvLynxQUBAPi8XXFt0ICyOhFRtLka2pU+0F894gtgQiFSxq7iTJ3iy8b18xs9GKqqo6DBoU02PEFyBMWBU4cCAUsuwDhaJ1J3whIr74giIgV11FheStCbCqKvqOJCRQvVhSkmfr5cRNTXg4RZXNZu8VYg0N9iiYry/tlzffpAkK6ekUjYyLs0/s8GZkmUxYX36ZzgMAfV/uuou+796ES4fb66+/jquuugp/+tOfAAB6vR5LlizBkCFDOmRwDMM4j5g6LsRWXR2dgBrXbckyheRFa56wMLs5p9EIBASYWmx63NWIonjR1qeiwi60KivtF1SAxFREBEWFoqKAPn0kpKfXoW9fFQIDfaBUemd9lMXS1LpDpBlF38qBA2m7IiLosxMRSb0e0Gh6jpl2fT3VJp09C5SUKFFX54fsbBlhYY6XlyTytPryS/pcJ0wg4eCMAIuLszco74gIr0hH1td7bxRZkijaePw47ZfQULJxqK4G5s+nc4tWSwKsb1/vnzFaUgKsXQscOkR/x8RQBGzKFO+6yRK4JMSeeuopREZGIiMjAwDw8ccfY9y4cSzEGKYTaWw/IJzPy8vpblX4bskynXACA+kRE0MnT288CQF2kSVc74W4qqwksVVVRcJSLBscTAJLpOAyMylSIrbxcqFlMskoKbFApfKOCJ8skwgQn5dIiQrRFRpKXmJRUSS4wsN7fvNo0bA8L49mQarVtO2pqTL8/c0OL/5mM/DTTyQaoqOBGTNabzhuNtsFWHx8xwowgUhHemuNmEZDUbALF+j40+splTdkCE04qa2lfZud7Zl6uY7EbCYvsLfesk9SufFGYNEi7xaPLgmxsLAwVFdX2/7mdkYM07FIEt2JCo+t6mq6WGk0FDWxWJpGuKKivFNwCZElollCYImf1dV04hRiJDLSHs3q25f8fMLC7DVa3rZ9rSE6ARgM9BATHFQqElcxMXShDg8nARYWRv/35gueJ9FoKBpz7hwdC1Yrfe6iLY6IcjZGp6O0008/UdeBG29s2QkfIHFfVUXHoBBgSUmdF50SRsPehNVKgvfECbqJCw6214Jdfz39bGigzgHdIQp24gSwejVtE0AzOe+/n2xjvB2XhNjo0aOxZs0anDp1CqG/moV8/PHHOHr0aKuv++Mf/9j+ETLMFYIs20VXXZ29mFyjoRNi44hJUBDdpXpDmqNxNMtkalqbJX7W1dn7OgYF2aNZ4oLbOGLXnUSWQETyxASHxma0YpJDSAiZt0ZG0u+NWy1daZjNdENx8SKlINVqOi5a63wgy+T9tWsXCbdBg4Dly1ufkKDX0/GoUFARfp8+9LO7eqZ5itpaSkNevEj7r7oa2LqVmpYnJdHNUmwsibD4eO++KdBogE2baDYkQIL8rrsoDenN426MS4fjX/7yFzz55JPYu3cvqquroVAosHfvXuzdu7fF1ygUChZiDOMAk4lOiLW1dLEoKbG38BG1QcHBdMGOj+/alJqwdTAaKQ0qZhuK2iyRWhMtcqKjSXD07k3pjcYzDrvLyfFyhNAUgqtxiyURlfT3t0fywsPp8wsJoZ+Bgd132z2BLFPkpbiY0mAiQhUVRcdJS/vGbAZOngzC++/7QqUCRo8GZs1qWUyJG5qaGoo6pqfT+uPju6fI9yQmE+37kycpqqhSUV/FoCCaEanT0XE9cCDtM2+Ogsky8O23wLp19rKFGTOoUXtLtYTeiktCLDo6Gs8884zt7/79++Nf//pXi876DMMQjS8ONTUkuioq7IabSqX9oh0b2/l37KL/ocmkQFkZ3SGXl5PYKi+ncYqIXHS03dohLY1+Dw7uvtEsgdgHQmAJ93+R/gXsKabgYEp5RETQ78HB9kjllRjhag2NhoR7fj4dTzodHedtpQZra6n269gxP8TGBmD2bAvi431aPMYkiSI59fX0efTvTyIsJubKFsAAHdulpfb2TyEhlMI7coTMTCMi6HNKSCDrjtjYrh5x61xejJ+aCjzwAEVJuyNune6feuopDB061FNjYZgeg7goVFfTnX9hIV1YtFq7/YC4GHXWhVuWKbJlsdC4ioooOlFcTJEtk8kXRmMioqN9ERdHF7A+fchzRzjEd3ehZTI1f4iaLYCEgehpGRVln50YFGSf+CDE1pV+cW8NvZ4u/AUFdHyp1bTPoqIoNdgSFguJhb176TXDhwPLlplRV1eP6OgAh8ef2WyfqBIRQW2kUlPpmGVIYJ06RZEwcbPx7rtkYrpwob1sIDeXbqy8odyhJRwV4998MxXje/O428ItIXb99dcDAEwmE06cOIHq6moMGzYMUVFRHhkcw3QXJIlOaCKSVFhIf+t0dMEWM+Hi4jo+xSiK4kURdEkJ/SwttacQw8NpLHFxJLTi4gDAgvLycvTqlQSVygumFrqAPaJHD7OZHmICgMWiQGWlPxQKBYKCSGhFR5PICguzT3YQj4AAriNyFb2ejv3iYvvxL2xEWjNelWV63Z491K4oOZmiNAkJ9BpHxfoApfBrauj7FRMDDBtGNzY9yUfNHcxmikKePEk3hYGBlMrTaimFJ8t0jkhPp2J8bxeux49TMX5BAf09dCgV4yclde24PIHbp5rXX38da9euhUajAQBs2rQJY8eORU1NDWbOnIlHH30UixYtcnugDONNyLK9oL68nE4Oor5LqaRoV0SE59y5HdFYcF26RI/CQhqPaMUTF0e1MQMGkGFpUFDLrXhMpq6P8pjNJKh8fe13uJJkF1aNH+ICLbzRfH1JYPn50f4PCyPxS7VZEkpL69G/fyQiI0loeYONRXdHp6PjraSEjr36evp/RETrPl7itT//DPz4I312ublkwNpahFjMuq2vp2M5I4PeR3jhMU3TkKWldPwXFlIab9w4ErhqNd2I9OtHEUpvjnRrNMDGjcCOHfR3eDiwahUweXLXn688hVuH7gcffIAnn3wSs2fPxvjx4/HYY4/ZnouKisKYMWOwfft2FmJMt0TMfvP3pwu3VgsUFChw/HgQTp5U2lrMKBR04Y+MpLohT58cREpRpyPBJ0RXaSn939+fTqaJiWRkGR9PYsSbT64Ci8UurHQ6ErZ6Pe1DYVh6ucgKDbXbPAQENH2Iz+ryNIVeL8NqNSM6miMm7iDL9s4MIsqqVtNnFB5OKcHWBK7JRCat+/dTjWT//lQkHh7e+vFqMChQUqKAQkHfs+HD6bvGrYybUltLUcX8fPqsjEbg00/pc1m4kD4ri4Wc5dPTvb8Y/5tvqBhfCPyZM2mm7K+mDT0Gt4TYK6+8gqlTp+KZZ55BbW1ts+cHDhyIN954w523YJguwWAgY8nSUhJbRqNIPfqgvDwEvXsrERPT+t2kSJGJuiNnaOy1lZcHnD9PJ9WGBhIjCQkUZRs5EjYHfG8VXCJVeHkUS9g6APbIlxBOoaE0W0s0XRZtlhoLLY58dC5Wa9Nax4oKOh59fEhApaW1fgxaLHQs799Prxe9O1NTW3+d1UrfuZoaBRoafDBggGyzn+AJEU3R6+lcce6cfTbk11/T/6+9ls4rDQ30WfXtSxFLb6akBFizBjh8mP7u7sX4beHWKe3SpUutNvWOiIhAnZhXyjBejizTHWVFBZ3Qjh61F90nJlKkKSNDhr+/EYmJcqsXA+GnJYRYTExzMSbqmqqrqZD2/Hny9TEYSHSkpNAJaMQIuuB5kwARkSwhtERtliTZlxEiSwgpUZMVHGwXVeIREGCvFRJRyMRE775j78k0NNDxW1lpT7tTCyz6DGNj2xZRhYUkvi5coO9Obi6JgtZuSkTXiNpaOpYiI4HcXAlmswZDhkRyNPMyzGbaz6dO0ecVFES/nz5NnmCxsbQ/Y2Opj6aou/NWzGZgyxbg7bfpd5WKivEXLuzexfht4dapPSwszGEkTHD+/HnEevs8WOaKxmAQTaFJBFVV0R2lsGoIDqaLiBBSRqNz6xURoJAQSmlaLHQC1OkoNXPmDAkvg4GWSUmhu9WJE+nvrj5ZivELCwcxu1CYsvr42GcX+vvbRZYwKL08VahSOZeyTUy0i1cWYZ2H0Wi3VhGzaDUa+syCg+lC3lYUymKh6O2hQyS+oqKoTc7kyW1//gYD3fAIa4uMDPpOxMcDkiQjP9/aY+qBPIEkUdTo9GmK2vv7003M/v0UNVqwgPanUmmfDelsVL6ruLwYf9gw4L77ekYxflu4JcQmTpyI9957DzfffHOz586dO4ctW7Zg4cKF7rwFw3gUUWRfXk41LgUFdMKyWu0F9qLOS4gPUZ/kCiJ6dfo03bEWF5PI8/WlC0xmJt2xhoR0TdG4MGdtbFCq09HMQqNRicBAe4Pi8HD77MLGswr9/WFbzlMXSSHgmI6lsZlwWRk9xA2Dvz+liKOj274hMBrpGD90iIRBXByZgU6a1Lb4Mpvpu6fV2sV8bi5FbRrXABkMntjinkNlJd3MiVY+DQ1UB5aURA26dTraZ/36UZo/JKRLh9sm9fXkjP/FF/R3RAQV40+a1HOK8dvCLSH24IMP4oYbbsCcOXMwefJkKBQKfPzxx/jggw+wc+dOxMTE4J577vHUWBmmXVgsdPIqL6dalYoKOvn7+tKXviXvHBHxcQZRTH/mDPU8u3CBLlLCXX7aNHsRfWdhtTZ1gTcaSYAJB3yRFgwJIfEZECChslKDfv2iEBnpZ7N06MkpgSsFvZ5uQETqXZj0iuhjaChFI9v6rIXlwfHjVL9TX0/p89xcYPbstr8vFgsVjGs0dAxGRZFgiI+n37s6EuzN1Nbaa0ZFZH7XLrqRu/Za+r4bDFSD16cPCVtvRpJoJuQrr9DxAPTcYvy2cEuIxcfH48MPP8R//vMffP7555BlGVu3bkVwcDBmz56NBx54AGbRA4RhOhG9nu7yS0roxFVTQ1GAoCC7rYQ7d1uikPjUKXvPNsBeDDtpEr1XR19YhEmpmOHZuKm0SB8KI83ISHtUSxiUNnaC1+tlnDtnRGqqzLU43RirlcROfT0do2VldBFvaLALr5AQijw5c6NhMtHx/csvdIOhVFLqcOpUSlm2FdEV4kurtc+uzMmh9/eWfqnejEZD+/3CBfoM/fyAAweotnTCBPoOG40UjczM9P46MIBqcF94gaKpAB1P991H0dQrEbfLf6Ojo/HEE0/giSeeQE1NDSRJQlRUFJRKJV566SWsXr0ap06d8sRYGaZV6uvpolNQYPc0kmW6u3LXwV4Ir6NHlThwIAZ1db7w96cTSHY29b7rSLd1MRXdYLA/RGG8SmV36k9JIcEVFNS07Q5f7HomkkQCp7JSgfz8AFRUKG3pPr2elgkIoGMhKcm5CR+SRBf548cpuqtWU8QqK4vS6aI5e2uYTCQgtFoSamFhdJFNSKB6Sz4e26ahgW4iz5+nz8DPjyYQFRRQ/9YRIygKHxhIwrZXL++a0OMIrRZ47TVg2zY6zoKCgKVLgeuuu7J9/Tz6sbGjPtOZyDJdMEShfXGx/cQvDCXbe2ISRqnHj1M/tuJiElppaUB2tg65uYEIDe2YM4fZTBdR8RCCS9RkRUbSxaxxU+mgILpAXik1FVciFotd3KjVFOWtrKQLtlqtREVFCBISFAgPp2PD2SbXoivE6dP0KC+n4ywzE5g+naJWzlwkDQYal05H37vwcGDwYNjaZbH4cg6djuq/zp6lm0k/PzoPXbhA4mvwYHtkbOhQuvnydjsPWaY06ssv2xt0T5oErFzp/SnUzsDL9TPDNEWS6OJTWkonJlHvFRBAAqW9YXlJItFz+jQJr7w8Wk+fPnT3mZpKJz6TSUJJidEjJz5Ztke3dDp73YevL10Iw8LoYhgRQWIrJISEl7efdBn3EJ5PWi391GhookdNjf14kWX7cRISAoSHy/DzMyIpSW4z3Wi10rpOn6aaxspKWk9aGhmlilqxtkS9GKdGQ8duYCAdqwMGkPCKjGTx5QpCgJ07R6lkf3+7OM7NBebNs6d3c3LonBQU1NWjbpu8PAVeeYVS2wAJx3vvpW1iCBZijNdjsZDgKikh8VVZSRej4GA68Scnu75OWabIU14eCa+TJ+l90tLI7XvGDM86sAvRpdPRQ5ROioL45GS6eIm2PKGhHOHq6ZjNJGR0Orvwqq21N7A2Gu31fiIaGhHh2MS3pX6MIqVdUGCvM9Jo6AKeng6MGUMRK2eEF0DHsFZrt3gREz2SkqgOsS2HfKY5er0Sp08rUFhIn72/P6Ukjx0jwTVvHh0fskwiNy3N+2dCArQtmzfH48ABf8gybdfNN5O1RncV6EYjfX88vf9ZiDFeidlsbyB84QJFBEwme+Ps9ogkq5XWc/iwfcZXQgIJr+XLSdh56iJCdhD0EI2nhfVDRgYVOTcWXd31xMS0jkgzi2NBr6f0XW0tndDFJIvL6/2Cgyll40pqXUzcEAbBFy5Q2l6hoOMtJYVm10VEtNxv1NH4RSsvs5kupmFhNBM4JobEV3eIyngjWi1w7pwCP/4YCpVKiYAASkeeOkXnpOuuo2MGoDrUtLTuMZvQaAQ++gh4550AGAx0or76amDFCjp3dydEl5O6OgoA1NbSdzgx0bPv47IQO3HihNPLVlRUuLp65grGbKYLR3ExFahWV9P/wsLaV2wvolCnTtlNJgMC6KQ2f77ztS9tIawrGhroSyrLdEENCqJIV3y83YcrLMz7C2oZ55EkOsb0evtPvd7emFqrtXu1idZOCoXdhy08nH66ehyKRuglJRTtysvzQWFhAnx9fREeTqJryBCK7KpUzt9gWCxNhZePj91gNS7OPvP2Si6sdpf6ekpB5uUB1dVK6HRKnD+vRF4embEKAaZQ0LkqNZX2ubcjy8B335EnGF36FUhL0+M3v1EiN7f71FOYzSS4qqqoBEajoe+Fn599prkwtvYULl8SFi5cCIWT+RJZlp1elrkyuVx8VVXRBSssjFIeroovq5UiaT//TDOMtFo6keXkOOdz5NyYFaittbf3USrpyxkZSamDiAjYCqa93c2aaR1hDXL5Q6OxWzIIoSXSzaJ+S1iHhIS4Ht0SiIbvdXX0HSkqokdtLV2oo6Pp7jwnR8LgwVVISopDYKDzKqlx5NZspjEGB9tvICIi6MERW/eQZUrV5eeTCNNq6bxx7JgSeXmRGDZMtqUglcruFQEDqI5t3Tq66QUoWrp0qQnp6YVIS0vp2sE5gaibFCUwWi39T9j8lJWRcK6spO/Ctdd6Vte4fGp46qmnPDqAxnz++ef45JNPcOLECajVaqSlpWHp0qXNxN+WLVvw8ssvo6SkBBkZGXjooYcwefLkJuvSaDR46qmn8NVXX8FsNuOqq67CH//4R8RdFhs9dOgQ/vnPf+LUqVOIjo7GTTfdhJUrVzZ5P1mWsWHDBrz11luoqalBdnY2/vCHPyCXqw3bhcVCB3ZRkV18WSyw3cm7Il5EDcyZM+Stk5dHF74BA4AbbiBx5E66UZYpwiFqeQwGBerq/BAWRlECcbESMxj5vqN7IDoLiNRg44coQNdqm7d4EjRu8ST6L/r5tf9YE83eheAqLqYLgui5GBREEam4OJptFhlJokm8n8kko7xcbjVSJQw/RYpUkkgoBgXRsRwdTcdyWBhPCPEUkkQ3hvn59JmKiPnBg3TRHzxYQmJiPQIDI6FUUkQsObn7CLDiYuD11ykSBtBxc8MN1BsSsKKwsCtH1zYaDX0O4ubGYrH7P168SA+rlUTx0KGUijeZAJVKBuC5k73LQuz666/32JtfzquvvopevXrh97//PSIjI/HDDz/gT3/6E8rKynDfffcBALZt24Y//elPuPvuuzFmzBhs374d9913HzZv3txEGD344IM4f/48Hn/8cfj7++O5557DypUr8cEHH8D311vTS5cuYcWKFRg/fjwefPBBnDlzBv/+97/h4+ODFStW2Na1YcMGrF69Go888gj69euHzZs3Y/ny5di6dStSUrxf7XsDVqtj8RUW5rr4EtYSP/8M/PQT3cmkptK07rlz3YtCSZI9zSgKkgMD6cRI7UIk1NTUIzc3CuHh7X8fpmMQDcgbt28ymYD6egXOnw9CaakSJhNdEM1me/Nyi4VEtOg6oFKRsFKp7CLL19c9oS3ElvC7Ky+nR0WFfcZsY8E1YQKd+EUhvSvvLYSmSJWKXqfCb653b/sNBNcoeh6RNs7Lo/SW1UrC/uBBEsPDhtGDIi8yBg+WkJFBN3PdgaoqYPNmaksk6huvuQZYtsxuR+GtramsVopsFRfT91CnIwHp60uf14UL9D3MzqbriSzbU5N+fnTz7ekbFa+qVnnppZeaeJGNHTsWdXV1eOWVV3DPPfdAqVRi9erVmD17Nh588EEAwJgxY3D27Fm88MIL2LBhAwDg8OHD2LNnDzZu3IgJEyYAADIyMjBr1izs3LkTs2bNAgBs3LgRkZGR+M9//gOVSoWxY8eipqYG//3vf7F06VKoVCoYjUasW7cOy5cvx7JlywAAw4cPx7XXXouNGzfi8ccf77T9092QJLv4OneODn6TiU7+rqYdLRY6oR04QLOJZJkMJmfPdt4vqaUx6nR2A0xZpi9heDh9EYUjvZgNRu7zFk45diIWS1NRdfnvjWceis4CQmBZraJvqBLV1YFITFQgKIhOuiJtKESWu0iSXQAJj6/qavopxJY4vqKj6dGvHwmuwECKsrXnOBZ1XXV1PrBYFFAq7XVogYGUuoyMJMEVFkbvz5HbjkGrtc/urq6m/5WW0g1jaCiJL39/+sxCQoC+fSVYrRpkZoZ3ix6rGg3w3nvA1q32mbqjRpEA6927S4fWJjod3fgUFNBnI2p5y8tpkoSPD0Ukr7+ezhuyTN+h2NjmaXohPj2FVwkxR4aw2dnZeO+996DT6VBbW4uLFy/i0UcfbbLMrFmz8PTTT8NkMkGlUmH37t0ICwvD+PHjbcv07t0b2dnZ2L17t02I7d69G9dccw1Uja6qs2bNwrp163D48GGMHj0ahw4dglarxcyZM23LqFQqXHPNNfjyyy89vQu6PZJEF53TpwNx8iS5fBsMrrvbixlgp0/bU44REfRFueMOWl97LiayTF9IjcYuvIQNxsCBdHEUBcl8seo4zGZ6OCOuhI3D5dErwF6P5edHJ1I/P9iElvgfQKk7f3+TUz5bjpBlegjvrJoaOplXVdl/itmPvr50/ERG0nGVlQWMH0/jErMV23NsCZHXOKUK0Dp9fBTw95fRp4+MuLimvnNsJ9GxCGPpwkKq/6qvp31+/jx5Z6WlAZMn03GtVFL9VFoazdi2WmUUFnq48rsDMBiAjz8Gtmyh4x+g8o/ly+mc7M2IdH9hIZ33/f3pPHLsGKUjBwygG3pZpu+l6EIRH0/Xg86YFexVQswRP//8M+Lj4xESEoKff/4ZAEW3GpOZmQmz2YzCwkJkZmYiLy8PGRkZzSYK9O7dG3l5eQAAnU6H0tJS9L5Mxvfu3RsKhQJ5eXkYPXq0bfnLl8vMzMRrr70Gg8GAADduZfSiD0k3RhSilpQokJenQGGhhOLiUCQnW5CQYERCgn1ZcfFwhIhOHTmixMGDStTUKJCcLCEnR8L06XQBFR+pKy1MRXG1TqeAJCkQGCgjPJwuWhTxkpsJu5bC6uLz6gmf2+W4u21Wq11IkbBSNPm7oUFhE1c00UFhE1iNZxQKcUUP2SaqRPrAWesFq9W+XtOvt+/ip6CxwLJY6CJaW6tAba3C9nt9vcKWpgZoHKGhdAyR0JIxerRsizSJiNTliBRHW1gsjVOrtI8av7e/v/24pa4KMnx9DaitVSMpKRgBAfbb9Zb8xboThl+/jAYvy3WZTEB5uQKXLilQVqb49ZiWcfy4D4qKlMjOtmLGDAk6nQJqNX1eycl03gkIoGPT+OsJ0djaibELMZmAL7/0wZYtfqiro4M6PV3CrbeaMXy4BIWi5XNlV24btelSoLhYgdJSBYxGqusqLlbi7FklwsOBIUOsv/qB0U1McrKM+HgZ0dFyk4CBo+3z8+viGrHO5KeffsL27dvxu9/9DgBQX18PAAi7bC6v+Fs8r1arEeqg2jE8PBzHjx8HQMX8jtalUqkQGBjYZF0qlQr+l4VywsLCIMsy6uvr3RJiF0W36G6IVqtERYUKhYX+qKz0g07ng8BAK8LCrEhPlwCUoaqq9XWQ+FLi5MkgHD8eAp1OifT0BuTm6hAdbbbdzYswvzNYLAo0NCih0/nAalXA319CcLAVcXFmREZaEBZmRXCwFUqlOJnSwxWKiopce0E34vJts1pJNJlMSphMCpjN9p8GgwJ6vRIGgw8MBgWsVgUsFnpYrU1PVD4+Mnx9Zfj4yLbfxd+OIqXCdFd4cbmCEFhWK42voUEJrTYAhw8boNWa0dCgREODD/R6H9s4FQogMJCOjeBgK0JCrEhIsKJPHysCA6VfBZbsMKIlarGchQQo7UOzWQGzWQFZppUqlTL8/GSoVBJCQqyIjqb3DwiwP0SkT/SaFOMvLS11bUd1I7xl27RaJSorVSguVkGt9v31RtQXZ89S6KRPHw1GjLDCalVAq5UQEWGGr6+E2FgLGhqUKCiwIDCwaRTM26yeTCYFfvghHF9+GQW1mmRCTIwJs2dXY9gwDZRKKjlxhs7cNpr96IeyMhWqq31//W7LyMsLQmWlCpmZWowebYAkKQFY4e9vRkKCGVFRZvj7yzAaKbXcFr17WwF4LtTstUKsrKwMDz30EEaPHo3bbrutq4fTYaSnpyPQkxbuHUxDgz3yVVysgFqtgL8/RQVCQuhiYDQaUVFRgbi4uGYCFrAXLB88qMShQ0oYjUD//hJuvFFCTAygVAYDcL5qVVyMtFoFDAaKniQkyEhMBOLjZURGyjYTS3fR6/UoKipCcnJyt/rcWsJspjs+kwmoqzOioKAcEREJkGV/aLUKW+0ciQVaXpLo5CYECfnryDaPtMZpQU+ldxtHrkThc309RRrUagU0GvvvjaNXgHClt0Kh0CE2NgBJScpfU3eyrUbMHslSAnC/cp3Eq33ygNh/NC4FfH1lBAfTnXVICKUyQ0JkBAYCAQGyzfzX2bSiwWBAaWkpEhMT3box9Ea8YdssFop+FRZS9IvSczLKynxw/rwSKSkSrr7aCoVCAYUiDJGRMlJTZcTF0UzWqio6FqKjKTUp0uNtnSs7G6MR2LHDFx995GuLgMXESFi0yIKpU63w84sAEOHkujpv28xmoKJCgYICBaqqFFAoaB8fO+YDsxkYOtSKq64CFIpgREUFIS1NRkKCjPDw9p2jfH3PenT8XinE1Go1Vq5ciYiICKxZswbKX89G4b9OU9NoNIiNjW2yfOPnw8LCUFZW1my99fX1tmVExExExgQmkwl6vb7JukwmE4xGY5ODSa1WQ6FQ2JZrL4GBgQjycmtqg4HuEi5epFqtujq62MbE0GzFlg5kf39/2z6zWCh9uX8/zXa0Wqm24JZbqJZGoXBNJQmHcuG7ExxMLVt69aKTXVRUx3p4BQYGer0QE4a2jc1GxU8SLfS3EAt6vQ8qK0MRExMIlUplmyUkjAzF754y8xTCSkS+hAmqGJtabf9b9FcUx5rosSjqoGJiyIJB/E+IQJEmNJstKC9XIz4+sElNaHuwWu31ao1nXjZOl4t6NT8/u5FvaCh+FVpNf3rSHDUgIAABAd59XLaXzt42WaZzXVkZ2U/U1totRo4coe/RgAHArFmA2axEYKAvEhPpHBQb2/RzFQX6YpLI5fj7+3fp56bXA599Bnzwgb0pd1wcsGQJcM01Svj5tf8705HbZjLZr01VVfR9r6+n+q+ICGDcONHRxAeJiXSNSEhwf5Yw3Yx6Dq8TYgaDAatWrYJGo8G7777bJMUo6rTy8vKa1Gzl5eXBz8/PZiXRu3dv7Nu3r5mhbH5+PrKysgAAQUFBSExMtNWANV5GlmXb+sXP/Px89O/fv8l7JiUl9bi7T4HZTLN9Ll2iotPaWvp/dDQ1wnbm4mE2U0px3z46cSmVZDFx++1w2frBYrGbaAqvl/BwOhHGxtKF2Mv1bIcgDDlFakx4ntXX21voCKElZvqIu0UhFEJC6G9JkqFSOdc4uiWEsBLO72o1ndjr6mg8dXV2kWWPENnFdHCwXUzFx9OxFhZGokWptAur9ha8tzX2yycFNH40trcQMy39/Og4FGMWjvmNf/IM2+6FXk+lCoWFdnsDg4Fmfufl0XGZm0ufryyTwE5JoQt8Sw74VNvXqZvhFFotCbCPPqJzBkDbsWQJMG2a93YBESnEvDy6NimV9FkdP04TIWbMoGtUeDiJr5QUujn31glYXrWbLRYLHnzwQeTl5WHz5s2Ij49v8nxKSgrS09OxY8cOTJs2zfb/7du3Y+zYsbY73YkTJ+LFF1/Evn37MG7cOAAkpE6ePIk777zT9rqJEydi165dePTRR+H3q0Tevn07wsLCMHToUADAsGHDEBISgs8//9wmxMxmM3bu3ImJEyd23M7oAoQrfWEhnXSEy31kJEUb2vpSimLkoiJg585IFBb6IjCQTlp33ulao1RhpKpW04lQqaSTXFYWzWgR5pPePCNMpPyE6Wd7aBzVEg7oQmjV1TU1JJUku0ARZqNUWO5cm5vWGkc3jlyJSJUQVUJk1dc3nYyhVNojVqKnZmqq3UbB379p1KojTpJCXJFAVdpO2kJcNZ6GLtKsIr0qIlZCIIr96e/f9HdvPgYZe9cDMeHDERYL2YyUltL5T622ex/+8gt9N9LTgbFj7d+p+HiKfjVONXYXKitpFuTnn9v7WSYmAjfdBEyZ4r0CzGCgGZAiM6NUUrDg7Fm7nZFKRdeHzEz6fLqDN5tX7e6//vWv+Oabb/D73/8eWq0WR44csT03YMAAqFQq3H///XjkkUeQmpqK0aNHY/v27Th27BjefPNN27JDhw7FhAkT8Nhjj+F3v/sd/P398eyzz6Jfv36YPn26bbkVK1bg008/xcMPP4ybbroJZ8+excaNG/HQQw/ZRJ2/vz9WrVqFNWvWICoqCllZWXj77bdRV1fXxPS1uyJJJLiKi+lgLi+3e305Y7QqLs5FRcDevcDJk0BQkC9SU61YudKC8HDn8y6Ool5RURRFi42lL1d3CUAaDHRSNxrpxJ2Y2PrYG/f4E4KrpoZONiKlKISSLNsvKv7+JEhVqvaluIT3lbgQXbzoj4ICJTQautOsq0OTmisxvTskhC5GISF2J/DGkSshsDyNqBET6UEx47LxT6DpeH19AVlWwGpVwtfXniIMCrJHrESE0N+/6U+me2M02j3c/P0p3SbEmCTRMd7YW0rUH548Sd/fjAxg5Ej6XgYF0TGRnU2irDv0f7ycixeB998HvvnGPqM4LQ1YvJgsNry1h6heT9eYixftqdPz5+nvQYOAOXPou5yQQAIsKal7fX+9Sojt3bsXAPCPf/yj2XO7du1CcnIy5syZA71ejw0bNmD9+vXIyMjA2rVrbREswXPPPYennnoKf/7zn2GxWDBhwgT88Y9/tLnqA0BaWho2btyIf/zjH7jrrrsQFRWFBx54AMuXL2+yrpUrV0KWZWzatMnW4mjjxo3d1lVflukEVFxMka/SUrrYhoa2LRjE681mqpvYu5cEXGQktYCYOhVQKCwoKWlAYGDb+UfRIFmvpwt3aCiZXCYm0p1mRIT3hpNbQ/hiRUTQicNspv1qNtOJXpjIajQkhEUdlMFgj9I0FlsxMa630BEiy2wmUSc8r4TAq69vaqcQGOgLH58QJCTYexhGRJDYujwt6CmECGxNXInlxHv7+NhtLBpHrgIC6GLZWFgJd3xJsqK4uB59+0ZekSnsKxXhVRceTse76KpQWUniq6qK/jaZyIQ1L4+W7d+fLvCyTN+/hAT6f1xcxzirdySyTCm7LVuAH3+0/z8nB1i0iISmt0Z1dTqKUF68SJ+fLFM/y/Jyamqfk0Pf+eRkMpSNi/NeMdkaCln2dB9xxhl++eUXmEwmZGdnd1qxvlpN4uvCBbq70GjsLt9thW9FT8cLF0h8nT9PUarhw6lOq/Hdh8lkRElJCZKSkqBSNT1jSZI96mUy0QU0IoLuyuLivD/qpdfrce7cOfTt27fVYn2dzl6/YDbTiVuk70Q6UYiLy+uKnD2RCKFlMNAFRTyqq+khUg4irSucocPD7T0FRSSNCtqNKC8vR3x8fLPPzVlExKqxmLr898YolcKQtKkpqxBVYpKAEFaimXbjiQTOpFEMBj3y8/ORkZHRI4vZe/L2ubNtRiNdtGtqKKql19N3UjQ5v3iRbkYDAiiSEhdHx3BgIJ2LROG9SGe3VGzvzrYVFhYiJSXF45+bxQLs2UMpyNOn6X8KBZkLL1pEYrMjcWfbGhrsAkxkSE6coN+HDaPPJCyMSh1En9TOvGGXpGPw91cgJyfHI+vzqogY43kaGkh85edTLl2ttufQk5JaP3iF+Dp9msTXpUsUJRk+HJg3z/k6ApOJ3lejsRe3ZmTY6yvcbczd1RiNFN1Sq+mnEENiVidgrxMLCCAR5GxtkRAwYvZWRQX9rKqi/SrMT4W4ioqyt2YSDvPuRrEaF7E7eohlxPuIaJUQVsHBsNkxNE4FOhJVnpyVyVy5yDJ9/6qq6NxXXk43LEolRcLOnKHl+vShJuoi3R8VZT8vXd5do7tEwWprge3b6SH8F/38qBfkwoW0fd6KRkOfT0GBPUtw/DidZ4YPt3eryMigm/eIiK4esWdgIdYD0evtU3pFTt3Xl04ybfVlFEXyJ04AP/xAIi4lBRgxguoInLlIUoG5EmVlCttdJDkZU4g/NrZ7FFA6Qq8n88YLFxS2+pP6errDNpnsQiQwkE4aiYlt77PG6cPGzaCF9xBA4jUqii4QAwfSPgwIcK9lTmMbBlHQXlXlB7NZAR8fu12EUmkvYBcCKyzMXmclitcbpwJZWDGdjSTRd7GqiiL+VVX2yFdhIUXzLRaq7xo/3v5dDQ+nm9LYWHjMb7ArOHsW+OQT4Lvv7OeNyEiy15gzh373Vurq6DMqLLSXbPzyC51bhg2j842YsZ+S4trEr+4AC7EegigOLyigE46YHRYVRSH31k4uIr115AhZTVRU0B3HuHF01+HMiUmkHEmUKKDV+iA5WUbfviQeRI1Td0LUr4nC9fJyoLraB4WF4YiIUNqiXIGBdBJv3ILJEaJ5dVkZCeWSEvrMRAuNsDC72MrNpZ8icuZqxLAlnyvRzFYIrMY2DCEhQFycCb17y7a0paOHiLIxTFdjNtN3U4gvMbnEZLKfCwESX2PG2FPh4eF0kxQbS9+57iq+zGbKVmzdSrVTgv79KWsxYYL3nndFa7zCQvrstFr6LE+csHuAhYbSZ9SnD9WBebl1Y7thIdaNMRrpon7pkr0eSZbpzscZ8aXTAYcOkclqTQ0d7FOm0AHvzIVfWBmIlGNICBVMRkdL0GjqMWxYdLcpjDYY7P5WdXUkkNRqEmPCQyowkPqVRUebkJrasteW1UrrKyqiR0kJiVuzmT6TqCg6uaSlAaNGNS2Gd4bGrX/Itb2poagoaBcRKX9/OiYa2zAI+4XGP81mCfn5DcjIkLy6To+5stHpKOVWWUnfLVFv2tBA4uviRTruMzJIiAhbktBQinyJcghvtWhwhpISYMcOYOdO+yxCX19g4kQSYP36denwWkXM1C8ooO0Qvm2nTpE4njTJ7iPYty+lUrubPYirdOND8cpEiC8Raq+poQtzRATd9bV2chGtgA4eBA4cIAHVrx8wcyalDJ0RAiJKpNPZ7yxzcux3l8HBgF4v49w5q9dGTSwWuxdWfT3tz7o6OpGbzXbRFRRE+7XpRAR7bz+RUqystIfVi4vpM/Lxsc+wGjiQBG5jawdnxiiaZQvBJeqxGvtdqVQk7IShqJhl2bj4X7TwaQtXGqkzTGdBLdF8cOGCAjU19H0TjeOrq0l4VVTYi7eplQ0d/2FhdG4SvoPdWXyZTHTTvH07ZS8EkZHknzVrFp0LvBWLhT6nS5fsNXvCNql3b2D6dDqHJSZSUMATDvjdhW58WF45GAwkFgoKqPBUiK/wcIqqtHawShKJjgMHaOqyXk/F3Ndfj1/7Orb+3rJsNxA1GOjkFhlJ4isuzp6S81ZkmUSjsGuorKSTQUODPSUoZui19sW3WGg9588rcPJkGNRqX/zaWQsREfTatDQyfAwKck5wWSwk2oTgaux+7+NjF1Hh4fYWOaLgX4gsV2ZZMkx3QJbpZqeujiInhYVK5OeHIThYCUmiKHN+Pn13RNuagQPp+yZunhIT6TwVFtb9vx9FRWS8+tVXdvd7hYLqdmfOpKi6NwvMxpkbYReSn0/blZVF2xAeTpmYjIy265h7Il788V3Z6HSUHisqsqcdAbvVQ2viy2ql5ffvB376iS74gwYBN9zg3DRfq9Ve72Wx0F1KUhIVScbF0V2Xt35RLBa763tdnT110dBAIsfXl6J2kZEkZhztC2EsKyY7FBTQ5+HnB8TFKREYKGPiRAvi4nzg69v6vhBRM+F+3ziyJcSWSmX3TBMzDBt7Y3nzSZZhPIFeT9/X2lo679XVkRgzm6nZ9rlzIdBqfREQQOehkSPtk0eCg+mGUBTbh4R0/xrGhgaynvjqKypaF0RHU/ueGTNIsHgzWi1w6ZI/zp1ToqGB/j59mrZt0CCavCWuZ+npnW9B4U3wKd6LUKvtdw4FBSQoFAq6W2irxZDVSpGe/fup7kuppKjV0qVwqsO8qPcSUZ6wMMrPJyfbPVu88UsiTuB1dbT9FRX0hTcam6YYWyrIFdYQwt6joIBeGxAAWwPfoUMpGqVUAmazFeXlOsTFhTaJBEoSiazGLYdEUbyoyRJeXqGhdo8s8ejud+0M4wrie1tf39Tny2Si/xcX00OW6eYnPt6IYcP84eensqUcxU2h6CzR3bFagcOHgV27aMa6aBemVJLwvPZain5587lCkuizLCoCLl3yQWFhEGRZgXPn6KYzJ4cEV3Q0pSNTUrpnhwJPw0KsC5FlSpWJ6IuI3vj60smld+/Wv3RWKx3wP/xAd02BgXSgL19OF/u2hJPBQCfChoamFhOi3svbCu1FyqK21n7nXFtL4xc2GcHB9CUXfQwbIyJdFy6Q8CoooBN/UBBF/Hr9//a+PEyuqkz/rb3X6q7eO+nskM5CVpYISQDDGgwy4gABHBgY1yejI+oM6PyAYcQZ5NFBR0VxFIdBHTdwNICMYBhRSBhHIlEWsyed3tJ7dXdVdVVX3d8fn2+dU7erekt1V1fnvM9zn6q6devWPXc55z3f8n5zpaMrLs583i0LiEYdCAZVtikJl66CrxMuLvk6WIynVp+BQSYwvIFxmW1t8kqLV2+vkLHmZnmeWNVh4UK6+BMYGophyRIrWe2huHjmWuUnitZWL37xCzd+9Sul+wUISbn0Uokvra7O3fGNB9GoqlPM0I+mJgf27y9FQ4MTGzfKdaupUSWIZmsG5GRgiFgOEQ478eSTLsTjKrNtLP94LCauypdfFlHC8nIhTx/84PjU8RnvFQ6L1aeiQszEMzHeK5FQ1i6WZGKiACDHSrep3VrIrNDjx+V8HT4sHb/PJ1a+efNS47nSIR5XdR6Hhihg6kAw6EZpqQOBgJy/0lI59yRcsynAdLRafQYG6cAyXsxAbm+XCRBlJShO3Nws21ZUyH11zjlKr45W7KoqoKAgjr6+fixaVD5rsnnb24EXXwReeMGHw4cXJtf7/ZI1eMklEj81E70QOnQvDt3JBw+KVWzxYmDDhj4sXhxIuh9ra02oRTqYU5JDJBIy+xtLaG9oSFJ7d+8WS059vehMXXHF2IOiru8ViwlhqKuT7CKa9meKqZvxXT09YilsbZVjD4eVm7GkRJUcIcRKJR0C68V1dMg2tbXS1quuEtKaKYieNehIuixLxXAVFYm1TLKuEujqCmLZsvJJm9TzycJkr9XHck0GBoD0L4z/oZJ9d7eQLtZO7epSIsWJhBKW3rAhlXiVlwvxYnIK77NIRFWoyGd0dQG/+pUIrirNLydcLgvnnJPAFVe4cO65M38iNzws17m5Wcn8nDwpfa/PpwSnS0steL0hnHuuH3V1M59U5hKGiOUQLpeV1v3HTL99+4R8tbcLmVi/XrIdx3pQM+l7zZsnD8h4YsamA3RL9PSo0j39/TLwO51CGsvKMOIhlnR2mXkdPChWr3hcOviGBhFurK5G2kB6Uf2XhcV+AaWnVVkpgwGtXCUlQgD5/5GIhWg0PmnLYb5ZmEgW+/pUFqfB6QmddOlZjaGQCg/o7ZVJUFubbOP1yrNYVSV9ELXtWHmCzxozgmcbensl6P6Xv5RSPazs7HBIGMnGjVHMn38cy5fPnfE1Qvv7lfuxu1uuL0NqFiwQ2ZBAQPq0xYuBQCCOtrYwAoGZMd7MZBgiNkMQj8uM6f/+D/jtb6VzW7JEzNQNDWNbrRjvFQqpIs+rVgmJqamZGSWF6JagSj07a+pulZaOLPpN8dL2diFdBw7IefJ65bwsXCgdADW6dJB0hcOyUCeLGltz5sj/UYOrpGTqXbP5ZmEiWcwXC55BdkD34uCgLIzLDIWUi7GvD0ldLz2ru7JSrCIswUV5GGp5lZZOz7OWK5w8KaEju3dL7C4laQBgxQoRXd28Wc5HJBJHU1Mi887GAEMmsl2MnIjFhGy3tEh/HQxKX3zkiPSvjY2SzFRRIRP9efOEXLtcSh7IYGwYIpZjHDjgwN69Yqr2+eRBveGGsQthZ4r3WrlSzP4sj5NLRKMyi+ruTiVe0agM6kw714+Ts+4jR4R0US8oEFBijVVVI8vssEC5TrosS2luzZunhE9p7cqFdScfLUxMQjCYfYjF5HkZHBSCNTAgE53+fmU5ZhkhZiZTy6qsTJ6pRYuk3yEZ8PlUAXpOcPI9uH40wmNZEiO1e7cQsAMHUr8/80zgoouEgNXUZPeYurqUdZ1JSqcKy1JJFc3N6tofOybXf9488TpUVspYs3ChTPhnW/3H6YQhYjlEMOjGs886sWaNWL50F1g66Ppe8bgSIZ0/XwhNZWVu473YYbe2OrB3bwlee82ZFCol8aqtTZ0JU2354EFRWG5rkw6bWVPnnJO+E4/FUuNQANlvYaHEc9HSxdn3TAkQnU4L00Rj0YaGpE4o5TsMZgd0y3AoJK/MPqZFmqW8WG2iu1sG+VhMnr3yciFeS5aorGKSLhak10lXPkwwxot0hMftFk2sPXuEfDU3q+0dDplQX3CBLPX1U3NcFIT2+8VSNTx8av1JKJRaMD0YlBiwY8ekP1i6VOL6OCmeO1dZv2YzLEtNVgYH5f2CBdntu2fI8HR6oqQkjptvjsPrzXwZhobkgRgYkAe8tFTpezGwNVf+9+Fh6cy7u4VMMbg+FHKip8eXVEnWiVcsJjEGf/yjEK/eXum8588XEzfV7XXiFY9L+2ntsizpCAsL5RxQ54yka6YPAhOxME02sH+isWjcvqvLA79fKfcb5AekvqkDPT1KViUUUtqAnLBQ6663V03qenpUrGRJiQqaX7hQVW7gPVtWJgNxUZHKFJ6tLkaChMfhkGD7AweA116T80d4PJJAdcEFko1dXj71x0XrXDAor5OZbLJMVGureC16e+XzsWNCOhYuFGteZaWa9NfVzW7piUhErm0wqArKc9Ifj8s2c+dm9z8NEZthoMuR2YJut3R8Z54pD0B1de4egnhcHlS6Gkm8olHprEtKZMB3OCz4fNFkZ3T4sMweDxyQtgUC8oBfeqnK2iSZ1F2MoVBqwe3SUgkCZZxJaensJgunEtg/0Vg01rMsKUkk61vO5nObbyAZGBpSmb2RiExQ+vuB3l4nWlvLUFrqSsZVcgJHCZj+flUQvqxMnp/qankWWWWChKu4WKnUU3y4qGj2Wz90WJZkAu7eLZavw4dVsD0g5+bss4V80XI/naB1bqIxYvG4mjy3tEj/IKWkJN6vvl7iixnismCBjD3l5bMz6N4uCs5YyHhcDAKscKLXKs22h8UQsRkACo0Gg8rlWF0ts4+qKhUTNd2gjhcDcik4G4mo4Ho9xiuRkAHi4EEHfvvbMnR2uhGLqYypd75TBgDd2jU8LIMFZxyAKu+zaJFyMfr9cl5mY0eQCacS2D/RWDSPRywbAwNOVFfPfKvibAGlV/RFJ1zMUKRllK8Mpu/vl9e+Phc6OsrhcLjgdKqsY7rna2oUkWKxeBIuv1+V1uIy261cmdDVJer2r74qr0xCIBYuFPfcuedKzd5cE9PxWtc5iabsRE+P9A1NTTKhLiuTQtsXXKAC7znxnylhHdmCnq3f1ibXnMSLz0RdXXptymhUxkAmfmULs+wU5xcSCeDIEQd8PukMGxslky9XLsdEQrkq+MAGgzJjcDqlU9ezGhMJ+e6Pf5Tl6FEhVjU1TgQCcWzePIxAwJUkXrR2MfOKMzlmVNXUyHnw+2dWXNd0IJ0L8lQC+ycai8btg8HYjJfUmOmgRYpWRvur/gwwsYTfDQ/LK2UiqKHFz6xTCiiiJbGXFioqQqipccPrlRqoJNdFRSp+i8krnOXnmkjkGqGQZDaSeB0/nvp9QYGETJx7riwzXeFeByfSXV0yiWbmK/W/3G6J+VuzRvpfVheprp59MaIDA8oKSJkkTmzpjuezYFlKIqmlRRZ6f6hIcNFF2R2cT6OhbubB4QDOOSeBefPkQZhul6NlqazGri6ZHTEL0+FQ7gnqeMXjMiC8/roQr6Ym2c/cuWLx2rhRHuDh4Tja28MoKvInBxyWAuIgsGSJzLzoIpnNMQdjIZML8lQD+yea7SjitZYhYRosixUVFGGKxUZ+DoeVSz0SSf0NX6NRpbmlZ/gyEJjQa6TqtVKLi4VYORxKj4v3hdebQH9/CAsWlCTFUBnndzpNaMZCJAK88YZoNO7bJ/0Y434AObdnnimajevWidUrn6yDJBDpyFdLi9wLCxdK2aSqKunb586dORJH2QKNCp2dQqI6OuTZY5y1XkUmkVCxy0ePSnxcKCTPXkODeKY2blTJcGJttgBkj4yZRzSHKChIYO1aa9pICGs1dnfLrODoUVVoFxgpoMqH+rXXpMPiLKqhQczYW7ak1nQcGpLtg0EH2tu9iMUc8PuVyB8Vs0tLT++ZuN36NZoLMpvSEfmk6J9NsKONRBzJ2EsSJfvCCgu6izAeV9/zvQTHp1Zj4EJLVzgs/8/ngwkmJEjMOKTOFl2KJFi0arF0Fl2GQrzUq8cDRCIJNDVFMG+eNeusGaeCwUEhXr//vRCvAwdSiRcgMVHr1gn5WrNGrkk+gUK6DLrXS8KRfC1YIGWTGHTPZK98a+toYPJYR4eQqt5eeTYLCpRGpdOp+oNDh+R+OH5c1tXXCwnfuFHGLE5gGHIzOKgSXhYtyu6xGyKWQ0yH65Fp6l1dqbEBfX2q0HdNjSr9098vgrJvvilWmsJCmUGtWQNceaWakTMzi/51y1LyEfPnW6iuHsTy5eWoqTm9rV12pLN+TYe2WL4p+hOJRGYipL/yfbp4KyFhLpw8WYayMhdcrtTfkEjp5EuP02LnC6Q+s17vSELEUj2FhcoaxQB5EiuXS7bX3YT8PfepW7xOp7jIU4FlyT3+5puyvPGGDLa6oCog9/6qVVJjd+3aqZOXmEoMDal+va1NxX+1tMg58HgU+aquljbPRvIVi8k5IPniRLaoSMgUJyWUSdq/X+6JSETOx8qVwNVXyzNIkhYKibEiHFaknc9qRYU839me7BgiNstAFWyaplmKApCbhzElHCiOHBHidfy4kLCyMnmAV6yQNGxmizidcoNylgGo2o8LF8pNTzdjPJ7AkSNDqK01s3M70lm/mG06lrVqLIvWaN/nQtF/NNKUbr0eR0VSxO/TLdzWTqT0fah9uRCJVMDrlZhFZr/RAqWTH91aRcJESRWdVLlcqQRLJ1c6keL3+nI6W4SzhaEhsWiQeL355sjgekBlAXKpq8ve/0+lqr0OZtPT4nPypFK5b2mR/t7vl757/XohDPX1slRVzS6xVUputLeL5llfnxAoCoR7vSp++dVXVTWWQECI1623qjGNlq7ubqWZp49rFRWp5e7ozmxvz26bDBHLc+jlR5qb5YYbHJQbkcSLEhGxmGzz+uvSaQ0MyA02Z45oxTAdGpAH3bJUnEFhoWxbVaXcjGVl6cVW7aZ/A4VM1q9MLkgSC8sSEqxbtABFvIDRLV6TsbrZiVO6hdvQgqSTH50wJRIjSZXd+iSWKzXA6YTKbtUA5L6zW4+4ML7R7aY0QxwDA/0IBMrhdrtSSBTjPvT90crFz9w202KI1dQikQBaWhw4dkyRrsOHR/Y1LpcKnVi7VpapCLCfKlV7HRTY7e0Vqxc1G9vaVJUSyo9s3qzIF2UnZpMnYmhILH4kX3od5fp6eQYpy/HGGyIQnkhIAtyVV8oY5/HIfgYGxHo2PCzPd0mJuBpraqTPYLLYdFaCMEQsz0BXY3e3snilI15OpwxgR49KfBfNsZWVctNdfbVSyO7vVyVOOGgODanYgiVL5MH2+2fXw50LTCQAX3cnxuNyXaqqpHNmJh0HgqKizBaveFw6LV3+g6rpetB5f78Tx44V49gxZ0qQuk66SKzsJIrWLF1igevTkShgJIlyu+V/KL3AJA6Kijoc8h2Jk51EuVyp1i2+yn4T6OgYQENDKYqKPCkkTH81bsDcIx6XgfLgQem39u/34tChJYhERrLdQEAC6pcvl36tsFD6qUhEBt+pCkDPtqo9kFq2jhafvj5VRJ1WmPp6IZhz5khfT5djRcXskp2JRIR8tbXJWNffL32J3y/ngMaFY8eEfJ04IX3GmjXAe98r27EaTWurbOv1yjbLlkk/HAgI+cp1QoYhYjMYzGrUiVdPjzyszEDUiVcoJLPEP/5RXI7xuMyOFi0Crr1WbkCnU9br5U6Gh+UBDgTkoaZvnZpC+RBLlE8YbwC+7k7s7JRrx9i+UEg668JC6YCKi2VAOHxYftvaquKfSJJ0Cxddesz2k/cu9PYG4HS6MTys6gzqYruAfE5HokgsGYBOMkTrE8mT/qoTKNYZLSuT46NLhb/XF901qO8vEyIRC05nDHV1xl0+kxCNSljEwYNqYX1ZBSFgXq+FRYscWLZMkS8RkJatBgak7+vtlftvKmO/sqFqD0j7e3rcGBpyJIPsaQFrbZU2lZcL6Vq8WJ6Hujqx9NTVjdRlzHeEw4p8NTcryYjSUjkHDods84c/KFf03LmSbHH99dLfUBC9s1P6B79fzh2JayAw8wirIWIzCMxSpIgqVY+Z2q67BwG52Vgq6MQJuUnnzhXidf75KgAxFpN9tLdLB+dyyXeBgMwM6GacbnOsgQKtkLpFiSb0vj65Lj5fahYfXSOJhHzPGoJ6jBXJtmWlWntIpvTF5bLg8yUQCCRQXOxKujB10mNf7BYonXiRMOnWq3QL77npcPcY5AbxuPRnR48qiYCjR2VdOotpQYFY4s88E5g7NwqfrxXnnluDQCCzSd7hkEG3pkYmEVNp3Zysqj3djcEgXW0uHD1aikjEha4u6ffdbplAr1kj/XkgIEs8LkKrQ0Ozq8j2wICSmWhvVxUg/H4xDDgcMibu3i1j3fCwENF3vEPOTyKh6mImEkqXcu1aGSt17cuZCkPEcgjLErMzTbCcAVHHi0GD1dWybXe3pGDv3y83rM8nD2ZjY6qUBAfg7m55eJnNRbE+v1+IV1FRrs9A/mEyhbEZ+0SCFAwqQVuSZN1yxQDSvj5xTXJbQFmyEgm5JyxLiIwuicDsVb9ffsNagWVlSsSTBIkkStqSQE9PH+bMKUBRkWdEQLrdlZftuKjJDm4GMwfDw2LNOHEilXCdOJFZjbykRGK6liyR1zPOkL6KwdTNzXE0NSXQ0yN9Vqb7wu2WierQkLxOtX7aeCzbrJrCQuodHcpV1t4OdHS4EI36MWeOAwsXAps2Cemqq1MxS2Vlcu70GNCZZtGZCCwrVeuMfRytV/PmyTatrcArr4iFtKBAiCkD7SmVdPSonIvSUkkwq6vLfQ3mycAQsRwiHHZi1y4ZzahcTwHV4WF5UF95RRXHLi6WmK1zzlElGFgZvr9fbmhA6RItXSoDG9Xqc+0Hz3ekK4ztco2UO6BYJ8vTkGQx5byzU62nDAhTpen+0zvbggK5dpWVKm5KDyKn1UonY9Qn6+uTeyocllm2358afK53VqJFNZRTLaps6qYZTA0SCSWH09wsJIvvaZVIh4IC6b+4LFyoMtMyDZqcrBQXJ5IxjZnuj5lA5KNR6YsplN3ZKROvkydl6eiQ9lDJft26OIaHu7BiRSUaGtzJmCU70TpVcedcgxpfeomlcFj6Mb9f7oHhYSFdb7whZL66Wqxa27ax/BrrqiqRYyZj5Lv13BCxHMLhAGpqLBQVyU155IiKkYhE5IGkFgwzH4eHVXzQ0JBKty0rE+LFrI/TXTQ1W9Az+bq7pSRVV5cH3d1OvPWWkCdWD+DCYsssS8OsRyqiMxjd5VKyH0VFKq6KtQAtSzouQLY/4wzZlvFYuixCumutu/oKC1UwPEmcgUEmcNLR3i4LY5ZaWmQgTY3hSoXPJxYtO+GiXuFEwHt8cNCJioqxrVzTTeQjEUW8Ojulj+jrk/MlkzYhppxgr1olxKGqSiZGhYUJ9Pb2obExMObkJ98mKeEwcPKkB8GgM0lIYzFlra+qkm3eektl8S9cKIKqixdL30qJDsaJ0VpaVTW9Rcj1CTOrxGTT4mqIWA4Riznw/e+70NEhA2ldndyI69fLwKu7GTnTZG1G3oxUqz/dCmJnC5RR4AMWicjD39urskiHhlRH29bmQkdHJRwOdzLpgRmNVHAuLlaxfKWlcm0YQ8WYPb1oenFxegmGUEgGvoKCyWWB0UIQCsmxU5KktlYCmfOpUzfILjiZ6+hQREsnXen0uHQ4nXIPzZ0rS0ODek8F82zA55PnaGBgGFVVub1n43Fl5Q4G5fwxnlfcjHLenE55rufMAc47T86HXfaH2eeRiIVQyMpdo7IIxjhTYqOlxYWmplJUVjpQVibnxOWSseyll8TgAIhL8d3vlu/DYTm3x45Jv8es2Jqa6ZHkGB5OnURTpaCvLzW8ZMuW7B6LIWI5RCLhwNq1CTQ0qKwxZjOyI2RmZEODck2VlRk340TAWoD6jIadKUvecGCiYOLAgKwDlIhnSQng8ThQUBBHdXUCVVUueL3yYJaWqjIZFRWpOlT64naPLQRJ8m1Zpx7z4vMp9w5V2hlzlmsiNp2CmKcL4nG5j7l0dqpXvmc1jLFQWCiknQvrEjY0yOfpqmEpMY/WtPZ57Is5ILOEUF9fKukaHJTjq6sTj8TcuWKpIXHgRHmq7u9cly3TK7e0tkqfGonQemehujqKsjIrKaPU3S2Ea/Vq4Ior5B4i4Wlqkn60oUHixKqrhYhNlWdnaEiOlwstmvSAJBIqqYnWSIZ2ZNujYIhYDuH1JlBSYqGjQw1IRUXyAFdXp9ZmnIpsxlw/xNkEawRysVu2qJ7c26uyloJB5WJhjB7ddgsWqLiMggK5NmJ5HEZvbw/mz/fB7/ck63dalgxc44lVGM3FYM8c9PulMzgVssIahzxOCp2OF1NBmEyG5PgRiShZg0xLT48P3d2LMTjoSsYZjgX2NSRZOuGqrZV+53SwsjPOltp8LBY9MKBU7EnCHA5VO5cSEoGAnC+9v54OkpqLsmVDQ8oK2NYmryT1xcWKOLW0AL/7nQsHDlSjqMiNZcuArVvlfLFvbm+XvrWsTFyOtbXKQ5BtDA+r8YBkurdX1Vp2OOTcMcynoGD0MXe8z9h4YYhYDpFIOODxSHX3igpVImg6RFPzsfYgLVu0YEUi8lD19Kj4rJMn1eDU16cUmAEZeFiqoq5OTN4lJUozrbSUBZRl+5ISIQgMqvf5gJISC+3tUcydqwLay8rGZ2EYD+xCkRQh1EFrXVHR2CnsJFHV1ULAeB7Gutb8nWUpwppNwjQVgpgzHdGoCjhOt9i/48AxWjyWgvNPiwwggYByiVVWqvf8PNuU18cLXUORpKu7W843XbXd3dKnJBKq/NiqVWLtZm1elr6hyHUuCOt0lC2LxVR/ymQDCohLfyj9Sk+PWLwOH5ZzOWcOsGxZAmvXnkRtbR1iMVcyxIblg+bMkXtxPLF/E0U4rCYvJNPMTgdUQlumcY+VQAYGhLR1dqoKNj09wGc+40hmpWcDhojlED5fApddlpgy9efRQJ0qWkoCgZkxELKj1AkXM5DoJqBbgB0ELT0Ohzzk7CDr66VdhYUqfovEixmGzEjUTc26BYjJESQMmQJqqfdWXHxq8Ve6UCT1cwBFgmIx6fAiETmWxsbMZGyyVicSBmqWkTBRbDUb90m2BDGnAwzUJdlnFQr7+9E+M0t2svB6ZcArL1cJHnxfXg4UFQ0hEmlFY2MtqqsLTaIOlIufCwVTObh2dMi6YFC2LykRgrp4sUyOy8sVcWW/MpO0FidTtmwsMNOaiv4kMJwQFheL5SoYVJUPgkE5V8uWAdddJ+eI5/vkSQ9KSx2oqZEi6ySx2ZROoleCJKm1VY0XFCuntU7KnanfJhLS33V3i7Bwa6uq40kJKVqIly1T3qrycgtA9tj3DO7+Zj9YRDgXoJZLW5vcbA0N0/vfDJDXO0pmHA0MKLM3AyVZTYDZM4yVmzePA5Esfr88dDrRYjbieM+13XU4FmEIhZSuW3v72GRlNFefnoIfjUpnpluNaAmsrZX/CocVEbPvd7JWJ/13bW1KZDibauVTITXA+4pJF/oSDDrR0lKKt95yJSsO6DGDXPTEDf3ezJYrgi5w3sMc3DN9Jvkay+oi0iNRlJefftnSelgCSW93txqcOXFj/I/TqeK4FiwQywyz+AIBOf9csnUupyIMJBuSFtTjoju2o0MlKVGXrapK1pF4dXfLvdnYCFxzjfR3kYiadCQSsm7+fAuDg0GsXx9IqYBwqqCAq15xhiEoPC/FxRKvp/fXnFCdOKEWSj4FAmKlW7lSYteYWGC//izxZlyTBlmBwyEPS12dEpDNdmdBMUO9nBLjCwYHVSYfH6hgUJGtkhI161+8WM1mSkoU2dKJ1lRYVUhs9DgtGagdiEZTrWMOx0j1+kz7HMtKRSLodqssIn5mBuaxY6lu7HT7nazVSf8d28j6fafambKCAElPOtI01nc6gbJvl7mD9AE4NRZJ2RGS/vG850JiVVQ0cywq+QTLUtddT7ihhUsnXAxVAOT+raxUmlSsmUtha4YqTOV1mcowkIlIWrCWZTCoLF6M8aLlqKhI+ty+PnEzHj8u57O4WJIRrrxS+mKKTjOjvLRU+unqarF4iehqAgcORJP952TBbEwmBbDiTCgk+2WIRnW1uoaJhIxlJ04IeTx6VH7vdgtBW7xYlPkbGlQ1EP5Obxvr5bJfoQj2nDmTb086GCJ2msLjkZt3aEheIxHRB9LjIsb7gOuldCTj04E33yzB73/vTFqLmK3V06NU4qknU14uKcyVlWrQomhpcTGS4qks/jwdGBqSBz4clmPhgyexAm6UlKhOsKhIOgFqv41mdh8eloe8oGBsV18mq1Fxsayj7AX3a7d+FRdPzupEUz4zx4JBuTcsSzo23aI0FnGyk67xxTudOlhdgGTd50sAiKCszJcs38TYQJJ5+2InVaxcYTA1sCwVB0rLZDgMdHU5ceRIKQoLXcnsRZKJwUG5JiRclZVi1aipkX6EpICD9XjiI7ON6YjlyvS/eqxhe7uq3MIYr8JCOT9tbcCBA5K5ODQk523pUuCqq+Q8RqPSt1M30e+XAHsWGy8ry17fTPcoBWBbWlIrzhQXKyMCn8fhYWnjoUMii8GxrL5eLHc33CDvWVGEfRj3q5eKY99QUiIel0BA7hu99vKJE9lpK2GI2GkK3axtWUoVu6IifcyYPU6GwqXsFKlHJGrSHvT11cHtdsPjUSWVGhqkOCszi8rKlBtRt2zpdRRJxqa78wyFxOpEK1d5uRxLOpVvn0+I2ngID4PfT55MdfVlclfaZ7yMO/J65RxVV8t1ZCd4/LiqZzc8nOqysb8f+VqAwcEliEadGdXRswlKepDM2kmRTpZ06+do5CkTYY9EhtDUdALz5s1DQcFpGKU+QxCPqyoTOmEnYWCIAjW6JOHGg1isEl6vG36/KgG0erXc+1Rmpz5XcbG6R2YCcZ6KWC47EgmV7MF+ubtbkQzGOzEbsKlJxUQBYiVauhTYvFmVluLYEI/LOV+5UhHbbBYbj0RSEwLa2lSMqr3ijMOhrFYHDojV7uhRFZ975pkiCLtkiaq1HI0qDwxDXHg+CgslHpCWUrqkOS5lQktLdtpOGCJ2GoODPIPdKyqEUFVUKFO/LvvQ3S0PLjWJ+vrkIQXkxmU8y/z5cVhWN+bPD6C62pcSIM/OYLTZEy0n05VRl44EDQyogsROp8z+6BYcr8p3uv2mK0xMtyKDS+kCZXKC/sq0cT12ifUqaWmcPBwA1IXROyu6NlmXkm42u2vY61XWBzuh0pdYTO4hXuOamqlJWzeYXtAyS7LFV7rEBgdV8k1PjyIOLEwPyH1QUSHLsmVAIDCMcLgDZ5xRhZoaX5JoFRbKvTbTNRWzEculI5FIFRxlKSXGjwJyTvjs9fQI8WJFBGYtrlsHXH65IjaWpSzpc+ZIHCr79GwJhjOwnnGnra3S9w0MqL6vuFgmmDxPw8PSxr17xdrV1iZ98vz5Yu269FIhUiw3NzgobW5ult/T5VpRIZny1OMk8ZoJiUIz4BAMcgG6Exmk2damZlGcobCzpNnW7ZaZUSAgMw+9gLg+MDsccXR2BrFoUdmkahZOZ0bd0JB0BvaMRxbSLimRToIma7vKN8+jnt1YUSEDS1OTnEPq1DClurU1VamZg9GpZNURnEHSpaYPWPp7Dgh0/RYWAi5XBH19rVi0qA6BQGHyPAByfk6ezEycJpqhSd2efMiaNFCDNAvTk2CxBBhJAS3lzEaklWZgQAlkut3SZwQCSqiaVSgYF8p7VZIU4mhp6cPixRU5q4F6qphILJcOhjKQeHV3q7guvdQOn6FoVAWiDwwIIVuwQGKiNm5UFqJ4XLZnmbU5c5Slq6wse1a7WMyBri6lhdfSoiyfliXHV1Ii/a4uas7EgOPH5beBgJCuK66Q9tA7QQ/BoUOyP/Zp9fVK481ezWAmwnR/sxgUKtRdUCRYJ0/Kw9rUpKwxlqWESSlOumaNzIxcLiV2R/FCzrjsMyUSucliKjLq0mFoSKx+zc3y8OoZj3SlDgzIa1GRnKf2dgeOHi1Ec7MrmXXa2SntZWwDZ3eTgS7BQTM5LUwMLKasRkGBkD7KdOj1J3nO0lnlMpGmSMRCU1MMFRUjzfJjkeOJZmhO1zU2GB3MArMvLOXCvoPyG9Tm00lWOCy/cThUvBYzPuvrJf6zuloRLZZks1tJM1m2spEkkg9g5iGthkw80BNR+Kwwc7C1VU0k3W4hVAsWiNu2sFBZupxO6RdKS6X/rqhQk+hsSUnE4+re6OsDmpqceOONcpSWupKehcJCFVjvcMh909IC/Pa3EgrS3S3HuXixWEOvuUaOk4kGg4MyZiUSqSSuri7VbZpv/YkhYrMAjAWiu0ovO9HcrDRzurqUC4Azh8JCMdeSfBQWyg3d3Q0sWiQEjBYeDrJVVVPvRprsDHK8GBoSEnXkCLB/v7JY/f738h0zOfWZvaAAwPi0Phj0Tg0bmvidTiEhLpfEZlC9n0R3PDM3O8FKR66A9IRrIgkDhM8n159CsvbtJ2PFnOprfLqBLqZ4XK6xvugEy17ui25DEiv2I5GIIliA3LecFJSWKisKrVm0ruqJLFwmKiEzm0ENRyY27d9fiMOHnUnrYiwm23FiFYnIxJkaV8PDSnKooUFqE9NCZFnyOxKemhrpe/x+lSWajWuQSCjhYV36YnBQ7isAcDgcACxUV1soKVEuxt//XuK6WlrkWOrrJT5twwYVM0srK0V23W4lsL1qlbzSbZqvVlIdhojlCZi+rQfMB4N6gVWlfNzbq9wADHSsqpKZKW9emp+ZQROJSGdKoVDGctEKwxlYPriRIhEV8EtTPhd9nSJX44O4/SwUFUVRU+NGRYUrGRPFgGGPR2myBQLSUSUSKoMROPXSPumsXOksUtzWbqXKlDAw1n9SYZ+p7vakAmPhmjwYFG1fhodHfqaLMDUGy4mWFj+8XlfSkqUnaDDuMhpN/V/GAZJg+f0yOWA2MycSXAoL1bVnogWTLgzJSoVdUJZWLgaii2vXiZ6eAtTWyvXt7RVSwwxHllSaO1eC5Tdvln2zf2fmI4tqM0wkm4r/lCHiwhhhki5a6oqKlMckkQDa2y00Nfnw1lsutLXJvVdeLmEtF18sE31WMqGL8cgRmaAyM3L5clWzk/fjbMQMH1JPP3BWpHek3d1CsFpaUq1b9LP7fEple/ly9UCWlyspCD37TM92oSWlo0N+PziYKiDJQdXjyf0gy2D10QiWriE0HnCmRSHHmhp1vtxulQZfWiodwtGjEYRCJ3HGGTWYO1dMVzwvQCrJ8niUeORkJSV00gVIR93WpoL+SaI4wNrJcjorFX9bXi6dPWfgo2E8rsfTwcJlWTLIxOPyykX/zPfpXnkeSab0mCvdUqULy+qkiwuTZNRxeZBIBFBS4k7KbRQWKut1cbFyd9MtqMtysJAxq0zo72ciwZopdXLTVQKh2Civo05+mYhDGY62Nhc6O8tRUOBOZgbW14sKPSdN7IdJmCk8q4cvZOschMMjSRezL2npIukqLZWxRkgX8NZb4jZsa5N1paVuBAIurF+fQGNjakxtKCTeGlpZ/X4haDrpKimZmffeVMAQsRwikQCamx2Ix1XKcWur3NQnT6rYI926FQjIzb9ihQqcp59fj7eYSLBlNKoUhxmAP52DLC00nGnpS1eXej8RgsX4qYoKVc+sokLOF9+zqHFfn2pjYaGcc7dbAkXnz1dq3NQAcrsTSRFEu7SGTrKAVEFWxjkwM8iOTO5GFqYF5N44dixVH4mDO0V6dddhOtLHY2tultlnX9/YcSIzsSSRToRIkDJ9Docd6O52w+NxJIOC9e1IluzuPLsVisSJ2lA6OeKiuwK5cF06MLZKl/Pgc0xlc06kdJFY3q9yXaPo7m7BggVzUFRUkHRrMWaQi9ud/4PbdNfJ1ckWiTIz/wYGFFGOxxVxYp+mC5HyGS0tlWOuqQGWLBnG4GAPqqqq4PO54HYrksy+Slf6z1b2IsuYcenrU+WMGPMHqHuRXhWOE/v3S//R2SnHw9JQF18sGZmWBfT3D+PIkUEUF5fi5MlUS9eyZdI3nY6kKx1mQHd6+mJgwIVPf9qT1HxioHxZmTyAK1cKMWJ8kV0G4lTdASxvEYuJcF1vr/wPSUA2LGDxuOqIOjrSE6zOzvFZZYDU1PZ0C0nXRAJQKZCqkyfGUEUiKvaFRcXb2rzwetOruOuEdWhIJT54PCp9PxZTMQ6jBdAPD6tg3a4u9R+xmHwmseP/9vaOjPfKRKBJDkpL1fvRJEXsrkePR7nLmORBMqOToNHe23/LhcTI7pqzZ+uR3JD88LM9PkrWuzEwUAuPx5NineK+xwLJEjPNeA5oNSKJovgwCRUHMmqlcTv770iauH8u+v/p7+0aTpGIhSNHIli0yJoVMTOjIdsCqZlKYw0MqGdWJ9l87uNxFVhPOYb+fvnO61V1KpcuVYKnLleqaKjLBYRCYaxcmUiSLrqAs6HTRTkHZl3q2o90VzOYn31Vaak8g21tko3Y0iLv43E57oYGIVvnnCPjEyeC4bC8b2lRbauujmH9egt1dSp7MVtkcjbBELEcwrKAJUsSqK93JclWaenIbKKpKL3BgZ/qxYwPAVI7IIdDzOXpCkuzWCoDNUmu2tu9aG2dh/5+H3p6MG5x0EBApbJnWqZikMlEnurrU92zDFwuKLBGtXAMDEinHA6nEll2hsxUbWiQgGcG0Ntdf3o9UFrvolHp5GkJ9XjkGhw+rNrhdqtitjx+3TrEwunRqHS0tbUkJQ60tPgQDDrgcikSo1uFKMjJYG7dHaeTI50Q2eOb0pGssWq3sePWCQqJiceTuo4kqbBQaZs5HBYGB0OoqvKgqMiVXE/Xlr4vfR/6Pp3O1MFUf7Wvy7Te4NQxUYFU3rP2Cg98Hvv7UzNFOVFg1jktRiRcurWIXom5cyUspLhYXX+ScarX6zI/XCwrgQMHBnHmmdak5RUSidQi84ODcpwsJRcOqzI9zGotKJDjSSRkctnUJNb29nY5Py6X9H8LFgAXXSTvqVlId3k8Lv0Y3ZRLlqjEDb8fcLvjOHSoD8uXz8lqke/ZCEPEcoji4gSuv34Y5eWeaS/Uy8y5WCxVlwaQh5VaQPTjJxIqkFQXdE0PFwDVqzBLkDPE6mpFrPT1U6E4PRHYrVKZsgO93sQI1xwLlrvd0rH19sp+zjpLWa14rulGZqc5PKzcGF1d8h2PIxKRY+jsVBa0khLVuba1yRIMSgdIMqETJZb0IDkaGlKxYYmEXibJi+Hherjd7iTxSffqdEqnTPJD66zuBmMSg+4W0+U1dMsQA751SxC3dTpTSZCd7HDhcemfXS61PhYbxvHjXVi8uCRpbdC3Ncgf0B3JiRGt7rSWcqHbjc8K3cskWiQVduFkhkDQ1c/423nz5BnT71Xd6slt7XVGR1P4Z9zVWEhX2YTZ8dQkjERUko5+bGVlSJaaY+hLZ6d69uvrZVJ43nnSN3u9I92twaDKxFy0SImi6jVU7W2cSCjJ6Q5DxHIIp9NCcfH01U8E5KHq6hI//xtvSBoxOyo+0L294xcX1U3wVVWMMYsC6ERjYwXmzClAefn0tnGyGCsgvahIBoDBQQuBgAziAwPSqb36qtIPKyiQ7VpbVVYRyRClAqJRRUgodhgKKeKkFzmmdYzEQrce6dYkBtEy0YKvlBYg8QFkv+w86+pkAHE4YujqakNDQx2Kinxwu5XbkLNovRJAWZm0p7ZWOuh0BCgTUZpuAhSJAIWFiaSb0GBmQ7dQDQwA7e0eSOUHRUiYfcgJRjqSxe109xzhditZh9JSZflnn0xrNicLugQEreaM58rGPcU6m7r24+CgKvWkF6EGVFwhJznUMWT2fGeniksrKRGr3bx5ojEWCKjC2LTwsXwQY76YFMD4tEyEy+DUYYjYLAKtVnQR6jFZ+mJPYc8ExrzU1MisqbZ2pKuQLjMdkUgcTU0DmDcvMGPjVezuMao00xXodCrXLGeb4TDQ0eFES0sR9u93JwvH0lLodquOnvFQJKB0D+ouMJIm1nZjbNHcuXJeScC8XpmxVlUpMuVyKddAV5fsu6JCXAkFBWJ5IymsrVX/43IpEcVQSDrYhgYKuiZw5MggFi0SwpIpKJpklcWBpzpY2iD/ocfvkWTpyQzMpiMR0V3boZALHR2lKC93wrJSt9P1E+mK56SFsZ2UlqH1hiSLBItubBIyey1TJkScKgGhe1TXcOvpceCtt0pw4IAzhXzSsuVwKKLldCotLr0/j8eV9a6uTp73xYtlcux2q3NJMH6rpETF1eo1FrOZhWkwPhgilieIx5WMhT3Ynes4+I4HxcXycNPdtWiRCtJkXNrixbIdK9DPROiB3HpwNuNC2NGz8+MMU682wM6RAaecZROM7XG5AK/XDaAI5eWOZAddU6OC15cskTRsxo4UF6tangUFsi4Ukm0LC6XTDAZFWZruzo0bZVA4cULF4c2ZIwGy9g6SsS5AagZnebkq21RamvobxorQ8pYJmYKidddQruUDDKYXeqyf/szZ39uD3/m9/qwyS5XPIn9DwkKyEo+7EI2WweNxJcuOUZKjtlaRB042dG0zTnhINNLVPvX5Tt1iT2u6PeCfWdMMjrcTrVjMie5uL+rr1USOYSF6OSNamisrpc21tRKTxn7Z3l+xjYWFqdmXRUWpmnDGujUzYIjYDEA0OjKLUA9+7+zEuIPeHQ556PQYLD0miwH5TU2icMxSRcuWqeDUw4dVXEFJyfTFbqVTA9fr2+mEqr9fOiu6HHQ1cD1egkSDHQ6L4dKlwI5KF7RkYC2z3Biv5PUCoVAMTU0tWLCgAbGYO1mzja6D8nI5lzo50TWPYjGxuJHcMOakvl7F4jFoNxyWa0+BRMb06eQnXVYkdYr4v5z5E+y06+pGzzobLSj6dNAMm03QM1FJpnS5DruFWJfrUOKjKq7QLu3BGCYu+m/1bFfWrdUtV3pdSWpKsVZqSQlgWXH09nZjzpxqFBe7UuqkcjvdhcglG0KzrFagLzpRpN4W28xzxH6HYqe0rDNujWLcXV0uDA5WwOdzo6BA+mtmfi9YIP2E1yvnWHfv622lSDdFXEmy7NI6BjMXhojlEL29btx6a8EoQe+p4IyIsVj2DENKXYyl8cRC1C6XELzaWkV6qAzPgE2nUzqNiVo+4nElgWEvsRKLKQLFGBAWBtYJFV0P7LwJmuv1gNjiYlWImuZ2ZqAyK45kQs+Es2fF6bCLRg4NAYcOWQiFXOjtlUGirk7cfMXFYg1LR2zYYbIjB1LJjccjVsdwWDpQ0ZdT9dQA2aanR1mzKGeiZ3vqZI+WrM5OWRcIqG3Hm3VmLF/TA136w76MJhSrvw+FHGhqKkBfn/NPyQmprkCdbPG3OuniPUOikU4WRN+GxABQ0h66VAdfdckdTnz4POoJHEyO0WOuOAlKJBJobu5FY2NFUuPwVDJQmVGsk0X9My3nDPS3n0dmVAKq0DaV83WiFQwq0ulyqdqO5eXS5zY2AgUFcXR0dKO2tho+nyuZnML260kAJJ06aR0tEcAgf2CIWA4xPOxAX588RQx6H20pL89OCjzN4mecIRk0tOpQSd7lUvIVdXXKlZcpzoMzRNYG6+tzobW1Em63O0UhnO4/DiCAtEef2ZJI2fXC/P7UbDs9A0+XG8iWREC6+KiBAfypVIcDXV0qm5ESEaMRG31/LFuiz1jnzVMz6ZYWCfSnAG1dney/p0c63gMH5H+rqlQ5Jf1Y6W5uaVHZZLGYiuWaCMGaDZYvXbQ1FlOWRw6oE3lv10QbbV2mMkV2q1Q6EmYnZ3ZXu50cRCIuBIOVKChwwbJGWrlIqjih0QdvXUzWntFKUsRFF5PVJUMoIWJ3/ZF0MavWbmHW458yIRy2MDgYT1p87LBbzu2iuwyCp5RDODwynEHXtANSXaZ6piIJGgkWoKx4tErNmaNcpUxc0WO92G5JoEmgq2sAy5dXIhBITQKg/qDB7IchYjmE3x/HQw9FMHduQdqg96mAXsi3tVXIQzwOvPSSdCR9fdLhdHbK4E43BEUPdfcf1+saT9KJuAB4UF0tJILq4NXVQi6YDl1RIfupr5f/1olVrjWXWJi3sFBe7TFyXq8cczisOlc7ubLvT4+3srsLOdCxk2fhdRZWBuTct7UJMfZ6hWgFAvJe3zctZtQKA1QbRnNpEnZykY6M2NcDI9en23as9Zn2rxOSdOKx9vX27aNRJ06eLENVlSuZDZqpfXbiRDdcOmvUWDUi9ePTiZe+XTqk6wvsEiCpMh8O+HwJlJdbyQHcLjhbXDxSMJaLTr7sorOZtNrSaa1Ntg9jP2Of7A0PAwMDDhw75kMs5oDTmRo/RouV3a3K6wSkWr3s8aDMrNSzxCmsrZcQqq1NtUaRPNJNqEu06IXR9Yon6QhqKJTAm28OYvlyy2htncYwRCyH8HoTp6yEzYEik6UqHFZZfSwjpM8MQyE1a9Q1m5iZV1ysYhDo+quuVm5QPTaDHVE8HsWJE80444yFKCkZOaXTrUOVlTMz604XUy0sFMsTO+SBASsZJByNCmlKR650ZHIH2i0hw8NIupb8funISc6AVE23aFQC+mmZO36cnbtSuOY2FRViHaOMhk4kVIyPE+3tfrz+ujPp3s5EumjR1EmJ3f1lf5+pTqO+Lh3xsluJRnPlcTuCxCCR8CAWq4TX6x5BFuyfdYmN0bTL7IKutPKkU8RPV25IJ1bpJD64/9GIDz/HYsNobu7AokWFKCrypBxXukXXaKPVZjLQXZuMy7STIhIlvuriqnocGcmYTsrkd050dJSitNSZ4kZlP6cHyYdCaqLJ+4D1DHWrOy3N1MZiJqHTqYgrzzEtg7rqfbqYNC65nkQa5B8MEZtB0Dsru2md8gpMXdbFB/VUbns8FSAdBs3dTqfM1MrKxEpVWCj7jMXEMsVA0cJC2TdrGtbXp3cLpIOIkFoZY9VmeuwRCQDLTTH+g1mGXm8CHo8jGXDb0qJiRdzuVPKhX09eHwYpc9CxEw0OLLyO+mA2NKTKHrlcwP/+r9JNooXSroBN2QyKX+oESbdoWpYHsVg1PB7PCNfVaBiNoKRTm0+3jhaXTCQnE4nQLTz6e7qDSHBisWF0dHSgrq4GXq8vRfOM/0MXs17KyK6Sbz9+/X/0faY7L+m01EZbJqLGHw5b8PkiKQrt6Uiv3cpnt/BlstqR9DA7kPcbf5/J/cp4LD1g3x5/psdn6eELikS7MDRUDr/fleK2I/Gh5YkhDiRD6epsUoBYD2rnxMhuDdTj1AwMphKGiOUQQ0NO/OhHrmR8lU6oOGgT7JT0OI2SEiEKDQ3SGVVVKXFN3Uqll71pbxeXFSBur6IiKSI9OCjfBQIqxmFgQPZJ92U2cSqxR7pFxN7pj7ZeHzT0wUC3KOqDQ2enDAwkTv39QCjkxsBAFfx+V1LclAMSCZCeTWYf7OxIR3J0S0g6ksGBiq4OBvUCqRlVHMS5nV70mZIXXq+QbbFkxtDefhL19TUoKPBlJCk6IeFx6qTGTkzYRjtx4ft0S6bv2abRvtdfeY6HhuI4dKgHS5dWJUUpT8WNli6GjPdmutixdO7PsWLN7CTdTpj0jMVQyImmplIcOOBMlqcay7Ko7ytdsXJ9fbqsSl33yq5NqJ9bBp/r/RGJD/sqPXNSr9TgcgGJxDA6O0+ioaEeRUWu5P3u8ykiVVAwsrKD3fLIfRoYzDSY2zKHiESceP11VzIOoaZGxSXU1Ij7z14oWA92ZcczEXCGyvgsn08ERE+elA56yRLpaIuLZfvx1nPLBJ382AnSaN+lc7PqgwS3ZxYXrT/2DKh0v9UHsUzgYK7H4yQSgNfrRCTigcvlSM7A2cnbZ9YcdPidvi/ddZUu/kYnOjqx6e0F9u+XAWhoSArDV1ZKuzo65LWgQLld0llsmHQQCIi7eu5cIfSRSAIHD/bgzDOrUFCQOW4LGD2+a7Tv9X2Mtq2enTbWf461jbhdHTh2rAjBoBNeb6qrlNvZyUo6l2om0jVajFs6q5F+3+txaemsS+lin+zkKhp1Y3CwBh6POyVuTbcsKctnKlGiO87u7tSD6vVYM/1+Z+yZnpFM8q5PHuy/0d9nymLmMUSjcRw+3I2VK2vg9xvXn8HsgyFiOURZ2TA++9koSkoKs5rxNxpKSmQAJgkjmaDwZySiZo1MjXY4lI6Z7r6wW5CUNIUTLS1+/OEP0iC6G/T0+EyEyW6hslvi7BYWfaCwd/C6fIVdxLGgQA0gelaXPT5EV6Pv7gYGBmLo7m7F+vUNKC93p1iNeHz6q/29PQBdfw+Mvp4DrGTJyTkMBmX//f1CpouKxFXKmLV0cVksUcRr7ffT0uZEa2s5XnvN+SfZgNRj5ns7KdNJCgmAPYjdfgyjxXrZLUJAKgnKtK39+1QrkgfhcP2fBHnT/06/RhO1lo22/Xjdknb3q+6yJeHR1+nvLSuO/v4gamvdSauRnpGYzhWru3ft5Mv+Ola8WaZ1pxqDBkhoQEGBBa/XkDCD2QlDxHIISjdM1EVnn/FmsjaliwehhpcoVku9Sb3wrZ6FZCdMo1mXdAJiWR4MD1fD6/WkzIZ1kkRyRC0svZyIrg1GQVn77JkdPv9TX/R1fK+OTb2mCxDXB3y7m1GytBzo7XVj/35HMvCd26Qb3HXrnl2wVndf6m6mdIHvXBgryIBk6ozROkjiynMzmqvMfp4sy4NotAZeryctoeT+0q1PRzT0dXr9Sb63uz7TEROu12PI+NtM5MYeyyXXexjd3UHU1LhRUODKGPOluzTt7s9091o6dysJfKZ4udFi4eznzt7GTG2OROI4dKgDjY1lKC4e2aZ0sWd6Ww0MDHIHQ8RyCInZciQtLplcc0y17u9XKdd2C5OdLOnBtXTlkYTYBxXGFelkSVen9vtTYzJ0KxqJJEmS0wlEo1E0NzdhwYJ58PkKkv+T7v/tIEFKzZqStuvEhUHodrHJdPEudmFKPfg9HSFKZ8FRFiEPYrH6ZED7aAOZTjwyWQt0t5AeF6bHyOiuSkovAOpa6aRUkgmUpU/fp/293VISi0XR3NyC+fPnoLCwIOPAny443b7OHiM2GpmZ6PpM2472XTgcx8GDJ7F0aVnS7Z5pH5liz4DRY9tyiVDIQn9/DHV1MDIIBgZ5BkPExolDhw7h/vvvx969e1FcXIxrrrkGH/3oR+GlSWIS6Otz41Of8iSJgJ52T7CT1wUQ7VYluuH4WVdd1jOD9AFTHywJPZ7EHhejv1IWo69PxSXpJCgcdqGzM4DiYtcIF6adYKWLgeF/2c+D/T3PjR5rlc7Voi8MbrcH8KaLg9HPNWUJhoejaG09gQULGlBUVJDiwtRJTqYYL/v5z2RVGe39RNeNlziIplEPli+vm3WDeSgE9PQMo6bGEBUDA4OZBUPExoG+vj7ceuutWLhwIb70pS+hvb0dDzzwACKRCO65555J79fnS+Dqq+MoLnYls9r0wdQe8GsvGpvOxTUwIAHddlHEsVxio5EfOwlyOEYKSuqBvQ6HA5GIK6XMiT3QVyeSetyWLphoD9xN53ZK58bKtIz2fToXUGay0ofly+eYAd3AwMDA4JRhiNg48L3vfQ+Dg4P48pe/jPI/yZzH43Hcd999+MAHPoDa2tpJ7TcSceKJJ9xpCQ/BdXpgrW7pSZeyzcDedNo4VIe2138j+dFdZum0nEaLPVHxKlEcPHgMy5YtRUmJJ+N2BgYGBgYGpzsMERsHXnzxRZx//vlJEgYAW7duxb333ouXXnoJ11577aT2GwgM49FHh1BcXDgq6bEH8k50mW6EQkBpaTypDG9gYGBgYGCQHoaIjQOHDx/Gu9/97pR1fr8f1dXVOHz48KT36/NZaGwMobAwTXDYJJFJOHQ6EQ6HU15nE0zb8hOzuW3A7G6faVt+Yja3zbIsOLKYoWOI2DgQDAbh9/tHrC8rK0NfX98p7fvo0aOn9PuZDNO2/IRpW/5iNrfPtC0/MVvbdiqJenYYIpZjLFy4EIXjLeKYJwiHwzh69KhpW57BtC1/MZvbZ9qWn5jNbTtw4EBW92eI2Djg9/vR398/Yn1fXx/KyspOad+FhYUomqWBVKZt+QnTtvzFbG6faVt+Yja2LZtuSQAwuWvjwOLFi0fEgvX396OjowOLFy/O0VEZGBgYGBgY5DsMERsHLrzwQrz88ssIBoPJdc8++yycTic2btyYwyMzMDAwMDAwyGcYIjYObN++HcXFxdixYwd+/etf44knnsCDDz6I7du3T1pDzMDAwMDAwMDAELFxoKysDI899hhcLhd27NiBz3/+8/jzP/9z3HXXXbk+NAMDAwMDA4M8hgnWHyeWLFmCf//3f8/1YRgYGBgYGBjMIhiLmIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjmCImIGBgYGBgYFBjuCwLMvK9UGcjnj11VdhWRY8Hk/WC4jmGpZlIRaLmbblGUzb8hezuX2mbfmJ2dy2aDQKh8OB9evXZ2V/RtA1R+CNOdtuUEDa5PV6c30YUwLTtvzEbG4bMLvbZ9qWn5jtbcvm2G0sYgYGBgYGBgYGOYKJETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMETMwMDAwMDAwyBEMEZtmHDp0CLfddhvWrl2LjRs34sEHH0Q0Gs31YU0Yx44dwz333INrrrkGK1aswLZt29Ju98Mf/hBXXHEFVq1ahXe+85144YUXpvlIJ46f/exn+NCHPoQLL7wQa9euxTXXXIMf/ehHsCwrZbt8bNsvf/lLvOc978Hb3vY2nHXWWbjkkkvwz//8z+jv70/ZbteuXXjnO9+JVatW4YorrsATTzyRoyOePAYHB3HhhReisbERv//971O+y7dr9+STT6KxsXHE8rnPfS5lu3xrl44f//jH+LM/+zOsWrUKGzZswHvf+15EIpHk9/l4T/7FX/xF2uvW2NiIp59+Orldvl63X/ziF7juuuuwbt06bNq0CX/zN3+DpqamEdvlY/teeOEFvOtd78JZZ52Fiy66CP/6r/+KeDw+Yrus3JeWwbSht7fX2rhxo3XzzTdbL774ovXDH/7QOvvss6377rsv14c2YTz33HPWhRdeaH34wx+2tm3bZr3jHe8Ysc1TTz1lNTY2Wg899JC1e/du6+6777ZWrFhh7d27d/oPeAK4/vrrrTvuuMN6+umnrZdfftn63Oc+Zy1btsz60pe+lNwmX9v2X//1X9ZnP/tZ69lnn7X27NljPf7449Z5551n3XbbbcltfvOb31jLly+37r77bmv37t3WQw89ZDU2Nlo/+9nPcnjkE8eDDz5oXXDBBdbSpUutffv2Jdfn47V74oknrKVLl1ovvviitXfv3uTS0tKS3CYf20U8/PDD1rp166xHHnnEeuWVV6xnn33Wuvfee62BgQHLsvL3njxw4EDK9dq7d6/10Y9+1FqxYoXV1dVlWVb+Xrc9e/ZYy5Yts+666y7rpZdesp5++mnr8ssvty699FIrHA4nt8vH9u3du9datmyZ9fGPf9x68cUXrUcffdRavXq19cADD6Rsl6370hCxacTXvvY1a+3atVZPT09y3fe+9z1r+fLlVltbW+4ObBKIx+PJ93feeWdaInb55ZdbH/vYx1LW3XDDDdZ73/veKT++UwE7SB3/7//9P2v9+vXJdudr29Lh+9//vrV06dLkPXj77bdbN9xwQ8o2H/vYx6ytW7fm4vAmhYMHD1pr1661/vM//3MEEcvHa0cilu7eJPKxXZZlWYcOHbJWrFhh/c///E/GbWbDPUls2bLFet/73pf8nK/X7e6777a2bNliJRKJ5Lrdu3dbS5cutX7zm98k1+Vj+26//XbrXe96V8q6b37zm9bKlSutjo6OlO2ycV8a1+Q04sUXX8T555+P8vLy5LqtW7cikUjgpZdeyt2BTQJO5+i3TlNTE44ePYqtW7emrL/qqquwe/fuGe2OraioGLFu+fLlGBgYQCgUyuu2pQPvx1gshmg0ildeeQVXXnllyjZXXXUVDh06hBMnTuTgCCeO+++/H9u3b8eiRYtS1s+2a0fkc7uefPJJNDQ04KKLLkr7/Wy5JwHg1VdfxYkTJ3D11VcDyO/rNjw8jOLiYjgcjuS60tJSAEiGceRr+958801s3LgxZd2mTZsQi8Xw61//GkB270tDxKYRhw8fxuLFi1PW+f1+VFdX4/Dhwzk6qqkB22MfCJcsWYJYLJY2jmAm47e//S1qa2tRUlIyK9oWj8cxNDSE119/HV/5ylewZcsWNDQ04Pjx44jFYiPu0yVLlgBAXtynzz77LPbv348dO3aM+C7fr922bduwfPlyXHLJJXjkkUeSMSv53K7XXnsNS5cuxcMPP4zzzz8fZ511FrZv347XXnsNAGbFPUk89dRTKCoqwiWXXAIgv6/btddei0OHDuE73/kO+vv70dTUhH/5l3/BihUrsH79egD5276hoSF4vd6Udfx86NAhANm9L92ncrAGE0MwGITf7x+xvqysDH19fTk4oqkD22NvLz/nU3v/7//+D8888wzuvPNOALOjbW9/+9vR3t4OANi8eTM+//nPA8j/toXDYTzwwAO44447UFJSMuL7fG1fdXU1PvzhD2PNmjVwOBzYtWsXvvCFL6C9vR333HNP3rYLADo6OvCHP/wB+/fvx7333ovCwkJ87Wtfw+23346f//zned02HcPDw/jZz36GLVu2oKioCED+3o8AcM455+DLX/4yPv7xj+Mf//EfAYjn4Bvf+AZcLheA/G3fggULsG/fvpR1v/vd7wCoY85m2wwRMzAYBW1tbbjjjjuwYcMG3HLLLbk+nKzh61//OsLhMA4ePIivfvWr+OAHP4hvfetbuT6sU8ZXv/pVVFZW4t3vfneuDyWr2Lx5MzZv3pz8vGnTJvh8Pjz22GP44Ac/mMMjO3VYloVQKIQvfvGLWLZsGQBgzZo12LJlC7797W9j06ZNOT7C7OCll15Cd3d3xgzzfMOrr76Kv/u7v8P111+Piy++GL29vXj44Yfx/ve/H9/97ndRUFCQ60OcNG666Sb8/d//PR577DFcc801OHjwIL7whS8kCWa2YVyT0wi/3z9CJgAQ5lxWVpaDI5o6sD329gaDwZTvZzKCwSDe9773oby8HF/60peScXGzoW3Lli3DunXrcN111+Hhhx/GK6+8gueeey6v29bc3IxHH30UH/nIR9Df349gMIhQKAQACIVCGBwczOv22bF161bE43G8+eabed0uv9+P8vLyJAkDJG5xxYoVOHjwYF63TcdTTz2F8vLyFGKZz227//778ba3vQ133XUX3va2t+HKK6/E17/+dbzxxhv4yU9+AiB/23fttdfi1ltvxYMPPogNGzbgL//yL7F9+3aUlZWhpqYGQHbbZojYNGLx4sUj/Mb9/f3o6OgY4WfOd7A99vYePnwYHo8H8+bNy8VhjRuRSAQf+MAH0N/fj2984xvJIFQg/9tmR2NjIzweD44fP4758+fD4/GkbRuAGX2fnjhxArFYDO9///tx7rnn4txzz01ai2655Rbcdttts+7aEfncrjPOOCPjd0NDQ3l9TxKRSATPP/88rrzySng8nuT6fL5uhw4dSiHPAFBXV4dAIIDjx48DyN/2OZ1OfOpTn8KePXvwk5/8BC+//DKuv/56dHd3Y82aNQCQ1fvSELFpxIUXXoiXX345yZgBCSx2Op0jMjTyHfPmzcPChQvx7LPPpqx/5plncP75548IhJxJGB4exkc/+lEcPnwY3/jGN1BbW5vyfT63LR1ee+01xGIxNDQ0wOv1YsOGDfjv//7vlG2eeeYZLFmyBA0NDTk6yrGxfPly/Md//EfK8slPfhIAcN999+Hee++dVdfumWeegcvlwooVK/K6XW9/+9vR29uLN998M7mup6cHr7/+OlauXJnX9ySxa9cuhEKhZLYkkc/Xbc6cOXjjjTdS1jU3N6Onpwdz584FkN/tAyQLdNmyZfD7/Xj88cfR0NCACy64AACyel+aGLFpxPbt2/H4449jx44d+MAHPoD29nY8+OCD2L59+4jBfqYjHA7jl7/8JQB5+AYGBpIP23nnnYeKigp8+MMfxic+8QnMnz8fGzZswDPPPIN9+/bh29/+di4PfUzcd999eOGFF3DXXXdhYGAgGaQJACtWrIDX683btv31X/81zjrrLDQ2NqKgoABvvfUWvvnNb6KxsRGXXnopAOBDH/oQbrnlFvzDP/wDtm7dildeeQVPPfUUHnrooRwf/ejw+/3YsGFD2u9WrlyJlStXAkBeXru/+qu/woYNG9DY2AhAFM1/8IMf4JZbbkF1dTWA/GwXAFx66aVYtWoVPvKRj+COO+6Az+fD17/+dXi9Xtx0000A8veeJHbu3Ik5c+bg7LPPHvFdvl637du345/+6Z9w//33Y8uWLejt7U3GaOpyFfnYvn379uF///d/sXz5ckQiEezatQs/+clP8G//9m8pcWJZuy8nK3hmMDkcPHjQuvXWW63Vq1db559/vvXAAw9YQ0NDuT6sCaOpqclaunRp2mXPnj3J7X7wgx9Yl112mbVy5Upr27Zt1q5du3J41OPD29/+9oxta2pqSm6Xj2175JFHrGuuucZat26dtXbtWusd73iH9YUvfMHq7+9P2e7555+3tm3bZq1cudK67LLLrB/+8Ic5OuJTw549e0YIulpW/l27T3/609bll19urV692jrrrLOsbdu2WY899liKmKZl5V+7iK6uLusTn/iEdfbZZ1urV6+2br/9duvAgQMp2+TrPdnb22utXLnSevDBBzNuk4/XLZFIWN/97netq6++2lq7dq21ceNGa8eOHdbBgwdHbJtv7XvjjTes6667zlq7dq21du1a69Zbb7VeffXVtNtm4750WJatgJ6BgYGBgYGBgcG0wMSIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGBgYGBjkCIaIGRgYGIwD3/nOd9DY2Ijrrrsu14diYGAwi2CImIGBgcE4sHPnTsydOxf79u3DsWPHcn04BgYGswSGiBkYGBiMgaamJuzduxef/OQnUVFRgZ07d+b6kAwMDGYJDBEzMDAwGAM7d+5EWVkZLrroIlxxxRVpiVhPTw/+9m//FuvXr8c555yDO++8E2+99RYaGxvx5JNPpmx76NAhfOQjH8F5552HVatW4dprr8UvfvGL6WqOgYHBDIIhYgYGBgZjYOfOnbjsssvg9Xqxbds2HD16FPv27Ut+n0gk8KEPfQhPP/003vWud+GOO+5AR0cH7rzzzhH7OnDgAG644QYcOnQI73vf+3DXXXehqKgIO3bswHPPPTedzTIwMJgBcOf6AAwMDAxmMv7whz/g8OHDuPvuuwEAZ599Nurq6rBz506sXr0aAPD8889j7969+NSnPoVbb70VAHDjjTfitttuG7G/z3zmM6ivr8cTTzwBr9cLALjppptw44034nOf+xwuu+yyaWqZgYHBTICxiBkYGBiMgp07d6KqqgobNmwAADgcDlx11VV45plnEI/HAQC/+tWv4PF4cP311yd/53Q6cfPNN6fsq7e3F3v27MHWrVsxMDCA7u5udHd3o6enB5s2bcLRo0fR3t4+fY0zMDDIOYxFzMDAwCAD4vE4nn76aWzYsAEnTpxIrl+9ejUeffRR7N69G5s2bUJLSwuqq6tRWFiY8vv58+enfD5+/Dgsy8IXv/hFfPGLX0z7n11dXaitrc1+YwwMDGYkDBEzMDAwyIA9e/ago6MDTz/9NJ5++ukR3+/cuRObNm0a9/4SiQQA4Pbbb8fmzZvTbmMnbwYGBrMbhogZGBgYZMDOnTtRWVmJe+65Z8R3zz33HJ577jncd999mDNnDl555RWEw+EUq9jx48dTfjNv3jwAgMfjwQUXXDC1B29gYJAXMDFiBgYGBmkQiUTw85//HBdffDGuvPLKEcvNN9+MwcFB7Nq1C5s2bUIsFsMPfvCD5O8TiQS+853vpOyzsrIS5513Hr7//e/j5MmTI/6zu7t7yttlYGAws2AsYgYGBgZpsGvXLgwODmLLli1pv1+7di0qKirw05/+FF/5ylewevVqfPazn8Xx48exePFi7Nq1C319fQAkwJ+49957cdNNN+Hqq6/G9ddfj3nz5qGzsxO/+93v0NbWhp/+9KfT0j4DA4OZAUPEDAwMDNLgpz/9KXw+HzZu3Jj2e6fTiYsvvhg7d+5EMBjEI488gs985jP48Y9/DKfTicsuuww7duzAjTfeCJ/Pl/zdGWecgSeeeAJf/vKX8eMf/xi9vb2oqKjAihUrsGPHjulqnoGBwQyBw7IsK9cHYWBgYDAb8fzzz2PHjh347ne/i7PPPjvXh2NgYDADYWLEDAwMDLKASCSS8jkej+Pxxx9HSUkJVq5cmaOjMjAwmOkwrkkDAwODLODTn/40IpEI1q1bh2g0ip///OfYu3cvPvaxj6GgoCDXh2dgYDBDYVyTBgYGBlnAzp078a1vfQvHjh3D0NAQFixYgBtvvBHvec97cn1oBgYGMxiGiBkYGBgYGBgY5AgmRszAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEcwRMzAwMDAwMDAIEf4/+txDXonufQvAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Running IDP 2 rh_MeanThickness_thickness :\n", - "Making predictions with dummy covariates (for visualisation)\n", - "Loading data ...\n", - "Prediction by model 1 of 1\n", - "Writing outputs ...\n", - "metrics: {'RMSE': array([0.08652435]), 'Rho': array([0.77666469]), 'pRho': array([2.97430261e-103]), 'SMSE': array([0.40227749]), 'EXPV': array([0.59789079])}\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHPCAYAAACstvVvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADph0lEQVR4nOydd1hT59/G7ySEvUE2CCqiiBv33ts6W7dWW7VVq3ba/mp3rd1La63W0Var1larde+BC/fee+BC9k7y/nG/hwASCCRkwPO5rnNBTtZzTs64n++UaTQaDQQCgUAgEAgETyE39wAEAoFAIBAILBUhlAQCgUAgEAh0IISSQCAQCAQCgQ6EUBIIBAKBQCDQgRBKAoFAIBAIBDoQQkkgEAgEAoFAB0IoCQQCgUAgEOhACCWBQCAQCAQCHQihJBAIBAKBQKADIZQEglLSvn17jBs3ztzDsHh+/PFHREREID4+vtjXtm/fHtOmTSvR5x88eBARERHYuHFjaYdotfzzzz+IiIjAqVOnin3t8OHDMXz48BJ9/u3btxEREYFff/21tEMUCKweG3MPQCAQUCDcuXMHzZo1w6JFi556fsWKFZg+fToAYOXKlahdu7aJR6jl4MGDGDFihF6vvXDhQhmPpmKwZMkSODg4oF+/fuYeikBQ4RBCSSCwEOzs7HDw4EE8fPgQlSpVyvfc2rVrYWdnh8zMTDONTkvVqlXxxRdf5Fv3zTffwNHREePHjzfoszdu3AiZTGbQZ5RH/vzzT3h4eBgklIRVSCAoHUIoCQSlIC0tzeif2aBBA5w6dQrr16/HyJEjc9fHxcXh8OHD6NSpEzZt2mT07y0p3t7eeOaZZ/KtmzdvHjw8PJ5aX1JsbW0Ner9AN2LfCgSlQ8QoCQTFIMXYXL58Ga+99hoaNWqEIUOG5D5/+PBhDBgwALVr10aHDh2wevXqUn2PnZ0dOnfujP/++y/f+v/++w+urq5o2bJloe+7cuUKXnnlFTRu3Bi1a9dGv379sG3btnyvSUhIwOeff45evXqhfv36aNCgAV544QWcP38+3+ukeJ/169djzpw5aN26NWrXro2RI0fixo0bpdouieTkZEybNg3R0dFo2LAh3n77baSnp+d7TWExSklJSZgxYwbat2+PqKgotG7dGm+++WaRMU9ZWVkYN24cGjZsiKNHjwLQ/o43btwodhwA8O+//6Jfv36oU6cOGjdujKlTp+LevXv5XnP9+nVMmjQJLVq0QO3atdG6dWtMnToVycnJua+JiYnB4MGDER0djfr166NLly745ptv9N5v7du3x6VLl3Do0CFEREQgIiLiqVijrKwsfPbZZ2jatCnq1auHCRMmPLV/CotRyszMxI8//oguXbqgdu3aaNmyJSZOnIibN2/qHI9Go8H06dMRFRWFzZs3A9DGSh05cqTYcQDArl27MGTIENSrVw/169fH2LFjcenSpXyvefjwId5++220bt0aUVFRaNmyJV566SXcvn079zWnTp3CmDFj0KRJE9SpUwft27fH22+/rd+OFQj0RFiUBAI9mTx5MipXroypU6dCo9Hg119/xY0bNzB58mQMGDAAffv2xd9//41p06ahVq1aCA8PL/F39OzZE6NHj8bNmzcREhICgEKpS5cusLF5+nS9dOkSBg8eDF9fX7z44otwdHTEhg0bMGHCBPz444/o1KkTAODWrVvYunUrunbtiqCgIDx69AjLly/HsGHDsG7dOvj6+ub73Hnz5kEmk2H06NFISUnB/Pnz8frrr+Ovv/4qxZ4jU6ZMQVBQEF599VWcPXsWf/31Fzw9PfHGG2/ofE9qaiqGDh2KK1euoH///oiMjMSTJ0+wfft23L9/H56enk+9JyMjAy+//DJOnz6NhQsXok6dOiUex5w5c/D999+jW7duGDBgAOLj4/HHH39g6NChWL16NVxdXZGVlYUxY8YgKysLw4YNg7e3N+7fv4+dO3ciKSkJLi4uuHTpEsaNG4eIiAi88sorsLW1xY0bN3LFmz688847+Pjjj/O5Nr29vfO95pNPPoGrqysmTpyIO3fuYPHixfjoo4/w3Xff6fxclUqFcePGYf/+/ejRowdGjBiB1NRUxMTE4OLFi7nHX8H3vPPOO1i/fj1mzZqFtm3blngcq1evxrRp09CyZUu8/vrrSE9Px59//okhQ4Zg1apVCAoKAgBMmjQJly9fxrBhwxAYGIj4+HjExMTg3r17CAoKwuPHjzFmzBh4eHhg7NixcHV1xe3bt7Flyxa9961AoBcagUBQJD/88IOmevXqmldffTXf+nbt2mmqV6+uiY2NzV33+PFjTVRUlGbmzJkl+o527dppxo4dq8nJydG0aNFCM3v2bI1Go9FcvnxZU716dc2hQ4c0f//9t6Z69eqakydP5r5v5MiRmp49e2oyMzNz16nVas1zzz2n6dy5c+66zMxMjUqlyvedt27d0kRFRWlmzZqVu+7AgQOa6tWra7p165bvMxcvXqypXr265sKFC4WOv0ePHpphw4YV+py0/95+++186ydMmKBp3LjxU/vhrbfeyn38/fffa6pXr67ZvHnzU5+rVqvzjXnDhg2alJQUzbBhwzRNmjTRnD17tlTjuH37tqZmzZqaOXPm5HvdhQsXNJGRkbnrz549m/u9uli4cKGmevXqmsePH+t8jT7o2r/SMTFq1Kjc/aHRaDQzZszQ1KxZU5OUlJS7btiwYfk+Y+XKlZrq1atrFi5c+NTnSp9169YtTfXq1TXz58/XZGdna6ZMmaKpU6eOZs+ePaUaR0pKiiY6Olrz7rvv5nv/w4cPNQ0bNsxdn5iYmPu9utiyZctT54NAUBYI15tAoCeDBg16al21atUQHR2d+9jT0xNhYWG4detWqb5DoVCga9euWLduHQBgzZo18Pf3z/cdEgkJCThw4AC6deuGlJQUxMfHIz4+Hk+ePEHLli1x/fp13L9/HwDjU+Rynu4qlQpPnjyBo6MjwsLCcPbs2ac+u1+/fvliWqTvL+12AU/vv+joaCQkJCAlJUXnezZv3owaNWrkWsbyUjDoOzk5GWPGjMHVq1fx+++/o2bNmqUax5YtW6BWq9GtW7fcfRofHw9vb29UrlwZBw8eBAA4OzsDAPbu3Vuo6w4AXF1dAQDbtm2DWq3WuZ2G8uyzz+bbH9HR0VCpVLhz547O92zevBkeHh4YNmzYU88V3LfZ2dmYPHkydu7ciV9++UWnG7i4cezbtw9JSUno0aNHvn0rl8tRt27d3H1rb28PpVKJQ4cOITExsdDvcnFxAQDs3LkT2dnZOrdTIDAU4XoTCPREcgnkxd/f/6l1bm5uOi/u+tCrVy/8/vvvOH/+PP777z9079690EywmzdvQqPR4Pvvv8f3339f6Gc9fvwYvr6+UKvV+O2337B06VLcvn0bKpUq9zXu7u5PvS8gICDfY+mGn5SUVOrt0vWZiYmJuaKjIDdv3kTnzp31+vwZM2YgKysLq1atKtLtWdw4rl+/Do1Go/N7JRdocHAwnn/+eSxcuBBr165FdHQ02rdvj969e+fexLt3746//voL7777Lr7++ms0a9YMnTp1QteuXXOFqzEoze918+ZNhIWFFerSLcjcuXORlpaGefPmoUmTJqUex/Xr1wEgX7JCXqTjwNbWFq+//jo+//xztGjRAnXr1kXbtm3Rp0+f3IzQxo0bo0uXLpg1axYWLVqExo0bo2PHjujVq5cIXBcYFSGUBAI9sbOze2qdQqEw+vfUrVsXISEh+PTTT3H79m306tWr0NdJForRo0ejVatWhb5GijP5+eef8f3336N///6YPHky3NzcIJfLMWPGDGg0mqfep+smXthr9aUsPjMvHTp0wPr16/HLL7/giy++0Pl9xY1DrVZDJpNh3rx5hf6+jo6Ouf9PmzYNffv2xbZt2xATE4NPPvkEc+fOxYoVK+Dn5wd7e3ssWbIEBw8exM6dO7Fnzx6sX78ey5cvx4IFC4x2/JT1vm3VqhX27NmD+fPno0mTJoWeC/qMQ/r7xRdfPFUCA8h/Po0aNQrt27fH1q1bsXfvXnz//ff45ZdfsHjxYkRGRkImk+GHH37A8ePHsWPHDuzZswfvvPMOFi5ciOXLl8PJycnQzRYIAAihJBBYJD169MCcOXNQtWpVnS6k4OBgAIBSqUTz5s2L/LxNmzahSZMmmDFjRr71SUlJ8PDwMM6gy4CQkJCnsqF00bFjR7Rs2RLTpk2Dk5MTPvzww1J/p0ajQVBQEMLCwop9vZSJ9vLLL+Po0aMYPHgw/vzzT0ydOhUAxUOzZs3QrFkzvP322/j555/x7bff4uDBg8X+bhJlUVsqJCQEJ06cQHZ2NpRKZZGvrVu3LgYNGoRx48Zh8uTJmDVrll6WqIJIx6yXl5de2x4SEoLRo0dj9OjRuH79Ovr06YMFCxbgq6++yn1NvXr1UK9ePUydOhVr167F66+/jvXr12PgwIElHp9AUBgiRkkgsEAGDhyIiRMn4q233tL5Gi8vLzRu3BjLly/HgwcPnno+b1q2QqF4yrqwYcOG3BgmS6Vz5844f/58oZlMhVlL+vTpg3fffRfLli3Dl19+WervVCgUmDVr1lPfodFo8OTJEwBASkoKcnJy8j1fvXp1yOVyZGVlAWAcWUEk4Su9Rh8cHBwMcnsWRufOnfHkyRMsWbLkqecK27fNmzfHt99+iz179uDNN98sVcxVq1at4OzsjLlz5xYaVyQds+np6U8VVw0JCYGTk1PufktMTHxqnKXZtwJBcQiLkkBggQQGBmLSpEnFvu7999/HkCFD0KtXLzz77LMIDg7Go0ePcPz4ccTFxWHNmjUAgLZt22L27Nl4++23Ub9+fVy8eBFr167NneFbKmPGjMGmTZswefJk9O/fH7Vq1UJiYiK2b9+ODz/8EDVq1HjqPcOGDUNKSgq+/fZbuLi4lLhaeEhICKZMmYKvv/4ad+7cQceOHeHk5ITbt29j69atePbZZzFmzBgcOHAAH330Ebp27YrQ0FCoVCr8+++/UCgU6NKlCwBg9uzZOHz4MNq0aYPAwEA8fvwYS5cuhZ+fHxo2bKj3mGrVqoU///wTP/30EypXrgxPT080a9asRNtVkD59+mD16tX47LPPcPLkSTRs2BDp6enYv38/Bg8ejI4dOz71no4dO2LGjBl466234OzsjI8++qhE3+ns7IwPPvgAb775Jvr164fu3bvD09MTd+/exa5du9CgQQO89957uH79OkaNGoWuXbuiWrVqUCgU2Lp1Kx49eoQePXoAAFatWoU///wTHTt2REhICFJTU7FixQo4OzujdevWBu0bgSAvQigJBFZMtWrV8Pfff2PWrFlYtWoVEhIS4OnpicjISEyYMCH3dePHj0d6ejrWrl2L9evXIzIyEnPnzsXXX39txtEXj5OTE5YsWYIff/wRW7ZswapVq+Dl5YVmzZo9VfspL+PHj0dycnKuWBo6dGiJvnfs2LEIDQ3FokWLMHv2bACAn58fWrRogfbt2wOgy61ly5bYsWMH7t+/DwcHB0RERGDevHmoV68eAG0Pv7///htPnjyBh4cHGjdujEmTJuUGfOvDhAkTcPfuXcyfPx+pqalo3LixwUJJoVBg3rx5mDNnDv777z9s3rwZ7u7uaNCgASIiInS+75lnnkFqaio+/PBDODk5FWn1LIxevXrBx8cHv/zyC3799VdkZWXB19cX0dHRuS1a/Pz80KNHD+zfvx9r1qyBQqFAlSpV8N133+WK0MaNG+dWsn/06BFcXFxQp04dfPXVVxY/ARBYFzKNsaL9BAKBQCAQCMoZIkZJIBAIBAKBQAfC9SYQlCEPHz4s8nl7e/sSuWAE5Yv4+Ph8Na0KolQqC61zJRAITIdwvQkEZUhRsR4A0LdvX8ycOdNEoxFYGlIMky4aN26M33//3YQjEggEBRFCSSAoQ/bt21fk8z4+PqhWrZqJRiOwNI4cOfJUGnxeXF1dERUVZcIRCQSCggihJBAIBAKBQKADEcwtEAgEAoFAoAMRzK2DY8eOQaPRFFvaXyAQCAQCgeWQnZ0NmUyG+vXrG+XzhEVJBxqNJncpb2g0GmRlZYlts0LK8/aJbbNOxLZZJ+V924y5XcKipAOlUomsrCxUq1YtX7fw8kBaWhrOnTsnts0KKc/bJ7bNOhHbZp2U5207efKkURtJC4uSQCAQCAQCgQ6EUBIIBAKBQCDQgRBKAoFAIBAIBDoQQkkgEAgEAoFAB0IoCQQCgUAgEOhACCWBQCAQCAQCHQihJBAIBAKBQKADIZQEAoFAIBAIdCCEkkAgEAgEAoEOhFASCAQCgUAg0IEQSgKBQCAQCAQ6EEJJIBAIBAKBQAdCKAkEAoFAIBDoQAglgUAgEAgEAh0IoSQQCAQCgUCgAyGUBAKBQCAQCHRgY+4BWDJJSQps3SpHaCjg7Q14egL29uYelUAgEAgEAlMhhFIRZGTIMWWKLQCKpKpVgYgIoE0bIDQU8PEBXFzMO0aBQCAQCARlhxBKReDunoO5c7OQkWGP06eBs2eBHTuAP/8EZDKgcmWgbl2gXTugVi3A3x+wszP3qAUCgUAgEBgLIZSKQKHQoEoVDRwcgIYNAbUaSE0FEhKA27eBmBjg9Glg3TpApQKqVQOaNwc6daLlyd3d3FsgEAgEAoHAEIRQKgFyOV1tLi5AcDDQrBmQnQ3ExwPXr9PatHkzsHgx4OYGNGoEdOvG13l70wolEAgEAoHAehBCyUCUSsDXl0uTJkBmJnD/PrB3L7B/P/D224BCATRuTNHUpg1Fk0AgEAgEAstHCCUjY2cHhIQAQ4YAgwcDjx8DsbHAli3A++9TNDVpAvTrB7RsCTg7m3vEAoFAIBAIdCGEUhkik9F61K0bl8ePgQMHKJqmTqV7rlMnYOBABoMrFOYesUAgEAgEgrwIoWRCvLyAHj2A7t2BBw+A9euBnTuBZcuAGjWA3r1pafLyMvdIBQKBQCAQAKIyt1mQyRjT9PzzwIIFwM8/sy7TnDlAx47AW28BJ04wy04gEAgEAoH5EBYlM6NQADVrcklKoltu/Xrgn3+AevWAZ58FevYEHBzMPVKBQCAQCCoewqJkQbi6Av37A/PmAbNmsQ7T++8DXboA330HPHxo7hEKBAKBQFCxEBYlC0QuB2rX5vLgAbBiBfDHH8Bvv9G6NGoUUKWKuUcpEAgEAkH5R1iULBwfH2DiRAZ8DxsG7NnDgPBXXgFOnQI0GnOPUCAQCASC8otFCaVdu3Zh2LBhaNq0KaKiotChQwd89tlnSE5OLva9f/31F7p06YLatWujd+/e2LFjhwlGbDocHYFBg4CFC4F33gGuXaObbvx44PBhIZgEAoFAICgLLMr1lpCQgDp16mD48OFwd3fHpUuX8OOPP+LSpUtYsGCBzvetW7cO06dPx/jx49G0aVOsX78eEydOxJIlS1CvXj3TbYAJsLUFOnRgI96DB4GlS1ncsnlzYNw4oGlT0SpFIBAIBAJjYVFC6Zlnnsn3uEmTJrC1tcX06dNx//59+Pr6Fvq+H374AT169MCUKVMAAE2bNsXFixcxe/ZszJs3r6yHbRbkcvaQa9oUOHYMWLIEGDGC1b5feol95oRgEggEAoHAMCzK9VYY7u7uAIDs7OxCn7916xauX7+Obt265VvfvXt37N+/H1lZWWU9RLMikwENGgBffQV8/z2QlsZYpvHjgePHhUtOIBAIBAJDsEihpFKpkJmZiTNnzmD27Nlo3749goKCCn3t1atXAQBhYWH51letWhXZ2dm4detWmY/XEpDJWHfpm2+Ar79mttxzzwFTpgDnzpl7dAKBQCAQWCcW5XqTaNeuHe7fvw8AaNWqFb7++mudr01MTAQAuLq65lsvPZaeLy3p6ekGvd8cREYCX3wBHDwow++/26BPHzm6d8/BuHEqhIRocrfJGretOMrztgHle/vEtlknYtusk/K8bRqNBjIjxp5YpFD65ZdfkJ6ejsuXL2POnDkYP348Fi5cCIWJu8aq1TJcvXoHtrbW6b/y9gYmTwZiY52xfr0X1qxRolOnJxgw4CE8PIDr16+be4hlRnneNqB8b5/YNutEbJt1Ul63zdbW1mifZZFCqUaNGgCA+vXro3bt2njmmWewZcsWdO3a9anXurm5AQCSk5NRqVKl3PVJSUn5ni8N8fE2+O676ggLkyEiQoMaNTSoVEkDd3dmn1kLERFshbJhgxwrVvjh0CEfdOx4F5MmOcPLq3z1RklPT8f169cRGhoKh3LY96U8b5/YNutEbJt1Up637dKlS0b9PIsUSnmJiIiAUqnEzZs3C32+yv+XqL569Wru/9JjpVKJ4ODgUn+3g4MKvr4yXL1qi/37gYwMwMYGCAqie6tRI6BGDRaFtLMr9deYBAcH1mHq1QtYsECFlSsr4cgRW7z0kg369mXPufKEg4MDHB0dzT2MMqM8b5/YNutEbJt1Uh63zZhuN8AKhNKJEyeQnZ2tM5g7ODgYoaGh2LhxIzp27Ji7fv369WjWrJlB5jd7ew0mTVLBxobZZElJwK1bTMc/fRrYtIlZZb6+QK1aQOvWQFQUXV5yiwyTB5ycgBdeUKFu3WvYtSsc77zDBryTJwONG4uSAgKBQCAQ5MWihNLEiRMRFRWFiIgI2Nvb4/z58/j1118RERGRK4LeeecdrF69GmfPns1936RJk/D6668jJCQETZo0wfr163Hy5En88ccfRhmXjQ0b1rq60prUrBmgUgHJycDdu8ChQ8ws27mTQqN6dSA6GmjbFggNBZTK0n93RgaQlUVXn7198ev1xd1dhddfV2HIEGDOHGD4cKBbN+DVV4HKlUs/XoFAIBAIyhMWJZTq1KmD9evX45dffoFGo0FgYCAGDhyIMWPG5FqG1Go1VCpVvvf17NkT6enpmDdvHn755ReEhYVh1qxZqF+/fpmNVaEA3N25REYCajWQmAhcuADs3w+sWcMmtn5+QIsWQMeOjBUqiWjKyADu3QMyM+na8/enKNK1vjRUrQp8+SXH/Ouv7CM3fDiLVhZIJBQIBAKBoMJhUUJp7NixGDt2bJGvmTlzJmbOnPnU+oEDB2LgwIFlNbRikcsBDw9Wym7aFMjOBm7eBHbvBmJigJUrgcBAWqO6dgXCw4uPC8rKohhydwcSEviZ9va615cWmYwtUKKjOc5ly4CNGymW+vcvf/FLAoFAIBDoi0UJpfKEUklrTdWqbC1y5w6wdatWNFWtStdc1660CBWGrS0tRgkJ/CtZo3StNxRbW/aN694dmDcPePdd4L//6I4rZy3zBAKBQCDQCyGUTIBCAYSEAKNHM7bp6lVg82ZgxQrg99+ZPdetG61NebPn7O0porKzKYYkq5Gu9cbC3R144w2gTx9g9mxW+H72WeCVV4A8FRgEAoFAICj3CKFkYhQKut3CwxlrFBsLbNsGvP8+4OUFdO4M9O4NBATw9fb2hQshXeuNSXg4W6Js2QIsXMgsvxdfBEaOtK46UgKBQCAQlBYhlMyIvT3QqhWX+/eBDRuAdetoaWrenPFBdeuat9SAXA506QK0bMng9G+/pTXsjTdYTkAgEAgEgvKMhVb7qXj4+gKjRtHVNX48yw5MmkQLztq1tD6ZEycnBncvXEj34LBhwP/+Bzx8aN5xCQQCgUBQlgihZGHY2rJw5aefAjNnMibom2+Ysr9wIUsQmJPgYODzz4Hp04Fdu1jpe+FCxksJBAKBQFDeEELJQpHJgGrVgClTgB9/ZNbZ8uXA0KF8bE5LjkwGdOgALFrEzL3PP6c17Phx841JIBAIBIKyQAglK8DbGxgzBpg1C+jUicHfgwcDX39NF525cHRkJtyCBbQoDRoEfPQR8OSJ+cYkEAgEAoExEULJQsnMBFJS+FfC2Zmp+t9/T1Gybx9jhb74gnWazEVoKN2Dr78OrF8PPPMMA9LVavONSSAQCAQCYyCEkgWSmQk8eADExfGvJJYk8QQAPXsC333HVP3YWAqmmTPZ2sQcyOUsVLl4MSt8v/su8MILbOkiEAgEAoG1IoSSBZKdTVHk5sa/0uOC4kmpZOr+N98Azz8PHDlCwfTdd+aLYXJxoWVpzhy64Pr2ZQyTJPAEAoFAILAmhFCyQJRKpuAnJmpblBQmnvK+vnNnCqbBg4EdO9g25eefzZclV7Mm8MMPLG+wYgWrfG/aBGg05hmPQCAQCASlQQglC8TODvDxAfz8+FcSSwXFU0GUSrrkfviBLVH+/ZeCadEiID3d5JsBhYIxVYsWARERwMSJrA11+7bpxyIQCAQCQWkQQslCsbNj8LbU+60w8VTUe599lllyTZsCf/zB9P1//zVPvSMvLxan/Ppr9rnr0YNiLivL9GMRCAQCgaAkCKFkRRQUT8Xh5MTYpR9+AGrUoGvu5ZeBQ4dkZnGBRUdTvA0YAMyfz78HD5p+HAKBQCAQ6IsQSlZGYWUDisPTk+1Hvv6aQuudd2zx00/+uHZNVnYD1YG9PWtCzZ/P+lDDhwNvvSVqLwkEAoHAMhFCyYrQVTZAX4KCKErefjsL9+/b4uWXlfj+eyA+vmzGW9xYPv6YrVAOHWIw+m+/idpLAoFAILAshFCyIorKfCsJUVEaTJp0B0OG5GDrVsYvLV1q+pghqRXK3LkUSjNnMmvv3DnTjkMgEAgEAl0IoWRF6JP5pi9yOdC5sxrffw80awbMmweMG8dq36aOX3J2BiZMYO0lhYKlBD78EEhONu04BAKBQCAoiBBKVkRJMt/0xdGRAd/ffsvstDffBN5/3zwtUcLDWZxy8mRg82ZW+v73X1F7SSAQCATmQwglK6OkmW/64ufHitr/+x9w+TLdcfPmmb7+kmRRmjsXaNyYwm3MGODaNdOOQyAQCAQCQAglQQHq16dVp2dPVtQeOxbYudP0Vh1PT+C119gAOCGB4/n8cyAtzbTjEAgEAkHFRgglwVMolayo/f33QEAAG9xOn26eitp16rD+0+jRwF9/Ab17Axs3CnecQCAQCEyD0YVSeno6Vq5ciaVLl+KOOQJdjIhGU7FvyJ6ewNSpwHvvATduACNH0iWWkWHacdjaMhtu4UIWznzlFQaeX71q2nEIBAKBoOJhY8ib33nnHZw8eRL//fcfACArKwvPPvssLl26BABwcXHB4sWLERkZafhIzUBCgg0++0yJkBAgOJj9ygIDAQ8PxtJUFOrUAWbMAFavBlauBGJigPHjgebNTTsOLy/gnXcY5P3LL3THDRvG/nEuLqYdi0AgEAgqBgZZlA4ePIhOnTrlPv7vv/9w6dIlfPXVV/jvv//g7e2NWbNmGTxIc2Fvr0ZgoBpxccC6dcBHH1EgvPQSa/788w8Dn0ta+NEaUSqBgQOZHefjwyDrTz4BHj40/Vjq1aNbcOxYZsX16EG3nChWKRAIBAJjY5BF6dGjRwgMDMx9vHXrVkRFRaFnz54AgGeffRa//vqrYSM0I3Z2agwerIK9PaBSsa5PXBxw9ixw/TqwahWwZAl7qlWpAkRFMVMrMLD8Wpy8vZkdd/AgK2k//zytOv37G1bXqaQolWz827EjsHgxY6hWrwZeeUUGG4OOaoFAIBAItBh0S3FwcEDy/1cFzMnJwaFDhzBs2LDc552cnHKft3YUCsDdnUuNGlynUrGVyLlzFE///gv8+Sfg6wvUqgU0aULxZG9v+PdLlbilopO61pmKJk2AunW5vXPmsFDlyy9r942pkOKoundnOYNhw+zQsqU/3n8fCA017VgEAoFAUP4wSCjVqlULK1asQJMmTbB9+3akpqaiffv2uc/fvHkTXl5eBg/SUlEoAH9/Lu3bAzk5wK1btLZcuADs2MGCjnXqAC1a0GXk4FCy78jMZC+2Bw8Y1OzsTNdXVhaLQmo02nWmFkv29rQodegA/Por3ZL9+3Ods7NpxxIRAXzxBbB+fTZ++cUZffrYYeRIjqmk+1wgEAgEAgmDhNKUKVPwwgsvoH///tBoNOjSpQvq1KmT+/yWLVvQoEEDgwdpLdjYAGFhXAAKnNhY4Phx4OuvKR7q1gXatAFq1y7eVZWZyZT8K1fYtqRyZa53cmJs0L17tKikpDDA3NRCSSIkhNW8N20Cli9nsPfYsUC7duznZirkcqBDBzV8fW/gyJHq+OMPBf79F5g4Eejbt/y6QwUCgUBQdhgklGrXro0NGzbg6NGjcHV1RePGjXOfS0pKwpAhQ/Ktq2h4egJdunBJSAAOHACOHQM+/ZSxPs2aMcYmKKjw92dnUwS5uNCC9PgxG+JqNAxc9vSkGAsIMG18UGHI5UC3bsyEW7SIJQU6dmTgu6+vacdiZ6fByJFqDBigjV/680/GVjVtalrxJhAIBALrxuCwV09PT3Ts2PGp9a6urhg5cqShH19ucHcHunbl8uAB3XJ79wL//QdERtLK1KJF/ngmpZJWqKQkWpG8vCiKbG1ZoTolhY8DAsxnTSqImxt7tbVpQ8E0ciSDvZ97zvRiztub1b2feQZYsAAYMYIu0tdeA6pXN+1YBAKBQGCdGCSU7t69i7t37yI6Ojp33fnz57FgwQJkZWWhZ8+ehYqoio6PD4XDwIHAmTPAnj2sC7R0KdCqFS0zvr4UP0FBFEnZ2RRbUr0gHx+62zQaWkgyMy1HLAGMx/r8c7ri5s9nsPekSUDNmqYfS7VqtOLFxlK8PfMM+8lNnMgMRYFAIBAIdGGQUPrkk0+QlpaGRYsWAWC5gBEjRiA7OxtOTk7YtGkTvv/+e3Tu3NkYYy13yOWMVapdm6657dspmtavB6KjmclVrRpFUmYmX2NrS0EkiaIHD7QiyRwB3UVhZ0crTrt2rKo9bhwwYACb3Do5mXYsMhlLNzRsyFiqZcvoEh04kIKpHOccCAQCgcAADCo4efLkSTTPU5559erVyMjIwL///ovdu3ejWbNmWLBggcGDrAi4uwP9+rGI44gRFEDTp7MSdUwMhYVUDkBCElBubk8/Z0kEB7Nf3OjRFCmjRwO7d5tnLAqFtpTACy9QnHboAHz2GQPmBQKBQCDIi0FCKTExMV/6/86dO9GoUSOEhIRALpejU6dOuCoacpUIGxu6rSZOZCyNmxsDkd99lzFNGRmMTcrM1NZPSkzkX3MHdBeFXM74rC+/BMLDKQDfe48B6ubAzo4FK+fPpxt07VoKpq++YkyYQCAQCASAgULJ09MTd+/eBcAst+PHj6NVq1a5z6tUKuTk5Bg2wgpGZibFw4MHjEcaMwb44AO64Nato3hauJCVwQG62/z8LM/tpgtPT4rAt99m+5chQ+gGM1f7EScnBpwvWMDYpRUrgE6d2KpFWJgEAoFAYFCMUvPmzfH777/D2dkZBw8ehEajQYcOHXKfv3z5Mvz9/Q0eZEUiJ4diydWVlo2cHAZ0v/ACcPcuq3/v3cvgaCnGxtTFHY1Bw4bM9lu5Epg7l664qVNpbTIHrq4UpQMGULgtXcqlf3/gxRdFDJNAIBBUVAyyKL322muoUqUKPv/8c8TExODNN99EcHAwACArKwsbNmxAs2bNjDLQioKNDS1DSUn8q9EAqakUT15etHq89BLdc1u2MJNs2TKWC7A2HByA4cMZHySTUah8/z2Qnm6+Mbm5Mej899+5ryWX3Pvvs/inQCAQCCoWBlmUvL29sWzZMiQnJ8POzg62tra5z6nVaixevBh+fn4GD7IiYWdHQZSTQ5GUlKTNavPy4uLmRlfcs88yQ27tWmDbNqBzZ6B3b+twweUlNJSuuA0b2Ng2JgZ45RWgZUvzjcnVlUHnzz0HrFnDelcrV9ItN2YMe/iJwpUCgUBQ/jHIoiTh4uKSTyQBgL29PWrUqAF3d3djfEWFws6OsTNSfSRXV/7NydE+Z2dHl9uzzzJTrm5d4J9/gFdfZWaZpWbA6cLGBujVi/3aqlcHpk1j1t+jR+Ydl5MTMHgwY5imTmU7mf79WURz40ZWTBcIBAJB+cVgoXT37l2899576NKlCxo1aoTY2FgAQHx8PD755BOcPXvW4EFWVAq64Wx02P+cnWn5+Ogj9pn75RdmyR08SKuUNeHlBUyYALz1FkXJ0KHM+lOpzDsuOzuWFZgzh337lEoKp549gdmz2UomLxkZDAbPyDDPeAUCgUBgHAxyvV2+fBlDhw6FWq1GnTp1cPPmzdwsN09PTxw5cgRpaWmYMWOGUQZb0cjrhpNEU1G4uzODq1s3uolmzmTQ9MCBQESESYZsFGQyoFEjoFYt4O+/Kfx272ZrlBo1zDs2uZz7tGFDxiytWMFq37/8wlim4cO5r+/epUiyt2cwft7WNAKBQCCwHgyyKH355ZdwcXHBpk2b8OWXX0JTwHzRpk0bHDlyxKABVnTyutr0xccHePllWmUSE1mz6IcfWHLAmnB0pPCYOZMCZexY4LvvWEfKEggKoqtzyRIGgF+5Qste//7MmJPLKZaEe04gEAisF4OEUmxsLAYPHgxPT0/IColsDQgIwP379w35CkEeMjO1GXD6ULUq8MYbDEo+f54B0osXW1+GXOXKwP/+xyDqLVuAUaMYh2UpbkVnZ/aOmz2brrnQUPa469uXIu/QISGWBAKBwFoxyPWm0WhgX4RPIT4+/qkgb2siPl6JadNsERBA60G1aqzz4+Fh+rFIhSjzZsDpY2WSepzVrw9s3gxs3QrExCjRvLkLKlcu+3EbC7mcdaOaNqUF55NPKJomTqQwsQTkcjb9nT4dePgQ2LED2LWLJRy8vZkxJ7lB5UZJoxAIBAJBWWOQUIqMjMSuXbswdOjQp57LycnBunXrULduXb0/b8OGDVizZg3OnDmDpKQkVK5cGcOHD0f//v0LtVhJPHnyBN9++y12796NhIQEBAUFYejQoRg8eHCptktCrQbOn1fg/Pn86729aa0JD2dD25o12ay2LCmsEGVJ3HFKJdCjB9CqFfD332r89ZcPLl+WY+RI8xV5LA1ubnQrtm1LwTRqFF1do0ebvtFuUVSqxIzEgQOBO3dYVX3XLuCPPyi427fnuENDRZkBgUAgsGQMEkpjx47F+PHj8f7776NHjx4AgMePH2Pfvn34+eefcfXqVbz33nt6f96iRYsQGBiIadOmwcPDA/v27cP06dMRFxeHiRMn6nzf5MmTcfXqVbz66qvw9/fH7t278cEHH0ChUODZZ58t9fa5u+fg9dez8OiRLW7cYMuN27eZsv7oEbPKAIqQWrWYol+3LtPbdWWolRZ9M+CKw9UVGDxYhWrV7mHfvmBMm0ZLx3PPmcdSVloiI9naZf16VivfvZsVtM1Ze6kwZDJaI8eNY3X1c+foNvz3XzbmrVEDaNeOpRHCwoSlSSAQCCwNmaZgBHYJWb16NWbMmIHk5GRoNBrIZDJoNBo4Ozvjgw8+QM+ePfX+rPj4eHh6euZbN336dKxfvx6xsbGQF3IXefjwIVq2bInPPvsM/fr1y10/bNgwKBQKLF68uFTbderUKSQlZePRo5qwt3fIXZ+ezqDdy5eBCxeAEyeeTg13cqK7q3lzIDqaFaiNQWamNr7I0TG/RUmqs6RPdlxGRjpu3bqFoKBgHD3qgLVrmX7fpw+tTpbcXLcw4uNZnXzHDqBBg2x06XIZ7dqFwsFYO74MyMoCzpyh+/DQIbpVq1Sh0OvVi1bKwn6HtLQ0nDt3DjVr1oSjo6PpB16GiG2zTsS2WSfledtOnjwJmUyG2rVrG+XzDLZ79OnTB507d0ZMTAxu3LgBtVqNkJAQtGzZEs4lbEJWUCQBQM2aNbFixQqkpaUV+nlSOQIXF5d8652dnZFWBlHLDg6syhwVxccaDa1Mx49TNJ04ASQn86a9Ywdvdg0aUDQ1b85Gt4aQnk5RlJ6ujVMyJH6pRQuOb+1aurIOHABGjKDFxlrw9KQ7rl07YNEiGT76KAynT8sxfjwtaJaIrS3jxurXp2g6fx7Yvp3Lb78Bvr5AkyZAx478K+q2CgQCgXkwioPI0dERnTp1MsZHPcWRI0fg6+urU3T5+/ujZcuW+PnnnxEWFgY/Pz/s3r0bMTEx+Oqrrwz+/kw9UswqVaL7qlMnWmYuXpTj4EE5DhxQIC5OjoMH6ab78UcNGjdWo23bHDRooC7SfZaVxQw3mYzWI1tbICGBQcJubhRj9vYUamlpfOzikn99cdsk/ZXJ2PqkSRPg779t8L//KdCxYw4GDFDBza0ke8u8hIUBb7yRgdWrU7Brlx9271Zh0KAcPPNM0fvaEggP56JSAbduybBjhxzHj8uxfr0MGg0QEaFBdLQa7dplQqEA0s3ZEK+MkLZJbJt1IbbNOinP2yZ5t4yFwa43AEhJScHdu3eRlJT0VC0lAGjUqFGpPvfw4cMYPnw43nrrLYwaNUrn69LS0jB16lTs3LkTAKBQKPDuu+9iyJAhpfpeQOt6O3asZFaxvGg0wL17tjh50hnHjrng7l2tmcfZOQcNGyajSZMkBAfnF2NZWTI8emSDBw+UUKkAb+9seHvnIDHRBvHxNgA08PBQoVKlHNjaapCVJUNCggI5OTLY2Gjg7q6CrW3pflaNBjh50hG7dnlAJgM6d45H48bJVhc7k5oqx7ZtHjh40BV+fpno3/8hate2vgtCQoICFy444MwZJ1y54oDHj5VwcVGhevVU1K+firp1U+Djk23xQlAgEAhMia2trdFcbwYJpSdPnuDjjz/G5s2bofr/HhN5lZz0/7lz50r82XFxcRg4cCCqVq2KBQsWFBqfJH3HlClTcP78eUyaNAmVKlXCvn378Ouvv+Lzzz/PDTIvKZJQunOnCuyM1GX22jUZduxQYPduGyQkaNVueLga3brloEULFezsaCG6epXWo+xsxjyFhjIGyd4eePIE8PPL747JytLGKBWXgZeZmYkHDx7Ax8dH57alpwNr1igQE2ODOnVUGD5chaAgCylcVAQZGRm4d+8e/P39YW9vjzt3gJUrbXDokAJNm6rw4os5VlUWIS85OcDFi5nYsiUZd+5UwtWrSqSnMwi/Vi01GjRQoWVLDSpX1lhdnBnAme3169cRGmrZ8WWlQWybdSK2zTq5dOkS5HK5ZcQoTZ8+HTt27MDw4cMRHR0NVyMFhCQlJeHFF1+Eu7s7fvzxR50iCQB27tyJjRs3Ys2aNYj4/z4dTZo0wePHjzFz5sxSCyUJOzu7fMHchlCzJpdx44BjxxjIu28fcOmSHJcu2WLhQtYK6tSJsVDZ2XS72dvTrSaVCPDx4c0xr8YpTYuMorbN3p7tUNq0AZYtk+Odd5To2ZMp79bQjsPe3h729g6oWhV4803GkP31lxzjxyvRuzfLChQSEmfxREYCSuVNhId7A1Dg+nW6dc+eVeD335WYNYvCumZNoE4dxqBFRPB4sZYyBA4ODuUuuFRCbJt1IrbNujCm2w0wUCjFxMRg5MiRePPNN401HmRkZGDcuHFITk7G8uXLnwrSLsjly5ehUChQvXr1fOtr1qyJv/76C+np6RanlhUKZsNFRzPuaNMm1tl58IA92v7+m881bUpR5OqK3FghfTPbjEVoKPD66xR1mzYBR45QQDVoYJrvNwYyGYOmo6KAbduA1au5PX37AsOGUYxaIw4OWvENUETfuqVNKli7Fli4kNvv50fBVKsWkwpCQ3lMWYt4EggEAnNhkFCyt7dHYGCgscaCnJwcTJkyBVevXsWSJUvg6+tb7HsCAwOhUqlw4cIF1MjTMfXMmTPw8vKyOJFUEHd31jAaMACIjQXWrAGOHuX/sbG8ufXrB4SE0MJkDmxs2Gi3aVM2gf34Y2ZjDRsGqwr2ViqBrl2B1q0pllatYh2mwYMpmqy4iDwAiudq1bj078+CqY8fs5TFiRP8u3QpW63I5UBAAF9bpQrLWVSpQmFujW47gUAgKCsMEkq9e/fG1q1bC63MXRo+/PBD7NixA9OmTUNKSgqOHz+e+1xkZCRsbW0xcuRI3L17F1u2bAEAtG7dGgEBAXjllVcwYcIE+Pj4YO/evVi1ahUmTZpklHGZAoWCVo+QEODGDZYW2LePtZo++4w92jp3Ztd6Jyf9SwAYEw8Pug1jY2n1OnaMIqN9e+uyTDg6AkOGUDRJhR9XraKlrHNn/hblAbmcGZmVKgHNmnFddjZj365f5+93/Trw33/AokUUVg4OQHAwRVN4OAuoBgezGr01uFwFAoHA2BgklLp06YLY2FiMGTMGzz33HPz8/KAo5C5Tq1YtvT4vJiYGADBz5synntu2bRuCgoKgVqtzA8cB1ktatGgRvv32W3z11VdITk5GUFAQpk2bhmHDhpVyy8yDFINUvTpdJSNG0EX033/A3bu8ma1dyzim3r1NL5QkGjWiC+fvv4FZs+iOGzGCY7YmPD2B558Hunfntnz+OS1mI0fS6mRtmX76oFTSkhQQQBccQIGUmAjcuwdcusTlxg3W1PrhB4pgOztam4KDKebDw2nt9POjgBYiSiAQlFcMynrL6+oqLHjKkKw3c6OrMndZUljhSIAFLbdupWhKSeG6SpWAQYNoASmpq0SqzB0cHGzwtl24wKrYCQl0Xz3zjPHbt5SEjIx0XLt2DWFhYSXetps3KZj27WPQ9JAh7I1nSYIpPT0dly5dQnh4eJm7lVUq/q4PHtDydPUq+9bdv0+rlFTP1c6OFidfX8Dfn+KpRg2gcmUepy4utFQVZ3Usz5WCxbZZJ2LbrBOLqsw9Y8YMo0eXV2QkcZQ3YDs1lTfqAQPY3uLwYWDDBt6ofvwRWL6c7i9zuYwiIoB33mHMz59/Mhbm+edZ/NHaCAkBpk6lte7vv4F33+X2DRnC7L/y4pLTF4WCx6OXlzZgXCIzk1aoBw8o5K9f5/9XrvAY/eMPlqwAeCx7elJMSa5AX18eIwEBfM5SK6gLBAKBQUIpb281gXGws8vvUsvbDNfRkTfspk3pFtm4kTen778H/vmHLqMWLUwfL6RUAgMH0pWzdCnw1lvsV/bcc9YZIC2VFLh2jfv1ww8ZszNwIIPYrXGbjI3kivPx0bbzkVCrgYwMWqPi4ynqr1xhI+n4eFruEhNZRT5vgoK9vR0UimoICrKFry8FlIcHLVRBQRRabm60UNnb83ewJGufQCAonxgklLZu3YqOHTsW+Zovv/wSb7zxhiFfU6HJa2XKyuLNx9ubMTS9egE7d9L1desW8MkndHk8/zyDcE1NYCDw2mssI7B+PWsXjRljXX3j8hIWxu25dYuC6csvGVTfqxfdjE5O5h6hZSKXU9Q7OtJiBLAPX14kMZWSQtH05Alw82YOTp9OgVLpgKQkWqpSU7mkpfE9ACcCCgUFk4sLxZOHBxd3d1qrAgMptFxcaK2SmkgrldaVeCAQCMyPQUJpypQp+Omnn9C6detCn3/vvffw119/CaFkIJKFSXJlJCVxnZMTSwd06UJX0T//sLnqW28x4PqFF2DyKtRyOUsJNGpEAffuuwyWHjLEuPWKMjNpjVAqyz6oPTgYmDyZMWFr1tCt9Oef3O+DBtGqIigZecWUtP9q11ajevXHCA/3RN7wq+xsiqrUVFqhkpM5Ybh3jwIrMZHL3bsUXikp+YWV9H1OTvnFlacnhZWbG8WVry9FlSSunJy04kogEFRcDBJKffv2xaRJk/Dzzz+jmZR/DECtVuONN97A+vXr8d577xk8yIpO3iBvmYwXdmmGDPCCPmIELR1Ll9KaExvLbLSePVnvyNQxIN7ewIQJwN69TME/epTWpYYNDf/szEy6HKWgd+lGm53NAOSywtcXePFFVidfv54lHFavZsD3gAF0QQlrhfFRKrm4uOiXWSlZX9PTtcIpKYlB6Pfv8//ERGb2nT5NAZaSwvfk/f3s7QFnZ547UtFXLy+KKy8vrdXKzY3rpCr6wh0oEJQvDBJKH3/8MbKysvDyyy9j3rx5iI6ORlZWFiZPnow9e/bg888/R+/evY011gqLVDbA1ZUXeVvbwq0oHh4UJ337AvPnM3trzRpg+3aKpZ49TZuRJpNRRNSuTYvXJ5/QBfP887zplZbsbO4PNzfe8CT3TGYmm/pmZZWtWnFzYwB9//7Anj3MSHz5ZQZ+9+zJwPpylkRiVdjYcHF01GaOFkdBcZWcTDF+/z7/SlasW7e04is9ncebhJ2d1g3o7a1dgoMBLy8Znjyxy80OtLMTologsBYMvm1+9tlnyMrKwtixY/HDDz9g/vz5OHr0KL777rti45cE+pE3oNvOrnixExAAvPceY4TmzmVQ8s8/0woyduzTwbelJTNTv5Yq7u60JtWpQwvM5MnaPnKlQXK3JSbyr0ajFU4PHnBMecdYVi46W1ugQwcW3Lx4kW1ofvgB+OUXruvbl0Hg4oZo+ZRUXEkxVunpFFGJiQxav3WLAeuPHwNnzlBcJSUBGRm2yMpig20HB36Hjw/PVT8/tpQJDuY6Ly+OQ1imBALLwGChJJfL8dVXX+GVV17Biy++CAcHB8ydOzefK05gGIWVDdCHevVYEHLTJgYh37zJmKEGDWzRrZsSwcGlH1NhNZ+KG1ejRkwzX72amXoHDjCOSt9Zv4TkbpMEEMCYlMREihdJKBXmoiuLeCaZjDe6gQOBtm3p9jx4kC7HmjW1jY5FCnz5IW+MVXHHb3Y2EB+fhZMnr8PdvQri4xW4do3C6vJl4NAhxlplZ/NYsrXNL6SCgmiVDQykqHJxqXilKgQCc1IiobRw4UKdz9WtWxf79+9Hq1atcP78eZw/fx4AC1GOGjXKoEGai5QUBVauVCA0lBcob2/TXaQKWmsKlg3QF4WCwdRt2jB+ifFCChw/HorevXMwciRQmrqFBd2BOTn6jc/ZmW7AevXYNmTyZLqxuncvmeWl4P6QhJNKBdy9S39IQRdddnbZBX5L3xUczH0yeDCtC1u20MI0dy7LOvTsyW0XJQYqDkoljwlf3xyEh2sKPd+ysmiZevyYRT0vX6bIv3aNQmr+fFqxFApehwIDmagRFkYRJbWZEceVQGB8SiSUPv/882Jfs2nTJmzatCn3sTULJZkMuHRJjkOHtPVe3NwomipXZkxKSAhv/sakNNaa4nByYiBy9+7A3LkqHDqkwOrVSuzdC4wfX/L6SyV1BxYkKor1itatY2uW2FiOo7RtUCThlJGhXVfQRVeW2UsFv8vOjm1eatXiDTAmhvFMb7zBAOBmzSiaatQQLhaB1ork5cUWRnnLKajVdPE9esTMvnPnKMJPnmR8XHIyX+fuTutT1araPn0hITzehAVKICg9Jbq9bdu2razGYZG4uKjw9dfZkMttkJjImd65c6xCHBsLbN7MC5BUZbhuXV6kDA3kLa21Rh8CA4F33snChg3xWL3aH/fvy/HJJ3SLvfwyW1DoQ2ndgXlxcGC2mGRdeuUVBkgPHFh68ZCZCaSlyXItSXlddGVZRqCgOzDvd7m4sAFv165AXBywbRszEteu5e/RogUDwMPDhWgSPI1U2sDJiRO0vFENOTna0gjnztESdfYsBVRqKic/3t6MlatRg423w8N5nov+fAKBfpRIKAUGBpbVOCyWvA1BfXx4oQE4y3vyhL3OTpxgMG9MDGeGYWGMTalfn+0aShrMa6i1Rh+iolLRvn0mVq92wF9/UfiNG8dq2gMH6mfCL607sCDVqtEFt2EDBdPhw8DEiSWvASXFJD1+rISrK28ExhqjPujzXX5+wNChdM1dv86Cobt3sxlvQAAFa+fOPH5E/R5BcdjYaC1Redta5eQwqFyyPF25wond77/z2uXuzri6GjU4wYuK4vFXxu0DBQKrxKBb8K1bt3Dp0iW0b9++0Oe3b9+O6tWrIygoyJCvsUjkcl6cmjfnotHwwnT8OAN5N2/mTT8wkBewJk14k9RHNOmy1uibZaYvdnbMPmvfHpg9m2P//XeWE5gwAWjQwPDv0BdbWzbUbdiQ++3VV+kmHDFCf8GQnc1YD2dnNbKyyjYmyVDkcs7yq1ThjevaNbrmjh5lSQcvL+7/1q25T4zt3hWUb2xstJM7qXaZRsOkh9u3gVOnaHmKiQFWruR1xcmJx2NUFNC4MSvq+/ubt8m1QGAJGHQKfPHFF0hJSdEplJYsWQJXV1d8++23hnyNVSCT8ebWoQOXrCxam3btAvbvZ1+20FCKpmbNGDdQFAWtE2URtyQRHAx89hnHOncuXYzvvMM4iXHjOPs0FUFBwEsv0T21eTNw7Bhjl/QpaaBUUnClpMhRqZL1WGTkcrpsq1blzezOHYqmU6docZLJGA9Xvz7QooUsX8VpgUBfZDKKoYgILhJpaXTdnT7NY27PHjbbVqsZVhARoZ3sVatGl7YoeSGoSBgklI4dO4aRI0fqfL5Zs2ZYvHixIV9htdja8uJSuzYtG+fPM25gxw7WM6pRg5aoOnV039DzWpAKxi2lpRnXuiSTMbW9USNaldas4ViPHKFYat/edBdHGxum1DdowFIC06ezGe3zzxcd/yW5SJOSssusFEBZI5NRLA4ezOXJE7pOjh1j4PvixbZwdAxDo0Y2aNuWbhNvb3HjEpQeR0cKoGrVgD59KNZTUli5/OBBXrv++IOlRmxtaXWqVYtZnPXqUTgJBOUZg4RSUlISnIroDOro6IiEhARDvqJcoFRqRVNGBmNwtm5lyq+nJy0FbdvyhidR0ILk6qqNW5LJWMgOML51ycmJFpz27YFvv6VL6Msv6Y575RXOME1FpUqssxQZSZEwaRLFUsuWut9jZwc4OmqsUiQVhocHSzu0aUPBfeFCFrZsScGdO/aYOZPlEPz9uY+aNOGNSwgngSHIZExAiIrSWnJVKtZ9OnuWk6djxziZyskBfH1t4ecXhM6d5WjZkrGFokyBoDxhkFDy9/fH0aNHMWTIkEKfP3LkCPxKm+9dTrG3542+ZUsGHv/3H1uNbNvGi1K7dpyxJSUxa8XTUyuOpLilrCwKpbLIipOoXh348UfGLyxZorUsjRrFnnKmSjeWyZgVFhXFC/M333B/jRlT8kKV+mLKhrslQakEqlXTQKF4grAwd6hUSly+zJvWpUsMCs/KolVNSiaoW5dxcuLGJTAEhYIxln5+nEQBLEtw7Rqwc6casbE2+O47Jb74gkK9Vi1ahFu25PVMZNgJrBmDhFLPnj3x008/oU6dOhg2bBjk/5/brFKp8Mcff2D9+vUYP368UQZaHvHxAUaPBoYPp4l740bgu+94MYqKYkwTQCtP3sKTNjasq1KWWXEAP3fQIAqVH35g/MLPPzNuZsoU7fhMgZsb91O9esA//zBL7rnngB49jJtSn5nJYNeUFAZQBwU9LZYsRUg5OVEI1a3LxykpvHEdP8408Z9/pgXT0ZG/VbVqQHQ0Y04qVRKlCASG4eLC0IHwcBXatr2D4GBHPHrkgP376S6eN49WaVdXCqdGjWg5r1LFsiYgAkFxGHSLHTduHI4cOYIZM2bg559/RlhYGADg2rVriI+PR+PGjfHSSy8ZZaDlGaVSa2U6dYqBlNu2MVW3cWNmf+W9sBijhlFJCA4GPv+c6fu//sqYhQkTKFQGDTKttaJ2bVq71qxhW5bYWIrN4kSbvuImJYWBrfb2/OvhkT/rMCWF1jyNpvi2KKYWVM7OWhcvQOuSVF/n0iVaBdev53Hj7s4yFmFhvNlVrUq3qrA8CUqLvT1rNIWH83F2NicdsbG0ei5axNZFXl485po25SSscmXrSbwQVEwMEkq2trZYsGABVq1ahS1btuDmzZsAgDp16qBz587o06dPrpVJoB/Vq9PFFRdHV0psLFPGmzdnfR0pTdyU9YEAWh969GAczOzZzORbupQZMlOmcMZoKuzsWOupcWPgr7+A11+nmBw0qHArSUl6vmVl0QqjUOSP85E+48kTFvgLC+PrdJUgMFWfuaKwtaWADA0FunWjuEtOZlbd2bPA1at0Y0qxJnZ2jHeqXFmbJh4cTPevSBEXlBSlUivGn32W58qtWzzmjh2jlXrmTFrQmdFJ8eTvL6ydAsvCKE1x+/fvj/79+xtjPBUe6abq4cHMuJQUuuR27gT27qVg6trVfHV1vL2B997jWH76iRe+115j3FJxWWnGxs+PonLvXlrgDh0Cnn1W9lR18YI931JTC7f0sKo3RUFaGmN7pFwF6TOkmLH4eP5GumbCpuwzpy8yGd0grq6MYZJITaUwv36d4un2bRZRlVo7OjnR2hQYyJtYzZpsjeHjw+NQBI4L9EGp1NYOGzaME43r11mW5NQpnsPZ2RTqjRszFqpuXdOWJxEICkPMEy0Q6YYqWSQ6dgT69mXm19atFAYtW9JKUETSYZkhkwGtWjFeaP58YNMmtuM4eJDWJVMUqsybFVi3LmNv1q0DfvjBFuHhvpgwQeuOy9uHDaBVqDDXWXY214eHUwj5+mqfkz4jI4MCzdOT+16X+DFlnzlDcXLS1nHq0IHr1Gq6GB884M3s1i2KqQsXWBA0J4fHgYcHXSl+ftyXVarwRuflxRucCOIV6MLenpPBGjX4ODWVbv09e4ADB1it3s6ObromTZjoEh5u2eeSoHxSIqE0fPhwyOVy/Prrr7CxscGIESOKfY9MJquwtZQMoaBFwsODrS/69gX+/Zfi5MABVm7u1Mk8rQdcXICpU5m6/v33wP37LFTZuTMwdmzZWr0K1pVyc2NGXv36WVi2TIk337RFr140+eftw5aZSaFUmKUnrxjy8MgvQovq5VYYJX29pSGXUwx6empvZACFZEYGheT9+7RAPXjA1PGLF5nFmZnJ19rY8P0eHrREenpqXXuVKnG9szP3jbBKCZycWEW8YUMeZ48eMexgzx7gt9/oqvP31waFN2pUuhZRAkFJKbFFSZ2nLLBGoyn29fq8RvA0uiwSjo4sRNirF/D336xevX8/LQFt25onlqRBA2ZYLVzIeJfNmxk4PHFi/gaepUFX2xZd/fAiIjQYMSIO585VxoYNCsTGcn81a6bdj2lphVt6ihM3JY0L0+f1lpJBpy8yGUV5YCCXgtbDrCz+Jk+eUDxdu0bLVHw8Cxju2kV3snQZUSgodj08AFdXG2g0vqhcWYGQEPYe43rk9u4TsVIVA5mMIqhLFy7Z2Tx+tm1jVueGDXxNjRqMa+rUidmc1nAOCawPmUYomUI5deoUUlKyodHUhL29eTpFJifTHO3kROtNXqQbbFoaXSHbtvEm37073VBFzbIyMtJx69YtBAcHG33bTp9mSvCdO3zcrh0LWJamem9xbVtSUrj9jo5a61XebUtLc8A//zB2KTqaFqfAQP3EiSkETGkCvjMy0nHt2jWEhYWZ7bg0BLVaW9oiMZGC6vZtiqmHD7Nx924KZDIXZGTYIC2Nr5eOZVtbngeurjye3N35V3L9eXnxOHBx0VqqLMVNk56ejkuXLiE8PBwO5azzrDm2LSmJcXS7d7MUwYMH/P2bNOGksUkT4xReTUtLw7lz51CzZk04mjIA0wSU5207efIkZDIZauftFG0AYn5moWRm8uYh3bBtbfOnqee9wY4axYayS5cyZmjvXrYi+P9qDSYlKopB3n/8QYvXjh00n0+YwLimkly4CrrX8hbWzMzkOsniVJig8fRkZe9WrdgKZfJkzk6HDCnaLWiqjDVLDPgua+RyCn8nJzwVdJ+RkYNr1+4hLMweSqUNMjIohlNSOGmIj+fvkpzM/XXnDmOmUlO55OTk/x4HB61wkqxSHh58XKkSjw9JVLm4UHDb24uMK2vA1ZXndatWrBp+6xYTXg4fBqZN429YuzaTXzp2ZPydsEYKSotRDp2UlBTcvXsXSUlJhbraGjVqZIyvqVAUdRMt7Dk/P+DVV5nC/8cfTLtt1gzo3bv4BrzGxs6OlbNbtqR16fp1YMYMXrQmTNC/orYu9xpQtIgqSEQEM/N27gS2bGF6cv/+zB4s7OJpKgFjTQHfpkah0Aqq4trmaDT8/dPTaWFMTeU+ffSI7r+kJG1ZhAsXtK/RJawk4SRZrFxdecxKFivJouXoyN9NCCvzolAwcWPUKC4JCZyc7dypjW2qXJnXw86dmYRijiQYgfVikFB68uQJPv74Y2zevBkqleqp5zUaDWQyGc6dO2fI11RIirqJFvVcRATw0UfaDuAffsjYpYJFK01BRATboCxbxmXfPprJx4+nebw461JRhTWLElGFYWPDmWXTpiy6+NtvvJAOGfJ0nI2pBIy1B3xbCjIZ959SSRGjD2o146nS0rgkJzM4/eFDunulwqPFCSvJIuXqmt8VGBLCCYq7u0hvNzXu7iwt0L49z63Ll5ktvH8/r4murgwYb9+eyTA+PiIgXFA0Bgml6dOnY8eOHRg+fDiio6Phqu9VSlAsRd1Ei7vBymS8ADRpQvfXf//Rn9+rl2lS9/OiVLL1SIsW7NN2+TLw1VcUKa+8wu0oCl0B0aWtTu7szEy4Vq2YPfjRR5xhDhnCYp/SZ5tKwJi6cKiAyOV0s9nbay2ueWtLFUSjobBKT9darO7fZ8mEhAQKrZs3KbAkV6AUsG5jAzg720KhCEZIiE1ueYmwMFrL8pZSEDds46JU8netWZO/YVwcEBPDSdsnn/D6UasWrwfduvE3MVUfS4H1YFAwd/369TF48GC8+eabxhyTRWAJwdzG4tEjtvvYu5dCqXv3dGRmlk0wd1GoVGyy+8cfFCGOjnTRdetmPPdFSQLVMzM5y9y+nW6Zdu1YCK9SJf2+S2ppAmiDhw15nT5YezB3UZSXbdNotL95YiItVNeuZeLSpUTIZB5ITlbmugMlK5Wtrda95+9PoR4ezv99fWm5slQXn7UGqicnM4Nuxw7+TUhgHbAWLXhNiowE1OryG/Asgrn1xyCLkr29PQIDA40yEEHZ4e3NGJ3OnYEFC4AvvrBFnTpuGDTItAUBFQr2h2venNalc+fomtu9m4HWAQGmGwvAm1TlysCkSRSRR4+ypEHnzsCAAUVn6knNc+/epRXAz4/tPvIGm0sFLCXLg0bDbZQa7VpbaQCBfshkWmuVtzcDievUUePatUcIC3OBvT19uVlZ2iD1uDiWUnj8mFbXw4cpslQqfp6np7Y6emAg0+IDAynqRVHP0uHiog0Iz8xkP8QtW+im++037u9GjWwQHu6EwEDTdh0QWBYGCaXevXtj69atGDp0qLHGIyhDatcGvvgCWLEiB3//7Yrbt5Xo14+uJ1MSHEz329q1rL104gTw0ksMxOzdu3jTt67aSiVFen9KCt2UnTrRLL99O12DHTsy6LuwDLnsbL7P3p4CKD1dG/SdN2tOpeLN0NaWNzypfQpg/l5wAvOS14oUHs4btoRU2PPJEx4nly9TlF+5wnIXSUnaz/DzY0xUSAjdSFJBT9HgWH/s7JixGxVFl+mtWxRN+/fL8c8/lTFvni2aNOE1oVUr/a3OgvJBiYTSmTNn8j3u2rUrYmNjMWbMGDz33HPw8/ODopC7XC1TdkwVFIlSCfTvr0aVKjexe3cV/PQTK9wOGMDUaVOhULCEQZMmwHffUSzNnUvr0tSpvOgXRnG1lUqCnR0DO/PWYurShRfCzZtpkt+2TSuY8mbKKJV8/c2bFG0uLtqg77xZc48e8YaVlMSbn6cnX1cRSwMI9Ecq7OngQCtk3smMRkOR/vAhj7/Ll+k6PnOGJUIAHpv+/swGCw+ngAoK4nEq4qCKRi6n2HzhBWDIkGwcOnQVcXHVcPCgAu+/z/1Xrx47EnTuzP0q9mn5pkRCqX///pAVOCKkEKd9+/Y99XqR9Wa5uLurMHlyDjp0UGLxYgY1d+/OTBBTBjP6+7OUwYYNrAF17hxLCAwdCgwc+PRYSlIWoDh01WJydKSI69SJgmnbNlqZOnTgehcXrRUob4NdibxZc87ODNSVrEh5+8OJ0gCC0iCT8Rh0cWFMTdu2XK/R8Hi8f59upCtXKKL27uVkQKmk6AoLo3iqXZuCwNVV3Oh1QbenCk2aqDFoEK8XsbG8Hvz0E/D113SDtmnD0iwiGLx8UiKh9Nlnn5XVOARmIjqa5uY//wT++YeVtZ99lvEPpkImo0hr1Ig1T2JjgUWLeIF/9VXeDCRKWhagKHJyeGOxt+dfN7f8osvJib31Ondmb70tWyic2rbleltbiqqCViF9suZEaQCBsZHJtHWgqlbVrs/JkQLKgVOnaIWKjaVVShJPVaqwnEe9ehRPIh6ncFxdOWHq0IHu9tOneV1YvhyYM4f7vXVriqYaNUSRy/JCiX7Gvn37ltU4BIVgqmBfe3vg+eeZ9fXLLywO2aEDT3ZT3sArVaJla9s29o67fJmB1s89BwwapK1OXlRZAKZwy5CVVXyQq0ZDwfXgAV9bsFK0hJMT0K8frW3btjG1eMsW1mRq0YKvKaxvnBA/AkvAxoaByb6+PGYBxuHEx9PqdOoU+6jFxvK8s7enWIqIYJZs9eqMgxKWkvw4OHBy16gRrzsXLwIbNwLr1jFpJiREK5pq1RLXA2vGIL07YsQIvPTSS2imo/PpgQMH8NNPP+G3334z5GsqJKZqo5GX0FAKlX//ZRr/2bO0Lkn1hUyBTMaYoAYNgNmzGVy9dCn/vvqqtvGlFISdmKiNL8rMZEzQkyc2uWn4Re0zmYwzRB8fBs4W5X7IzKT7okEDFqu7cAE4cIBNXmvX5sUwKEj/7TTH7ysQSMjlzMjz9macIMDJx6NHPLZPnWIW6Lp1FFW+vrSW1KxJK3RoKIWCgNjaaoPBVSrg6lWKpp07WQ7F319bq6l+fbHvrA2DhNKhQ4cwcOBAnc/Hx8cjNjbWkK+osJgr2NfGhoHLrVoBv/5KH3zr1nQ1mdIc7+kJTJ/OCuOzZnHGO3UqLTvDh3N/XLhAgWNvTwElk3G9k5Ma2dlP94YraIWysaG1KDOTf4sykxeMjWrZksuePRRMn3zCuI8uXeiaK+63EsHcAkvDxoaWIz8/xtwAdC/duAEcOUIL7/LljCV0cKC7rlYtoF49GWQyCy3yZAYUCl4LwsO1GXQbN/I68ddftIhLtZoaNSq676TAMjDYg1owuDsvN27cgJNoqlMqzN0HzMeHzSW3b+eM6Px5ZsbVrWvacbRqBdSpQ5fAjh20dO3fz1ICajUFVXw8L+iurtxPqalyeHpqhU9mJnDvHuOQpGaskrVJ3+rehcVG5eRQoDVqxP1z6hTLHSxfznF37667T5m5f1+BQB8cHBhrU6MGH6tUDBY/e5bxOTt2AMuXK6HRVEFEhBJ16/J8qFFDtG4BtBl048YBY8eyxMPWrXTfr13La1bTphRNzZoVXbtNYD5KLJRWrVqFVatW5T6eM2cOVqxY8dTrkpOTceHCBbRu3dqwEVZQLCHYVyZjrFKDBvS5z56ttS6ZUv+6uQFvvUVLzQ8/MBX6008poGrXpthRKLiPvL2BlJQceHtr91laGi/udnb8mzdoW99YIl2iShJPYWF0SaSnU1zu3cvWMVFRbL4bHf10DJO5f1+BoKQoFAz+Dgigi1yjAe7ezcLu3Q8QFxeAPXvYNsnGhudEVBRdezVrChEgkzFJZuRIYMQIlnfYsYNW6VdfpWW8SRNapVu3Nn0zc4FuSiyU0tPT8eTJk9zHqampkBdSW9/R0RGDBg3ChAkTDBuhGcnOluH2bRm8vOh2cnAwbRsBXTdxU1d09vBgZe9GjZiNdv483XP165f9d+elSRPWWpo/n6bskyfpFujWTRtfZGsLODhoniq2J5Pxom5IGnTB36NgHSaAv0nnzhRGp0+zPtTXX3N23agRxV5oqPazhEASWDMyGScQ9eqlISxMBTs7tgI5f54xTvv3A6tXU2BVrUqLdPPmjHusyJl1MhknSs89x+XxY06udu5kyIFczljIzp05WRUFLs2LQb3e2rdvj//973/o0KGDMcdkEZw6dQo3b2rw8stRcHSkK6dSJbptoqJYXdrdnZYVU9YgMUYQsCE9tZKSGLu0Zw9jdPr2NY+PfdcupuMmJPBxu3asv2Rj83Svt8xMmryleKaAAOMIlLzFLwGtGFOrtW7BpCTeJA4cYFbR48ecabdpwxm5rlm2LjFcXvqhFYbYNuukqG3TaFhd/Px5tmW5eJGWFCcnuufq1aPLKSzMMlPpzdHHLiGB14sdOzgZVKspMDt1orXJ19c49xzR601/DBJKJSUxMRGTJk3CtGnTEBkZaaqvLRWnTp1CcnI27t+PxKNH9jh7li6fu3fpvlGpKJQqV2bQXv36NKuWtWhISWFfKCkI2M+v5N+p70W7KMvV3r10x7HSt+mtS5mZrAuzciXHAlCYjB6dCX//m6haNSjftuUN5gZK1wKlYEB4aipFq6srjwmAF7G4OF7c7O15Q5Bcdvfu8fX797OWjUpF12GbNpw9SteqosRwRb3hWjti24haTaF07Bgb0V6+zMmEtzfPhcaNaY318bGMIpjmbviblESBuX0791dGBifq7dsDPXvynlPa/SSEkv6YVMNnZ2fj0KFDSExMNOXXlhobGw3q1NHAwYHp31L/Jan2TmwsA3i3beMN28WFwb3R0TzpK1UyvqvOVEHAxVmuWrZkjNCvv9Ky06oVM9JMFbtkZ8dZ6NSpDJqeNYsi9quv7FCzpj9eeYXP5xU3UoZbaVqgFPa+vAHeDg68YMXHay1XcjlFlPT5jo60SA4ezP/PnuUxNGsWf8eoKO7H6tVFRpygfCKXczLRtSuXnBw2lz5wgOfDd9/xeA8N5eSrVSvGN1XUdHpXV4qi9u05MTt2jPebBQu4ryIjtXGjwcGmDQ2pSFigsdNyydt/ydeXYghgjEpcHDMZDhxg5lN2Nq1NDRrQYuDnZ5yD2FRBwPqkr7u6Uqg0asRtPn+e/vY6dcpmTAWRYnwaNGCT3QULgG3bNDh3zhmvvqrBsGGMa5LGLll2dLVAKarZbmHvy2stkixV0hzAyYkuB6l1SWF95Zo355KQwHiO48cZrK5QaANh69UTGXGC8ouNDUVRaCgfp6dra5TFxLBbgIsLz4VGjZgh5u9fMQWBk5O2LEl6OifpW7cCK1ZwslqtGu81/fqxdENF3EdlhUUJpQ0bNmDNmjU4c+YMkpKSULlyZQwfPrzQHnMFuX//Pr755hvs2rULaWlpCAwMxEsvvYTevXuX+bgdHXlgVqkCDBvGm+WZM1T+27bxZK9WjTftli1pZjYEUwQBl8Ry1bIlRePChbSOtGpFd5wprblSu5GAgExs2CDHw4e2mDePLUfGjGFAuo0Nx1RYC5TiLE26WqcU/C3c3CiGbt2isE5I0O6HwvrKAXThSrPGhATOGo8eBVatYiCs5Npt1sy0jYsFAlPj4MDJQb16tOA/fEir69GjTOT48UeKqgYNeN2pqNYmBwe6KRs3pgX77FnGNK1bx2SXypVpaerfnxZqS4z/siYsavctWrQIgYGBmDZtGjw8PLBv3z5Mnz4dcXFxmDhxos73PXjwAM899xzCwsLw8ccfw9nZGZcuXUJWVpYJR6/FzU1rLUhLo2j67z/e9JYvp7lUqj5tqS6Vklqu3NyAKVN4gVu8mEGbQ4bwQlZWFLQA+foCdetqUKnSXdy8GYB162xx4wbw/vvc13360KcvNQHNaznKazGKj+dzBcsIFFdzSRqPg4P2NWlpXCc9X1wzX3d3Bqa3a8d4tLNnKZzWrmU/Pj8/JXx8KqFTJxnq1q3YmUOC8o2UGdajB5fMTDb73buXySQrV/J8ioritbZpU4Y7WEJskymxt+f1rUED7qOLFymapKrgfn4UTf36cV8JC3XJsSihNGfOHHjmKR7RrFkzJCQkYOHChXj55ZcLLUMAAF9++SX8/Pwwf/58KP6/IZGutiqmxtFR2w8oNZWBvOvX07/s6ckTvHNn3YUJzUlpLFdt29L1tmAB8O23vOH362d8QViYBcjZmX56lSobTZqo0LcvC1Xu3s3KwufPA888U3imniRs4uMpZACKmbyWpaL2R97xSHWbMjL4Pf7+tHjpauary+Xn7KydNWZnM3j94EE1zpyxwzffKHNddDVq8DgKDRUXQUH5xc5O2yZEo2EM5cGDdFnPmgV88w2tr1IZjqpVK15/Ojs7Wvdr1+Y148oVCqZDh1gV3NOTlrh+/UzbmsrasSih5FlIha2aNWtixYoVSEtLg3Mh6V0pKSnYsGEDZsyYkSuSLBUnJ1qSOnRg4PE//9DHvG4dLTHdu/MiYO2+ZU9P1l2qW5czmgsX2HYkb0dzQ9EVa5S3jpKrKzB5Mt1Wy5czjmzpUoqmSZPoDpXIG6AtbUNRlp+ixiNZpMLDKZ5UKt0WKX2Dy5VKXthCQlRo2jQOLi7BuHbNAefOUXz/9x8tWVLrhIYNaX4vWE9KICgPyGScXPbuzSU9HTh3jnFN69cDv//OMiDR0bSm1K5d8ayvSqW2qvqLLwLXr2tF0/PPA46OdqhePRAjR8rQunXF2z8lwaKEUmEcOXIEvr6+hYokADhz5gyys7NhY2ODYcOG4dixY3B3d0efPn0wZcoUKA2cYqenpxv0fl14egIvvMCYpn375Fi7Vo4PPlCgalU1OnVSoWlTdZnd5DIyMvL9LSukjJXFi20wc6YCbdvm4JlnVEbxl6tUnFU+esQLgkpFC07m/xc1kv6qVMxEnDoV2LvXBlu22ODCBRkmTdKgQwcVhg7Nzhf3Y29Pl1fBzy3JeOztedF59EhbpFT6DIVCmz0J0PqUnMyA1eRkvreogh3Sdjk4ZKJ+fYpAtRp48ECGc+dkuHRJjs2b5Vi5kuMPCtKgShU16tZVo0oVjUW3lTDVcWkOxLaVLTIZQxoiI3ku3rolw969chw5IseaNXK4uGhQu7YazZqpER2thpeXfp8rXf/L6j5gSgICGA4xaBBw+7YM27fnYO9eW0yZooSdnQqNGqnRowfvPdZeRV2j0RQb11wSTFpHKT4+HgMGDMDXX3+N+noU3jl8+DCGDx+Ot956C6NGjSr0NevWrcOrr74KJycnPPvss2jbti1OnjyJH374Ac8//zxee+21Uo311KlTSE/PQny8aXwZGg1w/bod1q/3xIkTLvDwyEaTJklo0iQJ9vYm+4nKBLUaiIlxxaZNnnB1zUHPno/g759j8OdmZcmgUlF82Nrq3kd5X5eWpsDq1d44csQVAGBnp0bnzo/Rrl0ClEpNiT63qO/JzuZjW1sNnJyKHltCggI5OTLY2Gjg7q4q0XcWhloNxMfb4PZtO9y8aYf7923x5IkSGo0MHh7Z8PfPRGBgJqpUyYCfXxYcHKz7+BIIdKHRAAkJCpw+7YSzZ51w65YdABlCQ9NRq1YqGjVKho9PToWLa5LQaIDHj21w7JgzTp1ywtWrDpDJgJo1U9G8eSKio1Pg4aEy9zBLha2treUWnNRoNDhw4ACysrLQsGFDnZag4oiLi8PAgQNRtWpVLFiwQGd80tq1a/H666+jU6dOmDVrVu76b7/9FgsWLEBsbCzs7e1L/P2SUHJ0DDN5obG7d4FlyxTYvl0Be3ugbdscdO+uNlqNooyMDNy7dw/+/v6l2jel5d494PffbXDsmALt2+egVy+V0WMIMjMz8eDBA/j4+MCuCJ/Z+fNy/PqrEpcu8bjy8VFj1KhsNGumRna21kVmawtkZeV/bGwK+3xd36nv9hUkORm4c0eGc+fkuHNHhgcP5EhO5kzc21uDoCAutWqpERhIy5Opbx7mOi5Ngdg2yyA1FTh9WoYDBxQ4f16OlBQZKldWo1EjNdq0UaNaNU2+a1J6ejpu376NoKAgsxScLEsKbhtFExAbK0dMjBynT8uhUgFRUWq0a6dCx45qqynNcOnSJcjlcssoOPntt9/i6NGj+P333wFQJI0ePRoHDhyARqNBQEAAFi1ahJCQkBJ9blJSEl588UW4u7vjxx9/1CmSAMDVlZaBpk2b5lvfrFkz/Pzzz7hx4wYiIiJKuGVaHBwcTH6CVK0K/O9/wPjxzHRau1aB3btZwr5nT+P5ku3t7U1aJTgsDHjnHWb//fOPLa5cYeq+n1/R7yuqvpEu7Ozsity2evWA779ndsjChcCDB3J88YUdIiKYHSf1Y3N1pSuuqBiiguMr6XgL3lsyM4v/zuK2r7DvqFSJ2w3Q6vT4MYv9XblCcR4Tw3g5gK5APz8GooeFMZ7L15eZgFlZZVvHy9THpSkR22Ze7O1Za6hNGx7Dly4Bu3fLsWsXs+gCA5k80a4d3XjSpd8c9wFTkXfbHB2ZENOvH0vDHD0KbN+uwPz5SvzwA+MkW7cGevViORxLLTtgTLcbYKBQ2rRpU74+bxs3bsT+/fsxdepU1KhRA++99x5+/PFHfPnll3p/ZkZGBsaNG4fk5GQsX74cLi4uRb6+Wt6I3EKQYjqsES8vYOJExjH9/jsDdrdtY7+f7t2fvsFaAzY2wIABzExZvBj44ANt+m9heri0lbT1QS5nYH2LFswI+ftvBp5//jkD0Xv2ZHxTUWn9Bccnvc6Q8ebkcOZrb8+/ecsUFKQkoqzgaytV4iJ5wTUaXhzj4phhd/cuA0APH+Y4ZDImJLi6sp6TJLxCQpDbOFogsBaUyvxxTTdvaoOdV62Sjm8FqlRxRFBQxavX5OamLVWSlsYCl9u3c9/MnQsEBfHa2bs3k5DK8/4xSCjdv38flStXzn28ZcsWVKtWDePGjQMADB48GH/++afen5eTk4MpU6bg6tWrWLJkCXz1yJkPDAxE9erVsW/fPgwbNix3/b59+2Bvb1+skLIG3N2ZpTV0KAXTqlUUTH36MA3WGlPCK1cG3n6bmX+rVrHW1AsvPF2Ms6hK2sbC3p5ZeT16cP9u3gycOMGGlK1acb1EVpbu+ktJSbyg6DPeogSORqNtk2NvT6tOYUgiLTVV2xpCl6dbH8Epk/FYc3dnpowEY55Y/O/iReDqVRbGvHKFzYk1Gr7X1ZW/X6VK/PzgYAaQenryMy21ZphAIJXaCAvj8RwXR9F0+LAc69YF4c8/lYiO5vU2OpoW14qEoyMLJjdpwmvg5csUTVLZARcXPte1KwvjenqWr3pWBgklGxub3KKOGo0G+/fvR58+fXKf9/LywpMnT/T+vA8//BA7duzAtGnTkJKSguPHj+c+FxkZCVtbW4wcORJ3797Fli1bcp+bOnUqXn75ZXz66ado27YtTp06hQULFmDMmDHlqtmfpyfT3YcMYZ2i+fMpmAYMYDq4tR2YSiVbnjRsCPz2G/Dee6xz1Lmzdlt0VcQuC6T927s3BdO+fazBFBNDc7NkPE1P1wqNguNzdKQAKmq8xYkWSXT4+DA7TtfvKlmesrIoXADd7jBDBKdcTgHk7U1ze96xOzlxDA8f0o336BGXK1d4bEoGXZmMF1N3d+5nySIVHMzHbm6ilIHAMpDJtD0Z+/bNxtGjN3HnTihOnFDgo4943Nerx2tC8+aw6EzSssDWNr8l7u5dFgA9eBCYNo2vqVOH1qauXTkptlQXnb4YNPzw8HCsWbMGvXr1wpYtW5CQkIA2bdrkPn/37l14lKDnQkxMDABg5syZTz23bds2BAUFQa1WQ6XKH4Xfvn17fPPNN/jpp5/w559/wsfHB5MmTcLYsWNLuWWWQUYGb4K2tvndbC4uwEsvsXDiwoXAzJl0nwwezBuZtVGtGmOX/vmH8UunTgGjR/MGWrBHmimsEmFhFG0XLwKLFtFPv2MHrSeSYJLcYYXVR1Iqi3aHSaLFzo794Bwcnm6XIjXwdXLSfZGxsaGISUjgxVqt1i2AjCU4C9teNzdajurWzf9alYrfl5jI7bx3j2NNSGBsyJEjjMVSq3lzUqttIZdXhre3Eh4e/FwXFx4H/v4UVi4u3CdOTtZpSRVYHx4eKjRooMbAgTx2Dx7k8vXXLHJZuzZjnlq1gt5lB8oLCgUnO0OG8P7z5Ak7Cezcycnm99/z2tC4McNF6tWzTmFpUNZbTEwMxo8fj5z/79HQoEEDLFmyJPf5fv36ISAgIF82mrUgZb15eUWaJYgvI4M3FumG6u9PsVTY+rNnaV06dYr9wgYNKronWEZGOq5du4awsDCLC748exZYsoQ30gEDOGPTZX0pzH2VkZGOW7duITg4+Klt0+XuKi4Y+8wZnvSSgVOhoN9+0CD66UtKZiZ/w/v3KRAqVeLFpKgxSRTcvpQUfo5arW3Sa4x4JlMhBa4nJQGPH2fg4sUnkMm8kJFhi6QkWqukRWowDHAbnJ25uLhQTLu48LGvL49/SVQ5O/OvOevRWvI5ZygVdduSkzmJ2rePxS6ZIUbB1Lo1LcKWTHp6Oi5duoTw8PAyucelp9NNv2cP99O1a7zeRUXRPde1qzZpxticPHkSMpnMMrLeWrRogVWrViEmJgaurq7o3r177nOJiYmIjo7OF+wt0J+sLN5E3N05i8nOplAqbH2DBizhv2kT8OuvwKuvMhC5d2/rm3VHRjLj759/6Ps+fJgnVEBAfpdRSYO8db2+sGDshw95kjs48Htr1aLV7vhxZiGeOMGK6tu28YR/9tn8MT2FfXdegSJZYdLT+Vd6Pu/488ZA5X1cEGdnrQVLoyn69aZoplxS8lrl/P01cHNLRnCw+1OJCtnZFEtSgc7ERP5OSUkUWvHxDMZNS+OSlaV1Wcrl/C0lYeXszN/Z1ZX/e3lpRZYkqoTFSlAcLi7aDLrUVFpSYmKAX34BfvqJ1w1JNBWX2VsecXDgPqhVSyqKy3104ACwbBkwezbFZHQ091OTJtxPluimM3hI1apVKzRg2s3NDe+8846hH19hsbXlDSQhQevOKWq9XA5068aTctEiZnAdOEBzaIMGZtqIUuLoyEy/2rVpyZk1i5l+TZtqT6KSxtykpdEs7OGRX5gUzDADeANWKnkDzhuELHU1P3uWLVEOHuRsct8+jlXK5subvadLoDk6akVSYa6wkghBaX1ZZQdaAkqlNtC8OKTK55JoSk7Wxk5JAfc3bmiFV3q6NiAd0P4+krUqr7BycdFaq/IuIr6qYuPkxB5qLVvyeDpxgvGNv/4KzJlDsdCiBYPBdSVnlGfkcoqgbt24pKdzYrN7Nyeg27dzchMQwPtV27b86+NjGcLJoCGkpKQgOTkZ/nl++fv372PZsmXIyspCly5dUKdOHYMHWRGRsp2kejXSDFvXegknJ2DCBGbE/fQTMGMGT95hw57OKLN06tZlTakVK1ga4eZN1l0qLIhaOpmysoD0dBmysrT7JjOTwjI1leLH11f7+oIZZlILEZlMdyuRyEjgww95s/37b57kp05xCQ5mjZGOHbWB3YUJOl293yRKKgRNkR0oYYkuvLzIZJzNOjjoFzOi0fC4SUvTWqcePqTwTEjQWqskYZWToxVVCoVWVBW0VPn6cpHEtlpdllstsBQcHDipa9qUgl0STYsX09oUGcmQgnbteC23tiQcY+DgwNIrERHaa/Dly+xbeeYMvSPZ2QxtqF+flvsGDSi2zFEWx6AYpVdffRW3b9/GihUrAFA49ezZE3FxcZDL5VAoFJg/fz6aNGlitAGbCnPHKBkDjYYH3uzZvOj37s2buEplfTEFR47Q7XXnDjPlWrQoPLbozp103LoVh+BgPwQGOsDOjje4Bw/4msREnmxSDFdqKrM2pPgvb2++Rgoe9/cvXgw8esQg9PXr+T6A7+3YkZYwB4eSW3p0WZR0xWCVZb0pfcZlDIqKL7Mk1GqtqEpI4LH14IHWDZiSorVmSVl/Go0KCkUGfH3t4O1tk5v5FxxMMSVl/lmju6+ixiiVlMxMTqZ27gROn+b1JjKSIqBDB9OLprKOUSotajXPq6tXef86fZoTlcxMniM1atCC364da7h5eDxtdbKoGKUjR47gueeey33877//4sGDB1i2bBmqVauGUaNGYc6cOVYplMoDMhlnLvXrMztuxQr6iJ97TmbWwNbS0LAhq8KuXKkNrB4xIn89k5wcmnTlcg3S07VWlbxCys0tf2HEghlmjo5aS5C+FhNvb9aAGjyYcUtr1wK3bgFr1nCpV4+iqWnTklQWL9ziVJjFrKjXGxtTWq4sFblca0Hy89Mdn6bRUCwlJQEPH2bjzJlE5OR4IyWF5ROSk7moVDxXbW35G1aqRJeDvz9TqyUhZY0iSqDFzo7xONHRPIdOn6ZoWrqULrqaNSmaOnasuJYmgOeXpyeX6GitxenOHcasnj8P/PsvE5jkck42IiIonho14r7L60o3BgYJpSdPnuQrCrl9+3Y0bNgQ9f6/T0KfPn2sMuNNQq2WISODNyRrPmgdHICXX2aA9zffAB9+aIuGDb3wwgvWVd3bxQV4/nmeEEuWANOnAwMH0roE8ORITgbu37eFUql1nRUlIvI+JwVDS+KppDg5aa12x45RJB08SFF3/DhFWocOtDLlqdOqk4LB15mZtF49eWIDZ+ennzdFsLYp61pZO1IlcycnwMNDAweHFAQHe+Q756SaW0+esMjhrVt09Z05A+zdS+EviShvbwozPz8gPJztNnx9y3dF5PKKnR0nfw0bakXT7t0Mcl6wgDf+Fi2EaAK47W5uXCIjuS4jg5btK1fobbhyhTG5X39N8fTttzIEBBhvDAZd5lxdXfHo0SMAbD1y5MgRjB8/Pvd5hUKBjIwMw0ZoRhITFfjuOxv4+9OaERzMH8vdnTNqa5vhhYRQKP39dzbmzHHGe+8pMWwYZzHWdCJGR3MWv3w5C1WeOsVUfaVSig3JhrNz/m0qSkSUJhi6qDgdmYz+9AYNePPbuJHVvuPjmc33zz+cPXbuzPgxfav85uTQb+/kpG3ca2prjqksVxUFGxvt7Llq1fzPaTR0DT9+zNn0zZuMnTp4ENiwgS4KpZICyt+fS82aPM8rVRIi1looKJrOnKFoWr6cliZJNHXqJESThL09JwqBgUxg0mg4qYiPZ+Fbe3sNAOPtKINOpfr162Pp0qWoUqUK9uzZg8zMzHzlAK5fv65XGxJLRaHQIC2NinXjRro9FAqaxQMDWSixWTPO6ry8ys46o6vwZHHPFYZcDvTsqUZAwDVs3lwd33zDk3DkSF6srQVnZwZ2N2hAt+JHH7HVSGgobyyOjiW7UZTEpVSSOB0/P2DUKLZIOXyYx9HBg6y7cu4cA+4bNaK/vUmTorOnbGx4Y0xNlcPT03w3QkssM1Aekcm0Lr7KlelGl8jK0gqoy5efFlDOzswgCg7mdapq1adrdQksDzs77SRLEk179rBUyoIFnLC3bMlJVkXMntOFTKYNmwgKYm05Y2LQpfb111/H6NGjMWnSJADA888/j/DwcACASqXCxo0b0apVK8NHaSbc3FSYMycbCoUyN834wQPWyrh8mdWaly/nwV21Kl1CLVvy4uThYRzlr6vwZHHPFYeLixrTpqnQrRvwww/AG2/QKtOhQ+HNaS2V+vU541q6lBeT8HAbREdr4O1dsptCXpeSTPZ0T7e8lCZOR6HQ9kp6/JiZctu2semsVGLA0VGbYly//tMWSzs7Wg9SUnJKvH2C8oWtrdaKFB2tXZ+WRtF0+TKzMs+do3UiO5vvCQhg5fmICAqogADrs4xXFIRoshwMynoDgOzsbFy5cgXOzs4IylOmOCUlBQcOHECNGjXyrbcWTp06haysLNSsWbPQfnFSbMGjRzyAt29nXEpcHF0p9epRdNSuzZtbaUVTUhKzsqQCk4GBWldNUc8VRcFsh9RUpq3+8w9LzY8aRdO9tcEK5Tm4fDkHXbvK0LevXYmsLpmZvNFIfdN0WYuMmfl14QKtTAcOME5FwtGRwd8tW9Ikr0/lcWtHbFvZkJPDCd6NG6x4f/s2r1M5ObQ8BQdTPEVGsgVSSa9XIuvNtGRk8J4TE8Owg6Qkiiapt5q+xS0tNevNGNy/fxI2NsbLejNYKJVXihNKhZGSQgvPjh3Ali08iJVK1gPq1IkzvxK0vgNQNhYlXSfI8eMMhnv0iNWmu3SxDOtSZqa2blRxcUNXrqRj2bIUnDrliZAQBYYO5U1AX6RSApK1yMen8MBuSVQBhvWgk77P2ZlC++xZduSOj9e+xt6eYqlJE6BOnXQkJwsxYW1Y2rZJ4un8eVqf7tzheQ9QKFWuzIDxunUppIpyCVuimDAWlr5tkmjatw84eZKlTSRLU3GiSQgl/TFYKKWkpGDp0qU4ePAgHj9+jI8++gh16tRBQkICVq1ahfbt26OyPik+FkZphFJeVCpeiHbuBNatY68bW1uq/p49GXSpbzXfjAzdBSaLek4XRZ0gGRnA3LlMw4+OZnNac1qXMjO5HyUx6OOjW5SkpAA3bqQjMfEWMjJCsHu3PU6eZJXXZ57JXxagqO+7d48CxslJdx0lY1mVCvscpZIuk717OWt88CD/e0JCMtC8uQLNmytRtap5e5gZE0sTE8bEGrYtLY3WplOn+Pf2bZ5TTk6cbFStSkt5lSr5Jw+WLiYMwZq2La9oOnWKlvHwcK1oKuieE0JJfwyKUYqLi8OwYcMQFxeHypUr4+rVq0j9/z4Q7u7uWLZsGe7cuYN3333XKIO1JhQKHpiDB7NAYlwc6+usWQNMmsSLTYcOLOdeXMVsqWJ0SZ8rDfb2wOTJDC7++mvg9dcZu2Qu61J2trb+UWIiH+sSJEolxWdKihxhYRq89RawaxfrR506xWrldesWn7Gl0XBbi5pCGKuekK4sMqlH0tixdJccPEhL06VLwM2b9rh5k6nEzs5079aqxbimKlVEVoygdDg60hpRvTofS/25zp2ji3j3bl6/bG2ZWVetGs8nK5wHl0sky3PDhhRNZ89SNK1ezYSXqlUpmrp3r5i95wzBIKH0xRdfIDU1FatXr4anpyea503LANCxY0fs3LnTkK8oF8jlDJocN46ZWufPA3/8wRv4H3+wqeKAAbzwWIKrCwDq1KFlad48Bg6ePk3rkj4tIYyJ5G5LTMzf264w7OwYr+XgoPr/v5xJNW3KIpXz51NISGm2hVmBpKayPj5FCyBJ1MTHFy+qiqOoLDKZTHvzGj4cuHs3HVu3JuLq1Uo4eVKBlBRWr92/n6/39NT2pKtXz/I7mAssF6k/l58fJ04A4+guXqTl4sgRtpoAbOHhEYj69RVo3JjHqrOzOUcusLfXBoJLomn/fgrdxYspmho1UiAiwgaFtGoVFMAgoRQTE4ORI0eiWrVqeJI3EvX/CQ4Oxr179wz5inKHjQ0QFcVu9NOm8cD9809aDqKjgf79mS5uCTVQ7O1p/WrVCvjyS+DNN3mzbtPGdFYLyd2mb4xSQgKQnq5AQgKtPZJ4mjSJMT6LF1MANmxIS1/Bz9O3oKKdHT8/IYFjk8uLH19R49a3LpGnJ9CsWRKefdYNSqUDTp7kBfDKFc764+OZWLB9O19fqRLdvDVraoN1RZaToLR4eGizNwFOYC5cyEZMTDZOnHDCtm08vqTMuoYNeVO2psK25Y2Coun8eVqaNmxQYNGiKoiIsEGrViyvEhAgLNKFYdDtOCMjA55FFN+R3HCCwnF3ZxuOwYN5s5s/n+KpWjUGU7dtaxkp4PXqMStuzhxg1izOJocPp1AwBfrW7cnOZlq/s7MaWVn53XSZmbxgT5zIuLHduylW+/enQM3bOV7fgorZ2YzhUCqZki01Py0JpY11yspiHFx4OOt4ZWZyGx4+5O9z/Dhn/g8fctm9m++zteXxJYmniAjDsjIFFRs3N6BOHQ08POIRHOyEjAwbXLzIwOK9ezkRdHTkcRoRwazakBDLsZxXNOzttdbmxMQs7Nx5DzduBGH9elrdw8JYG7B7d/5O4rpADBJKVatWRWxsLAYNGlTo81u3bkWkVHNcoBOlktVFW7ViPMC8ecDnn7M20IABdBWZe0bm5MR4paZNGbv09tt0xTVsaN5x5SVvjFKlSlrLSd6AcFtbWpL69AFWraI43buXwjQwkK8vSUFFqadQQdebvlYiXbFORb0/K0uGR4/4vZJlSybja0NDaZEEGJx78aK2uOW5c6wFdvYsFwk3N1qaqlbVLoGB5SdIXGA63N0phho35jnx+DHjA8+eZdPo5ctpFa1Rg9eO2rVN784XEDs7oHr1DHTpooJMRot0TAy7CCxdymtJ06aMow0Nrdji1iChNHLkSEybNg0RERHo1q0bAECj0eDGjRuYNWsWjh8/jh9//NEoA60IyGR0j3z7LQOqf/oJ+O47FhgbOJCFxcxtYWrZkvFL33wDfPYZT6IhQ0zXb6qoUgGSmy4pKTtfdlzBgHBbW16sX36ZVrslS4BPPqFQ7d1b//gKR0dac9LSeIOQsuoyM9luIimJIiYkRPfvVpirrzgrk0rFbfL21hbILKyEgaOjdvYI8MZ1505+4XTjBvfJsWNc8u7LsDAuISFMEZdaY4hZpkAfZDIeo+3acVGrefwdPUoB//PPPCZDQ3nda9yY1k7hGjY9dna8rtepw2uLJJq2bWPSSOXKFE2dO6NcZdrqi8HlAebMmYNZs2ZBo9FArVZDLpdDo9FALpdj8uTJGDt2rLHGalIMLQ9gLG7epGBas4az/GHDeNExJIbJGGmhGg0LJf7wAy+GL76ozZYpK/QpFVBYOm9x78vJYd2rf/6hD799e2b56XPBLszyc/8+A13lct4coqMp0nRZiAp+RlG1nDIy0nHlym04OARBJnMwuOBlVhbF0uXLjHO6epWLrhaN9vZa0ST9DQhgwK+hVk9rSKEvLWLbniYtjcfd0aP8+/gxj/mICMbT1K9ffEZwWWNN5QFKij7blpPD32bPHrrz79/n+d6oEa+RNWroX+bGlFhcHSUAuHv3LjZv3owbN25ArVYjJCQEnTt3RnBwsDHGaBYsRShJXL8OzJ5NwRQZydimRo1KZw41Zv2MBw8Y6H3oEGsVDRxYdjPClBSWWZAsQ35+T1t/dJ38+hStTE0F/v6bmTzOzvTTN21a8n18+zYv/k5OzBKqX58Wt5I03NVlUZJuSr6+wVAoHMqkMa1KxVpSV67wuLt5k13t79zhc7rw9NS21fD35wXV359Cz929+P0oxIR1Yoxt02gYS3f0KC2d16/zfK1cmckvzZrRkqFrgqhvUdqSUtGFUl5UKv4ue/cCJ07wOufmxolgp060XFvArRKAhQql8oilCSWJc+fomtuxgxePMWMYKFkSjF1oTK2mT3vBAo5l/Piy6T1UWotSSXn4kLEUO3bQ9dSzJ+sU6UtKCi8kcXG8cIeGUih5ehZd7TsvumKUSnJTKkk2nT7k5FBA3bhB4XTzJi+W9+5xm4tC6nLv7U33nY8P/+Z9rFCk4/ZtISasjbLYtsxM1gw7coRuusePOWGIiuIEsXZt7SSpJEVpS4oQSoWjVrN9VkwMLU3XrmkDxdu1oxu1pF0ojInFCqXU1FQkJSWhsI8LCAgwxleYFEsVSgBnXwcOUDCdOMFaQS+8oH9QZFlVZL16FfjiC5pqhw7luIwdz1LczNGYF7Zr11i64fBhugOeeYazWn24f58WGG9vjlku51KURUkfYaPvTcmY/ej0ITmZF857955e4uN5YS0Oe3sNXF2zUamSAl5eCnh68mLr4YHc/z096Z6xthgJIZRKj0bD4+jgQU4Ub9/msVyjBgte1qrF46soS3NpEUKpeDQatr85dIjXyosXuV7KcmzfHggKMm0wuEUJpczMTMyaNQsrV65EgtRJtBDOnTtX2q8wG5YslCRUKuDff4Eff6Slon9/VtEuLlakLEvXZ2Yyk2zZMrqtXnzRdGUEgLK5sJ0+TZfcsWM8+Xv31sZj6RI3BYVK3sw0Q1qi6HtT0rdnnSnIyeG2SaUKHj3i2PI+TkzU//Pkct4U8wopDw+69zw8+Jy0zsXFMkSVEErGIzmZE8Rjx+gezsykOGIRRWbTGeuyJoRSyUlKYqbjgQMUtklJdMM3bMhuFDVqlL2LzqJamHzwwQdYvXo1OnbsiIYNG8LNzc0ogxLoh0IB9OvHoLqffgJ++431cl54gW45c2Qn2dkBEyawIN1XX7GkwLhxllVGoKRERTEbZ+dOBrDPnMmZbNeuvBEXJm6kx1Lj3OJiJ4zVEkVC38KZpsDGhtmBvr66X5ORAdy5k4GLFx9CqfRFSoot4uMZ4yX9ffKEBT7Vau3j4pBElSSeJDGVV1BJ69zdLaPQq6BoXFyYfduyJZMRLl1iHbqTJxl07OPD87NlS96URRadaXF1ZU/TFi14Tbt2jb/PsWPAf/9RJEVFcSLdtCnDNCy99IBBl4UtW7Zg4MCB+Oijj4w1HkEpcHIC3niD1qQvvmCNo9atGSsk1QYyNdHRLFL5448sI9ClCwPQzV3eoLTk5FAsvfMOT/p9+xjEHhLClFkfn8LFTXo6Lxbp6UW7vzQaWgjj4/l7GnrDLknhTEvA3h4IDNRArU5HcLBKp1VUpaL1Ka94io+ngJKE1JMnfE1iYn5Rdf168eNwdn5aPOX9P+86c9c2EzDjSuqLqFbTLSe56LZtoxiuXZs35Dp1LCfYuKIguUhr1ODv8/Ah3XNHj7Je4Pff09pUpw7vWbVr8zezNAy6HMtkMlFQ0oIIDma6/p49FEwvvMAstKFDzXOjdHWlsKhbl1W9L1xgZezQUNOPxVAki1BSElOXu3ShS+6vv9gSJTiYNaUaN9a6evS1EmVm8nmpGa/UekVfdLn/SlI401pQKOhyK6IhQC4qFYVTXhFVUFBJ6yRLVUoKl1u3iv98B4fCBZWHBwPUpSB1c7k8KxpyOScuISF8/PAh3T9nzjDo2MGBlozGjXkOmzIkQMDfx9eXrVJ69ODk8epVIDaWBUm3bKEXpGpVBoW3bMnJqSWcPwYJpQ4dOmDfvn06K3MLTI9MRmXeuDHFyYIFvFi89BLT1M0xnp49+d3ffQe89Rarjffvb/nm1rwU1nMuOpozoHPngA0b6PrcuBFo3py/gb7uL0lQSVlxJXGZlmXQtrGz5kyNQsH9oU+Sg1rN2JeCVqm8Lr+867KzeaFPT2egcVE4OgJeXnZwdg5EcLASfn7arD8fHynjzxhbLMhLpUpAr15cEhJoxTh2jNdFhYJlVqKjea3UR3gLjIuDg9YaqNHQMnz+PH+n7dvZNF6pZNeAWrXoygsP18Z7mhKDgrlv3ryJKVOmoFatWnjuuecQEBAAeSF3P3d3d0PGaBasIZhbH27eBD79lKnu3bszXsjWtuyCuYsiO5v9hH7/nX3GJkwwfvsCcwZf3r5NH/zevXzcqBErf7u5FS02SiJ2CgbOllXQtqmz5gDrCXjWaBh7pstKFR+vDVRPSir+8xQKzrSl2lNS/SmpkKclFvTLi7X8bhKpqQwGP3KEGbpqNZMzGjbkzThvkUsRzG0eVComeZw9y8DwK1eYSSyX03pfqxZFbkQEBXHBc8Sist5q1Kih/aAiJJ7IejMvajWwdi2Dq9VqYPToDAQEXET16qYVShKnT9O6dPMm3YOtWxvvsy3h5E9MpGVp926e3LVqUTBFRuq2oulrvSl4UyorQWOOrDlru+HqQ0YGBdOdO5m4ePEJVCovPHmixMOH3L8PHnACoQuZjCJKcilJS3CwZbgkAOv+3dLT6ZqLjWVQeGYmrRbR0XT9uLiY/3pSVljCtVJfVCpe5y5fpnC6eJF16nJyGNwfGsrfrVEjWqCAk1AqLSTrbcKECUUKJIFlIJezBlCbNgxA/uwzW9Sr54vXX9f6801JVBSF0q+/Mqbq2DFauspLcKybG5vudu7MYmw7dgCzZnGmGh1N0VTQyFraeKK8QdsaDf9K6w3BxoY36bg44wSXV1Skli+VKqnh5ZWE4GA32Ntr07DUat4ApBpUBf+mpfE3iItjnZq8eHvz/A0N1TY1Dg6umL9Vad3EDg48J6Oj+Rlnz3I///MPa6hVrWqD4GBXODmZ51opIAqF1k3dvDmvdcnJPC/OnGGs0/79wOrVPKd+/FFm1EQmUZlbB+XJolSQzZvT8b//ZUGjccbYsQp0726eeCGNhin3s2dzxjBlCk2ppUEqRKlSpePuXe0syZitDfT9rMIqBT94AKxbx3ix1FRamVq1opWpJDc2XbN3Y1uWMjN5s87I4M0+IEC43gyhNNum0dA6efPm00t8fOHvUSp5Q69aleJJElBlaX0y9+9WFlbVrCzGHsbEZOPUqWwAdqhRQ5HrnvPxMcrQzYo1WZT0QaWi9TsuDggKOglPTwuxKB0/fhz1pNbkOli6dCmGDBliyNcIjEzLlhp8++0VbNgQha++UuDgQcYL+fmZdhwyGcvdR0Yyc+x//2Pg9/DhJQtuzStMNBogK0v21PrCWhuURESVpE1CdjZfJ1UKzs7m63v0oDg6e5YxEj//zHR0KTU2OLj0QYrGrsMkWaZ8fIzzeYKSI5Nps+nq1Mn/XEoKBdONGyx7cPUq4zjS0vj3ypX8rw8KYhxORAT/Vq1q+bFP+mLsYx/gvqlbF4iIyMHVq7eRnh6Cw4cV+PtvWpqqV9e658zduFdAFApt1qk+nQBKgkFC6cUXX8SiRYtQS0cjrLlz5+K7774TQskCcXDQ4H//y0GfPrZ47z1W0B49mi46U1uXfH0pkqpVAxYv5kzu1VeLLlCYl7zC5MED7U2+MMEiXUBL2h+qqM8qiCS8EhP5V6nUvl/6nm7daFnasoXxEXv2sOZVnTqcsVaqpP/+A4xfYNKSClYKnsbZmROMvNVZNBrGxF25ohVOV64wRur2bS7bt/O1CgWtTZJ4iozk8WeNkRRlfawy80qDhg1paTp7lpbhlSvZ4zIiQiuajJ2cIrAMDDqkGjRogNGjR+O3335DRAGfyddff4158+bhhRdeMGiAgrKlUSP647/9lvFChw/TBVbSG7WhKBTAkCG84MyZA0yeDIwcqV+/uLzCxNZWK5QKEywSJRE+xX1WQQorJSCtz/t+X19g2DBu98WLjGU6cADYtInWJalQnj6/hbELTFpbwUoBzxM/Py4tWmjXJyTw+Lp4kbXMLl7kcXjpEpd16/g6Nze6hCMj+bdaNeuoam3KY9XWljV+6tXTxjQdOMBU9iVLWFixWTMuVpjsLdCBQTFKWVlZGD9+PM6fP4/ff/8dVf+/Y+iHH36IP//8E1OnTsW4ceOMNlhTUp5jlNLS0nDu3Lmntu3wYWD6dKZlvvQSiyqaY4aZng788QeXOnWAV15hZkNRlDRGqTQdxwv7rJK674p7bXY2szr27qV7LjGRbpPISLaF8fBIx+3bIo7H2rCkbZMsT5JwOn+e/xfMvrO1pbVEEk+RkYU3m7WkbTM2JWlCfeoUrcPnz9P1ExVFwdS4cfHXL3NQ3mKU8qJWn4SdnYWUBwDYGPeFF17AtWvXsGjRIsydOxf//fcf3n33XQwdOtQogzQHFVEo8TlW9V6yhFlbEyaYb2Z08CCtS3FxrOgdHV38e0py8hsa6F1SsVXS78vKYkbHnj0sqfD4MeDllQMfnwS0b++MGjXsrWLGry/ihms+srKYen3mDK0kZ848XQNKJgMqV+bkpX59WjydnS1/2wyhNNuWlsa+cwcP0mJnY6N1qTdoYDltVIRQ0h+jZL2lpaVh9OjROH36NADg008/xTPPPGPw4MxJRRVKEjt3Au+/z9nnxIn0v5uD+Hhg4UJg1Sqm1Y8dW3QQqilP/pQUijjJfefnV/iMGyidBSsvOTmMN9m9OwuHDqUjPt4Zjo4KhIZyxl+3rvUHlYobruWg0TCm6cwZrXi6cyf/a+RyBoVHRWXD3/8+Wrf2gru75W9bSTD0d0tJYWHLw4d5/jo40G3XqhXFkzld2kIo6U+JhNLmzZt1PpeUlIQZM2agY8eO6NixY77nOnfuXPoRmomKLpQA3vw//hj491+gb1+KFHPsCo2GLULmz+esdupUxk8UhilP/pKIn5KIqqJITEzH5cvX4eoainPnHHD6NN0mKSnM9qhShaKpenXLbC5ZFNYmJkpCedi2J09o2TxxgkvBfngKhQY1ashQty6PwZo1rT+zzpi/W2IiazQdPcpMRTc3WuZat+a+MrV1WAgl/SmRUKpRowZkMhkKe0tR60VlbstCX6EEUKSsXg3MmMGAyddfz59pY0ru3GEZge3b2b9p6NCnM1xMffIbUluppG66zEzg5s10XLt2B2FhgQgJcYCdHddfvswL8PnzwLVrfK+fH10lkZGsWmvpwaXlQUzoojxu2+PHUiuQHBw7pkF8fP47va0trSYNG9JtHhRkfVl1ZfW7xcezUe+JE7TceXvTLde2Lc9VU2QeC6GkPyXKevvtt9+M8qUC60EmozWpaVPggw/ohhs6FBgxwvQzoMBA4L33aC357TeKgldeYV8sc6FvRW1dmXCFoUtUZWczlsTZWY2sLG2mnp2dtrkkwNiSCxdY8VwSUFlZFErBwbwQ16jB/SbS/gWlxcsLaN8eaN48G7du3YKtbQjOnbPHiROsSP/kCV1Ohw9zguPjoxVN9epZTgsWc+DpqW3Y++AB2x2dPMmM14AA7qe2bVl13drEZXmkRJfJxo0bl9U4BBaOvz/w00+84M2axRvx1KmmFyk2Nkypb9oU+PFH1lsaNIgXHHNUFy8J+ooqXaULlErO0lNS5KhUSbdQdXVl2YdGjfg4JYV1dU6e5N+tW1kSws6OVqeAAGY3Va7MUgSik72gNPj6alC5Mkt6aDQshinF55w+TUGwYQMXhYLupuhoioKqVS3//C0rfHyAAQOA/v1pNd+zh+041q7lORkdzcK8AQHmHmnFxaD5ZEJCAuLi4vI1x83LhQsX4OfnBzdrC5YQFIpCAbz8MnvGvf02MH48s+I6dTL9rKdaNWbnLVrEom9nz7JoZmnifiwNpZL78+5dbo8kiCTrUlJSdomCwaXq31J15+xs9hE7d46C99YtrdXJ1pbfERAAhIVxRlupkuVk6gisg6wsHjc9e1IAZGRoM8GOHuXxd/o0l0WLaO2MjuYEyJIyw0yJTEb35ODBLC9w9Sqwbx+wbRuTWapW1Yoma0/csDYMEkqfffYZrl27hhUrVhT6/Pvvv48qVapgxowZhnyNwMKoVQtYvhyYORP49FP62V96yfQixc6OzXSbNwe+/hp47TVgwAA5/r+cl1Wj0XCGXTDsz84OcHTUGJQtI/UDCwlhrSyAtavu3qWr7soVtsc4dYrrpVYalSpxqVKFF3Qvr4p5QxMUTWG91+ztGeAdFETxlJjIgObjx3n9SEigpXPrVh6ftWuzbliTJqZvrWQJyOWcDFarxozXixe1Vqa//mL4QfPmLDkg7BBlj0FC6cCBAxg8eLDO59u1a4dly5YZ8hUCC8XBAfjwQ23s0vnzdIPp6GZTptSuzXpL8+cDixcrUaWKL155hRdla0Qq/Ofnp1/VcGPg4MAZa16RmZ1Nd8nt27xQx8VRQB0+zJugTMaLtLs7Z7iVKmktUB4eopp3RUVX77W86wFaovv04XF25gytTQcO0Np09CiXOXN4TDVuzGtNRETFcw3b2GgLfmZmcl/FxtKSvnixtsF248YVO+6rLDFIKMXHx8PDw0Pn8+7u7nj8+LEhXyGwcLp1o6n83XfZdkQK9Db1xczBAZg0CWjUKAtffaXAW2/ZYuhQxktYW+xDSdqllPU4AgO5NGmiXZ+Vxf5h9+5RQD18SEF19SqweTO7eMtkrEbs4UEh5ebGz/Hz42NXVyGkyiu6eq/pWq9UatuCjB1LYX7gAFPpz5yh5en6dbYJcXNj7F3z5rzu2NvzMzIzK0a7HTs7bneDBtrClrGxjB2dN4+TxrZt+Xx53g+mxiChVKlSJZw9e1bn82fOnIGnp6fen7dhwwasWbMGZ86cQVJSEipXrozhw4ejf//+kOkZBLNo0SJ89tlnaNu2LebOnav3dwtKj68v8PPPDPaePZs3z9deM48fvW5dDd566xb27YvA4sUKHDnCi6++DXYtgZJkyJkDW1utgMpbLV2jYaPfR48onK5f599Hj+jSO3yYrjzJnejkRMHk6krx5OIih1zugJwcGby9+byDg8j6sTZ09V7TpyebTMbMzOBgYOBAIDmZQuDgQR4/iYlaF52dHY+/xo1pCVUotN9haedMWeDoSCtb06YUn8eO0Qr33XfannTt2lE8lacK/ubAIKHUsWNHLF26FK1bt0aHDh3yPbd161b8888/GDRokN6ft2jRIgQGBmLatGnw8PDAvn37MH36dMTFxWHixInFvv/hw4eYPXs2vEQLZ5OjUNCi07o1A73HjqWFqU0b04/Fzk6DsWNVaN+ejX5ffZVZJb17W4/ZXt8MOUtCJmOcmrOz1l2SF5WKN7onTxjDcvcuRdTjx/x74YICjx97Y/NmJWQyCio7OwomJydaqFxcaFXw8WGKtasrbxhOTuJmYEnoOn5Lely7uLAEQfv2FFhnztDaFBNDER4Tw0Uupwuqdm2+1lrd7qXF1ZXX2jZtWKPp0CFamz77jOdj/fpAx44sC2JtFnZLwKAWJsnJyRgyZAguX76MGjVqIDw8HABw6dIlnD9/HlWrVsXSpUvhKjmliyE+Pv4pC9T06dOxfv16xMbGQl7ML/zmm29CJpPh7t27cHR0NMiiJApOlp7kZAZ6r1gB9OvHgGvJRF7WpKen49KlSwgPD4eDgwMyMujH//NPBkCOGcOUW2ulPBeJy8hIx8WL1+DlFYbMTAckJtKtd/8+j6mEBM6ck5L4OCtLa52SyymWJNHk7KwVVt7eFFeS4HJ0NL2lqjwWnJQwx7ZpNLRS7tvHBtJ5q4TLZCw90KIFXXSGlDCx9t/t/n0KyzNnGF/o6clyDJ07A/7+6bh+vXxeS8xacLIgLi4uWL58OebPn48tW7Zg06ZNAICQkBC8/PLLGDNmTIluxIW56WrWrIkVK1YgLS0NzkWkVR0+fBhbt27Fxo0b8dprr5V8YwRGw8UF+OQT+sk//ZSB3m+9RSuDqbG3p1Br1471n954g3FVQ4ZYn8WmIqBUarOkiiI7m26+lBQKp4QExkw9eUIRlZjIG0NyMl+Tk6N9r40NxZIkqhwdtULK05PHryS2nJ35vJiFWxYyGQunhocDI0cyU3PfPlpSLl1iuZCzZxm3U6WKNkOsohVw9PUFnnmG1vTbt7l/Tp9mLKGPjxKVK3vh2Wdl5SJTuCwxuC6vo6MjXnnlFbzyyivGGM9THDlyBL6+vkWKJJVKhY8//hjjx4+Hj49PmYxDUDJkMtZPiY4G/vc/ipWXXuJJa44LVfXqwDffACtXAr//zniH0aM5uxJYH0ol45r0acuiVjM2KiWFwunxY86079/XCq3r1/l/QVGlVOYXVVJclZOT1lKV13olKp2bByljc/hwWiH376dL7tQpJhlcvQr88Qdjn1q3ZpaYsSdulhxQnjf2q29fFgPdt0+No0cd8dprtggN5cS2Sxfriuc0FRZ9Wh8+fBjr16/HW2+9VeTrli5divT0dIwaNcroY0hPTzf6Z5obaZtMsW2VKrGC9qxZNvjmGxscO5aDiRNVZVZzqbhte+YZoFkzYMECBT791AaNG6swYkQOSpBzYFYyMjLy/S1PlOW2KRQUNW5uxcevZGVJokmGR4+AuDgZ4uJkSEmRISkJePCA/6ekUIRJ7j9bW9a4opjSwM1NA09PDfz8NHB0zEZGhhzp6ZlG3zZzk5mZme+vuXFxoWupc2eK4NhYBQ4cUODYMTlu3ZJhyRJgyRIgKEiNFi1UaNlSheDgwiNQ9N22rCzG2UkJGN7elt0Q2N8f6NkzEw0bPkBGhh9OnLDHzp1yrF4tR2ioGg0bqtCmjdpqC1sqlRoAxpuRlyhG6e2334ZMJsPHH38MhUKBt99+u/gvkMlKVXAyLi4OAwcORNWqVbFgwQKd8UmPHz9G165d8fnnn6N9+/YAgOHDhxstRklgPGJjnTBvXgBkMuD55++halXzXVg1GuD4cSesWuWNR4+UaNcuAa1bJwiLgEBvNBogI0OGlBQFkpMVSEiwwYMHtkhOtkFysgKJiQokJ9sgPV2RR0yp4eSkgrNzDlxcVHB1VcHPLxNubiq4ueXA3l5ToVxDpiQ9XY7Tp51w7JgLzp1zRE6O9p7i75+J+vWTUb9+Cvz8Sn7dT0+X4ckTGzg5qZGaKoeHRw4cHEod/msWcnKAGzfscOaME65dc0BamgLBwRmoXTsV9esnw81Nbe4h6k2VKhlwdlYaLUapREKpffv2kMlk2LhxI5RKZa4wKfILZDJs27atRINKSkrC0KFDAdBa5OLiovO17733Hq5evYqffvopd924cePg6OiIb7/9Fo6OjrApxd1PEkqhoaFwcChfgW7p6em4fv26WbbtwQNg5kwltm1TYNCgHIwYoTJq/Ed6ejpu376NoKAgvbYtPR1YskSBv/9WIChIg0GDchAVZbkXuIyMDNy7dw/+/v6wN1WEvIkor9uWkQE8eJCJS5ceIzvbF/fv2yIhQYb4eBni44HERBnUarpH8lqivLw0qFxZ8/8ZfhqLzerLzMzEgwcP4OPjAztL8znpIDUVOHRIgZgYBY4flyMnR6tOQ0K0liZv7wy9ts3aLEpA0b9bdjZw4YIMsbEKXLwoR2YmEB6uRqNGajRrptbL5W1OlMqLsLeXm0comYKMjAw8//zzuHfvHpYvXw7fYhymw4cPx6FDh3Q+P2/ePLRu3brE4xBZb2WHSqWtu1SvHgO9jWXiLZj1pi83brAK8N69dM2NGEG3oSnJzCy+dlJ5z3qriNuWkaGNm7pyhRXQ79/njffJE7r3pCB3b2/GkFSpQveJl5f5yyJYe2ZYSgozw3bvZh2ivDFqoaFqREXFo2dPZ4SGFi3eLTlGqTD0/d0yMxnrFRvLGnlZWYz5bNKEAfKWGLZg7Kw3ixJKOTk5mDhxIo4dO4YlS5agWrVqxb7n3LlzSEpKyrduxowZsLe3x6uvvoqIiAi4l0L+CqFU9hw/Drz3HrOV3nqLmSmGUlqhBNCVsncvW6HcusWq3gMGmKafWWYmrW1SfyxdTW8rqpiwdkq7bWlpPC5u3uRN6u5drYhSq2m18PamaKpcmY2M/fxM28rC2oVSXpKTGQi+Zw9Fk0qlfa5GDVa9bt3aMsVBSSnN75aezlIDR46woXZGBkVT48ZAy5YU7paARZUHyEtqaiqSkpJQmO4KCAjQ6zM+/PBD7NixA9OmTUNKSgqOHz+e+1xkZCRsbW0xcuRI3L17F1u2bAHA8gEFcXV1haOjI5rk7bsgsDjq1WMG2ldfsUhlnz7AhAnmM1nLZMyGadSITX9XrGDKcb9+LGJXlvFL2dkUSW5upuvvJrB8HB2ZnRUayhu0RHo6LU9XrzId/tYtYNMmupQUCt6wfH2Z5RQRAQQEiD5g+pA3EDw5Gdi1Kwtbt2bj4kVHnD8vw/nzwC+/AHXqsORIixambwZuThwcmMkcHa0VTUePAn//zazCatX4XMuW5St7zqBLf2ZmJmbNmoWVK1ciISFB5+vOnTun1+fFxMQAAGbOnPnUc9u2bUNQUBDUajVUeWW+wKpxc2Nz3Vq1KJjOnaOVyZyVde3tWZulZ09g0SJgwQLehJ57jiKqLIJtLaW/m8A6cHCg9SgsDJCaIqjVtDRdv05Xya1bFPrr17MOlI8P285IqfR+fuI4y0tB15mLC9CxowoREXfg4hKMgwcdsHMnr1HHj3OZNYvXhLZtaVUpR6F1xZJXNGVmsm7V4cPAv/+ywG9oKAVl27YU7NacpGCQ6+3tt9/G6tWr0bFjRzRs2BBubm6Fvq5v376lHqC5EK4303P5MvDxxzTrTppEoVLSk8sQ15surl8HFi4Etm9nxd9Bg/jX2Ce+iFES22ZsNBqKp6tX2dLi+nW68TIyeFP39+dNLDKSNzY9myjkozy43jIzGScmub6lfnGFbVtcHLBzJ5fr17Wf4eDA+EapKa1kgbbU2KWy+t2ysmjllGKa4uMpymvXplU0PLzsBbpFud62bNmCgQMH4qOPPjLKYAQVm2rVGOQ9axaLQx49Crz+uvldBqGhtHoNGEAL0/TpLFQ5cCBPemNhjf3dBJaNTMakhEqVGHwLUIzHxdFtcu4cb2p79vC1vr6MdapenVYnb2/jTghMLRr0/b6cHL7W1ZW1l3JydL/ez4+TpUGDgGvXtKLp/n1OprZv5+e0akXXnNTguqI07LW1pYegVi3GeF2/zsnvmTNsZuziwueaNAHq1i2dODc1BgklmUyGyMhIY41FIICDA9uM1KvHho5jxlCY1Kpl7pFxRvTVV+xk/ttvjKtq0AB49lmKPIHAGlAqtVWau3bluoQECqajR2nZjY3lTa5SJW2cU0QEH5dWOOmy2pQVJfk+SUglJfGvvvGIkvtz1Ci2atqxg9lzCQnAunVcPDyYqCKJgvIulPKiUGhdvRoNxaQkmmbP5rqwMF7fW7UCQkIss12QQUKpQ4cO2LdvHwYNGmSs8QgEAIBOnShMPvuMAd7DhrHliLlPIpkMaNqU8Qj79wNLlwLTprE7d//+vJlYsy9eUDFxd2esTaNGfJyRwVIFBw9SOP3zD9d5ePDGFhnJY70kWU4lsdoYg5J8nySkSmvtkhrx1qzJdk0nTtDKtHcvSzxIoikoiEHg7doxwL4iIZPRGtejB5eUFFo0T56kuFy9msdhzZq8vkZFWU52YYlilAoGbCclJWHKlCmoVasWnnvuOQQEBBRaQbs06fnmRsQoWQbZ2UzXnz2bJ8477xRdc6ksYpSKQq1mDZZlyzgbj4oCevWicCoLUSfieKwTa9+2zEy6UA4eZNzJ1as8N319gYCALHh43Efz5t4ICCi6Ho+lWpR0YWgcT1YWA+p37aIlJW+zB6ncQJs2FKCmxpJiy1QqNu09fpzH182bXBcQQEEeHc39pa+bzqx1lGrUqAFZgemy9PaC6/Oib9abJSGEkmVx/DjjhG7cAF57jTOywjC1UJLQaHghXL6cwqlyZbo1Wrc2brkDa7/hFoXYNushI4Ouur17gePHc3Drlgr29jYIDVWgWjW6zitXfvrYLyxmqCzjlgz9bGOKidRUWqG3b+f1TP3/HUHkck6s2rWji85Ul2RLEkoFSUujRfPUKcaB3bvH/RUUxPi5hg0ZH+ruXrgF36zB3BMmTChSEAkEZUW9eowL+vpr4IMPaL15+WXGNFkCMhlnPQ0b8gaybBkz5Vau5IyxRw/rCFoUCPTB3p6u8bAwoHXrbNy7dwcPHwbhzh0FzpyhGHBwYAXxWrVoafX2fjphoaytTJaUIOHkBHTsyCU+nu6mHTtYuPHIES52dnTtt23L60lFLd/g6MjjS9I5CQkUTFICwo4dnJz6+jLZJjKSS0BA2dThK5FQmjRpkvFHIBDoiYsL8P77nH3NmMG6HW++SdOspSCTccYjVRxfuZI1mNat44Wvd2/eXMR8Q1AeUCp5Y1KrgehoDfr14+P79xkQfuIEsHYt8NdfLEUQHs6g5ipVKApMHbdkKXh6ssBunz7AnTuMZ9q+nf/v2sXF2ZkBzu3bU2yaOz7TnLi787pfvz4fJyfTPXfmDP8uW0YrlL09xdI77xi3BVWJg7lr1qyJL7/8Ej179jTeKAQCPZHJgGeeoeXmgw9oVRoyhFknCoW5R5cff3/Wg3r+eWDjRmDDBgq7atU4q2zZsmIVqBOUP6R2O0lJ2fna7vj5MVavVy/G5Zw/z1idM2coAhwdmQkVEcHzRPqssqx+b6kEBgJDh/I6dvkyBdOuXbQ6bdjApVIlWpnataPIrOhIJQakbOjsbODhQ+4/xs8ZdyZa4sNSo9EU2qZEIDAlQUFsYvvzz1zOnGHNJXMERRaHszNrMPXrxxn2qlWsx7RkCa1M3boJK5PAerGzAxwdNTotQba2rNBcpw4f37/PoPCjR2ltysykWIqIYIxOYGDFtJ7IZLS4hYcDL7zAbLAdOxgH9vAhrXJ//UVXkySaylObEENQKmlJCghgXKi7uwaA8S6oFVC/C8oLSiUtNu3aMdB7zBjg+eflFuWKy4sUtFm/PuMy1qyhyf3NN3nxa9GCF0BLFHsCgbHw9aULundv9gs7d47WplOnKAy8vSmaGjak9dVcvR/NiUKhvVZMnAgcOkRLU2wssw8XLeISGUnXXKtWbAclKBtKJZREQLfAkoiKYqD3998Ds2crERnph+nTLSfQuzC8vOiSGzmSN4h164D//uOMMTKSAeDR0Za9DQKBoTg4sGhrgwaMc7p+nW6nkycpnpycaGFp0IDnhbmr9JsDW1u66Vu2ZO2hvXspKE+eZJzm2bO0rjdsyEljs2bCpW9sSiWU5syZgxUrVuj1WplMhsWLF5fmawQCvXFwYOHHRo0y8e67thg/3hZTpvDCYcm6Xi5ncGvdukwf3ruXZf7nzmWX8tq1KZrq1hUXP0H5Ri5n/I0Ug/PgAVurHDsGLF6sfb5uXVparLA8n8E4O7PsSNeu7OG3axctTVeu0Op06BCvE82a0dJUv37FjPsyNqXahampqYUWlhQIzE2zZhrMnHkNGzfWwocfKnDwIAO+rcEs7eQEdOnC5fFjzhp37gS++45xIJGRQOPGMri6WrDyEwiMhI8Pq93378+MuMOHWaNszRpmk0rd6Rs2LLoIbXnF21u7f27e1F4v7t3j/zt28LrXujUnjGXRyLuiUCqh9Nprr6FXr17GHotAYBScndV4990ctG1rixkzGLs0aRIvGNZyofDyYgD4gAEMft25k66IuXOVyMqqjKgoGzRvzpuEl5f1bJdAUBpcXWkhad+eaeAnTtD6unkz8O+/LG4ZFcUWLD4+5h6t6QkJoRt/xAhtz7ldu4DERAbMr13LTEQpCLxyZXOP2LoQRjlBuUQmo2Wm8f+1d99xTd/b/8Bfn0DCEAIie7hApiCCCCjiwC3VqnXXRbUOuuzSttfa3lvvtf7a2+GqrdtqK24QUFBsrSi4UOu6CoriRhEBGTI+vz/ONwQUWjGRDM7z8chDTQK83yQmJ+d93ufdGfh//4/6GkVEAG+/rRvZpZrs7IBRo+hy/fpj7Nx5F5cvO+GXX4BVq2gHoI8P7Rhq27ZpFr+ypsPUlJaWQkOp9cCff9IHid9+o1q/li0V2VcKDpqSJ8+cy8igoOnQIeD2beo39Ouv1JohLMwQrq6GcHHR9Ki1HwdKTK81bw7Mn0+fpBYupH5LM2dSHyNdzMK0aAF061aAqCg7iKIUp08r6zj27KHlO1dX5adre/umudWaNQ0yGWVVAwOpl46iT1NqKvUuU3yICAlpelvpDQxoQ0inTnTkTFoaBU3HjlFNU1aWFILQBj4+VYiIoGJxc3NNj1o7caDE9J4gAH370ifMb7+lwOnAAeCddxp2+rm2MTWlN4CQENoxdP06LUdkZNAOuo0bacnC1ZVqOfz96c1C2xpzMqYOUik9x/39KWg6f56CpsOHlUFT+/aUeVVn12ZdYGxMHxZ79KB6rz/+APbtq8S5cwY4c8YAZ84AS5fSh6sePYDg4KbRIf1ZNThQWrduHVxdXV/EWBh7oSwt6QiUiAhgwQJa03/tNer0retZF4mElhzGjqVLaSl1qE1PB86cAbZto74rlpbU3LJdO3pDcXbm3XRM/0ilyiaXNYOmQ4co89qqFd0WHEzHiTQlcjmdPRkR8RinTt1CVpYLDhyQIjubfj+HDtGHsC5dqCasQwf+cNXgQKlz585PXZeZmYmcnBw8fPiwzq95+eWXGzwwxl4EQaDmbB07AosWAd9/T5+u3nhDv44GMDZWHhQJUGM/ReB0/jxtKd6yhV4A7e0pePL1pQZ/trZN9zBOpn+eDJpOn6Z6pr17KfPati29HgQG6l79oqqsrCrQoUMFxo6V4soV5c65u3fp97N3L5UvdO9OReDu7rpZsqAqlZberl27hg8++ACnT5+u91gTQRA4UGJax8wM+OgjYOBAyi5NnUpHjERF6WeTRxOT2mcjVVTQAZz/+x8Vw/7vf8Dq1ZSJMjWlJToXF3phbNeOgid9/L2wpkUqVdY0lZXRMvVvv1HLge3b6fkeGEjZVlNTTY+2cbVpQ5dJk6iJ5f79VKLw4AGwYwddnJxoaa5XL/p7U6FSoPTpp5/i4sWL+Pjjj9GpUyfI5XJ1jYuxRtGhAzWzW7eOmjympgLTp1PWSZ8/ORka0vJDq1ZUvwXQtuucHAqcLl4Erlyhws/iYlras7ams5ScnemICScnWrbgpTumi4yMlDV+xcWUbf3jD+CXX4CYGMDTE+jYUWhyBc4SCdVytW9Pr4UnTlAGOi2NPlxt2ECXdu0oYAoP1+1az2ehUqB04sQJTJs2DePHj1fXeBhrdDIZHUL50kvAV18Bc+fSDpAZMygoaCpMTSkAqnlWXkkJ9XHKzqYdRVeu0HlTiYlAZSUt3VlZUcbJ3p6WMVq2pBdOuZy7AjPdYGpKS0s9e1Kx88GDVAS+Zo0UguCMgAADhIfTxoimVK8jlVIdV3AwBZOHD1Om6cQJ4NIluvz0E33g7NmTzqvUx2NmVHoZa968OcybWrjN9JadHbUQGDIE+PprKvYeMoSW48zMND06zTAxoQ7IihPLAUAU6cypW7eoI/ClS5SJysqiQtDSUrqPsTEVj7doocxGtWlD/27enG7X9SJ6pn/kclqSHziQ+pZt25aPK1ds8fXXtFvOz496ODk763fW+UmmprQRJiICyM+nZbn9+6nmMSODLosWUVDVowe1JdCXbLNKgdLo0aMRGxuLcePGwaAphdlMbwkCZZM6dwbWrwdWrqQahgkTgMhIzpAA9DsyN6eLuzv1pFIoK6PjV3JzKQt17RplpG7epCW9hw8pEyUIFHxaWlLQ1Lw5IJdLYGhoispKAXZ2dLuREQdTTHOsrYE+ffLRpk1z5OYaIjmZlqNTUqiGz8+Pdofp+9LTkywtgcGD6VLzyJScHMrGHTxI/3eDgijL1LmzbmeaVHrZb926NaqqqjBkyBAMHz4c9vb2dQZMfRVFEIzpCJlM2Tpg6VL6pJSYSNmlzp2b1ifJhjAyosyRoyOl42uqqKBM1L17ykDq1i3aYUOBlAFyc22xfbsUgkC/42bNKCCzsKAlPrmcMn+2tvRiLZfTfTigYi+aiwv9/580iTY/7N1LWZXdu6leJzAQCAjQ7YDgeTg4UEuSMWMoq7x/P9V63b2rDJoUPa66dqWaMF070FilQGnWrFnVf//yyy/rvI8gCDh//rwqP4YxjbG2puNPxo6l5bgPP6SU8pQpdEwAe3aGhvQCaWlJbQhCQ2vf/uhROc6ezYKNjRtKSkxw/z410bx7l4Kr+/epRqqwkOolqqqUX2tiQhkoMzMKquRy+jn29vQYyuV0m6kpB1VMNRKJ8piQx4+B48cpOIiJAbZupZYcwcH0Z1NqsyEI9P/azY1eHzMzaXPMwYP0//joUbooisUVtU+6UAeqUqC0bt06dY2DMa3m5kaZpSNHgMWLaTdIeDhlnVq31vTo9INEAhgbi7C3/+tWBBUVVGReUEBLeXl5lJm6d4+2Mj94QBmqCxcoqFLUTCl+hqlp7aDKwkIZVNESYO2girOHrD4ymfLcucJCyqQcPAj88AM9j3x9aSm/Vaum9TwSBMqytWtHGbhr15RBU1YW9bI6fZoKwZ2cKEvfuTMFUNoYXKoUKNXVfJIxfSUI9AmoUycgORn48UdKxUdEUOG3Lnwy0geGhsoaqb/q5SKK1GDw0SN6EysooKDq5k1a+lMEVZcv020FBVQ/pQiqZDJlQGVurlzqs7enot4nl/6a0hshe5q5ubII/M4deo04epSCJ0dHWnrq1q3pdQIHaCdsy5a0PHf7Nu2eO3KE6hZv3KAeVtu304eTgAAKmgIDtaf2i0tTGWsgAwOgf3/qIRIbS40aJ06knR6TJoFP49YSgkDBjkxGmaK/UjOoUmSqbt+mJYP79ymgunePPg0XFFBGS/F1UikFTIrMlGKXn7Mz/VxLS+38lMxeHDs74NVXgXHjaFfo3r2UUdmzhzZABAVRN/Cm1tQSoA8aQ4fS5dEj2i135Ahd8vOVdU0ABVf+/vS78vPTXP2XyoFSbm4utmzZgnPnzqGwsBBVNQsHQDVKa9euVfXHMKZ1ZDLglVdo50dsLDWtnDCB2v2PH089V5huqCuo8vOr+76Kpb/8fLrcuUNZKUWR+oULdH1REQVSoggYGckglTrD2dkQ9vZUANuyJWWmrKxoqZEzUvpHECgwcnevXc/0yy9Uz+TjQ7vm3N2bVn8mhWbNaGkyLIxqDi9dUgZNmZm0ZHftGr2+SiT0e1IcfOztTf9fG4NKgdKFCxcwYcIElJaWok2bNrh48SLc3NxQUFCAO3fuoGXLlrC3t1fXWBnTSjUDpsREOnx2yhRaphszhuoUuHhYf9Rc+nNxocf3SVVVVHCuyERlZlbg5MkiVFSYICeHPkUXFNB9JRLlrj4HB1pObNNGWTPVWG8G7MWqWc/08CEFTIcOAd9+S7s4O3SgXWEODpoeqWZIJMqGt+PH03L5qVPAyZP0/+XGDfoQcuEC8OuvlKV1c1Oeaenj8+J206kUKH399dcwNTXFjh07YGxsjC5duuDjjz9GaGgoEhMT8dlnn+Grr75S11gZ02oyGbUTGDSIXgTXrgXeeov+E7/yCtUn8Jte0yCRKOubXFwAT88qeHjcQ7t2zWFiIkVVlbJVguLMvZs3aanv1Cl6kxBFWpqxtqalHAcHei45OlJQxT29dJeFBfDyy3S5fp1aDBw5AuzbR0FyYCB90GqqjW4B+iCiyDYBlK3NyKDA6eRJqjc8f54uW7fSfRwdqYD8008FtS5rqnyEyZQpU+Do6Ij8/HwAqD4cd8CAATh+/DgWLlyIn3/+WeWBMqYrDA2BPn2oyDsjgzJM//kPsGIFMGAAZZ50rY8IUy+JhOqa5HI69qVbN+VtlZWUbbp1i5YiLl6kN9NDh4C4OAqgFP2kXFzojaFtW/q3vnRCbkqcnSkDPWkScOYMFYHHxQE7d1KWJDiY/mzqdW42NnQuZd++9H/g1i06vPfsWfrz6lX6sHHzJn3QsLFR389WKVCqqqqCtbU1AEAul8PAwKA6YAIADw8PbFWEeow1MRKJ8qTyq1ep6HvrVqpP6NoVGDmSUse8LMdqMjBQdiv39lZeX1VFSzY3btDW6kuXqDbq4EGqf5FKKevUqhUd6NquHQVPRkaamwt7doaGyvqbR4/ocT1wgA7rtrBQLs25uHA9myAoG9sqTgYoLKTM7KVL6v/AoFKg5OzsjOvXrwMAJBIJnJ2dcfjwYQwcOBAAZZz4LDjG6M3rs8+AWbOAHTuAbduAqVPpDS0yknbQNbWOvqxhJBJlANW+vfL60lL6dH3hAgVQmZm0jFNaSs8pRc1T+/aUebKy4uBc2zVrBvTrR5c7d2hp7uhROk6pZUvaQh8aypnpmszNqXVLp06ApaUIQH3RpEqBUlhYGHbv3l3doXvMmDFYsGABcnJyIIoijhw5gsmTJ6tloIzpAwsLaiUwbhydwL1xI7BkCX1qDAmhLbOenk1zBwx7PsbGFAi1aUNLuwAFSTduUC3Hn39SHce+fbSsZ21N9/XyoiUdBweundNmdnb0mjF+PGVMkpKo3cCuXfRaERpKOzT5MXxxVAqUpk+fjkGDBqG8vBxSqRQTJ05EcXExkpKSIJFIMHPmTEybNk1dY2VMbxgaKrvR5uZSs7XERCA6mlLr3btT4zoHB06zs4YzNqb2FK6uwPDhVNNRUEDZprQ0esPdvJk2HJibU8bTzY0yFa1aca2TOpWVUY8uqVS1ZdCaR6eUlgLp6ZRhWr2a2kv4+VHhc5s2/JqhbioFShYWFrCwsKj+tyAImDlzJmbOnKnywBhrKmxsgNdfp+NQzp0DtmyhVPvGjfSi2KsXNbPUli61TPcIAmUzFTVzAL2BX79Ob7inT1MH6R076E23dWvKVigCJ65zej5lZXRWYVkZ/Q5tbdXzuzQ2pg9T3btTQ9SkJHocv/xSeSB1eHjT7AL+Iqhtg+ndu3eRl5eHli1bwrQpthtlTEUGBtSTx9cXmDOHdjnFxtKn/h9+oGWSsDAJbG15XY6pzshImXUaO5aW5W7eBI4do3qY33+nTGezZsqluqAgqnni1gTPprycgiQLCyrELy9Xf9DZogX1axs9mjKGe/fSESF79lBBf0gIdbb+q/MT2V9T+em+d+9efPXVV7h69SoAYNWqVQgNDUVeXh6ioqLwxhtvoLeiLJ0x9kxMTKi9QEQEvcD+8QcQHw+sXGmIwsI28PU1RHg4faK0t+fiXKY6AwNa9nVxoVq5ykqqc0pLo47SSUlATAwVk7u7U7apffum3evn7yiW2x4+pD9f5Bb/mgfRvvYaBby//067bGNi6INWeDjdzq8XDaNSoJSSkoI333wT/v7+iIyMxOLFi6tvs7Kygp2dHbZu3cqBEmMqsLCgnXGRkcDNm2XYuvU6zp1rg5gYOphX0aCuVy/a1cTLJEwdDAyUh5mOHEktCLKzact6RgawahUd5+LoKIWtbQv06SPAy4szFzUpltvUUaPUEDIZHY3SpQt1hz9wgLJM33xDy3F+flQEzp6NSoHSkiVL0KlTJ6xfvx4PHjyoFSgBgL+/PzZt2qTSABljSpaWQJcuhXjttXKIohQnTwIJCfQiuGULNSJs3576rXTqRDuc+NMjUweZTHluGUC9fqhBYhXS0kxw7JgM5uZUFO7vT8G7rS0XFhsZafbDS/PmdGLA4MFUk7ZvH7WPSEkxgpWVPbp1k6B7d84M/hWVAqVLly5hzpw59d5ubW2N+/fvq/IjGGP1aNaMAqKuXemTfXY2LY+kpVHLgdJSqifx9qb7+PjQi2ZTf+Ni6tGsGXWN9vOrxP/+lw25vB2OHzdBerpyR52TE9XchYZStpO3sGuOINCy6qRJ1J4kI+MxYmPLsHdvMyQkUPF+ly6UbWrqXcCfpFKgZGJigpKSknpvz8nJgSV3xGLshTM0pE/ybm7AzJlUE/Hnn7R9+MQJYP58Sv8rzgsLCaHME2ecmDpIJPTcGjGCLiUltIMzJYXqmxISlJ3GFUdyyOWaHnXTJZUCfn4izM1zYWtrhowMExw6RMupxsb02tCjB+1+5A9WKgZKwcHB2LFjByZOnPjUbbm5uYiJiUHPnj1V+RGMsedgYaE8UFIU6fDVM2doJ92JE8DChVRzYmtLu558fGipxNmZO4Qz1ZmYKFsRVFXRks/evbSF/fvvKbBv145u79yZAnZ+Q9aMZs3oGJDevakL+G+/0a7HBQvo9cHfnzaN/N9pZU2SSoHSO++8g1GjRuGVV15B//79IQgCDh48iLS0NGzatAmiKCI6OlpdY2WMPQdBoF5NPXvSRRSB/Hw68uLgQfrkv307sHIlFfA6OVFmys+PMgD29nSKPb+RsechkVBBeFQUXfLylM0SN28G1q+n2/39aVeWo6Nmspzqagypy+zsgFGjqHg/KwvYv5+CpuRkWjrt1IkC26ZWz6RSoNS2bVts3LgR8+fPx3fffQdRFLFy5UoAQOfOnTFv3jw4Ozs/8/dLTExEbGwszp49i4KCArRq1Qrjx4/H8OHDIdTzKn337l2sWbMGqampuHbtGszNzREUFIR3330XTk5OqkyPMb0kCLQMEhqq3PlSWko9dM6epaWSc+doR11xMX36t7OjNzNFAOXiQoXlXMvAGsrKio5aGTCAnl+nT1OBsaLhpbMzBU1du9LST2Mc5/OiGkPqKkFQLuVPmgScOkWBbWwsfajy8KDle1/fpvF7UrmPUrt27bBmzRo8fPgQV69ehSiKcHFxgdVztARds2YNnJycMGfOHDRv3hyHDh3C3Llzcfv2bbzxxht1fs3Zs2eRnJyM4cOHo0OHDnjw4AGWLVuGESNGYNeuXc81DsaaGmNj+sTYti3w0kt0XXExBU8XLtAL5cWLVCy+YQP12JHLqS7F2Zm6N3t7078tLXmLOHs2pqb0hhsSQkvBFy5Qo8T0dCAujp5PiqDJ1fXFNbpsjMaQukoqVR42W1REy/epqXR0ikxGjUi7dqXgSV8bkaptWhYWFvDz81PpeyxbtqxWYBMaGor8/HysXr0aM2fOhKSOfGxgYCASExNhWOMRCggIQI8ePbBjxw5ERUWpNCbGmipTU+WnyshIuq68nJZOrl2jYvH//Y92250+TbucRJFeWK2tacnO2ZmyAm3a0PKfhQUFUbyMx54kk1G20s+PAvFLl+gon/R0OgfR1lZ5NIebm3rflBuzMaQuMzMD+valy7171NDy6FFg8WK6rX17enxatdKvTSINfqqdPXu2wT/Ex8fnme5XV/bHy8sLMTExKC4uhlkdC6PyOrZO2Nvbw8rKCnfv3m3wWBlj9ZNKaRnOzo6Os1AoL6fGdrdv0zEKFy4AV69SAfn+/fRJFKAXT0tLOnbB1pa+j5sb1UWZmgIlJQIqKzUyNaZFDAxou7qnJxWDX7lCwVJaGtXL2NjQsRzdu1OmSdXlOU01htRl1tZ04PLw4dTB/bffaNl+wQL6/+3rS5kmFxfd/2DU4EDpr+qFniSKIgRBwPnz5xs8MIXjx4/Dzs6uziCpPleuXMH9+/fh6ur63D9X4a/aH+gqxZx4brpHm+dnZqbMQPXvr7y+tJROrr9zR8DNmwIyMwXcukWXK1cExMcLKC0FqqqkqKhwhZWVISwtK9C8uYgWLUS0aAG0aiXC3l6EpaUIMzNaKtSlnjza/LipqjHm5uhIx3JMngxcvSogKUmCtDQJdu+WwN6+Cv7+VejatQqtW4sqZTIMDSkrWlpK/y79v78o/tQn6pxbixYUMA0bBly5IuDgQQkyMiRISZHAzq4Knp5VCAmpgpOT2ChBkyiKANT3gwSRvuMz8/T0hLGxMbp3746wsLBaS171GTp06HMN7tixYxg/fjxmz56NSZMmPdPXiKKIKVOm4OLFi9izZ89zH9D7559/4vHjx8/1tYyxZ1NVBZSVCXj0yAAPHhji/n0DXL9ugrw8A+TlSZGXJ0VBgQEKCw3x+DG9A4oiYGRUBTOzSpibV0Aur4SFRQUsLStgZ/cYFhaVMDOrhKlpJYyMREilqr15Mu1EbQdkSE2V49Qpc9y7J4Wt7WN4ehajU6cC2NhU8OOuQVVVwNWrRsjIMMPFi6a4d0+G5s3L0bZtCXx9H8HB4fELe3w6diyCXC6Fr6+vWr5fgwOlmJgYxMXF4fjx47CwsEC/fv0QGRmJTp06qWVACrdv38aIESPg6uqKVatW1VmfVJfvv/8ey5cvx4oVKxCqwmE2ikCpdevWMNGzytSSkhJkZ2fz3HSQPs+vvrlVVlIDw0ePgAcPBOTlAdevC7hxQ4J794DcXAF5eQLy8wUUFKDW0p2pKWBuLsLcXISlJWBlRVkpe3v6u1wOyOUiTE0pSyWVvphlgpKSEly/fh3Ozs56+bhpem5U0yRg924J0tMNcO+egJYtq9CxYyXCw6ue+yiV0tJS3Lp1Cw4ODjA2Nlb/wDWoMedWVQVkZQk4dEiC06cluHlTAkvLKnh5VSEoiDKB6qw5s7O7iGbNJGoLlBo8tJEjR2LkyJG4c+cO4uLiEB8fj19//RWOjo4YNGgQBg0aBE9PT5UGVVBQgKlTp8LS0hKLFi165iApJiYGS5Yswfz581UKkmoyMTF57qyUtuO56S59nl9dczM3pz/btKn/6yoqaMmkuJjqpR48oDqpq1epAP3uXSo8f/CAinYrKujrRJECKrmcfo6FBW1hb9GC6jCsrek6S0u63cTk+Zf9TExM9C5QUtD03Dp2pEtFBdXGJSRI8Mcfhti1i86nUxwSa2HR8O9tbGwMY2P9fNwaa26+vnSpqqL/h7Q8R8ctmZhQA9KAAGp+q2qfpmctD3pWzx3D2dnZYcqUKZgyZQqysrIQGxuL+Ph4rFixAm5ubvjwww/RrVu3Bn/f0tJSTJs2DYWFhdi0aRPMFa+QfyM5ORmfffYZ3nrrLbzyyisN/rmMMd1maEgvsGZmVJgL0LbzJ4kiFe0WF1OReV4eBVPZ2cCtW7Sb59o1ICNDuVVc8XWUoaKgysKCgikrKypGt7Oj/lSWlnQ/Xaqh0ieGhtRSwN+fAudjx+gIlV9+odYWvr60M8vfn9tYaIJEomxFMn48bQBJTaWds4rWIy1bUiF/UBDtntX0Eqpakl2urq6YNWsWBgwYgH//+984cuQITp061eBAqaKiAu+88w4uX76MDRs2wM7O7pm+Lj09He+++y5GjBjBncAZY39JECiIkckoqHF2pi3pdVFkqR49Au7fp2Dq8mXqL3XvHgVYJ05Qp/OKCgqmAAqmrKxod5a9PWBjI4EgmEAmE+DgQMdG6GvPGW1ibKw8yqewkLazJyUB331Hj0FAAJ1pps89gLSZIFCvrFdeoYvijMqjR2mHY0ICfRhp25ZaQ3h6KrPLjUnlp0ZOTg7i4+MRHx+PzMxMuLi4YMaMGRg2bFiDv9fnn3+O/fv3Y86cOSgqKsLJkyerb/P29oZMJsPEiRNx8+ZNJCcnAwCysrIQHR2N1q1bY8iQIbW+xsrKCi1btlR1ioyxJqpmlsrOjppqPkkUqVnho0eUnbpzh5pzXr1KAdW5c8Dt24bIy3OGTCaFoaGyRYKdHQVqXl60s8vamt7ANf0JWh+Zm1M/sMhIIDcXiI+nLe3z5tGbdVAQ0KsXZQd1fTu7rqp5RmV5ObWFOHyY2o2sX0/XKc6nDAigpfjGOJvyuQKl+/fvIyEhAbt27cKpU6dgbW2NAQMGYP78+So1nUxNTQUALFiw4Knb9u3bB2dnZ1RVVaGyRrXmqVOnUFhYiMLCQowZM6bW1wwdOrTO78UYY+oiCJS5MDam4KddO3qhr+nhwzKcOPE/WFt74u5dE5w/TwfF5uQAKSlATAzVbhgaKpt1urjQ93Jzo4DK3JwDKHWxsaGjOSZOpDfj2FjgwAFg507KXnTtSj2aeGlOc6RSqi1zd6d/FxRQg9uMDAqc0tPpekdHamrr7U2B0/PUoP2dBgdKUVFRSE9Ph6mpKfr06YO3334bISEhz1xw/VdSUlL+9j7r16+v9e9hw4Y9V/aKMcYai1QKyOVVcHUV4esLREQob6uspGWhe/foINJTp2iJ78wZaq5YUkIBlK0t1W60bk11Nq1aUWDGtVDPTxAoMJo+HRg0iJZ9UlPpzLmYGMDb2xAeHqZwdKRAmGmOXE5Zv6AgyuLm5SkDp8xMyjxVVlKd4JdfClDnXpcGB0qHDh2CsbExfH19kZeXh3Xr1mHdunX13l8QBCxbtkylQTLGmL4yMKClOEtLyh7160fXiyIVnN+9S28Ex47Rkt7+/coMlIUFZZ7c3Kg42dWVsiV8BEfDPH5Mb7JdulBmwsKC3oDj44ENG+yxZ48UwcG0NNemDWf2NE0Q6EOCYicjQBmny5epKLxhTY/+XoMDJUdHRwBAdnb2M91f3dv0GGOsKRAEqr9o04YuffrQ9ZWVVPR69SoFT2fP0tERsbEUPLVoQVknd3cgMJD+bmHBb+5/RSajY0vy8+nP5s2BgQOBnj0rcOjQFZw/74bUVAMkJVEGKjQU6NaNftdMO8jlyt2OVVXq7czd4EDpWZbHGGOMvRgGBrSjzsqK+gYBFCA9fEj1NgcP0rLdvn3Ar79SwOXkRDuGAgMpY2Jry1mnmoyNqaBbcdZbzWU2G5sKdOlSiRkzqDB/xw66bN5MO7F69KA/+Xw4/dWoGyKLioowf/58TJkyRS3nsDHGGKNsUfPmdAkIoOsqKmh315kzVHdz6hTt8nr8mAKldu3oDT4ggAKppv5GryjIr4+BgbJpYnExtRqIjwe+/pp+70FBQO/eVEfGCyn6pVEDpdLSUuzYsQODBw/mQIkxxl4gQ0PKkjg40LKdKFLReFYW7bQ7eRJYt446IzdvThmngADKOjk5cZH4XzE1BQYMoMvNm5RhOnAA2L2b6sTCwqippVyu6ZEydWj0FlsNPFqOMcaYGggCvXErjvoAKDNy5Qplmo4eVQZONjYUOAUHU82HvT1lVNjTHB2BmTOBadOokHjnTlqW+/VXCjx796blTm5oqbv4oWOMsSbK1JTO1vLxoX+XlFDGKSmJCsSXLKHO5E5OtEzXtSs1x7S01OiwtZKBgTIILSigGrHdu4F//pOCqZAQagvxjAdOMC3CgRJjjDEA1GCxfXu6ALRUd+4cBU7p6fTGL5PRjrqAANqarThXjynJ5cDQocDLL1PGbvt2ytrFxtLvtlcv+v1xbybdwIESY4yxOpmb0/JbcDDtrMvNpcLwffvozX/1asDGRgpHR1sMHiwgIICzTTUpGlq+9x4QHQ0cOgTs2kVnzVlY0O+1Tx/qhcUF4NqLAyXGGGN/SyKhZaNhw+hSVkaNMLdurcL+/Ub44gsppFKqberShZbpHBy4tknB2JgySb16AbdvUwF4Sgpl6Tw86MiU0FA6V5Bpl0YPlLgBJWOM6T4jI6ptatOmAgMHXoa1tRdOnjTFnj3Ahg3A8uXUKDMoiIIAV1feSadgb0/HpkyZQrsPt20D1q4FNm6kXYe9e9PyJjcJ1Q68640xxphKBIFqlV5+mS7FxcodYL//TjvAHByo0LlnTwqw1HkWl64yNAQ6daJLfj71ZUpKAv7xD+qo3rUrNbRs3lzDA23iGjVQsra2xoULFxrzRzLGGGtkpqa0yyskhBpfZmbSUtPBg7TUZGZGu+giIqiomfsNUW3XuHHAmDHAhQtUAxYbC2zZQgFm795UCM5tBhqfyr/yrKwsbN26FdevX8fDhw+fyhgJgoC1a9eq+mMYY4zpIENDqluaM4cKwm/cABIT6XDf+fNpOU4RNAUGcjG4REJ9l7y9gaIiqmNKTKTflZ0dBZ/9+lGvK9Y4VAqUduzYgY8//hiGhoZo06YN5HV8LOClNsYYYwAFAS4uwOuvA1OnAnfuAHv3UiCwYAGds9ahAxU8BwVx0GRmBgweDLz0EpCdTVm5334D4uIou9SnD2XkuPbrxVIpUFq8eDG8vLzw008/wcrKSl1jYowxpucEgYqaX32VLvfuAcnJQEICsHChMmiKiKCgycJC0yPWHEGgwvhZs6gI/NAhqmf69ltq4RASQsepODhwm4EXQaVA6e7du4iKiuIgiTHGmEqsrak+Z8wY4P792kGTout1374UNDVrpunRao6JCQWPERG0jLlrl7LNgLs71TKFhND9mHqoFCh5eHjg7t276hoLY4wxhhYtgNGj6XL3Li3PJSQAX3xBheJBQVSn4+vbtAMCJyc6Y27yZDpyJj4eWLkSWLOGdtINGkSZKM4yqUalQGnOnDl4++23ER4ejoCAAHWNiTHGGANAbQfGjqVM0+3blEFJTARmz6YsVHAwLTu5u9NyXVMkk1GzytBQ6p6ekEDF8h9+CLRqRS0ZunenZTrWcA0KlKZPn/7Udebm5hg3bhzc3Nzg4OAAyRMdsgRBwLJly1QbJWOMsSZNEKgGZ+pU4LXXgJwcYPNmyjbt2gU4O1NH8IEDgZYtm26zRhsbYOJEqvs6c4Z+N1u3UjPLjh0py+ThoelR6pYGBUoXL16s83oHBwc8evQImZmZT93GnbgZY4ypk0RCmZL336cC54sXKWjat4/+bNeOsigREU330F4DAyqG79CBmlnu20dB5bx51GYgKMgAHh5NNJpsoAYFSikpKdV/Ly4uxrhx4zBy5EiMGTNG7QNjjDHG/o6BAeDlBXz6KS3HZWRQk8aNG+nQ3o4dgf79gc6dm24RuKUlMHw4MHQocOkSLV2mpBhg27bW8Pc3wKBB9HtqqkuXf+e5a5RMTU1x48YNzhgxxhjTCkZGyo7ghYWURdm2jZo1mptTDc/AgbT01BSDAomE5u7hAYwf/xhbt97C2bMu+O9/qWdTSAgtzdnbcwF4TSoVc3fr1g0HDx7E6NGj1TUexhhjTGXm5nTu3JAh1Nhy82bKpMTH0zlq3bvTzjlHx6YZFNAxM0V49dUK5OZKsXs3FYDXbDMQGtq0dxUqqLRAOXPmTGRnZ+ODDz7AsWPHcOfOHeTn5z91YYwxxjRB0djyzTepo/WOHbRTbtcuKnp+7z06iLaoSNMj1QxBoHqvadOAtWupb5WTE7BqFV33/fd0Vl9VlaZHqjkqZZQGDRoEAMjMzMSuXbvqvd/58+dV+TGMMcaYygwMAB8f6sf08cd0SG9MDPDVV7Rs16ULHRni4dE0D59V/A66dKE2A4oz+ebMoaNnunUDevQAmlqPaZWeCtHR0VyjxBhjTOeYmlKn7759aWlu2zbqPzRzJuDqSgFBjx6aHqXm2NgAEyYA48YB589TNi4+ngrlfX1paa5Dh6ZxzpxKgdKbb76prnEwxhhjGmFnB8yYQYf1njtHO+a2bAHWr5fB1dUeo0cLCAkBjI01PdLGZ2BAB/C2b0/Lk7//TnVMX39NBeBBQbSr0MVFf3tXNcHkImOMMfY0AwPKlvznP8AnnwBxceVYs8YA8+bJ4OBAGaZBg6i5ZVNcTDEzo/kPHAjcvEkZuN9/p3P5WrakJbuePekIGn3CgRJjjDH2BDMzYMiQKrRrlw1TU1Ns326C3buppqlDBwoYunShJbymRhCo4HvqVDpn7uxZCpp276bdhd7eFDB16qQfvx8OlBhjjLF6CALQurWITz6hHXKpqcCvvwJffklBQHg4tSFo00Z/l57+iqGhsgP4o0fA4cPAnj3ADz9Qryp/fwqavLyoWFwXcaDEGGOMPQNjYzoWJSICuHWLskvx8VTo7ONDh/M25cNnmzWjIu/evWnXXHIy8NtvtJRpZkbdv3v3pmJ5XWr4yYESY4wx1kAODsDbb9MuuaNHgQ0bqOfQjz9SlmnwYMDNrWlmmQDaNTd2LDB6NB1gnJRE7RjmzqUapoAAoFcvav6p7a0YtHx4jDHGmPaSSpW9h+7epSxTbCw1tPT2ph1hPXoAcrmmR6oZigOMp04FoqKAK1doaS41lYInOztatuvZk4Imbcw0caDEGGOMqYGtLfDGG8D06cCJE9TpevFiYOVKatbY1LNMBgY0fzc36vqdmUnBUloaLdNZWAB+fhRYtmunPcencKDEGGOMqZGhIdC5M11ycynLtHMnZZm4lokYGgKennSZORPIzqYu4OnpdIixkRFl5Lp2pR5Olpaaa8nAgRJjjDH2gtjYANHRlEFRZJm+/x746SfKMr38MtC2bdPNMgEUNCkyTVFRVCh/8CAtzy1bRufMubhQkBkeTq0JGnMHHQdKjDHG2AtWM8t09y6waRPtllNkmSIjKQho1kzTI9UsAwNq6Dl6NDBqFJCXB/z5JwVOx4/TLsNmzQB3dyAwkOqbWrR4sbVNHCgxxhhjjcjWFnjzTaplUuyY++Yb6j3UowdlmVq3bprdv2sSBAqCFOfulZUB164Bhw5Rdm7jRmDFCsDamrJRHTtSvyZbW/WOgwMlxhhjTANq7pi7fZuyTLt2UT2Tnx8Vf3ftqj1FzZpmZERF3u3a0YG9hYVAVhYFTn/+CaxZAxQXA0uXCnByUt/P5UCJMcYY0zB7e+rLNH067QLbuBFYsIAKvnv2BIYPBxwdOcukIAjUcqFjR7qIIlBQQD2bjI1FAOr7RXGgxBhjjGkJIyPaERceDly/Tlmm+Hhg+3Y6DmTYMCAoiLqEMyVBoPYCFhbAnTvq/d5NuM6eMcYY006CQDu93n+fDpxdtIiOAfnsM2DcOGDJEvUHBKxunFFijDHGtJiJCdC3L9CnD/UbiomhWqatW+kokBEj6E9t7GqtDzijxBhjjOkAQQDatAFmzwZ27wYWLqTg6KOPKMu0YgVw/76mR6l/tCpQSkxMxIwZMxAeHg5/f38MGTIEW7ZsgSiKf/l1oijixx9/RI8ePeDn54dRo0bh5MmTjTNoxhhjrJE1a0a74lavBnbsoG7fe/ZQdmnOHODkSaCyUtOj1A9aFSitWbMGJiYmmDNnDpYtW4bw8HDMnTsXS5Ys+cuv++mnn/D9999j0qRJWL58OWxsbBAVFYWcnJxGGjljjDHW+CQSOgbkk0+o6Puf/6QA6Z13KMu0bh3w8KGmR6nbtKpGadmyZbCysqr+d2hoKPLz87F69WrMnDkTkjp6vJeVlWH58uWIiorCpEmTAACBgYHo378/Vq5cic8++6yRRs8YY4xpjqUlMHIktRI4e5Z2yu3YQcFScDAFTp6eTfu4lOehVb+umkGSgpeXF4qKilBcXFzn15w4cQJFRUUYMGBA9XUymQx9+vTBgQMHXthYGWOMMW1kYEANK+fNoyzTRx8Bjx4BM2ZQo8ZNm4CiIk2PUndoVUapLsePH4ednR3MzMzqvP3y5csAgLZt29a63tXVFWvXrkVpaSmMVWg4UVJS8txfq60Uc+K56R59nh/PTTfx3LSbiQllmAYPBv78U0BsrAF+/tkAy5dL4eVlj0mTyuDtrV9ZpqqqJtRw8tixY0hISMDs2bPrvU9BQQFkMhmMnjhKWC6XQxRFPHz4UKVAKTs7+7m/Vtvx3HSXPs+P56abeG7az8SEDpqNiDDEwYNypKZa4I03jOHoWIYePfIRElIAE5O/3jylC6ysKgDI1Pb9tDZQun37NmbNmoXg4GBMmDBBY+No3bo1TPTsoJ2SkhJkZ2fz3HSQPs+P56abeG66qVOnEgwalI2HD9siKckUSUlmiIsDunSpwujRlWjVStTZLFN+/kW1fj+tDJQKCgowdepUWFpaYtGiRXUWcSvI5XI8fvwYZWVltbJKBQUFEAQBFhYWKo3FxMQEpqamKn0PbcVz0136PD+em27iuekeqVREt24y9O0rw61bQFwckJhogOnTpXB1peNSIiIAXZt6QYF6D8TTunixtLQU06ZNQ2FhIVasWAFzc/O/vL+iNunKlSu1rr98+TIcHR1VWnZjjDHG9J0g0IG706YBv/5KvZl8fYEffgCGDgXmz6eO4FVVmh6pZmhVRqmiogLvvPMOLl++jA0bNsDOzu5vvyYgIABmZmZITEyEp6cnAKC8vBxJSUkIDw9/0UNmjDHG9IaxMdCtGxAWRofy7tpFO+cmTADc3Slw6tGDGl42FVoVKH3++efYv38/5syZg6Kiolrdtb29vSGTyTBx4kTcvHkTycnJAAAjIyNMmzYNixYtgpWVFdzd3fHLL78gPz8fr732moZmwhhjjOkuxaG8M2YAkyYBx44B27YBixfTJTycuoC3batfO+bqolWBUmpqKgBgwYIFT922b98+ODs7o6qqCpVP9GWfOnUqRFHEqlWrkJeXBy8vL6xcuRIuLi6NMm7GGGNMX5mYKLNMN29SE8v4eCAqCvDwACIjKcukYkmw1tKqQCklJeVv77N+/fqnrhMEAdOmTcO0adNexLAYY4yxJk8QACcnIDoamDIFOH6cmlcuXQr8+CMQEgK8/DJ1/5ZKNT1a9dGqQIkxxhhj2s/ICOjShS537gA7d1I9U3Q04OxMGaaXXgLs7SnA0mUcKDHGGGPsudnZAa+/DkyeDFy4AGzZAiQlARs30u65yEggNBSQyzU90ufDgRJjjDHGVCaVUmDk6wu89x5w+DAVgH/9NZ0/FxICDBlCS3O61LmHAyXGGGOMqZVcDvTrB/TtSwXg8fFAQgLw9tu0HBcaCgwaBLRurf31TBwoMcYYY+yFUBSAK5bmsrJoaW7fPso2OTvTbroBA6gdgaEWRiVaOCTGGGOM6RuplJbd/vEPWpo7f56KwPfvp47grVtT0NS3LwVX2pJp4kCJMcYYY43KxAQICKDLBx8AZ84AsbFUBL5hA9CqFRAURMt3Li50f03hQIkxxhhjGmNmRoXeISFAQQFw7hy1GkhNBTZvBqytKaDq1w9wcwMsLRu35QAHSowxxhjTCnK5Mmh69IhqmvbsAf74A/jwQ0AmA9q3p07hAQGAre2L30HHgRJjjDHGtE6zZoCfH13efpsO6T14kArBly8HiosBBwdqR9C9O+DqCrRoof5xcKDEGGOMMa0mk9EBvG3bAq++CuTlAZmZQHIycOQIMG8eIIq0i+6TT2i5Tl04UGKMMcaYzpBIKBCytqYluseP6RiV8+eB338HKirUW8DEgRJjjDHGdJZMRjvjXFyotcCpUyIA9QVLErV9J8YYY4wxDVP3jjgOlBhjjDHG6sGBEmOMMcZYPThQYowxxhirBwdKjDHGGGP14ECJMcYYY6weHCgxxhhjjNWDAyXGGGOMsXpwoMQYY4wxVg8OlBhjjDHG6sGBEmOMMcZYPThQYowxxhirBwdKjDHGGGP14ECJMcYYY6weHCgxxhhjjNWDAyXGGGOMsXpwoMQYY4wxVg8OlBhjjDHG6iGIoihqehDa6MSJExBFEVKpFIIgaHo4aiWKIsrLy3luOkif58dz0008N92kz3N7/PgxBEFAQECAWr6foVq+ix5SPHH07QkE0JxkMpmmh/FC6PPcAP2eH89NN/HcdJO+z02d792cUWKMMcYYqwfXKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGOMMcbqwYHSE7KysjB58mT4+/uja9euWLhwIR4/fqzpYTXY1atX8emnn2LIkCHw9vZGZGRknffbvHkz+vXrB19fXwwePBj79+9v5JE2XGJiImbMmIHw8HD4+/tjyJAh2LJlC54831kX5/b777/j1VdfRUhICNq3b4+IiAj85z//QWFhYa37paSkYPDgwfD19UW/fv2wdetWDY34+T169Ajh4eHw8PDAn3/+Wes2XXvstm3bBg8Pj6cuX331Va376dq8atq+fTtefvll+Pr6Ijg4GFOmTEFpaWn17br6nBw/fnydj52Hhwfi4+Or76erj92+ffswYsQIdOzYEWFhYXj77beRk5Pz1P10cX779+/H0KFD0b59e3Tv3h3ff/89Kisrn7qfys9NkVXLz88Xu3btKo4bN048cOCAuHnzZjEwMFD8/PPPNT20BktOThbDw8PFN998U4yMjBQHDRr01H127dolenh4iN988414+PBhce7cuaK3t7eYkZHR+ANugJEjR4qzZs0S4+PjxUOHDolfffWV6OnpKS5atKj6Pro6tx07dohffvmluHv3bjEtLU1cv3692LlzZ3Hy5MnV9zl69Kjo5eUlzp07Vzx8+LD4zTffiB4eHmJiYqIGR95wCxcuFLt06SK6u7uLp0+frr5eFx+7rVu3iu7u7uKBAwfEjIyM6svNmzer76OL81JYunSp2LFjR3H58uVienq6uHv3bnHevHliUVGRKIq6/Zy8dOlSrccsIyNDfOedd0Rvb2/x/v37oijq7mOXlpYmenp6inPmzBFTU1PF+Ph4sW/fvmLv3r3FkpKS6vvp4vwyMjJET09P8b333hMPHDggrlq1SvTz8xMXLFhQ637qeG5yoFTDDz/8IPr7+4sPHjyovu7XX38Vvby8xNu3b2tuYM+hsrKy+u+zZ8+uM1Dq27ev+O6779a6btSoUeKUKVNe+PhUoXjxqukf//iHGBAQUD1vXZ1bXTZt2iS6u7tXPwejoqLEUaNG1brPu+++Kw4YMEATw3sumZmZor+/v/jLL788FSjp4mOnCJTqem4q6OK8RFEUs7KyRG9vb/G3336r9z768JysqVevXuLUqVOr/62rj93cuXPFXr16iVVVVdXXHT58WHR3dxePHj1afZ0uzi8qKkocOnRoretWrlwp+vj4iLm5ubXup+pzk5feajhw4ABCQ0NhaWlZfd2AAQNQVVWF1NRUzQ3sOUgkf/3Q5uTkIDs7GwMGDKh1/cCBA3H48GGtXm60srJ66jovLy8UFRWhuLhYp+dWF8Xzsby8HI8fP0Z6ejr69+9f6z4DBw5EVlYWrl+/roERNtwXX3yB0aNHo02bNrWu17fHTkGX57Vt2zY4Ozuje/fudd6uL89JhRMnTuD69et46aWXAOj2Y1dRUYFmzZpBEITq68zNzQGgulRBV+d3/vx5dO3atdZ1YWFhKC8vx8GDBwGo77nJgVINly9fRtu2bWtdJ5fLYWNjg8uXL2toVC+GYj5PvlG5urqivLy8zjVsbXb8+HHY2dnBzMxML+ZWWVmJsrIynD17FkuWLEGvXr3g7OyMa9euoby8/KnnqaurKwDoxPN09+7duHjxIqKjo5+6Tdcfu8jISHh5eSEiIgLLly+vrpfQ5XmdOnUK7u7uWLp0KUJDQ9G+fXuMHj0ap06dAgC9eE7WtGvXLpiamiIiIgKAbj92w4YNQ1ZWFjZs2IDCwkLk5OTgv//9L7y9vREQEABAd+dXVlYGmUxW6zrFv7OysgCo77lpqOpg9UlBQQHkcvlT11tYWODhw4caGNGLo5jPk/NV/FuX5nvs2DEkJCRg9uzZAPRjbj179sSdO3cAAN26dcPXX38NQPfnVlJSggULFmDWrFkwMzN76nZdnZ+NjQ3efPNNdOjQAYIgICUlBd9++y3u3LmDTz/9VGfnBQC5ubk4c+YMLl68iHnz5sHExAQ//PADoqKikJSUpNNze1JFRQUSExPRq1cvmJqaAtDd5yQAdOrUCYsXL8Z7772Hf/7znwAo+75ixQoYGBgA0N35tWrVCqdPn6513cmTJwEox6yuuXGgxHTa7du3MWvWLAQHB2PChAmaHo7a/PjjjygpKUFmZiaWLVuG6dOnY/Xq1ZoelsqWLVuGFi1aYPjw4Zoeilp169YN3bp1q/53WFgYjIyMsHbtWkyfPl2DI1OdKIooLi7Gd999B09PTwBAhw4d0KtXL/z8888ICwvT8AjVJzU1FXl5efXuEtY1J06cwIcffoiRI0eiR48eyM/Px9KlS/H6669j48aNMDY21vQQn9vYsWPxySefYO3atRgyZAgyMzPx7bffVgeA6sRLbzXI5fKntmEDFHVaWFhoYEQvjmI+T863oKCg1u3arKCgAFOnToWlpSUWLVpUXZelD3Pz9PREx44dMWLECCxduhTp6elITk7W6bnduHEDq1atwltvvYXCwkIUFBSguLgYAFBcXIxHjx7p9PyeNGDAAFRWVuL8+fM6PS+5XA5LS8vqIAmgujlvb29kZmbq9NyetGvXLlhaWtYK/nR5fl988QVCQkIwZ84chISEoH///vjxxx9x7tw57Ny5E4Duzm/YsGGYOHEiFi5ciODgYEyaNAmjR4+GhYUFbG1tAahvbhwo1dC2bdun1iwLCwuRm5v71BqnrlPM58n5Xr58GVKpFC4uLpoY1jMrLS3FtGnTUFhYiBUrVlQXKAK6P7cneXh4QCqV4tq1a2jZsiWkUmmdcwOg1c/T69evo7y8HK+//jqCgoIQFBRUnW2ZMGECJk+erHePnYIuz8vNza3e28rKynT6OVlTaWkp9u7di/79+0MqlVZfr8uPXVZWVq0AFwDs7e3RvHlzXLt2DYDuzk8ikeDjjz9GWloadu7ciUOHDmHkyJHIy8tDhw4dAEBtz00OlGoIDw/HoUOHqqNNgApPJRLJU9X1us7FxQWtW7fG7t27a12fkJCA0NDQp4rktElFRQXeeecdXL58GStWrICdnV2t23V5bnU5deoUysvL4ezsDJlMhuDgYOzZs6fWfRISEuDq6gpnZ2cNjfLveXl5Yd26dbUuH330EQDg888/x7x58/TqsUtISICBgQG8vb11el49e/ZEfn4+zp8/X33dgwcPcPbsWfj4+Oj0c7KmlJQUFBcXV+92U9Dlx87R0RHnzp2rdd2NGzfw4MEDODk5AdDt+QG0i8/T0xNyuRzr16+Hs7MzunTpAgBqe25yjVINo0ePxvr16xEdHY1p06bhzp07WLhwIUaPHv3Um7G2Kykpwe+//w6A/mMUFRVV/0fo3LkzrKys8Oabb+L9999Hy5YtERwcjISEBJw+fRo///yzJof+tz7//HPs378fc+bMQVFRUXUBHwB4e3tDJpPp7NzeeOMNtG/fHh4eHjA2NsaFCxewcuVKeHh4oHfv3gCAGTNmYMKECfjss88wYMAApKenY9euXfjmm280PPq/JpfLERwcXOdtPj4+8PHxAQCdfOxee+01BAcHw8PDAwB1Q46JicGECRNgY2MDQDfnBQC9e/eGr68v3nrrLcyaNQtGRkb48ccfIZPJMHbsWAC6+5ysKS4uDo6OjggMDHzqNl197EaPHo1///vf+OKLL9CrVy/k5+dX1wnWbAegi/M7ffo0jhw5Ai8vL5SWliIlJQU7d+7ETz/9VKtOSS3PTVUaPumjzMxMceLEiaKfn58YGhoqLliwQCwrK9P0sBosJydHdHd3r/OSlpZWfb+YmBixT58+oo+PjxgZGSmmpKRocNTPpmfPnvXOLScnp/p+uji35cuXi0OGDBE7duwo+vv7i4MGDRK//fZbsbCwsNb99u7dK0ZGRoo+Pj5inz59xM2bN2toxKpJS0t7quGkKOreY/evf/1L7Nu3r+jn5ye2b99ejIyMFNeuXVur0Z8o6t68FO7fvy++//77YmBgoOjn5ydGRUWJly5dqnUfXX5O5ufniz4+PuLChQvrvY8uPnZVVVXixo0bxZdeekn09/cXu3btKkZHR4uZmZlP3VfX5nfu3DlxxIgRor+/v+jv7y9OnDhRPHHiRJ33VfW5KYjiEwdkMcYYY4wxAFyjxBhjjDFWLw6UGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWDw6UGGN6YcOGDfDw8MCIESM0PRTGmB7hQIkxphfi4uLg5OSE06dP4+rVq5oeDmNMT3CgxBjTeTk5OcjIyMBHH30EKysrxMXFaXpIjDE9wYESY0znxcXFwcLCAt27d0e/fv3qDJQePHiADz74AAEBAejUqRNmz56NCxcuwMPDA9u2bat136ysLLz11lvo3LkzfH19MWzYMOzbt6+xpsMY0yIcKDHGdF5cXBz69OkDmUyGyMhIZGdn4/Tp09W3V1VVYcaMGYiPj8fQoUMxa9Ys5ObmYvbs2U99r0uXLmHUqFHIysrC1KlTMWfOHJiamiI6OhrJycmNOS3GmBYw1PQAGGNMFWfOnMHly5cxd+5cAEBgYCDs7e0RFxcHPz8/AMDevXuRkZGBjz/+GBMnTgQAjBkzBpMnT37q+82fPx8ODg7YunUrZDIZAGDs2LEYM2YMvvrqK/Tp06eRZsYY0wacUWKM6bS4uDhYW1sjODgYACAIAgYOHIiEhARUVlYCAP744w9IpVKMHDmy+uskEgnGjRtX63vl5+cjLS0NAwYMQFFREfLy8pCXl4cHDx4gLCwM2dnZuHPnTuNNjjGmcZxRYozprMrKSsTHxyM4OBjXr1+vvt7Pzw+rVq3C4cOHERYWhps3b8LGxgYmJia1vr5ly5a1/n3t2jWIoojvvvsO3333XZ0/8/79+7Czs1P/ZBhjWokDJcaYzkpLS0Nubi7i4+MRHx//1O1xcXEICwt75u9XVVUFAIiKikK3bt3qvM+TwRVjTL9xoMQY01lxcXFo0aIFPv3006duS05ORnJyMj7//HM4OjoiPT0dJSUltbJK165dq/U1Li4uAACpVIouXbq82MEzxnQC1ygxxnRSaWkpkpKS0KNHD/Tv3/+py7hx4/Do0SOkpKQgLCwM5eXliImJqf76qqoqbNiwodb3bNGiBTp37oxNmzbh7t27T/3MvLy8Fz4vxph24YwSY0wnpaSk4NGjR+jVq1edt/v7+8PKygqxsbFYsmQJ/Pz88OWXX+LatWto27YtUlJS8PDhQwBUAK4wb948jB07Fi+99BJGjhwJFxcX3Lt3DydPnsTt27cRGxvbKPNjjGkHDpQYYzopNjYWRkZG6Nq1a523SyQS9OjRA3FxcSgoKMDy5csxf/58bN++HRKJBH369EF0dDTGjBkDIyOj6q9zc3PD1q1bsXjxYmzfvh35+fmwsrKCt7c3oqOjG2t6jDEtIYiiKGp6EIwxpgl79+5FdHQ0Nm7ciMDAQE0PhzGmhbhGiTHWJJSWltb6d2VlJdavXw8zMzP4+PhoaFSMMW3HS2+MsSbhX//6F0pLS9GxY0c8fvwYSUlJyMjIwLvvvgtjY2NND48xpqV46Y0x1iTExcVh9erVuHr1KsrKytCqVSuMGTMGr776qqaHxhjTYhwoMcYYY4zVg2uUGGOMMcbqwYESY4wxxlg9OFBijDHGGKsHB0qMMcYYY/XgQIkxxhhjrB4cKDHGGGOM1YMDJcYYY4yxenCgxBhjjDFWj/8PrvnTaUStvGUAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ], - "source": [ - "sns.set(style='whitegrid')\n", - "\n", - "for idp_num, idp in enumerate(idp_ids):\n", - " print('Running IDP', idp_num, idp, ':')\n", - " idp_dir = os.path.join(out_dir, idp)\n", - " os.chdir(idp_dir)\n", - "\n", - " # load the true data points\n", - " yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt'))\n", - " s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt'))\n", - " y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt'))\n", - "\n", - " # set up the covariates for the dummy data\n", - " print('Making predictions with dummy covariates (for visualisation)')\n", - " yhat, s2 = predict(cov_file_dummy,\n", - " alg = 'blr',\n", - " respfile = None,\n", - " model_path = os.path.join(idp_dir,'Models'),\n", - " outputsuffix = '_dummy')\n", - "\n", - " # load the normative model\n", - " with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle:\n", - " nm = pickle.load(handle)\n", - "\n", - " # get the warp and warp parameters\n", - " W = nm.blr.warp\n", - " warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1]\n", - "\n", - " # first, we warp predictions for the true data and compute evaluation metrics\n", - " med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0]\n", - " med_te = med_te[:, np.newaxis]\n", - " print('metrics:', evaluate(y_te, med_te))\n", - "\n", - " # then, we warp dummy predictions to create the plots\n", - " med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param)\n", - "\n", - " # extract the different variance components to visualise\n", - " beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy)\n", - " s2n = 1/beta # variation (aleatoric uncertainty)\n", - " s2s = s2-s2n # modelling uncertainty (epistemic uncertainty)\n", - "\n", - " # plot the data points\n", - " y_te_rescaled_all = np.zeros_like(y_te)\n", - " for sid, site in enumerate(site_ids_te):\n", - " # plot the true test data points\n", - " if all(elem in site_ids_tr for elem in site_ids_te):\n", - " # all data in the test set are present in the training set\n", - "\n", - " # first, we select the data points belonging to this particular site\n", - " idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0]\n", - " if len(idx) == 0:\n", - " print('No data for site', sid, site, 'skipping...')\n", - " continue\n", - "\n", - " # then directly adjust the data\n", - " idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < X_te[idx,1].max())\n", - " y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy])\n", - " else:\n", - " # we need to adjust the data based on the adaptation dataset\n", - "\n", - " # first, select the data point belonging to this particular site\n", - " idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0]\n", - "\n", - " # load the adaptation data\n", - " y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt'))\n", - " X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt'))\n", - " idx_a = np.where(np.bitwise_and(X_ad[:,2] == sex, (df_ad['site'] == site).to_numpy()))[0]\n", - " if len(idx) < 2 or len(idx_a) < 2:\n", - " print('Insufficent data for site', sid, site, 'skipping...')\n", - " continue\n", - "\n", - " # adjust and rescale the data\n", - " y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp,\n", - " X_ad[idx_a,:],\n", - " np.squeeze(y_ad[idx_a]),\n", - " Xs=None,\n", - " ys=np.squeeze(y_te[idx]))\n", - " # plot the (adjusted) data points\n", - " plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1)\n", - "\n", - " # plot the median of the dummy data\n", - " plt.plot(xx, med, clr)\n", - "\n", - " # fill the gaps in between the centiles\n", - " junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.25,0.75])\n", - " junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.05,0.95])\n", - " junk, pr_int99 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.01,0.99])\n", - " plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr)\n", - " plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr)\n", - " plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr)\n", - "\n", - " # make the width of each centile proportional to the epistemic uncertainty\n", - " junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.25,0.75])\n", - " junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.05,0.95])\n", - " junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.01,0.99])\n", - " junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.25,0.75])\n", - " junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.05,0.95])\n", - " junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99])\n", - " plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr)\n", - " plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr)\n", - " plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr)\n", - " plt.fill_between(xx, pr_int25l[:,1], pr_int25u[:,1], alpha = 0.3,color=clr)\n", - " plt.fill_between(xx, pr_int95l[:,1], pr_int95u[:,1], alpha = 0.3,color=clr)\n", - " plt.fill_between(xx, pr_int99l[:,1], pr_int99u[:,1], alpha = 0.3,color=clr)\n", - "\n", - " # plot actual centile lines\n", - " plt.plot(xx, pr_int25[:,0],color=clr, linewidth=0.5)\n", - " plt.plot(xx, pr_int25[:,1],color=clr, linewidth=0.5)\n", - " plt.plot(xx, pr_int95[:,0],color=clr, linewidth=0.5)\n", - " plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5)\n", - " plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5)\n", - " plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5)\n", - "\n", - " plt.xlabel('Age')\n", - " plt.ylabel(idp)\n", - " plt.title(idp)\n", - " plt.xlim((0,90))\n", - " plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)), bbox_inches='tight')\n", - " plt.show()\n", - "\n", - "os.chdir(out_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "135dbebd-f563-4a2a-9f44-f96757fb4b0b", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "135dbebd-f563-4a2a-9f44-f96757fb4b0b", - "outputId": "6aabc7ba-2896-4a35-932d-bd843f90b8e5" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "centiles_1.png\t Models\t Rho_predict.txt\tSMSE_predict.txt ys2_predict.txt\n", - "cov_bspline_ad.txt pRho_predict.txt RMSE_predict.txt\tyhat_dummy.pkl\t Z_predict.txt\n", - "cov_bspline_te.txt resp_ad.txt sitenum_ad.txt\tyhat_predict.txt\n", - "EXPV_predict.txt resp_te.txt sitenum_te.txt\tys2_dummy.pkl\n" - ] - } - ], - "source": [ - "# explore an example output folder of a single model (one ROI)\n", - "# think about what each of these output files represents.\n", - "# Hint: look at the variable names and comments in the code block above\n", - "! ls rh_MeanThickness_thickness/" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "fe1cac10-01f1-42fd-a4b7-cf08ce0d64be", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "fe1cac10-01f1-42fd-a4b7-cf08ce0d64be", - "outputId": "cd83ef21-0698-4183-9b90-a48a1f90f465" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " 436 436 11115\n" - ] - } - ], - "source": [ - "# check that the number of deviation scores matches the number of subjects in the test set\n", - "# there should be one deviation score per subject (one line per subject), so we can\n", - "# verify by counting the line numbers in the Z_predict.txt file\n", - "! cat rh_MeanThickness_thickness/Z_predict.txt | wc" - ] - }, - { - "cell_type": "markdown", - "id": "88d2dbc0-e82f-4af5-91eb-dc8aa60f6ba7", - "metadata": { - "id": "88d2dbc0-e82f-4af5-91eb-dc8aa60f6ba7" - }, - "source": [ - "The deviation scores are output as a text file in separate folders. We want to summarize the deviation scores across all models estimates so we can organize them into a single file, and merge the deviation scores into the original data file." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "e3fb0ced-ed44-487c-86b8-07b9fc04d64e", - "metadata": { - "id": "e3fb0ced-ed44-487c-86b8-07b9fc04d64e" - }, - "outputs": [], - "source": [ - "! mkdir deviation_scores" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "571f549e-9edd-4f8b-a6b3-d76cd23609f0", - "metadata": { - "id": "571f549e-9edd-4f8b-a6b3-d76cd23609f0" - }, - "outputs": [], - "source": [ - "! for i in *; do if [[ -e ${i}/Z_predict.txt ]]; then cp ${i}/Z_predict.txt deviation_scores/${i}_Z_predict.txt; fi; done" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "9f63da6c-91e8-4852-91a7-a4e8bc9d9f31", - "metadata": { - "id": "9f63da6c-91e8-4852-91a7-a4e8bc9d9f31" - }, - "outputs": [], - "source": [ - "z_dir = '/content/braincharts/models/' + model_name + '/deviation_scores/'\n", - "\n", - "filelist = [name for name in os.listdir(z_dir)]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "8791195b-09a9-4251-8fd7-35e80a028d2f", - "metadata": { - "id": "8791195b-09a9-4251-8fd7-35e80a028d2f" - }, - "outputs": [], - "source": [ - "os.chdir(z_dir)\n", - "Z_df = pd.concat([pd.read_csv(item, names=[item[:-4]]) for item in filelist], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "f1054959-dd17-4c1b-b1db-56cf849ecae2", - "metadata": { - "id": "f1054959-dd17-4c1b-b1db-56cf849ecae2" - }, - "outputs": [], - "source": [ - "df_te.reset_index(inplace=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "6ab00be4-d9c8-49aa-b407-f69946ca2d6c", - "metadata": { - "id": "6ab00be4-d9c8-49aa-b407-f69946ca2d6c" - }, - "outputs": [], - "source": [ - "Z_df['sub_id'] = df_te['sub_id']" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "9f6185b6-d9d7-4651-bbab-2cfba6c46963", - "metadata": { - "id": "9f6185b6-d9d7-4651-bbab-2cfba6c46963" - }, - "outputs": [], - "source": [ - "df_te_Z = pd.merge(df_te, Z_df, on='sub_id', how='inner')" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "ae932714-60c3-4a36-8b72-cd9086a25761", - "metadata": { - "id": "ae932714-60c3-4a36-8b72-cd9086a25761" - }, - "outputs": [], - "source": [ - "df_te_Z.to_csv('OpenNeuroTransfer_deviation_scores.csv', index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "9c97bd6e", - "metadata": { - "id": "9c97bd6e" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "name": "apply_normative_models.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "braincharts", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "vscode": { - "interpreter": { - "hash": "f65f66140ab2d9a57fedc58a3b7e1d01f34d12111107cec87dc46b07c8179a15" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file +Using lifespan models to make predictions on new data +----------------------------------------------------- + +This notebook shows how to apply the coefficients from pre-estimated +normative models to new data. This can be done in two different ways: +(i) using a new set of data derived from the same sites used to estimate +the model and (ii) on a completely different set of sites. In the latter +case, we also need to estimate the site effect, which requires some +calibration/adaptation data. As an illustrative example, we use a +dataset derived from several `OpenNeuro +datasets `__ and adapt the learned model to make +predictions on these data. + +First, if necessary, we install PCNtoolkit (note: this tutorial requires +at least version 0.27) + +.. code:: ipython3 + + !pip install pcntoolkit + !pip install nutpie + +.. code:: ipython3 + + ! git clone https://github.com/predictive-clinical-neuroscience/braincharts.git + +.. code:: ipython3 + + # we need to be in the scripts folder when we import the libraries in the code block below, + # because there is a function called nm_utils that is in the scripts folder that we need to import + import os + wdir = 'braincharts' + + os.chdir(wdir) #this path is setup for running on Google Colab. Change it to match your local path if running locally + root_dir = os.getcwd() + +Now we import the required libraries + +.. code:: ipython3 + + import numpy as np + import pandas as pd + import pickle + from matplotlib import pyplot as plt + import seaborn as sns + + from pcntoolkit.normative import estimate, predict, evaluate + from pcntoolkit.util.utils import compute_MSLL, create_design_matrix + os.chdir(os.path.join(root_dir, 'scripts')) + from nm_utils import remove_bad_subjects, load_2d + os.chdir(root_dir) + +We need to unzip the models. + +.. code:: ipython3 + + os.chdir(os.path.join(root_dir, 'models')) + +.. code:: ipython3 + + # we will use the biggest sample as our training set (approx. N=57000 subjects from 82 sites) + # for more info on the other pretrained models available in this repository, + # please refer to the accompanying paper https://elifesciences.org/articles/72904 + ! unzip lifespan_57K_82sites.zip + +Next, we configure some basic variables, like where we want the analysis +to be done and which model we want to use. + +**Note:** We maintain a list of site ids for each dataset, which +describe the site names in the training and test data (``site_ids_tr`` +and ``site_ids_te``), plus also the adaptation data . The training site +ids are provided as a text file in the distribution and the test ids are +extracted automatically from the pandas dataframe (see below). If you +use additional data from the sites (e.g. later waves from ABCD), it may +be necessary to adjust the site names to match the names in the training +set. See the accompanying paper for more details + +.. code:: ipython3 + + # which model do we wish to use? + model_name = 'lifespan_57K_82sites' + site_names = 'site_ids_ct_82sites.txt' + + + # where the data files live + data_dir = os.path.join(root_dir,'docs') + + # where the models live + out_dir = os.path.join(root_dir, 'models', model_name) + + # load a set of site ids from this model. This must match the training data + with open(os.path.join(root_dir,'docs', site_names)) as f: + site_ids_tr = f.read().splitlines() + +Load test data +~~~~~~~~~~~~~~ + +**Note:** For the purposes of this tutorial, we make predictions for a +multi-site transfer dataset, derived from +`OpenNeuro `__. + +.. code:: ipython3 + + test_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_te.csv') + + df_te = pd.read_csv(test_data) + + # extract a list of unique site ids from the test set + site_ids_te = sorted(set(df_te['site'].to_list())) + +(Optional) Load adaptation data +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +If the data you wish to make predictions for is not derived from the +same scanning sites as those in the trainig set, it is necessary to +learn the site effect so that we can account for it in the predictions. +In order to do this in an unbiased way, we use a separate dataset, which +we refer to as ‘adaptation’ data. This must contain data for all the +same sites as in the test dataset and we assume these are coded in the +same way, based on a the ‘sitenum’ column in the dataframe. + +.. code:: ipython3 + + adaptation_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_ad.csv') + + df_ad = pd.read_csv(adaptation_data) + + # extract a list of unique site ids from the test set + site_ids_ad = sorted(set(df_ad['site'].to_list())) + + if not all(elem in site_ids_ad for elem in site_ids_te): + print('Warning: some of the testing sites are not in the adaptation data') + +Configure which models to fit +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Now, we configure which imaging derived phenotypes (IDPs) we would like +to process. This is just a list of column names in the dataframe we have +loaded above. + +We could load the whole set (i.e. all phenotypes for which we have +models for … + +.. code:: ipython3 + + # load the list of idps for left and right hemispheres, plus subcortical regions + with open(os.path.join(data_dir, 'phenotypes_ct_lh.txt')) as f: + idp_ids_lh = f.read().splitlines() + with open(os.path.join(data_dir, 'phenotypes_ct_rh.txt')) as f: + idp_ids_rh = f.read().splitlines() + with open(os.path.join(data_dir, 'phenotypes_sc.txt')) as f: + idp_ids_sc = f.read().splitlines() + + # we choose here to process all idps + idp_ids = idp_ids_lh + idp_ids_rh #+ idp_ids_sc + +… or alternatively, we could just specify a list + +.. code:: ipython3 + + idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness'] + +Configure covariates +~~~~~~~~~~~~~~~~~~~~ + +Now, we configure some parameters to fit the model. First, we choose +which columns of the pandas dataframe contain the covariates (age and +sex). The site parameters are configured automatically later on by the +``configure_design_matrix()`` function, when we loop through the IDPs in +the list + +The supplied coefficients are derived from a ‘warped’ Bayesian linear +regression model, which uses a nonlinear warping function to model +non-Gaussianity (``sinarcsinh``) plus a non-linear basis expansion (a +cubic b-spline basis set with 5 knot points, which is the default value +in the PCNtoolkit package). Since we are sticking with the default +value, we do not need to specify any parameters for this, but we do need +to specify the limits. We choose to pad the input by a few years either +side of the input range. We will also set a couple of options that +control the estimation of the model + +For further details about the likelihood warping approach, see the +accompanying paper and `Fraza et al +2021 `__. + +.. code:: ipython3 + + # which data columns do we wish to use as covariates? + cols_cov = ['age','sex'] + + # limits for cubic B-spline basis + xmin = -5 + xmax = 110 + + # Absolute Z treshold above which a sample is considered to be an outlier (without fitting any model) + outlier_thresh = 7 + +Make predictions +~~~~~~~~~~~~~~~~ + +This will make predictions for each IDP separately. This is done by +extracting a column from the dataframe (i.e. specifying the IDP as the +response variable) and saving it as a numpy array. Then, we configure +the covariates, which is a numpy data array having the number of rows +equal to the number of datapoints in the test set. The columns are +specified as follows: + +- A global intercept (column of ones) +- The covariate columns (here age and sex, coded as 0=female/1=male) +- Dummy coded columns for the sites in the training set (one column per + site) +- Columns for the basis expansion (seven columns for the default + parameterisation) + +Once these are saved as numpy arrays in ascii format (as here) or +(alternatively) in pickle format, these are passed as inputs to the +``predict()`` method in the PCNtoolkit normative modelling framework. +These are written in the same format to the location specified by +``idp_dir``. At the end of this step, we have a set of predictions and +Z-statistics for the test dataset that we can take forward to further +analysis. + +Note that when we need to make predictions on new data, the procedure is +more involved, since we need to prepare, process and store covariates, +response variables and site ids for the adaptation data. + +.. code:: ipython3 + + for idp_num, idp in enumerate(idp_ids): + print('Running IDP', idp_num, idp, ':') + idp_dir = os.path.join(out_dir, idp) + os.chdir(idp_dir) + + # extract and save the response variables for the test set + y_te = df_te[idp].to_numpy() + + # save the variables + resp_file_te = os.path.join(idp_dir, 'resp_te.txt') + np.savetxt(resp_file_te, y_te) + + # configure and save the design matrix + cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt') + X_te = create_design_matrix(df_te[cols_cov], + site_ids = df_te['site'], + all_sites = site_ids_tr, + basis = 'bspline', + xmin = xmin, + xmax = xmax) + np.savetxt(cov_file_te, X_te) + + # check whether all sites in the test set are represented in the training set + if all(elem in site_ids_tr for elem in site_ids_te): + print('All sites are present in the training data') + + # just make predictions + yhat_te, s2_te, Z = predict(cov_file_te, + alg='blr', + respfile=resp_file_te, + model_path=os.path.join(idp_dir,'Models')) + else: + print('Some sites missing from the training data. Adapting model') + + # save the covariates for the adaptation data + X_ad = create_design_matrix(df_ad[cols_cov], + site_ids = df_ad['site'], + all_sites = site_ids_tr, + basis = 'bspline', + xmin = xmin, + xmax = xmax) + cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt') + np.savetxt(cov_file_ad, X_ad) + + # save the responses for the adaptation data + resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt') + y_ad = df_ad[idp].to_numpy() + np.savetxt(resp_file_ad, y_ad) + + # save the site ids for the adaptation data + sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt') + site_num_ad = df_ad['sitenum'].to_numpy(dtype=int) + np.savetxt(sitenum_file_ad, site_num_ad) + + # save the site ids for the test data + sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt') + site_num_te = df_te['sitenum'].to_numpy(dtype=int) + np.savetxt(sitenum_file_te, site_num_te) + + yhat_te, s2_te, Z = predict(cov_file_te, + alg = 'blr', + respfile = resp_file_te, + model_path = os.path.join(idp_dir,'Models'), + adaptrespfile = resp_file_ad, + adaptcovfile = cov_file_ad, + adaptvargroupfile = sitenum_file_ad, + testvargroupfile = sitenum_file_te) + + +.. parsed-literal:: + + Running IDP 0 Left-Thalamus-Proper : + Some sites missing from the training data. Adapting model + Loading data ... + Prediction by model 1 of 1 + Evaluating the model ... + Evaluations Writing outputs ... + Writing outputs ... + Running IDP 1 Left-Lateral-Ventricle : + Some sites missing from the training data. Adapting model + Loading data ... + Prediction by model 1 of 1 + Evaluating the model ... + Evaluations Writing outputs ... + Writing outputs ... + Running IDP 2 rh_MeanThickness_thickness : + Some sites missing from the training data. Adapting model + Loading data ... + Prediction by model 1 of 1 + Evaluating the model ... + Evaluations Writing outputs ... + Writing outputs ... + + +Preparing dummy data for plotting +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Now, we plot the centiles of variation estimated by the normative model. + +We do this by making use of a set of dummy covariates that span the +whole range of the input space (for age) for a fixed value of the other +covariates (e.g. sex) so that we can make predictions for these dummy +data points, then plot them. We configure these dummy predictions using +the same procedure as we used for the real data. We can use the same +dummy data for all the IDPs we wish to plot + +.. code:: ipython3 + + # which sex do we want to plot? + sex = 1 # 1 = male 0 = female + if sex == 1: + clr = 'blue'; + else: + clr = 'red' + + # create dummy data for visualisation + print('configuring dummy data ...') + xx = np.arange(xmin, xmax, 0.5) + X0_dummy = np.zeros((len(xx), 2)) + X0_dummy[:,0] = xx + X0_dummy[:,1] = sex + + # create the design matrix + X_dummy = create_design_matrix(X0_dummy, xmin=xmin, xmax=xmax, site_ids=None, all_sites=site_ids_tr) + + # save the dummy covariates + cov_file_dummy = os.path.join(out_dir,'cov_bspline_dummy_mean.txt') + np.savetxt(cov_file_dummy, X_dummy) + + +.. parsed-literal:: + + configuring dummy data ... + + +Plotting the normative models +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Now we loop through the IDPs, plotting each one separately. The outputs +of this step are a set of quantitative regression metrics for each IDP +and a set of centile curves which we plot the test data against. + +This part of the code is relatively complex because we need to keep +track of many quantities for the plotting. We also need to remember +whether the data need to be warped or not. By default in PCNtoolkit, +predictions in the form of ``yhat, s2`` are always in the warped +(Gaussian) space. If we want predictions in the input (non-Gaussian) +space, then we need to warp them with the inverse of the estimated +warping function. This can be done using the function +``nm.blr.warp.warp_predictions()``. + +**Note:** it is necessary to update the intercept for each of the sites. +For purposes of visualisation, here we do this by adjusting the median +of the data to match the dummy predictions, but note that all the +quantitative metrics are estimated using the predictions that are +adjusted properly using a learned offset (or adjusted using a hold-out +adaptation set, as above). Note also that for the calibration data we +require at least two data points of the same sex in each site to be able +to estimate the variance. Of course, in a real example, you would want +many more than just two since we need to get a reliable estimate of the +variance for each site. + +.. code:: ipython3 + + sns.set(style='whitegrid') + + for idp_num, idp in enumerate(idp_ids): + print('Running IDP', idp_num, idp, ':') + idp_dir = os.path.join(out_dir, idp) + os.chdir(idp_dir) + + # load the true data points + yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt')) + s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt')) + y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt')) + + # set up the covariates for the dummy data + print('Making predictions with dummy covariates (for visualisation)') + yhat, s2 = predict(cov_file_dummy, + alg = 'blr', + respfile = None, + model_path = os.path.join(idp_dir,'Models'), + outputsuffix = '_dummy') + + # load the normative model + with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle: + nm = pickle.load(handle) + + # get the warp and warp parameters + W = nm.blr.warp + warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] + + # first, we warp predictions for the true data and compute evaluation metrics + med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0] + med_te = med_te[:, np.newaxis] + print('metrics:', evaluate(y_te, med_te)) + + # then, we warp dummy predictions to create the plots + med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param) + + # extract the different variance components to visualise + beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy) + s2n = 1/beta # variation (aleatoric uncertainty) + s2s = s2-s2n # modelling uncertainty (epistemic uncertainty) + + # plot the data points + y_te_rescaled_all = np.zeros_like(y_te) + for sid, site in enumerate(site_ids_te): + # plot the true test data points + if all(elem in site_ids_tr for elem in site_ids_te): + # all data in the test set are present in the training set + + # first, we select the data points belonging to this particular site + idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0] + if len(idx) == 0: + print('No data for site', sid, site, 'skipping...') + continue + + # then directly adjust the data + idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < X_te[idx,1].max()) + y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy]) + else: + # we need to adjust the data based on the adaptation dataset + + # first, select the data point belonging to this particular site + idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0] + + # load the adaptation data + y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt')) + X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt')) + idx_a = np.where(np.bitwise_and(X_ad[:,2] == sex, (df_ad['site'] == site).to_numpy()))[0] + if len(idx) < 2 or len(idx_a) < 2: + print('Insufficent data for site', sid, site, 'skipping...') + continue + + # adjust and rescale the data + y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp, + X_ad[idx_a,:], + np.squeeze(y_ad[idx_a]), + Xs=None, + ys=np.squeeze(y_te[idx])) + # plot the (adjusted) data points + plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1) + + # plot the median of the dummy data + plt.plot(xx, med, clr) + + # fill the gaps in between the centiles + junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.25,0.75]) + junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.05,0.95]) + junk, pr_int99 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.01,0.99]) + plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr) + plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr) + plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr) + + # make the width of each centile proportional to the epistemic uncertainty + junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.25,0.75]) + junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.05,0.95]) + junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.01,0.99]) + junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.25,0.75]) + junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.05,0.95]) + junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99]) + plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr) + plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr) + plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr) + plt.fill_between(xx, pr_int25l[:,1], pr_int25u[:,1], alpha = 0.3,color=clr) + plt.fill_between(xx, pr_int95l[:,1], pr_int95u[:,1], alpha = 0.3,color=clr) + plt.fill_between(xx, pr_int99l[:,1], pr_int99u[:,1], alpha = 0.3,color=clr) + + # plot actual centile lines + plt.plot(xx, pr_int25[:,0],color=clr, linewidth=0.5) + plt.plot(xx, pr_int25[:,1],color=clr, linewidth=0.5) + plt.plot(xx, pr_int95[:,0],color=clr, linewidth=0.5) + plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5) + plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5) + plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5) + + plt.xlabel('Age') + plt.ylabel(idp) + plt.title(idp) + plt.xlim((0,90)) + plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)), bbox_inches='tight') + plt.show() + + os.chdir(out_dir) + + +.. parsed-literal:: + + Running IDP 0 Left-Thalamus-Proper : + Making predictions with dummy covariates (for visualisation) + Loading data ... + Prediction by model 1 of 1 + Writing outputs ... + metrics: {'RMSE': array([0.55690777]), 'Rho': array([0.]), 'pRho': array([1.]), 'SMSE': array([0.]), 'EXPV': array([0.])} + + + +.. image:: apply_normative_models_ct_files/apply_normative_models_ct_27_1.png + + +.. parsed-literal:: + + Running IDP 1 Left-Lateral-Ventricle : + Making predictions with dummy covariates (for visualisation) + Loading data ... + Prediction by model 1 of 1 + Writing outputs ... + metrics: {'RMSE': array([4205.49266088]), 'Rho': array([0.45898577]), 'pRho': array([5.62632393e-25]), 'SMSE': array([0.81397727]), 'EXPV': array([0.19814613])} + + + +.. image:: apply_normative_models_ct_files/apply_normative_models_ct_27_3.png + + +.. parsed-literal:: + + Running IDP 2 rh_MeanThickness_thickness : + Making predictions with dummy covariates (for visualisation) + Loading data ... + Prediction by model 1 of 1 + Writing outputs ... + metrics: {'RMSE': array([0.08652435]), 'Rho': array([0.77666469]), 'pRho': array([2.97430261e-103]), 'SMSE': array([0.40227749]), 'EXPV': array([0.59789079])} + + + +.. image:: apply_normative_models_ct_files/apply_normative_models_ct_27_5.png + + +.. code:: ipython3 + + # explore an example output folder of a single model (one ROI) + # think about what each of these output files represents. + # Hint: look at the variable names and comments in the code block above + ! ls rh_MeanThickness_thickness/ + + +.. parsed-literal:: + + centiles_1.png Models Rho_predict.txt SMSE_predict.txt ys2_predict.txt + cov_bspline_ad.txt pRho_predict.txt RMSE_predict.txt yhat_dummy.pkl Z_predict.txt + cov_bspline_te.txt resp_ad.txt sitenum_ad.txt yhat_predict.txt + EXPV_predict.txt resp_te.txt sitenum_te.txt ys2_dummy.pkl + + +.. code:: ipython3 + + # check that the number of deviation scores matches the number of subjects in the test set + # there should be one deviation score per subject (one line per subject), so we can + # verify by counting the line numbers in the Z_predict.txt file + ! cat rh_MeanThickness_thickness/Z_predict.txt | wc + + +.. parsed-literal:: + + 436 436 11115 + + +The deviation scores are output as a text file in separate folders. We +want to summarize the deviation scores across all models estimates so we +can organize them into a single file, and merge the deviation scores +into the original data file. + +.. code:: ipython3 + + ! mkdir deviation_scores + +.. code:: ipython3 + + ! for i in *; do if [[ -e ${i}/Z_predict.txt ]]; then cp ${i}/Z_predict.txt deviation_scores/${i}_Z_predict.txt; fi; done + +.. code:: ipython3 + + z_dir = os.path.join(root_dir, 'models', model_name, 'deviation_scores') + + filelist = [name for name in os.listdir(z_dir)] + +.. code:: ipython3 + + os.chdir(z_dir) + Z_df = pd.concat([pd.read_csv(item, names=[item[:-4]]) for item in filelist], axis=1) + +.. code:: ipython3 + + df_te.reset_index(inplace=True) + +.. code:: ipython3 + + Z_df['sub_id'] = df_te['sub_id'] + +.. code:: ipython3 + + df_te_Z = pd.merge(df_te, Z_df, on='sub_id', how='inner') + +.. code:: ipython3 + + df_te_Z.to_csv('OpenNeuroTransfer_deviation_scores.csv', index=False) diff --git a/doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_1.png b/doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_1.png new file mode 100644 index 0000000000000000000000000000000000000000..2258d6a2913d00ed4a4f5f982de7d1065c371115 GIT binary patch literal 67166 zcmeFZby$_r*DbnfLAs<%q(MSDr8}j&HXto2ozfskccXNd(j{He9TL(aC3V*Jcc1f} z=YIE|zs~*d`aI|s_GYhly=%@n<``q{2vubn3^Won2n2#5Co8EAfxw$VAaLVPkimCO zg&GyWKm4vzI<6XyP*)Grca{((Q&%TDM^`%=Gb(q>cP=)L4qR;fY@94q)~>EjE&?xK z+W*fdusOc7dP%K}umFAus*|j)3j~5?3j2clELvg%frCKgBwxSr%sgzf@+6zNfAAgG zx>)tDvuyEbF^xoklL+9$|1=R~PKAp71Y7fv(#d5n(xfBs>Ws)k0ezC#Pr!otG$k&)ivmmNY>Yv(^SRH(VQ@Z8+o zjFxsawGBhdDqDwaZ$HV>CS;ot9U^>`r41gqJ?V(^K5judX}@KoQ%e6)M|j@u1FK_8M?Trhlqr9@z(_h2d8;2KT2q}?X>&p6AX-_TB9isbmZWH zlbd1V2iz1RFUHwQ!zkE_CnqNjMG8up%C(q%e0-FD=4B_&&T3uX++bXqg2le>2RAJN zPhC?p6t+X>JEJ|l5qQoIH@jOa9&2uGj}Nye&%p+lmYRX902?m}h0-0j-#V1*HK0KZ z4mi2E+T0Dm!ade}d7)#O5yV{3^=$9s*ZTSy13V{fR}^3u-;QJnKEtC|?%nK*I{SN2 zmE*d`lY#O0cdnz_Vi0#El>k zLLu4Y_x7OY`6w?OSFOq}OFX(%p%l2sWGU(CBnIvama6zj9e-!4un7r2#E|lCj{84wrDtR~A2rOG z&6exJ&e3U!=soKB?zo4pVM0QJ)1N&xyM@}KsDnw;Wv_z@Sy|am%ExP&?d|RLERWUK zIyywh-_DiicpSf-A@@fU2iJ`WJVg$MGxopdez^q<6ktu<|~<5`DbE!k6m${c~7NUq4FQ=snV$kvFTz-@WH4ZuSSW6*}!c z{B+8h;TaCCsFC^W_g8BJ+;axObH@JU;4EFv?@~UTqR`UQZ#6DC1eccj3K&ONFwlgi zf>g%_q7hL*K%m;|;%&%>5Acx6=1sJ_vpE0WX%*3!B83zh4i21%h=}XyoQIIaM0~6( zZFzaLMvw!j*!s)MS%m&fNK`(Og3UVqdgAq@1}to}r@|ea3$uk<%j*;WM{jXzLNc=G zs`kG_&%^I)huM1G?`DN*8~e^|dBf>p%vI=zb#{tD0;czSUB-pOE-&4`U9Ebv6V3ma zotrbi_%(CAwDvH20J#AP47nu7PvGI?@u5mP$3?~>orjlq3#_v*#n>-mWJIyBsHmlp zk%_50>ScTQw6fr6!*O01g*ez_tqQ%+G%hQ62wU49bpy|hP|xd)uo@77d#>rhMKv`z zwsVzIVqy@8$=&r?^Tn+G892#XzsjmUl$Ls~2cmq;%8Ger?1K}T4}rk$*ZH_8C9_s} zr^3s&ZRf+S{+OP}TmQ$Z@m;ofbj?Crb((nBsM1oMCI|8{fdiJ$rID?z0&}${UGO?A zgokS#{u8l|`%^^}kK>vAco-NM;LNyJxI8lj2?wNnSoF%v%bV2b#C~;bGdjVQS1y4) z%ZZOHmCu>x-Me?KcK+bRwMr5}Qn+`!pT2aBV6RzqXeuZzElsg{3XsSjk`!%{4BxRbwbF9u)QjApnDv2bLSyaFE&0fBznSDWj`P z{QLKBp~jBu%_u_}^z{=wV&Vw!EC>XXj4zswvx9y-Eci_4QOSE&})$6eC z{32Oa8f}V(E?%~^sIn4MNlD4`prYv%#1OehM*H#Cf`Xolj+`9IyZd|ZhPdWtzPLxJ zd@*zL0tLjo>#aD?Utdb9!JS|`GbfDdlMr&-3C0qE?Quv@5d8d+``q7V-!5WeVq_H+g*I;7c9QiSx=#GA1n>Toi1y9bnAd>KHgKJkBI0!*gXFfgwM8{Y zM@PHf+w)|c9oCJ*n;=_?i^H3lnYH?;cGv`TY^5DOSm4d2SiO8^b8-bW(9uW z0o1@eZ^v`DEBbg=oo&C=cvP5ke|J6}pPCvD!g6toEZgU|Tot92lM{P-db-f;f*sEr zZEcSQ9$H$&j_bacr%}dt@T{z?&A*43&j7&Lm{NGz7licmbnWqB?qC3A;;)XX>V&1Q zpI`fduLmeMLJ!)S1R&wEZLn2(h>3~ioUle%6jGW0+jFoj|8Dhej(_a(@-o}WRWIxQ z!NF6AVF;)LTsi~j0-}rr#BsqV?6M}6H z0;vrvgU9|??L%>fLwBS7lGB1^3T!8&q@|HbNJ(oz*|1w_C0O%+yhptfH0?%&bb=rV zM|w&qRyDT;_M7sf%ihS{&AI6-66dWLUNewKtZi(%1W&#NpPrsNR45&1I`;{X>_Jrrh3#xPtQI-XXlhgQ@ext_T~o^|D8O#1 zn{yX33d&YW$K8u$7TrxI=PuZFw3dt<5U0q*+bOo!c zh=_>In+voF@v-=3xDkk;luI`qq_F4)!Rqq3&^bEnpnp5-Cw+p7`WkH0ar0K}r{k+k zm$5DwH0HLQUEhim1(~`;F}$d#Xk(B*r#F&-8CIidXlUTI4V;m>yStsh3CKRJgS|B< z2&-NPtahv4h`}Fl${zy9MQ#rZH|v^Ub(w*cwGS3gN*O$+;4Hz4Sd?v5+pPIlfWpy? zeJ=<={e#aK{Qwde43to4$YbCG>j%5kvl`=(3Z<$a={^yram^CfsF`yMIW$Yx~%SFvo z<&~D&65D((Mavka8@ErT9=G@8Oc=)?TG*ur4>yn6_4Rs@Q41!Yfc=S%M*oM%H$0O7 zI49$C63bphj?wHA< z*5v2YEQ4$U>#W%Q?mP{gx{wSTbpgVMML(?HfC2uNca}}JwK^=#AVG1!+JX!ojHcyx zPh%;B7cIY%3%aiZTrjXb_{n)E&1w^z;jq$DiX{MSK>nq$%5+BlzYZ(eSNEgeL;MQ= z4jXYBIwQ6F^{J`dd^OzQ;GnFE%87dh2sL!jfbfCTq}*Jk@7P8FD_{s%LIM5{=Q#`v z44ojkY&h{5Ea4Lnm;w|T9v%G;8roL2AghSn&>DH|zligN^@#s4GJxZoExXwgAYv-N z9t$KUCjPn2eDUwFM;oCB`$CR0-DY*K2UYywAe# zKVFU)&EPfvIh3SRZ2||O;^roZdiJuv)$O3#^UMs=Ih4eVLqZY>gHLpyPyw2fGBhO5 z_Px}F!FJH;R_j&#YXVl><~BfyM}olGzujzaHmyp72ows>&f$)r|D5j0?vJ(MsDU$U z_B;;D;kmg~pi5Y5U}I&)04>OTvva|KdlVsS(4fV;3jJ@M9H5j|yX-1MTn%Ah_uKiH zi@iB#n$y3=KmismxDka-V4HVXf1jVnr>CPysR_-N6ctg6ic&%*78gMsMFY6lZ9!TM zf6jfg;oKcG>p^X89qLursm}Q{1Zyb91%)eeSQ5LQNcGjyR;w+{NIv7 ze(Bq15-R>g@#1!TYC1Z6^I_~J-(5(vVPDbPE(p?>H-j#ue$8R8E>dt9dxL_4RCRS1 zEPc(*p9cj8!*yD6;3abejzT3s^KJVT>==L{Iu%-2WjY!fc=%Gz_H)|m>gwwU2TN7H z=-i8oi>f+04F5ehy#oia>ex{dt){;I6{xWdQ8(3~BQqa}MS_4dMa{!AOMtM`9#dLc znaX~qr>Yv@yw%^*I6OWsV_;y=v77(_Z}C)Aw8QVn{4))>OxV}|lKVE4nrPX@gD;-3 z8HD%uOM`cq`PcIC^YiO8JLL_yAIw#StvGm8=!4h;7s+nF_zKebXMY+88#_Qn^!`Uf z%!Jl0&J#>O}m1SVBzcx7zS|9wj$`W#Q@6zNCUDts}uk(XUep< zU=2HrJ6K*eC^u-qZCY{97=EesN-&ksC!Lso zqQhc9Lei|mf^UKuR`Ntc(@$BgdG8`XS%wY;uS~0__ z#bf}!SpqeH9!`H4R5cJ1li(T}46K?oEQn(Q78GAw@@PmBqvPv$q zVtP75!rh&9QDjtsPOTnypq8PMg02Q$UlO)KH|LJ4dil+bGmchOrx;qrci9JfcGYU# ziu!f}0=Slz^u2-^#js0v(bQ42%}s_eSI#NWOv}>xN}_QL=1#9-CMK%>Nlc!avF23U zrlmi>?+FWxA!VFcT(UVsLxt<^Ztm@c5EJ9;(oiUtOcPR9>ghKW<->m;%qyy>P;xQu z?}acj-W_jS=zS-{bkNZKBJuh)WN7$;O+i;29-Cb0sh;)cXkoy2;>wN38-B2u_*_=d zDd72WmNghI9AxXkQ6wI_^;-e*kEu@zOAuUkCOC_x)yN{Kd~qnDO}3T&V;p7z_ z>>Ub-$D}d%CNz5;wF%v)2UUTkOviKMacep0Xp)li@##ZZ`YfGeS$BTM#%OiDl94Up zPtdrCZDEKkVT(F6bvsc*6N!uuLM9;TVP?(nF;Q}|!JSprK#_U6H=Fi`zN9ad{X5+fFHDMRJtCCWDgPWVq zSaJa}eq4m$uJAo;lRHn7DcV-PBlp}E;`s&zJZN|6GjgS8)=o}y*WCYZuo1YynVfIm z2Ke4GbnEFc82R`FTpR=*Ed|c&PzjQP-j2Z{J>5DB-Z~x)z3`TUHbjdI zDZYsovy`s4;7SrrKu3FaerapExN=DWpQ6%H=SZ4ncx(+miF}DtKY-;xf~pw+k*!12sfnogui(?(-=lJw^}46 zRlg5*`h&M7Uic0*;-q@T^Q*?M4fEzkulz@;X7q``iBRi}sM&H|IACzu!exDrFF5BqvJRE)>e)n-M;( z_7`Oh6A_7~SCBXJNkhL&0S7TY0`z26o38M;SIpNt8Q9m?46?G2_G|d-GZ~XJGbs7& z57l~FT2MuQyEV6NM@zR7Jbxa@VNSF(J0YeGwS2)EsHs_>nx^R5lkG<6U$SYYHzM+w znKS%7mwk9>vz?XDWB}9Q;6TANIdzY5!~%m0cAcxBF*zdvE3zl8_WephPA=yCH7JY{ z89D;-d-T?ed~3_tUt3F*DLNGr!qA0-^V$^JG>xXCEu-fChoK@sncjSLOz0E*i~~w6 zS)PgSiLhRKe@p?pg39hC;nS6GrHh)W5hTzlGgz$kJOw0-+zP7WS4$+lE4YhIOHcW|+7thN+b5X2tQT&k|r!3s0&H8@Y~LX59JOP-iuA^3IM2%ii9I znD1lmxixBWAPiT9^tz?LvY%ee!2hOKwvdJzlCLzpcrnt5ulaz7$G9qaH{TW9`D>=W z6bYHL5q3ZckK9$Xi{r4GBI2wP#B_-I7M$GR0P-G`wM_JgN_a47fM4?+7+V|1y52yU zMZKM=I%Ig+RM4Q=RjymVeGR0NNlamUso@btW#nR|0_?J~f~4~D=o;wJkt;vc0-{l( zKEm^gz5Q^Mw?#=6J8D=tQ+Bu@^@q=ik=DaADMxd&)HD(bWoNpoC{PB_*?>CsSJH*6 zglcFo?}_LB3q9k?Hp0)JRk0}?2J)qp3rnyr<1r~+1zPbWB#58QPUay!Pzsk?TA-OG zCn1fbOI=wRl9z=3y*3Bu;i&~wJvG91Vi9fo=VXu#JG(S1P0%2&sp(yGDxo~AB9tJ5 z`_@+6n0(Goh=2M>pAGT*tIb{+p+Bkk=`gLmkqV8{ZEltvW+X^7_V2nVYzv)!$4ZD`-pw4 z0((P*U{F7e)N}_KBbb^7d>F zr~vs&79O3dt8N9pfuILGrQdfx&a;Q>Ggo~c9{8jr+13r}I znsVI^>B|>U8{gn>dfq0 zw-G{?Tzz7QyaM@rjYL-%C5fuBN>r+o71UxvYGGEoY%l(~BG2jhbTKqCdfOxH!|ys6 zfa2$ukPjyS?Hp*Z=G(k^F)2l&0Sfm48i!${_imO4Ol!&i_KobzmoLpnjZ03T%k;7{ zuhBU@?ZMgtBuEH=#x^BcA7EfnO-+qr>1e(NAx`8k1B{RcEUAHW9|24T!Ebu+{zkL! z>C0~cF!=+p>EDNjx`nTngTH8$V17Sg|G~gkJkx7tO5j3BTt5C{Qbj+V~{m##yN4>pvdUueR*d-z^r=o@*Sr`C;$}6Y$iurSBLv6l93VR2%3LtTF zFN?6nPOIKrPh9Bg$vZc?F(c`yVuyNa5uPAPG1 z9tEs01OkqN4rqX9fk4z3^$Y<5>!c?pRE2=d3>xlKK@YZHzkZ#<2)5F)O3*I{&Ajb{ zDM+AUz=Y{z5EDS&@c|~h=G{+uq0>$Tgxdminx8-GLuO{+D1F2{wB^yvgLlTQl$Zuj z`v=12IOvdNmECECzQL)f#ala;%qTW<*}i4y9f8tW0EUCr00ToWQ&$RUrGSwUAF8X1 z@5@74$LDeUr#@Xu`mI*ogsKfUK#m2Us9*HD(%Xb8$jgIHG#oIq)8_XujdA!g8`8z$$xY`^X%EfJ>uQi8-0`l|6W-OGgZhjIX`C1pY%c{KDBqQjL!At#541&(DXqv9U31 zRKrKQxw!$$b+=!8|Mkxw*KdIBw{~<4QxWxwYNSpzo1cJ`8&^rF#RrXx@=~#lMKtpf zOinV@)@7ZZ3pzs!`AYIU9quh(WoLN1L%jt0G&S%h=0E3FD!&FBpJoq~>}{8w&wS^K zk>$VMu7AfNU-dVBtrP=afFrA<$>ER*l&VtZsJiy-%JEoCB;;T(mRUt9gG?_LL5-uj z8M{|TP4V5bBBJjddhj$gzwSjnu$PDE0Hy&##lZ00yzScf+uDyGA)TF_Y&lq%nC>lt ztb__px14E;rxzC&^C{q%wP?tjsH$SW(UdYbH}4410m2EOKCtT>_N(1&spREHfV3!v zi0Dd1l}nBsOkPtn`nl3QzqQrsmWh>>d_I_5a=RsdLRFb(b+J^!rH*2B6#2&wB2^;? z0CF(hzrtrJOId%$tEo{=RaDlg5J*hPsBtSJrt~oh>dB*G83{~G2^jlg>*x!Ua}f!YI>3JZ$>$G%(Tc` z6&8K@KH^Hlr4bs3RRLvXtelDXUd-+Kvl>wV{IC{l-E46KDvg@d{ zG@x7jxMwYgur&lRc>>#Qba~vKLC6uIOIC!}#3Cn0sA(gVcO{{d9nXwLnORhH?Ku?u zO(|V4sVPqb_&)t6hoj8_RzP?Hy%G-M=jRt56XVtw(BcS$T-(RZ2Ea~%L~(vS*4*6e z*YY9^_x7^J=#4J1V8{8GxyeHik}sYqLd?t%U&Ez4o4X(@9VUvPZ&)ySLpc4^f$qmQ zC0k{a-`C%LiXiW}*5_p3bH$f6TjsP$_&O7vUtXJFR#E(6j-4~1>)y|=-YF@C3w3=) z`-a%xzhd1^kEH6$X#aJ?Nr%<9^o0@h(T~{Vi;F%u*tt|9*$1G&Sunr?$IOfdP;aLo z6}1c*Kspy2Y&krR4N}J4H@ZWwuR0!MD)gJoR=>T6FcbpW`ZQzhuK%JX^yxFR`@a{> zAd{I2@zkAxSK;8}hXBe74pOX=6B`f!@d5T0Hfm_oQjNok0N|)k6Em;GG~OWEEr_R# zx4LyEywHn?tgh}75oj%t3|pD#jBPCnC2v_#o-ATG^px6f8ABkvN^p(Lw|9J{9zYy( zcp4mR^ZM-ET!xb9dxxbi(uq0GbS(ja)a#;Bkp1HGbPbgPix@`6@U^(2Lbd9YG6Hzl zwr`J-tRy7fJ5IC~OUTJlMMhmzE}(2~ahK^jvG=tC%$xZZFkrT}wm`xqg+MGVEn(&l z7!L=5Y4|YF2}nX)v4Y29Kvt}+tE+K8(mPzJLjeL&x~=GRu~HAHbTDCR6EN373wHf@ zDnfz4$N;1*{>mem0Q~>L(JA~$8->E?E0|;sbJNtA4{QQVAqIMBnaQ~gd0%0{T96-) zngXLU8BrxQo4ZinX*QYj$D6iIM$PjC2?;JDqO&&w-(*v7Zl*>{SK||u zJ1Q1RS5loGAzquod!GFS&FuAJG&+^Q;)hmUda^HY2fvsA zX#zOE?l!RePj%=Y9)SuRc6ew9lP9dfj>5nUOj`gb0OoZvBxLD=X?id?2)tWiJsTi9 zJ#||1y=p1_g&_9s9VZMP$WXjT1h7vSw)4ZRP3x@(mFM$wKu!Rv7ECpm!NITQ)!Tz7l`l zs~}v+p62N*C2PIg3YCfT(i?RZ81rs5fvb{{K=_z~;&b1CDJ4~Ndd@|~tyyMEh`+7t z)L0O_Moc6-=VOpbH*$B6a-ISx&gTSDM-CL!g8_9OCq{q(x3ILtkf$mrRS&UWk@v7L zAlrSODVTDc^UzBJGAhjfK?F=%sKM=;Nj0zg`tT({qhJhD@Z0TOmkhuXwnuP8>a8`R;6l5b<0z$ZdS|4yEVJQ`faJ$n>Q>>Oe5ciw}h=4 ze(PC+e(nX`Z!UX#S6?*efkQ=1)eyH=?A89`5lukv>`#5iY z^+dp>JB5rMiQs9!boM8ssur%TE$)MrC$>=^&; zRaW0E=s&ytM@jVNb)1r&p=oK~#`W}Vl7!!dTm>~h!^6F9+t~PKY{8NzNwd$Y9v&lJ zS{CToVR<(bOWt|2t8oofqH4HdOq9^MKm>dyOmbu2>Q8pWNTK zO;0jLLgfUr`QGs{U}j`2phn#g>UQ;dm4EyUxRJv>|LedL(wLDy3d+Tr#km0;jAgwV z^PwNSl%La{u|b8%g{ZaeUrmSNeSrb8ws zu4Ecl8^2VndMP=2r%vi z1;0NkDBw1w6Gepzl7xn2_dotSbarxfz1B9k#Q^fCUX?Q zHk)apPv$(f7y0=G!lC1;5^D2ZA42&*rVqV6QMQ_st3iObCct4EZ55~(ffw`8l1D>Y z%9C)dh!}4kNR>0?aoTg$OOSfU$?nF)nkycysc91d(PBpW@#BjkJUdCt!vyvE#oSF= zE|s1Oy)t4#g0-5x!_GNfNLqEOl#IrAxu`Tr8aS|2O?*Ol(Fa-E#3w8{{4OS(v=v%N zf*wrYhYQx{8=|zDiMjURaUBY_EzoK<7OD4L4Hej)XhVI4E6n`-?%L=TO~Q+a=y01bVEEH#gOwa%UvBU65q)0vrl zE0JSlrf05gVjTYrB8G^qGs5&XM8Z|Ko zwv~8N-rDo*I1y&2;EOWCcTPo4?)!H zll+22J)%g5Hg~pVlZ3PIUOY8|sO~ev!zywx)Y9b{^xa~1VBftS-HXY^nZ;j>BX8ec zH%$-Pa=Dj7IRGPs$|V!`juMal9p&UCK9qpqTf15ISTmnJ=Xv-OBM-2Bckyw*pOnBsw(KZ3sY z0dz^oMLi-Jt*aKlGZY=QWd+E>ET&(T5iCEx%d)Z?(m~K!{QL|yx8AcZEix2_ey{wp zVJm~uw{(5>O-o71RRXxIny^sw8tfKdp&iU>iS*oF+7SNOw&;J4jOaN=1HAelo`HmF zlBuls1(3XA0*^iwLCw6@w&r(pt8Mko2Z87HXOSf>c&EyNsTgLR#ZoF!r2OL(z<_j^jl_o>It6YC9{1U+?cf}YD9kU2qF$U~rRlOr+T{oS|j9Hor;K^Ym_%8K9bjB-yb+A^~ix$M?n*OYo8KcFBIef+o{#Wl9>22vozZdZAgK0Y4b4t5-Y z1u3UNlE%5jxG^3$c`-709s8$>6x!T`a9`$@x)M|HcSG*a$F0J$l4l=%pW(Cf*o;%O zkL8Sao_*0+s9{D64cz{*vDNc}DN>8$Yt}IfjuqW6Jt@iRy14_!WhUnLs#g_gN3=D!?QYaC_{A=qj_@7R6my6@TejpI?2gza?SiGR1$j00!Z<1gu6K^d76et zogQoZryY;P6N^LRW0`~3KrA(S41!0io=_DjIXnAS3 zU_S5tnPME<+bfy+^-Lxd{mp{AToXQl4cp+M9nZ*g@kNz&X(^|U=Ydx1x8J|{Y<{P5 zumo>lC}i{s62&am%YFG$AJ9;*nySlkn0j!)Sjx%iX)h?iFcM34){`yl#el}jfQky5 znF2NDEb3(=@ytPVrIUPybWKjym~mZSkiDdksW zQ0kkNGNerj$;$hZ?bpU^37?gWzQrNr@p;OuK--h%hgt(8?jRpiQo?`(XS;cc9Q%P| zFkpIhj3%C+zdkzLOXfaJKvr}A!*Xj9VPi2}WcArrn#0QjQVe@nf${fTp@P$98x7@U zczEe$>}h&9xSI%+l)~xhM8WQR*iGkWd0)9ijH0;lh|?b)7BeHey6~<2{HBWbmHv2D zxJp6ks!Z)!RgI2&FOM+m8yKza3Ux&8UG+xv^!XXQ&!i&HqS5=aEG?=f`{SRZ8=syR zJmnJ3O0NCPpi3b^!>{@0KGRHZPrzb(>npUlBXhet1w z%_+q!#zgG*#G`o6CrdfExEKKiQwJL#Kd4_ivg{-Fs%T`sl67{@c*NF`J6ct*q~54x z==-*8a&Og-JYU|cVk4z1uAfqfh~W2`nldRC(}6n;DC5nR`ov_Fuwbo&G_ITSouAHc zD|lDeFH-qGMH#7Z7`^GW5@LzIk}@DeYIK!Sphb}BXq^PZIt%&()MxNBGtn5g$AVCc z7xWtJ7c(oMm;rzoQeil(?EULat1KsHVS_m>^$=82YQYdMUB99}M3==iLQ~teYi(=b zoJ)&Y@ZqGR#8RoMgilsBSF@--@hW1lP-*MALArRRTnhA24gVn<1l*YWS3-R)_3pW3 z!q%j5k&LQ~3!ipM|IC~m0fJPnu(@8dJR}1(BKMC8`7@>GP-^Q4$<3bvX24hrXp4#A zLPPAN|9mI>$L*VK6AAh{Xo@2%dB=o6i2Ogvbnz(BNk*_A1XuJsm!_? z?KbdPP*F2+83i+9sw`Zm_-9$TJ|(B@K=sDb)9d%WB*{LN)_$t0gp!w+GF3)JZu$~D z+ufhSZx{_x(4d9?&ez-iyxj8jYdgGht;oG!ZU^S|S$0u*%4 zz4I1P3INY2HeFqduKG1K_%Vi9hiM#h1}+%+1qIF_ESP zAqDkt4ECd=k)Xx4404lqoE4_NF>Ao9kX)@IlJ~-VmZg=&%Jp!$8U)Ua8 zbJ1zZ^_oRJ~rvF1yVl~~yk|P%#yI{sq)b!w@>+O|>(7*r}KLbzlRdD@Vd0OED zkoaJBBS00e`rX>U;^p;z!U2Ji*kHP4q6#4~GxPp-KjH3Ju$7ixxv($qB^kds4uEKa z?T2=e)$PYBoPSR*eoieEG4|@(v!XcjkG3)Ds zqB9{**R6VZT>wPaFRy9O_0GPh$L0+8r_#`HU@a#aS3!Io6cJgy@Msy;=Yb!Ob7#b~ zTC`Ko5(VqGKyUxlUqVs^HF~Ku$#*_~U-VucuSAJHoW%i&VFjupEhAG$t;_@=F>!Se$68MEfwW? z?|uk*IKztETBy6p?h<3xbEtGz;^f@>keshbvoGHflGoE*P=$;;TQ8&BQfaipj)1xrMR56&x7n0`Bh3r9lA*exzWOtd=L zWgpVFv;G>5uOR;TyjOCyEGcQZvQA-oK<2f10R`p&qv(uj)MwI^)bFp2+_?R3yT$ch z+4Hc@ceG{YgZt}gZ#8OmYsx;+>c0J?Dh%HeS56!3V6kEv;PxNMfCgiqa;2xQe+CE} zb1>d@e}guN%D`+MQ{~uhT9A@9*txK3Rx^Ry=qD`L*lg@Ss&?>x zcd`#q;_L&g@qh58@??LX7ck@IUcYs?WXZ!J?7y9XZr$>bA}z&<{`QrEqj^q%h@5W9 zqmg;EreYh@AsU+T{qIwZqzDMTL{$k@lEzu z$&jwu*`1qF=YgV2rJ?^xiRSrhkK+xd8P7Tqu+{;02oDkZ{rx#4psWq&-R4GgQ;{R7m0U9Noh%{84)9L_7XkMha%*#t7+*dy50pzd`SoZh9 z!PjbPI6y)H1TvUhV<-_Np(@u(f9QD3jxmr&vnOg`rJZK+qKy{Yn+-#M zw+7+{uFtmG8U#UU7`3FYvBIjhKqakNRTfm&>c`ysq{7e%(DK65w1=0(sNuLIGz*0d zGZC4YbRnUkEokYpbGB?snnhHfzvKb@oIEbBh~5+tQQO z|DMf!pqo3;$C;x7@N;*D^vc_fx0i4)I~3tqCDS@Yo7S3Cu%cezH#7)DQ>r-AMGeSH z3=d_Zk2Cq&H0M@U)p-qpZszleQU*RM@p;ps|*eiNrP4{OEMCof*^ znw@$29QM!rf*CcWoNUsZ>XZ8re}DST%{M6~wMz}ea3mzwZ8%8rQk>1zzYZ59;<3rf zH4{X=5|>gH@c{>tqmvF z+|ROMLGZ`)B1SI8mu@7y5f+~(UQ%o6>P8rY*;wH376VT0gg7N}&(rnSc8m3>uyF|^ zzZ=Wm?+J%S68Mg+EQo9!1{n#3CG$s}SfbTb1uJ9wAE6^3FOq2sunN?o903D^=VBAN z2z7I-_lhCzxw7XOmm5=}YhA*{W8B1~EEb#|kAtUXi@kkzZY>|>qOC@^oN}D6sL0ge zFIxRJ3C_)pBb7rUY+A)iKPhJ%mo6~y?r3`IT7S6Z<%^zp0Czj?j~szZdH`_FPGHo| z>)X|SNzNviaqI`PnY^$esQtOu^0E>LGCTTBQ$gHN#gjTxsg|hw+rXU1Od3VxUU}O3 zendp;q>Vm<^kc2MQl@?})Uvc`IS;4$>lWAxAQR(TNOvtMn@k@ z=^BuIjNj;-ERaz%ri^>Mk28D!+oJWQuMg37&ZnMxTDo_Q$c#g@JrQ7)VDcL#b=yC~ zL52Vm1qDoF0q*mQUFO!GU{a?arnvWnVLcZTBKtRib-VUR@mING5lml(5-@A!0)ffd z*}3`Q@4*=u&gwQN1w$M3*`Dx}0GsIP>A@VzFt@^MJ$nDO_~$aG>%mxNK#c}*Hz4)Q zFa+k^r~5Q`uPkuV2^C_YQDjulT+@Z|2im7MEZg`70oLD7)^NUtX>H+P4jr zgM*1qdE2qxUld&1T?M_;l%%dhWeJ0VTztMF=b!yK^OKX4IQFYIMap32y|bf9ZJXY7 zuF~*&<-{)x*0%WHZBfR9&INYG6&0hJ;s}sN$F*44v}}sOJJe$^83r5BhCxDfFawXZ zaSgjpm@@;oO>oG`V}PPV2y+yG8Ws$jRRt4^&nsJYND2!J|9PY}H3?v@<@%;3m^N|s z>xMjTQBSXq$9}4oRLZ_6+oY!2XdX!OulQ{VgRKD-Ij)9pPm+7>nQUk6I45uQWAy9X-(hi}E z9~v-M3>Yg`fph{_4Ki?6gYipq*sKMgmf`_y-WWE|0p^iTAOXOpl3Q4a2>QN4g>X$R ztxYgN-v>fj+u+^c3rK+6C%TOhuJK;bvqS*53IYT+YF1xgzYYRM`g@IQR%|Th-I1d| zFqAI`?5#57i_|(&a=nm3I#?Z{UzqF?FwODp|0{RC!@*@!$o-p~d@;Y&0OFn<*?m5< zFWofrdehg(r&&^3oiF_TD^k)1vl43RbU}@gyqgsdpS5unJSYvEn9hh~7T}wt&7*Zq zs6HlI^rdnr&mUzkq>PTb!o`u6MAQN~&(U86dE=SC2VjBi3}nN_D60y7=)IIc#6mk@y*3_ekz zhumX%qh~oI<8!@qeH}fftTN@lygR8V zHwi_sw)?R;(o2?p+--O3uJ>aEiWb@{S^10$9YA9cH`W}`0#@c};R$1ldO`vlw;?mL zfMK=*1%CRl{PMgmjYQO|qHEz$hEEGA30?UB--AK7f`bzf8jZuZNl8h~z*L`yHjN08 zQgd4G3>5J%nR$DJoATm8^xgIoNN#g8k^9#+g-mVG5s$Rf*F}Fqo;?0izhe{90zC8 z({36}k>mFkh=G`jsq2y^xsjKbe&m;^HlmH^mwrAG-%V`o-o&~Yp+!c4UVyx`jNr%Y zuZhJ{`!WVQpBQNZWQ51r{rZ5nB^q_fx)qVO+2W?G=U3V|xWH?rC?$!A4V-LBPSMSh@%W@+n@sv4%Ooe8iR5ABKiL zoh&(MpWa^uf-LFO+uumTQG?^<`xFiBuiJOwVqgT)UJ@h|GcSOm@)Ra2q zkJ)sfAXX6I$hnG6E$)4o1sT4plBeWeLPKQZ5Ms-W_*A zlR8Fg`)liK%>; zk?Hi5&cY%jzilNPm<>EZzDXt0dmrZFqYLJ|m@~H}?JYf?DCo*X1c4t9^+&@&M{)hj0dfJ-LWdM4>tS^2G!-$`HJEKwolujW)oj(>-# z6X%W@;bdjchs-Kw9X0$2T}d(fmKydm2KHYawl<8uGT+eP6=pF|T_v{vxO0vKbNlgu6n&u%v2Mi#bBz99|C<;0{ zB#B%sAR6R3t((!w#Jkj?a$yAOC@wB8-8ZTL1|aFB32MR^G9_o1bkM%!XfsN%-EQdLIx`*M-O<8!GB@W6=LtT~VLmx}h89ABYKV;n$SsniX z@Ydo<7^7@&ck6s!1gZfN6qKbw-y6J(tq?6#87-obsCVxzZ*pK@B=ocD^Ug!_u-Whw z9XW#3!1P(COhid*>--!c;B(A>9_X9gw%Ylf+3VgOZ*XCqv{82c{87xO^U2m3&~r_&mYXMpV0O^#+uE81-Dr#?&!wwV_1UB^Z z=g%MR*L%=e=iL1K#1PUFq&8hJhoF*x0P`IQgJcJQVStaJOuG>s0#Sm}`U9z8HlEL1 zD<+tL0~lCx%OuMdA#MmzLhLUi9U{mPOw`aA#?88-ecPE)86OcyPP2;T#t#7E| zPV4HtW#Edp)s!8*EI-En;tFOx&!F{@0PaTsg4s3n(5bV)s%X8Ee!5ER=!KwAR4E$( zkP3lZG7PGjl&mN$@sonkE=gi_HHou)+913&LE!N} zg19fK?KHf}L5_W^LC(%jefW3|Vr|9BgvF5xGdw<09kQsFbn+*jB^Z7_@P}M365R=#fjLcc9vocFp@`cAFds{ zx>g6Iu*-k>^;pbGn?{n3cve)%6Qhbr*2+2XEY3e&z-~l@Zf2byD51Z3e*VMEoBW83 zLH;mNPFs?|N{I zjP4sr48HKqR1N^mQf8HxC}=rH^<2`-O-;8>8#m6T8h}Zh&oVLv2*ClDW|vJs*)^}Q za0hG{&khZ5BhpCvLmnQclz*ix*G`b~!j$PxbY8)sz?&me7vj*;D_=b9XWyUk<2*eP zpz@m{OD^{eJs;R=R7OS=!LQFtFa+7tsj5~_ZM2hWG=k={h;|(oC#eRa2rXh!WVTC)#w@F(^^OiH zi7#G6_ERP>q4|#`K?6a3ZMo|y%**pPsRFI=XtK4_Y%#D$ zU<79x;F!GHFIyHmS4*9)w-E!B)X|SV#i*}VRu*WFx7y*w8CpFlDLjdPgV8v1F@j~L zjj}C$=ICLirMvCtHPO@D3qZF)?fY)+tyrIvkP!E;@X&shs%Ak9O&pJ*5yPD_ubz6DMR z6;~2!Xtp_Ju{Xr_A)+!+nAiB>_h7dNyY9Wf!Oy`Efsej5j*9qGjbrHY@@5zNt)vnQ z4Rd9YfsKk4{drdkQ9@5~@m3qJOBwf#mH`CoZA2O#0js1|AnC+eZdzUKWH{{3Dv1G#TnJAL z%p3k^ZU7B2gf<67!OV;f4h61?ju(%>%%g49o}~Xg`tfYmhDXyf%%l^3vw9Zhy=gk* zYi^ZS6mewFKF5MB?HvzCqOYuepwNr;x{;m%{BZrKKENh(8yG7N{h(?vzd7b zJ@M6VTo-st%Q~k}H!gSGcR=lGJw#*NKdGvzUKsWYR4*dezp%A7`+l&!7cbSsCmVki zAFGKy@tHZS+W=d?02(ZHupR9HQ@CSdf#hjmy3s`ozX8HM@`Y5l7l% z0^c-CP*X`rZueT`Oe9VNlmNtb1S&ki(G;$c)B#R| z18&J~1oVrCo69LP>CmujS`-xGrG$Z4`HqxjHsgM$;v$wqVt04c3nxA<*Xbb(i!4ur zM;9<~>t{f9`t);c{M>U3jvIeLf5I&!cD)Gw!)m#il2VP2nvxA!RD|%iq&U5ou0Cga?>v(nnn4y-EWf>0zPk!>I^Y&a# zkJY9)bIM|Rq3fX!k?(OZ4uq$dho{c2Cu-wf`dIGi`S-J9^eV?Z3EvJ#wAISg*3Cx4 zA}mkNn)L5yI<|FX!5J0iTe2}wVF@Qp{zSZUv7(0)u`S0}$0wh7EX(%8PcNaLFz~%Y z9ldu0U%qVmwoGykrQDpa_m3Z`*x8ZC#_AFPLqyAreQJb~o)w4(pjAxYXLf|)SU#hp z&l@?X%cF;jpNc3cax==BeZ?>Z%SAoUQ!W63GXSGXz=9MO5fMpjHVn_%gv>HK(7)%! zWln?u>!n(GhDOiu2w|4KDjZD60 zK|!+8S9klJwI$(U(m6F9gPl&PFmAm$3p3&IKeOiW%gT4p!I9C>SRW5_TPU>qZGL%J z5P12TbcLZ1{^ESN`e^;FkhnHiG*zFIK73pDH%shH2^uN*KYn*~godiFu0A+85C&ey zMB7#YnFpyJyM5SNTVnD&He-3arSCi%72CBF1X)6s)1A>S(PXA_Y0k$#P*~oK3u+gr z#fag;v8JlVpqA6A)VbB}nU(W-I-k_S)xXgvS%f58&tr^sM;C zXyaLBoiYlR80y~Aik#AO6I}f7S2pD2YTtlZxM_!h1>xmUAGy!E0(x&O?$RJPZ2Z#9 z($dMdDS|`Et)VIDZVzmQwmv2=A~m&e1@Xis)J_F;Wy!VtPA-OfOiY+2`knmcv%cOq zbY@R>-*Ad7UtI%yZh=Gyo3WchP;hj#r=(KdPyaejttKKO9tv!~S7&FhbtB{YWm6aa zpryC^lj1h4lg^*)NE(3vo#CfhwIW8vh1K0f5&KB88X6)yP7*A8k8-qstW6um0(8~-O8E6@1tm5+vqNBA; z&k#SFx$(fo_hidm`23?4R~Lm9FE0|M877SX%{rntnt(|p4V{)eWIk=gf$J!7l9E{RaO(;?QM&aq-SLg)7RI%YGGp z-CrhuXVQ1e97i?1+thZ-s(x0ufsc+HXmY8j(-9FZL<|g?7~($irJQ{P!i>|#x{@f; zktPnqYOMNUDr(97Sv|gVGY46DvkPBO{&F)aB;nB*P5lXTHcG#a+@(?Tiflg-P$i9L zO-^?|OGsL8g93$W)M~Dv-^xx+Q57$cTJqn;-NN1!UKkAMTH6H$Q$jhC>&{8bSP4{3 zJ&o(H8m+#WODSp-`xZ9yG0CiI|I-Qu1m$f&ki8xZ)&b7o47Y70pkS4zoJTovf&2Vf ztMEHjNhu+#z7FcsnX4C6tDGj`T5NoLk4m7k(}f{$iv(;tS@{x2EsF}Jjaza~^6sG; z=(aX+k9}8DUufguNUcw*{paLDHC@ho#hU!Jx35@A#+b&ymT5%{>x9KDj+Pk+5o0j= z#J+^#2WI>fR>CJ0Xs(6z2J0!wnUtauul|&jrr8CRw6N_7bOffDFJDqLlyPnQqse`s zK<{aQH6*~s22AIH)` z%-Ld>&z;p<wTGT*!3oX6moln^B8Ye;2( z#1$u4!}Yo!8NL_($ZchIS3ol+>+`8M;O~AR+;h12=oUWl2)t+AAFg0*zVw80Bvu#M zP!87-0KrJ4mgG?c4iW(CT5`xMP|kyULu+BdN&#*(+oH9VUm3>i&P)+q^fyjnQN#o2 zz%5Sp=7&G^`yiM$$MTx2tSN6H+Hh`6Al%_o&8M}r+OD0S?cLC*t35qkrQuGPNV2yj zLVZe0`jcBk3nlbqU?0Yr9-SaPwcgAkkxTQFkB{>>r6;>wMfG1xWLS$7&MPr0uCoZ# z(T&XqC%zXZGiqLs-<5}l;p#FxH$&Qi4O z@DPc=RSn;ueY6kH@3IK}8lS#@w=pxD9@m2~NSYokBGp8Ylf%=Dj6RQy4gbde>&yem z*SVR0j8D(?^;&q=TW3W@n*o}teWnBGcLEPopFY765_&`u_WXNv*tuW(r7{uLo1D~M zT!GH>y*FAkByDg=smc`PoXHScO1@w)I>y|X7&9x3W9Z^@<=rTSjm=+2UA2O~2=Lw~ zznt;AG!G5on*I5sWuE%0+w+UO*9Km$Qt9Y<^jZZ{Y68BXuVhRKkK4~EH|x^9J)Gpk zoWQ86Jfw)<_8j4w1dRCY4GmUC3MVp8wzWzINMIAMtz3A$+Tn)BthM!DWMrN&2GUkr z)`DjQZQ8!go4`9f!Srm7=-% z6h-Zk*fa{h6o1*--J!vsjxA{TXWO!~ys4~RK<;6U3B=VcYn$OL^vv)sXC?_rGsR<5 ziD{$O1mu-mqtMVb(d+h~3uoSlN(6HsfOnv|iN~d?zP{{8U%e1djEUZeAM{<1;Lp#o z;e>y@!_8HaK?e4AUM#|;z}c_xKH*t+w=PUmB8*h5>syofepN2w5*{ABtHwR6#=TId zb8B#P+r5G2d5$F2JzWz>TL_9(gs56W(SuSMxs5BgdMMR^0Jqp8$r?U&tQr_Z`U*VD z^HpfXJdMU?1$V0-&=E?nJ8tm7aJP)fu|&cbRNH!)KEp=UFuAcyS+!=>5-FkTJae?+ zW`?OeQ`c=rN8Dbo-e_7{IZ8S_6GKHF0|=C@ky=qoV#Eg6e@5pQ`z%tWsYUSVE5s z?CK36H#bi4wu@PEvU;HD%1lbqF)20YbVWlaS4M-0)U zW}_E+mujl{EvFCre&P{4u_widvOr+$GPYd594cCvd%*`(?@wZ~{)n@ft67=_9OfJl4 z8?o+wGXbwl5;HeE4l^lxoFirAYUU6Zw!%vyD}so)iP+JQ;LpnW`*>|aDd|!?*Qs@* zsb#|=Z&PodkvoC(n@a;eEH#W13i2YQ?|*ca5lNy-P4&Ox>gf#gWE>B6_9Z`>Dr292 zV~a7iq$}6wCJu5}!qQFh@xeXI2~G%Qkde&;{dQbm#bX4fkoS<8bECbpiyTZw@^6o} z!d;u9O;t)Ykc$B^ez3It!v?I}<1yVBDW~Qg6gD=(`vfLn0AFWXPf0|0I@ZU96?$Ci zoTYXw1nO`LeV^h!Z*UT?4+o*R+nuGiT9A~hRbXJ;wId#!@k41fe*eCR6k)XiMQn=o zn6>cOZCAKS$6RnQb-bh)L$0u8T(9g##@8Dd&@IxR2iPvV&v$fH!22}F&YpBtPWuVo zum+)yLeS8FV6c>fo>VUb{h9GTdbwqLT@;6eV5;($HW<6+1(EFJa!3^&LjXJk3PBw#7X=#fd z@7g}QZa^#kD5md=3dMt^O_8OEPTSc@x3HW#8Ubt@FHsp3V&~jgDhB@4OiRnH8ygD) z>IwgllsQ=nYz%DdI^Kuw9(NKmjt+%4t;p7zk_a0LQj^o8;F7T&8LpF6a)<^-gos>8 zy5+#RQb$o2`idU=PLt_930diFfs+hWMP0d4O(iUphzi}2V{C{va(d>0F~W^wNfSeW z&)gu~z?W@JSpq(@?Z|4r+S+20{_!pTcM4qGJfxNjd%g2)Gw)bbfjsN)h(@*0Ev_?+ zK8N`v-tGYj_?z_$JUOpBvMWJ9@=r`w|{uhN__C zNnUl%N3u3~zkv2r$E0HWz%zZ-5-o1;w|516Na(kAl(Ml%?-|_(v_H-&;+7wIe#M2m z8%@?i0=}_z1voe@@v8>z7Z)Jjm3m{}m@J!=?sE+?AC_O*{B1~ z!}x+kS|e=6r+9wGrjgL~22)URGxDXt^b?c*T0<|>?0MGneeN7pDK2r!f7urjEGjn* zpSr*7{N~f6?q}~v%5r;Pa_$LxNlGQ$(w5$F{dcG{jkojVc{Hz9>(9$ct-FAuuJFI7%mr>Bl0E0_1u4=lt^UG?_?)(m$TuP6WiTW{*CC6 zkUC;~cfG?sHPuOIZZVVacUOs(>m$byAWUqJ8*K7z$)h3XutL>o2|!7{-rNK;-*^xa z*KcaZ4e{R@J94ZwoSr^KkIGh@x7rnjSC1duXbHRNkes{T{qtlC(f4ULg3-sA~8-E@3nBH$JN(!|`}9M1?RF6y%j4CShk&=92y% zyK_W@5rPgCdSYc~XK($pq7+mW?ENahfA|~s{KR!%9>6mEuE%!{)>e}B;^WiE4nxSH zgg?7Ap^YRI13ryoBenO`6nRWs+d0~(8F$j@DM>y4+v__8X`{&aF$uPxsUxQVObE@v zzO1Bw4jU1)eRyG5K`xZBqQ!_SGd8yDlP(_}E#4(sZEO0T*exQ+|6~xWe@reN*=BuI z80Zwoyxsp5sZ|!{_$P4Y#%@rTgljX_HT3mfoF7;;=dCPrjzq{0+@+@6cNE3#oS!?H zQYVjTDf)V~?hF1WW6j{}dS{GNzs^T~ZZAGd7anR5^2xcxd~0c1S?|0jWUIuM=13!o z^f);iSaD^{QSpEqq~`VhlB6hf=$M+CuEdsGZzqie{T5VkbWLKG@jo#s__X}`jKsWJ z8DrQ|E=w>uQpak>HH5(F`W}?>)rRYcc`VEYQYoJZHCh*22!E9fTZ(1)W{?(kK{09? zNxHaTP0!#2x3;|J(LiZ-&5Yy|%uqv8I$)!ba7>KlN>Tpy$}2`b}<`>^c2crrQsN z8pHx%^K1)f{*QO(1K)hEi5Hq(H@x2h)-NX@)i5`0!mK(k=uTqnI|ZwRj!B>lUujZmwK3su#;emNF}KaOaP%+CK{KdLdLY<4fiw-!KEl3#-$QLl%@~Q_y=NBwUTJ}e z1E=YPU8~H!ZDy?&F|2c){9a)95Zrz@a`Ai5T=2|J$9*I4+Z6h<4 za`2^4Uy6nt$m5Z^d-6-}oV|got|j1C8+rOZ5f~W?m6A$IR?P?v{Ye5VZjT9N?(&u& zbA#(QmV=LyQfqsynY%oxilVSzn;~d(25^hMd}$2^L-ku9pC4n~y^^1D-x!`s%bFaB zh{7Vs?Cxsy`L?7VTVO4Ss*3(hE~WtQU=eLBB@HbGO749^#ZjzG2lJ_lfYV@WDt z_;y1SrY2@)fKh}57Jl@AMmXqTGj z{$6{mP{wkOiNCL;q>-j0W4qrEF!}!#&}R+ff^d(1Cp`k$lf(3kM+Ek zXY^TDw6~EGr|n$-WMghCR{3bw{UskEPn-wv2}EvQGZL`2S300V9$377>( zlkoZj7|g)Ut0cL1ARyyF0;&Mi2-2WkPDzq~p`3?3ap@0!zNZGEOCAG64dxgOfSV$? z_G>*W7gnP_+_~#({3WC7#%Y@d_m|hHV|U2%s0-G@mWkHj(=SYmzP`F

sN`!b(Y6 z6op5kx-lv#v6p^h#U!i-m)a4|2P>{kF__M5QTp2xq}~QwiKMX<2FE8im)o431U9pP zh?aWU-)Y5VPDbbJE(bRyrJp1``I#(;KVE4`N?d71N98x+o3a}ja{+rPW97MhfxZZY zX$@`Hvj9n0=<` zspC?D_lgWC|8$ug0Jp?*cP~84;e)g^?(6~sKx#6rqh^)n)$&9{#m_vZSvm39a{st@ zL$3YfNIE!H9vGv*I6UlSf6pqj;q@O~=Gbps`D!ko*1aQSD>MFUe2`v`YT37{d8;$D@PIv|lTYwS!j5 z%CENz>+%rdAV3wZhoLagL6f=tfG#xS0FG!V^YppbXK8p0eSMd|MuKCvE)3BmbU{6_ zq1#5}>eWj*R4(xRuHUilA1t}5dw>0;(4{HF7B~DrLTD*zlyfvZYGajCABWF@ekFMS z1BQ`0AV+q#8yKpbN8yQUlhw+T2xv^}>MSlz%OL1xE#&C;EjD%?T;zbM$mE9y>pOkGhJZbJohyp0#3Qjm&c_f83{6)xbS~YcwkL) zY{MPSMmc(QrGZge9}gSa=2>q$W@cuMY)G?b^xG~@Mbs6)mScRfq?epe?Cu}``9*X1 zeLfP7+Zq+sVzrF*@Fvx25^%J0=O|WHCB1)VQ41bvRoU3y*b_hN&u-8QQjK~~pC%F5 z>dkH%*rIC>ZBDaLx`14oZo5WffW-ntvp(vWPySiPbCi&jFpy0KiPgFt_Cp5vcaQ@m zpyTg1AS-C(k^k!#HZDH?Hh9DT-Jkrw;Sz5#bs%XC5YbgSzbh3#f6K)FjuU&!>B=`h z6qXZT8;vhWAZF-0*}zimgcyW1)+868US+2vxV-=U>f ztb8UxZM;iViPM2;`%P-9I~p;O1!+V?Zk7wrJ*t{2+j>*>=Tbs~w~||@=M(1B8~Qlr z-A4GhVls`m=7kA9NNfRJKUVBo(7?J@JMj)|HmgiW5?)T)wLz4QKg5<$s#e|&$(aK0 zGz5Z4AmsB2;L^~c{x68e<@e(ZOiW|-F(7~C>({RoOibk?+#u2lq!@rxxN0)|TRU6l zghI%dxD!^QIYD#MhI-&Uv-zP{2~ygYp#OR6LtVT)!atq+a+;22o_CVJ7`Tp=x>1!4 z>~UdNQX{$B5#MpGFK>JH8p%auS;?Dwwiup4lV@e6gurEmi2E|R^K&eR*}%rAt8TItVta$ z-pR5wKmgo)JEz|M+<>m{dm5lwdjvh3oz=Ni_*_JP0U&IPt-M5udRo!9x7;9}$Oy7Nii7WR~B zdT??cD1H4KkV8e@`cOcK9)gaA#hsU5Z#bI7-P^l}MRFo+U@$-z!Cz8T#KWb}iRgB` z8Y!XGPDO=VS9dT47?mnnALeGZ^O(!)Y!1-yOm7NX!3dDU7i|)?Ng1#%-t*Tlg2y65NznjOAcjwzV-(W=40QF*&Jwe8gw^IT2~ngZ zWmMp6+fWo5t>*b2>aX*$04b^Lw1tIY%pbNfFphr9??QWV3C+%)mc*J3o19Falk=mB z)meCT?DX`ssHjNT#^$8TYQwX;nC~O7nWShk3VXNtFKcDB>3;U)udH9I0Dn7{vojwq z9$l5z;V*Oybu6rGDn`^QjjsezI_EpENn-$GL#R$bP}IGUn4HC!HVJ$f%0On_L{Arq zOGNa&t+@lphe0Nrv*x}NpOUU_6fj)@BdYr|%qL*eNCL`eNZ{N;Gk_pN;;1?y#UxlB zl5`E2senK`V776xU6`GH166Scgzb>{m0f-!Vq)DD#E9goNF>m$027YR$_-oy>|)&z z!u9?!XfXavL}_RfU#xq2u`;(R`ik5|&kZ+0Z_!U5ALdjoHQ6k7+K`AFK3B6DM}n15 zGY#dL9RD}&)U6$k8Zu$OPmM2>;nU-(h2@T!C0}~e@ZQ2kMIpPK%^L5^Gbw&Cu?cSi z%Q)orxIXrw<9UA2X3Dm^UoX1M&Q|>$@`L5`y3dB@Cf1$B`A`F8Ym~!XT>r7$R8UZm z`gS=z-0>QCu~jHwo|*9b)8^(JuyB%Go$QHYX+b%*;mXIgP}DTu)pg>F8^o4RgOf$e z$H@gp%`rnB8*8?(T8eAG%$~;1TdwvZC|~FrZ~*FXAUQ0xTUa@Dfp8bxcH`B-u80NV zv$X#^h!ry`3l$m`_SwRMHasE%x)X0AJ~Q(iYX$s@kvnxz@-ZPHAsCP_MO0N|c&b5` zVI(O(KGf#^eh4V%)JKyZxl2l1!bp$NxKq*97=EU&dBfdi)VOn0S>ga2I$PnpWY$fx2Tn%t$_3-FVxIM(jpWgHMZevi3-_|O_1_h?6-5Di z`vV<)9&ul+bHzQGmhGl8?hqWv>fo=wwdfwJ^iEIbJd>$0BtBfXrP^>(uo(eo0Wi?K z2N^jRzOQ$_Zoqrq)^H9i2!EYY#43S!13-O4g}BdU|9_C_7RX)%kUN8bRSjEWz z(A;l>E8$~<-CDT&K=2+=Wdi^DWs;C1fShUo6)_}%mLTTg2_m=$bXpLdRX(wARDZ;3 zt%fi?{hyDd>Q|`Bc4UC@T6&(r3kkrGmq8(CG!(F~-5sM9(=d4_9+`yMToH}&^T0yE zbbyBJP0C#TGT+>sm#xiTSSm825YS^G;)I4Qm~6wc&?Ml;m-O^38HS?1zr#waJRc(W zDveLJn43$1f?fO>7<{GrRAFRvzO3aVUv_-fSg%!oN`juzxHi5M9#hyya&QRrB|Wlb9O!sNEUngKmV5RW zRArI!c6*AA5>ZSZ-h1Zd5n$ot`yb8##`=+d7y(k|dnF!Du6RciZqAE!A-A7PNk-8t zvtP$scr1T$7vET9^jp#9E?A#t@}Hi1wTo#p7OYy?&cXMUNIMue)|OY4!bX#E<>ra` zj)vzUaZy4&KQFz6yQnn@^!?BXWxn&Pli%kp!rzuHQ^#e_!N45YWo}(XI5~TDB^!)b zfUNOB9F=Tl1qJ7qadsU7Au&9fo*3fRzL0vaMj zX%QA^b;`++JunxUcz26%)Zr94Cf?=y$#$mge7n`VEVaf{rN&iti?v}w~nE`|pU z9vR)?y0PJkX6BfSAv)=J!s2gFKCKPUTF{cPQLTG{>Hco@`0`Y)7v|~&HRo?qACG1i zc_TaSOM~zbrO5APYPQOzh6&#+v$JfiripOVqaTsc@{#m3U|?YJG#DlBAFo~6QtKsp zwl-m{Ij;;WD)+(s;qLTUM#fkLrxEVn`}61J=Cj_2o@`s7)b6LC3+qtu7MP%XCq_Kv zvL1t33dC==V`Bqvjf|WKu(sS~jl@Vu$Ifl7uTNyxVlKt@x6x4HnJ70;YX6KM<`FnI zrtR)tuA-p$b&J6Mply8>Y>bJzsY}Z*>?uV%wh%Qj>hG@^jUr&h!=1FELmrlpxO%2j zaeJnsayv)=a5rlqhL}Ho8f-romR}z~L9(KO7az}rhDN3M|68O%>FjibArjf-KX z;47&*$7p_LW>Ffyzd9?{Xsby`99BaAB41wqW5&{d2sfaKhZ-zqiX}uu+(>{@ryT=* z9xSy(fp-mAtM<=v^LXe+TXC33VQ#>{-<_UkEyfh_vKG$kO@j&+X5jQ*_VB(Nppz)y z_T(3uKO1nPf8%Km1{_z{K`4LZRW0-RzrW#en~Z*bEH5g$5OuCc2mHVR?r-zAlwxg| zW`~Df6((}|>s?UaPVdtA)fvQ^U0Ik)iMcHj=IB%w0d(w=V>*b}3)4YwZ7u=SN5Xb? z!1ExIU6Nv9ZC8M3{mp!Zc6o4|@_kM^{&_^-*5sSawF>WkZ-+(;y6{3(IgOdszBG%E zYdiCSh&Y*tB*WWsxT>e)VKW>VApXp5L7Nf(37~?(Io$=S#uy0D$6K&7c6hzbQ%Pm# zhn^5RG<4hBQs5P{KR=&XtZF}41M0~E^8JmG1n5M)%^iES?6z8;Lsooe3s+U}iJ-?g<#;jk@+ z4!^TQHw**g<^yggkSk7lwZEV(as3CW^tVQDmPTm#t;?9!d%d-Ctuz19>uEwmI-G9g z17M;&P4JWoC-@ujxxy`FRsWpEFCJH*b1h^O>LF!vTb_F;?krt8t z?V3Gl@&>0`{X?t3%OJK0?2h4hPmjN3T0eBlONheqx1Fx=hS|!Y5pM>e5Vqjrh%&@< zyl%R>c(j>)#y;C&GftC|DiU>aVm)!mWmu7teN+JgZp+4*a9o@ot6fXW<=@oZH>ER{ z)Kzg??deM=bb<0_yD+rv9x0eqtI+AZOLzbN>A+7ps^4~hPS!GW6b3k%{QbOrGsfb z+V-Z;=+^pNo$*b76cT_S?lXMmyC#lUsY#VqZ8$%bj}XGe?{7cR&1Lv~mFt zCjw}x{DB3bl8}&{a?=C|M>~DBh%za+x<`kymS zp*TX=UPf8|hHvWNI+kd?N#NetjwD=FGc%M9=GVhA0ux+7wz9CY5^<$8$DxtE=wFZ$ zc3uCt0kxpN@yJ+t>jEZ|wEe(@{dh*46#ZG%FBl#c8O0fBD3E^=awL8I8T)yQji@GX z^@EPQl)-B1;PT%zdnZ$TT*b6qm<-fenh_3q!7L8hhea5h+cbJMb289dsN!-Zw?72miQ2OY#r^6= zmuj-$8>svuFF;8d>7F8x3J74)V+%!ipO|Q~oIPe}nrH++5@}w2M&zJu&YzsOcQuqx z$ul+F+vh;t4#40sh>FNXahzw=%F9PlVgCxA{Ys4~N=5S#J;Zvv&PO)n0GwOvzT{vr z+g#?+b9?$D$?~Y5SfKFdB|H~bXMYrM%cv->+6RzMO{pdc3Me7_3sTTuh6GQ;a68kl z4R_~js!LjfIfHp?GHp9Cxq`K}bU6Mue9TQvFSYMhSU30EJINHVlW6IwrAW1~2o`t( zZa+st$iKH#v4+sy4@o5X(E-%BK%;Avq$(Z=v?hrK>@J22Pn6Us=0pskzZUk> zP5r?^iv0-~JzKztrV6YQAjwOULkEM<)GRUhF(WLJl?9?TOBw~;Mq9KOjU6|7h1%)^ zM~j(W-RLhYzJ@&@W8gT-#6SsGPD)&IhO4+_nNza+J8(*jw>Bl&$(6?AH-;iIQGx{_ zX>3L{Lc7o$9?2cC-4N^-tFMFNcd>_t3g|*WLJCXboBL6$ zLN{shTWW!E6xiT3kdg2Ceg2~p<<7~WwJ20Dm+Jx0`$>~T8bAaEmSBi!bj+-W#pe=5 z$7xC&*mi^4i5;UJTcduhPtEtcf%LEW)gv^P*3MW1VW^$%R;;=sryAqe3sDzTp;ule z!}Vxhpn|`{CNdgkP}%@_VyU6(p|#V>fSIvaee5J`UxoGZ5<56JX*^00Uf(G!cQKT; zuM!i3A>Q2^MiR=KUgvSPQW#ddtOXYo)K1GdyP7;Sw7d^qGk3O)*zl<$Q^ROdl+nxy z^X%5N9GeY6K@=Y!FJBP-MoLZ1D@BMN6#l*^5lntcO6YA?8qg3x7?zz`-e}4Rx#ulw z|8c{LhdRag9f@WR=uHLRqa~f+AHW4$-TFX7T;_RZI2y!xh@snzV_s`!8MngyaYk8D z5B={RpToh=aNU-Fi&cIr@NXuKD8eWEds)wb;uqX(R#S%uYBDmg%&kAwCbzd;Y?i;q zl$1!3@E8bN(s9^Dg#X~OzWC>Cn=i)H{1fga8UV~ z^`oK(_jKR$x=+Zoe(4BYY`a?r?5w+;U}8HEff#2xpO9~I+JuD%JEC`TVsDsOfY)j@IaDC-^JF2sI5dDr zn3!w-Od^0GCx;~>;*40z5J<6ZZc5621BHSR!45Q3Xs0$Jsc06~Dh9QdOPvF$3w3{z z@ePE8PSfPM5lUh(5D3`VY|JP4A|@n({LQq*we}Q;uzYFB=@lN%ou)f2G=-=ko08JI zl5}CM)~0$g=M-3Kr~Zf81v*=-kwlgOkbJvcz7yMYdD<9>aTujtog2{gP+o5H73_ju z2b7ecTkinaF;O2KxSMKd7K=NrObr!FifTNEcy_k2PZaKYD7eflt)e}tPCvX=I8c`Zb3np{M*|W0+0{-cQCZ9W3NR5Z%u7@TMxv3lgV$ADOpL;fbEOI4X9`g`AmV!@ z;@vD;bCy3oK)bH>DH-TH@bRXPl&F5nXgM<)VBC2xkLJQpyuN7=PScXER@N`kU;TIQ z`(LuR3(pP03(jVacaI>Yq=yW1GjOcHwzOpVt58%_9g%Em|F}-2xmv~4p!eVX+S=uI z()%kJpN=F}U0EM89MSB}jC#6qb66Pzit@$l{p;6Yc;s5$7TVF_VII|)tsYc80GKv1 z8{MoQA0=tE{tNa=|L$D7?e<@x&X2PwJkUtc*Fk17uHn>FD+@rMKeenh6yE=*JR21J z-QZWMj32OxZBzn1=oW$p=hAT_?sd60(dgsTk71RHlk!0x;n zkaRJCTcZQeq%Hv_V*8g2vtLKr*1UBQJ%3FK(Plxa$2#KK%D@y+C+|CBqyKzRNl9(W zfQQ~C&G!L?;lB~t9F-9J&z#&>s&7aT5Nbsc(dQZCAYYq~iWYBzC|sSfF+MQ~s}-_u z9bjZiFg?R1lS(VbfDH@m*HcW)1@@2NpK8orO^t2J1-?7Q_6n#!Z}#D%e_|SJi7-P| z#$lRy-df-tJAVJ6u0Lmnj@doBMk+W-fZDpRrR9W(G6SDr#t{_1R9232C#Q<1@9oXy zYO-(Z8Bo-xu2nL}aDBJmrmsEX*#;aXAcg5i<9bfL?3-sviSLS@2bc?Y;*8FBB>z2L zlQ7WV^L;H#`n5j8LTOgJWWY)Q-hlm0keMzjD=V8=_64A+Kv?|kzO@8te7skdf>7JO zQAs`C{k{<0_PAhb<|%^{9E2!{LxG%Ye3H!dA#K^9;-bg^z@IfV@y9zi!bJglMA{wFyhV$;AytGfDA!Jw3- z06(6X7%THpS?#^=|6#%ypR5iYU!OMWKK%?c+r%S?Ai@~_*plO)b3BNJ|NHb{lkFYNl`8<% z^RJ~6N;Z3O8ZZC#I}8!>7L0SU{qE@tPn zk%KQCf0D6=+kABMnW;CqulqhxG{l0J-yRC2sgfpTlJgs3dE(=}2QQ4AEGh~Is9q{R z>t(1lGJXgV0Z|@d{CuQLLfu*k@w?vDHtf*t?In_FCzogcA8BV5R^{{kZ9*EPH{IPG zf^>JMgmiZ)At2q-jf8Zkgn%GOm$2z>q@@MnKYV}Z@5y`O0hgD;!|Z2f*7~gb7IUj@ zo1XT&k`4{?VuStlzMC4Chbf9$M_EJHQ1Q@10`~0B2&pG6y(VuwMQzBmoi~PLXn&h< zyD%n~NS5V0umD;<{PT4oi`XVCE_Pi1@FzKM0NZh?M8(ZxfUJ|nV?)(X*tif(g9bem zD_N;`S-$1WY>m8kczD-7yj*QVeFCy}q6GKXZuyjO6*2~K`?k*>Q14zK%8HafG3 zH_yx*O>uUzGJ8uks;Jn+1Of-JwX zNA!m$M0q4NHWTxlUB^-=HyJ}dsYNmzv(V#lc*72uuw%dEdpIegclt zBU_b?ugKf4BPnB#n|lMHxkrwVrpDD#4P?Ua0{C5a;p&vbv8({()WnRcgfS+5cDK*b z9*&vW5!5h%7JOsA4)*re!mtwuHg1`})= z6Jly366VyCdYG<$!WO@DYpvf$D{-U-e@-fp@|kUH9RJgl2Zd_nL}eKOTnHWFB)3^m ztqUjUUq(hv*^8qbX0ldJ2~g7ne|}6+l0$-@1u~oNrvfR%%vhh*4Hprw3i?r5hrtlP z#2vuyfrV8;Mnel9vz9g{8?oBnvCDf|l&HW)MAQVr36tjZs4Pn1VgQbcgh}29=-%Nu zIi&im5W!s4gd2RBo^>Pyh3h6hvu z;|^~s8X5rPP`#Y3kGDlddlhx9qvzK2f!ok9DDYoQps7Ds^^4Aa>!MHhXHq`{<+14j zezPS{CF6VkMZ1vjOHxJ&eSI8aVt+uAQ+Z^?fq(eNH&^0!lqrvXc0~t(Fc)lF9zz+8rlr>0kq<{Xlj)}NrJCI!Yv zpm^9UadOJKs;W=iTt72QgU)wm!{dhpn=4y7{p{DMLO`%PDW0+)I>4ara6i&FTxEl( zIRG1ivD;FM+kNPZv9MR(N9*MGZ?{f{W24MA`@X%;f_?=7y}LqcLz20w4V%J3eQ!pZ z5Xjb<>lhu!%DGew__TtBwd{W}2Ij1uVW2RrM#r2>f?wD%dF|Q!NV{7FJd2 zc?A_g`y}QmpFMhm8Mq$++CfNXD?Y4`zUTe13dz*U+>3y8PR)G}P{h%{Q0LSYP^zuz z=oWeTf_4{UV~Xggg$!|RU|}_La$~=XrwzOU10W-RF8DM+teO>sbziEh&{J4i_F1gH z7TFyWZbq<*U@lCNc_(O`GF{4Jt*Jl8%wl)W#so0LAY_J|`$>FcA%iPRNvlsu(dS_u zka(F&^KZv(iofDvWyO-R9yGc+_;OWb@9IWUx`v zg?*$F)HfVg4Of+`RFOqoD%!P%B;f-Ji>`!fyqLRt5Rj-7yajjo5qh;WuWcAqMr;}g zf!xjZ!`-4X0npsr$jEp)?QXkv0&fBV#RRO3EaH7(KIItM=@!lN1_NB2K(mL6h6c;Y zCJFUtm?X#K^NI#NVMp=HmeP_sCSj6WB!J>q( z?4Y3x;?e+8$>6O5spH$f4ruYDC_jSXeYLggMt=-YXbGxieL-mqeZfThf<9R{lAkH6 zu(@-^L*4C?u^%`&jCOcnqU*{So#N-4cv1Oplr0P@C;Toei3I;$PM?DY#Re$4MfAM= zUK{w&0r+4=1ov`0U|{p7vAW$;zt?iVocz^?^Q{3{JnI@N2*B$Z$})$)@c; zf$jrCCSSp#iY7%*&q-)Oh0zP4+?M?-_i<%~C)bHZyx<*=UE32Xs_~a(g@VHGJ}JNg zzFfxsx~7($3~s&fCh%jJOKsE^e~-zA(QmnRB>k zjv5N?U!zaH{(4V4hch&^PpXZfp3{~-T~_hyx5M!wg8vo%S2VOOo1`ShacXK_z2u`A z-iLogWuh+RpU*eVQ5z^eEnfl+B#L(TEzX_Sm;_jUhPf*Pasy7 zMp8J_ioJcG`nd-2PpE84(yxPjW5Yh7%B;hOXGB9IDBI;ESE02S;oVaJJpvFJPk#R1 zQ52G!hWxs^d}B?Qg#@8Ac_}hW!^!CZd_4|431H!w#wlU+$Hxe+re69sPSLY-}bL}79Q zKb-z*BYVkz^ri*IXLaGLuSF@SuC2Jqt6m@Qey5i<^iE(ecza zbsQPU`8T@2nBEN3t&c(WgQU^HmEj%{-WTZRhUk^8^UG(gfQH5qX&62&<=c1hXSAh| z+!}|s&1JZBMp7~|i^{OVK7U>zqg%!r0_z6Az8uYOi^u^;NN^5M#Du$DIpnO{26HI^ zklPC98rksbt;)**9t#&w#zUn2%_K}qBY*a67eC(u&_jpi=My$HXKK6|;s08n_^~8k z9M=Q1lpe2q$9(BuLpF6D*j{8$4L*f=sYLR-v8_ny3JEnyw6BbJNs~JG37hsilJ(-u zuhzWR?`yliZ#*dxI7r3n0BIG!e+Yn!f{#5kA#7CLGZJe@8>JaPXz1VGB$=Tsobfc?l%pNTQ#S zo=5(ae4S#RJN7eT9MqCP8dQswV{Vs68&5>JL_8(+!074=I%0JJ^2_V0Ib1?UVa1^# zF2W|qu|8=;T>uM)xab;>DUW@7jT!^|ZH+xa_VALDa9r;jHlyc=j_a+Xd)K(Q5rg6I@Aew08UTCn%^#G-M+}b&rSwg7-yIr&?awvv(lkxO8Q_ z-+J1lpBk~RH|~@@yh`^PTT-wsh6S5|6>&LNBcj?)VHmZF(dd6X=-A`RhH{^j2ZaIOEcQ8RdtM8G3Zku{|WF#>w zEBZO9X_NQ9WZ)V&aGr;Rx*q;0%^!Q`crV%kxXwKm)DEYKOxSxJg!G@~md{Cp=Xd}p z?nL~Wph{UddVK&Nc*zLZz7KwPe^&Xh5D>ms);5gx_Y+`ZNKCG(Ch8a|_dqAVd$2MU z?4!K2&KdoP@US$Oo~tO2yk#xTCCSB&vsuZJE*ZPtM{V?(y0NT03a+Zt*a1B&TUcFv z@@45X();(Xt#x*|!o%um@U6Y6#{25g-00bClJY2png`_}+c_dj9>23U&8f!mj+TkS zYrD9qX{D9muri%{D}=Lncmw=z@5l1So<>Ia2zK*Cj<)Bjx2U5hR6na~@H^-Dn{);j z+8%qUE%)|*gy!zM-?#z~NQUv$LY$Kny5jN=?NC3hR-rIKTxWHkk;U`tJvQGf+vh0N z>c4Bzv$<}NWu^|>B7EkpK5O2=VGs`H8M59DsPnC0_?*jToV3cg10t~Ei3`Y$Vdc(Y zU!6OzbhmeQHiD7JgMcv?^yKUO@7%xLtom`1Iy8e&e4XP0_vq*UY35&&355neUVNTB zywY!RH0U1hw|(8lchvn<43ohd^|7LKW|sR0H&2H{%N*KK9I zHmEekC00z2!{URt()s=R5`nXVRG!A z3uMe2<$H)kb*~IQ7Uk9lT85u1#Y7YncSHnia21uugF{RaLn%SaMm#SmtY056d_FUY zNtk1<0wMp28QU5l-a;~ZM@5hwmj+_nib@9%(RWzy{&_uyC)3;YvN9>ObEzRnlExv1 zuMjfP&=ifdFS&G+0lc`}e7!IF|3?CyLP^Q!{}n(-E&0%7&7cL1cxeaw7j)q+BDy=t z0AD`(V+8qTq%WtdkO<3bJzehI;;Pt9ho9(K!C}Jm^s*#9n5p5arPJo$Ga9OUZ5<_K z!*Qb}shHA!+q0c0XFwh7ZO@mwj6Is$Z6Hy!Fs7!7c3)6<0-vU)u@wG>FDTc4&ajoS zufQ$M-FjWBOdBlH+;lgnez}Z(z)yk|9Or~_%{0( z>`k*bYaXz-ermZDD2=OW*hyfwBCsh!4vjA61TG}SMp3vNy)FP z!vY`k(gE-1G`U5B2x9gaV)9UE9EkumBO@|+%sx)ZAj(%&#p<}+Iz`vV@4Ord68cM0 zu56$`HX(9D>V2{tb#!zD`-(#c0nD}qav1g{;fwSfSekW>Wd{qNeOJYLdPtX*b1T|-4u1<`Eq+a?w_f`&G6AS0shODy zhncqzw#^wbGO&AjBQna}O&$#W3ta*JdEF05X!$B!yiUYR0tU{~zux?1>jTrEUf&-6 zj4(1Wy*l9s9fkeVIZ`k>e)j_4Ji#~w_J8ztnCdqt05|!=`D+nS0|0vaGt1rH-acKh zwyBACP83*w0J#bTw(RM_LHvJ#^EJs)`)2Qs$0Zl9`R+CJWQG1;#mBZTrwfnn9{Arb z;!y~U*1wNtk_nEVAjK{kg1#!!^(m%wKxg!i2w^NjknCCw?vthzHIV_<$yPxq^exKG znrr^?d~i$dde91jp=@}EpjLbo&rZgUvV;SRF%3wT1K)0^pI4neW1p0yc4$~RGNzs} zbUwgeJ2V{5%P9NKi$x(w3qs!6^FGTTbZVQOrefp%#No<9%qc+6y)edD|%Fy z6(^G;ltYqrgP#J0Z6numZD|RaI?7?qG|2+C$uwtArSvZg{e*HXd05^^# z5w*J|lsj%`aNhmSw04fBHSAFobSwq^Z#iL5cU|m^4XYu5*m~{N9M;g#V0|%ajpEWN z)8F+op*FNfJve6HNEiyW_rEnm-`v6=6#a%57M30_;en5V!JH#{9P<$_%iTk&U^%Wuvd~t#6tdDYa#XJKo*U&4KwJHXb%z(+x z4%E0foGM+E=4M{dZep`{fYvPpt-ocFlw?IlsTVJ81j7!ZpD)d1Y|9WHANgOr(BC+9 z38_6zr5na0ATXWUdkssT{jrwAVA1dLlREf^RpN;I`wh3ZZ)t>=Fok{W3p8O96Cr&+ z`KhUTA|sJ`JcU@`;H!_FGo20$4_@~EU^4M}cn1&waXC3Kq{5J(tpRv-o#LJXDSJ{O zX|Z@&3n|Sc*iK)f$x1!=b{~P3+sPS?pWb|DKkH>=4Pjf^&AU}3kHC-&_%Ja)i!{I} zlG#`mAEB@}t85%`7!vtA7@+kQ_ws6v;ctG`;e9L#K(!#B=nd`Kvd1MO!&syL&^94< z)6?cb92z#1AuIs%_?RBwB#;?I5vcvcQgdq~BH+`fNl~3QY!Kgy@d-UD4$Q$}O{vOe zv%W}FbW*}lSa`|A40*Mg)u5iY;$~)4o12^Kr<;#Vg^uAS9Jw5pECua`4IR8}5b@gQ z|E7zPE%j46Lyvv2w!I>19Tltc&@5nRV3Vt!YQdY{6)yi zh($-1ExVyu7N%lv^xkl_IMOwZtym7}OkatMAHvr;XLk0qZai=>`TwEL@3yZ_K z;Q}^RGm+K8$3~lKfLROs5uqdKE*+Oej2};d*>}E`LSF_=>UaDOlLek@enZ1nd^MZr z<-b|T%x}{4np*H!!Hh@iVNC~&dTIa+XZ9FO(E9q@Ww!ycTaXmva#{Vx?`%Ede+AV; z#=vMsT7tKnf*Z`j-@z)bnLEr~ojdRZuSB~Rp#CGi=k7J9XSIM!9(obd^VYP64UB*E zPN=mN%+0`11S$uv`Fswot5aG#lIg6=6%Ou?3EsB!>Uh!dSy*mCmO)h=UB-zGUrSlB zfm*N?Vlfa-DYV$(>7QKiR#qMOBG6;ek#ogpWr>K1=-jUG>gT?hQdp5(FqyFJ!pTbc zvQ(`J-aV5!sc`^?y>InVW)kyMd^5i_-=I zCvn^@7`${HVf#8SLkZ*eTF=BJPsSEtzIjO2G#tAe|HGHJG4; z25ddYTo&;ogAL29-lO>bXRru!*GCExf77MRsLqBMzV}7pJ-Ic@WGpE6bVXoJBkb;L zplXxx$5wL##T8pFQnUW4+Az%IjCOeIG5zMUE@hbW(=?!GZF@DN>@DTX-NDd!z6?Ia0@H1R=QOohuQv; zmiE&+Cdxq$?9ohJPRSc*08#~?MXZ7Nsb!-l8^`2Y6`;Myzb}#G34WQEDz`?;;Y>#7W06uMAUf#EVFAr2Nwzjqs0lyuDh~IAZ zMP1(!5fKsc*{6uybAf&HdG48;hv#|t1)eh4>vCTM-2UOOCxE5S3{;2T9n}vUedGX@ zU{E)aig@XDkb#O?c8w|C|AvDBv8XFgQRl@A7?9w(YQ(IpU@X4h*8q2SMZeFllGzDE z5U2VV-{x0|@BYq*GS9LHLo1pFu@S^%lo+RmK`}eq=6##yp|Yi;rkD!8D4(t?u z3X#vb`>y+w=Q6Q4%guSuGwd$<*b$(Hgv>20xcqO=tWTfe_0K|{cAwMuloUKmOG`=? z7PRN9TR>)kR0K81?vA9fJ%iRa4i96V=Qm%yB1)!LY2feytalm_5wZj@>fy81-p@V=VMaOOx^VL37^mlGb+}2C&Pu|E}AcHBL=0KmPmf(yalaY_+9} z!au^N`dfHRjD%6`o6Qe!2DzimJM&&-)g|fZu{4h>)8jbdOUntuI7e0yfoO&^y*1Y~-}7zE{*{5L~GN z2OFn>FPg9-zJu!J71$IM=%%KDc=(CP!tS9aXsCl*8v61&Pq0F#f3J(9pL*#=SCJ-4 zRKAWA@mRkF1Ju_~5ttP5W7z^0U|v)FVSQv)owh+_XPaRFjysj$|2vB{2; z5PiPR41TuOGyw=~fij>b69JUSn)RFQ@pY^8VS$BVW=8w<-FEVI#b21oB00?G=k}a{ zf5x_-ow>3aHVy8$xeO#|8B?U9wl07C2V#=xrkeMK5+O$IuT+7_X7|##W6)pJkH0?w zootvOI6j(|X%^+7p5=ldAzM@7ocO5nIoH%1yYlTV}d?4 z91jl<^^QcwUqBaLvMOD&7HPJ+s9Uebk$n4@xuVjpaPt5lMwo6886LGn7A+l~E>wph{(VfhDX)SxbFlJg`#q zD?*4BH%BHCoDn4?6bE4B&KhpFxjk=&6xDlK;GVb1B_uJ948a;!7#8X#qc!=s$YfmY zPjvyoq{RiTq*Nmo7Nr@GHL)9f9?4MvqcGr_%*KD$m6dwc8C=DRBP=QkCO%yccAWUv zmt2OZTYRsexMngk+u;v)HojRP5!OH*f!Xc5Hq?q_CW40fm6A&%d@@6qr9T5Y%Z$Gm z=BLFgCy+VVY+#^JgO^B}KQ%d~)2b}9WtT{cMXJ21()1n&F3xy)HKs1-=g%Y=W9YNBgfyTwv8I!4*2F^0{)i0ZPt|XFkKrzew?)(WLx-J%dJ++AmRPcNO=F5Ne#S(hiZL*!j%qwv8L}GfcDkRUr@EfeQriG-yMewaT<|7zO`n1Oc05{= z<9pv^_;x%;iNn-Xt(v#p2g$h;dL>Z(s=4XlR?Aj4!$?*$f6}iyAVBZAOO+ zr_zV?>Ut668{XsNr@&DEbwWkU#CrZ&L?rW3Zc2;%cqsEd5Pkh3gs7@e^-Xz9!Ji z6&B%Z?B4!n1D$#tCmi#&5BF@=<2g~FjP_G!Y5D+^6Sz54KA#xH=hI0`ogO*5E42R& z<;>h?@&vS<($8hDZbDHkQ5<}K9LwuhTNczCD#$N7dTwBwxGNMY6c-K+$Ysvco*GIU zHwvE*pd;DPFQ#Hzuf@}WfB0{q96CEuX z8&4Ymx;ba&?(@Hd+Pea0!oy9s=SfUgO$ZV=nEv9z#_Jmh5>LWQ6gCg#1}wA)Dlk}o z!SpS^Bz*IBcsR&3(91+m9jh&^!@F4FfsACtd7K3tmz0xeFLD2oW$0RPmw!qx{n#zW z=`dTI&cO`F%`M+_b+EPQ#6`FtwI4yT-C+Xhy6Z z*n3HT;Oj8kaFysze`$g*9O6P#|2AL{=p?tSO{P>8`G>gISJ$+*m0RXxP*1-81S;x& zbMY}gfCFS$n3X^j?xH>%Qjc%8Vy`X=x+sf z`_C?DYUSJ;E*`Roh1SM%+&-|e6nW_M74r4Zr4J{mkMLnMEh5v>m1C1A@$D2A!f*_` zxf6lkCdg@j2io7*g+`kWdp{v?q1)DKJ8n_ZQ{yKt*A8RM|E-AYA0Ps~yW2n-HqUy6 z3v$ie_g{V1n^?72!2}785BMbsSW>lyhK&r!VQa&P5M?Vz6MEoT+4HS@3Gh!L6les^ z7RJp!ep_DNyT8BUjF!)!_9*!HqWizXRxQ5Hr*7$+&vmL z5QwxQA|&3suZuTiq09*|gc%WHcL=-145yj zuf1}z^0GH2DmrZ!+ob#0bhQ~VqbFX|wDD?}>ilpZ{`4gFbRnh>$hB!4rt#0h2LSn2 zZ+5jo-NEaC)a%o}Kp4v4+WMvT+wbOAlY6nlN+_`CV77R%lx zP59%^Y^1Lx)r+Pcs%25+&YhAvRoP$YSVTLeqW{7RZ6v+!Bk;gu+c|#GtJJB_7~+oN z)yUB76AcTU+>4VP{!L9#hMJm6H8`QS6f#Uhy>HGTI-%z8B$bqc=B6CWy$06Xq;wR< z#^0I4)UB;iqV`X4;&1bb4V_?sc^4UzK`F?vT3@uk3y+Rp@Nu-!HY@Ix9S#`*9i5`v zj7s+YLqhDA^~;_RrWkd7?f0gp#A0F%@-5orGv);zwM{8CJ9Ko`IikjxAykB^srG)Q znCF~2+Mai7l~AG2>C_*zmno#nqTU6i(YBk+J9@4_0)@wUh_lsz>L%6*HD>3}*MIJ| zsaPbh+$|g7DjHa~_NR(&x0BV_Z(ogPedGMPVlDA@y`N%WWF&Y(3<+pE;3{egThgTG z=S-)EJZ@HKdut>yRw3OTO)1W4baa>9tkY4>+*8T3v*@gEpuhXbgs;mPss?W7A+g$_|11P?ET zO4P*eFB^BcgZ=*Ef+x-e*$;J?c7{lH%Hv?gVxzBQ6s`RZ`Wfioy^!Q9L+3vtpc$=t zed8(8gw-lFgfY^OG^n;T`Kr%Y`AdgArCq3EG$&Dlpv>=-4tusb+hKMMhaNYxPVI9E znz>W;ruFN9EV!n_-}~QBSF)23sAdi%?u%x*>>J`9g(;9=tTD(e3rtv1oE#F^w^ zwb%@Gar{D3t18EkRYVB2w=?z?5$Purs{yxtOu!d#(a*qXtKkGDTx#VnRY>%m@sEXVE&{< zw&hi%mUQJb{^TXJhePs>LzrHrkxMQ?w_Ra-Z~DW;FkFjEsYkP)5A!q)`K@5rs26gK zuK&Xhn@clu0dl+<3O#Oar8SSrrpq~VP3NZBn}_3!I=XQiuBgrF!kUf#aT`5?pH8V* zZ(3ao9J)IJO3kJ73mt<%IyW7Kul)O8wk#MJw7p$_qw~a1+9Il)j62$`|EZMM(2vYT z;d)Nv*1uU;(BAtwk+A&Y>zXQ3>w+?a#9PXhqjpcbwwe@{EksfP3=X#9{G?x1^@U5l zB@csGMWnC@e&e(@JOR^~Fx1Osj{Wa9T_xv)d42cV1xL#TPdwlypdFWfL+OUSj^{r| z`9jB*5sRE%Dv5ZqG93e4Lqsa8brc%^N_?Irg*uHUl5F6 z@bIs$t7ta&N?!|N5Q@)~DzZps;f|O|ApRO7&JUQY!QOx{KqiFaRr@J=% z_xd>IS*Du-DumGaJk_wzpE0hk2tITdz}_D5pvsa7jPtG8aefl!rU`KtzgblxpdQdC z)uW6?g+P)rs;Y}gEKJCCOfZr2V@Ico4$9?9ZVMh`IyKdSV!MTE! zm9C`~l#-tQ&%=|VqoENg^v$%b?L&XRrNqcEwL_Mo48fE0${>PyGqXWZlC(hNcX47r z?G$%d90<`*KHFy64?ljSzHd0niDP;3PA2RRt;rju`;Lle=Xqa|fHWbTNj%7Ij++v- zdVNsz?t$`vcv8wg9167pibA{h3Mj^v@#MwaL=ZFsC=QN%M*n~?ntOPgrXgFOrGayO z9QL#?J00hTyD(PSN<9IWWq-O1W$i3#@FO!`>}uq44#YOMP>*=RE`8-dwr*T>W?t<` z@48rYV1lT$63MJPrn5JZ)e!DM#rqh_wZ(OGX#QTOVq@i7-a==8AsEf9F>#ch%gDh? zg)_2GN2B7{bU#RrfERd;^UA(J-NHV->w{oGEoXK_1Pf>Z@VDuv9byfUKR%A{g^cYw zir@~x6q0B44}GPfwRSgdBs5jO|lYOm}O!-=EWk zDXg@`lKx~85_~t^H7JwJzSGSU6(Q1~8m~#?Afxf@nj1~gWy4?Bvg@)m z6L4n+37t zzYg}{yvF!Ega2HkC2t`Zy=^qs&$+vwK82rrDm0lW*P1yHr^WR=EU`?;8pF$`x37E! z;f{;-9G~B2<(#9&ktG#IMm_}BS}1gUmPf-`>Jkz@Fh;Y4fTP9vcHro89_rH5qguDjN4!Xw=ez>Y-+0KV~%L` zg2$#W->+Sb2_;sSa?62|%5H}mi938#noyvwJ=RrUstus@!fz`M< z>O*P2%^p*<&WP-6)E`u#M_q{KSB+=qqM$(Gd}gd!QOyv zFl0T1nlbBaqWov zS2KL#%V#nM7#c}EOUA>;VXjU>*Q>nQssC7#;Fwubtq&w~tZb$q^~$BWgHY|gIHO~r z*XCae^XstgSgTe-EHHSmE$EkLcXq^e(-4qe>eu_!Vs_ofkJqvrmubtobN^!-mk11e z$#JHu@8Lsv>06O6W{(HjLx=6&rzL*~isX{992^3#8@SzFz$O;=Z-AnF;Ef@%v2FNE zIssZr8sTiGpydhZt@$a5vF?_+%Bb#xRhj)LJ2;A)`18j6c)^8)X}syG^s=J~!O znVE63LU7y)$8!f)@eo|dVlo@VJus-Je@%sP^kvq?r=|T;F*>^N*aPk|l(sflL2qTN zi5Yx>K#f{e-cbmbqEYR*$n7oT)h-x4g@tz{7 z`rsSA)S10Iktrqc7Z$!uI%Ge1VbXPHX}l>Ot)DJaIa&~xuU=6xMf|K)kdjWu&1H5r z=}gF5`G6Sa(|$~pMmroYulk0efiBJq>E`!l5+1C!!+ed4vPzrE`m$ky!U2oX$qXzT zrxfr-8gY#_cBT|UUzP`p3h@Y<7^6vXi#(CBj&n1v!%+2>Cabg2#l-9zJ*QQ`QkIwW z=J$dD3#7`YIqTZ$t8>Z&9>u9+o3-2S`&R8pK3?AS>aVN4ryp*F``W0n%5mLJNUiu( zGbIi9^`ggQPkP6)4?=T9vh6pF4yIiKL=1Ys_8QZRDW?9@DuH|(m4xf#=)NQOseUA} zQ+y4FfiCj^S}=W9nO1^Kv4glcj28x0&rVpFHgao0@U@pE?aE+L(Sh~qr1(f=z6Ev& zgmB-8N2%4Q4RJAbdWL(k_A^GrOC1_!W*qwD%?8Lq_Rfx?e-dLAYp8*CN`qSOk5rSG z-u|H`vCR#7Aw#<%T2^p0pCLb)=fbf8Wem?hkvL08s53H*-7Nk-Mvg?;9&auWgSU0 z;2w?RZQP+rvmz04%e0sbib7-w7VE97G5jjJq_6cu_V))b;u?miaS7$k-=yKAWntMO zAb7?SqBqqH$_t4~$0qgU_vOQS{=m|GWuI3$Gqow0!7?zR28ha+_jC*_#hQI%9bZDL z3VV}ujg&9q$?0NzY|E&t!j=H$`;mZeqSdX_&$Y>Spg$4Gd{cTSxS}GuYUb4|PtlUn z>5#+(%v=jl-nh&Dl%FDrf}C#=wlYl?qKj6KO(Sb`8Bo){<~yE8r!+m9>EyttZKS+I z!_8Cv*1>Qw72#oo+sfg1LFzfF-bOwUSH#eyQB-4Ms#x+5+sQs!DSoAg&G{Kv?;2x@|C1aUPoe(Vt2W3++DHlmm?R{es4?_&a{cfR%x z3W83n=*pi}iIViFe~(&M1bD0m;iPjq5gU)zcBT!}*JXBil9|I)ctX?$;wfh{bRM0_RMm@AYVpi>W=cS%P{wfYiPEXb}@kf#>VgM?4LUu z`+wl@Dh<5&3`U}3hT1pvkq-AY7P|`_qh0Ny5wGHVl}on*HdM19MC9C|_Oi23CQR+( zVr|i)vdGtD-H(cxGR&zsN{oyAQEB$Q%?GDydo*ukj1!c?G8Bs?9UWO8ZdC&oa$eDF z?0pW7pzvnDTp%8`M*Z@%iN^g#E!*45iWwczms->_a#I2PLiH>)adbXGcCa(XzOHbV*fs7^>ylX45 zC3`?HFlC?iN&JGCSUwi0+*ID++1FHkISghLs?=qvQP#Luw6u=?f&sBUkt@<@;DsHw zS5qo-2#^ZF@dMUAKB|el;@C0M4^+YQRXb*8O{PVKgCfkVvzw$q{96aVx~3Pd6sG^~ zonQ+H8xQOF@-?9QU&IlM_^ONVrn(;yLQ#3L6$CMeXa1H#I`gVb7Zy@FiLhapKM1Fa z5{ekUN+jBq6r2_FkWL#~fj0e1XdQ|OON{a8LvHwG%X|5PZD@*xXa)o3IrW_Pp`5Yp2#iILYRAy8YP09PGOFLAZdPDp~2&uBU zD62B|o)B5Srb1cO%)GFqEiditeC|pPKT17-3U1!*eeQniHWwQUK(vE2fJWpzGWU)R z5)&GN1l6zK9Og-hjxMux(1q05VyDvDR@3D-B=yaK4mhvtiWlv7+1UK3>4MA_N(IG- z^sO+8{8DE*v@BOMUA<{7AOF{M;q#7`5Q~j3hf%j`QtIYA~a75qyirP|z)>n5W+X785kiYnu z$47=!c-e~|7A|uOgye!>6>hYkp{pl%&i|%Gy}Isv>&=>Gsnfa zP`-keDbYZJ-gomT$$-wk{$s+vK^3)n7 zx@Z+L4JFeKf>qNF{!-I78epe;c{Lr!#qquj=>gQGYyrnlM!)IoFX(n9B`a%cUJCo1 zNE6;Su}Ah(Z;T69pItfqD{6%*s!>q0JO1@_XJ|q+QvoeOR`co7WID%X!99KQa61=& z|11G{q!d*+bDVRfz40k6e{*VM{eFb5`b24fk@%EN5-Z~8e`NKVl+Cs}TylAZ5OWdet$3=}i^Vb-&dw*zuT1?6^{ z2~)OGMn)LEm&g&ciF`wD+{6bDc=h(+(4QlSTIjK7yYN%irZR;wf@VbVSW-f1U^FZZ zySA5^Vf;N6qRji;I?m#sChAzAngQ>+(z9Ss1+Z&E&!Xo&B&z?U*&voTyV(GWejsPy zyae&(GOUhW?X0a@mUCwB56e{6-pDgVGZvMRnJL_#q(UA2_Rm`}m|UQy?LN{>2$kSB zt!sgFa07RH(9fTXlf_CH=H~tzhn3+|W#67gI4+sN#T^2tl7j@c;I1eJp8;+XY;46G zWmirD;E+pgK%Fy^5>S?l$;7hO(TVO?Mh5F1k4u)CoRd;qQYxfkVJzhwUD|wXr_Y+d zSvP9PzF03?#%7I_e7akX|Y=Z#ro66auh^QNt|sv9g@w2;L;WG^39u}08kj(BVL%_lGcC#F4F|1 zL(*{7O)1NdlKFRknGJG!g>;Qo+)`nTt7I5pHT;zN^1XIJ{~+V_>m2U3Y{Sv$=#-2` zG=!&!h|0Iz2kM3uk_qIB!3!n#S?B(=3iWkf^oDeOs{uF0u|zzGAmxk%Lx_$znkPaM zvb0$67xnh2apIZY{R~Bhg@q*)bfpBXIUA1LdJuY1x7de3@&x|RSO>(9L9=c0O(Q>^*Txt%k2Cmua6 zO5Ip?IoYrI`f6M?$xzS~W*;(WWE2cM(s#D&eMdp9K`BHW8N;&>1BIiVBy}i=(j?K) z*v|67v(;rmiTLC0`;LjJ;63Pnp%F)Q?Gokmb~2e4d<+q`AqXyk@W_E+`Uxv|B>TS2 zf!)LqB|>-inaH@}HDN)0CN~_2Y>o1GxYg@aU6gvAN?j^eR&<~|h6w`g5z;x+z<>_4 z`Z*In3=)3F?^2i|p;S`g`4ttY04G;x2*}Z2aI63>*Wq*e)AaEV!3#vh zP3wq?^5-8N7%9#GD4K?z98>;8&S_5*(x6&Uxu&`I|!SA8Ci~^rY1bl zn-2&6b&!-^^jd}y2@d?nXM9_#;$Un#+-Ot&=Mh91#4lorX5j2b37vKNJVit0?SDsu zM?sBPT@~wmyV9UqToZjBpb5gKcJcY=ZrG;>o zr^guqZW~Pg`~YOOXpop$+*<>8kL&K|at1mvFY+@*8|LlyU?L+U<98*FPD=uFIy$=N zl7F51j^cBM3uf?G$az`tVNdL-=i%-G7Ur4mrw-PQ*WoPHrT=yvAiqwliN!sWz#{FG z)CzSqH6_`Ha2bLa^74Jn(t*}Bs?Ib}M|wVkOS`POF*BHG*SrZV4U!UY86hr-LA`)S z6r7V_VWX=Y&l9;cprDWuG#d1U5Xz_V3?yL|B5K))U&_Ts=2t1lATYAGY<>?WzP*oF zfNuxI`JRTl$yY2|4_#DLw4>(cDPJ%@%v%aESL2v7F)_Wn+euH%&2{=p7y$5;g741O zWyEg4k7jZQ;WwKuQHhL+@xU>Q&rqfZQcEO|b}5^FVA3i9kdZFQ|Hbn_8BTTHk)Hw0 z01!xJ6UgJh+`)X8hQrg${$QMC6mi6bhV|U@Z(dT zKx>%}=7DA}t39#tZ^gV;S!BA^KVIf=+trI$u_0z?lKUw{02cCdoEJLMsOS~8~W&5pa=OtOvr@R`8n-h>Qvkna%ybd2G zC~AS+p3C81A8DAaiSjvjuY5eLX*8SX%oZV=hZ2svWNf(ePySf1e^0OH;b`x5p-BRX zsmoKCJPfX2MzOLA`b+_(_zhM1$U1U%o;W#434|bFTBWoPm&q@ZqxwL-o7>#nF)}(y zLxYM+IJ>5_tLx8QD-Y4s6nE32EI4!)%=xW-fX}(f?e5t4POV%Qk7n6_Qk2OMW= zI54+T`0q(H;O{!c)9nBP%b_U-7-Mk*_JHl}?YCfIoZZ|E9M*QnzrWZu1E0gP@^V;l z^C9g2Wqg;aeO1zNM z6)TI<{SOjbRV5B~v(PBq5iA0|gtIfloYxDxD&4fD(gq$Jp#!^_trm{<&6+Quwkgj+ z+kj4DFE4v--M{$-JxEkk%(s6lK4r+CtIa$Zg?xL>=6(FD*H&AiC=naiLQ*=EXk!CX z2Ia2OZ6~sArn=op_YDo5p=2HXm`};_@naP-`nQJBqj-5UvkinbkPP{Yk4=?JPz)Ny z{YWCdw(4&x!T%T9z|9sl{r?=Ut?KQx|@tnDXwirPgSc{%{qJQVQCri~RV4jyH*N2C9 z-+-e7u=t$jj_p{$>h82n_Dn_*bdwA-4TOR@SF{qf(~pCL?CD0eLoY0?E7UcqH_pr` zmfa!{?Ch}RmC!nVt9?KWfh|?d1rHtWp_A1-4Lml_?Ro=N%bxOTItNvmu+U$c`8BE^ zdtf@|ldOoWtcY_&DtkA6SlV5j1Ck9JGWtxB%>+!w82GwU8jqM5QE>2|JL|DOcYhrk z2JjX62+^-UCC#36{FHUK(A867WJ*-mrC%@}1j7P?e!9Iw$&%ZsXtZrXVf~5AJ%4mi z9tDWw7}?powgbN7p6}M*-EOyf2RPlG0oMd#&}PH4t|U4d6`h11ePd&TeW5jN^1$;s zPaDG-WZv=j>M$aiLCqY%HerGm7Y$1%4z7G*>N=>sgvfsX{+(3~0_DPOEM7v!jb5;p z1`fYxzu|xc*7}~$2G7H`g1s52+;axBL(b3BO-jdPVXF)bv@6UPdEYJzveB!4duZj> z1BuiG7>??w9*YZQq2Kda#49pLuv2f}SX#@xN2>uB|OtIr0h(WTd9PN*@sn$lAQ&B`#)- zDtq9_GK^Vc1)k`S*P1u5YClN^tQ*^|6-vg~;-61JAUHS9uDj}c$QDb?2YT(P8L!`S zllvWU`RNw2wC-j(xPsInWX-|RQ5wv@7fjiHN>2xZ>Ywv#xaUUH-mE}-vp1gWKwk#l zWjUK8Nl8gr{U4#TvxVQjeKR1`mlJ7H6raWfW&**GJM-*s z6oNP5W;w#hef?9fr$q8g5ck+@v{!p3)DS0w2Ia|kiTNxur9qRKZl4fc8$u(Rr)VD< zF?|nX0Ajr`X?alu; z@AObhM<^W-y50$do+5o3sRwZT2h*FD9 zV@s4ACH>}usKF2$q#+Uo^q-XGUTVMy2=&Uii!&B)0@*Z3b3V_yy+?g zjS1Dh@4@i(wo}xs1`RKOOtQUBoIU<*F*0&B`@X6c1h=%Ci?3;0A}Py8N=;%b-vF5FBAGNU`>cuGu3 zoDpNaRCwnt{i2NzJe5%BY!Y;D&h%ih0IErEZbTY|KDDY)RDjf0#@G*sNBldNE!;l< z-wj%dX_YE`JAV?GhB#30B=f>Bs>Q#03N7wu4s=gmy>)vzr z*?aA^=9+8FF~=xB4+%7{EHK8Do|iOxf~wC9XfGhD%^TgEFPO!|XptC( zu-!fu)1}*a2|FEc3Rx+D7GxCUzjM_^waTJF9|i@L@M^1u+CeiTy7-F19qMz5m7GEe z_@OpQhPQDur3elWh4uT*%`@MjB_)#xE|ANaYt%?7DmGxB7xc%~L`2|v@8}r_>FUN` z)v2(2TdXIAvofm4_vO3ke0i%n=sC7N@1_+dw8{h_`xdLn4(NW(AdOZldq$Pd%{jE z(P{iciUIRCAO7(7zn{OM3t5_bb4NYSE0(c2jwPZ}^&Tc7;yQDCCtj{fd^UFZiLiCR zi^rEXD9GjX%Ao-Lq$E3Fh>2XTHRr)yN{^i4bnT4XxT~}=ylLLs_{9y$_?NBF3FL)u zZcd~H2M-Witr_pjfJS{q)mJ-Rfebt|u^ZbCBu}19a@wRtVqas~faHz{bbn)C>;lp( z_=quyUkUkSm^ot}G5y}4Anj&m>^Vqpc}W_D!cpFIXVHd|y|mPl z#wALaDlOE^OvL?tf&*X6)Qi`}Mo$|3o~bM-WImU^O zY2Q_G%92(LJxyLkH3^Bi^MWSacSn1>DV!oeL9x2=l(K1EB4Ss@y- zHbY)|BWGe_w#!i}lwj1y#tg`J&v5e-Ht6!JD~8fVDG;}|^jUgcT)WHQEN7nk;I21K zTIgh$4KouhhhpAa)!USR{yrR&$l8CF&{JJhWaZ3ZzKM(1tl^f6{aA9_qkbca*G{A|kp1r*et(|1AG};}&ayMk@v3HyB5z((Us(x^)%| zs+$=-$rUIpU^(ZcOmL*)?yinA))uN(g!4(Nwbk_O-<_SiN)Fe8CD%M+iY(&e zn?;9j-cG=%=vCB9t4rV};e)0W^EH#;2oi>fh=H&uww7}g^5(2;?LJ1%7oy8=P&v_B zS5|KMWL;Hl1y}ROvzspIW#!zmNJZzK^8La9lyY47S5|XlITW$6maW<`|I^;=NAA+|a9a$gpQ&^2IblTQ)Jej_B1qCnNUk$OJ5C?! zx?vcR7F02_vtdRJ;5WPp8(LahGZa#6Pb(PwMZY?j$L@?SjU%UW(1^ds(w>%U+SARl zoQ_d3K1XrLUu4r7z4RmWH|8_K0?x1Z{_VH|HQL%VVQV(u1Kz<`wbLPyM1|=XH?y(w z(7%m)Xp+y?zlGWavH~qKfru@0eP}q5i%R+SjT_yYqUQLfLi+J3cSHC0QTF31xUABK z-M!GU?;eqGzO+>RrjN~=9ZvqeT`minun}pNzMnsnBpUa<)oI@p=1$eWjo?X8jp0&| z;JUu_f*bl9fOhTnf^sy&JZpAtwW+qywvzm+%UqWg|9w5Zp|L@a%a-SNSH+1(N1ILl zx-6lNEIQv9kCZgw?o4T4ifY@W3)yf}y6Ls^>yG`9&7B~9rLHgAW)Z*+x`ZwdgmT`$B70EuIZqZFh3W5yTQ!L|BYY;OP?z@*y+B0lo zb%8t0C!SIS$k?~?!^5Q3@|KpZ4}|zPBY8|ryz|ru8YY=I5`(gtJNMWI+UIQfpuObJ zvVA3ahM)!EtDdc=-DSR`J&#m)Xo<(G_Dp-}goaI4xN}|wy%lzxIy2$PD*C%|A$@yX zFT^Z$yY)+~l5Vww+?OmcC%VHTB}GVxXG9tq(Zw)Y&Cly76d(D!kHvdxIK{jd2uAEF z&)+5WI<2Igr&YO>Q=WaBJCBb(-ios6^y$yEQOfPUXi(GJVwyT`mbo2eQ@p7lVaQ4;h{z5kHl7v^Mq*x@| z3rG0$^*H*!-e~6s=ugoA}Ya2?LkGPP%;?_N zGtnLbrgyux=4n6Uun(_Ar-M@|PxYi);L2kU3U*EIec(xsj1-Gj3HPH?0JF8>C6vGa z`GDmCZ%*0ziC8uqD$X&!w?(9++#D;w7um72`HlVaR0Dr z@%Q)D=LF)9483!kjg4aSK-=@^W9esmmA>@$-OQssrx<2luSta=BRnrJ@4h(LLug_` zY05zrer2PY9LMLzb{CbUUfS|ze|JU>tIk_~mr<8?m4^J>n^&&>7f4DH1z@3jV6 zm2zDwDqyB^P;MS2;C8Bb9PU~6x)dFQ+v{xCZKr48ZPnBkYzntgVK7e6qZ{^fFD=co z?zvEK)@IFPMneMH09Q z-{!QIDl1!xE)Q#m-@nZL@}6)%4p;|I0D8^UfgZG@*nJ1q8Yul_a)x(oxNcRO=btms znlnVrn42Cy{wX8r$^jO&ZZ1N|p4x!~GJBp{VdYV>>95p!<*(R2ov9e@vICCB^IJdw zNT8+38{jJ}IV)$C_i57Uz8fBSp0JXl1FiKWDQW4Mpl+p0_MK>g_Y#JNWd{i%-j~6@fHdbsv+HyCf5z2MmE39w`F~ z>q{E}Mj4Yha8V_#Gc*pomvR3dT1yp-vUdxR%}Ppe;GisVfG^BrZDlpr7!`?^kob;^ zuUO8_jcm&seuYc^MhRy;4V5A;&t>(3hp+XnL|3=9aWC*l+_P=Ph<=tn3u6%UNu6Z( zaGD4#8C=v{lG)k>qO4ifA|gwDJkqTz6LgDeMk4Tt>?r8yf`8gEvplg=iP*oVt2_5u z+9{yuL0Qp&02Kim$J=z+Ch1kc8!i%CisbTUIllb#G|WOvrnQ5-5S6H2F~U;AJI_SK-*uM6nBUq@; zznGq$)5S?LFjUA^R^lqwymk6TBHqMV7?);9(=R?+p?mKsXr=aOVG<3Oe}0;YiBdi0 zi2j{kUhN}j`|41?(OovwbS+%q)|1AZz@YKJM_bjvZ~C-oW7R-Fp#IFOU%UTHY(0N# zAjiHsC};cdd@Yvs1raYoyyp_v{$BsnsuDA2oB-D*)BoJsn%Q>8GHpz7>5mBUvc4`& zU!PnzZmaju$n}|bMPw4rfyo42B(&$%iZSa>WeMR!*Ann;D%IPToP*qMy`hMu}Eol!eT+92%+nXjF2RQia z7o#oB@VFG4>I`gsjSbXuG=bj%<8k^k9v%(wt}H-A=bozuH8iT?XJQCN#MHML<9dUU zwP-I!tgnCB5)DFmi8m7PE}w_MHI&oOl_x@PYtKe%@Q}A*XaF@o&jzw)9f2H5KtrzZ zl5!3-4!-_-{1rhTu>F4u1}_IcVEC4qFlQh9K&mNk zM3kkA{+PBzp|@M;Vg4*#howkD;m-cD(M7t>lY6-QDof(j#bX9CQ z^c1Z5+4xV|cmsmrEc^3GLY}HO{k{vN})&g3{{rhqcD1paPXDXt53@vrAG^W45(^2iwz# zj0zkQDWD1@>AGP0_i!(6EVX+1hjm-!@F)80FYpAOrxTPMI+8F}l)o;?@1^}hHu_+#i78h#_9ODi!(He4b?EUb97OEC$3+O=4TS^+(b^Xw zAq1;Nj$2TEfn8cJ><_?*)8|eVc`xOq2)O^egP3)o1ORr0>JIqG8@Gg&XB!8@ql;QyZ>O^S>zxV`X9{(O4j90w7L=}Wg;MC9Iod)fQ*&6s6w150)4%jB* zK@FW&@hK@p0Y&#?5KI`rKQK9394+SrXgn@8b%f{h6>jeC#u)I$1rZlkZtj9np#(O> z!5ONn4=;dprVaMT)l23Y(qdl%p@QQ1djz${$P|kaj<>4C2+qWKW|BunM6|XBlL~sS zn*y@4I$mu7E$>{syd6+Azp0~xhk`nW)(fiR$elml4LVV2a1h0Zj(S45mP6imHwp(^ zr>3SFi>sWVv>{fKo7)QI2T%K~aPipF>%TTOMxwel6g$*$aeaA060g@RVt>^v0|kb#kL;PS9# zYKjRb<sq4{q7Nly#%six|c?yWfVKiOJD~57atb z5-A&irLpafkB^`IV7M4F#4bB5@+b;Vn2Vps^ppmtup0@a;#-@t?bSFCg3CyFZ*hJ7`gP?u`~gkZVyPH(zB?3X$rz-zF30}6sN=_3 z!^E8_|7*8z-;T@7Btwk=(^PhUkrhG0AKjgUH@2~u8=K>^^Xs~rn!Jh%A!rVPVe#7d zu&~?WO_=89P=!E%QC~m5QZOrFw2{ezRO8p}9R1_=rlvC@hd~ zhioX_3q!IZvbGvxTJw{?2si`=(;@#wAS%O@-YcAmV(bF;I*PTP=z#U!FxR0^h+MTWIsml{%xy@_@5wK`zaz(GMt4bciW_L`@$ z2OW3Rd+04#nW&|@DDI#Hs!}L0wWC19s)2rm#D5f+A6*0=&yW+HM7v6mpMj3)D;xXE zB?!eXM6d8+lf3ZB+!6JxP+l3ee$fGSBhd0*6lu!NMnQSH6&zchFKDL;5deotAWZ`m z0MTA9A8WR?*uQNBrOUo*N0XJ2(l%Mg&KL$LSOg}1PZzQx+47bF4wt`Z$jRK);B2-C z9)UF$mzekz3>8Ft_#uR&(upgwWPDof#d5Q=n;Q+mkB&{v#enaB5%EV;{w)PtUdE+# z5jwJa4c?-NcRF~~qSwIP7=?0^dXDw|58*NiiJH+Lu&SMa1%aaOo%&h_wKg!MUtPBA zxmSN$kORUYQbn%!vJdcxjfH&!)QNfnu(Z;*!y3RAG%PHv8K`a(4crew{aEMMWKba? z#L{Wtg-l9|HGk;rwD>J;c>dxqXN96SZ%#Qj{Gml&$%o3fFJHF&HGoP~TpT&d66!4x zW&V04!*~Hle$TZ+VYJXww{&zYOjPdmwtEn3a8QvEKJ}};!p_2i1Hx(#4OCUzOa+jA zS6b}s)Bm!aNjlF2-5CA>KL|pGuuYzo-8C)W`BnRak&IEA4oD!EP!Tw;QLDiHc&d^s z@9Qg#iunDhx7Qwx?gg2VwaEq?6matvA&QmXdw+Q7d!olwR0-rmR%YgG&E>^6>m$-s zFfcP13%q(CU)Y>lpE;;C<30TYvNDk%H8gDNJrmA}0-^9D5xru=aBww%UCk7#vsy1O zU0uy@Zso3UbbvYlCl*5VT=b({bBIf(epQb4&5$}DD+ z^2RNPdySI3F;lY!g7td{UWyfd$>jI4aL*W$Ope@Ts~Kt@e1 zLBM`QAf@O_C;J04gJ=nXhE)`SjfTOyp>G+^x(L?_rdme^vZgd(`7bqO@c!o>XVHGL z0h&$Vlm5r(h_@*G%O5^!z9;_|6P&4d{+mBGmNqeAH~~{0iSP*N?#By%MvlbpZyAGj zT9C-oT+#bJbl*`Kk|6;&+0dpO0AbS^t0|5s?$pdD-(Lrrzv|z~Rara$d$-mo6kKlW|ZA^aw6|ySpXa7UQr!Sv6CLtRox<&{$Ib`tKE)oH3f#x-vXUs zdr58jDM->{5lLh`LbB$OQi~06M{lvK6ubYKy)&=3;^N@o;3kMP%!7~i&L;2@=fINn z9;2*p&EXbS`-2bG00Z2JEBSeO-K6LElJYe(IJBQjRgMY)!{J$GW+qRGe!0r$-rl4X zeiObOfafNg{QVCcovx&cK1i;&?4|_X8fFvfu{=$%t-8FB^_xpEc|6(}l^?STDmf|e zt4%%ktL)=F)+TwIfC;e~M!`A)sAY;;|4u&UO!{*qP6KU-jtXr=!cQh|Ah zKA*r~IHVq2q`e^gZGL)oWxlRXNmawXi4>vmJfi>2hA?}#WshQ5Eohflk4Cq?(($2o{izx?NORU$RKjdUMt0%p0 zFpAj3)qDT3%bz!NH!LH6po&PjdUeIIxajIW^P5Ce)oLB58eP=X!Vkn&NPug+-2}Xm zu^jRYV3i}x*-_ic=N^;X*I*jl^*a~~tdW!2grN2bVqbaexK8H~Ci}M0VIMc} zh6{8~h%@$46}{L8m` zt&tW8Yn_^ww$6<7erNd?*+>w%VHFhYw{5Im6<3w^vPW1=z&rgI!!SN`FzKX00--Oo zwN*jmg)BpW^_n<{rU6s^dV=MPbM*9NsBM8W+6*Q@gMzrRD#8ycb+B6ltqK48*la@Z zy{iep1$*_1E#C_^LD13d>gjRC>KQS#d!|p4`E0Kcmyb@E)61(az@h6`GtT(sU zE2IIfObM5{Q%If>#dM9)+1Xjbb%CrG?OHxt0TUF}Hyw)wsX=B=P9mTJ*=%QtuT;bS z_7bKA5>*h+kWX&}XY4947#F{N5I6Swql?hjkW~#ipY!^6dDQx@#n*UHCM1DO0r?W@ z%cLXR$5j_s*Nqk;rtGRJS~#Ac&8{TOBe%FxGfzrxBQ zZRq9j@=NSeI_4}fvAm{c^u?;hpDZ7-ZuK+%+85R!E=B+kjK`>sI>009;Y5uy9LNb! zNPodeF7t&k1H{&T4i=U|1i&XC5cQc#?4+fk2?pgrbI@OmV~=9Ym0oa6O8 zw?N$c|3G_Xlo3;fy&Um7MTQR^5G8$(ig>`oo-c(oV|gy5S)<~9d=-)m== z`*Vrl(3!cwAmM}xD8m%fUxaO__7w2b@0D2+!@<=FNO3hju7)3hz+?uVWPtx5m-JkG z8M+S69v^(l$4`TU|c}3?E!m8@*@M;?Yb<3wn&jzp@ zJs}>JLKyTtSgmHfT9uP?2>~vUwr4T3Ku3o9eVooL?tXQqquZf-8&{|>+%>kYeG7+*NV$6f&YDiiM z69qTmN6Z=wbmv5^>jq-z&dyE%TL3>oih~qfNmUikX?5gYSS2eUCYZyIfTTb>g5!eq zwi_(C7;!j+T!<#z*x2|rQq=R&Mr0<||Bw~#9C6zldwLV+3)6j_gv3NhbAZx$-feA? z;X?H5j#8Y(_no%D&+kPGGy1N}8$w@C4N&=3l5>21)e`M|^LR1*FLn$Yx?%_rBIwqL z#aD{l{xIk^J_E3#u*ijIzedirYKT3Y8)PV>IyZ1_qWhdFiP!AfnSZ+g5xQTQY`AFR zyFu{y@18aChJk2GC+#VKs@bZsWEqNim6r$Yp#D`?&;fywx|em!$xdr?%E~el6BCb= zSw&(GVST{@f2+@IsoH8@YPvDg0l}sXL0rL7I)6vT%bpim^#IPacXY@X4qk%6n}Qxp ztPm)bA{ZQ~15Z>uJC_e3#1kIs`D@NBPh8YGZ0ktFfpPT|w5lLdNhK!NVj0H)yS-^- z6uq)ye^3t~AHAdtKIHK`@Zj-)xdDs1C5xAPeeQ_%;>AcnL8UO@AfuqGOH=2*OxRrB zNpzFe1~&I>?9w`DRkQH%oq=6i26@;yy3$9Mz;#4A1m2sr;2v(o`YYMma%cJf^@1j( z52KjITnhoZb-l~8^Bh!8w~)1BHdl6@1+N;fL^Hr z6&7X`&Q0at(C%>xP6TIjKxxhM*9eDJW*C@BnD^%>BhdvxwZP}jrqW=-eb@*k{X5l- z4Kz(bR*X*8*Ry;_+Pw(_9asn}H_LBZ9|>xZiET@0cDm4HNi>3vJt)2NFM?7HXfz|K zB(hwfEy*c@%5~J)E05qy>Xlj8PB&rc%*#I|?1nuy;ckgBueg|4olm)ero8-<3FuFv z&HwhnV?5;mu&Ft~E^hsrYHE^xI40r+r$UE`pFI{3yU)?zhfhNyNk0xBVVQyuvk5|* zC&>a}7ta6|xiUO7B*hD}XsR0+Yl)EM@K1TpM$@aay+)x3n$(o!?`#5Yv+|m^(FO9P zZ$;UKJU$DL50*`iFKefZs394UG`tQkkTKl^V0HG6hEB4Kt9_YtuMK>QGrzbS377T5^U+-@j9b*%(30f8cZf{Ra>P z|ATJ1U2t{oPKCSqARcT+$A1F(^;*RNz6s}47Er^5$9S}}0MH-%$ziA#c1nVgCjV<$ zo-@Qjp`jpx`|VpsyFgS*GjeKLpafliRzSBcI%7KEL@|&WU~ zUXFzOPiojSSJuYu#SWLW{aXPCbsm3MZ3fg^h`pWg3mNa0LEEzC_vfqe85xm~Bc3ck zkb^+P@g19vs$@bt1T=`6JHK6QhTn;o1Oa-$s}U~{RP*|DTYuh-bMPbVN06?hk#UFmP!v99#x$hvzZ=W9z zlpPAwNI+71m9J}St6EyJ!LE)%L8sEEBqUq}4B8Q(kb_L0jR9SVX-;a{id)`5wzN2U%myrci5>jrQAtC$$3>=0%~_>?jy%jKDbl|j75AxLLg+1 z2Zylcra@do0gdJWguxjILeRei`2EzWuit3s6099P0K*1oOles815+K5mIIx|)yI(zn*g8YbG-1CF2Z-4HeQ*1zMh1Y#L53Xxv{znKkJ|5k ze|k1^2&691%sx9=Na!H{eyyf~b%Ube_aA z$_RkP&f)Y~f2W<-FwdWu{b!v(Lgl{`L)kdS*}b*Yp-CrIi-LdDl(m$K6-)#F2jHS< A4gdfE literal 0 HcmV?d00001 diff --git a/doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_3.png b/doc/source/pages/apply_normative_models_ct_files/apply_normative_models_ct_27_3.png new file mode 100644 index 0000000000000000000000000000000000000000..ed4ca34a5967216e8d8b8540eddb445f0cdc66d9 GIT binary patch literal 62973 zcmbrm1yojB^ga3kN-I)IOG|gR3P^)=cXxLxAdQ4{2uL?bNJ}Fn($WG_(%o+#uKwQt zjq%=ib%%H0`209~pMCaTYpyxxI-v@3uO6Thpu%9V2a*z^iZB?wAq)mLjEo3A*%PRh z20wV6#nhdZ>`a~A3>-~hvIfrf)^^U;7KWs*CXP-PcDC$Hyi9Biq~^}f_D+1v%r^h? z1tvR3GiEY5glTXQ6nhB`Cm0OF0Qw)UKset520ONt6n(Djp7tl*&0X2#=WQ#yBz5!Y zdnwXKq>nstE#7cE4>Np@DXKjqujb=6=@#C&ThzGIK=+Y}RK3#R<$cVqH>9Leak^L% zyC$Y=K11i%4wnOz#<2s&)P0n*nOiCJCPQf+L&@xG-ori%!>6jfRSa(p@Pfgg4d-|r zK^XKmgCu&~$A;(~EZ~pMJv7$;K4W?lgm?Fm%#*J#BJO@CFI=Cj8~PUds941#qyH{L zt{%dA_q)!R44ro$88je6mvfIVDxwqEYeT>j^yIiW-g>8|=TlSsZiVw`YZAk1qGV&! zz&#!T>ETDcR$m_bMStmXt!mQ;;ER*ba}1Mq5TJ?dExmi14gURXHBoO?cT!1SFle{+ zmc(t&@55lZoi ziOU#%X9(SqgzuieMKn11GwptReQGltew4@1Kh@;H4lTOx^~KU@>#ZP{-8?$1_SU0_ zYyB;TP@7HNTyUjPkKy-^&yzT<9?yGjl~VW1B(vRL8%pnp7QQj}+Rc?t{F$LvJnsH0 z^qKwfxSA38ZvF2Rs|w$1Pl;G#tvrXKqj5F8uFn>u@8ja$qCH`1GiF;lU(4)yb03Yx z`^QucZeEEm{Q(m57?|U-X&l?$-*MrHE z?V0@_(#!_GIzxN=`o3=0EksEtGEFCFH8|6@T%Ty+Jb5y6G8#{-lu}{@7Rmi&+RR~G zMa=+Q;=5%H<3tFtpeGK!T3IJp@tD-q@GnklziK9Rt(=}(&o$tpJ!WWI{Q8#Fa*Rgc z==)0=Mn)G8JvJG)uZNX3!3Lg0Dk>`VOTmO66=>}H8S6;t=ujKocDrwHc5h!4j~h-` znc(p{QbN1#YWVgFqdWR(G}tC^FhwP$*RNj(G<%)?0*~)xy?);J(&lJ;=800COh9=# zbIbW}!mHzQzaWPG`qcz27%W=w1P@&F2IKkj=k=F6jc_nlR#q6SSvOkCt{HcAbydB} z7zGO(+u>}_;A&0y_PL1()y=8jZC&4`&)L#D7J|sTX(|>zA|ZKLsv6FyRjWUg#;e}s z&PqT)uy=F0yFA3d+nKDi_y#qvtbgM41wvBTXwUd#Xr;4^{4Y* za6G5U9Ht$?4-{x{)LXoHKWj4T`ktEz9Q0C5Rhgi{7QyKX7SDOEp@Dz1_f8lFd-L{f zYRPif6TQI9%%|Y2z{U056BZVJH&fxZt6QR3gX-YmP`_O}^9UOo+7gR1cCB6DLC*iG zZ9V!S?S6B<#_IH2hC%Z)GAAde`{5wB16b_Eim50o-Avr{1JyCMJF0 z^f;Ye8AS_HM?V$TEh{XvIJkXB;weEQm=xj?t3REr`4;gE9%=@ za6}l*%*^_!sHkMS*{!EozBDv6^i@3$7vmy`l)X{Y(_@Y%oQnfHzsng@qi3&)2)83U_MmCX}r~aJbGT+oV@h((n3zZ zBewlO{7Mw?I9M??!rB5c$FkaoDPsnF-^LFdL9q-0k1B0Fy#-?p$yn>wa^2>JKGxUD z%9POjn46Cj<0jL1oy194^hK&~*=6Jdl;Y4kK8JxL|HbK9o=h^lM#5_)B_l7HBo;V= zNW^DyY3s3-_wU`C@|`s2C@3uaTJSnYL0ug=QhfCHmfN4HfTfOi6buX{eXfxpG^!Tk zB4LnNS6v-#jAG*Aj<5I$2?;3_D#Kusu?lKxNa0;?K(JX_>5F5sQ*w9bDQmf~^u9ix z{J!A~TW6oDwIM`&KoA%a5#j1X4NhD|BsNSu0uK&G!@%I|X??ghY*#f*>~OFmiGz!~ zR6Ap9_4unI4Gv?=PCs*NAf;pyuajxqc4%nmb4|^Z{u4a(QJuvx$_|!NaLf>DG$Y*> ze4gyKT-t{Be|DQwEgnB{Q&3Q-c2>8#x;h+I2l*q4h!?(DcVUG$QvB`r@84DR{5F12 zf%QT(>WQ*(@Q##}lXI<~ef88QP&So|Ojx*8(nd|XAHl!R_=S&;Puwkt=U;nzkU;e9 zO4RcW)oFA!0QrN*dHqpXc(}uiP2F_&>ZVz2eEiso9a-#{rAxR`Q`$uBE7Cw6Rn>&i zt^5ArPncgMn8;)b%`F`gvr5MsG{Ff~;RjpbzW(ex=Q6o;u~qI?FXI)y`-D+5@YgTH znT69ix2HR;x4!whS_%sOCjALnZoBhm*SmhvAZVVQpD#7;wsaJixBUDx)j~xn*?zXa z?68*Z#^)_0DA?S$5S9I0tIoD-*YDO#CY9>}y=sYwvonXcw|9l@T!U(k>^qF7wJ7vo z%XAvwr=>;o#XY0o;K0fBIl=!ulpa1Tbcqh0a1uBeHnaX#nUd1g1gok7{Y?3#=1Ke# zvG;;r1Uw+*YU}CApFRW;i}++7ee?sA{qt0^v$G!&5ur=Qve?enyO!qU#*ek$95drZ ziq9<2($dP6A8wVm2KO1aOEWi*QT|+}2^#-#nV*;UB7d~Ts}Z&s&fFp*C4~y5*cBhu za^1Pjt&7v$Xf<7r+`d~wBO^E%-3L^5(}A{$Qmxl2DnZ2juKEK>thH-``^h}nHDg)T zA;WthkTFFva&qEUF;MXG;)DNequ&}dplMTdv&a;mot^1-N8q3R3TL(l3DR_!KP~|s z9sS;Sfd^b5MFB7{bYd?S5?Ua+91H1wCn_f26tj~b6wY0qaw#I6bOG_@nWNc!hfs-kCUzLX(0E9>k zp|iFunlE6R+b_1k&DwW7fMWZ_(Z<`03(qtj2l&gAZ74@iZF(X-BtnLrT`t^4p>YjVrs8Zo%39#!iF67fiapuoU;e}2}W!NI{nh#^Jb7GSZ)<76Jg z#kPQ{79ai$&rRBul@(GNn%>`3zZs-*vB3TC_#UP%=-*tOt5@j5fyW<{nD`C^jJl~> zI`DYGs*q-Q{Kf|$!06{^3*?6n#lgTW7n}5VD^zJ1)IZb7GXD^Qjn+-qCo>OkTlK%f zTTfTrXKvbqZ@D^XyZpN6t;xUSFn4l{=`4J1R0bV zwL`br(_p^IL%rFPGsA0#_v$e7R#Zj?-L_$aT2xGIsj`Q}s_LrwbUr*b7OUy%px@lw zybVNF7S})O;JN>bUrpWwcmq`g7VzclMkHo8?Nx{u9m{0qIU3L!Uerf zKFVhbolUmhK->GXG&)MW6qV_4MkENvh6gKs;1?|pyk%q}v@$~}Y+KGv)A(FapZcDW z>G~Y29Bq#Gn~)*G)O1{MbwP${+G|If`fP!1tRW80l`X&ts(NmdI&Nfwg2d%57j(Mr zOZQ|3{JaqOAt^s!3xfLdECqLKAEN&s zGynfo-TYrK#Q)37rG3nT`@SXEDEF@fvr$k*v|f0aB$J_2UT&t=^IySL&Etf4cH<>d zd|y#fpwaf;0P1ZL&G3omz~EUsnJ5*I4E%<=r4nUmOSZ5b}yr6mywiOHy-zeTJXx+Y_V8OF!S zI457VziW|14`2L2^9e4FvyQ{f>i^us;)>+r6e}qw?%w{!=E$SJMeW9Z{D%>SzCC+V znu6k2M(_S!SCHUsK-gi8CaF-%^;V2YoAJSHJ?!tikMxa`t?7m`k$(L6*-8?J;=aWw zlCR`$Yrpq`tk!Chi9xps@8!FPU4bard$%_Ww=WG0460Y57>&>5;(cUpnOO* z?KkHj5IC7K!sE2W34TZ%hD72H!^OoNOyCE&#I|W)9Gye}FYcLqH>mi?`W@p;j5VOY zvReG0g#Lwl-kk#AqF zN|3J>TP}BALUFPkjd>Box(*O2E4|Mh@z4=x96{~Xk$H3UY#@ynn~=*|#MYJxlnE`S z?du?acFs3@?Vl}2FE8BQa335VRywXqsWUvDVM}DvX%EAte?&+a?y@zpbTVVt12A-@ z#b_S&*3Sw91ONac0roMNYj6pPjO;pC?I#Wsz2hPpGJ+9PsA&6@2`5N~(h)Lz36eO` z>Q6K+(RU=h1snNJq4*se8@sm>C;wu9D?uE@XXx_#%RQ`yoyf2@Fb=ENiM7Dl;#-(M zt5G*p{kSg$J*hD0K!mk{s8tDSBkS3EOl)cy7|ht%Sbw5K1A@~~Sr414cc37rpxDp6 zy+Q(j1jHOMS=k3SAnO`}+ySsLD9P08Y>5+?^`gKHz`=qso<>=fH$Nuiw(SI!&AbPH z=pD_%6=Slv`21r5^7>4jPx(R}##95YdS&*qKu;4LxoM?308`f32Czp2fQ+hD2D^cb zNw+B^nca-bW4lD7y25TjD9N`pd#2foyS=@g#rMj6h7Hu6;;yb-uDkO#mkT>{jjS%4 z$^`_++)!0NX36>RsSvuqVxnegZJ$?>GM%>5AgAm^7Zg$=-0YX&?T=`_7bkA1;#Q%1 zpHuC1J!$hfbt%~|Ruk)d%%JXHs#RwQn3VdRhAn{o-`xUugU6x|3w}U|2){~Kq@zQu>%A{F>oTe14hqtr zjIK?|M@P;8I=CLQ2!!dD_jH9n@%TSx$gTa7g<}kHK~-E{~^SRQXlb z$gp=P?O2}{9o@~2aE)7zW$1T%xxi{VfOmCs+FEzb%*_p9wRV7{9hM`x$*(3YFhFrw zSy@@T3bqMsDgy%z?Ioydt4|Bc%j*~^$W6)Fs6iI~zI7}+VZxTI&q0tX+6BIfgBoP> z<>V0_UI?jO)!8vANXpp%OHwwo(|U<89(4ac94qTkt6W0BZYvVVAN5;IZ40fd*=+K| zDMv+y*MJ)M=y!V~dz1M7y?<}71P%@ktYXq4w1M%tt}Y2c5btAS4Yim+eU|)G-PgCp zh8WZy5;8K@wM_ebm1$?mnVAcJ1mj|3J&iv_L5HgWyS=`qAO!VDXX!f`-9YQ1++r2o zr-wbof$EBiSaN{(Sn=!X>MAHL6)V>}wFL0!$LJ`)yiwHsHVZAp;4d|Uz5ra4Z*FZ> zf`c~0c7A@&<8eSqEth6~xzHJkT?s;V(%^6EEx<2y06+r=1GLFY2?=DO+bgFTHq&Z+ zezzU#DyIKJR&e_Z%k}L|hCZ|>{%#9Ym=n18hUHSSOd3`9DZ@^PA`W8=HP+Z&r zs-wX5^>ykA%+m!wVG@rOOo$gdS|5RsauhLtF!zG@Xl;c3Z@)j4J$sD{*AH)QZXoh& zq+CxJsxxb6L0pB%!(V_d?Uv=93#>L9HeBwGbYIVUXPrH?u<*24wX{8j(+UFmfEs~- zFf=mwH9k9}JNkAM{Vg1iy}zk|F4t|DN>P#j?adSQ+JTx$4=k{m>gHStmFaLHYRh}? zD-s00LC}YAv8cHC&xBNVvxi5Xf?U>9{(!!vprAmonk=gktGG8TcuE9e{j2j~zu+#z zuTZM%5x&7}X*n5`la}rP+~t0>-xUHx=z?kzki{7K=Lf5@6Ez@f^j1ZH8a*p74{>^W z8U*1SM%-^uw{TW!o{`8tPUrFzW~CSKG00vB=<1rgc=(p;%9-T-cTOVkZhI@AQ|W zY)ZJ@CWNEi-Jb*BhW!76lR3n<0h*Y!I3f}uPS6zoFy_fR-Ci?WO)Yc%gEd@4{D|5O zq9ZJ31x48n6|j!z|UwSM9%t-O8B;tn-`;7!cs# zG9H9_e8{4|lL;ayN>u5-+nK{+V}I)ECImzaW%p{hx?V1*6;q8)3HkUhb@Vk3#Mz7f zrzMoH&GIfDS+q?Ly?G`N-xG~cZB}5sZA^|Mws`)P_OFb9htx*YmbekNtwVWNB{eP zBN82dquVdNak_t@O22o|-!_meqMl^6OChTM0^WXHMMPP-F?fdQFKk_Q8Jko}VP%L2 z`#obgOhPyCl&!PoG=`EbL{{Qs`&Do6Nn~B~UyRya3{d}fGRG=6YB6;U6z>y!&LdY7 z*Bl0fpdjN%{0@d|;Vl35fUfv+xV?U6u??P*<)vl5%;@PF!{GZ;0e>XO1|Lfkdi*t8taS`g- zFEssmfyw!t+5}D9NaC4&Ap@I#dQthuh7`+=>>N1Z)``R#&45V4fUPo$9v?FcbJEoC z7>a-anY!RD%)i5ru1a7H#+DR24PoBCduqJK;6`mRruw(slPfB=LULFMT7zekH{ zt^NMu80`VNmDO(}9pVZX`U?B3!>vTh6td(G_tBs3G%Q)YTB7REhv4pSDY5(VKy)(ea4pINmwW{st5lT}i21R~Phj z5{r@e%d;{ALxF!cjgGhlt^Eq}qo?viXQf%HO3Zy-;pyDAu#u=2MZ}e9Q$>(uFo7 zy)icBt@H+ek8eJC{|dgU(#slyQZh;9CtRlJ_|1H8HD${QIg6|aJR0Hu7GHcHngl@c zlR`DE8o2dG!_tGp;EmH3S8BjFDXCX^xnG1QqVA+J5Q5W#yev zk&>+C%)v6(e3B5i-0Wfy`9Fg@oUte<-=ln1*OJD7@YGi#hSALC*|&aLTwcRKx8&Md z#DAj){W4^;bLnPh5Y9A}l1ty5ZK%;?^CT8Z3p;8=`xmb4WvBrsb}_9A*F24GJ&Vks z@k?9khhdiKJOYxUW)=Ux>hj^*nFHMqyMA^MB!-1@e$Nhl7J#Sukr4aBCc5FJj{3hn zKbobi{9Z>)8He-4Hu9HYSlVFH(riOx1!M_QjhXsr`2_d-{ek+LGC&KIPU3#_eyF7rqy!FWx?u z!s0v{8ggX{+SvXVL2|~%V9(_4k#Q*7vbU?eh6CuI#V*5Xi-|U?{VMBap{$}?K9V*3 zU1XnsBOzHd-VzdSEfFvA3xv|8HW%i&jt(GcC!=V!OItRZT1{xz}e3Qb0?mIrgS$?+3rcm91W;9qtpc@sTOyE%DB?73w0n<_$d&W5MX2D z<4YgZbiV?@bCv{X4PbxIOMCF**NKY*PFz#vzV(9K{fnVbc;R9G5$O7DuxRx0E&KlP z+L99Vx_M7}p!&Q|NC<9f65!zAfWgSg$@hQ&_p!bn&+lsasUVyB9U^Q(i$j^J!}xAq zFsERpUK$^p#@_QK-q?jxY$zBbf6Q3EvovICR9-kTI2aLP4BY`tC+(L-JIs?!4feS_ z`NApk-*plxUilxc(Nax6_Bv6BoNNoQVYcE>Y@Ys}Wy6iOD^sF6TsF)|Rtw}f2Au{R zpNpe__UGQLR8;qKb8~l^?%&;?uGDMHy~AP3_@80wDk^Z9K8V_WJ~OnEBj5Sy`+2Rx zheXPe9zM;>%;;n!GiAX8uyOp?A-U`wQ7AL~A|Ju`EI=`?R00l$Bc|C(lEgpBOEK|H zij@3Kwt>#vcddkg@FxMp{N}0!`3}+{CZ?vpfbz;HbPM!i0}=VsGKgkOqQ}udd`NPS zNym|i3W#;ey}J>V-?t=J9uQ8{wr!aod1C45`G{HkIC2K+L-p=b!lOojTPuAoT}$*@ zNi<6z!$|wtm~^F3$Afw9nDqzHyzswDAh8mv`)V7>ua-i92Oq%i4x0DXXLw9XR!jiR7*t4~q|5KzA>CfzH~gEu-~b^uq4hG>-)(;X>&NGol$4*-jY`V%2}&?2 z(wt^aIcjQ*Ikc2TV}yiThkX1J1E&CqzV(+Y%)2C)1fs)A?zpNBo(N*OiVEsLQr7+N z4UgDU`_^5?Xu?EYxW>oZP8XCkKU0*@rhTO%a|Nacw=o_l)d%mtkju>bbsQgGJE&4z z1PZVFI}QEtk$KxL;WT3(pJ(6~(<`gOH@b}`jgF>g=6YywzpC5F?#sGc3U_{7Tw@hX zBJ{w(&n+cg@DTL(YjFzN$<8_r!Sru!eHFaLp`t?BUR0c(>P}kkj;T;An2PT#9nySr zv87&VC>B1v;IWnt)$`iAyO73sez-;fh`gLv(cS58^C)k>>U-S)O{^PK{qNG!h=7=d z@YH+nd9_QD3^k-MbOOx=axU=i)FXI!cnl^q0+ME@e)%ErQW##H?Ym!W+JF_>)y-?qz1Kq}`4hvp^t5hlCuVpR0gc7=fMIrviZ5P5wWkN1znn8s> zGDXGPF%@IVYoh8tf)y6nz+)q#|IzHFp)E=!C_tYA8i!G6Az%J!6YvKxl^*6M>bBor zFWeeHoEV_OZcgf2$$-)}p*NF$do(Iv4}_}sV9r1#)c-w@e710Vt@mfDGN;e;uE_0A zV1&xh3e!OXaFYyLwdg70l|O)zHS2r1&5}9@iMAx3>txVqXP`D5G1mD%=NE;DcpW=) zZSF$Hjz5Ev&eZu~e63Znz!j(@zLNpUu6B}9GCuZCSnzyJjWV{X#)dYf%vevUuI#c- z?Z9C(^PHv*;M8ottR_6p+?{KzlYYU#%!~m_)h?h!hCl-A$t|E>r+oc3auZqH_w=u} z?fej65%}zgK|w)~5>(cFq6rfLW{7#eTc4{{X1}l5V&T9Z#><-|;K2r|U?tjLuwZxb zKPw9kTv|+2^d79uvgQ}?C(x^wY6hL@*}*|n=XAB%GN4O8H?M)e?E{)sAJ7SMc2EC1 zltXD*6GDA`HpArB<}h7fe6R%^XY9fc9IM*!gqoZPJ*_x!mav1)Z9-Wh5dpERX?yOt zmhzzvsgB$b$R`CQCD!}rVPU8=I_s|?6BRix@0UKv`k5iMAQL3jS+S^~`*F{57s|mk3L(%Q{Sj5n9rr+<95qBe+VEm*CfR-G@ z2bYCfs`?9@Y#y%@hMR-LR#Fz0N4G%UhY0mQvtO_wYEpuM zQ~Zh%@>?OhkS=$$w_EpztTO36fd#&MHt^ax&XbsWZT&W%}*BTe#{*ul};(M6NZ)W2LO{QRKy&2;XZ;jugMi zEOmyqXkj{st9p1^S~f})M%zRHrl)@)#G%w5tI}Ux5ixIBT%y(mPQ534xd(XsCw@1F znfsmC@>2u4CK}?9mhHJgg-*;jwsG87g`O_=ZY|S~NLdQozewZPm2L5tGm9j)Dc>2Ns}Tz^Xz+Lj!|Bq#78Lsd4XJP!Jh8c{_DGtZ176 z@YzF|!qMOmB8bE#N5jNwVN;4RfP8;Anrm6pAlbkMyfM=aurSBa)lPZfDw&#^dc08G z{3$=5f`#RKsf#i_U@iAB`_ocy=J6ct> zPnN=G-A8%K6CTcKBr(oFFn^2qpq-Sv)Zy}I!wB0c(TIZ}CM5+GSg}@CSC@*4%c=yQ zZPtr6s{!^Mcqhh16+%}DCIgRwM37vU1RPx^CMIz%yq-4yL%04Kq6Rng=()~_b}{z< z@o^CmJh0y*MJYKts!hDzq?a0&P5SP79baCK+SPS~CxF-6x6$7MGTGgOeO{>dw{)S z2)8mZp5}cLGCJXe2RT6XQ>~fZlPSpk!_Q_SgV6Zh4%$}haWEkpA`a?(-~mDXAZ2pd zNM)=6v~6?p5>3dE067*BFa-P|vh@Mkd*~YK@NnCiTGX7?OM+B=o|kFaEKbz*b~^#(yZJ| zN8teZ2h5EkA|f+eYQ;W}FySJIrd_=#wC(7wd2-m<#MNBU2GQH zL|FlK2pDu6Qu`qyJ)%xYSI*af4)+oM^hH$_I;b5VUgo^2Yqphy4-3bYkY@kr=ZE1X z_}PCP_38+FJh;Ym%5w>RZ{7=M+{&u)z9r{zenj*$3Qe=@fU@tlscc|*U+0K>2+;jU zPxoYv!!P)}f~TM@++LMW``A0(9yEko^yCSGg9BStwM+Vsc8P=lqaOd|9$L*wMd`dZ z@Rl0Rqq0MxEaCTQ7(PkNR2Ym2l2UXWc3o`Givc|oxKFi9hM=l^JSfLBRwgb?{F%-t5ouwaeXvTFi@2%xgYx z_w{kiuuoJufP!K>QYX7iZ|uBQo!2irj+6^FR(VDr!3lTveG-WkH(%Vshp5dEAUdW zn5r>yV|0eAXncznDuDRLo$~(`-DAoEg$IGhEpKYGQzbDnGdsx35m4LQDm^1#vOWTJtSAhR57%Jyg zp=*DPSHied&^ZF)_Z&`3%iaPm?!<&`hSS^bdX*AkASDAAS8>-`D=;B&UAO#QfyZcr z?*+Ubug^7ZuP2Nk3)~8@xRp6&f3v0*u1X_X6U}%=L!T3GECPGw+-TfaJHzG!2P)H-0(Pa5(ve#v<_>GcOy7pvc5d%#iTQ~>(i1Z zm2AtCr7S{xXzg_!D@vl3oD9rF=}Kc|Bk!GB~jgG!95YJ!Ls?+y;^+_OaYzeeEI-K#I$;X<9M%y*oN+%Rj4;W|TFhiKNXb9-p=q!qaP|S%0`|^Vohgn zRNz?)|Km0uMrvn<=j}1pgM%FK_*y;g=w7Tc`&{FMDB?2z&CT8a}m{i)mtt>=+WL+6@|f@KZgz8rhK0m@^? zJ1wT6@`8^OV%!Vpfb-UUWrWFP8gV$-!jF&`GzEOI*00L|Bk>DJd0#<}6cl2)yLMWB z3(47qRSHT{^7P4pB`5D1Gay=xrE%6Uh*6KW)^6O>v$EeP#@^gSg&(@`IS#h&G$eF= zcw`V06EAg4jfq%qp|{^nXyNY>uoVKF;T(+=YfQh)v&j>PBaHIzE5{?vcXf06ZUe?#A)y;n ztc`EAUi=yMyI~*75Df1j@j?d<1^r@FXx1B)fofC3!b(d`>~d$qS1=;shb7t@+Mbmy z8RWLh-Eb%rB80Yw{u6`D7vT!w)uBYmJNX!?gQmkqK zd?*ZxU4_YC`v!Zh-6JIY@vIGgeOq%l(y!=M>kYn?lx;EIq*J>yL{EAtT5}MYN>;^ zbeh;+I)o8u-nFC_eAW$DOPSA**v#n zv|)zl7hHZfIngwONpZ{W#K4@!V)yZDi^fHO4Tsr|3!zwTwB&2Ty@A#Ec!dV1+4`YmG8CAH2gn@6+v;cA(=Tf* z0cXe~X36sX@GT60ltC;aY0W~Zqc-k>J|m@aUm3UEHWJ0e61 zdh+BYp8`eIwG06@ce;=tKYz3_Bo-p-1Az5Vu7F^Gs&v;mLFDo&4m)KclZ(L1AC|c& z_wn(8x$7|A)a@(9&k@kwv$xc7wpm=Rpro`MssiPj0o-Wum*jtbP_1bnn&6*p(jWZN z{M`EmIY#bP0!Bx$i!O#__4H2KZUIm0K6+nB$nWw*O3StQcu^OF^re%9*Y%8@z!vQS z^(p|D13Tn`hs^pgFv45l6!4h)fCLy_Hu!6@!d0xiP;iE40arf zmUeskmbhd1$0}9mM7%FrOrz2cOI5K9N(bLF&}OAn0ot*8dCznf%Meg)a2ehQl2F?i z)YX*onKvvftUZaiIP<|Kuu7_)+uai?Z5;5;(Ph`N~r5RYFP=_9LmBpSOv-!`*i}XHQfNvJHI3}M5~7Q^aC!u} zaCc19f{V+h@n8ZM1_|h+s0N*9{O_Pw~fr(AH?~w_FGs2em5hSzQy#YcwkVJZnhCdA2Yw9K4vun{*d$rN(u*_H2QdA%jlub?rGG)Tbs`uf8@uTj zOd-zW>m%Q8(scyHHQ;+|X$O6b$RDJFKsjg#T0Ed038+q1R#S8PPpQd!^>JKrCR-^# zeto=uB_4UyTq01%>A@h8^NCMUai5db_m4yLj^%|wUsP+?S0ESCwLQ7Ym2S(=gqKd> zsa-25f7Wwr(Ba?NDTinOWVGzN3h2cGRv|iXz`~ya_-7BAaI%3tNnT+89@Gal3&{Ve z1{Zo~zV!T_erT2F9@h{|eTfU3WM?-iP#z2l%b66o=15L^Nb+a)a@|=uP1uSop1`UZwXxOb%17! zC!nV@0=NX1L4>*M76N|PWx(~G{JniGC8d|-GDlI)-K?zu&aDXtNXAJh^S;%UKUR4e zte{+2t@#8WeFaxl`QE2by$=aJ%Jnb?k`Z{S@Hh!11s>wTj&>J7xYKOUA@DfcTRQ94 zyLlroe2oJ&HtLqI>4LU15dY;(Am3?Fxk!{Twm7F{OloA1{JCXHKmWe9rR+2)`&CAs{U z=H@iN2UFjHwo${eg4YV#w3TAexL+c|pGXE4j#IX$g&rxZ#K;5O9G~Zem=mM;1|)Bz zZl1}UAK1NYz)WkcYmj*Pv5&37CUs8Y#8Hy8pOVDLi1y8zOvgcncw^ucSieB1p^k*u!UgItS>AZL-|FkF!injv7G9vr?bOcF+is1ueZm_l5Zb zVrH>ntE>Zv8IN3Zcb-ExW)a8`CqI!PsGRd5Wpftz8Ux0Q3vFVmqs|c#a*wO311gR9 zCw*?NJc`iJ9=gs_9E=r`5($@e+SKvN^{A?h+~BijA71EsQZS)a0?y_N2t!?f`;M{K zNPG>t1yxmplalbF!k`GCMx;uA968&XNiGm&io{3GjN!g7wwR!m_QV#tC6SHZAsmDI z_d&w~<)`eNRAIm05%8C%?+nfz(XOsjiz_ZXizq-135`Y%Mgzb!g+Y{=g06+Tw_!0uosHaG1BPH|FqBdKv7ed${>a{p zX@bw=!}n;xXD$2#J@KmqA~Mmbwt#f4Bn*WIGZ}&_C<(E@&dw)w5gs$Jyo~*1I=ppk zyqOZW?EOGnzGqpESU@@!+E}p#g>bHaNHG&)mYR@f>f{4-8p$gibEhpZ^G2tA+PkB+ zwJ}wd5WH^%b8+M1Qib*Oz@a+)%`4ZJA|v9#n_Tmdz}dtjs0Q)XUFUsXIu7p0KyMWr z(74yom8n7lXKt>AfX;#gT!yO@HJV{OtG^Wkyv#0a#wUOZsubX(sd{d#_fJ zV2>f(yvIAuM{^$e_dk3X9CeEV2>spzLh zEyT^m5jja)f1qp4wC6m{1?|M3b8NNm4pv5}8Pvc7kfkT)=eLG76e+Gh$H&IleC?_k z%|13hVzeR=M(v`yD**#`3Tl9B$qf?2S#mJXcKv8yto3@U#!5J!Y>JWpaqLj*79*>5 z-PTN85Xn*ih0w0cxeK&SmTmCRIgIx93`m(ChD12;xIB2!<~01e)BGEb)HW|gXHoG+ zP0lMN9d)w_6^j}i6nYv`%-;omEB(xIu>L`tK2E)WPEpG*I7G7+FLzb{I$)j^l;$SK zm<`9WprAVLxB#Kr@8)G;V+=*QUuzg@Q4Ili6uK6_6O;B!1hIA|oot(C0bI)(`0}O~ z$NChn_#Ok6lFr!l8y@H8Hmf9&mk^C@UNP2;xwK$#MXPb3oqP-tE7E*l>)n5gzg^F#{F zlL;;5Elv-|{%Z;ZcwlKFd_+t<&Wo`7ulolH4}Gj?ea}Ful-DuFEszo})9)eZDB4S1 z;K@v=)}%dnjC)@u2}Vg>>-T4S$r01lV{F(m7eCY2w~cf1Gef&Fo&LH4if41K6XN`! zgH}kokPiVMvZ;Z08wK<#4@jzk2MB_tW@05=koz| zZntH|qeG=SSya7TH-5)yVsTuFgF|7goD=h8r%@S=%csEz6O>gOW59lxgol5Ap3Z)< z6Qy;?{E&#pA4;a6VO>mHn+TY^V}OECU(XXC9}oHzktuWvWgvbhiRm{mA65?o4^E*_ zzXoQWDuTSQtk_lE{ALp}J3%3h5CuXKN8zDZQWEiWEOH#Be*fbOkL{W$F?AEFYa-5X zm0LoiY_?*ZkO&+fj|1u6z-N!gZA%2n!@!dM3o!ZWUmU3*C%Am%2Phx#p;zPcIEN^P z2?>d)CLFTkGV5e#Us;vG1wVAT5j^&!0@QMEUsg*@K)^Pkm)8h{bQ;F0kiBkwesTk6 zEkiqHsAy8oO`ObDJuW6cu(dx1&ByQGKRUazWFc3Kdl`)W6?80y02y!o`t_Zni=?QA z^k-Hwn^GX{UJyGu@X;Y4`9INx*?#Hb1bH55Y~sSO_YpoewQ~!yQn3YfK}CUmeAH}J zkmaf-mH}jw5RdwE6?$LrK9HnAhcWWacoriA1A0qKOF>y#tzaftUC;$k&;0^QMH?aq z2fb8!pZE4p-F93aqXEr&Y;!%s%m2H=+Cp^+`u8ndz%js4h>N;-&Sd`7#7b{xT^RY( z>o%XYur^?!5vWnRQk0o7zw~ma65OFQ&_lq(gj0C!3w591{PqJc@CXSFb+Gck%MqAK zG92`dm#&-nQ+4Hs;>~uD~lzIBRWY5W|D=3g#Vph@qaLJo(HhaBP<$p9fge^_T!? zJtOi9ir`)Ud@N8<#~XjeOCQ3d1AlYEt^b{L@nS38uFZxE;R&;%)+bse;4%9$w`|7@ zvOf31RE}R_9b=Wczig_6dad#6*BX7~199~qQkvE>yzHTN^v#a4)*DZtdO=DuSZC;! z5|yCwH5xr0+Bvggu{0m*?VjeYd7irZy5>;E*w55Pnu_sl(Idh<1;4DG?#POrV`3h) z4t@F*=-s{vg=nU#0aGC2vt_39RGNgNYUH(hm!TY@Z$CB!T@Fu}v;nhu4=0k2U=5%p z@DdCUWBa?1O8Z$e1=Hh*MnmRkd+Vx1A_o&l2y_*oreC|1fv5B?Dk`u5PMUPRcnk#` zyIox@zrw=7x*2_t029QcZlXlhJ$SGE#%MHqK72EAEwmlo8T+JI*x4S02FZT%Q9a_I zhZ%@|A<#=rKzF{y!7O;o1&dKPI_M?7LpM;T#Ghl(*aE#|18PLhdim~G01}A^usKw( zLTnjSrMyML=mwY>Qn7j+N9`*a`XRNBS~ex{>sutCXV`VdP`naoXa+YW(?i-n#=So( zU%0JcNd7*4r3smy8R_Q6EzEGv;oTv0EPg0fh2XIV-;)E#0>lKsDLV=fD(6#dMGE;4 zokra==PxtHG_6z+b-MK(e#JJ!*a=$m-^a(_i|bqI+n;g=oz(_4nyJ@*!1i)Bnt2ll z8omsH7o>M^u*>IkZc+wM5cI80HM%jA_+2@Gg7jA0*H=ijOxvQ^48b2_06^O|RKx<+ z&>n1aqvOqS&;+a$=VCKe0avV6-VJE#q4Xrr#~%2SuVe8*MZvuSRed||vZFS{%!W!WMF zyhElBrsX3D#WnZ@tCUoS?DjfXW8%z<7HLx@^>eY72ze2yqHf zguh$uPc#Cra)E(vgm=q7t;)Ng4irEJcv&|>z-IWhxcdpS5ys`s*xhJ}gakSCR&e+V% z=yYd}i>%h`)D~*;Q{XHbO9Kl8-7|QNff48?g5F^PUhe|DJQiBw)`#HyZ2WMAusLz` zSCPmD3}W)aceUT!Nn3#wJ8@#7!YDx{>rvN44-=6nWuB4NhSrsOeVv)`+31^D+pNWXOt-fjjf#UqgZY%1 zg8WTq(p#xSQ_x}TRfh$ZO;AFyw5l*uy7L@5}Hk`1Dtx&#SPNQ1^ zZ;?LmIEe=Y-ouB3qZ}Y`T6zPoReNT59sNQsoN7A@V~AcAyAr_w1cwdn4aZt0Q| zR6wP>q}<qCp`@cQo+%vbMGjgqKUDx?NkK_0ptgLE1!;d0jQ+{sB{QKTA z^@xm{H8GW$o=ytmM_X;Wp|k@y1m{pbLJ}qa2Q>2^`5$PcBSN_=5H6vS!EU|{r<2bH zRkEe1UY-AcrF~K(O&NsZK8y>HS}kIXmEBn=aV9umMp%f+dnUJ5hW9F&<76Lm1BuzsHm=3^OLmu#AZrv)%QB-nu`W$r302xT1T_-h|Hb8A-gn%iPrv(JU z-z`2(#sWD^vtzTB)E_@Cy@vS6aS_p13k$emZ&VyKHTcvO{q&TWl}DG3O+i+V{FT}D z;S1W2sqDP=A4zt0_&}TIST$+G0n!c{AVGH+bHG;CBXnOhDJ5)h!fTXaeT<{pQFuqJ~l45ZaFU}R$D;CORM z18$#YYv_Qo+wwuus8xtbjZ-~0c$gH-EJ4_dbt(XU%weo4t*1u{%>zd8lI8y+>+06% z2>g^d9(N)n>QAV)SH_{)kG;=c`MwN*h9yr{=S6$#Q;>MXQ{&*$?ECo^j$z^A0#B@Q zJ2aV4fU^8U$LHc#Nh9qArI@Yvo*)GJSB0N^gs4S1mU{;-sO)tm>>~qu&Cw?01NYL-?jgV!iwE&7aZSeZ@dK_EpU^O zi@LKSAxu30SkeoQ5pRhQvm(Oq4*vXV-6G=TbP3jBK_Cn~GFCw0ALl@3&~Jvc?iC`RI0H%Eg~ z$5T=q|HI*UO?M8#6lUSiS2XvZAAIUX_%c{m*v71UlTu|vstWvmd|UZt*zC}I_xJ1s z_&G?MnwlnZjsPeS1m+Ls+YvE(pL4qpQ+QM&_yBu=hV(7)-@W%%qFh2|W)u*hEWtGq z@!Th0_d9#FdiuX<4NI2sKfStdsqgOZPxc$85QM^X3IBG-HWChfUrEnq5j*GET&BfT* zD1CYLOG`&%!0DTaVwNajg|@c)A%(;zjihQQddE{rJXr7Psl3DB&}?1f8?twu*0yuD zM(Qs^xcCwovRz!LyG?;g2G)hm!0m&AikiP*zxFQLX8iw`154=Xu-laQhmss0Y=k+~ zyiSkTybtXTys*NY7~66|9tHqxHfaA{KLYl2ZUiw0jNv^1>X23W=GT`L065GNa+C%f zh5CkuI+smZL-vp6E784D9#1h)BWt&;NG);a$O{M%TQr7M&<@!!@2{iOX!&*4emalU@U~J`PRH4)738?Nm7v` zLVk}|AYi7et|ry__{|#yvFD164`7S3po>tyRCKZXXQ$N&Q{q-=E{LJ*r)j3!4azFT z-QCwA4B`6v?vJ^-i>Ex6cnMpwsdo@hVK57N1DT>0oCvdy(pclZ1K%XVY_0O0Pnjda z-Rc$I{eHRDqkeB9CZ?^Jz(XoJ1;xTbasskHnV1z-OvuGENMmUohqzAs>W!jeRINAm z!wm#4a1`L9Sd#b9?iW#J3WT-(FJ4K5uy|cT_p&lv26{<_)sz#WBBx%9Lsps!Jf+un zZuURA>m5~)>a9uZXY)eaKZI{B6f^~*t~#Kr1?Mu0g&dvBLp=k@ZlYB`=f!} zH{v)eE~xW<$0fqOa1_cAQ(!)xqU<5KaPmn^Au(#pN~-Lmy59DkC?_e{&u+tCSYk|| zxNA#k>uMtV+AuGudT76tkRmvf`B0j}CNN*;4PHL)Wr|Qzxjm>Zo{^VYt0K0LN9;2* z6k6Id5*!=_T7?F$p2-W~c=F`|e$%DwU(EHpxWH_(aiqY8+a)tc?0q z&RbRbF|8L~TbTN;=esbJOR$aJnNx7q)=kzsT1|tSt($fHxr8nR1tEd_l6WiF4~X&6 zfHTc+?3X148G-NwQK8g<_=@mNu<1 zmYb(gq<~XK-VYt#L%{Xx2Ou&7zW@MLMbIF>y+bHC#UJt)HL+dCNZC2lAWBjh#41XS;5e;R_ZL-ejRWz;5t8J zxCAJcW>McdAlL!Ip*t{}6%Y3WfV(NqM0IdWE?%Qk!&?N4R~J2mQ?varR#;wO%`11W zfxp`seGa4t5s$pVB8F%@Wr^m#eYDNylW4r5L!!4{lXs(#kc9!mn-Tr>BvMLJOF| z=mmgvy@*`cIwnQ&qyIi7s4+FkB(0g=8M$DGoz@!X_o#n%ihIqxX zE^#bKK3|vIwbWJ0st9YJ86Vo?BWLaOzvO&1 zSz3iIaf6vImZ6bsA&E;le{m5|{X-{q3CJ=BWiGtR@gMH{(sLpPrQsXrucKDTakb*- zXr5yCtf$(IkrKMLtlJ0A=zaKMwuqYxMYYY2+bw#Jd-6EZLP)dlcw4>4Of65Br=b6= zZ@HnT;|N8wBxxX#vn1EsQT_AkGA-hE$8Sqx=g} z6tQ4~ZB^lUR)eb8c894#*P{C*ESUA|z-J89{@#{+b!9vZhneD$PmW z6c>~>;3}F|$z`6|9r4pnExY#H(^+}qf7AFWsMH`=_vJz&UIjv+3-K<>3E8XDM$ zzvXVSXXhz7pcPx{r~(m6V0HeVz>YVF;i?-NMgxX5DPpxf6h|HX;^;FG*waIejk7mt*yM5=i6mpiGw=h4!0CUzuLc1C^T`y zi>$8azxnhC?=&uw>~JF$pM#aPb|UZmR*>(FP!_V9%rPvQ^k-GedLNi5*Ql5gx-UiP z!sWK^Yc^On10!3~Cad;uP7vdI-|WcvlHXS4)^K8^zEjvr85gjuiLuT|4au|P7@o7J zBrG|MKCR4?0;jP}K8vuJjAzt5b0Q?qJsoZf-mjr|=EM=H%X!@hP&AnYiXQ;!Au8fx z?~izHO9wclgLwe#Zjq7b>FF_XaiRM983%uX60W7K-S(fZQ7kjFS9blJCmt?xaq&?$ zI?{z|&;>m-*rvt*f@DE<&7BCgu%hHI4*Ss8C!dZm){={db0$ZKyGIOYDkYOu>a5U8 z{@V{7O|IZGllmw_P`ohPTwJK8$jx8hFPyIg&Is_k4U0^QzZZ**_rmM)xg8n`xAfv` zFW@;jz{CEv#mV#&xQ8yU5J@h;MB4=Jz4s6WZ*Zq3=Hwh6k|VaBPb_)W1}gG`;7^*G zh&v;r7|yi4xZUfO$tG*MP##m|!T)MkP?fBGf>jjZcsTRw3j)qeE19J(J>0BBW#+QQ zirGLLCeBYp7_{otl2<(R&4FSDSt|8FP+gqqW{$9^=;IKH`lQ$QqTB}CIkd!DUPbX2 z{GA7f-~v{69EyHEn|uKjFvME)-@`3XQM}A%3l$n&O-%vxY=~$Rp}Ku5th@d)RdP-v zm6$rNd}Tbs6#4aj*_L>LToBv)_~q5z86{=VhD9JNF*YtGR0w@$<}h|HIl`c}|HJF= z&BW+HhC4Dr2>2P#Mm74s8HFxO6fEhnLys0JY)cq;oOHL2RAGM^tPq{4=2rN{-23 zH8_zq>g+Lyt$1q^$2k{<3Gfb8p&0KzT!4eGkS5y6wF}{%0oMY)i7ywdhn?ef?qjN@ zhKX8nn{9S^1qB2w{V|eA;DeaN{ki6N_KU?iC-9}{7wNGt!f8)G0hX=T(zLWw#A`TV zB}=-d$Z~Ph=x6VrvLO278d;fuX-02Ls)U*mi462|Y)nVo?8pQxs#wDpG-22Q#u;8w{q**%3{hRjwS$e!vERSinFe$92yK zmi(JSI0Nk`N!s96k-?fOH?bGV)AmLBK^>lnOfs?J3FRYCbKWKSA|tOyW8}SL$RQTy4e!4@H$+Z&Va`Ba!!+|1S-s)kD=e#BU z$??rzPZ*X~jH&uegR+5fFoJT!OAfwI=wHUPBce3Giqn>C*ykA-b<%+L$}u?To~ThV z`c1P4F8zC6%Qw`rVCLD*3;kk-zoCy5{C3<0+?)on%S~N{Us>_16RXygL=1;vK^(r- zHEqj7lMnkpl&y1cO}MZ%(mRYgTb zzs~BuiMs6H7=-kER6Gse+nE?M?6;=B{K8Qq(zy==NF!r$P^=NuEs2kx7i4e{YSKw8 zzAjc@!JENKt*a{+KdTXiFDNkWhK*iiEiEly>pt(mNAOqFHO%M;%rt(+UfF-JZ#RFV1m703|NZ{Bt`S-a_n27e`?#Ezkm zA?V?t-(?(=($BzVQMm>Xh|QY`;T>{v$sG7+K0d7{U)QocJEF%-KOnX^+*~!S8cf{% z?u;lXz#e5aKc5cpkmEDF!im;V<={B$y1Q3at#l3Dxq!5zplqY0q%WPk`c$P;9}ae) zV%;&a?W~hI2LUtwmghcE`xLPd71>z0ot%5)m8_Um1~cO)k(VB34-b%ZDlGHlNShd% z=P1e<(lg?6w<-bLt$K*eZvynsz!CuuxI+#%|gn(A{_D4Z{&}g!PySB~>W2mly zcse7P%R4*|b|YNCdw)<3TiJr(H-ju=k%0gup$T}0Ap--1JJ!{Ck5m-y;NVPnR{<=N zbIv#Sh1|y8IEBx@VAS9&Cua2@Y$r?#m#n#pu)b<1(|X$Dujd6o>qi4BK19cmaIjuE zu^zyK{99eE$C63G-LP$^s9#)s>1WCtEGr}E@n@2afY@qqXAb+*3%OSvT%;?)sE=k( zepV&UOb-28n+Doz9Qh-l{Vy_%S?I7C+X0$~QA!G=>)gk;6S#zp-C?qxZ{wvZQW%`% z;u03MU*RotZfzmW6(=rT79u&=U1?xp|W2<9|$HC##ZZ0k2RNoUthMpirT_cUcD80m-LWo{bNG-9#}3& zLm%Dd!~4i0BduP|tj#sx;hh^_74}@V;`;(*E23BgfyeWvW~g77mU=C7qB*WNZ#RIe z(cX$eyoQO}*fC$BW$Y!)vqF|F3X4}t+rLnjd2h$(?TjQXEoSNfl=v0(s$zEyW!wpO zB}Im#nnV0GUdpnEJwS{ieuDF+O}KDb`I)@eQ8CKx>p26Jf=B@?C|VPXqEZKc)CmY^ z!c2Kg3jJ@!cs}-J^YzEv_&l4pN58o$**5daM$^)L1nhe6cBv&FfBx6iSCHdHGd2CC zet!qyYZHlGR#tzKJ^4^tuCbA3D($kLPMBmxX1L-0>ko@fTvF}v)zQs^XA%^pG_QyI zv;CVL6){Fsa{e%z=jB>K%bfXz16wmV*@G6j4tZ(`)8rDL7))JU)=IjD9hiH4?nH|4 zLPHF=2ht#lRR>Ei(Jwi48ma#BW|Weu6~Qx0fZZV=`EY22U%!ea~JC?z3dS$x3961YG91(^L&u^)!K9Y>m?yi z89Sbj!dWDxWmr-MnJD@B?lZ?2bxc6ukPsByk_dPZTV_q4_-L}fmSrP6G~ix|RIexR zUAEx<6Bmb3W^v2v77}_Gf^Wv6IvX<*grvyTymjVrNcA@u22-cj^KP{~F>6|}l_@Sx zI*>Cm8g_~oHW!!;5ckjQlEFZoi2B4E3@=Pckuv%eb9{^eVfo<2L7=0rK*aBP2nlA} zUL^yI%BX~)fe|FJ7Im6?MUE6j2on>1P>C@g?wm@DY)9+t-pwFs9=+tE3 zQ*-Q0Xv%Q9u%_}yItbivgPRWzjjD!hra&>C9aFt8&!n)!jLlow73Af6K}Uzl?RLE&^*=@DqtV_r{Awb2(WJ#~+Qa z&-J~CX-F(U(+mR8FWv?sfIi@rMD{S0$f;hz#O>KEq|f(swfj)QO!W`m4eK}{CByICZvBVel~7-S<8&(>FR|=lX$u^ znAHhto6+>NNnky@yCVdWOhwi+6*JSPKYv1c`1#v&r98-@!{3qz{6%jLXgvBXGkpB5 zjd%j@Nl7HOg2JT&*ZO3eThH%_kMD`WqwMUr`gz4OjpMhSFhD6rwC5mZ)1POEOg=&+ zL7dIcz}eiLh!Ur2$U>>0POfoaTqb#xyO9{X-5EQdgxHGAU_Fjg^FCsmQBTh<5Cn}K zU0jIGDMdeO#AIia3TEt^*d{^YJQ6trat@pmRQr!_R|qgd#Zh#0zBVIORAV$dl|)Py zDhTv9f_3(yrg@+glJTe8OQsKZ9C%HcXnH0z)Gw^9wOS=S*w=^`<`d|~CJ!ZU0m_`v z?DlfzyCM^>3j=tB`cGy@8k%-CV}o=N$BVsZ%1`<&UW;z3VOFiI{3hU1|52{B0!vl= zDk5PC;B>K;(1r#iYBN!Slv0xEFEA+Uzo`$tKnG#m$Qi3Jc zkZC}ER%rr0SZ%Eg!*vT66xYotDAqP_{Z1IbNGHHSnrHcAx1x-@mT@k=>gT1nnv%2< z=rWqh5sz>f{R_CcHAQu~sosD*De$tQNv?^L)ZpPXLdT2P0LfSj5{ag)fVK8FEp>LP zUDRh1M9Y-@#9#`=swD!Jx|rO-gD7?a60B_MQb~54`S}7bc=-~cP%W*gTJ6%ZeBvYU z5`7r-Y<92I)!=76y?+%__r1w4=m>^HuLE9U?x42dQ)@kU09tVN)|;w5fM z`>n0@hh~eE)}GP>LrchlB8#E9k%4|$Pn{*b$U6?9*UWfRFh6ISGk6RHmY6ijlG4*Hl4$5`)>VUyz>PYLx$1klW!Ixk2;cSAe?TQHA-vo63zBbX)#@v&s+3$OAE{EL?i z+C@5ZSk28}C1hso(UqB*$}3P4Q;Pw6^y>O`TZlX@B`&0qo!!oG?2Dh88vc{$!9~(F zOdQ61lBY_ERb`q7=x6J6&1eiHoc4#1(RI$xPNsYfGg0N`qPUdAbCv^Sbjo@ph~;bj zK597JgT;@Y0UUH0=yZ)?;agQ$wdL$LaS(`Fr=CWV?cT3}SFgN9U?~$eMq|Ly`D&QSJd9W9sZ6%0o19wSj^`yam}qF}1`a;o79!x@ zGha*KecX-g90z1tK?7P)G*~zs4pPXF!ji>&CsPs>RR26JA6x&AgR}GPGKCbd?_YvZ zUw1GtY&Q@QD0I?H+xf(0c>0SkFlUS7eEi6&uKVZ1z5|81d0bi=(k(TN~MgVRQQAc8Jh+}^NDM| zHUB6pTb)$VX&h!Q$c^FWrpZTQ&yY|mnt*o-q_wZ#H{i@}rdEt6-sWZbLgPVM8K5&x zJmz_@d3HRf3ZaA-1XDaSa1wbdw2H3h=QoVa8!Rv9^CmVONK-)N+rFOLV@naX!h9uC zhB#+tA7uEn#SJ(x^VGJi*Q;u@oyeNaFdUJ_b7R#3A`{4Htv>wrl*OH^lP6q@#E!4p zwQtvZEkG<-r`t_5}^roBgZk zMUlyI&+&<yTDJW!23oC;pd*pgv*$;x4xx0|&8mL3TB z$4NpsS7Exw*`4V|1^Gl4n-L0X_-jQzGMNP~0%KP823br2Ul*2dMKREq3-mWaRz)lp zv!SU{(9;354?{MM7D+Plm>B>>IeQdq$YuN**a>A^P8f>l7VJg24fg!##?YI!HTytvH3Pe>BFY!!zmd8mW^CXlin=1NT+SF+tPI-d^|KxcH-$kD0X|yp(Ks>^4uMRyY$4h`3zg1q#mR zhp%>Ghn_v|7#lrt4Vxwosc?yAB1k#EYLPqb>)$!U!OG7K4qo$G6%Xdr+$w5KpEYBU zCLw_hD=6I#Ibf*d;P%}f-AWgs$i`#XOxWuyM?THWq>K_RE}6U8-0UbBxq>hg9o#0f zu$7l;sGAPv(Pa{p&CR%oJJTIJbBYTY$?5;H5{>W>{B&i4W-eY{fs!6yHIi(?`9%m-4?-$bZ`7 z#l8>o4UnK#6{V*B<5-08=1tk<-V&eWzz_!Dzv66c`WuK1K_VHRUtFBOJ3mro;AH;& zg|r8WdbOzN@=}$a{$t+@*RXMAMuu%SMR~ftxTU3P8kapIlbGC0Y#^q?6gn8+W*_E) z#|VPYrDX1NYqBdr6=D+}IG67-WswfDyPWVBK?a zHI?A^_rK?ny%ijRi{3AY972ND{a>0Pn*N zCYL;djnkm&i60+?RL$s00)&A34U5|o9tWtwGm{i+pS2wE`D)hZ8E^qCtaD1a!5gHa z<2Ux(w6hDD{k<_L)YcJfAYPWODHOG zzat~npaflq zuW3~b4Nbs5VrutPAl!tf-(HYWG?S6}kZ$a95|`mixz3y|F^vja?^m?yQ7CiO?UiP% z)xQTV2o25p&51oPtC|KpNc!dXhM)aA9Ya+ySsI2)>VtQFHDSy`XE*u3ET>X(Q_Q=JXRnL*Yl`v2G5)`i0WTdL9UK0DZnp@~+|v(`0qNYmW^|UL z;3Q!vTOcofllNH+t<#r-fN1V!tx!HOvYpY^Zoerd4TSVnSr*=75Hez65nDffPAK%q z&xyo{LEHNsvC@(#(&b1Rz6u!C4V46pNgY!uak%3A+_`n$%oz+vVT;oE`^ifc6*UFm z8gROE9(`A>A?tjhsc9IPy`cELEt3+RlG2aYEXbiD_XifitC_tWBbUQZ{z6-ergQ&l zI#VY(z@|q3;y{T&$*H&yO|Jn%#4r8f@Nn?j@#j~z12CLd30=g2`nBwI-7mZdk%QVA zhMqkgN7F>M#=@*o$i^u1zPpgpOLEiKF9i%UDsbikTqjP%Dr%Z^t{RMZI>_x}2S zKWmvdC+E01MA;c6X9s+4#q@qh4VmG;%2z_TpS&NuYoWGkr3o1;48ic z7aV1NhgHz+H!c=WXmF~6LVm{rNcA06OXx?P;NU#s>rhLtzqwwrCA+y@g{AVcc8Y12 zYCKP?f2G_QtxIa2{b9zgMTellPLT3uJS22SdR>S3i$(tSLB0&63l1-RHMuqF82EsJ zx^|5DCOQW9MrB|aH3`Bf`F+K5H&`qfqCUTka1Pww&b=CcxF;4gs13R-(RiJUx8tDI zRnhvHJaCB@ltTH)@&yXBR~{$~Mevb??L6U(K}g+B!O@mCwzLOBbj| z_DK1LZX7$`?)MEfVBg=H8%}DHDbW8&k1MLnaMq^~AHWL*B7H{h`KL9-GWL}S=*jSI#{S*uZ1}Wg%^!N5=Hm!^4h>GCE1w&mq@Hg&- zSch{kw??0Fz>0t`fxoSJlaNO+Sb7IxJ@QK=#l@mOp}?ohuh$3-xQF9Y?ASKAZ;!GC za{vkYtrT?EIQ=|o+tQ8|#<+S@8UCyHWK*kK(^Pfm?3)qD$TxTMkm8WUyb*B6m4zjm zMZ}kU?+_*2pP2u;@9~vPpK#TO2jhCrIbtEbb6A zj=|yKO|X<108#+09{^#411BgJg#l>l-UYJ5z`p@OovPOAYY{rQZd0#Ch@{dBEA&Yy~ zpI+EP?aRlTMApbFQU+A~#i}qjp67ZwMp1T#8^Us{zkMX#N=4)x}I`3*J z>Nk_jkZdSbG)+~HkLF)pr3RF($H>au-uI#3;NIT_p*|{YcJD*GdHgh%ICgye{6Q3i zSDa0~gW+XJ)T&o&ax?QB1TABM1qB5NnCXv5mK-VYVudJ3YiSXK+C>D^w9=%LvP32O zbO3yw+Pix@a7{I{D}f~I_72y@UK7lk0=X1$_Qmk<=sLbCA(HnLy6D=IZ}H$GSu?AZ zgqnX=wD#InRiN)BA)aqMcx<}w!wj~$CG{G?cXvpD2kN*Z(V3Hqg_&nb&oP++v-xpbTQDZxLHe@~%gSWxC-@;s^Hwm~ z*}+N|&7C~Db}17!K@wdC(rDvvr3=KrswxX{nt_%JgJBX95@S9ovFu-FUW9WD?983B z@|0|HJ|jw($cF1o8bRtoIO`^ECoqP(I>{OQX6lM z&3vsKw$8S4u4%R% zP{lKcz9<@~8ctEm32gHg3f^XY7DG3A7p}32gf$G>)g3J`NiAX)0rvd|I~)Cpw!Q*c!4EUh z6Bd?^E*0Pf)-<8Ps!3+q@t>U?Iq)6Aof56ZnJJo^k@=_+6>`00)$SeHES8^7^>cRz zOmtT6q8-QORZYURLX-y=0SuIs1V5JsT8aW<7>bP5%xa#^+HIrcSuc`pSw{arvCe-$<2M0qpH6gsKT%+4%FMo-`Eq_!zxp+-fT(`FWdMOyM?*Flgg9r}>#{7zfb4xQorr1&BnL z-w)_|MSSsQG~jYR{DdO;Kn^&qkw9CJ%MpeBDFmKSON>0x`NqaWzN~3GG+?L$&S)gy z1Aqf|i`gKysFxQDG%dMZ6dMWbAH78QW*Uw*>p`E+M%dgKh?BIo`~1cpawx`;bKxT? z)zO{%*VnhA>%aq7D^Xc~#f*xwT__aTb=Jh=NMFf8Nx7}WKIZ-s4;wD8>-Tx>0|)2$ zEsj0KpG1i0(7Dg8YUlcTx@DB#kb{BEYl`6@guK7P$ikb6?%>{5}t(lhPGNAczFU&sp!iremrpCoIb zCNvp!*vQ3d({1d6DVJ?6jANidFOh}Z_y+Jt=Qf4A)ft3aZs#?@ebWjuxoENl`A6Zo zx&Fm%yv>)y+@^%U@q!ti{FhKaHQOY$jla#v4@@rT9Go#4G}Tc&K(2fZY;n(G8Vy7f ze{G5UaohTqPEuOc)N-ZHzB5Kap->hYfw_cT+_^T9`I_1s&-JfNL7gE#WgW7GxjoD^b zo#?|h?#i7H(hnet_Bse{0_t)f zNIb|57?VB~2WiU((0aB3dTS%%;{I!8OX1KJdMBx$S_f(;KLdv%C}V#KRFQ|{50Z3g z6?m)RgVK*Y)f0{V^f_zSMmrcxpm-pAu~n6vCP&tVj2iUxEuG7jO1pY0TOYmsJ6sGv zkh#Mrl~qS^sUv(w{ZhjPp0!fMhRyir6_{DV{+%1^gd9uu9mV)Cjs0c z3e+zDyz2fZ4i=yYs`C%kz#Ae^u;TpP{|XriMD5>8-tVX)LIHfB+t2}Ij}QcQ07Ci( z{Vyhsa6lnq(xAX`v+Yk#|CbaF1m~;gYSD1+f1=XlKw+Q(r3+x5!$1Ut5l!46fV1?q z34APw*MGd&DJDP-e*l#rmLM;UAUbJid^SDsMb)XWJRu?d-F{8@l@M|KJttZlEi9gG zJZy7YiZ7Fm605``wm3eEw^weR7_OTzyC_cNgkJp33>QWFwi z3cIZZm$RFl+1M*VcAwU?VSu2SIOpQylf`?H zoU5A20Rir32RlzmYRYxqfjWdt@5ES;FZ1y5Kv0{VL9w4ynU)2JnuF$eA;jfG>H!=* z(6O%nUkNn`aUlIT{@IVfbR)9apq?BFiJzYzQ9FPD6@WN13KF7m6#$*D0U;9=gqi{R z0zuRIkBslWqX9_Zph>>cu;uYs8qYAuup=RXB=d07qDeF&S_F3EM~(M$YYC8!Yf-Pb z#{pm;`A}U<%|$AjPc0(V5NVZx%WOO4xz1Bo#JB72iK?t$%wz5?;!hCH*qM$edw52w z^4ybwR7q3aURetOcvadN99f~M9r8)WNLcYTyY@G1 z1F0fi@PeJ08d|Js;4i6f`XfT>VeH`{QL9I+#(v;o2R1$JF)@%{5>nZtsl?SdpsYGx|NdI|Ax(0M5Lz7~XK5Nx@; zxg9lN;RPw!jTt#w$NF(#qC5sjt$r*1mqi-pASI3o`YXY5#c}NXaP29gS`pMeyoxvg zM3+S)H$1J_>T*Qb96=KRse1&B{ljDG5YU?ho<)vh;8Q{5%df%XP`neTT^tOs*>feR zE~k(-zo)p>9jnn4W`KFG83&LOu(r*|2ByB;%=OBq^07nQpTqEmdV<|uh|x#=>UKrO zZG1!+tHWaZf6Z|8n8g43Bgdj4DY+DudQB@;_98GaSyRF=F2ULd^QbbDQZz$XdpR&_ zIlimQ{SGQS>jFZNF|?|igbgICZVp(9iy}qX)1v-<#K%`@GbQmct*ymfZVoInb(oer zebVLs%4A z@z-}baSn@6p?(e@=nYkzpJz?@#7Pg{q~|;C$RxC799+sUmnM~xAdvJXXJr)o#BD%) zl9Ywjk=nPrakh(9H=C1d!W|meW>u~ro zf_S>mdsDdrN-GLNMa7N#s#-Gn{94h%;lJFhb>BX1+R?~s)dRc^^cdOlJ$7!LjeUK< zHVmehsqDT9o_VG0S|4-mO))d$nj92daBz0Ew?SDqxmA)I(06&TdV(lkMN%_0eS(D9 z;lN#UZ75cwQ$etsx56hTMl~Ey`$%f=F79iQMj7bFU9vI;Wc7!%a95Bp1ua#eRCbNf zf(+KO{We0U0tySq4iA4QtvnA^`4ieB#nIPS39yJrAM?x0FFX>iH9%(t0IkuWWUEA; zpJQzO-o>YOY+jp)=Iwr_$B8W4>=Et0$P?z+9+$o=LpP!^P#{DCfcW*?P6nfQg+$o0VJVW!2^Vh3q_;?UcrLp(-t& zY)oyRy*BX5;S-p@uc--J(!-&o1TckKI^NpX#N(@#Im*oF0oU|YrU4Y_O_^5G$}w0C zwz`%}ym%iK*`K?-pZq42dB6Rko}Z+=!awl-?byf|jiBavKXZSgC&xgl|8qODp5% zX7_+hXO52zy14NQ`@x0une{_c$k#WxPUeyLjI^;E7J`qK@>3n+m@ zO@Q+DD7HX1$hoLRI)9p8NC-(m;ftxJSACW2IL)XAigUMX_CSUIY0y%j05>|g9nc=l zWqZhD7V*nSTcIJkSL-M47MC00y=GFcU$YSs5v{fJoy&eUU*#l?3LqiXIFFunzlNsuz~GGX*K&4IQg{KIAlvMwV>ZW&rv(H{b^TgkoLG(3j+XYtZ`1|~a?$yy zifR<%C^IMwou2Cz_|$+8>@vH+&wt9t{mz7K05nwtL{4Nx1SWX@VSF*2lKt7OqB&%=nxunGT@JOjkW`&DMr>ZIaHxaMx1jh4k9XLE<>LSc(SpU*07H^ItGSMCxCJ^$4F7W#?OKaByKCYilB;k{0bFC@I;I=w!zlKw|JJ&}WuPkd6)s8F}5`s5xzNT}Z#! z%~+peSrzOExnx0l@@OUqxu;S;Xt@$dVZ;bkW+O8oaFB;18&J@VOO( zn?QE~!9LI58|FfqiZ0(JL|xcYtoU4R51f~8dM)a*?67Onj-5pbhK6Rtm&Ps}KG5Ml zhuJH8=PWF)8g7G=s?AMA2aKK=e2<+JlJYg4FN(A?h1C*H9@z_KFYWExiFtTj4~A)`(MaN&2}(@N$d=T_8Z9xds0j*ZtkL2(cw;+~3&1Q{2_V za1+%c@B;AkMFmNqfIq)xTr#qha%(t~dsGziar~4XUu&%{mSz1UHsHdl1wG1c7*eZs zR#?1_nOC031Z)GJ#oC3~QqJ|MB~^&%ZN~H7XnBi7)_f#xe}459OV6Y!i;ENoF_MEO zAV7m-p>A5hO?pKPoTIPj7TZ>dHD@-=h zA)T-z_?^5i#;9C)7q(;TYe%&}_;_2|Zeal^@hOlFDFT}UExkjdtgNq;a>8*&k@6|{ z+R|1Fi^AD4`C2QCI`9%3`|>r}-tXP7=gS#YlBA6irLYyY`L>5L6NL zBm;>X(yc$atGD{h%qYTZXv!HIohajGc@zl@&kD3OY5};UBRf$Mw)kOO`Npq3R5(lb z;IRAQqUIW8>y81m3sG1JN-FEbg+a{>n4|ARi|Pxv2ue!~ji7)-4?_vk(hS`&bax{qB@IL85YpY zz!NQ& zho}ocF(df?s4F{B938@1;TQ0+M@Fh3KMd%zBuwz~MOF{_>55?d>lE9%PM^SWnr>cC;y8stk7>RjTR9 z?^abt|K-md3FG5TK%Q;oL4N>UYG2sX`;UNtTcFAt+^EFb#bFTi>SOc2cg$Gu=BTjJ zHd#-=;aUxVhVt?tn(xN1-0ki2Qlz$i?_2Vu#>MMQS_e0kQ{HEnwe-Es9AM|yH1$nSdZ4l)qw~+* z5KG#Z#O4atDk5$3ih%!=RDZAX)n>}#WD2YZ&v zlBGFsjW>dQK1t5980aj?APTu*S5vy280noJm`$6OA|cQ*)~`tvi>`t@Lxg!Sp!QYilmHGVl)|Vr+y2eryw?U ziyA1}tSy&M*w>vVHWn!3NH;X9P-R3?<~q!#btHJ$bj16PPDw;u=C?XB&mOBQ3m@4g zRKo#TQDd7mh~VeBYy&k#gRpOu)xblPZ5okIe}DZ7_ZyXGLLlwj?6gtCjuD=Kf0dO- z>$=7&Zy^edGGBo3%Y*yt0;XezjaOt=?>LP%jf%RY`|TZq0Xa1NABx96fGO@AzB&NY#WS>zIEI;Zcyb-lyFA zc7Em0Je33k_ZBq*;dIe7g!(%4EkFE@NPL%%EgA|~2hED%W4qQ_saU+gRG&81KEMK+ zo>#BBjKVbRI87U9TS*>+`*-_+dd58VnF$^2>LGr7Ao$2I8>h!_ytTQcC^D*% zTS?b~f6iMoij%uzz_Kw9?+M7nVrW@&XJ^MFh4h8uR>wJ8?}YW3j^l87&e)bteoPs?J>6_+@p;(mY?$Uua2iD zIC0({Wbs9cjVtj!O-AlhV%BQo5`d$gumhxoJPyJD7NPIxhw!0y->h+d|9(C)lGxp;lF-pOgJL-VMpCvo)LmAm z#dlA3WrWUod0Yx4k+G%+#Vl?DO#j3?@czRbit z@D|UAdY#Htk_2+!jGn(mS5biXUi#_AO^cU1aZM1A zr%gaZ_hg~&71w*F68s!ubOwduxs?mZd-qfC^#1-JW6r&G!Kx)$We9l}g-(Fz8KCVK zO8WH8YX;D`JhY&spZdAHOVX&WZjM}ti9zvRT{cYBQwtlE++kfUp(k)1;*RJiw_k2d|qfCS0rx7}(^9>uuxyVT0T-9`C6fe`2cg!# zn~jcdiTEgw_5p%pmmNBpoBUJ9GE=&!-l4p@I7I?z))`r>k6LaA+u*jMhg0mXSC*9X z_9lN;_3!}Pa<%ylk3T-HyNatG1iTuyZGRegv1dV{zO!>nE?Bs25(Uw<*5gs~7DuA2 z%WC5pn8U*r_75ZJ1>iXHg)Hv_#R9yg*Rp~!P!CMbxj-K!LPoy$*!N0C#JW^k>vo)5{ zKIvMJa@ZZWFFClozzV!aK!1f|{+Bzx{>G$g!T16YavCXUfXL*B24{@Y+XB^r*L&h; zlq2d1q~AnZ)S0H%DnbBHxC$VyDfVzDcYx4Y}VeX@4nOQg=b z6SyVN$T)yhu)0$s;l+R9XYt{uJkm@g*jROI2@pwLEG#5Z@_wpVx$SsQKW!gCOeB6- zko5X2MGnv%MW~UkMTU9&qaKRDY|I7nfY|gYq~$apa;bP>^*+1+GmA=oH<_bZSP=YI zEFi1ZX__vpo3Yjgh01Y}*irt$x*4NZb>>a*>=_sk+H@M&Rt+XDC?w@RK2)3oBFFND z*%H^vuifQ$Aay|PKQ_h8ye4YUeW}QxvhC^F{76Q29sZX3Qz@kZ+X&er(U;Al{2=2O zL}&&WTLn_A)FoQz)=gvw2SNjb;rxiFz}BfA;)s-1?=Bw&85GzwT#8OS~@@`#f~mX@3AWl(#Z)^5%1zs8Bq#hNbk2Gk=MQC?zK;+#FxS zJ(C$LY+VdIG&E4$qu{6N@4sfG2*7{wn!$(yn)rhaIQ>7W5y|}Vef)RZE230esr0X= zXX&_hQy6ucI4P-v#Fj_f}w#Ih(V7p5EG?+PWKCuku`SG~23t6+Lxz54)${=T!o1!J??Q;GyW& zRp9%QBH)wr-{ioHlBLDQ)NWzT;X0!C6x~ zxp5hXHB(-xIWe73%7k@$!6_pZO7i0Em}gamI%AZz1LnS^X%w7*m_Yb)KLt9l$JXQo z`R4;+svS!=Ay@x$d*GC`Aez`GJ=?evO>v;0bcG+_9V4MDALlr5RGnFp{-&= zf24YPZ}`BURt!ShH^r>e`{Ad?UdJr`OI^>Gkr6DW$KqT^vUU|1!9m%5vl@bTV8bTX z&mPVC0hpMm&pgHx;?6GVI7C*AEGp~kkTo5xkpRz0L4~?_ozqIT{Cv9j-rhinzLuCn z4+F@TcUXY*gmWaR$H%yK>5(2@nIC9HSaj-q z426D0U=ll5*UGMn`>H>thYtomDJj#|V-0;$W5~!TiT3+nQdBrF-exy$)~lBRBY(Kp zA}{Ml;pBLr^x_Hu^eWV#rpUS!9lYDqcduZq~sO6NhCx;NNB#MjQHxI@Hi_^uowsN5d zXL4^&SW+_ZOA#fE$D;oICH!^fQu5xQQF>zj`Ev_{8p;bY+zN)NDjgg|MMWkRWB3s= zA23vLICf4$#zXFvFK2JP=#8)lMm}8m9&|$tS!mJtIz19S!oN1EF~?9Fy#GG(Pd&7% z*z(w@>9@5RgWd!MUao|f_}%VyJ|uP=KRh+2p^i}Ah*Pwxt5Ktx0n#t?ff6twMXF3S zA=!aTBA%Gza}`G8nR5JNCE=xnl&167a$z3ooGe6Y=5gBEug6d8#XD4hJ!UGxF_=~4kaZ?u8e@F!Tk?ZG^8PXTy!Kke*>)qt*Pj(nKZ{MtCeyqWMYc9 z=&64E)_UTr;(8_89{A>qg&yd2i(ea2JqDIW-@Bhm+l4VocDT`&DvUp>b+fXfH2WaQZ~lR${OVy98IU++Y;(W_EDpP6>x7M+I+A+F~XmqF9CHKp5W|%VXS?1za~FRw|QK z(hYYi>@vXo4OhzT0Zuq$MPzxkc`}r|cu8JYOo?kK#v^R_j9j@|)Gy4R?`_o?EkUN5 ziEA+A=0@|qA!*p{!=MJAh`;@#JWHxRmndZ_B@n4y{0`o!wRB! z#5#BkdA4%aWi#@_!?&;)9RJBB{_Dv%f2xRx{a{MUM6B*+EtDU3J)iF1yB#ysL|0e1 z5_h{8se57BaJrWKB0?9!#El6cEkt#j#;ESYDGHLe3um6YWC@B7c4v(c6u?p+(5M~8 z7CV#@qLVamDf8EVENrk{@2wig=rduxd$EsI+*^SmDypEvNUE_KlwGfOQro7heC+G1 zRc$Gcz|AsgSJQUh7B$de!f;bh8Y9iEfy#!24eunHK44%4Eg7f$l=Bfu7WeFbmKv!<8!9r4q97^h7Y*mtVy|nPn8HIpJ*E(^P+Iak`pLj_~li2zU{VK@Bw_SUugKm{AZ-+W%!YczUzng)- zS!{x^%7ae~CcnS`)z0Vn=u*gv|GV(?~NukmgS)o!C{aIEOTK@;!MCKPuPKH_7Dk6!IsxWx9YHFA)s zfeH;b4l{J@0B*$5lu*e=M#8s|A5Ved&MNQ%QNHafI>ero_+)om0xR%gjmN{QlQ^a# zw!*tt6BBJ?l}`i``pkwVi0z`uHp!j){?Xmo+CnZ7=l`BNK@Rc)14BhicgnwN*YQb- z?zIfF;e=YTRcal6>BU9*Qm+_=kkHtUYx}lGWwk};p@ThXl6iv<2-;_owz$i)R%4hs zy})>UTi450rzA-SyvMusjzfiSn}#HFm-m5|(;twpA#?17jm!2HbDY0Oq@NSrCq3a{yu^pFCC1NakT`HP|OU%X&U;nal= zOG|dJ{rZd<%46XwRHC`mL`{P8`#j-e>cNpZy$&Cr%2RYV$4!w~@y}^s<7O}JpV7R6 z)>;emBOiV|*ytE8dC=wHU1^~|FjL12orU%<$EMF`pz>v+bz~o^{^D~rgl#=19A~#; zC@&bCs@BA1DP(L&CkLp(@(Q=FCu!8>;3XLuw!oNC_UwbhEZ9DEL82vpvJdUM-1`8D z;4mfN5{2*@?HFS*&l(x=AgsT$-}J3JBYqn+$=;jjP*l|B25=W*V2t6yGQld2sQAMs zQ#}QSiV_)e-;d=m*BO}=+HBRL0_X4jJ7|-F%)uXi?n`7irx#gOR1eicGikZ;=62N1 zagKck_ju^K|8^49l`^eNt#_DTuC}Yc+}_y{SY7+d!gj@sMT11&rK`6@OmrVHWPanu zvY<}^9vtI=IqQsNw*?9K>Oo?FC~&jrLD@ip$TUS!ko@CwlOpw!juM++JVY7O4#meU z8Zj~9a6uY{gqXYVrBC7?KVsvNr-BF7s1Ch_lx>G3!RXzW5w>s6*O(tE_X5!b+klTU zEAC_wvA~{J9SSBwjp!=ItmENPD6AA$vZ2<15e7k!+zNUeZcdJ5p^(u2ibZydu?$m^ zTEngG^5LkAjXF;xOkm0TrYLEe)c>aF4M8tmQ>Ugfc%>}48>sr z!zKiZC&`VX!SH7L1`l$h2+8jGs$mRi2Ans1GC+6(-$^x9SxCPGy>Z{a9-=znPD4=8 zajTy!;{4WclC6~&3zqD}?_5&+lH|_;r?X0-^q8`&^LIG0HNAq%MJ85m8h_x&!%dYf znX9-Dm5SUC6bLk2Tv)=x*=koGf~c5My7LN@gN(^J#?BjFFd(IrB2SX+j*W~e8lD6M zR8D&<$FV)mZE=P)y7aQ@WPOp$l&I0eF#J%GmBh;%^Vf4+n!#41qJO`CY6La}ersnw8{OUC zN^K1b@3Ym4l=KV*{O1*cJvGXMA6uG71b_ID{;sS=@=wWLk;RM((*53*ZY_t6kTNr- z%CGjBoC9b7huH35%eOj-4cMeUdqX63|!1{tS_n*Uk8*2bPyr5KA)sz$XNHy zpqHe)+R&HzA}vprqt#(p@l=snS14)s?%rLD_3*d_hlyh!i$d-SEpzqx7D(*6c*&{lA6Zj1S@XOc(6f*a=7 z!xs2^L06j(DJ~whRMS?;9fzzvcP_~+OK>0~t2j76nsjuTa{h!*JpTUZKrZXkLBtE1 z)E7wuF(BfG49B1MC$o0X@kgHX+r--ra?w&JVr?{PWlNY9I2ve|tjAhep$2u%NgIBKw}Axo7E!}R?OBZ%;vT* zNFdn6m-gV^_X8&DI1q8pK$HuEp|7Xuj!_<7js#+24*2qmK&HIq5$)6t_Qg}CjmsW7 zAzadsDREs3@3uytlGny6W%#E59V!&x8q(6-=ZpecG)B%ZbQx6yYzdxMEQc^E?)Tq5 z*erd`!BYaGnRqh~?YSFORu;dvW}?LkDJ+~I|F47LF!~!>iSnKP@Uf3%IG${8ncGGo zu~VfJR(%SNUW6E#2cOI(v6zAp?p+5TS$aN$38JHgXs&1xDLK->9$Dn*9SbBmI-(Sp zl46aH7GVV|edKfgy#D%Sdhpe@1gh=!;%;}kfH6v1wsAvT9Q`<*Gd-}TUhTdDCXKmO zfh#`MS}B^S-x^Pz*DIziouiX+?@OQY{yWS>HQhpH@H9CGAq_NWEu-+IEzSVM7UyBm zP`Jf#n17A{eZWu_-)Fxq_O%9TWrr%qlbbRAaish^8f@&}W1f-`^ya*j6ZZ26UDX7U z>Ire+2Mf4q;N4$!!}!bgiFk4j^x7UBXYn%4#ghY-h{%H{1W)%1N?mfYB!3errm9l9 zp!J@soSvpS3@`Vp!Gun}NTPzGW30pl{NaIXtChQXuw)NB3M1c%+mt)#^)2SMM<=&P z^)ddjc~_9Xid-QKLKURKBYi?Ln)0`jgk_P6gFR)hNHM%`iDHAV{DPB&ff!H42H(?j z$Ve=OC{6(m$nNaT0`#8In;O@J%f!&YTa}VHi4&1En3%;ECueC7E^HQkjRp3Eum?Zi zbxLY?aOkPs69=a>exN-@>373(BRho}uICrx=B*~Y!@foXwK@A}6aXh+5kxxvjC{wU zd%fO~?CAD*GrOfm)YGJSkJV=~NsDlxiXF4SU`2i`>o z%Jq(NAM>*P+D0yc4G~l%XJsT5V?5beJXa(v++z^sR4KFaZnSl za((s__2C$a(1nFYC-1gm(~B+6x7Ab3gw_@om8nm$w$GhE_+);QX%Oo(iPBY9ubmSA zYsM4aK=mLULW<8OVUTRO;Xa5q+bia#>~0{g*9gMtV1_70#X=FEPqq6@0>A19TUjX# zq&!7{6;_kQRaIYopI{YNPqL8~@7zdBKWi@^C2+>%#rpcy{F{IqLz-)jK$2cucd@j2 zClZph#5XIjr>Vnf)qPhtaTYIJ{oALXy9`OIDy z72cdL9>t1r#+v4FU7j5?t0B)-RW%;){QKxJ7yo$Og_kv z4MU;GjGFh8>Wq|ds@^^mXIpU;h{K2tj2zrNCS{j?P0wF^g;KpMy&wO%{;>SjV)N9?!qxP=_GLL2WQZ+d$ z9gjfz`yEIs22s)~-9b#C{Gsp8hE4!MMf;pKxF7rGgQ+&Tj9Tmfx zy0OAa0t`o4p^g%7)kXt1It3ykyXwtl7^$h(M>80OXN0uf4h=)8O?(k0uJC&xZRR|9 z2e3bI>87{r?bNTd2rAzCZV!J2c?s`?NOn5Zblv0PX>*ClX9HlU>+H-X z6wd;wuWw1G9JiwoKE+JVA-q#)yd(YD&);<#5gpx7V>qY0|C(5)TS&Mh;pimgCu0gf zeQCC7oj&70L8StdY z{BuU5jt+lE~SY(8j+}h%INjW)28Uk+~R50Mw z?FxnJH29a4xI0lw4Q7b;*!sG;`Qk*V!7zJ6LPo8EXC#SmM;kPgi(7TjGk;cSz8!%I zWS$(UNh>lNp|0CKfFgB5-A1k)0^pt6$e2-4BleJhrg>4xV0dY%hL(V8<;Df_;;Wfp+i<*m-*EMERu(F0pYo+jjS;<2M6iY%{_q$#R98cx1ob<|G{@ne^dPktWO7$M;z`&mq zl2L}Y>(-Ib;o()O+iSxY+n@$#DbB$=0r9^XIYd>Ov2rIYHs5|YjS-}43Ii0$Y$$4) zRDfwCNf-bct_pg$ZRrn{=NE?Q9CPe#&8-S~)QD+cn}SZE=tdrP)}r|hjxdKC`|W7< z{g(_ocJ|4E%>@#>K;mt9lyaJljV&xb9gidHItUD6t3WKmBD^fuivB~=cW#)}G|UT% zq@KfMWUkP3b;}m5v!fk{4Bri`Jau^L-eAyLp1Tfg2V{uEfjKZau;GPAUfv!H90mO5 zA82GKl0{k*od?a#5~)tyB3gGz8kh z=^zk*#B=ua`Z+krwV;_d~C=D@Zmm{Od_S9mvAsrpIK%-1*4;- z@r1%)k5rDBL9LHtmKeBEiXT}X z6;u=8-2|_Y?*(lL>K*ma9hP#Xot$XRxpjF4A`U{oPbB%di8Op9krAk7;sno4s9Avi5iRM zaVU5bkC^fef@q&|h!RAK?4Qz|oRk=ahXeSb6L@U!CcuyL8K2p)()4JpH=W`ER_=!ux3f45w@mZSQVle6{ z2d(hNrhR&wfRO|V>=W@2nlb0!^_gnf@Dw07!wyfaHSl{_wzPVqo0l8%Do(+s)F93l zr@AKXA8sTWanpr2uvCxUPEHDz0-x*;H0k+1KSaw@+=K9iW&j7`woP|Nc7h}BP{Zqi z=Z~8cNcIq@>*iOQb>0A`-_+yB470D*Q`7STS7v?T=<+V!ZPeL3^Adv&4fCZ8 zxM|;C$fdPm3Z`E0S9(H4qa0A;H!m9rZmFJZ&>kKpmNwI?SLLQ^Nj1qJz7vyf_%~|> z1=5vS#G)2l8|HW|z(G|`8zrk*V?i(sySZ0-pcz+?VL0-tf-nSHV}5V2sBk{@c*v<< zkpD-!HgX?Owwl=(f+nvjH2Y@JTPV2ECA}l``iTG^x%>)o^54tuLrHUOtvBx>Y`>q5 zYb+V5wikpeG8^J+qwW8#sn*KUs?Jn2bBJJ5I`GUK<4Q!p^y`sUT;&ks*vrC$@^aYy zI#5^gzI+EgY-)!m6W4ZY+?z+M@D>5+`912`zQG4^WRH$TAf57fXxZ-wOgPlkXi|WEn=P2)qAEnm z;Fa}dFX@xFEzI~e@eJ1N9>dT>&`F60cyBKF?G~i};^T#qeoRKq!d#KoZUwWZF_d*8 zEzN$q(ALh4J9)PP0=T?WQYT}H(I72$LYW)Tol{fGRqD%OLQm}b;;g-1y+lTK=bJj} znlM$VyERl7oj$vBXbU8xP@O!M))eC%4w2}13sDr}-za=T?$(%6dpRhaBLp`JvfMaS zM2pI=o=Asm4J?Z%e|Ruw)~+@*vR`->R|ztcU9@p7F%i>3@_8g#m`^#++HC_R_xf#qL%G&H>#cV6v(;?83HCU zL{%cbl$?@Q$bs!=UtZrV^q+Zs-BV{wqoytvVCRh)8%uqm-sXt%B$Xd3?fQuyK5#6} zuKS^bMo}ouB~LYK)d!m}bW1f?$@9j_U3b-{J60Ir@@TYm$2~2Xeg3pp+PoFXK5lI2 zd-YpCsK1{vN;ZdTVWtU3!8dVYRX#}t>2Y#syU$8umLMH5J@0`Ih`^;J`t2x7!~jyU zij73bjM>aI3Z1VLyfYLEuLc>{y$I}Md(!ONvi_iDT_&dM*3ciz3+G4bWO;tyGa0bEED@D0G;wT%fS0h37%m>;%S5C`XR#pEN>WkLYgGl< zrPQIJBB2}XY+-8JS}dA<(1+;_4nim&;{JZ0{@MPJmB{#?-)?Z7x8J7-0hwAlh;C}q zw0VVugLy7ZJw5*EbNup<0hO|ezenUWbz|P0kEQHNN^K0GiYRm|_mID1&2FMzh#NLL zyKE5}wE6HEVfIdbz4T;f{w{~*6YWJT;ey$8xY9Yj@m^L|g}lMr4C84Y#l}J1&H>

h3}pa8gphV9|n5hsGTKG&_Rre^jIc!1uz zb~sapi0ap`vqL?8gR2XROaWJaew&|lUTe^6K;FI;U~zJGMsCd==&RFbUd``;FSBqE zlDykQ`0h_SNvMif7E7(wvkU5*fL~{T1sfe5FJVtmyBL=+jhlxTW`nKzO0hk;ijC~X zbfO35ZLA#mER;1#C4|YLYwYb*QSJs@ogPC`GbLNeS*taqR21zG~ z;7J7TjH-5M&pbh1fvwiFLPC6OdV_j#^FjcHCol9dY_-X35qzIoQdJG{)9Hdw1lK}K z!k1*5 zkB?21q-^s>YG63C>e$!S`QmDBWJ#Djt4gPJ+(fJ)l+jD>QgX8Wl$R0IF>21nb3AKi z3#$(N_U-D&F;#*`2?73ygL+bS*{v5={7Vk$_f71Xo~tXYXI73FHr^@0(0&PCK@KH+ zNNKgKL~x?mn8(o#^M}b^(5lSM{B(%r+vsF+O3W_EFYRlD9jvVFX2lkFPk4`YMva)^l;@ne_ zoyoc3UnI%k7p@}#bF=7wZreb(vl|@49X<_ksk#o?_!I}*#Xc+SQs5MxS+9Qc9$?Awf_NjpNOCVF`;(H7J>S@P4$%icjU|6c(5S7gc_Ev1 zitpY{Neu!4iq!g#eU0$Pzjs%(yn;8GJ^5&#e>ICyUaLHRk@YJ_g`OUoK47iZlPB#h z!uwXZUqP-m=sL`S0S6;&ig_tdvhnte*bqyq_eV%Q5kvZJ9)Ujm(ihF^4d%xtWt8Mg}se zb-#X9a4#>AuqT<5wA8y22IXc^qx}8^rZHy4IV8eZcFc_K&0W>b+0k4DXwV>9x(0y% zF?49_pYd*|zWzS^_=Hi+=_@7~uOd6UjMs)UV||Z(TKB9|R-KLpEl?8UWc1cxO<;xk z25Xo21Fh0J8ooz$WpXB~i*Z(7rUVHBW}{G`Hsn5o`;`hV)}F*bO!h-jQ;Z@Yhe3BQ zwEYo)CuGz$_he>8h;&#E(m*g}Z~Zf3<$fLRViV|~%NWGt17Yw@Fo zSzg8YZ85sVPL>EIsgp@Wq+DQW3>P2fI08xjuG?65Ho1h^mg}5{TKUmr=t;8a??)a% zQ+{4%kRdMKLW@n|vlJ-)s6x1r8d3*}Ss3H6gviZBpI;oi0WflnulRCEtt?^Pkb}1_ z$bhDgHs4>z*z+oZKSlpbrQiKRX_gGtKL$p3hrvl`t7{x@_StzumQ)QttK~2k>8MsJ?U6DfTYj*pRH(*Vm{qxNdszSFrN? z?S3PUOlN1s7JX2f@+x2~DUu3&Cy>ELH!88PH~L67ZhA9=jjW}A^U}3chJHAU+Ov1v zIStc9pN;m*Oc8OIBr`Bcz?UJctE4N!Db6-}<&)~OZ^_8$G5ZWAx3O3n@>jl4;PdLJ zyAV6sM+0MMj;PIck(o&C@Lc~FD?Of(fxW9SnST>^DB}+=2*2kE^R~t5{<$F2&%AGAo}(%4e{OR7G-Hp3sDSeJxMX#A%0OK(TS8HORs! zfJNNpcXUYcEGcn*iVm$d$rHD*uvcpce2+X|uBSTi&4Hnsj2-%CQv`a~Nw ztUc!DP_;hKtXjGJdZUvJd*oZ6c{px%S)NHkTL!G&>P;nSBvsJ6oKOhIn`}FjqHenH zJK~VRUll;3J5^mMIZ3hARPJVyXK!Ivko~^R0A1#AO4ojU9?iXrM4ni>t2siYF-S{7 zXGoBXcO+ivT$a4_+5RRF53c>$zkmG&^kJ;EY_cG1*#nW8iH7C#i(N5_tj$ zB59A#ffC6L92#QCaHS-FqxZqUMXJE6%_|Z znni8J6C{LcXxo&qva)jfXUDb|d-6oDg6{p4&Mm`uh8yZc^B|V;Csw&%k}+94$-|xE zznK-*;jgo5z;>m|L_WK|BitKFk|3o>2gbCu6qg#UX5Z$-7qin^i+lUto117%LKaLU-nkA{8oV?Vt z3Ywq4^}v%~l15i!O{`2|9#WHGV7m>M8C+ZK{^2`U)qWD@X$xZ%^ATYSct@_uO;Ge~ znvk%{bfXq}^Qs}kpQ&N*-|cOD?A@4jzC3|~;=;oWSmv}=E?VJ0jY+8NYTFef93Wo>l4n&6?!n~@iwZC4=@ z>g1Fhw>-;mvF9du9)U@3aG3pikAyj7r@q_8PTi@hHs0*f7thm^&5zr_(w)EmKj5}8 zh*1$#Ugym?s$+*5aV)H0>FE#7J06TBe4-&t7b!JyfWlR5g0o@p$=3qpyRB1B_26KAN z=%cTwn*If#=h?Tzx$)VjrV*=N-SMh2ZxspL5E}S`nkn~aZfOBC5;QmeBElEic4q|@ z8HBTpjG8)c(3YjV&LLXa`!t(W-C*C=u(ybVi$DygbjE`#>ecK%3DS^bVo8-(UgejM zq#3F%A$vIkUfql3OwRXfeQc>4Z{FOV=T;Ba+HAVTCG>y!@Sw>nBdBh=D99lTHtcMP zGDdW~XM_~D!;L;ByHzfo@VqmGum@vcVY+?KTr55y10m)aeujp+XG0h%2&#BQC+s;` z68Gf6mhLO_;KkcpFTr=v^y`m!> zF^<|NU94aO3`^AR?$g@7K+1!ITszMB@re#NL^~ZbF)~eG{CbZW#FnT<;h{`OfwoY^ zrI^S&aBMGAeSM=@ARtP-T%(cMh|#k-fW1V6hwR#zZMeA|3!D^E)T{BSMaf#135ry& zQyLjv(I&hGC0QJuYLPc5gBChkTSh_n3Rp0n0un~#HJuem_|e4(1V(B3#6 zbvpBumDBuXv%Ua_>8^yWT+V}IrL~gd10AibV8|?sBSo7s-`kTDD-EB`53_ImdR}kT z^yiNa7&gNYg~xnaXHMBLmQfVJe@s=`oTS_3^@1uuWF8*_-a;>2VAR~gY+}Qc$+E}vNTor;_sTcWuM zm>(V6OG!!5Mo0U*cBQQ)Hre)ofas{^vQ{0TBaf#nB`fLb#jgANLF}L2mxvJUJ)1mJ9`H||1R2B*%8F!$Dzq2oz3>7z)x$*^#tX%UDKxEx*fzD?mydj;L1{X;K9ZL z?Rl3loOV-NtCD*+7-Qvr>Q(h#o-44bSbA{bn2)?EGu)0#4A9jwM-8XNhKnxeoCy4i z#~K{Ga-G{~u}#9AwKQDa9c-j!pPrIF3SReh<=>NBo@x5Ihp$=3|9LX$Nm;fPN$i}5+-J`kp`^)9cz7jq_?R+!S?7~+FRavn zz^=iaZ<(*3G~N;O9{u&rt7XWhRTik`kg;$(&tdM>He9$?^?QutQq{he6Z zS_|F!-SfAaM=@=R;iJ?S$wp8@7f~Ftf6t9^JYGGys8uHkONHOViC4u3_GWfL?B=)1 zhPkRkr|5Q`-W+~>8%Yg(0&(uld3>@U9dAbOEBIPJi=DmXTT2TlWhiiE)1)CTJiKBh zT}GxN%XO%ekJmJ68DIR35KoL6Vc^B-KzryWEy0JQYf6YHQ_Pd!%F2bV6B;t($cpWG zKp|-;AwPOO=v<0OjZV_AUH1w>W zk_me6a^tAGShK*P>uV%$uh5`lFOOrY=XQPTWigp;PfF3Haa`;!yb(Ua_(HO&S|^`V zNWFNId~M?WKwzYKS#ve7bDa6Qkr5Q1Kzo*A}-PfU?MdG4jJ2t8Tev2=qU=&+&IUqR?O(*JJ)tB)t$DayP zF4Gi>L+Fd`x-kZuaW;TrSkVV5iO4Y*amb7aPrGrlPHuvhcg?kSJUHo&ytndf4HHfWBS=U{2Qk2M5icE6O=8n>D`1(in{!eyua?3KvqFN!PrY zM_VZ^lhbQru_?6iJGM+fR!^$vQDB!l4S({qhM3G@7~OyEjb$RO>LU!Nv9)ItH_7{{ zI*LQ3HEkVXdILg`CPJP9)AtU-A3%ft-Ig-<;nU7o(DMwIF^1)?E z`h}BGDUXa-m6j05n%Txnw=0K6ngRMWG>wJDwZBnTzXMh&P%wk#Vx+W~JENd6AVZO| zz$nE+Z|?n=~(Mh}p2MSHn_- zGF;xy607-l6+y-$Z7td(QX&N1*U28>fPmQ@53jLpmA6l22tDs!EuB!S&LY~;eAJ9M zz#+%m0K*2&ATUy=f2gQS|F?+HuH{RIXSCI;8J}^x8`sgi7pNA}74B%fP)%rS?7|bA zZb-4&@g++S~N!QsC34Yvg}+{RmPIjrY#F|=ODzPAH;xhKWPE-zucUMgGjs=mp* zts_bH*loDIxjidVXI9CDNNK0BXFkuW2=LmKerqV?Fc0TrxY?USr1u&L6`$apg6JxE zUJ?BA$4N~$7=5x16)-Rq(cnVHsPvu|Hf1)i&f3)|w-Q>sv&cJrPKbelK|mw?T?+C& zXfBiboor0nM$OpC(_;Oe)64vc>iMPt;Lb`X0wxSvWRpZ@mCF^IkHTkeqM1?H_AIHN zKe-T?|8^e-YT_Y4q!#(Zm!zyZ>{~EHN(mc{j$Q!db@3Fw6g{8AJm05`OkKljbE2dB zs#+aqHBtUhT6K|^g9wsu0(-IHEUZ+5C37`WX=%K?Cn^-091zlR65;*eC+t*UnmAlL z0KM_BbjModp#S<6)`|QRh#HZf4AN3=v(-Ysx62g%pXRQ_8|wD$kCY`7$rFlDDau+T zI~7^7RLZ_Z3}GzUvP(j?R8M%qBt<>eA%tw%LUtJp##Ul5_H7LB^{wA~&ieodDu3GTieyu1vZ;gVT=Paf9QGo=2QE4t?IUFQu)Gb6d}?~c_Pf2`EITu*RrlOZn8{;H*FAjk zCy%%hyWiNT56$0NO1ILt$V-M^K0(s#8pH%fCEK)6E8d2LjgX zygUZWd zZ=Z439oBxASn24>m3UYH3o@@~PAJI=llJX7+jz%XbxmvCPR9K#UZY&Seq=hn#FAfn zrB=06cqZ%$CJT)g)T7Z%1{|5j9>qpIt91Wne($IUT~xiK zyn_Cl^mIOT^}I>i{PLL-x35bU7KRNkeGNRy{Y^TFcs?RhEyb7SWpti3J@abAsovg5 zYKNt;F`KttlN7t#-l{j?XXe$9ub9ipS{sEd8~Tlc1J_cM1pklx)dnhD!m zis9tSRary7_pJWTh}Rjl&TE4Q_Vw>`^aUw*m&fc!g6~-BQsrt(dbn-YB%s&-aGStQt$vf-tkm zX$d+@dHQ^_)mgvth{o9+Lq{W$J)1&?FW8vv~2S zw)S1rY37s3uNN?aZ|q}rV!dTw#3j#H6_`DJAsx;kCKj|k#?~!R&a<+zq4TI2n_g%( zKFi4&_`1Mnp*$emq8|TR^?-n%VWN_5UmoSfv~wAiN5KuE9c zPk)6oJzD#jLzE(igU}fbegk5cRnIcFe9Wa$Z;3o(9CM@L_CDy@)vLbBQT#HtgyuW^ z%zHh1zVOso7h#$rCK9)^BXG}YSSvdrEg`A>aCU{y++^#Hyy0h)Os}k?VGNoMs+U6d z5q1lY; z$g6L^J@$I0=AkAgTA31=ci`$J6Y6a8G38wYs}-++{5ajpOqPQL#(;`fHwr)U{+jc$ z-3`(>zmQ6N%QNIfPO~U5^s$=3W_pHF%(+FrhTNTr>5|tRZ@Dk^PxiNDhmR1V zgv8P(ce-=+HKbR({AgNLr4`CO>>POn+pil$oykVN)>8z3?&0A}y}h4cWwnKS`CWzd z+0@K z4SwscD%F8LSx@o235#dxQ$DWDrmw&9w6!HrGp5sTZ#`pv@lKzVMXMaXc_>=FYiQ`< z=JM3*f&zhw8l1T7a8*0sNtvU`$-lOAh;eHcvb;^T@GHHiqe=H%nj?R*O-D$VEzu+D z`q#_B!LW5%@;nm*!vlsZ^^H+LHZ`_Gr8JFH`rj}&k8#Q?W8kO#(inTEWpn5k`Tm3f zZb>jIB+XmD;5lL6!8yZI>+z~zxGUMC2ItILZryMZ&6B}Mncd0hF*#%Ij{}s zPI+rjHMV?=Sqqfsx^7?C9r2@eDv55m2CmT;ureXLP)P}73kwU|SW2vpSyE|EX_{~! z@*xFo)G#WC3=R%z&0Rd?J{~1B*Z&ii=Ea=ENrV8@f?)B6;VP6KDpUtVL$yb zU(9wziemqx^Ob933V(|E=uJ=2y6qUKu%wlnl zWm47( zRL+?Zz0XGZc_Sx(Ma@4Q44)7iPZDB^r~}!&_l{<1wI9WT&%GjI24CWm+FTUeMpX^h zF>wFUb!r!hq+%0jWyKF{;Chav@bGZqf8K@O%5>RehG#T5|EEj&T3JCV!hz{PV))&)Z9_OblVoULDF*(G)!)pzTVkJ1Hgk z`}&H3^E|8w$#_FULqFb@F^ERCngG?1nlLuyNFa^UH@)%=8GqzDhjExR2B$! zj2aj!agg30Q5U*OCSdG>uXbM07>$)9Vy~+XPOkdh59Bu31E#Kb#_~v3{28M;m)4)a z5N7koI~f?{9!9bM$9R%o+0p+mUca*EmG@*S9rorybYl_fa3F+NlRnzEdPkSLDehRE z()v&s67)n2b83KLz8kw<$G>yX$lQIOVXkSoPt|g&F9?rkZfXj};b^m%jm`+=M=TPb z4}wNp!v%tQ7!oWCL`Cc>0-T8w!JF4UPbpDqi6d(=DPDahpC+GOTj?BCSG+bmV5_vV zG12#6Dit&AO>}8?30i(dG6rV7()lVX)(NPz`>wDl-9;X(LLKPv@SWsng4ya|;a0n^ z578hC1m$PK)I_mAMBjd!gL+NzHsKIK?Mw`JEK8OA*Nh=<7lGBq z$?p;^3lZ6CG7zShidU}O6yaqRDs63A11k_rOPrHe7vqD6{1zLyazWg$*R;~Fc(sO} z?X7cSF17n0-m#ugwRXX2Zm`%;Utiy2c)e;}$q7UW49(2U=2@K&MK(<|ultNVz?h!! z-u#hh#!u~Uy4g4ER(GHeJY(dHN|gbfg66SZ$}UaC2?z|Ey{DXr-DAK1p zFGPlt2A-|o=we@|q~$zN*x(0`Ox#Y%C(I#ZUE(}obLvpkWI2qt8Hg_wBSR%f0Kdal z)4aj${ES-4UE$3>P-)1Gi;H_PSLkkalrSm%n~rpI3KtKwu#@G`q!S66qhQIF;ZWT@ zdQ-nj^$ZL+;`o%Fz(<)m)ieKQ7x=HwADN5GegB>tj|KZcOjQ;BtA$+hj-JwFEDA?~ zpBPy_*av@hEiy(HUWZwa$v@%{(wiJ*5{jczs`(K?@;B;;ul>RG)ETgCxGd^x3%NsXY4n*!K&ByMOPSlZrWnIuU zIA=GUsr%|+bi)GKYWJwBH|5%u`b>5t<3d(4=-Z?Pfd=jb2qehK|NDWCXv@!(2noSh z^rcLk_34SyYMR(RC#M@XZ=M$!O8if>pOu;*5L!6X940Ev{VAI3gqxqEYWP--Cb0V8Vd4LfPz*saO;_J&D zD*TvKFU}HIQXKL=%DzEKOL4W=K=|z0FQ*dC_Xt$y6A`@y1R*MrHd(h|OLcGWqu|ZN z;MymLMGAsweyB}iReJhy-^!5}UfTh`I*+3UDkX-qJPH^%u1In}B2oD9Rge|~0|Vt` z-+Z7a+PX@pOd0rtL+-GF?kalz^RgbQD8t1ym`dy#8DT~Be|{jPyt~;!|8=({yzY+T zLJj?=i8zJpV2g2TfQyxv*9B!Ly=>e5xd3}``a%7+Y9USxl&RbZg+d?!LZD+y1KfJfsUZZ5Nuw*f6t`4GZK$-YnPiE zZME7tue`Gu4+6f6{B)61qdcSy21w{3+b*Ps`&bHGNmVbrs;R>i)O*`@dm@tJxc7lx zBhp47#AO)rXca3{PRSXAahLxxCdtaD7?~fmn!Pc~s1oTKNH!}|&M{~-s@}SN%g}Iq zm=ffZ$95_k=`@I#q-=k7>^Z#=pscvoZ;Si~U=al`MA~ANc~MwKWhWctOFOe^@Ip0?{b_^JiWw2-nZt-HXy)Anesa;B*`IB8-hi@HdL& ze||WX<}aR4>>C=2LDWn6H@|9hl1TB^l9AVi_oA4>FLU$qej~39;JwI(^%L%&H-El* zFf3k8Lgv08Grb_zz2V7WXqdHSscsYGlyG?eFPr2Jmx|pT>S9T0^^VtPIG4N8tRJ*TAeiVgS4ERzOPZ4Z!gJjAUWw}M^Lf=fex5!)$h1H`{r)F)Kvs@~v?|w} zM8_=ZEuVVwy!6sB=uF+0aF)f{qK?d*;GfADH&8u_XL^*P#m&dpsG+iTgBN;D+GxB8 zG9s^*0+ma}jzL{<<70(R;_j~w9Au4rDbH^ync;xtz6}-+H7-0FdbB9XHcV8__q!s z}vQ1xt9sZq?^p#fs;`95J&I>RS`qN)<=gJ@jp{@s>;619AmKD`o+0|bjAK>Zi z?`Kl|t1WmTj34Obv6mnahHN`?q0IfJ-x(L*JFL8v5I-8HFdxz}Rfo(1-%86N&mLVA zpcO%cnp^Jv&ruk3zC{EULh&+z+nL6>?b6n5Vb=bdo6~J{nDIEgi5O{Z3@J^J;Z!@p zK08>yN=6c56#-u_*NW|A(QV#0V&T^2k%Ke^gWHyBhu0nu|G59isIOdEG zADTgf%W=@IBTcD!E(ls}oM_>lT0$9Al!?$;$4s5#?nQLCwT|Qgbn!^wBS#t8@26ZqS zt}>OI8tzzBfM`@t-;YEqY_4VHpgcLJD943ZVgjX^@sp%XyB}5+k+6f6%z@i@o?C#a(D$p6%$ z+>=a?|4&}W(33XXeZY$%p_$@@2pel_$>=|2X00qDW%?~ufs48}R|h&w9)YqjGm7^9 zX<1BYX69)Sf9Jw&PYNND7O4t8KewKu(P(?-KQ$gVy@JoYnu*B~@$z3M%-tIfJ4PAn z>$B~wx$bh33HeQOQz>CUD9?e+iK9F`K**<`>Ff_^Az<<(e=Rcokb-E?DZc?pbJO?Y zz((kY$A8zAw!j*n`U!@5bkz^5GH25v)hl?<)&O_+#niU*l9EYuZc|$*=m^^WJR-w} zNLC@@Vst1#{4z5$Gl*RfO)%8L_Hu_UWu$VWH%mF(%(e0`$_++*yo8A5!B=+#{FHj1 zpWg)499=$v1@&n<^VRQ<@8hVv;uW)nj`xzGM>-++-yA*X*36WXSwH7NR{8 z5nsu;z{XY$z)s46u~2(|m5WhF79|Ae#}{Rh%EP(8fKEs+MKjN;((eLa;L43zP1U)lYO6HNv|Qm!M4sF0?K+I?K+lEsX$ za`lu;^4xEaa6A~Lwy=!b<>j&pI0xCXg}t@yA}OY}_7W1Skgkbx*0DjznWS(;?S=ZC z@^-eUu<+1Sst;ckRM!)e&CgHn6jfCCw-D`M78F_kS;25DfZT&-Wwn8T=vZx4;VpLd z?Ae7L+|FOWfw$l4y@0hMTmv)@@4IM&JPTkgO0Wj^2}(ov9^H#$Guio#23% zhy%fioqc_eaXTwnJ>AO4iY48Zdc@tjN3&FDX9AS@kp-tU|E!)U1gIgCNRqq$WW3@- z#HBW%G(^Kkt>P7E#BF0Qjxgam61RtsU{XSb(tP(=?JOlO0#Zc~-uw6OYYK# zX#iC8S|h6L~y>v9bI>vsClm;|NDj+pE~}3U%F6*eEs)(*g(t>MO@^6KOPIj zmj2(%_^`#Kpf3mCB8kzX{P(II5oFr`o(fBjoI~^9ue0I6LxYqjT7A7ENqI*WyQ)0= z?oTD(y?aL`B-A=PQ)|CM@w-rtX?&Yfzylix2WPh4(b)2n#n1cmQQ^;@Kev~t6ova9 zp8VPgkyZM5dQtcQ}5s zkS`y^aC0D`Sg)xzOtN@$wIi5_<3oskWsAcfG2)oQ4^<}pxUXNo&NgWC+oA{;QTzj) zRu%Ta!GXics;Gd^4R!*f+Q9YV{7-8mbMsF_L$X{^@-kE3)K0qz4K{SHhj~}p$H#Hj zdt-Qae(>5YBB#ijjhV+wKHi@zczAda(Zq+Sy{Dolhb~b86${JoPS#wuC|o+9E9(AC zWpCe?7tS-i-Q9n{>~KPyk;wWkme5XjUvP`0tP#qeqq z;r+0J3SaQ{7kFSdRrjoJs}FHy%M}R;k5vfu+m9PU{x>H^=tS(0pVl)HpD@X*ye{{Y zePc2*$obrlBA*`b*j8@AN34p93X8e#ra8w=PMfIuo}2jGc8f&N*R=UPRM{@n`cz82 zf8V~HdAkW~-=|{qAh@i;A|r<%~F_rKF^iIgAnK>+EBSi|K3ZmPqVd z|C)W_P|(uSBI30pBY9=>IZrYMcI+`4tR}r18RX=+?I{;*Pq9i7CJC=yB#4H!27zkdsHC9!p3w>X^hb?Q8WrCn_G<-g`BlF#S_3p184^=z_4 z1qnLL1^c%0m1unAi+7sfPzt69cycmoR6yr1mN&jSW8mK%Mas+Wd1eCLZQr}A?iK&1 zD9hi4IqK!w$XHlxr|uUAbI-tH_J9H6;Nrpth?RhasH*n7b!l2jUfMpvdrx5M!4Y$^e-3*^Bhw%#hEt}44FzMI?I zt-D3f^DR-jIHQZ5@%K_v9ru6FPjB}t*DKo|8M`xIs1(YIDk@^@`(CQ03wjgyKU@+D z2nwF|klOF~C|FrBe#9gXXVR$1_J4Z(92xm5?xjMN@15IXn?Ge{W~M^R%NH-;*xK$n z<+FsMLeU6wKOLRZC0DdCOLuf>2;-DHC+d`Q48UPuIF{cJg9QmfTl%?{yQTLmk(9jGi7J zcEsWk)%1sN3;76OguBsPN{u*%p(M4xYNJfM#R;SPS=36czl*$@#( zD~1QN)ef$%-5^Y=O$P~DuFFNT2}uG)6lsL-Pl5}6ex0w=`~bhN6W=w@JoOq#AX7#J^3ic>-zT&}aXp zY;v~cV*RPg-JkNhKo^+4euooGu&Ukd}-Jp%@j<#YiZQ1cgXoSlinE0eV-_yo%yy24i2ly z;>CxYaSLuPv!SucGA)(3`1trHyV)wEze2{KaQquP0juuK;5#0+~wXB&-wP~ zjET9qb)jrZE;x_TX5c*vNF=4D!|C|=w9k*4j<>v@x;|m?V358V(#uLtP6h**{cbv_ zvK=gcz8<|M$3;OwdF`+Y0ZaK2O#fGJ?+YOz3WZDo(ZNI(N01GnX9u#bvf-3@#F&5z zei4|L_oB12)8Xo1u1Kf}B+|K<&`aZhB&RH?@4-EmtUSkwZN-b5CiZ1vLda-F(GUlK}6EPH!<)e2o=BrFPe z$ZLLnILOt}l1}kHCIp;97|24cZLoIvbVJ6+vx6U_TMLw+8Yq^i);n)Uk6haD0|(-Aa|q zt}@8aq>KrS*E~l@M+z-$R8&+e#=9T0;^S5K4ks>CK&5HO&7tdZOJd?jkbrZf z;^+z}dO@jyp)&X`rk}swK0QqUaxkCJ)4ek|*svgM#ld!r7b#>dMvj5x2d#(6Jk|sR zEZQN^Z;gASccw~{kaY=({sBP2>K{M6tun-N*l({V%XJ8;si|)+ek(ZMUD;lMvphB< zMGy|QB~PtXJ+xIKoa^u3?W|L1RtBjYx{r&Ci&RO2APb{gaHke67wyyO&stv=Fbi?9 zk@LBh?C0x3@R5)^~Uic)vz6_^ZuFDas7mD4@kD2mvk9?LPjp)pqI|J_!2Y zzvtU|V0}U}(QYH(-rfPsCZGlj*XJ)3MZ$v$EwZ43VOqaWCe<+z+JV=5tJt2R?5OCUt>~IW|my41q#iO&US3i*`_!6n|Q& zWw7S2t{OrDluO>7Zw*J>H_N5Hg6=Lb)Aev83PS{7X2LobbV~f7$xQtgDOV-%T z;R5&@92fUY=>DWj*}q644_Y_DxefPii4VIv8)RDtr+`SngB^-0p%@3!{q~31@K~7^ zSM$Tw!VPr!LA0&`#MAv~hij^&!$?B||583(#LewhytL_;N^odd5iv+Ype5^UqaSR3 zqJCm=(EHx9q@*PM1qxi;Ah4mvppe)5J@DOL>;@yC5v-P0whs8pwRl}BR_Y5v-xmaJ z_kLwtG!*)+wg=KuWQiyeJ(mE8Sp*T2>~q+&munzvPy8ieV`GEjN$8#gBVlEF3E6Ac zisg6=G=h}OvhrKD~7-ei4G+SE~T3Gph}Om@QvDIEZX;-XSW z-9{i!Ljpj=egJ{zad%j!)aK`_+w6e@7Hv4=j}9X=qZZ1gK@r=<@d_nK{9+$IJO|xR zG?wr^HjmY$$DSalY;VCtTOY1;>g(&{>$N@JzefgDCJ3Bo68ED;(cWnCKN}k%3w8F! z`_ttf0JTCP0oiK@2&L}@4iu}6jVTtZGTwufrbv&sGf{vBF$4p8?Q_FEUt<~E-Yy~l zQXEJCp;=j!0BsjvCtFQ@3l)C4ebCS-3{yOdoP>J zPJQhPfRm(`7vFS+UId8T7o429&};$_v~ABgVGKBUiOgC-l>YZPI<+<(-_%N1H#b8; z%@b6+V_<{67Q|hJCJCR5MOdplKwiig7~P=7WCwT&5&%|FyT&5$>Tm%rd$8PeFcIK= zBmgn8w}w$BW`YPe0a)Hb5$A9%AIMkk!3$Qw4lJ7zE`TIfQ;4I8w{nt`TZ^rN0USu zJ&qN+0H9x43V8vj1q2+>bkn~DYpAhtE+iyWtX`fPCh?+*JDTjxnJS5oK0p+p(K7AC zL4gkn`oD+;oFSI~!!h6tl?Q`5CYm>nr!#Nx-#|BGGcqtzWIuucB;7m@5tl+DiK267 zu(#kQ0m~C+`$KHt{0e-M|5dB?a?^JqvO%viHy;k*3(yg&ma4ND)SaA(Xls*zGV`)_ z7?ojk0es@aSuo3p-?ruVJj+)il|lna;=i~1|AQy_k6roynSA-*Lk*3OU^F?Uq)=^^ z7$q&}R}V2fykM`cwkQ(*n}7;+h%%0eNgs!4I13~^|C?IiXXI=-QYvn|lT#R7-64L7 z|F|8~PuSApt4Eo^4bDGezZk{*E(-i%9!Sm~Ap8Vx!kO)4nr)|-t;e6O&eFa@S@nbK zx)|Z#2#Cww;^;)o=p3Ges@&PC{Dn`h76Qazxb0-eCkrve z&34}wUPc4)$@UBpKX}Bta7|evXMN$3l;X%#FIVNJw%>fjG0Y^)L zNLT@v`+*t!fu@52Bs>AjEtZyNXPnpX|63|ZE@z!qY(LTOi~IBTAcXc&;UBEO)8B~n zMz`zO!@QJdAC&)ZS^i=Z&~oJ|LU^p5q@;6o>>j*Uv-|_RE(6T75WKG7$;gHTmH+J; zBSmMfiD-Qz?86=0`4-F%vue!WcgJvgjgS>zBmp0bBOFxdNmr}}4@7&%iexpjb+!sq z^#S3em$KcyZM>1&3Qw^hyg`xyy0D^uB{k!j$tWoe*WMxeV38so%yk8vXz0VpXTWlk zIL9bLM;CM!A&yd@*W_jd+9@cxlAD`5mh%<~%C)?gmuJ0dfpP+kF1ta1UCRTd0i@1P zC=xb&WaNRO!2zLYf$qyN6?%DTcK05uCq~rC|56b>8uP$qVr*;xpX;9C&B-4JcXueG zbFv;Iyf#rFqgiDbIC2f}4(9J7h2ERf_3;`@6(~M@_EP@WS6Ue;l=*ENfKv4nfzQS8 z#d0uGV1bO*;&)GH!^PLxmMY_n;{R6G*hooi7o^$#>w1u=p)>(tdmNu0eF5`9aNA1h zcLM_je(?+{5C}kd-Q5v{9H1Z!rSVpleX=FkaJq`Mp2vIbhOYS?o`@r8s@1?N%y%oq z@E?=f&JO0FP6SdqBmhv2Vp(mj`vjm-h_+j5+|*fV@pgx%YCwsZ3cmaCJPrnf1Y+Qe z;PWIHo7kgSc)A|A-Ww|OUj)3ZdY_Z8ToRj-62@gd0xk6xE3JY-K|!d#hoFChfq*)I&TC;dz3-q|_QOJ1+*z|NNfaXIi=Ir)e8pRUx??jlqXATe zvWY~(egXhyBZr1H^?aM+)NS!Xs;!;gZ9BU{q*FlrV4P9y*Frd5rj)Bv^pc2um0Ca` z0Pv`3-k(h+JeOZ(``BmAzS@6hljf?dUpG8GJ#CR?`bDe+U<^nAln4Zz2b5Q>0;Gw{ z;rwOEOk+a>4CHHEoKlH$!6Fo)|IK8>I6ZxJbJVnlj21`zTr8M`hr3u+3eMf#EK3Uw z2gfG#yHPM1llsk{F=|Se0}sMDx;I^er9PJuQh?9__yUK71oe~C>~(>_|2LS-xpFe{R;TOQBXuhojPf5kCUYAx!PZP$V@T{(`D*M+32cx#Og2`J&Jlq9F zqPO=TBBSPdmnyx;mcSqgt@*)pIg<>JgfwlmH-)BIB@&vz#Pp{RN2mGXE5_}W>1e}Q zNN_M589Di|U?gYW|1}JXy5VFy-geZG2>{hWaV+Ob=70T~C?_WeaPBYo+zyhP0MmPE zFQ6hVsqR}xG2(yudx4uYNI^s|-dxTY z04o0rQ_!;KHhGzT3yJw?=CJQdzEs=^U=m+|E(Y*B9bo4i0s6cLRG$QKQWOU1bYtU0 z>SP&lwlYkAfBRBXd(PV-=7okhu{`{Se)k1C^D>-8ldRzdV919IN)?Go9H;`rpZ0P;5ScF3gmt=EIjk7%VLH z0lRs;z7a&bWq7w^#19_=5|{$pMYQu8-4HsvB4W@626Bm<+>vl`Z&I$V8fTISQX*Lt zbMxMefD#l%%8+<_&E|h9^KZL$pqcwDL|MvOZt9y2i_5tk88cvwx^wFCUchafBAY0RDD@cYC%oSljN%1 z-BU9>H#6);UAlh%F7+%?^-}qf= zttMy$2;dX_m;bLp9sPiZ+PKu&MQn{nie|Hb*!(24x{2U&gnn^^0S|w2d36e`epGAhM-<5dW+`{Hbj8F0S2@GP&roKZP zng3ZMl=AH5OGI}z-S^k4RYvVkkI>4x?D$U|Q%nToHkzIP?yy;u1p|6a5V@Qc`&{s60~00xx+N`I5-xwFmou^b;8 zd6{TgM3)^1v-Yo{mQmp%o`W05^QeCiJ?J~o;h5SNNQt-*lX=i~Cc`>b0GKiGmm|z* zaBwl9TMR;|p~oPB_qo71*$DgF^Pf`3fdk&Fe+XV#`9`C2E~Vsl#a}_`yFI0GXzNXo zYwD1=1^rTRWgBLh0hYiyI^4vR)&JfP))c-)0twBGaP%8o>kr z_x}Dy16Ky2TSYWpx^ctrCXhwx@gXV5a{M`!;L=7KOlS~?S_A^8urdtSyV~8} zf5R8GglC$-8p)Q`JfDEZ;;eC%H6O|ND-M2mdD?g_aj=Yy?I3x7Jq;`{ThM zSeXVdjB);*Z5j|1;&^xp-G4TI%@$DlL98aTt&cX70^fczF>?$QmsDxSAc72KjkY0S zrTUTm?{H#Et4kP}!i9JJjysfWeM}YG&v3Un{jKm=?Jg zzqM}*oBx*$s+hqdKMx=9VM0+-B9TpXK>|9X;l6qg8;hRRZ8CKU{=i}bo-_z)>*K{Y zzoXy&15kRk0uCn)U4IU3w2Bd>}g>D#tr)$w~ zVD%zDOQ=-a_hn|bPnNWMAH(q4L0(8s&?bH{ns=O?=OnfJBStXdvx$$GY0zRd@Axl3 z){Kn%(pErqOc(IP1uP{c1j;Ut3f(aSRT3WJ;ON)^6ek>FV#}NN!y;lq7(#clVX@d$ zuah4JVBtVj=$TN(+nab5EL2qajC-3eMKGjIdGUOhaF()wXWEb!jh$i7m-Fq_2D zvAxl?U6N9Xs`&!f8qkzja9J|iH{&EqjDdl0DdgMhT~zxDLNF9U+z*<2Q+YZL2byNx zmph_$>GbOVItpXsSn*xJK_a805BW9&oC+kQ9DoKOpp)?>0K|By(F^VuZf;iS6lFmz zg4xQ|6$-j!4p+<$4}4Wt_*Et--rv+pVBd*zs4%ft-D{^ex1^A}pHMMb3O@;y^F7>= zs?U_<(34IODcnVLCX!n0#uI{5vena546gxGsx4*fTNvJQ# zjcc4v38#|_Xmo98ao(y@+#F=HzK$x1T`O*MH-8gs)O9fSy+C-`pAs2^=TH+G^@@+| z@9BXIh{mK|CK5*{2h~FJ3k!1r4c;)i((L(6Utb>)YeHFx9^&uM3fQJMZvZ5#sf7ZJ z*^Z!S*F6Y}_L%9$s^a(Kz9AE~S|lu@$%6yg84Y!U2r(<}dDlV$nX9WBdee{p}|9y`44McpqJof2aHJ6r%)(On@E-WNS94P&;P9 z4W$$TMvA+;2Z9ik$O}fYWSN}>eTFUsHGNid^~P~^zmkDsZyI5~2F7ZJby+PTr9b|j zNn^G)-^sMX-RXnPSc`W}aeh8~`{JaS)N`7Usb*eV*hDt-s_WTmktVl;Z8OFVr|h># zJU+hmt9@VgZq~679v=vkU*qg7)ZI6}g*M5GZopgtH68$sZ58n2Ko1pP?}>8Gl986~ z1T5`Yd8q~9H}o1Eq~1d?$sp0>a6%99)k4Fm96faO#V6P1<|^ z(mthwW{3Tr)hZ3Zo4Op#o|aq!Zv_!B1LRN|*g3c(HM(trPI}47`x^G?0qLE@#K2^( z_@f71!B_R-d>ZX9&CT@THnv(he6*o4aIiz>a*UtTNWFjlw0zsa?L-sYlI1;e@nK{k zZK@^96H&7Y0=h}oi5Y#kZyLP+g^pncSc#+MmIxprJ?G=&b6*0oN3~%GEFig{M<_JB zI6OKAE3~UUuswyVJyWm@t;U4`03Q~v)>b@WQBgdpxj8%?u=p2FBJhqBLQ-NLV$``^jLI#Er})ndF_A6w z8FGCS+{114=k?Dxcp|@xe&D*wqKAg6Vv302D%#m82%Ag6BmFQ~+!@DX$diO?a!)g7 zMh&fvZ%1QOOn2LX_*@agZT%x^`XWTd7&tgM3~rwQM>t-r^dclAM1(adPo+q{o{_{U z0hyGvv7AocggGjW6z$2az|iEhg0$?0fisc|VW{rNO&MDod}kK}WW_rM zW^b!~BpQKfd$fqu3sA;GK*DzYD%DAzyLG-E< zRlsHL}lBnPAAaZHk z;Q+{*&ZgNuTY%3LAfGY&Onvo0@Bb9-Q1yz8%=H{R}ZwTmzfThSOtIg*x=l#P2 z28D_E^Ov7K^iL%uMx~P>y0o3ZI$X1s`X4V1u39kk^h|b>M~QZQ9JX_FT3j(^+~{i}5Zpw>0Fv{ZxF(Y$=wH8O%(TU*;O z3hWKc`prasetw8p-=Bj(6pfF2`z1a;f7t5$Y;A2zLSymADCb+dLv6!_SJ}?y+3xoH z4jr4c-0>Cl7^JhaujmjxHu1AfWzM6(0*P*q3L=3%&`X0!V}ga(4Bh)CtTW+X;^*kg zrTMeA_EmufCZMH75Lgmm+}+)ceZ)gMN205_lznM5G#-ch$A!$zC6gAwd#Y5}=|O2e z4FglNlmfH%-Oe7wovDb2`EMFXg>uHzD|wPzdlMCfd`BNSrwB9+dOQ_2d zf>R>;x7#qs1xOB12?ms8oO+vGNa)I}y@jQPv5oD7g&6fn?{bM;pw<;w={H*-^iTKG}pM3A)rBRDA1q0`P z%t_O+5fh^$j`p#SdO#11A&}`>^nhgz2>7AejqCHULU5M028$3WX13E;VW%am?;oj}o%sQTg zXNdn*L;78f(c2#8a?K8_mA3m%&B8xj4VA~s1@FJtnX~&XPjiD&P*qWYNb~)>nFNJT zK$ANGB$Sv+yU%!`94Q#ZuWT4~m$SzCi|$?|kH4ncrnt|ve(Zdr)O2c3b#Tc)Nq!Rt zYkHu$+H|ZbIe-hOnNsI|T*Lr_2C+f?r^lh>xIu=*5N{|yS4J2dqHJTs4E0)p8TO%u z*=LZhZJ2}$UhTiB7#uI;G^#50B9b2srFcO0+jNI zKAAGuiJO~WMW+dZtU0E5RlmQG^!#{?nmQ4h^RzkoE(^yk3=KjQsD*?cOQ`Ivp9|@S zS^l=c!4}yU{b^NpzW&GPw)%Z2{W%C0W7Dr*=~I(j+YIhn-Wra|B$hk zajarEaBxA5Z!SAyMVW&DJpq%7Vx65{i?BV=G&O&iVE}S3I6t2TY8e5}7)fB9Li?#H zCE$4mzv6et;&!|o6%qmukAPqVyj(!*b||Tp5i3U=$AZ@fRp_hiPfvvXmpwUy}rw6&gIo@83< zxSf*fw_lOJ0^tJr-8I#GXINKbgz4)S>bC3Oz7oeg5AA!2M9*iX<0vt`3k7dAs=HcbFrNirc>jEXwtE;PH37rU` zRz~ewn=sIZpaZ^eP*2!qmYp6C739l$)dknRNd_8P)AjMZ)T%o7KE15Wk?f_xq(C&n zfM+i=1D$@KYHGOC`Q0&rksu^5FK-t~|KsQXqxN|&$Y%_})r}7(ELc%1U{fvx^FY1U& zgP53Q17!H!y(Adrvb`}X+!?Q7XkMNdwiqMXyJ3(ha`V`aNYs6d&6HP)&#Z`2;iT~^ z5l4%*Kh$pg4$!GYWOjFt_Q^#)e}x{u;rMf6p<8ph@Vwczuo zm~G7%v~Pm}6f6+5dZX`|_G+QZjVF6}a363YgN(}ABPrMo?6|A@`=u%_fA8+{fGiCS zUmOAgL}6j!gXI=dfLU(#N-NPHA7urVhZxmz@4l(L)HY+)k6&LEeS=A+NX0529gMVF zcy}s^LBgw^XS+bgZIR77;hUJyjn11AIsHOMhl)B-wA0QG&-m&J&&tx$=V0xtzpvv0 z%|k-}>@9Gzg4}F-()PqKR&9)lh_2W%Tu$RX*c=iHW8eHGaH>?L$~uYC?O5GtESpT= zTz33!9v2yFJ69Q|&aS`8_!C)g%phR<(Md3{adJdmYDf;}O~rB`6T@@Zm65TvQh?;A z25Kx2W$8TYB11bWcp*?1DnNRmNMES3&_XOGi!QI~CUHjT|g19%jVf9F_Jf(N; z4H5<^9q<#;z$0xF8f$5B3V4|SdrQ1x3B>-`#>0D?ienrRhzAhvlM}@piqOIFxkpQ`_w=h1^2enz_SV``y!IHw z_w!5HS$U$inyGC?69ca&WPQClMEp{>VGZP?1P4c@9Is2&$;zzoMpu>9^*Gy8F{tDw z8&+OkKCWwzh*I!UA#)W-Vm({KX*st~6wf>p(l4HX=|%c}&e744=(PjYH}&#x;PSyE z$)fS?1wEd_a5c-i5v45Gu;|%`feDFBBe_*1A9zQ8C z3CL6cNVfO(N^aK{6v0_f(_=p~4(4-JB@)sN&89+Q&{c&eCMK?TKc)Zx)5zXFhTk3V z*tQNkv9NM!-%i#d-l(e)P_u#Vw>u(b_B$=H`;ltrRH<}+5f^fsItvd8w_=W|3;t#qc z$Mpc?UZTDxdrF7huVhKAb07YQO{4BjhE*%h&ABwqE&ML0OF%w3{WHu_*~1_g5t&;% zyqtNc2pZ)?mbmo{_xPQ;IELftvFNVlWs0jS%wlbPk8`=6*oVs`vh`l3@h09uR6JZ< z^HZQNNN>u8eDa1O@X>Oiav8)_PU3 z|7PFFUbuk4u1Meg>z5&L^Lm^Q^G5Mdn3$LtF4j8&Rkr7Bb1(~ag0&AA-EtJ^6@mN9 zXCIhG!l2$npm`7!CE}x+b%{%I9a;RQo1XJL2@srrd`uhVv6WWZ*b86Or1s@nhy+|Q zP;l^E(_X9neu0UpeTt#@Zl$q6 zj#0CTK(jt};dooJL$#D34pr=}r>s_l2UIq722JMox;jZi!|dvwp!9Sy*%VF$jY|D) zAnSr$r*q&93kR2@T;lMj6JfINH^=2r3fIZm+4t99RI%ONr`bu^A)liVrpsWWDK?*~ ztD74x_kq$s)@g!iV>4?}XQ}ck@ZrYT%ou|du@v=6oiVUNFL1h?AyK{j134g+8B)vY zKMO#@x2>k?FOElpN@6H~#CL~1yKiz~&?yIufe6GvrvP zcx)zUKwbI3TVn_ut59F^r8ZFZtXepXd2{?|+wl%?JDTqawFdD5XYuZb6x|`6Iz5OhYm4i^k`p5jEP@>F)TGTrqkI z+dgg!1aLf>lq1NvmQFx0a61dB(S5tt=kX1T8Q@d*Ol(v9ZnISp6wI*I)n$2jah?}I@LZY-J6;2Qz-w@SkCEA9AhwLx zIj@w{T}xT>&-(xbmO8rv3u&o8jnWALqQMq03?-%Sz73I+k=dNo>eaV@n?*r!F%UeD zJYA@Z4~dL)(QR_W0Kz-%a%~zfL-N(3@z_Ny^+A-mR1kxpAbAq2o|uP+M@mzI8slRH z7RA_^%O&I8^irEbX}s#_)JQbJO9O-Um8`WA2@GJTp(tWytx?4{cV!+;2+u7RJ--Mw-y?IGVuMBmcbH%9_BVo~R zR2pnQX;hpLJ*;CTmO(t2y}guWr7A=W3@Bc}!1#b@mahs6hcuD!!-e5wTIWFHYSDR`n2IF< zuih={?y?Ju_y?B*Rq$-NV_Ia?M)>*ZcMd8>r;;Tbm9HtPS@rq;YV!c){?yPh0{w#!3H67f*pFfnWzYIYX+Gd28ku zRepljgi*xCdcNytxCA|i4XzPEyMt`Rsw<_0OOf*OTNF8_&y!Rp`S~V3z*k`z=+kf{ zd=(qN*g$bOH^Y?Ak`Gkg4FHVaH)WNE{DMUPQ?;q52vszEPu zOa{qiS4?AE_^GO4Psg5P^){5y@QiWN>5U8ux79nC>!T+0L<-Jd^_StCT$WLajDteO zg0G2^1yVSStf$AyFSfH5kAo4%zdffX_Uw+Yd9s>O&-1$MMaH^*w|r81U=#jrQdK+W zYup>7diNMuCXO$IOHFwC3=Drm6E1w^<^Ogk6uk^hNF(h|sALmQps7etuUP|!N>vwR zK&Y1+s_6qbk(Uzhk1kTKz8=N9{Lcx#?0rlu&=)ShOl6-EN$6(z5&a}c=mR_pxlGbT z>NCeB)4yxtl_7Ifzz&zE zhL9Xg;@8gWjfaPWLl|@OOn&8Y4K}uLCN{S6se$3B{d~sTPI7wecs4K>;1lKe{{8z2 zuw@$qi{|I(XbE+70y>4vNT|se%uo^}>L{LR)CkpA?NbSao;nMi<@6L3crQV{JKyH= zwjL%iymJdL$P|=I`$89|^lq|3E@I|o))>P1{dx0lLgInV5f(4+@(IngtQlR}t(j>; zxwfOTF~s-j5s)UKjMOcSlVh)|23Gzwl-+j8u43Kf{JJUsD)|Y>k*Io{b9sM&)!n_}x)g zK+C1lmdJQ?R6{pa@)m7qqkmq=sX)}Jj+XAMQX&su9*e?3*0Wbros~~V2XOiXi_IQi zY%PF)>SmL$0uULZt7{)E{>H27N^z*~?&2whg`sP=xkkY31M{8vh@vhnEetVnZQsC$ zU|S?4zfUn(qiVv!wecvJTYPM6(Qh>i;b8~c4RdIc22ZCn4E`i&=y!md1<1gEJCwoC zo5dt=NEDiYG4{#pQWM+hHytANN^^g54kCulczGIbM@IpriV;s%IH^XSge;dqOKOT2 z5+-}J^omwn$c9}UJa&6>{I7T6gi`eQTe(aT9&{;@yp4cEsI}d_67Yy+?M>zR85J!K zyc^W^k!p^;_HM7RDYHW3URHK3wV-7oA^43$inB7C{Uncay-F|{!iVJYyYiqEH21qP}tYz7A0o&=%ZbY zhpPVx7A~b2hd=^{_Gb!CZ-R)Sk2Fm@pmWbZ82qsOO=km)fY;SLXtXKl^)6D;Z$H&s z>Mt(Rr!s1o$x6RRwtwu&=blbob8z}V<#c`2zSzJ>#+To|Hzj?rgceC@aCR$0>xx7` z!x(-UK3#5Xoj9u*omXS4Nb@KDOOBq#n7BsboD4$S;7GKszSYzk20PuyQ(61w4#=w6 zFny}kBsMES;B@%LW;cO^=O9Dzl*_50*RP>g=WY5F8isn{1-z1tj11 zSY(=Br?Dw0`33z>EK;6&E~Z)%+1dQ;$LNRs>Glrp}0ckd_hobVGJ~S#Yt-f^Xm2N=hR=SA-3jRDC(w=!ITRDFf)zr6fggPTQgx`OyC)%avH za4G2pJ$+wnW%c_FC;jwP-tFA+lTMfW*KnS^_FHno?6HJZbaEbXlak!K-=}xdObglE z+=hg#S16JN(~O@U+!LQAv%^@7wVxc15$fo?nzWsby*r%J*rg-m5cBVd%^23iGB@Y> z{(ayTUBBXn)5uw=>Yu3nd7j3tXbMv)BsR9Ar|I$rg~-EY{CImCo0>TO61NnIuKZ8H z*{o7z;TawVqh7J$+T9=4YpjYlR?oq-cXyXo*Z)(*5QWGE)d$=r2i(OtLp->N0IQ*) z;REiEeDsM@ql!D-n$CesDr448b325+IyN_`9a9Vk*Bps>74ZXPc8yEcP$>nfBWSn%tV41C|>`;*3r&RLwQqyF^snMoX zeRKF=ggm?ujM4FHKM|Hjo6uNpD6>JgWuSVS{QI8ZBAJ3vNP<( zoaXwb6r5Ph=jyUDcCHo{tieKhZY4kNf(4unbQ`>qVRrGbY8*X8*HB`Dk+E)w{LsS_c>Ow|Nq; zEEW>&p4ro>Ist@O)1rPnC% zo5X;pS60SN58pxG+u8XHsOYz?xw_e^R^loWh{g`JcBTWBMK4(pY!}WxzEm0u+SvOR zrSr94vk#NK)wRDrj3E8$Fc28UWOfGGcB8#F@kiL@#0#X$e&7*HePOr6?N%O4Y+M1> z^4EM;Wy&=8A3q_<@Yeu|*B5v`YHg%CGWf56tgwlF|IiSV%Kaxw2Ki+mb)Si>$mj40 zZ6`IxXLq;+-E#|&fhvv!#W($Ds_zY0Zz(c`d(ibb1 zCG50;d@r4LtS4Vxw;k1LDuYPzbWN!fWwX!|q1@z_UQJ8OVcq>(g(*6}zMza5wcvYS zcwDhQ`OT?h4;!;q?oZ|@lI~2WLTTQ_{$zXt{BE>!-W3P`C}Nc}v4qb1n=X(+M;#r=Rg;sZE7nPJbXx17WrqjusYE}&^mj1KG7g6% zRnA2u)z!dc%TEieWnwMr;3A?4Xd$v1#@uae=b6DW7Y2VEjTYhgzMZv6=s7OBGSx zMguU1pjanwA;jhOQ< zLhJp{2yW2O*7sc!sMyuA8gi?C76hPUAT+w>)yv46sV~j_XrC%|F_x~Tb90My|E8;z zMn^#=dtLb+hcF(mK$)ornDw>?%5?;`qRI0TytZVu$5O_nPB)I($}(UFJL%;d0UC>W z1pXmo0ep(x!o5EoL-p}^jT>%9@K;9#hI{izaPIVT7$S`o@dOj#`#I zJ)<$XPRIJ%tC-}lnZD{*s;;L&f-A}@XmuA=-+0AEwMmS<^K}t+x$={%Z#*6)8qGQj z54eihIEk02Dk>t4zP^_$U~luwSlhj_B~VJx=I47eK95J#m!>(KY7_Nmy=z?&J{s*p zv}AG`lk`>Ov#9+Ut;CHWB(-lR65E^Ir0K|O_&c4; znQ#_NrBy%U(Q~rJJG+9**>10ZXDDfHqa8-w?r5@Kpd3k8H=sl%rSb9M8Yr;L zs&fro>~1!5+AXNl2~N(&68aCfTAH=8VZ19f;+6W`f42|25>updRFex{RuY|^^s$LW z>}{$O(fYO&P$#LNdwE&en?OQMBoIS49`0&H1U=d(Pa_CZx>Hj6XXa;59w;bk-hn^T z^G;xNYysDxqN=1(($h7?n~mO5n8#3X92kyLtk$jUd^^9MK@8=!Qf(wqf)$lws1}#X zC}OUX$YZ#=yls{^;cjHcjgDr1H(N>wgihd+_ZMb?v0X@gnV2sMXQs)b+vkxqoJRaw z!12Q)VrGG;#sY!f!^!jK+(aDDF}Fw5dOl*H{_1h^=dmtaim|i|)$s~{#!DN8_Ivv> z@vA5_-o!l(sgi=GyULg!K_jaupw}cZsOlqtMszeU?*83{Sc#tAO;7-$p+RcF-CC@x z6&QoPb}gt+D#{M+_giD3VBPKzz@oPdi|ulwqYv z(5HyKaoxlFf0#O}xT?CYZ-WRbsYpmGH{IPKCrbrkZw>(>F)0C?rsF7yStlj z@;)cuksgRY_S$Q$Ip-Mv>l*U%73t$se$CC!JR%g7lY|HBU-zW6vIs1o_?n;QYECGY znt2ywMTRR_SSDQwwCJh@^ufPq0l|0MN0_8 z{`pPrNX?UgliT+Bq3aj*OG(ogEv(@GIGAMz`TY2UI<}Y9Q1w|-=5U|gOUuCg9~hOk zS60XdEVu>+e?QWPl*Wb{s;j4fa0*|_{KAcj-Gj69373uSIJAJSTPhMDDgc@Vya^%t zM$uUjcMU!DFIyPc%VM?rzPf)%WLwE97k|Hor6mP{bb>yMY^9MDR{{&%6y!94LW`dF zLP0a3L~N-tacy-u5gK*K4Kt@W(?dh+JpHSRacL*#28Kt<#eb0vPYp(-f1py&(wh_n zvqMm?8O+!1kUc3W`LJQB;o-jKGl!q(hKMDy(O6ih0u*s)i z6bKMK5x;s>Y!gu=PfYBlk&hXMA+A_oCu=h|7Zglu4oVqY00Ah%_t?XEuZ2#6lq0of zt=h;DsSWaR_sM0V$Pz(v=*hrK@m#|OAdP>+EXb7@1efN^VmZ90-{%$-1hhqb$5Stf zWTWLY>h?n8HBwVg&q!!=rFu=4!_KXPP7kV96@}zjYeo&j6~1iMPa3hWFImsPo3_S6 z*ToJ*D~Rd#S50Z)^`+pKazxX|kPB94H%-{?A0{VFbtR=X1l-Sm9=2wYS*rP=;8vB6 zlNXV#kf{}EXgUu`;L!GGY;5-}Nxh~$%aCQV)t{nbcmtltgZcar%L0w~na+{qct5>R zvJc)DdcS2|PS@WEJYMTRqqj8CyZKw}_-NoO1Sv1$z8OWaz=mHq7aCt*9*=*UMPDZI z==+=PBSI@B^!4Rj8l8HN;gUc?e{Wc>a}(E|yqrIK5T=~Ju6}2{;bab7!}XkX({FUV zQ&>_+{>$L%S8nRaEO=L`^5X9@G0fQ4@+T(h$S7I49#+0IxMp``cE6$RC*9ahSi=5* z+3_Z@u~E#L6UZp&=*L?4M~eqzgdWiWL`PK{)%9jyEjF ze^jujOPe|lsE{?`$Fqy24?(G|PPsUa|9bpek}f)4hhFN0aiT<9T!T%XSKkJ#^52{} zeTlO<1p8}ddYOdG47BKQ$+#bEq>+n34ZMs@B@L_0N*{rXcTPC{wW!!nDJ$n+WlYe) z(-`@;oEB>til^U;)goJUH3;9n?-ZY-Og+ApE5s>%wa{?F$*e>I@xIWJW%>?wf6PwD zI!!m5i9LjoB06u{=X+Mi|EszC+ZZdH?|KC@Fp804`YxBJXi;(3OM>+&G!!=OuxG?~ zB_jUf4=XG8;CxH6RlMVY>g!T@@`o0Pndu7?-ydks$pWgb;OC-ZEhkN?TAlSs=@n;6 z3;|L2wa!f0fC%0y100{dFx0fotSv!$=%(wzCsZC5{#TEvzC-Xlta+3tq%{SA5tW zgqpD1M#BySPLUEJh;-zGzM`F$QTPW?byGNRk3Ivad2}r&!mqt4xwYBqZ?9480Ttk0 zuckKp@uH3^M&9W@PI;#D2X%!ajYmpuZViu%&d14B1O)0`5xLQcmDLQi*P}xQf?f3L z+c|d!oQFrEAr^0m5B=IcPdXC4RmB1K7Z8^`TL?bz!1Bs_{-gS0HiOi1{X(^z^p)q+ zLEv0%^!7|x38exi*l*3vRu?tHR$m@ZKv28(7aE-=YfEM&$VFT{C6E`Ql6l7ITHSdy zeTjHkwj0Y(>-Q~MMi*0FQ1NRLoF{XdOJ}bRk4?vL^5wfD>pW`Nyf}-P3B)2EA*k_F z{Cn2_o|rP0Q6WmZzQYc@d1gnC&-5h~#a=In$qUJhFROa)@5hxBV2i}=6su!N-CYfy zj0#3GTc^;2a~6BL6756rh|j6eFTaU+R^wCt!`W(DJ$?OWtpeZGy#4XnnQzALMh$ue zM@ej~U-ECxk4i#mF+cBJI8nIL(MH_c&G(Z*Y_As1?1%T$+w4)|9`!M2@fas{M z#ME3$ZIyQrgxBZaX!duOKhqj4_6Li834c8P6xKQzyTc=3A3!b)N1XWhID~|Pk?Vzw zylP9cnieR^ko(td1yQH(w*?^&4BOWBkIiw~i=)=j2VfxJ#e^LWJ*wCoFCWu64rn|NY}o}Dw-}qs+E?=z_(UTks8i8J zV$OG+zb4>(CO|dg1I!k@sOM@lO2?0#nmkjjvS?MPGA<7{3_j;)Z6l*(I)P-cPum}* z`E3WG+FWF*ggj=Gx23qCT}uouHz>Tpd}~ZQC+J8&G(B$w&q16j`VZGjBT}A(%}oHH zgDz8aHQ3XiVB`o>WQv(j{bZNX)Atq$a`N`PP+CMKlYru+QQ6r!>4Q_THfQa9#$f-i z<_pj`wQiF);4=nIe{^VY<`4v1$<>CER4rv9-e@aIC!(R+M*K_;>L$Z}5 zFlCeq%96e{yI{$X66e}zXmaaUVvvyz{a-qQjHAM08?91?q4^xgWoV;Yy!SK+jH2Ra6-#R= zs=?*h4E~N*a{FB<`lbD18D3kxOuou5^8HvTNinEPGFLkd;!GQujr){R7g;C06?_3{ z>k07gZ)xE(g6~=B>Ydz$?PA^Kb@!Y$Ro3RJ2L9BEvAEa`_Qi~exaZ=sv75H`DBRy^slmtLHxpB(p$18E)5CI>t7|FMl+21spYny<|G@-FF7tRgmGZV zKyoaSlB3@ATI7H=KA80@2?^2&&W1``OIcF6P4K00bB18 z?OUirF=%cl&>q%ew$HzSboKhKq=|(U)%qFd|M43KKiyzN`1%>|9011@RQ93%S@n8g;r#vS!+EqUx)d~3Q zGz~{tZ7fWGeW6Tsyo^AS=oM*Fpg=RU@M@^{$1r)V^;Yoqy|YozpJMY_+bT1}sr)ao zZJ|U}u!E&hc>tv%D!K77ZkLqI%jD0;PYspg=$@?;K{)Nlf}W}}pjfCOFCbF~0O z*f#`HfayfJNcCiD55U;AAix0v5VK|Plx68Y{Z*mRFOv5~IW!S0D%#nGP2%sN+3K|%?yUCSR^U@jOils| zQRI9t@VWfPl~-Q^xjbJav<_f;K_y7X>mP|(xwOP6YDU}MaUt(rx0XrXWu@O|OjTAEJj%BhyV;-UBoTReYhG}B zrZ7w2T_F^zDCmGvPY~>EGuXALFWv$CJBd;L-i;G|=@Q37gFbJK5!JqtWNtNVM26uY zq2|SBU)j^cktYc0`ZD(#yn7aza$1{#Zm1kcM$_iXlQ&pqWT%JG6*dmYu(%?Mxo zL7}kPsy&Nrkqn(sM|pg$H_5ctv=gtsM6HH_SwrhK9XkM!{#kioyQZpnfA3slSnm`b zgGEW%um$+CL29}o7KNSR@m_{c-ZMc&yj*ySh15*E4jI+`Gc#OQgyVZso}g$2N}$Z| z0BzL)yo_%FLsw8rj}26u!gh8Xhf85yncptCTw@qg8^7TDrcJeY8%1*UZ zvw^mWBr)?MTj#Tr8I1^#ONPDi!Y!}k(wg5taQ^aJ!}03yfaM$8gg+`9!wgyX?2|#_0_u`*hE!C zktlZoBF67}nxZiKK;{?m7^m22Y;3#+^c!N5l586@G57=oXuDJ6ZSCGWOY%?T`Ipib zbO=thmTPEp-Tv*(3g(HeWZQW`m&>Dl_vC`Iwipc_O)(J`MMg!wsHQ)(F zO-Nx6BE2ju-IuM*5!7<_AKk*{ln+ohg{EO$wlu*nqN6wIboZLmtJraiM4jJ+hE|Dz zy8Y8=$_6u=IgV#<9@Sy*?jI4+q%=3uSbLW7YTDQ&LXKDg8?UX-?@K367-$>og-WzN zoJvzL7ZsJjjLQRVW?skOt3*VUx>C~rs%UH1*p zaEkcd<`lZti&s=4Yl5J=_vbyHE%2X&poz$tP?6;3nwv*;ca^Do1)+@kgJ=BH=8-lt zA~25C(22Y7Q0}PLzMxgMsel&aAF%^43HC)~{+ppcVDJIl_AG$pvfo6Fh=`D_w=+Z~ z5oj7Cwnwb@d=hB6*(BJXtwsUV1mGsSAdJm^U{4-H3PA)`!MZ0zty$L#<-Y(=87$M59`ei$(# z2+MseTA#I?9;ylnLVTgHw%pb))a+8VEa)ayxHq0DxeodZfdxotP7C>Y(-f~>HBb|9 z<{;kftM#xItM?kj4n&)p?k=U`m_dS{Dk$j8u7Kb7wYRr-9ET-7Fd>&&F9}G3*d_?E z#&OwZj9l?M9m756&wwxQ7ziSsQKjd6m9lcon{TDv!&2t-VvtOe+atln^BBh5dc^_( z%Y26D2x!UtJV5H5yw#iHgc8359D|?0s)D<@1-e8t+58F3`6fJ|1hBAOLppxEo1byN z9m{28haWcQ9x!JP4BN6t9DI$XVlR##=IeXOZfdGQ$*--!s{Q>tQckUTuTxc}F?G^( ziJ_o?pdh)M8%??bCEo6I@!$9_KBpm3c+;7$VuvI-?iLzj`^jikPTc|nSF3AG6#{rw zg)Jhf!PfMmSP0=TGYFSDA**27!vjm|;nr6B4T?j5IaNBF@d%;QCN=Rm5C8&&r_M@; zzY~C2Q0TwF!2y3JIf&vh0kf?5P;qHSS=%p5?B!jI<`g;M)?$+ za#F}FKn%+OE-=0+COhNu+v16sLm~^yHUHydmD7&dX5rw*)_zekyOA-g)5Ee5`$$rG zC+8BCy(Wy^?3fD~4I5Vo5J)4^a}-}Qbx}9kePL>&35afIXvL-Sc%cPKv|64#AfI;y zHh=7E1K7wpUw)`!&re3i09%~oT*AOCxB}~HV*bSm?B;sF2`L7F_}YKk(WIuP2A&}V z05pWtM$lnXQbHqu;b-|o@M)~K$%=@cd7<%)ROg_@P)252vp_wTH30?puOpfDH~TN+ z*yd5Sp%I0&OwKF|%7d}2p%y#xfjQ!l+vw4K1Znh^U*uv^GkX40%L0sEiXzPd4z;`Q zV6=qRUtwWIlUX)&28Q-J$6@%b5ji)|W20A--}4JVGxcCpl>y-aj6Q=TjmyJfa(*JN z@1eF*dou{FPa`ZJ$H%L3rb;wVib^H2YYJ|I7+=hknu|=HjUt4GI_7Edzy0sq0Em2b z&k2&ZXZXqMKJ!t)P3j*=2KW3vsHm*e)z|k0!O0a6-2ob;Z>a+AOojtkRA@fMslIi_3ApTUTvV4#g0VO*2zs=W&ovH&t+mUsz{hVL5%Er_BnE?hdkKvd?*8 zIk&kSZ>%VK5?iR4q$J?dh2kS2f+D^7gv%cBSfDucHHioNZ{rM-dd=VE4n#Z(sRKi=o8nlN_EGwNC$N}}JD-cGXDQyI`U@xWzZtuYN*eO|vu@B*o99C`;mFNp zkm2DT__-S2>G*Si{g%OV6l6GYL$y9)4Fh=s7{b_hrgr5n8*A`~6Y}2?6$iw|dZf~7J`L^)=t#VH@c|v2 z9&PSwPyyznbEKsXe7ztJg&cyP52VdU{L@+@nm`ywFr$Gf3H?S5Y`O?YsBIuy7jo-@ zwa5*ei2)cSp|y)HD4C)mH0SJ~*wG23n8=i%unGi_CUZ6PfFk+zEQ1;an7NkgLA89y z1rT_P$&3oSHJQ5M;iK6+G!RXfUIF(F!|`#SXe5QW$pqP(%S(#8Ujr|z@qhlZ?aq-( zv2hp{8chjXK1$U;-ZC=mPm`B(`#Zb4_{~{6HYNweUlzISy0GDNjB|nGGHkp=^F@?| z)GvYByrce+O?`EBw4|g!V)g$YG@u#(juQX{inO`qOH1DQCet5xSC%L1zcBGbP>G5E z9bb)p)zP6SQ0(_g)y5$tEV{eKd<{za4o~>Yq+Fpg4FD$s z!epfVgUlnwOaOymX|o^4DxGWxviIn}`@Is_6~>#KNi#APmRHhQu9zVHfJE59Nt!ZY zdsY^Mz}#4w?w914wAG(MK>$QXkOR6@I^ZrccAEf=&u4G=GcyaEpUQ{8Jn?{ofqsR4M17r2caytSDQn!`7PW^Xt2AW5On6V5eb*CqC`crup zZ00$ljy2OFM&>96h8vz17RYyQnqX&liA~0hS7-kX+@@^T*`->{ zpS2KHOD!S5s$PkeLe$wUP<>bt&%yWf%L(K}Qho7S^pw~4> z#dY&6c?GEZH4u@)%aVl<^W(olC-eeTF36rg%Y1=W7Sr7dng@cW<# z&3a*5;`g0S++HQ01qG2Ze)uz|49>*HdjSQSdhg&=Z#FfsE^6%`sF~+U5fFFAGQc-} zA1pV=t=tA_GrsW>q6Mdk>?Oi0c!luqbA&|kZzoGhAf1H#$QDZ_ZTB}4_s0lpWa_m@ zE*E;-gb;dO9m!e(oiqSmm@2dgSQBtsb%7QyGk}5sGK2sEw#3iyhZ|T_T|A9MMUj9c z^9P{h=(Jl1fkR%Tr3Je9b6)tj9#7FbMn>Sk>tTL)$nHu486X&vql0kXl{gY*GmI81v%3P#9qqgk>4kq z>o%L_)}yV?gIHKuWEn-v=Cn$yq|WW^_*#T(t8u#DuNV+MV~}ie8L&{0)iqS4M3OZL z3;&+udd_o34cyyGfdiRuvPyA8s5N4NqU~2%+3v!b_01f5rHGiG7qN4-_De&_C@&FD zX8$#EM*bc+dt?@)S^)0wXj+vK_a@**1MW*SkV8O#LnY?>;Q4ryyOSZ`>~W;xSNBzXHU*9PG$Y2{`D!KY;Rxz-mvn$Qv3&-ZFleAMuo~YV?H_i!ush^^Hf3zwB zsy;Y9O?Ljnzu56xX8uICYG+H_-!JPR{dRFVWu>n+0wjI(>}!;@6GGf?e{7Vot}08MgI9?)3eO?nJEG%%HI(YJ^&Qj62Qg7d!w$d9!$uM`E0-i z;tadgL>>nkEsq;Rx7(fE|653sdHey6r85-AyixEE)PN@!exT|mXWX1o$04EW@YGck z#YvE>r?6SPzP}_mUUV(8pQ^8PREH^bF`#5U%r$Z%PPVugwPU^iVqa;%CnYn39OAQP z56gn1F>C7ng(D8TzGmW;o;jjXOR1=!(tukyWcu0OE8b#dXmJe+A$Hz8B zYL!R;FX{l71H8Dr!0Zz+y#!$CPEl!F!hphr(*c7DWcX_>=QsctECej!*#jj00L686 z1Ju%UApRJHXF7oN_W1-4_CSz&!x$k^Bx|3Vnwtd+1_qFSE4Nt%ucV=PSSl*<5J7yk zTrs|WET|EmKyszwGryf7LCd}+P#0n9>S9@f`ezW%xJ;}5t76Isorrl||3Ba4X@VSo zh-Y+HmzSsi6c=0W29A4ruV8X6lsPRQ)hTdvnSo)RQd)Z2R2*BC zgqWBHP?kMy-h7T2#OtRQGjw)pjU4(Z&}yGW!&d_+$cU7@;H>g^w*H3q&Hj9U|K`=w z*(}Htc8cu&sg%|=m7P`xSFR_FBrNIaX#82v0$kW+S2sZG_X()$wK)>1KN>bWJBuWc z|785nmlJ0vVE0I-T=DO1rLn0d$QnI#AfeGTP^tn97x3HxWo1l3C@p-hII0zXoD=W} zT>6uS?$kr>(c$5tUvX-ghsA8&Uc5=IoBop)E% zZ)ucPyR-6`#j)mFqOd$dp~aRH=D|)B3ZD>5D9Pc&NQ}YI49egAO+Y3a1o();ED#v}GF{o)7JT(I15RM{xJ)$5M;v7QfCfa0m5|^AlgQJb<=yd z`xE`->TD_!LssC|Eg=h*ty$CtKyb(d|C6={JV+|dpoz0#$Np0%wzXLn$WwyQ1P;2x zmf^}Q@R(dVx(#4#R|=67^D;5pIjl}%z)VETrZYP{j0Qybp}=gTTVB0^M)pZ)Z-m;c z8MyNHdLr${NsVlXxIWvP_#zq2{*+(c?vrettv2nCXAg?^kV-U@$%yEg&&nRB+g}OS zj>8&aLU2M*rg26XA@HMfUkC}+PZb@0hYavs2 zHN#iX7ZTYVV@+IH16vU$64KK>(&F$}oK`0ODlQEiABn~u1tO|xO3Um(Zlmy&fwZMS zZ*9Gc*o7x?NzJ)k0lXuDxERD<@?dSRU=( zziqoynyb0rThqtu=ui8Um6i1o%*1$f_P7CWe0?xC2>=tqpv>^>%l3Vx_Ab04Im?B8 z0#$v+Zk5*|ua z?F|m^Jeti*WD+zlrNW7*bbm24HGxy+Fb~%@E-T1B*NHZy(14C;HkNGD7|3 z<+cghckgD+k2ePQ)txs{oB#Xw57jbHJ2mDG35}{|NDikr?L#)0HG>Ue*garA1Dq_^ zvm6stXMPWE0H1ptm==}5W~x^OpNMSVONECJ67Xtq|6kMg)!}erorIw~Gvc?+7o zVcmdMQSsGmk0it98?b*Y>j=I?;sGKY&bn6^*9l!;Q!M0BRm^BAIkK)9t*u)`k%_Oa z7`0IOT)IA*v1*R4S>(+@jY^HYaF+>dvWUM5cGAquL5L+(4 zSoWSqi;KvpHWF9!#1BD67C~}zKUhAnj7+@2C6r_)H+)pfY%I;_p^Aa2vTs;oeavU2$iFuH)9_yEL3rR;&D%SA3Y?Q@*lg|n9ouPk$Ii76Q89+Mc#+( z|GtGT*Kef^y59q1+A0VMsn%HF0l9pDT&AclkYOlOM-3pb;2ASq?6LA%btB*YOm&qu znr@q(7%Tf!*ioX9k5)v?OzO!WnM9ZX+pt5Mn5S174U=$ zRE2*?r{cSeYMic$nI?(Z1i$F18*bC8l! zrQox#whZn`a3cK=OJAo&t_O0n=UD<5kF7GoVE59PAYUx2(pW)&3t z$d`1$;pRU0U1a??ZX0mGgk7RSfC&*v9|OU>K!-Ka27WB$ zgl+@`HL7wo){)(&rhyTj%)(;>+fnQQ4fON=ug}L`!a+kv8jMT1CZ(#>PmF zoF<=ZSHF>z{}D5xvZf0SC2y3A>dID(;35(f)S05H5#x4?>m3J1utvK>LWDyC_KenM z@yLwITnh^)eMzZkFtfsqQy4Hn_7kDws@$(;PLVglegZ6mNAqnS+qvNCK+AANhly#}6G z+{j}ag0J7qmk%^65{0#5BP1_jGPO-n6w=?)$1WuR%N1`oS5v-Iq^Q?6E|;jM(fT-v z0|Av-40(Awi6(cSQ&7{H4#XlV)=Z5N9f#epRI-dFXF8DbCLXRgsb##TIF|_%WrJQ~Y>_ z0T~X%7ny9XZb#nWu5;slrP(+zR$Hq1tB4^!zG+;{eG;Y?6dZr!u=1i<5`cZuA|2!5 z?Moo}OjathVQc=)LjB+G$jAp}KEo_8Fj3f$aPe2A|U_(Vi25aq>7RY>=Ss|*Z| zQ{KPtEc4AG3#7=eO=#(+r)S?A{s0DUVRCTv47#wYQbnr-zL)S1j}S%~4J8621NeSM zOH3nx2rO$WW>pJwX@`3L{#_n<{r0Mi7UbfT%<*|0E$l-bV?l8L&IiTdKOdk^2Oh$Nhia| zC{dVoEmdc0#8-FjouR3R^DE96vQ$bXLtZBh4%AtJc5l=(;+Sw^S}Y?>W@|CHoFlTO z$RG-~8RDgolLDg1b_d~5clVAKUfiXazhT#@9Dcz6KZlk5x&HL{1=Lt|N3 z>q*F&x7RY&qq4H#IIXh&V?M!QVG%BKt>u?aF^HZ4o_%ecw7jE6fEM@ki+?8~*H?>1 zz9Y*%G`<^cR8hZMWX@D?YUtL*o0;~<-M@DCu*QvASgvXPuc_4 zrh#bMHBj0Rdw3Ff3$*;tYxUuL{qs!NgN((Jn9B*85QzfGQuDo$wkB8202HYib_l^hineFv%pyyNx9R33YYx zfi$hm9Cz(||2FZr92QH+CkC0!hO`YQUe-BB z=68*Zz>cO1y6bXil)fqlr@^>*Ch+B&c}O4+^&`odK~7gzTCEnA@oFl?_@k7xNv~od zWP|pd0a#MTqw;LUTEl*^1xnNj4c|-SnzvBfKc=4p%gIM}c5E<}Fd#RVGGR+<5DtiX zz5y%Fok-UQnH2tj*`-EDO~ znRC+ia3%vq&&c$Ce28bTdc!Wee_;Ax_6Pa;6aut_&Xrb^JuqdI{)HUtV0qyezf(#+ z3%@Alk8nz0`^78}gsT9@VIc<5ZXcbjP0L6I3(hBR{m8)}5^cG)=~{;HTuLy%3p2%i z8ciY_K{{m}@pu4xV;3r+0iX1)$0F_CFiPEID3obb{*3>tmFPsJgf zWYbY&$=8xK)DVE?tWcBFQL_=^lkxoQCvaHE>WpX5{QOxaRH#f>iuv{<-GsmH*a6pn z{~@G^U@e8u+xT?Yem5ovZTEGqOcVr`2`D>~Lan7a9`*9YE;FqakmFC&jZpl+$dzS6 zyq!MiA2EWqR#xJxsogBVz*|*ECaJHke4&wA`R*$B^Y9$E){;-)zkk6ivNZ7#^z4H4 zZ?Z!i1_ty9HJrHioD7ZZ2#5vNkL>Tcj2|&b?EW<;9#vLvoRI&@{rS4Hf&~$qfRhsl zYtZ=kR^Jis`vs#CXf*Y;t%Aq?9SpW^i~p{@X!iHp!SW;(w*7CLV#y8U@)3{I<; zx(_bUh0YFDf-=|dkJ76RpFyGnoaRNIg?niDirZ(PLLri+Xs?m>K0D%%hU~AtX2j6G51awe*(aT0%9U5_a4ydLK zF3_v(U}O4S$|x=*lAkLpG?Un(OsZKfEz&GV3kmoZcHJCd2%%Ur|MJB&{N;xv*OQEz zx(z@FBRXEv;l2UIp#+d2WbpRhpcK>4;hA5c4#4N!$iXRkfkn2 zshvQU+zGbhzwpGDaRF-a?wUgbX%TYPUG~^75RY)l#Z9Lk9!=p zq&-$(Ye-l9<@y?@hl6EI44*zpzKezG|5VHQOk%)7oOv*7D_7`zPsA?)|8zFWNAcy0 z^Md(&+_dxxJ_o;}V^hgYey4d5Spq;zCd4)du%wcCGc^oncZ1qD;6b6#7m%l5`V&w~ zd|`G)_U?LhpThFVtAg~30fE6BR@~dcy`y>*pxB%nBdTfP>E}_q7S7= zwSxow-yG2p31f72qlaK1h2D1GerpZ}FsVASc0^&tsQsq<;^85q?g>l2zr`w+ltKhD zr+B`Rk@HDTOX#V)+Z_kvqqOu8W`TApPHhC+{2xQP2rG$}mUdYx!htO2Vu^03Jg~#m zH9ALX9vscD*f$)XPt|~VY+HzbmQsaB7n-jhsJi?d^nyWD>jUKbITd~KOzD|hu||A9 z<8Z=wM7p_8p0(U;ggg+YgU!Vw0}v%sN+0uVZT9@q$(63sP;V>7^zui}KK+^fhWyw6 z#pBC;al@GPKTxS*25Xu~7U#&gw!a89yuYs4;a7wP$%{K*|1QVkbsW2xs-)b*0;Nb~ zMlxI5CYv7t@>I?)IGP8%j178G5_SqS;vC5W>+7;4Q}eOc~kc|ev=CSnQ+d@JFf zsa)xAFQoI)fl$qqeR3>bTf~n`r{t9&p&a;MdYnRAx(=2x91> z$P{Uompr{mJhQShJUx}i85oqa=pZx3Ml8>E-iBf=w{e)^ORtLhGT>f`oiEqtyK%jm z?$O`DhZ$kF66>a z%gNh{+unfk-#_^G6lEV5RJ6;p+Ujg$ltk0AfOMX~cuN|oY&5Aq-eRVt=^ZYGRaUS3 z+We{>W$+(N5#gnd_#BYP{^#A&(x4p~4nJQX=^cbiBAkCNA`wWxx`ww#{@{M|ky6_t$8$6d(^$krm&YU!cz%D@-%d(1>%Nt00ej$DpZ4)DTID2isrkJgYQ>EJlgo zB%9hg7|KjOlP8UiA+4k3`fZ+1a%3VRwxkPH)SYZ}&F5Z1vCmwt4j35oJjFVgomhz4 z#_q+UlkapEV~b8m=5#S0E!iI=7WVORI{BNmFuMQ7vQZGmhBX({s=xz6*L;R9bL)Qh zp^F%^BT9`VwWC|gg@+MmXGf&56*$9RudUs<;=6P*h_6UO+7^jlqfUJ;mi}f_CXuV8 zn4NJ!UFsAVmg^PaHx)_gCZ(t6A?NVmaaXP=3hQKJN~p_4^S8_(Bhw*Rm?>{QmZyUR6lq8U2)oTNv++O|YK#czJ3Slbyql0}tA1%HeHzio(-0s0IENDE!wEef; zJ0`d%#2G!2h3s?NQtwP`vAoOq^7_fH(npRMMDbdSblfa6B_w}PH0aMKPZ9*>GISyy z9nkRNp|wYm43iW!T&!d6?)O1#QU$W>$*E!HlobA(1u(!3oGA)Ju8yp4Hm94grtKMc z5?BFv?S)3LeLG+G&SWvE)w|`8QCwDB&6eCYKE`mYro3`fGDNujAzdcI7drem)<-$N ziJ`S=ucFd9T}H+@%~lTB;c+3_Fl8{iZjebz4>w{!Vd@j|}z{E7^ z=5h?45%KpiRL;nBE}r`4gc2O&>pP8~H$KMV_Q>a%docHpO)KAE#tT}#J%EBS)8m?e z>FZN(z1Z{%w3E}o@zM$K_ix|6g>(M&T@ZM$zkv0t=u@0J2^eDpg#GzIoy)4#H(j&u zQy&CM4G(@EPs#2*6p~CHcQ5Rbv=>{XNbVP#-RAS&(Rw!4W7Bg;kUAnGjl?L8)#O)h z!tK3rnl}01nlmVYO;U=cC?i4hc!q^MQk6ZcApby}|2vl)=X@}z`rZmNKOYrI(9RF9 z!HhkU6`x~$n9DjG@@~kISdoUpIf;L;?U+_2PMj`w(nY%vN5tyuOGMjt`>u?NMIh`> ze@G)GOX+iAWi(?ibENkz{9~qbzK#0wr3UDb=U_`<=E_VqfaPVuw^*IvsFHqVT}Cp? z(DceGWxm=>j!8sxwrir}QEn1u(Y~cGTh!n=->XGPu3Rg^9_XgrE>ZStlckVw~}D*h5`i+>?vEvT8@Q zyf!$qZ!u`+*fcnWJM7xoeV8Y~A6O~|(v38)NLdP8UHY^EUh#TZtr_$btI# zai3Lvs&Ff4MtkP=OiEl4%YUM@l_h8QFEg}Z0Af>=NRW64s)l+NApH;ch#Y((sd2@z zKIp7dMw8GSKH8JS9vYY(#<^3+we~VrMKLReF`6cSWh2^eS%>rQocUzgl-VL&7QQ0l zQ%?2?=g%Ph_08F(8OH|92|U%BT2eNlaCJ|Eyb7XaW7{y^_4;{Uj5ZZe}>}k;l#<4 z)+a-uOxvEn<;bujs}!eCApz7^mB#ixOoqr(`Po7=U%?Q#wL{GVy8gIgwDX6e4jM#3 zC%7W@UZ--Ht(cy}p^(!IFb9_&^SW4T|Ufr7iNy z%R)UUH#hN)ge-W23!oEezwh~^zYLVOzCf@Y0tV&eL0Ao{)(16hwy`s>Rlcn8!Vx`0Vr7V_=CA^=UVHXgOS z7w&&yYcsa&`7|h$Dp2Ee#IHO?%%8x(qo5w^=1v^}ri0=zZb}~hQ3+y@jf-vSSZ_x- zkZNISC)NB6nI$R68>RV4)`a=~MkRl$Mf*0zYQaQpw!;799Vp6fDkbwIl`9uyJv|}> zYwJuzAS)xM^!$r|AKdgujSau2OS3)$TUw=rNfaRB40E+-)yRm&QV~vp!Rsf+A>mkt zpi^-s;R~Xjrr^rOtVGlPTVo*=rcDS=P9iNsMdiuDXEX5v29`B|M}7GUpW6SNB?LFc zia)LvlZls4MYi03w`;8rF(<-5FeVX|CkU$3sj%99e`;DDibs%4K@BF%*KVzA>gbwQ zrj0^=PlrkVPN3UeSqPby{A2Oxorkuz&R-_0tL~s+LmnGAFpO`SJYP0Npw+(|MG~ss zE&)IKUQm#M9%?c}Np^e<9{1`Y2Ca2lrya~#hrMeaPR<6u|NgtFg|hGEnOP3#|Cx?q z_t^b2*~3P})uwn!4pCJF1$GAIIMDp|7GjnFBPfAvg>NKPFbquVB~p57)dwDYkDt%u zqCs4*8^p+hIaC$oQ}m;NRM`fU%yMfEfPeB9mSfm*ju}LgpdS#Qf_{JUDwfB=OGQi9 z=!;wwn`k~8Q7_6}QAER0psS@LMLP5E-AiKD>*J<;A2e!BeQYv$#RXathf zmsQqBz$?99tk+Y@xEf$CP*D-*;=YMmOlCa7r->jzfk30Oxt{Ie4&_TuruUqCepkfA z^t9N&!kExA*3Wdv=QPpbwp8?!ogm3HXwJ^g);-@I=W@SggIflqT{r6}pZ@Xkkhlm~ zMtHwJ8uFr{GrMD6Go&Cds{#)^B9E{$kp$@wWV?$OhA>4NDD;C z!JPk^c~O3#Xa6U#h!+})>=$6yqg`8a@hUoypkyO$oGE8#2(Q?w!JhI7NCS}kzlj)j zE&RNsi zJ})<4nb6-Ha0dE-r%Rj8KHXZxQZwGhKOLfIXv`YZ^-nFNh|V%6B{{jKo~-R}1n{q% zXkf~!sbNX9w>Q0=$!mY0n0Q3Y?jA%jSt2%B!n*{n4DA7ON)6=@SdBG!iJwBMSFIE0H;F>Pk;Km~w z?r4IC-y}Be?oPWg0IiPI)zwq>-r+%i6x`*ltyi4pC^2ub0)^q5?pa)WnjbirJoqYC zfnNWiC>P3Zv_%i?%CI&btuQe%UG<DA^|_j+FaFa%9kcZAEu5dft*Cl_#D>A{>muJGI$}+{-N>vet*6HCjs-%}<|tv0W;QjMg@ zu`V`v)3=d?s$AF;JQIXlt(?>PsCO-Nwn@kRasRC$aNX{JY&aPIQ8uzQS8e_S3@*Ss z#eRX(-41_!{KayA;^qwIyR&Wd{}_AgpsL$1?03^0A|MT-q=0m%64DKlqDXfm9Rkuy zx8x?IyF&$}8x$l2X%R^g1y$1Fc+BN!nHKl1Khck0k`l9RG z#H^Z=*=;yA=;-n@yyWEc_Z!-GQ4I6{9)EN3goRrbi*S72{g^dX#LZhpz;W14RaUmw zjbP!kHC}+FrR$U4zR846@0!LQ&$T`>v7hfaKtJ2t-~ZvmhliU-Fg^1AcLo5w+ttoM zp(_2i==H@@7WY{2q<6RnC5<1)dYTpQiGL9Ud4GAfrO~JS*yzVY#rdM76Jb=e7Ji$2 zlefvemrsBH)RdO+dnDrlcl-rkoA=Q3a`_+MWNxo-^o<=Ht(oiV-!2@y*XmQXZCIsa zyATpXtNb)z1);q?mX)^-ER{waK*s(sIofFd`FY`pkC*SBd>gHpn4?!H=KTAVnwl8e zY@ztXzD9>XelM1YkbMk!I;C1nSrWc_n@3ioS;1f+S$f;_^aJL#N)!Hv45-T4^($k( zeTXQyh6ij@qSwK0dY$EctzO+2&3^aW3r{J&>ON3@@lSIkGKI$GO!?yJI~+|2AbNrP zbT7JlwHKF01akq6+weWoF)ZN3zik)S+f8?4*%Vn6!S}~6d%am z`Yzk^eMjlw`zm9E@z0L^CFLRG>QJHyG6+E^FGay`{Ti+W{8n^K%x54N2W??DD4n?>66IrW@6*+f zk-eQ)a9PqMd!<$*)XaWT4Szjy_^#p@WemafT_dR zDE^D-GQNoN17`EAjJmp6lZ0EzQ9`XO>J%Sbe{;!Aul4`){T6~6Pw#7fWXbfL7nfa3 z43`;9O(g(`*8O$xG^zpkniOhktCnVpTcQEVKE`d$)#x&RPe~tJjgHTQ4EP2p>gBkK z@ya|MI%f?Re-`!5B+tzYIy^4e9=~mv3BdSG^NVxH5aGak=0NVL+?`9#JTNdo!TTJW z>q#e+G`0+YJ3?Ih53Vt^Fj?t^5bJO3B1O^HIYVrC(-4_b6L8`4v9Ire>G1u38<|cI zm=nLjiQU=VogY%IaMe;bgh8D9$i!mPxEGvRy6cG(FKuyl9g z`;T%my`?2m{e%@)cm9r|GI8>(B<}u38~%E&p9}q%lP})A9D2?n0a`y3_wXd{n$zXI zOMl!UJ}ZhRTiXM!_}OA;mzUek0Uds(%EN}vwG5!`f86OOvN85H{<>ENkbXoEgut}_ zI~=0mvs8(6{211&fqzvjL2ts{G8)>32ZK|I{Z)4xv$FrRr-d1j^HSm!hex2@QQ*~f zTb4A`g2rIW>pCmSChejq!H4DfWX{JY7|<-9Jzi*P2?T-`M_zn9N%B44Z(pn|))}>% zIe416stOA3n7&viYd;*k*GDm?{eL`Wa#44amBQkoYyXC7n zm%pW=l2c7r7472ibWe7=L8f(29~CTZ-VqZ8B5fp(>6Mt)GLCJA^7Z%x*_p!LZy%VC z*6%OR;a2R<{Rx!OEYjJyrK@F}oR~PPl|1Le#Gajr#b)ky=4^QT_kOYR&uKPhz((N0 zsloiMVUuM_S`CY13XMjN(CIs;C*)|0P3o})3bb&w8?g!2KQ=1g+Kt-eCnNVaq=$O} zaq#^{P93`6cT>1bqK=Q<;XxkUGJmA5E_7~{L2Z+%Qsa=!UK4U!ZXkHJK}}5~mJ%9y zQ`bVzt+d&}cY`w5fDfV*F(fahF=MIUaX*tKRC?`ZruRRmoO;rFBO58HfTLq?f7Npf z#e78=`~@`&Q?9N)f28>4HXDxjub`{qLXDS-Kc$R}W}EZVCc8&e(bUxm{{7>3b|03P z52xAQPM2R6bW2Q6Pv5Uf^`WM z0d?6pGIrh;&xk#l3elJOCY4ow8*0gL73L4%3IbbRFq~1_&hEb+P||hg<>Del!y=Rg zneTOQWcGn#JiV0s9GDX!HmCp)F$l=gi=gI|S2PoUW}eOMWQuss3;dG(JX_r(lg9#7 zkow6|Znz$+5T9f{$Awa1#DX0iB<%$KhdU3$fm)rANcQMaHK-sPAE`CUxYnXZM&jOO zSzwSbd843G`t5sRNSzy@v9XS`hi=c<{hN-C?9DCf-Akt0dBzWscO^{Xri!z{(1kae z?Ix=hcbc=h|2FdcBvG>~0QcWNrGQ0s_0(?zH>rh1O5bF#M?@$P($FZ;UfPknx&~1T z{czrhxmjuACT*C3+S5Z>Vj@O%vdi*eMAhNv?H$!*c1mYYJt|K5QsCmiPklY`{ByI* zog^iTN^Z78yyv|30DhJYRf1Siu+O868-8D1%|B|mHVIXlc0|1mIA`-(goE%3aAU8X zYjJUL)oi_s>Lf~ed3nyxtWSa+AvXogtE~o&dp&4o8!AkV4%%iAdK5#E$7}mf;s4sf zIvP18Xdlkev3gVEJZshJ9_=^^kH#R2kto!pah{|VvpGa4l1y!8WZ#a&X$X-OP_ z9<3kOhz*=9B9w|M+H|Vu&^lr*Ryos7kU%l1#{C8KgppVZnWj9pfnknLPpubYKJQ+^ z&&-R>Y;_GI8;3Dy>~G-x{w`$ja&qc>4KXXfBU4lV3^6|TwS26E%l83d0BQ5vd2I9Y zY-Qzo3#`^4C(FM{MzF7NJ(k1$q@?a>ZYcCuzp6pdWGGb`rr~bPv?|IiV%SK zb;(OU(dlgAT84S(z48=4wCi++~wd4N?R0Qj}9&zlxXka+VWlqOGv8EmiyZr>~RVKtV@; zC24m4T8LO&gz|I4Jv^f(%e7TGg)FK2AK>_WzY76j+TQ^|hjhYpRHLCu8=#@BAX8O{ zM-99hDSvM}b7nl0vVPBZG*>y$(vsP7BqIzgYmB#V%WUq#@UeJq6H<*32+Pr|KhtiI zJM$2-Wu|QfbY56=c9%gp?6zpwz?ueXspNsIWRJZ)gUli;bqHI76>sTfj&B@e8Apf% zXHi#Xx2Uso?g=Xg{_70Jl9_sblP)#=0f2{{@6Oc`CdCsij6Nzo4hUEk9#WQ>OOM7I zuPMO2al>n6l_Vw8Uo`%J!+t>SrbGcT{+hk!yFZ|ZoPLr27!LEXpvY3#)!dP=NHU*SuoWC}k#jhO!42?tQ# zI@$W3{%Yv#jPWQl&DLXaa#~ZvR^g;NzUa)N>71QOZb)@?b?;gli%%?)2@SHFtIyxQ z^jAYRI&E$OyJ9YDdZjg=|3^bZQ3ND{_IU$leqcYH&))LK>if+Mew3YA&TL^J0Wj`C z-ruKBkIZA`7=l947GkE~^@qoq_i3a}ms$LL<05}NqyOXi<$_bpJKJ%D_o+dYcyKqB z277~UMw{n)E1(RK1qwD_Vq@1;E47#$vb1H<=~MNDw`=E<$e8{}Dn4RjI;iSAc$M(i z4Yb9!^EIJg+;DKZTRn`$#nVa{BSQ|kpf9OmZPGzS&|7#n!*Xn+wVK;>*{A{a!2^yu zlh-m2N+B5abCVN2=$D?CA7G;+g4D8ERiIQyS^5xOv;L|@oiQEXdOqm@8}L2Ksi;%P z8Zob{%l7ogb@xp*ctF=xu38}Pm-VJc3j>QtOZei5XzqpguRe0h0rQT#25L+-^Aw>8 zesAvSlks-q1l1gHDw0SI`PFj@ zn~gg%`k#(uw0FwO8K`+ajeM4bi)qio#Pk%>X-ah8k>~jS6hTKvCpDC5Mq57QUJG0|yvaEWS-?Uo>ZAGgF zA>H$@12gZ$h5Y@4gMv7`y}v3PZ7gA9v$oR37a1nGKeeV&*CR*U@!HF0Vsfg(D*Y;* zDM*@&>`Qnyq{A+_ClQd@GsP63zvVwYcCzYB20Z_`D)*DH)w#j-TSt2XV&{tSBq8w!zMw;7BsuAZ{%UX8UlAh zWow6T@LIncIOB0oPX)0FbaM>_T1W5c2b_Pt&tX}@v6g~=VQ(H4c^#DlB(4*ciz`|g z@IjQ%HxxvV>ZCqbCQ-srR4$M^nr7<*lXd?E8R^HfmT&?}`kkMq%^1t&JzsA!tFUSj zg+L-V6j;<>akzz!lY{;(ckrf*aPNkV+pII2-D7 z`NC{X9+IcfabQNX8SOjVlHi#mMnF4AH$OoyBQseJ1Z6K0|P)(`uY zZx4S;^^H+_F&nOa&;tC#JW`f{n@L8-{@LH7F=H5Fjxf2Q%aKRa@!4^o?DkWhmg$!F z*FVRpP+4rnxtG}OQ&WdVLn|Q4Dbv_kK5kr0NWa`Qmir5qCWpb{!fUu+jGCEQZ+*_E z=k?8D5ojQTu&<^Sqrf`-b-Thf@Ip>M@ovVTb|&#d4R#wvTx>JrlD0O?paZTFGL0_0 zK|CcUPC-}##(jq=pu}G%UymA!CapKH8@XLxZ2t-6ccoI0ojhli7ae6Sy|RkZN`H(!&=@QXF_wSb=#=%`CeX! zFB>bQyJT$upRf|-KZ@pcmhX$4?BQ=;D+l2;zja~=dqZ#Zt<()Wbkq(AX8G1HAIp32 zv#pUrYKdGM`Ro1DfmTy4D`&gKRu%fCwp5GD%~6Zg!}$ibjGbAsTT(KA6aSS<%C>2XF26d%&}eQhEJE z@BAC*!tmye^jaTpbE{$X;Z5wAm+?gJ7Ju)L#Wa72FetDep|VU=THFSAek-=ai{1sJ zwm`?FY18{Z7uT-DJb$&$wFi9csduo8 zrsSh&%XE|?u!S`#wi^GwUte2caQgVZ?VjBl1k2>%pw!>J9Nn6lISe#vOR;c|ZATUo_|?L9|g4GsGW)@F^}R@|sn`5P#dypml~qe8Gb@w~ww zJv#XGP!+X(`7SfdrvK9BBIQ}&Rs1=XoGikrtAhGVQO1uS5WBtQdU0+JO5tUcMzc^r8`gO*C1v_+t%;b=L+IHrx~p70 zDjH-?6$k}f6zkD^8QCH^jY@wcKa;CSwglyk1Bzm`#RqyRc!V^sq2CrD6+t)=QO#vi z!d(6k>(Y5s8Zs~kKLae2K1f)D zj^-OVJLu3ccT6wx%gW2yp`C!y7ni&`NVY!O0*t}mbzb+A@4N4-$*uhS*=kUm%buLF zbUoG~k~~8c!{7b=_@)f8u*NgP{$c#Htvk^49^_KZR#J$OmD{#TRJfTqZ*@mkXB;K# z>MuRnhfCnO?93!Z@(L6&iQc;9^VEJWE`-JZUq>}kj$L<_KRJ1V_r$47a|i~V+kfaN z9(~c%)>e&gbZM}8n5vjq61jePp_Bh>1*O^?%LGrLBnQZwT!Hs4jiP(%=GJFT zYp{`#;LNx-IH^~Kv8ZWaigLzE8asTJPW9YlHNz#E+cO-qf-mR3`Vr?^6c3$C{W)(6 zJ9l16+6R9omAmzyptx;L627M7V`a5wS5aj{l)cb1Rm3@Q85~8@%E6laLOU{2+JcF5 z(ZE2nZ(u1Wg~zb5@RnLjRvRkcqM5CdvNFu+YL0qBbN|5|Bt{TvBey@|tV}Ys0ly*z)BEy-6%_GMt*|ZJB z6ujtX=XUI;bi6N9)`o}qB}7NKdGZK9Mco`iktW?9E;VW@x$~&ayc z`=a86gKCi|>V-L5g{4max3!KwC1ueJ_JM`>$}2R4bqIhbj#e2uK3|*` zTLsF>%DA6@A_g8J&FSf>2d0WYnH+Jwo7g4iqt@Fa9v`1fxMzb?#Sq8$ndGm+g z6x=CVvnwmfRhjPa9h8Ps;r!Ew!AU5tZVom6ZKNU6U2BjL$52Z!Kz$=K1+-;9%z!na?Y-g7W=ZURpM6RjB(zf1ABvqJn zn8fC;g7EbW4?jk=u~Brue(=z4`EpBBWHe_aBsP{>NlC@|N>X5=-8VJl-QVA(@@3Vp zcbLk`lAhQ-dqBy`$A???-Su4L^z@iwaNRw#lnqN)MSvvoFzt1JJe*qCgkMFXG&&Zg z(Dd{iTWQLqJXZ`Hsm)5?XOov24_C{M-4 zhI~3W+JkzdZG;|q3tMCxHq9Py9f!)IQcyz&@M>2Nos3N9xv7S<@{1QQlG0nf;v0FT zyrn72@NTh|XiclI1%#K{?Bx!=e?X}-L1MO-8&wxkF3FpI__gKzgTX=?acm$oNyPj4 z+pu-%zC)gflb{dQHrOdpHrvf5$!P15pVWfa9=9hui&c5Kg%3kxp2E0{lyzptFM-FO z3HunQM4N>{gc4*0O1%oQ8sD0@{CFp^!ovrtO1pN}8Kb7neofr*xp|K@H+N@4)$m*! zT{rdqlmiBaj#LqL*>heCX$!|n;~juw=P$9OUS>>E-}cRDX{p8jH%jXhE9{dL!UCoj zA3!*6d!S-jv)B)%)Qfxl72L}KGr$hH)7M-&y@jT!h{PZSZU!n^L-A>}vNok10~%Ux zVBpSe5^CjGDi*cEY`R3|VD+_Gk`U>hI2HNy{4OoN60PTDj>|}R!iAG0xJ9ZV zuYBO4#fG60HJtP;^=%#Bg|V{o-oK<_QyMWbh|vgkS+mv$TuGAVm%0c+X><%tpl1h8IlaDPn;ae`d#EBX^e-=u+raj3e33dBtmWv)b=|&!?Jlpnnpjr= z4@+7=$!@Mv_oSa2=>cv1WPR&R1$z#GiY)Hn`HOgZbqW16$C7&`hez-Jc19I-{qt-6 z+VaqVP43Nk7@oVo<_!$3d~6EJ0fuBzpl=eNp6Vb#scwNRFSjmz!>4twK+MYR>Q!Yj zc06=nXYBjh!?umDi0bPUg4;1bU&hY-VpC19X~| zwRkCcYim}Ln>P;tU;ho-%39ao-j6a z)7TiHKE@6mk%w)bBTt_(%IPN8>V~WicVr6LlkH_m+TcLwp($)E^59GOlI}{^Pb~v5qL`4Edh~QIaY~KIL|Ae^)FM5)aJb zGHROir=cwk`ZuMH(ZFR_=J#?SiB0=@zVYv$AEHE(#tYD9!U6w;$+?VQy$!rHSP$k! z-oqz=HNE7M*qu;bm8(BQ)z2`v%@7tj?iKOa+V>-0?qqy-6+JC75?XgiPEK-Y^@vVk z1P`as)WZlEpyB3{UKAP|Z^h<07@aqDx<7DK%F1R#ldvIi-oPgd?(c=v%bmx8E3=%U?Z1B*oFDDzo>#jZG5e2K*Jv(}>9J|R_7Kw0Ab6dQ#?&_7PZ_SfYh$LwBw{!H{@^Wi<-ur#3XZl1} zPFYaMaeQ`1IkiM^XGNwg@Qo7N?sOR$?bduHErz6#|Manx@-ML!1-+%mwf%zmF;w}kJR(7__*{`SgG{VFP zi>xya;l8br-MXCCvSr1xIjZ(XZh2+Bo>I7&W^+LNv(5t|8J-m z8t}fvXd5bxvB{16S9{miuC5p_2-smB?<%BuH)NWU0oTX7_YPG1`=7`S>(oSqv7G%GI2Z7 zWOsMC+^K$!<8OJpZJ-uyf2V(axs`+J z?~}uPCR!}4%IqmiPtW5Fo&a$Rm4t+n#qLUzW5XL%N@Dzfc>G*+aFdYgZ{uV_G4tBn zX|zg7Z?dS#y14MbFoWUEBZ!e#fqG8W#N0x~iGqr~ZDM0XtFGarEQ4r<*6w1P_L?Xb zmRen1IG-T$l(e$4``0&}DNPOOFUWd+pAU=e>4G$Anc96*BeA?>K$fdW6irUnjOQxV zX|Nd2P$*7HLEYX?dTQ8_F|T~~NAsIorr^JfJV$m6C314|>gwu}%O(cwG!Zvu7%P+> zc2n4~+uL8q(XDBWW}`LQ=jr_Ii#^VVY%YPi=@hO8mEYK?7JOs^ZitTHCtYez&Bf~4 zSlhH>TdGYSc7uAXs4SIkK9Uv|?s`uRC@%;d9A=K%_yv(f+VDdjP8Z(wq3Qak^@72} z+k5H<>Lp`|L+JKmo7bDv)Cj<&y{~6$q_$9z!^E6U?4P>@2@{?oAVw;_qz}loNT}w< zv3Gc35?4C<=~21|l~_v3I(R4`*3KtwIj~s8s?Kt-s5O_N?8WLV`WUi3E95R79{b1p z_w@tEzvN?_*ilPl@P_;Tp1g6}_f$hB@Da90GJdQfAvv2JWWb>S=sHl{5NXw#kbYC7|5z`Zu8{52k|6cIdiGZxP zuz!Ai)8?u%QWOo%@YKU4&#+}ssmx7Dxgc&*QBhh2pDeMhO}h~$u*k*T&3)FC1;7_c zJ^4<4m4P+Uc}j)R-gTwcW^ev%D^$;0cyYAq7D0hlZW18&gqHno0{Zh+Ow30(le}}P ztE~+I{STzQ4+fK%vsYK=X1lz314ep_&#fn-quF+$X%wPq`V+Zuo|&KdICNKq79T$; zB0Y{qkrTVN&SuC*9<$n(jCON%i#4pm0q=PGPWMnW-z@>Ql!a-{f@xwnP{d9a;dw+z zIS19MEc-niatR2~K_AVDg}o|)NqHQOMCDJq=!odVOUPJJg1Wk-0B%<}iJ&xBN=cDU zCqtXS6B)E#ZCbd?v5l+qmmB{I**CMQ*3 z_Km->p+ov}U%jWTg7X$RHKonz2j!y;_h;QJJvxbvPV^1&j}&=Al9MG`JrZ+$y+-jb z$&yivAhhh7HgvM&=-?0w@Tzx*cPPwHtY>3T^D9lZ6a75}IpYh9;0!paRmO5~iu`+a zHXd!M9k}*vXQG_aBlh&@-N&oTRDzav+BkY48J|{H1qhp;`5G3k)tJ~+Z5PKdUb|DM zIGuC%&Kl1%^Py@lCty-*90a6tB{|scm~_7_)XIJS>{$rB%sx(I0|UWKULT+R2;<`~ zR6lfd1T>${&4bOi_5Nocam+6Ll& z2}x3RADM#dr}Ydvk13{P)PMlS;Ssl|c6Q-0_&1@&I8@r#cRW8{fVCI!ok))z6GW~( zphw1HR?9k@c4%p7c@-H6pj`>wKR04(HqD;qiEC()ZvUF$v$AGcjJ(BleWVlVk-($iRtZs_PvB#bR})Q4UC-Dj(Inu~MX|C)~K8Srp6#&Tqf;`LHT zDc+e=*Fhj_?HYy>V_^bMQe#pYc z$!BF06*Yv#Ek*)MCf8I|!go@RH29yN=;7*$%=veSMXGjXBKsvOqG>re7SD?~J#~+g z=z3GLdHaoqj5p*`93Cc(kO(=!A+31f;=)EhrJ%sFHfzTgzjWxoK30jh)IGe z-=7CMq>9vIjQi-}1c{Z>{{ zkp(~fXpTg5NC;{@;1A$j-T&*`huhOf?EXM&yw(Ro+p^hnk7{^ilR0;*&$HuRaJ{Hy-My8XSy@ zGo<7W%6S57W^hgZx1u^e3{{i1$w_r{n$4qps)sx5G8$a#>KW)+qH@6w_8k5thre>y zeV;5N4}7&+;vv;`uiA2i3c5GM(8mm8jdFHz37&DQM>nan1VVBaH-OXmot9`o;P)Pe z`!0V^9oi52s67HkzSLR0$;$dq-3SvnZ)keJavOf*j=UL&V8#Rp`!cA^&Cfr6Zsddn zD|h(%80xpU#_`sBqjfkspQ4?7elt|c1>=cUAz$CAE>6xD(ZarhNaS%iHOT|zo?BcR z1s{*y8Mxwd)T43-W=?tqTJ2-{UbiZ->(U7t>BtWKE-iI;k5ZA3ebnYzw4(Tg`c0XG zA#6YpKc&6x%VE@5u4i_WiYf{UuyWH5Dn6^xmxXbD_GV@bP(?m{ymkXd{?hSu64mDY zgtBsSrTol&8SL8H>&1hg9<^4sXQilBniM=cxVnh?Va^WYL#7X3b4_j^73JPZIuIzD*DHMJXTJOva-UG66dhwruZe*nx~Y*csRqL+bf) zJoi(&mpXATFLk%(8*nR(qS-BY@d?=O85$~Gab0wEv0hHI>|_~5laq22P-7amFoF~o zhnM#*sM5MeD{*sjbg^+tLlP4|v&tm0Mj@tuhoZmfT;n@BK7LtK!_(@u9|yILp|a@- zrKtOs8^KRlG_RdMmSZ`wiiyk;Q**EKUtRNmVTb)(XEo+VKmHfstE&fV{bMH$F*R1& zx)@2xINryf5JYqotC#+0#$Apf?c!+P*A?HSvdGBBEMXOU z=H5Q!fC@+b{8{JMTBVGxF68^lfBMAzp*I@Y?4=&QF)}pK=z!zrPv6t??Euf$Pt=nm z#F#6rs;bJc^GPULQCb=W=yt!I9jw7GmhK9;fZ&%%Kv9)iNaJ2p3?WQ*WoIV}p9)4vmwN2Za!=F^PA4RgJh!qs`s)5#a;&PeMORM??E}aG zv53&WucORW;WfKF4DtOP^wk*U#S7HKBMef~+}X+OQZ_S3uJ>P!UluW$S;!f%`TCx> z854e5XM~QVGE;JAng#5YB*t9sYx3lz*4I`KJVHW3Zb3o4t8Rf3o=rVnjOP|OpzR8oDrRbap^d6M#P0n<_crS* z-r${bk-ECJSC%7pZSj(*#Oncs^X&VlH_dLFgkXRmrl*g85_mxdA~p~{6N3x^U0q#0 z857*ja3CpuKRHPfP0s1F!N3N{ROJ+oo_~Liba4}Gd3ktV{47suTx;3p^3Qo<;>IUb zEVWQydbP{WZaq-goVHU$C!Q->3TH0F#ZMD<@xWg}QJ(kMw{~UUpt84Q1;mA6I6QTl z2-)E-uhtey z%|aTl1uk&uiJ{?ncII9FxCRwOH)jA(n*a?sX5cbh*y}cOSXkKSdYhZWWL2*N?*Ih! z+G+uMcFt?XEWu?<49}va^`raMmXos<-JDU-6iNtW>NX|3+%x2T&yFu+cJ5|B4b z4#8%8L(6X$9$SaV=G)8h28cT#6jh6|>!N1wa2jdd4%8st%b7VQDKktk0f6l__yrT6 zA}H|c@3Jt&zr#~~J=w_5M+Ist;kBq6@?^S4M}MYwa!E+g?sxv>l8>S2$?m2!4^$*( zef4I5wZz2}$+_*J`Mi`)0`=!|vDwa{#m;??eL9TC&~q<7io(T3B5<#JJ69Zt#g=d3m*R zklcu2Yie3wH#DEI)GcsC-#+kW2_Hy3Hu7ElX>v15N*$|r<2!61nx_K1`LOU{a zAqF2e3oPb73JSKiyL+m^Q%BRe7ulFtN}8IQpskK5EoD1D-VOy#G4<`+x5tc~FZ96$ zb$KcY{f?@WeMl*h&_9jh>7$C)!Tq$Z>+C`HZ5K~gmeuK9d7(v~@9!;!NeEVq+#ja2 zt$eKY09sOLVq=g1qiocfj_HYXfh87lx>FAJG>&@u!Qe9w$pr zh|!_GQYn(*?Mv(A<<2bYtpJ=`Tl*#QqbC3Faht@WbbQ+5^fOS7xxifc@MwE%VW+1P+N6|qn2gNt#xx;uNri%{wqr1Vpm$8=C&V%8Uo4o010qL4Cx z*XTqL9I3U7o&McbU0U7i-(|(ZQPJ4UpVeY2vTR_x^HVmQu38> z2lf-T+Apby)%YCeO8xN@zL+VYW{i%Cx{e=GN#~X0+yovGMS;C098__zbFVi8uQ>>$ z@`7N&y+c4wq854XZ4pQ^1fiB9FXgLPKUKvC2iMv>bK!w#lz6bGWd!WY$Vl%m=_vH! zv7Hxbq7}iq{Nr;C8VH#;q$7FyOc@?N983@v9tk{w0&&AQp1w3H zY*2vQi#tcK^0}_#T4co0>0+u03X%!~7jh(`L&8Gm^Artja5`VG%~Z*2?@cwsl)oqX zxZ=LQk?U%X)}?J{dFHUz3{EGF&K@4*1*Rrx^s%u;;(ko!$Q%8xrdF>4aRLJU_4U(R z)eQ;3!MxaB#I5QC-0&G{bs7co4DX|o!C-&RDuj@M5b47Kg; zC+5ZO>yM}rP0yS< zG;-$ND<2vudjHG+@774*iEVeEJfOUc@aZ@h7=r3l1=y$zJAcy=(-P2#qW_qevl=mY zJigzcPQMe@i?K2vjmFeRVIHW=m}gP&^uv~xo_s8KlVipE%L{qH6|uo;;Q$f0DcdwO z&5epZpVN31JA6=@oU~EAm2fS##l^QiC5>x{>c6&0l_yGSMqx6K*_OO>r_8~23W-s7MnS#_ajx(AG8rQIiSr}VhB1GnnZN? zP8~7};mi=W@5aJSQ$i26O*Rck=j!bpq&0(HkytkkP04tRl{#+q^b7LTN?v|+QICA( z0Lc>zB_-6$1EQUhCAbasfQ|it=CDd7pi$e{*axEqsv`y7J_@_%FfkpvclRaL6HCiU zt*M^S`swGE@@-p;j3p)Me+e`l=9*o)(|EeW@O03~sqyT;JV3F8=M;O?0h8+OVAmm# zP3;$3$>yq_K%5%U+d&GPkRb4&mz|r#%eM_rZJAL9Uj*)Zr>_W-o7>LIe~xTK)Nb%& zV7l@&%RcZ=g)qx}#xipymBQs@*ofX6gZkL(C&Kr)76bHjv+HK_(8$EGFkHr;TVmqV;R8J8b+)QO%W?qP z>MCp7bTN^|_vX{xUM)5a!**|;_V)Jch}WLMK_wIOXE8j;P4wWX4DhXS{r-tEFaVUp zYUey&>!??`xdZPXOx>BKk;#33W>8mx{crqsnbrBJk?l8Pk_Y{zkSv=Sd`qTCdK)ZZ zuOQ-#0p8a%rSghWNh{EnU0%$~BOpvesfqhZ>&t8fI1E5=^Tdot1_;a59=5 zSq_5C4ntT>Tj3Wh-zl7#j&<_X)Q~1q_E*#`JV3~(NsDhNj+Slc`?tJp&7BlX45eH5 zP0Npbu&}VieU7ogKcv3cm)%Th9#fhq`yf5x_i{1nCPc;o;x+yf#2&S*H*To@9ydip zV-MdS56&?73A3N|_7~HZ46L6Jbablx8TPsGscdX)GlBQHxcb1w!VO44C^F>t(BLxn zUB(5YtgK`BowITFTRhiD1e4qL_);7#ATfhsvhH}Jxrm9|Png@C)p?tQ(*#*aVYbjX z`|Gz*cdpE_uWgxfYT#yzT@q9_peZ02rGN`Pg)1*V7`GA@mL&J3F*ZXWBU77TtUI{= zc$zd6HS*=g&u=I(^jBc1TYCScj_Yhcu+&QX5jN+@mjyQzZ&h|OH?Q4U0xTlBk04f< z5uk&oUd3W#!~N&i*SDuXyTU~+gt%i7+r_r2Q4xiHBqixM51*X($qerI4W$}iA+n%3 zdp=^S`Fbxh_L6#O5g0DO8E!3y zagK}KCtzPf^i^ZYqp3SH_%fhxvYCQcy3{E-@g_8kO@3eecGr8Nn~YQ_6JfVVx;{K1 zK7r>3Bs@DE@P2RV{^5boO&i3=N6^#n^dBGeyFYSL!T&X*UvEEGghxxc`fY-r=&kNQ z!dCY@L9{5oKO4h&1y-#dXgPxv5iK1l-a7(o|zfC0tGy59F&+?0g1^zD>G@VUyV-cLy54idZ+-v z9AiaBrvBY{uUw$7zCh1+MtE3G`O(k@Q~qsAb+f!hxVWr8uIob_Z4AK4fD$PaTGC>n zZLGq>SMZ032K#HfB4snoB;5XhzJ{qSM`9bB%Kv|x-6=XB9|V}Q*W0BMXlrZRFFS^S z*aBJl5DS+AE(%jSQl7YE#dk+X)avIC1KbSHedJ;om_WHbb_(gc=n0cxajo&eMjdZ$ zcm=>pTG!H2C}&Wg1SrZ#dkZ(*ww{s?OwGBBg8ClqtU#d~>=>})5J_oNu?Gg?X0*4L zJT|@s>Nxlq2{dzaQF10m)Mk(9TIGWSovj~h4GTMt*+KJ$-8%E`j6_7Ql5k?tV!OVRjhi|KG1D4X)sX5l#2;c6a2> z>205bXJ+e4wzHq7>r^l?`2&T7cFwcY6|dW7oKpsm5fC-`xY4dyqQBVrzl%`%Chzum z3!e!{e1_`XSS-?;Qz9v-P;+wJ(?xE68bxxgY;U{2s(Ew6;yVal=+shDGVBKaD>`^i zL*OZ#m`IY*e4gHUMR&H%GRWKUk9WM$VQPdIg_NI-S5;F}hc)mQ1Lqj0k^JUxOS8sn zN;~S}Y~_`JeIh_=ennb5+~i+)L4Zp3ZoO4cmHF1ztZ6G&I{S5g&eTThiC5 zSpWX8V5s%SPjP*)96|h7BkyDy)_d19sM4^)nqwaOX_nmkNVUvD>qpw(4eA|<=>jZ^ zbdVlqEOyzEpyP&+ZvIS8MwzQbi6GSUbOarEFK+jIMy)2Tm{u3Fk*@W#yLk<|l$X!osBW$T8FcFL3}AO?nGl8o17` zTFYbW*VQV;6t}PM&Je%9=pO1q^Nq*VLAag1r|98CSTwXELxl|3)2?~u3azggH8i9p zGGk)p5IcY6{&yp7aPHihzj2F>(6~#@0151uzn-Fm&p&fBu)b=2$;Tv#?6EPo?lC*QWJSB2^MBiC^m=8m2=qckhu6?1E~rV6Hs49Qq4V7|c2%$x=R;nyvB z0Oem3e4zF8XQ=A$bp{lK;h9esDqb76?d|P}$;iT>(=SgY0!z~D*r zUKJv?v%TPJJJSC8l?PvYp}tJs2C`hLYir9cy+Dw0cyv_bb7DK3C2})C)Tcc)Ir-_I z!*wWJ-WMt+A`lQlyS3aUrB`VjIVSnH{Ehq=TpF7=*a2PdHjoJWrg#qSeU|Cb0u7)V zjK}{rCvE2Gc2#D`B!r}<-inHf(l9nQ-ki%4c0rYslcV4^lRoj_O~>~?Kkfl9mFZ__ zgvanWJU5djxVJe{z%ivjj}lLZ!e^;b(5IRil+UOdujOT}D__dhA5R|v15OA_*lE8w zTpvONH99QJwl2-gkb#az&c=oyvjCq;9J%+jRap^kb?*2Vd(mBXKO! zFo`fP|7lCxm!kw+eu40Ie>M}AY zz|4us5mtH(bX`(87_n#+NwbNG{cY*eTR8aYo+>#OzlqHBcAOvk_>wRq_7(TXo>139 zq~S`eP|UZj$KiAmhc`&H5H}OMmc)zjK>dpNG<|weFR0P#|5xzZ%D1v&rjo`jW4>k$ z;y#t*AGz88@BZrlKD-q=Atd-zNwE<`3yf?7q>74`ucFaf-AmtZO(a{-C{2Ii&nO_(x%3VbM^lgn@xUjE({`7WP=M4Wc8F zNOpfBhhDcSlXG#YoJ_~-t5&Kb+vLc5ym#+Ig^{!|&FeJlpzWz5XOE&aEk;I!Nv4lX zun*D4saEfr`g&5p1w4HE^ftuUqqw;pb+vcp3vL5fzM-Gh=XFhWoXs#E z+%|AFR!u>u5a@Hw`b?n#mvBfu(Y%UO43Upwj**u zETO2V2qcBTiHDZgpB!Gp1NjfcPY8zk zVk0C3!Zfj;C=w<;E=}fL@5@b-Z3;pTNAePDRK` z>*mmzHv>EFuU`mQ_J<0eDOS%;mPxZQF|9l8*Fm6Japg^P6u9UgAZpL_V>NuO8fJB3 z1Pcp;C{-FShHyYuhCY`G?!U7;#3ZNy@$tAyQ4)|aJeer_ZzVRLANz#8H5tYQCnXRU zNoc$Cul!JZ8pM|84kvI?TyhX5V-5z!mI##!VI!cp;E2b&CWQpYnmSTkCX7#D9B8OldMimh563 z?euN)Jnl&FcStZS3Gj zbZqS0AuRf99ezy>NSL3ZjhB%TlgbWxadEi^s($<5Kcq6Zln-0FeOp=v#rY>q1Jxr{ z3_&N%@(Q-xojD?BH#81T>ZWzXf7>$@^R6wt);`CtY%@-Opj@7z0i{Qp8Ew9)SnV4M zN>IgK^s-F<|1M6wTAgJO(6Jx^l5ktX`!#M)>V2%JXcR0gTZQosv6UU%dh5JPm;Y5A zJQd7|6DaKt3#gE`3&WK3bZJ*!=kM6uPIL_aPi@!!Pi6Y9UsO^_4z-LCjS>;d8dIS{ zDfAV}VUcoNO+$+0kV6bj<(#iwlcs4!6qQqyk(EQrp~=+JcE~8luvj^UEa!ba%xC`t z`@8$8K34C$p4am}_jTX*bzfJ^li0zlmhMFsj$p!L*WY;iZ&TGZ`G2G0Im@EGFO6IXN=KqI4yU%vQp z``wEdmdzAhTqSF~eeuy`DJ=eG;u;p=0FdTC-zq`MQF>id6Xd05n#`;Atux=XqvbBwH)KY@SOO1N!*GYvcwZrX^{K(mdB3UY^5#PC1WfBAA(`Lf>gt+3 zO-xRP+slW?$M>V__Xzqv;_-sX-N>XnIy#7|51}%C-tHLEk8rw7LLwnU(>Zk9Hha3S zx%gyrY3NR3*D08qQqs|pwN5{{$HT*8e1J1`OWq*tJUf9M87Yd+MdnaOW&&!c(^_s7 z%l-PBBynp}Y)HI%b+mrg&nFD4sK(&OJJ?wI4YjU^tm1Apb@gOU@@uYnqHPVAOG9%& z?aH@1EOwn~4}TgodV-;)b%=QOZrlB2nVE&fI_OMQg7ah@7Z)cZDlRux9~v;wtQ;H| z7}a)uG(HfdLLUe*rWO_!-bhS*ClK)pM~^S&@rgH5pFVx61ic{|%lfsquWyT{!;||{ z`W(H&^*aNioWmyXK~>(1p`l@p?qf+)k?&7FP|$Cf&}ZQp zP*8Alb4y)j(t2hkO;hHXU!M}^*|S(Orc&xeQ+$RdS`4(XIst7e@J;!syY9#wN{bz} zf}ZIEfD02JfGfA)U=F#dPit|I+u_5Bsxh3|Tg50ZXIF3CxY6i5k9}^Rx3~Am-0XC! zDu0lbbp86~;NajG-=4oDksel}a|i#~Qa2=Hm0%e0r~5i*Al0%DP0NvziB@R|d7TY8 z4h8=j8y%IVZM8r2IgB6ZbvDK3C2U$ZOifS65{_2sAY?k%mJ}CPd?@tx^m5_e!9JZD zLYq5B`w;&_VXk2C*-#_L3*Nw;Ai_Ec1U7d9M;`Vm&I=-C*Q`0T+uM4cYf=6p7G6zD3IP9?$7wzjqn@1Z$l?|1GT4UpO)l&$%e zuBP@cc|AY(?9TwFTc!kpC@`H01~d4+SCd*#5(DnNMnzZ!*dA7Evt82r~o!`Rx{J#GzmB=HL1;7a0u$i$$3 zYYv@z;1UR)?Rc{T`|c%Cyp0`6IJk^dPaBB2zH%^o}6xw)AjXmk}c`r{o^ zrPHe+A0u>ssOZlKEAb?{voRDNJRMb%YFt^YU(liVbhn{jcGI^kJzT`$K>4Kj?Y2{= z17-w1O@IGgj%Fgghk4{kbbkK#5II|i{9#Y7Q%O4rxj2YGJDqvJdytu_PW4ud`b`YB z5RQ3jT3Ry4{Jr8cNCpH31%0QaB#hhS<|Ng22eI}1R}h~dNb};+l9xFSZrm9bY+S`~WpQRU%m1 z+d<}My~;A|0}5;OxX*VPKLFI-b#~JF{ZV`ScIfZO$-awCyTQFWYCCf@sVAhriLq(Z zCKvdoQDZDG%s5xT0)nE@)Ov~iEN(c#V_I2VAfCb)Khe_G4&etlvXkTE#aqvhn)~(E z3SHQ+0ft;{VbdDK>&Vhz*5)VPQVLr~$G2ydrc-eglxxcYjSVoH0krt3qj#BhbSzQ0wuQHe^5fTw#nR|-qAQ8~d2TeBQk^b!t6U)~D@)b3OcsDOM$QHQ z7W8a|RI9UcijdO!H4l6!WOz1iT_P&Vg8cMNg)7Z77${TSvSkm{JxH?GSC_$p!}Lvs z>#xZ_VR7yv81A^K5aWREoj4YnId={eW*je%0tOroChI%?veBBY8Uw0P6=AgD6rc>z z_N&ErB`4_el`HFpmp7=u_6TDtxz$i7BYyNOIADWP z(Kxmy`2&utkv~CkE zOi4*;9B9r;Nui*Wd+FXiWqf@b$E14_z98M~tG=?Hfe1k)=b#Q`3IpK2BB%(7WHPf~ zK)&h{_K6JmB2S;nQb-%)@YVXpW^VrgrA8YjvlFZfz1{SpW2?=~YWN$(QaHLeB#)ms z!5{m0o9sR0JdG>n{DQ)q&yOtKyLT@kzFoX{F$Kzff{|)P#0OpYJV}QSzV&W;RZ0-S_sAS8YJW=0ir~)|D$)CjS2WbiG_gj`d%>KPR0^ z&wm4C0_1*EwozMML!%Nvob;(NPi;d}73LTes-S9bsP=1TbAhM(-}%aStvuMiA}I~r zI&_88aFXPf&FNjZaAA#%j1BwrZ(6Rxn=Nl=ol9U}(B#&nX$2T=Uh}P9kF>x#2aS&L^UO?5!y_Vua0K`VJK@#c7Z#=um1XD97W6gG zeCo-tZTcg-@bb%33g_te@pzgI{;-wbaZuvY6m8Tp2TwN z>ZH#W$>X_3K7Opt@#_<&PKJ1$jkglVud@ngtt2=R9(Cy*2;u~H87C;r*8iUOhx(Q+ z<)ApN4xeM;oVT4f>HS!wot2d}3^Bh>lvYe?u4_oj%g0^3xa5|8s2qf!A8(GFE7YH# z@$GLbQ$!rz0|tP4V$$W3|zB3 z%Vho3goFgyZ@$@*e)q2XnR;&ePu$z%Z#7g@GN!^fI)&XeNwG$kS4qM(UX?(SUzUkW zmCb%Vng@Pb<1DtlI@T0}=ivsc)C#~TPxp$42h7Yu9(LSS<+rjXa(|vR>jzBf)6=_@~% zBxvdf0AX~Z&r_M?6ntQ8VqyV~8k?BJF0`BM-uIlt;o(yeB}u?c@6Zt4;+D?gU8oSM;qH`V?^tCjCE_8wG<$B2J(>NP0i)mZ`d-K$6yU8klSCU0oOJ zGAxOU-%W+ptb>*$Gph^I)zy9V>eX`-#n2_{>gpi=c?6rrF?N$w?;x+Tva?tIuezqND=?f4TMG#Z_0~U-ChSLm+vnJL02`V9ZRqJ1k2fAA?+9olj8jcoh(W4uY-%uNt3olzOABEQ*@kW@M6MT{|y=N6CubV&h8PiMHAaUBHfm3Ml$@~f<-DlzQS!gJO6ihCUrg&~? zE0-%l!X1!}^!?QDZlod1s=KenDf zF3WO=Mm6QeTg+q|VWM%7Gd5p80Ox5$`H-F=Jo2R!YPWl#XU#9>UM*kCI#@<3>2*i& z8TWUoka!%c%kV-*WqkJR_vAp+(bH1`Elyck8RbE|K$+v)5Zoy0flUm?_KKUzwX6Ju zNw(}~g?NN?qc+V%Vr-~w{y_~or^E2@B}U;`dv|v?<_sRpO+9?5cB<*ooyLh%xF00Z z;{c0^KC0#HUjV2yeR|c6fQ~q9MHM8c?ZC~w$b;F1)6>(09-Wt$XPz_dmRoE(1$(Qg=U+iATlq4C!wmU3bsWJ1B{(hZKdm_qL-i`y$AZO*smfRH>UA( zeSLjjf=!nfIO0Y=F*!Mjiur}Y!W{s}-+BheF*N=uSAZ%Y28_QS|9QLD$EfGe4b3GY z8R?gv8b>o4H{m#KoI3a8kIId?&Jx<%+K6!O?l!1+SDSgGa@XNJKSjfDlPI8(A}uPL zwUWhRnM))v((eWK#p6Ombr-0Rj3NOZ)WR;8Z1&vJsfX#2*voGJTchzL&A|U- dT_<5)B4@JBV_$ahj}-nK*l)2fXRphJ{{esuPv`&u literal 0 HcmV?d00001 diff --git a/doc/source/pages/installation.rst b/doc/source/pages/installation.rst index ce1551ce..18e50880 100644 --- a/doc/source/pages/installation.rst +++ b/doc/source/pages/installation.rst @@ -20,13 +20,19 @@ Basic installation (on a local machine) source activate -4. Install required conda packages +4. Install torch using the torch instructions. + +.. code-block:: bash + + # Command found on the torch website: https://pytorch.org/get-started/locally/ + +5. Install required conda packages .. code-block:: bash - conda install pip pandas scipy + conda install numba nutpie -c conda-forge -5. Install PCNtoolkit (plus dependencies) +6. Install PCNtoolkit (plus dependencies) .. code-block:: bash @@ -60,7 +66,8 @@ Alternative installation (on a shared resource) .. code-block:: bash - conda install -y pandas scipy + # Command found on the torch website: https://pytorch.org/get-started/locally/ + conda install numba nutpie -c conda-forge 5. Install pip dependencies diff --git a/doc/source/pages/normative_modelling_walkthrough.rst b/doc/source/pages/normative_modelling_walkthrough.rst index f63ec8fa..61a297a7 100644 --- a/doc/source/pages/normative_modelling_walkthrough.rst +++ b/doc/source/pages/normative_modelling_walkthrough.rst @@ -1,6 +1,4 @@ -.. title:: GPR tutorial - -Gaussian Process Regression +**DEMO ON NORMATIVE MODELING** ============================== Created by @@ -10,14 +8,9 @@ Mariam Zabihi `@m_zabihi `__ Saige Rutherford `@being_saige `__ Thomas Wolfers `@ThomasWolfers `__ -\______________________________________________________________________________\_ - - -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/CPC_2020/normative_modelling_walkthrough.ipynb - +\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ -Background Story +**Background Story** -------------------- Morten and Ingrid are concerned about the health of their father, @@ -40,13 +33,116 @@ IQ, age as well as the same sex as Nordan. Do your best to get as far as you can. However, you do not need to feel bad if you cannot complete everything during the tutorial. -**Task 0:** Load data and install the pcntoolkit ------------------------------------------------- +**Task 0:** Load data and install PCNtoolkit +-------------------------------------------- .. code:: ipython3 - #install normative modeling - ! pip install pcntoolkit==0.26 + !pip install pcntoolkit + !pip install nutpie + + +.. parsed-literal:: + + Collecting https://github.com/amarquand/PCNtoolkit/archive/dev.zip + Downloading https://github.com/amarquand/PCNtoolkit/archive/dev.zip +  \ 64.9 MB 16.9 MB/s 0:00:05 + [?25h Installing build dependencies ... [?25l[?25hdone + Getting requirements to build wheel ... [?25l[?25hdone + Preparing metadata (pyproject.toml) ... [?25l[?25hdone + Collecting bspline<0.2.0,>=0.1.1 (from pcntoolkit==0.31.0) + Downloading bspline-0.1.1.tar.gz (84 kB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.2/84.2 kB 2.0 MB/s eta 0:00:00 + [?25h Preparing metadata (setup.py) ... [?25l[?25hdone + Collecting matplotlib<4.0.0,>=3.9.2 (from pcntoolkit==0.31.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) + Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2) + Requirement already satisfied: numpy<2.0,>=1.26 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.26.4) + Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0) + Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2) + Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1) + Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2) + Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.4.7) + Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (24.2) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (3.2.0) + Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (2.8.2) + Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5) + Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2) + Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0) + Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0) + Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0) + Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2) + Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5) + Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4) + Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0) + Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0) + Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.1) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1) + Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9) + Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3) + Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0) + Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1) + Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2) + Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.3/8.3 MB 37.7 MB/s eta 0:00:00 + [?25hBuilding wheels for collected packages: pcntoolkit, bspline + Building wheel for pcntoolkit (pyproject.toml) ... [?25l[?25hdone + Created wheel for pcntoolkit: filename=pcntoolkit-0.31.0-py3-none-any.whl size=114835 sha256=40635c10c24ccf2c319ee965aaf1038272cd5578f14d9cb3dd14598ddab31d00 + Stored in directory: /tmp/pip-ephem-wheel-cache-nl3hy35q/wheels/9e/c4/29/3bca3a5facf8ef69b8622461d8520d24a19d3745aefa093d1e + Building wheel for bspline (setup.py) ... [?25l[?25hdone + Created wheel for bspline: filename=bspline-0.1.1-py3-none-any.whl size=84482 sha256=1da013ad20b77d85515a6a2318eaf7cc4baaa7772eb1d26249f923ce8d779d7e + Stored in directory: /root/.cache/pip/wheels/3c/ab/0a/70927853a6d9166bc777922736063a6f99c43a327c802f9326 + Successfully built pcntoolkit bspline + Installing collected packages: bspline, matplotlib, pcntoolkit + Attempting uninstall: matplotlib + Found existing installation: matplotlib 3.8.0 + Uninstalling matplotlib-3.8.0: + Successfully uninstalled matplotlib-3.8.0 + Successfully installed bspline-0.1.1 matplotlib-3.9.2 pcntoolkit-0.31.0 + Collecting nutpie + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (5.4 kB) + Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (17.0.0) + Requirement already satisfied: pandas>=2.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2.2.2) + Requirement already satisfied: xarray>=2023.6.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2024.10.0) + Requirement already satisfied: arviz>=0.15.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (0.20.0) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (75.1.0) + Requirement already satisfied: matplotlib>=3.5 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (3.9.2) + Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.26.4) + Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.13.1) + Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (24.2) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.4.1) + Requirement already satisfied: typing-extensions>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (4.12.2) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (0.8.0) + Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2.8.2) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.15.0->nutpie) (3.12.1) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.4.7) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (3.2.0) + Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=2.0->nutpie) (1.16.0) + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 9.5 MB/s eta 0:00:00 + [?25hInstalling collected packages: nutpie + Successfully installed nutpie-0.13.2 **Option 1:** Connect your Google Drive account, and load data from @@ -77,24 +173,24 @@ them to Google Drive. !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv - + # code by S. Rutherford .. parsed-literal:: - --2022-02-17 15:03:58-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics.csv - Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.108.133, 185.199.111.133, ... - Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected. + --2024-11-19 12:28:31-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics.csv + Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... + Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 17484 (17K) [text/plain] Saving to: ‘camcan_demographics.csv’ - camcan_demographics 100%[===================>] 17.07K --.-KB/s in 0.001s + camcan_demographics 100%[===================>] 17.07K --.-KB/s in 0.003s - 2022-02-17 15:03:58 (12.9 MB/s) - ‘camcan_demographics.csv’ saved [17484/17484] + 2024-11-19 12:28:31 (5.14 MB/s) - ‘camcan_demographics.csv’ saved [17484/17484] - --2022-02-17 15:03:58-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv + --2024-11-19 12:28:31-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK @@ -103,20 +199,20 @@ them to Google Drive. camcan_demographics 100%[===================>] 332 --.-KB/s in 0s - 2022-02-17 15:03:58 (15.5 MB/s) - ‘camcan_demographics_nordan.csv’ saved [332/332] + 2024-11-19 12:28:32 (4.10 MB/s) - ‘camcan_demographics_nordan.csv’ saved [332/332] - --2022-02-17 15:03:58-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv - Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... - Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. + --2024-11-19 12:28:32-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv + Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ... + Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 188944 (185K) [text/plain] Saving to: ‘camcan_features.csv’ camcan_features.csv 100%[===================>] 184.52K --.-KB/s in 0.05s - 2022-02-17 15:03:58 (3.88 MB/s) - ‘camcan_features.csv’ saved [188944/188944] + 2024-11-19 12:28:33 (3.58 MB/s) - ‘camcan_features.csv’ saved [188944/188944] - --2022-02-17 15:03:58-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv + --2024-11-19 12:28:33-- https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK @@ -125,7 +221,7 @@ them to Google Drive. camcan_features_nor 100%[===================>] 1.66K --.-KB/s in 0s - 2022-02-17 15:03:59 (25.3 MB/s) - ‘camcan_features_nordan.csv’ saved [1695/1695] + 2024-11-19 12:28:33 (22.1 MB/s) - ‘camcan_features_nordan.csv’ saved [1695/1695] @@ -160,7 +256,7 @@ between those two files. print(norm_demographics) print(norm_features) - # find overlap in terms of participants between norm_sample_features and + # find overlap in terms of participants between norm_sample_features and # norm_sample_demographics norm_demographics_features = pd.concat([norm_demographics, norm_features], @@ -189,33 +285,182 @@ between those two files. CC723395 86 FEMALE 0 145 [707 rows x 4 columns] - left_Hippocampal_tail ... right_Whole_hippocampus - participants ... - CC110033 482.768229 ... 3531.764896 - CC110037 595.269259 ... 3835.426137 - CC110045 655.847194 ... 3681.494304 - CC110056 561.345626 ... 3461.373764 - CC110062 756.521166 ... 4782.407821 - ... ... ... ... - CC722542 467.896808 ... 3284.108783 - CC722651 406.326167 ... 3210.272905 - CC722891 393.430481 ... 2423.675065 - CC723197 475.929914 ... 3043.146264 - CC723395 444.301617 ... 2988.001288 + left_Hippocampal_tail left_subiculum left_CA1 \ + participants + CC110033 482.768229 419.948094 666.496024 + CC110037 595.269259 502.320315 698.157779 + CC110045 655.847194 476.433625 654.215689 + CC110056 561.345626 447.258970 611.114561 + CC110062 756.521166 521.034681 716.391590 + ... ... ... ... + CC722542 467.896808 440.794061 688.130914 + CC722651 406.326167 393.469843 613.794018 + CC722891 393.430481 303.049578 444.772656 + CC723197 475.929914 372.449778 525.739508 + CC723395 444.301617 330.688394 565.359058 + + left_hippocampal-fissure left_presubiculum left_parasubiculum \ + participants + CC110033 131.719049 285.535445 59.209377 + CC110037 156.304335 367.678385 60.817591 + CC110045 146.767569 346.347202 67.481121 + CC110056 126.615335 327.528926 70.901227 + CC110062 206.205818 384.356075 80.329689 + ... ... ... ... + CC722542 184.300085 306.287030 72.629722 + CC722651 224.292557 254.786917 50.006651 + CC722891 158.987352 202.213773 46.418129 + CC723197 172.558200 222.384434 40.304889 + CC723395 206.235576 197.417773 34.240227 + + left_molecular_layer_HP left_GC-ML-DG left_CA3 left_CA4 \ + participants + CC110033 583.239022 313.144932 223.022262 266.801434 + CC110037 619.053381 311.428298 192.949211 260.551999 + CC110045 622.037178 322.315065 204.756048 275.428880 + CC110056 597.467595 323.777115 233.160437 278.133998 + CC110062 666.590397 364.130988 253.917949 311.079938 + ... ... ... ... ... + CC722542 597.823380 322.236056 252.159707 275.293551 + CC722651 558.060369 322.176631 261.160474 282.029715 + CC722891 384.798819 204.562530 149.220194 184.259996 + CC723197 467.847632 262.950594 215.411133 232.938256 + CC723395 470.969863 269.963160 234.219152 241.325755 + + ... right_hippocampal-fissure right_presubiculum \ + participants ... + CC110033 ... 133.101613 263.829445 + CC110037 ... 148.099481 339.309772 + CC110045 ... 159.687619 324.398659 + CC110056 ... 123.262352 290.196432 + CC110062 ... 136.785201 406.323486 + ... ... ... ... + CC722542 ... 147.391931 273.150743 + CC722651 ... 185.053756 232.752897 + CC722891 ... 140.980648 211.807774 + CC723197 ... 213.080235 258.567312 + CC723395 ... 205.934342 210.039976 + + right_parasubiculum right_molecular_layer_HP right_GC-ML-DG \ + participants + CC110033 47.651798 586.026640 328.057551 + CC110037 59.693186 617.448302 312.116795 + CC110045 55.738550 609.208671 314.460832 + CC110056 67.410418 569.389816 310.290805 + CC110062 80.403248 767.955163 383.194510 + ... ... ... ... + CC722542 50.874375 572.634593 302.504826 + CC722651 44.493903 533.912687 308.141458 + CC722891 57.371362 387.195124 199.979009 + CC723197 50.846316 481.409074 267.190903 + CC723395 33.216529 493.194601 274.020748 + + right_CA3 right_CA4 right_fimbria right_HATA \ + participants + CC110033 283.392837 282.565685 87.127463 73.589184 + CC110037 212.605572 269.307660 99.657823 60.920924 + CC110045 237.869822 271.505300 69.436808 59.323542 + CC110056 218.809310 267.327199 60.505521 51.726283 + CC110062 268.227177 325.403040 92.215816 85.484454 + ... ... ... ... ... + CC722542 236.946562 261.352283 46.144212 43.966509 + CC722651 247.810543 267.203989 68.730322 59.699644 + CC722891 146.836915 187.083211 27.913196 38.629828 + CC723197 211.618157 244.176755 51.893458 65.474967 + CC723395 232.592060 240.980896 68.335159 62.081225 + + right_Whole_hippocampus + participants + CC110033 3531.764896 + CC110037 3835.426137 + CC110045 3681.494304 + CC110056 3461.373764 + CC110062 4782.407821 + ... ... + CC722542 3284.108783 + CC722651 3210.272905 + CC722891 2423.675065 + CC723197 3043.146264 + CC723395 2988.001288 [651 rows x 26 columns] - age sex_name sex ... right_fimbria right_HATA right_Whole_hippocampus - CC110033 24 MALE 1 ... 87.127463 73.589184 3531.764896 - CC110037 18 MALE 1 ... 99.657823 60.920924 3835.426137 - CC110045 24 FEMALE 0 ... 69.436808 59.323542 3681.494304 - CC110056 22 FEMALE 0 ... 60.505521 51.726283 3461.373764 - CC110062 20 MALE 1 ... 92.215816 85.484454 4782.407821 - ... ... ... ... ... ... ... ... - CC722542 79 MALE 1 ... 46.144212 43.966509 3284.108783 - CC722651 79 FEMALE 0 ... 68.730322 59.699644 3210.272905 - CC722891 84 FEMALE 0 ... 27.913196 38.629828 2423.675065 - CC723197 80 FEMALE 0 ... 51.893458 65.474967 3043.146264 - CC723395 86 FEMALE 0 ... 68.335159 62.081225 2988.001288 + age sex_name sex IQ_random left_Hippocampal_tail left_subiculum \ + CC110033 24 MALE 1 73 482.768229 419.948094 + CC110037 18 MALE 1 103 595.269259 502.320315 + CC110045 24 FEMALE 0 124 655.847194 476.433625 + CC110056 22 FEMALE 0 124 561.345626 447.258970 + CC110062 20 MALE 1 126 756.521166 521.034681 + ... ... ... ... ... ... ... + CC722542 79 MALE 1 116 467.896808 440.794061 + CC722651 79 FEMALE 0 128 406.326167 393.469843 + CC722891 84 FEMALE 0 129 393.430481 303.049578 + CC723197 80 FEMALE 0 96 475.929914 372.449778 + CC723395 86 FEMALE 0 145 444.301617 330.688394 + + left_CA1 left_hippocampal-fissure left_presubiculum \ + CC110033 666.496024 131.719049 285.535445 + CC110037 698.157779 156.304335 367.678385 + CC110045 654.215689 146.767569 346.347202 + CC110056 611.114561 126.615335 327.528926 + CC110062 716.391590 206.205818 384.356075 + ... ... ... ... + CC722542 688.130914 184.300085 306.287030 + CC722651 613.794018 224.292557 254.786917 + CC722891 444.772656 158.987352 202.213773 + CC723197 525.739508 172.558200 222.384434 + CC723395 565.359058 206.235576 197.417773 + + left_parasubiculum ... right_hippocampal-fissure \ + CC110033 59.209377 ... 133.101613 + CC110037 60.817591 ... 148.099481 + CC110045 67.481121 ... 159.687619 + CC110056 70.901227 ... 123.262352 + CC110062 80.329689 ... 136.785201 + ... ... ... ... + CC722542 72.629722 ... 147.391931 + CC722651 50.006651 ... 185.053756 + CC722891 46.418129 ... 140.980648 + CC723197 40.304889 ... 213.080235 + CC723395 34.240227 ... 205.934342 + + right_presubiculum right_parasubiculum right_molecular_layer_HP \ + CC110033 263.829445 47.651798 586.026640 + CC110037 339.309772 59.693186 617.448302 + CC110045 324.398659 55.738550 609.208671 + CC110056 290.196432 67.410418 569.389816 + CC110062 406.323486 80.403248 767.955163 + ... ... ... ... + CC722542 273.150743 50.874375 572.634593 + CC722651 232.752897 44.493903 533.912687 + CC722891 211.807774 57.371362 387.195124 + CC723197 258.567312 50.846316 481.409074 + CC723395 210.039976 33.216529 493.194601 + + right_GC-ML-DG right_CA3 right_CA4 right_fimbria right_HATA \ + CC110033 328.057551 283.392837 282.565685 87.127463 73.589184 + CC110037 312.116795 212.605572 269.307660 99.657823 60.920924 + CC110045 314.460832 237.869822 271.505300 69.436808 59.323542 + CC110056 310.290805 218.809310 267.327199 60.505521 51.726283 + CC110062 383.194510 268.227177 325.403040 92.215816 85.484454 + ... ... ... ... ... ... + CC722542 302.504826 236.946562 261.352283 46.144212 43.966509 + CC722651 308.141458 247.810543 267.203989 68.730322 59.699644 + CC722891 199.979009 146.836915 187.083211 27.913196 38.629828 + CC723197 267.190903 211.618157 244.176755 51.893458 65.474967 + CC723395 274.020748 232.592060 240.980896 68.335159 62.081225 + + right_Whole_hippocampus + CC110033 3531.764896 + CC110037 3835.426137 + CC110045 3681.494304 + CC110056 3461.373764 + CC110062 4782.407821 + ... ... + CC722542 3284.108783 + CC722651 3210.272905 + CC722891 2423.675065 + CC723197 3043.146264 + CC723395 2988.001288 [650 rows x 30 columns] @@ -252,22 +497,22 @@ putative biomarkers that are not restricted to brain imaging. # perpare covariate_normsample for sex and age covariate_normsample = norm_demographics_features[['sex', - 'age']] + 'age']] covariate_normsample.to_csv('covariate_normsample.txt', sep = ' ', - header = False, + header = False, index = False) # perpare features_normsample for relevant hyppocampal subfields - features_normsample = norm_demographics_features[['left_CA1', + features_normsample = norm_demographics_features[['left_CA1', 'left_CA3', 'right_CA1', 'right_CA3']] - features_normsample.to_csv('features_normsample.txt', - sep = ' ', - header = False, + features_normsample.to_csv('features_normsample.txt', + sep = ' ', + header = False, index = False) # code by T. Wolfers @@ -278,7 +523,7 @@ putative biomarkers that are not restricted to brain imaging. Once you have prepared and saved all the necessary files. Look at the pcntoolkit for running normative modeling. Select an appropritate method set up the toolkit and run your analyses using 2-fold cross validation -in the normsample. Change the output suffix from estimate to ’_2fold’. +in the normsample. Change the output suffix from estimate to ’\_2fold’. HINT: You primarily need the estimate function. @@ -296,7 +541,7 @@ you will have no doubt when it is correctly running. # run normative modeling using 2-fold cross-validation - pcn.normative.estimate(covfile = 'covariate_normsample.txt', + pcn.normative.estimate(covfile = 'covariate_normsample.txt', respfile = 'features_normsample.txt', cvfolds = 2, alg = 'gpr', @@ -307,55 +552,66 @@ you will have no doubt when it is correctly running. .. parsed-literal:: + inscaler: None + outscaler: None Processing data in features_normsample.txt Estimating model 1 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed - Warning: Estimation of posterior distribution failed + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Optimization terminated successfully. - Current function value: 1856.502251 - Iterations: 40 - Function evaluations: 99 - Gradient evaluations: 99 + Current function value: 1925.145213 + Iterations: 30 + Function evaluations: 75 + Gradient evaluations: 69 Estimating model 2 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed - Optimization terminated successfully. - Current function value: 1596.239263 - Iterations: 42 - Function evaluations: 93 - Gradient evaluations: 93 - Estimating model 3 of 4 - Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed - Optimization terminated successfully. - Current function value: 1862.316698 - Iterations: 47 - Function evaluations: 104 - Gradient evaluations: 104 - Estimating model 4 of 4 - Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Optimization terminated successfully. - Current function value: 1587.950935 - Iterations: 30 - Function evaluations: 64 - Gradient evaluations: 64 - Estimating model 1 of 4 + Current function value: 1627.864114 + Iterations: 41 + Function evaluations: 102 + Gradient evaluations: 102 + Estimating model 3 of 4 + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Optimization terminated successfully. - Current function value: 1916.461484 - Iterations: 44 - Function evaluations: 94 - Gradient evaluations: 87 - Estimating model 2 of 4 + Current function value: 1922.205071 + Iterations: 30 + Function evaluations: 73 + Gradient evaluations: 67 + Estimating model 4 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -365,36 +621,48 @@ you will have no doubt when it is correctly running. Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Optimization terminated successfully. - Current function value: 1611.661888 - Iterations: 34 - Function evaluations: 85 - Gradient evaluations: 85 - Estimating model 3 of 4 - Warning: Estimation of posterior distribution failed + Current function value: 1621.445961 + Iterations: 78 + Function evaluations: 181 + Gradient evaluations: 181 + Estimating model 1 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Optimization terminated successfully. - Current function value: 1912.665851 - Iterations: 61 - Function evaluations: 133 - Gradient evaluations: 126 - Estimating model 4 of 4 + Current function value: 1844.061877 + Iterations: 36 + Function evaluations: 81 + Gradient evaluations: 81 + Estimating model 2 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed + Optimization terminated successfully. + Current function value: 1580.315780 + Iterations: 37 + Function evaluations: 79 + Gradient evaluations: 79 + Estimating model 3 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed + Optimization terminated successfully. + Current function value: 1851.005493 + Iterations: 32 + Function evaluations: 68 + Gradient evaluations: 68 + Estimating model 4 of 4 + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Optimization terminated successfully. - Current function value: 1619.045647 - Iterations: 43 - Function evaluations: 110 - Gradient evaluations: 105 + Current function value: 1584.089863 + Iterations: 39 + Function evaluations: 91 + Gradient evaluations: 91 Evaluating the model ... Writing outputs ... @@ -423,13 +691,13 @@ model using the appropriate specifications. 20, 30, 40, 50, 60, 70, 80]} covariate_forwardmodel = pd.DataFrame(data=covariate_forwardmodel) - covariate_forwardmodel.to_csv('covariate_forwardmodel.txt', - sep = ' ', - header = False, + covariate_forwardmodel.to_csv('covariate_forwardmodel.txt', + sep = ' ', + header = False, index = False) # estimate forward model - pcn.normative.estimate(covfile = 'covariate_normsample.txt', + pcn.normative.estimate(covfile = 'covariate_normsample.txt', respfile = 'features_normsample.txt', testcov = 'covariate_forwardmodel.txt', cvfolds = None, @@ -441,8 +709,22 @@ model using the appropriate specifications. .. parsed-literal:: + inscaler: None + outscaler: None Processing data in features_normsample.txt Estimating model 1 of 4 + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -451,8 +733,8 @@ model using the appropriate specifications. Optimization terminated successfully. Current function value: 3781.497401 Iterations: 20 - Function evaluations: 61 - Gradient evaluations: 54 + Function evaluations: 58 + Gradient evaluations: 52 Estimating model 2 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -466,10 +748,22 @@ model using the appropriate specifications. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3201.761309 - Iterations: 39 - Function evaluations: 108 - Gradient evaluations: 108 + Iterations: 48 + Function evaluations: 114 + Gradient evaluations: 114 Estimating model 3 of 4 + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -480,9 +774,9 @@ model using the appropriate specifications. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3771.310488 - Iterations: 47 - Function evaluations: 181 - Gradient evaluations: 167 + Iterations: 48 + Function evaluations: 156 + Gradient evaluations: 143 Estimating model 4 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -496,9 +790,9 @@ model using the appropriate specifications. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3200.837262 - Iterations: 40 - Function evaluations: 104 - Gradient evaluations: 104 + Iterations: 42 + Function evaluations: 116 + Gradient evaluations: 116 Writing outputs ... @@ -508,7 +802,8 @@ model using the appropriate specifications. Visualize the forward model of the normative model similar to the figure below. -.. figure::  +.. figure:: +  :alt: 1-s2.0-S245190221830329X-gr2.jpg 1-s2.0-S245190221830329X-gr2.jpg @@ -531,12 +826,12 @@ individual participants. S_hat=np.mean(S2,axis=0) n=S2.shape[0] CI[i,:]=z*np.power(S_hat/n,.5) - return CI + return CI feature_names=['left_CA1','left_CA3','right_CA1','right_CA3'] sex_covariates=[ 'Female','Male'] - # Creating plots for Female and male + # Creating plots for Female and male for i,sex in enumerate(sex_covariates): #forward model data forward_yhat = pd.read_csv('yhat_forward.txt', sep = ' ', header=None) @@ -544,71 +839,71 @@ individual participants. yhat_forward=yhat_forward[7*i:7*(i+1)] x_forward=[20, 30, 40, 50, 60, 70, 80] - # Find the index of the data exclusively for one sex. Female:0, Male: 1 + # Find the index of the data exclusively for one sex. Female:0, Male: 1 inx=np.where(covariate_normsample.sex==i)[0] x=covariate_normsample.values[inx,1] # actual data y = pd.read_csv('features_normsample.txt', sep = ' ', header=None) y=y.values[inx] - # confidence Interval yhat+ z *(std/n^.5)-->.95 % CI:z=1.96, 99% CI:z=2.58 + # confidence Interval yhat+ z *(std/n^.5)-->.95 % CI:z=1.96, 99% CI:z=2.58 s2= pd.read_csv('ys2_2fold.txt', sep = ' ', header=None) s2=s2.values[inx] CI_95=confidence_interval(s2,x,1.96) CI_99=confidence_interval(s2,x,2.58) - # Creat a trejactroy for each point + # Creat a trejactroy for each point for j,name in enumerate(feature_names): fig=plt.figure() ax=fig.add_subplot(111) ax.plot(x_forward,yhat_forward[:,j], linewidth=4, label='Normative trejactory') - ax.plot(x_forward,CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g', label='95% confidence interval') - ax.plot(x_forward,-CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g') + ax.plot(x_forward,CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g', label='95% confidence interval') + ax.plot(x_forward,-CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g') - ax.plot(x_forward,CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k', label='99% confidence interval') - ax.plot(x_forward,-CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k') + ax.plot(x_forward,CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k', label='99% confidence interval') + ax.plot(x_forward,-CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k') ax.scatter(x,y[:,j],c='r', label=name) plt.legend(loc='upper left') plt.title('Normative trejectory of' +name+' in '+sex+' cohort') plt.show() plt.close() - + # code by M. Zabihi -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_0.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_0.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_1.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_1.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_2.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_2.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_3.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_3.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_4.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_4.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_5.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_5.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_6.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_6.png -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_7.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_7.png **TASK 6:** Apply the normative model to Nordan’s data and the dementia patients. @@ -626,25 +921,25 @@ individual participants. # create a covariate file for Nordan's as well as the patient's demograhpics covariate_nordan = demographics_nordan[['sex', - 'age']] + 'age']] covariate_nordan.to_csv('covariate_nordan.txt', sep = ' ', - header = False, + header = False, index = False) # create the corresponding feature file - features_nordan = features_nordan[['left_CA1', + features_nordan = features_nordan[['left_CA1', 'left_CA3', 'right_CA1', 'right_CA3']] - features_nordan.to_csv('features_nordan.txt', - sep = ' ', - header = False, + features_nordan.to_csv('features_nordan.txt', + sep = ' ', + header = False, index = False) # apply normative modeling - pcn.normative.estimate(covfile = 'covariate_normsample.txt', + pcn.normative.estimate(covfile = 'covariate_normsample.txt', respfile = 'features_normsample.txt', testcov = 'covariate_nordan.txt', testresp = 'features_nordan.txt', @@ -657,8 +952,22 @@ individual participants. .. parsed-literal:: + inscaler: None + outscaler: None Processing data in features_normsample.txt Estimating model 1 of 4 + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -667,8 +976,8 @@ individual participants. Optimization terminated successfully. Current function value: 3781.497401 Iterations: 20 - Function evaluations: 61 - Gradient evaluations: 54 + Function evaluations: 58 + Gradient evaluations: 52 Estimating model 2 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -682,10 +991,22 @@ individual participants. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3201.761309 - Iterations: 39 - Function evaluations: 108 - Gradient evaluations: 108 + Iterations: 48 + Function evaluations: 114 + Gradient evaluations: 114 Estimating model 3 of 4 + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp + self.sf2 = np.exp(2*theta[self.D]) + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply + dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) + + +.. parsed-literal:: + Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -696,9 +1017,9 @@ individual participants. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3771.310488 - Iterations: 47 - Function evaluations: 181 - Gradient evaluations: 167 + Iterations: 48 + Function evaluations: 156 + Gradient evaluations: 143 Estimating model 4 of 4 Warning: Estimation of posterior distribution failed Warning: Estimation of posterior distribution failed @@ -712,9 +1033,9 @@ individual participants. Warning: Estimation of posterior distribution failed Optimization terminated successfully. Current function value: 3200.837262 - Iterations: 40 - Function evaluations: 104 - Gradient evaluations: 104 + Iterations: 42 + Function evaluations: 116 + Gradient evaluations: 116 Evaluating the model ... Writing outputs ... @@ -761,21 +1082,21 @@ age 20. Do that for both sexes seperately. lengths = len(forward_yhat[hyppocampal_subfield]) for entry in forward_yhat[hyppocampal_subfield]: if count > 0 and count < 7: - loop_percentage_change_female = calculate_percentage_change(entry, + loop_percentage_change_female = calculate_percentage_change(entry, forward_yhat.iloc[0, hyppocampal_subfield]) percentage_change_female.append(loop_percentage_change_female) - elif count > 7: + elif count > 7: loop_percentage_change_male = calculate_percentage_change(entry, forward_yhat.iloc[9, hyppocampal_subfield]) percentage_change_male.append(loop_percentage_change_male) - count = count + 1 + count = count + 1 - names = ['30 compared to 20 years', - '40 compared to 20 years', - '50 compared to 20 years', - '60 compared to 20 years', + names = ['30 compared to 20 years', + '40 compared to 20 years', + '50 compared to 20 years', + '60 compared to 20 years', '70 compared to 20 years', '80 compared to 20 years'] @@ -803,5 +1124,6 @@ age 20. Do that for both sexes seperately. -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_32_1.png +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_33_1.png + diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_0.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_0.png deleted file mode 100644 index 732e6d2fa966aa13da6f623915be6c37ae02b4d5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29709 zcmYgX1yqz#w;cpQ1VltYNd*Pz?v|1v1*9A4?k?#D>COQG>F$>9?(Xh}cX{vq>%CcP z7Q@VZ^W8YH&p!JGNK1;Ky~KS9fk4nizX{4fAaM5J`Qim4cqgm8dLA4_X0dz zUi|b2|07#`Q?iCYP~JQ};YQ}&?!cRDHbROvvgUd=_F7iD5K}E13lno26GQC}cDh#9 zhUR9BGz>HhR38j%Y%DlvY5(tY8gnas+8CnX00`s*L{yMp&LL?p+1^2}W2V`?Z2M!h zH}1D|QL>L8v}-cHqT(7EYY*{pJI* z=h@dcG8gv`Y>B#QH=TnoQL&{r=f2!Y@QwoIKI9E9-&W<-C>_P z@JEtS5a)mcJo;a&Rqt+XZ7~VhEEi^GW{#r%zb}NmfXR8vP?Nk)gTFXvydb z8Bw)-_ZQfKG}N?klSznt9L6*HmolNiLIL`j z941K)Q&vo>Qz5S?fh*G$Ca?HTZd*WrguxzSl)Cfd~I` zrhWBm3WUYqzsbL^NJ3Fot*$4<14=Fh8$*T3WytK5lka_n$^DGJ#ioSyM9J*uB^?$- z-3XCKr$^;kMg*4G_N=&KDc;#};0|7k3rt??QO-$J!=X>Gynzjy^yXn8t0s=|6Owpv zqrJWm(|k)u_yXYu?znj<5KsJNw*()Jg-Y}htQopQLpEw3^+6VXnT+^;hrFLuD)TB^ zFiYvd&gmIpvKV#xgTv-#+uHUi2WkJd)Mvx95EGq4@1d7HKv-i#Kf{b~Z z@tVKO)|jy*bLu%Y2D+fKaCcf~J4?ZddGN_{MP%O|GWg6R+`X97SbuL1muWiY`Q6|v zTjv>%bKF2tk<7!qM@KVNQ1K)jr?^%X#MRVWO^afYc=Q-^e5^ZP{L=Ps`hg@uXeK$S z`)qX%$_G0aq-Qqt_f78{I^{yIn;$&}SXzHXHPuBMk2gGaG}kptWuIIT7@*YqToCNR zYf~K*{pq~s`?X$YleM7Kts|z15pD#vkM5{&e}*J+?1EHYB%?k$)Od_9>qs7SI1q8; zB$-^K@Ln-BV0_ohu=So|X*Vzo8)ezd>3X_(--FX4f19n{#x-+${ft5FlCI&8xhG`w znz5N94Ku+)96}o3>X&Ay(dfZ@BozI!5~I2<0sZ*3MMXyitw)adBkzklWE)7m2f7Cq zOOMuzaMkrWR3@~eM{%qPq^o~#rBKqCi?QOA&q)~7cwdRLM2n$@!<{jyxp$tKXc=(l z1W7pl{d0GKeO-;YPqK?}6~8b(LP6B~MmB+``Q4H`_VR5yvssFKN*$gBZuQLBK?)sg z-LT-U=154*8$1y7CrYIA}kjv>S^@Y)4)tA8y95onki z>eid}Sz41%8~0ougCsgjJXn==91sdxtOR6nSrpstQ4(6UApa5;lsH9plcVn*U$}&3 z|8#`JCJtyAzMLc~P;W#t$&*p%h4AySC0MbvcHbCPpzcZ_vIu6JpJ?j)IGZz}m10Hv z-0n9|P-s0s4(RTiFdT+^{Hy{xEV+)dI*#$0Raj0i(SEAnn`b#K^Pngi+$=82ZIg(1 zI(w#LFVCbS8yhQ6y#9+~-}`bNu^|1Vgw5W#Lqu_%1P|p-{&OR`2hI@B5OG>+v`dog z@UZt3H+CnE9G73meKJ*{b0%}Mnnb6yr@d*^T9wb>GCX#Vh}PkSz@my|cHm)S-(hlu z%BFh?%5uT3xvX8MtX*m(Iy zm-64hq2^T&+8iR37utVGfbjg(C(LW~$}}JfT(^!pB`5AMn3*!orVm%~gk7{#6AR0# zYOx$teR}3l-ot3e)S-mOFpMB&I~PidY9ALG3%?pILs%hR_lqg$5ruwy(&z0-R$c~$Vms7GAh7U&XvA~uBP8Z6QBO=DL1fBFIoeKwhf*639E79{S#&w%8kL+-Hdtg0zc^FT}zxx<`B)y<66V8K*7!j2_90zIgaehIQ ze$9jz-jpy3gka8ufJ0@bNKFBq(|gW98H#5Gtc-831O$7cWjNVxL)a1zEYn~z6yF4` z@>KKXHpRUrKTavo;ujQEL=aVEPa7XVh^<~rtd=E3*5htvN8uJlSt&q6o;zh2UKchK zNr-iShgJw0Yf`ZX=+)(iN)7MrKJt~-C>-(7&7N7NMH#`OYFmWy$vj`fuok8jOPUN?3*0L^5G+6t2;T6OoW{bEO<+_Ahi#u=@Pj z@iNp=G9=M555OKa)rg57h45bA36oyoG#due5Ghk4QJZ@V#Kx>(M?C67IMpaWjw>3{^R;E^FhqYfu7GFTxbP=# zB{Ne86E>FIY)WjUE3o;TiIbX6NRY;Ks~*5C`2n(iwN6K;bVCZXP?;Va(}I>?z5_v_ zk~+cwkd0?VDL)TRJJGZeSl4AsAUORLjTDE620d+))m-1)3zR1y$QkNq_+Q{=Jvlr) zZ0O4r=y;Hxp8n?j`{|+Sp{KWG+B-Y-{l8HfPvZJmgarqGqM<2FFH3)dcUg4QHsyh4 zG2m<9(ydlC5fPD`_ZcYm1Ox=hdfzgOYg97J%cIuTeg*~w;c-xMY$7i#EZA%f!J(ro zuxpMD8?xaRSV&1q{##s3?dtl*fRRCl8FXy~oc(u<+wgsx}bPmkwntmEl*e1ohNxy>8Sv3-1eHdc*`8e)=?@)CR5 z26}0m_T;LAXd9<;E%N0Hh(CU8$t?y;6*{`-Q&(5V$?bg6ZopKkKS+3Ta=Tt}^64(lLap@{U$mp>E7Gj9%ve+?Uyzc=f}c4lGVz|r@vqwJ9q z*>r&o55(ktILRea!`E3acoV5kV0bENZ*QM19^aa1-q^i29bGjl4u!4&6#j{X#7n+F zxx`?YxV5dVW;K-a=;C6dsOe$lw;0VwN=g(WBBFK_!e>Vu=M*%kir z?kaPl+5KW#f6iew1US%eiPx!mwSu@Sr}akgkB>yJUpKc0V8-({ov`FQnb2xy7}CTXdJA?&T|%~?8_&e`@Tl2;2~k$S^7DD)ZA@?4X70avl^LH=a{h&9%mAxQQw&Cn$Xgd?Ceq&m@~8SwUGeabhBc|73LB+{ss04qRMZ z{=vaE)A*LX^{Q6gpFe&6Tw=K@+|%2;JzrNPHZnA9c);Yetez|}7Y#zBXIk0^85xGAB7URs>A<1uE*= zT6g5#*{Bq76aX_91> zMw456d;3s>v;Ds?qQTFxs@jb#x;<}&gWt7aDX3aXR)ZK6k(w%{sQ7MwrUG7bs#q(S zh&QFh3u!b*ipZ?-TCYsH;%843`Pu$#ESPeVbwMo~1@?`29Gxfd=bN+bw%?z{wiX)d z*rf(}ZmGbovftmFuSSRv!fDP`TY`Y;2h8{t0Y^Jos!Qu?7_THS*=gW$k2jM|CNYEF z$e3LN0~-@6<`q@nY;6XdaXSd};1N;7^Ac_M=Ide!xt*A#LzzYe)zt|>*nJlw48r*F z<)wM?9TOr0BjfgBQ zZES54IBG45;9yaX!_wcsV|0cRw9U^a7Z(?wLL<#V07H6(|L4*M?B2eUl&nY&d)n+A zL33xPA6QuoTwJJ(%o`ygAtuDKm?zrjhfV)Hf0PW!90~Insce?Ne*JpZ+S+<_er~$8 z$BZ8zAO8E<=g&*q$XZ&j-;4~^j104z141ZLZfb6}+|a8<^8-CS1~5*r{{x)PT=DT1 zXJ6!~o>7tyhw|ebad4n{)65wMv}mS*-~w(UBQ5PA6BrzfdUtmR@}Ak&-Z(lrx&CwK z=fatG>Q4+5+AlNfB45YTjo~_bbEos24i)nTT^?SYf2d$s{-L3yAWx0wE39s8{9AN? zlmMIep2Ox#)7=S*sHkWXm*a1(Hs2q+P5-c5jyrJ9wuZeZ3#)%sS64$D&8Px^@6PnX zB%n|uF89lM`^hbt^v1bowCeS7w+D4a1EV0Yd;<%D=>B-mO5}F+QKibPV{|kUgGAV3 z-ga^rCWZqcbh}!%&VJr_{15N1dP721)~Cjs9ZE#hcg-lY_05cfTwcQlf7eEu$Dh31 z z$RG}2v8L-C8Npz1!gwFp@L0{(YIh6a%Y8&Z&dO9MQlE3ZoR8MKq*AF21``bjnLArD z*=V7pXK*k~Kh-tH?f%AcSO~}RWK9$znZnh*HJrIUSwsYUkMY({5cvF9 ztj5F&{kwAhAD9BZsOj422^CjWCey7T&UZe!qm2!d-z$QZp>%=Zcl5uerW9%F_82bq zXOWr-?B`m_4M*QG8N8O_I!1_yh=^vP+n%YQB$G;61Jl^+k~I0(psp+vkiAQDHzBfawX?}}&CUjq|9 z0XrnBuAXwODkm3ZGGF^cP|(WS8dhE|2T~3t$a>fq5e?3lP~ft#KYzYqQ!9T0_!wk8 z65x?<2nlJx2bdTU0Jo}w{6tDj46sOe1c^wXf7kuxA}wHX-(o}nyX1$6N=ZEpzUH8I zH!CYkP*5;iDwQVHz5$0^nkdm)o8xf6(J)p z55|Pfb>u;%T0P{l2)0N_@Do^?VBt)E|0i2N=^_aO%aI`zw6@@USaH1og4IjDq^a=y zO*MCx95z3`qGnwE@+Y?h(f7$!K~hJ_$jt0FbIFlP9XK824U-9c%4Q&kMERiLydfay zPj!DlZqAlSG?*+TAZ`WV==kVpDTH+)O(cx4x~@(ZVA98jOWv7E)81xJc)0!sy5^1k z#G1#4TR4yhH~|pZcrGa5_v$kp-D?kk0junfj$|Gl)N2?6O* z#KonaeLo|ExJ-vmN=mA1g9s0=cc#J^PO-_2TP%hOuDQQIq`8?71ogZQM(y@#2dB$I zyAR{?cQF7R7wh(7KVh2F8n9Dwk5xALTmZqSyBrIVN~QDxC(*kIk55YK15;qPTtWE! z`Lm#q&~#s9sHAmf_X~T+md1{+vf4RxpX~y#tF!98%YQL3ykw*cjPO!II<~vamIz`g zKQjzSZ0Xl~iW)diPskIrBH*xrly8S&-JPaBGNDjds|&?38)K)sUc7%w9RS~QfY{iV z%DY&f8R_ST1aABm8~b-mjPUM6!G3ACN-e6LwY9YqB?pGqNS0_l*!oS?)1xCgRyStY zcQvlcVlubP;cwE?;f{=vd5X2q3Ar5TkkAP~0Z{ZKU;Y@tUATnZUm}E#-rqBY0U-M4 zwD>45lJn8Evcm#zELi7x4R?nAi(;46Z-N zMN||yR?RNn(Ju>lqs877{SzR`NqHoCyh2KKyCH`>CC};UX^#o`tCL>Z{=vBD=pUH^ z#o$*?fSJNctE)?znH9<&PqmIvTk!EgfKxtY5044|y}6oEBQ{vnbiYLyA@>XVb6nui z$c)qXyw_`(IVV|}qjDu;)s!$odFcLk=zT$ya(dK>JXDAr_K*|B@h9p=m3-Z>cCy#T zWyprRl!mBTeGcuQ{M=aVaH3)R?HsZOy2f3@UH?p}zqFjP9C@Dv>%1T+O=>`>0RYjy zk4G=XVFekW8i6O2Qmh4U-guqOF0Q5ZF$jm2<-Wz**+(|SFse7eiUV0`IpQOm_5T+IRi_1bo;Dv*_6lckqf_pVETD}OEDUpKc0sH{@=w%x40|bZX zOkL2?zCLjfh$Ulb)Q(P1^YaC56yR8f)E;)2KId6q8y6}4BRKjFt$}ZBMqYw0iH)91 zc|0=SyL)ZF8$D0Y!zk=jfc_}0ij9iZltw%mSc`~@?n*i1&PtW+{9;>o^@rl)$B(wV zt!b@4_&Vy(UMj%F$J<7x0MO(mooRs+@m7<@0#)MA=CfnIP=C2#@6Yg9kqK=ctJ%f6 z*|&q=QKDsJqhu_hxz%T9XEQt^1%~q(71K0_T1RxV>-NcW9l4`9JIu5I1C|>M{{s99 zgBrC>zBN`FAZ1McdJDCq0wDiQQj!H-z7~N~_4!jD&vh^Ur6ZPwpx_8xl#B*^EQB9Q zZXap40QX1wUdAJoue3WD^955bPZR(97sqJnFe$N@(3eNYNAwzEl;232KBZPt&#WB& zsN!U}zPfq>?yvCKJYr*G9o?J@irapGE~4aUCt>0({SqAk=(<(fPzY1$1I_jUWh1+^~pCO#yUDvh(w+7hy_3PJs zmX?LBhz4A_hbOiAdcq1D|B2dgF_|DS_`Kch);g`+u%ej5L?yxCt*ai5nHAE+h9bf2(ATh zFKCZi;*6fR+1|de^<$20Ixss(;&2Hx%*>%b-U;Bc>(u$VsTY}$+H<2ZISNW2fDHMx zwTU6@?Cdnw*R#2@WWmBDAb2uyUgtG`jBO$ws-i`Gmv&!()M8fEyGX5~IZ5LmH2N^n zLPa>gUNmscSEiA^Llr~gZhtV>jm~@53~C`b3F(HLo%~OGqDvPgRb@`cM#|TfD_)N- z%{$}yj=Kd_4muBbYsuZKuvqn#c>NU1fI1CO)&uh8_~IfvD{#KPb^Q?3f$!)vA*Y*z zRRrJV<&#l{@?6e_MVM<()XuLrKbb7-4KYdR&(i`MvbR|_^V(5;AY`-faKBq6f}rBD z1QRvhd-|unDC=EJy2B65@;^V`owl|>Z=l^X9i=(^)4P~xRvSPrn>_?p0l*VUQPBV$ z8u#Ab+Z&fE#Imf5bvJqhxIPrWOKwec_E?4fRHFGD7fITigtW@iWyNx<4#Lt zRbw(+C*iwDr`mY4PdOb^Dq)v2^)c5mS4LUgNHVjM#=Whzbqy4U5g^%jsy-B|Q6f_+ z^w`F#Q+#&6`&eq4C{DzfZAar?Q2na1ohG)4M5G6&sF4DE&{b(_weA6DwUl2ZSZO*6 zqRp0~r;+Ld%lm%Uf5Gp+!1|g1Qvett%H;f`o5@C3=hGU1Vj+MGl-XVw8yhnkEwj1i z)Nc2O(zxT$sCLyIHj0^;P+iwr34HmF7U25YApwz$QuV=Xt~jDq*2gAnPcqK^-Jpbf zXwHFapqih3$?ck1Pe_7Zo%^F3Kqv~`>qUUlOk_3RsGK!}H>tZj2Rkj5%Jana0b*vh zeA|4cyc>VAD}n@>r3OpA$`tST_JZDGMKGf?On*Mr-Ri2Cg-d4qvpFab(`xRL0gY!d zv0en*T>@AiWLo{uPVCB+&i%c>p2QObTp=S@nF6V zkcGH>jKg|e@L;n& z@*I?)-zs}E;<(3e( zHh*DKb63D-&V(D!Y&^lfK$u^9XKQWUwm3^c?-MI+ zEP&2_Y7g=+YC+(LQ@fG32<=_0=aLRghetYDzd29p>3QbmNu{yqYk!T03vCQTcW`>M zv?(Iz_sRv33xM^eaksU>2O^7c&EECHKrG6wi2}U&I{O@uXhC^4jh{^#+k|La*@bq1 zsQ$QQtH;e8)B=xaJ&hF`5tY(DW+1A&|+$>=%4DKSe+dXZ54C&H?_j`e-MO6Ialu02OTyh8QecrFPlB7A{z zd4@v1x{c{HmbtxoU{7Edm6h2+4WK!}bUFb*?(6GwvbD(udCXzxN1gC5nLxfnzB{ga zHpiP!ruQ=w6opS@2OttbaSG5mTIun(#f?n8U-0tJH{3Ov0RF6cI54s%FfuI0qp~QT1=F2G@Rv zr|`*tj}g$CpPSnnfuZp8^M8RQGzMfhvOHatEk2C<3S<8;ioDii(oklrwIO2kV;X$R zLd(03uI0Tp{C@VG@E|P^G7SvA0Jyxj*pxalQhTf_s;4)9o1a@0BAnui{St*Tm6B>~ zV0ViN!)AG*%MuKnyc%=abNS2LZJ+JE-l@&v_*qsZx~{yW~AH4 z@j~!9H>R%t`RDgRYaR2tGf*x`0XH&1tvt$I&Z%yu{x$}?l-0FJ-~n`Uy?uO!Yi*5R z5%KIPV@kNji|rU^MjTmm4zRMQ>dKGw%Szy?RV#R6UE)V7dLPPbInmwtMO50tiNl4%Uldu4o4yaa&>xELS{lUP}fEV(~E8;QMx9F_s zeyO>Dv$5HoK*LD?^QUY1NIqB0IsjHf_E{+Lz3e1jNMA}p&DY}gNd?Zuw-(V#qO4NP zh6!O7=4l73Af!E&O-hX}HEON*pmx;N=yacpH{Ll{`(?d2ih{U;ABSV|^USN^CiB-D^G%8rih zT4hEcV`{cMD_E9>-qvY)+BK3dQIyG8(@7nSGe@ZptcK~+=C{r4Ib}R3`nVEn4 z^s#I@u|>4jVa%lB9$BBL8?v&pNv2wC^fQi`z~*4?I>`aFthxpVa{x^(Kg#ZQ$3`ZZwA6}1 z`@}Enu~zCaFfwb&3Z0$E}bR*~2zesyd9g|^D@_Z5ir z?-}(_)7XdeekSA&xlqy>HXcmZ*t|Lr@AL@$@|H|0^{4wkx4M2N9v+@2dLHnKGP1JC zL`5YW{Tl5_lp8NlYfghKYqw)+3@*0sb zl^WTpf0ck>?U6&~#>0cp;}R!{#nVUay#x&Co0u45-K~U##AkZ?2++!r&%e$Ke?4!1XXw>RNZ+x8Ft-fV5 znWB55&X-!ewylSS=I+`t*HmV%gqFH6{t1aN>Q7K<-&_=Mr5Szn$XRq@Q~<1St`hoS%6R$_w?^ojGg9_9#OP@V#9Iyr3B zI=g8W(YVUW{D_x{&Ob1H2%eRuWqAlF`T3&;ej4H&DqI^G9qsPwVmrKRWu0-#$<%p1 zpIS#*qEA<}L-ktW@87>Z0mPYfUNSo50ZIX%Hb2iY8{p#N27(?Y2m?j;CJEX86}Ff+ zGA_xa?bn&VYhD_AxyV;v!eX!Ht%M~U+0hrQP$G*OCLDR!K7N#p|4jUh7R_YowK-g9ury=Ps?qYM#;30t!@Sl%VNY_614BJPvyxR7N>ZX5jE# zT90b=+W3sI6zI1dA6vSd9{dXh z2^$bc#SLbyxKC>-49&zk0IegyNio~74B%n6)23Nl==<8?D(|}8ISB1_M7xY>oDx>)+k2Z zm-V-WyQjuT>;J6OXU^WxKHL!hvd|rirfRZeH@!C*3>TG@)Vn%bc5ra8042}KTBKB| z)435qD1g5a6c%1tU;hy%m7Zz+@O|DRk7kbGGs8$N_e6ve=H(pxVT1jFBQGzTt8&@u zK#JO-^0GVnV=S_U)Y90tEFfrlb6DMau)ZrOHaT8f1*W(q%y)*Z4i^&8TW=h#qzl}E zp50S`9~qGeCFJfIfr%;A*-<~;S4imC{qfTM>h=~sLBkO^$EM-$GF@Ei!XrMVWsWq8 z=g$i-MGifXxAPCyJ~kzlFeSSzGK6AMo%W$97TSYZ>>L3 zsMZULK2Zi{8$fWa1yUCB2`W~Z5dgiz(>R{!0}%8WKwxltxYma>KHL}s`dAn|R+B!% zGDo9cM;N&`KW}~&q(OM}dgzTJ%BO?}#KZ%IW|yT8#VA`EvbZHBB_lum{a+6YTC8gb zdf!_rqG-&r6_l97`xlw7v$?ufoQ_K?t5XaXI?I1mM~TSV%d$4N;D7%X3#+@)_4X&w z3H*+W`vOD(R;wYbP;v2Kgy+w@t1VZ75UK-5BMOPgMH-N@WW0ArUR|ZS+NkI_-=Shf zzMz+DH~_KK7PFhJ)jZd;fFJRAv1GeMK6;(wF)9A2fpYir%?S?NV?OzU6Xrp0jN!9% zmR~KRo=V89the5EG8Mh<)IJt^TG`j`nZsW=N9~M|pwqF7d2Hd2pf!Sl0d}RJFPT%} zpk|Zsz58(oabx4jn{US9{2x~5=00s#&VI@lKvF`n`s38KmFJB|I`}p}yx{^Yk5_?BdrIGN2`x1xH#?_w^xj68cy)QMorolrL5k;KCM z423Vn&OX)>NA1%f_hpj5Kj8HEK`UurN9D~D(A`S5ay=Oj9(S3E4L?#6>Q z%*28UZmi`Ki>R5A74^$4oXd5Qn0AQJ@4irL7?bz$ar7CHCn8mrG<~-bqHR^TmS+y} zA2x^r>Jl*^xmnxJNsR$*lIhgOP)U-uAFcO@njsyQqYS-MBlyPo5;MI+>CvO_IL4T- zi^z+ZnQ>qJbEeviLwztPrh~Uk+$Mcgek_7ch6raGpPC1h{hEi8SS>ZfIUcnjtpjS~ z4MqgeNz4p5%eG^!igAPxDj;7DdURuVTIZquX*9cW{}~N8UclTjugPN1`JBHXmtraz z)_G%Z?2$es5chj;&*x(eG5z~jdQ24JJ%C) za`oCST^9R%#{wZQ(4QxpueFT?MKKVvqyq`fvm2vwgKiqxe5vR|VtvBlbotsnQVRMlH^5Vj{uhM%0YgqJ0 zEgS|CWqw)`icrJvT0PJecqXwnO?sHMgV&T0I--F5(l8 zQo#j0#_-zk#CW9WgnteRz{#+#u5}Vv?;VYHoMAWsjQy9Pw^m6?N4HITwD8!d;m8^i z;W(R%pPEq3OzZCU4g08&^5^HubwpA~xKv;LLhuTHeofFm73H0YqA$A5WM;FhP7u@D zDq2t^oP>2iQyI&d9E$RVhPp5-eQ=6S0MVUE@s|b~k4P^O_r+dW(#zurt)laYTZKj1 zLlak#2j{IOE3V6GQ&acpQtQR^oE)9OpKn5IKAiH^dbps=yxh3H48c{i<`t7=DVp}A zncIgI@&u-E7j({+tciCnSE;Wx)-x%3F%MvpZwG-pY$Pxf<{K-Kd|cBU^3D zC>1nK{b}R=-L$n)7<*y)9TU01=!lb}xA#3*0>4KwlvEbgx- z5z(8sZ$AO4P(&#M(ypTGu;QYns}8?X)R7~{j zD`|!3miJ}B+-MT61vUk=Ceclav+Q3f%IIV(@n?zu!NmFpPu+De!Zr(xZ&(+tD*uKE z>-2k7Gr#CeO2Vhd4Jif1)O$9IG%B^)a>F>20kQ$F62BdwfwsHm1ounoqAs)<=xhsd zBY=PZdieL0zovGp*Nc<$F`C*Q1?L}mvum^R*RxjCdmGuNyEue}juCx*<+QGuB{vRu zZNh^SJxvsZgs)#il$7Lq)A}Hy{KdQo7k;gc()*9Qk*NoNj6+SC zCQ%#Iy)7HJ-c(25@y<~C#o0veg@rwKmpIU~+g!;fB}j3VKjoU?J4j3X6jD=I=MQ*F zmg)(b0iy$E19|dkpEt*A=yvzMjV0exuC#Mp8qecCxt-;{Q=3n={YSOhRqrCgba^wT zmqd@I=$qRgDA$|nCju)cx?lfZCS0WV<$a}1oJ-{`BRK`N)!uYoeQMjn0x^i%KuNL= zsJ6%gl`0NpZ9AB35qCkh$%5flX+DyHT|ylJ?uB{4_FM&9=x?jcwrk{*^A9XsaSs?R z?S%fBi@SrX)@$LX%8>>A?8@asDJ}B#F?G!BV&f?yu7-?-ThD(?uI3{55=uswQnSXK zF19`D4u=Z4lpW$hd&D3wE?#XccwU~2MAMGrHx*c+B7dCi^z-TNzU%A{3012t)*2+- zWF$yyRheII3%=|ua>_IVXMMNL!2dL#$0dKP*+F2y3$E` zxHWfiaf#!wr2s9fl1C*V5jQj{^QH7wc4eXJSA8*w)h|`eskAKQy{aVCPSi{MV8C)L zVm*}_<2M{YY(TVCV0e+O5oQPHP(3|0)$@uUBKKghXZRZO^=tY5HU9ONomBxV`7b{j zCJB?s;VJjTXGO#9Ut{o^`I5^j4rPYl7W(X7wk0F0qqgvN^Rs z-`8+rOHUmNv!`kAV+g28x-N~DrSTyPgorn`FNj%)^DQ=Xcs|DhdDTf;dyPw&^J&TZKhT);B0A&p8kI1&YN>A#IVIT z`}YA}`$h4A3HmO-i=w@qk8O@1I}abW!v@oRB<8#DXu-!UwKL8X5A$3@)U+LuRf_%m zkCq*rc|n(|veU}BNY6~(Px%TBs&#HU^XNbLUyFyvqc*qv^~&1Fv6?pTl$OomphC6Z zpLxDv?gc9$PmYSu*&8{~7l&p0cB84G5L$;@bH z!}KuSnG&lrr?WOWd8BvssB$)Q+uAo^L+)FA+GMIyis4~)C5?N@nH9gJ8gOWyzPccH>yvIMFQ??lZXLZsprJvmqwR3gP4*6Aj3Ow#q`1$c zuIGSvv;tzJW;;8vZ_^j`eJcbs%R&ui<+`)UN- zdCZkDhr&6+HvJ78M#Bx%Y_k6bR@vJ>>tec7B{qfXMY?DAEmJwfVvk-55|@zQ`uDSm zKayn+Tm6O~rQ7}bqRyzV?T22XFRn#-+MMFROq;P%xeiADMFGQLvb({MKt214#4Mbt z#HEe37enW6P&{r=B@nXD(M3f?4FOsgC_8~bgFbb4EEf|F4(>@64Ax;FiCqB5AVG`k zNhkJ+j7(NW=2wg6Qo0`@kZh%Vprs9aQpteQFQs2ZqG8!rIcOLa90nLz`T9|l>19C9 z%f5vB3!Q2FZnk~7N{$L6ev_+d!?yP-Z`5E(PmV z@y7IDWKQpi55Thej(hNy_9Y+vH4z03@{Mk7Uu5{iI#=X>p|tfpJ*DK;k@z}+HOiz0 zOCJC9!i1SPlJp0yrfSQ{x3H5QU zOcSZWR4LV18dbOJ^}ZzbC)i%t^x%Ywh_}m^mtlNhmx*#YBOO+`{+ofsJ!hkIK5M%3 zv#xbdyr;5Ph6ty-c9V+aV^l+X_TFbIS^_`pQ-#Zq)12@bwQQ>YJsw;c>8o4gQ4$H4 zX-w>Y&9upb1IgwZ3%>$XB&{#)wvtRqQvTJZw1k%41LcV$P-+0uRv)wpgYj4kHyqA| zB%TI93hm(A2RqeXbWL=8D>H?M>p8r1#ne}M{T|$y8Tr=rjLY$zlnyh?{EqkE2J6`T zptfj~pLv)FXww~4T2`XRexG?8`&tQ5*yC(pd!V~XiwBfhqY3J?43uJFxZR&CJe?*0 zGO(+kJ95GW>Jk>vKvSPwdbBB4ZP2*Dr$cTVC0y7unGC6Z#T|gYJ8IBkrV`bt)iv7OO@$6UY{XfPurEoCZ zcpo?cmEm2}w((|*-~}T5AUeix_@%tI*D?syLFG*!$)^F$r73Nfz`BD=)^pLf(ji`R zYt~3ht51AH_d4BpT@tLxh6fsT_a9Vzt_W+pvi~JL=k_=$M@6^0nfG z`mSk}6azCAy8@hL>k-yl(rgaJT6epAy3QPNz3F`t!w*^{+bmp~To%jleRX<-kUFV@ zjcr>g%oV(^Vuvx_SH7=TFu#fs?LP)_ss|VOt)ex}vyJj4;(GtoBpkwtgX|ejhJwQt zwy~3XJ=c_Ti87Og+4VE|pXaU7hT9;JgPY9muL7) zO$6!gIT8?!_PZZJA|^{^s-GX52+qkH6Iw7~riyWJF!;5g&Bs~tnQ9jW>FbA490u19 z`60aVJV#Rg}#L^32PwY7m9 zt!FAy!TF%%qd4>q{@anUn9E^M01-oA^;dhzX!eB))-PMbG|gPk83Ar7{y?-#q^%Qw zyyPGLC#b%rm5etoCm!k`GPV~B8cdSdNo#{^yZ{Cgmwl1FRf!XoFS)p^Q)yzPt*$+Z zq?`^fZ!sEUC2dxqgwxOnZ8&AX5FujFIJLYSc0%N#Mm|PfuE4{v%f1YgwqD z$of28^FdhfTlcX1n3?-A^$I*kah2`cbxG8*O5`JAmai%Wcz77%MHik9wRpILs=6ZH z&T5 zG|7Nie`e2nr@F%1PI-ISU zP4M9&Wp<0h5#JXpbs}uq)ERl;23zLfUxy_C<$^4^TmI*laa7J>HvN>`k}ngmDW4 z**za`q+C_V1N~CI{~Hu#+MxoJZEiQ!jd`56vUY z1`8{lF|B$v4sqOK0;-xwPiY9r5=m}E8*>Jy%c)sU?XV_T9PK*(4OYxU>WTXRlV^^o zJ}WV(cI+xBs3>vi0QtRbec>>n>%V#0RZZL3?Ms3O&Wg>X`aa*@-e$1g5I3B!t$2cw zGRn$3a$Nn$3G;~47bCCBbd$#Yje7D)HhdB+#$wD@Q+}6Jm0k)GT4s~SS&Edg#cy5( zDtnbA9c+s}B^4H1qLM_nEP>(>&zXO}DhNFp9}JVG`!e!Sf@jX|j8=cO4Ae^zArqlO z=oTJgD#Qw>c0?G>wf0?(*e$>J{z7{b;}LunuOuMB+R5# zy?Eb@LX-Q#w>F_09g>NK{^1EKf6>NxE{Ko!>mrA;BW2+$3ho>F7_DwZ5JvM|A?gRA zowE94=kj*r-zzXm>??n$U5VyVaGCB2+y2#mM|8g_$@8$QBXe4Dy$5>K^$cfNgoJm+ zqurp9eED=B44eQ-aol(h6tAl6=C)gSdGu*0mpc|hy=H?pRWma;YUFbS{bJN6wOH^K zvy_$8dqa_`WEX$VZCHnj1kx(W9ji%?1ny1x=Iu+#R)(DIqgh4t^@rGIZu5$g8;lGL zdV+QDES8W!cVcPNi}!TCV9`>oY8S$mU>yZ1g8Xv*RnTd?dM)Vvbb19G@S}6Rv3U~c z12Fit>p2e7{d}JhAI?FgMTe?`Gj?9JcJaVO=X8dTUB6W%yqK&f<;jY;dAsm5F0W$q zvQ}m}|IE2%J3;@31)s|8sW$&l|02>oi6*mx`+dAWwjE%27WQ_C5)utXd9B5@OsdrI zdnRm=R=>C24Pmg#4w~)7>Rg*W+6Qkl`{tI&zMs=NQi^S{Yox`{0{R$mvhFwX^fVW$ zO=(Q0@P|uP{?oSyg+tY9^g7KGb5<4wz4Fec^@WxBU*|(e;+(jYQmC);1wh&6jJa5g z!Z~XTo67W!j*vgPv?3!l#3@0l`me6eI;yIm?b~#Rbc1wj792Kn=FHqPd+*%6GHlIoru+*E}Ee&?>gAf#B{;D z``jK9BekTEhJd-#Y8U#V!%~LHva<=z--VM9`J=(otZQ_ScO?>T!G6sWLJ+I`-#;65 z4hc@xX>(tB!Mse%kqhkxVvA2mYbct{5tp5L=nu=7z*Z0-TUv1_B~Kg9>VZMg$q22EJuf@KYPXG_Eg>EP`S?DPEt>EMcfudyN#WQ)rl7 z8JB-(a8uD{`4n{1XwH6&oTAi0w{Y)Rmv&N8o8SV^FN{Vk;tL;j{8Y7K36cJ_4_@jK zbH&%Woy^LlMP}U9w+`Ow!}S!k90U-|K90Rld>h*ckDP*skjflQ9InLpq;i`jHi@vu zKx5pJt-oSny_2N}Hi$7I&;I`Vo{?Qp2MK2?-h_(+BxnweEG4$YIw7+W-3OIofnNS|LeM*$-y4Da>;k@_pdQ~hmLO32C6gWpI zq&4_3r2;7v)W3=x4j|o(8WPrv4%HSl$qqBfioa<;dkinUoKfmDPifk?aCU2OD)PuPf#L~~2X~U?)m&ff)!}8v5B-$dLb0K*eDhU2 zS>cf#mDgm@sj>E=XNY>LN8o&Q*JZNWTn|E_`>x;HOHkfe`5%wCvBiz1L*v3X7F<05N2Vc^lx(RB9rLDF&$G7r-W1nY`ArY!W3?r-*6HLP9@Us6tO)uZwf zJ9utCq6bh-Ro~R-*ts)pX&CHY=_3Ykd;IGBJXq!OOBCh!@gUvH^X=qh{gP@R4}%mw zer|M@^fN*^X-tHZnNK>9RqcBlqP;+5R$q-!n%&o^-@4)1ajxEKa@at_Cv}1o6_E;g z6@TPOArXWPGCWi0{Wx_Pf!!wo#e*cVoO1gBYe-VAB zL?1}X1SB2W)qd6Ap`fFWC6HSFvAcA!ojC{-xhbcf$>s4vbH?pUM@O&JxD94_1*_!t zLLZ$MSp$Jbn1nySzmrM0l``Sv(U$$k3N=DdLwtNwG(U77F2~SU=;Fc1vdC-1q%Lbd z(#2Vq8}|i?UayAv6Ojn7fo{yy5`}s>Isa*jHWkN*cWvx_En5M-sx4uW$lbmky9Vuf zxrAr1_}+HvTnY<$-i0_wHdp;~-fM%BcnW1rEyQJma}kO8YuYMT%c{#RBMcgj9CHI@ zxQ91KG?h(e=S0kB8(VTlho3S6s9`OuAuBra4 zd_c(m27BDHWfR1FVE+&EX=j{ zQO^p8@^=UyDPo~9+~qd~kWohm%aqs(Z&nHi9Y}af!ZT?JW!+SU`7XV?ex(UpX>5;4 zfg{NBP!y*d75$c&@ry{r0QOq%n`f;%%sfOKCId56xGFH?^_~@Ws{C3s&ne`7{tHj%P)M1WZ*JMqGcyvc)NNhDiwf@vK$$94{r^ zc{q*Z%JVdP^2GZDV7=>2Y?oLz$|5_0kA^2Ssh7^+KR7Idn|fa_y|_2PfcQ!a7IPt6 zPR3S4-O45-)2vMQ{$0)78!SPc(wZnAw%g09!z(?P$6J3F2sCD{1oxVX&+coirf=^| z)d<(D+`nV#)voxTw61i;Do#}|EBeA&d!_<9g1fi;=3?vzhtr3Q>mCxuiR6ufae z)%!gzPAF73F6U)b|90Sh>0G3Y(3$;yYgT+dzjBxHOY3~(x7r#-zGZ9z>PUD)*G6kn zwUWu3sc(_!Itw@D4O?*iMF?#|=tSlQ#|sW9l>PKR!h0737>PUxg7Z4&Z1<$rcQWa~#j!`$^-Eh--U(eSaW? z)8IpSh)2Ks!Lz5E>_v+oUh&m|J37C6L!Re~dub~BT8|G`=TuDA^l5%gei=MEFvi8p0y!{XXIDP_nlFbpz`9+?r)`kAz1H&Ek3; z{^`P0Ky!N4Ei+^Hr5~o;zOQ5DRrq^HEq%@1TVeOrdDJyZd#Sj{EozMYuH)Ld%BG9w z&E2HVm&Wdq%J_rzf?@s+HIlcAD`1?zvH=oeXF>>z{VBE`)3hGC3(Ek8+A0C zrgFsAFD;UtOqk`X(=kllc=ljTem>kt^mipx*CnlEpkw+Mlw=4Cg(Y+-B2j+a_p{qh zdzXKim!_{!ba?fmTM*TTTRir#dJdOmR&I6%e?+v&9c_Pl-u7{e`*m3v%1ctN=EZ(A zxgMrO7w&Q01fQI{hR+4t`(lJaEHXukly?UND%XB1Wv{nX(Wm5>sv#s?4M^@Vu>ilN z)^gL=3og(0(!$CgukG z&+oUBZ_)(6m*L~|RaaX zH|%}BYhHih^t2-yMU&xRh=bqs7~{9f#1cfVJbO8^ca;5n@%O3RF2Q+0`l6ToKQ=`~ zjYQo0%L%Z!LM%QBNo-K}{hM5>_)J7jOS)y%9q}HDSMe)c3A362l2nq1{h|i?4i=NBsKyGuV~TaWSDH)23KLbn2q5Nl>LKS6Z;aAOpq74tl)be# zLQK8whyAZ!g9RP9%#<5?EasIRgQ9u&Rk@D8=B1w9>@7MPy#Kl7qLzWh!76R{N<9}HsZX!wc-G*oG>tW-dZWY>0zg*XMS&L1pvQe+KKD^{%9@eRhAm-Q$;5%ze zCKh;W;C+?q9alUyOpNM2^gF){hW+L(QM@PF8S;qRUxHS`ngnl3u6c_3PoEka35SK? z93^5`?vVDk9HvMFH1;WbN@;vq%Gth2(ij#!3~RKhT-r|k3SJ?wpA?$gy`Da9aksql zTsp;})7!c;WKMb%mTFbpWuw8WH=_30q;Ig;RDwucCP#6_|6JSbUC+E%ThwbYt|duO zcc+#^ozMPa)z*Kp;$Xr)b-8myd^Ox~pT#5QXkI}y{H1|XJI3$W zZW)nD481ArnTZ(<7HXoxGM{x-^sAIFAKo5cv-fbpw)p&gkM^<>PzEzyKE^@U?V!ce zezFW^!NfK>- zTx-0K-Ryj4u%W0eKXxyYa-!EM%j3e@UC|^w@!7YnB{CvPq0SyRaqR39BHShZ&&578 z6*?J)6xP*Wym4~h1rw3Tp>eD7eRN|>$xl}UcX_E@sF?3 z=U0*0Ap)pV<JiICbUwnY%@=hrs914o zK@ou-DmdETLMt2hl~FccC%%#;01xwmV|mHv@jwNF@>c=~NP6toJ904h9+tO$7PxD> z4%|U>YaPk93isys8teAd)O2tzaqBbL8x2;B%QaNXF;IT*65Z^cBYy~~(6T_B7nJ+r zs2(rkb3p;R&$W6Y5vJ;>DRaTN&^N5|K}sH<+(UH_gUbR*Pmo}b`zLsCcT&t!pwNPkx)+2Kyz^YwmGjQ2usM7PRjK#> zf}tU}+m4H4#m;>BXVjcd{OIFfYRlp@_SS)HzivI#Y^@9ef5_LOb?$0+o-)5LygJq! z4oUK6iJ(8KZrW{#VS2rv#4)#1rV}>Wcs~4?61J)LdKkhQp?vBcJyyN*A!gWgJr|C1 z`AQQuM=zvZ=AFcP^;*=m8J4Tih`GkibBEr>ptMC1gIMpc&UYqiex%ft6mn;f5Ip3BqY zcL5#A5tkiGs4F5{iUp8W$Kv)tQTfowJt*bnX6YesdT&? z<4TD1P-nQDh4gW9Sop*Y1q)7}Q3+y&0+25r9Afxtw%$5^r8j0;bH+CBN+V-fSyG_g#&ix?0! z#%UiE;JXe`rg`5BFE{LfD&pmI?5qL91yQq%`$dX4m&+|fe1+mfjp+--FkA+ySD{>L za%~lJ-Rn>bI<}*ilLr%cmC6`>51Br_!z!z*M3~kvYRaMURO50{&c-dH*Ar})Xfs^* zng&LLzwYGJT$TG88tbXveQf;{xh9Bm8A#2xXW1_9?5ypv-wT-CF2EEhD4+7MkV_>8 zPN6Q3nn#^&nMT~7URBR~KJ(G^X15Qt-%If= z3;%UEG zyXZKJ{OG&HQgqUxGEB+EFyq%@9uX0z+u<;>Fh!9^6>P?Q@N=>*++yfCE4o@n4ijT= zGqK{j`);3nRjBcgiS7V0>g|NY_IBzJObd4le3FlLdvjjxT$;~_wAe4D(BF)d7v_d@ zW44+7&Oqjvt_ln-^ZkK}A_3Q4==kn9^lgAs3d9?FhB50b?wsS}kxM1k>(f3GxCFPb zEH=0CvyxW=P6DA8-qvF9xoHOy+-$Y;o|nK;LaY4m*^jz^DN2hKHvT+PBAfK>MV-X` zBEw?m_dXZ#d0r$YD4v#vH2WLvtroV2p6|~0Su8~ziWs4F8W{(|m7lNjW zmN)8bsi-_5W+yW;k8&f`UjiRVIQgwNV9!wN0z5^BKylCXxmoHw8eD<%)jUF`*}n>` zw{YG%Ajw<(A@QN{l-AP}j?x};2x%25<)_u=vlKUl)yhQmTPgPT_T$+yiP4z5v3=Gq6q=+9*$7Yi}&H6gE z-%Mo>+KeWr1$nqAXF^EF{K9++MkDJ8Khka8`U!P)eGsC`V7_Z$326^LGcdq(|Jd5g zv++@2P^4#$>6+u0OgEXJ#k+C4j}d}5{LULj2l=_(af^^M5fN8XJ`*gsfQOqAm8(mn zsN3!W;lhA-2Wh0EkMPs0-N7Drxtn*_wROwGqI$;F8LwPXyu=@Jom01$8YE4wd>_qE zjnn3Caxcua%QV-|hFAK}*wZbNHR$M`E|pqlc!eCy)$svC84zW;wc0LBSNxHEc2q>F zmL~lB$>sxYhj(Q@oH6Uy*mQ$*K>dp3Bkgs%hgi}MHfH$Gbpv$elO$owdE!iVlx1*e zJ#h;G6Hg*HuU5>yk~l@{^bfvuip~!YJ3_|>ya#VtIM!v$9O5M&cvvNAWTXea{B8c@ zLvQf;=6A}Q<r1f^4VA@}@vv`ocetlhr%3@~)+(_! z3R?DI(`G$PCG%9P%h~BPE6-4IoHghL+}fxFum(uw55Kp-PkWoOv$q-U%)@T*@Tl8% zoh_l>8@Em@@HQzyGLw&3oL}aK$#J_|SN+89yT|24NP9kVUe3gf#LmzX1SUJQR zi#0+zoL{VI5bvw0Q2LeG#>Pe%SSEmu?CJKvyw71v1hseyKvQpL@|u6>f`s^=!^5Vi z4GKXXG*7(kJtK?g{PgA;uxo-FF}$TT@x*uYT5MXlIHajt|2Om}>zc1~`8ej!4e^lv zge}_G9Q3p<^PvP5Ao`$YP$jITpBFvG)IH-louU4$4@)B`r?UtH)_EXv}15t`8R9=$b4-su=Lhn(r;Ty2jzSpT(v3My`00`=W$cP<8sEj)kvC zXTwsiOsd&k$1$(lwRUoYcW!gbwY^?+os|R@pUo8OG}i+k!eG{kscaX4-NrS;mc=vfD@ z2jb99+B~)NlgB)bGitwhJxxtoA|j$nubYpG$YgLQucHxl%IsyT4w0^Xsc=HmUV11E zYo|Gv4v1zjmlgZSJ(Qo|@_LP$k=;j)y4*KS4P*(SDE=$vC~%&DRyVEgs9gW9_w?Fw zS>F#{`24PJ-+-C@(OFf`D(}>ExgW9em#(@(_ z>~h}qslN!ARH6ZlruS&dqJ^r@%E$MnP)a9I1?d`Nou&71wk`=6);#^k(L#zf}Dt>|AK+=xxr|?)+scD87iUo+bFLqybx$sd-bHu%>%o zFR14Ju=ai7%f@?Y_Dd#dH@6x9iW&o@pc%Lad;)xDia@m`r;5vO!jXbQi4$r!SF8FY zAK3vX&CND!S47X>y8FO1)y&r|#rqQIY4WbeEWf`~_A`RMy8Oa~T;EF||%%%?U@*jd^gHqV+Z z9~sNtdiCq!VdX65JCi}__=Cg3`n4!58qgSupkn}|rwArOj*n7!gtEdjO(iBKrv6Lr zMg;(4G6DV@n3RCnuFt-1fhqfSRN|8|>dDvCU1d4&Xgj5r`$@%i$%t4znU0PQ*cFlh zI4ZN~e`|jY$aWx1;^tNd{vbA>mW&4?vw@i^OK5Si3g`)SVjd6nn&S&~>|x zNnqPajZ0miGBP)U7ZL;6x?|f-!sR1U=fjS-uQ9G2A-0rv=ZaJBR|4kszwBiSuZnbB zdYh?zr2hTs83^z{rFbHJ!@}0Lwg&F5PdCy%7GnT)tFWTXt*E&7?}Vc_?s*&h_4LOU zACPu52Z*Z6l%Yo-Q0>Xen!)B9cwN>N$RvF0v8cs#FJKGose<;gz*Yxf>s$c4>VeE2 zD;*smJ&2`JgdDlv8T-|Qg#l(>&!KUL=^Buz_dea88vd4ZHHmGlH-UG{B{aRD_DtGt z8xP30+B^RI8O7vNWmuLLwd%l#dk5ofqP3#Ap2xky*q2Ci-_LCIR;#dhKu>6CfET93Dag-{uH-chJi9tx zJDIgDQv`+{bAY3@5;fDz^cVG~W8c^EXA712M;W-1oYeVGP{fyn5+!w6xgfeb!mX}} z4=mP}9P)m!qE^n2_o4pVeYb$z%NH<$;t#WybfhVn_p5S0&~G4Hhp%!;fE)y)D(~F9 zu>%dLI4z_atjmIP5~hsJ%;ct{^O$!IRY~TR!@$5mNE&K>Eh86gQN1nKu<0q7Wl=8q{*4 zqIk2oa+JeQN5{nA)qcaXo%cN*icL;tHC!hKQJtvkYWS+)*5E>9LyZf%Ktwspp zzAJ7n;pg309J*6OtcB||OlWE-(M8aJm1h1pY(O1dGu(p|lgz>7Auo;kwog{&x-4B6;Nv=UN9Kae%ZE%;RqW7}9!B)>adH#5m zs?zDAQ)`mG({)yV{i5Vb;3fA`_vL^3i)}+ppBcKY1JMr zAuV~%d{C{_uYtqKcDHs{2gE|Y!6iv&3Jt@n%O zmN;Oe<+Y#X_qyIlG6#NPI=V{NEwz~zpSpL+bV~F`iO%@8kuk_m#R))9THvz)ag#Xi zw!6w#6_z*&)UlSWp7NCz=98!CG&h?X$#J4RXm%FoFGI2&Jmbu}&}`$9oBQ_cA6Z_A z2x>PNTcv!cg%b@d*t{VeU#}#&!cq{NVqbm?bmW<5_DeBi=<06)?+wUCn1O6923O)r zO5*X(6%P-X6TSogs3u4Qan>z*7lnmA#a&`!Vran$K@#wOKGh$9S}U~q-71OxCWz_ORVL`$B zqvhXE##i8Z-~;v(Ce@TKkZ2wO99;UIWBm#WkY|hd-S7k876>zA>V+|_5B3?n|5-^# zbgn#^ZF8VdXP_JdN@kTm->Ja9aIs4LdQD}6?CECd!P=awYi25ZuV_Y3{-wNg57Z-i zkt@CHN_MtnnDKb1Emqg_%RrQX%%o>8>Ez$7PPGeqKDkY=2%1Cj7E`1u4!xg>c{7+I zn*OH(Dc~B(aTkI55ip-QgN@GV?b2fgV6L;`#qB5g{o771sp|w>rOx@&^psH-aIgEK zbsARK2lJt#I^xikD>etBt4vh=+x@oP@4D)c&7 z{J^cycLU)<{>w?W{wwxN4T5eV>WUHS3@(UNv`p{pCPx|nr*r3`gynwCk(Ej$Z7f_% z?Oj^#J0)(Ek7Opj?sm-FC4OJW6Y^L~SfJHo(|H#juxW!aZVD7+(JTe}V50XDt8ICx4>f%*n^ zWh`7=OrlNjEwd3=Bb%}H!mCs`t8e(Wx3`9B9c_#)wgxZ!(sst*@9SD{vzXqv0G3ZR zV(V<(IUc9+6KHEAle-%XT%i!UXpI@`*8-s=#9Aso< zyk@=6yg+y>vd=XLUrlISs>Pg~mfzfw41i(jySp|L_h)aOEZTXm0Zeee zD<$9bGk29rl@n(6sMW6|P?%i@IO~qe0`9+cb;*Kbs{p7TI96$ZlBiavH{FArnjI(f zmsCio!-TXD10!PN8M|l6yg+0o+F1%Y0g#NW1EYuK zP>KM*<6_zqF7u=;eX^7iFspqrf@AL=P0ds15ep<&`m)GYJ!CjuZ~d!wTB8cMoGpe@ zx*zUu^%`6l0bfl>LPAg1)!qFhBnR>p6-~_;*T6EMRbqioKjcZ$mbHXXN~i!|L$BwB zUh8oGDu4~b(14(wQB*V)s6JhemS3%3%*ABCCc{Yk9VX5dm;)WPy!Qs8V7-Y_s_$c3 zND9a(@Owdr_yjR^ODM~KC>(Rj%cFs5;c0S)9)9q0#eLh)V<-T3uvKc^xPA1D7MhzI z0!p4k%ef8+Nq*J}2dPPLiuoJZmac#RGC~WOg@KJ7IynZ7$lyh$#36Lz<|$RBaM+nk z%0513fo{)KF@qOu06*+IknAFm}m=r+^Nzie&7 zndQ)o2PF)6yj{{epIbUvVJ|z{ovB)(*vEcPbq1ZMhoP{}5@``A{bJp$XZpyBW6!{W z4&nd%jGBa|G|0QGTksVELo1nGfBk zj1koOFYf}u4+9_nqK)T$_VK+<NnW(r{sPnQYZDW4cV(CIxG@B zZOh zv|tuVEZUo}?F>+HtjTpNl3w?jSn>SrHv}!hE@pv|@-|(`uzN(xkMoxo)-NnD(lVXG zTctj|`X!PLx5wr80#!mShz?=44|r?xYmrtXL%WDzu#>CW;eS8-I+~U`iTj`SPSYDG z=9vo91pcQFF3^%17(xu`|1+a1Ue^yYzSt)(XaQ|i-G6V+WL+K>LsszLW_=YGOIFse z4&<}^Fiaz^t*ZlqU&7D{Cg_B;>oo#&;w4nORm-MTs}R~Cv1l+XRCkFMxlJCK+qde# z1+bM?^)$2tI9n_{g%LmA@&WT}y=7#)9dtrO)4_Aozz?qXn4A8fma$9>Qs(CO z2QOBmsM$DJJ)qhzj|fb@HxvibAkd^VHDk}4J+zJ*{F#^Nm^TJ>MOuajRkw3Rk_M&t zV%``j7Y@f&1epad#>Vyf`QM?t1#DqB69-9im@zJNLKixL0-XqXqRk1P{uV7m(!2g{ z%QlLrL%yr*=~*ra-@_FgcyKxB%D(kV;gS7FNg*Hn1^V#~z3#*I%1I`!4E+b_mIPt_ zE7o()BZ&}^O~$OxT7~}-c&S);14!T(;0F&5f(Ty4>4L-0qbL67_?>^luHM4vPU^#Q zzA4}?yDz)qH4x~+&)dMn-@b7rbG_Zd$Ns7h{?pnYaqTjyr8B2s3N#t|v1gK( zuY*G4wXR78&xMB09T8YJZ$blm$eDhDq50+Oe_w_F7wava9(pl&3<>3??_OMWS_( z{b&cOdbaf!FnLC;_#>Y^4Wr0hykAet;V8d!^;7jtkq-+G>C09sFbxc?W_y)Q?;{W+-WL#+x9@evLp!suNCQ{4ha~M`cHKk4%qaJPTdgTB4TEkxSG-t?F z>Hpgj>o5F78xP(&$Y_E8=Wzc$v=O9I5dCTJgY_vzX#`9Xs}#bg(GC7ONAqdGct9sG zpc87)2^{EznX6x=mQAvjP1$uip|u|HTb9IY?ImbIRJjB@PNDHYf&6$~jAU~e{Bm0(iEYtgVl-Pxh;tkBYk4|+bSQ`Hx) z`mE=BEQyz|POoQ6RF_u1h2>zlCkz(^uAl@!TUd_yEnZ1 zl3l~qjKo14^DSuLMX9rPKO3FbroaKN8KQZ+E8`xF+7-uI1X@MUcn8zW;%PGs;nfI#Y(+8m{9N{_q}1+EydeKuDg{|?48zz!#G46z&#RBY zfg*?~;Bc$kSR1L_RFsWpVnfwF_DH!x|q{mdz^;teOf5qwFq656Iju#zYPJOjkK<@bFA#=5=;)sR6jk z5<|b~!rw27Kg~_oBb$S9g(`3Oebf6kH_Yr?uT#Wvp!jrsZKM)t0^t!;xw5Q9qumW* z{oI|OPza~QDhpIAL5pf|spQ2URQLBR*N~xwU(!Z+UIwybayh7fimtZkT$nXk*aNi+ zOSIT3E`&ntJw-KjNo3b~oTOMM=L`f8rWFbMcmIqO@byW3?1!LXfrnGQIF~u7iR|~r z%!*gyYvT)q1h&23nw9s4qwW2S*U4k_uJ%Lou-%_>J*Wv55)4@aF_xaQi1pCCo$1Zu zLHpt0ISImEkZ;7h#Vdt@U8c*)_71DW$#~mu*E8@c0#mPT4YzUac=kGaq_nF0ZTjbk zh2g6`^hgp;5CY)bQ%9zagRZPf>T;WnP57lCfq3p^B{-5Hr>&POb(H#t_y9PIgwdPFCh$iCl~w z9L;TQSQ%ItSm=n%oSf`<7#aWPbp~4pQ^rKXh)@U!A_yrlVHLNu!(Xm$D!oe`zHvs% zM9~s4i2)Sss44Hl{N80#>0-WlBP`Sam91`tJ^Ti9Mxi3}MpMWfU07J`jS3y4m`WIw zk|+{+yc7CV^~p^?w+4rSYxSZP&F&4~?jry0NOCf(>CUg4k(OP2a*_|PHx))c8Xjoa z*V}PF>hbI2EUIY3$Jduc5jSk~_4O5zm;;*q{r!d6d;aGQ>Ll?>d(wp_?|(&QQ{_oe z<#DJu2`q;y6(uNHBq`CzQD6O3vZz$DNTi)lbk>y-H7->i%Z&Gsq^`|No5svj2|t&u zF8N*8r9!3Yi!3mx!N z+9B1p< zw@}==wac3!&QmGUZBL@gv-l%3KFec#)iPCDw?ZDdYmuLQ;8pwnm?ynsGcQuiT;)$y zkr>oGgK=~}lfK>??PmB7hJH%M8ikWIXsnjAd#R$utB##6s&S- zlPR7MJ&NZV;^Zrr{>HSH7Ax9@O@nwwBFj=$^b7WnR5S2^`ZI|;>5^G6+ZfqlRnr#_ zR|5g_69x}<$}h=(r$cR>b6GsOL4&_WB&5>~x!oNS5D)yDKFHamZ{iCYf-_#vW~i5*TcR(5C*ZW>DSAQM<(Y z;i@gA{)CrR{4mR=&SNNU&>^$K&fz|Xxjw#c?*3)1^&@yJAap1Z2}MzAqX^2kyRcRu z|5Vx{xPcHoobm586X6o~O}D<>6vU=}vGnilpewdKfpFQIw|T>}(CE^r+m?L)%!<6f zMeor-(L1y9xr3Um*Qorv-Lpq>sVl04AJ+X#Z^z4}gDmtjM9QDWvdqU;t2D>UM{MX5 z$hH0LGg>>OQw~jDu6IsV@Op|-(|%8L<5gr=V-f`4{l$gS(vNYA9XI_+J^1vXk;3EW zNzJVJ#2FclXOE?o^vZu;BgrGd+f0zYPtMkgqA zzqy-Qj1Uw7`iN9=gI|%4<dPjsCV6NCiw$qE*}6y~ ztv;N}#M}zN2oD5hXD}GXYb7SznEqT^muLijxuT2o!ZCu{H{hgOh z?TP=j#8ki9o${B4c9a%vvNlm|EL8Dwet*XAxx>FHPM` zzu$(z-$a#+tsvvoIO+)B6@0N);P!Y{GpDQI;e5lTUrPv?%QbMquwE8B!~4;mZDN>d zpsz8?f4=nk>52#2Mpc(n^Vdt-u(Ybwfn{eUJlgTB3tl4x+G6+|#!K@+VUSt5`dm*o z`%ftO#gOxs*%#T556=+Ng}Bm%C<#iH(uLt><>vm<)C!c<&(wDHN<(iOKHe&e!JmJG z^(u^){w$rB3HRW|Mtnp!cY_s_zmirPb|K1!)JA0>bo0&5V*$;qeARgZ=JYe=h2kX+ z_#(`Mhl(v_v8suh%9wk+fu|12u^xI76aF#@mo6;~SU!y{g4BQZi9up)otq(VCj&MZ zyanOigs6>aa23VIAl4vhrK5u#)m~U94vL}oLnJfXMtjdL7&{6%pfcle^Rx)w_skNM z61?wCc0w?NA`6wQigXk|5a(HPtSrO69{MeIRhwOSEBtb9z;jBOVxl92rx{pDfmvFK zNt7pfAyt#!+8mOmEG-V@3pteBAa2yIM1$3UWPN_5Ts&RiS4nbSjB!_y^yBJG*(}8q zA8nA9qD|RM6yYg6ed3J`))JrC=V5rQJF0s`k;x$9u^c4s#U>lL6rnXJqmThxmvfxp zd~&QUxh(d3R&c$J@IUEEs(-z+q>Z}1MRU`pp8XzrtV>e5Gl9X{H#uP6&uDA6d2DTSrcs_b449-yWbW0RMb z=fx1_idQmBP~x9}xpFq^c8f7fIV>;}X|4qD-u*X8`<@B&Wvvi?kt8Uvjjwr{j(8t7@ zwxyzr?LJlFWoKQHVp)g~Ns<)to;b5|<8cVr5Xo<;Q=T8KmB=Bj&o7!uc6T8~6O;y} zsXblhhW%GN#>LOsQLGbvzXL%L)!tnCPHZcaV4V5Md2V&0i>d?sA{WkR%1#(D44M=) zEJXJtTe4%vOO~9xKL^7DXUf&*Sf4RbF_wwas7o*Hs5vyRZyZL>cyb3BUnza(=)|Xo zk`@t&NP;Iu-mQsy!n#7ahDplX$Ak|cvxSGfWGD2Z)tu>hw!pV!uFWg=iV0%MRo)_6 zGng?>yq7B`MDijh@eLnn{DySozLrG`XYF4qT_|IgNELk9l87MB_Y&JvOIRBBj8ytP zLa3S2HTQvN$?aCSX7J2+@9Z&zgYe=_it!gmetA=>&)&7lyTg%C7=+N!%~W}PP^98p zJ7Hr8W}7t~FlddH*%x2+6*U@D*j%CK&4cp`Rk#46n62TCl>ci1I?V*=v~|?H8C-p$ zK*}6i8pitUNW=7kQy9lQVL}Xr`pU+8@nU~}nGfA8|6AWVaxyV7{SH!r=e^-^-j{T9 za}zi1?&#>ql&*B#9fLtDv^>zxLp|Qu*f?CM%*n1cc$I;96M{}Pq0DrK|6ffQEzP`R z6TZBxEuSGEr>3SRZrZy}(>Xt%)ED{DkVR+1Z?YqE=yQpky7XQ4ozm%KcR6|t5RkoQ zJ_<@#nJA$H3@Z<-d~A#^IQM6QGAWhQ1q#Z=YV=**-ILjDOjNvL0X;opub(}gFGtJ6 z3k#dqhcn9mu|Y#@%K5}YD_&`Be>WW~Mpe9P4Yp>c{@4tGaKXu9JEWw9PP9Uu935k0 z1ZQ9n($>~&=ADQL4Uf8fPCN-2S-|b>ZP-|tzrPlh%ZLu!)RhiKQc`MlzfOnJQ`6cc z)^92sf2hf4-}%OwoUP#L1z?s~gC)pDOI!RS2iL!g#~LHlHjQGC+7=xF}u7 zFI`ygv^J1gYWB4ichKCb#3v^{B{P00D}KqqOhz@0)wIKk!E3~7?gtRrD(~dsT+s%x zV7O$P0kWHlT;EWp@sBVB5)atL?@!f4_mWcl=4Mq?!#_kMUfNOlM0V33v_gCt#(qz z@`m>ZVFkbK^xA#+K^c(uV?Nyu8*N0q){eH$rnWLVroR5DL#dO9P@~>a@2w$v5U@UO|+XL7417Ai&1j_kf&Ui9gJRm6Od_oju-sSv&r>j>~C*4qehlVKm?94sCAq=vj0B(8rRER>)j~hcXe%UYY5danI;SNRk}9kaCF!Tgx?D|s{X_yEemg{K z^Qt#y2(&616bk9GDk_+Tg@u7X6p~p2Cv!ekn~oDmM11HpjMC9fzq;I;wpwXQ;9T>< z@Y~uldfnDlj{|yG6oL^91-{NU?}yumllH}08Lcg!>%&C=7vK3kuPe-_DZo$NhEeEmGcYA73XZ@$IOs9FF(UCHh)0V;M z$g;dOC?kWg+2x3Yh6diRI~ax4e2VP)=uba5!LZ0~fGdpckFkO;k8%G-Q{B(oU&Li8 zuJQSYN&*q?+*f#9PF99n+%NtuR#Sd|i()dC#(lU{8@@A|%4#t~^?dU390gX1iiY<2 zH}ufpph5o+eAx_vUjp9u6*j--I?KOQerrBy`-6H23oE}KQ9D9_wns*SFP7UH(vnNq zt|3NpX-JAdXK|U8GDtF|EvT2r|82HRC-rlV#Mu~cU=sHe$V<0%|F;lsr=4#XtBk|9 zms@XE!wU)uj9B(AB63-Z44Z<9fH5VOyt8#+4rLX9~F1OOgd z#hIfA*;LP^=#6Fjc=4Oo&xKwxvIUGRBa zjB>IX4WQ=B|B{xJduU8+@Ix3zb-n^E9;vg&lW z5L2jJ0LA2WYqv9!3{dJ9m&YZQOd{RJUO`4aSm0|?y`H7ZuxU>S8W|;}m+4mbAiUdqHk^aQfu*E&-?0q1|YTM0^=Fp z??nMh76l*&gl(73Wvog9#vn zjDjM6c^ZU+>oC6@^!I%~AVvPaBIW;ZwvPP(s7`{odQHARw(Zv30s!=J*)7BXyvD@D zV9ERd1d{-EYogXteR%htnwlE%15-y_T$+KJ$qNA!Zr&{{V3~`S;I?F5etrqu_5SvsS(B&If93&-a$;KKJG%q@>&+ zEI&mN7_WEuJMB#c>b82=pRNl-5P19}CUD1GagQi zjgBTtV$g{_C~wy#@V@+vhL$Yg-4qZQC?zHq0Cq|uHZ~U2c7V`hfhds45b)lbDO6^$ zT3`wd4XsR-aB-<)vtCjGv`0Zg0?0QuHI)`5MFO*7Ur5LRIIdi&IEvWhWNHu_vH5bT z($dmlMkXfGW@f+B_}rDm#5`_}=>f`Oqs9FDXNJRO79A2Io6I5(h>n_s#B#puz0lvy zP2-p6Cx?D~S4nyKAK>*guFr{d8rcc#1M_;m^duw-f=@LqkLSZABo1rdH-kXIkdu(O zySsz6|79YuEV(dcdKG?mH|}EQm5RH21^Gexr@9 zz(l*J`zs8znA}`4=G0LVk}43U$vns z9O|wf7Z?Wd@mr&s;x+3y+b}5Qw|cSl#Hf428QTWp6a)sl0ug}H+PYcueXD=5Gs&V2_bF)ENTFZgh)?Mhk=1P9i+@yi0mi0{##GM&;JV`rvqR*%^$|5rdrQh z&8h?(Rv#E!FVPMAA`AdEVWA`!C}fy`WvB6bCZ?s~rEpm9GwA`lJ(PxY*|^D3z>dNx zxg&r9V>x!G!G7}trwty&IR6b^c>atf8%$ncZLndVhBfehYmdoJ}C7XKR2$h!`X0Rlu{ z>};{R7S=A8=ksZj;6Sm;2^?c zqp6%xa2OP)0M$45_6C8FR)`|tm&S|Y4?-avyFJ@<-~HwK%921My%q@IjABw#hfg=U z_dr=bY8j05QKH^vh0b#7n@N=ih(2^o%$`xswGp7hWYQ?1zZZpVoX>Z3z~`*usF33| zKC%ZHBZ6BIagg1AIRGEJR$j|~+^_Fkp@GP=2q9iZ`hVX5d9D3?yxN)yVg)GX&R?#p zgWwt=ySK|p5tG_sVYkDHmyh(1&Ru~nUQA|=z~sCNFfG{9jodgr(^0?E+) z=nab0JHTrYLo3_1PEKr~blL`=Mm>EgJ@kptTcw0nPd%Wy_!t|kkT=M#{yS+>J2Nx$ zveUF2#O29a22f^DOxn-548BN+G-%h$;)%OE5yNZeeKEspU~vOUdOiUCY+KHPZXX`P zCEq*TdH#z&d^wkC-0b^EZrYC=695BNEiXRL3;jLT4?3w`Rl+fY*$`HmdbkegPnY9m zjelSK=i9--YyNQFn|k91P6reIBR2Lf6Tf9rJM>#*x~+3pfOai6tDdh+Q&YnRKmwAE z!8a!-huh`w3vp6Axc(Lq$C~Z)c@Pb+IOMP;+0izv2X5iRdY`OTTNcsh|ARP)0m=op z<_Bsn1bmY94=0pWrV2hw75;$oAk~|;_(5i8Ha`9W)vMj&c6sf=I$%tn`#nk-zUvC? zcJ?_2Uxd|nCHQsko$nqNO*0_1H_mV7v}^&2f8%!CsjyuW2)<*f5LUqq2>u=%d|k|2 z!}|MC1*hMD)nue%uS(VGwy%=BVRt-Z{PFHWCO)4(sr^;|alwX%h8nCiIje6KPBlHU zrwX4eenP?RDSm?yzPbvE3jKyh_KDE2Z*Uly9jU zAZ{G{c^)?g1736hk&oqY*X(uYP}X{_`3mEpc*J2fiP%noN@|azRDcB$^)%o9>?}?R zg0CKI+G~sey9cCWz@il()^9-FCoFBBfU@s33yamuDQbkFA(l8S`$|3$7I0s z>u=_TRaUwq$Vjipv;J3!43ziT zth(M}s|x^kI<2}97Bc80oo5#i9zZQM#1|BJw)EN3biG(5I0Ny^UXmX{tK^YanW zAv#6gSoHmNRSO8Vbk3tPFwi$l@5y{*20^Y(K_+IIc2CB%x*DXmwDi9CpD0*UQM=$9iD7J}*J?SN~R`(g`|1~oBW z0Huz2N|Q%HmFEKffod@6m?4aqnArdD@Q_9BKgJ}>M!X$%j2Buc3@-FMWT{N*|9E37 zO?i=HpLvXojO^AsAisY7Dk&#NUtRMGbTkOS?81z}B*Og%2}6?yUt*05ZF>1)>PG=_ ze+NM{N#E!UnTMH`mF4tr!aq71_59)j4Q(u)U&h2FzuWTZ=_x$&1t3%waAhJsFn5_J z)dH242dpSD35lsvEzU#+9SiQH=xDz|qpAi(27RDE6QkT;C1+|n_A8LW+x2PYmw|S| z%gNizx5$}rcUc}4lR}-l-}Me2{_XlEp5H1JeR%tcfPf$%AOIB)?^HHG`@d%aB0}^z zQh{LH=siLbqAV0`FalF z&FoFozunaLNfL!R&kR}=N;yIAv{x-=CVudCSaASqt^)ik?c>wd)7K}hshQF%XEmC_ zPHzAzCFi}R+F~&=u>s%b3qmxsyIsK-YKl0irFvV&YLn4ePzA%Gpd|gk=N*b6{bZHD z2%HR{+JCR`UG2}xJl}4jn6I`prh$YByWr;LewD2QVee_f=&`=X8UnoeExq2cZ5#OD zfbIJ3rlO+jTdO_-f+J5D(4e8=;cM&r>Ua(}aRzzGjNe=6! zTuOY3v$Hc2hdjaa?AOcC*UwzJ03swF_#8lW*O*Tm0Shp24CMop5EL}@_VdF@{VfZp z9U~yi-_l&@$Fto}ejoAh+&w&|GKHbRl_`Ar@_`}_&JSSE8KB(?gKk)G0b)Qwa=V>o z8b_+Qo&#LA2kII!1*0@uloc$I-*h~koR>Eh)H{nud#@HSVNvjd|AgWn3SYGVzypl1A2W#e5KsO!-GdAiGiGgBIxqc3Akw8z^38?yaY^m z!@KkC+=2qF<$pWd+m$veJeu_kwd_T&b0Ya3?{3gY^`E^)o3oUbP9E=UF1|DCcR)x0 z`w7%SulTB5Aiupe7T@alo^VxT+?$xCQRz{vyy-khnS~{rVfEmSgk)9) zD1lLilNfiW@?;PR_=els6#M#-8{@5*M#jb)dwWtgHVl=Ol{2MU zNg(cqm(pQXqly$yKsqu#HYTC9wY7oL;qmd&Y$6j9L=0F&Fd%YEWu;dQh9b)B=NiXeP^Ol6=>}fkA7fq2Xs>eOuQg;91}XQwj*A&&;U2@)}sg&~rMXcAwic z%WruV&5h%O1DUU1NdWj6QzDM1QMV*gnLU_}#e3vsL&Xh&$N+~HY$^>;9gN~g!x+Vr zo<3u~fO>L&C6f^3|A2~yj)8G@byfPW6TE?XCFKDLFzl91jD)H&4s;kmx8QQx zXj9mK{1DHXpw^HoO95&Z&AQNK7p=RJV;jTwcd{LvZ1Kj`CTBCs3TOKBWf2c|rb|Y~ zI>;(HL0WP=#lYlaGJrBN(iU*3O$zn*k5kc9mUR8`(4Nb#69UWoCtC;6=#`O+bGuACn4}b7N1nu1amP82p zROyc+ee-DnrFlzAVjp!TG1J?BuqAJL678Bb?Y@r_fwn|~G%wvI!<6Gxr~sN=I(O8` z53jdEW@H_O688ts3_)2$znI+yrG%%}*Ohm_vL^V5wwGY~#BIZ){l-Y=nZu+t`Z zIpUPqZH;{Vmf(wrvQD61pFwycpYbC&_$_F1nS!!eJ>}qiwWL%+KB6})&Ic9G!#gO3 z@zF%Vn<|pEG)CUB!|26S(_y)An^;HlUAkQgFMeT>XGXE0a$JV+XH7DD?9Cy1J(6sC z26QZn?D%WT+J%84)#6-`O%5y0^Mg@>&u-i;2;uQ6)Ohis{++YP$d8SB?=gzTrcCV# zIeKkqoJvHWke8Pp)q?8qhnyqJiZj#9e~y~`rwcJX4OACmJExh@jpJ^^*P?}=c5F-y zGDs1f6r8 z!koS#x;K&K!UaQYT`Q0Rx&oJ$b5ZjT?eg^!D|G$U7u9gr2s>g!a01JB#G(QpMFtLt zmuvn}tUf;-{Uv3nD36Mql^8NKtbIaeMEYMzC~`B?EX#|gu?ll+wgs# zPs3XAsgm=9Ub>dM{O_jlmPfw3%}c`bslKG#-G2UF!~9?-=*Ej_UV4Knhiaq2GI9rw zBdd*2VTExe#(&nGG^;HWilHfNQXs3zUme{vLEp9o%OU63DjK;Tx=3-eu&M-jvcJ_D z^pj|4mJuqglF90=NQ#$81YOH*(I5l~o<9HdXMzq*`@OZO75&eS?9X(N{#&_!jsAcY zHCjDtfpb3G+zsAO8q;U-^rHm)p5QwdR=VA@m-Da&WsNmO0;@hjt+~Glk4DAl+arh zrO-lpGLQ;As1dWNRM&HQEq_oU`cYzxxS^|=hN`JS(aV^1>Wy$)_U5qo?P%=!0B;h# zw#gOij>h;phqDW3!fL9;p1X0%3h|Rq7O}|%)sVE`L2LNW={Z$k zZ4nYAc}JufM+K|Dz#B@$(N?Cq)d8!|8W*;9s&=!y$h68~_VBP~auAV>BI6gU z6-IDBN8OHZ<8WF{Cvxmj&dD>_-_A3+_3Edz%m$eHx+UJqFx=PF8=RE+$#rn88|d@I zk5fLWjwT3wPC~n8YNKZQoeS1k!$n&YW^tqTaAh%P=#jB!g>a;DZkE_LCrVSb=UGVY(%uDdqT9Cj>5o?}6ld(^IIVM-mXy4q5^1BPXyA-6mC zl$9W7-)F8MX4MmpZIZ&l7@%aL%i=N*x8p}`m^)o$}& zu}*YlwNvU~OM=hW=XUDRon0}7eT4JI8Bf9IFo8CSW{p|rNHXglkO^9U>DhnuwbKgg zFfgl*hW)0oe;;4UoTWM0V9CNv6PBoR&)WP_oaQwjeub27V)iG?jYi=I89wm@=LGtt z+xeN2aU*EtfNtq)JL6TNgZ9^8mG0V=MJ8XL<*(#u*T7=;l19HOnmMaE6 zNR{r@J>G5xpC$b@{KWOdi<6BN>8vU0q#9TLUp=YwG4->STNVG~400c{aCqChoeGHus+odzLh^JRla0 zxI03F3})WZ)v&)N#hvIoR!FD2l=4#3#R9l!u%U-=ceW4}vV-_Dv6Ft0)0~h(A#PY> zcyMq7^bB7Mp3d)Y9gml}p`f757OTjCeMGS4^FR*@3Q{JfXg@!Q=d&nZVB~cIT84Y~ z?zNW%AXb(F`vUd-n{h$kUjF8UB0gQM^b2(4W!n#W$BF!X*hQ*nrUJfiONq4vML#0Z za*!vIHz!q?&66~791ab6szXJaj%|iN=`l6T>Oac*Fc@D9#E_DakwvGZgoQBKtqZ*x z92_>wk`@*;z!-12Ub5`z?L7l6Nv$7ppheqH;28nxc|(?DFp<5UpK9|Js8YHw6@I|5 z)Z_^U^3-9Y>kTLZ>3)dX6N0qe~Z0+9hh5aQ-n`Kxa#PdLdzM~8-i;RjG| zN=iznXJ=WU7W4u=r$q?j{^t$=+N}h2-AX*bayS2$8(BeyRlj=#J+{*>1jg69 z-SeZn3?-BEzRLCSij0*N9WcT2fHmD~T0&!)yIt6*zRj6tAygR9tW*S7f%!XXC&j2O zWJFnd6rvCM&03!zCCR~+Wqy|TMmh=~1<4w(bT{fTM@0deyT!BFJEYq3Mc%~<4!o5P z1i|)>>xQF5L$oWB4}Z+*{-aM!bg)_V1VY{czqab#BWQM^5)h05dvh2JJxIyPiBtDZ zD+rF7W_b4jvv;x1`s2K|BhqV?`TYD0>g$OL1JOTl@%^U?8j9&lHCc`7R6hbdE8~6% zL1$J!w_~9~*NAI1T~L4A_yg4pNtj7(hk5E0AHzrto;x4TT>{3efo)N4_YRc9;dgg;dn;b#&|=8XHbzy!Ivjo((&AI9g5L zKd#M3I_;B2!3@V-wkAVPE-0u6rV~g(r?m`E&`10E{($kdIDKt)fa@k_U>Lg&OwjqA zP%u$c1XWcfC`xIUYWKFwKTgP6ry&F4IThqFvjFg_G6~McWatL!gcXI%pZl>2b z28$&P7tnmAmdEaD>hVHTMr@Ic>w6;_lJg>;V^95{kVg~7XBz&j{gD7A_GBmN zaVgX7wgkH6+Gu*pdI+Yh3mAcx3sHz?z6VO39oNn+1Cj~OXrgwaqj~iQ@7lFuHY5x9 zj&e%hZP_K9;l^(j{%!u`TA8_gqt6rZS)gCiQr?>QNj}{O+752iV_kLKYqM`AGP1Y3 zTYQ{Aby2#Y=rhuiv3aR6W(ABSdW^3IzAczKx_VK7SP?gBP%6SdrMAOgvak_^q!;fg zBR!WUUzV{T-iV<7!p?@x8*di^aB703f!vTM5^_ChLGMF_6@-R+o%aOZPcOeYXH94( zhbzhK=enblTw6CiAA%=Vh{n4{L>=xLMM{GeVy7b)Y^3R$gLA%)X{%bV%$z12O_>k0 z#9rv5MkO+lxQOP{L8JXq(_k{;{^n#Hl)k^BFp2^@3RzUX|CoufbCnQpf^ZvkZsG7cZ^T3UQE82@AO(f6ld>v6KlCGHqjgQ5?m z`!#lgCYC6OzQG)!?Z$sL4zzEZa2(*~(TH(CZ#F6snNjW4{hjE@CTr z5ig=BJz@fRoM;E$=;i&-via_oPTPKMEd|xL`Yqo)3RE=_6$TWxQ?(Ne(&I;_lREb$ z@iM;MY|H@9XLk{WbTX9_qBcC{Zw(Dxz+veD!vYX)*Ndi$^|pkqo;UfgGXzIVvu!4} zw#Jl(y_7eGSBS-Fjl~!r2$?lD!{)YRPxNANMT~1_>y+nqDio_w2y48UQt=0&=xr)!P{oH z0R@^rUqO!$ShIwW_Xp)x%MCGLEb2=@t7|7qM9_|nB9yf8t}cOAUb3RI^S3;bQsb~; zb>m+H&bvm53AM6ygQ8;!xb(s3$b%;ZK1nCYzLdi+x(wiM1DCG&T_il63Hr2M_ z)FQ$o#m*E-BWB!2=;@9CN4-2iDevT&Gme6g0PP$d7&CCo8*`0;#{N{5sfS%XhVJ4$ z;^FRikb3^7aE*+Xvv|h*4+%B36mTlHK^r&Wb;3f9kZ^BvlhoJWC@5%Xzn?G(H1LPP zv`t#Im_wa%IUQ6j3oUU1o@fKFjB~Nkb z-fqi1-_EehU>(bbUa2EkP8gjtNRX$H1+|K*)X}qrTU=EB9 zG|)jm9Mv6+Fo=m6feA1ck4rQ6vtDfDJBOoEGGbz3Fv*s7Fhi@XQ$8XsNe=$Zh&(II z+iHsm-&0^c9DX9qY~~ubhBcKJw>6GXpme!jsn45Te(AaV=)EX60C9~j;~kSB!h)CR z!+nMH*8|5)9}@ z7YGIUU!I=D)LPCJ=q*sznP5gCV1#Yf(1SeRI{RW!lsKT7f|i6i*z!sM_E;>0(zcovamBXgJ>~<=DrHc$sA1POXTF!SV4Vj7Z!; zlW3}F!YigYA)cSIpzlXUuUUhN7LzBFGz8|MjQb*R&Or{yybcbSn#xE>1RdNt?kuY3 zZ77;9>ENt@o*n*Yf^y~FRu7(38+&)>KBzo89$a;{B;#Q*+5A`p7gx4>md8UrX421d zy(MwjJ|4pNPkOv(zR2cWvqR#-k+@S=v-u9w*{NHLgy{+FZ|4T?E-wN}?epZZTJsx1 z|9wr@@IPIxHjR3fw7PB^Z*cfMYF=Xos5>eF0Rg1~dHlWQ#%eG}CLtyU{Jbq~V(w{z zA$^k85xX7wng||R(S|=cExHBES%nS5Zz@XNWGP0aduM~Tq=OAC=~WmR(NLng`uX@} zk~m$r=X;&bF&#+O9dNN*5wvzNtwwj)=vqLL&cabG>jt=GZ@$dKUezZH+P(?;d2Tn|{9u-&q=$_>q;n+)X=$3K`QTs4Kh zBh%Sx5paSwT6R%KFc*Jy_&$%gA=XA?dlnyQFdg-H{=`9C zeSe5J>F;rWf_%4{q0@Ek;!0Qdd)FQ{_ooY7BVp66wWsK;981Xp6dtKkbqhGwXf46U zSqCYLa0;x>lN-J%8+3D1GDjh6N>(87d{($)=^-{<^Szh4M)y!^Gp&bKemt*e`D3|GX|&f$@pZ% z(PamR$I?YZIK`7Vtni~rwFX13Ui9W*KYdaUgNIfb;R&&GdR^(Bujj3n%)(7wDX>hf;kl#QDJ@OCE(drT+Jz4G+ zemJk4IGlYg#{7YF7-LoS1^fBpL(~v$s$NW`Wgphm@+WWZA(OY6pww(`u+5@UuNQu9 zl1PPNh(X`ZluI5pxx+DHlEjam{=st;R*_ivk2nim=_$ZdHC2u=jNbqQ-GMuzc(do2 zDaY{>HxKPXr+wRUR)VLeULlgFXY(3-0o5^{k7L~E2&~&!YKbX-r+2l|Y)06*8mBcx)V84;j4w}kIQCb>wo1u( z8mq2uD>|8#{`)BQxpU*tPR-psb~sVW=gaRjM4{~F`J^{5A1Pm+H`W4|X(DdF28jRj zeEyU=qVorR(9x*TP*iaj;KoV2rR8}Wn3sATAm{dde%wCYCU+{1{%iK`rm8P_NFTp1 zeKw>P>mWj6e+X6Fz0t>cUcIq*qh#ke?E2u?!G0%UZShe(n|VDz2JRIjUeodKRmSj= zcTQo7ma#fd4$w?Ppl?Oa#H2`p<#nJK^Gln&7xmaUlodCSb#r%hHBfM&^2+|Refi}W zJkQ(m0h{TNpK$x8)-N(l$%Z^yE~?4M~-e!R+m#_zfD&?{r;Jn`-5+Vk$q6$ zpmg+saF_6o`nh~r3sZn6}-9*4lkZ?NU_k145ErE%AZ7 z@MQFiL~^+B9I{GdEvf5ba%y@_nf+K}2WHk!Q((+T$)(K5Xjf`y$~bnmrqReVg-qRD zGX1>aux6-9nOf>OoK{B5aB!>vi($_$v6P8?Z$g^nw+_3ZQ|=M(1Bc>e`pU+)tZ$U? zqbAjtnhV7fxmM+Ytwwugd9g8@0l`wmk1vo_O5-nDq@RX5zmp$Q6}|eSQ)B9M+f_m? z=2(R;H3LpDZzA6eoSzftiCf0{F3C!pAXDe`#{ru<%$8p1v4(!J9;?vbS;~e`O4@{> zaBy$SEqU4JkN6qWZVm)W95(zL?!_f$NEGHAh``KvkvA}zm~K>g`0DU^LdGV4V`3v% zQqM+*iK#9~I&lhN4%&%vu;GSgd`hF{2S!Dx-_2~mVXux5FC5#{N(G?6V^)G z5bp`+C$uIc@Zl1&dkKa1GtW+vo{5JnA{c-o29|^|7|jEdTE$K`O1*Y9Lf5mT%Q|0F z1!y@l;(w1z-i^!T>QBK`+tSBc21h&0^XGC{OPy!sttr^0!a;0=BX?OwyT=5rH98%tsE2MHBMQlS?a ziNE^5b$vPAg{tefHtoN~cQRjiDnBIbNSMTx~hYH)y@`xvTF3R{X} zmS}iO*~FcNiU7q?z+Yo8<=WOAdVUfjA4XfgYG`Tk?%WmM9|?I~ zB3|UvWlu7Eck0sc>Y(`{RoV2-*J5dY7ArMCJEb-H&x~l-_iN#;rW3%-F`1`kaQc6o zL;IN^p=g2&nQWf)Vp@Q4`G*m_hNjZ}Q7^9GN%9DZ^9#ynt_i5^TYGCPB&Kk)U;fXB z2+vv>-F?i$FFLKb7c-R1ySs75=fsnYeq=91u_F6%WV&Q?ma^y0oY5-f#G!lKWTsou zZq&hPEwP-}RoNykuyS#mW-bSEY{gn}`OX$oEoFim&K7@9HdVb~u7`NYU>=`j%8jv| z_!tl=o9J!D?dztg7<}dJs5VdupYG6PTo{Q3NC_Y^_-=QU|M`v#I$b)1K*B;oc5HTd z3uU=FxQ_6upsJVJo$ynpEQnF|;UBFhWPHl3Wg44$*)>6P`$G?NeV7k-0wt{5otlYD z@hF?VWN8Fh#x{{HCf@n`b6_no3d)zJO9yCrc?2hH23aR*GpZ!r6uEPJQOTBg(W#{q zDUTP@SP;eku!S5Vm&j({5fzGJgD2v^b=H*d-E23)%#&=Dy>8wF?A1u5^8@p$gUl{H%_& zow#b`{O-+NjDD&vCi`D?@U4rl=V#x!nm$l{!h>_AREeh%iwVNyG9jpR+t|x`cgc#D zX*uBUlR`AdW{Kg?UTY|f(TDoMGv056?OWB<@8r0`*1p9Vw;-O3^2KUv&UGjmIMcIp znq~dgmi2i(#oVdCGX>f_hwpnMZ;zUIsGQ#hz-FmA49Me(jWOILuHM zyPa91>hPJw2nIbmn(^)?N{OXJXQeN(X(_^A<4nkqS~GI%@THpKmCa;Ya$AYFQf10Z z(%OHH-i0qd`p^|l*fXMtn@J+2%$^l!tc7WU&cX2I*on_8hh}u4Y z&(bK;AxJk;f=HKiNFyzvbf+`|0s=^z9(QJ=0qq4K2O(xWq?-v z?fIjD1WX}L&N&B+jEv|4oP0vQG{hEe?2}jM-JOBwWH9oF_JfBA8Sv6|NWFVzig>Z& z*>o0M_oLe*g&{rL>Nn{wpFrf=9Pb!&FOEtS?a0LB&DU3|&AjvsGxZVmbx2NiN~y0Z zEMvUwwgLnHE=l*+rffS)`wL!(h{F+WY%{e%QMZ?&CVjKUEfSUPzYS+6?QG^;|5PNh zh{0*$12!!)q(8KXrxm9t6&fuhMhxMn%pPdnN>KAGX>%@tyYWfP_TRoD|I3t79IL@f z3kyfKTl`=69C(?DcE@Dehr=TbC7;lhQu$hh+r*rBl+O0)`H$bd9f-{N7Bf6sNfMIl zfR^@SrX_xIr79WwC!2XrlPtxdM z24tj&5>He41>5-(;=R@G%Grw+9|E6AO78djlrO(lSm8+-jCLky!PpeLs~(qO|HU>t zwl-BkX8)Ya?+)CWl_hNF!23nk{Od>Y}4|}fq`RemXB|} zM_eL^(4^9#ggq4O{5tEnrS$A;>CXi7jk=akL3WNO;P_-U{KWTTgXm2Zz@vEd)&9n_q1zjeQuaxFJ zPHFc2UgF3(Ag`$HSeKnpqrpWMg z$5W^zQe$fIKS&)PQ}8^%IQsbDGjpyK=|@KDKx&KzDK+sNYFI1=(kF(u4+Bsz0-{T= zu5Q)Rl?yiWo77wB;UmZ6ajx%Q&;O~nPY1QY>lw3AyxqZ{tL63uSYBkOTJL2SP&DM) zprJN8tZP?|yulcw>|la&vKmMT1-QD?`Fb9Uq@QbgD>=B5=^Z2`dF_-$HPx6MJ(ga6e-0w>E+M^kc< zkT1FG(Vjcxr>jJ{>dQH$lik4^F@DgYMO4{kX;2>cXf@7I~9mgUL2beiyds>!1k zejAbqGFX28uvuelu2~T77?dNwM<~Gqt3d9+fJ~q?8UcL_E>iJ_v3JB0SZD|C%>6fL z(0**okJqHIQn-e?KT}4bz|0zk3h_4&7g*TMq1XGT3mZH&S=|&l=)>_LrABkujJFhZ%dCuNIpSZ)}SUM&;lWN?zlZI)g@Mok*lGC*d4!_uHd6W zCD|c%qY%iEw|_moh&<=*_V;7i$wm#itR0=WnqA{V8ZzW*6l2D|*Ak&F^r>?`eu<_J zX}ScVYI*z0oka+-NdITIjE}fO2MUdd*!{X~Hnk*wZdXh196R_{}Kfa%Z% zLpa}uxRjXC6qA~={!+VPk{6pM2#zl|KuKjTeN%WC*8yO9bes)bf zfk|p7r2j_HQ%Tkk?6TTa;B0yE{9hJ*mcIQ}>_H z<&(=@`Ob*7=a!-`ve#OV99LlCzAI{W+q@l2)^AwcSBdO7c%hr@AaQe8Z-s3jtOlh5 zCeG`>pUvzp?in|M1fj#O(Xx`7xxG$zgzN0@EF?f>`b_+Wf1tv zLzZy#rDvcVl;)aT=+$X*rskS}-o}QXb;{D!plp{IKgZx#oR<^5qFktr?zn;Ez>VYS zlL(oSvfR~_y}joD?#r5I#jhB)$U2#blJ*(XosONTBxmVMwYH;f2lCSem7RY_USxNz z$|sX=j|8#5wtu~IxY>u-+z~4FKdtTC-yuC-A+tV^@&1DcZMuGIPWSygFa(a`RObde zoW=b`m6es|FlFp_8G9bVq@juT6Ru=?f|M`Xbsy;w1_;%-)kP8>H#p_}$ntS`#+>eox+|@sdeYS_=&R{d9D$4tUHPUCvu5Ip&=3D*t&m-zU z!HbEfXR}Y=I*^44A`}{@hKRnyMEkM_REPCHc(PATRGs(epGm5mMKXD|O~h}PyA_=& z)=ZSOxQRE?JZ=VUxCUF~pt=&BJE#1RS?t4d75+cbrYASb*O4FmT1lpaFQS)8b}i+@ zvWeI^(Wfm$v_EOT-<0h+w~RB2HQp#HK_k~kUYBh) zE=D5qFoboPgbiC`B1v{$oy_Da&ig( zVALLQ=$pMEvTG75OZ6JNZai$$l0(@&^5w$A5!(H4+cDZ{A>K{!z}^EnsKe%ok)*mg z{?X@SRrBwSuB{fXDtS?_X9N0dB{sIRpN$3KN@C3N*avR(jD?D7hi$Nb^{|y?xFpvY z7Mj9s7>6u<@t$o=q|KXoxPB_IliZamWt#eDiewNK=E_bH^f_$fb8uL1)24kM1+&y_ z0Md@IGcgh42_Jt+3t?;2u1q`p)xV)WsVR*RJd}Y8J*Eg`+jnoCx{Hi0_Y_r5`qUzg zpv5vjWtBMoq@WeH`>Q_p>{sjCXUOgr$WazZou|mzuX{Av3327qSVcnONR(;!B`CqJ z;1ZL6@-A;BfgH>Jkze}2(LG6y9NTt|wENiSABTnT5h1;NnS4e4*`BTANFL;rc-T^sgSiE5c2;L!t48EmL5vr6^U8IxM+&wh z0^ylBgrHPJtYTd~T9$=CFP`vk4_$kEfL5KEA+$;GK6A9b$#PXg_s|BjFm}0c02wP+Jrzz&Dn++)@Uj` zRfq;>tmUDnf`w{Y$PcGLr}teG;;Og{jRDE;2^?pCEcNkri!XT7^dsx41tj}DE!TaX z9FX`!36B&nuy?net_tPxN$Sy&Db#C&Wm*HHRs3Gxv#JW0^lJWLz=FhH%$HtEp(0DG zw^(Hwp7FQQZRGC^!qGP3hT!)Xk?2Vp$`Cr?0hQ^p4Z?-XEsB34x6Q}ySj9IYwL>_0 zctvoVKt4mwY%Nl+%CmM&C(Por()(RH-y3y*rf=9uJi+|nDswK%{E^-7E^DRG)o}7N zUNdbJ*hK_UciI#ihG)c}u@p*%uWg&NtprjNHjv)Tk=7+S9L^l_k?t;aFYf&2{n4ok zFMQ<~Myufdz1VLmFT#c<@syplxQ7h{K{M_hs5?M7j(ms`(L0_J`mUelb~rnHy* zsOw2Ny4+r+A9k!cx9P(_BYp9v_Pq!)78`CyKw+d@cq_IQ*L>xRQx#_W>4qLIyOB(Z zS#%Y{j32+>{N%q1d+*L^1)@fH8g`Dgd5gS*gK@&FUO73G*qI`O4pr@yA4I)3*`Bm5 zM7N4<4WYJk7{8Uz-sXk}yIlyPjNbA^Jy{q1Fn9X+MRw70&l|V&*a|e^lz$x0kGQSV z1pT&sB8|i{aLPQQ>;0UCmc_nU49;<3rQ`Ku8mUxJ)-$*(MntP!*~z-rwqWirbiT~Q zT1uPiY%CzMtSe`l(~T;j;tv-Oa?uiFx{=R>sAA z`jstJaIdYfW2W(>N#~Q2m z0%wt!<=N*ZOdm(EP}?_9~n9HhKTtk7jUHg){0c3h({KF zSdojHcHBz`ueQKZN#lRX$aGw~HY5N;-2DBU#^do!{;2J0&jc6^(;y3oO~w;SL_`Fy zwINxI3Pn8ipM!|K)gAV>^do``zOfnUnke@R%n}-;)W+v(N0=9rD%mh!s<~Y1sg(1) z{%y-^!>S)OR^EJ-J$3vyLh7xT?&^nE99nnr&E+94%P5h=u={of7G}%Vp0(fkT^;9A zP#wbaU1~Y3w`;7(@riq!6487A^)Y=Pex5oc?0d-r1cM7uk{V0@=l5^^y}CJmxUn&( zzZgsy<=F$oi40u`7U@qA!-!o0yh9_X=-C653jki6jTWsF{F}X3ik0=H1-_|>y}itw zbL@dC_8U|=ZV(QWyp3CW&(=_pGrg{e%dUMH!WF{D6N-~0oZTsEM?xs=N!drz4QF(3 z;%iZ>TlC+k{1Z?em^7b4%Lbtu84kNsj>y3J(CTM$E&cmACx-vZna4-jcN1YieEgp4xkG&-Uc z$_(U=oW{OhKZyRSq1ZfR!PpCVq2=6s_|}TI zTG?EHQ+vd1TcNV(q|Zia7qPouhFx%d()_M~c$HF)s7y9d;srfZb&lHOsb2wf`{JkPyv~;?JMSyk-y3 zf$_otr6OIU7_)T1ASyI|Ohgj#3?I@pBTu}TN_syCE=JQ2#Kr26KG_x?OXMr%(q3&K z4NFEzrhGK~7&?7I(w{Z;vE;MpZKub!*`T?LQt^T|opP)5k)={z!IZ;6;Onwamj&>? zjv_}YoxKZ^ql@yZl&YaT>xW9OP#wInuJasB3|qdp+MiSa>tX?9>34t}MZ#%Va_)j` zl_%8{nOJG+!z1~X>KxCQyMwQ@^Fr5@o&|-8&#wRFeDm?AC-(OYjT~tEN;HpAD!4l8 zAa@khL&The%V^fi7EnZc-bJ9|2r8ZF`vB3$0h}^G!Yl)tK`!>*vAGX*>F9t-Q|E#l z?=NIF6Ea+xECQXY%}FkUTU6lJQT$eNeAVCxkC{e2?==)04G+h5=4%4cmsfBV()R53lN}n z0af?czr=1|#-?$bJ&2H@)33378Tg|EkR;E*B2G?DpsJ7Q{+!-ZZD4iFzoOO^Ia|8` z%;2;;TT9<}PX>X=-O6yf(AV_zHzM*|Vb1Q^$w~W$%AGc!$T-sK;!rZlvCB5Bk*9s~Uj-tH$> z@31%wn4|+xYF|=PvI0_w7oaxs7$_^IAZsYk4U*Q#XjsNRKElnen-a0F6cm=0v$G8_ z4?YTYmr2N{x4I^>o|YiuiZf0BrCAooI{f3-ndO@Fy3KwbQX`Atmx%aX>)tpW@?s0m znN*HWHC>Rb2;Lfo&Bt;lA!@YvPtar`vQpIXWjU(TT%}!8qDF9^={qws29R4G0Kw!k z5LyOE$pvPBZR0kV^Mlbv_nm33VZR-&1xA!qNEmiN*wKRa2+rB>95`cZE@Oyhal;di z`2@e@N|9B8RP=e8-CE7x!UK8M~${KRZSUb^Cm`8bu+md zvUCZ}^<(@kg6^B-RBuk0CC!6$61>*W1dmH=>d85|zpp+ktE!5!WMI(B-!FMmvoRTFi45bLUePpxrE`&VX*PIOi@G zfwS$T%Tx{5Ke3KaPSo*`wPO6IzE{S$Gx3;4)D=&Dl@eM>8~VGl&saT_#w)DlI@sjr zGHgyM>OIYBmY9^}0_;J9DpSlM^XEYGv$!iWuaPc4w_vYo4FAgen4I+#im2iDIe%90 z>g!LSb3Ehbjs=RDv6U4Ir@`p?Q%RxE3gHb$X9+%BC*5Sb>rFUiCZjelcZ7r@|Ag=@ zf4BMZW=ghtBd%*JZlXc)pHD$);?TUc#+6dkIMMHQ!+L-W!5uA;Wqo*aWUdddOOIO( z_W&Z&1;WwJAchYIrDNIye}c$thV=Kc#Jyr_wbER9LU5?e<>fK??BTtj;N1}jdDk1c zQLgTb@mlfDh}ZzE46Wx#1=guo3v^lnXEhGJ!6HBQ%aCyDpn)f7&Gk+5t;G}RIP;d{ ziB;lJ-RfSY{jUQw_q=kKzWFrVNE%+<)=u_N3X3F1mG}gSQ56NB?0f?8=|d0{rjZAB z=^M2zn6=&Id!$#21#0MY?Dv6ca1D+m7l^g8vJ&<@q6gvdAy5Uh#n^vQJa-(<(XTL* zjT89h4$WeUb_arR@9uvi;1h%YfJ0;reVjYTa~~qy6+H&2j1t^r1dS)N>z?Sw|KA*E-xC6X18vLDBh7C$^`xKIdeD( zejTqQkjn36@2A{YKpMC7W2iOPgUzb#${&TD;Gf=XR&$?G`fTO>23rlHzD1<^Cj2#f zz1-|@;VX*w7xb^dc;YpA_fAJuHOp_<)i1jzYDqDu(?#)oZ zJAf|P6d0!9i#w69{ZzY6k1u3Mz+&lLGG%E=ns07q?62EM*&hxLwsu5j%CqDl6yh6S zRPWo`i=5xQtF}vJEpPgz%K1us-95&hMfbPXO~ZEvH>gDg$ZeBV=d;Q#(fQpS!)Mt~ zRr>&;H3ASBQGnFJTfOVI1Cje?H6^nKo-iMiSW61La9auv4)y_X<#dVebC3$0N}>Ic zpW~**X}zYkGom&YvnSLV74F9I?&l{I(d&!Oont4ey1JEChdW_wgX(#>+oVP9YPfNE z!H?=kzSC_jmZtKnhEI0LW@}Q56E5d-J5HRkScC_QalGEXrMd4I1_xhdi2CZ?1nE%g zrdk);99bDV@s^88y!jYL`!z^b!%d&oDZ8S_|tZ~9KF)t14 z5uZPQJ_kX?=Rk;25xt;yad8o8m&?*gwJx$bLPHYWAOzN9y-Mb=HW?2h6S^HxA6^?( zH8iN{ZS`4bD|kv+IP-X*rH6O_`$@v;UiTHarl5lnq5bg8U<|8_p7z@Nw5(TYTOxVR zJs?)q2;f~}5)zl6L72im=M_`^vEu|j6D)fDEa+g&H!#=iZV|_*#P4xnd_QuczW|QJ z{a6a#^q$ql*|~)-L`3fo+T41@A+ceTSXsO`vK$1F3~;{NbWl9JJw1y_$V7#nVIc2` zkw>ocCQ^sGF?IE9add*rKNs+K=ouK^f>Q9u;KBe>a|PZ4v0lA}YW-`u&L7#S+K~b4 zNO}!MvX%=i0uZ%`2*tex0ip$JhK7;g)Bq9(=OHoMz1@gQL=-$zZIKH`I`<$ID4x3i z4-f;h!9{X*<#Pn8vkS$3eX#4zjQ;u7?ex;C?JMVpC<8a)twuV&o284^L)yG8KXavJ zeb>-=QvqjF%>+oZ5io+<_Oc7>S|kL=2zZL{1}C~CPNQLPC0$!tIRNy<5@0o^o828a zK**1NCR-BS(D!6w2gtofpr$-_1@Mg*z;J4)dd+GN)4_Y9e=O1_I=GH6*AcwRu~D2c zfC`L=cV1piBmK|+d>Iccn%1tsA-H;l0%@kOayfU)!QFR#8``&TFzj&kd?gefL`Os9 z0y#QJ&n>ooKTJwUcni3vdy}#4V(p2hrY1E#ect3$g4`Cjw6t{Z$cXHR528W18;k8? zi4jy$5n*Ay|9n!v7-^`OXnZ=BYe|3?P$)|!J>|CR zxa)TtsMy$Oi6PGaR28Gc_H@%>983aX$F`DxaA#mSbID(ij*kgKog+bXd_~6K3PNlg z%Z@dv*_0>QjeuzP0o-LI8?che0xpbR|2F;tX~3iCI9ARzS2AP(&Vk~X?d!dAcYu5k z+mMii0Cj9IT}XSA{P&+RvF8MLC57TfP%|V2+rTzX-wpmEL(TMyuU*o@fW^I@g8;fi zb$rlapX&PuB1eyYJA*dobB6Da44oo3{Fy)5M6Q1|*~cbYeMQ1Kl zF}N)?WS=9ho*BF!C7YRyI1Cwxa!W?`$|X1ZcRg0oH0w#FUN9lYK$f{ zCFY1PiCtS^SZ?anv|MQ`W_XB2y0+%ST_96kI4?Wf)gt;q;gC}}1m9mtF@fbF%SA;* zoamaJe+GmUz%|E!`;9HX+D!@ztAR6EAJ)?#ikiC;B-}ntYM)+gdOGF91IGpTcF&=X z31|tn0!!ZBM3rNV-I1t(mb$_=CW=YQnzo(_-~9Un`6Cd@xtD+d8* zsX0$WsW@k*uPVQ#eq$l%pjLJx3iQ#1wb91|ZC>{ZXADT?0zn0cOeXsat@m>8y;|rn zX7JpaFgm%A$Ac!mJuHk{?^|0;EYcT>VyU#~{>4fY5sicQL%5@~`-mU2{YS6S*D;4* zdCfgaYBtNUyY-{&ut>aX&Rz@JqB-}Jn3#)COgsX}(%bFH(tAP8FPtuhUxxE6m266m zS~_*(=EMBuiVJ!L*5~bfqz*2~5A}e>e=+ME-d>||im94o3Yz2G{E4n?g7-x6(LG#q zk9@PT4vgT-({mgow6~OnOn&z)5T^)BY|J6%+JwmirH&W?G~oWnCm=cbF^?s+#y>eE za`bS2XrtZ#m-ebhxFBPDvGglFCe3oWs_N>oc0WH5QZ@!%=`*qj^-9Gpw6>!pp;R5L z4oumQ@mfz*61ml~j{qM7))EPDEbmir;3WWTiUdZ;*QfNc9i7?)>$j1GMeHZc9pX>j zNyr6VF>+<2dH?|noGaTJ%P}PI=cgaW2lbZtVe1}b3WcafdTq6jc3nSlZuOzdt?ogw z&%VBT%=HchC__PD87wMM_~JWx`hci%HY3^WbQNKkl+0H7&Nj2N#Kb3n9-9ErNKQrN z*X7AJ(2DaCIATy}hZ#lfFmcMOIf!a|F<%q;Ty7QsU|JH8IUoxPL15?T13sr<&c@<1 zB%BcS6P3cjeX;90Lz@GRzR6Mp_OYMI=sGCp`( z^8*y;hX5ZB2i&;y0NQi3)!W@KoH0gj9AUXMiT9pC;nzb0r~Y*MI@_6#fT$#LXuDtp z(!m!HAw1V-3zJ&HJSC`S*GD=nFLWi$UoOQ+g;qYR?EzWxv9QN8Al%%a4iHB+?v1A5 z)_Ox*R6PBOjhGO+yD8shrVxoOn4sD6t$8IajS9|JAh_|RrlElW=JAUUX04PngZeM^ zhlPJXMRb zdQ)t`$H36P{&eb*>iW{^cIzrfj2t~Qo-ZROSE#k~dVI{ovk1KJ;6XCqDTkHl$c^;AvJC@cbr@852Bms9p1ze73v>NGUx_0F*vj)oqRsH-<-aLo`iS* zc|#QZzlDn2`#~v=A;w`Y?vguA7bQ&>%D^oKO_#ewsO`WaF^t+qlBTO%BJ@>wNxAN+ zJE4Rvfdo0O1RIG2%AkI0FfJNR7Y8VQ7+4oid?AZ*n2Jj)i4kKzL*lp#K|#1f!MK?Z zX-+X|P9Mg*3y8Yw2rBK_DCFXRfe4r=HMCZ&HWjXb^Y zFtf9Qg@kmuG_eI4{J6=cqZQ=;6;+Oolk5DSG{V_Ck*^gGB(3-jXBO(4A3VDm^ zh+(Qr(fa}2zeYTPjMd^eDCe49>k*rMBojF)n$QZc!#kByT8C7W2tTUf~I{h(wCbHVX9E_aNGsP6u|F!C@Gj;u(G`)8$ zIbz-=Rj+^&;_2J?xwU z##~H+lRL|RjPk8T7W#)L5v1=b`FbABv>6qmk+KYW;d~|cFNE8) z?<03!pZ`+5HKrN&vnL&A5G|7UgK*%s7`lFdfZ}N!3fs+Uz19kEiGT=^EX}JqsaH`C$ozd1Ep{}Z?0{K& z_M=;reB^!<$JEKDgiUmM{IEPq^?mq#mq+`*UXJ1a@8xjsJ5%s!+Jt8C(Q(OJu|)ME W4=O80U+|NQki4|ARGEbF$NvMh6=!w; diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_2.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_2.png deleted file mode 100644 index 396e5341304cae63135dfe47c00041601c8a9886..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29391 zcmZ5{1ymGJw>5}_A}u8;NJ)2t$j~L--QC@Y(jnd5-65%Tcc-LuNyG3i-?!fS*Z*cY zOJJBgH_qK>?|lv-Uu4BlUcY+{0|SF1Ar4W1fq``ePb4G+@RPi{x_$89OUKU=N=V@0 zg=7>AzJFyWuI>l}gN*t7gq>XRc>q7;auQK3Wnf`op(8bOaLOe{(Czjx*V_YO0t+OUn#n$oi|=VkW;T=m^$A_MRLWwSq>5) zvQ-r{g)Q zpopP0=-*L;${#R}F-`tM`IT-?++tDOpu8jnm!uRVa{sd8cZB7;f;g5v_p%4?O$)w4 z)(kg+^!$b3mPpRiPuAq}??%e4hS|t|)k_g=F=Ngjk+vb24}8pj@FVeW@1)M6uoH-e zO|!&cc#ZcO$*x|R4Zid9dNt1&Q`)#LYJ3OtWwc3c)@mj%hB=NPDXbf2|4WU%`{S2B z4M>i#r&Q6oPi>tW^JATK>zr9gfBmmWSKtU?&ixYojyrKkan;~&_I4W)W?`xP=^mdL z?yA*4!GC$P1!uc=FCu5k6#c?Yb8A;aFA>_2=wlr;PJE~QiGaWuJ#Tj4gbQ zssFY|`^n4C{!#u$>s(B=EZ%x#RSRURI-O`93&(IaRa~<#lHfkZ;NG|9<5Nbb!Me5{ ze+rjQ!AYt)#@eRGZQA&dv>)+Zbx-G#2l0j96YR>RVd}pscn^Z!)>bTFN)|It^``L52C?W^KgHtXd%N1aD9s&r%U z6iHIy+z+g~CuqVpJfHuSmv3amZtW;rbp=_)2}w$mZoyh>G7j44*xi%$IOJNT6R}BR z4Yjt&Pi#Wti-2FHk7CDXOPNb}$#D&J)2t9fKD$&OAG}jrQgoyV+pR<8IWKF!dc z_j-Xn)nootmro=xP?(>89U@sDIg`w*vD#uRGS-bvJhnrj9q}ov7Js!BP zsCnJ+-Q%97syoCEapK)OxJ%E4U!r)fJ&(~kKJ@>NRMX2f@1Ua|>fy6P4uS0}qht|Z z%}{a&cTGAnbV(jF7;A!0aO!pk5ZxdhXs|fW?#--w8ru^DG7r1^m$WcVX`NJ6HEzNKMa`yU##2zju0z5G^heLxM5oSw_Ylsddzx(cn+JFOOyl(nv<0NyiY7rr`v>Cn4wq4)@3Z^E z4L2)(vn<*s*jJvi>|Q5SzhHcl2u9dr_cX>u9M-LFj2@LO2`TA8Tp-L2XWS*CfK0&5iYn3)Qdh!-B)B z1hSBAm=|}ibY-`??ua2--VFsg$!S*UjW1=!IpMyMowuZWWx(8NZpmcxkM|t~HYWB- z#?YS!602&T`gTf#{1p6FjYLUOIi;{QULpR)X4I@*Fb>9ngDp~Ic74`Ki8VyBINOY} z{!gb31~W~54c8@MbLufO>1Ud4!`x9`MaCm}cN=3<@4)s-%mW@3f(ZK%lQ{=O^dDc% z=mmz(h7bHRB#Tqy6$B)U?LU#!skBoe30e9Z(dI8^wdv7Gh}76lHYXD z8a!+N!Y|keMm3xNAHG@n*HStGXUieJI@DOFI@E+G4Wdjmt;#6H2JX>!sUK6v7=ROf!I@JpuD~@T z^zxMYlyfmSNcu4;G59TDVv`s4#EW5i_$dSXNE)TSDd`XDHE+w6ZLYI1et4S^**^)j zAR78HlPT;&9vU|8QPp6qAO}|W!h%X0MsHdDDDLXl)=ASb*)(r;*zP?UQqb!~2>cxh zG)y<;F(ir~U~OSHFaJ2>X0y}H=GGI2jq9vl1_TqrRlsJ5Vr?6mb+N2WB%VxUq(7Qb zMj9L@jcG}!*4aNAj^D{f=0q6a7m~O%>IBTHHlSF)om(@*foq9f(sC29jF^mgKtM2w zQ)q;14DQcINymlBpMI%V6Rb7w=l&Pv;VZ}RNHR{kztGpoG|gj#<0;&7_^I{3ls`QE z(B6?AS;i|sC5vaxbU&=&{k9obV(MPWdM#PZIMM4iR!n2XzqRd9H+G~{;=(kC>zXTL z!5wIFov|X&~WbGmA{qYy_I-95p_*Xz=cocPu>tcf%X43uYhQAS)4pdlyH8d}7Sa}J*+L_h79^Ui>_h!ah z8ZjqX^Jh-^pQN%Ni9gdN6zRqLIjpY;O8-#jQ_|))(BwCy^SMtRAv2l1BosuYRGjgq zjBQv0Twkb2ep$o_Ek&#q#mpyRb3Bb&{X2%1mOca`fc`^>jHO7MHx;Yw9bx|4D8BPx z_xlLWRlVMD{L7Re_lq5QH8rzUVtx;{g@uLs$m{JyU6+GaWQL}!yHN#RhAH|h-`nlP z?!La3_yV9O4!GFgDnJBqe)y9)U@ZPdz4xD%bPR)X%AonAl}N=n|2k7Jjll8s^_?wK z7xwt+dEg$GIJe4MR^L>q+mWGCt}(--4y3Du}{x=*h^)0z$B;FwxOFN7H%n zS&Wd9lauSrCIZrVU1JgwdVhaIR{!Zl)A0o5{fdZYa<RaVThqt8%QB7n zK@-AXzkY4)?#5!ZIjoa}YhgS)l8&1^jQ_BAr{-f9~!GA=`&^TF&J0*-L-sT{Ve!%57BYOQX} z_tz(Vb90Hy%UU_Pxg$&9USHX}U{2vm7Q3wztm|M5h+QxDHT=WAk=)Sz<$ZPvD$Kup*M zpKr1!2U}bg18uV3RI9g$clVqrQ4S~Ij6@;euv_nhZLnF9)Y2k+-nyv*8Rb#$%NbSk zi5z$^Y?)g13qLqSRJ$?$>nhJ{o2#QGRYO7mD`na(2}HauRrXVq#O??5-E)a6L8#1* ze?I%%U1>t^c1d=|GRNR?wK`{1bw>^tYD2=pay_q)rIVQa=X5+Hv|C&zI((l#GG*y3SqX5s z9ICapwT&zp_J#}5h&(|b_r|l~9`CRFhK9o0z3*e9qhZW8ysj2Zu?Pr;j#pYN+4Q@6 zd!M5k#Oe(Q4zrb?>|o-?UEfix=BxbY=ha39?yatlSBCuI5G`6q`}@U5c~AIY3OCR( zGJNjL5#Hc+8YgP^o^2T^@H(v**0J@jIv`tnUcJncN#&TC92^*U&&!({#yC5>*?!cp zRMN`V8$nMy`e07;lTS{Eq+gj34Bsu=e zx2|j6jkSrY^kbvl)doGUWi$8&z|o#vUQ&GgIB00tO@F~+)Q^sdiFpG?DlRI@((Uje zmgoXFJN36`<%djbyV+C$3g@yN9EtA(bK{y1Z&t*++kaDX&6l&9>eUAD!a=Ccyijl{ zz%-FiP$<~h<4@Y}BlWw!!-8Qy>*x@JU@do91tHmVP|+eTC$|f(9_;%05aaHGX{PbR z&Dl#tM8}64doOQq^R;&Gct>wzH*BKbe_PgQT@Hr|WC{cRZU;vtf8Sw6Q1f6;{*jPO3XN zZ*5vNxUW-qUG_<_eCPe-%Az9=yMj;p-~`^_G5Hw}B{2I!y&5+oBO@s}I1+T)JnSz< zI9b8|TvR`UrNuNgL-SUQ#qQACK#?v|AI0oYhwUk7cimku+cE?Z1uNlggx@y6Q*FXR!a>L(8v2)r#%Ia%YEa~segM@%{LoiA(4?g ze}YI5)_VzTjjj$CKtwwH9e;EM#L`+~~!BAr0e3LnCGu)rT@mc>a zH?uM`Gk14)Cy6;cTrJr?AA-^MnyP3YSC#!8>stTnN9 zITHX`X+GMn;aGOxO=th9RK(cW8HUTa(|&(kdg1iu%{xrPx^N=s?JkMH!>KR;z0k}| zl3dYu8@cbcF#a9kbUN~U5TF8Fw8o(b=F6MxZZ=SYjm+Q zvTWZ+#CJ7s`0#KsrsX`N?8k9t2IBD_2vOdXR;(cj%b`TZ-RFTRDZjUzw5Nu?wnj-< zU)L*;%anC;V%tr3B`z*5hRG`^c)nGbL_{)9PIU{7Ep2Xe_#9Sv@mMofJsrkFIPK6o zOJdJMW&;BQE~mffU?lz%C64!x=)aI51e-EpQ`rVw z*Ywp)L!zP*S;zPk0V~PR%KG#Sxy=AuAdoG9RfzzE_trW(q*K@=SXfy_AV#~R=`3!i zdSKE?guE`&0AZ;>%5F>*m5>N=I+&FKf$))xjGLQVK}Chqw)O1$^IIVhaM#EI*vA9f zqF!hA@ zrr9V9!|i^a2Wa0A2n&k*{CqMp7Uz8>^%|oPm040<-^cpk;OA31pOj(@3GN4gO6s^f zijDE({M=z+bkqeeiX!2*7Wc`zafK3mQ1fk?6l2@8mXGhlS&){)0L6}-s*ZbpTw-Ea za6icQjDV!D1rZ2%H3bJ7nV5tQ7-3@kKoflULhN&+kAd;Lj%5(i948^pZLCaY!!S$T zkrnUOYF+-Wv~bGtoxLO%i~K-M{Y`0QU31g!oUFg83ZENac3BuH|h=>NF!oyZd|)*j;LA9xCryD?yP`Rz-6gc>Oe$A zQ>f5UNCeWx$G^bb{o4~ZFd)-z(O~dWjt2=bxr3{s^;}Y;(FUax1WG>`X~Y~C8#|fk z>+S7rvL+PpkgXsRADH#ROdo^2$$S_$Pfx6O?*;*O9rhZcd7f#;0IHWjuZhR&Qs%A; z&iB?=s&R0$H)8YoR!rtec-`$4nxG|1NJu=>pRFw;Nhztl+49sbFMK>Us+91ip^MSm z&SXA2mRLmDEAbT9WqZWuC(QHh*Z%1QTSPYQy5gLuUNr2E{U4qP29!?ahyckYJuvVk zAhutuMW|G(o$wEjj*hMroXCEIv+I2hjiaQ>%E|>HH5qfR&_3ePZd;aQvzd~3cV;Y0 zx|J8;bZ-gy+@fQtqimu z52mnN4u?5@pvu%>w>w&_pYaN3)czSakt+uFoB%M_v-9)cLqny58bvUs>CQL<0|U?0 z00vN7c^#e6@oeD{+7Cx-9htdeQ4X`}rp?YMxY|w_nO^6wVAi~^iPY8A{jT7vJT5IR z*iB4KX8)pF-JJeuy+3Y&QBqQhj*Z<^;k!b5_3Aw%H@?eJ&NlSX>0sP{442_$U1C27 zZ{rKT{J4b?I{?(Lkdfio8oPl`K+qeAp|IH==*%hx)fG7C?@X7Q?7>@`B*Rv)Gkl@$9M+2vkZ{y%O;9i}F#Jp= zlL5Sg$T#Zrg9UHS8I&5rx!4^u1#$D7wgI=pBq2Eg3vD_JrA^{@WvDjnbD*XP!Dejj z>?84p)Cmw?f-|b|Jbvca?OyKj%4sIUNxuM)<8#?%$@ty?sgK{aT`9DwKgU2#U*5hp zhKBH_D3K2Dax{zPPyhCb`GmvR;9yQ(USRJj8LOQiy}oN5kffaqG6ljj+F%(#d=v6} zydCEe=5;v~x3_2Z@$qpMXzuTXe|R`-e0Bh|au&i`5)*OxJ^p=yP}9@1x4?3F{G$dp z=OqHdWQj5@kIP|jaFUok9ve(Ludo4`+E0tq^T{hv{%V5M;$BO}DJb($cwQY!xVv-1 z!^7|3#|NR26abM0l0v}Oui*SxyW0gO#G36Mnq~v8FQx+996ErOol4`_ut6pvA-M=7 z^*Xs-( zaGGB5Mt;vLJCLRvKz3&}=tg?>Ko}WKSAIJGJD3}@yS0P^+wU**2;z;1P8$lnoYMv9 z90?@qi)UrSWI9R+(54S?LbsE)Yo=uBRzPEiQ#qpm2BuJP@ZTTS@||^KUGAK_f~a`& zjx87-8E4wuqv9OUqM5&gb42#8bB_W3LXLgtuDo0hw=KR;J`6vB$`p+x8~~T}^x}e? zjV&%X7>UPuAM)i3IwC6JI=Ft%Bz>jDHMQ_>VtjmZ-!cJ%FG^wu0)le@zw3|7TgTpQ zTklN}AmGw6TFzB~%)srqBW`C`6+G{Ht0^!49-J=#J=;iL1_oJ|lT~^U(KXHoD$L2! z--mRc7ws>#-nnfXYu-GT#0-}ociZTF@6uqqremy|Ki46f&XatNLdb>g2Z*fdE6h>^^zM5_(8S#J8#6@-?m4PAAbl3Dh?UI7vt zE`?wX@ZulI$r6A7JcB=%!xj>iY#J%x{Qw8zHEo)E2xk+9*8KcnYKL^itQPAA2ow1e zI{?#r0ECKAzzeVFIEM56d)RR;D3}&D*Y^3GJl|CnZU;pIgD-6d5}o&~TFb*Dxacq? z%@1ur?}I!qSZg|Fa(%pldSR?Lo@U09YYc9l{*-a)yd906RFmM%I-CG_CQjDvo;QLN z1auqhxHQ|E&%Jd$AGgD;Cijj28{1o5U0oQ!ifO2+Nm*H^9x$uE{W(|d0&%0aoW3%$} z3>+IAI0ra5RZvfcz0!hKXf?-V@Ow^{sxpE==+2Xf9o}{Oy?p|) zR~R(3_Wx0Sl`^$oAoEHC8usUWuCr4l&Ed8*&I73l3w_;I4-*~L>vbUPlE0=%o)XPA z8XY{s3;a$l3<R(l`4E|6%$T+vln@Gx$v;cpu0fVQkk$ z*V*+dg8#wP`0@TzJcg+I(6rsk32WK))dsr z#qDS5HsR{NNZ!Kue`2wtsnQT^e|eJ#ePX}kxI6nZc-pQ^+uGVnO8(U^{7uZ@5ciw7 z_yh~$wQOgKd zxElX4fBAYDHHZL=0L;ja&eBZ^{~a05>L=B@(J0Jyh&he+;NYyQFb`Xecs5pKV0^WM%pq)oncf#$I$e>cuW71~@O>+L02^ zBWYCzHKP;}7GBl2NBBHY*_(*V63OeAtQ-B2h`EU6j`0p`+w%;O3L$5ph~%fbj#f-l zq_Fx{{8KkhRA_f}u>^wS=I%a0K^6c!i`aw&6Rrt|gw4LvimR71GFr4MpOoTMcI4$3 z8~lZ^aztyxgCFE*>fg=7#=-GU4AZQ=$o!aZvVSiyD|d^hRuIR7WRw$8X8t8dLquLd z=d-;#bI*29oKoBun~#;V0dlnBn{KQ253P@<*H=`XR4~3IN4DEz))tlsc2$z{Op9ge zejt;gzk4TnFk2p>oOk%g?7fYyu1r6b-1k8V(~yuwj?SC2%UChEuNoWEX80KHIuMT# zaY2k`Wr!qXt138+mW&@_R2CffS3m6Xi1^OFFH&?L&z8}45uqX9acI=Zb}GI7=pJ*4 zIRTakVVt#$O30_MpjuTN{ib~Lr(=`!lhmTLxq z6uw>Hpm45O(u2QF^hw?w)&v!{E1bp&wE z@q9}{qu#uy#8tKWZfd5^W-8?>eQ~PRSI#EgfflS_woIoh7mZKS#f78tahIJZec?x; zfJf$J4kibbs885cdaD3~{EU&d+yPF<_t6>1P8*JDKb7q}n-g^O zz^4S+Ci6Um3)rp0TrWGKwYZ*8van$Kr7yYG{7FUWej*whd%9*teBu`0jUN4Hvy_S> zK>vlZ2b=-0B8VMzlE1q8F~*X#rT&=<*Bgk+M0dOpzpDG%c2v69?Rva8knBCy{h=Xo z3vh$6Cg8a>?-it~H9O=h-r6qIPyki~b}2R^Ba&+>*^LJsry#ij0j0!X<3(Miz(IC? zd;5Qb_hw6x{~SZSLnmKEzAbA^0kcwDl8)!V98{EN6^5>aRHMg0^kkuy3b4E{8lfZEQdd0qa;jy#xpH%(=7!T>V)Mc2w~ZO2 zd5LP?p|~bUqD98H4|*>(P-Q7=Y9zJ(jX_*Ne)vnU9C1t}m#p|QTP{<8aM3%MMG;@j zG4fn)QPAXvZnFag@Oy!s82SuLsi{M_x?X>rGG4&Jg@lJg9v*@bC$mfXmkx~hh>``` z?uIJr>h2Qt9C6zv9Ze0$g40-BIT{bF3fR!>Gue^L_$d((W*1EVMZXum0cJQgC@BdF zW&%Hc#!Xh-jmsShZ5V;^t88RsEf~`q(3FaH%Kj#Y96A)5e4p9;kbcfts#3lI+;htJ z@BM*JYros4EtFwRaC1JE=FAs|Lxst=D`BmsiB2lwmMwi~-s4?;KkD@=1NFCQ_&bY9 zFbNVtVu2gL5$eZw`^BwWB6~k%I*xK{0jvC3rO;M11pxOBh|&GiG%1GWz?&O4V2BJ$ z{Z?lM;IT83+7~CG*aY1;Xm;){&!fz*G3_IM_6dPKkB%X2u#pqSKqerN0Tk(Mg|-x6 z6*oZ6H=hsEHUpk>Wcqr@pHeYu*u#!R$8Xy2wp!tcme7TsQ4E6fQ_$c0_z}HuiSXz4UUiU%W+eb<9a}_ z1R@4u;oyBwEP1@Y?GC{Ld=BW1y{jD3%Ye%VSSf@BC-WngXH2<{BvKaB^}nJpThIgA zLE~_iTDh(3XE7$W@qG_I{wt2zHufT4i|w(MP7WYsDS@>Fe8yDYr~5T$vcoKtk+Qcg ze#1G^lC+W%!xBcWi#C(UQ%8{%_6et_cAr0gel{t;2g#=0W0rOKWQYp$r}CokNnPOW zuEHo)NbRG70+a#t;a2$y1)n7l+?1AH$1yW+gk+KA54%)~S~}97U0w{h4+I7UV$G5b z(XzVmW)-Elpvo!ztGXqNwe?8N7-duT~rR}5Zu~M=Q$SAAM5WY1qL9Xlruc- z2t8HtnH+2q_KdW&7$%^m_WSp5|9+{#nJ_AK58>s@@qDSo zf{xRHz3~N07%m)FNZv1B;J&>5`Ywq_8RBVF3N4T=$N5(o*O9l>YV-R|Aij8IqsIVM zi@=ZbP>06YOfLHzEvE?)2T)zwl~rrk`oL6Wp#uk3|2T??V{)I;^?RQ~Tg+ZeG?Y63 z@e-2eEM$~-!f(BW)9tU(%HY1X55I-r3sP8MwDihAQCn z(eH%Mn%XU#6f=4Ah&f;_tai}Ptz1&-G%oKexB$O#FkV$>VExzEv+L{KWYdiIEG#jF z86K}ez4sx3?$7UKEhs!4LJf>y7P}qmDVp8*7+S~uNuTdD^(gryFjdC*D7XavAnTF_RI z5-qLlRm(Bfc2AhzVg6n>)Q7-w)ptC9;LC1?Cj%$~?gB!wQ;=$tW7rpYb9aYHKp+LI zroT)cZ1n#YDw55R&yEo`{$04jhDk}?j%nJSftn5AoxQ;SOJdT00m^&yiP|psQhnjD zy1IASj#p`#Q20*Yp>-LKi&*38cm z^IY}?MiGy9gff#BCLSC6A^YCJ#a!Mn3(A5zyYoKHQcGjw$msOD>i(yDxE~B?`V9kO z9R&228*|fxR*LXaQ-0)F5wZ43WMp|tjn}(dTm5I7ecPvhx}FVb8W1f1{y8nQy4OD3 zOe>yi-(NYr$)h9toFJ1-2Fh90pt38x>UAN5fpNPL#`uAkcd6d8cz{qoS3Pyb{pgn>B|H@M$LK@JSJ4MsR&;ZD)HDy zo~U1d5xFidBNGn{Ms471Qc}iB2taQP2m1T%1b>UVMIek2fN>_0G&NAz@+zz9zO=7A zm2)=@7{$=6N&j%ZpPgCNQq(2qS{A3`@C zt~R2M;bJF1?ZNIZVr}zI8rtX&+iTwg?o==BFGI7A9v(l3(|J{AD|H#c^?3H=fPG)C z?PEbcJgO6Q_JWHZNL=D8jlR`Yl&5I6n99(A$rs7B#*uZIE30(pUj+&2)`)H@>_b}- zhmN)eVp;4rAkR|)X4)WNCE8(~SSEs=v2%2leN2ey4WJJjO%v_gWo0&TjObP8PU6p&)NQoaFf%lC1$i$g z{iVhQjn{*%O!s77+lt(YM)QkC=aO&x$YG`li*pbzqfb0C28LCV4|!sy+sF?0>z?d; zw2AWi9qY3*65`!P!w!r?Tt)s$d-44W;30AF|OsihDhT7WPA^2^z8u7F(4A^kYMrsaqcswHexk9~y z&|JO5zqq{rb%yxrBL{}o>tFff+0%);lngx1GQ>$eDT#@FgYmS_Maox5NY9?`vd{ey zXgAtcB6ZbeW7mHKrTT}A1}@C&DYs%G0+1nn#4TE!Qp%IVX5$im!=X*l`SMDzH5T!euPU;Reo0Zy>_O|$?%DJ=Ic0a)|Evj!+EQvq zF2?O1b|JU{!Kzd*Mdn+f_P2GGBJG*cx+!weCp4VxfQ(`$=8XCB=UUwT5Xj~;wWr52 z#Nuut55Gs`d8_u)Nk73Jq~+L42jGq3(a_L5Q@QuT-=FP3kE_GIWeb_nX_WD0=_Kif z6MaKn?7=MkD$~m1G2PtcYz*}*s*EFyk*22L1*kexvdb67&$kzzEOU6cXtRh z&`@x5tGgV|zaQhf2q#SDovXH9Oa3{bwxff`#>2#;q@Be;jOqDe-`w7ngGdU)QLN~| z@lAWs6b&_fwA@;oT<`J*y}(#TN<0A*5&nH|b4*;UQj6s{x5HL2-)SctCJxTC*&PR- z^QiMlVpjNU9&hX`EiF9W&uf}>-R+uTyf(GlM*bC_?b1-uNNhT`=zTjadXoS^Gedjp z(Z9dP^&XiudOh)LepX#4q0!g?f4#;!1d>-(^(BE(mjO7E=fI-x$CBfdpHX%oC%`ry zuVdkw@{7f$~NysDAyMwv+72Ggznm-ZV!snncZ4ZTF3p%W$?TF|k(< z!7hK>=CQ|6j&Q{a|3r3)-gH>7%c?;iVe&$d-?+CIzedp8x16E2sYwkKzUjBOw`&}> zCEaiS1U-w*D>*aijkTn61HE9+^o{V5#q|15*34dRGZ#T5=k#}6=sPOW zM^I#BPYhwM9{p6PvVofRt)chxHY2VZx*6O94B_}w!)zC=9;_X@waoWgOUYdMkd{(< zEYogs>VB7`EYjTzWBS9$m+cL=*5ZWm9klfKg9m5h{TVf(EVt10Ylo%9C8NK;vy~%P z?vL7P?D{?rFgW}YY{dpu$8#ViK!q>>9@%KI&iov>-$QGE{wU0<9jh8v@)o`)wrtL& z{~r4S@}d$>ZvQ^>rOwn735r)?*n@lLlSOFbL~si)n8~R9htKTWg#|qf7NK2ObMtC; zE^HC`Zgc*m>Wiz_`6sN6JCC~Oi3b8LvMMJ!^diP0Hhr1V(WJm(Pt&sR!Jb6^Kww1F zuNO@ql<^`25ww*=15zmt>U2xy%@9MEI@gp9344-P4+T#hXh?HUXoy#P;HzaL`$+Dz zHr-qdSJ!V@1+(qEzYjyBnbc4bS|F4`pWoeI^5@zt zaHl0=V)$6=rdSwJCLL@Cof}Zk@|qZ59#1`uHOyCjZ1i{T{D#x#^Acep*pj6RWgZ6u zLtaiq9?p5)NfMG)+ssR=k%4|)0Fg0n^Ky4SYk;aR9vytai`*qn_K z93>*+5G^UUc8erbj6_01BjqC3@7;cBC5^B3EHg2NYhBOols~Eg#qpg>LKEq6LI>rH zgKJ^V0>Q3MGeQY%xzj;rDaUm|AS;+#Gvz9KydwY7x9f~$+RP5u4(=xr0r4TKAIE6a z?k>;{qcI7@T*ET^dS?CHWlV1`qqeB1R+MvUapHbgD0GsCS{(HE8WLroQNcQFgUe#O;B_7<|tyn*1(cBi@}8tG=2;Lk^s7hlpP!$w}D$1`&?25 zy??aVYrY-9!P045^1YEnv>?$pfvzcW2;@J-`u@ju_(Eo@N0+m>Cg0c6HS-zPGud}P zp-=HDL?xP*p)DY?#YfN*c(Kb19JSJ071!ppRNZpQ(&<~in{BIamutO$nnOu;iZF?- zeCy6GJdiysyvUuwB-EsknfA8-XsL0CD$|RMvE!kJ@9E)!jO-k=TZCn1W;*RpONd6i zqcAr&XTXV$#iMs^nbuhLCnbeLs-MR#NYz4xc|xq4xTamVUPnK5m7&Bpx7yIbI=*>v zW;C=ih5b|DD0x=)SJ?>7u@?omq6>;~rgQXDP7T>D85H^U+Vm+wh~!O)!>A#7^w{10 z=vO0D-Qwy@te%zN?=AZcN+;?Fh z6F)U;ue+AgGln%igY;hWkGAvcowAV?m4z8$M2iS68p-XUgp{H4PpKsZsYQsAd^*H#bUhu0q=wKr?Z~+>z;AGU_cQ-)m3*VNtKVi;X^4XYV`^Jxc7bhHER%(I|moE2^%t!cq)|5-)i z`uGUVc31v*+`BL3;dU$#SokP~b~+^|C;@PK8)&98aW9)q+1!#4Zwxj$`^vE7yyLv1 zGVvLXCub3DC-kM?>b!PDHzD?+-+z*z>UbFI^k+2mm#7K4+d%6bR!rxVli@vQs8p3P zpnl1)4p;Z4LxJ^JM&`>3eS5RjRoJ+=QVI$&paMAnKr;`RyyRy;16y{+DUF6~eKw9| zd;Td!wear1%WZX3oEoXCBoxv zy>_S}^0&{Id6n>3ZIrp$?$0-t?Nplc*{9W*%%}&tJ^q$?*{LqnE#NM1)eJGj{{3rq zyBQ^DL6j-g#2cOcD&n`f&xVd}xs2+Dy$IfZP0xCG)y&n!aypA$FNclohKg}B7v|@o zNDWofJPsq|(XZyF*v11p-6Q9#nI{9+Bz*b|v6r}Yl_sk|^FonWHdH>m|EKhGd+>sh zD|X-mXhe+;4h~kdi9CSI-Clj!)7F02U6FSLkt$WWbwzOHCDo=!bnVcw@F?c`sETo~ zpT>OKWXMtyg_BmepMNR-Aq-cmLGWDI);IZnmfqn$v2m!GB!gB6^aM&)5ym^t$cQ(B zD6)lQw7uY)m$?RJ+thtYUUKOudKu%&X8W3 zvTwqy+%9yHDK|8=FIdZF(J?*Rz1k=lPNm&#BAXtK)6^C?tuIfsX|+g8D2CA{w#Nk%o2; z9{p5zcia25Cg+*+%kF+6Q^+XMS?McJ^6zE7qw{0sm0h!mL9FH8syaHyZ)~04s(Ocg zqY@?CyRMo>URXiBtz$eNrs(gWtdAx}_6SbN-l`v|OqSDbv`ya;+%-2E*Y4Lgth-3F zrjAQU7zEvb41mqV1P6mo3bzVAS@M+3rm*QXVI@`JxBS>aEdu6R7#%5g6zPMrb~5h8 zQuiJ7z;wB#*d9*I=4CuuoQ0Pgo~%!FU2#%b58L|p*J5<3(AW24I&sC~&ubslW>+=` z7WBjl*K5m42~fQQO(j0|M?X;rLt7>zIqAM4pu~XkJowXsl3D|J>5Mnuz7<}s(4W6Qqz%))r)W%yOCyVM43!w5q2%v)d*Eqsf;zBR|K*Dww#ovkrC}p?Sri&* z^?`_(-&;?=@^nW!zbM$;K>M5I6nxtHhG)wdJtI-Jbc2tVyV$>9TwL5vptam{YZvkT z`{?9X7#K{J37hxEw5XcY@RYHSoAUC}Now95xt8Y;qT0j?iqY<7Fu6=ru_%je4i7du zbpt_Ld3mD(ikcQ8uSpUCJS0j+yy!itE?C!#BR(4#LW_kBU_1l z^E{vXaLP!VZRmqQE)0%K!&Gnx8!or~nsUaW zJT4%p=n1RzcJh4#RCYJ{B$*lShZne~c(5_7@-s*_v#4(DW zhILbOy!yXiMuI*g&><)Vns_W-iAL~*m(xE%`sqJXspI~QOEZYcbpP@8+Tb z$7_sN8kQ}yipqjnangh&eO|xrA*yygoy2;|-(1amw^>$Hv<})3K9GT1arTs)7ylMTu8P!QoA6oG)thAr{2K4o}^menqy6=*3{@ zo->PoQe9W~zc*Ang_XhKYZb4ceP6ZY_6bF0scCbjlPp{X3mvmbvytGEdg|1JxVhS>Z;|e2Z*z?!H8lx%0c7- zgd5u;^Fgl8|Jw^t-N;DuOFu6#@CW8(!d5hs0thp{Ke899DjGT=ia)m*%0nGOWLM>e z2gtj_TLO|aEAySBbuax!<6>EJZT54l(vQ$xW+H8oRSy!epImRA-2UDN1;2?fS{XUe zlKfd!6%F?O$2VkL%-vnFLQpnGbl8QT4dkZpSuw&K^|<0q)HsA~*9p{|ci^QYB73;N zb{gi&ZfsyRqcwK(K7|&)KCJlbQQ~Z}(!5>r#q;;h0jg|)riy+I9*f3IctVUKMAC-2 zn42O_Wm=(*t`;3fTzXEW+sRtQX-?(eD_e=qO#4F{qk>_tx-u>_rZgby~y@jvd0PKyeP0k zj*E5vt$ft=c=g*MJbT6Ob5+8%IATappFU;Tl1AyCaz&xIhksgocdV@RRtgKt{cRIU zl7E9%+Jr+R*Q`~Kch766#}0ddL+#(BOd&h-ANT2!?EGez6V;pHcsw<2AGcG|=cjau zuPO$n?0L|$rq?;Tzg=%to@R7^%j~H*WgT!;Jk`Y6#Y%6@oG;6TjAcrIO$~&<=S@uf znK7+|A5}OstG?78hVr#bJ;?nbsPEQb3>U@;b#J&dv2AeV(Y9AgnM4aFX^5u0Dq75M zw(~{Tj?Sf8E%x=#cLqDfua%Z&lW9L&hp@UBxc+9tNn@9X!5$0~*4GY3K9SIxYwu2X ze04ABUCh*cE$w7I74VlKg`0{a2iu#|TdXsV(ty$t!Bq2DUmuUdu&uX-HNXSna+A6rf#WELx?isp99$jaGY2a?Xj^DinI z?0u%Ke_gS&M&ua9IxSW@IPuTfbI!=wcQQcZOf{doa7z6Fdo`BtiL|i>3v*rADNzOD zib7FfX=%^^6>sr8DY+%)NkLN1oMzLY6kNN4FyJ1z0IzaM*2++An(5O)p!R78{Ic_v zcHm7A7oRI2F?_dMv8|2P1lF-JMI0T?)f|$`>;K+f-x2!!{g~ll&UK$`6;XOy879GU zX}oW5I$OlAOHcOYf7*Hrs4Bkj-+Kt@RzO0KP&%bk8U&?81f-?A8;(D^1*GE$D5-Sk zp&KL*ozf|dAl%LW-ute1t@m9E7H0;SnLV>-&-3i(`~A$j5bUlMfy}d{e>$CRB9YDe zIm{RC4oS9~8GOyT?vgxA=c8PJHqft}0SZ17Jp)xSl(Il;4rf_K5rpv04K zbY2l}x4WyX@)4B?XK>;!%?iC?6Pr4`F>^7(90W~iYO?ayq-?xnZYwGL$`7fPQ9-$@ zq{1ZldAxza>+nkfO$BS# zwFMK+Ha|+wq%(EckVD6UsVc{PC8|a282&^3HXj52-crJYhn~U%Q(ngCA;+KNg-Cjc z@|`|*(|)32;KR3@uM%KM~jJvP8ao>nMLE*pNf5bFY~`bl9E&};?f`I=MODV?ASa~)R%Za zJQ!Bhtr4`)mip!ux!)%={?_-qMbx`46>+3pW~7~5w;6RKcLRnf`(eAY$(^6w-@s|d zt4SG<9Ol2L?#39#`{#1Z#NG1`+a3xfl%%f*fU5N2%@x6mkRilo6wT+9-gC#WHxFnN zMxeZZVJ*zPGh!89P%SCZHhLJxcm^^<~ z(&YO`c4n$D`R&)DBscv;{ntXK?I*HVVCuJL4pZ^hxFX!=^PPKsKkp~E25O7f=HEp= zoKOJkb7+HQ{oKh<{mAlG&hP73K9NFovqeX;0}D@fiq3QlH-rVp3c0aGW6jIyBogr( zH5Gdu4-9GtMt)a(@suC-4#RB-T{+w}VpP?)hP`lG&+=Jb@F=Dw#2M@F?@L_?Fc1%; z@@rjnRNgN>jX+p#sC=*rAo-GCP*{S@4n}}o=W;Fvsj}_b-Q27*{rQ~QFOx6i!GKLp631JR6<=#Qum6M-^iJMgO>UF~>j zu5GQagVpIY(A*ZRPpL64Cw8aivm-CU&=Au(JhSU0?>PTt-&Ci@*m$-ee6~q(A3M01 zi_fFbPXEu5j6Z#&T9UmmeXZ|lsB6F~Ren&*b*^DQhhP)4vPtQehjhknhV}!=+O3Bz zEyGAtAGeAS@ANb{t7c0oy#bde_KVLv@Tfm~ZaNy{FW!clOUlgK1Qruk<=cOI@yC;% z!vej>KxA?8OpkLoqA`>vgVl4DZDfHrMdWM(Id)g;v9Y55R);FULAtj)>A_>7c3xE0 zbY@ynA=HDMoMlM8he8eo^T8uQSG=czwy3PU%*?37aysZA$>pT}BZ_|s$-I|-FOBty zs5k52;yO3-P5$_HNy%G>mD{X*_(4fYi(Apol+TE`$H_(QjCp*5;UGV@g%GPimR*lu z{%kSr(O~FJ-F1RWcvQ|PDKgsi2CuNWG|5ZDOv;P<hst|5VqFjVaS#6BI2v(|)3V7_DZOEW31`=lQ|1h5yUs?G@$-JQ@fUrR zk-HyZM!stT8Qw_A>5HzBx48eFB-9+85x#Stvul2@mTSK5B||vzXqMIVAjVcS-6zRZ zFnSVsyL(>OKvX4_*!AS4IJAUz`4B-2EuaLUP2)V(@*>ncCxs+X9q|w-kcZH#C7Z5= zV0^kFO6H%jr2-oz&ss{q&+bLl?W*%@J-n{<-L^`n2~Hr>o4i#pyOy`!(DMI#!XrUe zDPR3-iTB*6<#Jl@!_2w80YTCCfUR!zY<(r>e$D@^#|bPH)^~zvR&PmRn~5X*q~&me z<=19&=};aEoEE)Io%qTgIv09nDCmT|Hg7DV>!gS~4xwB3KGQ+2-M;UEvsDhoZI&n; z(pum$aY);#9_`JT7hA+no{doRhm`w;{-F&tnck_MEDCB_zoZp%?S155euA!Q*smFI zaQ@52n?NEW`}Oq^Jbw2S&g%KPN`EqP-{ln%w0eiLzzOus{y&p_Op~L+w>%MGHy^<%1m@hnLDx>cxKE z(}!DaPTKhGsVR-krn_2ov+av#@5Y6Sp2=qCDgSslqM#oBsg0N^t6+5a{CE3LTeVri47+4_WE~kwdO_9m>>Mox{@GAd{lPQt})De zxN3jpJnQ1o9q7{bK+6oC>?+FvQ96;K6bXVPPVX)mG6#ijljD|Aad?2OXg%%^@9w}YU}JFJY%INH!pL{5Gyw)ojbam}Bj5V+$2 z%`(GHp+Pl+B>bZB#1TRr{({>TX21L{eJ;Xb(gHuB%(Hg=?I9tAC7<)|pPzf>1(?KW zEiLPACl1&Y*dH#pPpGfe@E1?`raeET_9{pkxDRT&wKX{WCoYe199+%iXb%KCuB%Mu z1_N&$!VLK1%m!G`pO3DHY&$nkX62^IYd6CQi%s>h3VR$x<~sriykj|*{*Gn~-t`~< zixTx$&lEh2&@D={P#oFZ``dhRyvSS2_U8{8H-{w&##3qR`fsSy7*9XUXhSKO%R;cg z7-`-K`U7t-#}b6r0+aZo(0P9oQ6In20rqL)ae5&^d;6{@95mf~?_OWpJgU3nGV7T? z)qZ<)RNA_uS~~K3@S}@{Rr0te%U!%(;HkAtfzJ4O^{8j2;tthCwV1+gD!xLDYl*Q= z>1N09m6-v{GSi&q%t)P4BRpnUlwva&k%| zQuqvM+ZyIGytgu$Q@j&%7-ZMrS^e#N z*G~0|?f1eiJ>=Sznv;J>nBsxuVmJehPh^1KkiX&Iccmp8TPUS}F5YEYx%Nynl@w|D zsKpk+>k_hd$9J%_7c76Gh4UHYKd}-GdtA1Nc_!r5^U;8%X*Hvnb&e)#D91C8pnv9k z>sW!}#=q<}*Il8OYU*89Vse+6(m=}RIK+SPsAo0x6_h_~xrN4CK3cU>mQTbBQvd5| zPa6E?oq=>C@@YM)mvOjt=pc8LO8(UJ_(PA|YJtW3k-wClim`j)jokkZbi@SUjm3^# zMQoe~&-X9JTTQR~_C51QL^tdrACj9cbD*gU7L;TL%oVP20mC*DK2l+;f{a@!z#QX2| zJ3CqpWfj-VNlRNB-z{qdGU%~39@aRT8~A7s89SKXx-+1=^B;z-KRN74dbgmqV|X=x zj1odJ@8K#K^2}aZFb=o1Dq+^HTuuxA+GFTnDM|gHfg3^&SF01GFFvhJp&UK65JY02 zg4hqJZ(fZVmUvY1US={vf4h-e)LwwV>`D9RUM_cqFP(=Ot6F}q>-_dOjg;}V-Y9n! z9sMdHgY!A6><3P1SrnpF!U??7UuZi8ze@H*X4+GmmWxnJDtwDRlWGty)gFdAh%AO` z8b|M^dtOn8;O$0Ac?d}T-Zf=5|eEXQWZP5(LI=#_Jw2(GPCVN{`u;bhw;tqjN)F4&jKuQG2f&_9c=< zk!Ff8^rph8h3u${kSx@1h<3Z$wvNp$B)xToLlZWvbhOIb&BdKr3R zVrt{t#YP>6AoL(1JHzjmIyN=D8HHUl#l%?I-eU|59aMB>jXIdV3x6bR ztrngrGmlwb)jXMB~8+%MTAgv%XcBo$gGa zfMR#%^zN5J#no_9RiiU_F$$E8l5MUYixpn>kBRC*Br%Lmj5^rL>fVS8EJr~=L?-=# z+)m+qs=(NX=dg%#(Qd5{{b+LkWq*{Q6VDxe1#U&0{%5Ui69Y_!T=6GD7G3^nR0d}0<1(|}~r6_#V{9%bzBW<~p2WQa#g-W~S&h$X_8dRjm|c)Ev+>dR5>1!2`AU$}dgHM@95(i9 z^!ZF?zmy)^knxF5DV>Mei;D91`rG-o*}$46_mvgIWU-dsfrj_N@QUVY$$GZqx)cA$ zBH~>IqwP=MA1|2k8SMU{1Xp1HuC0GS0%chk3WUTml0twdmVt+dxW2wVMZ!U$cnMfq9W~`D@6Jhcy?moJ~P3k`mt3d0NU{QciSo!^+nOK*`?QU1<8i6=z$ zqS*U{=JYu&(E@1V)=t(o=t;=eL)DYchKXr(k&)%1MdC>wO|$q@OF044_g z=^1j=>Be)yerb`P=Cc7IJYvU3N=eG=PpzlJ!Gbslx1QHK6GijRz<=kNtCJ4(hQGU`me;o1W_oQdn!`7IuHc@5{QrpyN zpvTyh%@axSB6{ed(%H|zh5}_$d2}zX_*6d;>I~QH9Kv}-h%pJxz%(bBuyRFfxP#bA9>#?_$BL(V+n=8@_3gL<$ z`Cs_maqubercaI=-)FrGinjC4sgqw{Y-$~a-Jan+{wu3`YOh6md+VQgpjY@$B1GKj z!jsm+dVlkPfOXgOhdEJr<7Sn*;;_obGHKw@zjibxOy|LFp251bY!>mrHbiWeS4cF9 zL5-N?u3Sv!SKti>VuIflW;Y_d@qQ>FS6Aig&EA8(y~{w%Sq~U4d3kwbM%(h| z`gNMidi50O+g8vJ2oIHu<9$1auN9REPpGSBa3=QL?!!MMn*iQ z9a?%O;FsznbYg~V^S3TL9D%g_sKQ}Npq6y=x152VmB8#mEkq}|B8Fa`h{tHCk6+lk z!!m0~yjZvy$Y}uvCmpzOKlVpaa5gW>=f;7f<$H`51?VI|z10q|2tXDxJKx~Oc5-}t z3HZTkD?Lni9Fdn(H+klgdRVk?4Pr5 z2nXmW0RDKcJ z+s*f61Cx92DG5nCkO{>9ZgAVJGw#4J|5$)0XQd-17wcv=`GK5@jy@1Vo)?XPv5O~k z$y%kTE&rW(S5OqX+qQSAq81|DiU4bTUe3p%A<>kUdSGhp-7M)9nZu7Ym&m*2nvP8! z>oOjh@9X9JKNNQH-%2`pthY~2O{Zm#1STXs8Ib6yO<6^$P_t zaU1X`e~EPyWmT!3_;#9>qm>OhZ)$4ZcA&*b)(}7~@v^f=fwFAQsO4{94x#|KrD_|b z^FR_ullK{GDR5SN`^K2ZXFsS3m9lP=vzZus{CVW_;8T`R?`}ZGRbar~!QsXY?6D(= z)=9^mwCs?Y#+0JSJ8;VVoi?GxlTt5&<}16<5mAX6QEH{=>4zRmdmL+hpU`PU&ie+K z{@j)xt`&bPHTsHj+fI8QI6Xhjf{__>6n$~m)uqhI$vFb>m0SP_xF-Y+9Da2RYihR1 z*^t!QJ60e8Oa#kcUs3M8dVl~0%rd!UWkk3%o{+ZrAYzt+>eDkbV}Z(i zmkgnJ5cs(QY69So@BJfxFAie|2UUQpG;JIhndwkbQPp&HBY>rP9LAl96yRXOcUjvo z*$w}xNF5hO>7RF{=l=ardb2x|*wcmT-^tHnZ_+|x3(Rq9!1~^6U30kn8!h}kV3|7N z)xc&dMm5@>>vTW$jtcGQ;s(`*upOjccY@|^!+>dJ&UO2NEZ&ynDE#iji7HL2Yg4~f zQc{vLAf-ixg#jl6Cfm|z9OlpO&%bX->UKEjwu|%Iq!lgq2fRvVHwLh$(hoerO}xCk zDH$1qz#DZiTOIjqWkn3l@fpGlB1aX&DPtDP(9Ba=0fpuPFra})Ru^L*(00Lroy+DMFzE3Ds~j*x+(RkqJ;oUGj~m+Fzgz2XO6o)O zeX32UoZ53!5 z3B3+z$la}pJ;q%Abo4j$U0v^br)Uc2_w&cw2{n8g`QaZ@I8)g04W5wD0ebIAN#nsP z5V7wa{&3UP^&y0%-FZsY^&B|;FfG^GqOpFhu1-wOWdOAE9>=ro!8e6cXqpAR;Z0c} ziHJE7P13tP`i|LVYAh1|#b7r{H`l$zPcJe>2rHXXM*8vHjB`r^ecbkp7ip~i%*nnA zjVr^X=Dc`tb9xCH7|k|%&lo7USzzFx*1@Vt|S+|w5-uDage>A#O9ZtFV)8e? zxm;{7Y#jDf#1iu?bHL}@Sz6y1&#v?7zZM6?qZcn;cGA=%z1X$1#fqZoycvwoT zirY!WZ6{XO+V}A=0zU!YIb$E8#3ig)yHvpI_|1nv4H*_~8Uw3?xZua!Mj8-2nqa*R z!~Gx|oa3qUi`{&Vp#0}exwU~S^55!wU?eiwg47F$>?J~u+G&^N-!BQWW`dDB7^3hM zEfYS<8Gvd5tgj_Lsbr>K#i2v^j1yY-0>HhA!iS>ra!xBv?8*k zUytj?4ZGlH!FzwbwBIc9q%v{A+3zsPgBS^@g%E(1m2gjK#Kpnk%U^p(?IkNQ<Zpxaz6vV^jv}ULYoD7Sx+^JNz($*HCjX0Q*Vb8_%Jqn9-t0=k5>0q# z*1o^)r54eMTc_)qX!y*(%ir+qg|@NGB1Y+Lb)ke`dFC?kG@5?=$VkrlVav-wUv*wM zRL!lOK7azn9(@{r`R2%xGFpC|9sWkcgn1mNrUmtlqQL0aA-%1?COC>QG{>{IH0{0{VbARvmF#Y7! zi=F}}p{U2fN5Ga*g`fXnF|=D*H%LI5Fa%Hp2I?G7YR?06re3Z6&@<&E%N=7=FvhUB zJ-p`Hb{M|%fB5fmpwCc6bW2!whJsKpGTDH1u8EQGl~XBw@-bJcWc~*g9*Z3V!_(FO zeA>NO6g!4Wr5Rp>T`|2*>jcCuU>vDU8}4KJ#kRQJg>S-{8}A}O89iTPM+H2@Lx2&M zT39%nU#ZxuxIA8*Wqu+&G_ZO!kmR(?9Uvk0C}S4)h976Jbj^tI$87z_s-UBZu$Ibd z9152UJ10png+A`_#^PFauCn8XVBKG@%t30VQ=g`w2H-EF2*r+Go}EtpEG**ox$4+f z0>+CrQ2xHBoB;X>I2+}8uIxx6W>yZ9U!5@LOl(w>n;AP}!I(L|nCsz#;uIL$b-NxJ zj&8E*smbQch{jhXWcuszozI#q`ovGuw=9M;R>s@e3T-K@(ZNF_`vhscI?Fry zlNP7^waeD#yEQO)T49Z5+mta7yIV*d=AlYOG~%qj>EUsGWvN5$=lojYc7N@I-$yr{ z#BnnFUT$n`Y(Ro!p!GeHGN^Nus&#e1YHE@iOrNfIVN!^ul*=9M1qiS5va(-);BP-` ze(rc(n0^W0zhgnV?5*Q-rNe6*5~T0P>5O^I`Ne9wQVyN1n@z};XZN!4@CB6H;#Gctj1w4M?gIR zihGvLp>*xDlIq0i^M&j~q2JeZwttPsosFqGVRsiZcd2*we3V`r{S-YtM@i3k7E(69 z)v;v^i1(y6nx}2n5oD6|+sGjYTScF3aRP2!7GU5pC;>O`WZPo=t9oLS15S}1ke?g@ znBoR-kt>eXxMXWGGm0~14iIu~ZsF&8_53F)D&^CuA}b?jCYhx*4=|!no!``$mGq78Oaiar( z4P6R{Plo2pJe>klIP0c0*_oM*q@+-Qov;T`ZC^-AE}aJAG7(g=D++wKH_0q?WA(hK zzSWETmwdW8GheyL?-9l2bpVY))aai*#d)9=s0LM0Yq8_YJ}N>1ia`;AmI)NL8#U%Z zj?N-TF=o0X)~yw)ooKUifl;E`Aqp&Z1i;b+qVBUYITCo=>#SAaQWpjY0RiiYuw7)S zHj{~UgK!bEtup?1F~?hI^DuMdK0_dL(FG~quWPA10iLcTb;7iF=@E8>d6QaXA|B@r zmuiF@&7I<7)^o0q11o$9o%{9G%~M!(M6U;0S&#bP5`qD-yN;8a(^yq6p2HmF*xX>i z>m1GyP8dq#Ujs~1K92UM^=(crjnV)Br>Uu#isC4OC_eAh9D<%jw|j72P}jnz?f+KT zQYcFY>g@hJUi|lZ4bc|ZCalkqL|)~gZ;M?y`M2SX>idnMW;0gei$_rOmyu}b8#A07 zdTede+HbJ8yiytULjxv?OM4ownT)^lD=7ReF#UNhL(Mx7e>clqSe*U z?OfEQ-Zr>m2W*dh*7Ob}6ek}nyF*U`@6T8$Ty3Z;<92@F9d@k*U88iOc}mSBnf__4 zyM2Q2hML*^ud!cRP+7G=Mzkl>oS?`EpZC7Z;b*tgHj81jb1e)hagT z_DnobrsIP(qM=c!7n2<}>~h{-FWs2~{%*Z3#YvjL&)Ik{O76$_Vy9hv{)>_sBN8~b zGcDz7i!ZEAFAT=!UJ*LADtS3TPqAOpf+~-HqY6{!!m%5J=K)B#_ojYQ>DAcw#Y+5D zJcq@3(um`r7xP6aC-Va2C-}t*U`}3MAGTHktQSbR%z>f)QqhsSRSo@^8bRU_VWve1 zTTpv!C52q%g-oEP=N-H;AY8ovxBK*xjFi*~TtY3%e@t;(A?Y&0AbD0%Qd+s-Y8}My z=Y!B7475Eg$G3O4jC}y8{AV!r1?gO76@gmCe4hDV6v2?V)32{q37$TBX%{)tidIL9 zz$?a>-0t5D{XzNm&e1h$=lKD!j{!_0dq+oyFd(cxfA-94mNERBSQh1cwQXwQCk^36 zeptXnL0k1&cO0Vyz^sAW>;=dt{r;XBgS39c?}o?Y0mgAe^MAcb%$Vq3M3bz!<||%? zg>iq^d}4Y4>9S_0FhZe_idu~VGhOmqXbuWun|lEBf?_%*{Ko7RLnamHJq{O#0FiJM zRD^)oRLpJXOaAM4MccJPD~h*dteYe7O_2WS=<4>vsRTY+!04cKlpBh?V8xc0sE^Lh z6;|z)MT46LubBuQ<}HaU0|I5e!;*w*dNy`EAcQ=-$B$-62G9URf;^x(~mq4N;=LpZP%nB)<`Rd$xEEW9TrJC~hjmUE3p3 z444_Tfi{i3+<(Rw%uV`Hf_;ymaPYgw=0I{gFX(*ttQHCyn&CJG1@Bqva9L5BJ&EnN zczSClJ6HYJwGbR_`hk%jGj53XLq~=Yj$Cr&+9rd1)G}b_^;cE#5$Z9r6j6;uFZ&h8L$u$;5!W9F;)xWXDdwUk)aR-P}~zNzj)5b&Sl+BxG2RvNx$iI^QH zs%G-~#YVfea*U2Xr*oLv>kcc|qZ9YQ1$@yzfJA5tQc*z5k$?aGvGvrCZL3N~lBG7y zX2;V`J!=})&smK)0MZ@^0`fLXJ`?aHx127^e&inBsWUd7Id@>^sX3GzF<-W7&;9tG zqj-9-Kn1wkTgXyc09_6Ta}3#l9-k$kO8@6|m8;w7^XDqew7HlnOH3+9QQ}(5A&)MA zQ}Zhzo!sLM4g9anTo2|cz`ZMoR0Zd&{_Fju zvI+{hAPQh+WxXd?h5&5eDbTBp=P5BxCTv-1t`&}2dV9#3ek*Qgs7T<$xsocQ+z*b=~`Emp*;m{NqctrVoU_=Xvkfx6OE& z_&(mQ2dz}%m;IkTzm>V)?*DhOlTE$=hpqww_FYXudXx{Y#(%w6m1|I2%u2ata4wUY zTRyTa>z&V5R#Wu-t?@s?aq{4o4)aUIA3YQB?R$r)-8*}xhq6?GOtyXCJ7Dm$roSu- zwEX|s-EVo~ixDw9*u%^CpD>4+-T(Kd(`=jROh7|qopYUXJ^$x}4BdTe6pQF4U(E*- zy$&Xl#HAwuU)Xd8>NTObbTv418i^O&s&hDybl6k6PFm?O#;(Qi{&O+qFd=Obh=LO^+v(DwC6!W%t4Ber1vyyyle~#n1U`1u>Rx|t%echG?LHF z%Gc*14eO=DcnoY0->+Z2B9ms<&JuMPt}SJ*p&^luQm+yAvnx)l1FDE4*1kE&740aV zXjK4mK)nqA$OcKWEH!_khy0Y>(H%u$*TF;!kO~@i`tKo#6U}otP(b$t2gX3Q)I9SJ zs!RX9PxddUnV)O$L0R~34oIZkHM)81T|7%afAbSWCUlJQBZPdGEvOC~F#w4q*kU4R z5k#I=Eu_*_Xx!8<$y1KoI;6wWv)5~qkcQzr=`x4)C5g(**!H(D z0SqFXW&c=8Gt77eBOD4llrrp>^ibfWL{W)d^+OLjSxBXwM%g*BLRb@PRPm~rSjC`1 zTZ$JGF~Y4yyo*g&!u4qy9ibCT@lIY9ip8QEgM866EzLPWJ0bH@d`2$BqlX8mhl98l zPzGJS!qu&~iV1jQiS983`^Weq@o>@7Apl}hGLK_NDZ|NY+8erZC+-tfI{#ECzRb+` zVb1#5fixD15iyK`QL^gNiUStF48KFsWM5pvqT9ix+hKtR8e7u}p(gYaYPg@^_$al= zRbcmRaBFqdCPabGb${=u(aG-b!i^*FnL2P!Q2S1xH@I}O%;|qogz&hkCL^+$ar>Y} zD+dvny>u9n9BqlAUg=;h^fbuwYm)+sCp7~3%h^tR0ru6!RF*5Hhz--IXqd76QDp?I zkdB)aAposp)o7L1qQTI+7C%CF>NU0KN0=~EZY?h~ad0Co1fZ2Irh~rtO2goP;wK*) zgSsaOiDz6tP>42u*07$3p!Q;@Ax+Y?XK{__VUmd!wk)uh4nwsO&8=;3p=T&t`De5J z+n9_b;om4Vezt>QPnMqN{|+7+^Uvg==6-eqX> zX3j2F4)$EEoUEM8l$Nfpj)H7#|L=WP2WJbmWQuR$Fff!ba*`4sJu?roJUl4TI$lS?>Ck)5o*zj%qN z6G^H}d+g0x(8RY;-+e{}hcVOOCRIjlhNPlIw8|#;a#id1BGLn2Rjt3M?it+MP~$RF zhc>?+{s5hIIJ@lUUEtE4!^$BZ+LIXmk3fX!KRZUcN(c5YYdp$Og_4f-mraDCXl0TWk z@Z(I5%PWUTWe+RP4*eeF8y`gx6%s`j2U~8+p#6BAFcXYeEjiE2AAO9_hd_s*qjpD1 z1Y($c_{W2zNW`x&aC-ZzLp$OWIH<7RFfA|zhV%xMQVy^CV^nJJl@juX_p`#d!{KF- z$dNe%*&pXy+L4-kkl=KKY#%*xvlfty2v2A}pt!y(mc53(57Ju|$fY^Ki-j+Nd$`!? z4B~0GqEvfcQS!(@)C#1g#P-y0WA)~L3`z)$(f2JwcHezg^q$B1p?;?>9-JVIGQMFy z)!7F>4>u7M6G-6Qe2n-mD5M>Am7l#z*msrHC?Ts&KhWW#c?o^dc83sU5D9Dlwo$Il zT~gW5OBm_jt|z38k3b74c<-re?|LOqtO-X8UBO*;gLT!L$ZS=I8#Wu-Hd1zXdHnk9 z8O{jxgu;j{7F+MTVTRStii!7A{y#4|arz}Y)RV8|J$kD|xp_ymDs6m**bWM`TUQ3F z`2Xoi-9FLl%sue^{uzHy9rO(A(CElEVqw_i{G55@!Fs|o+VQvQeUJ(3BCB*Uk#@V1 z(XaPQ>4i-@u!jFm^};pC>)vTV6|+&Kn@;X=^UFoOX1Yk>ns3{6Tye_|Df%Lm!Dsw`2M)ZL#T$Ug$bBA zZbR3v-#?NGI`wY7m`3;HTYAJ4u~V@$RDuUbQ4`Iu$#W6&_2@a9R)FRJ8RHnI$e{SD z`6^Mh#38DD~w{QL19}{&&BVD%q_8W$6+L-T`%0gEJvA%AIf{jEw6Ms|Gixt zsIf8Rmbh%K^3auP@T1V$>-Iw)#g9UG)US1SY{OI}MoT~0+v>E^WQrJNB)}3aHDQqBk@udLoBA=s!dA=x__m z!%jcR$xA7RF>>VT-&*i~x_FlWzZKDmQQbI)W*I&`Dr}KrXx1KS=|(-OPCgx>P!cJ= z_lC+M*ay2BvJfB9@rY#<*~yg=)O3Khih=9_i!_(zfc*5yLzL8WO3HUVNTKN*^CRn` z1zhCC^UxTA`Zxb4WcI3?TN)PXX!R%Yxj54v#-!KOf^z{mH!i38P9k@kh=R0T{T<$_u(@N zMSeDy6BAU6;Ct#-FQK|KHUXctr|7JE6r-5`S;|KwqK?U<>_6V3HKQZfFxXA?bzJFm z{@Li)|Fe<>2aCt>t12W|(J zWfb8=f^TE>1`8`so$}swcAbG*svWug@Q%2*wB6a`fe@$oNHa0=o+)^%L(Ip+;ySzf z-Z0RBut-i&$3*|tMqs(r8%41I%{F&J>Pm`Io4q0HuJ3}ovN&<a>I@f6U-O_9b$D@O#K*Ui?vOlxFL5)>^E3V37VLmHodcY}bVikE> zc=Oe&CO78yO#JE&BW3QBq@{*Q%E3ZQ7XJVofx^THWPkWXA^%9(c-1}j6QXM61CPVZ z7&wo}-WdC?PIdmPnV26|M=W~y?yrv?4J6B4T}Kh^aprffl=#-yZm@ogiRvnUcM}ls zv1dpZUqQeR>oq4jRe)VTSpPZ7c;Q5J-4tOWK!30ve57f2B4+ecl~GpmjEpQvb!$mY z6jJC6yAkt~{{k1M#}~QOz@r3uBe?N49qBQE=Teq|2ccBnjyU!$wFdMfoyA^U!5TT@ zk0jMrrT%82t#N{_k!0*?nf;l5CuS3#IF6|weO5;>)Xp%98&x?Rzp?7Y8Qd~d`!yMO zkp6xBx#ja^+mb{UY$sf4P{j_uPL6?DbL4cJKdMfSkHC45Hl&ak2KrGRI_bvxz>g@& z2z{rINKH*YiZpD#KXIY}DU5~`%4aRMBC)I-eSoB0Zcsx%YU&FaAUxZsBd+%kA21+a$DNwKl+W^0lo!fK>@MCiv@ z|6|If()q3N=p%#;U)>x#u+U zY^hhnCU957CYQfn+=1iUJx|OUu99YYn*z5Y&}G9q?^;)$q}tH<{FvoMN$ukrfVG=b zWS6xRN=N)Kid4rrWFs0IP#dt zF_O<)miih2Kdc@T^t(o~%`9~q1|T%lK4VDh2Jd~4^8!_YmJdtKV84(mY9UILmK9<{?koE?Ogc)V}RVfH?fZd+mxhw zYY7I-04typTn`CzLey$s{3tA!b*GlSJgfHRd<|*=GG0k+{8w_R7&bE z`y5#MK`UcF8yfP)UJ*|+DQdg$on#(ak|?y~d4w+_Gye+xU9JhaWrB8$waT`#BQ!~v z{Q2()iQogoFM_wn$6ft;T0*Z(`hHPV>M!heyPCfp9onX|K6-0%TNNHw8hvDw+f6(&9ZM!&!Jlj&*C?XKs^Wuzv=3744| zzGr}X&kD4K*Wz?x-`$p5W++^|<66HcL>D6plQqQIU8vleGmKtYY;om~DB^FLCBbG!2sN)Ns4Utom zI$4j7j8U$nCA|e-i(=3=;&jL39yZ6JdcuGC`B|vSOotKLaq%2vd5?dj0$GZzg-(_> z>K~uokEnUGs6Z|!IxU5H7TdX^DUge6)_IE6o9vB@KJ3)zHPpdQGeONRtQcaB z&m|=#B=`5_0gnTDJ4jfs|1Ey+3Yl|#yer7@hp4K?%X}gsCjOYi7}6AWfE%|=J+3C{ z9oCES*jOIsiXZ3s__pn-G0c@H&VbsvBFwW9PpM_&_;_S*s#s3`+*T~6vNBya)D8b= zf4Y>0nYpCx`ty_ueBDMtj$X5pSR16=hkCIk4(!$rBWA~gxLKEIYpuqkvi}-M zihXNqt3oP!kbuiJyUlb-#0V|D%k`2+LUOY7Kr)MVvnR*c*w~`mj6MPa!pVX|8;9j6 zB_}5*3I@hz-HJaA4^NU*Bw>Z^94D{CvcmJzqjse!Dog^MqA?f_J|Us=gd*SRLDdMS z!?Lids%rf~<$&eb55)bM^13u@&#fd)%avA<>y-d8n27>qdVc;?8FH`S6hr?s^ zgP8&e;0CFSi+XfQnX(cRuw+8+rei;(fpJo-`JR|w!+Jkjxz3xr#)Dx!>*cB zP*TEb@xH9gA|)oS?`9YKfcP>GCe5-pLPAX)mwgHJT=t9n?uYY#LCAQW{NY-tAqSC| z<9`<(@O-}lV`^?*>2+?tJ($*6Gh;B&i7lpJY)swcactfbO$IZV&J$_3P+MU$!`k}% zV;OY+P9fb|)zFp)WGK36jEJ(U9E zlhV`E3qksopC1gyeLBcB!VVU0x@?N%2CPdCseS#Q{|=Cl?2S;a8BtJC*M^0TO_!S^ z7P9S^o6{ETn=k`~j_SWCX7J7}O2?2##l*xM`cD2*0RRvgndi1Y-SzkHC(g8g%Pm5E zeSLv+nfDjF?~j*TNOZCFEbC*ANfFq{{E!ebAh%qN2he zgT|gBMdAxmTxRCrS4`61TFe*!#`5CnfqK$!b<)vNDSFySO-=nd!=W`T1f9qkL^k|< zN!-hZysUN-lP0HW?|(6mBYk~TZ{LQEj($+e68sDHw-10htmSgEKtn@AwWZUQY7mD> z_esF>bwEB8dir?10`CYA?)+jxnalk^>+_c{0{##D=2dALr8?@K)3&^7Iy!sRk)32> zl~q+%Q$+;et;_uxmz&?_UKeKrY&&=R4cL`{04%|HNxllTI7 zjjp@KkrUNc6ZIG4^1D;TL~1`R_ZRFNwg?UUZ_T`~kB0tyLDp_`Wrz{Idn@8|WeURj z;XJ1-Dm0o*D0y&D!M^2E!=q}leKoT{;^6yyor9s%V#x-8p0(Em%{^ z7EWVpdx!^tqwZG~6cmK{zMiyR3XFaZ+$Ssae%_{h$}1HKNf9=0#`5L>3-t&x}?!ph6=0PdU+8yxN!XNh6h>0iZ zyKP?)Jv`kXH$Pr2*v?fViiwGR#ikhUjicF}EX0EWmpsv)fCIZe)abS^tE6Q9^l&?v zEs~MOWpTEdplr-JWiQm|xb|+@|K1J>n;b)YrB$h*b(-`Tz*W+<@7->}x7Pyk_DhWo zhYs4>uUcEBIe6I}H#0{U)zsAbhK8Vm=(SHb8`yW($I4aaLnoJ)TjTOTJ2yx zkQ@0H9pO7eu?t*whJ~+YO<)F7IbJ}|X+-4uJ)<)=<0>FC#}mgq4r$FkAmc(~GUs=%ibgd%uDcsjH&z*0aL{( zL$ysz0SB)HUEgk@Pi5XdPbiC>-tOd_gZto8P>j5c-SdPJjE0_yDv0X+*B69@IcmJr zpo=C~d?pw1w0-b2&dX!6H5zYlv3R*Sk)f{y$R4{OyZ~T^u#f>tfk3T#Ec5Q&Xa4xa z#E)y4yY<4$^H<4-t#!36>bot4g@qO&Ti^2Y-|Q|nQ~~gi^Y?Gn^F950)((#y7S_u( zB22@zeko0hHw5!acV4UwRtmGh&_&6FFh@4zFct4$6 zE}2!oXp5(JCntcFni@p(FX8J&7iwzf^C7;0OaT{3$^4QMh04lG#>*b^`;J zv$ar)`Rs;=vjMx?>+=z@0kaf+y7*+e4e97a8zk)H%A5egxkh#J<}E^PZino{)=!;Z z!^32yrN3&GYT)2_-5=JO0g$AouJk-LZg_sW&uYc%akelTjfJfZM{n>R_8UpgSXY#j zd%^D5*#8PhX*>?+lL8(#DD>Q>)DaL7aVRJpeB8(L<%AzECf-6l!NCW}$rwq<@)Ef@ z0Z*?2qe%J20SZb61AsT;%}5jR;Vspzs|~5}I5wECw(683(nqk|4uR#hoA27}OMv}1 z4n+qWR*NXv`4y9fn;Sn6gpt$D$tM6{$DA#seD>9TPI@jwJOIn#Pry!Af^?-j3#c1! zr;)$EKktwjIBgECw@87%vYz@)@#}i>>>8c6GmC|_RZmZ4g4?4+~?!x zrxChe2ah=dE_BCj&!P$R%G=Ns18M<*G_UjRteQMEw+g;j2OAq3ry8!*9raEdo`6P< zICEtT)gqM_u`{0c5FFh&)aan1qgUCP8^1rEM@7S^)+ZUQqDPK?y#}E31%ZSwC)EPY z8;!sY>-ikk*v|g`K78HA!~RRT=)gr2g7_9%`xffX2*piO9od@^dJFYefsldvH8=5W zqWpe;2if&{c3$z_r3z%MNSz7bpfpG@r`OjqlKj3m>}hFfwP`FM`e0rQI0sJ^YcBBa z@H?#s50!(dZZeZ@0CsQE6^0`zDf!{UhrmA54pUC`S#*Nc4s^E7u5dgMBLsnf4)^!> z6LXq|*@flIh9ZX@Y_w7Bb9t^viL!6xlaWKjDz zU&9m^7Z+%r%+JV(76_G3@y4fz|I!^H1Yh*GeT#Y=Jq-CP6O=kborx_ZJ^taXTq2$KvUEu^BSLf#&fN~q1ZT4O4O+_-5 zH^&1&2XhuJ(O`0Na(ZFh;G-W$XNx-ligk8Jk?w-@Sgcu2Cn!iV+URONoY|+YsV_B> zEz)q-&&0&7Gn^{q!3wxLJs3rBFan^f!e>1M(dI##WqN%bA?Po;W2wnw2UI*?e!X=( zkmgDwcDX++(W>~-!Kwr%WdZ2jn>TOxYeF52MiUE@`wXEUxs34GQMJ%B>8Z^ig|O|e zI1M@smxhne=FmhoM_fyWB!tOPg(pHnLSt|uLD@DU_WXvK`P<3KNxGtig7VB=q&$TC zkc$z`6>}mtebU%~gf0M+1doUJwm9(&wiZ4skT39ycyd^xM>0A5kBeuOb`==?6ASn_ z@$@e_c!8*aiW#Oirzuq1FQo(C^-`-yOG{5-rzCznZUo#&0@KN&RzY6hM23L? zMGy5Mh;Gwi+<_F?_viDoo|ufsb6MrnRrgobh~K~21wD=wu8)>bv9NxEN(ZDhRW-FN zWl~qp&b;yc7s-dGE6YBOw_UYmWeK4KH;xBV_-54)I;pVAXY}3w`JGXN>K;ri?4m0A z=@mH-apw6%NLAQqnZA%xj_A9N+U`ac4n_y=i|FkRQ@H;+N#^ordG=H+CQ@I+*0 zz82@Y&4`U{2T6Yr$U9+CQClFo^ql)>O>b`~ot$Lf!Cf5ey8W?FeQ=}b+$_&1(E}{o z5-ld|O6b#P_oduFF81ix5G27v#iygih6Em)X~)%eSaH0MY|STdpw8U}MZgY#52WGL z2R~3vc>% z7Y&*aCu+Wuua0i#Ds?vhfLx7fsjSV zv}uI>cAwVRSh5-`EkZ^?!LMgfJQSkv#7i>d2l)3}sBOy-2QJbz>2>Q;?P)6Pbfft90G#Bn0$+YVX^V?@2spCGI;IQuNEAT zUn@LqZ*i1(IJ~<)rZ-v2&wfKr3%hBG`oJZU>A2)@c(qRO10oX6&;KA+_YH%USpz)BD6O7%>I@5*v= z0{ioy5z)1N8~vFh*Q`ujO6pr-)o(ljOc`E>XlTC1W+Xz*P2mXy?+bhU@#Dt_h|0&0 zlGfIYgppf=XtO2Evhtm656$@qIqSy#<085gbZ&NMb=CMv*}=cr2U}ZzjjQte66bvW zyqEScg^Gq&`A7jG2^s4(yTX%q#+f!pw{4oVT;AB?KD;Jfz(BcfsRl?6Udc5w%8F0h zJ3A&7TJ_-IX}5Uu$jQk)fVfESTQMK1jxm-gO1&L70%s?YKPSz!u49HJp-t%n#0kh6 zq;vr`Un)$f1hjoL`})2bIY<(BwBYKcJ@^4tqJH%=`U_J71((^w&1tPg^QSWpkjVfi z&CEPTboy{PcbbsSecp@R5RRQ;^k+REp7 zE{SrA{pY~sDk8@X3=!4GL*TPilVXXKZIlW{YXQwSx3@S;jXa^s+4%zL>b!=QdUO~Vco;}XZjc0` zBkFgN<}AGo!&C)tLO+kgp+V63(>!n!ILBD?$x1&nu8cNN{Wo7mw)FTY;B-K&#jN%4 zaAKuEhta=bm1+cV5-+{kQ4=yISkF`XMc1T8r;nwNwtzqMVBI#NKY~4D*mc5`z${KJ z^Zl=Yw}1Tq+@vo4o-zo%skW69@}oHxdw#&P(I6b7qDmc#$}jGlHSKKA9k#sj!!_tK z<-{TR4{|?xbzwR6rC!4+_$G9AkqeDWc1YPQpxfU)bMa5>ge>%1m#o9Q=}UChOzRq-MTI5w)WIv z&uB*_t0Q%s10scwviM6n?s=N~2CgXk;-*G#TImcw4_Xio;V0t%rnkdpXkge(*_RyhOG|L%RgQ0 zXZDOPE{QXQ$fXf;7$azFYgeOLOBI|bRohPEicyI5mzbI2o5yA*4F*!d+cGJwee((i z660@BTQGLs0Ze{D{iQ~?7okrfOR(m%kFT$A-J+_KOEFN<(*dR9bX*lD_x?u($^d}t z_=JrD8nM}BL+@8=74I)c^Cc2~RM@oM8S~VYlX45BM?02pDO=)v8cOF04hdN^Iiq4` z|CaijcwOi3Se`oed}uZOq!_+oLirGDbD4SCQ0rn50(ZU6;sCkUC` z=x+o8*xic5wr8lCQLf^@rwT7F!pIN`|C^wP2j2yk7wre^oH3y0FNy|}2MCU4psOZBbI zM0j9_t-!_90?rry=A;vQccz?z$iS0Im(O9#b=c~OXTz}h`Om%U?pO#PVVi`z3a>_C z{hMb{^B98)&~^YmTHGjB%xCeCZFS!x~95T1O=|MdABmC>Pwwo z#F@3VwS&2;Pz)hbR)Sx~d_^wF-DS7YWa#LGmKsV)-C{_pJBgW@Ybhz zf^>9WBiUN(J8E9kvHh~9=)gdjbUugSUn+Tw^(&5@n1SZ#kG*R&)fm=t#j6_CmeZeE zyBJY-WLJyeClfjg@9;PLZLmO{v6GXlMnR_$vnBtp)5sv;CDn47Ln`fPN`TGpC6l#E~E3|=DyGK zBbyHv1>IHS{=eA@8UX=;+QY{KFx--f{am*d*Zt`z5G_|nOU0PA(o$9%_*cZdhSjVs zQ2Fn^1LBcVLJkTORG7n7i-bqO@UK2f36*@)GrX(8XnjZ@Xo<6nsQ|mI4hdNe3}gN; zu9bSc4%(W(Y_fNQ=MBVPpfwSJP>V}R=}G6YDe~=J)@YzHr{EINz1~ct&-paBKfv$) zkGR2nEe3^YqU|n~+RSX~`Kjj!Ta?mkhBZDR;T9NJw)$N6*Ev?2V)qAJr6bFTK*@03 zn+yjwXrij=+YlbX`Ca>uJKRxzwcq{-#OR(cCaIcp|7lf~)L78JMzn{)?Jp0P<@iwY zyi%4Zh@uDc@gVhz&aK&G5a=si!2gj4RiYJ0ihzCxf6X@gRtJ}&@BZqADW9I63ZHi2 z5gbH+`8jp1{BLCc+yKZ>&-4vm4O(3t&`zW(uX_i{8hgcsRzJIU*YWbKR16H^c=Spq zHyfZw=-5Dk4iCi5V2!TYU8S+q z7I~T0_giSdigm55g*qJ26R(X%76YlONWl&`E6tAPHTO@i+)Q>NVXm8EWYIc)w6Ay=H zrINh33+AADAt=Kn;SS?l_RJgKVcso}8{+RS6h}9^vy_V!2;&`E_-~Iw$Ak(yHX-3X zptpe40&`()e*uBzVft`T& z>Xj9W=da(t`eas{g)P&t3*P(k&*|Zi6PGQeWJl9(@&8=MO)M|x4Jp^tO3WY(goNaj zm$QN6qs2_fOo$FjG2nRo^sl}tLa56lJW?XbLUpHX`5gIdE&Qqa#T=EE zW+7%$gX{Rfe~62lDYnt~jaiulK{=a)-SKO2+;pRG=1?++WBb%WRB9^P_2vzgirRla zZDdBmdu8--A}f8Q3$2l#f$IX9DbuIr;25)!E5h{{FG)Q2VU*v9AedK3*&Fsf4R-ld zt6&o8fcF_)KT{1?PZR4Zq4_Uza6h!V2JcLSj;gqE_uaAqzs46}@&O4K zV2{~crI|ri^e(;!LY)w1AQwi^CfQ!)cW!?4_w_S;%SABisBe&8F4F9eGk)|*vHku5 z@AkYICQdHF`pqopEnx-bQ6dhFbnnySy_DqU&FMybW+t;t^y@ef<6&X7NR%uriolZx zzOybk8ePT}vY$SE$0s6^2Q+I7Gg#>J!hfunkp)r3L7MErK5oA-qsqz{1GywDc;!_F zP;QkCH~aSAbN^W`Nz;-LZTgQvEgQ8HDD7z+CSQebHxq!$z2r6{=jvJw4z-+~US?QW zGtjd@L{Wi*KHlu*GS}!<{1W32kB@(6W;7M(5)?9c6(uE&O-%mU^2&>g2VMZI+9q*t-P6-JEA=~LW8-{K8dmz=I>!+(o#>tS! z`9I$E1;WCc0xVb6(4Y%=I1L42sRST;%}M)76O(QK3GWix$a0@ugZ^=kLKc?atW1F! z^N$5Y*7FY`*pvf4)X<8tkUDFQ= zNLnf?2_R5yZD%+n0~=$;;Ky)Cc|>2nKK2l|9Z<62F;>FxI%!A(t*=JKLe@nJC|X&oE; zKD97KYvKjE{5bx!e}XD+hET_y>}5U)o^@ced5SGIcAy`Rf(3Y4p_`L6+}E#}!A>Rt zCKfhjUAl}x<*~7jxi+hXXzOQed9)MjSYE2EVDZ#APQ15%J{>~&wkEOvENg(aj(^5| zzr&EI|Fa!>etpU8{pl}E#sNd@-hqJxw$__>FV0Qd^HWn-cXvOqp4ossS`&p?-<5T? z8O2#=91@meC?)prfB|br5Y-?r*Yn@e)OTLOta=mC=_!>M9Z3VH>}uaaC_7nr8XnDg z-Eg@NmEqF0%9Gos=grL|KchymI)ErzkZeC=yyBDu+RGczHpLn60DR{(ShYl1MDH--Z=r6f(tn7(%*>x7(Sg5 z>C{-O`<#{z{x*RBwKCN`_EUuW-`-WInxD5BNZ>6ZblZHOBK}TDs)Im;b$Xso*)R&XP|9 z^Mc_eo9p5^HgM@aZH>4lkM_#86rosIyrb*W?$aamdG#d^d1A56i=go88|Vjo>AZO9 ztAf|L-T^TF;<5p77QR{i@`A95QLpmUJJOr48(cm;c)n#3aT&6mF7rufoTu%dda4;_ zSDG)PmT`6xK{$wb?|LN%BtE7SsQvtK6R~L%U9< zfE5bZIgTlR_}Z2S}5pzmbrCQnUs2&PKrl;X3!z>_@LfBT@*ICu&lSYAh5YNenhfT zgSIW3vWBm~FCB-<6OAle`B_gcACWi_M4QYgz~5JvVlz%G7Qa3~n1|mFdP9kG)8y|b zIKMq3bYT*_#H9>_9N5x6r5-Z&3;83xqO)i$kCp1*duyBgwju_{C@bE;;xrmjQG>{5 zKIFEzo;EMNyS61m-|Wi@Onfe~wCe3aA*Qzsu^rChfbAQ^80t2G7i-+q0MCE7~k zkdlk@1UJewN;6EW)!$`=kM$(7<&kcbQ5e>ox=5Dr7h~YUSFlU2YfoVb_f4=uumQR7 zj{lt$GJlh1S=^s+{-mz9x`$oH(@tr9Pm*zj)aYc@b_7m6S+- z5=ffu>PNc8;w6^6#5)X6GGc_y@LndYBjtaF2qXJD&xk)Gd(AcddH3vJd0aJ@l#a~x zBe^7vuW#F?P~SVYaOCc=s=JYK=MH_(xjSMofBfKdooBvnjuA~hI7L=&-XF+NgZKNr z7jAV{wR7MEGFEI#ij08)Ip}!%@#|Mujm=DaMut3i0VK*zP;#vOL8jOQ{=nwe77l2E z1&-SvlNgb1Aany1rx6p&nVkIS|8#3Xr<|?e=*T{l!MC$pkh2}ZRJNM!b3_G>(CVrY zE-r5U?RLiPUU7M^PSw{{k7cU-`c(NqW=b*2z*Vnvl-7HDUteEqdSwhf)ja!G_wZqe z(J)k&={}sl(X|kQ_ph6=7VWPG->v@af3Q1CZ>r-~m9gt4b=ldUcwJF7m9Ad;>eqYK zbJeZRF6^yVo@@2geKAjAUc1UcRXP{mk+?&K1?Zrv#<}?Zs$XJ;O7F->3YcFna0pC+ zY3vMKW!EXoI})0NB+iDFt!%-(>X?Vh)%$Fmy(Qzh#T47K2dRd5v^kT_4jkN^y=*SR6iT zc_a(?BJU4{Di zo2X;6@wzNQldp|YNcjjqateMwKFU?j*WJAquy@dz8UE5q;SQ3{ii&l$mo}L-^CB$Q ziJ?&h`nA@o$Kx|zJD$7!Ga}N*?SQ=LMX91`tY(#7>mP+P?qD3s)_EMbg_glXJu;@V zzvpL$^)}UvM|hpD3q0fxiYo|^EYhN@Jqtq~(rzs-JFUCs&6Sj*n?ax5c%z$5!)Z4u zt(aKb6ZHfF#us&|s9^BLkrmEW_0WC0gC{YJ=JMxbrN6LK@42^N)jbNWLP`gNCDiAg z%&HWv<(p15Og3)_)~wxC)lbVyAL=3(a?%3&e;5+=krf}ux_vg+Bx*KR{Kp=vCqXKwkFhXZEf}SCoxG$nt~RdN+60i#%SWP@9Glp5FCAh9lM{l zn;;L`YPWy9+rjGaCz)qXYiTzuLfgpv?}!J=Yq2%?b@f-cNLK&&zarS;DBp^Lbe-HO z>!gGRdb=I3zh1`KpUQIQWQL;S7c^H`(F63~G6*n~b=vnXq1$)afi_ZH0s`8XUXzE1 z^AR^9zV|L30pc~aSb)d18~l@&&K4$7X0OyZ1)7(>?)@!nJarJSDz}Dzx%Hk=jd|$?|H*E>^$cFrWP<4RSMH?=%p*ge zHtuK5^C~3EwCHd3hu>BTiK?sg9iGa!ou3xZx7IyalWkU-G>#sxKg_+tGithad|OFF zC$5^@Oh;=*dnDDB<$KQVAP<4OH0h3mMpUm|Xi8C%nEl4CkHcHTwwE^3?l2+0X-w$K z)GM9}7sDiJ{iQk1;o!2Ioa?sF&9h;NI*_do-Bh<*vuu^yrG=Hha&ns4QM}4~(mVo; zPHn@}$=oyy{clh0Lb;qgeYK?O!iZ?{2TE$4`y>O>*dx%qPHwYD%sO*O-xSiu6aMm} zs`nM+u^olT%hQ5F42w+g4e%VpeSxt#MQT}wq1>DZYfKth3mt!l~ET=(VntbaQmmp!Weljke z-}5GaiY9DVTMbcS#b!NC_&2MezlO=$xpMv`jqKu^%`Zn5%gV;qKbU80#YMB8f7>4U zWaHniJH6Ki^%Lm2DRVuXR|i%qJuuLwt~Qv384ROr|C|2r=rW2PUT7+fe)&Hq`qm>7 z{o;r{Ea4dq#H%ht2djwa4zahrW*a)@3<;Cy^L@uGahDbIDn|yM{?&^oe=s>c$BY_` zroC{lJf)%ncBL%(51Vs#)E$M6lg>@MzrJ#2JWdRK_3O~6#(IiT!0)aabZY2|K3=Ge z@OUYo)y662a0mM+7Ftnc7WnARhwei@cvtdS>R&K4(k$*fZ`tdY^j}J*PG0VrB@}`z zpNh<+A?p-sDX{$dw$y`Epyfi0x1b!`m&GH%yY8E>N4{(J%pBe3W6pWX{q&;d#!(Vb zVO2mUH&nCS;A~8WqM^<0yUDWWMr1?K)dXor3!UftDrcF|sSt`~NQ_YZM6TES-o^z# zb}NL1PBR{Td;}5xQVhlC zBrPt{LDpQ=v3drHVv_Zmi}Nk6g~D3aF}UCi0z4Fa1@$ z;4;Ku_v&gkqCg*YN~HNs>=pE|*vS3U)NyhCdGqkuJX^V(y;GU{*n7om z&kH8Ij=mQIs1q27nlx+8b*^O}b)!}Lh<#DwveoYTTdAr#~j*Jm| z%Vw2VWD|T=@gCK!d)-6oG!`k2B#g+6OP)%oTcZQtc!Cl!`Q$BK=h|1uEW1s!Q1 zGdq}`tp4Hjy*VN28Dg3=5o@7ZwE0|jC)rYw`lFFxWC>BsE#HhE%1b!U&wAx-L2K*A zlvm}buYR_7G2@NPrx}(1I4o7x|JiTRy3ptQq$(o?t^b=ZM3}XxUK3(*qz=;l;g#sc zBsTnDi9tVi#9!k$fMxx_+o1XT*X?&&1Q*6o3t_O2K8Eq+v@MeIx{kisBEf+hPfT5r zlw!83dTV|0AB_S|je?v7QWF#&vQd|U*E2z}^WMJ2i~b_U{yKPPydU zIvgJ{D%Nn!9-WAy`Na{&?5Q#2ygOFbs{b zn7}`BgPKil&}$+#*L+-2`(uzXA)$|o=W!RmMBuu7gzHR;^5u(-42q9Q?zBI1#~h=+ z1^kHHDUU5@IKgHBS!`ULh8{PM?JoPRac!W5`2Xz%I3`k8hPuWt8^XhF-nIIf0Y(&` zl0pxfCYF^$x%NJs+NO83lyUwhN0uj15N^hCcSG_RAZ7NruMyEc)K&Ywr6`}E?x*hg zL&Zn%dda`vQa=h)Am72^%~`u)Y%cu>%5791Dbsac1m_)4Rv^V1rJJBzH6=4MbFZLK zaB}S+?I*+HJ|xfn?LgfAIeG^vx?K?$OO>9bdVyh6r4_VhjNN-cSvkZ}-E4HC;rOxw zG9#tO1s|*F?<*zUB2?62JrmN#nz%V=dOdEFlHJuM*>G69kPlj<uyAQ{Kr?HPYX(I1RlQx2x^vph8Vn3o zvMN?-_{oWK5>9EG1W6Ekl|oaZWLXXWaMNufd2fS?%wd-J$xLd2B>lJam1wlI#p2Os zguQVWz5?;tY<*Tbs+C*U8`_okTFD23>9j)8 zrv2riT&DMH7<0*)th!GMDTY|kf$c9=XB!XKTRrHk@f611eciL3bEDs5d_DX>gQwxk z?+^3aa00~38cK$v`jGyjhQa2_R!0w_n~$`MHYT+SUJpgy1?o#1h5ubmufKIb&(-0r z@?qb|{r2ctax;8V<2LuEIf-)MnM)<&3;e!hZle?#gK-k72ee^^4OnbRfPzhVaO+h$ z(<)?uo|?cu1j2#2>#i6Q(kl`F3RA+SQO4OVx?`b z!@gcNs^Z+lZ=Z21(dDgR%JZeU&(Ep2M-?n{(_&$`sP3Le#kr`0T5F%bw>`-A9uT1p zDbZKIjT!wR{P5_jf=<{zTaj*Y~2t1@`J-g+BTiy&5I?&nPHtP#w~O@eK|#%G*iKMh(6`tF?+~B$jk<3gbjg7fEu0go$HdQMMo`TsqCc=~(G{3CI&o&6uu z60M>_u^i-HJphdSzFlriSVaBQ#Ioo zEtUH;T(5`4km%pKnDld!8XtwxSh*(^sc$yuQxxasS=rCLA|2t8VRK=7^4JM@I39oA z$v_WS#_xvIFk|@w3FrPem@o zeQE>u3HCiNFYjt~9h|ag<<0dqF&N)kI;TERcBMGlu&hd=W5=b4dm5u-h46e!dW*$! zSM|-1^IO<^A@Z+(zHyyXu#ZPp#iYNJP}hm)%l>*~i90pUTdwh;DnBwq@NrOKjGXWN zkBmSg=ZD}y^jFlaZo0L{sZt8cbaP|@mHMc!$omajtA5WM7(i_Z4a-7`4^+i0GAXIg z5m>ZozK`;Lmdhdc-j_(bRWHGxf);tUt4wKz&{$oGmFYKQ_r+Ar`k8U|to1fJvZgQ^ zt>z+oR(Q}!{;Jm%i7?Xn$H;%z!=Zgj1b|M;p@aq8x}9Egbi1au&@de zg)kY&cV$WtR#bCZ{Y+M*?A(SI_ygE<Vp$L67Hb$NMNfKw;Eacm= zE6J)TG7jm6q*yH3s-geq**ZmI!HjbCuUHgDi@eAF)|%=@3v^0Z=y&Ss#*4T79%0!q z;vG+>&jCIbq-5f8SEmkCsW2#*1Kl5D9rI|ps_<7TX&9<@J}&Ki#b>I#4r+=(ZmA5< zt$bfR0Qbwgx-ysPWB7fza|Na_dNcN`>(tl?Io7dzNyYfV*wo$K-PGOGi|g}UMQQF=yk}wK)P!FuG$CdR6`yF!1j2_t(tUJMfvj0nz*r^9SUD%$*`dIv z$`i#U#EB?)zn&wc+c3?K&CHTfka$g4GT6`&K*5Ap)?#*17;JRN72k1jbG5iz#tJLQ zLuep?lWf{!s9C?#jVS3V)To%=^BBqdN*mlpM>m44RuZH3${>SZK+0eyzjVK*FTi_& zM-(s7Qy|NnHdLqqbDGB?ll@E<^ zNaTb>XNM#N`m;1JwaXZ*xqtoPlM(g_5f;yili;wQU6M*E+ev^hGuEkg2q(i4EV<3Z ze|`soI)&doWooZHR^fE`A1R~G8Z&Q*1isG*N7XMm?h)N_SjILt@Ef`l5NhBv#FcOE zc9#j`V4>q_R*R4!W1s0Mjh#nx&LAI^?yQ(rB6(HAeL?O5*oVs!~Z#^DMR zg;*nEV)ct}Z}~{(My!0A#%+%AYKLC;@IuA#z3EZATi%akVJICYqiFub9~EJek~?h< z#SvYzr~G_>7e#}P%?4hEh2eBZtao3xA*e?W1iCfr*DLr1D9CE z@6RArY#-tTMpy?O=8_+h?dDDohBwGQmXth(_AE{|Uc72Y%96`QXWW@$iZVF-Ynhtn z`_<0vldi3A0dv8g#``vDh5tO3-&BaID=t+W3&xcj{ni-~z$U=aXFF`o~(Uzan`#YpM%9 z>Mo%tH<$wHrRKfO9$#6@gt~}OsmxVvS!#)cq@7lFkLJ7}i4Q#u98da^L&a!L@xt4p zh!@b-5QEV3U4c7i1rk5Rk|&GgS0=v|{IS9`?e1<}0aPnw6-Zz=ZCry`Nd9+cZjxooa?1 zuH5w=8rs@EOtH*DDq=NfIGtr4g}0~kMH3Z%ywXf0Z_yO*Cnr}2 z;#zj0t^bkG3L&T#YkhblQFCSz;Zyu=_zk99zg@l#VaGvr_?SM11aBLBR6HwuJL7-C zjW<$?RMCCq4pXTdcCFUA%Z2pwth@xAO-^QrMJ=IUu9jL;mwdP;cTeoGsk$5&g-^+7 zg?6H7swMU(Dx2^7{;rW$qPHpaSBH`dpR!Xer8_nk{^=@C7j@|O62PS@s;-nzc~@gN zUr5BK)A(iyiL2zTS%x=lwjdwZc-h&j_I|z3qfs+A2G-4jaP4`H(+fSPOLp0<4h)P( z=1D`wN0F!>BehCHkRy`xrGC09A@ObL(q$ud#r2J7%@@+!%)6S&Zwr`Vzp!Sd{)9i>SxqcbX8Ec>i8GwzcpI^@T@P0G_K?6LJYkQEHYFdqFhN*Wcb z6Pp`avp~}DGVD0PgEdSTYD4+wbaXgGC`fERdSMvrnV${cA6@4@qdbj^`_cdwzKZmi zoTT66Yvw_>MAV|1XOq(EJjkI@a-vq&MUkOgoJ zv*~yg1A~7!zCM~^(LF5wJ)VkS7=#DQ#JF~Cftn!(&EOjx z4>8KUeh@MFUAwUnW+^>$9T!i|>f`RXI+|4xQjvJ2Id%;HC{fbY`1NYu$WC7R^!d;C z?_2!|Sr#mJa;p%<9M8WvG2SOh)S};!)eh8x^nFOV$#6(Xh&J#i@TM5 zZ*J!7aDgk9GiNFR$r|Ig&$uNo*OU^8YBdrYHe5gqr>PU;(c6_gKL3WP*guqcHgea_ zx;p9Ryqe$p8O3i@6m_Gise>v;pIf2hz(1MTF7@qAYVcd@JSU<8xbAGoygi}7&KxZD z4-SJr7pd>G8<=PBciiATnUMD}+O0-YS}A$7TSK>*G=925Iqgav=5#)7tye_Tur1O} z=yCSo7_RTS71lh8Z!*kz$CBYyu7oZY9LS>lGK?87^Fu{)8!>g9k-K}YkL^=L2upCh zu$WEw;cMdMbS*YE%*ETzJ1a+O*;c15i$@@RV(wZ!&9zI(qRa;uMU5hH^XIG?8CpO0 zG4p(i;4Sai8&kQ19DJ-sQrfN15#(Fr;Sb67d}60gkC|mrAL+UMwt11ZE6hP-^2R%+ zFox>7O^WA8%SoISil>l;K~M`jdj8rII$W^N``&hxf$@@K?DCt5giB3_g**4dJ<}t{ zTyT3+(IX+@Q}&!x9n{b;WV^jT>YOa4!*+P!#6dU5QM}%!^qvD7r{P)jvm*a))UdGC zAES4!8XAK`Z9S~F>4uv_B_K#98GJr--R=^-;D4xk_EhT&MtaJVdn}e@F8IysPa?E} z9y#zQB-Nxhh>&?dL6RF_lzE!}>u2!uu&M=73;qJbHKzKz59Glph*c*C;Y;$Enqn?1 zJvx8S-~e|G{M2eOkvoL<@t3mW9wVhF#4*Vf${&ELov`ijD zO+;6Nli82tqK3DEmI05kHItjGKLg?s1&{_;`$qPl8)HktnbmQ7E0v*2z3p}l!tf)3 zhCx|fhC!i=+hj-vjsc|TzPot0Y(Zv0M_71H7@9>1+8m^8Vl$e#GIHf_jYE4LxW`rD z!(EG<+$304BL13`WuXyQe(jx+%K!a)WoJzyj$nNJu+q7qB~v$!x=i~e90D&N^bD8M`Yg0}`G|!gvJh0$ zC1Yd;Zs^`Bk{qVB5_)oBBqTgq>^RDQIqN%2CVceyhH^>vxV&fR(mcEw-;XcARK@J0 z|J1yiUHfI`^_+`sj9PQ)-hVb*+>UiN$`h{VgsGxA79vR=-ZBd4k6st~-LIM%`0ePN z*yDRM?}qEPmneJs+NgOj7-QqO{6?q(b=3r?m*pCn1v?iChYC=3^WQKkNRRez>xnoA5>r z%r8oyyic;dbzLulhR8_U+n6qu3}BGNwy|$`=DJx+7e?`)&D{NE)9IU8B~*+{Q`(fz zVYlp)%C_Fy&zR<^-Rr7xo`V$8o(TM!NVOyX>0bPC<+!WNVB7FwPwBDj{`}e7t(Xa% zQa^|oaZsMqmbUEPXIEwIPWu;^mnP0N*A>j$EPg|g>MVI=PmvAe<~HzZ+d7}9%{%*Z zJvLyMy-1DU8BlYP3DsnMPSd71Lv3Ox_u8TvtnmUt90}ERbM@kd7`=LVz$YO*oK=$>b57B_j>_sJ$eqqOt@3daZd29S!NXK)F-H zJpsBYM4u@=$RW_Rgc0ot$rf=M>8weXyH_BYW$z11$x4Z{`k>JCqo{({dg8mEhrWjK ze-47xHce;9>|?K)T#^T;dvtAjy{>Fi+1_h2b-w0V$ID;zllqm=AQG^*tWa@V0UAT% zcRG&ch6h<$p2Lwz)7b-K=iyHKxZZjE89kqa8x|hcb4I64({wJp`7ou>zjH+8MiOOP z26he*$>E)f2X?!6I{snC*{uSiQ>8olt1M`$8C=A(T~lQGBhW`1*a7LGjlr>Sh_N^@ zp-OwN>XfHs_Ca-}sy;9qmV>8J0sn#iiyA68k+5 z92kdoFPs4WPr-?=rQAf~QHhzvRV466SfRBobHN;qhFsY09Pr2}+}>FdD)+X;DCqIn z@dOio2wWGm|5;(HKXU&h$a4L70{Mw&Ov*w9s`7lX@FH z=%qB%07FQSPyJjBlT(fP@;mT7j+ER3G9%>e(k&gSx!#`g#B6eJna}a{PSEe z0nZ^a(=yClh=CA#y(`zy~%BTiZt6M0ICAL=d`=9*LhAl-|>H#GKU{%=eFm5!9f znu}d3?daxbzC{|vR~UhjuGZ}SR?2*;c3sKU#U zdd+LSlLeciQpR~u9|1r6ulzi>tb>c`^p)Cmf3)9qGdw$U`yP4U=fII0&J=a9)*qwib`?7sES2VLE|(tz^+4AzUo_<;u3iQjc%1 zCpFMCvg*+C$lEYJvJ*yo8r|u32-W*6g3wFm7<0)e6npPb_>DwyFv=u3N%7L}BFH_x zn~4!}k|m3MH{_kNRKN%Qtmn?{P4K4&1!%>@+AVkJ7s{to19wNWEoT~?$Xh8k^M*8I zN$ykZpE4o7b8nk3p@s36Gv&OZlJm&vWj;fwOWRv*B$ zL)4!YTch&X29f{92$@WTNOWB)ht#PghoTA4UGA?AU!+jdUS7@InGGQlm-pN-wP+jQ zUf<%{DY&&S4GcK>K-TfMT$}AB_XLPENqYyVngPr$@&MlTy))wdD1#vS94_2jqa#R_ z%D`E|g3}IOe)lmt9`$=hQt4PCCQ-rNphW5rmH;tpJ3_V;yAyX3o#waO;=bXnQi~}@ z=5IdqX*XCT>G59w<;C$0A99mxxC#c{ES+khl(~6f+sQA~wG5ugarQfq#*qSBO3d%6 zWB}icVM;l`cXU04l}|K)h_ClvQQ$H$EDSgvL|#O1gTupRx;bH5^D_=xerOCI4xO7# ze|g|+)N?78t+z<~;WnSiYzWO650FV%6u6~INEGsZk3zPU6C_Pj*mtkez7;(Z>dayhN|{pKsdg!oyz!{t6tE_15DK zis!=g0pufu+Q3Rn-EW&PT#D&^6-`S+p=AD2GBU5{=H}S#pot*p46>5wAmtV{x%+$9 z)fq^$Q~@OvPbKTfo2jOu!D`e61EBJ55LPTHF7DcOjnB*+NzybJTqtLlCgu;rDMm0r z@`qcJmhZj2UtV|RZ3c-M0P7=z0GIrTAJDAz<;4gN0TR9oH2uiQ-Is>;!VF3$P`{`S zr}geZNPQBhM*z_Ff^}W?+XO;J6@zb!x_-#ZTi)Keg6>X;>4w7L`GIrWoi`<}D01VP z<~fT~e*T-gV*586xQwNm(WIgAth_e7mvJuz?5lwv{}G z?^x4JPeA9&Q!*$0AtW<9dyKJZ;TIqQy#US#!)}bs=)d1H<7G(TX)!nmWuF8&MrWW! z`K78jHP}_qMf$$e%|<7~j}zv_S_p(yfT(;iJqZHFZEGaGzn?51vS+nx)$x1ro z{%?5;7#Mttmo)@=*p3f5| z3WNmN#a>CeIGO-iS#EiP=b}UrB zDZ^ACZJY!wDa#FR4&}Uh4Dq={o7}UV0iA6i!ubNh+ycwiCa`P917lM<^y~T7+BI_} z+gahT{y;E3xln_o3^Az_>A`;+ACCCOl}>4nPA7l9qw{5q-TXdC(j3F&owyy~NgA>S zt&sOT8&>ho-}*6K^kOWj1n8=P_b!!!z@-`vLo_*_VJ?Rr7-3F;DiXL!834z61EM5^Ol6zv+OE8D_%hGV&o=?{od^q$GyvVs##o9nPTr>=X2PX+yOKx+UFi$Qx&gA) z$>8K32EwTP{CqJ0jQweki>ZHjO1n1u8+|^FxVs>0V_ydjkRInTYqMYX;n{^llH7ibFH}E032>W@Icb#C(+#p?@u)13LQYMK ztU;ezqysyt3pIZX&v%yvW8YTOsO8$(e#*UnRT%TbfKOrZ+vVS~<;(lyPQZ{00(gq1 z#Aaq?k-)rJ@Ykw{)yg@E?~9BBgpFQuT9D0TT>>6wN&wOei2jH60X%B^JS$G0vWaKo z(S6c>ErlK%ISd+H;o0_Vy@YrvcD^Z zWW!%v<9bvb8zN;T>Nr(h^9F<#^y-g|OOmXY&HzfH>0uww>PnA|j=Ml#p4&#(>xL|t zkf=OQV$YSgptMxx#Y6Jq+&liXKDd2!Y~XIUM3a=1RBJgw{*o9sTkh}!m;pVT#b}~Q zziauW0|MJpKg6j)_L-VGYc_SSN~91!!ecy?@@P%69v1Ncq2;!fY24V#34>DDzoQCV zH5U;HC7oMj85U`CuaDFizvTcu9Ds%zGn|L$Q~XBWl3W*VWZg;J!sVO&RoS zdzcArNMuTA{l`?t%cA~tahq+r9uyVSgBAov)gfRTdNCS;ow1Smp?t}ghNURMTHNbb z5tr+os|G49-`mX;tW;XFcXbxXOMWtn1bCGM-&7ZhV6J^0mR}8knYfk8DJ~4$jslyb zppyyP){S@a|M)tf$_6@TDpEwIJKdYk(%RaowhNFN|7CAlv9hZ#$zAW};#u^@hF`+@#pR1{J_KIc|mO{>j9_Q%yc%e)1EB6*YWRn^jNqX_FeVd;@3M#+3;9vDLkGOY;QW8+M2BI`p+u2VqWNNuVyACk9(gB}HA`p|lFuCGl`TDKy z@mX0+hx1J-K<%a?CI&DRo@P+AznDIg0N$YitmL35(j@iT!1CHkwfNuZ@rH;~>ZK3> zHr6vB#u@TA@E2?x@oNPJdnvGx%*tFwPpR<%uZSm_-B z7dy&8Bn4nxuMRiE-#xW0S*M3%;_F`Rb7Qurarmo+K!S-*%1?WHd;5|)CMO5-y;xxT z9eTJuH@iBRbAGsSnyWSrmIHA_Qojpj;0EzA1yJ$}ObcrMW;7CBwg1ov$z%A>!otE{ z%#py!`$0a9Jq|EC;Fo#bN?muxKZBb21GsodcuTJ_0DP_+wSZz$`;r@p$g{Jb*{4Ng zJHT=6NLE96r09Du7FCSlX%qNoD3hw6J_Z?I>ea7RFib9bEGGfDRocKHtGnovFuQN> z>PNK;bHTc79(0={jog+k13;^SKcdKRFbFF<0(VRmXavyN zc9SSa+>aC1-^K1aSQfm9@Gj~z{$P5<%@Q)=9Q9bQ`R8l|$~}yUSzSBx8N>bEol@9x zk3^c|_h{AwrfdT`X6BR`10P1;j?4eV>c26oTt_90>Z(qtmaz6P;(WGsni))Mx7pYV zSY(LGw$oep=Glx=HQfs@QBfw${22l)J1<*9$m5*vb=~wmz!rb}`wrd79|9t>m(O-L z&39C=MY!H%te#CJSN&p(*0iXw1_KO8r&8fi%f+tu2Vd;Zv)jJ&+^$fJ{L|N1Tpe+P ze~r|-;V^MZo{Yz^nahL^tF&91KlV>BW9F3qh<{z7#ljV%3f4avYY~XlfSa*gyABBy z>Y!uov5Am>m=N~Jx3;{|J!|Uzeh(%Qz5H(X+gkVZqcuq^w%hrvlAy0)QXo=FSO)V@ z_>|#ZpX2s^AZY%x(CotV{BWLU9w8rTQf0IJ{)FaeLbVon`xu~&VX|8WB26=`EM9Y_ z(dxwO{(-@o5P|qVsd)`q z*x2=*E?Z&?-yl`ZDZH{g`aTGY!Gf>xs~ zA*jQ6hir=85fP=+Vjn2TVcBwU?4Ws0R2+Iem*Sj;*dqc62zEEc2QgIEHH4t2-<-novmDq|rvYWGMV1U%4S1I*i*B(pLjg;zdFY zx|os9=SK(KS-U^IV~=YA7J*s{s0koaZ#8si^E_$x2U*N@5$ruTXet8Dpz* zYqfdSlXOm?_ zi~LPZJb|~#7G9|N;XDxoURI5DgwHp}X1z5qW&_Ta)#@*$U%Kl2?6>eFd=xflX|aQ- zdzoOKvK%eDtrG^DxVZR>gL&xK|C$dA%a8BZ?Cg*4>NY8>OCKj*SKv_mPG2>ewG(}{@rZ8Bm zppwcjEe!`(oadnbJ-P0D&IAE*%XD)S6UIL}NZkX)Z|QM@etpb=&=&wF%%P@C#W^?E zXSxPix(28p+V#y5R>42Kf`8Nn|CA;f8eR!K-B1K0V{E->Kf$$nhR;#+#r_O4)O>DM z3!hErt$71XIqNwGc1RL)fczzF2K>cKC6*4uuQb*m5TuubHI6d-ni8o+vixQNSUl-o z#uFe9k}@m!&c`-4JBvX5&mWQAjbFEWn~D4x7JZ+Ao(Xa5`+yVH9J(#60!D6m4e|Z; z@pd%d(TW2QI|F~e1+W{w$VGuD@MXWKHA*IW;a9_lm2_b=(hlARsq=}RHZT87)LD0* zuXoM1K|Z*E6n6PBZDC@)2n)ep0DJKoIJ+e1#Mk?x^6b*0<_NTjhYJ16iBmN86W_Sd zK$M-b;ap+w;Cup8g5L7c|04p+T|#URtT`HTb@Da1Le+imIYieJNPYXgo}aNCPFxT<>nD2p z;V{BNa`G1i4>;pP`$>J!uvP(jQ6!tfG{HGSy`WVgfj_Lp!!&Y`*kHZ?8(ws+GSPbf z^w>=JQYuX`$R<%GDp4gf(7x+zTrLtV;C9&1b0rAb6OioM)kZ<>mENM{OaIM@S$xu%DDNXrUWynGUK?XL)G1J;^ls*QMlMHshOetTFO1vyuk6f@Q? zBY8^L0BOuVO}G?3*6s&#!!#Z2)ZYM9fqImSKii^@#~jJq6(OgdKv3TJuqij_~PgeNGM)&XmJ$0hmw z!ut@`5_1>>)Ky@~3vr-e2R$89g-*j7a0bhOiaKn z$b&}8&kfz0ofRWJuDB_c^bFh-qoWQBnwAcp6$QjYh3nD694V~Hq+`wBj(pC-RR@eI zBxRST{?d7N&vO2!1!@NNSJ|ym^1(C`5}va^LK%-ZIp4t6nOi`AqcuY2XW0?Hn0^b5 z^7`MqqTaBu{OalBKS*nhii(ma{u1&3c>TVKoT!2v=)EP8EWK zJX*(!=nFbDWbE9Z?W|yRiRcTG=?k0}8wEE7m!;_%g`6%sFN`sfrS z>a0914>fMl6-<9D(4a5SXc^OHB2mjrwEmfRCq>twOxN(4&Mo=vp}NeaW53mk3kb1-!Hbw>@b<~E`yJGx+UaBpbv>ecC{&>^Sw*P>urT}QRh_L>**S)*4v%evLW6Oa>LtE>%`wbXm|axoZoIN zXy-G|L}q|VRJU`RPe3;H&a5-#h4~wJ2tnr2S~S48XM#)Cn$pN20gfZd`OYt}pZ=BZ z;z6)I``4do0#7B@I7w}eIA{xa;T{9cgl(|q)}O4I$9ZMUr@9ZfwB8&bcOW&wNs8zH z^^=Cxfop)P%B5mYxqn70x1kS&F{CSaDocE~FK9973gZfg4#T!!U)7YPQld4pWL*hX zdlJ$e)xerVY(qGJxq=Dl3aGJf(MLv8mN5ehat5vnBcuJcTL^DeDWyAMaf}JW_423D zIkouCl0&XSrE}gWprd-QL7T3|EK?E@^hkcTY&nmO5G8J_WPe$ionJhGRHK!5nu!KfoY$NI9Q7GFK}7t{i^OT4hdAbn-F^5oB5 zV0BY|BhoY*bJpqlx5Xt5AIR?~e18?0EV?SefW_iiub;_&es5PlM64Kp&=$LDes0RG zz=xR^-v|uj4!X6pnj6}^BEcejPrjXViTn^A1c~AUTR^u$ViX)EcXqR( zzsTQq^?aDW#y_wSR1DT4RY=#p8*xYqnkIx0-XKXe1y-~NsoU$$z$&(kc_1aj>yD?j zMdjL+r7U(L;%UukH0d`Vt>dq-Tzd@{z+s;rYz5ng)H3Q7d%kw_5*1hg^uZ5AXR2A^Bsj(pt2%eIntOf*v6at=@nCRf0=1oOD z@D0^XT1gWV{PV}Ohybs#oE7!lAP^klhbPkbLf{Q}Q^;LT*ZsAVmAjXjt0m;EnY*)t zle>fM8wO8HS2tTHN8aZ=&w1DxY~0@Oon0`YRa-eKPwWoy^%Y8hrL7AicRjo098l5*3x|S z$xycFMkZKvlGk8*}#t^FrUBfeY4=a31%UuLU0{=A$ zD>Z_ZGQxj_!b&$_r9Kro22-{iSY$@UDH>jEaDh~}oKGos>Ul2O=yjOC3sR!gVYxc6 zE4}80vXp;t$`$#oD>HX^{ zF?`ubMHM1F!z8z%8qZK(W>$D>iiTUNMtF)w`jA^X3;c(}4TlcQk_Emq)6}Q~yZxNf zQjo%WyuqL|kTQ8YYrAG_z>@kgC5pu{Ln{%c>qz%W4k2-XkYU1;r82DcF(kwGrYfq& zswzPqzQv`)k3m8Xi9_IyOguDG%#Kw@fzB}sJg=GWfbba(5pOfK35;X2pltX91G z^205WfM_gx61@wehU_B6F|lvFOu;589`crwU{0W*WU|^M_zK}9#X5>iXiDvjsfe71 zk%f{SA{!GvF(4+1c}X6DwmNi=H)MVi;=q8Xh`z|R&>d4k<4o?{2pdr}ZM<3D7mN4CFjIXd80`KWqn)+gPEjbWkDY_0ige<-hH-!{p!Z>pTGwfFA8FaM z%v=J&hT!Hk5zKV#9oijGQ6M-G$rHHE!_bC=SP7XG-}?=^2_i2c@j6tv2y%_TprVXZ z*E8Wcw5FK|2vxajL{39FDIad5`fZu_jq14wJp4{7-hNND5nhFq_Z=@NJCkMApT@(sg z_Nr393n2)epd1<1(e6D!`84F*j_~iY+6}+a82x^agR`NQs^_mFQ8nqa!O{xG!55P{}j3P-K|q zJ$g5mb%JJxZ0~^mmlM$@VA~LAN`Qj$HSQ}?9^btrssj==GJmjFuo~^UjLC9Q?3`f? z`G(|R_z#TBaok>l&nOOP2ZFZ-^cE+VSf-ycIdemBqzq0jvp4Jc5q~1j_$D&0gMD=2 z=EOar^SDQXhm#7M)rR+MgF*qpb0L!D!-o-%-x+&Wd?RzFqO@83);rYHy0;+-7GON# zgUjuS@zgY>gc^T17Rk~1lX5%i&CdId{E+mJ7Af-4$+$;4a?4QXuRe#+5H0-SfuVb@ zlfZ8%Z$oY=N3>#6m((d^aRg24G7rz93_SOWRz#Oy$DpS&kM_DBI^|7wvl~>R(7dg< zGAJM)r7V0b(ACY8zPqWeX{>Xqy@K`GfyM_qN?#~P4GScqBygw~-tt;@Jh|sYxC!*4 z{jsd?K=J-zcTcv=kFmXt+GVhRFTDcgBG9$EtF)ESRT;buKtRe)cFZ()(6CwKhF;ag?@BF@NEcbmiDVJ!nDz0To4K

SE^$xcx>6xBSSb z#-pdvvvC{A)h{)WlqWQ+fem4 z)^X0{y{72(9R$V#fJqcqY7Q%vjj6EYfTw&*R=THbl4H?AX+pb{B>Ji1M6&!6{)-7b zaMk;IJ`d)0|C`M+t*aZ>{cwdZACE|TD%EHhRJ>G;(2{x^6ZNku*|w?;qnC?bes{O3 z=(X%PmwwpVpm3IGNPG^KfvoFb6}8ZjlM2Z)QMSEe;Z zhsm6?!sCzx-zfJ4ICxy5aw*9MxK5 zTlX$Cgbb`S47zI5J!K?i4%c*K+6>{Y6CyQ#Rs+4H^+x&q7}}ev@zs^!89dAM)EOPp z5v|yuVMpP!F;5+C*&DKC3fJTyYPN7=H)-Z(9+z=GSR`*8OfABHrsJ+wKq$*dU5IAe zR_w&VZ!Q+F6N(EatK7R8A*lI(tk!ch7xgZw5)<##__& zE6Ar5Y%N%KP}?q$5jmv)VQBbLd|y`io*?uTD1uSk~7;F_=DDUwIXN493t7TW)WDc>D@rhxPi zB2-|dNLFnBh;Tp78TJV`w_+%(!#sF(!me20jvBB@_vNKbzsQK2_uMT1;2K}b^bYJ; z;l~Kk>r>t<1%;`Ji9z*pQlJwW}Jl2)-+ORrI(jhlW zG;#=0b3`@rI#Eo;`Wj*g>iRKd)eq17%{Fom;{ky{F9lK~3w$+IBW|iR2>BFA;CGQd zQBPEa2Ve-iH;(7Xgo(FSLJEV=n+hMte&b?IYolB{$Tze8BQ2X0`~pEo`SnXJqJ#VC z9|%3#-4ETjWY+X54{7Ytb!C&E2;4VzXO!>`JDwhF*jxu#3n^1mw*b z(Vs^5d64Cj#}?NV_#tQ26w#%wqdkVFaQ1woKGb&C=gaDUPmZLLS&;G%n^O8t=`0F1 zU>d_c>$aZ%tdj3p=deai?$D%Q3_o?rXy*&+SoznnW8z4$@`a^6nmZS$cGDFcW@ct& zxwsE+Y3%*3UV9huUSzFNBU(yVmvXMrsq&A-1HnuE;cxbf<*=El^Jn$Tq>_XrGplLTTB-c_@q-Ij%#P18Ji__! zs+?+`n9@YC3Y&;9wMyyh4Os>b4iy|JIk&&i91%1ss^twdJZdRLMY)nM%CBHV#Kh7L z4i0k6a)m4;Uve-Z`ViKnXo{8J+#L@4 z+-s{dzc`vL4S$n>Gcv!61CMP(uz{|1m`zf#)clvL(VR`r-|G+iEG)^+n0h`{lZDjV zPivHEeVTMP$T=)B7$GvK!Z>-+!#li7U#VFcY_Y^Te!X_HJrC;I%LJ7FayCFM+>4=E|6S%OZ(HI@UI*w~+(mfGES zenqNe3vfI9=1Su<8U7xM@%QwUk()a)j!snnoS!=O%)$dow7Wqi>K5$sh^f57rk43pf9EEB6-LvN0a{C;U6xB_Sh|)6~>#zf_2)AKIBLVERcA~i2 zdW0UIRtWKNqGaab2Ku#Obk`TPe=9o*lol@<+uGW$jt4leI_|F}KYjY-y`HE*Nc1p4 zu$RB9%us^vu9&0AIX+pBM@Ppx`{_7fz=+RX-`uyQ zw}x|PYOU20WtekCy*6*IPI4pyvLx?sk_!qLsQK->T0C}j8y)Guhs7_`pYJVogR}P)c&LlU72+(XZEPV;^NO9Gh0qRdYqUf!#iA zL7{x?C$P~FR16G?2)4(ML%@h*CGmfA|AB*FC;2i~s93M|Kq zlpv>jGs#+I+T4LR-q0scwimuN4y-UgeY(1}rC@5x05*9Im~IJh49Kr?z2u@I#+L)L zSzx_xO92-yD?iWzZ_jif=mhkGydz?rzpKsvUR-Peck}l3)hJQT_22UK^-apmwDq#- z&g25_^7(ZMeqLUltel+7pnrHl(EZ&53S{zHgU_S^@_hgPJ#80)iHpnl>{-P9?P1XA z!9sSt#J|3AwyNF-d&}T9_ukC3j!LfvfcK6bpY?IP*s)@}mULyuoya5qBP2Qz_ho=H zZ^k~!Jr7@~HdhewI#Ax7`bx!Xh1=$PRzsUD=EEZshWpW^BM@!ae!7AVKmni4XfVJ& zBrcm#hMpKInRt3}Oag+fhB?Pt&GsqfJh4oCIuS0uvK70YdR16k%?7C854~6|NxgG^xK8_bZrv&peovtvt z*)_R$&5$(jjboCK$P+zmotR;twBZxb+;PHHkd=+tSFi+Ur;si1mi3t&wVz?Dcj9xS z7G3?@jc$OMJ<}#ZLkf=qG&fzgT}w(~&)}XBitl*?%l4cTid~)mo!b68-yZrDf((GHQhf>2pT#x*0(jkFCK+k^R4RGkpHU4#BGx3-k@_z$4^g)W5%z(;C zvD7QGco?&sHO5}!!hZ$Af6>E#4QLN~?-?a~9lpAf}zmnm8RN$8jUC^vI zQPWVIAZ)I5DH^xIL{bVwN;nvWvj*>yUI=#)VV2MfXQY<;02ZM8epzDAQR6brG~giMXbz+l{aqn=$BY zqm$Y<&wcOx`f2t9x2<9Li%|3j{05$@r(JP#KIi2AXEY=t0yDZa4A?t2INVMiYpNQn zA?n#WTNx0oezynsNf^jaz5no`*@3K{aUS@vT-J|goNf~X>6}|381&ChydS7gSy`w) zQd_FVNeJJvI?)U|AEZI|O4POmDW}Ti(2CO({>#FYM{2Dn)=1fS=I_N)(8;3T;R8Om zwzg98SYQe+`SWt<*Flz7!XG`aGCWSzF*XCCuB)r-2u$;&pRJP1X;CcCcZX$uzTZ>d zYI_{sda>wd=(XShk(CvycW;{azQ4VQK0TS#F>yH=5}aswYf#cT)ZhQ3Q-(8e!Y1m+ zBy}GOCVC4>JW`n!OF*ca>>^nrCQ&2^^c=AaFH-}q&&R$R2>J&E{5?78EM1F)6|Fd4X% zLp4K-|COs_^9FesE|v5^8i&u#-(Do|gXXQ@b+#lI^KJwW*4}Y*jPtN|)7E8vu>G_3 z_PuQvi_vEYw3cvBSELdK`?x$dAzthfEyv;XW;~otojljyYJ7YF1GpA z2Hgij4%)9BijfaIx*`JTtm;KX?C7 z_ol7(Hdp#qWB}Y4ZaI+V3h=Sn|Ek9QaM6g~dl`v{2moCipY6CTzzxgQu1I1E3T7x& z)axJxa2=(k_JED9ND?03QyXFLqk>MM@remIh~G89jEIPo6crN&2bJ}joIiq7P?wbj z@W2e%V$!c)npexA1V!LV*X?m8B^8y_o>-cJziYj6vPIyWYu?TY5D`U2MI~iBwkXNU zS`B7A9+9{%kBIQU-fu)!bZ{u&Tll8q*nVa8v#*bkD6#Z)Nq_jGK$~^`KCrh>pipp- z8DjT0Cs3#>_>Fiyj<$5o@{0QvTG zWq$XPir@kxxE2aM29xXuM2r0n9hZ^;3UzUD0rU+Ff7o`BH<%;*T2@x#av3F4BA{i# z?~TC$a68;8qnyuka$OrM1(m^pQYpfJchL+X?MM>Zuv-lCH%&}cWUr)Ng1mK^v}gS< zCB<6BE8y6jBx+*c3togCotzW`>molH1z$HZt@B>6bU#F?C-GuGz&!o{wrS8nS!h8c z=vZXj<{N=os1V;XF_Ele?DGMz2mMtc=Vi#*&g5E_eFYM3?IZ+%@f#2wAa#xlS%60C z8vml^GKGYMgh1-v&ZPk;AN#ESBz(HsWljDi!Dex`BlOub%wWJaGwDPvxCGKa z6a0J;C7~*324d`i4MFu7+k*S2M8Xbnb*`53~o8K0esE7 z7Eir$4XM>#N5n6j!4vWyR#ass6YNiR1#$)J(ouF>GPA{2A25d~5Lb@?eIy|v>0IrO z#_|7H-lUuT$xv`>`r|zoi8lZm9NLr9(>ls1HrBWwKV07Pu57KZzbez_7*OzX zs1^_e3nTbcSQr@_y8*0gb-N@V9XFW-EXv~YXypbBzi}5}6I;x)GPqM9Dp!;j;T@$Y zL!`$FrGoOP%FaeBQV`9UZUnVQ@KGd|$*udbUDQLz`^B_ts4L$I2QBL2dfZ&Pv|p~` z3@BI(=LnnsJ=sV%A+K`jc+-s?hEE3rqzE8jQ*-mm=4RTV!FPy`NdUj~aE=)uWDrIs zro_}#IpFFXCO0D9M-093kG24r_uQtg=(zKhxVtomwBO(Pt*)&h6)OClvCh}4;C}wR zLb1~s1s&J)XA%>~ZhsG8UzpsI zf#6E1Q1l+(4+N4oqi{Z3J{@e|tM@qbzPn!m4IoleQ(N>uQ5nEkd=zx!0%++6ji{E$0l3adL^y6C*-zXK!b1;%g%$ZJGQj0L#EV76d9K(7Z* z1aREuV*Y_b4)IUxw$I@9Xe@#}k%*L37C?tEK)>pVqA^1jo7dyiu_S*U=nZLaN?ik8 z(E}-=g<+W#l+zrTeR`e2^}Mf{+Cy1Nk>^pam*Q6k!5PU&l1r^--fD>shuR zQU<4v+q6G_Y!IJEjX?%=_ivX|K92S$$W(*HUXMTI@!$dhspjmYxTq*76#A|^nj+oS zzk36)an5nsIyUI?ml@pH;+Btc1sSAPuz$>=7B{_v`+F0OpNs{HKbG!f~mRMp8}zym{|_ZTvG^ z&j#47w~r5!uCkH>Al>VIiT=e!y|FYp1x$7$DRtrD7!Rm6-{cZ({(5|IagqG>_=o=h zm@e2qFF>Xq;OmJ(90W~8ytk_h62`I(;sdfzaS;wqFHzi&#-7;}cSnNGS?Bz(EZe}s zNDG2lwn5rVLQg*ocJOy?i6-u>9iLVbtCN)D!F;o)3Q{y(w&FSKrPoqGI(Rnfx`^;F zEwp&pM~5_pVi16|afwVZS%7Ju@-0likR|Agzghv**#agqEzZmw?sKxqZP}mVzh(P+ zd^V*{{`CyVDv=u(ec1qGu>^Q}rK}Wm{FAxPZZc}>tHJAzz<{T!IX1$~();PS~O>Sl|8HlB#+=U zxt5%x#mPDJWi>TPS5{UYNJg9AMGI-%lm8Ff2kAGvQA-LKf4ss-wEga%efU-!!0A*r z9sRI(3?nJ-AO|Ql`quE$cHE|dv<_HD50-oLgeKF&k3b6(`au3)HO+b=NZO_VmF}B=c<7sug<$&-VOVKF5~E=ua51J5MIyq)SgD*` znM&k%lqq{<1qhq+37J8#KCILiVQShI(G{sERz)xR;}f_%>$n>(j0FFMxttR5yZy@y zM98c@Xx!ax-H~(eC#-ZIJgTd!D;O&WL2Af3J_2w7FcmxyEj?yQkAHl?v0Z54&lT}l z1yRzMo?p)h(Qn?~5nv3XaBrr4;O2BDJHmG^ zne@R3_C@3(M70mDZiHuH4lv&h7?FtyQQw?@0Nw@h^46C1)jfz-FJ)!l14|m{xI5z{ zB5J zwn}pG=~!_QzZO>icuHNw4HMKumQh*u2UnP9OGKaEGR^XHx71f&3@>DdA(F_UDH<;} z-ybnde09har*Vj>O-y>zl#UE?-?htPtgKOBe|do<1=3Um z023P!(nFkyNk~9O@JX+BWb5zi|IrIz<+vWf~q;tC+`8z5(C%utvDr=PSsNIa$% zycALfh(@Z$1?g%4hcjvf`XWj(QiLMykyzExd>-#Yf7)7a^p>$Q@W@`kt^Uk6^BT3d zn*qR2bHYr2njiR&mWM?4OMVI7uZKV+z@HBoP8`5g||LP&=tqUKF;r3IfO z?)e}^HaYLhs0c3mDfR=PArXHdAtVg$=#W&1qphB!xm-_Hdk{^!V}Qe#2)q9wd38rwwI*SOz2)K_G7V1IPkW2v7c! zfm7Qg6d9O-5FU*H;2s}9=-R2Yu;t5o^Ra`uU`z;zR#{)(-{n2@N!a9k>JPGM|H2*c zπ3bALwy@zYoBYU&RewU0WJoRsViT z6S(8Q@4r%Tpg%xR`+I&~@u$d!&r&*d7mLr~cfy0Pt`|FCTOrok)@BR9RgPKazxp`H z7RT#sC!$otz$^@jG@Dl#9$+hlULO@;PBC?%oD`Vd7w-QJFaN`3(^%lcZ1B4VSA&9- z*~*mJuPOgDShNOqezU_h>oj(PHSDTVuL&nO^jXdH7{+oA@nnGHT4A{asw(tyYA$Lq+(k0H?%(f z1_@+cCg?WQl{5mqg1^y*NEiyGLaKpGg%Dkeu`&rLde~jZ%F6nj(TV_+1xI6GgW&1^G7=`dZc^Uc-*Rio!g@ zrX|86dqoU#gV}^KAZwvUWf=dTeGBQQ`B~~OD=XUva!fXn2VLhi{1t4UFcH)GW=Aj# z%<6yZ0skMf6&!8YR~;A~Pf)0`7d%D3JS9pSwyzEIs1~t)w|$?WVJAIf826tghyD*! zVGhZcD`GmTZ6E z^QN;u-~*)tk{#&uK?)5ygAy}C{~~;`v7;Xb@2Aq)Lfwh#qdK|QE2y~YKyv=kzoaxV zl<0?)qLG}cF$W&z=H^Dqc@J0TeC#6WghGQ;r1f1p{r>-^LKfn-$wjbv=reKqU?(Or zV4!agzsO1mS`TO#ygrPeF59zRd>hn~UI;;T`~643G(m&4FNcucqQ&;XH<4YeBL6TW z4iTVJDj8Pl7n~j(0xOk4;B87E^p`OS@j!tWg)mWQ*~c`yS=_qC=t@>zT9>k^nW`f( zkt`PqwxGHo=J9Pm5EI@zEVZ|NN?s93Oyu(6DJoiTzWVp$+u@Jj)nw_<0o=+Jrp!Ku z5)EHYI^m`>)mm>+K)BAWM=CN-9}FK)AGJT}Auv2x?M4iFNKKK;+G?{sz%JoJxdQe~ z$)yaGs-Ed-=StQ;k#A!+qvWHd^mshWxv}Q|1GU<4rIq=}ee+(auFG68J)97EH?)sB z7`C(|eLWJ2-A760sE5en0hcmA?P`#B>jtK`mceHB#-MPF zH0t5)FaN;%g)GDz$d)QvCU1lv?v;~leq)C;YE$t{j8z0lhp(X_)HPlAU4=3~wF+G7 z0=1v`t*9bE4^Y5MVe*ZH0~1-dA$s=ml=vm^oS&sr&?<|c#1D!rQ1l;&CXlM20s?81 zWjdh5)14>or>Ly#F8=P=@QvOia{(Cj!>g~%VSp2;g5V93VkQ9rawjLJ=Y~y)EPi{T zpgS=@sRn_r3#j;bxgIY7XDmECxYyz0L!QOiagziT5A_mNI%yf1W{}SO{Q2|y&=8)N z*G22krJ35;#|1sHcu3FomCVGEzK+=#%Ff}tCK;+f3~X#{e7Z9k4X6_cCxX!tH#a9E zpwhr&JI-h~`9;pg=Gn_M_K!eK75m#oLS7va5m5jNn6%=)q$VaN($dmLN6$j&?P(-| zIv=(A8~@9cc*yE2FcXji$^fmF-4PH!%W{>M*U!DYdIW3`-D|y(XUCtue-Hg!VPw11 zE)G_s);Zqh=SA;-^rFFGM%v$BY=5rN8j$8zz@~1FItc*pBc`VAkD=mq_VRl8 zz|dn-%P`<(%W8J@=+$=C!;eX}W^pOx~lT&gHFMKp}9v?+=6Sailyw1wb|h zc_>LB5K=EIJBNm1!E*l2yN$T){9<`Ho^kj~Dq&YfuqAMij(qNk-M>I(wL{h?P}5Sa z;g7tB1#S@_lFNAPobt-FPMG>Pw+pUB6ySi>*;ywR%9FPO9vSH zo$*~O*D@N!l@X(Z;zn@*R!g&PA8NAp@qi#Cn})6P!{0{A1BuKq%J;=mf6inu&+s-D z%nn!gSMU&N$p(Z((znv3YdYas#{B9qvRzj|P~|~pg-1YJaNqlAV&l?9Bf#;7kH< z{wjDL%qsyN2XcVUiP{KyQ>_B_4|*3|taKYt5SGyqPYb?A6tTj!QS3uLA}F9WFqSic zqml@Ab(ji@NJJkg{1+WUk%-Djm(~)B{9OALR9f2iog8C%5Jn@Va=Nb(1A9zgu=!vM z(wl(CL&XQqItLbF$syT1+MAv}B{-rZ2X(X;t`{|@JUwCY8)JF#$j*1iKJByjWFEIW z#KwX-#r0XUWH>}CKs9jqT@~{A^D}Bb8wAk7`aj78TaDKL0_tb zfLO^2S51Bj?O96*vL7#6H>)&cS>0trPC`lg^MSTvi^E_spY2}!$Ru)}E_391!DNAB zy45fCeH;1Hz?0ke&AJV}Q{q;C8&~?m{ClNM@Kdvm4;V-A2vQzpKPererg0H{P|0{e z%^hfm z-eOu~F-5DHb6`tpjR)cB((v4Cs&FBB89qN?62#v*FO|u zh%pxZvCk3F>RMPhIy`XPODD}fEy|d)O_-CSe)kLAXGH8yRPj^WDTPM|T}t9aWyf=; z*1ut=`*S(~qL~1IKGYS`IZd9=c%&8#lCs6sJiDk6Amy`!HAg@QQ5_)CNNUS$riMy# z2w%43ykNyEF?UN@Rn<6JTOAV#+xQzduH*QzD+80S#!gIwa;;lFFGte#`#T#aQ?&LI z3-_rNhkvnLRfuv3=>{VCbc)@xBrGzxr6ifW;0X#>O zI)5hyAx2uoInHH4Wqa|-t$R?td%Xajm6-Y%<2h|YJ;ro@`|kkN$R&{M$Z1!k09g?x zB^5mHIrp|^Cj^5Lu3osBT2|wj^1DZCcEk7rHA+EvQhb96xiA>6eeH$xlJ(YkG&MLB z_Iv=Zd3WF&yR_-Ip~Kv*3k^K;S_w(2b&Q1G7cH6B9WCDmqTAbR$Qa99%nPCHJ0HC? zxtqRG7+=1nPv|iASKl1T=j;r_OCBA46YMZD*5VN`8TF`t6RPS*G05P>$;|oT{2S7KyS_Zt>0lP&BFXTa-Zt!l;>BMq^+uR zFhu4}`Cv*(gqBA?cV+)e)D|Q^h=~-^BV^uSegs`{eq)I3=KVHeZu4F=cv7zWqZ|TB zwXXengTpgPK83vfP+Ypu_hNDWb37x5WeY_77`D80&3>pgjL26VWeLiSH)aQ@KCf78 z2{Z1m{xjs~WIbVGA$gt^Eny=5#0EV`~D#?@MB!w{iRDS!ZKAq!nJ8T9)6j5R;GF1t_+bkTH6<@2eJJiRK2caUhGN$RNd z;Eikag=9*QUhV9>`(gXjt<0~6%7Ri+B_Uf}d_y)AT|V#qd(u5Q;n^?a&M>kAy>zyX z-}bC=m?`d&e`*mn3^>0ds}1XrdWgqNC*I~n6tTfuL*j#nrE*wE6|iwScrs%@Ys$+1 z=!#6p%-q`C#sV!djnGaj{s@RL_Pk0-$#v(uyacn8mIAe>xN%{ek{p!#!ZFz`bcJ*2 zkW-XAWDy_~aC7&3VNxgyRbCC24CV+4u~5zK0WDYvl8}%bW#uA_QMy0xY!^m7<Ajm9P{8*xc6C5RB%SX zBYk_k)?Y}Qu9}`bgGrQ$GFa^*foy2s>qOl{m{iPHWdybR=5#_{4ON3cHs1zY2YxWp z`ThuRB_6%!aK*H*PM^bPhD2WyVl*Pvm^`{qYUoCd5AWn=z&^S--$bAga8O_O3QLxBD9^*D9CjGdX;;t$im4LubbqLoa4kWS-(F#Jz8dRL*4uGOp_~0!gpN zA~J@WA10B-Blld;juDCBt<=+Z{`UM1PZ;#fVmB1$iLO>g32M9*6U3aK@NA~tY}=lG z_6xbR7c-HW?U*!9b1-<*JimTwA)M{5?ds}!yk%+Y@f`z~@VoB$^^$g9rOKc)I&Q*Q z__V>ecFv--!k#UfJypq!bdMNOd8~8 z#R|IYQz9I@doQK1vd7Y-iaes7%ker2IL|vf8d^;-wf-{i(EwAn(bF zhgbSTG;8AQ`KdL6LEe<+Ik7kRME7l}gv9aCVCF*<6?R?@28!4#V>&_AxQ*c_DMiw( zJ9nbrd`npcKj(b>QaM^9<08A7ohAkPnjtg-+|$| zUh+h;`mWD6P`oa$Y_(RXRcK_li)eJOh63fnns8-|GTw)C{pCOi8jiQm6np#daIx?a z{pj~pLFfHceuF6N#+Ft*!?A{n{$N+I3sX&u$Z=0i%DoGF_t{(To~MtmCnl?WO_7zZ z(ZIBO6~1g0i+Owo{mtn#urNYKCUIPP{S}0$E$n$gym(X!mEr$o+&|bzFNI$NiW$Q;*mz!;2ee$IdQ%LaG8pyDcg7mMww zMBYKzv%UN1f?u-I8pN0|6-FVZu}c*dM(_RUu>3SLR3?)jGKSCm4-Vu%)?YwWve93r zk&0O(AQ5o_^sO4~r^488>|U5szc12ventEV$qZ{OJ+ZRuy$yfKuDG19$K=HK*}>IYa$UBvd;MG7Y5;sd_tna)z}!>r%MXS*RO?%GQ9NhHhy}TP4fclldq$Hu{-;fhzL~T z6jfDwK#w;N06-O!{Gr45?m!edo&BSUuZYPTT@4k1MnSHu>f zK+h29H!mtFS=-$mXw%bc%}VPrqTFr24f%(tNgxaaWoW?bF0ZfGK$8(@A_Phd`aNj< z0Zk&EOH28no#R!bqY-Gadk;$EKm<{3Q_u)L{#@t~4%_D^#V$-5%GY!vs`BD3@3mW) z-)mgY;fv4NT#;*4Q(5&#j<~>D{^Z2)R|2W)3O%DEqzms>K?3RLU`3A4UT&tmvmNnw zy;4*rLk1!K$buBqmxs{GtwhCFcE~SEmAp4CXgFR31r>I$?c$_!ic);^=*H=G5>B;J z>();&+)fn|<+IGy`Tjj2BjcV)(vM8eg0b{ItJ^8ZG++xdrGQ$^E6y3fc^VX=*Jh1$ z)caHNa_!e6)L)p-s?Y*2NX|Cd2PM~QJl`f><>uz9fLku`>j|Daq`U$CiugEdH64=4PgUOZr?5N}Q$g$@Yt_(w+!$mShSx^+;% z)PbsrlsfbZ6y%S4 ze#mg{J*}Tl)5`#Ey73xr|C_Pr_^pwWA=G@#?3K|^7$&u9H~G}@*nM@@11iCkd^teX zl_?(E1impBISZG(FN^BOyvW&WRdRL`eCKCq&fYBUny@?~`B-S>laE*k0}qzo5wgUZ zQD4WWO=@h$!7m@S2m2p!az4RV`07oe?4#=p|HOsn{&kwW{m?MEtN2V&Ea+X=o+h!q zZ=$YbMna3qjQ@yL^gTj+O|jfevWWttwJ&*E91F4KC%M(Y-#Bx&m5bGD!rz{TakP$C zCCI17Xt#+SWFH@vKPL$vd6lBrMdx8rYx;4{h}RTSP>M`b4YV;?_) zs!^E0+gaxc6~QskLswH%a|A@gTo-Tael7Jsc~Ud4N_~;zesDO*#c?p{-Pwwln=)6_ z#Y3Aw{2X~WBxDl;pC@GP)xS(CJhFR&k4t{Zq>ANpu_Y6)~| zzF7<<=UCp#kB;l|wfVw$!PICd%=#!WFd9bm)_-jWY%B=5AqP6uShqEn`dxi9iK8TFZ$(DpVz#ih8Aq0_J?U?lT@`+4YM}9 z#VM?sf}bV4@QJnkcKj)x44KjIN_Uex<_hoivm4~diwY$})3>W)0g)%?m8YGW{1Zu7 z)y8s`6$Lfq(euJ_2{8k|{I6B!d&szz*Kj{jCb(gnm}GE04uWg_`rTH$(bu9ZI)PKI zV>Q1Jd*bR!=q0GJ;Cl3Pkfvivd+AcuD~aWK+E-5%XrAHVLhb>&sneeEUG>hR995B_ zjlp*^z6MMD4jM=|CE&ak_*Na$~oigOqN?;@!8AEqlfSQGBc4zK0shD z2gYz3pdqgyE)aps4zbjA#!U%j#cGZBpR8@az8fzKg*{5w!65VGH4LDnL){J){`>n6j_#>;6f z{H84n64GUvgi4AR>6}EzTb}QdRX_2-$uQ8nJwCau7XtmWLB!Dk~Y z*#gb+D;GdrC&0CZ3Sr{U1vtHupW~%j8_~6)u+tN$p83W z!|*4=Wj+C6oi)YxmrGCoXq0OmJ{i+h(V`rVs`4oNrAPFPb#GO*NR%X>*RmS(`@9jw zT}7xI<0q$`7w(39)p?BdARqnj{|mrU9dpQ)NA^SqLP+rrywBEwm!qgQ0_$B&`6)iX5simK0ncCm-eJV#Hw-ke&*u6t1wHNiSOq~`X{c+o$3 zfNG}8XtJ+HzaPpV5pt!izHu(Vdd-z8$3@%v$GVMFkYT^3I;)?4xZJA0I}xHgVwNkU z?#reFGiQnwFQ=x6+>R`=D%O}@;%dM3D$`d!OqFuy%4s-R+=}xm7@%6aKj}o7;rl|v z@lJmfD&%BO{VRofsPgIVrHi(?GVHLE@SV@U*p;Y~K?&B^zkVAj`68b`vpXIYFr33) znBm{HD2 zWe-c?UCiPO_qT%h7*;38zUFY^_V#(9Ml{Kyz2}rnQ3mJO`CkRjdFNN=w0+vJI+S7O zY0YdY(oOoPIgH|LbOeF~^9%DQkDNVJ5k$=d#!ANNjn66L#?|NHVH;*oKZ*Se(Dgg( zA7I1Sy_i@sk-s@II9bH(a5(e4G&m$l|B8*N7^bjcsG{|RS6q#~V%Ms?=%2Un3zw~v z5&I%W;=O&}uESzl!JO5HK(_N;aG)QybPq7T`F?X-|07S;dgGhxXPyR*X$> zk3E+CeB4;HlMLDL{P=OZ9L?%#a-{wEyQXTAh(k(sDaDvuJ?D;qPWPI|a@H015 zbG(e02%Wdc0@}?w1xb!xglOqOZRWFNTyepw@)EF?1$X|8Dd`lhDPC z(7MUEOT8(Wm#YFZ-c63q(5j+O&82IM%{XLC-4J;V6T9i7tdv=BWC124qm&{uW5|1l z+uOU($wd>}j0-9v+X=q;C3zAh!{@molV_9X0rl=I-{{-3)&9{kS0fV-(4@%6yH@E; z)Fm8S`({bje;{v3$$?S)h7;kTdG`=}V3glYb(VY?&VTFfzaR`R3{!V)eVPN7eDxQ5=S|5-d~OU6Uc@Yt>Kl;cNp-dHtM4Z*!JYgz4R89I*1hD zdBz7rq-ygReyvS=(i{Iu*Epi^M@ZrP3p1a`9~)j7RTY-h<6Te8kgnfJnH4Qp*%xMt z7*k#$Ul_Y{LY!_avAxJ!SJhMc?4DhcxT}qi1m2wV3Jcw15x=zGNtMf8Rb=_F*sI^C ztSw(L+YvvyuIUi;D>~UhyeYL!;ao#QPx_~h{WGIfrJsMFq{y71W%^8J#aXU@%k^@N=M~+PAgXLTcJG1zML(!kpHW%vkZ$OYVFS+UMt)*3Rc5 zZP|>xN-$T>6b@!SKHcSZM=aE;vMGt8@sH~_~@*e;IoCz=g;-EjSP#(&X>8LPwE~0 z-S_`$?kkVe-Sp^##|^fu$Hxp!G--%Fsc;JaJnvMJX0^v|O!Dw&!O@C?kZa5;VlC>i zLGpr=%!x#2iGhZ_CI63N`TNTYJzHez_c6p2-0Z~Vg*hnv5-B>7N0^AWagJzwHpUmr z6Hy(EP15flF0#H-b_UI}SP3+&26m&bXg-f_eem%==w58PZ_@C&@$B2+s06~d17etFM-x~K2a`YW(OM75k zMa=->zZ1_XFfTtW5Y(=b_N}N00uZX<;nwLzRU?%I--s*g-Ct6^ zDt!e}(B$uY|2raLQ?a*s?kid-Sw5O(_vsOilO7D@BW8aau3T#k!drQ5^-xqi`4<^! zI6=L~wrW`=6skw5?MM1NvEH%U?Bl%5`QVX%^Ew(1 z;xC~WtGl#*bwPiGrMpfT`XIS}KBw-G&adG$cKH}*Lj(E{FpBE_507{2jzxFbU;2F% zYPP`|d$&)CR9E&>BH>*iv|>bFQR00G{vSppMHnr?27BO)ShNrCiqU)Yf2TlLnE zBVh+!!>Xl6J1^XKc_c(WrGzu&!t!L&+I^NA^qniHRZSdIVk(Xz` zTxh!59Mk%&tJ~$vA8-W!vDQTot^Gp^uu7@`f#r8`{9-zsdV? zj+D6urJmq+L8uE7jYwn!Am)ZWlQ>jSYL)rE*{_KvI3bBiNiS+F!=zHm(OZ%hlz-Y7*yLcddxW!0SI)NKEo{t4X_yi>(D6Y*g2AS?6)WB zzP1vVlCIwVQHxs4`Q@wW#?8Frk=TeY`OgwRDnY(8pMiRxOsy1v=7W9(1uN9N#|NUL z{?aU+WL?9bWI zD(hA5p8Q%&4N~g}U45L}QV|lesi)>zT1xXhxp4oh%MV(i$Wha06ruh}k-mvD!SwXBrL{HEz#zP1$pRpyj`tU{5JF9~ zVI7Lj&JT6Is=ruj4^dBj90A1e6AX;tz&eqPpV3Ia%*x3t*l|=Aad?5kN;+`iBaPH7LS{i`4{F%1I}PY8f|T%0A!E z|4Plc@z|X&C8PBT7|eg&C3NOCC3yQEC{f9dpD`8V)Nk{6`e`e<+2_Ap!5l_Q`jOuw zislj&`M^`li>*!_nxA>8B7lwc{c-$H*{+(axf*F?bT0>ew>#qZui9m!ABOdbGfxBZ)pxsn>CA>k@hzBR}Ag{2p6fJw*?S?X!$d8ejWhzR1v;wb~Kv8PR{-XsTZuXiv7cw9!e2WDGY^pP$OZWk30_??@fvH}e zt)^2Z`q0vUKZp{nn7^W@&1(e)99#h0Gc!#>&3R>+a|LqL# z5D?O8N*ChsTRN?r-C_+4O>K}a3+afc;*ohKp0fMP56k%Nc(S^aUZ!+zwa25V$XTr9 z&+F34XTBw*Pq6-Pm$9#OpHE!u@h+z&^CUc9%Sjudr~kLR;W$Ij9TgrQ3uezI4vkK)!b0~Ip5z3pBkz zbH4tjmwDZ&XLM9qc?A{lSulW=Nsv7w)P6IBrTX6B@SUO4G^u}`3zeU*Hg&^4IA){D-^V#1JMrn3DhWSz*{BDL_OJx)%IvHH5I%H~(bAbV=mFK3k2vFF2dB70c*D=h9E zDlU*+AbXHj5dO9a0l%`xGZdbn&F-~7G{{|jBXD>+DW#_BATuc`33)JzK(f(sH!1SG zE5R#_iL@1CUGo>y_l&-XbCVbGdR*axgJc`Kdg~Bcb3Rxa=+b=tRbs)@usSoD%WJ++ zNLg+(Ho6v1(p7477tGYe9Lw3$Al^8JQ3+0Cp$edVniVADZWYY`;eqAPiHHivA*pHI zTEquEwtrYzS-+Y!7=qxX@sb%vD`Vz)VQ7e`Zvd+KmAY|lYjRsK8W=S3EE8=_FvL)koj%96V&=kemQ5w(u;B>{kyQ&&ZM!5@(OS} zpyBAzcu`w&@g_-~ebE%@zgVlFo)#f7hQzy+VFXpJ5!sQC z9}8gTJ*fl#bCGj})(ewRC7%x3Tv47paY%3$61kF(kEnS7&2-nt%4T7=4D0>|OIvl` z#Kcw7X9_rL^-P$bwuTdW$!XaYslUvMOsc$_$vt(oC|XhDiNea(u>6J?URH8>9D)ip zJ?wPr)`mVM2FkzLKs2AKaB}l(*)=9j>69+$%4vo8+nr0Q8H4U;bvZpr`%ZvDJ^MPYsC_6V3(Lu z9)+a|E<9OdlrkeZmMYpGJ2fEI|Hsz8zc>(_&Qg?gphV@z-`qaX1w-tO%wJw&&rxSm z-H_2Ma)C4oBr??_lAby@xLikheoE}L>RaMAvcN%k%AFb9Pv9WT_wD3soqQhs-y%Lf zzFRxOt(jrU#FgR}=L86O6VIiPZ~oZSFU~O(Fda9h8|><$$n|j4zaByfi~c?B?m3Yt z#NGu8=1?#EHuB>>rEkymDE1#`&Epz>pM~#U(d-gzf%Fw-7!UTF!MqaZcxPG}Z3P20 zhA#zwTSzYNaMV2q1dPAtoe>YZ+`)2q)p*i@r-1<(E~GavDwmujHYSScZ(SPz3I`w@ zQHk$B2{+dsgnGKpgdBk`m+axhDkwn+>Uw#FUA8s+9?APewvZy;y%xR8=)Qf*u=(mNN4ii^mUYOtojWDf#THQ}2=1G|???6+wJ8?X{-#M84Xc+T_AAxwE7la2hd~giHV6hNt-(!Wd@3i z%RS7RPSC49O@!53Pr=WOGbrEqsFrF@zp#S=RI?&9L?>NYj`1matn$aiSlS=YvlIFk z?fA`u*i`ZAMnxBOmyg4;xjr2#rRu9CxUis_!156Sf2jAc!$WVm69tSt<|W5ypExkI zt*o!pFf$`8ExCl6&meVmbwCYe7ChU$Z=IazWaud&IbR>25Z?ws)IV>7i5^;VKNs$2 za?}+?(q_|RetuR)Q&75(k#Y*D){qJgO!QP|fR=j{%{(5&*n97ORT2K3dLzC|c=jtq zV~7MD;_`Dy)VH~I$qQ=@`=%52eQbzh{4U(!DPxY0>v@ON{XCCNSN%*%A@gkgyJW@E zEqXVq<6BmI+n!4h36^;$nel0-fjXk4BNo5Rd!&;mV?Cj}hp?yOVM5JcOpG-gw9U?Q z@nOdD`7|OgU{16bdymDt1VzzUt4*8H(bRIfbG4yN*=Yc$T=c&bh@ux-+xFR8TBDL* z!KSk~sz2r2DlFLgt8|)m`bf{hzS@z~H)C|z;kXjJ?!9f7R^hx`IF*|Ssq+!}>BGX+ za?bfPME6S~4E_^rAk7$v;8DjUBqEIH$1kp*1Q}JuCWVcNUb42*wTe{Xno9{YnPTwf z-h}X+;sI39Q!TCXSbsnllP2TspiAfF<+ZZ5hD0Jkt(kx&38||hIAd+eI#W1B&Ox9? z*o{jsne&}?6u#8n2!yNCL1(A1CcnpXNZNU3T2)g%oa1)_&U7<57BL$1Cz{OT5_aEW zB5~Z_7{3~un$$T{>Tsu~t@A9zO0r!q{qgTiI!Nt?TZ|CI6fiWnp!9;N&vJ<7+|w2Y z{YQwnwWsRoMg(T0@`jI(C#TNKE`@ex3w%Vf=li~YtmM8^g72!Y>qCR7x<%w~*9d`j z9nCEM0icVW06UA=ELU>X^Aq2e57&oS*~Q`5uf9Ofd3*P1X&INC+=H!I96S*)mf&h9 zYefZ~i!m3>+NYc9DDh_6{R!MJcJvAkOMSz5z-k0t$)&ere;MMZK;k5QKzJZCLn=$4 zRy|!iz4=8-G-)_JeQmKLDeg}Cgf4KoPJ+hpm4JD&)m4ckJ;=mJ{P@-3)1oJ_U%CyI z2C`iXt2fc_eT=59wbIREYo+jQVRRE}O$lHO8$Eqe6yf$=jhNCOkfI-LNtabEf`L11 z2VuqkB!#d_9u8ieZ@C-a<3A8|oXf2-Bs;Bo`~kC@iux-IzBs0pl6)+bPpBRaWYPMt7m8k1)f|!0*(-KW#t9$Z2?AM zi$LJkvJV(ItpFhGkCVg-02U{k23%K;f2kIp<&m2C>l#Xhx~w{~8f^JD7wNMX-|_4j zgyRO^i_|i8fTt#8+v}L@&oVdY3wtje$E*UWq8ZLP&dQ@W*-6={U_i^D3Iu=e-C7tB zpVZv5atwoN9BbQYrWSj%PUB>fINfeSZ zA-2MgmHhpiZ{=dtuWNn*KmoSrv|2#}@zFMpy#)5hVS7jlZ7d!U9v&ARP0lFoUh-UD zAK~a&2Dsvsii(PS=__P+O&T*^GE$EoOHCCfEG@+h3Q8V>s2Bu9Ot*KWLULAw zV?uU`~7@NK|0#dPrj0^!Fa3%uqchj}bc@i0#U~pk+X%ZkXL0DUV1$YcC zKwzixi9g;S{xqOi_%jv6y@3S?WAgIy&S=(tT3aB>op8%_y-w3Hiin7z3mKR^t1ZS& z7OyzB%^OaDxuSH>b)ssT1F+I(#rQJNcVfbnqVQIWgM^MSs$YO2B_Hq@xl9_qeyXSU z39u}yxwur^vgb!Y6tH(aD?kteNs6K;YUV4igNfo0giH-N7V2%qIIkseYZ#GHvn^Cy zAwE^vpY#1OUYbXq_Kg=_(_`MgSuTf=#Jv;0Jy872jFDlBe-oh4YI#L)IIcpIEr?g1 zIiFf_sOo%{XOhbIe49VOSgL30bw;@S7pc`hPe;%p_Wmyu1KWl_JMR-77P!yq4W0D7 zRWd&7e^WSYzuUZ*BdRiK#JPw}j&B&^L^Y=gRh&mW0}*!oRQ@ilVz1$RcCQ6Ec-kQ` ziq_Dz(#?dZvuQKar9iUlMJ0i+d$tgqLqb1IjDeiu>M(Xju$8W%>BX~@57zDYvIX;- z<1KsDWSJ{eR8xqc8T%Q+SDT~VJq`o38fAwA`M=%~2>e>sbS-YG>uE5qyKGR?_H8_^ zKoc$4Mtvau%55QR;O2grFe&3y?-AuWM(xy6-m*#k%{hkh*hW411gO^x@0d{~<+Eec zx#E-C*Js!*g|PT$1M;*zj^MW8=9QHyw#7_S3mTpcki38f{nnc|8m2Cf*B6VqTg=-Q zVqU)h%EiLQyb-G11WlQx4(Jv&;v1g5WWDNiBVr^EJ;|?>LXzvz|6>y_`$9pebb!=% za!&xEGcDde3wXx>oFBtX*2gM^-RP8uxWR1}8|~@eskPxD5AvJ!;iXk4m(cu*M5H`4 ze?bo(Vtfdmyw;jLJf`uhZUgqzjIOpJ>Bp%sJ;}mdi|T!&@X#BVyJYbtpMUe)Okjg5 zAw=?)UlZvJx-C%l6qba~*5)`m$a3P;>{R^0H?peKxPwR|28>~p3# z-~Yw$vg%NOKDD_lq)~i5T{+zbf$_p{W)E5lf+Zjj(aCH7>~i!xeUm+O@{oGl7dUSl zIEU@B>)PYYR8sGNL6*fq$%q4Ek_Y*!cm$A&I*L_AsHh*@UjES){ywQ z!yL1n6$;o^BK}irek()%xEV&kO?(){p$XL$|M!@&x3c*%QGPsB2gh~b6+GuA~NfOo>JQ8teOcLIE50bzS*=*fyH3EOeDZ%r9lOYB^8=e`g zI{ERTJjp^#AE;%lPqJ;77it4Gxa0z6A{Bm<$dJz!BwmoruivE7-7v-3bS)C~leSh; z02Nr_cGI)Jo41>iE=%`X2;;M7Otfgn0eO37^3XvI`r;T5u5ORGHVb0S=ztvewkmvb z!r&aTSGV;-*zH9$wJ-yDs9-eE9Dr*Mc?h&YVTO8PMTh$U)la@dhPmgB6N1|qz_DR3 z!t8|?6)*nXP0wpgxs$I&TCo%#6oa(=SVKtH27CQ+x|i7?x-lr9uh*_V`2QTFzMk4M zKab!bc#x+O_yGnlykAd+P|0jGx5qBi)JKsp0Hu}O{osG9m>VN7vjl$zFV%r#jiG2I zsAxx|mNwikH}PWRB4*#l5Fi=j;f1Iqq_Ke4y3rvv5ori7%t}O}`10GOjr8;rk(}_t z{Ujt`DKRDGwO}G|zBOT8 ze@o3Z3Vct(iXl6_1#InLxA z8NN(iP>1r02}TCvojpo58?p1y_{;$cJ9+90tPE+V< z55$GgNl+>ySkDYR{U(3ctJNZ##WRZ|$q+h0f5z$*6i$v08%C@XTCwTDDe(7j1!3!9 zfCp{tK-5p=3xe=?rsrN@hC%{eGXBnv&9qFfEm1RGXm%;CQt4S#kS?o0R#f^=y|2uK zCHT+del^f&js$9tmurCZ8MUTT?; zY$)$h&e)6=SM4gD1sZ8viL|Ytqc1tnVRvHioZoWv(S_1!9Q17u?zS$L>}Dq#Djx;P z<4LySX5;@>KUiDZZ3X=K%K3?`3@^fA_azZt@!@`s-MnH*I1BD%PFk)rys+L%@ncXUB~8i0WYDWb zq)$-Iuqlj;*vxC&)<0Ygx4!%W@=jcShv+0q?GyS&&7PUP-s=yuG)x8*K{|~$&dqWzw1JSz>(n7lHG;- zF-BFIGS?*3@h+BZ-hSrYo)SWt%KDnvmz2w`s^n8+3r=&*$~@&&TjV~KFWJ?5N3$ou z_iUCeqy~)rM@B9V=ypnr4|ME_=WPkQG8P|`?#to)2{trCtl6~UcGht157ws%R>g!7SeW2QN}x!Tdk9{*ANKg%?D|5We5bu9sGOw5&>Lk4pRLLzQ8+(eo%c0 z{&>9n90Xp!vX$0yfIyHip8vs&EqdL9i#(1JnvN*q{1_GZj+B%#3&2r1-)_49wQ`DC#KP#gPcutzay}YZNUU=h9!N>#)d+q`5GI*bS5c1T49fw& zRk<)XEFCrH$bm2(a1w;&VrBR@NoI{gVXMlf%{h{keQ>Ux?|MDb{>Uau8=DO+P+8cu zm7vAWf@*6o?7owODo@kp{CSsy5vv?Qmy=7I)3rfkrIc4qishWDEF<_Es_hVbOe>RL zAAgoc<*Q785UX4+laDErZ$MKM7^_Sl!m5P=Ri=+sM&)k^mJSL!VBWZ^(va!IrbIzc zWF)V_Vj+s!lHJjWba@?R=8H{^K}Sx4Ls_IX&F7B!k=8^-CQM!CP)R10yF)=qMxy>E zITzaZQAX{X-EkiDpA>DZ!PN1tOnyb$QT#IB=0zh{L#>9YOb%_1k!RSseK!2mrwFLF zp^ecCVtRARzLlSh{r#EbxbF!ld=5L&oP3G|Is@G3#% zGH6sK^x01>DTePdYSf_>(G~GQZzU#0cfqVB&_qgs+k)X@_rNQA8H6~L(9JnuY3wVv z0vieMVO1aEnm*Oa+PVi#(`(h=D(@Va7g~Y3F2A_iSB95#>@K4>y@`@KP!O5>%kiRtVk+`_tJG4ctMZ7ahxXYTxac5kg+bIYxDlkwwM z1_&RALTSb>gnN)12yXE4Hlw>+eDsL-L==%TJ*GU;-pF0+>-Ien7!a^@(ORJzgy1_d zqHU5Lysh+588|m{$d5^t_vSqR-GB-SWZ|Rp-diRH~jJ=C&D=c}uqjxT_ z(AYfYF%mYg|F|Wl4}o$ns`zf=2^QI#N{|=?pmy)1zJSSWtznA&Ms-pqo0O_Q;3VTu`scFJB1Ka}K{VrDX zD@kKBhnQnapK}r1^I1X5rT(pwdpnFP(=-JGj(T+ih@|K16ErTIodb!~w}?e&?aTHn zL>aFmVK|)Yyx=6o=uC-ida0N+4832Qn+P?`w(2~usqmP`l6nSN8Pa;w&u?e*h*_A1 zF#nP)3id1)?P3DbeQj9y6dqd#bKRxbb=WJdJ>iR-de6x-1U@2Vbxbm*e`D$&99F@P zhw7KpWX!O6Db47cHRHwhFdZBtPBr*xAqtoim%=aE)-mCU?G&BMw>l_nAH$NkNGo#K zcI|pl)gj%nwql+0OnCT`51glp(B#>wvHCfOzYaDtJifPAZ8NX!pYTs|Wj&s3m1b%K!aDg4pQwoa3S-i>@hJSw&+l;!ej&C@4w|{jGo9AG zzAH^BSwuKELmN76^m&5SWhE$#w?)6QZnuUxI>|Yz4bCdiLNT;1kw;jv<3nZLm(Ny7 zv$3rgiU=X1(%(V`4sFN zh+#9Jua#vyGogGLP`*G`N`_KsgR8KzaY^+}wPz6re*RVKd@{Kab*#uPJm z4{=x`XK_=IN?p5$%?do0fgj=PPv7N6sD1rAh%EBjH4$Oj%oehq<1iFRkxFh4la=S3 z&KqdY%rc%_EAiL5OKtIow;8!lp3a%(cxWYQN;{fSot74;}tOtsOU7VUDVZMDURYU{TCS;esQ zP2JAA_2nskJF;IpOEP%Jrw8{KIC?&`_EK`wAs45sKgJ(xB~8)rf*y_H4=30GG07gsrjy4&={2RtuC&3DFJhC)#cjCv)JK96ihr+dASl1 zEvgAmP;{GfG{n~us{9bE>?M=mjK|k2;qN&AF*NN_D@XN3C_;DQI-Xm{!VQ6#us3GF zkWk35Z~0b8fO0{!@*WDR-CM-=SmjNDMRDlaE{e2j^0X#uGS!??G^cnS_S*u(FlirUCe>y9AvQ3}8&fL@?Tg`~ zw(fhAKUf`)OQ3t7uYRVtn~zLwVNi!K`x?sRPi@H*8RV!s=cxWhd|DEa72jyVi-{3_ zmy?uy$)rllDMx!5sa(Jquww0>c@@&NL**Sd`ttLk>u(ccDFeAH=4*1rTS@UD7@ML%57jckux}0{o7VgCOZ3tYf@~G*e8{mFtMjSY>mvu(5=C=2C(*eAQ)FGpv3+NqJ*u1 zJg~TZ==P~$rS5~IA^b5cvgZ4$R~aPDwzWsiPV|+9ARrNsuEd*F@DZ-TLUK*EnWUncNNUB7SwCkym zLY0MK7kh;2bagCte`bmaDqOwV$M})2qG*5Ke;ocPtc$*iKq_n0Tn47z>^~gO2cvwb z*{Jg;20p&lLhlIRcl|%*leto{qGXnC7}48>*w~`O2)S{b*#I@%s%T%(+{M-o1E27J z(?c1*p(Uc--QB;Pop!73{%Z<9bD?N>c+z16oF~`Ah9b&YbqBQN?LtgU;Ugm-$tfsU zkukn-NCXDi?oH6Ht*!mmZE&)qk;p*i)KlOoL@BNoJYJK zH@`B5+pW15I0*(#0&%YDGN5bud1>}3iU};fqghh=V;mkQZHSaKH2gz04ToGqY2O}L zB90p`r#{uWOFP(1J^Z^n>Ysk_x<8e2I+%$nEd#80#oRC*2?hqnG3*4;y zfJZ>6a6LDjtG4Xk9nYgx$wf})w%Pg{j47AM=8w;AT4ue-r(I(`SY^_m zrK0j*YH~mSw_kd`8c1Tl(Sy$CxFgc}6I-j?$iJiNuiq=o-&&Q_6jI^v1{XV{etv!@ z7vqZTUiU6rgUM1~zR)$fU9MeD>kr3WZKr#uL7`Z`va&2Dexn*ddw?rH}~)3k z#iN=HB(#AMfUU*G?mSuT(5kg1D^xEw8c1OExL$Ooq^4%Gnqi5KiK+XySD46V^4ieQ zu*zmRZD+@Psz|Hjux5D(Om?Qpo%`|eF@@hboLWAKX9%d5>zy=D;?TFe(X*9iF_Dpx zgPs$=m5}jRd|Dp=g(M{45qn;&ZCkFdt!XwmF&;Nv6GOnz3>WLaH9kGwT^!8D(4@J1 zKb)_r{5sF|$7&X~b*9{Sw$_fq`{5E73~;Tq<#BCPiX=z7`b&{!`FCu3_0J97%gvsN z+%{?J9!rg`7l-rlIkNE;X2Zl&rC{|KKh0EGU>0hW4&gX0)Y?I5RRS14{b6yxvVvS4 z%ytB!Q_M7b@;}|5qq>K`HGC*gv%0%Y-s(kN_zoz62GP75UwP6H3Hy`0oIZ-qlWxtg~*pVs#t zt+iXXdZVnZO+d(Py-_`_m*shPb$?$ux-y)~AK!3PFN@?BMoj{O9MPmdZqpZ$c%=ii z(i_1EEX~F7GKmie({xVDDV~zc-EqXi$vvKyhpTxd8SuHr1*-X?>s?{xnhYFYCW2;W zG+WW829r3mEXH%KmYW3?W2MG(<$3Ma;HAI}_os^e{QZ?GP37a5bo<6~WG&{ZXu;ja z()C>e1>0GfR-&?0Lr*PU3ZAn5&Tb zx^*I71)s;(Ak7uP8ZYhXmz3z%^$1~wO4Gqc9FDfOw%H*#*wACDPYgKSc2lmBk_aF+ zm@%p43_1edfWe=x{6KZ9cBoZM7aB+xP6r2q7d|`aq#cQw#c}7OO=UdA;L=}Ku)}NX z>$70L^V0etK85nQNqr~^Yt6m;j}UUD&RUKe&gdJD!0rPl~w?~bVa+>0?+V}mMU zZvHMfI5<45f*owG$;nDvihyghTA@13NVTPgp6e#Ik&)5MSFcvVfxEf8Q>nAxv@(2n zc=({G=v;_#N*(U!2T!L_657%tOs`(F;!}sv0_JwHHyJ{c?h$=*VyloYB=7$k`|T~{ zokq!9a3t?RbS=27hYh6gj*s>`cf+9yh&(+$xNgR3c+hKxNv?|&+BI$f?CtwQx1ALs zWVAPtFD@a$>aZn8t&oy%T${{cAqs*cU%y4@;qE#QWQ1@_u>j=EPc_z#J0oOLwUS{3 zQ3(msmwS`>+SPQBngx5L=NrGy|KYG+NB{`O?^nbQ-a$r3_cI|O;qA122!-XklAIhe zi1Tc_^)7%YKmJ|r^N(GO$uirW4|0!Zf51%hIQswrSG#Xc*Pr9>?&{F^-^H%L`2af@ zUb#s>j-KbGTEr$MCT2$>yIJk^l6w=QGMLYIjpYnAnNHYX5$Z@Xaz>~!wvUaEG$~H4 zl=#p)F#bBrGE zZy7Ype89)!+%`Ejjq519%i#)^MzXp8_p57{lza$jC>=2_q=zSG;(Y7Yp|w~<@O+x! zX5fBWr|T`Rz2DX0{5e2u{js}n0?waQvT2L7g*! zHeUQQ1|p20${JA!7nsuCm1zC!8qrcW9?mY4k^|c&*4IQPUv~&sLL92>O8=C~LKsE{ zss1u~M)e!GN9G=X3)7l{-f}%DLWCj3KI=011(2<$SL1hv8M!Ja1i8tUDKX;N{y|m0 zRr8e}9WuaCOcLl-nW4}59;=+G)!oY2y4)&i;IsP`Qr0S<_fjAOc@FYQTmPBGbcS#X z-qE!Zg=2%c01-6P^5Ix5K=!tf<;LqdEXTJ=_B4a76^{$a4%t%;X39Ptrwe))?? z;;~{&BIw33S*St7$Cm_hNw-YYviDOe02J*i^Hmll+p7aD>$**xj_A+mXCTRpWxR(2 zX|uH}jIeTc&yJdnjcr+70I9tLRX8Q@RgkO+g6mwBg}_-4g@hMLST1E$-jJU76`cG+ zZ8|JpogJ>h=gjO9yjy^sw`cv#S}k6JT*+b9i}iqnpzci-Beh~G3Pc&>uQePu_pfz^ z1c!xfo(~IeFFG%qfVgeESqsr*kZAD!dbZK)al0A6VB7Hq0tPxcHZR+yq3;=+mrmk+ zA4M$aHd1CNR=Pge)6+U!`qu`2+WaR`(~l`Qe&?g?Z~Ig5FJ7!}Z+8!JFArQVd#79C zd3$?<-14U_Lgv+#%XqH9>b`gxe+-6y*{@cFf`PN|FX&2#a zb-yO=3Bc%Q3h_*fDu;z+KY#xG2ep2pP$L2W=J~jy@M!%v%OtL^GTTF`M7Ja6GF0Ts z2Q7g5gwXRl9rQR2nF~BN&)oQTEaMWk^h}o49L$u9?M)Wa&?u%s&$owVlexZbL`e~& zqeo5axyzH2lRqyJo9&7Sujjw2pdhQIMlJAcMnEOv#R5@20E%F8eY8k?9F>$rS8X{R zcey_u5+p4u`aL@@uOCpM&nvCIv<| zKM*CvH@1>(;@%K)1qJm0K9CI#F*!Ngmx*_-50}#t;-5!=DME^; zsCX?!O%`>4KvmF1`V%P%Pl1;L_g22XS$bAQ+t* zbj8J+@6Tji&w6RVcmU+H*>6bK4F9cOvf!Y?H^_3KHM_i-hI>Q6u>u~x9{0(bjE5%y z9LK=fHIUTL`{+vnV~^F)TLqcJs1HgjE+uu|P2vqHbG!UfpkDklXr#tQ|Nh~@6;Q=| z<(!}E#LxT*B)S~HU3?4`@C^W=2qoZr?E^3#6CHhZW&|uI4G2p_5s<=pZC4%7@>`zBI)`mO2A{6Z z&QUPxaAH9jK*B%-3~}lb48{(aP#kP>9><-cS_t`(4F+x;jv_rDqm1`IATFn!xcN$1 z2qIj*f-WZpfh+deYJPx1vp65=fV|krf7~c$WySDJYr>iJZhuw=e=eL%I##?6ehG(w zyz=yT{A90letqqXC(yr7T-Uk&%4V%*{t(KnzjSJctC2EDTJv>2uF3rxgM?%lY;I3K za|<$FF3xjybh|p}1=D1{z5cnu_K*FaVomur@3GR!tpA=w^QPlFqkxU6O%B1T5!`1ttGd?B1!`f#Z! z8GM*MxM7PPm3z?0f9CP($OiIcCkQkcvjbW0s9yML-J?9_5G7XVU&Fk08dNs8@$nWuTBy zCSza-1qb%*xaH|z3N@euZS;x_A4cF0Yysl84QQzkmt6|s+~0CZl}2;JV;D2cZmZ{0M4@H-&%6`qY5SPG+Vh{Wl2Ry(r(^-ovR84 z3f9D-zv7E#u{LMmCy+p3@Yp^}bF~1a(tGJOL>=DnZ9i`C?MVC@dVWJX&{G7i>WAI>0$bp#1b9ZC2(`oVY z49u)tY;Zn*rWDdKTy_WeVBNCnE_ApA@77vlg4Y?G8y25sBp#QQ<{w+IjUYxwp&V6Z z!~V}lB;XC9{oP@W8M~c;+0fgPx-Eje=~6{N@$h(TGbrTZg4d%c!fZ;+5_y1A((S-{8DMq;5uB@(CHd^2Sj)eal8_h$LfPsIhO=A> zPZU_p5pZh~x6ROV@M1^M{2%-rsAah{fy8H4@LP!jhe30N6{t(kL{7^%G5_cFtkD<9+PiwTmtc7z==H#pck7NPJ1I3(CQ0EYIKi^ulyU<8yvAJ ztJ!EkXP+r^?xb64lW>I zfp5lQXJ?0U&F}pNjK-~<6O zeSW*0t^y8_dXZ+^GnX4q6T}zx68QATYIU!$bO?PIWI$;-xom}0KI>x#KsBF}AfSP@ zfO)(%b+6o+tEP{o*P!O$fC52>E3*W)V|S$w?Ftd~-_{X@Y&?_6?pO|>pHRRb%Ppsw zy17k}Vr-gk1Kf}55LrUM*A>`%-EQJOe=IPrfFWR+xvZZxs#B-Kb#>s7qs}PyZGET- z4Gmq-W%We>3Xyh(OJ5wLthDsYyX#};`G$0MGnDRdB8LQSA^VM&?pFtydQEO9!oI$~ z3wGT^&nk^cw;t=AAg}>1Y)vi>y2Jf5G7hZYzXz-FEUk0p5=DX01qnnYahkDl?wTcT zpm~0jBtQ``cgT8(97vD`fd5faQQ6&`7#bNHKXZM5Ts?!K6kc$VcL2fc^XC(c7}eST z*$V(ptxAj6gJ^Fu0B9nx2SU^c)bihhUViMmN$2RbWrlxND*vvJ73cqaeNH*z@0K|P;*8m(%!E;lDz0=YJ-7&DSB^(_& zzzz%<5`twjw-=kQoHkDxxm0lARieBC<$Cp;3DcYj^7F<&%6p1A6M8ul+%mMuyTk@* z$DE~7TQr#e(S`yZO6vj$2abH+gf9Bxd$49c?{n`+S3-9mn|DhmSOEzH7GmWCuwb+o zddGmHj8&?>{x0VWWYM?0HKuQ7bR2!h#w`&g6hR2?h$RAM3yy?72f87qPe~qsxRnXA zaCU7>#%WY^#@K}U&(}8YS0s>OSf_J=w>HAh0yyj zz%j!4yx2MwJ%4-t5BLPr0FT0QPu}(97HqRnTV5OOY|tbh#rWEeKYUoZ{Z6IyY{$Ro zq?zX-ufWi>AU;Oat~+&r*-?3EG5!p6WOgPAvcTFWkT3Z!^ZNhj?D#K`@c-Wy(p;7x zNJvi6X2kkvHq3N{^$Z$t=?Alx0xa%a$oR0myF9?F1tA) z--SXpK6mIo!!Sg91{dM^z?Xo@#p5v^ApOv;_HcMcY}rtpEC05cax^UHBICOr+vjT- zpeyCJ?c3&?*6a^x=rA()PchWHy;`78#b~6^&ZBd@FZn|ZDc2v(m|XCAX(NK}`lIwV z9H1Z&gmcyWOJfO&d_m0>)<96KBnu652DO+9>7KdZ?X(uDsDgbXwQb31o^&Hh;z^KE5$+sS!j-Qpp6K~V zDKH3$kBBg4a@W`L-u@w6>^dw9uV^%6=A`o}k;hO+um7ZAk_kjV!ra0u6)CEge@8oW8IL?%kLpZuE92>yrBw`dz2Qh+! z(3Ajba`rbRTP9?XqGzQaJmO+O*>&{nHn6E%-faqn$+!|p*xOeyXje%CDo+Ls##q3# zaIFc>>CR;(#Qp9neg?hMY>Yp1wQNL~dAHPOVIm>SQwJxZf$g2!U@sMQXKmKvH&3}U?-QRZ}51}-jj zq1z2i;Ksz=o^SU9qDyJh^6-a2t3rGzU6>gOhar+_T9>AhULAU_b*g*RUijP3UWt=D z30CQMJMnLLD0f6Zqy8?p%kmuIG_newq+Mi02WT7QL8NTKuwBuYUwVJLlt4N#|?CK$Eq8@O*@b=jyHh)ef z)4lt|5{w79jM|hy4ORmcCExt?=#GxA^~WkPl#p9N&->w<>uyf`1}GJr0WYf`NG_9+ zjQ93{Q}$Pw^oxsUOGOZasse7^?N;(8@DDK1flK2mUea`>{fxt^rFyz-?Cd7MmB7Hm zdxsMu0adQBT@~eZI!I70(o_PAKphnob+#75{4=P>^Lmj6$b_h5>-rBsLsGC=#(5Z5 z_6m~fiu8Ryc#RD8UiQ`p9FPpS^QAL~R|oj#>ML89%3FEU>Y8uDYFyATo|hb01O0-< zpJXK>D@mVxir{+RsZcu`u0aENBIP3SNiXm3KLfYM{$%BS`q)}!dVg^H&a9={$ISJR zGL3+zwH%2MoC?7H$wRz>YX+)aD9MA8seIpDfOdYCLz@5HSM>3LJi7wGP`&|#jK~@c zd^O3k#1N=4AXu!p2xIBget`t`mdDly2-iS&V5$S_pN5?sGkGvz^2;S7nE0$vbv%rw z?^m_LGt&mAXMZ153fO^P|6F_oR(9Rd)qJ@N|0xbSOnLcHsTM<5;r35ugPI1^m}*h# zQmPc!&UFg%c3`Aw)mRgO>f#2lQMUlg&Auy8TX6fwF{uN0lVH=flPO2U2X#H)Dz_M? zZtv(gJwK;-_pZmY`N#JPX0(&8;Y~@yjozGa{+>g83wsIL>JQ@DE}OIS>Y4Ansbs=b zbOb8|0(ybh1ehoVFbU$kpB^-xB?>JG7G;eVL&e{VM|++Yb}@SURI&`Us5z zuZE0cNyGf_94PPlUd{cwiN!P2Pw5!&kaHmhr>NQefOXb(QZ4$ma+^^UVM(22TFZlz zmP*dgYi1L}%?7l78^HYj^ITwKWWWD`KwfFun_E~Cy{IKR&Z)o*f3WHhxEYu#+;g|T z6p#6V#zV$NM-g*mO5Rit?Qm-1 zSU5A(o}-wC&Es|N{#=UW4XZw_j`bp~ib}~04}B6XRn%a{z?rX)LYHHp+(!fCM+~r! z)t+Go9UTbTD0B+R9v}lYMl!|HFts%)l03Q`z=am$|Nb@a`o zhAWZ@Zky*&0D~nOsj=_@h4WC8NXt9$%8}p{ z+pI2(HZsM^)*_o6zEP|cEx;c8cWJ5|@xd?l72L{hj$-9rYk`$rjwwO6?w;f7enSfa z>58P9flV&w0} zKinkL-x>_Jfi1fUpmRL7Z#Nb|BoUS#v=3Nmb~s99xH0qnE>0W3 z;F2)6X*s@8K+Taq=JzFY5;^m*Q+y7DO6#+u2ojkjsGpXXmji(Nk)2JM#Az8YXxiWK zv8i)+GcJkq)_6t4Yp7=h^caBZN;J^gzMx>CRAa46r&a*n{%aHP!b#ola?()jo91#B z?Yx2&MMqkj*eELNZFn!_tsIZ^@~x+ZRxwp^LCr6uG-)6v-LYI-|+ z&2@Cf1Kl0&7Lq(=g-xv5DM-Ekcq;!sp{eJUyn6(1Wf~1B711YZ_|HZ+?zU)u2>ES4 zHO;^L^8&7He}f4_1=Hc>F~kyLa^H_;ghcx>Ny5+gjb#PrI?Ja*kwj#d3&r)hQ%g(R z$tJtm`@r~DGzBtP@?J|lE3v^Gj@2Toh8)j5G5{6=CGS06hrcw4b=kqB8*U6!3l!{)8L%e1QP& zDL-B?NJ7h8GoP%9@M5d_s&tb+9}yF!;w0Ul;ogjl-bf?Tkek8xo^=ORd)oX>Yw$VE zZ#-32sUNGML1n_!UicY<@@vb^kRxAxoSjLY7nzjB5l(sQ z7uWHAh3%hZR5r?mGRGbd5iq!z1~MZ|IV#A{emxB*Q#>4tE?EcOn+5LTqt+*yQS!-E>&=T@a);g5i@75&7y%t zE{y<&x8#Xea)Iu57KfV!uQYmB{C{lbd3!}~RBZ^XYd3q;fdZF&dwcr^=)H)8LZKnJ zvU^)J#h+TNL=;DoppK{rJYSj^AB#Cq=T$^TSS0?Gv+LFJzT z*f7zcP9*$r5ra&~B?oG?RHaQ`?3+j+>F++$fWOi z85_DgE`^!K%!(|DVUo%Q?|KA^?kEdfPg){{kll@!a1(L zTDq%eD9h@qy#QV?LBPT?QsM}XmNp`<9tFeQLm+CrT!_RUUylOl0+`TqGfy-WN}0;< z9Ot~`Dh2qamt9_I;u4bjXHU+Jn7AGv{-}V6TiJc)PyD|ItITBTp6F@FZ2Wr$*Z2C_ zbs5=8GwaBE-wx_vkZr$GS((GGpsFuud|X`|I|wnIg@4+3l6P`Z9F!j9tRGC~?mvk{ z%l9edS)wyQ?O6zX<-xU(X&Bd5D%Zpf^B=0@XxYP7LUHNa+V`gnjR>i9n7<884C zwp5Dj{>FhCJ3-x-cD1o@rW&)?(xG?m+eR#3AGaf9`ZICLn^M@9R?6F=O?|0}= zi&;i}wBG2)j>L-GG)-atA%I+gV9yc9>!ofvn)IbdDsSy47;C@{`9bNztGW9G$UC~% zmj2>i)XR-J>WOQJpGvFtl-E}d%W!>0Y^ zj8;4qzHNgD4mRuVFgI@V(|g~I8>U8ea(sgg%A$mlOtt(6GyzOeiU7bAk_mA&awhXae0*(>Do{7626Sw&7&Xr`~Z<#RrsY`;5uch-+wN_wYo z93%0>(6^=M482o=WJMVYzj0XLd-Q0$uYc0`P#YQP++5K|R>QHWmX_96OS)m)&dx|7 zA9t+J6v5=BO1>1)qb{VlELyT#^W$K?Mp0ax_%%wL0;$UT#~wH8_yUD(PQKc=&ad=+ zztDijNBdOA#tp1oUITr4E1?%nB2L(0Dp^rzKKJVVBWlov<-28ct&C}@!V4|>S({J-(Cd(x4gAW<>tTEw zQ2sd!QywD}t6?U6Lc~B;M$BgHaY8>^ehO_b0He8W3*tjz*$7@-*zbW84?WFd`S^76z%E~=W{O@G7&bzZerh2%j;v}-$ zfoo$vnXb>XDY6WgVHVySpu}0}cZY&?P`s`H75dpahdcma+rm##povKgc%!tyu>{bH zbqh31woaYBQRQqlXep=w?MxqJWTHX8#>X`GBVJd~rngbE?1h=gDf?Kgr>o%ed8)t! z+Ohcy=QLMOHvpV$``vFpU5f*2W|5us2Vrn0`+nX(R;Yj9pt5>h&$N)ba#7aaQ=EPe zjcr&e;Ex$C8D^_-+>X=BGfPcNWTJo6C5vEo)%oK6@sp75Q+~(tf~0hlQja_;xu-jY zqNBu;Mc_cF=;J5CUR8h6R@1>~sCM-RL|Sw($=>Vi^DXeWpXJ-xPF6%8wC#t)_wO4D z$Z)n^r1DSE~+#0bd+8+0at=Ns^J6%BI*$HrG0huI1oC0wry5v;UK8zJP8YHTFiWRvyr* zHi=wclb-cOn#+nq;T&|{Q|eGt>?vfH*RjpPfACc z;IwDVl(4wwJV#sZ$g@4s`(9K#tR1I2tVcJv*K!HnKJeyo3o}pTDEI3A3>d{V9qi+k zGAiHTJ8fuyt*B7LPOSVI-dJ-b==v`{k7}y{ZS~$%RYok}^KBoeD0sUJA+}As z5@8CiToV(cEC7Bz-U(*^_FS_woReP9eXG;q+zZFs`~G{s0k12DaJg~s0Lz%+zkZoy zZ&L&^i(bEMYRu?3IrA^Ceev^o{y6a3RP_#-NYaCAw<<@-63+B78^g2Lp5wKT~~?A-Ye{Z%o0lmk7bP&4DN3;~-^cGROIo5sbG$HEr z&9vB>#o-_Na=V|F8@A8oSfN zOnR57a67L3BCSXGQ09pIl=d@?>V+w(3{TIqLKBx>AmKzNCR!X2aQS}){g=-zK<8D6ei zC03*`s!ZAT{5w&p)`69OWDkt#w5Iu6%8;ozL`C`dj_kuLKTW?#gv*z28k0uSozXB> z6nn0U{f1J+qz&GPlGEW)gl_B6aOk4j9}B|Yek#}0aSMtNbW$4G?#frem1h!{tjE2Q z*<9=oJt=QvL|$E=yA!sB2t6${5T6QOLq@8;s3bk=GxMy>X}%IK3RLRSQjL9wbM>hw z(;@KY{3QJz;LBC&Z1)*oStE+T6^-N%=RGWyEHajL$YGjWg0>GQbpQ?{lha4g4ATV~ z{cb^@hSv76V%~*g8uyX3R0a_m#@ho=Ue(_#OUP3GuW=)q4pnt>b$Gv|%vKt%h)63s z^XLkD&`I^F(;4h>Xu!(64;qY!6fvGaBYrEABeATsd#^=Dm6~aEhTmOJ{}q(gI!LLxxsPAYjW#mt5S5Qz;^7l)WzOIv9T?uxXE zO0;4?Ti4v5ukK2R>nMs`@uH%k=%M4k13N>QlOz5>hnUssToVov70LgITI=>MC>ha^ zQoQ+O8gQF#eLv6s3XLBozjx-o7=EHKgz*k{9g60@ z#CK}5cK%1g@zPzH4IhU-5eF#|haSK0yI>UqzRkn3L`yPv%<1yx=QLSL6|J{kVaD{} zE+-S#HP%HoMjSS{{>a%T#Kge0o`pYQa=xmC!rNa>q+cVG(KfOL_eE5NM(3|z;DiXq zoNU0;r3#C6o}1-Q+@a9L2C7oUih*Zc|fAu9*|m71}!BezJEv0|Vp z'iD_1_b3-k}Q{rNg?K3RYbelvuckuj{bRm5u9%bhi}#>6(!v%TE$wL7<9gliao z%mGQz;kY6)SqfF?0|Wex7ST3J4Pi;Q6X_J0%fmrp7p1YwjYMiOH?y^!0)neC=h!?; z8d@)VL_U6EiVdEG(Y*!6*Y}h!;G;f2(jb8U=^ai5elr9Ym(t{~sZka`{Gj|4iJyy% zd%vjJ#b7wYHkPm2CDU0*_mP&e)f`I{?l+c^10PDZvN^=W%5|>%g4kv+GH-jMcrKq* z(4Co~WDffvw4m=eMyhgag}_VrfJEW@^zgxDYSv-bL{;lAX6X(2=!|0w> z`_qCfbNT6B;qFX11xS9Z%tGhLUsY6gN!!sfL`(8}sFrUxF+8V~kldZ88&k{ZkyZY_ zaD9cOJ$g1CRI8x6y2xiJX;m<^~m+Jl~!(n&FW$@0N#GTO44m5-o?%Ppvn;4(nxhM6uMKa-E(H zFH1FX=96u(8dX@0;61Li6ogax+LoGdCl$7bOjLZ=j!{ke+jqy)woxkH`II?ddj-Gj zL%!Q!Ry-U17x8u(e(2X0uS6+P``@S9h;2vz*F{1O0obkP25={20nIINBk(6Y$r>Xl z(^U66?z>o5OBV`Fv?uN6QAlSPC?qK9UVHNo9!)j;I_I8e*>}M`Md;saD1z>bB765G zPRAsLaYD+Yw=OK$$jN!VEm5O~wIp=@XD@*IqhxzNyuws-fD3F8uJ@W)dk`v63fO!+R{$jsp&Bdyoib} z+9j|3$6?^2$78g-T?AW5?o*dhABN@*pUB8WcAAKqAEr(mxX_O3gd_Lwgu8)pmhtTe zlOG?|6Y`0^!Ha;Qr}e(rUK7LDUXxRu2pf{7s^(hSzpeE2Qrdma<+nhOz?P(m?PIa|B{Rtnm|VS zWh4#35iWG55Zq=PmPb97u^w&+@=II%HKWw4nK*vqxB4fWX~Ah(LKugigV&nj*2?*% z+d)8NQMZ*f8{f@pVB_tCO7>?{Hh%hy{UB=L)F#_~Tk6$DJnz?*7-5fX5-~3qaX|vy^2V!nzTiyDTo>bv9i6>2)?07rw}UeA0?H0N^-G6 zQ5(z8un#)>77=6vJ*`ouC_?7^bN@cfxO_s6$C~4{S(s$zy}!5zfmmH(vIMKrZl}B5 zQtr%0qN$1R4~8rzZ4#y5h<|u@kaA$pL0iI;=P%Yf3H8M%OAZ%5JLw%~OwGFIO8Y(J zq*#6HB*YHn_7ZrNUSwi>q(`jy9Z<@5NX~|5y!pwjjx6Ocv?*`=c8phW6NX=>#*3Vk z`3?I{zCN7qsQ-4mpK7|fIB#z&Z?jlm=HWVItM#S9!$X5xOpAv|Ck^xcCNH|OZ^tH` z!*3nzwLUf0Cwd3!-zmqgm%fn`pT8u$@j3Mtn17k6Q;^J?Dtq}x+xZ&;Q@!uJS)!@` zd%@Lf?SNK9bM>GwyYYUJY^F2!5XzG0* z)lCo>OSUERHTYC!oYkLPxbzt~>IcD3fsUc>YPANLW;sq5hqvUwkMDnY9KxFND;h-j zfuQ@=+MU05M}9qNI^-~apwen}L&L;*{ws@TeK!I_uX;djMQm`PGf`ldxA;OL*4hxI z!%o$y_tAG$CzrGLvq&El-n80D{rJe>Xo99kUt@ztba59Ft{DFP#B|mY!pL906OAumt zk{qE=Z*ECIk>*-3TMK|N=uI|*jSG2o-2Oq<0gVP<}l?m8w1(7lp z(FM{?uQfJBQr8Q9JY0BHBIFL`liyd#(`7Fy!4gfCX;Wpy-ODko?y@ z3*q)0g0>A`oU0dPrK_tsDH*4K{##{d8P(PkhIt%{R}@FTe_hZV5tc*&C=Jtk%}k9v`V9<$^mzb(@vd6iM-R zO9&P%?ciHNn=Poi+bYmVj-2P^?b(oYOVRf1>f%pa*nNuoM1SO;ynEZxWYB zLnFx8_q5t8dpfEBu2Cvs<+P`&%vZh=qNUH|ij(*YYV?5R1?>X`k}m`g6ctlo@-S=w zBt3qOV{L=7UY)=9CRi5jaR5vicuY##Wdf{Tz+SWNo-R_k)mH032%%{YK3%G=e%mK? z6IieQF}vo7>Ax=eD5I_6Dk{$rv!E|T*cZ_n+Hfn>WZz_4M_l~xgZne3^Q6n;&{JC5 zgxBsd`7m@Jm3wv2dw z%ei@9S#PS$v1bSwCd_3d%L&yFTziv(vHA9?Q`yhTw^+ER&gvQXv_6Vo-2(4-Pmxc^ zq>4>~9b_1r9gSCB((WWgG}c$55RB`0Pu&PZQUsA>K|Kp}Z}5~&&@>CC-13vmT|eNE z5lBN^&3l4i5rw5jfop26Ic?2{;13Kvw=AT_GsGHMNghhC{#|4z^%Y1UD|`BBF2(nj z(kS%?7KH!9bt#Rgdg3&YYA(VJ#%|ozVV5x;;|Y*gXdnKBr~YO zVIDMubHi9iLr;RhbH+pBu8S=%82?jYHE}0unqt3aB_uDos(3$BRZBw)mWi zW)<^~)8f(;Fp{<(kWuFHVp7lZKtb5{B)-?iUpYZvujN>@&svn$sFid+3b<=A&EzBO zz+(<;Y+h}TXj%%Nu4u-6pRAT~*n6b@H(njn1o>9O8IQnkRDU74(b>&tF!A~r`s3X8 zh3JO}cly3;qqES51(^cVbb@b$Hp%F+8C{-CQM)}Es;rBQwYBViH8d#E2Ay0gd^hJZN8jiegAVGV~h|`&?vcgMCeoesxle$D*301a$^W%#x964HM zCF8WA_cby<_nZu-7sSE`-lMV0b)BHMhDIRPSyi(e=P~HU_qXY~vo*1~-2oDN`%;mq zOZjpf-{>(7+}r--UF5}8;z&>24P0h7GoRn=gCa--AuaxV$j`P37$to^+Ll9*;RV5s z>KMBECt!3Gloi|pGC6Cn{19!ERbWfqrNZ!TGcaQR^AAosl!u3hy!?E&Z41pM$jVusCb{+VY+5-_KXNsJEFM>3LE3^U zjSz6%YKemN*!tVrgOHpPVX+QL$uhFu#S&PKYKO=0#4yQ6$hg;QeaQ)_m=0y7ST#x< zTwR!_a|GBbBrXR3Dq0IE2?h-TkmWJSVP2M zc?>oxtGsrC4D_S}fLgr9L*z@m<@F@t%0H0S|C&+Zf!3>V({l|jx=?#1W}ar z{P2ZIlyF(rW=zJF+Xbt-S0g!7pR zinE7To0>9l@z{81kcJ!NRS3!a1gI$#fdAZ1s^QSAyDd>LeS+NoCs;wexz;RgS?iqe z-tJIAynEun9J^(BG13(}p5E zgcgpk31;)Dp_@(j3&7$~p$&>9E}zENV=T3b7xMZpHUp^rb7kinzV*vM=HD%eLABkD z-@Pg}h`kRug|sZ!sdM4YRs+>7aq%AJl=+$dARHUo*mql#aM6uML^r&tgCIpLw%N}# zcaG=~u5+Rp7>P9{b<^X!*f{_TNqb4)lsg5-!p)Om<1Zr@_WV)kq^*+~L^4#hs9qG$ zB+PK?ZM4u=Kx$MOILSL1eD+uw4&U9JO{C(~T51fw2Dk_kKtNL+@rO_b{zla<1vw1mzsX1&PF?Y4*bEH0Ka}m>Hu@5-yb{X8QWT!m23OYXa)^-1WIU z0HG6q2xoZCh%;~JZD;pK$4sS`jh_R0G3|>M=Ez8+?kIlkJ#U&+J}yUhfseN0x22w*A0O1})fz|1MaOL#Zf zIe+ItAU6WS@k5J{VaBd5>A!gt3{pu?Td(=9F{jTtIJ7)|e~}3PBV?uC=q){8&I*3x zMre?y^%UL9xdkjWaK7MGX99Wumn&hHyNQ)ruv=^Tj?>xQ>ERHk*(>opEb|0&uhar; zQaYYIESnNFtQonh_R!`0OUdN7M1n?G`a!^4lJ;^Ff2Z9Ce8CmaMOI_{LZx7otX;b9 z0lwae-?h!q{M+`C`TfId?fIqXSqu|ithd7`-jH1DcD+DT#aUqjK85({GKUl`b4S_a z&*_Zx_A`WV@6|e6t+FfIrh;v=hfmeYrFlB*P2NZWv{e?q{pBTECpMqr&CGKjA_)ki zjv&(iNyoLt>%Ck2ee}yE>GBhwP=#vd0Dy!fO(i7D9XITyM|=Fi%QTJFj56BbBD-Pw z(*yhVL{hnP=HWwbTMg|}jOArgD#LVTu>~4nYEJ>gdkZSHKSD_NCM$x)UkxVWcl2IH z?A>Qs=NWy~px%f4fffc&{&q&f*y6f#05+x=0Bai7V44VE&52nqcn;0wLAkLhzV7a$$w+oxvi90VAvk#(;w`~e%6Ak^C<5i@v-MUgjw}Z*xjlZ+B*C!uEoY+!t zl@K+;py{fk3}P?s>NhsA=7tHk0Zg3%<_cN1gDFuK(kyZARCGJP_pqlcsk}0->rR+; z-P>F;=akZYpO#CzCrbMMN9IQYg&<>nsMdQB|O3WQh%&S=^$l+;gshyOa{cJE(&Jz98Cj(dk&WFJs+S=Mq_+xg% zX8hd;;~5UyNtEa5;AK=C{f`(8+@Rrd@;~;h+uw3Phan15I?*WNLi>Hw&70-TT5zYK z9(1d<*fdg@dH!M}b|{oXXS_yi^DECt7+NaoGNjd4aSb< zzkVoB`(ZvLIqOu;Nu4(Js`n{_8@zkDg82`NWsrZY`q z`MCa78Jj;o2dTJu#?)~5j7rH2j~a9Y=W*q5?iAgFpcW&bWY-P&^L_VF0Sqx!RJmc3 zI38{w8_oc@9Nt=CRai}F?joZNKe6+#s<5+r>PjD_R7Yg7U(?-$?qAhAGBRJDH) z4uP4;%ILoeL`3OgA(cT$n41bw(BJdZdAVhM6MZ#f1zJ<$-)b)LI>T!jIJ`4WUwZpF ze>Xm9M7mBrKW-fPn1(XFK`nY)sjBlA5)OqR#>2ju;S@F##n;$NI<5XClJ3Yue`UOA zDfo|4p4`wYVB9rkKEI84ey);kA3#fj}LyH z0gL+M**srR*0~+3?PZZCXxKigZkD`7-Cmt1V7SkicP>)m%(Nse-v$Yx*cW3^L%NLy zM*k+!G8b>fy`gj@7F+2K&w0%oU|C%Z79L^+pgdrbB_QF)k3xXk+X680SwP4Pc;vvv z7XuA|sn$sVP+ULsJ(;$N+xiv3GA46AmqYi~R{?ec2t7XmbW~qY&&cM5ub+JR=U|d; z!fiaWnO|YA&GWlg@jY$d_1K`+miVq-)YZ{Z`b?We7rqXE@c1lS z-rUs!mkyrmH>T>Fkx%VyL9<2`{SFia z*3Dm|Q~S&uOAID=^xxvoH=Rb6pYwbhY@9%mBn8R;*bX2wn<4hg0l4JcwYB%`Y;5*` zs|qX^ST!mD*mezVZKF)tAOzreQ~I{q4AA_JuP0lU0fJ?R^}a+HljQ{fUyBA|Jo(-> znZOY4>l$}?L!kAlDrr8rQTp(3mKcMFc#II{*HIpp695wPszoD)|J5IA#P+yhh&jUb z?U&gE*C*ZgI{7xrKa<2a4z3<<#_P)J0Svy#hXHzke$|4*;lbxT++1U0e43}lQxN!C zD;xOY{FwBZ`{*Pv+m42vE&x(8W|#MAZSH&OaaVd&U_>1AQdMA-_sjAf`7t`0D){d69VM?0)qAEM9v(gmXc*WW_UGz>Kza?_GxcJ2IBBEj zsA^WDu8a{G<`ji??$T41WtGK#&c-W!?3=og5x&n7`LayqIyme`sKR{_a#n2ifNel+ zBxLc`4q8qbCE&`_kVR81zki z8=x``oSn;{Op*`3!AK%!sV%jSzIIS;6^|YBr-wF?oNl41;7UWpcP#}#nu~#S{s|aP z^!4|n0LC4Ewl=rq)q!nGKIfFQDSOZ;QrQgQ_FZ=Vw9uP%cCYn$YmJ=|K1-Y`U>h+G z*g%v4x^*4_0bL$&nc=fd)hzY0&?m3;NcyUplmY<1pHx6mQr3d`c%9{B9>hcgXU^(Z z@Hsmum-N`M2PBB1tetTaScfQ7t>D$Z&h|gGh@!+*nN43q+wk+>trVki=xdXyX78WQ zmTrwKn9ZkyZ^g~agRhHPdapSOK1nGckK7Z|dAm9d6Mr|nr1&Dg(3+C+D3%jq?&xTh zs7JpLn^(RIui*Yp^ls%bvl#&vB}U~z zfaO8%oyP-!@QnaQ4G610cz)6>Km9g-Gyr-UQDB6@2cQ}-&)sl3?zq+Bz=lLf@Vgdc zIVlSdB9)zTw6RfL?>Q&Nlj8c_1S|LZ0P$lB_G?M?En$@C+VB>`^^WiLxryiBIs=i_ z$jrj5f~;pQLu9)4y4Z_8jjkzL$Kq`M2e#EtzYL|HK8&eyS@2jDq5d-vZ}FGgaN-_V z)hpM_m-r9RfA|4*0YIVbOsd}B6A}`-BUCGGx-pW!u)I_>v`6eZ#KxYEysbZkBVxdo zwg4Lg_&R0c;u8UmTs}*Oz90ABP`>YUk>Q1KMwXQDwg436-S^G|1VAYOmoahx6oCW2 z2I-eK*n!R;f7K*V4)g`HekMvk9{h7kCa9_5{$SY@aa~I8hfeRhVg0H7R*z*W-H&1_ z(3A+3S9y`ZTlN@@9Xt2RRK{9r0k&flhfVSNd3^0|km>yizHO@@?`2YjSj6i| zPz6A8u(PuRG^86~mtpj?GziEhKvw3nXfULb{ugqG#R7>E-qmUUVl%Jv)%9_bIU84< z2jT1}T@+(EMi#e;XML(3z|v&^l$-!VTtHF4w<$eRGxW0>avNM~QmHueT6Sps)_B2k z$!MsLyf0eS9L6j@n$|pWeErkyo`HZO`+S3OkN2s>_%bE+b^arBvPVec3_Fj;RCDTl zY0szzx#_o=@Y<4|#uCm3$g6}86hi*Rb}}aC6yw}^y^U@24WQG1|0zFy@ulz<4+#$k;OY5)MfFe?j&1Ks1Pv z!Q&U3d?S<+qsm4Le#|9*bD4ZvUxpp6j?_8<>K_CmS=hH!`nG1jG!f{-I?&|c#nyA9 zZdDLBre%{9etYSV=;v~!Zfh&J`4xxSr=m}GZq+Ps1jt=V6ilRaoM}zkF@XIM;I5%Q z^~NK10dgAzv?ONPKobCpE(C;9a7O1k1!793k-O}}!Ys9Ickf?hA7Yl3wH#l9xxe-^KM_2n%wt#xSA^R0fqnazdoUpk-6sEtQWmE| zfP94fEnX>Z5JjKQd3oJI=of7y6607&O-*BOZf?kA@#A*z?Pi%CbgUIpm$~ZiQ-kcf zgnXDFww}m296w3C?w$PQTUGrk^~vSsWh%gj+*KIhBD2$i-A4iVwb%9O)DA!z=_@EG zbjapgt+a$ms(AU~S8FJF-A>%^GudYGV6+#tw>3-vfLsoE-bc|*g%QJ%S0moyi)tfJ zUb~Du-@mbF@YJ)m&b~`TLUx&a@Vsrek(3KxZHYY*Z4nh>`M=rOBFCz7V*sUb0vMzi z#6l^p10NdYaD7Mjqyf5reFptk^7b zYirN>OEmb^hs1=0%^2aK*BTm8Ix?q*ww?$4p=E@pI21UsIDXkV)iNpAhyVSW30W`L z;tBY~WxgGTbQGEd|Dg0e`UcMr#x%(A1Wyyq-97T0wxDxpNeq!Q_g@vWrUpkFUguBL0J z(%NbjB2>06m0!{}#;nOBY!_2#Y?yhmAfBV6Kng)^wI?Qb8#O%ag}y535r4Fp>b^dK zYki6ixtIKmN=1b+)+VvJYpmc)#}RoxoM~Ismj{*l%qlyZ+roHsROeP+sjin{M82YL z!Mbu>$AZT2%Vilp6m&GjdY?CT7el5pGgUzz)@5CJ@$SmkjxuB15O5P5AAf{io2f3| z2nvEvh0DiD26+1pOF7L(ep;oa1#La}`jceP+QIpYV5pgz$QnVwFJ24_CBsKs304B( z2dUM&d`TNB1(TcY;ZXh9D0f*p{t}tnn8!NoE82>m<5`?Pg239ZR3pxtEET$JsFyhvM4+cL=DdTkuLI9wchkz~bXJrD`YL4uqPteoUeEDx zes=*`F}yT;fp=FQ4$v6Z1Cw%=xZ|zixZszUdH8THW2;~-3rZ&Tk&S<0Imt*7H6=oIAOwnD|4n%jiW5PR# zQ@qOuYIoa95u-4R`5CPNVED2%-7ruXm;A_a<&isNN*^7rBWP?IwOoMdB7 zEdIZ;+>ExyeV35_kc@rr=l@!lAE2x&Mb!JIItKgPC+mQpVDoTR?|t zLL9_(biVYyz4XVQo{-he4&I0fGE5UuNWDJH2nbae|w7b`MTBL!v#6$IE(UI?1^{FyH_I^d0ejDt9r>eGY5jxUTNvi1oimR+%t^gY?I-3D3GNn9LC@n^) zwqZ+@AGR<}Z?h63^eI-zvf*d}o#!KtEODcAv2=`a7@e;2w~2`qLk7N!G2OUIlu2X?I7SF4x)`I)P^2NSPxCz1tcCd{QVVM6hYMV%{$Li2 zOi|vKqVHWlHwI5?BU5^v%|^~^fg)v5*IDRWTG0#k(xd1WqjSZ@x$qk=y zuLym$^r@C`{_UtFRB|{IiUnLlJ^fVGwhw61mLU7;(ZhS1siM~?*4PPM#7*;0G~f{{D|y|+;?c_T&C?nslHWvw5q&~9z{Wq zQ}XBh*;Xuc=iyAq@1|95E2-B{3daXmJeJQ?R@~C@&~6aUM>9vHCJr&CE;03^+R@`j zBg{R78+FcAcCkXG|Gn{Rt|u~C3yxFsW8WjXA=raU!7%wc<@k4S9KV_??G~v|A?hCc`Puxbc`B^NUB}ycIw9BG# zb;uz#B7=#o)}2vugvwE3 z=QD@pGge%i7$K=p$V#32hllk?N#-7Evk|MhEQ)JM5ll~1#~9Afc_jMe^w;@-$y5*Z zfceGm+y}~Sl85N z`*tGp4ajYK9I<#U9E$6wD`>+8*C+1l^MvHWNVd9$?5i7<_m_l%NKaR}M!d&u(LfwA zHsWWqfJBBm9LBDQ^Lu~eb`K}Upb9Ve{t09`+4OJsVU?E1zzgLea`jsdZD#3Re=Uj3 z#A-@JdxD=<@WR%;)-hxAVz{We6QD(vIbMf)IsfowwtuvIRD*XE!d8w@OFEZbVmuE@ zqe8@tAMNyEUD8RnG_4E^&Zl&et?u$d2nQMo{L}VF{{MA4w^YsfbJ3iiT{nSOzu>4V M>%1ycwEFx%0HD84$^ZZW diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_6.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_6.png deleted file mode 100644 index 943656aa3cd734962a77e38f100f1100dddf6664..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26741 zcmd43Wl&sEw=IeW2u^U95Foe(*Wd(e+}+*X10iT|CnV4i+}$C#I|L6Ff=h6@i|@U2 zZq=!G>;8RIQMBydd+jxCj4@~PSy@pU{Uz~B7#J9ISs4ik3=C{A_(ev30bXg^k>LV= z5M0G&)sVrDAF^2lc#h&EqwNX%Hw4afQeR!F-dE4~fBn`zD+CU8afBg_#fwk>R^h(_0ToEU^du%FZ@?W&S2=%3SIn zKh#JN_QV)6J}Sxtz0Til?GW*B<>lj}<*wBkyB zB`--Q`uqs*6FzK=R9?|fE9?m?t_->8|I^b(I2Ac4J+!>+j~nmzB;tak+w$+zDjD?9 zjJHq^253SuM5*!QJRV~6J#&LuSx$j@MJ+{0u85Lz&0Ecg_zfd8CCSu}N{&HA&O1dj z3r`G601H)%hWw3&46TjXM?-8(5#J1lLu~ROHqmXF5o&nx9ddj*IdVm&v?%W-s3r52 zP^O)m+PubLNhI-S#g^d5#aicD8x+7sEKhSMB((*fjU1&!=X_j_tU&n%oM(Gr_@) zIEjCF${Tg%fj5MY6VTfvUsojXUdMis(4p)Ec4I=hGZor#*caI>#8c^EvHx^A>`1AGlZSs9|Qh>9Z(c1cSfr1mvy^V|`MgIY($6i9Sb^I%L8f z==@QqAEgo@1y3__4jXeCQ2K&TinDVysEhlMUE=wi4*TTgUWdU+pe;gdm=-pJG-)Eh){xzP8 zGAgOyiQW&UM^U@hsj(`Z#^;af++Sx+J`uRb6ItS|8?5uRoa>slUau;a-$_M_H#FQF zS3j@N(jYr)m}6W-B7 zh?n58Q&YP8Q^{F!J;M8`IPK06FR5X~@;-BKj^aAy95dn+E7iT=-ui4NAlGsk9`SGC1tSI7W9;6;30hrod~oJv5!GyYAnQE$xO0R* zZjw>rbsBRBq(O}8R5QxC=^&O0#*RX_+4QpIi{0H}jww}ub?|(S5U0K3V zG&Zii3O4t+!;dDmQL?%#`3yo=p~bX``91jT&m*tEb;33q4Ch=D!@yAiUx(Uld;u2{VkCd++`oGA<4;nYVW4eb*lHg$$=R%!w=%(qaNmR`XmNK;rErW9gcT?Fsy z)tL#q)YULGwk)?pLolS6M9Nc-)uZ(Y!}K+I^$@-kSp4;u=gcDiG>sgLx$cn%r4rE{xn6)Su{K^ z>{OL2dLvg<+)2`DiHH)f{YRG_VMU!0Cc5hkR<6iEj)4_TWvuhh8Z*XlP&_!19D_*o zQNj21vGW(38L@C*8KD{J(4-2! z{U0M(@g2eBox_S4nmzPEo3KjInG(WHn=vgoG&Q+@+~;u>e2CN9U2W*^v(_MTH<)pzlcSf=h_d`jLuQn!TWThjIGnb-giV-}ML5 zK1%nG-i?jksL`j5^wH^-zU)5OdI88Gq*P6kAbCM|l3R0;il{*l8(uaI z35W7dE-s`?;}2wRg&swdNsP_3xeN;8>^7=+v5R<|HB3k116$ZSw!fsb6Y3)r4hkq67zjq6ZcJiF2i!RKqWnBqQ*y2@V;ucy z^OmPsKn9@Ax9s5j&+s#C_*NkJSDmfAjEsyV-Fxs>Ilafhg0qIi-^R_WYW(0YU$DM^ z|NfSrh&V>dRnj;>^e_H@ok9nJi#VnLCr|PjzrJNp{g)QRSzTSt>v2H1x0l-HEIg_n zQc=MgL(JVhJY4cU@%v;Fe^?~AVe;_9EKcgFsj&y=b(QEi<97V`-49m;>>A!fusK-q zjtW-+g!OiUYzIXh>RAXB0v^#ev&GmrI3aC_;xPqGSl}Vf^HmfwxQhO4S#d#Q1(<^o z38f10xB2Oz4qa@kGddC+Nf391D}2HiJ>u*KHh~pM&69$M{?W66v9L?Y5W`3rH?I@HjWoQ`YQA3VwXX^X>C&?{V80ZXS+A&_TQ?P@#&{{6^BSJ(BV#(~n z_z2hKMln8I%#IDT5x$29ZY2rQ!2o^70Oe0RLLaof{g<}4GbBVIR|F~xJyb2J++RPO zR3tza#-&OJ-4pD5uZkY_$xp4IwpZck$L7UJ#q!h~(h|R-WbXLgmv7h0mR01~jk^(+ z9;1mk(*(U;nhG}Bu2yNdxo7LwIsya7zKR(Bc3Sh=j0q7kZ!!t47cbbfQ;vNhyedT1KAQICAa&Z-thvdhgZlLJ)OdR+IZH^l)!n?hM&3bv zK?Py1TwflTR*tls5gQA;RHKCb#rnsuskpVd3AT|ma8Tzb;2mPlg%Ra_TJ%1ld?))c zRd1(LJD-vu$3|#qYe7}N;^7>W<+!`(?>`xpe$urQH@I$oT}U7|q6@D_etvObcCb*@ zdUw?FA@d#cu{S$=G%}(V zCRaMku`J`&R&OSq+6cpdo3L0ifoh{JIGDZ|lK#uXC0Tj-%^csOjkRI9~WzO%`7_j)_k(Ccc&vuQI{!0T^O;X+5Ci0{>r`Fy!P3@~WS zk011x2a7!g3YiNvmY7O{rwHi8Tt+?N=ynU0R7&^Q*w{?E^&|Bic8eU;)YR8UEyuiW zf3TM7?M=ZMfMbM?X7cRvU6nPgewRyrd+@6+YG6PH27`?M=k@94BDh%K;|<*>#Vn(x z0)+#e_AIi%`>vffU#jaV{uSUdr8;$yYk^PM=p^shK-@@te7L*fbpNXsaDOW8alAS@ zlFqp|1x58-c1D^mRI&uu)bm_%N23tVdb;a)G9Awm`WP0rja@u4@&TmBG%jl#A>Yfb z{fd~#&MByT(|&nNEsPacZ)f(R*n53amtQDM)YEKp5$>SF)?&Jqdx@zz+3 zJ}>{>)w7o-Git(}bi!kvEW3^`#-fu85@KRvEh<)g3ouyr}I8lIXpyQ(+~=JRUUdt zNPIkeN@F*@zUp`y6?wW*0s%YTPZ6lM?rz0JysPJIh-RoLc(avQYrm8dPb1yDy|%U{ zGTt5+SGCjJYf|+vzA`>GwsYL^WC0?G_Fbb)XW93-Z6sSDRV7afb^Zoy}`Hx+R;rO9=^ylZp43&X)(;@9cjeh_1E! zr}H{f1EdR3%el5)ro0|y89L%ZgUZoS<%-3A9HgVu$)w@!U08$C_O?RROs z&L)!%rBZoS-_Qq=zo5K&vz1PJ@%8Ec)6Mzrbg?=kKC8h9aO@~DkNvqakg3ptYit6u z=h@De*PEL5$3hJ|0+wBdnQz8W(a~x7_|n7CNgy2o{xG)}dp-VFE7H4T*(j)}&&jh2 zul+KbOdtj98#`FGU;oROG@junmBu|0k&)C)Owp22_>-mDoVpnX0XOD87k|XSHN9{5 z3SkL3%#cA$6#_>j<#YK6?*8ncW_${)&*Sh{Z%IY_-?K+Fl6TRryJPHbKT62uW296G zQ~we794<8w^h=s!kn)P2?~F3iOA=eYe*Jo)-dE6aJKTl=)0 zEIrgCLdMtg-k@qlEMqtn#KT05rBV(^_!2vlz>g1%&|x9eo>A-I^w) z9Kq+U!yzYE^zv%7-x*R8d5{3%Vzt&T^a+CuZvFn|97I!p<%o7TlVN+-&S<9VFmnSI z9$s>PO1uyi6;*G2qz(>nebpa$lV=<}ZJ>IQ`yNzr#7XBhWlhwCMh>+5-(7=fT&%Yz zSzTSd*q@JEa_q?7ujn8TD$MbDyXH37uojS6XFCtPr$?H?|0j5Rbf!qvdk>mgsWqhW z3D|NNgyhI5&l;NO-KB#984Hgv2ubmWQiHaP=abok%%czC?a$>I04{O>%P-S)(R z?VI)rGG!DM-v|k1gMh~Y`7HCDy&b*;0h3mzzUPW$N5DhlMmUL`)PBK-^zOMbT_PbL zu5sZzCK4Wpt;;1xq-e}m;D+z5tmsYqqPrgRx@hH7oTe3cu*u2CK>UADRK$Q$FVWZr zg{Q!Mf6ndi%xB=9iaHGr3Sb#GH@ja^(fV_8gnSe3#Bys+K%KB`zdw`D z@xRmtIhD_43t2jr^c#qTTHE!WxyRZ9@a0}&3~Izlatu0UIBTME>=QXdUw&1gQa0nrN;izLVA>CqM`-7 zIE>D-ObN<%GH_Wrkj=KL`pI8m$IB+Zk#%ya1odTbAfASnon1vj!sBR}flR<739Nbu zY%MJ{wK#CoKOC{q(P-9F`Je5U>J=m;So9hxwY9Z5O#9G?_+0WMB1n0iM2UGEn5?a> zIRYR3o{!8D2{Zt3B*+8roxKn1<|QP| zK!$*m@$+kaUhZMT8cTY5IyE(i!!oaSqtiF%3bE&%!^ZZ$T(sQ&H*ZLQ9S?G-=Bodd zJ~sB?*jNgv3kZfLm*9>~xX9cEQ^}d5T{@o3>9|u~-Jt zJJ)2*9&S@lwR*ee1U`BL9|`T~5ZTz+cy~Sl(!J^LpP%WWAU9IKdh@{ufI@(h&Ow;K zRf5X)cfKMn0t*{EI5m~PvE$(#D9bgyr@LPRpR*pn8(WG)xj`F049K|0fQ5yHskNF6Sy<2_=BYOvVP?(bajdU1dVxkL3ib{5dgBwtLY3(!=A+tL zuFPOwM@L6p`S1EI9;JpLNGSsE<3WyuUEkOc6BUI4KHxzV%cvLTs3a%%Qsn90mHgE- z5fM@S)8$Sx4K;Ndhxtny=~y#>O5Q~k_s5cf*Fr$mPe@M(4x{k$L#mW3w`*@y&&-Q+N zI1YRTGDWF&%~_eUhT4IGim#U!t}ludw(-vh?ADu|%$rzmZ|_C4UOaqhv5m&=?2|GL zMsAy#O6KOxh_l5SOo15BgKHL?pXD^M?vb;dXe};ey08TemV3tklDgI#( zHgVb+A%X$^r`6;_d$nR&n&f@9C7b#6IecrJJFF(DZ?BG(%5>^LQUPeds7mXs6c25p z)>>6DM{p1zc-ZGm0$>ja&qa-Uet>kHot?Stf7NQuPqg`ZJ_6VQTj{XE57vZ4$Q+5s zsIgGa&dy$?+~WjL)Nhb35Gd*BJ^?t3%SfuZkeT^xWgasYKK z3=#>Lv&DFhy#O6IcQPU>{s}k~_T*w(X&Ugc*0whLFlQE!xcxxr2tHnK=0l+>P&vHz zr$^tuIEwK`=S_h1dZwon!AG~OVR6HNmD%0?D2u;;{|rpU#KeLoleqw5UAmZEwneMg z6`zVv=d|STIMCV|%Z~c=35g=$nkrkslf{L%{JG=;t78GUY0?{s2O!dO2m`_)r=fxW zJ{;{E$d`)aF%c2D?>}MGb7yv?4GDOi7}?B~4g!EZ1c0*s7MC@bChD)GTB*$!{AN`rpt)B^cC~mNn&y zwB?F=y|%WMcodjNq{*ezB=l>@uFx&X>F+}UHmh<&lOOvT7pGH_}I?~+l17-=M0K9Ld> zVfO+jo79KE3#0PsmmOB+z=!?{QFN%9e=cjKfdr1^7HK8zsn&q0NP2etz8ora!qcZ=97u8l#oZjRR%+@qP&(zoBT0$O1P`=+a(g+QJO+RI(Uc$> zpd_x-uFw9CP&AGhAjP(3r9RvT0O7~eU?N>!QnkH+$AJ+@G~UZDWfJeKCOUTj&x_?^HW{;H$l<0Ar@4knXf50I;qdBebMc3S_Z zhpXL^&-|RUhkJX2ptv`IXn~zC$oKd6w=c*?H33<_zEUqe0Rt0r_Y+0HdPT=0+*zhi z?B~z0XsS~njl;8~C$P|yYBs)HBllIEYGOw7?eUK-$QQXg;0*FB$iKThl-JTCd?ss8 zj}M3i@_9`e46(3H`$2Cy9i|T)Y1TcVGYXx~(N!UO#OV(G!8sU5BvII&!hqi&%-~k? zR(;+o4f@Jyi2)cD10<{bgDj8j+=vC`5ipJ4!@v2PseA?57OBjHIjf9?fOQpQZMjlOjy_;N;9etI6({i*BoXTeUDXkC24cWdz;D7zyvFt-TX1kt1*b>= z+$|FTGB&66PC;1NRbo!g7$C+~I%NP?0CKHjqB;et)f>Pi0qx}HrdWipe%rlbn`okRWFAG8@nrkR^Cou46MMd z#pCb?sC89S`ICCgR;p9PF(iNd3Y!up3i7!Dj^4!oAM)YLuWkC} zGvNo=7N5Ak*?s>RRx|6=<^o3XA&re{{Pg6+2`o3E-yWoM5cDQhT3LN%KZ`E!_*RRB4dfrwJDbKIjWlq;gEj#IGaX!pm9&hH?q=vO!{fa^aO6|jLQ7#J_2!;FLhzIc{7z~-H~cLDHKW54un)%RG) z!1s_F6sL56Hh`CaU1p5)C-DV2(vs8vFdD$|XsY+&Y@iMaKU_@X7-oWj1wp+PYAgax zt}ALRQqm6q$DTEU_mt3xxsVMF4U5%F`T%7(C+z^52+Vx_S=4(qHC$l2H}v!o25ml7 zuDgmjuPU^b{J_Gqnwlj$Yoqt-eX%PWbdOn@@I|6*jzxfz0`SWVU}WLfGl0giaB#Za z=k=u_kOX^eKo9d6qDyoU3KZZ)I$9k90>XWXChBZ8pF#Q5^fV|M#$e0Ba!ef=*YKVR zg=6b!xIG?w$?OoIMIUEv%onT84^~=IfvrqTOs;`1yQO{sYFQ>YX*hZ)pDQIVVG>8c z?g;zxa1c{%`&WHW;Czq@3f-Jb=nD(oW^40%IK8wPeT zAtOWX>SzVjcMSWb`m#S})^Y>eImcYYzLC{AqRw-KbGV%VX?~84eWq8~G*VWuV1^`> zTL(cdec9bNst54RbUs%L@&+K2o;}_jr*dgO$6yj81VI7;swPR7Hv<@hS&sW>?o^~y z*VG~@RY-YburV+o(AqDeiWmqaK7Ra&;OFnp$j?BmknYr5hd|72^RvpdKO!!!;!nQS zTNEIxaoNoL_@4M}G6_X93)#!tdoo`(F;X!cpaVTTJ?9lMaM3&lq5l^r6ewdW%Z;ka zWvj>?*0^StC*8hhsFP->lVectIa-MN4=NBzhWH;Y-=#ZzN`|l|JwgG%h$;BdIE|wP zbK&Zwi&={suhA*CE(rrwLp4IivdKCBPlIh6wiWXp-U=3t`@!b<6L1V_AYpTU`LlkR z9kG?sb&ofY&Ciak^_H55`i#ekuyJr1BWl2qIst|0zdsSf9<0*I5Bl%xKUS(t3o;pj z4i8WcB`prXF~g$olx&HcI5_=$A0)W)2uYBKpxqz=iJt-3YplUwDu)89_GU_v=aUl|FIKLh|ODFx?<+Cyj9jd1$xC@GBEtOpJ?vArcEF2QUM z>?GleL|mjyEYX;0XG0JYo07z3YS+L2>>IM4bJWm(9vMYe|A>Ax(fUv0=Kq#?pEvNo zyFC9tIru+)q@3rWC7Z9=y3EiSALtAf0DODpph2Gm0p8-91hGFHBQm}f$xk9yd6x=q zl`G@>x}v-h?8JE2A>uj`b`$J%*D}&Il2d3?45Bc?d#)f^QR($JMv!u+|LoFl`v3A8 zL1ZnfM?>WM=`sI!!uyvq%5t+vw{ZKCuT><*VD|@Enf~M0mXQK)l$9hDGoF-S|BXDM z2j_V_#-=-zFQ0!)A}&dagvd$u_V*KTdOsiS{0RpWEh+*A^3r+`-7z+zmLUGp{qGDz znbCjB<3}*#U|o}mbbb}R7eH!dw_6bpT15JJO)e49AHQH#YDKRN3`8o%gKlCZBb*^z z6Q`dPjNw8PCXXeGI~+^eiqsmMe-eay6m~R{g`4Fuqd{5labry(FVEg_*WVrvK%KeY0%D;FsNXSJDGAZWt$gNZti0Q1b=@qil zNghvn7?K6qg*7Gbut zZM!Dw~NH6gH44f*@&qG3^b_&t>0`421;VfVV09y=!78oOt)8d8wZ)J3J zGC;wX2Y7FomRYi((R)GI@dZ+3jd3EGYboRW_@#6MARQUXVOukVhec6 z>6EgRrG$3qLy(uR@9^!veOeY4MW7$C{@b5V4GMzs-p%#|f*Gjz zE>QALx%(`-*K?ViF`E$1u8=L5zUD`4LN*n;Mr3-pjM??VTKQyf*!pz!! z{ry7*mux~};x>Sw9JX^z=|aBsBcM%;F`7m-mrHr`a%-vC-5m5DhlAmfBqV?qC-r!L zt^}GW@jytAh>)?cC@?cKi&$tJSVF2ioy*712WS+}ZKp6wDff{H)kr5F;`}&Bv zbuAI|8yY5)HyysUn0;3H!H-{kl%<)4FQFpYC1z(LD*TQImI(0-VSxCHnW~w5H^9KJ z1qJm&LPE@de&>K9o1Uu+mmxkut&C+Z^hS9MG;s#Ny0%gc1F*5L@OJQI3Pf3bhUlGZp~ADlgaKwF7I!Z=v^1`*JG{q^_1?SNATL}eRW$vAQ=Lz z2C)B)?yzd74RPQe40R`{+i!<^GNypj8S8Dsn=vpjR1=v6Ym2rbLrC&P25`Tij=dcG z?tr*aT<~{e<2I*7yG0?JN9heBf($_o-c|VCG3%GCkg5Ir6uUYd+9SU#ztet#vtNDl zTRG-e16$~c`i7~Ae&>Jz3s9 z6Bos~Bc_z8VL?Hu-5VLPZhQ)}Zn7h(SdjIalP)p(0FA?iV_;y6?b4OwkFUOAt6(e4 z_22P|2tEqa^ThZ>V*%Du1H!yt(QxZ#XR_osx7aSFd3 z2XtNEK%tXljYL0w6PBl@p2DhG6bv_7JiLplzzFCaOB9fm8NM6sIhpIxz8(*Q$u}!F zc`#g?-fb4XX4X|-@3*IWx-$&OU<>x;;PfUtfeF96o%)lgbkXma;ZjIX5vA`>t^AQy zrQ`OTagNNu5_f8@HO!;zZQb?S%2UnF;fXWSZ`QtD#+jP3#a8EilGcSoNtl#l!?8BT zBlq;yn(-Xk30ABi;i$XH$BKW74=alYiW*X-2$Va1XbKkZoc~so2kNI_8Yo_^9|chn z3g-yVWSm4AHw+*yb_%ng^h^g4oM5GX{6?ZYzc?7?&wfBD%7TIso|Y!K`x-_B<`4$a z?dl}=3b3#iPe&h-CqegEvSEtYPoGX_OBk;A=004uUEv7KGI;14CTH9KJzt~|nc&T3 zhoRAkGnzb-gqgW0lg+%fw{le=$(VN-Q$Tm52F8M6{I1F7bz@ZQrSa_;`+E1-dN}|K zZaPaZbcNdyNw^E^*J?n3pU0`m#?^O0`u?H#0uzQvWUmyq?}b6^gvs@7oie$?mAJ?V z9x#{@G6j$!B(0C90dz3f)HtdM*V&MX)E^i`0ZXU$euUetxpvBBVmS|usLokUUVTMt zcKgt{D4XlKT-lg6*Iu{ln;WKg|1MAZ`lpeinlJoU$rO&)`#MSNA6tc5?VlXcS|@iZ zasq`kBumA=@n(6YJ)GVxQgnR%b8R)IC-`3I$)}#+es-?PZwkM>s2G_HCD3w$)jr^S(Of7vRlY*M_^7i-BTRACFU1@=_5|r z;EVV7!j)t(4LM=Clzj@MgZkJd)~X%oF(o`w4BK2_WXg*6<(#yAZuT1~eK0(#jkdQL*zoCsah{%h# zWEM<-P;w@!gs#^p%lsP)9I}@-dN2`Xn9AV#9q6v~%7-Zt|5RD1$D1o%uBvly@d zJ-U=x51LtBS8L}$5`0BSCtD4D_)$ImyO)URy>NVd_3x#F@j5-*+wZrwdoe}s zJAv#mzUsO9ZTh>U7llwp#mOsd#d@oev8>I5QcQsgcAG8NcDRsGS-!@&zm6KxSWH9W z)13t$4PPl{CW>c1m97^o9LUfAIYd9-Y0|$YljrYCy{flxUy*qCQM4YZRtQ#LhtPR= zE%4P!XCi)K>DDj`Ir*1t1v@(?pv{|gg&=Y{u4aMKn30u5Dkvy;w$@NxS+rH`Zm~u@ zt;dZErByx<)6J#oyVFC>GiiG92Q>>(P(dU+*m3k}4K921DW^b0U756(n9##A=v0nE z&Gp?~pTn@qKzznPDi5{eYV>j--PDfpR+vHRQBUkEfsca=^-@Yy{>RceN1-G3p|920 zdtBM;T*0i$a}{m6{ACN3Ph|l$`#E<5_3gE=uyEX3;?qL~)8%E#2Ia0;I}*|U9s^^J zmpJIWqPEVAU;4lCC%8&(p5EV)WlfB~eKo+jZ*_Xqdp102_?ouIp+M2O!^gv8{Na8p zixr0`+;5e1DLU)H@)9*M{>_tk&fh4zmr~Wq=VBLN6P6n2{BJMf#X?^U{w>T&7+Hqh zUUuY=^Sv#6tj~prd5>biJtF4AoQl3yCgHX7Y-O(;zwf}bGV?q@R$h`#GYzJvd`nON zPaaGVhEUW%}*%2rH;~}^8HJ#aV%bt zgYOxh$f@VYd-boY0(x|wB6wACSu-#oHbB5LA3tKZYe+&zOFKws+9#tKC3%}>E$5az z*Zp$8`|Uf;?gm6npX~#V?|Kq2KTz(GXSxVg_0X3MA=s5`kwTKSxg%-`sT(eX`A7J- z_))rhqho_9p_Z6K#TElI4pPHi?QfQxKLo@hd$UTskihuT)Gi$v_V%EnJuyc{KrR zLK)BX0B2kLeomts^K7A7JgC>YY(?os-aXvsrjbMzJYOy;j|EuGx#w+{ z-|W*j*lX!#V8tdx8>w5O!0^-BSP=_TS+;Q2ZkLe6OZ`6c7!?wQ->1n#UGY!!s0|6l zU+wd}8Ky4P)eMi)qT-sf$tOLYbN(h%H9YSs0uB+<^f~kBFFk3Nuz6wd&eMXhk<8``9Y2=J=(HO_82h zQYx|=!XOUW4KktQV<7JJz`Y29mWCE7^bOo)dPk#wx%q6Chxt3r&=UWvc;ES1qsQY+GiM%VOfqj;Zq( z)o+>b=dX$z3s^}R!i4`ZSLyzAjkL`1ow{UqOrKgg_*IQL-_x^ziIK7juriR{wxFp7 z383edEcgukoS?@yxUgdU+4lc;A#2n#bw;bL4JAZat9} zFkdvFsw6}^E_fad2ncARBqSxN6_U6#l#ZGd10|4w70 zm*d@5Kf#}?WgQL~b3VUf<;@BiV`eH3F}VF6p=RBYWqvYMXbv6J3=E*nTic^*>$~0Y z_Gn;gl#~i&*J%ehOLkap*fnR?Cb=sVNnTVm=;B~eb+z%z01SQH;P*I8z5DV?y*R@C z^ml@OjR5X$J4nOpv9rG-bH9f*VAUcosOl(~d+Ol!4kAc;Qw=rm?HzIJFx`yTC}oxq zx0pV8YvYrfpSq+-ov+3G!;BpXq*Fre3e4zOepppKX{MHuD=dToUhm z7<&b$F$5Uy_DGKNRio}nihDStHI;6{Me|+O!Eti0iQUo9!wr?@t0Dd6^d#khwn!lg z#+ra^+6IZvcQuutwBdvO|T0BVMU~(xLjFoK-$zh#B|W_{VKtuh*)5K$cEyM3K4_CWMcf2^mA||WIw&?YER7-<22HQ+Sxv)aFwG~sR>`)w zwMj!K<|kH;vvp*#K771@N<*28uUK+ywCEnEmRl<%@v&2woA-Bl%e(1f6+?R z2S%zA;>~Gk==!fm>l4!LX=wyLMccJJpl1$fwTFzH%bLv;N%sW>n|-Vs+vJ(P_!@8j z(HvFa>bk4PEP}dcItmSwl|!&?@WRdHx-iX43zr-}%reIil^p-1R_jDYq3irWTabhE zq;hB7der&4?l%>mmsXiqBwk#WonY@#+9sb#BhjPl$?%6fpIgad^8!d)v&gJ))a%?x zx>>)rA4mIP6{)?IZCkOUbe;!mN#QYBr<>WjM)s3%kN4A+p<5fqTQ!)%PGqqyb86Wt zT0RO(A3i}$KDT^haqdCFo^PdcCiop8A4zj0PO9YLm*7m+2V3d31_=)k<}zf%H~(f_ z7k)t463YMR4s*S8!egdegYv66H8-$LPE_uaHdDsHfXxC8OwkQ?>OVbJdN4CoRgpSQ z1Z~ntDZ8E+{i?O@0X=|)I$Ht&H+$yiQ@;k>e%_XIhW&$%ka{7U^rAc`G1UDR2iIi0dZsI!;P4!f5o<>RAN zSdX^Y##r;qG5XReNOa^_*T>LOf!bKWe@GShZ6bQZcmcEi`QH1>sa&|dLUg8Z`{zTt z`lYe56xbM6(Fw%HeHg)umW`Ypl)_^19eX(jBUIKoXAZv zyhT-x-dk_P!Va9t$up=lNp{8%9FOWsbGGzk)5@gpxO9s!X4?dF|1juHv>DtjYIh`< zokFkrkrFTW?|`dVa{2u~a(#66(|_NaD+;NE+jG=T&jxH!>KiqT$xtJ0W+`c*C+BeR z-)v_6xNTDl@>lE+c{B1oa2%w53T4UhNjk;IyPxgOiS*}8`|{onH~gFnit<38MiJ?W zK8}9U4b5GmSB9I9DU1uUdYLTBNh8IBe|CpQW)j!RQx6sMA429feZyS&sClLa7cka?=|F!?7Dg%B+l_(S4|XC|*%oz~lbd$xJ|7IF zt|#pTU08dTGHc_6O>Fa|z))5W7<{M!x&|mYmQ3_BEj&D{UZ#s__MSW+=yv`@Noc2| zc#3c1!}4%E-DSVvZ0ko(?QauezV^~NIlW*DWDd_vMG_{*_iH^^{vdL>t9R?zCBTEm ziYgo@7=2ar>e|fmcVhNuPepv;MeS>~^Zx#MlCKLLr`AsBtNy;G&Ihjgjg~*1ed{T}A#0NipQB&hecQ#t>Jyyc2 zrZ=>~%?v1diCIREN?RF85`SOkbPxAHoHo8Eoo5&w{`&Ie%UVZAhx5qbE!w+fA`*r_ zS$+h%c*|ON%u8@|#rimrjWE2#Fg5KX_3rHM*NyNhbZ70uuzOCfq-bmCS4ZPtQ$W}7 zd9r-2!f+gjrq6@hV0OmtSM6ue{8eeGkAkX4MYdcGRrPAj==kxK?v6ego^Xhy*kda^MkOg9~v{XNSZ|IhMu2?V$-}lqNb1jjsc0p)r;6RkXGsb zcNtzzX04tyG5Q`Fx>a8XS;R3cZ673 z(?mK>=0Z3_LbG=nHAA*AFc2-K_E}%eH*j`*z0ZzGl&WMPd@MHi@^`0ct;bf53_T63 zyp5Z^Kt2*{d2x7BOBhA5lcI`*LAoABU|^Sn zd?QPl<^z_sTAGz3E7#R!iD`}*cK@nBOaA?_yAa*fr|_GkasEgy8*m&m0P za}jZcVLr3|MVc$0z@MgqX4ZcNtuC@mBP{f5c04)hrl~5=*Hyhnf=*r0Ew>&oAsVY=_YANVLJ@_0?NFCCq$DfjZ}rN zOARbZZeaGDg}m8S#4=e@#PNH~KQDiCmtt)kmQsSbpQWOOn)fBcvjE9UH^#D( z)&q5gz-`=hd44*T#d%_L+>Jao#AheX1LF($dJJq;6&QXF0;`_@Gf(7R>#$&K*1ssV z6Z;PKx*MU2)b{2Gq^4Xhaw+XP1idykK+$i{X4IE2;q8w`Fr4#wsn-t-e7uQRqy6tK zm|4tEC<7wzKKFe7#OHE^3^10JN+Dusc$?x<;yM>%`3u?=?^sEOAkwOi-6N0eq!buf zxYxdS&ILNmii^!(U3hBLRhYkcJ!NdA>61faa2Wq3KHut;m1LHH*g(@JSG*eWQxz(O z63=gU^&tM=V_NUAJ1|7DT{1@Frx$9CVM*W<7Y(lx8uE@s^ImU0Ww22c3kwG;($M|h z-;*DDYVh1SRZ*XZe_9>nM}bYi!Wrnxftd_~^fuT1e!;TtAQ{%23n{TLo0TiVFP^mt z{2eYXX72i)S*_9?7O%7{@+IMG6%%|JWE89fDiZCn&9BW7=iMjir$k2xK| zH05#Y)ltjtitAY0)rm3qMvTP!_wcEDE+_=_VR*a*rnu+I(&;+;ZyGfsR;-S%KCYG_ zpqxSPMzpZ<@>WB9xiGN^gO#9$KSll<`e>HWMQBg$;8zz))>6T6@=~RXW=?3YJ zp+j1lp&O(T5Rn|ZQ@W(PL%I%#={XbGc;EEB>48d-b88hYOz1l1J#(YJ_i;ouBD$t`x3X3RKXL zZlT<667MCEKwNZUi_38gynIn-DhfW*+Kp;w?PAE;|4vv6jHiA$)#v(=2k5nR9M5M! zW8>!<(<0(g7>X6`d8m{WGa`6Lu=&~HLyk=MDMI(7=@X?4V*FIY*e^z6m8|P?e2Fx ze}@y(u{@gNpXIWc!4K=lvhrGXN;FHnTg!Q_-kq{YR+sE6oLIwH)Dfb*=k2^}$%}hL zZ*1Xb1k-dJkx?7TtT(r`8y=xH_L&CF&&N)2O88_uS?iFpzdbrhlQr>03w=ytQXI{r zt`QIQd&B(qn*=16AVlheygfe996Z}QL`Pq6i@s|d)Bfty7+JmI%obJfKU?8#cz^lL z)4wNNimJwM?FMV1Te905*4m#TdKV`nO2!(f*-3M>%YX3GbwM4r&Oaefjq`7dp`|89 zpDjM~;J)~QmAmW2;Wm(9Hd^b5G;iQ^?qmC1n2|%6UV!_scJwy^%&4ezKX{P`S`_ft z{BYxcABaDr(qeTxKdhIOmw< zy~L#!59L*R^wU)_h7UQoISu?1QwbBFl7+5=d#!4mYJ{*d&%04+P7||2nvwNk#UqMvg)FzG2?4*Wt|8b z_IFVuAN&Rtqq)SAOl2eM?)fC9lH%=Tjz|}VWFu@tA|jXscJM1A);bS8W=AG0y{zc7 zG>sX&)Tw+m?fnl_t?6-4L?Y!*70rBj5THp7y84YKX=?Zk6)Hr>m%$k zSveDAVL=bzEFs}!&{$qRz8W#X40-|rUj*M*(S2172uF~x25yYdvsF$3Jha@ED-v;` zYcwX7P4QBkRSd?H*O0QG2V?eIV;*ZiTOUmhE{pPS=(6x&hXGD=5{taO*ZCXx*HoYn zN9*;UL5EN6>0ZwRrg(2~<)zgyGJ;J96uI#wfv;Q%CMVDP5IiUM+~filgMR{}C^C;u zD89TXLzFx@s2x)GZpBQnZT**#;&orVnOAMGBTssgE4i|2deDO($!B9XQqM>lW9-K? z9ZCWoD1QJ(L#Vg(@3#6jnDZbn`RY9hz;kZ*lN2Xw)w6Mv%Ke$T+v$erG+Mm1dHh3+ z%imo!4$K~)WfX2?b8aCMw+AXi5gg6ZQhTGis2@CI>!9_I# zw|}BFxM7;4;PXqdKxYeLFi%~IPS3B9aJP2Om|q5R=cD}4y7ruE2?VFFYRRGDNh#T* zN-ZAFmtDa}uhathI-H2I4cUQK{_)E^a`d-wr#3Mf1BQx6^|qQuZ{>J6zjO~}OXTju zOwa4J?jsJiETNs$LRvo6ljO=5%!dLf?KfMV3!%TsjX>|1&gg3#VM%?7Ke*s%LA zdyr?ZLKR`3hx(4SoDtA^o@|pb4}{D=N*m&c#t`!!wP1Zk!TQ_IxtI5iK3O0}DIBgKc zK=2hrnT@WivP_QWnGiT9n(Z6`V|sfSc_Ep+HKDUmx;idzf+CAe_y>;_WOPDZ^pp%} zr8~ngWu6_y#R^!r*z_#Ux>JoPDEmAS{|qP*e>_=F*#49Sa&)DuMZfbXThtMrw%c;7{w}Odbla(=5%em-eGBAeB25MwZE{{%a==Q z+^waN_PCVrn}I!AtccG~p0_(;;bf3PuSVNs?RiZPIi;Nr9;+JjTSuUf>w4 z8_=E~e^d~BVP@h`%=P*_P>)(PdtqF0qltZ-%ejGb^gUV3g(bqs7^!Q(ysapS;PK`v zAN!Zo8pwFT_vVl@2!{zw+h@t&-wxmWB;3Sr3Wb@IAcaxBjMbH+?lZbFGDMJ8l!BQl zul8roa@)*y>cYH@zrT@lP!kuhopL6{oxOUp{Z%U#d>X!lz>tmVm#r_E`f z5#HQ^69~vpk?`EGBZqRF?|rhwb!a*j^B^FCI&{KiRyIeK0o*izXhQ)4tOg1t;ddlQ zCuHligyK5G&OwAkEgW+YGh~;iq~>O!Us|kjhOU^(?KhBpY)@S(G- zy%!F{Hr9^0jEvB36(sFr&QXhsv+tf;ame$7`cOE{1QoU9o`HV}A=p%}rKCi>x$TM3 z=>1}(^lz?h;tDeHQbzBQ+k+SNh6>-FJJO1(g>o_c6{tb7Ot_wRsk!N5_E{W_bKrJ! zKPlSZzaf}{@dhLzUdN0cv4|@=W|Rki6;Rpg3Gu?ZDuX68b;OTceB}OCHV9kjGxxow zDj*a;{LK8N#W;Q|z(3**;Apx>R0w2?zV}6x#u+T@#L2^HR0FZ3;3D3<;(Yz%wPn;m z+Q|_17y1d3_GLFns3q<}pio|A1`N~5Yl@-$ZkH?!n`&&qDt8pfgW=-7m@=C7a)yr< zprt>57J%2X_k`sCa7QvE+sh-CIAZ9mWbu76 zu_)<#kU2=5PmQmL(Zc%@>&`G=ns)*m4;BrQP~6;mOHhyGGW>Ip6b#3Q(Lfju9HprNF%!h%BKcD} zsemZ87dm0+au0f)8x?hBa zZ9Ls=C}O8DLf|fgN`el9$buBDifeM8vwrVNi+$qxs9ZT*&6z(&9P}{KRK4tJOQHT- z(Zcq(218uBV#k1gtc+*u9h`zQE(?3xF}(lQH~x9m>fpo!JbC-yTDGi3t;Jcoj3cI# zQV_WL8<=GDlIY$K)5197N#)8`tgTVXVaC#3nv)sMc_cYp=a7_^1~A1>@!r@AitXgR z_{(#$ZQr(_xz9FlyM7_0J+g)H^DL4*hNQ~YL>&yW@FU3>)}3V`8R5rSR8_2}RK zPAfD^p)wWS!|Ml`m}*C;v0(p;j5yMi$3zgrPrxXerg43?==ZIN#kHoda@mpBsxVlX zHLldD{<^rR_pW)rpuSenb(hm>j9faFTuw;|Ga(@%%k7U`E5HPb0O&U$Ie;&lkq6)v zz|T^Umlp`6OwH=_0HVsk_q-2KA=FFi>FJTa5XXRP0x%nVXBTB=j!Y$BRcToM`V*=@ zJe$Vv04|_z)h)?u*_CykT6yv~GfquSy{N3>Y&WP05w*(d0#F&u(D}&3X7`nHwtG`m zeV26lXlPhYU+svEL6)=gQf8x%gU^CS?V$B^nF5oj!Q$*d+M;}EW6M{u4L`W_T3MuDf*Cxbn~Id%@SlL_C16 z1SpP|bpv3&60);LnM<;|0bES@sXt%U(ESu&Ox}?@8RU&sPkS7MrM=r(_RL9RbMtuZ zZ&{HoH|vkCTeiw*H;yZP%8#Tac&$8|zM&siz+)6an-g-e$XxU@!ukR)EdCp3NH$`4 zd>Us+EBxPSP@|W#OHa+*(?G^+qh@VA(fNJhKZf$g?wHU2Q901fn)1rL!X^UhUi?vShtPgwc^NLeji?Uj@bFpdmr@jwy^H` z4~}Wfk4JwGiGPsBSPhZlSBtTMradP^|V1G$W^%r76_5Vu`RV%@Qf zj=Oi-c>E;`L_LXh-i%}%;_4epp;1+(k>=&C|G`At27N9nfiPM4dZezs`7ox;7F!G$Npq2UF$0dF2K`c&VlJrFBgvZS0cC0_MNu@F}1Y6%t=AN4t}LvH*RF`opph;fuXc))&vv{^c!^*DQ=$UXQ;dw3l?fWg&fDpR8iIa!FonJ7XSEzX$ zaN?~_I1v0T(>mC5%Z}645h_SOKgb`*=8%K;EPvjYxku!5E$9ld ziPGE^1bPTSEbUz$u!Ama^Th9ccygq?m5vvqW(-<}`va$jrG_S5xW#z)v#e|fU_ul2 za(q6$obK~|Q+h%DDPwwbwyU#T`s z6_X$FAChn9K$phz`S2H3<~CZ7av|~Y70h2}?I@{EpGdB@cLtXAB!=#L2h)P3>q;6n zZ3N%G6g4s4?THZ_4BgBjA+pmdJ0)O*IcRM4 zW7Y;_^DJ57ic>_?(esLMnL=FD@Fqxvkc?Gadnx5(2YCJity2 z0Yn@<05AX@74TZA0lUPV=EI64K$)Ts04nsyjv9?v54Xfs@Xs{JYijzE;!F(3YFD$9M?&n(-Kv;ckT4~X1GAYUigy0| zO2`eG*bKPOil_#5s88=UzNDq44Fl2%z}t43He6U>{zjH$fHO+cKzsnzbMK|JwTwOfb({>95ye-*vrL)cnSmf)KV|I*1quLE=X=f(@KL50|( z*2$PSPrq`56+|$Zn~~4El`HP;7`%z#K3F6N*VT$ZRMiqn@i|g?KR1P!ru?~!0=iG2 zIHDa_R%PkCiiU^{Uw|YS_dcDJ8Px5_p{T2CO-t+^BjM4hGD8L|MD&MU$al=~`zKi~ zHNQ-)uqNSXXp&P?Uo0iDBk5h!QD}}`Is<;h(i#KukWfE%_Vhx(i)IU)oghUb zW@KfvAI?<*(i0#OIs`y17TqDJ+?FH6h3P;rvPDwTf@FX&o;LP&&}i?dJR`rQI;oPf z=c;be_W_X3?7f&>OwG)80EO5BuUD1ESKrKJx^QswpqY3gJNY1mb;4~p4TmLdfEY#7 zH9}!{)qYlE{n4Q^#eR)d7vjJed@Y6Dh86lwh383PKO;?9KlQT`moI({AtU&X5VChm zP1jpTGQRSRuv}Q!GV&p4HCB#(9bMF-1sgwyss4mJxXIS*m~u6=u5Z> z$YTN7Xtk%i@c?-R1;~p?>!P9KQ3=>%F$3HyE^bfI%Jj53{^m)m64pC?Ix-$W1#>6apMZ?>IMJW~t?f`ofs^}@#MLX`gz@08qX7uV&|EN*9IC9D zUZ#jwAAt*i?G6BmAodq24Q>JevddXp{{Re91Cf>sr-3lE?YGgKi`)w4JpJxIv;1qJ6 zHLduLAQ+Z8gX}vXO_Kx2*<`(}fAj{zW=4F_2g<1fUU?5HKCHr&>9ICScV}_FYDm=v zjK@ixh)^{h$!~9ei;rT$CUw^Knku`zY@3mnaJ8SHu;esKjwzF7Wn(+TtQO8d@GD1{ z5x(qW+YDl3x3N*P;X6a9LE0u!M-{Ox9z`U9|3gGaZZ1B6Or4}ubRira6goA)m*(@x!onR}a zIYpTFUyfqDsvt##K?FItjE(tDAJWxBxzov{a>$$kD|}2bD-5UK(d(n~&8sX!Bcn(8 zo1sO`Lhy#q3 zb<(Q?qx(#wO?2vp#CL>x&hJ0vI`&RA)Dq{$n$cvXkP*CA7MXnNuo%wT)2;v2wyf_c zD3Aa8cVnp5s{c~cNcmsaU2@TP1=W-3dP1Tr#Cy0@U;|~J?(S&j9~3)whHACKXBzrf zy~REVnUovh0*8)_>2Pq!l`roI@aR!LT5I3hT2bzrNO5`GF*=_U(TY`-j#YPen-#vQ zz1>$#h5P3-u}d9O41rDjcKp|k?fjY5=Oyb>KQU5KOrZQ%HOM329&1$altc-*67)`m8UC~?HpSwOy8yhMc~aOg z7JU%*jv07&0-6(iRWGa}5E?i)$~GKmv-_lRDZG1{Gy((KXiAiv7O}B8Y2w{e0Q{LS z^=}v@HaT7b!{q}d^}@0;k_Uj;CaL`#8tGVTmnfQMGbWVK<2Wg>d7lZ#<@cr1@rvTS zi7_v^8Hb4|fdj^bO;e)-Vu%=cf$;+fUz`@C$jyJ=2oN;tF!R2Scy*7U4ELC#mTw8B ze$B*nnFd$dNm-=9G=VKJ5xVsvsVIj0TYiI+um+Khiok%cK;nxUa9c-Qci~yWFfMO; zR(|>CWc2A<>cCwuCc=s6GQEZC008~&syhzesWgOh%X@I352BO(3k>h|L7SonE@B|O zGko{ywo~rY#WbS!zb!AI-i7DbA4E-cm^IpZ0jN+LEI8vw5+wVJ)N1nOj1>u>`Z`kK}tj<~mL0x;{npp?kQz z6Up+uCXVu<}Po9*@Ca1b(nwq^7Pcv2dla14K1W z+`p|mRd^op*Ryj{$3KnXL;qyI{)MO!Kdg^};Uo)GIgsnn5#EwhrfT>Q^yC`!{0cf! zTj`A#&Q&xfwBBl5-a|Zf##Z+rMr7tkR9OKAAE4HnRDeY&|KZExC$#M%dE} zeOT*N$^P($hm~g3)U8OJv)MO8lr2#Kp>9AWP*4f<368-m9eKR!nQP!clF13->{moI zvaQqpE^t zjR;xVGY084tX-j24bUh21RhQp!P@4|OQ(`xF5;YhKhI3_Y;~LTXv%*BS-)bEF9l2< z0j_IN8y)kJhf+RY@X!4d@+qa53CfeBY*zZKboX$+Uw;4%1+K`KV({4Dond}psYDbn zT)}_U#p=q%sme@XQBPDpC%|;b30S)G?lO=J&{{(p<{C<}$yWA3f|!N+wG@R*wFEt3 zgmD`qFf1>sh(jA)CGR-ocJ7@~_$TXPY(z0c4->aa+An%qj5W`%bcjYSGF=>a8Ynu+ zc|@5GgPE5Ej3K&=vvAd2Y?aKe?|*aGJRbe|s%5#ZEKzYcQVvJ+wGQjsh2w7(jio@j zb^{|(hmik{XJEYq<~y1HAK%kMb diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_7.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_7.png deleted file mode 100644 index b1907fc7b631c3ab6efea11be02f488b6fa894b6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 27756 zcmcG$bx>T5|a0)aqq3EEg14^HqPfhIuGxVsbFod`7U?$Qtf!4q79Yw!TUJ-7x5 z_8orjef7<}s;T*BhN>>A?``fq_ndv!UVE+GguYRJ_4pCxBNP;r#|rW?a1<0&AMnD$ z!URWJ5Nc-N*8`WA3Tjy3#}~^C0p4Rf%4@rzpx_YRzfi~K{jb46Ay-)~S5*fKR}W)n zbCh?+u8wvNu6EWYbnfQPF4hkAyqr9oJnVET!4XGqLLG>g>0W z_j388R%P#eABmt-M#|;)1=LL2@=+>1mke(PXNb}NpWgZr$U+l8Cp5HFoGgdIzqG<_ z)QvY8xZc7hRbgGvkc0{FVb4QeeJFqTz{SQhWcT_z&J$Xs8b|fQC8-GwBoU7Dh`ad> zGT|BW`Vs3;d!81e8NQtZ-%fykDflqE3M-!cl)@nbe!+@+sOM!05)f3qtFAAg$S4B^ zDoE8EnFd2+@vz^I1t<}Ov11UP$;^iYUT~R({_xI0m)0MOt>y{v_(XV!68(b1zNYI@ ztq#;p8LHmibt8oZalhZUTNx-t2LAN;!Zvhsmqarj=isP1O52DzuMiSXMt2T6t{_Z-|2QX%vj=R>kb zH4h)u4KStA25ms#m{zzSQSGx0jst~qzQVt}|1c|Qq#};gEO>T&9)-|5dFuGY6I%!; zfp?zfp@zssJ;gMZ9(RC)yU=$^a{OxyMsz`=IjxSsW=XU|(l-ya9(JOKqXh8!a#!H4 zS_oO*mK)PN#VT|cd<`NBESL88M%Nv>6W^%c>v<9+E9oU@{$^~jap*M* z!Dmbvv_&+WL0<{H1dJAxDD=vYX1y7|GqsrJZyRoNOm>-jbb9vY;ePv*)02(Ac18_%`|w*q zG?zf@Hs>XXW674lPx_Woi%Tlrf!Bdg2Tff9RR%?wQFek}Y*g|WE{0op`&ECgjYek) zg3nAGOg-P;c-U6Oeyxt;k0JioQ8Yi}hHCpp*J2L4jWs7Pq#`pgzs+?CIzBX2Dp9`b zTdsr}Wi(N%BD$p!B$lLH zTHi|}B_c*Uj?vjIFfLK^YbUYlK91rv(nzy=prKRSS6v0t<E8}^bqaq_+9tN4M1aN4zY4`x!xTVKNx6M!9Mp$I&+pVSaK4v-nzA zzI*$>EmR#^F*m%I9cblx@;`ZTl+;lLU`cCXNMm(~cCNbW4?52{BpK$^-`Q)p4K#J{ zDAm%m!8i}J#3GzjE>MTl%_)}N(2}Lxm87pvcQoP658lA+$IiQ~aK-s{jk>wU8M(-QJ=A(#*3}7Pzh~Tw5FAI`BQNZTpLnK*S#FP(U;T= zaa4b9?hv2&iT4SLRjeSDOy+KZ)HVmwv`oPxU4E2(j5qACV=C`D#wa zYiv27D*XnI0xPCNPT(RZ=#gro-TA)tR1p{f*mJfmzKvuT*$A^W!3SDj5?+)iyojd1 z-6GH1}{0DtR`sk79?j><7 z@zT>J;}h!s4{g2JB~>|Nx>I=?Aq-KbA1W@`yOtS4BvjQZP{-!L8kdKP@MDc4(VL7 zg3?k9qM%-QLuvllHEX|J!(}>}cgG~Q$g1^CFYN-#ZOG`!&n0rXF6RQ$!vMT1XAEoc z=+Sg54hTyEe7Vg+(u=4Tv8x87M%!=mWV{<&J|tLrOK>?5?&}Hb8NI=h8*a%9dHRs7 zH2@(mIE7w_Qe@QBGrb}!u2(L_5%Fp*o?KdOzkR6dNzymTIK=fHeRfYEGoF_!`O1@> zAFV~A7LIfDDk)Cu4_nbz6W~m;Yk50TNVRUqq;fc`bSccpm9br>^V{5yy3L(6Re#=; z=;wAkDl%~qE8jQk#k#q5G>t+K(+Tj+-X=0C;rFA}v@5b{uL5;oPzk}mztS7lLnA6E zxDIVo?J4Sh#j}lu`XaUd?xM<=(aJ@SILWm;FUcV%q`{|=YKA%V-KvrXZz%JN0t}$) zH2FWA))>1zO*DK%pNlV|nhuJ8*lP1cs$m7fzr?|}?eU#59pz9?GHn!rKoyJX_&Z3*;ftv~N zZ;5bZU~P~?m5t+Tr&?paxh(I$Mol#>s?bSwsQC{oUoPW_){S7zB$%>2#K@#WDASZc)4@djV_ zK-Qg$usBBDVg}2edzPRaatG^rKdu}~KE9&?MG_8P=r)E+%DAT=QE}6Tm(-tx&=cR1 zbEOU&5B{p(9o3d04BVHLh*c}C4|$9LY9$x zO7#3;mHZ}QcVpo^`Re%*d7cJ=Y4EV5(RcEbRTVS4wjRj<7gi$?qjdN-M6Sp}_z)X0fj^{0p|9m>SUE}T^SZUc< zp8LhYy^t(xI(Yg!_&Mv+(T94fIa7=%9z#|uK7-r@Z(>g^nFeBa1C#`KGztO4S&@Dt z7qx=g6qY5}EE`$a1}ziwQQEiuI4Z*GI!K>j+&1`9zOfemXbX` zKQz>J*Z}ai(@{EP1s@$fV8spV9n+0zDGUb-pPSR8-W7 z&u`JgyWrE>qgKZm5Vo^d(KJZct+9{6!7En$D*1i*G9P&@e>$H2d22IOrawLN-yefQ zp*nwX(s?cE1W4hkKNe}fXofr@slxXl$xFz4`RP$-R~L!9249+QZf}@a&Zib`VHZq1 zYP9sBX%!{@v*k2W-^dLe+18xNIu-!|)jzxyGq@g+axRm(UE(+iaM8Q#le3#pA{Igl z3hf-P6j3i81qFq(8yYch$J^^mwy5*H+Qpy0rN8*79tcWYJC==I-CiBc)Vo-gwcGHe zvGuT3YQm`1VDJ9J&GVFM<&kQoTcoCC8S%?^=EwP&#)j*$H~1eeHjl49mynQvKp+=~9rzRy z{!K1*A0B$0j=mE1`^T5as%~<&J2UY`JzVMoCc%>@Z5u=B)>CEFmcv<0+}trk>4GlX z6Htqxw5}$vlZ&f^R_pl&ewU3wRHHv5xps4Pv1@B)`>l8W3%(~xh02-zm8Ly^=IVJ# z*fbbfS^MpEOjbHWCrY*Bi?X~Q1@`vJ!xCA$aJZVA{qc9!1Jcmz_jQ ztJ1~k4$RM=$98tg?6+Lm|I8EtVP-y8=QQV6TS>VBMx7$$1c5=*1m5+JtVEM*V=%QNOU$Q2 zi@md_hlrHaViAP&LOgAUkO#V9crTL+N57wBiLZQ-q~~^Vkyf1}JsGE-qcg3zuMqk} zJhPo&Ur!Gfvn{jw^v2FW_?PO|M&XNJpai;X{yaKg3^-X1p>>|p_c)q!83wb5_x;_h z-0Ro4D62iuEH7T9ebuc!?x78+aNE(y^4g&IqFy4Wrbhhs?OWxo^S#+**>KXCb21Jc znZ*`A?Qb?DKIi-99l?(~J3A|^$C-bXYOfNX&3i1~uVqRKIVqN`-*0{`Fz0?JU5^9SZA>mOi76e zJc!_e=LhA?7e^<R3e@RF)FPlbx zL%qq*6rEDBIV4LY4G$j zRiBoYjBI|D_JP^e0+TqD#-HzXva!3+oZjqnZsC(fPfuTCJ&sAo8>Q=jyv&i>75C3* z7Dyjwry^KR)HKMo9xt5p-uc?u-R*q5rr>{f;{nDb4UiM{nPJPdxwU?sW6;Uw@OWi@ zW$mXxi`Bs_v8RDE)t0=Thf8+DvH(brhm?LD%s+`S9`S?LQd_RF_88FuGT>!718CrE&U`* zhn4&Ib#ijD`(1+_-u2ST$|}omZ#N~`eebu^;gXa_xq*_m_X}{rpYeQrX)D2+0HZ25 z4xq>hcupc>y3qtyJRE4gVbA_%oZj>C_z?fk)D+v0?{+g|tIpcmk;P=h>jTM~K@Vw` z!nsqM`b1!%pZ?g?-S*0@gdrPYt*)Pwe#I6&rSa037 z9d^=Ejgnb<0*944$7QrcHqCC6$|ocwUGy$^{s4gf%r^=$yoxFSc_Ty2C+T>7V0IWi z2Smk#hYwFc;E%QV`D_elI~=SxuHFZCZU~LZV9Il0HmyiGQjieVW8kf9oFE=wS)_no+f)!5(h{h9e>s$CbHEyS_ zqrLq;9{=u4ZGwyE={LHcnGz5X%=usKx$e(hRyjse@^i_L%JGrnkBg)OczozXUvH5I&MciDS^Lp&-0qm6>FH{N*4P6G?^ju3E9N(O) zcM-i<`mjJ+ESK*@Kg(~G2%kb%9MYFqQY4@#Pe{Z6Xo|Z^^&sm>?5ahI=JR0Ju|P{% z#(}PQ-S2kLvhd{H-`~P9A5*SfeB`_AN#(V)T4<_oCNq3F%4!*NGy(z{Z)41 z&rSHv2;pcxO5fv-LQtW!&(-1gLIypJnu=D_N}^4BqDG5VSqwavKcOjkTpTW!YE`}m zF-2z8KsoeHF7|t5KJ(a+;&=D&)@G}@i6EY)vJ>Y?$8c$+U*>HXKn`)n7Roc5*L!9peovZIUD=+z5? z`S%z&R+C>ymY0`Bk2;A8ik@nGRs<}eq`Uv9ytqH$@ow+u%}t@hq2HMcGz>+W_oe{iW;hEjvU`m7O5=cMfz^Isng|#h)vp4`NNdmb<(b>5Q&^ARpT5)y=gj&Qs0f2HC zLS9WRVa{ta69VD!y>Rq884{G0F#{-yCa=Zrt{MtINpz%o1Z0NLP}Pxes&-Vdnw_ z0^px+miIQacB=E+f;FEk1)WaQg!aw#P7pwd!-_3tSkq zJA$GE+;F&5yBZ50A0YEBsu7qNwXZrP1i222En4iP%t~o8fYa_;UjwQNP9&z=H(+xQ zLecLdak(P|{Y|UC-^-UTcWL>+@Di)c2hc_;jHU6YU&sulMY(TgfRRVugs%M*Ibal; zu8_Hzb!e>wM9SxPUtgcQwB_yX?HS7lQVyL%kTy{c!A*D_7DQ2e{rsT1-`T;koRdeh zh;|*wo0vdAjOK$}>t3sv%sF!>k`}u^TgwID%N#_6@6F#ScbuI2at92YO2R*5VnPj+ zIGN@xd}+3+C33s#k)`i0%$|%w-Xll}W_(WH-|r*v!VT0k@cKl_Z-XL)eHKG6z1wa+ zT!OXQ9l3g+LjfK(0fIy&>KRk4T4eBjMP1p6FLrllCw&KbCG#-|{oyfqG(Go0lgjDG zS?0-d8b_Y(=@;(=o`O_a&9%Q0mQS$;7-*HlqWH?n$_1!vy!O6Lp>#~N_r@~R@02xa zHG8`SmD84v5;L8q_>pG3aC;Qk5rSV0>X<7Nrk-fp+AHk_*DZ5_Uz!l@7IA&Rny8AyOi z@BRLE56DJ*tRVR~JynL93zp2~NTIW)gqP|8Cbm5p>E^QWGc&zJ)S7SVk*3mc3wPZ? z%axGJ1}8+8d!vdQ`_1k{crwi0^scip?ja8{r&w1Q+a!eUu6?5c&anrVAVgxIrvtoq^Xi!p}K7nHx3`7UrnG|6Th3w*%GoKWo@ySg~OO+-GRf zXj~tPEM!HVL6P5Ck!hQo*j9X$k<32MW7P-jkY&78X)e^(P>XP{Ib=wYYPR78>+PxhHHEJU9K?N$102Im7qV)x` zfwtO)O}DC;zuiUuwpBunya3k9%oe<$mEm`M;f~h1hE_B(tIjVa1LG+=cmb;&_hDbMDn$lwxvMW*t#}S3aj@%tkMO%XLk)IpzS?iJ zoBbXMk`k|R`vbc1&LfbgQpNpVNCu?~MTLdsnGYnr&V0ddI6eRcSmpJ-Fx-XVte&4N zca&JLN}cZiLK{U68MsGI1)f~|xV~dJLD0c z@A2L&C#ed{qssQQ-#gcVUw*^yA*{iVF{g}I$F-VGbb;34Ew>iG#{j|#6S z2)0-uZnA3{1j4or;RsPCh?`77C_=_E^Sy_RoLpW)l>-oiOaLKLwx`f|T%ulL;bA+P zhk*j9tFnJIwMde=cNBA!14zOwL_O6OLn|OTB0<5*$jG>KaDZX0V0t*QIB?|#So>BUe;@>kdTlQ5c^I`ZKzAmM4f;b zJ-{XEkq*Jb;8CKoB>4~eBJx95BUmtBp}UqbN3~vVJPjOpO||Gg`wkSOKzLxT04U6U zf*jQw(BlstfiN)4r+p?7{O&i0eF^qys<4Yi)Yz%nN}d1BKY;mQ{+B_rX<=6Zfnr$` zY8qL%G`c}p)fOMRitCX+)LrMa>UrG9lG$!e)bpQMniw(3#sDit`}nCq0Vqn9!6^Q1 zv)MNt$!$-St9-MWBp3Cp5PKaQx_YmR^zu1f?^X{R{CXyoCWMEBlMfcUprC-;ZkpRp z;Hgp?-+gk^v|I56$&Sxv0>Px1RLAc$S7WW(;I^~D_j)A?s#*vN8rge31{OfXV}DRx zH0uul1S00wIUuF&F1BWW!XY~bi1GvwD8P~~fa)L`yazH84k>#D{<36Y=qgBSZz@f? z^wt&f>orE0qxdNwx;BsNDS<$_-brYaKQLd9(QO9s>}Z_&uZ{q3ip|RU z3ASEeS2)?;K6q*qkduKlGE!}+0(1a?|3I#@O}3TZCFA^v{amf?fA<0)u!LN(WFi(3 z2sYAdz{23=24XZ`YXqP=h`3i85{qgVyu(4BavI>MJzV;L&*QWr<5LH2GyX;WKkIyZ zeWC(aRrLaS9%x$*fUnf*TDh*@oG)%pY8oOzWCa>CvUl_|l3P#$Aw%+fe?If|!vv^m z_wC(ESGYTaDVTE89$nqu%Xc)!nT4EG0nV}b~Z2Rcx64`8Tr!mfW} zO7-gDfD&%G?gAYn7Gx!PFimR{#j5qv;Xo6nH9 zK-o;ut=lR~fU73LuM*(8iSVJ5;>`ZF!{vs>+GufeCiI^ZLl~gNDWNjwD$O3T}&|_YpI)0<2mGBn@{5Ut@?$-DEsK+a= zP%gjTy|<71Czeri`0O(RY{6RGj#Up7w;>L+6!-O+LCo>E{HcB6wo&_rS~IQBgT>94 zpuV{0ZM8iuVB@(TEGU624%8`naq)!~syqfzAb9M6>=7nt5ZVm?g6YU|SWmWafVq*X zLUD((&O^#PEZ7|#l0#=%n?u(jMr#EmQHh&VA|O12K&}GffL({sZ=3VZ&u{ZR0V~-n zfzQ|p6slxL4Oy6u=E>eC1`s#SKr->aSblgv2$Zw^dE4mK5L*9==*#=256p$LT^96w z)b#KxPnXXd(nz)7AAdojdnoZg6P@zO-s`(tZWrc{9|Pgt2ZO1>KH`q!N`g*6HXH>o zuwS=|m&RxP67c+L+;PCi-S_8G*KvN|iws`JX8++Ed{&ZxBnmq&p#?_5s;F4^g3CHh}(JVhefA3WoC^QsMYi^f~*J*;o zcT+@Z*T~OPB9Yy(8PnD07LR|sx9P)*X(UnJ$U(nJ%FqZz8^U2jmBcMsD33=)`$NQ)VRAf_FoIFV&-EChy5Eq|y1GZhqtxsDB#2MWY&vVc<09VMe zA;9Y2f5u6_k~qzVv_bJe%TB*~^ast?);l%45|5*8enWiYs0_x%j|A8G6jm#C)z@a# zX0fk{@-tjMtv-PGv;A#39u+Egv?2G6NNz&d8<;E`GViaA8kmUqRx`FUSaDVxlwc+y z89Ti9HGwr0!odc3OY&Q=c_Ox_Gd|_0ooTlqdfMJ1 z6KLO%3dL^<1GSzqa>{JBnk+V1wjdbs5$z^$QMN$h3C5g*_fxEEquaaDxgOEmMudFU zhR*#{3$MU7W?Hc#)L?rZX})d!i7fm>TJK_$XiJ zE)-Dztw}9_Q*!aI{%~3GgRDiK)Ae5_n$GV3&u^E8C~Ht*#gAdd9I#?)Sh1kexiGBw zE&=|0gVer(4LPCqAJ0hxsdjQLjtw&Ts9B_7c(NW^142Fz-j7zQ4*SX-9Z4ALpntuH zI>BH2tBvnO^L`>eeH64E2}3ZZHIljv*eK0326A{gKU}!M$%C zhN_I(isR+ zu_J!PJnr%Trr1(4QJaeU{GWONxgbCd!3#nhJtfG+FwBSMdGbCjV&&F^u7{5bu@lCc z!-^LZ;fW|1ohT}4x5?;Yfqs&N+(HM{U!krBek5^m8S`;*xaYSwI4mk4I2mTbnh|yw zY4uJAD?eIMRP?=mg>mDMQRcZ{a8G=}SnVN`2omuXvfKx8@@CXDkb=&_*ME9qJYo<37Y@IG3f{(TSZ%LucK}a#b9(K5a@wGcv z=UYTpxyX4*;+%ld&6TawlvNp_>#%r{UU&zY_qBe0{l=(CwrW}8GENU!RcNSDr4ViF z@2A|6a;qO{y89k$ULDGI-Zp=S-h`{`Rp)^nimpRInF zYDa>~h>)5Z__@7exw-q6e?ERBZ(hrj^It!=VGFr_2`&=&2KJ6HHfiBvvO~!0$E3iy zc&i1m{=4-U!#~a=#8O}mFf?Z;x~|jSx_(QPHdqmoJ6K)*&WZ=_QDs#*j8oQKe|~fI zRQeGGm)UZ^;WN@BXCd#?XYnj58=uGwQ0O=~I6MgITYRYn2507Ey#K8mhrJQD3WGx6 ze{{o1Io7^d{y>Wbqzf6bh=KD+x1VV&@L_$Dx3eoPHEcDIkpWT*9k41Bz_REwA7;tFeodS{1f(>+ zSdhJYf%MPx{P~e{bXNZttmMdzN6>ca`V55McU7(-^M{II|AiqKawrTzOpxPmaGMtu zvNDBGWH73d>>6-JBywsIr$elf@6)`kt7qgD6+0Fevw>|)NJvhz1`4H4kfc-{H+T2s?dvO=o_f_{b<3F$lysfwY*kWU26P~?&50>V5EndYL5c5r+ zdQX1!k)ECyZp{Rq?i-v?V4oZTdS3Z%RzNO-T*}O>;B94Mzq&6FOz#VSP_DeKcQ(Iw z!$H;h8A!GSMMYKc{(9f{?=uX&8+8vcPa#6G)Kd=3OUJglh&8iq^Qd6mK)R&>N!um9 zCCi3d42`rqO|*AIcm9PEiRw+4^VJ7q$Z#NzVbKB490;zUl#>U>Ari1+c(sL+cB_B$ z?rg0Js65#3$vas7K42*T$@hN2Ku1C^aCbR|MNc9S2zIRsNgCjHc&&u8tXanh#Wd5E z2R5Pd;F*1>bWHaBw^hXB_s{hb2&`s6?Snv$hb8WMfqBGrAEx((01$B3fQIp(oiHYe01D+Msd==aZ$U%CZKg=i{@xAS(yiCq+N5 zx6MhH7i@FkGTY58y*tl++Q>{ZXJnSdav&AM%brR`jh6u;Z#tHz{d4ltg%|>@=o-Lu zTyt9U>5<&zc}K8nRrd2QfEwc-H+(KRy5{A9(v9&UeKnNvG(b{0e!u;c? z?|q)a1U@X6-Q)oKO7ql9BqCX8aMI|4! z-Yq=2*v)#+s^-|g*=^HXq93E1#ZG_gaETK;U5l!SIXxbs5}GWKT^n0j($k+rq+1p6 z&*fRk9^LQ<-$y1T>WVElXS(NHZYN)SPfC(gvzw<%{5(G+B>t`yPopOWI&a)bE~(_O zRFMC%Y*2X^oO+jyR+xTwg&JO^xN1XuRWQLQ>~~Z{r6R-`GEAFvV|hNXUpHU1w&O4i=j)}yX$CX;bNw{J_xJ1e8E`7z*8nxRU>|EDBM}t z`?keSARUw(s-SrSJiP}7Cd@77p_KRuBkO{w`5F>MC?+Y1IotnVG4N)!`;$1>fOK4j zAdgI`y%c#Gc5cP)LjyZ-|6i)ohbh&>L_?*fN37*mNFMHL*@<=ce{S)r!m_w#}A29 zCX2+=xOV&@RtAFe z;FVWj`E73&WyrKU*`6ve6xnHa>xll#9D8vhmqO%zdF0G>C0`_*xi&*G41?Riqry7{ z0$O%)uwu9*yUnn2yFg}ijRz8_x`~MiuCW`3NOD$Hj~s+d@CPv5%z;9148S&Y$RZxd z>HT9!MJ8z9@-@}!*W(ull zPT~^M7$t75;ze&eR^eVR&5Nqa4-GJcvv(~P{75&cpFU+fXgY~v*Kbe*4FLD!P|gzF z5`X=cK*eEYNa?riJFEh%aCiH@&}mEC6)lMbf$+RBH3hcL*pCf;Iw8O@SS@DW1zdwy3 z&z3dcAF?igG_^@7)uGW+Q2A5Wd3L|%iNDS%?ofA9hLeN~kf zN&(i%P;-@$25(z$q<&si$OY)2=~m=we$WO=?wJ~E zBGc}OT;P8-0Y63%1cOW9Zs9?_@(h*GlO(R;*{w8+35)pG`+RG0CQ7mTPK{=Z zseaBE*T%wGj(W<5q8wx!LkR^twy*|BKv83Tg!JsjaI)!9kJ)9`I**`5nbTdy#J%osCvdMV9%LHgo?sd5bh!5oGW8-eSR*5W+>Yr z{=R93K%4qK<7H}(Vq*Vz)@=Qn%h{cX@?I|$sW*E4<=eHJ^w!^Af2vlnG?zQY-Fn^& zxh)soEWcIlUDz4$A{pKqFIvCc%uWVLP!U-5d+y$I@Pr4ff?mMb!CA=&yCCkLgNt@8 zq*LJ66Ku6NEjy2lXpMiZTAjetu5-)n?C$wJAM&^ES}gF+R{jL*9*(>dBS9}lAMkhA z4ilhNtvdWr>@k`({umBAC>^gPW{7LBVn3^cnn*ssClCLrRK!wVn6ZH&Tf96d9Tqa(_!RBP zLQX-M%ij15>p15<4ciWb#5|&D61DySwcsajYTj>u4WGu=iA$G)AJwGb;M&*5{(cqS ztYikVD6_EWjv*TSD#BIUW!mTBoRkl$rWXwfCGO^+ezpzj0#x&KM0aV=np<|6))zQf zWFT&Z6HdqHgU6O@@sG26zsJuqHox>b-^?6!Ip1KYmu^l;JEiNN95kddUdi-h+=>zNOW!FqcZ=3LVZ6X1K@K`xXdF0lSo$SuPvQ?PFVS zCn4Mkfhi8K{QU-i{_U(qxg08i3E?1XmgR?Pk%xu2~4rHMq zWLR4a-`Zz-l-Sw$XI?d#8Fzb}ZOp*8hXz)^{x#;Hs4xrEgPj-^*!_4vV6lWKcd)qj zvi5Hya2S;Hq)g*}n&;BDxfc0ZkkQw>Zd~{(@^5^ZOJo1WYPuM+1K5%PGM#s)pU*V7 zmCTLjeY*a0aBz(*t2LA$`$SXHxU+WPpjXoVWZp#lY0=0h1JGu>pmx~AXZ%J>3{7Qo ziM2vo-9&TL)sCC0P(a5o;^^8-DK>UKmNS~}2iMhfmrY~GISQAnv<{vW&A}(%xkr~< zpuz#8DHzXCKHdse*;6P_yUcqMI>$}rwaaN{Pwsr!fO1es{_jF)bE;?axHwQalQoSx ztG|D0N?2dBvPx?%Ydm1{HXeHSI`*f_i*Sd6w@FtYDh=}&@vfPl_n6N4_ma@ka%KCS zrPhGy|8jBBYe-jQI}sDKH#>kJU|{6of%{*slMx`z9`|OG(|S?6ctkcAms~P^+|NoV zlN#k0vnvG+WlLjjP7^xioVMXV3-|`sT2IJI9y*n(~}=i6(q(CFx7P)YTH)+RHM$EsYn;Goi`cyHX28+6G=E^VhS zxgAtqA+YeCF+4iFYR=c!nTEOK#Qo1`77llzsIqmw*&#Yp!MLQEO!ion z**`4dL{C=U*Y+6Gx}$E4TxFSpVpnrZ%nr%EvGn*!ajZmNg!q$w9AFLvGNGH9?#dmk zoN=EfydND{M6DuaEVfV*_CEc5-_yqfiV3g%`pq@a#03O^GE~$t;sWMgF^h{IbW>NC z3P4jRu$?N4OG{%7cqP~Wna6zXU5xemz(8&YZPJ9!H#79!ESpJ2``>(<$;Vk`p|;J> z5G>|m76FN2e*S((niEBq>t^oK26j=AtM4(AqeC0*%Q`6Pw{pYHGJ{!;S1isf2E_%< z-jd_mD{Q!{b(IZOXEVD2Vg>|%k}XMI>Yp#P_;$hz7JbaSD#mP^XT>hm5| zaNj;C%g8P2$=GAwp`sq+^@h_C(4|W$zpp_lMu*dwO@FNgeMK@dADgg_d3(Jaj*}Ou zzvNBF4xob&BI~=2Wfvr?{j7<|7_@hsr|P+E&b-?l5{W7OC|YZBpd{omB~hf}yx$ux zq}M0a{F}N~cR}|mE8aTdA*qC8Jw>F)fI=qJZEcGt^@vFaw-Gk30|}>uv`)&Ie4%^Q zPp2?7)l_xu<#RK{U7}f@)LUha#F4i=nXaV^mr^#Hq+6dlguOlJU5{I#Kbwh758o*} zPaB$w)s!)qmOFAE*!Ppu5Oh$^e#XV!7wE3=J zf1&|?+kBh{Nz^~R5|5)eXfYZ-fFooycJ+;;UF-+-wi@foadib=8)T2^7S5T(VkpIs z2$DbUG`~Fgj#pP~Nui;+`F;)?j>m}0NNpz3D>Wr_yxKtWH%gCl)PyUpF+BZ4D(OsI zX3VAr%G?mC^H8_nH`@!g^BYa(hK&&Uaz@qxQ?3qLY6*NfNw4oL9+l>nJxeN#Pc`1_*ib@>G5gEe8D1v z)YvH9p7uO;Azs>Wh>&>}w3m;LF0e`J6rPcI@sxlGtL|`!WMme1Jvt|02?5+D>gW zb26n(T|lE)lLn3_4c+hX~^crkBO8~L)HEVgDu2lOGuI<{N+iY8pGc09A{Xo%6;8tCTqUhiFg})@5xHe?BVQfWmz#l=<}QjV3oQJS4@yD z;_8pBCSy9&i_55sVP{#5XX2!n{mE<)cS5GhBrdE@s9GB53RQxaTF0d&ac*t>Y;F)G z8lIaIUBLU{InLc6z*kRE?XhL{BME( z`o91Hg+4}$53#BWpO`7pkEFef`5Sj6G3j_hlx{2-urc^rWHqa-ww!C)E>&QZ-Zp)= ztnRna`NwGdiPBV`tDS{H^ln)+hD?T65hpHPQ)FXf5qJLn%4fIp|N8J~X{Dp)2nge> zlNU0xACWAbTAv$Jm!(fWWZx*JveC*UMOPJy_wDX$B>WukqrK?yt5NIT3%e6C{3e{z zA6oiblg{g&>vO`t%Jdb1YmbHJuGQ0~O8p2s=)=SLO^I4!BOO?=5@c+Qt##(!E|u*)KH36SwvJ6!N))<1CnIWJPi0 z3&{iJG|7=%^auKyp@a@{c{J`%thq!UColgdH-BY6e)QLkYfU<&y(pXVj+gSGhuIuM z8BR`}fCdR$dn)h#>LI4ed0x?#8kA8i6MYk}Lfl;ppqr)NuD3w;^lKY$*5@jnPu%s% zQOaL6D^KK|Tl*~$zKeRflmCW+MsN59h5Q57-*!Mg4+ovCA3$GZ77(=#+i|#JN{NH^ zk3T24d`Q#R_WID+Emq{#t$3`nTY{!8yA}W|9&2M>qFF+vdn?1-aN&UE`>8TaoqtJl zNshot)%NjmiDiJ{-T91Ke(w2^O_{Z?odDVmu@n>fv!_<{p5xyAOg%&yagvU3(I0)- z4~jZfIfa9k)*ke;80P3XqpimgMX=z#(#vM8Y6xxK&8S0~Dab2Smh%8cQ#c}hCg$Vt zk)^d$JVb0x(K>nB*%@aj-+lG`_m1NQ_g?m)<(^w|#pfaU0&eHZ&WF}=d{RSN zUq52B>F@Skg~VI^58sL_-;MkER$N{hv*}~%hN9R(3T7V=$g6xasn#J#SRU?qSYOIj z(1(pwC4^>Y%shF((xb}B6m+a`l%S|We-Rsk)$$eRht%zZw% zC$8qx+$jQk&gXFC(u!<;uG18`P}p1|pPcsNRZqg<(j*O6Y?l{U0v|6bTWnt3sSydN zg`8NB-Go}DvGW#%b6P{Y{!`6n%>?T$FZX_ z>Y~XX^hpG+<*LLdq$vXnr|%cv>eQUzZBeY5((tzpVp%kH@!$(X7^CNb zaz9g+U^e**G&#+TkDN@YmT?uD=V~){SL?BH^j6(+^)4%wG5+XGQ9xtYuiN$2xBeIP9O9u;o01tI-*U$TNyyYqJc9 zwo2?P@laUQ^QJ0bI=5yI-^`_guc!F!H*bn=3J-hz6rL|xKXp}dx~h8O(4bH)K0Et2 ziUR%CdkR*-k~msY{_lXyiK9rhuq}>h;j5)Yl@Q4;>_g-SqYGo4O<$In>|t9M&itIx zlCJnC@on1ZKTYP^{#RLN71mbNrD2>FTHIX=!QHJCFH+pyt+*2?#hpNq;;zNry;zG& zafeboKyjGEKQlKo=OPz*^5kU8Sy_9p?|ZjP45>gIsK3Od-O+Qwtxj(da0%M;JDOR4 zL=Qaoh<{>Q5u;-nH3B8WJ)ozt(>O5|)deZ=h(F~_8HjfClph(s{$0l}Y0Ni*021lq zO1$q|?i$}b6>ZaI%0|npXxvqL!tgr($T#c4&wP@)Gb2dyqUZ`_QDcJre*3gTlZPbV62<(T`6j*iOK`j>^* ztjtGb#Kdm|QSI8Ruval;vz2I@iYfH;bOLa8X8XT|_pJRr-l4EK%uO}mk$EMxC`&A2 z%5#QNqan41gazSBUC%+iM8T(*$R1lqJ+STkIMk2nVIAG9d0@ybp_jh*kr(GJBtcXQu$3r}a|L9+pRw^Y_Z9qmp@|ObrT!y3oGp3ay znu1{CAj9O%B{$F00*_s~p1?zr?d&X{8hNUek^xQlcA~&a>#0ITtdfMkM@U!#pFLjk zd6~wK5?^r}evW6_{K}~B13Gm{4m)&1iCK6bmB+vB{0>i0*OpfX<1b##4K%e9qo14( zsOy55XYSA*fIUp9zF({&

ZEEN+e|iX;`S z;FsNS3YsuTNp`rb`eja#*}l8a+~0vGGd4ji8aC*=!|u8 z(=*i)lxvNt+CViO@qHg+%yUDL~@6W1Hz zcS0maz9W9`FD)BA2XyZbHVrrOIn6}Fl13b} zOtI`D$Tg*+v{<0ncjNV4r|YnaKHf^utqyIXP==RGmlH7QoU8r_=TtQTB>$;xTP@F&KBQLtm~IR+iSv zZZMy{(ZcofgxDfs1MUjA(;y|q5*ESeY4{HU(+fGTJ1h zjrM-^HXXN$>gw&`?T>$CSMw9%Mq^l6SF5)JSe+_^Z*F={%bJ~IB@S%pf2Di4r;AIU z-jT5on9qN^_sifKbd%m5hk^nyBV(HqlN{(71PPiP&updnni^E~mK6^mR-UxKh z*M_#c;iNWRuiqbmG|xdAgC#YhereZ!HjY+35HyqpXyP*r1;*s~rfbIlHgmL7G-&E| z%+A%<;q&9p+Tgx>dd82>vnRQ{yvof-?Gpa-;}!kmavlHQs55QqOS<&Dev;Sja-IA| z7Vc6-5c}K6yw90}!F@YgT`D1N7?Ls>;RI3w-=DK}&QHh>PE5;XT)?O@_aX?5Pm&vy zpPO~cVpI<7@c-OThq#Xhc+wX&{(_Q!&t0?PXVb-ynSR|x#H^i zUe0NYxN&lw{Vasv0KKl+8b3F%<)TF*Y!7vr9mhsIWKc4TH;hYLTUAo1D3TcZuF#`c zo34;%)a=M8n2v8r(x^P^fk*iE;O?nPe`Njktxuz+tSmw6dc6H)2*it=1sliDiOH`Z zq@sQ>W6RSkwS~Z-U_QFLZw=AdG8*5rxW7s9cRKQN*g)-ZjEJZ9>0Z*I*yc*_J_3i+ zFA)lZYbw=ajykmI^o{!WlUAWQc)j{#4fi(WLTTlrX0Cr%*>;Q=SBG#e3*&o}O-hiR z!Ot>yRjNK;iPI_Bo}0v1P!A&~?P}Gqb9~*=dmY#DaF^@t@2P;$@{q0uv&T5NuVO7I zBfyUeGTT_^h)PgxEUx2MXz45cO8kzZ{F4k~RLL)d_L+@{w?F>UQjKn#ZaDFV9>)#7 zW)DnP?yV+}cn?3=I5_*3^5>ad#MIlPzXINVbUO=up?-}bSDPGzg*pALs3v!wE%{g| z^9Kya!(MB6HSC0m{9|jly*e8~82Oy8M%QR829*j<o4>+l7YR;Uq?}tq;A7as z4y2=OPfr-c1=qdl5)LmKmK%MHW2Q}uh-)vu`s~T*z0s;5;Kl!o)g^K78xs?Ea^T@V zX&1ZoNm2+^%?+gNS@x<91{xO)5|Z_%iGd1?R94Vc7smj@g0heT;pd2bh<&E%-V&Zp zkF#<4r>dHexncxw)f}h=G2<#{N?amZ9}&_-$Xn)1C

    iORQCBZ?anVZ>CNlV-8|?GECKR*k(nu8Cc(i&EG4({aaE_AK)^zV33{u}% zw0_jqGFtiOdfYh6*XWvC4%xB;yWRSiHh~=M-_r?@j8s&c92{Olw6wuchXBK%s?+&l zPHMZwZ+WRfST;mDNRxXG+mW#gY>)Z<0>e?(C+WX6O&&gVejv`1uR=(>bR3kfx>w#_2W5yzf@z+ViPxX_u;jp|DI}r08b# zcNRl5_O3sHYz)}(!B=<*X7SX66#ZpBAlb*tqF?gzO1Oi}TB;9QYEih{!uqI#Wvx5| z-kG&)SXX?)?FA@_2F5dwsMj3&PWTn}Z4mPZB~ok@#W688XV5SLl)k6wJzvwRE4}`O zxvhia&K$E5a>MI>E{gHowz4sVk+=yf#d)G19bGBR&1kqHyTnfYOWa&HUFA{DlX&;m zJqRWuO9u1XQ+r)>J;T1GeJ7DS)PmqfAy_8F{H~`?+%p-Rw!%&$nNj~%wmmrI z9|4&o2H7zN@Cr-1h>V{99^Mxv`ETy%@Soq17(HKTPR`xMxZ8L@Am1;?UrVP|Ljlb> z`cJw)ROYq64)(zy$18rEWO1Q(%{BXsAMxJ0kw(=1fIDk`8%WD06vz3^oG6Jm?2TWT zXKoPDWqLXZV8nL&AA5HXGbMPyXakvNFaU#tM4;S;=o{$}eZAKHZtb6q_XG(1@Lq70 z5)JxcpM7`fwZsE4$GDlj{h;}5#XypFE9&4+@m;3Q);QMvO89fc1#*39ereHEZ3~vr^-qug7O-eRyu1VHyw8RevpXz~A z6@4ue6%9mG$9*=*1h*HtEq~Lxsg!3NBil6uPlJx^Yg1wwt=V!TYuR-EQ>@ z+do8jihckB4?< z5k%t|f*V=%8stt|KC~~$Qi3&JywE^7HyNN_$eSA(U0W~K7M1uJe_9z9o{YCeEkgyt zk07)j){R-5u60sKJAHOcX=bn(eSXmJLs73f77EOeq!1vyeTVMio4Bw}P=#DPGlQ6l zyb}$-bl>g5lj3O{XD zWbfi;jNVVG>%5XBK~UMO_rcH6c;Ro$#HG6ipQ^!g|nrG1vtiX7PCwBf?6i#CPq@eipu4uAjfV(kE!^A_1`g%3tj0fH{ThI3Ije;dRK5CSKO;$n ztJiSblpOB|llkxg(Kz6iUQ<(3F@rDm>sN&NYU7EU^KAhBBLdj)`s_T=!RYg&XFQfc z_ph{?34WjGJ6UdCufKSBUl=ohZ6qwh#O1hjZr9d@N6j`I-nV6MiQ0LSyOPRvyNGiFC^Qp%Pe9ucwdK ztZKfgaChCKPP@g=`?kWYu`T(vwQ1@cr;0i;D5UW2Zw-IBUko%B%lSe7pMp=7ZZgdK zrVa6MXEp0|G`-W_Vl~JEW;v1yQ##%C%8 zEtvt`U!SG|Za6@S2Y8WYmaUsQMYwvUjZ5E;U=1K25 ztt58|met>Kiu;>*OvymaT|yI|726^HMld0!ftmkyRbTtFmhZ2`{ldo1M)i~-aX$k# z9si&m@svOf=Bo~4_pD|gn=T9SOjhe|=O#P@a@y{k2o^zn-PCY0g-LzogM&4vr3~ql z3SOdNAAj9{*(}z^DFM09E{)TohRY_=e820kUm=++Ubp6_nn1xE!~?JLeC4ypadBzQ zYKg{djL@R`HxmFBikzEUy<(1-A>d4-T3lR&0S-5y1gNSCaoJr{m(=*3rCb7FjFhWd z_ecPZCj_V;M$8;s`c!J6!=^s%ET|`2td@c59@h2RT0NVr{-RZs`1FO2hAG@$_LRU@ ziuW!4-Pc>fDv~VE%!7CP=m|Y3W@eY@Qr5jdzk9pizayloXP}lZ2=C@%&1p zj3NHhtEQi=qzql7YD4EJt3qPQohA0+eZ2T|L)~?l+P{d)Q}H6iXJlpEgtA=!Oj5T3 zau!Q~hJpjs*3k*s068vTSsVi(4RKmAozf9{3{}vS6a{tlq!+a;z&xS?9KpEZ{hJry z=Emj`hI=sxe|Br3C(F-5j>sJ%rD3_>X%#tNsdv&t!UhQTb zbc3IpjqtZ~Wl=qZhcXHhs$C&>HteHAAD?Vc7tvs0Phd7Vq2VH`{jalMJCI%N+#6oT z1Td~MhlYkuudT7|?(Sw^d~LQLT;4T_l78YP(sd`{I+ffhKN!~Krz*RqGPd^GeIzaM z>^456taR-|)O8(sW^6r0NWJ(mAlLu>5YdS^yvOUf`3Obr9cxPV2u|*P9s^STQ7ns5 zB5KDQ3q%AF1{!pznr+Wv4_3qA$0|I>UYAgUR(@m~qyTD~46q@sS-#8HGs>t}fS?}m z^UW+RDd_4F$Mpug8rT`M+zH9$KA^2wXL#}?EKQw2w<9Vxc8&<_fIU0 zz*lvRD#-h%#(SDilSGnb)L=r>3DR^`U}K$m=$c z-TF>`243gv7GV!860b^JK$InzK1F<&BA9Mk)-S{md2#Dtkkg+)Er3C`fu#rEhU@*> z5f2vHQ!jyNQsSqfLHp^|kzP|wmav!WAij121kwu_T(PkMrFbs@%9#LE(YFA}M*i`^ zElm6pYeY%OkfB!Z@va)#@td5~&3e*iKdy;NSg0sNp>s_o^Uif&XU(3aVUtZn4(j4n z!W>*AhMZk}!cB0!97zBg|MQuZ@`Nb)m+Ft*R(^w?i4O8~OE`_-m?o7vdei8-TPXWR z=+FMfy$}W;UrrpBS!T`MeAahex}fBU;-mny2L#8mzHY{%J-9L&*LXEMG-u}YI!aU) zEQkxRO>-h}4_E-z)zrTBZ%Tj$WBJ#H0WYyPfaG!(AmicZ=LQ%H4*NM1uh1L9GJWKII zePI_$U4H(s2YESV51j#xq^2f*yXWx>+(unlFx2?@ZsCP)XBZlq3IEVu6#A^BVr{I6 zPb)Nb9W4e~VeCfR(PWeN%2r3>iDF1+JoTdeS~GH+Htk7fp~ zTv9}?CqtlOUkcj;WVaf*Yjhn;^FD}b_ne_rO9Rby%aCD+aIZGXa!0YeOwx zAnLoQVd_rF8!0InrlRaQarT+`^(mLkX16f?#peT+Kr#L2n-1Q$DU1VUX+SiQNOHc#l&7pXp`UBS#WT1-5Mk@ zq_F?Fmj)P{xqni6^)98Na}&krv)z_06^RZZq3ra<1gWnPO<(aTf35$$Yk5Yw&n5%A zd-nAme>H7cUe*-;Qt9^8l}n+x=~2g%h3C(#v8XMxd3w4UHu_NXfPdWC-dnG;0c1iL z2Ki{qc^u6Iev5M{KxjMr?`!bd2K|c^|rVtbF2YzAH$7Da|_?Yb#z^MXc1KIL~OtEVD(s9 z%R6?%b-VSPZ_e6R^k=NK4{0F{yu~`vtp*zf1fXaeIbZJhOr_Z1)YcxJdrp@(5{!ch zd*WEoN)%SR~xY+=J#B82rqH9#Q-q+KJFt7sGqTuOv6N=Y* z+_YR+T3R}^e{3tOr>~#!urK}$VaV}Ut7`kpq+4qi+R)H2tf_5CA20eZ&Hr{cb$Z&& zIWvSgZ#2H@k2!}>lR^Tf#1n=q>2S)5!D3D#4PSz(Z%!}QH_v4 zT7c#P0Z39KK(J+xCS*?mCNh;%6XBT_sGXQ5u9Ojk;6u8Dj#ayCxr7zML9O`(xMXZYw^ zgve%T1O1y(ipt#wc#5&X7~sHx;+Hc5&h%3o$Zfj(zZjT=Ki%qXkf;p#EZ@b}c@+_w zyZFUA>k0&*sROx_KY)Xvp>YKeTw?&IjSe3lUsSA`8Th-dbKO<2b#zPyV2A~7BK=uj zYX=@Y&QjZ4qe~@;7x}p)m!nz|MyTK5x!~zY3pv?Up5R?2HJ~vR91_Z+R~mq9E_QZy zc9=fZfJR+K+_0)<*^)X!hXtnHKrom^bs?;WB`;rR(u<(m;+*%ggc=e8=~C@(LUk}5pjO&ugA+`oT{k%8WhbwBAfn6eyFYyNAC z-m~0rX}$~(61>|N?0KFMH%93wc|LX6Ko4B_lRDbt| zbpYe?1(F3M)E{3u(Ro4?=BXINf_iK4JmH!!B=Lj>;}>=09R_j&CIAZy1#m>lp3lcl zb=Ey_-w<3~9KL5}WH3(@7ezAC?=L%W@o=lZWUzov2*~6zaBz?kh!Uh42!==!@~8?V zl;^4sky@v7>aJ4*JC#zWrf6Q7>tZ(6<-olFQ&lbM-$_rGCT0NFr0g++JEr)ROEI*MD|SPG<@4x!e5 zI15iqPNt`oiAnhP&lAML0tMtSNGCKxDX%>7>^V+_61=ao4L*WgzVZ~rs@R~~!Y#h7 zduzch_pR#aIXP>UHz)31f|K@o=aiyPXTE={9&_JQ5p@3v)F4-X)IY~b4*$6fSR216 zD(Sen)n7;z*x0uKUTqgM@Fv*6eM;K(e2@@W+W>lK3xLDmy3rHVh1Yz|nO^c?YTshk zW9u&i=Dw7p(ZhpLiQu_=&J*;p)@|n zL(bkZO^RZZ$2GrzckuU2tJOoJ$XDA)qS%IWewE2uoLJnG<21E@Lj`6c6!(~Y@`W1H zo$|&cf-*mxkkliIAcKFv*Q(hZ$zTCN3PXw^b7TUxxS?yOkglJ!GF6TPqIf?w2C$9z z6fG$~$MKIg7*al#Q8(g(iau70ed8YWlD z;#Yt#71Cl8gB4LH&X-Eh!+F4rV1P42heY%ZYy8hn@aGvt%EMExgvd!6_a_6~Br&rC zHKo@&EK30g($$TeOs8wssRn~S32*If3DtD&HedFxnl zny{|}?%Qc;NFQ8WOb&)%jY_Gi&cIF}x0MZkeMD0Z=XRQR0I&hic|avDUUO-FwM3rv ztqRS4@29z>>6KvfI!0yX>WrR#Jt#uR>XaS|B%O{y!Rx*{b z&vy#(R6y65O$R|rKZQd8XM59;(IwuZ?Ja`7BZitqW7o!NpC&n$%}2 zkn>7HngJPof{P~b2=t65xYGS&Nk!zk%~%u$S0S}y@p%6z(HSAK<+;)cM*~ZEdPLj^ zz`p&taI3^07dhf0SJ)mMqu7tNd8w882$JclKG>I$Yiz1aBNf# zLT|B5#GPrsL^!A`JR<(aXn^OBmhcNdd!Gj&R0NC1ha%*C|eKc$NkW%Q087QeQiB{XQzJ zBlRX$A@&vUNI}&yV*csKA{2LQ?&~BiLisx`QGH%IH!@OQyys_^)_`?hp|Sb@{GuM05`Zw`qfpkUPfEbpO$ubGsqiQZ zYE*cpsD%M+GUlQ#09T``;5a=)!zB*KSfmD3V}`0pE0jqV%?d)8s@3cYpA3YXXaQfp zRCxz*n!}>6?s7R)uQ;_=ZoIqsuQ~PBMN2pLEZVRe*Ke39*lec(RQ;^1G#7{oZ;n1-W=FXDtXe#9)`%tU7TISV@ibhCXu&7Z@IE6v zzwP(~dlcI^G08qXw^{Vchms&--xm^W+ZoLB zHfKM|a{;|Dx4-K%kq$n{I+f5n1rV>gO7!dl2VNv2B*(Wh9h$Ii;jNJwpIK<|}GbV4} z&w$CVNP{Om-FUT3&{WLO0*sa=9D3QZh4OaI|@iC*#|I0A~W z4l0uQD^HkLc|Zn%wK=~vWFw0(@QDtpPge6Z)OHtHkNDXQ%zYMc4yFNohYZI=bG0y4 z-((&qe5L%wTfHP}^z+0q3$p23GODI?Nn>y+V}2t4`I*ehT_`FYRfCC zdnpr5y0MC}tHv%z#Jz(9>~ECri^_<62R>WRUuIvW@>7%|BpOcB=&p$)Nc;NuA=gOT zJ&x1;-c-{<|l@A>EJ_q*@wx>#$q&f`3eecz`2jI+1hz{$3pjiM+{3v<&=6h$vj zQFIk7%=ihD>2x~&u{OZWF~H%FSHMv>|J{_0TY#_6p#Yz~?&5*F{SWUwbWlS@M@3ax z+&dt^_pt8j)d&913sesI?^&%?e!CPO!s=_j{V+vwyOICV6&YULOHuFDEliC!2VI`N za@5h`#fr8%37#M49;C_))knr3A1WIWTC-!r&g;JqSKfZEJ5`crTT+#~>1fM?+n;tU zwKZa7e0jphQ||rG4P9v|jC|&_`me__^->N$(SQFY_4vSi=Fyuh5{v?D(XJ$5^N5MLDD&7VxO{SE{Z@JghT(|`#}`dJ2}8TWzD;a&<}PT!7nPB!&bVD! znR5BE@~sCu?;P}gRk?R%qP4+ve>ubPpP#Nzxv83(n!0}IEzrtjnL5+hNK2c6sQ0U{q9;(Y9?%OSfKce0WxF z|C@t;ernnWUPT3deAR&OzhlP^-@}KSx-v9oe}CU!J|FV)?NQfqM`5jf=b8ggo;acE z-ptbf`t?a%iK^<&R*!Q_l9QA10(ZlfmX;&B+LqsoUTJJiEqd{tGT3HmX?fG@(Q==+ zHMh%RB)0`l_tQBzIHbn-UQlti-@KWTD<<#REV+`Gw{}lFzkZ1}P#+&3pIug#p0&}< zP2&8joy-xdtDkSc4}E6_^p$s1vS{pie9r0;x0r!xSeU`qYmRh=hK7Y9eI;9j4MKF7 zxkZ%^Uz!=L+b~!gIy*P(5i;AdR9M4{k;>G2am6emh!do_- z{aP^DCY_A$jD_E(5W3sblcEw66W=}e3J$J$^O}Q$qxr0y-RGZ!;U4`r-Dt0IS&?Q5 zLUGfFM_W0iWn_l4!v7j)8HDmIUmhRFFBkvp-m$N;dHOw1pPt?86#x5ee}BL0n`%G* zLl<&&*x1=~^70&BG})^}RkIwf3Wp?e_Mca)(p1;0~ z<@=4cMl}udELpPTmhUialarJ3<|hpeksQLR5l;7mQY#O>z39Df-x-@r+No17Ztzp@ z+Eb-GvGtl?y}CH@;X|rh)2YLs)s2OCg#@G9B~N={Of+ihhn*s*2<*)m=n?pu4Fh|)(yMMuXaPF-*bli0U!pR|HPamUvcLPG0*|M+Ny-4%yr`OuTM z-gpNAJ+04X;y4oJyf^&SBh$XR_stv zvU&(dS~@c`Gm3}y`}@>};O~=LJ{r{2)NDGPz|%9xDUp@QJ3Ks`k78lEbLS<;ojcFo z-v7d~uW+dL2HW0G;SKt~r*71pIq>6pDAXyYI>9uP!UaHs{@#;myaEsYi z9U8QiwN5vpQW{P!VedQa>npCJqSD;opT6+9iTfRnoZO2WE_+1%2L=Y3U%a^B^YT`7 z*F~*_n~utSJUm9NiOWpLa+8l~JuPNOrR?rJ&wBgg=%@*5_rpS)OYP6E@3fd1c)&{C zI`CS%@G;J3?Dgxb_V(tp;*SLWy!$fN8O77H~KGkjU@vE*fK z=(>lUol>t}z49Eme@ycIBNVA`6Fnv)$7G^XF06Lpb9QzndkQtq`1!T%CYLW?jx8*d z{WVj!$RZJ?cl<}9&#THfN<44FX<4#(&2juuJhSxinlDhRIz7<{87XYUwPbM@|IV)_ z|HSUgKm7i2*WKT^pQU=tbcTQDr09$ezO9kj5=vuHP*IUxzka=EOT1uL|4Scj3mcp3 z{)Wd`<)1%)PFAQZQ~we=>q&ggla%=TCs{YDY)}n*?;SmKCN)*!8}EH(^W%%`i~>04 zq;zN>d}AK=`-2?zsQLVlj}K29{x#PPm=OPVKSOixnQljPA?x+YA{JqPzHj3b5HMYz zC~Qon{QCNyy^mim+d4x%x~R1DY_Y@DGlSuaS3(y5{50LR?ZVvLTuN_mui}#iZ0^{| zNV>hxig>qI`%1jLdsyz*r+YKz6<&|hb$j28MupT|*jeRc5&Uh!xa#0rOKgS>{XW{u z*81n$*PR&5%gPdaS#v}wW9?yCw~CjN9-m&_Rw}Qol=kxSdiVNJoy@wUpQLfCul?@> zR4kv}+}g@_aQHtZn(J6bdEKD3gCjRPf+jO zMePHM-=u`~gEigC9rIo4!f4+^Lqp9(nWLklCEI$h+KKg6`+4N3uU@^noG)~2$tsi? zlo(Ia-@Ye{>MLq)fA{`9zm$|z>Ydk>m74C}-i{x4&Xjw!nTmd$Sp+Gi%Uw{-LYxYrr6qA19Uughpn@#?n$OG32ZMr+%jly=6Pj-iDQ|1 z6vcBa;d(sE^(9KYr>6%s`pcIuvFFd9PvKGI!bYRoan3VtojJqjzIU&}m*adf)ptI} z|IDcTSvU0RVnzn(pM?XB(d?{LZ>|~prmb6B&z;5>L$8wfc&++<$F~np<4_muA9T=n zphBXj57pDWT{|y8Ot!;S zTPi|nTba0=+!7Rk*7=_^8Qhm1t;aX<{qy@s#(Y_9_17cQ{b~W9-YjcvZKZ|&{`D)e zb8G}f*!{I+)X?1QsIZQ&IEw^r{>O)>OYYvi%fimiK#3TJi4+zV&i#0Os3r4KiMfqU z%hRiNyu!jP{QUfd_m6!YpXe)HdicraccnLK`4ldxy3ymVM?D^nWLT1oYVIDhkyqtH z0{Wx}8kIMCp~J!5yQ9@ST8Gfc+B-W-zX&VlO-wlno+yvk@J(yR`??ElR#aD4tIl%? zt5Qq2MC{vzmGZ7$mGd+~-RK6s#9zC<+6l)Z7(Y>j04JIv*AKT_%ZX1=r4oF(AMNhqXaD1uNdF6%& z$A8*8I?8W0T(f4|1f9&Py!AE!Y%Ot4wRRduSc;|3;i819wWMPB_}n}lNZyk z4Vdit>5k;c<81)}nwf^-TpAi0fH*ei)B=@LdkKN}WJrUgimcM`hZn1riMUz)n zKG$z}y3NGhUGo0@`}qd4W-jkbcq*@CWvxydK45Fh^*GD$bcV(rNm}4pvDpp1`?Z%Qhcq?afw@#WIG+oqJY1U;6@O5WBxbG~Uf8&F;H ziT{cfm!1ri#<5uorbOL_hNC+-%E2SD$5l{Ks^h ztj$GNy!2*81w%|z0~WV@?^9V^cya62j2|CgH-Q9gI4#{9d98cv+ zK0bOYE2~uPeN!V!pF&VpzfJbB4~G7{(jO{qV{oE8dBqyrYipL&zwm#?G?IMwkr%mr z{SS_>0mzTMcXUQlMy9~_{yKrsE2X*ENmRtr)w{CMsQaFiJxj=;TNATS|4n1hdE5-) zpT1@r-yW*cZVz63@$K%Jvu971Ip4!xq;T$HDk?OfP5~*@cD!dh-F6bk+cYUn zde}0xeg0z6iJ!ZjO_&4(hpuLYHM)fVi3R|U_W|Oga5J%G^z`)7zZ{(z00UnF=*=cJ zh?{7?Y10YpJN5@Mu?~5bO6IJDDQh1ZNW6bvPh_n>BZ{u~V6A?|+m|nwQLYCMs>~+c zQ1o1RI{V3q6Z9GL*n%g~8>*cS-k#T8w{8?=US3Iwe@9?xY<@X=*|E)=&$U-!zcoC2 zwt3&05mtU#*QQgPI)}$ORGg|QygSY+iXMz9J1+kQW)y0hG7?yBl@{DV*y0Y%*$WX&cwx#w07B(~C+wb~~GOKH7@PZ+# zIM=9-`T6YL@yc{8Ob*o)Ozq_ zO6nQ28Ix~dU~9GC=*`3LZSxBXSPx7M))`VmcLu}w6$h*Rq$t<=2s$>gtf5EQBbSV@ z8sL{^0EUwt0)ZjViZ;qCC^XcD&il@em?es=-Q;~7UBcDXHDXKY)|_kCtUbexFLPS3 z$nM+Ts_FmE{LQ_i+zzAPXPqwp^nduo;LJdnDb*~WZYbO-L>N7 z#M^soKp$lUa(;rW>jZrk*F7>R{q>CXfg2j)^AF_eU%Xff^xXm^EuqbK0829dB#WCu z2WtjiSH;)l5HoOkr?IzJy1BV|2sc>$w8@sD4}VrGjbthn6cqHAd&F$^c;|oDvD`hn zy$X$AafShR7Sa$C&Ym%icA{Im!BN2P^gMc1)39sj`Bk*Gh4)$ElBj=^dyd)6eErSR zmtDk?Ahe2RZqAaMn;Z39YiFf*B)Eh-`evf#H;|Y9JBP#oOA3xY{$rNtKlN|kIORIiQI-4p*uZ=oE4_Jf@Jwl^ zRtO7=%geKjww>MpEr^GQhipe_Y3U)f`icJXync&a5qIva0kC{t=A3{}fe4U`D#7=n zjLx;;1d~qaZ_V1d5q3sq=G-Gw&*wf5Gwiw_6bTTtVs>^`RZC0o-V9m=>D!h2UvQzd zN2B}Qx^;`3VeCptB_(#s<#2iUVp!LebxXNL^^5>6W`~=WI6Vj!91Qu&x$x&t&h_h@ zV1wi&f#zViJMrR%SV(B-?AQgD+@c~D@TcgUoSd$^k!Yp$*7dzA zGuNE%@`1Y;U$wpR`O%s|BWLH8Xnm#@7OVgaat@0|A8%;X*Zm|dFloh_##gVF+uGVD zHh3MG9;_3?61R5en5g*<8GW06$q&jFo1EM_+!T{~@nSqwi&30E@hDfw0`9Lr;G8_` z>+=IDE1ZEuH3T9?Mclfjt{47S1nr%X0a-2MS zmVab))bG=qwd73^3p0MWlgdujJlJU_5W>{FyTwh-%-q_NSAL$IP5pgGZc3wSm&4LB zlPrxhPSUKu1ZGT~va7&s|7im`ImXk|(ULtOPm7}vn5id9gQ<&)i+pT~&QS|GY-UL+HX$LQ|FCR-on4keb9Z+N zBv9Txd-m`N3!97T2TS{j(V_JMYc5^jd-SMBvL@Mfk`I48DlM`s#BKXI&1++_<%{Ok|Oo2ied$$b0+Y|edb})%B z#JxBV!@fF_q0SG2(*maZQ@!`^=VxGGP{)mpi+rWHtFr@AAD{Lmn>TOXl;|c&Ld8in z2>s2Yudk1#H>o)~qr!LGbjKPGx?ZO}7C%2?^O~b>#e!g4N4{bd5E43r?Z7W4CPoA* zqCg!vA~P5^zbY;+P9ln@_u6(1_d|zVcCUL|a|9S^JTc*VzL9@Q;C>`2a!CYFMXE}>iX^>8bvx{*ZLL#HnX+=e?IKBFx zTkw4ujRhjG+kpeC&h>2<`M${r`eEu?ZutRppO?93~_hQr9Hjr z@Xu686+3q97=V_?_-siLe(k!wt-d~j?LUUYGmU(;C;$D|b17#3$BEdu_P@Vf(FJY! zULzJ`@F&0uXYOd)USDuuNCpmT!r7v8RhQ>SY}&CS9*6=v@A-Fo`E$$($;n*Tu3f7i z_MHqS1_)j65Tk(T>6q$j9lRCv_GHs=_Z>Ypvt%BcJ>Hv`$kE)=($Lp;`&EP$)~Kk*HMg~4D-1(hfPF&z7c7gS ziL0x)qp}dBAgRq^&>Yi#&}x8X@FRbJ|ELZV6O(fH7PjagtL!A&A3x?QE-r={Qtb4K zVeYQ1ZKj^WogcX1vBNa4)tL(mAfwftzu7scay*Quy< zTWDzoR)5D1#l4$vZQQz*nUgcA1_}u+M_w>POWvW-x*<(z8xJ4f34)7(Oh149YU1y& zPPw8`^xxXe9tK|irY>9zt!LutRc`F+4DHtBl?k6e`#RnAXM%>;LNLmKSDL?8ZehwD z7#p>qCA%BOi5a?AJ(Lvr_3KwdZ!aIpRoSh9+0nM)u`wna8yg*6U3Y*`+G{B4WNod} zRq2?SnbWloEdTN8Ejud6W&PtqpFVx+?&)dxJlwR=(J>YXi8v)7HR)RW&)a`{o07s) zx%VkE3enBV%4QIUl*~-7h&tuo2gi?65#{A-xPeee=~(u!A=)JnfbBb-9l$hWofk9) z7w1N~gMxyLtgP5=E^0O;uUsdcc@m`a&HZEiSbrRS(i1~M^zwS{`VQ0YxO0#bUmU<> ziJmAouICh59_*|hXeA4Oehyk6PrDEVHJa!`g|+wYtpk8pR!`PH{zLUeV@C%Y8nR~@ z9R;O^QCTSA7Z+u0Yz(9e02PTB(`dA)SDxjLENpCz*~TZcOG^`QTN+zhm|%A-E&2KF zg9GFWfIo9RJ8aucE~yqq3W|!2Skdx>Z*>XIBfzRAK*7n$iAO+yk;W1>|8WhW%b$P# z-0*e$5y3e5`T43PpP=i)Q{fF?m|gM;#2>)aZR+`Tosc0ub&?sr57^CL-B}+B%&ma z&jU28!VK!Vw1#`NOKme=qz3HnR2Sx4v{+zu!M#020)32$>=o-wy=4sz4YVVmF&Tpr zIGE58cZ~49t11>bXMx&x^wS$-CnpievP19RxA|yjYMK%$3RWce#Sm_Ss=7MulJ?>$fX*p^=}?xb2uRZ1 zVM0PeT~+wc^h=l655Vq=iHl=(xT;QyNluQ$*W$UtH$2;6{z49k!8T1jkeZrGXpsGO zz-E|_t12}eHc|p0>P;+i)M5>)DBH`wj*gD1Ryvf6hX%kTY;hA8m#mB~em*`=-9mDJ zu;SEQphOJU%0}=+Itt#85lkJj`Cy%@Wuefp?RECd8JTTsZqB}WljlM3cfNh$i+}%Y zsj7on5A$_7Wc%)?Pn)2Hq>tL#*=?}2WCP|^cv>y(T-WiU=F9hrs;brqI)A zb%(j%o$hVVZZZDJE)JM7F2Q|0D#7y$j zZ<`EtCVGH z)V+K6?C-|JEcrC>KxuQ}&ri-c#C<{P7n-r1QZh2)wDvz&r5}cZ9W}{v|D@u+L(Ojc z_b1>Ej)1VsD=N}%?0O(=_~PIl<)SHHUQJyZARW$Jf4r&Nhi|%wA|I~+#F2l1ygzZD87#bg!t+?b34yzhC?TGqgRulr) z4=l4GUQkJO-!pll@j$;R?Hw&BB(V|bA82iJlchI4e;Kn%?U#iThxCZf@gK@?_PGxn zI1u+~1bS5qiW5PqNFA^qfZ4Uo>(NCffWdDcUoVxBkqLqqe5;}&x^j=8UqC=J$}Za2 zYEN#5WpJU$rXfA0esq@5WLOR(5KUB3NcNA8Oisq*)uRxDec@t2ZV@#Ik(c(x78h^{ z{VoWnsON@@A<^0K9%2||%z~A3u3Q%w1)DN4DXHAGfga)(->RKeQE=LT98Y$4+e5S1 z@+EqX1!e^Rt&oZn3u;Vj<|!nSmP?zi$GtFz;%9`#F;Q`;wFVM01_0QA6N2!=we1zB zkRwQiMv@9kgg-nyeB|9bQ>0$fwMljWP}btpV4dBkH+M~(oSh%yL=}jdKz^e$@;`jo ztcs)gPR1h&^aX(B3$OwZ#ireF(GL0Wc{#Vh1&Coe*7*%4DY4jd3DN)f@gd5k zV&z*TK483B6e;WIqzf-!&X%@n`>m)-@1EQaKM}p46qGwYK(LXiDJ$D70~;y@2BPW_ zGzME_CWwQLt|1Msdwc&j62-`=s;H=l!-ByLlK>8td=D*?q51XeOR%8aeSEBI0zS}a zCMIT+tg-R&lIV4EaEuu#q%Nc&rOQ$OOn+z5(;Ens8u|3emhje$jAbAX+;@?Fk%$T} zQxe^V>=J?|(ojiYna7fy`z}T-jAyM2WT5 z@u29}Drv!pf?2DyQhpp(Nzh z3~sT=E7MqbZ|vOYjMM6h0svu77(UhkB^8zRfGV)lP2c295l086k)re_m4Y8gWJo~i z!xfpp8cOGWXDwA|0_&6%LQZ_y()&s$C*)|{^Nw)DT^^BNk(9iHgw+TMGmDz=b%#f0BZ3=pl|M|st-V)iquvfwy0jQNu$`Mk~Z;jG2@dN95CL9MQLc6C))nr8T*xaT(iL(; z_*Vd=XJ7<1)WI0`r78rG1^xWA62uOs!Oi1859$SfGcRtFiG$nbxP5yL+LU!hzEAUa zPOcaRE2~c35BDl71<=)Oe;4Ae9iwT=csR*pXawKK0YyXUl0LiQG>|{sFB%U5z z%!~s-A0S>az`(E!iGqJ0s^QDpfDfC3jvtpoED|>e7ON?O15kPBKHp{{5&*JL_3q_E z6B8_yq?O)>4pQC}&fUS+gQ>v{soGuBW6i-gDJ6#@$HB3}B5&W;f}S@EXCoJ_NOE*vPc9QGFBgS2 zEP)so6Ec-3*|}H}xZP)itg&@-eGHU1J6eygD4!i@-8Xgn*1qVcd3Nk+oVuDUZpD3u z_3wW_ZgCpCtDaPP|Go&Ka`M9$QJ{d!$u`6xZ0hS1q{6>wtXTtvLk&@rNMO}mKrCvG z-yUrfN89&9uMBQHye$Fv+Y#r_3xRG*_65OwP(Av|30;l(&+qS~PXQ;fM;Kca)Pft;3A^UC8e%)6gIZ-s13>LEBuF6wH~pWj+}sm1%0shbEjP7gd-0h&g`;u2N> zLynH>=;-K1Oa*Lp1eo7`+qSljG^L(9hg=}pJMBAQ1~LsUavDNMQE{;w;+5%!;RakF zPq0s=)YbVQ^Cbp$H8-11)*|x23_%&1O!S9C-zWRPnWN!XQsN-DPqGZ#0HWwVUl4#W z6^p8Vg69P13hitFHTVgI3c{#z`?C9+JK}Rn0v>HCh;Z=_Wo_8Bd4BKWhU2NBuNQlE zm4se!a@myU@#Xt>8SDU=hYug--@ktuNnRct7o0{~V`HPasVU=H*jsClObQ(PyRdex z-w5OE=g;C`gyh9MG;?@cBu^I$uMs{X=iShG?T1}m(xjc?$aq3cX@2=Kx@M$~eIBA))LXrs2Bpw^*Dg_qJurmw@zuJ10pez#7ii(y+HZ+#F#6)ST9bg?nuQ#=!mvE3$Mn>Fo0xw^=@(|KQ!E!5n zR?o9%(m=gJ$L}Nl)%^DD75LPJ*YfkDAlsiMV))zlNaQh649!D=RCTTUf+(*Fq@~hhMm-cC}Nr{lvnyQ=Mac0E_-G zybC!ftX5QWXvuHV0^@Z`F4if1-M-hJLzB}r?~ua*eT|hG<-2>Q_h&1-<+I!k#Ypwo z7f&QsA|83=p>mNNl&E1C$I+ulp~<>~Tv`7CV9kLcNwzRnm?RB=*IkhpqkXi!sL2Y< z+z8&up);NZsgb{14bpliDN zpH;98_!Y8mPm0sHxW5&&t}kdU`g8g#Vac#>U1b%y}jvH&+tzF7?6EEb>LA6P%8W=?xmdr51*Z0^Hl>jIU3OuszYlCbpT zzofL=r#E&NAAmXy6Mr3-L=-=SNPsx8G0a2%RULB!CAtFH&eimatADkxKz}BR9wEKB zu@I;UBY-3?3|Rr>jYtE#IJJ?{dz zT2k*-0c4TES`HJu{d1KhWK&dzSM}Ah zfZM72H(ja)vFZUf7t!&hK*CAd2}~#BBW`C4)YonVeW?%+r$}QhK&&GAX9*k3ssldo z5tsqqK*VNHv0Sw`KB=x%S zt)VopKlr}s?c0^asfVKH2b!uEwjc}%owqk=4mvkn{F6(#TcIw42%biuZ7B@MGq0}f zfW!h}6Lam=efaEjmclx2#X-Kg)4i1VT2t~m2!8g^Bu+>2KEe^I#O-#gs zj7dQdCHb}O+qYkz7sa9A5;I7|Ww;?RN_!19MwB_6K%&#*#|3dp3P7!x;SeObC)|G{ zvTDf51x!9;1?zS{&kReQtOueFZY1G>Fe^|yX{I@j@)V)PBKpAsSUr!9Q`}<7bPUWS zGlMYES|V%vDFZ?`leiR?mLMOOkXa_!lxQ%rkdv8UD-%T;dL)UdC5x<;{COBfl4Jk= z{m|(I0n%EqoKck&231J>4qu7fQ=&qOi&G@hg+I^!5F-T*xCsd*4sLGl#N}G?<=h~1 z4QODlhYpO5{?;$2u>J6y!ZvG#Z#%Wmeo_JXlbd($ECKb#X$B#l3O4@--rG49 zvo)#Sr%!qL`A?$y)QA$($zI++GI&;#0`+Yeo&5~)1$-dmjf(<#&qlMNh+c~4UByO- zxv%dWGG@tPK23g6{KB5DAQAu(7talgbW+63w{IQfQG_Dg922{ zHwvE&-*RhFgyfR=&iGmNKQdn|zrdd303C)eZbGBc3vR+oqBqTC(_5|@{!$(LFxi;( z4&x0C7bz{nEi#Ni?+oDGh|)74&g1{&qzPd^@sc^(^0%WRBAUjttM3a_DVMVnxp#{V zdB0;ha=S+V0dkH|qCFVTp{APHBz5HfyROg)pDk9;`koE%8(~v=V8=S|AAgu9gEy}6 zR->-SGBLy;aegD3hCycfzWYWIHv^p$*Gn1{MB4Z$&l}eN@$y6p5^og#-(KFi9T;MY z1%|#}76aecz=2#dXo3%i&k+7P?F6yF+Nhl;w#~RmRH!5Hd$mB;Um)suxT0qOkG^W6`&Kef0tNTBYQDj zJF+-g!QuSI^vK3d4?Fcy*NKILWJ?TMQ$74Eprz=91a{zYio)3?g^&1C2r3{QDFsP@ zyd_|QhpOG03#HH-pb%mOC$=5jVLFP`Od_dFAo&cm3?{#2%rg*p2~l-o-C?H*t9!Ck ztO9W7m$fFYA8q_r!TjCiA}r_Rt*3wUI9e zb_`)g&BF{pld|jgis?R%8z0qf9Z*(5#|ZZ939iUH>gIUY$f=xv$K2rNJ6uIDcc^3Y^ucO zzuz7@cnj@qZ0M#_z6nIhpl_oeH>$XL^^yynf)80ruU}7ss6q|dHB(WOSQukyNX1X# zZh~U7pk|W(55hGxGI9d16GwLhd^~|uf{KeGhC90@*IPCZ`*4CnfH;TQFf-arGqE1MS0M8__q zTn`i7Z}ORfQ*FpH&{CcnSxWWrxHS=WF<{dQcTo)^fvE*IN?PfOvHJgY=-jGKBkK)D zT@5c6FgXzzB?lZ${k;KnP+o1H{s{1C0%&-Jh)56A+|b#XuvQGg;4?Kd0QV%njc8ZU z?{5kirikq7vWA~`rTA=GS~OHQceG+E0(s1DGlOCfEt-I1xw9xl5D;h(pJFdvS|JgIQI1Ur{n(M& z4`kjzL0Hl7IO&Xne|}mOkofrV<9u*1X-&;@_>%%obOuY1iss6yNk`GcizW7(4B!TcQng5Xm{Q;WI|MGDSB)*ZE89T5rL&Gef z!9ox*!urU74)8rj6$WZUtpG_ZY;A@1UBzwj9Bz!>bh-u8eMnQ8PtW4_gsR0}mII!@ z1;4L+9_4|Tf}tdbw}Xt^QYkP#)Q^C}ZJ<(>D1m?n)*<{AtfhX|Oid!(fQD{OIAU<8C7k`?x2 ziU+5ZciFOs=RQnK)W3YWeIf+wk#N941YnemqE5p5V?^Gf>nB`o7?_RF`n(4*ETXyZ znR!V$Ui^RfU^4DcPIk6Ykv_5(ayRo*&m;HBo@Crz_uxV3_1}TMzC0E@YvILMU(pqW z$Q=O*o@f>rsBC?7A2bOqq2=!3_e2H3mW8*qk(0olW#DZsu*5Pj#!yfYjRR`&=FUj7 z<1*-7#TqQ{FT9gdSj|cSF|h98-!tL;S+4tkHrM9K00L-$8B`yb8*W}+r(ibcKoxMG zhg2mMhh#k{#w)vd!rKpgmmpF@Vm@&)!!*c>#!2=FI(a$e* z?)EWd48QB7Le>5#0w+W#hVE$$bWMyr>x-He`ObjY=Pq0z@$m`d9Vu}Q4gQTAH-7&1 z?OfBckFbWFaIMsh!j!Ez zWHyXA)uVsYQDtRiP<7id4U1^sN}`!yflnqSk(lsUU?v=v&p5>H5TfQl?g)(nY-KZR zJc4OUR^E-faNe6*Ds@kpRUgEfykSJJ7yY$#{Zld%mYmc3_V%bbr_!x zbv{NdS#SvXc;P++d}EK+#GDU2#MUroI;U&o;LQK2@RRD(UzN(|E~h5msQt@E;!uS3 z!nbs)39#_qE{-5I$!HT6iRnDdWo7!Inn5A^Cz66DT5pHJN(R(1u}xtQ?!NEM2n^AH zi3LnOdcP=J35HLGYnl*1!I)<~h;n*OLqh{Gc1eO85-2oDH1Y)Hf@kM3IUxuUwH3O> z@cZ{9qLc%b<6lOGtRczOV9St&AO zk%`T3eFHRk1ex*+X6s^N7+$_~FXck=4jtDFDRxpbKvVn54pI2F5y)x4X;$^>63#gQ zJQoF&iTHE`RFz!RnJp@QAW`wR+<1?zV3v=>)CL#=g7r(0XrsMG^WVH{>Z@6 z+P2qk?j+ho)m+rQoOs!_Xt$%>s6>?N4_*MF#9?JK=35n!B^=&Yu0)=0efd4(_m7=< z_VP#UwtPLhyNJ0US*=ekI;MDu=F5vzg#WI!d|&xWlk`gE85=F|>;OcSQe=bXubMBB zFmiYAJHp3b>hy`QH8w%}&GaidR|cgYtG9p3vrkz|Q~Mx?*4DSXmK%S2o}Vub@X+~| z;cCMsdusE0R)-xOH#U&>#o4bG6*P9XS*aqcBCojG-TxO$QT24LGH4b5SsCOJkhcY| zQM|yreJtg<&4rq;SO&{9xLMJ#k0cvePk-jQvW%1e0Dt;qx}viYQhHIaxBx}qikprk z*(){-x8D&(mklYzn_4V7tY~3-4Zc`?oz0nMnC6_0b~=z2dH3#Gz-q8SWSQtuf(lOO z3}jzzTWV0!o8qgp5KO3LD$AAKo6|c2#b($CN4JbCojaExJLjMYc>&Ro8!mP0k#|YT zkYE*JzgbaQlYC`m9r;`BrD5y|o`SJ9&@F1a-Zrtv$8EcWq`G8^!{xkhvt<85gCkTq zIaw$!#PU~cx!Pb_^%r%nn5V8zi6HA{J>4>y!A4S7)_3=G8~X$*$9E<)$T&57w$xib zVSE1jx#evuHC5G!(o!XNclXbLPNc>-Ul~|0DZGMV{rar?!Hk`{n-3F3V3V7cnVSV{)$FL=ZMl-9E|3hj-@5e_P-DRl=Nqo&RA^}SMybCpikAr^ ze@2%5zx+QbzjZs4IQMw$>0jPYPaSl+ADMX|n3j;YWh^Y7a2a&MXnY`xgf%@4tCwT{ z4unp+VT^vwK`Mr8cCjS(0aHTDiGoa-H!JRXeE(V6bJW%4zD-a924ck#VZh-%fAC>*KW^0h|`u0MHOmf>sdMI$WV+)z7V)G3E&z}AR%VuZM_}j zFApL1Cy;eSo>cdPb*f$*i#PJ5>YU76)5=r68?Z|;Cq-OOT7~3I#(`U=p>HvWys)r< zVZS(3BqFr zPSH2TB#c{H*p6QSlUEHWYK+;4Ni00{Vi**y{ozA0=TRQ`aYq26-(Vd^s0(ydXz+JB zil|s?4h=9;>nr>)TY?wZxQoHiMle+fntL=BSZxdrA7QN|LOi*M=sI}@NKN3!cre3J z)bS-0kT5u~2fD5GWwMJAS7+$U-W=7*QmkhiN6Ef?`n#4+@wb;9Z*OR6ln0!tl%9iVg!(d%*?BV^rMltXQ^8 zZSg&_C1^;(YYvJ45kXQc>FOUg!#Q%QN?# zQ;Mq^o3F8er;xN1T6GQ>Bk?C-!S}zoY;rIlE}z86bHovM!LwaTOPlY}h~ zPXrWV68y!p8%#lQC<=0m8D3G22qdUb=hrz;6E>R@*5CJ;V;&l8j1ZhNm+fv`6j4DX zO-foJ^~XdPJ%^6^Rq!jeJvO2uPUD+S){moy4-CZ+LD0fhMFQs>2s+`$+;e<-!HI zZyQ;ztYfIEI>WG!^~<$@PuJ4_8us4WZ3WR4#HOjG#caZ%&-BT#Z~d4*o|xpCvxn~I z`cK{VqbshRpY7oJZooFfHlSu@fIYSZ18>NzHCM^ql=+2Va8H5NQi1~k19lr=D+_KP zFODrJkb%^ja_(GIzVt&Y8-KZVD`JxbZTh$E=ve*a@z%#W|0GurTq$_~2%>=|D4758 zXJ(1({7*|j@%(?qMq9&9EQ_kqg_)nOo3CtAqFa0JyQ56cKvnXhCsaJ;YvW=u6Q&CnToIv zCo=`W-z3g~CohoTkAwsrCWNR6q^dA{f%!wiEf7pLL6wyQCq9e$q5ivlSDp zm!Csuk>r8Mpd>M74hIGwj@t@Y^2{);%|4xzN*nw&D5Ky(+E$ z^4Da%6_Tj$(W7k$zRtq6N951y%^sw|@v{xM62kWYU1=w;)7@Er@MiZIdr}p1Rrm95 zuOGyk_QfzK0Feh&EN?tOg#<28WJsP5;?;UDFIf^W=*>d%62rX0t2$70d$73cBiLA2 zi~xlZf?>mT!)OJKR@COdCH~W9%enJkrr_$bneBGtUH0u0P}AISj2H=&6#5{WJcm%} zXAII~9G@AoOwgBita#v4hA!OfXv{y7SzuVPG2lau~7*Q{Y{f|{iw zQ;hGKa{!OPg0xQt@-VBMudlhW+Nt)A?LNi9@%+PkqW9Yh*ck7n3(yLP=J439cJBJB zD4zRaf0pCOpbC49+-^_nvKCh<`yFg+yCAam+;XWqLq+Dh#BxYcGLs`lYVaSnE9OVRX66!!h0ntTifMw8 z4BN{(kq~3mcW@(Owf68h$#;`kP$G+v4GP`pA@At$Flm%z4uBL#KI_eEtq)b009l>7Q^o^-R{L0;OB`@feRN5QYDw#$*;96@r8N*u_M+{(~4d3uT-S zf_H#1G3q;~3cqge=-|6&13yAUii^*m->ANhN%NWJkk2%SzDf%`Adx0gAWTI zB9JGsys!owpyE|Z&GNhPmOb}dzS{A0a%3LerV2^s)a3@1I+ZnU*EWZQ^tdUcxR zN;dazYu3XlusCTYBp+LW`5nhLsbWJGr_@#74VWT3RUWT@H*YSGCa7>f9NQMB1ydiE zTK?*NODA>2uMDkOU$G6tY-Zg|6(~W4NrrJ{q`*Ym?bXXgN(!->&E;VWvvqwnL&|@%>C?j1+pD*@Y)?k9%EKHnm?McdBjvt(e?%u! z@Q-)=; z&wdelwY*YLQAts$u{+OX)}&3WyRW>o@ps>g7aLH>cHG_<4KV6~NN?{N-%)09i4W2y zA$p%bOBhlvp)Jn@g66l@1V3v+fcTlo^2^9ms`1c1Kl*jZS8ZG}_|r_>_rvh#K(IM5V&mye=C0TIbSQ%Qm7$56(OhX5xi~d#cxR4N&G2y zRKB+3HXD3`7QiYss0$y?aO~J_@glPF`({Do@dHMi%{RJ_A0W^`08dIZk3L@`q>}s~ z*6hkswcTw}rHZ2=@g3#o&bL_ zkkX_K4PE@lp4e1$QyPcJbY@?+{XXlB+j+e%XGIQOZLr?n9U&glH?9=@{TL)A0_dP@ z5R+oL);{UG>V3*s!g$Ns?Q-n-@=Iwfe?z{=d1YqBsc<>_x=k}hkI&FWAO=lR52_j( zO~@X&Ic#?zd{Q7SN@dm_bD1rT=e9cd&U7BvQT-Oth|25z@|MiO!P+FuD*6Zo-NH-R z3XI8Ja`N8W$LCe!Mce(8Zzg9k@~`=#_~JPR@`X^|!+wn|rHm}%+ZSbj{^a zH}G_QHz?&NF;2hZqfhib)}vzsG1%V7O5-s#3~+RZ!jABIDuh%!g*Cr5iJ1$(`=&;e z7i=fi2!AEbyvxdT?G2HC7V^RQ8n>qpY}n!qrVzwMf{V<&0|=fyKF=B7ZC~HRJ29|Q zSmV^`{y~CjYHD&rH8+~^9(!Y%&t(PqK5`uKzk4*&sG4vHS5M=V&BoN z8oMEW%pGqY^mcnmD+^6Kf8KpzZnpaPPZi`H@MM5hFMdpEIjMx-x}kiT#kG9S&wXTM zvQ==WxZaj95v^xK!2%t7*p6rv7K!Z1eeBx!kk$Iz_Ekq#F>36d2x5czCabmg7rKRN{R|w<0m{y^(El%;JLy`aa_pk5Bu**>{rDxLHiLhg^ z0)xIAm)o}5RlO2LSiUuKFh%G3Z-0zT z9ZPN)cfPn`+~uO3WvA8Ht4|mOjH{{9U3=_HzSC<#t7B^=s;Z(sw@^LY31+bnbuw?Q z4ZA#Om>{DoE0j?8K!xXWMaSr-=);AIB8Do#E-znoEM8P773^GHt7|Dx)w zgR1(%y?^K~0ZD1;Zjh2jK)Or185`C8QsS=tyK~=}*BSqD zoHOU_v(H{@edF^W<|pL;aB)VMUo(iK_~%RYTwKP<5wzb(LBbFSy(lmsh>uk|;%P4C zNNUxK)Gr26S-!Ny%2@yB+~wctd^YNaqvI*yF=`FrT$x{5nbL#x8U}m!7ilD3Hd zj{m?}Va((yxkUakdhlK{0S@$-HABiOOE%|=3~G345MV`t@^aPj#=4%qgkI7C$W@>f z1Oa9sfk9IS6|J$cBtC6VMN78LfqyN<>#xm&iPp4IY5A#U8lxg@$!Lc7s5J)krlowB zFHtioB336lK#Q@ruORTL=~Vv9VdliR!9t*8w19*rFdCq6RWkArlhzy7##0G)eD>`9lSd$-$$Gyg-5}^&wgeiSk`VqJt<#a zPR^A|^CHBzQ26R}Np?|7TReG^f>a^3pl!G&W_r0*0D5R#HXWN5IEKViQ@h0`0h|LG zFr0vd4s|8Li6zZonR`)V*!@1Y{DAD~=($TljwS&icY1@TE4;1NpFL2eY1PdlCSjM+&cS#Bye9NM?v@JR%)R*07Fmfz$bXfW?9(=M}2N+lr#|OX_0^<7+ zL?i-MHlRbzmy41Jr&g;{x8wx5_@1}tK+*_8Dc0y-h{%e1%FYG#kYxnxWi@B7 zoeW-PF94PLn)V3C&v(NBYyw~~`Xzd>5W#NS{#M=yvYdjFLI@~ifsnQv-$Y6zYmWGg z1oUb$19^%fSlI_hLa+yEO|?Vnk(})*>dwnzVQh+RGT(Uuq(#}V;t130>5a&-4HQH3 z;P3&Xr(1hf;-Qt=Uq=8g;27F%gXlyI*c6N`VCg;4ECu^IEaJBQ?^9(HY=pQ*i3!_G zg{;*$NUdB=Ae=t*ox(i+9~BG+*K=+#Hhm%?Zs9jvIu~y}o*oP$*ibSaqyZ$s(YJCb z37u3S1uU~L5XlNqPa=Mrc%)#5pJAj;U_oYD;TV%t_}Z*;O}|F(4()z4lSS}JKv5Gd zgf)WrxsY=Up0JHhaq1WZ$H*%As+#C+{Th@B^EpyaQjSHEk1z7OEn_mz1n^u$V8@Qj zv>q0vD-LqtFgyi79?;Pew}3n|c@j_IDx%=$I!ODe0~*GESF2nqOY}oK7VlwvLkO=; znSGD^n0#q_mJYTj--UjoKd22uM_CYL0K!nImO=6>`6rUHame%4Iu&FhV3UPDi(H(q zks|t@H?p3=R-)`T+XbskSdzVSRlc4oPrKJufwm)r?GY2B$QJel{dm91r2@^oa>l-{ zhgV6I>WsP6nxX2scvpjZi@qf^xwZt;+wB$&OLOSIC};93t77xuUZ(Gh)(#$ngDT`` zgC-qhfr2N(w&2nvu5J5Fc__Vjk?H}GX6Sh<)$2poYfcl~e6%j&QSY4^zIC~9Hf9dV z^)d-1QBgv$_2;vj92r3a!f!BeWq>#eN1-An6f9;?boS~CcE(*iKv#h8s8eH+&GXuY zRHoqxwk$TZ@O^I1nMl4r+s5&@u17GdH?yCGs#;E~?H_=RFQKd)i_X;elA;$$IY2(2 zR}j>Fq{5N!o+u92<0^^2cqX$W1A|E^OC6E5<2)$e*{@iE8W?B~#)1Af00Vxy0m(8| zXG+`BSe+&7HV1|LS+G;a30Ftr_-?jS`L>{60_phYLyZkS_aD49niJ!ZI# zw9V^sjz=(4aG~uOS&swkD z$vqSsdzjNH!RQ_)p{f|ezWVD}>aaJb%;d1$R=?D~K zGN>*606+>L$3O}a`h&p2g|=A$9YX;mP;?Thj=VNqk-x?zst2N)5;umb+8*DK#kl(S z`unDb)k-Up4bVOLJWFf0yXZ6koPr__1r+=Ms+$mG1Z04c3{*(ylmaSlZ#MfgzP?*+kH)pyTM+Uc0+$fH zUNAU2YysUCN~!|E4-yh&$7ZUGUbJ2+g3bLoSbwmxrQQc|nU_~HuruW~7=A^*zL|3{ zu^jxY8jnm%EdWOw7u$co{ZDDJWq0fJU(j0q*tFK_lT1V)ZJdIy5S?UI-@t$t*a$GF zfe&hyA*8Foz)J}MFa6BYM)fHNvUXL)V(0n32`NEE593a%Szr10o~S zE2ijycaujedaYaKF-5q$hU_N8!XA;2&GesazKjOE@DmL5W!nH(cg30KBc?dKD7Fa( zUJf31?oTm6GhLbA#F9b%(w(?@Ap6AoU)u^K9;JPJgh8Ab!qY<$dT<(r>H(5cTs_^e z?_b{ynE=qHN)JWA?SnI7)`Ffz7~c4Vp(<#uowYZ;wqnm{**X#en6R;JUnozEIzo z;@G~kQ{bp6hVu5Uo9JEwNkYHF}qt;i4 zLlyRoeiG(}M1`bT4_SGUKuU{6V9XNnege{=pf!dF1Cf{W51Sg20I0SzF-kqkVJ2!>pe(#!>Zdf>;`aNpWQ zj&Vq&@~;aaoPI(dKf%g!V;DB!NrUDpl&`N#u$ zQwfj6ghI6vNn&B3C#9YwxSvuzI{S%q`R%JdJQ6k!41BoCOK=NGE;n|J36qk#ku-G- z@6VS45I^L}LDH@FFf`e2TCz7%C~sU~Z%9c{tDhOC2UrO|_&gA;?zX3_q>6+KD5PhO zwMQcdy@iqb-*w`3E5Z!mT3~|6>z5gPu(W7UFx`RxF2GM3fK*9FZgpC?9k9-}_*^gp zfxkCdPhYKIOCMcG18HY^2T2sjq98UTzN3{Bjo3Z*+dJ$B1)Le9U|{ z?dhy@c08=%r9ou}YlrzEt;2#4VUJ_qket?J?d+IAN_zeG?~g#)-vmH!P*^g~{+I^T zH)lJ#Jm8G>0b3LS8S~931S0}}AY=klbW{{bh{FG$_zrPpK;7VzFklXXBs(1F@Ywrc zmWMVZxma$WMX=&TMFoB02^RCe4vdc4UTA7JDipWlEHXAzpW=?nXhXJ&TaGvlR~Xif z4~F)zIVU0wjkXy4in|hh6f^RwtK)zRMvGlMEL0ze~xtRg9VmgMKsylC^ zfbN+T_;B+cgoGnO7U&5;KUjV3{?-D@LEFG#*#p9sxRR)lu?Bb!bO4h>?Y!DvcEja2!8pbf zFR8|fezDmK8cA>xAPgk^AMwDs^Cp6rj0`x@&$t0|Cov;~S(8CbEC*;PaS-AUv|_nI zDhj}~>Aw?eYD-W{pVL)rkEqepp)o`~Q770TH6rxfzoGqrF-=6gA-(eco+olrGrrYd zV)fag#@C5*{2V>jP6O{9`#vj0F&%aE*Fc@1ff_Gh@CGeR9_$x~K{on%Tv8hkMxhN3 z2fECMVeY{1s#j4GhNy4(4eDMsVM`YB5D>x%3(qaEup%}z?tCvPQay~q?5T?R3*+vk z6_K`*-hA8Z_^>x;NtfC|R5k>UvAAa4r#cqT6#XqK9AuTqW5|n6RNsUmpmKO>jZzznSg0Y~3wHG&D*;l6G9YT#BkU?^J3@4bH9Bhe zI-e2k)2?%Pv?97hF&`s5a~B$gX!(!fYCg+B%wN11JXVZv$)mJQ6$@X+yZ>FxzF`BJV^>(KVjU`|81J63!PPuczW3koE!r(9_$0%V@3zM_;gxhRThysQJ;fx2k-Z!% zy$83Jm!idDQ^Oa=GPfje2P6Lxfyvvo?U9Nuip3pHom-Azsw{i{~~ za7i=5&#H@FcR8`N^saQ@_fKIe6%ke7y2g)tA=nK%)fHUtKf^{u&CmjURkAXDDR2LlM|k<2tlYnkoO4_$D=IdOoDS*R$3t-o539*}&vlWgP$izg zRA9k{a$94L%OJ3!{`KJiAD%3E+hTf+;MChbEjd;Y>w3?LRto{-*TmFNK6%TWo|WAm zj}OVY4$)M;i~aE7$oUlO#!;>}lP?YFdsK(EK#IAW2jRBHdTIP^JV4{*VT++=UWyYjiOH6PoM658uO#50vuo+daUGi z^-{7v!k|G1;a))MAE-a(K-U6Y0o&tS9Zw6aSMmuQqr)jOctCSI$Y{fMXIFlpvPCM& zAdi0ImY7mbfq9N?TOB3O0{DOo1l}I@kCk(>?aDwK*T43EvnG~*e$PfFw(01IM8Kp$ zv>%{}@};b717v2PI5`+)5Cx(Dz01o6bg{CblBw-F1UKpn90|Ex2cDuqx8su~#x&1M zP{lsdpSp6t)UcOwnYB#5+5S}cnVybetU9N`oL68^#SWezq5nTC)OGvvqf zxsKx+UBCRnwXT5bMGV9j3QcIR$LoiyE|oR$s-aok^`5qL|F}kO3 zA)M$Q<-(VkyCi_scIqAs35*r=^9$HxTO!Z2h3}A=pxQdC$2hH5OA7TLk`|y-?h?24`5sQ^HKU2_0QBaFUS}^}>vvJJNFX75nZxlN8sM*hhaD6|{;GBkw>HH8`_?^qsvf!F0m4#3r%fw$9cn(~ycHkS&tKp(W_`Te@oLz1C z_F7U}77^CHJVU1PSsbt2m*b4W0n5SE+J<56rToT>@$CQ+;JHGSXrNMqh*}twjRP4) zaO#IQPzwn(ioh;q(>$boC5m}oS`OAm4LF&g80Qz_IbOk`SNL{6D^v2HE(vDjRTgsj z9mTF+-lEOU%p|83er_|Qgqf%&KA#9_aksS_ojj!Bpc5t56m<$KSSv4%711|fjuqk) zCj=&BVZvM57^h370w!w2oEIWz2lp%f$e}^VE3q0hNCayI%{1SSC_X`tPiO7dZjzduhp1{ zRG!qIak7))Y}MnY#>e)m-`w=sr>1njxZqo&5AS2(BCk|8epy|S-lax?gK5jlnBquE zhbBMM@Ek+SaJ3*J18}vf#PFmhCUVz7bA1vYa=^#t(S*V z;i1SN?P~FI!uf@zAq9>4`6;Iu2F_;P>AoX>omld`Qw-soKP{(zSIA-`cs2&<5&T5h zeY2`jsuzjzm)9)n%QY8?rL3rP+IgzQC>eFDOmN$>)BeMW@2`gN^LA(PL=XuBN;25WL%Iuy7Y>0QjK!f;YVC;KLh*1hk=DZP zRB;J10`vxZ7A4WBBfnh-y+70QB2EiOIn$FLWiJnqBe8KPAL}=>J+y&;f$#WhVb)$a z|ATK~xv~Mw^lE6*lB zz}WXuP~^%ae>>)#fKCRwd#)_fT-U^d@hnE;kV0q_)|+8ZDXg@O?Z zrXZOxHCIW05Z!*9cfd)Ri0YZZ_laGUj}dfkF+5Lq<1-AxP+ax=@^>t03edNG(O5Bg zH@0kgy)ar0_NA1SL%P)sD&+?L&^Q`cS@pVViJ?gGSpKx;`_y7zpG=R&wC2?+!v4E| zEv#p1+UABen~7rj>jJbztK?`{|tRedPYcJi{> z3xD5~gIeztf|Jo$!&4Uaxs6o+2TA_%kY&F1q?1%&a@MN!mp`cbH89=g*SlN-sL9^B zT6{vIii$KJGl&hM^o$v`QP_nL-e{JfdAXW4qQ9|YdE?vgiG!*9`KHf$v}dS0-{ z1*vpE^@Etcx;1YAoAr*<@7e|6b-O`9A9Qr@MjIPL_1lScTkCFp#P1O+bkz#COjQT( z^-@mtGs{ZZ!PVyj!XsaPRl8Wx)SKk`SzOa;VjM@&v#EIu9LJ9MGJCpa>e5=6iX(+z zZ&lyk9KtnSL|+A`oSU?|#GQ0uWI8hzmgTCorzxFbQgMjg1p`#1;UAfl4yKMS@Z{K&uB8;_&2Tg3rc)A_RnVh$RZ;g{vkeT)@=G zmff8mY4xph&O|NbD7WBT@!U0j&zDt1&~euyxLk5ascNR8SZ8?D-nKOSC0hkoX*eH@ zs<{R;4!`bn-5l1sry#_*HE(F9u;3i#PGRISQHTMPcnlZT-xGb)9-gsGD*4BK{B|+E zk$O~GeG|;k{2(bK(<9v-drc;}_E^6a_^=QcUWFZt_a-;kH2lQ0+?@IT2i>BUYisW4 z7d&;S*$vFO-4~hP1_5RQ0R{!QK9KsXWDC$wyAv5VIDK|-)zSQgwm zdN)$g;b1Ih70y*wd*D@56Ci@s1ay?{D#y2GwoxtEmmD zCO3Ny{Vr#%ZttqqRwy~`s@v?`x}!a6ZavBd{tcx*gN#I1!%UrqlslTH)hVMTnq=c~ zNs~UW5cyu_k$~X&IV$#hP@8@?DbrN1=YZ)#7KC5;S|V0Ux#-7?x`bSboicqU7Qs_= zwyWW2kP_-VJzp@fIa@GsQBfH(h1J6q>68k9LSvSgKPi9$=+;}sPSqs<*J5Qzi`H(7 zYuM}z|0BS77nS@uiN$_)t>{=zexFJMZ?tKPdUu)Wv5K0>59hu+yy7R6_Fl*KCU>(I z+;aZGcQmWzXDv2~cyUc1Hoz_SUd0V@Tzq@@G4^xSaYVUWv6h=sfO6l8Ie|5L+fxBEhnmV7 z>y;<2B<|Hi-w^Koon?MlMX!Fd0iK*PgU=OV^Y8lM*QMa(feaJH$b3xMZLwr^(8oE6aVz!y%oF) z24n@`i+49U&b{Mwr?2t+0v{*A58|ZYR{BP~&#qeogRO6Eg@T?P*99PCxSX!P1h^-J zI7;zB(1-<9KXjEJf&9kBJ0o+a z^GYW8VjlV3D5;}B>j$`t&bN~j;9^Jz z);_;lED{Im(dnzG{D*(+gS2~o&J37>{OM)prM8jz6jFGn8KD&7M`6O%8M4;nFyXfq zL~rFmxGv_KA_%I0`6xjkCB6m5NAy(_IyeG^Cl{#ngSs~=_&+TH_ric{1FR%g^50$b zT}-yLBif!~TI(bV3C{pg1yPgpv%HfU33UJW$mQ>NtFymqofB;>mNU_KR!JW73HSb+ zBUXMfwW(x{g>yZu>v8ilHqj}-HpHGX0~~K8cMCh%Zqq%w-WGIqQY+w z_!0(~pO!gY!V%+5Tp=H%qn2u2^;Zm0(1H2IG3$WR6bcU7kjx1w$DlbgFblxP&}cYZ zVJC7X>p}{{v^k-?;B9LD;5#m9v!vEideD_A+EV9t@$BIw zclr_vmJOONUX!BN|D@MfbLal%({!nLOQQCGy+b%J$NE`~*<*l9QeqxL9zhUMkREIh zZb~g8C~tF8K8g|8o$|9MH!2cSrQKrKDdZnz{WSr z+aGyg$M4%{dtmTITKKyUe8{BMTN+eS5`1wctA6dys6m*gKXU_7Tu6gRg1lf$L7Qp1 z2h%)>l1RxBa-y+~FHv9mSy5APf6BziHBpZ>D2e%DT@rvvMTDK(?;>bff~rDLM^njP z!2ihu?gmxzyy;~^aqex)LzgLnc&UzOg$d4h=8)evV2XcQuy(n=dC98aE_ZmX{@}gT z`Ah*h=>8EFhxtaAZi<`mbR3pd-_vZMR=kxa@Pyad74|!%T80UZvqO8Z}(qvS)jU{TU=Zq;~>AzDs7t>+FF~XNMF|R z;3*-uIj1=FxCqzDe6X=v#e`A?+;(#^=+u0q-EUA(q}%BtwMP<86{3Pv)CJo$Or*XTDz&F& z*wOZPw1Rn5CgADB?4WmB7Dt+VwsqrlGsopbj{8L2GdpgG@&L}k4rj%+w5_eamdDI$ z05v7s#}nPKH$3eVQI>L6ewFqlysu)JH?8yP`cfHA$O*VmdT5yrFqpng0 zFg%iKqD6jN><@=j#vVs~i1EJUxv_rUq^qfE`Fi@ifqIPKJeWjls(Z_|8ZAN@q@{ex zhqnINF2SPJu)7z2cszMUyHK_}fi{;WaK3Tr{@fB|T@MZ`4TgxczqkeRLHl=$%@sOQ z*ws-GDi75PCaM5R0U6v5WlAW*Pvp(N``;yhHY_cotIXs8Dvkp-s5JJCtzZ~i8H2t{ z1!YKdOhz-Hhk`770U(t?O#x_TD&RU|Wc&H|xVe>^@GB>if|G&ed26*lv!E4Rn%pTf z+ezUwjI{wFT9c0v&0#24Sp*H9&61fpj#Kl~h^Z0!=eCB4Z;Po*Yl`tyXJ^B()DLe3 z!3P>fWn_#uEO8^y=t+m0KKxvwV`)%~0n*eD7Sa~d-MY)f0kPuG)wa)DrVJ{Fh}T|) z^zBmFNZ`^pXR$VL#GU5#%$K^E1Xw;7$+aup_zE6EP&*J*c)Y&0tS_e%#|+B#=_`~b z%6?R*Ee$GQ6}!4n*ZbJjgq%yM@iXa%Zo8*V2uk+t)^s+J*Y&RGCMN5)kM3Lgr8~OF z{}l(#HGVG1v=dIngJ+LxqjvZfCKgfzR#InxWw6ZC@<+`Xvh*^=A>+TD|7aeyGCyBF{g8=9=w!M2&uZh?zh4B-_Lb==x?wnqp17Y< zQF6#n>@-BNmju)EVrj)Avr1CnW*50hFX!c&SIXo038gGGHw1x&NPVQCE|#J-e>oft zWbYxSfqtVwHYw1h?fou}#)e0NCn$a?a)fpK$)`spgzM(7MXjSvsqHCJ+7kp`(Ho9{ zHm1RQ64j0@T>&SmHs5!|@SG?$q}>{)=H(s|;pTay0J%k|N}w#2>0nXJKg97xxFxDv z9~Oj!A+7#%k0@>9Y}rA?FX_Yk$*nWq_tEM!C|JXC9zqTcZr20_UBw*<*OASHWpT2_ zTGWnDL=|Q)T(z@Q*E+uZtkn$vfVNhs7)0(S6Aq#$OJD8rQb?X_Z_#v9qeMO`w;WyZ zcfSzrj$TGJ9&+j)m^ErEE+~(G|M_!b1RrAeD_AvL1H6eUiKRV8<@I&MjnaKg9(+`R ztxZyF#q8yEvHxto@~keKkj>omXlQ*D zaCvlg(X)%>_Uwi}!ZmTybEB>Vk0H7UZuXbDlGwdZ+-mThVX)s%Z%K`2CeagSl!$XUmL*klF{ProLL_t0h z#Sia|jlU>BQluxMMs8ldz zU!s%Yq`vJ~9gw^~F;B#b)|w_ZnE64Mk8YkSt%bZ2a?*IVk0&=^$?nZgHs)2G<~oL( zMA%2X8(|%0p1me4NbDaacD3-Qi}Ru1>w{6bJ6y9;o-^j@mSdh;LRger8!)jcAQ&ao z4&LZ{FR!E&29k9EaGF=b(6wU_bqAPuqj_Rh)0*o(wVIA2!ufMyXVyQ^yy{3Ej%ZV`Z5&tG)CCo*7n^o`Mh&N0R#) z)qk4pDWe#M_rQ6y*Owlv{4xp*M-ED<%p#X-I+^ZLT}joNHvYj>I;vT%_?jiwKrO!A zxLPk5S9mW--cepdqqTU^f_@sG7W&&`vut z8hQ}MhGe0*bA}2{nlkl!ivRi1Cp&B9Vpz_b6ebSDmX=E^%iQ%g;ghU4!P6IMRCadM%&q^-;}t)pQysq`!ujD-K- zEDZQ7?GX-`!*l+=F42SQ zWg{m`WcA)Q-{lb;4Ze1l)H1bKVC7NU_b=au)cv-WVO1Vwi8u8${WpO2GOEChW}sVw zN{B?pAtXsTNR%!3%S6Ffz8R-5*Kb3nZet@hPSb{_TcbdCI!$8u;j;k`hCqV3JkfyI z3&r1O8Vg_TwdDYBK&zPD-5gAu1d-G1JvIN?yy5Roaxv&#L4~ml^S`}p4#QF28he@j zM0|d5?w&HcQ8PWW8acu;JF`l>ltpT6fW#U-hi-dP()9p8__5MkJjyVmLYYd+wqBvj zS4Th**R0{?nQXV1Gu00=FMB$}jt{o@(th~VCRlmtdu$7X$ks!#eW~wpxPU4N;RFE- z4KDLrYWrQ`0eF8e5gN;AxRFiEJxw+d^QQ}gFAimXK1ad{UklJ!!Kt7R?r?AnE}#i0 zb1G--(;QCw0`4iY3Pm){7hF`iQN#_otx9Ou``bZ2ARztF3qmmDgt;lWkh=!j4cw9 z^GXIZ8Dsq3%T87pyt0c#jRdy*UiNxTGXe z01(yba8n%V;wJt}%+J9uZ?HW0scP?^)a*p~M=)jO@oJ4qDgp-6uFwsJrjm_`1Kzloy#q-Osw_ltx0B4d{oTOf>BZe9-d!_ zg-br$@_j1ea4g!xO>rV+vSi6d$+1!#IHu`CoVxq|GjH0#0%G;@8$gIgDy$~q?muHp z=B!;3v-DcEvb6lK(+9xI@$vCNARJ`|xK+7`DFe}f2mj@yxoXl=G#D%w1TtksDXqrr zvCQ1hk*=>yc9sDa{;;6R%yG7HPvbdaL^H6YPEXfdM7*B9{~`N!=86T0Uv}x#m3J3| z?NZjocA0=x57FKdZEMCjlZ5BmU-$*WnxBT{1bwaimXWzREvxRBuTUeuY}aVaz>tfN<*E9O_dQoHVfN_FFJ>>3H84J!1Tnkmr9{Q)`{uaI2tG7 zWl)m%+yqDAKhE$M=;0h}**z&G8;+*z`V4a1c+Q!f(c#F|>H$SjI6hkZ#+LQLt?n{) zCOV3aAx}o@;sovNiwx4bF7#b4FZ3LIYp~MHIYK3_o2@G>V`{$*nnAx~+c|X)Yavl* zG-^=dXEG}+U4SvQ0f&gIO@!I-WRl$124Xgig6lKg#NKJ{9YT*wq(Gl3mhag{ zGmT{*kudD&i-wtX$7ogc9b-Jmf;OzooMV z5Mi#(7uX#he=*RVd+lScJHvKUSonk7D_J4yX;f8#ijt>EwEgRN@ZaXd zd6u_3t6Md>d~QDEVz(`y1*@S9A`Oy)`5@RJ@|L<++Whw>XPg+fl-tEv&t`QFBo8(8 z(ZRF_``2~|(MS}!k&BN46fF&A?cwTf(L3KCMZT9MP^xYQ4bRWi(;ERyS$S5rlf|pT=j!c)+kJqldttc0DqI0&jPueplNd zAQk~6;~;4J#DVD>&}=X;zy=t?Ry2R`Bx@{2oACmz{1&IcH ztZMkQ;QRCKyE5u|?_Z}1F%p>;0hd+_d9kWwN7cl^C(F*kj?3lM0+2L%SaMRH!Ph2y z{6+ADsbDrY1k{muj}LK=Q)r}X|$QwZmsu^h@*Fpcjrj|$>DfP6V% z zVk%SsKcuhkH+C3se@hJ*Y0yv_Jv|aI=^o&22c)$V|{e71dKO1DfrMg07BscMu&kahr!WXNmP*Hg&=NF zLkJcRfD+&jG*=gFHvru@42;gE5c3_Gj=@*C4f}^zL16+pg9AT|`K}OH)Uv1d(6N-Zm*8ghveo=sPR-}Wo z(=_?=KW90Hf3H0`g`;{A3BWul;Q69}eil@n0gz2--u4@Se}Dx6SQDULlBnc}1cRhV zy$L84ZyX=Tf*aEu@MWOUfFM2c=@^hSr)Fk)0sWnG+uWlo3dGCvincYZegLK$7=bXd z7L9^yR81Gw#j5VQSR|%YdOoFo*VXX{JFa|b>H5X5j;kD1_9p@0UyV)%WcAKUd8>3&}8y4moB9n`D^#QVQ&f_L6DYn#oC8cS=k5s=dBM zHKrhTgsk8aZOmQ%32TnVM%&5pOSGNh<9f?_Iz)N($nQy`EYm1+fP;xq_P;OuBlH}edXUG^|}7bY5EIsFs6M5nMZY7iWmG)AS56dx9|}l zWKF?*5wDGKB8bZk4KxJ^XOM5VxXKiCrJ;L*2H{HL#BNc+_-1^7v(NW%5EmC`)vH4U zL0`MCf56>C48pax%`5A|jO7s@vL>eT(6iaJO$6FVI)dyr3?4sPot3`+#25TFT1nRB z@HN|vJ4?E0ewG`7Hb1JHgOHJ5_A=dV2PfkU26fKIgP(u>atvy{R6V%f45(Z2`Giq;3FHIKV;;C-v!6X0!haf~RsL)%a zb%2ZupiB&vX_R1Ew|wP-T(yql-+SmRENESatPNZfC`MSiQltgDt0enDZM(vP z%R=>m_>#Eyp1j;+JaDi+nh4V+gzubURw7vr*-BbUPU-nNOK(OX>ZHWL50jCFMMGHD-kxQ2Y;5sf3#6*wcXVL08+S6&{}OhS zZjpA4=vSpoy7Mz_-pcSeUhlayKN);gXCvP-Z}RhPu3vAvo#R0|9dC%h40a@`1xGy56^tmuj~YH zu$5kofRSNgj ztL)%csDH@EbH1$z@U*K0eMBAw62g+V7}VN3b+MB50>ecB;t?{$=Bdi6ss=%HTyIj| z&rgJzg~b(6!}&?RgK#=k(g?%_^*^K~zvX2d?2XR}|6bDSe0BHdnRCgT8ao+RLs3Cu z8;6D%qImmzK1XZo1>K!2ylnu$JN+ z)mA8um<0IVA&Tg{AY4%MS^ya!+<5&ePE*y>`vAUfGmu)WaD|6~A)ei!0SKJ|wM&ly zXlu4M1DT#H;imiTY#tpwX_v#G%P|w`AzIzfk)#N&*RbzCwJp5^&mYHmln~6ZYx(_r zob}t~o4A>7Q!ENh6zCuRjIhQB-XS#qo~1dS7qzIk!?QKUV?0$AM;u2gOW|WjdfQjr z?WBtV8^fj@9s2a?dGbQg%ij;EmCWJV3=fqC?UQTNeq90w?WMW?$h^G!m;U?v0p)!w z?defAr(%j=&TYKw7AKtps&=e?_%_SP_1Q|CU_u}~zOS-_brzk8f^1h%!2a)_KZgl} z9*p&Pf?oZ!m%{w8Icth}f}P7$wKT<0A}^O7iX!vzvuW!{QZOM)4E_@LMZxsyZ04WQWdo*W6*D!=#2JK zLp49=zy9Lij-Sm=|MT1Wjiqa#SNKIo=dGTy1{S;+hJ?SO=##!DT$PW!BG3Nt8XmPU z6&%K<*Hs<{^@uQLW1AzB9fWXgnuC$ddNfO)TP8mB`75nf8$GDpa}^UQQfi9RbCcA( zt#mbW42v?@T=vySk1a{HN-=#FZY@}|OEGBtBBFNTBOHwRnPEI0dFbDG;v(^LI(ELr z0-4dSF0F%u*yJ1>>f${q7;IrsACt8`q6K^wO%E)8V;>}0)VaL~ehy|Gf-aof%esMs z0ZqO^{3l-CxrP1(%Z^p0m5Dwt2+Nu^HXIIP&^qW(Su(4hAyoy>&~U%@2=`HKp=z>y z7jd3f`epC#rcK#(4sk&`!jP+pXe_?>ogp5LX|bv;?)Bf*Yr6W`4LxUh`Tm=`SM+FR zPC^sgT6vv%Ev7QQWGsI%F1qtjIr?RMsQJecs<4}$os?pGVwD`6=FpTcBprHAN3@mA zw{71|d$6(-Z)KKG5MNy&{a%@Fk0ZyvVEV$+$3Ya(6So)8-}rT5{dhmNS17!udE?C> zx=>F~^5VR=L_LXtaD>aTt*`0BjmmEgL&CArYdB_B#2nv`?u01^n>$E?!WqAj2sX`o z8Bo;-{X>3YCdjKVP)~(pw3g*|UQyI|{JMAh<2P?m%x%b4W!0$5?Z)Dw(%o&qf;Pny zuh#yIV5D^Qw(Z;@%g-<9>$?}LI;$=RJamP>GR{VB5cc_JS;XV=J!AhKWA2|;;Yr48 zr$?-e8Y&%#eh6Ir`^)1)C4ME6U7iPW*bx?)DTy*+#sAp|5Vw%`HyL z#3@gZh&+CEoN=jc@8MECjlm5$`s!IB9q8jEbUqfY)gJ4SNL6KxyGhf*1@;1_zc1rK zhx)O#!yP4^SK%>2V{K32`_;>z_uKF~I8j_-17Z7^#LS;%k3KNP!uV8$5hO_%CA&Cp z{~B(ie{yT_Qovkv$30)#Ckrd}ar8KLJ?F!2>As-YH>V>Rjx|!B8zyFPG)^Te=JN^n zEZx*G`OvbQhMN|M*VLCIy~? zLZb5NqAw9qUY+{=y=uu7b&ZR@mOlnJ*m&WxxYXvUS9cp|8Isv^<(&$@Fer5%QU0OW z$hcarZZe7a4*nT~&|FwqC(bSTm%?}1acad;T#0=dWp6*kPw9#HahCXTNHU|M3(-b? zNezjMbIT*m)l(BLO>bI`JM@2gzT{Elp3l-Y@tcG{W?Ak9mzsdBhf!_wf>WN&E8Bd9 z6RGv9?>|SL_W9nLd#MD%B+R3e(b^r!o(gB`1PhD8JKK{Rx)hB`kpJSwg}qr=ib08T zreS|XM}BHN5ENqXVqdl37sO}(Tg7vpcTDx-UR@^bBsAVf)o-ojmZH(UuSXtVsRB`j^cynPY26BBGh14!v&KV4*f?8-0yAdLIW-KL-3d(<=zhN`W4 zagLI~@V$I1Taay0X5wqNIA^5HTox9SuFf(YkK&&$k=f=0K#Ddulh4Y?KwcAdeoF|; z>6b6_Ki>)6sb$4vhC_cgeru?vJN<`;8gJ> zu?XCiT8dQq%BmR3N!Ris**P#5+>lTX1v*EELi_i`#>DBDCJ4zfvxNF$ev#Sy$d_s% zj+meCzFM;vh_|y}_7w=@g-6HmTzhSCQWD!pcpKJI7Nke3Vq@{_A>qAW;S7H6o0vpgodL8#(++LXdj&!y!RZ7JLj!3`P_MpJPO+D!A~Z z)?(<*ORBu(pun9=-h^+HhWa6;4C9TPhwV{+$eqkWvXKUjDLm@jh?)4k$G=-Up4YJ7 z9GGivztAahp5*>>aQt~D=%R+VW%h7uPoEo|gnxRueB7KQ&=3*y#Z=IV{B+(RC}q^1 zBY|@j-*Z?zuipAFw>&8NA?)C-nZNjQRV$)|rVJjv(MsIprC+f5T36)vwL1)x<7?ta z;iM1>OQCq&PsSyq7wD31YjS6o`-{YH1>i%)gd-RDvwGU_g<1@Ck;;^cYftt?HQ%q` z{_HfmzjfUTS}~*-v)Gc|UCYY)7>i$)YVMTdJ#YwYtc1KI|dp?su|`EvS* z=?=1q3ukkkr&%e=0D0ZhFTF$Pdj%q8PM;&$Md{4{r?j_>%5v@celNNkk&s4OI;2|= zNoffY5ClXTkw&^fTBRhUq@`P=m5@;BM(LFHotO9hykk6j>@R!lH3qJ=@XGT%j(N=d z|BeXji$^)1^{h$X%O4EWqbZ)$;cVG)(I>AWYh=S--zJ=GHEnq-&G>UkKKQrP+1c;b z48u9iTeFD2KV705G9&pXsd9_@XQ^z0yanh|hAB<(*JG_|GEp57+hanHhVn@_8+1_- zP9N*!p4PLKd>$3;q9uGitDx?*cc;k9PF!B6Ikhp3M178$(Sm>0ns9jq{=}lm;CwMTA5!ySA{2kC4s%c#G#ST;Z(rPlEnLc=eG;;rJ&p zy>DZYxuQGs>+0PHRyGbHt&Aw)#-|dP4kj@uYjL(j&B@G3jJQwYXdYCees50aSCp_5 z3c==~m!7WgXg3)dpI-_RQ@_$e6V~dYs~HmJ8l`&oZ-z9G}{Ww<4%N?@jL$u;Z9 zHa`EpwQ8wPcSuq0e#q|px-k|Hzf`e8fQ6sT$1m?jm{ivp96IK?*!b(;NbN4Fs60lW zyidq@8KkE|^vJ?!yK$YwlPj5#xg3?MqT@NyQ1J3X`uYOH=j>I9@N-`&%$0|M4^2Z> z(bnz5T_R{+3x5H$JZcjZc^%G`A3o9hs3g%SBk1p}ad25ucb)Yo+v!V+392I&X&6KRU6EkED5OX2|Th zaJ<+E6n3a|_I9c{7=jrl1;hFE79a4OENW!{_Ck_)VQLO;haW0UzvQec0nf8pS1`1tt%M&K)^NCM6=R^_KS zsloc5!r#WG?MB}7G)~+2j>8CW^Nw6XRugldhtiOaEeDzB6iGK}B$?{WtDz>=+CMsG ztc-~=b}yv+-%2I4?kne=yDL1<5Gza8#VhvQ&@m3I?<@%~xz&|TZ}840oUQbO8+Mgm zaGagM^#wWgN^*G_nx7UTU6ezNiqF`X<&&*WnF_)*RWOvrP*;RVFwVx5QqQ^FP=!sU z3*?J6e%n8FmLf7ZX|}iUk~!-8!xVsGI`jRd;EQXeihn~cIEC&Vy}6Ya9woUe(n;n_ zVzz$$Hwu<c;QLv_vL5SO_TrjFRjwU1Mb9 z*L8$6_79@zi8jBF_)S$>2FhF!ufCNh8n8VZ78OFQtgMP&*p!AwIi@`116>Mk-b%`nhI-=m+E{=hs^WQ5mChS1C9jUTFAGdfE;#!pc6 zxO}LmE`C>YHm_q42rKo+;1{U@7xP?oJ%brxvLNT|A*Uursb-V%nDX)}@#=`MLt7Ec zdmV4zw-^cFeq%2`L6yi2e5#qPNfn=lb$IJ$1%>J^?y#xB9r{Z&cg|`H#op-Iv$x8$ z@*4gk<~&R?23XPCWZ@&eX||t*9Rlm992Df&4!B09`(<{I%c|Lq?+|s&t}`MKYXx3i z6s9(0jM7>@WP~5S40fNX&d}Vyn^vwEltbWGMlBb4m*mS+l`PoUJ!!9c$)Bhl54Xy z?@}!8mz!%@a$tTvC7RYNr^>3KkpHC2Jxs}DYa;xTJdx=&)tGFKmN>(K8SAmtcE_x- zcjf7?FHSn^95)}=ifR?p2DHoswEU?>Y}B=X{YjYUrQSKDdHM9DlbY$9V0(R;-hoiM z%X*JtXOPLCNl~R>R<(7xin_|~c5Gh!=v~xM{=hm>RlE2EgRg{m$@&LG%?_2dpMT6} z-lmx*vqz|WMHx}*NxPk*!iyidE035A>PsYbiKrVrn(ZY(QI~5g=3t9X51i_3*&LH4 zkys_aZq6w5QDnhzmVfi>bc|HGcf3(%UztR_FJcK0n^MIIM(7W>P|mKS*`NiEIWY+1 zvpcu=H(T3QKOpMIQkIdec`iiyiHu~q{~?Dij)IjJ=FgJc*AIB63`tK+h7RWbQg`Qe zjmvW0dTenMe|@H^_7wwbF9E;Yvl9a!bXe-Vj^somzm%5L76j+zY#x<0Ji}NU@=$8@}yUIeZ8k1w7R ztOT#F2^M6UO-8U6^0a5A`&&F;eRiW)I-rr_i2kP-(bouo+YmF@e@JHS^+ zvbHB`)>HBu5_+tw|9r-cpjRX*^cub5_m2E(Pi_=`wek(cuCj>F4X<3cQjG7F@e#$a};8xmzZ?TK%)#ti9XY-I2WXd-iR6!@h)#HTmKq}O~3 z-fwUPIjW+F>O>w<-TkI$6DXzQX0E&8x<<(7%w)H9!&#&dYg8efC43F7DYtLJtm2!v zuqZ?Ay7=NxRLAq{Gr^WzLyy?hC)EvdAL0wfAx1o$iUKWg!dDpU7`7+oK0h?_XZ*lN z@KEw9R2@7kWyziVQQOB+IW0&1iLfPq?WXRd_yp$AfnM%T$RPP zlrXyBOf7Rzk|rc%bFrWT+vIBAH813klGhv7dmrfn>x#dt8V@%uQ(%51z#-sn#*OQK zu#Ke!*Y_wqT<()<7p;k1wjrv83)yRqVB)u2VqvhtD<#K)mQb4KW&JFLw0M*2ZuZ1VEW6urzaR84%*Z&@5>m`r>kHE_BnCoIl7vh>YJ z=woPdxI{fzcXY*zfQaX~6MDX(=K-h2PK7kySR4 zP|yQ^&g_G-obsNoQU@d1Bk1FwITcYCg1I}k`hK_P zNCt$$L}EQz_DNXW?{yYF%OzeQ$(f2!lZu_{I30K!xOCZ)&}fbud;M)!!=h{at8;#w zU%UmD=EJhbhQH8)cD3E8LT52a9R+oA9ag@QRQ5+3llpjl^g&CL@Dd4mayw)*e}gZv zbmA+?+RJwdbe-t4nRt;DBD=NuB$t;N#5Trpa*ycNWyDEhV?9=ram?_Y`KYt+|4Df% zLXv5diK1W1S9(7u96mEmljC;x_TbFzBv)*L4+OBEI>)dII%ij}dTdp*IIx`wI^de~ zb6Zf}aG*WS8vE{rDV{l3PDuIug05Rk8l$-$S6E&6q-owUZ&pLeOIw@{+f(+JA(l!1 zuCnHQT;?FtduxW)fP^)AuQ&4@FMV!vO(@|DETy2+>*-2Q)-o6Q=7e&GkPm#5(;CWe zK#6ErOGxvkLkw?jgx%{H>8&_W^1@zvT;$?5?niuUY)X7yu>qfL9+4!{xq4`J=#gwb z9FQ4)E=YhDRrcw?ETUd&!bH#dv!Mq@VIY&oSi~;KdYd*{bEA4#2uT?a+?hPNZ^^B=V=&<4rZEgKP_} z6JO*hNk|`W2hMl$sugT3PqOZ!^KFokic9M&zw~?^ zuVP+zCV@{WL4kH(XV1l%->Ox*_w7f7?QyFLQG}eA3NLxnsfQ0YLCpiBB_CR+D?^c1 zN8^bZ8EiD#X1;X`9LQ)9Z{{c~_i7mi^m7Yq4Wf)oax2HC)!I0k_y6u6zAV`;v@5>f zB;9@!k=qn|=l&m-uCOkeGKMpuVfn-R7~46|W^qlV`q^jtuQ}pP?>LUy5#$Na%0n4i z_lb~)JM+3RZZOv@Y0lUK3B1RT8y$O;`b2J18n$Kr(0s#KT8`dS+;J<}PE=$0{H^4V zz2}9wbTW);&50J0Nxyehr^HGTio7509DdVWIz8|QZWpR(TP-C;_or7YWCbmfv`*DE z6r%U+EB6i^5V93v%!^EtQ2Z$KJ3(bn-UA7}4DsTzqb~@z`d6+$g zgN)v;&03cRqZMh3)UW=C?5e0;`Y24DtkZ3|X%(OnFw9xO&mHjsou5l4EIHk0Q|+Zi zuGxcr2YRKT#HbR#aZdA--PpL2q4<39ps4}8x3@jxjhDV_$3099)n71t^%6B$Kb7%N zm8x6M28CBD+B+^r_Rd$SysY}*!%Ih_Fq4v01U=$W#5(;jeVn2+sy&L0VVbafWC;#QcAsdWUY70GVy8VOT(JYC zZ!T;0#9Ddn-t zW*hohXC?g3>qphd#4sGm8NT28zP_>)oYKAE|7ZKrkE+K2eh371Lg?XU#N+pxxet|l z#y)$JyBs6pEFaGfbcN!z&7b7Y+}3l)I8tm$s?UvK{!KB)(NHV;a5lPhpIh<89mak^ z+=R@8UHAQKVdqov>pu%!`EMUN)T{GfL znQnLvPH`_vMiU^@x>I%b8h;6D=*xvW4wvw5Uf=C1U~_8vUHkLsYwcG`5@FQ4Gq3n6 zCl%`@>Pu!c$c04F=KS!c8$%?nuADN($TaBako;IqPEI709EqGQf{x#fsOuxw+NTg2 zC@N3SZz9a?3rl2Qb)Jso=dfDSh-_wG*Dz>pQg_ruU zskG)Y@l9q|ER94`irAERb+>8~mSufcSht|gyDzs7IPp^Nn2sk}ME@!-=>3*QsN<3C zNo^t!ajnXWK=J2mb(J>L2srA=^@Q!F{q|2~DmTj=1D35ms5ZWQbZ6(^cc!IcFQ%+t zdu5ssLtz{B%Et$)G0if2ccMx|OeemS(9qo5*E&&9)d^O*_hyo@BpZ>1Vn}2j5{6}c zal+iIqsifoMlQYn2IVP6JT454p|{&1cv0A=T4_H7VF9H%{NVI+;d78VJ8GJA276li zp_Kn9ut;^|+;8%FYCn&==i7!o*UEPyfgj$hpiQUZA}t?`Y|~I@_S+BQ+l$_nfgXt8mn1~{a?s88yoN@cg%XK zeKS9YI@2W8p09QLzcczdNPTmrx#^d?S#Gtj1Wzn|91-Fv);!*P8^R1@{#JsMYO^xJ zDv)276mf`6@HvdPHT=)4KRxgxput&BH>nQ23dzF;V1`X&e~kc9cW%mD37 zJjpcKubdXXTb5X;_G9dP8^)UMM!9V20wp_;N#myVohg$HvMHf1sSvg2^_ZCsk*U6V z%Eqy?vK~?;I*{~|1&7g^$`PvGT6$)LLqL3L$wnNY3}Wo^BA%|BC^zUJVp_(kaul2o z*R_!D%9*s1n=A3#<5om&RVqVG*6;ZKUGq zhtl}4MP^{dlQRBx%v9yG7C$`gOzq7%3CGQ@^6UP30v1eC%p|LHm=gBP=(k=g5KBxl zqF55*{W_3z{SX&F`{DT}j)At5RZHzlFI^|8?uI<-T2m=-H3W z(VLJKZcOgN-DBKS`JEEXYD@OE^zC=|RqMAx!onaQN?=%NfzjycX>K5gl8MeoA=_kN z@~uXV5cRGf0y%LCa2N!lxVU)udvCPuL+I~@PErLO9Ws-4Pt!~UU(m+sO1P)V&!7F& zIomnd?nIvz#02Jx_sOU0<>&iFWoy~umpU%qTn?dI85=OaXToy7$F|SKdL>#WCedt}o~Vvey9lS>$10{(=tT&g8V3Wy`7A`}OPpp})b@Kbr(bMM9;lyg z<;xDzuJ-JAs+sRw0lW776=4-um9~k_G|w+fjmNP+zx9UWztDTpThjlD3J&pRaVE@#=P zFMn3~xCYuweZ<+sc|pf7KNw$J%!wMHtEZRV$X<~1F&P9?3`> z=3rt_;kyI60=>{A)(7*`E3opTKH=10g^IK>^UP$eV1o6PJ8#tHz)xlU_vNfRoBm;H z-vt8k4Fv-{eK(aVDAA+j%+z0eoN3J*kos{{+!k;Rg=L`!9r@9F`=;0=czSCc2EB_7 z!-lo|CbM|uXGKlp^2@H|TQ&E0vSa5YsvO=NAJ{j__-y1lN;S07cV9{GDW)F3>CR5$ zdcAl|>;JZUEB?$6TZO++5el`CcTSPhTPM*2B z$AXDPWNlHYCN{{5$@_Zo@FX02{$MEGp0Ue!l}wXq$g-d${#{u$>&F~>sZ;dheX+QN z;i5~C`UWe6cnh*;f$pcVW09%f<4@O@w|pHFGavpL`+m>uvNu^xHB<3HKI(D2QWuQk z^c8C7Vk403bLsOZu`Uj{!wd%lTHwif~d4Rs7U&_RZYY2 z9%Z!jUU@(9ETz9TRYbYD|Xb370&R4guHIRCN$GqNGKZ>!k)bZE_A-#$svkL0e|+(Dxf!3_H- zm>&h)ZSgQmVW}betxa1 z2m9_hG`X3q@5<O*ooHx223ST3;L9s=R;hC+54Zm^ppOg8Xs~I?sD{Lxhffb;3l@ z?v7}UKygUoFlVdIdFk?Cm!DYZQoQ(m<8y}FX$@vSLk~ZEP=b9bALc2}4=q~X-7T*p z*P1BVY}b-0z0KrINgGz%H9sh9NDI+fHpX?NZCesA(OB{;h(?Z$k3RwprW3$KB0-w? z0N4dVPe7X0Z666AfmVBgwg}p7ym`uiu@ld?^?tN)@~n@STyKQ};_~V$6F)zRLMVP< zTwI)O!NBV?@r{m|vnG{>^p~`v9`og;ZNtMqho8MUiT8Z_)^D@|gMZBTo4Z|A?IUu= zBr6GO>M^X(_SH@~+l@StPS=*d6}(`1SirIFH9)b%K7os%UHqk3qiWo@*Sxfxak&$p z=4g@R^^AARr)cJwL-f9ikwZF;svX0aXJmhWe=n$gYXXxk0yN@Ztft#+W3@gIr^V3X zI?T+!&#__j0I1A3IM6+RPzBJM#7(aQb$P_-yL*m_^4N^9NHRB@TNBmh_%lxY76)1r z>1oeZY$ejw?xf`NFxz6-Dsm>`y1JAp&^Jztx=WqM6Cbs>Sz@NzgW~eJ&YG#$j?_YI zJ`Rr=ucPCLHzionbM^OBZy3kb$G<}o(gG^_Hpj{p@ zg!V4O%*HJ^d`&C;s~Oh3BcE8rnJUZ4i&eGe-Ejja;Cmxm8`01bU;>6n`UDY73_a}3 z&<_e4ztDRd92FJSo-E|3YIm<2<4YV*(<|~XQH0cQ zg65oI<;zp!jO*&gu@urVE$=EB7k{0qt_}60YGf`S`?(2y@f@J&o?kdGD_TAp=?z3{ z-(8rFwEB{J!KN*TX(z=x8ZLN`FoK`y^>PBEho*d1v|uhoA&XAwH*N3cHUooqc-$5 z>a663J0{U}@-Ta~4|xMe7aktdb8*lx;4nprbMfxo`9M%mAa5IamUwjt6xPWSjnfCd zHj2ISR{Wr%3lYanw9nuua?u$-8nnR0(%b{DinG+H8WTisKb6^JDfuJT5Qjl8vC}zM zx%aqPYkH5TPyx-TU}ExiUwW$U6O0*XV`Njxk_1@r@{-3lt*ebnU3m zT;eM`H>{zPc)9dLxgyA?Ll1573cIx$+>S6sEHL4AYWjUIqBO>BOzz2M_AnpVN z@QP7w8$EHxKEHO76V6mJc;S=7KX&>-m-HdFaIl#^>!t?S6I&))S^*F>JOUsQQaIanNGhzHRW0CKp*C&S(Ac+! zw<>yuaOnOtw6@X#0c7{^FgP{!Iv~0#9HvCbuV2qSxp+bTus*;K;fInK*W2VELxZ?7 zGsBLK?1Yg6;4%fm{B8ETcZ;pgWR%#z!2SM{b8VC4rX9W~DJlN`=j#>J{&U1ruba`y z%6RmDj_0DN^rL4s6GjiBn!M?_q+Ms9P$Z)zm`ppPCH{T!Gg>r4@jRX?wQ7$_RZs_C z-dn6E zZc+PwQ4%P3kpOY|pGdT>Zk`V}p^hzvTq;M(*`_59_ASzaRZn%qDGfs#+Olx~x0@^T z-*oAWnp#>{@Z!5*r2Ut~(dC~xGI{JDm6ljkVlFJFf7<@4!$OfoLI_;ehZ*Iu1y|~F zayl4NL&(Gn+qVDC`RuPBFo@udbIDJ&U<@t*2c923e8?*-3NVY2k;#5MV5OLn3qAN=y%p# z-{J8J`zD^`V}`aP%oo;@;Zx1Wp{jG5x%C-YaZj5~f9c6N7PV2+y`5px@HsI1rt zl_N-k$)F-r10$omPaPcYy0{25!8D*fIzr6-H#uW)Jj`Jdb8&IqEbj++p)vs8Rdf=q zBaXVe@7&kZ`+NnUQ6-yfq>loDLf-}2!QCB4?~<+Y!7JC=q9|MO8Xtr)qKb+Et>e(+ z{P33o=)Oxx7v$uRoO+^lF$g|W4W_^m3|>z|g~;g3XI%iH`jXpc$6C}=YZ^@W3wN-xcz zsLev)^QjEG!_X0{?T4;?mD84gT%S2h{q0ZgHzU0#(CsdKL)TyC@ARIS_?a}q`lj&^ zRuDD2hK2?UA74CVQ(oC*`KD~8Bi9Uq;o7xps^_o~5`f(J7Jv<%A$U_%w?X(2u9Nq1 z>BK=X;jM^1*>r#N)>jYme)B$kOqpKkjVYGmJvgQ$O#47O;IBhdRvf}=r-y#yI8Zdt zK3#KXCXMs8MX>$sD>STnT1~~t>f+)^lQzGM8`3^$NHB!Y@ei9)`90pY3we;p$3cvK zv^Nm&zw&We>A$v(wPqP^yT{be!a&vLC%?~mkfh;y`PDt&F>#1Z+UhsGP9MENZDQjt z!%V39tv<>%i`#C8Gy=i#>4H?u8aiQb${C-?QL5eb0HG+uHa{sq1!_Z7e)C=m19-H+ z$+>g)F3#rW=KR7!PE8z;x>Z$G5eNVwZ50sr|4nhsMfSB@0w{KKZhU+kn}A?Ee;qR) z=31Wr-od+4Vd#LoLaF%!`ZnnluC(stE=AU~vI^qo*d3yXGXy1(Ic7i+!U6!64X*A{ z(bp|FKd_##TTtsLRSRbCP6xyvZ>-3@j)=hIjf7+^EIN=Cn|U^aG}NH(xd1G2V7YX^ z7Pg-UHC>>Ek&}~WmzLs#TIu8k?R@T4@#BKXZ|-2OrsXU0tFjdrr8-d~8>2vZc|ttLzK6|!|CMxPOd86C#bdW;e7@xWFQ6VFhLJtj9{OYQ872vS<7o&Jd9UUD}1Demb zn>NKgRK6Jo&fyBx2*oGSa4dh$;3fU5dHEwJi>;0N=d2D){bSi!e^u4`3Mj#Xg6I;J_HZ-IZgA3i)+sgpIW&u>g z%tPrfCzU;P%xgngY{+v02-Xy0U%s=1Gd%fFS(#93+LQw7fy4-__2C@xjp=Yg>6Yh$ z+j|@8HX_4rEWrP1h8VqTaxxXc0Pe|hYL*{q24n5{>a&kzh_^CM3`=Y;FQ$o>Gjj?5 zJc#bLRvy~=UitH*s?eqNS6zP|X}N~g`Iz5`AS!l%z%zk6-}UutEGPsg!e&e;E#>xT zF)94=?OWn)F|maAnO>1_@^aBKi;AX3QwvAl78fUlQB#5E+a^)h?F6Y=JsL!WgyMI1 zolpa!sRToBNO%mo)R><5Xnj5*5uwQVA-g1Z?;alV61+GXH@K^+ipv;0@)Rc33E@ae z>YK}La(~`OWaGzRDH6*__;)RP!m!eh-m3lH*3MC&F;?#c*S~<71sar!e(aar4$U5K z$)c62Q&*2xwpvw_hnd4HETx&#Iq$fsN>7dV*U1`d=5&A0zT%VX-v*x+=^x`!aD$#L ztsihfz)@geWxW%>q%%laiDCDKYGdNVCy=$*e()f2cvvf%UWV>3$jy&{rhZ~dNm&Eo zdG((qaPApatZ}!6r!6Oss)>3|u_n1@HhTPC;KSc?(S9nT!Y;(P*x3I2#*OS`t;#{Q zBO8{HQ;l#tI=+KgM?EI3s3@9-#-M8%j=g<$Yvx_G!Wd@dfH3;)`soa{-;ck%11-!6Tq&ekD7OSg*5kbU9I^B=vCGR=Pp4`L4%UWxfZ!er)GLt4W&|{z zelgBwv`R_oHMRpyi=HFe+ezNoQa)bub$e|b4&NNzWlXqRzAsc#&|ygT;yyk&gPq&{ zi2HU=J{%t(Tg}#g1Kg6B6gyKxJsb8FLomab$?M)bOy{9fw$iyqk zH8OeaLYGc5Ci|~vROI*o%1N`_e7h-BDCc0`A*nn{*VMSc~pH z5dTi7`|L3flYx?pxO#UK6(zA-TaerBHNJ_rMxUtpO9PkIqXHHz7vAU%TKVaR42kY< z)ddd87#!yr8kbDUjf74+p(eG>`QWpWC=euljYgpZivfBLm@prTME!z}qCCjK6li4F zXHJxg6@GtlAxw%=oLxYY-$kSf6G$1ai z_msqG)qCafr@t6CA{+nKL202?qjf7Z?T!ak#Deyx*dtX7AlRQb8!7K-p0xb zIr5A|Duxo$Mk1lypbe^9l_gIi2H3w(;A2ID@W;FCY@~|J$!7J?E_W)zi!q)^c!QIc z*Zi##3~)u-M;a-F3R?>dy*qTmmFOZj#(z5XuGz7CGN8ndHp{ZF;-=?c`kiY3Ns-BS z(5DqxMo~<9ix{@L_}v+uL2NoPJCIRzzC3eBiu^)^3Q~$4FkXlhwf>ZpAfJP+0jI!7 zo4-HO4ZH1oCRF?M$IE$h>k~^b0JnWk_>je#t}ew-p86-tA4zUI1SWnUYxH!NyI#)I z&qenN^&WFg_pdK4+ku7TnKztMppwE~SXc;m z(=Q5w(vGiR2|>Bgd5UH1`c>vPY*L31*ZC@rZGr_IFwRCz%2vMKP=VE z3x`N@H^7N)HF5HePAh%RLj08N&uIDplC1#{t9)#EQ=)5Zyrg8*OTu2_yWt3{o{A#H zzB)fEoP?g|TXiIKbg}vOQY|`zac+BTrtS5V0IpLzO~ip3g2-JM$Xsez%lx!G)8xF+ ziGgT`aZG0zU#+RF{r#M@3};Wj%nH?lh~7HXJ^C6t=MXCGjnZaG7R3z~)CfgXO=Zo) z!>x!%B%g>EDc;qX@vEdV;R|8rlii0P9O@>-@<jYq+HO2t(PNizK$Grpe|=f zObh{1XDOM>pmTEax~9|-Ir5T239Y01j&gZG!xJwv3>D$;0b=iXry5ut#1`Q&V)+^FHH9gYo8ZWyBga!>O$0av z#_{nna;_gREJ4Uku-FyR*z}ZxT=o6xX#TzL6_3#1+azRU5P&K1Irt))CS?2SnD$E_ z4Pzd9tC;yaZv|w+8~l~;HMV5ZFfNPa34jQOBIv+uZfzCS1G9g4teoF zMe+iG*SBBnvmjRv9KuKy@tz(m5X~sy;rVl?o_UL+vg-?WNUc=_rbuTYp(j$NQ}UxC=I7_l7e@g|eovMufdQ^oWo6~2zzfc3Aly|AP~3VD4C}-a z_7KuzU07V~ylQ;D6FcW;Ns0?1oHSsYK>us=3|t6C$Pt3tfr71V(P%3$M4dc5R`m@{ zsTX2vjImMn57M^=CErxs(bRs#SZ$)1$z+$ECbrKoSyLl~l)xO4JizzZp0?dj+Dy_2 z7Hin!czKZZ_W}#}m&(@GtlP6KQ2^vtR8&MDkf>4!8sF8{QhfaQ5h`v$VPRNJJFxVT zq-UrER8C1A4l7_|W49YT^bOf*J=geU0wmmSPzy!gZgASFLZhmy1wlx}aI4^XPn`11 z@s<!#080Q(9vg((h^bYR@j32v1(#VwhKyS8>RVYamgO@4_BvK{ zP(ZV@wdWQFvBp(sy=Va}l5UXg0WiI_i zaWb*)-hUQZ0~iBdJz63(cbxJVc<4j&+{82)KNpa5Hz26!9U4;B(u%Kl&x^hB2-ROg zUO}3LFCDe;!2elIi_cRE#S_(z zU>3G>^TAh%-*E}ABTZvswkQU&M(a@2FtnPyge@<|CYai%Xuh}6)7|G-op06F!3s$J zP+i;oW8cL@RsC_yJIHAuGsc{pxHO{Ax*$8!<&f=kgoxhpt=VVP1a{_u%(fORPv=E>?-{-h!_cR=1O12mn zOy82k3nrH3{5;U&)#0(B?@Z+CqIbH|m=TyG&dwA{{4!TL&H|`h_0UZWu`g2H9TL9t z8P8{Px^X_ct&{4i0Fk%H$?_;_r+8mHievG_*4U+e91=20S*zRNoH(=Gyr~^19C^YgXuz+ujP0=d`zQ7Rzun>98KutshZ&4Q&u+xO85o@4SGr?c zMl6^Ic?txBo}OL-Pox>(=M!NAAzgfn$B&g#xQ#4+GikF=|EP^2jtD;G&$3))dsyr6 zrs$pu|MdsPP=K=i%grIJlan*((MSi~)$$_Gtgg16{B@X0b79Yv5YoM@Zg$Q+t17+{ zdG^$w&>cobymQN>85vo9Mcr-NiU=bkZbQ^W=YQc07!~ug!(V9<&v^iMr)J8Ht0X%1 zD?2z;phdm%sGEK94mVYN11{122swX2UaN{L-iV1L(@iceJOCDVCvoU#J$x7kIX9&0 z2j|7*r8@GomC?PM!bHAmwc8&P(Fx?z&B)+o1u>QnjIMx(m{b;6AgYfDBU5C zOeYtYPGJ8bpRD9x`r(U=435%`XquiUYiU6pTye%P&TI=h4AzdcV~j`GDC@~qDc;Fd zVdg>o8f0L?V`7wm>Wai504kBd!^5M1hdM+)C!DOIL*j+NK{;g%nOGy{616>K_iRst7ClMg))N0c8~S_Vn`p3NhVXYkw1Efsi0;mL;Njh?>C)pO$16r+#DtHsBy z@e)w7`PosyxqhksMq~j9c-?TURsb?7`i9u(*ynd}yhWxB3sV|qnVXm{T1E%+Y>Cn? zk_628ofANL6v){}ykJ8agoTr-*~kG(Y&%r%-2TQ9RiE=qdGfVt6L-V#A*Yyhj&3`c zeL_WESVo0VtSKY z|9!v<_K?+e+pu6__aNuRg2qN_Fso1}dimzfo1&Tx|ew1G~obK-a`C(HaO#CF4j=~No_5kTU$iCGvCpZMyR;{8J3IDx{ zqo-Q5stw-P({5K@4#!Pb!xfedzLR=vT+Z-gWgu07DZw00!_6wlFe8B{v$L~K&dwbt zdrJ^-7uU=I5;Y+y37w6N?d0@y;X~c5yuE#iw9>z|5F)Xklhl`({^+gfEOC~!DqC1x z;43({h3zM@fuW!}Fz2~MfYiDJRPb%DLw3MS^J#SaPEyTRQB{?9brnQvXlD7H;Q(Q! z2de2qZ502m^R80q8GFVJGfY(nhg$$+efjrt#~;cspq7tTNpTbU>fB zH@a^iRfjI1=z$3EJwIN6sNw`R>|Q$>k@;AmHj+2}4|^giil@W%Z)w(B;QEsD-{d0a zXvR+hk~jm%RskPK>wzB#!hn@yzqK=xi`CiL>GXSy1JMrZKf~`e=}*qjtEXW9l0pU+ zf~m-#2g1U_IgO1EekuRkF$|Q(^h!_raP>$c_VTI&t8BlqzLoN(fUw%Wt}HJP9gNNH z?ylB@?VX)CfV+FpC@m?rnzd@s!Xtv3nk3HgAg%lH`@c(2*pqhuz(P&GFg!e(4YHts z+(0^C;DQ7M1qJ2wk0JBHxo|LCuB@%mY)vDdROu9bQgOBLT=GkI+0Y&X#-tvgr(d&VhORIPZ-j$eUh%gM)aM~b`@`8NL-(3sv8vmoQ!-9dwpzK*>Js)nE~s;G!$=d@4({!tXLv^4q@I^s}LrkO!U;ohYc<_ zOG``n{4P9^y@F8MIXRwk{BZ;dW=Javsgg)|{o4`}OCi_I+QAEAa0CAvt~3eJzWH?Q zt82I<(Is5)T7_d$|13MbIjA^@5>*$#EOH3$JgQM6dGy87+%$N*C5d z!ePpPcSVc+9aK>M^Ph@X|22C#;e`LO2Jk6q|7){Dn8XYJ`;tm-|6@rb*RwJIZ3cGo zk^eE-?C(BtCtI!jzJL|Z%7gQt4_ekc<-lX)F*qs<F|Bq+=jop|_SW_e<`0w@j-``6K z0lsv_%#Wk$Pq|>JS4W*BXS55aF3$ob0jRx+Sa~5we1;Da^I{8YQ>GT0*k1 zH@)taHHoM2J|v7#eEFl=rh0(;lA0S7&`2W`e@*5p6M3}cPtqg6XWg529qO2xqKS=- zUH|r;2rA;=kAjJt|6ZLV`#Ye}d?%VR5HgHpDTaoSIR7byMjC-GXg!E9KOG9t<@^lZ z00|Wp4zQoxevM+lKGak7vH3M5tFBI9J(L*((I`aZOpJ^upbWL?CAXo;{+1Hz#YT0| z5C%b#nE#a|m6R96xOmJEzioZMuWyZk32qu2Cp-DiV3F%uB#4=R&gNfxqGAshhMIeA_ zUDx2TMU5g0iN43h7Su?g!TnD}GH%6&?Nhv+u-LIfzY_NOwjgc<%U!w>R zR1pXe-9+a1VX1UH`v$8Es;UcPMLMh;xjFHw`N&iTP)Wf~&lUZaw(Lf}5y$wob;&<6 zf`VkQIm06(JHc~zIzM(mWaM5!eZQ+c5Di%o1AidL|L@hw+~2F7vZ1~{Ib<7zu+#JB zJ@Xwww^pgyN2jNwANpTj`&OVHq{#G(d`K3c99Y_g|_f z4h|uZgM!0t)CCqS^qiaQ!gdw0)L{l`Ht*x7$Z!std@vE9z}OB+J7`8#ojN-|&&|v0 zLeD49gyoG)v&Y25ApIAl5*QRJ-^%#UE^ZJ)GmAqfY_;TW;}y5ia~V*2Lq^ymBO~lQ zJl!CO7N3?D4omfUQ z_KT5?yN6&@~LUMAl>Qrh< z3P_Z<_vQ=XgAcU+^CK4~K4rk;fs`B&1ULL>r}w__9O_M4`ud@eF#G=fdwX{`CZMc7 z!+YY;(9nS6Wqcv5^%=l{GfmHx_4W1NdtyT8+y9k9+~iAb&MdCh=l(_A+cz-qDG&{7 z7jjZzrV~_|fpxQ9cyMz*2@XmA3*Nv4_s}>t2g3WKtlt=tP318~I!0p?6HGEP^pJym zVrwg>tD7``^d1ve8JjUp%$3#e@8$Cw;%?Xp2??qjSoo9(=wv~5DwujKbrXP8Dh*^x zx_Qd9&@lc;DDK3L4lL`S>byB+;Ok z)t2p+)4{4b+&VM_6EiajF>$sVL2*fm^Vy+oR0F2V#0O(6sD{ACtQ-*kBnY7%5f|5r z^|zltso}(xUGu_xn~_06NeMd@7a6EhN_dp+9!-iC*H!QSE-5DkgXyx|OOkKv0R`Cq z8ga1bVT80yV8oI2PRMn?sTk`->b$zZm4Ga$0w{8-K;MTlXm|dobEIeNs@f>S`D`Q^ zY_L}VGvA(D}01v!|mzP^YH z$n0*4zzSr8oofXRamx_ITS4}RLilqMu{@N|kmt-!^MOW_d&(6)a>29QzMYm~4ZuGS z(2!S{^*eX?XS0vDXYO5H9B97E$WVvAIOVgW4P{IsIyLZTaTq%%K+53;O7?Lbu%kWR zz{#)=f~h26pBI;x6*IklbKEyEdD+>+ z38xdX*xKGMYhh!f40zr?WcQ(vEO*OQFmaXrB+qEmb4R4PhW#$r`uEEF->d<*Nqsyl zRxo^4QwhS=3b? z+L*&aW#QzE1ZCNTfB=L5807m#Mtx=1tFB1p$ys*)$J;~1$o(e*``;eWe;l^|chBzs dm#cW literal 0 HcmV?d00001 diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_1.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_1.png new file mode 100644 index 0000000000000000000000000000000000000000..4a955a7070582932c4f9853a92ddf4972cc6ce4a GIT binary patch literal 57692 zcmb@u2RN5+|37@0$tEk=qwE!h5Lp>zH6&%Fon4Vx$Vwtg(@JO}86|s#jHqaskxFHi zk@URI?)&&3zvFrS$NxB<<9Y7mzQ5l)eSALGb)Dz=e!tfH6Jx#Al#N-CnW88*v&}}f z6h$jTQ8bU381WMZqw!SyOUuvL-p|f+zu!q0A9reti=Wp~PrsvwT*Xef`}iL6^jNE; zsidMHcF@ny%U4@j`Plz@fs&`s0cDMX$9M52%e^-5@}(#a7xF)v+>JShC~DxjnUTRZ z|Lfy7PTF65!{1mb&iSj)!kUxk{yVwv@maBfJ2Kje9ZHIK{O&q@|MjswuU^OG-alUA z!E)I9$LUPlZQFkJNorMYbd?ZaE+sBb^Zir6l>Ya?{@I(eqZRnad*AjEPOj6{&ME?| zjD}GiUBwhDV>tO^whJ@!zyHH}BV1PIKR@(iznxBA7+&3>m3pS;KfmPte(e5_%(&t_f`bu zz0|Nu(~DodczG7Zf_p!dCO;Lxo@8opQ6L9DgE3nKEA#M z2Rk$6Hfl03FbodXM%h2{lijpwQ%9z89P=J!X=w(-DE7#L0@ZcL-bP%wz?pjW>QJL- zXdNzjdxb|xh~Dc5d*XK7cc^~(lH0_@WMXo%I$73kV!U_ll~1iVHt^%3YtOP>4A4H^d)Y4jo#)cI{eqkM{y!-#j$6u}N$$+(B<;W#y$QbR}(ZG3b6%owd-OuWlMK z6~zp>c|1Hk&ht|vJ^3!-F~?m+MUUmz$@oQB&jY5B;mF zef-O<#P#|3@z~cRqpHm>UewR_hjQrWmhLc~nws+Z`DJ@++D1{k+m<#h8lHXSG578% zDC{bv|M2Aaik!c5!wCX9{wfQzKOW9#T)cR(^U(pT_Z7jb(t@Uzo17OS7j9&1JXm#_ zuBZ6eDrOcI={9kR@%~EDn>TN2dJoYT78W{tcqk>V!TlzPZZ!GP_iXU<=jFP(x{hT& z3~TqdR{i|?rT~khHuAFDx9gVKiq@+d7IM!D)2z-;HGOrvD`{!a$-U*OdiBG~rPzS! z(dznoV@Y>TuBqv1m!n7TC4Q9;zj;&S+_`f_iY8ZbZJnNkSQR!se||bI?@)GfN^&wi zm0wtB`%YuUiWRRyUJML4zke3UAG$QZhLKHB%KPZ^BFEb125Xs^nUk8_+}y&Cym?@DD;R&1UsP1r5WlKm{|iA)Ev@G%7Iy9NckjyU{h6_Q z>~uLp3!BHq)iv{&svN)THn|Naze`aw*c=xsD)fSXzS_y%xZ%Y3W;Q|f3!CNTj+uO&Icy4NI*JkxS3+&1=P2jon^`&Sc>(rOHXcqxZi*>d@7dRJAT8L0ot>S$qP;z#*t1_r+G+1z5k<$+3twK}w>W$D z?8lEEjp!Iz)A^P6T3cG4v+T9FbbPRe!TSa(fNf>S9~m_@+st#3Ed1Qmsl_?fcmdTj z_wL=xHM_XF$gPo`R{!Mp_lZeIKEKSqm6KzN{VV$@vY8o2ZN_(Dk zyt=zHyIE;|a$@4b+%Z>ISE&cP`hL7Ga5K$2!pOkz{NCO4^mMfme(!H@HE8u$thTh4 zsf_j>Zb(c^6XoLi`Q=sIlaoIlOqAW-abJR(`S|>z+H^{YN3`Ay7dG|ntv9q2Q4-2Z zOFOJK{<&q{n|Z>CFSaPuX4RfDAL(Q7OA`;jd9bCSp`rU(;K@^e7BrUA(>j#TV6Jg^wPQCH>N0xlwxcYV(w*hq_jiw-ZS)ZEI_r8M*9a>)>$JNTky<=<936 z!~GSyD_5=RDmv8FJpS)2l5#pf`r?}UiE(>1HMPtV&;Hni7F%m0;faCjaO}b@>ib&- zX!Za6p1s`kX>ib>udi?4v142MgQnU3OtmQU@bRtw{_(2%p-oFmOEc5$8@sym>|$yM zJ8<9*eQZkXzPnTTZPB3>@gllcsSXq>W$$m76nA4&tK8r7^wPScJ^H$*X2hr>?_m?~ zo06vIFI>B}3X7Y78Z9Fw714H6*TU$f@V9J>%XP61W6W0Ef4x z(3jpvYmW8gpAK30yk=@_wQTd_?2%f?k={*o@ENN zpBI;qQ&PJ9V9!%-N>DFIlk5WAh{>KOei=AOwkJ-kJJwqmNp*zL(A5?8SB9oVN4MSB zV7jod@Nsz9P=3d~^dFUfZ;p?TH@$u9kh#^!{0#OY10&;0Jbm((J9 z)b#Xp7PfiQ{hbn-rU@d6d3my08#Z($Nn0F5tJwDR#4%DwP{_ErIMH+eQe^ANV=acGqoX2H}KNxt=BhGWZ&^{b8p)Dz%c_|j{NekZ|~y1erZmTckc_2 z_N@GKiR!>Z=4rMvN={3&+OcCt(Z1*01>=rNmxqRi_Khmb$fV!8B}I0-uwGE=_3PK0 zYHPz|V`G~YOmCjSOE!J~{$2gpTXoc>wZ}id#FKb_aZO9g2fXUk%$R|hnHjfeXUmz) zZ%((;)epUlSX^8@_~NQYk#jXIDq8oG<3|>Lz4Of5a%~;=pBE@ItHmw;F8w()){#-< zGh+U>(4B>CrCJ2lG2Z(~dg{5Ybwh%v6&|j-OAY-3w)xoChn1xA9quiZ=H=tNv}@Vy zkN!0*EG&hOA7`V_biTg7`_T9IWiy?oqA}AlFB@X?ibhcHY%eSAIf$-Jp8JqbnY!PY zb&QX3yIYCJhkrkIZ|1>|ZPieK6Uj~Y_1&yk_#*%I$#HpM-BU%add1o`Jjv#_Z=K;5 z7T!WG2)k}_@+EWgv%pyC4&+pwORyBr*1zuN4pwtuugKG~7>bXatBQc}`BhlA14 z$*PZXVAaP9tcnp?WX&kLw-`XWfKpP!#Urep{Wl9PH{=9{x^DQV_Mf11CJ zh_R_@To-zc>FDTacZT6IZ-?h4<4MUotdr+&Sm+r_t7>R$?>TInL_^2ON#&LF6waZ9 zET?osm##-gqfb3=YTCSMx#IJsKfk5>PVFu_Xuu(&BU2(2z|2g&eRLo}^L~1I7?$PM z%{9B4PO&KWw(%VMo7w*wtMsy~tDaOgQz{pQpPRWSnoAPB+06cc`%n3ctG7s?Y{mp- z^Cq`kR$f6dv$3UU&Z0-Fby;-bLeHvgR8{MhwbCz***!x4{wXm!h2zV`$tgDNfNFFa|CtL!W70Pg*l^;W zQ3cSa__}p`_4V~bMM)tm@t@6Gx0*Db7oG%s5SNt9D&L&~Xzko|L0mInN(vpJ{&VHu zr45dI_H;hjvw^BA^Zj(;=FRh5k|ttWTDukpeaa5Ly2D#jQ+|T#z1WkJPk-Q3Swo2Ed${M2s&TE$xNG#M4-0ieeYmrr)q(Ll8ia+Sl6( zIQ?Ef`g93mZ)h;N-j{15>Gz{=&-?x6Q}dtFEVAQQu4M#JyqH_t(P1sHYL&&jOL9c} zr(qoBF*L3(-FcE*Po6l@(3B`Si6SYncI~6qK$-a4p`QvlpF6y*eyp&`(6BSpn8iOZ zFs}VuR}KgM>^=%uuofjYDtsBo5VlR!>C-gm58E#FwzgW6pLo z@VExgK}ru#m?k~ww-Sy)(*8{5=?eO24qdaw0YQgU*H#bqUz@t%U*?RPKLsdhffF<+IY z>77~k=v_r{;KY1T`Kh1Gl-JT?0D7hC!p!H6uHPy%TT@kN`1ts2gUd29#PxoUuPvLk zS>e33&|!b|83v~1%d4kGS_(q`oXQ)1xcAu^fbUXCp23eF>2cb*M zs``A~yzjt)VZfeL^+QQ>2BAxfT2wl2L+zo9i%W)InRMcIr}ngsjd-%oo}S9nLWvjm zA3{AK+vwQ4VwZQt$J}qO5*B82a&k)9LB)jl;{W8ip|~_&S$p7?kc<0=1GC>h433YV z!;1TTd&^6En)*Ha!_?W?`AYb4TU%~G>yb;!oJ^dnR>c9i%LG|nUAob-$?qH3N~Dly zS67!e&WYs}H3sFq<(xSs$KLTpu?yFrkPZwFOM0INtQ8U#rlD|!4G9~UqQ8H5Iy^u9 z$zA(-bM1>4Tg($57Z*3+FL|{4+uF9eGHf$TKK8eHMxMHG2^}#Iz>`nGJ`B9U^l+8( z*ZNQR-KM6du<-EkO=_2nZq=pmwi%?X+xtWWr-CM^)G44{F`>~A2=3N`&(5811S{{v z%E~wpq&PRzWkn8m5Gt(Cbjs`w#msxWGLA|+^ZX=e#e^)Mp7<7f>gN|1^g6GTCzmBO z)}k*K0QE7^(?;%---1N}gNi{xrvv<{0|2~m`SKbrJ3I??>MOzl#+T=s?u_*ZXkFU-LOjzZ%S6uHL3Q7UHJ4lJ$q_;)be$f35gi>}_4MSAqQWPJ zU6sDOfW$bciHSi&?COg5i_17fj0_BDc0Al054dF^%)!RStITn^5ye0?bSX$^!wFUt zNn3}}shhpA=|_L>eC%XqWo3%8gDr9zT&K3Bg$0bb)b|s6#nQr8wcos_^{HjcmX-0z z2Q;Uwwwd+JWVx&Sn9a`GFN}eO&lv?^?sHDst@9v6`eK{|c;dNEl@*%0kT1adCnhF3 zN`uyHy{?a|Ixo6WY4Va-%egzb64I`K0QQw3x@ZTJK)nzJR@~oR!Y4XAHAPElYHBtG z56iQ-k8q`2xpCvZU%;1SHC;&UkbK70wQC|`KyLr1cSU8n@OuB>bPI0LF zat;ntb8}{PQN44hn$cZuuCC3xZ}99swWpcl9Hodf8QZN(5YbJ#X1d~7`A6T~K5ujL z^Ep*jRhi$E-1$~6R}*CIN8wI_7Cz_n0Co%w4@;j1tyo3ndwkH2nbA1%nxarwvb^Vw zJQ=0?>4D?(eLro@E5CjFwt1wm=(?i<%*@RBfwLah^@0Ua(o-}=I5{a`qeaL8YLcF@ zLr0qo)ve_vyE-xqy&)i6*YY*_Vt?w?lL*hPW~GiwIH9B!JRe^)Z`MB8AttqEjT_Vs z+j*m(3b6s!4kr#AH~>sXkL`9z^Ve9X4QJ>Wk%#PGnWl3ibb+WLCc43I1%#e4qF-R0YG z;3e)l$toz+pYJnQOI6RDIg^jWUtl%^ zA))74;Cd)431~`39E(MCPlYuOllF-!%Z;{74rWbtwLx=P2>@vi5N*iZ;4<{ITKw>V z6Ac9n$_jo30YeW9c5BmF+_-bgB}D<O9X3a7VQN6mf(50Bm z%1$+?jiY4%K&Fr*93CHzT)tv;ReL)}US1wK*KKJV6S}*%QJY%oZ|VlB_>Nk>FZHJT z_O8Tq>(+mN2?E6pxT3Od-C2;CkiUOUf@f7VG%&KQT4zK~29W#Amsc#{h63w7gm5tO zU1}L21js#G-;t{7R!5hg*|lNg;shP(Da$* zVfo)~Yz!4S^7`KCxHuNjZ^aWm3JDMe(m{^|G`++YetnArIjiaJ<{_QyG~F^ze*UQK zcXzn-R|Jbm%zS-gHG2Hi?02@{;NXa}XEX6PJx@<6hs=-g7d&#`v4gMex>mUFr#7-) z?s}`S_$S#cjU+sdIkm;fRq6*O>}0PgXXu~8qbq81^+vXN|1p|P*G8-g3{?d zF<@}dsZxaO&cG!A{&Tpgj9riRr)qjj;Hu;C(1!qV8bA)H+{*ZO@7}rfl?Ti%{r*9e zI9w%%jg3tYD3n9-(Y%RAIY&izXLr^#X9&iZOD7qL4&7*C?*8>>w%-nr@p)BM*!vG3 zT3EYx2zJ`m<1^)?;tn1vd4IG9YA%Pl((venY;cn4T7@d%iqZhnz0l3D9 zQ+!v8v@!N{8g-$hq@-1Q#SKwTPW?-lE@9gn?cKYVM@YyLL?|ine6&;OpAsCOedYp8mp>D=V+0rdoe$yOHghAoHZvK0>1MQTd7AsPSKLz@c}@ z^X6_bf@%p67>nm>wtxSA2w1ruAD+y-+Ue8@q8}YSmX)BFi6f8_aD&J{;o)?=yu6)I z@eTo3Z@arg5u90y@XOctR^H$B==OU7nal;5Kku7jQ;eiG?1)z2S>Ann^Y6>E@8r7r zjf{+}(bwy%M@QRkSR81(p7`WIz%0(|I&zb^qKjo^TEU>A>LFaj=(^Q2d zH2k-#3TSZZrEy??6S#Qiwi$6mD*5dtgj(J1pr=z9~TvWE1s6WeQ z_bpl13qc;3-y}ig{xKWk7qI^O>j7-vI-L8eK`*&_j?F7j6E{YmJ6HEI+oH2FG&Fwv z*S#%sK_O*rkMTTJ)~>xP6(hiURxMvvgwc=zTZN82Djbb}TkpXH;HH`s`JElb$99i@ zc*_6a!GpJaX7|g3<_lY^BB^}z&+HqqD_KoOs(5%9!)+9wx3@Qf!tCCE6KeP7x?6B0 zp3vD@|FbBZ$AntVF8y;h&bHY|-`K}MO9O_v%-45XkoVVR@)zgsuyTpZ%d^1eqem6qzklD{YA4Oh)45}!prAnT!`U1EdDDfa*47B1YJVZ+ zIJvy^=-bB?6cqkzi`@7@Es1k*Ih$ zV}UJhD&0(682|?mQ}9;?kn~&FO6zbf&9>iol51)<0aKPfeOg;rXY_7JMc@@Tj*x(W zzyJ`QjDkW0Hde8*D}H|N@b9;^ePaTwFKTY8;*!jgzqk}1?LA`>FBn62YyS7|VW@aR z!&o-jsM^H2AZX>>Z~P(s0A|pEHv@G!qh87=DeY+gfVH9Lx{$(f>lV}B!uZ;i*g!7H zSBJcPeQQBtY)U-#aB`ja(HCD;rBAea=;ah;3HpO$$Cqa3b2YO4QxFCQPWM@ZFH zb!(`qs-ggiv#xr?RCmz4d>PhbpPoNqD44LU^eNrz*KaSzVX^KoneVbDg&*smh0{#j z8SGA%{rk_N*u+c&!c{$gZnh}9GIj}ElWbnRvJ<8RX-XEC6sjQrS=$#%DjNfI0$)n& zv3|G>7?`RT{G_lz9_i;(MDmc4UQCuoineHSu)6e{F-AuZaC8#hu_APBHVXrS2W z_)k!%>Kd7unO<`fE|h*yP+IMMGWg4 zwsq@P`{JX!uFL~E7P)MWqJUvm}+{_&M=O=$q za4=k-Gu7eCB-gL!2c$illd}diP!+;n%-B=FKNyM(tuJ1Hk4Gd*no6jua)o(0+yZ!@ zD4+${d{9E@E);nL{r*;hmYC8V3^UNa#_2N@e8WErKVA0iiy)K`kJ#s{n5L!xypp9;aHEe(MhZyz72?dcJSU$wpg_)WHA?`K&Ny|e_V zTQSqW7ZzOc&bB@fA`BOIYi`)!)_iVdO@F!*)*L_(d&G88m?~bJUsEoqL7UJR{_vqP zGn(IY_`bBD_57+Ze{1gJ>3HUwH*dbsB)Rb5Qpp=RcJNWc%>f1n&`8y$iO~oeQ4eom z5=2zNp@^wJcvct?NjlLJ&;f6z`n~U2+>eUi>=cZEINavSW$Z##P)xZ*M9xDc9Dry+ zR4!b4{_(FnVopEJ&1E7d87jCp4i0*X?Y#)pz+q4sDl9iwhKO!QS+Y#xYw+NtcwRLo zhz?_I1+;vmsKM@mze}?l74|&gvAU^KO)i#vHlZ=QIAGpJRaS0XZJ8Q|QjNDUvwu}F zKe|f6sX_>^Ho#lvAMI5`VOdtWIK?8eG2|T7!2z6zdeCF{y-s4BRWDw!5uy!4dTF-u z?;z+*y=ds7c-td9am$-JD_5-9T8G2!y*TF$9zaKVR9p`H^mi$$)Gnv4KOrL0cGje&p+Jth!H1)S6*08Pmh#O*ah{mbd=xcmkf{gzu*q744PNNIVKy(KOlgHV&o7x z2h~DKN~)^0l{F+JWDFV|ltz`KJt|aHPk~$gn_Rmb_K>Cd14T!Bxd9si99CG3prKSX zH=B>@Y8>pK$OZ@KtMiHa4^AJdhJhGKSUMxS5EGTV=jl2LNy!2%KY+Q}o-SDPIwDr% z$$PHixn}{8QxRKVqj^XINGkujd%T=!Yk~@Jf@l`_Ws#pPtPH0z?zKyExe> zDxmErLk&cUhE(0#^+*LihIhp!MF)yQv}WlK&yAEat?T3Cb&Wf}eTW;V(ht&dW2_o< z9&No+dg7ZP1X}506PlXOFR?t9i@G?_e}DJ?^%`zq3&LB=$jQ~RFoU=I*M8YOdhY_zm8!ib7QYIf+k@rFH=7(HA8gdW$;Z@ zPR$&AUl}S2U7&328|&CSArQy-VVEj}in_!_`VCv?ft z_3&-uI6m7?S5s4?Q&#AY{T+sP56eGBy_1Jstf*(^+dKZphhLo`qNhsepM}S^v+9St zWyar?aD;Uz?}HyBpmCUo5(A5bzeXrsYinyAnBSbi$mi;$*}p^eEWk9GSOe}i{U9_~ z-t@!#ySmkuK;xr2l+PZ4#1k7_Ed+NtE8fb-=WQTlx zS(ygd1H2KAHKQn^&wvoJu2j1<9!nseT&yi$GH?#g9HY0lH>`Xk97wOx)|F6bg#qX^ zLzi^m`9z^Hqa3((q#M}hJD;8lQo0;hxwOFI6g0`O_~(zy;lr`%>0-+_(jOoGnwu(_ zsg%->r;W&fGil#DxZG7VG*Zmvza2!K+;!^3cwoDD0l4Po9{6 zyqF^(s_8{R+HCmp>h9o=9~|(x?>UxnLzY-3#`;r<|HzT_2nm_9jdU|J)XK^&yQbm< zHiqZ`ug4=v;EDq*0Ey>a8{$6Ob|>3f@7tmk4XN?+hBPN`4i1j%Isvvfe5)x7`@ein~SyRqR2{~425(vdW65#)R^8J(J77_^uk6W94 zjVE}y1O7U=vjnmqAD*7%x0=?{)~>0qXZZVPHm&DQCX3#rAi z(b3iiV;`OT(T5eNNB{F$m^p+~W0n! z6loJRkt{ZV=XkW{Lcc-GN#BQLkqIA7Mnd&AcrXiG=OBN{)NB2n_aZ{ko65(fjU z6SyD}8aSTXz}<%x+$|>un|X`Ay=FUm>Qw%ym&$=QA)Z=lV(a3{>f@e2e;xz;faDbymkpHTL(o&W-)yz8AZZ6RRn-jK zXr4BXQ8s!TXF{VS&=aBTFeL5e(xTD44}W-~0lEyZ7!w2Hqe82H=+GhV08lBB8SMkqqu z@a(}oTG;xmTe7D1>ady|cYzv51Yt0@%ttLB;LhT-b09Y3Rv*jzmM;nnNuB*sy2@c4 z)AK@|#Y`jILPGbZl6=7sa${9k{y)Y5i)guAhU#Jf_i1pBpl5X;jAxmq_pEhVM_0E1 zbj&=_W_wL-ZS|lRe4_`)Y~<+iLMXqF70DH3s4y6t!oaS9=}H(0s48M9j0hPeH?0s7 zVr7q#oc!GTC}++e+zhpj4SF@y#m&d`ORy;?O-{TW#cz@@A>0RLz_SdO+OwKLbNSu- zBeo|Z&L^g%#Evb%oQ8Kh2Lt)YRvGfSuKD`Mv}+)bO+s;rh=`~{0Ykqc$BA?0%H?p_ zy(^%4kg_`TLs~M;<6SWuQZWtS(B5CVWzPv|aW7xK99kgO_+N+(!vFR!!OtbNwFMEm zIoNeOUUN&IN8NTdk%VPy)~vaoyvN?2NhBdBrI1kL8!9ZZ>~MIZ0EAtzPDFz)fA$O^ zMF}84H>kbb0c>n+;1*I#_Pck-CFllB(F55VA{<5`(FadHY1a-l6&HiX^N@p9k z<=-o*pEugcmcbXO{xqF^B0^)`x(3Kk@`-%l;IOo?4q1TAgc~^@Il`i^Nkv9Ph@lGt zfSm@W#>a9B3NlMdO0o*5=!*vsDFr^LE227MukP}r@N#l-(dcWY#wA~b>XBJmDuA3` z0~mZ=xSUwg1tHy2JcN0^eEE_r6d@S+xOy=eqWBX6$%U6Q00zM8k?vRC9k$OA#(l@|NgnnZWbWadEX> zIaV|jj4>uArZBJ^C8r8jD2Iy^wH#y-M0EVq^B+rq|H2mEgv~NDGcy4V*%ciO^|~IU zXA%K5Xc@8h-PWyJ$9y>$89y|-f%j#;LsNvUj*T7sM+pco0tXr(d@RB)*1*63NmsgP zrn@^IlJw{#%3|uZYw~_pK*t$2xy(q=8Bj8kl7?UG5iB$|F|pmd_hxrNqzlXPIP32@ zKRxefw;lVl`$%Nl9)V)(>_F0Xu;4G>m3ZcrmZpLjZnm;Y2nq_S3;6Y;-wL}Z3m@MB zqMjS_XQ8{$-2yqT)e@N~unWK>&%3%VIv`g9spocbG7qW$&qDrO9c@puf&ktPpX$`~ zXuRVt?7f3ai}Pv;H;}1mvU=|-!+-s8QPL?!@DQcTQpcRZ45=q6D(0Mbhp zB;ALMV(E$hwm%~y9$sE)?=2FUK1Le|?JAq5DL zm?xCuKMg*+g`JsM!qn7MPDbW}CgLg$MgEhnle4g)%(_DlLHxaP?OGRfmbyd#`kha^ z?AKjxXf?Z%H9{`mHrZvZz^XWK_`8FLUf_zrD~DpQA92a;;W0mir>%nIAaLxNmXS>O z90IDY^d9{cifwCy=Da5V63qsQJ9^lcU^rP&<%m%N)lKTb@7@Dx#8oK`oK-q6q8p2N z0O?z)+Q;wA9eW~$eeFN{T^RdV&aMs5s_MfBVI<6k)S+V8@7gs86a65fUew^>Ye}9% zD7?0>6AJx7c+kyZO!#^`pyxWfyGt*H{9Ou0+#ybJvjhw%PGMoirM;IF2!l5;IQ{?Bw;imugLhorN10#w2Ae+H!5O@)1rAn*DH6>|Yvs?SYW| zacL>xf^|mV^TsEhgO+Vl$3<41$$!xHH|7rw6 zRRK~VvYLL^LO|#=0^j5se8bS?Y5}5%@#zAEb?n2_^_E+wqd<+G8I zk&(M!ONgDG_O!zTMTrd?R^b6~+gV7M%i+A+_Wjv^;6N4@SM86}__u7{T>(u=r=z=V zi{a~aPa+3204K5mV2<=5AYWudEQ53)x5>)N5~p29M~AeM(9lpsR^)>IolLXC$!BbN z0mUPcMZ|t1Rh!sz9)0N8VxSCU2^tYSRYj8mNx*(M)BY)LSzTtP1Z40lZ`9YXkAje< zz zY&1m9Wc=V=1t@$Zv`^j)AkISA6Rr%gAE6`2j62_Bh92-`ect9?L^;QL3MA3E5^<{t zP!Ov%NJm0~7BPELerT9(cpJ07BDIGlf4h!$4eB-_8g+Gbq?8f)f?N&JUBV`gox+k3 z#t+0F1Cc~bMTHZ7ElTKxCw(9u9ZyesA_B=n5u=0Pa%6_8;0t%+k7b2K?n2RPAg&+) z`!JpYsf1KI0K^>ZClxSleB?5elPW^`LAHtxc5XWMa}Yg`AQI@Tgl^z?#gm)1*LiaM zDvUZ^1SpOzkhw(Y++#t)r_b&=-k^gJqR9r=apL? z<0UKw84Rr(8Ketea*_V!TCpM=&&@*dox6&_mvG%9c?x1pW??HEu|18!nq zY>Wxs19HvallF2_frsG3ML>n!85?wGYHGv+8u$CBC#~LPZexO$es6cl)_3rg&IvLj z?Gpi32Ob~{)`(z$32b4n>Cr7QIzY{UFK40Z;7N8s9GVo-lGxvNefg?YtDw+Gs;h4s z>cI}{M8+n*KTbjiz!x%|F3AEwfF+g{T-Xm5u03!M}eE;>h?T71wZHI1Zi- zvO)-2(!t|XvT zeT)hS2+;H!M<8~_wo>QWU(Gvo%IOwJyB z3u0#AB%0a#Kz3k2fDq{(M!h?P$NAV1Pjm=dc7 zR>A-l3;a1E4Ixd#-7<$z!!TGH$Or!GYGE7T9;cvO`RCU)|E>x^V9W_I(4N-c^Z;dx zsNG@K2GA%XkOPDS*#T5{!)7ne6J4$gvpMz!o{!`t7ux{1xNRf(gWh^MIrA^}hY!n9 zVzRPkU+h2A(8A2uV zpBSJ4?3d8^x&4v?MFjZ&r=Jj)z_C(|9!N^__!l11Huk@`ngI+p)bC^ifSZ8pBDdE8 z-%Xwcah+O7-_S|vyn_iM7%X%u_dgAqI*8&}3M&X7cLoqSA~G^&`qu5+L!jUPk%NIh z!2cVts$R%4%#8Q0z!9p)VNH3m29&!)U>gI1++tL6VxstQ1!d&~$oI0!%2r=`pd&30 zt2==HVPrIeQl94~eK!Zq#kLX15|EaJ%o_QW9CN#M;Y!;9M1RIYY;$z9gbhaqgy2gU z8Evz--wfG06B3Cv78v-r1J3hu>gQOe;gHC)^733%a6fpQfWPT*W?w=)BH?~Am~rfF z5y|hQ$j0UFHJ`>@AFVzTv_nOR|EjH9cN;cBcyu(@#f%z*yD+4Kaz=pklPDwEa>Ied|$1@_oilGinXJEOaTSf>wk$%tx!5dom&6>hej211qZNIXj71sW)*^ypb!Y>Vzm3{wKGCT^Z4S^yCp;U;r80=lLoDN0GvqvJ+m zSPm_nMAHB&qup^WRge=%TkPrS2?HYlv>^;QdUMbXv_=|FeV3xM;Co}Q>#lAccCSDBwD!S8^OO!mIoNGSk6(sMijG1;>v{Li;^Rs<9mM+s*dRV^Mn;AJ<|JljB22o*$Bz;)M~*(! z3TsElbC|~5k4TMxwjn@29?^&#JMh=R*Y~cx_qAX@mt9a&a#>I;xgNPsc)do5&mnC< z;?dZc8E|`tbnr2aI79?Gftlh8vQT4TG)J}`L0pRm3ROKc_X4mG*n2bxFA`COv?p|1 z@Mnt~2aXlT|Vp5!}WXrbUMiI*;&1>$oCpR)}>#({=O_y9(DBc&}aZ5|Pq zu)M0ioFw_sfaZcKdQ6RGF1LSbNhWF0fAte__ZCbMWJImN%?K?5P2f;ePEY{86KBBm9^+?o?omkvC$VH#c|P_|F}XYWKn=jRMZvV9fr_3#@>}E10+@a{{B?$z80}Sd%JVD>pZc0sI8tGbF!)7Nu(1_G@6*N8fnpY6dD+3E%M|@ertZFI+ryS@BfT*9xrssP!SEU zzVLCvrK)Si*!z_NTDEg$YebI|$mm zo%vi7#A+g4&BGHgF|Y5hnIBp?;klAyKO(B2)o07g%gtACP$XV~iYAFsE96NG5XkyB zB!3)E4B_=XZ{OC`)zL$tNYyyP*H;lNpHhMys-muL6ckk6U4ZtMLH-PZB6Hv_ z+>oQPeS@HEHA(}?+7QqRQQruI1{ac(ZzUa-s~%*!%zZiX=?32m?keWo{5gF=pzrB& zn{h5_(utGh2HwK6a-|vmb!X3FhqwfL)aJQ19O*%(jTi>diEsa87ZjxPq0Bc5;PSrh zJPPowf2hX>Uz~s)9S700sje=90Ahk;Br=JGCpP)Hryy(FRhdd1=sy^Y?gWr@7qPOi zxHu;Q+m4JDBY7B$^40uIwDSkR&%Dp{og3ZTGJns;c=Rn!l!ZE_wpp|AhP)PdVrZZ0 zm$v4s-PW`k=Va4e!zT~*s0}A2ujgnPWcuVnN0)u+1Ex!=J3G061U8$QoyNQsHP{x9 zGCCkL-=K&2PKZwgQR6XJLnS86lw{`s49W3?$LKxQAx^9*AdgfP7g}`g0@M^LEIxkA z6?Y*We@+09)D0&ev<_oxcIfY;!a~vq$lwX`x`ue15ZBKkPt&4Pg6t;Z4dL0@(t_(f z?sY%A%W&if;tzZXw92IY`bM*UeTLz^drJwmTq2jJ%hw8A4cjuAY{WL5kHJzeKR*~~ z2FNj!T}zC5d3g&LRT4jd$T9TaDL(9GmB3#|i;lcuM<9qEK`)rfR0j7DhR5L7VET@r z86>qpR%ss!IT0zUwx)&_^4&B&Yfrt=AG z`}vcBOI%Kl86#c#I7nrmbn%?gtO4Rl3@8*1ZZvpx{l0CKgl$jZBOv?)vaP;xpZ{!=_3m@sZ>S z(pa3aou_~WvYWea^NEJeVP^9YS)ZqbSEN1c4_~qU}`tC!EP# z8S&NdMI`da;n@jell4>tZ_vhfgW#9Ug!;>T*N`t_$Vg8%`A^o%h;}4a2sT32RCQkyXUZ3n4HnSg&*tG-zkWS&(};fy zT12D>dPYVPzoo)RRu9v5n*I}FWZ!`vxH!iISRhadyq%7Nidp$;F#3WcZk6!#dY04KFpfbhtbekKisQ(PIRLPgeal{VEXMmI3)2Bzr2SDNcJpQaZs(B zdcmjJEd%Cct%QGU~Q`;TcNZB-n6H(2!K*ZF}n_eJ-@( zTU_8Y5*-4bfFH)Gujim+Vr-TV!>Y^_xhg&QEd@TbBwd9RKF@BKefXw~FwFDDBs6fn zs68(rzIfMQjVk7F3*4ok$dOqlEPKk-8WN0P%+k&%Ix~fKhuvI_GDo28f0NHJ55h71 zt$BtvEGsL^zyA^@=9iBc`8oPoiokS7NzR@d-n&<3TJ9WrZD|{(w<7R;2Py0SY0}b{ zWG^p5fwXv$wDuod(o5c3KMeQ}UPhEb@&z;)1@oF5GTzd(dOxCLsan3b=K{gG9&fkB z!eJPj#KN%=$u_4b#No0Z{={^&8*rmq0x~W;H*duPqGrUrWM)R$hCE26!^0^Jm|p$* zp%W3Ik$|x-SKn>~;DUh~gyObt#T@_Hx}QdOgNy?9!FHEn7k08Em;?;>&p&e8U-un1@CsU0D^yc$R9z}28x2KfF5WqQ8F-|c(y$aitmitwjGoR?VL7`r6^Pg}d(P|;c zY{FO-neBsmMKnj~+axmhU&)u4#Yi}v!Ir>YWTXB^wh_J(EjSwTdNim`_tvq*9Qf}J3Cp(C<0d@wR&|80R8)au_hIj^QQ9-`4~`-L35qL1Aw_(+DKL>58VzD<5SM z_9!~UIpAq^GdacMkh%g-_+xaLmX=lp{8>%1O-+Ee9to&jTge^gUE)i=8ja`~_5lI| zQ4mO=)n!0DearW+B(kceaHAFN#_GAujCK0|8ea*f8j0Am05t(ys+&okn{2^5{P>=& z{iy!V@Ml4@^&zMdr5MuL5Hh?+cgg&F6)RrVfTTIm5HY^14`$Oz#NIMr(|4{ggFy9^ z@RHH!OJ~w_0!V76r|8hde-kJ;s*b4_kFt>{1dbaxO%){Y2}naO5NiPjx{43}t7kMS zYj&Nrgr{52CLt@k98^>v1dN~(n2L%Pcv=Fi4a-u`*c!sPW5*~%2WS?lrGTHccw|M2 zeB@dMD7+*KnZGKqJuiGIP|@L6=H*%HcH91)=3^M|(TCDRMmh0tVs`!snjg8${dDWU z!)|j0+(^9IR5UmOYKR-=2?-@9-!}vE=g4jaa-_Od@BzL5i(WiDuazSxDCqk7-Yznq zN;VO`=LGz9+kc)+)>*I-jSJVWoqO0G96#1QR=8F~kJbMa?TrnX0%!hv>J)R=aaMfA z0+~c5;crkKc8X}^#NqqK48DirN@Hi;UG+WiX~9r4v%lwrNmU;u6yQT&f5!E>WfTWp z_%b@rzRkBQgXJyX7)UcvWUvA86^R-Qq7jFZfF}~&EH)-qzlp|KS((GmZ~p8V`rB@j zR$sM|vBvGjGQP8lMn_HVc?lkPtFFJpQisqf?e!n*xZw{WvPxo7XxjS34MR2&e(~Ym z>g0iJGqji5rEwwkV)TuZCtbgOyB}?qkf?dPv9or~y8Dy!3-V)JY+fyQzU8Z=+pURj zc32&x=QR(+wM=sZCQRuZA8ac|a`&FYV`ea-ddMUgL#z5UU7eEnZ^Vn0OCjl~^sw`n zu!rx0OiY}X2Zt?9Lv8?MO?Mok%uirrhM@_8L+@)+&4+&5}D+tiuUl#7y+ zcWgEC(hR${igSge?6u8#0ihddsi#ycgEi~GL(vfZr}NVqa@tv}?4o=Nx+#l$KD-b6 z`StW^y2oqy(f&JS)`qNQ$S&k$8>93i6hsEpSen-HtX}EEs&cQBDX4GJx9G$XHufkx zEuY9JmK@*atXrX$E6ukshq+UHPoC5)zLJ;9zFmVU_~0qE=A7gy8I$hYON$p}Wl`Pb zRYZCA>>JP@tQwHJK4qpt=aAepbvrCJ|I?C4QEw;Xmg05Qm#*!;uG3@`%Xlz+t@z zhN!{kpAuA_z4EhPxhv+8?q>fmWvh_omtQHR`ne|U=jAp2v)6po&N|OqNujRLy~PX6 z1qLkHj>w_OF+I0VRZBLdHc3mb+mV`p3g9PjJAKZWV9LtfO$lP-E(%yJrzJ9m$n_s z%^G{RtY0^1_HxBfp4Jg&;Wadeq>X2SKWLjR+a;YM2x1RgNK8S2eD?w^MYOalS5j0W zw|80BOOP|K&E%W(%B7IGP+!bmAf&XBKTp~Eq~RV)-!$R;TzUN`0c%f+^(UMBj?{bG zMZbUFG-7ng&|NmiNtIdCm79wQ^^nmZoG}7Y-_^+(_;SAK^!&Hoy&*DFJKS*xCel^c z_uXASdUlk%c{#Os>i5pczx+;n>Y@!L2P$3*_h0|Z_&0mIbLe%Prk)b3x%I0}mJTP_ zZmo31H02)Ynn5qG@g7wS!nwh$9K(0X0I)U>oyeuzuHcHpkP)uJV$Lh6q0Afj{YUld zce^Lm=aEPe*{eGdFx}qyrbKz>=ZuE(g)@VbBP47|p7#549i3NQ;eGE)MA-{Vh3{nD zGd_p)l%wHWmd&VdR66s8JEZIn3%jw%ro{BkLvx&!;&X0Iq7F%0wWfakFl}v0oS@^R z8xRi*q2k`z*vRGTs9~j^z$Rofe7!$1ly!;DP>_}D6W0aGNNU9E?s0R5;N7gw;$aok zYr5PQL8}R_d|MS{eOMrSy}VGDKP&B52J??vfBOSaa~ldkL zDP^hRsIryd$uAWq=YQCl*<52&(XPSoOHZqZr=-sR@%hSMZW$Wm`FEc0`;iZ-oDRAHmN^-2p3`(0R;G#ROrbhUbbEgJ z8T{Guv*6bkhg+kEWO<%l_ZQkv?V$V_(%Hitj~pQn&(lJ?6Ss>Sz?W1BQacmkR!D9g zsPE>VyZvo_{`&d+0H+6}r39)!DpxFmkUM1h@EJ8bLC8+DCSanl9Ampnf5jBdW^ zH<#ZL^Vs)*^T*AD_%02XC)(C39;RJmZhh=w)q8^~ z5$L;9Et@TmXt3=t*)iAi(@p)j$Ab7UzRWRAgXv_P#WB6vU-wmF?>$N8VF<6l>@-j^ z8$rzH;^TYSpTFYbyNAPH9;LW;KSlY(`AjP5^7SPQN3iFyv!@S;sek#+mmqX{hi6#3 zCyk*f-D=|w%O*eRp%a{3kgTK0_f?qU`@vK~7X7^}Mjys{>)*+2{jzC?mlk>7+#UIv zGOQzss+x}8%if;9*t$Pu*|{isFClP010;m*8u7c zcqKIc@2!eT>^^^wX87u+a)%e%r_AhXr2}3~Lo~njXp4*Jzi%*0dp#&U5%5)3K+|J; z{d)O(VsIzPECmtuTED#Gm$$l}>kz(Yi%7Z!!`F*v{=E|$mgcj}^yD*^Fr34VuowAD#{2d-*Ft{@Ll>5X*w{3D$eRam??`QYdSs44IFf7x*TT;`0b#2wn zhE47xpMSq<7S_=|XsRWf9sQXu)#JdjTRC)81%ua$|BJ1&jH)VX+x4b9C8WDc>5>jf zH{C5rBc-&ou<6)zcb9+y(jn3f5)w))-6)>9-}iju8)uC3iyw>ud#yd!n$LXh`@WtY zRtTQrE+JCUaItdN5>Nj?~)qJz-PP=* zZ$(vznL*dQLCVBraH75ru?+A)l?bkBeE3X3iMnFnBtoOXDr!{zqDmuib@6!3 z&tI((hen(^HLgD?ExkV}u$~{(CSD-x$;rtH`aqz3)&>^TzH1#84t9Fujx_rbl1&S< zZVREm3#4g<7oJ-?`eL>MUMLIbbD{h{M0B84T!VuOR#pmN8T}j4dD7SSlZ%Z-+RDn2 z^aVZP^MFaN5vFoI&2Ytnx{i*SZ{)8^&z={?GL}I=Kn?-C0IeScgs{R3FBjZ+MqY!a ziBG0h?YzZ1>&E*{YFx_jTKcEWI8G>z@|maE8mDt!SH~Di@!Znj$Ro#QgxC1v2tQVW zx9#+WPI+0z${Swvd%Vc5yqt_sN8vUpM4UY6mIZ{#5UL}ha@W-4-}+;qxHEyKUzhqW zV1gP5!XqilM$J~{_4`^u6g7Ai6l4c^g`%)Xip7(%;M>95r9d|keKWHNP}nfX&$m{^ z89jVBF`AvUw6-jIN}&Mw1_(1F=t%a0-c}=Uy~L$gx?|%YJxXc%5%IcB#+A3{hhCm( zdwjek9WGDbazFCV>V30cU%0;>mTi9Rz#v7ILL0_WUe*JS zIv^lWtR)7KdGUgvx3?F#lKKdw|3DxJ4-RNhRh>2o0q)y2hQN>Wh}*|>75}{gdm^x3 zc{LM-g-w!o!GEpu{V}oL_<7*|bjj_BYixJOyP-c}kb1~zjjwwJ~__n+}1N{D~fZqFKy9%TPNj)RY zJM{he54Je5ra487@RKPGxAp6|VWM3Eb1}RvA&wA}!G0*7#@k@hi|`lY8gNw;>aL6i z%sD4FKI|AQu6Nrn&_Gwb9H1GXU<<4K#OeJU4Q;0St?Ii^roVZ_7Pj?>oihdG$(Ln> zz&Q%{w~p~Q4tA*jXZUKLX_JYSvLWi}?hgy;GWn$U6&dwL+YBNi=}}SO(60o#kfnff z5SLa?wll_IB0IgH{X;c=u=qcJFWaSnvNw%Fpm}t&zi%y4jd%3JM~vj;5orUg7dL;l z0{*<&6{+cJr{tTpP^CU^yzF)U_wDhTk6`RY97(#F3ZnZ2Z0(`_n+2fLfj~@vhS?Lq zzZ)1D+5$crpsA3&1LC)(rDefW-x1p*Q_FEmm34ex@(eK@f3?`^5l*buF(WAxOdWOYs|8{xwR4%&ZCZwP9l3`6d*u36&6GR3Tns~s}VPDwIO$8=LFsSyTe zN=g`LE(5<35@;Luff$54D3O7xY{BS;h=qX|#ea;12;2EcOiIclgfkHY;Sh>1;G9cp zaNqK9lhiFl$D@D#9L(1}cQj*76Fpd*qKmezv49huojrBi#rlh35Q+^b?#=SPZvL=_ zH#{4A6*DVXM4QeRMt?|7AN83>M$hu#@tpb%IT=3I4>I8Z$ui(tCnhFNOiYA8fE|DU zUEeP1jwiq%YYkQ`B0Y}~o&fV8dRCDxj$HsQ ztM@p(C8CbY?aci7$nt%RRxu#W%S*6}PYs8S!gKs8dQ6taKZ+oF71S`v@cNaYI8ZsN zP`{Yah|G=7J!o_Lx%YUfC!SAmI)f+fM!G-3`KxCQX0l^ zsYMAF78VfHK49L!#lvfP{oZ4$6c5Qe4u?G0b!}ww?Stf0OZCn+hl*Ziko6wPNbI`D z)_Z}+oX}|*#Znvd&w*S45;~haHKk5!)YKk?eA*U0GgI1IhT59Ml8gRDCb_OR?Y|f8 ze|#^q_Nb0dCQC$g%0Pao3?iV$(ZAq(N11}htg z`a=L1-|+U>9ArpgJWs&Et`7m}1G+_y#9Pfi&L5!j&crl+djh#3jCplp30A7M%Cs&w ztVLcMx!wqHz7iS;)IVYW+2-x zKX~A+r$b6V$+owA=G>_h#N%6!Tu!}L>ZiYy6I_VuF}+~`tz}@_0{v)~nahg{kXzzR z(%02RJ-TlP<^xI~FSF`91H{}Q_Au}pA^g&*f>pvGl@F9-WC+6B2b5Fm>R4dB1Yv*f z)-fQefp2W^j!G0-5jApVYxuElNAnRgYn4d8xD}B;1tlmLa4#9Kvn}!}9|mzYMo6u` zz!M>384UljD1C4|KfDghj-dMf5*wp0Y6Dkx*t4qquqkXX`{^l~>*_N$&e zaH_}v*X+xk!}V@yASMGCFZWd(k&zw9U4Q^65glCu!m-ZG4BVYqphXx4RCt8F1Z=Vh zf->;v%YZ8YJ@Ja10u&5vQmt0iEtGcZLEUs)8(o4_qwYVzQ=$$21JE5}5sA_#PZGi5 zl{2XvNK2?PTLQo(7cB{3E=9ogk^-^^-&R&;!Cq7e#Cj_+LuwKlrEkGX_g5Tbn_lZu zEifafsZ7Vw5o5PT5V5;%1Ln{6Ww^d#P0`pN^_DcFH2?)5R-OeRB60A_P5=jU)}SL` zIgO5D2XS-kW>QF9Rq?2ny0?*VOG4D_{pj93&7{VFafPa4!HkTSikeUZD#} zks$4;`Nv3$u?rcfh`=}xSf)`x0$QaOW*tj@jnc(}K`QPGYFn7NUS z_&%1^gmOp!2#_UR_E&z7=!64@S}d?fD}X=@YOsEtsfvQ!p=w0lk1S$j^Yr43gC^(Y zlCowEmda-6HNe8LK`y|t$=w+ENI@z;9`I5tftq$PF0u{<_wnWi82^=l%$xRU0(kqB zA$uUA!9NP((B;4mampqvoQ9}mk*`H=(TWgpN? z|MT(!>9ZU*5D)}SRRoX)*tl4{wQ zIqFE3T1m0n7F0PTji;xnnQPIybhN}BJeV5njO5cYJhQhQP^~;KN-k!X;xhjs!EFGf zyQoj5UxjCf5G+pL%XE@oZC0sDYFv-1 zvB3_bIw;G)hyWvtdi=x$;Z+du|Lrl^2JF+2p4-2ixIkG$*x10c@cQ*@2n6f__(1kO zIX~A?qE-S)yh6~j)2gW{cy)F)TOq@|co3D;MZ_wYAKa+%Wy^5xDPl8s{oIKp^XY8Y zWx+%=OZCgcUc(0zVh`eiFVkV2(a)&IsW3|5=h4ZD#H zIAnB6F6=^s=RhI02B!f;O$_9O!F{0VAwnKrUV?~H3%nZpfd>&0djhUQgq0ZR`pAU5 z0!M*Qr&(F3!!y-=45w)NS+QNrrdUiR<*I*Anh;2?GQTYkHzmGiP9Not4in zE;$K38yg6pJmv7mVonDz634fTKZswxdPzSvic_wm{Tf|HFjy1P2RT7nMVXo#$MfT} za4cJE0@p~;`cXI2-kC2Cyi_0%ad?)<3Xt`I1GM+YDFWXNQZD#nVq$=-@ufgE458<^ zoBw}dBHZSm4Jov$*hq6n^;s?i5!VH}N#cHQ6qG09=^0D5%T=~HHpuBK+zG+A2D*pz z4<^j)$s>pMtPX+E<57eC1Mht@ZW`3ZE=2u?^Yi&OQ9RFXRU}mdm%}K%2HCPa#3Kwf4R8r$IkP3V>rZrwLJmS2=^GhV9g)3;{$%*| z>7%?|ki;X2#=e=^YPKDP?ljSdCEA7&3~CQZSaM|k-X8yUq6`f{>#F`*|DjiuW9RCM znJ-H8>g)`WEJP4zfY{j&9N!QG(HcZOO9yshRr~X(l#CiWOXosIs(qSOTC%s2MAE^W zA;hg7Y#x@J@TO#x8_M@jI{8ao$Y_JjoPmTju@iMXgN=1H^yKN2-jH4l=85~4>ufjo zx9i*H|30whTPdqEMgL87-bJot?fd8Af%JvChlA?%g#-2%JDPz90kcCd_-}#Yx~m%Y zZ9_-mM~^^cF$Ui6d&v(ad)pJEz|`Zl6Nmg)%rztyOhf3-%sspa^`%n%_-TwV)kf#=DC9lyt83o z(;^2CB=GPA18p1OY5@-9wDo%3%iYM{DPqtSRJGsIP*3w+TQlo&&@w7jGN_1kKy@jS zRR$#9H&()^%)zBer9PxDgb6a{e{{lkI$K!3;|`|~ZEYWXs-}n4=d1y$n%FjLIATs))<)hVnI+9ctZiR{t>7g$V?1CY7c`p z-9&6sL(f-ANY?vf+5$ajGr}!Bzl{{Dsphh3T}Vyllefmrpri|A^Z?PjAsJk5l9Ch6l!oLnz!)LTkDdenL~AQz?1t?c+{fNg5zCp({Xzs zDa4ZM<(nOk1jeB>$=6P17IzZ<@>upPW7ta-VdwYiRJbDN;45jx?_r!$&Xz8!WGkQ9 z9PUreNvZK|g9lIU&H_i);Cg3gCl&-aEP?Tq96+f}K6`%wvODNSXkNy#IGtUQI{)Z& ze9!;mBkm-hQYn+M!0`cR=F!g3cl?)y_MgcyFbYYn{{?NXpM@svQ<}Qo>WFY~%;=c8 zeaGydP1huku#^rk?DR-e()1U8`&xN2AHVQnxRQ9k(znune}>qP`s>l2)t3C9fFG}L z|Jcy~GFUGD%BOL{`XP419v%e%Jp&8W;PkENUyD4{4Ui%2NP3n8 z<#G~XiEy*x8buiGZA>EpStIK+72Nmsj0Hiy14kId_$`pMM8rGn#xg=c=8y^0J|Ij9 zA_lYwBU!V94#Lt80ldWxuYK(xhIxm3Sn{ObOJ-1IZs!+kN^?glfrq!hA=HPwq*c^VnUE@x}4f zchSo&648x3fHt6#A|*O}_l_uo8opxFiaE78C^LB!ce-yCuB0%!|BekTVZ&Q~vc z$Yq{Ex*&ciPj~_glTp0%uBMacT}fogk4yQd=etbM5gJEAo!{5=ZF=PkSuLW?9rT~u zDrIn~7wPM?YDIgTw0cuNsmddBC~uLaKKaoFeP9eCa@Jp>?|_Ok=Fln=jOS!W=en*e zIudxwdzOyQp@Y%|_-R0P|I6fT+2($$OB6C88aQ|rW+7%B!2=4L*(mv-X4ijcsqUjP z&}%Nx-MWw?>c(Wt&nJ0-wf5o@pUCl5(8|-+{UvO8IjL&xnOX=`3@P}M@aQ{rX?+4Y z1VlIx-a%C0GEmr^5DmT_!3keTZ-+3Gc^u9N6pVP4wcfLt$r#)p@qW`_EUMh zy=Buv;np~VW_;amPxaw6xk4f0V|BJJD|OiL#`zAix3?`qjf25=C{GHyo~#CWxbpLM zwuhS>yB4Ia<3aqpw(xthO>xV^qhl8+*ag4&0S8UDRZa6x5spapT z=l-gvcbQvSwn_Y;gn%p;5gp~9!}`a6%qvw`MpC{Aw_{7v#AnOFBr_;m%l5S zTC#qHr)~SAV9(kVSxMW)}Ffif~DYnWl(6cG_9s!SpxtG^mG0?RINT!l5& z?H+LY@<>Pw9+dqAa=^KZ27JAS-}m1NE*&$?+tQ!P?;53AzI~4rUSBeOxSYFHPxtQJ zvbO5vxT79v*N+y4>gpuXm=YsB%svzd1^fPCeX%%RUMz zed*m(SJy}HVmlv~O*MUcp4IlkcP}*5FwgneHd+Mj?{~V;T3~pS>bO5(J?w!!tr?6DKn!RCh=}N@C@^Y@LEjXJtOyEN^Q%c(Mn=Tc zI$+e?wk7#$l=RAM@os)Z2Hs_YktbhPut(WWjo0`&Ue=8AQ|FUsZk{Wuy)qXrLc@nxW0C(@6EhRpWe&%qKjkSlY*V~);Wqu zizNJ|1%1CeWnGah$4S_eSNKHfTpZ--z*9x0`XGGFzmCPj!m{M)mY}YN8qG|%e6vK zNdbz*9cC`M6sNB(d!iMDMN>aVP@gkuPx!VndOvwxFr@`GViV;x5N~Hq@{(dKMA-+? z77xxX({fEVGsT<@ZS9wCWIn$#n%{Sq<@`{UU}t4P0vy*xp?p4dw>4u4d_VAsCw69T z50@7PZ_0iUJ?x>Hldwe1;#`JA8TS!DmbM|$Tny8BZs33!_$+YlV>N*dip^J?LqEDg z2%xVResrZl1cwn^Rs>ED3`2|sdCM4^j?~efkRG;tcCwI9Rg0P8)c)I-Ygbpv@r`Fw z7uF##Z7l4RWvvc0#o6-=J;hnR+o4X&5I>>UE{n3Za0@LuT<<^Vqz;n@uLnRtMr-Fm zC|dllO)MuJv2op?J7g6)4B7jfu>zr(@S zrTS(27rp9xc~w{#=Ll8-yv^-2uu5K*$gH|%w|JlhcB9zLZ_R=b9qmlAlcoujJV@bx z@mT6F`;_+9&u%B5+5fnVBcXky$EtZV5bJCKoE}w(e1DY)8?p~s@CkPxq3$% zW7X`5Gk!23X#|>?q^#$CRRc@ihA1&-e!O_A0oB*l*HAR%*)PF?fMWxff$Huf%wXqz zyyKA)1rjYRU581SQpsuq(rYi0y!)$Kk24ry#JcOcdCNIhXnQd$ofP*9g&{rrB1J~^ zmxzQ~f&k~hCk+qpC4nOOV`1uPie2l#vjv4rvck947?KfyAKi=kOskKh2=#+ zBs>~iM**!=v+VXK8&Fy^C)hKZ19nn#TQA@-r7#{2X6k;rbw_^N=S;^Y#sMcD^$+H|Os+%_-vb z_jyNswo__8bM|UXl)m=NJRP57H5GCTGMY08$jCJeli>|%<}1z7$PBm;azmpuG#4nG z#(y3aJRWIP!U;wc_I>GvpL^BJCbG8+@ltk|TS#>@A)7)Zvfr+1M!ez}ANWg2`CYQt z=EX$!dSsXgG55@NB*gExxNF;*BCl3gnBZT0;hvfCZ9CFgI*04VvxU-K2FHIZ_GT{# z3l5LZ%`xmbWE{3H3G}e8@SK#DYFeY9H`&!TXe$fKLk2;K8;0A%McbVO)PCfmH!&r67 zH-Ok9%$&!T<)%d*lHD#zy>n1Gk3LscSM-M#{aX3N|GSM*EmFAcX*AQNfiV&^TuI3-}ekYyj2kWRQeI#kO$l*EdWx!yWbnHzs<@eLNcEB@l3qn;1( zdpWxBnXns-0rC^QYAQ5p^K~S_FRM9Yv9UnniUOICx*NR1GuBX{n+QXo&dV#52w^-X z1(2|CAozl?5^(7ky0}-d6&CiC=cnbn9h+Ouv2XqZ2oWY_{hHN=1_FGu%}o%3-p>E< z<~PQ!hM9N#=qQT1x~}y48ckI6^smlw&>u8n@^aRV?DR)6Fj#vFC1K!lZ0?YF67Z=3 zkBd0)V*~WYpVP#E@%=C07SH^B^Z~oc(%BLh>=o{7HE-U9eM8#LcN!9q9}=OM`jHw% zTx~Di;70evI^3%r_seqgn7Z?FGZxsOLqY5b*e|d_z7{m4Ev{M!=*Ywe(rLeYRX)rU zskCAP%>z_72daux-9;lIoY)cE3e^&-_#s zO5{sAUm;Wfj3>I2s-^k0OCBozNZ#8`WyUmyi% zmX^*(j7~bcx?+VOX3dU_j1be#Az|1>24oPZYAETIYa6M?)&73(N!qFJ>-ooX$NszT z2Yv%o4p>p{&h0t8Ub3?P?QNng!!@3x%-@xw`g=+|OVu8lk|%*TePJ6ke=w zg{m(0_J-MxR@XWZd7D6WDNqFqB{`STxhT(-bIH0K72e1S|MdtIxUD@&)Ye^H{G?X@ zp!F!dudkxKkO8Sc91<}%b+@Po+Aum=+Zqi`!s%SmoFi&qJ@xDL)pyQ!xq|Ymv=>q{ z>p0jC;=>s0YvBf6;uv1GHBU(!UB7-HgB7tFDAnN55G2rpS6je^FXEYXCv(S)kvZoZ zOV51aLM^WF7D9xY{G^ z2yqMDml_oM@7YHcF4m;iqs!l^r)5o%zYCO2icTW!ejP3D|M&h_(B(iEa83|ISF^-C zSpmGFZp-#bYABlHEb9S2Av0Hnu2G|u!Zu1W|1g&YiNMBh6ZatGL?_E|-A8Jh<@z)w z&P%Z7&(``J}NQo4ga zkLfp_jU+7G=M-E(enoI`b~bP;TI8X48yDNNzewQccRWf0Parr8c#d)L5QDUP#`3zU zseo^zU!3pJm0!Tpm+nY2P0C*$vsT$DNO=W@r|TyAC!9t|bDvBtchoHhv2R^u;KGLd zQqTX>gn^CLsf)2_vFyZS8cn`u9FFPL(*Hy6g1(UKoo`zAN5&mab66be{m4rY6ZoK$ zRFBQeCCXZ|BF(-1RnWt#Az-}A4Ty#{f>~LJ+!SD)%2`=4_(79khG#7SBCk(Pd5p~AU@(xjlL2YPyM zml|zrPKLOS^c4J#9KogClKzKIWF~e0e_u7iHg7$XQFd3`dPd-9d{VFCOOmzCsZdE0 zz!KTAe1*Zx_U@+6xj~XbwF&hsFB^uMo@*wZNRB<(arqHfFZF=ks}X8tRgotp4e;?mHKb<*AslSLyT}l6qXm%2lC(pC zm;EFpE?P+Gf7#K z%HkFTdPmB2g&9=){olt3-|R#-h&&B88-BB78cnNdDwtU{Zoq z>sPk8@}CJb02iF|=Qg5$rGMGnombdao)q4q>K)1Of(j3WyZZqo`UD`-K&Tx9%%0`} z%xfkt&p6x{^_m%>MLfDoVRH2JFL%hXYAKCwpLhBaRI2PhSDBPumQIh*;T|G;F4QP9 za?b%b&1;Nw3)doj!Z%FB$sI4;a9)ciAt1l>_nPF5e``OlfqiM?yZWielYJhJ9iPddj&~Ws=3vuJp@>1Ecjch1=&t?oU2KyM zU6pH3B`;kn%=k5=gL|L4mbCPM|Uh3cdXXKERchR2%q);OwAmRL&qSTldRg){pjY#Bgb|ja! zU-ce+*C-@qy$%yn+T&x&@!;ng3(I+Hz;JL8!VdPb6iFv_ql$Kc`u4I2-L@Crn$Ps+ zLQyK*vMNcizF}3g)RAG|MnE83OkA-};`k{hno7SLIvgwi0sn>N$j`4gY}~kAkS?Sr z*uk>CYzH%SU&R6DhBHLkb;$at5W|?mWX*8LwwIOfk#HMD!^CK~iz~XbhrpnNuy1CA z(Fbbb-+!%aM#8WXxYkQJ2{ex4Ybs@-wEQ{ZIF}bmj@Hr4I$X@zMoeF8@sr89mCnx7 zpHB?SH{~%TUuY!em<2bl7LBCn^*<&fjVezu6-a@K+zJIGTlBNtl1l2V%SwCIE1|PR zP&@rkb9R3GsH$1kTYNPAZGP~DBds3EQ{M{5UXJLid(1v@Xk%mn?-LxW`Xd3-0GHPd9fp6#Ax z1^cxIp&z}=;TR@5v^5&O$F;PP4Z=dfzwf&j*y4LEQ;}()u8fv8+Cfsj&2D@FhNC8x z(_MexH-8cxtgE$`^6uTn9{(7I9-ZP7YAtG8-oqh*_8ih+O*=JiaKoWUWDz`g&M z4wu`8{!gjvV~k(Fg?{|o_*HY))^wm0ck}Ij)A~elHLfEDPej;qy+4qBgIq=infh|< z%e3W2F{KzKlp!z_d8r4?V<*|TAjwVq6^U@8r zrup6OolH|*WUH^+syY;0jiHRgBx?K^p8YX{Pv&4s>-pWac(O)qlCyQh%h_wX^@POL zK8u1e^aNYye$$0x~}vc09K z7!55@?a=#ZZANj;k#I&LNCaDmL$^OzC6PdWyHV~cZME{-WhuZx==fVjaHeE-PPMv&F!CmWF&$c z{y@%2zO-Z8!^!t3^3SytkJBQyfo{b;p33}Vk}3q>#=Giglddnm zEu1I2NOxx>zDXbYT9nvxH2{f0NZH<3MJf>KtHc#!TX6WSX4%5?CU3bWgJ;a1aY2zeOg#Vm)8Dc~3Pb<>sUFiVpu zp@Vt#ytsWMLj@J~MkCzwV3PUSOP$maV_@u2d`?eavQ5S))&aG4 z33U5*G=u7(e?`mQz4FlhDyV9hI-V@@jFemh)htCX|3J5qj-@chdN6S3Z_MhNyXCZH z4QE&Qiu*^Fro+R18~d=rjJs3aW)CNp`>eB6EsgF~Jtk1A;Lml|#~0aho? zhCMp~)K}$OO#A7V_f@K{KnE#{G%X@Wv_HY23NaU-d>no=wl+(Cxb6`E_t0S%KZxZ@ zwN-4NST*LwvF1so0nWma=JtJNg?9dkv6=4n6vNuea6{AIWfJxu8aq_ZZEa{KZf=UI z-`{iWq%gfGGFUTD&h(zv)=e`N#{@y_5Z1B7139>ekIM(w+%vaOmTw&fH+B{K&ooH1 z!gU>}s?zFt|CNA`LyE<%j}JypFqApbNvaJGoriOSAARTH&fwNm&e_hr`Q~sk4pUxZ z_1>HMoa*=JvLB;%e@(cP!8r!tLTURz&(qx^4BZ_%E(PqYRk$`ex;mnocdvTyEJN&-6`rQP7G%c1bf-+lP zZ5}V)^4k9%mMd+84n(odjwXTvaT}eA8R6yTr1%>nN?wDEdgcRIh?bG;@d%8nh(5Az zqGI=Dh@WP1u0aqH-L%R#pS;AlS6D_qZ;mPQzA$gJz#ml%$Q1D=kJltQ+r>qpLX>G? zvot)on@q#9YrH=;v;Sawr&tubo;hWZ@2FUmybL_M?OWH<&$Zur_LN1j;<=unVXou| z&T}>bZ?q>|^-^NgR{zK!S3srhoGoJ!W;kHoVPIgBl@sgT?9cFj!}~x1X?9}8eGuN@ zDEPM%=d5-Gm|?GEW;L76NI+?8(GMOs+A4*_In<_R8y%h7TQy=Dvqq1(%7~73{a=5Q zL5KYhilJ7-hmy0Mje>xcPacX-OV36~_ci@DdSDV*24#I_Y1;5~jFPgd3v~*L*V8?N z#CWFM5#E;$67(!+zITyPt=|1$bwxFu6W+IfZuF?S=^UnK_yED0`m&w&mu1FGfOwjj z7n{e1u6R59OGWwx_GZKd^luc6mSfrPys~EB`wC z-M>SIKc8$NDQ?J*Tv1v}y>&=Qm`k-jgqFqp->cFUIcxrrLp?ZgeO6^Cb}-kch@Iaq zZaOyJhVDx|;31iPWOCyK9tccw!GIbsNF3e@JnO3eFowlxjk%>(}&Zi>6%PZ3# zZZD{ws5|V58+)?V<1SgPM=<&5!=R3$+pMjj_*{>P8ph`qub%bGaBq9_j2OG=p_>fz zg3@w4%Fa0X+s3eJLQ*|DnwLXndO0Ia*pcsxuSRkIcp%@jkrLjT{}M^-`Rv+rO%w8h z4zre%4xaIM+NZ)FkHfwl6_{A%vKh)oXW~giMoD?a>YgL6LX9)v?5NUf?CftENHv(9-&FB2C{+@|DwKMJI9@`pK3<@4&CDuYYvh+Bh{~ z=q+F2Y0nYyzR|6s4{dt%F45Z)ZYi8e?Xwff506iG-oQZY$w=~%X+U0V%w!4@L^2+Y zGVTtG$A)S8Y}`ih-92g=8g`d+6ro~j(7Dncy9I4l^9d&sx^w%*Zo^3MX*Q2#au5Cg+WVlH0QNgP=BF&8!EVJhU)c1y; zzLjt*oN7wlJ-6qX)0x^;O7S+Cr#kdSgrE6-Gltx;}uTL?Og{+6_9d180AfVU&j-4A78TqH(IeDv!7EvZ4q*4*_WOR98=FXXV!3 zcyk_>${U#br6S^=NQyk{!otZ?gdEXm<0==L$lyiS1kGD!2 z3=l{TE|lNi{r7{QkS?X2+qN{Y=p{GR(T{OC26jZPZhNaFR-@fs(G*2h-Eu%98=1udrHDDT;>P>WF&?PLyvm zF|c4@afpd#C&%GVjQD5=y7R$txdU@VTt*(XG zjbE5JmIO>dVwkzuvcf|d1yz~o&1VF}95$`95^pVGXv$TBn0JZix_M7yz2#OuqU7Zf zQ0@9(3#O4aeo&$+YGouRE zZ8w9}asG2m%znHC87uzBJ>@6ndMBUM_PlqAmu=TW=i~En-_cnI#$?7T#{+}`i{06jxUo3a z>77oU$81Fw}gFEcVZ=0n=VCokG$b^9yogA3-LdI==*=UC!9YPm!ghq(lKbe`a>} z6h!I~)^)&TCG8I186f6jyzq`URmQgtRJZod+KDnWxi{Y7$2`#aJ`m4gJ#oh@NS-)% zf~UkH=%c5AdUCY_x~A=u!z0+x>NtzZIk(!OXU}5JpI$ghMw-WA6hud5?=9k&qew6^ z6fhD0T`ru{_fcQ&vzv&zJdRy*fvtjakxh?a`boBbZS@-!n z-Y~)7m5wC&97ZJ?^{g$BU5NyEFu-K?gLuTRivb(36y%M*_4_U(7+C1&suF`t+b~R>4;1HG zq5}tlgKuV1M`56jce93<7v2?|z)kGMA~aQ^gmOQ=W;prEmZMqQ(4>^iPlAEd0xy7sR2ihb6WDIJA2{jN}QG{5#{rkdtF?D8I^Vt-_=s;zNX zp@6B4Km*oom?89{*L8Ld=V|?WLd?{)lDUFNKQ9>GI}q9&4?!hvu2$|0-ZhFUCes_r zYE{pJ7zr!LawY)e4H5()(7t+w0eFPDo^Vx!UfaAor>j|&U_dwfrQ^6O2HXLse|4<| zQTU5WItR=eauQTh*zcEe%Q9$6<|ZwixwUA;#v9Ka!g-S9qYhKU%gbGxYQ8k(;zCv_l0jn-I+2Vl9*O1B7!h@S)S!t*?AK)lZPK!>w{ ztYz5+U0Ob~tv9ui$;_j~mnyuTzvL*bq{PDGX@zLWoX>`-GLhTn;>1 z<(4+>5^{37QRL~{+s*&7_wE5TDsgd);?-Y?4KEpGX4E$WX!#2j4XvcyN1YhkOYfed z-19l2!!_S5?9r|w2g*yHC`j;y*P5dYcKiO^tJD|nzExV>k>9(9x-66b<^)ZRITbq=@ zyLabCKWl2ifE=MpPTZ%y{MXkyYL%W`fx)tikDl!LAwvr0hVXX-RvZnm|8B1%5&WV- zi?PtH>zn@RFParVkWcdonU355_vROHJnwh!{WBQrxBnOt(i6i+nXgnCG{FfUY8p^< z|8eI0sX5G4pd?1c<^y&NDj!-z)CmBGTZ2R(BAW!}la+dY2GK}>BUJ=g$GmDs%zD$d zP=Hfpl9Z%|5Q2f*fY(mX#f9_z`*%n%pm!n$=>Th`b!s%79HmC3ak(UBuar+x`gcH>}yT=3tdy*qFfcQ z3I}>N1Brglo9f_mP|HRbGVnYdWNgthFFP?F6aZtJ6_k~2fUi=#@dZfEZ9?G%u7F{8 z1K8^)Yj4*PLqy!VZdoA+@+U-aG!}%jumMpX!Jq(WZ3NxdJn&L)Vl-9}Z_ci2QJOyY zi%9-neZZ)LV?3?=gJi%+l6OWg^Q=u&T7QY%LYiOz4ZMT*tuUo8+ zYwJ#kY#-5te7rmX{xzvazs402ZGT z@Vx%q-&X-NghCh$d%^?Y=pI3U4|A8PE2yYAT2Mp#uZfq}+B%qCK|)yIZ*Ey&*Iims z!wid?A10@&zFnE}rKP=0pYE5xzLt1P%t4Y>yW=~5j|Xjnv$$qy{g};u_Vq}w@nZ2K1mzdu`>~633z~6^^8N&<*l`ptf-2DzNUxu>I z=j9F}+YVBw<$SXp*EY_jB6iY}5B$kIQF#Ot(&c&&SJ=60dn`VlC%)E6Fvh;Vubv}-Z58{Om3`RQ{ZOq^=ycg>xsI2uN3*Fw@46D?kz(doal&Onr zU7E#|dr78)u2YtQJE)V$nHOTJJ{&-0rStuj@2&j5m?@~`vf$qkobBL@--(G1xJ1NZ zQtZ_OjX(XP{<1x4R8C3U-ebKnhHR{@(xNQ;S#6A5pVW8b_g8){Ia1ki)WNliK9-+Q zF;N7kh5!fbtZEjeDeJePa+EGlZJ)F}t&U5*RMCWe5(_Lp=y<=1Vjew@kJTaxyZjCS zMt)$Fmv$sQYco0i`>Q_Rbz%C5*K}kZBiI)z8hycsSdV?4A@Q8gj61<=<5;>08f$&{ zKm4E8-a4wPF6#e1fP^Rl5+W&~bV(>kgMf5P2}md<-AG9{C@tL}U4no#B9clsBHi6^ z=Xu`u{`b4%jyuL>2m|GK*n6+F=9;y>pFJH=(97~sO!f~5c^Fp_vKed@JS=0_^^=HZ z_3wS@@}4oJwl2q?91k`;c!#`S8di(zHqDFr_88&R+GA=waOiG`P)Ho*Txi#rvUli+ zj-m|0+4L9Iag@qvBq)`Qn;iRV`o-$$L?M|F zWTkEsbD3F)s|{H+voP>PC+0FT#gT}9wjgb}OKas3^iFi%-K%`O`d8TpRKzpqkWtg% zVGit99&aLsW#Y`K?tR{Z6>q zk=*BWR%ZO;Rf>arSU~jlc~$mDmgVUDm_H+sFkARRCT#uZk-^l{sqgw>ZSh?A_I$VU ztp26zc2K)J2nyVt3qetjs7bldeQlC6AlNci8O=1*n9xOC{dznA-X zn)dS(!YeZ@5<_xW8J4t*b4!JWDSbvHq}#fdJ(Ai+W!Pwy#kWPm62x`4+K33&w3W3U zM(EcEjxlRJeb09*5#8j>>lc3M(veGM@jZ;1s9pEZ`z5=f zI5#@&*=PBR^ULSOp|2VLR-CbN46Ja`(&);tH_v-j*qq1^_vI`la!Zy~Yot3fJKr|V zD=+b@eWrOeu8Ga(N5p}EGZlYZma_;+y-+w5#o3okrDm&-HVXDF)kIN($R=^S!zbtW z5vIzhn(AJ!Rr)TIDoAs`Kjjb`uL}11D`+qIk;ji*GV}c(L9F7poh;8Mzgj%zx2MP- zdVBcSzL;rCm_dAM*pmEvvcGWYo2>MzkM83K1KodKd?`AxTD0c>glcQd z?DD^2AWvA3pCr|E*f7OfFf421h-(6q>mFKBe$n z4R@*%d}yl1Y`9i%(ZoDIM7y{+!K@=BqxO9cPca{gY9zU|?NzMYog(sd9DJlXl5IA# zC@0_O%h;x{??;$79Iv>a7|+p9s1p1k7`*(vmCWXTS-g&AhM#$PKH2oWqjk(*iJvjU zLBss2`1HEa%j5HT>*P-zND;2r9-_xr66(_I?}-*M3fZ4-1$lUVw+ptVV#C(o+bwF z-e(8)#-Ph7Iz8TA)M_50p4F;{bRu!(RfmVKgJX`~D;L-p{v<3qdGgvB)7!jAqe=x0 z{~BRm@~m}!I*?RW_G_Hx)xSOdc$H72d=L4wa~{?+=t%LQAf8z~J9%;}rJ+pBG(?2a zp~BC&zA^c+3Vr!;->RTK3c3KfV7h~fp~kG1%fpAyCv9IcG};X0VRgsr1x9kU)MJ(L zyxTdAnovbeO-;h*rjom9MK9UROx=Qt(ndQ|#qHVhSMFwV*YdI0w)l zOfN_H#7F<$cj+JO!|-j3AtBGbfj@62nc>8Q+!coeKIghCu$EQs8*FR{knk4D9LUrM z`Hc1(G#}pZTgn!lWSOeXP(Enao2EUeL%H}s(~b8=)GR;2eKo5T@oW?Mk z_cL9MKD)EwV((j?r(8xXHZun|_k0qOwi;H5?mY)}V~({5Ea~{{F*9_Pl9U#bJ}k<=Tzl{3X^+6bmv6yRQpnh^GRB+Frw9syf$lft>$Ww`?jfEjRe1hUtlV?(=ioQ6F##2Y55j=5X zT%-AKJ{Zv|%|FI5Us6r|zS`8mYH-DNSzwvdd-gU_$l}w@5mtXO6lYB5+Gn*{zArHq z_9zn_ZrsOxTqPsddp)XV71Q@^B)%uJhkvx&cF6MDWp#_nOHWGr{dnlk6^HxDzc1-M zU;HYtc9>8b-X*o2uil%R9>kte7};6>O_s5hL7Fp4*sdVhj44E`Y(%T)T|b;5bSr|| z&+pAWyR;;m@@A~^r36Dk#9CDf>)Bx&SLkdzmzi0#YEEZlzIF7u`Nu+HR7(vJ_c)IA?)oDUow^z^3W z7IPz>%G*{H_Paf(G>}^LUwxYDM&2JNSXz1Q8_sUz+!~ocfE(6`7$XZ3?6fdrdytp| za=;HXhovW+n74_qj`uOUrcTiwr+D9f`{2+0E{ETT)hON{6}{gKGe1K^E4T5adjGMp zZN;Ph)S*q^`XYx*ChbX(&5!4mtp#rTOusKD3yxUgr!GF-ZsGdKM1N8g#M$wqIoapf z?_@uSqABlat(-Kw&V`yco8C~|ecok4BvsL0 z$RBM1*YqmC@XxDUJhmanoWYiIa!osu1lP5BE@tI;Bac=$muIf)mU;?$WtB_GkNX-( zem>7K8DnX%@%Kvi+WpLnn4NV`OOs?z z39Zz{n~7o z1NT;Vy(bmNVVIcv_2;@L_!Ybo+jUmGQ*(2t6BT zo51Q=?`W3z?PhXf!h!DM{EIvbaZ{N|ZW#4An;w{k@0rX^ zKb_#G8Dk}Bv1&=)a&(m@u2}Gt(&*$duG6Gt?jq27do7`{QQDPDW6X!5r63X&j#;)q z_U?XVNX2bE-coK{*Bn>rz84sX_k0(!DGP)5GC9w22qHtE&l4sT~= z(uS8pnA=m*F2cOzEhQ~j``Esj6D?C?Oq6`A1Y1~-G1sRaefszEnm0B_+{LXYQmay!)QAqRqt>4Vg?pTQ?v{~n9DJF&_81+*ypJm& z>YU8iTJXt{)lwhPay@?eofx$kC38>nluO}P7r~D%1%d;tDHQ~pR$qvI`H(+O-|Mi3 zLF^-GNx8ctrM_J$PPdkvXYFp%&-`t%;MF5OufX^C+QR-d)v>Wj7SE+Du6Pb`Y-4|Q z%N$!zrMlD#{Ou#zrpMvZqVUiL|Ns_@P+Zh7t5ew zzUNZ*7T)H(4u>sYQ_0+)95!+ZEfUt<*%2+)P<^dM{i?rCVYgtnYI%<`L^jynMNFN3 z=Y%e*pFHXi^N^W=jNpmT#b#fM+T9JsStqodXD?$Pa+KLJ&`Y$g_lo~{Y0g6%lLzwC&tg66&&XocY>IH-a~@am%$}JQ)QqSc)(Eli z)e;(U7>k}9%=Wy{*igS`*!E*#ddl@lj}Iadj8U1;Yr*ewCwGrS9DUgwcQ(Ao=PT#u zSEzxeHzWFd_WOz9rQ1LVQ34vrT!2gkWd{_D%D2+!fAA}=rb6|N8u^oSem?EJP_24D6_by zckXg;O3+(>5_Q>wl2V3My5r^B@2&9p;gdR7!^FO05oL{}KpkuOS?D%4nd+o=N#9sp z;n%~K(elw4w~^-k&7n|q!bgK-XY1wK_fRXEhr^5p}g zoj%>B;*4SrQO=Zctl>aM4lVESs_yJ*C!vJL;fo$OW?mf2Z<1JYqVu6}qe5L;q6MWH z1qJyCH7j)fu^(R|8p!&r(wAgE|4Bx(U(uLh4Gntr{T*4sGlAw_mXw+y1z_L zCeT!6WMnd7d_y84a@m_MRNODZpUfb|&Y}Pg16rnc5ffU64e@BkxJq~;jVPoy2a#WS1zPJ^gz%UyD}+1NES;jDB;~Z*S#9^Oj63(e`$e;yc6yZ8kw1zIk=h z)@+kv$Kap@3Q7#tfVuY!x@pBHf^ay}Dg-1v8k%qKPahB0^lyEp!ah5XenGXyl(tOGdq39 zy3K4cIM#8S{n*Sx=v{GLu7A7LHko*1HJ+R(zKnROv7J>ySeMfz`oYns2k{*W{5ZQO zuNGL@nenF^TtB7W7feD75Fj4@l%MDFKU;G(d02o;l{Xq#2s}-*vx8NjAA=?x`_ZE>uc<@)f{-gfIR7b+tjL!ihb&Z9Y zx>tWjbSJe{<7d~H-4C0^ijMTGM1@T5=ycE$$}T2z-m}w-Hl9lj7HSUhY_5qA$>Bi^ zw{a}fPJ}gonbxb0^2X(JJ77q4TVr&2`pk&gn-f8Jra)(&P{($Ac)!pAEu@OO7R3f_ zKtb_w#o_R^GK0v~6@!2mrPG}|B9(7~R>lc36orB>F5YjB03ih-Vy2A$STUtl9dW9z zgW|o${h<^sD2)pjjoF}BeLW~NnyOm7aOC;^vSiN2B&ScPReaH!z}pgW z`YVoFnC=Eh+askP5$UjTm`;D=0VgavH8lb%(7r)C6BebQ@q2IK&=|L`x7YvkXELP9 z4hVXg6WxRT6LuoQv9i}l9d6_i$4yQk%L6we3&2bWq!8>=KE7R5hl<ZqKPat9r{d+> zoqToXw8p2!<;Fgp7{t2qTslnmq6xd`*eO(%NC|R_a=w;X^4Vz>o}mOk!RnKgv8!e z_6v!_kJZ!{-8agA0IVu-Z_f?@;UXDI%^e-jzciCSwLt)p7>UXQO|SfEDsu9$4DrBL z`7VTrw+U_bbLkWh=UdyYZ7pcWvfNs=FHn-Pep_ze!4R9;*r^gHmz=R_Y1Tk{ofFm7 z+Fp%T6j8l5Wq(#Gu6CT5X!v63Q`L~#bLo-&za0ulj&zx9-usS+A_(MX(GMb^X?--K` zOYiA3i^ux2-yCm2tHvmk5a36V{KGf>2|f<``kHxpZRu-F0j+tZ0x3TX<$iDmDTe+i zeaWpVdOdY6<$fVKgHt5fNL-Z}SiG_K!7EmV`HC5wJ@zXZ-Hv+C9=kvU6X^0AK+ z63E8x@AubDFYotvFvk1Wd7Sf3H+iK61QBA(MkbEqb2EW~5V}#SqX}vOAGkZYGc4u_Di7qxg2r$R8NU}W*jSR56 zVe#A-((3z?+1{?ZSag}{b>cJW!TauRQyB3hX68^{xfGeUBpzCw@Gm&UC8P{P^*1Ja z{>A%Wp% z0*6)Jmnpgb(Aec*`A!4=+3VxQX-)hlRQf*(YvlG7j;+kodOq==;^`_-NZVX7KL6c9q5<{52+Ks8Cx_N&E_Mvevxhu}$%ib}_8-hUEz zOuJQQW4`5(E7#3PMW|{#DiFKd!oskZA*L?6u27s6#Y63A$bI6uC95oz#gO+@>hbB2 zInQ$`sZRi;<9qsa0NPXP-V!|eC>8TM!d9WHbha28v zVq&0U`c5VE`OB?W8AS9N0|c{zqTmm%Bx!YXedWs9}Sqb^OtVR&8D5Fb~F9TCXVd>^{W87e+cpMMM0^j zm5nAxF)~VkF2I;~1QDXFaL3hjjVJg?#+-(Ui3yVS>b4O6WCf)3B_x0t%N7zAmJNPb zVSav;Tut&{@(>{^c_ZhrhhI&sCali~uLZT2r#4?qG9JBQQO^(SV&;CGGbXxx+e6jR zTFm}d@M0R>(Cm*Mlq-m*${4(IFJ5TgAl+NQJ6o8bTCy)&kk-?q>`mtT#HL%DemQBJ zz4IA=t?H3lLBaPt#>IaVH(lLivUYwZUtex}fr_jIqN}aV7c`vZ;E-C3TJB!AT}b17 z*~;Vo-0)yB$B2Rz_8i!zEtMVxFKSZmp9y4~4Rk z5f4R;=7^vwp=rivA^$Jm_btw=vC4}QCY%xm4MA-pK&w{ACjQa2Kw`wKklymxVeFiMOO~Hpwjgff>vY$U&Ev@e6hCMyyl{0J^4r?+a@Oqw~k(W6a1a&*0!4E(ak1U|} za&X9a@uDA99)f3@pDr>-7~lOPvCa_{mX!(d=?AtON%DyIA#|6|1`2=E&eqUb$Dvshl( z**!)wt3g0&4m5k)-==xInYyX5g=MS#iQk2Al!Wl=>SBvMYfd>+DRLoGECZ>3J&+}Z zixh2ME3D-JjU;BFiyd(!l)Nj78WvSE2$Romu??81-)QRSaWUsYYkS`585YzXv!M z@>Pm8{>0tVVK7yX>I>@P>5jenc_meKp75ctA(??UZVMn2{>~fHfnS#P$k27AL<8># z7NKo7^?Rw&KZ-lJZ)$Kqr#fNofh%YXXv4+unQ0 z&S^hs*Q>GY*`szC=cWn`6f!2K@sZ!G}AO&fklyH+0+xTS(z<7K0Q0u>1gnpI`AbmV2BwFa+Mc18z#A}mTURL z+oPxgl~mq*?DEI!gciwym+K=py!9|vQiB%bDGnWv#7LjY^2izX8vSyi>ms8bl;P8U zzCB$pHS2Lq5l+ez0uq2X5g@jyKCO}M{AyCW-t1GELbc?y5?ag}D*sRpU-3G6lF)5# z7gPp=k+zz*BY4vm1;gg%->Y1w%P{Ok&>nrrjX)HyqVeNlcbnzrStVqOtXFF87q5#I zaf+?gmD_1^B-zS?XEFwJ!>%h*+(GE<&N}~q^-C`>aVNxMK7A)2O1`b@tt+%pWNE~&ZI0G_bEM@Fj;+xflUe31PR}$D{zJ54 z-rdcev7M(ldZF`%uKmOJWwVIZNGi zT8YjR&x>=ZO=yxrN0(wW>)K=EHfpm!7%pH(TJfBFx%;Yr+p)82J?dTKPDsB+b{&Q> zL-}?ih`aEDYf-ULHXy5CN|yAp`Vn|zd7xCM;^K1BCYi+ zCgJY`Mln8SCMJeQj{<0DY0aSh6t)%XSs}N}!%;J!gR13P5A~}T%>6FFW);Tuia5WM zPJohr?TFsEPnS=_AhMj;cyFJQ{+H}n{A)+b=WegvUg?vT=S}od5UOAZy@JcK#G()+ zBT?6b{(YJrlg4P)HjblK@KK81>0cLqcVFMg6%5~b zfT9&kmbt2_d4GDj#K+;$47+d*bDzEvH<7aUr*^0!H3%HE6&>#ix#(ZXGSwuGS*b@g zLl_5t3$KO_*GvBG1pA6U%;_4bfM1`0-f_Ww6W#xpZpL>Kl4{92Ub^SL{KebZ`}pJR zHF?gsjm!ef1zp)WIfJ3>-=%rtCG9fH!wThn1bqWuY~HCZl8YlQ*Lh+!VE*!@+ij5h z+*bej30>JrV?sI z32;)3+Z>*HmMlB%1o=wpb52+9{JsUQkzYOCGJ?aN{dJV)3B&@xt zxELb%JNhLzmq@~LMFfLyEHbQJKabSH!r;i#;M9&YhwxtT z+WoYv&x{Oq&vQ_bEjB93Qh7^5{jU`I;JTrs-Ndv%Z!@oS&)+Pn$ z76Jh;0I>59Kww6Jf-=YfZ}NiB6BsEMr`9!{-BSF~ zdHMhq;{)B_$X4~%&(`0AAu+Wtx@f{vTNdeT_XlTuk*CxmCrA8|P zLV+4nh8k1#d9FfA2sG!LUuzVoDXBZ|AP-}xsSyI<<8_KUGE-}OymVy+a~-h=%3;A$UI`KN!lj0ZKVr8P z${14vM22-=kEcv(ei8Cf+_DrE)$%#AK{nV3x$vdpy3YtKDW(FP(rCQG1j-!kUf1XP zn?aIyDu6-XDdpWq)jlM*0ICZwc)!uTf428X62UQ_e zAQ&(w;$IqWoSe~c@DTO6x*ndtu^dNjIQVEgpPA)TZq&hSi594M-OIv&gJNOP9ynoi zaT;kudmP~8Y+t{mxwC@Wv+<0e*D~n^LplacE6mq0IEO+lC`bY4F3|8fJN#M<5{O`7 z_yq<+pY_FjAIJ?4C_P}skwQ$NN3AXT57{n6EiDKBcWi*|)i*!zUun6xRL}oJ(@On~ z*Y^~)vSRCuB+XIRL%qDjPxu`ABUVQ9?OS_-2v$_Q+pzOs$-I5|8=HGcg4v%)Z}kY9 z7+3RlPUY_|c2-~Q;?8{KtTNb>Z&L}82i~C&g9AZ1#InM6uO0$?vppkjzmV120MT;1 zW%gd)X#>IUbORxmDsUh2c9L3J_W{oBTUEvV^yyOs0+RN?GV?|9U}nA%jiaNNp(trP ze#S>^A+U-jgfQncS;ec3HnSqNb9=(^cspoSnTBJ_%6|`2EmI^1R<6D+x9gH|Pm(ORxX&69U%-XPk6Gszh&8};ZzU|&L?g11rqJMT{)buIgRKa<^~IeF$#Du z@eSz~6OiQ3me(Xb5>PS}V!*-UDJWlTCGLq#EKTV?y=Y%PncKy!S{~D$lzFH}0bDmf zP@8UnWQHR54cx=CxEpuD8YOc13}!8kuRJDE`5nbSbl_my&sC$1IZ(y^MFT}9$9A!I zKxDO#qW5ZZ5=Bw*l=%a(w=;PR@K*?Er6T+w%K(Wq&#Tk7DGNvmJ+X{|anQFZv{wMV zOb8J$@7=oxIq3P=mwGMGtS`qTExshNcGK@#|7qtoWvRMC5zz<(6Z=Qaif>?HkQ6Uu zzq@24WjKK1L9Iy2ygaP!?TZJ#EiTfIf!gQi1zSqan;#|F#BCg97TqXcK9?*QDjIS9 zd$SGOzuf08{?6Y}(pv+v>}FT*#`osAGzz$hGg)=GuX*=Km>Y;iX4e2fXg)8o@qSU?-$-ZTQA*@|L$WCO+$K9yEJFlrNRoc ze8tnk4ZSwH32rE9LZ=0OzgK_E%us^+bh7({Y8Qx2yvdBb1F^frY%dpN%8$16lSoQPWA_zZRv&@K~m z*09th5De7RqV?NQOr-Z06LsF20+v%iDoa^TmSY_6YX1Vv!NuKu{i3t869ZI$L6364y%!D}g1=$@7532bjv5Bf-b;?sYk@KC z@xPlpU!yPHJkC8z(tfK|K7>TrLz?myviJbPibh~VR6^;kqh_zM_ze)oUzD%jQ#*PGEB~3gihT$* zhtiaLH%@t8ozoVfb5fpLXaw)FDjtrIs=ynnia2v(*eeukdTSOhySk&=tYTX2`d{q7 z*G~7B=QlROqN4D~g+0lkd{7ZwPlJt*52Z;Q>Qpq}*SGE2uZwF0gsvOj4C(*TswvQ< z{8CKmytU#?94FhZ$){Z|*Ulou!1F>@whc<-^E!t+z##%YLm;rw%=`J?pKuJBJGN<- znES~%J{+MhlKRX(f$S1f%V$O)CfTi|v`iA)f8P%X+JQJZ9q0*~4KADrn6LG=jP%2r zIu>!Lq&j!I47%>ivR)JYNz0<9Svs&eEM(v`>$$Rj-^&Fm!%)DM{*U*CgmS?*Nct5M z3rqIbSz@OmD+{dX02B*)4QVRq zV8N+ERLIY4pXBj7Y$nt-68jf+4srhj=m+37Y{xh0lT)upy3xGXbM>IG*{2{`z24ZX#@NxwYhgAP9 zE-V}6_xGQAW>d$=5MRMISSH`* zKuExX8a~Y#XSF!}QMx2JbLws{s%}fa};vjka_7|~y8Jm%Wltu1iR-9k%IaI3qH+W*+OaEtV>TzX^@)G5_ z8qQ0dQ4l_CK0y&dk{8Uo6&ec21-Y|h)04z=3&COBg_oPmL4tFWkNx^x(BNBE|AO6w zq=aj7RV4`nx9wF;L1Ug0xuy^0DL=YL%434cY!@UQwr40{tmPj!B76rKqU`5H^WXAE*nifrPJ2jE__Hy+$YBKd$JItK?)#ULMvl&)UL)-`1qe7l%C#<>QpcT(zSP8-d%kpdrLVhG9k>~7p5W{J|K!|)x9 ziKl?&jGbaMB{e08)CA)T&DRs3pz}E|C zq?pk|2Wc4p>)GPI3k)G-ECbJ;kcg;da8SACSIYg{7~*#eFO6=q`f4z6Yoz_xw)!ti zjfX}vz2=c0IBtdNUk1Kf>mwZ`q#NBHLjWB1e4Ka^Rx`8axfaVcDGW&Np?r#t_5n?H zqoa-S1R)Q8$at|KFT$5v->+Q{|JgHcUoJ}`MKu2)BnEZry9XKQ=05{Jg6V%=Weu;Q z{w;UelUxw|sx{Z01*0;Zn*$7IR7whtznBjkpThvo-`nn+Kx?;Y(F{R|b1&{(+y%Zo zMmrJ}2YTm7rY!;xoZmzX)MQwQ;Dy|HYqI#w{<);7`ZSOiLp-2C`rJr=!s&0a zh`;g+w-_n&wtm!#TKzMsyIbb{#qJLmfbN08Vnj|L-$CwyJj)vxq&(PCx*m z3SXzjvIQWZb6Z;x05zo%5YYXf8!>C)dBz=|Uo|ZIX))&AH(LDl~Y(YT*GG#xi?}Y=j*f^;`xRQT&Mj!q- z>oba|PKN&3yBQi^${{gxus(_lZax}*OJ`>QBR%rg@HmKLM+ScXGygF$@kg9xS&;%( zEDD(V4pl`#f7pVIfG0K9shkWAH%KB>B;~tupO?V?NWy4ONjyz7l4as3(WNZOX3rWE({eFfG)@$eBAV!-7`RW8Q3BO0b zIPV3%RHd-^Od=;*j+8z{mW2^>P1m_sS!w&ej<5={rwanOuMg@+f0|FWk=KBxmOKQ!v zhimc8NP9&3A`Z5XWaH<5L1Y1Wy|ALoU3Lu%I$k5+A$fjHbJ7pgc(E*J8t$v+%K4}i zwC^tb7_4`;E_jaoB^X(vZA%X%<^V8>EM@|TS5*P|-Ys}2Z$$BZ>g<;*ln#-9HweP2 zObDuvz7GdU zg)e|u|NGV$6OI-A_ifjm|L<@3nzkAt_J9T<0_^hkkH}x_+cGEP*z{^Ta#YG!O$p$v zu+jMV+?D;G%kpK1Jpy`QijT?BZIz9T1HhKSj2MK#8}c9p9ipP5D5z*?kS)N5&9$JT z{AtmJeEkK&9Yekm`L*a`s#{TlfrSMb0TmUk9X~dUA|`}T5r}KjtdbPK6-+YjC<=&e zGK;4&=ua;|e)W!>bvX^!QYd__Q1O4d=^$^Y?Ei1|OO`c+u59ng<{sL{eeOf#*Rs7( z{VR-Bx?lf2*DPB&9P)p9lmEH*|Hq-A1xW+sEKPc1eaG6`T42A2tJV&9I(#`fIYD7z zkO06;PD$CFvhSyc_?{-XV-Xg;7!7LiYuD%O!%4KQXPD3I%;`lgLosj}GY=6|~=x79~7ll%R8nPbsy!5_R$>P`XAy&WK9 z_~hib;YUbQ0(q&4h0M4#l4O#{##ryBYNJ1X{I~+a2lx9E8)Sh3nr2M<6CaykqhnyG zz{zqX$L8#4Qx+EOCnfXU6JSW1LT$hSK%d|27O`11%e)~a`X5+^)Op;(9_Xj$;}s7b zSAY8h0V@NFS7|MQRG!k17RUxr_-0&6N-^@b)1c`LK<(T>=7sDy;dHI7FXSmjzzzSC zT4_1{*v`>02S_D}S6AoOpf5~VZ9W_VNej9dT>)r#b(pz^F!?5;qqFm_@dT~}MH1bIdLU>(og zbSye(us|s3>XPH*FD@=d7Z{G?OM^{UhwQ#ThRu0SPfiA)#G5-EA0ICT zfVV1>U&OLOrnc~eL^ConvNgVZmY^WvG`s;ERIRuA5)wB6M;8$Ug9|LSN3cV{jg|IY zZB5tzao=vFcRL*?j6`n z3Y7p<8jh>;nnpshjQ~op{Qb?)DCYs=%-x^<2%gqhl^FqehPVC22I5|v zVN?Wi?8u)v-EIrOK^r((7Xg_UH6|h;4CYqOwzQx?m_X2Yf%Eut`B46_c~3GQ0Yp4f zc?u~A1pFS@mwZ2e{@hmwiD~%jU1>(4du+NQE-p_Y-arOfV1|&qJgBi)9GGBw7wdfe z3y$gUMC;;Q#)fO~Wagl%FAgFBQP9>FDRhPfpA0bDlO#^9r)qtW8yY;g&JXCf0HW^w zb;j)$u(lu-n^}_#P1MWI;j8zD{w=3@NkZcT)aq}fo4rQ^pqms}JXpI($~y?rAnWl9 zo#ANSlKPlnDk8uw1cE3D0G7RB+kmBt2W)E?flxihR6Z9Zb%NlV2wkv4?6%8XR|Zc!k-nGD|X0$kBk{Uz)d}P`jiAlD$v*0*YBei zMzwZ0;ED|)kMW<+Mh*OI=r-ngq>#)|?hvhF@gV3vh6ncr4qHKWyPm&l1U58MJtdU^{ zP^Zhv%SB5R>&vON`?&}ZzsLB zmPAA2+jK5K(4j}kJ69buIXQW5eLZw)N*CEq2yQ5G(?zb^Aukc+?`5DZ$pNYZfrV`Bp!AIdWD@g>4+ zk^{F8N;!`<`F_Q*(n5FW1bAgB!d|J6ot(~(OSp?)pvHvUTEHX@^NozHH-mo1&)Hf1 z`W_cB_ec?p?S}n`qvTFK%%kmDMPx{W+zzfz7I5AEMN8!?rU|L(=_yG3jZ0%>AV*1e zo~*UaI!gZd@oo}8@2gD*Kaf*UtU@zm4s0;1e#Fr*i&brGIDlx11Y6>ea!Y?n#^c$l z0L3t9L`Z9am{bIMGL7H9mAbmRI%vJczS52`+gPNhIfIx5>LCio*4BzJ?0FC{NiNqy zlMu40L#2QYQbDB99r~)y?m3NFZ<`MqCYJY%9nTTJl9G}L*P9*~)(7Sza8$w1ZvZT{ z6lDJ<>|rAwt9eHT{{~?g1?&Y%#>RADIL#tMwLH<4!|`1H$3G!??0uU4|KgVX|LY-M Z2)picMmnHw=j(jEp3ld6p7FLe8`)V_vQQMoZeea>Pf@gT z6h%|P#E73Tn0(5_|7{2`bqa7eQ}x@f)S{gPOLxjt*a}Dyia=-S^V*=AB-&+n} z1JBi*KP;bpP0m~`eo9J8YG_fXGgR!u#S>pnd^rB~#NfQHq7f5Kv{8Yr9B%@D!6hFW zIbIg>M@wVA|NMj8j%8c%FUb%03U4tazsM3@c+{5RzkjLM@c+jzCRj3aa4bt~G71W+ zx?*Z4ugK3@S66p|-?-%XuODl)0>7{wIdY`bNl{2YY?t@a(2y(s`SK6xH$Prn-E4Wl z$_Ykw`(^W z7;L+4u}P%h;5yQP!^&d&P%`f;G+qVB46nN4Z?vo{=h zKQ#X?d|QPlEyLyTzkep)KDbvu5cYG9dG~{3O%1UeGfVUDJX%x4Ra8~$ruuFl9;&7B zeS4oTIyzcnfYYcn{BKxLP|#3Mu|sQndt`BOvD1Lnc_mXvNB#>M2ND_^O`^x_`;PSH z8`Ay$F>uIzoNr0Tfp_C;?drAIJL_JMpMUGr&s?{kKPM-rr<}uxY4+QG$ zv_&&yLFMQ7DcSOab&(92x+m`TYYYz$FD%SR-r7|iskHn4&_vgz6&w7EoF0{IyS=uT z2mkqZk?%i!N^)z6DSo&+;b-g9r_rgYsaKk8Sp(uWKK(t@B04k^6tVKiCa*49?czO$i$?p^p_-Di3F$<3!%ooX0%eR6J1N7Y>2sb#9+ ze?m01wHtbRc$a?7FFXIl)Xh2!-=FP6MQFb=As8grtf^$4utLR^qVhw3{YbJl5-iG9rdnHDYcu2>h9)Oj z=;-LSlsK~E!7=1@3cQMy63tjx2uc#sUHRk34;2-ah}*Z7kA3PFmvO-kk34nC?vfe% zij^ztySljWfu>uw@VdLZyYAo5N@ePY>q(wy3*BAqAH6{q4~U70$-vXIs8ugYPmqg? zYsFemCdD;tx~^|s{R#Jq&!0Yp6U3PP^qeOB_OzB{(Mvn;9aK?MI~5<#taa>D zoOa-sxK9Ib-wIPIp+5s~+M5%kH{D8`vP?UFKDI4gwxPM1@yeAe6E8~yMn*?3|D?P; zJ;mhYnDF%~>({qjv%6&SWgUNFGx?qQ8uRQcl9+owI!95mPc_aI+apNN=ie1nq)n8?6}Yx zW|O0NQbaenwylksk&$uw$B*Vn23C_nzV4xKi%u2Z>>;6{ZhQAKoj7qKNmO6ti3O^I%F)R!_<4PQ|BBF`b8fsp(|li7GCzL& zm^{ApbRHR-oVcVUwp6Y9{lBM&jVpa#Fq)Z}k)7-LIDNI+>!n3|hUvMv#yBp?=}!H> zq$ZsAFMQFi-KXpWpY>GcvmWUYJ>- zeN1s*?~S$_J0AwAY6>k6`@0nQ@WlLb)Qs4R7exXB0#YtsJcFY8ruxXT2gg1~UcD;& z{#ou5-v`IPc`y9@S-9=C^YfQ4n~EK-s<_qDPcMd8=V)?KrQT0h{zi#F`Ee83h1G~} zQQ!Mq%=b+d7apH?29rVl_dKnmEQW@Lt`)DSh?Er0B%ux5yYC0obzinh&CX7In!Wzg z))L2{-wS0u1=$)0Uc1hYwK?58DEwz(l%wbRR&3gu?q}OjC12k?kVy7D*8AYWgH=bT z__4&%s9`s@SC~!Sv9z%t3ef(=CO?9{KdDVuhMF+gdd>Rj+nlib`&2z`7+r zIj`(7Jyf?ae%>YJ?Aho<0p$@a+VuQ<3#$Iii_Q84oAdN02JR_S`Oc4msR*3A0_^zd z*;yk$KNXbd(y*oAO5a!9IKbT6vUH4W2Hz)N&fud@aYp`G`sFdw7>}LV6!C7EY3>rxOb3UO-+q-o8aK!{&FwY*LU{EV(Zj*c5>jjqH;5YEq&jH z=T>-P{);>R$!>oONgS7D93qX=!wp?GwyW)W6wId^JeRT~e5m#$*%r8gnTak*-+{aA z$BrFyx*s4<)#-k3;Ly+ad2waM`h!AL?ZCj!eJ7+h9G{h zR$FV3v~nGbg@py$Xvza&FN@8aH=-tW-8vL@8Ir$sot9%pA!=j z8ikTiCnez&6-|HRUb!-%zTSxJ19K~@hH|eb zS72{2qLtRy{QdK!hk5z(W^~};uV0h%!hSN}cByH`uO0sTCsZ{{Km1S9!MFF_urpR@ z_^$Z$`7>$M)$iKQvKZO1qQ*&4t>_FEsHR;nUrMLTZuaiIcVOTg&c@oBJe}i4RElWW zf?-iER-B6(Yd^c%I_tp$Z5jhq8EgYZ#Ux7X=wy#Lp0D+BS64B&GN&T!Dv9se>krwy zdHdG1-T%murZbnZ+Zvxdu`255>pNe0V8HRlE!&vVQWYa6@esW{bg1;OrJwOV+CkG| zGzPbJKQLnwms-6#(aFgvrOcxxp~uS7QsVvl_wM7DHv~+iw1!zpd=6RTR2qT4oWB0h zU|h!EKfk_4J@roK5Yl^Cz-_iFl~7&ja_OIE`@f;|mJJw?7KL)A5=2Y}woqv$&yL+6WYeSozg*a$?Ju zFL&?ElZxuJ_-Gn5I3DU8H6MBN=9;$FR@cd=7uF?GV&A9wWKB&?|2?vUJL&LFX*TM~MiN9*% zpXh!sEt%f^`@PSFIs2*ivrU$kEaXFTwFCK&o2~clH=t64wU4QIp$pXfUD|AY%;)P^ zJDc!GF@=_;60+b2Y`68g+M6u3Jrw0|)rL=AAS^ytFLX!In-?#5P*qd=d(k3H)DHsW zavG@w&+SbO4hsv5OH4FAd|1`Nv0M4nlkpKe=e+}W*9_K#b10qP*;|lMhoT9%o3r5v zXJ=>Y>Pwd-W7q^ESFJxNrl#ibUbQu?ME%3FTsq1+Q^l}oS9f)K z??GJT%;L8_)#GW=rR)~VZ*`+Wn}Q(N-Q2OxdjOr@T=>1+IvE)m2|cNwKY#9hT`7;{ zQSSSJ)vF4cDQqP>oJ!DFM!AouuC6v8pj3SORk+?sVm)~I`4iaIoeSac^70xci;D_{ z(>ycza&_^ns8#?IPUJ*Sae7?R>6PmuBO$vVIQoYA`YNKQX9{FK>^KFK#cMf!V=&T($z7&gOW$26YhY&ZoBug39Z z;NBq`3RpO$KPD?HtNz!T_@Zy$e|+AlbK*zR42?W?c0%K9PtO)?9#^b=|NWyS9S1HI z7TQ*LZ@Qdg7~S`9Y&th($DMt{D9G+-O4H6%U_bi>1eomID+g4`q?ebBaw{n&X5jrH z`@)3;fa&62AHFSOE1$Z3`%qSk#8eocLdCEyVj!nCnjc&?Dz4B-_v=q?argq zr`d5trEfXR9k(0Pr8j8YI5z&|JXu|^6N%p8CqHe2!E&p1DWL+6rIkq;N!vL7T;_F= zdHcMa*wTi+zP{M==g;>)c=zhnVs`xXLKaJg;qmck5EnNr!&>9j<3}%~^PQBK`E+N4PPjz^7^b}A~-OHDJ*nQ-p!Bp40*HlnO89D{xiK-kYZXENE$vt_()5az4 zt1TsEGU60^{F1Izt}>Pj$HuKWNs#+qYHt>km#~I!X5$3gPzi^HspLn^SH2qLjD-JL zTn3O;57d>Kl44uXwQ@2+W%blWB@R73Jt_hv{nF8?UawyLfC)}QYW>G8Z|thJ_YK8U z;jy`;)N@>qH`F;Jlmi$(|G>aq(0~S)@Fj*rhYo>pkOPi>f2CudGp{o?H#c`n;#u`^ z%iL=}FYGn0^foo*%V6=u9_oJ(s61M`jXN+f5J2)_=r6~{YPAg;@VEr6GorLM9G&FF zm;23*S#aHSN!z}qYvR;Nx@GRbQLP;vjifknaB!&a?@ijS9I&ghq9Xk#gDk68q4>i` zk5Y4UZ%+U5J#fHn-#!+R?}R>PVdfYxk-~(A587)8yZOc z5z-CjMQ3npzjW!+lQ+Es1FOy}?KT1n<@?eaZLFc}{4iz5M&VAAwhs@-O6}a-#0xK7 z8rOT*KKS7^+jqla1Kgo1%8u`=at6RPiK+X6Uzbzv7pF@cZ_-j(schGcu6;b;^Qn55 z(y=dZ@8s-r zoRX7zQG1f^FjR;f{cvaB-DYMnaffUy`h7LP+GA0?%|o)zX57IVF3f%8(eUjTbKD$s zF?s`=<&!TH6LE~}D_!Tmyp@=8ei(F;RX|B)K1rviWE%$%a>LyN1Ab$zTx=pbRn{fE z*-y<-qz{iYGN-aVYHMrjzjsI!^fgN+#Q_BW$Zb_U^zO0n zE~RZ>0&B|Wt2K<*$nkXmIdE}vNA}%zNlbF+z3n231!?TPxl@qm!=n@P|F{^s641xC z2fpa)F^?bX1^@UIkD4i|t-b2+?{6Ha8;v<9R;}9?g)`_eTpxYS@#aeWu;^zpWzZ1A zP8t%?e;61T+~sSZc65}2fU$|{39+xzXdJ3L<+gu+BCdC6?&FKSugWhs+Bloz>DGEz zlm&dW_p9EuV#NxT#a%_JpyH%(6TKrcGV=K~JIS%Jv7yCpABX@$^Z*YJ$-@KER_DYN z71_|_{t?8!Tc;~4)pdgBn6NF~XSI@6sM4PJ@u?2_(c!Oyx&%FV z2+B`WsOQ%1RRERB`+Ba?tX{nuzq$-Kw{CX)N!QJt>(vhp3ISfa)h9iD`jqeDs=YXD z*0Bm-r=QhFvmOSzsNDCGg-6CZ;?^ytyS}e*skCR`_fhooTWZ3VNcRc(^E-=KjsHse zwjZozP&UYyJKo&EAS){y6daro9ck&&c~N)bO|{z3ADYga{XgQ;zq0x*EMbt1U z85ws%`?0&2#Gyf)Z#+g0&F(eVW#a&gL)bo;U%BR_R zEHCMFCQ4N9?V>$*?i>^;DVfa|*`QN^!&b+b5H^a(>M=9Y6f`@=Omt6OU0u{Neqf?{ za5}OjiwAD+ytn-3jypzpvZ{oz1P4pV$S@LV0}O(?_9v_K&YdQZ6cy-C0iR#Ph{+A8tQjOoyOE)B0sriqY(;7&1WO5pzqP3!V#)GMMy?7ys zmhRbmW4nag(I}>RniF#q;=Q+2=BA$)82h(Lu)Vb2w8^X8=Aw?pJ6&u>QX4FQgU)} zIziJ0lNv^U7C(rNjE|f4``(RX>wYF69y$GfdxdxEzL(dz0QKEHJdAf#?lpA0;Uvy| zot@bYno64|ICA65muErhxByVP%RDxgADwbc4FvuAep0HGRHQEdwY8qp>0b^NEmsFrrq-L;pX81u9ktUn{sqzQ_$Q5*T?S5 ztg5Q2;t*4cK(5DdR3(nKv#6bu+V)Y!!-xr&BF-agBjxDm2#F{PkTUyW*b`MjzrSrx)tc4e=^lL0J(vm-Er#}PvUziI|G+>xsIP@$4vAzDRlH*Ac{WJSQam{n|q;_G`3?`(t#s##aggL+kY?6 zgH6G;R(N);Q4=tt$U<76}Q7(!E_0cm_MyROpr@K)o9tZipp%Uck|#hasNk z=$_yQW_Q@$$eG--`o+iBAP>XLzwvqd3XFB|sbEP&|Jm~_$1?j-86{Qe#Crs}YUt~tT{3=GBh$GQDJj=i*1xc zV@p$0aexx%e?EUwQcaBqC)-+IDbcbxpDFfeM@PrC$bVjsrL?igJlmv{)jvPSbSnRU zU6aCp9iYlHmLE?^a71zP3J9EP8THwLYj3aft|%xev1<4&&ztc2S{jQbUz6mxAPMxb4JT`A z^ame@uI@J5v14V-a$y!=8Sore2y3m+o+MNugbmtDUb6te}})keSj`vhN_p6m)BXT8Zcq|Fl3P% zr>!yk?@}z#h#NM=b!`O}(-%co={oc1Zo2>=M%HxZv9`;@U$d8Ck(WDu{J5t77!%N7 z45ZC`;2Wmp%gyfWdr7)F{24SjC~M1TXlSl&yDfr!cq%H29?qE%#VIHlPq5m+-2>C# zz8M4H5!q2l(~rWjpVTxw(#0I$?b4Sk2|JrwCDowgv!+JKxir1v3oV`U5uls!-px#F3N0d~P=;tq^&z|LTxT;PNI4UI{*V*BD z$Zn+q9Xp4 zy&pH9c~=Y%4cYz?_TH1Y)5g-lN$#3#i|<9scFPueUEN2sPp~)T&N4-Z+Ja~sFrBQZ zP=g6ndho3lq}uB*FNLGb4f$7haLQX=qHlUmPRETSetxc6n&M4OP0*-88294|pk$<8R;c%`AmY8p($DX(Auly* z0bVzPQ>X?_yXu7h5rVtD028zf;&p29YR4M}_{Eup8IRwKAM&UOJd_*2c*~Xx)m9(* zz$qef2F-W~hnkRhBFT6?;ZHsD;Mz4N(pVu59sa#=7`Q>jGOna#^%#CH7sbLut`x^Fo@QYZ`6 z%i|Cb5D`DsdOIt0w?6NY|q|>KUVM5_sJWz?@YY^j9$>nhpNF_x<%so8+W%uv77n`XFR0~N- zNjf|!lS^i&DQerTT{L-}=NHZ{-R!!$Sri@=g+AVZL(tTFd&eCXsH&bBXRv?8BqV5| zGVkGCMghLih5h=x{{1{eUb`(@2q9|#Bd4ANxkp7si9wM-VZFBdfyV25hms+}v#nHT zqKK$^g&k0UJoZf&)QK);ZEc-dAOx!zwZ&XV#>K^@2i)-2kIx=s%h}nZ^YTPrR6omJ z&#`*jEt7YTLusgs7ca&k4uHO(0zhA;0dj@l=>q(4ls zutEg|;xv0jSkvGmCKjgJD3@>sCq?UAExy1nZ|ZQiR_y1c*aX+oV>#W!mN786q0^G1 zL~;U!g%Y0z?rrY4PH@LohUhhN=$tKNy9*1SMj0psv?lcfni_#$P%FuymEC-?5zkT; z!YQnP0w{1)1R7ug3JW2dXt1$FcI+;)SfLZ7f_%Z2(2%of!1wMD5U^``cM6~fVu=zm z?!avW8|M?eApbE+v9Yx^&d!E9c_;;y6H9N>Zn>ihenA}AU;Wdk?BFogd;SbJEQ>zl zgNID0A9d2D71kW-;*^1n&GN#+LKW|h6)>Yzo`8s&-cU-gon3hM=tL~ebHHSeMbQ$_ zX{&EIw*6jk43~oDb^((7ta5H`@|!%Z*>)V85W6-XO|EzM zRCiw|oMRBG+B3r16a|Bd=r4?HE5v@8kgg|f>c+}){t01z(=($Rowjc;fTH45xtD9S zalJ<~8@ReF$}B$j49Q6rXTa z@}4|-lGt@n!=oNP)M;#LQgvMEmi8E;;l_@HX738V*U2eqEy})sAwKvWJH}tU2S(Q6 zUv$fsyS}dUAsQO?>2g>)iY||H;?+m}G`j;2`Y>nM(hJUgrx6x5sK1jcT|;~_8nlZR zu%@yjA8c@{;%q(`6xd!@WLYhT5A(EslZHsp!qn{=lN?bi4==B#kWD44j!W*XJPpAD zvNR)l#TE18Al80x22;zij|w4&TL!-G4gy=#gO`V2RQV&!A)>=sESa=i!RJwGRAM44 zVeME(WO521H(RTpfAmNfJ8$~W(uwBl5~K@xeG#Dc_1$7ep9@)-HXQLgBXw}_VLU3Y zYkd^6^>&N>iN(e8IyyRji?d#-1%ixLRsgjpKMYYp!7LdFtMpvoy$Vhnui)ML$G^$o zqjq1he)}LW76ne@&|nfU-7sjOzc4Fs*%q_wZ#++KjlO?$im)m7bC=(R{bEN^0TNJYtL^V(&sIW6vTHaou|Yg$ocMeb{0XJN(|_FWs3E2#J((OX=zQ` zA(qC2o5+V|fnHi;={LbAj?2zowf%8Ob!#x>=JMe0`%=r%dbkl%OD#YC?R_fN^GSvW zs&ZpP!zrj|L~KllIKxeiLEo{?B|u42Q zUHTesolTrunBLyKxjM(w(3?+BOimJM{YuD-E1TdYCt`o5qV=VqqQzA*M*xsnkEm`m zHRYl_(P!;DtxWB<=dD8`aD(UfcbDC`>=*5KKwGJQ^F|1(tvIHsuTRJy8gh|Ct;5)R z+zYAp5ZLZ$`OahgCi=@H!D1V^B^=e~wqLT9OOPn}tHdrmQV{a3=!_@U&en z+{6nWv2Gn7Kmig@5zS|L2wz-3Y4z8#U<)@ik5lkyT+zDiF9oYVMa3Te^5qPIF^W6y zTE7@UJjFV52Dmj0Kr$L7XvA_*sP6_&7yH zlYyONJmmlTLxdjrTn`*zholGUN@yv-;RXKqe}Bc2eXH%32mo)WSPa{?ZG#Lch?rN= zKRRVAHy&X&bB&2VkpYy%X~zx;V3GUx?~6s{U%M8UbvuT91aCr!Eo(voRI5EQbzmM1 zXp|{AIZ2k8rQ2@8n}r&PvJWaXjI6_dxtzoiZNdsr+>AW8ockYIwRcB`KTf$HkmIIA z+~s4tYmtR!9Z#RSd3cUH#cEd*2c72a?OrP19x``eB=0_ z3_cAQ)iKYOV7In>W1W2_kd08CVBi|TcZ7~ZT)s@0b}yHZP?{cTVg;NcQ7V+EXz+IY z2I5&AJyWTKwR<$EV@KxFgeOZezm;`T=c$NQ^{ne6(zhteu@5 zu?Z9T*JQ5sso>hCG57sDh+BSYr~p5Ix40=TN;;oEgQd2yksd@l5+Mv=1d2kj==h1Y zMto@qh{mwNY@uz^FI#pAs04(g!h9#9USMjj{CHg6yFERn2n7L{Bls8DNn&_VLs#>{ z>XBV~l9OZ6isn8vHN}cvp{b=skW9yYKvFR=F$%zucw@k1sf2xSfc2v=aB_3g;sK)$ zlLQhXnY3c1{3JJnL=K&kB0t&+W#AhpD=p1HtaGRwsH-R{O=BI119Is9rr=6tW@QzC zCMe1mfyTP5hg3+vBzg}@iW!!dA0fAUpX7%;;w2(GQstv`x=g79;xIJh{ zrKP2{a02W~9M=E=<)bCwfqQzsd30hua&L7`&2X#6U*CH^TMj*rU^j3%l0_T(@Ih8) z8=*gaF5xs3G#O$#BI?Tc{{4HBC;)Ph`kqPZb>ZR_MY)oLx9hJDl(gUIdtN4P!+4Qb ze(Fw*fQa~a(c#K(ipVSk zb)Qc3sOMBo`+>Q}eI{2u5ST^@v&{e;l!Y2VnE&7CgH$gnF@_ zOjx1ld-v8uhfVl3|Mk>UZ>tOv$$}EY#L9XK`8ikvNg&>-T8IZwu?=;IDY+dycm~BR zA9h60xA*KGsj1Se6lrS21%kVK8ZL%7)REiHk7y}gK0X4>2#rIOgt!v~L6eLx&cfJT z$1y~DpgH3kPXhYIu&;`NA}x+=8A`k{HY&)G;8f<>vuEG@dK|L279yb^ycO?o)EqM; zmS7vwP$Z>_Pa_r_6)D~XBitR2QY^}Ky#4IN;3I9KrghbCMCsyNUK|B0i8ccNQ+5;w z2NHWEFjM@^YypjAu@zoQPw%ed8MyoEuDAaIZDn8Qtl4jiA+sM}$j*Wn&mxJImX>A& zENBC~WrfhE1;Qs-EOE$5MZjqt$FPdBvNkzlAh?pSza_DKB>;N}Jx6Ybg_X4}ikT-4 z@ZJYXRCU;r*5dC)wVByj2~oWeG2DaK{%l}Wf3HOW4 z7D^TUhvS1f?w+0|Sfwm2P;goJT^(NmE_l!;Q}04zvkF@r7eK}ekuZLrbWS4_bY_Zx z1^f(VpDfy;6k^{+!Z5m#Z{x4_Z0qQdLb(`&?4KI+P+VNR2!|x9^MjffoIAAn6l_VW zH!}ZnUxvr6B&Xd_6JNn%X!xcoF?E&Ua@`Sm-Q{ zm}q(i^>-NzO&zst&#pZ4>aAE; ze%48*^R73e7e@hPIj5aF8_>x`^}|e1oE>lNiU(K}e)jAc#N568rQ)=7bTf#YdOtu4 zTJ3M&&7A`9YENOeqX=}tmjQZk0}GP)1qi`Q_BlkqQN*86f8>d-iSDK5@#{2>BAwXGKLtB4;9pL2;T4Wc=n13<%(@2y2xXZ_N9Vf1!kg&MM>Kr~0D`T!Z2r-6wgIV0gAc}(`)KKE#B%#%p1h$Na@SkNT57$Z`u7qTEWuL_Yn zL2K~}FRxF7@~mxe>qb5xDBL|AqA@_!Rl(mC?CtG|4v0(?(EyM-vcES!I~$3(2)uvU zvQzA=tPPMA%AluN=jjRm7wWxybhe zbu=e%V-5r03=Z(lVUP1M$;lij++;H~D||!rIQ5ML?%o7~?WGBMW9%vn4iMJ#d%A(c zeG0TD4obQJ0;~SoD^{OE7`lI*eCOlcyLLUldtfInL_%4a11Q9O_8V0TZH9QF0bd7& zBWeY=P1tTioqA239_ivHael}i1}-k55DtvNwTC`_j7Q>zhBIUnl7YfdI1Hg-5+wsUO0Nfqm&H zM1)8fmQ7fT7a8Dslo%C=9FS%Bq0l(KS|m#5{bQdKz#m2-a}Zb)wlKVmD=`+}hdd%| zno*RhxcK-wND3+^e)v{56tlCls~&l8O_IUz+znB-A;FwNmVl0v?QDO4KYm9*F(Y_v`Ah&}SQbc1sPZ#Dr$Qi*kHG`vOor!zuJ&IOFqWb`gC!ycv6AM0U>AtxV zFGZw2l1l=VQ1ik$1J%)ej_ev)Lv+lu3Qt;7CCgxO{5R{qfavKAGGbI@K|D;?+U{;{ zFeGB+z_**mjKTHaIb`er_9p=o#LtJc9q&W~WJHo@Bpi;22UI3TMh=lAWLscoK6#Xf zC?OAtzay`n2q@?FJl`-WJPw5cGCCs=(cI?&0W_F;3=_c1xow}=-e2Zn2Z*YE@XZRu zK&k)|s^{NA^&_VN_O83d(A`7t&dkjPsQdPF5~+fS?a$VLIP6`?FTY=G7c0tt6x{Ht zUAOuZwf=`6@v;uw^ks^5hrbRxja67U*D~BX z%0Kq`HHtVQWcJ7VmHx4s*R%+WdLp+}*U|zJkKuV&mm!XEd3iaY6ElC}WuKY zq&+h-$Vm?F@Xru+Oh#iW$j>)uNJBXU7hHKQ(!Q+>mw=VaWM)cFOKb12wJdh$r1kWo z$=8rk`0CQAq%_;8mK;)*pk%K69E=f|JZxaC|HYAU|EK>9dymA`^ZpSNKZsj zYG=Nazl95NqBn2e*y0eu6qGsexH98MhJpe92A}lx94hjion7R2LN6=|SSyEg$k*O~Cu8At=}+1B4TH^{CoQ#%0SI1_wo8 z8K7%zw6#rfvi#9qxxa6@!xigd&czJr|1r+&-r1B_G_8@nEU(DhU6~s}n>O|Y@5ZYjL#U_^pSs3)d5pZ9U z@WBpGNl!lo?Fpf=3JDG?1*C_`I1UNDpf-d4u;VW`Vauwo*-?G?=uuM;E(GNz=QZl; z>h?a*Klxibb=#|+wU;xnieu4QZTpz@e^1kqoD~u&K76w2-#$<@uL&hrL`BAhbCYU~XUUk?5u39}V8^Qw>0p(;EyekruGTkp;Z~;qT zF3Iv}p)LT?1$7@ zOg9*etkC%b+0Hd#Pg^w+`q2sf$&2l&$e&my zW%2f2Jahi-?{StQ!w-oc@%NtVe_aWsNU8a<{Ma&Edp99S%|fe0ZhXVRVqSSmY;^6Y*$bm`}v{`*LIQ3i$HOcRh zm>6`j7$modV2V|fl9iQ&zXH+7vj(?shRFEyM<)Vx!hWwfuk2z5u9Ec~L2t}@(jbWx z4*>}iGiZ>Ppqdn?V;G2UwWAmWMH1@6(1{9ENU9dIP^D0b-(N7--Ue*g0@zMMgS)Ey z$aslFA3a6#z4)wA^t+%Rp9G1@t}!QV#ZQrqMJB7zMTSZ84Z|D5XG<^5SM)J5K@Ft?5J@Fa2qTyQmK?_8C+h%8XA06Y z^Ut052hte-uUu>WArTs}a-fV1PNP=bU{mi|9bM#sd3FkLbAy<8B2?x+1-bI-bJcZ+ z26F&F&Y=dUkBqo;;}?+sHb>r^NjwT!3~uznwTSqqojYfSY;9|rv=tN8U43Lvs>j@q zA2MVz1?^iJEu#pOehgf|6Azw{wIb6*{xOKnQp(E74}-ra5YS=GKYUyskn9i> zY&-zzmzg5$6YJvU=0;Cd!!>jG0HcDQI+6$PEg6oS%W!CCw(6;gkCSN`tO88c;Vz{* zp_a7w17&fXyzkWFME?1{&xW{V*NiDrtM~Md_@wuoqxL$sHZQGZvSX-B{EC3PF)kD1;z)dFJ9o8I?yzMG*@W z?g<7e&F}!ZR;*}k#o>y@CAb6oK}4g?ei{Q%MCw=C1`UYnXaF5wv4I{JpDkTgrG#aSUEpWeSfae(oMz{p^*-7whzT^dOrR!k^d>3IEmB@|{8;6Dd%PfvRA z*wk;SX=xJkizI^X=2p-ehDZbv?%vOXx4-!0-)3(lzH5<>lqg&CLyPP^8;u zpsslC*^^kgj45V3DolOW{ z2g$?o?Oo3nr}N&~k*Bpd`%kqVDOz5pr?J$%_KHt;Z~$J%%RuCViw=jI3B zN2H~!QN!g?a5Uih2#`52;4-*YM0_GcZdiUZM@N2`AA+JOXkjG#20KWiVO@Lvwr)F~ z$i-7}2}k^K*N}fmB?R)4n6kE9aBfYzd?V=rZUnL<@63KKi1Y<152eRBFCN*hX8+{D zA%qxeF$ochb8pC0hg`G3!zUH#9 zr>>5UtCv?axcd+|J3-*X6BBZ4t^C2`YV$4;SqYRqmxmnH6+O8{u$N`I}p8f zr8VJmyXE^RakjFe=jp;djS2Sz{<^%R-A;|NJecW8fY_ALgd_<_p}s2G`P!Q%*_+m?l~Sd zp1~!^2^8th>ic?_NYtG8zeY?TYmyon_Ri;&UCtnJdkO5608=1Pl0#3`!YtswNoF)w zA}!;k2J4|EE5E#L%uVw27uM}B1=q)9|rIaNuT=LLg~s!15=L zzCtFhZEt5GGoDD$nDk=5vmnP!uop?>!z6DN8Yu$bN{BJt@_B_V4aQLa<9G=`?2{mR z2$!%hJMtA}rMnaS2{VNDNF_E!BDRA{X%Z7E_fF=2bGz>3Ut0zqN;r_8nBP_qVrg6j<0Z#yc*ipv%JOOV=+rP}khb=qr3o zaE+q~!e21RqS1H=`CGl371CIbTN=69@tCkL*O_+TRTA1HY}fZ#Nk>tqwrlA^L1o0Y zh^h`vd}8a~0{?pVvZ0|Nk_%B)oB0={wReWO<&JAFRV_C>F!1`?!L7pHjFBn|lDd+a zlZjU(Z(FA714YAvL|%c0C{6%VWgXXW2Sx?0timI9<3UZfo+cxrOzApdI`%u0dYxqY7Qc_b3+~fJk3o1|xqYy&S3;P|1=*j7JW1<1H zGi`DtPD3FE4_$hYLxPtLAUX_zKEGrn(O|rf=$6^Uj@% zA*%^44w0|{C1%}WvLB6#*-|Vqj3`Z!iNu|ltJ?@M#N65WqW@{p4Mt3frc7e@OPwOe zTT}flm2)v(lqMSfGd1bYVRhAe>awRVte2o#VH9U-p`!nriPbJFliXpcQ%S-##=`NpQ3#Gdl)uQc@B?d>fS{9}^&{G^g*_^3|ghh-j6 zfVl^s>z8^m^zhX_4Uhps#1d8IPqKm)MoE+bS znJW_eL-i+ULr5=VMQvY>JjMeM*+(QTWxkTsg7H@5_za)l4G|WYo~Q5z1LEX=`sDjk$nJPmnDD}a-Opg7h$>A( z-F0@4f{((@XM21nr0a&ETIx|m8^y#j?*#BCy}=HwiO3w9U}qrLLmgqVQLx~7*N4;6Eu*l$csR*Tbps*C?>6P z)D~CtVq*W21n8bl5xhQ1C3Pikmhe*?7)EddGJ%DWqZatZDJd!WvvgbHl!dF?C*@Dx zDDu`)6!x3byymfU*vaaP?l;;+$5~U*SI3sQ|_hj6$ClH95#+k|b-re2p z_o-i%D86uZ@Wzm6NYv{P@E5vs=)Ax#V+NJYP{Qm1<6>V(jZ;$c8=HqkSB&hf6|+n(nLoW&Q1qS%gaSP zs@_0KI0UuAYuC&VE|U6X|J~Nya1jYk!gdxG77R9T=6Dx6PeS{V*h91w?u?@F4j+ku zR|5lTQ~0Cno;|YV&e-2@?X7dW6`dchfSlSfGC6rYu79?{n{Iy}%OB;NMNHwhw@Y5T zN`t^REzBJ(gE+jjZA!cA?y?V1l#REIO3#v3qF>uzt5Mhk|2vR88Q{gp>2wqiKL#N8 z5(+N~m|`Lji3B=gK9C3(<%;m?#Jd`OqCl1>392yygw|KnEu*Mc)zv|>Ki6G+7{*S; z*_hW>^xdvYPB0?&&WCRWmyDP0VRMe}G%Ii>*pa*l<#Fh*X?VgUyN>vDEuPa$X;F$~ z6#wPr1q7}>&i($GRY;F5!*7UQtn`MEo}$xjabjX)a)2OU_Lb_jkWE$bwh$^J{W4F; zfzV;!_lkFO{aU5Ytcrb8xNB~zkAr9{xNH(@1UEQe{S|or&HbaSXm{krMksllD^@Tm zollHr6&L}7BMv6gOR{%wLdn-cGVt@pGZZCaVm9)?tzr6YsT&nhT(WHxe^3cr3eKFG zAYvtGUu$P4nHM>le;KX%5NEUuD?quHhbc`2D7yr5MBo<9us)DVp(un{yoJ=FYofEP zgoT6}bJk(vJoVhUW?z?;babZ@HaYg*Q|9Cpi|e(p=3U6CJb3fi6AQdq&1t(&coGqr zK^Hr|f;Yj2twXjI$mU((A7|fHfuezLl504qIP=p$G=g`(zP&X~9}WMhIaS#*M#^*X zOwOyCyqOI?eb>0~;*zx0{QPUzj*pFr$;&fiVxOd|3km{CI89lHXB2)579!ZYESfh1 z7)14jHeOEg*bf0?+(86vO*Iw^bR*&$k=LeB&(R?<>@kETv~Gl2wypNVx8V;TwhfNj z3Hxe1zmM?xzkm&; z>&s&KT3ECc*Krh2Os(G439$kr2|<7V=#r=q6!-o6_pf6%x0BzP%;L{-mTe&LFc(|F zzUM3!K*}5_gGkFXqGb%df6oZ$O@uZgcc(>^A>)iWBG`i_*r3Dk1&LV%kV7~Jl@C%x z)L@dFCs{hoLDyrfPX)&ndV2A1s)P*5kT^W4L6~l)p<{H#%jMSID_eIr8dse6O;2)z zcGltir>mbCTbr@n{qiQkR88O{!{Pl2$Q?O94%r@7x5=8meWU!c?Ob!;8NOSJp^2|r zl?d|+IUd8!n{WS~we4x?x@7S8&j>Te=qSVZN)ZKYth03dc4Al50I30*WZ`GWAYX#3 z6344JKy{=4Kv6{_M#>XJoaE0yaOyF@k!ictfb)zNUV)T@_bwrDG0}Hh6liN%x_xfC zIua1br7TxEPhKODdKB#}?#!7h#JGRI3r;-BmamA8aPK3F!}Y=#6n)~ymca*RSuo4 zjEYq}SDVHyyykdS>~dB+xveX=F9rJW+S^t#T+hE2^Qqn!{6$p8EqIekFB-NFZ|W=duz6Y6pQt5?O2dI@jLLwf5Q z7}EEjGj+;b;8YOiFSNa`lOQL@!alP_MxkJE>u}~oc5P!jJwp>itM%qcx3QgEP2#VT zPOGc!*38sysDEy>E==Lvxrk_nl-#FsMk=bQ7f+bc0$mU|gtw+(-^2c%C{1QeSxA!4 zKAlBwB*T77wI@&g83lyy8q&6iu$B9}t;$v?%;BWug+%-p8G`cuh$!1Ti^*#<>pW(W zvGgpX92{z2@0i|Z$chDDzH9exf`ib~#h{lX^fG=vv5>QVkG08$Ei$Vr_^rFKu`81m z_87WVyh2*b)hG*ZTbkgEP-LRf3*lU?)I$@%LKE`w1WO|8Oxcj+$cquTrn1O&Eh~TC z_cwcgjTy>)(DCEq5LWQv*w(b-Q8LFJ)S@^MB$9x5gBdT^^K)EW-X3R?&)@K43bnQL z_Hgt}vssgL15VCl0Y?6)%n*fkn=|v9Qu8>ZWUY2J+0gXgH@HHRvTel1!c>8(HGjwC z&FHP-y3O^>N_mKFV9*k>vShG6vO125hJ}URWzbi{)iuBLPK<;w!W}bjOzV9+mVU85 zJ8B_qxV)r> z2br_=Zc;&$GOAm9Acj&7!Ibmx$X7e-eA;ilrGO}d3iW{x!M)E zxU^hjz=r#lSgBj_-12+>F@me-*>aE*1Bn6b?@Bdt1`B{3qe!^)mZ*2 z=6+t({VP4E2n&b6t`{+*52 zLQiS3(8*uP`m~hyvz&M!`XN}rlj)`dfL1DNX~UNI`b!O``&!LyZ^=i!+H+aD%cG1w z-Qrw_9&5?^s~O#jOq+LUNy7a`%y_3F=F?Y53iUilC2kF>S# zTy5cO_y5s!mQhu;U)QHWx|cBRByGGRIyauhj2w&&h0k?AT%bYc zLBQuLHyNjw4zzR~dGqxBMSBWfZT9}JbbQ_#LibgbmD|USsC2|dNwC7XNvJ`0c`6W$ zbi{O>PulBT7lHS%{V^C4iT)WB%mP*7|0Y4C=)mL{TS1@=aUB>Zo6eRrJR*Av zi3uy^%hHf!cgr*}2#!nVm*Ifto;w1RM2@j-(T;QN92T*->!u6`nBvfPMcq2oU!TmC4xye=c8#p6+9I1C1v z>S*<$8q5iF;m?u%Yz19Fyn5*7ea=7KZNEA1CXdfz@%nDz0nIZ2AwM5r+FC!H=!KkU zS9^X+HI#|>&e+v|*wp?A_lAJhzDPv_5qdcZgha4D<(>>4Gd1Gm5=rCRUT zUqK{ez!V3X3ITTz3AFy70i3a}$Rjj4aCH510Ye`HnJBkVGi3K9Zaa5tld8_U?2g#x zJxRn%5U@{@N7E0Bj>nMR{4wcNSJqFJc9;nVAA@n62lPgtxwYyIH&MZ0iLcK>RlVdxBq0M@x@b=~Vmuce7jX^nJ$dmD{P6 zkfKlc#A@~&D?BAMk_p;)V7=JaPZ#VW;R?{Klw@JFZx-d(ZB}%1O%AJg7-SodVrG$f zk)55XHlkAWT!M;Ptj4+X8^5aa8=+yxH)GvWi!v*tcPIC+I7|_Mt@jKVj!i-EbKUw= zg^$hak0$vPdh`(abvI5E@tuY&ABCwiBj62*f6{LWGA~fkkOuV^&k9j+e@?7GESf42 zdqpq9!`u@aUnYNQebWWB`+)MFfQ7^P@y-Jpqz0m=>hja5l&%PxdI`h)d(CDwYcB4r zj0+42UtofL$G;ck0v_|z)o&Y)reVfJb!ol zlfyuV={qmgK5~Bt#ay@FWH3w%1XDP08)??Ar&HmeLHyj%h?H@ z@V!2YBWx-oa25|ee7NK&*&yCOEE|$d1CC~3C;-kNQ2s)Tk-CNiGe1fX8M8CbfKFkM zX#XoPKQHRq;6sS*kg@Sk|Lf*(S~e*Rc%n1}pl?0FbPjl(E`z(fgV|))pAT90BxtoP z1K;mSRR`EiN0-}Mq<#&vH%YH!i%)&EQSb17CIi+vL7} zVHjfv^XNH4ZEA30+%23=CSjEci=J%sf@cNz7JFmgKA`|RrKFUU3Fz5m<>ldEpq6J) z_5;Fz_+^hMIvoOXmwhJMI&FZxrm__|Sxvk55@-KOi-_HM3$C(Keo~OYh?XT}R=b$W zt(W1j=QhMvYtGrahw^vCw-BXkUK4{t7pkMg#zfT~rhv@0OtljQfLg-?GYGNLd6K!UsmRm7Jstyys}mCX(tr#pxW3S$wI zg9R9v8A3VhWU1!+w35bBX`F~CDA+BV8pV|PUA~AzI+`(I;_=9D#!IR`;HTHLjZ$Uh zyr1E|OeiT`;7+6);my7;lC#A#8UMmDU>pdW?&U%^GCZcT>_r>`mD`#TI<7!Qj0!hOQr@4*lD}+ax-^L zhPGZ)Q0REOF*d(ljcIe(-5mPnt0N8421PxI-F!lJcmLOo%sYnp(dRNodd7ic(#(p9rcPhkA9prU&ztQN*f9 z=bT`$nih8`a}i%55U?r0u(-ayK0G=aO7R0d8Cq7lFe&x(6KSqI_cTn88Ok`v*5l*G zR0sdo6w?FHY&Jeg&0=OmtR5|G{{qO2fjm_q&1_IS+%k-su8H*eyj%*(DDWJJ!(qWQ zQ)d74-tKrSLf}KQyTg~{Z0)|u!PR0Tkm%^pUr^WqzZKrl9V5hWd7tQih?tmDss@z@^(YzVx8zY znyiI|`3CpF#Qbx7MZDC@;z9*ap|+2;i>+y9rc`hg#&o zgbM1t0Eg}8!w(FT!kTiEv>_MOc`DDKq%us1g_1RylG3!X=)yn@Uc=;F&Gie2Veldj1-A~}pr_F1CgclC(& zuDQC4+P~)c&i(3h%iC@#=VfE!BNBKRFyA(DG-g%17VCr0^7ciYOvnw)oMah-wN7g& z(SR8hhQ9E{VjDcn5`lMuTT(hK!G$#IPd_OL7kjn z*aP6_qn)v+=ZH*`ajZ@4DiwTyk-r>Qy4BnO$CowwY&!Grff-T~u1&+UXq?(<=uCMi zp1zD(%lqon-7yYhCODCp(OJ46T!g32+%EVdKh#W;J`UGp^)mn+e-NYvaR>>K!1xG! zDNO;Z8|oN=Lspe1^SB8rhn%mrtjoT;-Bkq@UL%P%LZABz==b0A6bm|v1CPmIOJ!7J zE$VEW!X0W=c$+?iSdNSG`R5J&S7)0*9YO;CEC{KY$kcXQ+_a-&@4rEm(O;AIER9YaeBFrtT&q}$yO zf|3pl733Wx4`k{g* zFGY1yoSjOqD+UYspd-0NRLg19woP7aJN#Fa4$ydUfc`pvT0K2lO`uK> zVFBH>cA{NNi}aef+rsYnpRqq|X76u=>P={{(6Cz5zxB$#`?7&!5qA93{KdNO`5+i3 zL+=>W3<>0TlmA(9BexgR6x7HfobEM%kn@Rp>TTN+LCRqJ23?eR~*0i=fT0MFDiNSHiYrobZ26pkI$TQxS z^~(P0u#m9fW}I@IR+5i+yjza)_RI6bgr|h3Wmei)%ka&SRZQCi;<+p)tVIpX{sH@v zz5#kHu(Z^lp!qkT8<>Lk%zsXz?d@RT3CRckp&3$@c`6#E4K*!(9LR@ieSemFtyc$( z_=tI^@>1&UTdUnhT_-B4d(zN4gC>B)7J@M4ZZo|?9^RI38s$TWGBDEt~ zZ~jJ5%F2{AnEbKF*)RQ%?jO~Wnwz>sb9P2%#LwRvK>Qw@zgk*D`zW$%!purVm}W`l z{I>2jPxs@C`JtOyQaREFra$ZvS>U~52A)r7{v3*HIsR1-|Hc*tcdy#0n+({1p&J*# z5!B`Qv%N|5w1HWimH=57HI-9V{rD>jT#WcM+&*?}$@Ev77Um%_T^)V+kr4te_ri(| zdQC|=Yn#nZpgQ=h`^8!Ne%bj>CBjA4Y5TA5ymv^dxw5IA@V&1$ZKDIQEHJyH_0=A0 zjeD_L;{1N})czT-jpn)mbYo(m;06OI0GJR218!;|$f5_yGD&5(?)Zunn^+(g75hH2 zu;{My;={_^HiN@1`GrN-p@y8UQAfkggYFsJpI@rQRA2I;A4pdiGAy6RAnh%ER)2o` zvYlCD6%`kjO$NXD3_wNS*$X-;IN@KQ(h6Llj-c_`G{I@INQ;zjQwgf zBk?Uow3cSq(fjL*f#u|cuR}3E34}Kl_9H*6!3VMhh{OkYiG4{Xuzvv%1pi@3-q<0D zqky^>894l+Fj2)ns;lo8myBw?N@~hu_>=|7C4UJTU(;w){)2x6M?z#J71Y_T{n0}~T5z#bkAoUC$dWmSvy zb1pee4$v1!$kbvK6H^At50+RgRElB0${Na?iU_2e8R9Ex6-eCzWctdnV>nh#*)&;#Q*G)x7;9#GR481obQmku{L<5H11R!I%X zIUXpFezTUv8=Ona}pU?`kf#tsIJ{HtJ5Avo4N{XqcznXz*@Y z>YBRs5ox>HAiTZ(OJmwHoKUsKr)K^Z;N79+1>FO0;P3EGF;AZy`Rm%Us$lGdj0}0; zbnV4tInE9jC;5 zMMDxmunZ`D$iU*(145#zAPEWenF|OQ?P@$~C19yB*alAwUa}Ng6TY($XphLCF00DN zw?WzC;pE1*XOgszNF}7rkK$@55vaZp;7u*+nD~X7^Eo^AqiJ9Ii($42B7N<#5<<8m z1gbhmiVEG4R88$UzzTqh_`s0Z3x+MwoCc7#%s@4`zt~9s_llOL3CzS@0lnCXz=BG1 z`(%H292QvKZ`fpPww`Ags(objv52^qvN4yEZ($> zJS4GSBz5XVj$jkc-kEv>FwboY+j>`XSiHtN4TWdHa zmCIjs1x_S|locK6mk+hD{LiNy!|hQW=%&rTqW&(eMZWU%3)sfrP1-wVR06cYFOiYd z!Pu_A5)UO-0-L=2M2@fma3OVTC2i|4o%q-aY98n?yp)Q6%7idzzObOy9F5pa7cp#d z-QC6IbfKcm7DRj6-L0r`ut@qk8r3mPTdB=NbVAJnDTj0I4VRn-XN@pV*oQS9>B6~z|v^1UY7qrA=s#JX2y?} zDD;Fd?Yzl{B<6k|fjPd<^Sk?O=!-~q9h9A{NQ=JT#GKDRUw^oUm_$SzH@G< zX2P@L5Zi154t*MP+VJYeO`UxI>L+5gk0^TIT0$`uWN7b`K+qTnb~t2Ym_UU?Pk)0p zDdH!I2jd5`1Z$0z#}Cs#%3T|iG9f5c-cjZdKD4ru4TG%@fV-k#*8?!&1FC%>AV=VU zHf9EF=txLPqM4Bf(cS})Wdt^QC_n`IS_1DXMk?vKuX$yo!4=kim|kI$tcH+h4kU!( zRT)vy+iO*=-FLKMWEBWArx;$T3G>((7PBn71c`O~?419$bxhj^)J*>^O;BcQw!aIx zb#+XDZ6KrYg*AQLF+5P;{QY~iH6EC?ZM5barb?^7q)tIuurnUo2XUkeON^uXgz54;bwgG(iR z{&o^2_)Y32A`H+0_BqHyfEOZAxUqo*?h4$-mcGC#3@ZxI6iQ(D0uqwIRQ-NMKTCWp{-+LTn z-|%NqWX8?t9d0%mOT($|3|EkG+@GiG*Sdag{I_xEVx4`%CLZgs+vjhe*Us+=GY2=%` zR=!tG2}LTFR~02IYtW~>zim|r5$k`5{E0}BYzEc*C!$^DSie8fzyV4&w&!!Is0YHJ>vi%l94U6GMcpZx5UeS~s)Y&@U+dW~{CIk{niE*m~n|2>ip zr)Y`l?(X4e_WcyN1ujC65IqM6TVH4!QkY!oVdh@4b(eYi_(api%cg_X} z;ivg4_1BB<%?ZrQEyMaQU-Br0X`}iN0|1sn8fFl&-IiZta@MMJn01)6E z_ZIzzQuv@03BcAM0#a;6yl%))!5g4{wZ2m-4_4 zJb3uVW+oU+BtC=W4=^jr?Wq|JgP;Qf3|I&k_0v}sEdm`a0@8&Y^D4g6N!O^q0>y%* zt&DT~MqgUB^r+z!R?cW5c|3RTM=9@i?OAvDBog_TiKf6Xc+GDT1bV4p8`)(QhSOX` z8ekg3Kmo}s?H_0-o1L_4lk;$OMkVv|r}ZM2!aTvC0;*T@`#tcfmrPLR%xK7w<69_} zRVe0g`w9S_LxID={_sQ~mCf^xt_IGagzCdi)$#c7lH+PB-1C{qMQhIM^wk#wR|~bM zqtmasBoB88cM~F2iR3tHUk#O3P==~a>QRb1E-xhvIxNLa0HDHS>P0%tfupr-N-VJ$ zu!Yy^l`fBR8Wga0i$ut)d<)`qS{2${U#Gw&V|Gsv1~7B=f53SL7cMvgV2@lLAWtd& z|KdTv?`zdiQ7K3HNh>bU#L}BbkL<*g@vid5$8_H_<$NvX2ul16>3JO;Z(t@*etY+}kA01$fLrM(5oy zAnt^Nbu$=Tbdnr+6_9T1BpZcAHpdOu-Kaax5x*mbOV)n zVYg`d+pQV$ZK(^i=?`-jx+)jCOfbV9f`SdkPd*o$A)@nO>WByA_8Gu2hcYZc6NJ}0 zrKceVgwThW!P8a(b+ZvP!+Il6oK$04F`v6kusRV9n4pgLXVQ~-$S8$ z0l8H(vAvAkD;~sEN~$mXT<763#a=~z9UvuXN$hQw zAC~>^PTdbyj}S>%WdBvn9<|f;Q<+H_dCc1z4jRsJBfBqnfjAnCq)6wU}~6qMy- zt8g9ANc3O=ha(6jBm!83csK<)0Sxp!0R}G_Xo{<<(p}@<)ILNxB$z~Y%nQ;9OlEx&B_evP`?;kdiT3MftJOk1`EZPtxCS2CV_9kP;q#4S5 zaT-H--Tb1Nsejn&atv;@@OA88d&>SuZ}gp^h3CGE^)Ot>Pj4g#cni1bAGyEq9)5jZ z|8?lHzFVXjHIC}&1j0<9hwcOUY#6B2V$kM_`1bKH9ymFnOX8qobQma^4YV1QV7wF@ zcQK-lqp>?>9l>z8kg74s>m(Mx7n%AaWl}zGd?A$6=ywL@pIP_s@4ZxLFgk@W$0IB~ zlXsEd_02`e&3XVBGIWQ{Uu021=fYmgG4UgsM znrkf)U$u3^66er0Rk)R;R?-swsV}(}OkgU_^DNEhmoGIMC7Z17L`SG`f5~k&%#4uM zylzjTRUqH)KBRd25x%_br)EV1uDej#181tmirQ=wp}?%)%~{~h?JW*ZrV>mXm^LS5 zRD>SDe}$D=J>pi)(g4nWImq324Z6fiNaKuF%7k(gQQZ5s)kb&uXxpW3kIuu)d*z z3T)6(@w$I06MrqBgintLVmqixYiWlO&$Z0*;mjJx{&}1hVR08Swg&AqYgf}Hwe6#> z?-xBgWEZ6Ue%U?`9Bfd0 z4>(AG$(Q79ihOjzACH&2%-}y`Q1CL!$Y|xzv=NJ!)V$kdjeQoA)2K#)*a15ZLYK&e z0l5;>ByG9kbrR=-w48tC0a1y z$w|0Q&*3Wly%!2x^xEaM!%Kp8a@SL*1J?2Jl2XMZ^K=cQ3D2fCTwg#qVOtH_^Q zm$yYfCV0#r%Fnm02UHVq8kC-{#l31uvp{#A0dNf1pxRQ?(J4#uEhCWn1DnC14E-Dk z9^-a}r=;pRF6T2T_#V11Ae&60>6mIO{U{cU_%k)#oL;gtQc{NPMZd08=MUY^@(!8F zmfYWsMA8Y6GNQVxNejK;KSTcVtIeS3LGzFa2MtY7C+zDhj0cynX_ zIEOXg^m<**g+}J|;;dBQp}@rqlK|z8805$C=;&_54Cq@~Koc907n54j?ld0ZIc?X! zP{TQ29YH3|P-{_0bzK-WCzCu>K-+~QuZokc#2@O=h}JN2z*{=9&6Ozkv{q3U#XCN zHF>3(j;Umb8q`tNU#>P2IlZWBe6I5Mj=}7T(Jo#aCuN94XO;0Kcc4J7jYZ;>T-yZ4 z0f+g~+qVf%)O-V`C8A;n!m>X1BA-PCVqkRV;kL^ki9)2NkIM7x#Q_FW4)}18RH;VB!N>wvsb_YiN`kfvuf<`;C zI0DMX?~m~y{{kX~pam%cd3ivlHb`%jDVGGZCW3s<2_Icm&g=h7)O>=GDc@RAMgg(L z=)RayII%W6d()w4g#VMhm(>?d+8Imr-SYszuk6@WkO*Jb)7NM6^ZjL?XDCR)u5!jp zE5+ZIoSv<>Busnqo`CE=iE+kiJ0-LzJ-;b=K=R6d(h^9FGTfxXMA80+temqRQHaKw z)Ox}r_`ec;U?pNPLmp8-aW5^QG_wBa8yb(@bQoi5jPeG;J`}bC0~L$`%>wr6=JDgU zQL74n4XIS8MnGSYD})&cOM={*N#g`2^GR?1s=O!vGGny86!$|r!vGO6f_^oTcP)ZD z>DF7@;-`#-9D5l?fAfwoZ!xouPe4ZllI|Yzj2TM!v=983C#FBMtC8I5pfSABt|`-K z21eBe3ih~t*a2jU77dRT20cWO6C-qZZInct+B{l?GKy}-P>E3XsWq?Tb#!(0=5o@< zR(X=OxC=-h?H_#-E_f!7ti$k4wU58rIY;h-hl8A0@6wHYO#v^?$qeyUcOjP&w$g_H5#)&33%}qwp!0W zUe!Qe?w!N|m0T>kei-5>E(yNO!~RywH@$UAQo?#BCPDcb7tVjnjMH9VC+m9(W0E1* z+av6H%gFTB#WYBSC!E@N#Q}hfPF*SKkk1ytC)1VvhV&U3&4=@+hXX#}1e{tF*}eBV zXapIy2_iHd&S8JuOp#&iIwlzLkSv@K2Bg4zhu8VH=FfgKEz!lpsP{rsr2>xN%#?Ze zJU%I%O+|>+aA?TP3I_{*Aaj{=bsY12_XC6Z5u-mk{ug4R?LK}kP02tP#`6U_dUyd` z2Nl{f3fd-v6kIunvG!8h{C$_xH7s-zwGW-3Jyq_r$hQrVAwxwARLTq}W9V5X1=|gc z#WePsR5$tDP~Dv0{DZJc8ur|N+&e$KWGczPR6tJ5Q0y~0c@ApJ_gXv|ZFTg4d4^}l z3kXRjXg*zu1fir7v=UX7lv> z?R=H<4V03^8-@7YsYGCnQw#_?K`n9@ zBZ~j6j@OUh3W=|@3b@%f_i#c`uqjw_9f(H-L)>p07q6E#qEe zAw)Z6W##*L&-0I5C>*3xU_?Q#Nk~|DXBoM8Ml8(pYw}oX?+H#oEN!U1NX9bt>Uhd+ zwk6F_>WiJsf$sw_6DhA+lT`E!n7f~xY|8@kzeNzUs-|K^M8&AniZEQD`zLF4XdE!t zZf-sFJi^G}$?PW+Q%wv{_5i0ZN9T?^Fu{jAX`~c>C^zW>=|Eub+5&S4C`#JI$%$<; zUX2^NT@C?T{EWY}F1WwE?9%3;l-ZoXPEX!Nhq-61_>UvGIv%UB* zN!gxWRs6g`4OzWi*^v_K1&KJ?d}=p|m+TnMN2;Gl`2|vFlte73E>Y*96A{*%T8fucDiPmO*zGP?SKX1F*iN0btyv|n zE=ScSvf~$Y|MKHD;SQ%ocBi13L<se)>qa!D^g(dTY+!eC*4srV=|aC8=R04LZg+*1jg13Wz?0`Gu9IL(cBs& zQbi?OKB@mO6DO6wFMhO2=k#qBvHY4As9SB-D?3?caFWaC0tZBnkknM@BKVE%ZJNal zwdn&=1}YWAVmKYIjW_c~UZwHAV|}d@M69@d+SzSJ;yP|zJrIZ08Wg+_Ui~G-v?*%Z zGNl;7VV@WBsnryjah(3mA(s~!sdc2YTwI~QVJSzcA(69wc@5`xj$?hXfhaVChah1} zJK0E;omcQWqUv6E=}37tTU|FoQ@jDow)lTyBlW!?6 zMR3t62d%a#nT#4I6q^@qtnbcgGro69&c?E-y3L~Q|4qCUVp`6Z{bqG>0ZbGGc9jJx z+==#bKyU*5Pb+K{or6in@!mc=wEByG^7!YGX%`z;p=R%Lg?9+A0cQ}pZUJm12?i7& zGXNO*u?Wx61}SAk~qTP4@qlOkt_sWYC;H-&&SGxvH~w7J&S$Hx^6TF=_o~bUdYkSuUAfEg%%Ed z|L90)eP|O>;z)SIdP>X3C>QieScHt2r|MXG`#=Svu%~h7_5Ak*F`r6ZO#x^W8lF+( zFP~_F*Vo5B|GM{Ki@_4W{P5*db(#^nVfIDw5#T+7Oe>h$-1uxFjDv-vg0N{koyZl$ z;6@>?TeFIs)(%cibA(b4Ac;+aU$hr2~0D4iu@l!I3MJq}h&fykCtlJUM&tafm_+_^RGM_9jf7i)84 z^vj@Ei_yc0){2I53mOhyNq;-+4%4;h?rX96bKe0lx|j!&iAuJZ=@A`RSTgCATi-rr z3miBQT4})YNqY`+Tnc{Y?fpwtBiK731jipsl^aP@C22q@!|Y;(S~-K$UQzilxe_GHXd;9x7g^hp)1YlcG|Tgi zh|Z0*W7s`wSL@zkB>2tK>7?MVW8^Py&us&=*ep8}G#D*<5g#?vuABM}(ZpCblhnj> z4|r|uTLFBFr0s?>hEh8v;n@n6U&;1c?;nI8F89f?v9msX#B^Jp7)-KM&zqdr)=TOJ zYkBsc9;X>tF&kkYU;}KFLge2{y_o`%y$TLn=_tMj6;=e_)~FzJqxTzQr`oRHj7!cK z-1!vA)D1L)zu>M75k^N17X&;l_F(%UGEZ4*o+X1^qY*|eDbBhAMqLPo6|dl`?Uffs zRaVceL=QF+xSS@9e|}K~SPzp?+r^)K-%m-WSJl1J0hjCS`fTIoeu|PC!I?DZfLcSu zjaQ25Cvq`WS$Jw4R`t*@1@N0+R5H zS6`FdlBBs=VDh~Eh3@y|K{3z+uD;AA(K{_XyV5)(Zj}BMu zELAenl|fSr%*Pxdn>$4;Y@$l~SokLtV`{JP53;`QytIBPw>LgdD66Ddm5sZ{UmF)T znl*gke8!{o%AIxhuJ;d^Ae?>8{rH+NM+~GZc)|O@X=%wpAo=%V+oz zY2p0$v9^k=MpdTg;cc=*DzAViy^?n|gb|ZB1{bd+CBdehl+Nf9>L85} z=0P%SBW*nn9JQE_$hl|rTj!YL9o%>}UN(xifquv|0>2=AfI$RZ90bJ?0VvM^*xq5H zHj{Btt*@pD#uq=8q=K1j1!x)ys*x>dgEEA4x!<%2C270FU4#8_)M;mD`kc2ly6_Ko zc8gb9wMZq3@rE*e>~Q4F9nBs?!V3b>ugE9XF4;HrklLT>&O z)1Fq;ts{EW->8A4L}0Tk%$5<1_kmo1MY!ilaKEAY8RQN;e;Ub0u0eWa8^ z05i|e0(}H;>alb+G*+?6-kn)M4v5F>elyixXwAQglLRw=F7@IOZPKBx>}*Z_cUpW` z>%GR+I##4=vFaeV4cG9|Se>Nj|n@>^62DEPwJjo^pFFjeC*TRutG#a_Y z)ITcRR4+!-(ak%L-W9puui+E?Jw0FiZEK{7~TK81|`PE7~)C2g$>dD^1sl-;R!-!8DHlDbtfqkZ3 z;|}<}bo8&4w%!+vq$0SAl-C<4s-09W%W08T+a0DAh)ryDfD4E>q1Y3dM5LGwGEOOX zY*H$pDHgjRYNu9k#%uwMAgWmdS4L~|sUmL}fOH_ZQbu2Qd^swQ(Bx*&MEAe2v0PR{ zx>n~bK)N>Yw}Gh9ZB-&w8E240qN-%Y=~R+xo+jmI+-ze%9IVN$Ht756+q8`*erC)u z+}w}9_8Ga+n5tOV*f=rs9I^RBdyJ(;qo4e(D?Ko#ti?M(LT`ReKNh%p;|$Y&B=LT< ziBS^f$q$r(KldFr!BIr2BkVE4zLDOBV~6PGS4i5IlYpr|)6z{7b&|roeQ~h_lBP{B z<2$OdhB*2lNs`e*J_c8;GJymI!`B&{iMkcyp{^f-28BeZ@EQ>&8m4ny-qO9c;jc(v zT;$}%TiMK|Fh1bsK5qbf0$%Al!ruOg9mUqAQt(RVb@1np;Q~IzZo?al=dOoT##xgC zW7EVhI;%GP=K>G5l(}@0t|dVA4qy?VZ>qFVe1B`aZX)axW{!c!HeF(T4Ij^!@+A> z?#LPm3n_(7yGF@FS0zbRC8-TrgFmGfV?kG9B5_n4rFZDB(C=9A#;KEOy=Eo&^CKC{ z0SO^q4Av-#;G^AEEfap{TkdRnIo%kt;2ee%9mD1LCnEsiF#Z1Cg7o8afrEy*GLBSvne%2t9Jjt*Bw;{Hi|a}K zVo&gkie%N{tD}ZwJkh$Y?JJF4G8IcCYa8o+53N-6h6}eOc(77Nn~Azrk0jqof+%1} z;;`7R_4x_!v={vvl|Ni@RBd?pnw6H6iLI-5G}39RXATY)BWtQKhx(XoRrUC3$~}k1 zV*Nb8Wy^elgje~D410AJBA^WI#F}zK4(P{IQo$FMW=5_8}FM(ceI@P${;Q(=A8hRn0v@`G*%boFi!%&v z!pWV;<~zu$=EM@DHH|#ODrCRxe|@ltJ%wraXWZN+*if|>aO}Ddo}I)ac!}!`zU1^S zBsynC2ztash1!Px?!LZgmLY93ytu36)%ptW=-DKfaR)=f#!7#Mh51K^s=A1j&5X)X z*2a-M@w0zNt^9|F9uA{J`;qp6_*c7T!JjCS%;@C)(2*wpro1Sp!sa`PlpqKLL11%d znnDImjq^ z_m%M1>w1Y#UN2w7e^;ZeV-+CGfX_e9$p{@xcsbQ5?d8di3X65bl| z?+8O*6#l0-KE0UpPNVZ6<;N!>c+Rx0T!L}MiXr9;uCd29q6(o>2wo~}B4_zPh+-B)+}yH0dzE_1PEkk6 zkFiu(ukRTOyHZnsh4ZS+YAdGAFM1nPHnc5FILH^)N;U@)5e%YarQgRVePOXMR*Q>d zb#kPn*o5f$cp@2EmDXN|@!a4uj^_H066L(L!mKk6v|fxN>8a2xzza@!AZ8rGmeDxI zQ=AYA;Ic8YlAkv_FwL;|I9~pU7q#Ru)1Hq7vvX-ToA;ImK+JhG4ir?#iWuQ+j4Y9w z8gO%88ZJ7UdKnQnsI8=ioSEo-)7p8FYo3r$;3=%M20wc9qYPdXL$~}TfxqVA(P5q$ z%P03Li`d_Nrr;xgAEAHIdPhev=yQ8|We-pNs{AOH+T+nAF)`*(r{Xk|2;N$oUO@4W z{_iu^3(6wEU}gOjL9n?HI!TlS4`-!E8^+fG`+&SY@VqSe=ZvAEHrAgvQyjHi6nEy} zwU{W}OfV5*QHZ4^0^?H=QgVp~S^))B9@rVCRvb(yR;2K!Gc`_BHor*x@YL)1*KvYU z^Z4<^sUpwyrO-Ws<>`19aB8e_UFXcqAgg9ugircM_&|E9_5|zxjY^GUrNy4U`F3>O zg^Q+syi{b5RSwVd*;J{DgrJ#k-kpB85Fzbl*$-6M+^_2-gZMDld<^r}@M@QLaS4Gr z1lLKGA*QG(^ud9QN}&h8bm`-duFNRFb8>pw~s9C50TN0=W&OA zaDC&jeTV;V=rrteHhc|wcTfg_Z3bOfF?;cfys=FjBSTbzj)WVJ)Qh_L9-G6+kp+?O zuk=wB^yc?=U|Cu3k|8j4jqnc-8n>yzU0rQD4URNtnqKt$c!I3L-(wVFajwS$h+<(g zL^?tp7qIfjs?E+O<_phc2j{KEiRUiTU%C}ClJ*V2W-NW}Ejh|OW7xtGL3>uTyS_Z$ z`;CXKhYIe`KywIu_xZBuE={PC3C24rk)ur8pERr)GXj|-j|>Cfzm^t zOmN=wQyo4I4w$=xachh6)palY%AY7~566OU-HLP)Ywf-Y4D^e)i`MO58L6HkM18zF zZZFa!mTE8<7X1$!?YMS`aZFI~~2pR3`6< z)sZM!U3BnKH3#%OWJpQJjQBZ9 z#H3#>i=F@z))vw`70w;vcw^LvpI>6Mlt!BDN;3}a7nHC3yNse!X0jqbSdNVRj=`Z$ z`OJv=azSimVc~E3>z=Ra^j&HCd%N$~G^$j2UE9u!Gp|>-p6%%sRah#0?-Lw)VC^_tu}LJCLi0}aw^`NO-Mp&&PhLxQy+vb@uId?gcQR0t4f~EhJ)>Y#VtnYJUm{Z}|j9k$m);(qCUn+^7 z{0h;UKZXy4xX-pk=XP>*b4dH!CYhn{hx!5 zewNUdJY9{Lv5eh?qiE8LIFYg2CLR6>#rPe=(#36!ZumXLClv=g>7~jfZ2hIcUAmjh z^xkRZ8|nLulhxOJ?kK&_jzhAG)DMCsv>#-e`skk!Q9Mm(yq!5%HERN$ma!x*ahT5i zy3=ned!H#+My@nr?PN-JE*{oCVU?*$EYFwPYHlg0!Lhjf8aZY!I>$aw!jt$j8~kFX zfpPOit;#hZM_4a5(1LVb7)aL@g6(9`I0IO7!EFIJ?a_#6gvJ2g0M?`RgMAa{z(lwO z)FuXP<(-RpuxN#bj?NUUrvN0iAsKStU;qOk2K)c;{+$Mkqhn~m)x^S#D{PkXki7{` z!W(uu-^771e{B-)Ir7d)W~wyJV@SS>O&rrCBiJ>d2aJ=E=|Ay>&Af-JhWC#R?kmpO zlJnX%p3m4XM^Ah-D^q@3?%Un;eolCt`gcNW$z>53SSIW*Vk;wMEba$8G5G5Hzi%Wr zg8ewQoz&yuG(4vg ze%UZnfQH6x@!`*^5@&i8U|R8wfVJ1kFbrUuXzWc%y#<=8F-81ge5GGtV8uyFQJ$#B z>vYBYrNdlBX?*-5h!tbA{j|R?Yxig5Tf@?urk~5qh6{H(Eiuc!HTtFZH$iZkudDP+ z@5Xj?(_PWEs~&|yx?+kCEmwscUBRw^`}dL8SjkLy;K3A0HBe5<9IIaa+leeRwnxCQ z-xF;fq354t`));v63@)@`A~61Dfh`E5OYO7{{b$9{c19KbMh^3i}_0CvP{I>T4rDG z=aO!-dE&Q!d#oOIi}L`mGZWy{6o4>W0*K}_cD0?-Aj|#D@)`UI3XEZ^v)EB9z>&>@ zWjx{G*0&cs+Xn~bO@Ql|yY0#^B_ngx;RyCK7nhdW`2kMs*O;Kbmj1e*SA)c@bEpYT zFS~1EC>dmb{~u*<6;;*u#(QtNHYp8~qI5UXDItw?mvl>aOG$^)U4k^y-6^d|OG}r; zJNNH@&c%CqE@Utm?!DHUYsQn`Ph5~KO0KO~imt5H#JR@P1%s)nzO0;!t0sC#0(w}j z54ot}KmCFIsvDvHCSMN2t)1Dpk7(TH+a%>z+rM8jFvWI0rWHGUm$0IIOK?q-@EmlJ2*P2U#O^*NMUK1BS1>97L>8WM05d`sT+v-Z~$_2C6JSbBqS#z zLQXC(=L9E!cw`+Lkk(6K)SOuc%JkUapHjvKjQ2-DL6K>sqJl$N+oJAv^x?^W6eW@~ zJRQ!xnb~o-N8>w$;ch#NluJDNII~z}GT%w(ZT-A^a~IEAdI9apl2z+<+3g{heSw16 z>;Wgq+K$%Q^Mp}%GOhF2Yg0>KVj@`|H+yZ8QDolkjN#|(O!*?2?@q&^g2%GhlZIRC zlh2%Y8+H+O$3-HSo__WnZ7EI+X2m9Wc+aDvYU5LHjH5occo%%~O_FhMprHyhIW7YF1Egzm5*q?2tR~w>L`IrbwQ4uNdEtn_`^1q zxE!kc^bd|!99vR0eGJ{5v8|xC>X^OD8olkWbQYaeQ@Yr%7_L?R4gMAGJ@uJXsY)aZ z?;r`Mh=o^~=!W+TPC&lenHX?-P}w+xD;QPLC)&rRmt4xbq%J;(!}er3tp^Ml&>lUr z>;Z&R0gM#_0ccQw^Nawq+xE%|h&h5?8WkHG1p*4FX<1k>L5ccovVhYXBw3zr)pHXw z$+6G8`9&yKXdllMp3@iIdUHHcY8O9kSCX*Fvm^%e3Z7K|=GV%UIf(-AZ&+WU@4x!7t}?S?BqeMQC!6&{Qe741*pT2Wz0`o41Z zE16j_x+9n`fIsl|-|?D`R`u|=T`4&tH`nY}IoqVRg%0#@8RXDQi9`lifJp31AYh&e zh~>XpTqEYI4HQ^eS?d9BOeq7_OabaE-h-x9H_&Fb4=T^X!opNNJQ|C~g#NZk0xn8E zpiWPNHkdL%@W2P8BV1atf^-`+mVAQx;q-kvs=`mzI0FTiq^P?13{9_CC)H7vN&FUS zWuBwj^Os?RhZ#E^TDud;a?J_*!BDp(OWK};eDSRd zfixPwc% zxbs&K%TJL+v2(kb-p-zWR}MRWtSvOH`s#o2+g9#2 zKRuyN+-(f)3tK34c|uEAA8P#92&Un8C)+`6&NtmAH_bOxKe+Iz--``hNtQlBZ`L>` zpXrKQRv_h%jLtUxIXPV?R9pQln4s(M%Fo@v_q#-%eOg}{gLfJ?I=iFnd-%JM(N@qqo&uRBbDOT1-1se`@2k9TOO4H?#4$$ec^3~7bMQI zGUdo=8!LXk8WhgOzFdutju}=Xr#ha9cbl8@ny0Fx?1!z1kwroioBIlz=!0{iP$~Q7 z$iE+c_sOzIo*LE}Hw!IB5e=urFBCHPl`~`q-6e>LTEAa}qIU_9yek`6HcIWsRaD&z(~Foa|+yQd#ru_IJcyfh2lA_*TV&m(paXfO@(acii zbn3Sd-G1<)9ig`E{RgQ9Ka3WvpFPq;Dd=sk2gKoDmckbj(UZm>FVk!Y-!clgj2)?m zY1^a(b51-f&P|tp{|3*3(UfVL?YNBuW-^9ORTBAF8DQe1NsldXaqf*wE?1r{^9XEIi zGPEDY3~pNXuwD$2A#f7WV07sHVd?tjR3aENu@G7^F7*zaG*YIs@YOfo$AD+ z=ETw-O3CKIQ%CrhF)X-k1o^S9(kEme#NPhy{x+Y@*5oG3*pbExZeJ*|?l*XOED8Ms zG0MACf!jv+JOmP#_Q%HuWK4h8!{@aP4noYf%Lv!L&9aEtevibG6AqGpnf|ToCop}{ zfw#RX(~qsDyBFa=3Ns<*Aa!N<#;-gi*YzVrz4mNFUd6;AF`g_ShRz@j)fG9?Vrr}!uGv!ubk zcMj9Z*-2dPRxDIM06O_9Biw>;W&Vw|;;9JN2W08U*7XVvv?yF8=~z5Y^71pmRNjNA zXVjPiIjdYk2$cGZVc3&{xih0~?-zBn3zQpVw(OX?@bSYh=#dcKSvtJjAU$A%m0G+F4bFiw<} zYOV^GOr6s=kxP&@NXl(C;cVar^M(8l4e$y$wf_=2fLC1@zV>~r41?O>PN_STq_85T z+}LZDVo~Qi5Bk>6&kD~m&R{MLRJab4hp+0#FGpfEa{1}XkW%!LE_S3aYGG!R5E>k$ z5%_!Ob!Z3I^giJN(b)S3M;4&PV3Vg+JPde1dK+JjW{)^jr5A zYUO32zV^9V0!=y&pC?Fu@sSGKUNhe-b01?Kgc)VQYpNMNNX!PhpzD_6sVMr=r|*9&(G>bE)oYFC>vTtxYxLL4HeUJ6kXzjV+fV2!A3rj zoqBedsC#ajpn+*#<|w)WGc}1JMca81!+GS#I|cb{u{M+hqe@EXDb(vSClXa(kut*T zR5X>}DzKfXXXa1dNaIoIh7OWuTlrcDGNs&t-|`RbXLpH;F5N#73w^n0T{W9qCiv@Z zE=SHInZhXKA2TLT`U5K1@A`}uwV$3&WRn~`x8DD}I*>~hj=OgzZMYvX8_F`-y;_5Q zzT1_{zux`yxaI9zhep(&SjRCxR?p0l9;~*^z%rXmNNP7uHzkZywp5n+bX`45R<}GU z!SmOq98;o5hOa0IR{$qzbl8>HjlH4IqX;VJ#$<}Z<-b^Q$GGJmD=+3d?D`V_wXDRw zDtW9ZI;3<<7Y%_FYl^Y%Ep@|DF`_%fQ<$8zJij^dg2eUmH&2+~sX$@WWOiUh8h%L92E%jBs zD>d7hVb`3h5Y8|q(PP)lxdKPirhYxD&8ZDankS*Scq)cMl?tSzBfL`z9JvTN>5Yhj z(5##`&tO~S>UIBpzrNyu4gY1opURpKYKDc@BRtr4anB^*T0j3cU*6<&(%p@hR<@=4 zrl3aSv^+RYQz+kE&UW@V7F(hvQTM?{9M=ee%4QgUG^^jqR6RKf#VOsW@MmaAQAHa0S<#=uf` zy$+6olKn6BR}tgbJ}I1C5U%C1u8YQ5o~KEMA@OU>U#k7;Je&Di=H;H6K~@6F6K8vU z2}}$N@o=^x%IbE;7gAx{_D}5YBE^bu9k=0GcGJ^c=^SDb@Eflmz#KeYT&$t} zcGQC8pY#duxnoXW4VT`jcMm49fy&m#z5(&`?Q?Yw)b_Eq1emnK~Qj;2o z69owyJsC;c-(R2@Nv=?l@6vwRYR!A3kkp?RWsHdXGk#ls!JsoCj&u6nF zFAR)NV_y0l6m&THefbxUEmECf-vWZa*R#jA_?e+&@7$m75EQ%X>+6y~wqJjpaP>|( zpP^?m$u=QgFePVfbs57%+?|~M=I1jEr~i8}kSC{vftS5Cm88i0No7$vw2*GS!cXC3 z?;%9{-=1Bi{0C|I;&nQ@#3d8ual%FQIwV6M-)EAOcD+JPalIYv@mgqZEJ=H6YM6!^ zxvjWmf0N-A#ThVnM|?*XP9}bU$DCexU%rror13ct_51N*&rSQL^X4ArxCe?5%FXv% z$v5(wChIw`*F88`w-xuy`wV>u3(Pd=*8+|S@1H%Jo)Ja0zU-L4bwzhMp*n&yRX3aN zY6_aqt9@VVt(=va6zv-I$BFfn9Ad2h(OLK3I|KbN%`~m|FzOAQ-u2yd5P z>HPB|d{7C$v>+A! z)j!g}UjFX|Vlmx%fveEe-!sGJZGv!usS>yI@hS~`>g*DNe{UJOQ#}jgSgU@m=%rl# z(C9O)sIM{k8`g(G-1LDQtB+!8d9~y%<(Q2qhGu((i_r9PLl+7qFldG=a zm+y2nT7`;Sv6xY)lizaQPj=uxn$DWy=1^eMF|6i|9MnN8t%#^;!xEnO~x7eFjV~i{>&>Yaloj z#Br2DkEQmIQKYypu0QWC7jcLpK=dge1|B;*gU8+b@MSy8?Jc_PWa=?-m9bs=*CAP7 z@7IY&FVd_r9(b>N2W-h=vkN|aSzY{Lm87*|EhM+Sq``+o?1t-Eup3R81989`SF}qU zo1VV=v@fR1e6>wAoo!IMF&cYfuNvouI&zY~C9k@_G&Lr)#R^1&++FO20CCgj0J{qi zKY>6I9wtEr3jAnTS>K*#@jKIq+-^PlKhU0&tE+i>HUNT6XE%X|tbt-@peYd?ubg)z z$uO#AgWoX_ZX>0isX3Uhyq08GhqFd; zViU0l&bxyw#<~_R#~s#>1cstQ)VNs$1ShiJgiUkWw|sBQ2@E(2C0J>~JtSL#Ur!9C z>|f9J)X-6=f10_YSRlslKT`d1+<({MA+Mh9ER2I|>M*!AieO}_o}*N%nU^}>aq-jb z{FnSkwMthlNCFDd`f*kcrxBlV^eYa&-rbNBJnsS=Auj?e zVODN^Q=RPB<@TD&m2dC5clwTP6VJbu7L0WHzUpY};^FaZNpEJ?=&rR3=whm#SA+f7l zz~muyTyr0GekRuW7)=MHVTZp6@w?n|{%mVU>Qn?QFjm91NFeV7;~N%q*{!yb0A*wA zU#&cGuh144Ukvh2T~U@WoS@nXhF(3DM=sRK)7i~lb~rVPM}#g zqqK#Bun>K&i<$izam>f@cM|ihJY>x`G#a^WrhmR~>0v5lUG^PkvgFllUMZ4eoJ}3< z!$Ae=Fz2#~YzKL5R$g%{im!jf=aSC+w@r0Ll-bo+GH7-dG_39F6+3^GD$Y{-Cq$So zzZYHJjayANeqd@a9v9P?Kd=Q3&dIQ*YyXHwSlGaJhmMsM3xIMZlU^#-IIT+nQjUze z*2^U7v#O>Vk0G44lZ(Ew-UwVg!eUipAZiVyw@roD!+3d|^kt^7k zo6d_E4yX&P<)!w!(GSP}WHOabI=-n8mo*n~4xn6Z^&tfZ zo3!UWf#w=tZ9A<38hD(LWG-p+hiw(~HluRhUrf$~6%J>@(C;6J4X*41LumQpsY4cT&dt%$Df{A-jG<;mSiH;W7{DTN@j$aA z&kibKGwSC)@wghe;GI2vlcc;x-*j>&y-wA9FikrKUqdM7H2pB2*}w5U#>Ch%FAx>& zBO!J5+vh-hCJ!jULjnQ)$|lC!72{dE{qK(FFjY^$QiWkCt1{AnL|?9leeY6&g7FA6 z`iEKHZg8*cWW-+~Gk14;v+=u>eKWVZ>D}MCqWa|gjNxi}nS=-;?p@T4svTd*zuPqS zeJd7r?(Y<|;y>TZWx=MA44TvB?ZV9)wrFRD;hPRbC%j+T==i(&hQ5R}BN$RS*m z3HF=j@84nI>G4`O7~jKzJvQ)XJK{fvTA*vrqy zNu1++E|4B2+P_%y+jHwGiV_$+~f#AzK3Mj47c<6~UZnbPZt%ua{e znk{N#!1TS7y&k;nJJ($i(mV*Q=>2MH@YP*Q^{tDmD=q;+7z}I*RGpgZO~ahG5vQ?^>ti z0|t~lhb<`Dc-pldHC#v*L`9u4T7_t;Q*M4I6LRvM(YvXa#ME%&YHK^(ryukg4^}v4 z=Yf;}13%RGlX-vKu{FBd2)hmPp1|JC@z96#02>h(f)=?k#lA=EYg;Ii1t-bAR=F*Y z7a%x=!P=U-gOP}NZ1BzHi{6t&hI#WA)04eMmQ~2(xX_@V3YWV)=C&_?&=mIN_ZM_Q zG#VVBneK**f`gM&d?PL=hYCrlb@cWYgslxQe?V(JIUrejf}4IeGWxbCgbQ7BY8#j_^}o{PTdmzkmD(Ki$w;6O{{-HEzyhk$XF#(k2Dx zZLYMvNR@w47Vg+1Ma{AOu!i%z6;XNsj`E$X)Y7Z902Ad}B^@}>G2wJQ{1GqW!nS-6 zt6%%c7^)zuTqa(W0GQA4VtadgJzv~L3G=(eXyz)4?~stn8Wm#Q59+snT_a?aX-)qh<*O`zz-eDed`BAV)DTF zj6bC@>q;e!rj>L<+~Ie50;};2twKk910e~DFAL;T7^i_mT2v%GC>Q})3e7j_UDO3GiGfpNT5sL*_b(WaSy3d$-&eZ=S)#F8dSru2_X7{55b>hvmEa%7jJ zta15sAr;a43YpX{HpT0itu`s!y=hQkOsT&d&?@i9ZA~@ZxQKnGbn^ke$g)INGaHPs z_tV4m@We!Qp{W|a$Vdf)e3*!$CT}PO`7I;a{=q@wLQHqYfqOQ*8&+;QTW29KPQP^A z?K1%zg$NfHh~UQr2L}&zcZ(PFAtE8Ye+$H2d~ATsk>5!-3b+5g=iOdO4tMl4&;?`Q z;!4W#h4;UBtr#Hp_Ba3gcA<2*asl-E8WQ^6>F5!-PhR#0ksb4k|KMsVFj-Bsh6sK!%dg-DS=Pn8ssfY_a>~c5U6=+6HTt2Y;RkyRL zyxbP>%PiL@lK?!$5_f$|u4a!?iAm%1aywKW{xeP9$_GvR4L?SFbZ;QbWYFQ8@%A%+ z-qItG%2fxTzuj@Z--Y1#O9V)J0Mm?$jD%U-@M1vEN&{f4Y=F)7a5_jSC6%0>E(g@Z zG*s?85FdBF&Nk4-1vx(k`=c|SvZg%2bGJU*O~oElM{F6f+qcV0sI$FW#g;r$HsJI9 z{XWiKw@hO{Z6TQiKaarYlL>lsmHJ4kC&)MQ=q)Q&aM`!#^L+7l)5Z4!0z~3K67B~; zRkZqCSDz5E7i-upn?Jgs5n1&9?4HKAkQ^d;A>yKIy`x^HVT1e`XbsMSm$L^nxC#Nl z^z&-Klb>##B_=NJ(Q11ZL;d)nJYd9hn@>r1(B$wMtti^>{9wr|T~tC4Uac9c ze|D})q3AWAnr<*l=X#p)%r)6uJuPuefav#!cKmL9d_CD1@h(LyQGP}625W1O?Z4NK zpS%kX1N2m>!p!m~Q1QaR$G6}@G+Uw(L+QA@VCGO=jzG>Mf4PwOt%9TIOA6<K)I#*pRsxhiikqOybYNI z({S;aH?eogB}4H3rk!=86cGrsU}z61bZLOMYv0llR?bo?lMZKd=cDdmWKZ~#k1q`- zZwV;{l;UI{XBkJeg9Y(TA*D`8BvNIt1YkNWZ9NseWNKg~7<*U7QaA17^tKmnDi6p!jfZ7*= z)vI@O2is#8GOFoTCu?$gcL&WxXU@|m$JHsCCr)&1k^AxFIgP-jJM%BqblYT*!Wrl- z&~V9aN88f4J+2q=o*QKm*zel)=u`~n#RCG53NSPGK;qr>qndY`Lf;k5H)=3IK)NR$ zbd#1l8;Af^(xT#G-TP$_`sM!H_qtrL(fO6{(b3WQ0A%seNIg$OWvq(W+vjqH4nO6SpZ+ZacJbJW zj*W+s(IH-5%2xiu?Wyc+N-}5Tm=1n%E_UnN1Y0ECEFa%$YvdXmR{dr% zz@mKtBtHc`6n}0P;iaEl(ua{G=bv#|NIKy?d-i@LnPKbbNC`L@KT4D-y-y{S@zsKI zy2oGfz5nsMVCYDQuLn96+i>2H908S`Qnx}F2`M{Lx9;zr!b_rS|J^)LfOp=WLZv8f zf*O*&w_+wNHRIL%p!U0Fu zJD;UzCB2=^+5Z};AKBoj1(xQyCC=#hvW&&u5+Ss`(}Az2b_c2vP$99vHLRAyimW9FBl|QPzZu$%X|EZ0ZE|ZLOzsie(9K zV~WX1O-hlAy!85(Dt7nn7U<}`zUV?ZQhZZHN8(7FdrInt-#wJf{<@rQNKbFA#o|O= z$0$X8BoGRtCVr)yT`1D-lk{9n1Tx;R!K@4NP_e&+Q-4~uq}6DmrIU&Mrg%(Mn|Y=* z8Agj(-1ll-&C1v16xHv6^JJA1WZOgz=BIa-sdCWD-|j`E&SVsiO-`1)pDq3b;xk8! zwY~cbL`Wj?vFWwy#62MV`3uDwDkh3AGWZH&P&X4H0WSC8amQEwpm2m29lgmHcdrJY`gs0#z&`O zl%H!LkZrdICbvNN#T!K_;=o(TOMC}i_*~XNRtOd(x5p*53&g5>v#J#UuRN|+_oWsRdg*&%Rv|(YrW7dPw$$r$H+}w9~4118PXHw%RdgYQ3_w&aGf8tJ9FdLznR>{oP^n8TxX zZy?0jRH$9?kYxmGL}No2&Sh;CXog}qmZo5?WC~WKQfxmE{Odi#7@Y=TUC$5CQ7`Vq z=8Ey2anL#t!1Er7{}B=sD~?Obm_aTm&_wW@ZhTIRdUFGr%sHS~j8z5rWCqk79AeZ; zeYC>D(&~ls6o>8D_9j8tL7lH+EeH)^lc5$s5=d_g;Pe-~O|s1T{sn{3!7B~)C>4z4*T2@DH|ODnT>J}DXjNbdb#^%&Rh=@@bI`p zN@xSI;h>Nj?5>|K+iNFx2arJE)ARuE4HVH4K4TbTg1QP$biX_5==s=2R300~<(tux zadZ3+Zs>3E^1Uw2)Hc@CHt!TOTmsRNY;&Xd<(Q1~cAnf9v6q|G`nz|{oW)e>^5!q5 zI@(WN4%_F@^fqdx!K<560qR$457(Ljl9HM$?oQOF@R|3kQVIg^$(9MzWQ_(RW*fx_ zaZ3FHJKoDXAM0u9NdV zM=?BLzFPWYPqzn9ssYi-9;+O`aNw7IjNaK;3y!WPXlQ&MDIDnArW@Y8i#=wCSx=09 z6N`X+fynyn1YaklDMZY`}&ok7zI}fAK1KB}=XBKYJAvCzkFq+|M?+Hi;H58+TKrDs z#l4RH)!;?gwKhh1tS-M{JBx1nyHo75rfa2-k4Q;5yOHa3>Bda^hBqTvO>6yxAQy3W z;CF>Qx%U(BS6Fb^q4gv$UcFKWbX;oyih`ZAwOZdgIB}Y~2|a=BD7|SJY=gV zPG5d9mi4O5&Vp+AWzMOdjMR$_^rSaHI~vqFA^^V)ke`V3$oFde+edb!u!pO=rX0G0 zbl)~}?=zNry{pT23I~OkFhs>PsEWS1y94A-F$W|B{jBhkJZ{Ge61MV%+bZ*tzO{j< zXRp`+{~Ab7_X6!uvw@gy;MP+yIh0VpAYWNKvT9O2Ps1KtweeRdz--}*f!vVdl+FY#%8et^ z6ctITdgv`Zstw)qDJ`}1#A+g7t!cVhUy!^N`ytddBJ(v`)1@lZ!XPcrcD#CHNGB9j zo0|bPMNL!FU?z|4$-JIp6boJm26D0q3l;^lx-*$PEg7GKRHy&L6cC1lv4-rI>uV1y zqj4iq(-PU%|E>gVf*aY~DoCQzMA4rEm==J$(NEGP5y+XCz7SU*-(t~n69pF4Cx0!_&@+rprxk=5<*z~ACAdM`5c&A z6`|Q6A2UilV=OCmbNxF2hE<30(OkKY-FFZnoreYvs=oRv~BYJYuDGzldIxEHuwY|;A!PEO7~!YC6~ix&o(e#f9QFABaiM3Dp3-vjeW%lyyu^4#%_~A zpTMSL0@`14!>jT=M^TeEEdDsq@Hd5Ra^mrw-o`_5)Qi4;T!dc?UNp+-78VxfDx|UA z9DMDhN*ac>#}t2FWDLu&!zC%Z8%=)pn4Dc7V$lF6@-sMW%JLC3Mdxj)H}V&yO9)DgeACO1KM1sEaUu^fHOR5+?@$-V zd9vw#TY>T*{HV(V&488{1Y6O97>ynAS{aJl=my*cb%>y6j=_Ae>Urt4p73FFgJj*& zKoS{^eBt=x!@p_ZCV*BRLI999{n%?Pm!p2H6g2FdB`22ELZch%ODce!OgC`9n3JXO1SZ&dG!21;@vM;;Co!bDKE5UjhawZ zwL&#W;i+Rs2JxQ^w;J$TB_0Z{;wz}bU$67v_PcX~&%LbBsVlY&0J^8K#2mqG?d`*J zb147_O3&~{$jkzSyWNj}X28yM(0jw}@RNUJa`F$YOh$wF@X&B>_X@HtiNEG&gHMgW z7GE}6gIEoa4>j^VMH)8e+y@($u>ZZb-6!Ih8S(dHmU?42>Z&)_bYjmTE)3+f`lBfY z0RJ|VWWN%bJAz_4#hNdH)QxE^0D4olN5ud2isiT?&XFUzq@#~G{YZ5*5KfrIpAvcy z$H)pg_6ho3$6*;!_ddyKn2*ky){=vE2>@->fv?K|^u^D8&bFc~pI+toN{EY#*9ScL z3;J9!^Ej@4)~&bBTLO&|VjyQxfc0E(3Ir~Jb#I`NCxLXg@saH&QuQT4GOe>L{ox;W zmhHloJBQ@YDa?)5q<|b!_9p2ix9vRhfrXLQ9`n26Vp*UOJ?BB74={u2f4k4p=nWgy4RsLljw!cJ_FMaf37ieay~XC z=(AP^zpS;}B-B(P<+UqyHPY2372xNe0!c9L6%bJshwOrVO-icXc7YY#$84siPQ5j5 z%lGf<4y@OTtrl;@LF|Ux`L9&sc*1)_+EH;QSDgvQbIwX1Fhv2k-4v9;Q z=ouTS2;YJr6DE3j)Coza*Geu-VkU*@oebzinF2ON-{2qu1eBOZ+~51U?M{iSH-eBk zI1XU;1f=xad!UU@+0oIF$?4enzzeoUr=w+__Jy(WacR)$G5@vF_*I>xnpWaVqW-LI z$Bmg+Y3$9@#?$Q{k*J`%NnA<_QR}NACIp8Vmg~5$oM~*KJ zwvo|CjIV6{P4=BKA9D$7l9s4J0UV|;8L>zcgUp1D>`JW}i)lRV`x|SK?;c0_Ak_tA zpwo7NKwI9)i4!^&Rx#M~b-#PC00S?TzZf{G+$KGUG&JBH61yKRs@gt%Bw|B_94$8} z{B?I<>d1{5%f-PhvM5o#M4H=+C=ivS*(LpCQ)~`Ev50{njLn>}M2;L{BCTkU$|#~x z3xbJa*AQK-DY3vF^nbUa7?WP;x$XrrsuB{xJbx3ODRU<7Ze1D0vK6FrhU7c)mM5Dw zh}natxvk^lx1*^nb)~_HNlB8xLd^UP(ysPe;!#SmMZg$HUd-0(@$-7fm3o!&VjpFe+I zJ3g+ytmBD9Wn!zA3X#T~`k-zELe-@Wzg3Uv6U|$1!L@LnJqyW`jEH7I59yu?D>BfT zL#<^lvTC764HSY5ncuvmM}32a20POQKODz^u-PUMJAwc?nD~N#r^o+NkUyK@)Yv|v zDxEIUW$~76wByJB&1b@b8ZSPiVcvPYcz>#=$kV;6pxZ7^|G>aZt=V8H;NHRZCHXgRsA*ENoSmH5pYuBf!Z1dl z76qSzqFTW4$ns~cnQW`)Da`|LdcTq;hB>J0AGS3lF^-oN7JY^;^G43N7P>nE*d`62 zVwUSQRj1ktgmfnm<4qozC7f<5VEu4uu@OQ6tI~QhTbLUFreT31u#2_AC%h6ffXm!m z7cc2}GVE;1>)0l3$f`~7pzSBfizQP?%W8?zRuta@aKYPu|B^t`9tjaq1=z&9$G^U3 zKJ1IxgIw>{#)gEj&s8Bv=~TIbstnM1u`dOxZvNYF@6RVk&2t-LK0`@c{Yq0!)l58) zqB|&98m;M6R*2d!=k<~^GZ`ECp~$^BcoXKfIMh~t(Vq{f#f%VsP*DAmAWIbt3d+nc zdHW^*@X)T8i+|_-W-&JTC7f{B&k*Wudox8&Zpo=EQ1A{1?k*X#o|%E(Mwg-#c!`&I+)mZ6A%EarSE<1L zeMv{Xy~G7PsGi|rwDG7ZK{o6vxOyZi?JmR)v|GE^x4=EiLaM6a1R;yvx-x9MI*rGZ zYOLz?>#NsL`_~#5%`c^?)ht--L2?6xU_wDh&Kr3V6_Wi%#I@l~4@jF@`OV8M^+6Mp z8uOs};?I5p%w8YRAi2^i82Wcxc;W3LifSPN0CNj~2jS^Jq|2Q1;`o=I+8GBi6d`#) zu~EX(b;p?%SVRCgM_q2AUPaG4)W zb|rY!L#6`qz0biaK8Dvu&ZQ0{hU^2HOQ#mYE(O{cyPf1Cx{(ZDq`uy->l88;78%{U(8-%|OBH4a?)s!c zK>lO?9skW5RpYOp;h<_ViX~M%5;X(`J3Jx+1@JS6lb<0M)T?Kn-JuE`n2oe3qUK() z1d>4#;eeD@lf9lNHd*nP&Il7iMRDBp61JTD$zl=WW_v157tJ@AAwNTK_DLA4jgg0j zhl3Pf_7237Id2W&0>WuD@GZM>;QgZh7RrIXew`OoVm{v)M(K(_EBxkIT}5WoL=$6! z{BHkOy=675KxP*uE9UWQDU4buoQmNfg=8)QQ?xJm17TOe=ZMI}z3@nO*BwQ><$AQi zc*+PsHCm+MAddMKm*CJ?{JG+W104wvh)-=#-Cwa5u=ANQC8eZ=IX}hqCb}wcuYkUv znyp`SyP73w;HzGVic*4uV-Q#mrU`|w%T-;9%J^9M+jo%6-n?ldhTBBI#Kq;&wXIpHA;AZo}oYYyVMm%6>5)2<8NSGG`C4 z&~b5bgMcmzO#c~Xp|jhiNJa#D9L1zD9mo_}Xe^mHs}SqLq7{GJ&anVXar&!~Xl=g< zJ8@%7g2{n>%C7Ysv-)?B^1isE<+4Yk<=3}w$v5c@kBo{6`YA&u2)1~tqJEZlP_hJC*$bvuf#uZ{A{r@7qgMi9ppcMk z6Lcj4AwvT1>*H9ElqvqqP7FPub#KzIwG&JC!(v;6Mq@hf&Ct2+%^xYKp%m}zl#2p~=7(1e^KDl6N4E{B4h&u%JkjX>^n( zt<#0hurqswWB%;;lN_->Z;0B+(8x$nmSaa0Fe}V}{r~`);_JOY24~B2;%{)cTrwXu zEIlA^!q%;TXV^PFjtN%7AgHLBZgsc)Z|cO%gyEajms)vTkW7r2i>V~M=Mq8>V+;b~ z2IZaMsfjNL!*g0l((phgo$|HU8RCC|GJMzt9^}kPBtvusAa1h1d8ECfj|*@ z97eTVx-A_Bcn7{&jGi2S|7!|_5a`41Ucklyy8%-UsL^~~?4AnEURoC-qiMuw#7YmQ zF^NQlMO11`dQUo^9ZJx_cyOc> z#fN5qZdm}RiUJ%lSSa3V1PxqgQBbUbWSoFI-)~~MZEYvSe02Cs{yP59-!O)o1w@dl*MD=a#KiI;PV^63$X@~UEm-E z0mkHiV+RdSUfbuiD_{B6r(cs1OoRLQ_|FlfB4IHfe&-Fu@^@cZ8|7fvNQ8Mmck0^Qd5 zKn;kr6v(AUqJjkia$i!j#Y)sfD?~ZqGsH99KOr`F7;=MF_m+mQX+C9TeFUq$8?=6( z?~F@=fB$WK?8Iul_-X6;sOyc)VA)6`W{U>I0k0VLet_~t(c%VJmdKLja_oVb4aQvb zS|Dvs2r^Iupi&tYC#?s<@&C=s5EHCaeVI?j5FT4lH^9UN_+=nE%BB1qJZTNm&5JEA zBs64|I>IrzdHL5qS5OfVks;uI0keQnqm=4@Bf^fN-fpYdjzy(kZ1%}`DTZzUxNG4x zHS9lI-7((2eXA${_O+OqI0m#^MQKyGAC*WTvq1$a0zqAB&u0Nwc8^1CjS8**EtC*y z0CiY6p`(G{T{Tc+?M(%FYC;--eFwe%eZa3h0TY9kkx~ACcTbIP>ba0?nr5O7G0bXcKDHjJ2U;*2ZkJ) z$I!dVGapPcj6MW_F((6Lj>h*lr;sjiY=cqI9D6e~xQ3{%f(XM5!%})+GQ|Du`1kgI z7chB0Qu-mb!C2unJgmwV5We#OyYU9x=lbCx^Z$mZ2H9fje>VXErE{lCRyihs4PR4d zmZS!5QMH)f40Zzy^ziH;R#GbsyD8+}V&j~Duo-8}{sKi^1@6Ul^f-J_4ev*dQkd zJO-P_?X4~2t)WjRr>8+#S!AH=JPdeYRhvKxeHsL+!JN)jE0QM`^?wa?fX8tE&owYj zz6Hb3n84vd#3bdOT7Cq@M5drSf3g1kGb~Dx7+^@y=F7>*hDijm8njZev0;P148m$x zK@=WvK*uk>|99UZChF;hxggn{2lK)J*BK_&vNAh6TkCu4a(^+a?0Hbt1Tt=4&HAGW zVA83;s6vCl!o$uW-Bqbmhy1nuiWGPVp^hE5$eoXOOlN0jp)E}Rd+Z|8B>d!0w6ggi z!UxXdkohYR@}?FQHL~>qnHL;#@))3c3xR+tqafgz^#ZjF^_`=p-+()Z3Gz@={t&EwNZpbz7?4 zs9l+;&T_oxosnPvJB|NyH~5C=Bd}s-P(KM|NAdwGpb8!WThk!3{eR^c%s@@N+?zMzMe->S z2&l>o`~F=Bs8;m8i34oGO+YH9H|lr|GORgzHK_k%YW9F+tpZQSnaMHmjn7380O*S0bP!!IL8YpsTB^ zAbT~qJ6!-!wQ<1tMt}%<97cjEVB8f5moDtX3t*k>79;pEd`+IRLigZ=x+dw*>BgNt2;S^vLg3$N|m<+Hj zt$2woZ4?(o7{FuEzJ5(!U0qGg??lz{cxRg@{lBHCD$k)OF5tGCF#j}~!W3Z?@IU}& zW5uc&D6g*pK{!{o@&6`#uZ&5HCt?@y20;Y=Pn(p5ZOuQnm22!8LHYyOPvdL0`-joU zk6*F>w}!(BOt}8<(*1wg3uwXYlK{tyDi}zOat$aHIFf)4-x^+$cO^FsdM#WqY-9)_$-7cpMSH^8m0|bGj4v1(7S;`ve>5w!`uTqQ7Np!v%&&-nqXyJ_ zeFRm+{6aznpxPMLdSTg_d#wz8+xBp^Qg7Oi-s*kHXaK0bAgH4V4(#NVlp==n;a52- zpnUx3cV`YP^f8{rR|43+k@O8thl{l#u=Bmu?;kIS{C@1XKT~jVa>@lM5WG+JzkQrx zB&)o?M`fBCwK{Vj;GkCKA871zv|AV15 z;7R0YsV?GpwY`Gj{Neg{67c`*R~lo%<|p<4Rd%I8O zdLGjmr_-rz^EZ>^%lp3f?z!ildoF(HN5sVDt5;3gTkm7fwC@%X_q@)wmW z$-Z6<3>-zSotBYNf@~PU->g-zAR_1@)&VTqXpvmmzxpK1to#J?kAP%)2B689@j~UK zb%B8?jbkZP0O6FB>({SC^BE7Wpm^rD4=?I#c-iza z265n*@2tBtRFput@bmlhV|(rNh8FybW0cH=A@yLh*}>rXIP~1LMf$+}N!o_A@@fan z^usLQ07lJS?UkqFm|N=(V_2)S#_gN#gM_YBsw7slNz8x%9SX+1{FMSO{XhXTvf4Sw z*hx3ltd;d%JRUFqA;nq zK?WBCGaAYn@U~mtJZ0nVj@$FHHXa!dE-1%tx&Ovf5{c6fv@hsNm0qEJmAx>SJ_k4k zUN)TU3v&Spq2_{*+D*Dbp-3+-o?%pMTnJU21VJO}R z&#u|H++Vf&Q#Txbib3Z&{((x@PeuGa+OBDpm5E?RZr1_;aeWD#O6 zW!39VMA(C4y$M?{0UAui!A~KtYyuS@SiyBU+b5W5Ydty?RJOxpNhZxC%(#q$tHbph zA?YEUDh6_<;B-%S$XiDA=|x3FRnYBEj4)iQHMrc8;vCgR*<3%MP0qrYhd$WO>9+Z? zP(S~Zx07+Ghe84bKvo}B15^B>7#}QOamo}pcM*0J+}9R=Pn~CqcRzR9vphE0O4jEFjD}4?Zi#d} zZk#BjV(Lo1Dwa58q2AZ{{_X3QMwwvVb^|oAM0KB-^Wx=83@6IOpC#gc6c~~#D=S+& z7sh;`v};+?F?>EBB*T)8VW9F|TEd?X+xJ#S`o;>a(G~(MdA{xFBA2daZ!-d{to;fS zhkAAz4k|jEpl0YNQ0i8BD5crQOvJ6G6F3D)uxFfd0>Zk_?%ngDpte+E<0pN_NCb_( z8cX61Pb7FJNq=q*M% ze}a6n^L^JXh0q=HmlNCjXzx|37KRz}iM6S18nv76`jBn}3w!(VVC%WD`?Ip*VN)b$ zQAMHRNGD==^1UrzZ+Hj^4sgDge1j%}CF$qE@E`!+1Q5M?eD!1Q zV4lf7Lvw!!s8Ify?%;Onz^sT3&2g_T+Za!q#?mpECX}qZ#^LeYlaiCuadNW?oKvw9 zEU{QjtdmG(93{hd0D`HPYWh}~FP8CAq8ki8Mu>Mcs1b9sG0wa7@Z9X)?z%-_Nvxp$ zga|vM^a{Qz0A*F_uHo-a#=Uin?d!Qy8qP{hG1k@6($TpAMCAKIGUz&c%RMg$Qrk{U z0q_e-(lv=XmpHD#v8G3xWY@pScDmhZ;0s1nLlGNpS521aSm9=%6jdag=n&&}mlS}RGS@e+dFQK~aw6$T>?CN`G zdt7*X2NjBlOx&HzcpneDD57CEcaB%IY9uuULr$642E^45INMZ(eogLh?ounizj-!I zWO7@o)?K4%2w$I$mgz$l6o}bX_>)0(TOWxa9U+{4b8Blyj(E_uAG8x2XDPWN)McWO zE9B(m0TKNMn39%w=BrUSd3HbLiuQj?K>iPk`AA0dP(9{pZKjxYE54M17jv;c*vUfzKL`c$*q-11omC#TryQDHJ z6uKX;uIs*k_aEQmK91jY9M|#re2VjYpRe(JKGyS$+qXxLm5HB;LZPr4=xdu%DAbY^ z3e^J!I{XQ(_P0y;#}0p;!~XldocvGN`Z`ifZ2i66z5Lx>?L-0{ef?a$JQZY=Wn?#t zxcK{f`>AZ*>hXVmK*r10dF%H34{zf|7`^o^{3sMQTk?OZn>!0#DU@#q4Yak)gR;I| zJ#pAvZ*9z(iv{z?R$Z5l-+rNM&3)T9eW&vJ^6obuwtLyP{nr|M6H)04;=ewM{VMJ& zvDGx?D43@W?3!<_+|)VQFj?9uqdYa&PainhpIPBIb#;f|r>A_$u?#G95%o5*yeA{W zi<#^2FZgd$-VN9O{Y(7|)k|Rw|Ne0Ilnpi0zn^4z62U0>pWphi`v1=lZZixDQdUmh z9TfDqI3dqeIl1xM+Xn$wEKfcy&V6?2y}|14?q263xLQzopTpAI2hI^A$`5Bbt*@Lr zckT60$E&lyuNE2V>oZh8d4gZ6aDQ7$E7&^p`tFfR8NK z{{4Fa!Pa(lUteE;vklR+<43OCVPpxg3Y%S>)76@%lThOHjNfXlPX3)E<*SpElNlHp zQ<>P9n05sQDkdf+89h`>O-;R|;Jo^>l2>sC#{v8?3+uzV3I|6=+viz3DB5S;EW}k+ z1rFUi*8Jm3ubk6U-h$%A#m_l2y?b}MRyc@K6*zZgkH33(yW`CUaq(+bRe_IB|4~#4 zn220i{?pjg!-4OI| zCki|+s?t?Kfm@>_&KMJ^}IfDuqx2QI7``dLv>lLbM%Dd z@$;SX#+u#o58d9hOx6BPF4|w1w=0UtvOOa9-1+k~3JMB$uis;$qob4EzWr5zT)g(x z-#zoE()661Hf-L!*-+vho3I9j;_l&*khDqWVs38k>qrd~4o=RqRVSwGy0X>ByYpjS zRs_#|vi<$zi~O6&n3$2DU*9au51i?KQNGQAvV3I29EY z7rvJdl-M;hJ+7>j-hA;3$0>vzT*v(D|F$S zVLAzGcm$Mo?i8N;^eiGLN7&fdm@JWN?~U-T&qmF2zkcZ!?z!qcJ8JOq_8~SWC#Sy0 zKKTyEe&?K7sn6QsH#j-Ddef#&Kfb-?Dk>@(oLl7G8LF0b^{OonOnn4>=k;~`{P7pI z9BFv_mT$v`4Gb(SO;}gQ*)u=JIiBb2+-gddptlnBxurFckH*Nz2)p0j?^PSRJUB7I z6s{@4s2aMYd|Aik8#t~pN||n*Zi1x#Y}mTr^9TJ+2pv-+?sMO zE$!^gNNZznFBjfxdVaojxH(}xH&emvIp>JkPtOEc_~ci~$jHdb$!R@2{;DK+&M9+t zY;@G-*SEJfk59+p=zW#VQp+&T=@C(TofA|$F$P5PrnYF`J3@F?(W?! zmHuDOwx$Rhjjeyw9-Ek`{dZ;A*4a4*w~P~8IjFq)#MH+OsWkCzwh_@CQ17 zetoy~@L}OV4#JvfkR_!Zy$lhHG1ME*t%Xpf$K=QXU5CBrD9LNzPUGoqr ze>2gWnu0|*{K!4icp-V6DmyQ4?3yi>BFf6Vs)673N$;ejois8qkdn_<6X2dH^Kozx zw=8p^^7He1TvcV?o+e@V*;=q8WUHK<96nIzg)NQm9=Z*E{mP7=D0A(lyMO<_i0IQR zN^C+xLb3`9yD!REol8#_&*;K~b>FwwGrzfyifqE%Tw`_c-1T=%It)>}?pQu#dUfkS zL{X8{(W6IY?V1?GH*VY%kg_*hO>64olcCYkRk%8^7sn`Velx5)U$3*8e%LwW&o7Tvw6yj8{erzWOg5F8$n>)B z-V_-f%}J>Yp4-66Cm)IZ{er5RHuvoE_Wa|oZW&l9xV#Xd)>J?B>pE_7PhB_-BPHPb zy93hM7cZ_|{PXAh)vN24fAsDxvu&hPIWZ}CRrN$NW#9LA4~tCmb$@)lSKIU0XC!t+ zdE$Nf)}K=YIq%B7_ToMkc-1UMQ(oYDT<QPH&Yq5cX#ZEgRd23l&(ze{r|<{FuqnGUwLTKRe@ z7a~30KT1+g&JXL9I=mLxICHjj7P3^G4H zId#b4w4;-g8Q#6UzCIlHUROZT{aQE;J!h-WkLCFRqcN&5r)QTX7MCYKsLoDLi|pOI z_p<5Hc@MCI#itA)Y;Wlc<`8dRbiC@UpGkod2(t#Hg+6!+rh;}9|iS>gwX}E9&O#-so%bRyFTIY`i{k_Flri_ zBBP5kWu6~YEUN;y6ciMsW@hr4pwQmDcu{K(gv_ztwW_*sa(>bT z_dc!Y%*;dUkQv&5sgGCDcl8>hS;Z(nMpAYf4o5{rrQ&tBd%QC@D?e0xRBAT6+4zcL z66Hk{^V;F9dmc{YuI&N;Ke-roLrU&(s>U=qKQ=jK-$tU_vsZ*9gB6kwBkdkTzP zu>+{mTd6hAZ!k%VSHj`O6QnU=yLtKe`Fo~^8eQ>Ow>frjmzI=VLm}ReB~1 z`smRHdV2cHDgn|S{f|>amuB>CndV1}C(944>Mqn6OxRj;4RySS9J%49xTcYrn<#2# zi}3@W2M28|A2_il@hLqtpwxrI7VrL_p2+v^xd}~U=I5{}9C@#QyW?zgiZ;PY6sQtULiE(arR+QpD+{9S)cv$x~R@Q85 z06GJ%+wp;#C+17KN&M|0{lGr*^F3&avp;`kFx@_Qmw&t4YvT=`L(%&sxznnuRDX_l z@0R|!^Y4<_tA)bC!tcr9Yz8wzahAZm5>Uzg=)GX_mZo4;?o(DvA~b!B~2! zFeg-0C`Iqyu_tMfJd+|ZtJfJ~xzf*_6AADbs5#w^Up7ktK-)kmL(k3hWsKS-D*AhR zD8l%+-SIcYCeNQgPrr0Yk`XU2#K+6~0_8=*c9;$oAynS=$JaM0Nm-g*Lx3yH~1Oe^x|IAOVy^+Qo0y_ z=&)u*(2OY6wRNh2`c|i~n-xP*j7&_T01YP>XA8_9FC39DTe-qMPgP%EZ}#Rdpcl@T zc);As@+qp?KJ05zu;i6+7_g<;NuU`{TaOtindh9xS zG^<~^HF+Hk#rTq}mh@5gl0d+PB5z?~;WCf+2R$um=vPMqc#fU`e$v$Dm3N3WuLfuq zQB+*BxVV^BayF0;I7VMzU-N;}vuSkv_1m{Ue0(G$d_|gwxX-Bh^AFO!g}kQm^7ooP$;M7C!_N7#afcrZ7TPS7nPA&&B4I|{2cz| z$rJHvRBD$Gl@CX+O0~76ia9pWtrm0(x1`Q)m7)?ZqqU8r*T{xDU^KOq%@|Bhfc)zc;F#9xwtZ94w=UGO1ckP zaswx5fM1sgqzG%7>v>z-dniW9v_N#hp%{IV&b{X%%Z@|EnBt}xa$Mg&(!{1 zX8XH5pJVn0<%d$ZH|K&1o{&NF=Trfpe98U$sfGfSnw8&fQt$K0!ULHfzjfb6H9b2! zIWlq;nie;%bkOW*T*E9NfdEh~`MBnMUtiy4HZtlIeV+>KJlGJ$jLl<^K6pnmV9(Os zTXQBMf4-NS4V*;pU(e1kJv(MZsmoMwK6m9x0)d2egZnS4g)Dd&)V;1Pcp`IO`SOLx&Fay?bYP%t=l|LxX8f zddVkFfDs)s(>r%x?8}$t%F4Krx&kGuGr%v_EBu4-`iY8)O8)b$gLmVBA3Jy(I;y(R%Nn0OVz4(puk?BetpFGE8n9IR+L`xX&tX+zGB*A2M7eW+RslCpcOBcq_$$Hyl; zA%U544RmZ_?4tFH$^bXDGb`2lVir0cm2i<@CAz^`8C>`n|Q`nw61#P-8{j) zZ|N#nYvY?Yhi-favH9zM@PHguLHhL1pUrQq&m>`$cq+=wELsof+|?YK36hTD;-Hv1 zzq@r{lX;OD?WTiw!U_vF;*9!y>yx{4w8E^#+uVX*(VfA|%WG+_Yv=et?atN08i~N) zQomJfTp|#r z!!;p0E^M`y@e4(9NgErDAAkE`*7np2YHvVDz(8;xaRl3W#KRfp)+?t>&Lzh4N zL$T@o+uR|gXN{AbE&DhzM*^e>;Z2%t0^M+ z%W~(=okwd!*98X$oAr9qnwkgBD4<>zJ+0WdH@mL8+w_ZL6AE(E>{zGI!nCd6&QL-8 zHd7%(Gg=IQ{88H#P-yx5p)`>dy1e{+(;_nogCH%BNR^vk?>@p39DeM*{*l)}ae7#( zed}uTd&kzHYNzce_ZiXs)?e}9FqH%p1kG+sYOCDI`8?^Np&@-^(JD%2KzsjRyT}M#am}voCB;IK}Asx zp1uCGB0Zg3>V4MP=^(WquZCki!a-AZ%y601kjZW#JK>lJbE(k*|TTO*A327C}4w+ zy@#j)u#+GqbqM0@>YAH#1L~~S9Hs2}$nZO5=L&`LWTxQ=djKwf>YLSLpFVX|uZ{1J zWM_~Cn9lS=|JA9X#{pnqVruyG?8?l%+C7>NSg>1b~6)PyhK91*PEFlaojM5Uw{PfYgLqos+5t|L7kh{3iYk`V-y4gyL1)2GJd7^9!>0u=`ih_0*C zTmso3!p67n-%X#K3?LT-7?LOv-8W6eSk|d) zLHK6H7ox^RM@OSu(nG5Z1EaFX+i==<{`ldar54NySfPvcNm#nzuVYZN_JB+OV>tjU zSr8r~oj?`YyxF)&Diy`j7A2IF2~kne7vSE!e0)RraD7isDIL6bj2u?!>J@a4W*qo9 zh=+sky=tRUQrPV5?7V>-wY9Y=FP4-bOhf`t*+B_%c~iWOJfzy`-`qGYyFs}!Rt_HU zIN!Odpw@eQ?%JUINJH%MRqkIAX%{c*L7ZL>@CkY>N?5f@z^#|1Dx%%Kbtn=Y*EbzI z`S{elXF-SPv0IB^e+GTP3ODi84#$rhLXIp$y>2&qdp1-Fr9cl5S{$&MTEybx2Cv2Z zOE~RZl-c?Di$|P?zrKIuVFav1elavOl$(=tSGng0v!J9)z_3?CPM?lz9WltzGCj=^ zcR^|IRh0~!=k~t7OM>gx75R*`l)1l^FDiIR5$u)Wqw%MlCHZ^1;yJqc3lB-367r^k~<>kf3-bCFpzi-zp+UxqUddCh`)&0kg34N#zJ`Y-{!?Wq2 zIIbt5#5e&jz_;UnhVQx_l<7017^Poxk3E?C=hax#Pp3?O$lUDFu&N2k1Z>d9r!>#q zMf-cERrt$j`+52KJL4b0RN>1<_4dv&F{6 zC3d7WWn^JyWC0S<_D6R5BJA95{vNKbj8Hz4Mq6!UUq+bB;Dy24n3G4QQOz$}OeKNa zwL&O*0eI;?P_u4wamHLT*Mii@Ua6IRS}w?QeXXQdOx{9P1(KLtV)KBG1bb);d!E;>EcwbI!87mb)dW znj0Hwuv@zd3^O#f|FuU*+R!P^#!lncHy?S#5*{8N1QMj1EEtEaC7y)Y7l^5OxQuB7 z5Wx5=_~ZySN=Vp!@ZbgAUVNq;StX^ID^~;nu>-8|c}!PJ-M@Vb|J!U;$-O&fb;gcz z6g%Qav^{;A?*60MNATCwKnhHmTUVW-N8nSOyL?&tLA;(M_b`g|;7pLWukTs(YJo91 zUjE2fLgqmJG)362nH3l|s~ok%;$0hGsggauRRL$2RCRd;1=8Cpe41z_tC_z*4VQE8 zlLZU58*NJk>GMwAwJN8JKBw#A(jFtD{k%#_N^5uJvZLJL=?~2mV>je4WoFj5wJ~h9 zuF>}NlmW&LuoB0|dA`p=GkAKC3b#5kD@*XOrKKH|e^?snaTfu>pdAgNdt@->Ks&X3 zz+SPW)vAq1h%t>a#bl4 z-P6?66gHxaE}O1)f7D^Hnb~z{75j4N%r5_IavOB=(!%5eCd`jM_NIan5roCRvFB?1 z^t3k%udJqMmV=YiFxaCu4i6e+45*4hNUESl2rognD7UdUZ%W>=t`(|Xnq`KZay#S7 zCZov6NWA4{%QAiGB`9(ypD;2r6}k<9c+WnVt`B{8N_g)`@52kBKC2!dwlz(; zY}mYg`}SraNIB?feXia_E-8O``as|N_ZN?c#*2ueerIMlM1k#k2Lx;hj<&mUKCkT= zPxF2|rM(n5wVMKOrQ1f*T}tt`#$CF|Ywc?9~nvfn2bP+C^aZI>lPD`Lval_>u_ z)Kl{^J-xk<$iib|84`KrcHO>BmEBS}GI^W(>bhGDdQj=`R?W~~5)#W#OdT`7eUO#- zJimUmfW{R($91>=SRKr(>@9NV?%f#}l6EkUN*+FJP8HK*XJ@D2RuH!kA`huMFu{p+ z1_)vhJiz)N%i6}#krt}UkEsFSsexL0k;`jbyYpx%I6ef~iHolaD+{y-B5`?fE&ST!?mpZs~;TaZ3^1Q1)Sdz>&$wCN}) z{W4aSt03gyUN*G0(xa!}JaGF$I!%4Uel_ZF3aMI6Yzz!_pka<3_hA^eKOmjOxLlO0XNWb~WBX>TSSWzh3b}fl~lrX@vrQcugEr6VQLuke6%ZD?l9Qciw z2skArvhMwlO>d1n@9ZR&91;BmmAxsrSDfpcV3~qa(ozVlg`(rDIzvT6H;9@QG&39} z{tYG@Bpi+3^HXdTg33up0sv_>=^S)dO050wWz)$bg8!k@&yy#ZDO$J(_qxIRHA zPZ~b|3lr@yY#X7Sp^0!1?1mbm2q{o>?+epQ5yE8%ts@f7+~=-N6KlvAXixZ9x-ccl zJHd<|g5R9lWC79zV3_1pyS#>QCX^QOca2wsJJ+fBZ5U1#zPR-9%%otAb&VibYjQIr zFLG~Kgw%LJ7S4B^fz32w#!}u5>#6%fOc{FIEGn z?Z!owb9=pc38@45&xh_D4u}0^5Sa`ND+WM9)Od!~lozFrMkE?A3vn(1SFRB^e(3XO zdJ55T8X6kdg@xIGe8Axliddrz7ZH{|4TVV0;;h!z)?~|W!XyMmK*~ZYv%@Da@Ze)d zVo>k9eQ*nOjQwVlfc`|!PkSB!v_ll5$`ezoDbq7ET38}Q&;D5aW&3qkdwUw3zDrlG zbY8ujsd}PVyQ=l`+)U@z+Ce}=&cd@bH8qd@zi^UY0Lf@S>V@APJJpJVPhu88lMyJR zG?Y(WIVn(whyP5~UTnH;eNPB=H%ntr_ghPg`d8hizM*e_eP{U6Lz^GEKsBfgrJd?c zu@&KP;_oCWL<6H^6WYAE4*V8ea2SVZVc_pdOm(#y`7pY-2~rxPy`j~;d(GBkiFc2b z591ige1U`ouZ3iUP+N$pqq`7s<|WuNLX) z^PlYJ19*?j$jG>^aOUSkhT;4+n>q^Kg)6L0#sLon>`S4DfMIVvR$ccZcQ;}QQakYR zwiX1KMxC7(=HZFLtwDdalwJm*=E+U6()#C7;0Z`1w*7C>WUeg| z2kS;I@osZ{Yt|ub2&>H@J7DPZA#efzZ+#r-sB|Lo$}j}SAtiV7kUr*^?t4#*(cAPn zyJ^lW3BiD^$)T@F-Hnw#eE4u%B#&a*sPZ1qOZy~OiEs*n8706Gu!A570Mr0j@B$jq z=o)7R%h=H6-?km;Qjh&UuSRr*LqK3tcMpgfg+g>kz9T$BDTQVlc1#~@m6xGKG<^7A zC7qo&_WjKA&$U?G$g$3g`S7kuvH*smMD!pkUc5s20~#iVvz&=ZR5Uc2&mTzLTC$5~ z6^QnNs{&tD+r>o^XSVT?AKADIzFV(JR-M%yAom$IR}y$k(KPhrVbp&!TgaZe(1l-3 zKINGiZRZl-u)(f7PlxkQGD?v_GsnHv(l?)^#>B+XqYOmjSc^cR!x4yn@IZl*`uYY! zGz;)n#4ULofgNNNttr4)k*L!US0qlT=n0Y6hZI3n34_C09ti*|=pjD8zF8C%@i7Jl z%F4^1t$W2YJ(C)gc9)+ww)5gvBa6bY$0ranS%$(HbPo_V4#uoOL8V#zUVXa9kXeXpmvj zy^tb!jHp9MNQk(PQ&)BpIxflGKt9nsc~S))#pao>BMA3AI8=Piz+2Xsg~g`T=aO2m zJZUjoYZj={+?62#gKNYnI6s#RWfumrAT1Os7ZG2huK0sY=vIVvh`{4m6^4g#eD3J% zydQN0|3FG@f+Q*?dI}QE5BvLXBaYxuYZ(|M6U-DbF|k`%w=Gtc<`dNjSlq>WNN?V@ zEgiuBdIJ_o2Q^Q+R1o^3IG~ceoLnwwdpAlo1LXr^44lrB{S~7V6NZAV-Kd6O^{`z2 z1sDphW@Q-zg%B+P)J;C11aj~#t13l20LgIB($aRLg*pt!1^@mbwcWk%9MKIZI(mA& zFzOg65*s%fHS;h<;f6~yF)%1+>WHy4K6Yo9p-jVWT$S>_}ZL!jaij8sc&l_@4 zz7Nz|Ppa1j&77sYNRu$)er@Dxda!moxPWT>L@jgvtW)@JP17r^_gSCvPE7y!vY$8@ zsEKdBI#$6M)`q>qE+D|XcJ11$7otwPvC!>4P*!On5@GsL-_WoDs+Nt1$Cfc8ogAF6 zh3O$0avE@hz8qC1MAW140-u7$sp!?~;$gwt;f$ZGavdY#xUsP)=*-~r+Hac4Pu^|Z zCYjik4ZQfZlA)QClQZvEnje^|WP&W~|COTT7g@ia3L3EC;wVZ4fir4I$5C)(0pRp- zIC^?B2A*6ZrH~~$VTSQ)G zkB*J42Wf^zz6%bACv$-_6vpLWM}VIZ$^`AW2GWMaT1e^}Ts(UyngwRM0gP;H^sPRQ zE17=#@WCf`kpb)uG zr25Lea-KRxI;Ns^ioyPcu4ib?g?5T9I(}~-S>G0$xz&~}eSN$uD=XM?Vth9cU%U~Z zhhxo}XeJ(MqWwTPCm^c-!v~2Obha3H5$#iFv-c`_yo-dW@y}gA!Vb7DWnm%6TQFvP z++}Iy&lGCXg+NbponzHORA9*4Jo^uG-f&SGE+sNN!Yu)5C%}ve(N9ytuDNjD(2}B6 zPL7C(pg|{~!{HzO^hs1jg&)=rB@B)lu?&qaY}VShkDVy#r+&GEg4*NcnYm_Ox>Sdh zfp6d2w+7GELzj51Pygh>t3(5Ij^N|KR;N%x=0BV`Tpi?d|B6D~+v;Ei@-EQq9#>S@ zKD{KD<_C`UPxpq*gcbfV`9WZ2W+rWpgk*u@up)G*D5T~>ic6E|!_FWEw;5Lg6`P<6 ziu`^xa#jHpZJnIxAlZKFyTAKJmXwqfFVZtvNT7LmBw?F|fshO@(z0*ivMzOC#Ag99 zJ_{0OhsbT(9PYsQhbkqK(L*#7+(Kl-23^|^JlVq#Cz`#V!?7)|t2ZAmq3}qXYvKyPD~yIw-jhW)$TU4wf_E_>BMlnSKY>Km%|v7 zHngd4d}M-n9YO~>$B#>^sjJ&MIIIfS6nP+a2N5hhxi}9*uGNSEV_$MXSuX87qai3L zNQqUs1}fp;>^uU|6I>_)QH8*7eN_AR@Arow-Zx8AhXzKv88|ir={AWQ+9=)wyVzbY-#bB@puy<|ZxU*CV72r$_et4UnPrKKfeix%L8 z-1i+b3|SnzNGu2ROiJvxSc0|CWrhIWWw&i>0!8aCwo>h{J!9?ap>y!y8f-bCPQ1Ll zgT(ZM+eLZ{VoHoD!aH>>EiY@UI(d2B^Zy9@JL=)X?NBVYw0nWyfH=|O@hKEyaif6V z2U(`%Ni_qh+aii5BDxtg1=e95R>aoPvEZdT6qM+Lx$^p0FRE)u7G(Oto#E!=Gr&LO zKRaE$qH`(9E+zWRw)BceL&B^Xm4UA-EDS&F#!Y;JPU88o+5j?LK9HLkWWsSMs_8j7 zdjSd@Y-}{4tzJ0#0C@nFplOj0wP$i5@$AJS6=1XWhlbXOKLadGg$#iDmLhYkS|3u+ z=-01CxLA3p(C1+`KXmPlK2{rgx5OPs^BVrJQ~kumODXt=h{kL(=)<0(Q9t(CZQk|3 zDHSymc|L<-I9{1BaYPoMVDU*yG_3k>+veivMwXmqU?eE@Q zM*qFuGcz}rkIj@mZ~-b9!2>WetR|PEqoPc4Gmy73;LYjU2(euS7HPj5Zh;;}a>tI$ z*w|gWcQaCSbaV`c?;!XG>L6ZA&&scDRq1cKV+vc4ipavuVn~sj+pAkT|Kx*gcr)h9 zYjs7~&jEF<(+D}tNf(Aix;K3}uLhmD{+yoa@(EjwO|0<`@X>=WSr@C z*ChSQE;#_td-t}&Y9q!aDWbgUC%2*U){o5WE8MdVfiE^FsTYp+mU~&Z|J{E4r6!I6 zm|_g%EC3HC9O%PUfp^U{PzqXL>v_*lT9KQ9m_Q>i0s)QfE|nsvQmrW6-Ed_p#zL`h zxVuANzDO}L11KZhMraiFl!pE8BPnIh6MlZ@yF4qnup(L*Z^mQ8XiRZ6d3<{ zF|plwTATn$NhEO=y7s^YB%33;K5wcXAb*X>hwg1e+Ql;Te84M>%J`x>uQ52z6(bv% zxWTzDjH(aS7@7ptzjVETv2Tuo%ZiGUHBQI z7!Z9F^#|aP9t7$dls}SvAHCt~r)5(Lzu!Kq9A^veG$yb9x4ciKxinb za>aeu2)6n`^(bC%FA@pj&}eKuJ(FSZ`A@uL#Hx%V0!Zn0IXOGp{y6YEKXFjO$`C)I z1x9gs|LCsqNz52PQCmlxDGCKn;aNE6Lr6T4y(7*~lw&5^A<{6(7~J3i-fe}4NCrtL zn%>^B$6wwIC#n?A330uN369>Eizd#0I|VGX%F9TJj6lzGWPPujT@Kb9hpejl~`OvB!Fu_jkF9kyGe$!ib@_tp2x^9 zB7DLjB$N!9atN=^Uu6w6fgT}@8513VPn0#otobl1nrWz5wj>+}7Fo!peRK44ObL<< z3$M2vtqo+Qp<{V*=~p6_aT^uaz8{gO@rgp}{D7T}uF0oKn$HjhLMCkJX%P`x*8?j-34P?`TG<#!`& zK+JYZUQrxsO9McxmX;QvVKnO1%E}+Fq&Ehj_#{kE))UvBSa$_w6pST7>?3iE!TJbO zJjsvm@7KZ=iA+dH=vf5rq5(y2g0y4`*%cI7&raA5M}m2+%r(2_`0aD^41S#UrM{TO0&Q;R#=W|}A!-vLixM^9 z-6Kf0-a0}G$96#;C63}4;;=zz2LqL74ZvN(<_wLDh&^yGzk^{9iBLJjW|>u0RTVoN zZ|?P#-4jcNkoZ>X{2Yh^MNn_4tHXyRMwx+u0h#0gjBZIX;me`Y z)^vC8_OY|qnF09U&1OSw$XEB`1v^|ZZy%p}Xgt#pH}KG3Di0@?YU|SN>u0*!f7Dcs zJSNShFf(0D5`{tKzydId?(+35Ely~XG?J_exwJ*W2~%p+N1TqfKoi!)=1bJ>3|Sz$ zcts634r7O>NSh+R1NkAYeH|ipwNl#fELOqmXn6IC2d(#9mc8utk}_^aVI5awF8}+8 z`-+r~KpsUNjUZs?14QRh4qbXYTHUwf5`g*UEn9%7*@~<@sk-+(M)8S6iv|yq3!Zft z{ruVOlc$CPrrOY0(X=>(g;Q{~9b^Tlqt%pGOO~jIA5~NT-*080IWs+72R+jp_pHA% zfEj|cHex5!n53fAvF%(6!x<$ZQROo$YS@hgBtMLb*D|ac@4GMN>*wc#D+s-q2NHHY zj?eZ}hjKWO^a7gPZDS)6q$UKAUHDa0?gx*mYPZ>NL$7j6i}Y4GEF6o+e!HELFvAX4 z`b(Ys^^I}k#*IYpgJ-siq82>63XrB5m!P}Eb~jP^Q4$-_EhUo6h}JB%|HdGm%+Sl~ zZ^eR^DUT>(YGDYXL&vE1$vXbLDOTg|FZSDi-o{og<>r1~+HrA|!m!P6+`RhDAULLzl}#xiLGY0j8e-)DpKwS13e77_nP3`rT`i zM{Haq30%7Ln`xmid4JE{MCYe$C%bWBV(AAQUY>X_E} z;BkdN9eSzheLEdApX2>mQpDExnj%pgZC%~t z`R<&=u|uV6=Qxt3_f%dVN>odVFx%FxTVb>2qM|~wx?!FL`ib|v2K^5{tX@^%ckxrB zv6&eDA=xE7cb3L!QYgvjke$6fseji1+j{uEwl$6e+{igU7lggR0q??Pphlf!dvGRQ zwh3De{vQ|5>WdrELBNCE{!60w1!tnY%7MjEQAmXaWF}4#QTyO+>l+xP_T)9Swl?D4 zQ81AfFQDY9U$F7mm{_tH8#W@7b*4k$|3$jBv@xK#37)O@^q>~5q&@P1Y0Ag~5|s@D zta1Ab_mDUei82!+0^4f6oE*o8suQiy?yl#gN(<@Uy|XQ_cB{rDV{d`cT5sV(-i}U% zPcuO}HC^w-;aIyKks&q5+3?%8-ICmAyFTY*ObQ}s1KPgC=WLDB@!&?eCe98bu`x(6b83J7yah+;zC$}F8KD{&5XR|@uC3kq`kpl#g(O9xJVc}O zssiy`bO_g*Kb4J2O$!eMM`Q(MrNi|z;mEW6i-Nk5l_p`BdgKh-=8jh2taZb zb@)?522d$7BoKB}j825772Oe{Dsha68$jlNkwVwsv!?}V?HGtUkZ?xeA`mYEQB!&v z8X8>b^+?AM!A)o5#y%=Zmkq%`dL;b+%;*^ltMR`7^i<39m{2mNjdut`&mw_$d`KLc zmUOB8_&0jgj0Qw6DBxgG5FL=?V?kqBfF3XB+9M84h6aAiSri{)G0mwl$)kB??K~rd zq31|g2t+J_e5`L0mB^<+2N#=|q5I&>d>g10h7i<Ei7NtS(ZSg+$d;o3I6r$6@WAjE9ouY|&h>HJs7#!8Q zrlwWs9J`@Ik+Wug=dkIQQzYhcS4&#fp^Y6#QxpZCsM9FF-8eqtpOI2^eR?LM^;u8|i8;Wh%5KRUWVML6MkL%;fu7hP9h}Zg`r2Eb+Ol_^9I;TR%!mFvRP3*TF zhe}Q&=O*bVvw3r3Y;5SC?@F0|5Ejh7WaBJqgS_TrFm)f!4jGyQe>+fo6wDj#y$I-! z%%K??8j5PBPmv-GI+o5wp*qVbY*VyQr|wRi{_q-jm2*0QpU0BX=+eK5hhApS^O+4D$2yl zDna4q;gN`Y5cu8F*T*My3G&cRp3r3!0mA*)i{?S9#aPjW>jv7G%_12-Vjw_?z?LE+ z*$rfOy~hys;#RD62*eTmGHRqqRZd=9FI)(QNg`>9e<8nSyvvL#AM1Wrb@))9#8XL*ye! zbRbO@pcip^gI9X>MNfu_VusUGFnhneTu)OoY;+#CRfL^^aG)Z$#SkJtrb~DJ*Nu(4 zkt+*?Nyf3vPlmZz?s3=4-;D50x^#r{86AFR$2qLy+4JYmn`ePE+Mwhi5wZ^B?L@x= zkvUY#Ltw^QkT4~Aa^z^P-?$+PH2~RmWLBtf0X8aC zK^h#nSI{O{7njSC(2j+GYkTmbQJ3t4@vxNHZ2jftGdz%SKVJtU9YI6~ zZf5kL@9C z$Ed<7kApa36KMMTF}D-Gi-tm%zs=^zzy&(P1^yk2Z>*JlmXtw3eJ}`E=F&|KVWu8* zS;8l9>SGcx#1aCt%FtZN{18x79#V1gUzQOXhJBTG=Yng`b;gzDdF!K9fvm)9x3RgF zNLTk7KGUs3txZsy{|;)AmIJl91=pbjiExT0Vw*3323dqP1i`u*aJ{Dyq;LH2VI7K# zl&#L`1}r(0mSzBn86dA=FmKqnsqgMqkT3jzB~8Q=-1habXp}tr>k#Mi!GS24yZryq zUkC!hCm4nq3@%WQ5+#d?2+%(x`}wc1l~D}A0EiVBqEXuv%*HEAfmGKF3Lytiy~r;^ z`alB;KRX9UIM7q>nZGMK$NhM782|jjS8r%0tkL|tl2`ljW1cr%e!4AxdXFZfwOEmq z)FqYU+{bE9Go$~K$rt7|o6lWdLlpc-MlKSrfj`9}sLT!#@|?jYjIZDa$ai>%+y4DC z@K@GnSev9WU>728cDvsf;#l5Ps|2)^tt7C9TPD$MNzsJFKG!A^1U>)OF6-kiW{L2#_$ z&utCx1bHB}0UO2wJrpxvQ6B4ODjs+Vzj#o1XMc;5m-f)9Uldx!Gmf%lCUHv4FKHb; zAJjEzcdsZm4~>Yu6V^%5-@CUJmmDz|MkrXzMf;+hfa{cveckUl6V z_MM#Khek=Nf>H~S5w75~YT6t1#8kH)30>u=erh6@ejla~NW^XHRyJa8AgQ&@^IM0F ztpC&Ig!m|~!QO2@n-dBSZD?_3yE5EOnNk=KlT+o0dmC4>{bAIV0)fqm%y;hmN5C+d zi@hlLbv=fh$ybAbsn0+t#Vx%(dJQ_+_zoRqWAjZy5xG>*RCdKO7`!z|8<5%|rQdE4 z4i*0B7AspvcL__zkuOqbcv3D=*XaJ>xF2JN7SrC-57LQTw*g$aDdFGQZxWTbG&Vpu`VAn0s*7WcWkcU`1>hFk^h?b|s=O2eR% zC@0h8bm?KBDO)Z0ECNGTYZD+NMPejVaYH9JQ6DaF-Z~Brnhw>H zb2d*E)|~!!@L=96m4gRQs^8r&2$Ffz@}V^FJv(xEXe&}D)^nW8ma+Vho-I>#XT~r3 z73=Op{!=oRhTkS-)=du8U*J{nr+%Q-O)c13U*Avl%juW?SfQwl`f3be5Ax}!X!I<8 zkyVnv$hg%AZWv+eWSV#L_GizZM*~tOuC=7-RQ}nTa9KR5VIn%$t?~qYrN3>q1K&xA zon;KIK4kZk;#e7a#D>(ggt8?xxJ=kA9@o8Xs4!-h9$vPYotv9kn6XD+sY95hh1SC} z-GBbC1$nWp(?ObZpDJaL<-ZYRNCO$A&fri$h?5#aWQeWC$LqEA%L{*k&i|srVO^JD zrhr@C02T}3g-{VYySz59c+SZc4uL55&AJRGt=Jl!PjqnasAIz zzpgofczb>neEsZ7e)qZc%At#;;|@OS0)n;Qo>~$78eMM_@<^6SN2uU&eqm9rRJF$w z(+?FYSzEFsq6=0vyiYHeeV~A^Q!$V$a>)_XOTK2?7>(Qr$$1hp2^MZ+ON*{kV*`|g zAz%gag;5wEWQOC*z{1MGI4D6;a(3R#uRvE`?$LPn?vd`&W9t5ya7d3;zc4!S*Rqhs zD~fz2*SoWfl2IH};}${IOf$*ZmhS@ln_jGDx|bX5FN-1rA#utej z4Cr(gY9!GOCt6haYF{beNWPiy^yR<#mgHz z@Nc-rt<4tr;|`A2h0PXcj~}?5yC+G-?DL~251R1lkv!r09e&fxIa^y2g~gPvf~Q`C zhf6B<-kr;lfGr{$H%Ao00cyaCMKlc9?|0fk))>}yj0LPn}hL0q`u(+x2cO?|Yk(@Sj!QFS}Ec zwmV{-I&k&v>HhPDd-v@qkvBHhQIz7V;PbvS%0SV7X27%M^RhnZsl?x^)BS^AVL?J( z$?I?w<+)G}lbrAL?;qj0x#O=UU|4O~o1F*RE*Z7RmGg>JB(d(Ac&KC>ex3wM+8i# zA>;!;0+g*MW9Z4aMs3e}q5P0wEyPxgu@O~YTtY(1N|A2lfmUZR8!yXge03ge_uM*l z0B<(L=Sd(NU*c4s#H>`}H?oHkR&alIlNy4V9P8HM3wjvD#luHRys_+o>d($-E#@>FvdoYCPWHbNMbvEP7#+p)zLQ~_e$m~Gx7ZVkwCiBpcB;_zV zL($|Zm%cf?kM{M3*Ya=1M#m_WS=vQP7=~I&B+~`M2FUxAz%jI&n}m*6e6)fZi9j-s zKwMW?#AHeb_-_Qni`1KwKgQSl-9=M?vLhjP;q>1Xb%L*nB?(_2B1sb&2tlj_V@Slq zp%9fGobc8m3l`mAEj_ZLR*k9BYtEhAW%g)nK*1dIB+Ny5z<6RJG=tJ6mi9u@~L zFPWWyiEuR|D%Y`ZTXe{ex}Q`Lxtsd9yPUPNMfT=tar6{Qv}W>Uw(aeVsd}i&!g@X9 zI7FH0*;(oDc^&w+3@vT2Xc!|=_wW1MU;T-DS5rum3ngh!VW}(2Vq{DLi(SG<|Bf44 zw&{$0+-$pLbk)Ry4xg%f)x(3e7&-mv)F|_ut*tB7{v-QWDbwnQ+!znUf8S+MdG7Ts0X(o>Q!(4e>eO1=n8QK6sb6X6c3(+< zFO@BSlUI5>3oDCh{VnR_%5TDA9?~bWBn~=#+0fhV{K;v;O5Im522HuKy`2$Rod%?d zGEPih$YQAuTE8WWk~gsRSnP9!bY1%?x+^XF60@r`Y-Gy}D!BGF37KPP*8eEya*T6b z#O;Dj#~;58dy@I&WyPKT&1!ps5?dKlQnRk!Iq9su>UtqfTwGo)Kes;=Ba+D^Mg@Y~ zIGP<98xtl(TE_l zSK*c)nTMqAox5;l!=lGig=m~ycViEmIv%k%H*Qc*eWVHw&S^+Yq#Qa_*P@$0_Oz=j z21XrlGQOMwUoqt%EFvYZprgnFT0>Kku}f!{Hc6PE7TKa9zWr+8(WEHZY+@ghtSCuq zYgEEF7S{EVPUqV==>;k>25%)cZDn@d;o8O%a(Q)dLb>cV*+{U7%}HCvm_scr>SEYt zxsnoSva(>x-c4VG9n*#}<+y|;1Ns41qjshb3Tl{AKW2zAUc5CtXkEmYVcKcsky>(QS z+Z*>ibfaouR>$Gw`B|)+ zR=2hR`z1n%8sEQY70115N&QL+D^(g5@BjfP1?2E#flKSWKS`G;K3sw`glJC!0>*RJ z4pDO7|74|u1*r=>#GqR~5FQ2Je$0?3s9l1XooWdxdbik=}ph`ExaU^R` z5(t7BL+Eq{eJ@vjjjXH~o!o-+D0J=kue-|cb7c(@Ase5b?7$v#Tq(81YJLXtO|i*24tXq z5-mqUb=bJoeB2LELV(!TZs4GX-hkW(6#E0RCxfxvpy&WBAy7EdVDbgUI?!^b8y*>P z0l~ZBOkOmwly`$L%vQ-u)!>c&{lOBitC-)MglF5cmJkSN!|ZsQoW1LkKWfyGn__?} zJs^V|3~o46Km{V=eGiY$W^6fyd>1l5VnqTkr<3}=7_m5jZMKa*IGz1r31zBB@}gFod|zCOhdNdc|9 z0UcN{aLz)9*3fMP*s{I{9t_lM7`9D1<*x{!jv$`Zq^ZN!rn@vEwa(v}rkzq#4XQ%%>o&R<=r2jqTS@Lp&gE${w^A>Ft?KL}7LJK0$T^*3_sCanr0QzLY zBT-B>nKzT-wb8<#obd2p-B~pbn)8#^h*H7{sE~w@Kz~x~%K{icZy%o|ajFCbXqR6L zoWr181@Q9+HU)vhe4T{jTN$vwz=bG+Bth{FIys2m*gS7OYB@OYqM~BZfEKWa82@Ws zIl7lov9ZNqlluZf0s@iSI|nr^xvaOh(i9ZZWOB5b(%*(D0${Df?4;<@_j1iSJQJ3D@eHS}%&@V2(TdE<|T5Dq>BU2MQiQ6fJf5k%D6w z`>o24T;>C0n2Q=0SB>xAG$oR+RjL^CgQ`W|b4*JfR(cVkH!*I-FuVN4o8OHv`Uyme z*;NCqPUA<8?JGQ5OS)9siQdf5V2?JO`n|I=ZVlnyJRL;e67Iar&aDwp4iw*H7KU!J-nP0T0NLhdBbvPqutaG@ z$4RY!5VS9!D{yltkXE=XYOOwpmI8&sSkF+QRs$b-QlC2m{BgB?PX5uIi{@inP zE){%g+Vg^yUv;z8w7-@3?0yF8Bjrizu|U%v$s_bp3H-ch;C7jSAO5ewK}MI%;<$>Q zF!}?{smxHIpJ~!X9R&$so?YSfF=HyD;t$n`Foimh6UDej^HqB^AsF^)A_{t{w5Aa6 zj!sl2>+&3}acqpN<5&iBkh*`Z`Rp!&gfvonqz1K6ad1F;ARWAy;;-&aQ5BU+e@{|6 zqhx39KE=1BiaQCyuwAQB{jC~s?f`xJ0^d2;+CapI4nFUU2#%#C$;&@#{7 z6)-xy>Apgp`&RnuGPuWtA;3nB=q_BSa4!BYx@>6k@E=|L7EPE4XE-5DNDv|%A@h)e zCK_TC2q64tfkX3pV3Q5Lf0D66=`u680)<6%2U`ME((#JVVI_^62vf}8FBpXGE-yb7 zAeea|g7aRCs&zx6dg-RdIJJ-!tjDVVo!=lDG6`%WC1i3X z+X{v*RjG1wi^4>BncbH$VTAS{Li5*dgP=xKRng#!A1zyk?N zzye3CpWWRsKrv716!p0Z0ERTsNq|Iz2~5Tjypjl^&jopA++U}@@;hxU=9eA1#~iC` zKAEn#6EpRQ4034|Hj)xs2-j=~sX$;c=Z#*Z&%k=w+%qmg5cU383ihAd+5HF}2K`>p z+c^V9E;tcGvpV2BFAF$@fYtHx52qmb3y@_2#|WUG0cp)LlrK?Ulu#o2{v{{KVNer)Yst*aR&9{b5n_b7X8x4zxSK(-}nZ69DQFcuxxOS>Vb5JJST*FW|!> z2LY_xcF#opwaXPpr+65ERlhzzPY1xE>10i?^#eIFRDT@;|6Cz_OiAh^ka{1lB0kFg z0J6;SB5BSnxl}LskD$UKUwKt98>?#>7>oE7Oa?flK&UwB5MJ=xiv!@g zmJbM=L!+J`Ne(UDGggn(nf^QjwRsu<+yJ!}x4%3KlDew~-of5etR#PPQiwn|8p++p zT8Ds#p(1b1zj+o`vd!=A_`P{}Zt(7Vuk3XWP9DY|7b!3i$bby30s97YgTTZAsE-W1 zCB;!X@O1;p2%5Ik0kw5#$Ov@kp_DhM3kg(;{j{A>Vh>wP2V&hcr1_5}*nEAOspCx; z^4@mlcxBnf3lO)=Xn1_nz^BRI{b&tYWBvTRoiJm0=u5dZYLeQIAV$6pD*gg~cRXMV z6Amnq7;<5P&Zj$OC_Dmuzo37%w}+T_?^G?)6H{qnda9pTHu>prVtj{NW^S>Wc{A7i z)>Zw9Rg*uk-hHy$#_{{-U5EzW9w*TH z?XJ2Ji^^mzCuvQ3Lh3g|%8BBev~dNGI(8xrrD_YaKM5<`Y=#W%wYI-1$pkpO1 zYpWfT1Brogkj#c+CLrSgY<{%Rga(pu1K=Zw1#68ds6aphfZ?~)?ujLtujXh#QdqP~ za+%6RxudL0;%7be8_mGEsn%l%WC=2tkcx}&Ru0Yoooslv%=A7nWXgs<>WmJ2DW(6! zM?H*4Jj|K*iZW-fZp|l5=>Co&P>rDo*n@yW29JZ2E#MLaNdUza3?hyI&>2$%UACEr z$K)+TO%G4&{@rM?rhT6Xrbqr4YVNUO4vR)=^8#)qH=~2y5}!yN@cCR`poY3%{ZTh? zHVqtZg!cjTxB$rE*bpdd8V3gj9v1u?o`r=)%7g#( z<7_XilX_4a{rY93P7N&yx9nBg*qr?x`f-7(LmNd8d~$tQiKm|SH*^^k+98T!{hbYl z{12~Qv4?-x@d0c0-O-7Z>WduP;&h+iquE2Em)XL+naAMVz7I+OfOrlXFR$jZBF8-?higu%~|ULyM){&9JaMKvOZB4{Buuxi1{61wYz|uZ0oMyPRwi+RSu>B7=qE{w3-8w62AZ= z%GDoWU+{pNV^C1xYgb%elPl7?Cz75}Ak_9HXx1XDW&qr~4Ho@(A@n~mE813-)pd3c zG<1AR8K_>pMj~}`=naZSJEJ}frd>+6ic!CoHMN~8cW!o`HARWeFFKw2(*WuV=jWqe zU<{fxI=?W1J`MB?mJhu6i1_&M%1UNP9!TCpf1l8BAE=xK=`Q&(8S)ozv-0v2a`3Y+ zoTU!H)z=5~+_Q6T6=KCrroYlB);j2HVq>!jbS;;dp#As{x3yhK321$Eq|_B|)_T{q z%)qeYd4BM%H?n3eR{#3Ymt^@M9IR2V>HbbypT~5%ypWMX8(css$byf9%D^wsVFndN zMt1g7vvbc$pq0$zV$v{)VhjzX3~e{KS`1#?zGZM|rw*H}W6T-L`0+8?aSioT`p^f- z1G4R5MNv-X#F8&Ll9rbvMer%=aLeUiNxd)ENL4-TZ0Q#c%fe>dG z7~B{511`>xjm_8P#3>#g#@JX`RKle4inx9kp^UpZxSNxkP|d-2r;8-Ba82lI5*KBR1#HNAKRsy^`BJ zIIP?=mRgWC?On&2cem2~I`{3LQ@j~moI)r<4MuPD7NLe@tX>}D4gW7@WSBUZ`bb+J zr()NwArTP70jE_e8ju5o1D0nHI4eQ{3qbHU0iUk3yL<8{7j|L$H*RzyZ*RTc!^j*RbXcjXm%glhVerFX7FpxSPbUW_vxLM!bYNf+5GXQ7v&MLYcRM!_*IuYCd|dHilRZ`Fv%O8~X$5C=jrCL8&az#jBAS9EIe@;)8$> zOa$ackg;DsdYC|NYawq^0*dJ`v&+fisLeO&d4}uKtLS0~uoEB4Pl)c_mMvP*0Y@$D zE<2%_^q6btCTx?lW8JH~PDCO{+C*VUMe@B44G_r9YpRb8NKd&|zy{>#!M@cSkH9gh z{&PY~S}2S8dXwG6_Q!8{9L(bawXGe9%r!vu#T}x>zyt-p zgd>bzC>e`pVa5kML7)!he~Bbzk%TIrC%;l`W6_#>N&9ZMHr#yI;w7W7f^3V;=G@NbxLVppdNnvMp^K= zaNXo2fC*E3e7K#sqw1#k?XjBv26(6f_*0DZPgl@5hYocCt|v6Z0mWkiN==0mvld=! zYgd~`S2STjE+vO;vLo-Ss1kK|(UH<4+_Rv)wqbP3;EO*6afwwOdGRkB>jS>{yhQqF zUh;~1f=r$Z0e2)&nwx5nOr9I2?A@NnGOtZb*^W&yKhhp$+-xml~$p z{*^(ck*XFOv(7bvmPRAkTlgVVwN$MO1@%EKky`?oFX-QZ3poV*F?A5)g^D?5z^3(R zs2?gdsa7boQ!b1P?4&;qBeLy=Paeyl{KVoz@$tgEuj2hX8-THZ^SM&<^*=S5&HGhY zmdKhYPsGYlMKC3RrVzp7PlDTkTYO~I`+WcBc0J2rRsNl(jWV4yoeaL=GzK}piS!Sg zij{n$B#?6lVWABmrwTNE;rqv{0MFe~K%$@rc!#P(n#%Z+ z*c#r*HpHiG884PX4w!8>8RFWyoSX|e;kHSWWUa%?Ruwcx?t0eZetjyuHK|#ow;%m5 z2#t)oZqs&g&eS+uI9S+c<5yy0?c)IE}qk(TNS!vraS2r>cT z`d=#^q#8jrZ~{!a@cQ^s2@^1vK@VHms!um+@}j7cZQDBK&u-AH$lw#ur2xxJ6sqHZ z)(kYEF6vG5L(~ssdXWRBp{S&C0nqL$0{CY@bteYHq9#DynRbOTB~Z{-GoUT5$$j7B zEA9P{vO`www0k#eR8h}@)TC_5fgJL}T$N|(k#9VuOAl|$FO}HYQ(QmjntCG~w3o71 zw||YJ`0=So_?737#xQ-5WB@L+R^H7wr^tvski+5uvL8sHzR<2U$_5APG7uh4+Ja91 z02v7IxP3(e;s!tjj#=^lo;tRBSR;1zAo`M~c~_ZO$}Yzogr${$?tFE&E)^9Kkq53_ z4dkR4L9G?H6nNA;fUO2iLz5w(C4n+DXa<$8t(mlegaugiVnA@q2E2wrYxfwc$J@_o ze;unsZ*Q%(hX4_H1FpaGhh2rvVJ0s;W=HnRuzs7VXYQ0N(;&#{)fgRb>! z5W_xMO3YFPYjtr+iDDcmx0XmG0!4)UU3_m!_J)hI8e2}mL}d-H%urs`htjGT`xIK$ z1UY`A)x6@gG>zTt?7iTABi2Z*g&OP(eU9PzEd!dEj`YR1ybptb5>3 z$;ruJ+(ejiVT4I$Caxw^76K|f>;X8X0pyi5lP@p?pz}`J0BH>j7|8|&mU2K%O1cCV zb}3lN<==hI$WVZQQ=OUXC0N}-TwgFffClM&T5df~X<|B@jbx#R^y8n!N;cmzCaryi z@B(a)k}9obqI&d1_FttDEy#BXw-ObODtCjqxLi3_ZkG~?h4%>Q7s%$Wd1LZFC%?`!tf@zfTkkmgJOGriY}i=szF z_nfkd|%)QGX@@qDF9CAlHL~qYip`)p}oppnL-mdn*Q$PnMUZZSsGI!f&Hj zqcH&4ogU~^cOVuU6`PfqC;{06W`=ap3ZANIdSVrB8P@`1by#y*JXyj_k$_OetMp%o zwQ-m>P5uBAko)p|@dBE~k_yRtXB*2~k zqs$mm=t0;npqbRbLd+ElYa%(mWpk`c}jMx`Ak+5bEzfBk%EGXbiE3fgx~Ny*qRTKE!VDJT?#PorzJN&PAtH1g^o z4S?@WgKMJ;BC8Sr;zuQxTf3=Yi|j|dl>DNRJ`W0OF*h@l0^g6u?+D;BM?^3%F-7f+ zW-Eb+Qvt{cLm?EmcXt|UY6-L$=UkiM?p6b5T<8fGxG(cuW`5#X7}Y|Qt@U#Z%v$>z zbjDu-N~#OjlC@nlB|pD9%rz#)@W7$B>e+Qf?2{>OVENUTkO+e;xW ztp<1Wb<#kV3|&Km{afa=&)$2j%Bp~p@LXW2?T~;; zF0$#Q9p>y@mC^#0i7~5BB_&x|N#`PFTp3o9g5HywBb7BZG{cC3>>edK&sRmpwU3H8 zE;zKPaQco^{f{oPu)tSC_vvlVDM%dD`2`%D~5) zaoNi+_yV4?sVn!hdNFFyJh;(OAfUn*3vy|i&G0E)9q*NL!4OWVZww^r$~jd}az?Ye z7b)bS=eM~hZouY%5AUfA*z#D)#8z`Z)|Hhz?Yhf4EZ>ZaGygH(CQq7r8vlvCZOv>M z8K&(3Mv;R#v~7ZRXtseQXdZ~M3<3h_|BYzd2jQGzS0xhD3v(I@)jJArpczQn05x@- zyf3zFi}-yiuR}yznGmXGzhiH=gh845bbhjVl$=qx0RcJ^FU$BA+Qt6pqHrTfvK@do z>8f``MVD9A+98W~ZnoTO=qqIP{IYCaZ9K0g4?$U?9Zuq(B%!*cqvb?KDqqF?NV2%R zC}=+;AR%djLL|VhvmIU|CdyQInUUb7s1-l&L`3i$iWuLQHNN96yuwC?I63uwymuyB zTZa+xL$zN*2I!@mTbM#wnB3nKZ|?s_{>5R^lgr5|czlC;3P+0#VPg}2U$AjSMiy{$ zv+++-ot{-DBG=IUs?@jVXCMJB)fWi){eOk$pnDRk^buH6*j&SI| z3ZQ)fzT=I%=L!7XwWe3**zV7TlcI<+rT(b= z9z+2JoGB*^Pck1>N47f0cjvH~C7}U+_aJo@6<262)zXvwxn%+vU(Hf4j7uwJ4QJwX zrhKcifZN~1>U_Y+biKNu zy1ypS-^UHTKDCry&BPh`lR4}(#;)%Dl;iw{((qyGrD@T&uB#lTvP~&M|MXFp5KMO zdQgg-riyAl$)Rn+zV8$bLJCec)#dWEo^EhvC|}`vWw4FSM^Ygoh|dx7#$_WFx}B*< zH1KYZT6{r|4lLhrfOW6A?amWcvRXc7gVII@brr~!<*&d`;i`CZ9AU^SiIpX9|MN3~ zc1Y%@r-^rPRZjiwba;0N&pE|ue0ftHc}>?6n+t&p7?9gIIO1V=RwvrWWm*e5Mm$S& z%b?C63 zAk7|TYpqeB%Tu87m!bBgKxw0_rtGGeb3sGKYsLevN*N<6NATwNdSpo~sy~0?>B~Wj za-~EA!gHMSk}llU2VbGf*K!Ac(0HoptnFAQaQCIT>2k9O4(VUN&IRDrU#qLRka4h6 zDF51+BCDB6<2QM>j|}$PQZmhqF=GIB)wmES|CcQBmw@AgSDq5#HhN2&Cm}I4fsusz zJckaBqoX3>5522Fw$ zRVOwJTIR$0U(Ow;N-ByCQ7eOJ@q7`TR+(ZfX|Ty55GyN)xOQoUm+mQhQKM7f?%!N= zcQguO`U0f~$^kfhF{81~^}98``4^p<^pxQ&d9F11t{AW3-|7b$)HIFfYas2*i{#Ae z*qwWcK;v?IU=AaApW`4{2HMzm_rLbjQo^(LKTte?X%%C@-D@Lr;ok- zW1}|IWoh4+D#)xfJE*=MJn-W7Y8?K~GNhzxswsu}^}9l>6@zFW%ZrP-a7F^< zZW3ZQ#3o5htv-Xn9L?mWaP+NL&UCCtQ7jnL1w>VSRpfHX3Q|l9ZMKGVrd?+Ux4te( zDT<>AV$*24$Kw|WEZN8TJS+#-^ciW^Vrqd%ayWqH0y>r>7$|2A+^^(}a;vyg)I!$w zdaf;-EEID~3$?)%$x8EzLmtk9kGPgN|!ALRvzAd6N2(z5{iluf&0 zz1sPyc1A=ggpbGfu85Tl5!`@q?^M`1qw)k6vBk|vX|R9g%*iD;v8vA?((&u^Ac=ga z+B^NzFtjM1O#gl{qTuW*xjA-RCmX*+pgnQJ`2&Gq!$Ol%vJODc44f{0I}#|;7$6Y0 z&uwtZy_ieBBF2+8%A%G%s&brRO34Wf{fc1QIxAUg`$Kxg6%F)6`ir~MI6C`$TMXJ1 zd)PbLB1YSV3h&wu=6yZ6Z*G0HPb6)CEdJjFWZ>`sUk=pb!T`wx&@H0{{2I5h7aLmI zmBK%Im7Ped9VOSDwHJ;Gm&GRsbrrdYpf9YXq;{{{>4l^rjEGV6-0$>z$$_bE$pqt;O6S>M{t)Hc}3mflEG)1-pFYHMR zP-b?v2I=ftJS;*=Y@Dhy_w2z^pk&LOUw)USn;XTar&T(tc(5q<=bk0<^Unfs6K;D3 z88qu-BO|z<4NBa(UZ&x~Slr~V_ZgRU??-_n1oXJ2Z)i9LRG^s_G*LO@qaRuzHL@Kz z>2s^NNSsa|LwNhJA-6B%QPoDFZ9QaISt8pr_*t*D~HHpse@t#WB%A}?i1o-Wgxd6;?kRH-Od;TwL?jOEkV<8a+HgL|yF=-{w7{7j~x zH~pctHs zqkScR%t$Euv0E{O9$v!2UX5ozrJ09ebZ>4_qcg)wAai3JX{50JI5=m4 zWeeqE@3hlOW7)~VuY6t^Ci{Hi=@KA7Xu&8^Fiocs@I{73M`y>EQ($F&1p5e_S;9s! z?PV-9ye(9asB6LWyD&dq4lhw3*wdv9+1-$JYWK8Lt8mRx}7x|0dHzQ@83?b<_<^`p`xHr0}KNg;+qGc%Bc?>ifA%Q$JfqlBk*|I6&W5gC&@UXoo z1%eSh5d2nEn!gC!2Gn@rq0Z&a?%J5sVjyFdg!ZHf zqS_x7$EEPI4Xl;0SuhGU9A3j&#QJNObIVxdi0EJbD?o!WAjXI)`TL78y_Bh$I+Nr_ zMV5}b*n360zMKj?CbxBMQJa3MtX%1Z6nZIfBv^4+mDmqbkq>>|s?CkG#)O0mfT+2> zy=_BJ=}MBl=9Hi z+_AZ(J?-TY)My_kG*qSysa%~F{MkD^hQrL~!G&^oUnlV_NBg{^@3;%G3}p=;Asz_G z5GdRLw1p*Z?`ryHH~*%h0B62dsp(2jrj+201(~U!F-JmyYz)7K+v73V+Ew4)#`;FF z0Y;~(f&Iv+gZ8woEeoGuTUu30OeR_K#mN%d5?U@2YBfd$pQ4VMi~fNm8XHSqQ5Eg= zkpA#D|KEL~LLc_TAplozSh1^~x##lnH~0n_9po&A@&?$`4fZOj^zeqnf>W54R>mtg z+l-B}Q>I@>2*venr6?_~D%*TCU{lCu5=zF&X>5{HwP_^J#5Tegv4TMo(m*vc7`mqRrvJr9$S z;*qM1SnrI#7giAQdg{#x4b2{7y@ovA!?7AbR#py;oBP_O2x|yA$zHV!Hwsz1rmgodG@yAXcvi5XIy94KE?DSF5MvlBY6Odh-qyxOlOnmH zuk4;p%MgzK+9H0m{Yk8=e)^gIP&TXZYI5AyRw_6@4kL<*Po`}) z&)U^iEA$@=6K9kxCAo5(5*Z^kw**rLzm3zL`Lse`W*qMKvFE3Ib|BM*fYI9kTT=P< zoq-J2q9MplP^ihu?5fK%y?GPx5Rb*I z9QeEF@Nc$$kRH@*Oe7~1I9zwohwAc{Fl`b4RuSXP;2_nq^J87`cM{&-AvEB7+rx;H zuO<%yI-2=Oia4TnP8k6jMhvzgWrK)nUv$0oMyqTTCk3rtLn=mbbv=fvs?^Kd`m^rp zWu$CSd{tC3adM`YtJE})gPE)s0$M{d>ywZ0>hJm#hg6C;hN2obhENrMD@^H$p>O~1 zMCvZsSA+>zRiN1^0YXavc;WGm?6}@3*Se;2?QKmsQbINcE&Whu*rv2gL19Xk8QvHn zp+A1FTMFut^98<y;efhvz38~*V|aM<(bp)cKb{zB zr=&L#;tX9+ukOEI4QYTJuGGPo>T=eO%75hjPfjdLRZCmDnj{{7iSreoM?hvlygO`g zMEOcspylQ;*#^=}K5{sR9VAszPKV2CpJ3t`E$v21o3TjKJ@O(_s#EH{4h1f^YhuEn zoQ5TvM*Rhki)Svr4t-c1Cx1|O>sM*#ue{tzcdMg4$b6Rlb=>?x$DO4nQ=R-?J(B$; zL+*b=g&QS;1HL)odswKKTOVvI?|c_K6FBplOg}r?oswOh}CGMHj>6 zc1ujohz^1N$u;rjjvSY=Q#`1ZHEE=pnu8&n^1Wb}K~?skO1N^|Uaf4fcN|?>3R3cb2$S@?BbbKC=L3-7Q1iyzlhnJl*%; zk?qU6`!j-OLE^d*mEh_W#v|GI5Ql;0I!?}j>ygT}l^>e^TH1A+aWU{aW9%Ky!k(~? zcYb%(p(^r-4sS#uLZp!g%1@ya=Avm@Wh`Oe_MOfTuZ_R1&mz8Y6d|4pE>X(vyxpNc zXqkbj6~S0i+%#l{1=~6h(3JuvwtA<(AD{t3=j(XgoKXX35em@)#{7G5m;ww52|%4Q z>hO&Oe6j*y%gh6Br}T~B|6lzWo}DEqDH&3z*;WuABt%Y3rkk{-wZt2@_x&QvSavHv z{7VM$weg&cWwM)>WVhVMOrCjEH&fj~Qoas+naqr!DfOM)5K3V*Gd-fquI$&fKD$NR zD)K=|nR3MIk@+NA+W9t%g<5`T|d-d=;<;0|6n*akV2BfER!fN)8|tDbP8#KZ6j^p!^JI)g>$} zx4xmNDYUY(lIc$xN{FPSfeHmKSFa=zB?{$p6aveajBRXQCG&fo(G);QR2%i8LH?&zesoC6R);N#`$qoO;iU#VnZ_H|#P^n=c$$^*pIE6`keIg6{lzH0EB}N$ zeTG?i{w%cnB?ozRi~mf)2W@q<`^+yDLMeylwUG6*tnoX2^p7!uri0In|h`^iRXO<4d(h7aKLKjT*nhu7>Yus@w#jMj&A;w7u>+GmVkM2SN9}*-0PS? zskyj1PG)mw07uLYoQsc&-#vtF(NhR7f4?`wh3x!6t$IT1s|yHJ=#yWj zq;tM91an$V=3M<=nTnum)(`@bg2TjDc37J-qxb!6^z)ShZSM`;k1$P3uA-HeBwN1T zlg^KSwZ31Ju(UkSB7l4y^fN_HiL&P~>LdvL)Yxsky@*=vYq+kmL=Ig^o<$yzB#{&8 zhP#~@OY2S+7_Sz1@un6=~TD#b&}CLYcR>pLP63+63}rE4GxWzUo^FWMT%C< z#FFEtI67GgQ1_*ll7C0Eh`*~UHSwiPD9os$=Dqqi`wKNIqmJ}jPZ+BJ_ZM!or-Bj5 zB*wmz3+6l2boYfj^h#Hs6jQDBypqJq`>m=>gnDz|?1)y}1T65cfd7 z0x;uD-oMwdf4VcF{djMI>r>TPF(VRlc`2P4Q>8Vpixp5+88-YK<`RC&$@*|5mgNpEXXE9MtB0tQ`kgSZ`W1eDLu0v1Iv+#<>-_;)v=HnhRBK0)FG_GSViv&iygr>qa&O@+0?;E!hpNJ>L#h``;A z2XG~=3M~c49Wc2GI?4@9IYV^2+#qcNd;$|df&_>?jS8|msyyje<^_HA&M7rGe_V)^ zcu4;e^gH{K!iD=i%fsUgRN>8A6?ao}Bj~j1=V~n>$ju(`kq8+X>Cjg2h|@J4={8MF zOK<9FDC6X{_7|N!0{qU+E&d@s-&jC6o+kKx=+pd}CSlysk$0(#NN(+u)55TyB5w^v|ZH!|SxeE;|l z69W40aKNnm|AsC?yRcvblbD)H&uQ%ehNOTg)BpelMfw7cW6$(79-yrEvv)oOfhSbC zcY9lRw?@%s10QclVR5ASo%Gee!c-}d;tO@6ue|(-wRPljUL+j1ryJZX0$?^EW!mNqUTn|ZHC!s|XI4X)m=IV2i{dUu=55Wj%R@*k>;iupJW6N?KjWVWm0!~C zlJrma34zaIPtWvphLx4G@RCVehD2y)6uw_r);1X?+iryPyXGcvSK@Z+xU@wOSYN+n z^;5koNn|vWP3gN>4?Z}@TguY+hgmO*@S>9?JOaKmqcO`h1Z> zfv1voZ5`7M#^B(KHH-JD$>SHR;ppHdrO^*Jd?lctA&00gkrq>h4Y@;K5t2deR2u1U-}TNyIsuNrACwPk>iccKuUiGF$WCZ zn8A!zE=i>;a6O$0u&d)OH}H)CUPHeICM07dPj1iI? z0avD!M(`oyHuo8OlCAZ1ots@Cr6m%J`r&rfRm30$XYavX=#xaT8LYzJK!b~5Qt ztMdYf_T^1pDT%88?Ue$JH|(Z;2@y`WzU9IbT7>fZQP5SkGvPz5#2sn!UOo=H z*$6%i=JM-~?_sj`Y7S29?@Ht1WX8A;GfI0kq{t0n9qusHKbVsfBEeycOp0~AJci5c zmzK{ST_;{Ieup4E_ActV!k?OJ^06#%;%~BgNu(e}+udes^wfhs0CDEt9wz=mzaDkeG^_|^RYc>Z<62*zL*(OFqo%Qbhx@P zsgdk2K`sABMRNvAc4pLaS!mye+=D?tRLyy-D9TU8rKd21*m(#2?CA$XHNR7G!z4Si ztY4<&J0xW~n{<3pEA0}^XvS~lR9G-5>^N#ODAsJO4A4`%5a(s#c+$DLGY$%eFKZ2# zBGUKa0xR-+6#yD%7~^89yHSS0G;aC238k+#TDo;nm;oH6JM z7rR_TT4KFaLknA40$bWB3Kf<{rbrJP4~;K~<{f-Fbx^OGq_htjHekf1T$%s-{)wf1 zklxVpgO#VH=jpEZj=~4a4?8RE-2ZYuj<)W?({PO|&6TPiz%+)Tt7m!G-4z@!m4AXY zW%&GcN2KPnm>WEQ&7QvM5W*iswI6&l=G|3JEp<{qz?AbmK3{X zZCR2azin&X*Vqn)aN}%3*zqBEU6<4^m45W`DU;lZDk-9)y)0R~z%-azJ=x6-j6lBk zE^Yn0j9ZJweSRkKDa(!{`(y}xR8qhBXc=^S^o3@wWAjiM4XwMK6# zN`AE&hrJ%NTpMdRP{TN>;S#x6ux%7>gmXB3E55k6tA6?v9Jo5$u$9@f_v2&N<=Ek~ zDC>H2Abc_}`NnO>*xUPcaJ5{Q7yIqU)t|T^Q+ddOQrsS_ni1Pu=8;kvYRKF3Xvl}- z^nJy-sV2t|<+qZNS(2+Csot9~VtDs$8|2en8{yO}GdETYGJL0c;oxX2-d=#-=yyxZ zL&-VstOu7rJ~x`lLnPVYT5LeY>+#79^IY8F)p7#1$uz^-D7lSoVMs6L{j27vaQ0cE zaa*I`MDIH|QqdWLk>FmbqE>p~*y2YfOc)n8UrlLL+0<+>X_5R)5S$^f=~3;!n_A#V>agx4^Y29^3}PQJBE+)I)-tE z7|76sNM$8pPHP0!>L*}H3Q&@2Oc*vS1^g)yAtWR&z*~vX@Y)fIBzCJm(jn~?LbzLhW~a? z>Kai?Ar)2mx#s11*`p>eFghgUu^h~rB{@^eiGvRVE;gb85!I1aU)*zCjVW;Z_XxiW zOivBXS9kHx7n7>x?;|Nw(|^-pjI7+UMf(MmwlgotFpsktz=)H3-+eGb0oT)4e)B?J z%oEKDt}xI2tG$LRcPSCSThv$9ZIHiT#J9$;9!F(yI7FhU!wjeL+V)~?)GfG~GlQVAR za#6>XW>mVX#w-<`azWF@ftD2g$F+3Q=U0fTnrM=Aj;>!Y?P5OTj3kgv;Fb1d(X^`s z$Y?X_z(&rwCU{jdo!kCw^B6Djr&^Gy)Ws0R+b|S*Cc2XrL?9=eIhp)Zi+D-d*7(b+5o zrIbecCTU%@Qz(UsYK%wtIJj%#buEa6mW85KzKvEm!L7-Pi_*&R$hdlGeu=RTi|(FK z(=W4V{h;~-*T${BEw00rzp;ig@7ltK93S$@4Uu!?wDkk4XY5z%*Bow$hDy9}AFBR$ zJ#I-&NL9yV*0CI;zCrGPym%4Wd(mB3@rTbxIIe}27;DhyT8L3)wBgP2m};WOUHmH4 z_trx{9g46X^C_}=!-du!Klo>AP;fQktNar)C&`oqz4{n+Mac-x5It`#aw!Kh z8!9;n(=TUboWLz4%Y5)+EqG)O6TH{!#;(s2BB^NBp1ZIH#m17^xt}0G!NuI_T>MqR zygJ_^ZmSmcpL^l)b_lwy)u9NW3g!x=Pe9g#1ZQbW)wg2l__Kz-!*`V65QFwTR$gRwGL}{G(p+ zUn1In13Ch0N>)*fZJRL&xe;^A%EHRdzwF|rY)+57rClACxrh}hD%#F3lAPbGb7bRc zjJc8}R;en42xksrrlKM%`bA3i88@JM)LhfYzTqEERJ&{?@2Rg@1(5BXw)f@234+Y!T%<*Q+E?=*BE52 zQBr=>ckO+^XmV}4b}+Nhjdh(}>$KlN&5amNx9C{IW{tBRPk{5}CD;t69l-uHuTG^S zEOpv8Og3Y<^e6TgO$;+uE$Uv@4pZTj*!!bZ{VuZHE-XG~9=5Z?GZQT=iH7S<4-bPz zAF9ocOrJ(9_S~ofYQqz&AsD8NK}pDsg>2kCh?&NT8aGaY?iQ*`n#DQ9tSyjcbSD0@ zfWY8nE6u?79VDXMP|gnZfT)lo8-7A7OTXQLWl*z-ow4A>&o?4*LCHu$9eOkZXZz!Q z1V_n=R6NsOYzcW(O+NDrK^7yUw=1G+x4XCZ5PdV^!ubZ%4&?0!n_86=tb^Pf;|r4} zHEvpdFFY&B_i7TUw;9vt&V6QBGc%dNl8+*GtBZPB#HbGguViC6Sw_a+aWfWt2H*s_ z?nHPzHv}Zj?5X}(zz=D9sTak2_}V!jYpmz#QT%jemJu$`@!Q~MkD1?WYym?7Lo3N^ z^hM(Nwe~nTT~@gY_ukF!sgAXnOR_878oHie9(M@8#5hKFs=k$Y|AB6Z6;F=><)2h- ziLGg|wy1FnUknbLYJ#921P%EW!y9oI_@gFn?y%Ot^cW8n-aTvJd zq(EFB{Y!(6Q)ds0;~X6;;UrLdSCi=Xc??`5Zx@~$bH1(>F!`+HL!rnYFK%ONV0 zS^Lek)XZ?k3ckgj+x7n;>@B0JT)QybMR$Xwl!%l{cZVpTAl<1nf`rly0wSU!f`o*W zw1jkbgOVcMh?IonneYBijd6aQJ=|mLt+Lh|Pt0e|d)^n#iLnIn)Cu3MvnpDgYlf^B z^6YP&SLEB>#FMqq9PNe)j12z<=c`0M`!2Xi8Mx<%$tr&dOY^U*_QOJsN*|5GvY}(b&bYKb`q|5_qB2~}y3r6QiK1wC|KquunWxm^sU zYRE*Q#G+6qj$$svsVq&pjXBleC|iVqKf5{>e_^U=Qt7m=LS^ORNwU54p83L(ec|?_ z`EBkao*36tmocKhb>0m1MU2X|KUe4PjP`}ET%^huT2s`TQPIMe;jgUVkXb5)YbU$k z?0#dJhu!{m;^v9&7nkM{{v@kAr8+BGs{QK5m=D}ijf|2^KPUK&sYDW@?L7Gg0q9#z zH_}VlT1&f7qs9?=$<&Y0$m8^}=MPrF@1sWlT=TX!rcVimGuvMeYoUJe@DjG{2%1Az zh1-b@{Nv^Sbd|X*_VdSAr^TL3VW?I}8>^`W1vU9>=Uw%g-lu7~>3 z{n_gdfAgPN-?Gg2M34;b?_P}N=cK-GJkD6(9y2B~zgwa2xBPM?sPZ5RL+iFdzi?L% zx~Zp}U#hfDHR;TLe7JWpqwx6<%Mn_QrLJ&G+t9^oOgxap@ZRVcflTG&m(?8;$68#Ql@C1Iu?8t zZkMG!DTcb(NCj$vr^T_Kta!SOUB2LoR&0~UZ`W!|m<=&WgzlP*jOU=Y9Oe6NJKOLQ zMM+u4P!8x-*s2mmRSO#!<@SW_(Q@3zsjDY)@I!gjQd1LT_79B<%gLQoP>fBS*+4dI7nf=@YKC;UG2DmrgEeFreC*XI+w^8nj5Vk+U|X87M7;9 z;j^CxcV9@u_X%zhx=_6Bqr$Al%`gsd$TRP)Qzhp$csz4ksimE#&8)9&UiHYOv0x-) zvwdlLOnmBDod+@FyhS_#z5HSRVTq#&iEoE91?@+gw{4>pT!!}dPxDwtxy(j0#Ey7z zq|w&fEW1c68t?elO_8ujoBj$yZ46}Fs8^grkLtndO(T0Vg=l6II)Rp*`Hjnem1UZF zjB|fIK7aIcu77MylS@2a)1PWmn{s*7IJG>UTblpvXgD*wH&gq|V15jHgt=nqpNp=$ z2mXPl&L$~)t_MDQD@hxT%aT?e2`}$V%#B#nsZ|8=$(5g!jb*-A_m|7lCMls8&b@T? z3y&sU*o<7AQnongdL}Biir4mPGxX^%%OQ@5=)P{0CKcInQLBLG(+T-mC_ZCWzQ3 zDD)HSTlo}=p{8rH0#Kx_gX!Wc!BiF!ww!!3m@l_%W57 zrxm1=|0AHje)P03@_KMqx-jX8wpGZ{SZhC)3EgPB4@S~rQ#s?YgSUF0PmLI3farw# z$|EVt?)uW4d(?fBS}`#%iRbbLNvyo&nBTT0$#M!jt&b)BHJE)e+8k2-iqrClQ#dfu zlSj^R+fMr4IM2hIhFX3O_X@~LE%97-vvLzd6dYx6I18SXhS_P_R(z{w@1hlmmcUT| zM9gDie{!+He0?;azd>Pf`j#bO?82VPncsDzty)(W3R=2X5s4g8`@@S<_geo26JEz2 z9WQ<|`$Q)3XMgDU@qI~zHjlLIgKZun@rP=a8qnK^#Bx4=4xRB_B+}%d)CS5X9T=oP ze)MQ9*=@0d$a}B*Mt5)TOK2fpzr5JK%+1IMb`t}eX*|^O>gqmcLy6;z8rwUvJf>G) z?z3w-CyA(TUwqvDah6)xQ}DV+C8O)^xyNwaO|Gcif@luuRE}FQwwL}H5xD28dY2C# zXLWHZ0*$F1ygAT7A7O0r>eKed z7wJK|9VY>YQm?X;Z@C7}r87oSx!PRfJ`$gFw;Jy%boi?9egCHQw=c!onJC9OXEpqG zw$RlVBUfjc{kMK|_|@PYN6*%|n;;b>u)9F8C%=DwBcY42Xkx{2R?N`<`-c%Fzows~< zRaot6u|g*KpYNTXC_#tQLKmV2-F-=i3K?pFOtDJme*Vpm@BmD;DZec@(j8Z#nF&=6 zHE69QMC%sA9#iHm^vz*k3I9ugf;4Z(loDouK%!ds%DjKV#HocNBTeMHeAAX25+5vf zCKYfwIOqJNvR-n>j5{jaSH@k4^! z%9dIMWie(TwCO}ffZ?FY(!xSUrVey_5`lZ}L)uQ-ur)eLhdv%BugjhuE+<9by8AXf z*ux?}qoP=xG6!wqzra3;?Ms? zL%UKr*!@Ez>y#VfDTPPDJ_ml_;0STQ@HFoI`}BeWwbSafz{W@19F{)nM&1FXA&To| z^&12oV_7c^-7=hYo3R}FN#S%Op`Lpva^vp1hG)VnTAvfs*UMfSk*@|j(Ax^K`i2DU z7Ur<@;f;;wl6`Y<{+T_4deY!v?AI*lWX++^^oEyvhtQ&@dWzCg+(Xyr$@Iwg;RaKw zay>4-Om(K|-NKj0;ag<0xfmBQPr}Ga)I&aa{r1LR>QVVw*hN;W{*Bz4fP?EjzH|M- zm6~T;Q9$58p@79YH$NW)!t@k3usH^nLb_B=jZ21Dky!R?X#cgkIQzG9MaQ#EH$BQP z;MNYFky*W4(Z$=V;*U&~J8$geiv7^eG4xIqOVGsYePsV0tbZ#c?lz<(YJ}8RCvdaj z4cjGMW3Jx~7uUSaL{XgA^~q9VX}@_oGO=RTsOX396JbXbDs;B-#hc5ENaSCL(a*FR zuP@MhG&SG38heE_+bzG+r{@pxZ{Pxn zC~sL=0l>g;02+@~&xa4m&=AYu^?E&UPJ%VX;Tx182e?@CnW?D0=pTuMv6O|dxV_3E zek=cxu}VWB%;XQcxE{6pFDCa{jL#zp6a|wPmPxejvT8!YX77gouCGYdhWF|C&d_VI zU&#}F^Yf&>5N~|7ThUJ&WkMYFxmem*`L=J#E4sm{d$eL1WNns#!BGZXpIDtB@;ZXm%&=-}AlH@ZPWB(pwS~ zXR~X_Zaw2$5qV4${qM=>SxRq@=Y3oP)#~EAqs?&|5`H!2qtq1ncrc2h!2SF#bPxhS zHp{S6=)qSoRT%kG3;xe&6)BIvaw}hI6}n1Tq2HYgynwZd@8NPNwumiEZk{_>=D8)O z4@~NJlG5gxKI3UA@cy&0>VZk2U{wG3z~1k9+X`95z`p*RoJDU-?mz1Oyr0j1+3til zm#-XuG@O<4UF1zUId`a;C*g7rNGmNpU}n1>I#RIXA-W>}lyA5#QV~?I2kWh7xq`|Q zvB5j`j_6pVoRl@E*H|5YI@68ZMN^cMtN4WW>TukULLSVV2yQdQK^Gwc8G`2S7sbWJ zV>WHTCxFH&VC{55L+>sSR~6DVnxLD?x#1r>AP$GC-Jo3r6gdbNw(jqUDnh)3$%Hh0 zt0jw)xmFu<^uBkB4R$hB`6tKY5rgsfMVPSl<>gT4XU_3`EJ1;?ehrL^1(T>RTgh1)A}OFyRcig=XoSYY$x=lhnn__aEujBl^{ za};r4XMd6L(MFFVXUJq~sam|-8#Xa3AoX!ZZ3m;Yz2 ze~r7K;p@}%nomLXk8Fw}SsGcwKfanN@h8#+5h0XVg6lDSK&p$B8JJJ zW~x`^!R86-G`dpN_^+s5?dqR*+6UarQ#5Enqx@B!{_MDrT{6Z|jJ#06=vodN&g6A_ zi#uhHKRn9EB29~T(K0mnB9)y!P1Loc<2>qhG5J)y#eSra?eBSY@nPAt4sqBA`C2S5 z9J%?ti-3EduDf{To&5RLQp=$if2~Ub*Yt_$2&rQzITz1U(G??Mt2H-rA>|2Po8>n` zkn6$6L%Z{8B%r8ztB=}^{ozO9vt{bJ4IK~08|gPfEsF`?bMX9-QV{Ly*3Fm0H+Xpv z8~-WXOD4MGXcA}M4BPmW5|<-v-Jm8+;B=%%b18nQrF9fTZbokETxl7^4&%XG7Aq@Q zOVf3s4Bzk{`CwfCqcbjgxWVThv6gmzwwY+g=eW=N?cU$NWgy7(#k*2mD>F#%|4 zDkXS(x(=3)Agj=msmJ>tO;*I_5wK*)$-?ys&!3j_gs0hr|G&uCZPqd#I zo8LXK;P_EnJ>Pe;Tg~z2XVTzL4ky?O`uUEUw)FJPHfNO_#P}iUA$f^O*wVW^f)n~$ zaawOft}DmS?YF5vR9Oxrh~32Uogquur;Z*R!Ah9)sqxB4b>5nEyZTyOf5ay8&wzc4 z(Y*-t>aCC0YI#UrQP%8=W?*FS6>W)Lef6q?Qb*I^dhD9Oy~iK4^Xhx!9^bvKrtEF8 zH95W0c+pg1x9N^q>MwKjozJMcnaV#4vyq(YtOs?;-?V*0U2RjEK*}sNU+OlDfB@qY z1@4LC?(@0ZdY1>P;#gwiis9L*^yxOmD}5tGc9_)(VtNHbOnO}jD-Ykr4#cB3(ijGR zq)7T0d3xL;6jh#nN^ftIXIsyPO`$>4(wrqwk$qJUrNX7M^RINU^tj7%>HUh`(dh^D zZ3gTa$wTuOEbq&O`mnNd+3UQdCR)gJHp>UzqzsFFEt^q|(~h$Ziy!Hk>i#aSN_yGxq)Cf9FD5##){R zrSd6vhm-M=Lt4}%3Fn88Ebl1k;IXhKIz&Ir`_e|jDP#U8y}HV;(LSE77;{DqeMT(f zne?ctM@4>Fu02x%qYD2MmQI4ML+rg}Sr@*czl`Mq(lyVB-W@$q@;8viSJ{8)VoS33 zFdSVhb{mhfE9fiE_s_p%FwT3we3jj7dCXKzUVE*=`?VUvW!t?6}jhu(sAJ zZXMT+5oqLZ->jTJzx(&a<=N}GRjM?qCv@1tiV5oaTQ3baX-QcHN)im3NEkF$hxxeK_>ZOMS1q^azcc zT+e*vB5`W)7C&|L-d4ERK81$NY!@}!FWRy)(OM~9D^IkDs^S@UPjkyRSH*${Kb;xZ zZx6AUZ^amX;BwO;;A&V#apm{%li)~2>tN{Sg(ZDOU;40;nReDZJK{_EnT=&O3q9*e zO$%Py75}Qa?R7KN{cnvd^S*^VSpS-ecEx?9H}=V_-BZ%boL3qW*EEW+o^*t^ZhP01 zY@BRtzv>VPd!7A&aLd$#Um#3skkoi1PXpyz?R`KB=EZ?)wu@GnAKuF|1sIk89ii%D?w2-SCna40& z&q+WDa9?x3ZY|JO?YHRgPDQ>%u)N;&i)XC!ldH4JaxZjsTJ9SJom_tXa{2ScH@$$I zkF;5`1N{MQ>O~T#wIAK6RA1l1LRGzfrf|d^nsXaX-2|O(W$gGXpNG_k$hVv_)PB;U zE54nYU&fdJm^_&+{rhW9bMUug1!>aEJt_-ltAa27Wz2QD~qx z+hon}#+N19JQd#LNex)?+G>z3mMx&I!X|4VTf1^@ZcYDrX}fByFlnm8L?B+?BRKf? z>|{TKoSN-?e}wa$Om%6wYYp4KG5Tl!9ZPXky^A_a6X&qqCB^4@S&sg|!|6d1@2|G( z0OJdV(*P_T%YbX<@T&)v=EeS_rH6{TOA0sd zt$#lpXH(`D6kLt`x^jh*?bm9ggSM{Qo}2;qi#SEi{tvowBcDE8e!dr=ma!JrjD3wj z`97A;lPUdEbYIs$2^1D%@hm(2_q|vY1r6LZAL)M`^?edn)rgUkTjG6-v6M_(mQ2DK zt94_Ea&;)WUZ87VK|LkN5{A|Et)?4UffcDYj0jtN73!1Tk*ItT`yBfD>s#$NWPiY$RzR7SDems6TQ}CDSN9=7@-zU4 z(HZ)aaf-aStp~68g?G#;KlS3fDfKlDJsxunm;K`9xn1}Cb!~0awsT8kEKG+bxzal^ zG=4{O@A$^`C)Jii-Wn2frVn5HZ0#M=;EZ)L>z2mEG)VF= z7xAomiW|7>dswa~jZ&A&lkJmZwbes(NCiP!-+o0>|@xyV+VGwY`sYGH53UL?$C(6SqNI8x0_pJyMI5%NddOX2VP^eOvYo{ZI3 zSEqNsGEt3i`P1PNKXJ1%*v4mut19f^=aspm(2Bd!nA*20)IGG&e?37rGCR9^;g_np zEf~M8%q}n^V<7N3_&Vop6!WbIS4k9c?Z?VgsnZ@_^WVPl;RlvbN`O#Ie|XEygea=z zrX9M*!dtft(By%YiYeo%G}k)Q?R^5KzyF>6by?uAo~3DUAjct8Q+SqH zU=iX`9R9%H2oO7!fL`y~DV|29P{hmFAC2<#g_rW&`-gikh4%!D}=Wu+or(R=V^t`(CaZzD%&>er-Fvzt`pT(CHxRRS1q4IOM zz!?opjjX^ytIG2agE;UDPe)B3ilCNJk5JxdRS4oxnJG*@Jy1Tq3B22ez|0Hme&@i{ zOM`4j0(?j&5EPnHE?5rlHT zPC;f5dK62j`?E*-YWI}zbgvqPDJfrBx2BChT}s>SeeNJ z&Mo2}=m3QaW;UUK8E%8l)i63Gb7sog=ZpIptW_8j1Zk9k=(4dZ&X3rpi_AU@ls)0b zvCPvf4EPdD7V`tg-x>Yvg4ZQ0oN!}hA-rJS0C$IQ=+8CQF2TVsG&^L|ZC4a;dYn8) zk0Mr+C5zgqmi{90F3#GPI7Tz8?e*nF#1TpTYa=Y3kT=shF(MKTkwIQ>B^iccR!8 z*4a{l?}UmDC<3V$7kBpyjr2<`!*r|g@bTqe5MSj5>$bS~c;sB`TFn5zz|SkTcNt-5 zgL&1{X}%ev21=tH`)-k>?31_ zh1Qmmr;B&4zSDMe#aHpn5dO6b-_DB&_^I~b;Z z2Rc{hvw_M1fGz=TE-Em_{Y>S#x)RZzgqHTM9DKb3Jq>fX5x6$(eMJL_yxGT#eMjY3CYJ=FQ5GT&St*5STJ7P zV=5q7i5h|oh40~{&D1%x;Tl>fXKAK`5?g$h+s!S6-MC8!6@bCvQ}SNHDSiWc&fS8= zG)dARCmFzOt1oFa=;r@KX&Pln*CBDV%{;`dp)6bd)(wmM(jfBvWkG1;G}Af#QKuG( zOjr(+Kix&@MRu>nO|+>oJYpgX4!*3swls(Fuca;M3E1s3r7L|?9m&1oFIq*27Y`1L zH-FE%JtnD}uHW(eyC}@9s-%P^eLRQ3V_1$0=Ir{A3Iy!qC{7lCJ_Wwd-){>KtzDnW zDJj8(c$lXR%~5D5g!aq9$vKR#gk&n9IqdBG93kr_i@DuV=0%)X5UviO#VnwaUwrmm z@A5HNF3T!w@FtGv%Oc5X}t;<9kS`^ z=^2)oqv_ZNTiKQ9j0hQ7zP@+HX1LPVr-ob;8Z$Ve(TTb+`+;*;#iwg{Z?uvX=r4ZC zUK4(u)^t56)GMvzvBhU?PLBbj=k{0cPfCRyn*36J{QmKndb|1U?T?gJyLTzC;Iz}0 zD8*diw&LjB$^U6aRbi}GWSow8dueLEoqxwBE@~KBT6I-(EAV=<=T65f`f}H0m5s4N zdLhRN4f?q4akGFdiRXVJjKy2EIk-9Iz0sW{%Sy*eJIAGp{M65{oDRF)_8BHAlr@;q zrDSB-HF2}lXP{Jm@zTae5fjjhvewy4YBHJz{KhHJ+hqa9YWiOv;X%cy>Sn9EB9490 zQ|`~7TPiUGZ0_B|tE;O+=rYhm!0}!Ml8ji8-))a&QTWpLf;>C74%b7bD4!zWZb)?C zgkYMJIO#haLMa@@RTNd8lYA*X`V0IoqpIdcY(oUr6CHeY%v6>iI}tlaL*o#8m2!iJej6MIgdHt=zV-4rFUq)x|}lM zVNLI<9p*jw@{)1w>3Q>uD$%p=H?dVOO`{S5X#{a?0~4BPwk|y+H?;kR6J!XC3g$?8 z(b|XkZhTG0#Ev7nbZUyYsk3~=s@ugwMMVYF%sj{}MG8caQOkLrSn!=SjE0i02l%&0N%X@EH6^l<$NYhAeeh%s$ z7Es**kSBrv<@s~yO3VZodj!`5X<>^K^vdiGl`n)$bN0+GQYg=Pp1C_Z=lv49z&zQ$ z&VGB6hd}fw>`%i}_583;39im<(Wz0`QQ;AI5prtggskVR^DCAsU;pg6{wJ5xfmnC$ zl?aNnvMdA)(3F+)Fy$3q6*r266Jf`>8LXCUZ%C`HODfp}w7e!@K0R}j^v~eJ4!PN{ z{^fpB$@0NCpWqD~e$;ccP(#-MBV1z3WtRCbc`sjLgp+(T6-$oY+jC`*^dtpC#CC{; zGz<(P!IUZ;+#M03Gvw>>^*C({MeqD9($-mc*6j3oC5u%^glc@hDF1R$>oTBrP8c^7 z?L&~srib&ey`+n{+U1tX4TQ(0tv3RT%RF`QRW(1UM3VBJobWB1Qa@Y$)pYvQ(i0**?C+9rBDemZSl_y>f^ek%PAdF3%4zsJ6*F$TJKz4d zw;*Tz6YkJ2ac}+*48`v`^hGvMmairwbEG0upWtFt&dmN%q>b)(k`N%pQn%sIN9U^Q zx;s3}H2?jxx<}oaaydiLfx_6!KZ7N9i+AdT9ck(!b})XV58Z@XX0meoAzEoC>Ird- zN|wB)COIyD%bIQzWi`$zUQOUoJ zV!gV^)~Ir4zC9-3biI;$z9mpQ&=xnK^+PpW>95U1y^lz$@7_H^tR1Q!wBB$>g_t;;$AKlGiEqKZ z7YC|N?Z6*HLN@?pS%SThCrolD`e(D`W5qb8zQcdLWG)G#84Mhr``bw`J#qD{(ZREM zQN+}eR6DC^|AZ@wD~ix`L zSf=O_E6+%-AajvP=LYbnJH^AbGF7M}%HGKhF?G=ybIJIy!pW z&0IcKRvvM6vxYQABJa6Iyvv}7Sd+JfhkgdT(wgrs6z!WZUa6%`tr(ezq6PjqqYu0h zYZm`Hu9owz9cJ3Yty5wt9LFi#3Yocdg?O8rS9)jFGVXd#2EPNX2$QxOm9bD*Y}Z}? zG83z#8}jmk>ED+V4d)fHY423fg{i)~WnnP;7&34g+$ z@stM&z2`<=4k|2;50Y$z_uMweZk~X5avm@%peQddEiJ8WXsDuSziQNN z-o;|PUqCP)ZK!)^X~X`k-or!Z(@|j5bDLqJfT48TA@Jd-mXf_KgRyalZ+rjLe%9y6 zWWP7dYy8#0Ch=ZTnXzPytTDqkIgRv^E}zuR^IjAC*;991+xgW&Ew9I7-y96Za_;#0 zO8z@O)@ThUT8FmBvD(I)SUB-7LRpvrE>Qk_+mw}+>((uHCMKp07(ISxyPaSqBJ@U8 zxw5-Z(644!x?+VZ^>J_2L3?j}q8a-QLp~cFwCgM^L8;ywoB*U{L_>UaHcUx}YHym< zX!|^HcXuyb1bgrmW9%FtcS)C=9&L`t>3^IqoH~CljTz-n@K-$)bvv3$oH_7&a+Gm-t?Ru6gmc2cs+mM`c%MJBat^+z+AuxqbTX#j)8qY`-5 zF^~9ZP3paMkjoVGgTk2jD%F)MuD3$8a5>`pM#3Tn9~#_Ce6=|o!J_jNo6!qHdxa}7 zUbcxC5Pg1syRN-PymlP}0*vs9HL1`;W3aA`dW(x5ZO`Vw?~g!88*%sM-=mGumoq-w zQs786W^MV51GFxH2Kgv>?|fWCjn>FkBmrCLb{!UF%I!@u4SRmi9dkHYd>Cke0y|(h zvL=r_@X^A$>I`a7LG^H`YEOyDtRXmaM`thlOq1$w?o$8Ke+=_BEMGUUt9P}2rNw$zSF{F4sS~4E={bS3!p$C4f%Cy#NIdyf( z07_Ry^aP!ZK5F^*kPh#wlAc4hjawQMEuS~pF09{@X&~_rT>Iy@Z^={60T!MEzGeuF z#SYF&l%%Ax0G<%?Oo2nwTj|CtFw7#VNCdCs;=vKo&+ANe&txh8TJo9m;w6XFcKqjZ zOb9Zv;4x_dv;M%@x)>v;B8-bgXXHV7a5EWjrZT}N3SHJ?b1Vz&b4Fm~Fqr9=hTR*d zJBm$+*W*W50l1*;$me_P#rwc8c$<`zBzKUm<)CqF9+WxyS%!TbmmSLHw)ZuiSmms#YZ-C_y zNc9Q;MSc2rKw^97>*HPy@OO)d04Mb|u-kA4P|}z3&dQ4ReU>FDw%qggp@DmFJ|IIq zD4P}lD=}0JC;@U##b1%&oAIozX^m)gZDEMCNDguTG)+%lU`V2#C57-R3%nli2?#QQ zDe?19hbEn9wIz3Yl*7*gW4oHn_dWR7c+XZ2168sz;P2YWyrvh4fh|fI%ztwd5@_}g z4q#TYv9f*y0J5Fn9Diaod7updE>Zu05+QXX3$w@<&h-S1% z`+$GZv$_Nxm+%NP5UBL%m-pRnTAG@33k$)qv7`=Eonk|ZR)X)R3ynmyzi`d3Xddi; z!*>W<_WO`&@XOjWW0*pir`!UrozG)K+jqZT1YtfmT%0&y;^6!<Ta(4N@D0&5Ilq zpl#T8j8Zhw;!oZTi>PKF5idzr2!GT4C?fYtus_&(U=OAUJJF^39U35vBDln^fq^?f zP)9?-RPKZzqWlyPX=DJA2kQki6evSpY>pQr#;$U5a=Av|Zo#Si6$~gVa4UwM>XAPr zko^JT5-9}*25Ycd2WL#VQ>pd9Rf;!F(5m8Gk44DHvo0x9hZWb-A`h5BrBg8>Au3Kz zPRRP@nl(zJJowXQ{ZENtq!%BYgY*gLWa%(ycMcAeKo13+uPACWU$UT}pex#8XnJ}F zsGY{kJf@}%lGPCEa>w>g{o`@p-!*jv%AJg1FY;d;#&xH#|Ey`d^AC1OKx<(m=9thV zUa%!W%So8*Tl!w(@o$6gX$5cQ+J?*r6-p}ciANHDVt^JaA}VUc=Qm{U;EOX3K||UG z)SHS=;{^sG(b0rg=Q}{8fr?E|js|eRHAs)WfBzm82nh=-n3)Lt3UnG|l$4*T%v)Mp zcY$w;juLj9KxJv>Q8~g$AtfV2t2Q2}xAYAoa#)=%9aU_f+R+(o>+E#UaUcEmF!PSx z;6H%9!lYDnrdb9Ot|sJ%5Z_WsDXBb&3CeAUSxtM#p|XgH%}_`lV5rvLXj^n3@NaGi z$MQq@70~_tg?qO5Qv=K*x2eVNr|X{z`!!Eeg{;!sh$<2jxM_Y5$8`?9gaLkb=3C=^ z@MY|GTx#lrPriG2h!zM@PI`liaJ_mp^}Bx#^n+J)lmQ@wf^0a7iaQr}_#ZGnku7O$ zRL^X*NTvS&^rnyDF}_PJufRz#sw++>Ks3erxly|>+j~yHzc+$#-6o6RlY9RIRiVfR z4mMO-?`2y~r!V)%SN7M1I)+gIPerO}wmb+?dZSYu!E1is*x0~r- zZ7>bxzj>RyVU~wUC&*j)>h66i-IM|^=|3~0LYp+K(hY}w_h$?Exq40v-ibJ(?nLwY znHn?j`c@tEG?Tu9b@Y*qjYEY1?9~V~7>uVw;HEZhov;aM0s-89?fP{rgoRp9j8boM zxlHqtd1WV(k--xnLvj_}`%us?wc%)}=l`m6WXsJDG~}P=Hs2s}*Ig?={c`m@Y4`Rw zf{CW58d;jdBr<2R;Gyy(O%6lc_qfD-{0e5?i;u;T2~)VLHcu=IGA!sQ!)dkS-#_%O z_jbol!wjr+9lr8aF_XuDIfNre^hJjwede_UPye-hOqb_;Iviph+$C?Qk0C#ThpLB% zGtyIJc-6gu5Wtxs!j}h^3JEer>Uj z`*UA`HF`l^!IfuZ^rFNwH68>YyhBb1rC?A5Na&`5%?V6BJv)haqmQ~s51g$qz9$n~ zO4NPCz*%+m-HSXX{wmC0!7pkVqu{N3<=eK4)F6#QcRqb zo$LOtsiIJ3Bxb&1JE{x}9zN9}#6ecJo?ciu(aKW_qU|+uHLkv$LZvCEdW8k^#jU9Hk9fn~lG#?w>;HMkMRLZ(UV9 zQQB+FeIK6>ED6SIccPmn%WQV%Uob7aQD&Ss6Amvg9ZyWsH@u-$LUVJZjls#{KH3DS z@!(=`yt*xRhWsJR_uAw@N0%e}(WX8-Pt z{=WOO9Xb^rd)fpGd`#2gCS&K4%#BRYbD>Bf9aF%H#*i&VbS;T=o zPU!6HJm1r8F3NwH@T7TiZgZ8zBj5&Jv#-YQ2>i!b($XhwR-K~hp1;9I*35*xfT zsq?V-gE9h^X~4OM9s8yw@8=krH$k+7 z+$~V5p`(=u;vo|LWZtvn@lQgx*a^4)m6+Nl{Jcc6&&04K!nb9=*NlwGLUJDgmcG1l zvxVSxT_8AakfWiYSyI0Q(D-j^7A$-}+LmkAMy(az2s-l+M_qL-K4vtXIw4Pu_96e^ zc589;YO%Z$SLw^gaj+{{L7;(10AYh^3Z=jfX)eKJ(W0{r?i!8G%#4(E#IYlXNc&L) zZez+R(Yt5&<#nIxFuao{IyGOs6lR4ydE3bP4G|IQpr8#`#QQ%iA4u2>tb79D1~e*m z<{Vswd~6Is33eL4Lm{y~H)-~%ogm3{2>%9JD%$arq308)3#Rw*Z-5h6M=Oa;G>Dfm zP!tbn2*ayH4n4Ep{ybn{L+7K=Pz;RNxxXi33xZL{#wwHA%gOA)g=zZL z9hD?KHd>J-1b`0l{BVX6!Qahs_1_D;G%=Byc>`e;79l6M$K|?dpP~e?QS(^%IFYh_ zn3QCmTSw!(e~zAZ-R{Lfg^uC1XRiud^b#0p4C;B4v49f_BB5M_U8)`M?j>;4gPlw7 zw;2>hB$m=hG{ObxNT593!-N7dw6=8tDEWaWI>G3Nm{#&oK`tcdjT9k z^egPC5D_BeXG>qUnTs;UWDu255nFbknCoO&%)jdKS-g4V6bQ@B8=dapU-a&sb$|AU z#J&og2*nrWE$uBMp{!DG{7rCN8Qfdvr5S696P9Jya=^eQsgzk&_rsn4vB7Ljh|)n1 z%ZtM{{@*PMa_D|GHi+?hv68;6?&olmHua}f(dV#t@ai++0Dw$B6z_a!a|wIQXCmG( z4Qn18J}VR{k53&jF=W6 zu>{79C3R%8i!Z}HdUHaSeto#FAxoklXttR<@nDu_jCiSadH;R|!91opJ7Y5^*X@?m z-R;G9pVi9^DfAM#T~*zbZqbU&_#K(>7<|QqD{CLgQk`GvU?jtC-4J~%+(as$RLam6 zo!%PDvT;H{`#sF&s~%@FdIerr^N$dkqf=4i-umocd9Xm-wn?lA9VC)1b5LDD{98m&(m#T&W2O0$oDiPV|b& z1X%2&fASI62mCIidazXF%ClaNd9RrLo~fvq&mm98YbKH`%}C(Y2p~^SXlzF=mTrvS zik9CB<=9;*cGosf;`^-8UC5Fd7CZ_1dF1SHy z1ZAH+69(Iu|K@+PtuN`{>(5V@C~9}NdIi~G~{pD_~yE3D1WtTNxCj(tuRPi-2$5zIps9uvjuGAGL*=86e9 z(MK(Ku$~ZAM)c3~s8)vE3Et|s!+v7{3iYtYa)RwG8gy{LNioWV4LfAsQC~v%g#gcF zB{sRE2y~2*BL!~=X44^Dgm#RSiFONKnt^C|9`Y|@kA|TVUCmxDWypsO}o(u z+LA)z__pE??P7jdKr)#--a2JzUR{0MihW?_)0JjSfp^Pe^=8@`nDTj^tmlw1G7`fD zKyh)Mfe9G$kN6V@#u@_xQrw^z$?Ljw_xRsG7G`FYRcDNng+;m&mBm_4RTWL+`60bD zuo&Cg+nXW6{>{nzov4&1a(R2+X@QfAOCIRCNF|$)Ph$c&q*jm@o*D#s z_3Clgn`;Qn7K)SU85!usb$j^8J^-J$dy}{o1wN^{xw*2CYkGQi{M6Ii8+kmL_{t_K zy+cZUvy*fdiw>-%RV=~gFP|;q8=z2AH6Hl`4e+Ff=bA%^{8ynj2Qx5+Nv7!6H(*J< z?SAAA(vb&80874siu?4*`9bN`R5%{t6A@*>b-gs9#Lg5>5}{DKL!MXbad3q;Z)VVi zf#LjlQ9*%8<3^I&9ZIS!>DTFDgU3!(OmR@pVqs&$MBwtFcoeZIDTPw;K!b)x45&<* z))uROl6HCeR1QjWGn;U(Nl#0YwXs@T1-O+~37l5zWxOvkNdftF{O-gqcWSG#Gm&`|Bk7hGXU7nt4}li-ErlUI)=r zK}>252pv1$6fxuvIZ_j0K>E4zY4hdr@lp^4WS75^Mf|Z2@ z4N9|Zhz}R=lS^N=n$su;zu}_QZGzi3g4@Ub#3;3MMFUa*Zy<1ri=#xzf+sK7z`N|P z+y`K)<;mamV?Z0ZoS%3g?*Uxk?!fXsTx=$Tk_E)t5KNJ1dJ*Ezn5(S_tr$*s784~F zxFjUh<*qS(aLymjQD-W*AH~0S?_S?*D2tz?)Z(Lv5P|c7$_V-e9%-qQxmraIY3Wqd zk0}5wD?tqSO0q)thl zbHTkdvT*F#s+ySZyt~`->w6T0(T^2R+W74N1C9y^2!KkU#Cw@2&Ad=R=fEch3_qLvsw8!-pr|M&N;AK8>t-%hEAQ{;S6~?ZkiL-}@n1pC--{=7@E9!7CFUX3 zL<5o?P``vRj;VZYH=n=i4#;`&aX;-QJr=0MfOOtVc;t*w zfsBZbrmPhu3}4n4NV=&YUNSrB%9ikWLbt@RgFHN92g>@E;N*sA0H9HA7^c&Ii#rXW z5lb^qYh^GV2l)!jY9tUwG9EA#nr3Is{#&H5TgUG5^p+HYV2hlMo0|Z7_rQb|vIGj? z0W+aw$xEXd_RmX{gm}kDfQeFKrSbCOdp15&T>dX0v-n#W7a6UcgvsEpyY)jfQJq9! z_ihAyK^kN^k$#geI{C1Dgfz$UKcF*-o0sH8Q)1;Ysw5ng+$T)+T);zi1&HscYwr?b zD|``kbAK5Ay$O>tl9ZA%6i!f9kX{9=K{B{`Y=s_C)eiG;tyW(RMK-{hBWo_ZdTO+u zsh1KG(-HbK8}MTbB-62{MYKWx8z1Cn?gm>XnbV55)ehV{UQJdy(VKeCV-eEwW5NO;@9A0f-_tk@r%u2*8L?-Sodq&?`6K^PsV|li#=WEMS&a!;XTH{))isG0GrxfQCYan z{U+9Kl?W)}FHG8e3j6SZdU{&lO@M|l=;_zB48m2=A{KPPc|R~!$|nP+6LOJ2J>q=! z1}+qKP=bU&%j+=TdHqh@k+jA{V}J}apSHtk0YZM7XBcH-xN1;#hdeh_t`HmH&=)Th ztZg}&|NC>odg%QQG_Loi0=0?fR>e391y4dv6t+`B>{dcx{gLkO?jlrom`S_MI86Ut zI&zqR$BWyfXXY2y;CGq<`y{04FcpeFm@g@mvGb+83~6yCloC}fd4BMe^x zqSya!q8sYx$mj6VyagG+e;>)qh69Zc|NZA(;{WFZAwvkrcmjxh1R;OM@~*qY>8J2k zX;c(G5*9%%LlK&K5QjcQl?SQj;p#gOD>1+8cCWmy8n16m`@gS=L32jS%FV?sG^}WW z#NoqD{ijd)ptX(9W`F@mr&bV&S9$KTViVD6Z%&g)AEVaS*Qd7nMP>zyvHy2@48$|t z=s1uYf>PU>)CzEPV9Q_sZ3G7a@n^pyp!k^Ke||D`4rv}-0)j;!pZ|UFgTPTg4cLF+ z%1KE{)5-#Xmk6>(dC;Kl>~=C`e*HQ!Cj{6}4GoR7G8lyLQ!d7ykV)4tG>l3Vu(5;{ zb7z15`=3uBeVVFtB7hAO8G9+uXXL!S#dV>Ce|9I!QZfR8B}hr)rV!E zvV{!&+~y`hq8hvBzkfjR3xs+CI8P=Pyq*q%PX(We*nIY%4AF1VQ9P*<#ij3K<; z`=(khXiC?TjT?MvVGzS(;{TTddsKq&#NBwr_dp{5@9#+pc!fx^5klMDg_pNkd3j@YMuPnOJY5zYH=KpsFDnphh8W^}uJ*A|(8Y zYBmm#b2+Ta9A`oyM%qZ49%=+TdwcRQ$)1AG_SRF@7D%nUhSvdWFM;35-)0ENlz2)@ z1Z{`X#suIqdEq)xF_(n!ijeFGpkk4qhk8PZc{6&-4qeOz;WVIOktSkL+s!X8hk-(A z?s#``YB6|h_E9AxKt5qyzJ@4E*=8U)9R?B7=${8OR9jy^SIXw>c$bojN(ls9-tFnTSKsi>=uKQS;cm|Bc6y@Xg1iGN@yKuw1n3OoqiPyys_!>MJDy2M)^s5z2Rf7+ZtV#@L_U-rj4~#t$HVE>R+L8UO%s zE}Uhc<2QMMmIlOwh`!xs7OCn10#SbT4*TH)og-+WwFIu1 zxCd79>QSTbKYmzOhD$6Iq8Y@X*9pr&zIAGwZdf_L}wnsSUe1aT;a zOIlbCLm}eK$;lb;zkT~Q#7K%eCj_be6SNw6+Mb(*--aq2^q^paj*5Nr1`YI-n3$Mr z$@Fw|U+yQ^ZX>!-q)Qd*%b-Ur@z~TAbe>^=ni#R!bJX$j2Qw%#6<9fs&Ji{SzySfo zjI)S;_+54NPFVbhp$G%z_72XC0638#Qx;jCkQ@wh7J|AF0_cJWJ*&{h);4$Gh#`;Y zOBw8?px3ehyI@rE;?)EISivA0D!0?Bs;Q9&ssDUS7~=bm5(@P*B)X z0A&|s83W%r?Av=nWLdfng z=$c`pkAyK5X)OK|DLx|sG;&<2+=A~UN$Lk)4 zw9t?566&EIUXgO2G*wF@WIPe8v{uQEZSak@O>UFucap=a0oIPIH8#pzn4FU^ZKT1y z1}IrjnjkYFLp2Z+Bi{j*wm!-UPqwP5$sFSb;wWM;7+S1(lo8dk(A>f$y!;wuu1QQ3 zphpb*eZtMRsnz=KT;tIkYtMw0)MW~zDvJx4o+!RYw)g<9T_HYOHeMOixGnS94+4nqP|_NsrR$E z7o^Tm{#DXSmcKD5qF6F)&xwzZuZE!E`<{guJbT^KSTh)!5EfxZVg|A|JXU8jty~0m zgYZSqFlgx&XQcS&XgY>eJoaSzTK-$FkvU)A`x5| z@h`K>Mj8_%Nj&g(O<=0#1gye4s8lV4?iq9=ZxEF{(djVmqZkJHw0Nga4~hotHf(6@ z6iXhLn_Oy>_Muq;_wrHJ*+H#RZ_sojYcdoem$i6o!w6|6?G!k}mEq~>y4|P?DOxpN zR)jnPo|dlVep^c#Eri?wmQu7#){&*KDms|dFN9qOXHE#k;sdJ-V{z{H&HbcfrcuX& zBrBY(357LM1!P|)CXRp{tUy^X^im`%>w7FVkb|znJpK0TDILmOq?R_kk(7k-aOc%n zq~x;tVp>Pm@`I3?*4^?S^K^=AZpxs63*RWb%u9j5$LP1PG5J@F%RHRElrI8RsLXgG)6$up(X#{V&Lqt*$=?$kH>|@?#P?k*!GA<-&Z*ldTU@uX)3q|BlGU}jWoBVxW}>&p*3in@#NwvF zk>f{>a_=#=vAJa}%FAp1zklF}g_RMnPu_jbhB`+?X zJ*9FdbfnA9Np^s(c%rVRru*>&TJ{GYlVsyH+8I@&-|RKcE>coWxO7F+JX^YfViU=% zDIE~yshMp$9`jo9uvGb$wqteUz9Cn0D+(%V_VzBh6pS6t9S|P~9q6>Ios(3K_E*}# z{$R^#|J7=CVyjP+KOZ=^iskQ*Shjv4|39kpX|WXfL!ZYQVe$!%WBb$o!5_}%vfuUI zfI`nY}%dujF)(Ci!!COO^O@Dv#L;S7tTE z%1;eO`}X$tdq_p=wj`)>Uwyj;f8UmA^dzgU$7RXegN{Yd!opW7n*GR;l(SP;)jFT_ zg!C5XP=-d@GK~e9uUEgc%*otq^{lv`^~EwJCnsm1xAcj9YmP-vxWmkFmwRY{7jNPG zJ@-vJyGP9!L&fc%b1KL9S3EI0_5Atsm;8p661SBF48Nr5?h>>0n(KD-Eq$`HDa)iu zZ*+Wd=I8X!&-Clpub2Gu+juR} zym$XTlfZS_KfkAZE6lZA77PWM>6Vw~j^*{_S`RelSZF7x#NWe}aC0Y>+jDQcd-pCb zK=k&ofz|S5ZD)6>=u^=RX|8`(#6t5X4ZGgmo-8R-lJ3mh!L1%iwKk4V|I-hRo|J21 zsyR2i@}6csSIoJ2ttI7Jo_N)5(J*N_IW^I+F`s^;g~>h|g)48&I0Kds9XgaaJw2_| zHkW*!Ghk>khX z9z0m%x0IrpoiI5)tr8|?r`Foq>RzdD;$)GamYgs$IvRj~Jbip>GYhZf*;aOU<4b!A zo!z@#ExS7!cWmEIp_*wp&(`(qyEm(ZW(7|NzmlHvWEm$$ zZf>tL4>wOV$)8BSUc;<)=i6E-pIsHxLro&ii-P)PJ~f#&t;tt%Z+%;ZrN_g>#FTV3 zxA8||j(LZaj12A1g#wJ8b1#XXqs!WM&GSSecJ*nB27UNSc1x=6AP$szsIM z^>kK@tJ^Euj?;e7OD$Rv6%F&Dmz<9*&cXp@!bAfiBlnDqjBKE#{W0@d`;d@O3&%Ab zojtx1vy3dlW|1aMF~^S|KWfn}enw(B!?5bk(rC`a++0~{sk@}};ubbGc~es^Jg8{B zQqSXJVggR{zr>fc(sZclPy9Z*{jl1{+FBp1siSsdo#JIDEPK~j% zseZ|a-}3YK_aAUtzj@aqUtfCBu-Y`U<;58+`gK?_SFc_jY)xi4Bo|sfcl*lQTkOtD zvuh)9-#o+(2i|x7T)SoG&a$_b-#2X7P>k0_wT=SbbSB$^U`>C!DBD4AK1os935Bxn(eS) znGBy&cl|x_@SBjOon7pCU)E63+m(Zi$}uw78Mh{XTwF)T{NUlk^{6D*-``t{-LrYO zsQ)2tvL`i@TMblAGDrYscSozPtV8+>;$lT8A$sI?axCRkdf|U=p#~FE2iEHhczG zbFjkzU#}c1w_DU^@MNr9*amv~W4V74R1>2bjJYc>-Hd7fVsQC#1d0q!?Cap*qoSe{ zsBt-Wie_hLr^mWN4qSS{$fNzvhLe?*^?`>+e_Q`xL-Yf8cf|sS+t?lx6BD{0AN_N+ z$fYYve@CBKD9@22K0CFYo)s6L#F~k_n#+#|ap2&=Pfz=YTN1r?i9DAM;L^3QkiWl< zPCd)`S(|fh#EG6;vgWNxOiQz)RemwYd(zX=j*!b_E8O(BoX zyDL$7N)uBHJtHC_+Op&&W*DCA;E9rtkd%3O^lpLU9KU(Hpj?<}Y2ArGX8yu^_ujj^ zdi`XzK;5tDCi!h!x9X`M!v}Wl+I459<+6x%KW&7|BB!vhu)2oEKP)U&sPkVkjp(sI zUZWM|&$M3gFdwK5yM*Fq|9he={mq-}HNisSbDh=(*RS(COdC^OuM4l4sypF}z2$dM zc2%SjMfzY}Jc^>z%ECa>wY=6XPHu(QD)7uUY}#}tv1L`-oe4cO2`OV^4mOv0_KO!U zR)>iNVjEiz*0X0Gt9oPJ!EZaFF1heyo0jYHZPU*wbUO1l#%83YrK3=TuIAr)W)yDk z!KIpzcH{FAEyq!zsOab*3CA~WbHkMZhsEc=-p4xoKYFwC zIF*g)ZnAAdj#*qUcB9V!^q1CYwE|n-KAK%|!Kb3zF`;CIzlK*FAiGwoO6iXj{-uIxm zc&L;&GZTf5o<0^Im|t27k*Gr{u8)yrxq9uI{X$=0dV0EUcfNfVI-hyRn}(=!n;hoG zyz}zJ(Es+XUcdP@>LK=iNLTEE@u}Ar{WfgesJrreA%Ch?OeImx8)b={va-CyxvBmd zCLvP>s#B*}pZ|$~&GE~#==YM@G$#q)bmz0#;F&-PI zr>{TMnJa)r6Qf<^@*4{zf3os$bE>Lx=m|}Q&W^RAA|)^R^yAc$nX3YM524_{eS4e~`e^4P8W|7p zq{!lpY%qQ)=`4yf?eB5@BNXarS)}jHEY#abxn$P)_8AbsmFe)#&to@bUvl`2EDqp? z$CsC1Ff=z${^Ya!hI&Mvcg?qwhub5=9fmohm-D9^FVQHF!lkPL46{AbWoh(SbQXHB zqFch{)Ntubmjt-kj^B!GG!{(2lb0I8U&W&%nr3lxa&p$?q7o$FQdoEdK7TqWM&D+B zjbA_@ps1+Gq4)72uST9LZ)B)Vv7MzkDL1?G<2$>$TF}GH{l_Nzsw!)0c|;!vSMz=ENm9XrIr*2TyRs}_DA_YhK7a|lnYaJVf#sgwQ;Bd z{cUB%cUK3XZYVB!-(OG9b&^LtZIAq7sKe|?yqUSVs)504-8RalK>sICo|tyLN!AU@ z6{gGW&}Ha%u3gw&86RhE282eT+RnmqV?y}E^0eQo=Aow8043=I`}cF8vkTp5O>)XP zY{qKsYT@6gy^m_9%dUs%1tlhii;XQpyyuWIK^5q_G5q}e{=UAxQFPPHyzZ^5anY&lwYPWQYp#UQIIRNFGaj^L1D!p8 zK13$-W|t_{Cto%TV5-1gG!E|tCJmc6pp_+^~wmuusbCsPt!SO_XVQ zDJc)#p!@glfBQ2(e@9PG&-io7Zfts9bb+;DrmTR>h0aSEIPlhO+vuvWzRv$%UN-4^ zClvW7fDug?xBv0u$9&>hnmhoZI#n-t+$C-0Vzg5Gssfu(7sSQIy?ol@l@Fm#b>vta z%jKmo99Bz;betRGpm@EZqoX?@DH)DOw<=AqlqNqv{|;)bY@zVNV;`S>>}~X=Z$m>S z>MO;o>3@~)^JSD25Rq6K$+Uk#hqjA_%v9ji5Dx1nT7v$IZC`vrC~7Bl+*%zE#hcy>sWdY=|%gMa{!J@Al8@Z$uMb zi-?I${qU1#4)17hZ_Ky1URj>gelqu}#dPR%DjU9U?eqY{mMteyKxJa;?CCCCyvTm= zpvQVPr!B?5a)l{x$45Q4A2zO!q%LrnsmwgGlt*r!lamu8_MUE-w>KRy-T^+oXIL9d z=AVmPU2%tK>oV&^mSzsekH1U{T_fCA&SH^&3Qwl(jqso4IW{#lHIGfk!YE7FbqfF* zUVoqKNII~*-gGB`zZ?D$uM!Xt@Lu%-khc-{`^>dWGz)_LPCi@3Qm=jWxt|}MDm5Nf z(v=(^JXGc*>ap?>>%Iawed_4w7@R=$V_|;2BOw0sPr%XN07LdZfn5@#jDOY=Ma#tz5Y(~h&|8l4k4k&==^g`U+EHEn5WNlwmowB545 znyKXbtB0(5e^!>S=XnIaMjss5=q4d9{>a;#r`ZK4>|=%BArY$|8!o-z)~-+W*pU)tNrGe)}%h&`1|VRia-YSrr18gI;)0EqN}EzlQOyf;2C7)MbLG0Riv zWW9(Df}6l<|KlIR(fm5rtY05;H9YL|p$MnO`eGq`8NXd{{8Y1PHZ8N@BSJg~fyAS= z8frWc{oGBAlGQWtyE#F1lN;7k5KnTs2{_m5m>7QRewpjFp+QE@Slpb zRpog5VVZ+?Wksewu~_`V=9DRcNZK{d}0n(DC82$P1_K;^2gc~wp9;EEJ^r2dQ_e{hCT49s%jIM!jnmH zn?VI!F@a<1MJ^KE-QCv{`7`Yu9ls9_8qdyS^VmyMZ&K=xB=Pd@a74zciNDoN_G$z%E#38-QegO^7{+khkb| zgTPNeV&9IND=2I!^JS|$CX0?M;xNqtCMrb{cKx%QqwB2e-)tx2a7sfiA*wP67Z>g{ zc@ak_LtXT4y*=8#eUH3+sPBmt#;-nJ$DS?!JUEaVgc1y*{q#_>pP%w8kDT$Iq7(7) z@!XnOkBAK6vb@NYOixEw+R_p**W(%iRxRFP}eQRlH zDO0vY<;BF7$&cIQNon=l*&Ax_j9&ie@#Alqb&^$nN0x5e+SmvN*=cKQqt}*4oqOWd zy8DDnD7sPCub}jgtLep2b;XN6YrEEuufsVPV3DJo-2*H)<%UZi#PoC?Tn>RCK@mCQr}wnZU4riM-J-_ zm{LBx47G#+b~FPX8_BU3vEdG$*wi81&Xw1PnW^kkFU4T*l9N7e_2WV~Yoy3jQ}&I^ zN3;vg1dpI~ts_Xkwzf74sIu6pUqz`WJ?g6K*kwZ4WrGDDW4~?t=buwR`gBz+g2u&= z6kcLqqs-tpe2P{U3Ds)IG?E9EQW&;(oNhRuo}Ep>>4;BN3+z95aI)pHwqm+osknD| zh@i;_KxzBAF1vWe=yhPZKd=#m^Tq)Km7}HTAX1z)H8l-?HFWLTwIDIOBk0VpEWdxE zWjsoSC0!dPR)&sjKltjQ%)0e$xZjV|68lQ%PwbbJWEB$=E4d@yFB5wF8QRv=7k%G< zcI=P>_jr5z=MEH`?*Qk$grwTr2X)TgrJ?F3;>FkQH3StUc@TK)9n1tAxYXuU}7wiQb-{C}Z2WdGn{HCO?26 zMQjAg#ld~=Y=%zb@C2y6I-C#^a^=;-TWq2>ao;|fn+P@MjTctoiU|U!lbG8Dv7@42djmzPxEUm11 zNu&8yLJ#;Np#O;$fc&14CrU);50`hgqn_E>Lg?)t`l%Y39{bMwP(2L~uWg7vPo4qw z9dNgC%^8C?V7@!%gDh{~rl6(DL`a5BPul>aEMSK}_Vnbs^{3R?f(QxnCzj7b=V9X0 zTZ6Un4HuE5RS?Wu^!quA;Zf6O4(!hJ>gtS8B=#IV`V>p+G3qTp;QwhM+B&tZJ?VJF zR7b(%PMl5uV^W@ct8 zCr`RLjAnmUk(TyUd^d74G}q9M=~|&v?m7F4vBEo}?Ls9Pc<_nqS?`=|>*z=X)1JZN zVt&UxuuF6q06XDI&dtiw(sR@vDLpaolCNViK3}B*x*$_{y{+S+hX>cOW5*0FEK={? zyQiYA{<6KuwW!TJ!x@A)0gqNXv4y!0vI)h%@X7Fv)Pfk(=D1gY#{q$Xfp|gz!F>82 zih=erHf4oYeV)t`4q3V!E`S>?>H6n|Tvwc;Z9r*F8(&}am}@C3J3lkjR2H{s2C|H0I3@86%wefKV5tSc`O7?^o?NwZ_n6&stZM$>FAptPbuK3|}{ zg!+1gzLAlnUAuRyLM}m_>whZ|@QdIWV4?TQ`all-&NtJP~c2L18eZhkQTyZ-PeV z^~$z3jkfmo1l0S4fe2TvFcE7hPKpY|Bh>&d)yXb-kQCKY&+T-|<_4~*vJy1IY8EMZ zIq@c!QOREzy4*Mt&6`O; zYGG;V@Rci9RCBEig`m_#>uyiEnj7Uo&z1tPifd0!0MQKpe5{CbyNq+-lcn8N<>d-c zD)J|1XVsX!rQW#=oQYQ9(>%VBUHXAsY)N~2aJ+KtB${dG=m>)bG`+&YLZV9KFZ74l ziHV(lwDdG9{huh>@)Qq&%RIMJ)ggb0hNUR%8>eAEd-1uj@aaxN5S48`&U3q&z59K# zthwlb%hw;05C2gx*BxzC7rwUkyG?2XI;gPBZCl$~yWsWgAH&#H74e%`X6K_De&OpG z*Y)ImCPW_bSdH=20)~#Ei@^LgyZ&&bH z9WpX}=k zbM`!V8$H%he2|C78yEpn^q8&M1CAUl#)+Ak($?15n?~n0SVp|%T^$0H78Mm$Z<;;7 zu%LV6#^E9^caBrioQ;i*Z*51J6%`emlQc3ftTx}sepa_D@UE<;CNogLnl)>nyxqyk z+;=wj$JeiJfc*r>o0ynDc^VDC|F?PVITm#& z`!F-OZD&U`AoxH0oGh@}^yD9LekHbPau;vxPs@D>D)p+t7+Mm&*Nar><1%x@?f<$W z&?ln%fZ+^=o8u`CBhP8WS8-iF=rDDCcYJ67B_`SWC^mLrw?w#zG$%M< zYwLpR?yQQ6c?Q8(rkcTpqq6@PQFszivr#9<2Kn5#L~*|xzht&IrSnI9?%TXY4jG*m z&>1kOm%`?ng+suMq@ky0X6{3k4iYe8PNt`&C1*~%Ta*Ed18lDJgZn0^w*vq!pz&+Y zpFh7iJ#rk+``Tz|NJOvl7|?cI76PaF)ZHBpWpSc(r}j%{x(^>de0gKe zV%=X2y%-|TamU%DS8GgAo&-%A*Pzp{{GO5rat;zUX9jF6dH?<{`p++DDNM6=v(-$3 zHNlq0_pYJ}lPfEaSB`IuUcWi{$~K_5YK?b-@Oz0x0o=}Q^wuf^1`pvv5+S0A?>Au9N{nqxf%-#)lY z4dFPr6?DgK2DexgE*zvnjdlWaBK@3@N3*VX0a^tP>7YhHA7!}HLB}k@8|Y3*NQ9vR zT0ziJOV%ufHct2c(#exlPz9*=K-|TS?5_^;J5+}@(GUK*m!H2eZ3MdcE(r&Jd?ED~ zR@T}p76qk_;{|0n&>ie7`>C2^8jzkVKI`I&vdr3^6J&%VK}X%VVZ+fRS9HP!to-A* zhZ%?f3Tfgypv?Cw-l88kbpCwr6Y+%~er6qSWQ$IvY<(s}iMyJ? z|54$G=3p_I^k@FN@6ea@Xm)krwtoEB36RypZ8ahB*FQYi=rJH>JF-VYqDw)Osy57B{2%8OC=%XyqUu3Fw0Nm&+|6u&sXmu2-*KK?UB*%Ibr= z3>jdbprC(N=e4L!M{j*Ssb$}{9US9=l@&kw^D%!KI6$j@fgkmmJc({G-E=$DOr-9F z;~!A5(w?3kjxhW);XzHUbEAsBXr=N}gwu!Wom!EG-#@)=j(dN8Y9P~YTDWVybK|^C9=L+TbIv;YCKj(V20?lvp;0_|@PLsAa+I)`-I$=} z8|wi%7~W5It$8_xvSq!zcw2J*>*_O00kFJTC>3Mo0hw9l{*aEEu+Tn~lw6dP>xVe? z3cjUVp?^6D3ds6r1yB8rSFUud^4+8WTMZu9al5h5S05|5FJF$+jtGlzl}qfeu^;n3 zM!S!GfLp@K(vlsm2P=w2mA%hEU*GSLYumVX?Qk~uf)X6LRdvzC<`5C#vm3igba-%H zt*?kHD28{=-K{A|0+Xj@6@Mu&x$x0=0qdLWKR9|6SWF|`1tE2kOWZxIXV0l(X#u4# zz{RkiZ8H*a`F$rm-2{5Gr&RPe^fn6lmgC16Rn7YZ@BGq%iXj8|k$Js_UvmxxSO8R| zv$Jy$eh5^Ak)EQ6FJIJ&JZ$9(+kd1hFEG=njyZd-q6WThpq9g9V)6m+Xy)9Mb#fBN z9sbzTB4okB>g^GH`{!gA{fRW)&qqLMKB1Pk1jn9-!pbkpMi-ru8Sq=dGXhRSaHB`3pV{Fh46>&2vYis4Q z&DxZbwF)$;har}G2#)7Z`AkksC<4OMu?Wk6VdUA4HgDq1*U1{keKa&OiUnS5!77-_ zUk8?&fD@{0ZB?_sb0-ddUjoW*|HVL_y?akf0CEvpM9sy;C2ii8agLfxSh$tL{QC8n zV0e5q8#gM#t*q?mxZ(~E1}%V-GM#$6c1rr?P5(3nnb`xbh0e7{syYi1=NenI4($+x-$r~)Y6(}VxUfj?%TI- zdt{7!#Ld~;xyoZLh0jHkYUN_6PwC_u2h<^FZa? zM%}wamBo|!Hau)9xI<3kd2nzgP!loY(K8Evo5-mMlzLdOv%4$w70tWeZTFTsbMS(H8s8F*d2qw zN<)UyfCtn}k>jkB&C2qYFnLKR2yFnASpqGr7pMTvEK4ISw;%#6!UuM7+QA~)b^MlF zSDsy_%d!Iz&#^x1jRnu1J2!zfm5$0I=AhMoR!XWDu?T!GZB=zmt#c~mu+p-!fs|ch zJUn!$k$F~T$XuB#=~??;kdwO(noSfJtakz|V`PF(Lz8$ZW|yL<38V|mP7A0_U-Ayc zZ356m8EGLYU)CBteyEVtUtRw!v7rUOD)sYmhO&yF#!m8U|6*I+E+m!!wAMr5LzJR1 zRr>^(x1Rb5!%7AMico|$($apcsqv;>z3$djzwAkE(Fv3tYgmnVme|!)_6bqI^U`x; zU6!|QMFOKk?;WTxf|Wr+22hG|+)2PyYhckQQ>&hWxI&O3@*aW~D)CD0$YRx{;oeP= z43?dpow$U=5Y7k`TWG1hFU3<6+#G1c>`U5RhUT^e0Z7IDPu`o#mO&Ciq0SlaO(}n_aj4dV(J(;BS5H>vPBE8*R`24j^&8 z?joM{D$ewZZ{NGvrY6RGH_3edlEas{K1En_cD}Jpgz?(1bFNNR6J8b~h4uE(9!|zK z^#!rFfmQ%xH5s=7d&jG%??u)_9LSuA+A47h)b%}Yv20|}%#rsg{``3-FE20pV|q?b z?B!Ig9eqZ?G6Yp2G~@>79Fd6}3v-6D20t4r+SPY9kAXvV^z}==r0eH8%p@oV!;tFz z`n4FpY-w$+j|hRy$d_k;(Pav&{I#{HNG76iariJymU9SJ5pxh8z&b$PFepjDlocpJ zX>Z>2LuRB{57dGyH1{?>d;NMpSju}WmGq2^-ikvJKPZ7(dy!)x?GB6b+0&;w9NtsY z(^>Ohpiq2*vX0~gvkwWB?A^C-BMr@}um52l=xFh-_s4xI31{1W~8q^fFdus5&$Xcm&qrf>35uu=6g%=&EdJP!uw6SAo{z>M>JM zQ8Ao55Uv~^9$r~dadBp>>k3rCHe)tWnuy`{>_n?uw-m5UhjG?QLqkJ51_UG}wWzrO zuIt|Y_+fAxaioCIP_rzj$rlx#oDB1Ke*IiOH8S-+l`YG-qvFcJD^8npNngW;le?CG zN72y0AP%DVVf?dw*DkXQnLwyB;6QPRcO*o(u4o|3cLkQW3_i#~@keMt87glm4K1w- zj8avQ3x&_A+LuXd!9rJt`lkd>X&8N0b?1?*M?-dEc?+2|?)UrY@@LtO(qh_zJxp7L zG{q|_5NKCUihr=UeTJ2djmpN28$AR`jt{o+QSk^g=ma$ChQf~Q8?l5sQT&zu`R5<0 zB^7CKJUPyj0JoPoDb0Ay{)vf+=#6~s@(K!1gTX1!*=HK7$G8l`$BMEHFkD( zE&+k2G;SdwRgwxs4}aNt9lAD+0x~KHG5k$5-iFP1CKzq;s%nBt#V;pBFcT2@a+jQi zRiHwV4p1>QO=x%nte`;fz_$g6r`M+!2jDZ4M8RK2J}CFbNnvaByaz`Q6)oi)pt+`J z{j-&a8GZvYXo%d{h0i>D_6!b5@UwmACjrd94-Z#9-gd}Knpw+f;#_OWwJJ!wWZ5Ga zhk#bcuP55EO%2Icj-h}Of3BgSfoK~*HQj)#AI@9su*$YB?I|rPw(0iiJ{YKxk(?N2 z*diXot(E`spM6qa$H#ru5-G%d*me9VQa6l^5UY!Sxk7}n|9W>l*^<~q*kQ;=v5;6+ z^zvpl$#2RddYW-eLEgyq6rA&Ek)B%(Hv zT#-x=Kc$&jaz}RXhH_;gRc5H~MEgNDb}u_SHEcBy8F_%Snw!eV)GR z>^PD|L_Z?l>%U~70S!)aX+*$p$>!EAj%QO?rhE=54aViw)!fgVjV{T^e1xYSN5g%k zmWrb&pTVXOlpUJVM}s9+i}CzZX(BO`k^WrI^uPh7lo>A!AM!>1DHmk7DN`1(}`e3A4HvO}2%dJ*+_9UI#O=w6b6UaAO$ zZ9CpgR}2yyuU#Yw@tyzmM&voz+3(`2UW(ho2F5Oz@|{F++lae?a8_HI?rI5#>7yaD zkmw+>@7C7t5&wx?CZmLdAR=E#(?vB6U67YwKRqgCBN|rWjHJdEM#gfOGqNd!_61yBb;ZM=q09~w&i1yxGQNOUv~kBz8oKpMYMo>64{k-ca@2zRTa1YioGj&ZBHcm`V zMxnfpfH8nlyt&y`N&5e-Z>JxJSs;Flzd8T`@a0QJ_-9X?M@SSA4r!Xxf)!*Gv#bg1eWopFW@rWn0S0DgWEE z%&f?KgHT;8HOZApVf_b% znGj3aFwqu{E?@;fJySGiQ|wl$f>Rl)@k-~M;l-k*b~{bUwnUy<9X*4bP3o#DIPs~bX0Q%-B$r5k1ANu;n94mKU@l~fLp^49R)xhj&UFCtXM2%60oHbUmT2v4)~D$jK@*u zMH_?+su9C_4+b)&5>L#n(~Jyn9vyPjN$>Op3S??@g6RC0c4LG9F#cq+W_G19Tifbs zNB|s=41tn(x9{Fes6EVCPnxh_i+BE5k>t!)VHe^x0>;Sjx~L*{nSB{_lH>w z_FA8ydKkfVBmaIB8xqhP7IXC=1s4WPxF+ zrKh-OnCekphmi-IB-SidK5E17ao0c5NYL--GeLV2ywOUF8j5xWk04O@nwc3l)^KS_ z$!e@9f?iatvQRJ)1SGALxKC|uLD((ZcJHPeymTnzl21}n675~tv4l8OC_dy`LZQPV z1_`=iKN$oS;u3Gc1B?X7$;lx>^5JOd!vppev*D=!)Jj*J#Hf{a(v*Lpfu}sjdjHk;B zhhks9{-I&_>+7kKH(&+!t%$|0b^~te(+JFSh}-k8$txb6BYOP!FKA+`7Fmw#_oBPCqK=UKP{3nx{wxgN|N}T(ga!mw&7Pw#xgeZ?0 zuvH?QVk>7l&fWA^B8(4S<(c6BgISW=3!M2K9BtKC{7Vm0A#N+q6}t@#LXKPR1t0v5 z`0h6lJ|kdLsqsz42#0?ua6ES6_pjCHSrm(&Li>cl$*N7o$QLmI2SrPH_oDBRcnZNT zt#hLtfymQkK)Knx>-b4*MB)K`6VQoAhvGxvZ+5)L7sfVw`5?+3a`B`Ad3=rr;M>8r zgaVnQo_-H{kJbDy-9-#!%>4X}R`!Iw1}KPN4o2}iM^>b>|0Ry)~duAf;0a z_C|AC?(_!B^8sI{HycVT_IrZAS%r(Fq4_5HD-8of9ULgHoQ1X4uaSc>2y_NO4~_8K z$cP!gs*6W;O#o&Z1_kHZx9<#(RzAiuG~&@<@k#jM30V0FxC6t;<8XniIsbaU-rnaJ z0^Zvh7+!;S#6k^=N911>wV`=sd8q~9B>|#80AF%5D#BFFrP&*P9eA42RN3$YN-}^S z`o4aR1jvp-o5IteQ820v<$JvVaR{<-0PSCUE?{Y&DDoUF(dX%LCdVwgRe;kxoVh5? zxIF<#L_5HA@>h~3Oda`|1dvMR(O3|o;q1>^na6oig-9aiV4WTMQ)NqwD&_TSMjm<^ z8YOHCfm~S?75`Puz!&~XIRiQ!Stfq$HQ*H6b>>6CB{a}4BJ0b-!G$x@(-nasg`}Hs zCPI22HYQ<{ck`ZYKy!>!4QlFQS|B~w7`Bmom7%WI9EN|X53`rJj9kX_;S z{YGagSbrOBr>x| zq#s;su*3jB%M|>IkgIm!gh|QCP`TW7HQZ^oW72~RPIwsl`1ru4W(r?gT(p`QR(+!F zi?IgeDZG5X4-J9HKl-)+B8vPcGO;Y?A;H1Y_-*dWD(u1k_+NrSzW7dSlIzZ2Sv6Y4WY!Je(o1xx#gj~Fdi7DKhFC%Y6EMjsIDILg-XE=w{C)v~x))0aI z3b_<8j6`DCWq}uuJIxb8=g|}$jo)ur=j1+kfX$7E@BQFj;0CmYJD(&YpAdDyB|Q(S=NN z{A#+o3KSMthd!E~`TPXGsRc7u)as%hx0!weS^Wt@$cSgn{+G{Bw$C1S5zM47N& zm^8%7qNCVQ-nX_2*DWcA>f>QIAz28}LGq*!f27_op({dy7Z9Y82TTM6E0v&wcCAVj zdjNhnCC{f%w~$#Kz(u6FUnt&62hjjXj#r}4U{8N{hg}J!m*7JC**Wl|@1vvUgU$%K z(epur#^6Q?m^Ap8Putdqh^;muEe8bvFm{CDcL;y9&L3 zz-!nf0oMH*$*faK*E>h>6uc+^{6hfL;{T1K!N}gWYgaWe2rXSwO~8xoYA6T)0_K<4 z>ku!MM)c_+su02i;{JMC>T+voNXqof|hr^oCdhU!D%+2G#v{ex7YGHYj@lF7IfoW-e z3Z!pt07Y!@rZn9%tSvEh)JV zjNX8=fnYL~?6dv!ql}Z$((e?{FhOAcFE8!gJLcp|m=@vUsyrI=a7&a;xt;6=MfHWQ zA|Cbw{|{!_|Ci=gZW&4S0oiMWx6B!(D{-U59dmrPM!57<)BD!sG@JO9)S#fW z@fb3C2z!l$vyl>!MrZu8AH|!QgCS$Sa?%l;c!?PHoBbtezAOm_F zwzp?i1R5T3gdumTW3Z0|8No9Vj1DL9F3K`$1B`n(mXe6VbJP`L@e>n(M9rS~@5KGs ztDO+)>Fayh4gadkJR%~Z5hiZ0bl}jTo#q3F)i@{(9BV((drSR+kn=M47*r(NVQg*% zY0iM>&!ezfB7gt>?H?T-ZQ7lm+YV%e`7QVp9L0mkr(m=_qbbB1H^=bCjYO0mBP(Y! zv!sS8DM6s z%+mMossFY2eoah}65R8hNFB)D!MfX2-Goaaa(z7VL&%d6{Q{XW|MCSIJgOH@w}yQ1 z^f}UIa}N459}#+Is5R#wJ3JN-nMV#vx zBWF4%ck+(@>bsK8)2C!=r9QU3uN`Tlbl(D#ehG<0;NSU`i$MJ(QVQzPe|J4=B-q=* zoK0wbsI0_re|35-#6rxf@;QcrUV|x>f=6JaMrW}873RsUzI|9r6gSX45_D4sQHEu) z8ETV2`$~LlI7#I9qsx$KcsTM1D~Z6^TXXX4*)?vjYJABXGj?Haf}y~%ME=CxqN0h( z%7B?F$GO6NZR*gePy`JTFe6eD<|V*n&x5j6-y~QMBiN^rr<<6ay$&9<9OJ9Lak2@06# z3)J2*p-Qx#n@t>s2|beqyb#rq-{}4R9omhMX5jPZr&UxKNQkn#yKr!Q!_ag=L{#*Q zxhast%yVY;u>%KYuWdt)WHQh7%ISnC&ohbcv!mm-kZw$S%W-%k}B)ttt zU=T;X9}%G)ejBXxpr~jt*x7RoJRqn^vW7^iP*2a?Afq>E?!6?qh#GMY zxSu%Pad6miJoz3j&oY(cuj3K8Dv^V{4goc^4ifXEjhG|^^P=Th7R2PEF$qQG1bj?r zEnwl-fr0ZF8$&s90>;N&8_@*d3{^uDy&8oXF!N(PXM@;#_z)*o>oqq+jFpMsU<2_m zP?POjQE^ysHpt4=qntyC_>yOr$}WqI;oZ+i18V^4E*xUNGFe$!*aYtfb>(K?@*p>Q zPV_wc1H+6W{RQs;Y{>)hA05v*&wqQUe&q^DG5P)E#mLXg(1xcQZ`^=%hk@@5cG+yx z7OzGX_;zWvB_;dnTw-NIJ|PEZuE>fJCAjj$2BLyE@nqo4*3%3!oabN&q4VI0Nz`Sr z{gsUc(+IdmR`(m8rk%I~$sb{CCjXoL>C>w)+IPLl$k!@lcjpFn>2TCmFAg3g$E5|+ z+S2vc6Vk@KpcdQ22St{=G5{JHkblKCxLO8eBBx|+eOcKvh0D#cy(UIR4-twh zwQn&NoL^ids0}(dPq*9#T_*T&obmsh?zB9>{DlPJ;Hxq5Y@(wxEPu*QM$+BDX18M8 z7In_J@%2V368MKtLlm5+*8vz|%&-jiAG_I!g7B!qG_Dt7w$;RTEa%F{r`HR^DT3Jc z>6bVcmnRq+AzIkJaSE^QDLUY*QPx4vsHd&hlh6ohF=Q+TItNBBO5CVd(_SlCkH`pa zZVe1N`@Vq7$6bEI%c|Bzh^tiO@?S_|?Y`LzLWDfVIWW)Kkxk1Y?1eYpXlD7sO2L87 z08yns@TSY^>VS+&pe)e-#A+nZmbgNokr;R&@*$dpL6$E% z#!*BJA;2S7|M&G12M;n+h|vVN@E!qpv?KsDtt`OS0o2+`w}O5Q+ExacPip17jF|jOUAKKik0(IYu z_3wd-{7rTIo;Q>wzl4ju!%gBC13DM-G^(wB2$Ysg3>aZJe+Am1gtJwOk0$B3WC`^;wY+!;=v0ed` z9L(v+Fx)iSk+Xh!^)yDkJP>@*F*GdQCNKUTbJ+JFx3Di`+>l7JXqF{aRZk!-hlA9Y z_Bu)1S)hvab}M%-*`ADxnPQZWGr?GU=iDDWP!G*P zU0NH5nWd=kaI(e6(t5j#;Eh6dW&kUXK`rtyym|8`0Kz>~`PFG~FHo*9>lDu}3+F#A zBSQ~p%|j3-DF)tJpB}_zf^5Pfk!2MV5()svjDGm{$h?3gR|}n(+)z)Mcv4m3pX+x0 zr&u*O{9CNN8(+4cuhstnP3GT3171hb8-WNnPK>iJ=5q6YFG_h~2gsW4)Wvae0aUm8 zDz``XA-=_&= zoSVDMhNRM~NzSfwnOOL-g>AMSaT_%LHRCR9eloG3 zBX=v7Xav{Ta>qM{$^B#74`0R`G>Y9fZ(aAHJo@z^!meW4yaQ`k|M&nGdZFFvQ%hAf;0qlrz>JtzMofPf74o;=w1k zmln8QQuW`GTS4W4n^X536PTR_RA&GHj4tZzJA0Gg?G+YqCQAO^V@$;gI0X%ipFRuu z_n6!mPc4^Sca#Bg+Y7v<^5x#uj5Ij?i|Yorec1Ky=W)s#p0OqGXwNC?$i*_$Wyc+{ z6AkmfKyC=$X_*^QarFW&u9C?_+^MKCd=ux~hP<7;!-1(+?d>KB7-qP?MtE*t&?Y2= z&x#ztZNAWd8jnIz?xK$MiRZab@ezMz+!1CSiU+C=gEQ&B&-!++vriI>c~Ygr0~kAyc(HM|4P1!XhZ;DFO5nQ|)ZR(R_rRDnaJLTh`GZc4}`?$vlW`E`mq?>fxSdKh+=;eYLsrrjzA> za9^&etUsL+Ge>0*+Qxx2PIHZ&VIh}!ZQu?AvhL!KOI6KrTF$-t3Dch0g;!H?fcG^()fJ$hO7C;4zm-EJX<&{?gn#QsSa3o zoj!|`a<`Xtzqwgu#;%=VJ;Nu9Ty&D}yFJ*nCdK7m@h19hUm|zk9lN{c-Fl^(0%n&Z zF2>2yUp>N9RrS}dF_35p$7`I2&ESn>FfSaNCdN z4$LEZhhZYWSJ&iWZ~zjP)(Ld7ZqJoxTP_tDSi5x7%kyey)}#(Qzzunk3V5Ahnl-4M2(OzJ(A;L3>aooUM)@8qq2&e2=+`OvNaQ=g2)eBrE} zQ7@(QxuhXDzkCkP%cfTY3WR4l6J^o%g#6b);CD$iStjifsDJ8S4+@;8uN_;0OlCf zI1L8|G|3}tJD18=5D)U!8X$ReXCf9_+SqUp?y*aK9r@aGe!MS1D88SgU*m0nnWpuTciZs_&UR$^5)`97nDHvE(gnl-{~89o4O5w4 zo*$4NveSLBKf4+@IMyVRP2AX}avxYP{prh;iNpg9P2 zoF_G|T){wLNFpqncw~?Rr6oPN_nnEa45%q`W%gDg^79Mz^xoMU;f^OL^O7(9pS@~+ z!LwL5@Penm?$vAU`@3LE#K6Oh#DCS2lyk?;+n$dLefsq!gJLrUS*g2Dy06l1)|#g> zfWX51kNucPAg&gPta%uchmS!e;zx5(eoam3L)azn52X57R;G-Y*p4Gt%c1&^S?Sxu z&ARZ=NX*BLyn_f|NQ7n(FPiG}8i&*Qs_-)5h~*h3qnn}M%sMq{KZPCOI^y}D`GNRQ z;m?KLXP9aE#Q%u(TbR0Pb#Qo_uTv>7l#O(~w(5Qei?jg^4CCyLimhKc#y1S&iQ@W+QrMtVkyOD0ByBp5_ z{?GHAyW@oys24NN?AiNWYkgJ@*r!2!qF^1@wXl!`R8A06hZs-U7nX+0U%DuebG_w? z$i)PbXezL1t@Oj6XkHQKDUy{=Zxtv{ZkERkBxXG~RzY3`0BWdk1#W(L$YNaj)0hJp71 zoDAf^Nu?12g@K*{U-h^m4b@y9u>|es_~w*c?_8B4@)N6G+DgjvzHW$)4ffs;2pIrt zNab&Vw^R?DzM%f!X~9AnJWbtA;BA!$H#Ykk95ld$8h7e{2ZdFTjE&|^&7$sI<-rYm ziwcj*jn8fTZ)w21iOfS%Wzxz&Gl$$LNLp7d>%Y|MQl>NjDq=S0X^y*x-`!ovZ>{A~ zTq(j`yskkq?wxomgzWyF!*k!D6_*>HJ0VS~O719~GcI*@mK(Sd{^#fiULpB*4|j0z z?-fGj`3Ceb5ZEi)?ys(?>6!{?Q7+qC;!sg*vaTn?r!BaB2Z(YH_6sd7NXy5FI)Kkt zMgKLb-Ak|I7d<^E00luDEhs44AaRfZ)Jp&XnP$-N0 zG`jao$2u~$@p%uru~JE-_Vdp2Xu!>svudm?Dd9YgdR-_OkwR#sAj-`F3?#te)eX)W zz-1bDweb#;eS*Yxozo&C`N6M3g7MEzjZV_S`N3CZskfiRC@o3W7+^UO3lReXRu;f3 z$kI3-8;bF{Occ$A2igm7knIANHMRXTG_H?IdTWROmcNCdbyDAO$2Hqw!q}L}lh?u) zBNL?L@PLE|4B)*$_qzwCWrz(3oNZXZfzlAd_yT%l9}2DxnCaU%^a1^W@8UFq&!_(O z*g~y#s$Fy^_)Z|b99z5Pc{w^w(5cwlK!7ddsAU@iUGGl$jgfb|7fc5;KQcGmk)%Y< z`w4t!+yVl0821N;yZrP|PlM!eyOR0Yi;t&xX?0Km8K~C0LVUV6vH9scgZ+fQn$1YJ zi*f%BHRJL6Z%#^2r`+=|l?ekF(YECWv4|-lc%JJ8qjVhF6u{qvL~6z2v=kLAom$VW zrJSmfvVQAY_7=Ef-xh9@#~1H=N-2*&Km0ksT~+*h-x6-?Ha;oie|>REk7tpPIV{6^ zI-gj2Vf)&l>5#bcUD6rDVYzuPj8LykLv}ZTR^D{*W35TwJBY~)$^gEIrQo*ecH^{M z!5`_KNVIr#>C9&H+qCf0J!bQ+@|7nWo{E}UZT$83k%tuMBIE)j)xSTykYFADGkeC7 zLF_H{VVH(ug_$vw`NIELf({ZQ>e{LS05FgVS3L ziV6@)E>5aRv`?F#SK|zF=fh=||1)4VrnmDR1%a$sK%>oUz6GWg2)OFk{q|D(5g*9= zZ=al$dE9SfJAgS4#LpMA(u&7onsalqQVfBufLk=`THJi=4loDunm<~yAlK``{gVA~ zHjeuD)#EuGNfW>5$?yROI)z%Q54)=zckTVJqg8&E6jgDa>Kz;wt5@#Y(@oyEKWXMK zB6>SEm@~#QDAks~y)NFyCD*>FD4pruWc^A0^*A?DqUztCslM33xN9T!pe(OMC?{|X za}B4OOPulEu$4?IW6|dq;tV4L^PZB<41a?RN(ilqhQ)sQOG!V<)f-b+8C;pu=0?i6 zs7%PZ4uEp!cr`mu*G(odZ9U}$k4;3extZ_2ZNzS5w2r{Bg5~#rP6pupmjzxm2AK$U6%6Ys$3OpAB8+K4{lJi9469 zRVtyR)yvX5RXvF$UPeKgeko{F9e2p!7EtvyMKU#?MOiEOWiXw$#MZ>NO7VoUGKE*4 zpuFM9vMujdGQAJsoqH4tt_pXcf*Xt%Y*zYp( z@p0#b76z91DOH}{@uCz&Y(uvGV-@?1E>!9#@qcdyIr^o+!*sJ-iPvj#G-e3}*(eIWIgQGPmQ1dDa6LqHQO=QYDp5ydg z|9w$D6%eOY?OFpOIEb@W{wprOqbCc1x(bURs@H!6viz6Ju|(N_TL}*XZ3ddEmKwAd zR9i8ZLr1HI5VJmo&P0>n3~aatZ&&A@FMf+#q)>jHHRCq7m8I|ClBHGjPdK`Af#A_& zus&Z2NM##8uk}r?rz%*-mqB5^L3vo^;LA$?u!86wky^-4eI*b@cH5T+{YIRgI4=>A z#*#*@=cR(-1zH5kql03dx`W7gwuNKV^(F@lQUgvd-ZonC&y@+hzC1W^(8JxsDXG^- zUwnsux%T>w`ul3;)m@KEp~-=3Az_35qJ6p=iCa<{Ub^h9dywO@bGMPe8(b?Z_ZOt- zt<9ACexjp;`6z20k_ilzw@=9L1c@r**^`nqm(7Nz?D5II>*#?<|LyM@=DSVg-=TgP z#Lg!i3~cguv!x__Q{K#_ZT4hK=fN_sjXtP~9J0f~xtz(`HQcV09Uhhm2NG{^4W2c< zc?Vo54z1As5!mHsO#VcUM4C5PVFx?WVPNfpSP7v{I>z^mEM8G7-aG{}E}HYcF;t7_ zzq_9qe~?SSdx%aL2jEn~*!Yoa z{Fnr6j0LXYKdf>sQ|ukMJliqyEbrG@lWX4gen3m#wa$a#LodI@(BX`HSM%mAjQbmD z^k$maD(>+FwEL)!DXuZ#V!gV?@GZ!`f3NpJ$K1#`J?{TW^u2DdIRu%h^L6KVm)f*@ zF3c+7fH^#%gB?BhYva@VCqLeGj;PwB(l&P&*9As^CjwN&EFgQ$1HXNVBa?7oo9Pj~ zj`r+YyZ7OmN67Tq2E}WC+;x?VEAP6-&c-}9Zeb+ zsI>yAaApGpxO9Ld4cre?Aglqli^4|aB!H2 z40x3E_$$T%(-n;QbDrV39L^5-Qr13Qnx(|J!pmfU$kc1z~JJ2-VUwLyNb#w2_D9i1@yRS;+$v$@_W$Up6TB zt+VKUQ!x#AI+0L{5 zJ9RePl<+UY#e_2Y-?I{dNF%gPOrOFH)oy2_9j(KuHj14+cZa`-9>s6W%(?<_(X3EW z=(;z`Ya(Oy5i-`6UI=AvWbI2A;zW!1Y@3<$y|SGA+h`Tp&p036{v*n=+G75MK!tp% zxP6<{uALXrfE{;D)MIe=9N*Cw`Vqyviaz*$CDG0)g;tzsxr^!u8vr$j z=T6uCVtNj)zFn~N9DK;RF0y}kmh>sbn=p^wdy(MnxxM|wgG=}e!Ob0!mo<2rO$vsi zDQ50StUh@KVbu{|(vdQT5}o{jk6v|`lkiR~`#)JqwHjlHO$!I)Thh`RlL^*>@Ps^0 zVPcoVs!P`VPFaLYZQI9x=;(=n9Ix8Szz=UdA ztue>>rPxeuA^+#kYK(b5WJiWcxd<34{rv69xO_L!U?Kg;Fps5j))q(@ zAY2@pFlq+f7KEmMC{(+WZ@ui);LN0@-Te0XLG@Qt{Yp@X?FU}=GfQgmng*Loz0!|3=>Dlo?gcv-ImgynZ%)6vrNNz4-;J%KN6D`19&tWPn<%?wJmS)5K+YmM3&dw5EGpoy*7P4i9AqEax)5aP7w$j%(T+H$jf zVD_|n@OCg_t73Je=b9Re%!KP_Hg=kIZdUv+xbzd;Zx|MSZ)K*$|!u%1o(L z*JP{DFF$vZpuo%HPd3^_J1cHjTTP{C#O8`K@`Kb)KEtW3Y}=#LVyluQ7J+8fzF#j% zMJ1SqJkZPh=Xu@F-k9L5WVy&`Jw2UHA^p09Ob^XRG#oR#Am!S8KwZo{u(Yr$LuKEr zKY%5wewgL{!Ph6)NpMG@0P5$@ckdLZgq-A1e9Bx?%Dn245cNp%*XO_(npFzwx4$CYY_QzSeGR!m+yDTUAJl? zxuR@*m33t89}i^9!Rl5r%-4A*ub5IS`a_A97mg@JT#UfmQkCb|`pq+`rswwQ(?cum z67lLVNlP&IaNsOZKrGW{Yq#)6vflrAw3yq@u3P}6*}R(MroI`*rgNb1{7S0nr}^g~ z)W>`=hdzp8wCIgI&xx2!0H%U7&c~z6vgwRW;cYC)#gwr$PYvXM08~%&YkM*V+`Biw zVE}S!X#K0+Cl*tM$uc3*Ns*E0@gJ(itb;t<-%f})IO5_=tColEh@B0RYAU~Og@@_I zjFb4_nK2uQEM;ogT@cT9!sSxxR(j%W85gsdK5jW|qOEe(Z#qz8o#r$wbxxG3{F$On z3}eh6iu;da!7WnvK)1q$$^Jm$tc}g0Ns~%WEG#&L#z;qg3cF{Da}Ei!V|CS;J8P;4 zcYs4ATJFrHQ||(!Pmx?@Z8^r_^>83yU@b_Rg(VQiZFZYUgpEjZ-7FcY1iovjR_}5$ z`wx#R78o`Go0JHc&00G-)zj$pCPinHEY0)3=!wVWxV=>#QC2lCw#|p{Y))7t-Ug^) zrjz-B?j5oZBcwuly(pq=WgLy@TmLd&5BCH{&hmq7%D+qK;(iS()M!o`3d^aPGT!~A z%$}3GZh+vZi$W@}T5k!@ueFudJ=~9OO*Ga)~$=^SQ7DHd9G`N0#f4JRiM?6RR z`ftN|5zYg3O8OSfjYrhA2wy~L9H)<}8OWV0(O_EjLUa5w4RwWn>xX;HD3mZ5mcy)TX$Z&l_#XXo zFrkMX+^#*T&={_{Kit1GqVBG^kB|pX@*RDVJDbv9XVDi? z3X)ceQ_(H4v9_mvpWyL4u{^-_A-i`-uGP^W$;Hzo`B6i$Oylm&*~z~~!?nl}mOr#X zA>~TN(rfwBgUkry9+GdMVJaJ~z3ceZ*FmuG{xrL>1X&LMH!r`nzfLxQt=yxx%wduF z30~t(9M`-|o|JTX+?Y?8Ru2C{0hT-tAR0qbvKt#4SA$4OAS4LSP6mtz95$0seLA#v~v>;Idhc0L#t-pzYMn&d$3%($?+erx>SQPvHxB##F$Wx4#mm zU~6?0%aMZU89-|Tr{6Y8PcTs9JXwPuJOGuL@ty*O^cpwGj=oNSN*Gw_KizA_+M#Zj zPpc|j==?Z0;cb_3z@@fiZ#eKx!+#UO3pGTCW4oK|Nz7)iq#qySv_!}A7wt$No_|3g zBGW=<_Sf8u`h)fqhq!R?WAWOISLnTB<~Dh|tc7@%aU=86{6F$rqvo9cA78KCuWn`& zvas}LY22Gjj^?fsw1Z>o`-qfwWyDtLw!?9`IA`5vCRoWkXo;nhfi*G(U`HnaUkLC3 zKrC+;z_`I= zV1^tR!vi6#7f?DJxX`MrbTy1AV){dWw)?^eb#+w$>OZUr2w;NLGPIXbx_dmpQ-f3_ z;E88~;WYQgVTg8F3x?Q<+<4WxR49slx&2>y*ur4Ot#Ii=ogx9VA9XPlf?Eb()ax?L zmcr*r+$m*7Mw!b<^Oor_#U%bJ2WmES)fU?_nt zGU#N8D6G#ytCTPu@}a}4X3v^o!2qR?AXTn&8NMb5FFc9*tC-a6nqM#;|Ms3{Y*2s- zJhpC?m{*m!Pnm(Dzd-_$rrpJQQ;aJIlFw9O)%&d0S`jg^a>Uo>&rL12b4amD zu`h6L7;pU!iwhc$B@KS$sJvpSsA44iOniH3?%&b}_+=TOZLbEMtODZ>hyDE%%$^sU zx6_1EsdmqCM*e$M^gh9bW}CG_ukI;Udjs0D;lP^8M)Y7#XGQS%46Lr{MQo=EJkDuL z*0T+?HR%7n#x_1w5>gDt3`QD6RQN7MOtRDN#y0#-=#MY*SGu&G`DR<%W~32vuSCZP zH2Kc{35JJXy0|z74ZJj?ivh-F(pfQ8SToLhH&CPt;cxm`b+iA2RCjZ-tK z&ysQT*!|H{yq|B7W6D}~SMXp(ov%Xsgl0yrRmX(w_AS9&~&;8&kQ#zG5U}13X zr8*uZ3U5zgh5h@}ak|4hRTh$Q-WpumaMthuQK9sJlB4!1iqSw%kM9Z^GspI?-!>Xd zX~Vysv*#W5%i7vsX6?+^BjVou`N@@wQ9ot1p>yoTdW-r&y#HW`peGRzzA(}kLrq=% z5JpW$XBOtFb@+3GrkdRw6*xDL(LL!n@PY!KwWkVuN-$~31fj|Kh3(YPoA4%iJ(xjf z4j1r525q|WkHURXt^R-=T!^Zv4`k>KtF_xHsPEi*YH)vq{R4OE;i3YGHKbvHtnfYodd~q zXGJRCep#aVe^XwCDUQ9%)GrKoq?_1|+Vd7IKZloHgEzv;MVbDN^;?$>;tV!OOpiNS z=GQVIW#C)j+u$GiZQ1ziak^C?9{e*dx~j)6dB5SfuD`Pp`}T#cnw9FvxR=+3>(l%j z)PK&aEQdD8?EY;E{qJ>d%;_{6yE00mfi5c!3F0Z269Q`rBt8h12#|2T7Eq|0IwG{# zH)?ALOG8Eys}?_As-ax9Ir;D7yh;{3cH5IrRF{$vrhPV-Yn^%6Pn}KWl(@LJsO0M0 zf6NP22Xnnf!HJb^x*U~~?9U-y1+x^o8rm!TiIF(v}P=GmXZelEpX)K87+m>eTgXV<=&Hd6MK!5y{o6BuZ69QLD% zRns*K$ow=eWp?IVzFktBVvx}6=7O5udn!i0Hq+pJ5UU*J&{2Y^WK91*;rEj)HT&Rap!yCA9-RO9T z3#0swgpz0f=F8XkoKXE}1>8ca73+a5$@W}JpVpV=CUcy%qoiSZ9;C6Namn9lCN1Xc zyQr7lwR}j+H#YfXPmJeYlT{JwKI*|9p&5~f>+ZXq2@aF6-wOUo9k6)UlD+UjeEJz-Nc zFNj7Ep=njYW^=C4H}%P)8YC1DCP-oycSO@ShB`hH7>W7v+s67!-)zt)Bh<3gcEOR{ zPvCqIW2ot8+RZpXB_C)cCs-!%(JuUheRJ>#(>B@S2y`BUwPQdI$(AFQTIs%{P%g)m z-58#b4K#)PWst$zCtK8Anb?jN_HysSLtz`sKV)q}O;DcEMjqeg=0wjbZac`DVeLmg zy*$3yy}#S0(qufh{^379hqLQ4W0YC)VifjY;uPg{dT~(PBhzys5z06d%lcE3N8gS4 z$>0MNISCo{ylk4^(9=f0V zy~e$Mot(^o{e2YTn`d*aP}?uehNH_%2{dLIgktuAulY7 zh2LxvDq(bRCL>=?W25=13>C{_841q5+%X?3#^?~K4$k0vWtTsum}64yE%}Y4B-Gn@ zc!VX;wkE}XD^wiQ(i0}2F3yPlmn(j~8~u#i(9j_-jY*eo$O{j8Q<$cIh)I9u;7Q84 zBGHZ3z1w}@o4I+HXHv`?Fn9k4PoehA>{)#s&+mQnO6tqhsQ8~2$LL6;|L&R}^y2I| zQ=rB2n7m&nP{sC8&EIIjzKEw<76>Eu$r}u4$O@Brhv7Jx zi}`PA_0T-AD3S;x5+Wg)OFS2i8nu-`Un+mpHW#-_CjAh(U2O$N@^Xj%l|T@swL|xY zfXqIuvXRlb^&IgD_d@~^M z$qO2@l!$TwW)Bt~`(#lr_Eb`~nBO+EK2{&bQ^^|)TED^lKAU>w*-dk*E+BG8WAEkr`4Z|Bd*Opf=6SQ9(e9Kwz7zT3f`c(Hlpyg0~HzPH{Dgd?o# zg`2;uJ+CU3T910idfzI+QKkxTbs#Qn4U!t+M0{f)p$&oU0k#>482W+Zw_MngFUos( zpHamHBz|bT>XTnO^0B%DQ}_?7%N<4>nE4MQ3Y0O8+Rcrv=WhY?;E8j?rwB>B>Vb-{ zQ9Ip7jBtyP4hsXyQLc#}mpi|*srKdESoH@+_`Lfp}tVd6fv z3jPN5A1<`m(~%--`bAQ*n=*66ctXB7P1HJneMg{H)jwf;r8ogP*mjd$N%pxi8~9{` zm)=v0?%(zegqiYtyZ#bC;CD5IiLTN3Y{NFDn*R(`@ zltfzdGgsrjcj2Ju%!YxxYjRwO6%*n1GFuDK?EstsFwTqicD2R^pxg}A z8nuYU6S~Z#VIuYQj0$d=;uRnCid@}7v$^Vz@Iw;n<**L-L`t&p@>`3NrE6Gl>dN|8 zCdoukD@>i;+X&0e63(QgIu7gqIup!?fi;C{Ik=ydDf^1a^SSB8FqOx1a<%oIjQ(Tp zRsZ0EO@<)cGsT>f+zT(MMbXm5qbKIvK1`czBs3#5b|=*@5ati8iMkCUEyaqE~m4Mzqqfu)I)o< zy{TcWPJ~q}gW6{t+WlFu#T+KJXZO3{42Tay>4d0&)qkZ>)T5m#_JoPf#T;*LAqr+L z%90KdER|j)+|V9H6|SA1orzxRrz9ps#`4hf_7VxVJR#?9V^2WnG&$ zSm!s$I&mM`mVB6w6sfDL@S7d}?r>*q&sH(!q`fAcclZHK<3APf=*$MAEg}0g2yDYv z3|-&wL32kZB3QL5*5&z7z>@$=xId+E#Z}1j^KJcWxrXX1@~8%kp!^7mrQsk#d|DcV zd7_Qp54&6%VVu^wNTEvgoSY@vq!@Q^i@yhs>rNN?=Ql~sC^C-g%7PXF_>6LhzuN`* zPlzdqq29jp!YMyUrxp&brJchE-<_i$q1h>ucl;ux0#YZ-HFiU;6^taSo&L`7*q^Ck zF%oB4NGFYVoKNwY`tioeh*CV!6sCJ*y7K_tfZ0-`fol5CT=>BE;c$73va-lX>qnQd zle0XJBd=`&I-1nk|MIim^UpQcx1r1cvgI6OzgV0qRsqp81$wWGvU}ku9|tbI=*-2Y z#;;J`??eB6Ci8jSeBElld!4^K6?yI|Nfr&XFGym+k}mz^>>A=xCCk5tZgq3i6(-?X z-|VntW1Cg5=TsHX= z{@MwG&FE-j1h*Ee-p%Xpt}Ui;8{0sZqIGt1??EG3IGmC^C86BE`BxxpQq1OBXV4j$ zg4ffJeF8gI4)6NdQoWdR_#V~82fn(sFJt{s`lRS~^F6=O$y-f+*Vcbm`bQ6`a=Zrkv+PtFY#2I9q;K zXm?FyboP$HDRU`zcaM&Zp0%&_Ixmo}z>Mq2czsA>w7k0G|5Y_ZlDKXX>2)R{p^_XY&yWLpF7Ly_R&^h$?e*urRexAlqhakp#xc_C_#nA-_LejPZ{@8A z=jJ`p$eWifwxh=#CRm}9Rb>;C^}R&T{Zu7nHmifBXN+Ag)jv}c%lBiAUfvkk)`aZqPWDKDzYzn zKZ0{~W${R}ReZ%p)%8-+*!GE;D@?u2;*aMu0kv65%l();uQ0*8kytK{&qmG-Z2+@w z>!`@%xmvYK%~5aiS4?|K7E9dJHeysa=!s4t{vGoADJnAdYFb2L!xoSGE6?3y%&)J> zhiP%Y3#TK^e(bx5dD+H)>?Kd3`~V$iNN(LbH@bl8Jd3>u^95u4FS!wKElQT3PZSq=!*AKUu>PGc%-*o6G7GM>~0KOkf13E2GtjE{>{ci=`ObI7v9zA)g$J`o<+X z_A8nFa=K$*Gaz58POYV-dHvc}s6{%xgL=1MauCs(Zx!cMxo;~j-aFf3mX`RDD{1X9 zxp`OK2Cr}Tgyn6#C7>`c#TJ{}QwzTd2V0k!4bwCaf(4xi+^uyE_dH3-9p ze;|uddzB(*ta#R6wmvK=@13u~-&?_|7zp-paX_blzixSn&G-6TJy^tQMr~%F#K|Z{ zxa&>tk#+iGtB#AF2g&9p<8aUwOzFIxNPPdy%0Ss)`}dE?q_wqHI9&UyRCCB_ z)pPqXoaN)e`^35h=Y`iMfl<7PLkxuw>bpB9$rFwNI<1-#44V8bsalz-Z26Q%hJ3Tq z#uM!Cq0MY_mbnIszS|{O&CjnWqV-w3*`YQye-DbAHIB|WA5paeZw=yLdpA?{xg8^? z8+OCQU1(@gM#u52I%WzVUQcy`_zMT`yNh&%5s;fNa~num=u|A7tmULBD;rbnIo*GR z6(U#px4PCSsVyI`*wj10GtCVfJ$S;F(~RG4mLs2uIsrPnZi*J*l zuuy{8QV89d0n_st`tOOOZub|*y7;=0{Zf>#gahJz<9KBz4G+Kyu%nqb=#YOQ%V;8@)kIfe@hb>T_FGID;oVXApU6J}UETl=DfsOu;WB@|QO0 z>_TJpb0bc@()Xae%@N9$c;^4C8EvVGIBK#?-y5qro(EXxtV)hZlqd?A)KiGyU&~^(tMIT>}n*N5$ zU{;`TP4ob~5XxF6Zfi#A{w|jXFIHK_2bH`ZN~8&-k~w2wj8Ij0gf(RF`yX2)j68mB zofO>Yn0!Ava#Ow0Idm}&zKx?bmvrISB$%6b!5x~`FMU6;4prbFZ)futcWjNl%NRjZ zMefH&``Tv9S;hq0_YVPXzKwf$zsE`m-t9?sH0MQ61nb7|2j$uLjD+RF6j6_`2po47 zG}H=;u?I8dpWzMlG?3R{4RaJ}z3k^~8 zp06omyJJy^M{kCFd@1o*f~)4icy;FN)*I#!kupDBa{F?fdzQT8b(25;)tYG4f}QJR z<)`Cfw@Y9n)fJW7GWX&5F53;u_7QAexK4R}N;XVDtr-fcGPHOa&*7g#<|_i@hkg-x z+hk#puKP;{0U{PvZKu+qFmc{DSZe7_{|a|$nFY!|!@A5WrI>lVgPzdbLTuhZb+{3H z(SrTe%=Sd*fHnFdxwRGZ_G$Jv#_>CPdFxepN0{%OeQ!%Y&og(P*$jdzWzeQ!m}1qq zjRlC&Vm3BkLG%_1@I)cNa1dMs>=Dp6crn5>4#9RLBMJj_u@0zU!3Q1mK#NSaKt@G{ zv{pa?LdcjicdbFyXx=At&g7)|ByHr;C&nVsFj{qBIs|fQRUQ0UmhGt>QmLRW;~!w0 zl%PwAiS6A#94;#=iM(Mzp_r!6eON1rM4N$wd)K&620^7&Up^TvFrI)qfc>Gkr)OVO z2u=b7oI!{eptAZvi4ni0B^^jDFMA%>N@z6AjIB?nY8{q8l6t$yiRQ*n=lD- z`w|_Tj3jc6-`n746MDjtOnge*-=0^}T0rB^Z!|H}HlaZqlIu8REg8N@+4{oyO_+mF z6^I3}0o5$WhDK@Z1XOna4G=>~HUwT)uEaqF?;=rhs}I1n>(qe%g2EMq%UcDXFAuJi zCueWc9^7;v9Nwha-`tW-M2ATXt8Wqk&$&MpvD+%x%T`vkackk(Fs zdO-xKRL~LtfyuqR+`#RbI+Rlw+cNi%X*o zB{j7k$eDt+`twDz@=5^TskVR=ZUH{aKfp`a2C?Vdx;naFhoGqQ4xrgT2xcf1e_hrE z1Ss$hK@dJGs05q2u^5gpFJ9>{PWTLJxtsM)t3QPl6;nIx*P(t|wFp$b;5T~Jd+=G| zGB~nK^pyL95L>CvTyzj`dWuG+J@T5z+4e;*o-q^6Sa&>8UhG zi|+yOF+gn>C=_vePx*n6MViL}W!roWqV)QBhi?bkw4f5K_v`ZuUjQAEsUr<48)|?P z(HP{p7<3f9{I{IvDanCbKcIy_xyoYmFl|W#2kpA`)N&p$#Y$_iG?^HVKJDGj~Y?+HbI@+0^gC~8oYX3YxohVcBg^m}l{jVVYr^}y&H znEpggF+bO>fl$RZRZUycikI%O_)Ecxh=?>I@k{qjIKfWY^>Lyj`8=e}2f%jhK!lJ9 zKsx}*LPALi3*>b{1Qg~BTr;ERiyNeB8C-HAlhJ#StA#X9_AaR-jxd6v3J5O}6nu$F zN}_-Vhz|fN^Z|#@@o%;w%vG(AY1!9zKK$U>5JUi6S|6!=JuqoBgq8(A0omU#fG+9u z`r`C*d)^-l7(X~N?+>0Et@U;r(|gF{1`00&e)9UdD87LUguaR8J4EXfrc2aLSK>xYr13b6qTt zRJ0Zi}zG#j9Z2|ynqm`gjR zudC+!{6CwW>~3~aRNv4D4c-ZP?6GfdLg= z9xG)~;*%SiPbxoRFoQl?@X4Dl*|)pLWQW7vT=~+wll7~c0F4AGZZO1s4{&0iTU)z8 z9A8>eGHl@npz;C3lwz?Z>0rsKpXjXfJ#7?ec!93^MO(5li9H2w0r9%t`kVFlI#kxf zLvaPg|EiJNeCA!t*lT2QBaO?9SW1qTsn&~E$ zc6ME~(j!ujrn4fXUhV!p1kST?RhpeOx!g@@ot&)8AKz5D)vkp zK`=N84B_6BFc#!`EV-F2KkJy`N;mu`H6&oVIZVI&{G{*Zc2wcJj)}YJWzriU_^5b$U*^ErVtj2*wE1E(Ga)&j33K&c` zb1U5ShkPj5tSHGQR&VcaZeGm19I-P_LH#6+YLy?PMF-;D0nx+Dz3hn1{ry4kCxg?0 z4RglKhL0eKxK-EE!VQ4kqtpi{Qh-`m8A^J&JH87V6l`y{ze`kNTJxxgxaHj_t zi=JbSRD8hx4C@S=_#Pht)o3B{>)l>84-ugDfJGSK1$`3|u%W2pf=MJjqjygAwCM1W ztAEpz!0tZl^!k@ix<9g%dpuH2zL^Y_{4@;K<7Esdbi%r}NZKja8M|&vih?vIX7##< zKc(JW3}|9v$&TTB#{CCmehzQ?;svaP1h@!LObrWs4eX751I%CC9$CUsdeKdLVato= zReS>1zE!A6qINT!ov9QHCdd?0oL_7`RYg!pv<;Gkw79%fbXA#-B`C^jE+L&#!cR68 za-0$g<~9>d_rbwAEMk``RlYVsZw}XBNnx9VC_JF$wPZ!WOtpK0BR8WnsBcXIRRPt~ zM*otG(l&sg!S-S`G0&b#?JzW`s`B3c#*J2^VZFsTvrelmp!{Dvp>gVuFW%US9UY|N zpNuaYS^--RQmO~|)QzBpG6|sk!3$rjS}_1i?O5?hV`w!Vo3?TMY;}3_Qjd6!xN%c# zY2E=^1VXSrFni$h;BwTU`Aik539nBg z^X&x57qe?Cm98lXE8-yv{M;4}!)CMXtEr=O^bTXI+Bm~ezb_~5VDeh-w~Ny+xtUps@7ORmN12E}bUG=~?wdWAcx8R} zZh{l00qoNYSf{+0y64sF_D@zyzg)2x>a32uBB~1Bqb#UTW(Z|6jl^3&<_bv8SKty!~jYKg)#mKAVyM_vqxD8f^=MY< zMd19@=bBmmLkZlX`nd8!fUCF!AI-}l>T(E-v8?^&*TC40A~9a?`W@;FTiJ=m8&ndB zf8Ia4DN3mf#BZ>s!t+3XA$F`{!W%JYCGku{t1+!6r-Sf5Z6TiIq7TLfQbiK-JnipM?H3rYUjuBc|qa znB;XpK;03uFB6}bMCFxK^{%Q#?*H!Fne~_T1Q>g(f102DGFsG%5d?Y@z!v>?*QM~E z+xP$6eg|}2;G%aHBoDKo+~!vVe^!r^^RO_{?u!WIdq!M!$)_XX7b1)**j zU<(xjVA2A>GARoB(Bviluuq=+!obEx<_EvAy=Ix3`Tq|3Ah-{GjU6ZUdtN11L$rH> zl`760l`^VtI%J-ehnr%tH_6Q8DuqAno|^|vrF-MkGE-JAwi3KLrhC0^d|T=@88 zi|Kv)&pTnCGJnaETDq|aJUwm&_7-*>#W!v4RGTFn@6OmS)DAzq)YcBwDHg}Bv6#iy zRsU@laKrXh`3rx3fY$RR8*Ph>`0WeIhjUm#7VOTDp^J^$o!gDQ`|Li8c=0_xnBELH zo}Lw}2sHZDgD*&Kcn$Fr6Y=hCM;6n0bh8gOu9=kMTIjcw#U&r|FG6}>UW9t%i{FMs zlo61=@cb*^Oj4KYUF+i^5BKk-d@TCA(;pn>Fm&&acI+Wxc5-)Y-wD93fDlIlK#yO* z%lS=E&_|`I=4IFxP+SDFClSE*AJTUhm6T+nv;$s6UC??5cvIQ{ZXFCZ6WX!y@r#=9 z`ADpz?y60khqJ1l_jt3lyVxqOy%Tw}TI_X;_A8vS$eYw?PCjQ)m7?v^gb08yEm_vr z7NK3sd3K{cA^D_t%hwb2^hGd#nq$K!)h`D2cqm!SW^)rU>P5XtrO`Y<#acZhkyq@4 zRw#^!aRC}t+;7jBCTrcs7B_Um+p?OXnX+f+4>q%FPn@&YB2Nz7x+e@h{m*EwY%R1% z!^rA8TFkR~VYC7QlIUn^=;8u(b+a2r<(<596TEe+DQ2@XSXm0c~|v#I40H9C2O)wwRT|K8YWHQ+iJ(blq)DpC<93VzOZVX>j&A z3R%$C9w9r_jX$>%GXK10O5xh;W_n&3RY8&T3)U5WPSV2vY8`dbb6r~bdGI8!`iI@} z36aOAm#5tuHXifiR0D)x#>3U4fW9Mb-8(-olKy`xJMVZb-~aCmNs&FWN6MZ>8Sx=x zWM^GA**kk?lodku3?Xq{WRHw&3E6uWnJKF%e($r-_xHzrKkmnU|L*>wx*q3w9p`x* z@8dY$@7M8q>Q+{$L{d2Qgj#W9VyeYz_XN>%oo{XVZ)=ykGILpncbrFW&OBK?yv2RA zH1n-xEtFUikPLtLlai94h8+c_Pbt9n+3c?QQ6Wi%w@IEzuXBOtbDrvaR?lOhg_;>} zZrA!%A#0_>=(*jD>e1? zdp>sF?Y+8Qtc2vQ54D8}CLWP`O<3eB)QX?C$-n<}SE-B^;-4^F{aiEl`OXilcC|F; z#sF4_ow1*SUDu;6|2#Rc+RUCkWSifamtQKfwowy1@pO{VO~|MDLe2NUa5gKra$c}s zv5;VO(AX_!V#99JQ&6RseSF%($!yw)o-XB;pzeL$X!6A#f>%v63C6{f_NBHZnMo%C z5bTkSd7j)ey(V9n2paUmJ_TYej6~_BSV7R62ya zw)Lqi>Nd`dv}@Z1`mT-!=_roH8zk6YpX|Wp!p_bh%2O&P*K|Man194B*jr2HRuPwK zo=bQsY|ZSq_fE~t-!+tECeDfaKZfqnN5@_V)RXPR6I|F;ZQ2g`OZe9vkNed(te#g- zYw;V$JbjVHERI{zc;SVxBleUWdrw1L=lb#pe!!KpY?eFyvBl(K^YdpSN!3YKn>Z3U z(K4#f7kBnKMg=Rb$G)DFt+W@up&Ii{>k+Lm8+~0pCr4VV+B-HdprOL|rKYQ)&M$+h2_y9A=wM7xS}GZX0fj70`TPKV1=yv@E6be;8;^nK59Ht^Og8I`>t zPfmWNec6Ee1x3=sS)GPMa;3ugm_ou?6^1xM%tZ3g6URHm*V8eV7O9zWu7&KYn?@_i zp%m~rsreR*k93MLnCqOJk+87NA6ZWo^WcJ<&PyQvfUV`Hl^#-wod#vmW`=LsZ>G6a zDYIBNWvE==yY7$d-*D>V9LVj<;}e)DwM z57SDXHF!84HmA^LjOPjCBvfC+Y+-X0hr^m2;V*!3A7XL?34;^_GP59cdPT~Qh=j(r z@Rz`TPV|*vU0(V3g|l~e^?Qvam1mxXXIyA+AZow6EnV&` z)eHDA+TDA;3Pv*t-$&Gbo2(5y`Lg=s=B^mCx`V~C^hIWN+^c+si(taM{(Yild3Ci5 zus$5zTEAO?@{Blt!ZC@W*RS!_^Dt`xKUs3YO#jWSp`8ZV@O4=^(x0mt2if=dz4*!6 z$Q1CEUwethpNpqgz9WCQ`n<>ZkBI(;dBt63Zrnfuye!4!7)CtNA0KHH6wRC;r%K_~ z)nKBXt2Hrea?x$7WdttmwgJHvLSGnsPW|Up@%lrBW1jGu4JC)k;m-_ZsvO;-e3_nZ z(MuanG*(|69yVP&IOEJsz%lWrrNwjQwYu9=dlPzTJBRcr?wRjhC$4&M$k;|y7tG7a)0dh6w0FQd@F6LB!>RZEf+mwfzlCrbHvJVclQNUrI z6)?jC^mPW<=5<dqQc))lr8|yTh?DsdkeMYh5;5MG)=U!;C@80fI z?>6xky12r+ZSRV|Feo78N#WwxC@JZjL+@zse+mk}GGkw=F+;XP9h;##difJ$eB9>_ z;!AWjN(HU=I7Sp`jyvPt&XcVCCPwjU1xX%vzHFp@W8yH})1+1W0P-<#3a6cLFdfxj z^XCLor+`O%0d8ZiKu3YaCSGe4B{u@#zzPlyX0y3D>vk$J@+_*3FcYugp4^g#w&lU* zf>sGW!yW$d8Qj+W0D*lkxv#zB{Q9{rTvzN=oaBhPPtL??h|*sj>|!*qsSe*^89i&Q z#d}v3A}+LqBHvb4)V^q9?by+H!F!A=;6o$TyQ*W87aq;lgXtFvstN);Ye(4tj!;1Q2*|lr(OJDG# z?_>1WTU}X3_?~PggO?9lZ359_KjsrS-yOexO&%646aTAWC&kpM;n!P9 zJ1eJP33@qztIP0pQ-zLZ;x{ZsQ^KTS@tsa4pMp9h85(;CwKHOL7kPCB8({L7&k-?0y3!T2Dfu zVV@(9XP#af$7ocE%d4nGERShB4%HclIp7=zPYnB&u)MpF@wKP4h|48q)U}CGLM)g4+%@VneKGUC zOq8^=x*;LQ^fRgKQ9r%3m)e})pAO)19O`NBxHx79TGZuzh$M=zI^F&Cfbm!4n=0W4 z4R;GroCfPe+IC-RD;}HdxnQpiEEPW;_;S3x;}N!%?0wWgt8=Hwznnn=Urkc6AnVqA z%=~U?F%+sIg82M^JDS_|9b)~WKiM?XJb5ejvvg&*ULynZc{)Xg zZAC3++X=-xK&DKS3=jjEE5cI%qN4`NnCKbxi<|@*F@Z2K1B&otwX2?3mNJWFwZD9= zHgy0ib5~wIY$)R^IGZfi%s8!t(K#{m@I-^z_%M*5+uAo*r656@*wGM*7yMl9PfE-C z{uvG3nWqHO`L=U@6CK6o!YVMrm%+<@ zJG}bd)mEWtNh@$O$ zAdoG!(4gUMm{~ue>t3}SVaj_LlizDphHIc)#O7%eep^`g!M%2rP<0nsxgwjdj>L}$ zELo0-G-e_CZK)C+niCV6i0A)EoL|-<5oDH-eh^Ahq7w-R7S+I`Rr>c{&KU)e4@uZn zGf7bBn)RgGB=H{9Bk9LyVS8Iu?vIoVZj0L%EX|`0*xiSQSgAYY{?w?LnJu3kA5sES z54$O{cRTa~0T_*P;0fY%kdZV>e-8aLePU5!Xd&7zbN6XPtkdl>Z2}%) zrwAcpS@eh4A6^TNk1-tgHXo)r++cggtF7Ogk`l1( zB?kbL*#?UvA<(Pj^W$Evv z<|2mHQ4Ic+`j6FfS1$$pY)Q%ef&PM8vy6GCb+)L(RjA7&V3zu{T}1^t111A>XKp zHtRGqVE?38BZP}?-2UJ(UF=qYi8~|X==i8Qy6l#qVB&%oQ_;xqCoAiGG)Dfy6_nhC zt@7K2RNhzQ%BRAXot(AHrUbeJsP_6tD16_O$(D3-iXY&vFHt8%-AB z2YadGX5F#J6O);pI%htoK5JR+kH7<1C0pFq!U9K>@>+Zy$#(y0AE|iqVVuB3nwCw! z${!6QqZCdFN#kB@r@{Rc;o;%Mp?jNtxNy$xOCnq9p{k(dpPRooP5Q-C&KdkEx>l5@ zgLyFhHYumk>iL2yW#u%frp48G1yrKPW+K10LH4bh=ARZ8GhGHs_$Tk4ZlQCUXfuo& zH@?~TjeI0^{KtY(I=TC1m9*PUnnRnatvhONCu)x9<)tw)S~~k945bYu%f?d|;ficz z+*h{r^785U?f;2rxWeoh%%Vd%YKuj9b1blpQCT#U{IhM)y89!$pd30!}$z!__#Kbu7O%oJ> zzqZe0f8;*IdJ=1`q;-DQGs68S8LnsTdhLtB4g81w1)RlFTVv)`ufPz~BK*ndpu^m7 zeRKNEW1ertO(7-*uTE{GUzs9Lb09B&)u2*Wp+Z;7(z!mv$<9~Q?|G9|%p;>%UtCIx zn@yRyXQ>^5LU$tyAvijh_IX)7`=svunKWhN1uS@xn+|6SRo33x8dD%-bhx8jea*=e zrIngoSxeL&ChT19RYSu5md+OG3~U2k`XW4-use9&UULN<)%CxuuBi_6-{KYwE%i|r zzQ;YR&XAd_?bc!c(bUk9AnA>5*Vux;MUJb7fzNt1$=};0B)5*fuB$gW!^qyn>sFJz zSk~gy!d;h-BDMAj6Mk|PJFzmRWF}Naiw;%@k+Q7uRea+&QBzYvTMSnRFy;l=L#Q_yW0O=hN)*U%%dvItnwM_f7-^BzAVQUuP6PV`V!RL z%qAB%w<6H#08a`sAke<_3=ZC!`3B^pXvRCVU~~@^OP`J6qSt7&(>fk*dGD+pzUM4py<{h_(bD3|4F$964?6q_I719i6D?Ap zQB2|3n<~h=X8SoJj*P~3LGm#9Me34!Oh2@llY?WiVH49nH^%_h;h-V#0o4s))b8aE zsT&!oXlTSw1tPUfSy?O+Qc{gU`F1HM#S+xSwEyQ0W1zG!W|1 zPN+d@6e;WjI2$^R&*%7i08L+olHrBLWCJG_LBV)r**0P97Xzhzgf^h5rS--A1=19X z>Gs4}X@&YdRXGm9EGl~i1sd4+p4?AUx-ll!*}?HeMdqbKx_pK#qj8-J3#`Fjy?Uh% znlji9!yN7vJu_w}3}{p<;AgP0v#)^O2jm35x}{EssK%0DI4k;fyyOMMVMA7oQh|f> zIw!-ur-|QJC{LJZd?t%uKPexl!}u#HDFMSIudXh&wY9Yd6N`K?6n3aCh2BK6|Dpb- zt<*zb+@epj-wjs(#)#e|Wxw=cm?|gB$Hj9xxc&_+y-6{d!||#Ai71A@6dWUE)t*`Z zot2Qt$oubX0~4xcT*%*m%SM*+pRg6LV2Jm3I)o3p()^D>E0x`|KQGsUHy; zX}f7RdR0K6yxr3fr{eNMx+`(p%rjVjf2vR5#oE{rDy*3OpW?CYH7NL{ihJ?F&~Y?M z61n@o-7|9rkI!C$=WoMat*{9Honrn!pVjSnFz~qnbrEPMJ~6R1aPJ>lS*0fxmzJ^t z&#s+`r^flDWE>PHkO#Q2t&~~NU6Yl^2SYA{ zvHy3u2V6;032||zv-70WSc@=A%my6I!GHh|?OlK)075j#wUH!*+Sof7@|PeUyCP_g ztFN!`sAsV@0`b>3K)OIPK0W=Cdvx>5F*|@-6M@ltJHSDK;$B!8cY5|#zWe{#sfM#|XR7T6Nk4Lslq?VSJT|&fn_TxZC zL~KkOrxe|}$K1p{n}ldVda!|np46raWL?3fqy zmN{Rit4qF4l;r?XILtNRo=teY+gemfSu+Yz-qvMGJ)W;?x?1(V^BJ|Ap2q)IpQg z_9-NJ7W*LYUX6qo^VVn2%5`Iu^R4GLYU$fIeky)r2c8kq<2IAiAJp-wsT>eA<#cqC zp$B2`2?;6c>+5Ck*Q$ak98hr~A=u|403V2;h~(sumVwG@Tn}OKVw1q^;#gu=a~p`c zWFSG@beS;uUnfgD3I{PIaiFB=8oKoh>(qKAilhqLC)X{7(K$H5ZV2d&GO+SL6T)zF zagjmqT?PTGV+>c##T!;1NkA_Ng=CM^W&xPDzqjHLr=sbA9-Dg8HsNpcqM|P4>XdYX zxS)UB#B0uD8OX?PD7v2F*Ho|S>aGMq9K|AHlu!T_C4hhhl7ZCq5`5c1PhP9CF_~af zjnXMIRsq#yZ*MQd&M`o;fkjv~bs*EdaRK_5tehMIoxiS<-T~*FgJVbV5V{%EhNM7z z_9Q%f1mr`ANBqhm;Nap@Qmn^`05(HNd$Xrt`h6nkWpyxyy*R`Y(BC%%0{-?mU~d5L z3C9Ik7?3w=2Un+{*db~=dwa++c>DQfppT$y4rbp`wZ}>6-(`v#eU}Ffl-PZ`ObH)QC@1g!TzQUQl`9^f z1u_QgYXA=z5l4MT3Dd?*1!BgD3jI%itx-@?x-JA9onu(@NxkDI0wE9TV<0nzc6`jZ z^&I?<&$&l5laP@71K$i*970WgNAmeYyX!?c6+rOx-T%5&B@!2+LIC4dNnRe$?{Ld@ z^Gy|ktwzQls5|xmHz4Tq<016TnFdIDsHze{pD+bd<@jB&eS+y4$e-B%fcCPtr)LpdzAb-z?sYV5tXYDBw<$1{;N4bxXrq## z=)2p?o>Oi&#)WAwo|R7S0>$0ZZ`UR)H1HEG9-8{XI`4tZsu4DW%bJg^mG<@47`woMgXTm*EDJSYJp#8AjD zD=&|5uxl_-jqKtSZLdc8V%4L>ulxj}3PMbVUMP&&q8H8%8uTKLjv#puh=jrLR4PM`NkoOToPAVf1aO@6@#6gI1Dj-k(SVMe8 z0E?KI*mGyr)-WY4trwcDsH*C;y-`C8u=h7_-VnL{ffULbtR?8h+6_*uwYVh4XVH`i~iSuP)f}`Q8hKBT55T)TbM_VZaEF6Gr#$@=0fzTg*fw6T1 zM*K=c>@YPK7Z+%SnI6IV1oB^By#w9@xdWyF;O2IKR1Khj(RE(D0WmJ0bh zSCW#$OpOZu((!~dfmRs@i|?82z`c%I^!WR<%F5NG|*E;j7*KeTt!>A#>msS$#JUlc56y8$4Xu9LazuK!yMY zHVK4L;Tg=xdIxZ?pUCHvLg+UCxw`~2U}cQm%p>p%(ZxdZ(lZ&m;AAKX1Vmp{uudc(WW2Mhiv%Bjj?WK2W;3;QO^%m4rY literal 0 HcmV?d00001 diff --git a/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_5.png b/doc/source/pages/normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_5.png new file mode 100644 index 0000000000000000000000000000000000000000..475de8076008651a298ad46c1a6692dd206708f6 GIT binary patch literal 51525 zcmce;c{tVY{x7^#N>Zr|l}dyV$y6bUNahR;hN#Sud7e@lNKu3cDRUVzWu}2dhRm5u znUl;iRkv zg|dR5LZQl{S&iR(yRx?v|0m`kcg{i6+Qh;6qMb2C<)VX)rL}{l`K8@X#&-7R)>gv% z5AQ#~x7*CY!Ny)(K;X)M{lR`~J5vGCjGPzvkhL}^we2aCjTg!PsFI`-%_)=*nF_Mf zS}u`4x}04!PqV%rw~qLEzP&;2Y5cLa-N*Udt2Vc>Jf)M9quRtEM=iJN0owv??+PQ{ zU;yrV7E?EirDKE>$RMgY2*cLdAZpUw3C;LO3G~$jJebPA5=kauO zbTr>{@m1~8t1BHExmH~oC&OL&^ot(#eGCh85)#?3m-qVaHsPx88_lGHf`h{a4R6VH zy`0)6cxjbsU9@paigt=#eh`;R1cSMIMn(qR)&rC^Yu1#^^{zXUrso$NyoJ?sYLnET zrL4*h6%`fZuWxUPShUa`I&|pA=xDNf?CSKQ3EDru7t^~PyIsDmXP~8Cxn@I?gcK*| z&H7k*&0MSVot>RFPEHBZKCAh3vVHH~r3-GzWRq$<`1E%k+h*jq~N^iJn^rk0X z3(0f+kFCod@@UFlxDfL)Bcon>@4kIXTFfHf5 zCC&_vGWWGJ<@);4Q2DAIosW~9Ib_v&n9aK4{R1(6W4(8`*3U1Dr03fYsAh~Fr;%1v zRLr=y?ZC-ILyFu(DDL?SozU`YnUxz=bw7}4N9u##=kkXv=urFU^Vp?j+N{Y77oVP z5AkU}m7(6idbGMT-`;h;FU)nkoO%BD;@GxBRy!Qr~d3zifTW1sG{Fx3*NKC%l zC}pNn>Nvu*I6Ic;KKs+8tLIw+N2y_-TwAg5NlMZ3Oh=LyZ+~^T=9kRy@bKzLvEcjn z>3{tAK|@R1JDS_W#m}!|kslMYJKD8>o70ca(!pFRHa0dFh8p4{?8aHIEyDZns2gza4izv^{quX7%B(dlic3Yz{D4CVrT5#n@WZz3*REar+}5U^ zsv~;z_ncv7W@h%x({$C3qaC^1L@zTOJ$jV9ny9+7Wbvm&)Kq*zf{@{Ry30*T*Rb!s zyu7ejZ@)O3Za3O4T2x$27NjG?M-MI_CYK(#}il*tv5p4b6q0o%tumdb+!#k9sb=G^yF1I)t@U{_dSm zZIr}FihY0eHhg`uP7W^?_1waO(B&rXONNH`+7o$tzU~+wA1|6|x4<5}Xlg1SuNboR zsK?>ipIwc7TefU@H&`EwKX`-BUcG+%%S+|7J{?QLFVaOyld+upK4%z;e`M&BVA{2- zmf66ADrR1pmw`4mVAj@1JJ2ie>6b4TZf#_(MR}^h$c@j=9?JXiNYLiO>$H#T7cvfU&zjo#gamV3bKeFmBUAa;d z%CGB!y;fOOb*VGYmg2E6lvuPd`~nMA_)5D7#lyp6YFFdyYb)nbZsu@JqSvUCMr~#iZQCjnpLkvVr6VUVKiQ;_uQbL8fgu*{q~-$xoDT(wW-Eu)Ad!bpRuqGxI_-rJxM(M;!Iva!NhwO z>kEd4?;7Hj%(1p{nX%egCgeMvot^dFM@2Df$|!f}R0s1^4AUmF%^PXfukU-2UefEc z@#yZuhaaIdpFB4WukBEgeF8^6mGcILvO0>({c13gL@ySEXJ_)6TlJX5+2{PCw3}!P^hi z#;ZL!x`g5zVJI-{{KIc=^cQT_AD#KZSmN6qRd!j#>xy%33)1X%|M6MSc6#{q#Vc3% z-v_d$hd;?x{W#Q^NWJ_0-EFZsQI)}a*Bx6LuV9TZKmA;5llL6Tes*YAmT4eGwyVHV z&dsgBWZ}yjpPMpI>CYEBHR~MZ<5Sj3){wK%v9rsp&A_VG)=JemZ4vQQoL|iRL$YpA zNC@YO6)R*>k#a&8@yXP?e=kj{vE88Gxa$c0&!0bgu>)Im_Ve;8=H=%PDc9{Q73aTI z+gcqij0zt-hr7y2P>T{j%^jkMm9@S`WTHuIo1|OzugS?Rq_XHZe~OWQTT`QAzpE7G zo647Z9n)akKA-`b2Unv)Z>?v!bBA%?ozI`o)nu3c`K^0STifsJyW18CDo>7{r?`!% z(d{~NZfqH!-4E@O=v@R8s`?jU!j9#(ZY2i@}=iBmfxooR09pRc&JFgc_ z@1nJjvcG!UPB=$ZX{@`LdUtPc?_GUU;DHtNVFCtBGBiLS+<+0~Z*Q)f-e2l8s-trL z;4u;N2H8k4`-Ioa-nGjzDPxCr59HaEq{}djwhvEsyN|6sX4#&tV5(p1+=sfy=zT8da)^mO zCW~g>x-GS}wGj&^#Gc5jsj1oi`R!SgS-LdgPbots6KSj--x=(vb9b-*ZN6jJ;jTaP z2j)FF?fpHQem~ z{Pc^<35)adf<_Ookj71y?axEL{6k<;f)a@=Fcj5DtUe$(2{LJ zS0&XIWt3nuz$_+>9czMAjnK@QRG+^rs>!8v@vRVgzLeB z2k){^>Xmw(|2xfZJWr?TX^#{?e#}AveiCoY0&Kee0CeJ0hM~MlTUu`JA=03{ z6{OcCT|ErYFVZ%tprByc@#-FWf`!*zU{|_hDDC4jGc9h*7{&<2@Pr2E5`t;*&V;Pe zNUmqMW?W}~o(E2w$Fg&1*(qih*HVDJ$0;Jx6sK4u)_TOb-XH*Yj}*x$mS-j3el#U- z0Vs=LxpL+V6R=4yx#TgH&xsfa8E^pS}{t z+!F$a1zi&%YOz(s?EagWdE6}!I~6M{D^?A z`#dB=b8I=b{^{{Gms?UQuT!t1p`$BnX$i$H%CPw=6IGS`-VMuxp!5pXt41I0vk|xf z!j*bd!0uJCU7upHBlVqjJNcgZs;a7I_=2MG_bhI$po_PedEUchYz&|mtEc6zxDQB2Zy!k z0?Y{5AtrO;#I0_{zzc^*#afqeapIG}K&(YYMK*SJLcBG=jHbVr=E<;wQ+yj8z4FpU z@HRF`KtRCiS!-kC_+a<5_n+yT9vIbGIW<`C)0SnLb-9^0_IhaZi?f84C#XG16SfAE zO3}_rcpbx;XkMJ0|FB=g<=2IyOTUg^ZhkI@)-t_+3o~=Y&#ppOfQ%g8!GZ73z9%NN z9^~M-fzs7is0{9K*uI}mTU%Qvpa0L&WT1)H#YZC&T)OMFsWENTzK^>>?Rk$oaLn{C zbR1b7(|F1F&2?%DXTuYjT1|zYiT6=GF@6bIDZ#;-PYbkI58Lbph)Ow^alOZD@gCL6 z)n+wgo%zCPX=xr)_401+^fg0k%I-(9hQ5t6#~|+zcko4d9<25c3~YTq68sp2+`6X( zAWVHM(DG+C%2F7(=XmL#Wi`|M$jKjrgGq-*v7a&ff9Xt(g!9iGXw-%M!iIOTB{fUE zJWJ;LSq@rteu$Cwq4k(J%^PxLd8(1DEgi}A^78UopeZ`9ER%Wc1kb3a3p4!A3fsfS zcX$8!f?qXqBvX)o8lSH!TbuKV&|$VRdx;ywWPABtE=lQ*P>ZZ z0LXm%@k9CX!7H@NrdHV8;S-CKc|l_QOeWY0MAlIX+fQg_%@p|0flFmHB@4s*uxJUc zmk-=U)*|UNP9TNu?a^Kf=9X8k4AsZ3F{}vSS&*FD2-Yv z=N@2OSvsB2i<8czZf{Ib*#okkDB%Ed33~AsXjmSvpcXxxh_@JGKF!AdQ7LN~@ zeSXQN7#~E~2qqtVUu3yvtB`RO1Hq)ibw`f7xEw}{?MH*e#t&W3a?pk_;i96cGzrt% z9Wy`Lj$;N~up^Ss7ap7)>lyf78T_L?#~(Vw%HbUWW2Jwh6@s~Jrv}w=vE|q-Z8;Xq z0;NkrlI}BQZ{A#k20+A#Q?V!3^J*m>1JF#?&E5aRV`42ZCMRYRVu(eAVL^UAV?oC+ zf<3IN-ZQQDocns4fLtus39JP}urn-d1tq0@T36Y`?zlxsFSm8zo7OS$z3%CG0{)1a zZPN4`i_4vi?!wg2@xWb@gJ9mOs;YV=9^sB7Erd-KxlW$TGFdM}6YV*pUED!txuvBg zMZY)#1uO&mwq$8SNhQ7yb?c>J#Rjx^1$@rLvemzI(s-q;rAg}@c z&Y>!zQ74o%r0GOk z8DxAn?KwenERp38E@2$q*B=9L(a>}UEsAEt+F2}$5G{0GJ$`2*f@^|FMoAh!?>KqCh z*R*&UvDS(92aK4Q9c-A1y7+Zqpu&BuxB}v%ZhPeejv+ygk?fNif**Od3u|c^@j!YD zK)2Kid2WFgmr8;u!z=x369X|nbY~x=>Ya<4hky$H63_ath$R7Fv7IO(Q>Q##m@8h zV2^w<4EyU+Xo-Ujtfiw9G5@gYgvvma4VQ_+}MrQSLi&pdDAB8>EULTVGdkJ z^2@68pMs*JRRN#@?GKBKhdSADBsJ4evOPlWJ>pb#0thYnO2=1ZfSEvCc0qe^c{#*qifqD*vk0 z*Kf-Y#Vg^~c}vTWYYbh6*n^VBH)^yMOveIRrmA&E!p@i83(L(fhP_XaKNJ-*=pa!Oboy zSzNZ*kaX&)jNi{XdbU-(A+#1FOH#vC4;ehxZTAqCJb%8mysTb9CFH?_YxnM{`2Ezx zQ1bE4it&d%W3?GR;gMWSyXAo6kI$Px+fC}CqsHu54q3&)B7wZT2~~V)eln+j4K+2P z^pG+GUcA^xND3j`iC`zCbYhR77x1 z(&-mWP;Hx1w1a`{S&poMsPv;FHxT{+G()0W7doi~Pi8@2-+svIZdBCHtIN~O0Fy*i zMfU)`F++QTOYzBatUY8Ocf`TIsdyy{T!RyJkqS0-(TB4w6(H{O=@gzx92`WsXw+LL zB_&0wRE;PFjP(%hO_|AE7b=4|Z``$Cjj(!9HSI z*Z+2-)UWPGfKsp&$Uf3o_ARe1u*NoT+1@8%XFPIfrzpCb%tRD#7BU{E5C#X;aCehADn*)7VHZ0nwAsIliK zz2Mat85x;HPf!u!jWPEN2zcMt7LK~mh&BvZ`3~v@)mG8V4^3DghxB2>VgZ#Q*?#@; zBZX)6^K%*OP%PX6ld;7_%szQTk1}f@q?@e${I9A{jz)o+qD!z+prYp6d?l#L7(G(F z!@=JET}ulST0T+T`mg?av&Lb#X{~p5wg^$O0m0?YoqN=Ojwn5$`_C%^)W5D&u<&HD zu;^x$I5TP z1|1c|w9PPiOuCC)BlPxpV}Ts7`+l-!5!L`%Bmui5tDp!eoH()Cq9vui((?fpd!3Q0 z(zYoGr&%yeuqKj($DkZTf0wb)@n_=y%YHLdVZ}MLI662qt>UA=&w>F%#z>Suac)hM zn1rO;R1Eawyu7?5>tC;d35R#2vUP8(EKjhfo2>U^{qt%?L1g zQ&kkt-Oh@u5Tjv03^gSOx6A-PFUohcYPQY$vtErGx3Bx!mAs`kRd=#EK_%i_fS=!2 zfItVp>Qh5P4$BkzBSo!sz~7*)lU>d|R4eL5q6o>*Dssj8HuR(U2u zq~f=3u9eC_ZItUsYHqfj8tpqCwOXne&2Y`9rv{@!Lqe#NeEjg~jrsPbXVUfWfnq}q zivjtK8@R%x=ZywFi9%;L@m&FeRG#Z(0@tCvJUnZ?!JTvxfBI`A^EG+deLwm;a`X>u z+f}PpnepRR6N@ih*!{UZ(`w`l*VUPAlY5nSr>O7Idw%*`FboH{O5O!5i@kAU3-`bY z2cq2rZmwg_v}_Yvy{>H6amsQeHZ`W+t@hQRy zA`0xpixca+?_d2re;Z;nY}VLh0lTF++f-va9nQYmzWPLsctxU4K@tcK3X(}wjY`4_ zkE!i~*EN7aZ~R`e6^r)O>*WGq{eh7&d=m|ZT@LVrn2r!r!Lq+h} zBPE-L z|2$-yZ_wn*%F6}K8#szP)Z1_j@TRe4zXaGBPVL!mok0 za%=C(NKcD9&Utl-JMB1f(#GZh8q0TBf2-E4v0!=(?+Q9EJDO@7M8hL4zq}!3{(|Uu zxgpnm)=DSa>>3*0u3fv7!-Z}_=J-{%MUAL}uPoc%g5rG6u{c}Ox}qsx6-~2fxs#svK|va{Ji=W7b{A<=dLdCp7$2Scvhpiv5D7F0Ub;aq;|sx^ID2MSB=+xD1@Ksl8aECBG|Haz zqWYH?k6*N~*mvZ}5m`8m<+wA4(2ut8Nyp(FlHdfDFR~69sQ*;Hd3lFZjUoG%!CvH* zIez@+y?ghdZ!$$mI5R=l-6E4z=lJuRqKXP5#)Mcfd4+}kVftCGq>^a_BP8i|a_wP?MC8;0xfT*R@v8oK#THNfTbp2vp ziXb8oJ_GS_=Z2kCg5ny2dzL%4(z4Okmz!>bz2XaP8a6{-{}4T&sAveT8)ZHtH&-B@ zK{2!+S^z;hKv!WyTxBHlfF%o$Vhbzl6Acyrr8FScbMsxL_t^Yz$5nKLTeX3*K-bdo zEPlud&8xH6Jq$6SPo-D?Xly)(U7_e>Il(76LwX@TTszaq&&uMN&?O*Q+|NyS#O4=g313gVvUf$x$H^2}$MLRLWNLYM88svrJK~M-37I@ zAz)slnEYh|xASQqWLrgmFC(uOi5V?SnYX{X@)4@=LaJSNi_g^MEzwX7`MAftRi4%qYl@R zBYKH0X#foo^H>i@W;^X+Cul&Xijtl?I{$r3%>}P`IHX>N$c$Nb6@+~FaB{dM^&{C- ztBtZ{YaSokDrWcoe4-DQNiK=4YoEiH4PyO5y#_ zpcN9dg%nPW-T4BCi*1?45wrR3Hp{4Vhi!XT-QKYC680`p_@S7?J_czd(##GiuOivN zkM|+r_YMrmW3P%f(%oyYBpT%S^fZ5nXJTTap@oGm?;_|juhq>e^P%>feb_aLUdsz4 z%>X-M6Dw;SWW;lNLo2^P+F@s7lb$R9?9BL?9v2@M_tN&;32YH16rN6@$>sbo1GK+i$D? z#%y*|qI#b`dbHJTYVewm&&oG%-azfs*&Btp3ijb@fH}SM=gpB?BGPZYIn@WmKOhfi zy*RTT*Fe@8bbFCW>+YgTZ>p6x&d$VRochrgj8?Plh_kEzZ6c8r7D`As{fIe}ssp*H zFFFuv zHkH(J(9X(fUNXELc-vU{5%q1RmtQ_zUlC^Uz16qI=a7YpyVGbExW$~jr^aUvuA3^n zS_MMF!s^Ld;(PkU4^flL~SaUmRp8ZZgY);lz`HpyBMjh6%~uo1ru4BSS! zz^ZzW*bm4AOGq@QQs@D6ci@QQt!d{KPM-Xvl~7w%)v$^W3zLM~Amjat&~mW_ycs1LCIxi?E^ZlHvz^w#FNhskrk`<#Xq@qHk2R zw?}N0TDlKE!3OcCSbI?t+&pBx3%6NTRdok&PtbM32zayx!gs#QIJ=*pUxZ#ZEhF#N z;xR1WZ^Oe?xH8d2l072cCI`nVZ)8JAmzOh=W&nu|{sv%fuxn`iB{KX=Bg%A<62C zDewp6RnNJ68dJMo5J4%}fb2wrw;gHW_b~^+WrkHr92f3lMiGBn^lSArNdD08<*Jp|$ygD6L2%kPWaPc|-5X!ar6-^p8a3yXE zF-Vb~z$~^dwxMTj!mFaZ{FtD(wY93G@VNy#qdc&Sh-g7UGf#+*k0&Sy9C<_W2-cE3 zg&jBwV~beGs@-XN`Omcb{RK+sL9!xdk;$Wnhru^hg85@Z_DfbrC!(bQq6d}g;q~;O+`(@gCl&!fIEMa08Whv;Bd$V(rr~Zt!*4_KAgcZm zmjhN-RwTj&14SKiPn0276t1=F)_qG(j9&3&DDg=G$SP?~#BE4Q;_h}GAZ7C`d+bO- zd;aDxn@@eQ>kjC4OWc-~_9Du*T);IIP85s>$j06<=kPBiU>-r0GYf@_aKHZ#P`^4% zH^}#&vB9Cc6HyS@S;nFeqOuWE!I9#Qcc8n3qs>1?bWF%=$)!fq*$Q$Lx%Le^#RpXe zpmsnJZc{=3(u*~!VqO3unU{9VSYR|!}c5#}K9O;zQK z=xz#%iVfdI`c5h+d<7$on4ORB1M5YcblZ_`@~zl-Fquc!9G3EB#IV)7SgbtD|F%y=8~+Ux*HJCALZPA5p}k#tSm+&89GplR!SHe znm;XLc4vX3KM>3o78ZXHOVoq!Fq>T5Usz8-xF$Qj#B(tyH1q_@jCPSrhKXmqMkR~^ z*P-|@1a00`R{BA{H>+y%f6OCyNNj?MIb8STNg5QjZ$MOl9cZi-pk4@1K7Zr*{7mW{ zR7N-k_3n*GSZyTY4q|2(;elFfX#dy2VpQPKFiI3g&J<$ zAr=%Agb-9CZ)nv6iM&bye(Igph?arfx9C3M8nCyf^E9WId1TxJf+s!+XjhF-uY?VX zkj7UCYanr_gs(ykDSQ7u6G{~FZ`Z+qu{ zu!|7nZ?=sZmRDA;#YH0bgbKU{z)Cdl2Q*CId-uxg>eNj2RmaLu_D>{hJ<~`QIaG;~ ziey3em4duH;%Gq)Fh@|gb_oaoaSav7>&cZ@h(?2+3wG4;@OaA$RC*YzcD-e5ResjQ zD}`k*95ruB+5|*|IJE`uB-0tdI$K1L5d=e@K4IzwlM}8WD~R*6`jAH|pgJ$?RqkYt zVO!NFsIZ_$t0*ec0u?{IRDLI79^CN)SO^*KQ)lODlC$~IMbA`b+^!-f_AfMFz@s;) z-MH4BSe-`SKRobWNOs2@?KtZ32;Dsc+|h03hXRs=gPr+VwKFEQkqXcwU3&fYQq1a~ zQA0WEg^s;6cJ)sziudY9k}dA9ds1im#PdDGNio+64x(XF@P%>u#cp&v#UCPBX$Q9y z8nG(gZq^Xz*H$YJrIY|V$kni`Z(zS3Fsa^}8uz`aN9&k?u&~mK>)bkzAP5HuDq4$IhpWe-tPsX=_~G5OSuea+2%=(yMJD^jZz#nfDv*QrG+;jmfn*^T{rDB#y$tVIQD4OkdZ+d>( z|Juqmmxmw2Bbh*d*2uRrCblt>Xj>)SM3R$}O=?{K6)lcOiFR>!M_}d}`&gktsTcND z5W?$?wq2kIN_u)b?rj(C%^!$1#3<_woFV3chVOOSmX9$=rQle`Ng$#5aa9!+PImU| zklUlU%7Qq;1OJVv+UpQ91_w*X>@O{=Wd9H&hhGG7`0w^%A}#x4(i;CbWTGC$6sqna=n*27XkQ&N)Pk=u;50YyNkz4AVXLc@J& zrENrCK*0DUGz=UFh{1`N9THB;7U5tRkUr7fE9&bX06v+$UsXkf9pds|xUd`Lp(P^M zYuOF3Tm47HrMm?A!>K0F1<;uA3n-kIK$7C4vf0<6n*g5`IF4*DuEiB2ws3Krlh|21 zUhW@Vb@H;|`@3JUfPhpsU%h%2C|eFJj#LyXDk>Vb!R8mtNXL=X2uNJ!g*Pi|giskt zW(OPl7j}m|))K^OIh1$g20>n~L2b^!9&b3RMM={yracCJ0V9GUzEVnuH(tXpJ>5F_ zhlHf$P8e|-ZMm>dZG&+r-Y=pennN4ksx!B&W9z!2v}uCzb= z^yw7If8#CqBI>4mW(+%7N$AO25#C^DXQ#M)yLZS1Jtj#nKU3YjJ=1s{a9MeG_bvee z0k_$oso^k$D$uDA^m~nQ2HC#cH^*mCvI9(j9MiyJB`1D>d}L3YSTU@3Gjazj^06wP zf^uC3(V4J4cR&OMlX@g|wM13Cv7zA+& z-QC?7)P@pI_us!4t$haeTaSMN*vDY~=q`Q?4ESYm@FX~8zQa%u*F6M6j)F+R3tE97 zaiuMt40!rW6wVk8(v6Wz8295%I~1ZidO=@NhrH_=asft)K&? zzZce>>WQREH6}-Ova%Za8o{puSfy04Pxq=u?go9q#EpaJ*n(bxO;~HWk<%3za21sI z!#J%2TeZJ(?~|r#u+{;nmXPJbAu+Mthyh%GU z178La9c8p0kx3w2@Ey92TQRM!W}*7V}y<3}ZinatZZ`)Hlqe zy!}xq*k)5D>3aEZff?Jf&9@|~JxRFw=QqIw&;V6Q{B68hBI) z>8%4|{em~%6z77fv6=Hf>!5^ZObxC0 zekcC@yPM((FJB%Y&DwTx=E?&^6`*eLV3uT2J|S=tazRv6q%KLo$RCc4AV?vVFDXeQ zTaP1j0=bz8n*@v}>E@=90Lt9bWSty7Ko*Oz9FTQFMXA=casUW3P~rzABe3NzuG+wJyoFdL-aA4O$IlE{tgu)iNfL_8Oj0Xsj!S9>8^ z^X}bBZ~U1pz?RPl*k>e))MXV2@GCAL)_3FPP4k+`$;o|M?U;^ASb;P&G{=&)8j{ra z;H*Z9Lh!wN>w#4+A#9_Sbc!loLjlE?RB#!Z8Yh$LM{iKEMaD4Ro;bAujJTfFYmSYa zc*F`v0qXoRj(dtgi`5?^0uYYc5ZObd5t1j4?GW%EVGf)R*Vrs75K2vKT?Kp+1vRzS zcD0+dj5r+9TqFf5#v4MSJ!YwoLql&tu~Ih&)%%wpC2cKEsuN&y_Nz6+?8T98V(*_L z<#cAd-Hdh8huY7cXOlIkq4lI1-`cRV3azjXUz?GYWeA{y12Z)H_Br-n2E>MN^#z52 z6Ws_QY8XvMsyLcz+-}I2JvTqUjgAYkf8f*yZyfD=_$DWi2+lWWIP?ET1x&)RgX|%K zZr;54q?%eqN5^AerusOAEyW#67?5*0ml?4n$jLwAx&mSd<4_99VmZR{2x8T1*S&f3 z^kl_~;obWVp`J48g&)U7BGCto7^B6T(=R3=fpFLL08uz$aN|?mgv4M?t_$hz9Qu%4 z5uDrY$Ft~UXV(zk^EXAm1VMzfCM?k`(C3;Z)K>_ns^ARrs5PX+1KnUBG7mpO6;^D( zeVFe(g1#&02=vmWk5I&Ec7n?RsHP@>k>ZmmyK>0F$Or6r3Lrs2C9*>`#}T$G?b0LA4X$JH;KlmyvapH9(MuXo zD=6f+5wc6z5ZRZTtKyd7b^cE@1LL)ck@03uP7ar8>S5@s!+L?wesuinoEw}GPL=HRvu~ zb>gr1L^u*Hh?Nh# z+%KT}>Mp)!68wOkiRl*obzrI?hIb6jd!Km7KqN;{V+~M zI|QVN%MvayKlB>*-5g9D(0xJ2;ij*+*ZS0FzkCGwqow`yq3iw3Ykc> zpqoQxWQMCwBH(~^{1YYU%cM*ZK6U&SU429@@FzStVl@!e2kd#CDUie|sA(_$ytA5f zx1iuAY#)>a8%M|Hh_HwVMOoP!33apzL3eKd-)00n$N%NW+|&P!0+axX&K*)ElZrGL zheGJd)%>@Tv|c(3q?~{8+v0-k_XZIhL?amv_#NS5_FOOn5o3PwsRJqZjl}wGY}^8i z3Ol%lWF(-(I)!A5N!%Ja=Nr!7MK;7Yh5qdCEzcRXp2wvXJ`0qgx^`{2?@m1m{WZmSb}p_HTPWX) z5NcYVW@=&K|D0YWYjJwyc4{g=HcPXF)X}56ydnRDVgx54wiDb@W6=<&;O6gZ_pz#q zou9vE@bAtGViQW_JQTl~iT}FSaub!}PuhI3Yt@NQnA|x#(HIUO7ebC>qw>2#>dJGU z-H#5QK)gVlT^w`6eu7fv1Je0*Xvhz%1KfM{>=tC_ur^)6ZcZvI8_oUt3Xi}R9zY2) z`ItFKP8&#S1ChlTtF8i_kw64)aG=u$hAqzQJQB5Fsyn*KhvOpTY#}u1>nN;^rB|pMXK53K z3KtC)j)QyGQLdo~a@$Ce!wHa?C2-n00f~6B=)vK?z{i2Z(^ljvjI(@*yy=>DVXo9) zoZ%;-H%vN?+-$@{4C1l0$T1(79%Q3HZoK2LpDe<)$JlO^%oH2zUb@5%VV{G81E2X^ zRN&v!3x_=S@`e{OnLM>c7@O~%N|jMpj|Bg$}7;R^FFg8F@MZ;^ChtYV<_p0IdL9}xH*$)j#>;-2FKS>arctaEIm_tEsk58yw3QS6B zr#@t`P}ZMy;(*YFls+W)887x~ElwTdQ3s{^Of2k}&hVG-t#{E(^KfU~sZp$#|;gxl8{>B5N` z2o2w$a-fWbrC0`AE|l_ehlX@}~sBn%0RL<0bk@Vto-?6HY*W`q0D(N@v1f5$Yr zQ;^4uJT(MJF%b}5r%~;1lHyj&6w)U|^8`d)^%}4;>1_Hg;(QqscNA+Fo<(b6DJVF6 zxg7n!A10}vvaawgR63ld=0HPk3}*)JM*TrlQ>W3>!^8K^od&*Oi3^qCPlVN;03%F7 z@?$=j{P*1)c3dI1&wb4LgB*$4*`xWZ;J(?^<;FT;}r%7e5HGVq#-A<_WM z550rN!ongYHMK3*nw2~|0b0l0+#GIFl?2A!FiUt?#fmQ@BQF{wxCcCIgzAeT$3o&GGbpMu}gv7^9@ZMCX!ib z8_xVAHAFlM<=cNx7-+a^CW-SStk#sOd)6WX4=Ra{j*b`tHZ?(|CG;4~pB%s-;a_sF z*9D?BIXhJ+IlBX88c%MyLr&=8+wd3-(}Z__FEP1@$3d?1I-g!1J=D8}nNcMjo$ZKX znZUq^m`59g`7+UG|Ig;lL4ubfC_) zTfVfU$~W?!zAonhXt@ll%XI zYvUXEkwr@C-+z33CbcQ`1_SN#BqJ>iotD7gKV*_!&EI!VBiX8juHc$d?V_4g$Z`&W zUQF_MLH)^5MA;B-RZG`WkUT%rNFJf3y}K=6&$T&mJd zT%$5=fm5@RykDDJJFz_I@6R9p`5D(K-gdfF>s%%~WOgP+ri}nXC;t0;<$`t{`qv9M zb2D`~h%uj2A@f)!R2j)MBRMM!GcJf@$d+rLol=mIw9z<>3tT4C|M`=|@UH)Oh(~$` zVMImFLJ_h;;)E1&MCjkwk4E6FeQN@P$!i*WeV9(I;ags~M&I6O-E&4QEVf%`f4KXM z%Y#iRxU#<2oN1n0smJS#qP~gR@C4h0kWzgVtT|1O2Tlj>tVD7^?Zu0@ZkXl^FYB|?27RK&#V@?~C-DnjH? zk4WipaL8^!bR|z3?x3xMLmb>xlAEoru9n%`Y55msYc0@LNp4wzaI3_HYx3pSCMr8K z9}aYCgu8Pn=)i5q!@B&$?E7sXI1=3*D0~QyQ9?&q^M#yoz##)XKP(z($`%^L!gsd< zq>uh{dvpzaeqd>-x-e2}VP>p#{mHu*hYsZ}Jsf!U@_Je>z0G8To0w8iuses3g@T(b z!-LzmZtwYtz{{28ST9S#aJxV;LAx*$wZBZOnNn^4{V;$lxO4i1`Q z=tB&m^D;&zwCc%0^t5ud!g(`FPwCkYoGOkq+J@ZzRsMC8?OBQ0fp0wyT4`Nno53YP`fVaGLL-qGMM78=vN@{6q4p4JO>PdVv~V77O1^|=>cAhA!C9jdBykN}dmJ_<4lpkZ^PAjg}Pk zKm3+TcO~8LTI6I}oUNZRe7^bewnU9&>=klCj}mbf;$u1RZ;dTSpnzx3?bok+t>=w@ zm=+$%$qZJMC8cG%J2w~CEkIH{hlS8V6d6;X!@q}aAXZ#5HkQNf;P7@V01yoRb6F)C z$wr{XMNBN(xpR!CVXMGnBGx95jmKOAeB@!@MZ<^5C`(C8m7EIRx>kiHP`30ABt!9wN|cVYp_pilun_p-zDqe6j0aQRVa7q z(zEfkBAj6q{YbN);?Ws zKKFg7vgpRD1&XJ4sCU11?g6#WCn85gUbnV|^X=P5&IJ$=9nVPm%BWn)xvy@|G3G;_ zPexxKb3D&&A1&;9Zx@SDVmuvrE*y2t^mF~<0+SMSquM1@K^nFjTam%8Eh2{{AQnO$ za_rBC`u6IvX727;3v2}$8aAYhl7+2d;o{%e`wsn72ud8MVUtC>bnGX&XuLokPY~rg zn)T#P!?A2?LFzKK-OrROsdy{{`il(KUMtK{>_(5kc;jQdQx`UTUQ!c@& zmHE-OM?*TP`hnG+y6Jm$Qp|W_3?s7o^k>eTA&-Vzs9+c73{wvHs_7ti#n`lZrccz( z@YL_J~>0hFL& zwnVHUPcMW)eAsP@8)u$$I`HhSU5KLeLX$>qTwNP2r~LR9rO2D<7~L;k8%kc3r`2=n zRW?6|Pow|kAp;Iug?qi^(}5#blAU#a`3ck(2;ZzUuTRV#UiF=v#6{I4!Ap$p{I7Q# zlc8M`kq5^x$RlgY3mk`|)z)27-k{D_=ZHlHuHB1A*^!hIPAL(+6SI6Ng)elK(b4Uf zhn}TBVbWZ9!Ck3dtW==ty$hP+C73DCte+fxTi>l;y-VbzucUj~JzpB~%(*Vc>bA>q zz60WW6EgtN$lS8qjrYDC2nwm#6!Vb<>v5l4@zswp@q8cf?6pO8fy#u8o5s~DViFc& z7SoqAoWIHly0`FQDQ<*{$3r3Kgpj6%rNM|}HOwSM{h{i^rzbnFq*)FJ(Qzrhus^_7 zhOE|&)YMdptR@SK;F_|l)YN7D8;0+=r2WA&a|CgW1+|>RG9|UV>FsK*%pt3`z3KIa zh>V5SHhi?7EaVvoc7KSc#zCp(Knes+hNK_73j*%u=H?FKfndl*oEnPj=)6;?>P^p% z2giBfpb>ejQ7^h5vkVP+fJ4UaBYJwmQ~5#+B9G|JIN~||q<$|RukJjgIko&W-DNbl zwJf8fqN%l&Za^H$d-Y?9vmOIq*>1?Nu^+RfJW&7S9M56j!qNDF%$2l%{JxE9+ZL>< zxW4b|D!po8*;8_!AwTmdIxzi6{~6qJlj^*Bmrvd z-_%1wpQfub9=1S^QK=lu#gm}wag1#oi9lb7wU-6-n!NuTM`sz9MYl%bmqtK91VOqR zB}KYHxwyC!IOBj0<8 zNawDn>?$|AX!Tv{`=p$(i=Z=XpB?5W(ll(8YLCr6*m=5`G!91wr0#k}##?+zafZq2 z;5-8b6pGVb@WNvng)*i;*NVP_^~;TdrC7BUBU898}s;vXzaP}(6Q>o#Lu9sHL>%!gNN^a{xRytmtN01A=@JdRTp zv|b(YEMSE&1}nDJLX{ubzZlxuj=zX{z}4}>&jLex<&Vj1C@ylgIlu_hsuRh(HIQeN zXLoU>h`z$x<;R2c+2fv8{a&}9L!F`UogdT9)A2FKv8CsHftWt3CVWFywT~hCI`>Ek zTPdEVPtjaM<$zw{-QKJ__qKV^9D&q$DxZCwJ>$x&LE`Ab$*0G%kce$V9-hQBZm~xY zR(|0nR)Mt&JQu0nK~mOenK@JQ@=}tKI;vBQm-v!YQlH#E{Se{AU~#@yN&n@xcCCiO z5XI*sW4RiA<@Ki|bB#tiArw-BO^UtfXwb>dB+ho>D9WjvwsPQ(0^ddd(2&$K zztj)E55s|&FW*ui(7mKxz&~GR@h^Wo@D+Ta*n-2vq4mGkW_Qot)m8**3XcJCbod@W z0;JD&=MWkS`Pi6*?D~?b>nJ`??(>74=_^gb9pgNr>cJ`|XN+v%Hm5cYB3NQJt+|YN0#@ za-9z|&UWWfWB|d+1|khX&%x@_d50%#PI{Iu+Dv%RP)7%X)$7YhuO9eS5*r9vl{&52 z(@qk5bcpX@+#BJaX=!MJMn;rC>d^-#MPSPY(x(tOrM)OEm0AF6d@by4{_Yw?vWwGCR;XVR+E&KeF-Wt`wzQ>q2{48(T#9o zEpyRFjq+XHL(vU89(lOV6i}r~1HQ{)iO2cg?yX7TKt_w9_rfq)U=@5hCW4{mOFABW z>0aVn5HMW_r(ock$QcYZ2O2ssk$t)~F|RuyrI1Euh4AQeGqX`6Rs!u>eIV-pyjt6J zVhGra_b$_K>?T^g9(edq(Ae&e?<0xPS^U1ek+4;;A#I}!`TF9|6>^q854}}-{46`?wSxWiFYhD|9$D$zfG6C2cP*m z>*YjXFFpfar)mHa1_$_8UEuKX@@s;nnr-+Ln}7|s8ea@ujaCDq!E1zA!ibZik>X*y z9k~2+=h+OItSQFs$F_B+g5^SAS}1at7d_=WW?JShnsoke4(EeVU@3^@a6*2sre8Q@ znlBvnUmVzV0WGhRPN@Z$OS6b2hK7g3f#(6N*@G{-AXtnimzlnpXyV_~s~T*zdp^L+ zAW%b|bB@HCaP*1r%)ZMvyL-HC-!DQ}057dx!hZn*Mn<*;nvB{{yq?_$r-syAkNuO& z60?_zHQ^rYLN>3y6DzYRFS@uBl#W-J?00HOs^`O1we2~GvlC`($R*@&dJlQErMJnh zt6R{&Fi617$Ok-6nY7O_K=A-xIpysw=GJ=4(RsFN7UIGdHl<>E=%W@QlhWznr3kI> zInIAFj$gD&3=bwH{>%Rfp?S8ocuKM0{U0_ zRK7Z`Gn_L$EBe#Z-%bshJQ7;@`O`c$Uu7Jv5%~h4?i85e^lfeB0W9Igc<~Y_1TrOc zX4DH=t&v)u`V&hGeGw7`Aq@LOV^y_IVx`V-%6!ntKV>NCPL1hPxP+>Xzr6ma|F}He zO5di^=7O6&g+Ru0%xkz$MGVfS%a`jPS}KmD_I{2PsBa(uI}$LcYysEc4lt~c0!SY) zw&9~|OYIBgP_{NCIh*ETQT|ArLf0G;I{H#Q{7rP4bw97&7`r`gG z7Oi5aqH68a(iP78si%&$QJzAf)%&>_>8ji{9}M@~uP!_5{x(&%Z7`_sil&o9iUTC$ z^pCVb!u}TQhd8)cUP2Dws0|FC!SejKFQmXpU<3doffs83n41((_+F%1a5A0(9Al9F z=?6!!+bxh+INlv)4|>=?|Lg8AH!QPtlfDJtjPzy$KP#ij^`lRunMA4L9jEdZab43Z zCM3CRvBJrjlQKm+bp7{jp@GkYV_}^ns-mtn_Brz9{AlHz@#v~N$tr%=U}%u`+1?+x zJb*ub1pHp_d0ZHQy+-k)zQu+~)OtWHek;AHKu}nY)VB!6;_q>W7zxzU1Rsm)QWkuM zG1ldC2WaiFRHY^z8E`!bPbCM1Ys<#b#JZbFY^e_E+%8( zivQY;%6Q$z-}4($*2bg{C%ls;`dGw{vxDTYB_2bJM>^(7F*hqDV;Sw{lGl#xJu2mR zZXuw3ty%ZpvNXk(qgN`xTTSGGz}KzwwSls1-wq0L0{OUyR6eG;d5d{6s~F!$&t^(Y z&+@W9iE_gk_sPkd2^ZDWNElAEhv=wx3l&wcU zI*pCe>4}Eb`~9-|#vg8+A8f+M>7$wtsW$DuHyHV77_e-`*}k{iF0jVto&**?10dby z02ezf<_{EtCY%9VVSCpmwfHfn9g$x~{yA%%#-~5&h8zv-J~Zti!|Vre9hD5#5>=D`Yy}uuwLTrnj0MdZQqG_fs9|X;~QZ- z)rZ){&X04#LPurK-Co~x_K|#Vcr&Vb@0|Xp`I8(3F z);eBurO)mRXyXW8vgEkYUoP5sFq{zMdxaFz^W|$$u`tEdjnoONZs2%c*%f(t!cV|D zTb{^vF$gBCpzc=48ywj7Brw>W=>OND*MFPNUVkL>o>4fS@dqO@{cGbL^O=>f`@zAL zy>j0|(FE9P3V4=}Xe@2Go1xXnJaA$%0yC4k*P8*^J)RYff2(qSB;V|pZZ3Z3W3t0Qe$}8BBZPyHSRf-sBkB0|t%xc3r%a zV_&QSmb~0uz77ahqux8O9H{P_(T{B!@~fF9?Ql53#PIRy7ecVcmlq}OHYsGxrL)tv*8-rRF- zDA<~t;ZMvo&9VIZxAC_~C;Riqe5}|wGS_Kqk@;o3j0{X79p2^;6B~}VSJrsJwnTGn zFW(v0@-?(l&JjBVUB1lH;4UfsHzyb;0{SZzIuqGHJYWoc-k#B;a=qosM3{Ku#go#K zY_N(QB3h)dF{kZ6^$!!1yzD4eDbdos*e_fw=pgwcFTgZM&auzvY^QWid@&zM!TwLi zVjlLGZ@KALA&o({FGB`&UcSDI0^x4gY7eR!%NARFrNKcSNABGCOIkI$gwljJpn;EL zx&+SFv(ws*%In?7F#&y;%ZL8(*?H!@_UwI~CGv9t+rXDaGsiliVMVTObhPgmgm=X4 z4>*K;bv8+G!D!=`&$`+FcLba)%L%8;la`> zfuFabp>!)9ksRh&6u)@K|4@&=O~)Qx{Agi^lgW{nMaB>@dBYh5;=Tb^Zw_9Wz!XI^-BJ`&a8c%p9^2luliDdy(dAA zSCcYvO&cvkuU+u*5_s7+JO*C&75;`>;ydwf9RCsHxrwq;fHT3hCo6*nrszQE{;83Y zf@bezBzn@rV-Y_kg2b7)_K3Ktz*l1(pVMu^uG>_ z{)`a5&2M)i(_=CGchGFSbIqoc$xjjOYq#we_0%j#%FwUdIs%#FsutoU3r^qS{@#n| z$-Z^i@eDDeIec7knM^M@AF7xK*-?gutzX>zDrz-YiGjnuv&qN!t=-C&y zo7s2FVN09c-e|;z0ye)iA^V%Ty0*2a&cQSIAi?F?`VOrLnHMm z1VtoKV@!G9zwidkA?J(dQGQ>M3~)n~Np1YU&`GbC`^Ogse^MT_`6vT?aZ|DDuluI> ztHhdbldhB#vPs4_o9GBolz=z#sj%E%(+YdnEexwJe&+In)iY(mcaqoe`~TFSQ7Dd$ z9~?ahSjspJJUK*z0G)N((d*rhWJCkT5O30@Gg@2|a^$nN-zMX&$vhMGPS}+Z1T?@h zoxeB>7XLnA-|GXOQ89-j{kl9HR}xm^6e}TP)L7JF&rR-WLfA?)xrnyoBFlgL4HBvQ)H1yFBy6n8K9pYSWg-ue zE*MR?gc0?>2*7F$OA2r#`|~7`BZq(g{sHsHml!BWt?dH$e?JgI!5|V~a9^UHFZ;5d9yuBFOb+^nGrAofgXW zYy8d4u!eRFf$tYSN2exM*7aJz755M0%%LEqRP~GExb2Zt%x|@y7iUV*I0?P+LsP$L zp^@XsVf}X<(THO|Eb&LyUe`V;U2wRlkpp^2r?1rTYOO`r-f}>|j^^0@?uLRW8^BLO|I11%?ZB zD~@vz!k2xCZviKfJnt!d7P=F-Zjb=k0K)^wcd%~)N$ky?o%~lG_^TbVfv#(0z|&Xe zfc5kK9=Iw-*PAw}wGY>f@o)*r17hgKHM$P5 zgDE}!V%O@z4&_!#ZCOcPya%vM{C%UY=U!V__}`hj$j(#$N^0(xFwODa_!dHQ^XRC( z!^TLhdBXAvnPS)Y`>APkDEg6(6 zogbghFL5Ln|9wU=APaF7Yzt|L8Y?_H0upx^o9P%bplQHFL-&9c%hH3!8~D-wU!w)= zuu={6vi46`cv>H==0BVRV8~A#dub63+cQ%shPa0*?Fo$gXaVT6JuO2oZ1Q6W^=E*3*tRXN?Y_ko0})NZ=g?tzSUtlKg(QOGu19;xgxJxYZAU6;lpihN#IL0=?X%r8a7dmhmu?4XfVS<{d`R2*pi|BFaS z_^>wWj(&IHHyBr~S>>C^sZ!S#!>99d>fMNJUThtCDr-2K{q9X5hO%}eO|&AqhvH9<=F?+G8!AFN!8D|As&C%lpk>%T6%y=j1kRn~sY zVA9ez9?O<;@EUVeA6~?2WZ#ZWB z*aTG<*mo1{?gSoKY%~6J0>;G&T5IC~mj=Fj{Lj z)$U355>MF9^Lh5Tyn-_0bb=o3#-EqClOow4pPR00bbHP)%HK zm#g4swklvMi+_!ZphQJ5pKHj|T#hxd4ww2CSg(*hqVz3&KYv6idt|65jQ1bY!L-Y_ zyCg;W%V=+_A+GbQId*dn0xzMQ=1c(I=yC~ih{EUmpgmz=rEd|I^GTM&WZTMXzQPwq zwEX^}8~2fmk?Rx28k(Sm3H_wxBosn(imq6A{nq&zQSmvQ>~72$U(~V^_b`6^KV%$N z)?>#3y~n5A)n*e!_^QK4Z?s2O-tWA`V0L*(PFHwfKxazwp!4vLaOyn|#jiyM&Bi$y zO<=`+8Kr{N@g@87(sl=82QXj`jd%o_M}XM_8GUSadNhV22!pt6}1M%iyN3(}+IwO{6+1RJ?fTdmUel z=RNeYyq48o(laET{(RDJuYD081#9$?Qth2M#rVg)qAXu3+YOE4*p}$Hnt0{JT-y0D znf{Thxhoa>O5p?nxxa`)9ye6ond>_xj^{m?Ic*1_9(ehKi=p0_fnkj4+NnhmpGTjI zQ;N02JAc>TSaRRnRk@HJjeaiI&SymUy7TmT`-$JTq40 zM*vLNr~yF=STBIPV+fRk6&YG7Xw7WQ$M5T?5tB2fp=plLDkq3pT*>O3&kI6+7T9`- zQx|jE#3aVcl%&I%A7$hnb;vArY2+;}#1_ahF+qa~)p{4A4=C$#ZuKm_(wvw7pR*nXuAqbBdgGeJMTsV(f-{K{XUtuoU#J#xX z@eyUd@3Z!Ftev!M&#YRg<-AW3Aq<1Oe`sHGKJ1$sqO9$z2zutKC{gb&tm z<;_U^N_`JK?cSf{OWY6eB$*OoQe4T0Go{f%B!UJvnbdQv2Li? zb?e`&|JL_a@JFHZNneppWCrUu50?WzeC@7E(t4}ft@d_fMY=;mmx-aVZ){2Kk(x){ zyleN{N|kK37rfIAhNjW&*5_xoOICM=$=#CSgjQsW$sDm4wE}pSssSAOMbZW;N0D+n zcPE^>Z^hrMPh~NyKdJ_0n%9i~Bg-NDSspCobneXxmqa{;qNJkn&Xqo&b%=#ejA#Q~ z9LMFitM!8{Q++*cOSRtFHAHnJOKl=6yZXj%ru)j;b`GghZD%wY>m9Y34C&Fy76w<# zPs$CZR+GAl10i%4mcM#3EWPI0Ng+zgvILHnTjGb~{;!zESykTm@kY4EOP@2R>R;qEEB!-E3NTqe%Oq*(Ofk-@rIH&FE#~wwz%tq!xSd?6hT_( zhA}+UJ{{uh5f?Wr;*dNvvu|w{!MW)1$BebGAJ4;EAzlsTh%ztHWhl>qesRvvNDGPl zbS~YU1Fk}M#MKMe($2YIV7B|6x~G7)z)FB+kJri+$tLtD!qN=6BFd#HBU%ZGhwG!K zW!hnx;=_gV6H{`;w*xoc+d-ZAzJ{(}LzEql=h|=MF1=<-d z7C>cXc4v(fxD8k>(xSA6Ky%SG(cx&88uItcwZIm)p4n7Xt5gjEV+i`M*s~qAs8?kT z?wuo`dI$jn>*-d#4<;;Z)vxFG`sx;gv3U=?e*%zBi&vt?3BE3Ox1%+kMRz-wV>T7! z{kLT8QIVEGxiUq(dDm&(w5GPX)a1vVL_-ry!;=K=2|f}*{vD#h(a`Yk#7oz|S&vRy zSYk#6@A`2X>XTV;yirT@=p${GM7y$ZKZmzqove{A=-@md2bDJaCkHp2XgPnaqVN=U z@pW?C6DMY`kY=jXylqrV<-t|Yy7ou7P%FkPy7v<*-WDuXlUZ$yRu>iq5jsTh$Qpy9 zp%)?fH;IH|f{Xh5cXIDAc1)+Ke;l5WEG;OTP6cf)yS`E;uWGFSJtiL7UXSDQN$Q~H zd1+vM;OJO+!L-0IDdp*JB|TB=2-?B@Wp{;;P8l{zO#msIbe59w^QhAEsEV<9ySnj? zdnGF~--nD5R9r<3y1_c7oSGWpe1+KTI&t7{D-bTu*gJ|E8cH2ubY{^B8rtNa+X;$P z5<;NS`p!nY>3K)nAz6LH8`6K=&G$Xl;M5Z{{P@RLLe^=NwS^K@W~ZV%A7!2k|JZ%x z8s>YJ{PWJu0|gdW#otG(znztuEt9yvFosCwSNt*}HQj9a#qD-W@s;QgWF@0=wQ#sK z^K!HIUSMngK>B{;$_e>M5c~ks{D14F9^8z&XzGZ{662JkG2E;zpu|Sq9?t>-Oi*BXil$T-dguxdWy&9Q7oY}PntE*MbQdSZK z#1f|iwyA1WWBtsO0(4B)>8kNB10PH^gRd5N77ddgFg-a<4@y*3kx1sG4y*u!L(L%b z{JJZ1LDrqd-1nq=KM# zt^KEw0n&HK^+&$D7`5Uo`S1t0mbfLD^o82s?XgvMAz1?#-#Gou^XFXiP?x(x)WC#) z|2~Rf9i~gxx$efg{_HlkGKBANyx!Qih_3v_*I`qC^0+R4Q*no$x&OR*y+OQ&u~qfz z~3sR$Ay*Us4!L=BEzKR*7?6iw13`K842LMcC%o&c|P18-}gCV z-kOAcbNc4HBb1+&^ZdRfL)eEI$DF(nT~QB>UE7tvRs2B*G2KJNk-o9rn-`sE#y zrk&wGrBCwdQu8-%D6`&7wx*c{PFQs2U_(kK{(bP>Gb<8Qqqi@m;CS!fr;UG_c8S+7 zBmAs?@}UKYB>Agku~PZoEhFPC&di<-_InhCJ$c1^)kmxMv}P>-rO|6P{vI4aEnIFq z_53MM#SeE$UNdJ)TI`A8JSHne9oqRMzPW+`-JqtyoO*l0i(Dj}lfZ;A#rpc7%1R0s z#b!l*_xIzrwsLv)C2FcG3cT)^%gw5N*WUfsP4nW`7Py0@?RP$$m(Ox8#s_<2@!mWU zw+|j3fM{%=&gB0j)$@B!g4Ly&5e~x;VNjLCO!zAabwIm#5dDwb#^^JNK9UFfLk#pa z-Y+fmI<-AtDJn?yBpdGmu_`efr9edr}YF&s&G zT80EnH1*%Xx5!k>+<2}dR9~_-Y?QcN3Acg*M*4;W& zzryL5q9O*}2|1*Q`t}K~;Lx6bcjZQ{M!XhpyR5UB9#~+RTv;I{o9CFBF8M8PE)qV( z^kOSHZg5Z9jxYjux0BD^F+z=0cXV)VZpg$#CK>B38}bvH|NFx( z7M;~@-QZ_I>6l$B+^1616?qPa$1FYb8<=2NeuZZ+~-;9o^!O1d(`B-u64Fx9Ynkz6dwc9Ialv84iu2MS;mM( zo88{*Y)Z!0?&Ut$u1mDKfrXWYPnPOSHbmai&vxeZ_hX68U&=8H+^Fj@A}5DS#OsbU z_8kPq9uoFJnuItKG%kUE#nh#}GY{Ls&ONn#lY?0f+8dHqk<`uxn#;9MXF9cq_p5v~ zGT8BMb=;ZlNPXbps~*pc8%Vf>%aifE;imj-{gN)qRnP`d;=Q**VgH0R^@|k;RCciP zUVQHQfdo~z5eqdsFYPj|C~WCL%g?CQbDX22D~pBRX%+{3>DuI znMX?Ect3hB;jVTxglpbXyRq7^s}bq0{7#6SWIZ|U5xbDy5mnReTljh_89M|d|7X4* zo>mpU1f_hue02On^o%bLG-?uB;n+W!)D0_C!i9tHPSQ?YzKdxT)S!5{0CE zFhvpRGgLh<9Cvc@_?XL+bV#uF4C!ht?Xq-C!3(!!JmWY$gBhEb3HMZGtQ@A=+vUMj7IwWaU3o2DY?dom48f;?TS zATg)fC)Xsk+FipI;!LJhAX)Agn<5Nkzh^66VBM9tfYSy zzU|hPgLgN6zH}o0GyFzE*^&6Q*RJgAuMWw%A2cMLzg6z7(D_b$y+jR!g(XREWw@@~ zFxtvnZCirtxb(FpC|;ir^}A}cN=`_L7+$JhYBpUQut>Q6iuBrFGA`_xtnU984T5{v zzg|OR1p?=F8Qj_fQD=qZZFa}VSSNaov*QCDHK%}-|Bi8DjI6qb zwf%ib@tQXQbdIU%Ltu8xXR+d>gkVhndyMH>7#Rcl82drd%vPE0$6!$nF3fT#QdX7( zq+;VNUV2|D$!X&qwG9TjbT_Lvp3r=Oz|x&kxB{TbAaZdYOzK zDW*k?ri-NbD$8zkjThU(e5t1s?p3YrL2Wjl;GG%UP~# z^8ihn!l*-&s)zw4zob)cFQCAz2DrjnHO7?A}fE-4n(Z^3^rzANr82$LBX` z>C$iAuJAtXqJu7QXB!4INLIN5^TV2;Hvbzf=doC6LU9a_wRq zk~<(ULKXhIEsI}qKKoOl zx0PRP>DarP6oLYy?RZTwT5y4=u1a2njVt-`=RICme2#1tIeA=$r(6>=FT%A^jt?Af zXF=P!+D`Yr|Aayd18@Y(odK_r1O6a*hm z8&D*p_*C$PP~%5Nhtm2n3O|mqpk%-x8Q+C_CBDeVP+#eG?#2QqyQf1NYY$C;_ z6z81rNw^iZw-`_1$p6);<@|+cL%-CdSdcNzx=C|3Y0m4^>v|eG@p9I-< zhRw~iexuhVUJv9K2`Rul$|IA7c;m^cC}F?$BCvS;+~>A*UZu$A-yQ)asXd8!B=fjb z1=Ky1#>0o9Ime+bp=(EliSdwPzw+wtTsp5;DLjn>)5?#{th?Whl+NUpb+FaaX?UL9MNMGImq4vleA~SUkrHLal z^$dlz4!SlIdZvI6k=^Z+@g>9k+!kyDw=k?K8Y^Ma|1Gr#Ke);h{m~Bh`qI}Pyb>k-Vb)|d>K|P+YznWK9F7v! zES={b5y(s4WS)fI5oo93Bsg*^(Eeq!jmY_QL<`de$G;0{vcjAp_cC@vZtT|A1@0Hk7cjsQi*Q5@2AnI_+WODled#YmBZzgz^paz8p>UpIx347t8(iXAQ>eRGH=(ESGc?GKU-6S&o zEtM(ZVAdu)NytSSv|TZP5colJhRjhDTuZ?=E;jb1c~0K1y>~mqDLi(p4Q{josJK{r zJAKCUG8HRa13S*)%?GcN7`lw*LmYic=6Ze4qt&=-teh@$Ow!ERl0EnaONb~Ulw zR34qSw5pkd3HgJ6^KMZE<@fc;^3O`zq^=SK!d}`%|MrE=#7u>AE3odE5%;9Tw|5hb ze53>OE5EQxcpC}|En0?}iGv31zAUO^q`74D;E~gBOp&|I?nqRGEW)c(G@V`lhHwrO z1wkx?-j{lje~7GE>A%V6BnH95)+*D$D{8GMrR!4tFZ!@5(SdJ#dQUoQX?Crt;`H)$ zDTaDfQ5Fc`OZR(&mQK3l_*$%-9*^y>Ud<5hC2)HKYPoWMd)Se~icfnlqw~H$)aqdKfO=&K{v=Y6t%y3x$&A}d;=X&%UlR>-k z?z|2=RkymyM2-vU-lIUTj;L~Vcs^tup||n>M0`Nxh5Os8NjFzjkGSFxI3H!McfA+H zT~p%0T3%Xb0vz}km8&EeNEo9XD39#P@-0j`H0wRg`IkSX5RQ(P()V%1%~itK>(}$h z;Z4C;?%ri=QMUfESuGpujeI>-PbdDo0ZD9{Zh*;2piyZZd0q}1hw`za<21eSv2O0} z>i!L7KeRH@$|~;mLG!oY+B#Kk^4WX3AEWW3k|0BcU5A~okaLj9PxRMLBD|c1pCV`Ly%*GgOrdq%LqkbkMve1Xj}U|OoNnG zi|X<3Dv#d3#8U|O796P0py2E;N4-yMO+^)qyW+ldg1CaI6pO85wBsuGKE)J@d;tZ`JI9Z7Dxea`_Yvo&yW9~7YhWC1fMko5KU6igL zB#!jSxtE&AC8bdwqya#Kk;;tDqPC@mJxcN0b*qoSKUW)8esjL0!`P5yN)QvbRv3h)Yz7jnLmQ?7pK<<*4og62bb*Wmh=kDw|#RcT^>$H)} zR1~z;+F%aXqZ8o#nEtb#Dc<=gPLT!kGtSQ&I~l_Yvf{_pb&fzu)s5cahNU(a>~q2X zWLN8$tEXffRKYL(YyTGBAZYvXlu-(zm6!>CPLN4&+v0i@5Y12jz%SLRWb`fEeRLJ} zqbv7WacyFt|FR9v?LaF^QrnLkntL2YGDt!-&O~@oZ19hkiik?o>}T8Kw%(kUhEGrE z?XLNT#|Ztxg0co>p)7MnZ>0HUZE_4K@pI`C`?fWe*w-vQDw<;!v}XFE$mzTN&D!Yw z4MfD*oy=KlI|R_t*m}`q3{lF~&(n~0XS}YsOf#aR4tZT{MEy<#e8LnA1j8jw_7 zHBV)n9XY=@3kc0He8-eXu6f~nHKkrnFhQxHrWo{4^L;yEm#nky%vOW{2xmoPXlP+)#fMh7?)}b(b&m#nS33mnr^^STdcKMyL(=x|Gl7 znQlb>6L_fEdwsYC`9`N$v}WOT=tfR z>;u;P*S!^2K@97+5~Wz}&Wqz5ks=0Pg6+K~O`57p85F)2tv-$R(fYJ&kO#AA7Y< z7>4}55M*bEy3KIje)CdXhZC^y6ARA|d8ZRRJ1at*>tMOzSNoHVVmY2mXz6&2@pBHAtgbv=ZmU^rIJ`#JjgsPyZncKTz~nXY-BWeDQRa{ zeKnDcAE*_BuTo~HM`NJVXwiopELG6xk-nKmo~28(=qv9Ev;BP(^ioD;A)t3};90@YM0!ys}`&%1wxf-|ianVPzlT*FHqsDvL5ZSF!(2j2`|RZx zXzX@<12Lw^#ZvN+tRQ-BSR%k*8v?{UAj{%|=mD_Ug@W`_4$!G;oTa3tSwLMV0Exc` zKnXn1@Z0fpX9>VnLvtVwjSeu%egF#6-QSM@a&Y|si1>}-T1=1N9i8UP1q$Uo+m7GPu{aiwXRTlEQI7QH&XC% z;}2pGZ@|Kzk9l@?yD@+N{Lt})FAH=zjKx=Wl16*CPDm??{6 zeONo}E(?eN1Q~Kdf+5rU$9l27Az6g1NWV~ za83g6s$7fX+@9GK%C=d`60>j2RQi*YuNAp?Q#daS)xP|!vMCF+_VwzUS_dY|rcHLQ z%YIPEV0c&|B#o8YCr;Sigx%gLmg_5)b7Q!6f*Opm{D}E+*U`zL{3-!-V;O?7t(S5D zdV2a3Kq50d+30QpbYFmXgMk3a=9BmHqbsm{yaxO-P^|PDz+>&9GjtGNQSxr!{&*?4 z0zp&?1_o5X0|rqmrl;b{)mhQJy}YgHIst4C?z16_E02YCI8Va7_S&wVqoUH@8XYHg-!E~PT^Jw2d|A{3D($b8x^m0TY>QXgl)%96 zq}=1kz`*wn1v8fuD|N73#iK6`=d1=bq$fNJrTJ|3hPwjmwdGuvKl1zsy&%BKe`&P@ z1x5N(b>_5X7qZBwr`;jmkG|H+8optOXeVZ+M+_@5{J)*NoQS@NONrNvuwZUeGM(M_-HBY@BPt7cE9iEUo8{J$p!Z2yo#bRkZsjHTRWS% z=+#$wF3F%yLi1}MeS8)>uRhKF#omaLg9(Eaf-}`!QF`?Ed7F_OLXztAYw;1Qeh5>kU&3@?lhoM{#PQ zRn+hZ_L8*q2v;h9W`SE2hv>)i2>^tgtTR^zkH8k---vsA^S>}4K@7^kY6o{8_!|Lc z59y`02Q)49fREYfX86ZV@Uvzu>7_sgG#qz<|KeLAy+;<-?%Z_EIaDrUQF9& zh}*`WmRfwyx9yVmr1E5`(XraG`=p__+I~bl@HR8;2EJcD%($J17@e5ILy(t{cSCOeWFtR6SwgMT~5#yX_KPrnBr_kAb{I#H|_8l@Ew=42!sFbhdt)4L{s+L@Se!9qcTk)O8#*J`Zg;5o3M{R? zvX!K{kp?IuKE78Nwz(o#vLn(VI3C$Fvap}5Fx8mVoOTf>rgM_a0LL8w)vRA?rY@fUo-V*Dq8MI9~Jsxk(XFZtzlT4yX!vo>vD#Qc_`7?x5@ul)#1pI)c-&?sSiy znp#jz4K(dN0s;b{hkPQKbhy}6L|e(?M)yznBPAqADJLJ${zrUHkjN2pE9YZ(?_lZD z%%(zn$FFt*tFk&MW+}lAA}gD6Ep9?VZ-q1SC9n4b9e~)$oZQ4D1A8+?$?-8^xOhU;a`!Ib1kL(RZ0_ZVc0Ja_; zAR&+dK?6S$zxb!x#-CA&o6AbQYVgot3()<3c{KJC_)rG89nO)tKm7}V%=Yq$`ui&cr37XQ8B}C3PfBW*{ zwDU?mhLCjL`p@4Ekq1Y6LXR2XNFxYe9V}5jR92p-(XhsgK-x|bCmO6*t!o`r9N@yt za#Mr1W2Eu{23H6)iB5n{W{B@s#-Q}{bbo!A7rIhNzriB+*%OoMaA{)kOOMM9=s$O2 zvS^>~Z$vea=%2$RJi0ovt9Dd;bXIl$aaoxLMR3-$otq2e1hkmcL-`8N1~n-2<@Ou0 zo%(q@^HpxpL{C5-gA6+7*g**&zy^l{OhndR?Rbyz3~iRBI-|$#d&Z-s*@vJdO)XS% zx%q$qdOH|qp3iu-Tbqy=WYAUA2LhRqpw-S0G;_QZauY)B{?u02bWhBQu+&{Dd}li# zcyKx7gl|P+AS~2YiaK2$plGDT9j|voSJcU2F4)3r;+P~8sY<&Yqa;^~{3l~5B^B^{ zwVL(bMHp5t{OH?w7nJ=CCoc}%GfZGtz0TjGc_M~trEJg6(RBqn%^HR?d(uY;dL9V` zQik7za!yhg+pa%c?#FW^SV|~JxqkV)84fiZH|za7Sm9StmP-vKA_-g)s#X22Yj2JUM`SKdZeG0&xF1Pd(&TbFGEV_S zZUC;01~EZ$T3TetOL6DJ`txI^a3wMXaBm4fHNZ<_`)Rb#0~}!FzVyBt4}-cwP&ytV z@N@$Qg0|ly4d0g+_ODn?-erx>Yk46^Ej7RGuQl!c_vD2w5`zBA%J2sPPEYUg-@hRM z4c)cAP6B8qpwB=E1TQR7k!5*B<(V#bAoREn86htnu`e<17rw#-XhwJ`X9}5Qi}`PD zrrpi_TpHz^(2DRRc27A()00qS8iq$UxAvC-URA-jg#=QFM#ZdqX^Dqihb=de?(?1E zSMzD=G7X+LwixBDc)C%#ZtTx*L{Cp^)-qIV$?R!_?CRvNaK&BIuaO+K#gB&Jt#}=)zSl&x&X$Azx+4dac)WCcboa%j zMF66CSMM@GlJ_G{)b(+$(<*n{Oet>5^F>K95!tWPan z>;Z5^^q*|sb*Pk=lVOFvcrRbRY#{XcwcUdwj9!9jdwY8W*zV1i8_MT`kuOpEV@(rD zuap>Vw$~t#c(r(g{obvGyD&^?)0O9dH(z30|JU4E2W8oP{r;u|>Fx&UmXeZGP(ZpH zQ4kQ3?rsq90YQ-N6bU6HmF|`fDQO9j5Z`q_zcc5LGv}W(bLO4*nek!7n~Uq(dtYm> zz2f^xUhPH4K)L(Zq0zE!J5%>oYb-I1g|!Dwev@v`>t}^NoM)+6pIv_NOX;3|Sz>Tp z^QCuWmF+iSda7&RaHU)E_mo>cJeI^;YrVyFuGevni^B6f`tUAF{qfTKgn4etUc+9j zehzK%h_$}>Jzvaa0~|}@YC{x08(9zMf`kVC_WWTPlFBI2j)F>2bwhzz%ACeC76FYd zOHGQRFy*tSTDttPqLdv$I!f;&lv(AgQb>ZE-w9OZ@gFYJ9{%Ea8^u|ta@)jyR-WAa z-frpaC-tduD<|{4P#lgflCdexnMqw`#q_r&=c1RtZnBN$=Wp+r-g-Cip+c7@W<$9^ z3shssG0@RRK;6QgXSlzg1t{UOpt|U=2rdW~;uaelG0`a08_U7wae|y*38X%GLqmh6 zon6Vj^`7Bjc0^KE)_b*|lQq_uiOPzsCTZI$ti*+MlDICk)*6~}q@+5>CTqi-;syqf z-ku*vl~-_5WYZurFt)Oj$sE0ZD)kKwu`%bu(Q+KAUxn<8Ki!*40VRIr7~r06eG`;u zcI8B21T+e@uq`34L6z)^*+`Ui_e56AmFsS*fA?ru9E}KfI^RDxHfuohfH+D~7{~|@ zl$9Bwo${0up7O!xbmh_3`~M7cF?48gs0O*nkueusb|(!htk-a1Y_;HUv`}qz?`Mah z$<0Xw+wSP)?2A6nf1QV^Qj0D!q%v7+x!<;Jt)nxtRDrr>!99ZaXoQ5DZ2JB=)!4d> zZezf&S`54Z3{rtlzp6!JO6I#}(~8SuBO}!p?kI5@a_X3An%Os(IDX$4en0aZ9pmPl zu1?Q((knU^iI-n}vsBdHhkSI*d(++P_9EwQh{R|>6G2{>!jsWrl`PGo)QY5yfLC%spwcxC*a}YQrV%Bhpy;1M%DQtxzdx`Mkw`mI zA|g2;`&6%!k&#WnE=dhoPXG#x09vjXnxsz_eGcqQ@I#`>{mhOwl-J|*@e?Ssxe*!Y zw*0c3$(u-yrC3w%*n}_gREqiaNUwc za7anLL$VHJGLE8O&ZacRo6THf-|>HZ-vB%9u5zVnd%L2f`^cMq<1PPozl``iUW!hN zA4O|fwktUvcDtnavHeKauKWj6&et@Hf0l>)Qt=o+ufdvlBDxh8mHjC^_I^dF49a!R0a<`2Em~D_KiZ zlV|~`r+@+C07fwg`|}vLc>c8V2DYr-K&s$GYd`=t9$rCznH~{}utKMsciEAN7Gj&4 zSRN^59|v`8X6Z5+7&wS3cw;#E7aT<7<))|})kAz>@^zRiWvAonWo zKok0kahCpS9WEs}jlo1b)&|FNd37}y!Xr#T6StfJxS1fJwX`(LlCh;C3&TO|qa30y>)!E_S4LpTe)<|x z%KUB0LwxIEpzs-1x4mQD7B#2j?(Jcze^CXXjP(^XLjjGeadwaTaHeGVa6i$5Y~#+X zxRv51QRFsp7*j=f+f?I|$~WEX@y>F-a&I(lOS7B)`c!Np_|mq$1GRp(sn7qtR0A;xbw z6nk{^Qe3tNs|8)Y@F0bI+G(cx7VwA!0r~{AAk$RCht$|{2F=v*Pg`C&4f%yYAno0- zMEp*Gxqj2dK`SbMzV6?ab(CF4Zq{X7GPI#b6Am1IckQYB*+t1CqsLBEabx&;W!=0M zb?CakC`7uKaUY#I`6=DjBXgTmcKoL|TuO{mnC_Wgzc+{j0;x;s`SVIuPmtST6cr^$ zEN^UtcgHhuJGcPF0?ADUhF2#Tvd6i3K;0CIScBFJ(Agw1Gc&{P$d885$TUx^A}WtT z;QrgUTV``{><7O~OOB166dn@lb~+ai-b}`-_tCedtaU5bey-7SMNE0OWlFh0A_`AI z+{|85NBc`p>xD$4q0%oLq;Dvg!Nm|d5<(zu zk=^>{>vdbyd=Zy{ogvmijMyoxHH;6s=jIBoGot->CdG}pomtLqG@iTt^M`)co8z5B z#t2&tdWE@p;1jQoE!w(bZ#|C#@^|+)hcU;-0!1A|bGCKAyj$1&DU~GGW17q%Rsoc8 z>ntC9IE(Na)waQ^1Op#5GL&I?xtS%aN8a`OeC3`7;p?G{FW{IZBqfD{%WMq-e4bao z1v8Bsh@~TNzwKwnHN^Y%r9Gih2}P zUwWffk}ZT!U~f5_J5xCG27WRly#DkWb&mnc|Mgy(ZD(TCzu}%#vBdpJ%eHtYC zr3ugPU6V%;r?%@-(bXSg^U>JNp^7^Wi!jNHTa&}q%-fwsN;Jl`#2}hTN=vH>io8h6 zLJd4eUXbGb=nHacwb1Sn9TSrW+?z(fOVQ+%GUwFW=x%QDTpl55-^B9n&FJ1ir!IY{ z-{P-hYHvDd)Hf9Eb}m~Y@yK+zi2Ug2XbUiEMPNliS{O#iwBe-^dy%OZ*r1F?m*^+E z>2izQ&GxCRdYL9ARsQ~V{&8;QcdHAh?2X4qzU2sC#?RFL8m>F(KE2D)sx#;UhE3|S}pp7D7ElqgeLaoc&G0Z zJ=@FA&q4}c^=&VT9Br&wcSmjv-hQXjGuya-S(rJ;mUmH`igPOJt!%!@<079<^9Zv@ zD30B6H_I(5%5m<*$#$UkXQK>_`mIv4qMg+x(et^GHfXUyG%Dat~{`oNy+lIBk!U_jq-@~AwAR(fk zPuKnbVT>*07RwiZ%_1h20y~c?(laEwIo;piAA``i9oU6(az}P1t;I7*bG*y+Irc?k z(elCAAH0M;=E+qXgIyevUuW$u+3S87chm2`dN7=Dr}pi3Cchg4loi+TF^v_8J>wu0LNE$^9w{460lJa)B)k|hBWWeT zGv#?Kc}2K4G-~NdN3p0SJSYGo!;6HT4#q^~wD1}w| z=71ojb{LzD=5$wYToP9u`8&5(0<`9z%*E3?jF<5acFyxwVWzsuTs?MC6~R?Eqfp|~ z5JtcJ%`d)RFtGBGPHXSk$~sDaJeBs8rPwsIw{K@Mnf|43I6$KnN<|3|{58_NGfk57CWmaay+V=JXP>f<>Zr@FM3kL>g z_ub-Css2w+C4%z10j-szwu&i#H?Lh!S9HT1$FJ4%O!Yl9R~HofdIqyskE}{bOl8_! zz0PTlzw{*hlcJwT#Jd~G9iQ{AhKGu|bLq&7TUcq%mnrb4Rv}H>&&C{Nc=HPMOtbs! zTYzGX#F_x2qD%7NbI9SL#8^BH4PK=RUm#0KiSj#13gEtVfl%{Ei=Pju@Dc&>HC4t> z0?cuEWMm{YQN7Kb4p(PYu@fv(GWC^@A1CvwfyfmN(C*yqYy_yf-`CQ5&4USa>77G> zrh>2n7Kr6-Ei{P%J~9>z#H7RbQfBos1=irbxq~+MHOer@S-vaWl!s;7q>$R6xC&%0 zXj?Z_GJH{^Ps?<4dAda8B5=<#v#D9q*VK1qbCq3n$lrEz9RIe@V0q#P!~8;j(xLke zbmOF^m;^m}PJBG336Ioo7RUQ9B9@tkV*|tAYED*ri!ASy`FwXQPx^6>dg^HuDFwy% z6m$P}_!9*}!^o2@^mcZ(1(n`TrJ*aZXTO`vPTAJaOr$Pi7u+&4gVcQh9bQ5({yja) z!2D4-{%-5dFKUM>K?iIGFZSo}fCw%ULx#*VKvOL* z$?Xh!nb116Y5fqwn_7tpTykuWFY3DfCdBz9N?Kg12Fx6vEGC{+txiNs5X^ij;2jdV z)al{WHM|?bhL+-s(wf^>vRQMu^R3BfH$P_OEWQDY4`I?LQXzP&maeoyZR(k|RiWeC zmIEhp-dO*rzdTIzF+#IldUlVMS&4TSn)F3=ya5X6d9pD{U%&RJEwppzIxuN1Dhe8JF-5~Hs3*WUqWfR35neT{9Y zJMbT0-?YiHFj~np4P$;P4VSl^BWDW3ZCih?Mc)!$b?fa(S z@BLvmW?C9Au^90p8}-3dBd7J>lPOZy^M6IdB36(igY!0(y;|jL~#2h_-a_vP+G_4`ci^tht^U?NVeQmwKRx&wW zz>Z@(`mvodE*V)3Q9@#35OioS0}fYSNeKg3!?A#!XJTdj%6Qoda@j!Y5wsm)^z`<& z0{$BKcVUnz1%iE4WF!`tfXdkc?W}3_luUFR;q%5x5$aD&Y7bsYzl)E0LD@!yP(cjI zW4We~kfN7?=*7>XtX#m^VjawonBIF8I{4>Oq+f$#aZ%pl!MS~b!Xti^9v8${KG~^g z0>=FX&8-T~&jdgDmn^!XtQ6-f%>F*c8gWW{a!G!FH}GJ2`{GjQ=feR>VFCnWFqYc8 z^tRy{0{`BULmwTsoey>yXt??eu?8-+gGVM5c;!W5N;n$)?lv*<+BDaREb`XcOZ;Bs zBu^ebf6mu(xi1Mg1$^*pY{v`nzFG+a53P*OP-G22Nu3ayN=!|Sgf1*Z8)S0?K~31C z(e>u~`Z_>lbzjJeV25L6RI1DpxTs|1beV7kC1B^zyrRq2%p-(cEnxKInG@Sahwv@e z*MC#V+9Tpo#O1;aRmkqYLZIEy`8)NgCE2`>YpCcOx$-H>*P-AMO)=?@Xnis~A$5*! zwcns4=lk*3;T@iPzonOl8OS!{7;x4k5tvpx-|Dw#yf*3N2Kvm+_4Tu>s)oLo&9h(D zrefY8WqvGOXS;&}#e%3$USOIo)C6iF8wX^+#>pd3qrr_RoT5Ks?G zLYH)3jxheT?EY8gp4^MbebYN(`s!T9n*?{!-|&`QS2zvpIXe%!;%*N;?Lc2X9-f@? z=$$fO5!cgn*#F!}f;mnge`PTAw{TgeuSDLmnP@t2A)U-)hL5@`1(DKH@|||g=Tz6P zHjXM!!UIen$b5JFC11_zmf^h^>j{bLwT;vadh30kD|rlJ%65>8MGu4)s2>2oWhv2l zaO>7Bq^DYZl59Jgi=hT;lGQaeHgi)xu3Dy}V&7I1SuW`AFSr!hl~bFpx^JzH>o*LJ z0!xlS(xXrg(V%a3fS268h&vL4Pzz76^H*v0KY=Adl(^jFx^4b9mm6V&qEq_Nw5*@4 zLQTfM_vS8ASQ?y1Du@FL>;N&kY7~Pujn|r7P{?v(+NcwHCrDg z4QE6s@LIoNmp)V&r$kdTDI-JeQKnQ$Uf|2EOQC7z(S zBnKZx0nYCL!NY)f3Rs$s{(c-lV5LfW@ByA6@#VD?*HA{tQbDRibmLBhDw%i|RbNDL58-8SG8Gs)yNdM;Ig9ZLxSfjW?npT#Z(R7S&H~uOA zLtTH4x&+MSSIJ~A3FsBoEty`rxU4`*p2Ex%1sv`UILs%er^i5<(b~oavzQnK2&`8v zG*LWiJ;EmLE6W>>LR>wa;`w}W5MT{D{{~I&6~W&Cqm2VP-dItJ!M}fdS{iB*OFbP3 ziY1r2MJ!`=Vr%Jh{^!qi)3SIODglE2c%x+Z{0Q>% z04{&_T!-_wC=nCQWV2WUBGc#-zUTfO@%qLNkeq_JFH*4{9ut_kL68w(=I19sOQJ2W zK#4^8jqs#syM@R^NbT*d*gTCO3JcpRxGuM64)AkTk$jz?(R9cnq}qr|(w>WfB(qTE4I{I?c%g7^JxhKI(5eelh?Pb5X;z*JE?{z zo%6FebiNNV z4yYSaZg~&K)AOdzzoH}Yc0&H|u}+2gtyiUeIVOB%OnGZa49mv-1^4-!^=#{=tG9>pUzrLV)W2)dubwi?YAL&^$s*8&gXA*1ONmy6IEG zoaqgB9;e@-HF>3k^F<&w@FR;_tQ)Nhjwc(xaGEGap*oqOfuqesHH?-^^;RO)(=d#i z?0!p2yOI3@xZ@fEZ(M3Vb_jEn5TY75U#c$8DEtrR?Y3V};_Qxhz(o=S-tdQrb_;F>K24+7=F+|5O+;k*v0c4a zOORB^9a?+ymUF-xAFBAM5w1=wW)g@nMsX6#WTS|K7Ri7glL%1d7J)$T@ zPb#Nb)~jTKASZ0sID0GHZ7yR|$ivi{SzAA66Ju%54YQ;yWU_oEgAdm!|5$C;7e^D$ z9bcGQ(_2Ar2_p(mRea>EagF-^$XTG^h2SPu&vxI&e&x)s3L~l(RX59CmHVfGelS~> z)TpQH-z~OQYB!{$^cx&jRszfH_clbdFKZ19#x&Jad*FU;H@|0>)Y$teR*ArsO8Z1T zo}Y3s=?-L+nN>{`$=YM7+;FSgW$ap;I@0pOk`=7b+YTX}_C<0Uyu~{_?xV))JOcd3?y7ZV>V} zIGn`pwuA3j;!2j+C*l{0V8sdhM}I)B9OUdJ#VfGTsoN96=eVW3BmW(l$aw`_O{*Ot zk+;mj6%Aj4-<$nsR7OTT44nV>ryc06;HuBYup-8((OuLHM-a=S$cKpa=CKv8FwEf+ zFn>|SXh8j8`8(4v4|1?5T|zO;@x){Aet}U*W!ZRF-6n6DMGpTEZpnj6&I><``^5nL zKc5Z%fMrk%e;2^DCaOX{k|kvq^S^fuze1@EIf?MCm_X#3g-?+KwCR7wh1$9%Ff8ES zQjHRo14Gdnxp5B9FfUHg$}7}Nxw_D87sg*gJ{6Zih88d)gi(s$02bNtlDT8GGiK%B zfB?wXxU}LR!)u4V1DR1qE-q{!zaAbQw!z_2Q%5I%Itux`cnKMjK^ucX*MGpMhqVr- z;~c-e7crH)4q*lGOObI;9X|8AXJk{ArZLF!BNY{u7w+y|2}}waMn+u5>~LKq&l-uB z-<|tJ0Gjk|cdvgEEDQ(3z}k84&fkos!)i4=@oUU*rUvKMT|7MQdwPn4_lkl5L=Oy3!cB4nrT7a*z`8*2H2-BQcuyQ092%*}iMXLE zAMD+ZicoA@XzK7*&1=ujRpKE>L%{8lZCpaNbpeSW?I1%%aJP@x3j062xBBN&;PQN6sp!~?EBJ7mo?R& zCZ?oBfSmg(VBPP5(`U1@0Sg?86+j>{EIFABLJA>}!|v$pRLT=NOn8d?HR$)hItqa2 zG{vnRQ}VxF|2Gkao&TCN%J35Y|8GXZLDdvtT8zDFtf67C`ubnXlgFuh;Ak51(>ULj zlZOW#fsTopUeAiONndOqT3RyAFD%q84l%nBs1#^{niKa0~6nQsbUBvw=EDzoZ z+{wnS#H>X7_iMzq#7IFz0rtQ9`2S%GI}uR9VGV;^1w?8$P1PIIDARIeCIlv!h=0F^ zSD?kXBKLn-ra#-I|KAL)lENE)^H;zTY=^s6OBd~gmp?Hrt+Yzr&W;nrSur5Z5Bwnu z$XxsBgJ;Y61`R0P>5@+hz+weTND8mh*5-R46zj>d5;FmGT=c!*#Fw#xhfonh zS_l#M{x@Rb5{N)JWUHnL--KY{3s+Y~sH8&%zh?e##*vNZ!wMi0yyAT1Scxs6Bo{&5 z-OQM%TxC1TTx&au3NRSk$x<>1`4%RSRte7Iz<47I&uX3wE<*(o1mE6C`{;d~XLOT| zy@yLB6p9q7O5ryzgv^EaN*DzPq~oKbqaW{lKHo@3o*_Zfv;ZlEj|@A5E6v7JX9-fL z1b<*zy8=S&ftp&u*-}83gQMdQD703bI2<;I;N6f0$e@-$B1-t_5bexWmj(ecfD4cc zWV+bF`}bjvgO_!22%I;7`#{xvv0VnyFh!si=L5-4%iFurAp-_2p{Yr7Z?QR@&+M}@ zvf84~b~G4*#i|A`zr4=KsCdCZE90Ar7y)KK&6;hkDopzK|r*MojDh( zhN|o83V;sLJJkR-9VHvk8rozvi$70J@}U;s!)QhTya{zcgh3`0hCzf;wO06zw*i1b z!@|Q$O{NUCEr2yW@yW@&uD?Kw^ZfjL^eH%Z=_x5G_kr&PEEzUy(ot3r`HukRf|6EA z?dUuXq>}O=Qp7nxBke5=){98^ha@sL^?-5LsjWkV_I zklJyM8n+{ZJg~~jB9H~5K=On#3{2VYB_U7^oele!Cm^Gc#lHX)r2|q*$iKCuU#&jK zOT#9?A|>@%ZZbp)PQ4Hx>x3s_B#xpUY(~a^AVQAhiXj4_9CsC9@SaeWh9dmRCnq-- z748QgA0PXej*iaxXiX(#GDzu(m#BzV2`M0|x5kSIfSQeqAdKm(s;LP9?psG=OG^v< zm5syZ53=+Xc4Sn@=tB)$d!=a;O#l7-{Cwf)W6VIPI{*%uVY{BOl63`v19Dfn^$3h!51vD5sY58?d%Jf&UN>8}@3&r^Vom47x(~3@%B1sLKr7 zqc)Q6sez#X+WPtmtRsvO&&&vj?jvLMPzDrHS0}%*V8%P34xNV2R zyAO)YjEs!gnhQ8Iq7H2^m4uX(NK`lyDVeNq)_#7xiRX?hN?@k~zYPn3QovCham^u(6|k=!?UydfaM_DaN8P@d%{*G zp}(FegjYddS`UfVSG0G6r_FrSMBjgy$3d2S13^a6vIE`q#~21wWp+W-Dh?V+&}^m7 z_hQ%=v_N}Vx-#UA-qd5}OdGJG z(9)0h`|?sO%_rwkmW)UTy-BM-9TaJ!A&{mT5Es~|8X6jb@Uu5`33Q=^kRG|uK)1x> zW9t594HFYwZtl+M5?E!B2oCJ>;1`#a`~n4_5Zn;=JY>8VOKDjzA&|8BLg6X+5NrGU z>X1y(r(D!GG2t=Zgd&angakrlo)H$gCiqZFii)XK6X7->hmSOZpxzAQbjzsz1yhtF zGZZ%w5{XqlH|G39n?5`YEI1Dl}@)#Cu-h`xbOs|-wgWC%?$E)Rd`-5mu{QPC4< z3D5$-`X5+M;NmHQAbqu)Ub%rBJv}`#W;hC&En6Ux;yq90CQ4Lf&Vf5Js1@e?~Xv!`3K|!UAIPzD4VuG z6rpx`E-hsN+>k>+AfYRs;XPqizTgB3(dc5cPYI0KV}RhmYhDBb z$!3-fI$Q;iAxM1xo_}U;ZXD|FIYdMz6$>iv;?qkhBXly2t?MbUv9WDoWJrmL<-x>F zz~Z_95^HgJx#~xC_~(xfGxEH~A6en$fcHHQNI#lpW|qzF+mh6ZDjnb4%jlp$ou z5E=-zKiB_x_Ph5!`|Pv!UT3ep)>-FS&-1<|ZukAWuIu~#Oy4W)_)&EhCJrWwqF4@U zsA^LbtrSJkJYl5AR}=(JRpbB3x*afZJK<>U=4tL?MIAABbFz1Iv$wV2^{{erwRJqV zTTDhwT!h!g&CSVGZs$&i|M&(mN0&1@B_9=J<3(0DX`FPWsMY4=e>54&>9!R0X6&Hq zJ{_++s@{TKVyj_6+m%+muZ8=+X58EO z(7jDjc+&8|8V2oxj0PR4$2W$5sW%+dpj{DczF2OWSH|o4=98jl$@KGK?@3v1%ZMOW z6-GYQ)!(w^>4M20OI3nc`0%Ii^vk8l7v6EMZ~y089FLprXT-le-}gW94VjNr_V2G8 zm}ceRF#L4#ogjDArM|wtvDa#mKS$mPd>?s7XYq(lfqV6(Ra`=neoju}UJ529H@7DL zY|YjmivQ#AON#qUSCJz_RDJdP^kdob!kS4+eoT0kSYdrVPraU#>)Xqg4>CNuc5RJ? zrDbfL=S1g*NKWb8&^x1bzkhsv^1#xpRQhG1(oa_s~$+^Cm_0`Y$-#-lu2l;_CXy`W44h+xPT%muhNi8TxtL z4-VhH5b$?Ne`rr~z#myJ1@6$*Jh>j_oKp4`Z&UVbr61+`=B2P~`SMu#sM5YKU+B4` z7)(t~V+W)idzkTOy!8ZWM?L4s?@iMK^`mN;Thz{$Idm0DP|Q@qE~_gob7H4T^VK3b zboak@yQg(eE$2|2m}d3XwJVxlzBFGOc3*S$iRY9FePE(;K)LppG~4^yg03DO*5}ThYi@79 zWp(;=#+{<gr#4i%K_ealNAQHwf$Lyqwu~EU9@!JNL4teGk8ql2Ut__wLW1KMOgq zM@S3~4(fC+7E}(;nx8(sOzFj!$p=FnCRhblrjXc}dyUgrUm>HmrnsFn)XkeWtscY< zAKJ0Ls-Yoc*Ardyef#zm`z=WQoankFpnlct_xI6T;^wqBcbZ;RkK#7(d}^!tJ~%Y= zb8Yyh_EL9Yrj;w5`zmN+XUm=XX-%G=4_UYU=-w@BZDaEqE)f>Q5SXjs!rfSok&nIQye)s9( z!mp_TEWhzPw~x7}Xm)&DI(B>4a{N@o>(_dQy%iOE+q=5<^IvnSK6*zc=xCx`<%bXJ z@ta28r>~yuePKH0(N*pzAG(T*i5h8p$QifYoBM;qPDDZIhDPI8YyTDKU{tm46L~ z1SojVEIXF06cQQ9LYciwJz(4uzVmC|i$9+W!_v~W(lfIKHZ*92ST%IrQSkak38+N` z#>Q@t^BBL3!x2rW3D8765{$G=yrtwsS zMY>vBH&Eg}Kkac0i%UvkPkcPUy!xQ_K3RT-}AOPaB7^&15{r*|r_N6^Jq-9Jwh>RjBK9aB%Ql z^XgFYsC@nW)~sEd>hdQyH+Sfq<^8P4$g=Yb_+IjlhYug_8ypNCYKpT{FclCGm|Iw| z#QHE*drtMR2n!3(&Cd%SS+{0Q(A~SdUS3`m4GoMxfBs}s_E)%mLE53SCh?+C z(K!^tb34*98zk7*uMbZ4|Gk1L_Iq5m5TxY&>>OvW^W@|t+iq)SDaW3O64&9Xcki?u zI#(+%vdVjmS48ve7q@E@F@E9Ch5B>g^yw|DxD_&@rG$i-f`WqPM(#z4JAYR7^6_yU zxG8pu$_szucz2)5|&b*iclrse6~OygcWrQn!8f_99BZM+81(o?y_=GpQ}}o@M3X zi7K%Bn6>n9?YedE3LT8FoetwbNl8h`IDcM7c0)u2bMq|;I*Rw2#@ixC(>wB>t7vFw zZYlZ6?b^ND`Aai<_cPDc<>lq=`Q~&=f95QiIrcFA`SXVg#9N`IUMDGrqtaAXSJUCF zG+=|`$pxnW&^gdiLY&pQVM751H#kL`1&L4<}bwR8UxWRqQh7{;K7qd*QcYi`S$l`(HsF_&)iG z6Llf&%b`SUy2a^w9yZ1EdpZjp!dGq*i!sy`w{I6Oe)i0Av?ZTQ>b#6mKJ_lw&k3pPFF7A zOhrdWQ$9XEk;5lUGBYzrI-YD_Tw0RAFB$JDTJ8F!c^_WtZMOc-$S)EWHH-uk97|H@ zFKo>{^^AOOHa4~$Y09o&nExzHDMxThufq8#4*07i<SY91C<>__UU9!qZO@#DvD zGf!++Ra3KAoSU|Jm%5zP^6E>g2T+VNPCb)yadCNDV5hI(zsPpt!Qr51&*XnjehSA^ zxSy70jvm1@+g)I{3ClPAPMrr;$9#Tf=-aPf_1MGp4}A_qz5MbjK|oAw)tT3KDqknc zOa4C6v!c~-joKdmykq6g1N1&KgDciCh1jFNbkALPu&=7FW~YAkU*ZvJ9)9vh$&zX} z4OpsWadmgMqS{~H*uJ49NjV^i#tbLbdVYSs`x}<0ZeZFV&*b^~mLj{4S4&Dug_xU2 z1>dBsto)_FKSliTDNasr?m>rBq%XU;SX^XSt*7y;o+m(@8b?2ikf_7^zm1xjAmf~> zQW_k*Y}>~0*w8o~LrzZjF1zW^wap(s#4IgLywtbF#8l)L2LqaTT5W)JWw6kqHkS5{lhbr|D=pFfdSU@8EFK#buZDIG#kr zo8c!CmUT|mgAPY&>F8p=tYKqo*v!SXq0_Rv)IFTWtgF!Bgr;eCMG)QXloUSloTNp> z#ID{>NO*!DcdhUNWwByr4;LuHX)Ggfwg3^Wnkf`Ioq0*CZ1E~ zU{8;~Q28G|=tQP>6gl$HRd6ewuVJ$k5fHe@&d&Zw(ylE=F0s&C#QToKHu-eQ?8Tqo z!qOr;cSdz|bqR9?WEGc|K34MkonKX@V(sYoX5&tiW;V-llx$||nN$CTD(@plTV*ZL zQ<&wP0j=GB%7k%4uPs!s*)fEI>pL$Vn zw$(yVP|&zj`S0Ql8Z-5)oBKmYKi|49CDoWAG$uOG-yihup1S4x2S+YPMd{!EGB-Uy z1>W9$Mu<7Ccb-e$)-VB^Z~5QNK4vEaz5^-r^gj!X%bkvit7q`vw*O0IA{5pH{3F^vd*n*v2phq8ggKX zrpH=^Ck0p;-#$3Pc}F?Glykoj8yj1-%g@h`@0y0w^ydSyvlbEN zfB!6ve9Yrvvt)Yzdw!lzQITv6T57!a1rI7^9g3&!xrCOQ`g#Ech0Ua^78ZU9MKfB@ z@tNv>@%PVrFK*f(3N4~~^3yY# zhPIcrwaf9LwQrZt$qE3w;Pk0rztRNCuhPjJk$4gC*ME;)8}mha7Hy90%7s^Xlvkmi zEu*J*8DM5+7I)~}bK1(PAJ~iOJqwT0W<5Q0<5fhikcf#RODI0 z!QB)v`?)p3g@t2JMYeuk42M9L;hWV;a}-vkyH-~y)&l2(P26m6=BA0bou>Tq@8$&VCzwxz25>hwI1JkM(1% z+5JGh`}glBPuQ+4N9*kI?94)kt|~zIfW>JBwFtH#a0}k;+tpK|R?nAtPIhNL7F9Wr ztf5`-9K~5_u8+?5&-}1ZdZvC}Qe*#2*;NinCIA)P+iE>(53({1j|J@wTqB@nHv8q3 z!3%%IT;q}p#l!(+qP}|qN0&L zWA}G)0jzm@d&~IFD*!tulIM~x3%dx zFqo$azB#cxDJiL;v9aa6Hx^7>TKbYIzo4t(v17*wzFfY1xe%ub?bxi?-&gliQ)B8B zedkzFP(lF~)V#TYP{GSX@Syu@!q$_>}2W@7>cX zI(O>a9EzUsp57TH=axKEWsy^*>t8JWOi&9tqM^aaA$=|)WaTEI$gW~%0gs7J-O->( zvE}si7B8=FwRwA&2G2<6!NDU(YJrFGWcfobu@0t5q@e~(jgE%-{F;o7uLHeUvt|up zKxtB|d6Wk0?Dp%|Z&6&H7Lk?Oqm2*BCV6(f)Vc1+3!No~9p5{_>Ok$R1SbBMDNqH${!|QSETl zV!YKw&>ZfmuU-VEWKxvdzHOTYASFT7`ls%#oY`xKy~$J^FxP*H>6Lz$pDy5<2LX4$ zi>Z%?Kcg%9{_HqI1>U;FW?bgAhLl^diWnu(-D<3nGx_m{hjf2`t6u%csb3{F?U+l} zYxcky@58ZIxM#^n!NHG7ViQeD#>N-m{h#w$~FHY=KWAhp3Qn_tSuH`MB zIu^4V6O;p#h>(+!v18BK50^Q6z=bb;kb#Xc2EKUHYY{yJGX3ZU2Q zb4?gw{o2~vPG8$Z?0>SlHSrin^dc&n`{bR;s8P6gM+6hogKZqVrF`Vuo2dx zyVa6HIx@nD9tSR>cF#6o>4!c+`CugkPn3F2tvYeygu?mnjOfksp9cmWxeRHJcNVOS zkoZ2;YdYk6{?{Z+%JIwKJm)%qrYf;7C<wO^?mzj?%cWK^!vN5s=9id>|boGCuiQ&mHRD-yNw)=;8Etr3ae^rGOglK zih!QS{wiLw`u@Qi`OX7s(D3*~M3^Dov;$(2+Ki%fwpHBt=%)J9O*chpC?L3tIHLg2 zw6wHOUx%AyCS7`TSxQH7qo6dTMf$y?u}pZI_E0;TKYdDMXJZpbW5@1NxS5cU9ewnV zf%U-|^}T4P*;*z#?uP>AzL~c@wLM{d`gBcqcXzvIuV205W8*U6@2Dkh05s6xUQbPGLTB@>ec^hO=|$Zimp+m|jetYcip zf&J1Os()7B0SubP{i+i_k`>gcSetH24-`{JwX-u3re|NgcT*E81k z_RW;d(uk*rhm=u?%T~KjrIL7MOT4R`bDv7>$3A3^17?61#qY7L!rxAe`IdT2G=jdA z=({$&q03UTQVh+*w$;tEWtaEJ(Joq*72|QIAyY1{%xn4raM0zGhK9TFc!8-KAy3Bq zv~E(SMKUJGZA1XDUnNM_JHA*7y(XZp=jp-77aQ2w&Z-?U*y=QvmDaNnqB*+k zyR7Y>vL1|anb>{IU7q|#9egjFPdzv~Yp;VnVajA&WGDttscgf?o{a{r*55A7lTYcU<-tRadQ@x!&2?87L!NEPVxEaCFf!OXl0RZ#%iU>6{Fj)waYzsD?*7ya(=&KSG&yxiBNPajV;&5UNiBXSLbEjyJNk! z=gQz{p&zg5rLh0O{?t7@JlxNOus*l4u%KmNU|{3mfUCjCH+9)_SN=84w98kohVJDJ zymwCkhjldfIxCk&1fQ}p4@7)bH@7`wkcx7z7Q(kNnmTQEBRP3>rVbNI%&l9ubg(Dh z9jdFV6Bie+K+TKBKMDxk8+*N$Z;N+~rz} zTk-L!?qA!yh%TT6Mg(lF_Rz2Z05TLyCLkf9WzPL3Sy??<$0NHnRg~|o4GzCxx3*y{E~fPKTI2FKE?<>Yxm>9E%->EWeW(Vz658ed=jVU) z4G%NmfstOAQYwTFgBJ1a$B&`V);v=l_puL^XfxD5?+LnC@m+enkHzR~*MgvRWgB~# zm~dlPu2;Hm{k5||7+_!PQ^(tOcw@w5^It5sI8N74uI$af@;tV%4re006gVKxSQUJU zw@=O-Bdica_QH!7%3{XF6s4h|5s1$|K`M!5Yc^VD)vEmy5H9+G2^T z&G=}hlGfn}y;kk9&dfC`jDkFgN*lJuYSK`2^vo4dBbg`yMj>BJ&%RN<2cfyt_|66I z*)Qf_ns0+bckOH1 z`9&HS8R?JCd@zsL$A4|_4v{4%*1^Gw@*InIi@v#pdPh#E(338*R~kKLIHul0)(WRQiMjPSBP#@g9&xJeWGD9%km| zK?iSaGe^}WYAiIM{)q_|^joqSJ32brA6YV>?VDLyh1kA-Ao#tl%ysza)3dEiaB1?3 zis~<~5r~e7S+-Zt@BKp~X^QwGc>EVGT%dN`d_bfDoA(bQTh0@y0)<@imme03uo{4Z z<1hUE(2-3hq@bBYsMwT$?vosfH2#Zf8za0=4w|-Mq5X<$8o{Ws`$6)d{yKSjUV8LM zf}CDhR?f3Nzvm>p9vTTK2r&ibTw4gP4ewV1td#c%{?%7$P~=mjE!m2SRMJ~jSxEzZ zwcnqPV%uZGig)>oi-Jo-d64)?pi?o!g+Zr(QX_=mLpjr}3#%G!)QBa8M8p6vX<-s4G{h0Jz^lilg>E z^O$h@HF;|CGb07bD+rZI`|bDKHH^#VAlXeygp#s0B_)M?HX>wz%~+zdwii3! zt6Kg7dyFhNK&sQoTR!r5SDF|b8xvkdJ?@oNQsM?%KG8S}17rG)^4~tlz}@*c+yeak zw6MJ>3f59zc3ydvbg%D4cw)Y2n&cgLjJKz_$mbXptpaGP1{Yofi(+ohD@3~tbk(Bc zvDM{>2vuNG>_zRx-(U0QK-`@F{_!K;5h11ekyqAk<=3w3v$qR>ekks9Ws>6DSoP}Z z+TTCs21c~RUJ(KV$aOe=&k9Hmwf)tX`iF*=Q;_iKDI(yaVGWn_pt7Re)aRUh;xyHx z===ShI(*5^ASZeGi+z1&#N{AA9lTc-ZvoZL-A1>ZdYXHsv9VFR zcp?1iRW&a!nVg3YiEU0g2&8&~QNYZk$ukDn--jYY?G@Q*SrxqEmaOYGd^6BU5bV=b z@J*YpLQ(2299=?))S|c}p=*ID(wO?sZzXQhHI4fTk^$j>aEx%54T_!k{O5-@rA-4; zsR7!Sn5DrW@cPzAqnBe)xqLJA4H_zOF1mlA7^U338z?MF1@i3=HN%_IID9zx_HA|! zDf`QSmHmtJvusMfGL#wA>23&13g4D~_1;6%M6tbq@6#VTZD*JLp-?jy@}o^#4m)^U z?U4MIEz2O(^oup3%hhD*W*6tubbtCZ-B(Fx-(9?hpvU-h1CdaaWH^U9H^2KW{rEW7 zcX2hyq)ogf34y~)hS%d2l@sEO>j9FEoxI_Br;Qdq;4eqUagoE!|cgDVmxpe~-X zL;286kxHx-k<7$SVc*eEP+%zP(4j*iiw})U)OU*PHEajW0VvkC^XSc;mJ6;9Rpo>m)L%8Af z4~gA2Z+S`kG${9#1?s+lb81H9V~7XRQBddaI`)RE*X-Xh}6drBp-b^YNbNocQZ9 z-ml7|IEW-80Jc&52DEa$ruS1V-z6Sp|A_H%d*5%B3{10se|$9UZ8kkXHlNNj#VR!%Mz#y5!>P<=S`MCJk9 zDlk;y3od(wCpd~m-Z=K#n%Eqk(_3L+^rJUwcfI7H;8T2t?%!#B%&x~nx2xfVzV`^c zOdtYrkhl<|`SN#%RbTBjAt&<5?z9%|TN8Zf^Y#U)R_ef#zhH_fzQ zF|oiDK7Zx&>y!QdD(W3czUm=rSkc|IQdr8N3Tg#SgNfkr+d51BJpOb4oIwyZ#{CmCHL*Y8k9v*5?eOTA7y>REwX0jsr1qI7_g}1u6xz!MhF7~rc z)!VoE%|o<%(OUS{hJC{+eVp9$B%g}kQyH7=ud?u~r+T}o|B73;X%v!FMz58W$fD&s zO?JzM2;Kh-H9ux%``@K2`gx~HTn^m(X$AcbI;0?aS0FI(XZUMYM?pq@4<@d*@3B6D zS0!Z}CtsL3S<-H!Axw8P7E7pkM4yB9RHS_M&1L4GC0QUSo-mwnqE41=$+9ytI z;Qq0bq)8A~s7FEG(76zE`rNszZ*i^8IGGD*Vt(8y#x`Kx^Jp=1uJDk0yZSJ?w{%rKP9urbHAK zPuUtDJ-W&VB^Q~D%+Ncry?{L(fi!gMLl3B{?}pm0HOtVKnZtm(zAo>nWnlHn{^?=qDY&RUf ze*PMpkkAB(cFRD-8X=|efhc8bVm)-4z#QByeGHsW%6&}dTsNBS?YOv2FpryCTVpxP z{g=+e?XAR)GyrF42TRWqKSquBRbCYOIFCxjOc|B?mUK>N>-Mx+MzU)A5u%Z*GIb^E z<;W>5)sLyEsRZ;vRm)IQR`Nq+iTE0@4mB0M^d;rm82LK0MxLc+2wh=ixqtt@8T7~e z{QQhZd0$C=0tO^tC}sa8J)h&)@2&gNxxTMS%_Fe~=o%I{U6O@6(}0<(p@&1kMxpn1 zKXZvyC2M(XJ8NnXF{M2>HlkbTOsfA~!KZ3^JnVlxP8iJ*E)fdIT-n*l0rJt`-#_wi z(lh1;T@FzZhuFbKW&es8M&G=t_vvINEAl%qlyp6%K!ElKy)xQ@jlA2sIS`RGqJWnB z`E(aM@8>&m{5XJVQdK%6%I>+cG6m!pIB-mmT1sjO-=Ggb@cizh(nP=zXessRGz4!! zEggU|qPerfm$SgJmm9(sYj`ckv2|#ZL39jyCJ#u6@;HN^<24ec0mi5XIEDOq8KFWJ zgh2?{fLv7UhUi=kU{Uc@txw~pr?%^=s;ZnOIwkMOI1?1O*TRAyuoMb^?(WQ z0KFhz^WlI)v(eZ(r_E%2&IY{c68lAE(-MC8B zN#{4hVC6*O{`|o8`^6q`M|)07oixF zFbyRAy}Ya$&FVNAP&u7Yk)^bVMuJshdejxqHO6Z@;AI z^(}B{aBv5+sh2-;Z;gvjKeg!DCOH&6ZMEqP8Qyf$ClRY&5BsPJA>)&HvRx&v+XrUn zbI>P^<52~lkgaq;RW%=V?=iwD`Jlm1p#GuVK z;Wx=dQ{N3%+yVkXZl^(G^<^iKh#;alzRR^5AMg#84`b(&L>&qF-VO^} z(bUk;*8Gxt4{rk^IR3Q; zGN!?~bGcQ%3W|yyC~1<7hwzlq3+>@V3w`ti+aV3@V4C(h0|-t;(oa8{s4e>n?-tK3 zKE9F7l5}Ba%4cy-BJK;|ss)tH?q82A>mSq5(c3&9$Dek|%gf(H=2hI`iS?`YkEQ{y z{F0>|ld691Jjj1d9PQd;uwl(PS zEX*aS1OC59w};GMMRE+}xEjUN8AqYJ#FYVEt{yU6@v~o_uV258P|79bL9(0AAngdk z4&}Fsg`f~pR( z5vxu0JU2gk_6i9NAWo(udkkecF((Rv&nizu*E4mpZg@9YSy>^kxG#n2aIP1nV`$Q7 z*ozR#Q~M5Ws|9XO&LLg{E?sZ4h|$v>4<0_#KuzXg^%F13wt^U?uT`~=# zdjKFG&y+!5U;nZyKjC~hD*y3mdQ|Y^;*ydF0MfwTLQwd#k1XJXY}vlO8o%Gx_}n=$ zQs7W2KpF8oCRGfNAE&}pQ(cm9)Df1ghAi?HNP~pcY5%YgX9pq$@BYgoKqR;Sbbxmw`MOhggVv&_t-ykugIouh5|%q^76# z@Z(HX0m`l6;)(?QzKg^z(Zz8d8TNYoQbL4z5yZml_jf@+h)XzD73h5a{{EV?MrB?S zFhwH?=cW)(4}{ds3;9U-&zu1MdRJ;EmdK#s?1u8ce|$*oLr|-V1am3i^#eF0;x2<4 zWJw6CN0|5`io#tKC%G=}o}M0J;*&J2F~S+pT1YeAplN^*5|P%JH_NcXm97JVcK$J@ zODvm#`p(FR2yv`3NxRH}B9ppI-uv88oGI0i<#zUCZY17+A8H>Q4K+wQ@DxKg?KBy& z_xse{%?cX;5WDRB4`P>YF!@P174nIe*pO_pF88a7VG&xOD4`wH;8{xG-6zJjtx?gi zN~!oFdOa!WDjwrK96^$2CamW~`cY?HHY6h8FpTuRP=^0Rob9`Cs*Bx5udA3!QAE5V z*;j+7HfyBq8>0D05FR`&7<~jH+ffITx~p8_U=tPyD%gC;So8bmL^zZtnrPh=5{bxv z{8$BVssHQOl{i^sIAFNzG-@JzCRLEszNx7wAXmW{BD0bJ5h@o6m>2W} z4DY>UVd+(X=zVL|H%&ojC!G1?pW2$5Wq3TQFviFWp`(~V|7v*ks?~PIYcya8$B~ei zE9>g$!O=3mJ-)=uegWP)YJ#x)pI>kec_k$`h#Eev0J)R^dkk?n#KZ4{oDcED{vRiWGT&Xe zc+vdK88QF^c+R(Dheqbtzt>^JUcrEa&cQ#8U(vJrro9+fug;sy(YXu(9f1O)PaV9$ ztgDtwIbMUyNaEHA+2c5>L8EoXTuI0t)J2j5heZa#j5r*VTt{7SoPv>WKoy5rkScx- z8wpVZ)3m(sZ7{hWA=*RKHUL2qdq5Gogs!0P*(TJCBp|+O(_Q?i?)@?bhU)tI^qE}; zVCn5O_{7c|zksvgjEzIkEui8YqB(tEzlNivRA6o+LV}zQ7z}f;Gl)tFXT#O@@R1|V zXmljdKn@NvRYVtsMw5a0xksHl26DlN{t{2|f>@E5YJ zI#3v~{E^RfAiWk?2JHR|fFMAgX~$ij!jm&FH2e&BPy7ZD0ubN_2W#<> z2C!S0c;*i%OH1q9c0)%iw*4oxmUjO>MG>cPPwwd-$4_FQ2+`S?o@n@u5x^OA(WfeC zcHHluohP}Ucw#J|cxxOva=^fV4N*>HRzvV@E*Fwe~h8knr0ZqkB$}R&o4j^()M-d#|Ug*F{ zbxdjRYKTri77+48AQ0<1>_-&ijH)SG3U&=K9>1aN5+i~z=&V#>zL7z62&$2ptKdtQEFtJ>96eeGI8w3)Stc3pnJsEpH?N>bHULN08S-3rxgRGev+4`~ zC5U>i58J|^HLQPs0!b=n>d>)c`W$f>h2vK6s=(7+AG(vwx*ea3*erV;fEh<2rfx&8 zFGh)UIf~$_0hgm!-fJmFZrtYiQ3yEy$U=`EJ<7??kDll*xiLNOi_D(lzW{s=5QshA zq{!B-Awxq$kI+U0MIDj&ZGQj$hUB^KTU-#Z$v>cXKf&jI3?Y;p{wPQUNqA^^AIchv zjvOSm6(4`5s&^E03<0D<9KLyVK4)odl7wY(40&KQnErpFpH45 zdHeQDXj3KLyXp*poyd=)3!gz&X1rtfHdaOhgsH21$tqxLr8}E!=Hlu=ZPCr0N;?#H zDYVbae~D|i+nP-9 zC!)l`NM^FdpjJg)6we#KUJyW6a23#5t0Z>I9Jn0gm<{PGe}-&51mKJ#d6NbL!L05? zn7Yu}zJ3-X6)6FK|1eeO({SQc23AoV0UAb&n|>8Br1^TiYQD>1I@2q6};}n z!IeO@M0kB4FY8?#WkzP^!5J$vGXi-?PejO^BqZR%q82T$W0OvX2ZhS*+Pg{Aa2X~q z35A8XND_5dxfQQqNFn3Y@V9SHhwsQ}4Hd&ufd2~;5Xz~SttX0sCV^eMu5%)mL5!H{#Lz{Qb+TTwp+<`@ZsfffwAeb_I|H2o6XRnN83#`LB6IJz9QrY;2mi zGA!F2j@$2NqTC1#?ko3oZ@m~VMh4Yj#xU7ptA~ZH+fHx>iUYxq;4*W*C-krPl<!y^^#!_t2y+oD zVvf3q=(Y}fFlG+)z5Jj`t}jQ*B7{1;2{SjmtcGOhGOjF@$NYW7Q z>k14TlJQ7DvxYZsKAufv6T@c_jJNzgkwI+A%MLeQ{7He3jYCqY^u5x`JeBw+0k*r9m-`|fTXs2=l$7wv$#FpSb@K2CEh+I1 ziBkmfClQ@rQ@!;WTKCr1wLUc3#IS1fUb348rt{4zFK8c%!baJ4mk=y8hg%BXyT(4| zMd93&;1Q(27?mFfe0>#&TMX&Z67m)qfBTi;=}aj0mjp**%QD$Q_zlH7GJ|ZOl%Q0QJ7yn}p z(NT)oOg7RSLG!Ts7qKh!y*h}Th+?&7!-f#d80?5JdVXFKmG>`CI`3M%4hgy-2|&tV^furMJd6uC1pwwcQqfzR4?^9?V8_9( z@wJHH4RWRaIH3jSLIE2_OpMb#renPCGJ;PtqC6FK!Cg>-c)~{Q;7S>y~ z_+bpO!|%W_lX3j@sI0~pP48o#BGLf^aB=`?#CN)cY&96Er3W3sNB=i_as5=OAB)3> zv8=>}nwlD&(HW9W)LwGqXh(Go^D$38z9abfjvCYvGTEE^%oF;5+9tBt{9Cs!hl^kw zUsIzRvS(&$X3y3zRel2lgB`wjpR6XEHS_!^Z>^05*tDK)A#T?Y5q{v|%d3-VV-OX;q#?~$urHVa2Dg^x5 zjA=O)j09{@0&hafX}HJ#)7^b^M5jm2v<4{kqOg9hS!0YKe1tx379Pxn0R%~yS1s#) z5y0c~bG#DbfVk_I!=E0Oa0_NDr(FLpc95+%KOR-q#kQbVh|9h!^LE|i*t3};-%b8t z>h~kIZk9A$6xMgoeLTrzEC%p&M((MJY#f08O4JG%)&#zi(4pj%mSfm5MwaCsQ#Y4% zXSa)i_TG)cbPQI+Cse%6M!Y#PED@+Wb3r?##UM{p(-nrBFxJu8!Ki zFy3og*`56{?a(F?&Xz*&A+V_ppMX9P=QjF~E1Y~(wcXp+h8f_=bs#RvPI+KfA4nRM z1M|IwnwnX8j2QJ)~~`j z{)|`|i9>Cu!}S$+5ly#gxxWI`E`*r%2qOy(?+*Cmn`2nOgxEYeC1{H@6u1hBIlYB1 z2K*&}3RVe9P8j<&Whm)@{dqokABvJVJx5|gdSF?pj=AnKdek*`@9 zo;_)YuCyN8DnVaU)6n8RVJLW#45@X-U6_O{0BaMZAry6ygp1nS4G1Nx?#@A%WiAyDuK!@u4{WD?CXm5IrpJHcsOc-188MX#~pbLxvU+-bkW4@+P#4 z;EerSr8=)feRL>wfmof^>8z!tWz+do5W&D=^Qq^*k{X|acMtvXbaJAoG^NlzwNGt4 z3s3=>d6YJ*q=@9MVrH&EFbLCeH(W#$@S(2Vt57pKKoj`7CH5i=rK4Xg&CDv6c1{Tz z3dP>EGr@QX9i@OFu@7#9&Ut;~ZOb!#oI@r$@6ehA2JR^E@1$?73T6^_fi;Ha3i58z+L#e;*0Lw#a_Sf8*C}luOz( zXU+i1siz3klbJXmI787Jq@{$>ayqP7_E^1?W~fi?kKcsh$7+KL@PDB_1+~hl$Z7G%Q$Sick8B3 z515lKH?p0{o^;Otelp-9E$2Vq!1DjeZ+I)0UxL0)9D8+jbs}ubxn1VeKYlz=*7eI> z$lWk(LZHMFGC&4dy-BhJH+3Lc5{L^4NO}ZbQOF*m%HzTc)E}5^7ocCpIkJ$0GxHk1 z;lCajurJUwEVVi`0PR0>>|0=p&g(0fER$d>>WR1X~Bla$mQa>0Zl z^8YE{@PJero~3EiC3JTiH{agP0AtShLo9CBfE5+uhM~N+wl)}7eJz-d7QBBgATC|d z7BOzP_1*QgwFf?C{{uTYa$9H;XSHq19(GE*y%9l=;B0(zd_@z-$$kShN*F~VON z`5f63BYZ#Z@DLNWxHi zQGAF7{SWqn$3>?1AR+Ve@={nQ-K}y2q=lm zGO*=?J-)~jAodbUZe_Hoi97}I zT5mxiKv3hJv(l)uBVK!O;>5eJo*};$6fB95`5oaR$5ypoMM~Czn(JQc{1@Ge+kmM(JG7Szfu1%qVe8XhR z&(BXTpkZTYuY{8XLI0!w1Ze~_N8kOog>7gKRc`=ddp!h%h_4^>sxb);rU;8~sD*In z{}s-gxj9<{za`p}9(M?mh+wxTco64i*d<>?cptJA3+sBB!na{=_<~37gwgq zV&-FD+Dk-A>LwIm6m^n%Y-(y6XhCtg2I$K;9@a(3 zC|nxUv8p4G*rNU$?u$S|Vh#h}{m^R~frsJ(=e#N^X+}P*U}emb*AI^7&`94Z1t3L+ za!~t=&Czj+{g>o`O&KU60Kuq&AX=9;j|QX+5qkxyp>_OtMH*TqVZ`QER%uNl z>r~E`(lJod(szxd&1x7sOr@neoPc2WeXZDrTsE{X$PWy>cH*14xvzphVJyZR-IYYB z$jCCVB5~uOThu^9qM=C8;Z2gF1n%ZS`d+yh;v%`P5LzENJ1vD9D`=3gCEJzkFI09i z2h@B=_QV{L>7Cvn%kqq|9d_SX2dDKuko ztP-Jk5EC($8&gGYD?4ds#*6xA2}J?!sX;Z-s}8aPg@+>U{tG3eEX!M7GcoB$9CZ5SkJW8HU{Wf^CHN z=;%%8+?*W_$~`44FO5k`?RQ^`dK5MsV0^cGdb;$8I-~b?ayw<_?JJ5WGjF)zNYLW; z%IJ8U$%+p4zGl-;ssOnc^Q=-(Aou9DV4L8q zRB}-Mk0L)-Jx_WK$s7MSTb0$}t@B~VOSB1|L8Ui(g6Jx~k5+_la%_>4r~BGQ^XE@% zTyK1^7~A~^_XcjUE?1~y%bq-}6Z#*Mj@4CFsijX&_XQD;#uPSs5b0Ge@4p z^`jT|k*$mAm=T$6=hIR@Ix^XRzg>F618hNU-QT zwVA7aP*nHbS7}M^HhnPlrzr}~!j^jvM~q+iEhgm9_43lITYQJ~Z?D>n{9~y*omxcn zlDq2-mhFQrTYv0h*;_B+eMZad9xi1ZwdGebk@oiP`VhP_w5%rMw33CTRkdI-Up#m6 z)R^;Oaxv(L@Toh^n>Pz7MHOjTof6-&mUqwk_UA@F^-qNzJ0d8-FPZS5e)!q>%{M$Z zE|>b9mAd_jVZrGM*`5Q1g{4OrZ1f-MtkaCpc=a*!Mh;74*(d#j3fz64XC}Gp2NMqj zMV1SFy|12iwXjuFr*`iiKGue$w{$U4uJgYN>@xesy@!vRo!GGF;f1$pEl1DCYaI3W zJhbfkb+@=&1@Z%T|GK#!{q`$PF=cr0zD#$=ZSEi2rbL+Rg^b*lI#MU^pK*BD@qOxS zSfChP_>7LQ)`pAz?|;Zv_VRfBUM~~C-Cl6$r?g!B1&*25sY#cFZlbygpm zTFuOMw|&zURoc1VHx(zI8S?Y47O}9@jeFX#!0>KM{*Ge>*UO$dG_ZC&zA~I5m&KN` zlj~Dvj_ZZJl-oqs4Ux4og@_h3YTrn*zm|+ew+eXXk+wFdW#sXMiua*_tkNs{PPJ-m zjgcw$onH&QR09sGWnhqTvH8W;vn{egtbTR>MM%otPB;8!_cr-cv43O(%FoXf1t?o8 zB#oa?P@XYg_@#fW{Ot9m1$I{ty>2Bju}+7CDwPfe&2z(_ySi!*+&uc}JASy(E^a)p z)NMn`S;fRe_5?*E_ws^vb!gKaP#bF@j5H}NeLn$h3CCAC3xN$_OngRero z?#Jw(d(q?=Xic_+Aelt&nFO{bfbanU*a_e!kcK*$cs^5Hgh% z)FUZ`zVKmSM2ufttz?F|2Q##Q!~EAWUa8@hif6dd6y*^KC2~!~PgM9P2wTiJ#Kn&} z$ZluVenmcJ#e>H>Pnj-cY|B$Qp|AMZGwsD@?9nSiz{xSyOYRH(FaO8_T0hLf7#;K8n$O}IXMyXM%cBvs_Md#M7dam zN%d@!B&Myp3Hzmd?-W@+}75o(*EX}M0ZTVKa$rO>|9lr35 zh!KZ5FAC2vxvCh`Bo+1b46ui4(HA$=oisAK2hEZS#GaxkWL|LB0RArq%T^&FNpxb! zOx;fNPl;R%w-uM4tbc%E2@uZZ6l5K+s&843=_(%gSTi?doxP$TB_rRIb>V|950?zD z-P@DCNv~h;J$f}~Cy%?a@lzkW$E8CtH;Y=nq=idIP4$S{u^Q8_2sENzulJLqHDK;D zrFxO6Ml^088XQc}d#?;*#voj_BdAaA%OsaJ!K49N3n8ld+(zZ*ljC>p&e#?erEuJe z*3|3&T6DBJhvRlFO}v8*I}8VdytqdMtUSLivt~u z>&xI^4GgtfTxBON9*t`v#Gyu!>p-A5v||pJ%`#%5yE`1ZU+1;Hn1yK|@1R2Tn@0pkLkq%F+hVinZ@z8P(`f?Z~qq z{*wOYQ8nPYa+EQoUOruOyQ*=ZuSkpB*6o+c$Q3j5T|0*9oK$!BOXwY(g9?5M>((_ewz5Xj-1;PbZS{XptD3Y^p+5Lg@@L<&raWD50o?p(07n==V(WPH6ZD**DhF+w<~!9)>Qq z#YK4YL3meJS#!)?xUBF>&7A;z@jtYbvVuJt`%d!4yr$G1`XZik8$G6*!P8@It z{NGU`W0S=KK=|~wmM#@kAsyXj#$G?LK9}2Y6n`?QoSXH0Wfuf_ZM6d z*j)i(2T&5=S?q&BNB}tJrFpCzAbjXb=oke=%a6-z{q|(uCoB8iq|mVEb)-I_Q1>O+ zH*gz1cDB5~3yG+^RC55slpNu(UKqQh z$K=blh(9(RigF-YjwC5gIbfh`YT(I>32_gsw6moTY&)~f$_hMMvShoOc?b1pdL(cf zT$TPH&hJFGJdoWdG&C}~G0@^=8y_eQN3>`|e>i@KPd8UcTw`NozOezr55b}o;FS3X z-89knVMeh)hwrs}uha#qmQ-2Zc{#ljap0E`t;+REJkv?I6zvP4Lx}E!nHHmPpb`Ud zDqL+Z#7CbyTe&=s+mYX3j=F2ROj~{0-u)SL0&;i`SUSMy4|Ewoycn3swN8b2lA7uj zv6R3+l)Sd4YZyu$iMRBrJU2y^PS0hV^eYpdet&WQ#p{lH35k8x?0$eFuz%mh$ey&^ zllmiQ;+Bi+9e+^MvQ+Kq)xmaU*~#ds-H0>y{`}y~${7)W&_9)X{&V+~YBOwPFIvT* zMcb%j_adjKRpk0gY^1P=6&E5nw}(m>!`Jz|+xGz{Peo#Mj17WW`Q|zNW9DU7t~>b? z?Nh~jK_+UZ4|+b|e=gS@%JeJz4wHYqyds1hs8CmE9xW;W`HK(5S|BuGq5;= zn*>u&Yc-wgPwDV`?ozPZuIt@#RpZeLbC9-dI#bh9BeRg|Q#h!niGL*bA&1?3*DK>w zSfW>=F1YRM4i|dM3T-G5R2$N->?`LNyRCRlgb0{$4Zh>&jyL=G@NkF(ejq9X2W5hU zKz!l9VnA|OeXgq}roLpHV^b6r{Wd1$t?NyX z#A{zu)4yKYYpHziS`nWNpIH|%K&A3UXQweDoLn8%fvm$f@ZEiQvcN0I*4U&Ps)P97 zaMQi*q9SE;Gt*$!Y9klnwa6YR$|?_B-89{xfRoSfn{t~x(!Dv5f0X}0fRq}M7#Vl= zxD5qo3rPj!62_&7&q)uGIhWUE%#|ap9(PAX$riTltNp%`)HwU4Q+mKgM^kiRS7gRU z?RUC?1S9)^J$%iv6XjROIV5HB@$1h%07yX-@lH5?o*e#2=}aOpI@+oS`N&^PsrAUa+FX z!=+a$Qgq7OlsZB7ImkA`@_3*|1V?8{V5#i-cc$>yVw9*CxTaufR?qfZu! z&m2KM6b*@bB*N7s;qjkB{Pn`f?B^h!p7j{U_g8BIf;}_>FIgdXNwWH=rg3Eqf4QAM zMgFm=R92GOuh5Y_{QZiyx%ozr3SQ3Z?^l58vRUj9AdV+Snm(Jky}KV}Wv4kleEO&1 zVXOSJ?n{$9Lv=*>`&X=<2Xk03w;Bk?umhDG7L&GF&O@NU$;)oD^xA*jKA$qhO1HA| z!fT&B)Z~fG@8B{lA{m8Gke7=9+*?}hc01mID)4KG6mLBpF(TNaiw9G85Zyd8y?IS3*$+Eqd)KuAwyuc zAXth4v|tfH%LN9)06iqYHbekTHaG~(I|mpTpmsq9g#+vp0ctB0_z(63M=dMXUa`H# zahKy9m~6&{)FG{D5w4wo|LU8-!N;vbe5E!TzqZTZBS*pHio+s`twk8AC8GVd=e7KF zilOJQtw^PCZTVn1-=0Fc_K?nU+{cfXp+yNrBYQaYI4Atu9AqNxapAjEfjGO{gI2dg z>u}eH7P((y(IJzXYX|3n0b7~tQ~B`dT@4uQ9_1Ua_KTIEYu`t>LMqYiIuc&E+`d;M z3)1!RnK$mjyt$`l5+VtZl6u#>-dpeQ1-!VR#r*vF^FYwxfvI*Nx}~vltSom%s867i z&n<(#MjJT2v%|l67;C>d06-NG(DVW>sR3a6c?JSCz^>hXVVP{`q~<|{@Z275xf!J= zMzrM>QGS(KQ1&qbL=j67AD#rPV1EOwF|2Rq@1eWKoW9SDCC(9{EL9(B8In7Nao2)L z961I~G>&sm?mJiOuCJUwFbqQ=7SVwweipg<3(z&$@c0Oo2$j=SK?b=aUvJ27wmS+2 zG+0#+>`*XjBEaGx!RYS5Xom=*K-*CY+I&sUCJ#k4U^9!fYqL9~{sq8xyujlb_6`uA z9DrH`LTVtq-q6xw4T{FKfs&#kjs)30&*R_Y|I26w)lljV$U(#oZq|Y0Q`}kJ^gu7Z z_aFw(p+<4>^|COW?y6YrUE+7lZsyLqy+`Ee>2QI-s4hhN)|qsyd6B?zL7tcg-%V@J zt6{w>?n{Qm!==$Q(Cgu}pH+YINwImJlbt;deAdG-UI+p3L4j`#QWX}T`^62rg@Bl3 z2K>0Wxs$;C$h}Ak?95guS4ZZD|Gc$tmYl~%ma{kY?s{ADKKo^na=UVqtQ2Mudwh@BD-5x#ppft`z!fq{EpjBnQK5{m58^2s-5|li zn!76fuUddB1XhuQ+vojo*W;Z%j4uPOIQa43`gc_p9l#hRz!U+CLIKZ$6i62SDED@| z;N+6{+hEOq1+r3o{p({34L9IP0CeeC5Q>3?R`n~iPcANI_OoU6ZuKH%V?T>%zX~A1 zq5VDwXR!Jj98339s1gpVgsbF4e~e9$h+?fq#CKu~&Z#-sEsuB3Qy(1sN?kE;kfc)J zGY=m)_!|A0O)|dDq+qZ#Y~E#^R9RFYY!#!&mH)_DHXRRPA6r#6pzc|3RL~A;M@kfJ zRG|7x{U}cbpccaNJ+NU0um>CHhmaEhW`?nwZVFw^-Lal&=S)`UWK;z<7tt&>F8ur& zt(I6WD1H$KoMNEU46-W-;2ntohG$7CSo%36LCR=yRE5;jGx`$qe|zRBHi-0i=Y`7>Oh~B8UW`&}hqy(Tf+C5ka z&B%-OD#V<=-i{g>nDYK2EZG$;S)MKuN-aHnm&$PWitZZu@jaW}Xm8WryA%1Sx7p{r z6wisvmwy8z3$S&AbqE$E#7_apHW8RF!B8f|K9w!P-k9toKHgV|7#MDp_q@~B@AUir zEG*Cuj-_yr-@h62FZzeBP3-ss?>VZV~e^@C-a-vxY3X`qtoMwBmbXuW8n{o@m zG9FpnL|jJLrzsetTZBPrz)k^yfawmf2xLdMGdZ!?75A*o(BgrO)U=(0*gZ+!*>9K5 z@r(6;GK|^a4FHJ&1i(~*u_j>7OyD7h<&l7%NCcpf)r5mE4He*5hy5mj1PsIp292bU zHsr76&nic3=1bUKA*P_}H_@0vNJ;UVm)Ie_8Hi$3$rNDMjsHSEym(gFaeM!I8?B?V z(*hR{qx$axJhmg)P%v5VzEf)v93uWkk}kGu?mRj?WOrKTUr0qjfg)o|Tm9sBgVaGB zXmHkM7)&=L#VUP=lVoW=tyWCEA_(n}QJX9>eWLHUW#lYQCTAJJQ;l zjtsQM1ws*#QRM=qw))cfW2NlupSCN4&`YIyaa+nyk3LEFWVQ&*hqU+H@hI@1CE;+v z*=pxf>3%r>;yU0CE$_HH{t{vZ`2bl+)WT$x50;;5ZY=EJ6JG?^jYSiQJ>ap7eD{s| z9@yq#bSGesmJ$oBG>HaR9u|PpZF6S;Av+8oAHCyz(DQPk_vA|i)HQ$)fCK`}=ofiz zcp##~_^f<>ATtc;1G2v=3KX>vRJGh!YU9hB@B{?PNSW6#RAmfNJo-F-tQ55O@G~S* ziM0Gt+cvw;3DTUS7toQ)1VrBFS_W6P=kU-@z9pfS0Oy;3hX^Y6Dl<*h7;N@ze`_j= zDk{}Hej>%7eEqNx%<|Rc`^eu1xW6LO6!CT3@2iRRX@ zgYdW*V{$eD;7h#&0vEXYu0e`GRjD@V{uKY_kqGhwXeOaCNl_RlsxGBWCu8jd6~5xcrF=(NL$#y=I4Ctn?XYw^i_(7Mvp%DT<;6z*TT z6mCut@jOh14?B7=xo?Y<|0J&YK542x)R%IZWn~@7{sWJ9&}~`Z$^qXd+b_6k0fhA{ z%=Igd4>#E~g{q%~d!)RHG!EO(yU~b<&^~zV$M0lE^bY<;xwM>=ypWciCaKO)HlnCtEQKrWCd<$G zM8eeotk|5OedY;#$FLIM87V&$Bw5E{AvxA@z*9^Eo|b#igw+FrKdedW=H+D#`p||M zKv=5>b?ko{Xg~yR04{=hFxeyST!+f;Fot$e$Q5%i^1tU2F=ES-#spx-&V$1x{mDV-R80eI8mO(?@ zTQEqB*O1V?b@h$Be;<~L+e z+RStqe7Bj6KdsKFU3Wi$S`lQYs}AnwrYzq0>42zGMvnceIxwvq2-gk|4Vl7nMlcW$ zn7%azQY7QKZ*sTseJ(T@lk5KvG0^w_76UhZHN8y>>|`{~mC37C*_!NAtx!CNz0mjc zZI4IclgM+my5VJ#j{du>EH~sY%?yig|HIB`IK4~hrj9H9EQjx zbQ`e7)Asm^F~6IpxFxNs@wD7$LIzCXbkFgP9scE=9^Q9%TN7eeo7+;o${n(voO4>? zUXeLJBQj_R2OUm}0FRSMzLGCj_o+1|j9B*VMJ(4oL~I;Z5>G@US8wJg>#zSZo)b-g z7mpLEh zQ?XrEGog(V_DzE|6I(Rf+*GLCb*&jL05U4n~cCDK}x@jS2jV*`YJ-HFu z&FK!hBeF&At;CH?evJCiF?Xl!Y->%fyu(j6v)Hm?-<_RcR2U!Y=CL-P^RygXnlroo zS0BF)4p$(g7tWEVIt1K1^S}ee{ntmqnonFyNr!MT`nN*|1`Y4=&}bS%ty;kdJc*KL zW3=(tQG=emQTncqpupyA!u@*9Vs3oD1J5e`jE7I#XzK2MZ)&?7Ja^Kuw=efVl(YSSsI1|Vhp1EtgfE7UeOgg3wdg4 z>LAEEq*qn3z!>nr6`p>F*}-x|=kE7dF*F`tz34G(ajYr?B(|B-FVNz0FK!R1u6<*y zucK?_`Cbp*587NRbLGvp!#L<3xf`=G{rKJN*&<9n$sx^eqgmPhw3T{RR6fY#YUxF* zQI!sj`;9-7A~S;vz_bntIIL`Z^7p+k-)WwU8yDe9U6E_mu>0%=stR6U5P~tgL1UBz z%r*gYe5_)Jjj2HzVYF%1n@Mxv*7@o2>?r=Dy1H6<#?)Lrx~ge`bTT6EY+XTeN2ZWZ zvt4jSwDwApZ;P^$-Jy0p90(p~R85zvjRa+s$J7d+%<#%G90XVIW&245w2v&;aBJZg z5$!vXT1{GwE$G$3wKi}u&0j~TH)(~ClhjJ(#pupd&^N^lkBwOXYdsfee3SBx4Ge_C znF^D|13{n`Y|XWxvH?23h&Koan}Oj8Btn2W2(f-wb$y6h?JG=V2 zB16o`AOR>}{BE^mOqm?tse(p$1z32SO-I?-tS6`B%RCw1gD4k_57G>pG0os03A>b6 zAovM7(g0xh4&;$AA=l{uxdyu7fd4TE5^Qr|2p2Etc<=%%ceCXvfm0U{0;czE)vNy8 z{nPn5*m-GbqPgoB@Lm}MZ@yHm$kCzPO{M~E7JRX7Y^U;bv6(9~?U%V{h+f-{wPn?a zrKOVM?^=tUYqWJ<=_Dp&5}cngUd-s4eIzw_n*2CtYfsnYhx2g0k&A9E#Kn~;;{PuV zP~*Z5$Too}>Hv~dfVk>k35bv&RUXD;I~AH)4BF(F5H21bOCVjqPH%@G1PhM4pj$o& z2t0kj(lG`Q3goarCkzq4;yJT@Ta&Lkn8>ZUGuGH% zs%msPtO#!IR?)jWDu*b&4O7=-)rH6dHpci^$Jqf?ko|>(Ut92SIp|x_k zG!J1jNeRg5zgi`H$#ydM@TT_uw^MbCISLm_pD!`B52bBFsg7DLM^jK!oyToz1+qD2 zNB+4AFw_B+A_186fVJl}Ev*?CM&;t_3LDLL0?26jH#DZ;rNdf2U~pR;&_liha@##% zMZqAgkU(&j1B0&(9_XxtXLwoNBm#gU8VMI%Pm?*y{xRx*X`fsOHVEhBHn7p zsUJOn`;t%n1{;z2N@&eRvoWwKQTLlL)En4F$nfn#xPH(jFvp;ERqh)6}p3vXE zFnIqC&A{8TXsY$vt78(gi`O)}+0(4xS*)4cS~D1{?*)$Vw*A zc48J4&4J};v-w?vfy*ksu1DO{dX#|RNA;_N{motwKbr)HYCW)jeA@%7)JrfS6U1%C z23N8#@uKFtrIt2vpq{_V`zP4+`@j)T4@8Bm4)Se%zGt|T{gkvkTyh>wblcVhUYChg z{Gw}3so%2?IBn%0du!URTQ!r4k2%XrH@a6sP%@OvEs+X~wVk>kE8W~p7J`l@`Q@Wt z*~vwW#wYrVJ|&FuOdzOz^lGB82wFWsu3omcB3Gps` z65~O7!?j2ZbX8>|<0I5eDJT+5mjD;{;|5}_OWq-ZDKM?WYJQk^9WX`Z^Ii{u3@iv~ zG2X}RS(cTbNAk`bEwLGEI;_s6dWC4=lt)j6ms5#ZTbr)5WvC(Qe&0}zN}{Y$4PJ(4 zc#rW~ioDE0*BI`-Ox#;zedPCHR9om+33S|&tk*9ne?gyn!!KM5BS^3soi@e}hNv~~SF^^Lwo+{<20q~yT? z)xD;pw5VTj-cclrQ6vwYQ9j9{Q(EAl($u@2aU9obQQ<@U%gtwGe`DdbMNY zq5OOpDFfoVtWN}H8ZVfYFe!O?1B>e5m}9Xh)>2#9lj+vzRoD?VmF_u|&Ifi8rp%n* z5TaT*KL^3yhHcHp2WdI{1>}CG&-Iu=galBG_{GR{ep0smMM@yXuyGo%Ney6-lDJ~B znh`opVe#>eM1FeQQ?@J8d3AvzI>VPFF!gQH}a2`Khw|ZTgoalwH#lLN=*9!%HY~;1>dUu)cAXzJg77l za4Kd<{)P`?&dzG!%JFY`=2JTpt>n>Fut+o@r7d z+Gtijgni21{8~c00}6l3X5)KT9o#Bz z!M-cIVb8I)@Z}TI5+eFyg%<)p9*yMuG331oc$KOZmQEy|m56q_;#2EDhB}Iz{(RS} zhm#Itqk~y@;`Uiex^SeA9|e;XCvRY0Eoq#tqeEkEG50<(DF&k0Xo@8YuW-)3U5m%T z%p3Vi+ok4ur_V$PW@Z+9^35%b1zTg9rlB9bHdWa~U$~S~k4m8ZdeiY~eoVKou$y6T zUEYsuRb0`E**JY9IC*1Z9Bu&NweVV)?v)xXMn{bk++ru>T4?#+kw>{*0e|s{KTSw% zNXKpO^cn@=V|6=;;iC}Aq(T6EMl#@r@)H2S1B8az@86wi-2rdDpkRlCHZ5SKp#bA7 z;474_c4<{n-Fw>J2UlxJ@nLAig2g1Mp{Y~tZO$hy_4BAuU!s?&rWVi$wRfViIZ_gu zY1jolzLDtX->ud0&cf)oFn;^)^9AIeHOQFM|kAD;K|sgfjsvRi|n}KT>t{ zr&>!~-R#QI&MtyXe2OSbE}PI?%=NJ5Tw>Uw=B(Bnu4AqrZG{svHTD4V0N59UQ=3xH zIAh9{-iHM?S~Red{djt(W0s z94@}}+rJ80`;iMBNgg=>U6hGprJE0{qQ1U|M8@6zaiDtc0psdGq8%{$v4EKe7EXW# z*}FyTQ-1ePv@T7T4y#|4GE*@6+78! zSA`@5`DXd@lS{*k#`0E2sEshOK2JcQkw)@n|AGe{(tWK!ehn`j=3VdF%=_H$nne=f zKE&(xEOV&a&qohI;+3dgFHuO+I#>_i(RcX13=4_)`k78FPmGKmO>JnG2~q9K#&|^VbU~2d;a+!`?QKtg$_*4hQKL`JXQzDe z1%q&vS%pG1fqdcVo47&C6!Hs0~U{7;j8kjfhtpA4;vKmr!-b{`QJ2$8VvL&w#zP6xl{0IuV{&62W2 z46m#=JjL9G(pOxK!>3LkxOa85?B{I=qe&R?N%I+tRQ>}PCo3Y2e|^;%lQ&@a98ku> z=pX-O(!c_;AYuYzyk%!+d#Xh41+xmmRgFz3FwOt2;8Y{YET?!rL^ThlmBo}RsC6*P zYpUWQf{tn_J9d5#JkjaPSbg3ISxP89x@0K)-++YLKhA1`)bFCiigZt?u=ORyyRJ~) z+t9l>_$};Bq5g-AQZ zcHvfbltJvHa?qjAMCQAf0!Xr>tYUeZZ~n@hp%>ju_K-d4%~z04nyb%S77YdGT)gJD z>Iij{#<^Z$phnxd6<{pUYF+X>lWf40lIgxxQlL(NB+@45Sb=6Tv;Q<}iJ#8`hnn_R zlMZ6J#4EpY@CFoU&@H%r&NAGol)`~hYh5vn&I^f6=V_eeyS@q=nBaKHAv-3I7~&vw zadHUvxXpxqAZS5kN)Pu@IKhvUOG{@G#GL>!5C>r4`+(pMLxqAU@OQvKjpcxiPXn!9 za5$0zOyZv)X$*wkWyWiAH#bcu2yw0=Kf0DM(Uh$Nke5 zyA{86>=_3(slRvd;*8mErf47}+m5+4tZ8a4Qe*pPaei5|aKI>uHJne2f?i+DI0R)B zV_>lep~}j^`TDK;vXT9%(BS-0BdaB;)jX|Q@W}MF>)P~d$l2LB&28jpY;Sg`P%U2r z3hTpQ+~{+-fR6}a@TOk43$+7L^^n2iQwI0_AIML9)9a1cG6F zrhhk^@xU0_57Nr(hljC1GlbY}GXD%C_4{{kRSkKeSFQDcjK@RMUohgot{R38dzIwqC0=qXV>tp=p7aOh~$X`ay;H&!xgs{ZpD znwWFQ*w|zI67fpNB0xfdXHgVrKvqvdSOlb1mci2-_ z0YTj6T!k;wsaNJn_oy29R^!GJtQ^AKsTU%&zD6vKB-vVoM@UhLqE|M^>F;Njf)aMFtbH;9SJw{dKjwyRuW|l!VH= zTbPDTzwM9G^|HV?F|WOpzpZM6MAo9t|LG+E>S)fj8Nx;-!x8P(G&{d#l!qa5F5M{!}g(XL33 zY-_cu%JOY(Rw6C{mDE2e%=M>U|E-K22&Bq`H1ELAXOO^slY=G(aA#EE30p)feztP> z zNlWcVA}LA<&uD8oTYIGisvZ&ozsGLq)W^WNs|%x_es7cKsx0r_hy6q;#4d4_i;k9x zD($0R^nS~=TGy=N&ieQs9UN}He)Dr%zWbBHtn^c9D(S@8)##4YU+Ljzfs;z3hf_tp zN$v*VE4u)^J8WLcYNH)eNFd~bZC{~;El?D)Z{wqwva3bAeMDnupmjNt^d7_oW`BSN zb+XZvjCg=(o)5REr{C1d%JVpCSgfeXw zA41AwQpy7thS6kIQ0nU&M;)YoV_mJmv3s$e{CT0;!dhzo^gZ4i}5gg2coo+95~X_WK(&Fyzy%}R2TY;CMlqiqbvYAGL{ zL8U`Vd=M4UBgQQFEock0910yM;!z~Y;PMN;-}qW=5m52+pw!t4L@Fdc#3_xwbtpgd zQMbChctx|0@tmnyqH_M3i(2*oqfqA`*Q@-2@t17tSt*fi!;|Y7#81V2GApjS@1G_{ zr$tK>CQG)uRJFAjDTK7g#sUG3H>X4rJ~X1+J3{mA+y1K~&X4Uoryp!gHD=N}=9QG% zP}$jjR&p@C!H6h$w&^kh+GXuULjQyx*l# zSg)cnF)(0tD2yKEcgiw(+sIfE+1M%CDFw(3l2V?$0RgjG&)fc{YZ8t$@OQbe;YjZg|PF=#Jwg`55C|C(-CQ(x$;e>u$ zq*7E_*chP!ZGqgB*uNJ7Pqh|dIu9nsRy{l{Z?_!^*VdEEZj@@No29b8jb~B}4dd?3sxBq7aYH2x zycQCTp77zHh8N>dZ-rY+UKbcYO|D-uB6}p}7W}T*by0|73K$G~kKg$M!Q$m{($zLgYimE#>A^MV=#y~>0gKS&*Jmb>aUYnLZ1&Qq8ll+@+OX7i{B zHI1rDijPBo?yPX^E90>lmv%|`or>=vs#7qC`DzOT-Sg+%w<__FeqhLWjaK)g)E*2B zs9$9?%2_j@_>5#*K39@2-~5*GnEDpnRZ5GR$vX1rV~`mi8m5 z6m^Hr)o-`29GKQIP6|^na%SFtM>~GD>=L92|7+&MjNc_G>~{KFK?M6Nc=jy(E?u}( zUEj{m-Cb_m7Zf=KROa(CfOXjBXh#34NO#!2D%Mw*SdWT@FHV8PmioTZ9)pMgK0Aj? z@h@@Y+oI(@e=vFl#O9^v!SLWV7s^lYpZV?=kk*g_{UQ4Z^`8vP&64hKe->|5wk=uB ziGix9p#FfmqTE9E)h%59r*Z_zX<>wDlw)ubI$3YiQ&AEknC8w7C!AoG&|4*DV-D1H zTMI*yIQ*&h;k2C6jLRIqEmkEn5xFiQE%Rz?Gm+@!1KQm!f&|&nU(~qS6&w30Y&6xb zf&F%`)V5EI!vO`8qKP8edA1~lX3kF9trR2Vbidq9=#TA@-TS~crXY=D$oVCZ@H%;b zYiM!0&zq+wCfnylW&)l4pRA0y)|g)}>@A`!G)CozGeg;+0Zmz_CM?!jJ()N!yEKCZ zZKF!>_h0VQjs|D9so<H76MFM%bs*kb0?nj;p?X!p0<-*khn zYmsAblet&Aqo1JY<(HJMj6k%;Zaq~uKR!9v+8q{3m8rF^1?QkdT%8X-Zb-FXl@}18 z_BI4rWHuVZPlDc@sdFCiH9lBP7q3G-gK>D9rsEumJ= z?*osNmbG36sse7F0@Cv5{HQFovLD;Noklj?R{BngzP~Q9Mkbn-DG(8fgv#e0;s{t9 zjsMi>nRB>tslFL1Dss!Kl9J$gVIi2UtdPtRK#)p9j7{lkiqvuP+>+I)&`idN zV?rUKJ2el*7xTA-YSnK4VicMZxw`MePTNh0NMxt9i-VmWy(B%46dgX()qOX<>(1#z z^qyL%N*D}jde(zW3$1G5_5UqfRX%n?A7|c8`?Ry zB#$DLn}QQ;X~}r@MJt0v-f%zm*x!_$FJFiRALQ4Vt8P&&k1snDz^lN&`8r;&k71~z z-c#g(u^{L>v)GmH_#A(*xXNro;PQMjlh4IO!<=5%&Q0RfPP_64S(efZJMDoO{%%`@ zemTE`Fq43r_K1bVZxOK@n4Hm^^fjDsEI+JEr?od-x%tzbWEym5;R=d(_Ml!rqg!Um zLOn*cq8+cqdWAi9^@eD=a z;w8K!PR94q<(aoLs)34=V`D~yC$zh(>VX-$*-Kf7NEJ=dA$w2Ku_k3mmNWb3k+Gcd z=5ez`uW9Gy+*N4D#O3HeKPKVspFPhUzNzWqLVw_-?AKWmgi||r#UUlyqwSNGG_g_6 z73-Ceq)-Tvkol+Cxfk9eCJ;ZDDi6S8fKwyIihMo$Cfd!3h3P|&p9puJMuN(6Cff_Q zo!1;C(6aXD_VI~gcr!sPj`)oy-rv!>fa$cC%G}; zWXX(yw~uddG=D^E9_w)_{I;CYVfd*yk0PnKcRJ;6U{TMz<+ojy2Bssgj^;aFwXg-u zH_fB9UBs_m{thC2*zK0)iA> zOi%3F%Iz7PI%HCqKNy{tf5$^>#1SQ@qe!*u@QftB+WO%tUeD_zik=oyI47MSWr@Or zV*pxED5*;wH}&$1UkLnjd<{+NkMn^zyoB&9+oUOp=0@KtnGgQ?I&=hW<&Ijf&xJ|D z(-!cD)Q{W=L=E)EQ&aMPKM@eNMXcmub8v^x>(Aid%Q4x-c#yb>Q~AA_Ewh>zV~{PR zvde=dL)IJ!X*+QNxmegp1vw=pkhKg0s7yei7@nMzDVc_mj_>YoIVeS5nLwL}s|BiA zo*t2#rER00?y@<5KSe9N+mXFF$bF|fp%A-d)E6h>T>eB?i6{2>L{af z+OqWv|GDXXoqkAJY2E8JQV#P`$roW1qC(cu-_zLlT?k*GXdzr~l zDgC3ZYFXex?XRMWOkl{{+Q09~=dRDU1I|!>y{gdQrwBZBE7`lJxJj~2L`kWcD=uD| z4Nr-t@(ogC(veUjgrB?X;@-k|hc%aBGcJ%gr*<%S9`9CugXb-jIPBv|=1oSFqNw7S zM&FB3{CDQQ^3Qmc)V91gW4%APK-8H}i9u_Cuh z!R4f(h~7}nVfity4==nDH64?s(CaH3dqGM21DA03F8$jpc@4Mk=>?QJa4+OT+BSS? z$*(gs7?@*=R-#+&LwQN;*5u}|s)s#4wUUtvNY1ENBbDZrehO-OVOOG3^QNMY;M_Dj z&@t@qVr8x{_D~JAV&it>dO){ZtzA)_e(uHP>p60Rnxk{+(b?>apDk){j^>59@l^O! z8!dhvb|YHSy#fX

    +GL6N5YUy}@!5iLoTP-#7ZJRtzNgBO+B8ZuP$zIL#lf_t3_8lu_*f+z=d$#aP_$|*pd3mv< z@9}h6Y#-1?Ix;}GQDH>DNPQxH(C%1|ta`$bct=S*6uXnkS1$Hso$85|A9!dHDtK(h zg3;V3hWU(h)8z^)T$bL>|3HwQY1-jG`{?qT@JHi&8iz$(T4##nk|}{(sP373E*)DL zpZD(B80)R&Epw+ggPN#Xc%b7b4$xrZbY5ypcCMpL>&X=Vk#uXl08&x3$Pwe2j^X7gJIOM7%TywWJQ9A6S{UYei%ka%w zZk(02dq!Om{$9YVD|#hhtKmLgpK@(>I4snK9OqJ;j-w~S#Ux(3hAqZnVd}=&ULki8 zS4S?iLV3Tnyf41|RW|)(J(Ym7+qd_uNQG7dkl9Y4VijDyhAhTanT!j6TNL5yyV#V_HzSbwH7$i|3+ zb)i#SqKyANVjvBa?(VGEJ%bN>WAljbcE5^m8YR?SRZ&JM z?Z(=BM`iNl0EMk~KSZE1I${-m-@v}>_*uMRi2!xHP@&SBSx<|>r97UE?_l8fqS~*I z^ZIXDNqSewX_XsAuXVASkz>!#r_bWjtDVv3L>2Q3NZ2$`UOm^<7h4;KN6uNsKK~n$ zS%bW$C?~+6(mC`q?hWzyjNnR9g`=Z$=tjM~zp&@PQ2pj=e_SYP=RDf4@VelR%B)vA ze^A^ta5{1XLe5J__8c7F8_Sr-P`lWd{Huf8HlG$x(n)b^yWj?QFqXb@PiK#}cc|-Q z@*|r`&&0;SAU@eWx$wQ;(Jm+9Nt(6M{agU*FS4444mP6St?Ib^SS)0_N*i3dxSO=} zsDHl==9xF)ef2?P;`zP-@ zeEpiTo7@dix%g7wn_^|$pu=nDhgrTsGPJ0E6m%5bLs0WrmW0s8hxhBu_$v?1#bk9n z-*`F=Kbp3A^R&#nyI&kmQ#)Kn{nW2zh}sO)bjZ7eRQ-- z6V;S7aUgh7Dkp-k3>*QFC0`GiHR%i+9P9|GZ~Eo6Vtf55 zP1FfZ;abtBc3ZHHCsYzBB26cSc(FQVZUYZoT+T9dx5n=(rk}M3wja5(8;@c{vz( zQTVnMJom6cuV6}5ny8;3z-$Ua06mEoxNA|!J_JUPeT?jh7v1;~iq;4JIP=2HaSfig zd|LBn?|=lxk3U>!{jyIN~6#@qJz)0*6kaq;v z42Hx46uuoG%g}(Ceyx9OdH}&SHQ91GJUrMxorJh7Dh+e|Bb-6s7}geZEvato4&e-# z4o1MN3k69+7AK9CaXPCv&f@~PG=S$HnENZ?5*v2#ht88o`v?+zTr-J z$a6jHZY3{a${f_wEeS~zQ^6@m-@6=MdTsHFM)Y3SF<909t|adfc`$M++-8W_w)$CV zKsI+jqoXrKibS<%0Nzn){-4VRit*~Lpnvv1yDD0%lxi{~dxXjKsUHTW#yOXBNHQvN zRo`Bw85?3r=8co^jI11}FzabIhOG;_vXTuTodBol z(tL$AJBM1wvn1AF0>v_0N2aRj==obpPrzn82Edl-pe6#N*ug~L#5^#kER&mol7`P64eQLyaM#WFmdh~&zwYOk}XI92~Xuz5?v zvg&rVFh|4qN7+>Dn@rpJ@MS|5n_L=2^2YJg4fS588kJCg zCniZ5D^hv8jj3p#KU6noHm%;JtRzQcw)0MVMkF@Ydgn6-#qZ}9Q%ftE5%O$Yf;qpj zd%B)S3Lqd%Q8F0aXP%rQ8$J~}$BS%Ke>2z4r*&S15$ih3qXeGb@|R?{W41e9!rv-@m{2Iq!2Ey(Pb2XO&+rUvY4n3p|*fFUKRn zNKj)`kwQ`341e+xL$D(lT_?EO4SG>6m;L2yF44C_hm0nG>>%_16_Cdu!yf~Jt7GmY z1K~5)jGyyqJH9>*pJi<7qHwBu?XZ;-`Bn!t69%Ku2Kt)^K!g$X%S9o}A0+OnCed3L$d!L*~h* zkmdFf8+Uv*&lvJ8FTS9!&&=ZJt*dsLuR7FPIZ3>qXK7^aCwV7Wk@Wd<(+xaJD&6n0 z4G&H<%0|D*-Klzn-1oLvPB&G2W8f7W{or|>qIO$!9}a{d0woy+EF=Q5v*{Hwgyf^Y z`2Um;-!k>&4=$=HUAUn9I+mYC*4z6~TU2xd?d;s(Il$=q9zlp8B=qh1P7k_2e^ga< zJhpCQ5ArXfWzP{eY{}l1H&SL-FFynrMHX~dYrRgUmXwdQG*bLkh|fG4&%Nxz47&Oz3ohq$h`u7GZJDNfK?^D&+7XfZ(Tto}XX$-#3U4g9)EM zCU-TQ-?FVQevM=0XPcxp{bE4Y*@@Y8NL*T8Wxerfo|*1a?eknc-}pbeNUAqgH26V; zUI;x2Nk_@1qUDi-t4FjIOgHbZPKNfXrW<#EW3%CFxcur!ot#Orboh%0lU2^>n{E3M zYL58HsJpz#k4Nc0=pJQhh{Tk7m2jtNa z-W3s&JFi7hmfm{Ypu+}XJ$!@Thd+9R$aaF?b=DuK>vOD++Zv4Py#}p9S(zl> zqy-X!Xm*_Md+t$_>=n6mI>{xscnFTP$L?#Ch2j~rNEgr&&AO~uiV+V*WMA_P{A(oA zjwO~PCyZ#Nt;-i3GAZ@R_#+r(+2ZHPKkFKAlz5e`&FiIOTFZgly-%A%0bYR&^vkQ4 zSW>H4(^!z1lN9^+aJC2h5fxJ{@frPoa|dr`2u|c>xa_`Wi7X$eFQ*g{=n_Z;=a%<~ zhgb|>Jab)jkPAdFp-{@vadG?o#<+Iu3OZ!vC|}AMeQo#h>@cw;iS-de;|;}!zYbSE zUQhDS|22zB_~T=}Yur>H`1!4Xr)mD%n7zxP@4}_1J^9ex!qsekDGj$+y)J*sTg%Pc zk*&EPGg?gqr|oO4xsoB103Ct}jIp7>Jhr^6r{}Rq`Uk8GlmoQoN{`#Hf`}97Hc@a} z-2|}+y7ct)Ym|?>q*8&Sh*4XuKQe39YalKNrsH|yP3pdjTDly@0;Zyt=~8`zAwqki zFW#+gXuX!qI|!|;*P~Ny;LrW~-0e9N;#~ukK8h+$NG;NyVzNeGJ8bG#iiU=(GPQo( zcfMP*OKry+e-U4G)dRLae8@0Kb*3MY(0^8t)wXfnz+yvtvHwgKBCegc4LHNNcvZc_ z!iulvOrd>#%|r&s_hq0XcB7SsM8dK&iP^f5pH6P3dds9-zoxT?OYJRo(u175n@{rD zN7^Cu8=oQl@|2iZgHzXyau+wV(uQa6l+C*&hc8sEfTxSvD1FXtatujAk7OP5gG`K&%sB75> zEuMP6m)CI7tdX zA%i0kly&Ffh!#$)1KTIph7&^g6B7I0 zGPZkIeLmt87N%2IAL-b%WK<5F*|->vBWA@gtKS-S`^=Qf2*3K)`jmjawF;6BCI+B~5D zYxeN;PlOwEXC zlC#S2QtrtnJOZ`C9K$rAmSPaU_gPsr8(oUNWWU(;0RZZHZ*c$HYNft>M%2|uiDe_h zZgr-?#@00WYoGGevAF~VJz5%*=bV3&!>R_Nj}cHS#$!xKqH0F8n?^I5TBbb-p?fpB zDLut=Ish5|qzy?}Q1Wae6f-Gw}X5KyR4s$()#jqWrFq;LMI-F z6vTx=UV$Wk%Fg7kDdhTz`wi$O*R^xUPa!$}ehj(a=bZ_9cW|#P!16K$#sl2UN~)dyUdAwkuKyS2FnEekJ`Hw0Z7*saeDBQ%Yr> zRr3pJ^+@y2Atw#=r&k501U5*HQGBf5Q!6aHUR+IR`S_LI(22&>>$p<*ZV=`WfFHUj zB6aO3&4=1Kf{|BMoyh(8?nMRKUvw!67OZ8dp(6%z<@kNa{YwF;$p+^!;5KU4+HjmS zgt2A@&&->Nf-MP(W`yW5T{A4a)pT=;(Su^5vRZI`D*|Kw~c*gqvGe8H+!P zXp``~;6hL7S-#Gcmrp0{8#GY1^$5$Y;R=y6&b>y_I#$Jrks}0GUk>I5piQ#7%XL#} zcp`#qSv3TPcfLFEq>Z+(ij^F#cbPAwab^7CI7&AuUv+yoyNf8AdE_~^j8o#`=yc}? zYXk!!O;((&t#78jv+v@M1}@l(NR~*0f=iwmmwix_xcuoTKjFcPTpsc?0voJ-tdrLl zVcuzLQG(E*IdpiPp3IytAvc>DI5=XVL98cT5ZojI0R1iGL<<=KXaf_beYs^21h);x zl9lNuWbM4<17g)7Rcaxh_prGcd5yc_EHyfxzj;XTd*6d;%R{b{FL7MEIj$!(AoCKA z_%#EOTKtPk&7zYOaVw{hfpQi1YJzGss#Hda9r}h3wfYJ*NN!ItjY_RkUklA@pZZ>L zQ?2iO0b58HUAUk1Zmz4E$5vq!XfRxW69H{vX$1vFKq3Ktc-Qazzz+*3U8$grjZuvO zK(pB@R~)*Y<( z@6&T~R-vw>To-lLw~>!@86Qj$mz5W;#l;ORhfxKI@h-m;+s5;~4-r_5*kYBBat*&$ zrhnk?U7A6BT!=ft*P~wEWzP}Lr(8&-3yNW zW4sGi1U!d!q}aGW!*5l$7q4M4{gSE9Ex{9M-I~1{MboX1-nj+B`&5(Wz}m)W-T<}- z15SlwHmBJSa=`P-Iy!P-IAg#<0cDIVUk4f4LB6`^V>RbRbkRcMBBEY;gp($N?N<4* zSW9;0t@xI68a>~!(W=FT+@tTK{&|MR&n{EjNEK=t2XgY&u7189rQYCp`)-gAEEU4Y z#gRssr2g^cwh=~i!#G+HgG~Z>oZD78_ znr-n#XYC%lwO1747;-dLy`*>r7MoAoqfDkp6l??av7amFG<4H+8+eYj$|IW-5Rxrl z5`=5F+BSvz#%j1izl2JfJ|t+27gH`xU0jlSpmFK`PjOjP=J1aLSrVB-OYXVPG=Rw~W; z2@WsUj>3zcT#Kl0E5en6K2LC+t}E#>ZRz+jWp(l#cC>#$MnvQRsKR(aM)i3fzZ@mb4?2h^gU=2X3~ zMk<(l3q-QMH=-=zIvpCdX zWtH$f6g3&++_1Oa3*}Z(lW~1nZ}KX&pKjhPX8N|>__9BilWUrgE>6|0+|q{L27cHD zWSpF;1a^OLaRPUcg2O1F`RJX~lWD@ZpSk+cy~hed%UoJ!y285UO`8NOLMP5EJil3U7TsrJ#?j0VKj=p{ zoG7CBnV9DHdU}>lsw0&(G)8lO*R=)8gCP4P0Q4l+roDIN@$m6Uh+@I{!n@sax)c69 zsieG72Bg)1#<%%tH|p^Cn9|1&1l}Fp+!6rWsxcIm?cE6^3L8IjF$%)o^W{Uv778-1~4CqzP+gkV=fnw<%CyahW zqr3g~0Nnt!j~C&aQ@XA-&sgV5bplt`;z&EhP3kIY?;N#}4Tj3#6 zK&OgZBR}jBVK6kd3rz}pKshL$WmrDrdzf_;5LqNrS<9|0Y7$t%Q5RqD_Lhby@%x1O zB(w7QX~?NZYxfJ?x*x0`28W;T8kzPw>KV-CqwrFm{HYfMnN^!=I}p#uVO4N-tpVUs z7ev7<4x1|~lt3cI^k`?1p56)89<~XzOa^fRCXFObfeDJb)M|3t@KZY2FL=!`Pqd14 z_qT!L(+fZaZdA*2pJcbYG7cgii!CPYQiR!TtgU^JcA@i!yg(NdYhbl zANKQdft@afpgl-a_55<`^2bxvl&@27`uHo50R%ff!qAOMPM)%)DoVk<+G~F~) zn-t)mtj{PGO(zd3-3T@D)MBxb+mu~gOkT|53qW;5c8th)G;FAiFNC>7aE-PTU z&^y-9yjMUl0Iml#q=OqIk?ymv33=*wzz>!I8tfwUX!FEtf|?Y}n(sivVm~?9Oa#eH zDR^OvuqJ{yfyomu7WJo{(t2-+ZhX+8APTPl)O~x_;lH zIv6AJGoE$+>9Vk2*;R5DOEW9g@R9T&Z>eH**@YgBrk|bdSYx2CzI9i-vGstEBh>$i~HYvm@nTj^%-1com2lT zP+uAG9Zoosf9mJ2Z~y&!6PoK9;E+X-uWJ48?Nu7dK2E$`nA1o0Ko^A~6z*cR5aWM+ z+gUUUp(>Z6q@{Hq+RPH5NuG#^&*!)rc0B1wIyvy@av`kw_Ix&&o``6NRm#oyOjol= zaDlQ>;q(lZF>z~jQwva!Gd>4tqFr!Oki&v6kGKBNqz0k!+aSBWgy3;6b$!5M+Orq< z9k+>+w%I8o_^%&U(o2RHMIRmXtM>Jleyg7&N*WMJ(|af(HThB< zS5?Ic4s*%_t!gQ|`dJ*1uzP3Ud?YC@4hd+MXn~y&Z&;E}$7ct&?&G+88(9Qms0N&d zRoeD>$K4A|CTeFVU4!=dGIMj{4cq$uro*mXDQ7XRKc$N4Ud)>0H@mK_YWFkabV zOirxcaat>HO4z}!a^De0&CM&f(2Xzi6$eCK=KoaT`1cy^GwuI9qQNlM0F^gh*OS}N z{$|YJdf?n0kUKfpm|%hoPou!r=ZpP7vjR+0xB&Wao<5tv93N71Av%EZZ*V;89`5jbUz-Lg2fRF`aypspB1ui>pG9dF*VI z>LMJ)oxhRY!5$ey#WYRr?+6#ORw^Ynf(wq zuj&4YD&`syu*9hv%{oHjDfjl1&>9K;;%_GLs>p50G>2p#j_uuGca-RFTFsbHZ*qTE zFR<9ZY*Tt!Eb>5o_01*0Yy!tA4zi?!4qlJV#Dlv>2PV=Fw{=P+$Tbz z7{`-_Kfe6r`zOQtB4%%N@a7`S zem1DmmB7W$J76Yd8uGGkQ<*(dQ&asOdP-8YJt}$BJK-0{hw%7TuN@=gC-&*LRqN9H z-TC0-tXDySN(BXz3vXGv2;6V`9cmoG?F;t&URaa8S@SVOf|2u~twaam@7Jl9X+Z|oB! z`vQ+AoD}X?uy=dBMJ9%X~tXxI;^JbTgZphYgaqXqp(9 z{;e_15tYFgcG9qWQ-H9MKlt&U=i$M-gpysygFE97lh-_TI$N#DtXTKxB`RVR%YqtP zJd}5*HNDWI44LDf!>!^nW}>)gYuE;rRJfe(paw1RM_1PdhtHC16D8#q{8ALCrwlsI+p%%yq>#Max)^-K)CyJ5UH~d*LPGk))3V32lPj>9&TY-M0bZGyfAH&FLRzUM_9>C`#@tVfnInAH z6SHbx-XZW*FYgfi+vGy2bdOH zKe&3yH_UfxMs{!3j9fit+0kun) zV)T=rd6zT#_Gn4vr>VY`fDmt$(`7j-gZd7{-YcdLK^vPIBjRFDwBJNrv*j%*LMO3B z>{LEy9=~rpl<`eZn9O=#`yh+YA#(|9W!W=1rS^}BeTkTx?8tc+Lo#=J#PWR_zPAt` zfB^#@bB?yJP@7qgiLe7x49?9J#P&t2$q{=xo`}^~SpGFkoSbhk&AW{Xbz5^kk>Q_%PFxBW;0O*?zG<_rSg%cXjTViLPcUj`HrdgUC#H64#O zqRE^ds0s0qDGBj}xru7;nLD{8ILj(G+M*@~)GWllaYR~dC|%fRjId$0stzTTzN4j+ z#^xGjzLP7>>3!%B8XispmIvDe*?gLF`_}7gqT$_KxF$JhBxlTkL8>DX587H@s3Kh3 z*T;7D%g?)ng-=u5B4>Q+Tu+h_y^Ux$7nKFF#y=|5RQSw>IZBVYqC8(B$RaB8s%oDk z*D}j!PjED`5NgS0cT2|V`k+6hUMG0xCg}H>ndqCig<5`I)oRK33>OitC(B z3N+ttK|N`ac{gDz4gwl$d?{V0rz~)j~Y~ z`M{--kCe-JHkbN~_D(`C3COV)7WdEf{CJ<`(|o*o%#kU#eNgAEmvsF%k1Kx@--EO3 zwpZ@i+`Jli_IPi$$yBy&{+t`}lg`iPBjP81Sc223UC&uE$+OxJ8>)8I+kJiB*=>VY z)8j<63KR|#-(go!zZ}Uu<@!AT+4q<5^5tH{%ne}|X2>J{97mc+w|#t{@PNZlXUTh~ zwT=5ue4;seF^lDK;-M=RW-Wyc=hU!Wp@|&6ey>mCY}i1WT9dV^j8q*P+u^u+8@={J zvOf#e81`n|_lf7Afu^_l1kW^7KlB%o3gaEyI=^N+cD+o+;}BQCWIbG3S+2WOu@K|4 zs#mK& zoQrzaS=BWDTy#E1bZ#18bF+SjR2B2hTUVme`O7P=4`^z$s`CguLH%s;&(kz!<5r!X z_OwacFk@e<{pjrToWV%n&C{#4GM`Y3!{qh%KepK1H}jNqM5>1j0%$IK1&Jgh1+RxV zOq#87pc(}|IO~(}p4;^H*(e7)Q?2?ZtkRLFxY_@k&N>Fw{qicWcU-MlM@fc|4fL<; z=;eKUOEjNf4a~OfBb#q_xjDFAJ=~_!*K*1^>6WtRF*ojM*P!;fsD>(23C2z>zh-{I zMP<13XDM4-(3doKD?i{{?wAG!Qzb@*RHSy6FiK^u@XXGZWu%mnDv?nIKFwNQu6FZI zi3-UZ<)Wb2nhS^aOfuQdge=VgpBhEQILYTiJXhf|ixbUn6C_b?!*&}H8`txTdhIcf z37W&*Z4?9qubJ1|##QLGYacg%=-4THoe*A}{nVKlN)r*qq-Z0B=$|_C+XcT-#lzf<(qOh(0k?3J%W$pQ-62x$%%hzMsuA`wM=NHT zEX*S&eQy{=sI(U9fel7TywwleA!@o_Y^UQg-}e<3zH z*X@j*6%Yv@4qHWJPHGJmvGj0%&xMEg!G^#SNLV}UqP9*pwTi<`yQ^E66h{B-8cE;1 zjH6ZO^927>;T+5ccm+RcAIbMVa>z_@*}c%skmn@9g86OMBjKE~i%YRD#9)-*E2`D` z4Sq?Of)$4k?re8i&TqnDST}fm>s`fvzcNNqvXP2T6*g_~QrbVe`l&D|``@Qm7D`iE zCWmD*Qf?-5mkqE7iYc{9Vs4oR*E&wJ_M^oo8od9W@Ta4LiJ7fLiulpL8_S;m)%9aM z-{q$H0#6k2zrkAO<>mb7rpuqq-s)rtUp?GGT#?V^ZV3#3gNMoWWGFwM1V}${lLILs06688RP7Tq{97d-*VP*FHxrzWJMsl zi3NTT8zwyo=WKf548N+I_6!HaV@yg)cuI%^$B=&$gPB?m z{4^BLO>U4il#HfDagXR2SNnoqVXCm-w1p4+5E>R{1VnQzo0;Y`NQU?qVv}H|1v`EM*R1`W2fY3&gF4Ar2gdOmafHQ(LYUD63E^ger zcc#qB>Vt#c`nzd-{}=!6^TbS3uy6OT*NuV{Fo(~vO9H#D3_J{VlUKOF@p8`p;<43a zCEA!PuS!gOo^1u5m*B#}LLVqD>geczgx?)Lz9bk28aM_5Dz&JvFf%jrvjuW}-3H!2 z))hRwB7|)5lCwO8GK4|4_xE|U{;d}!mj~4BHlT;z^ZFw0DAN6d;mXJdI*98dPB&Lq zzeAYv+5`}G17L2vjgP-10)3~r*QswaF?A}L0igM%mls6ZHkTP$|9zST6YpeaM|XEP zgj;@C=t2^5>)-%U+H#IQN#b*61WX(J0T;w2;b=z=Lx(k@>rMmHX42U1~b{4Qjl zK|zfJ#suz?X3FHhm$MO|_KkE8B1@Pg;b^5X3y4&FgfuST!JA=xKHImN%rkIk>?Z?{GDZ`Rq|Cxcnxz-$1$A3S9d9u_pWiGx~$RS=N z;`482=gwuJvkUz=ARU0u0hm|8&y zKh5&~ky<9SHFR}Jf&0f_+8e!kaR`^Y&{xR^tC-MA>C9jfS5Hq5!mA`e#Ey&Gpyk>a zHkw~p092E>H6n-h{>#kOi%LF9{;Rk{xS7Y9I75UrJ_gZw`8bOLrT-RS_7t3(|J_EI zn?ErRTL2RI1OjK9eX((>bcI5NqI>@T_X(Z*qDWVa&xDzn+y8AW@EIF8|Fg+T)l~8S z>>vEI-T&;`RSBf%e>VTW3#q$67p7q@jCE^ghn|@^gbHfiA+|{Vj)j%g_jY+3;d1;!Be4RWQ)qC;;- z`(+NSL?nQc2W9i-6(1}>Yk$#op9*Yg5e89CfZA5TVY2OjzBNu!NE!qy;g>qjDDK?+ z{92=MnqH`(RN2%4Qzn~1iFu%po|Q;zjWVY%N+4&npquYc6KxP zViy3ifTxRdow^H?qn&w@ODI132w1FlHk%I8sRdpt?f;o#h1Jsp$ZwcLp;K~} z8(U>Lz=#QgT_b-a0)IXlR_69V-+MdI8=}lGhcQK&v2f~@gLL*HV1McR(a|&UP&51; z?(#0wOK`$+Zaa?ZBZQGklzrHw!pX%&AZuq=K6?_?hYRIU{ZIf4Wfxv15N2`$-j`;b zT^g{|2bIizW=nunCqstMe$x6xog#WCvE~1wyk(_Q9ha8azI*HT;o*y zUZImx7?*Acp4?+nNR4^NsvcHQQ1EGg+&YL8UPt}ju=YJ6AwBrpdjK}a#J<5KzD-YO zr;l2>c+Vy|HZ_$R`z{|J#AczCq9Ub4H^34R&tT=`P&yNk!r$_xI>JLB8xW)^;=Q5AFMk_EncK|_PDC(!j#Gwpz zMMYoNBaz)Zi{0AUp=GU5CU%dXU#qyJ$DH1j%zrKP#W#bJo({m*>2=l^FsQC1IUwk6%{c+t;T#e%uj8kCYz*|79~da9QK*LX*qskZu@L3SW|yD zXEHD$Cus5)5D?I+G-Z1RmKYLV^RSREWpb)#GXDa{BO4{^mcROfh;`R zob69win(AaE`eb%n{5pg>EyeWos$El68X8g0g&2-D!*?>yT4a{<^;DLi{MeglL-9n z6D!q4CO|PkIus*O`S=|zCeHuQ1z3xs=4*u#3&<*4tt{1&!)lICOmu%gPX{m+@COWF z_66lZk|TmnczVn489aoHj0~^aIyp3=!9ze%no?5?Aqxu&#uQ_Uok)m@jRpz9nF6d- zj_#fq0a#*MQBlzdTEX#(@|;xsyu3VKJ_=zc*xq4P;P6j3^nnuDQ!z2<)HI)Jbd8|k z>TvY=#cXdL*ad>?P!RGAxS%$VYbvX&2bGq-;L^ndH}(j9vS|t-KJZ=c!jdT)wd%xF zi^H2pAYoGI0`X^4(8A3gSTTY5^Urz{yP8XcxOIJ#~dd|28I2(dQH8Cx%-TOaHW++O$D_3G#&d)agnd(Crz6CHh@4yx7 zKHgi)gWL-yO#zPG4WiD!u#T=@dW8H0*{L8-NDRio;K+hso(GHxrvZ6{G{|$WagTqQ zgpwD`7K6zJ0RMnO$h%&2Fr@l?zAm7sV&%%2!-Q=e?6HNg=%ru2teYz9|E`ZICp^$J`s)MP0)g#z5-84k05C927zwgKQmi$#M;fqmVVOmj zF{I+duwphoaG)_IHqu~L7vKPpxU=IVmK5c{?hVGFKj#@C=B6OXnZ#)tcJt;<@@98& zx@Gaz06~?1j!RbktN$H#m6*o~Ffjm(duD;agqkov|9||Uf4OL7#RvtBtt3{4Wg7G zWGW>j$=v(7`tRp?pZA>SIqRJFoVCtcd#}9{Klgpz*Y*8=rtckYv}e~cW-exmqL%H} z(K4YZT1kqcxx>VOuk^ca>cW4vd+)ULHg!MjeahC;kutFL_BiJ5eayv<@1&!rmy5gG z7O8DgG7@~w-rgQwiqg`q|Nae9?w(H4TT99d@F7b*boO~s)CybjFHN3Wt_wxAJlU)rjLa;qmD_X{k}yvr}*KK3o& zk7L({6Mb!BXEQgiXKjyFu2s_%;9n}lAKCjeuzKQbSHRe)U-H0c<(MK38yly6q-=xk z_H*&CDDrJ9Fu2Y0jQKtEZrHdX~)pw!W} zY5LOz-r|6{lXAyC6ldR|rz|TxY=ddc0$W;JOFRd40m<>lpNwr<_|F5g_%ww`|e zch4E!V)ME-Taec>lzYRzo#@adEwG57vez zCv)H)=I7@VUiDNQ7sUVLpIZm2EM8QK?~h);yg&7Jiot3ng^*^jeSj;qL^g$=P4uXj`o;EsfOGgDg6I z7G}3@b#4x#jPAL8bjE#7e!E@U61i^6vqz84MMg%lC$U9585kYibMW9nhr@@pckkZK z?9yEmpl5JJE@R!6!_BYN{^);eE6U2)aUouvFJ0pt!$-YglTXQdnN z`|GQ1e?!#iUti7RT+fBYCM8)oe0zUBIG9G?z`)kV$hY=v$9ic~Q&UbZuC>O|7qxYD zbxT~o{rdKvqW16aq;1vx>FDgtWNO-)`NAS&2?Iml(96^h)qV=gd6dI;U)pFp@GQ>q zzPBikT3}@O>P=!2UPCX|JvjY?HdWqL^W;hSsnL%Gu???YEl-v{)XZ&HViQru^vMG`BH( z)2p?+15ABybMjtxubE*Gh+~T2kd~5h#qU@vVM)2WyQie2)HOA+^!Wc=wt4gBffgSh zpN#$Y+_nYIZ{w0b#+cof%@b)f1b`C54R(j#q!;n-55$NqFz`)%`^DlDw1Fi4fB*uQmb z(odoE^z?8x#74&O@Ou0DXybH*Qcq5PF)lmSzH05-wZ)~Sn(uENI6l^0?H|*bB)Px& z_8~P&z4NZCqfh*h#=9T1LFdoY>t9n|$HT)TBP**h*qB)2@O)L+6T3=Rk)y2>6N7q@ zoU*j9UcDlJTVz#U?9#e1WIiW1S5QQR$-KZK1pC7Jz=1bar`*q9xFEQB^Q!3RXetP6 z*fep?Z~vJ;3-?A+K6G?s?uy|#J>DDKC7!_S%%+WmG@ewQAL>34`21gNU-m8I&pK&byK?UcUS^G!&Ynmz-Z6fUP|_`jMNT zpWn0f)M!_@=V0T*o}NRtmpkvd3(Cl>OcXOeOBT-BTE^}%(}RFHiz3$}KU0%+b#&?y zL`{1K2bZi~y}F{R%Kk&Kt*2{RUtb@oRNIu49=(0bj{WciN7DS3*Q3y7rCuIc+EE@j zY9VqVGX@MeEZAxcRQoBD&btR3!vjCAO0r!eZt=L-_EGWier^ASU++Z@)jVh{!;jVD zW8U0zKct^3zwFQAob*~rtMiO2cx-xV0z6%KReaB*B-oC8DB)D`mCH9T*qD0H`Heuz z<;$N?Xc{hUGAus)l8bZQx`%aj)Q=xOP_64x&`TVf)|wSsvUz=el_*)|_E8aakmY*d ztSIZUWyi;RHT-cLS4KSHR0~w5Y*4kPCz_;fU0lN3?>Ny>SJToGM_Yqv=*Dqg`^P^$ zDy^f9E$iQQdYq4zj*g$5nTEm|?owB$<`)*oR>k(WL)j+#$gTTJ$mKTKMY}Zz}FDyE`0rzJXXi-v9;@nXt ziaL*SPVL&YYrTpuyWp;9EfbSf8x60qQY*u?zO)r_@42oT6->uy*OI;a^q)nQJ=c`O zt4@v8zka;}+v-up@&4w5z0zb4P`&;Abkw#JU)iyjBXtwS_;GMtTwE;g9A0)s!9AK= z!A)fSrND*R4E!Cs7=IWOcKVa)AN_3W*GC$v&S*)wdU(iml)2C;C@3V(`HXd|kkj4P z);5i1X5-*+9(6MdH38K@;)(uycLmi>*BO;h@_!T z`}q}EA97<{zMi63Hz=AFO;WLOaltBnQ#QCfN+@^+&x>vKYB~-Mj*!XAmoMw+>T06z zq2q;O%^$V4u1*x+YvGq#`Q+)-EYsXQUp`hT%>EvW`B-(ze(1&JJk#9eSfs)>MTQkT zk-qPBSS*3pn2ffAvkr?&&GVtnBFYW)-$8ge>tjVn1h z!$>u}BDdQu4M&$e*M{f~EGSJl)tRTpx=+te-aOXBGM73(aLI7|>pStQ%08>G9ru3Q zG9!}UJjj0OUC+U4-^BVykDfO-$8OwnRV4NLJp(;UOHP_}<1FpxMNYGm!}LLmi*xSn za)yS6wCYczH(b)==Hk+&@=kv5NVt4iG*#8PnQs*n{o6_}r^?Binwo*(VNnIity|4) z4`I*WG|AERY&9!)i5t@BxT__x_EKsp_pjmBT~Z&fpIO{Zed((7($bn-T<|L`FVA_C zwW}#7B0QX*o0~gi*k|zljh*j)SQXpQ?6b6NMsePxuz;hyF~dmb^>wvmgB{o8H(|32 z?cKZA_vcVlS1BFiav}U^`|++am(?`sSSgVKJ&CoejTc?5zP>BiwP(+s$*J%A+sn}N z;?Uoham(w=8+0`6*yk69+F?91F*w+v)>U!*9My~-zNY1K+Z`vv&GPa$#>YL{%l6(r z7>90He&n65yn%UY(ENmO+NKi=vnOcPQC*VsI5;`;Jp8kpqB&(XrCe_xtbW$rebDX7 zT~{kWjGdH-s_Mb-jwi>u4X7_a`k!iPB_t$h-MDe135#=o~{3`moMD_Z}$^ zC7&}+TJc`YRL5P{)MHlK+6op z9(5O5SnTNRY(-gcaQQvfV@Q4JeR!_a<^HsRXX@IW)+%Nf&GOBb?zpi03AXUc4I7H& zUd9RTq9`1U#8jzjdnNzr;;zYyYsAGQ^OpqKJ_>#Qk!>q*t=4%qLG5QbM_aO&W@cu_ zrlm=y9zJ|{3Nsj8@`Lk-7zUP?WP>YUh_Z!9seu89_1it^ z!7eVPSpzJyQqJ#hZCJly!{EV9d#GFw0UO+smZtnNkJKgKRYgof{V4Twv1K}g@9{6}!SDiF)`R(lF|pHs({FK6dF=;3a*wdoH4m*oWs| ztIn}vyVkuwbf#!?+Wlpvo;@E2gk1$QN4*{nuWroMM(p(t6F*ey|3R<=2IEE2b2 z13b+fW%}-2nTzRZAD>SkT#r!%2nx#1$$1`S%YWcEelW3Zf#dGy=+b`SwGnSJb};(? zdbd|M`KDEQe#>yngTSeFCnhE)qbu4S8*?f|I}J08!f==NU|5z_Cncq z)~fN&NFVdIHM@Oq1Lg7g)rQ0z)=DsHmUZjaP5*ex`=dWbP3*;r<;xr9XMX-XunRCx z)^FkvPp4`mY(d4b`%Mvuf#U7$}J4DfY{hXXUZz<6L(O{4(wxOXxfS+HZ zO({!cgYxN>xTI|!y+K_YE|l6?8SJk@h2&LRm|PtnA3y$-_Y6ptp2c}qf9LhX0|VKf z9tHExt+U;oo!rl#Kj(6P{pJmug@pyM*b=F4-@iwplX2|Zw@;T_mNx&V)WQou*KCHu+c7czX-B)i!I!TJ&#Ob&kN+|f9l*Vjt%swuS7h;fOAZSqGHJOFdyHal znr3RLitIYI2G#e&1D`vZRxB(Lv{jBn@+dQeSfUSXL!kt~l2+(Jl?Gx2zRYN0)5z%$ z$`epAc8<>_PZk6jbhV=X0nU8oUDe8^A)1rJt&DzCBgVchFVfzF5A}kSPWSv-%#GdS zd-dhZmx)6k-@RM&>+8Emz|(_6AFKU1P*7q6oZfx{+U4ctouB=7n=}cA|np__a4j z@GE+o9Z(Y$l$R%RRq537g}L8kE!LZvyrGLW<^$OPM$oOcc4oC$opGSj!j7!pn&7Qem!{>C+PT5-1XQoIUWXo zFxt|H!u#es$T10RZBRO?1+C*vwcn{S_Z}W7AgAZ2Wdr{# zoYLC0%N}5qY3WiLwoj1w% zE&_>gZu3ZQ@DVlD&3?V=l5yKsBQZX{AWDR_|9WEL&Yz!O=K>(c$HlSvoIc%*O)R3K zazHAr?5N$r7PnYzD-&_)#!yW)k6vnKdO8-G0|cr!@xpozA5VI%sNJx7^$uuF!s6oM zw0z$d3k$_>yd7!3vy?KwWxa1$_L9`t*q9--QHLW(bi2E|**Q6NASantM!s!`;wDT) zh@E+GBK_-Ww%zv+yt=YALTv9XeH8kE-d^>WSGHz>^);Q~z7Q|<9K2c%%3Hg~sFak{ z+nNBsj$+$$*7qTGUQzM8JK}ZX`0GAe4#-4kdsN4g(u2bqj3 zFW-7%tUC?jk@US~Cqm0(qN53Mfe7_-Oh$|V(3!cpOVH6Sr>2@>*AAm)dAcxvohXzz z3gkMo0zTzv831yfMN$Lo-B zT(D{0<{1l?mX!(NK8|di5&Q+=yETt9606 zvY6M1#X`UX(K5mxU7lQAb3{c-(>&S9F@|9&+Bs*3`sMk+O(;*oP#x0&gyV{eB-=lH zFscn)`0}n`FLRH*`J-u$A%#DHwpV0qX)7x$<4Q_oE32wZq5pOn(UV2>pZ4(d@ZclY zW||wVx%ba}=#RZqozf%jo0XJOYvw2PJiWbzg4OFjUJut%&pwyr94Q;7B>?5s?%~-b zDO;TO>~`996ucq0pg?@+Ra%65?ZVycJ6U&&i)H*Lo^Se4V$T@Ly3VAf-8OO!jazGd zO0-TvgPHl7;Rwn7ch!YfxyaQYJ#IRspN9uQgdm87V!`WW8!pn_bFtNDBqzeP^R5Qp zN_M@f%*=7f@C2U`{k|EM)&GLFw2NM{)DslAH+Nn48eP(fH zQ;!@3x_Cct8v8=$)PnQcJ3@Y$KAIXzd&EwT&ZlsMbt|vNPK{J3rg8T&Cfo`DIqC&0DsxZP*a?_U+sFSIqW~NtKn`A=TO*J7(Ro&o(kZ zsL{GvU~L5O4h;|`YU!g7A5z8`*0u5rXo6231PcHHB(S(ZBNLZk>L}&>{KX3(y3h+3 z7@>FSDJn%K?nVcY0nx$2#$LX>6q}sm2I#*F772P8M%gw zE%qv_!(rNnhM*kbI`ha#S&Ke6QWE#3PxFcCt}519$4$q>qh9GLoGgvIcD&~smRKn7 z+CfBe;k0GtJGHen`Bw6cJY$;)S`zzU#foHlIV^@QE2CtNmW>S`$nIL{gAxi0P_e|` zRbPK~bvqrl2>~|4e!oYbfZ1R4?!3<$soeFEEnrse2o$Y7>}!N?Dw= z1&lMgaW=CR0o9-7d7jirmweyrb+^7xRrN^D)~#Egpm@rh9I;GjwKdnmy_dw~*g84w zE$lQ63FBK8ZsVNtXYYZOB!=X(JT*{rT)t%vw(c%ZOiWxND41pUaie`?qPAmA_Mq{I zUzh(iBRgpW+Kp;zY84d~Hg7U_&fMq(Y68_F`Y&M&fWir>V}pYsOIX(0pmi4Cz1sjB zUJQ*Dns#4v#*RFTA}%}(BI6P*6sT`}VnVahb5Q1ZpH`*uc}O48fGYKkjm#*$oXV$V zpe9o~`DRc-04Mj}T8~wOG)VI-`7EK3q?^_UzAf6%(G&1HZG_o2W%b`b1Jf9+KD zq1DLJX7Zb4qOfE#o)2lwMgS!wt5f1kLBFED)lg&}mGqqtv1Pz`1i6 zqp?9J9iN&CMJa@48~VNTUQ>}N-%9f3>B&|@C=S7ZgglTM8?dPdTY&#jeR`i?+9VdU z8p|*2sOtP?lV-+B77nS$K%L`#PgrtXZXK$PMqRS+tqZR3`n(*5=lJ(~J$6tQJcpB{ z4@KkZi3>G7)#*+{-Mo3zvf6hm0T%0(PO>_^x~hT8^B8!>M))=q!KWYwgHl6436>Ds z02o7R7iU>ebxP|VKYBz5Y)wNc`%W^wdGls^IQKgHgtEi4l_0Q7z(-46h^&d*l07|c zL#adjC1sg6aGGWXk8)jo2+I$0VR+8EF^>$@7U&NhIuyyH!iA55jE$pt;n*Tza1`oc zKWO6kj~@>+cSaPucFNB~Xs#+v&;S!9VsnLd=+mFtv}pta@b5pJ^T@?|Z%Df`bdd?FA@n_AgRo$*L@0zbyz@mySY{W2V45wq#~yIgb7Q-g$x8a!`RQ z{C-P8G>riF5|ooObDPu9&_FZe811S&2X)I1z=)6)>np_OLdPg|-P~ZgZ|_jSg-HV} zq0#MwDqvPCY8R$b>*pairb7%bRnNwWAcY(b)<%|%R5~zAioENUkp=in5DcL&NC3(p*)QUIZ>2-gde+#esiPC7IgGB6=xE(y!Ym18 z9~|h(ImQ+2Ln^1oDLjef)HbwE<-mE%TUNPH8kw7}q^35}uBALqo+K_f;L_lY-34c; z-Ou-6bCPCixo_WYsd4I>+L>E#RF|#WOb^AJ68f$W)hwKUM<_)>ts}Y!9(sLCi^RLFs=ar6 zjvqe`7kN#`J@?zjHD&>UK5E|{Tt9?$AP()ZjTM`>jzOA zPn0ZJ6j{Nu=C~I zvQO0#4x8q5jg;+P8wr(yGpV(6=W|^z>^K?+D6x!lg~%295FU6}>hj%oRFZJ0h#dMWT-D!wHRRk(k+HMg{d z;{+!+H%G+*icm&(itS4x*){4bz!8kRs<2-*vygzyJB;$LCSZhp|_fpYmsAgCp4zGG?l z)81z7ipg_ny+J}Xl!$=9S(K5b6im&goHY?oP;|ud0m`spn7x-@$+YZ*wPedF`!I{KaI{nx+@^g&5d2l6K>*f|0giU5fB*x6+^e!Hhgul04s z4<7_Vgf?x;LR}z6H@4vqH(nf>c z;o)$#Kl7_0p+Ck&IQ;zf_9h*$AQ5$Nx1QA&a@YtGm11YJvxO>Uw{wa|LQb_sYr^S} zD(@+Pi1Z+Efs25T_qPv)GfIGItYUsQ*bY+#sKb1_KyKNlFz=d(2o^hg`@t5Sp3m?1 zG(3Jx50TVUy20C#B#h9mfq!y8q~;}jsPx)|Rf>b&2QN6u`y{7*p%%NC^KMwpr%!JK ztx9~gf`x^SYWK%pgG;u{ZG9{lXnjYARZ;iq$TcCrF`v+MO5gbCW#LqTf?L-H9?0mF zw~q{vkYl#GVR$_n97+HQ8d9GL+GS^!g%ylgjXjt;5sUz`kHf`=6Tu3WeKsa0yYo17 zRpUE{4G6bI3alPrO%{GqB(GY{+wM<CvvYI% z(JU;>kE}t*?)~&B7<#V_h*Rlch$cTAmh(Un58uD%K$(T=8O#0tZ?aH-U6k*N#I-Z! zszW@>BG;_=`#8-%bnloS;m0ri&l87Eu!PFTD!MmN#$u>A_a~2iuu00b2EKkw|pkK~yh3f!D#gaE7 zRzn-CKKkya>8AF1Jb$txc$#_m)cPIM1UdSp9NMh}Mf~ou_On1~{IDlcfEysvt>Jl= z7lV=>`sIr=%5z?|K2Q|Y++}tEb06u-JtAY(0nt0oS$xcNPTfhs4 zRx_2HeLZN6pOxypj2qECa&xvcG)hRhh%RYqX(@Jk%|j$dJaSF=No?%w=YhfPL3cb| z4D|I8`x5X2+1VpM2DncckTJ?HHUQ7^z8$r@i})6a<80ix(c{F4 zC+C;0cK8Vh7tN#MTi4P;LM3oMYrFc_f&UOJeypcv1JZ-VB_$7`C;x!PLB*SdppUG= zfxhrJfW<+Hn5}s7mBJpW$DWmYV$!v8b-aF9!hn0h-rRS1PWFv8;6~8 z5nH>5>N*6G|;7gZQj z?d|O(C&j?Z$ye1(8y}xQXe0=RroX>3NzM?GhsCQSJP>I_Shh6q0z-^M%&x?s$~^G> z#hj6mLG&3I(SzVD6tu{5xNJOeW>j86WB?qVk|>CH<#TE2pn>44z^IRLCj@gqHt#3+ zIS4`2>AAT_r~|McExlVlQAuX2Cf&wX(WW|G+2XCzFQA z_`AvXH<+8`7s_v1HN9d<%YCOhGdpX7wH^jrN=QpHz!Ba=M@N^B+92@~X<`@bAn&;; zSMUtpcX`GnGNy&4N1z0Ojzj)GmOwQ(M$%{)y_4i!NGn!3vv?I&jRAD=w}?dh{^$#7 zd;kUT8opTM-3@0zM})lv3cX`1K;kay3zk$%OAeCbW(9>@^sRkYkij)Vw{sZVd&_z^ zEC$bS*rr?Iz=nr~;Y14E+ar*PwOdJ90p_!@rKz2{1`9$I62F@Yer;Lcf^YdmJTfmh z&Sl8<<;+zf5>2p2_!GPKG892bfLX9##Sd(hlS`nCuxr@ZT)Q7!rkYW99b5tzXPi7w zo=mD4+86`)~IyF81DP`Mn0i^rF$?hjz4wfZB((MOMx%~%* zD0dwK3DOaa&{G{+K@gVi-@jiO3>P(nmT!3Q(p)rbOY@8bAvN-i*u-3N&U~pB)xIYP zzwYk2e}V<}a%ud=n*gEcyG`AnlatBj6%^btxY&)qHoT^6EE1q&XqeootpT9un8V}q zGyUTI&Rax$4}VQ41WK&`-1mEY0wiW^nj0uW11san)$Lv$NGU&l@&q{=ejFDR(7k@7 z@>B$vX++4IE138cM0mf1GYnm3r>-tDobXtihY;HE{ zsyej-D#VQWv|U6vNCr~?T@}aa5Ge_} zc(ESQOoyLzw6xh(oeI*9O?w+S0JFusnYHv>&Dm z;@USG%SgN$XAhMyUq)I*WdpV*sS)Qj`LzV%Mg%THB}HNNP6IB5h*=N5Ks4)G}+LDTP`#dVZq&6_%@#DvE_l(+7_L_pd z1f%4U$R=pB=nM2kRbp6z9l89v%6eiQH@CR|#*p^ARaHvRXQB}EMLGka_~r0s<6qXI zBDdW-5P>D8V&$e21r_fi3jvxNA8|9qEXMI z4-wp`9mOTQcXQw8&x`=4lOye`N&3gZK}hQ0gD_B&f{*2$=t$_FkM|x52*F+OD=V)j z*?D+D4C*E?`+9qWP#tMn0_BHA*-l$uU+-=Iz7k@mwtKK*lOS!ro0bM<#} zaZoFsLU53QuvzJYNAM80MH#LE#POG|n{6kGD7&{T+c1Sy)`x03{aala%rCFAiCiyw-7)Z5#K zcu7c*H1KFiXdBwJVtIDe?2Th@+Q6dmK!_^2=Kjhp4c-^d9F3GU7(^{*OfHi_UHv$QapH%shbJdk#>XLvOKc&AN3<|6=;$ z_*c3akZo*ncd%?4I4^xl&q*K(1c^^0^NRR*#=bj;D|~7Gps)+u z*5NgM{1r%>BO@b(i{L0$`T#m=g4#v+A9_nR(2MJ8ya>eXf`mmP)ku~v-GBF(=y2hh zE2#Ytq)9xdJb5WIvnD{+MJZEoKL*YuZ-$h|cm^K7M-LEG3nT#Qq|}R8Kj6comoJxT zoxi5ySO4r86aIVwW-}57{Cf6q6QGm|2no>>4G9HH7KwcVg@7Re*HTpcZQI&{LnhH4}g=eniA(zri9$%Ic*av5BJhv;M^QUHBn z9mpz)f8ZoDQUvc1br+gS25J`Zc!(5_wnUmrQ1)ad{1N95#rzD*xafhUw6wG+s%G}9 zcqF&N@-<>+M&gF(TUrpYY>pfusB`k`J3V=6RaG8rxE+vvY~0+Uu{oO(r;oLlF1dU6 zE=fEfv_u0uMPMD=1WG7}xn&hEaMHf!_tsEK} zBD9Vmpr(G*oa5jPO!Tz)XJ5FfMrTq|Gl>_KGIF>9?&3LKu#`w@+6%FW3{z0?=_Tj_ zM7YM40?3&ip|xt@G#$)hw!+>3nO#)hUtuwlb_s%3ApWAs&-jHQ zqQGcL^_M(fzIZW?*d7&YeU;`}j;xGK5T3e(0od2^?;Tr7cSGkPfpXB9ANWR6lmS;V zt!B1ko&*uF5cG{+lyuSqxD?zZQhAXxKl=XGClIO%@8MNpOb70JYgkw$Nf;bCB1Wtx zqU1qBIK4Q(9q4&Em7*G;NM>ZzCobnHT99ZD3J(cWUEOw^7R)1VPM@-=KfjcG8nL8^ zjsu8gnkU~RElm|8K}6UfBK#x(L}KvRZTsYFp_qq7L_9*_J`S=<$_##Sa=_wOBr@bl z>p|{v83d?O%C0Vm27U_{6fj{W9{4Fnew{!<4{=_KArzet3CX~Rot~SLgb?QF0xW+4 zsVCcKvHVmJGN?qP%{9E<0Hfgz*f|MB0sOpoCg8_1jtA z3ey?pMOKN>1hoGK^`u++Ph+D%Alv@3>(kr_N_7Z_3$5)gpQunv(s-UtAA8W=E}B5SRM$?VX%A$T2PwKX-9JM`ypWBD|VPUshe2Ix^~FT!_&d12f+jZ zKw?2aci$|UvpwJ~;kTIF)|p&muBoiK(9f5{!o5b^y$TnGWy5r0XviP)=GCGM%Jo8)YAP0o@6#i>-*xpzCianDCrKVRSaH*buk zUV=2p_)a<(9;jLiA_xDZ0j0s#hELR*pmTIyJl04kQ-HaGI3ao%<;}U$5T^-2Xy9v& z7b7J=#kWU>Z|KlOK9siRyRUC84{-%gT(gWyZ_0PNxu#Y!_?Cr+5J z(}!rAiP)N0^2>md7fraRPnj8_I2lBOK;RE^JZF&(f(j7?2laUi0by7`9esTyAT}aT zPOMT?ZlhsEURD1v94u1sK44@763h~ajKp9N)Q%((Z(B#loZ_pOFYn8kS`tgYuM)#} zmA$$gFvl?5MG6s9h-Re^;yy<}PXe$2p@^1SE3Fd+my4Q6RpM(t82u`T)9!?@Vl5?C!S(dshIt*MXu!g?n7h!&gZm-^GWv zN|*q8`I;6y0I-Bt)hEAmVMH`NHZ+VN@j}ZITHF%?%cb(0T51L2bX<7+{rySDW93z~ zwmk@nib;;YL1qN!=qMu8qN8cz59OUM!VjveZ87PE0<_m+6&oxgOzW+{_F|w&MhhQ{ zO1=YGh4PMQ%+nxPNItpDwbQ~DkM$Rs$=b1F$G+!Q#y}w!)5^?uT>lwSMEVgq`=uxW z8#xjVA&H1=Vktu#XmD6$q{N7uOoL@yO9lTZfDf?<{!Xlfvc|31go3{T@rLoAKQHAJ zf%K4RItVp16x!W+#S>qjnRCGT5EK<%3g~89`4WPHkg)Lc>c%VhsD7l%2$KMKBm@sW z!2v0c59LQWpgW&Kt00OV+)X+Xs0Bz9D;xvrB$@5P%~~?HHaYl1L%qfz$N>28`078t!m<`Ut8gaTzc*{WqEh zsfLM_HNhNSKTf$U$O}>1A#K8jqQ7Nbc@}yV*=|SN#WBaHwm2=_GVC zNZdR}cg?;>A7Rql!quNin#DtKNjGlBtl?^c)__|d!B8Wtldv6d{;=?H#1KmALz>&$ z*I}}m3Q9@gtPI+zcu3JO5m)>W#@N)v_;|BWr!POogb43O4np?W2bnVGH?+9?J4GoPQb%==Z;q=Bo3K9AhT^~P(QBzX7E31145o^f%|Utm0dKM%67b&vDDROEY|v;QW6P9y51T-5A+8bBYX8eV zqwwI7dkodq_|J_e3GOTh;AI&Z8TIR`0Rs%lmsT-{Z1euI5{HOr6fhe3K;4P<==S>} zxk<-88C-oy3G-YN9{uVK7a9MwaoS%IdlOng$gKU7kpKEU7dZ*5ndqnCvcBDO1_B&d zM2N;BiF5`$)rb%iVDlJaE%wSCxP5Vx07p5xY+{T;vjv(ioZs9Zo(k^WT7XNvBO|P+ zmti705aRQkS={!FBPnEw@T&ui_Y=pzXN3 zgkeR}{I7|4eQ9mbK|Ej4HFRT`onpdrBG|})90{Sf2(Z$@oFGB7!4}msi|b(rK88{A zck=!O!oT)E`koL~2jWU7;A#fg&W!4CD%OE+I0N~AT6OF<=AUqm$P8mbQqql&jlW0u zS22ZAGs)_FKHu9-pLG?q-9K@Z3)TWrn*m*J;v(pS09!Wcc_H(WzyF@p<&+d7NP|S? zg=^paV7HbQyaf6nG{c<;sq+E;PW<|nb72MVDz-N$yi0?+j-oiv42cU1hd`*z!&%h* z{1mQu^$KR@Ob8||VA9VT8bVD>Oe=H0Y)cbSxiB`GP{2bkhve3 z$;YU*HqOprfQ}SJa0}e}43rAgIBn<#_)4t%H5}Y%Jm21e+chSNJ#B3kQ)+CsxP$4D zJFksU1qms~8P5;*`r_^YarvmIU~#(Bl153 zN>92Gm5M@Jtgb7AD542sh|ymf>UzM`y1=>b3h*|~q(0&}_kQ~p0YM1^-gbCQ^UeCW zwwb>8q^``Y6RCSx@R*FYk6}B)SC8Y~Tn+ZC+d7MVx_Iiui6vBJ?$M)XW|kQpay!*~uP1N^o(&PDD&HeL@dLxQBs5CNAi+Qe znxGGpY$c{|La>KzfCa30){zCKTW&S+^&|I(YHkm&OV>w7r7m|@oq9gN5(G9#-h_hd zAc&Me3&;gD>bKJLG%zW34hJ*?A})f1kAZ_&tZ$$~RA8zCSVIPpQj*HRxz@3x&pG)0iNNpa-u!I7r?J1~{yU91er6S}8VeN2#~iX07s=B=pfq#nPM{9Ow-V zU)#N6Yh|3ruXeduaKSPIVD@2SV}ACXhiDFi1uraC4BOJIviA)+gC^N$F?4qAuud_8 zzrt5nH#Eu*yG#83(u7Y=Xte$nYb0_W5z>+EN+69~%N}5B@v;$*2h_2+yga0sefg3) zPVrO(?rGJhChc5#S3ctuPr;9L7&1FW${rB8q!9r#9UKcoB(aH!=9so9d?CAebKk19 z4VES1`0E5Ck%86XgDqE|EmyBNUl-OnE!D0#hLe&-Z&4G1S2% zKL|^Z%9*{qNI=XMa~98Dy^_+mAWhMt!R4dh7d&f{egQ*aABuuf{nrGn#{9|1ng3CY zuycfH&V`Y!`Pl@IK)QK|hE4{^LuRltXnAqfo@&p3{KKlq$Q1-Kl29XQJYq(IVjrp9 zM0&b-YZW2`#>UZ8$s+EqL3uZRu!vDO-;wb$JE-!!+vJ+xN-8L^HagFIVvQl6D}c0}qOf62rV+g*Of8wt_flPn|&@B3>QNi6E>Kc(YcH zo(L!+q?&FEC#_ho_;)CBn9@H2vrm+pnMK^O}vwrIdBLof`g4r7`W zX%b4OMxUt!&tNx@Fb3KYONsd3duo!)=YeUXi80~98z8fF-Q7HBo+Q;oUc7;~hkWSl z?8l9zY<6S@ofrPb^$~XW+roXTi7Nrl3wC)9gE%&DaF8i{^YI#KkcIkhhE1e$FmCZa*w>Vceo;FTtL zXU%^3Lqe-EAW=gwd5nZf$%$_kgm>bcz6+H8TP22E)|4SqXpd&~0dGcwleQ`K+CN%~ zxJ98lJ`fRTx?|lB))Dv$F_Y%sGPoo+McNk7O9SR{h{-RwWs9kT-`~@^c~?QYBX-gk zh*pTB4&3-hXYg#rbw`t|5Oy3zl!gqnIjHDdaDX5;QIovI2#r=O-shILU48Zex? z6r4-WwS%2%{vRIgH*SBAcHx@}em4z>xJ%&;kx_9hIpVA zb6{m#$(HE7@!z7KLK`=F&XIQ%>Kn38&AxoiWA}gSeEl!IBJuz5MQUWFJ3_C=nG6QD z!!!JZk`1ESICKvQNfK-Pg|K;3Q9m9#IT>W$WMJSt@CCFJSuf;B1!;>Y(nRG1X!4GLj_}+KK!nk0k)o9{NBB&vkVzn;vir$J^1$R+sAy71OaU{A}?1! ze*)Ah^+85L6TQ`ehJ}LX`tNFD(Z8vQq!>*df0O6SM1c{|VH+dQO6nm%><)A}8VVpj z6dCcxWa$`K>*O_4rzgL#;SGT-6jZY~7E9_`_tVFZ^SXxq+vDG#o`ZhJ#KN)zNSTbW zA{s>maUyz|%D zL0u#-+k& zmO$~WIX~;`>nRFxaf-q{6953HStI-aMsyJ`rHB$Wy^#(J4ZD(t`Y+WUWz2D0 zbYNU3?&Zg>4W|$L!-;*Cs#LvtPFx@HFBapR#a>wy9>55vZTRy6A&Tah+^^~ z5DwZ@kL?s2A5V+7?T~_kcZkGEO2ZHM(#%gBZRn}R#l`Am>bXKHayYTtFSsTk_<!cMH?ES9BE_YcyBB&vq8Vq>%s)Ka3PK-U!3dSt#NLTANv}i=UwL3iluMjV3eGV zFx24=8j93>F=70{txop=&`xw$gvYJftyQ_siUisKHkXu#db;=3x4OzF=%$N$AyeVd}oK;Lh zIc6%pd51Jxs_qG?D1;%OB=F>4Ki$!qose(9{p-Cr`;jCdvy_GkUmf1#bVlDHKOv?q zx!h`!O@VsHlWc;&?Cwk7d5HX_$G`p(zvMN3$xwEVS-_kwZ9>;F&&mYoak^XaV;dBx zm)A?5uGi7KnGm({!I3rOBP>OqXt0P^G5fxt`TL0nk^YdFOX0mCvO!&H?6gD+%|Q0| zzzXsqlMD)vB@4V|^{Z?8p00<+eHm{<+BaFEre9K~GL&At;;_U0hu7)sePhlgm4@oA z(|u2Q@_L2ub*aY}9g$;kG;k4j6j_?%NL9vEKQ1WieH~n~`5eCahFs$2goGBEp!Lb8 z6PM3#m$A5km{D6ol1XU185fUNo$$dNx--io6GidDnyon*2^n%C!%x?Hgzp`$BcIJ2 z(`wQ-F7t~wVSw_q?la#!5p96C&~$s^qi%4}Yc-1b>D@zu6J8G=)O3ic!f9zOyW5?M zd3cod1Kf6QpT4FeG@Ldukux#HP8*#4c9TF~KNDZXxze!*sob&GmOt=&ieHqYZhN~2 zGkF$2WPZ(vJBR(L?^|^{Gf|<}e*qaHby*poUtb@|Ew1Nm^|NlNS5?gqolZXZc;e{K zOqXHSww7c=Gg-z#(9ccRHRozM~6wqId*j75ofC=B#s;D5mV+cdXV=K@1rz+s*KebY zZKI7f>~FE3_hXU`sC)ga5vS0RZN>guSL6@G`2=mI)KQmVfP@;V&d`&hjM`>nV?zm? z1p>nucqEco82qh+01q#Mk+1R&k_K8Z)q3$(9ZYfbA?|R+NxiegOf{(_JY}&z^(F0b zY!i>0>WgLT{Ko`&(ns)vaIzDt50yC+r}rWfTKq6XFs;KvpC9cQ4SL&8#4)&z%{L6V zU!*B<03|P>@P4FUTe1vxFa5pJZuYFZ{JR}o5`t;6XK&ubAqlbv62%pVbN`loK2p}Ti(f85 zXVtZVKg`P{hp#4~JB88HJ{SKj8@H$P&Mwu3T_^Q>YR?#A=ph|sITq^zGVnYw3xF-; z;2AJb5|9cDgSTUVW|@W8*_?fkc=W*NwLeaL?2Wa*$BpKd&5M-e5=4ZwCKQyE{tVCN z7k)R~XWV>hKVPhWa#P)B^AF$dLFb3O`vtz(Bvu1@W6YOS_Zof(g7+~G%*Gagl>ES_ zPa3fHZh%)9W5DhvGGL{HNJ`uUHXZoD(2@G zPBZ=3GU=dfAKJHMk4S?4-n(w6PCenvWlb}BY$wacR_*gM6zGXNypZAOV8>Gn$O+5 zJ!hKauch$+&~;W}ResUd-rF_UTeK;&N0SsN{4p%5w>0dNtP70!hn|pNcA{CCEfuxLx?PVJ7_w= zDiLeI(F9idNZ{LE2kCfl(?^29V%F&({0RUG7{KsRya+53V$#x|{-+Tjr+AbP(>Os> zu-?=KnC3wH6FBOyA%M_|1fr~bbzLU%6nZJg5CAOf&?toy!Wl3 zT?EWkK=ML{fZw11I+FPrB(E_6XXNT%*d62$4tvwf6Jm`{f!`g0h!y~<`_mbanFV+` z*yj$9i%ZjUgmo>pHi8I&_jLVd7WS`2c=tUqV{2qk8Nn(vh?pdz7U52Ii9y2IKVD{R zi2ps5UvT8Ab)n0s9zD+|fKzy1n1&$A`EW@fBqZcNJF3?O6AsTuaaf{xw$4$#+DPxrTe@}u(b(9PTYh%v;7 zAMWI?=_ORG31QJ~P)TpLx&H|M@K$QrYn$`sa^Mi`kY@s54@VSG=@0^O(S*&7E!=eI3CT3}A2^j)#+*2^L4-e19n}X-9 z%*rw{dHdN@37|8U2yRl$ejVoT0umu! znP;fac2LCF-rGk&ywE1}0~RvV<1^|wpcEjo^6oS6UdaMC)%-GaYRkOpa9CUuQdDXW z2TBQ1Kox?=k?qt5s#ZP7c4>TNN{$e`rn^C18q7dU|G}2$STBwv@vNq-F!#zi{lF}7UCgkhWOk$NoZ0I2Q>1qYUon2tPItTk=0yvk3fM*P%0?hd!ShCm@ z1DFfaKzrA0Khu`Vk{;~$^e})c(i8%MCoDn>1HT$7W=^oael7R2gM7+1qJ1?%y|h6D zlQDzQZDSZk_oD-)J=&r)iVce3a`S#PI@m^X&>??zBsexxe|iI=6EqKWi*Rrz0f}G;WTI;L zz5~bRFre&!4%+Mr-7}VcndNS=DBOH*V@j&Mm5$fYL|#q@2M2DThyhK1RMc@HI~tAY z(<}{yi56recK|{a7M6(zr8+H*Oi(BgVASrL>?f9gH-ZI;8G-W;RA-6+R>K3#Q-aPL2!OsNq+O;G z2;&Na#y&AfJ0-#@YEPTAZD5~K1D#;t$%+O>t#6~QHd?>hR56tLz%I%MY_bX1yny+6 zZLQlTfRNh*%>@?2_H^*R&c%Y(G|`)B{%OGDL}qpXdmrQ)lz@o|ApqD|6@a)>0ItBY zaP}mb1jmtlh>ZppC>gKV6VTL>J3e=MGo@{NlpithaA^*&SX0c0vJvMUL5Phl=}@fu zOhFhs;1;8s=YiFF8mX8&+09yzSM~6(8@_pRVv|~xIrwooftUC6{2T_|0syNb(0~R! ziUO?QQE=6Y1^th5&~v~eC1q)j1rD3NrEgp?L>Ra`fK#*j9E(+ZfO^#jzsX$U8T|%W z7pfpLXZ|M)_}r$z9taO-aK8H>m;Ct})thr{(XOoMP+Ak1sLp|Zcj&rF#(=<}simFI@oZosHA~NWBOzkO%nB>i_xg5o z-u&A{;-~!=63@uU^3Gpf$m{$q<6i+EmKLG`3{;r_OY!~YEu*H?>BxZ1WJy_P19$yQ z!=8AWxb(Zjo^uW(@&=WS**CQLI>7|2V>3181;|Pg;Ns^72=A~Mm;vBRhtp735EBti z&`V2m^(d4Ba#<7*H5l!l!G=FP0j5BYr%H1L{Wk6M0Ed=< z)VrWoOr&@IEGW{MF)Bis!5^@w##26X-`B1;u)HUcqLpSG_hAL!H&aao1L4ju)~4ch ze~i*U%CYLHGGDXO?qlac`(tQnDI2^utw9q6kxgTUdc#(4D&KDJFs>#zdP-$M1Mm7a zukJayehm$tmlLsjxd6pMo zyzdVO9zBQO<5<42gtBaSQ(F(OJ10M$*PNKFmF-+j?sT>J2j0+9?H_iL7&aN!Lzf;K zJOdG{AT%Uc{fQ78e(WWQE}k!Rpd-oOo>kKl}H*b;>%gRRVJXA0HnPG$tSc;ALyr z=@S9N1Oa0f05A%mqq|&WO}Yg%yhK?0jElX8cyEBi{|~V*i?M_Y4|*aGk>AD|q-0^n zu#}d2zD+H_^&%-&>HA8UcS8KU)TU+YuW(Lq${JeL0!N|U!6#TM%lWOFF)|@WkLiKVaoPke*(rf9 zo^R3giXE?Sc<~*wDumD-H=U(s8Crj1MXH6EL&|mzW6c5scTRh;D5zl24d6qAS+YP? zmhyBvL)xejd=xHdfDbk}j7kqnSimAj;Ig7xszfT}dy5BpnImtbwXBkL@Gs{ex9BRu ztHVPC_V%LUdg8R`WIkfY{p)mupfuEzSN15ZNF$BWPL^6{$<;o9G8vfj*x@ zC5YzBFwSILzi|U6M9_PjM9K1c`w_jH=7EA^?ke-&SoZ|yL*u?; z`DFVVTNJRvDfFB!9VDkI`QJRx0l23Vz2=RAV0f6T6^M{9<|h%4Egtaoz_^$&(;Cc1 z2Mi{nOTK8Kd&|PMTuRZXKva_gbvQaY`UC*T!_p!^jf4Q-?kNiU*)Tlxqb??LH3OsK z3!i5@x7WS*spFf|i^XvERDn$iVv8S1X4;>K;odCgQbmUj>}WNTv}zuF0`IbyzAkwF zOLy?k$Vnx2KM+?bR!vT}6)tg_aF`4|x5!`ryN!LWspfUHfjCi$^~EY~q}u|zbdz!O;xL z%f%QsNbVdrk8}6ZvQ(6LmjVvq^BntQ{yhQ&OiXMaHFCK8{Ch;<`Bhz|#!UkMoKxb6 z7ZIp7V3j96#gPUZ{~$`YgkIWwBfvvG9!sWJseggA46vUpyGCaD9MK`t^->YYzc=0& z@1nuBrN^Jc4Xqz6ztR_sjSm7{&J6tBq!e7DNB%OWRED&Uxu1CUj^nfH%Go$KzoGHu zor3WcKpz9f?gX_AFjPx`nihwc7!~N6z>ou8G+SN1EJxDQ)6>oX3kLfhp6*tkfR8L1 z*g{@_F8j`ODHbqZp&6EHII$o9wyJL)x2J(da;tbc+)?iSvg>9Gb6FuGf|zp9xk1}k zW#RC1b-Km8c)v71Gc}94VC4XxI_&XvNJ}!m!h23t2g6*^JL99^jm!)T}{&NM%?gleKCy|MVmdXzBNQ8?3xY4#hQ5a&Fm~m47uP6ropw(t__zf`fv? zMEHBbmHE>wDV;a@g9tI&7)yNekCquJ(o(@M>`fE09c?l+-@zr?`SIQpoWv%>iL?|{ zEv>EJhlf#M>llFICcxmQmbSK0wyO0@AdA<5EHjYBpMmFF1`?Y9pc@V@ZiMZanjq1) zJF9-|Z77CRY3^%Pbk^UlB>kCE1=ZK9v@DF&C`zN*@suO+S%wch>}zD~Ypg1N z6l-3TDnSnx?HXcWdNr`o0oPS8sJdY@fq+2~TJb7a^fxmO65# z|L(p$N;X26y^aQ7{wV)Dx=?ZD3gmWWLnJr#B4Rh}{5dgT*u$83weOihTTQAW(viFGRqjmkj`V_9-)GBb{1z}vOFlQYB9Ady9yv?U&7=V*>-Lh`X0V?eTkP(J|{|4D`04ta^(ix8}UvT4*urnF-X0qS@HZ>Jv zfQ5heHB5x~Mi`AsRI=4OHC#lLt0>^s_uq2cWV?qWckP5euRIOGy3M`1tYfjhL;q5u zw=#v0-xX0Dbl>61q*d=ZcB4e+h}bI#`b@RQIKWkg162jg^nyS@M8)am)Z(LI7iPoz zh!Zx$HD1Uw2upPIL?SXgq~-6cCy1EL*gqTnmzTg+4Jwd7pxy_wlv1Q;ola~{`0w^# zJ;q*>51rrbXNu|iCFN%~B+zhFpC zH#x>6Z(pf*vhL#{`gvoK)S#IVO%d(H@1d^^x2Lwm-~4HKmL}pAy7)9(79E7-ob`l} z0xN3ErQttdh)3H_1qZQaoPFM0EbXP5Mx$)U$Q6JTgz?4gTQk zqdKiCRu1aIk4Qg9hA4EuC0c(+7+%#^=1fbn`qECQm6xI@t|%=VE1%;maHf=#$Wjlk ziVto#^j<0Fa+OtpH$V(V>SSbQCIWdK9QVAhL}|IY ziKzo1)48J@2H~#LQ&1&L-5|li&v;bF$tu#VbLHxbTy{=ivm?G1t_fP74qT_rDTcFMZFP)y?U6VH zs_Wf25TFY`Q7TQ&uUp2zp}G$4FuwpB5f&N;eGM3d13*wH3b1Ic78;;8Is>;1JNl`) zQ(m8wn5v7-i}9LmCJ`0GDp|*#$4_x4me563`uPvW`poBAB3FnanZGpGS>tl?dysrQ zp`NLr)*a(({GJZ&;F;9kGl=HE!RbZKIX{xr}Yt9ia0{yHzTD z1;Q@Vzy$;fC1K$l5Q&lkx@H0BefSRLwtB2scv^c~oW4$Dyz6Sn-A>nPDJuR#%d&7j z!C3J;zMegiPUSk0!2L*Ht6Hs+P+{(R{G`l8YKd3=d$r4p7WZvD2dOYhy7@2c+I$d< zLeZsVvTCzWtds^2NUVh2%mW*WyBRI@!)>3OS0&Ll3%06SeJbNfUl-e>l(jj71oazd z#=Ym9k}uftiKy54-lhvZvD5WG2`-o#=*c&n?M5`=FBUXf+5O6@{Qcm0WVklU7N}h- zqQGoKrt_8V=}2b9Y`N;i+JV8j@Ej)>)YTQ}gzX^`6g>Dtugg|eI=cHJY-6^a*$&Ab zTdtn@b=|!t>++6nk4BGPGx|+#Cs+eod2vJv7? zS{6B@!$Zl-OG!w-Zh(?jqLAI&IWn5rb5+d-8qv+*+I*}TDy*P!K+bfG17h=pP+nEdZbht-p>!QRNbSy zaf6s!{%3`7l|JJOkvxWQNo;RVs`Uf;Uw?`11%F~YeTKI4CA2s5)=7`=33KGlLEOq_ z#2wshG)+xSopz^a!B+}P`M@rw?CjlO1{ypB=4r=%ffLxrtR0`66GH=Dtqln5xMH8_ zhKMkYaRUY+B8bND-3xsPyvwaUV=H99(DV!fy85u7IuJNvsy*m;RcO~@E_OXhf5;WV zrW$AX-aoshopY9*LuzcPbsp2@{@2V#vf2#HHqxP8)>JiWZigiH`LQwB0;3E1T_t^dHG=)c%J?JxQ$Q|Eo9rt5MVcGTEPOTCa9 znL0PM6<3YZhzXp@ps6JyrL8Gw;ZCDy;bxFSje(tl7#Hek^So$Fn@9bn@VFakgUr=e zey=KXad)0+be;(%BUB#eJ3^^Z!PZ8W78N_Z(m#SfQgt;aT=hQOX%0<;cTQh2%3 zH|sej84Vl*dfr96hSX2!j(h;`R@L?kF^meWVqnBe0vsw3-G~>XpqQ*N06*Uh!f9Z9 zLO$h#h&xk4+v@|kG9Iy9xbuu}0=|>wxDT)>{XJ|tDh(#)oFBQo8AN5ykv9ta8B430 zngPCO30qeyG?R{=%ffwqkN0$D)3lsPhGnPty)mCbllU;#TIPs$4LIx6^n)#brswNy z0ROgcw?xsUBiq5b^X#gYQO0v30U&kBY|gfzhCr57yCZ=7;0 zzuzMQpR(v*fs(tQIr%i#tH^@&s`@{L2d;%KM%gLV%7pZK2HKy;}#IWYpRw%yuj!EwNUrw%>A!N{V0k4(L%~o>*?KN8S0E^sv(Zx{Xu9K+IaJJ z`hlrl#ko4IZ9_heuR=bvwDE-Ln1`ONF! zP~7~towvakxmfU2L_u+uL$mp6YIpiH&YmH9zE*Qv9ba=-17nQG?9*27VWsYTo_P1^ z-^g6$v0m0ujap>QRa_5`m}fllV+x{#B$z*^Lrs?dI zHdd2PVYjG72@3toiEf-m^~sl5g&Fhupu}foO!Rf!OqIs3ti|53ADAC3KYZb+yE*;{ zwI@5&#>3*@UnUvzzU&s**3pBupsf{EvnUl88Ov%BY{7>=Gls4)1TaC`p~xW;H!GI3 z%ayPAiT%+pCSMn%HD*(0Or61E>ArD{6cpZb1l zZ~Q%lWR;tfB2SNptU6Zpa{nhyV06bfVWbi-Gnomp-$${KY}*awHa4s78hInw^BCdZ zX58HKQ$8yk4xhifqOMdX7eY{Z7C;n$8_*1Chg?HrbVOVmVUj~+szpEY3fq_5%RknKjTUWCw<6Twar~}+h&m*L;i8mLzI=r3Td-(NvV|(>n z*K%GQ&#k;X+SBaSvwQQdJ1PEi0A`BdTHge&OV-)D?cmqW9;iR&JnTDrn^`&&NdHN` zW&UNj!=A$v^ptKUcRHV=<`x7pRyz{aC70k=ap z!aCOTw*ezoPOvOdYqyN)(@)2{kicAYMOx_`@e8??cBpIjmVvjqxFoGZ6w2^|*Oq z#Cgq@2!I3@qvdwee6R>8C z%`0Z0zVz`+cR}^Gs=_ zCIUaevREwC)3(v==DQH4Bq?#Kt%bQ2g@`cOQKG5pMVvaj4>9BDVni9&uRCM5m6Fb$ zww=ME%!@3GN9JH1;X3~{zi$^!s|%R^Z$Eusp1`c$7ZD#t>X@uBC7E$5 zqa^RMb~+qBz6b>~bwCr9ePkRfOF8!wQR1g|Qiu;`o{}nJZ*jF`DR<7-lr@ukciDGW z;{}Je@AMxY8V^dUO^Z|&MV}c6?I_Ow`LN@q|I*+?58J^XeQUuDcazV$1~1|F zZC(d86Kr>Z#;RAwdE#N;O8&9Oy2}~ohX*A~R|L7XkVUq-($8I2Mfil;6SHaBjLcjH zXAb=WT@N0R1E}>&u@tCa!q*?H0hW4t(-}$hjDPwfzI)`e#=L<~K6T}dn=W9^M4zk~ zP4aNQxSGGDQe9wU9l@KY_|RH%xYM-fN8X4MRP=A;Oo$c^l@Flx@*D8>uv&cI@Ub%^ZtNyEAlB6KE+6Z@pftcZ6=%qk{5E$h6%uXaWHgdI-fBQ%+ zV4uDt5#k`QVO_* zFE-%uS~I@y@L%B&LbcwPk{rT|5Jft8%VSm^0_;Fqq4RU`6Hn);ddSmc(6m* z5eX^Y8TwCFLmh;}wR(c0lsFk2wFx%q%*WWolzP`Eu^bE(93iG0=;6j<1=&xuN5#-s z@QmU0NQlz29`{Xp*5+sW z*f5r4RhFAlNTSLA>8z|g{`DHUznhipT1Cw+hORtYf#srGjSN?hHEV>_rWl-Ui zyeA9SWb+uMdx4CuGG0ukt7#po^|^YYKmv{5u%qD|s$zN|9r;&UM;?e}{_Wb#Oht#w(|k~M@*;ybTSMw{JjsGpwchM zq{~P8K>u64ikS^4MHIp%6B|b0;Ov7C4C02ej2>q=JnQcWm6Hfnyyk2!fuiL->WJD#f3Xu2%ek^Fo3;>SXnRT;WEKD-_E(z+8w?2q(%>*jN@t!EQNjm>R^q;TY(a?%X(lhpdO|vT^fmrnH5?`;qbuRINAxNT z^OLOBCm);m3S)^;5;!27_sne$i#0oh)~2$&e>{y%%ub}bu`{MH+9@;}EjILL#rZ48Lr}cz_z>=2?13`}v zSdi}$pHq%TbEjJs_edb?xE&y%sZ;;Te9`mRjd^dyetC+4Q{s~3O#J_=2tmz{b|yWJ4s$$FzlPk_DkQ%OWq5O`BzTmvOC zQOtSGN_I|4s7Lq&J~wzB(;h z?o(^9@^H|H%Z9wMh1*xBfyTU%`yOUf9`Qw4HbB$Tc9JJ`uK&zkL$#SDSP*`SMVICY z`O`h|5L25@>Zb>U$dVkX&uUTTX5B*rm~^$G8t(Qr&!TtAeVqTf<@KLoi7Vg+z7A2Q zo<+-cx!h*Nd3+{YxY8!@wH33A5e}{-Lbw!FI00)A|E_Q!T%dUt5>j5aeH1!6MN?DY#~Frj83+fCBo#+r zPY-r!iR>0yNWBH^4S|HY1LocYlq$&lwZI~NglkhydiZ|yt0H0|D%!00?DS|nGp=xq zkwX+2l9MgoaK7dqT%IXnE34s@nO~)wsJ1STf<-jllswQ6HnQv)LhsaQYQ|(m=hagi z9p($<4ogF}wQ1O@In{X1{ijPZ-SH^k3JPe%W4Y5O`f;;TPLAXEvs!0ttW<}jS5h+| zhNI0tZO9N`i7@WwyXC{hTi==(CNeq|Rcu=1V7A+}NH}<#J|B(Qs(kOyq?j3kFK~y8 zvDT17%J~cv!Rt!;$7q`MYy;z?UaQ8bPSCx`TZ>#$^*ndkC@^#mkP#vQMiDklsD2mB zBM$iA$tG(6r};10M8su@4&Z#B0Ow~kRaQ|Emam1uazIj$`F*8~yl&B{cdW{aSC8dS zip!d4X<@=1nd}^TaK1q4J|VF?OcM`CON2&&X)#9D5VJS=OWsM@Pcb2YFvKK~t zBBO+yG_M+$l+4(Ww5=s?BA2Ah&!I6-wv61wjF|IRq#Cu!s#?3lPG7zTbriDfv&5J< z+Q2*DrbgI)z{Sc=is-Q@UVxp7j zjizyd4YebSmv1COH>uT{kD`3`SLFc#WeV2qI++|6(VhewzRf9*)!(GfjLz1Y`S`kC zKz&AKF}9-fPpWa@{?p-oayZK7{4mSxHbIlr>Q$r7sA)R;1_sdw&UP5%v3q&hz@ild zOG$vz1Din$5(U+o6N%ah7=LONld+OpSuN!7xB7||>xwJ>6pnp3jrBddTJ?Ly)1fl;PmKWABI|S2I|q zflg#0(7Y9TQ^D=T$@#z_9~^=Nm(0cYDVPBRQ<=Qy(O^GpiUb$_7vCeoB|T;j=p@o_e*?Yk%tz894V}J7|H_QFA+F>aqpGk|Hy~ z2@s#KInvu>Ij{);XNp-M%>`JZFwzA$m(pK*u!2knZ05teOxRSx3JnyPKO4A9waYz? z3s^s&>g&5XZ%m!TRUYIScs?V;Mb+ffdc}~Zb`@5mC@XKm`l_{}i&df1wG$12VtImw ze&+^zpC&7va+ZM}dxT5*Qe->D);!YOgRO`-gF-;~b#BeW?Wh9sFTJcD5iUf`=9=M( zO7KY5(i7wTgUu909qrjh5P2YoZiFr8JJ9&|2+P? zyD6zW$NY7hR%EY`zj;N<_(u5++Z->8WC&~u0+51xL4FPu9mEKOaCfPDeSLjTda*<) zKo(d@NeL1F76+ICLJZ<5GwgS?Rs3zq_`D-ywFj}S4do>BmajeARJZ2a3i7;+^HnZ} z8Lv3pT}HZmgU>?}+c1q5S-(!T4Qf`RJ{d5U8GNeu*}h>#4mVECfqvab=PxSf=#*Mv z?Wh+sa7mMslo`fbw>KqTx%TK^On%kQ)7+!yO482J+)skGn0?js(e54Qkphc&#R5h$ zl?~OJln=3CH>7N-rThFtc?3i5Iq_jcos+y5Mspv3%K>JnUX-*Gn-vlX7xnCH>%#rq z>7C)<`Olj_NhpL3&JGS%*%;k9xu$)7FQML>y~hE`|!SS#&+aU#ebqK8o`Gm~@Nu zbYF+Qjal0-aA&^c2JQRSS)+UqaC-DNt>X|?|3e!0VfBSBCz4{|4P3JShYGoTH(`f_ z&l3#RF94PZn3}%;!YPO-QPOSKtpYg;He2HVf)XGCV+%wKaMAu}6bf+sN+~FygS2Nb zFf;T5D$Q>W3Av(zjTD=~>;wH0C!YRW+2~X-Q2d-T$Zkod%oz{_RVI zCiyPKXayIL-G98E+Id=heRN$`(Gd4U=Q|~P6c~~Ury7C*eOGwR^h-rW*G>Eb3pN6t zctucnORbtD4xy2hHUhNglUit=47wCNf`q&^%5H~JV#fBvpD~4!@f?w)?4xa0(cvYp ztsmdEMXt)X6po9=6JE0KQxXuBefF2cj|frseJg2=mxl-kZC^H6Bi#u8RqWc3rCOZZ z4@Wu`7#p9JMb0S17M@Ypg1H`0^yj*;LD&Ikc3S3uv;-Ss2aFX? zAm&-6*NmyCs0h2k0@BbI;6=Xa1gRa^5OENFiUs6j7*rZ?UgSIth){``E$ndJ=oHmN z)3QjezD!w`@~s^p1ng!=$MmQK+Ai^5TyXYKQHTlXDlGN}9PxPU?^NxYD*tBV5$?kz zL%80Quc$`c8sq7-Pe@qO^U}o6mJQ0=5=7vcXC&8qOq161935LO(`|jJ>CS>G5t|!1 zF@5vfa8!f4F~a#<6;9eHx7DP(w>uw|IdSH#%gt(8tBd5EHpP#5(wZz$t}2A!J$XR% zwYkw_HQIVOo{!{+*p804OJ zw~Q6DQrLW)h-BWeEcH$9x1k9csQgx_O23K`R3xGa4vt^^&1!G=3TjeDud3s&+FEt< z`BAeu$`{kn6MNjK8~m`%Kgl20gXVZ~1H3%gG(KLeA-pITQ)k4t-pswj5=-erbZ5E! z%z7D&i)`X2L2IvA)Kz-#s)0o*qwoMY z-&yfHX;ehWmO-@0=3E1s{*jPS7!Q64iZFO*U032-Ce}TxWMjLL7Nk!&pb+AtsF4{@ z=e&WqDmM~_38j9!w>myqFm!Hm_&7NLOcu(b)&5;lQ30FgXZ))FBm{Sx-DOm!mp+Y1 z<5UpiKk_>JTUb_94Df1jM^4O{tYQv|uQ;H>#b77+k%hM#gbxicNlJ%xkIQ~Py4s4W z`?HdKCzJFA3{cDDiBmiHJl9l-`qpQ#T!5XHBd;2jix|qB{wsxJV9u_}l>ujBBCpeM ztBc)@;Yl{Uw$s(0`1ul}5=9NLBsPfcIUm!qI_`vz??=P_kg zxXsRS@W^Jn{b>EhPdPIWpWjL5g{k7i?|_$I--)Q1R9a9`{HA7@@dQPp&ImcuH(2%0 zu9be9LQ#Dk2H2te>P4nr!F*2NUWnMUglAt;7TAvR<0dbm_h%FbW!l|X(4?AF<%Tj| zB~%Q{XO+BLZ7&<1G2M?!<`}BUO_{Y(!bDkDC~tPm8gyGlG?s`GHjA#FU;51!lM(U> zW16%C-Dy$NuAT^Y*&Hj@+Mt|0<15z}n%M|Pe=wtnZGst zY|DG=+R#kLa}XY{W&d?5){wOvkVF^6i<@f_vcJG^ zkkCgzjEL$H=5g?FBy@&T5T+lJoK0aw;mMED+-oc{$6Cb_+3{gqcNIFKo`NJz_&ADUx>&yg_vINc~$_(jW{Wx~rd7d{Ii)iSpDNNd#gv)M??Q~jn zd8U+YeOpw!ZP8QNf$v-4kgxm}kzHf?CG{S5VM7gmKMxB-g}u0{VwA?0^^nZO1uZw3 zDz@2h{bf}mqR{VRKT#xeXiYl$`|(XVM)a+uFy>K zk(Cv(!mV%&$kGS(q#Xf?4SGeB)r5rZ+l#GPGMj(ozLpG%*0^dOM|0VM8n5P9zCgO? zja;Qr6mj&UCnK5G4mYBIiLvz|dD$$nrecqf=&Jhc5JjfdNG8Bm*&CI8!f2{46}&s7 z!dcBO+0mu&oNU#7!bsCD73=zv>k6tqd!c|9PWrx8f4+^N4(!A2{I2`({PYSN zt=ZP$Ep>H7O7(b@e-f12@|H3UI)ott8@jk=qlqM$p7YOtvq9ah*zAhF@b%*;F80

    IYyu zr@5@ZQ?*?ZHmOhtDC<4(XLI0=iuTNE+{x)V`;AQ9l2VHeD?|1MdvmdsIZ-M z1+cIV?yTROTydD4$II$4B`VY@`#)w>f=pF^yqnDvcMD4KLI(EDD%Gm-%{HpzXJR#G zZ17xL_DuVtY;mr-m+u?7N>Z64=3KhQa%&yDxaliU7#i2b@_#NEPriu_DwhpHZ@eJ3 zvs9JJdNGp8xR1}|bGG0hZ6#DE8Ew}%A8(WphlWoWZYs3b{59uwdS>dP1_nlMh^eNg{`J?atiK2rREL6Ln2c}b6>@CT z$ryopVo+g2@%`bi{{VJq8maxpRmreWj^ARL0?J?_fk>cFWBk z-)5<$WkoVqwa!#*_itJ;YmLJa-Rt3!#49D)X|UW}=n$Jf|Ho?;vH_OqiJ=EOpI}Ot z#`lb=sUJATR%-@t7B6fUsqTgNP3T(KHu(0Xm#oMsAE%6v?aDSrD334l)v^~~Wh}qu z*ZJLNV?80o7Yh67CEp4st&>E!T`&>O7CL@!)I#+(Bmbgn?eqsB=H8e>6uAZa$HUVF zUw7W~p*!*T?2xaE{zZA=z{m`hgj3nwt)-b+I>vfy zB1VG>U!byOwt3W-wCG;lVlW?Rrp*j(fupv9r-tU^=BK4`Z3qXp80cYZ8}tbv&Exfc zHRwf)*!al(mOGIbueUs=nsN@qLb< zgs78L!DJ6{FVtJdoj4JwZ#;H(Ku8_}4H7*SB?I&!=(cBiR^74b2PfN@!uc$2$4S^u z#lj^QNnoG_F($%{{k)G)c*E~Mn(J8?TDT?V2b->}QrDT5bJg&Me(#& z)-J|0eCUU&q!3DNt(cEH4zQ|y>l&l#J6Mi6CNp$$d9K6T#<#i#eK#RRIE>iuqx%xk zJHF_rjcfDV)ntNpCD0MTy}-U5(vblK7AoABVek+j>7TSqRadv z8f+)oa5*flj2SjTXS{`CywxQtZX$=?l(YD$)rlP|Tz-^O3ub#_1$R>qP0+s5N7g+Eb7v`C^U|pI(-&shhTYlA?W$ zqDLT;vo<{!6c|%X)N(CQe8hx;DPD)nfE+DhB8G7i-2sS6%*S@hT`ZT24|w%%28lph}S*fwsIx!j795Qc@IM zzQ%3_yi2lxASq^5o!RK1NNN4b_d!F_?zwo4T+Xvn;k6wxEs=W2j%AxZR(L#y0b7KE zoy2V2?d6=;$btm1@69R4W9b?oA6WW{Lo+(#%HD)9&uUNbePLV5F5Z1uTsXdb`e=OO zdmC16#H?}_>ymN3Y8vptN{JuE9sywh&r&1fC5&l3#zaJ7x5siMlU<%BWMhE)a6(fZl+5&~S+xu`(5P91~+LB3K` zVf&rYl?Y$G>;x817?IA}nn4YVtWO3~2cd!ZA$>vW#(@aGkvQIMvTr%+ylcU=olI{K zfWP|_SPdU=bO+B;vuFQ8WkBG#^P^lad@bGeHUIn7u?%fad@Cjn<@@{`H}Dzxj6aKJ{%_$g^@He21m{jx88;l0lcl=*P&hL`b+a?}cf)B>Hx2CXv9J`Qz|!C_iWB#< z5OJ7Wp7CtGAGue`FV2H77I)*`1TTX8o;rIVC@W+eWYe85-g1gc!30 z=uM5|K*-vBN!G#4C?E}x0QY8Cv&zu&CMrMlqh#wnim{>@HI>90C>H?}k9!NhwRkj}3@`%T689R<6AvX+;ClvH<{ZUYx5dDu7CS$azK zQ+?~+p@NY1>jS=N1cJP;tu^n_v51TGT8OxZoC5oo-f31=BtO_jmun6@Gw77cY|7Xu z{OUkjn!+J&_wV2^C{Xp0i0E%^gCP|qp5qfiXq0w=*xqY(BJ9v0G3M*BhS&K;azPcD zoV`<|$FtuV57Scm*|5~LQe9}h?e1J&py28fAyKA=PfpAQAgRJ%c|2iRUmNof?=d@% zDicfJH$Ik@)!{W4nRzUzQ_}y!Ri&vR!*PHlF1kW|{*g4jyW1+sp z#{T;Y@-xbAlve~^6oLr|lV?`ct!2np`giI!dWBio^Inp9d5);`Ga5XFc}w>T87=ky z7WizRqh4p$<6ljmn3jZ8OqfRLn@V?wq_W0_(0~*svw3}$O?gi(pP!VOUSU0i>TYqa z+a8x^t()uF+WOSH@PiBL+CK+oj?6}zl(UshQ2MUFbnJ+lRuWEdy03Nr=J%rXVWKfFY+sRM<8Y0#zYdt=?!us-IgqWV>O&3md&_8hy@;k@5 zvaG_A-@0X|8T{E7p?@ApH1!?I*P*8dXk%@iT zb1+DsN5P&MWs4dw&5tNuFhf7|;HnTB zYg;=tTspWAXbv4NW0e29=+hDx?k2tpG_t9#p9epG@j8&u(J3dBdlcWIlC3`S*Isgm z6AOkC)DemF-;-g_N|cog`e&b0x9fMHSMLA6(%v$vs_zT`J%?6GP`X0_1?fgWQjioC z1Q8HKLb`=RBS@o2cZx_U-Jp~pEg;=p(#?OK@9&QL>b|&lT!%W;b7ZskS!=Gfo;m09 zSzT;ZEgkKmMZBKXDO294sClFl^ookAy`uxLU`PZbFCVEo<~GJQjklbwE?J#f!eheP z4wQ!n&(irJ?{3XjaZM$qII=ybt`5=PWbRfP|LCo15>aKq?R$|#KOHde5dt;HF&x{6 z()`lj%l?+|Ir(7Qap3aNozju17va80W z`VHxNgf{7w?&6YP;_MBX3P#DtFJDbuNSsqxG&Fy+f@ej!rt>C9s5|LdS{QHHvMaA< ze>Xd$526C)C$gcUB6XwsIGvG^I>09?sOV36vS6%6BO9@nVOn+XOX8}Zu8scWjq@~f zry*0uXTo#)FBF!UA79tKop{GC`y_bMm`0A!V$EaRL*weJ^p=(mY)Na$ZM(y$%Z-^n zS@TreRNJq$HrXCE6^Rw2yx$tEyRDVa`NZL}_TR}DOF?oBF zEwhKl#t_`-UGrQ3zygNMfI4h0c+QrU!_di8Uvy6Fn2ercVYzkT}* z4{?l`JUnQv+1PM>ed1W_x=1k8(X1?3rY<%k^1g+##FR_n>~ZM6`xV?Qk_S^9a*Pu@ zn9i)oE!ut$F+r2^{q_e755gN8y91N%shaW4^o8DvQ|?ilVdcgW;XXIGbpr!2dg*=H z*TcJN681d*#vBDEw>GyxnQ+syX-=1nn7(zKq~Q4&`35EJt60(|tVD&VD^oW%6zy$E zKLkp?%PRK4qY@k3Gl`6`Ef#1gi7OIPi>>OQGzuwFD9rH1SBjAzpo%l;xsvrnJd@1o zP{U2MVUFz3!5K%$s-JGB*8Jn5{m8g4NWOOT%|SJv!Zu{53<324 zk);XTagYcbBKpv5Yirl}D8*|O6oC!r8#Z`XXN`;(S-;@zz;+o*9?3<>-A?H~b+mD7vHArnI{ zo9-U@{pGH}%8HABOQKxy)L)KuO>Ekb$X_;g4ytFXe%*(D-uHcTRXB2zDDae4~ zye(C#mTu(sK50a-@4)HS+)oF#Yiktv+OM^r7gmSvE-XbIt_ioF?$acJPYDiUlTP|M zp;+5EyfbKu;8e9$#@6IZw=yIw|D*^Fr-+ zdVYNP@lY&)2%D*S?6;m0rBaBpmVI!U`_VzfZJgG<>m=Z4G=D1v=s=i|q;G_J9yH(^ z-FXe&`JWQqz@#6Ojg2t8#)J3uEdzYh$g|lHZXT!A$K!5G$>>xm_?{DMYZEFxFD*;Y z#wO!>!ic=qKUlR=E!AsDblC9S-(fu2gUIzPBL$B&?rN2Gx-FiRn#8Qy2qnpX4^A=>N()K7OLsyRXXDdLtG?n1pH-g8 z1RHObSVhdVbxN(CCmilq6F0cNzKt3Vxi4Mnf>ry}E6vl2zspV`S)IiA!^e2>XY{FO z;$PZF3-U&?zDygj2OnoTnkTB{{WHb&O!!hfZ=Z9OYe?nqMi8YIPiPy~9~dQQx&c`K zBfNpiF%1N$|J>HIa&lfmCpMVC_PN$R<7p$bnj!cg=a2RV2b)! zB1@#`kMg*e+?lVdy)A`e6@(n~#s$WSzZjiy;fu!+FqG`-XC-!i?aqf-BzQmbA)YyZ z=DuJYj=-wN8GMVVv+$lDVS1o;%)lDR%EG~V<^0V3N1cn*?#)hqQ#GE&fX4A=a>Jx& z4{uREuNz&NBctz*kGiG8^Wrq4VE$dX5av6I>Q^!$C_|eB^6y3kNYe-JI?IJT<2lLt zc=cD5zN*2P5;5Fr8#X-hNqcl~$0{)!&8ZvVq!e(}e%_Io20s^#KAcTw{U~$QfID)NVi6j-^BrzcvSe;bydi8Ih~9tgUfK@3fB;;V@E?7 zZd>;@xdbF=vr#9EOM@Kq^YdvXB_!x0j1DIne+Sskg&QyW{KJ=c)Sd&0o{c;1V!vOgitSA3A8A;`e6VLHIyxg_d^R6Ae^@X5Xjytg z^rMN6L$`o@XBvJ>EPuUd&|_>Tt?#tEe@feV=Cg;c3i^k(%r6OxGCDaqVR^5vu68*z z>(_vLqxFoZsdZGrSXrmUaGwjR#Zqtfq`EM(TFrI3VFo$|XqKXOB`P0h^c+DQ}=6zo%E zK*@o@AQM8smW&tn|Dd16gt2%d}ZTD=L$*h%@?;{K3ao9|;N{Np(%h zoQW&Z7q#MbpZ0H&J*J2|qcbTjujr5O=Xac5MV48yG*Bw(;M8?$iKjdgFMqjp_ro?6 zk7FL6$J~BMBdv&di<#z*u*YquO2b(>&{?UQ#^^<8YrkDw$z6f5EGIWOIce>xxI*Rd z68X88VQ(%++x(ABKD)6tPIfJgy7fb8_-Uo~>$D-Ia5Cb>ow{Y4)U&W0lyKM(t%2-m z(Pr-0e#NJ;63f`ldfug^DoYAsHL@NCI;(n1T2aUmO4?`bQvR)b^)s%|Rnj4&$O;2F z>_tZxQ&mr|g7V~74Iyw4Go|(oP$jUkvih8#FN;zo^as2$JIDQ-l^LE+h}CSbE8d)_ zF|BDC+gD>Wh;__ug!e1N4ZreagbMcdN)*fInq4(C=nqCArI;f-#4Un{tV?Ebvsnaj z8&-j)hMeuh3m+TIsL(CA+5hhN^ySXAkCgW$-lkc2e(JA`uX7O^ zO4Z@MT;Es>`#CMgip|EvA)>TdL$Y!`Pjd3;#Nf@}{%5-iZHX>-DnAfcAXRXBvF?hd z6MMTi-o&fLZIre>RABLTKy)M8u_F^By}9ep$pIB0YifGS^JoTl+^&rd;&c<8%eW8Z za1wQQc^+_J^O=hVyDm&uPYCFRX4O<&?)B9Z#*w?7q;hbWBNjm*MGyU z+<`4OTQJtS??aA*v4CRh{Pa4s#Hy zW8cg9YGziNJO!?OgXW`0zSY%Y$2)LtW`VYAC^v2bSV`aL=rbZ$G4F^*)f5*DTij_j zeVL|LLD=5e)Ba?Cg$xjx2syv}x6d<+CuzJJ9eZW_!)QQ`9jUR0x2d)e5Zn$i&1DsOXK3j-H;nybxaONsUNKqV+glh_yGm1$Qcw z9(jp*(0_AU>T>4W0V$G3$m~scJ5}Wk*03+D9C9fx_&YM*GM`S~@#FL~z6;D=iY#Yx zd`a@F&ZoCk?YrJLN2M?JzBVB;zv;!dvwPpCo3a}xMUiQ$UYK@Ylw|q&UTNuL^HdsP>t0#ndvY*v0EM;kN83QKz24F}mHc|guU{EZ zMGD5hjNIJZ7-+-9oei*9$BMTaYY6~XW)5ND*q|WEIKdEl%w=6KFkJ z7WVG;JmJu9@JzO_un4teHK-{lZ0YH-cYdX)@bPzYQN+)o0&*)|D=V(L!%24m^I5qJ z7R3iUf3zJPC&WHb&Z(#Se9wMu-qeJBvoUAX)=C_EkmB^Rdy^wr!-JWr`QN1yN4%`r zv(mOY94c@equJ{>>#ft0ZrXJ`rPjatSaP^cl)-#l{U|1q`KhADj$((v?01sAb(fwm z`)wsOZOgfxQhomt+c+ASQFw3&8^hWdHFs-x1tbRK!I?&)}Ow8%cpB8Nz#IAa@SRe4D`%jYvvLsw+wK zIusHfogYpi5x^yL8Mng)N7C)hnk}$j#JW6cliD74=$Wx|_f`ARmRFT9v3T%t1r0%aREEFcr1K4x zdw-`b?%u4boc^?ws@R$!XzL<;PN*$IO55N>tJh=I(xdI!nu%g)!6ioZR{80Kh8ujJ zeq@p9@A&Pfb-!dghV9@4-J#Tl$cxJpOElXIkhHSkA`4aRQPI&@xm)%8T|K`aMcuvq zfR*$HIXUxTkCdHh5B>b&Li(2i!Z!63EReLMIp0xui#M7FZ6aP19rQZ#JyG=*a*XRi zq>bnE+of^_b8!3LS$uZU@QW&T>UdU^v-aTqYJ5v9p~r8>quj+J|`?Yb&dH zS!MCj5?2NSRkTN!)@qAp+*fJe)?NrImwZLqX`@P&5 ztEu}yXrZR-lh{rguSYl2I+fc=XJNC7Vma!tuxTG%;W{j1e zZz3F@j>hyLb>kD1rGS#&BJT2GzLT497;lwk?5c4=S4fE2qvw~Wxt(TiL-q;ZU5HeV zov+?2-{7VG_ZLt3f;}EabmTS{lM$8KNbZlp`j@M0d9}e*Vny(aK0-nea;fcZ0skJMJqHdS1QRzaBoG)KRmdv#R#8Q5_@Lu+-mv zZ}{j><%o~-_~257Qd!{YYUPa&NMzFR5RB@+$;t3jvPm8=ppSrV0uXbIp|=RE4O+dC znAfOB&BIXJO}M5+ea^gS&NZQsGh5gZI6@!tJiiQ9M+VL3L|H`-N)6B`?wSzb;KuI+*bG+ocK zV{w1~hMMzk1@JEh=vCy$kAC3VJ(nH(qPf@TN3rRKF5p90czL4?sPI}WIy{PBO~m+O z;32v+b#7wVBBi}nmKqQqo+kpU_Vx(GeNRsvTt>{Kk0>&4PsHF=dG?|5z9$V2kw}51 zW-4+Q;&&4t3wQH_#N^CY%ry0+c5V21tKSM(=vr20XXE_g`m=LsscYFg+V|xtYk5w# z!dh9vcx84wF+$Ev9EA}?%Q=;z9~~Atk+7TRTH}`4cIVzT#&AUuH{-2Hr{oJ>b;~0sI>G3c-jJ{M|)Hl zFaX)v**mBk*yMkm{|c$1`COf`+{2XxorVP+YGY1W!c>UgU)03emAZMZ-TSC3gZ<9kzhvke#gSn$Pwrp9XiT$P9To34lYKew$C^SGsOy6(~6 zU7ZxK->i>I79ngud9-#DPdenzbiI_k`8j0Abxx;st8OVi`Ob2BXLyr6^pu*o+oqM7 zQV*&7F0*^7btIaPpP%FQ?O-rK{xoz6j`mp6T+Ltx{tl>ivT|}zU!5HteIt7VI!my; zFV1$=Ukq>AOL86f3(?dQo|Dp&8h?8;szk#|3UbMAj{ty!{xd2jNtW`O+&&GnX*Hx1 zIs+;-I02(Q(}NNc6W<4!fi?UMT3QwLd;2%6Mv8sF`I5V*dVC{ZxW|^^s*iVwb4cjm z>ZL7E;uAn63!@eN0Ms}l`cV^<~D6nID7I3;5RO zF>+3Qz{lHs(#Rr!@ z4NfPc6*dgmxVQtrhZWR+#G+zW!tDH_t=YN+R~0|%FY^HCp37y!FIc?1yzHHwbKYNP zyItpM<{#KQc#TTw6zb_CjFhHw6`~~ zh|;kjXwqZpxDX|=Ysgkfi{b)+#7$;^=ah34P+Y}wENT|L#Oa+t+(Y!v zAzmR^RY#?35V}k^`d3}1vSD%Vr!eri|GGPgiCL}qUR1KGTPjK+U~NcqrBHuRL$9-J zsuz#jirDQTSIl7PNRx;4lXQ8f>5doxEp#46-HcrWdOX^I|GK)w{hK#$Dlb(*iy|;F z6TnU%8ymY1OcUwEs-DNTzM!uUe^=)(aXns;pdvlpXQ;?P9Sse)MEjxtuDfYjQ|{Z# zdZ+dot_HRA-R^EIZ&3QooBgk>r$CKNeITJkDvZL#MN`P4W+e*S^n*H|myzKcBw};~ zIM!^g@2>}Lc@H7?3|9V;dcVM;s6S_wCPqdRX+$}mzOn7t_qcbj>-g&NT&?D85oMt!15slb@1$0S67ys!%{zuq-3f3 z+uygn>v5KGy*-iaG-(c3r>f|a+*DGgd#)L^^@=vdP5mKSbjZKTb%1eQ_XdwZgn#;o z9~7dOIPKfYa|);_KYZBH(h_iTu<;NMARzAE%HDweO{q%Y<0IQds?_Qz)W8&_HMG@)1ESc7xZ{-`K z@(@ci!6Ls8+8WKFyJHV*t$v{dh70r*K{3t-2+5yeR|RT_TPR)El8V_%x6Y6FUqq}9fvqtetzUn_z%&Ok zB`A?{K0ZEsi-|UXxQ0HTd7DN6Z3@gxy06T6U3_E>B<6R>DC4a_Sat8l>%KJU_|WYT zKX#VB6G`DWkQ0sZ7*B&<+Kc1O<&`vU#3){`h4)j5V^;l%Z}P{lnw~o}kCvUCC|U&b ze=ds8X{qH&5BR#I@=D#5$idj0>r+{gvGLWbSIr>e?!gwHghUhSO;Bh5+8qDQ%I7GR z;KD;oT=Vdlx+vocByvjWe44`}TVxzA+C-@u0=MD$^h_UKV2F-%T zmgVt$xVsx#_2)Udo$al=RjQW6e}k=y%u51-i|)jW>fj0cH4$6JrMV69^;do_|3T`I znJze{60b~5gv}pF=YPgaN#r9K;I1#phtQPvHX^onV2d0$ zh#Zd2Z5at{;5{$6L#sDsW0HBCbcJhzMBFyVUPot&m-3_}z_w^@V=5B&Yt{Akj)UPS zlHvKl29EO$LtWd%r*5Vr0Q?ql&l3{QM+S6M)8P!w8Szx#B>zH_eH|rleEdRDk5`e6 zZTge8z^UbSo`R%l=;B&@rfCw#xmD+{St0K$T;V~5{o7w}f45fQ;%hA?rY##u%rv|+ zGf9ilxH-}2zLkg1_>#B6b6Mk6Q-HeQ&Qhvyw_WO%h+tWR)stuAIF8@>KI`K>d$I^Q z#eGf9aH`+NTqe4=<85<;r4e$9{9K>zeRmh8=(F3Zd!E%^cW9sLvQ_TXSxppvdwh*l z+N3K!^Q+HH=ECPMkERrJ0{VnD38-?zN2i3m10=-7*24yDt6$=|xZF>qPCa*ClsEWX zR5frr4&S)h`}m!brHq~wrI;FBSwmRk;F9n_sfZX~*>slDxB)Ih?^7T1Jlg9h3lHgY zt^^}mzUu;Mg`Y}aUoYh~CD$sY2(G`y7y5r)>IzrrX2(cL&G1mc_>|>vT;t0g z%Gs~&JamdTHp6(oFY{CF-q*zAb50U_={1H}4C-92cVt;AyNe7t`z9Gq9{*CsB)hN? zr=I=l{hUxO#WfomNG0R=%~0~ZmLHpb&|Fs%^@)!wFb6L^hCHo0q2Zdzs)$q8MLDud z;-?`GEhhPK%d}sKDY@#cxwT;*)x^pT50vVNNEtil+n^@H5pr4P>2;2s5c$o&!i#4p z0WzJi@I@?g{fxm#&BvFY+kl8XT6$BBrAkBGaCumkC) zZcvM~8N2o?U8r`Ieio0KU=uU^?>+x)2Qlmp#;u=f^k4A&A-;L%VMQZ`?b!Ekp_Zwb z&FE)rL_=F9om5wzD0*d#Vv%RyADKdRRBtn_9Thx}|Ni%gwW1yACXpHc02zhD+Qu{X z3WvDfW<#DgA(`Ys-z%KOeLvc|NTL9)Srw(pVcmJ*W{;O0-$m-j7%o6j~i1FcIGU$q&TFxO-j~MP_b`g@rr<4*YkW|TjFFnGbkv?8_FHf z^w3fifCkV>?at4dnb8M%g@s_DjpKnr&1`K&z{V`q?9Cg2l@K2I&M?Pi*H4_L+er-9 zo^EcHS(bZMb|h&%QDx&>8Z2b4)M-}9T@kMHoH%I6Bjgz&smRN_0&wCuAuH-uiC)yFZa2qNE>DXOg%=&Hd?*| ziyQ~ru9VzYgP%1i!I=a2+X2457-%3R?8p?HorRK;lQng9gW&=T3LuBVNe<46)IC)e ze{ORc)Q^v=zJeQnC%9ZFY7(c^wjQT%7B6C#adruA7lzY~K0uaIgwwS`IIa1hC~WM4 zv|qT%UsToC(*yhQR>db6A(T(07n8me^|E#{{pj^;kxiMKoxKLfL@-*!K!CWV@!~~c zsXAz5U-I+IPMYA+{Qy9Txe@xhe$(utCX~(*EdenZ8O)ELJYjnN&)&9H1N*_1@d6*P47C5MCXUn)6;iQ`T6<04vQ*h zM{^Oj_V&%_o=4EWUESSxEo4!sd$2**(AI8Kkw=dPLlL|j$p%7l-F4)xQuMI%n{kah zIWsLoPek;~Sm?O*-@jjjO$7Q86TFlCFW{p8OoT+o!v8mK^!b}Fp@;cQvi9WUElq|0 ze_sg4z@*2@cz0ARtGBFQF0LBpM?$v+JZwd_7mDwp3A>Ef@S_0&#vjv*^u`_e?T2Vvz_O>kuy5nA#=au#g!GwBmJi#C|Plz1& zYjAi+I!2TLs;R_r<P3?U+$v=MlSWa$n1@l%ZrIMSQ zC^8MgBPod{gqf=9>V7cNSU3f0;dR8X?(Xs@{9J0lm0Z5O*t)EqIJ7Y{OOr&M^aAg4 z1wuy@KG#Gx!=&pRp)wS?R2J0iHCYzbDZr{$F| zzA2Z4Oe#xWem>^^eDxtJh8-L@qsPe(>g4|xU&pe-V&pi<=U^l$XlY%C13!G{Jpg=% z`mnEiD4$J1BCv4xg~|D|r3FZin80Vm>P4MQ2Qqjz!pik;P)nT&m@OdGvPmA#Uq3#8 zb9p*sp7IzVAVel4jAozQk18)0LX+cxjo~NFxGZFB1S9QeA=Uux^p9vnlZV$wctOFU zmWB@sa*yEh3}jIaT{Qa_UirT7BMUiULDKhFfCO%W&>oePM1TNkA^@^LXXodi4hRVe z<;~6W2zAY=;6n+7ymV=KdGpv94d^6XfXa+YOdR8?mqK`)?++h=Z_1}PWqj40BCtNR zK#C>Y^ZXLjhW_!=Buf8Hso^#wU^X1?Pi8vBkW0KEEjL3uffX;fH$(7{d-@Hi_Q0a2+^U8{}UZWoY&(D5??w2>>>~}m%%@OX3#cJ z(HvT~kdV+5?z8~F6Fxx4T48|wnPjiN{!RD+0s;)3VDoZLt?$J1A!LmsW>7oqDD&>qsl z!W8h>@58GV)c6LT$2W6S6W;-D3vSN1H|>6$fH^6QE~|1&p4~_vbf(JvV7&>dyRVUv z-85hzCw~VY|KQNj?G1ycPv3#{$DN9P`^u`SbXZ?2*9vQjVM~#fl{F2ytu3J`fHn@W zb91+)-S?ZGoyDM_prF0?_6E8N2ms|EmDI>feV&EQ9}_|%84dc^YUt%>&wXa zj;q`{E&LM2r(eKe0w;G&;C(eWTgA5&rjZbbk`|~{|k0Bz(ZIP-LD4jZG z7G&O={N%H9b9V4#1%!lV0ahadK(*1aF%k-j*D#f2@YRFx&{8&ZRfK??lL;g*<*}{m zwY$JBnT3>aR8fuN3aRyE?Ryw{mcqjpAYBB>WmxZ?1KssKP&(i#YS$CcOHjh3-MOrh zmHONdwQ#WKf^Xj?v4jUoaLP(?0ez$ZY(zvFe0|8=X{`pr5)Ar-W1eSZiQBFzIB`$U z1Tw@Ft=%$ zs{%nxc?Jd9j~x`c&>{H!`*gS)aOTd1$rJ{&|ILWS?l;3G3^72uqr+r(%Dsp9* zCN2>zV@BcSd09H;JqSA|Mu1v}rA>agP(KrJugRMYm!2S0WbEwNGq2L4(4w}zon1Ph zwEE%Ka(+=gv%0$a=(krP9;q-017Y5-oNhJb!VvBUl34ZgxH}{uVdjAT_;#agc(B|l zumnBRf4bSWu={pt3Uh!v`5CxPf7&@V{`q zjpg0?3cZ6z>FVm5!J`<=R3rwHTozl3t1k$iZ-&kI`K?9;g2TdY3JVKgB_hg!A^QuP z{C~H2yVNnzGmggy1B$6WLXeSHQ0NC^|LC2Mj)9Vl%qK8=I7CI`$0sK8ye==GCISR5 z2;wn!^_5{xqk(I%?qq>J{`YfPjPd2gIhORC%Nmh!dVPHgI-&zP5>3JdTze_hgp$6O z``=B~qr?G^3Big66m?A~xcM_Q^s558kFn&ga-9Bex5cx5V{rhEY4EonOfWM4pLRh1 m?E;%@@&0$z`v3h#-%DJSu%jl0D%liV+#MUhw1QOe{`T{fh z69mAUCJ|Py5stzB5z)uPPJyt;BSM0LBZ4p|wnv=`3&#YXH9+Vi^tHF2j)({`)z$s+ zIU+bLKsQtA>J<=ZI|z;1e+-v5(SPo-LS+8P^ql(fj6Fe*ghcOK5PnG|msB~i9*G)> zibMQ%A%2apR*apM*`gj*v#-^Fb!q6l?4OF2GW%cJO2Iav;wt6dJ$ne-p$*Q3LC6YL znQ2pkBR6KJV>+I!8+lz)JUGRRDTtXY;>0;j*ALQ-M~>xdS;74MGs`q1rwG~EZ|K)( zZQ9{yfw!{5RdyTD^W+k<-G;l0Vnw`DN~(Lb{M)jQ%$;@pW2?3+_cSWVt0i!*c%nCR z-=2Rl&$UbBiW_$J+;qX#Jc74n>0L-qPp^x9x=C#`I`TF6loGEuFF6K6)CRtk$nG`T#M; zBu8LsmzgC0V^0qGFNJw|9Mrb z>et7XQdqyR3W%b)8ecXeQV!s_l?2IkMlHVM_C- z`E8jZyCFT9nb(Wu{Obk{C0b7sg7F7Ue_Rh|2H8&is3&-{{JIMUxwc3&$4C&BvOUFL6brQ3h+ZwZzmI2 zGAuP;E7S(3sxSFUDvq<+E!nNE{8?xcVqwuyec8HcdD*XgYlxRem{uSR9ts3rBOn-b z$K{i|e@1g8Rx{^;A8ZPo(BtO?V%oZI$M~0l&<1MPY-ME>6iQC2w|5;Kj1(`$-uLlo z5mjv$sh)Ur#u?@5ebzwC73|rkGW-c%{wrfw;yKdfRie+;ehp=RXa)GvrAvPlE*a(0 z3P@Wc-7L6u!p!P7Wo6bI;ZKK3$g>ER4(%QMWfe{3gd3j+M~4%jiKY16{u%E}r!AP# zULI$(7EjwUUeat5hm_fG6?=nJF&R#&i7JU_S2h_0!kAUJ@3s2De85IGaUO9MlrpGo zk2m86$EX)Xy&fSJq7q_-@^pG5AuZQa$)H82DoOtf!*$hC z{M_ch<4McR`Y?I1b8q#e*X{~ELG;_81e^aJT&-r;ixO0`m-NRjkM)p_&e>RsK;}?Q zBq9#{7-rHq9Irn{9_w+x{n0w)4#h()-i|Ts)inh&|Cb)M($l}|WNDz?L7!{CFyhe3 zb-%VieV|d$&mxKti@}k=_Uneqn3E9^m4zA=SH}0ceb1}%37ma(#;iR{-OE`A8a19( z=#3cr>|T-h7G!B@SsoR8rrLQjiFoshku1vVLSXMl7mk}{Z)95mNc-cXw?DzErufV9 zjvfOB6sA`qH`119iy&33q~}I>3#w^7IsoDVbxaJlYMR(Gnc+qSkeSyiyC2nXt7S$c z(a&_a3|9K!46;r51yGvBi?c@z4DM&IQR;t%qT1pqw;+G#+Ak?Ry~p@`)%)`X6|d)S z?fAx)rH@iCsd}w%D9+0lHkW}fMt_49UMy*Ra1SPcI-xzJ8=!L?y}bS-ExKi5T6Zd8-0_# z|0+lSS-HmQ;kKr3j0uwSL0Q>~$sy8YdZjDl$i4z!pQxlJI41^cUL);M#vY zPM<66%kp4&OV!Nw%9+TT_%L20I+4;Qx`0|0fCkJ6UrO`Q%V;2IX38f*$xba$GOCFO z4^;}04DlTiCc)%|J)IGCqPRfn;>j*uW)+75(99Rr(jiCoY{Ka)J72932a)^_%BCCY zo0^((^Y?gILQ4WeupUcYABI1XhM~PtZhLkqBb3Gwk<#CCrzcZ}!N@5p`txTv{m%Be zZA-vE^mpBZqnfz%=ib8O-FnC;o?WAQzB!c0R{Xxm-e(Us@kTnQ>O2`4L+0&~`8U7R z@V#RYyc^FY#-u*@g--0G$_Zx1wP~=@Ag_Dc?ZW zdbF`k(-C-RJ!J|^6>= zvd|}4u^$*_v~UKHJP`t=oGu;JHXzY(fUy9djzg9O7`b`&W@fxFvE~}nf}im%_c}64 zNR4V3p7)OLxpi+Z$SF}^R;wNVD;oAAuZ67ISm+4E=5zP^K-yh`20lR%cc?~O<%H30 zIp5Q#HFov{S6ta3DOnN6pE-N~j{U4Bv-|K`TSI&7r%M_ z1^t{(1=(*|!1p5C#e_AC)K=^4xe;fmijfTw3UNjW&g4y0k7eykWP|eE{D2RwmI^Fl z&QosFcF?wvN)ayk>&7JnmMx>$O^fS^Z#nRE#0P*&l zxMcGv{@uhwbGQx}h19{9onyI9%~jaF)5gi||L!772Lr{kv)u|Okt5yiK7&&~oF?Az zdV1YpLXMjOUt!hk{=bqxHuubMEv>C7a$(ysmng`nzQ;pj0F*CM0Na4Te{T4*=IzO_ z)wIUjJQOv7&s&ir=K$xznO#=wM2bB&QvM7o)fs8ep;ckuez*^SMgd;_IF&e*nB3YT z4Gx|Nz_$snZl!2u+n)&1)`NB444+Tk{<%cly|@PX?mI47lx&i<>b0vWDH3r3?Oo>s zdrA85sxJL7Gy_8zNwAq!lOM@jOkm3xfKNx1F|QEQq=p_8inj@Gla>8goBuXP_B({- zMlhvVyN=(kZCAd;G%{2!5Gl}A(oKudeW<=$-~ZKRHLNsT65S(#JBjt7k8^U6_yi`0 zR51QY9w>)9U)dZ=tCTW_t|yZ9>J(p+pftOd zWF@G?RDe=jF(5YoTcBMUxH*0jU1R6|HZ)+T>Ju+UyTYr3=*8%B%j#-6W8ITk37=a4 zsRYp0IC)rD8{zYLez3csL4|;&Y|_~qvpVS9xgJ}_uV@vLwY80n2$k#~ z*ja@|XK@u0DSTSBmveg(k*xS8Lh*S#T5KJ5+jn+;2`KAH94?DP zCr5ki!TvE)SFNMA+2}lR+oa0Mv1fc~N0fQP$8t(A1UWiX)z;N2;PdJcVK5m9$wmbo9YGCx$%wm1$SJCu1LJtDR|a z3okl-b}X#kPOXGF^~Fr@m1#0Ne~xAWFV_u`=7xgMu}At?vB9j(sK%du~1KoNMKuGBo;ug-hIBj-jdYYyNP%x@bqz@|J&G$q@B%p|0(q6EJs=+S; z9mZhpORmRBhG6(OktF2rPMMi>Q|vnPx6>j_tQ<(S9p;}|K_yo{PF?C-kE=`_F{5($ zrqO*PQ|A7SkAO}i>Hr_xJy%{O{@}PunxRs6HNDsk9(t~}UE5bEWSZXpbQ;wZrNlH3h4+s^fP_gTwJYxBlL%z&Y$wv=oJ0d!V(9*^spplRx8g zsJ~k8{%>PF4|WqPE~N-tte2ODcSb$P5zEuU#G~s$u^{6piyFaDorFn|XM}0Uxo@W8 z`h!1=2D2oMz}86w(cn7Glz#1j&o(~lPWCnHX+34JpX0j zk{NPTVAQpz(l5xdJ$RyV3^_2JlkJuwXg~4I%YMnSn;`@(ht4@_G2qAuC3RtsET1KH z=_*mt3=y-k_#wfW7U~Pn-cOvn$C$uSmNZS66a^{;4}b-OTRAHr9GWpH6(BJ#DnO2u zIe(fr&JL_^6rB8MO1A!e#*@1_k*C5wnUs8~N)3OC-%Qy|(6wo@Axz{^-QNrio-CbM zn8_#_3zAKwSQ2WWF4yUGUV4v;___y8ud$QSNKLZ%jLwN(-hIWDo#9v}x$sx75r*h; z3S0lLaAkHBy8dV!uR@1EB`g8%NFgq^23IDu@b5eATectWDb+>h*QF3C>PZp{wV5M6 zsJc)_LIr5fsN=>k#OgDBVjCf5*9b!28l#vIMx{P3aR zTp&N(i*;!$NB2XUuF~Lp!3&v{orhMV>{vXeZ6OQs*2Y_CVw8OMa$C0!BUMLTS^Is( zMpoPsoW5q`RneGMo!zUQtPQ^5tZPzt^CA4z%JbKHBL)zA4E2FvyZ-zu&_1yr3xoC5Cx|MB?Jyq!+# z;BMu!@)bcBc`o;3e$K-D1&WSlW5G4bg~Yq=*H`XQ`b}pJK@`K5&p4%io%rt8iE%pI z`(YdLLVZHxy?+S268W?Wnm&t6>*y%Vn+~3NzgjuB>pF%X>_Cr!${;Y{^hjDAchGM} z&HfsZtcr#GdWD#nQ2%g(&j~!Xu!z-XM(yKkzKPtbB#w3mwZRmx60NofZXU~#?9&;o zpgA~6dGzwsj|=4JRbGLsHDjd$asWqx&XOXoP;RLfS@9Q-H0U%OW{3l3vgh^R>bI25 zyK~1u>e`e^QYUXYpMBtnN2MAy?wWBX9}hx6qN11IU&A}9GovP|m>=spI0|6WXCVv8 zxUKWx5Phy8x8lx-U5?hM32pz_h#pM0rbVpWE79>kGcU&!35QA zo$sVA_;oEk6yn%ev zfBf41fs@3x82a$G#O&;7gLwRxp zAHR`{GZU=@2#X%ekhRGdQ;RbV(F#GM@?LQTx{z4Npkl^~18b5vU*E>trSO#sPI^hs zNKx+COARh~)X-->X(SxK);U$~*--|-^UI3MOC6Ec4>xr;(q|@GBkeo!4h*nYrV_|} zM9}&Tn=Z^EC6)OpS`}$hSW$yK0UMXddwX6G4fe^XT(>g4HPj}F&S<3bZ+tDIGJUx- z_r@rxaFA`zfl#yBjtdB5tEOKjXB{IG__DoG!!}Jb`%l&E!|Okz76D~E3=roFzSdB^%{q>>Dz!aB>o zfg>i;tGUS5KAYh2tW9ZspSb)6!JUizSZK0l<8!tk35dcPBT9|cJvxB>3)Tk-GV*`h z$obu(>%0K&+p9;v12u+rnoxVbA)~pj^ugiW-A6oI76Ho<4QT{|b=;SVpc_N|_x?QW zv)k(Nv)z(!d3Lrv?dvJCjxxp%EoU}(^wn^W-ObX9)4+kTU5*Oo7(<1WupJYVJmaH+ z*%4yK^+1cMP7M8nH%uV?mFu!Z8gkjnv15llx1I4$o>|#qQt7vBPotXR!+x+*9f=*( z1M6$pNteyT({r@xCaabD9oy_%J6L*X{4UIyy-PY=*W?+p?LsWtpmlUJZPQOO7V)tz zX_8U7u3IKc>?$M`goH!|9a$cxkqLt!F@i4SRUUHh(BS(Qt6Fd{((Bw!qvH_onzcD+ z{yC>2&UdqVo#(xxUVXrWU>$o~s@wV4fw^)=Mosbc2vIJX)y`&UIplCBK^IoeHq!gCG`6jFP z$Fvcq>X;GYyjL=BWjqttv63M;_ziGtYHnaKrbC_rZUNjR*X|_j7JSPoy3l>d#U!Gn zk@-r?=J!hEa|yS7sF^U|xIX#}h1jmBOnLKqU6}x|Vq_t2T(hFHR+EFNMKK>n9 zcU_oHaeHrKHitkTI2f)hY}>nrj3OzWbQddz2OAt9Ri^#^E=78xYg6@6qH5RszfZZ`$Rs3}}}l;X-0d z;#19mIxjhRbfw0MDywHE5;c9BWRvf+^wp@XIw5P&cFb{Xs4j=)6Qwu8%SRs{3UXME_u6WM z8t*xEF6D>z0}^r?xcut!Krm$wFotQ0G~xT1R!zF@*Qt`tY8W#fb>e5p-zmLsvZV;9 zAmI=>E-XZWYr_fvLf@i4cRVTB03m`1Uw(fTp8?3PA?bomGGPua+a390^Yibud=#K~_y<4;T_$>e_gmgVV{hdQqWOB>dyztqpZ=Sl zQlt!t$8F2=;ET{gQYQg)y@wL|B{ITmk?r!mSTu|nd zad!K219dNc*=CKcyT)iJ`jB0WHRF{|YoR7)Z*vhwMasup=AR&JP)UoB3{ej8IL1{n zU&oJzUTz|sy+HQ;!BBw99e{%*LCIS3ZN1skwq;4t)Az z=KB?)=2K_!`*z~D2Z*bt`HX%=#&w{DvHLa8K6L**al$9}tQB!qfYhL`=coYb_zjtB zZO+4Z)c7m5AX0_>v}3C1<5xfQ;&mjVMYQyK#K~kH-o4=F!+eU4vweq8$=?SQfQ=yD zAa8AH8&psaNw8Q4n9c4t{5Rh`>kq)Rh^9rzb1#K`9)VA1RKK@#m!2=n=hKXp+06xq zS~UPqco0urtsnJO^U4MeG{Q9y0}-LM9}Im}l`RHH0x?3QW~sddSAun$X!7*O9L1%# z&IfuJWB-_6KYu-iUqma>X{DaB&peg48jN#ct9{oh6Lf8)Ri?D$R%x%Oq3cU>(kpjy zNxT)*8|vU{ZCIhsGZC$pk`CTRr@soY^0*=Zh0DE*}uL2!ObVU)Z-tzGNKdJ zH4&TZD?QB>Occ76l^rm+MB$tWx~DQuupYglI@&_&xbb?fKTS3MFk^Ok zt}RFOhiEj*2%(xng!9_AtSHzk>b&h~+AjlMA_(B_1p<7qk*)~VqT+CBg z-W!1|?-bl6AVG6SJ=4Y(;d(uXhO-38nh7;>NApgV>v1iUmRwMI7WbHEWSO6T-?fcq|9j#fXa&-+4(G?`-JF@06G@{!9GbSLb#aES z5qgEw@HQiOdR8PpN@tc_u_85PnhHa}tTjtJaHbDmfM$Yq@THd1G9O=ud0&`cG6Fz+ zD9gtUd)Jj&gg2~IR`yOJ1|-I+urUPUyvoBc5Z_XYd@*0hdv}yVTeO{=H z;mw2}u;Q1cXp~w!J^|tV z{2%(&$uuk7BBWJ%q0Ch=Lt$>z4$yKc6 zh%XI^J}RK&wsPaQ7;i#udwdea2T1Vygjao+K7<)y&>rAkt0pWo;fY@&)2eAj{^VIQ z^X|2-!AzSvn$&^YcMaWY2UH0siq7d2F zNRp7qzWaXXUGq%yJbK>eJ&yPL-tRb`G4m+5>$=YK|NsBC^SX9QT7q^3!wL$8LMwUf zh#ZBoP!RtdSVn{IBy*Vc;$QnM#Z@fjP4z5o&Ro!?oIGP`cHY$Tyn*%>YuyVL2Bs#w zT!LJ`aBMkeX=!F5#LaE|kH5fWdO@F?KRG=PAF|x+n5qSZLU)Gzvmjb5%78+V)sj4N zNWnI+?~Q|{!bsNKmx{&SHz|^oMGIE#Tf6v>_>s$MOTx9&759k8?F?PNp4;}K(xF}J z7s@RvWgBp_n{?&Qb!h^63S}8110#j9 zMvxEBVvE^1GYaM4+t+U?l#7oI7|B4{ig62_k^ddAX<6DvI~u(2&*pTM|V=MTgGxQ5*&RtXR1= z2l{fVAD@goXkcK#BfaQZ)Vp`uy88NVT^;TBw;D-=_$M7rQ}u*8@5rZVKfiA8<lQ z*Di{TiZG>S`v=TN8gL;91|5ByG~m05S{4o>qB{Z=H|&&)zyj$3gKyK zX)kiuQfMzk551mhs?_aqr?uVZ#%1$4OV&wr%SML1OLgpN^yg-0)Y1)ouF!7Y*y?-p z=KV8;R}3ZwJJS#7;j5zO-SGB8w|cu=HXmQ#*hh~ZmC!zJ$NqV2W57^KKljd^TR~R# zfpuS#VqE-ir(k4ISVV6BDbuMPZ~-5x!Wce4^ql zqxrM7hE?I$tUoo#>P~qw3E%PYQS8-8Nl9U_%w^lo&c0{={)yL%7McA{uJKy;roixU zwvqleEh%4)<)(4*@ipGtrTEO=K2~Gl#n;`%QdRGsyZ4GP9~^jSO&RCn5p`viyv;6C zw?X;zgWJ+VlI$UlDWCJkG|BT;*0hUYGZ_9@+0&35hC5@G%>Gie*{W!h{>Na4&y`tS z!Eu*Y()Y}awbh5r4o9iv(^6!MnikwYz+-C0Mb@k-U5Zz)?9`z{ze@|YFV34DENypR zFf=%L=jMP5djJhBLpXb|?cwSunR?F5me4S-18Nlqrs5}uyVu2KQnuhBV1Im|^<>j< znHkBRo$NJwGd9_qRNo+Q;r%fW#{DU`N#}6pK?ZOb|q5gECA&z`ts)`ezQv8SGx zSWnqlMZ8_6UN4?s^m7%(<^5!Shl)uHKq3X zr&ZEcA2`=^(Gs*>VX>?#kceemnj1dSY}eQl1Z0>(|@;_e%3C;awXd^lGZ zuX@XK)#C;D>GW&kn*w9xqv{^rOq%3mXOAk;$uMq?Bv;ES;aT&@yraiy_Dct~&5)LK z)Po_SV0I+Q{)4}Mn%&R`Ar@ZaCcX_DHe5EHn3z~=mqgj-h8@BtKE0~^&MtXAy)r+0 zukN}8_3^e4m)WcnA zy~a&xyQU@G&;#;Dn~bu@S{>5$E0{6BjGkRx8*sqMzGi6ARa!jerL20i<$gRm`9ouU z8rhc1xmCRH1O+ARYqbr#b$h|U4eH8|h+^VWZXNv3N7A)M`k4ikck-WGEOeL_m|vvn z68>fF0*c`Dz@FXnkMRHLO8Qrj@bx#WtEP#Py34iV@?k|2i>~s7F&->awN<@F6t-eC zwju+M_8;i7Ya^afM1Jd|3}|RO)99men)00-#;pr!_tiK|hfCfbo*t^`#R#g}Y?}Lk zzz%v%+cS5n77kp(E^`Vf5;|Dw%jx6eV|A){{i(Ccn#^JO zC~38PN4p@eJ)E41=H});n=ck_Hd=ad^4ajJ@@Lo9S>boZTJ_f1cLmw-p$?4O@->D& zyowtczjSHg_U+quv9gAhjADFY1KuyM_vh93)O!`M;pIn)HYs+Se-z(1wfH2w`RoSI zlD%8ZWD}T}^?~6H_GNZ|{*;268bjrY>d2Gwva+({z9Atjm0e5CK7Or|ink~H_loNj z-G~|UGkKF;n>~ZNlC`tTLXWFW)vsWfN=->gbD48?ni;8AbpEM1Sw|wTz+FaKTIs@t z!9$%(*K9_Y+P3Q*t+bwA=LG?#`=?-{_MW|}mT^9&v-GY}Rk&pKrxZRwr)Lyi#%mu5Oal& zB~fg;oi5pSB}MxpDY2`nt`=Cb9?}-Z{D8k+l*OJms*Cq$wtc%mbl~wKk4=Wb@0wrT1%CpnMoAuG-v zWGR>D#k9{PP_H7GDL*72plRo(1>=QeB;sQwj~|y)Qc@asM&Znkxy&i=YcX>@{NPlc z*U6J769!c%UtFop&4RX^^jPkKX*uAWP8;T_@eZ%vtE`@oNEc(Nxx+)Kwa}w?Gm_*|%UdB5_Uhig`UyXS>d2Vr=$($G6%}Id$ChtNnYZ2)vkHED zvJe+>6kR~`+f-vC^MarXL(v`BzAs^@!r<@_N<=XZeHG@`(FEa$utX- z@KVy&)^^o09qFm{4j=7n-Z!31nMPk+Bgs?n!nV6AqAA-d&Utnyq`n~&^Nq=(j7Ke5 z`!bsW+D&#}Msu2B?e5MGA9?^1t3OtTS>d<$KI-svx3;A4JfmVndq)@Jcmi_Mzo*&lEk0#aEABd`C2y8Yj&~T-pl`}Mq-Me=$ z7LJ=+rYqPXQBGdIHp5tbX7Fx-0@_|)g}RDLv~1YXU7VaJH*MO)AZ#6f{P=N(b|%Wz zC8(oYug}qz&(2Ko12v!Y`{hC14B(N_Sc^qET5ujnn*DI4#K;R)uX9B=HjNzU$48}| zDWu`l%vAy7y4318bkc)GET5-!;l-cH4p@G2bMH0%R{`54?SVZE-^}&ICG`NjR~aSc zMPjye|FKT`wQ=T~$a|*wssx+)+_|IB!LxavNlhttLA=i%<(}}{(%x)ndQL)JfffX* z#{KHH+GE6;a%4Gr?6Iqj{DP%-xk(k&CTipiWPp>!J$j_FS>Sy15D#v#eaUfeOvT7Q z{#Z=I{op-&_DJnfijPh)F7{+?c3 zTrSkhG4lD1`duyOtk1ba(i_&VCzY4|IlK3%7*B#q@?kWGIO zB>Lsqx?5M5J>L4QFjimks*a&hlE!uJ{j<9Czdl|6eTVp}kV)f?GuxbV2$`;_QP4em zwx*##?-hf_g_qkQbSWJ_e%*egCt_~4e{QzCtFJ1;9kbA5d2 z*boEU+Gf{+E31t>xp}0wUdHB))!mZP(q7U0v^0h1&z~!rP%dG3AGGqYripscYS+ai zI`RIt{g>zTy`m=Xo?R2d+SX!?Nlyz9Fb)82NCYMPN;3a&*}ZrT2cVQ;^?hDJ0Oy-z_q?QZCwd%0T1jj#dT}nn)HGlo-Fo(}s5@=H)$EBot z9m_DM6ciNJ=XZ8>?Gt3ZICt9ENW$Jen{Aho9htjefI1O1y3DON)jO6Vd z?U&7-U*EtWYMjFvqy7@KU3DI2L4~sdKnU)WML!lpL@N9s5szy zbvmeakLIVBSN1x!V#Pfe_>V)`E_w0dbwjd_qMTgSvVO`zjz0@`w7)Is7ORBe(?6Dv zFlPcpf>aF3!-jj3c0;~DhS zDr?oI*K5Xkd;fGYP%yc!W95n!q&#*vqd~+%28#QW2uqJg9j3U6VJx&o9MUHsK&|(= zQ(HbHUdG{}nI7eWs4^eFu^ zLJ)H0)h$`?v57abRVUl3ca+6#KSXv*=shvG1AuYo04t6rD*?5PbEUx}++TYH~|otIbM-{0TEM;tY*1ht^&^eNK7lL}_lh<1RU zzFiWkhoY`-gfxER(b6SvU)N+EAknmzgGZPN)0){!I@$Z|$P=#0$ld$#28hIH- z(3v#IPcx&L1-0DHU)%>Q;{Ust01J(+>d&Kdh1qGia$v@JW>V4{zDp!J?j9Z%a~>FAB0AGFQQ zj(Lm-P>yUOeP@}fQ%J(9X!th(d2!LvA8*QdEK2X*JMug_UlaONZ%fy%(o81Lp#ih9 zRf{Em{qS4a|Bnp&KkrO|n7k$hGuE^We8(X6qQ;|>=TM5WJJ-jKWB@q|g=Atc@Oy>` z+nDI&ebwr>{1hNix30gfK#QoWkAGjp?=m~hFhv}fAg9qr#SHA(qfpA^p}X`teQr$E zH)?rg-aZAh?Z%07TMl373f|ni%#HIKnktW1O=WW$s#Y?VlasrHqRTHZs^{X=$WE(U zl8}uh#^UYSwtvC+Q&R0Mr(K8Y3uYB@wUb1F4Js}V5>|$oBU|7+V_C0Z6O)^p`!5tc zva0taoTjY7nUkm#oPAn;>&4&T z@twLy6ZFI%o>CC~7}FzEHlN_L!Oqfj^Nyn)Ov0nWUO^Ck$Y|>D6qbe*;qf`Ei*MX+RKB|KQ1k8GGMXj>W!v4PdqW&pMN>HM>$aeScxE7 z1y_b|n)6Yrxb>YWXRAS z%%W;=j%2}F(*Lb?7FT4yhY||S5Pe_Gl~<=|mFVQhu=Xifd$-xJIZgm_uQm-4bIIq* z9eAo%@Y<-qH4km_Hh>?SlSQ^|`_s#l5H}Lw9T3ao_KuTP?_b{D+-pp^x|eLGHG6s8 zt*)Ni!^NcpWOe=e_1Q4_j>qlcr8V@hUYAa7cXR6y5n<$Abg1g){*NCV;0jZ=UH(r@ znxf^@$oj-rk{Mof#tPt^3rR=BC<|(R+y)BHW)l zBpf0T{I zabt?O_b?pco;r0?MSw_1I&6{v-L;Ur;sOH$)j~QV?rK(fIS;cs!IC$uPYhz~e&EJj z^=e;RJTTtnkf;Md{Giy%FrR>4w+(-$gk+y^;)zYV3qa>8^!c~02Y0Q)w)!vN1Co1k zRM=JiUTEmHblicX3&5$+%y4xa2Nx0Qm~2`eB;`*YPf$yb{lfT7SSWO_`MvlAC?`aP zQ|LE_B9R!ypvj6CjiQmZ+2j2 zSe|r-_UbZkg;S^QL#9yL|M~Gk{P(He!;1K-dn9s9Pp5Df6kvWAqF*3iJaS%Zvc_gz?jnT2uY(bYO3s`9J#^oy=3J^zi>6v zwhXXv;l8wLj{W-^g{(iFBd*hkT|Vc&ef7@cg)C}d=1g$+1po{&6pi9DtA4|vO@$`| z%V|oR>3NxB=T@mVBAwS1eQh=OmHoVE?)=s6t&snxd_&4BC`F@iqPZ(UqQqd~T}c(5s=zFS;1T z(K=`wz!Kb}{UJ`E_RF5wW#?*ReE{OOOA@|*%pSMm4wd3!j)st@xngy&i_?VgcFe%k-MjQrvk8 zkiOFLrw65G2HeE%u#rd%MzO=`t}k~wOZFtyh|_BjrG3x(6_@F+K-EktY2&=U(QuKB z&SUwFrgkE)=w!%JMG7$lE*pQ-?;M4mLliulR=X(7^R1HDH#vzgejk;0>?$SZ)JR{m zGV#UsUpPDN#UWr&bp$Qg!*JuZrpNU^QyYNHP@%jAn^taw`kuP}gUC3~U+H^PDT7PGIkDncsES3Fc;fS*Q0_xnp` zNRlBU!KEuk)a02Nt@Iy`qmBCZz=n6Aqu`M#H`2Se9kMUMQ%8U)sbFrVKV45X?VPMa z>ao9Xv~3fyCpRR|+_C>97yi6&K!Bms2^I{=AQOSr>{f6Mp zFTAN6In^4FEHFlkw}xQW$TBU^6im> zK%$?jWyJV-Q$gv~3!L-({S!3vnqYb{lCqFIc`_Z6dVs%bZ(V{hTB@GjC{|1rCY(a5 zpX}ywhDE_Cwxt~g&bG1c{z**=#o|S4UtxJfbe^*WBA@n!#^W=jX2q_^shIQd^g4s+BYFbR|0Z zzQiHhl0h_sCQPfcviQ)@r^rd^h|PZSG9G;YQb|SS=N~j1aTg*tKcZnjoIg8hG}FoL zLTHPEipow&lB7$+q$axPMJQEZq~npNmbp}~Ld)jt>irLuAC)$WO~ ziz=8-$f&5{F($xJ%di{L|4JPgml>lE)(HD(>6x&^UuSq<(X&*j>4w}+V{j*SBQ?)ycmRIrwZ;6 z_QTIPCMC7fh5Je7oU4U}1?T?#`^f{W%C)m-PSKU}-~eaxn3`iZO}|D@Z3W+NMRW9g zBy!*bJt`XY5}Q?l@_jQy-E$14KP`^O_Y4CPTWr|dCZm&g9+#(%B<7W z=yM^@II_+V1c-w?e6MZ#D8f}d^F5DRbd1MKSsd>Z3QZJbB_-d){7FM%)4ezM)rF2g zb%>B$iok7imy+1#r=!B_UuU|3AfP>mbr$X)~)Mn(D6zK zDJi!8+_Gs5Er^F#9g$9w608FdHmZ*FAhC@M7$1IT9|#QakrwG!Tsl3VM9(XhzW*Xk z)Y?zYnH8uleGu@CD=rg^##JzVVG8M}$x7hEc)xu`}2k8KD2ou+^c`mf+eq_;4&ewb^#lqSh4Kk`7~M+ZcEMf+og; zuIm=Sy!9ICt}Z4I1DBi$^P&|BWGv(DkPy?80eshTuwIOURxs&}a?t9G-(*|ydo}_e zfF&HQ_z|SSy1#LrYHq7@IQ}p#t%ezQ@u(C{==FnN`yjA9#9pYiJAq(D9vX;8@Vw0; zpTtxauVz_?f6bF-4vb7*y=J|*xcKg!J8!a~5Q%3ZQl5fQYJ{z=m@*9S5yiptk`=}F z{k^|W5>PxcW1+ras7q|F5zj{#c_2lTJo}N9g6U3f6q%GS*eYpsoUE*c#O6{zdh`l0 zTZ+bx@d+3%;?{YrzES2Y=H(euz6UVEcnPew8iu+tI6=nw#=TP?!@NGh%uYd-G@>KN z!$7hI#(%C0OzAvPs-=cV5|YQiW?1zqHN&SsOr$=;wzMubMr$QS0F)biz(qW+R!JKLX} z!8@s`=E_%bNGxEhiGq?+U6v>}H+PAF;{$<%Z~R!ShE8wBFFK{96nW1iTk=hgO+8s9 zHx}ndC9{|*(eS{`{n0$3Cu>+%iW|1(W}zuZZQ|97hU$>(0^Ozu-%v=I2k`}IPiz_~ zd;=0rvY%u(H6~=X8WI@iJUu=zi)`M?%ZI5Se{CJR8Z^95NEoJw%}rF)AxRIp!-7Q7 z=50JZhg~g}W!vHpy=oG0y8o(e^Iehr==?`D-L;(6@gQpD4;2Iin zbLaJgtbC#8a3{`%Z?I5I`yk`%_(E&Q-MY z3z;RHiWx}%HbXl${`mSq2EOxX)@4xPo^87^xWb<+uyoKi=A_0WeB@ae9f0YI8CJ-& zjWnxMj7pwAjxzGyuzef^dGV6isyf z#*IzzM0;DbPMBVfNG@_t^hG`W~L4z@LStV>~p(BE6tt?Akw9FZaIE3RTAHXw7%v3`Xr?45Y{ zte9Qr$y0~8KxKVo{YCAEA0i6STb~pHx2gioEkVB`cobmd==?Ba`ugsLCXd=_`XEXX zHSElp2hfz#ooDQ^uts3lQ~-mm8H6oNzflpO zQNybS4jb0MZp^@85{BkBhkj8h85t@74Udd$!Vemq*MehB9G=+uhH7lbD(S_j)!jTi z$wi}JLW)XCMc=r6Iw%1{v()k9ckbL-KfnHPqB-uOAf(byz#7odGA?HV!021!_(B61 z=o-RZvT!7UiYB1s)x(=e02%V-)-oZiY)|5&ZS!AN*pq7)0Ud?g|5(St!&8Yarib}T zs2X|Z2n7_Ai-g#+hbXmVwdCZyfdf@xRB4z!SuzS&Qv3%?!5O=ZhnIx6OJ2Ub#YPwn z74W5Ucn@O%uZWd5AVCbXUQ|ytnpTA94I&@D>=ny}-XMQ(w|1@Sl9!lXhES5?lJm$6 z2QsAY3^+6Akuu=V=*Pe!q2Kw5i8)|0&`u~CLmZx&VulOm5>mGbfEVus=u}sGp(viM zld&43>W7R6?D9QiWW_J~?^?g2wqdqWKLi6^G;xS=wJK8mVdxza{8CPK(I=+`8H*^r zen~{a8R`7;(0U+>Vf7&huaGdiqA~Mj7PVLKzX2Hw zB3&f{8SCbsNNC}BzVyeuVRR&r&=`W|EhOjm3HG8*yv`qXgyuu^G68n^3qt=*5@Dj>vc{ld}$EH|@lhFu`p0TwJ5L~_zX}kMg8qf_`cTCWv{~kpIwfEno7Ba!yXu8CP z+uc}{vgV#FWr@zsJuT`m3LyzzD2e63Vq&qu{Y{M8@cQ`&+kMys=d+g@wS)3~oalkB zJ3c+Q{|ylTRj551N-Lt5J{KKpp)%KmhYx?r#h2IR7%4djt5XT|zBiV)XQsQvGNHK* zWDE{o*evFpJM)gd;Hu$9-oGOao*_tIK*aYE>dSz+%g|h(pstS{MXh~uq{;X8ZFwCB z-~b}m&tGI6+d7u*U}Jc`E#2rYj`T5+nuXw_jMR=tAJ}7TeEj@uZ);?q;=$99 zYU?7T=%*k}odID%Ox;vQY$gqcQ|(bNX6mQ;Be;#IY!Pw#9DvwAVKS%S+)A^j;Jan_ z_zdLc*Dxdi!V!QyIFmF{p9e2 zo0ku7?Zt$8gX0{E&Mu6c^T;hEzE$7|`Ak*drtYT-UsHU zEdb1(v3VUaeyhLAw)EXDugr<|2rln}razwd)X3g+gcc)!`~)xwp{US51b9<{uc}DE zovgsiSFh4_Joguo$wIP0957(h;*#=zw36uJCj$5+f$E73X=rF@JN2AiD;^0$D*eCE z;jxb-LaQ+EBhbzVMnk6Gv#X_?mHdG!W1O@w6d(rt&XAYa2rADb*Ee`zWR6hf1T^G< zF@8tkQgk0qtjP~H7%mG*k*MSBP6sjZpchm3InHjxMn^{{&!7Rx1D=Eh%qO&v5zy~4 zH#G@%&XCWt;xak3h;A?cr+60#TaBE*i93taT$RLsDc|39gx?(x{d+N+l=T{5j|Isn z1S7Or;=23ZxpP)*rduWf4lnk<@Dv6Z_1Z9R>i`~lYvb-B$XX*UI-)?x?#QRcYI1aC z{*L}dRB){vjz^NSmFRb}P_d*%z8ukjS7!*a&;t3HY!Vq9fAHZ5JL(a8!TdDezfy6< zXK8sWE)s#5ut6j-J^vJlam1q$()RlQLLf%g%lK>miQ0zz+R zW&IULIj;5?)wwl2uKp(l-BU((0qOc*1Lwe0hg)6doMvYFU6eI7gAuLL($(T{UfR72 zYzz zOU*zAd&GxBPp@FIHt7?NB)R{v&2Qo7uO$pvuWh<}Jl&`sMh>>aS=fS9+z5PD`sx+b zV;r4R2i)`bCj$#v+}64TrNdy2<$*OuSmjon$sQ3@ZU#Utd@$p)n z#xx|WQ0clnx!2xdyGLNg4RU&L>skf4d@%18CZL)F6LGl6q!&0Kd^j9LUy%QWujf%FgaK z$F2{3xV7lw-9P=i3tPPI!dEDM#(EzVmAKO$eZn@M6`+7quK=fvwa0CqwPhga!{jpk zW#0AVCk^f@y_RF8r|77P1CG9Pz(0f=*hk1Xx<->bcm6pjSMBPs`0nT;!BQ6^&z^(R zdQ{K=U%C__d9GeSP0rJgUIYHF%NJkt_Z|6F);%Gz@TZ?<`;VyXT<;w|uusr=%6aE{ zIehf#&MyHG0uN4Ior@AWk|XftY46Wht^V}>VuGUtl1~ed``Iq$P|x6~TN_J-jfCwA z9o{gXd8Yr>v4Y6}Uoi@$X^4a&_Gx?ycu6^R(a8%DCP@g($QJ|;1o2-7l;dW7vu$sQ zwAz>h~!KVlukD#hHh0(^7n zQdW|1C%+SpNv}iOlqM$cx0#N_1=aK>UZmB5-Ijhi@2>A5frlcYqkiN^T2SlcjHfme znb2g+eLtaNJMP_Jy^jY$Y-bXJfP83jyCZ{>-8fGEMsX_Clejq9^8PZ#ALq1$hVI0x_ftQ!Rlzkz@9V?tBu4!;4XNtl0 z2x?BT>DMHivS<|Ymm!K^-X=-4cfJ&}Bmqqp6pa#0iEIFp`)G(zWdrtGMB)PJTSrkL z>S*It7y|Pn=nkECYX@**?_-Nag(9ZR)42yEndR)9Pu?=pGu1Zd+ycy{i#b3{B5}YvNUT^Dys(pa=hD*ng+xk)3rD(nU9&%eX7fSh7jNBB&xEa74|YIiZe5Kfj5? zRp%b}C5PrPg?r|~NgtZOp0tJEznB9@B4se+Jo@nU&OaoT!2K4(1BG<;4YT;#3xo

    3oS7#L)NGxS#bTQ7cgLenZ6 zd#~kc4;v`T=vR-enqG^o^r}7yxVP>)129%^*^L*Em=}q}MAnYm*l|H28|a=tBhf4L zR&=b{zG8irHq6$zI!%{1>tjcMk zyAHi~deC}PL=AjU$WGihl(y{>VGv)0Z#}o6J#QZ2|2r z$zYm}h1rmN<}MJ3DaXEnAeLWAiBslI&nMMaH9A!~Il$BUCLDAf{+D3KD+8Q`5UIwU z)65VEe-42cxb(br_kfEyDO3fnIm^x5ZPyl>%ule;PAYAflK}QDfhed$=CU0Qrmgbk zF4GdjdkYtHNO`3s#8*D|&8d|~SLLiK^;)gaa(7cT*#4Hg>DrS^qz?UR?a1cwEd2{~c@ya4tJ)IoHd1o?W9E zVmnod^!`?x+X^^eOr&yOzWf5|&OMI-x(G6!=!BgH#Kyh~x9cG5Xn9N&h-?P%hF~M6 z*H@4lFEJ~K0#$c-fNso}Q>sqKW4PrxSx^2E`#ePp63o5FhF-)^hAB#|G`b29Kei8g zmcM5#_G8BPf!3RSZv0&Paa}=<46!Pac0luzcA3|WuJwTvb?adtP~+x4D1d=kmK5~a ztPU#u$ey?Z4A&@87r`Lm73e=h_8rg*odddHA@w61OI444t6E-X>G7M(~c zb#qE&FpgTz`24IIV6r-y3JG4JW`F%AkQ^u+n$|Nvn2@_qe;(83kUh;^k@d5~!!=G~ z9jOl(!2`Y;Vq{;rix4!0gNB?37=ffIWyyocU=fgT|3IVOVy~6LYX}*iLH!R=P2qj? z71=Pt?yNH}c#wF90H{TEa7H+Q{O8j0GSj0nS_Rj_l447xf#SigFKnEonOqjC_|C z=If@sR#!SQ$9HmLRS%ee{tF%GE^L0W(|CNPt9j%lRiDsxu2ljt1+I)5!H8GsG7Ih1 zM0V)MhW=Qza(o+jVNA{6qsQw+e)=^FM~>RgA~2Ak&afaCCk6|m`GG;inDGe;5phARdy9?%dfVcX2lUAeXfRBe4k(u0Zgm0z~3{fh{nQoSZ4wd6AGnMcjELqgHHtxm_YHO*yiXRqXH>Uz5Ko+ z=k@K(Kx~RQ4GJ?SCi)i>Yd?A6OLHbJs5>Qo|I#(sVr0n-YwaJ8TAGwmpNGUgfgDw*dgf5Lax-oU+xZive0}r>*_SO6A3*UD zhX%fkmf_#fL|~d8EnaUb{TS(t-Y~f|)T~KZG72Fm08D{b_HD8tqEf9m`X=X24Dr3I zLTguqcTcSGxz1`)wCfckO=d+VUc8%{=r6zRCW(SGqkC!v-l) z-9Ps_CuV;esMUrTCYc2?u?u{CU1_}VaQh$t3I>u7-yh>E8$ROz^MMl$8%8 z1y+zILda^cC;%+*KWhj>!I-q0zU3IczD*b5%x2ZVjxW{3I;=<9Hiw(C#mCbkG)dn+ zKy{a&_Zp)A1n(X~rXbA~$e6@&o!JXj;+Ff(Nk~rt>=FrAHK?il=Yq}IvfO*PBYc66 z7;YT!_)*OFk;@eyK2)5%{yC*YjS1F}y^>5-M4?*D(#pV2n!}YpXVCA292RS!>mkYT z@#C^Z%GLLP82|3g76e>9beglzNg9$%<%!B~2Dzb;(V9U)&%eIL59#nFbuKJc{!O#R29XiPz#odna1!G!uh!0|*pHaK2?a-1e;>3fib z^ls5!>EO!R=113gu87zI!$s_q_g*}Jry)wE1<{IyM|XI^I+ZuxJd=lD<7!7vSJ_ai z=8%w*MNlb;hA?IW@e&FTo^^&733k`4s5gfJcrwf#RtLouBqGs2SSOLdIm)247kP5hmbWlUpx<1}PF^_Z> zL0&Eh(ab}Oij{wSdx(aVMEPC+8v1VZ5jgBTK!33TLM`TbU~!)Q+xY>1-TGgb75F*7 zIApBDUk(Okr@w#Md*WXk7wU@o+otsY^H)Rf)(w4#lt??3tLShd;R)_;0Lr$xCQas_Z4&`@Z}c9#K*FHt^M6fY65c9E zobyo-58O!#GU%LQwz;5*h>9-u>aNDQX~QvCdy+G*|21x z*bguT?HpxzbP&$}KDQ#C7CS#su$ppx&j)a+d!YV~R4$2tcV5HD;?0H|Zuc8CU%%qL;X4L3t15jrW zL8m}Jv0KD4H~VG4oV(-)aiY<+hc9b%n3l?q(>TBG%QcKp=cIk8mLTc^T-R!XAScLu z{y-|aytH)XMH*Psfn-g4h1&rIwNm<{t0>EY29c(>%tTwCpqs@Ll=okUg-sTkfyH6i zOiPrc!^7U4hFEa*QZ>3I%b$Dd^=DFm4?t5~xy&)YFWFmB3Ys5q-vW9&2zN+unTu&} zzXwVTOd5=^X6t*@SZiXuAvRngdVA1Jy|qyg0}AgC;{&<(wLT7xCJYh zKH~&U7dkpRj;Fuwy?_7y$w+xwAHAO<6JJb#1hvCU$N)hu)+Z>4zl1KB`8N_O_hF2` zvgArblfaen;VBbqD(&#Iaf0Hfzi$D}^`m+TA5eMULRxDOL9alc|K$7giv9I0e@X#j zC8Zv+88P?umXFRZMs4-^H||F5(7dlS3fe<2j&#S z(@KG{3jJmug>OoIL8uhyBM7*bJzM_ynOQDLn)#O@X9|d?bb@w*JFWU1Mp}AC1_rO| z`^!OC&9MRxB2s)MqfkImIE^%uazw$%&<7m2`9LBY3pzn$Gr>Q~0dSfk>q$IFv@gOE z<1GQ-E-;_~I+7SbU*Iq)x_&;mV;wXPR+`u=uxgW^(kk$sXH%;OnBwF8L|i1jfm#yN zkii!1WIKi?9e!0cTG>ak%XWR{A@q|q!;lDJVa!HWB9Y@L)kw*6R$D9j@h%&Wu>e}U z1H6A(@H_)i331?vBbBT}>(*tsSA7QJYOV~66!Ip|tRBu52=?bl~38HbJ?v8cGpX??;wP;v^Pk&Vc9~Ui@X13c&(uf)ko&;`| zHa5uY5WEm`Wr$Nd;JS1{@aYx%L963PF$@5l)#iq${=10xcE4-ejOSb znhUW&o$kTbda!y*VeIal(Pls=WdL7}eDGL}g?_f9ucM(Yqi9f`n*Yypc0a%Y0Sy)bicsZK?|EIVs52rHi!>^j6y^Icp|@M3y4LSZlI7DhG8;n$RKAB1sYw$@<-o`R2O5f4{%J_n(&Q zI_G`Q^FF`*x$oP{tDx=RMN8$=r%yw%_B`m13G)rX(}8}AEE>>wE?5DuTeN>rr>p!y z>;zKVkuYW`Z8#s(k)QK*KCO)??#@=d4Dg?&sb^=y<`6+e!5HxfqNFA0CqWq!j3)3u z<6Ou13l3YL8wd^;eW1}ueTNo>28`FV7lbxDl5|(9b$Wr?iR%z`L4v=rxWfnlC6Tm< z2LR#i%zO8?m+&~mBAn?tYX00cMpKm`a+NP zJGn4?%YA4{)dH?C9(Sv^4;8OWu@(kS75C`bC18&mM(2L+V*o6TjEr_*NoU`e3(hR# zb_Jl(qKLUpL#sH^AlGhmbnAF@!-6|2bUD**l44)iMo*EJArn>Iqz61}cD0|uC7 zLB>^4L1Aw2y5!^6e>YukMLZoKb1+1Xc2H7eE zp-B7 zZIi*Ejg3uA4$ibGf4|#cN&^r^@)WTueC-G(2yH8x2%H4UN03u{d${NKi|`fvsQ;GuP!`5QF-wipBk>aCyV{yl}IW zIW$JzCVGB?!m~*2L2X3n#L{^eEm`y_KNeVZuy!+RfL!~0No6j0x^Y=OLny2RGK@5* zK|u7XqtqKcy3;tYzXHe%9MCW6Ne&=9N1dIWu9wjgx5&_+ne-;cjGhP4g+~V#j54qK z`pgh5OAtW(A&1)gS6XP>jd-R1z~=Ev9vCj!M`}=V{ok_8*sWM=C`&sP+LF1a=lEA5 z6v}tLW}arOHAT8VaY?gTud+F?Hw{;|gd!Ot&=z=;@X%0EP!npnJvoP+qaHZ!vkR`e z?6cdNB&VTE#m_dF7@|*=_1|e{`x4D4W!`KSZE_K`JCo=M zW#XoUQ3jdNEzcMF=&wI$Xdra#Fit|yLpX*ANPCOxVo2!BOT~=iw&x4kVB*!C`3p1M ziGS&{HTe8^D{VNObT;C;T#t$1M_3FwR-FViqjnJ8avcwMbgl43*U_OSeRX&sJo%rX zek1S}gM&0odwwc{f0)cqqZzz>npu3u zAQ%6B{@EX|GX3P=6fasdU{}zND*|waBEGjy?oMX-;<!`g~LG5X-gI`*NhR_76oRICc7Dlgm&k5M-cF8`#M z7lb9K-gma{NpB^q0g$JdWVktR{QdgOjNIEE&l8B&P^pKY&HY!u&lSI0_{V>{Eyu5CBhK1v*HR| zhr~GdYPjRNoe7rj^5TmM&{8Dyo=he)uU&OtMLqx0ccd4I7}S#%p*HNiBKtPU}V3b5EGbG&tK<`TjswUW)Y&&eN>>`|bC~u=oYd@zSz>!$1(}q-s9`cS}M+qIj8`=}< z4}efZhkNwn^F`ILngG`Z?rBhCHf9p}b^_Q(M+ood10e5>-DYqSX+Wy|!?3wUI0eQ= zWY4UZ)gly;Y?#I^x?Z!URNPSyfWNW^FgKZEO=fE(9Jcld#&;JiHA$^5FVAOU}5SjUm$o1_v$y z$EUuTX)iC2T>Cn2p7DTBX>EmB!oFM=X5E6)mONH>WG*rWelK9efqV^6*ZcoC@N64DBh~FRK?N zn5fFX=KJvlZ-2Cgnp*1l^XE&1PoF*eP0@7WqD9@u%0p?UiprXrRvyKBLqbB1Ml7SM zw;30GLs5!~l8dGK5opsRVS%j9H-lH=iuTAG_{^z z8!X)ai0b|-jb}6(&D>>sz%q(DuV6QaqQr63DQr}jzduHQ8XSs*DpONKLrHpRPF5BJ zZT!uhp+;*QD^Ii>-!-~In(+)%Jcpsm%F5_;)Q1NT9g2|R9sWzcOKE4tgXn8d?pxOV#9K#E(-GR|=i*M$Nl8aKqJ}2Ec>4PJtqWZ0J*TE?NYXFeB+B&X ztqacHyJxh~u}q_PxX%6N$pPfN&g{ne`mr3(--9N{)-X(W?~YK`f2t`$QPDJt`oRzh zk^LR!m7$+~{7lqWN=VfA`j|#f2JvJKf|wOs6&OX@zDEu_zM3Ew$ z!w;+b7|muc?7E2)1q9NV@%F9jlBG*cqaO+c2mi2-(f5>Rv)N&zXGND?ubn?f1X=Gc zi*!rY2EVJ^D*};3zm7=(cuHPNeNP2n>VnMsORE1Yw#H4d1>*hKKAuB0hrhAqdS7s$Gk^P zj-Qp2(*#i=8UwRx%cDn!BzZshE+MMta4ro<8DE=?^hcO1BTKQJH!3VUSot2fL_Sygp+U|?Wb;KUvH0ng8F zOlItJkBERxm-yEaJ`O|mMoL;bR?z(fN180{?6R(2l^*&0`5ki4-#k5S%*~_pPmZa5 zI3!9@#_{5uQBOG-vt)?Tno@^NjwN1(cb&YNkK?pBGVS~0qH|7{ zs2awJxVm%`}p?^i)GVZTd9PtP$tJY2#0lbgGH6Y2#T0~PTTR9rKwG1S$wvbN^f zo+wF8{UtXy*B(tCSONH`%gV}LkIP~Sr8uwf5b0=o>9XEjz<<9PI({3XJKa4!IILiY zKpy?Obq=@)Q;Uk!TZF=#^76gHJjYAQ=JE`*7Nhvio0H*fVv>~@t1_FEK@d}0YaACF zdlg=?VV#oXZ`)jXBqTe+wzQ@&ios1_vM8E literal 0 HcmV?d00001 diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_33_3.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_33_3.png deleted file mode 100644 index 8297272eb60189b0a838c107bb5ff89ecbb306be..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 37977 zcmbSz1yGdH`!0>Nbb}%YN=k>YbV>@+B}z!MAl<2yfC@_^NH<7HBOnS3(%rB~cP?;%$>V44zhgTcg}g^d7n3S-)U(m5#iI}qoJV@sVK|qprK(>qoJYyxq}1V zp&^!U20yT%vMRcFz{~H>t0?e0o{O>}6b+4l4D}CvcrE}5-V}9LFmQkFZ0+u8>Gm4U z(bC<;!P(ux?&ZC=uic<_&Q1b6{5y^Ge=jo-VH{N@&r>ZRLj1e-7_4Upj{KuR3I36qH;T3X>MTlEXczdLyZ*4?bRB%|J zQ(|FZ%Sfl*!HQwdoS_PN0TVjOF3W5?LU{nWc$MZz4Z$Jzg?tk&|jJb6BDri zjQO&N?)_`!p{l5;pXR9hm0PW??FSqjhg_qgRAJRBaxSJ)q*N=^b$R3S)dyLu7p#0#nH9^mSF( z5aPk>cKz8;m1bxzz?sqm^$jya+!weS>6hZGIef&R&+Q(&AlJJqSYtl0?I<9@JyrF@ z`ZO@-G&Cp0I@K`Qy*b~`dR@nEi`IwNH{xcF%iV!8TeXn;;0fy#)IMBFfWCjb5auXU zV`=?DV0KdH-J|V6&FVoXB7rNe<9YTlv)?K+a)>Ct8mXMYqW}SkyO(?4buOBlhJ20Y z`*C1X4+Ww%{YVt#6FKj?qp`4{7vc9~f5woLz1>B7CQzdm7!VU;5@YJ4RiIO2&Lx_jaW9Hk;OyhN&<)X@|LlJwj=0HCZSD$s*dC^3 zQWmTf>?U17*ou3L^#;8rxFR^D{k1eC8wN97OOMuE@+Lu>SX@YR4r&X3X=`mwErF;* zPcg(^WX~4mV>)MXkFD9?`@Pj3H&pefT|WC!C7~B42cbKLlt2v*ys=l{T>N`uY; zgKW-9bQ&yCB;rOLIe4&6QLayyg1Oz>MuOKqe%xwC+Q*&__1VaYWV%=n)?_i+IH-8# zcuTyqfY(eU&uX_t^@cv>m3iAx>qO8`)~g4>XL61^iKe+e_)iotp9dK%_P=r*kww5r zK5A6A-MLY7da5NAx~Cx2t}}V-zL6@zI+Jzo6OVylx2LCh;|u9)4GcS-OYRhUj~1SY zys8?iS_#HbIZf_jM<;F&49{Bm@NvFE*UWiv2?(dt=}9=5m`0 z@6W}nta6kA>_YAQ>Yl%8do)^y#*w;h^MrSFTxbePHh5+^oE6Okj->R4geaOU0r`e| z->=$VPHu)~krZJfn^f!dHNV{h5{jBw>ocUGb|9Z#jC-hh`8mw zQEIf*0*HDFW@L+#PFZgSA3H58gNiZ~Pc>mx$2OIPY*YJ{<~SpP3+;#B>*` zNqOZMsnc+ZjxZU%ZaLVS2!%H`u=ZZR(|n8Oq{fz6I?Bj_ckBV@R+(N*HzsVxO?S3N z(qsM)-~+2Q3zlT6*o}R5GKKQvry9Q?OqUBTP&-)aLOV@4KG6 zo-Nw5p~2BFGgrkG$Zxy)i_sy=Nx`u8yrFN)2XaO}i@xd_i|I2Ns!taq|KzFJHs9(l zvRFK64R}c(U`usA@$n^Bp45DRnyoQLyI4KEpQrQeP3?~f4m1b8nj3hdeiBoBg^Y^I z@=ana(zoqI{-)b>u~<>Ryg zQYSunhxgMKVbYt#bdijEVE))w3=zTV$XAoL->2}_E>e>#0+Vi#C?3mNc4*iAg`~ z$35ZPzuJ#R#GQSlAn$b2i8y0UC8g~IqTS%#4;}AZ`~7n9v-E11ASV@56apcIwuW$$ zNRaphBWz`R=ro#QI@MZLcS$YgwJyG+UALR;ci5-)iCl)B!FCS@gh@KosTI15?PvK! z`buj?%7W4*AC{5Sc|ulzMr@;)Z<^!ym10__MExE6$$XYrj$;yEc?J{h1v0%j>mcxq zS2JhF4e9$~*RVofK2ZlH6!e_$%N0v|#cgk_`|R2IYViB;{U;*o1`-)3LbiEdXmEdi z(@tRbv_1{S#+2vwR}Y$~;`jL7EWbO9vS(AaTinsbdQ-^_FFYnhPwOBlR|}9tKE8ky;CrnM<2d zo5$~qxyT9kWHy*}g<8KL3Dp12KZMh^uCSK$)DvUB1?C@D5qWOBQAKs$#@g$F31XPx zdFDIQb0L~?%s3Zh6WMj}i}NL;wv;I^q&RiP!5-o^9a_`rWf~f+6x7>aDs|IRK`MS` zyLd^FDS+K@_q?ayI_%|Dx0ncAtiG#XJUmmPw?BVz;*sn5e1h7(+?+`7)r%;j>3TG2e|D{%sQ zuaj7NdHLIZoe8vmJ74H%TO`QvOp5IbhwcW!Oy9Lx%@IPjZG>(J_JRao(nj4@`v-0` zT%U*EVb&Bb8FKN{KL08$hwL{<3(^cumVMs%um?KYU*0qE)xCS-^^c{6tg8%YSC^k@ zV5;HsMFpf*R{lAxuDmBOSmRNn7mj(nE8`7;KWl)|vTF`h<4Mg?P~^eLk#L9RU=yu5 zMbZ%1Rd(pqKR`xUb;} z7y3PID=#0CP>~qT|N2)$v0e!dW5homRxT8HgWQ2PRzLc-R${5GSMuWZe6zPqQ$zl#7&Za`@as4qVq&nRT!GA4k>th!;Nh$TiP_=_j+ z52nN0`I?Sf`o(6Rj&3%v(Z*CC9{I!EN1E543|QYwuAW5$$_P(VQ)B=Pu`mAA;o0k3 z90O70j~{YC+964z%NBz;?bkxf_i!K505*A;oAUC}UOWey)n&VykR|d#dhYrWtQo9%_1K=t!Y z^vPzv4Sk@6#I}!xDXrJ&{0NhC+%!F`ObjE80`x#Mt049a==V;q0D;Btd^~znV)gfr z(*=U#r0uhXwa_O?xX|X^;Ia53H;S=zjowG=;l2&Z^G9ovl`b^LNV;MZx_M}N=n2%K zL+jj8@CRcAK2f$MN#P70KGooK3ToTm_sm0`vqS^Tm!m?_ti1(mF5r!dkLtqHOi~Oz zEQGa)&&dpMOt4JQxo~-)@Ezq92EE|SBEg9+cGBn!=t<&Jg!f`rJDr7iC3Yd1xG)aQ zM!GLw`b74s?BO>ytED5Sq1F4gH(4a6f}JF=%OjDf$IFpwLfd#Y!dNx^F$O^7 zFG)JGODqv@0_B_+s1~gLAR)o(%vpwg-SUfci)M&fdzDiXG$yopSNMro_`OI>5sWi2 zgqeDE+k?t3F%ikBgKxoN(yrMFP^SQ+36OJKjL#43kAKxFemr~0Ew7j{eUToje&nB6 zDag&kFVWSEnnRbLJcJ755q732nQ#H77bNmxm$j0Sgs?+_n(?_tzql1L!TRJXj?s1teFSlfFUExO`e5QH31 zjrGjieKUinWa}j15GvW=5Um1ClOfE|(C;|jl*X+pE}u5qOgU9Fe!5jnxW zX>F`eSH{Rv+~1*WPOfWwocb^ko(Sgopil{c+a};9-czRwmb3m^MNdpFufl=a?<1+C5W$m4_v_9&0n6Go3;it(|=K1#e$+KNt zA!E5NGsD0Z0Xpfl;Qb+f+p8vXO{?XVfVr52`p#6^0Oe1>XY+VY`C>Nk68;3>^gd^V zr^j}hBEHDmerNx5`s4a9ldYq*`a$3Cmx$SIzAUTudyDRi>WJCl(Kruy3qdnMfPt>h z3VGkRmn2<`7Sts*ba zTAy-G<8V#c6!$Y>WFYgIh5=$ZZs>H*{V9SiTY!)Jj(t8yf}hQ=q&C2w_>n{}yupPO-n9G-S1VL`=3Iy3_K$V7}>Ir^JXOH+0>J1xl3<5P++TqzZ zu{TwYje7&S?Wd zSw2gZs^GWOm{C?Lw?HP1`}Hs)ET#_L9}~aC>LD2u%)TnZA3Qb%}(QzqTJFSWq|+`L+I+mhxFCJTXd0g0PlhJw!0sR?U& zv41Q~A&-x8=XJXbvWfg}g27M!;rrS-bkP&R--Dfl-@+T^{x*MBo<}gme5WSf4N6lw zpAShdl_nhBT4k1a(Gfyoxx`+HwC6DUbN0$)hIJF9YVy1D+P?jmdU4HXU&Y4YR0wcMJ5tiVP^$P4@4c?C zXR@(WGD=X@;Tl=b{{k<3lNfVMD{Pk{sFPCS3S$tIr~A>H{_O{gREcHh8J({F!2#z@ zG0DNXj~MEP#6%vJO=K$^vue&%;m=+RcNQGoUBCd_IZ7#V>qs}Z7zA{LhgiylWy67HE3`3kpZ2;{u_n*9L(cVA+(i#-pT3)~T{ z)94-NH>PN<8J>Hk9g8`6IX0rb?^lfl%)-=^D(F(2w8DI)_C<$icgP{$RLCiPqBor2L}djnpApVPHTmdR)v-sW3E@zhfNFD!yr zkcPknbCbg1ZoVrIuN@4UVVnR)JlE75BYAnZhVIzoP1WH`QH!lxn;|6;Ly-8IPnZBcHrg&6ZQ zGKVjp#P3K`bPvZoO}o`;DB(TG;)MRb)5_>B@Xm*`JOa6PU+k$vNIlO9c7F@|dgFH{ z*e@{y2?8p@a5i&Uq_${H0yDo}!Gj+ZL?~7D@dnVZus>*A-5Xk-0)nV~miAt_{<+(I zZ&_IkzfmS(c&L z0LHr;RZ&xUXX99=T!U-)ONdj#?5p1ud~1&i$8dNynA`;$lVKIl|LzMvtz|GeiwyGu z+{CNsp`UmB9_=qB$?t%ngg=x-4@6?@EQBO}3XOZHR)mmct&ft#GM~i>SG_PJQ1i%8 zRf(5nTlzAy)H!1@g0T=?<@M3Lu)>6KAq|AvK%ft0pKIZsK?|?Gg`5{#Ko)K&jdHi{ z5X^j*xf03wX$QRhEJda}VrbXH%a*p*d&<*T)9c5Xb<8g2R)7{Nc7{14=xDA;APLGx zt>9|zQRw|d`qFelNGm4wS#V7SzIbYLg@vo_=x>NH@3DY7H{H^fz^_s8zp=Ky2^Un9 z0%jF{As&tKM@H!*x1jMyWerb@?^$o_wCoyIB%&TuxXWLR{J{)p7!Ap(JYbKCiI{fu z|DyfvT}08lsGkQtkWFX8c~QbQru6QDFx47`cdIYp9h1IGLp%+yKaxe?Q=kqeXu9Yf zUqCMVMN5TuKge+xY7;g87qPM*P?9EOb6*UzQ^oG}L4j|993U}?n+E@P+v$qnw_eJyL?HKG-_!?j@EL2c5cEk$6d@5@r&L#y`1?NP2_&v zGUXD|*e_o3-Fq3O$G|4-{)(nt)iFD2eFs4nOA#eV!L5Lx`(@X<1v?9b;&gq4u1c2O zSms!*Z;G=FH@8cW82*UbAmup(SbywoS$I8ft*SSXrcSJCMAMXGGB_w`vq`Z{|iA-Ax+0`n3^Ut$=x*5YsTabaC@GK816}x-& z${PGP+LJYS;;pz(x!J6xD;wJTN8!pZ+1oQEY&}`Apx9cm3ZN% zm*ln6ZG;n94oVeP2h;&`VfnYXpLp=W5#A(VXTPw&ova}ZxS0fYyn!D6JIqJG=bYy) zI0Wo-05)_XBziAodIFnKJuW*HJi%g6u?_#s4sl+UN*9_1Vf%5F8gn6Mae?J>5OA^= zA(``nKI$=zdl)bV+X*8tgd0Z&WRojVXCPczbHS!e+$VmY4LSH8{XT^zqlqoP~-RM7j* zuIZh*p7U;sKtJmFhC5QWcm$Dh+d0{}6r_Dw56@0KsCLZsGZgrn6dsf1K>`j4%EnsZ z6@m8>O;B*!3E(u;JmO+L=86AeT41NQ$oX{4p+{((t~_fXh}`|&BHjiMb z>Jy9^{=j0?zNhg5nq#TWB6D#Hsq}9&=g@o?o)<}*K897!j77p7N_88adu6!|S^R3m zw;M2tgbr!Hk6Psh_VtQ4FtlJ~(J##)Poe9Jd`RU>GUPFnU@LC1Ijy^3Vj3k6QSvNN z>|O{F^!h`Qc|;eoBY-HDz(=|Tu2t!UGNM(dq^pkni=j0+4*wTJe^w3XsMr$c!13#O zf?3uUPm5B`bom!@=JvPlK)&vbci+{c*?b!o(X!Yd(TV`cX=nYm{dp~?i937kjXCfH zjpu*fuTlU=Y3o{Q8M;LQ{}dMO6iMJ5s!m|hargX$piRrXQ5-P7W}W~a5G%zR zO}8xiO|^2+O^)2b9=wWyLu!Dm=DqV`ae#|Y25^UFIN@XAu)2zluHQKWzXNzq@!~J1 zW3)Xxo0$EEfjO|hm%xAEd$o|1p=U!%d}0#yDtU)2(_cw!wD#YIm7X(pzgL-&{lM7SK~N!xroZTr2l z8;7J66?feQSf6T`WLs#nI+qh}i07~+vpWW~Y8_B|cvUgCCFenPvXp8Q z68BL5&(8CN(z;XM6rrKO;1Si##OE1iy@NrALv9=UJQUm{NmrdgM*H5L=l=MttXPa+ zqm;*^fdG7h)q>!1x;6#Nc<9? zp3u@5;G#G>`ThTJbpF9ZyjJ*f=S+@9B#4ZkP;pI|s8} z9~UQy+sSXl0XIJ@&~By%{sF4LzhY4_3e*$p9%**;WMz+7uu&B#1Gk3lTS34rVeFa{iV#N%(4Er`n-!5T*F`S$oM#dP#%FsW!gr$0$vhP`1V8mYLi6?YxfdbgU6lXQs=$jp8U*U_)m@G&LsbsbbOv_o3WR8*o!0#Cj z%?R$ViBS7Y04+~tPVvj>$%LOwEY6a!_&-4v$;HLPR4g3)zkzC^d3SH; z;`ly7XUs5fr0)&Sun^a;{>Q0PxYl)3{c$N%MgqQ5{i@*?pkle+>6Om676r?&x6VqN z%Cdet+5b6hD#`i+fei7;j6%h@BsSl!k)zFF}hl5{twZA*{)lj zW*nPt4&M<63pgaSIy3s1m6|-*KFBu%TER92LGwcM>J^(nP=qiL&)%6ur27i>-6${W zXA2L(#YBW_AsFWj4NPABVrPE;N-~BoZ?pE-*|bVAW~I6-@b0lJO|=mP(C+I0P>+(R zYLRF2vT!}^Wn=N4$c)`TUC5SKXz-|xu(57`L=ugEVq}6@iaoD9K1(f%<}OgfLQ7al zID{^W<(E?0_(-ZMB_YKCO%y>Eq$GE{ZDsvA!9F^j46*pzcX1=2;YN~;isi3fEtkn# z=S@!ky{VLz0}w%|mXKy5H{)I5J6$B|j|m0g77UU>G!|h{ zC(r6SPPrN9L`a`lJ)Hr%E_(6n{b?53vypoSVtC~N_`k-8#px1eOXRzccc@AGqKXFF zBN|;YHo2-*8~PLmhTbYX-T@Dwqm5ZP9XieEZ>@v<_bLm19ru~S>{wctf+rU6lHGA6 zq_u~oQI-02AQwxbNLdQjLK`8GuS|;upu9GqIQQ|6<5}KtW<%R6A56ZQ{Bx|ARZyq5 z*5)%}XXVgx#PMP7f6W3UK+CnKs$Y-LXDa_%j_ahZmvJWrWe{84%%4SK716x&Jlc4C z3s%|(vIa9)xtY;7kKuTZ&r70})nDE}8=}B(thtAJjOki#Fa866<~D{l6p1?>YXju zN2a#E>bCyxtolo7TxebHrX<0)*s0vI9F#{#hw5G*;s}&PXo`=cmyCEjCLFsGw+7rf zyYgfh`h5HJ_K2K zyHt+Dk*FOlb=LiLfGJdf9tT*<%}X40=3uJ9j>ISX-Xc+w4DPxtiO;)xFX%~&Ykt1{ z`&Yk}K82|HjrG8R`8jV-MQ|0yxqkIZaztH`-a@$E&zD24FQpiImqhKx-g0WPD7&bJR9zxjBxuaS zD1QrQ#5)7J`h0hxOCuIZkGg#=l_YiBYjPuBP|2j zwzM_g5T--LfXAeG)AIv-m&6?Uy_z`pr!x#gXVsfr7fjk5E#m9r%$oGXSe}N=-)Za!x%YzA=3B>70#VEfPOIJ8&pVRIioa|qH%zi+Y&|iB-LgT^y zv7`*#q}UgJM|zeNVlB|bQR^!=0)M}X-OVXoao{pN#fMacXop6v2J~)n5z8QQ?wX2j zM6u$5Nh7r9SrKJzvfn3iY#Xz4NkK}OM|jMDyEYg)*wj(+0CgCRv15eg99J98r%f(5 z25?VFLD%*~jwNs5)Z-0XdDa@r$Jled(rZ08PKc0rlz#X(L6tWbk{(Df+6Gt(D;Q2< z4V0)QP&^9;>1eb~Xq=*awd%7c4c@G}Z5TZ_jO(rRC<&PP-tKRKDh_s;8OUx`!V?Ml z+R{TSn1V0^J5NIIH7O5~zEghjo`+DxA77{<9524TG#RzSPCzS{@40JdC}`w^zDk9; zRQQ5o7iIiacfCC89_QVawv^EwEWl?+ZLVW+Nc*Pp+ZMOD${DkZmZ1$8GPw81qD<{U zhf8aXzhV0ZC5CMZT5QIJ6V40xc~%>_&wxNGn+9uvkr1VI^Bp3mU>p&^)$(LOO%ih8 z8ql9l>+VI*!tzh^#`3HtXOHD6Bbd$3@D#U_@5wS=vWWd^<=*e!X@!6J24si{x*@my zbZGSJvb|^7uhvitX8#9#CwB}nmo{YD;Ocodg6~)F;2i{x8M-rl5sx;JZIfXOoDwC; zm)z?$&YECDiQX24rI4JiQJZ_acikDVu)l=HJ(JIGL$kM$y{gYPDFayz-=oG4$d#V~ zG#(NZ5X^G_N2nXw8+tX>gU!x)#SP z9lcTK;RdB6qRFR?O2~XCl|Dv=@GlymbVvo} zfEs5avMerd7n|v`%?eQ7i+tR~H!H~S=36jcd}nE}j1p^NO(~4FxTXOezDEVBB;lwX zdc0zeX&M-u9KP)ScT>4^4D+UTJvnF}KF>O+nS8hEd375GicrI2OVjA!Tr2okj6uo~ z>gSNjmidZQ<4RPFijsas;qFKM1-~PP8bAdoLAE|qx%pHJ|1x7cX1Iz8H0)_~$i{`F zNqvf?#{(RhG@%U?Q9LRx6*|_N(W`K;=cexvQGM{UT}Lywah)pxE3u>YR|Ar9uDzI} zoGB}y2Nt(4QFm-Fo&qQ{#JqQUx7HVv<-|t+FyUK`#WYl_g1}@*5@37UMt%A!4;~)h zI!}}Y1|#mp{W~lyVhOY+V-wWAn*Kd!7XJbzu{eK1X?-Al4B?nzEp1^=@I}<6Et@Co z>hqqN<3YMPtvNXD_2xU*q8c-ZW=4$ifUfxUu(hcL2`k)Ct+H zOw|6!T0u!)n78Yfv!wyGXf*^FU^Ton+2X`=XcL>mTm-ebubhp1HSeuYgJF)sH4m)o z#{12LYjpm$RKiRxth@RhtTs%H2OOGU8GIar{VW69)&gmE*2ewY*|0Lcnhxvy&1~eo z)5D;bgOwr3?w!cDU=%}n-B^O4)t7kFBZ9yOAPd&L?bXiy zV$7ppv-bFQX$v72=KWAu#^*TbHRCy615OG?Ggb@^OYr!kr>|-DpJ-9iU^n9+iI35! zQl>sFnHjqk^<6IxvJKs+bLcz-kSouhe?t_I@-rWM-_lsL@&Py||KN=y;3Qg2sheDf zRmT+WZFnCscR`c*bHhkK4jKvCAcp_2_&b;>W;4DYfx8=gM{S(x)Aj;2hH213P;@#J zH>vgnLkcYuEkA$do3hj46@|II>mNoJ_}D+izkxgAico=~ddCO*oU3H5?c?lRGBF{b zG?lbWV>?{-#;0+^|#HA&i(ob~u@ zzs`F^{m`kZ0O!ZjGId)CvHpqsjqd<-nTa-Fink*4n<+{AI02#Lq+*^#4>j&UotQQ8 z$(D7O=b-GIMyiWKrv}fPh&oOkJ9FCUapje#)Dd-o7$f^~Ff**n74oof>$kJWFYw0h z^UJuVc76fhuKrAs8rSx#_JVUu?ZgQrl9cNTKlK*(aXK|9#<0LD4!eh}xELhS0DXld zqcHiBVUqZPuUt{hVpFo7&3#LDYBt#!$)Z~JU0zs^_pk7}`sL`F3ZjhfIIR}nnfAZI z80$MfKzC*QB$W&ooffms&7#eNa=^Srk?BzXE?41{(>fn4|i&GuPY+Y7Za6q0j_Ywq5=nrKvRHe+?kg*r7uohqPC zY(tDGk(z?#ntmbP70dRLnHZ1JyMrDEVLnWmk_7AhOP~LfGCv;pNx5uwU0VYx_+2x1 zbJh&N*p{L{wnDjXq5Dp zz0TPce*K}gLkw|VB7OCRRb4VD5UoNSk?9F{1U+F-_y9(E7j-1W+1lvlNkz&5i$m%j zb^2p%z$!u0zSnLn=M0NOmrlw7F+p&*uV{QAq6nyQE61_|gnb6q+0~ccwrNJ{-C&II zjSy|$V3HA8HD|55QDd4x?X~G)Xa>|c=(V)=O)){jti%7-z6F@Mtyf*W*YTh5Ryyj( zmWas+)aD$nqlb)@9y3%X1BvxJ^X&>1soW$OB_DArDOHc&9uUQNT(tAd$W?+aP&C8%RZMPcQ7VQ&aA{YuB|at`}y4s7G6IVe3H zX9PU#h0A4I9Dpi6!^8h%!w`Q5y?fsNT}jfUi@AB>W7aQz_rGD27?eR0YGMc5^xvp@ z43shrkw;-FKJ=dMA3Bv0kZ>~i3_C%8jA0zaw$x13*YOZZe(Deux3`)6DQeYO;g@v0 zt5%Mb-#lXgBkU9^U)^=a+qIXJvle)bc+LttE*rcg03ywapw_>S2TbMop^HF(e+;FyFcqY96Jt^J9#ccF787$kx`Fjp~lw%I#1_(3nIG|V>%>h_D0vgD#N6;_0(&t0iK zswQJ3hTtx_yL=)u<0QKCEvU+OGL8s!-pdmBp95cC*&BcEd^A~=#>3m!mY5V}zU)87 z1MOA@&^b0QbePf~YUUO6<^yRJL`6Bs(i9XB8yu@6qtd)qnCP}!1xBK zieWH~`BUQxfoI-i`A>;1HrBJT98Nj+uj-3yK2+uvfYCar;{|2@Q|xckwhUDumu1NX z9Qv-_9qZFGAsX(?5y9-lZ{vdpeGVDKLmT5jP$qz^Vm&zhz^lcjOIPlz7svqWL!_jC z18o#3BgC99u~w#o@8$&GNyH}J-tRh4eKEf91}`m<0I#Rs-*Se(;WY(?7&pqP+(-m$ zFPb&^tcmtT?5A7s5-yW?U>x_+dya!KXBNku_1d{DN1R#u0yx>b;`iFSJv*ibQ289| z*^|(cOIdf)l*?L8zVbk3e0f|(*eYd>dHAQKY>z7md{l z@~fjJZXzaU_@ziHslS9uryvloTH|_l{xs97CacxU2+zxkP*6EFPP(S8oSS%FUXS~UrS_W zEhnpnZ*M5^dK0cIJq0MZ@WOus67q^%;DNY!DwuNBD%O1j4($C4FYNv(-cv)u?H~kHs9rHrd$N^mInLV5B~b)a$e1dA+M3$~66ROrb+EiW zQ@{6dFn3k9dc27l`E(m(!q6Fz34`ZQGc#-I>W&s=u;!;QQ+>LN@a0=3w$X4&JQKzJ zK5;RqT2ymSR_^a%Nnv5({+s4uF#lK$Uy|h8ByOv=DM9?Rpb6y(t-?`xYCJZYgVtU3 zkx^AuVkDl@sqBHk{U#S+Jwg0yXT(7CoUwrvr%oYpdl%nrL6f)T3xOOAiiRr@5Sfb$ zQWLktTwIGiX01vr3hj*WSHvI-5uyr22crhRnS)iS|84k&Qtu}_4Hc;>A2Aj%9jpV_ zN+^-M;sq%VaKUF^R%Q7YK$(3EQ|mxB3rrj9{tg)7f zO!yX8Qd3B0kkLKg;@fyO?^^^kkBv{!-fz(0VtKDhc^%{nFwXl-if0EiaeHs#JU|oY zi!|ZKq9q%w=_-8UJtFZh6fnakCbb+tJ4|h#*6hdv8~b?4wDAHaD2+;?V7=S z<9erODSYTbVPRO0^~+;mRj>LIlQQ=fJ3>El876LQ*xn$I21iMrR>s;bsCUDkGDko1 z*=~u6i^~Uw>%Kb+V-7gKFJS)WJ(K^jwwdpa(B@c4uT{LH;zFzcBlA|j&*u8opIa|f z)>E(PN;B|44-#4y4F-luY1e#FV|W=Q*QQ&tY@ul9mgiKME(XakM-F9=0*xB4O1NlVi~lV&c8_$$fh=p|Fr+ywtGk{9xtc zd?nr+eBNkdp$*dFd$!)kp7m-dTZWK^@7~x^9L2Jt-Nk!`yFzp*dFT(S?{QeY} zmY3=M;7BL*W_5iajoO{YdtyDDZ{u;{6n>Lm;XxYs_(Y}qU!6A-rj)2{X>oPpOpG09lgwf{j@d=Z8)O| z50t#FcIpkQUSc~pAK=gnJ1mygz`y7g={QW+zT4Q?pctIXQz5q=NbSy3Nou&fBxz?Q&&WMrBby1#k?&b zg?1!g-D>q`f{FVd1qvRMl;N*x(3Mz`YOv2rD<&yFQF3;TRbZgjvkk87tW;=Eo;;cL zT=4JpdGuJXSpN5C?x|LPiCm?4je}nMtRkmtH;(0pR?V8zXe$u2`mZ?$HQtcG3diZUneH-RnlVJBH3rp2t77OEq_FjvYTw_ zO6kwkJ0s#GcC%%}@q5dkc0}uct+%L^dk3^U6y1)I2(T2 z`+cvKpuLL(@(jp9!^dIxXfEJt$M5=Nf{;!yir%SVDa;C&hz_eANHq1(2OCts5+rj@ zxHJOh@^X#H22VP0nO%ArJyE9wiAa%d5gDg`Im(-X6UK=_*R>km*2v+Xh6nS3B?{V) z$FOJl9X41Rs`!3w^4RLBwCpMb_tek5rMK?c_>cg9u2B9yOUL@c4 z&lePeL`B`vfLtG2?R@v#Td)4jlWS1*a@KuBeS5YsNfUDYk&4@B9~{L6k>OblMQBXd z+Q~UMaCJqJAR_3UvVoKYoo3G`z4bq&5ePd|_0!`j?;~sL!OQ{R?S3X?7pqB{!xiQb)np#^G+{>${c?tAD()|Vw>L4& zkW2uy!OPvzS;vS>yL9Nq`kzWmId(&f3wgvPm8VlDsI7pQwZ&~%&HB6IiBE^3{?##?&MGJqztDQ^dNp!6 zC7OKbyOR#>iXegpN!%ij=0IeK+gWG}Y_p%N%)y)mw&2#;h&EAXEJ96BpSJuB%@gRZ z>HPfM>I#C~m&0uUN^2B$oNkbdBxbZvdtw!Vso~{Fdu@WgJ8tak;p*zzdwL7PCJ#UV z@L0L&Rl^FqM*0St=eVIw#(pNd8RwtTqUVf@JdLYl_4X6xD{=Hsy(%$hug?|&JH>R! zcK4VqGS$|u>U?-sN4FPn%;$;LHl>el{}H6j)76FrgX)V>8}Cc+Yp1v#W=QR-R{F}H zigA7KEYqOI;TSz07}yzy4OqY6JEf$0X^)6>%ID6O-q;H~;jgU!eK+ z<_h(*ce)jMs0KcEpa{gEk?#0Niui4rx`$-+H~R^cHMWxwq)K@52-v{E7-Y!J^%dqm z5DzIm{cp~S=1!PRruXbonuxOoFd|xj4p*l;z;#xr2h?|Lp#02!`{-zcklUxga3t&6 zloME*0h*e4jOn2upxpF3(^)eh8JA~!n!y;40$aENHQ{YNXCWmG)Wde)nf?TPr^bGQ z$IN?;5}%68tF%ld>7j0!(Mi}}SAomM$KY~I9Kw72hZXnj5ShL_$);~<1+4omZf~x8 z&GrC(;k2vqwzzltW_p#$SF~O}M%!ySo5v$(I^Ld2(l_%C*Oa;l12I3J#?u-!?r6cp z{q^@Oc;%Hr)Z-M8yUMe=^pQumonjs+q2nglksS0r;%VYI={CB}YPpK5Xll9@y%C3n zJ>$P`iA$!Hzo__HSL@^bIHUR(-!R(1mkj*pdjX0{;))?kkzdMkDWlyDw$PLuOZ3Po zDJU>FmZkBsKUC@mv4(9+!uR6$)PJ(#h0S8k5B5HYS8HAI8*FK0T^N)^K&1fktzICq zYye$&_3G8=?5w_;nwq_<%M%~>F65Y5ix2vTjEuSWOw6z}=T;an{zUMxq$l>{rKxG7 z$!0!yE*Kf&ZxDuIBo4Ki-S7+v6cD1BnVEt3&u7&`xchxi3NF6I6_olkWbJqI5ilZQ z+XoLGg#P-a3Vh^8p?2=(w#4jU{-cG!TS+D+rr2?MvAyP_{o~_T1F1qprzblz^?&uM zgBltda5~}(3fMuOLP13}+!olS$7A*Kx==onKw8EG>0Zzy58|>L>Q~>sRhpjcd*D;8e{%PEO7=Nr<2z1v4}AuV25E)zlsc z3)gi|;Mhz}9t}dWfDu=L;FkXk))~hraSrIo#z+AP2-U^DvIK`*bjIApt)-=0Xg9|N z5XRGnkdP3ZnYcVB1t%w`0eiiyNreoJMZQN=lAw?uZRHqvPpNv;e1hQ(U-_pM$Cg|4Nvd;q7d!%_iJ(r|7-k;=0p5( zqkx;EtO?le^XG$K)cDSo81&jooSUIgsBs3x?C4;A;}+vnuMdZZZp|$%TiYNZTLg-Z zJzY^Q_h6k~@uwsslYQ}ms=K>;0EecdqeE9u&vk#XBe&Jbcu1#q*oX4<{_eoy4(`Ye zF_RDdyD0aEBT7B{qcJ%@!p<#&Qtm=BQ=feN`@kw)nuUW7!&ll>_?5F~NQ{OppkV3l z!zx5hXeGtP=gZN&v%>{20UL~cpdKAvUH3^V`m1B#&Cw$Fz4?rA0_tktGbg~<^^@X( zN$-18mFczU=$s^$^-hCuT~u5Qu$7YNw9KF?1em^t*xJXpf7PtO0X%wWZ7j;xk~F34 z{!~p(O(8*|;pn!L`}Mo5UCV3Dj@DNx;?yBN4c|q;w{u|S$H!Q%$*oM?94nOi**23K zj8aX`!8D#H65!U$J@|$#-UPx`HE>aJ51P_%PfsVU940F}xcx7u1_OEkkDqMz7C=#C zz}Si69&vK6I0s(QgHUN6>JOZD)}@O`_r(i0;5|v7KlgypNWyk)L@@Pj%aGxk^^?S2 zGr6;~^KQ$T8Svdv+rSzA{X*i8OabRh;^+q2+N30s$9EUG8n<|M4q7kQcmwg;{mNwm~8*}==nLIPBSf<05+O|hnx8Bd}Dq1 z5I{rV!)Gb&AlEzqDAF6p$Yt8}vA_S>ZrkmR;!MNZXJfB*n9UofjS?lfpci8`wnZ|b zI0u_06>fllxE}VgLp!jk?^07Md3%d}f4j2`T$CMzsE;2%3OCN{>6 z{|9?-8CTU8wE@ydgER;zAxL+JC@B(>(%>b8E8Sg6H`1kmpmc-e1q7s}ySuw<_T~S+ zGryVnHlOEwP|$n#IXl)`&-1Lc_wj5YH&1(~_SClZGluBx$*}0nK^yiH!RW3y#$gZ{ zF)=aW`bkeBhk0)j7aIkt1r{cI&T6Q`!mZ)Uj}nX_x?q35&)uSuZ%hSYdG*WppHe+3 z=BT|7!weU;w|mlr99(y+#t)874M&q96KO>9S+E{{o)r=VUhe}R?jH$fvhHI@$bOJwjdsl zvrni`>?kHyR(c>;4Q9(a%sP#a3Y`IP{y@<7W`27fwv&Phef;Ff zTfl7qQutK*X}`?mQxS7`XFd4F^k{)reLZFRc)dUy-hRsf>Fa^OocDd3TUtf-ynJYCrVgnm++%ABDpgGwkgRh7>&?p#9l*%qkW6*&j=&A%38(Kc4e4N{O}x+#sr%(8wqq zA-lo2%EkiSX-nJj=0lME2Nm0AiqrLIv3CfJib0DK4lXuQQaN;on_HNi;el?MPEctnxW_)q91*^H(A6u>gIV-UBV!jUU z*@m=T-Cs|L7Qhrb-NQXyEeCs;lhfZf zzJV4!-+>m9Fxgk4Z43kZ!WM5jpOs$@?SoBHIIgZjU(P&{o|@-5yk?bEb|V>*XR5`Q zHDhMI!@<75NaG&{4^9x%-`hs`3X)E_I5XS-RaeM<)QyDNpt~X(w?w1m3s-I)*O~^T z*8uYN7nfNOmsuoNt}c}0Q@Bt&*>M7wSyVxhBc#_J((4o?w9XCbrG@k&Lf(dOnI&>P zA0%^-ftGMosef&$7Z7<}IDA)Zr~{n%iKuAWQh~mIy7J8Nd40WXdR$d>#dKH2quo4F ztjzVPK*a^oCNQYdeP?4Mg6)Wp6r{3Uy>f+ z{=>WAICyeEj*lL0xmoptK)yNXcH3yn@F{2aLkE|?9Qs<{!b&Jt_5&Ik`}@i(^#&1{ zx;DSMkvOdPuja%lwGIs6L9iXxdhJ{ibEqoKR+jc((%U9hIoDO4J%jGLrah&jzId%b z!PW5=Wo-!s?Y6LLTo+1HHa2HjM1`z3{nw(xw?J>4%%rHX&8c5;Y^nt&p?fHrQ@xwn z*8SVI`;>Eo_5oEy3UmmnxzzllY^cdd7 zK6@RA|Kv${R21Ie;2>PgX*lX;`I?Y`WD8;wBz$q-=iZ}DraScMxk^U+pAbT>j)S}F zeF2Z#tCBbX5&<59bK9CZ_wC?JErr{4iTgzWMROGr+2O*C=+#DcnqA=Yl(a`Wywz(I zRY{L_5biW>&a+`}7jz)KUSm^h-41scOlZaBWBflWAw_H@F1vfMTbS0^)I9H)(XB(y zm(YsETis`s5_$(;>pkdbX**dUPiqr-V&5fURCk|xwOQ0giC=vTumZ#SOh6zJh!&~Q z(b2-!GT~%)y>(tW)IK+MK-`kn&>#k6=lQsyj~F5%VoqLO#ivPb>!wRH1J^}V%@Tt? zwwjq%U7N;sxP%Gtv-i)Kd`$CpHm!{I$aIlQI9eRcMpw&yYhh=YZ#V#ulB%kz+}pSG zFJ6QI2YC!STy?5eayTeUGb$=0D@#+cE!R0b6ymY07Zp}irBUVb9(o+X#bW0l#bcW* z#Me#6gF=QzkANP*wQQTqtNoN*E`MI!mV5#Erju+LT@M8t;mD7punMYs@g#>IYTV+b zQcC09R6C4Q1@=}lLaj;f_W7BRXAW?jRPIot#D{E`^17hd@YHa4uHunkK zL7a6v8I;`|Eg%JW9~Y=a?g0?-s|`9JT;RYa${-ULmF zjQ|!Y`zPK~gjxVO;lhn&Q!@Z82yn=ph67xa-{1n}OH)&ZGPe*wse;{c|cbWPfrLW$}=CW29SWgb^+(}tFva?49QM(7v%*>#TQ;ImVc8~!A<9c)0 z84?xMIX<2U)VA;acVNxISMvu51SkVohlhtj25Jj5_ZR3u0%;!@hyqyR2*i3-jnRW! z0iQch_Qn%cz|EsFGif9xCDVZ9(*SY^5ly+H<0Sy#!?ksQ@-MEghQO#&dmc!Fn^K5z zFfe>cwXO>R2zP0FTfxMHem%_rm!sj}Rd(kbK&~fSqga4pWo2d6ZsixqDJoi3TDe$S zY*6mFf4U$nsTa!$xgE_XHMQE?-;tCoI9$CkTkpa%DwO;M-jbPFN&*7AASau)*v@Azcqr$e zF`5I6wJHaykn2V0$lNTH`1Y-D(?@^kYyvQ3y4ITvdc*CsrS5*Z)edNa8_>ot0eZaz zu+#GHY=62YN=;cTzM(<%xpGGDk3@qv^70sPOc^0Cw*bg1J(xo<)_&2^_>Tz*lliT5 z(k--3^GrqsZ01C}dwPBYqaf!t`D+|?dMc*=^9(M)jyK=&-QS%zC*O_`IfSb$7_ISx?iJI3~{IRN68!)qZ9=jzeTx!w3fG8w!LD0}~pFDl`%#RE5 z;9Pm!>;q1nlf*puGrg}~0Dof)G<0Cq+|E1iVZSBke><3G56{3Adh7aK{+rv|-#14+ zA>rXBV7mfb5c0fO3@X(7T|PK|HKf3?I&IUu3S@5+Ad5@Mj1`^Rt;TB|osJvwxE+}Q zs&@%gyG~%xhi7MIvvp1lXH!r;fCoWR$q!Hb!WSr;X+Y*VS_r@!vska5wq6FdvIbn; z50E!7F*Swr>EgyS9aS|ox1|t93NQVVx-Dk$`x^&#uwDRz2KlaMJ~zuWU4Q=?0f_7r zsb6Y@m}uw?XYP8oEvPp;<`Q&_j6p!HI_i|Ti^QZX>-2lRuC(+I)i zY-bTjKaduGRC)#mAvy!9FICl(9BH2|ux4id+)31)NzA+z!K;s~fF+-vk*5*oupU(C zOq2euHbsy;?cem{5zBuZY_aDSPQllmalp({=w%vPrF>R-wt)K(GPfpy-dxuFcj{i} z`kDz!gCl%$dd+0+;lcd3l7H6&$|E4;lbP}_Pnia50%#@UpA-}otLEnB`1$$A_9iRx z`VTX`&XP|L4oU%6DVgL4nF_24Aae8W$VmFJF*E01dV~IxlmdqW9UUf@@NPie0ov9` z{&8W|Stv`fZL!e$`PiPWjg_=pUlZ^nIY$qOy{gl8VX-D8SYVZ{Ao|OMtjbQmS9?Tm{q~uk3LN;Q1*U?||r0 z7!?(TgN5zwRC$0cL4tk_)zhPgWaS`*7D*lo=q3duiLu5j|^&fl=UYAP)rBGtMBjt^;&IhD6c5(4+ zqWNxPdh(b}Jz;EC(*QffrPZZ`N`HDbsP&6-&CdIKTXPgTb4C*@J7y1$%AK*5FQf+F z8XD4o3YC$Rlq7r&r@lZyhC7$8fdNKN&Qi0?%uK^J>x&x2xkcbR5jG|(%nJt6-Fny> zZqKG0Zc6U$+KODpM=B<2Y-m9Ef%7q-;aAnoZl#66;e?tRpp7t{9TpjzuUjB1ybqzaufN0!7!kdaNDo^)jVAXAu6Y^FdR_OC_uAE zC(nZx(C3~0Vt<#3X5LCA1j!f0)4OZ{{W(p$wmOM`&JcZ8F_R#kmmVLniN zERKPJVch-o1)R5nMRj!|J z=jZ3^z`?Eo$=V!<*l-7e0QV#-tE+b7`YwE~ec$)4*MZYv1eV@>cUl5he4HXFxlJC` z%-CZA8b+38MYHAVS!`-iGTU4o z4Rv)8^#m4nXK%Ju=RqzK!5mXvPVNyrDoWg64*XtAf%?8KSq7>srDE=U!=!w{ESwiF zEL9FGL7jY>?(aMhI-+RijSOq7XUT-@>48-D6a-m7@@ux-K^D}yv`F~7=g7~%%O9gH z9UzKtp^(BA5y0P#0p{A7stQ|LS`uFW@q_P9+Zi&x55OD(Fh;)VrmHO$1mJ30+r()E zPmZQw(C@IkZjo)TC`yjj)BsT7V2A)VzJKh4Sxd~eprK( zSX7kpt+sKjdcb#nY)WgsDwK#no6liDL3?#)4d z1JBm_4roK(067+CdsB$HpBOE7L@3UA^8YG)6jzg&TGALBlnh97H4it4X`JuTSh#lj*Jn zBT%;1n(uEpfT|8e;1mGlQ}Xkf_nNM)L3SlR+Zz+qR3N6sN9z>k50O_L9xQd}?zc=& zrvk#0US7@(w_E_2;Td3Lv=PI%6;|raks%==L0(jp3ccd71esggApO=1#!{_^0t;;l z@_F<3dIlW}OBg)S02x)K!LhZ4`^;|J!mH7q8`k83SP5sxI{kiz&-vQ z%p~q{@?S8G1?z6TbLHeyoX@3*{W#}-eJbyUR=$spW=Md- zUSt3-$9F9zCgxX{$zSsaK)+x>2tdUOJE+bO+$jUlq}ZLLK5g^k?A2ppsy5)}p_-QN z07@b<)-1jkN*O?ID3_C+9bTBuq^gU%ugS zl*Cd&r64zm=$Q}Xq5LJB`xlEJG7_yOQLxVBrA>|&q`R!%x)Ip}BcAO+^;<|cyUuKQ0D z&G+xg7J3_PBDRF_fCa!sfI@@Wi=0qkwttds3_-pC{Q?ak$kG55_N0RBXy(CzEy$Y2 z%1m2e0gW5vSQ46VcWqepYD)(pnngO&Aa#_gx1RznhA%&O=;0GM8uh-Oo{vpT?BpBQ z8-AKx->6PXTu5`ns#E#%`GklLoRtHL0?#fMzAwvaxdUZBBRAI_ls2HS<})Y{I0W&H zSFk!iKY#FLU%HOL5<%(M9-8&1#WKZ6eQhX~t&H$il=G9~#$DcbJ+D%X*y!i>R&@2Q zxLv8d@A84F7PK%tiosc4EsThUbBuDs1s27z~@1>sJlhxH#xU&Tr zPjKqaBf#$wTtQWfE6_&)8pQ_LC&%rvh$7vZqs1T^z>Rvu&S%ty&w!hjA1~Giu^1N& zF`vV&&t;Dxzp#E@wJf#U=g?40cySM?vFQex=XT((FdjX6Dkhdr%%WKe3J7GPgi-B> z(*{#~f2JIR6tx_jCtA}3$fo4!896%-G66PV2E~BM{gEcs{{wF%n1F6$s)_|(>j3b* zDahS|BD@kM1m~Qqvt76{UAr79BDnfht#&Dt1t^e4pkSs@rz#XK!1wYDRJQPla07)y z1c1@yqaKcRP%r^6420Jxz@0Tqajid`(a3s5fVl?Z4jX&@4tGZcWhX#Ee*sSZ+tUL9 zY++}vF?Dx3U45yvloNdX-mZ%w(H7)cIE`CTl*BJh!nxp|00MYSe7v;0{BXACZV?ds z9J%KkP;|uux&~fJc^-Fy6DS>t=DhLuFgcl7D8yF4!ZE%$ScI>(oE&-*4ukOKW(l}F zV=W8$}% zXPPe~c%~QR2!HEBCQ6M9_3IM=_=*IIQ!q&W0Qn1E76K3H6=r?HJC93?oPaREV+2FU z@H*3;^E%fL4GrA@(Hc+m03k~BNUowCGwKHbJ279s{;}~srX*o~|592S6<&t|P#+yV zeU73();BYg0(Xu4_At_6Q2hX3s-SX3Z+!x&52c{$4Bj*xyZ|T~`JZqHG`Ob07kYap zDZ0`NuH5b?AE!s~SM3<-Q19HRPee$I-E|9IgPh!B0Q()MJ&$pJW%X)H=I1|obuE&4 z;$k)?j4{I?gwJ1UCj3=S_TSLFL`TwoVHM8!+z%&=*&%K9udVe00m=w(uTzn*K>2V( zgXdGvZxy^&W137BNdkkvh)ntZR^SU|Fx3iDvw0y6jf?n6zsz}X)Ao*{jp@pljdie= zU6mPi{aM`N!bkS!y#M?8xlg*dhIhm=^C*X;56L%LtG55U_Bcm{9VtMaflq#iOD@Po4rPCDk)!m#JckN+rpA-88{9H6gP_@4bsg51;S~7 z^M7jrfRGL8Y(su^EtzQaS0Ui$c5m<9aCf};JbK@*~Y_dUYK7Tt0t z(sR`OfqF2<29nirnNAN0k%-TMfwAf7eV`(PiG>AP@e8w443gFy;wSb^aJoy@QP%gJ z#wO9#@qxcJ5dI_kbQH9;$>HjUh)C+cfB&+r)rPZ#3#9Qxnj5U&BX~c1$W~So7#bSF zEAmkv6Y9e0_1}MCQP8A~yZN0{Pc~x&_P^c;uk^`XM*3dtp!8#ERG@jeENU zf3dM94;=9Ztd3i>Kyllh62>7!3mtXyxSD}W(@BV6xYr+eBLtgCO22W<8c^yrTegSO zf2np3-O(&8-v`_+FQge#O+!N*jWF4TZ~MS zJon|IAH*Sj2+4IFE$`=ixR0f_tI+oswHt4n+z6`KzsURe1`GbT)R!qexo&pmZH;(( zQ+Ik1J}Qj0`Wv>i6xnX};NwqL?}j;YgS&;D&@2wiKHGam<`wr~gF|j052JU?zVf4` z0qd!U`E*s|8qWK3L$Yhm6Oo$TDdJ6#Ideo?WjNSl`^WGo_fEQJDkM0#Qgfcm*2+K5 zgUg27#7gXnf7s{q7rdAEWw!lZvhx{#?OuXmEj_{bdqI$UJF7jV1Wz25jQ_H|l~s9% zU1ET+Ng3HtB500j{WlpV--Jw(fYmVRJ=0 z?L7L3Rch;N0x9uV(m#lWGALf)Uxf+$J-eFPiqFh1$dl^+iY2)dEn z_6IoZOH_LiZGHxQSMR#_kD!5F%nPC(gI?rVeL3-`ln9KTJ1FTf9?oi`G1NiW*V|XW zZaOht)eh!;1v=wsOX+#@^h6B3|LVtouI>hN2UmdAHuuf#y5&Ul#DyK0p6fJs^6m`QQ}>(-q>-t6UeV{5hNXKFoM+EAd<^Pc z-sM!N*bWYQ-m&gnlCXQ@`g{C0XpCsh__b$Vz|A!HuoQZq{%Z=4C|&Sobi1BGpBa~p zQG)f%Qbp@H`(X9lKWg*Fe9iHYuar_^Z9=p?6*)L_Iv8v$Jyuv};po$@b3Rb-W5Txx zlwlVR9rASDH+vN7*X3gmH)tuPw{zYH!#D8)f5Yx|~5&z&^W;i%; zc8LPdgksdXpLP>A)o`1(OFKl5O1gJ)idAYw{?`3*EBb#CMAd47nA4OUtxu-Qt5o0$?%~%!|QT<8EO@dOdpSKOa%-n~-`B`1#tjLuR~e z`C^40l)!h`yC9EERzu_SJwpKq`)dbGz~lWWX|pGJ&Z#9eP)v_`gF? zEIpj1mrX+GM+KYT+Vv)4LMi6!xTyK|TLQ5irg4glg#fj>H17Ap+(4f}P_J45iCl0E zDd`B?bM>FrPUz^a=g#S*+JtL|5PGH|vRdSWJL4OXMI$`n?FdJfStRn2LyO(2G2EUx z6jUqSs~WTB@2D)@{;wHo9SXfa_0$4ewVOyLA89HUNRoSB#eImX^*9W(-*;2^lxZ1%U?h0x8hF89QDv!k(lDnOdt(} z=~;Cm+9195L+v2TbYH(kWn8?LffiXAXCju4-3{xAOzDUS)6!<~<-r$2upCRJOM2MW zwi}X`4wO^}3S{6^zir=9LBEb4ql{z__ICN1I|=A+wewyH{PV$;DsXWuCS>9HnU>9f zMQ-}m?R8OAf#tq!gdBZclNb(+j1cn%**t#~i*2Xi;VZS0;47eidW6^Lb=0ZdT|eiQ z)FkDqx6A65^lY9!NkUK`Wll5q+t%;&+?sM$<{5{d>kSaj&mS1G^2MDY9b{2cEW+dv zB)8Yv(=^%~I0@H`>M{qUgEB)i|z;6F# z_zv-A!0E<%VXfoJBs@8aP*2pn=(dny0Dc}lXf=IIeWQu$;&Bo*JQ?8=ic;qa8nR*g9*Xn1bcesF!ZoJ5#N@NiO+}L0RRUk3f)*on?Fm9Qp~+lztO#_zW(9( z{~-%0tN=qkR??8#C{;Eq>yK#j(x5Q8CsWeApUW3kr8f1_MAR-3#&wj?1u2z*q&?*Is-L+*L(I#-gx20-`%o9 z1(gg8)hyui9N62T07%*0-l{3qf))_(5KoqvTvdy@KO8{M11VVEZ0p!piU zC1$@BItQ0xupn<)4;b(<=$BBy`ze-v)fYZNtu(Qw>j+(`|Dur~SiEH7M45mTHI|Q+ zDI?<{P5Z6FyuaZo!4|P@CUve067*`aBlOg_C;Orf18B)fX}ZX7+YXK`nw8(deIoiL z!>Z>|KwQ%8>KL-RHW>wBZzaLtTXJeebrn(`V-v|L0b}+WB3u#nH zH*?QkfV7j0F#nJB3bu;q@;8hdoM`S&+d7OJWMsrIKS?3zHvroj6xv#7<+Ch9ok0Af z11+%J#rl&>ZR#rr0u+x`5h@x&qpt9fT~hTO#thPoO;P&n%;6p;`?t%S(xK2dO_Scy zKVFctD)gCLBd(i1!6%2+UOeh(m*uXrVG=jU_h14FYjHkvPmKs}Y;;57m+kWyT|K3w zW;{~7?Uu?IuJ9dV`&K2s;-7^dWHsL@9=SRll-<63MqJ$LLydM7c**mR*bzG%lU|%T z+I#V?t}~hh8n&=xw!pBEIW}d;Ti)!hzRWl_#Smm+{-~6iQ5k~9NkWGD9$pJXRa^PZ z&^jhEzgMxU+;VUF7PhU>UlbJ5!p6h6kXy+G{$lXciY(#-sPH#t zqLw4-^9rvx@K|#*kL#{nxes%gawEcxdwp#i#GD{AU%~i0n-Is=N!+U}#Ka6lB7adQ zr9404Ji$3H5ol!g6*sTrB4%y*;odB5ffn~8cP)aFlb9Jok8SL4sIEx;?4hY z&l2$efN0C~c7`aPh*F5n$i;{xWRO4|XitjeAHn5xj{5%V`YPvT9Sc{EEif!q}qZ{>uEV zANJ!r-D_=C9?;0c)1#;SS#>h92zJG$4j#_OP!$fq+IFdqw4w?gfTGs#rU9M~J#=g& zndNY~n`_S9UNm-eadg~z)vr}&nJ|f#WD=(p{e7}Uf;h3wT z5#=a_?lRc;7bELOi}dMVDO%wZVfhYV$5HO|61`| z6X|m81W9~8t*d^1|Ci8nU_*#8N)eHMRY$^E{+_1};{BB;>^!5VWaEGC{E9ns?YXyV zhSl*^^@9gW%F;WMB#_S$vof_qC#pTbGq5_Q+#&o)4&Vn0`02&I+;#$%HhlXt=X#n(|qkJX7+sHi%0aLFxhj) zboF|6X=wOnXk70u#^-T~F|uPMTb6_9soxZL8{7)RvSJ{UYAU2}Z_4bb)5hYZ_hUTmY?a=}N98zaUF8E@HEIm$xkx6A*Sa zWFM-%rsHL~nouZ=dIOBiq!9B06r8{N+sm;EOhx{!5@a_+FWisk>I)ZmDpKrC$bL%&g15;aGjkWw$`R_N`)bm*wuC8|oQG1&njw$t={gTjxL zhYYGOU#Dx-Gi7jfAiakwHah!*qk$ajzz(0bkI+v$hp%L#I+`^XiARg&W8*!&T#jRRX-@KB%N@6}K;q6;;8@M!eUtvCZ`w2tPeMq_5gHtM=Ttk7I`~ zK0$;TRy9s`);doJxBxQigSl4`OHIAfh-YBSo6yM4_Eo$-p8Og!kPwdarWQQR}vWC`Z6pl<=mwdDjWTfPp__EsLgq#&a~Ub(EL3XJro(Y8cejZe5ExZ?|%^lH7Cos}l2VPP*YftpFC z`$E)Y#Ov{>nVZ*^S0w>fJFMDr04(cYfv%QlWZXBfjUmh*>-;DCLd{5gK}^aX(ZM#= zRJ`3GLAVCE4*`4`6i%f`gPDVykhcXYaQgtz_JOsD9Wpqg8I!=oT4bak;}j8z1nm5B zr%y~hrEg$54lyQ3MtDizjf(4;clzFa^1}#HwPozkCj8dS%x7O1Z=VjR_|Qg9x=$Z? zzLSgO4NA)Ws}g92jzFiDfph8l%fSFb0s#HyUuqYG9d27Z`tzU!XbSINF5CO1x@OPj zG6L-mW8Tt`w_QlaP>7LO$o`gI{nTx{>M(*Sic9n)pO|W*y};~^hP*Zd;I}2(N~CEq z(RpUrP71!?7g~Yh*lAW|`T!f#^&(1Y%-;c4AMcb5oL@XNKy0B=< z2EGJXn^HP0Ituqeq(c)_^@!CHUhh0yHcMN+jG@Nk_RNomg)q99FLljAF)!EvuK>%= zM{%lk=7;X1)AL0*2J4WuHPAzOrmq20mQoU3jn^og_$vS5$UuBHTFK6h0X%50XpO|M z>>t2f|IO+X#n73AKNJ2F1*fUk!b?G@V55v0X9s7kEPj9oid|*| zn%%9{K2u$hItL4Y+S^8~eKnqM`ldn5%}BL@(qmLmF)UW8q`bS_T3Jc4xZ|p_4n#Se z(3KrTxHWeM^#Qm^pBDr8k=SHAfQ<``0oh67w1E!Gv}3& z39e*8C1uBCe;72+8lHNyU(<@4sJ?12n+E9VFCKL;pu*o~mh8n1n&FJ131sP^#;zs! zxlzGuOU8pzC|7m$VYK%Cs&K#Y>db^R=4(n<`B!XBYq6K|Zp8WxVuB+4X=M+T6)X?h zC4Pq0c(6vIqtj$m-#j;s*EqpCH=hdrm>UuN-LSS91aMm5UQ_(BeiZ>nQ&MeO#>y85 z7}}2T2GK!S80ODpalZU0(6zs18rr6p?z(W;=XulS4LsE&yaUtj18R8pN;6tgI$qFH zg+5sS5D}DZ8kY!;-pfaN0ifs)!7>LlWc?S2)0G5JHi^AHIuMZX#`YM*O1>f(ay(C; zNw=WO5@O-U=I|ZCkR8dD!Z}fh{B_!Vh-%RM$2q%bYF`85H8Y}c>jQgev zGKj!pkC$kHDwL9m9jSVk80?6N$*u=>rp1(wmD?FM6{xzR&F^>TcE9@Bj0agxd$YKX zi>(E$&_Z2P@&#O@GFGGjA3$8FZ2JC|lDu!_nb^i!$vhS9&~GMq#CvA-EbnLdYAUyO z0vPNO?DDYgLr%_oWr2F8vcANC@uV*jU1K!`Gbk*qlX=w9zB={h_S~@bO)zH_fU}c zd%y?J_A0N92zvNU;nSa3jO6V-myt$HxmNg+k0}=HOLlQllS+xs&}t2WyT7y!JPS8h zGC>ypG%)|ajpSUA>Rs!>8mHZT^$@a_CaroA5D0_hr6koincj4>Xjid?nF0wxvCrtd z?acX+b!D{MVbE5}dY(e3$;GNf6>|6E~%U7|Bj|t`cQ$P9-KCOwCVsCx( z)3;c6oA#^Rca=h>uMELxBadB1bw)I78>L{QKhz&#A~BP}zOkp^t2{!H3;rEM|5?v0 zHu-XwX5DeaBG=sA%zf?c&_JH$*1vVJ+cTS=YCOj)V*A(D#@89Q>RKVoQ4|SpF*8L| zUO*cBGPOO%tf$+=l#AE*Ot)RVkJ&Br|Ln+TCrM;y3`dEiA>K9&#U*QdJYiSGC3R-% zvRXJlsOVZ&Q!bgtfK7aN+EiN17VM(DNJcERIv3ybvP2F`ELslXn?_7>JF#6G__>~D z0U_u5Y1l!Wl1wG~Kg~>6R`@Zn)Epdi_laKJXgdF(yy#2eTzWZ?6fHn-3LfMl3SG0@ zyVIZphZ4qTuC&%beoF3*Znj$GV#w3%ZAJ)g0_k$l{b-31NhOwaY&PPsH{D^k66~j) z_|eQ+#lBWfNbmiRiSdzELTEKrQb8H>EX?NSuU{I!8?RH92CGh8O5iOU`W(-<>J$#P zq%~h-^s3x75^CM5`1YRhW0;{pxw#<^Byfbw=Sr|YT|BZToNB2Pt*^JPYms)<);QjB zw^|I{8Po8pm4%nTs?u#Xx{jh)*z2)V)#ypduPh%$KBua#G9N4ATWG#c)oSzEmPSH6 zC`g;4Vl`;WFf4vQFs6S^rmEF8Io!eR<1SV)C)#?Rm#j@Lq?hxAy*C!;CRfkLXY#tJ zh{Or~l^n%OT$Gpw71dNM1{-Xq-)A?~t-flBq>lFE7kHiBCrb(XGmV~N=d6aETUuxT zN^(Qp)MR)-vktl8Sw0brW~s@ipU+yqn7gNFB-Kq>ZUx~O%|fD6ATRPe1t^6_LTz-kK zL?~Y?8#y11jwbxm#CN>X5Scis?h~QBXb;5!y^JLG@gc@gN)wEYN_WOKSEOu<7Ut;r zWR}1XgjIp**q0o4c`}gsVgGIoc^z#;^Y~XqE~jXKhC@nFGEiTT0(U++y zy0|D&t@y*y0swY*mC))cuGry;keD=klvGXQ+=-jy)=Tc)N;bp#0GiuH(=)yrgHJ{( z&6fQ>*95(p1_Ot(I0Z?A6g(A8y$okd~^*i&VWNmFBy`*FfGWikBu&HqWzPmNoHVBxF zt;bW{Pbi&vPb|H_q#Ep4XM1~bnb-S%x+HP( zi2RLz!cMPFlbD`D|X_1lFt!i0@bIEe)*Yl{}Hv|+Db zvK^=yv2l`KuyQI7H3WZTJ@w!MPsCGkwB7r+y++QzJ)Yn&Vn$xx5V;ts>5<;pJI2_4 zgeKe@irS~N1}q;-*j)8-ZV<>G^+pAI3>|C0(qWgI>+>Ta`|Z8(tGh5q@nq;-mu)Ot6%jYFE6c&tQpKSs@>&X4IXP~dAEmzk z-aNc(4GeZAaK#m*NK#ok{{U~rOzhi8XO=w_QCutM)@=dX=y4a*Yp#8{s8qlCn73>F z=U;PB3Ci;0GR0opx_?g}09&8HC{U|!{cZnua$y;BHgjoAb;2Vo=1oS1mlk&>hEa>0 zgf_$S%ka0j?$D3ejOdd;32eH;;CyiSRhM5QFxcZ|z<1ymT+2c0Ec53W_60^rFS&eU z?`0(A$w+G^^QRZopvM>J!tcbxqGDP5Hv$)%Z74&eIXl4HewUJN>F_4dk^5}vWL3mt zp`s7oZXtR+1-oW$r@Zu3lwwr-nl#aw8tbDK{w2zP$eC9Eb@bR7_Ni0Ld)vk_cmp=B#N5h@}t9>GN+9lN3RY)gt zA}Q}Y0ydKM!2I&7AtHG-%&SRcPrRSVO;6?B#+8xTky7NG7yGr5M3K{&H)k5Q!K>Wz zIBYgQMqxd4Xs{vC$=B%a$RGQp3J&FCFuXw%b?RnfOBn;KDb@_5~Yg}Jlgaq!&zp@Xx-bI;uwg2F1Z z>HH|=sozn^m-C$KKiJH|6n~ra6hGMo?}2zM&cPXy4^q=(0z8t-oto(I*j_|jIya)N zPM9J=Sp$J3jHQmRR8y6!quZ`4Q`OG+8?(M5ydN0n~TdG+0t~%-h(OAv( z*?=#GloiDshKggT>b?UAHptG1KIpk7x{(^S=ZN!Y{0Ml+9LQk!efN>}V@{e5-r$YZ z7bD#v-B3(mV?^BZ~4&^TXtI;VDUPRjKZN=sPU1;;KYJZ`4On~!+k->|gmITaF znL$Z6a|S)41cCvgH?Cf~m9*xfv(%r~!my2C8ov!=fZYf()S56j^P#9PAObEO+1lYV2UlRM{=d7O{rij;0wayd98|LYkYNd z#|ka$X4tfhHJ=JX;_-`<_ja56YO1g4Hk27s6W6Oy&%bQnYu^z)lXz(m>u4v%+LiUK zT2L>EoZhEF5p^#t7`>dmgL!O}9t(SA22YQOK$knelX=|Sj~v!TP$sbbp;vD0P89Qo z*cB%UK@U+6^XAP^J?&B#_O=KNtQF?892P%iqyeP+6gwf!7TOPQrNDcm)=8poj`W^y zUVLJyctdMJ()F=j3;2n`Z7$^CV9Fu4xK!E?%2J|K1c``-$Y{}p#p8_Nku*5vwGaf5 zeUR6r{#1u6aMRtcx{=zVaXzkPTaGP!l@s-PR;Ijs?vy+cq8U2#fi=%eN17TAMHn`h zVFJE+^8V79Q=dCoX~&{b=6#}1atpW1LOIEjP@bUkuGpxffqms`&BG2>y8=dI)Amsj zxZRbZq9B@U`q6uZnq;)wFPsEVq}a)uwTCN2d0FxiiJ0&q&9e+Si*|{IclyTr(j=ER zEqp$?_>ilyVpq#qz!_VNZjEw>owg|ZomCMcjWEW<6ndPs%y=JswJg3@z8w zv%R_ZfJ(V`DsL0Vic39aO_A43ujQWft&SfhDEpbHP|@wgf50Fgg~$=J^Vw67Gu7nP zxy%CHWW2dq!fziW@fVu}MmSxT?+E=Ie1#Xp7g#3a$5Yy*2U2l8e=f{?KEaAj{j=EW z-jg~E;X62_9cM)(Ieo)tc0jp67AwYPhR`O*ALJfsB6eQl;n>&9JktgW+lB2C5Wt(fQek`WDbD!EmhT>Z(j$>{X`R$9!%>QFoV=MAKJ{=24OOyS; zcQ-9f)ZfYYQ0 z8&=Hy_nZ0uoPB@l)K6FIDCxa=QVlFL`#&TD!(i(3*(wJg`5(A*D1lKxaJ}o1{ml97 zW=ofgGwL4DoTRqp^8d;M1qrqV^^&j6j5phzdwA%~nkJ7~Ctfe+n(pf2Tz%dB$f}MT z6aIadnsj_IOU#vXz{KiuS4{Bi-PJoRJeyTw)n9sg?!LVK>7;d2O*U}<^_^TYeMxR+ zeEq}{PyZ`bDEMwa4^((4!wYjl%N#(iLnUSfL)m4A? z>+SommtcKT{$p|DeX%X^9zt<)-5t+&|BzhzL(G7;Ld3#csf@uxitmq*h2RhUIQgZT zUY8gixF2A6;C-MJxNhop&VzmPey{;sgRa1$59r37sfp(0PtU$g4zc%(kGpbAb!Ty` z?A9Lv8<%Dji+fnjN;$ep?1A#mgo)R-%l`1V^{vj+ecFea;tXF^v_oU(bBkrxdpAVy z`mq<-5SHl&HiskAYvq4PY;d^rRB)rP!zEAPjT+)7jkd>Lyce{^a`}WazbkB%!oK|Y&$}#k!H?;l+6~*8 z-m~wUZT3{H=)R=j?%g+PHN7uhTYh}{t)0(YClv(VKWA#`UUK37E1_Qo#>Rglrp%07 z`m?yI#@+n)N!xEFh7P-|F8}7fRW+;pjG6K4WMBvJjMnMBDxU?HdCt1nTlY@k=Gosa zp2wMvSATQt>r2Vi)wxe@UE5mhn^^z2dyBYrep(tUSg(i68m52dwLjmM zn7;+yGcmSbR_^sMM5oJtF5RuTq)v#`pm1q-l)Fo?)|hN$yxR=jiO2 zva3K%l(0snBxjd7OnbzC$WP*Za*j!C!kO?NyeB)39OL|I8*1BJrA zgF<1x!pDW*h)O+Tfq#g*D(JXsI#{^6n>as0-8FG_v~_T`wKhHP_Q=`A+QD9kSB#gR z`@EH_tD}nqAD`X-{Q+JFXG^|oC1v?=69PviT^AIJ%mn$1ktdsLjlw{ol;v+|d8DmO zxVvf%PPYD8f4leW*`!yzDk|q&h2S(s4ky9%y zov$TSa_Co9x*+W`DH}~s(SI{8e$)GB%6w0k%z{)r!KJNK1KSW2y0Cx$;Guzw z{9j8;;kmh-_djTv^u4}ue7x05&*HZwLE~1PzBG_K@a2ik?U$DWDk?;y7_R;57M)_h za^=dvLY#q9nLt%8TI@L0WHkT8mvFN?ERSadVA*?hL>P9Z+J zwBxlisIAE?3*XS@Gx*`Y%Xat5_?-l9lLmhbtwMczGBPquOiX-IQgqpn;YDF#;kMqZ zLgC@z-hWzX$Gz5TU-B8TxVyUt1_oM@jJb9vhp+c{(;WHiaM02q=jgP|pW))fmfchTOc^sCT8QN zLP(h(H@CIrdPa|wT1p5lfz^SdPz6il(r)Ms{W0wt3!Qh!cVcdDpm5*Mdxy2K-4`*E=*o1u@o1N+NG_5D&Z2YW6ZaU3BP749Eq)zZXb zSL-10jlBN^&#bLw*z;OiTFw?!Oy1tB;_!ecyk`R}Ha;2ILaZXo1u?NC*zd%}MXO2gt-J8_{`vV=WzUX< z9O@1(m6Vhav&y7hRE(ZRqZ57|tH~U&Lk8iz_Bq-`{=@IV{Mq^WmJDgH{l)B<{jFYE z`fHD=9(5+08^8PiZnfDehA~iLg|qPnI7{dd!kc`W~(7 zAF*(EeE;QezbkmauzEh832*8O<#%kgwk;)ue6|8P;y>?ph2L8q{p{NT!K71#)S= zn_gY*ZVsn(Sv^Xm=6U$p7@mmR;LFQI!>0uPudZrq)OjCJodEctt=d{!oretEOI#LI z;fv^{JoqQ7-E-l2Ac#xtCnRL{r?Fre<@eSmM#^kx0j4@$)xbLE*o~E^iM!xJzTS#v zQVu0$&U;vPB{nwpc(apFB||DXTQR1;Ku;7xIJ~~zFJ(c(=TP`&C}~S)XJn$0Z?fC! z=*-GWSGnET#-BeOZd24(AMktcI}$fFw6%qnn6)7fHS_D&*LQbQJ&sl@s+{Ku`RexB zFfcHlvq(!!EL3^?G2LAqQ)~($@kA$ETJ^m~z+z>xR#LkzhKBR~Hdq_`)?K|2LJ zBW&-f(%?cUtFPlW*ZmJK?|m{?o?ZN&{r>Q7vS7=1hd;ksxLA(n6OEW+y3@pky1C(I z(Q3Q-TJPf?yDFKRzjaz0uX4?doUj)~st^h?q{3-+v`otu(!JlxKa9I2g^i6(2N9xH+S?J&8Rb0xjox3tV`G}QH<39AkIbzmp)H0L{v%W- z=8M<=CT)T#bj!v{yLEiLr(or$8Trna`W;W8WT4>BF~oQ8&mt?*mT z9p%&Y0+)rJTPi9lUq>or&nK6?{w7h|O2&^yvnQu}l9YACTMzp3)Ii&XzqLYCw7ox$TJ7p8M|~;jtGLG0`cPV2RwNXecP;yuGE2qc=K~ zjE#*WiYn|UzCj?OT+CG=jWn4xp_sl?%Ov%muy=oc=}I2k#f!;;j|fpk^`{bm2x_H9 zP)YP z#$1H1P!a7-`T2c`x%T)6K0gsf5H88>(ior)Wse6jyMlG%pM{1>(hNX&_=V6z{3rsD zV+_}Lx`g=5&d!Q^?Q-Lhv6!Eop1>zEVI#?@sIVIVL~iVZ``;M&7}eN;<#|( zLZ@eZCTHy%+Uuzzc6ophAIu2fKvAWjp}{pj-AdNdkBEt}Y>Q^D@Lq*vf02|FmY7I8 z@#RTpe_3z3WE(y6VYONLr>t_X^`EZ-_TscLeIuGlTuxtK|HCy~!ic$SdqIXO*V5;P)hmXQ!0nob z1Pg3(ud%&_4@ZADNbdOP&~IZ<@bDUNw^#PEqN1We#=fOovtep`%kh5t3ecF)h`))5 z5Tm1{_;}5CK5=_@R8(BY-JxJG%~yFYPri6@?u*-M%DmdP(CB08PrKe1=3T1pXZoFr z12B3dD7u($GYLLCrfz6y32tb(&Z}Q}T}eqPqD|&tjuJ?1>*jo?I3y`VscHXPWifH_ z?;mxAa7mfk&0?ez9$)zWb_*L9*WwT@WBv4n3Ei`h5RG>#$;3x`92LGYL|@BR^wN)e6gZrUcUp_U1~UCs2~{{9kt9H)=nM2JditG2>#Lp~F6A-@$I18{ZopOy zfE7M4gee(P(C5K zxt0-I`n6AAJ$v?ySTT|Pu4c)I?FhsD7v5TG{o4hf=UOrIUu-UvYQ5K}(!lOmE4#?X zhGb>HmCNk4Ka)?=8l#3JYBPmk6H-1mjW14D=(lUhW|Sp1Ug}vpNGDS8=WY3xB%1((y(i z(&P90T$C8_7Df?U$8BW^HGO?1ph7(x-mv}v&;p-I4a19yin7!1%`5{mqtD>XzsLrm z{o86`dqF5Su8^6LF?D`Ox*i^vQ#EZGB5-Lp5+DRJmn#~U`q#fJuKq!b%f9}^4OMq~ zxJ*3dk;CbE?|e2n&cM67oxTm;aS+(w{7#QOfq5n5Yz04iRt!bYl{NF4O+vO0u#86n zIqv}xqTM!wodLlP4jjrow=CKcI!9{VHkmaAublVZ>K29PJNT6Y)O2aLdbzNgX?Y0I zP6rY``9Q~_-}C^Pd+9LL9r1RkoBug+1-4z`D#3ngcvuJWL{3HJ`D`7ew8W&AFK8j_x-5e_Z}Cj;P31M*UIpc`E3D$q&+ev* z6-$n11) zpXUhaWMU$2cup_0zgjV+!OTcQ)0%fL8|8Al8%R*;v3G-h{w3>$mq_&y=dlJ-1r$!a zX^VYo1U+10wzNxxk3S9i3uO$eDz()mM6Y@V42(_4vZrffRQEpU+qT`>t%cr&ATpWu z;Xw+| zAo9VW+U?Qy;&%x8;5&)DC05_rzz4Xw^Lwz$ZS`UFt)jUyM7y4ytouQEc)GpV2;xBv zF#FHOhB1^T@BNujCRl0_yHRs%2_=YhamQ&CqL+^M|9rL`iG%&}J^rI8bG&i0Erm_< zor<#4I25j>AMYu5mWOg3rs{ykYi7yeG?D_esyt*|r$0jd7RWd8@~*NdjhcplWFO4Bx^_)c~vh@m@0& zVEn;HoksYPfRt3Vbn)d|>w$M39vn;pZ6rxyotoJHUrtcvaaHR#XDxNb-CV-OJ z?7KY~W7WHc(B#aiQTR^V_SBCzFvK6SF zu&>!2wF!xgjGRqbnt+Fo%FD~6YRi=I8O;Ny<4YU(3nPdWjJk6F1D(Hs?QpRcy+v=v z>Z0GT=5W`{Hi$^36Zl2?j7v}Skf9e((}J|y%CL&iB|l#wi!PF8hXSPAnA(54>CyrqivUnbwl#~R@`Xr4m#Dx9QB?h0vZRNdjAfLiL znX>EqPrp7Ru+Fd?uXI|FnQo2SV1`kS`ZL=nFs#P05Uu3KV~l8g?uI}g6JS?)3b2b{^V76TBeYOpB%^X+Pp@d7g0r(SUKNiN$I&vI*|oLk`g&P_ zcnf$)P)n(YJIi|8E1%G>v<*#KBB)(gM_*BJ+y>!&3;u0ssE8Fnga~%bu)Jpv)HafT zQ1+D$Hs_sOT(aeY38l9CZXyAEv|cYeC;*bk3J(F#8L zM)mNs72<+Hx(Gl15hgn29S>2h4g_DN7j*ABzga6Wyx_vV?wy#TBECo(9#dEisl&x= zNESS(OF+2riHQ-V1t=K8>USJ#-g;fuH#dkW0K=xtkQI9>Q<&!kghA2D4zOh)alY>RpKhDZu{M zw8V#Kng=hfbJq#deg-5+6{`|=g?R@B$gbFIvob$__^ew>2o(Rnf8w5(llI_%wFm`o z21ru3MX5yezeebIGe0qW=(16rl&UIy4D)y4G<`=fpdg{lpAi4+>vl9J3t8srl$eJ2 zXmNMo)YaAbACT;AZIy~e{dXH~DXBEzs^XJPmhvre`Y(icT6=rd{^*2Mkr8JE*CU-Pe7q5e&d;QGGj)+tu!#}44{KohzUnqZ3K z^+x;+_Qfc?v#RxlGohouw^pjtD3Op%tN%PBr=^uFZ#teG zdbKXO&yqpwG0rZwSTR-I3Q4ALXjJ^n;j3d6ZseMl`vUq7YDk6GX|xZOrA@Wt)GltD z^5`m(8sF-P^31%;;vebvb$6tAPY++5w7w3rz8+)e>5Yvhv=VhH&sk z`6q+{db|mU+Xkv72~?yb2!Zj5iTC%ialyGW?@AH?5j4M8!>N|>7CfvGiFXi*U=s^= zyYPTne$D1*vHQB=>FJRJ$U2TY3G84*0&r!Xo*d2odNUduHWy!z*%vq zq!_6tbk=tzzQuugBILTL4kdBGy9R8pk2)oR!1XMS#>Kf35WEFL?p@_Ncu#1=-Y?A^ zd80r?!>g|ZMo4M;H7O}3KR>^(U%w*8@9rOn5`78m0m6T;g!*NW*VY+uwYl)+;(x1A*-u zLAd11%u&$Z0QQj!cp|T;DCBqQZPAs~2>7+aXoG-u?yqvO1iK~}Ods$Y=D>Kf0D@&ZRvuNo_9YV70EqDT zf{$!$x(Vm-rerN>Za;Pnp@~5s>(8gk6}{`*AsOCF*A=U(B-`~io4h?`5iMdZd`{}v zWnCOuU!_04=7_slLk1n*{+X6#?U~q84d8ugt{ttI@Y!K116bHBxQ1VzELYA(OKM2T zSogDoUZLen<2S*Cw$5*!&{|znQ#M$0G)VUS!$apkzZ9gTr8T!bXM$<*2?*p+q#?sA)jhS*VX44@jf9$z!>XPDpe_38XNmjr{zLs>UTNOd3X3i_Jt76GIw=eJqKm^Ij$uzKw0&-+6)0IN4;;?5&02nb+@(x~Tj0)e`v7W0czh!G2F z2AquV#U?j**CtX6X73}l2wI6z>${B|AD{uoaP2X616a5A;)!8OSDc2rmqbID8A#j5H4hnE1#KcaC{Xoi=4-ILLbBhm z?EZAnu)RrJC{njKfgAH_Z-$47F&zw!|E7K2tF>IdyF(iIQ|)WK1#_nV9RCMxR5b9s#Z2?<^KXUp0qOLV0Zzn${F zcZ`DPDe``@u|~l#&|u5Bjj7U&uv|sR;gw#hU@o}=GX_MHIieK?|jOYEPzun7^k3jascjSa*jMVN{S|jg(#6<0PZBal@i;MZ& zcq$aT!<5KN+%cGR9;-fCI!dnUet2Vk4*S}A;8A^`% zzit@4u$6jr4_tL4hDBNotXR}~%@!$WKFfsYCqR9v0_5fUT~~>Z_tQq!HZZlUEbKB? zHm;H}x8A5O5&fwrzDbm(V>wxK=f(hD)&c+JdxO6}Bh@udkHXYs#xbm(^!`|~9~q72 z2yX&ln#8DX@gg5S^rkJ=*uBnN^*gpieDS%_5s!LH{H}WQ}Iy=#E(ZYNk9Ej5~%{M z5&!FJwjGSDti8tvTNsxOz6kG)yQq~%SB$MnLE=ISoyi|+;GYr8%n4^+a`MnSp~i#x z7S+qk>VgYI>aId#(WuD9RId99Wy6Adn1>A(sU z7iLWhh=N7XMXJ27H`Ekk#TB~>zUEc~?;`&oLxphE-R&dgYrxHqXo;7?YijvS`kncZvPj`K45-OQ<>%W(v_U8OpQ#N2@BIyx zB6w(L6O@A+0?m8E# zJ3j-fr=D4o-I!WZKOp6&n3;A?8X`L#`k_xJviWIH8R5Kh%@R6Cg(GVR|~3RTx|?%fsy@)Q>`g)DklXpX#iGtp&;QD?L4V zafrWy7!xS1JoNyiVNA)XYVM(uF7ZTz+8s87nvo!qRVeqhFcW^oPMJjPj=uEkKj*jH z{-9Qpu)NSW7nNP^CQeNW56KX)n5a&1@n$_BJg@i-D-I1w>-}6=tvHD zxOw1Rj~4r~z*pY-70LJRw`R4Q9T-BfrqwfPw^IUVp`!{4`jhuKIIv8sV9tz{Oy0hw znkIGwOrFy8d-4(QjSK_(D5teCzSy`IXnp$;y0-q+py+F6q{$KYzE|kTsfz&iU?93F ztHT(<*#acFzgyB3n}4oS^6MDwTQ$h1q!z3A{KdLALwcmzov&AFix|{#EA(~!{ZWBI zLCIoHY@meSSaj=65&VMQI`q?V{E=2Xh;==g+%Tm=v16i@eaqE%GMbG-4gF#`DXEDE z?_1iZOnyjM$zYCqPyZ(0pO@Y6HP{-68t_Z1Z$LJU-Qie(I{Fy1XRXgqq|#F_J+GmJ zKID|G_WsPw%>L04B@InTW@hG~lRSI9em$Y4L+Eni>p`o<-RQw^!pvd(;fg*cJ7<&i zsG~cBLDQjG->*}@Mi$$7U`ldktI#+mlx6*9q$0qc!>6rD1CXw-O~aK0%;}1!FNjqV z-~JhJ&!%y3;I~$AqDfMHrF&PPPvrRvqcu}4lnj%2KuHO^KbIo}qP-xDAhdThRkMA0 z=UISDO1lgS<+iGNB5@ZFk?<}=Tjj&7sKjsy=apLQhAvxo%}{ZfVziZ zHJtn$`ie|aaXlc$qLC&%q7C%p@bH%QNGO)L4?>VV6GRy307XcNX7Lmo=;0|QT`dtqA zk|xQ2Wxw9K+Gqc9Fq}KfR9Qx|ME)(^h!oC)I{ZSzjeT7F4<=9E{A%H!p2KyC=m~g) z{%Vd|^X=RBEp^m*SNHET#qC=qdD7~SlMPCK?OShLN)Tz~`HZYTYiLB6`Cv{^@$YM; z6FVf-w?7(}-Y9cJ^K1&PoD#Zq3D9zlNlet-|1y#GMzg+xW&&s+`N2F#sroMi!b4TQ z^5D3Y{&v{JSa`qda!g${l)NiJDF(*v?k$h!H!!>HLn&>#xFkX!_{UmJuIpklkckj+ za@goH+=Dl4roc;R48-f+?Ndv%3r9({^CX4x3~3T=ZoeV-zQRDg&xV2~#Yk>7Ea6tgC7 z?qb!{SFoF!WP?ic2j6q&!rQS`afndV`E_}hPAvLT-zFsDw9K0rtO-sJPB%)a2-_-l z`sA5ENdOgFVq&{32qKh<$7WK5hyym`%;lsY9*aRYj!5{E{9Amz)6Z4@c}5ERLzgx- zDkNg(v`hoVznLF#yZj(HJ3idv!n(`)4Bd48^`{(iB&6&|N(T8W_>3F;#U1sG02$~; zCB*(lr~Ju|khf5~t?Xyw5AMYxF>@Jx@#rs?s?m)*ch1JGgB}`meZN%pB_&%E2`Iw& z_B;FqJRrAonfKCcpS;0TXo>TF2l+?tdP1mD+vI)G=ZLOyfhV6**-$AgsQy8cw{7g2j3G?{Tt^B&rKRCZqD?P zsej;=DyPwx{;0~~x%yjRSb)*Z2j}|*w2z3T%iVbN#jXjrw6u@if0sQ2?2IAph89W| zJ(8SdU4Wf?|7KwG$|*y_b6if^QZ}Q)lEH9x*_O73#(9gGxgV{Jdw5zRp`{`|=e%$0 z(foa~SEXYnKPQaU_;V+PVUY0+rt*L9=)5YdVn^ac?zqs|cPgGw8UBiwS&(*rV(VJ- zv*bPTs_PS87d)`F?25i$f?JQ=%WCP-#3OkNiMCFb)2q-!UA<1!D}FP6j> z`^Acn&K<8Y?j?RSQ~hr3Eeq(z{dauKDUtN+cJzyLSO%v=b{XXo_X2XQ#STD|B1 z2dQTZ5$onX`SI!czbk&B;`e>vu^zZz>rYWrf)6<3zFxURyvysqS~}C8DZ0it(727(}IDS9(&v~e^-$aT<5YbJg zAO44b*?!*(4=lVUZGQw*2&w-~m*74l*+$X5)K!zttcPAUTS|YNPp+(-e&bGi##Ha* z*OGu9y;QM-qph|Kf){l2*78-rngfifSw=tzsJhJm-KcBlD*ujKr7!)O2j-gZz;AgC z{gG8i=X7y}g+4OKi1odV(AJ>tugdQwep*mLBrP)=;B2i4jbSawof!T^bG-$(*%I7U zDz*@eDbj0GNeLhDVhS*{$-sKO-mEYz-K#%xI=aNTr)>?<^nQv+f1D?h6IO~Qyb_gJ z9*}pn@7KM>KXvd>JpVmZdts6BQhh@Q^(`pI40`EG>>Sn1(I=z;z%!X$=_#n1z}Fqd zrH&L@O{32d0G3^GOB%yd{TM7rGW~sO`^FScdykiUqW3p;Hq+WZ&5Z#fi|PRn>f3LP zot*<8x+hl@*P9IKyIlCSQExJE)}>cQidL0);$>wb3L5*3?QEz;R`VdyVXsCOJFB(1 zGH+iygm^;+zR~tGO~&rQCdFfH)t(2r6dfte*kXtIkT2~;4YKuLYVX_}$m;W^dztt6 zksOkCcDWTu5VFgybD`J0t2k0Z;(Ni+<-!*6C9ba{E}Z0liiQ0E@LZ|qS%#ou%1R1R zEbUp<0PZ!()a<*DCrEl2#9)v_BTpgp>u0xfZnzAj{=P!cX_B~~mHTgH_pjdPR9VLl zcj|KyMBs}pRxgo`%2ETy4cseU;B1VaxUF1N=yQr=LCLE|418+}Jz z6w|FnlaY)m zw!8F^&c^GiV>xLUdj}`r_-y zdOm?b08E2xry74LVlWcxkq(YRiBkHn95gT;lA~o&!^Zn$XvXX0RTtJIR*Y<;MZ_z% zT2F420so0&MHOBDyJu9K+A)om%;$MAC2COVhG4S9=KQy1;WfmWlNdvMP0VTy6AtiN zZ;d4@7~Q%=WWPt$+fOd6kXGzmBjSAZ(E2k11%}FDLA})t2NUX5W#S*2M_PVsDI`R2 z`~`8$ul&ZR=k{%IUKWyF)DFrI9egiO7@Fh=wy*fzgz?dO$u5V`z zXtjpYXH}}Lj1`;%zTiDVH=_P z-a=6@ZA4ymKUDkc5LWl@$<+0UH9!^I|8@5ve7=1 zB#~^gvflP$sa1cmY~|5Iq?EtyBb3D(7?t~R-)cw9HP!0L8`B&A6qc}-m2mzAL$O+d zD-)y_eX;+xhNzfBFmliMheQrs2>#*a*RuoA!pu=~!0|g6yx6=)7*z{JW&J%|sVgh> z(m&`Ru#$_wN}Rih9~9wn@7G8XmUm9=#=XDh?>k_!a$)iC687M;N+lP?^xo0N=aSv; z9i8qy$ORV6HT<*Q;cw+WvjsYMISLwe(ETyZB04g;#i{f>D1-IpmI?BbEW}O6Hyw^_ z#VVOr{-96RPJx`eaHjX~{G~n`eQBfEE>HbULhCY<>xDR`tQb@glHbfmP{LnJseefM z*gXiZ?)#f~wg+J~#MKMQ!SOb^_Txqeq%IMvCzGSew;|`QH0$TGA3Inb`-`(Z+CBt<4=O^JekaHZw zSZK14df#Ua4E&FoE01*2KMZ&L2fuOE(2t8^Ot@@}C4k@&65Or_S#Qtv{i_xZxGyoiD+{p6?N-Y_ zQUTQ-_O>kpUr{?b`)>5HY0r1u4c;eapOuZT-MI)AeeV61moeG^&EPdL8T=soqpFsz z^*`&xp2@>(w)SPli2jxXHrYuvB^Om;dH}-7+lfTiikxz*%9YdYr&k^u$Ur?9r(wj% zeB%GYOg&d}{H*NfaOsPG6UN)sDp-7ql9AX5CsuKT0PPdxBB^_WbRz;Nt2kbo7sa zqhm5a?^3tu8d;v{+M5B_ymAs+7&=QBMY`a{*0p3(ckhFD zsQ8rTE6>FuEYJz=x{F^B;BBOI6hP z7s2B~MZB@|FZrj&RNZw9{{Y!WezirRF>?wE?&+lO?CI+i(E6=GjgsvMqtkdEoPJI5 zref&V{{Yth%|F=79-}{uHy{}x&GPi5SAXuFJbTAMEf6onHP}X_O}zGHb+L>8=5B=m z?_5kX_Wm1Au+ZmI8ZOo&f&PB((!Y4Qd0p1U=CdE$l+rj+#dgu-rj1z_ z+I{jPM|gO(hg^{Fxnq7UtHQ4^SvXfnxjY?d=#R1ILrQW4JgYx8eQ&LzW_=PS&*>!H zxM9Yk1)7I2cM3xujnK;oi-`F4$5SmsD!kjG^Jf9H6X`RAVDb%d*kH!(935R4jDo;r zk5-0DpdEarO;>?EF?}4BdTLqjUR|r*o3ynY1TLpfMM(}F#&3qy6p#4zSq4h@=e)c}QF`mb4F0%CH+78<}Lh>HJ|V%=zqO52jf< zU;xGwhS$QMKW_$84`zj6UM$}B(fty6c3K{Ktm=gu*B`kUJtaFyg;%7YHno?oF%!`j z_ntl7yxWbal<7r>jV+>czH6OFgiiwOQf<^^&ZP%3k?87%gQ-TRac}Zn@P}``xtpTnU+2s5_VVOB>6hLFmg^K{ta?vR4m zBgL@g|E0J!pbwC1LFf25yQ;h+AO{_-XIy9(cP_mZ*D>w5W6#N<&--<^D z3vzWYhsVS$KqDOYHGB-FiA3&af_=T!elZ4B4DB;GdXTUT0ZbX2Xnde)QN0s?Rb-%ePGbpbr6ZNyhX)0>VTNE}CGq7B zT1u3NloXs}qV|)IY;ob~Mqg(#8%9VD@8Z$AgA1bM(Su<=*>nKgu@BK8@5YYTck{4FDx=rt12tS z+*UhQ;j02(P@=!;pwdsXgMrU5$UJhc$OJJgop=_=dZv4}*>iS%{=rXltkkPjQ)Lwu zV(mhGjMt_u5%jw}_ugPnPNIJ*TlS=N+^E^+$PA1Zp5WwxDPWwgd;D-di9VwghVD@M zb>7Lt!^5seEv>B-EG!wnF0qLlt36w14Xsql8z0rrN5*;XKTNHje9@@>*wX#-*ySlU znDfJ+V6`jMq+rDvl$1-ggw^-t9&3pU3&U3&Yir{iI0e%PP7$scUNOj3%d~)bJO3&% zoBpsDpV{ZTRUfpAtwWC>s=mH{HbKjrJl1w}TOjQK3n7rXP}30zDoji3UJVFvCAt(| zveA9s#Y7e;qoJ=S0q+{#x<;S7#M@GucT~*cU<$%HI-Y^kwKeo8797MZ;Lr4dIrfXz zZL`mBy=sW68R;OTUtorVk4PZt*~g^7iHx50VCZLz?bTp$e0a#9DF5uRwre%u5{bkk&JNUuF-A?UOisX^?b@mkSSl>7!ssS%EzQg zuC0FplQPvdhWpRX&Xdojf@NqJjlBNzU88vmB&)dV;yDydB!6>dj(dx|cvYgde1GvF zNu_H8Q|qwHr*b{Y*ua(!`VVD6At&8um+q2tPf>-Op$u<0`igpgCn_{56aE0TFss=^ zXCJ@$*^OZ1%B@Eb#4_L9N}AzlE(}mixBhy+1XHD5R&?0ht9VA^0ZxnRg|=zUZ=+IdY$Nx|F91QD%mH1UG=RlcTDe*b5zT8e z8B(g(I6-#kN7_>eJ{L?g+_(NcR7BPQwM!X>1}cpD@z43gq0#v{4K6tJhYbIq;Iu`z z^xk;@IX5kq%$w z(?O;+36Bk9eSJYAXAZ9AZcqDipCh-n%Sq$ySJeE~p+%$LU5;uOefO%4Vus=Ei!JrqFRZiIh85Y6dcrZ!f%q7i z!^MQs2qnP~jLyu!ynOX{7_Lvh|CWacx%xUzm!IGRfr+KD8(F1u^KUKi*bFQynjFrq zjZI7n4CTd{c3Qj@<>Meq;4|v!%eqNGMy9s)2gZC$Ob|NNNzy97r1#NMHiZEO)v z`aBMYbdh!=oKx<}kiIkW=~3yc9XR3Ox;~i>bML3KExo-lFa{O@r;lNv4F}F6w@poD z!ZZjR4*KL%qZC_i7L6DdBrJMZkL*i9`zcL^RpLW)tTVJBmssjE@$I29WWUW7wy*7f zWY(9oE4tikxt-_1Z({sk5=s z!-%BpnNZwZPvZT{;30NbJg>T=nv9Fq-xHUf{_6X8mn}fmJFbsf!~BFaC&=Lnkx%j} zU;xD7g0fk|wJg8>N`&85TufXq{kA;&xZZx80oZg03|1f-s$?CbAG-kzBS`g@*AuN9XLn zmv?;o<9P78>azP(Z-cT!%slRiF!TTpPo8WgM!R$IM02qHTEn_o7xb9<{Ha7&HCc2~ z39^&mhZWur?B;&C{}M8SiXU8Nr8V&q77;apvD#C-NsfZpfAYha*U=x2Ty)aeLF5Hg!MAk%$I&mP-BackeIZKr0dB{`6YKM^*UhjmpZV z2EHsqHLz|RLccc7gC&eqY(M7HNeq@#n22(81GM{lb$fwiG4ZZ9mI&vfDD$`vQVliu zt154tjX3Jbx?EVnY3lOaf;8KUE)0x{?{+Iv1E;>s^X+x;b>!{uHn%Xk$UrrGg&8T+ z0Z!UP*ODl&J))Mmq|(x|7S7J^!~Z=Z$IST17Kv>tX-3&+l+cC;*Blefe@f*G(4-HW z>l!pG-jubd-h$iKm3ab4U*zOm{DblN>G<(ss9#gUQo=2`rG~0Qz|AiRN#>MjPCFOq{h ze(5GKv*0i!x_uaB1EIur(;oUh_7wyhUEH$tM&eM`gwEEo(J9vQRE0=?_BI2}~wI2rRZ>6S#Z9>Z=) zkI9AxbvAYk>gP5$^}?F9BWtEh%W780Zm;J5We<8r2v67eJZ#(d2gilyGJoVieSKjd zV7{CFFr3uU^jO0DinQY^fI&Q+*xlb;>$ON z@1%AbGMT|wdLI1Hy=nCf$qWr7I)5@55kZ%GtX39dJ?$8;j^WHZ#_Qh2;x_;iCfbmlZBZM@LZ1cMsiJe= z-8sbxC-{3c9mOx>nWl5J7_anh9ytN>uw94Cm5rKl_GhM`sMcp~u0D7NFFVOV7IUT!R-iknI^V9lT+y!@-0k3qx6{`kYEdm9@9_)4@76mdeR6{kw-S{4 zYeO|UVW6A_B!U**XJP5iVGm7Nm0oa;IF6OJ3le-=iLGv;US#XWpkPnJCys5P8 z@G8zakyVRJNO5nRc4%y&1l%aXyP^LQdGyV;!@Zfgr;a-zr=^W86A+ipNL+H+9iQv5 z$8wil6rxVst|x#~UinWI>AtjkmpYpAcwa-AUPN#tt^z#UYYwTaUb6mi*N``lo5Trk zCs}Z7N^$RUt8l*nQwB~@7KlES2jJCqeR@s*cx(b%t#iPaE@Yy`Fk*x zA}+(4H&e0N^&EZXOp3(&O$z`vbFYe8suEl3c&3XcX{>F$TSfluWdULx3EZz|Aq@j8XEzwTT`;;iZk zBs(8p@@k>O^{Q5gQZ|Uv*k8Pd4BQ8nZK*JIwL5`?S*+guatvZ4lW3}%N>=o?e^?}P zbw}0zG$O1lfJ`Vk?G1>zOj?FN?%TPWKLE`a`^yHjw~q1a=BGC=Bn>cs?bSsh#nRWC zMJ_tP2xn1RVW5S>2zE*%?c_ju<%Gsowa?)T+6Uf_gTp2nhw|*UH~{St1jsB?ei+e4laNLAs*w8o90YUO_i!GF=FS02@1q3n*%$x! zp;N9ZnzZPYPB=+{e+=;R0N{r!niwlV#>D=rE(G4bEK<^y47u*LFqu&3Fc+qWj7U%a z7C`XcocjU|4JiW6Wz3%$ZJw}kS^T{m4q#;02bM~1r(*n5En;itjL1XI@HuR5?(4eT z?wM~wzFc{#sHh>>XPVmlwDvcme*d}LzL2H5WOdYlvP%J_Apdr8>#C({2iJWvHom0l zIejT(B))!-p5W`fOJ0@9OgTHF_^0>G8BPF1BrHZSRH&T64zx6Rhnh@|$v&C-y9@gD z*hb?vzRp+KG}ND^2j`p#j=4)=l&zPG#QZ%LM8(M{^Q^uis5(Cd;b+k`Ja;l4LmnKShXz=O~wuD+Spsv}|Ty_opv@sl;DS@#G&KuV`Y_^~s z@}vfHCM!q11gBX)i0^6B$SS;V>@WL?YR9LPFr9Ix`%qhrI|m7mbF6l%^(CCwPbT}U zULZ)){5S)H-&H`X4$HJ@x>LsSaVdQ9+e(QN(w}uU&8?)y2X$??gWv1+LL7|8C9zA0+# z7qF1rH_01p=@$d%=X#ZABi2^d18t?SkRrUsSR({KS{hk3XWIDyBTp=YQepH$9zorR za@Neyjrt4460SZ?zlGuA7gbLiUVEzN;<2}WJ#KVdRD{4%y0;6~-cBa7!Arl7j77kLl+f{ zZdbnc*VuwApI;6<`W;9A{bobf{*JfL_Y@W|P5+HKu;VcmTCl(u@y3&T0h6xW?iQC<0UMQIQ4rPXm{$GvGju*HAb zWPebDL-qpQa~uNp($dGq621=a6dCTf*eYA_5v4A({gYL(#s=!lDTT9Hq1dwZ&+(Ga z+4SvQn*7j=0wE;H?B54(jf(1QuLR^-=w_@Ial#Qi(4&9@jr?8#?n9ibizcF%-~K178q&*6)C>oqstSJTd%J2rAo7#Ty!B?oOo=)!r} zUGJVo{iDNzqV+Zxp*@zuj`m? zmm=_H-Ylbc2FtW2IgJ%(U%bWD_u&{;MzMelbC|DaOHsh#eKpI>jDb$}6$RDLY$y)6 zQYrXR=d_XMD{}mbSiHB<;i;~FGCZ%VKIDrwcn|F8=2-L7Eh+i(Gew*@@4|SV4_qx= zi#yEQ^nwT@|0u+AE7p&4*S#8QWA)gr{;1U^wHHk%vAn`V)jcwDT3>$$Nss~uaQwuH zK1Icc@G3!_ZH4yR3pnq}$_imgfOAj56U)TL_Oxq)7{d`&qW~{V1;Aa{0N^1#KGvSM z05?eLAC?^EZHp{LD<1l`o-W^uYFhrif+$ID3yaGE8=&lT$V=ICi9`9gP}+j4)v%P+ z!~@E-q8d_&G@FR~Myc&5=?KV@;**n;tEnJa2Y`@>JI9}z3eh8C$e#;CAc#Q$;EZoz z5-!XkfOG55MSYehey}Iz?1hzCqC?3;!w?_HcWcj zBGtaYO?Kj=@L3lJqlce7sblLTtn5kC*c<=9w0tL@;dA3)d`SFK6PC&Nm7>?a?s)O? z<;28<0o=g1hJJV<=d8ajrVhsAgHH1zhwe=40|JLnqyM)Ipi?A+d2q_wQ+&;^)cZR( zrUo~$mAyTJ3&az3a}Jao{d`{SP~Yub5+KGd^Rv2IjSZ;2f;v<28TDWSFH>SPKQ?Olin43PDhkxTKBVO(QVm1KJ+fRe{bipO@~O} zjkSY=DUwvChZ+QHTs#d(q>qovm%nw0D&dEV7&c>A$%)}o;9_F<3pG6Ie^fwaFa@y# zc6N3Ong009R4H}Yv@oFVo)4|>CE8a*gq1$dn|@4Czewc2o`2Qc$~uiabiNX|G0&2F ze4Ed*f!c;FCZ0)Yr|ejp?MIVJV6@sWj#C84O`dvtl&%mkV}fQf7X@VfyAi_J(%770 zKn-UDO{bq!`>BkxRQhSn>RXj5ph@r6^0`|2h>=h^E-o%4-NHXv%CbEQM1kYz7bww< z)0`X40A@hp6F4%k$0LM!5YdRsKiyXmam@2NQoUuujAqc)dJiSo-Lr z+Hh|v9@m;eXymn!EAT0K3K?${onvElNN)>Vjykt`qHzW#p2Wg1=DHdg#HXU3Wn+wh3{M0T01GpKk!&zJ z9)IPdMcZ~ad`6hivo1J8*+Am{C~T*dfG(zmYVfKp=TZNwSaLV5B*X{dDKTp`{3`i+ zqO%|JuaexA&Fln`s@x}7QPOuGUhTgwuQ$!aef~VFX7fLs&MDjFfZqSf*Q6kf&QCj# zMV;4LM(l}`0mfncF56aa7M2Qp!b}7Wz};Y&JrHr|?g2O|czAgqU_VY2(Q>CC2$O^y z!s2tSHB%IcHL>90oDhhanRT5~jDJV>3;hX&%OdSRS+>st>%n50)wsT4(|$?^1;~Z^ zXYYrLpgj2e{#OC3eKn;ybSd%VLbW;l$%l`TQA(bU0DhITjls}Z*dX$Em+2Ke1ywLPK1uzS;5_?r&Z5#ipKEBQ^ z?Q&O@{ASJ@AJJYSc1XrXFelEZs1*VzH-{NEiiAn)6mZ& zQ||jA`K*i%7j}HTiud@z<~tUnGD z>C!+}sjk;V%DBO!4G)#y$M)RDcj?VGXHf~-cF7}gWcwC&c6v8tD)}c<_y1-xH66IH z{Oi+Al>(P#3R~R}B%Hh&61N}LLaag&66k(^kKY9IDc(d7j&?*GR)TRoh=4=k+;J-6 zIK-PMF^8dgkC0Hcb=4>{PoOGb)*#oXBijOw*5sg$K~H`8i==y(U||lkPLt_2)m^AC zl%bQEYpk)GLBpE=6v`l+%Q{a+4F3yC3Qdqy;yM07%y>`UpAZ2JZ`hSyx6C0B%Kl>p zDCF)`NEHy<%1uFn6!VcX2V15eu4vF{5;uQ^;C`GyHY0Tkk`rH_c@|-C0LDYW-s-K# zZ5jgVj+8pCOQh6YF|*rF)JPhy^R-1L`01alJdi%LquU*YFR$SL2^t=sJms$#wuXj= z(hA-(hDA?LPZ@8%=4Wq%a$Qa6D|e6GU9kD0wi`iqbZ&_ABj@fM2O>XSyo?nG>tSxZ zwNhhoTk*d-IMobt@bT9{q0S@8wM%3OkFHjy1Wf(y%FoT3dG&r zh@-DUGI(HHrDoTFep#AH&a&-U(I?Q-OQ<0)NSS|Ij-#-IjUhs*CTbonbExl@NNvF+!4>nky_areMLQ+Pr!5;rKJn9m+%b zi=)Wvylvbe9!#fL@M{$ucZX(b$9YYS11alTZoXM(8?<=S};o}lDUH4l2;6_ru{ zJ=1s;`4H+(Yc6|WxHl$h~?7H|J}(akxb6|mQ=yov^seeQS$Ji5tx(&;Vy&Y)8e!b*F&GL({%JXCPCH3ejdny%f>^XcK%Gf)^7BtCYZ1bt83+ zK59|bsDq+yb}EG3#l1@s66&3nQ0`A7H~??p>bw&cN_lsg&vlghp34>h##)0KEKA^e zavnNqc|buMfdTxrFOF8bS9;_@cfDz!hm9YWs``?7B%NTnd$6F~Bt2keq7DxtBCqKQ zyZ;}bpmG}g{gwsG2XLVF;`EAx+AA|B2c~f~g!tTEo@tcEahC1DB*Nm;hBRwEmjyml zOD~|tAb$-(MX2Qmf29k8)HNo_yZb{PwFafh>bLQxwe?U#HGBLxMJ`nhBVS+Skz4DW zzHNbJ#7-cvyRX<~e&Iw~Tc0Ep`%PJ|0{IN?VMsAiH-~c~ zcg4zHFmtg8hOmTJIFh{cGyjO>@#si1q>p+Qb+`i_5eU2-W(l8I@3y7C-r9R7_R$_{ z&j4bLy0NEg)298N0yp8<=%4jCA4#6s^s+=PSf{Z2^5-@71{x{>M-=4HrD-t1}?yTmjr zm3aH7d4?;OfCS;4z?SrOuchuUyy;xTwW(vneT9Mynb1>R_WvhRu8vrQT|wM9p#KWn z(w9!w#4g)n=VOKDM(IB9P`!3=^Dtfik9&C?OywMZBzPxGJrk#zmecXF*R$N+CFH^YO;oeuB{el(w$sPA zRGL98q^Bp^0-F+Sga4kmn>fRLXeCfvi;uO=9J1OZ7T=wChn?wWKQkv|W$VwUR(-r{ ze%xyp-&rKWa&{ZPThy~>2yzGD+*dV2GWHj2UhP7F(*GCvf_x@sUU+n-_S>c=Zg(ht ze4;asQWs0(x+uf_uV2rCO;$8FH=o_;ztN*xVZ zKC%8F?s}NM_nv!k+~0e5v*TD2_*}>9*du4V87cDO3Aqee6fO*=?c2Q(poQ$KFYS9C zDQZml=}l`)nOQ1~Z~T&$xXa^`A=Lv8+SQ=W(M>B`3HbFqj`1P7SP1e0A+Y)qwl6Zi z@dC7h$x&?^|Fny@9BQX6nEZEe^A{qaBY)!6rYHHa0%NcSR~GYP3D**B$NmIalusV(Ctb^f6}h z`WmYsF>FcT$v~=oczVLZ$x$rIs94AM(aNtn{bIG=xNCo}vV7pKp1)fkZJ;&>zOtTA z{ddUTb5sZ?M>NmWv`mYXxO*Df9DL6SfSu9^Yz&;-;?z5YM zaiHe?xpdW-b)_ec%y*cyBvWNNVgc|z#9xDUwb&wKpjnbEubU??7JYhZl2gZQ8z_y+ zR7n#e3r~a2uCBnlduI0CHCk`pd%`xvYyEEZsOBv@r+M|m|AgFr@)1rQf5+Rm^)p%^ zqxhU=MizSHi=%MwrnT9GWKomMuB&?ogO9|wURl=`@4GN49qv=$x%%GSi&@XW6b_dt z9ndGz>s8_&EB|$Vj+gCm&!BKq-QixEb#G}L@=#ggVIAe$({kA4OT5IqrbJ7laHJ)x zhDc!d?jeEW55q^8G>WtrolbRy?I{q37}@KTMe`gdhZfZV)8BJX``sYtV`grDRao$$ z**}}g0B}-ZH;;U|5R-dWSis%=i5qy;8OX)KV<_Kr`9BP^{4eUAX5J|9;YtlQdu&qzBsmH zIt0(_BbcuT*Q{*rF=>1}<8|u5zn}W#vUbl;cb`4e&yu8Lv7%|7YVHVmv$ko+ZswzE z;W61h%#z;>`ehF3@BckC3^FwEC`MKUUbbEk)|z?SJo;BAB=I_-Zx}17>L}K!3WPs6 z@>yxC>iWlk5e(CsQ<}|z%2W&;^f-T%Lr2#5Q=ZEGhXv`5AG#30NyIXUz`?uin%C9> z0MPI)E*#)2Z#;av6Gs2qy|Gia_%Iz|5@N=UW zL#BO@W=Ev^`=jFKlv~f|dY(CRW`1GeT=JDeq;~x;|>-3vVxYL1ngu$HNKUQWNUl>#A?28fglGhrlaDyKWCWG>*TZ6y0fx3zP)iBaWPc;pBJ?0sys znT1X>;K*6OT^b_Rc6P52Z}N0@YIe3(y`Xy+RP@OFmRZjSpllr$%}!{k6Y$Afo*>m) z^yV*#m8qE3gQIhklilbgjB2B#Ng%4i%KUxkx(9AZ;z-N+U#q^*IjEUtd3lau}P&1Rps>NLy^mtS=Cci`@-f!{x9eyk4)n9$jq| z7LJUOSqOVL8cc*Pkc1Vr(YoJouVL#>E@^nF5B@7u%N%tp$3ZI!HMTTPt zaX!%m6h@JjxyMivjM0al&&esvwrOpq0SooZc#f68vv$_;5b0GT>ZCIM9U!aBb0Pi9Tm|DZGiA8jkk5-W*cb@bry9o)bc`H3YB%J?PasOkc%cdNP5iK3 zW%EbTZz2wAZ71FZA5hJbo(#a3tTkf#g%rTT#qv96s`|5Ko2uWZrilu?MX;s+EIbzK zhq#dUi=RP+$j!YPZ<#GDEJ6@pgoW_Is;ihGUX?HJ3{-If6nI6l7~T;JXeBc{TOAt$ zFm&(@$}W5+>7bsjRqobOhu^utpGnSuP$_L&w&w# z?7O@T;hUsQ(sgJnLyzmCvMN92u`@#mcn*ax?Bxr2ip5Vk%U_Sk`tix0VT<&?BFe-xa&b?UxEm!ar_8NW zGg?F@AFxmRLn$VC*iWlvKRak$i~%%I=ZZu{MIm5s>OI26z~CH@&_Wk$RclR0I=XMN*k^UP^vZ?*2NNTXO%t;%9x%4>UU#LkLL#{A~bL0EV zPbR#KcsBHm>3UAgohf;g+nXu7Fn1lA&p|GEoB}5c5KgtH%m_vXF=RN2IqgGucl4;) z(;ub?j^&Sbt$&XbsvMC*;>(U~2h6p+r;`5Ha2ouI^0>uc7z|Tp-HuNA2N`H%=XA*# zQL-u}kd)W_X-Lv-K{$A>0jsAdx@R!w1-{LTt91&&^)tGlc=y4kF7ss7fExx1aY&Z7-s zNj12BpxW#Pxbhk(=|Nf9w3{slP~9QSieWT&>I^PYMZ_jSj!oR^911Q`Y~m&`Vd%e+^^Bz6rI|*(Tm+SK$lZQSk|7aWiv=G#VhiTz=eN;s zFDv%-t+5rTy=<9B6Q0xhAGZQ3iOiO8%ldf=S&H8k5)LsQRipCEihZX!+sLkzKW>RU zUQS}Ps0YrDfJKaeVIX63@V~r9K46rrgFnupFr+R`z=tAc-Xub(uu(}wX;5D9D{<`h+Vi{N z9ZUQFmtu_wBoXBG;uQRcm1hy)IoEOO&4mOe68#Os5ic)q3PQRrIL{3?mmtaa817R? z#E_AXL2ggni}y?_=wF=9i> z&JWEO&XkkD0kVK@yt$Gm1N0M_%APp-MC||r^YD;ZNBmG6yf}mM8Ax{`-xb^JHYOyI zxl=eCagNY2A%mUg+{CUj%LWVtURuT$J!V>50T&>3ieL!+-6n zl4#1^eCZdx>4!_eFcI;>t`o{f*tI9W=i4eau(*i4ZN2sGZ{0||^FX41_@B?kpP32~ z*PClS^dsR`9g@BLa6etW{T`)983jXRjR}Xm)4_(GW;X3^BuMtZ@j`6lc7!pDQoKC( zQjx7+NevHvL!p(8jTnkIn_K>o>E_M#6b!&fdvH&~B$RzCp=Tj)@{8bLOtpoS@4G$K zjC?G!?23j?-Vf8nKJ;S$D;_@V)-!X^aWW2@8QJEh2x4rY@WtGx3Y3F)A}X+*+N}Ku zY}3%g%YNc3X62|B1SmQ0!F(!<7_389H%tODPsAvth8~obir_OjliSE;I-?}t{Tz6l zA_ga9H>$K}!18z9MHnRM*k@)|)@!XW1S%dqdemDUbVxZChy{h>*|U!sxw&J8z?ejP;yj7;Jswz+uVD4Li`L@=+Sd0!uiisv*F=Vf7K{S2ak!nXIgmX_A1I_H@o zjY1v$hPJllFq_>hi!*hmUiiEEn?%Sfrevb2CYh6%5o7{qY)*2^`5SK>5_j!Vy1W%_Rzjbl|u1?F>n zz&Tivj(o3(w`v%;5{_{y`bm^x7#qh>Cyi~7fa?>bZVKowof}CKZ)*$1A;N{#vFYkkni1dW62?jd zTd61>GiSZ9&ht|pQ6(RbYx4G2i(3&C+*hMd!BT8=ZGK4D(cX`GHIH35!+p*)8-5Fv zK%ak#g1@F`*$waRgn zwGBOR!twiOX`>*%2G%kxsSOhzZpG(GShO~M8wKZv+vn*lnGOMg!I$v}^r;9T41M!v z?@0sR1g$MxT($TvI5M$k*Fqa{&^ZyOFbWB7TyJs>Muf7X0EeLFkgatm$i*IqPEYv7 z&}j4yX;@V_=CKv2_V1_pvwD|C(C^fdG^9Cd(e97_Iwx-RQ-KX9JAX6^#n6Q$q3|*< z;=;gufG8w}Zsz2CX3-Jpu(>h`_v-6Ktx2gwwvod@T!?MQG@>jVBmN&=JxRd9>I9l0 zQLiAHICvCoDM(IXX?Z!-c<231ubr84+8~flxgRM!A5wX48%!YEkr0cBV%9@Q1KR5@-KVwDy_;})Z+XZo0kVCcc3cS zH7G9TS;5L*!K#Y#ii#~5J%#!+&F+2fYX_HIgITxMUCg`jY0QOM*+edm1UOEH#lI7$ zUAgNJeZ}aH*JjVU_OR;(($31?K6KsejF9~<9yE2U=I^KE1^$Iyk%OrAp6eC3Xt#$+ zygaIWF;42xno|>sU>`+W1~#r=ze_?Q1jQ->ac%7cYEdDN?G?zI@AmPp2zuR#s$3jn z(>|(gUXkKG9{Jru`NBP++?~%P&9DkTQdAG};!+RcKfe|>TZu)z>|6Yibpkz&VuA{? z+Kfz0RN;_My>_0ujCYWMgz@n`6Ty1k9@jOoZlm))*7BgsJ>P8IyrH-CVw?^JYO z|IOTEM~`y6)cO)ywPN^FdZC%}!&1~#FvLpNkr*<@eZN%ejU&sNc!g?`m^Jwj_V1}d z{*fD@FQN))S&9wobuvoVhRoQ#);+-z#p8eM>}jjhiyKVO*-mX|xbBGI4Hz1PeIsI0 z&5DR^!VFAIPv6QtVume*lV14ipEPWTa10VL%xJ;%nhYbqhnE{(o+LS?nRjLcaBSK! ztDK3JtHdA*ip;t8yWd@SxScn=SYh+qa+W44?bH2Jc-LY&4&5e7mc2Q4f67Ud-q%wf z92)a%`19zshts|GNtdm0RKQ}bdf@^y+B7*tj<#az*^f8ps0nlZIh>58#0)TM=FhGQ zN(!A$=xTkn#+vlR8roD`|wrtA&xGt&ge z6|CJoZ4MSbZeehx;bqxd{UF8?k#K3--4swb_26x*Icz^%zwVxUBB~Mp5i3muMVgf{ zX=-YY7Oc8p?o2VLY{FlmBm-hmH_?sm16SuoGv0II;K0QI3ma7>v?@%_jgaS-k5RSz!X>gBn2|WE57lIf1FeY zz9JbPSd#zWfFjxYOUZGu3#dFP)3gGwJYQpxNEf7ul9#h%Aj)?|`ERo{;5W}dP0VY7 z9P_fU({%)hx$czwpQKMTgIb-@Yx|nUi=R1(PulP9=y+hM*k0?>Ixxb~RVY&VC_Y zzuP$fUfvz%Zkw^1TLvMIA9r3ey`Y6xXyTnuqk*w-WU2%OJa+>ft1Av+0f#V+M%I4# z)Z7FR1DS2{%l(m-O&_msAxKsAuG4QvjCl4RUb0J(KIZjSzp5p}T1hq*WvD2+MY+6- z_PoNoP+JSOxkO4?+MCxzp6hzPL+P&+g!t#LBLPJU0K2QIa#*`nNT%^_pDqvZ)I4#bMi&=#y4yBXBE5|ufbMT z#4q@lWDMDwuIDmFL@j=D;DaM-U9XP7%eFEmYlZ9=DJZX+5Vj>WwI`KqRb)Z``}7*!3UR+hG}P^tpue%`4K;jouJnbQ?QS6J_~ zzY^4OU8=7A5eyVQ6;x7C=m1bvhj@F-q~;Duew3{qB;F;;ISAo zvc?ULK9UZcztGSA$+Dvs-B~##Yu9m3pKy(!LRjyBC)SijhZg+;w%%l{{_pj{IjR%-k{bh`jo*5Uj}6 zspGg6UV^oaXW`Ih8>;SI z@D;3kyKyuh@QVYPH4AL^Dt;gNq`3IwZ_9~@JjRF^GGXW7>u1cjQ11}C?Gg&lexP^V zXbi}ZDDvm}tb?5$nKlK5Cx6M*#U!1lfImOnnYmHntn~6Ug$P61Swl4nmQA+3w({A_ zvn{|kHX!!87Zd`~g^@plvvX5bIW(rhKsM+AtC?a_GEv6iC?$X5hoo?mk;$`8l_Bg< zQGO?b5iV?QNq<8LP%M{}C<*!52j64sA?b zWmctnH!$eWM-vE*9^vUR_pdy=j5%VUMYa#pvWwc}b)F=ti55F@)z3E04DNBoMSrbUtrT7v}d3K@EUfu@4Wb zyMo)b7gMZIBw`{V8(G)niD0!)?NhU06E$3e&cy)ryLoG7ATWAqmrsNzfo215>vVn} zpen_OD%HxieVt|dZyB6}AA+f&@Z}o)!@ubsZG`=qd99~`OZXF3+FFbLQK+ijJx7l_> z%5vHnuNC>Nsowa#a=J3>-dz!I(d`h)SRzv?Do-C^UvnW})UW#&|5Q!NsY~52cMc~u z&kE97v=jEe|AJ6p_nw^_w*@>v&Dc!i&i#q7_m7x04n$@hj&D?;zjZ}+Lu0a5q|$n> zyWM_v%B{{tvSvAhFm!`J@s3F!BhDagsynVP90^qzlmWUpc^xbY$tAUidyUP+m5P{9 z8JC8Cx1f6ad+dB56+D6bS70ICz#Re88db-KuyTCTK*M4a>VoxBiVP28JU;vUGzoIw zDKlL@o#-Y21t0trFtr4B^OA^O1_oJ)?Q1e-Qvds?dkCLQ8za`=*ae}!d-~JTOLVDt zp!zF1x95qV0OK(OyL+CjhT9%l7C4&W@cti5Qg%+gi1+#}vr@o~tUvpMmQ0&!3QqeS zx0?C+$TW}&j3z(V#^eW_w$=7A37u^E#t`&D>hDzbR7&LJlQ;V6OUI)g&hJf;j%-nF znf|F7x8qyEDgM7ndiP$bg^#qXB6&oMs2Ps0sSaG@vbEYC6!j(l^}EZE`~aUp3uP$G zeo)K>kr(%ojhq`87^K|rFNl;7QN3$p>id}uL{_iRtzM=Hez70d&@-`?D}0jO+Hr2E zA-q2!2fNe8mi-g-|A^E+j_1FNe<6fwRoP_mud%I}!B$o8-6bN8{Hc4~d2TcYpY6>F$+ZOWJURNyP^-@1lUquL&HqsB3ON}dDtIzP4+7VOHrL%zOP zoS_%_?5$&Vl(I8x}P8H1-B?!r0i+ciZ4xDb9?P2 z@`H9&WkEQHM4=ZQ`uW}m3QTm~AFq9L2gAm=b!#X)8z*kWG7P;;&`#TpCJW)^B*-1z zQXS5BWt7RU2MCpl`GSOwK(;(3SJY8{JIy4w} zZ2RW7AJ6ishqP~FcVCl|7X5HqoPV)HqqqC^b_?fH8~0$KZmiMF$Rcg2H~T zt`>4|MMwtM0+<1l3fEbhM?M^{yu(wufV}<9o54PiBOOpfKOZfvrr*6ry4yx zKVfWQ!h|`Gii&ITAkT0LN+xD*mS?4_%!&QpV72(-q);YylaAIS&X32-_V# zDZXP_MBmL}hlH7Bvfa)nVNvHFTXUowzP4w4($?37o`cjJ1nsoIzE z_{o!pxZwz?1Vcb?U*7~~6-*Izw`GSsLG^*%AV1{IPdjL^0V+t~9--a=&<$_)8whKR zq9UV{NsLvbWq!i6oSsB) z= z#brFD029dz+GlKAExSY-_77XQ>rs-JkT|VYyGC7OCO!%R4&utC(T7T)U)V#OsOtB` zI8ha1z@?7Ci#3IYsUeYjDGBm;{rYvdXg+`&TEB(Q?YkFK!k+aX^e6IW_b}#JXuKf1 zeEY^RifccM^4G+Rv_v0F)qW;(0w~ospS~BC8*1=6$vkLHUAs{2IuXtD0Z^Z1VvNL6OKpccE9>P3C9*h&i zr;Jiq9#lK?g!#>BtdEzjt1CqR2@oy!QZn5MomZET(WMd=-h!1bxLRsqq54#e#tkou zSP0^i;V~Ga*v!maO1(+0(bn*>k3Y&jz3)*2)r}8XgX3>=YFYVX0@*2 z8;+z$KZGn-)9AK1+%4uEiOnlfrj~+c5+57{Z1T4$E-?6*%T%ANr$DqNAU0M5Lqd)l z80^&6)+TxjRKlK%qd5UskCW&!f}T8~Ekwsh`MIXX_}hyUeR?~j+FYow{o2-g2&yxz zG-fwUBE^O{&l6B4!hp@tlx4eTb-qG@DC5zUnEOR78lH}kf0mmohYEh7LSdx{40bcb zxTxJALip0q<#plhCCUHt!eU~$A#X^qY6VtTJwn<6)Y{o!8utnbNziBea~=8>b;&6G zl9IA=@s0F)kV*7sva~;$KV5iOV{M{rVXswGR-ppt#M>z=RLu^XQV`%!*Z2FYR2--`RwiC`=s_oVmG;<~xuS#$p^vYPQ zhWSU#1!^Dq8qMBZ?Vo*mq!75~K@7a4$Y`~xI#F|N6~+B^utF3EBK>-MuabBh(&2mi z_&A~~K=NL1fa{V`da^Z&BX45GqQF1B36M@fl_6t-{|!DBqG0%qj?qI!&rQ9#ILPSj z5C*dGDJXEKtWMNcSNG!N8bARo7GLb>=qQQ-bkWYU&Fj-@AOR4|03c9_mwg*6OB>>n z1Ce<&m$kH5!NrM#qtkh%ax0GOi;~A!ZLLi9klI(5H)cKL;7>Sx#bt9nWBta%=k~{O zrMQk>S@?cOO-&7xbghfNFD@)-TyK3fgq8D(iO+SRN{`GI`f^$a-+ABCOtNbqn!sM9 z`ALph0>wtbZv>z!@k(AqTpX{s^*saG#-Zk_O;iz)6`>(46km30Mg7RKHAT&?Ig}3_ zkvRJHsSVu#cx-^cc8`um{5_D6kific8`bRX6Z<942$xjW)$Ng#-0Ft=RYT?zu=4qZ zWQdH}C2p@aHMgXCoG5xTpvy@L&r>5)lj#|;c2jQM za;I80U2JfFLsEtsRYP*8>s82~(Ax2J>(=Rm7)iX8?j0LzoAyK{i1R>Xjn3qz!~Jx3 zX*qmk*JOy(XZH^bOaauQ{`yLVB?)BEc9*O6a1t1Qe!SCdS+W*@yIG%%#<{a+^)2q+ zxsxrlF>uI6Mms1p)YxKiaZ%68N$EpeefP<}Q)+5b83?AU0hgAADK*Wxj^Yao3vqFA zB9`rPK=wo!?xW!NrSs|hH%Bs9947|u2Qflm;;X_#;D>?gTT)CTDgwA&i+U?CKNu78 z#4NEx?1xg7HZ06^Y%Zw2B4Jj%*qJc2fGa`$zWK$2xm@GZwB+2$^+bb$w|D!_9j0yD z6f-Q^9(j2g03kJDqORR4zE8V6)uJt1%;R)jjJEYoa=!qDrH;jmQjL+%`%9w;_>4`o&dR{=nGLX6hh>KdAQbCw->V?FzmH$2e4rK{j}6KFpH3@s4OQ&DcFOJ zC4+OZG0~82$+jQ)q9UAk9EeeZ+0uZ*swlTv@b1&Up-e*=C}vt05|0CkjAkyR-t-k` z`;@5y{Ahy7xk1<>5nC7q>XUS3g|_)DMA*T5O8{t09Nvf#dU#KGp8V-AUWkD=C3Xvt zb7ZzO5zcJbK-O6`FejkK8n?|+b>Y_;0)Qcec3&Sl+Ie1D!&)vF=qbwcRpe*h z=+HG>@V&cGr?KHc6P=u#)ZzRhUEplSYN^;9V;0id?)#xbFNV3Ft=vo3GcdDF{7!N?mZoS4y^7Y9ZI_di^9Aak+-f_9;{wFJu}4K%D~V2> z3J3Lb#mWg+`m;N}014kX4i~J<2*>;HBhmzm=&{C;%Nu%1&n(V$Ri}y>Rrsj-zKAf{|v0A+D!r!#+gZ4PX zwyx-G;yC#Ab8YPb^8=9+;KnYpwx9yLJo@LyRDtQ%Hc;li7*~B^z6o5g8AUlj3O~G8 zHfRC2y7<+uy2Om({E@TIDc7JfKMtnqX{kgFqKJs$K-Iez! zo2-e>6MnP8r|Lbqp{I8=jV`#&^IWe}aoh(MW!I%1?wVyRUr92kom?{IC_el)$RJx*teJt>OO#yH99)FoO^Ztq!Bo|a%?+aGS90Vx1f>SMCleq2>(?0RG^TxKrmYs zN`z!eR#*WgF~v+{=o5U+@mxkq9B$T=y-M)~iUXHZ4Luz5D^_nkS^g8lVaj^IEWx_6 zvJ%kELrPXsiOtTujS%8js-`GM33au7wTwkC-0NP|{+#OhKYFV-Fc`MD>C??ff|au3 zfXQ=g#R;O`pX*;41Xh;KO%&p}9yqAP0Ri8DUZQ>;r^0pA)a)o^#E9e1c8L_pLwBD< zMVUuCVD*~lKrN3#P23l40z05PiFT){(>xLqKji8ZRwe>$xNR#}pc{+e2EBXC2vBD^ zN)=ynKeDwHxVln{K$)j6?+I%mYoo5iGwFWt+LGkopcYBW8I>V@jwtXg6Vl0*YiQ~k z`=g$}l4ZS&DpP8I&ahZdY6X`#305?MAL`#jPA*vaMZh`+NbjjdUw3^IA3!F+4H(aBw4iE1HSG{S5G`VGG^;WB z`iz)1YF<;9op@5VMH75atKKDLe@Xb0i=w#S4xdnfa}ix&xY6oDoom>yf%#)gaI9+H ziH5Y6&8-WA)XU+X8-kuwCd!&hPai1dpMR(sBDB!;kXyhhT6dSQa2?p6xP^`RJ&6zQ z({75WkllT()-{8p`98Lm{N6lCJ3dWQ^h9WOJK%sIc_B^(l|1L3o;2 zYip}7l8n_CIfD7zL;-$^rTrD$uHd?|WK)51D9%4HEqt)mX5SUcCacCGwr9jKioohwMfB+4Ei? za>M@Srlfp@;^7(PthR)-v~(ZW9IER`Q8LecYjnZuA16MP4q6-p5BuQ3gU4ZEE0NI2#YkqL~b5t~BIHTD-E$U?o7Xws6D3|lo#wRE|*pm_O0~Q1zI_qy6GZaj)SI7RJ%~HqcB~ zjNv|MDE3`0$DN*fX(Zi_3n|D>PQx9mP;-DTJ%YZ6bZP>_*ZvmM3zKQBf#Knwfss<{0efiL`nbqEyu84u z?}q04!uDh6#uf@z7Zp}!GYSxA&2;6?;49?{S1jN)YuAQlt%6q?0N=&S&+mmJjf7~2 z{945wV+4DKmJrEB4b9J&UzMDKZ1)UWeY|&~hBbK~J=KO1XbJN6t2pKW))y|ZTk+dw z7YZImfk|-?+-g}_*;ap_fB>ls9H>J-B(ojHEG(WZ6>FASuPzkKOWJWI(0bGBf6LR~ z_ux$9;TYNfDgBqbx{Swydb&1z+I9DG*NdeaG5f{EgFy>W>5QLnffxr>6^%a5zy4*S zQq55DcF%S<3ib|K%gj=9srrX?NsXGq!dvq+ulf1gINaA4g0dh$Q=m$QWkNwff z#nxz2gP%Tnlelgq_Q?IWI`a;ott8;VZgqa5=aQ9m$e{Sa`kaM>{<0XmNt5h|y@9!$ zp9v`m)(<)fDM$p|@_fvcjwZ{29*)Dc-8Y)1C3O5`%NDxSFTqk-}eIMQKY87Vk>irdk<-yPfcA9{bOZN}uue^D8q+ zqqJ(dnPH7T8iNNbnt5@yn4<6{pAYtv@#VP=aqI5mo}0L9ajR)`<@}JWnebR%&^_}O z6Ai1+-MM9P@>X3^>8Q665E95Il7AS9$@ZOH)U|?u?ssD{H|f~XQ5?{d)qa1`ez=LU z5ba8vmK3YsO`pYHbJftJs;3j={8C zdUr1eY8W5#v49d})F&svPLJ)qwblvnz}s=HLZ{_BE*ww+kkA+klgrmlLwFZa4=f7Q z@xC3lzM}kAGVLmS6#cVsDpYY|tIXs6qFmhc4RXS${92Ixly@)Qg%oeA|K*R@0<#Xm znWMf4C-IGy?tQx1AB&s$@UI_OeFUy?om9pR=j(BwIGWe7ub6aj$+A%G(%DWNX_;6*MpynButmIu+YRl4h=1XN+4X!SUG_ueQUd&kG$VPfDg=6*zQ=^UbgNH$hBvd=)z8I-z_+$hf>{r{kC`z6#XBx@@ba2(CT> zzRl<`1X>-Qml`Sw4ODbBMKoEz*3{4#7&~kn(4(&Y{wW`_AEd-fSN}E^gv;2yU7$@V zMSY|MD+~pq_|HB~Pyx&;xn(b|ntcwJ+QIHu%`!0&>phQD3AaZD{u1h`57xo>lbIj^@V!I(xnW&TQ`Tb1QQiyobS zc!b0Si&3i)^Ld-~vk$zwQl^IKznbZ#1-z?kJv1z?T)*kp7QO`9;h4J`&buG>_#~m} z3Aji7?m%$=5=$ac)gUT@z!Zegv}lvDtt>+CMiO?27mJiZ0?sU}hN!oE07?=x5h7wn z#s;UU_aZD}TSi*$1-8oforw-#5yGc+0vt`EnJJd0zpD|_IHfVOy12+Z}lx*P5H+y9TpyW`DlVqc6S@Xt4TEHL>PlT!LwsW zp_B6xYNm)8H-?fo!y)_6O-|Xi*)@h<&Uv--oxK4OV2UA-39l~m@6bEP{->s_V14mB z$W=jZDYs>o1=OhTeoBInDDe@_C+7W1_-cQ56ey77ZMe;MiHm=a8d^JRJ^=>$%b_~( z-=CrIF9OKmh-82!%)!MwMIKcYDm7x?vej)s2W44%E$~kFqG@L}Xg7=^dG?G+rtzEqri{q`)}4(Ov09`Gd-8OJGAs-XtO+@xcL518#;($ zVly*Y!9D>h*X$CD_+s+q$Ah3tM=7ALw)#5{%pfQz2rzA;rh=^9^IvAC5q!0P(ZuT* z7|=lLB74pTzSKz)lKHB ztSN=_j-6X>6(OYk`0@RhGOWkPEyA-IcCS>eOmyi!IrAd!K}$2+?kg_(S|fD9?!y9{ zzrc4)IZi-_s`JvoN0QW20d6~A|t1AVZ=#AiXoVHuhBo;ZqxM#=hG0D}#24 z?w73IV?yc1{c3F;sZ+Rf=7VeEn2M!9cmKv38Mh}2tOpkBqueKb&dIE&r|)_DE{UoW z4eGn;vf;A5Pj6Da`XfkT@}~t*qfh=BRCX$SCRdzi8U(m=p!L}}*1XZt)Ra=o@$o37^g|P4(B;eU_WkVrlBEw9b1X}1qk7O|Nf|s-3=^~V5md(^3 zZ5vf*P4zvmKe!hY!GBK84`SUyA4lE9o^nw3?z>*oJ*Y41$IczQ^-Y7+uT^@he>IWL zu5#wgMnXekb;&LC28V8Y&IY@Lr-44JV(70&8(2l$kb)nMzCAc5rVfZ&6VOuvYJZtd zOM3M1AuUc!VI1dte0(0o#YbVwDgvsgqN=K@!TsR}4FQOc)bg(zTgwwe*hc*4$$lw^ zYxZonX_~g|zW#8B!j${N$HwiNt0 zh`09`FUjo3Lj44_6^K2hPE%5~@W&ZXrMQMJeeHBmEX1F(KJSAL@o?Ann?>U1wn40-ROTLv}CFSW=0hAnx-POo~MV1dNUNibxtC-tM}ljw1Pj z%N4-G_Fs=NJLB{~Pas9*YojKzD!so!kkaq#eU~a0IBBnC!+B6x@K(`j8Vt z%QpqYXZ)90@>5Rj_S-#v>XHYC(lF2=vMLXopadCnMeqfXEJ7@OREG~yq7d2lB|WYN z9DZck5R(;-hLfc8`W~|a=9_079bFgxGN|kOC;+-fM{6Nosy52Y%UeKQK=w&XNgnUGZa|u)shA3ZR9a?~Yw(t>41X z6MCv7obei~Lf+ti*J4=T{|@9T_voi>R~$N0a;nvW)hpFA@NRiw`)ma(yoSwPKsC|3 zvO+4^pXqG@dREcGBFS+W)vfSt27RDEUr(Jrz0Y1Q$xas-HdXXg)`sunuOW*Y9a$jC_I zA6Bp6l6PuqC1?o!m8z!`xFbbib`$iiXlrY`4f;+{F8^vPe#?GVO^x!4lCw}~hW7xL zJ#Vr~FPwXJu#uD-f-|z}?Q`iUp4RHaJDgr$p)omiu6e8sO}I@_N6+NST2@a3sM5Zn zX|@Y>F~uB>m&!)(=^B;`x~k0_YJ>v+mYH~z%^fk=_A!6`T8;PV7?%3z(S^XW4H4=0 zzn|Q(>g)Vk$+%?SHVnmb+>Jaca3odG%8^kvI9)-U*Moe(eVv86h!_bVV(3rJXtQU> zDkb<9oH!l`ISLBKoPf8QI@UD6cIh+P?+9907z?fe-%6IAh}lmem-#MQpxj3-EJjbb z(h+;n2jeO-+oHp1Y6H5=E@1c&7l1r4F1Mc<-`P5ubB&66X(Y|6RnQ`yezutp?Dv}C zHW}2Gs;qtuXEm?&pDNs=XgBskNda{-&9T?$d4lM z66D3VsK38GNE#0uKbrHGJF@o!DryX@Fg8({wu1^Yw9LveH~!JuIbX8j@NeR4111%M zm_I;~ljx9!pt5MtlotDfX!#s{XtczFF}r#2@Zm8?Qer<05JV&@;xjxaRn#Kw`&mfT zM03R$N36yj|Q`0$BH8lbN;N!cG%#jc* zVf7)0Dc8`5P(7!&eqEtab?~FgN<|!nuy5KanAl@-Uvas(VrJi~ zMI6hVEVCVBywG0T!lB^N*2Zep1^h#dxF+As@{7-yM@=4`s+S#`NoVNdu`m;G~FQ&u{TF1&F2meSzc@YYw3;KkQ+@ow=+)cN93rmzvVhB zr3`V-vpgSek35_iecaIXBvzl@hvLuC<8Z>|R#a#5HNObj`R)WCf;o#xO2SVv{%~tP zTq8->%$?v<#`sEhrXWr4O=t90es-TA{G8U$keM$MTRzUsezbY@ayKM@=uN_LsrRL4 zOU@Xv8|=*zf0k*mWyVnM9s9R$?s*yszH&0!a%Gz=Uyna;{mZ=q?w%K{Z3w}V-6yP= zhI(IqZpNRf$~}&Md`or?Y~E}@!*scYjlfwbp6L(p8>J>HcHP*eck7XT*VA_uHKm>am%aH>^)ZUL7rC(qHd3~y}h=BnWd{tAFp8uV^rEpwerXE2;S?w>^`CX9ICTK9({F2{Kk&;$A1^s z(*u0qDQ8c^K4PPor<=P+BuSq`5k`XBmtEPF?%3SQ^^*6g=VJq}^rIt3o91>{Ox;~G ze&=~h68W*Z^Yh&^O8fQR3{xz#yZ0zg*6#ZI*7-pCzI1zn=8BgH;G<;PNKtD@U+rZ3 z$tOBKSZhIE!@S_ua@ue19|YFj)@n_&R@>Fv6dNVTU7ohrB~Lf1xU~~)P`SYR;=i;U z3Nd3%uM&S8;;M8PU#8b}hdgWJ;|R=NmUyOe#f%J+X}caNyDf`Q%|cy8Gv+uCsH3@sGz~NsvnyS9NZK^jt9W@bkl`*J9jB=1X4~18eZ%BY zC)|x1O_k4!uc2X!o&OI4qpYlKlUeY`THlh9ubk)RCC^Pg`F_TteYmT> zs9q&7bz(g6>LI&dg|DMpj0-$JaDdpq9!xQ*Fv~c6bL4Nub5=X_j*K7JX?lNQhf);K z9m)rutX^O4j13!Iq;*%y`JH3D9}cWZbEVdGN$?#BzjH;eUEwCR#J-!JbmYknWjMT# zJI!yx`>geR`HHk8W*gWW(^K5z|7=X}-R9U>c=vmv#iq>$8B#o1Bb(1T3FsY(GWmG0 z1Uu#f$C0v4@vIXS`lUznXoSXZDL-Be6qJ^_8&rzAG#&p~Of&!3vvN{Id)vdRmEPlb zMhsSuKa=<-6H|^o5gHsp(|Pc6C)*F>%LhI#^!(BEzudmz86S0&p5*%#hu(kc&}}*+ z{(k+cv$sw#JeuBR*HEa%!>%g8t;sG{AvogY-=@BLoNo8up2fsAhF?~fS}nNc{1j(# z!HG+|_P!qLm3+^rk%M`cx%ge%*K=EB`ut<@@Ln}3>vg*3x6^WFZ(!?KTw*dqTHd;X zHY`8f^2>C-eOmv(`Ndd5lhuc;l8e@s9fQ-ycxUWi__V(~oGPXUDpAm+PP3 zNZ8H3KGL7VYC>u3c0Jj!&g(H z;P33`ZuRXyPUQWt%|9hzBNOv$npuXwIy886MV8Ys{gLxLkpzLs&PZ!!BJgV~(+bU# zGaUP$&*=WPw-va3m6pmoXZKUrrs60ynXO`oe!n(}=Lw8ArIqHqc9kbTXr)h0Kl84j zyM5Pz=0k;hex?mYjbFc=Gq*nPL1|ZVw-|k_rzp+_x$k|(1wC`rh3}_1ha46mmF&T5 z{|csCvxttb$cRtuS}8g4a%v!nDZkP6=558x&W!7#bf=Q;$vurR@KUe2_k35c+4!&j z9A#GV6IWNN<=zQ8dqh{tNt9_*+J0N#dVyxYi8Z&q{w}xmYw==GNzt53d3LZ zSzkH2>fq|Dt1=hyz!`6UF3)G}Jkt8l%oow9qCCn4p2M8Od-yUN-?xvOf0cSS)4Q2+ zTox-+ij>7i&9}---=wd}l!68sPVUv&%erPS{4@9D^rQ8(dkdb}eDO>(1jz)a?G|(DXg^ zPp`W~_cy6;({3lH@;{f>Q@rJt#jKT66&v)>D{da@+5MM>zFlV<5sLB@m5w~s)lk#* zGJZy4@K9Fsd&RvHuSc4OJ8vdd+w6GiDY`aPlbzWprKNQ_^OvSZe>%IorNw>h%iuBz zR~m|Qo`$vy(5bDt=DnL1?lvPaYM>zLR2L&v@4&6Ftfd9%URlK|tgJ4acQNWaEYURO z*lW|dG}!|WBr!B(n|8h*6T95fuoQ0!ZTpx%$iFbSNgd+FJQfNsuv1tz#rGyh152*T zZnRl8J)g7mwIw?bWEhotc}kwdV{RG>?!pRp%Wuli10s9zF|Yf*+w?}br{_aF$w^k- z4cq>jce2fj|8QG+izd=7ba(TDj>ukX(A+6ldq_zph6xvD_{BKSe~x-t!Xp};gr!bK z?W6RJ!qk)+7b};7zL9~(_s>d}v8!Ie7bnlpi5hIb)Ai1x>Scm2QLK^K`qaF)tKV-| zqU_+@vhywDVXsa2f_Hu- z<;KS(24AWuZyKQf;bx`GoaEx4QjW`)`Iqcje9PprJw=Z&NAMA@Izdc>ya}DRPtcDb zdMW6bC_%^MRMBOv3@Z*I<%9NM5zuyU8O8X#66D2464%&J#4AONqbDT5)6mdJT~_(wgC1%(qiE<%xC2)c zfJ!aNu!0FBb|Snl0|ldSsc{UUOHmHO@A1tIv*7I#w&^!!nw9wmMy2O|roL&$###7? zs@6wpPC}}V0ww@@d_?mASVX~DAM`qam6+&zsGJNg001ymrUI5fF-)#RX90Mue$>JS zZRxdFuM*u5(DSVOEAvfXYcU6-#Ghz5f316TvA! zPblsAsW6Rsul6=f$JP=Je1b?&x&VYi2lY-aF3(kLc6mRKR6r7WJKoA5TF;n?sQZLZ z`S%sjE@bchFP)UJLGguoO7Z)d7 zs$LHektydfhnbO+NY7FB3qE=B1noX|)XfY4&w~M}2}(_1HPNMh7#3Cm{b@(^M+emx zDllAXt)yfG-x6N9>o)6UsJq+)4xI|1FY6&Gf+tM7D!vVHFGEaXG4(0Q&IQ~O>TAMQ zeRAlz>r`u2{{&j}T++oAm{$^fvkgzs6yxU24?;pThd39W2Rr-vJD~#=i$Rq0RfuPD(HqEpFjQ-x+oidnNTVuA$s7=U*P%EoBoqqtm-jakN~FB}TI@3pOs)OYECY<8u!17#k%X~v)#BFhl>77L zdU8z6N1mqOd~G>&s;MA%9Y14}cPOi?PLO10|}-%dt2;aj$c?8-D{f`~&|{Jv!|A z-hUyV#FzSz;~x>?VsK>nBb?YL%M6LmPZO$h7(bg{P(4NI_AyQgi?bXt7`8v;S^g+*Jm ztas(8zYJX-_Oh4$mcR})Austx30-ox|BF8wyq>*ur&fb6HIidMR9T>=6R|He9+N5` z0SQTTzNpB!0Og~?=!L8s`O4gN&xS|| z6&c`T{zeR`5o1fxf&PJbYsRSsMhWIIN;W(GeJ-m{SJAwog7lu#L@_gI-{XQN0SpXa z`HZgxyF&NH`oxq-yPh?*pFfAdy90V%UpBb@I2IyA1l={0?;^IJnUnhWnl0!>6sZ26 z8Mu{#lg0n*Ki|ysG+A6kl_Ml11amop#?sS!{IYN{)X`I>B&S;bL>mFIxcCtjMF(l= zBZ&-V=~Hy;KMRVTE`V?8r|B(G(*OIfmvJck`>(eny;=J7peFwJU$6TAznY!>|Dz8i zudtqa@lC52nTj+yNk#;`aw=Hn^tJOn%a}RSSq~2O_2ElvL{;E*lk;unps{Y5u>3ST6s~Lg z4^sW;(8U0#`eys7n)urEIcD?T$%g#vCTvFrJgG8emVXp#i{jKBOWpp&Q}p`33$ubz z^Xl)nozFco_fVh zd7-kjO|+q)>2feK-@i#FXg*X%OX*2QO?#E9{;5s08|lARollds-pS#Svsa`!EWEhm zp=NmXKK5Pvg73c7c4>NO#@0J%{^Z!B+z=V=5U<)7CJb$L_s+>wKQ%bHJJ#hpxz`?^ z(pqcHO<^B;nq=r=BhOng42>5zRh$>zmC0DDJTO_RoVF~0XIg9WzDNB_?3 z>OWK{C|AXA(Aiv6_P&pAhSNA{+<WrEo_aJ=*NC3Nlps z)E(#e99;Nn&uOkJJiTVnI{>IqWC$4H01%le6;7*~>p(Vj{1uiAS-wu2+r>$x&HffG z*`1}IeO_jX?d`uO=YD-%aiM;^;;DnzfJEL@(-$ZoIdZDHUr%1#P2+q<>GC;;&=h4U zi48kn*i%ImE?YhM{Z+|RX3DR;kj63jpt_q1+?uMjZ{~krb2wS;)WLd|OMl^gi$y0k zm4xPS^Ld>zIHP?pXqcUfHM4p9pf( z$1@cQHn~iTVl`;Kn_6yc4gb49v$hGk&x4u2M}_sFG<84nNfs zl5JIbp6}zc5CNU-!%svvJkGgSey@(VI{QZM*H8|iZ@XWobzDRV16_x8$U31sk%y9{ zGHQN$uamR0z|5v+NcfuD*Z7ywgSYRq@rW3_|3&*aB}1N@R>?z;Pa zOnp$g?)&Ym3h%;eIqjgdtHPEuiA$W)^whX=&N-(o<6Tw`U0EL8ll3kQR;D-do29sB z45cUb)-VR{Q)W=Ml{yjL81mens+)(0SM}wPfze6eSIBS?s4R>Xi7Yvh{?^rHi*lXc zzr*PpHEOC$puw26X9nK9dDBz}kd8YfwT09M6{IU4iJEMJk}h$RLQO&NYM8}`S@|7? z`Zm<|2L?`{AcN*!G(cJ;Q-qxt2G_+vNs}pM?p*sgWUw4FQq;EI{zetW<8vMhtl~!G zPT}-5Pcz*`gn7bW^3&#*stpT*h$6E!3#;s9uiCk{2PvtJYFvlTw-r{=+&SPTv`fnW zW!8zV;rc}5s|VJ8pXGe}RASiy_t04u_hTxW9wA(-lnfu9HTcrl%ktYn`e~hgwE#~m z2m8%x`g!cY`tQd!nM}Vpm_l@XfJ0@2AR|$^0R!W->0jdA1z_5mJWQ5}LR2bEI0`mW z1p?&b1Skf~0TbFRfnQ10s^E(ykU=uV2NYgFLLcN=0@5JEdun23V+ZV8#JvgC5KUFp zls<#wE+I5;IBtj9ZEBbD^zo?W<~nqiCEM%yfjd&}p=A#}^ImW)bS?U7jZ;|6PRbcu znz2{dM(pIxZE9=GG2AKiiE=+Ho1@#o*Y2MI=D>aN-u@4?ELEC4kBkdP*h{(3NxZll zAa^S6JIxy+K!atrybB!bFYUIS`$S5NQV3HB$u)$!IXO61C@T-Nm|cYg>#k$&R5N`Q zs7}Vr;?DR71sw-g2dwlMa2iM2GCs%m3IrOg2_JS}_GR{^z@YoXvzNaF--&;9Pg&na zd+lBkg+{4CdX^6#;#MC&?)I5iSndk{!uxx?jJui7_h7YuQ;cfysq@Q!T3i~J_+hf?Nh*pQkC20$oJdf5698HZA$&=nq!QncloaH!LR8wdxSjW4Kx|0QSQ;H30>SayZ z>&|wHm`s}<)I_C1sF#?!t2fCS0hbQM#KxNd%ttco+C5p|UGG8Z|NFNSfJsHr_+QZ! zT(yUTLqAo^1T0J+j?=(F6l2hh+AS_o@2V_+s=*p)bATf^ow!tW7PU7#2-@J>NoXyUj3DEy#b)%q<1(^)1$LNod=9HH17z>Qy2vK0k*q$P;!gB z$DL@*Ne6GTl~71+UFPx2Q6yfOm-D-ctbUTuzBPlde3kXjXbZ0~$#~TnRsQQwe0I9o z2G)Y#Tk7lI1Ipa`Y)Aw)uGQBp3HZw8#$dBXQq05KBHRN`0$u=5_4d?JpzK+uEa*Zw|kX;*DwX7*2t)+Xqt?K zD+K{qh5Sm89LhW5&bvND3JP}0F>IM@%x)u%XZMmlqI>mC7)1~sZO$Ob)v zm?PRX0cwq06W~awX`B5Wus~N19AOmjD^{%NAE>UDF_FubZrf5P6z~u0G5axh^X*cB z&f=E-1wnVO(?yndcf}ve{`+|sjg$12hUWL$#&!c1p}z(28XeZ{<$l7Gr`oq2(0oW;~UGJ)NL8L=(f#t()Rch_wf zp1ju-{-C=5?zHN_+6~{HDNNOVKP@F27xzk(4SeqXHba}cyJs$B6NoF`WOnTYb^-{@ z9}zJK4e!e^!8E}dU^5laZj)0}gy(FJtv3i!YE)V1(@9AGnf`2G(3J8N?XGUn!>;#t ze?!mH5B&-?ZEZz7RD$0HpfZpRMBYlP;LSSn6&6EBja=x5XJeCj4uzyTDpMk@&2?hK zRwP{h96&M78oute`s4IrTnt6a-#?@#?STKe?O`7x83sDO(oRq4DZarmexf$*s#^Wq z%LXK%NCg&RTlTO9O{uG^Gi|?DE`IpzhA+vdU9prEj=pZ-Bg!GrvZdC8k^o_>1o{$| zJlauD!DK}H;cGqu!kw z{QQnvS(`z&Hbh#Z^m(GxA-AXvG5&U(e#+vk-49QlxZE>X{n+=(Oy5a$$*Mc1Z)gd| zM()_fRF>aPI|GZ8yqx~Fp0uKU-T$7qWjTYjEU)?3=A#u)VpXXRMQVR~#(nm!iPq5k z+YuTMEv^~5gL6tolryKD-d$1_uaMODot?P;R4qM+PF{V=`ecA7vai5jHG>8xkK|<> z8bWU!4Zm9V#?HCzB6YmV zsQ_Ea(K?&|Mw^4wLVEfmFdahB(V<$9|I3ENy;3o!*h{bA1G}HHZ((7)rN5;p;=@H7 zC*hYpYE70S>vA~^C(o;LUVDA$NL(&+Vb)y{9-i?0h@&t%y>9b^lo$M#?7RIql1`Gd z`hB1EwTmm~9E9JURVX=e!b&zwFXxUxYWc;akI2&Y-3b$nuE>Z^)(Fd|yxnfSrslnY z)i%l zLjQ`mTGpE5XlvbSnyMk3JUw5o#nNgfPC#_fG@^FA)q-ARO?-OH4NX3#%+z%;=PQn| zZE5zxLRmciHoLUg-m4oq`o7~v_?tA=($DP$fuqMNzetT9{ccX0G@@pjKV^U0&Ylb^ z;!K`6y_KVWRZd&`51llNl37T&2U{?sjW_=l4JIzr?95 zKNP+FaKs6D4Qg)96*!W#hO}RYiE-CAoRc+-_xuCXWNE5 ztsDhvb-#@d+G(}0(;(0`Fy!3z)gLh)w)^%t1E_1w?)_-V>83c=;BX=0kmlyUR=lh^ z`a372={Y0A+*?xdHQc?fQT#lS^N`!I`2A**56az_Eu4wC(&pe{8QG6%I%?AG-*bT0 zpeS6R)R+AF^Bm!^XhUv9%;P4bvEj}H7NN5;R?am{%f&w3KOg@$`(Rs@#0geI=FKU8 z&4ik*BkV_H4gF#VEcp)l1zK|V+ij4b9XA)7QX!iZXV^oK*l4<% zhmeLS+d&89_a`hY1Oex@bC8-{^_!4uAm>9xK#jl0Y;$>S+kkOBhh8SJ58Y>5=GU76 zYDF=a5m#Qxy%b@ziS0+czRKj)j@HV>){GrrsCH~{x1qaape~7p`dM*!2Vtady0~Q} zb`GfnVskkuLDmUL1%~=Aik`lGB^{Kv=KaG3T(YJYv`_){B*hv>8+>67KG2aA_v(^k zZ~v`BTK=4=ty1YlM1>Q?8h}{|J!ah&!N+y;pntdXg-XF40`{qzrhg%VLc|KGP{0@h zbZD4hIsH{7^ZMXX7neiCxsh;(*gh7x(T2dYm|G1euDc|bJ)?$LWZ^8i)Wik_x+)*O2M8~f1beFg5ofE&Vj#k zOwIr)|0?A#k7hl7*bB`}1}Ubq`$tm#ap2$W6RN)@ys|Q_=7{CxYuShQXVq2mo}fO& z7TdDb)+8Z1*+(T}4;kpOKyH4qz(WFEBM6grAf|p`GDJo+)P&Q3x#GV1_LVP!_-@sn z#LzMGTb-Knr~bH~*oF^S;rGl;Vh*@NpVV*$LFfKoP%xYnU2<+GAD%7)#8G-cx&IRH?j~t7@X5D9BD0U`1;-C zg&Fr1b_e)+lhDW5PLDpudUf0@6^Q0b^HQUXIS^bcv9JcQokEB_DE-Hh`$fc952b3^stiV-6;#g8w zR~HjrN|<@37iNJ}7dpK!oY)W4Z;8*gQn1&~Vd(<*od=sT^ch6V+a%{9R&v4Oou{ZS z!t%E{-quO{=YRIHVeb=ljpAnSB2L4;6k+~iKBoHDvOAwX&>4e_ZLJx`l`{^l*NH>Oc#`=xR|R)Y~x0#rj-eJ(LWw)E@kpbrPW?zOq zA`P{U?=u!p)ry)gCezudXf2PAGjmom1_nW?%-?<2zO0)_8-L%dZU5Tk0L#i1T1!2DV2G7xH)r{7$H7Y-okgD`t~iSBMJA1m{JZ(v z4;;}kaU&fM5kp24s$W>CH2XKhuzgSptvMlp3?kWIF4ie2X`F`wLe)(F8a{Ekf1jiV z7Qa%jJiC1br|Hpuk^<{3x%uv$G8paHeDBrF^Ja4C41H4bx_4~*t9qJx`8w@yD|(pxYS)52CTm%G$3Cys z>h$)M5}XL--F4xrA}VNyYG|pyJM)>-&?x%)>a!}%p)m$0S=EwbEXyhdE*82tQku|k zk*nYqoz>*q*e>-*MQ60#COUN0<%noJ$Ys~Rsf#OIWY9z=KJj@#_qXVV>F$!RL5iN{ zvcdh-{P$1G3_T@_<+(x1xEX7Jeqa)-^Lw6LfCn4=0_Q$@%thz~qvNdKF+T96 z+UDSSL9~N-1!zCfZlSkq8BCEioRxYfaVX@B>ATR~*EUF?EfN*x6&;;?CVJr}W#q#@ ze7IzjowIKOyS0mp7fshkfc!{z^C_`u4mLj zPWa-Am8X@B=O&JzX}45+YKcCel-wQyxV&c&{p zRB$mYC(g`@$x+!TbkxW1*?@+fBK}!sK&6bym~yb^5d^)LiB5U<+V|S&4@RoG?nVnp z@RFHC!sw^yk{xQNu;B3S*{kI%`1RV~tD&FN{oEN2X6L-Wb{mlkCtFLsadnHwuM9y| z#4PuH9K2EEH=2eY{0_RFFmvvv-zte|)BGPDl<6yt>(UhZbks21`?7g6Mh;n(R*|%f zfnpE2jE$pCa^!)yw-sD;`LQoVHp$DZ$@QMU<}jN%6E>i60V4(1c~<`hy~#)U zd*wl!gW7F{!+tyrVPpz?eSgJew!T95=f@j{Irc9`kr+-^r79usqWN))t+EZ)xzP*z zc{{=t+0SZEIB}yq$t~+#_CG4`8TESgV{}i3n}+p;>tTB2jC^)hA@rwxhM+t>eItTx zz$==R-O9h4{VewiE9CIUf5;twe~+5==+MsEA(h4Fo65nP>$!eTP18o)-akm~G6V&7 zX4)h=H=I;ou5*5Q+^I*No*(RI_82Bh&PXB!;Su|ieM;m)3Y}L__B~H^bDR(xT$6fl z_x5+RgrVio;ButC57d|eh0c3&5hx@2G9&k;Cm7S3iQkFvVtM78BGCAAANRx26E%r{ zzOr=u(BHA|wo`S({x!yW9;Z*SGSO3x4;vgmq;O+T@*Z&tj*I?3`R^m!KE7Om@(JZ& ze22kC`uJ$iBWMxRZis71SGZ*qR7X|CM}Jn5LMaXXp@#FtsPI;uYEFZ*bo-X3UDG44 z9$ILvl(5u~L7+$#$a?$;ogs2Rx!V;*va0PfvV_oG#`(hXiDSFKhWhzU^p-*OMuK)T zrb4#@cT^pGe%0C%($(-}68ix<-;a8kF zW0smUe-rKZ4US4d4!w^rWIe+?;i4ik?Vk>rcsmq#{o*l(wp@z?N8;~#Wp>NC0k-$6 zNN^n)M)6eZ4j9aR`fL>Fdeg{7cilJ%=d0bX({X$}p}bQTB24;7c^O1BH#>%tlsD8l zA+ix?jS;JVLzR=xmROu-Z!gZS(LI;xfdOE@Gam3Gp?BwVlml*JSt|jXSW|1gRx?e& z?TjV&t5(~4d>$HlSg<%3jrbcg_$oWyD2Q|FBR>YU-?vjpNTrK02%D9dn!4EbWuKRq zZ_L@3JL_Q+7H^1J57WjNgD(thUB~{;RPl#|3@ zA|JnEnZMLCz>8mOQpJgP?Tz(hZlOu6!}C>kj)F1PT%@|~;JAO<^&0bW9w0nO&yWl$ zv4VE=`g8NWYuuG|uIt6jF4W&vS8MvU$iGrr3Nh>dx$%$Cwwb8pMycj7Rnzt9#WZ-A zVX_yqQdifB8sjd75Evat){#@~*Og7rtughADEQ-rsn_qoG^8D7VL*rFGIiogmnQ7{` z(dRdHU;4tYSb|Znt^EsXR;iZpCWp?UN+Ssay|H)E@gW^_zv7ER+KvW|zHQvqe53EJ zy(@-034?6;KfcPXv|U$x3<(qZycivpVvUvT!3usxR&d&0Wiov+QIlwbc3N5^zYgj|yki+PCL zCBrQ%=loMN8KWwZ4aN$_2z{?b9{CHYPMTYwqpVX6hd= zK=_3UhE!k`M$Am(a((B1Wi)%x-|DzO&U&(vks>43IK_b*a$H=KGUW)KO?XPpp+Anu z--!P+dejMbo*$RcO%4fx4X;lzlODezbE4V68m3~-$>AiC{y#3dW7@4xS1=@a_PwY$ z`c_m8>lQ#zvLZjYv7W3DV%Uq8bI5Q#_3xa6TWYz{oIKBf4t5qfnBwo@U?<(8?1L2C zjEd6@)@NB^Zo49mVk7kpnOD^dVF3-TUp$1_tIPPgj0)#*;3?==b*RM{F+ZB)V@l6H zBltABfTdY1+~v*b|9l39{uxDvlgHn)#(i zsp>2qmY-0xj&uxgmbH6@#Lh@;nAS(!B41l4q&|N7o@aXAd>AfwX5zy%8MMfNWY>-z0mf!_uY(j6B-j}3D7gN-@`wgn5g5!w#b-9?TIx{ zAMcFu&S8$QGnO-7q*{H$OZvYxzKnmfcXwvfaQM2x&BsqOC^xR)Ww%;`xwkl*;w6<4 z%lDnm{^14IBEKBc=#0oAKG=MFBV#8{Ck0?SNNPaI{C9Pt;Yn6!<>9jiAJGxby>W_# zkum>60v71dbM_>5_5rU0lrjQ=7?Inve@gqwXhT)#MqKMe&Uq`%N4d1SQRByJF0D}Q zmrbUZS}C7#tw=cJ%J@^!I(*}tp`^b2Ppd>>MPZdJf^&L9*?p(?b7BWUr;8~%BwfJB5KE(bk_)8b7b~!a65taG|?!*U3PfcAMo?2Jfl@_B&TH#q2 z9?Elgw0iuaM>T^?@9mli8~p$*sRV#T7QZndJftQx#YRbdM0wx$>X*SD+m;=;D~K*9 zy-N36(-+Ll?5c-3BFj>kO?^%oX#MSpPn2nM)>k3cK&gIRjGkChUzjz2 zc6MLaC~dwHf%YE~0QD)V<1%ifZTeOGl%?%wZ#sI*h|1sW^I5~oQN=c2=fas*v3RBp zvX&+C>)U0%e2i{~+?u6TzusGa3kn1y8>h7|dsUkp_OON(UMPR|K62go#W&W%Z>_id zb4pr=`IV>WR%D~YGm#f3&}A4q`Rwrz?TI1YR*6ekpxTWoD{dY76$VLgRknY>xD^Kj zDwN_E>6_7<*d>BV@xYkTlWVQd&|a!W2`qK@r^$;f&$=yzf+l1a6PsAtiriF?4rp&(jP{j_WgAC%C zMmW3bJ_5^edPi6Gq;C7v{ApK#5*@aair4oXWUtQ$Ca#EOX|Zp8gJW>!T@h;ZLA|YR z4c4D~{$#hY)N?^xyaMHIOSkEv@cB#+zD8m%RFj5{`Jfm}Dt_w|Yl4$-pxh=6`v8 zhozZgA+&VV&ij5_EJfIq4En-)wf?IZN!W4Qvo7iOMcykt$|Rvcx6Y`b{^G5FSdXIO zDN8*V+B^PQqn`vvg~c<$GrYz~q$wgmADK>6L3QuqI{wVv7PWp=ZTa@|!p{vB(L1$N zEbjR;PoHa|d1-h+`2ppu!I-xx+Yvk|i5cG*`v-osPZ1kT?3QlhgIkP2e~QtywJ&>A zn=Ez)wjCW_;kRaDs^<^4^TgB*^kZ02(>h7lIM=DNQWPpM+e@J<`!uaRHSc-kn)%4p zH^*vI-6Bt*V^znrv`BjH0dj*E1+027f%NX!2+0_bh0kfZ4Kd;}h!FH}x zc&^%I+M={H<+mR?D2#!dv{;RO4ZY0D6U<9@kH9ti)Al zXeF#jWM{XjY%RRVS>%8UTuA<*zmMD znjNe)ngvEjbSZ(^?7XMdmFiMUD+<>~rHJV9D833f5Z3>@NO8rbWEG4b4(}PVR{;6B)n8(uXKRLE}3{ zP3DM>8$VX0n9RbZkp2Wp>#+;zth530j{>sygpqn6EV>-UWu3sHxOXIB9m$KJD+Lm~3E)4>e%&JoH^tEBFvo$09dA2P{}i(4S}faWWo-@nDcc`_qf6R-+X*Pd zTl4l%2rUyU(OL}1wtACi&VR6R=5qd5WXjd37-J|YP+2YhHEsw|ynq8^>31LpZ#8Q> z))oQm08V&*OLs{lb z_kM88w}=?s58=vykQ&kahZ#HV8%V8#m;$ssaX(1}cFwdE72?7t_`PWjAB)s=E>Mw5 zA#)z(^2-ZSUW;OzWJpaTxHO%5P4ygJl5jn^4SEOhc?O_}*EW2C(k?Asp1|h-w3$7m z{iuGpLgo#6q00Ccq8$R63|JlzsYpO4ZFr8Old|}U??m+0eQi(%I!p%Kkf{mz!yeqP ziu=&^0Nv{jXbJEqhvszt=g*(xhlykN|A31@=!YKC@pv{Erx-$oJv}2Z;`M!}<~&cc{SpamQ3!(iwya`&Bo= zpJTJ@q8?bb0vrbNDI#FT=(|na z>=A?}Y9N;81C&mRQW=O!6B9{k6DeA+iMbg3%K>6}xqbNOMED!PH;e|@j4u(=JGn&n zr~i!#W$yD}6G(rCzVR=BCa70*C#LKW7-4hyp%2qsBBu#S%e{bc0bO@i>yiOrLSIU( z4*^t|a>XwtiTGmRBUjjceF1||SEqhc{=i2n(W@<+4<9~E1uwgPO!*&f$4nJgfWo$8 z+L)nU>bUSfOcVHLr9rq^HIkx-x51lZ1ZWAhBtSdZPfEoEK0-eKw>ePWjUnd*HeUl| z36P%u#vW3?VsvtifWRAC-`Sa&l{+Ds96#LG*B6l4PxxPuYyxqI1PKs|h+q`(o<>Yp zBfxqZkeKE6TKLlOe;HLABC7v+Zv+30=u~DE1Q4A1oRnUa4m>AxjoP566e6fkqxVKE z8OzqHrdRP5^F7=D5T=5+AQ@PAw1hCV2MUF43FWn+{w(ZgG*_y9vVokmr>}2<#R$as zE}36zPL6Gxl4RgjXM6L1U`LVrgTj?Xf}QCi_F`wa&Wj$&`J-+Itfi4qn5=v6f63a) zN}kbUpK{qcN@8N7s)E(hZNyB(X$*J4CxP0cD~}rcjCVWp4p4_|M_cOSuUsGRXm5L` z^*Yekrp?s_J%V#JegjU>YJ{L*qSk+{4izk6+%PpPU4T$IBZ=>`>7Rj$Yj7o8iJQ~tI&QLLE!YDnM3shCfYoTnMAg?&DYDzQc7cSQ_!1ic@fAr2&u+n z?(3+#pzX#Cm2*Cke&D$G@blB%gmBnu=u)W8fs^J91&WJFWUB@_MnH(VX~bv>-|G*Q zv{5C7=b#MkBg1oUwQa?K3KBQPMB57cULT3_a3Wv+8#3)QdQFM?(+G;u9wf~npY`Fz z82u@5{I3kTN6P&Dn>k7F5KAfi^e?#g2&Ue4K<<8BM6dB_z4e4>8DN)d)~z$Z6NS}e zd?ktH#IFXR=w)3H@9GA-G#27bSjq0dY6gysn1za(6o4Cg6wvO7Us{Ooi~d>eQoV~y z)3fdvK=5yFBrn&4^gUrreX0IIJIXIM7w+QMT zaT_2?$;AHx0!RY3u6lYqaWrs49POCfK%5*xBG`}!W$05Zz9EVO7udj<*aKU~lA?XW z?Y=jhZuO)mKkPmZwETMbbHF#LiOB22sMc)v-o4KYh+Nhsss&}N@3$L)db@BRnr7Re z_$dOZEgwYTr?9;)fjx!+0yN~jjEs%9!NW!T*Uab@=pt?dn(sKC<$dDqASWjmH*}1@ z7ZdpYOP@|b3;FZ^_@AM1Vlu((6yd5OqEJ+AltSc8j~t-_C%V2{UGt>IDUpjZ+RC|p z?BBgz_R0=1|53VEClEX|9;3enaxJyozE~6ZSaR1K0z1ULMmbxhbmEBI_u<;wT5Z-Ba!+T0=Lo6Mhr&5I?``DReQx)T z>lmg1{g5S92cZB-pS#5u<1IRY?a)lr`=@=y?%EIQp#%(ZzY7*^ONx5mCMRFqiIds- zhLCY#Jw)qE3)7PB0yk~zDlwalfu7;lkQ`!*61~`|_c*;pkBv5f#jR%dk9(9_%`H8D}UM)o|yY1e4Q$Q6*hb zMTI`fc_zerH~h~zlYtY7ILmNu%akkI}017dVSGU6!gb?h+-KQI=L6P7=UI1 zt(csbg_}$QqNAgU)?5f=<;TXxVrO)0>dz=fN{0a8l>~x1F)kv>4l#aWmgTMe=CeiU zHnK#G^uM?jBRG)3Tl6%JawyW};X;Q5kJ8&CvnG59WEJ>JBJ6h7V^1xYn}^3|pl#23 zsO(iwiJ=hsKsrRn5lAd-xY&Ij{vKaEE}B?5tf z1ZoHhLSWn|=`p+xl{Dr&q( zPG)N`@l!J}HWslNQb#(~KV*SSoN&@&*m$_OKpvhR?0%7wq zTpG0dSRgCs4w5D1I4Maf4n$C|{|1f&oh@E+y@4QygJt>?p`FOcRnl$8a!9Z!KWL3#WQ}SLD%>Q-p%{w8-lL=t94JD>UA*X9tJroPJlI~p%S%)a zBAbL4l9=0t6rMaGRmNbQ8!Xs$D)vf?SGDsiMZ65 zXHOg_yv>1(iIQ!Ervv`Je(^mSgSSKd5-3nHoZ_CU{o zy?lI?ZHKJ-JZX2+o20K@yOv54j}01-tt(1%p>x_lgU}qvM{oJWUBgqe0?KgOaBH}8 zB_X54EFVbwHxsD4%ZgRJx=_2^#zWXf;|RSI7n6p zsEB7dp(J=e-9#xTud@FJDig953sbRAAmTmUe{R|aA{709aNb+%bg}!i;VOt`H8qG) z%fOoE_x-v+IaMu%>M&MPH>fKsyPkNk^&nHYVX4mU(+Hz3=&HZD4(}N2N}Hx7b$=WB zP{geYQoR#0|Loqqdx^?FzJ>Zn?~cFc&OWK|A-qmj|MPgP9`^*e1OECbKmH?DR>9b_n6CiAXJUdtr9A zmzUQYwde%u{?M{hOOmcwS~}ZFN4}kK+sWBNY`x(E4y!I-)Ey5(L(75vvoJi%9B}U^5Fz{8nN( zQzb2kM{9Cj8W|5RRr?n?)yNORP4ZetW74G)2{2rPADjH;%Uoclf##KTV^oU}53wzX zmOJ*5F%pKG2lI)Q7|l!(*p!Nam*f-``%ptsJx1x#cBAzw^PhCsVmjpuL5YRgnH9e@ z{=$Md0mT~*K$SRk2vn2`f1VAGQ^jyeddNr^{f1n)f~hGFu@xXL@A1x{=8O}Ge=aUA zJp{mTX?uTkfzERK!uf14U#)RhA7W3C;3U%*P1t!x(J|oW zkv14EEijCWn||xo@+)t0hzrC3MXV%1QT#GHtyI_11K&FO0(EfNv0bS z=w8L9Xblyh+d)i+kP7qKxH>ox%^AXpmpK0cs5ipH zAa;WpaaZsRM8%gL#cQ~ewV~%=3MZnANrG2fL}5`u-DDiB9z;ZK`fIdFT}mW5c1empd#PFE)QzCmZ~+_oU+%_(vphQvt;k4 zXGEMgyqeN%hn0nY<7zPlY-L0^3hW^LW7FS2V^_(Xe50E~Wcx|7-IGlOafn4P1d5bO-+|#R zqEegd>Pp0^;1Ep(9eiTchJZ6Z{gbrlMHb_i7Rs^8(XOs8IC`B~n={s$<_DfNOQLNP zi-fthPigmk)G;BgL{$u>1*5MsddgLre7>b;2DJR7C*|C1w7}}aUqAXh0F@?_O7#>{ zxW0&ecXpCUkT2P6A)4-Y`XPvuS3s;p$V=FM(f}GVS47>BBc9DX45WVD0JQG^R*n+0 z-`Y!fObY7ioAE5SA9M&H^61FqcuL>F<=)y6TIYejIUijRJ-AOTbQa=+U_N0z2l}6w ziwjQEvGiU#pw=qh+_eU>kjuJx6s)q3}&vAHQG&1q0Xp2wo z>4RI(V&)cY*e_v@Zw1O>Vc`a(x9)Jx?IS?-kz6II)k~HXX8-l8r8OMiDDhFqgD5S< zZQ0KJ_rkVP8aoT=98y&gI+Lr-_pV7BD0X6W;PxcuA)cWZfW#)=p3bzJOz^bYPFT<6 z%Tqjp)Z;tqvch4*IMgXUpeuS%uvOhK>xq@Zc@S~{@BLH1+HUKNzVl^iyXaOaL<)g~ zIPGQ7#b{}QA-?f-@k=koSEbczZL#`Ink5z2xFKEq)D;6oZJo-cSw9e~{W7q}6VimP z-h;gt6O`*v(JCJz9d0eJGKicubp|%an32csxAo2v2`@>&NxTit#29)=w#9&4UM`Hw zwb}q$kl7^2XoI(ZRFW8+rx->5`{He$k3?s9wEN;}axf*&q&0%Ty9i2z`h&{{qGHom zJP1dEa2o|Y8RsD&G5rBiob6eBhcBAm$SRPix9ptav?2+25 zgL>Ya9gG9%{&urtZs4KC45c!Ven~>+-#YP-)drDeiys1wK$qmF%ykaE=_tUn8Ao|i z2@|WwhaR?%dJo9CyjlIxr1>)-58x{ufA9kMkUjq8oaut}VK~GjB@q7)uH8Q{U}Dq) zjO!0!-QaoHnef0(<$IWo(T|bfqpGbT*xgARf?))mWT$Kcvf*3)fu-D|yW-?GbFc+d lBE|x#yx8BR#gpr^&rZ$jV@F2kjwtw9za}yM%Bqa~{{c;Xy-xrD literal 0 HcmV?d00001 diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_50_4.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_50_4.png deleted file mode 100644 index b174b49824e4b02093e03d9beae34fc366f124b5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 70420 zcmb5Wby$?^*DpSRG!l}MV$dZaC=DV40x}?iw19$icL|6{DP7W_h!WBrf`CX#=OEqP zdDiUxeSh!u{?0jnoPFsf!Z`Ch&%N%oK6UTl$13ud31|rr2*hQDhxd^P1Qs;{fzgYH z1K*(`zFz}>Tyl_6(7=QLJn>B4!r$?2A8I=w5QJCIzcKzyc%Q;IMI7a{9Mx@JIJy|w zn?xQ0-; zFRkI4ygK2grD1x~u(fgH`nqAxG%_RmZG#BctBNUNs>DRjXYc9~lybGr6AH4ka|d_@ z3_7^t4uq)3mD_Kr|0wNmzU*=Nr8smsq#Av% zTo{SYF~?&LAeF&mZl2(HzJd7X%K*{{90i{Ld>JScN%-$8?x(+>g%_f~uf}$>68(?h zYYKw@|4WZDqG|J@|3o7@nS8az9~J#Bb>V{7o-?-xlFGboO+<1$V5cD?}T9-MqQ`8i>pD4C)WM7F!(nTZnb7nZ$vR`my^KfKG z#vrR>klb9l1)q_x3X!kkkjrn7%dyB;smSHa*&5+K#xY1E#avUx+&;zJn|*i3VvxK# z!7d@}lNpM+2Qf(2Xk>W|av>TS6@zS9pDr~ss%kY;r&mzSl~v3of$!~zlt(N{L`5T? zMk9-3koi>MdFHQXvX+J|6m$I*bFV7qZjXdJAr)(1eyKNoXP$@rl63i?M2kSg zQdQvzrTo1d3ko&G%YwD3oa=reQf^b&hAGHjdVM9gHK+9ug4lzJ)9x5F_!^gvsWydNsXt?_BCh*R zOBow-_2{w>JnJhFBwVR>^<9&!4pauF&07PD5j$iOh;~(-aS!xox1|}bS7xjkAw_y9^X`-;LNFF zPx$pS@mCH8al$VKU+tVK;*n9;pE8eHd<}dl(q5HSap$b8VyCoe=o6gDTGLKFYZ%I4 zN#lz4v3ynRQMMg=Qj2wHl9%-SOHxd(<=b4#_`o}g7`OPvnN08Pv!7pF&wUj}ew|ymJ7PXCON>p) zwZ?c)KqJkh|N8vz(G@=3j@`@kO9$n>lF_C|ELwdf>LXaaf@{Rb!h3RlnwryIPy0$N z61pmb&%Zg6HAu#tlqmL<^d;tK)5-|8?9y1y^}8kJtaWJKp?Zt!&XJw`ec+b1*-1{0 zc|ylYdcD4ld17qhQU&K?J8?sv=5%G8I~GqvP-2eU%lsa}HPTInsm$mv79Dbg$LF^z zLnmjRhm{_C=d>OODl7f&pH$w}=PEp~pSqCA;8~bxMUzh3QD)E4Z|}q{ZB^u$ z<0o*!YtIDIvF zsVF(d!9F{h1Di;eiAtT04a=mC%%bQtu~w?D#5G%k;<%87WY6PZc;;Yd*Zo|soaNDX4dLyE7EEdDUFd``Pjk8g&c zmr0e}5e*<2&ZWg<;{%sQlx9Afs+fzjSW9cwyTFD>R#)`OHy?eP5FwxH|6Jig zWk~5sWf1>)*V&Fpz9Zw_V15#`7M3`!=($gmS1VpDvv)M@PS(GZAnF|44Y%3M4if$FGC;EYD5FSfUw{lO3~iqA8D7K{HkCwREhYwDXxwwQ4# zn}dCh`6yXhHS!DFV-mA433{_H$Ym&zVt$5H<5KphUn2!cA&xyyjlT1Re!AAK@E~bV zP+9b`@6JwDKKDi{5!KTlzvR8dHUp5q)cQ)Ie^chvcSo6gq)9>jb7k|;|L-@_V^8}o zJgP+;ZGBy`O9-rb5qRavxoPwFaTz`RqS?<+74K$t%PTxE@Z%(eM=qp1mS;X{vK!oj zU{H3#Z(vXRg8UL2xX&Mp=<0s=Xh=CiRr_=C9pPJ-S864zA4Mqd^p~gyw)!%=KdOCIsO^XnDkPVC;miId*m6H zkYBr7^2s|S$I0+%(c%wlsu!ULPZf_6BEwht-6gC|Ig-L8P%{GA(MSGu$Yq7yCpG-x z?HwCAtz19iqmkbZS##TYs6HDm+2H+_R>hPMyu9_Rsl?{~j%Ra>9JD?c&Y8WW&(RzS zxgR4>iz^zx%2=x6ZP7#;slf=gWy&PkyNXxxRM85PCoMv!Ah7Obv)OsV;)&3)H>pxI zQmL2qy+?YtycUsTeMHgA)uGK;@G@z)$aKCk3V%;A2l=!B@k2#P^+_HJa}IG()mH!-J^H?$032rn92WcWfqP*Zfe zr2haVo6c~2X}sP~U=dZ(-R*dak-f1k&WI;{A?zx7e1Ab?-Pk_ed{jAGLuuFMYf>i3 z$=$GXzk?95=LxURjZT#N?1C5R$m&w9o}>pZMm5o4crS7q>mjHxE?z$SC3GW2R5AC? z;ttY1qr2mwoR8OJzo3_PSC1d3zF6e6DwV!KSg}{qL`X1YiXY>;v%seT{=^LDAW7&%`z?#Ukn4rIf<9QJaa$= z=dbN63;%&rMsx`d{{#H|gS`j>e*?&RD<2TUkj1T?YyPaiHgwL;BvI1ncWe6Xk%PNr z@WcOl4U(h&B5h%~S#?}IyI*&^oNT%vF-NGrycfWgmzZXIOO&caZe?ZVh$zv&pTzjg z<6yn^i}^EbC8vmiLN;Mx;r-PS;|;!lai6Ohd-i#WCM$W>e*oJ51qU+b-KCDr%F41m zKXr?YidtiMM@mJ>tDpR8;LG2|MYD~^|Gb_3-Y_fmLU-z?M+y8Dm6hqy-(5sxOw!G1 zi;9YpC4Ew8geaJjf(_`t<1+&2O)~y%)MZ>UK{Qza)_jA}-Aphx@Fl zt-Vb{bO{^VZs|{UHGXQP!vZp02HWBHgUk<$i;MKFfq{WVj!S>4UvUasTU!fSjS4Cy z^qMtybadpb2--}Fb%#;yIE12sYxB%vQEHD>Ud##4=E$+}DP`P!%D5|`c+Q_PRR=H) z3gFW3%gJHzIj?Fd#_@EDZqyj(t12sJo2hm9u=x1+oSvOoSv%~^cZwa&M%7%LpLlM! zvwH3gJjEuQ%z_0vU68z}%(I|)6A*Bz>!WC^x~h1~ha2*%4B`KLy0N@Fk7c1f3i|=K zWLsdxO~EM{-7A@~OeS-6gn^?fT3R$%xWrjTKi-7W-;G51TzvHPMR zGVF-uF0mLQ?jeuzK0EHMadUVz_%)#*fSHf)eH5!|WODK&RGrt>{{GL_)}YQLVJzFj zO(R-CGhcWZhJ3cu&B2~1{~Yt0t)Fxi)zy7fP8RvPmCy4}mOiC^R{uoo?d?s(aIfE! zMA&9B%b?y{(5wf+#Kffe?U|`M{X~`14KXo#-#|j@E3~w)@{64#6ciM87kjZtNJ#EE zE#F5XBaf0V)7>E@CG{;R;MJ>kzIFTdZPWoTx}vs3B2z*vt9+^jpb;@!uzUM9c$bgPR78{ zIoA=Ft5eQ%cD#4v?%f0oEF99SR~5o&g}&cJkh45WgOC56BA!%HAp*}=YGv@-4ud?r z!O~bc??%lIao*E{7w4x(zmtSX8kWVqcRGcmxwIp1$cNibHDGvpd0|wz?{UnuM!cN) z85Yg)rM-`!Db^a)9hI*Il9ldK2oqZ@(CHC8zz-w&|BAd9gDURNT*|rlx!w4Gm8Zw|3XY z;+SRMARd2GVfga2plfTU6(0}Juqgl^y`SUs-GiT%zS6cF`cwG1t?i+VtgM}_ZJJ^X zM~UUgl^*i6L?MgB153Qimrdt?C-_dPZ_Y$WZXYeAV!7M=7%6@UH-EG}$Nn^*K7@+9 z>BkTM$XiN@D`i$=FSZzO+_=%Xqe+B=h2xLm3snIRR~haaqrzc<7y|=aiQ=Dz#Yi2g zYZ9fSDhu0D_pQ<|HT{9?O9<6y4$Y~QcdKwArsrP2<8POk^}eR$)FdS*mxWEpoiZ~! zYjQr(*yz{auMyH}`n$4CsXIm7e7KOAjEt;ivx(62WUZY3u6@8p-3f6|kT4~Sa-UY2 z<<<4|b?sl`Vq*5qA3l6F8LIVg(f2uXn(zAPF;rAy-uDKod~(1kfb@(uh+>whF0j0M3s;CZrjg3eC_YQ z;}ik^l1r-);R}5;q2O%Xp}WZI#91Xp41aM)I-E%|rJh;?&!`$J#AxsFTS;8A(SWUWV1 z5Je1|+UtV)^F%0)>4gRP1b$OnXJ?#U#>D7o3Mi74l$6k`0yx)Dc8F+p^*1gkuej$e z@8(t*aWB)}fByVBBO{|H?2^NyBaFu|17O9J%*@zu{QaO)hBJ!04;7S>HoY^DcpYsi z{)1iNKR5X6F!s=HYGb3o6qP#F_Th%BtLrd(Myoo!VYX7-gFZp@>ca?Z+5G!sjbRW= zdGgcr2jM~N!rhA-*v2#KE`qQl?bD-2^UM=l&PcNsWX9pj4j5o=sj8~NhP=vW=vym$ zMP^uin)0#cxyx*_gBk%83JFg_5BGZY-ycCrs!-=~k(UT%{jNVQVauBAdbV-FTODu< z0FxoSA$sm-efsgM(bkB>@#AIQbKK-qOp54SA{A4kZp+%2vM{`4rQOjo&v0u&)YPWE z*&cJhml|(J&F-qfiQ)cE;b+!e?aSe}R>?oXs(MDHpmm@FlwZr{iV0sGk@8ofsISvl zyqy6%)q9NLySpcJnb4V&6wo@(^!dGNLd{y@fh4JF_O$3d`JX^g1k)1$c1f z6z^|RJ5$loSxhoD4GhFUhe=FDRXVT^IUKBx{D6hGdez<883r>iDV0~RD!Q<+@O41S zk63OUSl+Jh3oSpx=p5*UVXjJCobJe&_eIWkChhF@sYbaa%!MJM=AJ@rNxV1t6VMcjaA$!Unr@L1! z94z;w2X8ms;V`HZQ&Us(Jx{L&NKmuWB|3i$&EXwY>FLYugM(HSYWm8L%F${U-rn9` zD9ds~>4gmQz8shuIXwjyoYd6RWi}|4C>G_nAt5uP*z*K`>fsfx8&2Q15+aHd%95$YO9dub}R``&l{4 zI|-khWtOepZHEO0QKqy%&f(!<;i~}-g!M#~T)FkcXBbiFEe4Rm1Qp81iylqRYomhZ zf12qf8`dYP0XWfwJ$MjG;};i4jW9Pi52d;N`gm`}n2+Xgf6NA>!gcF9G!A%8O-;>k zl~Z2JzWeTCV}@J^LaWa6E^qB_WTi@jB^XAdM7gbVacze0*6gMx4ESpZBc!9KS;Tt=(lLMQ;lFrOGyI zm4{vY-QhiHl9u$J3ffb&6|a2tdb&|tag{K{7p>$weZ|&^#8Kl&C9j#YyfS^28doU@GDr_;xmHhGJNUeu(xeY4EZssRI)FRI# zduYd3#oYzrVUJfibv&p4_N+9+=i)poJG;oN_xg*jM({|8XGZu4-Z|Bcb9$yle0cngpYZ?mHhraX>xKhz=;fKySjCr39kn1*R5Bk zrW)Ro-G~>lyWTB%QB&#pW&!kF${upTb-gDDulAkf^}>M-4mzdTf6 zbKZa|GM3K^4)^!RQce^!>dlb5dF$5S`S}<5V`Wx!>FMbrA|j7-k+%Sp{Dcw@4h0 zs6*3*k5LARIk$nKK#@4~%RP8-g^WxZaKBCM9#yS}&UxXVOnEe%ZXPZ&-nd5v(*

    ~JWZ?5|;^LE&=gf9>WBhN_!t z^hY=@_Xh(U$;imC|ER@CL(>M^L_tyUI;`A4-czjOtQCIKUz=k#^%(IB4^5i4JB3m4 z9_D~Bx`1*V?Q~1#YUExyJ2_Ywcxo^gA$eXnY7I!}s?aM6Sh~Bve*E~MprkajQGdb0 z&mRf9k(7qUjHe#@P?E3>PQ%2+$NG!&v1DB|Nj=>BTciJ+xj9?5u!Kot`*jyenk=ZP zx-7!nC$!eVaA+vdMGqQ^iyU;`4@Ddr%=uI?On|bpR8u8F0rI>jC3KJ>STwjerUtMr zEXgGBg2<-shz0Nhz?fJ4pBtfuXvAFkypDI%p{4fcs^h{Vhh5FBFL06^;&X9=f+-RR zRi<8`FV3O)^&#}(&b{Ino#-7+!Hx`g(V3V~aI&0NaD|-QA9zn8@MT$@iSz z4Sv&cfQ|ExvZM8Q*X`k>M}ixYx6S|DMT!Q#)P}+3Gp$U+LQ5o=C2_2u%`sv8e)5zCkjq8rPxv%21qLCg# z%Ecm*yAfo13dqpkLeb#tWZ$^`ry}x2HtUBK%owChMJf83ME$kI%1q`BVx2CZOs!W4y>mlm&Oxi-hPaIz-C9q391fOOWSVnyrFeVH#c5C+UJ)kGJtper8hCY+miR#K;S3O!&4RCJ%T-`q8Q~f+N;WCcV2f z{xI?YOE`fJ#z6J|v*v=?B5pe+g@#4Ysh;F%&h4*_A#`iqDTRg0G4=Yc04v>DF%qOr z5Hv@I8<$y*$W%M85q#@h{Ta>>f_w+kL}EwX={9JbCI;882?KAK3lpBKSTPQ8HO$Ix zh?KBh6Lh@5__c8QqLYW7K7B>kb^0ov&(-{t-#Zk*gdcyb_YS#OKa9%v9ys)JwCH+7 zV07Za&D7S63HPJjyoC2U7RTtYz%MOZ`hIeFMczsbufb$Z$6kXU7IeLeBe$aGE&ufB z{Q7!H1FyZ9PAhAW4Pf*DDd=WR^+cvsxU7w~ICP8SF5));StE4(SQE{r)^zF)deGLS z$HqjI^Y--G+DB8|ty@a5Z7lB7TRG;NeRv|Z*rQ(fLW!fI8DAAE7LyJr?Rq>kt@Vms z?t|!iP2F1pgWyehuGPllZMjH7I=DQ;)$k(S8aJ}bVIji2{LZbz)hc}72?+^}ryBeO zEr;KOUbKC(QBMv!N<;(+NDk953#0~ZRzU(%`frf<`{^GtXwIMGqhz8C;=KE%d8fJ)KV*N1BoF#SalvgWip`~fNl!*;o!9onlK$Yz~; zgw#CEV`Fr@yu6cM2YL=i$#)$->s8-@D>sD6q&>YlUMaA*GV}?qQF}SSm2LGHXTPiW zY2db3%Ve+C{{72~MTqHc=|j%`cHc=vbH4*O&W5R~rNOg@s4!2}(Fh*l6!US7Vp8t?vpWdZW6 z{vR}`9Gmg)&TG#`%d9Nwy82Wlm4SN13)?WRjg*#JNyXI0sR&(1Wb<*hrs{^7$1 zsLR)&KNb00cq5U>&Aq*r?(XjAp&-Z6gk4xR3BBrPyXUwlb#Z<+QesZtEpfs%QSBl; z6hS8(4l{`#ehmG-6)q7W&P+f;@)Djkpk{v8O~d)_)QC@?SgCn*r-0HSnp;}5Lo+Q$ zzKiYktJB|ed_L!_&2s&i@hz}-*nCxo7&1fE)o`@qd(P4#XPa>1Z1l>s7=1+Rdd8MVOY3CKZ9jP>TtORTJ{0A@dH6u$J3Zw59jEtLGv2qslfORw^q z;31rr`_tX`mgyzElR-ydc@*CORp7Ri9ryW39u;C`s6g1Kug0&WBH!U_*48iLunE=eJUAh zaouV|VWw6itMcG{zi2_*w)|g z{V=o(nkL$*Ef?(tDPO(xOWpN`@k$56vt#9?JEkBkBhaM^gm!v;y$i(PTc;zYAP4i8UIN|ItpQm$axoXGEExG`)u!NzJ9IZvuCu>^Ru*zU!Vt_fzMeC zU=iqHTHj5AkCM~UuH`5vz3@({b$Rd>x9g)$As82$uy>={@k( z{27t^hAgpSZm8;8lqshRVjgkJk2o>s%#4E%85|~RsdATrjIMemeKElmbtP3TQyIG?`wlcfM^I;0<<)1=Gd zp6T?0@^A$}M@WcL?8zZ88dp$IKtIaL$+-eR17ulyD;>OQ1=XM!tiJ_bJ;o9mx97dO z{M(8uBpOeuH46)I0h4##4GIV4Q#?B-duOT2xc`e*Vw@+_@3|KanS#n4C)a9+rf<4; z{}4#b$$t5T(_cbN5ra}lx!T-;R8bs18TXGLM`BKk=@$$9Q_TCX5(l})+=Tqp7iF_v znYoRJ*4Nj^dKtWi)tLJG*T|wRf*W9oH%R=ttnU`&|5bD6VYpqw!QqF82FlIGy}Ge- zo0+L8Dd?diAXxh2Tz0?djy>zevAP@=VYqT3ofMH?WaY6U_MS)n$Jc9Y3pi(ke(L5P z@;3uWUl4kWcARh$^Y2hfz82G4V+fa1%&kq#Inw#ku~GOr)Q*pipOp%cm~#s;*6Tr) z!f6=lg%%3iY5+mC`6#btWjFIYl^!)1kyOg^V}L&4Y$76r9$z>^yqii1`~ zt@s?nc7IhH>Oi&DeUIjzBO7STdXud9%wI#EeP*SSD3Hoz-Ve{Q)%ZdL*6@)7?!TO+jXGlRN`80Qn+4V%sv8Y&ZugWK z(!C>KzHgLRdq(v1inTy(9PcvonXqtuyWCG-R||{$7tz(jw7y`uyJOlt>?>gioG3#s z3rz|292kSX{DGwClc5?f+f#1I*eS5dW@WHMqub8IBqJ4JItEmu+w8c7OIS*WkpV#UVo9(@|$ z-v6n|mYpJHu*Qxb?;<%y1)W6t83ETi){t@93CVE^X~g&I#66~WG(Kmd4q`I*!yiJ3 zsy zmHIzAQHoE9&9EXG$8;VU_WpT)ef-UR(_QuQPJN?i@5=5RBTGJ6S)TZj($R%L6`2W6 zFE1+&e0kE@y)j-HwQ!_UW@*$)tfch`oHajn*>a;)e8?ZZykUEjSK~QYRAOrt0s9&!5}7 zDWd54w)nZ0@!8w|c{K4N_FFid`+C>D7SW-}t!Q#}Y{9Gy1lbyJ8ZNtv>+Ff7QSkBZ zFj6b#-h*F*`MJ@r2wV-luDiT3@Vg5y+Bs%i@e*}>TOY&-RZQw^ADf397f<-~375CUj^N-moIw$YWR7n*5#y=*4 zJNDnXIn&7)x?P6qm4UpMaasYcW(+!nbmx~D*V5;3_rrfmd^wW-bk%lU_;BlTEi2%l z^&$Y9*=VpS>@hf*PC=l<;z)v%k1$}**5t@$;mE#|z7g(4PxEo@@J0@k#kSA~9SB&a z@w#`nA+!52v-@vO38xVrGt#MBRzzUxRBm8`y*~>sKdmh@Pq11C$)wZk4-@}GGk4gU zmXksaRDvV|uoTpH=|_)<(D39}G&|_>W!4jk1uJnJPY5I>CBe>909@HEen1Zz7R+k9 zvty?atC8v72?8)vrqo3l19Nb_4fc1@@=4d;UTHm!X`Tguc3U{u4?LB~7pzK}+ zC$!v};U7JBa#S4fV;rDKHITW$Ik%RO;N}hkRP?ys+Y4+tl(&U>pb0Z0Gc`%WA0O#C z_a1W=3OCZh<3jRom7Z;stu6lPaqd4`Z`wKKo#{?dy<2Tdu}ECaiB~h@r6av}RLXrS z?AfP&5j{a{wZ3%%2O5USIp#w<9^Ba)cXykwl?RU}jGZg9KVhnkyNSoTmT-CCMM7$zEgM(s@I*Ugq5m5)mSoIhUKB^Uj|T93 zp60g|;i8#y?fnE!o=I``$697YYy(&TQ>Q(B--iC#l4(02? zgnI)+6)?yH5cm$K{7Gnpt?2<$nueEsT^h)vzNNUR=V~=t@)wA+G2{q<`n`pve0kJU z2eSY3=g-l?J*cH%FZL7|NCL3g_Uax)3y2^YOwG)o^+B{`Tm}C~r>3>e>ts9i;xq_^ ze=ul_B)kW|YKw@97JD36TchgGCOJLR$f5aXl5E7F&t*5; zwcIm9)$E{5Y*rmA_f3xZqh~JBzq(qM`p__xBGHqT8fMc+*$uh2?jlXe;Djq=NjNd) ziBy*zOXrfCV#SNv@@lTZXLY8_2AKh=PxA@UuY?>ttT;@f42VKFt`7IkTi8rgQ9=^r z9R+)n$40Gu>8k-W5(gNE*j?%i%GawN?H@cn+Sxkjt~voWIi?L3JEEXwn*dD^5un;< z0$K#M^b(|eo|W_ndrLa64(p*Dz`gv8{u_|KLWGHPmhL&LPY zU8NR7n1w*N0M{C>KM9VASZEF=@6SKmRQ-PCdWdNGZu50^;^S}r-(%Jodi|x@y<|@I zB#q__ZQW>7UKwtDhEQ6(QxH$lg)V)n^XL_9Ak1tK9I1koiPA3=bZ5 zzCR(&wX#&?VRUla;}c9N2`02txce)wD*BqIlvH|inmH{99%wy6Uhn?>OF+WE>enWM zIcK{$C7qN%QDUwRi)ZZ3$Yf(>Ak$$L7!Y6!K@5ls6+cQVYmT)!vZ`IkkaMWB($mwk zb99^qX7-KM2 zT$;JfsAW+NGHi5Ptaj`_I^tg|=jqwmX6X7>=V>3oUjl<#K~;4DI0ial0h$syBpCot znf{7qW@b*8vbrlOs-CZVcSkqOZD+pstF}O%)i+?IpFe*VBM$*{t{9vxsg02~-8#z= zegK=5o=5yJhcH0TpUCkjo6n4pc)mT`E+TTeBmCVtf`^BvqN1V@TqAlr98eEI*nS@w ziP-?~wGzxu88PG?FCuyGfV7D8Euk%$AtsoZsHl57aXJ<6z_;F7X88(DLl|`8%bIcS`sVE>$OW z5XyeIE~i!H$PR?*7Dxx+@=bc~D8CxY?*!B8k*B8^m^2`}>+0&7q3Xo-svM1AzCKF2 z69&y;v>)up69Y881a;^$P%nr1-^|?HozHb*O;Q}TW}{Tm9wqc%MKHP0Jc!|*BOlXP zrNc|_qdDs3!EYT93k!r^(ACvN!KwKho=*3Jg6K!<)h`zG9rcSyWl@nd%fT)14`UpNsk z6RZz@)TkSG#k^RaGh0);ZLk0Z-=1UdfjltB9>RSMSi0$U`CAj=E7(}EisB))NR{y#E{?zM}TAJiARv-SH>>L2Q+#(`Lk zy_u@adg%GXE|!?60kszF`H{Rt@a_L61<+MlvaOQtWc`z)sL#H4mFm`d9#CzNj?G6) z*o}XNerN_Ki+!IWpq^-MJZI0F0h5{FC1)R!`u6R9nYXViop*>)=kAGscjrWl z5H$0mq1R2$keLw0{(ez=!wNyD}`xE=N{d*Y-(L~TVkPL01WpP zdQ*t0VZFj#@Pb&L3BT8lg7u_=X;#>dQ^%Q;ucP3vtn3e3S$O%m=0w$Y{_mS{ZB#z* zf?nU8$-|9JbubvGxh7$Ns+Jzke~aaKPR!xf_{ZCJ>3!`DNc-RK(yMN%`RMa!V1xbD z6OO2j9poSNcu!9W)$FXoxm9f9=49g^NA-A>WVrR7jwCmDXwaG2X|)`4(k-gw-~j4+ z%<`WAY5!_|jh@_@(Rg4W&GGm9KW}|A=hTxvd#dwJspUPJt)iA>=f|NHRPsfuF*)7yRF!U_TOO zcdo*qeXO_ze%hF>GpG;r3=D2Fm&XRTA$Q`KPJbg{LU){`LqCv1qQ?%0;)BmRq25PQ zvmLVg1p%Gps|;bJ(-@^Q{ZGp1Pm+do#QYuFPYeFItXkewQq9khZ&FS%KM-;}rG@lO z^!e~PC!b@riy!s-uT-Y!tVz4T*1}%?XHBN@0j9G5JuC{VT@LOCNF?99TDjD4!zb_n+ysc;-1~s0olE6nG%-`eGq%zq^2@~B&1vO*(PxtOj@;a zYdx6wAT**SxvK&%_&~CUR4#-lI`^tTC;Blml91|ieivo6K3PlW-w1h9ljgT%u5NB4 zj=az;pjrK0T55;XisHO7o#gqUF*+ggCkr18U(fTS1q9k-{7>Kutl+!uyKHH!1Yi&J z=RJ)8^b@ic0~rCxk@DYBA|fIAq*Ly5E*lygoDM2CKw@}|Ef6xqKqEK|3=B|6UM?LW z#Ld4L)Jp&g1}&r~=Y)E?uG)c|YTtL()oa@B>WI>O3X(vk&X?A2bB6R#U?ar@!oS9A z=}N1TOx>GzO4-*J-`7W}Sj{g4@_uhsyWLzZ*>yFzMOMb0hhOJ}QTLu%?fI$o!|IQv zT(|HwYtuI-Uj^q0i%GJhn9UM@{-5#~mMqGN%?Sc8Av|%Nhldz~L@*-E)NNWJqzVs} z2!P|!0u>VZwQK|gnYxp8QAh&0Zqy#w*X~2O;sK#bq1lBqz|db1SBB@U;s(2l5( z1yvd=H$;DpLD2_odunAR1Xd7HP`ghHG$9S*b*G?@qO*A*4{i0zGZlHCxkH#*QCBy4 zK;%Dhp3h*)gYXSehQRvsV?tjDgZ6wnL|K&0kfC0_IDhNW-Kd6&-aNTe_?fzr-#i#*MkQPYXVRpHr595<4O_C_JA!E*X@*tRG8R*>8< zIp0hL`v~-L3<#2-le&-q`UBDwrk>=C>=snfZ&NVBiicl7NCzJuAFZVI6u(qO!>_&3 z*f(;JsrU|P9D!EMo~ocKEC7%?F826=G_PLcYPa+FTXXY$fS=OPV~T575TJ#!aB+nK z``Y@W#H$^a37`bc1VCp7uj7Er35yIMMFMCInhf{4Q&3+iCM zHT~_cGec$nwr-;x*ZD!dO=`Q}#5Df0A3XP+#iVXlws93OzG2tTVOARvk;L}8L2&Dm za^L3et_kFf?=C}SybTRCf!&F2G5)v?OQ!8D=t`6H76VPPv$S*E9rt*DtpixbXJj^k z&nJ%Bz0;jLBRe~>v^5Xpyx3&bn8d@c@r?#s*X zK+<(buDuijso&)0E3WiOwQooyNLxH*|Y@!6h_SQO_ZQ61Y=J zMnTaGM&VuCDFgy6IjS*7JG*o^yMW#o2(D)(ZJuF(tVk&-V_rT-o2IX^2@zV=&fG%< z2DrQWZ(*)PL3aN6^NdRQEU>%4PVfiDhByv7fgB6gv2G~D_qJhUp`#sLAB*2FCe)nm zkD)JwHO2M1k{djh-v_sS&OHu0`9Q)$Vs)9OvDItaeIgxD$ry+s9L+2KCUcCnV9sH%M zkc5X51ZYtaFn5U!Dg{y{vlcQgFF**s<0HbW`8B@f4hE!H*^ZK64qv}_KqQIt`WlOzdMGL68(U6Z1&SwBrCTIYYIYGkf z9^?#lD{LD*Js&?N1zkr_b$|U&c1UM?GUk7cA6Oa z{+a3$)o5h+Acf_#^{vw{l166@0Udn8msG3+oDH^vo{A3s{CexRK;bu#$gk>U6PQ?j&mLC=?95VYG0!hj7-r$0Eak8;niy-QEJP#+`@k#t#BdLt?#qjgDR&vY($j=s`4pk0|&aufP6V7|&_ zkSD?^;|P>~>cZipFhOOeZl>ZVD6eYw$s{uZQCltyajIp`huo_eXTs7W9Q)ylcy=U^ zk+gfq){^wiLPuh1Q&H=jwn7ZMHnxde=wU@vL%(Fsw0dvQf`!;A=UIC)#CKhXR}TsH zJNw*bk52Z!J+<9?&Eqh&&3s1J zvFnHy^eb>B^jt!}w=i5C<{D#3Tv{r$rhrVH*r@ErlgG%^MK6|fqMeA}pVYspxW*oo z$o2=SqEB7AYMoMMN1zI(u^8%mTlYeOWY@0YrQpdAHT)!513;Paeoe$J#vtONla4#3 zrSd+%q9y%*WdU-YoFF3&6_|$igaqj?=`Fk%8JyY?Po2@|4`!AiL8*)nw*B)sXvPnf zn92>N@x9`ei-J6wP{z4`5pTuQNh~-oxDMxZd35l$Hem)Utb`+5Dn$w|X}{5AA8 zIKW}pm3$YX5sSe?)eZ|Pa4_yto8T7URv0sf%@I-bkSuiDEZ*GT&w(sz?zWf$J~6R3 zpKVWTYb%e%1|aaOG=kys z1fDnJrTFN-(F}a^hTo)(6w=Z1orywBk4_~Z$OL!?O$p&*rdL+zHXQcXCz8O_#^i(H zTT?S#wSyLYT{ow2qxwKxB#?p_5|~^qV1R(Y4aW=irzGfvtSda>vC-t_3~>wiElvvUvo1QV983*>mo(K8T< z6szS}i<*82e|(GXd_|(X$$G2rL#ml>$!+Bjq0%2;)Z+$q#Y|4?wvwy7I2u%anO zHA*;%*$Rg)s$DiBIiK?Ad#nk4f7#syU@z*79`5ovWJo-Bd*y+T-FDkHLC2yY$@TkF zs`oEADR)t@@UGNpMN{JFWQ=@dNggPnlUON4rgM?cN`MN z-*89Tka9=o10hF%Fa&{==1n7De-Wo;3V`Kv;BuToHrAvw5iLippV zb=PV+vir&L!rsmYDcALL#stO25HvJu7alW=7_FC!G*S$<2eFbfGIV)3p^DdDTiy2$ zVcm2!{LnwAdgJ=_*FfQc($XQgs0g7BaT);OK*FT&n~pF9dH0(mYT*PU9Qg`{Fgrw^ zC0gE5&Ojx?RwRNU0hrsThI)v!K4KcMeZZ`XFUfcQ{SRV^H@ff>E5!pw6>qr7cOA7drln z#@E>3Wr%H`p^e4z$w*?77>*|yChd`s)O!Q+Anet*xROc$_YklVJ3u#P%8CU7_NVY~ zefKN2mZP;ocZz6p3xRSjphD~skFnGoMs&OO&oaU?vdcV-k^RK7W4Ej-sod8L;;6ec z<58m*vDYp5l%qJFd?^Gy(?_rTMJFv}RlDGf(&2OnuLw*qa&c#fo@s%n;a{);L}$us z#v>mHLtp+xeINgWaC!wuwm=Si)4$`ZCMP7?THtIUGyhinJtq!WU96k6?6(qf+M%v< zwTh;1#Cf>7qKz>?yRyJVkLKbG7%y=~tiY*E@F&qAxVt9yj@2kMrPG)0^f8Ut$Bj*X z?>~L5Q7|p^)ZKgks&;Bn`|w05_lH^Hsh(MO^w~H;@YK-S!lKq)l2Q^cggmv>H|d@w z(cEwEg3J>`QNk(X)|GDGjxFx!7p<9fwvfA44~|vbm2fXyonQPpRywItv|#JxbnDu+ zDQR0WO3D@>?S;?2=~g)g!!b}k?^9POI{AkW@$TBsUK0^H%uV5Z*_Axo_3=dd+fPU( zNQ2>Z#WO!>g_|*!Rh7~GVEydjJ9RK_K)&AgFQ~1p#XuiIhQv0ei9B=JPh;pKBn0Il z6zq{xiE!597jEiPTi{Yr<)LXqEfS*Hi$gK&L(1EU894vT6^sCgoSUc!^c7xuSW z&ZDc~d7(Kts6l40yT@R({0zOiQ!w=f5--0Y72zxJvJ0Kbf;U5p!*JXaYwB=ohJ>*i zhSBP1DIwUQQp?g^$-S>t_THbA-y%UZs@;<{Z8zPZ%2#HgW9ciV#ANhZI0d2Y??G0m#OCxOgv&e*l+6rBD*}y?Y~1 zG#K-lcW*d87kv7;sh6sAMl>r^8{Q>x4B3@Xh=_|v9r*fr>5hQVX-r(K^w zYM+?bx~Gb}!nJa*=J~Q(Dv`6y`mLf%OPknL+m;U_qLohRw0Ptr+ zK0Yz;x@cenZaQBd>wu&SXi2^%m-f&BswEyizIS2^P!GO~m&i`61S)`zCLmhISZ1J* z31tBY2Rm?R*q%1ta~pH=y&T4anVW*}Uh>dW>p+mNZ<-cK`>R6z*xd>1gwq0!Oj5bT z7q+Ggo{TNdv!+DzeGRC;EKw6akvb=PI2u+Ow-Sz8hP7TXN-i5?{RyvXCB!b_mEK^hToDBpq64dRlLDh*}|2EMoR*xoiEm9=Uz z%32FPN$99?dR-yQul$A4C% z$zEQ@H>*j*KrCW2%Ly$NfuZy(n0$Vy-9*Ma;dchnDx)06L)^8`ICr}AwH-&RCh)lM z)nrBkp{OWje3Sz)xH2O*C1R_qtF1sW4RDBq)34j~(VrC(0hF1l15_hx9#q}$!y*%Y znSnm3ozNXSO8gHk8Mn#1L^f*Ki)F=ILe^9<#X<{AN}M*b!8}1=-r4s^t)A$vSrJ-u z=PQwK6Y5d+Pp+(El7n&%9`8NQ0*4KtgNxpDvV&tlZz_;)E_oBsgCs(v4SdB}QPvQa zkQcor=&LNB3|oEC{zfNH8t>`+_aNr@{8|%)EbUms&{P7SMglCu(xA+S@AYThD_bk|t|qc?q_4Gq`9Ws|aWrdS%tjNY(z#PBtt%C(VQnnkmp;H3_ENz9tV z2ZN~)nDUx5WtYT<6?h?CCWz$1BT&{1Vj@F{k2D%A>d#2A34ZO0C6=k@;hxIAdP6u$ z7LRlRi&|$21jy3IdOUK)oHQtRU_ zE2Vv*DzZzXZML=hBu8+6{Co=L^pd^AXLP1_G+R5-HBeH|0MDDW*MQ`A4yEnXSKE`P zMN)juqhusadG21CR7rv`$B|y^52c+|f1xqaVpDtAC>4whN~#YPG1THv=6ma8l{3dH zrO|9dZhVA^VF~Q%sRvsnjcVP!GG2!vsR!r#i{`Mwgo$4q-!(MWsQl2Oa-umlZZ=$> ztgh(r0K(<2<5=Qolw#)1ngSh2W#wgs6%6a(5ax&6$5iruJ{7+UizH5)Ysl@jv-hk2 zG}P;C)x;W2VVB+r+@!%VYeS~h55`_tFq}8lq*aDT){B2OeuI%cV2n-;*R-nUQ<&TQ z0<5d*Ldi%BA*#7KI3L%M^u8|pK)^vyFh3rpAiX9c?M&}_g$liIBvQDrVKCNM{yM|- zE5p$&-2F!T)T%%8Y=@%b=>AkrWq9TeJN%oGzn|3$)+E|wS=$wd!dyX;3Vl-=btNex zp1bHmnQ}ol@BlU_8oa}6_+3V3*!7mFcbf$XgY5^%)~ISNt_=@aw?vH~FD49299>xP zm)d>mNtsz0;|yb7zchTC07?``t13SI>HqdVHhJFb&CEemal}AxYB~Y^f;%#v{?3uEr ze=cJ0=O>FwquIN!ly9YE@fz5rS;$u4vzIqToW9+4PgN_v^uAkP%`VWq%`htdeaUmQ z-}wD)$#C*~x@Kmw!e6l*1cAO>KYzB~?+_rT6xl7<5@A9;T9BG-hZ90d7t-LrFAHQ% zdzG?+piGg2^Q~14EpAEOKlI7?8$FvXF`I`_Vq9O!B;VRc6gNcN?%}S?qMTYgsPwsw zGpOHIz`{-)d;982+4?a5Ejrrn4!iFy+Wb82PRc`LFQ;EtqTvj|L5K)%*1w*6(nScG zEf(vMLo!}xo3&~d0r{`}vf?D@dBv7+HZ?XHNEq>2Y&uwQqTEEFu#Tqekh?KGbJT;(_1e& zl9BfEtfLD?yzU8x%pI;@6@*H`kZ56~DnqlmAu6(&XXpqR7|pRv?|M%nLD1@ zYh5!ZSu@S)C)c<1=S*9NHLmKtB576qx2E$Pd~r({|3UuSr&3PVkq-F{$C%zY>GgAE zL<)knmplEHAw#^kZx-|U*rOV>R2td&7VqC!iD46kkr>8vY>b>*ist>jzt%xF0>TT8 zzLcqV+pyVrMoXJPtDIr=sLHyL`C=puGuND3C^rA)4`V$4$cmJ1;e*wiCia9u5?)1T z8fL|$!%em_&>J9m$dtCA>*Vpo1k;lBzQtIp3pkj^(W3j#y`ntzvY-DJG4HQkhxG~J z7z6dF5?ov8be|Doo7vj+2Tj)ej?zK*>z8{g`y1Q)MOD9d3IP={-EC0;h0zuSLOYVd z^+)%s$9x7;)i6kso-j5hqj~Ap+BqNxqu)!XK6xfhK}+rfiE&f%*S2~vB(=Ti6)CN4 zCr#wu{EYO*0HZibq0Tu!jF-C2w(t37?j;qyBfbd8>&-_G-S=c}=@o6$s8H%O=Wl#BHo0 z^BYaj%3P|_ceS}{=uE8hp!x2LbfxCre+1l6?ErTiw{FVN8q-#vS6#Eg@@S5=H@?Al zp0>4wT(@Lx%NAO|bB?abv2GyOW`{4NA z`$2Uj^=q@HjGu=7kp*q_ta+ldp&Rij(%tKCoTknxAosy_rG|g<2N7<}C1s9@LAC7aCi7&@nA&KV+AAOY1~B=A81B+;=q{8RZ~({cv@ISXliJ`-l*P> z1FSmK;I?EH`X#{h_)zR}l4AH_1x|o8CMVlix}@QotI-mJ!(QCGxo+Pn1jD}M8=2xi z;_Wg$si9*L*qUyK&3RzEl~~^v$gIEazhpjp-Dv7y+xIz3nyM;La=#ENte<-t@2{~4u_i52l4`Oq}O?Be?Zzwn)_ejc|2RH=E!{!4f@5z08s zE3}Pg&^a((Hlg{Ff~Ua%32w|<$vHWY$2=ap$FhoY?|hFbj{PW@31l;B6*{qFw1BRh z4}Ft?$gG|FxV3+NJ@j_x>qn%A2OnN^yzj?z13mNCLUMuN<g0|SAUCppz>B6pHf#BQ-f(~pPF84iWx0nJ}92ps{HBEi2%f3f~751^^VXtl+c zL>^$3BnrE%HpZ_)8Ter@Nb^mog#(3R?E8Ws*|n!CTMs&5_{&RGwPqYi*3hTj{~3`W zEQ8$WMl@CeltmMerOS#glH3=<6B{B`4T+Z6_kKKj{P9bE#VwP3djNf4_aY5uc-r*nCmt#i3yA2Utf1 zecjzVRSTGc>Pz!4FbI>Q9qxnfS`OF{cH9JQN_?vw{{^(UVb%1cgso-2?nIT$i`3Myp z06lyrHMPi({|!^+_>w@Gco>ocQr;-r7@v>%E8VRPU`)pT2<>pb2V%?8PP7y zjw^~N!6mpI?D6b@$KP3cGJoy-GVovHm=HuaG|niN(F?pAn20ijS%;!dFMa?N&Z!D> zD4!LaX{HJ2(B4K_e-`y2^mxr9$Nr6 z8sEOqTjHG5M+$qP0!BWYZ2xBG;pe+>tGJR`zf+l}GRsXW9NYJ zgh!p95xMwQ7h=Um>Yo)76vzKLmyCHehH3eA!4i9pqXxPp;N;hQC@ttu;?ie~80LWe zH+Xe#YF}><8$GwX45Euua&XswB*W;iJl5+gl13*aD5Lj1BcvQ8eO=u1uHE=UV^FUmF8)o+XJ&QSE(L}t+K<`^H78RBuP@@NF z7Z~kjUVz{7yo3*Xcm|JGf7b|0oK;SC&Nj*?w5&P1qU$o-ZsAO6(#AE3B(!KE%4s+l zXY6Yi`P$HJUOt8?1={qIq2p-~g?$}i{V5wOIO$t7kVtgVcB#z5I>1^E$pSgkn-G51 zOtF8>A7(6&kYbAe+gjxFCZ7Wv?*=dx`}d5*g}yp|s+e4w3hAE>MLiivliQcX4jA?(3->w?&VON071KOc>64-F7;1G4=BJLl^K zcvms~Pb{oCuwWJ*7d`s z`*CbQaj$eVQMl_EVzcRYxK5|R9^9~ivMO}0p4}qDwhvsKEM^-9+QFWjQ z?FaOru_7bVufvW)2}7XD&&g|iD+aEmbV&(Ipg?b?wEm!CUbbb1uz=gs2g=ibSet~? z=!o(H0fW8H#g@!+XW)FbVzUgkEQ=i}$3Th7Qr5-ibl<}Ax;!!WQOqvWd(~Ny8a_xy4g*kcF9&&1<`#Aq|H%hmssc%96zE&qbLXf{{ z{lP^YElrLSt^x-D3q&=GCahev`ePl>>rek$vjDgX0TN^h<&CC>k`T@Sx z86%|!jaSZsoAcI%`6LL|VDk_uctIpSqwIk|imgo`*}I>{PI~ z@$gr1orgU}LiZIvWU?;%JE+*ddJsHqqUpE}FSLvVPy=AGSEPh5y9t8dvH8z)A-(-W z9&5zbjNh~FBdO-jgfBdWO@HW7m-4Vq)Mw>Yi@WWg(UUA_Z*8@&i4?E{I!QEsb#_-2JsMA(A+ z=&f!~fNI6wMhtUY;RozWT(F0Nq?~VnH^!3Z@Ynkp{m}jIxi-Fa5-XX)iE5=;gL(5q zPHpp0nrN~{kh66AkDp7|@dTc}RBtQ2UP~iCa}6wm^L%tIz@Y%Vp!S&919kICvVRjo z72Ic?kFu^xFQkE7`37n<@Q;Qxn4z!-hDw!PLOw8KIuvKT>xJizo3sC zWlaCHxaB}$$7)KgP%Vk^1V(gvvxtG*Q!Eg==tRF5D_Q2cdy!;my;>}*sL?*tKxF9| zo#H=0AEzL%MvbBcdw(4<^exxrB#rc(JvIJ66rPzcr>n@~)`A%Ayz zsjQ!;bbAN5Ha6x;*QJE)a>EOew}yRMy`+PX<&sW@lRTJhVa3srQIli_6z!(%1L1Ii zQhu35G_R(pW0wj2*02s7siuSJC8u)0d>(#hC>p$Ad)1i8{e*#GYwFSwDYNc&7qO&= z*w%m3JjYop4f}|to*q08^^togC~PrCcD~D`;%yx6h#Z^X`S1mUART3301<39v0}>f`PsI2Ho9WK~2O5ZH;qe&xD*1EA|97Z1LkIi@mrz&xhziIpOzSmc*-mIU;~4u3sCiz$|hZ zMBaJ5F-z>+nPjN2I9amXJStG5F@RLUf(twE{Ex{|$;0g8^jCh0her#gkHPPmBw7ZF zGUSJxqOH;ZPOYI3nnH(a?egeJY~y>Kjz`HPKbMyFeo&^^t z|Ew_uI6P3lK%1n9F>1Oae&|0RU3j3EKAs_#*yf`*9V1H}Rn5b6!MA@p|J>y~LT_K6 z)3vpZBa_M3BWNdeaQI1vfnn|onxu{8leo50)Z1{8F-UFHX@WWXu(&BHKWTtVEGFpA zKz+2;S(H%Z7q^Yej+F9g=+7BZ7EqP}d=&hc3bz9V=K@n+q+RJw zqt&Nk?ux0Z{XHudRRJkJTg3!43(=PP*x@HkVu)QPhTMfWveoNYWb!X|(suSG_LMDe zJr8{j0VlAgntffYYNxR3?K1JVgZhpgXw^%ncU5Kh#fYlMqMHN{!j~t|oR6ZfMc2l; zOP8jz6Tcf`U1(>5AwViq>h?>0w8{hqIwUO(>FY51p##o+=Ag!1Mfnr~<$}O*Oj$-M zF7`!X=)W;x{qrFGI#l;6g}I`)8-E^G!8F@*PMYvc=b)CR42{RCBdOjO2n|<535^37 zD{}Sv_x+Pp;GDt#K4s+L83bW5dBawdB)5lOcspqi#%yvLzMgh`MT2t24x3fja~?U^ z<&!e^05{5K$DE_I7Gfn?raW%s$_fnxEVzvlR8d?TgH0B11v$LQbbR8xro0~@o*($I z?IHB3t&IS8%b+5rQiO{Zw_q@pZrK9N_L9e{_8e1mU$0luth;rl)lh0DI(_+kM!7gp zzZ(`w((7OI=V}lR&w3;AHwG1<$mQdeUvj*5RqY=8;sc4A1$vj+s1G&K@)ptXSwqWx zk@KE7G;#or9|Mo$F^nPCs|s|KS}|Z{-KDisx>az7$zw!aOu2YBsr?q#YOB6Tp1)!7 z&?c|oJJoht{}lP)Y}-9)V0Oq7n05%VJ31w2gXq_G748?m@gBk>ay;FgY$0T5F9GI$N_@#jCWSa=284R0 zJnqaQy+=~W1r$M`9q8UG&8^)?sq@4NaXp8x&_4oVlIan&5<`k4h8*(pTMu6d-mrNnz_!HJ$5K1k0}-FV?)Z)$0rE448HB zx5bFU++mqCrdpOuDYK9@U*OxagT?fWAS2L;qH*}KCs~cAkr26n?SdnJ%_3hl)TYr6>7PU?n<{mtbS;fq4c!l zm=d$ILs-t7sX6y2t@WCQgO;_7oZnqz0BwW#sY5ZDK-%pChHd^l_lkqNv)Qd~w4;MG zPiq^#OS~OJ`%IY&jgb9w8>(h{o#ljtq)CRuTQdxNo17fvHR#3R9xTOAAG#LSf+oW^ z`#@5ADZH7*WTzn(5ysZg%Nu2bs(JKr!Ib6x9GYLyNR@74M%yWs!7Xm%;8=>PmQ^9` z@0a2<;53i1)=lG8H@CNv+n(_Gnw`S~`X5@;ZF#av>{x~^Lk|UC_aI|HE-a?f=SXb&HuTf-GpvGW(?i{mOTwx6qd-2WZ;_GX9_=o$w}pkP(q=Xv}p~{>v7`Pnb4`lhp;6M znCV&=^hn@p>Q0vdOM{o9U62*(52mDr=eg-{0evRkbDi~cdK5}irl+8vM`)K%xNEdt z51kYi@ZGXEDQ)D9?nFcxS3J}BNT4LT8Wd0jUfQ=!-QY`w2n`|g<- zg^;qau&cus`t)!yMK_zkCwfqnL z;x}@0op`46!ZNiPj095DtA=G^=re<)nugsJZIbyXX}+VmTJeDl_swaWk@`b6sxz&@ z7;4))s?l$zE-Sy@&h5iD_5s0$XZ5f%2SYJ?t&IY3bB49$y)1{^JqbPP=##6(LkHTy zdlRn1l4XKdIW%P|b%CK^AG)w{)#Yw$by?A6X<1VEpIA~PA$+lkQZhMow zDcGH*Z`N4l199eWlcoUw@y<-@LR0t+t9a;xgY}TeY?lBlCw#bF1{yL>_+e9x3LiAo zxW*aZxuQf|=~RF{l^!jlB1D0I@JH%~y!Mhi=sxHP=LySJD@{Ou5WIi@~@qE2D`nQ7W>7=jWFf;8Z8-s-wdYdv|bxO9mgC;ba=0 zX&|0oVoI|t-4jALV9St+j(6nke zF)X3;=hE<{L^R}lC|>fZYXuzJ!=MhA?Di;(s?lr3OeDnhNe%@#d;IaG4s-1_Urt{A zQ(cOLcq)zQDu8>W_vLAZ0hq7sA9li2_L=J(pwI@e9sn3c_9)dPl3sH@3hJhv-hS;$RF7sA~2L;mBq>3UYcC6qcEQpA&WKFQfZ+LsI2< z*T=AjeJoS0J5nV-C2@a&0JyLM*P;pM`5YA(U?aT7?pxzjlc9KKeb3#> z#XuoZtbl)Vx^Bwz)beNGChKG9_CkzE%onGZl&P)7Z^Qbs?O&5iSzK9Tr-)^#R(zqC zoX>D~_%szcY7t`54licS$W;yq?VK)N4 zM-_c|-j^A9^KCvApdj`uA>iVJMcWYJ)H;Y5Xe`+eq)I_S+QQ%Wp2malN zow;Ed6Q$Z8c&H@hw+-CW^d&oLSLAtx3paYx!$}F9JWf2IQobPP9UveB=%9r6Egoc1Fe1q|=Ukn~gqcH%r~zM>H#+FJ0w- zuK33v70TBX@3TE`Dd(_|^;Bi0#^U|QlNStuc9B>^tej{4)^;BOa7va>n=jfI=p9n? z3H~eYKYcQGnw^0zFbwmD>8Wi1@#s?xdnvX-2t?!su^RU4Mfv3vn~FdQ!o0pvCIO-R zr+4&^qgR>!V~T}kIKG2U@zcIi>yPs?f-w1xXdE}q=Et`OiS}~ra=7^?(cA9J+!KtRy^H>l6XgMDJ(&v~>4TK?kR#DO3Fv`lFH*NFlVrPbnBf0x>p&#(Dm$VW9QC7_ z)p5tN9NV#^!8~5v{^_*O{_|%~pne>A5>hLl-R#HR&YUK}p-#01(41#Lsc>(b;P%5* zcX6NB88QQg4ndRAs zkwUpuNOLD%KAD%npUt%nc_<@u)W~JWueNFDRBHvm&{WiL;ivCr6BMBjI4ffdGx4*I zNG7$p8`MXu@NCbGT7s6fUj;5n!rHuF+I(n!vUF$;^nKh?n-}9ot2=w~GZ*ff7DI!^+dMrYo8ium}C>wybq)EMjVU>hHEjyh(0E9f&KqnzPQg zVxfa!QIRujq2B=nKckSm1E&qL?Qrv?DA_%!MihsUMGrz1{CGw>42Y|S>jfPlWqXsb zX>-VDk7BWgMR31yzp0inzhEuEwTxjSGAq^u+hUp28UkOPI1~XXwqPlwN{xAYGAsWU zi#Wu*PUk{rXYll5w5PJW*?093yGEm4#8YR&JfnJ`Jq2xd>R zWS+}la7#Kyp)iF)jspwVJg^>nYVkn8F)yt3CAsazp$s*M_vPUz*XN(+JZ-6!6TXmk zP4>xH38IZBJ)#HbQKf6xak-yKeQuWc{8K!`=J^OrBh=!HzhTk|him!c4EVr1oOt9c z#Q;#PMPfN~(4yV`Sv+)<>O^Vk|rDW6boMK9%y_ zkfSr_>fgrus4H}sD|>4_MbD?=2Yv=ST_>jcQ&@KbHzb)jVjlajNB-oFd3V+#{z1ZOriMLlhAKa z(J9Ksp>_lnKj|nT_HW~}&is&P?TjGfsPO&}Fp_CR>FxJOt@rA$<;!yOiqOx9pvS2# zyFLUoe!5*li2t~mp~?r6fC5xb>^5tHim6+0sWr1+CIjEp1VPj9UtdX9c*vvg8Xr|A456lOsOt-cb zFLKanG>4f@&Sqzi{>dQgC(EJ&(y;W~gq55Y#w;C%j(^E~BS|MJ3VY;JIr3O3U5sKY z25C%z?OsmBbOYyZ@*z&PMGittxwR3F%;X_l8@46>FPJ`mZ|gKRfra*7K9Ed46y)4! z%>*;&8~b?e5bn}{41S4RNW~U<$;|wRxzaYh`KhZ`htho3KG8>y7a@&Jy;VLcEjwDn z5sNcfmIZhyTH={J!Jg5lPvR;?idFI4u2SYa0-DtotDO3sBNZs0?%T)nF0^3}+yj8j zAot5o{Os8h>+CvWd8xyFSJZeOL8pddY1wX6Oh~eQ-wZ69aM7ImY&ru8z7Y6>uF{6d ziZ|16F2z=RCO21C-&SV0w)&g%)!Idbbuf{a>b_&+i(b7bfDi;wP$$cRh*6op6&-JG zJA&=UswGb*C5KVlI*rs3*+!dEp2fX$fz*Lc_YHofJ3+1QXBOP&j)p(#yynTx*_@rb z@{VlY-3-Y#@nBOGCp8{O7)){2E<~S}hn(;P>KH3n? z1)Wr1o;QkX7aZ2r!$XXM z-7aTYnGPopQN*Yb@yg+%rDQ&@Kae=msg*2@o?a#Smaf@StbJ0u+j~Q=#7Cnd5`z6f+9o&R8raPyRv3n-cJvW;N0ura?6dg51d|hA6Sa^^61jMn zJ@2*T?mJZ=LM6kH^#sL8K!0j=yUF6mtvEbICxGzC5?0T2+EqYPe<}~*J+-z!$E=Qt z!U(aSoiP-ehb(W)$$8WZMd{l4MfU;1a!_vETj7FpX^Xd6y4%e){F`h3fs18UqBOEz zGS6Du@Zq=cgnMm}Ze0pba z=v|Z6vg(=U6sjBRAuA-@dVDlSBZ^L7cgK(Gs1nZ9jyxS$Y|hn-J73t1Citf}Q7xY; zNnPzS$Kf4Er~@VPt?mqFu*6Kp_I9FwV zL_u{u_8a{3ngC+(f?WH*40llB@&NSfYE;qqwHZVPE)In%9A0b`68zhmV*@9Y&#n`= zz=>S7y2(Xnn!SX+DP$v28@F$Pvev^xTHnkp!{N4ee3GYG>uO&rH-6!pcx`criAD-- z+5Dw8Rfm2)Hxm z_jqZjRNAh3BJ(_!kOx_dH!;JrMs4G<%IGd*;v@13w*udrz7RQ$DWoh{SfBOohC7Q) zZM=;897pSq{5}bRGyNDu4z7`<*dN|1_iB}P^2Qzvw0f#hit3}a;$umR*DFT7Y_xOZ zfX!wWP=J{1>(ZEcfr^7u$Bn(bE0150Kwk}iwTB8m63jf{uHMU=S>)#75_VuGlU>hYui8d%tXVC-=ukw*VyShj8%rZdKxq z{#t5aGW?an8rY^oT25^|pvRvwuJo<^`MIZzwr2jD>o>S(&NzSbgd}Ic@mM&-!^m;y z@qS4C;(A-Fm&0klS}nPhQjb&fXHJWq@J=c5=%&d~{_#$B-~8kWr}JQxC@UB%$sQgx zT<$b!6u&>%BrSVNmN$TTO+HK}=tK{@q9SpFBFNaxyY(1dj9V7c&dekt%=Nr4Fx{y> z|5(jIw$;{JhwJ-+=WE9!r9VoQRN~dcPFJ*LMrZ4*1T&nzi8@%lwWD>#Bl!|=;v|=| z>uE0ZWW4}gC>nl=8FybfI$fp)xSeUBRVEZ}^g^gd!NH9^1a5dQRA9%7Gjbu3^i`H> zFW1m$4d3FPy78%hy+S6}E(_w^)4>I!@m|=n4Bt(2nFY5x-&OT!z8$>Pi&888ECR_p|sQQ_zMoif($o}TS&Pgi~2ITPArUTOVz|l8>#_WRNwei=7EDDpj-sP zQy3iHRIgQXL$P0`Npskn0m1Lx1ThueZ|2s!^v37O<&DE&pckQh+MxNI-7>~1vQB*L zcxpubDrg}l?3r}dcC;ZDZBBmdOh0}ZaRc>A$6*rcsbt{vI^jyK(x6>Xt1+Dceyc@M zrS*B6-odQ_9BD(bOFe!Jz0jGzvvAaXX97siNxl1u;0;wokbbwgF{??u ze@vI${3}4%eMi1YCf}Ka<%NK>+|jNrFJk?7JjEri>QqajPj1LtX86?9R#ffjlERBk zs3y=svLP+%e2t#>0O*Mo{$0Mo?}L-E;9qbDIlZKZUhN+~+{n0|fH*G_F1d|5efX3z6O6gt)6 z>|5!20(aQ-bY>^7X{hjc!)0w;@lwd*Ey`O+nmFrj;HahZ9?d*mjGS!udZ`~&_CoZOw2&YMr`6so2o*Bb_TyVH~4)Q&h@LAe9cWQcj^b51W?P75eY-Yny;JqOD&}Kq0uK1^vAHBjyKzRSRad*8s!H?tz;F zE{|!vHnz6Yig$AQ7|=G-)pRo5)v4{*GRIzl^ZJNzCm%m)ELa>Ur{P^gFF}0QBL*gO zXRmkllx&U>=A8c4G;Qum7W64tYsMBm zL&nf`5TWR?5+%*s2`(as54Y?L1srx6hGxar#+Y65@|&&0Pl$|GC;^fbK>PA-?J6km zVX?L5{6TJcFy3>Pxz5Y*VOaOCot%6_HE{ysj5(Kx_=nbZu~4^qtm70cs~$i;WoDp# zEzQ(_qcN*sc_{fHEE8MMzcsZ$c~}FcZ+tThJE}I%pf;@Hm*_rWMzKzC@LEvW0A+PM zXVhf+Rs{|YIN?TF=Um_Ky%!{cU)^=b@V^>i0{Y^&&G+hb*c4s8a zl#Ay2ObPxzoF;ryZ>PJ_&3aXoUF!iTmEbo!i>J16m{Ac0{N|kQk}YwZPk6e}(I z^_A7A)}i-$&!)Qm`R^I`Pn4S%;fBH}qj`j?Hfd|XD$M)Oq@yKmI#w3@i=RmyL$|01 z&2mT&EZ0u2o%W}h@K9DL&9T%UF!}AGxWfuYe+? zC6H66y^h0E(=1Bl5zu(spuIpcY=i*R;vDzU!RGU%MB0j+3SP$>iu&APZEJ~1U4~0W zV{k1kvVXMIdqzf=wgZkfub$Gwbu|zN2_)Nej=GR%yF|_QB+#FZCg>Lb(KwAeKS zb;Wf?%zN{GcNL68N^J0-!MG4Z{ehI+LxCC|EVahO+%Ey0~`_@ac$h`GJAV%PU8aXK40 zSx6$RKUCkb@AqkglV^2;W1!>_fLIK4ACIFj&aj@t0{YY5o^rTsERF zW(jGRJ_OZ_5r^O4OT#_>Zu-fo;NhC7=Vyb6eGvead`l_eW!BVR5a{4l<)U3aJqb92 zv~$DSLkUlkTSF*VwslcgkEBqI4I2t2EX=A|MAxzOgT+f(NRK36wnVr>X`vw+}+B9~vq$~cwf@F;W>9L8(-4{h%0 zm4OnHySqrq9ivjxB6>6}r&u5{l~6b3Lg6I)#Jgkm80LgNYsiw_;{w+_r-RnlD*{Kw zFJ`-&5Q2W88+_7oCm)GSpqzA^58bsmRp5$l4N-WJfbOQUZQ7|;2o{5U+!uIl7&KlH~J0x`EUq7H6tNLkJnK3(Q6UP@7 zNn)y;Gbufs#rPHT7g;*|67rX!n!U}VO~!|{;jhzS))6V9fkG9%=A0pVsU+h<{?ac$ zMt!PD0@F#z0k!Q>1Gp1G4!hDzw>WZv7-Gsl_s;z}r*DBs@w4l(wnoodZ&WEJlVD?WEn}UpBrysGO9ZXnZXR(!sXee6Q+!7N#@!3X#{*Szhiz;{?^W=l7 zRrT4X+2e8OWHtcLdoWOLL%zu{?ZNuEC0c9oA!`L`LO8(eJG)EyS#+L5hHqDLb29Sh zkqWcU7DN=}-G{v?)e<9;;>L_`J2>U$Kv{x<%KWEiwTH?7@P%tkYSWUGa zmp!Dy%eNTs3Y)2Ff0fy;qG-+1oKRdBhUBE zr||8cnF2@0ZyPVhk>6?Cgq*(LBR}_We$FKA%P_)=?tyDr?>_;nQF)(~&fxqi6h5~+BcoNrWW!Z<3`f;^OX;sOM#JM)_8-8R{h`KJ0Uea1Wtfsv0OzU@PZ z^^BUxBPs7RPY;eP%jgvUqrO4K7JsFfBI0sVbA-ebZvNjgqMQcSW}~n71=jHRUV_h$ zJXw*UM;l*iMr=8B^5-IaWpkWkpq?d%6&}45QivAym&mOS8?GATogE!E7M!@YFEo{t zpt?TwdBy!9@@tyXy=UlK8#*WTf#R=>OcK3SMcx0=9l|9$|I+?l_XoI>HMmM$-~cvd@2Uj;*OJOj;r2i3Thq2Kk+c&kc%{b8dKcis}v00m#CTYt=ZSH zJv-#d;i(lby|aof?k{I->u8}qBthbH8@{kem}GJ`?PC40z_efiC67@Wl1~Acdk<{sZuFDWlx(I@{d_PHdoxdnJg?5 zC_nq|LCzx4FTPySR!(G2cGt{mU=UzMG$gZcC_R!=gqCtFV(7E9et0Vkx-d`E8J-87 z8K5|$^AX6oTOFD4FjuiKUJ3w8);qmQOL5q zk-=>d{WuqHV~h0&`tqZag|?*RCcm29^g>poz$H6PBcqhC$0k2*7p10sd6i|`_hZ-E z2P)oLghyn7_PZEFMhG`5Jcq+CpQmCFEx2kSw2~Vmpa1#bqUe!BMJdXfFvH}7j;!{K z3jB;c?i@v+bKkTc>X?q-C^o)EDnyu$Z*q=UytK(F^ zIF^@Qr{u;ZdHPK<|0Y$Ens#$Z`bURE*APFj%yF(put6ZPtWK5SfIr4Ptmk{cS0pCT zV7UbFIaoFojG#7Qb|LC|i4rK2SGVgP0l`0p2womG53&!H%q;i9;(>wD|FHGdQC&oB zwEY53c~uh8|*+;BkQ+<0h>bEdO-ui5=$Npbv^xhn==hT+Udeu0{JTV zGzILm%e<#p4tov=_V|C>zCWd8dx)o$V5z9<^z}@Jccs1riH2m9PtN^x5bXRxE1lDp z0}1bdtznL6gw+vjhF8|WT*EFi_hoGag;%GP1hb7G6>{_KTR&A3Qg1Gu)(Yp*CT4rp z!SJep9|Gy!bBm6G9v_P5{=QvpAwMy&HXd?%>S}BmIm~6lh7Zc(D@V3}GffKf7V?|I zM^SE#XrK8!}Yx-_(npa6#WOL)UyTdl;ae|o@f?6AA(CC_B4b-lFs(B zmCT70Csh~OLo#8;(wHFjK{Ro0z>0mJ4Iha?E&jxOSpn-%^taByT7ZaPF?;i?wI%3t&ZPp-wbmjtjH(4Jg-KcH#YH&6$)51 zx9lOjr11R6d>)alo!Pf)@Y{G&wkZ0Mh8G$X67)ulruxqU661a)7R^WAv8Ms#8~C6O zEDz7vxAsvK1?TU2r63;PWTf;vf53p}S|ziWiT*>%MR4c>Dz5nq1swdSUbf7?ZhpgYla^iZ5AkF4Tv?_NG)_Nz$}Y>^PdTB z?&-2cw|f?d@%w&4{53sh^_gQvCoF&BfIHFa*X%`wbz5~Bo)4k`fhWoqaW_SqB)9q^ z52hm2r(LLXxk1cl0w05(6Mf&b9^3D&fx}DzW4^Q+N$5JL6Lf=t0 z3#==3auir-Owqtkm0Ld2IzSf2n1?_w3G5S%>KHwEY_5`_)SKGBncR7Q@lB^Mw4p5a z&zBFmlF_mMh6Gjn4*2n0G8H~xw7vBMvAgf7_m#w%J2yU|3X>#3w%Bex;gXI(2NB-L zgQfljht|7OBegX>9Geq$8?7gLP5QLDA*9Lf$}wg&p|@QCDz~KBAP(J#+^9pK1MUV^ zJV)VdA!y}?WQf7uT28aurGS`6B-wz_Py5JItN2z-s88lx+FqSLMQcqD`bYF0h&@vW z6PKQ|trEvZ;~PXC;Xz4pq+$z==1vp;Vx3{ebRUQfhDTPidc`G)P5G0Z5k&# zQ;)@fkaeu-Pq8~4ZpeKazhL~Js!~#gRm3eyH@~GLpMD&Lkzkag;-riZx4@tCbf9C5 zXOub15C(Ng=Sb5wvylW=IP^Wvd-V7YJEqR*AV;Qb&lw!~z5;a~l7usF>Bi7^ zBMF$j{iX!FKmMVRG;w(m%m;f+0)rPxi}6#9QgWd29+6T~GlW0wCwMK}3XiNn;K=YS zMq_aH1yPrp&f@K57reHtwT8{QsQNvr#53P-h?}v&Ipnf8j!BE2YO32ToKe)&Ba81` zkLx(9i6R6Nx$KFU7O&nmvALngpmn~aJqoE(mSkl}3uQfK*Du`I7R#J0Hu?CIR2v1P z$4XBgzd%jWN-U_jrL#k(z3XB0&m3Jk8zxjbr@K9~f9FTI9vZ1ManV2_NiWchVWni1 ze*94VM(hL5!0V>k{F~*Q zK@cSDfP$k`rx&v-jKW*AIH0|Kk~BKroGo*i*4GyN_@0lAkH;p%Y5g3du!Z<ohB zSUmFL8h;)SYzPcdZXkg@8eEbl@gXMAbGqY66BCr5_gFsr2K~3mp2!4bdDwO( zsv;nO2PR3#Uho==D|wd8nTiWvd$NRr@)U0Ya-XQIhH7JfLz@n^z^=>9WNBEaDw4$6 zQtMw`x%ms3vnOHbcLu6|Oy}n?&gA4CQJH2!IA^TN2^~R834=@N8Y_>VTsR!5vN7-B z>(v`hKcAxW6J2tHcTA$Bpbeg2`%;6DEOpfhIgcd!$AqSKP zb2Nsqze1Yw(U&#>y9avRc)}UJR4i|8sq^HY&Rp7q*W%nt5#Ko23cdrPUOEi;Y*VRm zB4*wGAaN4<%1_kl5{n~ zJosDqa)@PBZ5C|d%r8*nOarCRz72+T0(~Zy-)S&@?$Sl(efePersbEH{SUk<;XK#E zU5p7XIqGe1gerftv#YK$I|6lW*-VH8T}PgU?GG)se!sc;2PS`hcmZb+)Q164;YYoM z0$B8H{TLhf;sPh0NK?wu;XE9f0&E9fsf(a>=Y_FXH5*Tc$X+);A18#>Mea@hMbWuN zQhl_-ayHJogVs@hAkw}nud^G>HL04NCQRy^cW<(P<%tC8&0)xAevyEPrl2Y1jUX(? z-+fQ;xfFbObn&JG&0Q|~Ph{yl^&eYe%JR(Pr+WzWC^pg!O38V*?6Oan4Jf>1Eq`_n zl=Lpn&LSPE?KjibPMH55aW?&>dWOPJZ)o0ryZNs!iWr}Lschn4Hlr#d@q*=WXf{N( zEGNN;DGM^IA#Xw8!*E&6p)?9qW>C$<#UIkWOSBvBY8cs)h!Uo-zmxTQ0{dz=tpj%0 zzD7%vE_J?;GP}&SO(DyeFz4@K1D*XN_!Z#-_O zW;)4#@m9@lT&pgdzIZxcg*Vgj>?EU|mB800?Ma>4L6$aG-e4ka6Brkds$&H)SvDZg zs;P!5dbTG99qs#T6f&Aj1j%;gb~)DG(&vihhMnPxRQs_9EW#Lge^2;|0hNhZeQ{x| z^{{15#q^Z=_viO}7Med6ChcARpNWwlaHyLHWlD>m!Mv{^NhKatZTw!`87L z4oPFH?!S^?+Ve2JAm3Eot|aw@oX)MAW|G`h*US>BBZ0N~tW&hTM1FD(dcdXQVK*P@ z$!gvu+hsXIVS*BqC(qS-&@)pxn-O&dO@(*TEhQbg8tY#h2!&^buq#|TPcv9hf1^1b zn4(J*FOGdOhnIKf6KkXXbb$9`Ytg?A zhv!J=q><5>J{zmfI>1)WS!3#d0tIS2?9so+Zg~`_PxUT^mJFzau4wxVTE>utc+mi`iFJ7D|yK^%Qf0L@I=Oaxg4#FWT`w;L_E=mpiK zx$8qhh@K*#JL1`bXy1ZJz*Y3kMW;j`4ndWt3+gFfEG+gyiFF5keK zP3M)Gsckb7Fc2giawUQMe@pNdK|uKvN+8l&r_IioG#XQcouF04W1pi;n2dYvN|g;i zYi0{tdk_iE$MDi%gg6!6zf$ zy6D z(6~_0TC2qkHDgJtD<=ObZ+DN9H&7&f_Y~~9a1)3GR3P)ai}(js>?#@?bQT(xR3@It zhKhzoK5~-eZ?=%#+6Le`==kr3QLl5bDjv3?0CVD+S1l^rTE4o;8n^fn{(|?Aj*zC;tXY3m~Q-% z#65+`a#yO!v8b>XH{6hKZkI${ML7=?XDS#?2;X1Rudd|2m>SlFe7+M$-6Wu3{OwP& zi0Ya;yz|AA#ZDZW13ZChs`{t6+Mf-O+dnU|#sXgxk#2my+S_p*{n_ih?UvR@gV&p; zCDjwxQ@ulWOxiPIlZcdxGS~*Y4k&MDbvM)iNB8^2I8-{bUZOyMLeUJ8V`4eWcCY3Q zVHg$Hw_Ln6Rd;k?y|HV~*b~UT82GJ*z%JE3R+`X&0)njC-&uwC;(BPqdEDX{u{j~( zp)D-VVnPaE_(2U|>yy1UbT7g9u8z+#7*wC#MNtS*hM7kV5^+MH%1L0;dPl`s-R}}U z3;NU(-#|5S%~MIDvDFPxfFP0`Px+EehxmG_uIdk;%*mrEPyq;u7LjIVQ;laXT)u{G9XpN$R zIs?9sNVQO>GvAZBDALTktAeTyJ45kWV1$+NFzpE4L+dZO-!&q>rfj_imjKUu!VJ|i z6T59)P*{G9hKW<}!S106gPM=-O|5TaYP3uGdV$Kgvw}yj3yszkjvuGT;h_;AW14XfRBWjhT~`^Rhfp)zH#-;6sK&*g3AK zflKBh--b7W-JxGV&i8oM(gW_--Z*&0SmCY*vj3Axj!E~3vKW-B1)4g9x6?g-C2gfT zhi@D#ec%C_5TU<4zU5Vocls%h9+gi>LO8b7v4+Smr(c=hDXU3ADI_|$!0|hJQj3O< zc?Cyx@7pR!Z6I|ybsbN_j+Gqh9NNy>p+2D?Y*sB5#1_;HrHobe*8(66(77RKi|-nc zS^w?^MtqhDMGF+7`TtP!>0qMxF{J;h4bwTr8~VqeFh1a{vjl=FCiW19g_s9;o0_BY zRG4;asF(lJoxbM^)xr({+S8XM;8VTd6G{?Z>kHTa)R%Huixl^Rzgjp3U6nsfWDYsU z$3)QPQ9&6XYZ6DBi<7xq`Cl)9K=jc05J*m^jU7WP)4@NsF+bpcWYrnjDUj=;%va2A zXwXMWQ#DoNA$v*dwl={i7^DXisfIq-A9zr}>Ed9|8ZU%AqFVzJUc9P7R*qu(6J%8f zLwj) zb-zM%klQ)m6V8{%Z*aB*UJ)ZGV%?*0B-N18enJZ$$|3Tn_tl9K77I#O2G^r2SlQP0 z#-C+tOQbb=3$m2xaa%uwIe{#?S~;iv)ly{fKTB}iZ+Dfc^GBreX3nPi%K*pAtJiF( z^z5+g(C$DGpwEOlkcMgaj0}jlPGrW0jkbu9h1bfP+nqyz3{1B2O3`EHF(^eFc36?aR;v!+Zmu zS3;UOH#w|_tr5WuqQg1E8Xtdc;9oiMSZCV+JGIu9_dKXZ-9`pz0$>9@4-weiZvos? zwzTAl(-AW?rJ3HQ;^!WN33{8Z?G)(f!jOI)59LKmQ(BxUqqAV_hwp^0tfCpKn)?pN zXE2H)#Lbsa8e7YWhO91L#serODudGy2JT5_^*P!!q|J}>@&>giP4;lTON$Sls{8@EFAG= z34^{ugYgp{f3TFlyo{SAwy~{@#7Y;X_kHMIXh);QZ%Ed1vSJLw_?_@~x+74d^XYcS z`~~UZq5jC3h^>vMV||x|h-k8Ayf)MXJ46$^+qkX2nd6cHGW?7AXjk%k$cyqiilQX; z!tek5iC+Yv@SX13+6TbP@L}92>tsaIrG`Vo6dmOY_6}_1f8|9RB}louPkn+&wHd;D z`)j8c8f~+HLM><8+7{PV>dqr4$Kt!d9T6BkBo_NW@yipfHA9hIUQOPk|;M=qge&<-nU4_D2RYB#AbBq0$9Zzqcm+F z-opB057yZ;B&RK-dvq@O;eo5Al>tBxHgdM~qnqM4V${ygWKQGnZ1dIwDI|9(nK>1I z6)9HH@nkHra(I|nI;vPY4zkm?aRq`)2@&_NZt0=nU)L~mbWDx-mk}LAwuLgl;pPyu zsFT4^N;zpC(SOF;q|N&&$0Fn_h&{;2%H~d0^)S*inQxTWS|*BtyQ^MUtzz9$9|urK z#3o_8gu&-}ac&?Wgk2JaBvs6XBa^|V1!@*;SljYQCgm&&{RL5Kv^?*gTz0Jsv59Zr zo-XCzatMT2zas6OeaN4&kMKn59$%@+8_#z2_2`Ggv>sbD=jFv&6Cb3>G6WVQL)ydf zy^n|I2M=wkJf2H;JotAVUN`^bf7-t&zC|dqV~z^PpG~!2TG;NJasBPR2T?5!wJbX^ zggYK?gAG&1*MT@y?`kq7(L7(UG?) zEG(KVwa+_T%aRC%ljDx=5&zk| z4t$@CYEK3~jTdYnq_8L%b;-V8O9nHz9k~-HQb{yQmHEcsBC_dHzK=V*5MkjM-px<^ zMK?K0+8Pt(ks(q3PImHLeG=^tTG2f2ne_(qaYbp+=}7U5OT8s)w}fW_=DsR|WrsdN zpqJntu*Hk6g}x#nfnwDd%`cxOe+qrDGtFF|!hq-5EobJiy)?Hq3=6W@5O+c+A1d?J z(fQ@LW#sgr>k)SE!{_yJ0S(+Fj3W{XP}L%&`NsBZ0P%aBY{WcLx$I{cWjg)azf2vZ zOUUCiDUcXYK3l*2D0XdcpeIEt@8c#jBH>O8ccusuv}w)@MU3oT>CWn?9(0bYPB(`V`< z%$Zj?So$zum*qcZ?qY6vm486Qp-E_2LL_^%)k{~$)qMQ3ZDw-6>_L#r(A0Vo<#!?% z+!tHc)dt%9h9o2BNo(1H#@JzOPILe_lh)Z1@se2Q&DcSfA-EEURVX|(hte)KSh{$Q z?5OG68V2fN}M*hfdAlBVnK zv;h-k0&5q7L-Doh=qiRp0wu=rH zjQYo_Se?1VOB+9*tcrs6i8t-P8CS5k+?|~9f{OI_7TMK_vFz=8rR?CLUS>bDXC5ku zuS+}dgmE;FS=$l$4Hd#C;l&g=SDY@+vW!JjregpGc1Kw|e(M z?H!eDB|BGNmwKYEP(2HqZ3D>q^(ufTtHZ&o9JEWclm7X@gLTZ}{-)0i#_k6d^wF%+ zl0%9PyiEwQCF$bt9!_1AnR#2fD(kB*&%U6o7yK!TQThJz)$33Z4xDfQo)ADe8V0AY znMh6bZpf7W?g)WyV`BDlbnWuG+^YI0{K*al(AgTL>2#YQd1X^Kec zsdGeMUR8fZF98V9#rjTEq10Bza^#szn;GwLv!Y5(e7#bGwM5@`WUTNd+NFJsiIg5P znF#->Lo{FUvRu@+S2@x0N^!z^fWseu*u_72+dn0@cZ|!})6$vYSBVA2??rBMC!YES zN8aQ|bHm~d?YmD%m^}`Ko6KmQ{sf)%O;!{}-aTvj76A<*3Qb9kq(2dyk-!24b-<$? z6mrfbrkws;I@kPdAno==QA30nnX+B?d@|Qp5Xqg-b>w(7nxcZP;pBu0t?mX@J;M?$NdB;C+Esl1!5ScFj^|0Y(%rrv#&+^&j zRSn`z2TU?aoa}7;eS&N*n4J8#b5&3E@LDXLs4xErD-9O0NFw4!-LGbQVOt%RZ2tWe zP0`BtKnM|_7=K0QUrR8qLM+l_WU$R2)7)W(v792xZBNPmIm_u|87IiXaa9LTc#jLTZ3(_dNG z14?eEi#RA!KZMl!f&;AqF3#30>YN%$760yRB9#wAsyl%1%K(VWx`@_$HdaM_3)98z zoDY~Z*vkQ;9GQJeCXI~FjObm zM=mF!IW(7!mVUFcMM1{E%i6^3Sx;#a4sJwuk6Q3WXBTcuc*03)(4w(P^TeqHtCsC- zW;L;}aCXe}CwrZolg$pMqcBk}HO;caQvd{0>U23Go%w~iH4@**tHH6L9^T3c9TZE` zmlK?c4*rIwNUb8Q3ho585hiiAB$jHe7zn)M3 zmfmt}DCABnW|rni)0IIt5T)rF`dOmlqgCD=86%nOYZ4U8B;g#6#C}13cgwr%;077A zpj1#|EPam!*gbc;AAwO2ODF$#)FWcqKsBh`97vEW=rKKgNmWRrR zLx;Bx=aE^b0rnH0w}tDC0E|tw9&)H;>0O!fM~?LE`>(wBB6s@}0>HVAqLKxEI2D`jOFOy^_T!mzhT=0*i)4HYj*GEfT{^BK#5 zSOrj66`vDV1XhI1dCKQ%Kj+R9Sto#jz~D;XC1o%kL@;?#bz}bpRS!I{Hf3f+b{@5S zvzJxlw36-numxVkNnuj(q2%9Neam8fZ#%Bz{r$gs$LEI5^4M>6Y!*bXvLl8T#($QK zM(XKEUG%!%6JMm$>_XBumtubCG`q^znWP&Rz?T{tHODR ztp$3;7e=`btxQbAQqrI+wMtX!xev7Fq}l{)7@ib@ zYUJ6-3>v6{fKC^oaOTwHzSUepOC*5ouBL~7RQ05PDWL#iUFI_7N1Dck61JThU|;~! zswd(ol#Zj~?zb;Cc{$Gqwb_V9Q#cMzQkWKUCs8uh%MB==&2Q>{{_f#GtJMvP(LtjY z9o$(p_1N$`Cv=Aq3)vc80jo%}vxk1|)<-Kpu=t?FZa9G)SXi(PfE=>?O zG;zI4ca#%FQZmd#S;K7iB44ozVG^ki_yN7-^4Wg;4v6fdJHDoKYbNSR>Sx#Gbs?ue z&9814KFs`5{W6Z?yjjS;nNW0h`;9p)3}fhpBZ?TwjD5bhWAX=^o!rOFFXi`5$sQ5-NA zz}XapB^MoBZm=!w`&++U>RrJX7w7eFO!~B|+!nN(rdywSNkFcmSyg7WlK!pCM1c(p zcy1y5#fJHYkrPn#2EVUdkluud{PWjlO7m2Lyw|7=aSinvO=s3^W=Wef_Y;=`Q<}j{ z3zEM>8Ac=DTmL&eHnjl-A4JsY$*w*T-sXh)!s3$C9GJCUDIA=YpP7dkymv$S4;;moNf7b&=u^ z)2MG!0k3+C+dYM-QoeXNw0CUS31A{(Z`)M&*DTFg`zi{_b>}k+!_nT#y$-4YtAYPp z!Op$%v#pda^59}js_Ct=ujJeaI{PMba$+-<{^n@vXBrJbo3gNB?$1X@M2M(NqQ{+f zX7Fy}8x0^z(JFHOG$fB=3#hzs|O{RCV8?Wg(#ldOS&B=0t^@k!R+@sJjrgcZBNf!pv+m~q*czXV0{UNJaz|X>4 z2FU~C?lM{wYcAzpy5hwD?;#4St!Q2mo^Es7^+2B8))pIgeFW?$1TbNkyP$Qx-CW&0 z3eV$7SCA@|lJ#w9w)w&(?)&(F^3nE-x@Jxb*)4eIU>T&+!vOL9zxQ+w)ht%(@5u&y z;r-&lgseA*5X|2yg}j8&&;l0Up<<$R<7BX?C#%=)KTw;-pI`T|5lAsnjZFosQD2#U z)=yCN8NJTW7Zy>B|M{oULKZ8x$NNzq2O>srIUrY6{zqOkiF`xCXFKF3F(t!5tBE}q z3QQ^%uLWz`YE0SM|5`k4SYIXN7bM;FDjgcoJWm&@I`_7Gos`i1cvIUK_0aDgqkLsx z9qrt8fl{`b3qu1YAA*(ws=0=Rnf3?&acibUs^)D8Q9pO?#}u8Z+*dl^DuVeN>t%Uz zy{c1F-xoJB5rN%(W1orM!cqTxt1HBsEup12VNZjcMcfu!*}mO$MsMa8rf7=soh$A_ zOJ_ioSfz^!3T)<2hr6d!hewfm+XrNn)6r}{7UG&U?F3v{u|1dhLI0&vg!V{P;f&ofQWk z`HoB@93OYJWe2<&+rP{j>ts;0P*zXUGys}4b+6D`XctrIo#ub6rk&$D$7bx5%IU3_ zOYPEu?)~jXPQdF(o^aA3Yw>AFX)W9r+fU$zF7%qoP@{_#+}JGD1~xD8e={t)RLX2Q z-6NHeci89K&Dr_a1g)piy^{RG0+WX%?`gfMMMl=iG@8ux8Ee}a#r>x2gDW(Av?}~u zqpi3C(6pSEd@$kNExeJp!_LK3a<=piCd)>Rw8&FRJF-S66f<~59kS+ao z$XyO2bv4vMk9pRI*&@e+B7x#!IqIgbXuztnEG`6d;bb8qJSqH*7$Xc)XTs5+-`btG z%ccBWoaK^{`J--m=OcDzcWeFa2-i)`y4l6KVSR}bjq@&B2XK0!PIaew|IJ1i$!M_c zum06U+?2DPUtBm7E@7G9p+5qab?XFOEZ=9kki-w7r+zk>ji)Ps#zz3QC1l&x#$cC^ zFPY(CPv2zVV&g4MalS!0IQGAk*8ib&eY^}wQCUHxA-8s|1`MCh`c_L*2UK4h3jiaX z{qxPF5FX~gkV$o~W0j}vdGm@HKd_){M9Gyl=ca;r3IJCU^b%d44La=0)__jKHe`j9 zE5`8hslL84II=FoZ1`KKdNLlHS*#FS@O|yW71Wj`19jDa!~iWNi&D40m*<*=UH`ri zW4U>!MKd7-Xnl5x^Xz|T6k`2s-Xv`$@e|!}^TeIY#-~RJ;2zVwgn2G_a5a}UaA1QO zz4?{qV#$&QyD{oo`kIZP?^o8E_?Kf@v#DkFfvK8B^ur$ikd{-|>a6O*;2$P@4Mjze zFKI00}E=#yvvmwVP3zi-_j)S=3iZ8s6rOGpdR zVxjTs1|8!cFpy0(ZQHJXuEPM4XXjT2XTc-dO1;;%X6OTJdf>B%p)&nNJu@?3*jM{L z0Y&V}*`RlhpGeQ=?nW*XLY$6G(C?BF0M+P3je&V14d)7u-u`(6YJ8rLdwZrc+i9gi z@o}ojV*e4sl>RVw^ml~x9Y=x5*Z5MaS7@7_lrQwjqiZl=TxZpF#?M{pGDr?~*l&D- zaSV?`ghOcMJp{0fGeTq8>nBKMFNNb(z-meNu)+pepGq@hj24A${X_ zn{nE`2&GLVq1fyLON$U{bJp(_l56)ccDl6Nv~sih*{|zh~%nA zvKuK+*cvaFUmAHes@x}V!M_+?u!YZ zUFHtydCx^-ito*2|6 z1?Dc>+EiEN4N_ML4riXOn)(-o55t=tLi#h{Z}7dfbJ)N zHcumijMa?U7Ol8}4dZtHu2$;Zf$|!ScU&uQQ^cqy2gl@~OF4Bu5w~4By|s!oF|;iH zt%`heeX$M(U)uS+9jQl7?gcN>{L?!u0paqy{Qqgxgz}~yRA5X?ok{YoU@5Osf9!3s ztX*rRqO=5EzP^Ys(gAv<1VcW?@X`F67G2>?h#=ulAlE=h;F*XH6xI~G*AsuNLPW3` zmX+|_u!UG&v`+>D5c}GORNOPyYU6u|hBakZ3yy6nvDwgKiO^_@keDFq*U=Q1#d2t! zquaI}n&sryb|;_e%*k(uBj(L!Xm;H_!aIB3@$%AirC}oX3%U9I!2koWfTFbS45B7` z8{92iYqaxDn+E4wn| zxVjG;9MRIzNxOVe&;eMh`s1z>XQsYBi2)YfU896k<+{{hV%1$ADN+0!k7=a3YK$R; zjqjxWd5mt6>Oc6U_X`+Zt_Ot90gn{0ATHxRBN1^Dl{~iwVdD8p4;TQ6`uoH|@`49V z2*Q=V;|~~HDF@b8bRZYUanvBX)w)sc#OSJP)amQ!79Vfv_a8+0K;X1m!{By@)7gas zz3S!31_FYuP0(NXQ?`Z1r*y|H;$L1k9~flq8ah4A*q#&45U0FKjg2fjfJ31j7ElcJegjHGZ69|aev`6mfdR{PR5Ll~ znYzsfqR&{DT!mIe;A}*#X3~a`bkRiR{wA#|RcROS*S{=3={+7kX+HTN=V3d6ee}4q zZ3uL40TqDEhz!mNZeyY%gLNyWg<>cE0w9JVqPdpN1RE>_aE#%#i9SK_&qYTkzO@l$oovuTZ7V!;f;-OfQf-ED zmXu0AUfk|?g6gQGt{~!&^R5NTfS|Jef4u<6NS6lv)%us7a4%|HkO@^}V8SDFbkOee z)H1$**+noIJ@}~0VpGIsDw<69VDX1pm}#$qt;$Gj3<1alUqYSH<0(Q$U31R&N|ixb z`hfApkB0wt00&52+=;564MY(^jDeagDwc(4?xG1_^d49z@_>V_{N%d=-PAwXxo}u{ z9zI}mpC-+{N~PoJt;=gOS^E`~h?Dd?;j$!N1oh^F!fmS4R`J_DZ9 zayrsnCR~h|DraXA7sUecAq^oceuyUnE98x#*3I^VrP$il%Xyri>Y;gCB2*-cZt2(9 zfXJ>PV8CI(Xi##lJH^2ZG!Y{aVa}#~5N&*#=b#;a4)z?I7(VWSK@H@MH|=px(pcLX zd;Gq9kMOQfBkG?e!xfi{b97fne+&M=E!K1ienDZBG!(YlH1o|&u982N%whkExHEN| z%y3Z!bqc-e$;{Lnc`xZp7pphC!m59K$FHZRvKnccD%QK;U#Yj1T-n;$@7|o4A*d6j)ja@6=-Vo7OMscynp50Mx`AuT^du z4E^&&dnp#@K5u7*S1X5fkGv8oXfJGgz!QLvZxiU0HSWWw_uH<3bIf@*K5^Ee2hstH zDo^2l@b7Fv2;6^5AwYo#Gk4}4zh2M{AeP&NVlAGUxubQ5F5_VAt2v7f${Arus)8TD z!3&Bu8Ck{n!nM2WR7}Ya68ha|n1`ct@?Zcwgpl6f^6kdZlzzowYLAi;Lsj3%_9t)( zpyTH7*PnkBVZydzGrD*GkmM&Xe}BjQ8w~wbKQOZ@I?qyh6OPBdFTo~O9|COxV%2a< z7>JqVEn=)4UV)_FXV+N=*DJ!?x?SYOV}|qnVWXgS9O+tY5q?lY*j(2tXW+ zwcDT|IaK6FXG9tgOw{1Ljm3*!!S5gu0?zYo=A9;^@CYLt(;>I2cj&;z)m}|zC~wTQ z&ji?=oSvOm00%dJv{#_KoOcKC>VJ@JTD8NHH8IeWGf`7i$=>L8`1a@|0|DmM-qlb1 z?Jl7uO*{*Wr#CGETx$n?KyCp#o&1QL@yX5%P20Nu+TZv~25tH#39xV=ywdI;iYE@# zojegUQg5NyjM!eS<*~;~whva%XQ!0gPsv?7k&E4dzXuUbxbkdF0fD8*tNhUh^}LlE zaiw`EIZXgQpA`frFLrxYm$_8Vf{m^nxcy4lGW|oX7?hir&_W3{fcL=-sYOIa3ZZ?Z zou052!>(yT-e++5ND9nLmhu~xZUt>$m9+deHdCsjriL_<>Nr4Us{IFoX*C@o6gyYM zZvl#GFB50eIA53((?IsQCBH@*B=oqjBIWIBAP|xlQ>_u zl~M#xm;uYUk3(Azd&dhEvfVcNqy!ql?H&ACklICIre5GoEXjk+6ID6mifK|qo& zfAygg7w84}x^~51^bHY`HSZoROszjFC&COKBSNnVe}dkd62GH2fHwO%x@xsEcsMpE zv&*?wJDP1X69T+nY0TZBctjX!nh#9~q`hhdBfPqw7ev60@&YMxt z(FzYwLc}!zFOTMvsrI{MfWgZ+lKLNXe%9X}J`G#KUEx29F1Q0!fr-(Yl?*&1VKEwF zYrfu<4jaMBN*%B2dSj>Xy=}KcwSo?;Q@@L)zQaUyxEV*M@UWo`poY$q|I)d025fE8h5+Z9N$i|F(q)P%*ei?rxiSC4Fl zx7{%R2D#bV+9d1#Lr);;&7&5iY@tunjc7@na6*oi(_ zef~sLq3G1ECAXSm1fV2ISj>o^+{F{>_5gbaL_?(*m|*y%J}{G;_t?nNS=#V19T|fJ zH+RN+Es51%E$W;znF`0s@9>6?sDkP@N~^6)GT-};i3PV-1r-0=ryBM8kJ+QnxmeSO zA%)3$y9zxcN+U}0hZF4U>D(@#J{uU^VU9I?)LGUzzj<SW;GA!F?dxH(3)aeuZy zHXw@hO3k|$><0PAASfmoJ)5A}ai$SUyJ%X(^5-%@8-R%+ zm6o@=zas`HlCnXy{)9J2V9as)9Cg!QFq8>$xs!NY}?S6t`tH=zJXnDbhNU1&X&bRYh-=dO2r7rZfH5oB|fm96E%PY<4yy6`os`i0Pfa7rKNM84~xkmnvq;$v1j4z|hKHpU|THg@72-0iFeR*^9 z8QP4Iz6jxR(UHgLK%;K#0unG+(<-6O2tW~(5Jq4x|&zGuHHnTD+ z`&~o&7JLtkf~e*!x#&;?Xn}@4IVn%6X_U*&mYBPn^)_v}W`wW8XXZKLN#h3ZAk2(L z*VhiCs70nfjeiQeA|6btXG6Hg8?p-58=Q}Pc8#70v*z^(Qu%I2Z#%=5jTMAZhn{6W zXj_;6AWL7GU@Bvzamw1tcTT7lQ}(Z;1)3Z`{EtF|81kf@Wn)x^tB!t8u0ER5gh!)? z$?~BxzS@ol$^Y&-K_4T$kUvw1-?Ouf%n3mmN&mQYzQ(i*}r4LF7ujqk>F2c zH^O^TyUBB|_$Om65JgK_2w~6qh__^Fy|KkPb^EtWclu5`ApX4nSpGI^3ER0~o>JZ@ zt$B@N#hORNMU7g_rC2ob9Z}`57b;0Vcx_OkwlOs=&(95oULGu$Ff><6_uAts^Ad|E zE34>EW93We{4obO0SUrdw5&r46Igz~s?iR4QhN1CVR zE`l5JvreNn$wU++87pIKrOd2$Ro{{iD;2)Ye%lc58lG^_Hk415Ex}5`^7PlaSsQ4$ zXStgFmN(uBw5&YQk*?ld*U}3XY88a&TJnFwe3Gh8<``4vi+>t(kq?WRzrN#n{?h zH`TNf-Vmv%sqG%_4_9KzbGKb`qR63sv#P)Gaf#K%qvXtr-Nj0(k%rL9#AiVdWr4|N zC*X+qm$}4dNv_>l?2Zyws+W&LQ;m3MJ>H9+LsL59l7&)L@gXm1V4o741>B?aI<+st zW7KC6GMz$K1NZDTWhRZMZ}%;&uzE2AIk#gSqPK!ePc#Q3rR2*fkzn&>2f1?8!gVi; z$0rO~LQ*F*tF8}u1-0>HS&l~HSt8f<&06o=sICzr%REzkYwlS_%u<8MIoOif3--ha zj;v=Lc%w&W()6A4=AHAE6RPrr@?YHGA-?h#?}`so6`{r0%z+XW%kulFeW&b?{^@V&ClQI5#6GRTm=IjEa0|lvNRmu9BlS)X|Ckm^Ee?0{FT!! z^+{AQ8zNC_OL{6BLzxK{{*$ZbpzLOWfbp(M$jqU~8}^J< z01E5|a!P?9J0!o($X>rc?iK6a^Y==ssfz>iKCPHWdH5 z%A*Qn=%~e%R<6#zjeo}=n(fg%y@6056nHMTb<#9CSkW)Dgwu7d{h`BcZ5|rzfrVa$ zK%A7a;l^FK%q-70P{vM6cBNC`ZR{QF8&1?kpU)STLz^FV6t)F!V0D^@LjQE4ckZ=h zaY^n;y2oE{PH<*uI=6_*{mDsDZxn*!!~Z{hy>(Po+Z#4Y2uMf>NP~2TbfY5O-Q6vn z5(?7YEiK)h(wz#@-Q5j$?sLxX8~2Vo#^)brdmL-;HP@VPJn!>9b1wP}Yt3M%oM7K^ zZsI~R0tBp2jS1Q`d2}$Cer3MM=
  1. C3gzJa7!=c++L2irsgt0;)qI-TrdY19vHj8o@8|$u zy zlE$|2XoA&x$T?s3JS^D|%)k^A#F;;T^|b#f!Pyjst+3rn&%JsvhlbmCep&1(l?6dg z0=X(hW=ypaF+eihaO{CMkBnvTfj%oxFN&#AF`?{+j3|Anx7iy-vPo-f-dLrlY&;uL zc$d@M#iik%mP3uqn5}?PzOj>(8G*ZAzkkf=jAWu*85L7qXjkbJ~T!dPP-FgqK;|_Oj%S5GJ~=S?P$*f0Ab`?0BEz z*(RXVagw)O)Y9;<4=aM!mFy*9)h4A`cCPUC%)LFCF9YJ$e(d>`%2yh4?L>R{wzIo) zLkpJps~wBXuB~|((~cU6%)l6rGi8foewCI%eS6f*R`f16Ol{ssZymO$2^e{ zU+}pu+;OwQI(FFBdtu6So1PG_k~3`$MeOXDtIdKr*gQR7`3z_TWf~nUGPAP&@zrNb zwdil`TV5W_{_&5G9|4}e-2KrZBox8XgdGG>Xf)XIW{r>K$&k=#G{_%)2=hb2wYfe} zprN7pR~L+wI2E5!nH%=Icd)jHsrWW-$XolitYTFm&Eyg3^7zpBQ7`)TWB*E^W$rIc zD4pjkIgE;6{6s3U@$Y7;sos}gC%15JS>3?cZ8Sh~>^T@TWlom0gTE{4#$jKmR=Kl% zBVXxJg;YW+^7+OS!QbOMQ)vfwH=g9*xrwp)SU8UpM2q#H(E25$oj`rkU!hS>#WEnT zi0B(8m#bH4>(3{)SR?`i(KNES*t5-jLPpT4n*U`W=-AZP0K2Oc7?S5B2E93b5X6); zBiG)9G2nz4A3md{Js+qhU(2Ysh@0}WK=uiYY20cVjf_w~>2ik?1@V8jFw=QBkSQCJ zJ2d?0z0no}MNZ4%TORS7w$$;jOekzBue@^}=KBs(@_1!Er3XU~AspR^#hxXf*#=jp zEHTt#U$GzNLNsq@-ha=QL7f7SxgA^sA=8jER`yoWrN-o@^%z(xQnb?F-bM*k8nKkF z15<0)y!_KmO-;Eco?7yCS`BiMhrjyhoRvSn*_$gT>GVU=8%|^a=bG($2Q+}kKlFLL zN5{h(nl4m&<+Jv+WR|B3{k+-j8qjOZhd}xv#Y-( zg4~U_0a{WOHfy3q;)EAN?^3~fKq-}=5#VUF`t`%gQxa2+8-GvYhdfi<=7h7^w#si! z^Wby-ox(^`YcAqI!CqqUYYQw2xoadW{vBj1`fxM{K_;RY=B`ru@%>!0Tc4-h8f4!6 ziCT2Uz!W8gt7-NY5od^3%GjAgGH10hu;{ax@$Ev1N)Ek#i-5Y%E_!0Hvwk9d!P)^H z40uH2HA0I)^wAJ=^}M~cT~beEL{BTb9=qIw1!MX?XUI{<@Km%ghbk8!(c+6<4Ff(oz>sAiDd6GuRO@JtAg7}W*+Y>OjyU|? zIFKOnE-TH%X)?~oo^I5RQMCzgSBm?bG&7dJZKrOC_dI(ooG(+6H%hEp zUqw|tYVxNm*)LtE!|0fMgj@G~&IoF*{(zn}L04ucfefI~Ny*4i(a|rv+@qqR`iC&0 zG&J155iG3^4;Rlpl9O{clQYxPhXZ&ku&8s9bW$WRSSKqD~cWL|%6E3IVN_Dt~KcRp#VNd_Q z$SSu(RN%^2O7HX9Ih~RTweeuN?rf9x_g$Zaf8y{pW{!AwZb3dRj}xMi=$v|uz-hLH zE*ih3BPEJhK|^Oq=L6CN#F<^i`XLc_Q{@95&uM*-u)P`GlB7X*zuMpJ045{QtoWz& zwT))&MNOH$)i4Y!Ay+dBx>Z;nJmv4hMnnz#IK+wlrft`|83BO|^-+7*f5X0%9s!OF zLP#h`SQSBddARGxn_S{3_74d|MoDzzjpYcP?i%}hD$n^VUxVrB`0`~Y2I>{I!6vYz z+TN%nc(Ze_u;I%3LVVQnu93%^$W~A&S3EmipnGj)Wd$fg@gN-~OE#Zik^AmqdvIYE z1ZYg`MrkM*|t=&*mGqsGy(yCR#Q~>5XeMOV-4yCe!w*x(b(Q*7_$Kuuo zN1ZFQgFB*YD+=wasw7nSh>b*Ah&Uxm+(%()Wx#1I0ryw?YHI`C%|OI+JXynI&)`mQ zjKAX|@a22+in|X-85z7T8@X=deW?{Z3JoX;K;oA9;aJU40{>;{v&9@APmP)m((GQ^0k zcvKC$&I>d?c$6BB)=n2r{#zpHKQZSM!5Y%-%HdPciKW*<* zw3N~sKD|N~IP%>?FSEoEU!YPA9pqyB5!pq7OP47xW@ondBdzDX{vUF|wgZt*Ch7N1 zXRgJ{yHBlNE8@rUaY#m1|Jup3XiRf%bg{#`y7?wX?JbUtx;m;?m9n~u#NeU4(RQia zAALBdLe9B2@Liz~5T7p#<@;K1-}KXLN3A_mpvI#VejY|6$46HLz5Bh(8L<;E3Vv1J(O&M~opF>;QZATb3!z}2Gb^hgl+8jyR zRZw?XcC0aX?KzsA<|7WL@=e8U^sO@cnQj(ivaBF#vR$g<=1sXci$du}F;PTJt}eeZ z&9j^O-Gy&Ya;PLZF=JGLV$Q$*{BmjdO%HiTslKIf0J0wm4}aY4z|Gq}Y>cFl zZW|h6I9qg*7VIOrGxO*uc;L`_ZK(G0;yJVTt!Z2)OyH_N+YFs7crsh8#)gdd6`~C^yHb@eqN1Y(z$YqA6~k;c6H;k3dVnD( z!^M_L*6?#T`NuPNE4xwgOLN@1EZ`ctBv@+a^yU5V-~4aa+w1iVxK#xyPX<3H^zV>NqbZ)iW3|9`_NUuaWL)%%R`%<$e9WWwCxs)Li(uYpeQ)2LLK z!a&wo@gX+cPb;yl#p=^`Yzs+D#5k^N<_*JT+Ylcg+;=xcE-ON(B)CO#W8cV=>W0dy zS6R$!4FQT;Nf@GNpB2%am{&e&Gg80mp9YF)xo-QXPtxzmSVtJPN{t3I&#bFAAJ-+= z&vm3;tiF?Q;T8QDRfs5@Fuol(CY3iGMjyFI)>A-Q82%L(-ah4?*_erH zSE%q1ESK}tFM*|!`Fi!M{+Q@aDuUf5O;N7R6Q7v?l00)!!G7?-ZFZj%1udA_ zn3Otl5r`xW6I?P-T{CGInjd}QXZta%DBGC$Vfs>O19v*F!^m48|NcE^35pH1$}Pe& zTV(W9nM1+dE1BH>z4h*g6T>YKf|nS_F-toKWDcU}c;$|GgKT0@kSAb&FttxfjuEa@ zy#XyT;7hu5dez!0uq|UN@y{+mB~$h+UHXhMc4-^`5#|l9ph(5`7%MEWBtTzNO={422?01F|Iv-D4-+u>}hy)fhOo=2`GSKt_$_b<62{2Q!C=|%A zgB@V1^mWS;&SIfz9R%%x<}?aAx_9Me<*M}7P^508lc0W5vIfljt=dn@bj@47LOCX; z(YL0diQHz7T*T2_Lw{WO>L-y$>==0@!;44>-q8$UG#Zy&GtW;m zvw9_~dZ*4EA5XC5w@Ou|gtwc=R|^6?utUyzf|3I`GEhB2ud_U&arE3D;X)a4i%k9D z^V4_<4cSFP3>MMba)vDpng4zWmdX|%0bkz^ZP*sDQ;Db7;)}#4{NNJ>&ek=cVfIw5 z1(8A!y5A6igVnu2dv{}_1B~b==hW$wb5N>Hu1Y4%^UWR}RpyI#9go4mG_gAYRPVvs zBVV2k-qozc{+*hwD|wJP5+h?woUBz&T$xRu?6t~_0a2lv@^Aico#aH^{#qXRU`>&j zZEjEFk-He($R}eSDB>nbW$UU^Q1J`OqUf#O`m7>^cqqn&#YY4!HSk@WtrEl+56%njD%4#xj7Q)M3|^u^yWG3QMMq(1S+ z;VMX`F*0z!7n=7PzS;`<4s?8`h3U}1!$n|(aXTmlgV&oUcb~tRGKMW+0C-8&G~f&6({uiL>iPZ1YZ0 zXMJ;`b+l0H?duDTh{LRTveNo;P3p`ncjJ$(ZbFZN>ScHM7I5(^7PoVSIpGyUk9IH9 z$G58N8ZQi57z$|O}& z>DqY+6>^a&db}s<{m%y@Z(r^PXFk@Wq5wl??b45|-)t3YhxbIZ(~oc=Dj!8vsotkx z4+jhq3-?NB6-+CBF}|1H?J$D?o#rX72+fxl;s*A>u^jy}$(O>KoCTMf3H^X3*de?g zCAzPqR!BOJvlhU!0?d+5DwD+k6_2Z80F# zj1dNo-^9c6)evCFnP;cv*5+O)&HIb%ku}@i`w~>Tq{^98%w|QAj9&k4e^DU%2I88& z&>>vgwHFsb37$EakAmIiEk;{7#jbK|jUG!R?Zhtr-?P`}uGmR{%=reGJW=RM(F*HZAmR_{@#>qj33zhAv($rERA|{#5p2li9Hp@}S zn8R9e+EOYi`0pa?!YpyUW=ZJZZTA!3GmESu#ECn`&i+|FTXH8@<*nzX5fcq7_#sbQv6GH|$lXGfxG2G0)+l>6#N z;osAz6jZd;Q(uyC8kI zp)d4$WeRTY5}0^~O6Dd_k9xa1k>LULR1! zU{XlZ)9qKbJ-3c3mk9C}q$RVuR;aUQt&k)dq? zDIx4#mX+SG(39rzXPwb3ftiH4GUE}d1ygGEDSp5_@?5JK2)KjbQ!pd@-PSRV4)Z7e zkdYw~(N-S828Y)As%GcbG^e&nn$DG)%AV_=Xev6M04V6${R<5jx$krJ6R^JXJd zwO_*|ENq7O2`IYt`AL1-eC5wQpeB$XeJqHFbSQoo^26f$ij$U_nnx-3F_$3(?8*}F zgNG4w&42=V3=V0uz4)5znp1+DMO##p7(HzcW5d`-q1^2D>wDq8fed>VYBN|3D>1Vm zeo=V>D0j{_z#Rf;rPo3yVL$m2v+f;h6BU9}&XH#Vttjmm>_^KR<&RI#$v}rlRNtp4 z3qu<6eAEbj9)6YBlHodk`Q&zF@$~r~=JH^#^vKsPTsMX*3@a3p zs{EQoX~GsSOdb8o5S#eQ!vT#zllCF)F1r3rENeBBIg|Cd@YwlS{DdRgafS2tF3fJ= zeHN=rJ9^ylvdn&Q36KozW3%-Vob1V{;-x(Zg$g5Y+!fKgDsl_wVM#=6@!;nvj_Sve zJ!fV6Nc0e5!GmoAMT?O#SmcoV#??~iw7SvSYes9N7&=L=FA$vTZc|r8ENqn%4--wx z?(t4AoefK^b0MvRCXAp9=wiw5S*{N!J}>H_;b=zFmc$52ROFjRPF+`VhA&M2@ITi7 z7x4=NB~T?YBlvwg$O;|)gy5r3v;loqbR;Dukb}vd5InU!@dCc24!+CPsQmJ3>D5K? zI3d$|I{x4!4hs=15s5zOn&DWB;65K;)OKj^nLitAiG$bL20dMrjwP{T3C7huL*0j(WQ(6&e96 z4SKhd3H{YfdE0BM<%=sP7~&iEd%XdPkeLf*A)LCM8qo($L5+TqHBaSizO(-1{D-n_ z9LcJ!1GgObDoTZw<)!qAyg}QYXIt-^v8`qJ=QFXMPmXe@n(gqoqI${JEMJm-oe3ZC*<#`)$<6l{TE361b?M_L1haS*%i8VpN&*mddOL)eDp| zMVX--C|6)4Zrh4V>m^v2rIaGrg7QuR@^=_s6Q*io)>f z5_*1h=6p9IQ9n@hf5siz*-asRin82M*yc+)ZaI!QgRT0-{yvFs<&>iAOb&qAGMr6& zw#;VxaxQhHh2pO$tKks7y@K>_35EJzoLHm4c7RM~-5Wi$k=fc=xyDJ)S^;L@*q#r& z%;gIlQW*ZnlCIrl{rx3u)dpZkUZc2Q9X#f(W_IP%oza_uIGv~8`;8}D=2Iml5~wek zojG7(hbl#m%i1`_dkxc>=&#wU`PFMwOh7PF-1p;|Ia#9z`?qA#cEWXK`jX`M8+D0B zQc=3DV(9fV43x58N*8MLzc&_in+|Viz4u~{j$=d%S5GSI3t$7a92B|0On)Vx{paQ{ z%oZ8nuSk;IwxOIpJQ1|T!8|sao(=9h+=Hjrd6T|m8Q-Y2{k3TvxncgToz8+$KJX9m zot9Qf-xql^-Pv#`$ky%ZVpYUg;)!M=TQ@BSI!iTVT#o0T4h1;{v-tH1_ zwcLt`EQaAcJUTu{|9g4D14rHMxXRO}UMtTc5d+@dwVzc!)q`=DcXatY<*aQ&BQosH zSW6_3E$f&g5Vh?13Vogh;dt`y71_UzGpy_*ONL&&R}s*;)QxO}TDu=I`FYcnKR@}Q zK5ZlSJg&qHa`n3H)b4C^`OCAmc4jli`iM#|!sCA2l^d|#fDtRrA$l9UZ5Pj%^Z?un zG2QL@6G_@LF#m{+_Xtgs-`3xqCK@UeE}Lx%Sni*`zZerWj5~ zIPE?u{&3lI5>5Pf!b8ne4>4*Uj%+s6?Za!jPnJzia_X5nv7kFQJQuT&0`aT^}o}*F;?%oNFxoV;J=dr?f~sLW)aBJ+_nWiLK^p=G0tF5_#E+ z3kAjWk5<>H=(T_=?U$tDYCoG3<8=E1c@{CU3OfV2d}X;xy1D_;?6*gYKIOnrG=BUp zq&fi-%414H)lYOw?Q^y2+mDlHzB4BETHD>X@xOGazL9MfR;Yx`F$RJ2ay&tD{SveI z_k5*JRQcQHXvt3&(#pglXvACi-Tj@hB8MrB`4UFfUG)`N-x$t>0U6v_or!KIkXtX!NS^GXi!08x{2#M2iyTrKQWQcbH#YM6^g^Zpi z!g~~^(wzh`pS5FoKE>Vcj(aLRGu?`f`1h(!IBLuOT; zho|^*3MaIu1s2w)Uq#^BJIo?@s^mi%Ra)EQylHc7(lv5pI3%>k^&M_=g1eqQ?f=No z&TjKEP8tF*-FWfrd4|>o+SjKQNiJU(lrS>spYP-6ZvV{?xmq+yPb#6pb@qTd)SyoM zswWzHfk(>i&LPa_OlNUfFsxDqqj~T0lTX)})zLL^scfV9Vodfs;x< zE(PMdjo-eEBeqAZp4}M$@}s&yu|GE_V>zHHp=W8Ze(O!jtzN<1usp=-NOy1p@u$JJ zWzn`meQdZtX#(r*;BcKt;}3fEa_F1JHxhz7pQ>cm&UI4CujZ8TXz&!791$mJ#T0ZK zmM8UlONHsWvrM`J-KTAZB0b|exaY4e(D;${%jX$vPB%fpG@wfBa&Kj+*26KT7?@s zPCo!I4PbtCK&vfOw2XmxlU+F;L<)xNf&uXjv{~}BKH3vFu?9$wD%9da{8ob+ipktv zmDP@$wSQeRav#u&1Af$%_kXxoe@gwhY-p+7G^z=142_^<2lFdnM-nzy`$c*%-AORJ zFqL_tIPC2%@U(Wpbma&PQAlbMnF*EHCi*wh)t{;3ff)&#WG`1urR`VJ8$Bu|0oMvH||O?1NGUjQbLOeHB#B0R4Stjs*q;yq%>v9C3jVmmHgr|rqG_rpzy z-jwpTUPt??d8P!5p+9!X2W|YdesOh7%NC7S3939D-8$sjLCkxwdsfRQPuf?OGPCGA ziYbuYVaw-ASON1-+6(8}H_+ak#HoRJI(qmz>NRy&drV>5jn$kdB!f&>YK9;p$MW-tle3GVnw1mu@}HYG?@iuUAuSqPDpgqJvLDnq`UCQ<8D2_|=UcX58ECj)OtO!{c(nN7 zSh>Qyx?%}$`f?i*L_dND=XKU`tVFh7&nw$-6WaY^cTZA z3zDeK{BY2=7CRlUL0Oz|0K7nv_^Vk;ODz_kH?YsX_n#f%*876!%$FPAtR|+e4|w^f znH}@;)u8y|AVQA!%~stB_8|fj7Jn60;&eiD*Mfsidt+N?@{r;e$%ba zDTT3>Ip9;T&|1hMzL3tQ0h^^P@_hLi*dMZ;XH`?474ne6UACS7<-9$S6IR6MT2bu`n7z#Jy z(UvWm2O7Llv2ZCBQAUEy)g?PQ>CY%=uqhDQ{b+w?-$@O#yaWC&x8LYs)!Msi;!wGM zge31e(TwVbvtMmy?7K0<{uUMuy|zwG)AoC7Rib~IeSJ{mO z!D#Hn;J9XB0Sfhnkhlz$tow~BaNwQlDmzq4ou;)shAfla0W317y?((n@wirHN00*+ zN2pnA<5%8=PfgS>t=IeR=9ba1$iwz(9dlI%A3tC<1EByfAU^o(dtPV5P=_#B)>ht_ zD{l6VQ8QVO`)Z;!VGGjGP|UJ_20*$er$O*%if4CDs*x3F^nWMGs8spZO0|#k8*@dF z-G=a-($vSCsH(Q&o-quHNB5C0f(c;a4;>Y%i(WG$rN-Fgi*5>?ea0lH?ftFN1`)@U zPD!kS5oxUSPU%`xT}Zedaj>g(q*f10uk%HV7xT6#y%T5NWv9ZFG!}69G#bgDHKnPo z3fnKzho)CW?@=ft+tBQS|71vMT$mV&fsO4KhwZqn+O&JK2P57c`YrL0uDoSZq4{(- zFg)CKAUi?}8bJ@PZHfb26v@H2 zOH9NfCnh$+fv#i6|#0>51dVhE&z!dpB$T7d<4-?O3p_tes1=F-`P<5@tug*^&RuZqMk zW$w_|aP84c%aQq8ijRj2M#FSfIibdfJFc7;D_)}>bEHwEt?gk?3info@abO^6lZEM zD-+M)V}_G?Y$@j}yXQ*uE62!F)D8o6huAH%C7(DHF%B~!& zm}CliA0saX!GpSEdahv>W!Kk>LV2dbn>=9Go!`20J+#9*22 zcah!};tC{wA24k(z`Bt{%lAC)@6ij)|T?M&!pL0 zFcg`YE#%>}K)DO>6%Gs|Akh55HdKd(WPO`f-vG2qCtBL7RGUyiD340?*}$e(E2Fj6 zI1{lE)YnDy=KG(|n4KEN&+y4^#hrCi?z7-N)Xf3bg4f|wj;O4$EZ+ayU=TJ-1iMP# zoKG)tbPZKO8!r_izH51Kr`ARLnHN68q@eQV4Y35lKNjuu=^8m43~x3BG7j#$QjhQ$ z&s1PVD5w2{mvz(hog&qZ8wM;uGm69Er?z66eT#-v6`@QtT<_f5pILT>%>FlV_uB9Y ze*B|CMz$_84d0dI_N_`}JW^9hTvj~ZnisUtT}dRMh304QuUHSwV`*ESf37_trVJ{X zVHSLL`*Wd+@d6|0{INJC{Jhq_l47o1wz#cw;!GjZ@uh%rCt6TrPAD8w~mTDt!;^O|2UMaA8#_XKEDv!kQ^Vc|| zJtg5qywdpaFxPKC&hrkinxLr1`>2-;Hu7eGd(>pO!*Xql`>-Y^o}qr}h~|?j*T7(V zTmF$zPdq6jGHBX{v0wC}PM@2xH~&X3l1E&e@1G@eCXq_&1}-gFIQTWdK0>^s*pbPH zf3-9mPADP`_Ws&83p$`X7|WJqfy}9BZL5gOBJ4AbTSi1{Z!LcxqLOtjqNc~2HB~~+ z1Le7#U|`0%lg z;!F-laDcPxHcsxvh22?UUw2CYuyS0)X?riAG#RBV)fI9LKa?KhcpTKVa0C~hl0gFM zv{Oy9NQ3Bmp)`~3I?BiKk51#)64|WrdDD)4(I6qA0J(9nE&@wDG<4?D-r%s&pu3Zk z*|I9DXx&ELx&UCeUn1;bC`9=pxW#mXzG8|c>y$+c82B-XeOQ%gt>JegN?<00nL6vU zbc*~FJ&;G8uV|$Q?NBZNgC>S9rvCRD61{xv``HAeb;JD8zp^{pFTD!Tg9k1Cs|G_A4 ztV{BBC8F(m&)Ck_aLiSecN$hr`QyL=G5zo^$GeIQ2Ny5rUV zSmB0!=cd8x+4ruuFq6jl(e)>L&@z^(tEz5VV+C@a^A0C-)$+p7z5i18&_Y;JyMwlw zap7@9A3o^%26{SsB2hy1;d#)T z(Q5%wXbWrx0}-NLR}TkFcEX$R#xE}~_PlF&^R++ldrp1>oQB|naAVpfaqr;pg;klg z_Mhp`g3MT_3%8N)1b_j}>iN%#sVyAKA&ug-D2(cXt)c|NGL5*}tA}a+#v?uSzv7V% zl^=g08g#b1h+XHsRHoq^zaxBxWCs#hZT@fiE54Nxzv;R#x<>ZJq|?i(ehMiJoRNFF z7YA`1+^bQc(Y2>Hjo60Jo7$PHs;6X*o$QsNR3$e<{mjZ`SWMWo=GwQBiwZ)XckQVW zT))6e(<<9^r75O`2M8r;^!!MzXV}_h<>HA(Q%=iG<@aWTT^P#qw^1YvPN$R&#n0{c z+4&J6;@@AJzEd)H79=*pYBKr^hL>~WbA|X(Q@+#h!U9U;%P~Z!7!iqbmb=K+~wJcW5}-mCv|BDi8};Q5%@0n8=a8Q1o9?;5ar$&I@0 zJovq`+ogwFtUzI?NpQtLaVJ?cwj)lpf&iGFwc9-u*cum9ZY$Ywya9|`Y~w_1?9pV9 z2V^J?CbEx8cWU-0@mWe9ti4E|3cT2q5dGO+inZ}?m@&Yy2eWiY^}NIb?@%0wbI`&o zwOoDs8tcqpwp%WcLe3cd_Yk$({;9i$G)MZVu<-XDUF9f}rG;m*`;2SZ`6^awn4*rZ z1NLh;3NNsdAo3vCv{vOf+-FC*&{kQjgW}%dpG+kTQKP#rj3L6VrOF9Pj(@6y{{}6X?CToge9b zYs+GfE&OmemC0WCF9#+$h!MAq6>fE7s?^JB9%sb0L3o+y@f6I=OFpNp%A3!-e@l`aCSsfFIPdS3K>&XA&*~-HR}p z!WWgmD3Q$Ws(i+w19cu6J zhyDw7^MGO`UGvxvXJoYfSQ&yQ?PA+CI??sdv$&ftI_AL z>a`v}1Ae^)uhfjSPViKC$82A`RcIGO!;|GL{3GnYBN~J&X9eu~+#Usm0KR|cBkx#C ziAU=0U&a8LEu}~jk$aR{u$Z@?LGA>^0O&?wPi(sT1)kKYFk>=F)6-6l_H4lXK-6rE z0CK6sFQ_TNYQO+}h|#E<1lVqdAHL{(gHp<*0vUD;1FCjN#L$5J!9U#FoAKPe(I`3R zr!V!{g=sC-ntgqThmPs?`@-YR$kYzwENf+{>*fc=-H1&kKk)MJ&}P6kzaJ8lP+vn_ zX1ld1BUN1`+=zipH~tlFWhe-H^Tb!?RnV$1k{hRALVM(CpY3rEp6TVEpZOw4 z9P{i(OzEO4BRYtF zd2ucU!eoHn87W_LZwt<%aG}xGanC?^f(yfq0+m4FFE2ikZ6+QabJL-+SN(?He{{Rd z+O%=z50$c#yxFGOGIhy7M`GRTq-_+n`UDSPb|h}7NBg&L~de#E}M6J4HU zN=!{-Z~#M&&xsX74zj?h-q>@Egv3 zc3*EIZHpI^AdVrFKUYSKmjt)=CSJ##9K(WMs;eq@u$te^_TC|yL~-*I$BJA&{5W#2 z*>`G`C=yiHbpqbj$b*J=#dgOI6)XnRDoMG}RkP6<c4)8T=Ld`bFMs1>8MmXyykyVU!;#@7i&5{{R^aK$VtHM^0pH$pZuO zOqcjFS$r9&*;6L`+J@`Wq0)sWuObq%He&P)uoeo)fQ7R~o-UDA;a`C`UWUKW%cTCB zgP#efz%A5IUwmeK#HLr;lQ~gVpSB68iwkr+H!&9aYhixI1Y+>-BkMIxI~xDU&DwrT zjij(PhRuGAWyDV9?8M3B(C~?@uBw8w5v8huR#`)8QEi0mM|K-3@aY2*{>7(HfFxg# zJgQ!Q=*;)#60cD2)tMHRqgcn;S1`6Ly~9rc;_GaL*aC)`x^YMJm;C*sR7^8$tNw%3T{ z+{>ARuiN*?91gBPx@LSBnBC|7EpqCz7Ep7!ZjQgbBP@QeH?~D4cwuzV24XF2FACJt z5xB4y|2v8Ld@2+H63hohv?<@}D4`K)w#L-ZR(z!))igAAl4Tk;0|;wm2q12Dxr7=h zdTUwFbKnO`^y<%ObO(s_r)9bPcuJg;caSahv5Z>=+U&?ZuHmzCdP)Eg1@&J>O#r65`Clv$iJ)!k$S45>Kij4hlv4(ouO~v>721J<#Jln`#?e5(}x#8iRgF53|n}g9bjet}fd zv#1vv{?N0f9%Kdu{a4(MgrkH}k(D5|a0Pl_{|xk{_r6S`80$j(>MGnPsSR>i3mVGG zA_#j+?%J_HYh+$!?i^O4odK}Vh6@A`*;iUg58|zwqbh?Cmm#UUgQwA_JPpFf5aqfw z!Dp|7D)O2jTo<%RWP*Zt_a&T@=k-Q^S)x?=AMqkH$G=b4s<^^E59W_eGlJ-&(&%Cz1&Ju_9-`J zI;!{uDpL7aW%wv;tT?UdnsJJd&x4@CY^D;U341d-?=c z-25wRnbb$zk^6j^@E_UQD2Y)LJB9DwFw+XZPbpb>Z7-kwy22($BFXq{qaX?m{Per! zJ8H?LkL+T1PF1mDu-z?uqwM{*-*e#Rs0#6ic-Pis0E*$ zf{~}xAXfU{OP8VJKfJo~fYN8Be?*RVHiid26)0Cp`$q*N6HcE=YC-V=RPH84oU(_P_;K3 z@1qwz6RWtEPzs19VpyprUXbklhfrY^6!Iu32`!<5_}-F9yE0ljpj|kU+1d7B9)a3z zZYQQLJ*+#QsD?0hzq`r($!6mU)o+rp>-}N#h{I<_(huB1y;blISR)l=they*;gObC zJnDX!N6SUjVn(Dfn1J1-<@Ng-AI^3pEudkVy~`l8^@lf19U* zGzK8Nn+$c7FnkQpv7 z0P_5sRsGK~^Z$d^u{OO)PunD>!yov4Lf`VrK>T2@{oYONW>M8o zwZSE_RHa+HfL{MRV$fPpo>Y4;YWx5;e7eb@vRXH;n7Z9{@h|Zw<9GjpqLH~M6y-#w z(I}GXaLQNODo_dG@3F~$a0l7t<@YLpuaNeBXd%V93ifnGQSK#iDFf4=xvRde_`kYc zpWc!Q(bEp}w*mcn3ipz&Ph~i@x{GS?ik9^^CW$bp+ zz;fDpJ^x9^T)QKCnqzP3h@B1U>F70x3|dd4*N)`H>cIu8X_K6`P8QwxnNiMj_!0+$ z>v^>jW+txF)62$Un-5zM-usAKiDAn-oOtmvFU$#u(*>gh?e$DUjP&I9umV^}_~%>pIot z@TiPX1lxw2$Q$)MEHWx9Q-xn>3#OuNqUJRLa}>!~UOO9aWnKD1*TM;y`lygV3o}i4 zjqdgdS5^nw&CM8PWm}T^I`54_@iP}HW?~m-{;*N~+|M{>gX;xXUdGgWYHV1wdMo+$|#;!l6^g$$MMLk_$b0Ix(B*7i-ipod34nw6~ypf)UVT#uV5Ey6|m0S1;V4Cu8STMBj>+$KZ-w?s z^P0JOir$G6izg>t&K2un9{!B6=ID!Gvcel3J^g{Bcs0w)>Inzia7&h3s&+O+Ay2Q% zPX#&2jiy^q4Q0pHT*rl9q+~#7?Et{hz`qV_p<&BLT9EqRTy8nCqJ_q9D}n5$&A48S zJmVcda|XEsEhU=kvrA+a~+#@5-9-H7RfuBc#`%wTqT zDL86GW}vcI@0WJ@)VjBaIgJ%I=$6=TkRWVahO#p97izO8+!t*^Q?6BCB%(o(?vYH_ zOiejTUk$a9&G%br-1@NI-Qi_mH#-$}%rkR?v6IH$(Sw95-n-PM-1jj5v zIeXD?thRmZ8=P1yAjR=^?KeM=0rC~;?<}8VA~QCTi`p+D?7EmVITPe^wF?e1@y?Q;?;Vy&W+mc?VaqM4DpWAPksVF!x}C{AeBJ>9*Fc2TFrT zrw9-l^dbh{_NtH=z($+F%MybzPe9z#Q^zx;R!|(Nr;S6fT8|KmgV1dbL#azwIsbRjed56h?jqWIqgDnP0dGq@En_}Uj5H69c8XK9<_ zzR=i2Y3_`4h9|hXasUm?re~Zhn#PD<+Ch%Er5R=Y`tOhb3z8ZKwq`v?nt(~h6nEGO4CIRdmUvnW+qFN!a2 zKmV)INwSvVB(Qq^aR<)mmmu?psZ&*vCO+zId77O@2p!_~ebICa5UIR#y{{F;cpf)W z#HxWj%AjNWi14`@@4%!zgjn>(jEP7yfksJJU9!nBf#6$3biW1%dh8k>;bwG8m%u^~|U&9BUpsu6| zyu(s}<=vP@uz~Wj0|ITp?E?Q~Wkf7fQ0JPG_HT<%(iMdk{x2P)CK*^FxZ1p#7m{y*AT7hmE7%KSt&b^8-bV11%`co zgYsS0(7aMYR06I1A`kY?U@-pvuLnpR78+~>X`xg>o6*OvZ|ZKb40wRIL~-N_0{LoA zr8@ZfmzR*=ZY6E4F^`Zq7JgHqmQv2rAktA(T2)qWthlJ@rTo?|+w8*p!u3D|_wHf* zo^Wo;F#k9LA!?SBj_LaA>;IGaYJ1WV^aU3F-Ye5j3qEzXrwm?hd4cP-Cx3^*;Vt{K zq54Xq*{WP6quw&7T4nyJUst!#7k$|dvbs9E&1(V>F@_fpCkzrQ!7fYjJx=@RzKGO< z!mFAYB}-j-2XD;N|KT%e*!*BM_ZiP7uBGHFzz`3l-5n%5)YH*Adx5|9rehawYU?D|^Ya$>^Td9g!uy_&Gav z{D!N+(>*diOc4pa(I_P_9+9LbaRU7S!TIb54oH*M-_CNJNN|lda}fj9m-vY#em0B1 z?LSiC?tORr`?=;yNi5z|E1F8R67XVPU`;acpgHu7bbMkkjD=}VM?c;BgTsmoh&zr` zK;8TdLQd!u-K>uN=!J$Q{m3!`4xgyGJ-&RCPfj58W7Ct{SH24?5l$aZ$F9&qF%}s- zd)0rMdz5h;p-c7og{5|Ohuw)*e3IdO*uy@0l>cqu5N#bK0%9Bg^vdX$g6Md$_TQLi z#Jh(}xB$9M_#CS(gbTugwnz=RF|_$Xt7%0`qUOJt(zf&|P0J(FOs2Yi!4q2A`Mh(h zq#KU(gK|k8i%c&eiUoAA2u;h+6y3CMU8zovdRMOERB*l&7%v_Mu)GMdpl)CnUEr8+ zxz*an*dhoRX|hnL#)+PrPBS2`wfQb`lR60VM~X}8oAGN9W*<{83QUMB;~Skltc4d+9g zj!sTmW@ZwV#*>DNbu2bp14Pu+`OMlAWd_3pWD*HJIXUE0Q&Tguv!kiJP=X;?tsq~n zx5u%Gmc16ufqazYSe7 zaXG&XEDjV8?wFd0?F}U_*SSG*-#O#og(F2y|Nb^(y0y8LQ$cgYVr34Fnd_Ti`fyUv?<`zAGWUATqeRG3Y{CZ)p!#kVGZp zml)=!uOn&?GEuot1;g*~9IL6vIi@>-wiCBu3a(8N2VyUy&7=}=xZEL~#sj%{OVYUN z$_;dyAfXCtJ{uFn_I3mrxnEpbMfygeY3mtxhO4=Ew9RpT+B=mlcb)&1OBQ?Rf2MOtBO@aLbBmGGS0HD*b9}tK z;}s+cIXRQlnJ%mO!cE5`A3wj*Qp2rI_3?6Z3WyCs$H2IpaZ6w^>6$G!unUr+Yma1j z-4@;UGCsO&*aHIv?Ywe`1#>dkZI&`lrXkf<1lGSL^0ah^-pCAM@I`gJLYpPKyvJG) zl}i@o2XV$Bco@62qKwvZYi>nBfCG$2ZfI)O06zdE6E?f(q2d-)wj$~3G{c}%T5Y~L zh~_IuCTY;kn?l`W!#ryg$zF?kQT9}6c)K%dEIBbizf#paD>Bb6lo5$=mA0t`>JSY( zW^b67Rfv&Vu!SGy+ZmAWct9g@iKVrv^DhP$g3(2DP>!NupyB4P8{t~Z9^xxxp>3hp zSH;F5J-$?S1CycxyPxCPhNZp$Z9c5XXZ-fyRyBa9YYX(xvyy|mm*>3NQRVSVwcv^d zHr4Wp;xLcSy!?Dag$(@Xizgva&E?Pl{~A_)4fZ9ny85(sO1Y*Qaqkk_a^fZu;_n|=Sb<8n5d-hXJ%)QyqkfgRT&4+rv2wa&q#rvNDhj zVgRx?JG%E%v-?5c3YJ#i2Z&x8QVa)C&ZGSev9Ie8pfa$8#0JuR8F_};xrFvH^NJuv zv3pl^_>PB_ZbX}_;>6#Wl#MBd1RMxNsAIaIj?8S&_qUoNz0?r&E&-(d;hNGWjDDc6D_4@cSdJZf`3X-h+%JN07q& z>gJ$)_~zk!SnQqV|0my^Ky|}CiX=@wpMk+i?pZ`!JX1PD5X6;@HaOYXAIx}`m)k^c z_xAU<4~SPQ8?u*w%Win7GL+irpvs`dkTGU~t7l<25TCaYsgBVNJ+J|w=k_^h|Z z@Ll4i3~cTzm9SNq(D$=(iJIoxnQmBKjB?xP#VyNfUtvv{M?e~_YW&QSw;;=g6TeeL?ttz^ z?C7^Ffzi%F_-2Ra#u08MK@^aP+5!?$lmAOZRX9Z+l0-f9k=ADLDxB94&aG3y;#ZrUN6}W}^=H>>4fFP`~ksB5kHZEbWO4)j& z2bIHa@Acc$O%Q83$sz}lEt%BU{QMLg6N90prBze^yGXVg+(Gs0{b~FuO>@JaNd<-I zSaNwXvq4krSxpk1#;!GOHFu4rD3ZvG39g7rY1`VMD!k3rkg$it+S*xLxfJb!(=Qx2 zY8}Ev<{~0dwEGiDifKoJKA9@mL6Kgr06dJ)w9;6qNm)ECN!4=EIOy@PFw>g} z73OAQp_PZR-Luw1j+(-a+p?XRLgHwlF}7*`Xy3r5%Wv#vJ1(aLt|gO80^sX>(JBAG zFc;F|!9T$qAB;3Nv<8p7>t*kz{q>UT|P!Vy%kgLGYP2|dJF^cx7(%kN3gx?%-j%pEo z{;Wv-hid=?8x8vty1#7!7pUwm)>lhTV>9U^P%9L53=M_V)O@C)v6T{%l9cS4oQwex zIoT44UCSQNh3D+a;4Z+PUo2W8S^%XlJKvI&i#j3BHB(7E4ees;unCZKCovAqq-Are zP!-5^dsdVRgXuuBqs+0IV5#j_9Op;S;t7-C{dE1dpX`qv-hf2TlA`iF7g>FV=D^s* zj3zlFvTWWSSTO(wOY;Z5`j1MMaO2KE!r;a3lVVy8>2NUucqAZ5GB-iKP<(ReAH8yU?*EIjw+_ns4c>)85R??@mhP4=rAtskx=WLAtveq@}w-c4L&H7qwYisLTxw3CfZF>dp?1 zD;Td)77lEKD(~s6Fprjv=*~0$eCv~W4p8z|V~)I|xe&;~fbLe+?viC0jS-exMN%t- z{gTKMZ>|ObCogw<+X0|FFjCJbj9t3KOt-!m7Nmmug#OyZwahXYx{&*YVq0$NM& z1q1~{FJ3i9Ca8W)gFG6B3<7DH{s9bz(of0n$$)H=g79N3P{#fh9sR;5DG47eQ`mw; z3g-cNZ1Hp&U?lfV(lOMje2yVdHS<>YYf!L8p&^8=HmoqBr|nz!+1z2 zyTAdV`j=jpL^57KYSiXVLR=2738s!!_Xs=d*rU^@{?CB5#T%pMvkUIj5o<(fR|R3yaj63zU4;(9;&S{4ZcW!RBKPvuAdvnx$ zoXBZDL$L^eU9T@3B8*y#3me$8AfBs;?Mi}+iwk1>$7++|bUaNfD`uc&zHkjd`BagL zEOS?(80~cOA8q9jcKl)2DZlK`*KtJH_^$LJ_qchi(mgeMY(quqAM_c2ibz{Z>)2_= z4tPn?^TU)3g^?=#Fwmfth3I!e^dr&iG2wJKUGc&ZtVpotsn;|=WMe_{X8v(tdC&xZ z^&egQshSqkKSLZVlXPH8l{yIU+ZRZL@dXFOZI(x3q(fk8a^NFKLE@%l*)?)L#s8PJ?lgy{gs@I)B)tRpqk1^ zY5D5aCaJ>SI_@O38pEa;o)Q4Cjf{+FwR@$3Jv9|Brv@+r0s=hFM@yK`YeN6Cxhqt% zmmyj$I$yDp@dEzK09}J>t*KUMU7{eFYyr8=s!h$Wfo~W;di}JONtji~lOy8o7S#+X z{OcGu^_9NF4KQU*^9PL}ONhkw^CZsZNDfC`*z7AfnlHY9?Ow|HlSmUsm*l**WEW*= zcm2JyA%^=#9*YU3v}l*5?QCO==nJXUcP0%^zNtxPF?M!@a3Fhjya^9vWoA|t}N z_}PN;jq@c!h*KwhZ2*`Sr8A8tk~>C?ll4{IJ1 zz3iqCwqUi<)l=HgYC@QXSursO*C$hr>!P8(nfxW7q?{92#ZJQXg|0{|x1xg#K61i} z&|Lrf#pm7t+sx}oBMYo~of$0T$-u?lBHlOlJ{_{YK%VqlpJsCnHJF7Qu}Wi8>}QBk z5Rd-%wW6P^v4%wXmZ7tE3oMg*MMFZ&U|ly*idj)WD)k+Y9X&a68v3@dLxQ?dpbEgC z;LpFZC%3ALhW(e8E@TwZoukk*%`W6~9wW4^2`s1UO!R|Fd-QZ*tECXkb+y3$0_vk< z$C5!(LpkQ6k~s1f+7D-oCGMb(k<%wKD9ySv%O0*mQ*{J{Al~u572xxIcKad%&nRFQ z!&3iK-_-1Hn{yME?z;)N|3iGs=|1kLwi(zgKE7X`9I6iKd*$K5LHE6=w$?+Vq`O zH`eF*{^S$9L-8YE*RZ)jAn{S((&~p9UB03zT{U!3z_b6eq=Vag7-}TUyXoD)_IlxP zB7(TROL{@1mksy98EvbfZV)i4^7O;SQ=e10n5N}ZawHrfji;oRn^AtpLZJw)89P#P z`1pUXBEl_#%R{JvEd%9Z3-CP(*fKC@GQ8)XCA?{|klKz;I4QUy-?1}Am;Y#AZ;n_U zC_Y2iH#Yf`0r7NQi_9i!i0&5-v}SFUWvj+3E$Xaj*B{X1sm2p<|CsG-OkiF4nL%I0 z=Z(z4vi`=~Qs_Q|F3|D~!&+RP@DZ5`24r*5g+n>|(*X{})1Lrg(63DIfFo;RiCl#N zHU+0Qd7GF}ziW||aU%wiU8BauBh3&9RYM;?Oul>?J!QOrOFE4s#MZ{B0;xU zuxTqQAt4Y*^~$pm^10GupI=i^{EQByc|ksKb1aCTSi~HY9ZS-G)X$%#iqMS%sC z@if=$>{PvTQXfU`CjH;Sm}+Yj{KXRh^V<(&w}^QMsefh&HO=-X;xjJ;_xKt8x(0KR zGSIDt0{59&O}DW%T$QtP-KW=ywemR}T$BgOI+{8n zH;S3`fwqF#m&J6pQq;u)UO|?$=RZ$yP|f42F|btnZ!B$fcW0+>P7bAkfkAqMwVhqn zSH?mW+4_`Wzx(D!!A9YGKcEs$EmU>rC7GJvW8>W{k-Y{MDm64T>|j-ARx@6RWlp3> ze);`H^JH-)i00s&cE+R^{S`r8WMYU=p;ixS^YhJ+OkFq~mpM8qUZ+0J1wKQm|K3Qc1oD8q`mEi!&1qZWZL}e9Y zU;f*hpO$a(T)S|;-dKGATcmwrEKkLLtsl`S*`7FFZPwzHpPKiVd$_M_0LwJ$#hl?jfl zEPMj9>Q$G2h{M9MJUDWKJDJ)9hrlVwVVFFvxz3S11kD7J5_uC}$R$A?-5QNlXy|f( z_Di91q$R1x?V0i6zC^eK1IxFihRUm2jmHi4aKw6HB3VdpIM{u3$&r!I{w6L}vE-3p z>L>H%9+q~Q!Iy@Xo&`BBB2T;&&w1%h})3EiV?&2jQE&Usy3+5=Mr}QDuTwx2cNi zcg&pI7=Eg6ZWEZDvcfCmHVr|QTz-Xj0IW@Rz5dtCNZLRoi@7Y*&%lr5|HC@)&PIsZ zABa+}Xxc}#KWgHzq;z(p1UxeU;Liio>HYD3_OHN}WP>YST|0};^$mQ>ojLa=bmPD& zIZVug`#c2w9h*h&!4N}Km|Sk>oK&Z&UyG}&Sy0{mu;638_vM&CBSsb*dF5#OL%sdJ?`A?mOngFs zBsRKRv+&Ayuuvv%BUb7M5xY^))n%4=XvmUe_V_pc&AG+J$K$i>z6+(40Fn-I@pZ>puBV5avzi@&-=Ui8Fl zJ_4vwt{bQ}O!fAR{Ak4V*xk=I&3Ku_p4(*X*mis&h=f(rTo=K_T?Z|ocK1z3MBatE z4%aU-+mlh(-XPYe!lNSk@F^t5ZW{|;{u2D+zEfR?4*GZXXV%o^=6U^rj4zPnRyZwB zNkL=i{dgr5N3W8-!Y5}wbrSRi_WLXYx>MC4Ma!@_NK2}v!yR!od$q}n5$uEpVTwdW z;3j98=76L!h1+AbWBl)zRsFvL!F%ao(9wk-MdGDMD~ZnwE0UkJEPueZ9|(n1!^4zP z9It9!SFr2)<*!CP%|?MZu#wZhO^B0+y_kPc_j@1c^s9czbs|cd*2a-Z#{^~BL7?{m zd$V_=3Is{^xZlAU8@Qu`p{JPqnUjUHH=xxTCwJYJPlYKG6Ou$} zkFOq?r=Wrb{;e+1DVFW)IQfnY#X?JOh`rJ#I+9Y_qw190^*bsU9GMvHJ89Qd)z$uF zXT@G?VLo0iFYFmeL7`;!MJif3E1o(tGt*&b%ok8#;OhpkXgf2dg!A+BC2EyFZqK*j z#z28hK0`>mfC2SY<%UI^p*$Ez7k znsqxH)TOfJCZc-(1Gu&N52m}{r(qnf1$-x#36I8xQ`NJwm@A#Q@YTpR(Y+9Q!Sd3M z>$JqF#WK7O-UV@Nyf#~lLt|Vz;z#xK#~nqfW^GoT;?ff?GXbojzw?RQhiF5VEML19 zT9G{4nO64)`}_L^BnvpdLv@D%`veq949uQ$&r%Cs0U8GHWDx_*ka7U+L@(0Ctef-g zAkR0ktB&6eWWLQ^M`;7%3J4UsiqSR#NvM&pBVYmmGLVGr-u|;o*te2bZsjRxb{2^6 zyW01tL-qL{op8VN<>eK zBQgNwgikL#roOZ^0Lf=SX7&RV?W$D(hy{ze3Rq#`_P%ropf^zn-Uo4*jtDqqJU!ln zwYMRXKhyHRjCa3%WBD_|Km8p&@5}3=t1$C%91cv(*zZ)*ywVM7$ST^oUu;j0#G!j) ztvlSPDOmh2XJ^lKZ@m2GnnVZj(|O#2&sGvoqw=-|W|5=5*)oJjvm=fTp_>?ffJ z4T{s{3hFRRrRE#N;|IKmXEGUCUBH5l_;Y21@b|=~DW$t5`+MR{EaW!w>Q5(`tf)_30Sv3asjpFj=z7A+}+(ZYQOh@XZacxl}V9yJPs@$jQ|z3_2c8n zz(B;Utu1I_xyjMI?QV~uOsDluEEE1WNEhJ|5drTn(B!cDBRiWSFE0;3IaZewJ@A_P zz#m5(8G3pXYHGRf%f6#-=z5C#Xo;K7&upArkIz>}e0)Xbo{$^ob(tSxHpp+Z{M>D? z*A@5d%w&=Mk!o^Z${^Re7p{LM3K7k8$$ay>p_vN)#cSK7+s7zU`g@yG?bnw5L;UXTiyE}BiC#v0a5HFn537)1`5-R(GW{}fEyIZw=^Cx2XqGFl&gr0H z7e2Q$gE-vzF;6%ML4;D~hMBQpN{y&|hU>}9cutzBK&Yq%5Bw97FqiyY^|fk{t4$}5 z=)nVD;b((mB*DDm&*bFMFFmw8Z%WooVTOcxGlZF+^lh>Z3QbO1S{C_s9mnRdC3!Jo z16Bh^J>Z4n-tAF8JkdXl24;0ep{IX2YZu89A@Nw>6S{e<&FMo8SXQNlz4_iHZ6(pI z_;)Z4H^t~V-Lo>dQjVV;)n}VQxLhPyirPIZi7J|sW`t3?G}xV*efx$8MrMPq^F{(v zsQf#+vygqY^OxU{5LZe#E_d|JGY684TddIse^>{`X$%_v{64LZ=`to9T66L57dN_# zau6J0u9!bpYED?hki*g?_XmgXH)$? ze=J)T1BV=oK8re5qh6i5bfnJF#c=F$?v5U^I8;SzqQHz~5fPM{#}|7o-G_;bjDoGP zynS0X99vt4EMM9`d#;pTGJCnkczz)CBKEREa4r{3ni<=!&q4nf&Fip*d6WHX)=Qv;FjTH3PE0H<(;zUQw@7DMndZWq}_->6#o$1;bx{w9%DD`t~jH zkJ5p7+~SsgWECBky`uToTku@k3*85X)x3CiV{R=voo*-vtUd_-gaxF*52_nXJU4^~ z8Lzn&9Yvq;Hi8OXH$Ut# z9xj&b#+CT|tmL^`K=Vi)iO2MLH!&JDQSNhz z)kFptWbGs?XP)|F;9CEBj_|F_mL8}%B8MqExP7R_Q}Box77I1$g}c(}24lnXZ}e_4if}G-Y7!RV z`g&6!r5v&6yxaMa`5d7X7IcK9qkN-HSl^zj9ZiW5H4&)~l71Pe5|QGPO3aW*hpsdE zf4xAHyn0r$y$MwkO6o;i=w7+$}$$ps*=Q)>?eP278 zqTYBh&A*iMd8rZRA7E|l>4kyOINB;?MG`^6c+|inF6tp2{jF~7IiY>t@d)Rs?TFF4 z6juI9x>aNdhl9WDNbf257Um(p$Gc?o9qRq&C zp9Xeb`UkIXcmfyu{f-6NvVf7GPW$IaU^)H-MuSUdSV7@Z8tK*E)LQfRs}K_LnB-0p zZ3J}9$YpyR<%3izHgU0y@%6V5yb33nJ}ctvCTGXI+Vp_5aB8#Xa>6yXnnx4U=tw8+oF>#+epyzSy6Fyqf0!WO z?Fvp74f=KoRP|Z(uPW!4g4$qxQd$We1re()G%+mXD%LLpl<5zmqE_AVq*!Uj%v@=h zS6hepYghC?_k5I)d^<3%%s61s*s8{EwN^#2P1G8ovZJ*Mhp>B-YJl|oS%3SKZuKU<0W*l zOxmj`kV7b3GtZD8ihJ9`B4U{=`LX|Wn7PB)ur$Fep-~Dt+2j}Ns-`ntGxnTeH9rTR zj-M!Tyy8VOUZg%WIB!6&&JtPM-mVf^mjWri6q$}g|Kz--w6l{~g<-Bl^Wy-hnOjQ{lW25*k*b)EO^ zO{L%0j{_1(8PZ~6ipI!=pjEw&$aXb^~{7p}P3&=wQ|d@|8VQ}EF3n>ueT|EZ(s%)KbPZtvyL9BOHGpcuUF zg=`*mWb3pp-rYwIgFl#{rKw zD^zgSePD6m(zrJ`WF{OKO+wX(?-?`8)!IwbEJQ{xL_cV!#)yNq#M7~;xsvx-bv48* z6j<<+R>nPc3vx$Vo!N(=Q+O4EL}ei0PIJPX(Nu}i8A(b(POhH!DVXbmaS;<4N8%7q zTuM1;JPO5`bDdu4>eJdaN4sXE=W^-GmD{5q^RIuTXNwLnM}lpRH(!6?kkSb1JPZ9y z^|+b4%#J~#LbDn(eS!mIY=V_|_11@pUU*W+0x1$2_jOFjtbi!74LGp(wF=i{m({Nj;xE`sOf=JT=@%=B;wC5RERJoA1`= zk;2WQZA6B8>(wQieJ+3%uDgjcPD>asmE(3qOE~B`gl%3I7~sLc7+|M(A@LcUVi7|T z{8~?};H}hFQ9ZXM^SQgbyjip69Hz+#Im3l0vzZ@$&Djitx(8wTp@M;B0c^I*!Be^| zBZJc6W0+a`1D~aWTD|4|In13aO+c)KeMkKgromGd0+YYCuT2Qz=spC}zl05v3CaRM zV=n376$;wM^r!L(Ph;n=>DtmQyh5M6ag#bN*v=<2bB?V)+`=|2G!vvsQC^R;r=t8? zOjr}>U!8q6IlQe6E99o0B*+iw^RK>`Qrt>Ul>Kb<=GRnYj^S>^172g%Rge;JKt%rh8(h= zNk+lPXdZoAgDLa2j)+~~QL?>npXTz`CePd-rA&xZdNLB8y3d}i86O26{|mh`wUg|G z1FrNAGW0JEY8D?~CNg3zHKcB^` z)1F88@F^qNW9EcopJgQw3RL?1g%ceua3rmXYe}rt8pz=2QGNr{Nva!?q#R7dTwB+D zPSeq9X^US83fg${<@C#i&T`7R{CP(YXfM()S zx&||oPHE=(=(zh8>#%)!WO)u=$5JC1!}5Xj5q{rp+8iDKWM{KTvMgYH_ntVBiPim^ zB|+S&jM9p`Ro_xxPZmyh5~PA{eyqvGJV2R1MjTi-#6@7i`ezgS@R)@nNxdWH{H1;S*d=|xWJC)zE35*%Z0ZmHa_KBy5R5pD zlpMFEx5&G494wG$8S_McN|K`n@akjQ4@an#5jEKQL_XaGEmqdMmQC2hXrZ+ar9$l0 zoJ{b6&w&9bD+9PGt@8Zu-;0BSf&_^FZZh=sFHqb9-0so*tXbr)nxE{+^;OU&7H)+dt1CKEBZ51a3{h zL=9+C7m`X3IPuK!;iYPTx3#h67Q5TIvhS|$uFphK7q0iEPuzva4Uc#~b7VJ))5hDh}x12R}0_9 z$&QE_{A|uP6^>FWT{AR}TN3bTZL1%ZwaBe&X$LEC(C6sJ7pgb-=$ylvw>t%8S9DI$ zWzn^A71snFo;11;aShm|EDS6{P!ZB~p9S)dQ}fEbb-@dlR|4bem8>?0AD&*{2Kr(n zoLO~r)r;apUC0i)U#Bj6%Gl*p%&~e2J}_9u*Q|B53vJAm8uBdgDdy`D!!ZBU?wB!3 zDb>*e_Yx!!0WttxuG_cngzj9rD?=@q=V1}>A3)$-J$jDE3Dsn^yO#ox$R}+e0yC4Q z#84njpgISvpx-|1ZD5XrxiOifbINFTe11o$`HkcBx&3B!_UH4nW6EnfBr5N;)`1B) zRkoym)y#1mwVz+)(8m7k39zMFN6KW&^mrbb{PV%jFB}ed zq>-F%@@Sl7^=R1l)s&9R0lG#bmAnsLSI*|b(Jw|`?m$)p(~aHjgboCpdlm6E*)ryv5*oT!#0?L>|CxZ}5nu zbf4S8ia6+t$wN2z7EozI3)RkSfRF6>_W>H$0GcfY^~Fu5KH%=YX;xW=cu_{3M#(Mk z2UF!I!2H|Z?E|dU>F9Oh;pTsS@O5arRm96a2auG z4moJ71c$ESzCJeI-gfO0;Km96g!4}KXs+7uURZzf2&lRbF{<-{sMCRyB+qXWo_Gm zarx92a*c4f*?2jsZ*4f5Y-N7pcscyHfxIy!gi2kmC;GmJrnma&51$EX$}k89GmuXq z@AU!4Hg#3{*l*0G$!x6;UdyZS*F7V>5npO0$BVVf8Ksy3seiWd$DnJcwhDKaynMV# z%$%AtJ+@FbOkr852kPiu9cdVv$|^>NmhC;!Z&T0K5@uN@j~*%I;r%CX@6)=e6Y-~K zG7^$w<chFga3$OP z$wR>Q?fu;TCNQ=8t<5>PMLOTh{jq9`QIu9m4+DV| zX3KTJ+EqUHdhMSwCDf0BdxiOqTauP}J@oAfc&o)i^6YpLlZm^SDf+0$A*yj$*YxT64Fnw_ zz^>}JANw5uxfurNDf`9YT;OgMJch>-KYQ_?5{4=;ZJAtrg0c8i_nu`YRp`mHU{i@f zvQ@rHjq$tr6tyHXXj7$T#S{;+h%1CcW02Haw4SYcQ9j*1-~$I> zDO1zA!euxcsuSKIbB(=R2%w$9o;P4aRKaovU^A2y03|@fHlR{|=SWI#)n`0+H;<$u z^Gj}TrupWW+zS4^`YoA6a?@~UBxWSK6ds)4<;>sU!VvNm+vCRe!*Cyt2e~2UH#S#> z*)9W@)+Ey78m}`E<*&hEksHmAt8CZZTKjCO?y4*0=TD;UDM9@)lk7wT%GY;MLwsBe zJ@NLRLf;$f_4p>;ne_q*jUa_E)4pk92kr4V^nI^yX(sgG&_^#rp*bMQFSMd+&R0#n zy?aejg=H_#Db~r=T&<`8Gu5Jg{s~6LHP*nUr&D=IH_9|bFlLQZ9=~&WAl>`A^ke<= zLr;KV=g`Cc3qL{ux7({(LIqnv#sGs`Etgi;tAl|v*0QTIt>A_i9~_VOe)a{}a~(iw zhUy45%^~pVVIj29`(`H62>nbPvPa!Z(tDD2>)aw)qCSAyNqgj*Z1?a6)M7W*#93-ceU#J>>J$R1ySzoNsvOKE{Yqls#6Y=U zUQ(xY-oEI&sBX$$n16={pEAy*AEg9{NFQVwIe>dQ@5&^-**sxMWHRy4^0=w#%%5UV zW*Mx82FjdXbVToetIrRFru?Q`&WQ?ik&1L9eJPOJ^NEZhVYUq5!1qr%sNviWxkeGk9)vq-G5xM?$0rT?7>7(M@ZKdK^gBC-J{e5M6ds&gf;1KZgT>j zmMv?SIVv|_G`P2ZII3h!S2Kt#G)MZo!PM2_bZ%2+UzMKW>_Gy#4nvHNKYq`!5C*m8 zLrs23P76;({V%6A_fGt($6}M2G9TOal>~dPg}q0qRy5u4R1r0~(5yv1qMO1^<}E{k zy4pM(CUv~Cjy&C{B6y`oBfKU=X`O%V8KhZh{tIgVLj25BtF-G}n3$s{3)G@}>@+Hk zAU)x7a~!_^3iS5b0FGZNek2JGeGg6bp|zTrdW9Eyf5c+4KH;g6+22Rys49DavpZ}c zl}iS|&I@T4iD+E!|AM3+$ftJOviJe&cuzO+vlAOpX|Ns#M!!;Dpm|SyAa#Mj^#6Lpo7s347tfB?{eFtmoP4}L6Ik8p^ba_&xQSo0 zXlU@|qFP`r9LVX5K#xE%IXZ1*6sY~xeQ+h>TuIx!wogE_J2qoBf3)QMl*Ckd~ z&gvYulb<(_{#h;e4$Y4wjpXuAwu^X&Y}2L3v1LdBGBtBQP_bT5JH7l&;EJoL35sW~ z-r$oC)Ze!ouLQfoVA-?u?pYO=Zck60w|gzQ#h;oh2%Ko?E11@`En@L6rd~QbUX7?X zJ*{9PSQp#i|kEXjh(a{v2NL3Pw@l<>2 zfedv1(I(`57?;95+1)nzGZASAk@wD!qqn9JhHHiX4q7WwYnlP}7hB^rBMi}tg=*2E zKgIlWzAu47UQ#OMc`d_qgmGFtw2Wu)))24VRDk92^zFweKrdqgP>{bgypsZOv3h&i zfeJoh4C-(w*LHrq@Tq&kD!!WSJ6+COBrskS5lCWs);54ZJ>qqhioWTlHY7T#>9eoT zcEC%T?3kH8)~ZdEf@2xtE%c1im{*;~VZSg8s*+~!>6czr_Y47+W2d!=d$im;{ju|& zV?&6%F)D@cxq?V<=) zI8SU(JG=dytJ(Db%=RRJZ&dN9Z?PrGU7Q|w{fR&>+*Aq$P!XRP(9L4$3N-#A zVQ^>tw)}2JM@{wzZ)a2SJ7@;*a+zdFGut+*7o~{xl@GeJSAT7gxq38z^SP6=+r#ho zVH^uAf!<`}(Nfue!VA=X8{{qLTdY)htnAp&IB0eO44*Grh&E%tKT>YEa_TBZBWAkr zD4tFYAUxbg_p*%-R=CbF_GfDDG&xXzLK%pkHX%uq20`LI{Y3u`Ei|ITeVXU?_ou;q zi$MzO10ds}Ol>xRFL&w)C?bqg45-U#u3a%U91Zu-dWO6Q&B+Irhqqa$xPYRxr`>q7 zN_@jiVYn?-$3@-iPy%DKn!4kz8@a1SwumbO1I)=sElm*weqwb#V{~=N9G&h#A0~ zZ1>6VlXW5ht}x=up=YjLqlH`A!*hDjCw;gS($+IEDXZ@Cootosenta@7uP9bA7fVO zg3R@;x7I@!AKZ=b=!0anuCJqH+4<>TL%QTvoC_NRxjrObgT;Tp``;}vTY}@`n`CLC z*wr_;c?8Yvbe8&|xgCic5sYRGll8Pm=tpcs{NzuR3_0N0hEUWQh`|Q8+)M}=Zg&k2Bk>vCY*fxX` z{0@-6OLiOH83IFq_Gy@as11*}_yBeNv66KA=Bv`~ zG?l_G!hoh*OEMVUD4O3syHFZ^8}+^)@+)wZ&~s!XF9uY!b36;LKm``~>#x)|qr%T? zVmq&iEQxp5XZ>%9w>at_wfN$X5(`1IHXsG5Ig@^drUBKF>(j1IQua%)XxBW_BzbTN zz)`$9L1pC|5skZIwDdeA1ou^BU(92-|EjAVEr0S%9_lB+&G;#W7zskFy~*ll7Y)Sr zguu`4vxEVA_%%z%;=hbUm?{Tc3%f=ZZXOwM&8z+5AwI_OJ-~@Q<3qAr4@IJJIWJn z9S{Jy#+rYaN_0!WPA?Rao1efAFk+dc4x-*?|Bo%0ClQ?kV$e?)WB&k({%vJ#V!e`Q zZx8jma~&R%lBApu0us(K0>SYAml)ut5<% zI3u65-oT0t1lA#(>hUN_Y*0v22W49r78O@INgNp%tpn{H-Av))=F+Y6fD9!7Q}5!A zO$EIHY8hGKHP;h~8oKQ6i4MhOVfVPPd3b!Zb#$cCZS#PKhi5gLpadSKWeBF1{95fPA$Iz*GiyfUhUK+dY@1hj5q3{#( z1GY=99((x)!1wn1i_kn7B;w4QF`YyVErwQZgK z)*!X+y3u|&)XFbyuI4|9lURWy6hs6iGVhlJ*dw=#!i$S@la&sVI8ItpAPuvc6);}K zf|ez@xmr7){yid4V+{}~)S#Gd{*8n7DxRF2Af~fu)-e{VmiLa1vMj^GTCKJX{~{B; zdAwdF;P*58EJMZp?UprnIn0)$NI|24#EKnfwAiyDoBlD2)RKq#b_)9fhZG zy1+r1pUORvB|;aJ-+xt&FNnL30~Ei3`wQ~VxmK8NDPqf+c#{mUMz}OG z9;LespdB5KMV^ zXl~Bm7Xkz9H5T*Hp7&RLhF{!HqUz-2M43IKmHDTQ*=GI z;P%GB&F9G_i5M8HQ5Y>C~eSaAr1S4=+d$9(;~d zyvwOJ=H-Cr0oB5n|2B(QwnLtUs03x$>z>qfimwQuMMO~WOa+J+fKp%>t_Hhz;gvus zr_Op64XXH|ge7x?FXX|qIY`6#_iii2Iw&$y;oK8Uk#>SENLV~>t0hnW=ne4UPEL0@ zy6n23eg!SIJ>JD=XNHZiNSmM9SSzQJ9&rxzXZ?XTR{}xPbv=0y}zCRgU)0KKJ>=qCM!c&f}oCpd4 z@H6EM*ac!)R8eQQf6t{K73SvbDURV=L@Nb)P~?($AI@(%$o1f1bdT?oyT}4jIeHq4BQm0(5yg%9SjXW4Gie-Q9_sBoTX@=aFaIged3Hq*2fJ)rHhu? zy`x*HG(`MWQ<7^k9LSyceIh6L@)TVAq(dYSATSr5jc3wa--x|{OGr%Y-yBS6v{`$> z#>QqA&K#Wyo{id!D?UgoXgX6nxbNHbPntTlklKwL-b2%mzj4i~i9|d}P_`dLkQoR- z9SJ(xo4DLbP(nip571dcihnWSct0aO4H3ecX?pe+Wx zh|(5y$fqJV6)Mnj5IrfoQ`3TJZRsW3BQ$U|p~A@P^}quIoOPtu9cYmCUbR=;|JUg^ zV;}__;cImC?P2cKoDaS)uo%9EMN`Q_{W+Lr1}bIfY{VJZ)W`R-l?oY1bMF9?2!x<5_Vg#RYS{l%Qy6g z@pXoGDHwOequ;~57P%U zNd}dMmv#nMq5qepahl3E^A1^X#N>%58+88Zl_lJ5&SQzW{=~(X)i0XcsP+~Uvuij- z8r3}ni|(wy()E0+XL=gjXE1>!e^&?$-&6w@V;D?Yhg!GY2Jkx{sYUkn^iFr%0tZe(Og>zaVu?@Q7EM`hpo9Y#S_y zLFbT6QouvLhi1J}5j9&&1Pd&dqvk0(hWFElY87L@Kf|?|KM@x*Ra z4*@W*OiZg2@B*;d2o**9^j_a?;XZ|OP19UcUVe9N-dco#(&Ui(i_8p+EX=GVF9$vt zP`robC$!`_h<}=y+wz%L7L%-YPU!B(2s2TR>moK_m0Ugw1@U=~A9PdRywLzLb1X^RbrP-QnQ+5aF3X!t)wYIw#6QIZk zrmLk$dccz}AAU9%++>0#cOap*t##()`&!0+KWEW4cmEOq;OeS*4Cnmu8+*p)$Pj1=_#4~TvO-f)L>H6CTA=d zZav?bISo96phUoBAysd+?32?*8;HKTO1q;Ez&z-p_qyH0{Ts)C*a5^18o=N+xJv@g zkctY{{fruBw&*1)cA;o#-xxJdE6!!FA^*6zM$p&5%AMywRP!3&CK;o_V#WcpYE zSYXkie9Y@zO{9ubt+W6JJ=mNeYA{*#G%Q0JJXDYCDffXzuOA&*d8Q`kaz;f-3lb_; z8*S@fpPrp%feS__1_}%2`w*ahk+&-ZZCrP`l&6; z;3=e=y0_}z#tRc-&x`K}QA5AVlBmE`4&p!X+#`wH@2@P)D|5b$XPGrAoSjCRQ>J)W zNJ&X0AK5GTBVm_Bl5$sr4szhyjY0JuS`vfVN=uY1k89Xli4+io~GP=8%k1Bt05h@!7neA$S!CEu% z`M{F1m@*q=_!C893|{8Xgza^AaRL5>>;>!Z_HRLVa`pZK^Ke$QTtZo?-!V20Ff36K zkw2n+X*{-n?rwA_rl*S3Dzh$ap-8HaTKKu3G>nw0-h!K^*S6Am&98}+wYEpOCAGET zjhC;lIpSL)e2f2Lpq%Z)j4d?Y4z4|?iL8Rc1~8Yt5N3v(#_3ULcE#B<1T(7Q7IEjl zhZ%#{)vURy;`hI*d+%^A`~H9Y-O|!fAw^20WN$LMWJXk!JwjxU?A?+rlu@Ek5|X`F zLhmw?GBZL(R>;iwJ z&i-cN%_*m;=N2)qWNTg7p!)!0SO1wt^+exl&#uO`nMQAysZiPxKyRa*X-6xUf6gZ| zsW9nQha>M{y@I0U+<52wM>}#=5rB zZgWZJ#rdZWx@VXL4$xS?`=qRBrkfzJa`IPg?U&kNc~o1vW1Ku8mxeAkd7txkOaD=g z4H#0{8?zo9Jz6E|zr|r|;OG9{T#KH6XoqC7&-HZ;zK^d0>6MjpGbacT^f*3AOb>3Q z->USt-xXMW6LK`=JZ1V~#~|nYGR4}f44Srv>v*>E$ks+AD-{K>=oUF-O2kQcE^Vld zt~VJ~7Kw|CL)Xt-#-BMgp(m!+2@)7W|a8;eqf(GE-&%XCX26adT+&Z#3GdnZU%0DlM zz3J1iOQDq4(6W*xKNXmT$C@?ovrhtYP}2f8)_OEU71GtN4-P`2%C8K0WA%Qo(@an)D-omp46AB)%;L4J$2h0!HmsK=wZ=ww5uP5C(&mjzFw!Md0#G-4!- zIV+x}7X)p(>rl%NEurkx&L9ayI~#p6PyNaz=}#Y8j+xy}-gtdIzj*Vd-lgD>Xp7I#?nI@QQC1`u zOMaJX+hnvs{OX>%t;-(6rX&h=`k;u%%|>xYVvb~}>Je1LXmQ3+X~*P+ce%R(LSVuT z4mqYm6~XfOvE5F3;nTM$cKC&a)YR7pHzmq7r)lzGjEj-%^1Y%r#c9!~0RTVa>6T}S8!$Z`)-TU{; zV<5UH=KZs`l3g?FHf)JPLun2c|caL?KJ_=`P7UbaP za2E&^^8Qm)CF%x6iWR z^^NB;kF?ev5!H2EJ&zBwE=aMN=#%o+VUhC_BbG@Zh5_~RsPYc?}epS_%+7aSko z<2iIun|PQAT=?DB8te}G z?OjEDY5=&2KLmo8vWw|@A*9hNt-P`BM4ZOcGk0A^)ANr5is0nrba8XLn0lGxm~t%9 zi5=27u8=y_Uz>e>NST6i|7rg{EEr_pR#n~d@gYg9{8Gh3ovo1CTJbLIC?57UTy_Fh z148W#Y-~awJv#VIF>0{gH2!K+f(*T|?P1+Jd%}X$J|!||cQo|nnrB=w%`&R0-a*jd zxFcAcOiYDpkVRNDq+jXnxB(9FR&_GXUZ@3uElv5aJ)V9gr7+hw-dB%Ww%Gs+1dpz= zS6ZY8TulL3Ensn1!%)Bf(r=E}=E*0$=4)>%(YQ`X?;=$= zJf$9OAf`+&@#&M+bJpx*1@{sre$+=DG6{@%Rqp&|83RyXW@fGIC?_Lq4gI5osdOPC zZL@x(#6$a8U<(4e!q0~ai}M0TT*4IfYrMHcYxWYMr*8@y*b1nz&v3}_G2Q&ijma2y z4^Ht9vq_NrvTc$4o|R_m?`O;qSSE}|>a(wE?CwUZ&sy^g0Z&(oT zCvg6Sw=T-v5@rml{3;iy&)OH zkfMLp$>wRSOiU?G5GD{M2%xlP=!5CwGB#`7go{vUv(ScS1(TQpQ>N=7jYmSy9HMd7 zQTiwUCho}`=(WaIZjt>@Yh5$n2bNq|*^ziufdXy^%i^qHd=Y|bB`HN;yPQMUc*!dS z<$s6raXJM)Md>(0jO50eLsvoa`MF#d)2Hwvf824V@Q_{C@HOnA!7M#1l^~csD}TQh zX#bSuqUdEcd-B66u4FI{)Mw)iZCX7Z!3DSH5N(5>)lmR_SQCX`^GCUxn!0z~CpB z-4KaBP-4PEt@u_Ri;&Q=U<1fK6sYW1)85ct0OP6Qi+2m}l6=!yX>9TT-pd)Ej4xef z#`but*}thpSECkf-KO5VG?E{m*lxJB_o@nkC_V_z=(QZGLnBL`jD>^6@CiDh4=6F< zCa)OWx#7Uo$pHR5(MaKd8C{4x=S6;%Cg{D(GuF;^vRD!7kQ!*vsm?%OREt^STG?xn z__Y-g)2arzUX&WM#AAA{lx<^Ke;RZ4@TELj68eE-%xrIarQ1XQBfd?wRij{!jqL&)g1a-d}i?>u~Y)=o!?*q%7nebs7n(bsMf3bTJkM|N< zR48obHjaNwu9C!Lqg^PJnk3hL2(-`xD9)hG>YZ;W=X*A?kB#<)QmhCktO)foE^gN# zRQg!Aha57uX|kV~1mV9qrbPKt*snFUJR~tav8f4-)nkInzBx}w6!1l)Z?fEYzln`6 zV?``6QDJB9UuRTsFxgjMYemY(#s@y0e4%Sxjp^PyA&_lx(hdww4aGuy1UcJAip>|n zT8t`9I1aUDF8nf#OI@I!-S(x*n3pd0Vt8}i9;&C$RnA2^Xi4SscD**Zg4yt%1#w)v9^fgrQU4C?b8PP8*mmuGF7}Y2`s=HhSpAKE26?1-q4IKm7 zR`Sp?m5=q+qLlMYp~k#1;JD;72RvIcH3{L4UdO_o(#x}k^@Re=(R(SCPK-Q@VWB(C zr^sB~39&1&mf?p@E#d$ZU5WuSPp5so4`c%4XY&$K4Inu;wd8hXldhI)GIeBZxbryi zpQjXr&G0qP_l8EbUGPO!@lJ3w zUpjU9fRgrRQ@oGN$%VkFGmC4co$B*XL?%Z!+2KjVp!J35^C@)g78$pLX@#a|S2O;I zr{+eL4s9;&z8B=UG-tMyHgN{a&ZfmB;^~9C2N=k^xz?t5Pi2fJxyMWdrAxL93y0t8 z@-M7fj+lvoTq)nkX2Zt$k;M>WRKph)J9vwM@#pXM9)iGmtThSMrAj?~ zPCRXZx!EOhqh*q5?2i7R$hhPlO!U+~?S>TZa^vR|TQuy=w;DMISGO2{2omIb0gicC zUh@Yiu%+~oyRc4Q(pA6kwiJ%9ffH~t)K8jv5zGWZ*<~BnleUCzXJz8NDP?_!QaQT# z1$HvAPq4bM!1RjyCDFBVBE!lp_}+`%iAMf@1ELTDL!3dE>9~=DHh%zWvquLn2m#yV zs#dc)7!kaUC48jl!H8^UxRpW<^YlcX^VYx}U}z$jrp{l?2oHI7>g9PRI+VK@u(q0C z9I4L*2xcB4R9wJ3`%A|s?RbAB-Prp53MADVu9^4`NMk<*{V_AXYU9sW`wg=Z_@kst z{+9_#j7*Kq8hHS{xY*H5>^dW;9B5F#8H^ejh?3Kp`j}jtzGTB3<&TDW+A7=Tdi7W{ zH1ktqFHIqzeVz5;EQe~Ol8|BNmXEq&+%hS4Vh zw=_OpSqBAY;a>N<-?Z;$4}WG#OvKH~MFK&#L>^E3`Hn<>Orn5vf;TbHa3^=s!xQpE z%71@NePyu1xnqRrIP!ybw7bVEc(>k`GT0KEf|S3pKi2{8%H^FiW~vE0u!|AyY3z_A z#YJ4u+wzLWVcVjU!b_4I2nEKE%9J#ba^E`)v@h+R_{me8z$hM2Pb#V!0y{w$0tMi}7Q+S_=N$LZNh^;QB)+7tCf#F`G5uGAFWGL{7wx}xX(91@nHJ#(9?3ec{EMJ42U7|F4=QGi3 zfqYb94h7Vnfgo(NVA;9Jbc@7&#n5;>44SOQUI(U7lS~a4ix1kCMLGUV)-oDxc1I?5 zPRQ22-)Cdv`UvR?|8(xLT1+6*qRY`4yZnoTkm*_}<`J5#!)D1Z)7A4n0VeW%5(EDr z*^n*rUGp{2%R!44l;DN_=qiwr01Lge{cX4zqF+0&hcoSPH~lW3~Fu+Xph>Pu9#zTv0p(&m+KB+e&a_+8Ff;mqn59}p5(2){z?2GhA%(X zz61VV{KH%ll+z1EOVD-HUToY$__*ZU=GyO6xDvACju+TuaDQcs39(UMO0S zHNT{X0a*>|1SpPbYT^#MrVeVe-IovPBjnY=gl)dl6udp zvUU;*Npwd989Ew`*Av&T5)1&GsEvJfb|u-f3<-USupA%p68Qzd4*E`|JA242;Oz*F zrQ4&CIxC?lsPZ7O1aaKL12a{2wWY!PXl^Ao zjjkJ$gqD@ztYbxYOLy<>_K3etAag#qb{+jT5ov)*^A;maT^Bx=UJLQ6WM+ael)tBY zT9D>q89#5>ugT6w0^P>%S5KV&R9F1UOP6ppLr`SmdYS6z*!J$)>!a~iaG#ppQh^Gk zdRTsBuBjoEXl`(u274NpJBNjtRL1V?;ChXoiBzInLU-Pagf69`zOug8xIOTX=4KB$ z9bY@S^}QZH=cj0>y#10Rl8JZf6AKhuqb%vFb;lJNZf}Lk^#@Iw;<=uOuq;s^dW2p1 zgkeei&Xu>$o6D+D*LynFOuD-HSqtsww=qOH5^UU8r|T(wm+;M)RM@fAU?bxJd=Hs6 z$u{3P887FrjF0i?;IILS6C04RKaeyy39}()DM}x%nLF7T3@AOE6NW^uYtUxhyz}J6 zVbMiLLfk@qmbvwSmf3N~?JX>#M;Gk(gLnX7}ve%&RzSmIxt;Ib|AMV48rxc);zgV`RMM&WaD0 z^aTZj2^Lypi1+Tzgz@YI)l3N?*04Z4QvlX z5%*k}5ym0t!q*LJ=CO7y7d2U2;sW+lkWqPZIp0)aht2rLW9!dnoEO)7F}+@rVaY$# z*;A={J@pBgHkvXIoe<`YCfq|mFMf%lR6ZK+7;f`+H_bs`c)CjeaVHeES*{;=0dr|Z zU4!<)>7#=34n01f10?~=>V#Avr2g9-HZF~|%5(gzh89K^w!BoXTAJ)Mpi^$AmZs+3 z=z_VNF4O9^V-Ol5P~m%f51t0(3`x3O&(3x8PF3qJ?o*l=_vI@bG1l5=6V~1nA|DcF zplmR_^mME|GakRfhaDYqhoF$z^Lyu&2(vJLyAmB&PDK2G7N~Zjpb_}bgL^q1Wlt>r zAuOg4H&P^j(D`elVw$#v1&>lsDEcys77y|*ES0oYSeaC6Ah(lPE^%ymSN6mccAd)C z2dZ4kre{uHvHnzA&Pv-SXgB2(+Ta`i-1r($_@FNq*n;QE z?`h?VQz{$+)$>)y^9VPslzsip zf>@QLm+F@Q{iJKMFp+^Lz3v;^hTp2-%3vf7y=j>0oa%w3`lDxQsr~e%!e5w&X_slH z2I0KbA6vPJ?i4q~HDk`*fwN1KOHF#<2D-syoA_hg!n+Z<0?cVEbG=&Xnl_&xb&0G@L+Kl$RrpXWuN#deI! z6F%;lGjkLWzAqLJ@#runZz)Bk4O@sSJR)Vh~7YG1)=a`V-u6zHoV z986>ie7EK&#L7`DzR%u|ZPQEc#Cpmxt8BUKcNz1Z^%-(r&%l-~x2y_zY8(yU=6-8# zdi0xqyQ@|5tOis<@b(RO8eP9=!}afdOCdz6P!ufxj`xm0f(8_hKOM6(f@P#IXd*)Dm=(hyn`t(<-2y^5Sw_immHHw1>7pXblM}J_oMrdD`Std;lxKsKoa&O zEWBEDhM(*+>buB$|Bri#b^!zDm73*`cJofb+O3|td3xay0H)zglguPY*^4#Xvj=aRGL&wvS5Lp^eAbj%-`=ScQ|~?MHSdkubC~#{}c# zBbd(ZFZ3KZQ>*!U_de>ks|SC>bNKGf?HIWXDQV^pi$gQz8HF7gcfFrsX__y#@N&oa z8Q+h1%G!?U^hV_kdP)&_2dQ74LnmooY^nIERYioXv@b;*r&4%~0G=~2PS%~`37vN? zX~b$G+#1Y^s7~m1jF;!Fez_N82&oi+!u66Wk`JjZBEQemx;}I%bh$cQ5PQ0M4;7Ej zon`9b%g+xgs&HM!KsZ)VbPI=m^v5^$0GXR6VgAPjU(>xzFxF^hJ-!T_)Ov7j(`o2L zMXvu2$`!uYk)5*?;y18oXWmYa_5nqL(8EoQakFK!QS&~k$oEG|)MiQ2d$|NMg3472 zX+OQ_x6nXo6qJvTl*X~(PxjyAy#Aung5vxw^{}AK#ZM+R69*K*DLDx`l_2cGSB*X) zWs#}&pR~ZICT}{QhV9?^=y&G zBGih~ypiaE{@hRj83@wM*CA7vkx2Gv5i;ICq*(r|qqrE?ty_mvBm7^y zc)?ogu?@7WF(|r)#l>$wegq)D@al)iXAq?*Jtk5^{P=Zk#yfK1)gO(A7{}zA9+fLE z5`eU~v!Gu692^uH$xAqh>5yAEM!vxw`ey{xm?CV=VWspWl(pG$+4;H2;4%og7=e7Y zU1K`vZfWe8{{@Z$BkHr#1O5h@qs-<( zgY@hj_szEdes*boQpLrkU{*s-Z69Q%peUz5aFxGyn>AlvUXD9HFy5I@$7{T$d~Nl& z=MZQ~5zi%l#Ypz2dZljA({fyD4GIbxK)|bOf(}!-<3vqQ^@sLA;x#XG6dvcwC#;Me z_G$x12`^wHCK zKLx)l*c?bD=f7`)l7{cs5>t3_lDi2RoSMsAyD4;UwP0NvC4L8$uPy~bA~p49I~U0o z>d=mSn?^{gni;s+*@M6zau~S?9f52ZlguZFE~ty{K`-4m zKK^*Z64w(@M0?e`xUl5>;wF6IG>QC&*5%Gdt+~1wAbGxmo=FqUf8Sxc(V%P5kzF+R zo!0RakMh~kbMT^16P)j`?$AWQr_?zP5w=QQ40n`n@_CPzu$to_8lG2wnCZ& zqm&RjH!CW#=clghB)k3^%bqfZQ>RYlS#`>mx}C^h|A^mg&r#VRl0jWG&xl?huPwap zjd8)qz1&XAnFN}67d<);c_pQ{4HHulSD}cIdo1esIy<}n_hflKjq|5Rs>tcdYLOIL z{YD_WBNHs7rKS0+(iML6%^GJ16hPY$`d2}t9e6;X$4CUZQt0uWM7aFnhCKfvnMT0V z9O%Fm19Pe{X4W$*pPU`_F$Ys-h{RStpfG*s*uSU$T5%4CP=fVO5U`j6)qQo;rQTq^@W15fc0>}!q)Ain zAzTFXJ!+iiV_w`|o7-lgm2(1tOdmlz;w@qB1gt=R)FO0a@1vC-cu5R=b(|MtzJK*A zx{)6!1lZX4oq!Cpv!Z&Y@#6INmfADEl&(MTSXu4|?MlMAAy*JEZC2KZW36`i;3dat zmTn!lBr5KoP!+cACE=aFI`A%x&i)(~*^P6K)8qX71~1F0ql7>H&@KR)-LZ3hY4T22 zGBt!jx53fG3xp4rF)Q(*!CqNpM?f4%=!C!)5=y7Xo=&_#*b!nP#9ino{{u-`5iKlQ z5e5ndZ(FD!!xV3tCGxG{yd_bl^M5YtjDlraUj0@p!zm|HFZ9s$4+R)SU*U+MmRiUp zlW@8~N|~IFPHe7<0rRXA(NByDjB>P_k+9p$adoCw+=CfBN@k+fMH}?A(#7(_N5fj- zqfc;epP-AqEN!3aQ2#$DU*EocOFCa@e-)+4b*5hE#Q7(r>Hz9QV{*8Qi_1soUh|-j ze`!%R{r;r1j7(F8z9gifanHq=!dGN6Q&jG>aTB_TEa*@B)ycSZR2NGoktbHvOvL!d{n;y7a)d2i-B}BBCi0>Bo5tH zB5bJnX*>z=%IgD{1Lb`cX6nKTL^2hre((ggZ|_ zA#LJ4?IV9C4;v0pLTP3LOw*rJHJ&h4S?o0J>-P7cTVVN8l6v8Y_Z@y+Bfw=k2nN8e z`-{DmFCsiZ-unKap~AG4&;KA>g@`%_LE|bCi?`V>y~O!^4NxY#OqR}X*}lEMbiTW) zrzajtWXYdeHl?#Pr2g7a@4oSyND}uC4$k#rICN-Lx^-_@P=EiAs$CpjguWI!mO5Z& zBXjOTvaJl~eus}Yi&v{NrxVE-_;Zon9zMlW&Z@Deyhh8jInEv1d$Rb|+nW2Y$ZX`p?}>1tMar;uOr(iQW>+eE0ZM-?lf1?2W*MMGUH&%tzLc zgoVXcRWsZ@|AC|jN;1S$@0*99hb8rLI@969B%J0^Qc~iw_&rK9*PL2VP@$*h#f3zd zkIL^ROJ;UL&;JC$q)*vc%VWELxBuqIDtDq*seBcy{x)oG0JZhoPJtd1y<*q2u_E4T z4WhE;^ZqxnCW84~dq)>HYdT+H0QA~7GHlj$L`9l8G0D|LVcPd4PJ|0(@V24w&A#5j zR=U<%;Mn)pzpbOYT;Ljf86!v^$9_1tFx5{l;Sr6;r_pHBo^=OjF5)oL57;gZIMT%Y zA^Mt{>$K4>-??j-dZje;K{kwynpUP$GvDG<@ct`1rPyrYnC3=XM%Xheo}6BPYXib@ z?_rEZkYt5~P{TW<^DI==Hq?uk#utf)`E=V)Wy&TjH7J6A;+4{Sj5TdC~y_AAm z{E+BssG>I!$Asbl-%!LI1sUdi`PRDd<;9unqb(e-bP6GA&$sExqfz`MI>WTMP%99A zPC}5G`R$Smd^|V~j)=!*Q+rW?-pK}p^TXOEJq2^D!2(P4w5EBcW2 z5Nm%CSu$!fuS^`+$+Cc_g>jSd&ac0~kcPm6SXN+6IOqObhcj9+!}aqt$cymN~DJWxN&b z<2nP_k=P<(jGh+#{=IXsXSyTc7Y!0zh zh8u`8?%#KfBQl4x=^?VWRC!et1h&&qkqv+zO4uxjh^zk^fNH2_lCCj%heWB(SA^XS zz~5ESUfcw);0B^*-Fp>U2`Tj!W{%8uJc2W|R$WD3mJ0s4MPXJXhXr%ua@u|pEvJr) zabhwW6D>ykv+y~z&R>(QD~s62OYVm}6E)0>UR?ayNW`dtqS?=IE~^4@E4OQwoojP( z+x5B^c+2Tm?*J}F7-;Y44@C@0`?YP@fqdtM)FX5g!M8-DFPRy!J3LRPHloX9m&}fR zV5%zkHV=U>F2~I-E1+P(pnmxrz=y4s62Y!J?K;kO>wMTOKXO*W>oeAFq zwo83@Qz1ID@2}Z0Hr_m!G7e#7J-QOo0!|x5!KvO*i=*s<5baO0#R}u+ScErZJGz4n zL~9wua7yqT-I0{aRP;1|l<|q)uVw7R!GTqxkbF}fV}LJ=NG^|4j+3nor`(4aA0(Hx zToquoi61CD+sKnv!+ki#==vMMMQ%{Ut*4P9o{f2XRiPn~981VryonD+6cXq=a z1mwoUy;oajOsDOm(FW+UW#y>D=$R2=*qlq5jHCJZ%|H8L2ARS6VZ4y{;xOeX!#Z_+ z&uZxC*6oL3jIc_{1mLmp7}W&*o|u83ir4Xn8jb;S`8}SGwzAf<=OY$s+MRH;#TM!Z zs1zc=W?k$m7ByNuKzRAoj=P=(XFmlqG%=n)4y7T#SXcq`UrR0C+_Z^2(bS^>e(#Q! zXe`R$O={npb64-A+cS+rThC`0h!aIu^;xRM`k(OL5a%;sk1+f4k{S{A&v6c&w45BD z_o|22(h0MZ8Ib0~i}}-`D^VlU&|{j+8nmD1CeAWZEq1b!4WU=S6C@6I#*@LkNbLjR zr-tcM;-y+4RI1^&*$IoR3G%ftB^Sp<>5x1d-sQu!G7dm9Vs5vPqIVnT9`ulB|aF)^vIbybJs zE@vB5uKzn53gbe`Y?QE0aNdt&fR#`451gdS!q0!-e=n>3^ngN~`$XaI8W(r>Y>!3z z_xD{F<_wvbLLnN4U~2tt#6tpY6oE4o?1+g{DG#A!x0Na+{LZ+U5s_auZYDCwNRa3P zD5Z-a--dbwN!{Pj33J42fj2O)HHQ}?5CAT`U7o|PdygTaMm{^C{&j9<{TpMZaP6dG zjrAWhjpT5o#ak$ft8f8@_TRVd+_@8jcvH5iik|n1qmIr*&&0{}novd+m_(LFJD8*z4DB;A>%Nb`CbpG=^c)!HoKe_)6`^N zdc}KZKLW#^3!A)=ZZEk?ppnAY=^^$Z{W{)R<>v>v&N?Dl##ZeoGA8~TocHJZrdFmV zB~fHBsU#y4Za?B-O(&Sg!<)ZkoWzjQJJ@Sto0S~(SE)EEScdfX%-8)=cy-o+!(p0H zu1nPEwkOaG9~BZuYuCR!G0;C<_WR;>Zzpx z#b=hHoC6S|GW5Og!P9!sI|6^^R-VG=mkDXj@zdzm-G$`$`oN~uC{O@AwqwXS2a=o#@#3F zavTRP*Kv%texH6|WYQU<8G9afj$)c>ZEipTM7(-JdunLlF3g;t^D3FbQ`Fe8rte}+ zBZmrVBfqE{7rOA$Wpqdnze%jbu2^*TS*u^a2>gvsVO>7 zcmZz8*3eLe(I?1E(GVd+|1G?Hc*8a-vICK^aZQLm>?_$YlOQs%GpfL%4u?<4!JnMs z?|)T5a>c-6E<1Qfa|WQ6;Q?VFAStylQqxONV~%b{V61Os!Df! zlQfwz5vn51Wl4S5Mp}vZoUqzYEtN=uet}uU%WQT#w5EfdD?QVV!QRN1LAbpx@@0fQ zX1GBn0ET~;KCI0?T0%*RAWH+MAj+Sw%8t>j18XI#4|j4vam=JbO*}zfACwb>Ofb)-4Ool~&Eg$lkN$8#1bPmtn+S`XLA0yt$MnObc!7l=u@F}TvhJt4 z1f{Grv*HUvhj(LndI=GEjZ3p=#TOjrlZh;Tkj@qcSdSC zaPK}A*wee$2jaKc*yIS)%W{8i9@(B)*~WVy`UI@c0yzM!V99Ch_eAuzaJ$G=O<$~b zq(`0x>p*k+YynPuj_hxx(J$d|*b;tL9&B;Z0F zb{7!~eTXm6K#m8Aa4DC4bAi4lI%U2K)8L8U&ut;M-NWI3qG7RUiTCB)ageWZDRjiu zN@oEgjDYkDkEY%0>M3Hkly}$yWI``(i3tqJAqe`gMhW^6@+(+mUwqR&`elbI(r4QM z0HFWDbgTlrb)7IsA}@=jb?4jCUps1^BdWU7$+Q@}_qd&-SeQr{etscL77+M-JMT~; zM0I&6e(ikj=}X{mqFUg+-Ov^dm-B&gWboLmv+^V-`Jw(Wv_ta)W0z$KB z6v28mLd(utA#_+KTa#E;RIXxw(9@&1T`FPqtAIDMk=b6cCA@IwrG|4f5j%Dpb zi?Jd@kLYsS54q7ySY#0-2r4N=16fR2#3PXpd45$GnF3#dI4~k?Nj`^pmREtF zRm(k^ee5;2qI2_~k0%FP2JJk|6n^l|pZFsr*sAioUwZoIc`(nUVEGx6z^JPQpNva( zImY_ucf!_Sg7EWON3fH%)wLaUv)(b>-$wfsQBpPkq;E(|6V-;t2Rr}d7q4BtWjD#C z8Eej4VgA66@eblWq5PEKvK`?&LHU8s0sScBO4gz=C|~>U6Zsv|%+Af$`2G~;7fLok zylnK}5@jA6=gID8=buWowTTs-^e5y)@cF_MZRil>@F9X#C1i;K%DEy)U@~@KrKcDdRCtnJ>lz)H7 z5Ip{`Kj?q>V+BrN**kz{Rm(AYN_Xa25%Ao9xxX;og^v=11DQ4c2GfgtS~}2T%$tcr?x7JI*hcoAI5eAV*8E&nuAUnkVHDh~yTpYsOqkR~hdEx6 zwl72mN;WbyYC{eJ-j!Ti=0oGCdG9Rqd`E%ZQOrsnV+HFsZR0j=px4T`e!M9~dcb>S zrcn|>D);W)GZ4>%FFpB3eT=-*?2GvbvVhsAfs_-59drz*v-EJJ_0RcvQ(!5wa#Z98 zuXKwkPCu2pGu)od3VUt>#sKDH$FeM1IsZM~>OGEbLmq@_cZn+nD~;r^$Zg1mf1 zXXhgjQV^9ftGj)FpzbpJMV-;D`^y)B?ajuVNC@)}m00qF`Dp$6^*^VkV3XW_pI!44 z^wovo<>it%3QhzoxVEK5u(}Y3Eb$bmhK-pf1;q7D_cwY3QSD(r?&fA~vkE5A3x*>cEkA-h{NtlXvX~nTIX-W}&s^tsJVlA~e4N`#H-|uVx#Kg|i zN=iYM3exsbt$OakaEejvI3Nu#UQozUro!6+2)}7RZ)pklsJX-}O<0{HCY{yAA;!aI zCm#D52g6>PW&VW?h(~RdzL%K;Jr!AoD6(YVJnJrVPXM~E8zTG$^e$Yu04Vn%Eat@0 z9os69baQF z&TWHN?Z}ZML;wx`og3Qu)|nU$MV%+=@N{pKmX9{rXih=>k^6wLe(sT4x@|=AHBgNcifPHUU!)I z8Uy3zeg@Tnl)1&B`0Iea0;o^cpo|hr=Vyf!SsauWyIx6~=%az+$+8a#YB7p`)?hDS zyd3i{0l0?*e2V`?ygyBu(gSNd_H+B-&J*wM%4{nl9|T0h->Hru!y<@L@{qh+6;f?* zcc>JC;RtL3uW>jfl#IQk%FmWW+F7C?{f}BJrSh+V97;Lqw+49m60sG5(Afc+1?ciH*b=L z+cFaaPBKxvJpXh(;zHJiM~?4fQ+wAdts;xdqT0|^;u-;N)qdiu$l(#y9I&znV$Vt+ zdi&wShouGZ8?_l`=a8@BAfpDxQzcEqk4ZN52y=qL;-0B&6xe`v-uk+#6#RMARq5UmZB6Z`RrbZgy832*#+Ug3a z1T1wBHUQ$6j^ky@k^sb-bwfcqP7h~~A|^v@T4nlq2HvQ=LtGaUZrfGL*cal0XKER} zN#~I>v5l6~(l&uL8Lf#tO<-VPqDAYgv9E=DeXdmb@>qWrzNP9vKz!8UW5))=jPSM? z>fY7OGFCVsV1A#v3H=UbJ~;I~d-fc1lMoh;p6DvxOG~@C0{KM`FE#N#AnF^=sqMuZ z*pgw>U1H|x0l)L_ynpD$Tx@Ar_L8y2N3c~KBwa(G4i@^krnCuf5n$}2LhE9K~eqqdkA(t3ql3A)A&~vv7SX^;z~22(;MGAjR7Qb9Ri#b(5F1qu$%Y>LOYO)v@0U z;Z2O$D=U5cLW1z^kioX9nJ>GK%82-4NYvObujSheU$W5#f3fcuf4gV7&rd8v zQ25=K}efxy<58;KTg+S}>y0;1r{;%rhBeOfqZWoxNX zR4?K{O=B#Kv5wq89Eol>Gk6ZI6D~awnC9mU{dg3*3mJOiiHRo1>rsXO{wT=q&_jaq zpPz6-(e(F+nT}{v|Ni_R_+#dS9slKdZ_6}_UvOhNdmr;QZlXVH8T#RO&C0}UL`6Oi zCJ;;GE?S@SDHmBhJUnb|Z7X08#+F7rJ)%0}mA@!v1Fv^WpHF_i(A3nFS=l^JNKR{g zflak&y2stie2w3#gI{+Z9~m}A6dru^ZhwD&5A4_Xk6*Y+1gxO&ha3`rAAC><%?7KO zSS;>pCfbQ^uisWgpMjDm;y%Yt!X}Vp{^cbJDF18xH@|7Lpw+|KDWq8O4IU(-S9NL| zhDpRTo#`sPez&{SJ=<%=ZInk+QW7ZzXTY5kEg!*ff?Gx>_1daau&=LA5aHeO2?W#`+L0CJkcAGu~m_sdpx81bjrO}T;{u+!2n(DDstSo zY16mS(MK=ov9jJ;3U2tAD7R~RfIM@%ht6T-(|7-jBe*D$(8zCSc;D@%6L-tWJ%2Gx zgU4yI`&{TDaag$vlaaH8(_wFjyU(4^G?W>g!fEN6rV-4{%*d}vQyapD;5$2Yy-_@> zW>N~@d!U>sSTLg$JB=Uc@%qhi@AG~~C{fHhtezQG2Y5iqaw3FfQh*m#Kuy<_;8!F( z5BLxdKS?1%&Ga36Q&W@2+R8i;`F3;D_P*ZU)2qviTeocKy|qgMQs(i90)UQH3x;C5kTfp;_{WDr|C5m|&i^EEnI)}p(p;nshrza%8SjHZQd-f`gmkyic~ zB}zKp+raTj3fYQ>F0rH78^G#LLMh{Q`PoZJ4%0(nNFYFUS=sd%hc*!|dU7}mw#%zn zYB+}X#)}uneRnbhR2wSHH;5NIPd-QU@wU2p-Fb+WmgdG4(R&x*_CvmLl$-k=cHHL{ zCr$8BzP>lk)L@sryBq%;%gW0ePGIkkUh0*3#4yPO7{ANq(k+t4Uxn@)#QWVRPYz>! zG738pSsaFEFxtes(8x?{o-p%_F&2E3qLs@Arfyv?`U6vBZnd>PTlVU)&Fq0vmwr52Oy z80T)+yC+niYlKpB>BSP#pON2qy~$Re;R7SA5XX;0f&@OZ?zPlbW`O`JP}C$0Pv}J! zo*G4PRVqwU2H!>cZ|JgWx>oMKer&8(9QV~yF5W?(_N`2cTpCL-N+fix9#B)5HRM4E zX7Mx$M2rV!2b@Sk5)>39{_*oG-Bb0gz(mOP|E}sn$I-~y%;aQKUwuh|U_F(`qSava zZzM4|0a(BPP2`gycB__JupJmE=AIh$xKE0YvPTXyDmIqlRPpq?b7uHv(AJ6l`?>$Q zsBHCVCv+|UlBU=R-=J?ep_yeIz(Wo^zJY?WqPtt-3?I98-dNa>xR}^Q4-^7#ZN_}_ zFF(Q>IrK_|S65f*CB0(NSK6&CIc}q2kN#olJ~x&r;WZdzdPro>ZioolXZf=&FzZea zHQIQ3;3Rp<^0HgEHmv-fAA(G&5(mbhYD%mw7>zDMC4;4WbwxBWs+WX%!E&xYL%)2d zPjT_7va+&J27S;8qZc3M&?rt=iN~_49D+RHkcgo7>N2qrzV`-jgCv4~U&Mu_B`tU3 zw>340wRk{TE;qgY9d?0q@r#GeSmWF`-Rj7-P{kNYS?;aX)mhex>FrWKq!ttI*5>%y zB&? zHw-}rU4jdC6Vzhil0vx?)LIAyy(l1&8$&FoKRbu(dQ8@N5^-n-o`3ECCs+?{3mKny zBPoU&^0|il?#W+Dukzz%XAu@&$n3{szv@Y(?C^J`+J1X;`jhoPm;?}x1iqW266H@} z!{6K7rRO<&iJpPsM$%QD7@p!Jm3WDkXU9Ih45c&~g+` zNYEHXogj*6VYm}6$(4(N!Q68h35Svn&P>2@m>f*sAU z!e<@PU3~m_-fL~e8AadJvmw97OA)hrvj>;9wl-8uvY4;^fC@ljO0;vo#yg`h@7j%b z2%sIUMfX4`8-Ru>PdT$6@)<<$38=r)xq=YF6t?>$#QqS!IogWXs^O=Uf-JFp zBgW4IWVP5#9pB%u7Zt!iDVo{GK)nwB8fm7>`fi7vPuOW}KOTP~1~yQZVO;tWz-<=L zUAJQuVBD+snLLX+HV+d&ZW-|tW=uGQ|Ni_RZhMKp^nd5CT$B{KLbvhcQ1(?4eiUSs LrC&)I-28t4?@ycY`RM(jAi0(jcj*Y>iGfCl20;*pw3L`K1R;As5K`^kJK)N9He5oVBn0DkyU)j_&KmZf{wnwEUlyjM*CPS z{quk<;gb&^j*_|$FBW_6f9OtERB%~2^sd|4bl9mn>2@^VF(KU%I?<(~Ag2I7qf6fe zAjAg;Qfdz|@WUL`L5huy9fodPA_=}O{fylLU$LuLS*DSGXpjiFL}q2tPQQ8pu5rDd zEVtpK80gR^i4a0fO-(Iw-c+A{_0nprVK!D$ax>Tu25Xm&RL&0Bh}{a?thul?u7Bk> z!U}`IoD7qN5VPX7nuLO{?H}33DG@}xl7oYb#ZoHmeUOH2x5keHf^z`&!qN6_*6|stmi#JV963Ng_zXBsuQ@qc~p~rpvn1YE3 z1FVlp;na;FMk-AuQ{f3C<9)F9522x0IDl}T%*glPBfrZQ42+V%@0`8n zx2dVAx|y6J)rFRq7hhaloXOU|gEUNni;HUy4j&=8gNIabc3ihs7=9KQ(b=O! z^EF>cQpM4`dth*IetrF32JVV>-}f3eE2EdQOK1TaFD~3xhN3$#hFiNTzusRLyw%mp z@!ag0ly4$7W_cL&#Sqwtj$b5+P^)CbN-MiOhy-7*b_wdo9;qoTlruVne zH}d;>ds`c>k6EB+H`iB_6i-Y1X2s-xUjAgw+hheQQAVU!?Ic=ZJ55ZDW>z#$+UN9P4Ht)6t}#a~cMr@k_a2=&ORd6XTRS}?WBwD7ZBb2Msd-;3klms;^UrHU zswG2+MNLgJrbp|p&o^~E`8spHf4>9R|KiOXR@;Uvms;=?(rhH>=)|7z^pPl^|&L6XIQ}aY8 zBm@Cvc5`zhr>95j=;)|^QNkcBOsb`&rCImZIe%GAO--}d==LWpvJkM#d{fs$*($Ld z=9s-AH=d^#7nDz*-ik5s=Bo!p@^3!I#ht5KO==!1HtsJqS3EsEO#zBi2`DYL7^JS* zX2@WDd-Qr~X^H&F6Qt>CXTQQi7Us%1WJZJfTCEGuQ9V~AXvXufhu_(*{)}3V8fRf) zVaxWSbeZ|^Vz*(|_6iLCIW{)dtYsM2Y9vooLgJ2X)$-#h$37uwYd2I)ULHf==gK(< zpAGrRlP7y8Cz8p+UT?s#^K(sp<;T5S=I|Mh-Fd(@2}47}d=8_wP_j0!lWBjzf=P2; zi-D)sljZrno9gQ73(GMEtzVwJc<}h~orsPP-~nAAGN&u?c9!`Ui=iS$U|-k9OKE^f z=`XX=&~@mb(){sS34NC70u2p~)x4KjOj5GBuMg|ht5^6U-kyn-ge5kU+`7)gY6xQl zHnE^`0nNXSV{YmyC^WR~yL|kc<6(_OutKXLZgaT#WVJIxLG=dxhYugff#u&K(4Q^Ut-onSYwY#%=_{jzRhrTaS{{9VJ-uP`0(iy z8l+WhB%XHSK9r?|{0x&+kd{(1BodQ^U&`IRD*yU)e{o@XnF>f>l=J4uJt&Uf*)pH| zEqsd(G6A#&drt#RoAA2PM(iW@{O`_3+Fx&d<-6Eoc`RzJtEp!=Z*178U{>(;{_W!j5Az{se;&^ErrByY4bW zCR=002cbTfFMt&PYHO49^z>ZnVrj@bo~W31iHE*iUtM(NX_YR8Ns@-qseEteTTP(E z5Q$ivS3k$<2h>wY( zxjH|_f!M9bSlz*3Cg(@%4{>py%FwxA9gkY&-%PvC-h;G?3`O&oiFj;reSCcOkB%ba zZL6hMy5lH)t`C!20CfmiLn5E`I?>DB$)r>ix%vTp0U9qYDk_>*QMxlZtYN_9?d{F( zed*@D*Mz#<$xw(34OG|}jMumpI<5T{l?cLr;&XE`yWC1-hno@Uv@s+d7#L_-HacXS zUR$dROt;xZfym`vGh(N|ef#FHT{b##MY^)Q+yS)nw(orcb}_Tw1iF(MkHVv!X&tD& z*8Om6XK_3^nKJk)5h_w6UgDgH$bs|o35<8K^u>_SxJXHx2B;YLi%>100nVFuMIk^E8odtMhWo6|B)^Q>(%ShUcrK^+K!ZJY?7R5W5 z#I#^(;ZaehI!VdNEHsKqc{s9f-&P|;)yT+btM%Tq?~2LH!^6Yn%Rt8c-QK?KJX=kk zUGoy=8231tcD?Oe3&<{iyBWF+IJd+)?g3bI+t+D*K>RVYF72$(jhCND-iXO=^=3iD zZS==uiSQkpOP}W)?Cie=2UUQ0Tj{_7NAE)JNBxqUc_P4mAd%zHDC9*=1>%eR7#|-m zFX0;Jh?6Vvx`6ZBXyN$MBzu;O90U{b1cEhw@b{nezC1iU6sMyCQk;K0uC=_hGjhKy6cR4CiJDKsE9xL3|L8^1mLZ*Xr5(!Y;0*cIb4VxP?VjWUCbonumt#?k&dTMJxM|}3VJ}Kpf51k-R!))JQbgd?Fw|r9sCv-OHWC82DR_aH(ODu z!ZjmOfUV=fPoo?$>FYPSVq~DF|7F51ZD^RXw6Zc{vDz<5mVfN^pg5WF@@P;I`5CYa zTA9Hc8<)0W)19R5$nCR!&%HXe0%Ngs8Z=M|Q3?Z@7hye!p;r7c)f& z!N&)eOxC5XrDlCoJ1M5Wy%bnplbsx*V`m?*y#OXDf56+S1|SnQ!$t@Iv-@VH<1R7g zz-l+!`u&gv}zu>b@y*KD!7 zd3cOwlL@$3=O4fK^JBAL5WBoQ>;vfX0jbZWy(cgav`qN|BiUu4OD%W?K?EFTbADLD z&m<%y(iVjx(stvV*AN??_TvXG3M!@;z+!$E^X>5MNhByuA~;87b$vYmv3DjpFL>6phI#}a@k!Jb(SAFuVJK$b1D!197<1Ssh9P*S0- znI>C1pK|N*_aHLT5os>X#1grD@NBw4$R^lz(egm2*Dm&I+S-$IpYqoSfd&+=s={Bt z#GXEVI&`iC43CtY+z`In6_9c^s}V-vx9)Vsu(SdGv$^dV`fskTtRO=p`8xi<-SX)c zR-PVVC?$Kr38)p5?u&?s09T4x=W!zO>=^`DUG%E?j_1wQ35b=l1|8T1raqHVYd_Ei5cz zxvU;PeE5*CE?)@1Qs-!`2IJ#l0IbKOxsK~>dOcoWO_rK=J+>Y%Y1wgkw%s7azt^2a z-CT{?+(2_l6xIaqtA0=xU0KNsR`Z0N{h{ zRgCWY4B40kz=P&==?Ji`{$^#5NJ&Eg?nD7W9k2VrQ*W?i>LDXvA|r1#N}czTK63?v z2>IRs$XPBxn;%e8$MOAGNoH8f?5ex8q-4w1@$z(EdlSjGp+N*O9T0AE5LGj16#UAF z(GQGb&=?_jy!6$ops8Zk`*UrrV4gt(DVE?KbbY#rB^S$z1hA)t^5wBbulLYsZvYO> z)`);*Lm8X{1P}4tHb0{@^aJn=Jd67$`BYS9Cs%6yM{G#l=H9)%fg_ZTX)^BdLY$EN zd$0HQqWOL9L`~%65R~9hHO()kfC$X0 z*QskZwDAb zD|-@l6WH{&$MMETu*(Pp3=0Wq1+w*FYHEuAo(s^L))11<`ktG(P=KGt&IXjqpTC0bg zY4aF|NCG!K7BP%dZ|D?-&z=fjY;ol2)jS3e@wkA9i0E?{bIpAOo0=s+7eDpPMa^ATb39)M9iISqp#qwpm>+^Av)fQHt3uL}@% ztwhq`A^ZnGU9iuen?a0j>Z%Pw(MV;4!R|KW0H)4CzunU}h{_d!Ns zGGm9#`?P5XM>fygQ;u3C&B*#b07F1zz5yc|Dg@WeuWt6oS_JUpQ$+>OceyxaI{|P( z(#eU_`*a@F^ZIPHY$KXc%jksdLw<2`vd=Z&N^jz4kR9?oTaLl3;amGXWPA&{J|AuP zY0bR|V1G7O!3;2Q`v+Ytqwc}Ii2{_&%$PbAwkaCaou7+}B9+_ChJXmJsjCaUu;H2?INwd{8p~mN z{{SOZRnT)*2rCEScNPig`-5k@5&Z3r?f_#9^U9UL6?=KaZ1!OqJ@Gd6+HOvR39B>nAF zrG4doD-jz&u?XD($okj$@uvN-n#O#?&6Qogjdpc12zo28;FC`%V8OvQZ;Ifees{Rm zPi-;e`6Qq@pnty*IiL=jWW)9^Pe5uw@Zj)pAIxR6)EVQj8>?|;LAY=L_FxY7#6o_-dT}78wisU6@S;QE282pbt5V!=FsI}x^f;@vLDO# z#mYsx9C3%+oDikk?6GMl7;O2szzy!%0=hJVTm)i>UTb5yY|1l96Y$c3NAE7k4(|<# zB4*m^nx>(kxNtb>K)g1W?MFdzaM3Y~7~O&MCJP4J>YkzF810Mv@skr9d;Dvenpr_I zUEAl-&#?BD?jCl>E4dD4wpNTuH|sP66%JiN^N;EkZ}hz3mIQHdojMogJ_Nu;^V6`U37e3_h*?1Ajo%Mlqg z%bNYg+RNRkayoo9Pj%QoE5;~BCKPSw!lcxtqfH(qleRJE^2(OTD8z)~k;ULp(O55c zFUU=LpggN~*`=qERSeyB&Rf&WcaTu}v=q5A_DSD;-hgFnMix8l=%7BXKg`JJ>P+CB+q3ISYSLyQp5`gQ2 zvCFnwzIpmJ+G0V*TxH~HP?$qqH_hm$~XFeDFn~YLv94XilVBQ~+#J8*1NHvBkq)tO?WpLO*MJ zstznBgAd^~&H7Af4agtDI!wYr44`ORx2Qf|ZX6GT;i};x#!wwr<+5Chl4Ys+F=Mt!Hg<7IX+P-{wO_U-I&jUbO8r)a0WsJ&qe}Ubw2NYY?_+f3(lDnW&YP&=ZzHMnR!s zWqsKiL_(QdaG|;)%&!5pPuPvfAb77H)rm^xNzOCv5FwUGM1>#}B#W+?*Jw_J+>+Bx z36sq&OtTSGxU0G68yBWlr;fzB1;>3?NTmPx=%dR`uU1#?C}G?A<=NpTvB$`~HTBK% z(F0j?QV+=Fmnr4O<@AN~Y$3aG>-_*2?17z~-92=yh|Pi;1w_q87J;_%K!z$09T3*Rq^et47Qal@9Km68zK;V=wY9C>o#gYXlUrs#;`0iiF3B# z_10optNjq$5nA7t#lt0>59G<@d5U_WTLXhJ(FY6%_9aJ0ra_kno(YTsdctbnISN&k zIhE>F6Q1WkJZ;^XYXud2y7`v*vafOQ29mVJ*u~@s<`~&ItRYP?{^1>NaRf#SPObc?< z3OF?gO}j2slvLg!E`MdPipuS7oz{OeEHQrW9itI5n!}RI`~u8p`HMH-K;1O5$4Hlu zHlO)phxPl$HAT};r^w+T}Z+ zoxP|s1x7UDbLX=Kt)lWtq{VJoe6(=Zzu7vr613b~icnkteo0J56wR_b)1aYK_hU*U zd3T}!p5tn7OV}ml-F*yERG&1gk@?H!y_4g@vg>>m+m^chlb?)c#7w+_ZyMfwIQ#f* z_VyL)@w@DDo7?Z{9UmQZ9bzvKAwK1FtCjaXgp%Bk2^e+i?~4kHX60pzMOAf;~lw+7$aII z`hzW^pd7-k;=5_y?Z2OBp6@F=u{n#TD3a6XFnm!;c*h{AAMlIjp_0B{h;d7s;bRWl z`ZF`R1WxR@mbkUYzcHxoaAb02z?yjZ@3?RZ>kJ7$?h}j#iwjN-r0{P`s>tL)V?eVn z*?LOxo^oz`KKOm$d+qJSD_6VI_IU*RRzD=DtZIT>?{ixV<^y^KEIX%_Vj7Bex~}Zw zcoj;nwV^Vc>*GQnBv$X{&YUi59?2wHKBd*&5Q7vlM1i6fpq_H$LX9tMKa|aszE3xJ zfOs{Q&ym_T)&&I@w;Gl3N{J(oeJ)$D|H+<{!Eb<=1v1ENyi|1>=57MV#x%#PopT2# zMD#t04T!Iiao#ExUA?2ADTaHM3|6UEfV9I%m8dVMFy|CE;K*d#P$;|lKHs~8VN-5u z*BqWGyEg!jaq@ruPvJYpo{M1I@#zBUuf>D*F6X~jJCdlIgqvcy((M=DfnXS$3ok-Q zKI9QuGwOv%OeDZ#ipjqI8P#;9#pfs0KQc}_*sYXMQ z3Kti9sihT=kU+e&y!=E^u(rkK08|kd(^}JjWst4bOBKK!XdfNLL*xgXH*i66{iTY^ z;2uaOE)9U-3>z2s14wqBo}ZUj3V~Ylt+QM6<*}1a{-WEypzv4iy!pv?x|*vNkfwx# zs833wg&6jRI=DhC_=%uSN;y`6bdN(Q#cp{9(4eF zQh76ZVNbs63rfv@nhyq-Vip_bCXej)JKib&A9<*nuO<4;mBMiDx>YEE`?o`Z^WGk2 z606Q zMudpNb)&)cA>LNcbnbs-jXQbbAi_i+mFs`6B4lFf%pQNl8K1(B;{S*=ut4}@7AZT3 zW{mb0#0ChIx-L|!jn0Qoi6DsKwr2f@%R>d>LK&)x8AI$Ds^67!p3_C8Mr!9pqFEUU z@X%*)(`KMWDx1n=i$p3rMk)*U2G(VJ^IfBd;1V}|I>M-a@dWS;Z^V{)kv`)s$|=D! zb0`^Q40VnIIzg$Fq2qck=0Mcns{*Y+w0HLI`Kmz7D0{fRT~W$DkHhF!x5O9a>kR27 z;KTt*qC$web&}6a?9J@WI-<2i%FiWY3&{;bB9%v0Ouv{}Ri^Il91;`&nGKElDqG$S z5@R82e2L9xq*cJU-3RUQKrH;ms9%51c9C829}SXx^3bfCh~+>up70DYGcRiQZs^@3 zzulN?uEqkrL^cdmrcZhIy`Z9dwuJgEL{5QhSdign@EOJS_N0P!^CL37ce9S(qa-5jncI=?Cq8Dv(q8e0K3i=PX$|^m8AC1w+w4 zrOL5c7-*wiVz1vW!AN54{%3?g*<<olD{$nKGPnZEE1EJ$^MAVDqnl=$~(GS9D+S zXNmN&yAEacwK}ZYgq!Aw({VwqT6Nn!uwu0qELdAvU7E52RgxZj5ZyAP}zFcb6#4ygQjfZX_@gmI`Lw&IJ8KA1Nu2{81JjZqS=C9}fWvOkr z5cD9-3G%U7sy0vVFJ<;2YMjg`h~YSWd+zXTxqRT8-yfG{f#(IE>OWbZHEx_lDdOR{GXDPzSZ{9so3oM6`C*{`-e8O!YLX&#zb>1JC|6v^ko z1p1B`TgKd1!#IAs?USCEuaON3e+zdMGev%h8xI{z@AkXHkeF5N<>WJ#k(LoTG zCn^&67AzJ}`QEm}5jd0L2ad!5;Yc(ZnA&_R zPz}5K3;&O0oj+T?o1HECCT`%5X<*ft9D161v+Xu^gXR>lmGR%Q*GWk~ST*}O0Un*h zhyU8XcJ~fD9OG14xNL@v)X{W9nPfd>i;z`1V1; zV4Ara`(~Y;Fb2M!2ZTH3i($9>C(v3q^#Gui>QCp3UtbEBmdO+Iru-QR;YCu9M7~^| z8Pf_l%em45ZX$a9EF50%Vmggoqp@=+|GOyQsn+c~O!9W^Z!@n?i~jfQ0N)svhW>9g zSNxqYY8iRPLs7vp+|jQ_bp=}dBipnw(MP8$k8bHxByyBCm= zJD_C=wl+>eN{WVE_m+Z>Ps>#bv5ZtVv%+AI2%rSDf{cs|$oDA7SgJ^{mw}mC!TdGi ziT8*ndg6KdqSv&dqN9ywYTdsA{!&nAv~qaZFfuXaOLt{I0$noy_8;mKeTKoFSz1m@ zri+V-y@s{Q3ts*Bw?}V^J32P@ZbXNwRa}S3b0eeF??Bps7_*IA8Qa_2OUcMQH#B?z zA?g62y`+|}InK7WKNdWK*c=SdAj0Z(o(TDZ)&SOi$MPxNKb?&TN$3-K)%`j41K?}e zA?x^HdP>#<=%uP|9^XSitAi?r%-aHINdrx=5RKf4X~ zRXHiyv>V-#Q*z-BsfXNO?fDT-eOp|@pe}XcVNV!h76xO0nlvjMk)UsSW9EJ9*O%sh zr~&dG5Sme#R6%oSlgYp^_(xj1IXUUN1TZ057T)atXrlXZG|WK1tOb&8|Fo5U{oq=0 zG`=~d;`kK7{7!^ISs8#@vK0yr^;!r(=Tbz}9)wS6XpGl&?2w_yOuD|HkM9ZCE=N`7 zt($AbKjg9keu6ERl9GC6VL=CxH>5lOeR@#i2Sf|0Hc8==@?!VHmGOr{xdQ{r-SIq% zDq^;VN3Z{7=Y*!Vwsu4`Fl*Rlw<7AeA7f+pr!NDF#F&~)fWS~w|1@DA);430`w|K91vx*+Nix|0HOXbDepIFxrz_K>do=RPg;`C; z%XYk8moDmiX}9MUzg=*rbstT)Yu2{qnr{q3PX5E zm1K=-GTGP^;gc|z9i%-%--l2#Qakh;r|~J|qb?&vPcgCkX>CXd4f_4f5v%T9rC)9# z_X-jBYYYUG@&_KLN$NL0N-PycA;R_P-`azG#UPFit7mk}7;_fTGW031{hDJV3AqTR zQ7~iZkV3ityymxC5^2sz0z%vgCR$8&yR_;UkkTQybvE>nkMNaQO5O%0*#mus$)DnY&>dexg4AWVVjYJ05zALx|z1p7>i zF6!Q#7v!3tS9I$&KpZZys`@4ksukx;=ZIo`S@0Z;7+M~NW=5Y zcb*du>BOv#j>0kwX4vs#tTJKk!q{{;VP4Sp#>z;K2xUvBt{1j(sWNF+M)p(}TYP#7 zA%BDc9=@fuo8UY|)AzRYW16s+x(4#zoxQq5BB5@`y9n2xo2GqaD8u6^l!60Zn_cSo zA67d_H1*C<&QX_>$tH&=p-AM@jCU@cOpcPHhWT9#@i-<{%F*?21HBME+3f)n;w3Z` z{z#q}9YsE&mj>cHx)7Bnc&IjYA2pgF6%>8@&8g3Z-NDhJtb+?s%p)%swj;&HC%oaojq-o zT*vLyC-lb&eAlD$*h%LVXo+1d0oyn2@cCc(#Phl`ZNYLepCx~U7$zX4$nz&W1>Mc_xA$GqZ)wS-_SozpWH|r+OiDpvgcw*S>?(TwR-6A!9mpi6 z6x~IbI$uyBPW%R*2t!|ptK;Ujn-PqRjvmog*VYbnKkOytK;#3mmJ!|!I6f{5zOwhA zo-ha%dVCiUU z9?z>Ojzv=3M|e+w3j-yw`5uB^r<3W{ghg;RAdCnU+W+xlR|P{eNSn$ugbd1_3>j!*T;`pbo36o%(Tzs?TZ&3yoD_TWr?G64-X8PEmAyN zG3d;r#edPpM2)k=_efOLPI*^-Z>7~x9b?hZNaJV0YF!LhjOmGrlBmk*%yLyN$m8r( zQ*-Guv#P3|@UBYzNjo|;#u5`lWLi4zU6q%oe(Btqk&)HgRa#f!+(|`s9KA_uB?#BP z7%L?Kf8DnB$2dA|y|*kVDH68i5IvygU-{irp)Y)t67BDl(rmgoNZ(3f>a+E#D>V3& z6IY)T>hNvPTrBN5k4|=GyS8+N#oLxgseD(6Nb?COjS9V{Qc(V`06xgoODiuf+AKGZ z>akdy%$PHfogWT|3wxC3d+r6=hwuM>QGNg>SRR|IDnGau!HDVph;Fm&RouMfW|W#= zd-C(0!$Q@n^|H|FNd(SkJODqcsuLQnyax5(ZK2nkEznZ?Bp+jx&WjzdCO z#h?yM`EW->2@Su5LfuIc45n&k)|s@1-*K@qNHE^9I-ZM(RTpr%gKZzCR9-edNf{GPY=larK`t8K|%AFB^vMp?4{Pt?oG$c zJ3s5?#ejek78j7VuQGhMMJD`HU6|XIIaG*-%;UC!7Zt@%@Z;L#szw>3C^a#i;X^zw%rj=_p6&wI1?1a3SbU;mC<4d~3i26914n0I}B zZm#z}hm=Rk?~$=W-d-1k%Z<>ff!h<$iz6h+?am$T&N`;!cdQtMcV`{@xHkNd=S5z# zdiL?PWnrPczey3@3l3!8@bh~`D2Oi{7AE2K=7HRcPmOI3C;{eg?gFW6%+z2>BYucH z_*?VzXzLXN>iy3jU0oO1-Xwi{!irIIcV@a;tMl7keD3=*dNqX0MQ?8DI$_t=II(q- z@HcW=_SzSNvlB z(c?SI^GJmS({l~RsF5*vtX}-JHO~GPYcJhCeR$^n_GgVGR_v$y@66w@&aL0xO%i%V z$c~>RD*94ie{W|P{o2pJk%JZ5JNTq1c1z9=wYk~k{Q>-wqRG=sRIK;@4Gl^m{HWhW zQRe4YQI{7{k{x?LB6zTO%+<{adWGe z+fHx%fZw?6$}yge=1L`S5jh&1XAbK7LqViA-Q(uKJ?lm)TgJnFP2?_O5Po&jek=R6 zG-MOw7m46`*58CL0L=Q)Y$N(=COkc1mGAyLrbGlHEOsA&-Kr`8c5CcS{Nr~K!44^Q zA`(QRiokS@TjQ+>2oKwifr#TsNu!Hr9ZI+)5h>|{AQ1JQX<0zNfwqa9|6OWXmPoD} zkRkgQII)ha$cWQs{EVL{Qnvh}yfLxzarwOZWaF;yAJ<()=;+s~1TjEzA~nzH%19bl zDN5RVT|f#B#n)UG*-4GG^B|$&Qspb9J&K}G#vfEe7_mjyWzt6u5f7#k94MrtK=k|{ zEkk}`+$Z}RRUo3#@Jy=moHx+ z2s9uK5`5h}Um-H~Zh7=}5pg2zSpaMYe{s zkVGi=3i1C}hO}z9qk+Hv8+G*4EB<~d(}G-y`HTi4fP^21dFA()=Ys4-k%t)z#n1kp zUPN@#GYY877;2Hp#)?ut;mtBYG;ylwV*0UqFgzFc~#Yx8%k*} zRI8R(_DW6r6ESg7k8j?Zt4v&ef#illd#7l=8x1=fDngM+m2!!cWrb2?PF49bFAik? zPQ#bKbep`r_uxtNSx6};7n-2#S=kyE6nL0ZcA!gEAtVx=1^+Mr=eQNLlcb9p_imXY zubG>lWw0{O+qx9#vHB*MwJx7`54YClJpU)>vorvt-saYu0_6?rP2>z!S7=l-&_H0! z7TPknrh=;4Ks@(xBpnfNw%-Gf))~bWs>7&3yHK^chb+Zf4i|L=6L!V*Dla zFEr({oWjC(7o{u1Y?KGVo)pSn2rOM-Ed5ra>>JO3(QP{XlOMD-C*?15-=66G$-oS* ziOz^E@jwk+4%3qHBw_LGe9`xy_QISY;sBzxVc9>pkMnyUDPI#$d<6=q$qL<*p`*=s zfR7IY&G$c>n^8c2^N%ZmKc~XVZ6YEfupd1#t>_I~u^zSW0HUAbkFb1Xk_%UQV4LZo|Tx-A?1upma);H=k`7MOA zuF(hhUA1+;GG#q(rm~LrIcO|BLh4;X$GViXw8inLii{0Tm}ZT$ycE0~a>IM3uA;9i zCT!7pzAf${2hVcvRY1f*PD(OO*4zSVdj1{y#E6x8fVaU9zMOj0~#`^?f$Us$H}SF{KbOzX&g?OkmPI)7_%I!wf}gUg9g8^ zRUX>ofH-^!AsQscJFHo3HkXC+Tcx8#@EI(a7ktZVH<_qR*n36Hrcmg3+{)qMtrQmD zOeB+pu+wdb75!P;_wrGF8gn3G6!pTw&JU}>(X92~-~4DZ(g987K9Uj=BmBJJ02dut zw#z25MK5>oe4dL=S7#K1>C3*P0qoZ?`|ATUB0QE}m)!vq`a0gb8?tc1thlk+1pcpF&ucxF0=3MrxF@BFfn9Il`_5FQ(Up znaY-N%JeF9YTqJdlw_FHWj=B_T=dJ(S^P@h4nrJO1WBMQXBvg)&yjJ2&5aO8m2LAn zV(g=on;=_1`!hHN{^IWP&q^!TkFc%R>f|!VpX^bjK=G+rijd_!n^CJbL@AcOW5ZN7 z2`l+!+6O@q&?Pek3SnTIR*ZdGYU&qoV#K_vv~~IklqN}Zh(Y8e0gT8JClkrr+nxCM zw!}eV8~o5Ut8MowTBiT2Y|B>(g-udNW&!OC=C$z85GnNKuAzh%222Xg_al5GQh8VB z`pgV{(K_tMj~~=bh}4*6z#SG)7E40@a>o$ER|kRc4GDZ*zmi#W@evwGc2x=>jP(JbquDMQ>!&;8Xp4+9W?cuQGTEdUHjEUL zMEisz{zRTk6lI^H9*0q63`yX3%uzujJgIf1^0(*E=SZ+S>{{XZ)NE|nAiyjm{buwh z{l!L)u;psO)j?L+R&igS6P^+FN1q{~9;3c`>fzO2Yr-D9y})%=yhw(U&Eo_%23KL=*fW;%Y^;5G>CQi;ONT&^UGXxHGq7-9DF{}kzuR~h z%7DBrjA}-RI3|XvbfK)gtRWK6fs0-B?!Q73@|#($;m^=5$W22`CJ#MInN21eU($v? zgBj(GFrmHiC(JDb9ul+pCge<9gV(w^psy~YhiS;-`}tK+lPlC%TRJjpwcB4G^=~gg zoIvN-iREAd^(6gmiarEr!5ak?9&En6$iUlsyuP`RF2)?MZw$ovFs!z<9Mr5(SP8cG zTJJM(Tx^w*2;;zsw3hOIB%B-U`)r3 zgXL|jk^fbo5J^_S;q_O@2y_LG_yAE0RsvInF<5H&(bwQ$DJl-B5;Yg5r>C!BvlS1Q>oMo&*%s+)*_7)%4wHz=wcLv7F}qmaDD9+ZwHi%O+s)E7eq6J>LFky)X@TtBDrzZVYoh_L}u#E0<_=&g^z~8!-y6tQlsncDSd)k3Q#nt_Cv2mN=E> z3!1K*O;s6zD_unKtj5dSI%l6oy<2BzW?wNVx-Clzp7t~AxL+=iv91nImmiGbanBX2 zHB5HK2wjjQY1Xx=*Pmt|yP5R}>$vYNZtnf8zAAUPxox%IS%HcKnIWC`7)j}Oyz9Tf>U7^oTIeK@)>xJ>{mEVar< z@ePj+wmNS?#KKxZh#RUFRFI*8`V+*k#}_3?P=o0bV%XFDmza>DjwLDLhC#>@GUUw{ z{u#Vs1g=4IZGL=+Ib6sXASiD(CKz!8i~}nxyge>8rK=or$0pJFO5IBdrw+_FL zm|W}QG6X{Pub&V%Dt^Is6Xml{Z?>o1J=K;I+xGid1nxb!`yNIviknq~yf8q|>^Gca zGdxnCQ$C@tvu&0;s8EKkkh}e(tZbqwnwj6&G%u~pGLzXE>6R{ZTa-NS)x8VC_Ikm? zHpg&XBj%@1IvhQAPOjc2j_$jbUvw=-#FMQGt|lzj-ykm!Uw>Z5Djj(>p>Kk>~{m8o21=5o+VgGkK>NAGh>$IH3~ z=9Np2OrEw4553uwBp*ADl={qn{^6;wfCCIKR=jL zYbN55ct;0&>;0XsfEVaU?H!$Sr@Vx#Xf@Y_3xbSjfi*j-a3M5vZZ*i_RegkXrsw|48kf>4eKB`Q2*#GKv5O+*O^H=c~omtHnZ#I;K zdwaVLkLH9Ez@aBcL9;go3WO6Z8vRVKB~ zgsGd z@z`PsY-FWr*0|WjcV)z9wc}uiaeim>5ZcelnNHOZVoIM8@QrD);GgDgiAvJ6XrtojQ`dgoZLcX1yPY!@Jg2A)~c5iNomH z3&ZH;#Vga%Z0~bt#%0!1qurJ-^Yc9HBpqvwW*(2QOpg<@B-g}YbZIYy^YEysm*n#4 z!_TR?3&y62SrSXbpClglF&a;v z*9jLK?!z&>=j`-sP(GVS7aOOATIFtP36=)w#WO%z*$4YOOx}iXoW)7NU8Sqz$$5d< zZh1*1)Q!iIpR_$~e zV!(^9gLb}7R+lG$k8k>=mYFh^YfrSb94Bq{>-?!odAQr+)wf@*Cq%m~22L}27^^ty zs+W8Y=g~R;dagfuQYSR&nfI^GhX>X{+6{EZhQ}Q}H+4tH^0jA28!M-ET10Ud6>dpTah53RH~>z46MXB;yalg1zR zT}={3cUzu`yC1F(GkSqL%fSr=6T5h(y$0$fMz&ont$8G*J6ct!7|-?r!B~WD$ih{!DMrjFqSPp{YE=UXyKgOcG3%eep7 z*SE(r-TwcZg%C}f4m=izqi+QU9Z#gc^#)#{9Nf_kPW7_H3mJ2n<+(m zSqVV$lQcpiljq;x2SoaLF5ABjtXh9Ea9C=7=;kLt=q&LUR@(m+%@KIan4{Y#3~MoK zri~vB*EZl&Ex)t!YMeVHVI~UMI_oz{6>Y6&leUb##urC`hZj96x4$bW5WfIodjF`N zF10W3p^_=spZ&_CY|$DqOhtshE+oH_v{1dC;Ze^RT$}{_R0+RMPU=`##N16?ax%7A zoP>=sX9_28BT8pBM*Azbglg6^f4}Xn)?PRjIahljCsL+fx%j@Bz#0M$_}qt_?9sEW zeIk!*4F4$A=lMG$$7=rcs8vLcOv#Ydi+ev;2%eE0UlslyYpA?!xL8wOpNv;LrM1oB z43o$DEwP;u@>N zL?}u_Q{!f3X$jQR)iw92y~J9ISrgv%$(l&vYF~U>))h-XS%H-p3#)nqLVKqyME6;E ztzn_U%vXi4vJi!5>$Thu5>aDz9t+^n9U0X`T>&zc}7~yo-CI1$&(4;7PDMkwIA=+`6+3Q_$Kn{ z0~B!jkvxNweHIY8`U89M>cn?0&xSrTfMmK|b!2efuJ*KzNNzuI=i_l-Zs6vpDZCxW zx6x-stK(6?T#1!=ndteu^Pl=Qe1K&gxw`KM`5hRu#EmapTwK6r;}t~dpX}uVPz!m+ z(?O+bQWLOMxQ1K~EO%ZN3H=^s7_*oNNICj_=6k|a$v_@(hCz2%7rk);*sRq%FyOyN z1;+BOvZf!qoyje}IDft!DCDwWSX6^#G73e^X4kd$+fH4-*a_90G3t(Y$M_;A+BbhU zclpMIq^5J*A&&elMzw~9Wo z6p(E$3=reg@6M$2;pu*|9GA?#pJG$(+zp`V$0MYA;*zK$YCpc(Wt&H0%}seTfEkyo zs(=!S4W0*bL`PZ~_v|Ca-gZql4cC@g2K(wfy@k zFYk>LI2@RRYDkC?c))H(4k%e8x4j0rPrLS|40YMD=?$r?pqU&lkPQLM&1>ia6oa0# zZBbqm^7FbQp(6q)H&RU`5c%OXI;@appKIvIVAoZ=V36ObS?nN(_S5>7S+){ayHgv^ z^F^%Q`(cehsUDZ}m0$3mMD2?GVt2gGSd{)L!TuvPH6(1T=hC}_UItq}Q~Lm6e{}<@ zu*8-nHt2fhuaC5K6#!6oH5w@4=ODTT?2SjYauK8jYy$GKfNy_)8P#xpF@gabeLgy? z)SI;IS?w6{e;>3NlPBLMZGURKu5jsJE%bT4LOZsm6x_BD`L{*UTQ8;1T9Y5f!7gld z`Q(Efkv|2$xe#iCOy@H`eeL?zJi;aVd`H26240m0r^S_G;-X^6{cuL@@M@!|4zT$; z-oaN)>*ZN5nqzyciur=w<0%WEmeMUiC_ExHFE~v)d6Rg~!b*p2gUWta^TsuiK$vDP ze#;dm-tnOYf30IyA2LIZbj*OkdhqU-d_O3`G(Y3@dn7Ra7AR`Zr0pRIvA{KL(CX^G_1O}W zT6905=&d_d>8D}=5`D?#6kAbA!Y+)r=%@%G<`GU%{ zqQHj&aZJ}nkyOF-o(G#JA$3hqQC3(*pcP@fMZo<1nGM-PSz=~h%j$@k?YC(f)#gv}AC)m-{rP!M-&gbJ&~{hgEM2BDD!ef%J|6zq<}lYB=W>_pj=_|f}68RmzVxD>X#DlNQ{|&h)8$3@}tCc zv?wFsaaxoJe6212OmA}1u^>kvgyT)GCEcIzbJhQbXS9FAuT!!vTk+QWyd1AbhL{-p zB(zp&=uw?IPW&8_=~sI1(lIA~Mx{GdkDb2t&-^(HrCNei#=HudkBa*IL0q^~1WXj* zIhrl_mI@tH89K0Zni-F>ZeqxB4uDs12W_{_eer`raqqUfI8F7pb9W;;uPw)l!xJ>g zv6@EY!rgS>+!70FN9x}7z-qj%4#v!`(&KC}BHECrhU6bO5#~vH|NEMKh4sguMJyIU zlexp6o664VuYLQ+f-a0VYqO);lzTz({^F{_OcC#JxaS|bapr2|F`ll{pvyF3J7L^*&aS4d-&{y(|@86ilE#_7YQDvf%f%KS(E}KV@ zS!P+18oP(2QvXw%)S3@#{J1; z$Pq@Q_&2G5`%}JS*S`Sk3v$(Bi2Oe@s*gS?Say7+SSXNjjpad}+W`VdATk<5KU8>h zKz$5grC5v!97qi_oD=0pc7P3ZK$nF8aAwIPS$kPnv*BxV0qu0K)`Ts|P=7&*x8Qehb_-dPwA0@;5)(mC!m(K zzpOt5{VI)aoYdhn%s9r5)%9OHmd;TNL@Ea9J{zdEX=+PoVdK^M%8v1L(4t>?Q_@Xf zKV)O|16`*q#(*=NST>zRb`L5Sz`w0${Ms{Zju+ptw>hZ21CVbv(;!g`yWzo54g@fY z9ZHS>wg&j$(_E^uZ~i5c4Pl!~o84B^+GVGw5{+T;E)u)BlZ}MS;;%ZHanXA-44>A} zs&=ag6qNyYDgXIR6gmx&dN=Rm$VRvn+rv8$!M3Kv1eYQSp}$f1G|W_H>)N#)#^eh; zaa1|d{<7@sq2+eAbr1_Lf=j3XrUJAD)evei#YR_uz;)VwiP3xFZ!r9(*u(N{gbDi| zxc}JdpI=q@GJr4r-JIGo8>T)5_MTR`=(5w``(|VFb!34Z4pAE|-u7#nKAz+7nbn1A zCWncx0~?y81puVY>)fwB(Q`xfxUcL&wF7boPnE~R)x8hduoAnhb0hA0t^DH|1UBFU zrA0N|ux#KnIJ$3!8vc7Clx^YDVV^0>;+sosnsB)`5~$ImK{eIsh-@~Wj88Q$lUwlb z)Z66+DL$91*VIXUQvD5LI*Cl(8ASs?bnXd}!0cs}aG?=yM8tD~^wuPPVTZ;!lWuTF zKVMooS}N(&D)Ap`x{>~@h1-C=*J)Z-o^jE7Q=S!g;KRUf3Ipy;8*mcp4)R6(Q&C68 z#WP1i)L;eQ!)zab1D3sUKXdz|SEsDkrr_30c``GGXLCDF7Cj%~W>wu>I#Sd)FoN(}*(X&r zUjV$ASF+TS#PwWpurF9vIMMoePE2O8L}vq>HIA=C22g4 zSg-HDO+!CIm~MRGxtn!_D&d5<>jOJ9xK(zgOvajg?2nNl^`Ib@tMKT123EkPNubLDIJg+f`^&t;*Mgl)aik};;YNQ0C#3Mr53U2YuHVXT{etr zxY0JbrWP2e6#@9ZVI1SP@81L@U~?!naTonc*})4;sQ(kZG76mrE?zxN?Ar~iJGb5N zcBi2Yo2d==4qp7tZ`G1-x-jtW?@^oGc+J<=F{q^1L5+^$On>*DqbGC^{s#;>dW! z_fIM6UnEtz?57YN(AD!j7a<#5bODMd#h9j-3io_uB{x`!k0XjdF0(_ir$|O*Wt7Ja zT~=g4dAN|OJDcD)oHYde82so5s}LsB;7q2FG1PEo;^7@qsW*D&q#3y%1vwVtATIQ3wbKllQ zn2?a1(3If-eCwSrcROa=2^hHqngdJ=qy;+mxc5&QE7kNDWDqN^RcgN)9E;1^o~2sZ zOK1uK35?_B1m5nR2076Q(X+^~Ff;?FfG#2Ja7QSu-HjodXd$`bZm3otREq%B@}%I9 zv}^S}zlt{NeEdskqn!ty&@cSXaM>16^ni0Z9P3{BeoxJ3ye6j*g&#`|JXhAge(XmU z+CO(RMuDv$xm$$Uvl$o#lk!HlwYf{oX!5vJ-J>Yf3iSE7ZwyU=1!q(#@$cFTppi1& zK^6%st%gfZj_ZPLP%DAim?paail8=k$S#K+CQSYtl18X&ud2MQAzTYD{qecW`RFCoAt)hi(K!x z!W{ALCS&0+%_e-*9Vs%Nn^Wk@4@Ux~_sNU!&v6fa^INxz17E(M!L2+R0V?v+brS*h1$>71xQmnoc zJI7zhH7Vnvq~8@HbrC#@W1L@v&eUlut+~9r&!#)KuSEl-0Wk1fHv98$c-=)gHVuwH zVq74uak=&jd0TP^(k*6yl5 zzrQpGaGU=sBJAv0Urx8n9wU%mg5D(>Y4_5h0o$pB@9x#&A2{D>D3I_z|NnWyz}K^& z4PT;;=E2XNg(zr2TwozOU-ey3L~@7wJJc-{u@2@}gmRX2$TIG5uSL<+&I*lyyfEo)yZ>yqHI@}SxFx`$>3CIQ#C2+Mo zZV1DlO04W&jeww4q>1^TX)svUS#IkM-RfFjtGhXB47iq3%RHaVxh#=C>O)jtXiazuk99}{fToHpV(%{cpTS;!2W zGtQO5OC`w-4N?_wU|g(g)*Xtx!)fnQ_#8udtL$bJ3c>qi|KOf_z7JqQo)Qke1=<>K z3Ox)k(J@F7*C=-~$6X{RWuL>bj|a3rL#y@g1y;gERnhlwCyyVT5+F^bZy<_1bV!~s z2ArbF^6xo#UXXs~&0c09d~RT51(L@HQQ%q!tyY#j&4SNSi>s`%=G+L->v|d>6%N5| zu9r0|(e6d^bApSr{PAX!JD(Vn&%S%%!|XItOu25YFoxGJU7xm z)*F0OAEM&BXk8s1LHb+mn!uropO{UZAgjWRy4>QW1VyawgJ)+RP?f#lU^`Arkim-~ z3V+0qC(gQiG3oraW$VxZiPD<7;1UZ|=*>438N-EUJgL57)e)D0RQ)65%oe)umlTHx z?lH`=>vKWgIV!1$fDut%r|JJ)6pF+F!5_fe`kuQ{JWQ*4hzdWiOn*qVack1A3k`fr zH_kBG&iV^JCqgBm378hkb}cYAvMG|csF#p&sPfOdl5vx*vWn)q{xPLLwlBcJTXj`R z8E)12%sJP(e8jZ{@)D-o66PO8U~1Z-}hJd(?!# zM`6KP5LASNWA6#}e*|>m%R@Ua-y0Jx9$MRvBGO=*M0~IttQ2I>Ec(>IXwZZfwD;}S z#@^u5O%goB`b)IKwqa0V16dDq@mAyN`Q=Z{szz}Gzj+adFjU6y16`o4lz(3!dreFKmw$JShW;E8*fp|!4&SS)Y;w+`tv!crxI(c!*UwwEX$y!$P1^&^#z`A#BJhG%b{hpEaS9nq2P!Ww8^(kQ2=Q zGugRjUyZW2PT6?6_-s0aB^Iwh4>?X&L-#bn4hz9FK_Qy+c2v?#_EIE-O0w;)AuACu z*QliXR8k6EONzlM8_{utZKeE>_(QVR-8MYSTo;jNX||7j}Q(+ikHUi5dtC>XD>NONjHAc4u<(DYz0`pSO~Mb zD|F?SuD=?UbSKCMQIC>1tYoR{Z|cSB+y=eTSvY}ZzLNqL8r|t%cCQhvOoNwjo(4bt zW9Dv;zmA50(bb@~=j*;4z+f|>s5>a3@~JoywE`lv#GQST^X}jal-1j{h~eA*f?Kgv zC;{`@Zw~HL#FE53=miW!3AEgKx<@>+&fL-zFkr^da zqz$d(US}%D->xYzi`c(@A!J%3J3`+7in!@diqNf5!&b>bD5u`XgRBW<9y~Zou)KH( z1NS(`ciP=CfLlrER%Wr^T>mytqT5Dxn}ny<@(pLYiy8mWZM$gfDI&;UTG1*?P!$;M z)_Wf_kf*c@!rJY?oq0!?6j=Xo*fZn{`u5Err8`w4GWGIuLtDJ8l+TV#s|6d=WqCfNOOfGQZJ9KU@e#L`WmQ9_W1@P+)Q zOsob6t(Lwg1(;VI4UC##JQ|dX*$I7>lkBuTkY^hs6(Y7VkavX^AigCQ@NmI@Ja&)% zUn-O>!5|XUD(z$3y000(tw;Xwo_(Lm`Hj3}>w&Q>qh2;9>2xouEI66FiEpIGY$p)8 zEPjw9*949)ab&^8RKeTMw?KF5T%j zRZ1>o7u5k~0K9yhofmu4jbaR+J65nhuj~N3pueQq!N93$s z>Sl$TO3shtjB&>)P=^!Vn)C`3Vu@n|apZ}_5u}PX6)XqBYN3aR2Dfx5lC0aGopI(k zVag?34$Ln^Zb>x$h#J*q3OFC&FEz9|vKrZdbD-Mfp(Z%RktZp~sHBI*j5A!};8W@F zJl^(qV5;E{tPV9e^W&U4MI{vU4oV%pUQVWFz(Y)K`zz7+-Vi+YBfZGvwwC03UqZux zJk}AJvT%hWM!;z4_RF6XmeWDYot!S2{xCXzJ?s^{g!@TF-+F9n%I&EutwD!V!?EXB zebO6xDB$zPChu*&Wv-UWJ6hF`vqhEcK`d3i(qEUiP70s0&OW&R0I!VBvjL4NTDE18 zRFkN4mMXebhst57xJ-r7qSbGVwE2*G3i*Api4x`SL3R%Q|uRpKTC zBKbRJO(+ZCV?r#k3kQsVVXMp18E0+Z0`{`@_#pM_qwOD24TJ~o^Wm`MIP8gW?;uYh zP6cEG0b>XZ?AM1%ojQHejqRhkG7xcYnK@om(`sKt`5oQx%ENu_k;Hb$^b(ex{f;S`fWzb*N)N z&bkyBv)cOxAh_ROqQn{p!67}(NR47F0k1y1c3`|?R=ik$NtkknH4F_NA&ejUTJ9R$ zh>9^{rtgDn=xAsfQk+t;#9Rd%#Ek~4DIFDJhA^`s zWFLakltn*pI^1h~ew4&Ij^21TE7szoyuryF4qt6}rlzcj*r z8KuEW#)9*+Bx%K_M&?z@a?ED})+FNHwJ$p+2|liKLscauo6GH0g}2GDF%(XJs5EAt zsQ8DT{?JD^Gm@h}YGft?O8Iux=k%DnVFfG*>}@|b@LT(-){HNp^>=8nklSIhOMEgDVyC>90QYcV@he|rz{*-+D z*kp5=n|rD1!?a#e0vkcrXsD*r{mGCKX3P{qavZvGKFP$}!7v{QKjv@^EsC|%dluOX zZ6Xa5o=iw}ZAlxrPvX=X?EY!vQ#Kgrdh$E!oP_*YMR~o-Iq7?N_ku2U~{Z% zIu;De`FsBNp|q72=_qCyriHR=`PkuNFG5MeTAn^-ZW_f}C2{6bpqhzLWUD#a8OEK~ z%GbqtT5o?$X^AC$a_Ce$_3HA2x%QBqNk-^fn<_STILj}O)`+Cy{9?7yA+Gu4I7 zPJWIeQeuCcd_gdj^IK40V4Y>D$X$QYN>K`WdW<~OXW%)bE?ryd4=N89M&=p(`-BCPpam=hBd`BUjG-plK2czDHl@#ov}<&SNz&Hm1$d97C9 z?T&fbRSOUh5L|wF$6ov6LxS5JvEv(jRqL2F$NN@DT~iok_gm%o%{Y1-I@I^|E*Dg; zihFPO-Pf-5l~PHQj)ZsEPk&!eFT!Q1A7h;glUwVE?eNp>v{?5cyd zmj>8)cs`6tW@Tn}6<mR+TuFI4`Orbup~+_VAFWujkoW?xIKC=X3ggQ@2ga4b=D? zP}}T&PJd8l>-)7pr$kW_DggFA<~G&{RLHy5hYxR1r(N9!ZJO2GM`(p2l z_wJ}01QBE%-dG>!Ooy;>19k+x(EH~)X)-}UL3@Aa(=d>-F;8yu_5=)slaKG~YauJl zM0&LnG2cT`^B=EqWXaOibBj!x3BlpuieI+8j;_yCR?_KOrf3GOQL+V%oVS5N7|qS8 zN?5gDDE}&FsG_rjt9o+uVC*V)*@)vAD#D=gw(%lkEZfQzVdu56bH>KTp%D=ZC&xz{ zgQn3LMMXtp1FOSjqywQe9TIDGLlKQWx6`E0am5k7efxHAGUS&;?*3#5v#Po}X56iy#h&be zO3Cpyj@a1Pq|2SJ{tQ{9)vvgQ5B~}!XKUJ>94$C3hIcKwUWc_XUMrKCm6f5M+f{6; zr039l)_tXP!2WmdrJGfDA$(&hQdh2Cb@(APkbW;)MU^YA)K#>^bKCNE;+5+ob0(&y z0wzuPhX>;))O=_2mCej97{CjQpcRm77vSY3@j2LOCKeg-2b(6ne*JoB%}%_bZ~YIE z@d(?|FRX%sR4_9Oze>4zE0?cG?k{BR&BhxZ9zPHgsT_@R8~34^Zi$qKRn==LguZ&K zf(k|Jai{HrwOZ5Py}1j6#cXnNa$WfkL`FR3Q>Na2BQDm>cVEgc<9A)wZfb6peXGvO z!GT-tx!nMZW}}6{F1f7Z# z1{k0mc-c?7mp!+C2cbS7gp}E~_oMFFC%QP*27CzFmZ#6PO;KG34chfZ#CYpZH^z^r zIbzy8)RT2jumYM*2%NbnRI=|478yTXZ>BNCXArg~OIEQ+zh_B}{uRMT0xu}P!k2Jc zr8=p#8?T|?IM`jINgFSDMX)RM4CZ}JR(_RES$z21 zdBfN^qYK<5?n!X8?&qd=Kl<%mEtf%N;4vHL>EsKK_1oJ=PcOO1W?0xk=KjF(*I7rQ zJ)QepaSdSWhA^74?JqS+zk7O3$^ERbsGaf^tS-%k{(8}`-JY*kp?>4WjTrAR@FMu! z_X~)eE$5e)O;pIRQLCgz@b5})C`9gEO!HPpShki1?vi0=)SGm`$Oa6&^53ZHezs05 zdfdZd3^75@)ALK$TV)yy|8%XqAe-UOecCPi+e5Cf@tElbxs{f_TJEUGRt{Yo+!&R0XWzqQELa=2T2V)JKw zYuRKKf+&oOK2k9!Cnu%}=9`d}l@$|VWn+^k3)~ME8?SZiOqB{685!Z2r42Q){Tg*{ zN<5xdpQ}U0app#Kb7bMLU9EmZWOOtQ>TZl1gNYkDQY3<4a&NkCG}8oOVBz*YXxDda zy#QCeaN#4YoH>Yngte6v*RM)C^4UD&c_njUmbG#?7UE%n49eg=KYip~}*czao3m!G#<>a)q zUKLpl@SYAyVy%kpcB-Tfc$0gSx)USMD&D{6%JAAz?wn-8irJ(e}WU>)KI7 zpBBHMM!T80`LoU?XYt9n`v&B~c4Iu&V^umRcnJLV?FK6s*R6%_ETxpR=L~jLYI-fO zk^WBLB3k~5Dk`V8cs`ne(fkKx^l7{A)_Lvr)+aF$c)dxUSMn!*~s$8iUplW@h))5@nn-Lk-H_3l`ni@sI=2lBF& z^>usWu__NaSJ%%)W^L5yd2*GmD@|rq2dkB(ywk9rsZ3$Xu~z|_Yk&pHYCTe}=6<;G z6{l49GW&%K1P%@k+pB(XQ3D6DETw2_>Ek_9R&H+P!7na(>-Bidq2u?EK+Qa@K6j~b zu|H?R#RzHhG|5)02R4gzu~P1oSlTp?z!sbXXFK{jF92|tU zWe*};Do5o^Ofr#cXe`5)eN>+Cpvt}2UG<=mRHpZ}yoX1{UbCcSZw`HD{L7cUUaAjE zh5`XtgyLw(<2~n!d*83u_WgSxq$QzvKkvA>3P2zZ%E{rx@Go-TFuA#m$L!65kU`YM zSxW45^l47+enbTUiu148{%flOasYfTtP&Cr_!DpY&MrI{(E|Y3Fjnow;7uFZ!f|p3 zTb69DBZV6wgK!ZDCei8yC@dGbMk{QsolESGfl@B7+TZ})qW?ksW7Sqmq*3*XD`ApoD5Ltf&x zX25#oin?CQP#Sr7^Z6VNE{sQe?GNsq1iOeiFT_9&#d>UC0-?}cr(n(13mj$tV69k+ zO0jBqXeb#(x(T>I zPFp*noH$L~<$cQ)-{Zd)vbh@l2c|#2xGXiz`}jTFFe}y$gh(5{(e`vjz#BwQ8qVM+4zJ6+TM7*ey#S|`T6j8u_MTBOqTg-56>fH zGmaJR!kIOv-j7D#`MDvU*0|qEb$N1Q2&u@v&+=IH18*N2JT-7;;3Vu*+BQ->Uba4z zGcz;G+9V5n-JA^JEyZo@(s9GG)z(5cCNc@&n_|B2emg+`3s^a`Nw>$2e69u|xFkx* zt%7trX+2W(NA@-!eaCnn-#AJ3tIQ4px^2bmEBemb%?^nvPZB0c?WHS<5wxsK3e;3o zf|f@$Ya+1J`Duw`jU9dU#eFghoc5MeyN8^bCxgfo}zf?Hzm#Iod zxNnE<5+^5FTHcEFkH02Y5}TAmG4N0RcKW@x85%PS4hrhi@drQu)kF_glTq2QRU}x_ zd{cSJt{o&5WN8QB)AcQ+(|mRkY3GmBI+scZ3@Fn!4IZl|otm6U$AdSc?$ePjyz*p{ z@mIa#OKeBQTb=T&6HM_q+0`sBHMiB)Mu@mpkuPY3>h?l*@;oNSevAnmkbbA!biB~N!k&h)M&Bk~t$)Zn|m#tejk7=d7MbTSWr1?+-HS}U0@)7X4!SktJBoG8p zNAr5|TyhflJo4t|W`t$OXt8ZrjY!pNUINU=&~+Ual=H^gEnpp0fG~IsM;_jg6^KWhH0*JPZ#YTs})n={JHfnDgNSHqxFd zRoM|04Fr?`EPo`m^JM5;ckjI4$pJHRH-s4lQYj9Ai*ifCPX-6I9o)kq)e^F@P~5J7 z5QPGNr0$N$Xz#?H&m93skeZsBdiO{CF|e8zKYbG1DA6z+89ERduRU2Q8#l0E0^A>@ zk{w$$w```Mq%;l2Q|LsueRQV{{!tBZ?T=VankrU&G{t;%V=<=1Amj(>eV$h?XHeG zEDs8J?+jVE&m~$ESr1*o5AYA?{gTt&hzAci0kF6Uut+Et9*NQB+>gOxQ#@fB;47~=K+EzBtRi0tL}FKuy8u<+#awFZ8b%oXTYHZiH$)%-Ot4w((^ z-Kp+=4a{FyP7LRW)P!vyryQ_PYT@s#RF~#VN`?-(dViH#;YBJsjr|cFUn>!Q{P=M> zEF2?#+9Jz7E_hK81s|2_zIprhZz<7QVnWLwrrTcUWPBN?zeevK+)ivZ$=&_CPx5Z| z&+l-<-`uoGCV+jwyV9WVxj137Lxu)i-1YGqpAGOx=Ma0~d?b(ernO5g&mt3mrRss5 zih23cS!L<*`|saxeK4q|_n-f8T_4ZmszpZ=Z~&->0Aw3x5rXmf$*P@$YW%{&f_NG? zA0JKjaG9OqnxnT&d`%&iq^ST9#b+OUwyuZSu%D>IKodmOTn&`Nv2VLvX0)?Bgir9? z*Dm|ryD112^`_BMxWI7&RbkZp>?|T_(SEX1Ry&#Mwfa2S_%XqcZMO}JbHtaK5pm}Q z)%oKIIETEf0-%{ueE^PjkrBp>qZlqJQ^ez*caxC%Q+4vDgiCqtOh7`4hXe)(gB!@| zD5;tMK7OQiZ`UsJ?}69w-tx}28{Mt96aoSQrPM}0wyV2;q3AE?q{w0C9~uAoUj}1!8{>bn=(frTv^&N9dA7>{=jkkAUj{(j*7;;@>!V&DB*H z{Pza9s%c1|3LQ9RYYtW$0fs|zU}yvx=HREtlv|!skcY3sJeqDyHM{RGW^Vv%BqUbr zp<2Har|;E5kD_*@;?4Ga?W#_W4`{_4-xwC=ttq|kM=KR-XMh#Iarf@m zmzVCb#I~|u57=$9?9RMyQxLNW_DGGgpC2BSsa)waEG{mda@NqG0{1YmzzC=`aNPHR z82K&bZ_`faf93)4;)@;Sskt10PG)Xk%A^k7ZmJW zWAqty_{^Gut`dKipzbX6NiI2%P2U#1-H;QVy)g*CK&Z9c+uk-KT zo09z7U%}-yJ+@Qp)<(IJY$!AsSd9FYRvy-?vY4!@ofFyB5i_hw2~1uqx#S`SlL6@& zQJqs5P*%P=Yt!%t?u6LhF>rxRvqbcQH@rz}kN1~6+R7l|Gr{-^G;%LPrOT3*!>=@~ z4hYLAeJ68rcok)DkyI~?Y8+Yps(3s=Zs90R+58u5PV?!KHE+#YVZ{lr!B~lIMMVWC zH+SCEf;Vrlfqvihsz3loJh>UmVLbaiZf{=ZgrIIS%YQc{v*p&^yEJR8s{@71V?Mj1 z9GA0&Ha=_G+VbAIb?bM8lPKd9DVarCVHvU8+L*rG{8fkvx!b;CbxtxVyCq}2Ymr8E zCQQyi}XH&qrXmVX-+=x3fH}`o_ zj$}PK5u7cDAU!esns+2$s+iAYeTqk_C?|)B7{N+2!RVo_!NcZ=&Fv^ZIo_>}G;n1> zCj%(Xu1A8va*}x+Z{9cMW!=7PUkT&O*%qW3FL8w6#cBIx@tr4gw9Ik&UR%|gm8pqI zQ(Jz`{%>w7YUnRATD4bKtA|XR}c9DFFIv~)=hG@_l`M#CXl=YN6M30Z`m3Z zA527d-Zgb&F+1(qIgRA}_wR4gB&AtfbMQdCro?OZM8sPQ`iTCJBZ{`qqZ;ORVm47CBJOtTi7{{vpP-n(xPK{HACLD7Nj%8}`mDa=d|FXTl&%)2~s@uy!JfO}~B~Qs(a5`JGqTU|9;k zQ{yMcZdnH0@ogJhJ$JFzw8=OY*^Kr5SMU8mp_!Tk$=&qf71t41p->1E zGC@=LjX%?X9dCAj1P=*mRAtBPnE;kW+_7DQpD0N`{G=1+7Rm{5wIw5EfGQ?<5-1u6 zNT$uENQOP)cXDL%WM+l7$q=YC>XRtGn!WQd)Ixdzl*Q{D>z@N8Gu1`mvQceaRqWUJ z@#7Vgk{aQl<}-*esP+`Hq|5JvT2yn%U&!@74qkm*2t`|zR7ND@uXQ9|Rr+%X%sL14 zXEd|RkAGl0QeIroBm=pN4wAYSc`TR8Yx}Bjst5V44e-TOw%y+@`{SMijnkv@Az6buFywnm)op@ zm{zThRWm^9Q4bCQOpF~ZT|hDy2r(I)&nq6C0El5&2*MAcw;6bAq7%T>*q${vt)#v~?&!BUw7-}n{oEnv~X2rL4dhzQME)n=5a z^dQ7Qdq5Y$mVYfv>EQyxkO&3<&9CP=Wad5^jT->J^S&ESj0Q-V_do?(z2+>(a{ao`HhaoUQ^zt{H7rHP| z`)2alQey;^D<4c$fA6kT5X8ksSoHu|z9!k#gaM`5Xe~V8(Z2$$QvFDU)AQ8SD7eH~ zpZ%?RD1%0}@zpW{H~^mMTWhN&k8=Dz1cFZHWv0e&%s$f&-=wO$I@XVR!lTP5!TdvIgNV+J!wlbEGFTiaMGHY==HJ zuMG^XxT375^#eoT{~=l&FpRu{s@iAq@j{v5ie?jX+w#d^&w=jTdlym8OUPj9ATehR z5}q5NRM7aNYd1Ww3qj@1{s+PU=YxV3r=Kx!uMCJP+jAn8y_^{zK78mOIM@`^D>9Nz zSz(~2=J)^w%EO41Bf1SAzila~3tVQDaQ&dRcC@!K9eLcIeDvs6<=-BIW83lL<#Fl1 zGnBGf-MxRApy;>$ox89%X%pN>r?}yGfxd+CQh)x`XWt!*zBaTFus=|X{Z@TwVq7z? zkI=lNqI<1W`i>O!Mw#$LqS*T$5v3a0#8RUBF4cr#&%+RZNqHt;@eN87c@qcuXojZ2 zKBfCv-}C}|d2<)uZR%Ote|IOeavC_VelF~B_4~EiJ%L@N8HP;(4r3xu1ux&p%L4I6 zechT}??07SxNWCLE#3XFJMwklG5dbY4i2KB%l+Je9m}$UzJ#}6mDsMam00w>%rj*P zgJ;JMsSFl*%bMC71BBnq97o0qzqsX$6Z$r0{E?>}@#V*Lqa{L$#Pj!-)90_GO6-ra zjtN%2wLh~Hzw-6M3UB?o`&~ONl`_h-$fxpx%i8R6`V@i`6l=L1k z7Tm2d&|7_61R@~mcOP&fHXN<(>*LpkU7 zo+X3lx%hd}`HF#Dm_1(i-EM94Y^259j|+L(acSY~bj8-2cJ*L8#~Rt3D^z7W6`B!8 ze`h+s_05|o9OCPZtePPHWADDYh1AO1-N17x_;|nm_b0i$pU-S29V=CBx3_}N(r8K5 z<#yW!Hb0h4;3CqE%Rb{%Hldi<>?H3~+2uOrYVtA3$n`b(d!p;*;*1Eyi(8jd+X7AG zOfB63+>Eb5e(T3+dVpP(KIB@7F=Re(7$GzNB|%H2EVii^zlJC={|Dm>0iS9dqD zQDGo*#nNy*n<y4;iY5@fkifr^WCN}a18R!8mI?vzbH1{WJK zVCJSduDxb+P%@rWp2FFfuIcre5@cVG^P7gMY}P7MkW?QQe|noW`++K+!v4>0+D6X3 z)?Q^370fsNSvod9AC0e_NT940dI!Mu+^);Np2S{MX-F5jmZ8eR#YHIPxl`BG7CiMT zvCK&O#CYn8_i#<_t@aD5-{V3_a#wMyergefv^~Lh2^`$fe8=UzT{=&61MoxhRTj@A zCf9gO5kExpgOyTsz|?Q(NW+u8$H=g1{4-hs-L!P+b4A7hD`b2$#_w+-(SXbg+%S8+OSyJweo?mH2rfnpQVvg95F)0GPk!zIe&i4}0 z^JtDk!$()O*Dl8jTXMl~FVz&=i!dX;D{NJ1UiwPsfGL53>>dIkO=xFzIGjuVETC8Z zM_nuFLPZ=C?(<`JrK9 z_030oElo=tQ#)d1Y#fsB`akdb$|P4ulf8cYEmqM-M%1!)rhj;+rnshUSJU=Vi1NC( z%-;J?TA4q!E+rZo=hq3{E38k8KM8Xi_oV?>-w0S@(zUW%poXpBMl~j>`Ke%v?j(5HESGQVsLtt1)=Cy|efF#*-nbnmX@g)wDfL^yuyr`Nbo6BO}6 zfQFtL-5qN_@jYf%VU)pmI_3`&0w{51j$b&6xgw3zW1CFvyn7iGZedrH>7=FBFUg(F z7>p^yz-uGTbh~X=oFJj*g1IQs(|z$>^qYh>(c~v7%@WV464|Mpa9S|mtld^pfB51} z!h!Jo18c64Koa9~O(q3{>JeKhiwij`oR{YMnI43v-93)D;qpeiJ#P5>^O~#Y#3NPI z+w&!gNvxvs>$BvU&xVVE=nPI#ZR>ksvKk*-JF(PgI9>B(_vW(-_!#jYJ{TpTla!cT z4zT8tC?YD`t<>k4(+g0JsIJ)kF%{qY>fVE*z0T(Hx4W0&0{JO+vi|<9faEbvyt-Xs zlwXNkMQ%K+aC56YQ_>TW_o9HJ_L^J#vf_S+vtEjGDLlYLC#kCW<;I1;?y2~JXyR?Ew6W60=lU40m0rWl) zy`ED!86It)J?1&0Y*lMD5r_vLj!p;psJwc+8B=Rhf6s$%v8od7_7veXbOh{y7h!A= zn@vrR6`O*ao;B-%dxc3SXQ1G|H0RrXL@vX0LY~nm-)z!hbk%6+*v$Ro*Vq@k=0yzP ze-sXic1#|WPbwAj508s zqqux&4%QKf=w5ka&?JSk;$vnCs;N%2V^sGo*&JyGWB=L+n=!d6&iPQOR(NBiDoswMR`R9h0u%Fvdb2NMgrOu#hU{2 zRLPveH1ZejvkD7R162HqipOGuV{<;dL1xHuv@0Wv@kN zNEH=6WcK{JMSVsvt1(pF>5_?@iRGwDrri7Cu^E12hdC34Ace3r`MP`96*y&YMyrNz zzES+Ov*eZ^(z8M(V^=eLGf*5;f9i`7(EAC%y^-8!42EbVqA#*hl2Nw!+%S&M_5|L; z<)=R$%R>YQ$`nLq;9@*9J@7SyGrcriE?)Y|6EGlTQAcm<IZL+1A)$QhN z*c9CI%mZ>9EHgZ#U^?4+{UvD=DC#GOcK2Kwdh!tqMhyt-Sz4#M@}+0DuXhpr^a=c2 zO+Cl-#%JN6r-b?pfv^ zgsLm&x{F;zX70~=?U4T>!9PRXm>^)vKlO*abd`-TGAPwV(?Gx1v+Ppcy>^e3>gXGw zb!}T|sQ>sBVHr}QN(^uEQSf%(HY+($ma5*^iCDb!SuLyryZQ7D-~3fm;L}v|!Y8y> z;k-bm`LI$B8_e$WmoEbymBrxdFU&Bn<(5*B#AE5kX;nS!tBlV1bSqqJO*+%cU~ILJZk+mYP~DB@&kVY23aX zRq%|?OZ~)rHGj^V-|q-kFQAIPjC4AL*PHvF|1>AHJhuBw7sz*l>O0XF4qma`q6~Vl zKN28a?9;{i;pv`tND;}6rRTx!`Je9Rb`xYhf1@myz5aVOZ#d|)yl%80xRhHaO0M)_ zB)>>rq}+VTLHJneXZk&5zu9WRWAz0=@#1UP{`i{MKRw^DYFs*+efTIO1FUUHJ z32YTTI_9QK^3z|W0m}9nZnw8}7+}qQViNMAs(Lee0ll~H%KOS6acwguAJ+JEd`u6{ z=PS|UHWA10u)$xj@uyS>5l_Wk1sDyHrOXWqiN(yD_T}eZJk4JHvWlJ`Zp!zn$)M+m zK7o-#;e8(I*cV0D>u_|dEGeQF=X{pSCN8vF!;h6C@Z!Xm@B%FRYZPAB2e|ETj$8;m zlP?_;NgAyLhoi34eeE$IZM2a(~)tl4`1wTwWN;j7=P!-XAO8GW%kHq_~4U8&eZMUyf-U!=O~CV zFlVHXUIcM2*?M7suPEHAUGX^~LDKInN!qNH+}-?aVKW>izZmn`M`}1sF?YjGLM=r8 zt?JD=?pYVRi-Z*oYby%8u>&deg{pm2cZjPprfRYf=nkZvRqr?F1 za?&r(5Ujm{TFIVhDYzpX!FdC8_+gG#V&FtWt(Zd$1gbGpNYqNmuvxn$oZr-H7d1c(pqx?S}qonTW3@ClZRJG{%t~Vtk6T=N8fzS&GxQnQ{qen3qEK}V95TrIVAX&&<6t-YyaJukR+ZB8YNOnKy(Jx zYz++!Z1J-&_g}6-Y=H(EQAUyl=P#R|nGDQt3h^*jk_l%Mk7j+r6F-~j^sZ;os94(` zbfO8jIe--9jQhU1bA}EkSw8_=*1v5wV8}YS-UzMIK|uf%P#weKpy+85I1(87G{*t? z0d6K*0-1AV>*AnwkRQs9=D7+qA65CA%_iW;HB6hSnh`oom$VXbo)<&&804h6avRh97xFhCca$^qlfOh?CnEqg7l zn$R&3+Gtdj)j0i&O|epN&?^X0Kv&0&&>MA-5ClE2Z=B(m&HITfegU18^Y3xsONdE( zMr(Lo!&|hm{K3^a2KbC5MjIxbTPbdsT$=wqf%~OPcv++Pk?NG7wZAa9Qg^iL_0FQx z{IvIriXHU$fk2j&2Rfi(j&V$^Yw@2od=6FWC%z@(JKCUdrax!9;2?i$D=>I*bV>4S z(sDSb_^X;dI<Q@wJ$;Dav<#U9*ryzm8-lb;kTL3sQCWndeGfm2P$*i2!2V2xQ%;4xruK zspJF7cautOoz@hfs|St%85$PIdiX#gGtRSw|EYsKWuq%5WIg)$#7OqEU9R_8D@YD8 zQ<^Gtp-zH!K0K{gUD^Z@K@-R_o+l@d%($R!A85k5?CO=@nb&8@qgPG_vQod;S9bp$ z0cIqV8q?oCouEqI8-IC{@$|F&HKz>f340{XZ#A)ITkG0eLThRCVQ57Cte&RJTrC4J zELz+HRva3^-2cwT7kg})A0BRY?tPUx#y~{9_xKB{cXXkJOX%@AC?cN@j293@Fn z3867?$AIcO11hs>4yR!g6QgsjJcsJ3H~Q`y3e69n2~8D{>gN7J^U~2E$V;|p_=%X4 zWVE>Nhtp=b{)-Ep?U5iZ7#bRa#)UnoGN8>0t(#}4dFr4bMuH@W*fFL09sgClJZ>$V z1??$NhE@cc>9h4vfbY@%O%ozqEZ*8f$K}yVnsegL*HlzUKor4Hn%eJZUhv%@$WY}N z6R=d+CL41s2mCQ$f7g9;Z{0|>W&=D2*~xbTWXvT{+U z>hNpZKMi`|7sz{?N1#l?tpZLWyl^t0~MSEtej; z$Uv8gAarzek-AD&6z_-{b2_r@AAeQG`X4vImJ?oaDlGtdNZ{eO81ZQ+r?RQo{rZ%v zwghDv%4`YeoXV?YZ`H#Lf=H@rc?CSj24gIg1`B9NqcX{&1ZCDi!-3^?a#d~ zY8a$uvQ{1guehKEiTY(~<*fc#XmLWjI}lY>Rez|i8AC%Dgj5KX4J~leF3Tf{KozP(cKGRw)u@=?LJW214n?ojHSv8G_ON8&oQwwss}W z^YH1Pq7pvlS6woH_ zJ_k!h71pP-)v0s<=6q821i z$51hwhJFKy_wV1UYG?!k^@X;CIaXwINITAi(vCwH21kCj5X#O6uw28{X{@I@v=%n{ zCD{3?`veNR{uY&5csQ=gZ{b#06o zSs1I90DtJ#u|$BKJsjpovVRc>ZLbn`^d(z12kcx?M#@16gW=AbF#?ohibIV&AvBl$ zuA2D>@&^b14QRVci+A}HXre5@G_;3*Y`1xWa|)aw1}dr2IMtkc&ZG13O+PL4Awvrv zCITI;{7{EB@02IQmOMG!L=b4+LRFwYYNB3IWa8JykjV4%+Zz2RU}3umh(NI!1b@)_ zjaG1nKE73KZwNZ$us$J+)Ip698oAgzEzHbhIbz}07&z9_g6t0;ZZ8vWT7%jPe7X$i z9 z{L={9?X;`h1(0;8*`nd<^`|H(B%-3UuOKZAgbH9fh#FC22l*IU8r?9c2&25%Pb(=o zC_1WgsI|_3T=Va`CWzV_InJ#v8mFhY#0}6n$Zy(01WQlyXsbua1eJ)DS`7$`?mX~$ z_Usuto~^Ad`p(veS3r1%2bF>XL#%`{bJk~MRieMIBmQ#l@a=_9y^ltGI^P^(1Z_&_ z5YW;oTBI`g0?maPfHLcpLZgchT797uFD)3?~*u+_fqs))_HY4jya)4gSa#6bAlQ+{d;xr z1OR>)w)g!>SbT5$5e@ixNkKv|=)C#PfA%!oJ7@eU6MjT#F_-hVDX7JGb)rJGRWtQT zqZy-U@+nvof_`BNsG}`PNbTZuEK5*cDN3-~Ojeo5PLu4puaCo7@c@l;gt(HHYy`00 zb~08l{DVe<8qBedcSO)t@NYh{o)gIqmYmA`SMsIf1-{~c4H|_@&nxhEkG=Vzk^0og zXHjqkiS77c4gUQg!1L&*=ilQ2euIB!Ik{VWGyC&DNN5|75QS^}IVhW1{L`1;`yJ&u z@^6J(@cM9|iV65p!}=Gn?N*Gl-98(f{<8P2(;ldWb4|C9U|gmCxK* z<<5Z?Jm+nWMxD^g-i?*Eh;Dnd5PunruEJ+8eE^ zWTa9n273?azPN=`wWGUzx<+ttV1#N~j`WrNhcu3w_${68S5S7Lz3guR*3L{iNU|LT4Jx;fYAut?-3w7v(QE&SJW*ZrvtjBI0zfWk=rv ze+=|6V2cxA0_t%VKL_$ibc=%&68#&uIank|uG$D<>e~DR)W6jIg?#?R1AV~ruyH{f z&rLZpZ1>K-@3SB4I8G-|!3Fjrcp>UBbNA&*-WipuE|JsLd$^C3yLr@`5#CR+bm@rQ z+kcGl2WpJ-wm#`;vBW{iQuJtuATKpX-&-z0P{9%;$p37`Ko4oif?T#b#^#*ne;Lp0 z+v|hd)7de3g0vz&w&^_?uhO-!I%Sv_cutqnbM*3>k1^Dp3>0zBBLMr+fm`OIrYS5J zf(4x!Z+p*+ceSdv*;hV!iYL|MvyV7NX`_&ziU>WqvV$gLw9yJH1-Fzv9A{ym^S`I# zeC_&0cl3(rT%0aCpaIZL9KtA-cFy}5Tsht!sQb^dnUHc~pLJxB)e0c2r(d{@4lp!_ zNfNY1=O|(~?(D{|YtHCH%?hLugwD6n7pS0dCN+^w&D@*=`i8;}54{}>Ab0-R)ARh* zE9$!T(<>}k^UUG>bd?(%=!Ojax9b`(w^D= z07gJ?(Y3SrMsRHh*16u7*+EPh4| z0cHjoGro0n*w%me=Lw{%+FwB1aISe|7R$6N*2TM??<$=!W)36KeIht%Va`FWBVxsf zLkIKM|KtD6pWLlmgcKAMpoO*cF@U^XK!6--cbAh<>Ht#Ipk_u{Ncp9ts{7}waKr#kcR z!i4W`DkzjuX5$gj)+uwNh#^$>5-hU}jmMZNnCQjH|2~nYB-3Abd23?KD=!;8gp+gq zTO|7jYUT8M>95{(BOn(0uMHsBjjw9risPU+KmP{{n43WLwyhCuUyKDT6bPJG5T%0dAg4mxNQ7np?;RrZ&hGA(EFYu5ii*m8Mv+1| z=|a~fRpp*X{^))U|9TR*J^KgExc@!(D$I*&F5IhBP!?%7?{wCtWr@WRWtv4HCn0y#mBs{&IsgZbPFKsh!%X6Ut`_7o&jo#wjR%Qkp{AAF}A>#kJpsMFnaRx~m!fZ5j%HXknTg*B;mfZgOStWSd(I=__LC0S&?7YTu=m|F zv`=8-xe}8shy*hFEXgS;pF-ki44nh~Nk4vki~@=7blAmIbaw`_vuAMtT|(j(!6-(7 z?kDjqJUq!v>U07XwjW=u)+vCth^yx9{`E#=^NByq|3~H?!t5K0Vka@Niq<9V&(?IS zUzT{G`MmWI)OCPBaiAMQ*3(n`6`x@gbWsX={CiE}$AE62GYH*|pwWmQ-QNJDnO8tJ z9f3CgoB#uWAkgaG0$pR_0P{KWO`&5YLCQ-Qw$XqTV6Hv!Dd_m9Au+!W^9Fhd?9(k9 zP`Mx|0fmMStZr)V10K0{`V790D4RzB0UN_6CmLME&}oKZNLm3C?3QTeXdn=#;XYUs zmlmjb^#(ClL4RpY%3K1r667~sbg3Sj);IU~D;4;_Y1HsNDD`VS` z%cl%3Ir($ufSQEiFD~4W`CuTZoD$mi)Y#_GHvu|K1X)~M1ZixfK_}?qFc8q_l|u?< z6^ZH?o6xQ_LCLkA_AuMfB!tdvco z3e}%)l^xJsW}u_39E=IwLqGnPOpZnO#qh z&cLAHU|~;vNIy|Cgr=ED&~%!@V~YCh3&KVefByVgPdhopgKaR-CO5P<0*d7Wl~viP zo`lf7=`A?>^KPcOsjwFlYT{Ia0sB|lfcAqP0_BT$EIP#ZoNm73OZpKEa#1?ZYP4^% z31sR~umjAq&Wr5q5VY2s(F!ZH7J)>5>hrK|BPe;6^xi3Ek#|y^qAYSDt**4h@W@CU z1nqfec%Y^Rdul~izd?7tq2f#No_K=C9+X@NN^M$j4hRB*04(Sic--r$`;^P)dip&y z3psyY269t81mwhUotc?BXvd{$Y6|^9h(GjcM=*#Ks4anFHAyrjB}L!vgI)K+!55 zW_h?LH2o?8=s+g2qNN*v%d%_&)>E}g!x3mW=;(Se54$S?9D!eccwYL#yU-W|1r%fg z?TB}J6o6{M#=SR*k#wi|4p3?v-5aM?YkS`IM8H&%)T3*S0v#wXZN1w$qssu+1VC>J zUQ-V?eL$OyP}MQ~lgF@zF`R}E7eV(1Io(qtp84$AAYlC{I;D0Q!7cKGnibutC4t`< z6MD|ofDD2D_(_mX`46w)BIxET!IJo-5k7pBZ_g+^;*5zq`#-Svmx6!@$f-VP7i0e8 z*Xv+W=(7Qvo~m8xn*UJrX^T5_OsW|eKw9k#8&;rB5e&VM{QqI>Ex@wcx_03Q6h%-# zQYl4Jlt!e>prlJ$Lb_8xLIe>(KokLK0qK$k2}$XakOt{ir0b0JsQZ2Q`M>|1voEjB zdREM})?72j9OJ(4k*buAz*(PHYM!DfNWA`^acb?WA{By61L_J9;)q68=-`{Vedmro z@N*x53{gI~e8Jy$({-0K>MT$M84&+1;t2y#87vJ>660XO@&fo5KFA1*kN}|mhl19! z9yS|&{I9{>WcE|J^U4bVvY)U4%4Cx6O*DXeLVX!#GrBtb!W*wRsL=Mv>obzlKkr=< z!884K1`noAMRrqVpjh2dG&4)!Li>X6nsY^H{BG_#l88MYp2+#nJ0YupVSTW}(9_5? z;>kZxNJ{-LD~qV*w_T4mWY3fgv&gM|D>%&>an1XiLSSg?lf+v>_N#Yvc&{v9x2nShEDw{CfJH7z3}?62K^ zzw5UVzzJ48xNV?;`CZ1o5x3Fd4xmWa=HDSB#PUU$rQkf{kN-`T{%w(`HAJ?HDuvDI z^PK+UqkPTTbw*(Vq*1^KV)}xOX*+fM@46C}7QZcX^c`cp;ErH;!wLYxf|;AHU<%dO z-v(2t(AF4TK`O9TKItd^1ROD%@f)O%0!dkX#1l=M3(@^D4OZpYs8FB>0SVRDqK#FgAx{bm3sDcz;ojRt`WzDP!7v)}n5&#R)^lIE0o|KhoK=v=}=Ij+`#=eOIpBfkK4+pw(by+$J z;?XDZ^6Z|Hvg|(C{c#S0KCnd1ZB6PGZFL~a~Y0E?%?dAP&-#|xZxaWc6Q9Xl#; z7rzPTzzvx(4>BlNaqsi#DZ!Fa*2Z#K20PDhO)|*E^fuMB8hUbzBv2}jiE9~e?o=z= zD>!fmmsHXqhPIUu2*$eU~bkOA&6^(&A~%D^G@-W|BbU@#TY+{LP6YNY&~<$|!m z?F~z-Q&0Q)D@nb$Y=HZnanF+?REpHp0A(g=<}OW$KloL{2N@K#rMO> zjB#)3<06GlBd@-@A#WG=V?Ymigk5}Lx&R^90i6+v3Cux>Ao)9=X+xw9%0kvBglnJf zW8<&VW)%5(+|C0mei*yz+vmMGEz-O#Ei{9cQ-Yt3pC;uIyhvkeUW!Rcu_Y$0waQm% z8d`xZ@ekdShOI3VOxJxUD3)v=&Bos7h{}9FQlK4A6+7YRX1^YF8rAUvM?S0Dq^fnM zSuFc4Ysp8#;9Bw0Al1HBrwV!jVYZU735}diGM1BKL7TGQRA&O57B<5k^5WnMJrQpB znAtKPke&6WDx_A~HoBeQvB4U^fHWp zid)h^l)2b*hg?hhF+=g&;t&hQmn>I*9C&2iFr1m}ac8fzS}Rt;ms=f`O9+j_at@C* zbB}-027BGTPkzmhjWKgCQ@i$Zv)CiN+vEcysr|y57Hj2L!3cAFv4qp`K2O!~gq8bK zql*Svon#f685#Y>WW!A>y<3f3R(cvVFNHkFtt+X0dQ(>_hoyEkhNTqG$E3>NvgOS% z>@2J-$ht?UweM`;2bJ0)*E1>g$*R-ig_W8cj5CVXptRHv)*6ma0`HRQCIeF*yNmM6U(BY2Vms{cq3*EOK z$F9sPmbM$GRX9EoPu-{|m(81_etIukOfomFFTcrtlILQgw4^sDKe@L_lfHl(F=sdq zO{IHa{?_-V$&3u23}r?pLqnl_wQH6V!6bejYY_Xd7w#&c2+i9Yhu-bz1{^ zC?o8Z@mzkMYE;e(d!}I*?~GgSs5t!6O>oPLN>+Os$j6PbaXqYXR*1c5A#YouKUzIb zG+e@FWa4}|xHon3`qd|#45u;x55B3fwYpiqwR$c}dM1E{^;tn0_KSJbG$O(b!|j#R zCvS2Kxr=+w;@TxtpT-llElZG+dnU;Jl}Jk$PeKfX`22YVMtaqz zqfN4t6;$t5M;o4!ncTsm+}#beDC%-t)1`9XVLustZqa%)fwzDbnp|GI;2Bp_Chq3u zzLlugCrTPHod$9gV!k=++@)PED+@K_#$H$$-fEiQiAuJz;r#5pe8I^4hPc~iMsRz( z->|7~hJy){p@CpNDXt|SU+7h0>>s-1IGwp!td-OmJCB%#U90FucqlCW@lSB_iSO@P zGVbo$s;Y>7OFW^n0_~y>V=3_#%De06u;D(u01P7v#Wwh={&;csBV-O#Ij5%rX#^Z> z=XjlPI(n4g!z3<#Z6>;gowqtX7qHTMnloi?n@a+kT0?`v?IzLKiHg|e6PHDMGs&h+ z@F-*G>1|_#&)rcW{u&U_mk-0FHB_dXC^g|!fY1hg>hmDqa*Kh*EkQ?YpE`{8J7i*> zv&$Av!~VB=E47@K_55iDtrT3A@a~kF2-vBr)y74fcD;Xrn@mS#^sYp3ja8BTrOzI| zsY1|t>+LToj@})Scr^5SA6wr2)HmTPT?g6c?za^YW~W5DFDEko*n6*zfwEA~s=3ko z0qZ)MIgK$FyJe(_+c3`$CG?61=PXEl0l>dh zK@1!zrZ;`jz6V) z+HS~2LCU9TT@mW%GzeBELy1>2AHUhz88bIa@ zEG-2^ftLV8QLA=mDG*`a3PG_47~Pttb(w+Y5#1MR?xi){zg{!n9k-z8g(ZILL^M8P z-0ad%L}(~2z290uHFVc#sG8G`SU=d``s>-DeCJI^+_ESuPD)5v^T#hMjJVv4xS#jF zOHQt#|5G>U>MY>6J-3tqB+J`P_hmjlRVK&FncCu?3&@lBVD4n<^|wON)~<=YqQV-uSm}WSM6XN5qJ$!nH(|-I2TLN_|w4 zXmb#wFWJBv^#9spPZtq3GC$?@$V)y+q=OLsP`?dEu=k)bAr>(NkC~2+VPPrpk420& zI{Uy621=#&;O~3VZS;RIg0qX1Db_wgF$Am;nJLO>i}5{wp(F<)yn@IsB0*eGZafdF zD4-aHDA1Y(^eLYJKh3N7c)hs|;5~sdF)YYgB1wwU^4L4kVFjPNulYso_+t^J3T;-h zQ+SlmLHwn>V-QjELG*9FS(0}C1WW*;F#(D_^@zeLD3^f3DSw36+(5c=>bo1kK0#`@ zF;1>5$SW0j%JOrSfCB+pdx6Z&ZJ_!r1qrzRqyr8+L!>#M0`W- zAW*)>ypBB(uA7vL&ZKRCW7FY**9pQQHa#+t40`USX-uu(TUrgnykt)h8_Kn9NgyW6jMv>dFB zH1pRsOSJ-CA)_`^T}=oNAYi&1>5&_Fv_RKc3i?)LL52dc)(H?j$l+pLZW~nFWC_#^ z?z>O&&w3I13h;OR1z8(qr9@*=a_Xyc6=$FQGYXg~akv1T2m`gX zIvNQ6O_{jNtgL#FMr1kig0S}{s|ApfP>XB#{50hxOQmC+hnN2uhLbE?0s#s31oVZ( zatFSH8jYBm8Y#eioa_e;rgo*J82q6UIukC~SQE z-0ic}MU<%x=l@gf{9JP|0=VddfWa3SY(Oj;&`AJq3j!?Fd7W~{^z9;gdV0i-!f-Fr zdwSXkl-1n6r$6+)+Yr#}(|Zv;Yh(k@J8t1&t9NMV-_emT)c_As=kZ1~&AM{~0|V=g@PhhJ02 zF%Q>7O$^ZT@Th^LTzDHmcL>ySv^5ONps${5yzyqZj5R48vut(43ZzKHL*!yle&(_) zCFp?{fh%(1Cf@h*P6LXxiTO^_Z#F`FR6txXhExZd2&f%EBQk3sg;k1oWri z@7hPKPc*l8XFY86O>p>ZI0i`nw^G}YQcpx(#uhj1oCVdJFGie9;nLdfD@COsPeM`g zT(c7XwttLyVDw+hh;Q$goXfNk0b&pWdiT&3{8h06E{(uP^aDi+8WEA|vC^2B7=HPO zNN|*qF}|1c9dqcC@OXzOJjiTx=K)3A8cSs1j8)JOgLT2}uWCC5B2Y6BWV9CDGCAr$ zHK)?%3b>fF;Pe(i#7juoZV$Z>C3OIehzmEZwF7frBi2n?(J-h*BSIxpOPc@+QL=f9 z&hyxAU-f0kpL+D8$MD*_6O{^N2b^iGO6*GH>LS9EZ8h2!V{74AF6+T32 z0p7)p^wDgP4otR4EM?fb;v9Id+h1Ez^pkeBL0^~zPW!n=kYvCI)qo;lbq$RGaNx%N zea*+?(d0GzCbQ#MHLFBqLI2yUR)|=vn9O#-*jNN|k!asL42mG1JF8K8?-aO=kO??g zU==MKRirsenQ7rLG$iDJ4DQX%pYM?A_yT+NYjM=B1Ix$O8F3}09zK@eZK!>_(hmpo zp2@7mWSI?XGZLn|OxhJf1=acpPiR@DL~^jy@vQ!rH_(IrHPd+Pi5 zA2lcN5#hY{B2DzvWmCDSR&c%5-PjqlmSAoL1*V9$T$Y?F{O96{ymNngi`3Y#Mkm(3 zJ1&EjD@9Uq!0`3+MI=_nUd~nJy~HQQARs`X>$X6j2*R6TG}xdj$qp*R8)b_LMDvMf zPJZqc%2Y}hOtqT@K;I#`NltO;Gkbx7KV|pvbZBe2+I&uCu`&G0V;4>TzW9C7YG=n% z*GbtQppbwBNW~%4kD5S~HXweaWzZ)^6B?nhS8jc9KWi-Sy!RYgAgF=q10NTnm=f@I z7$}e&M79xk_GJM93eXt@Rmv^gXRR|oujL50=LdbjnJ(|V8SxqACwCgP0~*>Ki!IlN z+y4EE*>+z2Q`>EQCJ={1q~{UEdGHFOYEmL}hn5>g0Kv5mii!Flhm4T2?cnD-VK_wcPl@D9<-;^(PW?Ii?ZsMvJFEot5GP>zYGD`oA-=3OT7^$ z1c-a@(kAqsLdTKctQmipCJc8Z`P95KPcwQ z9iZ}$=#_w!ZZHgw1aQYY_V)G#IVG&1s%`#illx{kt7eSz;EHXTHpcNoAEdiIH#hG` z^g^e=DP0Fa4n!ya^Nf7}mNtlNS%an>qM3Dp(@4@GhZHfez*K>lA^|mZFcOx5Ma$C$ zgU>%_T7N(UdIAg_fN)#nd+a;ISk7&}i;N(M*lSR~l;3JCn^OF>H)kRGQ%KdU%LB0iwKJFsnu}4^19+jaqt$5da#8YzXJ-tcbU7ZB zx+p?Xh=v|JsIEA|#B?=qdl-Ptb^wdRL?Pi|MBO?2{C8kK=jw@23O*u$0R_<1&!kh# z`vpDs78tcXHv3TCh(;X5TCKk>oe=8KhH(iZ_7)z(UEeLyu^=7EjwN0PlaPyy*qC7D zBBnBEpy7e;6+pGeT-l~k6JXwuq|UWPDO&_-vo?WP2kOyXcSNwHU@jjL5!mq$vgWsS zbmSC-o)Em_rmIU0roR^ZHFOPU$iH5V(yDq~2Ik!t0^}SyPAa{$c#l310b#TWBcT zhPnM|CYVP+dk=(dBcTZZxYtWA04AguUc2|*xdM;YFC(VwMd^p5HmSd3tlFHMoM2sI zpg@c;i{r&(3$ja>#LS#eTltq-6r*hO7J`siSXgs0z9j{38b4}gGYR$D z-2!NLWj^p+fDweq!L+toD8+$PQhkp*p9woWx)=b4V3IR;^u|;f=bEFULt_k|W9CY2 zw_(I#W|dLPLS7eoIe+)lLOK3hZ4bVTJ!y?b814CX-(djw@{0D5x~T(lraWMmq<->V zfeEmfx=RjYSKMJBT|Ph?Z)qf8lFm6-L?1$G4)R$4K68@PK69t1KgJTzUk6O|fNBJ+ zTJK$#q;OEPK04S1_|X)oi{*c_H-GUPCn4(4Kh6Ppbm|Dv?V(6qR+wvm9FX77dz~vP zKR-h7&M(Q2vuQxA976fTpgFL*y%YzSW-zRObdN-M^4!tXBxkKK3f(ydp+=gUHzWMe z>@US@j&j>=SemzQ`|_@Iro0C6Xm76wqdh~IX?Y#z2~ZQ|OF6exRNjo|_L*|eSrKeH zBnAW#rq+qyay9!CZXx+)G7ETRjD#_}9#q2n_khrNw-na+U~MOv2S*hww9kEvjEGg= z?MI&$$cLH-2OpxlcUmsBpo4eqA~$NjH?@;5cVN=?`S%qBJq>!in|y2qHwY9)Xh&1hIr?(LihA>5-ypIm|4Ix{=+!ll8`Lc|1Wl~ZHGVBVfN6Q?Y zbs@U?XhNNnDbc{G52>k!U(*!x?q4tc*>Vk0J2QkQgP%xP92CCJqUOI9FjBitzjDwW zhoQG2kzlAtgAb*!6U5b|w2C=ti^{EDjq*HltqI|vK*O}w|L?)i4?lGc(iNC&A!S6| z#!pS6ajg&2pS;j;q_jSBE{Ubr46?OgOay=?B{tAyZbS4JfowxG9g&b4gtZ`~#_4nw zg4Nn*a1~&nki`Wkfj{bKwUni_j^J${yZ#$i#)jCYb^4A~7ykf*-5_Pssp}!Fr*wTp zwwAF_AlZ%rwL84~tY5|dXT0V5S6r#m$Ili)IvKrc$R&InMI%oU8A%Q-1=5 zM1g#ucs~u=SyzJN=Tw2a0D!E#1dG;bdsy=d;cq=aAc@4>033rU6=?zHOM_qk-_Tg^ zNexQ?mAU2`<7E66d1OsCNXwN_BjB{CQqZUvYRBvCb=b;vIB4jtN%a@I3wW!4VYMLh z7b2(|8mcgNc@joiuxKTvq|7FN!ywZDRfqj=7X`#ByTi zOB5OC=q>}w70`niEkWp7G_S)`kbDF2OX14B2Ww9%QQklW(g&qqLE7JFS{%q)Bem0S z1*7ft>E9K96=JAYLH`(a+-x!$FL z3~-9HKR9L3sJJiPhEvDeAc&HjOlM?leCqFvb?%?fftlJ$9~B=TA3~9O?>ugKcG--i zPNZKbzrQ0ZebB{E~0eaQe`8+l!N*w)_)%MKf4R6h#%>ZftPu3b5=F0~xJ zgiq_FPx|)IQ#>ZMgg3OD9TzT|aK@cFa4E1yeqK7z)R`ZOVddzzba}BMa>POgC#-j{ zNzg4-Ouc-GJS}IEY|Qpd|7&D>z-v#2aKEIa;1yi!7v5(g#pN=K+(K8|L6lHnvpO0% z&?Fr+^=WN8P8=RYaDPQtYB>o1SQLINvwaQR;Gtx0RL#w4dKZO{flG>V7C=p`#arJ( z4hw3~G+K9DMP6X!xIwPje(l(R5viDsZY8_1U?LLa8LGX?bqM#rsJkQ2Pk~1gxUogH zh}@P-WbYQ?e%noV)zp-vD9*)1>R+N(yDLaY#rCq3XyGw%EM?n z=g;!~NKty$LRUMkaSb8cL}PTV5W#pqhI;uDf8;mBk5rYGiS2GCbvWLCMk&iIlB0`^E5Mhbb#zB5`wVp*X@j&yKW^nDEvt8W&z2$E$LC%yc z9Eoj=Y6O=X_m*=N^|$KZlCOk4guUVfsEE$-K?*JHhvD_JaI23M6OO7)i!6A^CGrOv z`6jBw#tT$bU(x$Tp4O18fW372Tc$h1{5ed{>e%a2lX}MHoWy4z#`^)qaO@NT1 zapToW)uAo5PLnbR$4I&@qq2)l()aTCGYn;UIy-U>WTGbUc6Y&%ePZ%yz7}bwz|wt{4zdW-sDHiT3hh_ z=1|O_UV^{o)usg2ZiD5?_slAh%aZ1)Bre3H6}Vor>f-64`jP_|ICxSApK~Ui(=n(c z$i>B)_;zu*Inx($A6xh3m!&WeQ)JCkQoZoy(o?~Upb(IM#yLnoQx2pMrv! zm}l9=l`Gt(Osv{Lqn@8ASxdYz0u-?oU8|Pmma=&jjm0fX$(x1sY6av}Y8LF1ynOKV z%{wuq?7~UP=oxPNrFUlGCSs_non|$^ z6zn`1SDgEi-!`EO^-}uD6XD@zz0^zvv*IMJ7}6D5K`Wb&eEGSe_$lJSG&-3juVbc| z-&|aoC(pbiq4PX>g~a~iGX~X?!)`)a=}b$>=VxxsF?Bi{xRmEFwdMLpIERoJhD5wm zFbXZM?44;0<{EC!OTO@>lXBE`xGIVDq>iDG6=ZAL3H&vY1A0nIo_-gxNJtAq&c1rA zVcpK+e_3+)=*^hV>xahm&n!Yms@w#=*}bQfi}02qd|&_c{gtOAO)|32yED3zZaEFF z@oQjI^u7!fSgJoU5XMXq9DX4YS2@w8Y0;x2?vwO=D%M{M!~tKR_e6C+i!q?RBCaw& zoX!ujTb2BGFEh9GZiO2QY@avP+JBzZaQF7Jj4sBi@)a~{!)G6Rm3CF#W_)@53AMFt`Q&smv?d%yWGPrln&)ws`MgFCIA96hJsp1TA9 z^4}qoMM`zK{}=iJ@7SMp#edNcynkl-u+Y#zQq7B!GBUUdzvEvj6nL_t2;NEiYo)*u z|J23dWQmBXN6xeRrCG-f2KOdk;T(KiCNP*PDxHm!soz}^9`T=gt$M*jS>ADBX<;FA zz7%6gWDH-YLgC)toG8auM9OK!NacW6X3g`$?06^zwFmY1YioXLsh`hA6ex z6Ys6zPO|kpUluJ&RL`Jsv1D76D5L&s>a&3SXtmkPF7jti>GhF#NH}4lBAKmrW?#lC zFwKic|?aqa6-pfAILqUWhCTbzc_G=+olG&guR+wx`SY@QnmK1%sbP%TG?V z3K({U>!47q{uFvu^A|gfhI;D~@P0ggvvm;TUrDjiz0?zY!P)Ajokx7-Hl5n%*#8VD}S?waSy-R6HoixQXPSypT>7Q=R4DK}OnMM!Krr=fP#+qy83FGq}D3nY%)ittZ zK;qS9AD7DdI5dI|-Hvz$ugl$Ydw_DZiyQ04vk`cio$1h>B7gSo_=rqU z`(uyOZKnhn#zrsY#|p-dQVy&7w2x0GDBBY^b}rI3=6G7%{FMTz*QN&3@ji#T&E~_0 zJ5CMyg=^#i*VfX;EISr7WPoKof?iBgdL-C_Zu|6 z*WJ$$Y%O~CxRK~Q$|E1kq(FtQqkb<4|3qT{{mf<}3l8a~tLfKyPGHhKeLmD?VsNe} z-{_NTznrMjBl95+Z!i59I$b3_?l`@bwz%U+lLj85+eCwTx+wY@>#Co z0G*Gq*e0`5P3Ji&1Xs*9tlT3^$}$KRz8P;s6_@M=(SIM6>!`9SEMKu0mpd8X9g@Z1 zo^8d}xc5mYea=%S5vR{T zmA~Rq{F=+^5@|Z%)kZXvkTLgJajb`L)u7M%d?N_{Jq=Op2DaHU)DM9AMTbs4<2}NNiehd$qQu$rW-gv)GyX-1V)Zd-FB2< z5w8`>=Lsa5!Me-Thg0wLBY=gw*4kNoK=|IskKt^&H!~D8>Mh+g>3fF}@tmKH?Jsk( zsvMB?=({BTG9od;xybLFN$sBe@yl80Dd+POu|u}%%PFmiZTdwpf;m-wSJc(`@df3S zbI+7;#cNf=Vl5PNFsvgeRtRYmdL9`F3D9wI>oeCoW(2bc>wC9O-nA4j-Jv&6|Cj_1 z?vzHDADh{fc9l;9D|OT_Qcm+ngaKHY;>4yA3Zro;yQ;SLb;4Hajhz!db*U7rbXqbh zQq|V$kycveDl|9fxnjWnlhNO3zR6MYkV$W3Tvq?mov7tx*XTmF1DCg zi!`Mt3zrBn`l2|J@3~Q&r7yB%Y&vHvkYcqqD)&`i`bWegsbLp9e}-Re&IW}^KOI?y zrF2PRc*wTTLsJ@xL#Flm`>V8z*6y$|*k2xk%^l1|W~3>@;i5P|M=9WniDGviAsJk6 z-9v{FCQ+npTldCY855NHF3BUlk-6~dA`G?yx-(Iq_8f~R9>jVf;voBL+xI%-+W)Yk z^KQz7t?S}pihdgTO)b^DM4kQGcX%#C>!}8kYe@bNHy!5>aSeo7rjAQ&hF|>uFVQ2k zhEi+*n*iRES|2pgBrP1AFaK9ZNoNp?I)xZPD9DZjzmoJ1BW|%S@eDRZa?JaAaX87( z+*kx-CE*|6 zEv5|;1Y;s*i6Si`1{teqqRzTW>^~q5MnHL^z={EZ`nxX+93ZR#8-K`au`bR6>?Xl; z`Xzty<={37RjVgOz0~|Y);L~U0kp9ayUiA|RG4TWtsiqSqe><$tk(ir@FZkz{U&A8HQBmfNM$pBH{OdseYv@7pM|yted8Vj%$d&`K@hdDWETU1}u5*r< zdR{B8ys>`?dccd;3J}#bUdVhu_cS}pzMTDiZ0(zy=5enqmi}iyACne4BMxTw zN*%}EPY!m~A$I;5!oTnpVyI?Y-dIx?D}h2H?{&Py|42l+&q_}H`f=;R#wPuRgUu9P z4P%feK-aa(X>d=S$^7h>E2H;R+qzD)?E1enlPY!s6_$Sm-6UiDe)tC_LxOZ3E63-& zRwd<_k!YUn`96QZ-iuScuP1TXt2J|>5!3`(F*K1sjQ%g36rom_{kWQ?cX)Ey2Z!s_ z(P=qE)p0|@PX4V@Y`P~Opf zBZ92ha*XS}@^K59Ihb!OT@ZKXgPJ6su;(w9P!ktWqQ=gcuRhu2v=@Byu0BLa#eZeC zKolY1i*sUE5x(E(lyA`YHnanPw|!+Xt&xGLIT1ZoZsRRknbtu53d+lssS%P8XV*u>Dh_~YWQKDG0TV0xB^#E|6Dbi4fmts2$NvsftKJNf%WXy{iG2Acnz(h?9$5+cUn@Zf&JYcw$CJwHN?k8}>;HM@j~k__LdM?>Zm zEgF)X!nzt&wvFbE8UOgW0jKcFmq8_3W7+7 zq@0{^>L%#qJ?MzxgQR1sm3Bzr7?Lv|>gN2{$TQ71^N3ZBTG+cw-sYLA0?l-~?DN2h z^^@r4#L_%IlpqTs;6IXCq=8t7WY%JOD!5|)QpGMkUdKS>eUPjikb(+Xy}s^G8dyT| z_#wnRlr5y}0=Dwi()ss+$Vd-U3c$7u0A16*yQTS->!e}~6k#TgsSO*{y1K2@medl|~cL;eSX-W{~EQaj4 zC#R`vfNuy$m32U1OhOdxwV((@NJijE9&NPWgg`{c3=38eD=T%49m>0w29<~*3&Lo9 zIA<@dM)8niWEUTy#S_d)e2%`h{K~M4<`^|Ditp z>X8AtEIlOL`p~w&xx937QMS?j_oSei4e~Elhg({9ZtzWt8bQwmvZ&&s6aeD_h#YP= zAxIm7hZ0TgodnSuo5%0PK*6HT)q;EW(+zT($>ndM$lQ`vgtKR`3h12^D3Dq^dyzA_ zqZG7lp7%n+GV`ze%gz;plg*GimVl5D69v;e1YYX^|Da!_NfGUqsbYJ;7OA)T>|=ym zQqRZ^S0ws7f8~Uj+TSp6*_aFkB#6@ae&cAUz$D~;*5=yyB@jykUG&Q!M&u8IzzM*A zhDa$AS_0$``7y-OGCx0A33t)2*1!8t?>ss8Qpeg-O{7`Tp&op?GH>C5 z?(aO;(n9)y@KL|8zP^6ydy$FTg2l4;*v!n#)Gt8cyr7i`o`3{Kjqn|z78JF$gAnm4 z{#ZO%{WmklTiQ~V?{3W90!jH0(6+lf<5*>yltNXXf2)?+4Nx6%D$P5C9T&VHhLg^FvXq?oGA;@~c{ zdz!kNb9y}{R{1Mu-cJCp2LFyuPfUD%3VGexSj(ovG$YcxP3xyV-r$&T{jt*TGWqr@ z`}(`x&y`O?y}p_!1Q@a*bVJ37lbh+FNBWzwTWKVcxBY(v5G2yskiB9 zD!VZmM44zX)%t5%$POCQ5}rSw7&>3COQz$Tzk;)LL@cJ*-K3uX;Jypi$=lZl70z5a zdDSO;?Bq!)(=#{=2^Rg>Aa%Barl)A&Qp+B)(kStC^+ zD6&i#)HVH}C243!Hg^ZYIWyon1>hgn~!`xzO zAveh|;QMF6gNLm2=jz!+K#Ws2^*v?AkgAo-uPcv(LZQZg>>K64XAa9!W>SZ|gZZOV4S_56fQnrz3<4CV(|ng$SRvqV zE`Hx-4FN5J{8j)wIBCim5=1DJESAmNrCc}IdKSiS|-&nk9p^@fa>tk_(gur<=sM6m!vux;HSZ!f)+ z$iezkm=?1k{0kG8CUQFDgEL|D0ZjroP$Q80;%;GjN8&{h$C~D$efPxG;0b1Xm9J*33dF zNy#q2$M%6_gd1B^#JeVjg~0c?bW#g+4p6jcQXgG#n^X^UrA^SmTY~9B!Q4Cpq=rZ? zUCM=iCL6=62oPvRY3UX_Hj`T4Gn#Xe;@; zd3#byD&W_AlG<(nV{(_mc;g8aieSP#nu0r^_qyHGG?h>?*3#G;JKuTjCXvTfc;w=y zX}^B;Rt00iZJcg%p1!%ieV8H9dXyji_$jOIF(+*>#KJ7aP^B~vX%!G zF8SR%e!p7T)XHw1zWQ9*0$St&MlWDy1Job zL)&k~p9VTb=ROsyW53(dUeuDUDJ2*NRa?V`oTGmyhAur>u&wD;!e?S)$unovcIOqZ zGPjicfKn3FN~7sV>WgumgeWaD}A$^WjB za@R;D_mWpnOC>0d{ zlJ93U^Vlb8bJE0#>b0LvyvTh8FGoF%uJcbW@r+LDO1LsQyY!%oJ?IqNQGP(`BNd?-TkdmU!f@_bkjl!k)(8XaH_Y+1h-6SfI0PtrN$q==vI^e z9a_yvvgx#j)Pb~yxtn|Z#K?VhZJ{B&2%cW5xD-ZAc|B$KzpG*DLUv2_UBYJMlXXSf zy`vvdIqA2{e-gQ{sOA-4X@E6#j+{x6k}bBYXAL&q+oNBMf9e5By+X_ExR4;;EXGO3 zUR#&K=kS;c3ocxIZiKh`b6d*hY^eB^U~X>32>~b7_$w ze*$Zu?X!-?tHK2?Yj31IaN9$hB)L-JC8~NRl5%S;XN2VIojmuFdFm-J6 z92Zh@IN|pJCKMbVE?GuF$Cq53y3bF}?YnMk_8C)80`B3>e+3@>z@z7@r;=^tuMm%_ zVCWqv@6&LjIqb0a!_qW~Rl!K5d6Oacj%GT9r%MvO)zTS3NSO7r%0o%zjm>u`Ni;jO z4I>l>=P^Kep`w_+3?P4DD;TN_2T!s9|HYn)<6+e`_eoPtd=8 zTT(;gKZBdg?tU`a@nx(Vuc=%A^Qr1MD3$JK5!b6D^=I0)(}3rapDKyJ_RERbRC0G$ zsVP{^b>A8KX+$^jWN)D-NtVSZ;lc;8DRrVk9&LvvjIZ>XAX9s_mfM={pU#Sl>|=S; zUq$b6v-j^SSjIgLCyZ1 zTYl!s*rk*@ft0s8DQZ{MbTk4AXK*uP+ybU;@6UKFB|ja`7S@V4?^Asv6D?fOa`iA} zVq85X=4HL^(A4K_@z!a&sIE-uwnHZC znz~u*%?yKK!u091uQ?^eeLWchKcjywl_))md2=9=Q!MaS>W+U(y@(`-RaW_dw%LI6 zRc_5i$GFTDwsA?n)5*#mVFpCm<+V@yw^KEIzwSO(AJ)mto}(`2(|KWI(?>ERCGb}I zbD~m*t5?P{1U|_O?LQ^{CT%|6+UGp1-fuE+6ryB=o4NW$ zcZn<5)Y`)Z4UoYNP&Mb~e#BK4*+q)vLPLMyt9k7rDvA z6)nbkU7){e6QX)^O>MilRqx~CfY)@!wLzP{N{=M>;qY9oO_6qozHrK-MPpry!zWIA zTOw+sLl<+(e=4aDe-u|g#4pG$@9Q0nxVgcfSv8-RxjMIrg~%vn*Q23BJFBgmmmwav}HC`EA+SCd2IF z>ce^S3il$_?QbF@`-jVy)DCmU%NITOyEFE8#I}p|j#@Lu^V?J-D!ygxKPYq`&SlWp z1gyG~zi0m9SY>bJN)K7q-ply%#o#03zV?eVV_VVcS$py04t*q4#f!!|Yh%uvj+saP zd^zPk;sb*b5#@^m9eIoW2Lq}m%-U8m!R3oykDD^IcFXsFj#YJMunn$dXjRu_w0bsI zt_YOe-*k1?c8V4$S*-Hxs9bU1*4#W@Qn6UflE3(op|s?1olVW7!%cm(!zQb|^LSwl zK3ht<4J}k+c13tTq=x?U&(;iQ7+d5sOkSBxF4+fGas^x3yxU(T)%dQ;n)mg2RQ0E7 zQZUR>3rXPw77y`nKjSTuF5cO$q0@6__n$EZ>;@t zzhtHD^f^&Y$9A5>>UH*Bq_Vb?*k`rT{HbBBO}iCsCp`a5s~Ke_L!wNt&Xu05bMCfW zkhkcn+OXj^ihirm^Q^CL+2VVmtl|zKKe^PHhbyme&baj5DgFqLz$8#4RJTVN>%Kr| zk!#+h+Y>01BGy^DI2^-pBhc|Uh;}O5lc>CGd+EUIQA{R4AGaR~l$BU{WNePbxI55a zi%aHSy67MN&2YR$bpU#e!|HiQ^X{_6ZMvQ9wE%~;BIS)>)h6N6C}^Y$4L_(nLs+_1 z)py;eMwXa0#zPFN8N)KO9o9Y>RSqO`59k_Htnl?y_q2=;%oq20y$uk`u51mjW>n1f zvT5)QN_ zW&}2B1ZWR)J*GNC?!(a&O!dzUpRs8FB$pP>Ln)k)EAXv&U)KXC_*C!l6Cyix!5q~w zOWa(36P{Zp(u&OIqDkVMr(MG1sg!nU;*oR6NnrlM4SZFuZ7RfD@U!j~GJkV3kD#zr zM|nF3&L`0DQ7VN{|8vU`RTW8ki7fj^F*b%`bTYzjOYGPua zfl24F=g3DHtXT0c!C!F?!~YgJuOc%a^9}heCvH>hMoE$5 z<=++scYu*~`@0+EkSs~%{{6K1c~c=!8gKdXML}Ob5wa(y4CuPc!kX=Cg4okSpiei{ z*HaGs6h8c=OwYjJ7BdDS?%x;3=j1AC2hJmJohJ5Lau$f9*^qO@&)0VzG8ikva&Os; zOxyMeXhUVds@EL&IPYNL4H|!5+O0COvZ{cQ4`G{c%%Ib2dG{cE|2R;q4{htc8Q0?~ z0X8a&#>d-Xj;$;urS$f4keF5xu)XwBKs^V!D6^-H^Xk%p$q(5yb9=<~&_-g-iE8;- zU~$+)NW3IhwTezixcu@0hjayn@$iRb?&=Fdmi*?d(7 z0WG*hI%5|vtUdasIWSdC-QWPR*Y?-c!cPUB$9EUo=kN`N}0}2K5juWtv+*oo!pNgEv zGIHDtDiRH_$cv4fpMd|&&@IC_H1^pg|AL48`yRPMa;=In}7Y z30OtejE_O!ZEJ|<`t^I@b+OL9`*|{y)m@I9SL%i7iRxDlvx?C)`LL8&!H`FmpF6IeHvT24g69CaDRtKM`w;!xWvDC$o;%9+5^3A z@Fs_k&nLCmo#anvwlUidzM_pmYmi-YE(0GkBMY@ns==P$M?$milS`_)i+_feiS1_X zYR^MDjZ_5?039-{Xh{`0{gHhAd-655x1=HuD_dTeTjRqE*Dyje zub6sqZQ0(~*tp1wnVI<)B(r85qD7gws^#IrP4M_E+v_lH_B9QKs>Oq`nSsGj=3&54N=cR;yz@LrIXsZTK zU$#a;qXi}C?v(nPNZwbmwb2s+@4%*U92l;h^z}u3lH{AG07oa8@z?8FeHJb z*gS}ID&D>O43byh0FBK`AaaByL#A#RNgo`LG(Wf zG!Gy-d^$KX`Bw^i9Vh+B7J<206f%fROf}8Z>>Um#CY3?M85({sIQS?!Pt>F5tkR*` zQ=VS1u53!rQ{X>-yrg=69^FzDWMpT#Wl)}kVc<_>~t*yhUA~AR08qTplbg6DrCq1_i0=TEa`$c!jeCI61*hg z5w123a?Jq((*dR6BPPXL3WPSC;lAxfwGbZT%20?b^51^h|WZEqbW;^1?sIUfG*{Wz``fNB627p z(1`jV7n`xsAs`R4ni>%B${iQp3#^vj5`mdN*3hQ{0^}}WKJ&`n1NVOv$f)K( zT)@vCEbrmsav=WSaF}i5Z-D>bJ9mLy6n3gUdQ=Ld+YPXG9-5d8%vrt1Lx>FS0&BLs zfILzCE|@iUl=!pM%{>;PoHw=_B2TlQxL}AVtPoL9SkS5NOUugMfFR&cr$~&>-W^F! zhC=VD#r1~}}i zKsOliXjj4=_Wk{E$@_i047T0k%T(yBikwBqg5@n^c*0UkO>!=sc9M>i=JbU3Xa1S(}YI&9N|}@*xb6 z&ozMJSZGQSnblDYN*NFkq^Lo95s==TCZh(?C{hIlBvJ+jl_JFgBOpb<&_i>8P(nZn z0qJ`#GxO{|yZi0_BRo79lKZ>&eb0N|_nzZJm)F+rVo;eHM|r17ClojO&d_3k%7njf zG>n0@bS!Chboz4L+*ey;g>%Z+IY#Zvg45BSRiCVVV6Hsfa7e6OC>m|&)FxGMI7eo6=1Lo+EGWUyVgG#v=FZ z&#^jTPjR*RfoPhCCC}s9+u6mS?-(z>!z>2()!Tav>AWa&8x2XS?l!m*Q7nn(S#^dldEk-0C zfwXMG4Lclod)d$rZ>1`)iaM91$31pbNLO61{kViYMVs%(VOizOy%ilD58*9t*l)-5 z^rY1F{Ed_B#Py`u56rvdl{8~L<0x;X%|K}gJjABk zvM2QBQ3&ll{nNX&>{nI@*YxAZA5TvO_RZ(UV7mdVbf&qr{r19U46|p$xsjyRHG5%K zQ+;EKuAsiKh&sRw;PiKLWo2Zn&sn1AVA62#`6A0|=peTpZOPkHnRqZMI@;mjp+gZg z?^kls{-Y^{g>Bu89^6TueYU0W$>_tH&V0U_oHs(rus=(qLfW9SPWidU_)ikz;`hB@ zYg96dp#V@^f(!LGWhD%*AubKK+J;5-A4qHVH0UV}DuArP*xp|!WHyzGIQed;?x&^c z{SoB-5M3?qKyPoaB1ck~=75c62{B(OG^o_?H^~e*S&t01UV-(5 z0^M;9uF;VTU;2OT!LUgR^&RU>hY+o0<&_SL68~K5 zF^C{U4PzDIe{~lsO~dUDNv45;Mb*{SG&<>oo+?Is%P1+aGA@twLy~|kQU5~3^GqZX zCsY-zRCES9%NwF4)O?Ceq@uGEz0Vjdx_VT^v}g!*6a((J^ERG=QZ zF|trezFT(*%AjPL#SW!;4hqXrFMUQgqDpb_XiO`c%3yMX)kDR_#RD;4GrELp*v*)< z<1MY-S~35v=*K=GAYwba2{S8M9VYkjzz0Vk z)wf{OA_LXFX>5i6T#nqa+d~k=H%AIUrd13t|BfFZ>9@2=QZl_}_cJT_=-nf^9g%;a zzuysajd9QchF@R~BBD#x^(~f#=kFnf*w@#@lwY>nbrH+be$J!Sl)wv8e62CGJg)v^ zM49*c{q2lvGnYp`6&1kJi7W~$6+Q{2^Ak1A`Hb3yR&jHydkA^-mcc@3pVcL5pCT4b zh!&dKu(v8AM}l{zWWfY|SNCTNzLJbd=(7yrx_1s|o>?5$fjy7%A+u?EyvG*P9Z3iU z4}j9idk%z(m}pREsolLC?~?QNs*}j!*1k4FV-dn5YtR{2*eRc2L=9q`CmjUQ1)U2;BoMVq{&|qWBIzlXbsco&;ENCj=4VaYXfAQ#HFR7U|~NTwlp24 zo$pW^p9ra{@64@zq7a}iU^;CCBV<#m72KsP+h;Z#<&R&tTR5E)ta!>zX-wY)6@4>6 z5B&{9Vg$wJdQ1%~#6YqvmieyR>1sArfp7&2lFJU>vUC2}z}0vcDPgq)ovOtX4Oc=> z-QQEKWDfhrr}41Fa^NX{+kn4+57LbOcfyrC;u882lag`_56t|YJ-xi`ou{xF(^FHw z#WXNTrtg8tOb0{|^ym=4I_p?*_l#exsAQNFpw>A41=jYpZ+}ha34W_#wAT~o0 z%$zY7w!pXb4dCXx!9?t=wny3iuFt}i!Z+&jR{mM~2Kg;dmRJusSimoCI<@lWn<>!! z16sdDqVWtSnrIj*p^voXrf^jUr_<6xA-a}{07e4xeoW+Lk-QKp+knBN`$Q+qOsLG$ zHyO~Lj5755eBC-zU;{Zi>NA_1?>(6V{yOtL`;}s;< z35oQKQOV=_`gzl1;SgcVeriSY$D=>)n zT7^XbtVO=7Mbt1<7nE5{8cFbgSF$)Sb+Yl00cvqhL==o!hJL_Ou_#UohVjAVckZlP zG;r-K%8KmK}rcZ0ZuL_A1PmmO7xrT`C9a;n%UJiM?fl238z5A3wGI8>On;a@dC*Xu0a zu%H#ynOmeGXpOEkxatIs4&DoweK^Q(f5eVebGdEt#Opr!%B4o4Zfj#u@rlyFZTNCQ z^Sue4c%=ZU=BX0!e=^2(_OOnlnwY^ZFeqa;PGXU3VG38+yHbb=op{hJFZx`7GGyn@ z)-D|K@_OjhnEdk-K|Z$@6HFdLM38uL=8%PA0N`E;gktN~sjZRNm6e|aiLwp>0sr0p zed`{14d@9$TEs#bKBxl+b5Jc2bF3}y@i%Uq!Oyjqe*u>SVlegC#(~CV)Xn#vy?%Lg z9`lU$v;v$-e6cj}sUfVih=iUrqMoueWX6 zgJnpsJn+L0Kd3WORy6I6WoS=R^Q>EQN+$HY5t1Vp_V6(D;D)lAhxw;H7^#w1R(?YO zI+CY~=O5qROiCK(zdLPUr9Ai;tdR=jir^>e2(YPt_H42ww5je)l|2qaQ0YL0mPbfc7%GvvHH zvY#!^IvdtiUN-02y}m3ed0$gqtxRls>*S)X&Vu;T2TUW!`*LLDK8FO)OHUvRH}W`C ziT8cY8Kx59%_twl$Lv>=Z~irX^sgC=|AT)Lp_-QqFW(Ygeh+iGNs|K+RGn@c8#A*O zx~(kbuIE;eS09x??6t#yCA~fzGI@Rc>*zduiP4vT_7Y!Mn!fU?;71NS5S~2_b*O`kb*!=E~qDc#==A+%~ER4w>166vfjNrpXb_c3{sOs zW#EdE*Qd_vwHa8WO9+r9}?&z7{{sSFeO!*ihNwUz;J1T z??pEt6^zL+f!SzYpdFM$zbQWqE;&6v5{U?}F$~?cR*k`g6zEQEmzO^>Gc#jZ;C=^N zDh0Ahj)+!Lnin2CogLW`d3g)v`KN0slodm}!)C7Du%pFdKC{3Hek#|s1<=}?Xsd+5 z-KZ~mTbcR#h`3!xSWmEA`ryK&eBt@^mn*5glPU zHD^R^-?b}yZ$2J%983cv$1z^n1OTT!HL)m6TJm>YLvi%CQo+VkM?Yw`K5TI-{R)%W zl!Rffg5fAb@BKIG6OJ7_#(|IECTVG_a~-&2CE$y|j+*y%sh&c^5j`GuN6IA#0#5~1 z*VQ#wNA1WI^d)1$19e*EIS6+R%?u_LL|QJ+^(;+EZKT{iL+IU=uVHze17?E$2F;sI zGBSd_r2uOqXa~^nzD)_~ZCK^CG~4=2aa)xzsT+;HjsZxH1PWY!|K&?(xZYL{L*Kff zMrZK@Lnirx#D)#Y_+aKNQu~g*TTO}hZ2176IMBfxw%;1X-=TAL%-`xl<6#^2()-A; z6UUD;Y5ZML-DCgO&Nigxgdl;v-bLN--@quw(?mvfMxZ2z6{ir-o)%ty<{6TW933gc z1YB9`z)FhLdh$2!j$+TD&`784c>ARHhcy{)euBJKMOD=ktVsk*pymF;+uV`>?;PDX zG=6p*l=N=c$yop_Otj^rytSD_f%T{c8>l%S_$QWBYRJtNq;Mj58D*ls_UsYFhlo!L zQdd$wx`n!gTQEU|Dpw^(mOKSu5cu*G0&6tf~5cU(ug!zIKuIam323OH&m z3?N{_hoWou-Eu*XN%jq36-b%=xtLgV`P=KXQm}VZTh}V;e6oVldusWxond-vy_^7V z^9JbFG&6wQ>Fd+uC5S2H9Mc-y9<5MLbhZ_|!1UaOwC-sIkIF!3Y8hBcQ!dW-p=a>T zbNE@3IL22ShgoqR`Y3_B=g`yAJl}hn;M%MTf+Iie1#X(c+Ce6&3XW zEZARZ zdVFL|-C>s1uu5#dkznhmgczM`_rfyBQe)321CktLiHzPu!wviz5;;ov5qiWbicuKp zzkKvlHT&c>)JFzF{Cf~Gn0a&WC)HPZK!LOw>>n8(2geab!XIf=5JDdWTOO)-dQ0DG zn-G!d%ZiGY07)OurG;s3Yu$ptBaDL>bOFrP1F$!1*sBifLb#EV(q$5YU?3gJ&_j0)n5Z-;9ZHIH3_XA-AUOh(0}MU% zkV6au-yZe8pXYu5-*;Vq#^CI8&faUUz2djlUVGl&*HWc9&3+mJfzYU{-F^sxko!R( zWOb)bfR=1ADCxgrZa39+PJti)Qx3ZKY3b@_>*OdQA}%5>bk4@z-C0gl^gs7SoLsF%V|hZ~LLlcL z>bGy`cqcE9`S>$!BahYxrO#8UpSwQ9bd!xMZ(ZZ zQJu-MX>J=`Yi*rg_0W988}Os%eA-2x>@4`9ny(o z*T+h99r=G6do2EHYiVt*O?gdv=7p5~P^4wS%Cb|+JEYwA*48pO(YLZMGJB1<(_QCe z=CyeSbbJQdIbJi6I}|gq(_tpJc}c_g-mTlWztb$1{f_~}{@3_@H0<;TsXi?$)VFWn zHqJ2DevX;=>S%rL!i6bzla>z?JKKZZycaI?k}q_o9&6xFbDv|k*1mn)@Lb9;18F|y zSMcD)+t1_QDT2$WbJ^zL?rq*T3nyqO;V5OC=Ls;q!UrY%UvXdZM!T;Ak|b+Fm!g-a z?CTYFFSWLZSEt-vGeWc{fY%JqG5Lw?Ew1S)ByU``-LrMf0kpwK{=HS5-(jg)>%;Ei zFg>bu=l8Jt%hj2;mS}n1HJs&XNCdgcm0_dv(}iMlL~}ltH?HXXCMS2utxY-svo_S! zswS%DCC~Jmb`l{k3n_Vt*VF^>TETH#p2od<^p$-!Z2Q}8f7<88 z3pK>4Bn--(&hBOHk*KTRZTgqGJ*g$5RQ-cv1S)(jm=mEdEm{5c?abp3OR&)$wI?nAb3a;_G*ZckXYP?S}!SP8h&*1MH;0N=w^EAPQqll^j>_IL&l zqH2|qXqKa=vplTpxU==UN5V&ep_<$aA%SIE(xG?RWtmATq|@@!t*JcA^#Of+&ukR0GY}+%$^F#JIat`M1Mk zXCTGX^R)EVmr8{K*dRvX_UAz#Fxq^wv<>zghN~^QbsV!NxXsV$@a5;-tM~= zOHl<7Aq_JX(1$1I7+GUe0F^rEdb|z^@lV~CeOpE^d*2xn5k)2a&I zFFQDrhA2&!_fgYdF`ECv8`6rg}_EIJctQ z69OisHt7|CS$v}@ih5Zrl1k1La(zj+Kvo&=-;MKDfxa$W1HDWB<6jFGx)+?o8G`S)KFy(8=&O$qt*_c_-g3ln1bx6RN3RNS-^CWI@z#k2 zXM`!zP{z#8&KKM4dn~9LYbJ}XVi3xTX#7@loCh+L+rba=lP{l!^t%K)dBG^qXRu>o zJX;>(@NLA^r?O*#d5k6~evMTG=P7HFQA^%!(jMo9Ocr@ya+P&NwVeMGj65Ynj^Yej zE|$#X(Gv#cj zlyz?dEHJ$({glMhB6<= zy5|e#nfgNDCi`c(*|qf5Sl3sks>?gFNKbLocN?s9r<-BnFJHf;2e)x}WOeyw*30-a zO}D-Q2Ghm4*B^sYpZ#<;x$lq@V=^}RX)?KQl2c^WUkn0Tw^n|}g~*xAd@r~lBZ^lL zS@wP!rtcu??BH}gj;!2iEcFaSdPUCf56k`OmN0o4&*dTY!vQv2?t@%`^XI=7nl&gr zA&6cUK9_Oz1z3$UXW7pd@0^_=;8J`r^{aE|frC2N5>GQ=*noQ4FXJa7a9QxlqX9m1 zqt-7&RM(h%fPZ+Ni%Qjq%@&?b_<-8ozo7;R*w2*!F0K4J$sS8hI@ony3Nqbr&*T>W zKBfR{vhhcA)TP1gx^UF$LFeF8J(8I|9M7{kUJO7bZ&nczu{-q^L# zMeLBLMG`vqujj-@4-J$A?UOvG+7r_FC-9tV?Zu2>(Ou<%>sqb->&Q}u-P)qkFA8ZH z8BZs`>CY+p$;E(osD5|c7bpI7& zn`uX*|C91&Wg|`CCjK$#aV{pVyF*Wv&_uTCOV$6hHUqX~icS_S9euH$eg{Uq4t&wu z9WmSS_1~V8{6+xYSp0MAIo;8+=Rid&A5p@2{3rhS&7K6sI8GVQpqYd* zxbgv}FsuFUSa=dxfX}G$g{uKIf7pEmZ|rK7BtiBjOeYN)^c!9X#{(~EaUXRfpQ|MH z&CgSnk4S7imo4EZqTZnm-Opa&6p)+pyz&=_R9mQz(2wuV(I|3|R)zd77-`CU3Np`_ zTYDRLU0&x<#J~z?V%E!-$76waQt{i@@jw&piYV@(e(p6M*BuleB=|GD^$hWNCvRH+gJFqLZ}@T*E>I#9Qp8S`;ipDd}`pNuIXrK^dEG zGix7*{&9D*IdXIm51BTkk`+o{fS^$_>SWziSYx~o0q~Pz5Q3tRW`)Ad3xugUb0V#5 z+vqDL0Jd_uS0;cDl6F3gY%M?(`LeJ>4^JGhv(hO%#L$L{#Z5B$sy-td7#T~QZ7Dla z4LUk;$oz&5AgBwyqt`+@s#42*rO9#|ms$(p%rYlNokHI_KGD0SxY;&-lde%Ng3@P% z;c)RiLo82h!(sn#@%w1?V3};tXHH;XqFUb|SZm{Ba3`{rosi zR9&G`fKsZw6TeS3d#D)8baFr1n_jk^?y+krnhnrXm0g`YY_yz!u?WqLiV@2ejy%Ok z4%5QZgo?cgl9`ZzIhX`c{6>g(%P!;d5w$^#=Tb+eC&DPwpLrD^TI;C7#IS78Zh5#_ zOFXM`hc8*ovxgH2*&W94Gl#pXfBD&AX<*%pHfPgLcw1>Q0YxhT$&SvHO}9zpadcp!0xFl%X-5fa zSE9HmNoRS!Sh-n|0QT)f(=xd-e)=<9@-->X07GCT{UNN~`XjJmA|zAu<`_^QfS`T< zf@>0KZln|r+*M@df0T_HZ z@;88x_`ioYzpTM4)!6@{HR)R0-&Z=SNb@E|M8_I>GX4lduca|199>!aXKwDl=gj*i zcj$k{9Q$C-OM|HYid{NH|9OS&w?_f5#7uZ$0{+G@;)TZ=w%q^nsQXXI^}mhGqclZI zxbk7iUpA4bqGb3tauEcilA<;BH4drHe|*J<39p$q|3BEu;pqHNfC0j^VCAa6)B7)4 zcVg0H{`e*mU*Em^J1|)5zXShI!x#Y8XUsF{zi2($D&_>d3K~~A(=Ak|wIU(w#o+JW)5R}je6HF{rqZZ^bk`| zPfx$RzrCc5p9T|plPpDoJR`>fmlB&TjZp^3q#&J%?P*=*5VzP>I8@V}qW0bK5i)ch zi!Wqgq@dCB9KB87G20HhJG!xdTya$_w9u<$o_dFr3Kx)IGf10B)@lRp7)wP|ZgaOhzHTvTlZp zSv?nWZpoJp)H{XBLORLe4;&t!xJol* zG6)M3%XroUadB~>L4F{KK-r*i_p&4#v@@WQrO|c5Ke?j;OF{K)FetEp+Yq+G3!FAW z>XRF`JLjSaX;FggM4D4~I!$Wj2K?f908y!MpGPhtgX2yGV^#&ir2~!>tF6`V{VK(* ze&*%~0lIn*fU80IVeL%|miW$5>n~zeBJMs(;OBG}SC{&bnaMjfJq^++ z=arOF!G&}mB|JiDQ4@3^eBW)Mta3=Ap^cT{A@aUNOZjp7XE&eRqaeIp>s+civ1DTE zTlzNj3wTQh$a)%U z2S%XduUg_aL&dOMl`F0&|0=P$=taR$F=EhU&~au-6Fk3FXS`VbO;lcSaikcurRx0y zs>s;6zqI*2Z&{DfK%X{#CUFAeIq_w2dYTO?6oeSytW3*o44g_vCQ&Rm3tR{$pKRdLT0XH zk~v+YVbW_i-9j;RqFk)elNxI~&z1-tvkVmXbsZhX>DCA@F+s4Vl)7E%C{qn_^Y5ql z?j_zvS2&Q(|NKM|!*{Q@iw%%Ne+GcbtKcrT|Jn`6A@1l<`xPl`bxgCYCKMe#!~B8l z{(a+B58W32O!zu8TAxWZd<@}qmhPf>R;DE3C9HDezPu8OR$<(xV4&N$Jw-` zBcUA9aF8W2C<8pl?=+J}decp^H*1|F_f38SfKRy!7w+k$mD=AX@YH`2PH~x*@&R~p z;9E#fs!7{a@ya#rEne)m7G3+Vlosle!)7?-%wy+YvzmrMUtf&(QOt*-i9OASHw*ZsE&8UQD}WiT5k$r%r{>6 zo|R=$w|1d*z@PHErHdGwXr0<*jR!=Bk<)D|%uLqBl$+GlBaMOFPmP)Wo+KsjqRUKb znw{@in~8aEX%R{4$q7SyefW?_>grOh7sdU=Sd|tk(T9nNi{Eo|wUT2`TyHBhA>Fk+ zNej7O7f{P!Z6UKhP(W&$H86lMI*crTmzC8z=#nNiG5PpF7#$DV-%^FkuGe^I)i-M? zcSB(Vq_Kv?Q5oC1h3@7ko>O2hG3!%i{uqbDsb)_2g45&mrdOQsJxjA>Y2{a)dS-d= zVq*I7ULE0VXxS_Q7tMXtd4)!BS&m&SmzdE{Z29-BZ zWPIZg``G1cspX8Q{zS+oi)i+f$@DMVR4h>q-Y)(7?~ijDRpeheJa7vyFrEzAJWS~< zd7SrU%4bssKb!bvH%42w!m~iMJ4GTmJ&fbaRK(oYQ) zq~pL#xk3UiQyHpl35rRjTSUlvYis%SXD_sp6BfR+1(RLwkkRa39)53aB}Z!Y=S9Em z+li6zlVVa$(OAzS^d=9v-50!f&ttsdBP1w#%rCj>XSHmOMJp{Bwk1|>kI4zM`c@;w zdr1nU^_-`=jD932qP=vh=4){>a()%KTH*aUj&S(eGf|Pzs;JS3Ih|&Xff&MiYyIxf z2*S>f%+YWB=xRUy*YD4$MLw45ed1p?NKtXr`kH3CD?(|i8AB9p@LPWsgp7c^I3eq% zcmt%CpT8HgdV!Goijf21wYq+s2&8=RSI?{_&_&*ONpI;wF+SSM#RFDpKf=R+MU{cA z@bf1bUq$Op7`Jp??xkV>nwgpTa(UT)V{n|qbez$-7Gv^rLs)~nQSjk@&I zq?UZK%*!y}a8{EnHZ4tCQ&Y1MqY4t)ujAuc!MwD6lzpGSrizY^_C`x+p@!B`eY2qw ztYYRbI}DDOEpyHjU5#R@P( z{?jbDypWS#66b>UZb8dOc{pf^=X_*lVQC#l`VmD~fE%#23sWqUrnas_PV*a~YHAbZ zhM!!8A9$yyr`rjIynAPUu)8i|`HQ^npcLSmYZ4l0c8R`bxOZ@I~Q z4DY2WaY3p3aU zC3XTzeg6FUysvM>w$9K&g{qe>N|1`_RU%4KR(vG7t7*9Hdwd)1jCuun+ z1{)3~S&W^@9z1w(TSbK)Or-G{1)GGGW&v*V*-7rTm7>Bn4B;BDuyEMVpZ7z>6jqQ) z$m1IK?m4Xa(N;9URz?sCTR(4Yt)Sy79MB;3aHGf+$*SZpgG26cGchrR?VCO)`t5(R zSracr=o0r6hu)mMs9)xKsR+5phf>%KJ&n9hn4+>)@-D9RDL+?Wh)A!iOBQ&Py;hgT zAHO_Q^5T+4>}~}WGq_{EG1I27JMjWB@K{$@9PH}IDQ{-qOJbFAJ~uo(Z0x_@9Lgyh z4TPPRN2zlJ0rNTB!^$q@m(7pWdKCp`PM%~Ko zvc7VFS6XAVl@`2A{QVCW?(to3Z*TWLSa0=NDyTd~Lt{D7_-xd7sQ_qXWNK=6`kj#7 zwQqE6QueGd{MvKF)@cQZ2$$*PV7omd79mU@T^QWYBs$gX#C5BuYX_=>_QVD4Zet*b zeF&IdjTg?;`qNdP4GYL?YPP0iS+`L&v2%{KD^f~_yHF{o@y=H)ruxvagT2k+N+%w# zai1Iv>R={DJ31w$3&;xbkiXh*$MLR)2C*LZ^V2QuMe0;#z;4YHxeq{BR%>xeXm?U=cM|++e9g+{rI6q;x3K!==HmI?-n??xw-9i zm>o8451MI5a4Vjoqssx=HF%YIrG*O9KfaT)f zPT+y>K81{fhYgp&zYajN78PO|+Be_F@uzw>;r7c=N=cjD^0>?mxwCC;ZJ9Yan;_ko ztjZI>xOU`Icjd|zZ?L3lnwps=wVpuidvmmTxIv#FkvoYl^i|GEkg#@bX43l!q>J6! zmzG=MM-hBm5CH1{iI7A$&g zKUDn8$g%nrNtGBFzD<06v1E^OUQBbFZU0b5#G}8rw1@{D9vHsjzHVc4c?T1yEMe6t z^9j|f-;Zv~Hz;Gh`UClh7#X9o2Bo^;#5| z!&UpCt2OQmQ?;DLA!vll+Qf|pG;XvyrWRM91lIKo7gyI~J(FhZv;bYF@r8wjgTX)| z3%HU3X3l+iC<^V=km9j4kTSy3dpmKaGgXX_tcqfuI+KD&A66;ZT>s*6CU&^0AS9wX z`RzfZ_sLm&cz=}_Zrn=#@(yxmyu%5;$-$?c+6e?WphFqRDoJsvMC%&6Q{;*Dp15%& zNeX`b(kZN-V|T2cWe(?(ZvnzqH5+RbFXM6{LnUm(p}}KG7ntgAh(Xhig39r`!L(dM zKxKd|Q-Zbk-(ScXb?p#FjAMcE=jG$0=jQHSoBSpqATUYX!C=3h82%kLp zFo?y({Vc@^>T{Pay+Zo!^ycXmv7=*SV_ne>l_gKUlKbM9+X4?-1J5up+_JN~;x^Yg zxtLcpm+aP^yPgihOM74uafFC@F|>gGl^RAx=5XBHqyveNrYMc8pa+$CUz!2+hC zln9}8$_J5X$J(ySw3FQ4K?Y@3E1 z5Y3smh6BqN1OtQ}(~FaI+2!T$NlKs;aR1rE5C7Bx?5_b`mH>iQ*l@USh?Z`~ZXGTo z0}p<+qAMt7`}NE&$;u{tx)m%A9(nli;VuDlqy=d38g)4d>@QvAxUXP_YJ^q)m&d>b zzW|ya9TNjvwjQtZq2`dHh6#TQrpwVQG9_tH@ikX22Ct1E!WpudEB=9 z^(3sjIpO<#X(zS_c9DpRamp%kZ#wVt@NE=1Q|rAf4~L^$2`8vopHM95MJQR35#m_P zsOJf95S|m)txp#V8&&+Orp0z|TPaH(Z%p->OBeuo5#Raq9PI3NeZ9T@OHTEBRvZir z&nWSuM1cmH>>uVPki) zY+oh3=_Ms|v7l~#F%`2=aS)fRt3_DA0lu;U5d{2p9+$jlzDbRHZdX@V!A<~Ro-LVQ zE0@<0(C`6VIZ$ks!0@dtchWpiiaW-bQXr1~U1_6Bm~f zMgQGmQ8<3sTKGvudirup7zb=+2}n?B5V0@qPzSo#{y~sLa9CIvVsCG6zz~ad2rU5` z^Lf2&6S&$9A_2%gcp6AM%mG`}wOeM5;-(rR=^Zf~+nF$p_5{fY=3>B_iVq(?)X$xpz+1HI5YV0peKu{>1bx! z=5iUTBFLop$&HMPqK;fn?Yb3U7_wW$5LHz}roeYe@$v#o+cH9e9s`ecbcVjZIBC=f z2cl9x3n-V8k{WpZ^5u|aM{K`$n)1;ein&;N+#4D;3;xYGzT6?&U<};@<1Q17`y=!K zSgrs@PwK*jbQP@u!`i?jxL*sK^^oIOP5&-&4c@Y-+_3*^Cs4zq(bq^%Sa0w&=ET+U zM~!1s)?-gT_DW>=ylaw7tzxYD{D~+%DDbm+{3n6CB8W&F!cy!jnLl2x)?Y3#C~G12 z9IbKzviIoGBL_9LHvwBcss)GvrxH+eVrJ9`OzSA_5P5QJ&@2%7VDDfj@Tl_mGC-}c zSvDr7*~*VK_z{@!grErfL*x*^1EpMY?!|*9UMYxyy@*;sfBjTRp?MMDP&m6}dxc$p z`_AUomLcH7Mo3O~70A;7!8ZiCpS}1>?N+Masw~wIHmyib1W4WY*TKPPiEfz;m8XwQ zO&!q)nDxbr7gr961dh?l9px(iH2>0pn)32%R6|u&GDe1mhA?8l&X_eB0XT7eSOE}F zL=bZEOP(F0&Y^e6M_j{E{a4PVDPjC#Vx4kFbTmB&6O$#n+!h+aDfy<%V1nmu4mst|h^`_V&9Nlhl6EuiPj!zW{&` zAXpektP8+bIF1=kdkE?k&R8oG*cAQnpung}`q#I-qWaT~fX6W8pe#1|76_&aX2IQK z=lJ=tFO}Vv1`4Wi^#uJ=3rcyfRg0eVJEXW_97Wx2Spp)AC;)M{7W#aE6z%myz`p~R z>@)j8uWCL$#BMuqD^be9Fh#jcFU`dWQN)8&|(%087*dFhQ9bW+eg;m_*RGw}@ zx>*C91j>a>>#7DaE`R#s_l-%<`0K?8g{I}dqG^FiE%WDqI=M0SKI+sQSa_zylr}?lkPsEJUZKYI%F_s?R=7+uOvJfq=vj z_$f?avMGoTApl~Z2e@VmgbF8<>us+WIB@h97*zs(5b=wP{BtI&0op;sW!9Sjm0xw6 z(=-b#A1E-A@ZWVl+#hV{1tAV(wPr~K_^4K}Hs62cK1!J1`{vXbM5Y;k^%fcXI0S@ zd2~pCn@v9ks`t7jd3cF>x7N}Ua^?ghMB__Q@jxuZY?ATalm|X{RocoP z+2-q!*I!3v!R+EvE$o&drhesS?=Rc@b`M8Xci@p5j+&hr0OwC3vBTWYUI@#k_r416<+hW;xZ^C%m9)L#& z^(}sb7TZTNz(BIedkO&;XN{>3AYme)&xybuUG?8xV=rph9xyT}w>c{-D=TDN6=`;~ zKWIN*mjDo97yu;6_Yb#a6HpH@aB*?*gTf-%QO>?B(wdq@#CT|;Lirf~{-#USJz77OkK0j ziGdvU!$*&D^YeKnB@qTJz7vec0X*YZR7{zlw^;?i(YLZ;qg{~9n)PkVNVOY3DZzkE z3xtQw0=J#7Uo!PQ#*rL=_X`pdF}=OLCqyTK$K`zqUJeQ}cHE(jVgNw(7MsW(2L~8Q~Ni@egwSB(rVYEo=PV(5V7sfB{?0WB4P7x-adn(CN<>) zHSgZNJAvM6gKOb<%z+AgDVtc|@XD^MUat@g)LywPD!Ri3t;2Y2d(PwX>l=v4o$Kv1 zVFGws$l-}^HSAdW)i{qjkrO}U+UlO0F4bLt7|ybQ_(yF5#Q%Zj0GD;9DW_F95Q!`L zm(HJm1}m(79ig=Uxmz^?xI8aTCI2CoR#21*Z4GC?6O4!jR$gi$A&J2SK(MO-sLpk# zEL9ev)&aaywX^$z@!;`aBLjO4q(q&ud(WMFNtdsBEb6p(bg+q;9|M^Qyu42ul^l@K zD}sWQz#^8ka%X)0{02yU=0Ml>$;nAlq;zoLf4CN` z{7b(QHYh?0kq`&=XSK+@H3j0*nJAg}74?&o1m;0%$Equ_IZ+a3m+!YX8wczU9SBJHL_}ym+XegK zmnT6Gm{&p^t#%_aV@RO|Fx_(i{$Mdjhm{xw-6GSKO67%xU-3$Qg3r#j#Mc%ea1>zE z5aPITSJ8gbocF6Q``|B9wwpGf|r87}H=|GDyWC$^h$HgriChh6B*Jr`x0rVX%wWK1s#YZe6 z)2eswNbb*_3Tika;($4c1ztKPGV(fzS=zd~EJ0Bj$buy578tG%7&+~6VV0*Olncx5 zhekvc?JTel7-AUi)xEe$APM;iTFxKQmo(J0wC2FGvmgsK3*hHWpSJSss2ggw0_~Uq zJTR~|QPI&&W``SbD$2v(vO{id zm*RewS!-`>Y{W}Daf7gW3dBo04usw5h%$g-K`7zvkNV&be_CPitUv^ z9K&8@`vtWJ@IM1Pd%KYnvKa)fD3HCZ0;U(FfSv%yAY@qnW@~H9Fs?l*L&{-D*pY1>1VIwzm03mEjZRn=YF&rRYf}L-D@Y&( zev-PVl<6wm)a{uy5q-~tWojXnTyd-Y;?9^88KG&&g~mxJC!38L*&BV|VgAGGUy|La zh=IA;+2Qr+Rx~hJohquTXy7!_ySv_?y7};zR_i`<E($|z3KmV@v*UyQQ@K(`geolz)ZYXO>(L6S;`6_8}HNrUe%uunq< zTIILyg4{7XB0x(koQOFhnxTPwb8vJ2ju%eSaob~2X=X5^z*|M$1!fK7;~ zpNmp7lcWl|r|$${ra^{s1>}1iz&?e&zJ5H3kpVMNs*9ZBHo&iY4i!JG06TgKAkBodWSY*aiOr#@51SiPDPB#!5 z*6U;~F;beWPnx0E-PQO7LB{;Ch9f5Ew$*JF39POJ3V>u^kwR3l*aZs(mIR zV~szwEx4CAeW^7_?=ykkDP&L%RSoBf#jbiBFi(zo{oT6_gG&`6@J1786-Pp+y7jM{ z+ zX+q_|2#40>_Kl_c)e`mNQSVgJj6cL|&n0yqV3oc8R&Ztavfl2$$HxCe{H}(!!fPTEN7Wa5FN3EfQymhMynadBRi9S+v&|xa zw<7lw?Li64v3vwPjVJ(EmCi1qU<$qF z{o*wOuk?{)?Nl*$6^%EKjLq+|$0Buc+w=GpwAam!+2D)UuDvfU6|d|&14=s|=<2H2 z*vt#yavpe18^SgV5HTQmbt43v70bueFdi&c0HbwMe#n z2SuT_p$0VeWN^CMkRmdQe8ixXOZbhf!de#`*tr1K?-tNO5Kw-4l%rK22;fl6`}Z?w zB>{oAz*aUaExL*q*@j+Usmuiyy~L`EJyytML}=4Z!|kYAy{`{tJhKIpYVaBuIl-Sy z_Q9!%?e#3{eaiP_Y2@F6id&Yk!Ph_#*m#1x`+6V0!ks&Jh5@V|BK`gR`SO4F?!9S5 z?dc-Xi4yK2V)^cAE4xMY;oOhL$(9_rB*RK*+%HJCC`7m=;HkBHDw%Qu$3YEDXv~+Z zfsntOzDfQKIpQabyuD>00BFGnw{aK@ZmE8MF^>U$4|>e5;a+nR#$4M!#d_R$l>;-7e94`zWfgl}&T6gTcoQw$j2dTwiSy-kh48JRL$h zF$4;6Kj-IDe}^v#;k9N?gdIbsN}g7CEo+ z7~`Dl+rxe!JJ4^9yJow(SA7Sg(UFl>{bOM;8PrFc>PQX>+;2`rc(C~Q^z@Lt*Z?aO zBx>ggUck!RT?;4i+Z5@$XQCGuy%xHjxr$rQf@RNOddO^-6yH3f-yK3eJob zgHrnoWWVy?DMB@Y;njh5l0h}!it+WcZkCE=-@0g~{DT$BA+}AuWo?`PQ}?N34ynxe zM*i@q0PLT7IT!9){KW~%31+BfIs&goQLBEurN3m=d_v?&3__|vJz7b- z14X)T-K+{L5f!B)H5H9Fl5@P=O9r^*-x9sZdtJCUJ%JUoxm85@i-tW#&SUCF)Cm7& zz+g39UEP?5G!h*RJWVw0{(#F`OA$H8|!@j)QW=IHPJ{FzquIpk)MY0ZH7rt3hvDVoPIr; zlvO%Kl_xuTS6`pCsBYu#^>I=Gl3@iP$Okow$b%xi_9(Y2C0f1%^}R4L7Nb#M8wR2b z+rI3xgA%k*YEXp-ocKMjso&=TuEl-QtKaEdT8!}uw>H&FtFQ5P>hx}1;gI;k0V1Lo z!PL;{an8cUzPFxH?D_^InaTL?>Sycu54S&_(RX`J*dCAXnYc9C=g`{z>OIkoa{(i+x4z-I$Szkv~x>!;7q9V}M$PY2mdj4eW!K^e3}OS0aeQkd8v1l#w9Lt^x2 zk4jAJk;I5}QcT_rA=%+SRq1m&whFH|tI7jep^lIWa=nSrua#V^Zlic3MYl(-hwK5+ z*BriPfs!VKxHEmZh`;AFV4(7@(aTemEI$0v43T-BrjFcr_ziYypA{+x`DUvkZN-UG zQ)lat2!D8Achd99S6oEkUwVfb{Xl8uHP}j^A*|L2_N@Sc%tvS&!rTt*VZcYC77bu- z`G}~2k|U;(aeg2m;8*rTQ23vdf}jwt)OwbsJb|b{sDxtyl||6M zRpO*GD<*~rY|=q(HLvEaqGO}MJpa}?SI;aj6`IdPw7;>>9N13B|$~iOM9cP%ngfo4=byHXe{-7 z`=^N6LmgFNGOXjwqIaj6bSp{h+rKs4A`2VSWENvX3BsRBI`zv2EB$*asIB1DC>GJ7 z=&ycDz5eUiB--`E{V%&143|Z>-a`FupA+rXoh4$u_v#>FZ!3wSem5g*;eb&4qJEdS zZR=mZ5Gk69bmXC`u-KhSFk6N8RDAJnNkj_m9TtloVi$E{aX+@2`*c^I_IC@JDfsL; z4lFB8h42fbn`?gAL#_x4GsLZ$e>3G5$@^?E)obFP;>j2^ReG9FWURSzLCaX*u={&f z?U4UDmY{BR3m?b~v+O!P)E`nB@j={WLBx|=1adC#XeHe>IDQGTtYF*-ZvT+g zJ>3Yp1|!{Zd;rc2(#?s15jH|ny!#G~Nv)r-Q9hV#9!o$hW87oNT7Nw!soCJpB?t%J zN&-9#CIwk~Se8(3ABU?oK`xz&iNoQW^E|D@9A>%A>g@gaj*L?lL*o1cNry7&{#43s zo_0sOg@BdKA4~dH?m_T&Xwxz^tLv*g04uOD(EH`}!MYwHL8st+V3k-(uHd79^<@uR zO|!@S&ejEEdKu?Y`ektjusrq+`MifdMTXx}YQ#U#N$X0Es&{y9x*%Q?1^{>W?>)X1 z5U}3OPP6kt)bnbfTmOwsC#s6FC$Rn-8={*H)-H$_GifoECHA#$k>!mqXB_fJ7dRO^ z1cex)EB9!lFU@|?R2y%p`Natd|DbdAyblM*j_k>=2UD(myiS{3j1kPS;-E1JFMqQ6 z;_*x1S(P77sV_kYe6c8=vJLHjvYA3PBtEh(%*3GkhL|w=?T#<)bH4~i(p$E}-8Y={ ztjNGnF6Rbi=N(W#tZ!~ei7TA^T5xic^wP!F3B$-EBYk9`*DS>mzv);iAmC(n*;s zqYGg!{>BeYZ`{c$kS@&6Zz#xJNijsjK7;>BA4Glyi`t)>_=Y8&T9>4!ik#v-<%?BF;zr}yIc1h#`0DYuW@FE5c zqQM3ny+au;q=P8DK|0_h_s(RPrhvwI_a$1-KobwW!B1n=nQ$ZU%hwcDbzYO^x;+=}#?KmnmJ>yaha9Q*+;2bp& zK9mZ%RqGb8zFH*FHWZ`B6!@V{@VHsvKeYgp$j9r2VZm*qakvmKM;T2k!^d^dfD;A_ zTCGovY==ukUR*qxTveJL&9x-{Lur0gQuo2?ciG_Ns=EB=ph+filJSRSmR52SsMKwq zUDl7gVH(?4QkD7Rt%l$BYd2KZu0EUmfaU$jX?GzJ5$7qWYD#$Xojvfz()U(ZjUg~V zx_?f_dP#&GBKRB>u}hrz<}Wqq@L0R;)+v=ojna<8mc zJFEv=zU;1zD|iMz?jI1x&*ZKguUeV4_8Uq3eO8$JV+EEOEYAYB8y`A+?8d(I2ca|* z5A07bjXr}z)5iy0>F&A#`k-OZY#F+p{6#)ksvFZ0m!>mjRey-d%_rnvG2I#F9ypTk zX9<+`lIFnbjR}re87Lp46&0G4_ZX+1RPr9P71PUtX~{HT4)AiB3Qd)s!xZ zAnxECp=eN>8?sL))ZQlRHhVB@$yC0y{QbD>C7t(ry@hU>{36+Z=6!5+rneWmH;uh3gJX&mHaTpX>=ek!$P!XvneS}@p{rimrPHx)Xo;PVu=uwhM; z$9|(Dr3w3A_+Ce_HGTX_VdF5a8Q{V2t(EraPg)8aTRUi9iszWSU1ZGtJ!ir-#lt&86|O!K&6M7?$&)za{0vZCz5 zX8|7qCz(h!Zz!%_-jN#wi$0|YbL}FH5R1E;^s!e%DIH)CCO;p9h5BFzh^jK*7Y>J5 zpxSDmF_jQ9DNBBz6lQ!>!lJ%Xjx>;Sqo!f-dYeKzTbLRD4yiVtT=^O~_p8|E!JR=W zQdG7TNqXO~gPvI;l(L}4N)$({aP{{Qke<&&pyM$w>*2b)o*18p%R0Td3bZ-tn?~rv zw5C-aA_>>V6)mW@r+>d4C@pxC~W&7ThHy8g>2qybZW##+C*QLws zQhc6Q7Q8mQN=S!;->QHyYdd#2b8twyZ>`k-j7s9e_LLp>VVlC2cBy8qOT=!Oi~kTQ zl!wWDqnqz)yR6w;R4V>YGcQHUa{JFuMwi*eM1I5jXmh~A=oH$0>YRJSF;UaO-+u%7 zhnk9hQTYZsZMY-clFo+(S<<1)XywJ>kgVl`wPfTM%d6XwL&KS9m)2&|VHaL@Cch|Z zPWgn%ZyEyZVoHGgooSxde{X3X9MmV5FEOfUv9tgFY7})blQI_d;q=qo$n|?tvHc|S zwUlK4p;O3`>T){Gm)O>BULrfkH?V{cf&0EAZqsC;5@rW&{QQsL^hx?fg&r-tho@Xk zI9p5oA3k3&sI7Y5dgP+S(P0Pu{e>t3*{MkV0pZLy7d{`J$_7*N@mS3L4~OM7lbeQ0 zE>UwT3XquJCHbFQ)A+F@(EvY|*9(cHj8fah-?UHBD7Y*c{mSoi!*4ha0=Sx=C}z7P$*_{My1{!SGUa@mYgK4yzBC;f*J?(EXBDYQXFTUTnr3T5YUK5}jHkRVYA=A@Q**~KxWD@Ub=th4-m8inKeWG&2^Y8MMuf~~H5A!;2OAz=cu1u&*^cG5)Tk%60jvby( zURd?unxk9n%Jj?6WwyKfbea3AP3zDw;GNpt?U24Ib-<77lxs`0Wkn~Y$gl~+#STNG zqCqMX$>FcKgK8@s%_@+YGfY)5J{_UADeC(s-cMPVj)(;fG zXY)@Rj~Q!FHjgXWXAM!%-fQ6q8g6{RHP-;M%Bdxka?cI>sjO0`?b$60oxXMF4r>Gt z4=MW}b!xxa*7%8zcww8EvP6J83pyb_RFpiM+)S$iNw;=pO?E;+0{yA%L)S9BgrHQ} z6iA#qXd;8zrEd;DUkf*GE0RD_|F&6+qRpmGZT@Lwjl-*l<+Xz~gohLUALH-urt}QA zufi*9QO-MT41AhDoU#S6jbmjWU2WmY;3&!M(}sY4aYe5T*G`n?|0(Rs!=YTmK1TK} zEyylH$u?zQ&LK&%bX0OGWHORe`eb@E<^X*>KAG913;vg|augkB8C=GX5tbL=5(s)htNr|P0wH(^Zu4+M;9yYryr_Gv z70=2^{##bQSKmLaGKcs)PDJT=tPoY!7rHX{kwD-lQ!Ii5G+DCYYAg#w;e5d&SFuixBUqKH7^bB`uE#=gwTH+nQH%pmh1Uy zO3R9%SsJwVm1GvXG+c^{qVssUo&Ya}dYF!QhlD#Ycst;9T`dp)1Xcf;^YUwVhP`&D zw09lKDRav#1kMqi5Cpu(%L~%}VgEct8eTcW!!k>%D8!m~R#NOQ022LOjJO-YFZAyf z1MjJSp!xYyCDA-W3Jkuj=2K-b2nlwC9_vo$6{}L3{V!k|x)=B| zQPO#hf|eQgcw>&a^lQwY3|jmnmP5%+;oOB^UeNw{%U}H+eNPPaF3NWZtH^IHv@`Vf zKhQ$w`tIN|#HG*Ya_hf!8xBPPx#2UuS)ugvLrs#KFr(m$dn|#1^G+wDWqP|YLkDxq z=E2C}UmjV(N=aybk0qd;olfS(9qIlMUAdrx zKoBvH2SK(%DFC>Hn0%n+=?69o+{MelJ}}rKFHHFj=fEb ze!2&5KT-AzI4!@iRAy+ysKML-x;yrF5MaUQ#SF$IYJ(sF+3|H_`-Fg*3q12P$nExL zee8c6e`$N^@E~_qyH)aN6|d@$_0XgL2e}?^z|U_PStTTU=kYN6#t#|i;e(n}`fo`d zXUbX@M#5SD4D$#@jy(mMjdMk)=5+#wc?zYpCFaO|o*(C>6GZ+CJ9|3mC88nQ$0EtMCPbrnZ(9D?^a<}wzr@iUnl6`D@ zp$-{hm3!b+rf#)FnIYLaJ$Q3a?M^J$`H%&pd?L(`yb_=O1)W zjep5HU8Touw8_Z3M(trYd6rzvD+e+Z)Cx{UZmmh~-hJHgG+Agf{&zUH`!(yk17m?+ zIDW5Z-deEv0sH53us~s*fuz`Wc6}>?!uRHS|zcrGoeu<82tI3b8Dfs zu}ZVfRjm{zawpZ+#vtlrMM}G=z!;je+Qe1F7|7GN46I^r!nqw`t^NBUW0m95)N7fw z^HT}bLpQYAM%Xn#W+x7NJP)tJU{hRE?4``xIBhBI%tK#lJLha8eU@*+8<}zJkEZAe zHrZ3It}}=V^RaHW)`ySA_1<2I?Y(Vy7_!WL+t&$$4MPF@Vb0lJ&Gf{nT<<<_ZZKJN z+L(yD<#f)f6X)jzZ=Be}<{6fwLA_`E?hTy3b87iXyTZrU*>*rPRVXdu}_D>8Q#WJEJ(U_RX-l>OfoJL3^_MdRMH6f2!guTLsf0 z1g6QV&81fT%>~to=`|VR8*!MkeQHp5Hpb{45rL^SZ&P%(=XLV+k@^@J5NWnd7)f@b zJJYTRu%nuo=!?c>*7`oO@!kp}>~GEUgCQbSE7lD72s;~tXXC5{?pr&$Kv1*$9=YWk zK~m)8KXOJbDTUini zr~Gu1TY$Pn3<^xTG80J(g+^B*A0fTa$Vd645GauGhOR$C76(F`jnSTjiXj4-pz_tP z7ztgeL7qi=Jw@UmP|pHV;_HftSIAxy^geL8DVo?zzdg2jd_5DH4o0W-(nY}+a%;TO zk+^G6Iiy!vr&w(S8%eS)AW;bwM*`6Y!54g?#6l8AY3@ZaJPBD`sANkf==W8fsvGSk z=o_Lt+(NsSp(8d>%xZF%SnZKP;((M|b6mpAtj~?&bI4%i!M&a%_P6 zH%f4{!52hssk{(A2jU1wV>$Kaxtj-BW*-E({4WGtL8YL~dXA}u*O%)w&)@v3UB$x> zyj2V@$NCKP_>}t?p`DYkiM9AN{6SyYa0|oxA5c_Q1qhIQ0HI<>toV1nVLl0vlrWUf zA3x6YE~srBsh7(qU7=m_{TW4=)_%8e58R*UF3#ARRlc~^jLmO(a`tY$8*wC z=c6^p<*tGa_Xn-X*ga<8Nya&^sn-JkDd zVs^;IbDT)T?`1H~iI3$m0^_#rm6n7im0`i60BGx)8Sn;{;uFb!j^fTUTab7`+Rhk* zzLDd*!Y|2s4_z*978U}rxcHS#!Li!t2@> zm6Ibcz?la=_1&cvxo&Gb}v0&iAde<0f~B$H<{mjL}7kFxc-?} zUvxCv#CM0G%rHce=;b^kI^0W0SqXi$UV@Yq>~m|OgIu4lSfcwyW zX5A{tsCF^>#0phdG*9E=X!``^THT}`;SD0_<4|-p&dw50&(%3aQ6dw^r*{ir`a%iR7|c~mr0*t~;MZlU)inyJ-g@LpTQG&~)o^1k48G&5;(i2*_k#M_Q_3^t60T9n2d zj))+h_8O>hbNt({a$e81qy7!`Jvk|FuE2(5Vm@lVy2CI%{OLcAqnN%v!~m$Af>U#q z&L=%WeDT6L>MU8nbzY6s=hbsg+QHVnz=|cO&RMbv;Vo>c^wsY8_Xgv$!hFpxrT!>M z;_K)LwhMlrZ>(|ie&qr62q(K0j|1ENHs(KYdn*;T-w?eMpM?mLoL-Ld(_OSPwt1Oz z!*M4w76oj~2S(7Poa=NH%<;k7g2aI;Ns3b1tKvmS-jzmkh4Nx}sRBm3^R1fKG(Zts zG{JDfzIwFU**g?)YzW6kuhRkX`8G#!+qRM2{m1E_ZPvHwOSx;9)&wrgNRTUqK)$9 z4|5;a+_fv6IWlGsSQ1TI_*2BWj~n7(&OTPHCRx-hiw+LzFiu36MmGiU$& z{pwvO{J#jrBSZY1^&DX@p6AX&QhqagG)kKL*gyer-mMqc|ni{(lvPvpO_S~QTDCn8+#f-l7HsA^8I4TK0o%ZmZpIJPiTt>{3d z+Qq^%IW_-CPR^V@YsvoFuZFJlDT2h;jY?t+y+S>z$DHvmtD1vUYrp)9pBIf`glSqK za7y0~jVl!ALaYI3F?;cYTu8G$GWiD=H;_{NFSO)s{n7jxB5bi>12q7EqvJ=7@Ypdv z@F8RLS?DzMTqrd8U3IWiHTjeG8lBX&0$uI^!j5WQlcF0LtQ5t>1q9LbUh1u{TR+(- zRL;tzrQUi4+-BVlfI^ZgWyg>=P2MV){Y!|xSCF52!oVHqNq{OK1VU5R&(h3&`NDsX zG0Bc&6eE=((EdWNTI66MsT?{q_3|>8D75WG|bOjn#NOCaGE%t-j8l&ZUD?Skl zdMggz>z{RHYGix!f}s&N(pbrZdFKu)b9|*q%1Ro5R{k-e3_;Wpv}&+FE+>(g7>KwX zVH3{Bs)R;IY4?-}laFDB!gsO+S^O+5+GQ}uUwTn4YqwEMW^po*=s}}pSbN=t>61)J zsEND|s6)W9o^wcfNSD8qZ-9)`3|b4O&1iBgUy;C<5>5X#)-+72N1xd%` zQn~+5s|eT#9v1*x5a4LY8zu;t+wbJqi48UOn)?loo z*Nx$~R-m+q{j6j6*px~!U|!kq#<3JMvIQCdIv=sYI|v9(oEcg#)Drl|%vkz9>Q}!t zx{5#736cW~%vinIhf3w+&4>?)+`pv<8a43;Mb1;_j{(?DE49@`gduh3q;X zu714=OSk1Y*!DX6j&-+18n)R11CP;s`vKr-KszQr$7d#O*5OLjHD>(Pd}t5 zG{7lCdn4HOk+}0 zXC(J&XyCNwT;w}396AOlQiFDzEdbvcaN&I;fCq{{Doj5E;;khf*}ENCZ+nFQvV#9( f$pdjXeG~N0NV~vpnUZ9nVLm4Z*JE$&d~g2`4H35y diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_57_0.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_57_0.png new file mode 100644 index 0000000000000000000000000000000000000000..f15e8bc8fae960d1f19290f98b97902de6d26df7 GIT binary patch literal 42041 zcmbTe2Ut|uwl#`vt1Sw&3L;2o1tbXwh)7lu6p$cMvVef(43Z5kC{c-$K|n$gBo!G{ z1SIF21&UAv$(ed{(d{|?&b{~D_y6B#H^r{KSK4#UIp&yS@mfLd4hb*h@UHSF$p)cha*pB$Cy$w>G!3H#gD$!_m;z&cw=+ zm-9O3mCJuTwzs#o6XfEu_}2}bR<_1md^rUeXymx{U3F-gOb`8cC{--Qgor5dgVgPt z%1@%_hMb;|Pi_;IT0U(2*?QsX@mH^2UVQcHX*td1SNamI20dJ+w}0QI6}c9mFD^3s z`T6sUEE2!oKK$wY8p@bvuqcZbmh{@dKg&`--(`lRUR;P2Hm=x5Od z9|82!TAUmvKtwd^Ri+g~bnnQKBhvToDO+2Aq#^ajbfBh2FM8>*aB#?GY7_){-|3qg zVZqJ5`ug>Dfk{VA7tEK4D3xJ-aU}cIt5-aWDeo{0&tJS?ia39nk@0JFU;NFw=CFm5 z2Ce;NnYxyif-SiHs&!ggnrX)ee-(z1m-<-&EOQ!Er%&JF_U@mYVdc;<=R9^ak{|9X z(vk?*WxJ&tTHBD=)KumjvI<9HP-r*WtOJ)4e75bmL{JF&68oG`XS?4?@VihTWOa)C? zKGP?CJWWH&dZo2X9e$7ZnKn8OKM&r<<7r#lq*DxynsNb{JXq)(OfVG^ZI6o8YDyf3 z*hp6&dLroGoqonC)LanBoj4`3(!iS~cLct^A#kqg^tA}*2#wf}T6z_FKd-Xj9(FLs zzt$<6me_i-T_i|>I-QJv_d@oS{42{@`(R85x}tC>E8;IJ`5Gb6J8|7EpWiTBn1*h) zGZpT*Y4O`{ZvtpoHDK2~)kF{9(s=IGOrL&b8NeyWfmCZx;3zl_%Hd|ywistPT5UBdj>K#T2S*il5k3jFA+g_$m zdd8MlmhBwa;384|O@5i)M-zsRO$U`_M+CL4GCgJP=iKjibc=EzV8;i@Db6Psc2^p@ z4(^;EQA6Ea-}dgp;=giAR7=hj@MZVuGZVPg;Smj|$1z=4F^kIg`iZOU>EY%%aaQ|U z@WnRYm>Oo@x<(H@LCDHA@n$Pp1B`~WB0nckB`6N>hR+M zvq1O&9TNNff^i>ic82Ti&xcNAV1kSd)3*Uu@7Vv&WE zN|gV=pTPFQxKPKF$9!;-_v)q5>}#^mS^35kTYP|_=EJlw9DMvLuv{+N;VBk5c2124 zEe)-d=Ogjy+ZhZXz|N!S;K|Zla#H^&2R$z2U0mNifcN`2nkfOp$z5 z_#$$*_L1hCnVAlH!ZEJbqF~Qs)d_W68MSZbJ9$noeX;fxJmkK)}e-g7* z++Va68b8-u@ZK%oom`yE?s|=(pryAEI>%_p#40GNfjOf#Kv%flsv%K(2Y(lL>cC9e zmfAGle*AK_bnM4bbp4@Z+cO4O4|F~3W8>MF7!C$8ak%c&M{nRe6rHaQ zpZlXqdQ2OdTU71c^25GzYq=XC2lVGR9_H`o-O zQQ)setL_Ax5rS_mc1D95$#8Jbq@Z0UR)p0RJ;G6o?bQ!o&`gKxhLgtX7CRm5?C|*d z1?C9)@6fMwgG^rk>Gm_|X4yN}`t-w@FRMYnindA_SaB-ve0zdo%v{e`U08w4@xIzj zEJMT{)SVEEH14Jttj3+Z01b=Uyg+DHqmpj7>ul-54?#3j@Oc;xCVmO%g^4u&e4x29 zw0pYaOeQve@G9KE4lkEuJuuOe1)kh#UstzKcUA|tfOWqRoYYj?xc5lDo({v&6M=!j za|Gy``wqFdVcw4?7OZ@g!!)Un=40KT`G{sXF-8sSXODZTTX^X`$Zn>#UcnuGQjyLA?e^(ku^JtQavdH1yF+h{{+dYYyzp?#Hv2c&;mHw&lWB2R(;v?(_gVBaws)Xp@WUaCqp6y~mJ)c9#|bv>HLRc5Kb>{8ONr`AF{F2} z>K-yRo9lT1Z3PE<2XZ)C*M1f(oGHfk{yy?MY9^LcUUQC*HtT+hWQ@IBuwBMAPb*LK zMUZ;u*^;vPNz*fflEyFN3=5nEg)@73 zcO7V$F~BDz=fs~G*X}6 zd_Go-4)56*;*8TJ9-hEt!h5CeF^<+aip{SUeKPz)x6CX;lc&Z27`^)LnV5{B*ZHu z9m@lQi^{wZP)8ToG|#sJ?jZFRzd3x9c$L)tACdOgonP_w>uU8q9X(xX@z@ER^f-Zz zXf#xfkv?vD9Ky5$vo*wSDrc(5Jc9t-V&vkivV!LFauWaW6)R_Fidq09@p7Y$H0EF2 zs;;KjvN*dwDg6h43E;hhLd_?k`0o!Jj*;+`7F~bhPMlT-svL{GWtf`wn*>PoL zj6B@jk%{7`g74O3A|-_N|?X(`sNh>bn~Z?imrdajeCDB3Aej8crw zDx+D1ys!-WDAgp@)mUj{+T1Mg6E>kfU}uvo3Tk=ic>MF~>Y%->e^h#Qq5J&LCVnEY zq04$_PSGU1(=^bEIcgdl7ng4&+r|UE4E|D0W4@j|-$61m6t6I%kXdB$5~0E$t0A04 zpZ*i_^4fho4tDe-t19AZ*@e2M&`YvB;dlIl+}yOH$e=a0mv9Ffb7xUnB_pCF)-;ePu=#5gtdm;*Suc0~IW2a9ETP>C;^QLke)^X^G!IrrmL=$ls%4(pZ3o z6piNl6m#`g@_$=`ZolZzk0BD`HIgo$0o5Ww+Rmf$@+PA<)Qq9=r)=+|n4m?-U0~23 zw5^3;d5#QSJ|9#jY_j~wZtK}GMl0O8Um*uOMp|{{q#E-fRz5zJgoFfXDXIH+@4kYS z6c2iP;mDDQhM5_~hw%q!`SIvqn-4YoKj(7)P8!fGpPolPMpmt-WJavGsw@buPzLL~P|CNqs}zDr|S2-?HTV_33T@!V| z&~Mt{pw`|9VK1&?3l|mX=8Tp}fvr%C*Qt&v{PEWEsBqzrAG$O1hsY8Ok!j$jZog+p2smjB)12Sk?CKN(&~R z^i#5}UGiIoCQYiLSMWj=Hi{g$H-?->)EgM?1YG8;sj3pM@+J#sjJa-ei<_HUMWYtR zoH1#ZRs5l`=-J_8^(`&(L08SXGuSc@(!KQhOy6P(cGbHF7A6&@wEqtYGr#(1NBC7jojTmP2e(K7M{7;o)i# zHrgfjtV{3e**xYorKP1KYyd+gn&5Ca)2Zed6%DkziIiUsoVDxg>x1uu7$t7s4mm%N zdY=JoQ920d1Ks2`avdvXsmk4DnFt#&3S}3UlC_Nr_nq{Ab;^PBk>^#2c*}6YxA^-J zHA5}CCcbX<%EDon2DU$Z*;!axH!)HRFr5K3tFsaNLQiKf}2FK-!`R;UYnCMG8C2JP#aF&b@@~WMvY6``ty8eT+}-&+_ubrgmudwGyDO8{*E4n^ z`OH2njn|rip|Ob)ToNVy+1#4ny!m~A#QHcF*G!mZqo%;&<6t)NmNo-cmL47+rh`Q} z0klFN4j&^8IUf}rZBAj=C9*R)HkRPIzY@1SB}Pcg&%a75>h|E!p+lx^?_UZFH%30G z4WLzZ>&eo_6#QibCksV*nJFml2{|oXcG4-d7{IDGRNqO-$Qm7eC?P4Cu7Xijy)b1j z2t3gxsdg&k=!8qMkKfceK;2q=|1fOCvK7_KXN%P!E zn`=!FchEfz;~`S^86bVC__#euYPKgkE;l#Velk=Imf8l!^9Fvs3cgDgd}2^%v7NDm zgoKJ2E$mg7xtv=20gFPDPfrh-4q!8L^YYee={+AWPtarRwz!O=nVi(F|}dCNK)71-t7s)B?6iqTn#4 zWgi}}U@7(Uz5-Iz!cRW#Z;q46MqZUVLCM((E@EPQJn`GNyF<1O9B4@7zyGcotjZf%iE5^XNo)K~)b{r3jM9tj-_ZQ)r>^+4*pq~Vr$oM4QBm>T z4VnUW2619yp74&2h@yX?r%$uK`k>@ETrMK<5r|J%Sr4l} zSBKathj2}KS=1~M357B4sTZf1?)D6`-Bvn=k&6@owS}iv7B|GhgBkY5>2bC$f{509 z8U-m6dgi~foBtURf6}90&rRGApBiTT2c|aoJ6e+FnUHJdSHfLa-w2Cn|Bav!--BmIJEGqx{HIIUNjLU0uZE8(dak-Tn0- zF8%M!_)pvUYf+q~0)-X-T9i-x{9vJ1NX)8td4x-sj&&9fQ3AfpfDv97#+{%2oTv|JXcRTT&w)`2W~E{~9>5PzYzkr%S&8SOUvKnl2D6R`J=DrZeryC4~JQCaHl!s~(3Q?UeldeA7&W$@)-gZv8(YkW7FJ ze#>xYwsf(g1A;%`y2~VV!ViM%cQF;w^_tOz_>A#3xR4!1y7`YA3J#>Fv!fAfWDlo?jIrMjAIOD=T~- z%(yn)CXVj`dtT{iI?WmUGYvAjkM>Kr$(5nYl{*VUX3i7e-X_;PdGh4(=8v(UBmnd* zmo9y%$JaGAg)%x!wN_F%K8ycnRgV^__1!wA4L-MA&zu!iK^l}{Qv z#kPi_J$ASVV?d)|AV&A#%{g>uT{*xya>oj}{sDN^`Z{n9@S46Fq<>HFrVC=E6>`kz z%!&?LZI|H+eT7E&wBvIoGf4};&gMV=iFMf+7{qrr7PFU27RontQ0}6XBG&~gl)i@V z!EfWU)f&P$3amy%WuvY&%`OXg>^{-<*qT()L5&hAhiOvURi{w>#zylgf#zkkmWzu^ zXwT%#Od40k=B*dU$htAv73uP#TesufmS1xip&-p~sg+Dz934$FIWh6TGn`NCU`8P| znWgGR#>ScrqN1V{H9One(u&2w9^uCDej)`O()S_pP+Zgn*e|-bs>H;|sJy9l=F&X{ z2<#4K9Uo*1Y=4o9@b;34|pImAj8L6ztYgD)u zZ?Df|wpOMv4*2fKYZj5Dw1P>Hrp=F3>Js)AJt=GnMaAU z?^%v~mo?LZ$8BFq#4cXE6)3#?3X+?6opKjeZtnXVgLZ-4nVM=iyY2054P#;y!{XBi z_ZzifV=ze_Bc);Cza}8i$A(MqPhJ8fmR}+#3RnqyE2{|bx+Zb~j3#^AYum6Je&$1$ zAs=E)gDf;C2~uD-F|o?Vq60i^9OIxG+I`=R?FF5POUQXmx2)3dcza5@6s4S;oNajB z6z9*gr*zEBhFF&vKDsL#6j|rK@9UzVtq4b9}Z0T7C?>h^Yi~iIEX~ zBDY7Qqa9!WpHOsWRuH5h2zAfz_x3&j<^=xvpW}Z2b)2hoj_1g)zupZJ-ThI;lXB@n z{^Pf}<`{M<)1i`rX2`5(D>5`D?FIQvJE44g|9iz3EOYFW=bYgOU4CD$j%GxNb$@>! z655_nHJ!BMXD&Tno9*&>{krW1nP{qUth405;Puv4)t4_<9p@fM;cib-YTLi9@jsvP z?%g>^`=rG7R)guBCr)X5?ya%0u)Ja1gQVxJcT{6vf!o%y?Xfr9Cl9vij|@iW`)U8U z4y8kA!v6>O?*G7>>N6GVDpwmw-;*R291JL~hIZ{8@(I@m#`bL!No{ygJAVG$8CKK{<<8JA~*WEv+88yG!3|AF24 zjd2R@v9Ym{S4|YtHsI|_wF@nliC<9D-P(~c>xtwi7J&H`-sCBw-Iq0zsor%0kttXEF5idOtxX+K~CLB;^3@8Bri(OGh6hDaF^l1#bEaT1){{n7PXR-2Pm` zw#;jTn%U{n#Xh?5)wVm*G`ye${F1Q#9DIH8vt!{J^njh-0qNEy&4E8q2jajFb| zexa&a6Uk>ZN2%MZPgc2Jg05P+m34&`m;{rGZV>Eq8LTQ3(fso4jPK8dap16oMNf;I zJA@rwJ26(8+Y*Y+0kk-*=MJr=dHY0Q)83so)v8GgjFS9q5D0*F5Ep?zQU^Wx3JHJm(l;&&qCqUR1xpFhj?}a>qosU!P3=-9yWr!^c%MaocNX@oGi)8qc~; zH1RiCRJsOsg{@7+q03VA?vH#$wiinOs`8-KoEZ=N?+S`w{`bwVR%M9oE7X@c*NZ8x z-hAUZ@k$Zbq~v0rF>f=|pvGc2EIdhjFTX#!HYkM0Dz-iBazV9GhK6Cy!iX-p>qQBe zFDsu*4#zdSdFtfGsFcBS5D`50vtM!ceDEl6=%Wt0!FVd`eNS+xq3GhqibalkB_S)s zdBvRm%8}w?=?H##xTQ}&kKgK=fiLZ&lT{z}{oUZjVKdQp>YlqMuB7bOm}^ZN`f`*| zYj)$3n&z|5kD#xQRDU@BZK!;}ZP)=nmm{{H3Jp)(lg;a2UY}P&lX|ch#c|DINuL)= z`cDV{{5AQqR_gAj8)@1?bz^TBlL@E?_0?o~djt&Z5K!@cLa$W{?I zF-cLqzZPCB;z=07R&*{-MdehB_S!iv@EGuC6xQy4{5B}h)1HZi6>f4jZK8IalW)Ue z zidDre$Js{(&UbF7_D#1fpFB}e?L|VH{;9%!vZui8zWIug={1*p;a?70h6&GCYW}M0{L-x-8|oRj zAd$1bZVXBRygYk%Rmx+_ig;hHFk^*}yCt!Pn!0%@abPy( z6`w@QC(ns!RKy7N=|_ojOH1lh2#fm;^Alo4P~QXCH%XTQg)cL(YwF1Qmeg*?*kz&F zEn+RqbNuOxbdQ+KESvVFv#e+2b=o(cGsK#vy)nzm>94vI5W*{-5A$WBz8i*2R{OlFNY5r;pPFynj&nKKk&E z4kMYE=a!>D2e#saya=nniHTD*<^@NzT4i9NvE`LPovTZ=h7%LL!v=(vX5Nk9^?CCg zSvr@yN2sWlEr-ik*5~q?_L3aTG|k67hnc5dlf%n?U;(QdF;F34r)ds(l`Wl6Gxz&g zdWM7bQ|0)#XW0(`4NMwY?Qc$FS5EfGT?X(Ly5!XJ9O!4Y58o9*=SNIJq9QHrBQxTC zpG@?<6SF6alutlFH-(zkSgsaCxu;&Kxdk^1nj2BV2M`36J^-#Om^L2Jx#2o4X%~I= zToH+aV+nWov*J%L!Wy=Ys-fVsv@AHC)^2$l^t*tFv!5E5Th(~ zt(|as-G-A@3bwYna?#flqV;=_1hG>BAP=gHK??NCFTcp)OOOPuLMN8uSb_&D%Nt^@ zSDe?jRkdw4f9NqWGqYd6{s3~gP^gY%?)5`JS5WuTOO21eK}AIcwTZ6RXPC)Pok|$h z?js7CW^XAo5F0aq)0gJh=gyY=sClum}7su&ETJ9@K3!3;{A-sOnRdA@M$)Uv<@sDnMG+^0BeF(dS1}Ox_4oFn#7RZl)=R znpgKo;+;TMfS7!6fzs%uMqAQrXUvOp#lT_~VLJ9iy!1(f8gE%bULh?blUKm}Gsjp{ ze;9ASn(BPw%3F%UH^JUzI76Dp{e3>Cb7i`c`uf&G_zJSGBL$S z6Q>?(2iw`DLoEn9d#TG40DW^so8cL{5IUa#w#?uH!DycH}N&FDWOi zugf_TxzjmN6u-`=1#HA3a%-S!j@$~P1ju|P2aLV-z3zf0_;`4vy*XH&%0M={gAe8)8yM{F}$<-4syL3WP~Ikay^{VN^5Qp(>ki zHBv#mQa0vweide>c8>D&X+^zzhK&)tcV=dAQ?gLG=i%YG>M*P9Q>?KLAC_ywB_(xG{!z`=;gAA%)=ld)m>|Pdt_(v5O0*l6ADKxLv?k;@*UCTQmIyW2 z*|t0MU8o9#vx~E976?iLHpQeqgtcJVWi%EtE-J|C!Z>v^$%Z3Xq#_}ci*;L;YW{YJ zq!DWQ*--eG^rhrNZFjzx@KqcSpb>aKJ^fh9=)x5{Tx0*e4hyKgYN4_^;xi#ZxAiUl z^1VntPE^o-`px(8aT))CGUvQY^0AktP~DT_%$Y<;k~QxkB6DZH5D&HRuJ6^p>~lQl zfy@A&QDrPNCNfPaMLNi3eJ)MZeR~@CfmT?fHL$;LwY4eT%a5m_GgZt$c?Am;4}s1! zrLZMz){3ppq{OAG=NU2SBcFiGOc#p#u^!tdsFvuIJiPJg(+w|L*wGI&vIx?`>6t8i!GF1Q5xWPWq zZsDl7JmN_xcgSpP;HuPm|3;_};$s4ATNQ462Q#o%GU1$|j6;wNBdrCa6e1a(A332F zL9M_FN`l;)H$}7Qn5#|;gNi4LZ_&}wm4Ndt@Yr*Saa|}b2)#u8RD%`gxHz1Ntjajr z#tRD7UHK+T+AcH6-4ZQCT9^O$RCb6bJF$FkeSj&{b5C_FB2;LhC{bE$_v_cM)3L4# zZK!|?;o#+;e@;i+HMhaW4t@9T!GZz5)o@0*u7|pswnON}ix(&Gcns(`9A-PE5Y@KE z?yN3HC&2}q0JvG@Kspg%Ei#}&ytXi;xmZc407t~W7s-HCp5`j z&2-PQ8LycgD9nZ`IN^b|M1$@3ug8%h1zig@fL+{GV5T-?-yw^t_zr-K6zO+XTEy_{ z16FF@q_h)@i`lS55TNBKb)F<3li3508S0U3s$prF1$EfNh?+yNATTgcBmZ%NS$27M ze?^KZ_+aE+V0WAVlSmWyCUqHoc8pC#K@NPJ?U#hAcfTx~~G|Ot! zv?@<7cim7G$Ob|cU&1dYCg#50XS}?eu4P>K>eX-P1*_;7%U*Y0Z2`B9n4{c^xI(KD z9gvUczNR}A#c$OO>Jx_=D&ub;5RxEG^%&?#El`F5?=k5G!Bvazv|R8F@|zD;#o+qEPGSxN@a+ zbAM-%y)mb3pf|^$!7Zjmj8I15G~Ie(9NsF|it|x2I`iu>&8FpXP$N2g^yC#rs`>r` zUXW5|Rqnfp2XWg^w9)&PoPV#Yyyl`(}- zO!}U%N>`>PKRf{5M8o3cK+V9wz+Gu+wv8pQjGAD1QIqR50k#`2gLRdbdUpDZapYl)CN73Wz|A25i>Xc_lzR(-`^c6vqM$Bh1}cjK*;s_J0jfn1$ED;hRP0#do#msi>y>hWS{GbcVRdNAoj|(o z<#*f$=?;#cRZth;7iEIF%5yhuVZDlnT$yH`9iu};GDp>wPN=pZ?}pfOFOu`C9r9vO z6x3;lFr&6$2WVOdRcio|X2W(egPCjOK6*XBR|)R}LXDObF8LTLUcuHbHfBtzIUj!BbQG&(F%1UJU8$+a+XGJ#%h(X9 zv!Eoq77;aikIe*q1A_vaami|kJYZNoP_kgr)g7_b9iMpvP_Tis^d5*&f*FUNjQelH z4uy9u=ng2L`_&Xw_F92ZhcpyZ7Eo+A1)O-S;?0}SpazQ=_*sYrUD=iU=_p`9I#&YS zHi!fhHpc_mIXUHmimedtLExpP(h3 zcz-hhc~l_wuRx=%W{{a@4ONz!KaZdBgLzPc>Wv49sj6C9 zTF|ZG;o&(@?V3$ewCW7ywF?aJ$@Opt$+lKnR!l^ch^u3o@gZW@^Nq1016{1KLBTDJ zR9<>z(7zXBB1ADscq0^=3JMSN;RxZIM`iolc<_uAu@Ou&Jg{dr;XL=GdLTNp;A|YEjWn1Z0bCWzKfsIv0wk z!ip<=qTP%*g@guvJ8=SBZZNYvw%P-Pb1(*wT1rA-)jKyC7a=1r&kvzkZ|CJUpaQ<( zC*vdrAf*GBA(?D@+2g}3lfJuvze%n1HOHu`9OwH(p9K1_;~Ui^dnx;op{AgD@!RD@|k%zE@G6ej^QQ(aGb|2l5{{L| zfg+pnlTs+k=Rj%n^af>CB4=y_MwOc%lBKFK>)w(((U&5Q)NGMF2E* z@RS(h!E1?Xob)YbF&!F#fDNV4YfD^Y2joSGUCy&}y%4M=3XTbomc9Y;!Y z{h@>1Hu&kxUPxN{wp)c@VDPpn?Lgch36p1EtDg0y_xKoV3^|~R2Q3(QE?p(W3>X*T z^j4>meCU=i?6v~zJP7I-p0{a3jaj!mC@x*EIpe0Z^Xjn{A*ntIC z?yX0u*vGo9EHCqL7LEQg4zk94?0pkCPD?gBcFcJTLjasqC>SzQp=9>;4xoN_Gm)1= zWpdphNXDGIob9V-;!`;c$qfS^UqNFpNO)_uFFM=af1ou+>B_~$#lX$oW~y6kn_Q5E zQU+<~v->PI9kTo?Gd7_reVh%wp0>km+$GhFZb}@rdibo*a6~+?m-K~U%sRT{Q>qz<^LPt|=<>6dlvd#)v1^#u98k# z_llT+SZs4UBHb*{qL4Q|DmA=f}!AtMr7UdW3IOuN$ii%){Y2cfCq@VGcDhvZTS+%jdA z)k7eX?>2ylnYj*tR--|M_DANA9H6%H_MK**gX`DS{_~FCx%;?JcfcK#taWQLMGy$g zWVe-KzdU1sB?e~_%QH?~S{(KPvY+nNvxux{`|QWa3Y$@b^yJBmwy7) zWXiFn>Kze)LoA0aM<_BDsVg zAr`yLJ`S&ysUJe(>O$$FX^kJ%fySg~TsdE)1kM=X+#%QKwq4?~Oqu=e%hiptT-XA5 z$iq89OwMP~e-+*^h^1AXx1av_VGZ^u136VVIVEKZ;=n+n)Kd>7!sD;=^74?n%<$2p z=@G)dQ$&kHi^xXw`uz`;o8M1J;RcP8WsTdCq|RtNbg5{3eE6&agzn|L%MDnrIplqa z*MS_1Q{0zuBoFR^Z(V+Buxwvvm0EJQ{%?6G436@Gan$l|jey`lYN z?B!(h4!_%`H4<}xZ&LzkfIVaz)9IKjMZ*4`ncHeR>?j>Bpt+LueJd;K%eWBAS}Xcq zZQ)G3F#vj;RL~3?*1&9)ftuo4t33<39;8b5z!o|()bsMeWQSbvnbg;<<3TX@o;YPW z_3je=Ay`)O)2D5vThs>Nu!yqJh077uIvN_0ph(uTyq6Fh_*P{|9`;}oP;THzG-CuE zf|T>=H#av!TrCnImo0Hxw3Iz_Ke}TkKPzPi)-44of+lf_srfCjB^eskT4Ptr4ENqM z)m_ti>`X8B^87r!l`g3xe3!+_Cm!gEH!Jw@@Q2EZY?fv3Nw?C^ydLaD$7 zc)UT!w%2< z*!@nMWWmGNL#DDy7uvyjr2@KFuh!DrNdqs6fxIUj$>f6?b*{DuulRvqV3u-O>r&$b z1tH`S`yt&*+RSp%ACEd0&tnJbY3ldD^16Yp0pd=yx~4|M*qh1qnNHvL_{;v(d~7Qf z-$$hCqlE6|60Bl(wQ(Q;?B*yOd=EYdxgN-Ek-dRfF7pIenF53jZ%My%K+%g0jB|pX zrW~Y#)FLkVNMLSvrA9d^rrLJ95W>wy|2x;R-tS}OCeIp$Oox!l|4Z$XlX4I`r$opY?#a;_Cko8D9#GI%6A z$NaJZb`6D`dk4^wiUWc4Vmg_5xy+vHoeo`WIKa0dp`j`ZzC%SeiHs{fZ@-*slU6E9 zEE+hkrkh-9%q4WyI@#atL2$HO3ee-(fByNaCV$1Pf5}heLvfmR$AA$infVa4+NGwe zZv2KZ&rHU!l#+rFA1CJNk?i|AxboLQ_l+T>R^j96w5O5IGL)`vbdhDK-bq zt|JHwqZ2})aMX2y6t%#8#}QM0$zfqo9azUUrf{wIpyCI$mM*9{yCAbxPsFEXMDQB3 zO)U=7gDcAd=4FVOo)=78lUpsAZKqOWn99#5-*QN!a(^2W#;Khy0AvyX==)k)(LinF zyKUKW=vHW1l`VO};(MPqzDei4dLN1EBSqayP&$WtgnSL6=r%IjlcS6o_IokP`jH%hMeW>Z|_v@%$(xa2aRL zu*@hIj;9G%Y#IYsu_X`om97}bKKCBanXc0K5~P+FE_~i566{-_9{^42MenKv$bhm3 z4;ululH}vbbb}-9nUv_W?V64bCD=_UCc+sLbBSAH$C^OnqqIm|d<&3h53r)iK;UX> z8d4A_gf3sc2iYOUmK4&mysS*l#S3tegXc_36kak-bXbnbP5b8 z@I1ieOrD+u>8a}vKM|FK>kUeR6BnkvAN4{#%*CyjJrsxeQVi#rU+#R)F{que7i`#b z<1iCr*?05OQ^x1j(khz~g`o5n&P7pD#Aa;zEg*zl+=8T@QlUaI0Ua&gymmLzQ1%Z2 zEcDzD2GB0%88xNbhl@L*Ofk){Aq*;?YCt6b&0y%xo$0qQRI1rfot={9!=Z_N&@kz4 zBRFJiVkSMNUNkpnJ}{CZzI5}J+(utW?p%L?3^G~9Jl{#kfwdRrK|S~Ok;fKi^pq^m zM)H@QkLG>39bt$4P8j=&VGiH|w8Y5X!8_>$IdhCcM67q$(%bk1 zl_M!&rwjTkVO5BG)RlZHDLJzrud>*fFyoqn{&1T(SF$ zgnjv-t;8ED$HqzlT4WF~R+W2LIjubHaAjk$4cwH7q_Ssoif{guA>}y=MUq% z&vH*v@!SRySOpFheUOjK0wv&lUtWq1rEQS2(K5K`uhz zJyPP8pb$_lveL-gO*QmAkc5n^(1URw7iCo+b9Gz!iL^Vku37z|amXwPrM~%RV012YqEw+M4Vki)Z z6Ch}>0&qeKM4!OGaHwLY$i>u)d;|b93y$$EWOj8Q2UzNAzd1M%r&>IF7Nqx%pPxp* z80+lfVhUKj1WFDvZkwIPNbU%ypF(3|G6}m=Vk#~fkSl^_levzD$r?~zcY#teI)#aX zml?ZhipoHPfri^Lt{v^P(YXddd@2W(xgVVH|R_(Tjn@a7W0Q|(SCxYK<)KAAOZ1n z7A8=(v5@7sANGBy2D3sJK+RWQ61xKD*4kzHhms)44x@rx2N^VQ$g_y7I$0wxry z6#P;_0KSw>xx=EOFyL={wkrjl#bzKU0mHgbCyWhuTwevcO!dBY7*HZ`hVE{VK=sWf z9lB(7INUH`5ofB++XII*5j}^ep;x5QN|Gw^a11j-n&Gv(PO%3ITu&@_$x1U57#(=*7+H!H+qq0cu6^ zRaD7V0_6qbH<1bg1lg@%M`_>`(?I*YRw5*u0CfrEg8`5hBF{Jjs{1Z*0@>&_Tsc`? zTZ>2QL#gYgN6`!`@}&4MU-WgGFV~WusDre%A=)+lDiDPqaR~@Sv+ot5vk!fSB|c{NZd{qBklBL2e8_ z>5kHedpXV0T3`m)Th@*5xLu|bybln4kPPR2q!B)ME)@c)Nwp7!Dj5q%fH6hs9H{z# z6+#xm*#PyQ17#)ePa~iRp`jB@V-<)}&6WAJ`2jUD;U70bW6_Chs0hS*km9_>+PnAe|x>ZYhPkFcknk zD6Yehcs10WVo~VJhfZ5&l zZ2{=i7@ZJ6h4Sgvo3K8ed_7u; zXxlK+dBQtJjD94XIY+rO{HZ;_7wkMdiU;YL`)b?i6^AZ0_)`MZqHaa#4nT&8mg)hE z3;|S+&IG)CIn&77(uuYRFwl7TY%diHhwqU`W{RjJ|eh|zY)v9P6;l@2&yg0{Fjj2H=NK)gl{ zt_l7$0y^`Kj!7FijI%AE>NxDcf+tJ*ncAhQkopL^ZGHqMtSdvE7p0w5UL+lm!l{0z z?gUiU1PASazv_S-1s3N5($f9$#|;n@9n_W3E-~!6frWxyC1Jl5%3%hm_R|mYkS^^a zz;~#o<4{ZMq&(B#AAA78rr-On0^%|Sclq}Lp@XOaGLLR`;}{hqvX9`&*dZXHQz4*> z$=uu7z=KYszPTBl5Cp-9FbQBs&<DZthMSa29p~jt+!vByT;1fCN8C4Jpw__!*eD$cmlBYK@#%kkMO^9u6|s3i5U{Pr z5q9r@`K!QQLdqZ5FEglw1wtXVuJZ;EDp1CYCcOuBAE2^)1L(y#0l&a;r(4Ex?pWky zNoWQ02iy4Z7i&klE@@r<*WVPenF0P@>SL;~qsXm1d1h&PnXk%^SodW&?q%U$XM@QMo!<48x zD;lx>dTj%Wh;Y2`;9wB!cN;yU>zTj&(#U$8I2;s=qi5yP-Zj8sAs{M3-n~nO(4vOw z`!Z8^#n(`+53m`Bjn~x+7jD8Qu*W=>=~;H~#O6jcuBY|?PiOA|&voDa{eRn2PNgNI zVJ1psOP$Kz6=g?}Sy>sOZ6#%fjEX2LWUoq+oxQ27>=3eYzuv0zIjKq(e-;`!39AAqqu!E7Pis@>xqIA6RDbnN^zFzM_8sFqtH~? zsP<)dY2W}1^z-e%o!I!fL0>KAkdRQd8%+-vThVW2s-iK)4}k(PWW5nP`;WSoS#{Ing=bJg01U%nu>(WU81smQeNg(Af9y zwUBMWzkMm%5gB~!UCObrc7ZY_+Fk5>>d_e4$}F(ukg0m&^y$<7YcpR6Mm=A%*A#(& zBAJAD=W4UgYQ^$jnx}nK`Mr$iX)A<) zVB4LwYuEbW_yXIOEDtcpk?dM!tl4Xfcow5*4072_kZ{+WWZ)Y4WE};*Wi2s82BS^u z1UIwUq@4Sr-b=2C|i zLY|oBrdSE8*s{pa*t_y?+_=#N9V-IiG1$)f0iIyC3d@38PQyG(TN4-&&dus7VbL@6 zb=@U4;TDRzy76Hm>LfGvNARJ3mtq#1u~bOWrhoj%5caBhc6h`fCcM#TN$pk(CsE!P zq%q#(M5y}|c}a_zM#wM{q~Czk>0(9>32yH>d^j&lspC^*WF+h6wZ23ia5BoI`3E;ilump#; z{-`rTk6FCAu>y>bOI~8(IFKV#Yf)i{v^^DAPMMbhbmAC4nT81l=b2KU(2G+4fx~Sc z`TR^W7w6l4`bBDGPMKP zleE2e^H<4THy!NA@2KOz#HH9&;OM0t`gi6F?Xpvyw;20lU~h#5+(+dpJx?r)F+STh>Z7yYJe}ljNclB7XdvzfS$>c-i9_t)}vW@VUaU zJv4dsw$okYNj}G@+`DVnr zq1NHq=t9--DV|!T!4yirr-PNKh>&=n5 zAsMX}zh2_t`r_3wQiVyUT`9EM?TugbLY;*cM;uweTf4ZKz#BOPaY!I z;3+viV%^4;)rVksUBuCwh)P63X#Ta+TfCkamvChn!*7iw=!EKVxF0lNc^lon44M1K z?|n5aB!5*YRcD>@0N`7ro#ox|nEr#Ri_+2hzeI}F+HHW`8;6Kf$R@{rg0#`I)3dYc zGov=6!I?-QBSA^-d%1KtmZhmqNV&+9d)SENg{i(5lriTv=ow z!1cjGY$ECnBa|JPL_TMhpNhI4%ZX!)!K@>~2PSA-cU#gf2}Dnh3m9>E(+efnZi5S+ zis`VHk2O+Uk!V$G$A}r08qk*H*$u1S8aSlD3nZPxB5&GoEun)%+`BxhZvh+HCldM3 zfM}$YWx&imUCODR5LZQCU0ogbBpH$4EJV;vzE3L&MAtlD#b_7N`VjwpL@_!g;2^Q) zlxhAqltO2w^&(2aqy*Mi+;eK;_(|VUP4G+Pq$tn>|1pkC@u9cKYn=Q5av7Z4INZzl zAl@C^4P|dAg)j7Cw9vqrs=s?%v&2tG?tc@arvH=-o!4YY`#3pYjykTULFDB9cJc0 zknp|b5BLsG31&;2swhzaF9S&~_3;Sq9||~e3Te78B|ASEf>}@=QXaD7-djkAJ}PJ0 z@bvcf8gcdZ^r&sqwPTHAji!2t+&bnIWu!Koj$--;c~EEFQ2AmT!mNbbU?C4C0Y^_i zCpC2+R9YdfnoLCULPwkavu6uEy&0GKvw?Gxl6N9YY>MOV64)GkB|eeFM~}76-#HG? zj0N9JKz$VE4GzDhUO}Sv2Yp?Mk#6G#mIPp6_1mNV#Q{517gg1^>M(}|;-|z*50mP= zskfWkNAx$bm$sh2Q^O5*<>wXSYVN$PxK7NDRtE~LOg}=S0sD0mkY&8cKj>StwlYG7 zj8mJEf%4MQn!DS1nPo_X1`$1{lFB|4SnDbaDOr8pJnQ`Yt)#DrI>sZ{uyT9m4EKJe znW_Bp?y9Fz@PZNXRfE+4ua%EA{NHj1vy~Hc^Yh9w-qNtK5SL(dPCH^T8dfQ7mx~y> zD=zmcUKJa+R%y}Gc2pBVhur_0kgsB%w&p#|h7&lx8#bsP9e5;qHty?T@nB_8w9hTf zKHZK0P4wJVo8!_gtEn7!o)l>BXs&yX?^4)ZTeez}JZp@xUnz93Bv0+`f$>_4#fU}b zeDv9HqT59L}Ss? zw(s`G0C=>LiY^jAmOtbvpnIN#C?%%8aQ6iHIe6{k!=e7ZkxQXdGYtC;zP#?BQf4#K zu8ow|TJ0-sQP73KY)LpK52s=3rO$u2Sg))*)mT`K=pI~h*r0T^HwFa8uKBrSZ1VCS zO8li+i-6n2F(Cf)hXj_{NWvE*ng6$MKZo_?05{t!WM=~L7B=Q!JJ|S`q;vXMBOxya zsoc?Xk8IqF+;0jye^f5Xqg9V4lRg5L*8c{$yxh0^OXeDpR|_>Rr3DS@4DYY@CyOe3 zK2kI;SZS3hMeR-_k4-@91x%>iuZHfyzI8FVYPu61S4G8Y-_#XH*xEVBZq@qqn=%Ai zfKYH){HT=x=f2mP>EBH{7ta9{KLGgo4_khH=JtMU{Bf-I%?BZz3c=^Nz3Et{e`Ne7 zQW5RGBE4EykNmWKFIu5CAV;(>$f&GaiVL65uraDRG6e8N5Re^9C*n_k{R%l`RTz}uxc+M#4jU$X>E zmUW-F?!uZiK7rJ1=6K&l`Y1nR@fzW@N)B;v81MuIa6||an@!ukJS`1&-m9dmD*T?sJnFLD9*-5UyXN%DVC2ZRE< zk|29wdtL+4qMb1B=B@|K`>C@u7fEHn8fG@>PG^#A3|rKBCcCCw4UR1nlJwhD%5%fu*l43~2h%+o`aP}F z+dgxXcA48VyE$z5=@yQrtk3zJn}wVo1Plq9wB?%>sT{wj8@WULw6SCB5L2RB*N@{K z_e9R6#y44MJ?PxpS8^qwNngr2PmTPLt*}O|rRUa3@)bE9Z|J(m>Kw=qeWoCkXWuhq zx18HO;c(uaYqIa6i#o0~W7Z8!IS-2_zW#h*T)attp(Cf0^hUp3kPm zYlMZ4yK+tDxJYs0Iz!?*d{4e^jh)F=K z`m1uc$9@>~e06zYO|1Ew@KrVy>#BsCY(^54@z@%59`>2>Htmah&RQOofy0XMHc%HA|wF*N(<5_)O=Q#G1D} z<|7wd$2Mo?$#BTvDfvq6DL@9Cig?KrR=8YF;<6na6en+WSR<{}L?k%uDZXAioq0U1 zacl2I6S=ChCHP+#GTk_%}-g&${Q>(ulbG+SseAWxCT z{7l2#N`RI0s@L4rc&vDoBiwxz2w5@=>Xd_bMa^@Xt+*)em^*?&3PVlfZWwFk?>o6dcHqe!(sM4{Q;M zSYMJwtCPoHSsMA|h>6u^OJsn`N6}TXUvSzhTzMvL7 zyaUDRKkvHjw{f7ibC>RZC7B+M$-DH?UHAW<_tfXL9P@WkjZ1m0>|pEc-dNUpwYz)A z*u>=h@bvAP%6jZvBDy}bbjs6>f4S_BU3XM1;Y8;2im}nL`}yA6O}E`qO_6)g`w-NFD}DJyd%6{b6#9V~7+%q60K>V)Qq|Venx(W`KE*36=nE1~Uql)R zZh92jM!Vw2I-lRH{T{y~Up8V(SGSC=(|PU=`{=GAZD&z@uzxurQICj39L)x+H4+%} z+JIIq<1T5d=>W||$X@GmESaL?)!hTqzUflW{-CPywMX`fj>p?)Qo4qE|HI?vUz54S z;oSJ~wUgu3v5#d+ip$jB1$ohKGu&_{{PJ$8RX=3|bR*K6ZA{I?EOc9W&PR1WKNWpo zg=@%dJwua($%|s#OfLIv1k>F&JL$o886CLQf+mSy-pL$qU#Y8nAIE_lpuJnkEs?NO= z*#Zpy1rq&NkFMjK{1`?XMPIDy>$dZd1p~8;WzXgdy(_Km`BvnHXzr0?a927t_E`RQ z`udYKX>WYWXku;S#P-Q}4A#kqxp>$5S?^RR+IX-w=J>VXRL-o^6Nw#V_Ey5S7xyOS zOGOI@JWPn3@54hUZZW#0kt9;jpmx1R*>yblLs8}2R)xcUkN1okueBJAR(o((Z7_jK z$}e0!VzQSnV5H-zS*W1T^8!cJ&9ptS^+x>3`d2OrzsRAFZVqGMUf9Vbql$OhV178R zf^BFOURPC7EpK-gpQ>I==1`4qivP>`TXQ#Z>V^lOm^0;fKTNI}ug$W0c!Li7mpv>} ztI}9X1zyVyRdO^>&ZaY}qs29B*PoK!WYuC6)oaob&^b0aQM?=3-BMf? zt5q(Xz@Lq}IGo3M?Cl+647{J1hi8o6s=jwV_Dr_kA(OKfv#oEbr5LDp_H~*zS%w}Aa z;-ArZYv~QA+GnOJgYDu%lF}0k+b&;H_gMP()!Lpo{gyC;Tg+sd3QE@Yq9%r37z!12 zZT(t#i?)zKzV2ejNWBloWm#GFEN5?g?3Z1dJcPAnjb<;0g)b0I@%jU9oEA8{?=Z|YTDkwF|n8NKbX|wEEYq)>Ug5+*fV<}MXsQY(fB!1-yp|A*XlGr zX52edpr&~}<+X=R&t`?S*`@_5AS18?BF#I z36OU`p{7x_JbCuZJySgA{C3CJTV_k|4w1*{D?aY)#yTwcnB3X8&slS@U_RFFz*|u*O$um5i^_=wWTm_8K zOtyAf$B>IviR} zN@Yvy&{7`L)pfK6L@U{<^P*Jf}@3c9FYi@9>!1WMom5w*S%=^V!e= za7Mm)2Avz0yq#oU$a=diw{K*=tKo@^5(`=s136UX)ljDZQw_OX^1e4)cFg*34+&Cz zHAFq_3vjo0mC zF5dr9lSZ44Bks(#q08mXcRtjVO8k6tSS`dmfBOzvi;?7}NQIYc*REf2Ym0*NP-kzH z8@HF4cOa(YGXId!#E6$qPVZ+@I&N)zZoc^>d(QcY%sk2C1LNPvl#c~Uj(vNzU{Muw zd%Nb3*n76F z!tTK&uAe_QmloxJbsDE0RT-#Y(Y5m2uxst=(In?6U*-ipCf*KT=OmMQ?qltFVPn*L z)54eA1=_i=JU4Fni#XL?X*-m1%<@||n^d!&p0;06pP1>>HDrqI)m}!mQ|)NUu#Zv8 zq)xkGT%fnpx%zK!%{wyK)8EcV{z&ulxH$Xdw5wE-`3SoQwK<(~|AOS%IH}S3$Ryq8 zBj*QrcRYW6Mz2NbMnQSwH#N3GTZ>36cP#_!)&i3CIq}_X4aqwkoLmig;kV{;!(XjQ zD@^;k?L~xS-WU~oTKHVnv729IcKgcYEYl)3Hb*F z*SI`=fLW=7Y797>l9dIerH^!pTfyS?#le>{Q?_5lfA-Dn6pa0%hhI{-3s6qYP9&01 z;l}2#r3qDfUA=Nvy}_jdZRf(C<3xERv?!gwG4egr$MYiNEK-t%Z(^8G3{LanA%L5ei6iJ5XI1!GevY4Ko9jyC+7JIJ z2STb%ye^fnI#~1l1a|{Dto^EUVQ{Xi-*&oWPoOX%F~^h=Ql67u;BLi5a16zU0j9`R zdRj}Wdq7T~m;Hz6YZfdO#z9?~IyNzdLN75~AXK~2{DBPP82oa}QHLM-H&GjeJkwg7 zYM({CR<;NbDtZKC#53h+{D;aw=b2)yy#Bq#o&`85UK9DGxx-9xP$(jiZTNnoQr^$$ zVSm7GQg^XQ%@m23fnB}myc2kHVe89c;edUxbh_7x;quCXDmXO1lzGTp+``$B>W*Jg z*dfKx>uiXNa-g;?sqy^J+jVa3ieHy7@Ts4VeC*^k_yU5SXEy)Eu>T^H(nRJ@R2U(i zu!!~Fqi!nH=MBv`6+6ezo=yK_g^^k#Y}ubiSo-Hy78FS#hx}i|;g!jL4w=Kwv{qDi z($l|xefqBk`55rV;m6IRK4<^9RDc}}-L+Y;JRyKFjJsk*YC)f0z)AkX7l|}E-JczdxRGL z((aY96kNO4jhwkZ$v$$v?&UHb(C>UcEGOqVsj~OWvw%e`>whl;hrV7s53t28&s@H^37=^znNKr;L@AJSHd1cd_+^7cK z{r^-4^m2(!^YQ5#D59`a-T61Pob=eM^D)CNvm4c;$!LsNN*?*!r4L2nZBLF~7LKCY zQP#~U#{3Ua{j;Wsna>n+|3E`}NkjUPsa&hYvN9hk0vx9J|HYEOCj0pO_mKnH?SX_5L_Jz&_uxuqEEQ;s z-{WML6w6C`OL;>=(9KX@UD+nKZhlL6i^u}-FBtn9?l>>&g-RckI|^ES*-dO&i=~uK z(%_+T=A-Jxeiewkwzf9bvA2^^49ZA-w8|(Nke>sM*cm3C_fPH74 zAUBU4=}y325qcPWmxrvsDibP?tdde<)x?r$g`?MBT}ia(WdFmQc15*^Sl^g6gyiwd z@mZ@nGSZrvvV~iV@KaA{C?Tg*@*e$jh=Kffq{Dw1ifE6&bNhc4yo&bgj;^yRq(W%j&;{1yeg=EG|RFe`OD$Rptj#5lO*YKa>^l<4Gc9k z#CGCmNx~0-tq>^^lA;ojt#N`Vy;AGPp=vk9jgYufM{+n27HGG1Nz}A1?QQfx44jYncw{T}#ce>@L|G zzehlzf$m!upgQ*X_PBV{1;w3u*yCg9R2_msSclY~rIz}!`J~*8Dwl0Xw z6n0ll>T5no)IgSnjOwvt$1;)v=aZte;VZcwk#)~^hTHfYKN{zAqz z(#uT%1V);zd}d`3wq--=I;Z@rFA^&aovHKsBqf-+Hw#Z-tr z=1bMqWr%V;ezD1cN!+PT_0%3EWxBfrV^cqt=aAIkN=KP zohs>jwZ`lI@R^-$lc}-1N6kkUOBamy3=H&}k(n-Ip=$iY& z-vgT`;suEx`dTUK7O4yV<$liADo*-rx+EkuCW%r9D=VM{2yi3d5fWp9!pEM3VuLFC z02BIM$)@1`J;p;9hs92;!8!)ic%c?*6sKwhCHUSpYTOG3c-#cQQ74f}zMppz%E#mY zyX? z=!C0@<~_Nt=2655<%;aU^G&MMvb-aHJ%_*c%ad{7R}havDkSQ~Y>X8O%AEbY76`x9 zkCB|hD4R!Ui2CH3zI_5|Kjym?{FRODXJyQ1q~lA&QpmP_Z6MQ$=gNNtv~-=P3pIut z5_SFSs}i(DQq5b`d|rWyZn=sdQjfsYRcc-GK%&?#qe@cR!I6o#d4*R7$^Hp5Nk}~japs}(CA35Y40478QfK4;K0vBt z<;qELWp6+3rTOr z_|78l0hD*DL27>#lAY3z$s_UmJL2oevQn(m@s{iEm3H5OwHNzlYT>`CY}|GjFE>XP z<_vNO$eVF#Whg_Ta344)l!CA+DHVm;@6D!%5~j8EdHi zL$KrIeKyn4X)H_paQtr#nJZWK*w=<=FWZbcd3d4qckMiSNqY(2C-whHj9a^A&1IX# z`;+`^# z6^SAqFNVi{Sr6HpW}`S7WNI#2*|3t{FL`qaW=pBh7xjlv&pbJcXw;nzT>sdL+LzY# z1yr&qF{v9ZR@Fl}sNc0*U@TVbKPEiOx>!&JrlJ<_VkDkaX|c@=s?MvczHURhg=LR~ zrC^z+B+7ilN+HFw-*9(d``&b_I#3{6cyV-he+m|Aw0DsCY$Tnx>)$4j^PTT5JN_6Y zsANeV_}?{g8l&j%=VcwAvAy+YXu$;1ws`hxkH*+KykHDhSXgyx!u1W|*N3dg-4@Z`fq`5Ma}vTig~V_=cTW2H^&YN0 z1;4X9VYX)b%~vnXge;4=>xC4}7_Ok8gbMQIQz)h)LaoG+5oJF_l5ejGd!ljhmMSfO z`sh+Q`NMyeRCy^U#_q(cH8V`}XQM~cX17{%ScC}$v(T-irbZ2_{~T~u@IOd!k{J7b znY`}LpQ>hY|LURq2eq@#e|qTqb7D6vR+`VA)9P#F?)zau`W3Yc!M<%jcu?ziMQ@a( z6rtIl+fhnSId7H|n{w1#1{!`c?qYW1tX1)O*Yq9P|MV21aoO(~qKu|8e^ut(48jb# z(ZB1&yp$7RE_XVuv90^}vV7CDM=#Kqb^dT0efe0H0E&r|>YPxl{BxWgTuLXWp2Kbr zb9+mFPnDW{DWFXLxs&5~Kv3WB zZPPmCmiCxV-@J~GZVX>Qalww|1)vss2H@MDwg~dN`iSO~kuvk>D7Xtut7T>yc>c8B zuT%SC>yejR9Or#fk+)T!1bT=X!f;B#vfCD{d{BvsI}xiWVjEmeWY5yX1rO5Z+%cub(2v@ zdYQbs5e`V#WKp_u@ZQLS_7UR^*ACi-lRE;o{|~?Z4{ZN;7cB&KEe7Hj&)BvbT)X;) z{`_naK<@VG4*BF=X5(%VpTKbIKC6E%H-VwM=V!vYcF6KHC=1f7X50R*=!0X=_&R@X zhgMNu*E_p*9%;^Q_`NEU_ia3uHFo|_8?L{$I06^j?#?cu@vjfTk;sry0o^smQQN)95;90QJ&V9-ej;<)HrP+H6~{01AmHn zzt?0VQ~044fl3Y&xpvbuC)-pp+v5E4Nd?`lsZk6ETYd_>W}Gb@Fr3Y*^k`02d}z+3 zb#BBW!_ucIt^ekew7Ex58e8u^ne1QrAS%DneQ&t}yP56#21EWGEZH>Wri)ILeOYhc*oy0yh1FyA;WaXKT0 zi!Jv;OK&f2YU0dmGtFrW6*$A$`9-2)oQ9$eTlOcmG)(0$F?4MH{3K1GraUcbf3tyj zZi$&vyJl^g{k^8iPC>`P+8t$+ds;l2)8_Tkxa_JKMdtZa#4a1Cv?PR=r)5&N7zjx| z?4RZNa?`VHq3w&H-<42&mfV81?W99rsGWi#y7-k$>m^e&0^TM}DsyI4u%(|bX)%>*2gtK+h+##Gc z`;=vm^oqijJ4-|j-=_&ek!l^189(kh#CE3G(5#bpFiA$FY=OGP*+>8V%Ji2-j4d1t zEoVEF)~4s`ew9JZa^|`PgLez5tCdP1@{>srIi; z+fW}sVCdzmE4kLgHa#7Sm3^mw_83ZYRr)S{TRwXbD&@~Rb|3$~&!K(UK-8m?Dpl(=(G;PuK8Z)3*oLE8J#Zy;IB|Bp zZp;!F%GDd|E9*|u{oEg#dgR@;SR0qw`654;D+P|!+nkrvcbE${w@$Rj+Emgm^Uq)E z+;*+yEmdWo>9u6h0?TuAz@ECU*Bws3y`z8Gkz7W>$=UXTgekh2RqMqyxPLCSUcX}Q z>H11{3X9O4Znx`q7S6o>R%rA2;b)seKlQna4_$rkI*yQB`USuX!Z4+-@aB+d(^CGr-8s>&=xV7WpoDC&T#X4t)Q{`>yG0VB3+< z4XgXDCR{7JdGAa$#y|bMP~;X)bEkXq=l08n`Jc_aA|%DPO>aN@x^i`a)!f|!qD7T% zu{JFQM#pxf91_qwc*Qe=#aGC3{i#z&j@>#t-N++xPztVrW9IMcTdzf**(fBeq!f{p z6EAg?{MPo%a(42+$BylNckUiU1a5B9w;z_#2xW1qUwdae_i@mKYBrgS9+Cz((Lds=HXN$j8Yon)bP` z{`T#{0L@?IBcbF*7R%zG zqocdjU&~?V=qT~D>Q&!qT=y?JIuD%i3gE?1DEeDqmBFyxHmjm{86u4DTSpJ{4Bd2# zz(oLRh}nF0@7Q+TV)}9QpVEb>~I0 zb8;2{QFaUNhu1YVn~yl63 z08e3Z#RZP9PRaFrw@HhAjo9mbioK0h6VqPOvbriz;UEJIo zAVme`W6vuME0=NX?E?*D>FdEg5Hq6kZEJmjwOzoMWk-B`ea(lX^YV1SMX*TC&;L1*sH&@b zF*ST_%+lS#ibp~MV_XrElf!M`h;p-z*n=)v zIMZ5DR~TT2bbiS!9^%(1wPe@grT?DL8X7po z6TDi~tcvN;zdU(Ggjg~MxAhh#?{IP@QS{{$5%^q_ z@Ll`aaaZxVqm+WafChr!-FOpX#2|B*xgVFiS9d@=TVB8Ykcr>eo^Rl)84h4(DxM)| zd5xbpJ{&u9CJ2O@H57;*A3zUh=qqH=+i#UyOmCpLTfT>0r!&_H%FE=_iKCKp5U{qt zqwzU3$!bMKMYWNZHga$%_5BY69>^TAM$4BF5o6pG#LUT!ML_VHjQ45P9z?A{wRQt5 z@sjQ1lf@b7ZKb8LGH2k)UvUkB|I@hvmMAN+bX&sh%t_iA50AA~CaFu0Ac|w0sxZb>$%YTF|c93KxV>v-pfe&RlO2cq`w##sIDyt#G}Zz8v&?!vH8m9?J__agNC%Tfe7(N-d%^nJ+D|CU%FDsIZ{IO<^LQCC zE3AqntN+!np{BfP2fx{CV0bow;FbfP0DtOdTe49c)IZq!3E)x+#m&Rx2A;Lh!OP{q zwwC)d5Xb4B$(xk=lp0rEh%`l_B{fdpS{TMUEfgz&eAc~4Y+P3YG2`%<3PZSQo9X7hmwsiOj z-xbE!Hz8(9m)87kL-N?>%jP-KY2o&SFD4O&>_16Q=VH*LFir zkU-qI09dU$%^*Vhlu<`S=l?3+E7+iy@A${w+!%-H)52!Z8vEkKH!wNaE7Q;Clut;MYbKvtV`6Gr1>!#pia6++iaWs^Qtfwv z0Iy{H{m6NX-XV3uYw5-swYQY?Pq5Ic224?GJIkc*(O=g|Ot*8q@#TyD`KH$Iy^$Nd z@@eUcYUxdR^3y<#nBi+tx^Urw=cJ(T8%$dsbUs#c%7MW*O0u#hX$%JKhfz6-y%aox z5=(1qzDJ>}CLZvx=lWo)c6AiMmvIp$Px(o*vrt%j~1<1+CeeUZk z9?D@z;iK7LpeQMd^$YNz)vsS(nL>Ou9lJtq94dKzB+G3T>Sioov0`z#1s{7AW%;UA zIH|miEc@Y7qa_}#6#gD*!BMN(~;8_~Bv06K7r_P#CtfoXD zNI8PNu+CKP?qzEmn^UYBJcvG>VwHHgWdx(2!0wD|?9#-t>@z~sb-hNG8QtZ1{jlZ~ z_AJEgJN>#5Q%$kKuJjUhswsCoZ8|$UFTVd6vl%nH`+FSPvRkSVnBL~7!RvC;(if7A z4!|I2%1#Gb2Hli0&lmP+7Z1;jk^Dsb>-oOf*vGry&gH z74LLcPh z~yR1q$IabX>62vqodJNCogNCp%vcBBn!auhLo_d(HI8;Jq8 z`;M4M*C(i>_uvS#^ax)2999%!t9D!+_aZA`$x22B1};Pv&Be4_(-13{0l9&Zh=#xL zVoUK&#xU@l$FB3+yv}#dMJePGtR4z^qB{27n?0SrPB?5w)`993#PY^4aX%os*bT0} z4_3P+J5ikkH2wfJJAvkW)I8xF83EYf9MUqz5FXUHN-t{nQD66NrZ6}|o=8&=1)O6H z7_L(6cAUqLA5X?3odM{ocs8-lgaw=^GjVJjvbiwT&w!>wo&{^cURcnwO%QL!-!mda zjwGfUy*R}ALcS;q zs5a;VnyCKczimA#%Djk;EuSoSxXD*&BTWJ0Zd5t8@+L3{q-SVS*L((gNAvE3OjnkP ziHUi4vA!);! zH4k8=mzd}hTOE_j)9EgwSXR^1Yr>(5h{KvEQM0kJg(Y3y)EHcLSwx*$GkpR@lRrSt zx$oCwsnUzs%IjPmJ??(*-WEufM*(5M7Dz@#cd;Y?_5>{De0PJus z!9pYR_un_P9ozf+`_DnKd=Q-EzS`%$8JU?f(0O;EP*5OvZ+#9r2?f~?iXYM7NQ-k@ z0OX6sFoUBIbFW5}7PE;4l`Guu-u1&%NrP)#9$riiLSPV`#u4dwY@I9)S?j?`MpX;b zh76Rome>wZ=JJ&*J=9|TVF%eG9iu!fSVm39syx6~%*+YG+lyLbNbr=0q1_CNY(h&$x}+U@c`Ifnl2?4hAaRaR8o zz(+@ge+Zw~^bdppv6GyKc@N+m*vZsziw+|fX~7X)Bu1b z&t}ge|7c{i(ZKsLye7m?0fgmWOibQjvGDQnLBs}+iNF7Ckb!r@+kx3Df^7((EVTc1 zBrzfK|Fp^3%`L_}+OAC-|A3V4Y?d~!XiA#%X_)6n#FpsaWtzzU0vN3uk!`N`v^>j1IWF&b^A84%_SryS0cIW z9xPY+5Pqt>ygX@X>6gtNIO=%f-FCx|gpOc$m>QNflrdXTycI(%mb&*1*Uhi<@-Ys#;8cZ;D~jZwF3 z2AEN9%JOTGQBgsD#390=iG{Q9Fis}^4&VhD4q(OOw4r=J780jJZk|l;^ms3)4ct-P z)lqT^{n$+&e&4)xE8EunI%cZ-+1R9D=-`k!J1eK4;MJ4_^G62Gf;Y`lhL%Jox7 zd^;T{ckGw|QzCJyx}HGmAY}!yOql)obKUz{ySI+S7JNbEyuAN#(2d@V)bD#Imq_A&!(tkXENSk{hVP^1f^ zNMBawuZh-_W6uju!V(HxnXV|XAY%_8?IoNwmQg^a6d7zuAGs4Z1Ar4`>~j#;n!HPNC+tN7)7 zz4)B-MsvR=kOzwo=ztLZ+vMa*y@yfN&HH?i-k092E-mereD(9&6`m95Mr`^AoagMw zDv3n6{!jf$p!%#8tVY~oRXD*~_ zP+nuGxivR84`_^l|7JKLO{e$p6z{=<8?Wsu&axYQQkaD*G-|V!u<-)mu`92~Mkaw~ zIDpOQDv*zYmR+m&a&pEqIvHTqupap2cM>a+G8Pm6=X03ECZn&U&D#@W(_`(G7%S=VC)Gy>Fze3rSM9uq#Qeb{45}NZujop$D$DF`RGjWIOqvWC>YnHa2{&PcToydL@{P2zI`Ce;obL}g5)0_Sd!~7 zVUnhxqr(V85iay=Sjgr&7Up$58^Un|S4M{q`t~R}W2vAaFJER8E^Ay4^J)nNl+#0w zvCE$#Eow8$&Pc?1-E?!)xVN~{-a-M#FEDE`C@fsCWT8yUg|s$s48IkL|D>VZ4+ywJ zh`Vau`e#xA`V$55bxR9jLYIuCPUU4+VdAT3YI7am<~m0RzlPqVVHG}ZBQaIAsdB`Y3a zVWg*^to#>BIDvb8(5xem0nF8-7cQ`48r=jQq^qZA>4Da;PuP>MBe$z<;AIi$`w?0K zQ>fCl2}|!bAxma(5$+;qZw2v-%XMjeuO2p}{+ z$VCFo93j>}0T5PKICIWR5EyOZZ#w#{U8-Yr2#G literal 0 HcmV?d00001 diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_72_0.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_72_0.png deleted file mode 100644 index e391a4fcd5638d8f7f42deb5cd04b12adcb9d453..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 27737 zcmZs@1z3~q`#wHEKtw=VNhMWUkPZVCP(VTH6c`}Q=#ds60)ljkv~+g}2m)htca9j0 z91XvF`o5p{`#+BVJT|u{?!2z^I?wCA9|E7NJR!Tpa0vo|kSQw2t3e?6a0mpi_aYHE zLZ$2T7W{Vs_CWFFMey>xXc_>1lh`Y0!yph+D%=~dZ_@h&929qYq~)Y;2X%5ab~J<7 z7(3Zp+c{ZVzP|2a<_NR2vlZsQ!+(eOx`mUIy`+G^f9Lt_9L)uySU(3sAlD&^^7mi5 zC7>tWJ!uC|&$ovCzg)n-kz1T~Cr8MwQEJ=;CQ4Y`>A9HyPIDk* zN411uP|+;E<7+e{-6PBLTzw)4Yo(d7E{hrOrI^@Op0Cg+?MVv4X3$gupT>mPy)CJv zQ^n0t?{9jVT^=SKd19Q;yeNd>Er@#2k_W=$Hqe|dG=VUq9n}Aoj*n8+>7(1PLa3K2 zO{|KNpJ#WQbFdYqrcdJqC``u2;)y}X1&ze*{R{4|Co65%`zuEBAaV)q^^Fp5H&}I{ zug(yBW8dW5lrAI`hy2Fh!1sn|yqDOpYW#jt=#h@WRDw<}jMko`FpX~Qlfq^7V(vca zL}F8jx-Y433e+VUmjAo^8}^~FUnc@>fzn${TlT!p97C?h0v&&{MO9aXta6Ct=|Vrh zeyhpBTpX1#AZCG@VEUnWfIzFwP&9HG*?WbuvlZR1aCj7#IqSDla*w|!c9Z0hyq~TU z48MZPP^2W-Z#;ms3+?k}1baak-i#9KEbX*G- zED<0W)=7#DCM|vYaUAsuicN{7y)bm%hu9D)S-7~CYyxGC9px7ue+?BzpaU4@Hq4;~ z5jC>IF{8rJp;S>6Umw%WQEE#lBA3UWq;Nt)jK08`;(8`a%^Czj7(&QJAOP{luYzL7 zFOHiMm0Ny@Mk6k$5KNKwyKY{d*>4n`c{M{hqi%Fja2gR(V3yEL5ZEZdHb6o6$=C9V zl9nt1KN%Coc*g8HYbD9Wc;12LJ2MYwR<}t4Vx60k#yj& z*{t`BjquYSrDs=WY--nblKoCy@t5%Y<;ADhd{uo({r0zXbm?a%;|z_UD|_NTVI%Vi z>MvecJ|+}!cWg{tjN*fI_!<}wu`+7;JWpTbe{Mje6QS#U(O|lWZKlVulQ?o5s+I0_ zdb{u>Td9)*qSoBvBwa}DRuYBsyz=}K??rW2$C;6WC|&GxqtSHZAh?xt8vz+%~G zzRmj0t7_4oC_g>V&FcyUujVidM#Dk2r+8vpo#0r9%!#L>meb(Qs&7pPpIuP2G(ACV zkzX?P2gjZ!(lR*(AnTCbMH0Za5AmO`}VEn|)mqU{;-c$sdQ6gmObp zdo^k{y^5DEWN?4X)_v~o2g|>DKv^)Di!WUB8(|<;vIo`BvlS2h=|-YD;_YVqjO3Yr z)VM3vRNiE8V?$@&F_pms!DfVkV2M>;pCDK7T*COf;WnEuv3swlU3aa?#@C&Zi!)_9 zVT^LrGvTvxj9 z7$v|qFlEwE8yV8i7xLR`$m;0}(sLgpt5~;=IAmD^ir6=~@gG*ljNZ?uOfDvuc8ALu ztS!vkb9`w>Sx(_CHaHl0uBx9OL5r!FB|NJ9({i*OVjlk&B<~6y> zs*hc4>sCRrr3hq<*x=XPF2;z5QfIbs#=%q=Y_dXEX&;I`?L?y8i8q}`}z7CYhe!pI$PGFPaAWFl%U_B)5!xPhCn;i z8Y|R`lnig`)FE5e%=f)#rk(fj?OE+93?4Ap_RLM=na7SkaclNMUkGWnBANKKPhrwHJPr+Y+|MjncbO++CRGD<@$w|O4juPVY} zw&}5TLBp9gf>RI421h^b6YrkmHC!0OGbHeFKq^~3Z%Kl0o*7N~iqRS3O}%4qC3s~( zsqqv*sPYA?N@yOVD ztE+5mYA>Eie=~*xAS4k!{*5S)j}y6q(NGSqa2eFZF|x`|pPGcO*_U^|D zQi3H+!n#IK((Rp{RE7kF3Ek4)JZx-K>T@fiw(lfRTo7u=9bw@;7KyOx%0)W69}Yk( zyjGGfLlf$5^sx;PN84Gw)xyb#*AJvQ;eM`nAECdxx*0KKt0vdr5OkcfL8QjC8$s2D4rr|OxPh#qZREX9aNwNY)rx21OP>gDx$G6KOSw%?(H%7;7-!4S_|Z|ny`$OS zpA}43C$DY=U9>+x^?q`ljm@}4zL+=xayhRQ-E$95ps3~@gE&efMw`oCz#eat+DK;e zsvuIL;_e&DAcaS#$NvsvdlJl+SFk*4E&oDp+|k`efmBLOld(c80#YBn-PVm~OrCM6HAMNZC)!b1;55IkuzdZ7d5LLKr{kC2x3$>$`Y{EL>LN^jp9C`Hy`o zgBLhEz>7c!DmY0WWld9p!md^auYD~L^XZyoo$fkHTstLy#3897{`1c)MxYN(*OKxO z(}KzRzdYdaErG7nd!K+i(ZG<0%nzS+AP`QZbiA8Vm&2A!danPS-nfKVJ}0Ev#~k&} zBwTZu)QeGHIpd=?Ybbo$#uBYS4WJn~xtL5tL%X@RR4}SrJp4~5ESG7McQL)mvC-YT zQkOv&0%1U2a!4k*w_+}WUS6JT-D{6NG;|zK82>#UhH|~h*4vvIstHbI+ynz)taw9? z=H%WB%dqK`0Qt7H0ywDb^{3X+pnLP^z=5zp6eMkz97<-*HS!%YC2tOX`+$y0Att9v;Qc3eH}iAU{B z{g<9}vHU8m`1oPT&SRhJV>bg!9ILFAxL6%r-NJi0{$Z6nwkzcjEmmAL|4!<`j%J-V zt*e)lrp4LzFuyrsLMY`hDAN$(wX;Fmm3-cDcw%{${9wnt&XbNpz)f7lXG~6Ieyf|6 zqHDi%y{-S;i@~?ASgqKx#BHM!1sTyVj?bOoHPG6|hl~f6e~pa)Rhr%p87YNRYgcL4 z7N5{UMA2jSG;HY#y!II&RxY_Wc*KIl>U{`&F%@2_;5a7NgV@(hH!2L=ns65eIe62r zX}Sm%a$VPJJXQhq#58!zLUx9`xxtMBqTYCo+*We9LV#641kJmcz$IGcX4fDk8b~&9 z7(-f5JQIwWz7D?Mm8vbGF+AS53$7Uft_L~SJ5$AduZ0Uk`lD3X!8PlT#_`;|+jl^n zMVY1)kZ!L-CeZYVDEEr9&d2`jo!;gu zVann0(j@($mEGZxop!miwuQlPQhwdH)_UwNTy@ysd9EScTk)!tOYXE#OBx9^*XOSG zcFWS!g6XOx)nT8GTa&6OuKrV|E;~8~uJo7;`1nS`z#fNPy{Q;+xy%=83USKKscg9Y z>Q5%0#;qw&hZ{2EdkdBPZFq$_ZuI_X%uPaxp(KN>;Vu`SxXMbFdKHk@i5K^WrR-5) z?8TorN#pwh(_85;qVST$l60|-ZYhw16A-CSF7_``smp`)z!FA~ZH^Yl5AiVcgAV#3 z^Iu9I)*jZ4OBAgI?phBEm!2u=tFqPUdsx)l4c9XzcnFFMB-QI5I~uL}iKA}v-r^|H z<&qi0HqMTy7yBdfW1Xz}gYR^V=vGJLe%SO!-qC#Qpe+bTv>V$d(VnCdcn4xDcN>$v)yl7%s!c-44& z8fWGUHH`-kf-V$Sn}x+iD1mYV`Ka1gqaKZ?mD5DievSAd->`A2p!h7MGB-wpByV}R zjx|rWJfpHSW{6K0rWC5KprU~L712VYvhHv@kR*^MlD1d0h%eJcE;5QwNA0DK{2R5~ znOO123r~&gRt);W`^C%JvSY5npYHeFs3HJoXg6DJ(IY?DGo9o(oz|V+Oa^*S)){_= zD`9)mo#|CJT#7XftK;);>8HA^N2(;ruSMlq2%ijBW1ZITu9Rg?!>h4zon^x@t-*{H z-sq7c>ZZZ$Zi5TTz2^R2YS%$i z0HFEV3jod3kGkPwv>Ph=6+jgg}6$$@%9Iz{^*L>ykkY z{|2RjmY4j9$}h6a#|O+HssWbB38H27POqN#!6HpG-SK}%8ScVq&iB{P51BtII3Z%^ z|A03L6n9)F^{^2eH%fFf{!hW!_VucT!l%HoqW^>;!?U@6Z*Y8>nJQj^szTqIoW}(( zAy~%0!3#G&2mAXT(OIA^A}pXShoM4HidpgSSQA=-z|xRVzXkMv*x|?MM@-~8b;8XF6+S9NlU0=FfCl) zS$U;hOxX4=vA%&7uByq<)6@JAO}mF@EuW?$Dv^sN*VDH^ODoXT(WF zm;8?XeB!lV@1_>iJnSc5d{3ZarIYGd2jholj+V7|uSVg91${ z#DxVD7ZZ4R3}+L@@jUUX+Ao&xcXxNe>~pdbXN<;~;68=t z**q%PgDH$_XEnzF%w`M~XuwNxlq??C9Os9iF6-i0nG2podK8}2T4lUVSn32=EV2s0 zuU{?lCU@F;>w$#$-ppf}5YTt@^lQ#h((;M)N1zSU8bMxU#NLFw1o@Xv;8KDYwJ5dB zP3pdX{{GqJnw}40PYE~w?wNnv-cjQajZ4EU5VC3q4`d2(Y%Z+7zn9&J2>E3-xN|yX zi5f~==`AOIln%%(U_m=ehkq3ZP)8Wz3{87gd~USH!nvxHp(JFCXkw#dBODp zfXv4T4mbo^1vG+HmF*&3-OM)150!dN(?qMmN`?aI^CkaXwWGb1Oc;-Y(dx?v_A8WO zg0H`KPn}tuBKLgvU*_YC)&vLV2FxBpt1T~9OSre@qjdjjwhY_(4OKd?J%aP3V}Ab% z>5%(R?rw}r%Ez^QfAm-2WSMny+hBPYYWNLHV5sPSJm^__l4`CwE2NJ?_9sdK06s?& zPGuAz+Z@&uD|%(}GXD=Q2}JRlEak>})@{T8xbsw99T;VyM-&zZ9G2Z|_3O0>O-%(` z1~hDa2<4cWKi&SQgZ1oN`ZABV?9k)z&$QqwC0}vls7T(Gs?N*+AgtiDu;BKG#{JXS4mAdOnIiQ0l5Z0!O~V z%K=wMc(~N|8bXMJbCm}dCt6d-D`jIVjBZezZ@JW;&JzFW1hvZMzhL>htBdovIN5&s zRMmdt8UgsZC&dx=5x)E4PvGg5Y2k{BkAJG7LjK{y2gpL+_&pV)%1>ytwcJCXHp0Zy zqUyLrJ$9F$f2V(`rS*HcH`VKt0*6w5{n(#CI8Z#?qETR=pSj4^_1GZk-w0^+dSzvH zI)>7+3OB~`apbER` zK7;qy!Uljn4G}XD-OC9fK4$upND&4F-QtHqA}(aGbxlQTdiF({#ArFuRX+Y4j{tG z30LObwVfyjzguES1^yT4Hm8E&vJiG#rWASAx#o?@zx@WpAdzYx|I1ME@Bd@nj?oYC zEC#o(C$r(^f&!s*Y$16wNp- zF!&M@5;Syl_=Ps(qK=M^klheH%c=b8j=!V#{}J*5N8ZAB?r4?0c@?=R1IL;!c0|6A z!-@D7Ibq%9gwD&Fnd6np)_bdi&N}>k)--f~XaDca7~m|oRn_}nsuMSIur;r!sF+>I z%gOm+YrgH61{YdefCVY@N=d~79n@2-u zY{7GcDFf8yYT=awPC-_;3kNKf*J8|}iEpZs8T~?iO9=X(_)_@#HO50lC69WC^~@pfKjPjzBZ?fLTudy8IbIoTsm0%JP#Be&s5=)zJK=u z_%&$!U?D)`=Ys^_UGxw3FGRco$;)`+s3`nSzoC2MH{VZQmlAdN!n)W_&H$IhA;fF8 zQ3B-UXXX;9jt)(*-~ma7+-kf9$O-!wie1r?=1$ERZMzwJqcE5)?B#b`UlkiF$a0V5 zztI0nsd$)MP@g5`Y`n45)mh2`DKRtbhAQhpB#D&}BhZAkXTDE;lONxhB6@1=a|OaT zo{bYO0U}9SD<%Jtn*NXk*ttlFbK|t1Rp+bIi_co&%j~?uop_Glwx(az2oIPSq`d$O zRVeczPR*@j9o}u)h(fs-hcaiIi+qIVU zM`*=_%B{zLyeTj;s?MlWU+4YN%(l(oI!BLy9aZ7g$_%~p20H|rp?3V2+})D<$SMgk z(kf#e2~4V8Fz)t)(e9H!+&KW;Kl8QZ51T0u0BmMi`a0#ob;LUsvqpcv(fU1-J8^1o zC*tdiz68KKIh2NSxBl=~&}g`vpiDPHCqi`qM`s{3_{l?s$qS7leKI36+ux6f82I2F zwd%Z%NPs)v7vijHvvDb@z*|DS#i#^bJOuuo&7=%IJEk5Yw_b?~p2{9Xh+ql(?Y!d` zMv^Uv5FSHgC^zIGgcuQGu)9|>-*zv#E*KyQ4qCZ2bg&Rx{3U!`IsdtHn~2^4Ag<9?xj=7})M#nf5RnuWMt(y+G|60xv8!>R+pfQNm)mr9|CS`8IwVVsK%@@p%0|D7D&QVNxlQ z|KnFb-~H7y0fCtg`(jm9RVUL@c6gi1EhGy|OGiv$3N*aBOMfKR8xSDD`Gtjr=UQ49 z8_R9Rf48^eU6+y?@9vRjSki3R&cG$vI5Kd-CYVJ=GGdvKmX7X@htp!184h9@RN4)w zb?ZEw6QhD~#{2$1bOXanmSPHSW0gyah={nc^p~FB;4ql{x`Lr67?6|20uhY?2iNDBbF6C#ZgTEL;nF5eLRJgzF#=A zFzsdg-*M(&=@4tf!Y_OK6Vy8Oiy!E<fs) zJzEqwUSjom8yqUl5I24BJ9RLt+g{sgg14|5r4ZW5Q;l}I(?2`xbM$ed&v2;_7GFgZnvO-y+A}X zRbqV&SJZwD1~PIwNCm1*vshHJJ8L-KTiV%%+|;Z50`9*xRfy-SpWMX_Zd2OcsXGK| z^}{?}yph9Mf6yw$l@MkKI_6Xs6s1OYHO~AP*I-=3b?w5$969m_YFsWEBr8s3#Xn45 z2VK>IkJ}tC8G1#QHJs{Oc(2JByq-*S{jgNAu=IFujOS=Y^%lb&4v_*YT#C=c5Pnpb zX(b@SIzOCbIAGq*T_fi9Fb_SNpt?1tk+R4cFRET^t6z1fOj9tue>M?*;;AHRJ0aHK zz-}f53JnrFyU3Y-yy|m8sl$bipWb9QTgL|PXx17Nun zuj}ZzNPKJZRO|LqrJ_eIz9?SY?D6bfy<0j~o;PvwMv3$iwyQu#d8NG3Q~TPZ91ZpI z$z#r$w>wefWbK?FNfht=QN?7a6kF74QMvtTyi zSdAE0IM!_qGs+kXc&(FF^!?QfrUpDMCoaBvJ86*9)XVopR)N$$<sWnnHSU4!WoX#UUDQOS;5b;zBjtFXJ&qwfM$U z^T7DxgfSJTD`9K#r=m=Ur%#_MK6{2+g$a{<`s~?fB{`EaupXpZ*lmEq;;uX&c%mvF zmuhjkp$6DlL>kZ>ToqgYaAc4h3m=<=U#f5l`?CbAFrRIcTvzV5g99#r@w@~ zV8Gd*=l@T_CC8?7D$;F!{S|+HTs6;kW^3uu5#Jbk&ICz-FvdydBS5YkI8x9MOs=~ zPqnjEUw{8Kar^73PeSvz-N_k6c}p7W}Q*e`x7ud*GcDBs~sI3F(Q^~EwHoIoPw*M4Pe%1M@&M^mU~j1&?8~N zjAD0u&OA37&b`Sc7Os#>p$l)18+fdwCtR78yB8LviK;>+rRL^d7B<;lXrF*%>PoG% zDF^!c`YIQrbeo3EOie{>1cj6|169lE=m?&V&Ev#LV7S~_Z~X1iAZ`5`mvs341|{_e zR1%!r_vbreVXq@6xd+xX^oE{7!cc@!dpIYP*KRNE>Xi4f4bZM#i_wNG*aW+(MY?k9 z(Wa3ilWW4zXOTykhV!KF-@g~O)uD?!R|ntHt5{mz`pTvJ9aN#`wKpieH=us9W_UjL ziD$s%hu1OIxq7l%PAw-<^^;isc1Cs{PW*hoAto06`SWEkq4ys@CIT_u+n;7=bGCW3 z(3k-1SIsS~t*nf>rJm8#;Nue_xtbL)ZZ}%|K?+m*l|58Cd?-)%YgAP0sCjZ%u6D_f zT;1o-8p7C_EOn9A_z0Wye7kQwRvMU)z*OyuQE_y< z^Mut)ni^@&DZW83<}rNTXb7LS`xm>lHm z=6(c;O?!T=t(Er1mLxmO2aDm)c5`QymPRz3uG?L{D(G8UDxy7D2 z#vsvkN-iDRU+*^|y&ewj*2l``6JW?dH<^e1$>!oO6tM{2 ze#8dYVH!I+2^~7n^cIfRTjF%jQ``owZ$t-75?P)as=c__*lTXp+y!zD_!Uxh7ElZlh1ZD)6&yFOqQ!> zsz7)R>uZs1!5KiBLJWKwO+q9-)_Wb_u^Qq9J$Yp|`TaW^f9>W2+uE(iL%G_`=O^9g zf^P6iott}|Ux(Fs9L(_Rnt8&{XhU!9*<U9FJBqcQ$G;jOfw(J znRSd=!2s3}=z%6p0+5;{X7!x8bm`I$nGIk#%riLe5rZOP3e8sf(#vE+f$K(p`7-0N zzrn17ZJ|~bZ=CenpL{jcu!EFho*|-OL1WRQ>M6F}Niw$ct-&dWLME-^jp=D=m7w3X z9rZ{lj5Kkj+}TzrZIsV;J2(H08$X@VBfaY*Ma>c@uW9HK7-HSo8q%>+OZDYxO+AMX z1QXvM1^vjS--shY`LlX&o`qzje>nY|shZ59BgW0$hQ|*+A|oR|LCDD6p1;kGX! zzZyS%Hd`tFX9^B``uEvV#5YMJ?)s%|_BVP`+CNi14jt^%YM;VQzLJvC2g8M1w{9sN zq#ddk4_k-Vsmh%W;Ms!ki3A(M^7U2#G|%FE1C>A;kLJ@U{f%e)`^ydEeL0iX%fyup zXL|)@pUfA2hmqUoXypB%G6zMDykGq+jI_UZvnosR(9~{!V=^BQn+=3;w-eIcr;-8$ zwddPcZ;g(Zn1?dTdRAHiPPTk3C_J30%Idn)C00Yrqw!M0R&X>YKSEXhjU%RRU$Sx1 z=lnFqEMCmc1*D(ypMnISS+lRjlmUfeCS?Fj73VLl*RM!q}ggPH5EXxBFxE(VQ-u ziL*wRnM6V72C`=;f+ymrd`Dy={^wut0~2{ZY=hx784nSVL#B=TBTRQKlG&&N!_AYn zl!U2P=uPyW0z+%wXfW?idNJx#y02)lQZl)@2VDsPn5=Z<7Oz2><%^;ltO`TP@U(T>YBzjv{io6MH}jHO&qI5MOQt z(Q?fbnWs}W2e=0mkS@>tNmoRYOgwJ5;YbJoo@X(Fe!w#_p2ao=i%ltjs;9m7nL}l; zSKF9i&mwhW?}Jboa*$}?GHO=#sU|n~b09T$-}gtP0N%!WwnLbu?zn9lfr{D~?P@7? z&bq{=pM!Yh(8dfVtc0LbgZsU#P}2tQ)2l+SF9_7_Qn|akmxWZ+D#)4tOnC>`@nd7-8*QvU z(tyC{Zb`Epp1?4{ngqn;xoW__8!a;vHO$;ax=U`n*%7f-ox$y^KKuY3Vz~M~`hKVj za{adEDYp@a{o{za&y0Yo=l45?K~q&(8`w9yK&BH6N%rOwzJF4kS6}UYq+ms6y-0Nf zRvIhqeg_xi0C;?^JX`9D$8!T<1m5=N`}^pLD&bwsN`I!X>F+B#Wp91~+SUmS=5f5J zjYaQwLf8^w_8o<6R*ye_7AVAcpV`x+5^x43zIjp$(!gD%nStm_^HB_oH$1$1O0= zcZ{1Z@K-HRHLk@Iz0|JY0%SO+IQQE(i0{T^jsGN9rL@~K-)IAmK)KTu)o1ade7n1j zz>%-sF}>(>*lD;tR>lJX;6(_?*g}dw%j>>0#S~c>uHSydEHe|Z?mYDqu*JdsWkvFg z#7nvjVe5{aTooG~Y&B%9nHNLKfiLAJu?Ut{;eG;}RF7_P%gCJQqS*N8EkzA{CV7ri z{#o4s<}W1dfkn521-x2?zJQW$;zBe)iaRc7t)qj@Nc2sAE1|p)?ZN%)7aDfR z7)9StLQjwOXomOR2VVM_^AhJZ zjVU-r#ugBoC|>QRU-X6uz)z{lJY{cwN-JH!+Lcgc*h} zZTCn=E?Ve?DS_1>RUA&66;0t^SL30OS%^G+>Ea^FqnV!u959kcv(@Q4v4NT(u(a*% zZ9vG#aK!9~{&|GD3SO--$D6epO#OUTYRKGg_E5m6!A*c&R&LyX@)Iy^FbJ6dBwKYW z?^*)Gv>7YKvxpd9|9Qg^=aPHFhOFg)&t4ZHVr`^+!gT)_yRKd9CbTw`XVtUyj;{^` zVTTdC%xRxbx9MEN()8}Vm)@%C8C`y{#^O<)PKL#SBqK4d*#jx%gnWF7elGi7` zJfglDImz20~RH2%pfKV}l zK1&b}D=xkRbY$g9M*K(}T#Wtk=Pbwg+N`XAlamu2=JRjw$mf9Pn1PiTX`Pk2;bbrD zHNb09L6Fq*K3s$>pinzNb!m)t=j+#uRKd9UbjvSKuAXf+Q#5mZ`KeLT5zIyw77-y2 ztN^4kW|H6=+0QFp|GLBiCWDHax@sxT>c^z&`PnJx2?dTo6ae=5p_)6{^A6hTV*Ivr zj(WT-JQ*?y#j2ww|lNuL@Mn1_}A#@wz*$HhX8S6#OzpznP%$9w}*7?%vu5{ z6Wrzk_1qUDIk>n0QA*wfHYE(Agu(u7xeqYxJk}71+d|kAFa^BaNp5Vhv9V4oeIMSw z#g{!lfdO27(iz2fI6i&$7)X#v8*@YqrO*q+@84P2bp~Wrk5<6X`zg&UgE{m7^i4rj zt36zb*K_K91nAMnZrS6{I7I+5D6p+x^k3uRI^ynH#oV=`^Eul|wmOA|&NL!$k}Vb- z0u=+V|A;$NYSH@^uv!1J)Iyha9Tn*<`4AbbR*2MwI4;nZ+f5@8vBEfwn)*2SQl1o$ z3xI!g`r;8hcz0I-BrbvL_m`NfdV`{dZ`Y4`Z2lxZ1VqgZ^#8Ei=d3x_JgGfHIo|DX zF?zJfgjiMfki(zJQK9VkBG(`g=KPul?wmN(t@GG>-TVDfEeMBt_CE<g)YvHH5-luM3?OW5ifkIq~r)#X1*(CYU3lLt$h%^K*&{dXU;weBEZx-@issZ%@x7| znMqvvl)s9jG`F&HLm480U-3jfQ>i-SIZG(>I4@r;3lZXpw6QT z=<>>eftRkJ;WafI)j3V#zJny>b$un~-8y*<0LAxfropC+)xl02CkKJr70}~KoZ{%H zp8aS*qEl$(Ck4cxKF~L~_aw+ktS=!G8L=gwTiqX zsWp;GE;Z{l5HYWgJ_iPf(3hPuL!qRJu-MtvH!wze)Wkz5mV8rv22vYUM-LuuW3w(M zb^H9g!fhXJb~yD_&CEkLt|f@xa90YSl9D7n}HWipzT(m04I&XKLJlWIBQvCM~ae6 zJwZhct;W(*T0&5IBd$K50$Pg4E{AF|-j)3}n^42BO!OH-2cai8zc3UJ){HY$%=Zc{ z)?6SP@xt7@YHMIEsjmuVj!Qs+CrKWjBY*$CE+!^cY6I5TuU)%lyvCN@En3#AbsQX} z71}Lu+>Z(e31bI`qG{s;TaZ-ZHK>gtB&92K+nOuH+@uX#ezV-I@8BRrLh_=L;HqWm zq5|PEnKWc!wvIEE<^caHp;P|a+3PZqB}S19l|-HS<<&@Fo1fw(oqyooPZbqObTucp zR;!h5x>JR)jC@5b$%YK;u=ehKrOzP$k=Pmfvofv^fX77B2hvF#SUuOSv`-l?wfs7r z64;VwaWb)pLe)604Gq50XE-7Xw#PjsEh~7r@`3`sl5cb(Y_LJO@|p!g%))77qRQYr z$9BA&4)!Npfna{D_Sh-E7J1P;dco{%QGad!e z9Z&L2D#wcgc>)ObCjZ+2dBe2i8jyYfC|MaWE`hqq&kqG`!FsYfa(8#P5Mz*^TPfC#yR`~zS z(KYcN9xB*w$@RY7xFb}^nDOoM}>wU(9D)o`FwH<}al&(l=g zZ^0w>#xoj5(o?$9Y>vph3#}h>Kwgvh?9iI#bza3_j^?msl|o4h2UsuWdSsSRM?^eZ zw(12QuOf#bBO`O3{;El|Y6Pv(-y88U$JTA7`onB>mB+KpRMSF|JUZg1oW3?VfE|_o zKdeS`wk9i;7Z8n38i(=}jS>|E2Nx9ZRI*WL{`l>Ua#mlL?`D8KGGEoQ2|50^T}C0I z_N4gVZK3~X?}g01oV1`pWQ$OV;v~tHBZ3m1jKpzX!I~JhF5;0sStWKhlVy2RoZAFBgTQ?`9-4Iz3S4kwkHc zqwauUp%1bL1K)I_)@=q(aVz5Y&>ZleQ8lF(_kJ!quiBYInYX4kix}OCyi@LmB;K+) zCBF}vfF&qnASfW=C4I)e*DfV3h}#Yt4y04}@u|^cvwVC1=^Fv^(NhUG*r>j~PB#-c z7z)}!*yy|M#HRs>40TTGy?Q zts}xE?BMSWC>)EF^!u@A|9W@LTj6=KOrV(0VbDJtQ*HEo<2MbWv6ZojWW0p`JmaNr zd7AE*{b&v zyk_U1`iJBBd~)WFbQ*!p$`^b-`}AjgC7PdZ-u}cMLVN$$kE{Utjnh-#oR2xQ=7hAA zv{f0e?$Nx6ZTiAywjuomsT_yAHpbN@oqOCi#w`(y66seQnq4^duESdGkM_GGS38hj zW$;lI`vwzkP*J+daFJRe_SQF&r)*#tD8p2qX0pS@QJ?%&UF}CrpX}NrnJ;|IxLuHB zq^#JFn@GjjQi;a$7FyKvx9eLH=tzYPr4?wV>HlLpp?T~=Oux5CEe74@m^`J0@F z=GVh@LgiQ_3BZl_G93t3hI6fOf6^ljl|4e5W~lD9Oe3$hraQg;E+8O{mKN?eaCvA? zIoudLlSRSC7OwFUP3Tyeo3=O&5Q0~`n8QdE)ES-)4%>q~coC}6FRBs<8n9mRV+OYq zGD5v*xDzLFCtasc1^RPxa;o-*%I)5RbCfGAG9KyClVA-_97Tm32jN!0oIU)(eCr1! z*w0SY6IN&7lKa;7Xm@2mRKy`IzsO8S*^ByBTR_elV|G5qP4CsPg0h#o|2(^M@PMe3 zbbhYQvOPK>wYc1`x;5liSC?$Qo%P1^37TJI%7OE(8PMBSj2394i7UU9yYe48c%_EM zOI;nlEBZovyl1=Z9^Ap^U8sp9Roi|Zc1~r#PEPjT9xJPYq@kCpS3znK7QPCP9ov8K z0(2-tH95(?I=0B7m(BL9Q<6J61ge6ZK)>CpZu>Hu6jcXX^-)`B@bykqNOq5RbIkhvSS zV>ndSVt2j;^PCUcl4v z`-UF!i#R9t>(@59p$$AEcsnJydTZgM7sPr(^JhYWbkgK5CjzkAK!+!y*`!2)t|b15pu3o z;}0sOVcn(Z@pc>J#~m;DPUlN(Fy0Ps?Z`PbaieQM&wtWsNUe0$z5!~?3UZli@UWEv zUjwjVCu}}E<`YrFedTiQZ-i029@U&@U@)pSYr4x@rjOdz5a;*3pPmFi8QQ_J$_-QH zV6wqK_f;@`LfISel-=(3c9O)0I@Lf>IfAvXnC*2Hklq9m^X=(ZL0C$NsR7roo35?-rURgy&R z#7!p)XM`AI9b{QVv*gTG7@HNTb>~Ymf@fO-*>&bhGD8>NlQ?XBE-?@!&+qg3eZQ~Q&p%`Cx$bjc%el^ZpL4ErZU_~p5Z9Wyo#}X$PxOl~tmT~3 z@&QOQx5$@usTkYwT=C?F{`;Y-k0w=5#T<*lBq#+Oppu9Ww)R5fp+6`dC-(Gq#_T)6 zi6jxvmW1(TqzfI=<((X&odpzh(6BfWrKdoLuBqJ$9G!6+)u0s4drYUT#Q2X+FqxocVD01Rtx^BX<(f3FLD%v* zke^o})qTOhd;6ZX3J5Be2dpox3ecWN8oY8}`F6MW>rcKpx!-Vp`HMs3a?1KY+o4hkxjv_O>D&Qd{L-RoF6LLPxZwmC z)uj`oMRmpDNjsGVl2(k);p(OGIoZX^tSZ!8x2Wu5ibIs?4(h%^^~^h5en3gCq}93| ze_on%4I66R_F2AfHbF87G|V@z%##e7cr<7VNXRZ4pog1hlGZd5w8Qm1Ml}NA-VeT->mg4EN_^A#+zk8z2xzJOGr1b z-?@wy_ptYs1+8Du^4Z7SukkSdom&++3LUUE0<9{XzT@Mgh zQL2?cEb!tvxKZ1S`d9acBIurDl-zAO3v+$&yIkc>-_4nWO9JIqhie}6ZW9Wo_>3m9u;OmCKtYn_kk$p1G3nV!V;X?d~OQ-ePo1_hRi_IJqu!JeOWi>O*zD z(mod9&H91xQB`gv;O`zw-MF^Whb9))AFxZBcM3c%sZDH}QE){`9`4qUU8>*Y+e?iv zX!VC1Y#D!6(*>hBlR>DEj>^Ot-m-;VnQhO#Fy*6Y!~=&PY>Hhmx)(qvVZar4w(qztLiXF3|}y zxr6}gBUKsJf{+RSxMCMum(eqW$dg%tMV?<&&xC!1yO=Qbq~xz3wK>~q8&-yuYc<#Yz1f?T3q_t(4f}-hbl}X5u90Gpl~&560hS za+wtm-lhOjWi}10AS*Ph< zmFoRpsF9V5UhN#_QEMT6z}P3^piQ)L!}}Yw4{vVqUyC&f>WLSS=S>Zdh&XoTJB_2n zvqRX5>@Fq4JGU1XrRPi=nAq*WnN?Py51Wvdmvzxg9g(BYnJFHL`@vO=XCKGcsvktL zrR=VE%+=V_tK=WToqqm_sesA-$#EBl_GecMm~p>gs|nsRs#4 z)!HkPk*A&-Upc7+Ul!K_E|A7aaR~|C?u43)efgHH&EM-f^EQ>knGM?7wsuz^%tWJi z(z)X0Gw;1=JUDQsJHk!@z+OYlCIVtC>}xh=2p0Y1bAXQRz7WK*?u&;JST(rU8RoDX z0Dm8M=_|C^+^9MY^_PX21R6|v=~T}57yzIxA+ZnW0K5JX?d#q=D^*^Xs_Y_)(3-!w z*_g6N(e>9A2vNA;5B_Ghwdp&Kuu^>H3w_ED0X+F>^@=V#Q7J2d&+kUf#ZC zxnmk8Mo&6?WhB|HQhIl;FIHOMeXgA+AxTOtoe}%X1cL9^ueS_DU~qe|ygykc5Z)lu z)efPOLe4_Gk{eB;n5IDK8Mul_8DK!y#um z25Q4W`fOmAT6t--Z#MCDeuH7%GAeGf+<4SqA~9{UbB&T^pp5`L==!!jp|HD~?w+{* zVcK?pO#1A&WqMo$<@0flT>rp^cOe(UqyMo4BYPe{0TecfdxgI9=@=+2@>oW$n2lU!NgpdgSy5ER^x{3S*mxHrvA0&~_fs>Y}r<(;^W&+sU5*%)w>GQELP5aye+vC>405iS`94lWw1nto?i z-qGv4mh?bgOW3+^HO>?!vd@D3Hk*7o9+wny=J+5nOez^#wenb3#nULV)WzzJ_k`=& z!D0!(vhNlX;_1MT(4%j57?}L7^p-3;Hfv|trm~Id-y)0{O_)X#(bx%(a~>jEJNbZ>y~yG& zwj&gf8e%?p*7`tfLC10t1zO?B<{pBnfgIxuIAF~_a^OhPB_j=2F_|>8rWneOEVFAj zEazGp!=7~jPjy`4QQg(o6H_A>#^3=7J}2BIc0|jmKFc)(QpNtU(UAGE(eO?CG0l3# zF;P%)=4M)e0QWJiIwhAj^fa`z=?EQ!#l`LE~azFD*?dD?3(GbkZhAb z#y=7WeMQGl2Ts*)qpqeYDE=!DW>RWu?b^fc3VqyiQ;ylVK<<^_hl|r&vqTzAaRd3r z!W4P$MZTnja#aLe&v4L+u4Z}He~AB@fqJaSmwL+fKd)UjOn9)7dQmT4Z7|m=Dh@o! zY4Y^QVnuJV*ON57l+bva3=7qKF9ut$r)PZ8APwD=a#8W9X7dN0j z2O%rkIUFRNlUJgmf2)6>JTRU;j)n9#A;T^u|3qn!Ef>Fn1(gv#W}NU3A=J1CEi88| z%M1&ugParoRvVz8q(?@+G;%;~=SfUi%v5ziY3nieNkO{K-}G@{Ug_)xn(COAKll9R zfN4y+I+M?t8Uu`V+`Fhjb3=y4X8i=5Qf3M}x9W4hwE|ersOV$9sam9oD@H`D5OWC3 z^9j3fggGfe6a*b@*ReM>Lht>36mGISf@ru@8-BP=5tw=rRAsXZqGeWsabMtM@#IHFXrI2&JI`?z2+Ec`xW4`Y53agQOO zTHM`Y6bqLl(QW za;W9yW`M<=8OjOHfPkOD@p<}z78RW>-zMON{S-<{C>(y9Mj6--g`QpV80Lp2%`bQa zmhO^$)7O$^4(y0|N@54x&3Sn-Bo^-Gwz{~(Q>$saTJX=DDBdTQ!2qXS+8F32npMI; z?OJ;JlTPI>$2B1Mm6yyHqcGYspSx7$NprPO<45*`o;J^KyD;jPF)m zfbqHbk-hEnuCWYn&3q#G*pR%p-O@*w=ej?fZbk`*A6g5Y8GB=*-7p%^e|w%{6u(Y* zGtgqb6ku`p2W76C&&;SIo+}fY|DFv#A~g3|W_3fg?2s0ii(#2Si`wCq4>-?h1Qd!I zZsD|A^KkljXr!tST%`SaxjSQ)MH>XqqIjR$pOp8GQfBn(c$W;^WSK*t#ocL&tS{Ux z!aFKeY{df^8qc*eX^V|lxj-9)A?89Ck~+(q^B7YMtp|VYi0$lr>qD*AyqojS;%f{E zH?w70sL5%+{$rvxspW__DER!c_%6dc?@?%HU{O6-(Nj>c_{P$8`~kJCthAXk8Y?r} zEu18He3;^K^b=qN+s`dVMmH>kn_}UGXa4c9)lMahF!{tSH+nquhQ%x;MH^mN6gl1q zFU(u=aJ4@SUGx}E`0U~OEPggG&;qF%<&r`FJ6^;&&>~PFYBqx~)DpV_NJWo_Wm2-Q zLZQ;J7Cn&oco{yrYPM(Hqxs~hz#T@W|;j;sgYn&#Zv z*R=;dHS;USZ7K|I_9myxyLP0ibjpHr-P;^hw&u0y=go^q|5c=pU*p#LZ>h7a4m1CO zO-*u4Gp2;y+!Fp-3q5N6uc+}`)<1pX)TjLRvFgt9x_qV>7hp;x8uz`0oYkaVm-QYX zDV->`JEcxQC`f4P=&oLt4&wR6P>sQ|svLbvy83oAXeIAoQ|7Xe+P+n^4ATS!o9yuuO=(KS+OS{VE5lMRqB|o){^ZJrbv=3a08*i z{{`xeAKJddRM>KB`z>jB_5XUgK<&I*6apkC|Fn=364cByX18KL#TpM02|_lK?{}yvS+5K$4J_-1J*Pxn>Tz5ri?Wx^!mbJF4 zJ64VAc@t-&ADhArrQ1)PWtv5eSxrtuQ@JDd7sVH%mGO1^ZnNA4<)f{P3#jK+8bO>G zxf@&1&1z4mG05;pLl&w5uvyqcw5k^frLuK;*@YrjZ`ho=&UYBnsZO1_ndGS=+7AJn zm*UWvWX*+()mxjG4BIvR^Z>S84KD1sHu{+MY%eyAn+a@Oq8?WK_30va{qs@w+fu1LT@R=Iw4L}eZYNH zEoMnuhtgZV12zGFLT4=t$%BVu9i%W?GQv_-*+rJ53Nu(9doyceNL!(sjO105P;}is zd~*`Uw2rRfnVIP>!1ArW-EtcO(-5+ry2F|^{6$GA%)TMZnh*Dk zsXc*XDs~n-xaTJexjt!tSj&SxDfeCN?vYeSL{2hUdXX!IYzS+2t_p;uLbl}g&-;+F zTFlRbCD-x0S9y%gM&M;se$?oo-Q2=2k{Y!_AHm#RQYW}FJ~SCs2@(d0uUG~{JZ;q7 z)pjcDChE~EUj+_K_loJq=LkmvYzTM^NpgkZed`&J`OgB5{vjH{gCOXyQH(i4r_Oe8 zkXWz&Fc~al6JrmW0AZ7mvfclSfBdgkA9FFBe&mpO{Y~?(d-GAe5E8+@{-zpbk_zhWroWulooR@n|`o^bE0@jCq-A8jC4V!ix~| z8Rzf^zAxGcI$))Cky z>wRhe zKXr(2@N5x$81THXpA#gF{a6s^0j=$p?&T_NYH}P~tza65pn{fjUemQ#qR$u{W}L+6 zR5-h}qsEx6YhP>gyjNQ=jWBH+QqZj~@YF3_%#Bh$?o+lsV3__?e(TtRcqvkUz)vr6 zIyys{U@(VWQdSvrvJqJb&E+YabE{$zxY}FJYCHHa@9cn;H*nf|2?bw%T^!o}-h@+- z>B7_j4wpv8^{tE!+9TFG^>+};)k(JufN35;9Xcwo?Nv_Ew_$a!L%R76DLaQS;y%fj znNnf(He*y$#V5jJUe?jbPx4;pwpG}vLwHg}odz{!&~TJt++1(ycF>nunTFh^t)v0nVfDm1_hmg- zy~5V?vFXb4s}!k&L{R0Q2UOe$)gX{4VD6)ZGdygE&X*!*Ecs)3z$*T=U|B;5VY&HP3C_h8F}lWjkBDQOLw~^NdBB)fdUc2{QY-EO4}GRWbD=r!Me;lOya<8q=r~M1oIc8AFb`$bQ^l$ zOm&OccqF%T^QrlOY4xqSqqt{kVrZj*5%$4Zm(AsC^fIfbb>8!)HqjW%A%q$j-=3$& zula;TWBH^o&{TM~fM=_nr4uzSA9lg4u+p4dvlt+t%7Y@Rt=SEEl_J-MpVsX=HMwt0 zm}+s2Io7oRHdQVZ9$A=;v)34O8^|f&5Ct#0V9EU~;B39;D6=vI2dFjGT{6?lGW8`b z;-nqoJ7r#RXs^W)Ra^`OoB9(A+u~2)8%JL%RK$bb{7Q&OyRg+=4OOFB?Z=s%LXw7$ zT7qMaYIoG0l=-;hTIs!PRaj);_;N62I2fJw%`f0h z($t$=@E9cN$dBk*6%3i~STa!Ia&@eZ@$RDQmUhshi57(Z_`K}uLxOQ>Dzb2YKTk}= zWO-Jg`e(Uo5$Lw3zn^OobiS52P#s%Oyvi!@qeux=QGTdhq4O%m=T!3A(Jj$Vc>q(? z38bolv(LMUGzNjci?PQ} z9QD3*hXvO?a$bIx19b}cHMaTqPuJ=-7SPggsFBQLkD|87SLnTUNCK2`CT;CtO%x|R z!lieygCRb~stPn$@M|V?CtqOf`-&P8f~TdjFAal(&UNfbyuT zpVMLn>#yl1T8i9{G3DL4?UwO93uN;WX}a}j_vP6hcvRhvBE>rCXel+8?(p--kNIXz zew0dWus=6F7+DB+6J41eIa)bDb7529L8oq51vtol(t7UraB8UM@#_`&MLX^LPaeyC znz!R+RigVm2;!MS$8=V(qIm1@?^&(b3VFA;d*8;27T=y5n)8P9(A9R%`%3Q&yluQ8 z^7HSX5$^}ovKX8nYJ*%8*KuwtV=0am?;UHX!D~-<3TwWm39z9*kCvkMG7hXB9FyLH zsmr$d&Ggo&GIt46J@)R#Z2ntaGHb3dT{yoT5dTY?{^w^1qOX(aodRkA9)yXYV(hsx zCrWNDlMOQGI!u}XBpzq_))q(N(2YFxsIA#l9i5Q{CRtQ^WOLQvX9al@*}#HEh>e&P%<|3Z{jH)iO{NhGsBPMY@q z*5`LD&+m8%l&`S>jUln1TD*s_7xkIALlK;oyLo$PXT_alLqV;O^>|3Sb zkms3;wAJ1t35HBqxlyu4G5O}^L8>{R)u>k9M(l$)K%g8!gOPK;^b~6pgiVYT(GH2z zN4imZTRN~R2x>uakPWSKU1tMCpCo#cnvA>Sl=1faCQV|@3t>%Gca?m+F2O{?>clCk z0d95dWvnkr6$n@rH|iid_I1SaeI~z{C;~V#nBgu_@XS&|AcfpYsxT5A3h>tG^^pQ| z0_-L~ka6|>R5JSJez>-dVlW6fCe+RdZ^0K#saQ#og`8_|kSfk+9UV4$}J<~v$o z?P`G?DiI7I^K>YYxX>g z|2-{yFE?vxmg6(vON=W#Hh5^^<=bC+# zgVdp(Vh}b)sh9j` zLPEOF8r<)G-|u|q|3BZEpWE&8%rp1gbH`fOy4JPkjgo>40Ui||f*=I4ccfGh1j`OV zFvD<9!#Bp4@|EF#!uGc{?C)Ed*gNXm8YB1g?X4}W>@7?UE^FOsJ3khmj_pYKkBYA7!O(syf9kjW}zQ zZXV;T_ATcR3o^csO!TFgeVQJnt`;3$WD?(7l+VF_qf)a<;n#1L&sMK#gP%QN7&VE$ z`CMl7T{`*7R`Txb$ydIyME~=jB~mk8xpErM z2NV9x&(Ck#zT4QapQq&I<=wPB%lOGNORMmO$?&bF8Ng^de3~ ziXv;+rO$rhd3t&l7Z+C#4N(UL1yNqJpgdYRJ|bLOTVvtm%*uVb%QQA>+LNYS=)wKz zMsHsrjg*u>89Y;>+1_l7mC>cgKNWGubCN_jR?z?|G=Yw3-m z*eW- zzux}C{q3pg=8*hfnNgyy*Tjww><|eJ4N5xq4dsnrLlj@Xe*HFYe@9WVF<#U)SHJdj z>U#QF+K9{sfzT&p2vqfKa&D; z4I9rnxws5+q*hglCnhCjthFpr5EJV=F3q;bq|i%i6+C$kP3M^e_@+how*~vAQE}X3 zgQ+%YixnpMHCPzJnd(_&`u!sY@*`98{`_Ziuabf3h29L~wI3G4#l(`hNcF+)Iy;kX zAN6&6mc7kI^>&ppCs=rq*Pc>&6Dei%YJ4^!c=6%|jSdGRV`?p|@+JieF74`^sv|rk zlF#_<(iqI-L`xWZ;b2wDICm0nZCj#q05RhTb4EV2yC`o6e{4i}I0xCAy1&aEu9OFTS8 z@c6Yb$GJw$!PGzU8tUGVd{D~>ii`74@H{H%j)cE2sAp?G*UCaqJzdUm``p~r)O4LQ zBPldA^ihrXnWpykQ%L##a@kLq6aVeUC0x3mhYpB@o12KVKb4P3d-T`ZS}fY@_SFxq zDjs~;o%@mXkk@U;nl;<7F~Dgq&QVE4MP-Kf`}gl_ZC5+r-%nLoU0Zven#w%*<*AipV=~;C0{Ipjt`g5?QMwQPG6qez16`xwScHp7X|W)LCXvL|1(C z*N{3XDJgD9GgG|F0&7NJ%ZTF`=h@RQd#Bvj+XZXd+uIkm*uvz>54VP{wI09}^dD$1 zk5%cFa%IMGCv~yJJI`Lo$f5AEwy`0G)!>{m6mk5nv9WPz{~3ug)}OU5IOg^lxpox$uE{m{dwJDAMZvn zPEJnN!8WTuI^3^s@TacN$f;y2wV$`W6;hJmu_ucVf#qZr6jUdViHKkx9vL}>5K~jL zd*{Zrg;kj(CML2~ST1!b1()<@sLRiwGrM}!<8AC&;kr$ZNF|85Coj4WeR*oopR2FZ z*2-PQLC&qqf%xjzzIsz=-uLz;4&hq@>TAB}UU<8|@m-N!^apCCrkjU`9+qznnltk9 zDlZLumf_GX*WfqpmKtniPHiDS4X~KuXJ0m0G zN$;mH+;iu?I9Jkn9@vECifc6GCH!Y-$$7mhR0WxZ>hfa^~#;^x|BX?b~AnDK1~WoWD6!Re(iw zyxZyN-E8zJH{mtChsIlB`=3fan_wUEc5jyz7i*lQy{;-}V9{%&VaP7ao^!BY=DKZZ zTB48|@+F5&v$eT7{n_r4gF9bp-=a@dRTXkEoLi5}?+`kNjSv$NUEFY~AgX!Br>>-Q zQS#O;V*$?E*Mt;)v;9^>jPH1i|%lmEc^D$uNNv7j^*AKxu3&&BVe28{$i$ z=hn3#_9>)|Q>&n9!DG~QMU-_pHNhh|i~Tr7l!N209A$Pya4=*2gIBvRYi%Ij>lJS4i3_;uCDINB-hoQa z{f&){g6IOz!_7VwZ5Vd816+f(g^V0I8)s+dd-0!#;eti1n2WjIpLU1{!5CD{NwdZ0*UCCjsPgx_$@~_@$m82 zI&Q4Ihn}te{w>)W&e@fIpV@wS_(I$bN9iKVk>viRC5xEG{8?C?K7oORh#jL_1--}4 zO*tygHwl18VtS~JEG#$}FI`%z!RLOo_#>;SwKYT8d7>|vuRmCQGN8F9qB+Lrqe%zJShJm85;IllhO9dTwo0+r{b(`w z>)s{C0qxD*8D>x2H+$8006Zgzva)h_v9kjw8(Ygl>F-7od=W2rANlQsx6cXxR z5YyJtN$GrLOpV_=!H z-zH}?4*B%L_-x7h_ZNrVw@1Pn-cj;O?lEc%@ygq|eC^VK`<;3!ScvQIc(yQY7 zvn5|Jw3OhOSm7?*u_DeYu=%!ztj2ObP=2!A_^I3$FG}sTtKHbpAlK}w^Vy-|VfN-i zosMVwLoxF$H?dn_Mu$`#>AASL)XXn%>s4yctg+i2KKApa!ntB6C3Ouf6pC??zd}N= z)YbdsJP)5aI!2hi1UJd{&h!Co_?6HAeuo9s9BIU z*$_xiSfNW;9qSa4BWthbu(q4oF4p3?j0P|?H=ea+n*ypR z!?;KH)TvXxetsEi5zpj96kH854_)-ASy@@{$jMvNqs{2gjpj~vck;KOEM zU?{eqKVP}Od;^UzkQTFHi2NKX;vOt8y+79oDAH;5D^AKBzG8xy&Rky9+~b3FLgZ1yy9?J6u*v^H82u6W6~b@5syFQcwu!MZI%SbXRX9MG5S@ zJL}<(yV>keKPen9ml7OY_-m->5;HT7B<=x33W(Rum#04f$auEW+1Q8!9;j}x(0r}u zz9I&~rCogSa++Z91$^bprH8f!I=p`k%{eE++^*#khLSaDx zzjldjy_vSDDJwt>j-iGcm8;IvO~f&@TQs6BqyQ)Av#CVZ46B$out%clZvnAx9w*y7n-(5t=i zxl=6Tv!PbBa(H<7BpBhk<&m-!?_MofOE9BS(K)8foQ1qLlTtf7JJk>~0Vas#(U&az zlB2NR`@7izj97+4Y-xexif;OqZV2%6^6~@=qzfuF#LOjeGd1#R%(N{mGB;vpHxm?F zkHML~1;eH}(%7fx`P4xN%&ld`rW#VcJ?3e3HIFH=0c9D2$k^4hLo4s9_ns>Dx!hsI zCtE@JqYi+d4=i^zjU)K6d}pP%kI%r;X!%EocG%k+>*`dg*5^|bTH>uTvUDq4WE&3w z?j(P>2tYIid)FmBJ$>hJd+h15BVgukHz_G^3mt%X8*Nj-b(kr;EMj6|edsm&(6^!?+#t}0K@vM=+n9cpT7 ztS4$tWoi}Tf%!Km45Yqr;SG$~_>YHH_23{_9EcPC`pXNPqWWI1CxBkHGVUCIhmJ1{65eow5KgMD4U_Y{qe%8ua)T60s75d@@ zCLnQ2`EZV}e=*$Raaw(3|7(y87!o4Mae(PNGZA{LK!3c4Cq`DMLlj%i|6ZJ#nR)P& zuZoW?3=jNwZds-zF4{>LNW`mbrIH#v?UzLj@`;Iw{0R)I^XlsAD7^uj&08(wc9qBB z>cM)aVbfm>O6jWo6|RD#?%O))Ma=+09#9%U@PmzdQt%zZ$>4&3F>;zuiTGCLXaz>u zVx*Le-fa~lTF@#WF_AH&&=QbUW2~@UE^N|+wMP1%-#%c`xi0YzLtKiBhbIYETOmQr zzphTIuD+f@P_S>dKTK-6&T<@?k&;rl#L5cs5K@;ED5jP5lpc*NhJYu#)2g1S!N92~ zFQ1V+0x>c+!uzNi$#Y&enV6qvt&d0ul}phmc%q!rr~r^>QY}+M|8p$o!!M*r9T-LS zOu*Z@xVX4!8#{;;V6*z&^|_SeDu{i0onEtTLujKa)KTiNnAreP=0i@s-E{Z;Ek*%> z-r23N3Y@L{*rIUGhd-XUwmMVtJd*HnK;r|pu$Jt;bXB(ctDPd3-bow!9EMhLEyV%4 z`m}ky`}_9{_jik_pRxy9`t1k?_e)qj?*WmdPDKL7WO#Tuv+{J9+~rY^{iiX;9t-KI znU-V8vLty{V`4E0iVWU7QFkX{9}$5MeNdUBtE-!smXi^w*(Ij(HT1ciMM%%jf||UXTT9=b$R^i1uBb1*cLlbbc<5! zi^Z8jE&u9jiH+qEYIvHOO80#ta&ooQ#&_@Dg}NkTw}~DT(2EV5xg8%J2Em?)&~-WU z@-%^@kr5NXJ^+^h@?YFoDJMyA-?|V$Bdqe_P0HuU8;)FHv%P@lI!!3LL4^H$0+YGZ56de3Q*lzYc1loWTU%Y;e1MchP z@xh$9klPNAuFL%8n0<{>d)6-&124*!OYxsSe{SvQC<8r0Sq2(0H_8f^%}@C>0OoTl z_t;SWkwVuAL)3Lk>d~W%s%&J?@o#|6MPQSn2oFqwkM!CwBk_Y|qT}!~ZenFDLExzl zfTx97M$VrJ=D^GF1U!-<~;MCjGZ zSit!{UtP7%Sd3~DAOZ)1v@y2hWf%)lb%*y&z%XJVduFxloSL`7Z%MM*83kHb;gTs+KQY|>4}TN?(N!l?lckH z2vL0?bY=q4k|fuW=R}u_swBU+-`k zItGS|<+3fTt{UJu(JkNx82riij|6wGkf6jKn5y#87KxML#^!$!U4k|Vb1ex@kqDL{ zgwb%WXV=DK|CeB1CSRbfx#Ri-!jy>hk@gQKn({C1|T9PhUiH~LP8=g;^oOy z;6A|?u(K*(J1zZ=QhBAFlL8zT0_4+I;6WHK+mhdl=Kl&U;2;oo)JEueXy(i?pwFM^ zDVVA_Yw3M(;0BR831Zzy>!?AysNWXJtD+bR9==R}<|OBk=t+OY?pc48r?{M)9Aslo zpUtJ3TUdCDQZj=d3ko(~g$DYjX_c2F3~eN@FJEM2wAH#hyYyFVEJr&;{-Y+D#uZ;5 zRRgTOpEL7k+31b zR#sLqdAc*v9Au=V8vd?8f{xG4G2fdBkzh=8N$JCyYK&p780|`d2TPH7Jz8&;n(f$*V_o#2bI zvNC?FdEENw$w>p#(c0Qtvseh=IM)8;UOt`s(Khh4u~8Qxb>>S!;c_hUF<>24<*@M)F* zIaP>(fx&wv7WlIYftEVe`mkLm26FZ^R=m^X8Oof+jvF^_P@@qfQav_C53Ag|B0S1B ztwBWe`3ubT>G}D8hU6QztgNh%`(DAuF$B4$M_}iC-@FN`?~LS4l5V^JNftDS2V&0< z2v|y>`r|$JO!>`!oCONH_QffD>*Zl#q#73AYcDS^D%#h+X``&9UJ(&V@;7147fx?9 z55t0d0~YsVw?o;pUp2rw7`2*3w_#KRP$bAw^UHcz#3&|42RWnsO}Uiw$J?IAuVv_* zlN%agnZc2d6Qim2609w1SAqFG2ln?iz$W02-U4!a^n1D)qL%!@yCJ@5Us(sGI=RNo;p6pB2LogIJWo*Y zQTx9vrS0D1*)&Vz#r(D1uFi=MTh*UM;~oBG7x8|y1-<*C;n&NoZa5;oNTWmgr=QOS z?3kujmIE70MNT`0l_mK}o>+uyz<@#__LuuRhxvLoCNa>R~hnOP&Q(D z0XfAomm8%*QmXVYQLPcJvu_|T$O=gsqYksq#1%q!UJlDhwB60yACMO>+e0KL{+`Hx z=MF7QWcjiVv?j(wUj}fUChkq0G#DQ+pSr`PiCJ7C{6z$At9l8K!Q0xN0r#6(;p+PO zOGvNf z?Zp4pt|H#fp7+GgrQt#ICyh;egHPj=#HI8hM#dATXKwbeI6EPxrpD`VdO8$6X&TLM z|FDt(UooqDdruxSkxCht!8-~6rk7fVPeKAcKNW$SyE`p7ShF@fd<-kAb+?-s z<1;gVd$NiWj2O*7Rza8nMkgv`FGC|F|Fk8Sr4!HIO&N;UCl8bfOR9N#etosMOEGtH z2Tz8==j3|}^!uISy+@Kg*iOaPORVVNCcc8~U^BMs>8azrgM=hMbOT9AJ$Q6g9zDy* z$XpigWlDIMyFOV!Xd~tDcU`2NJ_O8S7?1>~J#~dA<-TmKIiCWdkj05;UM?}P(?nie_H`>eR2_}?gnfHFilcjQiLHm$jr$Nij5C!bRS*{frWc|wF_2T2PYH#)pUq}d-@u(`sE;pqIj_E{PCP;JTq#Eh zkx(`z4$u|Gqe#Jb@!1MCIBq_~87Q?V*m(NJWV9VY>KhDbO6_swe9jknk1*DMoK2Zj z>ALK_@15kMh>u95=aJ%Y(IUt&)iZWrF_DWpAp!V46yMs)E@7}w_LgX8J z0flzxY@o`kYgkdIqHs6yZhPx_+n0;ZZ6k<__l8$S%kY4d+D-Bf)6Ng+kM9?(SzW4M zF3Tm9)|cx0s53EPK!>#?`Snz?`FG-JV(&CB7S^rmdMp-!uta%l3a3w^7)S&jH^YOF zx5ze9Kxn~TPgm(i>GG1U>t5o-)B+aL^uu^6Vc2tgan?`aW?XXrrHDX@$KO5}D#`4W z>|*dR?=k1ZdlwB-$GyBEpVyd8bL*xl#^9+hx8A$HUmAA(B-(Yk*pJkeaSpqnUaNrM ziQg4EpkQ||?+V4c)4;a=`J*6)G{#oo6iijYmbpJs4iO@uZ_0qqWRIMH%d4$W1I3wm z$p9{yXK_EzUZ*K>!)EirtEhF6&wKp4W8AjOczD{CB-&LF2MMK=w_feOiAW@vxF`3+ z^5!Dbl`M7?(%Om6A$i&Cbx5&|g}A)ldL@^RiNyBC*YCbq$6d#}#a^X`APm@By8Zab z&kKVjW+_z2UqK1a+Yat}JH2{e=xILh$o|`z07i2Sse7<}XeDwI?sW zU_4Ffho);E@ilcE*4Oym`JT-1O_b;t=8$Y24mYjTn>_5e82eX68Gy7*ckZ_R-GZN$`DMU`j9B?XYisjCiYdk=rP{=_B%E+x zpDv@&@T#H}QS@^-jRqsLBh`F8MNt1g?iam z6Y3t&b8f#rUSz5!sxFocbCaEm)K=lem#u5JaiFMJMuBCPYaI9)0un*tW;Bq@?Dmv<#af6kWt>Vx`E#CVA ziLH#P*MnHf7|Pu_56RmrVlJ^=#H-9U7F{pS7$znox_sDTKs-zK3hdLoIxS-Tpp+4Q zFly#Za4SunB@r_*S??IBzCHf}{Xw6C-^ciSCs$!&BXTJ!TjpV;i(Lhh1EflK^6*%a zXYPqaUu3%|x0mt_Z3YvQ%|}j)eA@EJq3ySM&}}0Lrj64TnQgGmeDQoGBh@20zW94m zW0T>?R(-?tO32VlS#kB&!!Ga9wN@{YZ*|jlCn6*Au}-kov|t}oQ(_BUwO6U>A0$;JRDBqPIr`qrs2d<~r!SoqGWB*=106NC z%P}t3!s@?(4OO|HzJbq)U>D=SQ+}%9_6a%)VqxL*%E-6Szz`Q)FCknH*JI8))T-@l zSA4e2nO&uzwOjZiqvgR?rE^A3oGbkx*pn@!VvOunaDLd z{U4Dl#2qhgk?<4IM0@#KQYH}#**A%dRor;5G7!KFpo9ADEfOXFWYg|%yD=R<5AHpl z-$fYBj8xg)t8=f{Nr5=6$rR9K)NiuFhbl!vxlDizq@;}S!C{}-KGR5|lOU1onVgAp ziP20-PR`2*zx}@KnAiDPRojQbnc_8;Va#ZL7mtV78PNm`w=e?uXlN4l!~%We?S z>s?cXM^k`&Vsq^G_*&7$WelV);N9)A>SyP;Aeayi!=n`X)|CQrNurhk4hxeZ(P`78 zKD(;x|2ZnA%Of;Nmt>OO$dDAQnogj>hC2)AsiST2bycl}zwtV&H&IQO&qaxhUXXzh zQu&_-{a66kIbs15A0MxxBInBY$m(xf3uk!HI}M}5UIPEHIkfNpy6Yh;=5b@2TKhpZ zB{^?fSN)#{XOCkwG6tRPZt)ZQuzr4gE9$Jk(538WL zsk3^ucmnatGW=pYZk^cBRDY^?j!q^5bX>k>Z_xgxr>jPfg%!5`GeywTyOHXYF0VGc zVXx%MZ&HmU$TCIrln^K9KVct}p_S#g zCuXx9@uGeuc5{h9A*1_^Ze9&Zj{Jff9ld5frHE43Ype%nGq- zA%=f2{y>s)PutVMf;0C&-hHl?k!A0$s!EDR=%9q7qBq?AJ>vwrEM?HK&AXs%J|ql4 zxtQH`L@n2@4Uqes?sZ&%+;FbaI z6$q_WNY+ir$UBZHEC6&Dsa&@a$)6&QZ8CX!37ui(TQeKCNZO*V;#`kA2ZVNirTdM& z4c3f%RKR|q&yKRRAQY;ZtoK_(=@#?j+qZ8=UVVHHL4~itpZEp@g#XxH8X$pmVjY_D z2N~Z)dTM;l>O}3t)7{>oW-x0hy9eFTm#a>;m+EnBsfp!SrTd+`cd-$Xjc>Q|r8*3j zhfC081oCLUI|bFx{^0#$Ir0{s1B-__V1`5(Ur$euLo*+!zxnRVb&wZZq$H5FTbb1m zvlk{O(D43p^b`$P(IdYmJ)~rFu}^*-GO(Ha(&?%OKvpAO<>ewM%fCp8bB^Y(+1CWr zCIXg_`2?OC2Z4;G8nk#1P`9;uMj6pGF&bE-BNRlY5Z4AHjDes!!Xz2O3>%;b|C)9D zHTWRQ5LAA5)`2`%o6^?SCZeRoMfyKKCOk`1_QscrOL5Cf|dhn^abuH9JURE zs*M2gefQ4W&u=rL8<>5(q5h16&sJ3a4Q8O-S-AH(IT<@uF(I6`Pg9$v*lWV3c4Bt& zRos+gjeNWAvM&{FAyp)A?cavjb}(AFLN^fDD?|eFyzTv<8*$QEbh&ZqQj%6}uEijMTVD!+OC}`H+)jz#7FWep6 z7N%Id#B0&dlm5dBvH~iYn(@s>H6UcOD0B-0{`n762?C}xwUPz-`<)-V%VS#FVHYR5 z81f(wzeF-$I|HuPR!bqKZGO|mbhJ0%vDol%+nYBEsTn_PP%SPh)kOXZ3-j?f+yh-4 z0WdS)7B_(+SjFci9WNXdw0Cf0PFSm058 zeYG#~Y$g&Y=0QH>L0c4rN= zz?oe(G`|ccZj0=+zC^tA8V}zRaWB^L{#mV4LQmUil)`!9#M}pGi!FhZ?RMK8Wi@Ys z{5_;Bp8Uv+3T?XJFO6oKkZ&L!15sh}k478pLKV*T2+9o0O1YC=8Zgn*JPh0UboH?J z@A0oM)uvhqS-<7zRk^UrySbI~SMPxScX5VNP_kH2Xms(IZgx8+P$E#`AMj$mV3h49 z!^EzZna1B>#HT;g5{4iknLkU#pVraJ;9b3#Q*{mjt@KW(=Me}Yii2Ji(FN=?u1tAN zob-So@;5TW+DSL*&LnsWRqx?Mr_`hRqo#%n#*A$v_c^ROR zUq}-Zf)NCvEHfxDUxV`DX6kqS&4pf#N;hHTA{!gtNwSW2a%zg#b;|-231`3%RNoUE z!G1gT4!83xbUTbDf z=oj#EzV-3y&%YkV`VCKNYxn9ITm7L`2|~X!+nr=t4nR5kucTaC+uh>QQbs<$^N?R@ zgj6-;W;Le{w^zpK@hQ0KK%w<2G?Ww-k-;Ktj~1wXfAb}e-R#|A+g478owqd1{g*VN z)ma~)$e@=xiTKW4{?6?c!n7StbazYRDSITF+fx4jv1NX7w6LE9n6_q5D~w?LAws*V z9wa?6k#$Jz*Le56B=v(TOBX}h7FOm7eW`r-2mr8Vv|VI@@pmzQGf%#z

    6gDfY{&?vzCV9RTIQ3X{jBEepqo| zCj}jXdG`cDX33QP>&Ok4U8eJo$C8lv0HcnMPLC4$SglkfkGLqoXeF*+4o z(`1wNfu2&b9_Q$&e~>`s%4@k4Tl+lUG_HAj3HyTo3?9;?0ctaGah+3a^Egkz9gBlx zI@9A45;nq?;x%cb#EJM5gS8kAQDHt(mS9>eFFnwkavKeu0?cm2$?0s9aHAWbbTpEgQ_Aw`+Ivx^Yq{G z+FF!wa2It;WxvCGx6eKHH&mD6&iVTCbW)Hay1D_Jgs{hYabfdG>!~dKWc;(|XkqBz zy=EBey8S1Sbpu_egaR=SPVxrASSNG+^XK{h_;sFk=QFh6sq2aTqyJcEZ~Xjfy92{z zk3Ele=ej;UU=aiuSg9o(1SL~(y-}vFL?o7=# z`&{aQn+UW2_fVm4`xV{L6aGY~1%g~{rhSFv2LMq*-QC?n%YQbo=;xEf7y~bFml-1t zB8h8cWOR|2ckOie+mnr8p}$WBMI;pHR8k2scr971yMmD&~x>g(hv(+ z-@YyJ{o{Y84HBvJugXh;b0emsJLeOoH%Eqd3WY;Zh%h!Dj9RV}(}fFpa!}`H*~eY} zx(}MXf!&kPOc|@jC;&kW8{XXn^{rd^OnX*MZ7q~0`0*Mx2&EbQGd@h97dRX5VivG* z3_S%!o&TG^trNPRLT92?p8c6t^ogigU}EeFbL;+@H|r;u!OE0xX>_m|KUr~cRd3Ay zorc;`k2P|8a2k#N7N9DLh-B(-W0)6pxj9W+6ukmH^08oPbo6E{P%_$DN+P%WqE%g8 zF#8%p(5%`V8eevWQPQ3?fBQBX{OY-Rh@%enoo@g8Toav@_y`t#WUmM4u7o>;ssk_rBJ)^n^%P(nTHDnf4q%|MIPP#$> z%7b9mYu1mf6Qy%e$bE$IY-Q9Rgn*Oc$Ge2ccu)HMV$hBKm5`v9WVkd~ zh=0|j%}XKmrAm4o;J-YNLzktYB0?B)N?}{36FE9s7xq_lwASOC73tq@XmQQPLN7i9^=Ng}8pu2`5&P@3;T)POg51l}?0tVDIRR~jgfeK}24|Diud)4*AW`RGr|I3gc zw?+E<@9>k3E8FcES%PG~`v4x8-Cvn43@xriE^>3D6}G)%3bL|i5b!NEX73qrzuoPf?iwZs==M z(4{pf6_|qHy$*CKtbP|j_X?qox-lb8q-&$wl)vC7oq#ZY-i*^WuMu-iK^N`_2rY9naQ@j*)7ivMBJVG_ssAYeKPLr zotH8StdYDZ)c+rbPvNkA1ZuFNi&D4m$bXg&q!PIl92w~==Dvq&f>HggT9%fN9|d-G)sI0$*zksg*y-PyUb zzQrHMQND#=AbO9lm7R;L0kqPD{?aeMeN$Q*DWd@T4lOkXlK`%B4XQDq=HSQ+)N~yQ z;(_zuQ`J}M`H2>~U#%_Cow(zH*`DTDI1QtUAYgj08QR&|r5I&{u&?)e2WXy>KZZcr zHWSpUvHLIfq@P$1M969NVgQ|}R@M|hwwc-=@Fjc-R0_y@*j0!Z6gSmA;?eMjvbCVu z8&E5hWf)4|^4@iO`I=#Cpo98RWQSzhz@Kdvbk%y#X!*;KCDtQLN$1t^n;AB+Hp}?O zATT$hO*+_d_;OwvLHRTL8;>Uz=5-xT02Z-uEX0JUjC&TOy2_^SfWm=tC=3KjF+u#S zR2Try$I#Av<;vhY&IJDOu?|hr@cg(Fo#e?avmIAPe~wj&BjZr-R0B4StqxdC4Kp_3 z#~n0jy}zI5k(@vON0h|_kOXgt5DF*a<7a1IL#ax7?}sxUN4t+v(I4`y+}RE!(}f?o zTlL?i?0tIa+f>3DCeax`D?7h&B40TwjLo5abQuEPw?GI%3_bw`N_FMV>pV}sUHoZ( z9bE(vY2zSJ7NQTdVecrE4vHUvzI+mF$!!l0vAwNdexMFKkBX%vBoHp0Qg5iSM5~Ov zP}_zUCo5f_h+rZlfx1WO&RVSgsN&dg5Je~}DR}{3fU{D*uHYjCqFqp&KV0bT9>6tBD*gjLs6^*7uIC#- z`SuPF9;;AKi!urE@$swM+cKcmT!URc0aPhaf|+Ya00Gg$PL#q$rNB_tF)=lT6()BI zG$>F*i-p!WLmg%S_=fCrdISC`8)>7IAp3`7n$rIh)kk0rH1dtkpyoO2*XeUKpzG1e z1K0N#f%vz67VQTCT$seYMTv~#gSlLH6i$l>GXa_mx@xA{Ow+4-Gw;_23P?#2VG6l^ z`IF>ONiv1-{Fcrq2YccZ7u|FY!iI*h+JCKMaM*@QrSj`1$h~RlPkhb*YTMxAVj;J+ z_K5CdJ*SCN1!lc?Am=;BL3Xl}9=w9!gooJ{bal5pJSr`m)zrwry)=6Nx&FC6pA1x0 z0nMzCQhQY+Toj5mEo^0bG+0PyKb*P#jK32If}s0w7l^Z@fJ5uu{4dyi!9SJRdeYl@ zk`hfFDfs=*;gE*&GwBaXXoVjv_hSOC3&g#CiHz^>Gq0ukdWCWVjNCAhp|3^5Kx)pBnzoQ{#SLc7=1e9$tC0(UT z*bV!3XAM@!BACy|Pbzx0pKcE&?-o~Cr@hlzMmle<|c#B;)kSYyN>OF-F!)EerU7T&G@~WnK(Ol7tGNHGT7DS zTJK)Itdg0oZRMq2wSNx1VBe41s8OC)^fY{^{VRr@v-M#aIogqy{6OQp`HJMngY|L3bFj1E0dLX%VFTMKSHy9oc*)?Nh_#c)y}dg7;Id}ufs(-rjJ z+B;S1#(7bS?Kfd~z8!8x6lAV;y3g7j*Wl;(XHw|$B<#EICmWY0$)H{4n-k&mt5^jg zCOm_(k|pAD*c>vuINjA~lt(eg&7;R$b;QQWt{{IkVgJHay}MZIsX!1sQQY9!AUk^ZMc!+y-?O!yM!oK z&hM5(ub`VY^CR0vd2@6wlrTU^J8c)VS0;ykFEYU_&)RuTdKY9`Z(E{wSzp%;uQw6h zhot$qXw8dl+|LcRflbGpqi)M%PPfQgUA-@?5S#e#(oJxnuM;uTkZV1hV6AW>t`}C< zXX6MBkHW)Ojt$22Q8~IH(OhE3q97Y|$a}t&ku)_~f|Q~)FevEFWGHE5!C?O3f?xZP zo?y7n{4U4(@AC5e!|>4eLYGgmiHkcg`K-g0&nL_V{Lh_!SyG;z{kz{UqAgE&z<6JP z3T~h>AseW6b+HIu<@d*Cpv}0Z2K?^7 zpZbW6?F9>GSoj4yJG6^MKZt+#e^1qK>v)x3yi^{=Plfi;eZ*DM_6k`_R20#5odJ(R zt##M=74E=$^0(H+kDHFFBk}OtR#IXPDma8)f4GU^x9Bk6p0x|K^=w1lPiw#0bql|- zEtz`NN^ki(mRI-Pbq9lgOTVkhI$$Y0ajD7ZS)Fs1$Ud5t>Uhb^$>|%0(JcaX8a|qGp z%S1ETBvTL8OB}5zE(adY@!zE)kSgiS-qh`J*uI}Da|<{ZtErLx_viQY+PJ?>>6FYFGp_UvV!o%F7xWhC4{nYcCl`z zbUS$4*E|nI6Wc?+AeoS4z}`=>#QiV2;auBtp~vK-$3L$k)eVYbU*E@Ay>e{~us(x} zJUVhvNr*ig7C|9W`Yi0rciJ1Llhp9HpZ!Xvu2N2VzPw|@A}TUIP~ob%^oE3IcIGQ* zK4%ZZz4p9Qr@qmO;-$n;i?ohZZ?LlROix#5IhfCXG+<+s?3$=mDo&elkYCA1C%4%4 zlx3FI&5`mFVYM8YuCFhZSi)8pzRSGj6tg>>0%NfGF(z5uEHN3|XCD-D<$GIUuZ&p~ z?%kUAS+{;VN|T+X6=mozO}ac{9#Anu&Z6B`Ic>>t+rdCNm-LCavkwLrKb0b3!k#rlP{0p>+{!qc6DSCZEM$+?@W-f(W26h=6~*5_RKhM zf9qywcukVLdRq1&F=vJSnR-BVmwAYmX|LbOyNyE#Q&gK|_c$$E$M6-q`g?H)JT`Gp zCn-lZKT$WzkBN*<_6tlS?+Jv3zriA%nZgQ;vEsUs;CXn;&_itahP{{kqxZsFgAR!s z8{UtLERFLT18UQHt3}!HxW0a!wae+1bX=kgU0z;Y>PlL2yTT0X0Kcf|PTDQWw!Bk5 zFv^%dS_Cdc#Iy`ax!8rn6$Ue>89T5`fy7rO?8!RdnSD+!Bfd)mron2l+2xq zg})?Y-|p+EaIEq$&Pz{csj$Y#o|v$HI?(O5OmLd?Xg76tc+7>Jv@f2WQ&v$%R*k$z zzdczzToRXbdGu+(uMujz!am zg5qm=Yo6hxmdZ@BseHwEpjXV*5E6(wgD@dG>JT07=~F7c3) z|EBxu>MaZ_e;s5)iA!$3>1=*opAf~gu5|TI8i=755{bG><$nqsry-@m>2NDx^`KPF)j{}GV1nHz}KC7+QkAc_xWYf4X z=_qO0?vX4MEkxdhcUu{+``-cV%y;!FyzpmYWrdKNo0}!9g?bC06)oa8!vK}qN*WrV zOz?w5I{LDq#>UjqfM%fKwB=e|f>aLu67-oE=kBYjdPA}ayIDB^;$T(LfYO+K2$sC0l#zJrDwf>k<4k~M zwI5WXT;Jy8=-Z;hMS1pece#3k*h%s$K$n2)Bo4 zRqHqk|BFVvmlcdwXKUy@Hl;UXe?>({p%})`E%%mI<2>Uh!Rxd<7Lm?Ja|sxPghOj^ zqn?Ys#rNWf5<9M#2^Cy_$-i>-$zSLLZ32_;aXcc@dw)d>e&#R%`9N5&X$~@sP`2p} zD;MT{@#7-`DSxwBNNX;Z()38A$>F!m9v;%F6G3%dE)?4Fqzw~#0HJ^u!HbBBKDA7R zH;hqH;i0scUtpk>yG0ZjTbx}B8OVQI!H9z3_UHnnWfhH<({Gbs(NJ-nhq?U!v|1eDT(UPSI#90UYg%OieJDb@?g9$S%f z_aykFeaiUtY?ouv36Scj9vPv97g}VfWqsm{`piTZ{xprT)zuDUJO{gT3B@zv4>KFk zw<~>$`?Me$_dk34+UKd2V{}NMTk03)78f5HzY~RQm6FmUOVR0>8K0UO$xQ8%;O1e1 zYw(^hk)xfdYlc8@SSgv}0*T(I>>BRi{T|+ra3ZyO{J;463b3rUZtE8mL6lGlMM5bl zQ7Hi_QBgp;8w8}gLBb#;MCmR;NeQ7@S^=@7uT3eDeCf>ie+F7gEi>k z(IQ{S;j(G~iDS0S01TT(5Sw)Y{Q}I(!1#(Bpx*{?h6qNw{L#(-%hl}#0ARzT2Rqv9 z;NwTeuIUHf1~3)lf&>+L)Ce8?(g#PK*xjrbfRc%VsT-)_K$~cnb`Ac^nX6fj4LAiH z8Xnczei#ar5C`S<^HU>MwcbqzA-Toy!tUjLveg=zgquJ#wyttJBe07RfippKJB`}l zj(Z-uYnEBxBuh+4V2}4~aq5Ru|0InNB{cQZfB?y~_$|bZf!sbc7x}2bli~t8o!hI} z8v{!RBDDcF{HpmZED6x*9sscM3!JZPfcYg+x(`l5)?fz&g;i{5VZ?s{QyLopSHFRh z`V;UJ9&WiQ4IpM4upo3hlWxLG@BvXZfNsb}Zf>u?AMCuYdF(kuPX?zaL^^Q({_5`H zGSl6>fl1J=e}q}@6eZ=!KO$=|IUs}y;S((4FB1~97i|0afPI;k_Mkge`~g_5J%DM9 zM<0rhMqihfE`yXER-EosMHX-QOcF37C}m=2&lSH$LHdufq0_eN>WmGR2!@Mh zJMh0hL1%_LNEO|qKS}6@~LQy@}wh}r_<;2=*vu6Z202P~BB}POr4wqV46`GfhImQBK zD${;PPV0wZp{td^)_aC0({)8p>HK3fB*5YeGMY|Ken?C@hqqP0$ zsi~%Z6R`3bE)pj*k_4B%v~4JY zl?sEbq*Tjo88%lYf>GQI9845xz+!dH;4`s-p`j9Q1Kgv{!JZ2Qyl8bAggP7gHq1|F z;04vgJg8&RHV@P8Pgo1EF_z%W`DkY@{ocKM?_n^Uf*S*z{w%=RPe8rgHlRuafy7lf zd1`7Z1_O*fZx|KdpnZQqk4mLp4GjrFn)9>3u%yu+t8j3JHC~S+8YI@ffY+W!1Y4Lx zuX!Fkg4r1v5b&6-qTUZi2uH5!XaH=9xQOTu(Rl%5&RM0fi84)(6!n9rIsx22aAUax za+JQZXig)EVr!VUzCj`F6!?RY-+e)O3PPR=V40EwO%UuB{Gdg8Q<;LqZe>QhO@C19 z&Lhf`iS9P`xWkyzkdxfknxj=&(yfk>TnGb)K>iB9Vq5n%poUg$jk{rcAu%}^P{_Y+ zGB^#aOK{_WiR8*NVx|7p%i!je<**HL1?%Ncpjy5IyxpUiE+`G)FXU;K(}K}zPK^(g zjgTQ(CePb~TBj+qqrIjMX@+f0O{ajx3igsv6wRT|V;LAgY)wc5u3-GYiJ;{{?XPbq zz}WKWQM_vHE6?6(asD;sOB;aDgBFOI?4U=c2NKL3J-uWtLpB`+hY9zs=TPBL;v3pY zFb)Ry2t3Tko*o5YHn#MS0j&(%3rLrdeM{HDCn~%g?2mZzo&&{B&Al2^2Y!zR1CB0` zLPdP@IeAXrB%8Cvfk5Pb)YY3M%MhCJn2odDXACU^Qwj6vvn|S&ZGR8NzgA*8?H>@3HhdovqgQcpnir?R z9S)Y_((Yl!i>;neC@$9Gw&HdnTBv-OE7mj$qYwJ=OC=|rE5gD$uxv{-jlwj;S_kzA zb#)yjyS9ehi}ZHTfk|O0E;z3OeB2(-xeF-^v-YAVX)F^c?yV|l5HLrBi50DYz^ExF z74#frDbXt&p%l?-`0$}bTO4vpVBUmoc?R;(U_w8L)PdsqR5R)L4rRo5$Mae|1kxOf8DH^I6BCwW+rA9+}$nT1x{61 zBKH#nz$Fnzo+^Jku$Z;xgkZ?iF+2snR3E>`_P_#kmLm0>zCqydii;m^i0ipPwBWm* zkSOe_tzKg`z&@u6Re~I4zRSWAfz*N(>LWufWCreML< zvN zDiR?t7391JQ}I9-Yeqb*9A8(bS}@H{Pp82Dvch%y~mJv&wKqL*co{CvVny%6Nxj-_%<+w zC}rbvfINH_1PI|mdA6^?$Mr@9o`WS&`cbUjpQ{ycxW57*4ba?7;su+95BtFjx-!@u zR#5yFM9^CC3E?X)YK}=|%g@1!MxE|`` zh}Llv?=g?Xu%g>9FR33BEvGSWa8I2?mw-gWP-ifhl8@HCbZ(;7GpE@W%y%`k zB4c9wQ)ulHkCZgvRC!cSsfl2qkR*b9exN=MZrPaHz10)QTn@-6-@qBGm~VLk=E`@F zNr4pM0$5=|Bu9hnpn>31+wOM7eW`c=`DBccY8-3~t<|7~wA*niR6~Ppz~c7pqrjYa zz|GFfdlo#>v(_8QfY^?RDUh&=0*ePNdJvrGLV6FDbynfGTzJ)kLii+0v-&-fFDjFJwRa=ALMz(B(30W zvVs)9^*h7nFlJ|Huzb@#7Ut+ew!9z+`%+-7asKty7b{9bs~YSC(U~z{U_NMoF$u)M zY;~&iH><0wsnXgIKp!QKY_2T;A0ko&)1krn^5um-!Xv9k$Hu?Ej{zM;_Cm9#FU-1` zZTn$|n%akBTM+!bhq0Rv!6XcIIxrhW)>}XyKyGg^Jp$9N73c$%=9L$3`FsH~0ZQqJ z;-!7TNetzom{#s-I5i82$hX9tg@CAdR`ycLD1? zxbS?Pnlc;^YQA(UmdB#tMs(Rh%P0hEAd5N%Gb}_mC@TV;&Qq?2a99i**pJB0m7C&0 zlI3E@t810}HdQWzQ3cfO5l0t0;}_1S)k6?V)D?177Bj;KsQD^#J zoFfl`%vI4Itd}=`@|a~lq#$ZjBHIt0HnyMIZ$B*QKek@NG(lOm=Qu?GoD5{cXAK7W zV8)08{IrOj1OT}L`)+=N_w5hX!xS1N<{uz-v;l5O)oL>jT7c(kz_BYKngpc>RQ6f5YQfCP zq{eEZhG)wG`Q~gY1ps&wr{|m^mFJNY` zjHTp%4WsG;*jfV01OLEy`UGY{i{mw5?+O~1nU(BGSn0c~im%j&><@JJlS*EW)6R?B zuN4Ygp--(bQ+Nv@=t<%80n;js&s8LS-Yl$j z%wa$a(@I1I?WkG84qP|DK0*(KA$y74Er_eC@DK@IR5?)jzOa8D(goTqBE5pnYkYUI)A1 zd)yUMr35EWhOv;MjV5BBiVgS#1O#yX+JHW8zIp2h_#sM+D3;PZSrztIOh1waiIya{ z>h*%jG-^TDd-1-HU>1jTCcI&4W=2x{AqZ~W1k6e7leg3BA|+W@&(XlH;z5k)r8r7WGvo9T_VNrxIW z4(@-d{i850&Y%QNnn>bu<#S$VP!Lo zH2LQ)YtvX)w@&j~40Fv5Wj2G_^bwdR78pjf_hA;ssytyyy}ky z`;@cKQDCYN7!H=~S@$0T1I!;-C0JJzeX~4X<`IeFJ%V`=;{`F2_$Q%3m?xjey%xj5 zI4+Meo5^p31v>Us&l$+mtJa-m49ywzlw4qj!(c#(=scV3E32-qesLNYMGde~23Az9 zQ@D&eIQ=~V#7A|kmRPi(z;oM3eBiB`e&JkVTGIvH<&B?WHg!;4>cOlYFT5_0H{+7@M}qGXAgXt?^G_ zwRy;`BLrm|Jw%>F`*a{qnDGAk83cPEDJy`RKEUUM(le-MVM+Fac?H?EZ!)}tVGdf; z2JrU&2`Mh!_3PxY%pig!l&pTjGEd9HLk5J=Y#Rk>BY7ZZ!CnB!$M7tN0UpE=f#AJG z3t^5Z9`f`?QB=+L^m%3*4}drg#eZ%vG4Ek9SsF*% z1^fc%b6qY9bSa4ra%k++$VL&iVPQp!6oA`x0E0ueEexeEz{Ji&V)h1RQ8ZU5{-5bu66W39>r-?coW_IP!2jMM{bTwL26Jf?ucUwRHK+ z)bI0RF0iPaA}9BShpGbaXkN#~v*`Tq-dzPN=dZurmPZzP(ut^DzP~bEnt%uc<{so4 zh-P;HfJo7GelyCBLQ&`kTpR0ZDfZh%zD}6p^Z0JB=H1#*Nss-rOWEcE=CG-Is zu7eN@W$O=eqyYXUEfM}>G5W4T>c1I`l5YNly)ncWmfVHkRwrcr2O@pjwTXbz-#dP= zywxZ&eg)pEN;Sd1bMg*>wLoO~y%`GW8pKL6Pg`{dX6obnLk z#{gP-MP5N6dw<7lXRB#^G)auxjtn9!CIpQ^{tGbKd)=!SKnjRh-JoAIup0s1u`a}Q z5Opv?J_!|IGX;_?I_eKK-Bq1RhkQ7+w%D$Mx^p6WeJo!pu7O)Psv@8*ir^tW0A4Q)IGiG}O>>|;Oz^y>Ve{a1#IS<&=_$dafG0R&qj8X6klKBGj^8D=(? zz=1y1w)h+5Kmh&(D{mky#YX@xxC5dj2)4i>bZ>vZ3wYbesuoef!H9b1rS1HN>mJk& zFs)*g08M~hZwO!@A(|;{;}iwOxvJ`FR&zI0odDZigu#MV=M@N-0rLEy zdo>BFRcM@oe&0_#lu^m~7&olP5LkVL$o?@*R$n29h3#>?(PlQ_o(ka%N`eU8juk+< z$qQ!8H2|`q$KmzZE9=!PgBi~mN>Nu`R==AHYPeMc>yr?S3+mxCuYlVAhsca9%3*Gy zgrb*jalP(eOIU=w0)zODnAkA@ZjnG0l34q>ZX5_0K7jmU-od;xMjo$A1Xp=Gvg=<~ zcvgMqdqerIR0Rf;)ev9?t6aI4^Se%*J;j#^o(ijmDM?9k0@q=`4&;;osi|ihxjod0 zf0_R2Y17PCxh0yr3$$w$39Q51eydS9V6O)b>a>2hlfT7sDLzj@*b_!}F3shZcETk7 zU!%ajj3Xo(PgnaIAe)^xtThmhwC!jQ(_Em4LR3mWiUbM8lo4^iacLeALv_G*_NV zBlmopEf{WtXE-*5N*A7?esB$<5)gao!J7r3I%D!dcMz>+bIq5zgYCxum|8$-dJG8s zkfqXC0|1WtB>>V-iLpU=3|I#hK%GwjbkK!8zQ9W&V}V0KaMfI1xsb)4AMqLHrEIQU z)%S5>nH~&*8)?r{o^0LT-JN`XDFNVaTm&cy0Jw>F@+9oM27#b6B>zAFe~i3)~Yr1gRDc<8NEi$zpREdbwN%QZI~{RHX3C@ zple39l|g`>d;&c;96^yVjLK_J*F>=Z(2O&(Zz)j8pKVTvcH4!GxLnsBqGB)ONMTZ?)K*RiTWTdj)_cASQ#i{uXlh#as8Qiwoc zfr0cH73lzR%j>vxgX+Hubfeul*%;jc*anFnfGUF)$Uy30Ix*bUtaQu)foL8_dqlp7@6WEIC(mp>NuJKw`N1vu*O%opZk%=?_uaeqLS zCj4&Q!1<4a+IItQ2kocDb9^ zw(-mUDZC|QFEI*?29#_D1f0m5aE0*JbnP557#&fnjkn3&iLVnx$K!Gi18GYXBSbDh3|le}j6X>cESFFa6DR$8S7_yi}^ z9+h-_-%$JlXZCqENRpPG%4qKvs48hf%#ahTG~&)XnZKZ+?_trND%5^!TkoTSbi!?Y z3awShEWv116x`T53yowT%n->`WsN0j>mycVY&9uL*Un!r;B^3SOrS;nhG#GLA6<_!Nu8Gb)U2p&<*|@ zKKI@g2glfc|9dZWax)(k@Gc0`V7@F&9*Go-nEeYs!Q&xKn}C1-rB zyi7AG7T<(JXFSe*#qIUc}H@7!wP7Qy31c05V>ii2&sAS41Pe0>B9Ak)xVzCfZpI@dl(0oeYuX7ngpj~tZoBL9L5a~l#$3N3(Rv5r8!TaX zB5It?v6dCb(P|B_oz0m>mO@E=*M}f=z5q`N#wcR2pn_S5l8KvvBY+BOA)H zO4#AI-8Hi1{|5Liu_!V=hiU#Jq)=&CpQ1nW z5rJEe0BmJYJRUq%9tIH|F_dci=j=4&;^$8tp0yLsWbKGp&u~}DGe!Iqa9h? zUmhC@JT=pA018_d^b%y#;0M&Vm_`3w6Q;@5vEfRmoQ7yKsNiW$wkkngR%`L~8%meO zo&G4DSkCgVGdJ_dzx`}%3)R*UZcGvjLhZ#yF~9#-yD_?O{p2*{h|taFEwz~ei~~oZ zep4FAd+QN^2I1-jI=Un9!jLyNS@@S5SGx4ejfPNZCBTdv7aw2 zA0Cfttc(%TKZc*{5D2W-gajmd2h(q9piN+75Re0@0aA%#UIO$C3EsUHmR+1r#$3as z|No6A&m_MBHs5u!6{_34s$6xuYSk||RR+cc0?gvmdZ%4-U~>#TfNTNo4bKhs_x}hL zdr;G)-&!hL-l7@Ddd_A8*G&9o_zs( zNfLQIeE3kgV!VsU>$DsdL?*D>CG{;NePs;IY{1DTLY^X^vxHd)ZEb_dFbgPo1Qysg zFsy%{sgV8-c3(jWRNru|dXAXAeNo%l*Ij-v4v=#U5hOrbW07C40z#>LhVQ+mUCeK3 z?rleIDHMxk4$PcSw>2PKcKr6_+ew_8URm10>;9Ii$+k*urd)Qj( z08ba~*=Mex0-&87Fi z>_7=A&oK;OQX_!`cz9j|#ndBEXqzvhoQhRdkFiru`|DK1*9~X_+SfF3!L|4V5z)-M zqql>CPyoU{DEne8n+}9MS&LaGs7|{A6jW48D-FrZAVF`kjR6g|HUyGpr z#>*3RwoqZ_p^d-qmH1lnuXG>ukN>+E@ht4kbRDA$d(wcXP{9W9O#xAWf1uxpg*R5Y zZm@tu8#ZQkw44+1bSlZayk;e(kRA^G8A_HbB7j(l8Fo3qg{cKa%s>=EE;vw5e&@Pj zinP)gV$cCXt*C#;8G+|MqQ;8Fwir!G?%%Sy>;E>V4x;@(oPEfKtdDUUnmovq&xGnP zQLn2f!ShaVT1XL-$vn#MVEd0dP)&4NJpjc&A?*GdZIo~m3M#-lB4tNe9lz?Qj|&u4Kr#=; z8ku4}ts(P1nW>-Q@bCBf+v`K+$PJO-){M5tKrr}5G27|i0z$E`^UMFuD&)tSYP&`=LBzWcL&6rmxfb-#+PDawEQ zKm01MuMYzA6e4B_oboBokdQnB3?RRWK~7&5y!CY!%1i!-iRCj`BVwOZVh}KQ@#5D8 zlHY^JFAHoq7Nxu4e$XFo%KzH`+L!UdNlIQ~NNP%1rL(Wpm&ehTWrzEj&(r1HuuH>K zoTgJh>in@ofdIqA#B)Kgk~o)L;uxKAGSD{S&2Yi_&Pfa&aiJp z@d=?wg`+t&Bzhjpc&m;_Ftd_Dyzb=~32$tw*zo#?nwOu5srVD?I33-M(w98R7*`QS zgz>XnzEuBkYVM_m>XSD@md5jD)J843ToJD{S|+ ziT>rI4+4xjzE^cJ!lnl$)dh3Elhbv!khbj!rcP3IbYn2X-a8^W9EU!(d^*7`!w-JB zWu2n_!d#!goA;PlWQ5qNtUM}Fu9cms;Z6{>2eoMt9$Ucv?h`VxP!R(KtFr92e3cWD z)qL4d6*D)xAHz8JAz2Yr*M^r0AmUJmWzPy1Kk8^+V9qhEH+%qlZD$Jy_#L7QMeRs-V zHx)0W4(iqkN8%^RV&Y@M<9Ay}X}^<(r)1`xkJ*XpFv{$D7D~>leQ9RRzD!;9i7w6c zXPTALfsBu9K{571uSQn;#uhoZs{uI)-RBWfJ&$R-E6?6PUz;A>Oct`vk8{hRj$8{k z^<~O`I$ZOT+(jX4hii@6O;;KiEb8qNA8DTmeVMo$_vC?Q=j_*o+y<$ehWX6o#aGYb z3?Fs-^hxPpbYW;ww1{o1bu?3Qo9S8n>o$sYeI& zg~l!i?Cb2A1gb_n>)Yi_HQaVRg1+QuD9$u-xij*)3HsW#%APbs2C-0*Y*ucGmfA5l zGP(!`y=|Jzg2|x0LCRPS#eO^8#SizY-O55bqF$)VRv0cEa?pu+PjhIXUsph1Rka+&=D4}#i+=l{ z`EzK*l4PYnYMN1*yN3B4`}QR0Hav%wOonu#L7w`Z$k#CcO5TkZ=sS(Vh6Ccw^^efi z4&Mq~2ynLx-5x!Rc_gkL5uxP=U%9%G?OrgrRg$I)7c&=f)mC?ud))|69`&nyk6&$P zK^Wa#J}xJio!?LHCA7@q11=d;HObJ9y~)$%W0>NoYRj*oUTqoZxaEGi#JpTW??v(66BFqD@c%44OtV@3z?zNI&5XPok4C2&3+q^# zFRwWk0`q12>_DTshj#(qPlvm5&rdbm-r2O}ZrpKe){osO`*0`IE1)I&?D zS)!x*u-I-zdwDb)q@<4r!aqzDek(7HlaaaZA{92p|1@W2PE%7pU!Uvx3 zQHE<>GQ6>6%b7?wA@Kkv^Eq;L%#Wfv9 zNF#JIU)bshc=fv6dfhbn8)LnF`#N!B^y`>w5n87i)BOLjteSd6a4S=rd8}oaxbo^N zI@34_$;VSIZEL{-*cp8#laQTc+yqwuj{2+u$&WojIzRj<(qK8?G+)~bJokHLjYDoi z*C-@grU|fdOVj8I?kfDkiEX6s(q#TP_cZeB+=4%$d#rf=r7dldo7&gZoe0E4GF;+b z?Pa^h4LhB(OfbDYF|O&qKl7f!xX{74ul)FvnApa1%)KOZh8;L%6_rVA@2#0PTa#Np zS86_soiJV|AwmiNj5qDsd0AVi>Ibb>g)NByf{oa z4r%?eQ*qdXj)c!Q9mRw`((ZS$b<<#UnXY}CwVG!4shsGOr=Ve+T*)qbq#W=PPxx8s z2@EDGkdboS2COw4K1<1JEj*sv6D}{a7JK?7_K~$hW5HKyLQ6?pj6L;P!T~cuMXmdN z7Zw!RpTxMmR+?dyU;IinqstM~ndxa)<`!LRpd*xhr(r_n6!E-wzt+>V!Pm8h?`0p{ z_N{6AGG~^n)YjhGI5f%k^B}=>^`W#P84yv zy+IiMAT+f7mWu3?62V(vM(PCGrN+}}%RA;l(Of^t0aUYZ z$L4$z#%2HTX@r!@inUT&da2S6+Wqz@W#IdVpp3pydiK&`73Mk-`E4Sm8(Zl_+CI|~ zr_{x8lf}!nN6Aeje{3zUS=%Tjw|pU!H=lpS`ng)wkBkbtt0--Ibm4@g4ehlP65*%E zd?K_i%{3Oh3RUu&mczocu%PD5xNY@5|0t9O1eYxt>Juc}KZM(D+QJk9Ey}ojuK@vnc$EdJ)l43|{E_(YSbyQ{?5srrGT@!ftk6LwE@1tyWXOvwwUQ2i4L%*MFttYW@Y+-4*amI zVB1_zZW*i;A|-GCF5V(xe+-@9J+|8*-{fwt?#hm$K|I^}-3IHWjb*Jw{ICVG*~Oof z=sSVmDNUlA=u=ho%Wa-<9JJTN3GWFjlbyi0U56+&prs+CiQn*rl;EQ~WR;$F6q~s+ zcWmT_qHdA58>1UJ;IkGdbF&^%gOlNFc?^|tMs`f=!v*8^)>7Cuf4s0mcZE}KSRFoX zK#J~!ex>3xdW-|#y-}J&x)W{#>9kw&uZr%6S_o}<*0*%H zud=T>goG;bM9AIDrG~>2KxCC(=GM6s*#X_{j`~`;aG8`x{GQ$WNAa5X`|h>)2T0_@ z&23t}O5El2g_utP93hGZ{ooD!oH@2#CN$@%bz{pjvYvv#aNv29qGPfFeXM>5^_3f2 z*e@Rtq(MB;FTPeTbAwiRYnKPUT46hLPy}l%pELMR=$ci)kO+(4m7G&YZK$yOeW2;< z5{#mI3Qrc|hgpLKD|#L+uh}){hGx&S%^ciLfhUvv{9O>c>aOY!*gQdX`IHJrD+C?O z3+;k`H(B_*=7wA&iD0l3O@nDc@5knqU51H~2?DAepAVPr3B8bLnZ5Aq`bL;X+7S#9 zjf(y3dB**2{jL=K3srk#U)+{d_%YU7@~>}ATrG2HigoiYCGv_*KY=aU{6I@kvoqQ1 ztY+@{^BFE9m<&aUxkw6(Y-JYulw=?%k94?!i1D>ZD49?x#hgc7aQKN8 z%Wj%jGFyOB#E6si2^zSpPbc1X9zT2u3%ffn7em}TdLDkb$kr`GHnJQcdzOH)tRk}h zn2$>`+zXcl!-SP$2XWXef%O{OF4OMy4fJ$)_*)V6C3E8>Fo8S&3af6ckrIHriCSmP zxU-P^0dM`(>~gzH zIisINU2#|_JPWV*@`Vd2PtLR4JQ{Y#+Hm41$xxvcXSt^*rCrD^4z=T<;zBC}X4;g? zcJaHKp>ETynsy~GZ2Z}a$uGSzNv+W796s>QQEg0U>nkd5JP4N#5wPiBsOzaKC(qbd zYa#*+db!OkU(TzIa!@McQVStf<7ZE&T0Ic4{}3%-z)@W257Q|MxjtcZ$bUs#N?q)5T|LO5 zj&Vy`(c^`RrOc3&$B3mA<>5+qwzn+@KIO{D;KTmGOJS}w67uPG8X0#gRZC8p)6wS# zG4;!qocekB?O^u``E!fg*Gf)B_*4bqk&VVAC1hMFWh`6$7*J$Bg)c7uXib^l<-4y$ z1cunYpfD{eQ7E;rfL`W@yE7K1^QDa$cCTNH!m8w51H3Cl7z`$<=GzEA<*EeXNJLB7 z9xgU~gvZn#{q&Y!>G#xrJWDAI*L};$Fx z5hE-N#`L+>f;AHxQ~CF$ra-psM>Y5<@G0gfem$i*Xk+{5rOq!N8c_kHzaU=28i!EBI}GG<)Db~k$hoTY^rv)r!CE4Yy@6?o0Sh~zTu&EQNR z_u_w_a~y-o7%1b$%4(fiGXdU&AwHkD;|Rb&Ef*uz6N@> zSznft(N$JBiXlyodg=j{=N<}N_$g^wuJtBtKPZ%AgAUG9*HdzVzZNi+-+qjOI++PD zdW@Lp(6R93DAWIsK9)pp+rT17G^SBX5 z)=P|$?S94P@ZUBPwEKe11Sb(8e$YW_{{e@biHob~W9$=OAD{UrC)jzPs$petYUi!* zEcCB`e$}7AkAb&1$cdYyR`}+lsC399p+ulc*!gf^%cifcr7h$ZQg3fR2Iv^mOI%OM z3)>OEOA;lq`x3_of4hJO4+nde$^##8%C@{Ye#N%D7q}yq6zF@sbR>4N#>N>BTca+D z8{$`dI}`?f06qbM;3Vvdg~2e<)Kk)ngS@O8njh#$4PE0U78+1Ry9b})%RYp!V46Q| zWaypeHVyL-GWJ`pc7GFN@W$-@)Qs_7wMyY#bd?NWrs*%lO3tEA`{t1xCr0MTKl#dj z#v+ir{fx`a@jspF2gy!YWa!(^#Cf!#DM#W7y();Q*@MoL&$2;dUAAebq^wG|*~$Gf zGaP+rSH0C1{8$>jJ}(;RkbahAdHP26vpo;>R?GP6P8+|h(l#05Sopee?9a=fe0bc~ zK2PT2#Ei-Nk6WNE3Qlo_w*{3U9IC{~r3Md8c?tr#4B26S-h z%T-CIuM)jt8N?~T|~>z@8!Y4R)`67kTBH3lN-#m!rEOI zhgOSTpmWZPI+xiGXgzL+5#4*bo{|#()`Q|3wY87f^YEQ0`$z>faR0g2I6mIn+(83Q z@uTWgEAqFQt`H^NT-{DB;#&ARIjV}mJRyZ!c&VkB`tZ^t)7Vp4?KmWMB2U92FQvUv z?@?0=X*@Id2;NfA4+|>7a+h+J&#kieUKs=)|JRc}I3aEPXf#o2)?YD}x&_`ZY9(Q~ zZ`rVg?vOK{^3a4wUOb#z?=PY>PFPd^_I9IX%{t}D^-wZ}e z?@db<6|u*|&%AN@VedT*#^aq4A>mz)H3x%9xq6E>c>`^^f45+alcv#~T)D@2&jpUV z|I@()Hx&QV1N}B!`&ws|j6YwjFY*7=g14X9AMXFF1+}OxIx1!F z7UX$8P@f+(P!9L%Rqfa%0~>C#M5?gH#G+zC{}FxXQ!xbZc(Ri~w<&Z3DB5bZqhmF%gg;bf4J_tlI% zMtVEr^>Ngz=0&v=dh-%DK2MU-!+e{4%r0sQc#3I2u4AR6`()YD)YRoeaJ~qXV%6*2 zlCVQ^bVz8ZS#bhXT#SK<=?Z?A&8;n;KX<~+ybe6TOsIG9gO#6YajwYcwiX4Chb6QD zqb#e@BI#)UdmnsE4(<9P4rqKeXemk0oO#_8dWn^rTdBOfJVw~FMjIr!785mEASdsE zE0df*ukm^#H9g%7Hg6v;vw2N#0_3!c=@_%#G)Z!AA0Ja7YpIvprXito&-Qvdlgx)} zK~m25y=}7%(~16h?-aMMUDx|~bZUB<1$0?Z$*KXPUaOAE*_41@a5IJdkHtY$FaRoh zZio3^iX32xEq4Lse#)`3SoZ_={%T~ced|h3da&3F%1jUmD%V^PBuZl%NMmR`Oued- z;PY@gGj!z4Y#8cHVRW+{(ZD;42VOFRcm=T9sk}Aw!7d;R*kmE8pm51}_wL>B0k|aHA2?Yh4(Y>UsQ={nUYskec9i1?fGhX>dA5kE>>aG0Wg>!bh82FKx!TA0V>Xw z>x}gDw}FNBiauVzMILPrvFQo}x>hm-NbC+kMNkp$x^Sw8P5zF1OvXF6xEOC+ED|_N zQVssjgJm#@ct!6bK)ta%HexjjRs5wnr~<2)Q33IA6GsO4Qz;;p5D)2?=>bkwvD1q7 z6!%Nkk5p~VD*X-m{)apYayY-24UCuYO`TSYp@KUh(Cak6CIx9B zsNWkJ7|a6ARSD`qeZbO%#uW#_J_Uz?A6SHE9n#OAQdvG;9P~^6)u|h#bH}@H-N901 z6VQy|sCRwl`*%6Kxo;tO<%$fjgTm>HftvJj5VS|1Cx0^CxS;`bp}c-qR8e%R$jG<{ zo(Nsg6DhC3qwIhk>^hLd=7HJOd4xznHpiitJikWN!G1sE<&PE89$J>pIZVchQ>Ww! zt{laI^*cCeoHG*q=VcmUZybu1pQM%pZKnwb)~>}c4TGYt~7d&&G_>Va@So< zp-d6pP&sBPE)R5r;{MS1_$AdDkYW@8QEX#rM8&ccEtZ|2fX)Q&GYfs)PAIZ!Y4}w; zw+Y_1$#BhGU~*QPPARI49{;&RJ8rC$`rQ@>)+~pVjC(uN=NIG@NoLJqG90^Q2*-~VM{EG*A87qKsm6g+$vanrO8(GvYRhP zAN2R6+&KYk>=vs+NtAW7)~^@}~IGh?Op4Xo0I#gxCgZT(V=DhP(0FVSyo=om;HZ~h1U<*Lycu5aSj4{Z0xYh3hcVT1p zb+9RD+jfBD-wPamL8!~}&&1h`TpZ2CN8DK&sAX$tkM^ z*5|e0<%&FROdw80^t$Fcko%f~Xki}ch(QBq?sa)@&!5`N5f$|(=`k>emn=(8OPiXW zNN7(6Gh)P(gR3nMfaN>@CJmWTmzM!Hfd7jZ${^x}wtbDx4DVM$S~_>b7443m15$P1 z!4-nInyGXo2L>V*=e={|=g)===8*#|3`g^)6rKVhmd|hP(CJ z@rRV`hZs*N{nXh~e2Ayu!;DfCKb1|(H49wV786UpqdALKm5e+TL!P3}`entT_???$ z`_5_dau#Izvr4X7 zr$K7=lq-DG|RHB8U=YTR&V}yPX^n z?|d&g7klgj$|f;ht^v?g{+2ASWtju*{xn{opq=#(uAuHa`V}ptwA+vF;1i^cqnu-& z4o*!fPE!qQX7Ai68Gca8@5J!W=LT6Wq7n4W^v~R6un6Q;qqrQ+|Ad&2{6Bq&jn6Sy zS+Fe+{5V#7@^3q}MW6YTgg?K^CtjysOQQO z<{zbC(@%|~G~?%2xBcmXi@9(Xe(xd|?d?lMGoPnyn^aU&JFVHhu(^2o_~h>g{_a&} zr0|d*{Gj_Z7_EP5w>MK~eE%mT@rBQlaT@JSJ}QK0;vbj#CryFm=9YGZ3QgL?Yhsu1 z)_)oazRj4Gi7yoDi<3O$?^*?ls)>Mg8tc@%~RyB1XT1Tq454 z+iKoJkK54~L>ORnkc3~5`bFERhCawRT2C1#Dw@VfbtE354vd$Cbvq?GaP;D4>xay% zGQ+$hG0RTAB%;+sT)fH2-J~jE_m5z_l3-+~f25on!_ArVD8=O=$2ib&$g7vIq0@S) z!}BW`KeOND{{6UrF8lq(tK4W()I%^B#V2P{FiH7M?GXah3$NPTVKY8F<;CbDUJXo_ zE_I$mrvO+X&Q?Z3#vz|t$O`gY_$`z{TI17AQ4-jr834lq)5RsHxb@iLetW#FM1=VK z9xdL_BrdxhMMD;_jz0hbUdN_J>FWKV2qrx8#=q}73>Be}k{L_w?BrziTq4AfCjr9Zz z3XjASK;uFiVu|S6uNxn-RWN~Me_BP*1}39-)1k z%LX&HE$OOD6Yk30o0Fx=Bi*}k`K$@=hPNJRb~~C!_LY2RH(Jb^Q{H_s#b7aqn^Q7i zY1fduUD;P-XdmO?)WF=-N!); z7QQtF!{ap*=XSroR^A=&W3agEq-tSx5X|W~rJ%f<8!Ry_y;wL*Ht{u3OYoEF#HOXV z#`MK(i?6&!i|L#>n^qBFMN{zX(_`NQ$9@#_9ZWq5DR~kXlD|b3R%Df6R_uNtA+GT% zkDf=kFm*rsj`BzadHjN#Ls4IX*1SZhMufVB*A%5k34=!UK6m-_o!sdSX(HGUZi#E`JYG#~ zTn_JUa_>%h&R`KOteWqgK5AyZa;f{PRoa@TLU)A2uk>0q8ly$0LVR7k#O84~Tcf*?Ldo>Qu0e$0HM&cTC1J9W^^xO?bWb(Gy+lBn~-Mtws z8XeV^@^hr0yX&k@Nsd>Al$>#UJNVhzXtA9rwJNmx9{VcpL zV*LH#B0h6Xd~Ztc#QhMT!*$81%HBwy+*_%$59JFDj21~{G-&3#(slW9$EjkmK zH#@CtKFdtL%D2MEnrlzEtO}n-Y9yM~Hx$`75GK%1Q5wMuMT7ApPs-5|yb~jM zlJ6|&o;+(gtB)OjH1$6rvKDX;!>^zTIO%4Vsl|IfJ0`OZ7Um`K1#3bKfedU?ng4p@ zb5kZ81+3Z%Bye;EjvhB@bbH)>R7C5l*l=lwtF<*i+&2Rr5K80lbvK*z+so&@pGGU! z`z!u@aVfod>qbHNns5eK-s<|;zLJnJ2e~h#n>f|yqtCE?;5RQO%cmdy29(iC`iV`h z-;GEzxcH@zt3YQo`qq!95c09Cici!qZ{xqk_3~+)3IR1@G`cjzGtxEK%=8l~)z%AyYa4sWgm5Uf8j0$0X~B;YE`0Pv;= zn`?ak>D&vBQYiJ15#BGdwY4?v+X7Y6ciZx;b=dQvea=Pnae;n$(N13XhoIk$@ww?$ zJAaF7uk8pPJXHFJ#b`G$~a3FqWjE5T-M~bXjQ{-qzu*14m+$?#vz)^-_)|=hTvJvyLZ84v7nf8d_q0KSEBgHA%FE(_ z0;KY8V}8imO`9Gb6cIiEdX(RuVIgL7ZD4PckvaTZ9OY^D+&>Rrm+zmp{)#b?2sP0_ zQG}kEz79TLf8gd7HFHo<(ECCmIYLZ*A*epr>|%`F^nvu$m)1m2QnzRydwf2LcrOX| z+u6@s^L<1ZouNvrMT=P9+P8uG;x?P1Q!I*7$))bZG+HOEvV=FDG@a*B?&qvLo7@+X zAmDudlHsSV09y9e50ki7kbac4U=>J zCA%h`wpW0Z`{5l#v5X$SzhyVMhsV3ApNf}%XEO7U7vncTQ%j+hmzU4`Ziqea7@lm! zdJ7BW_~_>59LQ|z!Ed<+aOODhOgy|M}L9|gtouT@S{MNn;0wte!$MlV_uYvD% z!Ps<}7m${E=psz4;QgaH5lH>5D`~aJS{BMk4w{3tpg1yf^H z?8ejq=8X?`CieTRkbSXLsy_JLN#_9@(P9OKKhsDf4eK>EHO0MLF4wqIe`RRqg9j04 zBDysK7Rh0hb}C!|?{$LIm7%iUyM3qc8bvK4>vFk=r@w z%0NR7*mL26s?{{eh8vR2Zdo2Wlnk&Y2IK5S1@B`^2iC?&nc-B;0F&Hqt^JsS6c`%H z%i1)juVlTVqN2DL`by)@E1!NvZpO-=fy^Z9J6&2nm@OmE6hrrLumQl)PMbG@wx`V6 zx;pXhQ;Q^9(;u#nXyj8AIuvl#^}n@Rr+CYe@YO7C!)T#W-FleOgxot~w{@Fo`}sCT1F;0_9mG!81I zNuV@FUXBKY2Mq>4&|);~E})@QVF=JvSTy|Aa&OJuC>UrfprdsyRU;Hh(LONAB91dQ zc%crV?Ke|bGgaCiQ1`(e2&rl`b|6*-#88RU}{^zaU$%PAg&m^RP}wQXig)$4}t z*7Kx%IRaqs;wTGN8Cav`JP9S$8^~|<;*n!QrYUx3M$zbzHuQEPEtO%`fn;VQdunJE z5SIthPh5=_y96}MBHfvaj(I&%+5>N--$fX3_2APBVge{4shfV^J#p8nulgqC`GUqVZK+xgPc&M*?D;eC>o7Cs>H z^S}Pw^4P+y&M!1XVNuJz>?M?LrL;B~Tpu27`I0cYKU1W}yFdLiVh+?Lzl~I_$?NyO z&ZJ&(c|U0jn2%)@X%)|&%{i?swY;#upVJ#OKjY+Fl=v;Imq<6wnKBhNECC#nlSnvM zo0muh8=ITYM2##o`luQhv=5w%N=a)ikwZ6DB5Fo9m=)-mXZ=;BlA_{HSQ%0skwNQj zwe@L7jqcz@4(*$%@5#$&jqU}%P>t~3Xo)r7^ZT@B=L=2x0W>cpqkQr6{*u*dY9Ybf z6ic`|20?zEPjY8oO1QK6fuql4I%kUffB7tC!W;9EX~b~rXJSYMWa3uihw!uegZ#-0 zd5gz?!xUTcSpE+;=ol(p*TGjv29Kz`b1)g{O~TEHXN@~|y?y(wp8g&^kUlUvEEPQ4 zACVQ!i_!5=ixMcogagWGRlo;@kOHc54Hm>K|usZ+{i}TpY0?l%-M*vV;62 zk;oS#!|aO0^75@`@1fu*vuYLZ_uuCzDJ%D(o4elPfPNBzqNea6wK$0;ygty>fZTvi zV;zIpn}qAN$^MA1@c@&jq6(*i!h(XHcQxQ_*?8D7TlZO(pdxh4qlcjug+i1nwV z9_oAR`UkMxG!3rv9bP>Jz^j#b%hc{Cd6#e0ey1HhKBsd#j-=M z?wuR^h?$2dja3#56d$#-#VkE4+F@7|vYXtv<&~A`_d?P3<@HpC{#guK#uJlkdL!Ob zb4@F5?~64#bcoyOQH+*f{$OF%FMF-pMI0e&d6LmbT;zJYQJB&(Gcz;dpo@}0ilXOI&wvj|vN0{LWiGyH>stt-GP~p_CMGN2n7sJ$qlOsH~Hh#@$R1u)76Ixp*O7GxEHsa8XjW;e) zHqk)a<3>QRH9@h_Cgc~axM0aAGUZ@h{}t+@g;1R9U_WW1qDh7A)<7X-6Zu~Bhiw9# zGc|AYrRzS3O~Q`DBNF101Y)OdVf5%`3{!q8jL{Z=fb@L*;mjwXPaYie@hVxM^8(XW zQXEkQa70Pc5we$2kp*Y0$8h@aGIoejWzSHvZN`<3qY*M*nD@{dnI^|A$X2&Z$BHf|6k4NDiaC6$30`yxylXU6DcHDQkRFtEmtJ^HSbm_r? z^2hV#Hwg=Ih?I&(BDYMVTTNL>>FLT#5$ouY@@3rFi`Wi~m*7;nhnC>~1VTgKe(vSa z&>Z%#E~sYFKH$a|*1ma#`LbCKIK*s}bFe$Pc&zd?<<+Yn5dc=-0qF=PxIw{`y7Z$u znxLT=mtFbf_aQ}mW?kuuQd6Ne6a2Dh$*khekS!I#gJb7zqgXvU+jsl+M{>{qK2@K{ zov8F+IjBFt{_%7mwWrq?+hiU1$}yWxxxfPMe_KK`xjtN@Tqc@%~PI|gxVCa=ai+u?75>?tO*rwNZ!ay=?!T%|#;|XGm zb~)kqGAZs%Y!?^2B{eCT=GuKcjlUZjCaDx#9;*Vn@PyS#vEG-Kcu@Oam2MBTim_reJb3 zjQF$mK#)$y7_Q!I?bj6%B4(bLxk$@cT;y(QhGX+H8QZy4Ft?!4vN{Qr^8ir6`Ok-T zw7q!X6bdeYKkYen!-2s`c=;{^?L{GeNxXzZW`=NO&5ex%DKTwqR)VIMx-OE9I)6E4+IstWQ8VAA#Vk`L)=}-rZ1w=geikpLBw=&Ywo8MGm=HCsN zh7OzCkRUJ*%sPQd0^6`ztx)3{iQ-Qt84Erbc$|~bw! zYWs&V%s&9l9=S zV41o`m`XJ8w|R>0C>DMkJI8rGdDg$kM*QObtv72f%p+0;Sc^X>cuxE9!FaWv*qbeA z+HL@Oc-QXT>o#pVNZPESn#(43PoUAg)`;5ldskOiFDyG$nx|S0%C`I&^EAfFJ|aHU zsP_qnc0?uqJ19#MEP}&f%1^m1Od`uz-6?7r*^Lkb?SYusa0EMFoKLxxgo9Q9LX@@dA?ozwR;6ulcC+aiK z-SpoTsGfypVk;-z8}3$4!o9YKI_s&13`v3`!O{_z#D+&l1a&0$^bN#Ig5VRvU+5_7 zJ~x5CPOPNMxe?Nt6_3nK*wW+<*E%_u8VpV zZtur=dG=sH)FU|PFZzi+(bBPENN#4kJVE2WxHq+5P2He58$sVqR_b$ZltJFum#Z2d z?QgzC;t_CAAe3wXzj$PNs$+Ucz6y_*l$42|FC!z<3zkPCJR-4Q(3ua-5HOIkGp%vi zXzis;E1AxA4H9qfyf{CMB5uvAD`qA=;okc8skP!#Ik^!^BvkXWJ3KB z54HzGAUL*sW>rki1ZH%bu*^=JLh+ttGK+4rr z5q@ds;0;$2z6I;FA99|=z#+#21I-V1uMEBP$?u!)fgPK%74PHH1^#4O+kX@%}Ciu(Et zq{~tQ3==Rd*ZfSI4?QCCgi!u=Ex$U-pjG9EA9kRJKb%755j^%f7Fbpz_HBWZr4jS5 zC+z3Q1fRjo19EoxN7vF@N}@|93SX-Rtjc{ujg984&&1m4DwW3CfL#eY zel0CFCWfhOzEk0Jp7rQ!vPiS}zh3LZfTe8q&+=6JAERw&S(uym+kV1%oDdfm=Q*Jg z@Y6*YqsC1VBb7C4b`yOaww4-=2|4o!8t5(k{7MV$$X?NJgK(>?@Qs)WY06S{8|(KU zp@yyo(CZ(xeB|>KdMfuc`e~6_7?fV94nO#RZXjgwu&~va2QyMYh~fZ|sXYPh8e%*GIC@bOIBmNi0leQs?Y<|c#e~FoBZqjia8UO}j~&n-xf*ty5{+ml zZtUCFP4KMx@5^oRb&H5>et0T&?t%r{95B)YO!n^&abV#KW=w}lVqQR8mM0;;pv@;h z!mS*qFjrt7zX)7RFRa7}NqV7sXPqi*4`u}AGNRd}mI z=uXUg2x=1f{HKql!!fzEP(cViq{2`UoL_@;xou@2EkIZU`t8ZGNm$zT590sL-x@z4 zYqb$JW5&xm?T0+py2%!VAkQ!eUa;~CE;{P6ozO05M6hsq9#DO)Amqu>l$DiBCy|Pq z@qSkY42R_bBO=y0i}Sx6fvk6a@Jlebg*o*P^g3QV`ElGU>S|U>pwMxFVP1K#-6yf7dEFI z$*!2}Tm?3=1ne0h8cM(T>Au!cY78Oli(4bl)`Rff!((DxstSnzFYLJ}?|#q0!os3b z-lNcte1i=pwAVr0>ECWRJywCJO3b1|)(Es>Mv9!x` zOxzi`E+g4n{TP;I-kZR6lcS6O{`bd=<(;-!UD0jtd2}mvU<9+jU&g^Wdl&}kuI)b7 zg2Y@N@H!@V#Fs-tHbEP98z-qFPCw->TOb{J6jyAY@dC*tAx>-)SS9plY9PPl2qt91 zcvt$pd)4HgYe2E41?`+B&b!-yiFP;fr?SV!MLgFbZ~3CS!$KJcp(qErz!)sOSWt4K zy`JlqWw|xig0~k9{T{jFUXWVFHa~Ep`^AFw;o?=dPbV7gel*<4a4z>G?6E!W`qA`4 zG9V)c=tVBp4m?UbSZycw{NCH1iz>@{=?(T7vI9fo>KisxP7a2$wW1il(YRtN{5oxH zL=ut=_czzI0^--eWK+9?qfqvlQB%xOwXU3z8T{`F9GaTY0n;<{4kl2k(@?;#MP=setBa+i ztaegoOP$ODZI{T3X{4AzJR}vQNjO@tL~;&aM89F+|l_IZGaf>CUcMt?MXPj(oJELWY?QL8}iKMMqL zT*aPc)~A2QiIj$_$-z#LX!@4pF(;UfBP1CC6xf(U0;>Vtg14N#^|$xQD`4UVk_iXF z>w+-awWt`NZU%(n<3K}u18>z!=Z{AK^~wWW)C`_QEdh^Xyc(ITW4vciHMX2;{{S56 zdcdU`plOAxupf%XkR3aAWP!{}H1QQxRZS=p4I?YnOZ163Bxi%73j@&VKBz>2%uK}o z!pIF*)YQoNiY=8y5?9c&j(_e9l`Op|bzVvX1&ST~iMD|tiefqP2`$tC#2#5a5^U}d zE#%1Q&&8Q|RlW|4t1XB;Ayo`+5^Y$b1ETg8Wz39#NIvQ^!sEbOJUC#nsKZ5G#$+l@ zkPD4C&h3SHy;?hL$-=yOF;xw^5y)p1(WJZ@R zt)P(ZnvqvZ1ZBKm4T?W8fp#jzdhrGIDyWHIaB1}&17Z?f@EZ!Nk=YF^jt zaAanKIOaK#i-&#pNvjqh}eIrDm^-z?*sy1AuM zM5+-oj9r=NV2~LlNlpK8cBWmz)5dXE;Y43JlAeP&QszA^JngQFFZ>~n z)p3NswH|Ir2CnNDz(=e@8Lz7p2xcSPi8>64ya{KUfiVu2fUo`L-+@GT!qh8{rPO(& z69`yFlP2MMi$C2fLvGLoV_}%UmU{QUpl&#v`C}8~3v(rPo+`IDaMfq8FY!|7`>KK~)e|A5G;S?%r0v#-9=AAGXJchEO=8tn-_k+Y=| zx`~#w`Xqqa&KRkteZ+U{V;3rW?BJ#VjOxPx%)-aA4nfy!Q7-`_+oiC$q7e08P9lyP zeGEE7fv)`JmDy6sY-mxXK!mh?_7-WoMiNZ+ZiGir1HZ!x346Gq?-sE??+k9@BhF>8 zB_pgJ9`b|+YtnJRW*c11`~g;mLqSVIO6yT2=?Sz743n*Xc%{_&n3Gs90ONHsk9_EG%EcDR(E+u*5_PDXx+t88LUZl0LdiQ^qyy<21naox3U`IB6|Q zkOuz__0_whda0dg;K;6uEx=HTQK}#8>V~Ek=<=T(6D8xlquVk z?C3%ya74IeQODZ`PGLDV9GN1vmP}pbHQgm@aInl8iZ|0R;R|;)5tM5pv&PY25iN^i z2RSW>htpS}tcKOK@0y+!;Li~hG7yT1Y>NVw8o#*Kzl*35 z$`)kb{eem~BhCj!G^-W&Io)g};*J_j=txCcazCP*>$hjUCy91Y0> zF!WfoWy1Gw~;rb?b`oi#*Skb F{sWGK?oI#z literal 26035 zcmagG2Ut_fw>BP%qM{(6f*_z&3y6r)i-nGWjb0T9(xnCnp&k{GE-iFL1f=&8s!Ee4 zNDB}^TBxBWfrRo+^qg~l-@V`c|9Ku|Cwpf0nwhoU^{zE*6Y@|?<)_)Te3|HoXmSGU=l*({#1oKkKseDtBDg*III zRR&Ybj;62Kqeg!wi_j2E@Ci194}G*@Y%PH~XZX$UQY~t%Ss7F&^sYt9h}k2b!Jfs- zoLs}sICCYqj`=|6akw|Gy;8&DoJ`Q6Q$aOK7;u<=smziLzWcceLsz=&$As z^?=PXh9nzA7SBjUC87terthCZp`G;O_FG%gzKO{Fmah3^gZId@NVK{be6mY93H|6c zf!k=#Cq%tqICrMLT)gZORJ^52Jjoyz=^#;N5Y5&w;Xhnx_(`0PfeB4add2A<%m;-Y z9jBEvZ-Pwu-8;3^^i*qIF08Poxhn}Gp-9NZ%M5lk9I0b;qiuks(N$8@(M%qBP2Cxg z;?Mmkh;j++m(ak zdWw(3V&tL+Jh-BcgdMpKDHJPvk27V5KBUV~Ys!Lpq@a59N>+U`IBrnwJW8?P7Es-O zjUoppaqtS;ouD zf(sR7>u(6$7Q}MmlDH%P zvVVs}JclwS8*GspJUG+Bh3LMa#UYpZc6_Hpd`%<2jV<6h$M^H<>7A;$Xhx|TVZ_Pd z2irWNLNH>UKQf%@PMqEPX)z85C`VU*Qx`N5y%>!!Oh$8e+bhk&Q>>wS0+MF*Vq`Nh zGLMT1?nW77_sVBlaxxObE@fSUED$Yg>&{1TIv;-Pns{q`*aEF=>cWYZor53d2Cv8f z-FqC1Qg=kx-_#Od#2Dq1*o)@U z%?>k-EXIQ9rrCD<#`R{RWXP2C!qK`jH5C^upyz3Y;~IIZW$?7?)Xi9O3{vhiwgPB_ zw+tlHpY^!m_sL6l^FAZP1*&@@BEFGmn^%dG)J{oATv*4!SB%cnr;m$I^Jz1T>sVpz zGngf%dk((xl8FT+6TEZWcivrHj^x{!(K+E$|DDvJ6H(L9TI0)PaA+Bhr=xM0`Q}Dl z%;K4uwzm5+gF2DZdJM)>wBLJmnJY9O#n*Gd`MF_IZja%Ua*yAwmzuMa3L#sZsmf7L zrEXNVN*$arXyjs3j$*6In{jVbjzF^Qn$EBz_5S3PGu?=TKs)$4K6hQknu-;>+M7i^bqPhX(HNP!#_f2sEY4Jhug)fRy$*E zgF}%Foxt8{g5;X>(u7aX)vMt;_ZaUeDP?(FVhbzbi`nrh_)aq7^?T~ejZIwOe&29= zNTzuzfEVW4ReW`sB%pr!m?7qS@Vl_p`TD)&469r(IilaSO;X#S{-LMkK4V_~TLC!s zc0ch(oJogir|RRIS*@^J3Xip8S1K;P(7c)#v;CCXjHz4_A=k4UQBdmi!No>y`cTty zl9jmW8f+@~mALLncOqwln>xcLu9trTTYN#^)B-czj@7${KH?abV&@j;-m5sYFWYm_ zXD3(HO481azEJjh%9W<6Yn0i? z(N4}+q3uev)!_2(Z2RWEBw3rc+V^>v(7OyJZ;l(^0(Y-j9I0l#OcfDMzOM8*igY3P z`k`KN%9BH1 z?Z%7d0FC1Zo z!rBcDi#3@Cp8Lpq{9xg*K%TCad^E7(MX$>971bNm1OfAMBqy$e+p7M0>7HRsFG`RZ zZzEJ>VKmtIq;J{HBn6RIsBpPQw8Ho3c>Q>n_^>`EAY-tSzS#j5y`N?XkR}Z2en~Y7 za^QGdpoCv_JL4J6Z3eaCgCFfT`?$xXm83s23aVa+bR}}5$VC`LBHd3nKJ{BOE<~Qd zgI6X2uDp4f1wOrPXunS=vj^)cq+5Xu+ixH<-76`t8#6Jjgd@#&qBxE#D;;)Xs#Xqi z{=$x`|Dbc>zx#Znz_P`lrM&$nsxUg69J1i<{UUJH#BN0oKM9288FuVGhg~>G$9>Wn z9LEr5PX+&Vwa-OTTviGA>tRA)rkJnbi z`R|&EA2WOxbJb<}fHUymb%?S_+ecC?PxM%mMnDk~Eit{~0=3*#i*xVuBZib65_9|1 zS8*}{UQN!?LwaC2DK3&FwR80xtnrE|Rhob*gX3qcR5EpA)szk69ecxwv15*L;bU(- zC78!cSI?^9K46`+Zd4f~$V)BNWVgVGodihGv7@iU3To1kc=0k_XDud&mMi(CPM?tY zTV;-?!n0ok6vbbEPx#4aTQc>?*5G)h3Dq`V_5S{xX=_}&18r5y+RZYV8O`(0p_r}} zr73v$nfo^Z-VzR9KuZ*bZ%WM6>kvZNISeLDZhMK9#nb+*`nF{qXz2^o=&5Ta()~u6 z+^%+*>g54zZN68D24;b~Um9K#4Nz#jRG_b|f<)OfF6$5D?DN#w5ZA61;lTLnJf6-h0`18R;1KimkIva3j-rOnt(|OW_hW8&3XZT`Ttk zqmyL$br;tySkebAw|=7p_UP;umx2V5nv zA<6o5m!4Ek-$a%wGlkO$_vzMK!>Zn)ut{hcTEr-c>7?yQsspXx#Y4zm%2ddStpJ4@ z@=krIRV&Ut`Osb9kvIyeL8h9F^9|( zC?D~P_Ggy#2-^eg%x zt4OY2t(SOQAUDhYdZG!IGkSKXMI>-;Aou<2OFTS-HvX@{sH*HwN(I4CF|DzGKZPGo z8QSIn%`HVfDO`=<$}vFE8NjzO7qBTT9<)3>%x?fwRCVzo7(4{GvU04n6=N*gqs()? z0DpfR3h?c}vH1UMR_qy1J5 zP~wwjL0R)4WKg@JPPpfyh~izCEc6?BMww00PlxfS z*r&0@xi49);;f#%`7@UeQ`Jue$W{Z9^p^fr4KVH>0qdi-7k&i6wd)h^-();4bLMvt zvQ)+z^L31?M@O#kgv`n4S+AX6#k{APq9tQjUVY4|3wCH3Tj>8x-<>SZD03mY9yT5F zXC@2cj;hf7)aKno+4L;0r7}UA=~P%Cc>Wb7VfZDf%9)b!VX{0!x9qKzhl(*X2jrkR zDePYyZ-RrLW?G8yy{V82<3`M=JbME+hsQ>%%K83deO*;Y)9d_a`Tt`c(86T3#*lse zv?^IJ&Y$RszQZ{+Vy5{g_eZ`e!!@~yCk>rz&>3FjKer|8t^m{a8%TgqQ#Kzc*zCDTl>dG}=qRstw@Nj!lVPgQR z-LeGQ!qbrC2l>8-DnzmQPSFxlFp_s?tgf+T=}=<-u-zbvC696c<>f>Dok;zC3GThu ze%DFX`3HHqjnjktMXgI!+BKc-ym{BAyBz!bJ1By`Pk zJ+`^7YEus45sNbi*FM#x`;f|WPFCQ$OJ9b@U-MNmo2=E1vY~Ejb4-u>$+Vk^+TuRc zO+a}l*S!)5hNjKBIm)${(L7bLiDJJOVL%9S$wGW`(E4LghwrR%3Jns;tc!$Avs;fWJXba@IC!B#F~ zsG8u{CN04AnfSBR>x9s%^Pp$e*(^w1&7LOc`9R6)2;^P7<}~3-Rh#@+h=#x>Sc=fW z!&yC2KsZ?pR|^ z{xSa(MaP!r?$(cY8kiNQO>a(Tn4TZd_#Q+w(>2g7Ff}w_AK*>bR#Q4o>1=3VSipry zb5`?u80kCFGS@O#$r{I6(qJxkmTNEO>Q(xsIMd^Io_SpYjc0I>GqJ3+?t!G9{?x&x zU8~&^vz)$Fum~+nyIH&Tm&Z@%tzE`6zYa9P*Y(%g4v$8}aH`c4;yFi+htmq>%qPv@ zr21?-k*kA6^~L(zGzm+kWn~D$3Od~5pwSNxZZ*iUtyY?yZyIV3SL<}EM<++?KY$`hh9z z|E3{w1Rxy+k?+Nzg%S(ummZAqkSnrzB56q*kzd2_D=L0|^oc3vZG$h9^#$LftA^$D zf1_Y+I7duiDRumu@LRbR1AsFhMK7c2JM1*fW?pwlyh!_ZLd^AuE0_z#^Zp#T26{fpe$5#W z9Q^H%l0@H%f83FVPIk|<&Tjk9$T_4zG_qT)4Amu+S@N7! zYHEK``}ZQo+@y3n(naOV&_#VfEkxr;2Td}__D;i6O`XkPy+P%9;xa84}&pn$RQ{gMTBF|yc8x*N=FZ3bl++mEE>lz6c{gc#dF3zj7Zv!dt9`V<+PFq~}cxd$#qG=SJJ zp|w9MmeQr1H)xo{#py^?!{u*qw$o}A%*eh`j_3WtSrcX;Z7vi?J5<*`4`Z#ZhOKf&EzG|D@?hcbn0{u}`{P=dDkwU^TC4pY}M1Ro-Ignk<*uZ|(%gD`BB#Xhod(lpZb z6vUTGh_*0v4^H=kRi7PgJ;SARg(qa6Q1xfbs~rYccEp+a&&bo*0lTo(|`oU;jZN*(9$2Lm|&n=1R#W^GUrvdHlB|nAWp^{jQY# zA#wx%i&-KlT_U6e{()LxoSDk6{un1Pa`0pG0GKXcTT{Rv-1=?#Z_oYRY{c-+b5eA4=)QLBXNl3GnFI>iMMKI^5@A%%m1EnD;dTWXq=?cK!j2|4!5KzX|;W z@ynl9U`ibusLB7Av~vk`zrDb3(r%At{zKva7nTl4AebQ9`putdg9Lrd%mn<8C_jK; zK=Xd5?PF%X&;Kw=-+bue@R=tGyM;f4pDX4>plGIf3B^{WW%4e{r@={ z$khXTRakrVKlZ9>{O_s#p6Ho#NB{PHprP-2khzq*Z4QVLRNZa=x6=j@S}7?hODn6s zk7_I+m}>9nI4;9SQKlzX;#QF8Ur_PUuAwA@5ae7E`YUwkeE@d10a?#3)iBbfn}qi3 zS_y0ot#5E~abc5udGVTVeiO!^H4t!`}sL`BUKh>hj^qaVptWT+ouFimN%x4{FIi4682M zLumcV!{cr*i7}YeypouD0nMb-Yhn^&SFc@rci_!K?wapzE_KDeoH@-T1zEk0)(9D^ zj@GT;@;9CeVNZU;RNim$8|-ydGUSSLY(LOV;pqL9?p({zWd1V2i>YU?n8DqE@v7ou&q5iX7KfnfC!xGg6Zt@@)B7KTJ*E*%w*~b_XG^axoYr*nexDh0T@gsi*CF?Nx(<$Z zQO#5730#_x8*23PQx0cW${V^n^BhH>6SW<M}p^N(#6d_x_4sn@qPWLUH-OCyr+-QlfNr&Ch&r zH4Er4WDUYi-NrnAAa~A_)$@XHxR`Ku>%4hQsuz9vHkl0(!0TTa0mn#p6wBud z5rM0H_%RqPMzyi7ugQ37^y>a$!_6|g|AX(J?U)iPr4S z|FIu1g|`tYngfC&(jz>N(i?KN{O6m<&PTnUCZXx>6saO>t=|i@z2xqF4Bi{8CoVt%W?+RTL#z(a-i+0PRZ5g2ta3r!$7^ zLGDAss@1|kuked!_ER8!# z#VOLa2W|k5C~d`l>B{Bfq?NN2=nW3O#lsJXa-G;hSwglvB^A>jOyR+H<-MjH0P_L< zwo=js=lkU0n)tI69y!woNa;!#0sXeCO0aYig-!bhWnWzs6nwKGBFoqm#2EH*Y`C_+ z(eE%SlNqh?ZzdaMIO12M{i&q5)3C&CbsY?BfAnZb1A=%%HJd_7N!Swy{rrROFHGao1p| z278ROdc1ICfrt?*K4wm5$!_SOA^#O2llr9os~r}LpLJq&y~6wBu3a&yu+>AfoKV** zLhJN)XW4fbdUtHj#TJ;L@*3==td@s#az!%j_emyrevQjx#n1E*8_&Os+lLLlWflHl zZxKiOq7>^iO6!lJ!wVY)dRtjNoUFZ_qxX~+?=TkVZD4@+wz<+m&-$nYAp?o)^ENeo zD01cal8gr}etJ41EuDMdZ77H{12atZRX4sUJw2zmbmYigx&9MIC9c*FMXsJ$+TFcd zUoDxlHo`QZ5oqInb#pV&+vY~SRtsVEjEM1HDob-?l}GTKn@jjmb6m@2fl<(JAximk zR1Si48*Es>(_7@nO2av>m_E&Fc*e{BmQ^p;DZ_HH-vp0ezG6^muZIvRs{bAnGXkfh z#{33X@B4Hx zUJo7Ao7mJa^X|whA%!L%-6_3R6gucygqlb=EN4hk^ZTb3z%RdHFMD5(Si5Y2x6(6S zyms_t@L+mp#!Xihy=NAm-+6j7uZ)94- zF4B4&Q!gvhOSxs#8sQEjmTD&ZP;R;JdBR{KCa59Gtua$yGzO!go4>v*=S?Dnuz&$Q zH=d_YW@cmeu?jex=`Fv8-nG7;u)6(96pGcCfTVodn)I8*VCWCXW|Wp|DWYF77+6o@ zuPylYcHrT`Fb1=gt%V0edjGW$?rbBovtvVW~TBkrPYU=b__;B ze&a8SOxHR)F&M>OQvq?%_X&kltfTCVs(+2R#>0&w2{Eha$}5T_SSnrom@lqYiJG$ zM{p1h)z#QGta$NjrZpUh@}P+ykN&JT+^w05iRTG;Ziq7FaH%g&_O}fB{-@kv);M(PXWT1O) zAmKXw5tb5GMjrsbnS`wto+(rD1Ustd0y8pw6qo;(M%q{rX!GIlrX=6MTIg z;k&jxx>H+PN_V&dq?>e|X6>{aiEgVcOILhXZ-2t@!`%sJu`7daT!D-X?!I#la3*6xM3O5C#s8U8lAE^)Lv}l-=nt*^kV6v z4))1nb6?Mg`I6KQuzqi@_PyI)r{v*J>#3<7zou9C5j>MZf9t$lyM$JXLGa-M16wyz zVnIi_YgFZk*VcP~=ndCNjtbR#!S=)ZZ|0 zE{xZ>f;3O?Ku1@5dwcMH&uFdtH4~HvCePLOmZNH|C2c1|_icRm$B^@4ficfFx3+AC z3r#3_{9F1ckJa|bu#XcQNl&Htgd08BAi@lCw?L99#&Y3@Ir2GzaP{g{pmknYFNLu){{*eI{ZAF4g2MLn}9Hy6D&~b?^33~=9W(uXZ2D!L?fy4_b zx@Rc?8V^r+b_0SisyIJp*Ip?OXZuNYDbqFER)Z4ov_71SukSoQKbB|UBQbVe!=rfd zqrL0;cuVPO^6zPL`AUM&om`XqB>Oq^B)5FsL>u`3f|!ME=&8p+BtdxP8ztt;mrruB zo9OF5ZcF1Khp=d$4E@L__OEXZht16F$fFf@H8T-1JM$8aYJedZ7*>1$`?9_G^9^dP0RX1gK7P2ZCn4t> zJhe98up$&BNPtM;5xxrkbMx~q}!Qwbt%|1cm&D!fNwJ(P9&-VgqATj>(et|<=TwEBJ zob)gF!Dgq(;?HbGAk5s(OeD5;xiHhBEy8}hI@+KN3XXdiU(QCWxC}f}8I&f(Xk7pG zjrNdAz1$a;h9DS#$U{`DHSGLX1QDZB22HwKfFKi2p1;Y5tIW^OM{qm{?bl(B3G3ku zvdU%vdD0j@;v~0F+)7sdeFmw&3QbS~56)1=fspXaZGRnS`Esn}k+IK4%YzijXs@k# z=W*vYoiTB*O-tQE|OU1H;5w^c%J+rV8q&Vh`v0y>_G(N}z<)BK?__6xvNwy{+7xI?P;|jc$l~ow0O#DPWe5>2ZSM1jYWxWbfxakp#$Sj>a-EybN zw6b3L+1wjdlfLlr zRkK6V@FKbl%hfV?+No~iXr5lte4E07sKlg?*y+Q4MNk^FKHPW^_ftzIoUl6f^Rv#i z2zk;AM=+o<0D5LC{Cs(+U?!n)kKe$+pk!^mwDY<}Pl{B9 zX;pc7tO_?G_MNsol7Uk?3W-z${4v4U<@lPS(IKz=-uivY&i#7Bt@ZYtu;liS`%?IU zC+9_3$p+?bo2a~?K<^<}Cs8dln?0c4Rp+}pBi(MbTV>t*v1)*qD)M!+uGq_8RP z*1caN4&`Um)Jv_QXehx*jGTwWSU|)5=GL$u5QNZBK#|!-YC|_)$S!3F;DLnjI zQC$q!f;PFzC)wt$e<{5^cYDYEoy|bbqdPyi*NrAg=P2S8R82f@2|Zgu5Ed4m`$8`= zJD=89ZRtJ`N^4pwsys)!dw=!68b+V(StENEPdVXywt?wFv)b>J~uqZhyXRL z=ev+8un8~O{q3K4>E5vOVv^v>3-qjB|3Y7bA2RA_Z>PYa&)!B`1z~b{P3#hE(t%2g z>VRrI#hiR2@f+vaDl#Vf#DqRZ1^-ecxyPzI)_tTUuS2h z#WJ=#8LOErj<<-EtDIP?(N33V*qLs5yZ?&S^kq|9Bscfi0cvu;hbmp%A*penFvhUs zK5U}5dI2m)HjQulr8hh4zrOD86DNsvb#<5q9Jq`1H*@LWmj{?tZPgrj1nU#F`xYxFfWHa2!Ja&|6p8m|`BwEl-D+eIFNvzdI9{D<>mdFAY#U4bT|QD zlbZVa`qbNky!`xaE;(<>DHcJk{BxaO85J&|JSO35^&cC0G5ZX8ClXgfTxt|Kp35|~ zt5U=6rZ`|BanYq$W6t=V$xWc1{Jgve7_ST(wODH=ImI|mGzSTmcKJ+8r$#k`JZT|w zN+Fq7xf%s`bS#vx>Hp@`unUC|t2-uu@bms=&Mjx1dlj6g73uau1k-Z#WP|7!J(~1D zX6;%}S65f{@j+m=zwQXtG+N>63w*W4Z> z&jy+EHaA^>V%JyM4t^ibH+X`r$?TYjx^&;x!KlJEj%K33NJ2zdxS(P`$*$13Dc$eD z3kK`$>~w7c5ub_h`%u9oT4Cer;vP1Z5CM3I`Zh}F%9V|-t_My(KZQG?OS6W&a5dO8 zTLnhk#yiTsN=;d(I4c*p#wH|?AE|K0-9V2e6Omz-MefzL#C-|ZoRH^f&|yc|TIa=2X-Y%MKzOK|K;cFLEH zHtybqzRcYG{IKxNag6Zzi}a6mb+WG+xlQvF$t%M8#Tlc{KeM&5pYsZ*gLxw|fPR!* z5#@rfh(dowRjVc_il*7-93H*Y210Wi@ zhWq|qJq?bNq9ApzFQIIN6u~LeUu32*RA|z(5}R0ph@juuiJnYt2}%5tiU1@ z!KW=Xcjo9Rc5oJ3|7~e7Z<*6cC&ahs!xK8Nb5UQu+|!c$MJw&GqK_r3&I12Pl>tDa zqVl%GXzZHbA-Q5ma0`J8C-K2C0ovpBAC}a`?2c^nw`Z(*5Cg9!`!U*6^{75hvEc_f z9KDI-E?5PHEjM+-GLua)mt3F=gk8#o4~ZPie)PSo%W}3o`jXPqDxk2%&s$DRc+Q*x zoa;WwBuFlPe8-GywCX$uneZh$D2K5<0{g|iI$k5@(FOPv#U*(HV!1e&#|oIqHR1$Z zgkr?|&H1Bmt}kT-F@$p5ciVocq@*;yiudZp^|uh<1$8J3(zIa9$~JT#e7FompO`uynt~XgXtHgUy`+ z#Ino6`!_>|2?+^wcR-Xd!^L94jnMQ@F!c_3_Vx9nr%%5XKl>`VoL{yukjnx*rZ9)N zeefy_ZIvKu)6b_Ry~qc+TsPR+ZYGrrcRf7BofJCV48u-jHUQfFdd+|~1)eoFC^cta5BPC)ARx&PcZ?)SM9hrj+ z{GD(H8F^8$TG(1o&ZA7`i1i0YC~^RX{`^PA-F$~Ry-hdPA1+-Gy?=#AMqbLwS{Y9oPekUUo4m`Ew@J}fUEASw($tuC*9EX43Lrxiw z*~RSiPr!BCkCumsH16H(=sWr$WPG;cot-AzIMBz7Y_!F;gICSzCzDmIwf+Z0CTfjZ31PCG&SQ*~e%m_H@-=_qOAGIBszS@Hk;q-p2*L+u85 zAw%3@R1q-v)T)=u{on-0u*&h&kIPkKnNMcR?S>jz!<@jf;_ezTRsX+>v62fxr41mIU5(9`Myn0tL>&H{lr>DM?^2^3wrXtC8d z9rYyL(n3PykgkFl zs=)P-iB~x)Ihg}C1}NkgJu`$7;LkflRSj|DcLD&Veqw5>b$GDv1<2Y=e2GQdbEqsJ z4`4g`0kLtcnL7t0XS?;{VZqpJR#uk%=+j2)Qf}X!UlcP1dEd>K;aF2YK+M9p7198; zU(e*;Kjsf8&qfQY*?_e6-MdsWFx*EF0s<|EtONf1P4i-A0rWOXX(c=?>?Ams(f0L~ z2Y}*K;Q&B=4uC@z2-%F`s}(3Y?X`*e#lB3y71yc2jBG0$B7s4Sx1Gjy5^H4eUV*J{ z8I4GjMVtstBKldAQuJztb^pl=+IwS-bmfki+Llz-Two%X6nS~*O2Oyb3$WgujTtEb z6V-tId2RQpNX^AQkzB|K(y#Zv4QearIz<{S0U^EMv)&A$C_IJgztfTq0pF+0cPEP> zNN)4J>DrCH`<}vojU6D7NIcgCs&x?byaJ)5YrmRcbZV+*!gZ7O&dwQt=g+`kx9o<( z8o}wsv+ZhcB8ImE-j zd=n}B-y%ZlHO20LLo5YWJ>k79e6Z7|FhuU)>I*^o?Jt{c4H-FsM|XeL$@AQuORxcH z1wdg#_EnyNSU$zAU+n_eCLi+Ho*{&Nvd|9VV|R%Gwi=yilaHM z^T{+<;K3JIva5mc8)wP`&DL+bglI`K@mg=_L(+Y3AE%&V#QLyEqZm^=bRB883 zjq5evthJ+-+zn>p-RlzT-TulT(;PTP(`?)9*AUqS+q4RF zsJzM%GYar}xs4N+!pJFIJ}T>vVoCL;oDtwh{lJ}rUNfk&~pBiyr4zW-|zM8#^qK**=F{ z(b7szA)2Y|&@&YvhR)DU7iEgxS3>x`0k4_CdLya|03mfIzUf+Vm{OlI4~(yGtRa7< zeRBp98MSk6jjF)!@StvMuPh7!zgl&;eU;xkhU=daxd?B5aJDDUnrPIESVPYQGn{^P zw)xH+PZ6f~zGdSX0{Lh^zF-;?_(4?Et4*fvAMy7 z&>zq?ltPz{0aP#74SG+i;6vHdHc_doLD+NWxCe@{te^-W_?9Bz7#mHI{%g##Jgb`K zLhDYjB01sm0gW+nPO2A~;NUO32Qwp2exk@1H)!o$N6K;ae~mJuxp3knHI#;xMucX$ zYvq}kjOdl<3+731c}Ta9b$fL1$132Y9)sKpr9S+WuCA^!@Q*~2ES^1l8MjM0mxj~G z1t^@BeKaF(9)U#ILaUGl*!qYC$Rk}YK6utyrQg}LqB`c-Ge1FA#bafJ>Gx2TAeSed zZe+rJD$TnE!&*Z&xg!yXooToS-eEbSZviUJD!4q#Wl#ElI62oABOnc9P!C-kDd7bQ zX8{67;3EZAE5SLU#Y>pFh6cLMOAOqhBnaV%p4TUT@4wm@be&}8#Gn<*j4116mvA6TAw9j;9o^{!-a0E zqZPPRCB^;+K~6JC1~OvgSIBPKd74AU7gVwg+b%@0m0&jFyGfQ@1oM1$44v~TFmz}~@>jO`;TS%vBWVGe* zXQ0Z-;tn7&E~c4u>pcLE5_w3{ZM)AopD|61FsOg|LRh zp!86Z6jy{n!6H!(up;yiizTut`%GO&%+kiItVi;!r+%o~kPJ?viG;ac43J%#yuz8o zp4V&ow0v#i5*_T>{_D~1Iv#TB3zfs%Ctt(vDbD(rqvYYI(w-W`bb@lyOO%s*c8y%i z-Yy1-vOZ|#P?tL8HD@mIG6uYCLlM$T?mJWXzUfluK=D<|am8h;PfDU?nf~XSnw#=y zdq?)Kzm$0i-p!fE87)a_UcbT9Tsafa=`Vso=sXUbxUXaVW1`%P7r^oM+N8p_U`pAU zN!Ei>I$5=-1+x|;z{i0ga9 zRKorV%kLI$fAS2Ozzw}!kvQ1S{*mD`^EUAd&m7{WUMY<4o=E5+3>;tMKmMB|JLV5wWr~fvCoje`*1sLt=eW z-79WW`b(lWcu&em6Q&tg5APU^@&5hNjQ;2H6{_)j>(%8d-7EIyR4-37U+{VBkFr~7 zyjWUJi_If8h23zw^0HyeN_5qi&4Z6eZF6k$XeWH_lmr74Q?3BNA>rasZNjNAe$`DJ zZ3HzJl~zHUtFuK{KF!M`S8mcA-wf~8{N z7jDcy7AM^BIVY+#RLcJHl`Qy3GsTET)sgY_G@5s_-+6ub8WdaAapLcicFKugO_P+f zk>AsuI=2@)UA*%yI^LJ5tw$`88U6Af#;H!DXe@4f*h1Bm-`h`K6 z@BG1T?>{x9tTEGCf}2$l#3yLouVTM_KB$ma%cjPT^wQfHu~Vk*GHmisrRXK8k$Gp| zs>Yx3g|v*M)9Bvrl=J^oV&2>Q{-Imwx?xZ3+!(0$r%09vB+Gx%AM{MA@wr{uzc2NG zw}M;@$>MGk=oky5?Cl_V(AH8R8`Qw3jPfVYN3wM~b1v<-n}NR?u=DHBqrttpx)&U& zp%R-drJTke(0Y8FVH~XgKD)GXQFO0xL3}froBi)M7eK+$?0`o>4b)mgw_v1s-LLm; zf#0vpvwI$tcS2US=k{<4;Go}H!MK%sV(+T%;WAlccWdnJbG+b$(U;7%>k)(82$-mL zT@|11;g%7-7ik~Vpn#^Kpv$?uL(rQ|2H}-|Fs8QU1;#BQfk(`&mFc!F5g+UY`gNI} z&6~s*)$A?58!RCm*6m3h9{4!q`?hJMZ={P1Q9U$RJn6OZWMa=n4#Gco_V=|(F_r(9 zewWvEJ6E2tI?|e}IG?|7x)*EnR)VIuAS3pYi0}8VtmcAsP_#v9e~^qi>yP(ppH`TV6DE&?ywpshP9M^ zXL-|lUV3~B(P&Cs?pbrh!U~ODd!2A6&J0$Tyl}o`^gWqs!~paCL(40^&xR1yrxnHE zTbVo~suAOfZ{XXN0y`S>`!>99&#^up{lU;QI(_t<@b!qyX@=J{JQf8{UN@Qg6=)P7~rc9`e&-f5Von20hyrccvr{a&%JzU(wRba5;Hg^Y; zGx4|je_~nnt#h0|i z=twP(J1crAn^26fYPnOl)PdpC)noWpB-ikk^N0@3MySH7qw&KSD^gx4jCZyRYWz|AsrnV@?x1<_W%09I zH+aCp3p}fq9?p^S0PEz&)3rV-yt`hrGaNd@C>0rNUy&vaRP_^nl4T)R1o3v^H36k26n8HaEaGA%k(~Re1V=_;S(y z(4G8-?1qF}O9*W;FiO=zV*SIXD@RI8@O-}gJ}mr7D`ih|Mh3s7;d85fRDh=QJTb1V z518)Gt$G>jn3wITv46+7E-S6yVbPg0YmEKq^oQ_@*tHkq5);VUCpNt#_NyLQ(?FP< z@prYZHp8Q~pWi;-=m`YBp1=fFJ?le9W6EXXboEZHxLt_S*HJS;Mv}>#Av$pbdON9F ze(90#WZqAt`7-BSwaMQEmyX;LI^^o?vdC|rzXzl~hN*~vw&erl)W>=#&^EWHk_)t@ z^LWfDEbr(4#-dfG6YeJ1wqoP4@E{XfrR zT68g5&vp3gF}{LBY%K^m`Tx_{mB&NXzI{WegcJ!e&qL8>9mUKrQz%bai>PebhLCNt zWLH@tM4M%XkgcSJtYLbxW@co0l6@Eq8Cw`*8}B{R^Xq+o|Ge|h`FzefbKlo}-PiTK zmUFJ_xaYgcynT_x8drF~;tiGa^Y(Fkg^KTaS6cG8?t7;qE;VVNZ%um4%UFwVS01cz zn_lW97X58H_@b|a%~;-ifN%ig;(P(d`B4RIOJ*9Zesn7MYP^4n^$0rVl!5&_KRCWA zxndcEW{oO-8v9dPMPO>i-O{R9wCPANa8PWC69pWm^mDro?%}mQtE1C^GoyBjR8FpeB5gPu(DN2nyUK_Y@@PVmw8!q8 zoDfhFjmrZ6cp=uI?$(fTUERfH+!O%I!3H35cHoVGd((O;8q~Tk1#GYEe!(|BhqES7 z^AaPw^R6~qcP@-SJ|(N>woO(!(@Rb1*iD4A40sxy2?JyA0;70;uA+J07{uzM=O1R8 z2sOt;SxWzs-+tnT!h1Puy}^-ga1GGE-{h@m(*Xa84@`oY3*%&j;hBTTqM9B-zzdU` z;%X0?NonEd^qu87o1CxQ$LY*fA^R-ZD2ud1T3-Iy`la_)cVeUAOy{HV1& zCjDIFZ~GFc*7=6M)LU?*{RI2dDMWx&LsY~LP`bL6Ud^UDPK^W6MDw@xDBB$^Vfdc&LbClnw*@!l%r z*7z>4lUyQ!;l$t>i{-x;9Q9N4Y#!{{YqJsX?kV0huJ=;!Gi&sO9!j4KeTp8^u$y@njJM@LP_MUlZNV2!%y5h_#%|1O`* zVm2p|I})pnE3any$}QZC+`6US`f#9iWCou9eXq8YbdqGo+H)uvE^l1b{jeO4+kE|M z7yVq&S_k?kgN?z&3u+&cXdwh&BK^9@5*0+=KqaMDzg+J#MxfT&Ku;F);jliu6|WRI z(Gc;lyl|Ck`(}M9*@T&QEbhq3@x7EAP(geITemIA!hrC%aN0&P7Di0|mne<%nimr?*J=~u5>7dmY1+d%MGIEC0v$~54keILx z!PIrhXZ%cDiUBg3w7z|u0|hJp!sSU`ynnp+cy|?NNX2fKy_qneVG{1MccP<59$CWQ z`CU-89>z@?Wenk5m5a^i>M0e3SnV62dzQe5z5WOC)rw=oiXps(Tu%fBLXBC3X4na;%ZZzFwS@8Uk_MeI=5U&?lwEo^ zw$n>#Lk4Vnb9&EJG>Y-<&8_I@CY1NEs)CZHxEjAQ8XnvLDTT?24{j%NE5w#+3i@yN z=bbG{G5B2aE~VcM!;LXBHZj3ID1c@$0uEo98caO4hqud;x~U+53P-&ktNI+MQCwgH zyo-+Og#<|*CWwZZJ6-LDFX_?xIB9*iK>=`rdv5))AvNgj%2{49;3FNZ@y_|CCsmP# zs#_abXy9^_gV(mhm#(htqTxQF+qu_dto}w!94Mc@knD4HOSHX5Q>#Z@503FGZxEe> zo>`bb>=k=)*e$w2_ke?SHm#}Kv!Q-V!do881nOna9m13v8De~eJt1EN3N;A6X2Z}9 z6~E}lk`J2VGh(NUy4%cXHYr~h&5fdfR0%bw;tn%#*s8EY%(SDdu4mnYT)7ZI1g$3t z^l6gEFrJ+5z0MoLr4Om`z&t5kLxxF&SyK|}p|Q3{uW$=m^7vF~v2~|x;QJp%YI4l}&jN;pO+!MSf zC9`3tef{N~?Q+EqB1kBlAXjjwjE&YMYVKFBEaUL!uo>y+!NrF*PF3)( zT3gaAVY6ifJacI%M5z3LKX>`UwVl<<%2WH*7qvtJ_COCE+B7XmFkOZ>DIePH`YQZ0 zKdY$kh;G6FE&BfB-yK|!XqiB&;l$+ZmrKUA$eXfTD5rI6zG61wkS9?L$TT2of6HSU zJq~T+^f7Hv0>KAP-Gc*w%*okVisr>@R|{NbEBnYz2gOJ4PP}1uc+R(Y4qwSE780xI zb?3u}M@Kt6vr~LzLXHZ(yt6U=7RB+*!1khY>0fr%I6fKT5#Tp|T<4ur;DXEd<@ujD z0}$vumiti=L(mLmhZ%R%IXeyAXiHecX|ipngsRpN#k)~xLHkBxsnnHiNwUJdGarN zsRf^sX7-#+4$$8ucWwSZaD|ft#FZCGE>t90DId#_&eHW$}o^7-pAJ^2h zP796PbavP_@q^wFGHw%Ym;b}v`r|;DyBBHb)j1LKyChJo&B$~GYd=Te8@!YI4sgq% zvEOg?G@G+v-Qo;FOkn0K#Fokd#<7R(egCiV-fZy6_Q=jJp7dvJoU%W+MLqDu9*teR zJkRlgDxU1+y{Qx*dH>zz(fhGOzWw)(DSN+TIRmrD~dhwqJxuY;2cY+|qb3^XCa@Sm=@4=XAB2CkrM{^k$a)A!6=v=iP~d zau>cwuMFxRr#%a@y81!r=*j29G5jG{FD@hUdvGx=UsrAj)VZ!X$v)o4#3h}#j_Q#t zDEAlXoH}10Xd@x~I&4L=pnP1!`S6boUvgtyJ!*O;c6eN1w8k1LH>lFyJ4GGa30=Cm zQl6v2PAiCO=2uq9$G8Ud{qvn#ih%l^TrJl;T84{k{Jx5``mGX+d#%hpxI6CiT^EyF7FQ{)&w7wn%X6HYHGJG*e z?L`*2Ki$~)>qY;>MlH{kJ<2)FJxUh8ZvwSGB)%m>-Di`vwv=QbO{2h zGby@SUe?l>Cbj70_cEbOV~9#V3-t)?X`FhG8hBgRC@+E|=V1G=IsRpTO3c!6zan?@qXX;jus&7mwX3VamNp|)AW&+;fN{Nzafg5~ z{O~eKNvJ|*m21TG2KQM`P>alHCyS6Vu^Q4=Uv^4cW$}2Cje3PnCD`;FmH%^q3PI`Egln!8pOOW{!Ry2j0 z1w=qh1wU86+4BIzjGK-$uz^33&2FGQ~dNvVv;;?*LG-av$SB;T9x7_maTL;|?Ln`|r|Gz^6Ec&XbEvFR! zUw4A={pSiLw~qfsW1KP!*-Q*^#f)OUI%3XXd=pYgyYLo8pirDhw}x4`V@Q}WB0ZC< z5L=U?X^&aNe6|&0rRem@cOciBTySvVrKXQrt*%bLzwx zU>Gqe{mvM%B@q|e5UhB^38R>L^Qrs9bCxd0BS~$Bpr|D%tSF_;&1W*;NHv z90tHFB;^N%UxhA@2gUa7U6;aY?|Q6Vn2pkmym_Z#ze;gOxCr3@Wydv%St*M2HSk~( zTcltaS#vu&FDdzMdS zxNF$Muqr&(ru9eH=OY+jK2NAIpjeESn~q!V}`x(lQiICMETD7e+dXO5Bm?ihwW<>Xq;gwVA;vqwPmb%@s2 zdUg^yx)XK`^ki6aNbdiRTb+A0`cGbCD%SARetyDy*ryqe_Ph-X)pfKMEjgB}W2=6#l%n9 z-pPd~D6SpweBT2kWubq7J z4Q~FRG|rF`fB1vX7laLmEEgI}7RhPub}Ots#zrYo$V zpO)i`(zzhv_`_2b1-p^j14q`}-?%e2Gq>8KFObupG$)ufnlvdqv^4)PyY-PUpvaUS zhmXygOWIXyY!PN2Ucl^tdyk`b$7QrADMFoj$!f*TycOi)J5R(C0b`szu8AnD?*>q3Bqt^Hl|}Ok{PtbOzipHp<1Zk>xDIU<8LqpuJOws^Ko> zP+iq@HJ*yP?gvwJ+$1-HBZ@0eas(m5l!1USy_24sx=N&bQsyrt*JNK}4<6i4tZ~I` zxMNzvL+eEY{Bq=TeWk+lH&D^F!b1$M6K&o@sfXaJWh>y(+AXt5uzr zZj@H!D^>BD>T&yAfI#_2xcS4A22&a;gFFM=A3!T~uQ11`UiY57ygtF>yeGNjnOak^ z1QMYb;|sPfxTJ99CI{{c#7=926ISeNa*eHg{hg@ zy!9HN2QT@{`b&(^Z$?N~qPYep83L!k$lX$LQI#Pww|EDPyB3;1ioL^U+i>I!d#HX3 zelUp(Lu(p;$4Q9h@eT2seU9mnpYqCl{5 zedArYH#X&I)?5^fShYK}aegPwvg>rweB$Yry3~|)zS$W9A}G^bvo6bp*5+lWIvv~K zLeuWxUc*FZDqS6WeAqC3So4vuiN%b~kBL1K5os$ow`W2Z)Y5qtj7Qx{hO`9Mj7P;I zmk4B&HZJ7HjA`#v5T!|umKS)zS8+5*2TUJ*zf=3M4G_8S8z23e!QHlH5&`)t%*?^uMN27zmp<2Df4=u5 zbXzU<^8HYe)FNrwKQ`1oMTCZwf=(;1_ z=IOrov_t+GX5d={Q|xa9++aG5Ow|v@1tL7fYQh3}%G=>x_|o{5h0ASCd3 z0o*mk)Ai_w&Y1B&Z=XLFpE8ZLFGTt%5M~_2!vxll%C$T7zqQgVAs_A!UU?6B&D9mf zV!_)R1TF(D^g`B3GR0V`x8zwpAR)-3~pQ$Nx5cWnsSnTWi=U&dSs5K2z)*^v{rQ%etGq z{dxH)JFUll_VwQmMp%j@22&4=X<-9VcG{^s%ekWB$_m}Fjj<174;+vQ_K^P2ziWqh zD3{kJ({ywOW;ajSL^n9zu@g#EQw7#rWjdw%IK`gnmm9KkoJ-+E@!mVKveHT1?1?GG z1cz%W*lCe#JCq>hA?gz6Y8hmrf=aO{vG61DDv2%vLsAOBTYbI6bk$-6Y*Mv&5#vkU z-I8vH8B{IK!I;@$tT1NK`V29{Y3V&S>@hFqxj~~FmUOAL=(;JZ9UnM|kaX^^T%sIC z$=zLy;(;j8Gu>p4nPXesuLWrU+CMuMT&qZg$N6c@4NP)qg znW6@RkTq9fYwY&r*uU-{kU~I&5{-HTW*=Qm#HMo}pT|HvDIR$D&{W|_zw8DlL8ajCKOH~3zS36i5WURK+i(CGaX6p?`y?7j@ksra zF|yX0(tY>NS~O@Q{qhcKKAYgfEW@tR|0pX)_h!xUg67iKGqA}i!4eymXdxlCKr6^^ zGvq>q=?cD~V^8t3roSdgjW9xYuBivC)$&#o;BT{9qxl+ z6sE}Y_;L(#vNrxgYwHZ31}b-7x7p-f0+M!>QT7a5BzjrHxtikk&*yVp=eo}G81LhK9FNshipWlfL7g)w&z^8Q_%mF2RM z8zc|TpRmCo!|FRjip$`Zaa}$7wb2=(xE$Tylv=|8gM!eYY)n~R1_r^#Pk5vZ>!+?W zKMgdGy5SbJu(WefxN!c8ms#=To@cV>SLxx_@uuS>oucFtq|BJ5UugF9hSX_?3x=I}Kf4@y#Qn$j1ksKcz{%{*qd}3&; zaGHGR8Wu!ADfEFa4qMdkOc0i$O7d+5)BTGRvNIj>yP%Nugc4(S5#DVm1Rcl|59O=k9gNot*))1aZ2iF--VD`h!BSG zKszTWCx=6?%>MD-QZ)&^?>gD3)2HV(2Y$0KF%_X}qS^84TB!Mvag9e|lA>&QZ+`uu zUT(z&rC3dlkLLU)FpHo4Ih1t=oBA|TK4-;}h%JlH?dFWb6E8lN%vZH#6ZqTj2ad5%I6C7GL+0)PAS?z;kV;ad>$6V|Aqz`iLFtWpM&}I z`v(Wmrqg5-_QH5AwYs|cbw$POqC{r7um*X0Urmd|H*c(B_|CLvR?aO5M10M(7sjyL_b)a&<1$pp{XTPj?24bN4u7|b)|yZ1|T z)N4Ms=!dIIf`H8_tB?WPf&d zYuUJ2V=y0H8KamO72-7EyJfQRtN#a!vyfuusne_~?;l{{d@8jYq}EbqdX;c8N|cES ziQ_hGisjNr5LKz2jD?B%qeJR*=g!^xTA#~Iq%VIKUT#xyk5p*cosp)N7VHNP9u!eU z{`y+udFc@eeT2V1A|fuHerKfYh0q-;4Gj(UF>Xdi40Nk6RWD1Oz`{)|3rTMw#BQzE`2G&I?Y#}EZ5Wi*tqdCbY2}Qvsw6ft_PsioZ(bTMSY&hp9P zGG3h@$jw~4Ukj2!DIeW&rQBw7^QOP2+e^n)wFchZVy3nF{{AtMGvUZ#r+2+=&bpN& zoSdfS=Je6|EZDB_<7sH;{@$YS5sB^4JRKYRTpt)y28?^(h# zOJ;BunudofNAL98mTu3zNqIlr9%V6T=^4vys5e>LDkOQZ{<)~f(5CE#`-E?~-m)Os zn8&+#W+vHo7Zno|6YJrk3rH$V8Wm9fyLPtmv9XWvPP545YEMO}N;T#gRu|X}a{Is; zUs+!dY%y(A;;9XkKH4wtJJ<&uvAs~-!)yJCVSjVPF(fp!84gdzYhO4s9>3nc=@=U@ z=f9lOZ#r6WcN;b~+3C{(0XQVzm+OyODUE#|4CLx#AyRt_#d_|ttM5;%A_%-L4%%@> z4i16@p*xsJ7`3p9_UB8!yRJ0S_i6k~V+Hv6PkC=HG{P1twCtv;S^FqnF%=5XppRm?A-lJ^xcXUD+GL{6 z7o=b8$GMhJ%2ha?ao%BHzGxECijmvc*uZn>F%fbY4XLOQ;WVnztukU}X6Cc#h<4s8 z^gFsQ0rOzBKMJMYO-xBRy2@&QrJlTS>rffDjJV6(1j;%zXEjCud&3jDD}J z_2wChcg0`A@jE&YCZ-Yb*UHhJY{a2If$YQ69*d=ewp*`HJv$f{PdLw1RDLCxSfO6# z2nJSk4@6#4$ zCey;`;hsx963i_$5*`IzyC6!QB_$b7+Fj)2ByWC16m@??I9~ZotM>Uzmu`ZP!H_{s zgEOr$_x;=#zh2-HK1z=dnj91Yravf;I?l~DdOva`FfuZd zmnvK~q{D7z-K!QC7x!s@g~ax^0MpHdVJ0CV?djQBot&`D{7^Dxxnsp9I=8V)RZj_; zG}1NklGVpA9(%tE7V8;pXOIwLTCorgoxJGBo>~3&u9hCRiWcUAa-nwMj zb=F2&`e6NL{Dxe*Iw75e?vq>f_kH7E7}a{=A+qVcA&VpBako;QKWBOv5MUt~G}!s! z1F4ab5vD)7iP_(ICJ5Taeqs8Co~(h9h{l(quUbRFgc@5n@|wGVAyZLRg`cFtsvj2< zb3w4&>tJJ$V^sde^UC33E1imzqr3J5Jxw-SS_s&ZBcvNe*1ZfA96rpFd&s z#;V=p%IXhYG>oal;ztThu2k~P_N2s_lH*?sx)EJ|XGDAQUi{0K?3(N`2*VO6Km5+9 z7cbbp*p?y;bYK<^SAlh)ut!2dlJ7*{8OM_^5Wn{=fFy%Hh`mY`Bp(P&kSCc4gJt(i zElbHLSf|Kt&c{DrTk^-Rj5yX~6u4#HKiJlNt}5+fphhdwbD?3|oe!K{p+myQSwJaPW~`Rlcum<^N7 z!8xPyp7uAmF7fjhfCS~Ak9z*Rz-3kiX$ZtSZ9c!hzyED|`b5Lm6CjWJvk8eB2S&MJ zm;Dl$`rZ;65*{9tn;#+NyZa3kgU8-tc`vA{VX>(8z=OT5sU-LD%h#{tf+@S^<%L~p zMqP$gKur718cgB4aKK`!^FVs8tgL|S>E0|Gao`Znb1fd9m)7Uw$?3yC4l8-088 zjbh}~)D)J?A$Cp4{=SdT?%W$xMyB@L_Ez1q8wI`cvoDjN%60DH(pa@pVSIdi3|$UW zq{Q!#b?hBb*<8hkTN8e9&*k*LTTLx2aBiHe1T#1=Fz{RHpi%Sg#(bwlj$8Ve@79?0 zU>$-1~_R%oij#X^bwxCqIHcs4m=pSa4KwM8|1dSni_+?qtc4k`cHKS=Up&m z&9+x2k#~Z|;MIBjObh-tI~xo-g_(&7Q!FV@+aiZU|Dof&NZY34HECQ;o!O5`t6i6R zzEv;RH9upPcl!0^B5FbC9ksKj4CSViOG``JjBjFvFuz^0dR-)qq+Xuk&MNbRj=%u=&kO2v48j*gvHl<&c8R0s_g7_(J2bFN}gW7xyX%M|t=s=6#cCO%G<^p?%kXf!Qk;N~XIuic~) zb6c>En=vVS9gUjIu&Kg7zftXs9gK^h6=&k-*T`PH6tApX>vgY|F1<=|kepV+;}f@q z6ZyS^#6gR_zLYVmWY3fGk#xBO=JQ&yAv6TX6Uqf|M=rfkZsg~N*Ht;Wf!!DVZ+i<` zz$_lv6*(j7`TM-v!Vm`XLeP!^yg)1PJe8?LMmH}M73np;JS*m!r5T`B^)~a4(Ob>$ zg>7^>uJpdU>x~P;#blI}!3zua?`{>J1TX3&Vo>Rf9VxYIooh#8$8rArRj+}c{W`|j z$ol*s2`G#FEwhU;io?98t$LDkx6Cx#QZEN&?A)6l7|tXNzctrmr1sCd9FbNyT-7*9w@_#P}GqaWlnG@K)OLSO?u zgNG(j-TU^Op|!PjZsg5p=-RK9S@m_Crli#2X}kGWQ=_O1Tv&4pi_5qVCj5?Q5nhj# z+b6KGwY>f4=;%P1h-l~P1^FHAO(6bCaoh@czrxLPf{G6q)Fw)uGh^;YE@)MIg9KCf z0d}19)0Z!8ft`cAyCF7GYRAe|F3EaJQ&ZEX?FviO+oroSu%Vnl zPGb3gX#{W0@c5WTgQoE9^#m_`b;vAIOH^|AXFB2!vax?R^d0G|K67weq)15=`N za&vnG4smNZwNCn?U7t^>tFz&5=TZ3d^mL$(ktepl-~(Tfb~*1Pixh6$XaO&cs>s8Q zl7fOoa(1(mr(W}HTy*sLjU_!VYMH}$;}UE2pgq`xg5U~s7#w|IjzkIu-aC#~6ngRa zhtQlt_uNG;u;F(3B|#n8-Z2X;*5%aTc~rVO8BG8E%iEh4u_+>VF+sQUA$E66<|250 zDFqYLX6yh26HC1|=04G$?3j}SGC-*ftODcAGzJ3$gNze9UZ8f{HWx=Y#vJFYe7=_5 z;n1f%eVSQvO#}=@vFJKeIN2Y%yMubIuR1t5geSDrfnSK4dQW3xwQWX0;qiHI+9Lxj zab+qd3nr~$=gvxa@FI4q1?h6(vT|~AL94R3s7d~FxR^BpL|FP08_LU3YF;g(}(n*O#|N zR6D=l>6hoVr_jH8t$1e{lay>YAa|>AraQr`!5^dl>ucls`?#=^GnL{B%-c`Z9PZ8w zN;!bymDg!#u+g+xAn+z8Gh%f`oTI8h2y@A}_>7Gf3l=Do>709fMA4fe2Hyod*Gg&YV} zKHD#B>%aO5z_LAooM&Z4-6P#XQ|x2VLdy+%;_Tdpm(OYo<%>&J#E*z+p8&9e;u$Mj zTfwB5fDgTg%~fdK%S28=fr-3UP2pDhkRKNn#XQec&%_>+-BkF6JzbL>-KY|P@1XK; zAkQ!qUggwd*5rn#j8{l$Xb8jQ0@l}EL9XEBXy-PyN3q)Z(8zDpA03cDSJ&L!gp$2} zU0fI{#F}c0433N>QAw6~4922TH*;G!bubQ{M{1W8igS&Ej%DNKZY?lrUg=ZfL9Kq& zaoAiM3k7`Q1ZZwlv9sGh8Gdz*fK#so*Q_|KL&eTvurx4a zl#?YYyQ<(AE@2tf*7>|3a8J4XLRNb4`yW=QM5^$1;z1RUf1kg2F^Y_?e6jxzY@QQ~GETzF! z_@x3id#RVC(8++y=*ATh71i?O43cF`_W7;w?Bz?nANTK!L~q^i*PiP!vS8oqiq>g; zB1MTqLPriqBc_fOL_fvJfV3tv^yHkWE4MAx>q?O}MrYAs=K|^u;Ei&=J~G3%6@vIN-;b$0reX zvIGDCC~yi!a4JBz3kzWsTza>^H9SDoBx*?mlJucfw3roeovtKtN~@2F=m~uUy8x$r z)S1A*&~Wnm_lK#e45QG?Hs}hl8A1S-{gRbVEk97}?Vc!h4?pGp?!~2=H5Krso7>y* zU_sAHdI zw0SrUC@f_Spd`!?hR|DfM;|?L=(z>3n?W$;0#n;7(pSV-xMXDNrGY^~CSZM@6|g3S zHCiyF0RY|>ld4VC=MS!~$qYK`_@W_2fj;!Yd2b$Z{M82xJ^)0}%UNcj`}tqryP zYth7GaXHWG&!j~5g!9@aH{S6oYCWvI^<0^wM|)`fCkvpk-jqSd9kMr?N0kQ0bEbJRIuBUK=e@Qi9u;HFPB+&G=+vV!)sVx(O>S&xx&Im9ehY@Un9eRP zlRti7C#m45s;YWZ1|K)QkWp2MAuhwnR5eUafyq;6orF)YXh;QP%f5g@{KC{xc-x!$ z|79H>E@3Vixe3!f@%b=*jS-#5E5!mV^5=!P1g=41Y^eqA>VF1)3I@(H#C%qrIXzV) zYr&BG&!kVlfbVLErX}f!ds7A+-N=X&s$fFGvsxS z@>X0nux{Vjj4-EpP#q=ig|i-8ChoDr0AmdlA_%HakVY8VUIbjxA#S`e^++6RIofn8 z|2^}_i|~ODUo|HD6P6 zb@UOL!pgJa8tw?vq!)BKtzh$~C(9n8#%~R$&{;0)8kQ`9=!^^i2r@Ay~bNV2$6~x-ej{bADKT%k|z0xD-<4O>|+(T zgu$!=6IzLor-^Z4#lu#;qq(9Ej&9ZD)tBzEKIyvlllBw!lFAa|FW^h1Vkn6%tt0Ka zvCQ7Gq%uO3-X227<<-zROn^9v9`Q$5(FR9`l2i#Uv$QN#myqnV>{O)h(5~ED#YW7j z`0ol#u}LIJ_7-1Ly|~%%1M34<*EPx`ZtIz^gosnW$C==K8g7@Qp^v^+^&hR%?qD?N zQTwd?zFd)I_(?b`pWOTW6mAjWt)J5)cn_8yApSM4B;IGXH7fiFJmlI_Ds1DAoK$Q) z6Sy6i8WX%RN=Z(6dpWaK?V{G%vl41gB%j^GoZFeRo*g63l>`_VzdL9sriuXJ-HvV4 zSeRS*e7#%gnqB@tUvWlDtm(q_LL*kJ036xO5;qE0?pd1W&QYH_($C2H$Rda=?)&p? z2(skhDJ;NFgfOVbg%DH`;5w5u<<^xewv8m$&{CLOo=B~8Qm;l3c+v?P(6iQ0EjG5g zC?s@&f+ZBs7jsW0rxz2^*mx`AyCJYYwomqzQ}f9f3@Kkb%FvDX;Onb?cH<@oK(*{a&%t^rq>xpG|6f z@ZGJ2jE$(P@S$+0$#}hvbt)bI64@eYUbwvMWgN&& zcxIx-kCm%a$UO8@P#Tk~NfxhuSKsfWrM-My!?Wx&@4KJHp1UD;QQJ5pF4oU;MG0-p zr)c){@M;z30u$P4*h4~_;Yj)W3jLSMVm5u?0Jns z+gkn<-zi7?k-HZDyhUnb>n3`euHXII63#=# z8uXVXW6yfd%@!`6C+IW3T{B7+%m)e%YnXaQpJ{Op`y6`P&#J5(&dn)FdUWBw=L8rlbpFO)%W!cNIG6du<@*deu{iu&}(SeLlY}74yNK$N(qDyw+;DXI?Q(zFGLTA$A9T<~7#=MXV>cws*OP1D0OeVdrp}GBv-pu6m zgS9QKt zQnqPtXjxg@anA6dy2)^gJG8cCiUNcbzMqbtO}t#@Wf1hA*aVA)Vwbpj`|COMDoUTm zzKv!d=1~*6{FMRjd?IrvwL}>sh+N-GxemGGzad!NY3u@zk&>!$C`vhZkG)LK@zXis zeWKH}T3{YCU>IS|j4J8coFC#!F8^REzIX3Y-gO)uErpw+#+1hMqQ7mKLu=6B85Lam`D>!I zD_?)H=4+$1P)FWr;Zps07YyW%#0bNPG_@4BR3HDyz3)G!FThMcdoA6m|A}#7wr<@U z3(1wxOM`(5xZ81a-Q@TJ4V~$j-wk}8clwUPa5TO}<*bw%weDmk4g>WPb3?aR($M`2 zWpm#rutDn0QR*QejJtM?ygDX2M-Ck1>n2-S~#k{!X!`(?L$ zO`WVtem_F>QkTeTkxxA+l*Z4)H+L`4BQ=RN9g1w!)fwcseWgHy1YiepzKhJ%eo4d7flIXoXA9Fq%36e2$`s$bW)3aDh zgNF^jHvF~qJtaWfkE!){6M=ErzHnnA6r&U8cEfKBEu7P+9q??77ZiPQi~TYaDf(Gm za3x;!`5dUQdg*oXX#AO-W7{nJ9BO8$SAVGD06GZRD6NnCd5(WMro^}Tr z?S8CHZhW*MGOdT*oC+);>ld2r%_%KMz{>lgW?=XrFz~r2wBURlHNrMI4 ze{|Hq!_)Kfo6n69w|4kZfJ^X%s|7)7Ug*gSwpPb?mdmYx=Uw9g3b(edpcu592QWLVIGjRH#dp3pzi+^OTgg zC+hyOCa>e|E_qWv2%&nZh`qjaXITSUR;LAXEPfGrt9 z{C?QE|7BIiTNq!x=KOCLqWZI2dgm+dpG8@rwV|@d6OXygFVBB%h6x=GdSyT80lPYq zLUP6Ah$Kzj_Fs(9Rj1z#$M)sl-q}C<2G13GRNKDPzxm#h%kvL=U#R$ee3XtV(~@&y zZ795@_7?1r2<~`R*dD>){F(b0`YalrV6wGlKSN4k`A;hWGViYIZ}oo|yx=MRw7h9R z*p=d#>-(n@ zs3C7<^)0_%@$ZH*So~T24Od8ptI45ZO?i|ZgI?4AFO~V-fkD!hD0(_c?A}A*SV8c` zYilVyBm|e7ocv2CN`OF75=KDS073m^TZ)oTj65c>X~f;$8AV*a`sLe`&<8;Txi{|? z)+!zE`HbT||0)kfwpdeqPE}S`{>WPf9u>svgP%Tqsz+~jxWDs4%2({klP4X9%YeS} z)NNxSQ3B01~0U4S>~9y`S_eQ`F6R=mJ+L70~;R=lz-nBD{rWIEYM6|0@VnoM|PZ61e_yqSD1G zJOaWC7rM&xtd-U67X10?1^eYbR3LGQ+Vksp zy?F3zoyJCKMv>K^f3*RN(Bz;nw!i-T4HjcVyrD0`_#`bYv{5EMKEAzpb+O>*$K zO$4Y=&K*ia*xp;NxA>9uO9X|rV7Fzw1r$q=o$~lFkB!m@#TReT;OVBQ=O~((Fd_~8 z{iUsKFM(TyM#+%@j1Te=Gi#3y)gck12eQu->`4j)!U7Mf3Sb91k( ztzCh5AWBUO@Ba8P_Ic%3AuEXXd(6aJtw1c2frp1Aj>q^>LIO1=CT6Opp38SY60ff& ziM!|Z{{c8cvYSopX8fNA&cQ*5iI{i$J*{9<=eitS`eSnP0qhotKq)*<9JZJ9@sU7M z4XfR(0R>Eo`~#h7k_D^GpiC=>T|@(eA&WO}{V68A1IMRDz#>(`3X25R+GP++=w&|j zseSarGv>@4U~olKn-%I7022}MFE1B9NkV6^{DV~XTkY0376L>RRAgjt{dIg|Wt2YuSms8M(b9%PV-lM~W+*)AQ2B!bsHqT>Ik7g|6PFz0{p|rx2O*ux z@r=Ka(n!V6kJpOF@)$?_C3^v<)sBAwfm745s(V@y2ioyKy)Xlj@TnxEb! z!p@=zmW`&Hd%1uLNkHFWN7Kll--rBU(H=)cK%C|x((bK6kUe=g@m^2FKcq_ z!l>sK9G{V!YDh)3KC8Y4y03|Y|KA~hk&nmtekNvX*uTEb@0k0m!T){={-r0^;`Sa0 z!pujfIR0fJ{3B@dkGJxFlNwLIj$<=`xuBehN#|4WcVHe}vrvKphopZWilEDRGob{O z9STeeMu<&=u=Ib@U4V+Z5UL~=txNxl84fWke+ZemXEJ*Z@#g#4_LB5 zHC3#oX`=&DfA8xX)Id=@i}IvF?xG)o>GHMO`l@Ei?={#RVn1d_{t9#8GeR7P@mDjD zvR9|0RGEZ@%SSh8#ogXRz?2j?-}7diw~9{mNN&*pdnt$yI0d?8_U9fEQER9B&d$s< zb#@X!7DaM$GBA|yT$7VCg{W!8p)+t;5r42!P1k?+3fCB1{enQp?(T4M9B=%B>1Oq2 zIXHYe|GW~6xHP|`L*OAhxx2R|IMzM>hZ00tUl_WltAGXT;oeS8())%7SSE$K zshaG3p1;k3>x2nmLdbz=g1nCch)5&;K(9J=>eMIj0&JHjlG{-$0$52;pFh`F@&cC9 zw{N%4v#=DkUr@iN(!G{I9*tV1kZf^n_&!=)nW5RR%sETcyP4NT% zpzp3g9WYh(Xs3Y08`NTof%t6n>uf{b0+E1>%KfLE5e z1EzK?HP8(BZ2Hb4GAb&>uhP@)d=kOhMr1~SEE2Z*`?qYdWw-fi1OqQ`fzj0QHq4p? zWnXUAMvVAt=UnSamgESd7O;LQQ13GPk&1p6xc1lxET8t-sDy;jt}f+UHOyxrrVIpu z%#SL0Z`9aOhCbn0-ft)4!j2nc|Gv^b3S0~XVPs@f%i*9C$_GosqU`NsSW-IVX-rHI z@RsUEU!bHqHXOZN3b1motEl9y7XFPF5lYF^il($+;Shg&CQo zeaG4$ltk1A^ihge1qEume%G$BkFr7dzO^HU1Gv`Y(?5PFbOr;~Sk zpB8QSDn0{lf$@~HKt^x6{1p6x2E#EB&?FvnnQ^+z$9n$@uBhuC)jzzBg#|+3W$qfr zL&nMN)$c7LUhCGC^X|*z;b=C@+qZAEmgc*KCjwR8M7{p{g+l0r#ak8~_tCpJr;o$b zujD$?qC_DyZ&N2$EC2PSU{zJsz_xB-Vd2k_@?-7^Fz!tuVduK4syw*H&!eJNp}B_c zZlcaut}9>zI|0!|acdUF0kOp4FK5Zg;}?!WkDVR=`uckvJ>`GJQfaEw3z(j#EGpe$y& zHXFjQ7E2V-aR{{Qp+*g{Dd+8%qQGWEWE2$@GYcVsN`rqeTPuf(b{6(e>`N7u6e+{l z4>4{)DVqZF;|YXD#0d!|q0j5RONC`6n4onWb``}0-vLR5-HiAbTlF-VXIDJ_2Hj@v zj5t*1%C)gcMqiGklVlI)k{mFcGZVwlExw{NaQx_)0GzFAV4Y&!qd1ac)Vxh;`ol~q*X za%EC1EGNNsN6q)w$`^|dKBZlmoS8X^Y(uUPJI%}6Ko&;1X-FynACP*df5$j>%$!nl zjDzjClVRg1YaEgPvmX+^wY<0(4oNUrAb*GfQTYVAM>$1`7P<)l3KF+*U07BY8=BHl zpv#H)_ekw23t3W=si(sUuJwxfW8&DJYB$(g8Y}eKahBMbjsl8W3kche_pS>=WWZyI zBC=9D?O1;xlxI}?1mqvM_^7mPLH%A9mGs_kkWuo?tJGCsJWq?HPUR}`$Nn=z^%LWn zsJAX=%P-wdOfN+PzVmUC33xnBu#LyZ$5Hyq;oij2cUU9fy}aExJcEx7wE82Hqr(Fa z$oC_oqQVE7MV2NzfV610jDThX;!$agJqQ$U<8CmoD`KUh?=q5Fs|UOoGtB+th~f%wspfRzuK5 z)BVx+j<#OrS1dBP-@do}g|PxIbk3@@WBeM-3g%^tf}DC*+JAPUDCU1Qeff3PLjOL( zlTr-V22Fb0uHHzN#c*Bvn+*p6b&pE1;cDEgUp|eF`kS>a7~-Q7Vg{V^T+H+OJ~(V- zWdGVj``IU5=)M#zd5HOKb0qiX zsaZnr;`0Vou5UrlWj(ve=0A}87l#0RIMTCcbr(gN3(c+*leGQlIpolHxA=JUl!h+i z;g#SFiy*6y45AV=bM!uJq21dv)aQePnf;cfY;LJ*oO<5ee0T2XP?aKKXDSjN53bY9 zy?xh948DK1`_-;!C?}MH5gzs&DO2cF*2!mr|G#+TsX&oXYkv;CsoEr-s_6Y)Vo4>O?o%u< zo~d7b#ukNdd3vtG_sZwa^%d3pv_{7{ABSBuR3dDJj-lo4+rFZG!)kP5UCVw?Ta3K6 zB;ls?6`xln?-;m=(GIqME8Vi+ZA(FC+&wpjY?WNwH(4vmUEldM{jyyrd<)na-7sCGkaxK>|JJNo$(cqXG(REZ*C zqZ4z!GV<}W*m!>acZ2O+I_8Bsah#>ed*KNg7M4jLy^@rV$~lF+0mZ94vP&xIGUbgn zV7+#&&)HCu99^#B?CBj16CtHSOW(Q@3HJl9`Fln7@e3ZXrtMx!#l@Kxp8Dl_`B5#Q zupIfdmXcd@bA9~2_U|@EkG9h}g%%gfpTTTifpdo`EIiGlA2A(FFV~8>BN%ho7(4*j z;Vqk6jcHc~T#o81i-tN=4hFrJB59*ykHcP9@y40o(fp#rVDRfPf)UP8-+}-=1mpii zz6!j%QET&l-Nwm3Os&zxlZ0pe!Q#w#{W^AUG!awADMuT%mk6ufF4tRd7>K#Ywvf|^ zAk7c3R=lRkY~n>(adx@%C%=^Cat=7L(d~%4HMk5FJRcgB_*rfrv|IJQ&tn>QUB9g9 zV5vIOBK9FB`gKRAQr(1ETk1s783##kh0efU+=JL$H4)MFE${E<@q>&{LgBa4u6Z5_ z-;-$b2EXp%GG^$SuzSW9tn7=TZLr83iv2FL#}4%O*fO-a)!P#KqmI~DnUE73yP)Q< zs^p!BC^kHrRIx&1z%fA>4J zbrpRdBmNI1z12Ks2z^p~H1sSxx&q;c7fV0cCzcNncJG*r9^(KlVXn*WU zI+0>~Z#Atwz{#+PHAvc!wCh)-unUnUgrP{BB;kJCJ*Yo{TCIhxf$5(dhw&Ga++*HT z5e{rA=ft!ni(tUSoff@!gYS-TD3XX{{iJ01ED@Na2oQvu2v@vG8WJbK;S5z zB%;!E==yF~Pf7%C2w>r7mVk4O4>sx}*);!l*EM3@q=WGZFkW_t*TP(Oq@F%8FKPKZhfZo_#Dk7z+GG+b zww7Pzj`DYREh;wVxW?D!!8T?vDd^*&un>{Nrg9@lzlY9=7!R@|TwI=2Pdc(C zCVrE&%^**xx8ixiZ4_u%F8t?cC7C8s%84uj=_!@HC$QS0;BTUpQgZj3vvvxT*( zHdJ209fcgsh`3rGY@}iS*`!)k6=uPG6J8oo{5NHHQWrnVKk2@82G4}QaV-re&Dp)Y zHCc+NIn6_4tPlTdoo}Wt2oTOzS&wmd9?kJ_#J_26R=q%)_+=_X1qs{EROX%?E$7b8 z%2}}!zwCqyUxiXWgE@WaKClq39<4umbSsWvtKjmd5^Iz28w%GBKPIW|?KDj#dn1CIO-lVoFH5t z*~O{NSMspSe*7h!JA2sMtCp2p|M(m+{iD_Ciz4m|NcqxOZXpGM^P#Sd7tAd0$;I*gAe5I<2++p6B+MaMg+f&91h19~0iBVWv53o`zH?gz%#+biNpIE#? z(&W5I`TOB^GnWnlDA?EavlYqAir>-88(Z7m}@~R#hF|6 zY8Wd%-|o-RnTXt{xkky|RB5PR;rh#5a*O4(v+$j=*6~Z4Rq|(5Q{*OxU7T!vLtU3K zkTI|M{5`rWC$G$XHI%O^$k*%OQSeM(RB@!EG$hP-_Hv? z!06k+(Y3q78FbC5zPjEuiTna+LSiQ=0x-VTxho7RsN1p=21m*) z&JrvpT^LM(EifY?Il8<4sMSqcp`Nh0F+k1R`|?PB3Y;oCN@Y>8ij4)vG1VuRE}_e( zNk><-r+GMDi|)C3TEj`##rvimALS00B;iCfnK|hy*c;F&>+pa3dVySJu8%n#O%{Q)ANEPF|$k(NS_sj`?@l zH7xvwoG)?L!7O5{dU0a*>1JQ8Joy>MLARt)abX$!1A>h775%S%% zf`o?Qfa_wF2iYUDwlrdEj5}}Z)jfNA3(kgp+FZujD1D#Gb^#mAkTi!G);;RXi8|Vu zeawonVH_%HX}g6?C0?2*!Cwb)zE&&N5zf0W_=^gYIMjM6ZbgB7QzLap*i}hxJ&dWh zB2m^Up8T3Fo`{M0uJG0^wxMbg_S}R8shE04dgb_APK#f!Ri(Uec79rKCmfx}T~u$i zgG1cpy2EeaxXgJl#y7w5>F6{;kQ`Qz$pyb2kH~M5uhuK`xiU5I!sVEgj=p9)IH={A ztGv~eO;fuKIr|OC8t72@P)WL zw_GHhVSDV=X*I%=x4+5E?@J#cgZFP+v*Y9A1A*pgT%7yOBSUZ*_5dD%G*SP!ILgty zgB6XNz?oSX?|M!Z321_u(t?AJ@Zi^2aQZQMYS&LeP%cSH?&?N|DTaLywJv8&o7jt* z8i|aI44L%ahLI6!y;U8wssB?XP6L!1?@69SQbA~$8AJ5Rm4Sb2V_ zVv3l>`RX(;3<ZU%eWk z@aFU7^j_X)=)I7q3*n%La_JB9Gf?hU#Rdr1bH*kj<``Wu_|Ra zN~j^ak%P_8|2NO5Or9~mDU9at1d}usK^N3Po%xug|K>$kS63DJgJ0Btq4c7GVi#P1 zQ;_47l||INu?h7fzpl0s<(U=G|{x_+LMlMozza5Fb<7RbHQ7If+D?cFdWwmtuaT}lqf z95JDg7X`pV=20~;At3aI7E*B)4`}p}4Q74NVV1!BLde zAVB5$#u`m`1zgc?y-F_Z>;nKSiseQ$(X20BC@_SiLMT%NYOvHU#Id^{%+|6KP;jCJ zJ*e_z&fm;2cYr>Rr;_-a;Mjw8=7rvXyTA&CYt(EEG&Q3+pQS%J*qzVsSDcCEyrq$Q z5UU#0bsq%Bfzq#(Ap1% z?qe2h8f3%t5Q2$+6_#@hyNHqkMh0IB#B5! z+5ogf5Hw@WrAIRO{=shJ#Bn?q)&eC%kexXb1c!~iQxwo)w6u^`tEbmMPx1D%XU{&( zZy-pnb|@rQLxqPI?W06OcfJbLtTYkCv_d_ViPSz)*vfh7cijuYxeod8K;riYW;6>; z$Z&i&yQ{xS2uMh{2Y^S6Vi44kppp5}<2Y=q4f_m97Kl-h*fOy3Rv>$^*_>Z%Pf*KZe|z@+mpv;U|tK9)yc5?2*Cu1HngCLl!9k+ z0Xrv_I@~sc(g8Z`=}-(n%zY_LJzZ`R%`E@X8P_@H2B#Z^anUR);H03iTCRS1E1aYt zG;bDu&Dr$UngBZ2%3}EhnqGz`L`FrO1{TN)RCrLFEzg6zy8y_@XJTMLK$KXIlyN2d zZVubJN1F*yq2-^LK*m9F9hlO}#zsqS`S=q^WJCa8YlLjrUj`q&SZyI5qKon%OaYSq z4niwWzzyKXrm-VT!hjS_tkZEbrVblE{Y|oAf#eRAM<{A9E9IO z^Aq8)nGY6`l4->?-X?8}q^CR?&^UhW8SFqNF)=+fcMtvdg))mblj13Tkr$CZDJ*20lHC*B&JQ?7zP}r7H@tXx|2tgd^ro}mq1gOyx zj&D2*3(3)v`Q}Zi!&sG8MG7Ee1dw%@vvm`f5ga`zKLq$J0b`)Y^fP%#j|7y1=6*}K&smeqjVfJ z;e2T`Q#$wzWGF@e@8irkE6j=2x3yz03^Fz!gLKx}p+jpRwdU8C`K4qhP=Cp`bO10I z6#;0XIm98f(fsPbHac%Ykm(i!kL}F5pz<3YR2*}@^W-v7g9l?jii+Bv`kw-w8+i~L zt2o#k!H6~%x6-GeqI!a^dL?AfL!L9UATv~d69F~y5J*X;&_9Hn=ulD(l#DS0coB*a zaTJq8wVwb14Hcy(A!H-3tV{@RKLph-#y+dqXkI3Q7A`6PY@fYT03tGIc_Fk=OQGkQ zB^rFFKiH&ps9qF82EM+4^zOor1I;Aw@3zs# zESW)(DcvG-JQQ`BxW7jPCeculMd-poii9V>cD@l2g68_7{3o;^5w)cJ$a94Zf>G2?Q7qaC8jq>w(9l#dR;7ZKN$=P22tl9$E z;MaV7YCIqnJP^tTfQ<#*&QQ>5{jb?>$eF#3PvF~B80Z2fosGSq3*=z4ms2zhh*|V! zYi)9yCK(uCf^s=W2g`og2wLg|V$y)rwlF~vvI|HE2x0?V#_V_T2~e*{bG`_zs@CbW z@k{G2gr^9QSAIu_76bnuWA6cvW&8jCU)o!fq6jHvMIn`xmc6oPnVHGT2rU&t$(|{D zBs&VFP-fYCBqTE#A^cy5?)!7!pYQkg|2=*lJxW~Hd7bBRp2u;#*X#K<)YH2^I5@aQ z`}Cztk=yxA0~P3%w33bb>8L!!%9O|9VE*4b;<}&zHA~C}_@^~--4317L*$94> zk7i3WVGzi-B8gIFW@GT`In{kkkdO7GxUV``fF2`&yv+f1gG3%|(>6gAF8N*>gLq)bpC@?ByB ziN?>HYWe*2hU)?V4`MO?zHS8*!}U)``Fy^{KBv3DYsedP#=^qFwZa<0+{<+dey0U; zIJko(#Gv#R1av~my)DZuWrOI)e4{jiU5(M;g=0$*b*%zn5(MV zGZJ3`iO}eBCSBKI-u z;$nRhkCDm7w=@7~-n8~AwQ{n&5ElQ`AfpcYdyZg%D_oTO0IT_`F5oUmln7q^awcaM zN!%3Qbulq9_1}I)Yo`FIh@4vT!O5E|86Nt~4?Hfc9?t1w=ogZaka+Ar(wcMOXgxL` z69wrO@6A9xBz(55Q*7H?cH{L9gMP+6=2*7YjM!t#{53tjn(`DgLcdonS%UxjGkQsqcCF`986QsD{I~hJ%8nW&A+{m;VX)!_Z{5A&u3hZVDyX#ELkc-~5 zapR{aJ;>iRtiP^&lccI)TTs4Aahm-+eRo~__~&&YU?6m(T7Yr`kF)~aG1O`sIb&J( zE2g2LVFuX&``LNey)c}j7#OHJArSX7Uw{Rv@Un7J^W3VNfB=e5UD%Sf_d2q%)i0J3 z$S3BFsgn)Xnw5BW30xyj>`));;dYS4lVm_eL_|iRzHg{uj|(CDg7R|>s@+#~jC2Rs zRul-no=NRS}7J+rhOTrrLc@At%W4_Zdipj|HhJu1rzkupdh0W=Gs?ckM~|eLY6H1s5GXhEP7Bjb#gP)*_Z-K zvyGs7>ihTf^>yQkf1jpbwpb+)Q4;_Cx;56?LK_qdRbR(c<`Y*JB7P!jjP9YBMz_B@ z+HN2@o0MX#V)}$*(NQykUEl$4Y9pibFD3#MAgeykkzh)(2CRA0{H$XjrN9gB(rfsv z+ZMr3>)Y9N4_v|Vue-hmF~3V_8IY#KgJmq3XN*gQ$KbVY4E2M(HS z(FS$}uuBw*pVwNuIfs_?8$q$Bdv5s&C zqx$wz=pVw?g<)?_6k=}&a+4S!q(%w}XmVEz3k#7@FF0^->_xU3t5ue{BKwT%63XOA z2X}?CZF)a67nA`NCOsGF6}L&0qV~xFy4u`)P)3y4<*==)-nJF}^eH9%I4NQQD(oRj zbg+)2XQb%U?zlr2U z@yebPzdDz~4L&2@Yg#ry)_`xVIfn?zkW#OtOyEpUpFX8f$QB(V9p(;ey0-sFrXLt5 zHe+KT_nb=RT3{c5u|p6aOqhV+n8^MPZ8%A8nIWYXPZbY2Ax%B$hrwWO8}@q*4TUzl6WAwT(rP{5Dxi7ADsmnM7` z7?2bb&uK!4HL8he8{KgH`+!q?B~L=LFeQVi6lUMzR5&%Q$kaxKG6F}aA;Wy21|M<* zDit_TqMx9dMIWv7F%(VpFH~RHS8Oygp%r(g}Ea+mBf6wjFL=4d@&|Uft0FS_uu^3Jr(^!4X*d z7D5}w({SJ0`yPUJumrz+`En2-qTg6a`HXoiSZWib!jc7V4&AlP!|r+-vBOB&POoFb zapOx73#BN`d(gIR$JMI5xa2v$psekb`O)^76m)wE2e#pKRz4Y|UDvVzj!(g(HA;ppfHR8WT6g?_zZtee&8zmQKXB=!BU(!_2bX{o%;lCfsZ z>eY|(kLS;PPlVKdZYC18(1bHbw7eTAXW}ypV2cdQZLd>&{Pv9*wguM2oosD`&-Yec zs#EAU$lA94o7sh2L5uz&ar&dyY-IHWXK*(Q%Tm-+J)Q{%Zd$|j_Im+9T^6RRTwa*B z9VJl=Xc^vMpILw9%9T}2qbPoq;7bt@aVp^MNv#W1%3SzfOm-ubEsL@J7(d@iG=g*f^~V-{qWjX zTy)a<%wI`=G0)#Lr3+PTMlZ&)Od6yUe1Su{5}isaB708*bk>?35y40VUWhe(K^Y&_ zMJJk36y5llgNsI3PdeD5s>immD=FBQ&&bbA)J@Im)I>|rQcmjVFsG%Z9e4l|XWWlp z?$~<&i)WT3yykG0G`)#mIhJo=%BXi$0@RbmwQt`_IK6)33ow$DbGchSCXTE;96wWT z0KHY9ocWe5Eop@AIx)W!fbR?ZaQsMc6tUP}2zw9*2*$+Tun$!A!5`sDfvdX%%RMlx zPX~k25=cY{iCoGJY(f&NC8d0aJ-LL13kqM7BFN&|tb2fnzkBy?Dc*vp(L;y%#OJ|> znK;8bF*vA;i|39u>Cv+9*+wEDe$rTogB6~sJE%i`6)%4YxL3aobegna4$=K~z$5QB zX)uf0DX|uyZR)-qiFVl1S2e-Ee

    rTU3^DY=P7`o(GGn~NCzS@@(g zd^2P+m@{NEbTZ`pCSPD(hc491wgO$qg?$aW(0}%2=t5gKFoZHWSD~v?;=-`;KG#Nc zRr9&`O`gaTE}Oyc*Tb2fnwMIXSdw2f1;|NBEJ-acNz5&n;x}25*Gt5kv4^)fHMu0O iG&jB?Ex#ytiZ|otT3!W4#*oeP_`WeQ0l8BJGnfETCSF?r diff --git a/doc/build/doctrees/pages/apply_normative_models.doctree b/doc/build/doctrees/pages/apply_normative_models.doctree index 4a24e45cbf77eab1dbabeb9b3688647acd0ae4fd..a1c3942eb79b910bde91b4d9efb967d5df32580f 100644 GIT binary patch delta 6094 zcmc&&dvH|M8RwkcJa$<^UTk8rN$wKJYqJR<1`t680clAS5TuC+tT($ix%ZNNaQ7~G z$pFS8sn;q!tJ{v0!q{S~bqZZEq7|D~TdU~+I$B3(;;U0@b&A-Lc2dEfbMEfV-A%HQ zKRVq%&dxpO`+ev4Jkgue_b`=VK4V9iHz~&3xL!Go!piirhhKTvwz+<5kduP-L0J%e9Oh#r9zpdQ_Csz=3^3e;z)M*&OzY$aXdIzy5W zR;&nEtmvr4gr$CF*@Wfipmzor!e%3?of8C0(XlyQSxc+K-w7WG?+sV+#r#$T_BO!g zEcA`6O5i|&tb!7=Js<=a!55U-?rz2xk^=&#T4+_MMA?)Qs!ptui(D{)W$1EN!#p=% z!q@Vp%{jQ+!rOQQHq3)o%zX~@6QLU#_wYS@uaYSQ`efekYYc~Y2OkGn^`L5%a9aB= z^kx2Nd5=esn3YUrhr|j#H_u9Pu+nVy2kYEC9;qV3=(Bk|W0w4W*`*5O(JoGQ_jszR zW9D3&viZ{~(=1o0Q6;I2Dne(hyCHv+xV^A>!IUPtQE$OzlV%LMw6V|}bW1`28(CeA zyoHNx6Q;%u)NGm=T{;z7GvXIB8&QE8i&)5?B}Ukrub;{Yr6z%YvAS9?{dguNj^|H| zYeYsVk?K_5T%w;k`f15_2>CGzn>Qs4If_cqGt4;TKO@{1Hm}wxsMB)H4rk4(scH4g z-13?lCTf{)gJ^6+L7_?Oj9ZaLg%DG)EL((N)-0^Z7zhAviE(ecXpuqFu*{j&0h0P{7<+ryd3H#+uqK6d~IWMXRgqZc=i8{h~TtVOG`GK+U(a9l`lU^@$t?{>Q} zW{nN99(3yVMcAN!!)b>uP4GT9Gw(h+H3HlFfgkfOLyv54g`cXtKThO*FzVQ`6Toqe zclsd={urQ_c8KrTZryO*_&|1*OiS&qwBhgVJ@rn#w#!Bw2K6MHhL+@?2MceoM2f~Y_hpv+JmoaDzq6ho-n9~h-QgZaQq6>W$7PWxmQ>B<` zh>K^Q!=FYhhb~kyHb?;Kk&yI%6>|~Z^9%;`Z2wMJVn9U$ZLn+te;&&fPk|@>3HazI z1GxY$nLu8^5{sumlKw{z;8BP%IP4Y8Z(=rMng?~; z+{@%pf_HsZW_nP`Jug|3I?n1Mbwsnea4b=uR^Ov%4?jOU`pn_c+2C<>fm>0VDy2S1 zQWE{gkJhJwUt?TZ9*=?Q0l&1x0jMDQY;^(J_vi-HznwvIPPD-{2%kmSuW8;R+jz?w zbmBx5eyDQ&@jzzAIs$*q5PkTuwFY=e>(5!Q_N%TZRWE9PV!#N#BD|YY@NQ{M2F7V9YbT+FZ17*7FeM0fOsQzHQ1 zj8^wIW%vlT(inX{YB1#9q6uns=C!ArKr5E4)hfj;Ms(BgCsWDZ_zVl~OqRtvH@F3j z4mMRw>QtIfwDVB=gE)I8jzmIq)tT?Y#%n*++(qUth@WYCu`$^5*7kd`c7`ZD2xEI8 zDGj}ZQ_esVCr?x!xuXGwjbvYNrV7--Nyr=ic?X0iXmqaEMJEj=g#eQ>DQSY2?c(r- zIv!u;Tj<>{R;9UR*W#s!x$Fe%kbQjl68i0Gs0;YI!iw3=`aA;O{<$E&HY=beERJ9+ zgNns330;DZ?RL@Y_bRmeasj$&yrfnS$0;v9MIua#L`#;Q7fsP;FFy(4AE*Ju^!O6V z(+d(XE|aIRoQs$r^om2}zA)B9xr@KWh`nL)Mf@kehnt}I5^j}bs*O}SiK+BBKym(vqfrIU!(=;xuIg{aW7q@SUG(ccWqfb2%uK|?K+tRXSohu-59>Fcw$-Oee^aU43WC$7~J0Zv| zXYj8NmtL1A@Y%Godpyx#;`Kns~QWuf1g42;J*GGYdIMV>Q*`|#BPYgv{mW427EMd|C0 z-IYtNwM?al+as{D;P>IQ50xVAzEuRX+*Q@*p zlM6hZ-5}J#@nz%*)V>2h*M`W`t~36$>r@{STcxB2{UOPXA5&|UeEQzdt>#8R@^|6nAe&2-k|z7{ z!)v&CmST>}a31^_id5x+HnWnBpJM_cIoulAmj}wS>H8mM*eUelovA(?Ig$r9*K!%@iLe&0k6L zA!%Ch7A|fe%{!!di!|r((M%jA%>uHg*h%vNQSdHqLW;@9dO5i-K)1>&k?0?yx`(LV zA*yqT>KhWzu~^R#RWwAE425_*b^>L@TU0va%|WF@F6Sy8awk^lkei!Ihn$5~I^^_7 O>EILAa9$DE3jPZOWAohr delta 15391 zcmeHOeQ+E_cK3|FthKRZ*_MrE$t_#9BwIWCA<2@~U)Zv2jJ&duZ7eWmJ=z^blB&kb7~T+ldG;UoN*Va14gzK}VQZH36XJSEQ(h55H1#9VbP{B7-&?wKl%_{8E1ropt9|6*85y z`2lHCfY$^SV4Gw%r$k;Q>e~l8yIHIiTkw;m$emH}`1Gu%pGZQVNXAUmHiVa0*GCsr z>5w!WQ>->IthL{?UUECwNbdzk;v9pSmF|O97Z;6C3wT5U)(+^u&FPGe5}SDVkW@Jw z@gTnt0rh5ec~hz0Hsiz_y6baL)>y5p-( z(zf|Vn@$FDy@X$$--(ZwyB3|*rR%LVr3IV3h+il_%lr`fbS2&t-xAL!X9E~DQI53I znVB^8RvOb-14o!yv${iag!nTlqRFT+YcI8t<2ailgk??epq@x9EGXdVprLQSNO)_i6~{RCFavPKb>3vsAt#k$@mb9ImvMpjj3h1`lS+g@*yRn9L4 zB&Delwi9qq5zXRvRAVbp9gXkFRU0=Cacnk)Q^l{+=z{ygghvV9s@>q^!40b!sWsU#*lGGu%SVP*-bRl6y_H zn@ci%a>4CvQ7}L)R&Zquq_QLrhAFB}MxfVdN$>=K5I?`PpGo1v&X$hgBk*0Uq0PXcI$2^P8A5i`r*Et= zL=ck^-db9XkJYSTzClKrYaJzhvF34*{RB=nw9od#&|f3{pWU^5Mesh#OOKd!w3DbT z>#H8aFVsf2uS9WCPz0LL@DV;Vrb;T(_#=Xfq9NWd*c4gTeBjK`MwHi`HQMBuhUdTQ z#%Jrk#rzru{U%;pU(SASdP9crL-ng~ShP)!M?x|mK(NF#1TirWfxQXwDc2)7 z8&vE{Tq3%op&W^3dyj$QvbH`2FSn>D41OK*H;5VdL3u=IK@boHApVJ{uw*r&QKCs% z4xzY!;!-GtAizL;j###UphzPy1Wh7IQn|f*cOObXFyJ&r=gsBeHs#6hR3MnjT@oL3gIIwVMs-r_>d|ieu#w5Bxa+L z2=yl*sV3GVIT9KJWku*D*xI=uW&QL0&#pyd&iIiA$APt)# z{t6%G^rRNnp<)DP_@B#N*O@tbK=!K+{AEK;(>0M-_bQxU9Wm5A@LMQgr7mD*L$%@h zjtvFFn){|we{;#KS$4bI>2}+lZo8`kvMG<#}ZEzc)9=F-@yrjwK!HwiEL7$n&rb7t0aZYzHLUuc6?}en6 z#FDVjI5}slYP02m0%~%*IVbW$-)3Z=Mj)i}WJ5ftPtLJf|9{A4`)Vl5yTGdxbOFpP zw5CGR1OT)kuw;T_Yv!Oud0z#z5)@knpygWE+R@$$HJEkItA-ZU?G(`R>(II_1E}l= zfR?Mhi|e`?Xc6#p&Q2?|z<(R&1rbaz>Cw4*=lp+Ej&VA#MWe!{a^!lYm_i+xxv*SpiwCg5@E>}JWvN8W)|KP zJST*xQvu#|oihh-$~za{iRoQu0eD}#=S)oRIRs$X7V}PLVgS%+sU3X7T02NS z-zUdOJwPu|K<1k%QqZ$vnu`lah0|)J#`J>|NSh&J5A$P4gvba*Wm&PQB&9wYgR?1Z zj6?fKr2)<_RY464iHL^a>mXD;0+3nK^nW`f=4woVQ*+c43qj6L4%2z?po*kwk{@WH zazRcg2Z6>Y8ASQ0puji+B<7sCb6tV>36Swx+{N=O)4c8GwwF@SAYl8QlRMj zA&blu^X`Q&c=L)4iBQO<7e$OQX>rC{E@(l6F{o?AWuxp82HQe0jaFCS%0eg>pbE8- z8i!e|(F-a~5k3s>AUNO3hcqcHD*}mENI4MN`h@tcvXVIBW1#@LeNaG2h_sI$EIs((2wk zBJrzQw@GDiQH3zW-@bmCV_vS5ro)FE!W7+7DSVXdbZa*UG1=;Bf)B$#TKFr1$yvIQ zcI#nA_SR1FRznA?rq+Qe!aUGcUC(0nG-29A>XQqhiPtp)B@wqP1(nKe`0gHV3XNte zlvzPR!B-}zbTxMHe>FoGb}%PgInnYKNngw;Az|$XYH)QDHT2IgMnJR)+B3r@>^V_e z*ZW+~HflLtqUTm;R$Y%jub6}X(Y^?OvZ@7YS#Z=~ga>fNDih+s*$LUwj8h7g1UjVV z#zT=T6bnaS+Y5zYvs}TC4Eu!03g`_HkzZEy3@<>AS@eBx1TLKn3wn@);10?l?0QfY zqp?l^b<_PR8w}Z2qQDT8!eE=^13rki;EYQb(PuQ!n=4I5C;AUpt`5(kSI(*jeuw8c z!dxUZ;T46>&c8)%kAJ%QHaM8Pq46mDa~c3MpX21tW#4T2yomi@>N0D-4;?=@d_hj_ zzKO+~TIx-Ru$qF8w>W=0QNjnV041aopo9+qO19#EYdOpQuFvo}T;V8Z=N6F*AqBy5 zo?-yU9e3j9_;Ot7+|4xOm;3AsE8xZIB6Fjl$F1+DpLE{AFdgu|z4Sx+98mwGlbr!s0gnX9&6r62dy zuvJfFTJ@8{AjYq5H~>rZ<-Qi1d3WH6BD`%*R_OFP5QtsVwcA&+EK^LNwX%R8@-EOR@t@x~#Qch?sbOb3TUSi7 z@%c5yR%m$J@~xrWjw|HDc=~UCE{LYK*+A=Vl|n9@^RFZ6=+! zKra&eEemcY{cD07ayY;pi{K5#xV-NU_O@ay^&MbuH>lST>VYevPJ4D&F|2CPttE8w z716!AX9dH4-Jr7*x(5uph54k#zOvpcIKR`%sdosZq}1Pe4^`C6}&2x{61ET0XX&mF)$ z1Lw+hqa^9K@3U{y`7QN!P9V$NY)RJ%FU?6W5ni9eeoWD0FNB^A6NgEAkM1a8|C>i)&M)*+7$fprhOy~s*2+Yl3Zt4zMd{vbYs3t1lC^cI+ z^8OhEx`>!XiAgu7cNDrg-CFqOwB_Qoesh|X!tnm{)qPiUdzvz#x2MJ9K_>`rUY`yk zG86sM`SOtX;Ka+*!Q7d`k}-oyD77sS42{~MvS7DrG+U0#^r2Cor4Ll(YKuT~)C=4g zKfrFIs;%6TtJnn${AT)p?tPhIPa6`S zC$x{1&_z1u{-3i|&u6-4eExM0wzDsh!Lp0=`4T+#;Ai!`ShFj=Khh;I)stI4`x?Z0JJZKcoM0=ni+Ld1IvWnCjBh7TvFvAbRyOZ@WXz9& zEpe|kW@??Q33`PsJ#gxvi}`X|Q+$#uB-v8Fdyr-4my)Hu*1EJsmMS#6{$S?WA1Um_ zZ+vev>+ZtyU$HY=@#a@NZg-cD{yM>g|C&+@{BuS2sw~A%#j8)VY|CWcBUi?|?==hW zoTb-OfcJ5o_xc|^%d$Hr^S*C--o-H0cD(1cwb_}s6YpZq{BQy859{2Iy!j4O`DlI3 zEc$nM3Uob4WLe))$T6R?%0@J3y21egpF6*-Xz#9FxZ?uC3og#b$9}jPKY3yCT-EIh z#KPe*E_x({@4Vo^UtFldFJ5pv_j>pC_>9XYoHnYFI|~TiW^J;0_1|;RH~8}Ty2WFV zW@g7TgU0_S?n@_dzn}gv1XQO{GuB(-`zKaa>8Be2_P@V4%(C}VMHlo~Pg<#oqVf2p zZZ<{PL&!ygHCQ_Sb!gs%2gX3?nVb4r2LVDsL={fJfo!swI z%0d^Dye~|oG}$Nby0g%=RfloM+`Lo`m$EZ=t{njZN@S$a4Y`7>6vOX^8u6{~y7n1? z$c&9_4D4ZlG`)(>PMj$I)w>_FA5BmAok@g!?;T`+IX&SklL!}FKE&F}$jU7UsMjVD zzH|9ucG>iVZ%iV*`2J~@ql5)hfD1Yye&>VHo;M+GvcwY$Ex%E+LnTQ6@n|-dSY&yh z{dFn+rw{8O^>}vIvW8@-D#sKO(Y1&b$%R`pKT(6SQ%sW;_%&w=_y71ntys~QEFTsk z>r^us+47wE_v1BD>3eqCIW#OmUb6hIfZngoctyd-j? O@BK?4({H)aElH$#^j9g|W zJt8GViFw62i6xo&dGQ5B`RPTe#l=%uQWHlA}zltcZxUT<`otSjEo7JPg;IsVghmx*kmvP E08yeOOaK4? diff --git a/doc/build/doctrees/pages/glossary.doctree b/doc/build/doctrees/pages/glossary.doctree index 6151007c555a1d92a0f92bcb2138ee268e316027..6cea70a6043cea330ed7796b09fe0da80766813f 100644 GIT binary patch delta 204 zcmezDdeDuvfpw~x@BK?4({H)aElH$#YjM`Er zJt8GViFw62i6xo&dGQ5B`RPTe#l=%OD#$)$uF7$NQ)T7FUPl#b02G75~0hc;Kreq& zln$58;P>m{Oi#^AElMoOFPZ}6q$HN47MCRE7EJM*94O-=;?3B@Tb!C)l2@7=Uy+ty dlsmsE7!{zzHLQC>e4qwHHJnRVu+{)aCyA>^F#AC@>#@=J0um09MN1WxoXh(d~s$xnM^G;p|yzYv%Xlp9jlqC*69PN1{+=w;zU1Vunbw`~}Snq6xbNZ`m z-cUx8qvC;HPul;O!yO=>?7%mGPmqc3o%lM6aG@54=TIoL3N+Y)4Gu~Za}|%Ka7}m z!?NKt{A4<+rPxc>?o_2{fpxR{>7kgAS&p*wBFDHe4z4 z2Pfc~`7neG4mf1mM&q#1Is_JDGvnqRsQ`T1HlTGCo%>KjLv?IO4;$tVt6E>g`Ca zk`GMv4>DddIaw73ogdQ_L2F_=0r@GiP_va69G_$uXoV9MiZygiNB(dDA5~lN?YlPukyQ#J=lkjG{ z0J^SeW`9|8wL^igx+e4oh{c8Bvo?=*7}VgvcO8a(ttR^e$`XINd`*x4w-?0x_l8`n z(~Y z^$Ej{LjaR&nt4)7D2%_yaHw^V-dg=4F@9IwDb(XF{qZgTps`~S; zm(eg>YI1?GZ!dP})Sc+Hw(E-Rr^S_kwZ1R$kPe<=pTI%Yt%dB88l!HG6j}I@ouTV{ z`p5N2VzKKA>HZ@K&#AlVpHWRBVN~S&JcK-bZK5E^1n1((?aw4e+9XjdM zN{0v?j*vmgnKIE8PCk+4)L>JT+ftb=)qhL%-BS2|l8P$GH>+yAuP8;Yu_{GMMD<$Y zB!f(0W_SnTJH`5c5H#XHbZ}tI4+(Fd{deL=ej7geG;7DPOIb?Y2G$>fAG{H4Z&Z(s zV5k$O$HuU=5&VIkdx5qxI5--?!3r3t1NN$5VEh7}uRwEkAh)*L1)Quv@hZqs%&qoi z50<067>M9A6?UUOJ6UFFXvId`JumN# l;9n~2&H8M(%%Xh}+{BdH02>+7Jpru`Z1*nmBHZ3L{}*x6HH82G delta 1922 zcmai!ZETZO6o7Z$`o6HWV=Jxg=-ahrHv6t^M^~qn(F}sr0-{DYG=p|q$L*W-BkdX) z5jKX2&J~rM`hyRNhQvrh2un3VgF%yph{k_Jk{LfRC<)3B{umN9@!q#v?bqy|oA%uE zJolX2b9>>?wKzY+zw7B+;C&!IWhb#n$R1CGMkm72P|6;RjzxkAdvg4htOWOAok+aI zNED=*bQ9BVloX4lA&1(S-TM%5N|BsgNyYbD%y>zy!V|(xT&g{W4QpSf``?u9cQz^U z!dh{=X*3oc3tGa_8(*l29NSo=n~R)t?{RHbSg{-*gHHS4{+ zJug;0d=woTx8S0YE5+JRD`<`6Grxkh)6WbA3G|v=xK$U!b6PL&&g(^e3hv8wduZ%l z@d0-W`24(dHmQOoVoz#>9P2omIh<)He7d=KP;65b=j8vh@FU&R{O08<5#Q0fg#r4_ z#1;KqBKO}IH1`7bTXQX>_0djOGGk$$V%-NfPLBdjz2lh4>;TX$Mj?LFv-Q19y)@O zoh`R%kCEJKCr(%OF zt7sd{S3e$$O-8f#Y*&C=RN#Wk!F{QqGiOJY!`yV02}EKm`0G)pMx-zBE%$lu=Un;^ zEZxB^DezXGp%S5ACVcp3z6I=tj^f(Ad>r2QW4=6g?uh`r eCu66oV|!%mtmiyjmXS{i5Pjtv9Ks);-2E@|6GWo` diff --git a/doc/build/doctrees/pages/modindex.doctree b/doc/build/doctrees/pages/modindex.doctree index 6a4a8aad1d5374cbfded61f0f5aede93b36a7765..10b1aecddfece0dfdf35938e845bfb3f96e22090 100644 GIT binary patch literal 410015 zcmeFa37lM2l|P<@td&3@gpd#t9&4&Yr?Uv6jRC@rKx9IMfMQeKUENiW>Z+!yI!U7_ z~x$D-HFn>T+R{nuLAm@bv82ZsvdMv;&$C~9@ zRaGx7DlIN8xoIw6TGm?BEH^7f<5O$J)wS`NN-?;iI$k_DN99m#;ojmw>fieMf;kS) z;^_iD}@w}*7nBq@M$7iPXkI}-|E%o9Am6>TRX%;5w(_Cp~X?BQ0zr46l%w?4H| ztT(ncn&l8UjMj?vt=H6RA*j&Udd)?cCF*4ce7?1Cx=^mqwT?#H zAnLinXkoV4s23;aS}XahE$U5a@$TkaVWxCuX^X~YcWEPNRvO}rmz+!3`Qk>oItlK! zj=%7#Jwcw4Hz-#X5Ch<+?0yJE=6oQ`Yc0fZ9BU&)9yB_NzKk@=;6`(%9vMzYqTT%F z&9@vV)F&GQY&=nom8?dgTCFt;*5GXIc-oUrZDPC)2b&nko6Z{yo+Nu1X-pT!io<~_ z5^Or}JW!sE=QXWGtj3%en4sg0d{hWJ8lduq40Kxa13ui>(35Uq+-#u`A$@E9fw_Xo zeB$0H^*S?JjFdDBwU!;6sthwcFn6cxMGV*d#W||G4|Vs7aePz4aXdX%l|vdss#w{o zSUNpBj6vSOXsk{KwF$*{&g+d=&SwLB1!o1;8=6XTjVUc^EmI9ix)^UXeV!dppL}aM z2E`Vj$l7ilNnJ4xvEN0LDy7-dZA5}+X%dv4iCM^jT*iR3Av}T&T3VvkwAizT>XkmI zmJ(DPq@~nwJTxzNLbHlNgGCP%YZmL3G8PPja7*QQ=X8^UPL+=@OH<<*);J&>sZAH_ zg=Vd8mS3=Wv*ZRnYJ}e%k8o>#t$mpOIWT)W8vu+eGP|oI>$KY5 z=|_2|@pD6tg8NYLUI>fWNkj!(>!xNZ&GHC|mJvl=`~*Ahq_Om-cJ8%~6#^Cu%+UUF z@xU173|3?LI8vyNl_DhXwB9d+JZfTfD>mm^$Bgh*y`d%{L>a!9$LC6~ZY{jjsI{2)j#WiYU3AY^#M0u{(utW$ zg|Qg0D4csgXpGLq5zR^PiX_6f&lF)#A#!_7^_vArcNS76DbwT zh!>Of!gR?Tx$7=0K)4SF!&sIWOv5*GByMKoD~~z6L=@4(I$Qv~$Q)#tASZ| zk%OS8*~6-srUBBDN*NQiP%(;!M^V#!@mMU#sYZ6V%IY^d5+T@G=dA_Pv$TfKZsAmp zumdCvkEUkUhb!>MH=5PZDE$!19gUKyLb*B@Za}@(61-^6PGgh`UbdFwP4VD#r94)~ zNM{8gU#oar2I7iAQ2GS{#z{@1&m5-`Uji{lAZ}WJx%eBwn}ZOSMO z-QgjZ8}ailfoeO&)TW?N9SBcqkt*e%9-(YoxyU}r$;>_DzG zJ5A3+Mb3$09xt{H2Kxqs*@4__W3aJ{6q`jeeK(jb;FtauuM(c1WI z85IAiqRhH@&@~u# zJwsozw&ZHrULU@lf#F}_@8b}^g%u6ohCfo~@F5kY_Hp}&*1Lm)!NtLNp;^ELsTXEB ziNp6Am0R=oNrK`@<8eQAmstD=a{dbg&P7i8Vm5~|N4G(zd$)@xqT)ZZ-g`;KQ)h{a z+b<4w5%p-ya+SIfim|d_>t&Q}ku^P-m;XEq27XkWW zQF#4s52zXtyJjNtp3VUAkBW55z%bU!ZA9P(25yrKE>bsW1QS?=q0zF4&1kpT-0pWR?0mh4W;5`U|2rYXBV z{F4Op=pJ5_1a_yb$%}Z==d+^Wi}5Ea8uH=GjCZXidy24!R@D?zzcsB|7V-VOl)42~ z+8}j{@C`a@+3Hyt|RIyOa<)EZS-ZCAp3ZDXv$MD{^M)MI_*jnvsmDe@* zY2keYEZ=gtt7u}pJryy;K2dBWjs>^>6!m@EY*GZ+v{t$=)p|3l6-91c9C32(7`E2N z6_yh?zJSL4<6Yps8d!WdHSSc4;~qbiT8p__I@g-Nnaornn^zI?y+HupiSUeF>%%`z z0H>UhtY|!N1W#l}`injnBU)}LN*nlIKdQ^E+l#GEbfsn+9=-ou8&|>*jXx6vk$w25 zbaWK2kpRxXzGuw9*7*Pnd&+!JsZHibi_OBoAbTuSrb~r^U?2!iWqN-Z0K*^xnGT^- zotc`RH55{)NnN+YM=XZU{3Eh#HrE;mn#;sKQiF-O<*DgPk=&iyz#*MPFkm#Am08Hs zN~Lz75nNbqlxovKe#f?Lj~^JywX-H5LIog66Af2uCCOa`j@RxF7cIA_`$6I8}zbjwk`JU`S`r1B4$OQnbxi8jNfVHs5e&5_`xT zjJxAy0?E{4m^KMQPr(?DrYjhRw-hVoQmr=5x16OlzvuG*ZZ2zawi2s@sZ^#}1W$-r zBU)GPf!!NZ0S@3?Wby~sAf}*LuLgUHW3|a@nGI{Qjb4o@0_$*a6%52xOo+kY+G%o! z7VA6fmR zFIp!716ev^>)pR|cdc5KQ4gOtekF|&$R_&z}Xy*qLNQB zm1KjzIeZ2yYXB$>b{ahS2IeNyg!k+$pxxFLXu|GgfabP@y*3MIukHr4CHo@$)(|e( zw_mPQ^r*-ByR*Rf4hCcCU25pe-zi(ilWzPY{>DGlHf#_W5sJo_wHBAFEO1SG99j!$ zPRp+N58c}ryuDEX%tQe(3nTjrm6>8RJ_3;mGt<+xdUK=!4XSzTOpOBMD2^fg9JMN; zir?h44`zSa()}_@!dNoGo2WA$ck^$OxZJ7`8;lY0Eqh`hTFZ@Mu^fW^ZgO8;H@f6=w?=SILo>6fKfmmUg#PFNfYe~mvpG^nK(*%!@~9&S-wnp(35 zSOf;b9Tf6_<#K9)2R-~cN{8sC@uW*Xe#mp*<+7-p?Fvmr77-G7L+) z7DdL(H7(n`ex1TCg`%+sm3-69T$^{ZvRM?3Y8KGKu0TtwXuL2BXwU5iv}l-R-cSYN zf+WK~@dN2r2L6} zL#b#X9AH1EN?r$8C-;@hPj({N*x|y(9~Lene6>6ng$tIbmsam!+jgs~7V*KAjK#u7 zdlV|U{p0k-G^atIJkAZKrmS5jez~AMhH%d;XCU~kb;2{glogHm&0JJn$pU1?YRooH zTN)Y;`3NDyZ<1?<+d?86>vJu%{cs5?p2Oe*h1x=m=!-=~nCTT@nsj!-M5H^5_3H;Q z9qEo@Q85T=ovu~g0UF^VayALdnGrB!7OH-*1m#9zDMw!{$|0Uu!lemkmrF#rr}vz2 zS8>0@ZSc)tK1ZAsh00_NR@Bl|kl!>mxoL3IbnQT~Qo%zN@rA|u7C6Vp@vE|JbYilx zWptA>?r53nK(7AA8%>UvT4YPag%`zgfxcK=cuE{{58iS2*yMwEylxQxa}>o715NQp zqKcmbhULWWEfFuDpO%;YRz(=cq6Do9r!k2Jdk1T(QMA?xr}0l%Q9n<((^yGExtx2U zX8UTXUASxb_S9hjxWX?1_jk)E`|f17-$**5KnuduvRAk7su#goP{aLSyY(V^wvQGZX>J#6IZzs-K$Vjn?D?v2o|L5ZYW=|ik+maX*KETFAMrR<<3 z-AZrE0@`3VpryCjU!DcViy4f@Mm@%6f1ST^_con39)2E1Olhw5+v>-?y@X#wLlNgd zX9GP4Azn6^TX;Tl{bh|Uyj~u{hiIkf(-uCbmqgbFUPIBgfqwu{rP#o~l!$*QybFKC z23{_wZ2Qhk31Vs1n|Fyhwx<8fL-fFghz?@cb890)FY;L6hiOvSjX50sh{)TyZD{)-Le1(^J2zdm zUG5!9+Vy|5-Hse;?H}|g`hs^9`Sps=sJg9cf7Pyb%xsJOY3*88JI%O#z!2%$%A!rM z`dyplrKsLuh&Nd09> zPPB1gA$^iq@E;nD*Lcy0;lryE^5HH1#@&42jYs*gkOZJYf&I`ZywBT97EW*w(s06G z*3iAR2o3M26}(Tn_iC4#;nKo2JZ)O|CjnmyE&N}J4Tr*i#~-1Ex2qvcA7A5w&2Xzp zx?qv{v=DM|WLR-CmRs#ymugOt`bv?Y6Apd_y{k6#aQrXtaCEEbkBT}4`hHKqiW4Gz zbF%-IDKk#3mv>jyC%>AG;tl`T~L zUJ1EZ#>T`3Vo|DxvaPy~bXx{yP>;5|Q|USQ670i^Ll{K&(k^S58FgZ>A-+zg6M-U7ny-;rb=z zBcbc}Ay(8+V&VFg`j*>~Yw3o}^(!@Cca6@j-!qm;BkU%6Vn$f@l+_3;Oq^L=zb8)P z+--cg^D$AQE6Qdyw4TUz8Pr+3p|IT@yO6+=s}=vDNALxpoH_iXtoEBspQP%xM*D0s zWf<6I(mouXx?Z7_!YFzzDkU}VJ%yFcVic`q0qvHqKuc;AeNh(Bp4Sa%>5Zaq%mU-< z8H}BcqVMuI?luPT#w}xz@6gnTy}e{H25}JL<%?;~=Ofo&)-VR?#Ub2HaQDd=v{WvI zE(4H;q0Inv4q!@Q0D6#6I28T>e}n;uFQm-q!<@lTgx2&HKpSu0pxc;qCI2?JW0>S{6YQvstC#ZfU}32%{k^sp`Zpy7Wj z8b;mLpJrJm6ul0Vku{=GK(U ztf@k!Q440Kk*^L3H;~A;PU#wSl8Yc;9GV=;?H)uR?PrGmrt8gAw+IS^0o|$LD zgUe;Zqc0W}-8MYCU?S4(Vg33+Oh>vdYWA(coy{OW0&qMQ?Z@=Q%pmOPQ8I&^B-42(OkN|3XElcGWjg?#+dX0r zX$(^8u#w4nZDzVLf)iCumS%>()mCcrOZ-XkB??L&)UJMOWoPm7=tPRnOTQ^)fvVf@ zR5S_?+nREjX-n#YcHAFfSU7YHnvR^&@7m(hHYif0Fu|-trKBd9<5*b(KpBOm!IN*S zxU{pgfVRCW(2|;9uFeA572SZQQXXrvsaI>@fiklo7qdWD=mxsguBk7ErUrPWRZ3b( z+urM0etQ;FW*I7-?MN^6H}1A0@y1iwkzVKRC5s)2gAgz3OgmEB^jk|zaIME}>^jy_ zQnJkXO|$L&UYuiM!QP#aZGY=;+|4%LcnY?C$=gd7ws8Yg1;c5b{Po_|oG)jthN75(_Mw>PCH&7f? zSVPyZ02YVBQ}IVwLzOzj45BP)lz_wtev`<;(Ana+r#LKIbf35!|Xcoi-=(l+si=kk4ItD`2$w8qdn|oE7=4KFKX6tnHpt7 zru$jA@Qs8O#ipNlzC{Q>q=K$@Fi2e%GWufC^+c^7I6&2N*shw0ytgw*{6ME8ZxBsL z;Q*P0S2Uz3HbupsTjcNqDyaMRSnARji@NJoiV6p$nz(k&M8th-&xyN{-_T-@2<-3U z1}@u;2z4R4G5J3hF%r@C%dxbjFBWar#=@xyYgbD|*e~{+uopPgYZkyoq_xl}B@IP% z>g9qL&TpD5zp<#9h&jKCWe$C@m@`0Dp=79Ou# ztU2e%D2x3gMjRu4BG83SzN~xwO5Ix{#<%*dA-pmbghI2roGN)WtNBLivDTw|k4=$) zI zkX!+9Z%d6N)#6CTFCyXBkq|4qpKgu;k=Sw)A=1+Y)SbvHPF>uP07$VA(O^!v5M7d> z)tH4S9&_N!+%9qpDwnQkjm~bD4+1#ucKHxJF}DkQdX(HQo5gyHo4LnF3gh97FBbKr zXe=uCo)|UV&Y0G8pTj&IaCAye6dLXy1A(X~NH~6G8-@qS?H3Yn3*&`p=`M(=p3qsCeKTKx@B>Al6b_{SKqcQ= zXIiiyWM#8BkQN-}<9m!1`hU6tEvWC+ZY$%Q7>JSUIb!>@K{0~ z%=jC3^ME&=f(Os@_L7AM9E6NK=$otZ9xt9TthzfPtKQ*n+|4T9cnVg1(A!HER&fwA zvg$a)U#wMxw#jp}U5u50sk8lqo>>3nMKy+7UrflY2mFn@xy2h#!L1*Ad&$Br4njt5 zW$;igUg;IkZaOVMC3pz50Fy3Bu??0#HLq9uyK#Fcc{gcj;V)}=D78)*ew(zXK6xm4 zc8qo<-{Gv(5VbigKMM#`I4g&V)`!9i@kcl-UAj5*Tds}SOX$pck~-L7e}M><#D)1b z(}f8iOSOT^`Lx$Ez;!r|qlD{|JTr#PEWnMF zbl`xkL;QkD^4kQHxJ-xLe7A2f$G3r05jWvcVHo<$<1;wc5F9{mXZkr^9BUE?v&#JT zI|HwtPfzyGCoBDfFeH6mjCAnwGEu+Ze${8Bf>T)ko<@~6gaTZwG_H%R?==j7JiC1K z8fsU@`CjJnpG}3Ca8k{nlH0XPU(5}164$C-Cw}!aT&r~kLUjLaYR}4qxIV10q7l2H zi>i-zxmJxynkQ2?F2=2tN9+79**LdVtiSbMi#mSr1+o8xf$#FS(ie-^+bwrb0{Hc8 zwA)L>h}Sdl{Fn$QY(hqy;&8$mc*Hrm<8BK0oJA!+sDkK!A4_!lViA2q)D3IHstIh@ zO+?^N_ME`yTaH*Zj)Oei-h7}`#+}Qiw89nCGnH|=44Mn2B5pAy{V3`LkN4F6)S_1+ z^8eph^3xZK{7+P4J~bkmHFmp+So6c4vxd2Vkb0v&!(=|Y7eim99poYKJ8~k<0YlnnC49Al;&~)7bhk=Q0wY;1&FxI10**%lywhwn*wnP%Kp!#BzwfSRC4%0w)cZ-B2PP?d&;^&M|nz z7Fh~%un}T+(32NHtJbdds(nW<*wg+&(_zXYXd?cUWBEg0EdHFD1RV{K-9jS9Or&Lu zzf}>^P)V>B3Qr;_#tA)%`x3M&Jc)8Ipj2+82ah;_ThG{A!tLro0sl7-)B>E$Zvz!vEY>ezx-us^M_Eh_0{ zgF=BQH*$qWV`d7)xWp>+J#V>++hako0-djC`gFC{1pVvNP%DOlE2tE@7%Mc2Ilf0G zcPO<&0+DT#r*W-n6HtJOJTe7eMe7Y*XvQ0tcDvtwL^QMivI}M(?P2!4yDBU}0$t`? znZ+eB?Tm+Ag1BL-g+%|U!Z>DAbzGP$isMlZM(QB7gId}gyvy-1AO?jDH5%aDR2Gik z1yD7^KG_AsR(lxsx@hiUC1~#B4ha~wYV};9UN6j2cDM$1#D#iL1`LW%k6{Qkd;X~l z_N=iEU?9LeJv%&J8>2i% zq!3LI3CZao>4lx5=bn+30^|Ha7H=Xm-rXP(YwdX2lTK|G4>pH`O^jTd&KnG#G+u0s zjWo)WBTQ`=4pfm~(|PCJ#C3bJj`8uQ=l39CYa9zIjj4X-2U0=6ldf@=Rl`!JYLVNL zXq=2<8K7=_%B*zb??c(V>Y(-1o-#p?CGG*bU7>mem?n{B&l=q;6f~}Qn|$fc(o2fw zS|BlbRs@sqa%zTmtFM7sq6W7(b}xVH?yv9A{p(BjIJIHal~~%lKDDs z`2FS|lqABFhH%OYVT@I%NOWt@2&+eVxUb1+0IS5e^;2I@# zA4ieV!kR{gQ-?;B;my?3!yHuqCMnrz-9t{939(qVmXGjty|I-RdAShY0C*feOWkjq z&+<6bi1%48pyltEfa{@d2> zjAfTCZ^Jj&MnmknZf4^(k7aL(C}IrTkBH`_pbVEAKBm^Hn8w0mj8fs>QyYBhF6Lbt z9el>>Aj;r;cp_SAEtsC2Yb~9g-NM)9$W$g_bTkTq7N0^}zDP8KT`gkpcx?)Y-R8ot zpk8YUaU5BS!C~G@YdPK&4`PElR&LJS$qHa+QJuRp972DbJzMFC_!Vv=KqYKitNzD7vG#^L6XX&bW^BSY^gGXo<;W(Rqk`jv|l*p`tuVZ)yd985^zC#T^ zO1~UJv8XDp*nkz`hQ6q4yw6UN@*6JVdk89>#{ecX8#d*)#VFBdYbClc3QfH*)=Z;E zFO`*y@jM9rrBtP@8W!(kRB2T5EsRnDWvaC5pufCfVe?wAJ%WuAE*ROfUMsIq5V_T9 zuRg2lhL_VLSEsc;d$i4VA^){%yNH$GvsnkUnQyU0;$<|*BdS{$$T14;(@@DLu_c#C z0lc1-H6!kYrmaDY(Y+630j<#uXp8xT5|lLnyiKl=^KUce#4EA@_)<=fj+=uw_#1a` z4tV1!HV5zY_L60Dz(Gj1IpAZ%U)J0lC}7Pg(!0$;Yq_z^x{^}o6##9!gj4XT(=LJU z5FQG@Ld_fs@5i5(+9kKxTJj?78CpjgU>G@AvZ!Ww-X3;xm+L$; zQSB%X_thA#q-kuyf+pSE<%!@na{91HL~fnI4x`&<^m6l{06dL08JY&wM z##jo?Le4L)(eNL7!fsbUx%317aYv0%xQ&{zRhs1n(|e=MT;_!~Mw__^m6B>R=d-d| zw3(4CpgpZC(8{(hIA6R$Zp^Zw#~jE4S|c@RiRHX|-1Jb+uP~P$m!Q`Wv6|>h~F__kuJnnGNV3xV8 zBK9!?7Hv`9f};gE7hJ5Xs}iK@+rJLV^5 zP!B$Z{7OF=58kVFAe{y-ik2}AV`-ZBU{Z^G!1hS6tFA&Jb zdV}R|{7qO*G_c{132rWud$_c&cCp8`#A-;|me{WXvZPDw!qsevU4cKw5*y_+TWaIR z4eb`lIU~sdBK@o2Xs6v(eot|_R>u)6EU?v?sZm4)V!2fdC*@7Lbp|1FDl9O01wAxZ z6M}{h+q$42+TI*mz5PV#5*HnDG$`ch5!wL!Zlm!XIk!+wb-dYE@6g+n$R6^F8n%K?0euKZT`izldqv=~%B zJTV>DgCXX8=p55AV%4x_kbC1s-6Y+(U8_21?d|!Fn(>7%)3+-xkSC<0seo~B*nA-! z8j-L;&G2ruOkKQ+(y0ilGE`=%L6ANFm5dhF9J0z9Hd{AWd#7-O z&j&n4gaC=MZvsr+Z<~6t8#Owq7c8KIn#T6+LHuFeuz(JFDRl-pNzmUlRMxpovu+C9 z*dEaFY^{lVqdNXm^dYs>XjI4XMpQ>zi_y@IpHM@wQCUB;x{2~SU2MmHqb;B2VQ?-I z+wmLJOCQ_8IK^T+h)X=S!wj*s+O9YFRtQ%6)b;c_zJ{PmsdV;H_C<)3S^uGQzI4U2(sy(a zz>(^mBL+b71u+2o`XSzvg#et$Wv@2^Kuc_fVO4s*uvjF&PPLGai)GPgsyVWS( zcnUS@PrSWkQKL8r$olySxCxFosKnAqCE&`c5q?Dl)ruSPSK-+h(*t{i*<5 zs%}x8%G9+D-QaOl37iJvUr~sAYcdOnBoeGRyoC%_oFAb-ZpHaAJuxc|d&*(};hK#B zO=c0kj`@n+GF$}m(fHvGP4g^|Qm*$eypi)x#y@r*|BEKJ>1+*PqftJ+SyE_YLPfiV5V#%h5 zV|W~a)^o{5L0xKCIz*cWpiQ*>25VnZ(bgp34~5UdA1&GpS1$#1NiYoICUM3ZKaW~S zAl&-rh!tY5e;sIn_Z8ojwSOGmB!rht4*_<8BrEX@}a z`Yi!Ws+H;8REe)l-%!YOUYR7~AO~+D!^-pv^v74GU(yp>nb=b|D^m7|Dmxe-K&ZM>`Xh~p*r3+ai0&z`b?FI}x&cu6Tv;M!X+IXG?mNtg3wlzoe?oyk3= zN6W?!kFRtCC~BH97LF zwTJK@fY+#mPo!pew|WP+R5DxoOZ5w_2VLF)0H4Ry4M49wrqA#~7-J^A5tWj7Oe_Az z-KIX?cnVYBZQfq8nEE&f(WTB@9OaNFkLh)c7S>FP_n5l5+Cz`&lL3!oAEf(j+Xt;i zjZW$U^O#c8Pz~OWKOsFck10J!p)V&2$g+mYI=4H$^O(L%^dV(aW{>G#Q$w*H(+^qQ zM0uUgWBQk9%V(f4I2ZAleiHT4drTRpn8%d3mBsS z22s=ieC1Q>NZ41X&jyWKXOL`cJV106va(m3<%08!_)u;yqWGeb&n$hGJ{kVx-nD52 z-+xnJActsl?3incra)gsCwO5{HFEfT13R!0>wITR=_j-Z^`R&c_Y>Hp?BE>C}eWANh87<=pR zfy)sA^Lg*jCK;V}vY&61I#u_6@C|GE(&3(Xeq+EoRkzRNu#D(^@`RtI&~a(OF)H3R zRPqTbQw17iWwTh)ugU`2<=udm(i1+O1;Cp*Jvw^A>;A^w>M?ITg?fC4x0fvHF$W=; zdd$a$zpUX2*HbS%li=pNuHLD~EpkHZ70FPyNQb4+LJdKiqI@hM>ZB+$#TdTuw-NM* z!uQ}$OYaN~Z#acjD?kjFfkYditf4lXI&@SW>ei9nbAR|>3&7oruUqR0kE2T5$o2t+ zxL03d1}aG;7}goS|QEo2aox1&EUAfHW7OhB@yHUasXc@+AN|H3mC&YO2< zxQYFnXa5e+zXaCR#AtxVM3ezmW=VN!)Q>Eqz%7Zn)|8lLji|#%8Az}leoQ#ak5|*j z1iD*y`Q6?z=$EE*s_tQ;kR?=8or>1LhW8QNY^Bxfbog?-Ot{vy$m`7)Rg)FuF#l_` zVlICUmw7B7X-<&ST!M$G@hU;#$Ar`TZv`+h8i#widL>oj`us-~GM)8#i8#o?Tgb3n zeGUEbcN)CY5qM0{(mU&*;5wqd*C#uTuyAz z@7i;*?Kc;3x$<*#B~9)+r!W-R#^Ldv{}!ZWVu+pI#x(1gJ$}gv(HhoRc6-mM8=vDt z+R?~+{)hsp53#$Fx-6YP&`sn(KhcY_-+`{N3D;9IT*1{2bc)>6KymL|VCdpoHS%#BV>Lt%Ic{;+PC8=YQCH9$@m zkmZnA657>(-nr3VLGX}5E>^1D8gZo~&l<9LlPg_#(nq!r217$b%%462 z5BA8#+PAJ;>nUp~SNj)1oD{D1FYsYOu66_dh^ze)cL_{z0GDsr9Y{y&3V77ZN z`r~H1_t6tG+p(uCb}ugE4QMip`i%}Zd_>kCYsq@%Z;MTBHBMBJinAcFWiNL=D zR7pkP6NtEn!VB=n5`l(qepTCQpoO3$0oM0Vi80hk2>!2d&tL8zm4;bTTN}bpitz$s zT_WoH2B{RBlCTh*yoC&ca|Hcy!Fe-1F~P~6x)GcTn#_Xp4AV!dkFQJFqc_XzEdgrQ zi+YqyLHd~R&8y%xn$ITO-MZ&*^NvBkWZkdo{tme3HL&4}32wIJ>IFNT#><2&UW*d& z$l(>?26^aThlZ?m(BY)_F;s32B%GM)4MFNo>tgcc;KG8Qyn?oi-7A1eVWglmh(PnJL>vFH(TxOLQ$w?wx1$!I>%Hm>;BErIe$Ta+^0|E~)J4 zP4C|Zc})*hXJ7sIts2&NcKhn78=q@MYUAXq|2Ne^A2OpdR&muck(>U16fmy6hu=-F z5ea`o&G2sZ_Ky9{B_U8-Wh+x zqd*OZy;t{Z3*qozu^@F){a8o^H4P2#&G^H*VIdXtQfh2+X~W8WzgR5WHMZV`RNP1K z^dh9raQUUhwmn8WeBPG2xEfzsOQQojX{}86lR*WDO~l2Gwzkyq2N+n z>RLQln3}E>b>f0s4r8ZAM8;PI4btp2`lu>_mj+iN!5HUUgg^|g#pDkT=JABgbA#*+ zWrD)SePAG`%Pw0?9H z5H@8@bn&-Wd2u0yVBYcw+L;Y}(K{Dt9a8Zx;?4!UbA-OgQ4Mcc@9$htU3T(=(VYvT zu;BsYm&EhQpEqtC^xV0y!^;W(4roZ#?JFrP_g9}{U9M2bxb~qjD*Gj<Cth!^CExa?(Gh5JjHhBHQrvbYR}g4Dmu&2mo*b4A(WU`t z6Ky}oR7on@ZXw_gg$?}CqRoh0VF@ne%-2CH5@!gvhs4BeH}yq@+y9E7m1h#U44b1@ ztjQxnza$EAfp}2V_swO}wJ6$C5*7lHw~#>~z8d{;fp`}^F@eaQx)F#9n#=+*=FWwP zU=(*QkalN=d_>)=%69WuNh85>7g!*78>R9t@1XOG%|BChe+QyeG_c`^32wHi>LodR z3tlE%*w~#5?PKRq_yx3~S2{;*N(=|3lS2ZA33{KPZKstld6Y>PVJTk~z{IE((cluf zGQE{5@s;T-3K{R3##SbYI94X!LWY&;N9d2QOh2Y4wlcA&ZdRrkXe>J&!$EqeB)#-7 zOB9y!umb-P1wMPq0)7v|QjWRonmu+*%3?(P;dOMyOdgQ(bkxlwoihtQQPBb7*FN!g zR{X7wl#v*C=k{&e27_j;vUA(ewrx0$xxZK+tu=}}FD+CW#lhe}q0XC=roS8HcDU8k zSeDg6R7`h{WjWERVNC*eEDLqxb8Jbg8pX04tvYD^L2nNyFcx$DGf^PRb_I#cfanio z(O87rs2Sd^4rDok0mFT%>{*-A&+pK!FTaGlTOGo3eV>MDTL8>b*-=~A#S!=-qb=C8 z#{8*X%wu+Ze}GC!!eGYyjk~RmyzvxP$6LL)4{>I%b;f<$Y$$j2lvap1MkdY;exkPAV z#{7Mf4S3QF__!DP7zTVeAp^eXZ`{oQ-gpWIe8byI76xz-vNC{+;&ukiDhA9N4EVVh z`WOcMzl01}aB@`sTGG_b0N!{C1|03}B?|*M2pJiW(>hQa6BhGtk`wZ$o(}_FTw>U9 zIw~cR5$E_Dce8^x9%aW7(C;J;>{%mliMNj|%-{fIWX3Y3gtqbG2z*jV(6dJ38D1n} zxNu`aE>!%DyScy{k8)uVQ?4Zn;+IC^Hg7*!IKhF)$cZB(dw@1>ED@h2I_kGZ=q@ip zFy++Sj2y6B;MogCkt0N5E;3$Ol`&5II@sFNj&%ujmBrZ zXvFa1Qwe$TFaE~eyx@&Td9iReE-F$eupb(Q?|OU5!U+yS8cz7j8Xk1_&Zl=C^l%qM zy2HJo`)zYCEJuw_RyY|b6xxI2VJvzdJ*I!ncX*9}(YA{`|jTIY>pkAD;<8QfEl`Dd` zj9w@%6tgOM>@q}eEubkW|;z*YY25luCQs`)m9#3KM^MFAxAJ(8!uKG zk}6%dqbc{)43rD^a^_Ob@;FqF#LO;_1v8Dpq!FCG!hCDY$+0e=SQLe#Xe0J>LFr46M)EL&LR!Z#Q_ix9AT+g|0vx3#^C zI@3?0fwyG~?CWDqoL9g+$BSYeH}qj4DAqY5`S86)GcAvW^4+O0dk^|4D z76lL9aaUkWJo;ivTa;NF3#q2BT`gWoQtR#d@NEnV|I&OP2l!7}(T=pGOa6$q_+uY1 z;VOnjR+N*Yoy9L}guZ6c!4IV%>pwFnU1X&%7FmyV0jUA7Yb2uRml*(lSkqDTxP3&= z-NC`&;$XahoSp0(j)R!tH;GeR$BLK>=baiw-4C6hCZk83+YDc$@>~?s5Xmiu=4X_L}&>3V2pMij#1lMuun-2dem55 zW0AxUsu;Fc#Zs8QSQK8r+XJcw#IBi$yjS#`yu+j(5rG>Rxy^EQGLVW>Bbb03lR`{f zGh3U6Vq0!7)z(G#h18r}d-)HI@~lOyM6{oYr9FMIXul%^78*Xg!9*;nr)7!1)i-m& z_~ryl)jhl@sWY86YcJwOU&e}d*1wkQDK=;7RW*gwZ%wQBTEzGBQfOZ9qDo%PD{>NT z>nx_e+C1$qB1F4T%|UQ(>gkkj|WdAjM!I2Hs}{ZE?~pWuUKzXkp(_aI=wt5&Mz`= z;7Du`oJulBTyC_@>`}uZv=8t{VGxfLU|~xlG5^r;634 zHUm{_;s+#arBXZ42=){jQ?QK{xtZwta-~u(OhI|vv2EMq2ZnOH8gy8mcJh;2 z;si!Qb*wm?yJ*N7xOicWU2WvNhTD8GAV{6Ox-eG4=m@SV7V1?D1}SFx)x0Lm`CSm^ zWDjB1TwgCYo0!3)v%#(*AXvxMBGqw;Slnj~*wtMCc3K3m%)$Tb#&KT<=D$c*2}5f1 zG#p+Gi6YU^Rkhy39ns^{aFIScorXKfD6MR{BwU2emvO^9*1klc!xcRBTl3{sFJJsI z{!^-Mf5~DUjavoDsltLe>H>2esHbg?Izg3ww}#s!H5Fd0FmZ*Z#(0;Xk4iqR%8Vqu zgOxST#;Mpqrh983qwnEUgaSb@7+ zI(gceXB}tMe@Va}3jYUxS}gLqrB<02&6OT*9ch4JoKlxKV`&em1*Z!>s{5aGDdqul zFGA58t4&SMKz$o8*30{$eC`((GN{fS%jtQ)`1A}Lfil6%oxw+l`o3j==uOA!B$_z9 z!du92cx40nmGQFm#-5)~Fgood zT({FWRd|qr&yq2NVq*cte&?pK$xZSoi9Up|R92U2k$$0v+!MS*&M$D!QgvJXrIjUd zPfb9MHW6$XN%i7vyj;_=EvHXW=%tXtSE7<{`k7MrGFG-XQg|{8uw&f-D`l>xrhH>b z;pb!l?U`MHmQ)J=Q5Mkd>ISrg{l2!54^#2=ld;d9Sl)=-c1QWsuIaQ9q2T4ApD zF8xSD(54>^0ivY((N78bL*c{tBlIIJ6_|o_lnIETAxX4ByY19Q0u5=SsUb;W6fpZ2 zMO?{&(W#goG7HY&9ZO?uB17pmf|lz?zg2*HYcl;vA_@J7w~#?US_gQ!eslsoG5v@= zb)z3CXfo?ZYvTe;}s?PF`D!&S} zP1WsnNgt zB&u9-m^@{IT`sul%14PXr0Eu_pFo>Z>^T=xFGLbJ2%l_Y`exa|ElJu%tKp1P5}3YyHacg=LI(RA4*mJ7*C z-{a-(b-lMq@D4jk-4kgpG1%M9-R-7_g}hNNarqBDk{%Hw!99}v^7bKBx79yVSmuU4 zNZVDL_?&l>AjZId6e=Z^wmDX|H_~=<7GTfl23RRuJ4)LNvw(J9SD+=8wl`)0?Yh*U zC6=~&=7h@#w4O`brE-OE?Ot{7ZL;|3HV(CECt~dMa<1Q;!VZ|R)u@)3aA>}MJkB@Mwk0VT`ULHlXq@8 zgdS9Zm}SA8yy|C!7niXw6ZL(ogtY%lazMuN7Ba}#x1m2SW8Y3sOvbXOZe*;2CbNuP zCl4461bHr1+db=|NW7%&gJ)g!*-6-*z@`#EzsC2tbcjkHkcv3fRjb0OE`RG`^$G8= z@(bLLsk;4es!LeKYNU6#M=~u#V$GCT^8zmIJJ%vYziacSe_bJwVsradRPs$E(~|#B ztgIn!6HBn4WC88RU4fQVf-TE?SEJ7rtfQZ$k7AWwgi4vIrVbEjuBumS*zp2As87xU z-G2p7vb6G6%YxFpll42B1yEeh>g96|t8QT@Qs%!5`^Bmz^>x%N*$9 zjbR>^IAaKWSPbb-g7!>vLpxQt1;Lf-$Swlc>b0qMTXCv7dazvYA1rRc`Zt1&Kxwb2 z?;F`tuuAkHSa}N>1Zx%jalu-nCni|gQ#XP&1{!-7Q*eMxLm(BA=q$+dd%hMqF8KYrGue}&X{W*&EIX&uS$z|H|Gk(#x14w zR({AKnf`zuRxO=$`&_62>Gp-5&dx!3S7}Tg?`RX*Kp4kZTb;d%)8Z) z49vAwD;S1!@u+4J1t(m4j84eV38F>i2Ktb7p~3ppZO<#ItsY2-8kq^-_;rBVEt0@J0$__a8VV)#*Nh6AD1tp$SivEy1Q zJ8#0`;BG8asMx9zJ{=lc6{F``i|WOR^7vf%w}8|k=XCdNa_;r05ijSK={`!o#H@LU z^#ED-eN0vn#UdfvR-=fVs4A6hBGH{hQJW^mT^PaTkmU;S1owy1a~ z_uAKbMxSPV$Se-7N*mRC&qFg~LU!+u-=1-e9--3)$lOl&jzLa4VJ8mHR zDt3&jdl=}%ETno3(;)=n=$?L|*RRtQfa%vSja+ytHDj+|>plEv+dQ%uW-yO0w|c7) zeJ^62shq}P*o#Aq-S+XQW6V!7HbM zAiK^IyI}KXjstdbc+^0Kejwf9MiZP+ntO}+?2}!{pSqia{%+jcS>8=l{WTTlcHa5R z8X-mQG2MGHdIs=zh*8~rn;2b=8fnBR^#C#YR{RO+nTgSyS}V0RR?b}v^rNVbQ;1rL z&Q7>QEYCqfE13LXo8+~xi01!0MUPVUdfkvR)7Ftx39Ai>eFbqe4t#2F2`BXq;25D2 zb^sN6O|e1;36X)1o%%aa3mU~H9rnk`!LhMgeVnxBW-W(!C>$!py}L7&Lft%H*qAPk zl_$zL$(L^wi@|6Srx#U%q{G~+CgX>?AS30pGRWBR(D>yuRRq)rw`{@D&GBHYUTZYA z>@QTxNS;Dg_guYr>r5F7q#=ccAYd85#`aUa#(6t;u#pmFTW{M&oPX~c)WrT$7sOr+ zVt)?xeWHhUg5rp~80l2&AM{8!6EL+7h$&42w-7Yzg)*HcWT|X0w8>b5Bem1hm03Qr zQKnJEfmobGMMYW6$2FX4MM1dkeqXeym(Z(t=#II8(173nWh0^M#2<8%%yU-d`a3AAqe_riNREznHq&~0#Mi>Q|48c zH=s@#253A3?3^ybvZb)3fKUm>YL%I(Y6Bw$8#_o)>wB~SnIXv zdKtL|1WsZg?)yCf4R)s@pq^H1H*<9~i*k4*CP>WSZl%lAc}5pd92Vv~n4YwHj4?GZr&4#&?9K~KgR2~*W())kwF)TJdoVzR2lgG!V6@gODI@e_1spwq zFYIFIP!1V`@a@?{J14I)GldEpkoii(d0i?vMGC8HsnUi}j1y?Iy~-c@cw#)6?&ji;4XRGVL<4NSIem^yAvg}q3GH-$>DOF9ya(ihX~fijy@ zV4=BUHxw`BX~!UPGldK;|2A5r9h_uEBT2JF)>l&%Xq_u}Z{P+VDeWkxDN^fTfNvxKQqQqQVZW<^|ZBnxM2sccK?(fWnP`;!(K{m2Ned_0yb^u^-J znQ73_fY~i2V#r5&&X6;OX@e!{RC=gwAc39;^M`w4aMOt7!4lD)u~hxYqFEvq{8uas z=!?aIV0S0THQnv%iRk{lp40sVX`jFXwHI4XW0i7}Srk`fmcKP($DJ9aOCmBKgGz3R zKwm5}ue1Txo!g}oQS~U+xgXAS%L}6_E$B3y8MJbBcMjgAL`5ng$*Nyy)XuXA;fGhO zAj7eAr7sp;kFp@uecOc-k@cLOll8PhWs)emt1?+bx~$R^?HiM*GDo1Iq%C{as7+dQ zNJQ4LShCU=i>w>`;A&9px{0WKbI+-K9xR*_@=AZlNuvgl)RK=2Qe4l;8netE)F|vPBE=t> zAHkq&@r$V|;uVw^G9#TIJcTxl2g=w0)LAB8D4hkeN7W0n&UGlK+m&20Uuimg$f9Z@ zCjDhBljw`Zq_eXjr9rgYOvI}9_ncM3oF|Q$iHY(-E)5PgktLf&n1NA+akdd4Wm9mE zw9+c_WIH*u!fa0RDEd;9;6aP5iMaHwST4~Qi%XmL!qk!w8x5D;P$JfRqvx#IU#>RB z3Kf`CXb$0tRyAgnM0QCgS;|$KVS2Yi35$ePbran^wkgP8T%0J(RGI^WxlKqKULA)U zpnO|#(_pY^s$88a9K;hu)TVlERQ%=^7i(L$RDvQ|s$XcbEgy{1KM^~Zppsj$qAwOZ zZ%a#s2k*F>=2+|BW4zd#YZP&C22Awy5M0ZTMI7BW2jBuS^k z9l%uUFh0bLRk~f@#>X-RiyR=v8$CkKvRLXThfoo>#f}jAl4yi@=+KuDVgr_FgltJW zLj0|=MBwYg@dP_EkwAvJ+S5?cU=g1se56kVtnhvo3=X`6ZgSFI7}AHX7SxG zT=EpAW0@C!JU11D!rJ>BsuXMO-FH6xg`0y}%9GuGPXRu}T~v_U98{-J#j@q%^^JHt zUfhq%^5F1mAT+1gz}r2g8s1-noXHI+?08!*R(M+R(PHyJ5wQ-<`V9E2ubP9xs1`Rg zFwI*KZU;J1I!)0lsKd?5@Ms#XqC$NN;|6x<8r%&mRd)kfjmgtltk)p~%x<>|Td37# zgSVjM2^mh?TM`cRj^Q_J+(c&lj!c^Hb;L4${xGhR9=5MfH7KIP_Dl@hKSKR{b+;T&SJb-4f)W!Y?!xx@}w&?4d3Q zwiT%VEH%NXmWyCR>6TmvfmUo$3t8I6G(nD{M$#VR7jk(UP|Klyx&@AExd?K8mm`9wsfWsq~~SsI&w4J|Q)g zs1~PEyngQs{36Nw$^`RUDE*}RB~tp8dPp5SODsU0=1k%}zzd+l%RK-$MNJiEDLM?E z=!uyM`8$Oz7gxE!o>9iFGqzqSZ;^pX5F3SYgelV%rL#f4I5auLG{CVL1hP%Fg*8J1 zE#VFueHZRy1R6aIOI-}Zv%oL83G2XVmWETF6Hpt1xYN{2edpz#1Bm%~xjX2IotI-z zSp<207ysA!#hkdt=H0$CS-V5}x# z^!w^-uexfJ2rbKWHtu!aLFYf=`x;fZZ)f8ad+hVQOC{muvaet08TEDrVEVIh8oBUo z)Qo*L?pco}!x_?M=9c+4a60INTk;JOY2IMiH9zJhNz75Zzd=0tb}IUzhr^&E8W1jL`+&iS53tQ*YZOy&@1Rs!}x!*!1x1B8+~|h{!UI9 zFlndJ_^}HAY^325}~5CabZDqN-}{SH4i@FMIeR;A4|xCFZ&yJ^ME&=f(PI7 z_L7AM9E6NK$Z74kjSY*~H^~X{OEcpkFD5a}_*p_`EZXXmoFz9ic;hLUajdtOEX?2_ zWMsxtxjkuPg(t9W(2GM18}g`>L_`n!8+WsTH=cqGmwS83!UhgPMmB6sxi@U%))LWx zoI2{ao;(FF$}wEKDIwQt{>I&0WB0!GG9nji_Ux@cjmBuy_)JI$$asu zi^QdZ-2E$NLyo1Jkj5^acS2?-jufOrvvB`XuqkDppo6Mrenr~K=E!-izA|^VbYL5Y zpkP0s2)oLxif4EXLZ+v}`@B=ZOx~i-GHp04W+CwY-2yfQopkiRuZ2Zz*cE@kmWilu z`qR`d_rJ$i(={5|2JJi;-5ssP(s^S0EorE3tuWhQo1T4-Ra< zNeyvqJJi)Ee@k?p>VU5Ro^oQ`pBiPV6^HWaWF8$xD5#2obj4{nQ2&`mJz*P~1i$El z1WSO-Pg0YBYQ>RY9a)Bl1G?TGc|@>KvEzP-z;UH_SQ}SZip=-|8vhmB_`;iI2vF*a zrKq27)Ke{uf4qEjdeDrSV=Nn{!*Sm-ghE|0!D7$k(vH}6Nyq>JMukcPd52UYA&OF? zt70n1q{BrAoLWM9jOX$PN@c|IvN}!V<0Tgs1zjUs(M*-)cTp0==mwb-1Pmsj>!QG;+^DyeR;@J))Xi~eU?^!I|V znP9h+hzSQ6V169ZF=5@cJBS4inc^aKtn2A*7G3-x3NpVXmdy0UBJ;5>5H&gN8i~mH zrk;~?;}ly)nCPPQ17b`iPs7g4Nz*u2(w8kFB%i>M zv_WosZMCAcN(I0uPa&$4q-J)47O%Fq!^Y-U*o@ z3;GMdI&-m%&Q*V;*B`37eJ7cf1AVdNAD`>;r=H()3bgbwUK*|NE^5Y(@!Fi6F*%OUUS)l$GPQs31ME~V)-0kh+jYqv*JbFu@ zVTW@4(%VZGKNSZdUby&&lU%L@Lo}6Qv(>NM;ai_{$nTJNF9Id!OBFF+dzXJKcSo&+eJ1k;Z37J-}!8WDq!{XXdk8Dh0K= zpU3#OpV0*rlv3V+B9iv>%s8zj zh|hVNstzY4AgBO?6bVlS1<93Wz;2rMTW2Iocq+F(NsDXN-_`}u$**Go-fj-=yoWQh zgNjAae5K)hc`7)?&h4dCX+tRJjHS0%2H{hLqDAI0o#})f=b;Hq)0vBsXwt(3y40Vg z!c!Q_-ik_Yn=pMbm1t~_kB8DcPW*O?}0pkRJg-@Gmh0Tt;B}ViEkLPM~YT+qDxB{__kNKiugE zf7la!K4MYLkBnf#L$OStFBTIrCi=8nO2m+#_naXYv8?zb(*-1*$C7igIz~vj<;49P zWKULR1fg6|U=OTgg}4PNr`wex#C)X(=4p?MQZx~R0#tG@OZ3HJ(An9L(jeMxCSuhF z2BIIEbaUt2W_=XN$ayYl_7~a8umT`AObxMEO?cLe6BF#70QR-xA|~6D3|gvQXxy*1 z=;=pD%%3Y_*+X9}_H0dyiU!VZEfHfb?KxwH8SzINh$x^r#96_9<%tIfJm8l)s5yk` zRxea4#fme5aZWcUIb*)k==tc71l;a%Hx_T zxb>3+w&g@$%!^54%byyZH(HcQMCjMY5}LkPgkH)C4fu4gcCkc6yu0T_6e$yxh#+ae z#08CQWT=$MN15A^Z-^)<5M58^BKC5g)QL4GDIR&J3Gf+a(A~35s;LM14Oj}oycaATbP(QIqo`{1#j^!YIu{gM^dvrCpcKeC=`h%YH zb>n0a<{6d>Y-FN9SsjS4>WV(stU9KxisDcE7me@N}S?q#tvop$h*L_18+0ibLT^m8xJ13Zr zT-u_|@ffX@#7{m8h`FEqHhN-ya`u$fPcBSt-Q+`AKT&SRJIaq#+W8R5#dyhY=#Q72 zb=c`{@PNP<)MM0DZ}<_6X51Cdp7m^bi-IVBce(=L}5BP_?IK()<{}PpwI=%64>oC-ry#QxK@a*_pH7Zcso3+y8AZI>Pt`~ zjc1j5fM@lzvmsLGnR!+h(YmM)Ldt0ivG+16p2V$s>ZN5|uGx0|x74r5#;KH`L}m42 zv>C9PDsdt`rA2^q2k0hI-*SNNyKKR{dHUjvVW@ZenH?>Uy9@?~gS~Q-4$~m*aSe5k ziqTED!T}Of!R1+C6=m26?hJ3%kxhS^PTv$Njy|a*gcf>}`Xtj>DfiA$4oB$SEvSo2 zi2B&vMJsQboUU&gVz*#03qz0}t<@?KFs?5ZfibSt!?`4R69+3BZD}uZD-Y#FhH0LI z&xw(^Dgv$HE&_zw$w9$uGW>ASs!*62f}1cP0i(P_z>TIzWzTUG`I<$7Z|3B)nk1s3 zO>`UNNZBZk0?Jzz8tcC6|Nl9pkP;t*iY`5PY!55IiGju7?B&qXHv;r} zco{7lR?R1Lu^>_`M$CfPI#R@D59e5NFX5N9-s*Mv(k{TD`*<}N@p2e0Y__G6atK>0 zzOrXZF?kap=3A;~&=cEIv8T*iDg{jT6qA$1CSB~?h~HPO()%h|*uA;p+JP^{tzUC&beiEn-M3q7=7r~pjA|Ix^WFQ8`Z{m&vs zc`h;DHt>gYx6kFVMKIpx4MlwZW@!w;lZNjeFMKfpj(4L{B*1YY4FTCc|Dn5hhrbKA z3eLNTpU$QVKF7d`SLUd!p@O@~+ItoJ#Q@8pg6r=hd`#fdc^#j zfKeU|iD#_}OzK-w4@pfn|3Sa|75&2YNVr}ejQ(jVB8X79|E5abgV7NK>qeTlJBLReEswa#ji8)IN6RyA>Vw8}heaGe@M3&yrAiyZAJQ;sKRci5K5vdeguKbLd?wzP~T^BBZdnu5+M?CQ4xzeAcpeAGX+!SCcTZR z>VszL&8a9Ln0gacQg8yTNc?LnRZLtvSEs3U&ec>cX{73@kczUEqNb~;pOCFYigawH z4$`ny9Y+;L9?4a8996#8_`f_A{xYbUD#bH3{XO&Toc$B(f^#-~a~i!jr9v;tUP_yE z59%jm?@L)x|BBAMzKU?vK{obA?@ZV174J3vA4!G3VDE>hl7g~r&UU^ny`7z3pe8vx zJ6G4>e<>CCQTEZ%fX|_RLiQ2T>1HQ&kcoYCYdB_N+w7F@HU2+Hg}-3me^RA*_O;!@ z-p;LusRhohw$d87U#9{t${fl^bqMtnGKWw~#~kV)4Re&5LrfrzMsi1~IqHL^z}j;_ zC+t^}sg!~}$5Ewt_Sl!Xw{s^?4RG$*g*9lKQ-Ky`&N9&M4Af7^96~4^bEtzf%vm9I zP)ar_8M8v_pX{Z^{L)mI3#ME|mExIl^rh&SWeCh*<7g=#z$mW!3c7Q zdYnclYNt_qwXE)=v)h}>lT(~R6mUlwq7~>#q?y@YtL&r@fi9d(r-APAYNX%E6sWqb zQh#C&+lkTcZd&Ck#HX_Blb*njQ{bm}L21;(9n_5Nf;zb)&)6bl-U+r;R^dygj^(mG ztZC^N8ksA+$i&3rU4lx!CCGFp?P6t(SiD~3aw%ki`X&yE&QcO{EmzIoxI2=LH=ZJw z%kAD?vgC5%AjB`fUal;aYl0YGdKevnFMMdNX|ZQLcwXzpA!hKrIw2eW)Ze(94ZLxS z4Ybrr3>LB<8in_Jd&$BE4ni6>_{$oeR`=@Bdr#}xAd17&s=IIVw5~^uG@e%K0iM=> z$Dfd%nWuGi`-*J%Tz60v9yhpw9uxRn_nm>nR#!nZ2U0Zaw72}E7?0p%iDy_UZGwQs z6w;!K)H68iM}dB293h*?Rf}UdkX)$Gs+`@d6wZ;9q3<`w%4OQp;m8`5mzlY-Mc7}g zH*s2prvndgpk;bCSE$zu&UUKBnR=}}RhXoshwaS)ky2q=wU*m)u}H0)Z@^E%&PN~A zNDeR*3LFUqQN4(JQvuIJpfM8j_1{smrq7=C zM^cePY|IW(C9kKw)14o#gxEWzazsw~OQ8X?ExVEWp?zWC0x+6^Mr%%Dv!`F^QLyHT zd{s&|3WT$M6)L%%_4LKmu;HvfBOwMFCcBY%QDZpoS2CFVgIF9!T)~QVOi6Q!+<*`p zu9l(GLB3j^XqIuwPG#1aEFe){zw<3R`Qa91KbOJn%0xq7EV8eOfmoB-u9S$(Phc?k z!A(czCqh*t3gbozQga4zkwHY9(J_FtE)Gy?2DhqrqP|D*D_KPHBOz!$9!qojV$pm@ z1{^d$>;@C@qmY&#{#L~q++_(`6)_aF1ST@qtPg*|igpf~SSD?!>R#7n(qd{}@A^iI z0e*gp75g5lv?2UCE!>XSmsNYL9_IIsX!EF zGXWdqU7JZH? zDJX$dG?FE5VIzh_+4OJJ5NA_dB@OBWsX&dgio7}BK>dWQA_UX1iaOA&@=sx5;gpJ# z6ztwg%)%)*DDE0bESyV*rG;}TJuwR>dwP^CoF`5}X^IboKT6v)si516*}Abm);`{2 zrz6J883x@3*PjAzn4&7WQu^(l8&%ytQ^E?YU&sl>r!W7ZC+l_vRC;TsMkw4y&DhpV zBXr&{02*%-1k_*Vg)b(c{vuRL9#H>Oe;4k6dfr9+Qeax!&S&66hl+jv)iCq8$=Z7} z&*K1=!_1?*Z!`0(MU6CO9_j&Rp6B9ENYBj7vzSdpeW+Cq9W2c2sl3y$6A?$PQ+O=B z^31VKyKuhZmNS)}2?~CaqIx#GSO6dw?s%T5{nCc;1ggX>Q!h{mcxy5tA(4fE<}GA8 zIrT>L$WKnaiJq9CU{6^Eg$5?`$*B!f#rkA1URta)qy?3X5f@MElepkrc9Iu^90?JA zDm-UoE-)Nv@|b=Xj2MT|C5YZbrrEc&d1E4@t7IE9~~ zW^9>qdLo8!BaR_-R+!bqSMB3SkYV@%FHSMOj&Gn67{dgKZ(1~DqyC7cO*4$4~`#5Pm@)T_$%{%+iA8t*0z zE&OE-HO;+J^P`52|~hk+#f!?C{*|kfA0gDxkR!*rd4MK~R$p5*c_z&RHhCut5x$q{a0x z_&^s7pfeT*;O(bcJKG1%%Nzs_<|_^7XHvl_tb(7WN*h8!XNbaxRZzImvUuADg_1=+ zh~2d&yzaNoAm{q{P_V0VpfKA&nonGWUBfqI$>H)P>Ss%!hkYj%#=`aR04lk?Z1lyn z=U~Tpa%a#r1MK?o(nD<+*N5L^;COe4q44~CofYlqVA~>fsm!ELq;9QvQj}VL6a?{? zqLQ2V^rai(+w~I>e-Q)64|zJ`U#geT?L`0Bl>Dq5k17$j3k3P?jV51$ogUETM$>G< zV0=d2>5+K0MNB`2f;Zb^c|%_;-kg&aF%6{MY9fve^_*juX|l4rnqv{;tg%?OgTjJH zYIb7T4hPG280Sl#VbM4d%WjNi8GW%>_JqusX`b25CgR!kJ?Gh@brHdfEUG4A((_`O zL|-f>Wxa^NZYmLD?&vvVdUX-Odo9W&BJ`if5}LkPgmzs-U>8e7#6Rmf5g)ya2)=I7 zDG}Mf8cTNiVv#-LMFe(Bi8%9>o^$5#C9GetGfKKdocNzuPS6*N6V8P7cDY1!ek3iO z{jG{%nSV*37>i&T+QcOC{I3r`k)T!K>X-XAwLNM}SpPiAKI%zYPsaccSI+v!1T0!n zcv7nIE8;%HE_79N(;V6Dcb{!u?4i4FNF)2?E|6UlLDoAnn5R&h+ssiJt(7FCqyUJy zr*M>>n5U3EW%d+u-gT3<{-kM`2g+lf)b+<`U!f@L_7-v@s4v6f<78jLN@3=im+`5+ zyNCUm-tpo0>m5*aTQ~K`2dYTP-D|H<*$$VeFFagC{njJ@B?`Lq-aU<3cqcVud-oot ztJvSmeK`x% zU*MF}Zm5`3d*AXm?snGk##1=!e&p>Xi?fb{5M9mf*dUk=OZP!$w2z|n&bmeCMYTdp z$#m0cJ}SY4r$?#u&I!RPf9gfzSbsNeXC3b*4K4g-4QHKu;px4zu7v^OaMtPW+njZE z)JWs3qaNU_y8r|Z>6tm}mPy&B!>Z)^igDAVDhb?m`!?dd+|`9!a0eb2%SeRK!0`-r zB5t(Mz)3gUu2i6}TV%A=xP5zS4w3tGqJvd}s4djXIBtfc2lZmmm@bZ$C(1Z{1~s|L zi;1rAZmNj8-s#L8t5Y2-=H!tz9>q?M1T;<>HYGMvhx&NixZe#)@uMBwI#Z}Nkjg@Yf+IZDX5%JqgN9omQCZFt^f-pjQ}|>Btdyb5fHks9OX_6J?32B<3nEk0 zzX5n(eX=h|1*h=IK9?%>{P^PqhC`MunZ|mI>qppqA7Y5HWtCLT$dR3lPTDu6B7yKl z-GfSQKOudwELmq~Lr1SkcAN2hALMNdCMf<2#R2w|aF6g+sxU4gM1p)VGDwx&fz1829E zh%ujF!1?h=$Cz`ZNq`tb&vai8n=rU4hqN1h_Ylhf(CH*)qI0Z2wW#PvMlj|7#xjMz zSWL;7ZrE-q5kr31bB5fjeYRdFyRsKKe78e6T%c41Cn>oCC6c3i$_-_AFc_~vpKanB z-8>IPlXc3jgof^^vO44nGtC;^O-y+eXQ5V(mB*o-x+Y{!gDt(m<|{q!*PkC{SR(!( zk4o+}lfGE|pNn+{Kbkbt6tF=~G|*Nv3iyeYZsrSDoVXhcvwtsit^gTU*=69kDr=lA z12j5}d$Ov9DRIEnO7Ope7vjyyArO73NpP{nH9uZr5x5|B5YQKE5Nu9?jfTr^C=qLR z_MSEDD&LVt`L-gh0sLZL_A5_!0b_+m-j!xaZ%Gl?$S1ioR3oRGlZ-K6Y4oQoIwoRE zIhHN-#bQg=7y!GeM2wl}Ib(Vi1MpglGKmQN>R3Y47mLuY7y!FiA|k$`=R|zMM6EJT za|8=%l<;83?+k7in7n*{yTNG{mx*Ub8Ii9(sESuA9_50+@eb&GJiOh z%=E<~^S0DDXz1+b60zfhJ!i+|k{y*Yj7>0nab4hwi`hkpa@&+IBaIR?25otQO2CX= zxLIX-28ou^v**7odM0AecVpQ@Uo7@q&^1n)U3T+{*!At+vy0pBMrLUS@n@#NgN01-^ACS26vEg1x08)Dl>~hvnGmX`7m< zS6bu6&nXdpAq;!#y0?!l5mb^`E_upK69i}&hJuk)5DLrK)2Y%1X)VP7h@4hvO>Yiv zAk+R9wT;`4T^l?Jxy`|~2<|msE5E|#;6{9rW`2~s0YBS}UjeP{a^eSYe(0RJVW;B} ztu=0_7`ygf(V`le`?^481HigBH8NDoh0K|$ zN4aU>4?nDNP1TYn#Yej!#YQ0Yq12?HTAUQ|!YKSY?uHKU$3HaqnOKSp{;34L3JFDP zRU!!$>EH%ImQM3BMqtHbMsWj=fCAG0D@9ziMv~aEp8!N2JN8q0VzFcFDQoPQ2-nJ* zaQ!s8{hSi6&s3V8RO@S$VQa{&;Eo_`jrJ$jD%x|Wv=b$>cwTx32APl>ghb=X+>sw_ zFt|}ftKA^}nuaEwuYxEfezB&f3(eBbO`F87q;$Iq{mN-#Nf~aw($jdwuBc)fRW$se zZA(?%!$fW?bHxgiyb{gmOO5Dy1#J3AH;rg`0ySety4~16)-tprDdJ^c9AO>Cqn$$@ zZ_#!y6=H(pwxE)4Ju`#j23T1mIBp@SK{l+$%QY?jLv!kiEHGZu4U7w}6{ov2HPx#% zEqc_@6|z8gQ#a5pA&(Un37d$~_iI|}w+41L3$QcY0K1qkWMbHAdd|O*gTJPQCk^1M zvHxA7wCF%rvl^rfC6k9g6G;m||> zAA4^CCs|P+j&tnUdvh!c%Rn#J&cN)j+_137eYmjT?gA?aW6w;_cE9bJ9=dyWcR&!l zKxicDCMMouf*KPwUQwbZ@xB$082zC}jq!-bU!#bM@&EnS^{uK`ue#oQ-LsmHe01ma ztNPaa9(8=LstT0Q!i#*%f5LGuyzvwgI?Vf(EE3`bp{f)Z^4R1V!NUrjJC5uQn3Ry*>tFtkYEL5dZDB2qmOW8|P zf>=s{VrlvtcZ-ELZi?lAwQD66_(J8v#h6H3xG7xhM zMxgMgveHC6N;sl<@(HA8WdWrQ^)7FR(lrW|7S|WeL9+PyM{gJKRzB_ajR)+vA6=Zd zp&%`iVm~BS3~WFzdE5cpEVBDq3d}3oKRGqTZcP!jDQ_IxGO`w%Lj`b7CID2yKP(-= zLj|EH$11aoFHoQ%%XX-6BNY!8>r?!GK!HXLlG`U+Dx5S_yreu{LYrG1bW?b`2fRMg zEH`#RVwr;oM^n0-W|M2z%I>}W!asE+ygDc*p+9vb=;$3g(zoyW%WvQH zS3}wg`k@>X9v-!pFyXbAY+(`O=7xfPB&YS3=G{kgpt00IBY8QN?qInJK~#;;+?fs@ z{yt#LUBW-WC*~4nPgz~UgiPjxhl@PcUv4CyJ$#T_KZj&xw>wyPs5eXhC_fjizp_=n zXg^Ih(66><;4F@7)*#E}hS$RLis{f;CVt}T(%oZ(54hN8l=*$K|Ev05`MnEGqxZ0@-E3v7$9`Kt$CImd9}>< z;DQqfXmiq9FTDvy$*}+w>Tx}q)zv(%mLr(3wF=zZk)M(U-*fZeyBG(Q99}WoZ@ws% zHk0~IUFwD`C~xI#>u8Rb{f)crKHj)#_wf^)g|o*#&bjIRN*3FXqmaCS$Z>^xkz-wG zi805;WU@dOOQFyUl1kf4QbNbSH&7}s_c!jA3U54xRNmIF&VU%ezHNag*3Qu&;}ako@><0+)_b?;ZQNQI-2Q7Rb@*?!zhL4w!y=UfOhoy(2- zVoH%eN!D{N@#zr>vgV&j!wY|1&1d9ZzPs-;Iv6pV2A6 z;0T|Y&!`~PAI)DR)fAXye=9UI@Bu$5)lQ*@8aZU`4{T#euH{CtRxULrai>bkZTrQM z8NM&7fZl?sdb3q-RAEmABss#)myv0ffnJBJY?+~s+bUp7e7OO8HD#SR8&PESqM*_F7sY2%8Ewn*dtkDd$~M`!uRk+o-Z zzx|@pE=8cDHsRUc8WzT$_jPJW#58ly`Q#~~xS#-w zZGcdUeeeQ*JmOo!Ur&>3_k17xNDjv1MTHvTJ>3VtD;1t1+qa28UEc?PiRenWH9&SR zxCvODO(M7U%1s?O1){lbc$K;GWbO-4#+z7B)o+>!UYv>zZ^fBlb@TuLxpxI%iM1=> zoa`hKns&R%E3|U_ua53xXqx$7x*?8L#g>43SXCp1*mYs^Q=|vQ5LHYT5E+1_1I47= zIXoQV5>k*2`-sI?KT$$V?`A}~_QYd}C8pDqm{O2K0Rk45Kc4BjIpZphQ^i&}X!$M1)+TRqW(c;@3nJ|d zixGZ&MNd8@k*`={@pUQVD`86Cwkrp*b*SrXy_ilzK*nY|kigZe^&=I81oT(Lhg&SB z1XX-C4)1v5k)B4Z3c72bsUX3;sq2F2*5L+UwKx;R=r1QS8cQrjyAC(7s|7Lf3u&3?Z&mE|eO`d_ zBX&}u9T>EeYIQUf(5l!vB~4$s5z2I;b#-5^ScSUUCQVrfUuMeQ-<7y~NjhH+&F=#U z*z3DC6^6q4KMsNVB%;s(%)P!B<=^Ye7Nll?K{m4q|Xq zeUzFQgyO^`&#BHWtHL*l5W?HhZPpToY`X>00w zMnTLg&v&GDH=XJIqJK&8o9mlDo$0*_w#V$UwwBJ}a^q_O|3UM}rxjAX8`%W;QkaOK z=u_B?ox-$_E=~Bhm!yPH@izd-H)-f8CSPN9yOyQ&n=JS~o(JDt@&!l1Tod%TgTEK0zck@;F9iw77Z-COq)5KF&i@&= ztodis@WNkLOTKVVJl#*e_$&-ENAd-IK9+p(4uD9Le1Ttp5zQU>+?gUpP|0E1U$@qZ`NvVBuJb>?GcTm*6aD~YsKLLW_^8m=ra4fMHesm|) ziSagc5aSPI$oTOVq02zV&w7OZG>dC~VuTP*P80%`SVG7cp|@KK63AfJ1+veBp3ks2 z8YH0Yi2}kBOF+4Uo_3o-qPni@qB>UwE-~oICNDVc9cBQwn>QZ&?6_u7+*2$X^n&J% z=Ue;?63^X<;=vM2JSV3mg^;sb3lhwoT^G#03XZSMjyLKPaEV}} zGzzy-s1wG)Q^1cH=NlfZ9I_R$Pe~Vnql6~tfh-a{9)R2`FqT*nyf8nxgs$CwkX(;p z==%F+Iwkoiy25>U9Ha!21GzTKWw;5lR^RQi|5n66lziePMDP}ip?)facDy-JK3HPO zXCa|YpS9}+@p)5PKKol0X&+w-uq{P25^esVXyoeXUjkYc;YaD_P~HSM@W6-!x9=he z7Dabxl*e&1Oy!2f~n}`(rBdsH$IG1C;4R^P*XG2 z@m5nqeN^Y0;JMhltsvZDm}DZ^ZZrFWyl3jmahJa#BKGAu zh{cdS5$hcj>^x@aUDo@f2^A9H{s+LA2e{vkPb|RAp0WnGg{ut)N5%sr|wh$}00VxAvAW_`j~Qy0X}q;IanXL9uRDb~j2>!;=#U=Yc2$ z2KKg(ila58wU7{yZ{`TdtFI4D&1@K}kK#s4+_;Gs$~5qHIaE2s{Z%F^7^#m|t=Mlr zb5m&L=sWiISJvFTw{k4}Uvv7m=T@7*{Jr-^#{y9FLFg~&&^ru%z_!C3vqS?s{X>cu zI+^EamD@DV_fIwIqhNvqZ-(L6sKMgYOsi6#1lF`Fg9fYccT^u4#=F=Car#BGSJac< zNbwURHXGN%c8Mx5y1aIl!aqWc#L_w?BgM0fN**o>X+Ffps$ff1^orM=YrJZA*Oc%8*7+xBZ>RpF_oK4&em z?wId901C~bIDpmFvM3g5{e6w}k$4vY>xw9`u)4OBExazd}>a9IU{}f`jqd55o85S@8V} zhHvL%hu`RL+?_te8#mL33bYbSLiATe&bz%|%#upP(J{4eU3Jn^iDFY}hI3p#=cOPa zmFQDkAS82naEpj4$e+ZhulqmaURL;L((uAxS4$;wuj-jniB=DDJED2AKB4n#UiY@= zg56#n+Z#O&x`QL9i13Kz6n!2bl5>ja+(1}!#K$U+L*V;Y>{F0jRM-TnHGY;Q7cJ4W zCGBt*snUSO_zl!5b>-e-{jIk0AC&`(IUqv~3nOD`SeL%3F?Pd#;YJGVtL*uA zxWItYLEu!1>?k3rc_xqINk;wAy`XcNW^8}-fcCCkpmU?u;-I~vE_FdFVTvrHjR>TA z7HHMo$}&2|6g#??FPnzTB++b@UPY<`=PWh&%5EMoVjB)(!na=&6K+by1mSMJ0f5}$ z04&jmDfGFcJCQ-i*wD$#g&O2=Bo9NzKOYEZ|I=92j;TneX%>%L4$PxqoOR_AMhc_o zc^2RN%q0ig zl9Pi%!Ev*YX#abQeSU(3G~Sdb4J@&w(HE13LI#N-RBYHFF+ALLFcxT z`HI*Vq|6;9#Glt&QVJ6KYZ8TyC6>_7P9b!YO2X1^Hb{!E?79^DO0^w0vUgXiqZLqv zcGTfwt;z%%;E>hklFETlNy>pe6HTACSQW(ik0){-ODxW>Ou&5n_Tw`QMl>`5Gc`A z*KS?NJl{j${ALRjND&Pnbd00@3dwmBkcKBVp2-9o&3lfQN2%-5OwXLSs;qxEOdfFE z8_phZF8a=ap#tlyW-eiKAK)R!%s%-x4T1AhiB)6_3Rm$V;40n#@V>kT^b(4Gi=82; z->MG7J^)=9M|&qokvJ;d`>NN)5=YOGT>_5JheRdFCTdh`GXuqK#T)81OduUB_Ls&= zQ?2sYKyhnv%QSSw2F!_LD(I4<1!DXyIT*jv@X>qc7nZ#!<5oIT2#O__@i1EZ0PuXZ z7hpshZI`{q9ZgYj4us350dJnexC@_H4kLTYoWsa_)8^>>L-yP6j=j+Z{10ZlMPGz} z!1<9ex$(;ODWjG0=+0sEWi?x1NH+tr3XfH8KovF|vYSarE!;CpX?YHOI-LY`hD}00 zFa^50h${{^r^=&)MPO2+H4GVcWp?dZS2OEg;_dMM%(@pT*!I5Uv6Wu8+~%pA)8hp+ z?q8=!NuOv(Y=~Zq&De={#|Frh;i#v_%|RfJIb|zoFCjyP)gTi7(Mv+YF+%SEAm2iv zXKlQd)zuQ<7VF*A#??`X$xJ+8&N{Z{!~R?r+&`5E_hr_g5&|Gz7pMX!ZDm`3MSTBW z7TmwXdD-y>v|sugcV`Ci#?8zi?+s`NZuV)BS+apR3bdNpiPZ6a<*%z{z_^E74>Mq1 z4>E9Mzz`m>448WXB2xwoehTk40(nIE%ramOvL`ex4Mt8lpnBYoupwzM=UrHYTZn4a z){J)EP9606X}EtGHT)Lbs@W{EV|K=>a6&cSIfRQ4tkg=|%GU^up0m7NPfs9Ik?p?d zJ|vZ=ubeL6Ar=!)is)=&1?NO;N`yf;3$B9Gk#M5}{4Q3< zgm|p|kls~eJQZESojn3T?mz>USYCkTF&s(ycJ<^*KuLdfG|ay4w{%6&;2ErH$GnE~ z^koUz+M1byo4#S^8DFjji)C7xExbm~2(CfYU-2DDOGHNtuo>HST$f6g!ib@}v$dt4EF0}*+=@KfOH6_lxf*~% zt;oYz-JV#HXJx_tv^=O&U+eus z7BTS8rxAm{u4c@;=f55r^NWBx4r8A1h#B)ggLNsBF^``DWB#-7C&FiD%rB-TL^I>% z+z)2_|A=J}^b!A6#Ty-FJO+tJE2Yt$GFZp0c6Qvx^vDDT-Nw*XBs)H5E7a}2gw%rj z!F|%aK5CUI*SF6Wdf@Y;0^eRc4t|h|FT!!~UkKFo+gp{_pqAHbFz4Dd!WJg$egNe5 z8eoaucfhP&9>bBknq574wozSeb@V%6sZU42s=^%o4XgSG?lo9v@yu^%3lR(?iU3P2 z5#;q6*i8nB=>&$MpO|!Fx{9s#%&P--IRDXKorE*0MhD=Ks@Co@CL-)c2k2z8eCsqj zF9c>$2vLF+HC7%kP1oRxK1fwKQyed3IeR*&6W3du_0uKX8U6WRB{#J#z=T`xPR(N}G%CsE{_NpViJ>LmvRd{>kDj`=jFV@V>A=hs=M2L&y zuYi@@#qn}{VlEE$l-0$-Rhk^`je4yHnLA;}|2W+nssXoqV;1!Q4U;E!{KCal=hGQil(s-Da6yeWr*nLgV>DimbsPE z+W1jQJ?{^~h$YvKy>pcX8OX`wEcTtB^Hndq60F`Y1CURt(hc-SSzXQXW9@Du+^qul z*)2cIg71&>;G6FNk%dn)*KKnQCh&JI0D;Qf(ZO?=zj3!$fj4e?74*|WMA%AyMWgF@ z?-#Rp88|x03#_*`cl#T6i-b3xN+b_@ zzmr8I9Epq~S;kIJB@HAdl>$|elF?t0bl&JCEI~Sd9Vnf5`x|#lhc|9Y$D8-`VeeP6 z$cCekQ8ufRl);#g7V9;on9P?XsIPmeOc2yp0|oWp{>I&c;*FbvTBIqzk|N_B5%g>C zH?xS1Ba}vL{<@ln+pS9W(8K)^&~Y3dZo(tx;r?5I$mHS1Pl1Pf?G`Xo@mYAdm4dE$ zxTP8mp4Y!esE|ap!OPTjaNwO`4w)hz04)}Cz9XMaS7mZ&rvsu+wGN2T{VJAz<~~R1 z?~oLph<2iY2Y>SZ`l&nV&QUry2Nrnqn}&sPj?!^tH6_}z+~fq`YglE@I{4<5fOCoy zjRemyeMG}Hp1jx16OC?8#a7{jzY&4@B7raH;oZvKJIk~l(KTso6h(I)RlyUD_`WH= z4CFl5Xiq9u2zO))fZVQoEYXJzbf4qHh@qipw~;)zYX1CN8A|?9Djda=tZGMp{)iYO zD32@0i`yD-z#E(vP{M;-*z6;Ys2?xEi5}t@dUi>rnvu$5=N7Bu{B8;b8o?2965b_2 zWs3-VOZ_GWz0P8?pK2kqS23zV9&;hB@1;d8LX0Jr%x>rv!9;}p)gURqoDt!tH=UG^ z=2iy^c}uy;T>B6VnA%yxgInMXYnO~9kC@p*atqQOG&VW{h*Blc?;4*nOupS&Ej$F`N> z*dU0%v#ta)1WX#VaTd=Gf}<-~cPowZ(@5~0&|c)mTIicFvvB3U7`97xbQZoV_3>Hx z7Io=^Q;A9Jf)&g4Vo)!Z0ld#UiK~g|hbY{jeyH>T`~Y@I9H*cfbUb}=q09zWX*&zI zi2PtZduM$rnnl-Khd>H5AjHsA+RI=~k{t~fFD6byON}nT7Usic2P@;XNgx-cLe3P( zQsCG503Rq2Bq^Oh@B^6ya*FKUN+73bi{&k;Xchvw34xLYats$p1+)sBC3wDfu{k}8 z*E5X6;g&P5{qSo#LP@E^expI_^H-)Xg?YIDeKyI4gj6k{KPi&LY>+F4q}nay%q@{RY68N3Y+A zPb_-Pp0Y--g#nf)LH|TZj({B%VFBzT9r^hRJ|TX6>ue>gYlw6TU$0elV-~;emhWny z`Gel>>JK!3K*6^62|KMg^FqZwIjd@KXn;PduudOkCW@oaV>5P?`ABjC@F=q`H-?qI zW84|>r4X32*cTA~o|m!&xAAuX$hX4lLA-CWx>`UuXSnG1SrGm$N1|hdb;&jmP;z>! z+t1A#H~rilB6zF4-^t?J=17}wx4NUMZlZo4s9Cr{8nto2}|e%XKtmP z$Wuh`3)jsXse~9M7YrK6|?{mtJ*B3p4EaNWps|0*L7y8XPus|2OhK1om zKO)hEt{msSDx6Kw{!YLzg}Yqv2i@fwW^s3UXA3lVuluu8aZs2%&q5$2PFMsC8x-#M z0P8Y(NQ;c{SN$E`vS-tPz*R8VTh51om8+Y26?}OrUI@?LUjUHXU5+LCG6MGY2|@1i zAtNHH5lw~RrpdL2xwJU*Ej+@*m;r2fSw6xRhZLq(otjk zkJ+659nh`!2EVj~uS3kh1!D&G3Xhr7QWww}XF`RT(}!Fq&FMq&iJ8;vDYH4v$;o3* zpH$vc9-R)gr(Fr*)IfqkJ!?C_bxb;0)NiHAF_T)m8727cRLZm(EKZas>WvxLZz7I< zwJ&64C%+A{1AC0?R^h6uas%#NhdXX%j(JaRU_BXnU-HQDTlOa@*x5@VCs8?e_Unb* z>0QuXkwSaELOi{3Peex>u^HRAf4!;JShrbGKDmBb1)LI6ZceFlv|)3B+D_1u9@KLm z!!|F26MPKU0#K-r;VM>F^D)G)9wHY>ye#pq)>;zs!TXbuEX5ysOl6)9E|2p#Qc!=y>T!lP2l^%!28EJWtpXT|swUz4WEOm%$b+wO zxq7R@R0%P)6Q5Jx1$M~wK8+w@?p_W+Asbqb@i*>vxAMkKcdIx5d%gE7S)8pL1yjw} z9bdY$HMTb8+hBC1mzV^3TpB2k8~lyC<-r>_<)QB;5i>-U4r%_GG`#TF)xtJz)1-%Cn+ss|a)fONk675| zc!0#mISiyw788l%fPSGk5D0ToA+PJT_14!EWf+jzCXHIFe5v7 zVGG=i0U?@(cG@l;{wQz~L7!N21-P8MTw~W!Hy|Mp5(Aq<#Y^ZoUN{-PI$j;+x0$h% zB&Xntv+78#3>WgKkB2G1}+xFU9pki3F`%x}R;K6d>VT!1jkl_N8dp(Vc9hXYVA}Y29f%+nW zE~viUii+){Td|*#iU}e*b1ne6!(mvWdleyqlj2rv8#;Lb)Z$=gGi3aZe-WlRgH`Pq z2ipg?VplA_`N=!3J4PZLOWU<$lmXdx>XPjqfn%ex?Jm+jFi!579Gb+`o&GBDtZ z;1*PZ6pSf2fUjKIQFaDEQ`^}uwuIwnmyq=XiL%BLOV+o?BG8J9aOZZ9SwxGujag6^ zy07b9=nCn3$G~>3o3GIzu<{RroVAZwA_|iDyAvgjC6>gyb)&c4bdbp2(RGpCss~A8 z2_j*4S(|q`)2*~Uy3qSOmQaFZ{LMreV~Hi>k};}#!UP(-_V z$|p$N3joNiH(`k-?rz`bZGR$2qH`I>e&W(C=tC5pVDquM8e3in4C`*OT!K4kSw-%Y zGq*_V0S@VMq*k?<#~Bt^{d98$3t=LtPiZ6+A41%)grD zD1Z`l>ojahpMYC|;Fch9lV_<3Hv~1%?|^3zm-m!#Q&aKu9V56U@{INCCq`VNki~#1hH*IjJIC?Z$%yc0<<%cGDOhVOpO=iERVDv@`|2gFSGe zW(&5n%Zr8KZX48DLDd-q|CEp%yYcCYD>htx^@gom4LPnqWdr-4ONR5s_oT~P{U*-b zW3fF*iqB1yB9>TEyteC<6884zg5-Kv*X6o)bl32By#^QWqF$=zLB5xGSE*KovkE}$ z{L(;M?Ub-mNDI^pqVsJQTZ5$ZcZpKM5=%;}eP|ORHe?XP-_&)6KMSv9?}BCt)?zu11L%IaxS3Q}BZcUaA5vnXia_K?>bbLi{=4>86;1 zr2fB&QpXZY>St%BlCZR!4U*z-yDr7!YxNy)t1x#LUCW$0ptQg>=BUm<85@x9c~wG6 zp)61@h{}_)$YL!3xpjXmv1D<0GSY;G4Hv}h;}{zL-jhzD-$duHfa{GNvNPR;=|H^Z zhp;f^!Xb4kf+^}=p>PZXSW_Cyj|TE-uAm-+m)7xf@>6XQFfH9>Gy`vF~q5x zmHKpTtT<7coJOyAp;3m*37Nehj=lo3p^0{#JTMDQ2^g(-y3J4lT3(A@^R?2#5Ld^t z7_~e{3$B{2f^)rAE3mfkB1Cx(#u&oIKZjKqA_d(2sC|*OtGnr^C0=mZ%~0Vw77Skt zU9&N>7AKBob)s4;HSj_Qf#>ujoYvEXd8NQEzD0>MKI|$tREQnESe=GC@V|+PX^0oJ z>V@*;7z3=;>r?24K%_=XFhhZLH8Q;es)~0I$#=#AjO-v`0~_zCCp~QS)1YquP-3^o z60_THzXLi+PkRLn8x#{>HHw@9!T%xj48V%@4MfZA9U8u~(?dwwws?Z(jn|}|H~g)N z4QQtZIBCTOGz@kJZa_OKpjEK}O=d@^FnVkQT1h&gMrMkzF$Y{7jcRRXpt!AgL%jyq zSHm?f{iU(e6wC($#jWf-7s%29Z%BP~8ogNDT>`?#N?@45*?u#{t;H?V&`ldK8;tS6 z3z5@V_!4!3|FFiWf5?l?Y9iC%7$Y&lD`>V^O(sC;Og5oHHmm&#Fy?2!Jb_Pavl@HK zyjhKtlV`J9|E*wqhn@U#gbI6tHNexmh6HrNHnsX}o%^ED=(I=ebV)8uugsed zardge$!xR^>vmU@4`+o(JE# zY(}!Xf&LZ_wB>cE1H3E?nlDX_rnw;6+d8xaYxmghVS@FsK#L>6n(&AvST6vGObOQb zDM+yXF#L(|`2~9`ziBU&tIoh)NVThM0X0HSYM_WLLXeQ`>Zh5x)39*Em8Ff;{JwFI9?fSR?2xsRM40N^OY309<)r|?~{T)dF7kAo7+J{cq-;YLB$Y;-5{feuu=p>aB1Ims;38&G zYxu|WfV+8^{BKe*S|kGh3W1c=VWsR=BJh9|ODysrjBFe@xMkewfe6wE4!wzw-?08I zJf_x0<$CTeIxh9P)&zC;n z6iP=m;(UvPe$s?MHZam$>AzTF3FIkx$s&>2tp|zhEQYL~u5==MMi0{>oKjSI5W=yi zeiLhUSd916E95wuC`T-@M5PkgsHZ< zmXL>G35m^r-91w0M_%F*=I`$ZO6WKK#@!O)ji-{(f}4FBNfrrlB+^L8UssEAxOIXa zMmY`!DLA4WghwpO@dRjTnW7x{DTs2M3G#^WnMFBxA{+MzmW1rrJJClkP!UH=EK<>~6mRKIx)VJZuQBD+~_?}WHi_Z|P}d$jiz$}h@g zg$yk6JABIGy`N+u%8wM-A4k(+}quUPt4oR zo-%v8IXQW}-9z$Bq+v)zX!Z{j`$21kvkRwT`+wZIJ+Qa!cx$%d_Iq>PzOvcUtSejP zi}s+2iS8j8#GM9>)^MvjQD(;(*!J}7IrjM}R!m~?>k;65bEBN6 zzgll;dcRarkUj~PsE;neW^A`|pI3-6pRnl_vl1R1g~@)jo4iCNcoS{_pipn{R#sQ@ z1~0REs34A9Y6YqwS6lrR38a|?_d3U?<2{IX`x|$ALU`k*C&YU&_k-TAWbuP=6wE1C zSCD0}13gt-HvYPrAH>~>d*}zb9Ju4~gAg7uKgc?O$m9pXPk|rg{qQHkXXXc4W=s&; ziMnzO0}oF|z>u8JOD`9)0MYeqXCx2{gwE4E-yp4=y<&f0?mai^vsGZeBOZiQjd zQX6!-)EW(@4+%QLa^JX;urFtFVEw-+)<H!|qM7|Ja$9m1-IIaViRh>GA^ra=Qnx#4=q@ zPof8QAMykq+?WV7!S5z+rG}q+4wl_y@~owK3;v5?=+}3J9f9KNpy0|&<-WkGcJ@=v z-%@T(H^f0TV63a(H0o9jn~d_KDtgwT2o&D44lNbOs&H{ueX`V;!I=d0S2d9&loE;q zsZeAS!|Lb+0P<-FC?mmmq$U;P{gM|3oSYlvbmj$Oc{*|;cSD3&En9#RZnbR1CuX&< zr>s_sFa?IB=Fgq%m7~$)zUJn=m1E)m+M(O+`QRRhV_Tbh!GBS?vV9_WXIrC{uml~~ zZSV@-ZK=%O_2n8Ool5Iw;#N&M*RQ$=aQ|gO3u)sK-hJ_JzOq^pu$#Ir( z#z2eT0*s(*BraiMj74J*gD2S9F}9!vCv4`h9$Z#R<`{kB29%2*^+$O9QB$z4TL zA(8umD&$XD)d1aHSl)7FoPQ0s#5JnUuo&V;Rdke75h$^vvA_ih$@HyjZuY*0p7RVYVt*<1<6-27C(TZ=4*_sg7T9 z9jlU~1!DY;9E`_}ACk}x9A!q4T&H!WnA{98jP3-CxncBdd}4+Xd&+7UiG?9gIOk-p zp{V?s&heZz@hH!b*@)Xr5>}iipmVp`Oe~itew@iwqFyw-tT2sg0c2q0P?LKy0P{yR#&6I$mA!? zjn}RO|1W33^wB(+QksbsK1cLroL&Z zSMJLs_Xi+QUpq$k4)!Z`>^;-gqh@UGM!)79nvYG72f@4vxB)ngo&T3>3*7{>I%R z;f<#f$^G8%WDyBRBBMyUyMyDey~HI*=(T|odb_`Iw}g1(sU-9--tT0Q5Jw`Tgfd); z{8cXn36~;&nTvteGkFWL*sv~t(iHhU|7YCm82?NfUij;3zG%0G*+XCSn?Rv(_@W7q zm@oQ4fXL*F#!rDS`j8Q@GVz)DqL-WcyXKIV8a5ckFGk1^hjguX`$^(kTIBLOyC0># zdjv32_xV{mm==2^H}*a?+(43t37o+PYdBof9WpkMf%2#yfsWdQhm2`h7_RdZmBYcb zqT+^}+NP5Rgo_Toe-@wu{XW#uE-;^KV*cFy_uEfK8o1=1-RaK}x(G2=|Uu`OM(GT5(al#QoigmBc4 z0Fc{Jk0tt`1xNh}F-N_d8p6qLBzbv}Bmd72LLV>u2YqOmA(!0y5JqhIcm}K5ahJ|h zxwk9$AhJQ@S}*;2HmA%wn*I-3O!dgtiAu)&Q zuc)_w%Mw74JineOPb{(Id45jn2v@uDAmM$j>%zNMck=kfCxZ%1yr~3eI*o(~&6mWO z!l=phAR*2JAon7OC6*8`NETusjfAb;e2^FqWZ3!%GbUJnt75O*(*rt(NVP=esYBFH z=D1$Us&*w#exW4_KLdoGcRm93NsSt?HWDh@Teg(f!CgJg*ckwYd@1o<3LT%o$O*<`|u7c&+fmtF%mL`Z1-J|K*T#_z``78++ySwrI@+MG3KSVXjU zH%e1sdBd(g-oaX;lDKM$3pQ_Gp$N}Qd~2lCj_)AgP2%9JXxA3 z;~{^$@F;3g4=?!BesYCKznz2*ksF_$9NoAUF56`H7_aS7i2iT9BiA3If1QHecQUjR znU@$clasUcmgcQ@Dhkra=ZX609oUQ=pMN14*2CZ?7%c9y4#U{c%Yy_z>1AU=7~`V= z6dJexAgimz?H6gxr3;O5hLErGD(Ev4GyRvI;%!29lc`&t-Xb4xUz@1&w z$b#==E_|h)VD|~SEK2D2^n!ZAeOd5*K^}aUS=tOkyT3wwo`V%QF)Q2r2jTlr7JOgL z@a>!c^frIv?l3uT+zgW!NLiDF=&y*J4|uenjv8R6)yz|0rM|% zfso8)gk1Dg`I8v+UH@m?iv|Bo8eaJ8Y5{Y%%Gbky`MY7Eb_C1`k66I`6#$VbV2+=H zfcZgXus!jaAA4Y^(^|Y-YP?`8zZwBU;^ogYB;qCsW?(% z_g^){1z30?Gu&4U7eAELMOgeq;9_$IF2tHp8<~6mA?l*5fM2?I(b8v}aq;L?$TGgY z>reroFGhVr4lHncmxhHAqi&k=pACyf1-tjjx4B?}Bc}sLf%wpJrTYU4ABgAkoBgYjK#}Z2n$Hm3qpn@>6n+TG{^BG2d;yRj7tu-^)Cm7f@97_tslP2VxONNA&q}Xlm?bq(um()r;tG+NDMY? zkQm<5bunBa9kM8Z&EULXNg)`MHnfaNsa1qa(eXXs^~o=pf>&ssB#o0G$HzA;CI-pm zYl$+!5=$oM<)Vv3W;Y!qvafVqWDVU56B{?B;!tZ(i{0`F;sUXa*5OwBD#QUxwHi9z zON}a|6*P*{OK|Lx)d}QFaTbiJe^|~l zA#Up}@n^jyAV1M!q8&_>HdhXs2@xAI zh~Znh&hXn|E^N)tjEY~9vnrdQT|!)L<0FL`FCbn%$C5&jQ146>DwbG6-QgN;xHRNj zWa2C#qHHXJI>_x^?;ux8994KaX`W4B2f`QS zme9{mA#{^U!qRRwNQ!^mbt(3hYCBMFyDQbv3aCOm>WylvGJ%oQzZ z19k$OTiL3B!Jv5W8VZZF<|Oltcf^3-SzHSe!mksBfF+g?PD(=zA!fG}B$>z4O2*%+ zNPN6L!1xg9W9a|tlmsR&3Al(=?MmX~={roW`-Lc6b*CUuqN}dmx{%qf@~(Sn0HFgN z?N@Qg8SjzGIM=-FO~}B8+mq_7HaYKTOG~j|W>7*U@D=SGaNeif+y{8bF|$v;O+(#l+byptQyPZH2e#2BQrZJw^_Xn@;CX(Nj=KG{7Y|7_Ge%2Rj{*n9kXO${Ai>F zRKyQOq8Bu9-=I)VpKeLyMh{~%cDm)cw1n|=%M>!@Dw>vFXvdqFABYkcoW zBuKs&fPAZip49O!R#&6Ia#>jfxJo^lV_(jK{-b%&FVGO=D+e(@R5Xo#n0H<72 z$vkd$M2{tcEB`RUH-;Y3jk-!&bXk)wLA76san^G}Bgt-0&fZQQX zEV2AgDH3dK=;T>kOR#x}A>((shJcTW^ zVL_JcBghd>5~6aH5RZL)7QaO&fR z42tl|@#40|G-Oj%+0{}>$u!dRk=lRE61v)Anjc*;YOYL_0hU-YIM{_MvDStNV(n#V zS?h0AL^WO+F#Lpf7?qArK3);kxR+J!N>t-{7I*!^68h2I2$ZNFwKs0V*hK>pcOd-( zQ$k7*Qmc(YdI%&HOk*|=3$d~JdEM@6vs@%~*BPETFHeKql3&@**9i5lzevR~5ik&{ zBpze%l7NmTx&-n$s7okW;0LgG;DG4_DFOyk6;}d{1q`m-U2V0>lf|TXfgUcny11!Y zN(vw-gRqM&l3?DQLoj%Ng=9nrzVV|XgaxfL&72TILJFS&jCn}mv-re93hXI!NP+jW z>>-5>?G^kI>~o8d|1&w(oNkQoZ7=8V*3qlVyv?n>B~Z{S>nf`&i;ej?>tPkgu_>cG z4B5O@>qc(%VYrBUrTQ_X1GqyN+|LrNT45i3n7ApVJ-6Bfa`)aF9ScCwH*g3-2=6fX zQR!=6m;M?9LU(Fr!&rS3^YtOV3)7-1VXk<|N6rAaak2+`A$_CrIC#K* z#l8TJ=jXtO*fVoHFV)AQ=6sgp1xC@Y#dHDl+>>$)%adJ=BYqFM7*)tJ-$e@9Sj}>a zi+*L>RYWqs*DrIYlX%vqF5tlP1%8$jdi#6e;40>D-(AK14>9W1eg`ItBCgG)Q8}Y)$tb8o`m$1q2h%Ml($={PuIqZBN$~Uv`Qm*lXP5~wm-uT4)( zHiwFvV+b=b01n{AsFbG4V+FRU8M#oJ0*eJwXRv#6JVej@lMGS(f2=a3Ddc4trjY0_ z5QrZbt_|_t#y8%a3Q=LdzY&4De(d(L?dV0KZCh+e^c$|%=rKH-k0+NH8qY^lks*9W z9|Rz`-wsO*n*{O;G{i{GcE#j%Tnk40GyAToBI`>&Rux{j_pz!SgAr%&X%*PVCUcnX z&|AXukZ}%#v}BmT!Jh(iDb3^#21_MP@HnQj{lsF7p9sO{A2K3bkp?WW_&k`30+NK? zRFEXT$1w8~kxmjPp#F&cnEi!(dzM}c^F6GmBF`3QHy7)@dgx(0O-}i77K}d_fZQD% zODx78)d6E-wGAA^>g5a&2V)v(yP@=kqYC1|XWLk9 zA~8xuqHt)6wQeb>v*Q5oGd$IF*e6#=gc|Jt6@B#pFf6_X{~$c;E(ZLtz`E0y8NP5r zLx<1dM?^80vu{+=$}tWqP8hvs>Kn2%8!N^uD0mEyKq`vBOg-(H}$wj0iis5l3B z_}4%W_cHzsJ~1yNd&=r%MAI=k|B(ImyJK&30sn(;vgjx952)6atPVhBZS))0w<^mM zoPP(YA4AeK@j3o{p0pcf1N|83!Xpm37Y%e5E zjfjgri_O@+w`;pCM83jnF0uvk3#>#-hqMY{FSDviw13x2dxA^vTL9#n-}LO^ud}*3 zzNil%CNX@?0>D?jAbfw91>axi!B=-Sl801(>u^CHTJw#U1h%dKpv-JtsHOzbLkQOc zp@=hkWt%+{JJ)5wbAaL5`Sinc{f)b`dU@mK>4zPzKfTiXoh)Y_awL+MLT?9OX3fYk zc`Q^Fq*SywB%2X0SqXjUmO$A|`5Sl3hBux{Hg|fzlSMWhiLA1*7RQ)u3RFP~M}I}q zd6}261nImqP&$9(Z`>^%-nc29Ij8|hLii6N;T_(uWRVR=A){>K#Bmx6?|LO;%h zK=Y&AC?GT-`I8v+HUDSa`v&-D((uAxR}0p-m5%NQYaWGl(-Ewp&&Pr_{|FFif;IRB z2-eJ>05u(-S+J%cbu=wdBb6(#(B6wMA-e>Qx>Q67AkN?jO~_%&58`4u8i1K|ypvMK@-Lj@7cDN?8;Lof$g zk-?nepMp6UQ%f1l`IAil4+ZFGdO0$~^b)N`ARgRFm;&1A?xa022NsLWiOASQbgZ0v zlKmQLXHZaG&N%qu*?@71?LLBIn39;pu@~&d`vO_`mL2vtQiIK9I8}{77Q-a?-bc!{ z`fiBL)*;Z!PE0F9xEDer7=#^VhmRH1!7Ugh?#EaB{(jrv1Dhq~%zIXVgEG-`~G$00jA$b)bHy)hM@!cBey0(sr!Sq?G2Kzd&= zigWt9u_B+t@U4Bm3Z^IEZpJz;4070T6W)wlYAzk2yt;fm)2WysVm!A3kUPeMCAt;_ z0gBTz(L>$IZZcUDMt`_)oli0hO=q30gNew`PFB^3Q;6MidR(HtUOJpmL|i=h29LK2 z54VxmN{U3bs%6r>+Tx*~3L%o0Gb&v1PAsuRa$FGpBm%pMAQ8NbVdO_Xoe0jDt%&o- zESC9+5EA%Mq6DzSl0epov)xpXB>p9>B>b(ixYp{Z640uMPT`~(7@gV{(5i?|$#p`; zn#>z2H(dz2Gk2!(2D{oO4X^zt z&Hmxnw{ zvlKS(JV3!cEoj@pCwV`Bn3&pOC9gj7E8vBQp` zF-BUkdFwRvsj*_Y(Wo~V&mCd&eq%jquXMACL+i^_G>A;+;jAPe>Ucw`#A*b;ehaksmVkr7nx^f>$wgd+(e!#h}47Bh)$%us1QcZ}E9hW}>6nQSxkMW7+Lb0bjxlnmho_3U5!=NvD_B(1R zPqK2>l&58~f<mn>qFi&a3;>Y=5580SdNPF&jyyBTtEnM4pm*LBsn{g<$$TB_b|5 z1e>w*l;$$dv&mS?)zRMe>-ioh@`|uM@I=jmILV7&LNscIG`g|-B`#YFN(nMnM3lNDN zhd&WM^GK}hg<2$5b|08nf3GIi4qN7qytdQ;Q%Rf~4F=dG8r?glC(xjivi4V^K2SqU zA^t08+hk!WXJOy0jA-CURp4etVcR#-{yDHRffX!JP@kBL%C|8G+-o2v z2ok}k8Ag8O(}`f#JpWHxEb|i~B=AI{1hB-CKvvJc-Bgeye%Wp44_L zq6^XrN6r_Ja!FUeX#qKY%4Am%_tyZBdrHC*i~C1-a3(x#z#v{9#qjW>oUYd|1-~)! z8A6Q33%6Xt7-uonlfJ##qTY|0=*mw`WG0qa%$zR~BhJ~if;e}1*EuHwKX@f0@Q=qg z*aeLcT!148%Fg@Uv_xy+LD$|8iMuUE1o5?*$X6_}_p(v%aUcJ_>QE-^8o8SlsmsOK5s;Mj)@Ir@Q6aPg3$mrreD} zK_&q}yeK3xUx1T8;Q%G5oo3&10e6$L>CZQF7vKmDm~`ZvQz-Dh$VO7)KQ!z>0P@1p?U$(P7hfj(*ZAk>E#l%a{XPfpn@ z94z`Ku_$$G#FB62U5`i6|iR6trNL~TRpOczogyJM8YZ%U`kT%Kwvlw)p`i@8j zd|$vA6Iu!`{i(E+WFpWfA)-dou_e8dULY1VlHOA{L`c+VH%Nv@jrQOZiyE<~eH1lX zQ>&N8hVdMdv2+ptrEP8oo=U!p3@+ActaCLAk%5&4TqOIVOKEPbO^d zzmc;HVsIO^7~Et2#@#zddE?g3Q5-(<6LZ)PV*C%iU&*p_l%tS5X~w1EudBuA+?}=i zF}jC*#Vqo)E|xljM6HJvokXS16B*oXRe0d9320T=wm4J+ZQFBM)vkEp z-v>?U?DjK2%qs6iAn&ZA`##!eR)Wu(t+cR;?kbPM8P9CT1+K+~!tQzlPG(+LWQQz6 zrV$)f3Y$G(w=H+Qqa(fZR=&F06v|R5sH(aJnuODa#}C>j1XFOK!ZNar&+_~S4fCo(D!reL z2#PA$jO}OB^0PH3mG(9uYx~(={1URZZwH|8tnCN2WPxw7lP?7tQ3 zJDov^7f;D)QG#Zl7C(VluEC>!KZ#FlT4YcAXj)u@+r`VnlhtbS+^B^sRPC%2eSPjB|L5mMTw|o+U7IOf| zr*Y|%;eM>HwjR)#Fl>n;Jgoxv3BkoI_#T-D-vW&Wo3pVZxIjazO3~eLl70eIM)9DeabZwg?uA>ND&-R17*n0(0TaA;7mx2Kl;AFOzT|0u z>b$dFe}<&+k_=LaUW`E8aj!9|w~qUVQz0r`Y_CTkuZt~< zz*W3_c{Hw866>Edj;zJ-UsI7K{J!r8Ah#m$sIrDg4xRe z$la&0#A5bA4vgvhHb4-Q7qjpCQBB9>Ufo!Ap2ZJ8&Vs#XC$bkyEcS-qSY-nTvHFa( ztoFAmf<*5O7$w5dipxTvqxH3{YFC0pO^eZfxrr5Q3W2;UnC^~GxO*zT$QcuI0+ilx z^Z??)jZ)8zRS%{jQN(S8Hi2=Q`vKl(<>4A6;x-!8y&a&O9(@h|c>?QBUlyz1-5oxM zNQ#bz(o5CR{5@S{+De^E8qi)K=Fyj$y&EFLqyGt@M7XZ-iMy`wX`i^RHnbPPuAu2! z`P?F0wY#@n;J?=4kIKBwt-U35+O3l}w@b1!Ux0P!<=1Z6a@mD&LvF3q|Rb4VU`ROXD z^VFNpJGNEc)7ns6%UHek{K4XRW98=PaI?B&nB6qIp{S}9*Peg=&0JMMEsa5Fsi02+ z?~IjgRDEavqBK?Ei8O~fyG#gcimsO|Ew?fPlNNr)H^`-HYCF_@LZQ^YzRRLi{gC_g z?ohPOLD@@k`46J_a4*GvXDJaAt-@ybhbbyFPmT<}ZpfeX@wFX3?z?x){qff+syB79 zpNcN_2G#fi*|;bnf7gLfB6-c8iQ0``Y7_jP=Kv6l%Z_Q!oBWNt)1GGcg>>=Oj=`al7^%ip+L0KD-O0{D>kD_I1SCxU&S708q#RakRg2w>Ws?rZ^4+l}^&Yo{4~U-fv_P21g*HFcvDk zGbW1zp-2&d&qTy!ULq0(#YKTq*yeBCEd}1VDTTRApOz$uUqr-+_d8i6!I8))i6w^G zACty>Q7p+(zlosRy#yslWp|)dUg&S!EfwClC6&ucwWiuMCT{H{B3|bGP8O+fB+^L5 zUsnr;x)tn9!O+FS+&*uj8M?PUw*i+3jqQyFVD5H=LFvP>FzENed`b?39>@&Z$05G( zE7mpyKtBQ;XU`Y_We?~Wz?`5}xNtDzH~OV8%3vCOQmXhoNMXf255K6?EH^h4H-IJ0 zjLi+ttdB&Hi2Y2_rQxP}QAL|jK50okS_J#9ZQ&Wxl9=Oq{#e%=E zgYNRubh8OpC={=4)JMzUPuf!60mn5pp@`5K`a=hp&B=>aplhULu=ME089NsK%H zQhr+{vI$QGmDgp!PY4EHRGKL>rr}|sa3e)S@r)l3q)t)I+YB*p!5%K*G|Y?UBM^^` zClQ+NI=YoPu$T+ITf@S*j_#>jiW`f=2o4x!*4 z3{5D#O`EtZ6`~^ObTI;XgHG{?l6jenE5^@nnt=^UZ08b=Y3N1l(ixZ=%Z(=YQQBw! zK^-X<%b!+CMVg3%-V8vn&V#qO`0cx1s{4Mi#PAlcY#*MCDs=@LE?L1+>&WWpMuvue zHWtz58(38%VCUlQq1!Q%zqz=lcnQx-DK#1;?uId08a;-KD%T|p_tKR}W(2bJ^GZh^AxXu`|fVQ!Xi9i0s2o+JbYs%W&&bKV&EGXjO`v zMbyGb@`>giKupzLUT?R!;Kx-k^(~1^#S)9DM|D7!SZo6avG~nhXYrctaH=14RmdR3 z&dT~JV>GNi#ZlC-xi)PuxP8EOwZh{gQS~*8B|#kiw?qzOiN)d7K2!-28#0K!U+g-2 zH{i;R42D~|8m;Q&4t0Sh+#Cklr<`>8O<%?ORI55sZ8GiD#rHYboScFA4=!Z;MF=fNPCEdcK`qfr$Qi7Xn_H4MsF>f47WF{coxu)Qj&vK+w46^QnU9JC(- zv{zHpj!>NTmrHgiU1_VaKt{IYB(knfnpa)JkkP?#--^*I2^CJ zFlTCZ!RH2bP3Nkl8rstM8o?9!4gd6P_F}wqQ{o6&@P_Gl9$*IM;7xd|WPfvVV30kO zYc=uI93Lp&Tr3{TG=4b47n0+rC#GijQZKt=zD9U=1swk#XiRS&;;mR3b^0{Xeib(l zo0GSkS_I@Vi+{2X2Q8?JFX31uICC3sL+2`CbF>6kSkvX1=)EX3#|a#ASMb_RIj!NX ztI#mGg?3dTw*{&f*#Sh#NyJYj!lR7ERhz}}=}EXav_47lf8`%CmRcYDryP9{FHqE^ zWc0!HJNx$x-ZlW;aL?KkZ!4ZuY)+nfBDfm+*AJa>V*j3Xw+*a4@v73q$XJR0;#xZx zD(L}LU;9L+zJ^!CX;c_}?IbQmjwsMFRxR!5?}zR+e9A4S4i<-ohOn;bo*x6ogVxw*Ol;i_G2VgtSEuW@7dh}&N z0fAgzyu}W#PKW)UbH)kX(sKxT%C7BTS zJ~pVWD4$c* zrC97f1wf&T-N#tnEQ{UuvY_^zT&RUEcE8Vp+HdoqwjwV4Ki>~cc=!*UT>aWv;tN$> zX?$yMXiyw>J6{akgCarCIT(OI@9LNzeZ0SMca9Zr+|03>FGjv3Mg1m1PV;^%OP&=+ z#9T7;g+|xrcn9~_)$|gYPNI)uFY3NtvP@_KYGQOKCWJ*yF?kDM6|9)th^&7i8i7Bg zn9vN&G?Nt;KALJGIRL83KZqd(oy*F~GF6kKbk#(X$hg-Q6K!RMkFXEyoC&k$=&chu9!RrpO|98p7JOr3Y*M|$uW3!^5igc zi?LhONe>~z`Y?Jqq}NYWP5hk%2^Cf^;@QnEtB;$$boA8HbOtT-dSySvmHHL{cb4qT&q_P)VbQ*OX z&$yGIQUx$qvCc-){|BGubJ5T6iOogqDaTwShWwCBndR9piKMjW!=37lDr6C$5_Dzz zNWW`ug*F56nu&8y`{o`EU-{imrqL?VH3db=!4;p}=E)|x2_%2ggtq8eypKphn>Mt6 zLYuE(d(RQe{OO)k?-)fyiizzg01BPhj$n1O*f|@rpmt_1)I#l?Em=_8oEkNA+R;@m z%c)0QF*+Pk>;7`E#29m~g@AB~Ed=`mPQeSo9wgw2=q~s}3xOQDYzdHxycqvSTnb`R87NrhER; zC9Wyi2O#tdP=|U%bO?8c@-JxbRWa;iS2_CQCrA94yIirpk zeH^*g{pDtJG)}_m9CHFF@oTxPz_G zEZ4?|CRj0hypTPzreKq5y*NDu2Sb+e4zzLuvy-&^rT+5Jj-kTlLCnsE*4alH54DV> z{;ky=6Qu#`^Zix+S~2+l03{^uOLK_(KttTgGlKLC%I*(J3-2%)l$K`zzFcX!8K0Qa z!k+RdEee~=N=u*IMV1h;)U$0w)nwJBSJ^h|!=1F3J~^W{%45~h7G>Me*0}zPmT{vR z=6cM0`J1}gZf`g9t1?Xm+p~-tiLh9ml%KJ^MCoowI&-P!$hvuvq9lbza~}YOYBVok zb+c$R4`)H`prpr^a_th$gWkhD<1`=$oD z@JjMw;pHu4Sa^?x@9~BAIDBFYFMGxj!Sg@A^Yuj$KL1y{s*y%ehB|GA{NjxRKT0dE!Y#$XWImw)F9BUAmCkJ_%PISLGBA~xQr&7)rUy_km^_xchI1r`t z$Mp31&!!wvuvvnxAtxMPOYkWj$)WT*sBBYh=FOoC0 z;IDW?3%0BS!C!rA?fqV~65J#A0FZB<)q}s!4XCRHf8C^JO5t6mjwBLYTb)X@8*p;0 z()8`vD!m0Dl2_?@a_sPfiLiNCrQZX8B79~yvnZ;*w{5xs zUIEzt+rZ7g?2hvixbR_fHSA{Rm!_+H-LT5kQ9mHCkPC}BB(0@Lo+pzb>ml0!1UCJX zVw0(?q&suvGa1N?K8-;9bimF4^@-BdZ(>M_9Ww*wxYRfEM3W ziYva@q>2o+bK31z#h&pW1hgtPsmeYindZfs#oFXF6^DpWN6|IU1=7Fi%C_GC{N)<- zx%k91X!g`aF^i>|l3zQS|z=MRUqt*1Ofj+frP-}zTp*YNr z&)|0^CY-LGO6R)X>euE3@7KAuDA@K$`ha54l&_H=zdv!2QOf54;~fphvO+bz!bN08 zW7v$Xa2<`5c;pguj1>rgD~hC;#fsp%Kdm+qbi0?J1XXP}0Qu$@T~%wcx|+94yV;NM z)n3N0`+I2?93RYsWBzkT-<$>KH*j8c%!z-mzj1d?Ja630i5Dl0ighn`?&!z7-^r2> z&yh%84&pt>UsqG|-NUQPO8ySuh(pPzZ^xAUs{tZd$;akF$^Rw%iSU^z`Af9vNz?J= z90DraH3$}>NgTf`!h8hO)$R|xXFdxTo`OsgP$ca zYs&!e?g_=aJc@teE>o=wp)y*CKwRkgg56S(5ULC@KMm=G0Eb?(E1Ga<$Vce;u;bgsYIRh*==th5(e+mrhy2J2 zhW~jY!?DC-_)-f``nFv;h^H?}%Ts@=uj5CxZ3t*p81p#o1sd}w1hguQc{$U|72Jz8 zGv=i};)V#hHtsP%kDKvd$0ugSv!^^}eCANmmF;8E6d#5Q#>$hJE|p-gA1VxXvvO9O zeU;fvKmNqaV&$%lRQCDfz(&3In}f-3pZ{FJw#z-T&rMR}Ci+sl0=Lrb*EE3V-tDK? zclr#`8_mIHY(w3;IhX<@Rsor}R>8_Py&#lVdr?j>#Sa6ZP*eQifV!GNd4XXKo zlf$5*Z^sO(A46{pHmI<9FsQD8KM_7NgKD|inKYY9iW~IXpNdWolZLg8*ovE+aY-36 zAt&H;d8S-o+i)?mm?$uGQsNgn%g?QGR_v6Y)M5E?xLfw+mKVPTk9{%ICex8w?33P9mb_)H2jN??U%l!jGL&8TOm z;+`<0o`pbOGs-xW?s)9`>^gH)#l>apsBp6}f#H`*d32{s8>Hz_sDt!^divf}B)oNh zz*5dY}?F6VR$q;$%N_t7O(R z!IU^T0lFbVl(%oCGIFT??YbyM1uat7KUnlNY%@#y0HwNVfH0C zCNgPl-vz$uebnqgey#0W3by^sUTSSfWn5ufsPT~NYT6qbOutY_rjMr(fzkh9Gqa?o z6`tdhNrIX-4}e0|v;zX_YHFIB4P92#9tQ?H)HM2bOig?d|-|`NZ`l$~@)@8ZXmTHui>=tM4cz)2nPm zVDxQlW|ma8UwctbP}zP7K%pwz&jRXdDw~@PT~^t?3phDcHu`oLuJEeNoA9%2>~^!?+yaC$%E6HQe_%)Ppv0D z++Z94cLoG@`BbfQGtd}qKp?JaX;?T^EhbxYf>f%ORi;#}E1~fes+Pb7RV@vdo~l|m zr{bAVwQfY9KNwZ3k%|PNYE1%=Th+o6eWZk{S~gsesPo6k*algtzH^S(6X2*4vsOblGP`6 zGHYK>9Xx|+_1pt4c~>BA;fx{AcZjYCjIR9JYR=O!1PJ}^^R%0OZ|JFc!$!HYSP#p+ri8J(D0JFAWKT7!MT09)II*LGZ>+ zLCnELL{h+i5D72vekF?-I0|XR;IFG$i|%Q>%huwTV9s(_i}dZ7wfG1?1Y3*PJXnkG z1inZ3%&bK?qY^cay?BDc7C1IRE>fWQzYpt&7>Y+-1#J|Kivnd@JFafB19YlJUE>jN z*RWJUX(DDg{V$!u04(`OfmlB4@Dmxxi$0D(+&a{-Fs#F)9oijN?3hZYq9+~eaY+EZ zUxAONuo?x9Xf?JEmG~j|pL09sodY+Y(E3EgfvjRj$knhBJ*!8!UMO)soGB5A617 zjaXIWIX}s&c4YOeB%7aXu_%b+Cna(mODv9OOg6V$3KBv;L(ES@IwAC3uZVDEgb*MEx!Pi`i4Ye+kzZt}KDBvF`@7DqLf7F_m+_7i;Dkle(K5BE&WJVPGY9jeP{4j+q1hu%~_G z8e>Y!aH%<3ttL3gR^VJC9Avy=RyWxp*h9s)+8DQYw@5GusR zJpL+XW5VG`I0Nu(W^p`{wr^6Jnt`>c6QAkt5$^o2SsIqWrqcv^`RvY1GY}bFfC71xA?Ifg)93)9Hj@2%T zb$Sl~xlKnbv9!Ao)6oX=Dlsx=f0|)o&Ck|o6si}pJW%y21+*$uFWJl7ij-w`Gu2B@ zX>N!R)$1LA9#_5IiBC-RVo&>2^%})}-65(MtC&^wI+Lv!{997>;sHq!n^Zxh!D3^g zH8GVvQ27~PuHKK$UglTMKA~WHtDFg5+TlvBiHSm8IpeQrU3*O7nO->~8l(S*&DhG> ziQ)2L>#}~HxTV-pB+x2w@6!Cam#PH)?I!>fs=xh^)zxE{7^Go6P>@0xd(7&>J-!~6 zfag2_3JI63@;B~|((uO3C{2fO*$Lk7WQo&oB$DTUU6YPWLQMcMNqD2kPw|qGAd7PY zWpTB?akngZI9tE>~bBd=#NV49w%Wfmvj2b+RwRDpP;|u(z{VTBHnU_SC!-x&y4~ zz@&c_=;bpnznFo@=nDwM%}Wgn!@N8pNhOpgaIv{YMK?pMD--lvfIITmO9cne0K!SKfQy!h?AURvBs^Ba~}j7}Z!vD*mZ`l$>h zKlbUkJ}aT+5sP1b0tEYSNn}5kSnSUjTDDsX62eVg7s82bO1Gk&jq*f&7aZ_Xo|vjP zN{tz|Nb>{Etw?7F?el(%T|wNxCz1PDVsU?s7VS(xn+A^!AH?(LrRBN5RT1etFrZc8 zZo}mz(B1Y^R@KjC;ck;Fs$2lPSTlE^Vr-F6Pst@yVv8xCDM#LbPM5`K@{e=6ACdfWs%-5xhlsC(S_ zD;mweQh28KxDk!f;&0q72i~|ThYs$~UEc3xkpxE~qa^a5ivOUOpaiMhA1IYq z`5Sjjg*To`DsT3FCyP`#5^1F3ud8|A+|zoOy>GvU1;gQeqi@H&Z{GxnVDB3?58k)0 z0^cKi*1T_Adm!(dT)MzP@-2i)<9%aog?iuom1*Vrrnj@$UIlUdeNVk_Txr1d9hmf( zKrf&7?I#(CjDCzj-20|sVR+yA6E#E@mQ`w@^1p=xa0vkio&+>fc;E!q=z-I)?x_cE z`F&pH$I3_$9=Ih4)O`<})Xh?FGmwBXEaTGhPD(|n@Jy@)Ah!n&OLUDt&;w_KB~P`Q z2ktnAg=tgRgIoB5*08D_J#e$)3)*I}$WMUa__d4xmn#lSERJXN1=%eH3E^snn4gAp zLg=L%^bU(ze!Ks;^pO#%;Fya{6ULy4@$5{uQzHwoC4 zgLwLyv^@2xQFeB z_{2PH>}el)*p6g6%~aA!8|*}TxshNh^I;n+#RHiKi2i|XXbaUMJeP+K0Zu3FX zzNMF22#`m%!)(5wUMd^vH|gaEbs)`mKLC*yt-xk%SDBSZra8f+G-6ILv%sBs*6&3* z!FWCnfI^*M#elk+Y3XJ|mrct<04IlON#Bl{mcN0H7i?N$^I%$D2Y(`bW~SvrIe5sf zlyXLcL3C_TI{g;|ti6hFO&@LUGOWs}(&QLymtz_+UX?3*X>fh&#Wx}PVB^Z^(Hx-G zger48W@9)4pSBC!@|l)V1`4Ap0&&w)!@@8v6DCN|Y8@rYSlj~*r!W=;9%w9Tc=Xg* zY^UOvFcx2kKwe{U7IzH1E)@krFMbsOxvfAf(T7N&6=;L`6)bVH*~=Lg{y``dEM$40 zg7t!cR)vBkdzqXMyjU{@OU`C)h!6$q-vK?YV0{&zn1aQg_K||sKh-FYRYzOZUFBie zrB!b1D%BEVnMdHV3(A%Q!X4CXM?F$yoERLn8M?IR$l7xqQ2otQhsW!U-KECZAY6gB zi+)T@*IL!7T6MJ4sy8yJgZ~5a)rXSV(f#V+PZjJe^KjGtz(hLa_FxCk**4x0;_I^@K9~pbCB`7KQFoQDY+G*${VTGde@SZelh*(YyK4HpyN`BR zpPvKxJM?+_c1)lD0n8l1`aCud`usHfiSU`}^M^XdytXA+4oJ|_ek5k8xNdJ=4t(at zrP}Cpt<);xu@}^QQ7$+|n1lIsV0Oi%u;M8|+M>{-19$JeV{dua-p~98z!<(gDNe9czBTuo4TN&Uz)we)j%GyUm zZ;)Alc*xNpTn<;7n5vb<*{3Sc#5@Ld3=dOgRWdErf9LHV{-yej3btnlp>n3$Zksv$ zwKxcs{h%KIPYNr}cU$@Jt-eH2^awU%uf9*oDWcf2JO>-Jmj~_T$~ON& z3;_8?u%1`*307BIge@Ax;wpeB#2^1peSbijk`s` z8#hJKAy4ie?{~5YgCmhu7_@lD=Bc@?OwLl`7cB#?^-_``j#mbX<1PNi-QwVlo8s`! zQSbA9C5tdP3TcGludCTS|9^GY0whOqo+Y7^bSK^Efg}Vc!SWC~Ko0~m5Fz3~cq>wD zM6ihso4MV&+a2xgo_BU79mK}q5Cn__h6Q3&j>{$#k2n;uU4Ub3%84C^ki^6;T!!!n zDM&dO$8QHnfP8;<&vZ}UOkdCLovu)o{+peC{r}&u@BjNT$;e=mZJw`V4oR?iWZC0v zo_mnO+UB9`Ve`BOy?gY`Y@Rs`dddZi5cgn8yO-kIY>ZpE1K3x)TNn2%^6wdkP1qbs zw(Or7n}s^%MB8dsO+EgEI({M;>ujCk-8RJY-l0T%okHOvwoY*}tH%_48XiKW`z+Vy z*vJxXh0C6h*A+CgK_gOahBVku#78h$-RB zB!#H@L!7nBRb~_OFZ;EgRr=5y_3M7`eT=iX38xPMVyD(AEb4^Yu% z&WEep&6W8#1+;^Dn*Ec!=I&~WGP5l7?l6{<^iCm~-WTJzp2nLMP2I;^@-KPPGqI|J8z#LD4$6MeM>U06>Ho{A`lk?0|84FE)pN3{goh`+5~l9j z>3`Q$Wu^J&Q#DT^n&z`yJFO?TQuniyuI}>~q@huV&!F@Hz|gT?Yc@ukja+%e8Fq66 z<)K`$JT!!nwA$d`f1n|W1q%OZe6pRu4C}rnu0E^U=t838>6SvY+St;OL~?Y}v$m?K zS&UP&P_Y@poU7Pgy1}CU#qI}!V)`P2KL6hUa0E!%Z;`9m{Sczh#&B!Ro4N8L{2vjU!|h1Js=5B1cQ39KR@Wvys~rZ`2J)WV4oQzn{y@Z~ADct*9s0*d%+G zc7y)}?~*KgoOkI8q_FlbQTFgIJ&iveJ@dntvT-X5>0ztHsGX-&Ha@0fcO?6m)XTO* zSCds-+1Gv`cnAmg_;{jC2jS+}sXBTo6~;ynsObBVisE|_%{Qxskckn)!(D#MOh!5R6I6wap9mo)cQ-c;?H ziSQ-OrbO>iU(zv|1Qtg2kw}ybZYe|qx9$3p^sLecTE&;t&p0!8ZUJUju&C4JOWLX_ z%FMFR`vr{UBwrGRXnHsLlJxji$~~7AZ{{?nTyw6%Qdnk@tFRQPqgh%CGc9rzmO?nT zgniz~HM11L2`xE=jis<3>~Txs7J6cq0(+WPOF>*;3JbbQd(@h6>hVp{C$xg_qc&{r z5|?()+1_Y5v^ip3slT)!*8U7Tl`oK4XqG~>9ctXoPjmq;JLc~+Dvsa&R;c@-ZI#b> zV>X)=e-WjfTC+mlh>9^*ZdT@Ig$Pv53jRt$okt@+vzrxCM(+{IMmH6SqXY-43&FcEW7CTZWc> z+SH3vn!#cuLWi1g%h0jr%#$}p@XRx8jM!)_rJaotoQ3qsOWnLRzM0d#TG1`z10~sT z4A*L1Y?L9T8qT+@h7X%FPp$@@xmFF4SO8A?x1WcMrL4p%>L4XE-rn%DSL0 zbhF^l5R@QJzs_;Oufy`< z$De6kIKG=GY}0m;Wqbdwv9U~tXGdT(U?(W)p9FiI?I?P&4I#Z3C=vJUC|txmJ7?Hp z@$ilH6L!xA_5QV5#7bfC%y+V3c>BF?*6U(EIN& zmXo|f6r$Mp0Mn?f{oXWwC@XJSpR(A!J%wnh?>Dh6 z8PQW(Dg5QE3ODB}Rss4fauurp1gtDq0p4O!&H5Fq03nu4_UUVAfvp0B=1+18n^l05 zZVy)h*3uJO1z=Cpx(Xn!QJ#1eKwKW&-YNh$9C%qNPUUL393E`dAt9Fri zi!i(W&yLbgt=nH-#hl>w7lEqVpTClw`O=8b>~4Q4qql>y(cS)Qv((Te`1w7fEGa&$ zAtbW(^AEDPlji5Yt{r|q(FwmjV(U8k2zQ)FFX6Z#-1VZwmM!M)cDTN?6RwpHqe_02 zmvGS16$r|fmM^u#<3pYB*dxap(UK*r6YLcJ$99k>aSXP)eO<(X%2z5b`M zly+RNoP~4{psq{sZfTCIxL%Wotx0yhUIvXMxL#%1<6N&>kiy#aO4-Bpy0irVK+lTn zl~0cH*k(91!}Imql*-2Sy6i*sa>LDu4f4RTv6&<#R1OhGfUWe2Q$s}uW!s$KpF39% z6YO>7Ts@%;A-w@g#GR`O7cuAR@yxl(YcW27=4h1D4{6#)=e2`Ia5`AX;5Zc=ljBt3 zc)a6uz}u@FMdY{W40!vLcR|kw9J;I&_v!J^-og2#zLM={YbMnS&*_Df=soH=9m*uI za48KUQL^WhLe&1(f#+1uDt(kyJg0faSsX6wyJ-T>v!eG{2-lAZL#OhWN5V};W60MHzd^d{S%rZiDsqzbG0iqu5~P}Nbh zpD3m9CWZhj**B=opv;>XBKqVMHr~WbAQ<0Myn~*YH<3L}lQ(fCgTE7g+(N`^_uS!O zVJUHh-IklM0==nYTfA$T-Grqm?Ua4uBGMFh&&jR9bE6R638UY#gIyi5XX_ojvYp}x+=oP_!9evm+{ofinj`RmcKE$FGr#F` zn0DwexyB~hL-KL(pWq>pWsmca6p+H&LqgfZL-GUs@#vX(NV>yrFWnhE%yvzMJ|&NVN?R7fLr|OA;Nz{*Y#}@t zr40tB=*uyRfaC8anI8+~mO|{E90b1}v1)5ANFzat={-)_Xhwqf_&mI%(&eY{W{Qs? z$c5JM&GG`ARVd{soC_&4H&Z;wlS}$+Au|ynX^aCBSQ0_BeQbFH%^;Yswz* z`d$3-=$XOmUZt%lhd;s!1xUJ&lG#A)H9OG90j4WuzmcmA;Tpy|uEO;3bqqTH;WV0c zr;^+4jD;ZEI=*ZcU3YO_!htc~D^p8+DXGA zCVTxgS2v_N23ckR)`9~9)(Qtx3an4dq$vTcPo+dgU_DcHnXar5T-F;k%tq=teB(&$ zmN_}@X=B>fOw0;Mb^#J4<6#O>XDG6j(zuj8NKa)1BivB!_s(TZm^+(*P^4T-2z9bW zt^z`Z?J4Z{My?rz3P-Kv6gCj*TCm3<)OGa4AQXF=CJ5D!TUPO*p%nDgE6@{<)Gl!9 z7G?NtVWtDnliDKV4aSU_?uya|S4vSwjk*-i?|9%N|tq!LDCn&QvyhmWsd_% zw;_c!NTTckl3vFjkDeJwnkTx2bU}u7iMg&tDQxi3>PvA=GUg39T6Vb%DRG3vT#!}v z5wT&n9-<@5*s_)WLhuoec=6tsf{hMBUxSK%8mXug59G{0c@u%5g~%ua7!u_Y7*fieQZRIECjAI7l%quUU}(8dU`V!G(Uy~7P&Bdu2C1Xg z8JXA=FlZAJCBq;JQ70W#-{SH7$!?;@H$sUJ0BvN&n|qW1K%`Jh0JO>?R{?;+HWapf zBi9T7g~L*E3L5}a1$!I-)#!- zFkBDTeD|#Lor>?a1&#JXgK8^{HzhMP`jaT_lr1<%I@7Vy+$e;Dqv*HnPolGZ1s^G zDlf;Mi1>CpJbtqi9(!XAUFcYHJ68mAJ>zPr@VC_K3+?dyEZ5b97dHLaoO$xW2%dTT zV8jF;7JJiJPCG{!XfcHlzkr8-*LGeO{hcoUQ_bzTxoeFic4dESrmdY@7j%AWo z;P)mHCF6GrQM(x0MY~tV=vk$Yp~{MWopBb&V|vFHi_SF`b;1?>gL0$B7c{k*1rW9H z=S%=-xGVP`pS(S%xRNMDtA#c<`06=XRl)(rm|2Ewm2kMgCe#_iM}9Vr! zjVA%wJf&&K%&buOcTyEjA)3PbG(P1tq(`>W>9?}#)SRo>O;NGPRan9_!dY6vAGXL< zSi<3;o^01@J(pR+Ayi0CVPgsR-5pxO3+ahj!t7~UEaA<;0)A)nnYm`8TxkXK`OkIi zS1J9L25-gU88c3}w)OGWK&gw*D5az5$I;m5e-tERfK63l&{g)4d225Xn1>;CX;pA( zcK19nwjrO#rx6?Z{QA+c&Ba(i*%!;ffY*V#ZGX(jmNmmDU2P%re<+!5qKVtQXu?X>G8yQFp37F5fKI zs`=4+ZMg3GK4~oIYSbD|rL}cN&=baSi}=~3@@58og=U?;LzNeKZ4VZNZz|=g+u9z? z^W8>+R>X0~HWWZ&`|EK%VzuE`i>+YJWlp8(`mNhryo!Q3V!Ya3TDU#v9(Jp4-2swC zPTiR0UBBUsjN-@qdac#~tL{*FPb-+Y0qudakVm;Y5ur!?Y}PCI)!V2Q@`FxcCxwEQ zF7R9*YXwV&kWIDLaFxKlL9Y+=jBiBd_uva$BdxtyEXJz-XuePz89_oH8TRuxZpCG9 z^1I88Qoex8yL||Q@I%Aw z?qG8m`StB~>hy_C#HhQ@2;RV3>l9oPiTEp5@qw_sTP@Uzh}8gUcL%umC@XKi-3svs7XSx>;+aB-Fg*%E@ZQiyJ4|gz?ciSieK2 zy&_tkoO*r>oqahyp%5QSC)79HD&>Zu2_3-M9sS%oGgwUh4K1fSjD}b#kKjX~+ZL?} z`bOQ+JbDRzEv~>6wt(IYI^dnUMzEsPXpH)sH*CObAEQ*GRI9G9)rZlemQhT`0Al7F z?g*-`u47zU(%JSQ!`)Hk2A86%^Lp za0bzfij7ih>%3qU+T=(+>YR}Pd4H5z$c@1we+-|U-IFhshf5XwNBf;!sZrBk;Ey=y zXdi2$SNl-Zq3k#RnXl9ej!^BYLJ6n53#dNc-=JltLZsf=97Pd*;I2__K>vIgxDlZ7 z-rrutetaK)9Ph<4`|;oS<9N?C*^k%o$MMd^IxjM~6n~s%FqaD9d3zfPQmhB@gKm1= z!1oTRP!@2bUpg9-4-3cSxWzPum$q2V- z*3zZkd51u{twc_n4RR)tm%2b+CGvN3K>mTq>D?e(h`ikcGHX7_lf59{B|_@=Rufr9 zWPr#qOX!J6&!HfTh&)5&--v8q3bKR9#$_O<6M37+AzeIk01U(V?WWfT*+t}sL|z~=a3sijBEKT?7Lj|70(pSQ z{2a(4BE!dlj1XDB8e|iZ6ORWunaIzH{11`G)_{D22(>@&ej*2m{3Vh3Cx9#_a_c&f zJBVDp5#(ATH*EsBl}Pn{AU=`)GeB}gR%`}2lE}kE9wAac3uHHuSvVc$%_H*WIUw&4 z`SST7UnN4#-+PhB(?nh-vUeNEej-2L4)Pl!4}JjTVIq(10Qm-y)qenT5|Md-2+~L7 zjgNr5LuB2RAg2&1Ul4izT9B8CJarw&(?tH}Qy@pRvO+DH&;n9`~kNmhE`FWXv;2nK8Y`UOVosQVR*;^=MQlk+TgC>7N zs3VNWM`HC2kB9LY)7QvgtrE>}Eb3D2WfZ$RmScBVDoeB^mOlU_w&wv3EYtH6A;9s# zM1@+Da0@_lp;oEznFgqM?(d5Cw__x}zI6%a_fe+~q=1QnKG8-6mb!t4$9$lH@NI1s(a)wi3`+da*_Uj;X!`{ONXP`*+7($^-c1-D z$f$gpSn2mRVT|A$u@G2nvr$&CBm$qIib?SU-oGMM+>niFTG+PBgAEsgkvf5n9ESwC zV}z|dJbFy7?B`(cN8Fh-JQeaI~9Irg%?ze8Eyz_i;*1)rQ+!Sx}> zEagY-rM$dDDSri6(210%rb@}Tv6uzjWiP1Tp`cd+uXG~l##BMc0cIBSR(mn`btvXZ q7{n9Abc6ZP6vS-I`Q>V%(k#NiP#Y%mvZqMC7~!^{8LT#y4C&#fx{zt7pjx4jnUF<`zVwcEmx{zjZ$s)mf7~vRJ>KGHit$1fo5s6 zRjJoh_40!9!t%f^vxV~F_JUTWRV^8x+Doskk4;xg!IibK(&1Suhhp>hlnzt>*4H~{ zIXnxeis-#HTRyhEc)tR-Jg>b_K)I_uzgnr4W_L}G6x)NvR;y7NnQj3)!e(A&tVxg$ zj8==yCSKxsL9IB+pB9ZxPw5{c#nA(e(m0iwZV$AI6ZC1ed`x+Dd1?8S^1Skz_9dIk z^~uuasYYp(`kdZetc^_;8=ITshc;h#$*xwtUOiB0Z3dW|Idq$+iW8;g=E?e4g>W8j zG=a(5tLILSl#gmJVDAh9aoUyF0rK*xAkOLd_c;7pkAE8o3lO4FVXzn4^QVfH#%y~z z+6GO}4@QbJrDmfvG21?dzuKhUlo#%5%@(K2XO%Y@$lRO`nW@p5#0%|~s+(oA!&5Wc zfN2vT)h2@axPoB#;%jyjmUDpRFdtTOT%^QpVG~Va?6glrQ$c|-FR0X14;wIA6d0^G z7lymaYcVK5==m7zqaAcE;LFkUWq-2*Ubm(jk-@qQ?G`p}JaDMkm}qWbqm^nL!)g?3 zwR)>)4gL1ko1T1n3!`~ku%3au{(_<4$+Cz2&8gyOXDzM-%@)nEMT29MdYv9AMM|25+KUfQ zR<|)curgp4G)s+xrCF-G4|Sg=W=X#X7H8^G&Iqh!G)?9DRbJ3utVV{Uit$EM=l9~N zQ)n;2kk|wSS=;Sp)D`0o`&}|=QogJ78}+>IM0FX&O@`>uF=+jHujL-ZX$>}_mLGoH}Q-EWh3A)m6cL-|v8`q#cr zYn`2bn0FdKFXR|_3ku!`F%&z2WWhh~;7|K_A)K*%3?HnN4vk{1#ZoRG_ZMrUiA%}dAN-H+8zo9|pOOZi_Yl&%iowo1jBpjRH+6LKC%BWXk|8kTui%wXP{caG%Hq(;^7jgVodK@*4vE(T=r$<(P+H=y1XXbOaSpA_upd3Jt{Sq_Q@BMYE>!L0#f>ljR0B}WM7jM zU%^aY5zXN9sFzpsSbzn)Gf9x9g_rJz+V1qX|bN^zuGY6jTkNjAiO z*Tdnqyc}6#K(x3$I9@4L$M##AkgrWx^3lJ4B3tVx&Gc(*Y$uFBySkEw$niTui9%hnSk|tgaar(4gG3DL4qpUT@F} zfET3(#4VPHQlmM{ILEeAa)@J7Sg%bOjkf2Zj^r?V*0gwMCR*IjY4KM40S&Nm3Ld`W z9%I`R(id};MVVFcpldMfdWNE7ZN&NNygGa{gCQ!WtyMg{kAwS1tZ4Wq{E>1+C~%t2 zC+sCE?+OkFJA<)etB6U_D9&)=hVL+Hw&(1Xq{NfP;49QuTKN(RLVlS+<{~70F`Gk~ zpoLKTq_~oDn#LE4MsXyKz$mlA1pNjt~WMEi||@1OL%iQ*i%M>qp%2#l!8(PEjK`JDhBJ2 z+|&kz;^1g~auVH`&5%$pR;zGlO-;8{;U@SpFF1K|hX z4sFVnHX<8?1vZ?Xz`kz~rq;0vfn@3=OeX}P;T4@g(^ZVY1Ep%ET(6JuZDM)l@3{QG zo6A~gEuDuoHtl}YT>egWtq$$0cf$mYNdPbEU}V|{*TL;yYSe<=rP2CCt-=O0*)6Zd z23n2Vrh%VC zBJQ(>r;rz(#~JVpN7dF?FIOZ^p?p<)-57)w)`7x?pdcMU6e9qovQ@5+!I{6pd_63R z&ql)*m=zaJgRy>wE$F^k=)hB=7#GTWj?iE#IZSE#y2ltOP*_#Fq$MA@P_5!m=Fl;5h#Xd~c99Pi)_ zM;nIvG^%iNImF6;+Y!M4Pi?p#m3*qFBpRHx;Z3Zp0iZOjY4GG57>7(#+cWckcBm`R zgq6ww&26{3Cl6>Z?FO`gy%BzE21CgR%ThHFV}|m#yPTH~ts? z#y{9GY!FotipCeW7glO4p3Df1m`^iWcEx|_-ag~)jbcZ}i__KC{)5HpbSWBK0H^=- z)KtCE+TVn})VgiDPH}5@(@y47)T)Fkekap8n3KyQ_`p~#!W*e4w%UDD5>}W4V&l+E zx2`9&puNOcBWDeNGY~8zuE2o84lM{T22?z{p!~z~e@0im|7XMzlz&>jr~I?IfR=YL#g3e-*!(l#DJ(0milDX`@jAi@5gkDqN!?0<*v@;z_h~dV zWg~`@btsTwP@NKdkt{El0{ud>ek({9uk-q4_^_(mF7;K*(TK2#uZ8#u2w>rE)|6oA znqu5AGV8V8c)7A|Tb{2}m}QXUm!eWyNxp-X%_GT+c|g0RE6~zP@|irKO?LxYGzhR@ z$lACNzVKy!Al=gT|1coSdi2OBJz@EkKlQwNgTEWMF37uyE{LXs))b$71SOXx@u??j zcoD(XAMv@=T%%m_Q-jeVKQ{oZ4D$06#1A1qIYvx=o+XIhDL)I^YS&(C3Q)PUFmoFV z2a>C0QZdczFN$tci_assTr#qJUXdld!!XWrwJF)bV@8CC@ov7-bog!-I>;cAZ&Rf; zVq9MB_VgsWYC0T3r;yzlUP}C7ksrbx$>S=xfQULG^;WNATQ_HcPehvY6GKvlDf}8} zxt+iC#gw>E)lP7OsVQsMiJ$f~E67vv->iSHMkd`wKVwBB?xGHQ9>ZciM(fO2OjSnuW(ITYwvhD0BwgRJG}~o0hcSmuk%UW=%r2Kqva5SbvTL|;{&qMhFnc4G z`eJpW4zpr;GAOJcomfA#eyV<`RITEnhN!qwV-tM7WB66wGBQ5V+%&S@89cLCbs*Py zvNxk*>z8*Ux;DvFeSBma%1gU9q3zMW?%`zDNrvjRq(us> zAQmkXZRaj`p=_A1qVlJn%Kv1|z35c-?{NP?)jg8b(fivz7^#1#P|C2i{XQzC-P(SS zmCduY9atD$C8L~*v7gUFrTn0!-P*3p1KR3tK+A5VenK7?&tWhc8|N4!^`-vC-P>l~ zc=&19+oUre>f31;hz&KzhwU7{NT?+lq|Y_?)6yU<|6+9x3NpH4gAraK)vuhj z_4#%rz{ybk?w-Qe}~#B>Ap zH-b|7OR!pOE@-?;M86d(G=`@Zk<7BFCN47HX6ZpV-5#2!os$189sXm zAy19T?dz{OTdMD6?UG(@wVey>hR~Rf6D@7Bo{+D>A(63E80K* zRbf#SVLwoUerKSPn|}1gqMzG;Wfx2)+NrElKYZehSQ?^r;lH}hLedYDpxHICG@~yT z&7A%#yIeBKuIw$zHts!0jw|htelnK0^u;3X+60I-k?qRKME+P-B72*ZUeO<=kZi&$O1ec#ujoIgXjOPc zr8Czs_@*cJ17MNgT+q09Kt++(AbPL$1S-8_YD zKB%)!`&_51az2427a{&b56|_WiaEBUQ^jwmJYCgo7yE0cWC&Qc$v!wKFHi_&utaV{ zrL>mF^H|wDmdK~)0d03zpry4$*7ATBb^}^=OXOX7VElasW3nZ3*5A0>0>c}(EHJ(k zG;j3wlE(tWL5Puq85EaR z7mf`x4g`W5eyhtlmzQcdA~PC{I}Xp#vW$<=amJ8=faT-H5p#L|yPd19UfBOp04T+6 zbYXW{S&qmW&WQIVO+0MYUGv-HN*RB zO8a>hAf+koCsb*TSgIbArnKV+eM*`&mt`pUF{tD=1<@B%=Svd`Zr6#I1k#kYl=bgj zcBCn7F)P|XQ`(a)g#ADXv(OV6P@qjm>O}ft(a&v4vkN8@?OfKWA3kA9OGC6SOle~l zl75&3&2EjQ8GW&6<}{_*<&sHuOK(ZmFH>6EB0ws7zA%=a^u?lQR#TeYL^7%G%t~r+ zlhQJ=Fh#4vGC@mqO3TELSW!Qfg=IoYC#foVp=L2zQu|Y4BZp<;3qYI4Wc@uoG0Oyd z>Vsusoy>%sGPj5*p4UFHhpFZ~8+OD*(Hx>wPWvYs_35eRejMm&u{0q3t+oW4U*ZoM z4=5;k47U2Mm6m@4WzAU<9S(l$#&=ZRKBo#%Xjlf0%T41>7nI``f5YgYW3hAuiGJ4+ zpLNs{9}#1s7k&lmrL~IuoRu{Il+jokJo(0o&pIg&Xe&@DKWJ&KB3tr+Hq;GhDvhir zn|iepJ{~i(>=k*S+u03tD_j#_3{4I2F;*#Qw(NMX=lHF8P`R0*l5Erd4|GFN^q7L z7B*Qtz_NadOH7biyHTI)%utZ2jvfSqOTB7DG{}YyOdK(_i_vR9fY}wI(NnaHcYvyAu3a^m zus1U>{19g#Y!J<8-~g6HPc-l*Hpjt>EkgLA6m)$-EM4h~Mc36T$AJSRGFhMB zTe7a@w^i7q0K4+I!OC_KLd-`u6z{djkcz7Bilr)jv8Z}dES#F8cC}=Z-rrl2UgS`S zS%4D})k2`0HayR%NeeDGziEPe!=hs2XtvR)y)2L~u&eVnN^w>#|azkd)g&vn>p@hjO-0K!zjLJUi7jz@(mb;J@jp#f{*K{a% zet46{C(X?rx8%iXDRA1C6{q;cA$$<2k;1RwKST(2)6JStjB_I2`2x-a5`yZh!zZQy zORO$5PE)QfXQXH~W_5{2n>1oNY%X_=YR=?vY`h8pa>vH2>4`Zu*i#=I8ym$sh>L&6 z_7}&(X5x@Z6<_fHr#-R_Qdy}z-I4ltNW!gIPkH2ft0^2=T(qJ8}oag4oG}8FiQ3Ts-Q9 z>oP9_F+8|9B@g!a8+Y@7H=cn9Bi>%}@PLDmlLvkC1wPY@XAG+jrDWCJ{>I&`;*Dou z)vLU{Stnxs}5O_#H0>F)qM|I1{u0lRiJOgOxuuuYc_C#_a;+-DIIfa#?Z#YIQRF zYf=LG;{sgi*3w&U2np36sROw0n= zl5uBewKCG+*IdT=f?^$)&$j5|hh30)hQaP~T+$bd%x7Dkloasm!ELvf%z}dqHa{A| zo0*0Mr#ZZt1_p6{;<%jcZ?@>;hf|RIk7LPAUo3L3iTX2bST$+wy2+${eQ!y7q2c+!WwM9L64yJ@-bDdCPqS{9>z~@W?c|<^~?8;B)+U1mFq}m zcCAjG`)k3N&JUUbS6HOAhOZQ9%EGLis_kd&!5!-S#_`sndVmw;&B_QaU1u=@$e+V+GH=nf z>+&EqU2~2ce`B<@s@Db&A?k$gVTYp|LJ{H;MQLYM8LyPoP09W4Ml=5Rt)b%`iRN}_ z8Mg6~SP>Ha^_Am_?@sCQYpawfZ43=g6MK=LM!-eYAok4P)Hy!_@XcWA?~tI@PEjtc;-; z>_vt=J$(4EEJ5=fng3yusy7CUjYe^XQj9gRw=Fh;3SdwidJIFT8FPPL#+(#kj8_h_ z7!YYIgbY&F(P*vY3kN<1V0jG4$LWd1fUqZ542ZB9b%dH&W)1?bd>vOb%Fkj(TPIix zMynV_(K~$kH3(l+P<=^3#hyB#TB-u_aMg9I*qA7_X7yFq!m1)~er_+u4UW^*(x!a2vP0omtiK*eKnQdeBQA!s>@_al%m;6HH@=~G< zL}9+{W!u_=9EtO($?%&5=)zsC*&^AYHi7W0dBDD>m#`0CQa^Yx1SZ2FH|$rnPY~?{ z1;%?4suNQiX4`|HnCilX4mY=#J+U^&i28-YEYw4$SG!TAr{8+hlTUAz4!5=i>sjaP zFBl4*JXUIs?r&Bm_A`;bEl@>*^%q=#0YYX5GIsHyswertv6d=5ruvx^NX-CGy2de9 z4NHTXid4I8=9{66l{8E%J1K<8Fs4Z#;uTbOyR|+NVmoy!8C2;$=n8w1RjZ)zsQ5$@A zF63Pr9lX)%Aj-r-xC$+`=T6Pcwiiv!Y~t%~WVV7J;WD~Qc6IoAwB-wpGuT2GnvRdv zCvnJYHoPD8+5^N{_K_U`a3^cTJywZb8KB9@1n z2vCV10X0BC^;7TyV`7g_Akb*Rk<9SJD981U@E&^PDu*^uoI#uq7~agLI9gZxC%FM= zs>MBBVZFS4Li8wgvnY$rIW55Lo4{hz#YuoC??Bo*7uLZftO2maj91_+r+w*oy;`jw zA~kLjCYkzJbK5q#sGr|OBgT~YhphApzs%W7Dcdx5;RptxTo2m2Atz;+z%bO}{k8op zi(a#^VbJ^p8dz@*cfJ~9uO!<2Xqt~6;PWt0YmUSZ8L_m7MK;?cB^E>|kyE$6s=bQg z85FcSDwqx(^=SQa7{#JN=!y+k0QUAn^X6S91)Q(BgzM>4x`4q;)-vp~Z;w%l&($h% zaRhsn;%F<2R=h}7GRE@4{&05rz?2e%CS#9)wqPGQ8R2nX!Uft&2u5@wWhj&mEbd3hlQDMvD@KgG{jHx zLL8&7o{LI8;VfB1`rO&9tQog16lV=$j4J)qJfL0M4QLDbY!Z|;0K8qUk8^G}CPXC< zfF(|kL|y-ozj3#&&l}I6>)+|^C6BJpK}e_T^Rba!mUMmR^yr08ip=*^2kpM|MQbwiIk&hf z!++>$xajz(x);USe^^kX6An-_mM*iz;COG;n6+MDW7L?FQOUPXm}<;QRyL0sb6y_M zwsr+t#a066h&RaHSTPisU3oyeDl=%&HPu|eC51`AJI7291^iNT&2dS14M2y4e+bhv zt%Pq8eT0PX>s)3c{t>Zoct!kPL&T5azJr4ZXo6oIzAH>bm#M@K_-D}+l}$JVfRneS zhRWG5)#Cnjpx2}4`Uk6FA{M5n@Y_V2wTw*95tV(@U8)6=q)-dg;uRgj$!fu?(H~a} z?xiQD7OIzz(Ej7Q(u^D}-$J2Yg(p0^H6HHk3YSWV= z2*Se}s8%z|@pIcW;?h(UUiu1pTs~*@r?nw0+Eq+o$8={eXsYNj4flvUI$nVA32GdZ$!H75W**; zMv@R_p$pWsl)!u@FbRALUJGZmCv;(LXXwInv`*@cUwDt`K(6%B_=OXV_=S!Zqd^RR zNe#t@7=764Cd$ujQ4AkMTfQxa!J$YL!>3U%dlbVvQHw`05Q}&egBgAYrpZW#J}ty- zAP}E?vO%gnUqd;e_PmQ8?LdajSlmm96CTy3XBof{6l!&AE867S0a&6l*VAkCLjn#t z#G<@6=dwVeUlNTG(x6ISTQOy9rR#8&5~H2o%hWrE&s%m4pZ5)YklE>6-luSp>h*YQ z0qk+hEj;*Doejw;?>@+e0fgmlUg9~;SKnXgwt z8m^$nUfV1vN(#b-twM$frZt_EBt7Ljl%!ulKqM(iO!tDT_YVL%HAx|!91XUr|3=F? zOHX<%J7r(1SmIne9M;!I2~Td-xK~v6ts_J!=9E<;So1zQYLcz5??r#ys_{O0VrB#O zWSb2_CgvbA_-aAbElJ>KzZto)_EJA2e+k02!cN7}VnG%y`3zdAc!<4e$WM%V6*1 zbUu+s2q2CJ6F{F5qrht_@1I9c?7aKef!@wt?jKYRq4i0|Zbqh^qOxy*Nuec43Q4a9 zOmwIv3$16MKQ6TP(-RX~>?uxYaag+%TBn-+vY2h+O1(`qOGl02rVx89I1K49B26$8 z;%@zgGv2}E7j4t3?ql9xs6h>1Kv2`#r-yP_$Gep4Py2WW7iQ&x#2aTbts$u6U69hd z;=}@zzJgvbUZ?ovl--U6<2FVkhQ@0Y8h*18X}J<*EEo4_~E z>?v-+;IKycX?u?4f+mf*fRCGaJ8C8R?*2xB_b~+?d$Pgnf$xq21g^jB(!*1>_ihPa zz1X+tl9k?nw_G-UWITA^0JXAt@E);hSi{fl!J}@>nQe~*sSl9{@1Il$?WgtH8Yo!9 zRIF4!yk96_Tyxa#!_$a_Kc{9`uX<~=Nc?&QZifzcw$*SM{M zlcPQK<1Gd(jva#Twqu9zWen^j3C;X?)U=ewd^RvK_K#wIbxLFN2yz#GyaN_H`fjH%p5j1+} zNb)@>Cro{1dbB-xS3jkJjYWNJ}^(Dw~hb&(JiY0sts-@aQt4vv+kP58WK$7%{RJ6!xy_YJCUyZ^+{Vz>8R+7Bv3GDzG%LnYrlF(vMMSlK)h z_e*&|`+QfRrS;POdmhlfn;Ep|nqn?slENg5^jHiZAh>!hig4msg7-O&1KR4E)U8U+CIRa@}m+5q;1~t5ypr$oY59n|w-lbfHSOQ7_-ij?RAOk<6&n8ahBRM^G8PU8ozwYi z??!)o;dl`}v4w*@#Vs5h)(A&!w}o8Tq|qMmaZ`RrtwewAs}y*zR^YKG8@wL)YbpN= z8*4ju@3dXEB3e>@jxJv5y|xs5Alo=Hj@t)7HdBfvrB#kdP`8 zId0#fI_P~!r6jI6zMsl>`*{VAYraa~?JEY4LIz0u4_Ug`9Zf;lZRn$S zTfVJ=!J&vN_vxsY-Ie=f)Z(sOVv*OC+wB*|R1MUv6ChpWc_-cNS=RM%}r{tb~NV&+-8HV@{96v$+daa}gLLMci64Z#;vRe7v`pJX$gbA)S`Y$3}8l(vtPW3qMSB z@3qza7;A}f+1)h^9V+vm0H!3BnQ7v10&fG+rPj=GVOsOs#BlPOx4KPtER@}Do6%zK zGVcg-+0ft0*vC-5L{#=ICeqX-$%Czi8UWFulWar31^sbT*fZ#fnZnqUZENBJcumM* z?Z$?_*5L$>$l>EHIZWlF#wVo>KoH;3H$lw%O_IcP9fVZynFHCl6GCNC)Z!34bIHXdlW9 zT6Bpq*E30Bl1_R!hIbKMy_QbuED)*8Y^ECa0$L#{Mo9zFA)aagDy?|>4$(*$bvQC? zt-g)$N{UhXU*Q)1FM(-{>SdVmh)fiSK1DUSwc`hhOi^o*IdY^(lO#n8YScu>Te3)7 zbcz&di|L7pH1-rH(m1T$h_o|JN1Z;tE5(A|Vy?DCn^`Yj#61?A!z$>B=9>w2xBlVN z!6egJ6CEUenYT{Wea!oZHK^g)1U0RPdSr*I@Gj+Y)TRs}a%e?ZpiE`p9)i7w)*0&h}*$DVBPdf+0abiCJ3PukvLk&YK%q6=4g$1t;D zO-~A+@DQaJq_l!H97}1&T&C93`-SfU>CBZU*-iWstA;fe-ELy)#+>W+u#j34xru*Y zb~;)mG{QGhGptv=2cnd`3>xldl0Wqp`hkSLeePgq z-+HsMieE157;WsJQ^D91WONaK$_sRy;SiP5xQPGJ-?-cO^)c3X2IJSay}jfyesK`A zpo<&)%rMGnq3_WL{}4QZE$ml zH=cn*CwY6x!yyhr77itsr468S9`?|Q|6cILvE|dc6)#DBWgO?0GYbK>ttTRx+U!J&u~|5nt??!>!Wc< z8%K4UO&rz6l?X*RZ-Y@f&s%IXiZkTN9jvg!+Z8HNoNnRv?N$W`e5*6V!DYBKuynXM zIaMv`FY3Y7;`g6d=Yy&5o%1{|T4C_0P4F!r`F;o{+q1h`phtHrV@a zz|GF84D-C=?q3xMkh?w?Qdl-$2s&j533ve?ViXdfaWX;zR$&zRkMExpSHfW4E3+~$ z6mShh;EK|Eiwd=nC+9t}7F&(O^w}#a>b@x#br(mlFsR$35DBqV_oy|k@4P23+m=KT z&KqzM&3R7ij*7JqInVLV5oRGrGQ2xI&v~wTWP1|N>3Yg}E(#kSo#-v!dQ0QUdH$f6 z3w{IFmsH(;Q$p{M`V?339|{%MelkY+{x?+esTXqZOxuU=u(HPfEp=SQg0);Y$H*pk zqS!g8lpC~+aTROw0Jw?)n0&JSEPvzfjSFu)!^Y)F-d^%-TsR2Hn-M)WlFQP@MbEkL z5gM~>q3GSlrA;}{Bpm_1f0qZe&vXS^+Q^CTy8jLVGz)mr3ZNzHv;g9Gu+{igg4AAr z?uxYaag+%S}{4#Bf?AMJSTO@j5&yU9F^tcF>;Qca-Q1|cN-;frFSs-McbvS?qfbm zLW3IKKv2`#r-yQQA>O52e^}0Qn+qyHf;Y})+Qou8-UaE11V~IOJ~?H#BS2yYqY*~wutxZ4I|Jo{CLJw+kGo$wY9$6p zyj+2Ij{=W9+2HjcK;qcTuiI@$M=V637hXpfs`Q}|H=}L=Syx#Ygz{C3Uwg&h8S%Ha zzk)QL+t1#zWhiLXtJ}8>Z`p!VYX?h>k$SVV{jy@USsDrs6&t)cZmcepZ`|xId&q;}CwDnqj>f_D2Q^clphuXKe-kN4YQhY zTIhfb8Cbyp^ss}^(h%p@;B~g0B<}41Df7m@-Tpdke2~m40keMMloQ< zU_jdoeGCI$n34gn@i*>f0B<}41K#TGB@Y8Q2ss%rsP&%?CM@LNBq!ugJs&>m#U+Lv ze}zhE7Njru8+WsVHy&ljJm_{32llKH_@=jyJj~z#TXe{8rG!mD4`^m!<4n$6_ELPjF4vx&HPZAIQ zL!)u47mXNR+?*<{b zIQ;55XXvW#w!`p#A8I5SzF6ogHBDv|%0I>TiOf3mX1sR0ea+C-RTmeVrRKI^+tkdq z(JF!tx7}JF2}`4`Tg6~q*&Yx@jK%w%7GI-LtH;GO79Kt4sH3C>BK!cgAx;DEE{zU8 zXmt?X1Z9g?{WG-Xv#A^YkVw4h$5AhPyy~B#7LQjYzVLX}g#tftDIAyswAb{-D8blH ztnnF1Xrz$0{6UlxfvRt(M>|k;_2tFsX0uYP1yhasXsOu@8l{N_{#NQWIo-Ww^eXU8 z(SA&xi~Ro}?*Ul2jRGKM|?xp+hiPA1hUxk{n&Pqe=FE zvyv?QKIi8=tYuClmthuHMuX{Qal(iUUTVHI=HGwk?SDa}|7i5*^_L@xmaLo`24TU$ z^Top@PWciUK4Hp)HDM^&I~2@p7@TS1Pjf3PB^W}5j4~+MR8hEnX`Ax{7%e(2Q-rSI z1x3O-d2u37+J#_Pe&y0gwZtyik^?FByB;7b0g-8PjV_QbPon^e;yg7_;T?1Ik_>5r z^|%n;>3H`d<6V33I(d=XVRk=S1!g-?35xQ{ z_JZKyJMIaL`9@z%cB0Hlv5;!|+STH99lq?Z4liIJct=ZkABXmQR@6^bx>Ad%ia+*o z2ChF?1VuSH$XWQTMx|y^zz?DzXvjcx5tP1I1U=pbqz1sQkxa`8*1I3j475C9FHv$= za5&f*j1`fQke&B%kTLu!F^H>95li2zETsLQ2^!uLOGEl%(QtVOc$$EA@ni!2L2n6o z`V0~9?47|5c2EXWyj5%fRAu zxv@S4UA59=+Nz7<^Qk$x#_}H;+2yB4$&`xfOHs)!wdjjQ^{qLu(D2y}CNpC(1I~{} zWR!cG3}4Sh-xE`?_+DO=w3USYR``5g^bA%sS-l$AU207?YHH@F-(TFyLdj*^c#05WAhfhlZmY8icgfq>ycnk>c-{TWg z?uVp-!k7fTIZS!KpoZ+gJ6+8&dLqapp~FUK1n|l^(!LlgJ+{aE65?hJIjRe!jmzW2 z{I=gF4p9cd=_EzOeZUpSYls!CTtZjrMN@o?0^Sb-*$l^7#cW&^!Blf#?^fVU=T$3o zrg;+AR%=5|tuB5*P*$t;L(O1!u{jB|Rf!vNZm3kNmEt7yzpY!goVQ_ka7U9)RMWnD zVrsIA$fjV9c!P7->Uw0h8CPO>3`P?Y%cJ#LI6Z;Q;^0K1I9359fhmk>OGzzH zLg&PN+tr|2IZ&!r%Jur#aImWmWu#Ruwx|e>cjMmWT73`~aaSv&l@?oB72^n;X?`#B z#8e|_)Tf~pa03C_oJ8Q)7$E1irz!v&yuH+@Z=%Inn(9i;VX>(Ej(Yj1rx)B$=bgH% zV+M5l>AOqg7z4G@(zd}%hOHrs7uKlN2FUBUAr?b{^ulY4qh*YX;F?mgQNu8hVx(Wq zYmz*emn5ggk!0l!jY_M9SvxWl>=*`W4cu~285_#GdQLvCGfFEnD@hVzj%A!Ely&gofWn4r zY3jG;$)Yo&yMw6E^T)5xS9SYN6&>1m9E79_yyb`symdI7HVNv4MEc!IZZgy~Sf}uC zg@4BQa95*}Pj8ZOt`x6#A}ed0%~BC~OnufsM&HA$2VH>}Z0yOOkO$avx&c;3tZ6Xi zo0aW|W$P({)OLUSyo4LtxlKKA-d4x-wxJfNM~4QNO64Z57OVwh?gE>_>=oHgF)Nqcb~z%O8cC+A|h z&fmB@5|1}-MdH!2B=MNferOb);q4_)BpwGLDxFN3Ce;$sQu*9VE=wwmUgg5C(lqO} z3bWK)>0LUE2B1TS`6vKNtHaz${1-Y5M}(;Z9~Vo9SBF_^>M&BQkm-n9eI%2UifQ)0 z%*%e0Z3HsKhkcCEo`L)lQQ5abP&LwEBzkB;aWBgEWDVx6=#OhKZ=)xs!LX+|4Ti(o zjRtd4{PvyFmeG*mCE~T0-li=xdrZ<@*6PBk_U;QMDtzlMf9lclG4E*cD=8mQb$gt? zOd}~SJ=Q8pA2#k^Q)pyRM;=5a-y|`Y#4oY3y-`Pgln2-!bOWqZKC~#6Z!C3W@XQ?Q z$U;=gO~=&g$Z2^%TbmiQ=;~)KwQ@L+)YH=@{33C)*HUlLm_A0pGcDVcflPPbA@lwM z;G~s#R}giC%;RV<0rHn(e0pWxxu(pM`*!&kD^^gDo|O%TYekB}oVE3ux5qykI)jwM z4>3M51fMD@`v$F)kdhdXkc!jMF_J7H51>CTA*=MnBqV!^laL(NZY1Q&sd}^J+TSk` z@{zvBOUI}6d~eVDOOlPJ(70!ycN%v)xA60Mqg*cXA9{q`dreP;h!UvRq~E`ttFB(_P6XIyWS`%3P5Z^?Fb*-~R*1^J zX)mRrBm`PeJdTczWNA2z{De;J6!yt@lsW{53XJbDqlOabX>-? z0f{qHBF$@nv`1Gj=K5WSm-kkMLI%NjGb;IJh$$HNva*I?Of72;=K-zN6=-Q?%^&0e zt=$c1DjHpLRlQotV%7DKerq1+-jo@-=vo&i3H2NaZy>mOEeV-hSI!m3_E7iVAq+1B zJZXjD=ZQRGd&u!%^5SAbDJenqS?2a|vUmXDdg_=a0-_rA$xi!draGGSUlZ`SeRL*| z2pJN7JE#V~`t&Ob8NbYAN%>Sqnyt|Rku3cF3vF=W_ak~@!jC=02|o@igkQ8L8!duQ z9w7&Y{9t)UEdk#Gc65BUWHu76nh$t>qrf|=Ai-l#Hh4NIU-*^fI?9zF_bacXtaYc} zGTUB`Be&Dl(xzIS&h5dUKg$N6*>QV8rHN9rF9dhO2hkQntM+8xeyR?JaWa0aK1w;PRwYV*gPk70?qE_c#e31y+w&sz|Ab z6Yx{~Y2(HN$lfs_jvyDxIvwDkMo^lk%vXA$c|0*03!i(T@h1n|qUs(QGG&Z&xI}^H zQi=Q;p++sdn3`eIPU~)~J0p=YSylJJs2Qxf?ff9H3U=Q3H9mA4s>i`%X?M z&Ao+u>d7wTPu(cj4W{i$zl-=e$cUOSXOIc+M4+cieuyo;EkDC1$q0pivsH zjLn9Z0%wQrrhD(u-8P~|yzaJG_fh^S%QQnhNd1k^Os2nW62$H_W|)~~PQFy+dI*YI z97O%uz9O2ppBCM@S4~qBkm}hG)!^#cCp4_;v{`#{PZOr&Aq9d9(ATl~yZ;X*f(5er@F^{t&xPx!HT5OodNSafn(aLxQ2Q~`LQYjcI z;gE_-S#gAW)dYMnF99jJh$dk2QNJsuYY4my4s62loUvfEQExUk9V}KWINeURs=-F- zw&@DiJVUCAwVmZ*89hk#nip)}$|t&JSdSZC+3sC~n#|wNOXh_j^Y>8MCr3!P6$cX^ zQT>E`phK&P9#cFd^cWhh#h}$FR_MS8OEQ1~P5UOCmztWY&hYV!GR+cBJK>lSD#~I$ zcHzhpN`iNcZ}d!(Oc*0I+kU%ntZe_*`qzVE-Ugq_=UKcKVNm?0mxJPfF(@eUQRld* zPa}4kRz4gzf~q@)qis`7epZdrBsELEA)!VBMn%VA*zm~pEp>z=*`;Rp>b&e81iMc} zX(Pxn)ua)_@|QG`Xa}MX-{7J+ z!0)mhtyFOObg)*MZq$);3nwM{Iz(d(8+shotX0NaR3?DrY*jW42RoWniMLp;PeYQ7 z-~eT9uvHwPV$G@ICi!Bm@`9Dxu5P))3h$o|95fHvr~D2-x(J*bPY zv+OJ#6XgDAy*fQv!?nD-I-q5`0>HpBS1wMK*p0k()*aT-Mt!PL!8uWZlNf<}e@8%r z-I)le=hL})=hL#7VcpJ_7wwX~{U0CcKYEZ`8DCsxhMP)8F zNT^}H(m*z|04Y7UL@O+Dzbi|G5(fCKtCpeAK!@O2Ys>laaI;IG+=g1$*lNlZ&`7cFi)_o zXiCSljU3PcVZv}v25#Pv)E^M-8OGAZ8>7@pMf?S*vQ+I+cbPOF^yGKoTfs!Gr{q1}3s>Np83ni6uspk^_-<8vS=zq)Ww# zx5aXTzF3^toE0GroZVV7Z~mmWyt$-VJXk`qB{CU;HP_=8Q$@rpC?;eCx-fVOZT${a zpwKs1mP4qLMY1L}iZjktXHd5*`D4D)6nN00XDar5DV9C-#bVF7`H<2e+HEE?=?lGO z(l*YG=Jfb@Qrf-R8~L=snZsut9Kx#f-{G^j1GxJe?lLS={TDZF~VI!>HrBKw&)E9dsu4D zVxzQ84!oYWsfX^1t+D1Ex-9Bf7{)hrZ>1d&B$6l&JcTJzX2SG0WC2gwXJ1Q|V(qhg zFN8~PV=zN$Njnog<3n7g=fRCZZ4y;111w(Oh__>Tp{yoQ_7T zsL+^%f(hes9o_+!8MTRolH`mmH5yp;&2BflyKM3nlmH={XJ<>?vz;6Xv(imu&Tlnc z!apN^@l!T&HS~b}K$a0<4%o9WVBd$zDSgWiu%Z!5abh-Wjndy~lu{+Q{z6`?hJe-I zc8App*QmC6^oT~tU0!qOyLoXzym$C;ceotyn2I(kztpHWi)&1Nofnf~VDgLZFu9<+ z<-)8zYEJx)o=HhU+)zPNM22GEwEouDE%8UON;J>~* z{4eZsv9}3wktRsjO=}8WoR>mpgF+W{N1^pugqfkeotds4C*aC<+Txlh`|=WHD~R&6 ztVD^|sC@xZBrV^OVg(awHmO{x)NG}eQ3v;m^)+c3NT+q*38h(T-Q3hOS)8G$DR^$j zr>o>86!uXh6ob{Eg3S81GAA?T!`KGZd<BP$&&g3^TQBbQ%F(lO18bQ2WZr z)32}QdyGJ%N8O!yN8RJWDY@ZE;4w>vCIjQ4f~$ip(LpHA&n+4kIcr@<=w1tO`3b+* z(Gxr2$DUkA=yV8h&f{owgo{*bc>2>F;Sz=2N4WTr1K$~|yHs!chJthg$VU@v1f{9`@e8zts@WF!hV4$r6m3qs{F%t%vqNX0YAYUVkb5yEGhy>-PT0^HFOf-?mC(!EkMqFz!){<45HnWLRa0^9_2TFTj)CD(!?*M1TOL-5HpsaoRSB-{EfSLz#GrNgPXm*M42fXnNJb0P6mpnY+Amrr1BB>&DFkv3P$n}CfYc~9; z7l#-&{7FhSe8Athn+?423~czMx0gI@;2`8=!+_AwI=C>mHYu4vkD3Sn;zb~a2VYOg zga7b1?&bk+JOdAY>Fp&C4>$-pc`&F|;|?|~VBaJs#4pW^6~j5?^Kw*5BcD(6H|}Nz zZ#)Atws?EV!we2WPG&5Udy@`Uc!IyK^x_aRCoWCNh8z5iyV<}S&%lO~x0gI@;2`8= z!{&?|!wzl@hz8`;QNQ)%d5#z57_Qx(l51^$<8H3;#-m(YpK@y~5lvlQ6XG>qSo83n zBa(&p$z>@;gLAjq`xFhI!Y<2^qCxlGk)q)psF5W_1N9(NH1K^lOVRKyye9tymS^kc zBr`?B%PtYuC2=pQ80mv7JA$-O@iYlC3uUAr9sh)vltL~kQ34&gG;?&(Hg%AWT&l0k z>nr`d#sMGL1}NsNI-`94k3q=vF#nu)n43E|k&vSQ#vaD>&j`41Eb9%%#j*UDPa*2i zJqc#AZ7vr*pZ?mP`z>men~dV?XxcoSl{VqmsK(l>7hqQYGah}06C(-2*Hu5FfsP~y zYsdn)EiNR$M)POX9!E2wqQ>8fr@EOOpn}f>zh{ww|r$ft_S$b*E?!LW?u}ECWFEN(uHiEb%`PlW*)h2S_sH8R&rbU_g zt4Qp^a(9OMX|2;mbFZJ}UW-(I=mq6p!Jv0hp1xR=Kg*)L7ko{AyQO6E zznnqkM?eIwry>8U>$ei|9jm*G$gxhMzp*Idhffgr!?6UWFBXB1cY&x0Y1c?5eDHcvmQoC9*NgwGgNr#$@ zq*5<1bc(bDj`QWL*b=2kDgrM@CHG29Un~NjnG$MEZo83WaxY^5`C*SN1>Pp*Ifc;_ zOcViBBz+TtYvehFr?8^Q>cTPns3GMpV^JY&-e3(rW;Z*6sNZYCU2Rd{PmsHzIYX_v zf-0?%yE_hA$gy}Q1NTHxDGS7{C3Em`1W!QVprr!+qMP&sM8CAdK- zrQ(J{n>rxI(AZ6?DZ<&LIw&)GdWRH?tdjODrKVxKAFY)pvg%GC$0Mumq9+zv#hzS| zRU(urUy|>u+G}w(u~Zw2kEvR&PE!o?qV9;Q_D%grWv;qpVLG0a*joh}A~TGc5L>1b z5fNB2H?X{A>p3bpu$c^740iLC9^`)nu9!<;bQ1bQt6r<>9tn!+z^a9kd3+YjpBkxm zDZpG-B7bIVja2wfYQ_qx+L)dzTy-$wjH0=DbO=xMy)#kvC%hQN_&Yv|O1?G740ib| zR@MMkXK`ZVM?-6Ua3{+CW*&II+6}zRB6CB~-hf(umV(KZiRUMIp#CpTxx|pEd1w1( zTG{PY;*CeWN<2zR%xXJi>R4|tdHg{fgy_m|8e09MNG?%=A(~3D>B~2IF^HklnWzLE zPxD*mD;H#vKlK{%M1ME#@HpO07Fr~iCEu8H(doT!>;Vi_hi^>x-r*a2C2C~xjZqKM zH^!Gw<|erpueq|~^NsC_dcpWAPboxUX~qR?bY}mGi+78p;Vk(mOTxu2rm2+<13>Ip^ASDIW9DPH4%cRNgo%LF>IA`nlV-8p}hT5mT}#GG*#wV zaq349pC>a@9Zo+$a3{dekR(&kj=WYHc7t|jrc0731wh*3n%(#0B{w->G{_EnZ1Vof z%qS@pI-SbKi1B($79gcL_Dxi2O(-agl{B)e;0OT9F~euzO3Rk2M`YB*az zz>4}!uxF89UuG(F`1o07EDxbmX>#AUXyb=okotQJdY1{7zL@(Blv$Sqx+b|@JDKE< zFi8AB3tLMXk{|KpkSn%E>E*{nkbgNUxkoyEvB;k@Ii%fEGAoubsQd_IV8taYOZxt) zB9f3}f!V2!&rzN-as2{WbJd<-C=L`J10z*2ZuuG1?MhK$zS4tnyG2VsW`Z?Oie(Lb zu~>6%KBP2=cALpeI+iYqUU&CuObE;29SnSxkzlGc%T8uf=P3Z)|WHys3j z#ZgB=1;+pA63*2j6|pFPRu-%@gmz2G%=ubxne+5Y4Q${SiSEax9bgGo9a?2@LsF|! ztO~KrKjCW?IgD!jw%O)rgNcX&t~sF8dlVma8G@Zk8=R^2j_v45vd{5FlW6dqD6vy9 zaUm+XRV?~q@oq===xT87_LDg}kHP9kD}&;-cA^CP3QI1vf4oR33y7oY@-^3#I<}*V z;!Nikjp{iTDg7u24Qq2OXXuN?nZ+7x-K||NnZiR^DeP@hdUW5PV(%h+h_r#X-E;QN z^7-6@`o}3+6;4BGvrwjiXy&;)H17g25O7Z-Om8wrzP|Ja87`0jqZx=ASbk}3E+PBo zAc7f3Dm9*~4DkWRzMC|4E^ma6I2?!^oU{;}y+v90e*1vv!82(MGVhpWUSnZ(SrIW3 z8FsCUx=rvW=UVp-X*8di7tNC*XnN-Xb3;qhF~*?s$3<(UaYMfx;Bq(gJ@mxf(Co?O zh8A`(8ti#p(W}QRt$085GNoG&qg;#=dT(Ex(5$~C4|G7#3*(*XewNOhF8s~!@Qxe5 zzxi#dZoA*a(az?1jAGo=%%1fe_)7&(b~m%eCHxRIW4W1+)CJ66@}dyqSN=RIrS&U+ zmX+<9U-{qj!28{<;FW`(>orDdj93rm+{Z`t3`+#KJ-v@|LS^t^F86oi_F(dEq6?_0 zD45<{&b#EY6cY-_hHB7%TgaAlcQ2vQkB(<%?>}e9lpjl6Uf}xc!8)4=#{T=@8xrkI!e2cwm}g) z$jn*=B&*-Bjj{sco@Kh>kzaUZC}vcQE+!S;hnNa3vp%aRLosk;bE|=*=~Hyxq*!(I zNhKkS(3{l!m~KfqV}=KD+S}cNx{ZQB$JQ%adHuvxWBo9@;DDI`g2G6>UX6fpL%D?A zHf}(}NgR2}0xKJBX%8~$4iAdF!aNC_6C-gK09r%Jc?76Qit?HaKiq&RR9lANdI%lB zC{x9|(G+>hIgU)9CKCZqWY0!gv`Hcw+C-?|@`s_cn;jb6Pxt{~0GuRKA1>v=iDP*QGY=Dzo&)YAfFnn; zH&a@^o@c`i%t*5m|QE)Qm@4;snKEz0=1&h-XWQg8yTNJwZqQ`DHn&pWAU&d*HEXpCNv1tXK86g>Pq zR8GlIB0@HXQU_TWs?JRc>x<;4IyWibYvk|Cg1ltsA5o=vc4oh^+v4easeR7V>}_e> z-k$|Gld+WF=K)ks$yg#sHpWs1`4}6$gIY6Iyw}KoF$?mNv7e_(@r+HrecEE=L)0E; zWO7{%`?s^eZZeKyQ5f%VJRNd{j=!7D6Q(Td0F9Y*{MxOG;iS zS+Z2>mh7cQ`=%^tOLpv~O7ZMiewnz}gRJT>Uh|MXy$cBsP<_sj&axV|$tOaf^waKa_pyaDiIVGzI(QK@u4zjT7c*!cq73s%ImYLr)5&k?25hUy0N0s7Pm-%vZ ziENAOcu;c_AUkWKY_|A*-OO8#$M_m3wxDvf8Y?ahs)WhbU^uDBmbQ& z$V;|9OqJr8z{~tk#R9 zA_wz8-QbYubQv-CFg@SjxI5I0H=ZG>$jiOG{sY{5+m+D?KJf1MWQ&2QIFGq*eE<>rANp zd=rmsV_8pFQe|4?*&#Jr{McRXEC8;8gHPjwwbCfg%@!LoDtj|4g_95!+y>AbtyIWm zii1`G%F7(h*gG67HCi}t!4pFVIFd0nGgxdiiq3XwrRhe!GFhCUGjpBIL1icxr&Mc$ zTX%{)yM-nk1nd~^VU6SlhC-2va}80WgnKUm&v>9Q5+nY16iZJry)67f3`VK3dcAd| zejiCShIzGrs-{byz1l}V(WmB_0*1VH!g0BTDy32u_-EjY6BX{)VcG4YQ-PX6DDUz{iYP0xI&H{52~3Hk(GQ2%(gU0}5^GfS5tl zgSK_2ku!@6sY3W7<6T=>A29=I4U^jnWqp+IHS*ueg1nTU-=s2OL!jFT^K(Jy z_{Gm}hCEx%Tr}dx4SSsNHbqqVjb89# zqRO9+O6jA@%lU3m+V88##>ET=>~%FtxkCeHsrcSN<)wqejRGj2bOmMx~PeKo3t-R1fxhMelN% zj^_#A(5wkJQ4MY|dZhy0UyTm^NHnp!tC=!ySc&}&%l)(-d^%>g@cfjD~sfU zCK#f}Zft&w8@(9B=~bKwdJf8z{9@B5f9gf0?C&N&z)X1V+Q4dnL;_EHbtv-&|Zr#efy}H+_^abyG-K-u%_xi_>aXeEhZ66~- z2&GL_#@eCm6d5!0za?+~bX5J7s{d$){CaJ<(-P3U zAJAmT)-UKt=V3G+1|8F;-xot9ZE?-|kL4vj9T?CcJ3Lm&rnl7D`oEF|NNI5U2dcCt z6cmPNix}MUI;@6-#zZFlUG)~6*0)U~r}o%zu%mjYIMZbJ%_GK|C12sfBI>G2p;Y}S z6S~5Z{{vLQ6m*>6q%Wp91!Yc623-#kyMDYV;H$&x@cRrF?;cM2sQ#4|_4}wcNtGx! z(Nk$ntIv{JP<=< zj1LNDH(PwQb-E9i7)`TDf-xC+r$^sTi;RBs1XnJKwVc!Rd=d@SHj2?Us^x@=$Mia^y0QAN%Ae(NghX87jFo zC;DRXz?p&EE|*NG3idKbhT<*ivc86RP zdNck!N>b^`LQV-0k5m%!#{?`|6}Z|OYTlv2LL|g~^0>(M*C2NH>BGfdzWatWn)~vi zxiW&LcQ&w?3uz$3NK|f$Xst9}xha6ly>hqF6Z6WkC#P4AbEF%u+`1|3;47n^T;#`U zznm!R_RMj^qc0KPIkGQdNH8;p%NWYuU0nSlFXR1Aw7XQ@_RW3qH!4apXO?!O4X6)1 zphErD1NvSCTXt8P#w&a^HDkHbeoJ>(zsrkJjL+unsN@UMGCfUiVPy^HpJf!$J_qZA z`|j#b<$?EO-N4(6V`l%72kNhL%4wfZ%rUe7@Hg)EjPb@Zc*cI|?In+AjDrwersMpT zoueqbXKcmxsD5V&T{oSUqY|_lJxZl3EY>r2n!g*jXN-4~g%-(W$us6$bb9X@`$G&4 zhi6Rp-r*U0E^1`)j8PBLGsc%s<{5jQ7?ogAeCGGPYY};SZSeq7rgMRd)AmgqGGM2< zMv6_G(!$*~Mf$o)1|yBxS5pom3Z2d+uu2f3#YP1&O9-QHl!E3|X|yt4!NDo$v^8E# zbcJ`5C0vqCIW$?F+GuG|9suJ(*<{5>(wUFpM+QDtp#aatV14_-o zJ!PCJ8!NHQRaAVLMt;49zqplhaT=IjvHXD^uk(al; z@^_RFFxC(z>*I?v$!6tGf~D-El$mrCo-%D+wi=rzc0GhQu_UeZ5d@L9@FbghzJ()(CZznAoU z(@PqWU;4a{y8l9LXSv_U#gh)z?6C>g%9UjD$ zH#LZEI`%KGdp1NY*L49|)SI$~Q1roNm?Wu2)LLHv^?{v@!Bz>_sKO5_L{cX}rQ@{o}d5E3L(Dzd+!)zBm zFmaC&0w(t07UckGIN8n0xYlUQb*E9SI4RCyT1noQnpY+%Ju&i9BmY#3Uw)*-#J@I{ z{q)6R|Hcg1Xt?Z#l9_TF#rya28X{OWWmq)IAuA`|TD5Q!(UVEJNsv z#gM$NcDt!$mNa|Il3uym@3UxKKjXL*>e7 zIT&r!o6SuJi`5EJX~3QW6%U`q&1C9I@a@4CXKc@WDlHcm{zFgR&sh{nMc_}z5}3YN z1m2Pv2MwLwTrwj*(OX7bAsJDvz*q#s6_@r`?qrwK$!$=ff)qZ`3AE)1LZ2C{aEr#& zG?M&eXUtD5N~U7Wf5kF}zF3U8sB4@wqwMCB8TEr6Gm2Z@_Rr9);m=GvE3_KLT9fiO zfeFgmr*=z$F?%k95l?1TjK=d~n?z>4{WEeF=@*&=YcGsaI2FTAMkTj)Mqez3J-I8q zG^BRZ$;>*Df$7I6qD6U|lra^5ltTR%F%@L$NEuVnPSL7}sgTwkc`VE@OI_XVRpWGP zD6GS#FPm6=gRsf1>fXRLAaqqZF$SJ8-NJ&`G_<5@7VxBLt3s95 zNJA%B9|`PlPi+kLku83c+L;~1MhvF^!HvQ72#z&hD@VY_;6{9rc6pTCho2qRtAG}B zIo|_#D|Eiq@C`;%5t(S@O~$+SN;g!TIx1Kvd>&yZGJM3;(Coc43;j&?t_FLbi^@Ld zG3->*{`4GHG-7{hpA<(-8>81~jNYIlUXs37a`$;xLh~<3jRaG_w|^7da0m6 ze|w6qgj}I@CY4-KYY}xYE(nn{vtq`O>ewBw{q2xYT)LE7JknEV-nu;Dqnkw9uFxKYG(?Gt}ZJC07F zKm-!MSkrW~`1bYd#SWqT9La$8pr(}+ujVT~FIQa@RTZNOfIk521XcIQQCmlWEj5WN zk&M37XciQx+2g@9n&EnC#)=2Kv44DJSVb~_%f2|iI@l$ZGv)#>5n@8fwxN=5tujN% z&SPbb5VHBCq1dn*FITqt56!5j=Yer|H!#kx-|$#1i0hfh4maA-a%!7!8(mcT9HxSj7r>Y((f9)M8<~Eyf!#xGzv4jxM#q(F9 zGH_EC#l72M3_-d_#2K_ojpnvNxyJ|!h)vkAjf~Nqrp{)-uH6`9CdfiuJN6q;{GVR|p}p$`wIQQR`D#X6^#&s75zr3POk|L^>d_|Gua^UR?~dOMB)So% zgG0X?NNEPr!*{&;;XCdfHe}-G^DcFi_RF=@wU_N?&R8sRX2wVBtzK)tkr#lYBLKw9 zRcW)8GDk_GTsGSu16*#i{eSetY_{ylWwRAxp_^l|0r!uW8u9sRk5j^MSQd8MYlR8< zDbj)|Tx8`v@6`f3`(v}qF7|E9{8rP&s&4z1 zzSyWGojR^RT%^Bn2cmwV$NVV@yzG`zjas;xnz1aUmy6Q@=8!Xj5TJf7u}d`!!RnPwTW(IWeuCCWvbQCS|8lUYOl%z?`7S+K~ES2zfHxe}2xom`Qh z6<5>?&6Ur2QHtTpr&Ds}YyQUFT;Yvp;L5*xd&$EU4nj_@cDY|=a)maNFIjlOm_YSMheALKd)uA4wRfj7f%&M~x zuPG$bZ`Jwm9v1OgY6R6%u~DOg85vKX2O~550MH=q?5FBY*i1gQn@FM>lF@j2jwX6R+H5*Rb1ze^fEn`yar~H5HeF>PHMVT;1 zLc%}}h=e0dXwFPvGK5nIhn$KW5keH?8agwbbT>28Lw66!a44R?VC(7<*JIW7*wt0> zKv#cI(RJO$)fI0A7mpPL6_s6Gf8|%v|9#&&-m3cQtFOMVyC?cT>!YUUtLr_g-g>X9 z%8OckJ+@eR0bT~pyJY&6-aVbYVo~QH2=R z%=z)|pE)!PVy9NYoBv$;zZGUFKFbKPgvs6dWj1t5AN2^rsrZBISgcusZI36RjCQ8mZ*3$);Si- z4hTt5{=i6`?vNl1tem~;QYnfh4n-FeMHx~a+pU~U(5Ls7plA2s{sG@iHg5xvv^PI7 z1-3ZkilY8lD)q6%q5cVlE(kDuwQir;OuDwWOj^}$ZmM9wfo6RZ-dIHoQJfjCY~Bn} zQxO*TF#>$;qOErS=nu?<*Em#*VnQdC30UGVVa3J(*bIoI(dO9Fj$G z;G?M=z!HZ8MbG8CU1hW6!@Xrmug>K^?9e2N#NSILF_t(a_MOXjt7Vh#p}gb^cBu}o zzA8eokq3;>sEayaw4y#6(W^XBr0m!~?}Muco@;YGIEg3?N_rpm>E4u&IJmkt4|vLm zUxSSXm751xZy#JetNVkiwD;lVSS;!_I}qp@1vc*2-o+i>g{S zbNo@%YZ#-Lqo~&w#c4ml>8kE~NhS`>CX`Q6G3d%9@!9>|ny z6@tKYpI(+azrV2f1|6HNup7#NmBDv>I{6)z< z^y|QRJMDBEjcvJ<4^;Fg^mLxzpX3%AFzevuT0%g2 zFU@ol6>^oCLF#VmE)G!MC#R1hy1fyFQ-S_Tx9vZ*_~7I`B#yE|#2+jczNtaVpZ>$> z)W3nNRC<67q z&VxKJ=5 zN8-XY;bHtUR1A}c7TI+%altEedY`!P04y+1;sTGJNL=_Nw8)dVfFs~Gj>l1i_@qel zr{Obh?66J($5Bq+ScU6mHqT6rQGx+Vc*-ZJY=gW5bW%ZjfIN<}wbrh}k%sbw$SP19 zK^Hyn?(rAlnUM_F*FS~miNh%!*%&a@nrzOP`df;Qj~U}Uz8zCv?N=rO@$?)m1npq- z_W|fRV(F4@mDJtTJ;X@KtaOF3wce)QY8AZ$% zS*ky^IdF`Tr9{V}WE5jwk;)h>aTs%SUQ`%3x3_GTysWn@*->G}k2++G;>umAT)`5D zD@DVMZdchX`9N=3(yK7z_Z*r;k@(+JNsJ{9iG5*4w^}y&9_TIkcHB$b3(m7C6h-h| zp^;xX!V-tz1z*~Bd&=g?P6SmLfgFm`^F&%d+`kU@9E!|-*a0AW7V`b!bvQ7^VB z@36$--I?8^%iy~GXLEFQZ#g=5Z>K-sA!QV2o}0=UEO9vFeLLN)mrdafc_|$1Ql(2g z6k#RG@E_XkQQ^N8_0L80D&u|1RiQlscw(OYQ?~}*O&7Pp%uH^A(>`!JN2@$JJppbx z*#a&WL7TKv9;*((RsWl6Q{sIFsA-tn_#CCB8tU6O@P6rI*6K4qJ01{To_9EtEI4N= z)-T;zn4F;qZjrhB$IfMg}DCNt)Zx{0Y$o1$f||ksD3Sr<;v2FwkLQjl#7^!=>rjcC|4D zn76CL)+E5c>y1sL_*~a83UD-vWj*DYlz(EB=CoCC2%!eEw6bcrqyl}(EQDnqvMPPf zTgJla=Rx5V&P(`-Zo7k~F0zOd7WObWqOiBVG1kA=kmpZdV65xE!)~1Pg~>Uc3xub6 z_48tTctHma+IowZcihiRslA_VD}v4*?GNHEhDNbz5d&1$NQ>CRSUfKH$+G1g>l*`p zWD&rR=mv1kccK;S!tN~w(wl3yT{X@zoK*ya)4Rc7p%P6l>`npPIiqVb#jhv=@AJBW zcTZD*x-feRmv`)s412Q(>{H#qzQ_{yF7Uq6C;l%N%( zLg8;6Z3=T~Q*`Dx;V{_v_WB<{TkzxtF&K&5phuuZdTtP3ng{!hGGKlUrq^$1D3v56 zloU!5dQ7T4pf&}Pgs!!dgwRrGu@WnMkP~P_)u!-{Qt&&ps_1{LO}FtX(B=%>PtqQM z3sK7OXY=}*N@;9j1}``%wPxX;N$rd1|3JJ%m!BWhV>~HGkCJjnbXz7H1KrrAv*@gH zt2PGi+47dkI{g6Kp5|9WC>>UG{CO}_d3-zNXw=Ynhit{K7dD76G~g6|-^USr0!)tu zGUZ5bl04eYrqQi%%Y*HS7^=U_^X+!yTW8>6eaVg%_QofkNzcr~NtG;gHZ~fpOL##! z?n$!HF*eUJUi{1%cor1xPF#v~w~#hX;c}rSq2|N_T;*T7z}(MFfpRVi$SAV(b)T1^sY^*WWhFc6ERU9@KBkDBNf{l!>GuUQ) zUadK=k`&R&>0_&HjZ4005{JE;ti{$JDlk4S0NIn^551iP z&$T=dX|o_X0XA34@KiNKC{6aOkJ349XD2&;3(08bD^q5~VNDdLk4)t>mN=X~$H(d1 zm@>rf5ZSz3Mc{@p%d!2f8oOZ>-;r;T^wqKCv1S9(25%@&)Zl8!8r<~dTZIc%TPg$v zfj=;YmpMcXLoTSp4*7{A zDH%%Q*vG!5Ejy~~DHn>&sqwn`JAnxZ|EbUR zc8*-6I9GI%VEdAisXngnl^8*>-BZFOdXK}XD8Bz)D&Mih;rmHB_-{~z(h+c7)20M0L=y+y+Gv|Xrrjju)XDQ;DpAPr zedB{y<9;8Td=+bGE65CZSqv-T!)~ib2EDq9daBR>FnMv2XSI~cpUOY4=Nl%bFq=A8DCwxw6tLcW?&PNKF4*Wq>CPy-yMXtqvk=3=XqRlSm>Gce{o$^f`b_|?$V0pte^DMH{qp7^irIm5 zFPh4B%viNDcHJntv081ga9a`iY=>%ZoDRW_xZU{gy%Dj#P=eWVx1%8dt<}@yuh#`< zL^%2DwYqI*>m21Rx&%qQT(vY=L)<%-EZ}AFw;GZBxnN9$`a7{3Cl_oUa!d$Zeuc{T z$dPm7BVrui5&3du+_gW$uFbunu0MY)er^LGJko~Sv4k%*diphcmm zIS!?w=7OCR{e3lj7MnpRYJTdOC3v-CqSl@@?$>C5A~6GRi=s-=hWAKYCAwB)yau%CbH+MhhBznce+S$Gm11SeESqa zHz?P5%DV~1hQA*!V6<{BglknW)g1mV)y7+b&rbL?xb*kQ1+8?u?FEhePH!x6jF+Ve z7ZL-L|1DLGuqEWXol3`Dp#El*&TuFY236V; zr(vUb_MhDp&xg{opVD5tUW z{6+dF{qpIbQk^TRdmg0~ml&;cFr;;YzTrDWk*#kYV8DR#Yq&ICnJCYmcH-Ke>YUqw zn5GD_7hqWDe2s3~xqhy7PM|AkcYNMpfC;7qj`@if-8(hd`87;Nx&999#?der+ngde z%;NyY<`SuF-V+2iMcMo)G>TO=@1nX!!v8`w&m{B==zJiphG*hiiJ z?|?EMou9!-==`sQ7KL+=>Vr}lgm7z@z3_xOXnjbuniD~3{X0a85`hntutEY!GF>xU(~Hj5JU$Oi zl)8TmHX4)yH$~mgf3=&o3MRU>3Z9b-DQOj40FC@s0hX9sGR(=P2^e{rxz*EUh?r(8 z>gUnW_D=6iN0o7TE>#U@TwX}q0@_z-SBpP}YEz|FWo&h6Q>DGNf?oHnXnaq#D%a1@ zAzxUO;NEMYR-cd640W5LI ze|9erV~)8aWOM9#f;NnpOivLU3wEg@O=m^)Dy>6Yg09x?P8n$(jzsh-Z3!iH;%y1F z5omEx$d>p7fGBK5V(Wglz9>Fx**w%3->9r$gDxl_IkKuGZooX5Up zOjk}Eg@El=p15{St)bCP#5#@c${8-<^%~7t{a3j?Rvm5CZmh_Q;2SgT>6vzGX7lFS zw$oOP>ciPRwUE9AQ^b@9_9_fpNMF-!cN~*U3rX`tslafDiJF~;2z*q7o!>%Yl?D2O`Qc(UQTRGn1(3$Mt1*w%{qWuOM#hPgUO?6EZO|2lo zMuwg9umg$N%bpXO&?)dPfkuVl?e28yQAOZgMet^yPCYr?x!4b#92}g;Jyr>(as3_IESC9Ukd?;3i(hnko@3h4d(@Owz=kPdWc)7WKq)STW$$c%sV|yf=WvM*5ucoSDPwpnU zG>{X|-dx()gv&zUq*@t|2$QUlx1Vk%mc19^f5;n7m_#XPsZwThn8VzC2Jl_Wet`%tl7s8EQ8>-$tLV0 zc?lcrQaRLL8PThBsG~%Ubf|Bos@Xxfh@%?^Ut$wC%qy90wGtbp3jfad#tNKHhcGM6 zBM=NAEBN#V9#MxglQh@LW8wfTev>MSI^6*i69kIT%}WtSHOA&(P^C-H$yhv@kITa& zQ|a0h)QF>@amY;v8;3fIfozSMftvL=08U1srDjja-Bse9&bZiJW&oDV#EXmbAgnZ! zi?ES~3=pw2lFky?gwzzn-AeFM>!I~)vAIY_PgG@AY{~v`=Qshl;XgFQA$tLk7Jm5mi~(Kr$VgvS}TYi26AIR|Jp$6@O9in11vh%=Y2Rh4a0HX@9DOk z9YswJ^X{&Rr=+Cug_qqgG|c&fyo_)Czpxu8$a^4L?cxGD#Fe*~1l3&0WOE~7OE6#;k!0h}G+Todlx?`9UA+ivEJ z0NN?Raf-N>1rWA?Hk}(umSopO*Rpr=_R+Qc-!NS~u4M)z;aYwWS`>0E<50@AEEXoY zmLG!8LTL}B&pP+N3MnES%DkTGLI}Od7$@-22~Cck>natvpcZ|1;(Z)#*Xd(*{U3;> z++=WCn$t=6)CTMSj>Hl!?7D2+g$w(pqT{0ro5#0Z*axJ#u(jhlR7Fq+`o9f;%i*q; zltFj30a?;rooyLL=L^3j5BZcq@+NGg8404=vJJ&!IQjF1PvS*@n_9HD+Iz|{_ojAt zE<#8z+dn`fzq=Ys%smpEq(?-#t49oL(d{H%{3?I-T?A0rh?4%y4^Y*xzgp%8rus9z zq*oryREOpd9NL7zm8AYIf$Q@%V~IoR6h2c6`*!w<{nkqRvDX#wR3%W(%eCcp*vT{YfM10EZq-s<%Fqg z++=O$$(onN!g=LNYg%7x2N}~kM|!w4S($7!XW@v2yw}Tp`$}d}C-QFLA%O}$UkY!r zsnqMfJa%gZJ(Y@cm9RDE;xE!N#T%EtK% zkO7Qx{Yvb{F}mMr>nF~O11e)U>nLQ*8e!XcTMv*Qu^y`&)OylTN{| zi)2~q`&hRZ0sQ6N0Pf_9Gt^Fj|8=Q%6oL1x-N0*KMD0-8Q<(m`)W?g!{;_UgckWhp zfcKRKUYGh>5%9m%4ftjns{?zYXnDu{#FFpvB2Yip4b;1d{ZBYSd3sx)mv_{k4CyW# zgNmB}Rir<31L;DwL%Xm#1+Wx#O@{Y?BJeJUMulab^@wG=N_vD8?M&y~&o>-f1dkEI zBijvnM!0jo8&q^|yFr6#(d&bw6mfzI5N!3`^jawe;oWE?&>S@OrtZ$&YzZQhvX_oU z@?$34xt|}RbDJOLAsdoSAb^aA;&_?7BsgLb-Ux6C@@B7umYrBZdl*%OWB~QS{Km+= zIfz^euig;JtM`UG_w!10Zu2T5gm8CooFW_&KosOqfp`198pI&w-M;$;8(4B?zT5Zx z@G$-zN(_^S7TI+%oZ>Z0`WQ~R2Be%PoWfuv!YOA%i$dWP97=^#gvmwWlxM={>~PAx z=L&}gJpUzL19TtlYYo^h`{5(lkUC^MVZ44^B39;VQ-nm=k1+quYQ5eQl&8+Q>1T3K{_d`*wXw*x^F>}2S>_eh79=5|oQL7>4f5HLru zN^)@f4xk zI(<7+;i-)TNzgH`j#FGhRm0(_9q<(4OC5@ZaghwTm2mOJuCT;mK;EYa-7d1Za0`JG zhFnInVz}@sovlFc1$yJQx(dAFH-blB@VIMfNZw7f8nYSj6*@{r~KwPZMu4H5N%WEUaKfa>$e={MDhA- zsl3J#hu5ceg%>l+?K+!TU+yilt~VoNiFF?LfS~=19zPD&r&kpJ=&&P-yT422E|xgl zEn6$OFGS!e;Eta?1)l8f6!?>UL~-bOHfN$3eHb+IYerb&FuK=|D7r&r^YUN`=xy`dle|~RCf1U`PAlWaXBmz)#uAhPP*OTx{0=$|apHeEf;KhU{dJyoM z)ylRq9_}d}zhx612Rvcz+R05mrl^REWQh8c(ZA85UKBHKNM#0=ILtV`ORN}HxASaP zwR+2{E64Fd&Bhe+Y9r{JNj=s6K9PRt# zv0rou8pWS~P2~@kIQ)rxJl1WQP3nK?EvawDCog-THG=hLzP{{J8|iUPOxD6naC`fD z?Ei5X5XH}5r1BF>9DY^{D3Qfz!t2llBYSc@(c8)KC;Mvb%FAp9Me+LpXyn%=vBcqb zFJ6sxyUpg`z64?zn;iP%;S-H5+U0XGIc7jDftMmtVSzGQg#IVERZF$WEz}=)em=_~ zTNrMsGM=5v1uSv6uzxzx42Ih-o6KkQmdqFMr6S-sqdQ~ZQQnry%@;R|ka}TBzY+zy zw$?xxf@2M0Uv0QX!l!U#=Ic*8l#61-L@Fb _pl-6O^fbNkO`SgofFyBuR6Miv1o zj({Isk7>I+@o{BXFxAG)#CQqbU!6gR=RmUpPb86hQ(glET4f6resy^edOm^Gc;&~) z0Q9^H9j2?O1yq%9tWg+J-6;fbvem$^Ix#Uoec^LV>Y@O6)D?ZN*rz!hRv|zJ@Z6a( zBK2!}XlE2$@X*7^z;h|yxe6Y8YR<00S=Xvf)+WkLynSB6IWq-Un6zM04$up6XxR`Q zZm2YM6ct9S%|IRa@8skRxQg42fy&f4HJoTPrqMD*pvKBDy+QfjG_wV&%5M;?^}2zr z)DCGJS>JdLz0sMYQB(ePsZ$?wcwEig&?Ix8N&^$p0Thi`o&QR+`*W&l()HxMj) zb{O!^%?x2~yX?u97=M{pVg$QXhk@2d`0C_gAdG589tK($(W^WRq{84jUTPl(Dl5N4 z)Wg1X=LMu-fSKGFn?c8hu%m(P`1&u{&v3)ptp5SvIT(rA|8-||1{b@Txp1%*`wp_0 z4i2fj79g)aU|_e3IXLt$aU8 zLs7mRV}T~MIH#lk<^}gO4Q>8II*e(38Fu3w(m5=KZ9)q+@^~pw2ok9(>=DisbPD8A z4XVlL92rC>B{%d4XcU_tehAey;Z;*I0k2&E@ahi??^#9QJ-r)vl?$4bE~c*a*>_Ul ziXxCcuNz1?|KEYtDe#{ZXcmEYDmT3Lp5e<@$GlPRO6gB=Sao2m4o{ zyipuV<&6p{KzXBokQ+I;VFIt%U1Dd2!sZ6A)M08Uh>np~wbUA`O~Vt`4N{xijV9=; zr7^f+6-+hG=0qWfHWXNG<2skK4?Xj$eP?)XdGaftLUM@w%D2hJKpA~UUnk#P(RURc zA1~VA@$LM|0=q4wQRQqUXb4bz8c@iQ;V9{c`Jo2<$qdI{-X8t+JXBUGj$gq>gLMfn zY%4uUaa^soQgmQg{%N$lW-Jq)06Y^G}xtb!u%j&SxYAj%H2pO%>6Lq4zPts8RcH>(o;*RO9 z4r9W6mUm3Iu~F(4(K-53)Pms53gkI(E`w5nhJ+Thx->RHdeBJXLfMgg?Sm7~O(B&y zU)lsdT@->@h_HKkit-K+XSdrzMQJ5l`2#P{$2GwD9dC?m{U_Ls<9NHEhYThZ`gw!xPFL8vjkAUN z&-eZwu#WZEJxO(Y=CRwa2)s{&Mup+E?1da2yR}6i9qtBF$1%sSIt6}@-FZdeJ*OLZ zyS&Tz+9Cj7MF3}C;xQHO+=<#v`#fdwW&H>w?Io zgack1$)R_KJNI))be@YtcLm2O!XW`f9u8&KMK`y1U+SZq`)459J#KCWBjM)$Dzqr% z=Ek9vn_KL;jz4)l-BD_L z)1i78U&+L&R3>7H!^FP&y4~@z*?L`Gwg$UYzV2lay-G(Y3g-;RoVtDdkFY(33{MP< zNzbR+kF?nTv-N!5=}e*Ej3kG&+?Mh7aYcp<0+Z)cX@5X6?T4|M9pm}@EPyLKpZ|=% z$n#0Ryq-@1YB!$G5p|8nCwiB5L6)ky=ClQ`)+U&gq?}s)@?iOIrHO+t5t|6i95I9 z)?BMtr1Lpn8TX%Q`1AV~8Ta~6u^Y#?xXX~#oDaHX`%v}ZtG8DVh5s2Eh_dd{9`yFr zM|G8hSa@Eg#gkUfY)DSJ@RiR{5|A;~fywmUGWJ8Ia2y%Yt5i4?->QS|vUFt%F0>~BWVO09Sz#N@zu(pY zM6usqhrejQrC+}NR&HV=YD*HC0@XC>*I59b8Mq^>wHCXnxZbx3dq#z)6B zk8iu-Bji4)R~fYgjbM}|03t}m)SXtY{CXK80ZboE5I5jU>Vv&Z5I-~z6_r|8!bX~( zezh?FgN=Hp%}Nj#LfyVOjHR{ANaGJYWlztAtaS6OgGPS$IhL4PH_VI!L;2xG49RVp zEK?gei3o75ok1JUq!i(`yom$e()2Pwb*T4G{ec;<#i3Xj9m#+(LI;RDzx42}ca#h&Vu{0mwU|?!3m1mY z?Jk=s*Ai%9ETnf_FeTWfa-$v-(W|s-a3#9-gCqKsRWnFcvx9OGDZ_7tu1vaz2_RF3 z{~8;m3XMO%l;IEMA%eO8?E&)rPGUxwZj!}FwJdx)qT+?>o1M$smuD__z9uBy!WQ{cdWLpp=E&=A6FT8`U+k6(zq|XH7unJb^g~Zx zGWzu;*o|YLUt=c*`Es?pnFT^EF^p&LtKDq!dyAKM+|Nv!BZ8z!G5-&NMzQAqN~&vM zP&9A$^dgY1>jqLM&dyYJ3jBGq&np7&hHl_p>drJddl>KmuAy{V^Ak^tsUpDF3HaA~J{Iz6%Q*%Dr0VNs{~m3dLFUx6)FUVyi*@c6dV{77waX6g4jV?9q3!7v!V2B3g7 z6YEZwkk7Xv@2@-kmOS)T?(`e6(V(=LQnD=ayVFmync;P+a}{*!R>r{LJL}D&b!{T) zWOqOF+ImASLP$^Vc4*{xwPT6taRhJh5eZkj9~*|r?IeAxP)_&P5p`vR#it5pGSMZOoLm zmZ#{Jwy|n?Y71Nt4eE+qtyo$u-+-4!Lo5su-0-OuxC0$r-2S_&OfP{Hl;$U%;mfYI zNgu_@CD6z(B(cQdFkTdk)d_F&t~8Wc^Me&Qbjjk8L^sW=nEC2sLLJ7y81mr|4^IrT#u}u2qi)G62V9|tQ8G_u}EKkQJ9s3UV zh_ILJ!ym<*vy^`amaOFCS6lTHq0{NvcC|4juMjr_xb5mNX55cXl_x91aNhm~yiHTq z!?#?FKZR<;H;;oxJ~K6T+A4Tni=LueHC*aTZ1sWQS`5clzpmTvP{wh_^CF8+O3XT6 zSq?p>;TP+}-dBdIp};ERUVjw3aRRF^WYc#P4Ef>G9M2KLy`MKM{XR&$lu*Hw&?q+Y z`YWnyL|*qWNGMp#zV2k%@{aY5nf|o0t<>2}PXT->G%5_Z_jPiH-CGPnZ(EQUNp{0U zFc|6v14`XQA?DKEDS%M25_bl?=M;hWjBeoF(-gHX%$~yK9s48CmaB@uet9>r!}&{N zV{n1@l`ii%Um5&%5%8zG0pD_Y@g%oC`#fQtB9OkK8%Uir2!_=u@aISTZ4r3i)(yN% z9EE_U#*h*4n}-#|gjwDZfACEBWD$7pCU~<`BEAsr+#lK%o!g<^0oHdEBIYMX=fU8J zMS{EnoOJEoOpZwGO$CCyzX)QG66F24UZM3DD>Xi+H0i$kd(uTTgnLiiQfvNs* zRcZqsve;CnXDpiX9SeL;5MJAZtDVc>5*6=Rh>M&{tyy^2Vp5;@?f*c$MAvQ#Dq6{4 zZvD$hEO8uZjcnXSWcBo-K11b3b2EdyH|3&$bbxP# zM*jE(mN*XZgEE4=hTiYCPTwO`bhk~Aq|Y%Ux_doU4M%s6Gb~0w2gq>)k@glGuipf> zXEdgKY_Kdz$ph;f3%$Q}C>F*=GT?25i!Y#yB@P1)OESQN1w-U^klU=RsrfZH~k z0r&Nm0p}^397(?(tawUdz<8>qM^ww=6>0b`ZiNvKMZjyGXji1I4L0~CPxu3q;MWfM zqPX$PRBm92!;MqB!iynwyUu3TfA*GHP1ALeSS#hyNPAnG-d%@)I52Fi0k5vsAdCfX zKcj=W+^j(`yj2>4=gaDlKGZ60Gd{1@oL4W2qX*iz;B0@0WUc*?iFVMK&5tPdu7F1V zT?b1X_HMF-UVo^-__zRMPlEjjnK0ftL?*ndVEBO2WZ80Q#nvz! z&yi%b^OY%cp2M0j#!{@FlgeopxvT*NfiY``1oHxG8GL=FURZmX;_e2>gLDyxt*V6i+5od4eSlPgblC zfX#roEwf2o?=7is0?F5&8~KSNDH%%Q*e67ny6`AACJUH~Z*u4##m>Jx1}UW!brJLWKWGddOI~PQqbv;YnoI|Aq2KBDN*WU_Fjn*6t_JkOqtI*{E1@s zr&HODB@Vk!%E4|MONP?zHk*H+>@EKW%M)9WV_U1Wu_`D#TN=$;yE=&(fHN(x2D2+v zQXHV)jLpv+B1O^s$Eh^O5{Kr?Q{ZG6+(y|HeKapcU$@InJMV=530ukQK!@C1+cI5l zmM4+K;?J2TZA&HkT!H5Tzzk?KK|+8%pvmuB2YVRZDf(OAmBysR-Lb<~pGpD=TB^r7#`9A9n>+?MY_dg$~KX z1dy3|&&Ecn9=A^WOtMSyrDl@Fz(O=}(EW`ztGrT6Oh;{U8$R+DWCp_%7UFqlcEj;` ziqeou@q`?+p)^1Z{>4gf-}mK`!SPyTE2@RU*xrLXsCIJY9!ft;~84WeeOo+>l| zOkP~%SuJIDp7K5G`DS0Ea*~<}n`TSk%!f>?W^H12b!lVivc|+_5PHLI44t!Nw~Dz$<#hnANId*2{6&d}^vjoc zDE;c)T%xkNH4T><$K@UR-c(f0Q&JA+>R~?yBP-kRTvas@Ub5T*!yqQ{7T8wpMo2Cc z*Rb>{N$^9#85&L!yi>QGvo{nK{SsHNEaVb#=?Z_~<@jk0aQ>`7Mz;Pb?8eCoJcYL- zkrkMOp+eU(^5ML}AXHIXgUzpKD?md%sP)eMKyl?7Em#k?kr9<1YTe`aYcpUy=A z8D{zfH1a!!u*7i;!X_VQLY1AmmNh8=Y0Sz2PkZ;kQ{Yc!@> z6?B+TgxHM#Dz9}f0)RhuNEt>_a^{DGq%Xe(OB~KT-EvpwK#m2i+iNz*en1e0k&*7Z z7>ox+awGlAvv-L8u`}>mN*>A zhM%Evn`e`LfItaDorCn3B=!{Vf}uc1@m1pq=}0DdN|-w99O8ztmb^MKl~-8e@aojW z>dAvCL+W;&&Bx<<%f~@sfFSeW$oiiu$9e z)W;Hs`pbNvG5~IiY@%M3m#D!mRaoJ}5z;+g(d=Y=;M8t< z6SnvAPIsN~yt*?FxyWNL)kHk*{`V16Oil)*aMWbbT)+WvUf?>(YAHSTO3l`+v_1CE z-dbz7D^sO3hrQ{qzo>LUt(@k;*JmPn*dw##i$z(2R~#r3WKfKJ`pOmta%qpFEd*kG z`i}s(!l(a3{6#)}`sMZMi`fHwsXwrEr=3zBG3zW9uYazAJejHS)=YErcJcw3E|1Rq zS_^7ze+4FXe+&Am4t6%?zNK3a0C~6T#v5ap%niXpSmL?_Ji+KWsO~8yVs#`1X!ngc z`{lKDoxKE3rx-oge~zr)ZGC%t8TJ1)Y7{`F+z(VnNQPBLA$PY1Nn?N)D00Q{Ilpt5 z*_r)ltEL^i)w*2&;f(G>TeyEhFSH(Lje0o-G5{C2d>me=ltxOGpKBf9!Ij`NKk=H| zcZ(1-eqU-hO0i70og1#9P~&?G_B08ikhDKCnn!3*^T#I`&HCZkjT4_(Z1X~BS%$-Y z=gS3f?C4fsmUrM6!+2^C#*|pXNzf?Pt$jSzH9(s$*8|3N7(DYUJXa&?Fqj*QfO&B@ zV9vui?h?`X2nTnm2E#Z}1jcG^80|g76w>P8EBczf^QVxndGApnN?S+k<-NT#zX=|U z@$K~?0N>+c=Ft-_=Ecw=-Nn2+k5TnmbjzD0KLmry3rg)3>!wh&sV?J39t87ZAfO+~-e#>~WcX%of{2HNFK&|#@H zjmQG3waFS}h#)bbyAo)qRf23vr%m6`*jAZnAvDd#R!E?mf&`^%Wq>Q_;~G$9tT8b& zIn^2|txo_=($D4G|y=QZnIzFzo`d7xCWi+i!rpwviucHQ!l%h7qnXQF65*as}?-^PqckqTnz zFAwEHLptgnfJT0&Dwa5|B6z@49o91RCbwext}Hf)74>h>pkW7zbf12es)l0?CkSZ@ zgd-UaQVu;NBJ&qTA0z^U+y);Ch)@>b9?~jhOHwzXdhJ@ZNfO3DQuvRl6vh&V!o#^R z;DzRPmCb|S_m&4opazI@m;QzHcFJZ20S_-g%CuG#XFj3_HOb*3Bp-rC{z;7`4#`($ zK+HsT8)p;wZ~`PeO{|F?>{7WxzZAhb>HR_}mEn<5FFSsmsz$g%H&np!I3>=0L40h1 z`kM(g=1@6I0O<<778_*$&s55*;0HEAF*^3j!fzYoaRS_rg5* zk?&G&Yl}f=y$KqJEJhHLD$u$uqiX$IyMW{C0r)>`^j6##2GtIVL$xKG8N&gD;J?cl z3rCQX3OSW)QiW%=^r5QlUfCJJM&w3RhL4^#;GnQu#kdjg0c?aD@#FZ5+=%qc=SGx% zqN1)VZ3v{ht@hSt--xmr{7JysE~_h42SXTs68Cwcu*1K!|Ek;^SFa+96ZCK>TYbP& z3F6~v7|aSK>YCmyxq!@1ymr10L^dU`EgQlPuP^JiovZuerc?w=CgF04Ov2S47`2Br zc=?@Nj9UE%*p1`ly13UI6dSSOi(05gpc2C!e=>-Aitp@K&?qFDloRLO zAfEn<>YDJXnVf*vE&zD-2ZncPEi?;L;N24%6^7UJ>P7qdhKhiBST|tquH}K8Aq?xT zP$Y=GyhFd4oM#k)^HhQ}`=Y+};m-Z}v7&SPqQ3dhEKkUDmzdWh{$eDq3XW6cdOiV! zy(O6rv)}|@;)vq}KX%s@6jzKdjMhvLt(2*LeI##Q67Jm38_{_#-n=$AP7&S+Ad2$F z*%=eO8Q=9(?5|D$La%at{Gg+XrzG8; z=2yeXe@fBu_kg{I$G6Yn9I8Z4x`RR=u8FEE=mjG_8^FzRVn)&mGyfP?7L=WrZ^dWY zC_YL7kWCYCCJV*WIK=*^z}LO0GSS!y!OsRnGU?*43dB<(2!T<~F}g`>KwnCNQP?5O zaE55ga7m?puP(K8v{uKH!Ak>2zNQ-O(xyhcs+X41U2&o8qHd>~&JiP`w&b^@9%e z!YD{)ypK@uolL?KhZ%=O!Oz5ZyT~T~-xD}t$a4_?gt-dlKIjlDjDe*6H&SVjB@XS2 z26Nr6vU%{;ygUeYsp5>Y5xvTg5K2im_~NcWdE}xJ(W?vzsf|H}gp4(M!I_{M3kR6k ziPfbz@_HmpTf)t^C9e*~9H+8zj+#=m;JgHE;#&9VX`j5L_P)-Z8NrE0(L$+?;8i(_ z1hDTU5AbI1jSD1+)W*2rIWuiIMcy)G&=GmSQ@i4!*l1AcnC`B4`OaWi9$A{j%YN6u zk(3HNciXPP+qaXI^3(tnw2rmElTtM`R)I3I!p9nw&6}YL{aYKWfyoJH-kS}$I}dp3 zG1Q^qRAtLVW6MMhvJfB%Z40D(z<}@tG7_4QJqHESfwVoyi36uNoVyt()Jm=EXJA5&mnzL> zqe(RPM5KqT-KVqMPbR@JZL8N$LyC*oQ(6n2a?i-aQ*+Ag2UG48XdDW27`y37RMp03 z|5Wa}C~ahv0*x4}=M}|jf52)(cUYZRY+kx3U&kmH?UCs*S(F|J06l8m(PKEza&xKh zVx~gAei-+c7R7x9;C^d&xbNeY9WIh@WF%7>FgAZ(6q^G9o7Z=T&B0p4rAa&&vkx(5 z5sewk4;RI95U~6}cUT^gLuRv@QU4sH8ruWo`}v~yt^|DlB`?0|DxEh?Na`3U@Q;re zO6qyI??>r*S~tJ}N|F#+yGn}MmyQ`4fKS2z%Gs|C^+K6IPXU-B6X*~4i!y=eS3fd= zwp7}qpqR9xGJ#a(qM1NTR0l&x;+Wl>SDOeav*GleWx8#jf*uOXWcm)5$n+ikftTwM z8od1JJB(WWaO}oO-)7Qg!LrmIlTkY3~D+LokddK*bK{mdi^$RAwoAy8jt$)!1N=2M(zDui0~Ec$YsWdq@5x03=@a}YH1a#g zvBdEScIzB>yG)n6VhOLPf0)1vE_LM`{~%Sh%=sPY9DmrMUKj<*jPDT&KIb@=ILyfF z9Cy3OCjLVNP8f3O9FHOXoH@t$n6!x%#z4}30W|V21T1lAU(`A7c9qS8c?4D%gB(0K zTt3!=!67$ZXPl2iU!4=5TOeDiZCn4%d&Th%p~6s0y01;8JC-RguCFb1R*>;T$5FL(V`x^3@LBQDl66DjBiFA>#rC7}LzHl})qf^_FHb9)hpx z0p*0}pWfI5w>zA2uLyn7p`wv9EZxh-7e?;o4hf?b?>>%=G88#>i*oo32hJ6A3zof??u;L^RoJOp4mc?B59oL32wJD~sZaDQgFGhwCCs;$>HRl10`ye+s2!ts_j>$aV1`f^-a zBc2Gj>~0hZoyGXVYy5*6!u%l@#;*PW?8XVX?3=<161GF;L1I-=h+z(uEVK*YAhG_y z82n2RgOu}opMgdpaiPK>c<}jNs%yZzNNG(pwIn(Q)T&sZ<3IlV-6BwbTR`#w9lzT7 zG&KhNVv_tc+`0eMq3GN>b%<+64Ka`Y;8Ff>aFima4h0CdY%_BhlU&KJi-9cfMD2Yb z>nRXCjwcohZcDPSvZ0UWQiq5fvh)5PJ{zl%Ps_|EN`&GL_WOfPVv@T#;iW7 zp|&8OlrUMO!dCqkcZB(n1Pn0OcG~6pS%>OS4mwy5m*n9PNKqBGFB}LF7ygM$@J8_V zc!+ilpuC}DCQ#F?0H;Q(m09D!2qwFRuJ;>=zTU4CzTR&j`+7gTa7(;nntr|C|IjEv zBcAx{@=pBv$=E_f4ta9+IdZr@50ol$cmXyVlsk9NuFpF|?a=4|Ep!aU-(@#hA`nBx`VbM_P6q$Gaae+LG(Hkxp2?wS%^fD5TNaGxZc zAAp0J!flOC=4XiWMG3ezH5P4kyk>O#q&7^}VJw?;<;3Y?oo% zTrOG3Lv+wDfyTLbm@Y)TZZKoI{JZ2z#&F~Ydmw@dQVQYH&LxG?F~A8c-C#;Lig$x4 zBS(vwLK(&v0Y8KrY(4%WHyHiugB$F?NjS!o?g3lO9x$v})cLgsjnZva@s{8u4|}=B zblcAJ`{LyiA<`GHA``mBUP|DkYX_<> zI$*pc?Y#qL8-V0-!0_k^2h26lB98+GM?mEqGl|9IAUDLd@ENy=qywgU&@J1Cst3dK zB8S5NoXdys;Dlt}$TkStUil0C7*0`PI&woh(;O@XAF-zbu9e*VJp z@F@*petF2))qjuOIP#FR_z+V_Mw|ZrdB{c~xeZ~)AK^6{`h&q=c70F<^9!>j&?uw} zDFKDTY!9ky$aB89gLW8((<$&@#(Go{cvp1;?*K0am$HeX!7J>1y+%RTufw--CS4Qu*wLikD^K5H8dSY996k6oj)^G&1t%)^G+uDzC zxqG*@A-1hL`(1|nfiUL5?<^eZ7KC-Tc-Lw43qz_ z^OC>*CTt=6+)ScA`?)`u2TJAVz7rb_%B`zse(nQshe97W{VT49!l?j{jEeoP{(gu; z=|HWqfs&c;Hb@tKC?hb7=Cd@ots*(ft@2F$ zBUQCLQwhKH5uB(A$*6c=47|&Q-{hTJ0m4RY$N%k6Bn-GD@P88EK5sOZI0QZ*05ucZ zZJ15ypAisYc%=(4hR{mbfWnM(Hz|62bJtWBq`7T=V)PDd+H?tnEy=teH1f}5EOE%Z zw+CV#-))dh-hF8BFq}Ea+pi~h&UGje23QjI%v8c+i9^`?syNEM z5i3J_FmVTn^kBY+s`ey~aQeKE)Bgzg{I=Y@Uh5Scf18ju<=!NH}FvDM7bs25#3ydhq(ukYHEmLk8xirnh(K6Oq2yVT)JHTJ1hU48r=-f z-ReKUL~NdR%-Xe(In|grZSBa~wZ{xY;J3M{(W;2oj#Q5B69o2OuU8S_@^wYt|3W940wKi&DBt`Dla(2COJBTq5EL5G# z5_V(l3MGot^qY}=RuI{gl;yLb5%4lI`S-cu&i%>1qVpWdzhl8siX{IE5Yjh1wQ$f~ z`wT$~X2Whm`Xrc;^3eRvLFiK$uuTk_$$;C#o%XH)1#ZaV(-;oLy+M&)VGRj9)i2jN{Va#5$*WQxaR)w z5KpDGuC#7?b{!d$>#l8Vsza*swQ}0R%iFSwAvC`3aJIhCj05eR(pi16QLFx4>_b{g zVn}0v?>ht7``l1{f9R>R%k=E_&cf;0HNpzE%rcjX8d0t+2Ea1H^423aEk7k;N*at zeM)CePd6Le;Hj841$W^<*|W+strlEZU%I&27^{H)WkY2PTmjUAawXon>x5v(rG2>oLfBrJ_z`8gMP>y z{dM4iyL`AbyLw=@H4M){V6kKcmWo37e|bkSxYByrrJz2*zXp)c@jjTO`~nMeBNDQ2 z%KKnyrKOhhbU39bJMdJ4!H(oBA-%jM^f`H;R5=hAVxvLn9qU;Rgm}RNPU+C`9bCjP zf9Np}kb;$FOE?;x+s*=Rv3f4lWSDa^Gy=lsSOfUq6u8L+|OI59STp}G}pUW{gzrM7sbdE?bDL0#C;YYEFS^qZfm_ktiPZy(b zhl6?;G)c+7Akci2#1e;+OB3Mn=x+6F0(NNVFqASJ7(>8AXOV!%oKrdz35OH24L3Gd z;02o@NEY7Gu9nuzV1t#VQ{QD5Ca3AG`hP87?24yMr=8_1o zsW(c4S2nb<0QScR3~cdBPag84&HJU*Fm}4Xm()-L1edBgLGcwr1s%LXxCxX#9o#+@ zzycHQN_=N;s5P~En0{0yCgiWy=GCREOQl0eSBL9cAwhj+a(Y&5+iK2r*NK>y0OQ91 z!Tcs2K2OBh8B~9ZFzH%T*Bn~{$T5w6ssWb-=yw3&8Xvf586SZbT3u_b3@O9>mLPf= z23niBIb@CCD}?GDL41J{ItIVZ4K>Irf$Al?Fh_fF#4S2_g{^#fu(Ww*3f@s{Ofl!* z{HF}1G5h|x=X<+F>|1-?(6-?lSHlF{w(7_mOGlMjQ^y_&9>AfsBPSd=v~A6e zt5+R)VR>@Xcv<`}!Q)89wO6SQxYHD8WAgB_J|hD{mPZf{8VH%r(aj zmqtcLaF&gpbIq}X)3dg53euK$Oz>| z|IMt~d#kNe+uKF>2>W8)c5aBm$yU3=ek5Fow7HnaKH2jVl_a%V zH1?Q-o+;G^JkJCViNX8Na9*;~tldCwBx}z|W<8b;uax7)E0Y7*Lc~8`p@FuAiW?}x z`w0|+U@vMO+T5475AP;~_I4}QSl@phMEc$V%J-TgyletBR#e2>mdb(8HszGisgBFQ>$Z(9YI5j@P z0Zr`C(4D`bam%q4eFYlDZbe_Dx<$64pA`Y^$6bLIyA{pb7E)kRHt?OGQDLg>mBxJL z^X|HeGJcIOyb=y90{eahdv=EQk>Sq$Nk*b`JIQE)TzD_U;$G9H=NWxR~D8?WkE|qkG8--B(#N(08r7|!YED!sVxX>NL%=r zT&=LN{aIE|OYRR6lZx3{)p!nE7n}no?+|26e)%XdfIzOw#-T-t%}`fR z=s^#fg*NlEb%hthctTfr3H~Bofqtdw3If({bcI9kHPoq5avafX(5xD;CAu$v95L&s z>I`B6RReqaaycQ*?uIT;?%jKu6%_mJkId{h2bmq-!{4CWb~g3LmbNjWC9d~zj%M?@ z4rPF`09RielkCG9^c-9C2cS`CUYnxqeUWuhlrbIa??t$JF3Og9W{%JJVL%e%><$1d zTAV$I$V+i1Fe2ITIz-NI{G>U6l&DZmK~!iGC!z8vA|xv*Yjtu~*SW)Ko$`VS!4qQ&$Kl1PeafeVT0oh7-0TIUI-)~S3{>R*ro zrJ+g4p@LhuCsxDT@7Gl(YSl(VM;Z#YW;yaA38UZjVDb(TL>+Y}ViqCz0*zp{KT8n< zdeH2)CrY-C`UV(JY&>toU$pViuau2P!rG0Fdcbs})lTzeEitwpte3v=T+yG6M+};^ z?I?YhPzh{0^F()I%MpL@MEQv1wSS_7H=GaZww?YHq95DM7c>GnwwwE)QS5f}PgJ+a zcJpu%(7x9dXtCSPZ;OET>)fE(Qp6Nl=61t#u>Ki@tLNLz9&)>(MdWdDFaU|o<~;yV z^k!4KkvAKG3CZF+C9#v6jd^F}anGtuLHuJ(Csde`5riBHA>|RCsDfzmrWs7R(AQQJ zYRdv-7~nQ@6~kKw?lkWsJ`r}SWn;ijC#iKlLun)`HKeq)23aYsGUUl&$_gU`Z-DEA zFJm=41_ZBI0D9ZtWvPKyWn%NlB%O<)pJ&of>Z&}^YLsTC;R?SBzU)+KVh)Ru3 z*2Eo%)H$y^vMY6^lOQUg&YN zbc;bH^_rFO+E|-&FZd+WP}Ru4&>hSC3-vcopNZh~2`d^^-L_x(7Ybgnf3U8xNb6OI zI5`Wu$iaAt#v_Nm@j_@6t8d&yb&Kd5e_aH$*LMY4tiJJ)BA|V+8_@LW3igxgPs{1- z1<&h$D+1l;azkeez%*@$7fSs`gsbP;kjfBI>&2rGF$@WXXcNE`tq}bJX(X+0fefh( z6~xQ$BxM!iDAW3$EMEtDgAin(CBW$qe6ADsbt?drs}1x2DG86?fHE1SEbVb@Au>mP ztC0z-O&ASQh{Lw1d27##>}~OBH>quLAN)nzBK=C+76q)ZE!rcwXd!&+765=x+zpUu zCE=6D+dYXbhiLE))!@-D7d*I#a8S&y;I)a1fWdfeBHn#mYsB50nExa#Awqf_WQXF#bw421IEp_o796obe}d1AU+hNSn=>nb3?VH$((UNi)7 zu-TdY`iUSLq^vHJbTzBmdXpfknh>D~;S#fxA$cNu$hgmMfgDUl1@+&&-k*mA2l=DM zvlnjoVUrEIZGnJb5$>Qq%Uar=Ci)6R`y=C7(Xje-m9W0Xc-F_U8`_3gsoGg)=oxWI z`GxmeRR`jd=JCdxf>5O-!EA*_u^Ln>vM##1y=WH7$6TWCa*^UfU+1y~;PGs-Jal4{ zy$D*QZ?e0|0pyJ?*uC0h1*>S2eGYu~Z?dM>;joP}O)$aXfMpYpSJE@dW$#4qRMrileuBikP2xB78Rwq0|ix|Bj6Y zrSwU;p}}xDEvGZsavoDs@f6&g1&)6(XPr9&X0T^r=0)%c5)VEUD=WfsCzQzZo|A zpvT=t={f=Nm|M#A&@WJla~-Yh$my;B=2>6Jq5;jX`7o08i?JI=^En9d2rwn#U>e{CLSbVKDNzLPkQucZpDjUr zQgo&tsAR#_$>+lkbqdun3GdbpvDfHz&Tn2+Vf~T75vTx}8r`nmGJo zru|*GbAM8^=-f_fo*%wB@gu=;iX=1(Aku}oir!&DvzR&Aby3^)F0CGG+m`}0JlZx7 zozS*Vh8EGPHZ6O{=+df6|05kz7joH+;k3O5W641Bl$!>CDm5mFHN)X^P-%C@| zDt9}cgpW$V)DCTndq-KoERwmA>_oJOnP^2-@L%Ocum0cILa5+8zO8~EVQe(%d$33i z1f?#vx?l<{gI#XPrLaqgQDHYA?yJJS93V_r5}aA16!vARxv{9EoZUJ|@+x1Hdw3HVRS1IBe} z6|8~QeyadWOwz&x8qS3juWh%hbRjJK)+_2q5?DbQpe}V;MOCd!T@t)Gj>H&prM9_U zE5TKtTPh}3l$-;xhQ4|#7y41%ehU!$QNm6r8I0u>4#C3EOZq>Lp!Zp2SmMzCs65~^ zU~W&@VB)kB6^j#?x4Vnw5gXy^eSy?CF9kO9fX<=87bvM z3*SOE^?d-M$hY_${vw;2e)YkoJ`@e+QFzCwGKE<`DQ5LP(yX>C7qzVSv%49>KkBVlju%+G4yf*(+L!957W^C(EU^k9A z?YvgX@dT%UjZmk+|J?Ze7lineVleLvjbaVvrvR6jx@h)zNzh}n=NABv$L!&u6K2l? z&?4IG!S0pWBiKk9{I}sVE`zYybHX_l$kCgGTdYY9z}W{6t;)5JafY&Z+LqGxN+a+T z>&TWHwR&B!HP7A?!*jv&koH_HOQPX%5_;_+=OC@e2QwMwrb zXb&_0QWz#jXhK4TmW}~cUoD+2c}S-$opEe5DCJp-rDHJjaJAKt0V5xCMunJG0>&z; zl`*0J+L4M*l&rfs7Yb5q+XjvN1`3v#TN`kCfAyAg5@=p#Zo9DFg5ir9g2CQ8UE5Ns zT1fFoRjVA)t5mhrB#T$Il)%&6FQjUH1V9w3)<57cQnlz;A5^WCwAn-Y_+*NfwG=DV z8Y8-1Q3Z?AJVt3G?5nVDbwAL=oPhQO3F}s$*KIqaeblWG$%I<9yFo#rQ5j!&oqR`w zm|vM<^y&{`H*=#*{W1t~iZb;CG>TD>(1-kZWL;FIyd>zcGW9)x$D>T~&6p-?j-D>Jt4Fs*R-06+N^4H1O-CzNJ?f2T_n|Kg zEnY{ulfQWm)+v#vR ziLXKw&`4crS04wOm=n;RAYtw5W4di$wJSj;(rq~VL+DbX$keXr3-3Rl*C6KCt{A=g zzhXCYqg{PJ2yu#b^$;|Q)vg|htc%)}mjpf5uKo?+@n}~(bV9qj3tB{LSJ=JMt^^xt z`~L`h&epCD_Gni)!&tjgVXBClJS&&p8d`LYRPMW0B-a;_Ws!ue3$5s&yvWs8Vhf=a z@%TQi2q7J^#huoQoHDHyt%1&SXhjkh)QSvP`l=P3nTKFXD>@w;4NAeZ!?mL4U*RT(a|A+T^7 z<;y{`Y-8fIjm?>25x#c=mCPw=Pnocu^iJKjz^y8n#*%dwO;XQMk>&}S3hhYz!CTPB zG)(ywBgUuxQS8Q1j8;c;LgXbFX{L^YJ7<*di$R=HRHuK1MzN~XKT}-;-rX@%g{GQB zg&__m$NmsHN}o+Bkp71lJu}htm*LL+iKe1+JJEC=t|6u1h(CA&?ewA$3PsXP1qkUf z+e|b4XF&^&4-fE4PqG5bG#>N^#uzM@Ch&Jr7du7;(ZHO$Gx54LZ!*1n;pl@Ju zHNW*GE)fv92a3U2)tL2f4zk`+DaoYEf5BQFRe)&mMhR3G*4+E@;#Geywh-1Fk8fLZ z2YD1Wp{tRWro$1L^#uK4KHmd_=CJZ4jA-QDuFGypD+J_VCMDcHcJaslIAC-(i}@1nrFkz^W1HoP3Yr# zOXy+H=o~uZQsfMOxV#VO4Yg(_y~GZvgkuhEqDVcON@^@|NPW05Jpy1ez1=>t>3vmR zdI!5ydFc;DNGq8vg_}sE}uL3+C+mDA%*na;TT14A^*uAp-1RKfTxd%R@fCud+aP0Q*3(59_ zdv0)Hi>zCD(~V&cDibiWHqXxGFR^zSd;K{YC0T-VvDAn@%Oq%B*n@}X#jbuBwh;Cp zk8j(9>9P;BeSe{#H_Ybap!*z_pM(Z2KLeV+T7J*ULo#Lgor8@ArHo3k{EVFP{+e`G z<-$O!yq7~GznOt0jvf|c(z(rodJ>s*&m|Co3s6P(klv9>(wPyxN+n56v3Mm(i7?Ik zLQ2vd0HRQmw&O2SlIU08l%z2{@*AThQN^N4(ut%Zh_RHCBm#Rf#;4;k!=>hAdvdyX z!0-J)ICGNPvnZ@ay+^n0s~ROq>4g1+&LqoBHA;Nqjp~yc%KT~+V_5$LcH^i~N5(Tp z*xyD>%~7awYFb|lB9)?PeF+-HYFb~Qx(2+vW3Yp-WErY5!~xUx@gi_OCdSSTJ3Sfh z+#l@_o!illjIh&gFAc4cBJmCZM7m@*V}MCc=+!SL6>}mOjXfxcM#`L70gYgL%jCtH zaOZwrh|X4&hV-S-RW?US}j7{Or{mc-Z zJIn}$0jGnb6k&z{ArCXM>!K;>72`cN1wRGC$YTof&HUy7I z)9=)Uha@|6d@#1UHWoh(AmlI>CB$ef8W8u@Sp0e(vMOWoE7)jIYGNtI;-6ZW@QGZA zN}KX=XymskvBXr@Bg2Glvvjek!h}B}5NvC}S<5O+_(Q514iok>e6sJ$Y?_3DmLy&V zjr=6W5{JaO!zXSZ+4NpY@Pt8^alsgR&&eHCXE>A!LoW$`YAWHe#36jau&motHu+EP zE%}cm0q(>Lo0Z81J_c5qoNhGB%~{%r#U0X40z!uFSaS#!MfXZ7-Lb@>`@u%MFa>N@ z0NnQ3)ZUbr+QBYWtnddBB1^^!aVLp%gWVs|t8{~@%`@H&rqnmRs}*vC-3jCrZm{>` zuNCv)|L9lW++cKdT#OrxDi(EvolI(y7z>la(A#3Ay=#|5FRqBb&shfcstS9;{zJN<9 zPlI@+*wR0OMzPMYN2spp3@hk@+4beNsI})<3Z#D&qi4Ec_6m3IxB5lrj@2JZh(9Pe zN)fAHfRHZYO=nn=6Iuo&JTL*bsEZ_j5&bo{KBD1;;7E6#+yZu4LCmub5Y)_t-1;0LU(n zSB!^Fc*X987SUcY>|S}r#I{6!pHIVQ)M#O~1`;Hcql>o5Sg%;PGVe*B2u=gXlJ0wY zgj5d1+kJOS(11EcuipDYUhL|h#}>jX#^c*wv7uCTk7A!%$J2hX_y&S6Fy|ixFmiat zB-H2`GobFPXY6NrNUJAMsS5OzSFQ}|b@4>Fn z$nUnn632>-$+mEtrHfAG8QY0Ka5OguTIs2I3fMBUDeM`W6Hm=rhd5#AC9Q{3X^kZg ztqXc;+@7+@zq+^N@26w(`3{+)sQ%nks$+>m_1un0w~uUkZ|E((dwzTSiyf*&5%~qF zM8*<_$mzGYyOp!4c~f3$2D?gU{k7fn7d33_bu{TIOFG5L7tgvs|UXc2AlVfV`96Ko`t??L#C zayxADt-4U0haPL)U>SVV<*9KvzeQ>*KJKYzV03++p(lj-Z7Ygo_+8z{BPg`Wh(O0m zxVo_V&dG~f{cLO@tUey!w)#>89t5^MCEAYL03GMB<0Kqt#~E<+)sEYohgiyv8^cC} zQaq*DafZ>}-*ot!a$z8ihON-ZZ=hj`qgllmXl}EhLPY8CZ34lOv-Y}E>F`MJNNwoa zh+d^Oq^4NBHl(DN=6xY;=)(Y_(1t#OzepRRUwzPqhNhd9@!D9sc0*+pP8C&}HM*HCq%`p`MW(`u-7?C9o3b8ERdJ`68^ z-N1iL&P=px(-XC^a=Xziq`KV?tTUI1J&(hx+vj!LxhEmtS-Q+aF}0z3%Xstrjz%EA zddJAuAHr@N_3nr`o)Mr!MyPLq+X*B%IGHGdhir}7jMguMXr<_YPe7v>y^gMur@98z zdl<9Q1v^=`ykmW1zz1#%O~w?!cY{WS0bgXTAQyCB>GF>AmBBxx2>2^=gP*=7sn8|r z-ro7yW8M3EFb_PsHxHfAy*~>rqIGZVUg_Rqjge}3AAI)f-iEGn;@Rbiv6%^YQylL} zU=dMLyGIEms(2|$NY>J1W4xko(JI=UC&Q)T$zUr8sF>IP1@RIwlZ$2J(7Z;<;A8KK z9MFRnMD`RJ>g+N-yB*%SnVEtev@zv-?7a>nip~5w{6(8N{qk+*5>(I{3P1S1f2({$ z+I8OQ_DZbc-?GKL3f<&=F7=NV)-ah~c)86mJcw1EoSvx2Yb zFAXw2yrbT#+xF{DOF>h|6EaVHm3LawA3Txo&@koSBpILjUt%}TCi#pm`IFc^=V6Dg z6gNJ?gX&a+v3pMtyOb^G@1Rj=X(~C4d*$1yuCZ4-jvwCNodW-z2cIbd@4el?yQjHm zB*hu%1+r8SeR)U!%_RPI5s<$r$d;M?@}qF){yYoOxt(VbJP7uGf}<44vJfEHa@q{j z2d7Zc3sM)~UO>MZfJPwbGdXc!xN|=zMCUm;ab$3mBAgH)6y!wV3sTPx;*lbEo)O84 zOTwM|Ss^;NS&@+vHX0nK2r~o_MVY}ncS26hr!pm_X|g7qAZwIb;9jnjYT~+g=k!>V*>Z|QqA2hvA0wj zla)4})N3~2QwfbF4xx{Tgr8w@JISX0)xD+u zoFqNI${|%0K2 z-cB>jr|&z2i{isWseHf^hYzQAg%Qglx9e;kJ(!nA!7fz}<@|_VWez23T9H`;zo4pN z>dUMFrCi2m4JhMAYkh^X1`g?{K*OQh>&5Fk1xPncVQEi#p}MMt_f&TRryoTm-Ot{5?E$!ryZow21ci zVE4-3BW4`=IZlAjxJtwRoB4`h@`g1T;4!@3s4E;I=WPSDPJd}rg z%CGYvHX4*-_0P<&^Xps)OXK&K(8%xC!4h*1?!vF*c9kwTm0#yS39R6HR(_qIQPmyd z*E#4_Hi^RUN{X+5Mt+K8i9_+AU&pPVP1gNr>@b+puOrAB>{4m-KZ#(L)aG%0MQZck zjObNr^Gc+seIN)mr46aAORx1p+WaOUr$`$b!(XJ$)33g1^K|24O6sqAH-t7Lc{Ss1 z>)YGQxTw}tS5)`3CRZR0_gUP9qs{9iqQuoeczG!u9WS>h%B|uFL^nH&z@DsO)qk6A z+gH_JU3-ZcV4R67RDW4!s{Y~=Yb~$TQ07SR*o~w5pJJ>2xwzE>JK^m?%u?)x zw?LyE~w`X?3Jw@RCXgBa`pEdcg+5ED@g$SKC{$Erp7t69^E}cP3>rV%A)8n&ZVw`g-Wd>)=-gaY$K>2S6hb zYnk~@!{N^TY!ID0Y|vjd3-NCbi()2 zf)>%f7wlg7Uc{D9zLyy(24SrRa%~Qiz86wK#35XauG-l*YPQBz=9&EV;53+P?~78( zh&peTpaFG?dS5=27rXigv4!xy@c6d(<)m1}T3x~<1&YqZDc*th+zpzOZhF4O2Z)oJFIF>jR4|;Cg`q^Y%LSu))l%AUyvd&pX z&NCd!gfWnWJ|&gVSmF>me@2emNjCLQ>Mix>BqOKlkSdDuhHafeD#ME_VS(XqrK`ic5>0p zM6c2#uT;f&kGwKyv<_FuBmWeTQ+VY6fWOEiPrv%+k*C{UV?6TmTG(P9d7<}EUb$jM>-&h3Ri@Sk$K&EWN0uinb_Shwg;8GEz zHcyy|B2ZVmf!cUolHoNzg0mD)@EZp)URngkTf2dAfCY`5$qZ^n&g`3u0Q&|4HrqM< z-f-uBH>l`5ha2?n;3!4hpaO*S9o~!)h-H~w7u}#GO&?4Fm zirp(Ws1Up4=vyjz5O#y^b6K<2u9RdFIOv|%7LiiQi~n&sh*D_QqrkSa& zkMREy<6qR#`G50bSAP;)2uCN6Z#z1VAV(*G>SPd}v=T016R(MZ1J3-!vt|W=Xj&1$S);s|`(dL& zsaX7(c`;ASg|Kw>91D&7J~b>c>DNX6ncG#m)Kp%~qY11q%cQ$)n5ym&FXpI2qAuesqH!qKZT`D)x>WE&Yn+P|iNH@_wR5g1iwT+pJY-8rf(1}U?Ff(t19UAubN3qeM z(oX>1`kTzHJD0zj*1y)N>Q7?V!ljU_8(x^d&4UqLi6^y|0l@6n&^TnU!@i}i*+n8m zaY_>k2SBDFy|Y?M|DMvKlu8_&Zj^DWGi1nra=CyNy1}?w9 zjuES$kKH)_x;~ti3j&+sk-Hiig%-GJ`ahrQ_RJ$UTLj*j-0-H02!$J+mear(-0HEb z;vyKsq z3+cTQ2qm|J+bX#-`t)FeUi0G0*LO2<^q$*UbXK`l8-qY09NJ&EPT{<#`PFcL-jf%# z`rX(<9+%VO+kT9obOswLwOo)KHrCHU&pFbqBusQrj$ulADzeop(<`Bj8N+wMbK)U6 zPSl)Gj*17d5ge4me^&O)QE@VEf@sPmrhn!wLWrVsVNCE$^RIJZEls#zLL`H^6zxc#L|Pvx@sPl7GDpjG14ASaakO6hfSw2yprrIppl>KSmKa9=(2F@ zXOne58aoW8Ix*z+aujvgyWAzYB)7Rs$ni)52N4o9xeEjZVh{zPf+1%CidX`}-0bY`Oy+jh znc2&ofJzie$S7D@0$7w<6$_J+M=7NiRZtcWi-(BCqX-lz2!$wB_=lF|gAo0`?s@Fa z?auA)ail8W&Gz)`_v`N8@0*^UZm2W(WR6$zlQ~|^0)ZcNZO2oJhNfGS4c^c%369IC zirFra&s62H#%hbdUjs!{H%e`GC#g=V%RMFPC zd@Q7SBeSXH^5(wz2xH;#W)~g7ruOlR$uMNV$5mXdAEj2S0c*bliJE2Yw>KGAe76u) zrb^EDnFW6bWz=E8v5Kd#U>7NxX2HxpWWlnn1Pd+)lBKiY)t6x8g6~>}>kZmD?7-(> z|3eqY7x2>s)hj!yHMm`!3^`%b@#FS>Ca6eLtVb~64`f&gB|RN0sa-bwTC3ujuQG*X z!*ThwY`C6@1JOwaOC^K*{ta2Sz<{uWdrWC6p89{C*G;{Hhi3ERLgkW zBvaK=fP}^{ZkC&Uq6W3TEDgiSHsUo43idwm? z$;zz|TymWeUJ0%vu4aMjEXU57INYTH&FKwjj*QeU!|4giaN8m``9ycCZMt-FqeW@` z%V&q&gqlgrP0kI&C8Y^}#=~Jes#)u7CYH)9Gn)jPDPN7S1e*!g98|HHXca<-Tg7H} zr&g;0o4Emrnq@QJYBDa_OkFwOXErl|`qW`FanV!Q%#}#dG@D`eA)AqHB^>ot2&M^5 zXEP^$9=qDY-eV49To=4X@)hd-dtqjafgK4{}Pi6;PQkS^520geQX^E^ANK3UP>byk`k*0cQxZC()RI@&5;hh9& z>7QD^cyJ`+r~7`=m3Kwise>q_E7WF_bmgrkat-K8*nvWgrB|7BB{V}(%eF;V&Ol2^ zx^gD31YHqVvp`o?;ESJA$91g%UkT554`Q`TSdI@%!L)MtZ3HavsO{=!ov&K1-WHL$ zIJHNo6Pb}H?QFeejZ~IkGV`JvlFCHC!-Bqt6V@Wpjp=k2L=Za{QgBx;uE*dlIK1*?{=#5Jr6oVqaorgrMMdnR@4t?A`~ zj^oV2;O@)qyD1< ziopR8Udr#WBs-~@0gnkuuyCagLD`egO?piORo~Q5)x48XbtX~I*x@82Pp?hCRc)qb z8LlEYt%+QNRRlC?O+Km)Hj!)as2W=F(DSC&TC5@n=|E&&+j>-e0acWbst0)`9#zFv z<40BVU|)PdTH+)Pe<6-PFI)P$vS(No!FZ~t&HQe|MTE*um?rZDWP@V_FKKxint2Z^ z3QltK6lJJ1xiM>N!OR8TaEg-Qw>!dpdSQ`=+B*1SqrXT>^9h-$`5IJIsJHFF>uo~~~Prjl;7l1|Sg*kFW7S=*BooNqj{#@5C zI~vYQU(2)|enu-hJl#hL!bki?VTffE^~#7p-_<>jFO@5PKU#wNcZaY!UeVKw*@{2+ zQq?NsD3v{xpb-|2_&s^Os5>fnD$@7Bo9nKJ6V>qpOC4Ceg1ook=Yrs8*|G4e*RwTc zRMoceE{f~sF)cWeeo4-@y`t^uRX4YE_`NQuFb>dDCUAJsSOp;&c9W8#*<)i!>LSbK zGDNp@5u$82yn>=(-(?q7Mu|a!C}5GJm$(+j(#LhHvZd2sP*APtXSd(4PoP&q8n5hz zk-GivtUg-KBfrdc)!_kzh~en!7(y^*s%kogs_gVLMiGZADSA<}vxrskd&*vJ-5Kj# z1J^5RZz{Uu*p5=b2U!;8ywPxwP4g=LV(AU4a_JViRQ#2RJBcjJ!CUcMlacwxbqG_h zsJ)R$?DtUy7m6xCMHXbL_`Q}|%$Kp|6dKRscc)&g_)8sKvz@Gx)l29fD2C_kjQDdg zBbtMl(1?*$N{*g0CNNv&XVkK1D{+wDX`oZ}WraC|GfqxRWY3T|`;)@#F<4c0*=@QrWawT_l!0MCT=2#$ z6xQRZqZmb5uTa@C-(QJ7Ii^IzGZH{?OY9-L{62RQhjLCR1tVXu@E`rR%d*+^7rA39 z2HIE37}qWowN(6;KNZW?)IhZ>wF15)*3f)%yg|!Cg-E@vTtX2U)XpI<8ia_^V5?B3yXb!&K3ozz`N&rk91;SH>utMTy{7QSGfGY7(L zCY;;_7$Q8~4S1e#&s@NLgkyUEs|c?x0K7@q-wU{h@COhR^F_j8!km7Ke3r1Ea5v%3 zV*qy%ipv2W;pi2B;|SLhb`YLg33!%JITrAJ!r8|G&Liw2>?a&v1?c)P;32|eg!@kf z{F-phNq`-MvsVMoBlN5RbP+y6SWmcnE#T*bz3TyY5cX{V93WhO8sJ94`qKd)BYgBs zz$t`>2#*o2+XVPFVezK`%LrZP0D1@yoCkPVz-C-MNO*(rSAu^b;CqDKTLCu{o*Dr> zOL*}jz#j?cUIMs)@a`7@9hU)~`4ZqD;rTBEULst5Ip8|NzpntiNBG@UfaeHzW&w8* z-pK*}LdfI+O9@XF0KX?>EQS$oEduT!Tv-BWgf|Iq6JBuu2MO;HI$gm0?SKs7KEnNk zJrjW22!{z>lYj$+dkLdo1r!KtuLi6pY$aSwIP)67CkY3y1-wFd^lN}82tWHe;Fp9S zd;_qL@T(nw2M9m@Cg1?!!RrAJ6JEFh@G{|%oq#6@JnLK>!*22vEO9`W$vv6HcF`uc zB@sKOnEdL;C=1cH*mXC?w6#je4CQ+rPOEMCHZ+t^F0D)#ap1P*4AD}=YsnBL2I#49p>2zJN<$GjIg&2m y`X&WjH$wsc3@=+pK;2&$c^vUnvd}1MRym7DQajHFk_A~lz6VdboK-514*ee~7?$Dy diff --git a/doc/build/doctrees/pages/normative_modelling_walkthrough.doctree b/doc/build/doctrees/pages/normative_modelling_walkthrough.doctree index b2e8da1b9405bb8a6900639cd10345d63657504b..81b6237822f3f04efbf0fea3b14c3078d8162ee5 100644 GIT binary patch literal 161333 zcmeFaYm6(|b{;lYS9hdo$-0tb=}Mj?s(Y{PIWs*?)|;%8J9ESLqxpU}N8_VnvB)a2 z$YPVlS4#>c!wMpx5ya3@5CcJMCpMB84vakD{K+5ZN00ysY#=rgAn=a}&I3;12+5B; z9K`u{6^kr(lTCJ?J~Kzx?3vR|R_({yYp>T{d+oh`^IO07zkTx??~$L|Z%;;=K3w?Z zc6(^H)yeDIpKP1Tbf6Bc*T4Jv81QFlV+Y>VApHK{W zGQmT9{?|)oyhun7??nDq5rY1+UwQQ||F`DOZ{HcMXTpBRJ7FH$5TAw-S7iOn zHa5R5-h1^f|L4KZ)^r>vUCulN{!=b* zyXyaE-3PaS?2}KzP>)?GqG6jVTjqG_s`_7W3u*tpt=~Vq{n@)kJs|#v$4wy7sYLPq z^+U>uDBi#3v}r4;pYbZE#sEfB)*M^vkdgs+YSCneN1&^B3wT`%R#)#Lm!n?sj;fS7%`TVHMJ{?0<~1-@x(`ksE#_P2IkPx zCY0PY(Hc6L8f|K5T2x0Lw$C(uLe1qR1>vFksEXND?eRyp*kI#hS}98 zmVY!^!g7;g(M$lLNq}xo73&P8rh}F`CZH;2cc>Gifr8Cr0g$9QS7!hl&6<TZxc07x@rrpoFT(reKU;fy8@0C^rPsm9HM+|fj2N(qg zhr>98V&~LE8LO&I29~O5L;ZRR>X!{eZJ({JS}+H!T0$zY2Q_N0=?a)_ND2-qP?ka{ zw5`wd_Ea_|_zZen8G9gp5dFv;O$mXTL-5pifVvbc9~7KeGPs!Pm|fp`8fr?GoBXI{uxN^A4;w_fNW1H>`oEmw zw%z>eFwgkMMBiI7! zct$=N@~}IFQo=`l1dcL?99ib|zJtzIB=Qk(ZewKH>ir@fyUUu!zu|xHy@&~023}Hd zpu2wTLM2XHwo^+U$m8oNECR24PaeZ|pQ-+~I`iG=qce(%n)9In;(C)-KKz2cq{z>Q zUvTW;S3dlL9ylLG-X~Gnu={`+FrxjyKXD&%1NtS6{{`~k?87g9$O;;TH4&^Q+t*07 zrtlI|ZFQu=C>km{EGeJQhvrezaLTt~uVEw!SVm+NWA%Efk8QKSwj`Vu<{HG>zN&?> z3Uh>19;lXVv)PN$5_T8ykNPZgV0^s0s%HvXlM!+G{($zeKKj$oKcjt&kD*?4#^%67 znxEl0$N1=v@1TBF`@*i}gT3bK-cT=sJk<|>479BAE761BfBjou%m40_v4bG*WBue8 zpmU!x0}LB;y_#B}k&uA6nqGQqdUv6Ff;HR7H(DM>G~Cf6!?X;&^#k5V+qmX@5`Z}t z*P8||?1~r4h-2v0?}0pAVjic9SL`b$@M;khUxA9(Pg$Db-G_6{@NMXYVeGjoZK#iu z4cOZ4C9F(KpLBG!{gN8$ExDx{KM+@t3qB51f(3zpIvM*R;AF#(k@;8hz{k*j7`E00 zq(`6la}!)H!L&#~Yg&!81V+&2x>OGJI{mx zw0aC7PV|Lm0-zb5ixMDr(bz#G!0%+iR30rq{|o~8DO|V_B-@hc;`5CyvKIK%3x@Fe zVX&5pp^k0+@dSiC5+n?pJp!f*Oz>Jvf#XkK|FV7yP@j{vN%&#~+`up%Lo z_#{#KNWd5$?+YB9L`Pi1p!obV79!@Yql?9~90p1^;6eTTv*23?han7gm;+&A!AzBDVMi%s`dIBwz}Cfwzt_))zct3iZJVI|ncjF0hQSLk+-^0+{&m@a?oj z_DC*hcAs#NzO3a4b9sR{3UxSvL)4ZQPp~f@0~v$_dj#I(@l3z5Wh(a+ZrowD?7tdF>3%#gkkLl~Gs3!62K@k?Fi_qm zJfNN<=m+LFXxbdZU|~hrOZWq>d&_WP-VXBI82c4aeVi}wcELdp(h=r8qJpsE8NpOg zEW=|IVb0$svbdutyl1u`IfMw!|BtxxdKT z17ZMFd;~i#K%Nrci6ucV0oW-5ZHk})Gy^Bf{KxZlQJ#08vl#3e)Q zvM1OKUVG>K)wQPQzXq75cLu#4MvAPl3g5KK60j*;S;Fj_vI5br3^i_f2|YaoM; zaVrh5e{B25aJ zN`l=sjl4v>nW2(%2%l{pVpEfBc|xpn7enmTUSNyOhs`qtXWgiuF$^E%1ZtwmtRQ~I z(;_D*46U%dqI6h=V zfxtipsJxABV1>kJyrlfrVB|-%z=b-})WL-f`-Sa=xfmLpw&a9szk^f1r1}-!&q{u- zrO2EtbY!IyR6C;73W_Yti%dHxuymW{Wkzaq0bY>Rj!a8jn<2Z<3ydI(GRrYRRqg~7g>T8S90&whwZ*hq zk>#b1#Bz!nYzG2TJ3t1t8>M5@wER9Bi3GJS{y4=ixBRs156}`D2nw7mwk1XsTM9an zST?|km}FV(NRq;HGRFp#AkB6pjup?!Q$>~aZhCZb> z(&ST5GZ;?@p>2ba9W4O!(g`+r=_!sP6cx9_%GCw7UkS&pirI#!w=Bhxg_T{S>b6D7 zZ#su4Ly4Dm5#Z80#C7i=*t-?Bk+JF?<+cc5yB666zsGlHo*)G$76y=bg|73EgdV^@ zzIQX64es9e7JN>S!hvn)(Gorcviks?^&}sM1LeoqMhhHgtF2s!PckFdoe?wi@Uqn7 zAK{+nAK7$xw7+9xox#2Pc%{DX@kp2T^ZKa(^2O(C5RP<1Z8(H1ub;5G-a?tDe>)81 z-~tNg8=TEz_DMGXzRr(~oPhh$>0NrtZ13+JOn=ySwcgKsJe}?9`KT?+J4=%1>-{*F z-Oe2?m@>}?$C3M2&+R+hX1}9dgLk(@v1R#qRJcAk2xbop9=HGbJnqRmJrjw0SjIn> z>+wmQKl_4yn*fenuRmwRj4i>vE{1K0zS>xs1HiyCI>w#xtWh!tK>9l3V-A3HWMs^9 z1fd*)WaU{nXp%l(_{jl?jte|NL>$??dV*mCxwu0%!^yNUf<3a<4Ul`oMF5Ft6W&1& z3!w5lkZn9Hk`3wM;N$~KOUGi}w=#3yt`<_O6B!@g{*-6^wK{o$69qo|M1kjcdfxrv59eX$(dpK%GaDVX96BcmmgLYfN z?Knbl(1l_LsPhH1Wwi@uI!-BExY zxwx}WsbTknL})$5O}0ND(pSIkJPNMkR-Zf8kWYxPd+ZFJjyDYt!dXP6pCygUb zr(+Ly4}3m`wU5N$t}yn;8(2>bdp{j}7*Ka&jJz=kK+j{Q{Kznh)3JwpC#fHUDa^R*u&}AgL9vreL~@M?BQa4+aK-#JRN&*uF~9fnW4u& zays^a+gtbD*0?VO{zx~}W=qA6GJO2%U|;{IV-JTSMBV+&=fn9?Tb6g0B+u9T>DYrO z4EA*F;fRQx)3JwVjhHzQCw@BiKo0hKT`=3nLcWgpn1fSx)PgE07(uNWiqqx&%nJN1kztk*x4MY zb>>D-b_b-9XzR%RFjFrSTvu=3lx1gWLxe5KMCwWUaM4x=rXOjaRQ~{}r~LK}Y9!U8 z3ops+g5*>K+I2jU|U#P;n>d4gsa2|lDEfz=I!)VD@3f$ z!)!8?{E@BMbdRxou%6*fmXclvbMH+fvOme4XjEB@@#5yO6R5733# zxo{)^xpZf&UZAB5M_#Dy3rM^RTasQ7s4pDa@qhF&_5FwghLZpfIWGw?aD?FcDk5cY zk(K?#2Fr#KGRiBSFc8S`wu+q7RK@2e#a$6;B|*mt}0?*dZgLEd$crjRncET4O|t*3qVyeLia*qpw^nt36GHT@tGd6sPv-vi*?aF@T##_k3x>I1B#L2QvcZ=e zb8$hvLn63@tRsfKV&1C`s26)*eM~a_s_QtV5me?c$-{fBjC^zy6ZvIResp!S6duRw@NMgCNPDI)P;jlVUC-mpS@{a2??e zWtCK6X`0Gko@LZw*V0~6On^tOK3q+A`7!l{g$yWuJ1hB@XJyB~V3{we-~Y{jZI5O{ z{^PT=9q%ZHrvKy@pWXlY{7VX5`se`CE?!*tE-sOFk6c*@BN)f-Xl`cPhApI=x*26qh6!dqjTc&mO|$-U-6= zuoM!Ao|ODfB`-<>x%28cCGV1i2eZ3~l)Qe3NTKL`qPT-d_faS^^e_)l=r%ZOLdDSh z41OU;Hu7Y@faCm^_A2|8Hw1S-{nxh5?C~=Hj_a=7YoPhRB5#4~#CeAxS}!&JyF*Kj z^+j8M4<+4;wg|F`AF1(6@Xwr>^kj+eTq{1nod3!@!JHle(L$WaE_c2o(5zYV8{nx29d&E%`Aw9(r#=7Jv$N!B z31)9P?6PhN9X({-zC%l}2l(;!Yv;!uO7q*t=!{P)GZff6tWXY5M1${w6)kt!88F{GM7puHF7n>8I zuVw88mcgHV`TF(+sY1~&Ju!qNL~d2blWGTbK1Chhmv(T`8DRKnXG2~KXy3p5lUTO> z)W^T|`Zut!{+9N>v%>ya_rdKy^T{WbQ2EjcYK)s>gt?##gyh-LH>(BtCT{MhJjGod z{S&JORzmCr*5*F|dwGKb_J>`$feJywkR)dAk0STcT_~JcAq|sa-i9|QcJb!L#kWyI zSl6)8@jsxGOc)V3oNy#WDsAv=Q^B0SFELm5ou z0g~J~A&hf#6-Q}y?1&M(Qz;USWY@^q`}R&qlV$Jo*j0UJp$UcbWE3jdaYc$bH^+T- zJOOMIs!d+mu}5QdWR6LiDzYg==;3-Q8@jc$4+@M;g9M$70SW#Mkcy0&AW94Iq;~R6 z(!l+3SO|6^n>XaGJ7hb;l)yqBk^#b3Lq_PM3Wh3A(5z~Z=vVUEoT+0&9+A?x(%#aM zDn>?{%CnYg%~gbR;&OOYuw1k_0Wk0+oN!O3^ee{whLb95zQ}3c&rMqov#1;V_dj_! z%F9W&-}|IE1v!)WXp)uBrs3%j0ldgJJtWakFIS;WAKd;V(w~8-^~vkseeKGjUYmde z?;j)pb*LqepwS*Pie875rg|;>Id;JRaC^WX+8rUwq7zucKD~0Q2}~4$phSWTO zpa@275;cjye>=ydEwag30H3XewxZUk&rsM$O1{E6=*34nw)n{c>7!5WgZE?uf8WnU z9eqZ9@6+!cE~$gz7q1Zai_Vc;l_-u^u1eVhkNf%vSO^>k!MFng3Hs7hoR0ud(*bf& zTiV#1b~S1=)`u2$qu1KfBp)eoAEE;((?01j`SQ#z_QD>BS95;sec=v)1TaJOLnpf` zk!aNw+ivMb(v7Vf?S>uIx=q`W;8`F+YHM@BHGgO)y2 zC*H~MqH2v7duH}WWS=yuo@RKorV z5^U`#iL~8kXI}*90EMi;6KX;6u6^+39i3#T9qUz6AB{}dPb1lQWy!ihQTAgjt#xGz zvx4+xKZ%4em|r18vsngjQ;iLl^9xzBeE~7ZvJNsSo{@YKAEYH9LKH(;_wUJUqxk{F~N_M~{8 z_5~#5fJgsgki-Ym5<~D0%3ss7w>}LRS&@k${vn*en9L1y10%=vhD}Dq7+Kf&I)vS_8cS-5j?P4tT_Y1jIm) z3vM1^?r=2=6A&bqbho-%1H$kkxED0Mfeo|^h6o_|d0h&v1$>xchIL!p!AJx)R`iLC zumu|%0DA-_m%Z#Z1GG<~8Kkk_&sHeMf-+gm-AeJ0njFFnIYFcY-jN1r5HL7EI>=;b z!OK^qMf~h|v_n}qW!>Lo(~YBP+JkbAfEx_Z+*;qEFo;=XC9vLp21F^A+-L+5C~U+d zw3IIp6eX9e?T!T!nJ$8hoz~V$$A!xI%LqZA6bx{}W&$yp5QHGDmDaZlVxD;>$gp=6 z)1B5Z1VIRrV14(8MSL7)g6CE&>$HYhfE2JrZGhd$swijADTjfsq$M6fC;$!!c`s}n z5W>@hLUu9kz=Yd&YRKbPhP+hAuaboo-zFj#*~~>WK_FVGGP~8)XTW2T|5m8K3`3_YGF#%*i-f}A&heH-eqJM$}8Ua_O zG0-NEG-UX6K$5uN5iEO$J-uJ=e0I2EZQj|)aet9v1~DMp>T+<#aw1Jo!U_oY#CzCL zHqKZH1iE6eT^bX51sq0;G`EtPWCECgD021;lFYC)9{{akfv;6NpeLX-oud3A8|zAq*k#8G}G} zeCF_+3$m_aUYnYBE%z5sRRX3wzA!3P}gktE?K;@?)HaK;miZ90FMx1MGjMraCm}#ul2dJ0UlE-!Ejxf zF{EJ#F~~HSB1C$V23&63*#OkH7z}{XU6=@!K}!ICg3Hb>2kvYDoQL`HifxLOaC}P= zdCrBv<+_~>aM0yJ0rawg0CphehU0^GR!KXR-m2QJw(;x^ckL?0z;=ecD-lL;f7k$K zMxX;cStWXH(47syE`peZ1aqr9v>G5L1hE#-z?zG8HUR5a3eqBxf9?+?DtrjHAUjx@~6zH0)Up>cHVZyA>9v@E{bWfOwZfRvfTx zTRIPSDLLoOM$2t8%Zf_frTu0Am=*{!2${_z=aUc=A)!Q(UnzHv1s4!bcI`YO`nP`w znPYDKKG_i$)Vqir`9K%CN z(ZMwzcnQR*Ml4i@hC#Dw#rXu=7S@UsWL7lAVKTs1LE44O<*7|YSd=^s=DpVzOl8PZ zfmumJ*rOnBi5Hkd3%p&F;`Dd-4Zh#uv<+Oa|AJtoE$i2QD-b&qt5|6z{xAtX0Y(6v zBil^3X$#9H7&Fk-n@7$kSSe7{EM%GUog;@#d8~r>F9HRyeSpE5`)*rYFaZ1raQrxL z$e~p!Akp-Go0E)@CtBuiTM*5d6$z5WdBb8Zu&Tlc>@jY*a#Il_VHr_yT@#xZ7&)0Y z(G`_!fCnF->3a)B%3--kh~UZn3<#W$9evOm>$3Yb8LEU1n3yamhLiA{7#pw;utXKz zMFc?>AhC%HQWH)HD1DcySF^!_t6;WZ!cm`4HVwmL#XmrOI&R{gsS$08vboI7A5(m&=MjYun%M~qj1 z#uBC#u;zs}3%b5Rmo`9GFlk`BVmvS!2%pie^noD^BgJ7L37RI`MY){0O!o)Z?bG|12bagUJk!&4;% z-SGz@&LB5PeOpXIbFVxvYo$dN+(8(Q#J*-Q;Y6kp%b)yUsVu=+AQ95%f@I+sWLKV# zwY5i-nTS;zSt_#NVc4Az*LHP+^B`0YPS;`nfxiHJZ;sO3FbA>x1W<-;#5u|m-Xo_z zrUpxQn8Kt!OjoQ8*?TsfL-=(KOR!gKqi%}LtE0Sy6ekdG2=udU$9kc3T_kWveYL(m=a#VmkD;nQw0?&=b@< z94|qLxi84lX5}}Ab7r-%>~$PJw4<{lKQqc58e6+uLi2&CZSeX)T&%<3ZoHmp?b#HCqti z%Y!a#jLMbcn+=P1ac*s4yYJu?EX4~d& z3lF-aJv_Fmcb9cG&Fy%z%~zYPn@uI>(}S*OjKbA7o6VcMEj;LMc3QCcXS02Cw}l5? z%ytV7&ulhu?zQlcTiI#B=9A49&fOLsbR~Ov!{&!O+c!4;9aCl}r+C?7-7#!BXM<+9 ztlapZ0Kdx->&ol>m_3!({-;&tErSP!rnCLBr!uiNZQs+XvTLo|y{~s$_EcW`omQ2% z%%k<@%AU$=pVNKncZY7{dI!OK-lONWLUA9jw@&u-y!JIYmA5^$>z$H4mDheIr}El7 zw>w{NjO?kr_A%L&?^tAb>Fk5-uDtOtIhD6Puj_4(J(btKB`#!?n)s~kxHvUy_TZG#V zxRO?Fd0A!SYW22tge&O)=XhHqpZ9YT-TdY$gDr1$H6p4|9m z3BKOU8@2JxqOCXeOs##hWaIG-y;KmPj&GLC;~RRc*1lPSuQ%{s?eko1vzg2EhaFXi zom6n99&k`0*yez9>UhW0eNtPG<)B0AurungBMN5E0VmX52Ndl(ps?BPI-pi(aT=!p zS7-K40j_T;!1cW&UDo@Zk?=K~0$fi4u0NUquE(+mq|}4nL01Ri@7jL?tNZQ>aZ~IR z;Cc#hJq5TvIl%RJzC8uFo&sDqfejl0OeFOw!1b*KxNbA3?ay=d;mXtF^&hy?ve{g4 zpI|k73UH-1Ue`Nr)Llqip>Ef!`-|sYrA`5^pt|)YgohH}R)Fg^v)tj6P5(#iN;ri# zPE@z8Rb1Vsts{0NR&AXETsK(T#VyX;yKnAu+NPBwb|qH0KLxlFL>#dz;o$3816&_u z$~WDbc+>5OH{F7G(`|>hyw!l|^fJ_aW_r^tg*VJ;FLlSFGlLOzfv!`&A+cmpcd z=ecoK;!y#vUjE!{*K9$6FAut~T@J@m;S}Jyg*mS&vh`xiNLjtvwpC66uFfHiuPMOQ z%NFaITW`>88=3C=jStGh5$?;)g(G_^p8{MrH&59}I|aC|X~+Gr@hy2}|1$)*?jrY% z`_%28{5`^zw1fIj0j>|6mA>Pd^!`hrO4no}=oxSCR$~Q;lhS2}lHQ64+a;s!4+5d(JGMD1F2>l9#p1>p%f9dA+*vFe-s~g;xsOajXHJq5H?s>NbvJ_mwWdoO z8Az6Z)GvgN4Yl0`h1GRSBfN2@4;@KK8bOx>k|e=~Ea#*{YMX>{Opu~FPzNnA1_5d= z17vfceoD=8AG>yjTVy-BYOIM>TdwY9o+7;w8H3r9TNtKHbxkmpg=@n>-ROA*!;B=T z>Dr7v`5{$yQW(k90O<_|xWySPV5fjuHw$cx)h=KLD@^RXE4b)(!vZHHzfB}>nB)I> z5_9~$eavzDw{rPP>?H-#gYE{CAW>FZHAp@!5Rptxlrhp)k*}7COeWx+-gIJtO27;@ zudMmutUbje)8Qm!-GDBZp-Lv75*kP56+15%>bIskh!%VRd2aVbQhk9548x`^>^xBoJs@DbWt#efUB7wrqQFWlc$DaD*j{)AzQS}R`^ia|vk~h!Q z1OM~(ID5bD0out))%z{aqsGreJJg9@0KF4&K31=%I+47{h_jNG8xc=5gqy?0wnAHm zN~{l9HWo2=UZ}pV??3&EZCx=fb6`RgL*9ZJEPaSCAODczKBo3`cII}rwr`y@b#8YK z$87rgA;quSS{cS?9>|@UY$1&gSQ2s{*?fLT2_I8QSXH)qv3a)*iwvW5EU7cu=$d2b zr~x&FeRVH?R^yMI5M`U3cM;_tH9X;GHz9eLpMMPVuQ~c35RRq~ivUl$vaDU_V%6P4 zqNDd0Aq;wdiTwIE@k@KZ_ivHUe;L1SzlC&tW9#+hk9iW6xfZ6A77hK}O{wxL==A#( z1cJS8Su^w2f)ql5q*ft|C0vhowzJS@PJXJLDV)Ce;v>{QB3s$EZ^Hie5qkXS%P-G% z_Ug0DRf4n~i)^xbI?yN9cqG#mb)cArL~Jl?KcnKZF;O2*q-EzYbBo%!t6bc=hWB06 zj$zBrkad&t+ODp-yfIz9)ea!ry%p=guy$aZqCQ$x=AKm9*|b6`l{c!**%Q74U+eka z`R>qkA2-{NnC$y=y+2RciO)`a=4H4OpB*n$kK!|D!2#8qhemtbS<141ux++)Qd!?7 zZ67pyv2q1oz?i*QYs`y{57ZL+%b4$unKpQOnX-2wuQONcTH+-`>r{!?|QVde~$NE8>nIXu77DiFq?%a zDeYZ|ZYFJC{&9U>!}dsj@MBw!y6<9zksm6m?E$v4kgw((W)e)L2|T*^WEl23ZK#sO z-!gpEwpZ9kWlXbAVI2qhINRiqx7Tpv>CpCJ5MuG*mG}$Rp06P#kI3o@OCT}@jxQSS zK8u=;><))>ddkhKq4 z?|G25A=ZCsO?r>)f`>m}A(e=?P;yrizMSpk}XpGt?b)!r2$Q@WnN&U6T0 zvN?3;?eX#IZpMV2`9s}1y{QUr#n~%4Jqb$tST08v}$sVkgpkv z4SN6blhFG|_oDZ^4`qRe>{%s&-*&70M+6ARt@g_gq<$yWJqzo<@fgruuiAfrN)IiK zy5uiEXz_Hx;-CS^uM7uje8{SY}mUuS-YqY32kLn^TC6G#sB4Dn((?=>^lF&s=J41=>a!O zFNgY-rr!`og25 ziP7L&*Ydd%`~_@HVqp-!#@g)k_zoWSiV$1Wt^MdVw#zx6QS4qH3B0xhvhHZS-$UT= z)5^R+VMjlHbRZG<3CZi_!=Be*o%#>#M6jen)(7anm;lHw`D)?^efTCvd2q zfnv747se*B2%vQ+5^zDb^!8Bm*=i9(irU+II2A)Sllil{JSIl?OLt`fqlmm1nGU(udht)l0NPiU1*r4?JwTm1W6I9G)aJyLZOiWhD9%5f zjQs{ONgIAcZ}~?{#Oe%j^CRsibZ~+Apgug+6aQu@=eOy}-yQiz%a^!A<0Vy^VrOlj zt|`kz6j8^(9+x^)OuSRaPE3%x7$K)1wyHb6Nr#2J9FBZ=_JaKc28JbnVZVuf`SIDC z0wvP-fzpSzk|E1M?2zAqY%nz}ePk>FUi%V&T~eP=lj|wA^xCfo9$qZIc!?eKFa0)% zs$qPgfB7l3nXBDy;@&7AC1lM82`0h?KDWhHAX@#xtAe zyXlRg*-eq%1V@V8H!L`t;#|RZVxo82z~KL{`U_Mb@*<}>*tbf67t&PL^d7p7y@1c;Ru7& zW6JKf50IeL726xX1Aj6|zaC%8(^UO)(VNI3TLzL?NXR9L( z{ML~MVjJUx^IRUcS2ptMl9juC6Q}mBvks)WmHm9{+|$E*BVda_srM|x!-wL@Jv~{} zKt%V4x2zkH8g~VnT#o9^lykXGTfjnRCGpE+N5f6o@#-Uz@f_ zh$g9S7bCX^kx*lx!FlUY-kCE1=d1>)<$)Df5;<2HIbjg%wc2SuKo#%8d~8@wUo+5S zj&l4ZB0pW;+d9heq(J>80piht`oH!V(A_}&IVwFAT(B1G-` zIM}9=!*QE9c&}n`ZdZdG-lsS|qkhf4x8No91^p>?@BfXHdcALR_XG1Ob@%@-_lCx! zvVGYBx?|B9hkrc&3HT@CUjYAt^h34X-uKu3@;CO6b=3An5i1=Z%LDZViJJawH`)+} zzx&1daQ?p6@4)$d*WBE;?cTkk6y#hm(71hw<1X>;KS8lMi9y2S_tMOh&IzobICLE2 z#DKfl_r!qiLE&wk{LYt*|2ht_@TM|J+aI|iKhsLpNc?Vr>x!n5Xwzx5P;_}hp0;jf|9Cpl$*6e~TGqnQf?5pE_0 zc-j*z;0-omJz+b$!wiIj!6w44(+@wwp;JGK^!C+_>A5JIr5Rs9WH{OrDC4DU-b1&$ zDSPWs(C*j`QsjOh)%MArliVU_rB^4SpKEqca_bNCHtAO{MKn*v$hYuI(hx1o}Np{2LcRE zMbLcEV}w4^I2AmHTJ{*HJh#I*Jw^FHLzMrMi02)z^jx&f(zGwg1z6E@PGyU>JXv< zw?RAbm)`{bBKnHt>zpIf)(QQ+Fgy08>FeOpdlA8s9TCiXB7*IZ%45QH9}E??Lt7sR z75@GzR9GOP!ZifC;>K)5x^8V{+xwBb0)j~;ceBz72o}5n!M}h-fj2Jqa6s@MMGZS3 z_!sxW;!Gq7`z3|F&2MI8U)b-r*EQ_0U+SA%F^Kui@Q=kkHNk~phHOU(+jaCVQu3X( zRNR2)hOgc}d%GJH_|^k@Oc>_(z6tEPxBv=1xP8B41OEDVU%MB)I(fQY;N7=KUN_bA zs_{QY-h0pIL-a5i?8}!VXp96`y|fGZdn2{`&yhroBLAsh>iPLls95ed)1_`G94dxF zN-?|$g`$4G7&S``ZPe_BLX|2Vy2Rg52!-acawwD~U&5hK41Z#BC{$g24~4F}v6lC{ z+>M!=@+ndt?UTPD#s1ZeEmz;|MtWv@1dzxpv>ytYcE9#l)WZ*Xl_dR!!o_-Nb~UJW zs|jt^PDnR$LYk*yxk|1aZpd|^-{RUgp=fHJt@OogG$v*%p>DQ^ztIr>U7?A55uHRx zV{!5;yX<0!cH?$G*+Dln_k2&|l-7ug>El|zeM)V#@6%tdYvypMpFKQ9tx__5#MTrt!AU7rIMP} zN(eXkVOL76`pysVeZUy)L~NGQ!+d_ISxT}rE|k+(m0GAcM4JXGncZ;f!fJ5$7{? z;U=}*v|CElZmziW2r!IVEZc06rt!TivCaJj152pbtDZ78h7D1)3) z9n=PZyQ?Oc3HlWkt`u(%F)ss+ZYM)xW+_dTrJywvlHM!}y%tN))I@xqxrqUf(oHRC z%$sGY+-&4#?MAxStk&3OU7)>fqV4&y<0Eso8rvMSPPe$6+2TSE!lQV2!+|Tf!SA5d z^Y*PIYs*%|na^e-J8RY#Myp<%wv$;xvx|&_i#g=v0UlZv-TtwCwl=Cbx&DbZ1m@OBe@UR6t4J5iNVJzK6> zkZV@960UmW+Bh4nirJfxTQ{lG+~p1A zS}!!mSiSTmmaDmFHJP3@2gZbqxm3-iGqrTGs0*VjmcSSW9hPPatIYsww8buFN}riE zZ8-5hQR?LfO~?sGYlBwgI-@n&DpHVzjiw_Pi2TY`Dx+Alksh@NwSH-shP(`~czA@m z2IQllwPKL@T+JeURIY*-i7blX&+tCpxCu-9pX~nHGY7KMr zRb7Cb+whrOe>9)D?P*t>tsfxY9NuZxi@JjsqKifonb3y=?@fzs(rq@rY*yn#LL0~P z*9vcgoC(-b7x>bNjCAqYHk(8*-{ZHCn5z(5BIe;Yx2^p&m7|L{MLN68$4c>H#ic1D zUaF)MrGECN*l)su>EA$pZeSS1d+mfVYeD}iY#ch|M*$DjA2B?v?aD{d!((NP&Ev<@ zgO`V3J2eeuSTbNYc2~BHs3hXcE9hP5hoy2u>rF@Qj#_o_QCXs)>jtT0X_iVD))nMQ zh8@kDb!8tPdipCFkl8k^Zg?rIDT6q%QvpYo@U;h~@IV_C4(RJ9f8S-qs&R8hXqw z=d2A9_FCaQ6$y1u|4ukK(ZGoYPBd_$ffEg!Xy8NxCmMJcX`m35c&uf5GFzil@Ldoa zzP*Hhyc_igisAm&9zira#SR8v>>D|I(}Vc_BXcEG!&b#&Vw4thvL}FlDJ9h7LlJuq z0luVOY>^D5{GreUKL0F}tteRQ#o+JLBIPO_OWWHP*x^V7Yw3m+9I%RF>HAh$#z3ZDOO97QZa=V!WMj>%WA(JNyW8hT@NL1=71%9 z6^deGCKQse#>&l$wQ#XQ;0}eSEmkn>k2`)z7WO%8xT2LzH6APW?QNDFC69eH>M6-I zO-ch1z*4CX|8@_b!uIY+0{a5VFnJ%=$@_3gmpSMA(D}Zs#nTu^C_EwGL&DJgK6k$B z?svPBkg%-B4H>V(*sCJ#4c+gO^IczkkJuYI;S$|!Xin9L*1N?1Odfj^shH~n%L!Oh z8LdXP3m?NN>Lto@7_I#!mleqvo!zIq zK!khPTVOX&W8oXjH+-ba_ImFO?I=J=BF890vhTI}DJFC1;;LTT?6Qr9s1#40+a-B=VJ=~!r9jXS&=mqNu9=%-i;mr@%1yNMVR z*TT#6A|AaA_vKhBMPDxFrCOQpg!)-Fz3g`TmvK$GN|a0^tt;kb*`#xoD=r`Hi`a#T zm-_8gxjL%U;&`*KgLFL+rU-gI1XKu+6KD>!_BhCp2D9>!Ztxk*?PbL2nMO zFMFfQ`d}pLqwDeIjg_ghRzMe~lT37xZ6p@KUV3R|Don0XXQW<}ohEhuykZE`jw!0+ zMQ~Q2rA~`GFAPNoKfu@A#?1;xEA)hR;Rj{Au?PxAF~JUgifNDy$}VEDa5=UJYw2*c z*w&O%R?nKTR6KTBGF!=Tq@2B}&O)`TVWt$(uKKxr%m|ij91Vc6(Pgj7=5D$I_AO$i zYBO1m8JF0-snv`&=w;MvCTfEwtBqv%eA|sCrzQ=tYvyCxm7LU5gUkLXUp1O?V~`%m z=5@Y5lI7v`<=}cU&eK*)=BAl}IG+?^3#FA@W`~!wRj4xUR)ftAWqw-d3um@|;v6#2@k%&tNi50R^;qDb^sGo{-&2%KxPe;1*LNsJ%qTNY4g2|2+`2w&D zsx-4PEnAL-v*dfxZ?{coEel#Jrtkg&djl&{Sr+WS@ugNfY0J%s)YFo z73NXt@-h_ZhRo2D{zUzLxT*UtV&OaT0$zRqT z@T0R{vM?%!H8q!uC-vbxpq?lDjLJ{anMKGPT0tu{O+-8GaH6QhV$Eb&)ce>smB+=2 z7#~T@DAB9edwx0H8U~UfW7-;sd9mD(L%Bt$z=(sMnY&zO{QbQD+?pl}lW8m|D*kaL zQ7VqE8VP=G#S20!kjV4pcs+R~+;r*4bWo4iYJ4e_XTytPRtXP#j2XIVWfpO>4%%&t zxhv6XRX9uQ1uCKbK;S2SP7AaPvM$C3gFvF8sCg@_2Nl*o_Yb<$0dpx>J>}Zp7xa0! z-)l2BnmWxkQwdeBsHU=`KUUW0f@J%v(Ih>{=9f1yIgsSLQ zriwoxhWyKv8OkyAtainn_u`#kDA5fU3YUIy$r=rAp1?2>f04Q7(hK4Gy0WlZLgl<< zh77Tn3echSpc|G$(Lpylm?bB(-k?ybw)jqwRi@^Euc(=RH&hG;CQbfE;>2h^JLoT) z4KZ0Ns%_yi!AJC#98JZ}1Jgy2EwpmkaXTu4D5HLQMrbR1vnYlWv^Wmx&GsyCEfp5I zP+ScR%8ZpBbJaAXSz|RfYUZZOrQS=Y3k@?$FV1tJLEus-1=H$fE);Bt#i^wx0==6+ z2{X+lvSx896^mR-?E3Y~I-kC-FRbc9qYITGZNe&;clanBoyVr5!YIouYe4)tQyB;Y z4hRqB^TV`|uM3H?0yz_@wqlV^JUMTt`N^~p?lLhwXqni_)fPfnOkO3!D4Q%^2?Z3- zRLlJ_o13U9DbWho16)^%q#Di2d8&S$RDz3OvaCk@q2VGvvyybLl&dVRC#7k+Ezgn# zV>A@}m*HkfQ@ToD$b_P1NY)C~8~waqX^Qdyqa2O2%fVQd>3P!77KKD(A%=vT8eH0= zX|terDuu*!Br;|$z}JE$Rx(D0rNpJO)>H;UFWt~8U4f5AlS{vP)9+u6vQ?|yyHaz<43C8%h?+-Ebsch(=Q>f4&GIk~F%mGh$C zEP+xAX`>M^mfR$n;5&2y44!C>)QO^Wr2#t(_7L%MPG8Q>CtAPa@8*?`ei=%Ra`DU} zc{x_+go}$%}oOB>3 z&qjd++n<{4Jj7D7bXi&!2l0rIxeDjAy;SA{CLcy|~s*UYbQMB?Y^kx|W;BeO5l7^v;*<&1z3RmsuaLml*u$mV$ zjc#Mn^3Ml;ZOH|T<58O#al?riN$|;=&ZW}os@d-OEJ=^XRi&YDi-6Les2pP^ujF7= zG1+D5`drOsrw}=E*i^-BIwG?$(-#C7U(6*=}^IGHEL{ zs7!jXE>l><)$^1U*687Uam~!k!8IG2jxm$x2FH&3u|Q-zsWp7R$!W_mov#h zs^4w)mmtVwC3PJbXgQ)hlL(;8s)@^rzh2U26$QFA+L`dl^J}ADVWZ8Yki)Vp6>eXa z`io_cJFoir&e9BxJFNicAA$h#5XXL|KpQ=+6lo;N0-qW7hv!BpnPZdPOvTCv6;b1Z zy;*<>%&M7oOD%_m?A$aXQkd~;$#6Q^h+i^RS*>NNy`XxYPZz@H1HYWh(U&5_2I_MD z5)xf8Oruq}$rnd#FP{zZ%kpI+(25!vqu%8fnQ?w7w@lEG?C&9RhMrZL^GT&XQThI$ zs4S-Qgfz_x5v|ls=H-mE$g%a&@I2Ac(tL)FE()#lTqnW}>&pZayiQd6Q!fXsVzdzI&$Iojt0pAyGF0MH*W=!F zaFrAI8p8@fwcgPOg+)zS$hB}Q7tV}|4Iy1mwfaH+W*MpU^0oLSLOHlgf05_vg(%Xt z3PGiv@6>X!{sM zmFdl-C|zplrO}|54c2BtZ9Bof!<>GG=Fng_1q zMx>fPmxKwODoSc7+V2a2TBUO}TGDhb5#>2G>^B-!gYlO~yb-3qwo}UCyON zN#!B%Zw6+^im1s{A$dNK)6p@j*IBJn%rabC?B!eKQaYOqRV%IhaLL1v=u6q^Skzmc zY`b3Qh57g}Sdm+NgXZdHt}19DvQ-Mgf8w>a5O3Szj z42Fu8%dwaBzCRkB56$UR9P&CXUIw+PRByG@LX8f}87_ZwRa^8WrGE~~v$RBH3ap-} zr3Qy|pzM!#jcKM59$3vmZ7uJ-%%og%joj|4QPy46WFlZZcw?58TmJG8dV$I~@IGUIi z+||0JCT#7Ur#Jsm9|WuCxX`CsvuOa14cMm^jAAfETw(9e5v+RV1ip4`r*+ZjQcv+?;vDR2YP3SN&EJuEVfLRHIg6Qy+>xA+0$ zUzo7K=C$CZIBOP^$&J{%PFN*GGZ_3-h{S4X$RFD146d*=T=v_SHLKOPa^&Ex;|3I0}S?2jby^1yZ3fwGiq zba+cmb|Q64o{d>6k+_Kq*P?i%-ZXOKOO{jSy<+^Tn{75yy=pVi=R=j*O}HIgi0SLX z+&B-Pn`$Dhjr>|*&Wz&So6xXoWxJM{sA|*TyutAKK%o)Ou}!5v7!OM#$9EVtGcV>s z=TI*tvE62+Sv=h2Vk0h;nue5qC}D)TGV>MY$wUi&eQGE@H{ot z+aoDEpy%~ac`?Ysfp-bvJS-{M$RZDiV=|HLE={Xn($ay6ln!Rqa zEKK?)Fl?o7mYqd95Ea{(vtvNwEpRQ| z7&EiegV@WPvUXjcum;072Ue|TNqIRHH~RBwS?P`XSw+Yz-K#`MhE+c_FJl^IP+t-_VS3gP5+l)D~Bh3d^srsfYNhUcMnhvq7|7!zI4la3w< zvg7oqZYC}-7Zt4*?L{LEIU&yITIEJuG}B_NUahw$TzAY5q)EcoNB8f1fs=mOEN zvv#VOXV1C#ln*F<>pWL)T=6#xf4h?ymokw`BUOmbv_g5r3o+HtbYKw{3vGCw`>nCE zDD|WHd^82KEiqEH*tDgHVw7jklNmLUZ!H?;P|wWSzOGjSm5z87G_H$kkz=p9>;&$t zSZtclOL?Jew3L||9YeNq)0x=gnP6PzMyd%Dtk){!nsV2ekA!90tm*N5F{^iD{h=Z* zgY>K{mE^EgM6$anxHj6rKvfpM;3Meq_R|7(OT=ATQJq-xiX^{Da4i2sgXX(V3E}d#_GBA z{461It>A1>9dgSVUkx=2P=QPTJX$nl*weZ5o?k0w{ZdPcN+p`BW?JRexj^TT$*`re zoj^fpXv;!2l@BS(ljQ4Ix6T&bU@MUhoF{6nR@odTtGV{9UyijG zk%^X6hbrHgO=|51om|{>p^h8*gw>AK zGs#i_A(MrIl1acX6iHXQTyGDfrrMv&lYv?BH(O$!)h=`K(0pF5H+ypx z?vZdWm*&LSjWUi^xp_Ajl`H(^tPr&%+{QE2F9Tdq=uZ_yUl+^g#aXi^CanOiOuNI# zWvyp)qUYTLuLV2jNq?-aJWG@$E686(3PvLooF~K4Xwb-KgH@?MHZ4wRnZO?3 zibNOnVUHFk4Tc$)T54@{)ukI;aWub<7b>B^Rfvbp0&kE7rmA47uk(fL>7Y@V*87^j z5~Y{_e|ujN<4BgCSKZas-IZOv&T6;D3U$v+W)(9TWN=R?XUu)ynMo#V%A8I#vEmz29RO+V*l?2_sXrR ztEy*4(dcB65pVt9|Ni&C|Nr0j%(|qv#4(pH6$W0I0~!-C+td`!+xWHfK(dh=gAubd ztye7Fm&!-@(Ye+diJ>v6lR`Q$(hIGw(kL_|W-gH!7MfwBK8X%{KAzzd*@#${^AS(Z z3Z`7?M3d?9uCZCDOt?z22j&PkGjZOYSm*xi%xYz_0ob(xKP6dF2%nR&wB@Q);$u&@ z%GLxkkPVC~eR0r=Dsf3*srXr$;e2`xjM=<4fxSYv#mC3qS)Ghoa~3ud+(^zzAK zpEY{EdS1&`6Pb(;HWL1sM{QE7U$4)yEaOU%W0)bc62oOHAf?IEg4obY49zAzLL}lU zO)4X=M&%8O2jScrSNut@%M-4EZs!WOxTJ1{c`hI|y(8bKkS~|2y-}@oE=$#3wr34T z(MU1f_nnJp>Ol6>7AdlNTGn(Q5BeaNAycWr%*+Hhoz6xEq2lN?-SjcBMre?9S>;G- zqJ^o+P?~tdHMU5yu55)53`^r_I1N+*?Epg7{mD=>toT!43rkIW(Ow#y9&w5UF%cuX zJt62%*8*uhSYfM~ikhL)rCG4s%0k+5y=J&FBeCXBgwM+Tw7?bEf~9L--@uca^43|# zp_j#Fg+Q-YQrT5;S!Y`XUm2QTpm*)L8cPt z6C+ojM8I!2@g)+XJj?~<$~fej$zZg|=0OG1bS|r#3CkDMTwxIzCIjhOnn^|j?Ru3H zQgP{AuGYO}C7g0a&7>>Cd+BZ?Qni`_%+AoM-)cvbe5L|M=4b-!GO%fBOvHhFPD@jR z57WJ5qdrOugw{YC!N~?wJ#Ed{aXNiQQBk4JSXwT~cPo*h)-{q^E~yBW@yOo>b+^(g z#HW%Zc*T4^z~$pU&{zHWz-cM1PMK&VQ;22;1D%c5o5Avs=RpaQ1yeoutFr&>v_XSP zR+fvb;OUFCL{SAxQYz~`zC@Bp3Q5Ws)yVShmYOCoCHLR$?sZM2!?M!$W z&336o-8?tjY{?tXQ&xxzwAwlF$WEt;QJ+)ld?_+Xs8oNX73fTa=Sd@?Ccx+)KbML% zf8L*l?OEMJC2GToG6w5sVxZ9ZQqrT>bddUj)GjckxS@%lZ-oLzAbTDNl2WbR%rR$% zr1YYs;5+RlNXxK&ZFr|o&~9L_n;Cu|7|2g$&C2DeP}y`% zgMn_Ca_N&sA=o;z;uF%JN}pxmprRI(X)zt~4x`CdTGWaOpAnMljYutLOk8bEU;>Fr z(q;O5l2YqNnnt%<)wz7L>}s8MqvEL?8J`!jr+GM#SQDC2f0^~wHQK6sxwDyJ#tk;^ zAschPbd9=+;AgosP5dexKo| z`jCsq6I7WwEfxyH^R!APB!4exYJE-&YW}>Z9yZjPSWf$mtkSIbPE+->ij`0Hg7dzQUrw3{8@-mU#K<(C=vUHB&6O|JJsdZ7rJ0E3(rb0K-=BpV zskj=*2P)GL39HSN@lO+{R*1^=Lwc1mD-g)-FL3^Fb*gc`;ZQF}i`ClHA1E?hG0_KO zfjRT0N_3(%XzRU%ZyW;ol~XGI&>-xpM-;fcW?Gxp`7s=eEK$Bpi!PoA*)SVC)5X9U z7w88we%2cr=TuOaL4$3Aq0bv&VezGmv*~DBQ(|L&I`(B0C5_H`CiI$-pTU-{4yu&W zj5Iyv*@%qB5^YoSMoJk=G3D%3m@;jUkNs#ST1kTrP1AYF9JWV-KGt-X*+9t` z4<`p+QKJm))SnH+#+(VqK1VUot?Hww#ZS15nTF8t0-dA!iB=-yYY!?paBpY)iBv8> z?(6ALBV7bf$t;lwh_3UPm2U^45$3cN?J3v;HVutk6(L+r$@PFyaV6_1-K4WpBod&? zWva^fLm_t5Ej4sTIh*F2W-q0T3u+6LrEnn_8OF?l=;51my-7!1b%syoEf9I*DidQ^ zCL>CN)@ftV4;5!%9U>E^&mS~;u`(a5u|ASg^B!-Yo9U)tqm?-u$07mnwJF(XrctSj zE{nH%r@>6C67vRzJ~2~^FnqY?lVO!CHfieAsFf6hDXWuUh^K0vNrU!+mD%!Jnk#0e zy^To)bS0O|@F?Cw-IH&IdDat`a+Q1_+l9SvB?AV6X4((OZdFhzdqK+A&$v9rV#O2C zq-d*{=Gv?fNl!I0>xnX;9$rM(q(&~KdzgMo*NHhSU6S)-e+sD4*BLKhN78;p4@*v?chSSo5GU5L~rv8^|K zmR8H9a@jJU>rZ`IlH$Q%5)r_95-*IsELTaWXTbXd&#ciHCUOJ6$PbF`Y9O151nPA) z-5W#$6HhAF3i3*x(uO@Mkck&tF2(27W@IMbYK5B;xC|oo{CP;~xxkZNM*EhoF>;Y$ zg7Qoh($n*#!_`_a#L%f8oKBwAXOm`FqNu^R9%|%Wo=`Qcoc0wkq(>vHHy4U?lWA+5 z4aZxcKc0mvv*1h*`ufdbaF&HNr65UD`D{Ru1?rp+RC)@f)f&F6rh!*es|^Z$y*tds z%X)jP4y9_f+LcC1cb4!5&!c35L<1GA`_sjQ6a?#!3znLEkR4_uFPXOVW?2p9=$xP9 zO)ovRP8qIU$c0r(QAT0%G?9*ZV_K_SWl&KZ0a*%^9Y_9Ao zM$fy7GOSms{%JX%Ou|60l|~+Wr@@UEjs|O8S6P=PWQJ{NBYi-n3{OoaS@1X)`Cd2% z+sz?!syEpwch<7lQX^k(g_B(DG@LFC^@1)(hAsHNZAp<~xtE_QJg1ephHsp&!xkaY zOZ7l$%eYEx-7wF>)gaRjgi3XlDxW6Bet;TDq48{58PW}jX@~#ys10-8E3+=XQHoD|ly;z0# zi9od+$ixcm(?B{=Z+MdmtDK%rc~Y)M2c8ViC&@Yw+l#Xx*!siKSW{|%Kk__G#bJ|` zZSvL7wAqce;tKpXkZSR6y+Fx${9%8jYce&Xyn(npNd)@6vrM`MaSKdF8Sp86*kmJP z#iypux#0-R+@w-1YIGzwJhh~jQI>pps;O3@LCWw>()B(wNSL`XY=Hd{I-LvZRo#{7 z_9mIOE3Kz};U+D`dOuC3>EM{RltDhN)=VX0$p_5JBMR{r0D4~~T5v^Si!g`WX zLL;=2d*WhW?w-mu*b}Ild_^<}lqQ7gy|h>H54}^DH#CWLeFLf0hz7f~DkR2|&z}ad zFl8qJaQK0>NzQ4$wiigcF<>|lrhM+5O(Gh_bA?hmoNJ{7Zt6>$?eLJ!7mD2H*;sAv>Kp_rLhyxVj0EIX}Ar4T80~F!_ zg*ZSV4p4{#6ygAdI6xr|P>2H*;sAv>Kp_rLhyxVj0EIX}Ar4T80~F!_g46T`>s$Bfh#lzo$YzM-dlz=0gmi{l@EgKi;j@zPdCBV1 z!c`z7sJ)GKdmpab%dPUv?~1JVg5Je1L0NxuofUWW!$rl=-N>qof11gb8pi~H5*sGL z=o}D@poyLZNbNuj0S$G!hN<1U03OzJ{|z8*R0+i%>tvmCru?cFHJY0y?`KVavKRz zIRwFoP{9P1CK@7?gR`Il2%=7%7}R4s!4vyQ2N(^d9dNXAP^S**iD;a7?BvQxopKuj zt#OY%cJg@kv3Pj=mr&rCy$B!6gQw{4zd){KTlu~ z;%K^w3Xi9OfhlAsBG7C?srPKEL1EiO+b$hO;Pb5+hNlxI(Bg3iO-SN|&{#Lr$#xiH zbg++}EyvhxPR#v7!r(MWwNJoT0n%~$Nl8^Wo1B};Pd3YSg8;BN1J}2eX!FP8&?E6U z^yolzc^}$?vEq=E$CT%g@WG!S{sQn9guf8{g<;%)P9QF@Z~+>yK#7G+!6JhL9A(Q8 zN1Qyx^n=zyCng|bFtv}N5JYYOjl#`aaMoDhbnaj^JRL>V2L?URWX=tlPfo;#OOBbG zT$;-6@nb0N(2GWrW=tfqP?Kyj?9zI{OvYwaw;=h+bU|EH6{=`M_GTBd7Ykb#F(V!w z7$!?9e+O9k=;#OTNPzeraPsl&#Osa(4~a-*@sn}~!nlATz*l ztqB1mh305H+ld5#Xv-yHM_Qn!*zAN7My^hX8u<_nKAt47B*8Ul5|CL}?SbZKMj$j5 zWD%|w%@gSmP1Ws*vNegZq(Y5^|9T>S0Z*yPSNoUjjCR2|wbNol*7aK6DcIU{UvO z(U_i(QJJo5YoQKNjfOduxs&~)qy0nXWS@s=yr?=7_}(V(EJZlfj_XAq^kld0qc2xE z^z53#@%Z1OW8OGf3$5l?PV z8S$LV@tndQ$SNeXG>y{XpC`-BUX?Ak~CzV8CD1z#Ce z09|0WAVW~cn+%Q$2lROZaXl6(EJt*wMA1#O>8>b*#=x^-~1rJMTkoE7d^R+ZOIbnjP5bX@t8=+Zv{f=hpjs4o36e9m7Ut?hbt zXsy3?T2o&ot#ReswEmZ`g4T9DJG36Xc3S(sN?PN}w`u+FUj?o0dUj|%d+oILf0eYx zm2cDfzrG4u+x6_w`nO*@tpi^rt#ReswEpj}g4T9DJGB1Y*G}u;S4nGJ`8KWp*Q=nl zUC$1!|K4@9e*7wwzmQGquSEC5b#IgU|Go-R+x6^_`tNU(dc#5ew@ljT9|ev^q5(b< zamF1joJU7k(O&zm=f93p5`kl4l@$4O){bLHy11SLDi`(yLU>?1(y=?AxC@T$_m;Z7 z@HTQ39|#{UAI$5I9yOx%JP|y8^oWRR8hDJ5=Xs?G+s97`=uAY zZGz7mO5WS3WMN00zq6?JV(kll@b+`W00`fJ&CZ!?hn` z<&e1a3%EZ|h|dl`yLATakOV)k3@rk$^Rms?H*+V|Et-hhbz`%3+JY?m%W#gB4-?#8 zGKU?dw;mAzuB|loRwb;vb_ul~Ki&sN#O>)#?8EMN|H+eQig%l;?W5kU*LF-^Ii73( z^_59%zc!3l3c^;nt4G@QH7}CcjuM-kh;JEH*EvH|AzB68_lp6=#Jz+EcE%fsv<@Y> zvYBiCT&9L-gWIHD1|dM4!t*4Dm<90Q?lg5Z49`4A(E?W%|4K)J#*!Q4z`~V^7ZDhR zJ&jS^tH*9IR)S>*;!A*oFw;X=!xl3w9sbx0e^pn|ATM)o(%@E^A@0M3DuLCuYX$*! zJsYEpsAiONv(_6kG9%=?Hy|Gh+qiOoXqiVv^BQ<5uj;vKnVMx9R<9>cP~yeB2jAj` z%dp`lnyTF6bYrpBwH&d3 zIbwgk(5}BZV*j>cf91^iE^G*1xijYv(I#`b_1M{Q%)267zYMW{`Y~Sp_Fx6u`d!gg zhBF|hl(%d?R3(Y=nUR+J6iK-sk`3~kA=>+AF4 zzulx1a)s?st5pFP8EF|h2~kM2OhS+_x$vO5y&jSk4f9B&nLhSTfo5f@s@xY%5|e}E zA$oRt?DdC^i5lEKE)KXRtt&vTV?rHqdQVoz5aG+H@D2hk@eYuiXds&nPVTvl9tCn3 zB5>i^0rd#&dFv zb=aw0?5)C1uMLDn!I;+t!sZt-sv#5zn^lN0#9Trw?Nrmi6*$lU#{_UMdLk#Y2gXB! zRRQ*?WQSd{+z7$h5ZnaflLl}q`iFSsI}n}?fJKEb-KBN_Z0L9+0QMii&}~MXUJHVS z17Lq2a^L{izx}1#Y%|aS_>xhfo6T5r!c~E!|w_=lCQ~<<=1q29JIv)4Cym-@LFkrIrN&a_|ife zgo%T4rI9U{qJ@W8Fd#T2B+{;fg9Gdm1~D@aA+Z9j@Z7Tz@!!0>{H1L81P8}&RlXr6 z{@rs8A&Qg#3&?@RM3~6FU=P+DgbI5;@$hd}Ik0&6bXz?5E4%c9c!OgIQx%SX{G*;u zGru+Q5=X>@`pIv7F`>Tr$s@1F^W%kx{dE5I%W`iJ>%Xn)w)q`E4c|g#Zy_4qsx~-g z@a?PGvr*yCb}GD9h)e$ir6wfQ%FStYnV?;Q-+c$o#U)91B3S1C`t!BJc^9Ve8NReJ z?3Or&o%Q>U&9?^=FT`|E7$NGJmoP{NkN}U&LxLpeu5kcqA3~rA3=r%?7qD^9WV|+3 z_LsN=D-G;_!(hJhsIOn&=7J50oWc@0e57LJPFg+!#O?ry!@nAzWYXIt=HJF~HR_BF_XD8cK?JP-Xc|Aw)hnHcIqL(@c5$qVw)KvG-Qbu{)L_&q)AQRG>x~eH4R6$ULAtW2a zR)P+;q~upp_nMUCiZIWk<+#wCTGDh!vbNrYS$!jh=;CDFmqnI@(*)p&n7wmElr$g`h3H;&5pQ5h#h_G`SOK6Tjv!t zMG3DOO*ibVZB)H$h=hRnIC+E4*Hd=E39p>4&r&t=@~Qe|`F6Qa5Dc;DxN_h3^%QNS==DGxE_Xx-R6ceL-nMVi1Z(gbgjCUlE5;VaT$ELvN1 z7<&jraRm=b0X!&r(53YQ+;>2>UM)l0LdQ-x0c7jGaiFWV9pEGaheuHXQ&}7w93ePd z3LmsWG~TTX-rQK1JvJ!WZEFIn1xA5<_DGkr8aS)Lvl1FVc~)*YtHGCFWuK+0vl?u# z7|v?21g555+iI}d^Pj+m8UN?z?Y95!H(fK$-QYCoF8BV zPh@T2Ss}wLtvJt`a9r4|4wj7#6V58zQZHLtO|G@kAS1(uwdrpn#ETwrRxwj1q z5>7>cH+{#$XQ$f1ueoa*L6Au!|K@d9!OY(_R11M&3ZePeO&z?Ca32eJZ919`uqohZ zLO0gT@0p-b$`|=N^Sxynj)k8V!pnJM{sChj)afkBD$O4(pCIt~i_-jEgELWZi*Ygk zm{l1#=p-BNp02_ z;m3Qrs+!PL@J3Alm6E)ezh^h01NHVH!QSGhrOWW^eN$yRT{wM+-a=FE;mzyC{F5FO zqo^jg@$wJm?;8M$4%dlvCa`c0F8*Nt0Xn3m0V)e}rI`j4_^JJbvu%S$XDpgRhmmQ+ zfE$9KzD0)Bg9kc?E>-Es99%4Mk$-c(C(!ch=e_yI+(a}x&^yyImWl4o@3CCh;-S0` z#`bAQNCA)`19);DhJ)cymr(me1)vo==zt{h6kg2lTW0Sld}N65{nxf%b~s&Eb-1HM zVc}#ei~wpXV_wWZv?;$)$~|1l#r!)vZ+421{siXr`~$n(bsLtse{K84PUiVXs1Lw< zh5#gzp-&g{_hoSWSYS5;inH+hO-{L(e+{`ZbvQr?_A9;XdKcdlnkzF!` z@b>%z+5*Iv^`rTlBCy;0EL>{SS+OJ#7C*o!yZ~j2hVDcB1T#At{q-Zw;4D_{Oa_Rd zK7x~`fOl`-MX|_DvgC9e@~~!tDpHd<{zW^2AqS8N-zfoqIpsL zXn+2J#%Z0EITCf|0eaGl+gv;?=^qdmL@QLffJFD6Xu55F#*Y#1L*{v`xqJp zoMqy3rNCu9d~Mk$TTiiB0o`T>rS(=n-bNyo#mV165AE*<(gfzXWWk5P`4X zqL2TCKK>*6=-q`627RRAQ@_;d8}J}P|= zeQ4-o03X);KC0iGYCsTJif{{_3V-z!SN;@N{1jLE6j%5ZSN0TF^b}X}6j$&R7yc9% z{L~V@kBY+mcp&^-_%qxI;s4k@2%v7@9{d;d4fjAq9l|}xp$_35pv$xD9w6iZy9da> zZ}$Ls7jX};HC*bU#Q09Q`TLs;jY<4IBii;FG>PmdNNz3D*<-o+#7+kz3=?3`Rpr$j z!AZZq^Kg~={#J?im$l+dpKO&6OOS3}fI#`iZdr>rpb3Cf#ilv5e7pxxWwOnyu&%xn zw@>K9dJc%%e-6W#f5Z5_iyBA@u-Jjj0V|$?5CDKl55SxJfiZ=X(1YdUl^P)2v(ff8 z0%4Am%L~3(u+>BS3vSQi06r|?1S}39O64Q(G4UDo87OP^Z?JnU{VG3rjv{{c(|=0+ z?5F>1tC+QmTb01>(QCo4T_ kImNNad2jU?FJbR3!qs5Onf8oq`4Q)Z6FEk)eeJ|~OO|9wmQ51JHhJMViJdfdXc8maimz^L%UE&} z=Ve}jm@1p3BN(y;!YetzX#qEY>6Y@?Q@U*zCxr%gW{@48TegB=A`^1NtAAfF4yDsgvSEimwJF?BZ+S?Zl`n}!4#@;}i zFBlXWeI32<=?`>A#PsbEF*BUH*|#?oA(3$0#)l)u{2J953hGkHRJ^3w6wa#c z^?5_ScA>RDq6h{#rLvs$V!`^pRck>2aSr?|fq(Pi-@@&YK5?;V5%a|*VnLlz zRo~YtS_#2*$VA@3dD&)hnI?>+8a6C7g)>)lwe0h@`bED^X-^3S#wo?;6`6FF$S99%!7cMn{D(6|a* zzi7+@*KgL}8`t&HbThbK1g;ki@I+vPatH?B6mHB)`6i8TX-R3(B}$CxJOu_OOwMdw zpjWAZ7LCfZOY?VmJA5$j)H~seR;$2&tgIBoP^c$ZSz6i_==8Q)VaEEry=|hkBM|85 z^jX^iU8U>1!Jsb`lv`L@z3m-7YjAf*mH>Y$L*CvFUnmhV9sZEm*GjBM9GR`1f!5M4 zufLmAUpIsP*o+HzTKzr!-K|+!GFFT?Bg2NiUVkL)nb_#DZKgvQ&uA5gf^2F(08zVF zp5Afh5PcX7Ra1a#sc}hL=B+n{xo0$$;yuE%Q2rOlOC(_9GDYa^m7t9L!b4a&g_+ zJs8BjGi4VBap#g3SD+V1!qdMG)3oriqwQw#{p5u$hzg5hXLwqx7E())htw+rJ(-r1 zJ6i|!8eA!mKa&p$vXR!D;u#^)C-k&+hXR4lU49@XV6+7%hGuqzCoNjE*&Ey?*eVw- zQU)uWuKW_6)>0-)NlDlvDV?=8O9uGhkW)gsa&iYo*r4$lZ>JX?^?oc$gUpapG;?@z zECDT<;mMu;kgwO<*#h&kZI>P}D(CpSg99ONXQ$8|=X@7fVIVMVY*X><;6Cbk+(qq9+xf9o%ncAo9}#3y@%z{9tSR5h?UIp^fBX7dKqO836VnG0_{Km8&zC1Ew4fk+f>3QwG*nlO&${M4a zu)yxHR*-GC7LrScQ_1gdDVR2<(>}+u^e>AAM?+t_op+!(}Za`FAgMa+HROEpNYoj+5cl301f^-&IvI+xgMlP49SO1B||5eE6jSS8>_CG}K z0TLY|giN_Jy~Zs4JYlncF^1XAxo7vEn2pGjgU92HDr6b_)g{{4wy6mkJ`B-4oT)Mc z|3(6LWPr7=Cv5E-V_7=`tj$O9bIF>Vv1H%}$K+Dl1pmFg)-1iBu#F#%W#eDb*#j)3 zp}WY)kVccYc0f(Z@c~HEutI~;g1Rj_TwwI4e^?7I4ne76u~|9;-gZm7H{`Xzle0x( zZVS{G7LC14p@>o^L1r&u{h-7VI!PdBCTplKhP?U*=8;v@5?)1-t4_^T2)E~yxzPkA zQuU^~Sh~Fo$0Bb+=sg8G@#*#Esr)r&iG58Ry;&tRN$bHYp~E1|dbaAG8yUl`zGpYu z7%j6FX-yNT2eg%gTXag8a58xR+N??@imi&6$hrF$!&om*Mz*w+wFW+ik3<(R{w~&x z%5)uT=laZuzIq zOG}9GY8rX*i#%fc%0wP}BAvYSiL7s}0Tq*3pH5}U$=jDoi2u`U;(U2JJqkCNAJp{JB|V#ZR)yHRsdG`Ij@vv==9l2b6o#M`n730fc`dcP0;iWG1hGu*cuz!su~? z%ya-+%=Fm6rd2Cd>);z3rE~25y-dPepDN~EG?RCK=SemFZ8X^^s`2`NJ(^|BTHSUu zE);B!j7g(Ix;Y<9qqI2{6{hi}VtODI3GtQ?4s-IO=NoVaeLEG^%M?g0X~+x@oiYbH z^pBhmYlxTt#i&m(XP^_~z;LawkuEc%8v0fmV$XZ*MsjR;zt)4Z;dw?_!&W0|1UekP zJ{{E~5c`i>qXdl9xZz!hs4AX|&CNueOl)B$YSGi|D_=|edn3eCXEu5Vnds7N^s0`- z-~L*{FOC#mJ_R{)mw_ym2&9jgV9x0Dx+#cJ`lV!4sg(X9bkcZm6b;7iNqiDxmDH#+ zM@;7>tJE~?n2Hu7WF6iy4b4XeQ}c}Bs;MX!(NmY9OfWLb5St=#i!N;}KLgE1=sAI< zD$g4t5O>SrJ}ZPkQt z7KVR48|9RSy&XZyR?owO>?bLt&By%6QBHA_1*F$q|&rdYiRL5Nigm}1&hh^k;h z|ELgEg4E8hCDlAis!c#gLFzLCIs#JneJ!c^qof`yLiSjExRps(@Sy=Mf~glyMwf~Y zN1)RLvrY@45NlQpKxD|VT zd^n|P;rOs4o`Z4lL7EG4>Wn&YQ1eFyhx%g3U_gg|n~MUBcs`yB#G|6abI^AJbXc1p zI@Fhp2z<;F!(&rYQfSXY^zQ98bSTTis(M(cbJ=N8H8LS5ea?f5a76{ZP=f^aITS)U z^wFK@S~{&At zNp_FhVJ(B_h6)eYft}^leg!D8IcfDe%s)ZNO=kym)#r_LTD;!{ET9Nb$gJw_DwAyN5P} z&@5ag_dxK~3PyQcvI@-$D%7AunXmxqcDp=En6TR}yHHjpyWnsSgJDZBJ$@x?Tw%4r z!xQ+)Vv3z*bclt?rnu{(2dhz;(bW96q4-t|g>|b|tG^m|7LHx3*Sq!8ZA7t-*P(d| zBU{#?`T6ssM>|HWQ~|#+N^Tv9-EUy~du*x78QpDA3U{ZTqAzL?mH^4A6#W5o0%|jb z9m2|B2zKN{J|RTc)gv2F5xbcjU%#jI;CxLuUk|@fk0?XC?Hkbd5y(wXjg^~F#aDkD zi?OPJ)A4AE%Vm;dC@wDI>jmbmdB z2iKm~2YLjq{bdiTQgE$mFIo`~*9gb80{Rboq3j$R++3r;&7}vo16uMX0d9Mt69>0h z!WMt9&)ezW=M(7meq;g=VmFfmw?3^02e&UdxY4Kkp@cKh+56DdurU+S+9Y77HkJR2 zg;^F)f3go1<(<}^asE)7k^*O?cKSQ|dVQ6ZPwq!=)LL#k`ok3dhhyFNN0q#tp-7mX zcm@>>7d(q1wMF8O4@ShtrN_Za^#GFe05h4NQmDt6{sH3^*d%uv(47Z(DjCP5C-pMH zH>M+I8_3{qw?}t(bh|gweXMH%m?D~|D=}dwF4;B`Jc0ezfQOW=F#5IuKSZn2a0ZO# zOUan0#XS|2XgYXdemo6}8Gu?pNW;w;(QWhJgZK%+t0K|TJR?@Ac$x}kyltMN#b)h+ zqb%_cpwWgR+*GEtjj-ViqeT(vb7mi7B{)&0Iiw8gRTv_tDX}N2#OY|^ZMhQZOHd#g z)5h1bK1Pcp2`#*>PD@T4EsZf+%97B++v>CkakOlS(c(-(3va8_Vu_>W>KHAqB((6h zIxUrPwCsq{;!Z*fZ>!U?I*yiBS<5Q|-d5shDVMd#i!o!P6VKyHrKwKI<~T}xphR2e zT3(Dx6!sB|@w|BK^QFQ*zbeL8kHbFhQS9T^vyTs~(sM=Jf>kZ8z0irX&l;h+r>C=D zV0+f|&N+A$;1#>6m#F#$&jw>00cX3!JG360eL5f*u#m8LE=EScE6XDMc^Xt%2cgvj zK$Y+sf}a7Es+MWf?>fQ}6)HrSzidOQ|4{^L|x5q+RXR9PRa!wpKFSJ&e$ zan^I|J7~{3R7hW~$BpBpdHJX`FW0B}5499apmo1o%?|NqklI9#N4NWf@~`Tv!LT-Bw6 zmGlN&r-Zwy0k4l2?$_jS!_L}wl;!jCMm!G;+tG;gtIX1cWDHZI`4)6y(WJwTxE64N zeNQfcZ)!bw0N>;Rq_vyyN-%A36E2);mcG#1K+NdyCcGT({pTh;2iAlQ##oKZg|{ zsmLk^u$|C}Cq!v8o(l=Vz9*LucC80bi1*}#xU(7G2!k$c#fL!ZMy*XUljwaGN>x0k zqd#rMvw)7CyarD-!no}Ku@j72!e#THM=GPY?8Jowrf~KGIA?0LEfE}6+rsE+%AUBo z$3fyEgU%!6p+kEX3tz2!X+=4NPG8BxRV7f6%XRfcCC`>C)TX+cXOLN{7Vl~}mEwKA zAv&$-J`tBHDf)*^pfnR=nvKx6 z#vmsmORKunc9Cf)JK?l{qz(-aNmxMmS>y0)yRZ|XCBqqA_&Ee`!O>rJ;|~Y!fFMe@ z!A1N^{8Gwb8@6feau2)Q#V$)>ZBnXWmp`)0yX?}-9%};Z@?C&LshM5wW0zCx@;bZx z3%gjE^u_FQoL!E>r7xV>?d|e~`g?rA$iacg0*RS0D1J4_wGVR5gIwz%*Eq;{zViCLwC_9oZekuM;_JX}EA$!3Np2=RYZD-jF*kf9$xWU%qWH;Dy zg6sw>;bb=$;mK|={N--&`78aBHGUwKe%6CO#V;A@2iM|iSgy46;;R58o(*CfeXtkj zHNqBldMy6Lr3au}vs4T{#!n8K6U1|uE(xcy*C->9MzF6gFdfmO8uC=AWBckwa7SGl zQQj`&R=VlKK|Dh?buExsb<$QYk834Np|nolZeJ&4VmOtJc|^Jbdgu~6>VYHb!dSb1 r6MUcGwt>eZ`P?|skdANjfa?!AZp4d3DR zJ7#aMptsvSyKT6m;X`e^HRu{WZ}j=m@@GeHjPk=Xj(*#<2Tscv4evpTR>!p3j?o)k z$IHj4yk}Z&!3XfDWqO9ATg`3DZrzknI;V$M-mmSNp4PJLo}qO-ukUWGuHs2&uw7`` z-POKhw9S@h-ZEBNmf15~y0y|X29E8vOrzH_Rxh8w0SQqq4uC3{Mgo8HyvY#m)Wt2w0DP(bmDgGA1G2kndmY1R27}VXQR z?mWyHr*nGi3*fW!7;m$;tC>B|)|Mh;xKt<8wSs6l^WGm{3X@8YJ0lHu+Z}8 zzo%>EB7t{|fort2O0g!Mm+ECa$6(!D@n1ITbuGW+*j=r(Ovt}#v<&lBQv2xSD)kfq zN^7OUT2;GfepLI6Rw@=675cvF`aJ>=*R~iChK>sou|8C52#4rNObb5SYj9f3t;txz$%2% z2W+>{>aB&=xJ#pDwfB7<#$XL@HqtG_p zzNPPLKGpr7=d_Psy?7z#|H{*k{Ief+y?x902pf6 z7Rip+wdAyPX)0n8Jgam{u9U;C_zZ$2u)nYAuGZ`47&ie@-?BZ++!j34-=_yurf+$? z5Huvz@6vzqRYYOF+@I6B z2DF@(oAZI+1{f@0Qh2=O@Ro!4ePai4UJJyXGCk#WzP& z2A9Uv&28(hL8?_#l+!k$d*rTMeE!0P=9QN}{UUxhwCA)~x!lDUUwHYG7e$#;F|p7` zU;fy~UVK#+Dkm1ofvpNoE5AfIES=K`-OT`lWljD&tC6g7Y|8}??dSu`(>&FrMi_4@rV`R#HW?cQmM-8dc#HqEIY-8%iiaQ98^}ibL7c^j=%r*LWQXY0ooT zH-S(9D$=<)B&rbwvwt{XEMwQ`wSkTp@hGX!YP^UnAUm>S?hYIyL|SElL6mq$coj}s zq5WmdnK38kToRAJiOebG^j}+uoL*Jr^qJvX-nx@Txt9c-&suNtnWUFpM2DV5mt0>Nbd`fQW=PnF61 zZ6S91KW8yoA3uH6@t<;EGH z(yQ4WGg%4(?p=A7(MKOLiV0=aGcu$L|1}ltbSBTwL_(H5`A$}Qk zO2{%}loDF?$0#M=d>L9N%yu|jI#1TO9_F3)s$#AConhk@9wE4f(tMmd@>gY=(#Ig@w!KpU?N2%z{XLa5wAK<-(5Xsk89Tat^i# zItT+K9Om&OW*kqEz42MH_?W%^z+g$}k4 zZQH;j*o*poYoE^52-KC=UU*il5pO}vO)Ku8-yjzZUXq|*5MZU}3S$fIDp}uzcyk_iS3t;wK?e%~Y?iBo|Sl@5yj;X^H zqe-Xqb`!gZ58?26qfp*?;{(EW>#+lKQL^yuy{jF}X#5A|LU%lKM+a}g&U?pjY)tzd z3mc&}oB1$ekm;G*DD(Iqv-9Rl#dBI6+5)}X)*XK{Q#z+%zl!trKs1d(w6swzVVguC zm^CNA^n!8AWCF<5m}7(Xn%_6=MNR}D^(qzk_TJ_5u2x#97F8o{xyqrr9s71($mxuz zhe}jAJ3h0h+3^=sX2Jb7vTy8aU=?_`+Ck zq$%4P4RbA6RZQ$En77vO-Vcp#{0vcN_=xS8yL43AWX*l#V4WJlJayy80N6k5{k%d| zb*bIDf-+NyUu;<3BJy`Erf~s$9$qNqI3w?3$SXz5S0;#-xvf|~ znlfV&Meo+^5W-^C47`0Tmls^i<ow8~4MBX*Q$M zy|M-~D*ci=4Yz)X`9$sL*m-{9!WE6%m*EiQn0w?G)q%z6wgCr7%hFmM1O7K&M~8nA zZ6@&=k6g|5-P&L?gYS_G4;`4Ub7X2lr^zdc@9bbrYn!;!;KJO5Q?B-)g}ohPPPXmz z&B(q<$rT6f9r)3;ZsxDyL=MI|H}5m3WLTR0{1h15U>u|_FQ3av&!~hi@!4<(J5v5s zwr%!qvG%$1UZIcQe!H>=Y-zmGw&Cd#+qNwXZn7YQ1=kj4rKi&rQIUN5oAf|*HKFny zQPFP&M~u^v6*JMND$PlWjPJb=Cn}W!ih(Gefu=DT!6-@)le-wkDB44RI%JI5%or21 z{TMN(Tu`2X%v{JK{`Vo@g|rSy=`S8vDb3UY$mY02Ve(EDDNr+*3(vfAy5%JcYKFoX zNzK$4h7A{@0_6m8OR~D<35k>}tjAOjs*08lDz8Ojaq>pz#Z1(V%_>gYu*eo|GdhK2 zc0xae)Xo^S4Gzi}HBi@%8>31o{>_V$;{QBNia(5v$XP|r_7&$`&hqbh2&GeA{3!4} zLvSFC^BA~;k#9)L=zE)2odJBrg6hhNuPS<_8ksE8g8J|T3VswweZy7YB$eCW83qbo zP%Q;Uln>;7d@Cc1s(3GtB!|`(#i9QpjYFTD$f0aiz-l`$i(;J$yb@F%4HlINOv*73 zGY0U|*;HCE68JP7Oq5dtW5!lSA4r2F`beJr_@a3BzohXjIq99%U{@ed6vc9(`FsI$ z1D$%erJW-5oZMDgtpWD~wzVon}S0B-1FCDSbn;SyXUkM9m{ytjRc7;x1c z>E0GR3nU`W$ZOM?>h!l1#(xof(AS;8Jbps zgG?3`|)|OstJLS`koIEof`Zt&||h!gP)Q$=+xli>3dcBZ+#wbp}oQJ+$pnN zi+@4AfS>Gcn^+=Y-n{zTY`O;_4nO_-39sMyJi zY0c(i1Rj<1!LhH2(|bIlz1`STu9&|#VSSo+#k}|+EoMS?t0H^&Q_|NqE+LAAaiKV| ziz>5Ei0L=msv4YlkQ@#HntNT9rj+SGPL>UmkcBtAyhmfCS z;yT;%qATWv`q344765V*zRpZDe1K+cKe7tX+ z*+t^^f zgTCc|OZuy5o15Cc{FP&cc5JKN#7MX@F37d((HAsrHZ}h_9UeqtijaSz+ZpWa;7mXX z^5GW?MGXm%5fMXzC$XR*1eY%9G8|28_eglMs3b567=Cu5M5Fz|>$ z*h1|sKTrjsL4h&O(G$^07Ab=O(?57Vo%2SyX_ zB&+jKy@tL8hbRt=hCS*I%!w9+yO2eFVxnD%L(F9zpao=~Tq&g)QA2o;>6VxSy?&ESV=DlDPs+U$qwqQ3%&a9Mkm7ek^BnYWF{{%g9d>$oZYUwB$ zBl56-U;v1ym`@bDzA2YxCEwQpC0s2Q{ZT-nl?jjt4>7%|F~E_4<{iSTOpOs%cgz!h z>Z{;I1+J}>AU`V0eDYicBHFkrcps{PnZ+?pylq|Kx2=gJ^q%6923M{vqnD2$v-})g z!;U=UQDj+=;?1QMT%5+@chhh-mu!58P_yy%JYA?}K{z*;c)!oTrd>81x|2hf%zXhc z5ealJh6A2Wg+fU|fykJO0lzh#$Ww)8lcMf7n@SANa*;C?AVNsDt5@3GJ}wR%r`g^0ga|Wrpyo( zghSfq&gvew1HPm5zh!D(<*swLo9_g}|wtd}YQj+JR~Oei=Fj!Ly89P4RxY}5lB*QUiWq2M$) zD%IjR){6e?7#(ZHMu1~=S{xG!PJ^RTEskTg;ZKJ+j*Yt5J7&|zuqcI{lnmMQi4a7Y z2STP!!A)qUB&p}++haGmI)yh)w8d}^+Xh$MtmyplffZM*n+gUwIkHx{IcrqO#i{E!D(=>2%VH1hmX8hMsZ ze^}av6`Arty`6_P6mPh1mZfp%Es{Jam-O-|z8t%x7s_o#nHa{n#l7#m-RmKFo!vF$ z1-)B_c9G)yS;&YW?0*x>ab6~8xgWyV&E_okgR%y5mitoJSx#eje_OWW7zofuG59>D zWN*_a0{nR$;f#SBLbkWxH~av1ci1H#8@VMMB%+7s$TgPQw$R5_N7wF&dwD!n%(abk znhCE64x2@CV28J6kgAHm;>CTRIs}EkP7XmqEz#VDmM>S=k?Z}OMkx)DSb{F>-E!x@nEhk0iqMq%H!9c!QX4elsyEpH;hJ*z5Qx(JqT-PZSATn`s3aYm~t zXeGt&7bb|^xpx|0CLtrZTHPvcot>ANTl~tJV6XAq-125)XBmU*xbbsFuIZ+~Wa%$2 zilu)sm8E|guFgnKP5B2QD?J;ci&BAO6`|NAJ!2O_8$VQW2Z2cMZW=~kGupcd#mdBZ zpBB~uej!J*eH$_pfmu6nVaoOKyeWTz_lpJW;-r`-(0<-Rk!BG7I81!AOoLoHhnE8x z=?sqnJzBjqxq6P!Z!+|o=rTK^^Zf(wurEJpM$OW(3*(8hq=Au~q zU#7A6@FxOplspvY#!5XGlpDjfWu=$|m%v7)s!~wGODZU~-^U(LIf(yl!XT=qtbeDD zOEjp!@U#A=8Y%==vLITRYNYPNX`d4nH`kdELNan*kXUVM095#n03fJ;3^0-O{a+L4 zJNKUTKdOVF?pcT5pEM9m5mQEjZ#g4Ffq=r}#$qB28jS#k7>;9uj~tX!_baIY(`>8G^uuF%$y`f| zVy>^HG1u1DU?*a1K{4@|*c#)8?Ar@?lrF)QcOq9l!%TK3!eh8k$@pQe=9rX=G#BQs zgyw?YF;1Sfd$EYn;r_+gIn=?KTcqB^S`2qFsYMxp?Q=x(JFGHr&OucVpYZy9L?0qu{yGuM0rAWszN_GVZD+J^2!7TQ4IxurjB{cQ1I)B z!(w;0u?LdI$yG>Xe(c1yHgtxMBz$RMj@iD3#16@E$}~5h=1bO3mh(?2FX5e)*h*0& z%7$xsxo}myVr~aw;7?k&j$Zhx`tWICPybGBa!W zqPn7GjYnrZ3j(239r?1q0a(2xWN*?M%60;*tFtNb0o24LGXgfIhG*kCRvynsB&(6A_SP|J($!tLoc(RZ2$Hx2=aB zU}=!Z^#}QvHG6>E%R8E@cl#C;x*!AsPw7npP0^m9ta)_3DsbYA96`v#99}&lWXD#g zvO#qwiCJ4yt_y@#s{M++40k1YpF4kx41Ku>F*uRl$6F-oQla@<6%YbjowD8}^co5e zJ&j=IFMdfw&Xzz{hmHBfbEi1;Ne~E^;M55V9*Ck4Wbzu!y2;WNBpEs4L`bu79H3F& zhjF8y)TkJ|12il^Br6WDp z#1(?6KngUe0|gpeO0Sc_MY=r^T)f}Oa0Q1Xp(?DV*_yzNp9yCSkx?OQ#n^KOHsho$ zqS}FEW+On4lm#_g6A&I3;y>b8LR8Au1fDMngqV%%#Ej3@gkTptc5keR#z{+;kh&*$ zO^|zzFHYEV%xyS)M%|#OzE4}<3VYDi@Ukf>o-~BW22`x(A~i0JQ!lWwTgRb7avS6M zg{s!mswOi8@GD^t8g5PEm$+b4E3qyKA_NGg)Wvmsv8ZRX#J!b+(o#-_uS}Q>>IS@_ z^0&VMA9E@6$@7;lrsqmXe96(G>z}_2yk@)p`BhniUH^RkzR(Q(H&5_f39WwD&y~;* zt^$SP-K9jk3nJRRgnK@QpAjHSm9XcAsP}eEmEfmuP_CwlJlxxcciS+;RpTvoU5%g2 z1ZflI4bpxdSGfmlFRL_6m)=sF42Rxlcja#D4td|Wg_iEMI!*C2uOz&n=x=AW+lFTB z^>M`;wlse4S;HMYT&BYfyUYB^tGEP?lgpm>au0}o8;1;hTKd3+L2d`ft37(nujjS# zlV_E{sp^&tSx>DAEDEkk*1H|k@(d^cthw8>9pl*`PCk|8)FcC$xQPR$GWmw~R`@pS z{&MooY>~@@F0qEt;!RC=Ax=dISAz&s@z2M2s%vp$z{sp2lmo4uA; zgRZuP+$~5WChmE z^-(HbpKYF_&C|oFTBm}s#*=ERZ7Y<6@i5I}0n$Quan&8c5J2B9zLELdaAj@Z@QCit z=gW{l`iNyfoKz!EhoCn#ioP7M(Gba|YZQZjpoSF_H9LJLc+w^!IvT=DJ&#v2l`ua8 z2vLKxsm9IpiqFG3>NOvQL8{6Bqb=w_s~P{${= z2GX(e(>Lf3o@{i!!5~wy=(jQmm~Lb=jt&FOLN>_b(WGKYgCMI5H^nhjp|Vp@L}@BC z0|+oo+#(Ve zUE2$Vno!u31_=R$X#Ew5jHb?H6yYr;htHJxlz^5R!eTzO)a*t{EISukWhJu4d}x)G zq)TZtfrgrK^`sP37#p7bDSaSOBr=XbU{XRVREo`(Y3ZfnlroA_S&K>pnpwA)y(_bB(e(#k8CA?}nRQDT z4ML`}%(|6Xw}Q9_nRP3(ZZXS-+|0{uCCr@D8Sls*ky*EdAx$NQ2koC*YlMYqf+0;c zWTexdpay2UH1bm^zzZ3AWB6p&t<1XB+Lwv68N)KB;pWD$c`CBCPOu0{{z|HzunSHB zp-uzUo)_3WcFf&@W90Ea*SuqF=1cRXWY(>AQ*X6!Gk_=|O-L!Gkr}9^8b>ng zmav?rSllw}R_o?MQo|q6x+T5Tetm+M+T1Ri=gFl_c#f$KW5X{*tjf*gY^vl>7R{!r zc$RHai0P1n)M2JmJ=QqN!Ta4s4c_O{25+nJU~)dyxqPOA97;-N)~iCOrW~BXMYAe$ zaIvE4t2&C-{WLlf>X`E>6kl6Q#tC{s?6g2x`%$w}W7`moAH$8uNlm;-CwAj;s+0qq zl)PUDq__e}(k7kaYYo45Q&2oqbaL;MOj;^VlPO*ek#Q`=t7_`q$rMLG7FPPT>)9Gy%Vq_qg?IUToGvNbgB z)%$fn zs_tj`{kp@>tX?f0T~1EXRyZf;!>13LSzW@7>#geM%kO!o=0%;10FOJ8n3O}hhO{Tcikf-4B*$fO71t&#^JRrptNK;Te zyp0;q12zjZ$!%$(L*umWQ*ugn{?iGizsb>f8hUDzbpdyT!P z=oZ0y-&TQkIzOW%e4wG}tX!n&U+LOy!@||vU8Oyx zDD&**MK!f(xarO*9_Wg-`=xtfxf&BxYvlq$PT5-i0?XB?y=v?tuaS!$YtLyHO7weR z>5h4aQDIpm0hzHDH}p^#u1{bN2h?Swz9}uQl0-BqVC#uk)>2BklXqJBN!#W12{L;RM`Ef|9}NDs$z!pS_8+SnQ_~8ZW@kT z$l>(s=>H{m;swfyq-kXlb6?Y{+GjMw())-lv_S^2Vxj74j?u-r9eU?Ks=K+>f$OYV zc1yQbEpvOdzwdSIUZqefuC`6rTj_%gI(BTU?oA6J#(F3eB&c0&27;sM3ywm6f1}o@ zY``O@2R7L?dM(3`L$;xPV*3Up3Z%ByhT!Pg6f}yLDrldw2U^$M?SQ}(O$zeI?9shf z#4YnWh8CplHZi%GXmtzP3j-`C-oCc0_vtviSg#Zt<#MTr{dsk5tz5$dwk;F~672n2 ztyC(lR~wD>VzpSTmk?Qii698ER=c^QBOZy-GrWX;LDuQre6Db!=vAs#>eaQAEwzcmE$|6ip#crV_}Zf(kh4(9MRG;LNA)o zavFVZ!ZcDBhTm6bMr>iYhS||aNV?ed?BY4Cj%b(kjz##3n7RtwX4OPE!LSXi&~=Sw zU-vqAwX}htX$OE%=o&gqWqYQ(xk3?85a!!1YtXVcpN=`F4Mc{^Lw~09Suyv)qt@>?+4_y8sQSQcmv~NQVxA} zQF7@2g(uUY%c1%a$|1k4upIjBgUcZSHzJ45oJu)X8Gi9>kiMXG3+D^&!17#8-?nez z+|4ySendxl0zdN`d*a6r_co)75kKBbI@+7=#O}CbDS7{Q7RCFIqz>TUoO1wEtPqJK zC{_$8wv+@Rd^#H&!sr&b^B^uYJU%@Bh{|F7!$l3_<7vaVb?VeT_ju$U%XAvI$)=Dx z*J!UHe#;1Uyaqq&UiLFI!?9xO>d^ZAblr&2&4G1wgB|CO&1A|EWvNV4k@oSK3LfD> zCMTT6u&?nxNc>3U3-^z6vO*uQtFIXP(M0|1)TtC23qjHdd5~2iu}TM}62W9$CNfQi zIFU{aN0C0@Ds#8K`234vD~Q->${=qPDm!n`2F}5R&hIR-a3+z`)F2zdSYZiUD0v~^ z$r*|@g07Yq;AL^KYs{uYHXX9*uso7W(!CEX=(gay)0U)RD?xt1UA@e6ma@6*o0wQ2 zgGMaha{tEBrKP#gUGLD^`hq zDQ<*{bK?rDq~&=n=-i6?p;e;aO1))N9OLT9Tm#3sI=*Tmo@#8;akg5Vu;l7^ z4wRkE)p1$YV6KjpQ=ub_3d|&DHHM9Fb%do6{y-K&X(Ia}Gj|3asgs-@r%Bg%R^vGm zMf%CM(L$0)+cn80R?S{DO@>9dSMD0=Zjye-xYF%z=8FZyxhoZ5k}cuXA9mlkx((|r zd@5r~Hv;SNr9E_Vmys{JTbYi0Qc`S8kQ8$pRjVXc1n-AfzILKmo~zc1%VA+Io=;}_ zn1eeO0(Lwl zwmI+xeLV!r-@N#niz8@AlJPqhMaCCX$@uIzy3n#xEDAzQQ&e`PKcOqC(sWV9E_(7h zY^#IA1VnhGrMYR$PzyaWI@ZyhXt(;SkHhF;^9&MwNyuYw0@;1}R8#BwQ)V>4R6Z)NGb-WWYI);j;SC=M7 z)IJ2WY^YVm-bfu7Yrsr2H%6fO_;ItW`YsUczS(*zv+UFmB#jQsEE{fFArtG!!RT~S z&9W-ZvgyzarfW7GqNh13tGwl>gItpS$)c8|R@#!3Vk)hc>$&&=PO(t0tfiS{aiTA4 z2!)YZa@WgZgOF?jKIFC}G5_rZVyf!qzDl3CS(b5Il3BJq#w^P!rI=;QvzcX?8FP$T zw)P@yz@FJc*l91tI9po1kZPZuw>l>^8EXFkw4TjS`!!jE8EU^LY^Z(aaIIFj_)6r# zP0n=VsZT;s@ce6etJGw7N;j{O3AKPr=Y=}{*6ELatm9h=siWt(kbbzA&oe?z+Q3P9 z@bwAuVD9bI_mc1s{H$)Lwp#Chi(i>IQMa4RrAnz$TVJcL7t7UpeLZ%&d97SoFE!TJ z)~eNYO6W54W!)1+u2Oxyf`mEsMzyq#tMS#?<>rH51}~hf>+_9TsZlAH*GrW$eZk5R zzCEAayH)PpmP&UGzt&ho2{ifDIN&rB*4{t3}M$ z(prpu2aa=blE_tRu-S^RGSx=C)L2`K%eDi@or&{X>XQ@1h^4hc1EE%`MFgj*u3_cC zW^C~@If1e#h^FuoYJi#u99t>ZO6B!hY0>O@qKF4RT&vYeYgm=*rCK$a58N#MSP zJUUUMQmQu^rAo29hJaNF@fF+Z9jd}~vM5(+RMw$v7T1cDlIVaCePRZEKqHa0D_PZV9t#WM7W1`lb}D6JzbX;`H=R9O)v@rfcOc2Mgu7FFu_ ze|fE5kCF1=7LX|Y=KFo3sE&26j&O|YYeh)yYPA+y><%7<@FeZdNZ&1E3sGDz*UQ-L zmnt!x?NDa?iQ=(hqYh%#VLiw6E?43Pfa9$coT#zDO4X=WO0dNs6f6EMV!kJc)sscT zTCrLx7uTyW23By`6Qkjwh=2qth8~?LlEOH+zE;B-NU_!^)ryT{CL>N1t&boCCo$^D zqS@kuTc0d~9YOT;!nnYRl^}2;zJ|ls*9r-N6Ek-UKWoRa2)>`WTg;TJAal2vHM>LR zZZQLcW$qTU5G!-HI8fe|%-!NZiEA=Pnfr1qRX20Dm@!%X zA-P+~kQ$FZI6jQL8e-=M)hHR!h>lzDTX?{icr?S~9`PkPTw+G5gm~pqQb`VddIE>e z9rWdwRdx;qefb^a-br?AdTZs$4SA|&KQaoO0170}OP>3AoV#JE(1_=0&L;W^;E1dX zCz1k(Gts3Qu`)r8P!-)@RW*Z{qPqk|SENWoq;*%M9AHT;Wy*oqlOh)S84IGh(|k2n zLv%y!0`mRn$SgAfkO*(sjKYdzBtm&=NhrzC`cXKEI86c-#Y$vv%SdLWQ9nj9$+6!u zfn(=Ze1A=4Z&mRfet(>M{ES{2@^ATp0-Y{xP-@3R1$qc6!N+F;FBd@!%8KTC`pY8k4P}+ZD8OS2m&T|5}9s72ES;($zoNTM@ z9^-M6bMxASxjDDM{7>pc9&8_WqVam==n{>Kw!(?V_lR;gz6^;p{D|#!42LBhHd`Lt zQhBllx4C0lhP#^fR>F-W8vk0Dbe)HnKRbG3l<%D0`pE;xKcTgx2td4^O9IXV_IS!b zv78>35X=V4b+wlkBnS^}u%sk>eNmF|55m*=&?Vv85lTY8t*|8g>j#&F0&YYSemzV& zMG}7Z{rB7xsBt2vJ96>xe6ajM!B@Qz-QG{%6jTX9;`md$)d%e=xqjwLiKK$c#b_|@ z94mcn#o~l96T`O|fR-$PV&Zkm=uR5k$Vp7f=(0`(?fb)v)`<(CIplfv*|zTK$YUQ$ zdL^kd8HOC@YwEpkn0(cv)QRbuvkm%%~&=$-+g*3Z=Bb>rPB;N!W)giKGtug+=MG zf0m|*rDW1VT(lrBmLyHFP-`GxRst39rcw!N1mwYsNtv_`xh+Y|FHaz*YPNjO{Yo;N zSSGEqF9%m}Sdo-ZtF&T`NvT!yYqO({JlAh2k(Oh)u4(tQ=b+oHS~KR>qRdl9=P5EP zy!ZO3^ECdR!QcDv_x|gn;RCKca9YNwb8h$~CScFC=zOII6Nk;(C40p1v}b#|HG1Wq zA?2@RWsEj{4xq(%?j1hX8aR&8^O`=aOT$OR6Y9k1((obI@I1IOx})LaZM!w_Ov^3o zICjs2VG&5YrdtEU9esYp4Isk@?19%Gc%w_5pT9Ib1M8!KV;|cAq%+W&FzxhiA3q*; zY}+Gi%#OJ?8s57)8a~WXXrkSlD3J4i4jc==9`)>2b6aoSq_;rjG;ntIN5dy}0H$Zd zA3J#Y1H(sMqviDm-R9no?Q};!FnrAQ9JAkS+1)NGx&Zhze}XeE_M~~+^g7KJl5x4{ z4BGQ6$On%&M&EY4re)kRK+gMyxsGnhpQne98+%CLi{5zyR}?xuJl!_72fKjx*lq3* ziW0b@(8ZH87><@fSQCC`4>W`5Y}swldNe#U@OD-jE3S#}-xz+`G)Vk5J9@8e84j@l z`quJB!*_7XD^N}|D5K#skv9<#H~s*#X!sb18{i;ne`EMXr1J2c)CcgM+X0Cz^l3DF z)Y5yq1AW&3#oPFOpV1o)zritDw$p~=d>@>HW=uxu2jF{*GXkQB*%l1Zd0_aMKJe^j z@Mw6S33hw5J?QqEk|jY{_P_);Iz8Q@p?e2=!kC>#KX}x4jX~RP?sbWw-f8UhZP#e3 zH5r$*yyh*_H95<^quDlHecPgr_*gzDrV6IrBXkP@lY`AW0DaUi#%+ot%+Ys~brFrY zhQsEj(IaSW4Ee*3ej7u@f4*|>@Nt@N;GEtr7|}AjrZ>9y&ZXgFeWTyREHN-kTZ~|j z(35S13~AET7`~_Dd3|?dbrp}@LVw@u*u8@7>|#c}i%K#CP_pS6T?~(h;dltoS3Xc& z13e#ec3Khe^dtcPK>?mNJjAj$4X0ol-VSR60%5h|buBb@#?!Yki`rgi^vXlSXTX!) zrktFz15LM29CCN~PItfO>3hu%!ckZhl43Nx-?EAIA91@nCfaumFsoe<>KoW^{ zEgj}sBJDG+jt+b<@O-|3%8Z1leRI%96OREqc97zWfxF-yyJhxvzyrQqc!C6lJJ^mC zGrPpQmaX&2cs~B}x(01gH2S}v0+4BeKA^)E5{Bh@xZoB}~^o{4~@6*SBr;lHT1iA55d<=$Xs8w&j z&u~M#cUiM{S(A5Jb9Y%&cUd!cSrc~|_`3}BT?Y0p19^AQc`q%0f7JOB!@KjR9O;iy z9~jd2N~C{^zA>b~PTv^PKS+IGNPiW!D30_6>H|Z1nJ_1$S&F>D@KKdt83iA0nc#XF z0#KDdA+aRN@u5yvAf6GevPw^c;A4exybfzSWa-FNMyf4v91PQz|* zmCSm*?bI!=-#c7)YTcIA_WN)5r#{txt6%6Han0+V({*cBzqb!1Y7M(tcdd5+O22oM ziu-ocD~bAtJges0PFq!P9B3SD9J-HR__p7)v{$|7S6r)ZqsFFXw17d=Zf_V} zk3Q?xrfm`^!>c(ia3d%Ha?d4ei?G{K-Jj_5z8vhBz})XQ9_k&bs;)Nn_YR64p6}fQ z9IXEN?wZ+~Fn!;(*SbDhCra$M>mK#`P_1ct9vr|%O zJLH=i^s3)@pz(O)zQz-c{f#Gk7iJnx%bMx9R*l;1&Y10b%XDYF_3JY$r_TG1)4XQ; zGeC2OV>i<=H!N?)@f(&~MKwXWDx;iNay@kH1FzoGT?3hppr_`BYjzqsy+3`aVHxKg zw*|_ArKG-EiNFX#vGHVM8eDQvG9sXr_)G^m zUOMGkrf=1awQb{#i>AF{85g?5ZeWYL@uDP_f8F+d%Vi_IW?{BgJu3U*H>y=Nxc6$H zG*mC>{cfC4Eic?cb0EiqQDn6yU)P&VA@x0MipGFagV1{_g93dyNEfY{MsbsK+OG|3*VJ4buCCEt2bZd>$hU08BEj|q)rhIRP6)3Km^$n}! zZEj2$__ySn?uO;(fwE!yjqVx=Dj{)-B(Ut7*(^eAxsF$}XgESXD>i>aq*ET$?VQ{du?KZ&$Ps;v7hEe?}QwZol>FSo2WtJ+I28I z$@kt}f4blJ^B#?07lY#Ri9!oO;)Dtq<8NeR@y<|DaimyvX!3J`cz@Hz95$O(3{&lz z&SMv!Hh`>AYdUR9F&Rgnan(*4p@h0pYK{ap7poYwzv`up)&WQ{i2s|tqYZnb(Zru$ z#Ux;Ze`KrGT=F_5X*q|{LC1)$$Z**x6_6~z9{f5(?VyID!x3uBqdo13!uFfPV%zvyn#!X(5&+lLl3FkdI9 zqTM!mKV$z-|4o5pp!?l+cB&Oc{7%^{d=|3k)GFV66?&rB)0yd!NZD*w_* zsQiRRfJQ zg1;jeq}^?GwhhxW+MNl;O@P#CI)2k$lRVVfrUz7})AV^EEOV$OKzPuPy=epMpxN9I z@2@qn0Jmic2oWrFHOr&z%ry2h(2F~cXVadBRYYN~x=$M|3mc7^Hz9yu2N+aR!sCv^ zTMgp>NFBr!ft)Jh3UQ;m`jdC>+jq=>!h=mr+xP4nmdCa;+ThZddJ}7=M>|ccD$5zm zM!7O^@!U&i&sHzK^7?7~K4H9I43wKVclza5K6Xx)DbL0h`p7FE{pjfns!%1i&;;13 ztLFg_A7)+6h#{V5NNLIPnZGnf@&2G~-d~AVP4NrkFw=54}*bX}u)-gpD z!&x_=(;HNUSBOG^I%zc-6s^Myr9miL29zjc+u(H+q%G|Kt^uI{RHSo*kf=r!%=Yep zX<8dryAE{Zh(}3%%-}^-0o9RpdjnhE5NWjm22ln(!mDu73RyU2&JYD7ybwdfF>^8j zA|~Cam{ZB=KN*Rfp4H^^y;3=r_P___gWi#|j#)QeHhoiS4%!orA|(FRM_{$gx0NSN z0E+q5hg1z_^LQzwqdSdSr+NdTzTGJ`fk0srJ3(^>Pq)qLjZ(X_JvlW&Womvxp_(sB zZEzE1La_~AO7`uxw<`zv>N6n6NXGe;M(YrbKh$yUwqIbBE_n^JV@*v2k3hfBGeJi2 zP}1v`V5q(yA64I9N$UF(g_Fk@rj7E6#i!4D6-)`&n4_E@%jm zHmqBsdPj)Ui^S-CQ`#E&Lqj|ihDVx06LR_rrJCkX$~1nATl|bmE}48TS)OlP?7+yN z)Y#+#!6dJ$Da$Rl$;KBs$v>`Yut~leV!%H-W?6vLz-tTce8>zdnz%Ueu;-2y5`EKtKtk9QPZ19B4MN)rB$7siYJ**ckktSQbfWJi3>-wz$=jp7cVW*IpL}vud{Rr`lhqSw@fbG# zX4|O27zaZX>P0zU|4k6A$va)M-7wbiZiI#!+WSb;wl3{@1Ofd4E}69se2 z_LgU-grFI$PlKJOdJF=L@pKIEAcO*z`3xKc2!%uz1i_JG8ftv7V;U;n|H)DDemlhb z!FgEku^KyOEHbt&62}+$imWLmqKrN(RGAbVg_i#m9p%{-D5S9C;arbgz7Ye{d*3)OO| z)85GGq4IL7+g{GL`i;LpE-KIWuilGeF6pJB78GHj`MkcctQPVL8))e7q_jzGeo)+; zf@cLe9~qY#I5BENbK6C+Gp5-NM75fnM~NqgbiGME>HTZkOxAfjRsbC@RZa{efKuzJ zJ{lQ))CJJjG_*${fEI6~01|C60d)0#5aH^{6bbaVL!O=1xXjyT}hcY;2Xrtq|G`0%S`T8K8*;XPTG-RwIrcP)^k9cy3F{M@K${_POWH6z9|q{lN;LQ!qQi>@*y6xY@~&7AS9Dh+oIX?O@q z8wC`fLirTa23ZGEOdF4%fzReyxV4zBZqZ;q{&JjB%WzuKN$XV*b7zK(4ON2~GQOvC z=jvzi5{3v9yPY3Cdr`!9z$?eKw+#HR0V~CI3to85rcrBHa02lgCY)RvFiGGw9(jf* ze5+umfdh;OHxXD&C&;{kPLpd4i-9m;!KvE_UtzW!xGQ&S*m|(J!HgWjdMV5po;>|+ zz?rLdt#BE~K`;n;1u;L=d?De(4<)hn!inD0)HHLUmL59M{|`>a8`v=Mr>bqcy~*0= z9%Q8sepf`pstgP`yw;lKn+n~!Bdt8DAOi;PA7&jUL%ys?uDVrvAp06q`G%}0TEPKV zKDt5@2(pq)P{@cg^+BpqDWDiE1v?<>fQ(`!C5Z7|3}Y1Sp_mV2&a93(lji##;!L%o zZH;P0`+Jb^QeKDT^iS)@a!^Lhj zQ2K&u2{59Jp=<=JV>)49qi7vNC&j~G8Wj)!n$x)sPBfb{h|HN0;diCQ z8H9BCMa1e|WAX5Uy-|ktzWfAhrb@vZrOx(Jd47J$IMbzb>mTJ|HA}{%;^ax=IzoKv zh}5xaEbtkQbeopT_K)S#EQ@Vm8`CulE_*F!6Z=UNDVHiGV+G+po`t{x6QT5U1g@YO z6nu}E9&+k&40u4Q$c;_2*+pRo(Hl*QndQ4&5${uiMcYzE5kPEi+BkY=;TqTrV}KC( zi$GdBs|N@=p|3kYaa*;_&h|^jE9>DWRG|$IMO5U5nT=))t@bn6%C z>>o|FJ>N3xC2V*@M4XmO@pz#2`ar2!{GE(htXr^uN1K?!g014{R-emUV3<~?Psm$c zVW4;h-YxnP6KIJUYYaz8u7H52Bwx%XB6*of1``#afqisLFttkSbdMvLV%DF@VAi3H z=>JXQ?9ldiEXnq|B;$_AtK)&%>jR}`@vmmgVtvW^Lv3OXEIE&}B?p#$@;}th4h$j1 z;k@ZFZB3pOgr1YLVy)KYVIYn%4<)MxU8?C#P$DNJYJhRcY&Mbc!m|n#72* zK+=RR{hEVkO0Z$8GY=oCS^Q0&F`?bnC)0tG^b6qJAfM^*qg2q`iEMI(@UN@H4Xa}^ zg-0MtCdHV)mBE-pFE9T`<6?bz=^f-_C6D6dPleI{%)m&SD(CLHOKW9dt~|8|<_grL zl*vL$+pWwN4n1MI!~%~pf>=t%q#7KDD5(^O{vd-xhn+L$?$OzKN0a90{&dG9ebOA& zTj7&NJI;R`+lwOKvFNAx>|9wp$ERYH^@C2?wc~qPEamu~&csuW@1H+Mp+FZu(M5*B z`pipfp3_9)LF2URaudJ`w~5g@Cq>9ks_;Ri!~IE+Y-fl2&#D@9xPR{9yYwMieH&bX z4H?3c+zK-+iex4w{A6*_avjAfv^w)pYih8_$s_BQX@$U0>`>Jd^r%`ykNglxMC1a< zWC_PGL9D35_*i%zAGlq^F9I(YdVJ!p2maW?E8-H3j&b3~Doe(j!ALEY=GNaLKXDeK zomA`GOQ%&W*73}0K-Cbn267>4IA4%HT~6>Uq}r^f6_^C!YiY`T)YBx6D>Law?N!hK7?B3T^#Kxe6m@QT2=O^L| zuxUM8nxCr-7QndkX+K+9JYF7rAI$JH05q2w0J+B938<=}{Ak8d>e|S&`sfU(@V}-n zs?6jlr{B(2)xax(^fWXqbp`c{pgCj698%wzR7F}e9U*+eq=o8lE5OGxR)C=w^B45xBD9$QT82Dfiq&kXd}4kgqoiEkPgGJ$DiMR+ICHZp1w#vd zHb}nm1EgH}-*x>`OtO)|B)XdLA${Bjj26$+B3=}$Sy671i)@ozbk>VxU#9C7$Y>Dc zdt$W=QENulGFUD0HVD^BHfeB6K#EP{5oA*^P9Z_KhmhbVW!eTNa(v@oaw3tP;>SUy zo!KegQZ<;J;#Am9@ymzz?Lz`h1A!KW)oEiJ{!Ci_1omsQ%2P}r6qJ6MQ|y_1H;kAj*#RlOKt_LfrVVT zEPWOoi?Fm*oJNHZCL!ugO>x2yTyAb?ncg*Y4G>s-g^mlJt>L1JDMpNNjmrv=E2uon z2}wne5tZc+;n0yW2iZ_*L?bZph(TCI?NyQQh%ll2O4Ia2_LC)CBEa;IV+`(KueVWm zTdRwT_$e!1(Q%@wC{y_$7k#&d11UX&52e>ZfJ$=!O{DWdE4|o@G7E0rN%{T)Fh9QXa$P4AA7t6D68E0?} z1m*ugG7`R#ER`tp09B=bD*6l92gCIG`2@EfDA;DMFla@uEJp; z{0*R0aY?t>((Gjj53&JMBonjxDk!%~#j^vkTMT}frqW)DuI++*jU<4Cs`=Q^>|r~t zZLRD42?`Pcoiy)3C8h@P4F?t z6MPUM=shL84zhf}<**RJW9o%6mWaqho}Qd#zh9m#B3B2N!E2VgJn7&&WSfJprznR9 z%kI29$$NY1HDiU{6w{()B|;8lB7yD=;DBejP$+9C5Cs!4;E76NIjK~w(!DR$s+JtO zGRs+skY|aky+j%c^tJMgCWT4hat1O}BLh$3ivi%t$(Qw3cFb?5r;aII1t2N0pW31L_ z>v^hfCG>)jYK3QGwMNroNDqz@NZi{8`_E@HtYkx*QcsgfP1=e=rqnM)kgLL}Q+tH* zW1cBwL1Jm0r)4(fuq_F>I70@JW&DiQJ(uO7Ud&lsU~Hn`JC$i=FQcdooL?Q)(0wv# z=vMDSlS1WQGRka0V;^xQiixy>$-D5_YMMmEx%SDEyyaj&H(OdLpA2eN@?sWKFb`&0 zwJ>Ij;*E~kVtFpWY%VWmF$MErrd5kzwirXR6N>?6$Ma$qQ!o!^TD1^n3$x;lPP2vC z69H!Pc`=JAm7#_hn7RyEjy#g-VR#v2a{dJTxgS z1(klD6s)!}1@lNWty*XiU6>WitG6pb7%!8R$EsR+?2D8OVWlyO@>(P58o8>cM82vaiL;PN+~W>Pn~kwZL8)xEz4NJ;WT-3A>GV5r*1Wy@V$`U zRGH=Y(34};fqQo9Sar9m!4$=R7*-Vj3Efcax)yS>!o5qJG_A1%@awkUkSFwrHgWvz zjwMo>-e3VE4qUKYx7vX_!DV)(cBzBNI?rj#7%zS))#asW!^U~J&lFLX=!2c@*_4b2 z4p6vnkH6x@h4U4zsklOJBS9_M+>%kK%%7~x;yMgvS-aD_q2~7cFj}KX#(wS}lOT}1 zpsSj_pBst=YCLF24oW%?)cl<>fyz|4GcI@+^h7bjbE9H}f11PytA7h|E4YK5uGhrW zM3O3g<2@u6-4fomHXtMLLz5RCk`2?lYnIh9tojC$Ju|7%AraceFI+|LTt}WPs16O7 zbtXD^UR6KAG_xhB#!9LXXmKs4yhRh<0Zdx3i!`|~2umN8ND+?#JzBk-U44SkuQK$j z=rTJd5F+UY6LFsLVPqySK4_??yrmb7aDS$BNT637q!)8S5;Vay%SV*Rd{k7S=efu- z2te-*(S;cd1PK&gVall1GD#B)EKHnaU~*$H=2&mcv2qCl%kN>1Rf2tSRD%5%5(WDU z$SES-f#DLqhSY!*Dd2cE6X>tYy8%52@(%g2zX{K7IM5fOf^kZZIS(MIr6Ct2CKwYS zDV$DS%8L|2sxq+32aC|+u%vVulTBU=kir)l*%XVvGAb7T*GVki`%1u#iiZZdac*%U zD3`*u6|I;87sE#7d99#=7gtbj_4YiTY7j4H45Dsj_`W_a!pfjBPWC<}_Ha-kxRM3Y z!c-%D+eaIOsJOYpgiu)~7a>;54S)*YkN_n0_W&k}zIFzEhdxyJulitwc6y(Q8wjR| zX(Pe+YLTHpzVfuO$b>ZkYKY03c#)+5t+AXNXVskOcZTo0=K%q zGAj1`Uy1B_zs8E-i?C* z#!QrAjLFdy_e^2K;7N~^?2UxNg<11PgfkIm#+YWP=9rX?G#6&UnC61sG5+6a_w?M& z+z=mH8U}bi)WIFMNWB?oG2F$t7F9m8ON1gtr}7kf1!OmvG72lfj`a+`&EDgODO0p( z4G452npz?r+<9ryeBFov$FSwYn-84A4*Gu#yZ}9wRVAal3cq-O0fGvkluhH=K=~JA z^7+ZhKERu7bjW~Bi35mr!wb=PHqhSdPMZx%t^e+*7Nj2}El9op5-)RpOQzK_?S1yINIhOCfy$!8JZp zBdAqvhdDJ>x+Gt*qkhRD@A`f!-uR6S-Wb}j^N`L+A;Zpp+Epgn&HYt67m?R-92>z7 zpTtM+g{~@A`khg+(ql=iwEA!9tVl=`vEW0d>~y!mWRcq8q%%R9D1qJ;MrOx55m{Z+ z_|nly=Sd)xp|!7wP0Gx9DaGSfY_?lrvU3=vDu5lkG)I6BY!Aj`oGN$j>@iltwN35;sPY1*E6XB@`OMgsOFA(2g1h@_eeE6B(9# zAXj##L+u!43EzlaMVR`e!BqNFp!ucJAs%Ri5IKQLO!I1dacE1c@Oa%|#@(2+mB`qT z6(x1YL(?xfJ)+uy^kySKkF-U1P+G+ZjvcltAp|X_iVfOj5!w;Vq|jjR2xNeDmei-x zn$(Yho&|w$(IAZ1jh%3v9Di-4Ol5%axZFi(kFjjhsYaZLUy%op@gkmvM1z@A z#GjYzXFSjdqB(&|OmAu3P;?zer9%lBDS6) zb9}vplQ=+0YcHT=5`e{Y0P)HOFfL=)8`rYJIF>Q6*FBlg)trM*#41bWU`+4A?V-1t zRFfH#N;e3+qR$g<5YR$fpQ@=iQ*~>=rd4Ed+Bgl`(5?^Ain6q3A|zEWniBBJf=5#V zULQHNaxVGKfY_Iu92DC6XF!jg-5Ic~YOv7O3wMVk$p3qo-x*Nrw8WhOognlql;bTS z!&{KW?F{0|ERh+1d}Y9v7oy&K^vVEnje!;oDX+F(v;6CpC4;F~S%f4%RjPZE+EDo=frLQl{OIjQ4SgS)Xc62+vGY9^zc-cQ{VCo1V8jUcO{{+UlA~93I;GCD=opNQD!k;pp(C`F-l+{|&g_lGRf*o;UeUuuk4~;Ht zd#CF3FjwnTaG>$H+Irg>%veM$ zBGL^2_f^ONAS}?i-NqtB)O=WgJ$4rpZJ$2qiYrMGLR5E$(C_qMejkv#7Uyh!4OB3a z8sX`f8MKT|Wh)-X1#eEtT-XsSks z8w@&Yk^R;N0W*|L?#!m34FgSFYL`7v9tA2EHwdb_bWly93YE=45v{4v2&n2go61Lj zt+f>LQz=Fz*>;@CQW`8J@wKFe#H;eU7~N@&cq25c^apweG+x%g0<8e5!coAW--_G< z-v~&>C&TJ|m#AaLisKbe6J@x|d+5fQ$UN8XreRgjTN|OOFV$*Y*Q{;h@&tZkO=RXq z>!WG1e&m6n_g#SzdDrET$pb2t$vJW}6&XW}^!`SMA#@dwk&S9()WX&C^;Te@jlF<^ z&hGjZKbN;cX;3ugr13>=C0eNEl|Q-f{E2W>-t73)B)|0sXzA%yhC@rg2PlqPheE5O zWqlbAt%`O%5ko76Eoi8Tsq^2Hlsu3azQ{NNfvl^WP-$SI=UYQTWVy;ge<~T6_>#yk-~~qy!m<>?XKV=@Tfz#AO~HEH zw5%*{2DhP|&otT*rzy6LR*%^+8-upPDDx{QWFArWk#&2c>skf;&$Dk>%Z2iAmt7|t zP)M>xEGT13*w*C)Gs+IAr5jSlmN02$O|Z_5En&55Be`(>7A;}Q>+XDp*WJ*rte40| zPkN;3j%d9vMl8??Hxu^jX4^mOH!zY&exFfY6;o#7v|*^T&z@dL6@Z##SJ_P*1&n4EP4ERJQ7&N z2aXc>86%LGTi|DR@mhrhy{KPoN#}QoNX%6NB(y8OZjq)MBt?fCKy95YFy1-)1Ihu=1<#a>5K87{t< z!G%LxoqkSdS>5Wi`VC}>QX*0_Hw>j{2kW8+DP7nu3X#Z5CG8vX8!qNg#v>smWc=bB z+CC>D5!yDU?Mmmh8^*Pr{w>l}gOowjT>9Ih+}~y{U_r& zO&52WPvr&O~aah!y6}Ga2Oo^HbUlm^{z5bS0&nrDf&1<6g5|uQY*lVz>KWd>3A(JFyI-BJV#ijCteF8CKKmAi2>J86Rg$bDrT^ zE$}z`CLYauybGy7=QDt=1ESZk>Ju|v&z)&HHM2R>wAW@j+kV4o&y^Nu>bB<>J0Pct zj2$!HwI;HqwNWOx+j*u+X_!i#?WOYk{E~5|>%%`@69rCge2+2yX=%_cN=>a4TLi1lCgqjk%bMPo5&EH*MqDWRH1EIbs&%AZ-g|Zj}vsG2&Ine)JR)vZlZ1aawu@jiz^Y%TT%~>&ZY=&+N3Zh{!mV5hb!=C~?idii|bkokXeSS=El|H}Gn536Vp$0HM^f zOl&x|Y;UrnP}Z zxWIw)Bp*_8jmbP(GOL;KzKoeM^uFbf^=X8C%dQ%G=Bu-}&DbN_(u_T`M6+(=g+^D~ znhAH3L;FK}v^Rzm7r5FWL0;fZPJxjR#%_oVWNF_EGGk2Z+aRBn;HZpBa2(#R&8poN z91FKmaEP`v!STZ>g5ytx1V`^X$AVL?vO*AU}cLPW4Q=GxuguY z8FuD@L5|vVxTnIMh`Ac*+NcKlsic8k-M@d|KA#&KU90X@*)-JWEA0s6Z4V7RL3x-XBtW)=B=T@x z*XRR=CJ4B_L*$fVUBtE7Nfb(jplCz@G$OG|w@M|26p<+#VkVs!jxvSpCFbS?zi+u= zLrPn1ke5nx>u=FE%f*y0tWPp$#7Jpskd5F#VFg=ib|K*L7co)DEM4@&G(jpa!K>nO zZ#SL}M@oEUH^ITr0%xHpHQl zc6mXbJ9*$rvSB5=gouuDwcJ}S%$AVE1m{-xKtdB(XLBgzFsj0#WI!#aD@~P}rVg*i z^vvAgQG)y5n;}?Y`y<^R zN8gYl<8O|Nj2}xR<1=Y=p@nI7RuUplQPq|IoY56s?Yg347d>I^)%C$)0wg@r%A}Pt z)KU|Tj&*b|dYc+kRQiJqDh<7$yrGj+Ur>6-1_xZDPI$y~l~tX&=TQDb^@fh$z>weI zL!RJUdx7*UVcpbu16oiH6)Kp#?IJb+&;ZUo$Y#fe2 z3mJ#?cfsNyjOV$G!?__S8ts;GINY*ECf1Qub2H&GU^R@wQww5@apz7o4(oj!PlqZd z`*=Et+~3hNC7o67__GqVBrS|;N!mz$d4e@xY2=Hj=*=He%J*D{892_jG1@{>)tf`p*p zsn-h4a@8dt{^iSL$Sonvue6B2lk`VFPU2e`dH9D20o>i_zA>S)_IyenI2rO_=ndEB zNq9(p);CqhjSRC9?7)SXnxlz{gQBa_-`43Iwf?StiNr{rkSZ%iWeegYV&AG*iObO0mhc}Gv~ZMF zY&8{p5&L!!=q^N2qz7D8G6Jsn9nL)7%GmTuEUrt2a`6DGTaL*Zj}ryR?cs4!bMt!{ zb8~35_Ivt7hFZIuL0yZL+ZUT5+tOk)ew}D0gSw>VPO=I)f`2}|6aCsP2rQ{)c<{)N z5iWQ=C|z=htYN_JO`#>%zuk%?9S;@~NwLu05lF6G8!RQdesff!>la2Ty5?@9=n`#d zqU-lkMAyFzi>|NSvu|G@c4W*6&I!4{Dt}Nq%@r-!y~NRPP$e*yi7g!Bz@=dFE zF9K;G{Y-`_Cwv-WwY44v*vN<3r>D6AsI$S~Kqgl(jPlx49-J&3CTLeX6{O>?ogWJ7 zpe6=rkY*c79&5R}U<~DOE(f3$OQ4v1y<4LlF?S>kH|te^kQi^ElN~Cg$dwI4jrne! z2WxF>!_E-7g>k>*kG@1YA&w8v*MpwjGPA;HYOTsywFtSIsrg zX?A^!U!yHzDut&BU#!9l6iF8?wC~oIs5@R%DYf#%AecoJ9Ln`#SPU&~KEk(@zhx0p@{+>>sfm8a55R63}D8!xBmy6Am?mdwDZez`ll`6XIvrZQ|GczEeY{!P+%? zi{=g>o1?qk?>)TkI6m_8S=!52@9N#}A$4%O+p2D@Bl&J0PmX%NYj>)M5Nn~T2au2R zCkQKGPpTAhR;^*Pgp|b8qNt!A+=uLaj_X&O)~40$zj}9XqG2}G&jY=OtS!W5P*UG6 zLgIO$1HA)vYpuHhct=GP8cHBdWeZP^AndDVQK$NUsdvH6!% z6GhL)_b0+Hxp=QOkUtQa13_m(wdVJG4>(;v4CMfW((gSPc@qI~^)zN_?q zeGmyck%5gUV%MvfLhJTczj3g4)C50PgGar)Z7|jS^=_+ERg4G1vIi^~M%!%C&^^GO zfVypuhCg_OoSNObQ{8G2OFd|9Az0AjX*5Jl#w9hsx@mhhXVC|$$bo6DHK`*4%R_QP zG^Ts^p)>G2LGEfKvINlkMX~BS(oTB)EB)T1^bL)8mP=(oU4mA}kl*W?*VRw3=tDHC zz&Y&=Fk;hg*?#}rgOk0Z9jj9XQ7mLIMeay6avwdRw3}6$9KFXHzTfedW@hl%Lncm2 z-dS?ojhTM${Zx`6fRa_;YGHVM498(SFFrSW9P~WuuGb>q=}7?ogAzQs7!%7PgKEjP z{B_m_ru|IAZ#B`_5#L${ zi9hh~JxzyL|30r}VxoPbi+SyVQ14^E`Ohj#Q_4yEWUYa$ur*}c=JO3yW+X)IYuyf- zI1238VTzCgH^Dtl&2F!Q2c%$lm_&uwU5k`M0#Gn-(_sl^2{V#P;F;E%RmT+G#^^RI z%SR*cuc6enDkW%bR?T{yvavI?A0o&!*~irnnHE<{183l-wRhi zfJuJ!ar*ePFnV8ojXu6bAK#>pI@0W3HRAJ^&QPw3+Z^s$5tz*iUP z<5%e8pVP+|5DIhkuhYk6=uTHx>Elsq=zaL;_Kpx1J`%YTP8^S$42PSn{hO@qo2=cN ztj(LOy_>A9o2;Fitc{xt{!Iq^X1DP)L8A^e?&H0ANcHC9^o{lAr|BE(%?5Rj_2yaC zo44p2>&@M;rt#j;rGmUSl&YKehT=O}ZolJ>sMZ99YBPTj$V^gTx@)EX4<5@PGynhq diff --git a/doc/build/doctrees/pages/pcntoolkit_background.doctree b/doc/build/doctrees/pages/pcntoolkit_background.doctree index 26cc2d52ab050e5f51fdf32477aa2b6ee7a98741..004776a986682a9c4692589911b01be4737a4aa4 100644 GIT binary patch delta 6019 zcmbVQeQ;A%7Vmvc(k5+b6AM&I+qA{nl75id7NeBXc2S|wQYarqu%sdF>!VH5d_WPD zR{3b!=f~^`A_FM+fvh?zn{`A`fl*i8*#Q|{X9w36cV~8Xon2)YWG(8t_uQA4zE>JL z`p=#B?){zf`<-*|J@4Lk^gZtD_c?99cK7;cj%x2F)0@kd`x2>bA(^~3rb%p}Gg{1e)9wN| z`#>UmXK2(0>F@wFCc%ySk>P-7@H#u3UZ>09Tpwy6Z1ifKlKhW zLK9T3&1UKcrk>&|2-us8VP3C>Si}B|5yI7BPlYz0&lIe1WZH3VDS>(Y+3-N-g0v;n zXCx~HZ2Z&AFxM#=l(CKvrU%IVP?I&A>zBH%w0kQY&C1Wbchnd=H{mM{Gte$V= zlig5|J&W5TnUzxnj5WhfmD!o>D)J&|bIQ1vB(qy6;`y;=*r_smF=sFLu4GU_$4;Zc zRE0e3lntQ2J_|lEPf81@c4vArF=~B`IXG<$cFT=V~L#D6+j@IYFtV+Fh zK7)0Y?MQuC8X9H_gh#;GJrfQ#B&X+ML@@?a?okfH&@AsH54A5E2;CPdO-^pL$H9epRA=9Zp-z)qd!1Ezc!iDE)k<@^e0hpXu;PdAi!ykMM1I z4({IB#d;xBKK>6`7 zV9t{xGRNa|3KH<8ishs_3cM{gP^_GjG!)I@3izmU23bW7i&z0ZQ=OtMpGAueT&T`~ zN2?4*x!edXjE+_uSJh@yC%#~HmMRV%q=DqpNl)RL8Mhpv83(Qx;j6PV$wQRi#to@N z?@~tBdg}u63+vNCtVm;K_>PKTbA;)B_ONRxvIq>pr zEv7SLVml$nrq?ylNjRp8Z`VZeoxA-;a+#{A1oIpX_ivT_uaq(R=2Vg-=&daR&(vfF zPShx;TLl&?CqYehsUqGP&{sW!u9e7&banEK%p)`s{gaHuvTX-7z^1)0J_)ZYRc^NHGpEaspbv$5`Z)BZ8B2BWbusXJA% zF2}(5x7{1KhDr?;1i%e?u zwQy`v7FVyOXQ1N5i1ZpTHkFY%P}>x(=r&1-RR4mD&1xrhcx|zTbEurOF(+$cI2rR< z7=YuAx!i*)2iur~t>{4B8#XPj5V?d`Nt%@5ooUJ^M_^sEjXbL)eoCqS-X#`Vsu1%= zOiXFBm3+c5A1V2tnu!1ArTOFvwX1~wr5bWc>Hnfq!$(U?ND7c;Hevw#%4n8VnBcPI zWCp|JB1X=^#fdZ=ZpkOVpmvp7J6(6RO8;|pY&}V{xOBON))5)EDh4hK5>}Mc5+dW= zN-cAB6U+x$c@z01+CthY4S7V#Au6@JywXB`6~!HniF2&7l2cLKn@TO>L|WFg-b602 zI2<%DpD8)cE43I_TgZQ-xXUqdZ>&|1J%U_b*()|)-X^j10_a|JB47k=U->5aBVk{txUd?%HOOa*r-(T zN}Gj16!>Ut;QDoY$n#O)b1F3(Cs6aY-9moHY&)o$_f#bB$ZG5xvY@ZMfF2()>j?bw z_&_|(-RyXdd>aLRqf+zE1Zo~zZy_0QsH;-jNl7Nd>CWgDH6=zS2*orw3rJZMS3E8b zwOn=XA$LS^^@x*KiYak|E!5gsLOPf&PqjFd9P4B)#_m#i0Y&?ecM6*yi}oR( z&^^rQ^mw<{p>e!kxeqT~kM&TGjh^AmZX1`+jN}xW^^qx7q&3=ylm}hg=yalCy^77O z$GMb`GgYim>m$dR$@r!^&Y1A)5IxSo3+8Fi;(3d^A7ha&x?95Yds{h^NcD`lZocBH z=0bY*%}$lhLt;4Jf0Sqt%dWn?G#6VUhVqB?p`o7oWxi?s{)3%N!sN4E|Jl(@Tli+?vu%~|oF`XY1Fa1&Tk!a)*tZ z!l1d4ghwc+h@><$dN#&hc54?g9=N>Y5@(~I_{fA-g{SQ@#GCFkTr;6nLrq+hO3IyZ zVrZKNq391h!x~K$zRXO!1zs55QL>4?jQ%3?*uD1dZfEy3zsP{<=rqthk)0poKO7>^ zGcK|4PH`RK22gQD+8)IKTSCPTf0@8NV!$Ky&sjrz(O=m8SPf@-GQubSi=&fq>hWss zIhKK$kqje<{X#LAI|43;zsv1XrW%J?s*f?h;@;h)LQMC2?Ji%p9l>oLue;Oh^!e}~ zhN$(s{r2uqL!4-kG5C)&E&#dvRvJW|JK*;O{GmqZ+n1B(b-Vr4+}Y997ZOQX2zKu) zwcv+UGVjm<6ScosI_quB^H?-=5?#R;crXF$}u>^)BZW{;EQML=0WCMn3| z1oHz4#yH5>f{bYpS>l2LK9{DO1I3EB2 delta 5910 zcmbVQYgAm-73LgffFZnw5TfBVKq8L;1||#%Nq_+MVF&~?5%QA9Wboz!LwHGIu|N{S zkW96%janj!d1&g2T}$Kmh>bQ;>!a1B(st2WW3~FHW~EIe!I)*U?Ahney>o8@PFMb% znS0K+_x`@K&)xT&bKzZj;vK3V&_8nQ=n4Hs5?5^z+S?qKZJiE#>sF_u$I|HB($?5% z>1yuv^bt`P-XoZWyM#EQT1XJGpfuJ5`9ZM}aYD8bF9c$rkXQv_9f{BzR7pDEuqjg? z$>2`U<)E%W(hoxDFd1Rpw?RW}2qey_(hsxYe(0D3x9&&hkGn%V9nFqThtuxZGFn0S zXhPUq%yuH(s*grzFtINgmWMwQ`BspW z#y&_d44d-K3Y(5fn47Ujzlec&GM0#&*qFE(n|oL@BG$9kt!rxR5=O;F_WuD~6rw6$ zMU2Xn=VHb*iMC-ZKHJjD62st%Igb`;so3D2tUWVfzsbs`Yp%n3)@PRzVq>&z@KKJA zOyN|(S2@LGE2LZUX`2_{BFVfLPFT(QA0Z`p!!i`PSLz;SKTPaCIFwrulZ*mx99SMA z_raIBot9Q+k|C`xy?6@U@P+3#v^aK{?rUuAag6%b-)mYHuP_!C@)G>hni~0n#NdR) z;6*T&#>0iG*a(gPPhf*JnSQGE@-g=^Ija}T;ux)$@1SOJ61}GNa+Q1e2EByHT!7@K zMm{SM`;A2GIe2~bTq4o4=f{y0=vbTuQ3(e9DmIx(Ft|jK5+BGXQ^E$@){#ODwqRE5 z-l7P&WXqZ3Qs(te$SPP!)4W$LnOh%w(DM$n6ESv|WCrWv;lDT;z1O ztq3RoR#QEvmi7J$8x7X+ioBY|(7|UbmGo+Wdy7`6G?`$cXdz8O!*u>NOe@BZg$c%s zRC!C(;rift+hNSZ2UWfjVW2z(kX;-Gm2-B^k1$V39IfSqp}JhhR*Z^p4UZ>E>#=ra zC3X6MEwcc3s#Fcb!BR6F@u~W*^cFG(F=ea5*tbs{lI4hH$Bn4_Wz$O_?nMV`Ty@(Q6behmI->Sqg`%lvlte5t3Ha7nLUMJZy%j zDl@IudfCXm)XnOJmHbEzmk0E)(Q2aoS~oxAZnmQvgST4S7@|ByF4tCxno2aJRj1M? z(M>)KRO`rLHHU+0C4a6q(^Ed+$ytHJHF@+;KH!IHItTsH8Mrf*PH|&>16vXo)KSi> z>15rNO$;zlYvZ^eFy5^sK!f|@u64wu;1Uog&&_#%WWHaUN>*~)M#hEZ-xp(95MOmt zlAl>;CbbG~?X0-^yB8Cuf@@K8Sr+6cPaA3%kq4P=A$tW>JX~rXA$4Z*6vrHy74vFc z9(k2xUQx$)`HTPJ`bFd{a)+o5I`XmF|D>9OeS?`?Qg9b%#m(P1LPFv2#zGn#jC*c5 zDU<$)2%F+aCNs1JZDC1CLQCj9hmT;uJTq4-O57xKm@69Gn@cF%kv|bZplT7B2Ge;(<^x-!9DZx&5 za>IU2#7+JpezY}%9^rh0wz8Z&p$R)aLs+E`!=4t`&^LV6r!}$1{l%VaNuys#)*_4j znI`tx8DcAa82ioEeUut7dqHUZy(acqf3aho2{c8rZei9*26gV^4c^?Vrd#R5*jJtX zw9IE+!mZ^j$FqU*6oYp=WaV|+;N1@y@hNe}4N(MsJwoIS5x};;(fcukbl~mv9PC(6 zqg{;Ib;nLacM<(10(~c7m#44$1R*ZSxvy}3uh#@m!0b>fZ&aYZ_Y+v(drto}8|NFV zWiua$gSPGH7TTS&9ErQwx{Xc=e9o;NKf)viR$Cs5?2iDdA#qxf%>=QP=z-W z>gVXwb8+Bq5Wxm%B4a0F(}ADfbPNP&Tw|Cg_7hg(MoGCi!Z@OCZ)w za#Tm^NdtVCp09VKKB(MtiQNH|4(Ac8r)xMgFuFYShLk_FcMYk~a43hEef_jNlskHu zIkLhB`%ca4Vz%%8eIsqE!jRFA6P(Uwy_@1v*RX0r$apx2c{{lAn?wi^Zg&P@Z$T}yo1f}vB_lbl$gdE;h1n# zoR3d2*j&KoJT~2IX^9=!w6TM!C}Q&$Y$mW-&dxRBQf!W3^8_{)bex6Fw`ewv&FRp9 z{s8e+*4g7WI2+p>-8;59y6{p^L|P-9(g>$BA{=vZCN9omgfkf7(Oo>Ui$`_wh%O#& zghz5=lz@>QAsOAGP$7(~6tYobe*n9zJt`cK1V$(Vv+*Anh^ID5;1)&Td-#tFv?>C} i@E;e5)kzX~0so;szRG&s;Yz01l`{%;dvcGKkpBUtg85be diff --git a/doc/build/doctrees/pages/post_hoc_analysis.doctree b/doc/build/doctrees/pages/post_hoc_analysis.doctree index 5ee952c3fc4f2168321bae24931da6e45b7261ff..bd824185adc1c8d344f424e4ac0129b64d7348fc 100644 GIT binary patch delta 1095 zcmZXTOH30%7{~h!ZPkJzih+b8MPq^mEa0muDxyY#U_2;Ql+*$%+ZDRF55xp)^+e4E z3A37T(dfY_A_UhE6TJB1W|WKgxL{(4C?+&f!DpPAMKJO5rSseW_y5m)o#}dy#>SB~ zV!QaJ-`WAra?e4TlVp#q1cgv7S1odqXTKy0T#X_deW2Rn)A<~Jd09N4#!DD%=|VamwL zaVk=Oq`&!C?S+U+na{jql)EW#(74%rEpF8usPN|Gy%jF?TlJaMio zPA-B1*7bA_4#+ED7l9dgT23ON4&@dZ+JG{Is^ZuLD{-It08S7|6;$G9P4}Rcdf?Gh zHnJW&)dUxq=R4|IX$&?`Ah=3NXA2eBTYiJV1TiMSHLVeN!oU|36rZ^SBMf{q!NzbY zj8l;GivfBVa$nSHA=CI6ew+nA$jAQmCHJG2DF^)@jL#6bQ-n0VODg{Ed=WCvmc@x9VA%O%atqy&ayo3TXLEZnF@hC6_MUw0N0>79W|3aDbLPy38d- z)fR*T4V-eikz<<|sB4rtMwwfbIYpUElsQCMcXX%9XOh#h9q033k>FW~K V(=adH3d;`DUo@Ni?~m?Oz#memZdm{T delta 933 zcmZXTUr5tY6vub2+l*368YKB=D<3ld@GEJfGIKL9bx8@~&!Q;*Os>D&T-$zg)zm={ zO{~PLK@|BGsQG989tx_5EP4ofiRz(;h>BHYguy}|vhKMvC3-ph&gXu==iGC+zxWq& z?K9Cw48s{Q{QzVikZ7mdC3$_WmX3ChOO={Dt?nkDX){rN!*G-lEl| z2J^F2T0~Wvtvmpoj^@x5Jf(Tg>zcVJ2gp1yi+vj;G*7W59gKsHM#BgfC)n(+hq?Jg zr}O{yC;s)nxKq{+u#=hX+ri3i>}iH7G{5F%D{HDWF>m=TXhig88C~4l2MVHh0(mPY zp;r_LvwHg^TpDy7gRn54b_~J@D!*|hqE?7uI=7Ur*KGTy2s}oXSYjq7SH~|8Fe5-B31)h(!b<@b zlHhJ{EyNLI{t^JE;m<*BR`Rq{ktYQ(&kz5bR8Q~%EHv6cR_Sq##+f838MBd%dIpX> zK4TiYGKSY09=i`#t$zFnu(!8mRxx2_-id0H6Z+Hru9kpDb)N{eb^6>xPSBoBSO8kJ zuaiFsaRPfEo2@L@>vYO)45j?#DH4Vs{MjkrF%)9D1%p*cFdXJnDD@ahFfC;3G*btb ziHZ_YVUG%HRM?`z5*6~ON;h>66^M>BO|+wzlfCd~N%q2LuashOE4CKB!uVB)Ox6ap G2KWR0i!%xU diff --git a/doc/build/doctrees/pages/visualizations.doctree b/doc/build/doctrees/pages/visualizations.doctree index fcbac270870277c7ae86289eef0e9e3895162900..6181093c6b2aa9854357b7eb3ca11f8d1bd19d70 100644 GIT binary patch delta 5573 zcmchbeNYtl9me_Y-66*T=R3&Dfr`8wFSi60BPceljgf#_iy5a;Jj20qfjfFHM58eh z<;`5wx@Vx%c5bGPMmkMe=Q4v0>S5DrV@)LWrENqD(P(XLHF3<%7CG;@NcR4b zna=~e?DKqoyT9Gz^;J$=o!b?cZ&+V% ztE#E1ot@uksdYPr9HC1X_D+D;D|yAf=y>h@l`%rHpzvr4c+!aq%^Er*8a4UU@7=A@ z6AfWOFK$&usS@Dt7e9@;NS}xW7w3slaRpOu-pfv6|6?)E^};Q&BJMgxiU*%Ad4!{g z2(yBT65@)gYuxA%td>G)U?b+#AoG5$i4x?SGlR^}k9U$@zBwn*>|Hxy8b>Aa-G(6d z)k(kRs6xJbZjd`JK3hfWXT zrtVGavY;w0C6)9lt1`#G{aDjFaNlfhL8jQ4lH{#j@S2Vej9K*ZeIL#x-b_KQVYaZCL){PBdA;>6}lY2xyd@ekZ#Pe23)@Q>bQxbB-T z$vnWhil80-`Qf*9#D8tg!T=X)_Fj0L7Rj&K7wonT^wM|ayN?IEe{%6MRm*pu3UYgI zT_U0;am7c)V&34hw1w^Y)JU7DhP7YwRxTofwcH{h$=oEK9*kEtVU1lhs*=*pfhVAF zQ_z*4^GCDGP3oNbp_SB$%+#;gd?0l5V?(=W9|p6Z-UuGZF9Qa$Pa4R+F$OXen#=}r z`~d^G8nU@J?MflhS!`cY?BC5XdPDhje+1j@>}K~1?kqti{`ccN@$SbZbX9)R&96?P zYsaCZrP^4)26>efCCDk1S${-#(^lH2GKwRVn8g216nX1OaK$XBrq9F0aHOd zNC4A7B1i(sAO+|^Do6vp&F-ujdp!4~m%@X!7vHtV6!9%q`0Cm6&o(1)w0a$<)G=lE~ z8?XZhaDpcA9M}Lhg6F{|uo=7nwtyGGR?rMy0^7iL&;nXP8)yd|UK}YJ0xTN?yfb&Ees>$Sa8NeyExDS#%y7@cxF^?YO9Lv1&6^Aa1{7J zA2-VnB#nT7eIVnTlbJll9 zXN){&c^2wU4X#9|lw zXbw*$G}|@VVKZ9n^+rdX)l$`Hv)0;7b~}6Ja;Y3vhq2yW7U7B>*~V0jMW<)MT%MkK z)D>xUIvSl0cZHy>aH(re7L(2Bu-e>Ms5UxGc89T{5epid)#^aBsitm&+eHSq=OFw` zC$_s{?f8aiaW+(KsIl4_-0ePX5l?AEZ~6FnJblJdyC`DREa(G`5llxqWnw6kF|AjgJ%N~3a8!Xi04JTK;} z@$h0jA7eY~dg+GT5I#a0S&S^4=SO~i7Ge<~?Lkl0Z*P+7w&dHmT@%43kKhXtH5BW6 zaGFQ(OOaMe=itRYWzKRB&UoIo%a$%_orj}{oG(O05-s+<9cFhcXK?h}07U009G7`yIaydv zHs70gc{142;;b$DosnMQY&p|qyEYjh-I$mf`L#-eJZ1=#U$0D|w>W#gD}II*R#H!s zZk87LPOs58`Aj39?eEd?fwQNLl>4oT^WCD5_{t}b(h`-4&v{yOUp_;R zskC_4)8hQ6*J!;;i;Er>&gd&d)Fj6azCt?{r^|!EbDtIb{J0!0l=PM+{(rp`+pbB> z&CRv#wQ)`2-{p{@#5t}JAFrOqlE1j@d5G(8lI{wXV8k(Ag+w^;GQ`VFod^Y85*IpkSJ|zEb_$d8ZX_fCwZp3A& z49Mr#pQd4z7NedP?|t?gx~Q3Dqjx!oA&kau2cHSeRUQ^Ti%rhduA!mlHyx3f~xS zU+2DmmJ7mO6&40h3rkB&>8;k%TLc8)4>Ujv0ze=L0y+>3LO>`81K}V7M1ol$3OoR! zK@5lmabPxh5X1vLFn|PL1SXIOl0Y(;15&_TkP6a3I>-Q-APZ!J9FPmlKm>VU9>@pt z!9!pHSO^w@?|{Xi02G2Eummgx%fNTRa_~LyFn9!fA3O?HfR*3}eWkaGQ~n_IV7M#I z8Lrjsb%jp#9AW83-^H`5){^iu6|?lX)?-EAw^>3D<2T=J?dUxS4uKBP2@ZoJKn6C@ z1-kn>dVBOEt)^oQpb<0yEBGnc3bujm;2E$3>;${Ov*0<<44wzOK?~Re_JVz&73>FX z-~f05w1b1-5aWMBhbpu5j>tmo)8;caE6jML4Oq>OS;$Ub`=4fO2TXWvO5 zDW&a0&(d}*fa_Aov7y?)O!f#%iCt)?-m)(IC-(G*W_4KG77(fCr0ux9CNqwhBlSi7pTllaflw$a2 zsAm^EM;sgB)wRQ@XH_a@%|FOvBiy%H`}TT<8fF`5?s)&>0D=Uv1hME?f>}aXLRrFC z!dW6%B3Wj!M6o=;63r6B63Y_DGMnW=mUtFDi-9G9#mHh}Nn}Z4NoJYDlEN~VC6y(O zC7mUMC6gtKC7UIOC71f&|JY3L6i1)X`ze2ux9|1JOix=6LzP)_e32{?3Sxi79Fep{ zvZFdhq&({Em+|=#(aXvYId~Zp7*(=DhnelvjNb}!iF2Gv70D{Rrebxhn&Q!&Celga zyyCIMRlaAsQGLwYW8(hZk&q$MI!7FIvv5g8tA6C|=(r7!OTu*(9&5cl`U|r}$|vDJ zD!NwXZQ|-$MUF^MIm)5W2s*9r*Mp7Tj{VDXMJgacub50e9?dl3l49bxZWig3ago-~ zuaO@I@siKA9L8VRlr-oZS4ELN5gyUXrV){r_mANv-zL(mMv%NLAkOi0zDQ?;3O=0f zSTi4n@q7%+DYl&^9zWCJtVDd^pXVrhNTdKbt-)s@Io@3$(vKZ!3q>+Hega()T}fzN^QT>K<7o{R4r#&hxZQgT_A_g58(w1)lo@!%X@Bany_%Jgy`zDxA=d>1duwwmdvlYk zTPcRNb|zMqVj@RH4(!`{!`|N7PD)hN;y-^u#LCuK^l(~MA}+Gj`izzx7uPBS^8erB z7 zCYv2`?TN@}`8?R>YE<=WqnE)F+y>X*n>xxFzmfmSZD0MK{Q2hU9|y^wsT+^2Ab;*t zSiOM!`Do4m?#I?2q^!T*baQj7h)z5<)LvLQTQob#45mrvF4C!*yUio45yH|))Tpe@ zPBF?JYWiovVi8Bjn=&FzM_dkjByU*g%Tu74bmj1fRnFB956c;mzwfxOd(3?9pxxX$ zVU6>#X9HEUOdIU$E=cshT`W)^a`4({xoGhoF|iR_M}Dq|$*;Fp4UQX2QwD$JC(F8y zH#dyo*VbKCwvlz38EcC4Xv`le`A01IWO6qB%a@C%6ciG4X%v_4K+Vx6eNSDs$caDF z5)~+v?5Zf)#M_HknNE$fCI=EzMr+TB_K(x8G#e5wjp6SDzkYTG)54p)`|GIT(kYEe z+WKrZmuA*I0gubGv$H*&p<>1^y1}e`{Kci~$?0YF5?r}kUcP!Y@af5pE7|6u3ch^t zAt4*b`s+^b-Mcq9R^EG=-gn15X|B?5cZZlw-H$WtK^LA6R+u=s;6SN?D*VzH{f!Q#1;z z7LQfgaUohx7tdekzw_L>)vNz@kl1#snTPq2*Q(x6eztFv<32UsAFS_Dvsl3GS%=5e z1^>~Z;<Kl(?(pfQX}n%pvzldt7qH)^S1Z_tAld@)cL_ ztrBP)?k;zjV&%B1mku-}W_iwe(4eJNfkP{K+6qukA<25pLjmHk}G+!oSfW1ef(36 z*O#CFx$|sDar9A}?Z0sjZM(0#z-4S8HuhX_S@lpY7u8^+%kbyjfk8o(P}fCV!Rtiz z+So41&Lcg04r=%3mwz^G!+Tj=H^z-}O*3;Ml>M44X=W#NbRycFI#-VT{QPwH*yr8RxmoOZHLAG5yFaq5I`kyktZ(1Cb!*+0Ey?)~ z%z+l;=mxKqyu-T1Hk}`P76zBxTjfZr-XNlLvA;I9(xG^I_#CZQHniu6w6wNa@{_)42Lx)tcoDJCdV|dT`m;7S(>WUpYByQ0vo@GJT zz~?po`s?QQ?c3|K%rq;*C90EL>;^c48P)bfg%b%1KAV@VTp1W09ep-vU;LFU)A(zp zzAlK#EQ1oS;~b472WDfB*=NZHvEHmUk15teZ|{KO;$mEG^he1mv+|(*+)U2TQUQk! z_lbDh?y}*D3C%p)Zu?Sx#~aw(TPF4%Jg9=T(2P;=QGb4Xp&i|{@pWjs+sFleDf>^I zQaKj%SJY?^d~t)SwRI|XI~A)qkd)Id^rK5!er`G=%DHFL;TvDxv?U8^Ccl6iVMGtw)(ckgEdU4Q$Z-%st=%~wBhkNa@W#It8x7cN{#?#r|( zIkMej$|6$6xi)Fs+_*7A_CqhCLT^*SRu*B2eYVJ6(apD4sSG>J zvw5?Sr>EzoxQoYpcqJMii5A7-rs|U9q-l&d$dcmb%?B7xoj%K!FIT&9Bkt3c5l+CmlKd9%`0-Z_-QKFmx>5m8 z^G2RO|9pY{9f#N%sH6G??bG^hGxwS@*nBW>zjos^U4Hb-36UmA_sPudJ9bn$u=AP8 zGE+*%L%riH`WU`A!IF_Lq?P{i-Me@5$+$sNzo91P^zx~0o`E9+?B4v0>e^_JNySw% zKW>`V$31`Z<}X}WWB--RFYh0$4Se$C+fOrkrpeRqot-?qyopEx;dGlv>-USB*6*P) ze=?ptdGeg(Ipir-&Tu!+x^*wZ4x7ya^a8p$@C2 z#l{qNn~8d|PD{7hw3PwzlKvZo0%yd<2cmr<>#kd zWDy{AsVwA(MOdOd)uv>nMDv*01e@`(QlcZmiowWtKr|j2PI9DYTPWDuXVN{NO4{}0 z4kij?5f3rL@j08XZ+`1+)V6YHHA=hs!CSO=x>iSi|NhF{p`xi_R_`@GS)=QQhIxbM zjEr6#y#8r*3=$Woal^WG*S$9%E@L(QYBfvQ^x+|o-4*@NLx$cv&jsbqcs{;{O{jp& z>l7&m3SBznG5xdDjd`WWEl+C}NymCBtDAc4_9CN5$2OaLbf!b!m$y18_y^}ntykwa zzqlJ zslcxf8}v5bBC{oUI2U-hvM~rrS(nMafZ{?{~_p z??)6<6DJO#U`u;rV|8om<30IcCpz1|{whMJv`HFW&bNi zK2?@8$+3w%YV*z@@Ad0_F`jd?&XkumH8l#%#w4Fz7s56^fBu|OUHaj}rrzr4YPBW+ z3YOf)#$;WlhCVX6hh5|rS(h&7b_V}AN-(P|aF5En`#wI0TQg0rWtz9tk|Yu3nZH5b zt;RsNv(!(5T`-~)<1sU7)S?=Dc9UbfGqofd0HD&+-O({QK0aOnfjl^={`&I4&R5}< zhpyyUvQn!%Kl+qU44KgE5XV8fM}2&KkB~2T|M6oFXSL^ei*aP5^Jrg<%;MZ{-@bjc z$YB^|nl)A3KoVCeba9{^kVG+ao9gGLZ#`mCD@eQjkCel}MvKa@ed<9CvF`pQu?q?K(L%#XHhdX~&#b+d?}AP(cB3c6ho_{@2&rZuCsq%R?<0)S7s;-Ly$Wlj(cBFdiZGA42y@1xwbs zc=54Kr;o&D63sbDZTht`Ki(|hj7v^T9k%N^KVtLu-_L4N4Nk-$;VS^9vIfS+#vGhi z`v(RZjlL@ALuGliWAaPmOLZ%(g0?X*9@d8|nq_`&*8C$&v$`kC@-UMmeM$ zvR~tM$WP>>E_zdWmXFKY_j=CVJTdrmPbYBgCZzuZc>P9q?%Zi^a0H0ov_Vv_B4-ui zQS8Nw7sCbF5$;|rxud82uArRyXDemlUhl0(u6gTfA~}SE?L6@}>0R7mA9C3U~o|Rj5uQ0Y3%rH^ixwI04uCkShME zs;WxOh@?sUpQUH#@sADmzFy%5Hd`keu!Gh#-h9n(Q>mXojxe5J^NwA+J|8ZWk+U^w#99EY-n9s9m)qpex1udl!3;K3S$$ZFY%2rUsj;ID7@1o(WnM@rg# z3_*n102pn|Fs`oZ746zW-x@UXTVs*?luU{tkdy*8VnzCX?QC&08pdZ1Vd=f2J!e~z zr%7tibH$q5j1Ov2XEsVxUNffb5l@?tjkAPDriO}nFNBGw2}@whQ5|NdN2)1?Rs}y5 zc5K`BHo2m`(A5XPspN4$?}DmOHL6m}-J#YjGhR|)pM-{*Xj%e*D4@Zpur)9+_=r8o z*QmAb*dQ>a7m%UW5c)ZtQ$pK$J$*To` zw3Nknvv(BdwG`=Z+qR9ovo+{#5T$a}n-(wMAd)G~`vRe<#H^f|cznH$Lbvz`6g51! zsZ%{LExzd|H+dt<{US0BDGfB%T$C&ObB-TdC}AtAyChB2`1|+o z!v!g>KvNK%MKYHaML1&g^e6Ya_Z_9`)DJ!cDS5ImuV!j}@RyCHQtSFMn=?|aNx zqVx0n2OoXUnFfQ%mX;O;yld9D3f_;G4Q?o-0>#o>S&sAGZO9^rS+yBPUIJOFX=9=W@QygYWafQ`>cQ?0Th6%pw_2sm8 zGS))K6eW?_7F_!@lOxKlUYg%lLU!d3a&){G85GphxYx+bVB_sYD-SV&)utE&`UZ>B z(0;VI-;m{WJyl{#qtKGVkYVmY4e!~)_C%M>=cQV5z&jvd9nI>Yp8MFPd)fw=kHxus2n9hKA-ysT_M%a%uw5R&xIwl54KR)@=7FN=Z{w)4rx8ZHZv&vrQjk zXU_m$VGz(CFs{R?eD z10ZiVjn(5JAA2t5M3p%`yVCN`ra@h!uGI`@zj=47QM+J6kH2^-`YR_{64%c zzr%Bm!5)=7-BFgTmGLn-T7G6!t;m7hlCitGKfsq@!|C+*9UUFb8OF**V?D2*syQO> zlstKh*8)(O<$6Io+uY^~1;CwRxZGvs_b6G{LGC+|pZVYGL~b@OkG!p;eBIcX9;wtf z`1Rn#KeWUdS8!AekCK)%Yy#SYNJCw;ts@YqmDV=Yb;PJ*qg^DML33qLeA|YSsPf6p zZ0YIgX>atF2*Kj&v5^rm;Fka^*}RTwq-ff-|48xNOp2D=(WA}%_vgA>6$)2gP5%8C zdW5S%E0-*>{^fY~!i6m9Q(q!4Mu&x&IxeFp>(Yh;(qv1XX=NCRFbB~_GR!g#-8VEg z=9QoRahnk;h{`FFvSIu^Dsn~s2#q^8?$%{;;|GuBSTb}PCDCHgs;8!_0`{6$ggN=_ zy_67umQFhET(HrG%*aUVFVBuyHca)!_=S}dUL&d(xzhoqFx;>B*Z1XA2Yz{vwq#$R z*W8AC?^bW#oB*(`=wDk~+ZNRyf1om2zC(xIQCxiM_U)1V9nViJZb;Upf19kbA8OY{ z?^2QD&GJ@6HL|_D>%f68I_*X7v~tR$cae_m@t;0@aw`|NY-`rxUbU*peS#5e#i3i$ zDs|csr6q^5J$nHo|5~$V4X077*uxzgxa!-auZJd@6L2&5qoChi8hZc^Zu=gd?*y&RyXx>p;60s)X z8Pn^*>bMzwe58TVqPDya`-`x$p?-_G`TA@l=caq*d&ZxJg(U#1By0l7H?N&3Y_c?A~qBb&UQP}!#i+|>aRg6#Wm zilOH<_!J`RnvI4)P*Fuig(5w4OUiZpwZ~-tZVN{KB`}j3wzlaaI=O#q8iBg$8Gf?k zG+{b;u1qEK9ku>zw^GCb0h;THR`LkaL5QpTeI1!5YQctJkIY4+r8gF$rdBS9#_qfU zut!;JsgcTvmsU%=ddiMNdT{5|tJ>`~X4RiQeaW_|I8FQc6he zl{Zba`kLh83go03Y@>jPh}YiUD`@={xEDt|4hU=!=IF#k6R5L+^oYcnH$9c%EVg3* zz&YRP2s!sww%#eUWj1DoNVUQ;GCIc9Q4IjWG1zI%W3;WmFIZ6dMg6jyyE|!H7+6!X z?v$bSByN7GkmzbOA?PPUO2_g?V$TB-I53lP!jAP}BQz{nCG*urJCEnXkpU4$xoTYL z5*UP$@pZo0-M0pJ+jSLPDkC@JOKV#yp3`Rgs4Q62%5mStW|ZSqGawH+L3v<0#IL?z zlH<3)Zm^?R9|)-ql$OJAmtyS8mq#OKXDUL)l>8PxddM=i0uI*xhX!2s(8s3%7p|0A zmYy>5$Faf9*Ic9d6@_&3Gm)-5E3iB{l)*gRTKYs>8moYU%lE@*$vOd&?OQxm? z>-SxL265nM^)laM;>i)%*|M3ZG5MO7uC@PS%yd}dr)Ut zV{QF*;DdBLwr$Is)lcO=D1u#Nnfq;#gllLMg4JY8?i7d94`sm7l`+y=9bQgViWJJ+ z3W9&(%&$(ryQ;xSpy~!nR>_OYFRh7+cJGC~yH}7~#uDnAxSsdi=imUBy`Zd~M< z|Cz&}gcCl>chrNl1-C+2CJ%sCO>191D9H!A`y7l1%{{|Nn?1N-nXOQi7)UJBj-tXN z=FMM!=Cemz!rgDi%q^rZ$il97)}ijFv&6;3GX9E|*SrllVfOCMQVO*nrJ{`8Q^8)g zYL%mOK?_@~O>(R;^hLV@I9e zhGT~bE;WfJ$o|(41Bbz8mGWRwM`xp2Y=e3fYN~!~Pp|D3W9MPV?3w9ocl}43o9^pg zv#oXWZR_ZI_3G97v(kCW|5O;b7B)ei8l<@S&)m2S>c4H)OH>~6RPLsC$S`A&10e%w zO?LXp+xJv#8X0{M5&ceX<%hM|(t^rzI_Bj@#>Typ4GDWz@*X*lgs0-SMRwih&0)P9 z#I0^h;dmH&<585Y%Z({70;X=4FeZc?^V-Imebe)_jUjiGAG-U~lQrm>zX#+~xsG1y z-~TwbW(w}yz1!^Vt%cm>t>{Nfc_ekOFReee=(iTIuH)#8HlWB9@fs8JBxRBmceOt-*Eg)}Hcd4raOn7`Ds_XN4y zpC2}KGnt8`W3HX$$!?1&#I6-d*-^IFSa?DT`AYos#x@2wWABFb>y146e?p6Jwl8by z9tEco8j}Rlvk7#4LyEqCtGIq@7}rNl)0*)HR7nvacnlHsE#=> zAz?>tUX)IqQEvC7rzh{SuX7WZ{+6<;9#>QpSube!22N*CG#Y7nT97=Zs z-g6RZCJg4APZ^(dG@`A!HrI;uU+A-0Z^qrn$7OALM~YGpY^SUQ%~TU1X;)DSlCM&1 zpP6gn1(nEXqA`Y)XTKHRw(Z!12M_#3D(gqSoLI$^n}nV~5K`qQ z)1vpDiZ!WwH2^Y|<5c@nQHnAcQj(rM)eJC`FY~nD)@pHfbVt;5q-c}Pderhmgiby= zSFfhrz4w}{&j*OGfbd1fhwiZ)^wIb=yuH16XN$5)2cq_PXxG~#pHR2I7;M!5%85M)2Vu?I+bbP2!*SZNr9CVzid<~@KO~whOBMvL zn;M?n9zGEdA%rlQa3(k*2oK;%Nm-_nn$f#x|$6%`e~GkU&)b5Eyo2;??xZ%N@yL2g*KiX+blk6KD}6a>0P3q4f4 zf_%B8RG*Cp-^pxIJa?`R%07S4h`j*KW5y+?RWzY9uy%v$zH(H)sUVfVn<(VW#}Z^kpzB1*I!#L?FvzgDbxkIYbh!A*`CIZ z?bM2j^RzW4r-z=hhJr+N2W+qJl9r~6bV*&4HXOdSaCvgr=M{qS+Budz*Wr5U%cz#C z1JJ8n)dLp@!*!@osYx`!{V$c_%xc0TPT!i~LvNR$os-P@1%2gbzKEx%XO<i7Hz+HDvna zms8~PAe$Z!-IM}Fg`zK19Vy+^Ed>_aC$`C1S`D@rnp%-Or)w=u%hXQCqEriA#Szht z11n0B=E4!mtqYF``( z8C=vHRnS9lek97E>&v1{WN$Y>NZfE8r^J z&zJ4qPEubTD_Yi7gZLA87`A2Oi!$-<_kO8VvXJ*ILgSwVg?Fni?S&3X21wXA=Zh`q z_XsL+D?$$gF(88D1bpFaxjG^mU%0QM+N|WjV0IvYUf$tb-##^D`{WZ{s3*Q0+0X@0 zX}OFP8TM;Hn)*V@B44FkR;4N+UA1*YoIC%(5%)%r;LG2 zPw&qsxZCQg8<<%_AF#!@8k0U{Y^XyYJ+_@zHmXBU>Ij@Z&o%X&Ke#0$7jYYRjCiqD z+-EkWI8Lr)&dy9Zz}u1Ue&IN%(u!?UXwjP3E`hfOYGUp=e=*i-p zE~ma>FG`A(cBDAP{6Je12Qs^-bLrY$M;S(%DA**mHfTbF^VuZ!(M`r-KwWmMUQL9$ zS?R)shSB~yR&rfFpE*?v0znSrUV36^v-!ktpuQTw4Dkig(+wZ7A$*p5TzMgw1;tTE z4s3S23v>UyZlx%hco4CA<7Of-@?48jG{8fFI;E+&oIYaJ{@SXDv#WY&D7TY)3RcS8>R3!S2n)p2d1@KTrAaN!C8n{M!c^xS`;i6+j#I&?A|QPT8r!j2>onsL29}X>8&*d{c*tWqUhP@eT2&bj!`sY7M#t<2bbpTO| zo=h2vh>ep^m*?z=z=)g{@mR=Cv^_Qcc%xr+i7SfVqb~o|R;Ny#YSB%Zt2r&uou?Vb zk{bsqw04=xf=gm=hpTLl5ibQUjH`|r6Sp=Wx_+M{Cm>BZj}S^JIY7bpz$sSB&KAus zP1N|i@x5?8f_J3NTvAq6m-N>lO8MGFsbB@dWSrB>Yjz=Bkvk(+lH$49#F*2538Z7B zXD3NHvR}h_29ftTxl?>H(}Afm1N_n>VUta5lw7-J&2vzLA&XCCH~qe@(d0pGEdTop z5{#F`<5e5Gz$+rs?Cvridw9~wr@{d3!MNE&niK+y*1bm^6mUbHoiXS)ef;_d(&|81 z%?wZb0m{I3>SKW<2)Qwci3tz}2|h;Yc0fOws9)@n54QvloKEoG4UAOF=g`h%Bi59v zzljJDGZRW8u_M6`r-*P@1q|g`zy1}Xlhu}|1_+bBd=KLNb*vaSPhfC*a7$|_o z6T$bo45pRV|oMnRcGVFlCEx~@Y8I8DV%;_!8CqdtdDM!PB z;f)dzix*)EY4z;6bHc;nwzS#;XFDi_JF0&xTPe}@b(petmF(za7?NH=Ul$e@J_pJ7 zVzI}}e5(&YNHEO${a0R!7X3Po1d|VmEbCe+2ow9bJ^HFe37RR%#QH;YHo<=6=%!Z} z!bicICO~yPd-iNC)@>BVvOa|3!~6HYKty^TD(p&pH6mi4#egc~DL)Rd7_DFAsg1Vl5?W8^zPl2VZbNs-M56e2GM zYY$(-akK$-AcHEI5?_wO(1#HSDY3dplnTp>yl=LFNnl|V%8G0(|< zs&gYW;ny}Gk#ib5kUbgsRk)e}F*=odXu_=Y3sRmp;xV)s28Am{tkVh#DEFY2S&eD# zt4@1wd@{tGnq;P|MEc2@?Kybx;K%1D?hPjm5g$;isBwyDaj_MR7d!^b zVdI(e=k1wuTT5YzHT?DKm(yqw>~qiGcv5c>W8ugsSu6)L1`=Q1Sh0GJrEVwuK$bHp zPWcyF(k<-Jv~rj8$-30Xsm4Amm%DfO?k40I8?%n@l~diHnQaBm87g3Fb8-?<-lUQU z*gqI1Va5I_XVmxQxn-eM`=8M6$CgU+wS63I=DEapru3#qk z-Hk*`(M+l4fo+J>mgxXOIGh;-z3?c^d5jS;<0^ZmT`Zzm0iCTjJs6H4($)U4Xi<;0 zv1L?2_0OL_EsJwVC4s5#TTMsO0c+Fmm)_P0TtW=a%cl15*2 z!3M#6es4=HnC*4^{47c#+W9)dKSL%Z+@+9yk=yh3VkWLohu;IZ*l*+Q2RULvO_oC_A=j-D7B zYao0t8f_scG2h!IDdqcfZlK1XlAkGxX@^?@v8G+L;}8jONGsx?zJuq)e*5h=Qt*i9 z_Xh5#ol^XXnA&a}&#(s|(EOhBCNpk2X{D(UBY;uer-@|k8KmbZqo&mYUaf<771b{hDk)s&!`q>wqonvbg9Q0yVA_dlbT0B|$J0;3aZg7~YV()^YFM z<7`Ia7_*7wMHQG}a2cw$W!{HxV{IDS?_-=q$6$E*Rj%Zf5n=OFChK>Qf8@IPVF{*b zFm!V8)<*K@W$&$Iu7+#WM-4Ph+tJBPDL1})gc=3i0bJe4P8RqZ}IqL0I=f<9qh)oqId5CLqp>U)J0G< zs42_F0+p3Pyq|W(ZmIP5fONaRW1_OA`kZKCmkKXDTTQUS)I<8al%TGNNGD4KzqCkY z$iWj(N=}UqaD5&4;Eur=%YFte2X2{fHBxwqH6S1WEc-P$*h7RhxB^S4b~hS&2M9d< zz-aY|&+jT74{Oa*3SVJE^z!~iR22|H&pu75;{Bn8`x4`T#FapV|4Wqd!4{W+c%Zm| zuFUgzG~zA&@bRNd{VJ~9AdW7Zn~N)1j%-yd56i<5VME9z_A^iDY^JT5@uU^MfB(K4 zlkc!;0Nhi_Z5^x7^=qJTAmIg|mc>9n?8gg#A_$q^3}YBq3Y^l&*Erw}Jk~RKJ3TYe zq1m zZQ+Sv!i4_?EsN=_CGZOA9!9}a?2(kzf@i-5ixB_j&70%>3%GPDa}`!_U5q0t_j6S*gRF9i|LkzPIhXKh(AuG?$71Vl|#~Q~Df^u2zSz z94LS*G)j{H)2Efp_fZ~`CgsV?Gv599Rszrbw*J~Ua7x0g;~|11(#aqZAcLSH{F523 zDZhPnA!AzW@{u%1)5~^zv_Z5=%@UqNl=#P-T;v<%XVgp>FP$(*nYq*k~@Vfqbaswj| z4>yQf%FW^fBLSPxCRatvi}u&P=LO~H$lUy@jl5?xMeqAZ032&kyGW)u1xhOjZv?fK z2R$diI_b#6q#cuiqGc_oTu2{pCn+wjPMmf{-O*0pm)ddQ6+}*Qe=>$?o%NcHd3;iNivG9@eOj+FcmqhRVSdu+ci}WzXDR@9{3t+qbJo)xXqyq5q^m+%rp`?j zH)&BR>MaaKvzr*W5J!qAJ0i+2o@jL&M#LQ~}#%7lrU$3)<_uV+t_g$~6|3@L|k ziBe4@#e$D#{LwII_OT`~)&+=kNC2{DJXRfOrvSSUtX*J8$PM2zo3aQqFN0cCO&1+BZd(5Po3T5{hI{^mJ~}^xRhpOb?Fte92boOm8yTGLW`I)NC9W9gAax(s zcA70ICfLZBRJi8buA4||Fgi0m@O+v;gc$ltBBc(=&IMEiF-8PCkRYW{ts!^RC1qQb zqj|0ysao*nu-E*T6H5|pcQdhIPq-aFek+d;l@{fAo#|9Ib>nzn%?Z*WmDmCqk)FFA z-gHB-zor7o;(1ovtfzn3jD#hj@C~%P4mEUremYX9Bsx*~9OZBToLM*b7MVRI2fC20 zj}86ywe{U~ey*FxgF`~%2tnhZf*fNa}k=WtSV*}mK6$U z`lqHIz*{+k;G$X5SVw4Y3^#fajhgghQeckiq!2zM_5HpmcVXoK<7m4_QYW~qEw-Tq zEyL8G7ik#D^bHYA872=FELw39d2z6euGIdGe5bk9<^r%2$5ZA^Rgh?jmt$T;gbxR) zTM>SS3?SWSs1YVWwx%uVv0AfV-`*ZTU&9!4&$g}J*UzpDwNvh{UJ=NZ>_|%Bk7k4} zLoVqxJUE*Vo2o~3(3R?+xNi4*_qVIvH^@krQRT@{SxSqmt7HbAm0HdD^(zi}gn*MM zmw~+m`}&Jqc=Z!qnHeZ5=f*s!Zj5V=R<9yy5gE@Gb2TkjK%qJH0;PJhn31;!gzt9 zc74|>G_v0gT;v`|Ma&~`u#s&KgnQ1PI7SFdgw`@uICv_`00C{;5Iq%kKyzZt zf}3Xim|XpuM!IOy+W#{EeC6e=A5Y%gf&9SJ=H{BDiZ;&(f=Tb8>7Yjwd#~T^^=5NE_}L z`NvJOKd8HY=Ms5@G!kBpDNYsOjwhLF>DLuk3drfe$=!&DI1HY2Y_O$H#^PYD9eOOGg90BYB}OXLImFfsObZLHd|MD_Tq za_wk?v>mJ%`3*YBP-YzYar;ZKde&N)?NdkD5))7cw_>^L!;7BI&KNur6EkF)ywA1L zuRkz!&#guIEMeQs+jlb}*&cwTBFsW;Ou&ggYj>_(Ju)>MeAmy*PBraPlX4<_^QLI8NB6gi;64@ay968k80k(QbEr}6!E$8Xu2 z94Tei;3Rd9?)5U=YM{Mxv2;a=#{!Pre=IGsC zVFDps>?iOKAuL_kdA)o}>kNc<>^OnONgbtvKT7Er3|VFsAqRWbajMMQ3tB7%`>se? zu)$$8q2B6x)gm3oBMiySll;L3fDk+3ifvI)imlwJWz@w{OM?}Y4HirA04US5P+o##@)Tmsbh z18WkW7ZKOdFRMUDHsXN3zX6A3PbX@i8F0n$$cP%sb3NfEQ}p!>%L1O@m64_hQ9MAv z5d7nUiulF`(sPrF&^N{h6@kbXBU4b|PzFN%_!-8mKux_G;gkZ^XXAEv?%l)4B>B`O zG{j`s4^T1=p@KH90ao=`nCkmr@lDgV!amw8<78drpbsY%;UEFRDmw@vNmL%NKyjcR zZvZ$^njRN|!-vqL^Ss~)S8l6~00{?8-~xga(cRP`o^~n{g1f+ZWL^(ok};cn*uVJX zf`RbyNQ98(G^)Tgwf}PJvp3t$=ZpW@RrP*{Z`ryJqa38l9J$H99l_nxGczbRd&oSj zWgzJ@$-FWXAsH+=D!mn~BT z$j$;=pL6`OFM4CbMqt5GF@(t%6pyw8n?8Y1#6?AX6t2Ix=kMYPl#MKtx?Mo}e*spg zB67$CF1DfYks}%y{qe_3)^;EkB#g~}A+ZS-7)1c0ttwGK35ovf*|Y5)hl87ds4}5( zl4}uf8Sn+bTV?TEG%DLYJ?DPUBBUPVx#O^Ge!(x3N!*5bwbMi)nR5UACUfckI8WfC zxjUcN9eB5H4)qH^W2K4TLYV!;{3S= zUx)p7?qZVP`u}jk0r{=}|K}t8pM09<=zSvEfzW&S-~nNg3Ah90Zqk-(LzIP!3}BsB zP^3`Nli|F@j}EIs?*cghxD^8e#7SKre$Je*NkMWTE zYwNzY(d!$lj1+5^(Z1(!)!wTVQjk(KXuLdtdzOYS`WO`i zcoytz_o^`?r>gJv^DavLpp85vV4?=Rd?^@+*}2X!LIddVwpA|jXg`vQ?M$>3LX%^z znMfc2#d`qI!NWD~j&^(T{{2a!_aG4psl2#TYSC=;9_(Twj1$CiM0$I_0pv3kZ0?HH zjm4gxXhn689Xm!q6P_{_cTc{6bXAr`93#Iem!0wBwa0VHw`^p@FL5Os>&=>!+szp9 z3XF;p0nJZ*(HFvx9F8`FUIqdxcH0TBJs2+^Dj4zA^PF+;qsJjGfNo_8429s60W0bl z2sT%~_Yg#=xMRgy3@;GAaU>5?3>m`4bpoN2!DP7APuckovd+p*4nEEJai+_dsiJB} zkvj`<4IZ0BjK4T+Dey$qbW)J!UZcT{!vxf_6)Q$xC6ebR->#?%iW7h+ntGn#aA>uP zgv=QOOYhRKo_s@YN#fQcp0jRtdCJjpzQW^Um(UFER3wri5t zOfTc+4zlM=l2cQ@PJX?#nhvA9;9eo2vmPE*qGFF8Joud9+W-rqfe3wkw**$%j#66Q zph@nsX|dn!X4nVFF&Bym;p;_)=fKc`98|1@eo)Y-_m;>&wXrp{A3uJ$m21SSp7OVc zW!Lcf^>q$SJC7Rkpa-lTYH^E4;V;H8n-s7roX9Q(m$b2^YIYo1PY(2E9PmdP&@z2 z{96_uq?>e!>g0Y+cdPoO0`2MFFL0^V+&eeR4I3f$Vo!Cq6zflN@rKWxYHQC0>@g6b z+2tF+2rM|Ev~u4v$(ga2DXOzGWU#`ebvwCq?)QfKmqBX^&djYfz+_m(Cb2f1{Ff=1C7*wd>Tzs=NYwF1 z4)6tq13BllVKhlNpKyC$rMfSzHfzgGyOMchn_`%hLqcPUel)d0dZ-`kl#`77@;)<%uuh zdef=3*6w_mxFQ_nB%6Q~8H1xO5s{3)HsOc_0{9eFF&d9_SIBpa>5132g~{|?^p>qUlz#6WCl#f(an=dAOo)2D^ePGMBq6a&S?Q$oZC zA)$oS$tzni&(I1_F!@*HQz3ZpF$9H!ZnDWIiH3*JN}LpzzcovH{BalRgY7eYf$#?W3KIu_p0i9YI zb5N>aKV%24;VJ;+#NUlTcFD9c#C=`5Ea2SFnaF>zuT_PF}qF)ueLwr3u z6uiISyE82rQb>LmK(M1zfwV>jJkSjkvPH?$=YAi%e;F=Uz?wh*{IjdKmx`>?v&o$XaDus; z6u>vgCi>{b>ygOJHFt@LsS&vr0BNTp@z4?FHD~Jc{dpBA{{HFrzVl;`{>$64XK z?&S)ALz1np?sX z@Bb2&qIao*Ke;C~mMv}tFsu4a5oE%}9u~U)?_6LV)vxoRyL$s>G8Jo4U9(_3@M}G= z;smTBj|GV!2fW2ye%Pe;B>LMRLG*}!xm|EIXVEF|WAfp>%ylk@L^Quprf8kU?wG zsai@QSG%|l^%hh|fFQQu=j!Telf00S5E*8!8PGL1^Jiux=ug?{A0_@TNpA_2w>rZE zYk)!+NR=U1ShuiuZ`lLP*)UWWu(x$y2 zNH82p%fz8XE$b7R|oe}v^PF%d+ zkP|`1-t)Gb?G_Y#uS2OaHf!x?|zu}7~XBaRH4kwcVfh~)^=*}JRlB-h>so5e_aAVn}f zmSm)qauWI$py1D=_ZKc&6jsi@6BO|zrcJGSgOPN0jGAw2DE1M2hL$@81>-=#5WUUc z-#-9H4T1gX!|^cnVCWB{i6`cg?mkAUK?%b6`mB>n>rPzwCNsSB*lV=tJ?YX^UJRj} zwH*>yu%dr9DN&KeduUoNTCla`Kz*{V^!zjdWD#`Qd*Ov4fSyDZ$nc%IVT^+l@sIMr zn8x9-A&NY?=dU6Jgzm~njl5X$1eT7FZJ+DvCd_yDSvUBy?yIvY=n`Hb87bBhsR)f+ zg#kaAazXU%R0L1y5;gUNfVIC2ewt2BLWDl+4=peTlnk|-sLUcw@oJ@sM{JuqO{BBy zS~@_Ka~hwHOyhYSzQ13Z^KWoO{U`uOh!FBlO&otK}C`~=XP%R>}$(TCEIQ42{!=-S1 zU2DwjJldimMouUxdNe+VJ`TS>cPT_4JnzDh(ht4rb-E803N7JA!&1-wM0`4GEq?Dmh{h`LYjY zx(4t~4FJ?KhDfc6IqfdxCj6k@vWPpF2$sYXe$;lCB1phGgjqZ)rz=CBe3SJD=9+{3 zwI-fqf5VWOg6CVfcrlsl#G51MFB11CG8ND3+eJmBPU7q1kV%BLZ$FMOhSBa~Q?f2{ z%69nkP8AhZ>7NB5NluF){?Ju&zn&5EBCs@3)a`>y$-TPUNbs(^adQ5|%CD0D#a{4VK*oP{AN==^ z$?N`a#JcrgGs^#FI|y5^mUjB_jGSJFGyOnR1d8ZhK|Ub!*8xF68XMgM1o!I|Tn3&~ z10_k0qXQ8SmxBooXxY+WhpdLdUtQ2Q1T^wM^8_=T07?rdaYh&6#L?qSG4ei+e*a%H zarw8ATwT6D*ewnziE2oWyd*+mQ4y!N3`STc@kD^D|CV_k9!|JjnJNPRcQP)<;nDG| z;Pv^s<8S(uPBpK^cYdAxZh7Q~%Sm%YqD$ZNdt?9{wm&!uRPir$xY2r$Y>KK^uacRb zmmrI+!fOC0Dp#*ZMuN+U(9)ocf`C?cDyqFYPm}y5P7&ilHqBoKBSQC+v@#U@$r*?+$2OSc5izhF^>r-Hhs>>EjLUi8b4nx}WPRX0 zDb-*PlurBdJrQKU#@#bSjxR;MAg9&Bpg$Zp&!D5~EKHl{YcLcGaNV1!1CvpdLt7TC z==a8)TC2b|RCHr1>IOXXL~2oo-ig|<7e|LeO;Q2(nB_R6=Qla;2W$Uv^nRqgryhD7 ze?jzdJ=)n&9MJAP5hMqm#Zdm${Y|NG>-E^ODdr0ps4MHR$Don5=w<|=!-CoWJXn`W zG&gv2eO{e)?21=0a7a?nyTba0(fZf!W~2?ccHs1T4B!iqGgNvL0X>?V zFDupp!oh9Xl^TU?HnQa^nmKjYL1YI0ZIsJ#%Wyf6#>k%}TA(vI&u`+$f4TKkK!q?1vC@2 zj^}ZK(Zh*Mf)_|R%o!L(Yu(o2yz(R#iz?VpV2M7gysAd{00fw%OV_C>Sl6v4!v{P~ zk;&%OQFy`{rHjE!kbb7W4A*8V8co-2&<#+~3Qvpu5RtE|$+%LTagW~TV!V^u3`r(Q z>>v&3g#u)@vhp^x`bZnl%|0$b#UUXl06B-ZT;y&oU9}odgC(0`N@}NEC~yIRw>300v>^VYEd;y499GH( zJaPIry@P{eXNEW~#Ws;N_?|+MfN4=H_X|4OXJZ6i4=_v)@CVKy?`uE%rwU4r$|9Gy zmh*ptc9}96Kr{K!lgrzxeWkT}9?s@CYPVDFJa+j=m;NsOJ|2Q}tJZFuFx1gNjp_mZ zAsXUUy`RBm91hfAuM1J#3Wex7TWL>nh3O}GLv)DhOoL4l2Y`H0aNLs3CC#Bdj%*Pq zCfVVz3GYMUVqSUx^5cxIhqJM8lt_B3S(p~i5r;!Ek=Vz6#sa`Tz}y7#?A^N{&0A9@Oz<%lacG4q%usFk zK4S=6NNEf5uhy0^mKN>gg?q)^(BG^5Hi9Ar;8C|x1qoaW{q&NMgEPsde5(q!chZvT zAgaR^Y8hOF&WOdykn{q+GgMCw&g4}WtWL+}`S!C0(69K_FI&2lK@yg)FQ_8TrJk{HrzY8m${fbwls zA&V50(PXutAVksLY;W8oh$DIMuG2P=zFSsr0T|z52)U|8LtmGvqEd<-x@QT3T8XsSZ@h)g^kT zi)7390A!j4nHe>e_*!bsyx*BP9MB<10OUTu=bA4SSOq~KgkhSTup7Y_vvpLGuYFsQ zoB)6=mX*4RO=8`G5H*#;H0XC0_)!@7`AEd1q3>+p7|MfMh~j3F@P|Z%&^=*lGYbuVEvdtn}(S zVXuk~>{+-)CG>#={3`olkf3`@~0cl$cQ zKA%W;ZxPxcy1CLD;b)(Y>X4+jcoN4{3PL+iX?RQ_`5ixoL^i<_MAi}}8`5?3I&}qk zv}}ADPLpzYjUk3jQ1e%D(}Dv_&pwnaJo&Cm7gIoR-f}kCmasc;D%_EP&1wBZc+j>< zC?2h>)1WoIde%Jsb!F3;f66dFIY1qUGJ;Xn5kN^b61=U2T2~>ebp|VO%ba(=#MJe= z`!mSI_n(6FhC55sN8BMOhV<3EYL95Wzrl1wf$6ukMf@I8C-2GIKfYuO`oe+ug}?4j zuM){R7l!v&n{|+o!e$;)XtrwzCH(7iZFm>qU!ICH^xJNJ>BCY6bPnvhw5oorXPfqN zHM(=+#(4g@G3pCn@&D0Z-^Q3B*7M&g3(5@tFD}M!1{^ie@Eu3GQGN|6*Q9>!_2-&9 zPxUoy(9SWy_6X(x*?bc5o=|%xI(F{#Yxw|x>B2mtlcG*_MYyUos zJ%BbvE|I4p`O%Gk!HhS+9-@aJ{e=hp&Y!;u(f|n7UhMFc&IRPc+5Mba4V zM{sq%=gvuh{-U@H#0_~RLTW^IVq$->J<2i3uu0eztfdF4c~UUT6I}6~Q2COy6l(uO zgl(XpDshQ}PzMm;`QxJnNf1c&8+p9d%#nh=5nsrUpl0q5wB;;~|uCv=yXq84F?M?^^V_bZ8M4+;I!A@r+_54mH$ig>{YC=fK* zh^o9;bVcI;i+9$iT>~DY|o&F zrNP9x=J0o{^9W6i7haO^#j3C4YA}TGWGUaHf`iy5^%2PXiHM0qzUC6zlr4e65hiR? z4vVKz|Di*C%uUYD&fZBt;jXoYU%Ao*p`{Ki!*CnSU%7mF3d;gAeJtj@gSP~a(Sd6D zz6-Q9=G)lxL&_za*BEri??7|^9n*Vn7A$e7e2|}Cf{eXS1G0cKM5CxMj}=Df{NxYx z39=@Ldb!ic4VHc5f-Jy^%(mdWugp}G%u*`P7*1)1WfaLD45o9(&)-qvren!s`n8Vp z_m;>2Mkkg2?!}jmi^F6xcNzN{cVqeb$F)%?&xTd+YouXOa1l&rV!+i=^^fmt`Ujj9 z4m0Ql9P^`lpi0-{y0Xogzv2;wV)a7Y4xwGLX(T)dD*+c#hH)dWAAyRHe|ACoDzs?r8#|wy(O?~N?L51d4=7@u>|99ya=^xDstxnWJY8V z%0HzUW$?zMPFp0S2+lMEvHb`<(WXMGz-D7igF^{$lu^aDL*()$_dvHU;F0@MZY7OP`>Dzk#rEiw2+!} zBD!!?&(|Q`h(aS=fr&7mB!AFOLaT^6u|9Ga@+O*}-@ZLMdjnMO#3Ew`)h3krwiV_e zQCiKv=dH-G2QAZxsQClxc*{jCKJ}pw>Uc?+TtoVeH%yyT@EzJo=?1f5cT>v3&V`sD+^HZ>~s+rl=dlFUr3sJa?=U=jNIvyN&~594uO^O2n1e-eJoEXLL3GKEB3*M< zujl8VeYR&rdho@~3Mv9o6F2;Gc{*kMFiX814BSO5CjOni;iMVB8hM`^Am_W)a>-^tUkqixl86wxQ2(sF$Es z&bS(Ed!pp4!%dM(pJ2;L?*)8(_{&4lKh6AV{fwNi_~J~-8K-cX?>oMf?`g5{XAAG^ z1$De}UKn?D7+=br&x=N%Hg23}7VKR|r+v$pWp~nJEniI+xkUNA9EEE}xbby-r26{M zY|(3GU#FDu`djPiSzk%*r~2{G(w({YgIm*r+D5W6{4+)A&1CMlrdYr@qKw6i2BJXXf5T<&}Q=itM})GqAN%}=jm z#8j_t`tx=~X+RlWhB%ZSoPQB8-RXZS&1!qypQ7vUMFeQ8h(_PRlInmFRPrIL2^qVRD1J0h#Ik9#c?Hj!)wWgG*eJpNcsy!WUHIqApjYfg z4L~U4LqxTMcWHVuVhH-n21N~QY!-MOH#aw8HOR@W&IQ(p%2NZIN)d4jz zPS7iXAYQfk^ zFd<;g6ue{o&3E6mpbYl2Z5rTEs$a~^nfWAXfM_kR+XcWL4qZte&zJfB&G!F@mJ3)_EhL&`0|?lrTt@}9 z`&>Vpn|KLiiIS31+A9@OMk$O$a0&ADWiaiF-x{nh7sT+1g5<)G7~}M~n=MXhvMs6l zetj>x;*8T}+jHyn3hnitow~D?_m8~vkk+(!>*U&DXj_ zc`;*S;}&Gd(Ubt_>blIrE<(Jl1Be!Nz-qwlGDXRjW;+58D?T-^kxmwLJZbjrvlO9Z z;cR(I`=Mx&Jg2ESa7+C@I_i@yT6r&|WEXkIWfRF_;+W|wV~Q8PwNp`@74URVjX<(6 zy=ur#yh&V7tE7xfzLB8U%oZtl!%`_r)34q}GGl~*z?>WQrZda#SFblLW?6gJeyM=N)Acb_F^^QXrb|jgOJ=^Ihl$U^Nx{_>aH|BRbZi8uS8V+^ z7*t0%6=GZwi)P5#PD1!w)fRmYIv)%da96#y^6N+O1zEzTiX9UxN2}&89A?4Ns66du zm~ugPE(Z#`t%yfqGle4lYDNMfhD}-22GQjE z#^hmQh6&_|kS6SY@*7w+@>j6x4HVoLjLYso@n_>}3T5va4I7umM<5vu%)^>=M|^(q zBU`Xdl;V6~7GdKCk2;`gM4O(?M3X-gW3EOU>BA71B0sIrw+rTdz^jKC5IpmW>Me!v z8%r^jq1iyo&u;98O5=jK3!da5+-AkY=xLG=Xs@Gw|M&Hn7Y@$^aSWb7KWRKLSEwj7 z*q`cX^7eobhskOqq?!03g9*a{G%`t3%Zkw)fG|gnNZ;*`P2|`{{9rhErY6LkZGh|^ zdMH=`3@BX&!X(Gd2WgEh19iFX^~COcBG6P^)bZ}10JQNZq!Gqz!;rYAcEasP_z)#A4aOZnGcTep23;5wk~9v$W*e_-hALoH4kPkQMj++U zhN6F^z^)U%!=P!GaBv3m5@I3H*QIDJMCw4YO)0Mx@J~+?xr5M-2w)_T#Y=%Pf_Zu~ z?qE8ru5mMJE3Ba*CM&daYZ8~@`)P)3eN#sNR)hoLG`)KN{_0N?gmL2(!@4o*c6W*? z*1ZSQq$6-jH5?Fu0|Iv%4aA0Bx-&vOInZP~aAf2F5L^za@fuuwc=3F|@RPp)r@RSz zNlLb=jzV~W9cA89lK|~^6y!1#CxFv4W`>(Y$|j6=EO{40%pDF0R$R7Q!@!Poy}G_) zbS-{%dP$X@hi5;7GQrpv2Gz559k_EUp5m6PZ<9RfpU`K(eu67^vxVk%kvYM_6_;c_ zdmdUUnId(eqq{rdz;kTsZHcOb0WGIg28DQIW`oMCk}T$9&}S8NaGsFJE@O`u z658*HXrC>(U>N5(kA{8P8_Fmt^;3cpBWP5FVzvB%TU`;^jCao5o!sS0dY)JoGk!5vUpGLOQbx zTaz&%s)z#lppZ@?cN{U|bpAfjooC!F#`{ZsQeu}8_1wj&EH zHnqUErEE@NHwatKc$zY>5BAdss%CId=f)1RVP(L9vSal;gnW47tW0&eU0%pK$nX5l zd5$Svz^5o83r0$vC^4X6;SERNXw@x@tY1W{(dv{6fsI6(&Fn8mvRrU8kP!?EQONaO^9gxTP4f z4lI!!j;LTj2|0$T$WV&F`NIxJUc>zkx1Bny;nsUN=VYt3<|-x&FWLm!l39fEsaw^r zyIcptKSF)SaJ_(rAHIXJpfz#dfezx8- zf7Hm4PiVSOVo>XPb0C{5p2@L-aXmSd8pF;TdpD@j3#k-s+9uP zbj2z5k?A+)kf|PmBv1{r8Gw7VAxB@|@}OKFq;dX%BQKg2F}0C)ErM&1n$%vV{Hu=v zD~mJ}dcKE!lEuklKPk2Fr4pgddgR*SD_mL9y9+9`25Sg-yHpG9hcRKlFNWHQvR{D` zZH8dWmmvVdK^zMm01cVCp26~>xLNcIYuE(dKu4RFB#P&~l0^R4C1=6U2}3B2yoPR$ z<5Jj_wmDg_aaCUm#cAK;>{ChhYpI0K%NAt=4m`@-#<(O$fFGl0)B#KlsQb-LYC{W#6ZvaH7wG*w}6?tv&R8fA`XY$29Q*}Bf1=4ZY8 za7Lx=F-#?N0uuWQVPgqE&IlS@wkH6$cdgL%+1iLIOLd_MkM%aPDP#HhXWdY*ZEkq5 z&`9O*u*#C8MnudJeFQ`n@p3=9Vz45mhh^WunL>GAl+1!Xg2vpFCm9E}CS4=Ub}a#n z20dT3xd<+7F^v^LTxukqFClCI_gWIFS)o&p#ZSfPiN|1n%+4Gk`H6j@!R*S>OJ4Jz zo39XG_e_5OkVSo0PVWO;PU8dYr&r??C`t_SLpylV0g$eRvu`tegTd#G)0dcgslD;1 zZ675~OKM|CF>aKCMl9E2JoH5X+ZlSwTawiT@^L0w66~Ay@{9^YFU?%W`26ywit;^+ z6gv4Qq1^a1D=R5|+7q4uN;sf(xW}P6m8Z7qnQ0|YPPnm7PX%coQP_f-pkAh<9OPCM zAnS(oF_i*Sn*bZq_!$7`6dl+QE`pmZ6us;#AdFFP>{0dts(4i+3fZ^mCpQ_iKN3s; zm59<9Q7I5ang@c~n~EYmaVE0kf?Wl$GMfRCle*_~3n2a4fgDvT7uOOxLj`6PT?%w^%QqAd|Srmx7K zF>7I_!*sR8K1s7%eGLoDJ}h1&Z`&~1#{Z^Irc&ct58>VOK_^|S;&K~(UDZP$=H;Dx zu-o15`?>F)>RMQEFjnQR*+Fzj*Me3vD1f$1u+G<{*e~+?`KlMT}3ii`DjI;zrR%a9g2eWt(duB9s7o#hk1x#D5>ZK`Kgh1;T);gJ*O zGj^^p1%kU?Y0Bt5X5B4Zx$0D#RYmQ7qQb($)l-BdFWtB?uW@eTO^fGI>FFva>1}Q1 zjg?_=H++2ZLynYslkGMd+@z`L#fVHz-HN$<_Xk~Gd|O@x?Sr%&uC8`SDKd2EEIwe9!EV--|*= zIH3R_TaZ5%{W{RBjlD;Y9$kp>kv_ZiIb8OGx`=^Gm!>05J+OEc23LJ_6_lDcXU?3L zj}%+h?%QW!aTA)VhM14<`V&e^OO>o_kXCRoF@S&WvKgD}z-q-@zI=zV)yU`yWcSZ5 zKZ#It>dGOp)i)7^jS1Sb6rNyf`j7xeQFY(e*9)qN1p%71kasXVPlMPC0|j#0^rr3knK0>*&$o+%oZ4_S%lJG; z4|uIo;F*%n?o#n+Goq4`6x!dse7}FO%i9fbUTVwypfxW*TSw;{1$Nm z>w^O_x412(xP|YTE~{E=*6GL+5fO3z@Ge!|+)QM*G<8T_kz4wMB%a-yR( z^z`&jt_*8#ZPmf&nRRXxZXP0MaCpxiH)1bPPN!bQt-Fp72{>4H<9PPOnt9*zB+-_F z9z6U##q-nOuN>kR MSid}O>5e1+1F0*3(EtDd literal 18179 zcmdtK2UJsQ+BTdJ1QCG~Q4whxL_q}ErHS;G z!~=pr0Hq_4L=X@H1PBlyko+6Z%r`UN`_4Br|G(b#ul4Pp^ucuF-r<>D>U>E-YHy>|#895ob^C#{F z2KuVX%Kq)XjE}#oY>L>k#~{!Nkb%yX8= z1GW{vc3;QoggfCBM^cR4_xn%ubi{eA4qv~2;@&}%V`~CA<~dxapG%gqoqS?d4mJBt zLlVZ;ed5xC%Q&3Y(6_AliSWY6`B(h~bJSVnhUM(Qard&_rJFa4Ve&6d86-7~cxv~? z0DmY(aU>_5GMFd4wg7%*3f?eGI#ne9z|bJ+R1m^U${;DX=iph_6R><3OnmY^kB02~ z?=xp$J*E8`A=+p$3)i7uY~{@YMNw#lkB?Z|g9fn=j3K)+C23)3#Ru=%o0WD{y=Im= zI?*eQv?yPG#YM+c6e=5!!X=`L#V0pVo40kw4?_j?TgPCN1~e7ZNLq-s#?OrjGuj2Q zbhVL#T1HB1a@V-+bvy;3Ap_1c3tXKV1%4&X_he?x<@+~Jl4b&y9%aG1Gf$31cCPvC}mA~s)zZSDP33rWHNvskyiG-7kgV|@hZh()IHkM2O4NyYQJ!z?i+shKdKPGT7*qd&ZmOd$to)lY zcj%?%5U8I4q9=S=BYVuXM>bl&bqTL837$^ITguU@94>P`$M7L$rWHPio?ph)XUQ6* zdtkP1lB4Hw(W+;C)-4<<+jP#EyZNWO>j_P=@>-A`KauMFn=g5kjc87qOGOdf??tBN zK2i}g>p60+Go={heu#{qPOCR`#R}@Dt5Z^xeGWD$0$urhWnH(mZ>Bj0y0VEA&3voFnS{&8=`(O75U2vqC|imKN-vCe#QPJHqKbY%y;MNdH0>bItf zPd1?HYKZ}1w{@DZHIC=+L06Jc)<>YVLoQ4`9bo||gkE`X<+X{9dV@E~XMoYa^cdwK zJ}D1fSw)4mveRmB>+E=C&P+i4e8s&og+|1kSSV#Jn0MLO+E!*{Ec9fnemYfEUNA#4123x%lR@!M0^sB+QbF1wgH2;rcNP!bd1N} z5=Th%c+@ATUzk0KKCrvGfEvkr!AhN1-Hoyz64PlV>9p23=hFrx>9^<`>%bD}LxtW% z!#8s}WuBrEhg=p*NtI5YRU9vGd5KT{j@m45C?^U)wVt68bz3zThX!=QK7RMnY0YW> zvA8cQ)nz6*C`!z>7t9i!c34w@`dMjYzk)&&1#jKf5UpGy+3K{eK>d&!wL3c>e?R6Y z9RS~m?)2j!eE1yuxXJIwRZY?3ptDox zU70~yS=l(|FU#Z@84@3Kp5JcJWFoI+=>mq;P3yk*D!^%%Hef_itgBuUfIme!zqQ-V z2qe}#L1~q=PbX**wh9NDf}$S;p7=jbG; zFhGg9sonse_Tu zq}i|Wss--Y77k;d05YNNQuzABfs#@dN%OUxJS#mNr?Pawarh(!@pFgZs8RkdsMP%h zeLS6RM_$;bKZqQYisef@r*&%AjGU#XK?m2GEzuX^!#kg^*ZGh(^+DP03+H<0jo_oU z-sGSl+tSjm4>jggftc<%0@Y_tn$f$x@s$yi$|p(xfnD6aOk#c@s zSmbB%sz+R&(2~_UvG^Vv6c9dP(!I_c)=qI7VD=Y>JXsYPR~z!7X3YA4#|R(&8mlUr z!`i=y#N(n1UMPO8muhq7rP3+d1kk1s`y1Hyf4ED zoAH+{Xx$?WToIW^20F)StVr?~Xw@A!0&iOO|3=Hp64 z*@*`h?D}gUCf)ayxTE@h zmj+&E1v?*S9aOKWD2bEX)%D|wydov>d?`|JM~jRJ+CiWlX>pfKo7S_F5!l&W97FbCO$++_y$u<_f(3%=8n5Fi=p9Yex2dcNxv$emfle@ajwz-+IG3pYLf?V zVtJnUjNiZp2Cyby8+nxzr>#d>1r_+jd9z-UV(^m*j$9?2XOCz_U%|0eqrw?`1^3x| zKQf#y|E7=p&>V6#lySbS9bUpYWkbH`HS7AQf4=m=P3hIFG3#1L0gs(SKS}BBPJQH* z0GL$l2Imk}{J2vd;9tmStDUd&0UJF++jeZeY&qkx9ewZ`BjS2E1%;$kJF)^un+_Km zdfB^>F4DBP%IfU(Qk+oiCrF>E+mEfI4{WuW*nHM3YKwUYVk0MYX2@YzcFri=R3w@k zVzU@~=Igx`;pfcQ^o_63F4lbdtkBd(Dc3LsoYQHE-3fz>ilx6Mc1wYS*<^*DW8Ynz z5J)I=CEcNveo{a0s(LI+2mYhd7033c2ZGPo2~yq8FN-6r_03>E{NN+aNB^+ZD_I*(zzn^+qShW0VR?}Etm$HR zi*ag5>m^p>&@Sh%DVh6oN^EJ&nD3>sK4nN|xXxApqm6}d&XCUbWkyH&zuq~tDDp)B zqLv_8`(dUr^?RzLg9B~n?q|(lt$27kq*JTe&wr%pB6iq<_LeJ!)@L)LP}!8dK15;( zCSl*caBV(1mOh*4v3)&qD!SBsBjzY$`;5?3`fP0NGf4((J^!l`6KV`U&8mh@3n0BXDUxy65*GdQT)(J5^)GFD2E-z%~`eon8U3^Aw@JV z*Xw(y5i6RSE|wuhH~&C=Xz9x`*}BhG=i92-@YZ}LRnOQJhN(|k6+b|hs9-)YZsrUu z>mkU}Qxp46Zr4Ls7A5)SF7@(6n^(rGDg~<2bz58JArOHfPNgMEMx4DZp(UE{I0nOK zhW-7GpQmmstTVFl!tLlxT79Y3E6l~2N_Vr5gdMQ2&Mtj_XLBT%;Kmt3`xX- zYARLRhi_>AVr?#(t6Hyluu>H!de3v}oJUQmHEYCsYUmD)uvVXpZD{oFBChuScy+O; zRI2xddXm4G@4!l}xr`L6`~CgOz=-Zv&o(RkINh?oVTEo|(l}LB?J-3ai~l?v@h-w@ zDDv#P*?d9c=tIp|vGR;uGoBO7BO~P(w_VZjisq>Ku*@W%?mq%%QB|DtzU2Nl+Jt)= z8%QIODE?4CM9t#+=I#$`VoHhcTDm3ApcT`vOu<2>uRU4A1HAxO=OIUsUlA5abk>vA zm|i0(_%(fyAk@n2{xIFOmigsTX&mS2&;7Wpu=Z7Hl?MK0V#T=nhO58my|5coRE%fN z=<-RjtVeV7<@(xZs1b}m*D=TDo)_Yii^iM@7j`e$m5Y(QBxfI*&pr~&X26`RIt6;l z74=A6YY=TvquB<_oOWRj>Et)XGU(aIeaE&o36uQ{Woof~@6qZBLaNPSk)VT@`a?u8 z#cwpP?5cEX{L~1!I5A(ZB4K_1L#B_LZO9;k(bB-UJnS`U%f!5rKON*h6m^yovR!VL zKo?+})oaCK>KzVVdfGm0Oh82JBSfZN?S}K2W=^?PU$phPFNm=Am{9h~Wj{Wi1R?r$HO zzPn=uUHO6O=@tGdlB(AJ6Dt|s?oU(pX6`-}@8mUVtXQF!*bimJI%Fp^S_4VXnnAPx z%qXj~k68cxK0#eo9;fhnFtVqIr#iZc$Y@XOAn>`ẘrL8NAka>tCuNt$O^=t8$ zy~D}wosoIH`BmQW^7F^;<=5`YjK_T_6J?K5lV?fGGi;A4wT77e)s9q)Ynyju4aGlV zjm3KL99mdM-pOJWp0o0_Gw3sjH%*M-MDwkT>tu;*1cZsV5g%$NMpi(%kp z<7gf`n>d^xe_-eJdMclxfDEMwhseIrg8X)DeQ3%Xdhx5qmFt)-&CdQDkJw?|)-T~U zs`C@&H7XaX9*_<0&NO4TZs(gSC%%sO{_HI6G9oIgPozH*y}PNTmyB_3W;hF6+gw+Z}ySnrd;nM`!sBU z7g^nGqsyQtq;w!$I-I^?@}c`^XN~CWT|)|K0)4b}czDI<3F<|=>he!i=+5ik!*Jf^ zmed-0E`6gigLB-yzw%^{gng}x&z7ryPuh{&MA6N!+f>{6#K&1>?Ze;NNb-+u5gOR^ zM9v_hPQ9$N5!n)Yanv8{ai5#~tL*qeU9`+Y5K$1ym*J+1**a-x^u>k@$mh261UTzb z*&B5iZeMpDPpz}jIwiCVR}Uhm%z{j(sM*<<+p5+k+SjIgs>N5kiwQfY`;{0tw=XVO zR4Dkp)h=D^xC{Sg=q|l5Ow1{I6wcuwclVozWUUUUNmH-sVg8Up#{-wr!El3c_yvHM zziu;?r1x$Jg?K9;2puo!CU1xBKH_~9x4jQJFKmJnxQBbaB;+iO_R>J4Gr(sCqT!hs zE0-AzI?^$qGq2B&ujQb}SM{vbNCv1sUUh11qf(!@0d@##6yt0=q~L+LW4qxL=c*qW zegn>wmXd8u^C&Ry`IP89VGC~%g==~3X!woGomsirvkavhXrkeFnq|bj^LJq3SH&X( zIyF)YE=+LE^2V=8#IKOvex(XbcZ@lZLZ(!;#I`?2c8`U>{HU+U^RGkDe}Smk4y(&T`8 z+@QMUOLRfi=6b{3O*u+P6jnB`WuziAdw3DVpird z_F8XWFrT7NOwulGFO)E5tI=X`(?u^v`i2J@)HrOfTj@M5M8Vc5#baSo(%;0&T|^h) zTGBOhpUV{P`Kia>Htp`|)#?tMowYSvl3rMkQ!J#>+Al;NVygCM-s8*@`%F1T+CrAg zeij>C{JL;ALZB1EpPg^#opo=*_zlf*;EL~q=XSjE!Cqe zHdawjdkrWu{I54=^}Xv?|!-k;?jk87yJgv@)!5;>!pO@!au@@+v#-CU=gp=pP-) zz#G@8(buQEBD)yZA2pqi^>@S7o9J6=_Py)<>^ zoS6?|!el;mBUz-HCEWI$8dJkCNcA#s6Y&hb93|UNDi2_$x9MRE6jwzjj%iIz6{kd7 z!bimhcEmh>2sT8zZwFwmL@4}}_u0LHn32HCk@=)jqp`MD_!?szmU6?fm#~vVXu_56 z2uP_7k<4uFE9O+0+3nj2lCE`NdGq&7DWJn;HH}nIM=jZ~@V72>Bg~c~LR8!BHbc?{ z;$uF$ZrC~fN`RhRpU{^*#F-Y=Npa{DXrsx~yzEmvoRcxprlYPsuS*&^B~ydSa+)To zW}O>8wj?bJZ!|W$?^Sfq^MVzGDlXNG_-@UnGnKrEKAOi#iHQ2W?>POPUWJ&si90p7 z>FQcLTE=~CCt@Z0mAVZ_+RH^ba;~x@OGI^AAfCrSo=d*b*TPB@MCbYB3 zM|W$r;n^WyO>xe^X7jErK6ReWW7CgT;>=}4vahSSMMo2=%HLLjaQFKT_;ODlxN0^u zaYi!pB(ADUuI5Wq^lBerXXCZ;x_T&RIyk*pis5axq_6`wrh6&7%F#T~QT|#cx8WJ) zYzc{$HVQo%Q*)%NTNV+5)75At%Z6L^8GQ$Wj^{lr!;MFHQuHrOD1Cq5E7MGX`dxC# zD0R6OjmB(cqh(q^Jt&k0=XGUyxT#9EyO5d^{ekwUz zP$^kTVaXdrRu*;D5C~NBuny%+|ET?)bc&Yw2C28F1@;^RF9;lE_jRJyKfSGtB^r*- zq+0gy8A)C=qHq=?n*TNsBw>&=fVq;Fi#!57Cl2F`Sc*qc#3w7ED}9RPU!I{zPf!7{$tS2f1=vy| z3h)>wqm;#A8|jHI?`R(`!5of4sn1Zddab5HT{VFz`4#S;8$6=Qe9U{F!Y1#d>Wa$f zRQ*k)mpSymKo2&{?)ye7!?KXe(Qbe0@m6{E!qjCyEFZd(0rZY?R@1qLqlOT z#Viufjsqgf`?8u_%c$wjhZfBd>gbV|k8cZ!^VU=MuS>=K+*Sfvs z+fKfFIn9hDMG3%YZOmX! zYUD%;u9nSe7?*LSXIRa6@^(7 zUnaPfqc4^85t`Is-sM3F2h1egH1-Po4dxVw8WG!M>j!sZ;*Ex%3XS@>%y^f#z<-*x zKl<=wb!|hIjjvp~L~Y1V$=v(MW;<#m{PHMq7afv_(UXlFdr^O?C{a2&Nihv|Z2iWD zevIX;;|JCOVQ_>p>=r0{A2uB`b-$FSY^yccd0Ye!_zhgh{)XqK)MDV-r23atMSIiv zXzgX&EGL>FtOZh+mFHUwe;XDwMa@(-rpZe3&3i(c9`$Y0`@`Uq9nh7hBJ)|+I_l?O z-omR}yEW@~XR7gy6kKoFgsj5E?Ks=`qIaoLv!Csf2HJla{^D9w=}e2fXK)~>nq6pg(2`s3T(1hjwXh%09?ceLw`K4l0H*H!OdTYY5(ATA_^jLOzik2 z{nlIPlpcpD1NZK|BA<3imEZZjZ`SDy2I+^uYRYF{=gQ^HUvsUOSpJAQcJycWJAz#@ z=HiclrSm55=y&Na^?tbJORt?FOGsY;P)YH?da3H{Kr}rOHAFwC*ZMiY9zo2&Wbbph zp|5ej&vdFSpB`hvW*O<$JPcnF1Y%egOuT9nXI*Hp>-9eEOaP+dJJiy!=NWv^iyve^ zp+@9jM97Z&ZuHkQ5G|{X(8z?t)Fq#(2cCbh&b0H%+djqe3lp z)T^<1aW+fClBTa9C19*_N0V;rQD{W~wIxu05u~Qr4|96jk($L1n{2`5rTYIh7XZ3q zs{mTK9@2;kRhbs;7m?bv!eVj0kvvnj^EiFo){O9Sr)MaQnCLfwl~o*}w1YFIeWzvQ z^w)o$G^jiWyTx_}e0S#aP%SiQ!GH^tJ#=grBr!6c5F~cB3A8yyuoHnA#Zr~}M03Xr z>UpMP1!J-YcUYIct1lWM-!;YW$^{JmzFwYNRy%KE2&#wl^RS12qSGFtlT_`sFmE;u@zLkqb5gd45C!D7 zyV^IicMdr)Q}&Af@Akz1Egj;&R{Ed4WLx#dmHY-V$2FVSEg$sl3hlxfAoqf{w;2CE z>*D`wHGdh9f8I7lb0F)$2nGbr{j_z)1)!EtKRulV+TCrSrRnxhzagHX+95z90$Vm1%cIV(%&U9>cI)oU{L%IEW$O#z2=L~y z_Xm}Ql_g;t9RwuoJEaf#^CpdnED#bb4&=7S<7h-qvMIaWYeT+|odfTjo|dB*#8gB5 z%ygPGVF^!Bkv2Uzp!ylJu`ZHnNlS5DE?nEKV;r&>(H>T~zNVhTOWlX%RWG`I0)}O8 zIwkKTdeI)3-|jax(#d1P-$k_h!ly#g9)ty#whV*0)Hz3vZYq$kl80kW4`w*(2n#|} z^;@TvNS@<>sb3OMd=zyyoVE#CR@*~VVlsvW*^!xcTb|`@Je-A@y*sl?u)}uAG!pvH z8zr6cviZi5+kR|Y~0srnWMZibj z|4J0i8GUGTn(1cM%o&2!@;9&2Z0h34Hnf#hWGaBwu13AsnRqS5pjF3EXHYMPR}{1a;pd{ zodrI-eG9sCmaFdM_{gpDcP&4KqG8k3Ps$&o3P5o120Jf@x6|(HWYwi2{2bKpw>*zG z?QC%%KDOvAOiPwz>R!J+cGp6@O6_=G8F8IXR# zI^P>3rvza&Mga}4it#+SyT_#6V*ll8{9oBt|Ksca|KFN2BnzLRB%muF_tImQo}!BO zG(zyJ_gR_l^+h(lJk>-A?Nw7<9p0^R<&G*~FfK8UR(BtRCUVN`3*M&*i4Y1s?JMl- zr~}Nzp!EE0JIW|zlWqB;qoA*{ubIxmOAJZKY>k)v3_L}3Z#=k%F+%?~#wfoYU&Pe= z-``3G%tYNSXsfZtLKI{SrY;$2a#=%!k3($%Y!D)UNso4cua4q_@HFvBKd%{J%^7fO zkAv-ge`yZr<5#Rc#8pwyl6pA!x+(hLptFnBpd4XxnX(S}@*Tf^0%s{vP63kEL`j zQkD}=&NZ*75zIBj*ft8-Q*0r)13Mz`4{z3@LRa5&>9xK9l6iFOqG;Vpi5QJNdu`SG zYU+Z>dWC_1CS>280fay)LHz)rDpewwWQ!)Z|P;CMgq)Osn7~^U#$dQ|J(Vvy`gD4&=nVigAlYU)>5+EJOaGz+*y3Y6bQZ83<2S`jWARcuaD8kKOeB@t>{F%Ezi&!wWWHe{6~O7nrEs%bL*vQaFWd&;H+v zBcnP%8tM7RC_cSb9;hE&$5^*j5Lz+y`})F-uIqzg-i7NjZnv2(&=>2p*_Xz)z{;%j zF&}#dT?r*yI9ieA@wKt8Z0%r9z1AlLyNS11pQ^JoVq`&LkQ8tngcHb|!)!G}r^R?) z@r>{D>iP!3i@_ZcxemNQvuNHfTt)Ql4wiMtlYlLy!P{4i(<%wz& z*Vm~1z~13bZssR6?%AYS@#_!&4vJ{MQ$89hns+ncdIoZDNsN1pS=7Tt9MUiz8C)3T z8DFmVN8Z!Z!ZtW+*ky{Q)7MM($^6V90-I$P-VKkzY~`iUq=AH85Dc{>cn8wscq}m5#b_Mr1H|6z*;rn&F&)0~XW3H81 zVWSMHRB9K?f5&rg=hMCyzQs@rQeMdFn4tKMG$+ZIx@PDR!;KQJQjl<+ro>fHZ*iM( zbWYXU?=<~<)6C#6>fMil{yTa-=zKcA9D^Du*;77Z&d z?sQw4v8bmJqT7l@bGqJQYgd|A;jlhn_a!{XBvR6q>~T!oNkXD<#}|Rcb^Bl21GTEC z>*C9Xos=V_BTxp!3LI{}jcz&~>I`QV&%bA-uRq3P@gA^ADZEvTM(l&w49P3S!2B!1 zO0$_g1drHhd_CH6HI%%9$Kd}9+vubSWIGgy1Jf7(`IK}r5apCAzvlTeglwsxuz0Jp z5u2ECcRMnuu9tjz(lYflb~Z>yUZy=gwFk-P?TM-jYtPPF@8$9taJAuNvTwlfR%w z!i+V>KygDm=NL)79A%I!63IqI@^y)(LtJB`1KZwfc{QoHe@#z>W*-J^cBgFZp&sWq z2WHftNOIiJXhsx2t2U%v>Z$=Gsk@8vphycb%Ak^S(%NV|!5 zzIuu2k`LIDXUShO52&R@Y^|BnyC_>;~GvffF zLMm#BrK`&AuC4zfBcdQVnkw0lYz1?gRdm^_j{!U+F!&t|tuVo$Mvhv8$9e1&^Rv2Q z!efr?akFko>BR22>Xky(2;cj1z)Yp=(c-GQcauno>KwvD%IQb>j6Htdeo;GMO2 zE$E0q=ye_ShpSK8egTKI*1bsZat*5P*rw+D^i}rF04cut@%_RVKmG!ulxkie6W|-l zn)lUJWc(y|jF_cEX{i5L${%}f9)=mQHDLd;u;J^?ljLp;G7|oR#h!I}?j^uWmL3h6 zv5nGVLR@A_|7wp(DTZ>iIQ(~M+D5IJV!!vkgyL+!^@ykbZU8GW;2zK$G~HYCM^FFh z1yTGu?c-&WlI6=BQMW7*xx^O$^zf+a|Gjhrh3)baU^YA@>;0tvh_>jxAVHW% zH!u1^mm%aA_@^;+2<`|Jmx>t;{-vWEPtRHW{P&zKpQ9C))$m(@TjT{xhkOqIR0=$E z=6?ZDYJ$hPX)ylq@)GvP%NPax8)(IPT38L3w{**DLn52Uj#FI=COQmw+ySi-?Z$x) z+KI=9Q*ex$+rNl)d<|WE$tq5OcmLATKha4-vrN^9*ME~6{FLSSlXJrZ-$iLR`1WEC z$Xz-mmw9ZE<%fVz4QC&XRt(l{Pdq8C& zG~I}!Xlt}vW?j|_yg?+Wb1HK>Zmmvhp2Ws(CHNX7iKc(6`8&|D8|H_$n`Irs9U769 z_Ysl5zK5n2fExz@ojY{ZC5O0{rQ}!1VX(=Y04wwXGhAn`JLea~qovaUSBxD{)}9Mx z4fpXhtY+UWPzWS7zGzmCEb6E$JzU}{Z&<6_J*UtQH|3JVU2%JJ={3NqY)<^?J@GyH z{;+a`?ABdJ4{{U1u3tzH+68mE4c7<(&kh1uKd+KM6n%vx6of+Ia@Esl3WnU%(q1!r zq?hKL#2MsZfNY*@ggHf%&pOH)W+z!ed=|Q*Z;I%VHuY( zl|om};HB^n@TsxR;@ib{&&u~^I{q@8r@+pKL3-(&FJKSlWRrc}l*lk9{~$D#x@Z)O zJBf8>gz|#3ASE1{>`f~2<wjPpxz{s*Sj@jV@%DF>Rc0G{9a`wM zNXo5u`IG$s@fi1G!*982+zpd1q5j>{><<{o-;JA3I&~djY%^&e3jjJrp7sH3>2C+^ z{;pcu6%n`CUFyGYQAQ!veA zP$iw#Na)2QP*l=?S70`N6vs!r=|=*l!|(@p2DPQ=}$Upx3xm3Ps9 zYhu8$xuA2gn3dI5>DBC*Diq8P|s4uCWb9pOa-Hh_0 z3LlEGOS)wI51tiEjZ)pe^P=?Lss>7M5B*HH#9(GYv!L^E?0C3b9@6n?{wc4pe}D}2 z!96O!FW1X#D^pcCxO{2}5I_zcqhYT<)p@${0pv{ZZgHO)5&Ui^vZvTyVI4S^Hxd8Fljd3ysGjn~$r{*~UfH=74kWhU7 zxZ!Z;-}_9DD3?Wj8>miNhf^fo_`kdO8`x}$t^(TTTh*}`!@fsfH|F-%h?^w9FuamH zzoK(T|FR7KB7A_jO)j*_SjJ%S*bT$J^A|SJRYkz9T;zb_rf_OG#wzJ38}-ky(O+~z z7b&Ug1ue?NfIAl0+r3~1H6^+wWTOGcRgwH2kD0uQ;FjLzm) zxm^HaOwz|{q6~#(0XEd9*G{&y2?f#=fJx091@uYS=k(H$(y>*kcvs-;tc4LrcHgfg zi*B&3L3PnZ;B7Z?$K|4jJ-}((+_>LtuT{UA5E2<)HpwvT0_}vo`-YLFVAb zpHZ$~F|Q1ElD1auuQA*XHHh^8pNUre8xf(Iux~(b(wYQ7E0Q{JLBNhQ>y`I;96>>^0AR-?X5F;KVE=Su1PS5N! zVK*TVYU2xMbvkzw3lK9I9JylPR}et2l&8hJ>9@YXzgQ=oVIv7v)_E-+9G5c+a@(l0 zKYF^h>yID7x6{UDxceWC$l%bJMgr}U>mIWcDkiAM9V+a32P8Der}hRn&$lgpxKRK1 z?@R$s;YfWEZ>>|!O3V$FLf4uWS$6W6CH=Z~4PF=Cl*yVx1lS7ZZ7swOqD2{bifF~b= z0!N6yTA8vuj^qAx!QPgHFet~5BpL7HLfuJg|=ZP0F`}=s)S8;L09@wpHZ8i z)8u-epa92NDb&wYCqf?Pa0HssI~<{f)@_|cZPHMifjSYjWm9UfN#Nf~CMV_i^tepG zc^FX?nw^Le8w!f>(23B1nY^n#!E<&h7~=|E`4A@41-yC^8KnlhHRwz!Lv2z~n=iMr zhU4CCYh-C_D)CB9RmlA=oh;2$S56zl%S+LNqByO;M`i{9=bOP>Q6E)6AP$4Q?*&j7 ztmCc|wdRPpBo9|S#rnvK4yPYId-F)U-wvZ3KX2_WpsE{tT=1>z!`E&%j#@(>CF{xF zdi491+b@3GAB-&g{R2Z6C3*H*%g>Y77T*@#zLGSNQ=)z=u=44hl=OA#cN~XOKT%#g z0O8ZCg5x`{Sh?{nPJt0UL`ZKQcHj=>9pO5^FAAK0sQ9dO0A0{!pixV{QUx#GYK9)f zTj9;|4_kLCdcpGQw39h?=oUgSgbEVlcOGnv;leAEZ5{77MrTTu*P+kz%x!~4#Eu#F zyz@f@D=dR9>Uc`M7fRz5=05LFN9NsX5R8E(kc##j3|i=Y{Ie+=bj(*zb=Fh>t%2TzP3(Kt^+W91&IMm`(mRqR+!T*#jhl-K z+M3Ye?2mnVIMvW8!0`&xYffFOr0&LXF^B^g3tBRs4Gp%(eAj88c6AIr9er#WsXBvx zM>2w&UgrDK?{vF5`LsbT&h~kkg~>_gmgu{&Ncs1WG&h93gq0WGmp-_J?Xcwbc2e~{ z^}cmN=`OR)FHH zw?q`W8-~?dwF4hy6Ah$i+2prBD5@<;4N$e#-;xFD9w_qc{!tYvHOn2S_Fhyut*-gh zpqjjw)sF>RBjXgUuLO={t32>*dDX_BkJFQeGm_*%3-?p;hugX)=xL(} z$AcG=(r7orUSLE(cIgfXt%xJ3NtjV}rzYZWPU_P|I&uDY^3#AG4Jc;89>o!SESk*i zu=156_zFbu`$pE+Mg$#MiLO{sH8ft zhS#53Y~qc+-jsJUUA)uMFNXx$R%khzZrUGw<0JFiOSG=DOrG7t6+^KlaTMn@?Dx=Z`OBh+2jAah%{tC^icB_?B1>&3sPjh@7xax(6+b+Iz`FEtzs@ZZSP zQ!ipYYNVbmH{4CdOzaS-;p*wb3nwR$n0!08`+XAnVtj!~!KUU>$6a`DogxARx{ z9n~+!O}pZChUMZ#oDuyoZgVb5zKSc{{`Q@W4tb-Lywxrg-?T)lh0W~Cls-0@;9Xj+ zM5)#eyWb}Yc(pxvy^g_;aXy^NYorZbI#Cwkby`(IA6&rCHy^?GYI;e`HNo8OtP`U4 zw^}?c#jS~>PE5Lg1UffPx=grO|1fl$5lU8no3jb?jcug%2YPnotnSgxj9^lJF~$|mo?N-X*Y&x9*)|_JT)}hEINXlr}v9la9{KzD}2gZt9!Oj z^wcBq9i3+@+dQFapU%^te3-Pj-Q>P_FZd&~2!H%-OQrayl@ISI6Jm!}v?+p4HBY=+ z-}2bTrarC@E+s2hC*RLKmka~0K1Gc}@x4F1EDJ1jfa_bnNgfKgs;*}mLV?RIL-j8Y z2A$Of?&o^V-*^Jtzcw~dbQrk*qNd1F>Q?~_fug``tC_;*t^!|J12WJx(J8y?c>n(a Dn^v(g diff --git a/doc/build/html/_images/other_predictive_models_56_0.png b/doc/build/html/_images/other_predictive_models_56_0.png index 86713369c994ceea449107fb86bf9ac02fb9eb9f..fabb2f3ba10b8d670c683d2056aef963f1644b5e 100644 GIT binary patch literal 47682 zcmaI82RxVU+XsBvBb)4uNJ2*0Gb1V`gpe(iz4uCHW=Y7VLb8&OJxgR{XK%7IGvDKK z-_QT~zn|yxzCP}|`u(nPUgve3$MHSB$M-nHR8^FS3F!$D1R=h8LqQ!uu$&MC(+wXN zK9MfOAA~=|oUdy;-?KA!b~AP~L+%(m+gsZ?TR%2oaW!*vdTeKVl~&Ij^21TE7szoyuryF4qt6}rlzcj*r z8KuEW#)9*+Bx%K_M&?z@a?ED})+FNHwJ$p+2|liKLscauo6GH0g}2GDF%(XJs5EAt zsQ8DT{?JD^Gm@h}YGft?O8Iux=k%DnVFfG*>}@|b@LT(-){HNp^>=8nklSIhOMEgDVyC>90QYcV@he|rz{*-+D z*kp5=n|rD1!?a#e0vkcrXsD*r{mGCKX3P{qavZvGKFP$}!7v{QKjv@^EsC|%dluOX zZ6Xa5o=iw}ZAlxrPvX=X?EY!vQ#Kgrdh$E!oP_*YMR~o-Iq7?N_ku2U~{Z% zIu;De`FsBNp|q72=_qCyriHR=`PkuNFG5MeTAn^-ZW_f}C2{6bpqhzLWUD#a8OEK~ z%GbqtT5o?$X^AC$a_Ce$_3HA2x%QBqNk-^fn<_STILj}O)`+Cy{9?7yA+Gu4I7 zPJWIeQeuCcd_gdj^IK40V4Y>D$X$QYN>K`WdW<~OXW%)bE?ryd4=N89M&=p(`-BCPpam=hBd`BUjG-plK2czDHl@#ov}<&SNz&Hm1$d97C9 z?T&fbRSOUh5L|wF$6ov6LxS5JvEv(jRqL2F$NN@DT~iok_gm%o%{Y1-I@I^|E*Dg; zihFPO-Pf-5l~PHQj)ZsEPk&!eFT!Q1A7h;glUwVE?eNp>v{?5cyd zmj>8)cs`6tW@Tn}6<mR+TuFI4`Orbup~+_VAFWujkoW?xIKC=X3ggQ@2ga4b=D? zP}}T&PJd8l>-)7pr$kW_DggFA<~G&{RLHy5hYxR1r(N9!ZJO2GM`(p2l z_wJ}01QBE%-dG>!Ooy;>19k+x(EH~)X)-}UL3@Aa(=d>-F;8yu_5=)slaKG~YauJl zM0&LnG2cT`^B=EqWXaOibBj!x3BlpuieI+8j;_yCR?_KOrf3GOQL+V%oVS5N7|qS8 zN?5gDDE}&FsG_rjt9o+uVC*V)*@)vAD#D=gw(%lkEZfQzVdu56bH>KTp%D=ZC&xz{ zgQn3LMMXtp1FOSjqywQe9TIDGLlKQWx6`E0am5k7efxHAGUS&;?*3#5v#Po}X56iy#h&be zO3Cpyj@a1Pq|2SJ{tQ{9)vvgQ5B~}!XKUJ>94$C3hIcKwUWc_XUMrKCm6f5M+f{6; zr039l)_tXP!2WmdrJGfDA$(&hQdh2Cb@(APkbW;)MU^YA)K#>^bKCNE;+5+ob0(&y z0wzuPhX>;))O=_2mCej97{CjQpcRm77vSY3@j2LOCKeg-2b(6ne*JoB%}%_bZ~YIE z@d(?|FRX%sR4_9Oze>4zE0?cG?k{BR&BhxZ9zPHgsT_@R8~34^Zi$qKRn==LguZ&K zf(k|Jai{HrwOZ5Py}1j6#cXnNa$WfkL`FR3Q>Na2BQDm>cVEgc<9A)wZfb6peXGvO z!GT-tx!nMZW}}6{F1f7Z# z1{k0mc-c?7mp!+C2cbS7gp}E~_oMFFC%QP*27CzFmZ#6PO;KG34chfZ#CYpZH^z^r zIbzy8)RT2jumYM*2%NbnRI=|478yTXZ>BNCXArg~OIEQ+zh_B}{uRMT0xu}P!k2Jc zr8=p#8?T|?IM`jINgFSDMX)RM4CZ}JR(_RES$z21 zdBfN^qYK<5?n!X8?&qd=Kl<%mEtf%N;4vHL>EsKK_1oJ=PcOO1W?0xk=KjF(*I7rQ zJ)QepaSdSWhA^74?JqS+zk7O3$^ERbsGaf^tS-%k{(8}`-JY*kp?>4WjTrAR@FMu! z_X~)eE$5e)O;pIRQLCgz@b5})C`9gEO!HPpShki1?vi0=)SGm`$Oa6&^53ZHezs05 zdfdZd3^75@)ALK$TV)yy|8%XqAe-UOecCPi+e5Cf@tElbxs{f_TJEUGRt{Yo+!&R0XWzqQELa=2T2V)JKw zYuRKKf+&oOK2k9!Cnu%}=9`d}l@$|VWn+^k3)~ME8?SZiOqB{685!Z2r42Q){Tg*{ zN<5xdpQ}U0app#Kb7bMLU9EmZWOOtQ>TZl1gNYkDQY3<4a&NkCG}8oOVBz*YXxDda zy#QCeaN#4YoH>Yngte6v*RM)C^4UD&c_njUmbG#?7UE%n49eg=KYip~}*czao3m!G#<>a)q zUKLpl@SYAyVy%kpcB-Tfc$0gSx)USMD&D{6%JAAz?wn-8irJ(e}WU>)KI7 zpBBHMM!T80`LoU?XYt9n`v&B~c4Iu&V^umRcnJLV?FK6s*R6%_ETxpR=L~jLYI-fO zk^WBLB3k~5Dk`V8cs`ne(fkKx^l7{A)_Lvr)+aF$c)dxUSMn!*~s$8iUplW@h))5@nn-Lk-H_3l`ni@sI=2lBF& z^>usWu__NaSJ%%)W^L5yd2*GmD@|rq2dkB(ywk9rsZ3$Xu~z|_Yk&pHYCTe}=6<;G z6{l49GW&%K1P%@k+pB(XQ3D6DETw2_>Ek_9R&H+P!7na(>-Bidq2u?EK+Qa@K6j~b zu|H?R#RzHhG|5)02R4gzu~P1oSlTp?z!sbXXFK{jF92|tU zWe*};Do5o^Ofr#cXe`5)eN>+Cpvt}2UG<=mRHpZ}yoX1{UbCcSZw`HD{L7cUUaAjE zh5`XtgyLw(<2~n!d*83u_WgSxq$QzvKkvA>3P2zZ%E{rx@Go-TFuA#m$L!65kU`YM zSxW45^l47+enbTUiu148{%flOasYfTtP&Cr_!DpY&MrI{(E|Y3Fjnow;7uFZ!f|p3 zTb69DBZV6wgK!ZDCei8yC@dGbMk{QsolESGfl@B7+TZ})qW?ksW7Sqmq*3*XD`ApoD5Ltf&x zX25#oin?CQP#Sr7^Z6VNE{sQe?GNsq1iOeiFT_9&#d>UC0-?}cr(n(13mj$tV69k+ zO0jBqXeb#(x(T>I zPFp*noH$L~<$cQ)-{Zd)vbh@l2c|#2xGXiz`}jTFFe}y$gh(5{(e`vjz#BwQ8qVM+4zJ6+TM7*ey#S|`T6j8u_MTBOqTg-56>fH zGmaJR!kIOv-j7D#`MDvU*0|qEb$N1Q2&u@v&+=IH18*N2JT-7;;3Vu*+BQ->Uba4z zGcz;G+9V5n-JA^JEyZo@(s9GG)z(5cCNc@&n_|B2emg+`3s^a`Nw>$2e69u|xFkx* zt%7trX+2W(NA@-!eaCnn-#AJ3tIQ4px^2bmEBemb%?^nvPZB0c?WHS<5wxsK3e;3o zf|f@$Ya+1J`Duw`jU9dU#eFghoc5MeyN8^bCxgfo}zf?Hzm#Iod zxNnE<5+^5FTHcEFkH02Y5}TAmG4N0RcKW@x85%PS4hrhi@drQu)kF_glTq2QRU}x_ zd{cSJt{o&5WN8QB)AcQ+(|mRkY3GmBI+scZ3@Fn!4IZl|otm6U$AdSc?$ePjyz*p{ z@mIa#OKeBQTb=T&6HM_q+0`sBHMiB)Mu@mpkuPY3>h?l*@;oNSevAnmkbbA!biB~N!k&h)M&Bk~t$)Zn|m#tejk7=d7MbTSWr1?+-HS}U0@)7X4!SktJBoG8p zNAr5|TyhflJo4t|W`t$OXt8ZrjY!pNUINU=&~+Ual=H^gEnpp0fG~IsM;_jg6^KWhH0*JPZ#YTs})n={JHfnDgNSHqxFd zRoM|04Fr?`EPo`m^JM5;ckjI4$pJHRH-s4lQYj9Ai*ifCPX-6I9o)kq)e^F@P~5J7 z5QPGNr0$N$Xz#?H&m93skeZsBdiO{CF|e8zKYbG1DA6z+89ERduRU2Q8#l0E0^A>@ zk{w$$w```Mq%;l2Q|LsueRQV{{!tBZ?T=VankrU&G{t;%V=<=1Amj(>eV$h?XHeG zEDs8J?+jVE&m~$ESr1*o5AYA?{gTt&hzAci0kF6Uut+Et9*NQB+>gOxQ#@fB;47~=K+EzBtRi0tL}FKuy8u<+#awFZ8b%oXTYHZiH$)%-Ot4w((^ z-Kp+=4a{FyP7LRW)P!vyryQ_PYT@s#RF~#VN`?-(dViH#;YBJsjr|cFUn>!Q{P=M> zEF2?#+9Jz7E_hK81s|2_zIprhZz<7QVnWLwrrTcUWPBN?zeevK+)ivZ$=&_CPx5Z| z&+l-<-`uoGCV+jwyV9WVxj137Lxu)i-1YGqpAGOx=Ma0~d?b(ernO5g&mt3mrRss5 zih23cS!L<*`|saxeK4q|_n-f8T_4ZmszpZ=Z~&->0Aw3x5rXmf$*P@$YW%{&f_NG? zA0JKjaG9OqnxnT&d`%&iq^ST9#b+OUwyuZSu%D>IKodmOTn&`Nv2VLvX0)?Bgir9? z*Dm|ryD112^`_BMxWI7&RbkZp>?|T_(SEX1Ry&#Mwfa2S_%XqcZMO}JbHtaK5pm}Q z)%oKIIETEf0-%{ueE^PjkrBp>qZlqJQ^ez*caxC%Q+4vDgiCqtOh7`4hXe)(gB!@| zD5;tMK7OQiZ`UsJ?}69w-tx}28{Mt96aoSQrPM}0wyV2;q3AE?q{w0C9~uAoUj}1!8{>bn=(frTv^&N9dA7>{=jkkAUj{(j*7;;@>!V&DB*H z{Pza9s%c1|3LQ9RYYtW$0fs|zU}yvx=HREtlv|!skcY3sJeqDyHM{RGW^Vv%BqUbr zp<2Har|;E5kD_*@;?4Ga?W#_W4`{_4-xwC=ttq|kM=KR-XMh#Iarf@m zmzVCb#I~|u57=$9?9RMyQxLNW_DGGgpC2BSsa)waEG{mda@NqG0{1YmzzC=`aNPHR z82K&bZ_`faf93)4;)@;Sskt10PG)Xk%A^k7ZmJW zWAqty_{^Gut`dKipzbX6NiI2%P2U#1-H;QVy)g*CK&Z9c+uk-KT zo09z7U%}-yJ+@Qp)<(IJY$!AsSd9FYRvy-?vY4!@ofFyB5i_hw2~1uqx#S`SlL6@& zQJqs5P*%P=Yt!%t?u6LhF>rxRvqbcQH@rz}kN1~6+R7l|Gr{-^G;%LPrOT3*!>=@~ z4hYLAeJ68rcok)DkyI~?Y8+Yps(3s=Zs90R+58u5PV?!KHE+#YVZ{lr!B~lIMMVWC zH+SCEf;Vrlfqvihsz3loJh>UmVLbaiZf{=ZgrIIS%YQc{v*p&^yEJR8s{@71V?Mj1 z9GA0&Ha=_G+VbAIb?bM8lPKd9DVarCVHvU8+L*rG{8fkvx!b;CbxtxVyCq}2Ymr8E zCQQyi}XH&qrXmVX-+=x3fH}`o_ zj$}PK5u7cDAU!esns+2$s+iAYeTqk_C?|)B7{N+2!RVo_!NcZ=&Fv^ZIo_>}G;n1> zCj%(Xu1A8va*}x+Z{9cMW!=7PUkT&O*%qW3FL8w6#cBIx@tr4gw9Ik&UR%|gm8pqI zQ(Jz`{%>w7YUnRATD4bKtA|XR}c9DFFIv~)=hG@_l`M#CXl=YN6M30Z`m3Z zA527d-Zgb&F+1(qIgRA}_wR4gB&AtfbMQdCro?OZM8sPQ`iTCJBZ{`qqZ;ORVm47CBJOtTi7{{vpP-n(xPK{HACLD7Nj%8}`mDa=d|FXTl&%)2~s@uy!JfO}~B~Qs(a5`JGqTU|9;k zQ{yMcZdnH0@ogJhJ$JFzw8=OY*^Kr5SMU8mp_!Tk$=&qf71t41p->1E zGC@=LjX%?X9dCAj1P=*mRAtBPnE;kW+_7DQpD0N`{G=1+7Rm{5wIw5EfGQ?<5-1u6 zNT$uENQOP)cXDL%WM+l7$q=YC>XRtGn!WQd)Ixdzl*Q{D>z@N8Gu1`mvQceaRqWUJ z@#7Vgk{aQl<}-*esP+`Hq|5JvT2yn%U&!@74qkm*2t`|zR7ND@uXQ9|Rr+%X%sL14 zXEd|RkAGl0QeIroBm=pN4wAYSc`TR8Yx}Bjst5V44e-TOw%y+@`{SMijnkv@Az6buFywnm)op@ zm{zThRWm^9Q4bCQOpF~ZT|hDy2r(I)&nq6C0El5&2*MAcw;6bAq7%T>*q${vt)#v~?&!BUw7-}n{oEnv~X2rL4dhzQME)n=5a z^dQ7Qdq5Y$mVYfv>EQyxkO&3<&9CP=Wad5^jT->J^S&ESj0Q-V_do?(z2+>(a{ao`HhaoUQ^zt{H7rHP| z`)2alQey;^D<4c$fA6kT5X8ksSoHu|z9!k#gaM`5Xe~V8(Z2$$QvFDU)AQ8SD7eH~ zpZ%?RD1%0}@zpW{H~^mMTWhN&k8=Dz1cFZHWv0e&%s$f&-=wO$I@XVR!lTP5!TdvIgNV+J!wlbEGFTiaMGHY==HJ zuMG^XxT375^#eoT{~=l&FpRu{s@iAq@j{v5ie?jX+w#d^&w=jTdlym8OUPj9ATehR z5}q5NRM7aNYd1Ww3qj@1{s+PU=YxV3r=Kx!uMCJP+jAn8y_^{zK78mOIM@`^D>9Nz zSz(~2=J)^w%EO41Bf1SAzila~3tVQDaQ&dRcC@!K9eLcIeDvs6<=-BIW83lL<#Fl1 zGnBGf-MxRApy;>$ox89%X%pN>r?}yGfxd+CQh)x`XWt!*zBaTFus=|X{Z@TwVq7z? zkI=lNqI<1W`i>O!Mw#$LqS*T$5v3a0#8RUBF4cr#&%+RZNqHt;@eN87c@qcuXojZ2 zKBfCv-}C}|d2<)uZR%Ote|IOeavC_VelF~B_4~EiJ%L@N8HP;(4r3xu1ux&p%L4I6 zechT}??07SxNWCLE#3XFJMwklG5dbY4i2KB%l+Je9m}$UzJ#}6mDsMam00w>%rj*P zgJ;JMsSFl*%bMC71BBnq97o0qzqsX$6Z$r0{E?>}@#V*Lqa{L$#Pj!-)90_GO6-ra zjtN%2wLh~Hzw-6M3UB?o`&~ONl`_h-$fxpx%i8R6`V@i`6l=L1k z7Tm2d&|7_61R@~mcOP&fHXN<(>*LpkU7 zo+X3lx%hd}`HF#Dm_1(i-EM94Y^259j|+L(acSY~bj8-2cJ*L8#~Rt3D^z7W6`B!8 ze`h+s_05|o9OCPZtePPHWADDYh1AO1-N17x_;|nm_b0i$pU-S29V=CBx3_}N(r8K5 z<#yW!Hb0h4;3CqE%Rb{%Hldi<>?H3~+2uOrYVtA3$n`b(d!p;*;*1Eyi(8jd+X7AG zOfB63+>Eb5e(T3+dVpP(KIB@7F=Re(7$GzNB|%H2EVii^zlJC={|Dm>0iS9dqD zQDGo*#nNy*n<y4;iY5@fkifr^WCN}a18R!8mI?vzbH1{WJK zVCJSduDxb+P%@rWp2FFfuIcre5@cVG^P7gMY}P7MkW?QQe|noW`++K+!v4>0+D6X3 z)?Q^370fsNSvod9AC0e_NT940dI!Mu+^);Np2S{MX-F5jmZ8eR#YHIPxl`BG7CiMT zvCK&O#CYn8_i#<_t@aD5-{V3_a#wMyergefv^~Lh2^`$fe8=UzT{=&61MoxhRTj@A zCf9gO5kExpgOyTsz|?Q(NW+u8$H=g1{4-hs-L!P+b4A7hD`b2$#_w+-(SXbg+%S8+OSyJweo?mH2rfnpQVvg95F)0GPk!zIe&i4}0 z^JtDk!$()O*Dl8jTXMl~FVz&=i!dX;D{NJ1UiwPsfGL53>>dIkO=xFzIGjuVETC8Z zM_nuFLPZ=C?(<`JrK9 z_030oElo=tQ#)d1Y#fsB`akdb$|P4ulf8cYEmqM-M%1!)rhj;+rnshUSJU=Vi1NC( z%-;J?TA4q!E+rZo=hq3{E38k8KM8Xi_oV?>-w0S@(zUW%poXpBMl~j>`Ke%v?j(5HESGQVsLtt1)=Cy|efF#*-nbnmX@g)wDfL^yuyr`Nbo6BO}6 zfQFtL-5qN_@jYf%VU)pmI_3`&0w{51j$b&6xgw3zW1CFvyn7iGZedrH>7=FBFUg(F z7>p^yz-uGTbh~X=oFJj*g1IQs(|z$>^qYh>(c~v7%@WV464|Mpa9S|mtld^pfB51} z!h!Jo18c64Koa9~O(q3{>JeKhiwij`oR{YMnI43v-93)D;qpeiJ#P5>^O~#Y#3NPI z+w&!gNvxvs>$BvU&xVVE=nPI#ZR>ksvKk*-JF(PgI9>B(_vW(-_!#jYJ{TpTla!cT z4zT8tC?YD`t<>k4(+g0JsIJ)kF%{qY>fVE*z0T(Hx4W0&0{JO+vi|<9faEbvyt-Xs zlwXNkMQ%K+aC56YQ_>TW_o9HJ_L^J#vf_S+vtEjGDLlYLC#kCW<;I1;?y2~JXyR?Ew6W60=lU40m0rWl) zy`ED!86It)J?1&0Y*lMD5r_vLj!p;psJwc+8B=Rhf6s$%v8od7_7veXbOh{y7h!A= zn@vrR6`O*ao;B-%dxc3SXQ1G|H0RrXL@vX0LY~nm-)z!hbk%6+*v$Ro*Vq@k=0yzP ze-sXic1#|WPbwAj508s zqqux&4%QKf=w5ka&?JSk;$vnCs;N%2V^sGo*&JyGWB=L+n=!d6&iPQOR(NBiDoswMR`R9h0u%Fvdb2NMgrOu#hU{2 zRLPveH1ZejvkD7R162HqipOGuV{<;dL1xHuv@0Wv@kN zNEH=6WcK{JMSVsvt1(pF>5_?@iRGwDrri7Cu^E12hdC34Ace3r`MP`96*y&YMyrNz zzES+Ov*eZ^(z8M(V^=eLGf*5;f9i`7(EAC%y^-8!42EbVqA#*hl2Nw!+%S&M_5|L; z<)=R$%R>YQ$`nLq;9@*9J@7SyGrcriE?)Y|6EGlTQAcm<IZL+1A)$QhN z*c9CI%mZ>9EHgZ#U^?4+{UvD=DC#GOcK2Kwdh!tqMhyt-Sz4#M@}+0DuXhpr^a=c2 zO+Cl-#%JN6r-b?pfv^ zgsLm&x{F;zX70~=?U4T>!9PRXm>^)vKlO*abd`-TGAPwV(?Gx1v+Ppcy>^e3>gXGw zb!}T|sQ>sBVHr}QN(^uEQSf%(HY+($ma5*^iCDb!SuLyryZQ7D-~3fm;L}v|!Y8y> z;k-bm`LI$B8_e$WmoEbymBrxdFU&Bn<(5*B#AE5kX;nS!tBlV1bSqqJO*+%cU~ILJZk+mYP~DB@&kVY23aX zRq%|?OZ~)rHGj^V-|q-kFQAIPjC4AL*PHvF|1>AHJhuBw7sz*l>O0XF4qma`q6~Vl zKN28a?9;{i;pv`tND;}6rRTx!`Je9Rb`xYhf1@myz5aVOZ#d|)yl%80xRhHaO0M)_ zB)>>rq}+VTLHJneXZk&5zu9WRWAz0=@#1UP{`i{MKRw^DYFs*+efTIO1FUUHJ z32YTTI_9QK^3z|W0m}9nZnw8}7+}qQViNMAs(Lee0ll~H%KOS6acwguAJ+JEd`u6{ z=PS|UHWA10u)$xj@uyS>5l_Wk1sDyHrOXWqiN(yD_T}eZJk4JHvWlJ`Zp!zn$)M+m zK7o-#;e8(I*cV0D>u_|dEGeQF=X{pSCN8vF!;h6C@Z!Xm@B%FRYZPAB2e|ETj$8;m zlP?_;NgAyLhoi34eeE$IZM2a(~)tl4`1wTwWN;j7=P!-XAO8GW%kHq_~4U8&eZMUyf-U!=O~CV zFlVHXUIcM2*?M7suPEHAUGX^~LDKInN!qNH+}-?aVKW>izZmn`M`}1sF?YjGLM=r8 zt?JD=?pYVRi-Z*oYby%8u>&deg{pm2cZjPprfRYf=nkZvRqr?F1 za?&r(5Ujm{TFIVhDYzpX!FdC8_+gG#V&FtWt(Zd$1gbGpNYqNmuvxn$oZr-H7d1c(pqx?S}qonTW3@ClZRJG{%t~Vtk6T=N8fzS&GxQnQ{qen3qEK}V95TrIVAX&&<6t-YyaJukR+ZB8YNOnKy(Jx zYz++!Z1J-&_g}6-Y=H(EQAUyl=P#R|nGDQt3h^*jk_l%Mk7j+r6F-~j^sZ;os94(` zbfO8jIe--9jQhU1bA}EkSw8_=*1v5wV8}YS-UzMIK|uf%P#weKpy+85I1(87G{*t? z0d6K*0-1AV>*AnwkRQs9=D7+qA65CA%_iW;HB6hSnh`oom$VXbo)<&&804h6avRh97xFhCca$^qlfOh?CnEqg7l zn$R&3+Gtdj)j0i&O|epN&?^X0Kv&0&&>MA-5ClE2Z=B(m&HITfegU18^Y3xsONdE( zMr(Lo!&|hm{K3^a2KbC5MjIxbTPbdsT$=wqf%~OPcv++Pk?NG7wZAa9Qg^iL_0FQx z{IvIriXHU$fk2j&2Rfi(j&V$^Yw@2od=6FWC%z@(JKCUdrax!9;2?i$D=>I*bV>4S z(sDSb_^X;dI<Q@wJ$;Dav<#U9*ryzm8-lb;kTL3sQCWndeGfm2P$*i2!2V2xQ%;4xruK zspJF7cautOoz@hfs|St%85$PIdiX#gGtRSw|EYsKWuq%5WIg)$#7OqEU9R_8D@YD8 zQ<^Gtp-zH!K0K{gUD^Z@K@-R_o+l@d%($R!A85k5?CO=@nb&8@qgPG_vQod;S9bp$ z0cIqV8q?oCouEqI8-IC{@$|F&HKz>f340{XZ#A)ITkG0eLThRCVQ57Cte&RJTrC4J zELz+HRva3^-2cwT7kg})A0BRY?tPUx#y~{9_xKB{cXXkJOX%@AC?cN@j293@Fn z3867?$AIcO11hs>4yR!g6QgsjJcsJ3H~Q`y3e69n2~8D{>gN7J^U~2E$V;|p_=%X4 zWVE>Nhtp=b{)-Ep?U5iZ7#bRa#)UnoGN8>0t(#}4dFr4bMuH@W*fFL09sgClJZ>$V z1??$NhE@cc>9h4vfbY@%O%ozqEZ*8f$K}yVnsegL*HlzUKor4Hn%eJZUhv%@$WY}N z6R=d+CL41s2mCQ$f7g9;Z{0|>W&=D2*~xbTWXvT{+U z>hNpZKMi`|7sz{?N1#l?tpZLWyl^t0~MSEtej; z$Uv8gAarzek-AD&6z_-{b2_r@AAeQG`X4vImJ?oaDlGtdNZ{eO81ZQ+r?RQo{rZ%v zwghDv%4`YeoXV?YZ`H#Lf=H@rc?CSj24gIg1`B9NqcX{&1ZCDi!-3^?a#d~ zY8a$uvQ{1guehKEiTY(~<*fc#XmLWjI}lY>Rez|i8AC%Dgj5KX4J~leF3Tf{KozP(cKGRw)u@=?LJW214n?ojHSv8G_ON8&oQwwss}W z^YH1Pq7pvlS6woH_ zJ_k!h71pP-)v0s<=6q821i z$51hwhJFKy_wV1UYG?!k^@X;CIaXwINITAi(vCwH21kCj5X#O6uw28{X{@I@v=%n{ zCD{3?`veNR{uY&5csQ=gZ{b#06o zSs1I90DtJ#u|$BKJsjpovVRc>ZLbn`^d(z12kcx?M#@16gW=AbF#?ohibIV&AvBl$ zuA2D>@&^b14QRVci+A}HXre5@G_;3*Y`1xWa|)aw1}dr2IMtkc&ZG13O+PL4Awvrv zCITI;{7{EB@02IQmOMG!L=b4+LRFwYYNB3IWa8JykjV4%+Zz2RU}3umh(NI!1b@)_ zjaG1nKE73KZwNZ$us$J+)Ip698oAgzEzHbhIbz}07&z9_g6t0;ZZ8vWT7%jPe7X$i z9 z{L={9?X;`h1(0;8*`nd<^`|H(B%-3UuOKZAgbH9fh#FC22l*IU8r?9c2&25%Pb(=o zC_1WgsI|_3T=Va`CWzV_InJ#v8mFhY#0}6n$Zy(01WQlyXsbua1eJ)DS`7$`?mX~$ z_Usuto~^Ad`p(veS3r1%2bF>XL#%`{bJk~MRieMIBmQ#l@a=_9y^ltGI^P^(1Z_&_ z5YW;oTBI`g0?maPfHLcpLZgchT797uFD)3?~*u+_fqs))_HY4jya)4gSa#6bAlQ+{d;xr z1OR>)w)g!>SbT5$5e@ixNkKv|=)C#PfA%!oJ7@eU6MjT#F_-hVDX7JGb)rJGRWtQT zqZy-U@+nvof_`BNsG}`PNbTZuEK5*cDN3-~Ojeo5PLu4puaCo7@c@l;gt(HHYy`00 zb~08l{DVe<8qBedcSO)t@NYh{o)gIqmYmA`SMsIf1-{~c4H|_@&nxhEkG=Vzk^0og zXHjqkiS77c4gUQg!1L&*=ilQ2euIB!Ik{VWGyC&DNN5|75QS^}IVhW1{L`1;`yJ&u z@^6J(@cM9|iV65p!}=Gn?N*Gl-98(f{<8P2(;ldWb4|C9U|gmCxK* z<<5Z?Jm+nWMxD^g-i?*Eh;Dnd5PunruEJ+8eE^ zWTa9n273?azPN=`wWGUzx<+ttV1#N~j`WrNhcu3w_${68S5S7Lz3guR*3L{iNU|LT4Jx;fYAut?-3w7v(QE&SJW*ZrvtjBI0zfWk=rv ze+=|6V2cxA0_t%VKL_$ibc=%&68#&uIank|uG$D<>e~DR)W6jIg?#?R1AV~ruyH{f z&rLZpZ1>K-@3SB4I8G-|!3Fjrcp>UBbNA&*-WipuE|JsLd$^C3yLr@`5#CR+bm@rQ z+kcGl2WpJ-wm#`;vBW{iQuJtuATKpX-&-z0P{9%;$p37`Ko4oif?T#b#^#*ne;Lp0 z+v|hd)7de3g0vz&w&^_?uhO-!I%Sv_cutqnbM*3>k1^Dp3>0zBBLMr+fm`OIrYS5J zf(4x!Z+p*+ceSdv*;hV!iYL|MvyV7NX`_&ziU>WqvV$gLw9yJH1-Fzv9A{ym^S`I# zeC_&0cl3(rT%0aCpaIZL9KtA-cFy}5Tsht!sQb^dnUHc~pLJxB)e0c2r(d{@4lp!_ zNfNY1=O|(~?(D{|YtHCH%?hLugwD6n7pS0dCN+^w&D@*=`i8;}54{}>Ab0-R)ARh* zE9$!T(<>}k^UUG>bd?(%=!Ojax9b`(w^D= z07gJ?(Y3SrMsRHh*16u7*+EPh4| z0cHjoGro0n*w%me=Lw{%+FwB1aISe|7R$6N*2TM??<$=!W)36KeIht%Va`FWBVxsf zLkIKM|KtD6pWLlmgcKAMpoO*cF@U^XK!6--cbAh<>Ht#Ipk_u{Ncp9ts{7}waKr#kcR z!i4W`DkzjuX5$gj)+uwNh#^$>5-hU}jmMZNnCQjH|2~nYB-3Abd23?KD=!;8gp+gq zTO|7jYUT8M>95{(BOn(0uMHsBjjw9risPU+KmP{{n43WLwyhCuUyKDT6bPJG5T%0dAg4mxNQ7np?;RrZ&hGA(EFYu5ii*m8Mv+1| z=|a~fRpp*X{^))U|9TR*J^KgExc@!(D$I*&F5IhBP!?%7?{wCtWr@WRWtv4HCn0y#mBs{&IsgZbPFKsh!%X6Ut`_7o&jo#wjR%Qkp{AAF}A>#kJpsMFnaRx~m!fZ5j%HXknTg*B;mfZgOStWSd(I=__LC0S&?7YTu=m|F zv`=8-xe}8shy*hFEXgS;pF-ki44nh~Nk4vki~@=7blAmIbaw`_vuAMtT|(j(!6-(7 z?kDjqJUq!v>U07XwjW=u)+vCth^yx9{`E#=^NByq|3~H?!t5K0Vka@Niq<9V&(?IS zUzT{G`MmWI)OCPBaiAMQ*3(n`6`x@gbWsX={CiE}$AE62GYH*|pwWmQ-QNJDnO8tJ z9f3CgoB#uWAkgaG0$pR_0P{KWO`&5YLCQ-Qw$XqTV6Hv!Dd_m9Au+!W^9Fhd?9(k9 zP`Mx|0fmMStZr)V10K0{`V790D4RzB0UN_6CmLME&}oKZNLm3C?3QTeXdn=#;XYUs zmlmjb^#(ClL4RpY%3K1r667~sbg3Sj);IU~D;4;_Y1HsNDD`VS` z%cl%3Ir($ufSQEiFD~4W`CuTZoD$mi)Y#_GHvu|K1X)~M1ZixfK_}?qFc8q_l|u?< z6^ZH?o6xQ_LCLkA_AuMfB!tdvco z3e}%)l^xJsW}u_39E=IwLqGnPOpZnO#qh z&cLAHU|~;vNIy|Cgr=ED&~%!@V~YCh3&KVefByVgPdhopgKaR-CO5P<0*d7Wl~viP zo`lf7=`A?>^KPcOsjwFlYT{Ia0sB|lfcAqP0_BT$EIP#ZoNm73OZpKEa#1?ZYP4^% z31sR~umjAq&Wr5q5VY2s(F!ZH7J)>5>hrK|BPe;6^xi3Ek#|y^qAYSDt**4h@W@CU z1nqfec%Y^Rdul~izd?7tq2f#No_K=C9+X@NN^M$j4hRB*04(Sic--r$`;^P)dip&y z3psyY269t81mwhUotc?BXvd{$Y6|^9h(GjcM=*#Ks4anFHAyrjB}L!vgI)K+!55 zW_h?LH2o?8=s+g2qNN*v%d%_&)>E}g!x3mW=;(Se54$S?9D!eccwYL#yU-W|1r%fg z?TB}J6o6{M#=SR*k#wi|4p3?v-5aM?YkS`IM8H&%)T3*S0v#wXZN1w$qssu+1VC>J zUQ-V?eL$OyP}MQ~lgF@zF`R}E7eV(1Io(qtp84$AAYlC{I;D0Q!7cKGnibutC4t`< z6MD|ofDD2D_(_mX`46w)BIxET!IJo-5k7pBZ_g+^;*5zq`#-Svmx6!@$f-VP7i0e8 z*Xv+W=(7Qvo~m8xn*UJrX^T5_OsW|eKw9k#8&;rB5e&VM{QqI>Ex@wcx_03Q6h%-# zQYl4Jlt!e>prlJ$Lb_8xLIe>(KokLK0qK$k2}$XakOt{ir0b0JsQZ2Q`M>|1voEjB zdREM})?72j9OJ(4k*buAz*(PHYM!DfNWA`^acb?WA{By61L_J9;)q68=-`{Vedmro z@N*x53{gI~e8Jy$({-0K>MT$M84&+1;t2y#87vJ>660XO@&fo5KFA1*kN}|mhl19! z9yS|&{I9{>WcE|J^U4bVvY)U4%4Cx6O*DXeLVX!#GrBtb!W*wRsL=Mv>obzlKkr=< z!884K1`noAMRrqVpjh2dG&4)!Li>X6nsY^H{BG_#l88MYp2+#nJ0YupVSTW}(9_5? z;>kZxNJ{-LD~qV*w_T4mWY3fgv&gM|D>%&>an1XiLSSg?lf+v>_N#Yvc&{v9x2nShEDw{CfJH7z3}?62K^ zzw5UVzzJ48xNV?;`CZ1o5x3Fd4xmWa=HDSB#PUU$rQkf{kN-`T{%w(`HAJ?HDuvDI z^PK+UqkPTTbw*(Vq*1^KV)}xOX*+fM@46C}7QZcX^c`cp;ErH;!wLYxf|;AHU<%dO z-v(2t(AF4TK`O9TKItd^1ROD%@f)O%0!dkX#1l=M3(@^D4OZpYs8FB>0SVRDqK#FgAx{bm3sDcz;ojRt`WzDP!7v)}n5&#R)^lIE0o|KhoK=v=}=Ij+`#=eOIpBfkK4+pw(by+$J z;?XDZ^6Z|Hvg|(C{c#S0KCnd1ZB6PGZFL~a~Y0E?%?dAP&-#|xZxaWc6Q9Xl#; z7rzPTzzvx(4>BlNaqsi#DZ!Fa*2Z#K20PDhO)|*E^fuMB8hUbzBv2}jiE9~e?o=z= zD>!fmmsHXqhPIUu2*$eU~bkOA&6^(&A~%D^G@-W|BbU@#TY+{LP6YNY&~<$|!m z?F~z-Q&0Q)D@nb$Y=HZnanF+?REpHp0A(g=<}OW$KloL{2N@K#rMO> zjB#)3<06GlBd@-@A#WG=V?Ymigk5}Lx&R^90i6+v3Cux>Ao)9=X+xw9%0kvBglnJf zW8<&VW)%5(+|C0mei*yz+vmMGEz-O#Ei{9cQ-Yt3pC;uIyhvkeUW!Rcu_Y$0waQm% z8d`xZ@ekdShOI3VOxJxUD3)v=&Bos7h{}9FQlK4A6+7YRX1^YF8rAUvM?S0Dq^fnM zSuFc4Ysp8#;9Bw0Al1HBrwV!jVYZU735}diGM1BKL7TGQRA&O57B<5k^5WnMJrQpB znAtKPke&6WDx_A~HoBeQvB4U^fHWp zid)h^l)2b*hg?hhF+=g&;t&hQmn>I*9C&2iFr1m}ac8fzS}Rt;ms=f`O9+j_at@C* zbB}-027BGTPkzmhjWKgCQ@i$Zv)CiN+vEcysr|y57Hj2L!3cAFv4qp`K2O!~gq8bK zql*Svon#f685#Y>WW!A>y<3f3R(cvVFNHkFtt+X0dQ(>_hoyEkhNTqG$E3>NvgOS% z>@2J-$ht?UweM`;2bJ0)*E1>g$*R-ig_W8cj5CVXptRHv)*6ma0`HRQCIeF*yNmM6U(BY2Vms{cq3*EOK z$F9sPmbM$GRX9EoPu-{|m(81_etIukOfomFFTcrtlILQgw4^sDKe@L_lfHl(F=sdq zO{IHa{?_-V$&3u23}r?pLqnl_wQH6V!6bejYY_Xd7w#&c2+i9Yhu-bz1{^ zC?o8Z@mzkMYE;e(d!}I*?~GgSs5t!6O>oPLN>+Os$j6PbaXqYXR*1c5A#YouKUzIb zG+e@FWa4}|xHon3`qd|#45u;x55B3fwYpiqwR$c}dM1E{^;tn0_KSJbG$O(b!|j#R zCvS2Kxr=+w;@TxtpT-llElZG+dnU;Jl}Jk$PeKfX`22YVMtaqz zqfN4t6;$t5M;o4!ncTsm+}#beDC%-t)1`9XVLustZqa%)fwzDbnp|GI;2Bp_Chq3u zzLlugCrTPHod$9gV!k=++@)PED+@K_#$H$$-fEiQiAuJz;r#5pe8I^4hPc~iMsRz( z->|7~hJy){p@CpNDXt|SU+7h0>>s-1IGwp!td-OmJCB%#U90FucqlCW@lSB_iSO@P zGVbo$s;Y>7OFW^n0_~y>V=3_#%De06u;D(u01P7v#Wwh={&;csBV-O#Ij5%rX#^Z> z=XjlPI(n4g!z3<#Z6>;gowqtX7qHTMnloi?n@a+kT0?`v?IzLKiHg|e6PHDMGs&h+ z@F-*G>1|_#&)rcW{u&U_mk-0FHB_dXC^g|!fY1hg>hmDqa*Kh*EkQ?YpE`{8J7i*> zv&$Av!~VB=E47@K_55iDtrT3A@a~kF2-vBr)y74fcD;Xrn@mS#^sYp3ja8BTrOzI| zsY1|t>+LToj@})Scr^5SA6wr2)HmTPT?g6c?za^YW~W5DFDEko*n6*zfwEA~s=3ko z0qZ)MIgK$FyJe(_+c3`$CG?61=PXEl0l>dh zK@1!zrZ;`jz6V) z+HS~2LCU9TT@mW%GzeBELy1>2AHUhz88bIa@ zEG-2^ftLV8QLA=mDG*`a3PG_47~Pttb(w+Y5#1MR?xi){zg{!n9k-z8g(ZILL^M8P z-0ad%L}(~2z290uHFVc#sG8G`SU=d``s>-DeCJI^+_ESuPD)5v^T#hMjJVv4xS#jF zOHQt#|5G>U>MY>6J-3tqB+J`P_hmjlRVK&FncCu?3&@lBVD4n<^|wON)~<=YqQV-uSm}WSM6XN5qJ$!nH(|-I2TLN_|w4 zXmb#wFWJBv^#9spPZtq3GC$?@$V)y+q=OLsP`?dEu=k)bAr>(NkC~2+VPPrpk420& zI{Uy621=#&;O~3VZS;RIg0qX1Db_wgF$Am;nJLO>i}5{wp(F<)yn@IsB0*eGZafdF zD4-aHDA1Y(^eLYJKh3N7c)hs|;5~sdF)YYgB1wwU^4L4kVFjPNulYso_+t^J3T;-h zQ+SlmLHwn>V-QjELG*9FS(0}C1WW*;F#(D_^@zeLD3^f3DSw36+(5c=>bo1kK0#`@ zF;1>5$SW0j%JOrSfCB+pdx6Z&ZJ_!r1qrzRqyr8+L!>#M0`W- zAW*)>ypBB(uA7vL&ZKRCW7FY**9pQQHa#+t40`USX-uu(TUrgnykt)h8_Kn9NgyW6jMv>dFB zH1pRsOSJ-CA)_`^T}=oNAYi&1>5&_Fv_RKc3i?)LL52dc)(H?j$l+pLZW~nFWC_#^ z?z>O&&w3I13h;OR1z8(qr9@*=a_Xyc6=$FQGYXg~akv1T2m`gX zIvNQ6O_{jNtgL#FMr1kig0S}{s|ApfP>XB#{50hxOQmC+hnN2uhLbE?0s#s31oVZ( zatFSH8jYBm8Y#eioa_e;rgo*J82q6UIukC~SQE z-0ic}MU<%x=l@gf{9JP|0=VddfWa3SY(Oj;&`AJq3j!?Fd7W~{^z9;gdV0i-!f-Fr zdwSXkl-1n6r$6+)+Yr#}(|Zv;Yh(k@J8t1&t9NMV-_emT)c_As=kZ1~&AM{~0|V=g@PhhJ02 zF%Q>7O$^ZT@Th^LTzDHmcL>ySv^5ONps${5yzyqZj5R48vut(43ZzKHL*!yle&(_) zCFp?{fh%(1Cf@h*P6LXxiTO^_Z#F`FR6txXhExZd2&f%EBQk3sg;k1oWri z@7hPKPc*l8XFY86O>p>ZI0i`nw^G}YQcpx(#uhj1oCVdJFGie9;nLdfD@COsPeM`g zT(c7XwttLyVDw+hh;Q$goXfNk0b&pWdiT&3{8h06E{(uP^aDi+8WEA|vC^2B7=HPO zNN|*qF}|1c9dqcC@OXzOJjiTx=K)3A8cSs1j8)JOgLT2}uWCC5B2Y6BWV9CDGCAr$ zHK)?%3b>fF;Pe(i#7juoZV$Z>C3OIehzmEZwF7frBi2n?(J-h*BSIxpOPc@+QL=f9 z&hyxAU-f0kpL+D8$MD*_6O{^N2b^iGO6*GH>LS9EZ8h2!V{74AF6+T32 z0p7)p^wDgP4otR4EM?fb;v9Id+h1Ez^pkeBL0^~zPW!n=kYvCI)qo;lbq$RGaNx%N zea*+?(d0GzCbQ#MHLFBqLI2yUR)|=vn9O#-*jNN|k!asL42mG1JF8K8?-aO=kO??g zU==MKRirsenQ7rLG$iDJ4DQX%pYM?A_yT+NYjM=B1Ix$O8F3}09zK@eZK!>_(hmpo zp2@7mWSI?XGZLn|OxhJf1=acpPiR@DL~^jy@vQ!rH_(IrHPd+Pi5 zA2lcN5#hY{B2DzvWmCDSR&c%5-PjqlmSAoL1*V9$T$Y?F{O96{ymNngi`3Y#Mkm(3 zJ1&EjD@9Uq!0`3+MI=_nUd~nJy~HQQARs`X>$X6j2*R6TG}xdj$qp*R8)b_LMDvMf zPJZqc%2Y}hOtqT@K;I#`NltO;Gkbx7KV|pvbZBe2+I&uCu`&G0V;4>TzW9C7YG=n% z*GbtQppbwBNW~%4kD5S~HXweaWzZ)^6B?nhS8jc9KWi-Sy!RYgAgF=q10NTnm=f@I z7$}e&M79xk_GJM93eXt@Rmv^gXRR|oujL50=LdbjnJ(|V8SxqACwCgP0~*>Ki!IlN z+y4EE*>+z2Q`>EQCJ={1q~{UEdGHFOYEmL}hn5>g0Kv5mii!Flhm4T2?cnD-VK_wcPl@D9<-;^(PW?Ii?ZsMvJFEot5GP>zYGD`oA-=3OT7^$ z1c-a@(kAqsLdTKctQmipCJc8Z`P95KPcwQ z9iZ}$=#_w!ZZHgw1aQYY_V)G#IVG&1s%`#illx{kt7eSz;EHXTHpcNoAEdiIH#hG` z^g^e=DP0Fa4n!ya^Nf7}mNtlNS%an>qM3Dp(@4@GhZHfez*K>lA^|mZFcOx5Ma$C$ zgU>%_T7N(UdIAg_fN)#nd+a;ISk7&}i;N(M*lSR~l;3JCn^OF>H)kRGQ%KdU%LB0iwKJFsnu}4^19+jaqt$5da#8YzXJ-tcbU7ZB zx+p?Xh=v|JsIEA|#B?=qdl-Ptb^wdRL?Pi|MBO?2{C8kK=jw@23O*u$0R_<1&!kh# z`vpDs78tcXHv3TCh(;X5TCKk>oe=8KhH(iZ_7)z(UEeLyu^=7EjwN0PlaPyy*qC7D zBBnBEpy7e;6+pGeT-l~k6JXwuq|UWPDO&_-vo?WP2kOyXcSNwHU@jjL5!mq$vgWsS zbmSC-o)Em_rmIU0roR^ZHFOPU$iH5V(yDq~2Ik!t0^}SyPAa{$c#l310b#TWBcT zhPnM|CYVP+dk=(dBcTZZxYtWA04AguUc2|*xdM;YFC(VwMd^p5HmSd3tlFHMoM2sI zpg@c;i{r&(3$ja>#LS#eTltq-6r*hO7J`siSXgs0z9j{38b4}gGYR$D z-2!NLWj^p+fDweq!L+toD8+$PQhkp*p9woWx)=b4V3IR;^u|;f=bEFULt_k|W9CY2 zw_(I#W|dLPLS7eoIe+)lLOK3hZ4bVTJ!y?b814CX-(djw@{0D5x~T(lraWMmq<->V zfeEmfx=RjYSKMJBT|Ph?Z)qf8lFm6-L?1$G4)R$4K68@PK69t1KgJTzUk6O|fNBJ+ zTJK$#q;OEPK04S1_|X)oi{*c_H-GUPCn4(4Kh6Ppbm|Dv?V(6qR+wvm9FX77dz~vP zKR-h7&M(Q2vuQxA976fTpgFL*y%YzSW-zRObdN-M^4!tXBxkKK3f(ydp+=gUHzWMe z>@US@j&j>=SemzQ`|_@Iro0C6Xm76wqdh~IX?Y#z2~ZQ|OF6exRNjo|_L*|eSrKeH zBnAW#rq+qyay9!CZXx+)G7ETRjD#_}9#q2n_khrNw-na+U~MOv2S*hww9kEvjEGg= z?MI&$$cLH-2OpxlcUmsBpo4eqA~$NjH?@;5cVN=?`S%qBJq>!in|y2qHwY9)Xh&1hIr?(LihA>5-ypIm|4Ix{=+!ll8`Lc|1Wl~ZHGVBVfN6Q?Y zbs@U?XhNNnDbc{G52>k!U(*!x?q4tc*>Vk0J2QkQgP%xP92CCJqUOI9FjBitzjDwW zhoQG2kzlAtgAb*!6U5b|w2C=ti^{EDjq*HltqI|vK*O}w|L?)i4?lGc(iNC&A!S6| z#!pS6ajg&2pS;j;q_jSBE{Ubr46?OgOay=?B{tAyZbS4JfowxG9g&b4gtZ`~#_4nw zg4Nn*a1~&nki`Wkfj{bKwUni_j^J${yZ#$i#)jCYb^4A~7ykf*-5_Pssp}!Fr*wTp zwwAF_AlZ%rwL84~tY5|dXT0V5S6r#m$Ili)IvKrc$R&InMI%oU8A%Q-1=5 zM1g#ucs~u=SyzJN=Tw2a0D!E#1dG;bdsy=d;cq=aAc@4>033rU6=?zHOM_qk-_Tg^ zNexQ?mAU2`<7E66d1OsCNXwN_BjB{CQqZUvYRBvCb=b;vIB4jtN%a@I3wW!4VYMLh z7b2(|8mcgNc@joiuxKTvq|7FN!ywZDRfqj=7X`#ByTi zOB5OC=q>}w70`niEkWp7G_S)`kbDF2OX14B2Ww9%QQklW(g&qqLE7JFS{%q)Bem0S z1*7ft>E9K96=JAYLH`(a+-x!$FL z3~-9HKR9L3sJJiPhEvDeAc&HjOlM?leCqFvb?%?fftlJ$9~B=TA3~9O?>ugKcG--i zPNZKbzrQ0ZebB{E~0eaQe`8+l!N*w)_)%MKf4R6h#%>ZftPu3b5=F0~xJ zgiq_FPx|)IQ#>ZMgg3OD9TzT|aK@cFa4E1yeqK7z)R`ZOVddzzba}BMa>POgC#-j{ zNzg4-Ouc-GJS}IEY|Qpd|7&D>z-v#2aKEIa;1yi!7v5(g#pN=K+(K8|L6lHnvpO0% z&?Fr+^=WN8P8=RYaDPQtYB>o1SQLINvwaQR;Gtx0RL#w4dKZO{flG>V7C=p`#arJ( z4hw3~G+K9DMP6X!xIwPje(l(R5viDsZY8_1U?LLa8LGX?bqM#rsJkQ2Pk~1gxUogH zh}@P-WbYQ?e%noV)zp-vD9*)1>R+N(yDLaY#rCq3XyGw%EM?n z=g;!~NKty$LRUMkaSb8cL}PTV5W#pqhI;uDf8;mBk5rYGiS2GCbvWLCMk&iIlB0`^E5Mhbb#zB5`wVp*X@j&yKW^nDEvt8W&z2$E$LC%yc z9Eoj=Y6O=X_m*=N^|$KZlCOk4guUVfsEE$-K?*JHhvD_JaI23M6OO7)i!6A^CGrOv z`6jBw#tT$bU(x$Tp4O18fW372Tc$h1{5ed{>e%a2lX}MHoWy4z#`^)qaO@NT1 zapToW)uAo5PLnbR$4I&@qq2)l()aTCGYn;UIy-U>WTGbUc6Y&%ePZ%yz7}bwz|wt{4zdW-sDHiT3hh_ z=1|O_UV^{o)usg2ZiD5?_slAh%aZ1)Bre3H6}Vor>f-64`jP_|ICxSApK~Ui(=n(c z$i>B)_;zu*Inx($A6xh3m!&WeQ)JCkQoZoy(o?~Upb(IM#yLnoQx2pMrv! zm}l9=l`Gt(Osv{Lqn@8ASxdYz0u-?oU8|Pmma=&jjm0fX$(x1sY6av}Y8LF1ynOKV z%{wuq?7~UP=oxPNrFUlGCSs_non|$^ z6zn`1SDgEi-!`EO^-}uD6XD@zz0^zvv*IMJ7}6D5K`Wb&eEGSe_$lJSG&-3juVbc| z-&|aoC(pbiq4PX>g~a~iGX~X?!)`)a=}b$>=VxxsF?Bi{xRmEFwdMLpIERoJhD5wm zFbXZM?44;0<{EC!OTO@>lXBE`xGIVDq>iDG6=ZAL3H&vY1A0nIo_-gxNJtAq&c1rA zVcpK+e_3+)=*^hV>xahm&n!Yms@w#=*}bQfi}02qd|&_c{gtOAO)|32yED3zZaEFF z@oQjI^u7!fSgJoU5XMXq9DX4YS2@w8Y0;x2?vwO=D%M{M!~tKR_e6C+i!q?RBCaw& zoX!ujTb2BGFEh9GZiO2QY@avP+JBzZaQF7Jj4sBi@)a~{!)G6Rm3CF#W_)@53AMFt`Q&smv?d%yWGPrln&)ws`MgFCIA96hJsp1TA9 z^4}qoMM`zK{}=iJ@7SMp#edNcynkl-u+Y#zQq7B!GBUUdzvEvj6nL_t2;NEiYo)*u z|J23dWQmBXN6xeRrCG-f2KOdk;T(KiCNP*PDxHm!soz}^9`T=gt$M*jS>ADBX<;FA zz7%6gWDH-YLgC)toG8auM9OK!NacW6X3g`$?06^zwFmY1YioXLsh`hA6ex z6Ys6zPO|kpUluJ&RL`Jsv1D76D5L&s>a&3SXtmkPF7jti>GhF#NH}4lBAKmrW?#lC zFwKic|?aqa6-pfAILqUWhCTbzc_G=+olG&guR+wx`SY@QnmK1%sbP%TG?V z3K({U>!47q{uFvu^A|gfhI;D~@P0ggvvm;TUrDjiz0?zY!P)Ajokx7-Hl5n%*#8VD}S?waSy-R6HoixQXPSypT>7Q=R4DK}OnMM!Krr=fP#+qy83FGq}D3nY%)ittZ zK;qS9AD7DdI5dI|-Hvz$ugl$Ydw_DZiyQ04vk`cio$1h>B7gSo_=rqU z`(uyOZKnhn#zrsY#|p-dQVy&7w2x0GDBBY^b}rI3=6G7%{FMTz*QN&3@ji#T&E~_0 zJ5CMyg=^#i*VfX;EISr7WPoKof?iBgdL-C_Zu|6 z*WJ$$Y%O~CxRK~Q$|E1kq(FtQqkb<4|3qT{{mf<}3l8a~tLfKyPGHhKeLmD?VsNe} z-{_NTznrMjBl95+Z!i59I$b3_?l`@bwz%U+lLj85+eCwTx+wY@>#Co z0G*Gq*e0`5P3Ji&1Xs*9tlT3^$}$KRz8P;s6_@M=(SIM6>!`9SEMKu0mpd8X9g@Z1 zo^8d}xc5mYea=%S5vR{T zmA~Rq{F=+^5@|Z%)kZXvkTLgJajb`L)u7M%d?N_{Jq=Op2DaHU)DM9AMTbs4<2}NNiehd$qQu$rW-gv)GyX-1V)Zd-FB2< z5w8`>=Lsa5!Me-Thg0wLBY=gw*4kNoK=|IskKt^&H!~D8>Mh+g>3fF}@tmKH?Jsk( zsvMB?=({BTG9od;xybLFN$sBe@yl80Dd+POu|u}%%PFmiZTdwpf;m-wSJc(`@df3S zbI+7;#cNf=Vl5PNFsvgeRtRYmdL9`F3D9wI>oeCoW(2bc>wC9O-nA4j-Jv&6|Cj_1 z?vzHDADh{fc9l;9D|OT_Qcm+ngaKHY;>4yA3Zro;yQ;SLb;4Hajhz!db*U7rbXqbh zQq|V$kycveDl|9fxnjWnlhNO3zR6MYkV$W3Tvq?mov7tx*XTmF1DCg zi!`Mt3zrBn`l2|J@3~Q&r7yB%Y&vHvkYcqqD)&`i`bWegsbLp9e}-Re&IW}^KOI?y zrF2PRc*wTTLsJ@xL#Flm`>V8z*6y$|*k2xk%^l1|W~3>@;i5P|M=9WniDGviAsJk6 z-9v{FCQ+npTldCY855NHF3BUlk-6~dA`G?yx-(Iq_8f~R9>jVf;voBL+xI%-+W)Yk z^KQz7t?S}pihdgTO)b^DM4kQGcX%#C>!}8kYe@bNHy!5>aSeo7rjAQ&hF|>uFVQ2k zhEi+*n*iRES|2pgBrP1AFaK9ZNoNp?I)xZPD9DZjzmoJ1BW|%S@eDRZa?JaAaX87( z+*kx-CE*|6 zEv5|;1Y;s*i6Si`1{teqqRzTW>^~q5MnHL^z={EZ`nxX+93ZR#8-K`au`bR6>?Xl; z`Xzty<={37RjVgOz0~|Y);L~U0kp9ayUiA|RG4TWtsiqSqe><$tk(ir@FZkz{U&A8HQBmfNM$pBH{OdseYv@7pM|yted8Vj%$d&`K@hdDWETU1}u5*r< zdR{B8ys>`?dccd;3J}#bUdVhu_cS}pzMTDiZ0(zy=5enqmi}iyACne4BMxTw zN*%}EPY!m~A$I;5!oTnpVyI?Y-dIx?D}h2H?{&Py|42l+&q_}H`f=;R#wPuRgUu9P z4P%feK-aa(X>d=S$^7h>E2H;R+qzD)?E1enlPY!s6_$Sm-6UiDe)tC_LxOZ3E63-& zRwd<_k!YUn`96QZ-iuScuP1TXt2J|>5!3`(F*K1sjQ%g36rom_{kWQ?cX)Ey2Z!s_ z(P=qE)p0|@PX4V@Y`P~Opf zBZ92ha*XS}@^K59Ihb!OT@ZKXgPJ6su;(w9P!ktWqQ=gcuRhu2v=@Byu0BLa#eZeC zKolY1i*sUE5x(E(lyA`YHnanPw|!+Xt&xGLIT1ZoZsRRknbtu53d+lssS%P8XV*u>Dh_~YWQKDG0TV0xB^#E|6Dbi4fmts2$NvsftKJNf%WXy{iG2Acnz(h?9$5+cUn@Zf&JYcw$CJwHN?k8}>;HM@j~k__LdM?>Zm zEgF)X!nzt&wvFbE8UOgW0jKcFmq8_3W7+7 zq@0{^>L%#qJ?MzxgQR1sm3Bzr7?Lv|>gN2{$TQ71^N3ZBTG+cw-sYLA0?l-~?DN2h z^^@r4#L_%IlpqTs;6IXCq=8t7WY%JOD!5|)QpGMkUdKS>eUPjikb(+Xy}s^G8dyT| z_#wnRlr5y}0=Dwi()ss+$Vd-U3c$7u0A16*yQTS->!e}~6k#TgsSO*{y1K2@medl|~cL;eSX-W{~EQaj4 zC#R`vfNuy$m32U1OhOdxwV((@NJijE9&NPWgg`{c3=38eD=T%49m>0w29<~*3&Lo9 zIA<@dM)8niWEUTy#S_d)e2%`h{K~M4<`^|Ditp z>X8AtEIlOL`p~w&xx937QMS?j_oSei4e~Elhg({9ZtzWt8bQwmvZ&&s6aeD_h#YP= zAxIm7hZ0TgodnSuo5%0PK*6HT)q;EW(+zT($>ndM$lQ`vgtKR`3h12^D3Dq^dyzA_ zqZG7lp7%n+GV`ze%gz;plg*GimVl5D69v;e1YYX^|Da!_NfGUqsbYJ;7OA)T>|=ym zQqRZ^S0ws7f8~Uj+TSp6*_aFkB#6@ae&cAUz$D~;*5=yyB@jykUG&Q!M&u8IzzM*A zhDa$AS_0$``7y-OGCx0A33t)2*1!8t?>ss8Qpeg-O{7`Tp&op?GH>C5 z?(aO;(n9)y@KL|8zP^6ydy$FTg2l4;*v!n#)Gt8cyr7i`o`3{Kjqn|z78JF$gAnm4 z{#ZO%{WmklTiQ~V?{3W90!jH0(6+lf<5*>yltNXXf2)?+4Nx6%D$P5C9T&VHhLg^FvXq?oGA;@~c{ zdz!kNb9y}{R{1Mu-cJCp2LFyuPfUD%3VGexSj(ovG$YcxP3xyV-r$&T{jt*TGWqr@ z`}(`x&y`O?y}p_!1Q@a*bVJ37lbh+FNBWzwTWKVcxBY(v5G2yskiB9 zD!VZmM44zX)%t5%$POCQ5}rSw7&>3COQz$Tzk;)LL@cJ*-K3uX;Jypi$=lZl70z5a zdDSO;?Bq!)(=#{=2^Rg>Aa%Barl)A&Qp+B)(kStC^+ zD6&i#)HVH}C243!Hg^ZYIWyon1>hgn~!`xzO zAveh|;QMF6gNLm2=jz!+K#Ws2^*v?AkgAo-uPcv(LZQZg>>K64XAa9!W>SZ|gZZOV4S_56fQnrz3<4CV(|ng$SRvqV zE`Hx-4FN5J{8j)wIBCim5=1DJESAmNrCc}IdKSiS|-&nk9p^@fa>tk_(gur<=sM6m!vux;HSZ!f)+ z$iezkm=?1k{0kG8CUQFDgEL|D0ZjroP$Q80;%;GjN8&{h$C~D$efPxG;0b1Xm9J*33dF zNy#q2$M%6_gd1B^#JeVjg~0c?bW#g+4p6jcQXgG#n^X^UrA^SmTY~9B!Q4Cpq=rZ? zUCM=iCL6=62oPvRY3UX_Hj`T4Gn#Xe;@; zd3#byD&W_AlG<(nV{(_mc;g8aieSP#nu0r^_qyHGG?h>?*3#G;JKuTjCXvTfc;w=y zX}^B;Rt00iZJcg%p1!%ieV8H9dXyji_$jOIF(+*>#KJ7aP^B~vX%!G zF8SR%e!p7T)XHw1zWQ9*0$St&MlWDy1Job zL)&k~p9VTb=ROsyW53(dUeuDUDJ2*NRa?V`oTGmyhAur>u&wD;!e?S)$unovcIOqZ zGPjicfKn3FN~7sV>WgumgeWaD}A$^WjB za@R;D_mWpnOC>0d{ zlJ93U^Vlb8bJE0#>b0LvyvTh8FGoF%uJcbW@r+LDO1LsQyY!%oJ?IqNQGP(`BNd?-TkdmU!f@_bkjl!k)(8XaH_Y+1h-6SfI0PtrN$q==vI^e z9a_yvvgx#j)Pb~yxtn|Z#K?VhZJ{B&2%cW5xD-ZAc|B$KzpG*DLUv2_UBYJMlXXSf zy`vvdIqA2{e-gQ{sOA-4X@E6#j+{x6k}bBYXAL&q+oNBMf9e5By+X_ExR4;;EXGO3 zUR#&K=kS;c3ocxIZiKh`b6d*hY^eB^U~X>32>~b7_$w ze*$Zu?X!-?tHK2?Yj31IaN9$hB)L-JC8~NRl5%S;XN2VIojmuFdFm-J6 z92Zh@IN|pJCKMbVE?GuF$Cq53y3bF}?YnMk_8C)80`B3>e+3@>z@z7@r;=^tuMm%_ zVCWqv@6&LjIqb0a!_qW~Rl!K5d6Oacj%GT9r%MvO)zTS3NSO7r%0o%zjm>u`Ni;jO z4I>l>=P^Kep`w_+3?P4DD;TN_2T!s9|HYn)<6+e`_eoPtd=8 zTT(;gKZBdg?tU`a@nx(Vuc=%A^Qr1MD3$JK5!b6D^=I0)(}3rapDKyJ_RERbRC0G$ zsVP{^b>A8KX+$^jWN)D-NtVSZ;lc;8DRrVk9&LvvjIZ>XAX9s_mfM={pU#Sl>|=S; zUq$b6v-j^SSjIgLCyZ1 zTYl!s*rk*@ft0s8DQZ{MbTk4AXK*uP+ybU;@6UKFB|ja`7S@V4?^Asv6D?fOa`iA} zVq85X=4HL^(A4K_@z!a&sIE-uwnHZC znz~u*%?yKK!u091uQ?^eeLWchKcjywl_))md2=9=Q!MaS>W+U(y@(`-RaW_dw%LI6 zRc_5i$GFTDwsA?n)5*#mVFpCm<+V@yw^KEIzwSO(AJ)mto}(`2(|KWI(?>ERCGb}I zbD~m*t5?P{1U|_O?LQ^{CT%|6+UGp1-fuE+6ryB=o4NW$ zcZn<5)Y`)Z4UoYNP&Mb~e#BK4*+q)vLPLMyt9k7rDvA z6)nbkU7){e6QX)^O>MilRqx~CfY)@!wLzP{N{=M>;qY9oO_6qozHrK-MPpry!zWIA zTOw+sLl<+(e=4aDe-u|g#4pG$@9Q0nxVgcfSv8-RxjMIrg~%vn*Q23BJFBgmmmwav}HC`EA+SCd2IF z>ce^S3il$_?QbF@`-jVy)DCmU%NITOyEFE8#I}p|j#@Lu^V?J-D!ygxKPYq`&SlWp z1gyG~zi0m9SY>bJN)K7q-ply%#o#03zV?eVV_VVcS$py04t*q4#f!!|Yh%uvj+saP zd^zPk;sb*b5#@^m9eIoW2Lq}m%-U8m!R3oykDD^IcFXsFj#YJMunn$dXjRu_w0bsI zt_YOe-*k1?c8V4$S*-Hxs9bU1*4#W@Qn6UflE3(op|s?1olVW7!%cm(!zQb|^LSwl zK3ht<4J}k+c13tTq=x?U&(;iQ7+d5sOkSBxF4+fGas^x3yxU(T)%dQ;n)mg2RQ0E7 zQZUR>3rXPw77y`nKjSTuF5cO$q0@6__n$EZ>;@t zzhtHD^f^&Y$9A5>>UH*Bq_Vb?*k`rT{HbBBO}iCsCp`a5s~Ke_L!wNt&Xu05bMCfW zkhkcn+OXj^ihirm^Q^CL+2VVmtl|zKKe^PHhbyme&baj5DgFqLz$8#4RJTVN>%Kr| zk!#+h+Y>01BGy^DI2^-pBhc|Uh;}O5lc>CGd+EUIQA{R4AGaR~l$BU{WNePbxI55a zi%aHSy67MN&2YR$bpU#e!|HiQ^X{_6ZMvQ9wE%~;BIS)>)h6N6C}^Y$4L_(nLs+_1 z)py;eMwXa0#zPFN8N)KO9o9Y>RSqO`59k_Htnl?y_q2=;%oq20y$uk`u51mjW>n1f zvT5)QN_ zW&}2B1ZWR)J*GNC?!(a&O!dzUpRs8FB$pP>Ln)k)EAXv&U)KXC_*C!l6Cyix!5q~w zOWa(36P{Zp(u&OIqDkVMr(MG1sg!nU;*oR6NnrlM4SZFuZ7RfD@U!j~GJkV3kD#zr zM|nF3&L`0DQ7VN{|8vU`RTW8ki7fj^F*b%`bTYzjOYGPua zfl24F=g3DHtXT0c!C!F?!~YgJuOc%a^9}heCvH>hMoE$5 z<=++scYu*~`@0+EkSs~%{{6K1c~c=!8gKdXML}Ob5wa(y4CuPc!kX=Cg4okSpiei{ z*HaGs6h8c=OwYjJ7BdDS?%x;3=j1AC2hJmJohJ5Lau$f9*^qO@&)0VzG8ikva&Os; zOxyMeXhUVds@EL&IPYNL4H|!5+O0COvZ{cQ4`G{c%%Ib2dG{cE|2R;q4{htc8Q0?~ z0X8a&#>d-Xj;$;urS$f4keF5xu)XwBKs^V!D6^-H^Xk%p$q(5yb9=<~&_-g-iE8;- zU~$+)NW3IhwTezixcu@0hjayn@$iRb?&=Fdmi*?d(7 z0WG*hI%5|vtUdasIWSdC-QWPR*Y?-c!cPUB$9EUo=kN`N}0}2K5juWtv+*oo!pNgEv zGIHDtDiRH_$cv4fpMd|&&@IC_H1^pg|AL48`yRPMa;=In}7Y z30OtejE_O!ZEJ|<`t^I@b+OL9`*|{y)m@I9SL%i7iRxDlvx?C)`LL8&!H`FmpF6IeHvT24g69CaDRtKM`w;!xWvDC$o;%9+5^3A z@Fs_k&nLCmo#anvwlUidzM_pmYmi-YE(0GkBMY@ns==P$M?$milS`_)i+_feiS1_X zYR^MDjZ_5?039-{Xh{`0{gHhAd-655x1=HuD_dTeTjRqE*Dyje zub6sqZQ0(~*tp1wnVI<)B(r85qD7gws^#IrP4M_E+v_lH_B9QKs>Oq`nSsGj=3&54N=cR;yz@LrIXsZTK zU$#a;qXi}C?v(nPNZwbmwb2s+@4%*U92l;h^z}u3lH{AG07oa8@z?8FeHJb z*gS}ID&D>O43byh0FBK`AaaByL#A#RNgo`LG(Wf zG!Gy-d^$KX`Bw^i9Vh+B7J<206f%fROf}8Z>>Um#CY3?M85({sIQS?!Pt>F5tkR*` zQ=VS1u53!rQ{X>-yrg=69^FzDWMpT#Wl)}kVc<_>~t*yhUA~AR08qTplbg6DrCq1_i0=TEa`$c!jeCI61*hg z5w123a?Jq((*dR6BPPXL3WPSC;lAxfwGbZT%20?b^51^h|WZEqbW;^1?sIUfG*{Wz``fNB627p z(1`jV7n`xsAs`R4ni>%B${iQp3#^vj5`mdN*3hQ{0^}}WKJ&`n1NVOv$f)K( zT)@vCEbrmsav=WSaF}i5Z-D>bJ9mLy6n3gUdQ=Ld+YPXG9-5d8%vrt1Lx>FS0&BLs zfILzCE|@iUl=!pM%{>;PoHw=_B2TlQxL}AVtPoL9SkS5NOUugMfFR&cr$~&>-W^F! zhC=VD#r1~}}i zKsOliXjj4=_Wk{E$@_i047T0k%T(yBikwBqg5@n^c*0UkO>!=sc9M>i=JbU3Xa1S(}YI&9N|}@*xb6 z&ozMJSZGQSnblDYN*NFkq^Lo95s==TCZh(?C{hIlBvJ+jl_JFgBOpb<&_i>8P(nZn z0qJ`#GxO{|yZi0_BRo79lKZ>&eb0N|_nzZJm)F+rVo;eHM|r17ClojO&d_3k%7njf zG>n0@bS!Chboz4L+*ey;g>%Z+IY#Zvg45BSRiCVVV6Hsfa7e6OC>m|&)FxGMI7eo6=1Lo+EGWUyVgG#v=FZ z&#^jTPjR*RfoPhCCC}s9+u6mS?-(z>!z>2()!Tav>AWa&8x2XS?l!m*Q7nn(S#^dldEk-0C zfwXMG4Lclod)d$rZ>1`)iaM91$31pbNLO61{kViYMVs%(VOizOy%ilD58*9t*l)-5 z^rY1F{Ed_B#Py`u56rvdl{8~L<0x;X%|K}gJjABk zvM2QBQ3&ll{nNX&>{nI@*YxAZA5TvO_RZ(UV7mdVbf&qr{r19U46|p$xsjyRHG5%K zQ+;EKuAsiKh&sRw;PiKLWo2Zn&sn1AVA62#`6A0|=peTpZOPkHnRqZMI@;mjp+gZg z?^kls{-Y^{g>Bu89^6TueYU0W$>_tH&V0U_oHs(rus=(qLfW9SPWidU_)ikz;`hB@ zYg96dp#V@^f(!LGWhD%*AubKK+J;5-A4qHVH0UV}DuArP*xp|!WHyzGIQed;?x&^c z{SoB-5M3?qKyPoaB1ck~=75c62{B(OG^o_?H^~e*S&t01UV-(5 z0^M;9uF;VTU;2OT!LUgR^&RU>hY+o0<&_SL68~K5 zF^C{U4PzDIe{~lsO~dUDNv45;Mb*{SG&<>oo+?Is%P1+aGA@twLy~|kQU5~3^GqZX zCsY-zRCES9%NwF4)O?Ceq@uGEz0Vjdx_VT^v}g!*6a((J^ERG=QZ zF|trezFT(*%AjPL#SW!;4hqXrFMUQgqDpb_XiO`c%3yMX)kDR_#RD;4GrELp*v*)< z<1MY-S~35v=*K=GAYwba2{S8M9VYkjzz0Vk z)wf{OA_LXFX>5i6T#nqa+d~k=H%AIUrd13t|BfFZ>9@2=QZl_}_cJT_=-nf^9g%;a zzuysajd9QchF@R~BBD#x^(~f#=kFnf*w@#@lwY>nbrH+be$J!Sl)wv8e62CGJg)v^ zM49*c{q2lvGnYp`6&1kJi7W~$6+Q{2^Ak1A`Hb3yR&jHydkA^-mcc@3pVcL5pCT4b zh!&dKu(v8AM}l{zWWfY|SNCTNzLJbd=(7yrx_1s|o>?5$fjy7%A+u?EyvG*P9Z3iU z4}j9idk%z(m}pREsolLC?~?QNs*}j!*1k4FV-dn5YtR{2*eRc2L=9q`CmjUQ1)U2;BoMVq{&|qWBIzlXbsco&;ENCj=4VaYXfAQ#HFR7U|~NTwlp24 zo$pW^p9ra{@64@zq7a}iU^;CCBV<#m72KsP+h;Z#<&R&tTR5E)ta!>zX-wY)6@4>6 z5B&{9Vg$wJdQ1%~#6YqvmieyR>1sArfp7&2lFJU>vUC2}z}0vcDPgq)ovOtX4Oc=> z-QQEKWDfhrr}41Fa^NX{+kn4+57LbOcfyrC;u882lag`_56t|YJ-xi`ou{xF(^FHw z#WXNTrtg8tOb0{|^ym=4I_p?*_l#exsAQNFpw>A41=jYpZ+}ha34W_#wAT~o0 z%$zY7w!pXb4dCXx!9?t=wny3iuFt}i!Z+&jR{mM~2Kg;dmRJusSimoCI<@lWn<>!! z16sdDqVWtSnrIj*p^voXrf^jUr_<6xA-a}{07e4xeoW+Lk-QKp+knBN`$Q+qOsLG$ zHyO~Lj5755eBC-zU;{Zi>NA_1?>(6V{yOtL`;}s;< z35oQKQOV=_`gzl1;SgcVeriSY$D=>)n zT7^XbtVO=7Mbt1<7nE5{8cFbgSF$)Sb+Yl00cvqhL==o!hJL_Ou_#UohVjAVckZlP zG;r-K%8KmK}rcZ0ZuL_A1PmmO7xrT`C9a;n%UJiM?fl238z5A3wGI8>On;a@dC*Xu0a zu%H#ynOmeGXpOEkxatIs4&DoweK^Q(f5eVebGdEt#Opr!%B4o4Zfj#u@rlyFZTNCQ z^Sue4c%=ZU=BX0!e=^2(_OOnlnwY^ZFeqa;PGXU3VG38+yHbb=op{hJFZx`7GGyn@ z)-D|K@_OjhnEdk-K|Z$@6HFdLM38uL=8%PA0N`E;gktN~sjZRNm6e|aiLwp>0sr0p zed`{14d@9$TEs#bKBxl+b5Jc2bF3}y@i%Uq!Oyjqe*u>SVlegC#(~CV)Xn#vy?%Lg z9`lU$v;v$-e6cj}sUfVih=iUrqMoueWX6 zgJnpsJn+L0Kd3WORy6I6WoS=R^Q>EQN+$HY5t1Vp_V6(D;D)lAhxw;H7^#w1R(?YO zI+CY~=O5qROiCK(zdLPUr9Ai;tdR=jir^>e2(YPt_H42ww5je)l|2qaQ0YL0mPbfc7%GvvHH zvY#!^IvdtiUN-02y}m3ed0$gqtxRls>*S)X&Vu;T2TUW!`*LLDK8FO)OHUvRH}W`C ziT8cY8Kx59%_twl$Lv>=Z~irX^sgC=|AT)Lp_-QqFW(Ygeh+iGNs|K+RGn@c8#A*O zx~(kbuIE;eS09x??6t#yCA~fzGI@Rc>*zduiP4vT_7Y!Mn!fU?;71NS5S~2_b*O`kb*!=E~qDc#==A+%~ER4w>166vfjNrpXb_c3{sOs zW#EdE*Qd_vwHa8WO9+r9}?&z7{{sSFeO!*ihNwUz;J1T z??pEt6^zL+f!SzYpdFM$zbQWqE;&6v5{U?}F$~?cR*k`g6zEQEmzO^>Gc#jZ;C=^N zDh0Ahj)+!Lnin2CogLW`d3g)v`KN0slodm}!)C7Du%pFdKC{3Hek#|s1<=}?Xsd+5 z-KZ~mTbcR#h`3!xSWmEA`ryK&eBt@^mn*5glPU zHD^R^-?b}yZ$2J%983cv$1z^n1OTT!HL)m6TJm>YLvi%CQo+VkM?Yw`K5TI-{R)%W zl!Rffg5fAb@BKIG6OJ7_#(|IECTVG_a~-&2CE$y|j+*y%sh&c^5j`GuN6IA#0#5~1 z*VQ#wNA1WI^d)1$19e*EIS6+R%?u_LL|QJ+^(;+EZKT{iL+IU=uVHze17?E$2F;sI zGBSd_r2uOqXa~^nzD)_~ZCK^CG~4=2aa)xzsT+;HjsZxH1PWY!|K&?(xZYL{L*Kff zMrZK@Lnirx#D)#Y_+aKNQu~g*TTO}hZ2176IMBfxw%;1X-=TAL%-`xl<6#^2()-A; z6UUD;Y5ZML-DCgO&Nigxgdl;v-bLN--@quw(?mvfMxZ2z6{ir-o)%ty<{6TW933gc z1YB9`z)FhLdh$2!j$+TD&`784c>ARHhcy{)euBJKMOD=ktVsk*pymF;+uV`>?;PDX zG=6p*l=N=c$yop_Otj^rytSD_f%T{c8>l%S_$QWBYRJtNq;Mj58D*ls_UsYFhlo!L zQdd$wx`n!gTQEU|Dpw^(mOKSu5cu*G0&6tf~5cU(ug!zIKuIam323OH&m z3?N{_hoWou-Eu*XN%jq36-b%=xtLgV`P=KXQm}VZTh}V;e6oVldusWxond-vy_^7V z^9JbFG&6wQ>Fd+uC5S2H9Mc-y9<5MLbhZ_|!1UaOwC-sIkIF!3Y8hBcQ!dW-p=a>T zbNE@3IL22ShgoqR`Y3_B=g`yAJl}hn;M%MTf+Iie1#X(c+Ce6&3XW zEZARZ zdVFL|-C>s1uu5#dkznhmgczM`_rfyBQe)321CktLiHzPu!wviz5;;ov5qiWbicuKp zzkKvlHT&c>)JFzF{Cf~Gn0a&WC)HPZK!LOw>>n8(2geab!XIf=5JDdWTOO)-dQ0DG zn-G!d%ZiGY07)OurG;s3Yu$ptBaDL>bOFrP1F$!1*sBifLb#EV(q$5YU?3gJ&_j0)n5Z-;9ZHIH3_XA-AUOh(0}MU% zkV6au-yZe8pXYu5-*;Vq#^CI8&faUUz2djlUVGl&*HWc9&3+mJfzYU{-F^sxko!R( zWOb)bfR=1ADCxgrZa39+PJti)Qx3ZKY3b@_>*OdQA}%5>bk4@z-C0gl^gs7SoLsF%V|hZ~LLlcL z>bGy`cqcE9`S>$!BahYxrO#8UpSwQ9bd!xMZ(ZZ zQJu-MX>J=`Yi*rg_0W988}Os%eA-2x>@4`9ny(o z*T+h99r=G6do2EHYiVt*O?gdv=7p5~P^4wS%Cb|+JEYwA*48pO(YLZMGJB1<(_QCe z=CyeSbbJQdIbJi6I}|gq(_tpJc}c_g-mTlWztb$1{f_~}{@3_@H0<;TsXi?$)VFWn zHqJ2DevX;=>S%rL!i6bzla>z?JKKZZycaI?k}q_o9&6xFbDv|k*1mn)@Lb9;18F|y zSMcD)+t1_QDT2$WbJ^zL?rq*T3nyqO;V5OC=Ls;q!UrY%UvXdZM!T;Ak|b+Fm!g-a z?CTYFFSWLZSEt-vGeWc{fY%JqG5Lw?Ew1S)ByU``-LrMf0kpwK{=HS5-(jg)>%;Ei zFg>bu=l8Jt%hj2;mS}n1HJs&XNCdgcm0_dv(}iMlL~}ltH?HXXCMS2utxY-svo_S! zswS%DCC~Jmb`l{k3n_Vt*VF^>TETH#p2od<^p$-!Z2Q}8f7<88 z3pK>4Bn--(&hBOHk*KTRZTgqGJ*g$5RQ-cv1S)(jm=mEdEm{5c?abp3OR&)$wI?nAb3a;_G*ZckXYP?S}!SP8h&*1MH;0N=w^EAPQqll^j>_IL&l zqH2|qXqKa=vplTpxU==UN5V&ep_<$aA%SIE(xG?RWtmATq|@@!t*JcA^#Of+&ukR0GY}+%$^F#JIat`M1Mk zXCTGX^R)EVmr8{K*dRvX_UAz#Fxq^wv<>zghN~^QbsV!NxXsV$@a5;-tM~= zOHl<7Aq_JX(1$1I7+GUe0F^rEdb|z^@lV~CeOpE^d*2xn5k)2a&I zFFQDrhA2&!_fgYdF`ECv8`6rg}_EIJctQ z69OisHt7|CS$v}@ih5Zrl1k1La(zj+Kvo&=-;MKDfxa$W1HDWB<6jFGx)+?o8G`S)KFy(8=&O$qt*_c_-g3ln1bx6RN3RNS-^CWI@z#k2 zXM`!zP{z#8&KKM4dn~9LYbJ}XVi3xTX#7@loCh+L+rba=lP{l!^t%K)dBG^qXRu>o zJX;>(@NLA^r?O*#d5k6~evMTG=P7HFQA^%!(jMo9Ocr@ya+P&NwVeMGj65Ynj^Yej zE|$#X(Gv#cj zlyz?dEHJ$({glMhB6<= zy5|e#nfgNDCi`c(*|qf5Sl3sks>?gFNKbLocN?s9r<-BnFJHf;2e)x}WOeyw*30-a zO}D-Q2Ghm4*B^sYpZ#<;x$lq@V=^}RX)?KQl2c^WUkn0Tw^n|}g~*xAd@r~lBZ^lL zS@wP!rtcu??BH}gj;!2iEcFaSdPUCf56k`OmN0o4&*dTY!vQv2?t@%`^XI=7nl&gr zA&6cUK9_Oz1z3$UXW7pd@0^_=;8J`r^{aE|frC2N5>GQ=*noQ4FXJa7a9QxlqX9m1 zqt-7&RM(h%fPZ+Ni%Qjq%@&?b_<-8ozo7;R*w2*!F0K4J$sS8hI@ony3Nqbr&*T>W zKBfR{vhhcA)TP1gx^UF$LFeF8J(8I|9M7{kUJO7bZ&nczu{-q^L# zMeLBLMG`vqujj-@4-J$A?UOvG+7r_FC-9tV?Zu2>(Ou<%>sqb->&Q}u-P)qkFA8ZH z8BZs`>CY+p$;E(osD5|c7bpI7& zn`uX*|C91&Wg|`CCjK$#aV{pVyF*Wv&_uTCOV$6hHUqX~icS_S9euH$eg{Uq4t&wu z9WmSS_1~V8{6+xYSp0MAIo;8+=Rid&A5p@2{3rhS&7K6sI8GVQpqYd* zxbgv}FsuFUSa=dxfX}G$g{uKIf7pEmZ|rK7BtiBjOeYN)^c!9X#{(~EaUXRfpQ|MH z&CgSnk4S7imo4EZqTZnm-Opa&6p)+pyz&=_R9mQz(2wuV(I|3|R)zd77-`CU3Np`_ zTYDRLU0&x<#J~z?V%E!-$76waQt{i@@jw&piYV@(e(p6M*BuleB=|GD^$hWNCvRH+gJFqLZ}@T*E>I#9Qp8S`;ipDd}`pNuIXrK^dEG zGix7*{&9D*IdXIm51BTkk`+o{fS^$_>SWziSYx~o0q~Pz5Q3tRW`)Ad3xugUb0V#5 z+vqDL0Jd_uS0;cDl6F3gY%M?(`LeJ>4^JGhv(hO%#L$L{#Z5B$sy-td7#T~QZ7Dla z4LUk;$oz&5AgBwyqt`+@s#42*rO9#|ms$(p%rYlNokHI_KGD0SxY;&-lde%Ng3@P% z;c)RiLo82h!(sn#@%w1?V3};tXHH;XqFUb|SZm{Ba3`{rosi zR9&G`fKsZw6TeS3d#D)8baFr1n_jk^?y+krnhnrXm0g`YY_yz!u?WqLiV@2ejy%Ok z4%5QZgo?cgl9`ZzIhX`c{6>g(%P!;d5w$^#=Tb+eC&DPwpLrD^TI;C7#IS78Zh5#_ zOFXM`hc8*ovxgH2*&W94Gl#pXfBD&AX<*%pHfPgLcw1>Q0YxhT$&SvHO}9zpadcp!0xFl%X-5fa zSE9HmNoRS!Sh-n|0QT)f(=xd-e)=<9@-->X07GCT{UNN~`XjJmA|zAu<`_^QfS`T< zf@>0KZln|r+*M@df0T_HZ z@;88x_`ioYzpTM4)!6@{HR)R0-&Z=SNb@E|M8_I>GX4lduca|199>!aXKwDl=gj*i zcj$k{9Q$C-OM|HYid{NH|9OS&w?_f5#7uZ$0{+G@;)TZ=w%q^nsQXXI^}mhGqclZI zxbk7iUpA4bqGb3tauEcilA<;BH4drHe|*J<39p$q|3BEu;pqHNfC0j^VCAa6)B7)4 zcVg0H{`e*mU*Em^J1|)5zXShI!x#Y8XUsF{zi2($D&_>d3K~~A(=Ak|wIU(w#o+JW)5R}je6HF{rqZZ^bk`| zPfx$RzrCc5p9T|plPpDoJR`>fmlB&TjZp^3q#&J%?P*=*5VzP>I8@V}qW0bK5i)ch zi!Wqgq@dCB9KB87G20HhJG!xdTya$_w9u<$o_dFr3Kx)IGf10B)@lRp7)wP|ZgaOhzHTvTlZp zSv?nWZpoJp)H{XBLORLe4;&t!xJol* zG6)M3%XroUadB~>L4F{KK-r*i_p&4#v@@WQrO|c5Ke?j;OF{K)FetEp+Yq+G3!FAW z>XRF`JLjSaX;FggM4D4~I!$Wj2K?f908y!MpGPhtgX2yGV^#&ir2~!>tF6`V{VK(* ze&*%~0lIn*fU80IVeL%|miW$5>n~zeBJMs(;OBG}SC{&bnaMjfJq^++ z=arOF!G&}mB|JiDQ4@3^eBW)Mta3=Ap^cT{A@aUNOZjp7XE&eRqaeIp>s+civ1DTE zTlzNj3wTQh$a)%U z2S%XduUg_aL&dOMl`F0&|0=P$=taR$F=EhU&~au-6Fk3FXS`VbO;lcSaikcurRx0y zs>s;6zqI*2Z&{DfK%X{#CUFAeIq_w2dYTO?6oeSytW3*o44g_vCQ&Rm3tR{$pKRdLT0XH zk~v+YVbW_i-9j;RqFk)elNxI~&z1-tvkVmXbsZhX>DCA@F+s4Vl)7E%C{qn_^Y5ql z?j_zvS2&Q(|NKM|!*{Q@iw%%Ne+GcbtKcrT|Jn`6A@1l<`xPl`bxgCYCKMe#!~B8l z{(a+B58W32O!zu8TAxWZd<@}qmhPf>R;DE3C9HDezPu8OR$<(xV4&N$Jw-` zBcUA9aF8W2C<8pl?=+J}decp^H*1|F_f38SfKRy!7w+k$mD=AX@YH`2PH~x*@&R~p z;9E#fs!7{a@ya#rEne)m7G3+Vlosle!)7?-%wy+YvzmrMUtf&(QOt*-i9OASHw*ZsE&8UQD}WiT5k$r%r{>6 zo|R=$w|1d*z@PHErHdGwXr0<*jR!=Bk<)D|%uLqBl$+GlBaMOFPmP)Wo+KsjqRUKb znw{@in~8aEX%R{4$q7SyefW?_>grOh7sdU=Sd|tk(T9nNi{Eo|wUT2`TyHBhA>Fk+ zNej7O7f{P!Z6UKhP(W&$H86lMI*crTmzC8z=#nNiG5PpF7#$DV-%^FkuGe^I)i-M? zcSB(Vq_Kv?Q5oC1h3@7ko>O2hG3!%i{uqbDsb)_2g45&mrdOQsJxjA>Y2{a)dS-d= zVq*I7ULE0VXxS_Q7tMXtd4)!BS&m&SmzdE{Z29-BZ zWPIZg``G1cspX8Q{zS+oi)i+f$@DMVR4h>q-Y)(7?~ijDRpeheJa7vyFrEzAJWS~< zd7SrU%4bssKb!bvH%42w!m~iMJ4GTmJ&fbaRK(oYQ) zq~pL#xk3UiQyHpl35rRjTSUlvYis%SXD_sp6BfR+1(RLwkkRa39)53aB}Z!Y=S9Em z+li6zlVVa$(OAzS^d=9v-50!f&ttsdBP1w#%rCj>XSHmOMJp{Bwk1|>kI4zM`c@;w zdr1nU^_-`=jD932qP=vh=4){>a()%KTH*aUj&S(eGf|Pzs;JS3Ih|&Xff&MiYyIxf z2*S>f%+YWB=xRUy*YD4$MLw45ed1p?NKtXr`kH3CD?(|i8AB9p@LPWsgp7c^I3eq% zcmt%CpT8HgdV!Goijf21wYq+s2&8=RSI?{_&_&*ONpI;wF+SSM#RFDpKf=R+MU{cA z@bf1bUq$Op7`Jp??xkV>nwgpTa(UT)V{n|qbez$-7Gv^rLs)~nQSjk@&I zq?UZK%*!y}a8{EnHZ4tCQ&Y1MqY4t)ujAuc!MwD6lzpGSrizY^_C`x+p@!B`eY2qw ztYYRbI}DDOEpyHjU5#R@P( z{?jbDypWS#66b>UZb8dOc{pf^=X_*lVQC#l`VmD~fE%#23sWqUrnas_PV*a~YHAbZ zhM!!8A9$yyr`rjIynAPUu)8i|`HQ^npcLSmYZ4l0c8R`bxOZ@I~Q z4DY2WaY3p3aU zC3XTzeg6FUysvM>w$9K&g{qe>N|1`_RU%4KR(vG7t7*9Hdwd)1jCuun+ z1{)3~S&W^@9z1w(TSbK)Or-G{1)GGGW&v*V*-7rTm7>Bn4B;BDuyEMVpZ7z>6jqQ) z$m1IK?m4Xa(N;9URz?sCTR(4Yt)Sy79MB;3aHGf+$*SZpgG26cGchrR?VCO)`t5(R zSracr=o0r6hu)mMs9)xKsR+5phf>%KJ&n9hn4+>)@-D9RDL+?Wh)A!iOBQ&Py;hgT zAHO_Q^5T+4>}~}WGq_{EG1I27JMjWB@K{$@9PH}IDQ{-qOJbFAJ~uo(Z0x_@9Lgyh z4TPPRN2zlJ0rNTB!^$q@m(7pWdKCp`PM%~Ko zvc7VFS6XAVl@`2A{QVCW?(to3Z*TWLSa0=NDyTd~Lt{D7_-xd7sQ_qXWNK=6`kj#7 zwQqE6QueGd{MvKF)@cQZ2$$*PV7omd79mU@T^QWYBs$gX#C5BuYX_=>_QVD4Zet*b zeF&IdjTg?;`qNdP4GYL?YPP0iS+`L&v2%{KD^f~_yHF{o@y=H)ruxvagT2k+N+%w# zai1Iv>R={DJ31w$3&;xbkiXh*$MLR)2C*LZ^V2QuMe0;#z;4YHxeq{BR%>xeXm?U=cM|++e9g+{rI6q;x3K!==HmI?-n??xw-9i zm>o8451MI5a4Vjoqssx=HF%YIrG*O9KfaT)f zPT+y>K81{fhYgp&zYajN78PO|+Be_F@uzw>;r7c=N=cjD^0>?mxwCC;ZJ9Yan;_ko ztjZI>xOU`Icjd|zZ?L3lnwps=wVpuidvmmTxIv#FkvoYl^i|GEkg#@bX43l!q>J6! zmzG=MM-hBm5CH1{iI7A$&g zKUDn8$g%nrNtGBFzD<06v1E^OUQBbFZU0b5#G}8rw1@{D9vHsjzHVc4c?T1yEMe6t z^9j|f-;Zv~Hz;Gh`UClh7#X9o2Bo^;#5| z!&UpCt2OQmQ?;DLA!vll+Qf|pG;XvyrWRM91lIKo7gyI~J(FhZv;bYF@r8wjgTX)| z3%HU3X3l+iC<^V=km9j4kTSy3dpmKaGgXX_tcqfuI+KD&A66;ZT>s*6CU&^0AS9wX z`RzfZ_sLm&cz=}_Zrn=#@(yxmyu%5;$-$?c+6e?WphFqRDoJsvMC%&6Q{;*Dp15%& zNeX`b(kZN-V|T2cWe(?(ZvnzqH5+RbFXM6{LnUm(p}}KG7ntgAh(Xhig39r`!L(dM zKxKd|Q-Zbk-(ScXb?p#FjAMcE=jG$0=jQHSoBSpqATUYX!C=3h82%kLp zFo?y({Vc@^>T{Pay+Zo!^ycXmv7=*SV_ne>l_gKUlKbM9+X4?-1J5up+_JN~;x^Yg zxtLcpm+aP^yPgihOM74uafFC@F|>gGl^RAx=5XBHqyveNrYMc8pa+$CUz!2+hC zln9}8$_J5X$J(ySw3FQ4K?Y@3E1 z5Y3smh6BqN1OtQ}(~FaI+2!T$NlKs;aR1rE5C7Bx?5_b`mH>iQ*l@USh?Z`~ZXGTo z0}p<+qAMt7`}NE&$;u{tx)m%A9(nli;VuDlqy=d38g)4d>@QvAxUXP_YJ^q)m&d>b zzW|ya9TNjvwjQtZq2`dHh6#TQrpwVQG9_tH@ikX22Ct1E!WpudEB=9 z^(3sjIpO<#X(zS_c9DpRamp%kZ#wVt@NE=1Q|rAf4~L^$2`8vopHM95MJQR35#m_P zsOJf95S|m)txp#V8&&+Orp0z|TPaH(Z%p->OBeuo5#Raq9PI3NeZ9T@OHTEBRvZir z&nWSuM1cmH>>uVPki) zY+oh3=_Ms|v7l~#F%`2=aS)fRt3_DA0lu;U5d{2p9+$jlzDbRHZdX@V!A<~Ro-LVQ zE0@<0(C`6VIZ$ks!0@dtchWpiiaW-bQXr1~U1_6Bm~f zMgQGmQ8<3sTKGvudirup7zb=+2}n?B5V0@qPzSo#{y~sLa9CIvVsCG6zz~ad2rU5` z^Lf2&6S&$9A_2%gcp6AM%mG`}wOeM5;-(rR=^Zf~+nF$p_5{fY=3>B_iVq(?)X$xpz+1HI5YV0peKu{>1bx! z=5iUTBFLop$&HMPqK;fn?Yb3U7_wW$5LHz}roeYe@$v#o+cH9e9s`ecbcVjZIBC=f z2cl9x3n-V8k{WpZ^5u|aM{K`$n)1;ein&;N+#4D;3;xYGzT6?&U<};@<1Q17`y=!K zSgrs@PwK*jbQP@u!`i?jxL*sK^^oIOP5&-&4c@Y-+_3*^Cs4zq(bq^%Sa0w&=ET+U zM~!1s)?-gT_DW>=ylaw7tzxYD{D~+%DDbm+{3n6CB8W&F!cy!jnLl2x)?Y3#C~G12 z9IbKzviIoGBL_9LHvwBcss)GvrxH+eVrJ9`OzSA_5P5QJ&@2%7VDDfj@Tl_mGC-}c zSvDr7*~*VK_z{@!grErfL*x*^1EpMY?!|*9UMYxyy@*;sfBjTRp?MMDP&m6}dxc$p z`_AUomLcH7Mo3O~70A;7!8ZiCpS}1>?N+Masw~wIHmyib1W4WY*TKPPiEfz;m8XwQ zO&!q)nDxbr7gr961dh?l9px(iH2>0pn)32%R6|u&GDe1mhA?8l&X_eB0XT7eSOE}F zL=bZEOP(F0&Y^e6M_j{E{a4PVDPjC#Vx4kFbTmB&6O$#n+!h+aDfy<%V1nmu4mst|h^`_V&9Nlhl6EuiPj!zW{&` zAXpektP8+bIF1=kdkE?k&R8oG*cAQnpung}`q#I-qWaT~fX6W8pe#1|76_&aX2IQK z=lJ=tFO}Vv1`4Wi^#uJ=3rcyfRg0eVJEXW_97Wx2Spp)AC;)M{7W#aE6z%myz`p~R z>@)j8uWCL$#BMuqD^be9Fh#jcFU`dWQN)8&|(%087*dFhQ9bW+eg;m_*RGw}@ zx>*C91j>a>>#7DaE`R#s_l-%<`0K?8g{I}dqG^FiE%WDqI=M0SKI+sQSa_zylr}?lkPsEJUZKYI%F_s?R=7+uOvJfq=vj z_$f?avMGoTApl~Z2e@VmgbF8<>us+WIB@h97*zs(5b=wP{BtI&0op;sW!9Sjm0xw6 z(=-b#A1E-A@ZWVl+#hV{1tAV(wPr~K_^4K}Hs62cK1!J1`{vXbM5Y;k^%fcXI0S@ zd2~pCn@v9ks`t7jd3cF>x7N}Ua^?ghMB__Q@jxuZY?ATalm|X{RocoP z+2-q!*I!3v!R+EvE$o&drhesS?=Rc@b`M8Xci@p5j+&hr0OwC3vBTWYUI@#k_r416<+hW;xZ^C%m9)L#& z^(}sb7TZTNz(BIedkO&;XN{>3AYme)&xybuUG?8xV=rph9xyT}w>c{-D=TDN6=`;~ zKWIN*mjDo97yu;6_Yb#a6HpH@aB*?*gTf-%QO>?B(wdq@#CT|;Lirf~{-#USJz77OkK0j ziGdvU!$*&D^YeKnB@qTJz7vec0X*YZR7{zlw^;?i(YLZ;qg{~9n)PkVNVOY3DZzkE z3xtQw0=J#7Uo!PQ#*rL=_X`pdF}=OLCqyTK$K`zqUJeQ}cHE(jVgNw(7MsW(2L~8Q~Ni@egwSB(rVYEo=PV(5V7sfB{?0WB4P7x-adn(CN<>) zHSgZNJAvM6gKOb<%z+AgDVtc|@XD^MUat@g)LywPD!Ri3t;2Y2d(PwX>l=v4o$Kv1 zVFGws$l-}^HSAdW)i{qjkrO}U+UlO0F4bLt7|ybQ_(yF5#Q%Zj0GD;9DW_F95Q!`L zm(HJm1}m(79ig=Uxmz^?xI8aTCI2CoR#21*Z4GC?6O4!jR$gi$A&J2SK(MO-sLpk# zEL9ev)&aaywX^$z@!;`aBLjO4q(q&ud(WMFNtdsBEb6p(bg+q;9|M^Qyu42ul^l@K zD}sWQz#^8ka%X)0{02yU=0Ml>$;nAlq;zoLf4CN` z{7b(QHYh?0kq`&=XSK+@H3j0*nJAg}74?&o1m;0%$Equ_IZ+a3m+!YX8wczU9SBJHL_}ym+XegK zmnT6Gm{&p^t#%_aV@RO|Fx_(i{$Mdjhm{xw-6GSKO67%xU-3$Qg3r#j#Mc%ea1>zE z5aPITSJ8gbocF6Q``|B9wwpGf|r87}H=|GDyWC$^h$HgriChh6B*Jr`x0rVX%wWK1s#YZe6 z)2eswNbb*_3Tika;($4c1ztKPGV(fzS=zd~EJ0Bj$buy578tG%7&+~6VV0*Olncx5 zhekvc?JTel7-AUi)xEe$APM;iTFxKQmo(J0wC2FGvmgsK3*hHWpSJSss2ggw0_~Uq zJTR~|QPI&&W``SbD$2v(vO{id zm*RewS!-`>Y{W}Daf7gW3dBo04usw5h%$g-K`7zvkNV&be_CPitUv^ z9K&8@`vtWJ@IM1Pd%KYnvKa)fD3HCZ0;U(FfSv%yAY@qnW@~H9Fs?l*L&{-D*pY1>1VIwzm03mEjZRn=YF&rRYf}L-D@Y&( zev-PVl<6wm)a{uy5q-~tWojXnTyd-Y;?9^88KG&&g~mxJC!38L*&BV|VgAGGUy|La zh=IA;+2Qr+Rx~hJohquTXy7!_ySv_?y7};zR_i`<E($|z3KmV@v*UyQQ@K(`geolz)ZYXO>(L6S;`6_8}HNrUe%uunq< zTIILyg4{7XB0x(koQOFhnxTPwb8vJ2ju%eSaob~2X=X5^z*|M$1!fK7;~ zpNmp7lcWl|r|$${ra^{s1>}1iz&?e&zJ5H3kpVMNs*9ZBHo&iY4i!JG06TgKAkBodWSY*aiOr#@51SiPDPB#!5 z*6U;~F;beWPnx0E-PQO7LB{;Ch9f5Ew$*JF39POJ3V>u^kwR3l*aZs(mIR zV~szwEx4CAeW^7_?=ykkDP&L%RSoBf#jbiBFi(zo{oT6_gG&`6@J1786-Pp+y7jM{ z+ zX+q_|2#40>_Kl_c)e`mNQSVgJj6cL|&n0yqV3oc8R&Ztavfl2$$HxCe{H}(!!fPTEN7Wa5FN3EfQymhMynadBRi9S+v&|xa zw<7lw?Li64v3vwPjVJ(EmCi1qU<$qF z{o*wOuk?{)?Nl*$6^%EKjLq+|$0Buc+w=GpwAam!+2D)UuDvfU6|d|&14=s|=<2H2 z*vt#yavpe18^SgV5HTQmbt43v70bueFdi&c0HbwMe#n z2SuT_p$0VeWN^CMkRmdQe8ixXOZbhf!de#`*tr1K?-tNO5Kw-4l%rK22;fl6`}Z?w zB>{oAz*aUaExL*q*@j+Usmuiyy~L`EJyytML}=4Z!|kYAy{`{tJhKIpYVaBuIl-Sy z_Q9!%?e#3{eaiP_Y2@F6id&Yk!Ph_#*m#1x`+6V0!ks&Jh5@V|BK`gR`SO4F?!9S5 z?dc-Xi4yK2V)^cAE4xMY;oOhL$(9_rB*RK*+%HJCC`7m=;HkBHDw%Qu$3YEDXv~+Z zfsntOzDfQKIpQabyuD>00BFGnw{aK@ZmE8MF^>U$4|>e5;a+nR#$4M!#d_R$l>;-7e94`zWfgl}&T6gTcoQw$j2dTwiSy-kh48JRL$h zF$4;6Kj-IDe}^v#;k9N?gdIbsN}g7CEo+ z7~`Dl+rxe!JJ4^9yJow(SA7Sg(UFl>{bOM;8PrFc>PQX>+;2`rc(C~Q^z@Lt*Z?aO zBx>ggUck!RT?;4i+Z5@$XQCGuy%xHjxr$rQf@RNOddO^-6yH3f-yK3eJob zgHrnoWWVy?DMB@Y;njh5l0h}!it+WcZkCE=-@0g~{DT$BA+}AuWo?`PQ}?N34ynxe zM*i@q0PLT7IT!9){KW~%31+BfIs&goQLBEurN3m=d_v?&3__|vJz7b- z14X)T-K+{L5f!B)H5H9Fl5@P=O9r^*-x9sZdtJCUJ%JUoxm85@i-tW#&SUCF)Cm7& zz+g39UEP?5G!h*RJWVw0{(#F`OA$H8|!@j)QW=IHPJ{FzquIpk)MY0ZH7rt3hvDVoPIr; zlvO%Kl_xuTS6`pCsBYu#^>I=Gl3@iP$Okow$b%xi_9(Y2C0f1%^}R4L7Nb#M8wR2b z+rI3xgA%k*YEXp-ocKMjso&=TuEl-QtKaEdT8!}uw>H&FtFQ5P>hx}1;gI;k0V1Lo z!PL;{an8cUzPFxH?D_^InaTL?>Sycu54S&_(RX`J*dCAXnYc9C=g`{z>OIkoa{(i+x4z-I$Szkv~x>!;7q9V}M$PY2mdj4eW!K^e3}OS0aeQkd8v1l#w9Lt^x2 zk4jAJk;I5}QcT_rA=%+SRq1m&whFH|tI7jep^lIWa=nSrua#V^Zlic3MYl(-hwK5+ z*BriPfs!VKxHEmZh`;AFV4(7@(aTemEI$0v43T-BrjFcr_ziYypA{+x`DUvkZN-UG zQ)lat2!D8Achd99S6oEkUwVfb{Xl8uHP}j^A*|L2_N@Sc%tvS&!rTt*VZcYC77bu- z`G}~2k|U;(aeg2m;8*rTQ23vdf}jwt)OwbsJb|b{sDxtyl||6M zRpO*GD<*~rY|=q(HLvEaqGO}MJpa}?SI;aj6`IdPw7;>>9N13B|$~iOM9cP%ngfo4=byHXe{-7 z`=^N6LmgFNGOXjwqIaj6bSp{h+rKs4A`2VSWENvX3BsRBI`zv2EB$*asIB1DC>GJ7 z=&ycDz5eUiB--`E{V%&143|Z>-a`FupA+rXoh4$u_v#>FZ!3wSem5g*;eb&4qJEdS zZR=mZ5Gk69bmXC`u-KhSFk6N8RDAJnNkj_m9TtloVi$E{aX+@2`*c^I_IC@JDfsL; z4lFB8h42fbn`?gAL#_x4GsLZ$e>3G5$@^?E)obFP;>j2^ReG9FWURSzLCaX*u={&f z?U4UDmY{BR3m?b~v+O!P)E`nB@j={WLBx|=1adC#XeHe>IDQGTtYF*-ZvT+g zJ>3Yp1|!{Zd;rc2(#?s15jH|ny!#G~Nv)r-Q9hV#9!o$hW87oNT7Nw!soCJpB?t%J zN&-9#CIwk~Se8(3ABU?oK`xz&iNoQW^E|D@9A>%A>g@gaj*L?lL*o1cNry7&{#43s zo_0sOg@BdKA4~dH?m_T&Xwxz^tLv*g04uOD(EH`}!MYwHL8st+V3k-(uHd79^<@uR zO|!@S&ejEEdKu?Y`ektjusrq+`MifdMTXx}YQ#U#N$X0Es&{y9x*%Q?1^{>W?>)X1 z5U}3OPP6kt)bnbfTmOwsC#s6FC$Rn-8={*H)-H$_GifoECHA#$k>!mqXB_fJ7dRO^ z1cex)EB9!lFU@|?R2y%p`Natd|DbdAyblM*j_k>=2UD(myiS{3j1kPS;-E1JFMqQ6 z;_*x1S(P77sV_kYe6c8=vJLHjvYA3PBtEh(%*3GkhL|w=?T#<)bH4~i(p$E}-8Y={ ztjNGnF6Rbi=N(W#tZ!~ei7TA^T5xic^wP!F3B$-EBYk9`*DS>mzv);iAmC(n*;s zqYGg!{>BeYZ`{c$kS@&6Zz#xJNijsjK7;>BA4Glyi`t)>_=Y8&T9>4!ik#v-<%?BF;zr}yIc1h#`0DYuW@FE5c zqQM3ny+au;q=P8DK|0_h_s(RPrhvwI_a$1-KobwW!B1n=nQ$ZU%hwcDbzYO^x;+=}#?KmnmJ>yaha9Q*+;2bp& zK9mZ%RqGb8zFH*FHWZ`B6!@V{@VHsvKeYgp$j9r2VZm*qakvmKM;T2k!^d^dfD;A_ zTCGovY==ukUR*qxTveJL&9x-{Lur0gQuo2?ciG_Ns=EB=ph+filJSRSmR52SsMKwq zUDl7gVH(?4QkD7Rt%l$BYd2KZu0EUmfaU$jX?GzJ5$7qWYD#$Xojvfz()U(ZjUg~V zx_?f_dP#&GBKRB>u}hrz<}Wqq@L0R;)+v=ojna<8mc zJFEv=zU;1zD|iMz?jI1x&*ZKguUeV4_8Uq3eO8$JV+EEOEYAYB8y`A+?8d(I2ca|* z5A07bjXr}z)5iy0>F&A#`k-OZY#F+p{6#)ksvFZ0m!>mjRey-d%_rnvG2I#F9ypTk zX9<+`lIFnbjR}re87Lp46&0G4_ZX+1RPr9P71PUtX~{HT4)AiB3Qd)s!xZ zAnxECp=eN>8?sL))ZQlRHhVB@$yC0y{QbD>C7t(ry@hU>{36+Z=6!5+rneWmH;uh3gJX&mHaTpX>=ek!$P!XvneS}@p{rimrPHx)Xo;PVu=uwhM; z$9|(Dr3w3A_+Ce_HGTX_VdF5a8Q{V2t(EraPg)8aTRUi9iszWSU1ZGtJ!ir-#lt&86|O!K&6M7?$&)za{0vZCz5 zX8|7qCz(h!Zz!%_-jN#wi$0|YbL}FH5R1E;^s!e%DIH)CCO;p9h5BFzh^jK*7Y>J5 zpxSDmF_jQ9DNBBz6lQ!>!lJ%Xjx>;Sqo!f-dYeKzTbLRD4yiVtT=^O~_p8|E!JR=W zQdG7TNqXO~gPvI;l(L}4N)$({aP{{Qke<&&pyM$w>*2b)o*18p%R0Td3bZ-tn?~rv zw5C-aA_>>V6)mW@r+>d4C@pxC~W&7ThHy8g>2qybZW##+C*QLws zQhc6Q7Q8mQN=S!;->QHyYdd#2b8twyZ>`k-j7s9e_LLp>VVlC2cBy8qOT=!Oi~kTQ zl!wWDqnqz)yR6w;R4V>YGcQHUa{JFuMwi*eM1I5jXmh~A=oH$0>YRJSF;UaO-+u%7 zhnk9hQTYZsZMY-clFo+(S<<1)XywJ>kgVl`wPfTM%d6XwL&KS9m)2&|VHaL@Cch|Z zPWgn%ZyEyZVoHGgooSxde{X3X9MmV5FEOfUv9tgFY7})blQI_d;q=qo$n|?tvHc|S zwUlK4p;O3`>T){Gm)O>BULrfkH?V{cf&0EAZqsC;5@rW&{QQsL^hx?fg&r-tho@Xk zI9p5oA3k3&sI7Y5dgP+S(P0Pu{e>t3*{MkV0pZLy7d{`J$_7*N@mS3L4~OM7lbeQ0 zE>UwT3XquJCHbFQ)A+F@(EvY|*9(cHj8fah-?UHBD7Y*c{mSoi!*4ha0=Sx=C}z7P$*_{My1{!SGUa@mYgK4yzBC;f*J?(EXBDYQXFTUTnr3T5YUK5}jHkRVYA=A@Q**~KxWD@Ub=th4-m8inKeWG&2^Y8MMuf~~H5A!;2OAz=cu1u&*^cG5)Tk%60jvby( zURd?unxk9n%Jj?6WwyKfbea3AP3zDw;GNpt?U24Ib-<77lxs`0Wkn~Y$gl~+#STNG zqCqMX$>FcKgK8@s%_@+YGfY)5J{_UADeC(s-cMPVj)(;fG zXY)@Rj~Q!FHjgXWXAM!%-fQ6q8g6{RHP-;M%Bdxka?cI>sjO0`?b$60oxXMF4r>Gt z4=MW}b!xxa*7%8zcww8EvP6J83pyb_RFpiM+)S$iNw;=pO?E;+0{yA%L)S9BgrHQ} z6iA#qXd;8zrEd;DUkf*GE0RD_|F&6+qRpmGZT@Lwjl-*l<+Xz~gohLUALH-urt}QA zufi*9QO-MT41AhDoU#S6jbmjWU2WmY;3&!M(}sY4aYe5T*G`n?|0(Rs!=YTmK1TK} zEyylH$u?zQ&LK&%bX0OGWHORe`eb@E<^X*>KAG913;vg|augkB8C=GX5tbL=5(s)htNr|P0wH(^Zu4+M;9yYryr_Gv z70=2^{##bQSKmLaGKcs)PDJT=tPoY!7rHX{kwD-lQ!Ii5G+DCYYAg#w;e5d&SFuixBUqKH7^bB`uE#=gwTH+nQH%pmh1Uy zO3R9%SsJwVm1GvXG+c^{qVssUo&Ya}dYF!QhlD#Ycst;9T`dp)1Xcf;^YUwVhP`&D zw09lKDRav#1kMqi5Cpu(%L~%}VgEct8eTcW!!k>%D8!m~R#NOQ022LOjJO-YFZAyf z1MjJSp!xYyCDA-W3Jkuj=2K-b2nlwC9_vo$6{}L3{V!k|x)=B| zQPO#hf|eQgcw>&a^lQwY3|jmnmP5%+;oOB^UeNw{%U}H+eNPPaF3NWZtH^IHv@`Vf zKhQ$w`tIN|#HG*Ya_hf!8xBPPx#2UuS)ugvLrs#KFr(m$dn|#1^G+wDWqP|YLkDxq z=E2C}UmjV(N=aybk0qd;olfS(9qIlMUAdrx zKoBvH2SK(%DFC>Hn0%n+=?69o+{MelJ}}rKFHHFj=fEb ze!2&5KT-AzI4!@iRAy+ysKML-x;yrF5MaUQ#SF$IYJ(sF+3|H_`-Fg*3q12P$nExL zee8c6e`$N^@E~_qyH)aN6|d@$_0XgL2e}?^z|U_PStTTU=kYN6#t#|i;e(n}`fo`d zXUbX@M#5SD4D$#@jy(mMjdMk)=5+#wc?zYpCFaO|o*(C>6GZ+CJ9|3mC88nQ$0EtMCPbrnZ(9D?^a<}wzr@iUnl6`D@ zp$-{hm3!b+rf#)FnIYLaJ$Q3a?M^J$`H%&pd?L(`yb_=O1)W zjep5HU8Touw8_Z3M(trYd6rzvD+e+Z)Cx{UZmmh~-hJHgG+Agf{&zUH`!(yk17m?+ zIDW5Z-deEv0sH53us~s*fuz`Wc6}>?!uRHS|zcrGoeu<82tI3b8Dfs zu}ZVfRjm{zawpZ+#vtlrMM}G=z!;je+Qe1F7|7GN46I^r!nqw`t^NBUW0m95)N7fw z^HT}bLpQYAM%Xn#W+x7NJP)tJU{hRE?4``xIBhBI%tK#lJLha8eU@*+8<}zJkEZAe zHrZ3It}}=V^RaHW)`ySA_1<2I?Y(Vy7_!WL+t&$$4MPF@Vb0lJ&Gf{nT<<<_ZZKJN z+L(yD<#f)f6X)jzZ=Be}<{6fwLA_`E?hTy3b87iXyTZrU*>*rPRVXdu}_D>8Q#WJEJ(U_RX-l>OfoJL3^_MdRMH6f2!guTLsf0 z1g6QV&81fT%>~to=`|VR8*!MkeQHp5Hpb{45rL^SZ&P%(=XLV+k@^@J5NWnd7)f@b zJJYTRu%nuo=!?c>*7`oO@!kp}>~GEUgCQbSE7lD72s;~tXXC5{?pr&$Kv1*$9=YWk zK~m)8KXOJbDTUini zr~Gu1TY$Pn3<^xTG80J(g+^B*A0fTa$Vd645GauGhOR$C76(F`jnSTjiXj4-pz_tP z7ztgeL7qi=Jw@UmP|pHV;_HftSIAxy^geL8DVo?zzdg2jd_5DH4o0W-(nY}+a%;TO zk+^G6Iiy!vr&w(S8%eS)AW;bwM*`6Y!54g?#6l8AY3@ZaJPBD`sANkf==W8fsvGSk z=o_Lt+(NsSp(8d>%xZF%SnZKP;((M|b6mpAtj~?&bI4%i!M&a%_P6 zH%f4{!52hssk{(A2jU1wV>$Kaxtj-BW*-E({4WGtL8YL~dXA}u*O%)w&)@v3UB$x> zyj2V@$NCKP_>}t?p`DYkiM9AN{6SyYa0|oxA5c_Q1qhIQ0HI<>toV1nVLl0vlrWUf zA3x6YE~srBsh7(qU7=m_{TW4=)_%8e58R*UF3#ARRlc~^jLmO(a`tY$8*wC z=c6^p<*tGa_Xn-X*ga<8Nya&^sn-JkDd zVs^;IbDT)T?`1H~iI3$m0^_#rm6n7im0`i60BGx)8Sn;{;uFb!j^fTUTab7`+Rhk* zzLDd*!Y|2s4_z*978U}rxcHS#!Li!t2@> zm6Ibcz?la=_1&cvxo&Gb}v0&iAde<0f~B$H<{mjL}7kFxc-?} zUvxCv#CM0G%rHce=;b^kI^0W0SqXi$UV@Yq>~m|OgIu4lSfcwyW zX5A{tsCF^>#0phdG*9E=X!``^THT}`;SD0_<4|-p&dw50&(%3aQ6dw^r*{ir`a%iR7|c~mr0*t~;MZlU)inyJ-g@LpTQG&~)o^1k48G&5;(i2*_k#M_Q_3^t60T9n2d zj))+h_8O>hbNt({a$e81qy7!`Jvk|FuE2(5Vm@lVy2CI%{OLcAqnN%v!~m$Af>U#q z&L=%WeDT6L>MU8nbzY6s=hbsg+QHVnz=|cO&RMbv;Vo>c^wsY8_Xgv$!hFpxrT!>M z;_K)LwhMlrZ>(|ie&qr62q(K0j|1ENHs(KYdn*;T-w?eMpM?mLoL-Ld(_OSPwt1Oz z!*M4w76oj~2S(7Poa=NH%<;k7g2aI;Ns3b1tKvmS-jzmkh4Nx}sRBm3^R1fKG(Zts zG{JDfzIwFU**g?)YzW6kuhRkX`8G#!+qRM2{m1E_ZPvHwOSx;9)&wrgNRTUqK)$9 z4|5;a+_fv6IWlGsSQ1TI_*2BWj~n7(&OTPHCRx-hiw+LzFiu36MmGiU$& z{pwvO{J#jrBSZY1^&DX@p6AX&QhqagG)kKL*gyer-mMqc|ni{(lvPvpO_S~QTDCn8+#f-l7HsA^8I4TK0o%ZmZpIJPiTt>{3d z+Qq^%IW_-CPR^V@YsvoFuZFJlDT2h;jY?t+y+S>z$DHvmtD1vUYrp)9pBIf`glSqK za7y0~jVl!ALaYI3F?;cYTu8G$GWiD=H;_{NFSO)s{n7jxB5bi>12q7EqvJ=7@Ypdv z@F8RLS?DzMTqrd8U3IWiHTjeG8lBX&0$uI^!j5WQlcF0LtQ5t>1q9LbUh1u{TR+(- zRL;tzrQUi4+-BVlfI^ZgWyg>=P2MV){Y!|xSCF52!oVHqNq{OK1VU5R&(h3&`NDsX zG0Bc&6eE=((EdWNTI66MsT?{q_3|>8D75WG|bOjn#NOCaGE%t-j8l&ZUD?Skl zdMggz>z{RHYGix!f}s&N(pbrZdFKu)b9|*q%1Ro5R{k-e3_;Wpv}&+FE+>(g7>KwX zVH3{Bs)R;IY4?-}laFDB!gsO+S^O+5+GQ}uUwTn4YqwEMW^po*=s}}pSbN=t>61)J zsEND|s6)W9o^wcfNSD8qZ-9)`3|b4O&1iBgUy;C<5>5X#)-+72N1xd%` zQn~+5s|eT#9v1*x5a4LY8zu;t+wbJqi48UOn)?loo z*Nx$~R-m+q{j6j6*px~!U|!kq#<3JMvIQCdIv=sYI|v9(oEcg#)Drl|%vkz9>Q}!t zx{5#736cW~%vinIhf3w+&4>?)+`pv<8a43;Mb1;_j{(?DE49@`gduh3q;X zu714=OSk1Y*!DX6j&-+18n)R11CP;s`vKr-KszQr$7d#O*5OLjHD>(Pd}t5 zG{7lCdn4HOk+}0 zXC(J&XyCNwT;w}396AOlQiFDzEdbvcaN&I;fCq{{Doj5E;;khf*}ENCZ+nFQvV#9( f$pdjXeG~N0NV~vpnUZ9nVLm4Z*JE$&d~g2`4H35y diff --git a/doc/build/html/_images/other_predictive_models_73_0.png b/doc/build/html/_images/other_predictive_models_73_0.png index 0ce9b332a6ce90f69fde3227299a3d596bff8cec..f18578d977f246f42539b2b3a002d5ad64527295 100644 GIT binary patch literal 51001 zcmb5W1zZ+u*DgMUf*=Btl7c9mf`C#Yf`C#YB_XMVG}57hq6lodK?wnA1nH1&1VOq> zLPEOF8r<)G-|u|q|3BZEpWE&8%rp1gbH`fOy4JPkjgo>40Ui||f*=I4ccfGh1j`OV zFvD<9!#Bp4@|EF#!uGc{?C)Ed*gNXm8YB1g?X4}W>@7?UE^FOsJ3khmj_pYKkBYA7!O(syf9kjW}zQ zZXV;T_ATcR3o^csO!TFgeVQJnt`;3$WD?(7l+VF_qf)a<;n#1L&sMK#gP%QN7&VE$ z`CMl7T{`*7R`Txb$ydIyME~=jB~mk8xpErM z2NV9x&(Ck#zT4QapQq&I<=wPB%lOGNORMmO$?&bF8Ng^de3~ ziXv;+rO$rhd3t&l7Z+C#4N(UL1yNqJpgdYRJ|bLOTVvtm%*uVb%QQA>+LNYS=)wKz zMsHsrjg*u>89Y;>+1_l7mC>cgKNWGubCN_jR?z?|G=Yw3-m z*eW- zzux}C{q3pg=8*hfnNgyy*Tjww><|eJ4N5xq4dsnrLlj@Xe*HFYe@9WVF<#U)SHJdj z>U#QF+K9{sfzT&p2vqfKa&D; z4I9rnxws5+q*hglCnhCjthFpr5EJV=F3q;bq|i%i6+C$kP3M^e_@+how*~vAQE}X3 zgQ+%YixnpMHCPzJnd(_&`u!sY@*`98{`_Ziuabf3h29L~wI3G4#l(`hNcF+)Iy;kX zAN6&6mc7kI^>&ppCs=rq*Pc>&6Dei%YJ4^!c=6%|jSdGRV`?p|@+JieF74`^sv|rk zlF#_<(iqI-L`xWZ;b2wDICm0nZCj#q05RhTb4EV2yC`o6e{4i}I0xCAy1&aEu9OFTS8 z@c6Yb$GJw$!PGzU8tUGVd{D~>ii`74@H{H%j)cE2sAp?G*UCaqJzdUm``p~r)O4LQ zBPldA^ihrXnWpykQ%L##a@kLq6aVeUC0x3mhYpB@o12KVKb4P3d-T`ZS}fY@_SFxq zDjs~;o%@mXkk@U;nl;<7F~Dgq&QVE4MP-Kf`}gl_ZC5+r-%nLoU0Zven#w%*<*AipV=~;C0{Ipjt`g5?QMwQPG6qez16`xwScHp7X|W)LCXvL|1(C z*N{3XDJgD9GgG|F0&7NJ%ZTF`=h@RQd#Bvj+XZXd+uIkm*uvz>54VP{wI09}^dD$1 zk5%cFa%IMGCv~yJJI`Lo$f5AEwy`0G)!>{m6mk5nv9WPz{~3ug)}OU5IOg^lxpox$uE{m{dwJDAMZvn zPEJnN!8WTuI^3^s@TacN$f;y2wV$`W6;hJmu_ucVf#qZr6jUdViHKkx9vL}>5K~jL zd*{Zrg;kj(CML2~ST1!b1()<@sLRiwGrM}!<8AC&;kr$ZNF|85Coj4WeR*oopR2FZ z*2-PQLC&qqf%xjzzIsz=-uLz;4&hq@>TAB}UU<8|@m-N!^apCCrkjU`9+qznnltk9 zDlZLumf_GX*WfqpmKtniPHiDS4X~KuXJ0m0G zN$;mH+;iu?I9Jkn9@vECifc6GCH!Y-$$7mhR0WxZ>hfa^~#;^x|BX?b~AnDK1~WoWD6!Re(iw zyxZyN-E8zJH{mtChsIlB`=3fan_wUEc5jyz7i*lQy{;-}V9{%&VaP7ao^!BY=DKZZ zTB48|@+F5&v$eT7{n_r4gF9bp-=a@dRTXkEoLi5}?+`kNjSv$NUEFY~AgX!Br>>-Q zQS#O;V*$?E*Mt;)v;9^>jPH1i|%lmEc^D$uNNv7j^*AKxu3&&BVe28{$i$ z=hn3#_9>)|Q>&n9!DG~QMU-_pHNhh|i~Tr7l!N209A$Pya4=*2gIBvRYi%Ij>lJS4i3_;uCDINB-hoQa z{f&){g6IOz!_7VwZ5Vd816+f(g^V0I8)s+dd-0!#;eti1n2WjIpLU1{!5CD{NwdZ0*UCCjsPgx_$@~_@$m82 zI&Q4Ihn}te{w>)W&e@fIpV@wS_(I$bN9iKVk>viRC5xEG{8?C?K7oORh#jL_1--}4 zO*tygHwl18VtS~JEG#$}FI`%z!RLOo_#>;SwKYT8d7>|vuRmCQGN8F9qB+Lrqe%zJShJm85;IllhO9dTwo0+r{b(`w z>)s{C0qxD*8D>x2H+$8006Zgzva)h_v9kjw8(Ygl>F-7od=W2rANlQsx6cXxR z5YyJtN$GrLOpV_=!H z-zH}?4*B%L_-x7h_ZNrVw@1Pn-cj;O?lEc%@ygq|eC^VK`<;3!ScvQIc(yQY7 zvn5|Jw3OhOSm7?*u_DeYu=%!ztj2ObP=2!A_^I3$FG}sTtKHbpAlK}w^Vy-|VfN-i zosMVwLoxF$H?dn_Mu$`#>AASL)XXn%>s4yctg+i2KKApa!ntB6C3Ouf6pC??zd}N= z)YbdsJP)5aI!2hi1UJd{&h!Co_?6HAeuo9s9BIU z*$_xiSfNW;9qSa4BWthbu(q4oF4p3?j0P|?H=ea+n*ypR z!?;KH)TvXxetsEi5zpj96kH854_)-ASy@@{$jMvNqs{2gjpj~vck;KOEM zU?{eqKVP}Od;^UzkQTFHi2NKX;vOt8y+79oDAH;5D^AKBzG8xy&Rky9+~b3FLgZ1yy9?J6u*v^H82u6W6~b@5syFQcwu!MZI%SbXRX9MG5S@ zJL}<(yV>keKPen9ml7OY_-m->5;HT7B<=x33W(Rum#04f$auEW+1Q8!9;j}x(0r}u zz9I&~rCogSa++Z91$^bprH8f!I=p`k%{eE++^*#khLSaDx zzjldjy_vSDDJwt>j-iGcm8;IvO~f&@TQs6BqyQ)Av#CVZ46B$out%clZvnAx9w*y7n-(5t=i zxl=6Tv!PbBa(H<7BpBhk<&m-!?_MofOE9BS(K)8foQ1qLlTtf7JJk>~0Vas#(U&az zlB2NR`@7izj97+4Y-xexif;OqZV2%6^6~@=qzfuF#LOjeGd1#R%(N{mGB;vpHxm?F zkHML~1;eH}(%7fx`P4xN%&ld`rW#VcJ?3e3HIFH=0c9D2$k^4hLo4s9_ns>Dx!hsI zCtE@JqYi+d4=i^zjU)K6d}pP%kI%r;X!%EocG%k+>*`dg*5^|bTH>uTvUDq4WE&3w z?j(P>2tYIid)FmBJ$>hJd+h15BVgukHz_G^3mt%X8*Nj-b(kr;EMj6|edsm&(6^!?+#t}0K@vM=+n9cpT7 ztS4$tWoi}Tf%!Km45Yqr;SG$~_>YHH_23{_9EcPC`pXNPqWWI1CxBkHGVUCIhmJ1{65eow5KgMD4U_Y{qe%8ua)T60s75d@@ zCLnQ2`EZV}e=*$Raaw(3|7(y87!o4Mae(PNGZA{LK!3c4Cq`DMLlj%i|6ZJ#nR)P& zuZoW?3=jNwZds-zF4{>LNW`mbrIH#v?UzLj@`;Iw{0R)I^XlsAD7^uj&08(wc9qBB z>cM)aVbfm>O6jWo6|RD#?%O))Ma=+09#9%U@PmzdQt%zZ$>4&3F>;zuiTGCLXaz>u zVx*Le-fa~lTF@#WF_AH&&=QbUW2~@UE^N|+wMP1%-#%c`xi0YzLtKiBhbIYETOmQr zzphTIuD+f@P_S>dKTK-6&T<@?k&;rl#L5cs5K@;ED5jP5lpc*NhJYu#)2g1S!N92~ zFQ1V+0x>c+!uzNi$#Y&enV6qvt&d0ul}phmc%q!rr~r^>QY}+M|8p$o!!M*r9T-LS zOu*Z@xVX4!8#{;;V6*z&^|_SeDu{i0onEtTLujKa)KTiNnAreP=0i@s-E{Z;Ek*%> z-r23N3Y@L{*rIUGhd-XUwmMVtJd*HnK;r|pu$Jt;bXB(ctDPd3-bow!9EMhLEyV%4 z`m}ky`}_9{_jik_pRxy9`t1k?_e)qj?*WmdPDKL7WO#Tuv+{J9+~rY^{iiX;9t-KI znU-V8vLty{V`4E0iVWU7QFkX{9}$5MeNdUBtE-!smXi^w*(Ij(HT1ciMM%%jf||UXTT9=b$R^i1uBb1*cLlbbc<5! zi^Z8jE&u9jiH+qEYIvHOO80#ta&ooQ#&_@Dg}NkTw}~DT(2EV5xg8%J2Em?)&~-WU z@-%^@kr5NXJ^+^h@?YFoDJMyA-?|V$Bdqe_P0HuU8;)FHv%P@lI!!3LL4^H$0+YGZ56de3Q*lzYc1loWTU%Y;e1MchP z@xh$9klPNAuFL%8n0<{>d)6-&124*!OYxsSe{SvQC<8r0Sq2(0H_8f^%}@C>0OoTl z_t;SWkwVuAL)3Lk>d~W%s%&J?@o#|6MPQSn2oFqwkM!CwBk_Y|qT}!~ZenFDLExzl zfTx97M$VrJ=D^GF1U!-<~;MCjGZ zSit!{UtP7%Sd3~DAOZ)1v@y2hWf%)lb%*y&z%XJVduFxloSL`7Z%MM*83kHb;gTs+KQY|>4}TN?(N!l?lckH z2vL0?bY=q4k|fuW=R}u_swBU+-`k zItGS|<+3fTt{UJu(JkNx82riij|6wGkf6jKn5y#87KxML#^!$!U4k|Vb1ex@kqDL{ zgwb%WXV=DK|CeB1CSRbfx#Ri-!jy>hk@gQKn({C1|T9PhUiH~LP8=g;^oOy z;6A|?u(K*(J1zZ=QhBAFlL8zT0_4+I;6WHK+mhdl=Kl&U;2;oo)JEueXy(i?pwFM^ zDVVA_Yw3M(;0BR831Zzy>!?AysNWXJtD+bR9==R}<|OBk=t+OY?pc48r?{M)9Aslo zpUtJ3TUdCDQZj=d3ko(~g$DYjX_c2F3~eN@FJEM2wAH#hyYyFVEJr&;{-Y+D#uZ;5 zRRgTOpEL7k+31b zR#sLqdAc*v9Au=V8vd?8f{xG4G2fdBkzh=8N$JCyYK&p780|`d2TPH7Jz8&;n(f$*V_o#2bI zvNC?FdEENw$w>p#(c0Qtvseh=IM)8;UOt`s(Khh4u~8Qxb>>S!;c_hUF<>24<*@M)F* zIaP>(fx&wv7WlIYftEVe`mkLm26FZ^R=m^X8Oof+jvF^_P@@qfQav_C53Ag|B0S1B ztwBWe`3ubT>G}D8hU6QztgNh%`(DAuF$B4$M_}iC-@FN`?~LS4l5V^JNftDS2V&0< z2v|y>`r|$JO!>`!oCONH_QffD>*Zl#q#73AYcDS^D%#h+X``&9UJ(&V@;7147fx?9 z55t0d0~YsVw?o;pUp2rw7`2*3w_#KRP$bAw^UHcz#3&|42RWnsO}Uiw$J?IAuVv_* zlN%agnZc2d6Qim2609w1SAqFG2ln?iz$W02-U4!a^n1D)qL%!@yCJ@5Us(sGI=RNo;p6pB2LogIJWo*Y zQTx9vrS0D1*)&Vz#r(D1uFi=MTh*UM;~oBG7x8|y1-<*C;n&NoZa5;oNTWmgr=QOS z?3kujmIE70MNT`0l_mK}o>+uyz<@#__LuuRhxvLoCNa>R~hnOP&Q(D z0XfAomm8%*QmXVYQLPcJvu_|T$O=gsqYksq#1%q!UJlDhwB60yACMO>+e0KL{+`Hx z=MF7QWcjiVv?j(wUj}fUChkq0G#DQ+pSr`PiCJ7C{6z$At9l8K!Q0xN0r#6(;p+PO zOGvNf z?Zp4pt|H#fp7+GgrQt#ICyh;egHPj=#HI8hM#dATXKwbeI6EPxrpD`VdO8$6X&TLM z|FDt(UooqDdruxSkxCht!8-~6rk7fVPeKAcKNW$SyE`p7ShF@fd<-kAb+?-s z<1;gVd$NiWj2O*7Rza8nMkgv`FGC|F|Fk8Sr4!HIO&N;UCl8bfOR9N#etosMOEGtH z2Tz8==j3|}^!uISy+@Kg*iOaPORVVNCcc8~U^BMs>8azrgM=hMbOT9AJ$Q6g9zDy* z$XpigWlDIMyFOV!Xd~tDcU`2NJ_O8S7?1>~J#~dA<-TmKIiCWdkj05;UM?}P(?nie_H`>eR2_}?gnfHFilcjQiLHm$jr$Nij5C!bRS*{frWc|wF_2T2PYH#)pUq}d-@u(`sE;pqIj_E{PCP;JTq#Eh zkx(`z4$u|Gqe#Jb@!1MCIBq_~87Q?V*m(NJWV9VY>KhDbO6_swe9jknk1*DMoK2Zj z>ALK_@15kMh>u95=aJ%Y(IUt&)iZWrF_DWpAp!V46yMs)E@7}w_LgX8J z0flzxY@o`kYgkdIqHs6yZhPx_+n0;ZZ6k<__l8$S%kY4d+D-Bf)6Ng+kM9?(SzW4M zF3Tm9)|cx0s53EPK!>#?`Snz?`FG-JV(&CB7S^rmdMp-!uta%l3a3w^7)S&jH^YOF zx5ze9Kxn~TPgm(i>GG1U>t5o-)B+aL^uu^6Vc2tgan?`aW?XXrrHDX@$KO5}D#`4W z>|*dR?=k1ZdlwB-$GyBEpVyd8bL*xl#^9+hx8A$HUmAA(B-(Yk*pJkeaSpqnUaNrM ziQg4EpkQ||?+V4c)4;a=`J*6)G{#oo6iijYmbpJs4iO@uZ_0qqWRIMH%d4$W1I3wm z$p9{yXK_EzUZ*K>!)EirtEhF6&wKp4W8AjOczD{CB-&LF2MMK=w_feOiAW@vxF`3+ z^5!Dbl`M7?(%Om6A$i&Cbx5&|g}A)ldL@^RiNyBC*YCbq$6d#}#a^X`APm@By8Zab z&kKVjW+_z2UqK1a+Yat}JH2{e=xILh$o|`z07i2Sse7<}XeDwI?sW zU_4Ffho);E@ilcE*4Oym`JT-1O_b;t=8$Y24mYjTn>_5e82eX68Gy7*ckZ_R-GZN$`DMU`j9B?XYisjCiYdk=rP{=_B%E+x zpDv@&@T#H}QS@^-jRqsLBh`F8MNt1g?iam z6Y3t&b8f#rUSz5!sxFocbCaEm)K=lem#u5JaiFMJMuBCPYaI9)0un*tW;Bq@?Dmv<#af6kWt>Vx`E#CVA ziLH#P*MnHf7|Pu_56RmrVlJ^=#H-9U7F{pS7$znox_sDTKs-zK3hdLoIxS-Tpp+4Q zFly#Za4SunB@r_*S??IBzCHf}{Xw6C-^ciSCs$!&BXTJ!TjpV;i(Lhh1EflK^6*%a zXYPqaUu3%|x0mt_Z3YvQ%|}j)eA@EJq3ySM&}}0Lrj64TnQgGmeDQoGBh@20zW94m zW0T>?R(-?tO32VlS#kB&!!Ga9wN@{YZ*|jlCn6*Au}-kov|t}oQ(_BUwO6U>A0$;JRDBqPIr`qrs2d<~r!SoqGWB*=106NC z%P}t3!s@?(4OO|HzJbq)U>D=SQ+}%9_6a%)VqxL*%E-6Szz`Q)FCknH*JI8))T-@l zSA4e2nO&uzwOjZiqvgR?rE^A3oGbkx*pn@!VvOunaDLd z{U4Dl#2qhgk?<4IM0@#KQYH}#**A%dRor;5G7!KFpo9ADEfOXFWYg|%yD=R<5AHpl z-$fYBj8xg)t8=f{Nr5=6$rR9K)NiuFhbl!vxlDizq@;}S!C{}-KGR5|lOU1onVgAp ziP20-PR`2*zx}@KnAiDPRojQbnc_8;Va#ZL7mtV78PNm`w=e?uXlN4l!~%We?S z>s?cXM^k`&Vsq^G_*&7$WelV);N9)A>SyP;Aeayi!=n`X)|CQrNurhk4hxeZ(P`78 zKD(;x|2ZnA%Of;Nmt>OO$dDAQnogj>hC2)AsiST2bycl}zwtV&H&IQO&qaxhUXXzh zQu&_-{a66kIbs15A0MxxBInBY$m(xf3uk!HI}M}5UIPEHIkfNpy6Yh;=5b@2TKhpZ zB{^?fSN)#{XOCkwG6tRPZt)ZQuzr4gE9$Jk(538WL zsk3^ucmnatGW=pYZk^cBRDY^?j!q^5bX>k>Z_xgxr>jPfg%!5`GeywTyOHXYF0VGc zVXx%MZ&HmU$TCIrln^K9KVct}p_S#g zCuXx9@uGeuc5{h9A*1_^Ze9&Zj{Jff9ld5frHE43Ype%nGq- zA%=f2{y>s)PutVMf;0C&-hHl?k!A0$s!EDR=%9q7qBq?AJ>vwrEM?HK&AXs%J|ql4 zxtQH`L@n2@4Uqes?sZ&%+;FbaI z6$q_WNY+ir$UBZHEC6&Dsa&@a$)6&QZ8CX!37ui(TQeKCNZO*V;#`kA2ZVNirTdM& z4c3f%RKR|q&yKRRAQY;ZtoK_(=@#?j+qZ8=UVVHHL4~itpZEp@g#XxH8X$pmVjY_D z2N~Z)dTM;l>O}3t)7{>oW-x0hy9eFTm#a>;m+EnBsfp!SrTd+`cd-$Xjc>Q|r8*3j zhfC081oCLUI|bFx{^0#$Ir0{s1B-__V1`5(Ur$euLo*+!zxnRVb&wZZq$H5FTbb1m zvlk{O(D43p^b`$P(IdYmJ)~rFu}^*-GO(Ha(&?%OKvpAO<>ewM%fCp8bB^Y(+1CWr zCIXg_`2?OC2Z4;G8nk#1P`9;uMj6pGF&bE-BNRlY5Z4AHjDes!!Xz2O3>%;b|C)9D zHTWRQ5LAA5)`2`%o6^?SCZeRoMfyKKCOk`1_QscrOL5Cf|dhn^abuH9JURE zs*M2gefQ4W&u=rL8<>5(q5h16&sJ3a4Q8O-S-AH(IT<@uF(I6`Pg9$v*lWV3c4Bt& zRos+gjeNWAvM&{FAyp)A?cavjb}(AFLN^fDD?|eFyzTv<8*$QEbh&ZqQj%6}uEijMTVD!+OC}`H+)jz#7FWep6 z7N%Id#B0&dlm5dBvH~iYn(@s>H6UcOD0B-0{`n762?C}xwUPz-`<)-V%VS#FVHYR5 z81f(wzeF-$I|HuPR!bqKZGO|mbhJ0%vDol%+nYBEsTn_PP%SPh)kOXZ3-j?f+yh-4 z0WdS)7B_(+SjFci9WNXdw0Cf0PFSm058 zeYG#~Y$g&Y=0QH>L0c4rN= zz?oe(G`|ccZj0=+zC^tA8V}zRaWB^L{#mV4LQmUil)`!9#M}pGi!FhZ?RMK8Wi@Ys z{5_;Bp8Uv+3T?XJFO6oKkZ&L!15sh}k478pLKV*T2+9o0O1YC=8Zgn*JPh0UboH?J z@A0oM)uvhqS-<7zRk^UrySbI~SMPxScX5VNP_kH2Xms(IZgx8+P$E#`AMj$mV3h49 z!^EzZna1B>#HT;g5{4iknLkU#pVraJ;9b3#Q*{mjt@KW(=Me}Yii2Ji(FN=?u1tAN zob-So@;5TW+DSL*&LnsWRqx?Mr_`hRqo#%n#*A$v_c^ROR zUq}-Zf)NCvEHfxDUxV`DX6kqS&4pf#N;hHTA{!gtNwSW2a%zg#b;|-231`3%RNoUE z!G1gT4!83xbUTbDf z=oj#EzV-3y&%YkV`VCKNYxn9ITm7L`2|~X!+nr=t4nR5kucTaC+uh>QQbs<$^N?R@ zgj6-;W;Le{w^zpK@hQ0KK%w<2G?Ww-k-;Ktj~1wXfAb}e-R#|A+g478owqd1{g*VN z)ma~)$e@=xiTKW4{?6?c!n7StbazYRDSITF+fx4jv1NX7w6LE9n6_q5D~w?LAws*V z9wa?6k#$Jz*Le56B=v(TOBX}h7FOm7eW`r-2mr8Vv|VI@@pmzQGf%#z

    6gDfY{&?vzCV9RTIQ3X{jBEepqo| zCj}jXdG`cDX33QP>&Ok4U8eJo$C8lv0HcnMPLC4$SglkfkGLqoXeF*+4o z(`1wNfu2&b9_Q$&e~>`s%4@k4Tl+lUG_HAj3HyTo3?9;?0ctaGah+3a^Egkz9gBlx zI@9A45;nq?;x%cb#EJM5gS8kAQDHt(mS9>eFFnwkavKeu0?cm2$?0s9aHAWbbTpEgQ_Aw`+Ivx^Yq{G z+FF!wa2It;WxvCGx6eKHH&mD6&iVTCbW)Hay1D_Jgs{hYabfdG>!~dKWc;(|XkqBz zy=EBey8S1Sbpu_egaR=SPVxrASSNG+^XK{h_;sFk=QFh6sq2aTqyJcEZ~Xjfy92{z zk3Ele=ej;UU=aiuSg9o(1SL~(y-}vFL?o7=# z`&{aQn+UW2_fVm4`xV{L6aGY~1%g~{rhSFv2LMq*-QC?n%YQbo=;xEf7y~bFml-1t zB8h8cWOR|2ckOie+mnr8p}$WBMI;pHR8k2scr971yMmD&~x>g(hv(+ z-@YyJ{o{Y84HBvJugXh;b0emsJLeOoH%Eqd3WY;Zh%h!Dj9RV}(}fFpa!}`H*~eY} zx(}MXf!&kPOc|@jC;&kW8{XXn^{rd^OnX*MZ7q~0`0*Mx2&EbQGd@h97dRX5VivG* z3_S%!o&TG^trNPRLT92?p8c6t^ogigU}EeFbL;+@H|r;u!OE0xX>_m|KUr~cRd3Ay zorc;`k2P|8a2k#N7N9DLh-B(-W0)6pxj9W+6ukmH^08oPbo6E{P%_$DN+P%WqE%g8 zF#8%p(5%`V8eevWQPQ3?fBQBX{OY-Rh@%enoo@g8Toav@_y`t#WUmM4u7o>;ssk_rBJ)^n^%P(nTHDnf4q%|MIPP#$> z%7b9mYu1mf6Qy%e$bE$IY-Q9Rgn*Oc$Ge2ccu)HMV$hBKm5`v9WVkd~ zh=0|j%}XKmrAm4o;J-YNLzktYB0?B)N?}{36FE9s7xq_lwASOC73tq@XmQQPLN7i9^=Ng}8pu2`5&P@3;T)POg51l}?0tVDIRR~jgfeK}24|Diud)4*AW`RGr|I3gc zw?+E<@9>k3E8FcES%PG~`v4x8-Cvn43@xriE^>3D6}G)%3bL|i5b!NEX73qrzuoPf?iwZs==M z(4{pf6_|qHy$*CKtbP|j_X?qox-lb8q-&$wl)vC7oq#ZY-i*^WuMu-iK^N`_2rY9naQ@j*)7ivMBJVG_ssAYeKPLr zotH8StdYDZ)c+rbPvNkA1ZuFNi&D4m$bXg&q!PIl92w~==Dvq&f>HggT9%fN9|d-G)sI0$*zksg*y-PyUb zzQrHMQND#=AbO9lm7R;L0kqPD{?aeMeN$Q*DWd@T4lOkXlK`%B4XQDq=HSQ+)N~yQ z;(_zuQ`J}M`H2>~U#%_Cow(zH*`DTDI1QtUAYgj08QR&|r5I&{u&?)e2WXy>KZZcr zHWSpUvHLIfq@P$1M969NVgQ|}R@M|hwwc-=@Fjc-R0_y@*j0!Z6gSmA;?eMjvbCVu z8&E5hWf)4|^4@iO`I=#Cpo98RWQSzhz@Kdvbk%y#X!*;KCDtQLN$1t^n;AB+Hp}?O zATT$hO*+_d_;OwvLHRTL8;>Uz=5-xT02Z-uEX0JUjC&TOy2_^SfWm=tC=3KjF+u#S zR2Try$I#Av<;vhY&IJDOu?|hr@cg(Fo#e?avmIAPe~wj&BjZr-R0B4StqxdC4Kp_3 z#~n0jy}zI5k(@vON0h|_kOXgt5DF*a<7a1IL#ax7?}sxUN4t+v(I4`y+}RE!(}f?o zTlL?i?0tIa+f>3DCeax`D?7h&B40TwjLo5abQuEPw?GI%3_bw`N_FMV>pV}sUHoZ( z9bE(vY2zSJ7NQTdVecrE4vHUvzI+mF$!!l0vAwNdexMFKkBX%vBoHp0Qg5iSM5~Ov zP}_zUCo5f_h+rZlfx1WO&RVSgsN&dg5Je~}DR}{3fU{D*uHYjCqFqp&KV0bT9>6tBD*gjLs6^*7uIC#- z`SuPF9;;AKi!urE@$swM+cKcmT!URc0aPhaf|+Ya00Gg$PL#q$rNB_tF)=lT6()BI zG$>F*i-p!WLmg%S_=fCrdISC`8)>7IAp3`7n$rIh)kk0rH1dtkpyoO2*XeUKpzG1e z1K0N#f%vz67VQTCT$seYMTv~#gSlLH6i$l>GXa_mx@xA{Ow+4-Gw;_23P?#2VG6l^ z`IF>ONiv1-{Fcrq2YccZ7u|FY!iI*h+JCKMaM*@QrSj`1$h~RlPkhb*YTMxAVj;J+ z_K5CdJ*SCN1!lc?Am=;BL3Xl}9=w9!gooJ{bal5pJSr`m)zrwry)=6Nx&FC6pA1x0 z0nMzCQhQY+Toj5mEo^0bG+0PyKb*P#jK32If}s0w7l^Z@fJ5uu{4dyi!9SJRdeYl@ zk`hfFDfs=*;gE*&GwBaXXoVjv_hSOC3&g#CiHz^>Gq0ukdWCWVjNCAhp|3^5Kx)pBnzoQ{#SLc7=1e9$tC0(UT z*bV!3XAM@!BACy|Pbzx0pKcE&?-o~Cr@hlzMmle<|c#B;)kSYyN>OF-F!)EerU7T&G@~WnK(Ol7tGNHGT7DS zTJK)Itdg0oZRMq2wSNx1VBe41s8OC)^fY{^{VRr@v-M#aIogqy{6OQp`HJMngY|L3bFj1E0dLX%VFTMKSHy9oc*)?Nh_#c)y}dg7;Id}ufs(-rjJ z+B;S1#(7bS?Kfd~z8!8x6lAV;y3g7j*Wl;(XHw|$B<#EICmWY0$)H{4n-k&mt5^jg zCOm_(k|pAD*c>vuINjA~lt(eg&7;R$b;QQWt{{IkVgJHay}MZIsX!1sQQY9!AUk^ZMc!+y-?O!yM!oK z&hM5(ub`VY^CR0vd2@6wlrTU^J8c)VS0;ykFEYU_&)RuTdKY9`Z(E{wSzp%;uQw6h zhot$qXw8dl+|LcRflbGpqi)M%PPfQgUA-@?5S#e#(oJxnuM;uTkZV1hV6AW>t`}C< zXX6MBkHW)Ojt$22Q8~IH(OhE3q97Y|$a}t&ku)_~f|Q~)FevEFWGHE5!C?O3f?xZP zo?y7n{4U4(@AC5e!|>4eLYGgmiHkcg`K-g0&nL_V{Lh_!SyG;z{kz{UqAgE&z<6JP z3T~h>AseW6b+HIu<@d*Cpv}0Z2K?^7 zpZbW6?F9>GSoj4yJG6^MKZt+#e^1qK>v)x3yi^{=Plfi;eZ*DM_6k`_R20#5odJ(R zt##M=74E=$^0(H+kDHFFBk}OtR#IXPDma8)f4GU^x9Bk6p0x|K^=w1lPiw#0bql|- zEtz`NN^ki(mRI-Pbq9lgOTVkhI$$Y0ajD7ZS)Fs1$Ud5t>Uhb^$>|%0(JcaX8a|qGp z%S1ETBvTL8OB}5zE(adY@!zE)kSgiS-qh`J*uI}Da|<{ZtErLx_viQY+PJ?>>6FYFGp_UvV!o%F7xWhC4{nYcCl`z zbUS$4*E|nI6Wc?+AeoS4z}`=>#QiV2;auBtp~vK-$3L$k)eVYbU*E@Ay>e{~us(x} zJUVhvNr*ig7C|9W`Yi0rciJ1Llhp9HpZ!Xvu2N2VzPw|@A}TUIP~ob%^oE3IcIGQ* zK4%ZZz4p9Qr@qmO;-$n;i?ohZZ?LlROix#5IhfCXG+<+s?3$=mDo&elkYCA1C%4%4 zlx3FI&5`mFVYM8YuCFhZSi)8pzRSGj6tg>>0%NfGF(z5uEHN3|XCD-D<$GIUuZ&p~ z?%kUAS+{;VN|T+X6=mozO}ac{9#Anu&Z6B`Ic>>t+rdCNm-LCavkwLrKb0b3!k#rlP{0p>+{!qc6DSCZEM$+?@W-f(W26h=6~*5_RKhM zf9qywcukVLdRq1&F=vJSnR-BVmwAYmX|LbOyNyE#Q&gK|_c$$E$M6-q`g?H)JT`Gp zCn-lZKT$WzkBN*<_6tlS?+Jv3zriA%nZgQ;vEsUs;CXn;&_itahP{{kqxZsFgAR!s z8{UtLERFLT18UQHt3}!HxW0a!wae+1bX=kgU0z;Y>PlL2yTT0X0Kcf|PTDQWw!Bk5 zFv^%dS_Cdc#Iy`ax!8rn6$Ue>89T5`fy7rO?8!RdnSD+!Bfd)mron2l+2xq zg})?Y-|p+EaIEq$&Pz{csj$Y#o|v$HI?(O5OmLd?Xg76tc+7>Jv@f2WQ&v$%R*k$z zzdczzToRXbdGu+(uMujz!am zg5qm=Yo6hxmdZ@BseHwEpjXV*5E6(wgD@dG>JT07=~F7c3) z|EBxu>MaZ_e;s5)iA!$3>1=*opAf~gu5|TI8i=755{bG><$nqsry-@m>2NDx^`KPF)j{}GV1nHz}KC7+QkAc_xWYf4X z=_qO0?vX4MEkxdhcUu{+``-cV%y;!FyzpmYWrdKNo0}!9g?bC06)oa8!vK}qN*WrV zOz?w5I{LDq#>UjqfM%fKwB=e|f>aLu67-oE=kBYjdPA}ayIDB^;$T(LfYO+K2$sC0l#zJrDwf>k<4k~M zwI5WXT;Jy8=-Z;hMS1pece#3k*h%s$K$n2)Bo4 zRqHqk|BFVvmlcdwXKUy@Hl;UXe?>({p%})`E%%mI<2>Uh!Rxd<7Lm?Ja|sxPghOj^ zqn?Ys#rNWf5<9M#2^Cy_$-i>-$zSLLZ32_;aXcc@dw)d>e&#R%`9N5&X$~@sP`2p} zD;MT{@#7-`DSxwBNNX;Z()38A$>F!m9v;%F6G3%dE)?4Fqzw~#0HJ^u!HbBBKDA7R zH;hqH;i0scUtpk>yG0ZjTbx}B8OVQI!H9z3_UHnnWfhH<({Gbs(NJ-nhq?U!v|1eDT(UPSI#90UYg%OieJDb@?g9$S%f z_aykFeaiUtY?ouv36Scj9vPv97g}VfWqsm{`piTZ{xprT)zuDUJO{gT3B@zv4>KFk zw<~>$`?Me$_dk34+UKd2V{}NMTk03)78f5HzY~RQm6FmUOVR0>8K0UO$xQ8%;O1e1 zYw(^hk)xfdYlc8@SSgv}0*T(I>>BRi{T|+ra3ZyO{J;463b3rUZtE8mL6lGlMM5bl zQ7Hi_QBgp;8w8}gLBb#;MCmR;NeQ7@S^=@7uT3eDeCf>ie+F7gEi>k z(IQ{S;j(G~iDS0S01TT(5Sw)Y{Q}I(!1#(Bpx*{?h6qNw{L#(-%hl}#0ARzT2Rqv9 z;NwTeuIUHf1~3)lf&>+L)Ce8?(g#PK*xjrbfRc%VsT-)_K$~cnb`Ac^nX6fj4LAiH z8Xnczei#ar5C`S<^HU>MwcbqzA-Toy!tUjLveg=zgquJ#wyttJBe07RfippKJB`}l zj(Z-uYnEBxBuh+4V2}4~aq5Ru|0InNB{cQZfB?y~_$|bZf!sbc7x}2bli~t8o!hI} z8v{!RBDDcF{HpmZED6x*9sscM3!JZPfcYg+x(`l5)?fz&g;i{5VZ?s{QyLopSHFRh z`V;UJ9&WiQ4IpM4upo3hlWxLG@BvXZfNsb}Zf>u?AMCuYdF(kuPX?zaL^^Q({_5`H zGSl6>fl1J=e}q}@6eZ=!KO$=|IUs}y;S((4FB1~97i|0afPI;k_Mkge`~g_5J%DM9 zM<0rhMqihfE`yXER-EosMHX-QOcF37C}m=2&lSH$LHdufq0_eN>WmGR2!@Mh zJMh0hL1%_LNEO|qKS}6@~LQy@}wh}r_<;2=*vu6Z202P~BB}POr4wqV46`GfhImQBK zD${;PPV0wZp{td^)_aC0({)8p>HK3fB*5YeGMY|Ken?C@hqqP0$ zsi~%Z6R`3bE)pj*k_4B%v~4JY zl?sEbq*Tjo88%lYf>GQI9845xz+!dH;4`s-p`j9Q1Kgv{!JZ2Qyl8bAggP7gHq1|F z;04vgJg8&RHV@P8Pgo1EF_z%W`DkY@{ocKM?_n^Uf*S*z{w%=RPe8rgHlRuafy7lf zd1`7Z1_O*fZx|KdpnZQqk4mLp4GjrFn)9>3u%yu+t8j3JHC~S+8YI@ffY+W!1Y4Lx zuX!Fkg4r1v5b&6-qTUZi2uH5!XaH=9xQOTu(Rl%5&RM0fi84)(6!n9rIsx22aAUax za+JQZXig)EVr!VUzCj`F6!?RY-+e)O3PPR=V40EwO%UuB{Gdg8Q<;LqZe>QhO@C19 z&Lhf`iS9P`xWkyzkdxfknxj=&(yfk>TnGb)K>iB9Vq5n%poUg$jk{rcAu%}^P{_Y+ zGB^#aOK{_WiR8*NVx|7p%i!je<**HL1?%Ncpjy5IyxpUiE+`G)FXU;K(}K}zPK^(g zjgTQ(CePb~TBj+qqrIjMX@+f0O{ajx3igsv6wRT|V;LAgY)wc5u3-GYiJ;{{?XPbq zz}WKWQM_vHE6?6(asD;sOB;aDgBFOI?4U=c2NKL3J-uWtLpB`+hY9zs=TPBL;v3pY zFb)Ry2t3Tko*o5YHn#MS0j&(%3rLrdeM{HDCn~%g?2mZzo&&{B&Al2^2Y!zR1CB0` zLPdP@IeAXrB%8Cvfk5Pb)YY3M%MhCJn2odDXACU^Qwj6vvn|S&ZGR8NzgA*8?H>@3HhdovqgQcpnir?R z9S)Y_((Yl!i>;neC@$9Gw&HdnTBv-OE7mj$qYwJ=OC=|rE5gD$uxv{-jlwj;S_kzA zb#)yjyS9ehi}ZHTfk|O0E;z3OeB2(-xeF-^v-YAVX)F^c?yV|l5HLrBi50DYz^ExF z74#frDbXt&p%l?-`0$}bTO4vpVBUmoc?R;(U_w8L)PdsqR5R)L4rRo5$Mae|1kxOf8DH^I6BCwW+rA9+}$nT1x{61 zBKH#nz$Fnzo+^Jku$Z;xgkZ?iF+2snR3E>`_P_#kmLm0>zCqydii;m^i0ipPwBWm* zkSOe_tzKg`z&@u6Re~I4zRSWAfz*N(>LWufWCreML< zvN zDiR?t7391JQ}I9-Yeqb*9A8(bS}@H{Pp82Dvch%y~mJv&wKqL*co{CvVny%6Nxj-_%<+w zC}rbvfINH_1PI|mdA6^?$Mr@9o`WS&`cbUjpQ{ycxW57*4ba?7;su+95BtFjx-!@u zR#5yFM9^CC3E?X)YK}=|%g@1!MxE|`` zh}Llv?=g?Xu%g>9FR33BEvGSWa8I2?mw-gWP-ifhl8@HCbZ(;7GpE@W%y%`k zB4c9wQ)ulHkCZgvRC!cSsfl2qkR*b9exN=MZrPaHz10)QTn@-6-@qBGm~VLk=E`@F zNr4pM0$5=|Bu9hnpn>31+wOM7eW`c=`DBccY8-3~t<|7~wA*niR6~Ppz~c7pqrjYa zz|GFfdlo#>v(_8QfY^?RDUh&=0*ePNdJvrGLV6FDbynfGTzJ)kLii+0v-&-fFDjFJwRa=ALMz(B(30W zvVs)9^*h7nFlJ|Huzb@#7Ut+ew!9z+`%+-7asKty7b{9bs~YSC(U~z{U_NMoF$u)M zY;~&iH><0wsnXgIKp!QKY_2T;A0ko&)1krn^5um-!Xv9k$Hu?Ej{zM;_Cm9#FU-1` zZTn$|n%akBTM+!bhq0Rv!6XcIIxrhW)>}XyKyGg^Jp$9N73c$%=9L$3`FsH~0ZQqJ z;-!7TNetzom{#s-I5i82$hX9tg@CAdR`ycLD1? zxbS?Pnlc;^YQA(UmdB#tMs(Rh%P0hEAd5N%Gb}_mC@TV;&Qq?2a99i**pJB0m7C&0 zlI3E@t810}HdQWzQ3cfO5l0t0;}_1S)k6?V)D?177Bj;KsQD^#J zoFfl`%vI4Itd}=`@|a~lq#$ZjBHIt0HnyMIZ$B*QKek@NG(lOm=Qu?GoD5{cXAK7W zV8)08{IrOj1OT}L`)+=N_w5hX!xS1N<{uz-v;l5O)oL>jT7c(kz_BYKngpc>RQ6f5YQfCP zq{eEZhG)wG`Q~gY1ps&wr{|m^mFJNY` zjHTp%4WsG;*jfV01OLEy`UGY{i{mw5?+O~1nU(BGSn0c~im%j&><@JJlS*EW)6R?B zuN4Ygp--(bQ+Nv@=t<%80n;js&s8LS-Yl$j z%wa$a(@I1I?WkG84qP|DK0*(KA$y74Er_eC@DK@IR5?)jzOa8D(goTqBE5pnYkYUI)A1 zd)yUMr35EWhOv;MjV5BBiVgS#1O#yX+JHW8zIp2h_#sM+D3;PZSrztIOh1waiIya{ z>h*%jG-^TDd-1-HU>1jTCcI&4W=2x{AqZ~W1k6e7leg3BA|+W@&(XlH;z5k)r8r7WGvo9T_VNrxIW z4(@-d{i850&Y%QNnn>bu<#S$VP!Lo zH2LQ)YtvX)w@&j~40Fv5Wj2G_^bwdR78pjf_hA;ssytyyy}ky z`;@cKQDCYN7!H=~S@$0T1I!;-C0JJzeX~4X<`IeFJ%V`=;{`F2_$Q%3m?xjey%xj5 zI4+Meo5^p31v>Us&l$+mtJa-m49ywzlw4qj!(c#(=scV3E32-qesLNYMGde~23Az9 zQ@D&eIQ=~V#7A|kmRPi(z;oM3eBiB`e&JkVTGIvH<&B?WHg!;4>cOlYFT5_0H{+7@M}qGXAgXt?^G_ zwRy;`BLrm|Jw%>F`*a{qnDGAk83cPEDJy`RKEUUM(le-MVM+Fac?H?EZ!)}tVGdf; z2JrU&2`Mh!_3PxY%pig!l&pTjGEd9HLk5J=Y#Rk>BY7ZZ!CnB!$M7tN0UpE=f#AJG z3t^5Z9`f`?QB=+L^m%3*4}drg#eZ%vG4Ek9SsF*% z1^fc%b6qY9bSa4ra%k++$VL&iVPQp!6oA`x0E0ueEexeEz{Ji&V)h1RQ8ZU5{-5bu66W39>r-?coW_IP!2jMM{bTwL26Jf?ucUwRHK+ z)bI0RF0iPaA}9BShpGbaXkN#~v*`Tq-dzPN=dZurmPZzP(ut^DzP~bEnt%uc<{so4 zh-P;HfJo7GelyCBLQ&`kTpR0ZDfZh%zD}6p^Z0JB=H1#*Nss-rOWEcE=CG-Is zu7eN@W$O=eqyYXUEfM}>G5W4T>c1I`l5YNly)ncWmfVHkRwrcr2O@pjwTXbz-#dP= zywxZ&eg)pEN;Sd1bMg*>wLoO~y%`GW8pKL6Pg`{dX6obnLk z#{gP-MP5N6dw<7lXRB#^G)auxjtn9!CIpQ^{tGbKd)=!SKnjRh-JoAIup0s1u`a}Q z5Opv?J_!|IGX;_?I_eKK-Bq1RhkQ7+w%D$Mx^p6WeJo!pu7O)Psv@8*ir^tW0A4Q)IGiG}O>>|;Oz^y>Ve{a1#IS<&=_$dafG0R&qj8X6klKBGj^8D=(? zz=1y1w)h+5Kmh&(D{mky#YX@xxC5dj2)4i>bZ>vZ3wYbesuoef!H9b1rS1HN>mJk& zFs)*g08M~hZwO!@A(|;{;}iwOxvJ`FR&zI0odDZigu#MV=M@N-0rLEy zdo>BFRcM@oe&0_#lu^m~7&olP5LkVL$o?@*R$n29h3#>?(PlQ_o(ka%N`eU8juk+< z$qQ!8H2|`q$KmzZE9=!PgBi~mN>Nu`R==AHYPeMc>yr?S3+mxCuYlVAhsca9%3*Gy zgrb*jalP(eOIU=w0)zODnAkA@ZjnG0l34q>ZX5_0K7jmU-od;xMjo$A1Xp=Gvg=<~ zcvgMqdqerIR0Rf;)ev9?t6aI4^Se%*J;j#^o(ijmDM?9k0@q=`4&;;osi|ihxjod0 zf0_R2Y17PCxh0yr3$$w$39Q51eydS9V6O)b>a>2hlfT7sDLzj@*b_!}F3shZcETk7 zU!%ajj3Xo(PgnaIAe)^xtThmhwC!jQ(_Em4LR3mWiUbM8lo4^iacLeALv_G*_NV zBlmopEf{WtXE-*5N*A7?esB$<5)gao!J7r3I%D!dcMz>+bIq5zgYCxum|8$-dJG8s zkfqXC0|1WtB>>V-iLpU=3|I#hK%GwjbkK!8zQ9W&V}V0KaMfI1xsb)4AMqLHrEIQU z)%S5>nH~&*8)?r{o^0LT-JN`XDFNVaTm&cy0Jw>F@+9oM27#b6B>zAFe~i3)~Yr1gRDc<8NEi$zpREdbwN%QZI~{RHX3C@ zple39l|g`>d;&c;96^yVjLK_J*F>=Z(2O&(Zz)j8pKVTvcH4!GxLnsBqGB)ONMTZ?)K*RiTWTdj)_cASQ#i{uXlh#as8Qiwoc zfr0cH73lzR%j>vxgX+Hubfeul*%;jc*anFnfGUF)$Uy30Ix*bUtaQu)foL8_dqlp7@6WEIC(mp>NuJKw`N1vu*O%opZk%=?_uaeqLS zCj4&Q!1<4a+IItQ2kocDb9^ zw(-mUDZC|QFEI*?29#_D1f0m5aE0*JbnP557#&fnjkn3&iLVnx$K!Gi18GYXBSbDh3|le}j6X>cESFFa6DR$8S7_yi}^ z9+h-_-%$JlXZCqENRpPG%4qKvs48hf%#ahTG~&)XnZKZ+?_trND%5^!TkoTSbi!?Y z3awShEWv116x`T53yowT%n->`WsN0j>mycVY&9uL*Un!r;B^3SOrS;nhG#GLA6<_!Nu8Gb)U2p&<*|@ zKKI@g2glfc|9dZWax)(k@Gc0`V7@F&9*Go-nEeYs!Q&xKn}C1-rB zyi7AG7T<(JXFSe*#qIUc}H@7!wP7Qy31c05V>ii2&sAS41Pe0>B9Ak)xVzCfZpI@dl(0oeYuX7ngpj~tZoBL9L5a~l#$3N3(Rv5r8!TaX zB5It?v6dCb(P|B_oz0m>mO@E=*M}f=z5q`N#wcR2pn_S5l8KvvBY+BOA)H zO4#AI-8Hi1{|5Liu_!V=hiU#Jq)=&CpQ1nW z5rJEe0BmJYJRUq%9tIH|F_dci=j=4&;^$8tp0yLsWbKGp&u~}DGe!Iqa9h? zUmhC@JT=pA018_d^b%y#;0M&Vm_`3w6Q;@5vEfRmoQ7yKsNiW$wkkngR%`L~8%meO zo&G4DSkCgVGdJ_dzx`}%3)R*UZcGvjLhZ#yF~9#-yD_?O{p2*{h|taFEwz~ei~~oZ zep4FAd+QN^2I1-jI=Un9!jLyNS@@S5SGx4ejfPNZCBTdv7aw2 zA0Cfttc(%TKZc*{5D2W-gajmd2h(q9piN+75Re0@0aA%#UIO$C3EsUHmR+1r#$3as z|No6A&m_MBHs5u!6{_34s$6xuYSk||RR+cc0?gvmdZ%4-U~>#TfNTNo4bKhs_x}hL zdr;G)-&!hL-l7@Ddd_A8*G&9o_zs( zNfLQIeE3kgV!VsU>$DsdL?*D>CG{;NePs;IY{1DTLY^X^vxHd)ZEb_dFbgPo1Qysg zFsy%{sgV8-c3(jWRNru|dXAXAeNo%l*Ij-v4v=#U5hOrbW07C40z#>LhVQ+mUCeK3 z?rleIDHMxk4$PcSw>2PKcKr6_+ew_8URm10>;9Ii$+k*urd)Qj( z08ba~*=Mex0-&87Fi z>_7=A&oK;OQX_!`cz9j|#ndBEXqzvhoQhRdkFiru`|DK1*9~X_+SfF3!L|4V5z)-M zqql>CPyoU{DEne8n+}9MS&LaGs7|{A6jW48D-FrZAVF`kjR6g|HUyGpr z#>*3RwoqZ_p^d-qmH1lnuXG>ukN>+E@ht4kbRDA$d(wcXP{9W9O#xAWf1uxpg*R5Y zZm@tu8#ZQkw44+1bSlZayk;e(kRA^G8A_HbB7j(l8Fo3qg{cKa%s>=EE;vw5e&@Pj zinP)gV$cCXt*C#;8G+|MqQ;8Fwir!G?%%Sy>;E>V4x;@(oPEfKtdDUUnmovq&xGnP zQLn2f!ShaVT1XL-$vn#MVEd0dP)&4NJpjc&A?*GdZIo~m3M#-lB4tNe9lz?Qj|&u4Kr#=; z8ku4}ts(P1nW>-Q@bCBf+v`K+$PJO-){M5tKrr}5G27|i0z$E`^UMFuD&)tSYP&`=LBzWcL&6rmxfb-#+PDawEQ zKm01MuMYzA6e4B_oboBokdQnB3?RRWK~7&5y!CY!%1i!-iRCj`BVwOZVh}KQ@#5D8 zlHY^JFAHoq7Nxu4e$XFo%KzH`+L!UdNlIQ~NNP%1rL(Wpm&ehTWrzEj&(r1HuuH>K zoTgJh>in@ofdIqA#B)Kgk~o)L;uxKAGSD{S&2Yi_&Pfa&aiJp z@d=?wg`+t&Bzhjpc&m;_Ftd_Dyzb=~32$tw*zo#?nwOu5srVD?I33-M(w98R7*`QS zgz>XnzEuBkYVM_m>XSD@md5jD)J843ToJD{S|+ ziT>rI4+4xjzE^cJ!lnl$)dh3Elhbv!khbj!rcP3IbYn2X-a8^W9EU!(d^*7`!w-JB zWu2n_!d#!goA;PlWQ5qNtUM}Fu9cms;Z6{>2eoMt9$Ucv?h`VxP!R(KtFr92e3cWD z)qL4d6*D)xAHz8JAz2Yr*M^r0AmUJmWzPy1Kk8^+V9qhEH+%qlZD$Jy_#L7QMeRs-V zHx)0W4(iqkN8%^RV&Y@M<9Ay}X}^<(r)1`xkJ*XpFv{$D7D~>leQ9RRzD!;9i7w6c zXPTALfsBu9K{571uSQn;#uhoZs{uI)-RBWfJ&$R-E6?6PUz;A>Oct`vk8{hRj$8{k z^<~O`I$ZOT+(jX4hii@6O;;KiEb8qNA8DTmeVMo$_vC?Q=j_*o+y<$ehWX6o#aGYb z3?Fs-^hxPpbYW;ww1{o1bu?3Qo9S8n>o$sYeI& zg~l!i?Cb2A1gb_n>)Yi_HQaVRg1+QuD9$u-xij*)3HsW#%APbs2C-0*Y*ucGmfA5l zGP(!`y=|Jzg2|x0LCRPS#eO^8#SizY-O55bqF$)VRv0cEa?pu+PjhIXUsph1Rka+&=D4}#i+=l{ z`EzK*l4PYnYMN1*yN3B4`}QR0Hav%wOonu#L7w`Z$k#CcO5TkZ=sS(Vh6Ccw^^efi z4&Mq~2ynLx-5x!Rc_gkL5uxP=U%9%G?OrgrRg$I)7c&=f)mC?ud))|69`&nyk6&$P zK^Wa#J}xJio!?LHCA7@q11=d;HObJ9y~)$%W0>NoYRj*oUTqoZxaEGi#JpTW??v(66BFqD@c%44OtV@3z?zNI&5XPok4C2&3+q^# zFRwWk0`q12>_DTshj#(qPlvm5&rdbm-r2O}ZrpKe){osO`*0`IE1)I&?D zS)!x*u-I-zdwDb)q@<4r!aqzDek(7HlaaaZA{92p|1@W2PE%7pU!Uvx3 zQHE<>GQ6>6%b7?wA@Kkv^Eq;L%#Wfv9 zNF#JIU)bshc=fv6dfhbn8)LnF`#N!B^y`>w5n87i)BOLjteSd6a4S=rd8}oaxbo^N zI@34_$;VSIZEL{-*cp8#laQTc+yqwuj{2+u$&WojIzRj<(qK8?G+)~bJokHLjYDoi z*C-@grU|fdOVj8I?kfDkiEX6s(q#TP_cZeB+=4%$d#rf=r7dldo7&gZoe0E4GF;+b z?Pa^h4LhB(OfbDYF|O&qKl7f!xX{74ul)FvnApa1%)KOZh8;L%6_rVA@2#0PTa#Np zS86_soiJV|AwmiNj5qDsd0AVi>Ibb>g)NByf{oa z4r%?eQ*qdXj)c!Q9mRw`((ZS$b<<#UnXY}CwVG!4shsGOr=Ve+T*)qbq#W=PPxx8s z2@EDGkdboS2COw4K1<1JEj*sv6D}{a7JK?7_K~$hW5HKyLQ6?pj6L;P!T~cuMXmdN z7Zw!RpTxMmR+?dyU;IinqstM~ndxa)<`!LRpd*xhr(r_n6!E-wzt+>V!Pm8h?`0p{ z_N{6AGG~^n)YjhGI5f%k^B}=>^`W#P84yv zy+IiMAT+f7mWu3?62V(vM(PCGrN+}}%RA;l(Of^t0aUYZ z$L4$z#%2HTX@r!@inUT&da2S6+Wqz@W#IdVpp3pydiK&`73Mk-`E4Sm8(Zl_+CI|~ zr_{x8lf}!nN6Aeje{3zUS=%Tjw|pU!H=lpS`ng)wkBkbtt0--Ibm4@g4ehlP65*%E zd?K_i%{3Oh3RUu&mczocu%PD5xNY@5|0t9O1eYxt>Juc}KZM(D+QJk9Ey}ojuK@vnc$EdJ)l43|{E_(YSbyQ{?5srrGT@!ftk6LwE@1tyWXOvwwUQ2i4L%*MFttYW@Y+-4*amI zVB1_zZW*i;A|-GCF5V(xe+-@9J+|8*-{fwt?#hm$K|I^}-3IHWjb*Jw{ICVG*~Oof z=sSVmDNUlA=u=ho%Wa-<9JJTN3GWFjlbyi0U56+&prs+CiQn*rl;EQ~WR;$F6q~s+ zcWmT_qHdA58>1UJ;IkGdbF&^%gOlNFc?^|tMs`f=!v*8^)>7Cuf4s0mcZE}KSRFoX zK#J~!ex>3xdW-|#y-}J&x)W{#>9kw&uZr%6S_o}<*0*%H zud=T>goG;bM9AIDrG~>2KxCC(=GM6s*#X_{j`~`;aG8`x{GQ$WNAa5X`|h>)2T0_@ z&23t}O5El2g_utP93hGZ{ooD!oH@2#CN$@%bz{pjvYvv#aNv29qGPfFeXM>5^_3f2 z*e@Rtq(MB;FTPeTbAwiRYnKPUT46hLPy}l%pELMR=$ci)kO+(4m7G&YZK$yOeW2;< z5{#mI3Qrc|hgpLKD|#L+uh}){hGx&S%^ciLfhUvv{9O>c>aOY!*gQdX`IHJrD+C?O z3+;k`H(B_*=7wA&iD0l3O@nDc@5knqU51H~2?DAepAVPr3B8bLnZ5Aq`bL;X+7S#9 zjf(y3dB**2{jL=K3srk#U)+{d_%YU7@~>}ATrG2HigoiYCGv_*KY=aU{6I@kvoqQ1 ztY+@{^BFE9m<&aUxkw6(Y-JYulw=?%k94?!i1D>ZD49?x#hgc7aQKN8 z%Wj%jGFyOB#E6si2^zSpPbc1X9zT2u3%ffn7em}TdLDkb$kr`GHnJQcdzOH)tRk}h zn2$>`+zXcl!-SP$2XWXef%O{OF4OMy4fJ$)_*)V6C3E8>Fo8S&3af6ckrIHriCSmP zxU-P^0dM`(>~gzH zIisINU2#|_JPWV*@`Vd2PtLR4JQ{Y#+Hm41$xxvcXSt^*rCrD^4z=T<;zBC}X4;g? zcJaHKp>ETynsy~GZ2Z}a$uGSzNv+W796s>QQEg0U>nkd5JP4N#5wPiBsOzaKC(qbd zYa#*+db!OkU(TzIa!@McQVStf<7ZE&T0Ic4{}3%-z)@W257Q|MxjtcZ$bUs#N?q)5T|LO5 zj&Vy`(c^`RrOc3&$B3mA<>5+qwzn+@KIO{D;KTmGOJS}w67uPG8X0#gRZC8p)6wS# zG4;!qocekB?O^u``E!fg*Gf)B_*4bqk&VVAC1hMFWh`6$7*J$Bg)c7uXib^l<-4y$ z1cunYpfD{eQ7E;rfL`W@yE7K1^QDa$cCTNH!m8w51H3Cl7z`$<=GzEA<*EeXNJLB7 z9xgU~gvZn#{q&Y!>G#xrJWDAI*L};$Fx z5hE-N#`L+>f;AHxQ~CF$ra-psM>Y5<@G0gfem$i*Xk+{5rOq!N8c_kHzaU=28i!EBI}GG<)Db~k$hoTY^rv)r!CE4Yy@6?o0Sh~zTu&EQNR z_u_w_a~y-o7%1b$%4(fiGXdU&AwHkD;|Rb&Ef*uz6N@> zSznft(N$JBiXlyodg=j{=N<}N_$g^wuJtBtKPZ%AgAUG9*HdzVzZNi+-+qjOI++PD zdW@Lp(6R93DAWIsK9)pp+rT17G^SBX5 z)=P|$?S94P@ZUBPwEKe11Sb(8e$YW_{{e@biHob~W9$=OAD{UrC)jzPs$petYUi!* zEcCB`e$}7AkAb&1$cdYyR`}+lsC399p+ulc*!gf^%cifcr7h$ZQg3fR2Iv^mOI%OM z3)>OEOA;lq`x3_of4hJO4+nde$^##8%C@{Ye#N%D7q}yq6zF@sbR>4N#>N>BTca+D z8{$`dI}`?f06qbM;3Vvdg~2e<)Kk)ngS@O8njh#$4PE0U78+1Ry9b})%RYp!V46Q| zWaypeHVyL-GWJ`pc7GFN@W$-@)Qs_7wMyY#bd?NWrs*%lO3tEA`{t1xCr0MTKl#dj z#v+ir{fx`a@jspF2gy!YWa!(^#Cf!#DM#W7y();Q*@MoL&$2;dUAAebq^wG|*~$Gf zGaP+rSH0C1{8$>jJ}(;RkbahAdHP26vpo;>R?GP6P8+|h(l#05Sopee?9a=fe0bc~ zK2PT2#Ei-Nk6WNE3Qlo_w*{3U9IC{~r3Md8c?tr#4B26S-h z%T-CIuM)jt8N?~T|~>z@8!Y4R)`67kTBH3lN-#m!rEOI zhgOSTpmWZPI+xiGXgzL+5#4*bo{|#()`Q|3wY87f^YEQ0`$z>faR0g2I6mIn+(83Q z@uTWgEAqFQt`H^NT-{DB;#&ARIjV}mJRyZ!c&VkB`tZ^t)7Vp4?KmWMB2U92FQvUv z?@?0=X*@Id2;NfA4+|>7a+h+J&#kieUKs=)|JRc}I3aEPXf#o2)?YD}x&_`ZY9(Q~ zZ`rVg?vOK{^3a4wUOb#z?=PY>PFPd^_I9IX%{t}D^-wZ}e z?@db<6|u*|&%AN@VedT*#^aq4A>mz)H3x%9xq6E>c>`^^f45+alcv#~T)D@2&jpUV z|I@()Hx&QV1N}B!`&ws|j6YwjFY*7=g14X9AMXFF1+}OxIx1!F z7UX$8P@f+(P!9L%Rqfa%0~>C#M5?gH#G+zC{}FxXQ!xbZc(Ri~w<&Z3DB5bZqhmF%gg;bf4J_tlI% zMtVEr^>Ngz=0&v=dh-%DK2MU-!+e{4%r0sQc#3I2u4AR6`()YD)YRoeaJ~qXV%6*2 zlCVQ^bVz8ZS#bhXT#SK<=?Z?A&8;n;KX<~+ybe6TOsIG9gO#6YajwYcwiX4Chb6QD zqb#e@BI#)UdmnsE4(<9P4rqKeXemk0oO#_8dWn^rTdBOfJVw~FMjIr!785mEASdsE zE0df*ukm^#H9g%7Hg6v;vw2N#0_3!c=@_%#G)Z!AA0Ja7YpIvprXito&-Qvdlgx)} zK~m25y=}7%(~16h?-aMMUDx|~bZUB<1$0?Z$*KXPUaOAE*_41@a5IJdkHtY$FaRoh zZio3^iX32xEq4Lse#)`3SoZ_={%T~ced|h3da&3F%1jUmD%V^PBuZl%NMmR`Oued- z;PY@gGj!z4Y#8cHVRW+{(ZD;42VOFRcm=T9sk}Aw!7d;R*kmE8pm51}_wL>B0k|aHA2?Yh4(Y>UsQ={nUYskec9i1?fGhX>dA5kE>>aG0Wg>!bh82FKx!TA0V>Xw z>x}gDw}FNBiauVzMILPrvFQo}x>hm-NbC+kMNkp$x^Sw8P5zF1OvXF6xEOC+ED|_N zQVssjgJm#@ct!6bK)ta%HexjjRs5wnr~<2)Q33IA6GsO4Qz;;p5D)2?=>bkwvD1q7 z6!%Nkk5p~VD*X-m{)apYayY-24UCuYO`TSYp@KUh(Cak6CIx9B zsNWkJ7|a6ARSD`qeZbO%#uW#_J_Uz?A6SHE9n#OAQdvG;9P~^6)u|h#bH}@H-N901 z6VQy|sCRwl`*%6Kxo;tO<%$fjgTm>HftvJj5VS|1Cx0^CxS;`bp}c-qR8e%R$jG<{ zo(Nsg6DhC3qwIhk>^hLd=7HJOd4xznHpiitJikWN!G1sE<&PE89$J>pIZVchQ>Ww! zt{laI^*cCeoHG*q=VcmUZybu1pQM%pZKnwb)~>}c4TGYt~7d&&G_>Va@So< zp-d6pP&sBPE)R5r;{MS1_$AdDkYW@8QEX#rM8&ccEtZ|2fX)Q&GYfs)PAIZ!Y4}w; zw+Y_1$#BhGU~*QPPARI49{;&RJ8rC$`rQ@>)+~pVjC(uN=NIG@NoLJqG90^Q2*-~VM{EG*A87qKsm6g+$vanrO8(GvYRhP zAN2R6+&KYk>=vs+NtAW7)~^@}~IGh?Op4Xo0I#gxCgZT(V=DhP(0FVSyo=om;HZ~h1U<*Lycu5aSj4{Z0xYh3hcVT1p zb+9RD+jfBD-wPamL8!~}&&1h`TpZ2CN8DK&sAX$tkM^ z*5|e0<%&FROdw80^t$Fcko%f~Xki}ch(QBq?sa)@&!5`N5f$|(=`k>emn=(8OPiXW zNN7(6Gh)P(gR3nMfaN>@CJmWTmzM!Hfd7jZ${^x}wtbDx4DVM$S~_>b7443m15$P1 z!4-nInyGXo2L>V*=e={|=g)===8*#|3`g^)6rKVhmd|hP(CJ z@rRV`hZs*N{nXh~e2Ayu!;DfCKb1|(H49wV786UpqdALKm5e+TL!P3}`entT_???$ z`_5_dau#Izvr4X7 zr$K7=lq-DG|RHB8U=YTR&V}yPX^n z?|d&g7klgj$|f;ht^v?g{+2ASWtju*{xn{opq=#(uAuHa`V}ptwA+vF;1i^cqnu-& z4o*!fPE!qQX7Ai68Gca8@5J!W=LT6Wq7n4W^v~R6un6Q;qqrQ+|Ad&2{6Bq&jn6Sy zS+Fe+{5V#7@^3q}MW6YTgg?K^CtjysOQQO z<{zbC(@%|~G~?%2xBcmXi@9(Xe(xd|?d?lMGoPnyn^aU&JFVHhu(^2o_~h>g{_a&} zr0|d*{Gj_Z7_EP5w>MK~eE%mT@rBQlaT@JSJ}QK0;vbj#CryFm=9YGZ3QgL?Yhsu1 z)_)oazRj4Gi7yoDi<3O$?^*?ls)>Mg8tc@%~RyB1XT1Tq454 z+iKoJkK54~L>ORnkc3~5`bFERhCawRT2C1#Dw@VfbtE354vd$Cbvq?GaP;D4>xay% zGQ+$hG0RTAB%;+sT)fH2-J~jE_m5z_l3-+~f25on!_ArVD8=O=$2ib&$g7vIq0@S) z!}BW`KeOND{{6UrF8lq(tK4W()I%^B#V2P{FiH7M?GXah3$NPTVKY8F<;CbDUJXo_ zE_I$mrvO+X&Q?Z3#vz|t$O`gY_$`z{TI17AQ4-jr834lq)5RsHxb@iLetW#FM1=VK z9xdL_BrdxhMMD;_jz0hbUdN_J>FWKV2qrx8#=q}73>Be}k{L_w?BrziTq4AfCjr9Zz z3XjASK;uFiVu|S6uNxn-RWN~Me_BP*1}39-)1k z%LX&HE$OOD6Yk30o0Fx=Bi*}k`K$@=hPNJRb~~C!_LY2RH(Jb^Q{H_s#b7aqn^Q7i zY1fduUD;P-XdmO?)WF=-N!); z7QQtF!{ap*=XSroR^A=&W3agEq-tSx5X|W~rJ%f<8!Ry_y;wL*Ht{u3OYoEF#HOXV z#`MK(i?6&!i|L#>n^qBFMN{zX(_`NQ$9@#_9ZWq5DR~kXlD|b3R%Df6R_uNtA+GT% zkDf=kFm*rsj`BzadHjN#Ls4IX*1SZhMufVB*A%5k34=!UK6m-_o!sdSX(HGUZi#E`JYG#~ zTn_JUa_>%h&R`KOteWqgK5AyZa;f{PRoa@TLU)A2uk>0q8ly$0LVR7k#O84~Tcf*?Ldo>Qu0e$0HM&cTC1J9W^^xO?bWb(Gy+lBn~-Mtws z8XeV^@^hr0yX&k@Nsd>Al$>#UJNVhzXtA9rwJNmx9{VcpL zV*LH#B0h6Xd~Ztc#QhMT!*$81%HBwy+*_%$59JFDj21~{G-&3#(slW9$EjkmK zH#@CtKFdtL%D2MEnrlzEtO}n-Y9yM~Hx$`75GK%1Q5wMuMT7ApPs-5|yb~jM zlJ6|&o;+(gtB)OjH1$6rvKDX;!>^zTIO%4Vsl|IfJ0`OZ7Um`K1#3bKfedU?ng4p@ zb5kZ81+3Z%Bye;EjvhB@bbH)>R7C5l*l=lwtF<*i+&2Rr5K80lbvK*z+so&@pGGU! z`z!u@aVfod>qbHNns5eK-s<|;zLJnJ2e~h#n>f|yqtCE?;5RQO%cmdy29(iC`iV`h z-;GEzxcH@zt3YQo`qq!95c09Cici!qZ{xqk_3~+)3IR1@G`cjzGtxEK%=8l~)z%AyYa4sWgm5Uf8j0$0X~B;YE`0Pv;= zn`?ak>D&vBQYiJ15#BGdwY4?v+X7Y6ciZx;b=dQvea=Pnae;n$(N13XhoIk$@ww?$ zJAaF7uk8pPJXHFJ#b`G$~a3FqWjE5T-M~bXjQ{-qzu*14m+$?#vz)^-_)|=hTvJvyLZ84v7nf8d_q0KSEBgHA%FE(_ z0;KY8V}8imO`9Gb6cIiEdX(RuVIgL7ZD4PckvaTZ9OY^D+&>Rrm+zmp{)#b?2sP0_ zQG}kEz79TLf8gd7HFHo<(ECCmIYLZ*A*epr>|%`F^nvu$m)1m2QnzRydwf2LcrOX| z+u6@s^L<1ZouNvrMT=P9+P8uG;x?P1Q!I*7$))bZG+HOEvV=FDG@a*B?&qvLo7@+X zAmDudlHsSV09y9e50ki7kbac4U=>J zCA%h`wpW0Z`{5l#v5X$SzhyVMhsV3ApNf}%XEO7U7vncTQ%j+hmzU4`Ziqea7@lm! zdJ7BW_~_>59LQ|z!Ed<+aOODhOgy|M}L9|gtouT@S{MNn;0wte!$MlV_uYvD% z!Ps<}7m${E=psz4;QgaH5lH>5D`~aJS{BMk4w{3tpg1yf^H z?8ejq=8X?`CieTRkbSXLsy_JLN#_9@(P9OKKhsDf4eK>EHO0MLF4wqIe`RRqg9j04 zBDysK7Rh0hb}C!|?{$LIm7%iUyM3qc8bvK4>vFk=r@w z%0NR7*mL26s?{{eh8vR2Zdo2Wlnk&Y2IK5S1@B`^2iC?&nc-B;0F&Hqt^JsS6c`%H z%i1)juVlTVqN2DL`by)@E1!NvZpO-=fy^Z9J6&2nm@OmE6hrrLumQl)PMbG@wx`V6 zx;pXhQ;Q^9(;u#nXyj8AIuvl#^}n@Rr+CYe@YO7C!)T#W-FleOgxot~w{@Fo`}sCT1F;0_9mG!81I zNuV@FUXBKY2Mq>4&|);~E})@QVF=JvSTy|Aa&OJuC>UrfprdsyRU;Hh(LONAB91dQ zc%crV?Ke|bGgaCiQ1`(e2&rl`b|6*-#88RU}{^zaU$%PAg&m^RP}wQXig)$4}t z*7Kx%IRaqs;wTGN8Cav`JP9S$8^~|<;*n!QrYUx3M$zbzHuQEPEtO%`fn;VQdunJE z5SIthPh5=_y96}MBHfvaj(I&%+5>N--$fX3_2APBVge{4shfV^J#p8nulgqC`GUqVZK+xgPc&M*?D;eC>o7Cs>H z^S}Pw^4P+y&M!1XVNuJz>?M?LrL;B~Tpu27`I0cYKU1W}yFdLiVh+?Lzl~I_$?NyO z&ZJ&(c|U0jn2%)@X%)|&%{i?swY;#upVJ#OKjY+Fl=v;Imq<6wnKBhNECC#nlSnvM zo0muh8=ITYM2##o`luQhv=5w%N=a)ikwZ6DB5Fo9m=)-mXZ=;BlA_{HSQ%0skwNQj zwe@L7jqcz@4(*$%@5#$&jqU}%P>t~3Xo)r7^ZT@B=L=2x0W>cpqkQr6{*u*dY9Ybf z6ic`|20?zEPjY8oO1QK6fuql4I%kUffB7tC!W;9EX~b~rXJSYMWa3uihw!uegZ#-0 zd5gz?!xUTcSpE+;=ol(p*TGjv29Kz`b1)g{O~TEHXN@~|y?y(wp8g&^kUlUvEEPQ4 zACVQ!i_!5=ixMcogagWGRlo;@kOHc54Hm>K|usZ+{i}TpY0?l%-M*vV;62 zk;oS#!|aO0^75@`@1fu*vuYLZ_uuCzDJ%D(o4elPfPNBzqNea6wK$0;ygty>fZTvi zV;zIpn}qAN$^MA1@c@&jq6(*i!h(XHcQxQ_*?8D7TlZO(pdxh4qlcjug+i1nwV z9_oAR`UkMxG!3rv9bP>Jz^j#b%hc{Cd6#e0ey1HhKBsd#j-=M z?wuR^h?$2dja3#56d$#-#VkE4+F@7|vYXtv<&~A`_d?P3<@HpC{#guK#uJlkdL!Ob zb4@F5?~64#bcoyOQH+*f{$OF%FMF-pMI0e&d6LmbT;zJYQJB&(Gcz;dpo@}0ilXOI&wvj|vN0{LWiGyH>stt-GP~p_CMGN2n7sJ$qlOsH~Hh#@$R1u)76Ixp*O7GxEHsa8XjW;e) zHqk)a<3>QRH9@h_Cgc~axM0aAGUZ@h{}t+@g;1R9U_WW1qDh7A)<7X-6Zu~Bhiw9# zGc|AYrRzS3O~Q`DBNF101Y)OdVf5%`3{!q8jL{Z=fb@L*;mjwXPaYie@hVxM^8(XW zQXEkQa70Pc5we$2kp*Y0$8h@aGIoejWzSHvZN`<3qY*M*nD@{dnI^|A$X2&Z$BHf|6k4NDiaC6$30`yxylXU6DcHDQkRFtEmtJ^HSbm_r? z^2hV#Hwg=Ih?I&(BDYMVTTNL>>FLT#5$ouY@@3rFi`Wi~m*7;nhnC>~1VTgKe(vSa z&>Z%#E~sYFKH$a|*1ma#`LbCKIK*s}bFe$Pc&zd?<<+Yn5dc=-0qF=PxIw{`y7Z$u znxLT=mtFbf_aQ}mW?kuuQd6Ne6a2Dh$*khekS!I#gJb7zqgXvU+jsl+M{>{qK2@K{ zov8F+IjBFt{_%7mwWrq?+hiU1$}yWxxxfPMe_KK`xjtN@Tqc@%~PI|gxVCa=ai+u?75>?tO*rwNZ!ay=?!T%|#;|XGm zb~)kqGAZs%Y!?^2B{eCT=GuKcjlUZjCaDx#9;*Vn@PyS#vEG-Kcu@Oam2MBTim_reJb3 zjQF$mK#)$y7_Q!I?bj6%B4(bLxk$@cT;y(QhGX+H8QZy4Ft?!4vN{Qr^8ir6`Ok-T zw7q!X6bdeYKkYen!-2s`c=;{^?L{GeNxXzZW`=NO&5ex%DKTwqR)VIMx-OE9I)6E4+IstWQ8VAA#Vk`L)=}-rZ1w=geikpLBw=&Ywo8MGm=HCsN zh7OzCkRUJ*%sPQd0^6`ztx)3{iQ-Qt84Erbc$|~bw! zYWs&V%s&9l9=S zV41o`m`XJ8w|R>0C>DMkJI8rGdDg$kM*QObtv72f%p+0;Sc^X>cuxE9!FaWv*qbeA z+HL@Oc-QXT>o#pVNZPESn#(43PoUAg)`;5ldskOiFDyG$nx|S0%C`I&^EAfFJ|aHU zsP_qnc0?uqJ19#MEP}&f%1^m1Od`uz-6?7r*^Lkb?SYusa0EMFoKLxxgo9Q9LX@@dA?ozwR;6ulcC+aiK z-SpoTsGfypVk;-z8}3$4!o9YKI_s&13`v3`!O{_z#D+&l1a&0$^bN#Ig5VRvU+5_7 zJ~x5CPOPNMxe?Nt6_3nK*wW+<*E%_u8VpV zZtur=dG=sH)FU|PFZzi+(bBPENN#4kJVE2WxHq+5P2He58$sVqR_b$ZltJFum#Z2d z?QgzC;t_CAAe3wXzj$PNs$+Ucz6y_*l$42|FC!z<3zkPCJR-4Q(3ua-5HOIkGp%vi zXzis;E1AxA4H9qfyf{CMB5uvAD`qA=;okc8skP!#Ik^!^BvkXWJ3KB z54HzGAUL*sW>rki1ZH%bu*^=JLh+ttGK+4rr z5q@ds;0;$2z6I;FA99|=z#+#21I-V1uMEBP$?u!)fgPK%74PHH1^#4O+kX@%}Ciu(Et zq{~tQ3==Rd*ZfSI4?QCCgi!u=Ex$U-pjG9EA9kRJKb%755j^%f7Fbpz_HBWZr4jS5 zC+z3Q1fRjo19EoxN7vF@N}@|93SX-Rtjc{ujg984&&1m4DwW3CfL#eY zel0CFCWfhOzEk0Jp7rQ!vPiS}zh3LZfTe8q&+=6JAERw&S(uym+kV1%oDdfm=Q*Jg z@Y6*YqsC1VBb7C4b`yOaww4-=2|4o!8t5(k{7MV$$X?NJgK(>?@Qs)WY06S{8|(KU zp@yyo(CZ(xeB|>KdMfuc`e~6_7?fV94nO#RZXjgwu&~va2QyMYh~fZ|sXYPh8e%*GIC@bOIBmNi0leQs?Y<|c#e~FoBZqjia8UO}j~&n-xf*ty5{+ml zZtUCFP4KMx@5^oRb&H5>et0T&?t%r{95B)YO!n^&abV#KW=w}lVqQR8mM0;;pv@;h z!mS*qFjrt7zX)7RFRa7}NqV7sXPqi*4`u}AGNRd}mI z=uXUg2x=1f{HKql!!fzEP(cViq{2`UoL_@;xou@2EkIZU`t8ZGNm$zT590sL-x@z4 zYqb$JW5&xm?T0+py2%!VAkQ!eUa;~CE;{P6ozO05M6hsq9#DO)Amqu>l$DiBCy|Pq z@qSkY42R_bBO=y0i}Sx6fvk6a@Jlebg*o*P^g3QV`ElGU>S|U>pwMxFVP1K#-6yf7dEFI z$*!2}Tm?3=1ne0h8cM(T>Au!cY78Oli(4bl)`Rff!((DxstSnzFYLJ}?|#q0!os3b z-lNcte1i=pwAVr0>ECWRJywCJO3b1|)(Es>Mv9!x` zOxzi`E+g4n{TP;I-kZR6lcS6O{`bd=<(;-!UD0jtd2}mvU<9+jU&g^Wdl&}kuI)b7 zg2Y@N@H!@V#Fs-tHbEP98z-qFPCw->TOb{J6jyAY@dC*tAx>-)SS9plY9PPl2qt91 zcvt$pd)4HgYe2E41?`+B&b!-yiFP;fr?SV!MLgFbZ~3CS!$KJcp(qErz!)sOSWt4K zy`JlqWw|xig0~k9{T{jFUXWVFHa~Ep`^AFw;o?=dPbV7gel*<4a4z>G?6E!W`qA`4 zG9V)c=tVBp4m?UbSZycw{NCH1iz>@{=?(T7vI9fo>KisxP7a2$wW1il(YRtN{5oxH zL=ut=_czzI0^--eWK+9?qfqvlQB%xOwXU3z8T{`F9GaTY0n;<{4kl2k(@?;#MP=setBa+i ztaegoOP$ODZI{T3X{4AzJR}vQNjO@tL~;&aM89F+|l_IZGaf>CUcMt?MXPj(oJELWY?QL8}iKMMqL zT*aPc)~A2QiIj$_$-z#LX!@4pF(;UfBP1CC6xf(U0;>Vtg14N#^|$xQD`4UVk_iXF z>w+-awWt`NZU%(n<3K}u18>z!=Z{AK^~wWW)C`_QEdh^Xyc(ITW4vciHMX2;{{S56 zdcdU`plOAxupf%XkR3aAWP!{}H1QQxRZS=p4I?YnOZ163Bxi%73j@&VKBz>2%uK}o z!pIF*)YQoNiY=8y5?9c&j(_e9l`Op|bzVvX1&ST~iMD|tiefqP2`$tC#2#5a5^U}d zE#%1Q&&8Q|RlW|4t1XB;Ayo`+5^Y$b1ETg8Wz39#NIvQ^!sEbOJUC#nsKZ5G#$+l@ zkPD4C&h3SHy;?hL$-=yOF;xw^5y)p1(WJZ@R zt)P(ZnvqvZ1ZBKm4T?W8fp#jzdhrGIDyWHIaB1}&17Z?f@EZ!Nk=YF^jt zaAanKIOaK#i-&#pNvjqh}eIrDm^-z?*sy1AuM zM5+-oj9r=NV2~LlNlpK8cBWmz)5dXE;Y43JlAeP&QszA^JngQFFZ>~n z)p3NswH|Ir2CnNDz(=e@8Lz7p2xcSPi8>64ya{KUfiVu2fUo`L-+@GT!qh8{rPO(& z69`yFlP2MMi$C2fLvGLoV_}%UmU{QUpl&#v`C}8~3v(rPo+`IDaMfq8FY!|7`>KK~)e|A5G;S?%r0v#-9=AAGXJchEO=8tn-_k+Y=| zx`~#w`Xqqa&KRkteZ+U{V;3rW?BJ#VjOxPx%)-aA4nfy!Q7-`_+oiC$q7e08P9lyP zeGEE7fv)`JmDy6sY-mxXK!mh?_7-WoMiNZ+ZiGir1HZ!x346Gq?-sE??+k9@BhF>8 zB_pgJ9`b|+YtnJRW*c11`~g;mLqSVIO6yT2=?Sz743n*Xc%{_&n3Gs90ONHsk9_EG%EcDR(E+u*5_PDXx+t88LUZl0LdiQ^qyy<21naox3U`IB6|Q zkOuz__0_whda0dg;K;6uEx=HTQK}#8>V~Ek=<=T(6D8xlquVk z?C3%ya74IeQODZ`PGLDV9GN1vmP}pbHQgm@aInl8iZ|0R;R|;)5tM5pv&PY25iN^i z2RSW>htpS}tcKOK@0y+!;Li~hG7yT1Y>NVw8o#*Kzl*35 z$`)kb{eem~BhCj!G^-W&Io)g};*J_j=txCcazCP*>$hjUCy91Y0> zF!WfoWy1Gw~;rb?b`oi#*Skb F{sWGK?oI#z literal 26035 zcmagG2Ut_fw>BP%qM{(6f*_z&3y6r)i-nGWjb0T9(xnCnp&k{GE-iFL1f=&8s!Ee4 zNDB}^TBxBWfrRo+^qg~l-@V`c|9Ku|Cwpf0nwhoU^{zE*6Y@|?<)_)Te3|HoXmSGU=l*({#1oKkKseDtBDg*III zRR&Ybj;62Kqeg!wi_j2E@Ci194}G*@Y%PH~XZX$UQY~t%Ss7F&^sYt9h}k2b!Jfs- zoLs}sICCYqj`=|6akw|Gy;8&DoJ`Q6Q$aOK7;u<=smziLzWcceLsz=&$As z^?=PXh9nzA7SBjUC87terthCZp`G;O_FG%gzKO{Fmah3^gZId@NVK{be6mY93H|6c zf!k=#Cq%tqICrMLT)gZORJ^52Jjoyz=^#;N5Y5&w;Xhnx_(`0PfeB4add2A<%m;-Y z9jBEvZ-Pwu-8;3^^i*qIF08Poxhn}Gp-9NZ%M5lk9I0b;qiuks(N$8@(M%qBP2Cxg z;?Mmkh;j++m(ak zdWw(3V&tL+Jh-BcgdMpKDHJPvk27V5KBUV~Ys!Lpq@a59N>+U`IBrnwJW8?P7Es-O zjUoppaqtS;ouD zf(sR7>u(6$7Q}MmlDH%P zvVVs}JclwS8*GspJUG+Bh3LMa#UYpZc6_Hpd`%<2jV<6h$M^H<>7A;$Xhx|TVZ_Pd z2irWNLNH>UKQf%@PMqEPX)z85C`VU*Qx`N5y%>!!Oh$8e+bhk&Q>>wS0+MF*Vq`Nh zGLMT1?nW77_sVBlaxxObE@fSUED$Yg>&{1TIv;-Pns{q`*aEF=>cWYZor53d2Cv8f z-FqC1Qg=kx-_#Od#2Dq1*o)@U z%?>k-EXIQ9rrCD<#`R{RWXP2C!qK`jH5C^upyz3Y;~IIZW$?7?)Xi9O3{vhiwgPB_ zw+tlHpY^!m_sL6l^FAZP1*&@@BEFGmn^%dG)J{oATv*4!SB%cnr;m$I^Jz1T>sVpz zGngf%dk((xl8FT+6TEZWcivrHj^x{!(K+E$|DDvJ6H(L9TI0)PaA+Bhr=xM0`Q}Dl z%;K4uwzm5+gF2DZdJM)>wBLJmnJY9O#n*Gd`MF_IZja%Ua*yAwmzuMa3L#sZsmf7L zrEXNVN*$arXyjs3j$*6In{jVbjzF^Qn$EBz_5S3PGu?=TKs)$4K6hQknu-;>+M7i^bqPhX(HNP!#_f2sEY4Jhug)fRy$*E zgF}%Foxt8{g5;X>(u7aX)vMt;_ZaUeDP?(FVhbzbi`nrh_)aq7^?T~ejZIwOe&29= zNTzuzfEVW4ReW`sB%pr!m?7qS@Vl_p`TD)&469r(IilaSO;X#S{-LMkK4V_~TLC!s zc0ch(oJogir|RRIS*@^J3Xip8S1K;P(7c)#v;CCXjHz4_A=k4UQBdmi!No>y`cTty zl9jmW8f+@~mALLncOqwln>xcLu9trTTYN#^)B-czj@7${KH?abV&@j;-m5sYFWYm_ zXD3(HO481azEJjh%9W<6Yn0i? z(N4}+q3uev)!_2(Z2RWEBw3rc+V^>v(7OyJZ;l(^0(Y-j9I0l#OcfDMzOM8*igY3P z`k`KN%9BH1 z?Z%7d0FC1Zo z!rBcDi#3@Cp8Lpq{9xg*K%TCad^E7(MX$>971bNm1OfAMBqy$e+p7M0>7HRsFG`RZ zZzEJ>VKmtIq;J{HBn6RIsBpPQw8Ho3c>Q>n_^>`EAY-tSzS#j5y`N?XkR}Z2en~Y7 za^QGdpoCv_JL4J6Z3eaCgCFfT`?$xXm83s23aVa+bR}}5$VC`LBHd3nKJ{BOE<~Qd zgI6X2uDp4f1wOrPXunS=vj^)cq+5Xu+ixH<-76`t8#6Jjgd@#&qBxE#D;;)Xs#Xqi z{=$x`|Dbc>zx#Znz_P`lrM&$nsxUg69J1i<{UUJH#BN0oKM9288FuVGhg~>G$9>Wn z9LEr5PX+&Vwa-OTTviGA>tRA)rkJnbi z`R|&EA2WOxbJb<}fHUymb%?S_+ecC?PxM%mMnDk~Eit{~0=3*#i*xVuBZib65_9|1 zS8*}{UQN!?LwaC2DK3&FwR80xtnrE|Rhob*gX3qcR5EpA)szk69ecxwv15*L;bU(- zC78!cSI?^9K46`+Zd4f~$V)BNWVgVGodihGv7@iU3To1kc=0k_XDud&mMi(CPM?tY zTV;-?!n0ok6vbbEPx#4aTQc>?*5G)h3Dq`V_5S{xX=_}&18r5y+RZYV8O`(0p_r}} zr73v$nfo^Z-VzR9KuZ*bZ%WM6>kvZNISeLDZhMK9#nb+*`nF{qXz2^o=&5Ta()~u6 z+^%+*>g54zZN68D24;b~Um9K#4Nz#jRG_b|f<)OfF6$5D?DN#w5ZA61;lTLnJf6-h0`18R;1KimkIva3j-rOnt(|OW_hW8&3XZT`Ttk zqmyL$br;tySkebAw|=7p_UP;umx2V5nv zA<6o5m!4Ek-$a%wGlkO$_vzMK!>Zn)ut{hcTEr-c>7?yQsspXx#Y4zm%2ddStpJ4@ z@=krIRV&Ut`Osb9kvIyeL8h9F^9|( zC?D~P_Ggy#2-^eg%x zt4OY2t(SOQAUDhYdZG!IGkSKXMI>-;Aou<2OFTS-HvX@{sH*HwN(I4CF|DzGKZPGo z8QSIn%`HVfDO`=<$}vFE8NjzO7qBTT9<)3>%x?fwRCVzo7(4{GvU04n6=N*gqs()? z0DpfR3h?c}vH1UMR_qy1J5 zP~wwjL0R)4WKg@JPPpfyh~izCEc6?BMww00PlxfS z*r&0@xi49);;f#%`7@UeQ`Jue$W{Z9^p^fr4KVH>0qdi-7k&i6wd)h^-();4bLMvt zvQ)+z^L31?M@O#kgv`n4S+AX6#k{APq9tQjUVY4|3wCH3Tj>8x-<>SZD03mY9yT5F zXC@2cj;hf7)aKno+4L;0r7}UA=~P%Cc>Wb7VfZDf%9)b!VX{0!x9qKzhl(*X2jrkR zDePYyZ-RrLW?G8yy{V82<3`M=JbME+hsQ>%%K83deO*;Y)9d_a`Tt`c(86T3#*lse zv?^IJ&Y$RszQZ{+Vy5{g_eZ`e!!@~yCk>rz&>3FjKer|8t^m{a8%TgqQ#Kzc*zCDTl>dG}=qRstw@Nj!lVPgQR z-LeGQ!qbrC2l>8-DnzmQPSFxlFp_s?tgf+T=}=<-u-zbvC696c<>f>Dok;zC3GThu ze%DFX`3HHqjnjktMXgI!+BKc-ym{BAyBz!bJ1By`Pk zJ+`^7YEus45sNbi*FM#x`;f|WPFCQ$OJ9b@U-MNmo2=E1vY~Ejb4-u>$+Vk^+TuRc zO+a}l*S!)5hNjKBIm)${(L7bLiDJJOVL%9S$wGW`(E4LghwrR%3Jns;tc!$Avs;fWJXba@IC!B#F~ zsG8u{CN04AnfSBR>x9s%^Pp$e*(^w1&7LOc`9R6)2;^P7<}~3-Rh#@+h=#x>Sc=fW z!&yC2KsZ?pR|^ z{xSa(MaP!r?$(cY8kiNQO>a(Tn4TZd_#Q+w(>2g7Ff}w_AK*>bR#Q4o>1=3VSipry zb5`?u80kCFGS@O#$r{I6(qJxkmTNEO>Q(xsIMd^Io_SpYjc0I>GqJ3+?t!G9{?x&x zU8~&^vz)$Fum~+nyIH&Tm&Z@%tzE`6zYa9P*Y(%g4v$8}aH`c4;yFi+htmq>%qPv@ zr21?-k*kA6^~L(zGzm+kWn~D$3Od~5pwSNxZZ*iUtyY?yZyIV3SL<}EM<++?KY$`hh9z z|E3{w1Rxy+k?+Nzg%S(ummZAqkSnrzB56q*kzd2_D=L0|^oc3vZG$h9^#$LftA^$D zf1_Y+I7duiDRumu@LRbR1AsFhMK7c2JM1*fW?pwlyh!_ZLd^AuE0_z#^Zp#T26{fpe$5#W z9Q^H%l0@H%f83FVPIk|<&Tjk9$T_4zG_qT)4Amu+S@N7! zYHEK``}ZQo+@y3n(naOV&_#VfEkxr;2Td}__D;i6O`XkPy+P%9;xa84}&pn$RQ{gMTBF|yc8x*N=FZ3bl++mEE>lz6c{gc#dF3zj7Zv!dt9`V<+PFq~}cxd$#qG=SJJ zp|w9MmeQr1H)xo{#py^?!{u*qw$o}A%*eh`j_3WtSrcX;Z7vi?J5<*`4`Z#ZhOKf&EzG|D@?hcbn0{u}`{P=dDkwU^TC4pY}M1Ro-Ignk<*uZ|(%gD`BB#Xhod(lpZb z6vUTGh_*0v4^H=kRi7PgJ;SARg(qa6Q1xfbs~rYccEp+a&&bo*0lTo(|`oU;jZN*(9$2Lm|&n=1R#W^GUrvdHlB|nAWp^{jQY# zA#wx%i&-KlT_U6e{()LxoSDk6{un1Pa`0pG0GKXcTT{Rv-1=?#Z_oYRY{c-+b5eA4=)QLBXNl3GnFI>iMMKI^5@A%%m1EnD;dTWXq=?cK!j2|4!5KzX|;W z@ynl9U`ibusLB7Av~vk`zrDb3(r%At{zKva7nTl4AebQ9`putdg9Lrd%mn<8C_jK; zK=Xd5?PF%X&;Kw=-+bue@R=tGyM;f4pDX4>plGIf3B^{WW%4e{r@={ z$khXTRakrVKlZ9>{O_s#p6Ho#NB{PHprP-2khzq*Z4QVLRNZa=x6=j@S}7?hODn6s zk7_I+m}>9nI4;9SQKlzX;#QF8Ur_PUuAwA@5ae7E`YUwkeE@d10a?#3)iBbfn}qi3 zS_y0ot#5E~abc5udGVTVeiO!^H4t!`}sL`BUKh>hj^qaVptWT+ouFimN%x4{FIi4682M zLumcV!{cr*i7}YeypouD0nMb-Yhn^&SFc@rci_!K?wapzE_KDeoH@-T1zEk0)(9D^ zj@GT;@;9CeVNZU;RNim$8|-ydGUSSLY(LOV;pqL9?p({zWd1V2i>YU?n8DqE@v7ou&q5iX7KfnfC!xGg6Zt@@)B7KTJ*E*%w*~b_XG^axoYr*nexDh0T@gsi*CF?Nx(<$Z zQO#5730#_x8*23PQx0cW${V^n^BhH>6SW<M}p^N(#6d_x_4sn@qPWLUH-OCyr+-QlfNr&Ch&r zH4Er4WDUYi-NrnAAa~A_)$@XHxR`Ku>%4hQsuz9vHkl0(!0TTa0mn#p6wBud z5rM0H_%RqPMzyi7ugQ37^y>a$!_6|g|AX(J?U)iPr4S z|FIu1g|`tYngfC&(jz>N(i?KN{O6m<&PTnUCZXx>6saO>t=|i@z2xqF4Bi{8CoVt%W?+RTL#z(a-i+0PRZ5g2ta3r!$7^ zLGDAss@1|kuked!_ER8!# z#VOLa2W|k5C~d`l>B{Bfq?NN2=nW3O#lsJXa-G;hSwglvB^A>jOyR+H<-MjH0P_L< zwo=js=lkU0n)tI69y!woNa;!#0sXeCO0aYig-!bhWnWzs6nwKGBFoqm#2EH*Y`C_+ z(eE%SlNqh?ZzdaMIO12M{i&q5)3C&CbsY?BfAnZb1A=%%HJd_7N!Swy{rrROFHGao1p| z278ROdc1ICfrt?*K4wm5$!_SOA^#O2llr9os~r}LpLJq&y~6wBu3a&yu+>AfoKV** zLhJN)XW4fbdUtHj#TJ;L@*3==td@s#az!%j_emyrevQjx#n1E*8_&Os+lLLlWflHl zZxKiOq7>^iO6!lJ!wVY)dRtjNoUFZ_qxX~+?=TkVZD4@+wz<+m&-$nYAp?o)^ENeo zD01cal8gr}etJ41EuDMdZ77H{12atZRX4sUJw2zmbmYigx&9MIC9c*FMXsJ$+TFcd zUoDxlHo`QZ5oqInb#pV&+vY~SRtsVEjEM1HDob-?l}GTKn@jjmb6m@2fl<(JAximk zR1Si48*Es>(_7@nO2av>m_E&Fc*e{BmQ^p;DZ_HH-vp0ezG6^muZIvRs{bAnGXkfh z#{33X@B4Hx zUJo7Ao7mJa^X|whA%!L%-6_3R6gucygqlb=EN4hk^ZTb3z%RdHFMD5(Si5Y2x6(6S zyms_t@L+mp#!Xihy=NAm-+6j7uZ)94- zF4B4&Q!gvhOSxs#8sQEjmTD&ZP;R;JdBR{KCa59Gtua$yGzO!go4>v*=S?Dnuz&$Q zH=d_YW@cmeu?jex=`Fv8-nG7;u)6(96pGcCfTVodn)I8*VCWCXW|Wp|DWYF77+6o@ zuPylYcHrT`Fb1=gt%V0edjGW$?rbBovtvVW~TBkrPYU=b__;B ze&a8SOxHR)F&M>OQvq?%_X&kltfTCVs(+2R#>0&w2{Eha$}5T_SSnrom@lqYiJG$ zM{p1h)z#QGta$NjrZpUh@}P+ykN&JT+^w05iRTG;Ziq7FaH%g&_O}fB{-@kv);M(PXWT1O) zAmKXw5tb5GMjrsbnS`wto+(rD1Ustd0y8pw6qo;(M%q{rX!GIlrX=6MTIg z;k&jxx>H+PN_V&dq?>e|X6>{aiEgVcOILhXZ-2t@!`%sJu`7daT!D-X?!I#la3*6xM3O5C#s8U8lAE^)Lv}l-=nt*^kV6v z4))1nb6?Mg`I6KQuzqi@_PyI)r{v*J>#3<7zou9C5j>MZf9t$lyM$JXLGa-M16wyz zVnIi_YgFZk*VcP~=ndCNjtbR#!S=)ZZ|0 zE{xZ>f;3O?Ku1@5dwcMH&uFdtH4~HvCePLOmZNH|C2c1|_icRm$B^@4ficfFx3+AC z3r#3_{9F1ckJa|bu#XcQNl&Htgd08BAi@lCw?L99#&Y3@Ir2GzaP{g{pmknYFNLu){{*eI{ZAF4g2MLn}9Hy6D&~b?^33~=9W(uXZ2D!L?fy4_b zx@Rc?8V^r+b_0SisyIJp*Ip?OXZuNYDbqFER)Z4ov_71SukSoQKbB|UBQbVe!=rfd zqrL0;cuVPO^6zPL`AUM&om`XqB>Oq^B)5FsL>u`3f|!ME=&8p+BtdxP8ztt;mrruB zo9OF5ZcF1Khp=d$4E@L__OEXZht16F$fFf@H8T-1JM$8aYJedZ7*>1$`?9_G^9^dP0RX1gK7P2ZCn4t> zJhe98up$&BNPtM;5xxrkbMx~q}!Qwbt%|1cm&D!fNwJ(P9&-VgqATj>(et|<=TwEBJ zob)gF!Dgq(;?HbGAk5s(OeD5;xiHhBEy8}hI@+KN3XXdiU(QCWxC}f}8I&f(Xk7pG zjrNdAz1$a;h9DS#$U{`DHSGLX1QDZB22HwKfFKi2p1;Y5tIW^OM{qm{?bl(B3G3ku zvdU%vdD0j@;v~0F+)7sdeFmw&3QbS~56)1=fspXaZGRnS`Esn}k+IK4%YzijXs@k# z=W*vYoiTB*O-tQE|OU1H;5w^c%J+rV8q&Vh`v0y>_G(N}z<)BK?__6xvNwy{+7xI?P;|jc$l~ow0O#DPWe5>2ZSM1jYWxWbfxakp#$Sj>a-EybN zw6b3L+1wjdlfLlr zRkK6V@FKbl%hfV?+No~iXr5lte4E07sKlg?*y+Q4MNk^FKHPW^_ftzIoUl6f^Rv#i z2zk;AM=+o<0D5LC{Cs(+U?!n)kKe$+pk!^mwDY<}Pl{B9 zX;pc7tO_?G_MNsol7Uk?3W-z${4v4U<@lPS(IKz=-uivY&i#7Bt@ZYtu;liS`%?IU zC+9_3$p+?bo2a~?K<^<}Cs8dln?0c4Rp+}pBi(MbTV>t*v1)*qD)M!+uGq_8RP z*1caN4&`Um)Jv_QXehx*jGTwWSU|)5=GL$u5QNZBK#|!-YC|_)$S!3F;DLnjI zQC$q!f;PFzC)wt$e<{5^cYDYEoy|bbqdPyi*NrAg=P2S8R82f@2|Zgu5Ed4m`$8`= zJD=89ZRtJ`N^4pwsys)!dw=!68b+V(StENEPdVXywt?wFv)b>J~uqZhyXRL z=ev+8un8~O{q3K4>E5vOVv^v>3-qjB|3Y7bA2RA_Z>PYa&)!B`1z~b{P3#hE(t%2g z>VRrI#hiR2@f+vaDl#Vf#DqRZ1^-ecxyPzI)_tTUuS2h z#WJ=#8LOErj<<-EtDIP?(N33V*qLs5yZ?&S^kq|9Bscfi0cvu;hbmp%A*penFvhUs zK5U}5dI2m)HjQulr8hh4zrOD86DNsvb#<5q9Jq`1H*@LWmj{?tZPgrj1nU#F`xYxFfWHa2!Ja&|6p8m|`BwEl-D+eIFNvzdI9{D<>mdFAY#U4bT|QD zlbZVa`qbNky!`xaE;(<>DHcJk{BxaO85J&|JSO35^&cC0G5ZX8ClXgfTxt|Kp35|~ zt5U=6rZ`|BanYq$W6t=V$xWc1{Jgve7_ST(wODH=ImI|mGzSTmcKJ+8r$#k`JZT|w zN+Fq7xf%s`bS#vx>Hp@`unUC|t2-uu@bms=&Mjx1dlj6g73uau1k-Z#WP|7!J(~1D zX6;%}S65f{@j+m=zwQXtG+N>63w*W4Z> z&jy+EHaA^>V%JyM4t^ibH+X`r$?TYjx^&;x!KlJEj%K33NJ2zdxS(P`$*$13Dc$eD z3kK`$>~w7c5ub_h`%u9oT4Cer;vP1Z5CM3I`Zh}F%9V|-t_My(KZQG?OS6W&a5dO8 zTLnhk#yiTsN=;d(I4c*p#wH|?AE|K0-9V2e6Omz-MefzL#C-|ZoRH^f&|yc|TIa=2X-Y%MKzOK|K;cFLEH zHtybqzRcYG{IKxNag6Zzi}a6mb+WG+xlQvF$t%M8#Tlc{KeM&5pYsZ*gLxw|fPR!* z5#@rfh(dowRjVc_il*7-93H*Y210Wi@ zhWq|qJq?bNq9ApzFQIIN6u~LeUu32*RA|z(5}R0ph@juuiJnYt2}%5tiU1@ z!KW=Xcjo9Rc5oJ3|7~e7Z<*6cC&ahs!xK8Nb5UQu+|!c$MJw&GqK_r3&I12Pl>tDa zqVl%GXzZHbA-Q5ma0`J8C-K2C0ovpBAC}a`?2c^nw`Z(*5Cg9!`!U*6^{75hvEc_f z9KDI-E?5PHEjM+-GLua)mt3F=gk8#o4~ZPie)PSo%W}3o`jXPqDxk2%&s$DRc+Q*x zoa;WwBuFlPe8-GywCX$uneZh$D2K5<0{g|iI$k5@(FOPv#U*(HV!1e&#|oIqHR1$Z zgkr?|&H1Bmt}kT-F@$p5ciVocq@*;yiudZp^|uh<1$8J3(zIa9$~JT#e7FompO`uynt~XgXtHgUy`+ z#Ino6`!_>|2?+^wcR-Xd!^L94jnMQ@F!c_3_Vx9nr%%5XKl>`VoL{yukjnx*rZ9)N zeefy_ZIvKu)6b_Ry~qc+TsPR+ZYGrrcRf7BofJCV48u-jHUQfFdd+|~1)eoFC^cta5BPC)ARx&PcZ?)SM9hrj+ z{GD(H8F^8$TG(1o&ZA7`i1i0YC~^RX{`^PA-F$~Ry-hdPA1+-Gy?=#AMqbLwS{Y9oPekUUo4m`Ew@J}fUEASw($tuC*9EX43Lrxiw z*~RSiPr!BCkCumsH16H(=sWr$WPG;cot-AzIMBz7Y_!F;gICSzCzDmIwf+Z0CTfjZ31PCG&SQ*~e%m_H@-=_qOAGIBszS@Hk;q-p2*L+u85 zAw%3@R1q-v)T)=u{on-0u*&h&kIPkKnNMcR?S>jz!<@jf;_ezTRsX+>v62fxr41mIU5(9`Myn0tL>&H{lr>DM?^2^3wrXtC8d z9rYyL(n3PykgkFl zs=)P-iB~x)Ihg}C1}NkgJu`$7;LkflRSj|DcLD&Veqw5>b$GDv1<2Y=e2GQdbEqsJ z4`4g`0kLtcnL7t0XS?;{VZqpJR#uk%=+j2)Qf}X!UlcP1dEd>K;aF2YK+M9p7198; zU(e*;Kjsf8&qfQY*?_e6-MdsWFx*EF0s<|EtONf1P4i-A0rWOXX(c=?>?Ams(f0L~ z2Y}*K;Q&B=4uC@z2-%F`s}(3Y?X`*e#lB3y71yc2jBG0$B7s4Sx1Gjy5^H4eUV*J{ z8I4GjMVtstBKldAQuJztb^pl=+IwS-bmfki+Llz-Two%X6nS~*O2Oyb3$WgujTtEb z6V-tId2RQpNX^AQkzB|K(y#Zv4QearIz<{S0U^EMv)&A$C_IJgztfTq0pF+0cPEP> zNN)4J>DrCH`<}vojU6D7NIcgCs&x?byaJ)5YrmRcbZV+*!gZ7O&dwQt=g+`kx9o<( z8o}wsv+ZhcB8ImE-j zd=n}B-y%ZlHO20LLo5YWJ>k79e6Z7|FhuU)>I*^o?Jt{c4H-FsM|XeL$@AQuORxcH z1wdg#_EnyNSU$zAU+n_eCLi+Ho*{&Nvd|9VV|R%Gwi=yilaHM z^T{+<;K3JIva5mc8)wP`&DL+bglI`K@mg=_L(+Y3AE%&V#QLyEqZm^=bRB883 zjq5evthJ+-+zn>p-RlzT-TulT(;PTP(`?)9*AUqS+q4RF zsJzM%GYar}xs4N+!pJFIJ}T>vVoCL;oDtwh{lJ}rUNfk&~pBiyr4zW-|zM8#^qK**=F{ z(b7szA)2Y|&@&YvhR)DU7iEgxS3>x`0k4_CdLya|03mfIzUf+Vm{OlI4~(yGtRa7< zeRBp98MSk6jjF)!@StvMuPh7!zgl&;eU;xkhU=daxd?B5aJDDUnrPIESVPYQGn{^P zw)xH+PZ6f~zGdSX0{Lh^zF-;?_(4?Et4*fvAMy7 z&>zq?ltPz{0aP#74SG+i;6vHdHc_doLD+NWxCe@{te^-W_?9Bz7#mHI{%g##Jgb`K zLhDYjB01sm0gW+nPO2A~;NUO32Qwp2exk@1H)!o$N6K;ae~mJuxp3knHI#;xMucX$ zYvq}kjOdl<3+731c}Ta9b$fL1$132Y9)sKpr9S+WuCA^!@Q*~2ES^1l8MjM0mxj~G z1t^@BeKaF(9)U#ILaUGl*!qYC$Rk}YK6utyrQg}LqB`c-Ge1FA#bafJ>Gx2TAeSed zZe+rJD$TnE!&*Z&xg!yXooToS-eEbSZviUJD!4q#Wl#ElI62oABOnc9P!C-kDd7bQ zX8{67;3EZAE5SLU#Y>pFh6cLMOAOqhBnaV%p4TUT@4wm@be&}8#Gn<*j4116mvA6TAw9j;9o^{!-a0E zqZPPRCB^;+K~6JC1~OvgSIBPKd74AU7gVwg+b%@0m0&jFyGfQ@1oM1$44v~TFmz}~@>jO`;TS%vBWVGe* zXQ0Z-;tn7&E~c4u>pcLE5_w3{ZM)AopD|61FsOg|LRh zp!86Z6jy{n!6H!(up;yiizTut`%GO&%+kiItVi;!r+%o~kPJ?viG;ac43J%#yuz8o zp4V&ow0v#i5*_T>{_D~1Iv#TB3zfs%Ctt(vDbD(rqvYYI(w-W`bb@lyOO%s*c8y%i z-Yy1-vOZ|#P?tL8HD@mIG6uYCLlM$T?mJWXzUfluK=D<|am8h;PfDU?nf~XSnw#=y zdq?)Kzm$0i-p!fE87)a_UcbT9Tsafa=`Vso=sXUbxUXaVW1`%P7r^oM+N8p_U`pAU zN!Ei>I$5=-1+x|;z{i0ga9 zRKorV%kLI$fAS2Ozzw}!kvQ1S{*mD`^EUAd&m7{WUMY<4o=E5+3>;tMKmMB|JLV5wWr~fvCoje`*1sLt=eW z-79WW`b(lWcu&em6Q&tg5APU^@&5hNjQ;2H6{_)j>(%8d-7EIyR4-37U+{VBkFr~7 zyjWUJi_If8h23zw^0HyeN_5qi&4Z6eZF6k$XeWH_lmr74Q?3BNA>rasZNjNAe$`DJ zZ3HzJl~zHUtFuK{KF!M`S8mcA-wf~8{N z7jDcy7AM^BIVY+#RLcJHl`Qy3GsTET)sgY_G@5s_-+6ub8WdaAapLcicFKugO_P+f zk>AsuI=2@)UA*%yI^LJ5tw$`88U6Af#;H!DXe@4f*h1Bm-`h`K6 z@BG1T?>{x9tTEGCf}2$l#3yLouVTM_KB$ma%cjPT^wQfHu~Vk*GHmisrRXK8k$Gp| zs>Yx3g|v*M)9Bvrl=J^oV&2>Q{-Imwx?xZ3+!(0$r%09vB+Gx%AM{MA@wr{uzc2NG zw}M;@$>MGk=oky5?Cl_V(AH8R8`Qw3jPfVYN3wM~b1v<-n}NR?u=DHBqrttpx)&U& zp%R-drJTke(0Y8FVH~XgKD)GXQFO0xL3}froBi)M7eK+$?0`o>4b)mgw_v1s-LLm; zf#0vpvwI$tcS2US=k{<4;Go}H!MK%sV(+T%;WAlccWdnJbG+b$(U;7%>k)(82$-mL zT@|11;g%7-7ik~Vpn#^Kpv$?uL(rQ|2H}-|Fs8QU1;#BQfk(`&mFc!F5g+UY`gNI} z&6~s*)$A?58!RCm*6m3h9{4!q`?hJMZ={P1Q9U$RJn6OZWMa=n4#Gco_V=|(F_r(9 zewWvEJ6E2tI?|e}IG?|7x)*EnR)VIuAS3pYi0}8VtmcAsP_#v9e~^qi>yP(ppH`TV6DE&?ywpshP9M^ zXL-|lUV3~B(P&Cs?pbrh!U~ODd!2A6&J0$Tyl}o`^gWqs!~paCL(40^&xR1yrxnHE zTbVo~suAOfZ{XXN0y`S>`!>99&#^up{lU;QI(_t<@b!qyX@=J{JQf8{UN@Qg6=)P7~rc9`e&-f5Von20hyrccvr{a&%JzU(wRba5;Hg^Y; zGx4|je_~nnt#h0|i z=twP(J1crAn^26fYPnOl)PdpC)noWpB-ikk^N0@3MySH7qw&KSD^gx4jCZyRYWz|AsrnV@?x1<_W%09I zH+aCp3p}fq9?p^S0PEz&)3rV-yt`hrGaNd@C>0rNUy&vaRP_^nl4T)R1o3v^H36k26n8HaEaGA%k(~Re1V=_;S(y z(4G8-?1qF}O9*W;FiO=zV*SIXD@RI8@O-}gJ}mr7D`ih|Mh3s7;d85fRDh=QJTb1V z518)Gt$G>jn3wITv46+7E-S6yVbPg0YmEKq^oQ_@*tHkq5);VUCpNt#_NyLQ(?FP< z@prYZHp8Q~pWi;-=m`YBp1=fFJ?le9W6EXXboEZHxLt_S*HJS;Mv}>#Av$pbdON9F ze(90#WZqAt`7-BSwaMQEmyX;LI^^o?vdC|rzXzl~hN*~vw&erl)W>=#&^EWHk_)t@ z^LWfDEbr(4#-dfG6YeJ1wqoP4@E{XfrR zT68g5&vp3gF}{LBY%K^m`Tx_{mB&NXzI{WegcJ!e&qL8>9mUKrQz%bai>PebhLCNt zWLH@tM4M%XkgcSJtYLbxW@co0l6@Eq8Cw`*8}B{R^Xq+o|Ge|h`FzefbKlo}-PiTK zmUFJ_xaYgcynT_x8drF~;tiGa^Y(Fkg^KTaS6cG8?t7;qE;VVNZ%um4%UFwVS01cz zn_lW97X58H_@b|a%~;-ifN%ig;(P(d`B4RIOJ*9Zesn7MYP^4n^$0rVl!5&_KRCWA zxndcEW{oO-8v9dPMPO>i-O{R9wCPANa8PWC69pWm^mDro?%}mQtE1C^GoyBjR8FpeB5gPu(DN2nyUK_Y@@PVmw8!q8 zoDfhFjmrZ6cp=uI?$(fTUERfH+!O%I!3H35cHoVGd((O;8q~Tk1#GYEe!(|BhqES7 z^AaPw^R6~qcP@-SJ|(N>woO(!(@Rb1*iD4A40sxy2?JyA0;70;uA+J07{uzM=O1R8 z2sOt;SxWzs-+tnT!h1Puy}^-ga1GGE-{h@m(*Xa84@`oY3*%&j;hBTTqM9B-zzdU` z;%X0?NonEd^qu87o1CxQ$LY*fA^R-ZD2ud1T3-Iy`la_)cVeUAOy{HV1& zCjDIFZ~GFc*7=6M)LU?*{RI2dDMWx&LsY~LP`bL6Ud^UDPK^W6MDw@xDBB$^Vfdc&LbClnw*@!l%r z*7z>4lUyQ!;l$t>i{-x;9Q9N4Y#!{{YqJsX?kV0huJ=;!Gi&sO9!j4KeTp8^u$y@njJM@LP_MUlZNV2!%y5h_#%|1O`* zVm2p|I})pnE3any$}QZC+`6US`f#9iWCou9eXq8YbdqGo+H)uvE^l1b{jeO4+kE|M z7yVq&S_k?kgN?z&3u+&cXdwh&BK^9@5*0+=KqaMDzg+J#MxfT&Ku;F);jliu6|WRI z(Gc;lyl|Ck`(}M9*@T&QEbhq3@x7EAP(geITemIA!hrC%aN0&P7Di0|mne<%nimr?*J=~u5>7dmY1+d%MGIEC0v$~54keILx z!PIrhXZ%cDiUBg3w7z|u0|hJp!sSU`ynnp+cy|?NNX2fKy_qneVG{1MccP<59$CWQ z`CU-89>z@?Wenk5m5a^i>M0e3SnV62dzQe5z5WOC)rw=oiXps(Tu%fBLXBC3X4na;%ZZzFwS@8Uk_MeI=5U&?lwEo^ zw$n>#Lk4Vnb9&EJG>Y-<&8_I@CY1NEs)CZHxEjAQ8XnvLDTT?24{j%NE5w#+3i@yN z=bbG{G5B2aE~VcM!;LXBHZj3ID1c@$0uEo98caO4hqud;x~U+53P-&ktNI+MQCwgH zyo-+Og#<|*CWwZZJ6-LDFX_?xIB9*iK>=`rdv5))AvNgj%2{49;3FNZ@y_|CCsmP# zs#_abXy9^_gV(mhm#(htqTxQF+qu_dto}w!94Mc@knD4HOSHX5Q>#Z@503FGZxEe> zo>`bb>=k=)*e$w2_ke?SHm#}Kv!Q-V!do881nOna9m13v8De~eJt1EN3N;A6X2Z}9 z6~E}lk`J2VGh(NUy4%cXHYr~h&5fdfR0%bw;tn%#*s8EY%(SDdu4mnYT)7ZI1g$3t z^l6gEFrJ+5z0MoLr4Om`z&t5kLxxF&SyK|}p|Q3{uW$=m^7vF~v2~|x;QJp%YI4l}&jN;pO+!MSf zC9`3tef{N~?Q+EqB1kBlAXjjwjE&YMYVKFBEaUL!uo>y+!NrF*PF3)( zT3gaAVY6ifJacI%M5z3LKX>`UwVl<<%2WH*7qvtJ_COCE+B7XmFkOZ>DIePH`YQZ0 zKdY$kh;G6FE&BfB-yK|!XqiB&;l$+ZmrKUA$eXfTD5rI6zG61wkS9?L$TT2of6HSU zJq~T+^f7Hv0>KAP-Gc*w%*okVisr>@R|{NbEBnYz2gOJ4PP}1uc+R(Y4qwSE780xI zb?3u}M@Kt6vr~LzLXHZ(yt6U=7RB+*!1khY>0fr%I6fKT5#Tp|T<4ur;DXEd<@ujD z0}$vumiti=L(mLmhZ%R%IXeyAXiHecX|ipngsRpN#k)~xLHkBxsnnHiNwUJdGarN zsRf^sX7-#+4$$8ucWwSZaD|ft#FZCGE>t90DId#_&eHW$}o^7-pAJ^2h zP796PbavP_@q^wFGHw%Ym;b}v`r|;DyBBHb)j1LKyChJo&B$~GYd=Te8@!YI4sgq% zvEOg?G@G+v-Qo;FOkn0K#Fokd#<7R(egCiV-fZy6_Q=jJp7dvJoU%W+MLqDu9*teR zJkRlgDxU1+y{Qx*dH>zz(fhGOzWw)(DSN+TIRmrD~dhwqJxuY;2cY+|qb3^XCa@Sm=@4=XAB2CkrM{^k$a)A!6=v=iP~d zau>cwuMFxRr#%a@y81!r=*j29G5jG{FD@hUdvGx=UsrAj)VZ!X$v)o4#3h}#j_Q#t zDEAlXoH}10Xd@x~I&4L=pnP1!`S6boUvgtyJ!*O;c6eN1w8k1LH>lFyJ4GGa30=Cm zQl6v2PAiCO=2uq9$G8Ud{qvn#ih%l^TrJl;T84{k{Jx5``mGX+d#%hpxI6CiT^EyF7FQ{)&w7wn%X6HYHGJG*e z?L`*2Ki$~)>qY;>MlH{kJ<2)FJxUh8ZvwSGB)%m>-Di`vwv=QbO{2h zGby@SUe?l>Cbj70_cEbOV~9#V3-t)?X`FhG8hBgRC@+E|=V1G=IsRpTO3c!6zan?@qXX;jus&7mwX3VamNp|)AW&+;fN{Nzafg5~ z{O~eKNvJ|*m21TG2KQM`P>alHCyS6Vu^Q4=Uv^4cW$}2Cje3PnCD`;FmH%^q3PI`Egln!8pOOW{!Ry2j0 z1w=qh1wU86+4BIzjGK-$uz^33&2FGQ~dNvVv;;?*LG-av$SB;T9x7_maTL;|?Ln`|r|Gz^6Ec&XbEvFR! zUw4A={pSiLw~qfsW1KP!*-Q*^#f)OUI%3XXd=pYgyYLo8pirDhw}x4`V@Q}WB0ZC< z5L=U?X^&aNe6|&0rRem@cOciBTySvVrKXQrt*%bLzwx zU>Gqe{mvM%B@q|e5UhB^38R>L^Qrs9bCxd0BS~$Bpr|D%tSF_;&1W*;NHv z90tHFB;^N%UxhA@2gUa7U6;aY?|Q6Vn2pkmym_Z#ze;gOxCr3@Wydv%St*M2HSk~( zTcltaS#vu&FDdzMdS zxNF$Muqr&(ru9eH=OY+jK2NAIpjeESn~q!V}`x(lQiICMETD7e+dXO5Bm?ihwW<>Xq;gwVA;vqwPmb%@s2 zdUg^yx)XK`^ki6aNbdiRTb+A0`cGbCD%SARetyDy*ryqe_Ph-X)pfKMEjgB}W2=6#l%n9 z-pPd~D6SpweBT2kWubq7J z4Q~FRG|rF`fB1vX7laLmEEgI}7RhPub}Ots#zrYo$V zpO)i`(zzhv_`_2b1-p^j14q`}-?%e2Gq>8KFObupG$)ufnlvdqv^4)PyY-PUpvaUS zhmXygOWIXyY!PN2Ucl^tdyk`b$7QrADMFoj$!f*TycOi)J5R(C0b`szu8AnD?*>q3Bqt^Hl|}Ok{PtbOzipHp<1Zk>xDIU<8LqpuJOws^Ko> zP+iq@HJ*yP?gvwJ+$1-HBZ@0eas(m5l!1USy_24sx=N&bQsyrt*JNK}4<6i4tZ~I` zxMNzvL+eEY{Bq=TeWk+lH&D^F!b1$M6K&o@sfXaJWh>y(+AXt5uzr zZj@H!D^>BD>T&yAfI#_2xcS4A22&a;gFFM=A3!T~uQ11`UiY57ygtF>yeGNjnOak^ z1QMYb;|sPfxTJ99CI{{c#7=926ISeNa*eHg{hg@ zy!9HN2QT@{`b&(^Z$?N~qPYep83L!k$lX$LQI#Pww|EDPyB3;1ioL^U+i>I!d#HX3 zelUp(Lu(p;$4Q9h@eT2seU9mnpYqCl{5 zedArYH#X&I)?5^fShYK}aegPwvg>rweB$Yry3~|)zS$W9A}G^bvo6bp*5+lWIvv~K zLeuWxUc*FZDqS6WeAqC3So4vuiN%b~kBL1K5os$ow`W2Z)Y5qtj7Qx{hO`9Mj7P;I zmk4B&HZJ7HjA`#v5T!|umKS)zS8+5*2TUJ*zf=3M4G_8S8z23e!QHlH5&`)t%*?^uMN27zmp<2Df4=u5 zbXzU<^8HYe)FNrwKQ`1oMTCZwf=(;1_ z=IOrov_t+GX5d={Q|xa9++aG5Ow|v@1tL7fYQh3}%G=>x_|o{5h0ASCd3 z0o*mk)Ai_w&Y1B&Z=XLFpE8ZLFGTt%5M~_2!vxll%C$T7zqQgVAs_A!UU?6B&D9mf zV!_)R1TF(D^g`B3GR0V`x8zwpAR)-3~pQ$Nx5cWnsSnTWi=U&dSs5K2z)*^v{rQ%etGq z{dxH)JFUll_VwQmMp%j@22&4=X<-9VcG{^s%ekWB$_m}Fjj<174;+vQ_K^P2ziWqh zD3{kJ({ywOW;ajSL^n9zu@g#EQw7#rWjdw%IK`gnmm9KkoJ-+E@!mVKveHT1?1?GG z1cz%W*lCe#JCq>hA?gz6Y8hmrf=aO{vG61DDv2%vLsAOBTYbI6bk$-6Y*Mv&5#vkU z-I8vH8B{IK!I;@$tT1NK`V29{Y3V&S>@hFqxj~~FmUOAL=(;JZ9UnM|kaX^^T%sIC z$=zLy;(;j8Gu>p4nPXesuLWrU+CMuMT&qZg$N6c@4NP)qg znW6@RkTq9fYwY&r*uU-{kU~I&5{-HTW*=Qm#HMo}pT|HvDIR$D&{W|_zw8DlL8ajCKOH~3zS36i5WURK+i(CGaX6p?`y?7j@ksra zF|yX0(tY>NS~O@Q{qhcKKAYgfEW@tR|0pX)_h!xUg67iKGqA}i!4eymXdxlCKr6^^ zGvq>q=?cD~V^8t3roSdgjW9xYuBivC)$&#o;BT{9qxl+ z6sE}Y_;L(#vNrxgYwHZ31}b-7x7p-f0+M!>QT7a5BzjrHxti - + bayesreg — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

    Tutorials

    Other Useful Stuff

      @@ -111,7 +118,9 @@

      Source code for bayesreg

       from scipy.linalg import LinAlgError
       
       
      -
      [docs]class BLR: +
      +[docs] +class BLR: """Bayesian linear regression Estimation and prediction of Bayesian linear regression models @@ -253,7 +262,9 @@

      Source code for bayesreg

       
               return beta, alpha, gamma
       
      -
      [docs] def post(self, hyp, X, y, Xv=None): +
      +[docs] + def post(self, hyp, X, y, Xv=None): """ Generic function to compute posterior distribution. This function will save the posterior mean and precision matrix as @@ -306,7 +317,10 @@

      Source code for bayesreg

               self.D = D
               self.hyp = hyp
      -
      [docs] def loglik(self, hyp, X, y, Xv=None): + +
      +[docs] + def loglik(self, hyp, X, y, Xv=None): """ Function to compute compute log (marginal) likelihood """ # hyperparameters (alpha not needed) @@ -363,7 +377,10 @@

      Source code for bayesreg

               self.nlZ = nlZ
               return nlZ
      -
      [docs] def penalized_loglik(self, hyp, X, y, Xv=None, l=0.1, norm='L1'): + +
      +[docs] + def penalized_loglik(self, hyp, X, y, Xv=None, l=0.1, norm='L1'): """ Function to compute the penalized log (marginal) likelihood :param hyp: hyperparameter vector @@ -382,7 +399,10 @@

      Source code for bayesreg

                   print("Requested penalty not recognized, choose between 'L1' or 'L2'.")
               return L
      -
      [docs] def dloglik(self, hyp, X, y, Xv=None): + +
      +[docs] + def dloglik(self, hyp, X, y, Xv=None): """ Function to compute derivatives """ # hyperparameters @@ -484,8 +504,11 @@

      Source code for bayesreg

               self.dnlZ = dnlZ
               return dnlZ
      + # model estimation (optimization) -
      [docs] def estimate(self, hyp0, X, y, **kwargs): +
      +[docs] + def estimate(self, hyp0, X, y, **kwargs): """ Function to estimate the model :param hyp: hyperparameter vector @@ -542,7 +565,10 @@

      Source code for bayesreg

       
               return self.hyp
      -
      [docs] def predict(self, hyp, X, y, Xs, + +
      +[docs] + def predict(self, hyp, X, y, Xs, var_groups_test=None, var_covariates_test=None, **kwargs): """ Function to make predictions from the model @@ -595,7 +621,10 @@

      Source code for bayesreg

       
               return ys, s2
      -
      [docs] def predict_and_adjust(self, hyp, X, y, Xs=None, + +
      +[docs] + def predict_and_adjust(self, hyp, X, y, Xs=None, ys=None, var_groups_test=None, var_groups_adapt=None, **kwargs): @@ -687,7 +716,9 @@

      Source code for bayesreg

                           ys = ys - residuals_mu
                       s2_out = None
       
      -        return ys_out, s2_out
      + return ys_out, s2_out
      +
      +
      diff --git a/doc/build/html/_modules/fileio.html b/doc/build/html/_modules/fileio.html index 54095935..99728826 100644 --- a/doc/build/html/_modules/fileio.html +++ b/doc/build/html/_modules/fileio.html @@ -1,28 +1,24 @@ + + - + fileio — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

    Tutorials

    Other Useful Stuff

      @@ -138,7 +145,9 @@

      Source code for fileio

       # ------------------------
       
       
      -
      [docs]def predictive_interval(s2_forward, +
      +[docs] +def predictive_interval(s2_forward, cov_forward, multiplicator): """ @@ -153,7 +162,10 @@

      Source code for fileio

           return PI
      -
      [docs]def create_mask(data_array, mask, verbose=False): + +
      +[docs] +def create_mask(data_array, mask, verbose=False): """ Create a mask from a data array or a nifti file @@ -189,7 +201,10 @@

      Source code for fileio

           return maskvol
      -
      [docs]def vol2vec(dat, mask, verbose=False): + +
      +[docs] +def vol2vec(dat, mask, verbose=False): """ Vectorise a 3d image @@ -224,7 +239,10 @@

      Source code for fileio

           return dat
      -
      [docs]def file_type(filename): + +
      +[docs] +def file_type(filename): """ Determine the file type of a file @@ -250,7 +268,10 @@

      Source code for fileio

           return ftype
      -
      [docs]def file_extension(filename): + +
      +[docs] +def file_extension(filename): """ Determine the file extension of a file (e.g. .nii.gz) @@ -282,7 +303,10 @@

      Source code for fileio

           return ext
      -
      [docs]def file_stem(filename): + +
      +[docs] +def file_stem(filename): """ Determine the file stem of a file (e.g. /path/to/file.nii.gz -> file) @@ -297,12 +321,15 @@

      Source code for fileio

       
           return stm
      + # -------------- # nifti routines # -------------- -
      [docs]def load_nifti(datafile, mask=None, vol=False, verbose=False): +
      +[docs] +def load_nifti(datafile, mask=None, vol=False, verbose=False): """ Load a nifti file into a numpy array @@ -330,7 +357,10 @@

      Source code for fileio

           return dat
      -
      [docs]def save_nifti(data, filename, examplenii, mask, dtype=None): + +
      +[docs] +def save_nifti(data, filename, examplenii, mask, dtype=None): ''' Write output to nifti @@ -372,12 +402,15 @@

      Source code for fileio

       
           nib.save(array_img, filename)
      + # -------------- # cifti routines # -------------- -
      [docs]def load_cifti(filename, vol=False, mask=None, rmtmp=True): +
      +[docs] +def load_cifti(filename, vol=False, mask=None, rmtmp=True): """ Load a cifti file into a numpy array @@ -439,7 +472,10 @@

      Source code for fileio

           return out
      -
      [docs]def save_cifti(data, filename, example, mask=None, vol=True, volatlas=None): + +
      +[docs] +def save_cifti(data, filename, example, mask=None, vol=True, volatlas=None): """ Save a cifti file from a numpy array @@ -535,12 +571,15 @@

      Source code for fileio

           for f in tmpfiles:
               os.remove(f)
      + # -------------- # ascii routines # -------------- -
      [docs]def load_pd(filename): +
      +[docs] +def load_pd(filename): """ Load a csv file into a pandas dataframe @@ -558,7 +597,10 @@

      Source code for fileio

           return x
      -
      [docs]def save_pd(data, filename): + +
      +[docs] +def save_pd(data, filename): """ Save a pandas dataframe to a csv file @@ -577,7 +619,10 @@

      Source code for fileio

                       na_rep='NaN')
      -
      [docs]def load_ascii(filename): + +
      +[docs] +def load_ascii(filename): """ Load an ascii file into a numpy array @@ -593,7 +638,10 @@

      Source code for fileio

           return x
      -
      [docs]def save_ascii(data, filename): + +
      +[docs] +def save_ascii(data, filename): """ Save a numpy array to an ascii file @@ -607,12 +655,15 @@

      Source code for fileio

           # based on pandas
           np.savetxt(filename, data)
      + # ---------------- # generic routines # ---------------- -
      [docs]def save(data, filename, example=None, mask=None, text=False, dtype=None): +
      +[docs] +def save(data, filename, example=None, mask=None, text=False, dtype=None): """ Save a numpy array to a file @@ -639,7 +690,10 @@

      Source code for fileio

               data.to_pickle(filename, protocol=PICKLE_PROTOCOL)
      -
      [docs]def load(filename, mask=None, text=False, vol=True): + +
      +[docs] +def load(filename, mask=None, text=False, vol=True): """ Load a numpy array from a file @@ -664,12 +718,15 @@

      Source code for fileio

               x = x.to_numpy()
           return x
      + # ------------------- # sorting routines for batched in normative parallel # ------------------- -
      [docs]def tryint(s): +
      +[docs] +def tryint(s): """ Try to convert a string to an integer @@ -686,7 +743,10 @@

      Source code for fileio

               return s
      -
      [docs]def alphanum_key(s): + +
      +[docs] +def alphanum_key(s): """ Turn a string into a list of numbers @@ -699,7 +759,10 @@

      Source code for fileio

           return [tryint(c) for c in re.split('([0-9]+)', s)]
      -
      [docs]def sort_nicely(l): + +
      +[docs] +def sort_nicely(l): """ Sort a list of strings in a natural way @@ -711,6 +774,7 @@

      Source code for fileio

           """
       
           return sorted(l, key=alphanum_key)
      +

    !c2?Yi}pcEpEYPd1w*%Z(Cv8lJx*~Y8{&Q>ZxkaLv;;2h0AFkd;*H`{fM6LzvUxI6_Cv9IBziDl3bzqi@>2{XRfo9GbaXA#ywe+r^~Kx8@Pt{Qnmu+WxEX5^_2A=W9tz zdnFA_yQAEWlseaO4WLxd0#{0T1G`OaXo$gST#mqr5gGu%Eq?rZ7p(Rl@Z7smI7~F2 zpCCiT;5~yc4XQLkU3;;Uyg*eUiG^e`n0H0qV<^Phgmu*ABACc82cEwg#TNJs^~dB| zV6cwDaHYK1+eh?(W{ixC-YA-Win3a=PJqaH6MhJ8G7AsSCKBWeKjnnjoSs`JF+@rA zGJ)>HM*WE~Ofzkbz2TwWtVa1cQ^zjqw17JPK>zmJk77sdw6iVu4Y4GsSo08Xgv zb`^=-2!G-!JUFhiSMBO{_2e-jsHT;I-+QGj(V+@E$9Y>)VS!{FtwaUNGlS zdGVyUg&TjD7I1?5tb-Ch99v;}Djt@uewMKHw}+!Ye#BdZAZ&gg(fa-c7|P~BPK4K5 zJ@Y-EF>_8`5b!r((h-tVYRLu&owD)2v20iJRUitFsRa`Va7y;kh8zTTiFZ4`9f3?z^r@f4ITsXX z`n@3~0&#a=Gm~Reeo|OxGiQ?4FcsvN&4wzl^6gE_g$=wI0{4`y`eDl21V)8dwFa#{+4Tyf7ff)rNA2G#9lM7%h zU-tN`A86x;4S;ag zXKJ@Yns^<7BhnFoh&Qpp?8a`63>o?WkRZClL@Yt3KYLGA|OhPRfz9MiWwEkB>0YyH9f*Uh4>y^ zPZS(unP#LUwT(AKtvK`SGl|@ha3guLq2mw>>&I*+iU>$YsKudr*L~4M^=-JsFX>DsOGbJ5Fo}KleK~Cxr{2*^Y z(lzq0@7VizHI_0IN(mudVn_Bu{qR$sUS7pS#R5yN6Lu1*Wd|h@IUIPHjwA$$H6Xp^ z&_l$b-ePP2fkp6(xA6Q)5s_Q98ZTka*nM%^ckoi-9XcU($2^kK00aCTLChmac`~+! z2}uiFWf6PI>szE)ypZNLQ9B|oOi1mds$EcU2NAx0zI+D)dXg}Iz#v42!fc~Ysi#aN zm`Z0Sr3Ezpt!=k|=Y3_MVr-`DZT(t>3nNaR-(q|ss2lSozfDMe$${(`-3iX1o4{nu z^et#RJ+;jiPACcp#5t{zlyXm|H@kL?x@jyVlHLs7%pdjK9^(7`d>kXbfXrvr6?gND zMfMqi4EXHNm*?&LvJ1L^8fzHL`1*R;xQ~6W{dbT`7j?r%nP`tND6et$A%Z`dJ7o@@KndmZ?F0JM^~`s?Bng~r~>$A zpq$vwAz;>g2Vq9EP1zx`ibP)s;vRu;qz~@|1_nBC?QLT_&~mcyj|L_VM(``l!%>9o zSrEyFHMcGI+Q%XX0HHH8=qnT^|MU%`T< zfkaWzl7^aT8Qg>)uuGrHM4Uj3LBokL`1{SoL~n9a6m+3=!UBjnzsN&*bOvM+46(6I z*i2ZGY#tOY%a#SZh@pur2W}eupsVbhtP$Pef_==!2Vu^z9XKF@ z95tcVfz^%$0_nW@AtvUhEB4*FQKW-DIf&w)2VMd3?#}KS3(gKYj-Xf8{fl84NV_}X z6i~z&DDY$1W28drW$(otWjnlsJe^O~wJJ>5S-X+VolKT)YCw zWMYpP1tH>-Zk-7U3%`J8^&7TAV}{X|a)Wf=H}+`nfVHoL@NNOBuJ5}P&!GBX=i$)% zJ3~;6gRKemGZ%S-h$HoRJ!Dtta1^P~9$0Ta;Zx3voG~$4kQs4D0Etqsb_7B+n8{zr z!w;_uKurzCd(T!xDVan~!(_mw|Mug@j}VqVb?EC|p^+oc+i?c8==K7Xgos_ZueQM% zuJ9=A5S_QTmLIVj-F?Hyz?XnFNi+sV#utBe^Z0^l{!74a;JR)}$KH;Oby_j(4E!%~ zwwvs>!|+BI3wkHx})k0CmtaqB!B{bA@_P#T3Xu7_H4snY_nW?=RurH zq8uoLG0>?fb#*#SX%d{K+O7_-C1i*BSGnTtcpvpgho%6Q zG{Zw>aD&7%&297(A8F=TvZ6rC6E_Bu{}m0|1`Q?u<60VfjuW8K@E_6gz_o?is2}a8 z&Pbir&5z)_d`N;G>s@VaZSLTblVXPZ^%&94CNA5l>BKth4x~NGL6`a8yo?VAy0H~r zxa2KN z%svGRdNtK#)G|j9zzwtU7_2zG5oU!1t(EKdmDEO_UP+KI?NhU$Abf#ZGoE)CaBxN} zuUf+d(yKUNpI`bv&YErg3g8JS6qhTF6puucyrGa_{`O<{VBT=pEIUWh_;!(Y4HkuM~F;X+yRTzU~Jw1{G!w8I%NhaDzWiBvjQCOT zFaH1LOu@zf>zp~O`#J)az(w8$(Zl|F(#cAo?!Xx$EojozRf(47zWF(UoORMGQzisPQLg+_snY0Qbu`9H7XniB=eM5M;34RSM163NI{_` z#Ek|m$Mvx?5yix&Ly<(vx!DHP&Y;QI;bK#M7P!6?Vkjd}TQ{!Xs0j-mbvNS+2&F!= z8K@`GQyv6+j`{x)wm$D0tty8VL5&dUVt)=b{|`<7P3wV_amtePjKdzkn3^Jtmv-;Z z4^g`C0}(ra)$rh8cUU1?5ze$_+eVaEn-t%7J3gI0&%r9e6$Zx)ua@627g73M0ec*;qnRHIW#VUlqs63^!?EiLo> zpIL8_P`9c~K(gYG+P0r*8)`g#6WJd=l>MU_`xt4`i~7$f`)k*x4s>U#aZ*mEG&HF1 zAfjETSzF4<0_V8|A+I(F0oOqCU}TI;e4bx?4ALgw`MmDa2}W;zIcGZ%W&KTfDTYFT z@7_GS`C+rjhPA&}~*hH(=Fx1K4T=4crkSPnonOfx7W=U#ZEb^6_L97uQ8` zUDexnZo%$PnE{qby1+LahSRA%B52Lq*VV;Tp&Z+<=j?pq#&^DtNnQvmcOeK(xpAJs zep!2a`$U?y<8}x)NHNTf8#HM>a0^KS4y&)RI2c<~9of?B4-W6egVMHrLmL(9=GFqr zO=Q#%zTvtcfzo@PA1;$9RkF{s3AV-Op?W1z_f_wjjvL;Q^nMRH>AytA;JP4lf6mmD zqcU7*?ca)}t_TStLQnD;9z5k^mjkhfMiS{%mmQQ)ZV z&vVM}-@kZeN#6amxExPB&@$pb5oKW$DAq|8m10KuA&=c?=TXLN>n&wu#@oAix;Bfs zbxNODwdP0Ge}Kby+9wbchbKl^>}AymmUvJgL5X3HrBH}g@P7$q} z6;wOqjF=A(0!T+0uYlWAExSr89#7V~9kin<>Dc(1Jv0Lmb`scY>=Tc*aN49L@ljq`k zlkfBwU?unr?%w|km1p`0!LefpqoN@6aQfuQlVMX$fox&wx=vl*7V>dF;_}v>KC}LG z^b&`utiMn#Xh3>tL}Vkvf`7@2(5$67d8aaWPxsW+RH15O@gePX8R~+6b{Zv=p$AJ= z?5v{}xMJ9PD0!{#0f5d$&a97)TNNl!byQe)1vY`dfFKZY290M}iE2-;TcfCEy=tz7 zK>zN_YOH%b8EiA}O1ntL5oAN<`7<`IH@oW|ndJRpX3Oaop}KpCT1H{h^MaG{a_>so zT~QQ|M`#T}4_<%9&Tl?;GhNBk_T3+*HJs8_aD3%Vd{`VZ5`d2n?$s~Pk*>HT-*TnXlG*qo z7uQK^>yHFoDY%E6tF75>Pxp?_uTjN-J>I=fcUOG*9oN5UdxVR9!SKDGhyB6CZU4|G zQT@KXc1=<>P2rNxj!CX{oA@4l(YZK(ec*R`)e<_-fAB7P)!eLK6tlS>QY%xa8}UHZ zZgh9QF={dJ+jsxsVzqNCF7$`h0TF>ZXN_&c|Md~p#x)Fvudc6;R$Hn~PK|sWh|0J| z6?gUHp(DE8z5b1xx9E*L#U71aniT{bUi%^g4LLPg1&x1xj3JP;JjGyZ7k1CpFYC`h z(&0m|e%_~>_%rbX%`hcA^*;pjBxk0e`ij;^u@>hen|D=lxSv)zb9gem%BOxrD8lu{ z{mZ{iu7;Yv>Mvjv!7s8RDj)h6?d#jk!A!TsrJdcwX~O&6Dv$fc#V8g?yU=e>zJED# ztxRWOq-xonvu9WioKRG=+I3}ga69=l32ipcS(}lw_`bWqCBnDp#6fNv97(i-N3=|dLG%<3)2{6(NptLb zOBgxVoOO8_rfrWT$oCZR8BGn~XxZNn;j{dc{z+eR+bxXW2}P@=4xoL}-jE{QU)=>CoPzNByD zQBnR5`(=2Mip#i9#^B&KAzU;M&L*vKs)2zFzS1tyNB+^h+sPYN_7;`u2)9^l#v6X& zx{Or)^EcxA?Yzg%(Hy%{wu78f-!3=kg+(4)53iLnFq)=rsba#QV$l5jgE&Rp>vp(D z_juT9lC#Wjv=+C0eaR||1+P%H^sG+nnSD$?NTxpGVbO*K5tZomSS*@kbUNFCR{xvO5=tyWN3#W&m&2n<0QzQ5E zQvVx4`|B9fF8s<4k4u^g#JP6fFN{m4R-H$GJ)h4G*WN36XMTDacU3I*oomvP?d}ru z+jqEEynLugxkfu3{rLGI6F&ap`UQV6Js`?^=BGGf0h3oaMUH$HhOe(FfU2M4cPuQl~kjRfnb z@?O;DaKEG(80y{Qkr$O-OtTeQSdZksnzPS*iej`qD!8|)+YPm<-{IJ*Y?<8Pre!;v zoH`?t&cWZ^%;%>()2i)ZbIo5nQPsi3w4YnL*Q9SgS7Mv;&y*q>-_WY+2C?`Wx4|U? zv*DV(tt~ndx2&EQ8EDcv{z#ZObn(E1!B;v-4CRgTfl8-p#Q_sGf6aaMjnX+|jlQN! zx%wZlMsR1+(GIVBmlpMIyUK1C?h95)5k1unZe7heSBAToJ@WKsTYoaVbzFwKX0&-~ zmCEC4jPJ`L8Fr7JMYwcg%yn;zt!w0FhELf7IP+gyQB(i)uc5p=i~5AmR}2KUyGyP5 zF?FLMlRg}C-0;v?XM)@_D_Jo?nV3H2f=_pBD_XmrWjc#mc@`b95~Qv)-X@~%AeL&# z)yLGJ@}S;X?XcCg6&L58UF8*`rSsdYc{?wAfr43RuESK1LyMM9nQV?g& z%{<^HRbF0F_giGy?8`{kSiY=JdgnwEHr!Yuq&_Q}N}E3R2>0(vK%({11N`b1dstUe zK6TSDvTdywX85SQ)`GR_K212+s>!QMDJmRG?)fAa@Y|U5EUn8FJ{&K&B5GjW=(THa zIi1a`e{9fry@v9wx>|kawuPACNi{DjXEnnNBc-vDv5WHjcQ(Eh`XG_(rumVNS+K=n zsp*I|?~2Z@uR8-dXj*B$trplfz*zj?wa6aLihBWxE0`*Tq8gv=Ke{!j;w9gk3o~Pu zdrY46Zm%o$@>PyaOOYgaKX#wqx&S)SV= zZ#m4Z*UQ3Qu<=y;^Ht-(3@|@le*QvoU%ugh&nZElv^5VS1(@HIZR1SQ+_yJ<`91v8 zrampI%`2a_)CDXL_;ciCCsa82*00XR7;7*?#kk|H2D!91j zPS*IX^k#?Q8k=)by<6WX4?M_k(Q)SpIn43Do~Ekm-4UyYRt!(uVK-lW8O6*$>V<^0H-Lxry(|7oE-q z?c|>_$EhwK_A3FGXUR`>pzJ|xTFuynd`xt*RLX(_Wl5|-A{x}(Cj9EC6!?|E8v6Tjg_O4e9c;S0h(f+!E^iV(t`E9LIgmK%C()mvP4B3u6a+{XBBm zcmq4>zitqaF&PnYU0(D-wDfkfnClH&*1Wa)d-@^|7HmIpQ|)qIQr_BaJ0xFP^3Wd0 z+5Bt>Kd1ed(Q0gJ+S=NQQuldgXsQCA2@F*TM5|xQgdYH z-4^o5S$ZV`sQ%gh?+s%6ScGFYhF55GHI+B7^=mSH8+}NSas$5`7xA;oq0E@Fv^r^a zw!My`O~|OJ*NVG!)b6x>@=9LKyHxh7D_+jNeDmt87`MXyeaU&U%d@8LitBn-RPgQ= zct;W7HvF}M9LC`&eIfJ4PnB!Gn+QGZ(c}}k7EO81AU$fLTD^>a$aDk8-nGHmKkn3I znuq_iTJtC@oSOF9zQb#|-14lYS6Zd+m`@h!8Z`Fg{J>dQcUUO2?eJ(pG)`yy%q~e+ zgTp30RJ6&EaF4k^^h>z+IFYVGJwRy6`R%ZUO?J4Wt}_qshPCVC_WPEbaekJ{2uSU+pwb5#BPb{B5uI|f!`QbrXpN%Zr zw#!YaUt6{Fe7%=wG991O?CQTZ)Jm&v(H}a|y7JnA{`gAUVWHm|T|HMkGXptAU)hE& zv*GBE=js!u8dvsAv*NyU^85Y)o6U`H=@U#E#LQ!;a)MS|&I{|>f~P(rZSo||r}nkR zp1)gP*&lr;5VwbaNRpq!;3kb(-jl0Y#oyD{KC%)lD7UffH{DR)pt-MFQ0(LFg=E%Q zDdCjc@gLSLs2}gVo;)SkVq-a%(^4ryj%^W$9F<$m?r`GFpBIX@cbL$2?x+2s;?sQ3!9oWAHkTfcYlI6FCah{{Kp zoxxj^7PL+T_Pq6^-NYxr(6>PgjVs37$@eA&KGY5lb|$<}dyBhk+kL3cd#pFWN1Vr- znx1g4UWg)xk{*Ngs`+oQC zQ60>^;4S&KaptanwDEZq zN`~RS>H)?N)_n&CY;nM`xIBuO&6DdR-_v^gt>X^~0U^MpDuCLKKD%r2 zTz*)5yqLZ`SA>jf?iKG3I@D&;A~@mDCT-r%xYRceVM#%>+#W)k!*1bYj^w=3dn0#2 z?qg22FI_<2`^v-QqD4$UzR3_d>CVaT|G>z~_{vc-nxpkTH;t$+4k_OwpMLi>7Tv*{ z?Bp75({q>VG`L*bic5~H;u4&q^)evCJUQpb=Fv8uKG8bxd^->mCSOz4X~W3q=|%f% z>_?g&#Bb zC`HQ^l2?^77tN@+7+Kr0yD26lr8YDieCen@Wiq?`16|^cD-UVJ{jR@}OU||_c+S9z z2F6UYiZ#U*HSwk#Tji660t6@)6QAA)h^|cz_-)hZ%)_p^LHXK%vsnR6)30SO-zu0s zD$2c_JZn>MBFmLtqm572kFLD7Nosw^ZqDP^zoxcVv^}wvKQ*MVdEjdT*VN7?=SxZf zC#JZ*k5xGxQr=1%+@)|7JJ{6NwZ}yczj6u%;#6#h>!eF9wL@N|NCa7>$g`J*>QXGG zvNZQaSLN9hWNEXecxTSd7D^HcJ?Yxww{)=3}cg>X+7rWxLzW)w7O60!h8<3 z_3a`Kbc^WG+;{d|`nU;~tmSZ9itrR?YvWF9sO8?G%%-?z+D85@Ifccov2m2) zs??U8^GCFgO$|4MIsV(6zuHUZR?J(eQQCicbb8{{w{7N^f3)W$2<(Q;o0lq4S-tPP z=aSmrnjp5v@pK)rQeYR?SLb+bx=Zrc*<%5&_v!AdneEah7^g+}(=IKWgMaqa^>B^*H`=XzI=V%HZaG8NwM&bBcbo`90q0_^PKoD6 zkbVN>OY!0r|2-ERE}kW^24>^ezbeA?(!w|bN5ZJ6y#6#-s|_T3_u$v=BZFgunHyw_ zTmB9zQ6ctFQ(Cef)R)Gb-DheofZSca_8;#54!^YZ`C{1{_Lc(;EaiJ{sbrAOUtJ1P z(ZXv#S4Ja|>*7mcJsAn_lLE_H>vkHi|9SoC-ZH%<{N@>z9oHD2^hPYf$(?^+(7DHo zS#XnbmGio#p%jiZc>Hlp=p{xiYzp)&8qOge!ZyErUr;-h__%V)`TWwF|Fo4LZ9E>2 z7D@+Pc~TvB@Y8=qZ`gzAb{1@0M)^DR$}?$sinsE4`N*FF2C9Ob$C4M1$-MrhDEv=L z1$cR7N7r6&T@qOHv7HsMpqYiq;p4{>#s<58T}gXBYMIxC9Y*9mam#S3zNxA+R!fac>0Jz$ zkaw+|ERQ^XK}U#EE7jFi-IyAVmu`GWj=noRwRfkTjL-Os2rDXC@Q0)JMT}pgp-?*a zTn%L1IcC|!f@C0N*^Mm0}d;DtiA*fRRFxW!Y)4dfyaNzlX4dN6E~w zE#$0EyfECb!Jd_;+4rD$WY?wdUq|%FkL}L#th^WD>{Y8wUlp*&T@XL&TvvR_-(r<_ zCnpvD_vgH(Q|P|EEzlkwIZWQ9aI5X0g~hJ+m`|xqfa>bwH5AJ3-8m0^^I<<@{HfH%o*ej8 zLP93hEA7s$G)#P^-6I@-K1^o=<(8C~TgIi^d`^{u@~dKHmQps}$JqK>olz5zSmWW# zMfZKglu~=QRU^KJ`u zv3vh5?eDn88;5oj?F{`AEG8f`Np1{Ey84YpqL?`{g-(?7~@q~X|~$u(cO z3_rU;9eQYGtdGt|C)opBqu2IQj3w+|j+Y2K#86RAp2VHHAmTILDZhVDEgr!*PE3oJ zSLZ7+P@x#+Bd+Jg3~k2#`m|F#D=BYdqRuquwFFCx`-mKIqQjG?5S#z@+E8;e%JAcn zN_Ka1lS91PFE}^>wLkm!?d$V>K7cCL24oQHo@*W}djB3}uv$m~=Jv;g9KKYzY?rX} zZ{O!586SoACOfOo3~S<9eUkOHS3Fr=-Mdx81#^~S{6YT#&%E>(g(_na{6>8T1;@NWr!l}Am}GEGVXr=k^GDrx}D%|>(;pmSp{g?20>kfRNFz)dm6eY zn{q}0^H8v9xx~aJBx(SpG0q5w)_4HLK}vdhQRu)Pk9v~)!Xvs5kW|`6qcov5{h;a4 z$|u9RRXZsZ!;FOb6;v*jt?t{{Ga%d&t46j*`T4`gQMg_Gp;ncT_INT1YXS9Ir&WbI z)@ag8z-QcLVai2ot)Q4?jz-;qujJ8slDi~7Fht-=xR4WuSYi8?&6}U%JS2Qj{~H69 zzmlU6X*bR)hLLtay=_7S8+lu(2$gm@#K+1$Q7DGhwElcns~csHMl#%*xfyB$Y;0^V zxb3Q;9Y6_|m=CUijL{IpjwouclbS2H*1LCj{<@J4^47FNSDMGzRkQjXCttzOuHHQ2ijdAOUIw3Yzc|j~xOx!){*|BKd zS94*jZ!~X4fAH~#6P*t&D3m2iCtW=HdU~MPI_(pMelNcsn0*Sh~H8ciS30as@n5|{y~Yd#@uH&J^*W_s|Du&_2{@RJL9ZSq|i9#@#! zrUV5xt@xhyLA0N7Vf4?cx_n%Fkd$3noA&!PUB5rw<8D@$7deHD+F(Dbi7z9C{v8rg zw6uvt$a&XsJ6RO?$YNc3z(dEQb0&H!lIUo0aYN_v(nP-t$*WWLWlH)5I|}PXuJb64528?(&3kwUY7|M$3)Vy1UY?IPaPJrrGZ(mGP6v*%yRiA+z;K_-ZZ!E6A z)6SdVNguOmxQCNDaOhBtv%5i{-|QCAop@c^lpIcJ-Y%cjDwg>OBe7_V@C%faZ#(<(eRZKPjX>W&>d z$h(H z3PENca31SuNZwqj@`E!fl2I&MX6o;c|D{9t1wKiq*-%HRo^lm3@U&Qz^(rOXperzx zJYqf>P+djP@;5=CEY$Ye{-<#=*;FYB2Rc1+=*?fg4G$-U&^)ZHtieZZ687w8Vmg)Q zFp)6nVE+2YIkEb=PJqnUrd-8fWX4LYl_KvwQiqxO3YCs^P{oO%Hu!PI_31H79wbwr zE>0B(XwuLCYB(?=Je(__j5VMv8bxeMFT+t`-BZ_Smlxrl||=b;VtiNZn_ zCOGAl==JPXR0Fr)UQJE=#VxL2^_$1JrS!tiuaSd|!J3E^?s*yExePS8iN=2`(0TjH z>mPUb>}O>?i#;Im^HEd*jAK?Bq2w6og)lCZF$-ai9EA?o*Uv8+)mp}dcUJpEffb*J z%DvdZ=`f|D<<)N)qvMt>ZUc8*#ZKR~TimM>wsd?!+Pfa*&56(!N}vG30maf~MGzf- zLs_tGtHG08B6Ha#Xn6+wSpf7ytWm=6?;$2BS&PB0C7RWgk`!#Aw>ttvzQ0#rdh#qY zOZ5H=zr&VeAjPO$0`=oT7#KhaY6GYRkx)#WJ%64ZcL53K&rn=tU{`^ze>ke)5Q<7T zfpCWiDI4^FXw0Ibk`i{v2wkSjv@-ycuo-He*m|5r*zNwKW(}^)FV}@}w>l+zdGom{ z?$_-7_pTI5OvHd4EInUUYCeDVDeLLDjtP8P(PXJt^z94tSB?5M@86?g?BZ9D4pY+7 zGOAIO8=}#?zk)qFUf|bXR+&ZR&QSNUXs5)aMAap6 zAtI-vL(In{mr`!rID-$FF_g%b3J`hsXGz`0S`pksjG{MU#Jtc;s_jy9F(e=VWHW3L z@?li>bv8&ZH#eGPHtLgKyw5M&e9H8NTFw6~1NULu`eteeJLGNM#_icS^sfv0WU)W> z*;dt#zYS&_XuX;kHRsgdCXpa9kN?{w+HaLIJ~EHt!3mOIG9EG9Anlq{?NwA?$3ayq z6&YEb+3=4+WO|{$Sgc-=6Tgv@t1e-jJ+_uYvGBprZQZsn%<*wSIys2!>PmF)!st`T z5EN<{Rf!vQWW(q>X?FD$jQoKv+u39Ec-?83xv}L=)lrFycZXa|tv^}t@Mh`FFzH0z zMcvWc&s+K5m*nj-^0#Ga^&jhwjN(ZO8P6@%;qD&5wR79X6cei(Jfql%-zwCu$!*G(QNtcVZkB1dmlV1X{Jbd z$*2G0MyX54nE&{{-Kg0chX)vp+TZ=#c3qM^-mNiU>@V>9T}KloZaou|d;r&f9G9(a zqTi35TeF_5!p0JL4%MZ8|Cq0J5)ZlTKXs^*ONv`o(m?+GGkjMgVOm&Q2P_T?y~6T(p|vAd<||j6 zG_%Nw^4j&!UCWKM)(_rF(?24KC+6Gb{u0K2?pi{_$?rc_{{4yno>xU@QwD4wQ{v^J%)4c zTvq~*lFyhude_9?Hw=C=zE+)FbU+tp81Y#uT;yj)4*h+@@H~}P`6#_+aynMD=umJ4 z_=cJay=>fsaqw9C{O#w@ARPR2zs`c-_)Gimi^9AiAGkPttgQ0R zSrZglfu3IR`1pDjfd-sBR=zI>C64G1`xi%WyOxMn4Nl?VG(HU{%-GM64qoA&$?`u_ z2GIJ27#*4uDRwT~oEnynQwn{7}r zt1-7Kb{@Y|m*2ldrsb`tQcEp;XljI4Mzc%cfYGts8e_-AltYt0h1G{lVjY{)s8!4s z2Kygq9U)oQbYHUFGkU-Rxg5Y{XtV^`7RX&``(gOPQSZA9M0owjk?4V3#!Gcg#l6Cr>UF zwrkGfc+uSM@_xs$Zs|m)kpnUPsHbo>&ju_fE^G>OmE##K&nC;O{o~*kd zWH$UxspZaaWg{!M+7NsDct#K7)B`8E{8*>y0i~8|Wg#=xqVUGok}|WUVoEJfQ!6Lt z(qrq8dtT|6S(B8-9d1=Do!e|IoLf^f`A#Eos3tZn^}ay8a0(1o4B7pZ5=c7u{O=F3wO+rG`(4;lydVB zzez-0_yvR0${N2U@*nMcKb+m%cJH`Z%zNWwa+6g`vp;yX!;9^7q=MFG%|59McPgZv zuM!sLl^2r>YCNrE`m?gK@qwrO+pB#8{#NhZ&BhY9=m@9|aFqVc=-HL7v&APg^BJZM=^!aUtQ?mJeJ)0f)PrBMy5BJp5T7>WxBqUX?v8#HQM9aWQP` zj(wRgKWuq5rM_RdZ00m`Olln-9=g8!D)IUW`)n8JOr8Zd$|ZEv8kd!2v9 zU)aNE%EBj_)eKurvn;7UEAM#fj*w*TsTCiUUhmmPD|XCfdg8@|zS4rv#QCz+Hu>uk z@mG%}R%|zN%;jrKcr_93m&E=2*|Fq4#YqpFS>^!=q4>niYZ_@Y$6rgin;qaA`sUV_ z`hG_Kihb(VO}d%-!;d$Z`RfFWB1rUpSj|AFq?cAq?y64ZG8>v(?fwG-N+*v3nbZht)Iuu-1$AG8hK0ky-naL7sHGn`j$SIiO|7dXuwBI^r z*|6&<+uptB*30L`h&o6TlXS5jn(}NkVz5@XB^*D(0|nDn08 z%f(eGnlSpv$44j2wCT&p;oITaKOX53>{pL7f;AP0751eUbj(j?$Gm*mXef-($zDFb zIuk|&b9&Kg>i9>)U9X|I@3MLz&UkwzH9vx0CuViZm%h8Td~L$vUI3Z+(MC7EDj#ZQ zNm0@J4JQ!XF+}{-Y4XwI$GXq+Ce>1$@bm;CWD`~zK+#7_p<>AB1hsx5rs&|=XT_kB zFs2%yhnQi1CUx=7tyTvUl~edZLpbCk3Dnm#AY8^^iy4r(h!teY$JXRRtLG9+Ut4Of z^4P}*tYIf(g>n$|3bmdiY+`_MGXQae{2PP+PrgQs%VFpl;yu^Aco!F<{ympz@q>)C>T6GywL<04S|q;7j=MA?d5vujlhY;rbobSGH!Z zbCRJ)J~N;;$vek|L#zME*%P4Z&uetI|IF=EE|~Fql=O~M=CDEecE@#){%UoN z0k@YrHLB@2l)0@~!>WRBlJO>f1iT&|y2)I0-c|p(Z`nPB_k$W6Raibo#m0tYWMqhY z2%hM>*{A0rSiG}XwtRVBTEV0fa4A~drOx+pjtk+%>$)UtJaT+|Hj^iCwn0lg+9UFOfRSvrXFwxx3w2~wX(=xf!5B;go*Pb#{rowkJ%~k0jhrqx9F?h>DM^9d zRt$mCF@d_}a_)($D{`vYyO7iQ_SA!GjIJTwP{z>#Pj_ZGtuf>g$1+?NoW&}6l12M} zLo;Ipypxx`e#(~p@FmR{ag)v) zH@=9(`cO%2?#%ty6}l2vD8i3i25OA zC~SK?*rUp*vn&R*$>thAPkZd}L;YJyUhkdTuDi3W>#Luy z?>ARktrrU}Wt`c*9+%3OHh{l2I4eo=ZhykEH9#$Jh#`k?hrkX>c;|PHxX+xL0OwEx zC@WdWYOFh)rWEbT(`bf-NArtIx3Of~fZb{a8ZS63b=#CRB5y8TiQGVXEAInAar=&K zw~ulkJJu5J<>{Gx82#~i44wW?kjPz; z)er33tlloC{f7Q@vc|^7Ira~(b*iQ5xy>WqzMq3b5~4NVvYv#ov1@hIzOLJ244KZ!5<7J#d%aToz>RJ*p|)SdkCo znSz$cF&EU+iBk5IZ-5M1alErz83St4-0-!6$2{j`j{mqr*viR0JEq=b0GtLDxv$Ac z+pBCs#?i!Lpq6gn3Cki1!m4jB^L;LZ+lzNbA1UX(kLReVCVF4)th_^{D?;jZYSM9< zbvu5h(bgZiS}vm~92dms@>`A=D6mB!Z99x7h$w5fmj$kT4&0B;_gb;Aqc-v|dI-R{ z0^DYDv(Pet4}&5V#9NfQu6tKtxXZk~S?fzVq{om`Oq?9U&?dw^WdHvvJNI~~^EHl7 zt5-MM(H?6nW!tuCD?*mZj*zyp4KYP11|daLrVL_c$MjO2wo7sM$@rI{*&ZEBv7*b|x zM$@u0QBI==i&+V&tl3?FjmUDPB@Sb629s)fnlLUj1Do1^W&MR1zpBSCB9!226?BZ# zJM~76R1?QxxP18*430e)AAfni`R;Rkf=r5dhdHppg-Ow-YP#%}RfH;tIoMIykh&YI zlG_`@!WkE!mP!@_?wJpVdG%noJ-_5qP1=%G=f+)@ugTPVMeALrArJPpb|#i6`}HaF zm4FhufX7^bU6BmA>95dB(lB~uX~^Ct$qAb>cAE*`3JVl4a6=Ol+l+4SglO0@QnRRz zKfb>IBDkMr_=a6@cQ*CvHvj$+f+q) z@!|ZDfp9CA^~MK^S(>Liz`4FLIb%&D;63{%Ke7a~GqmF4Oo`-S#ml-2bXOQ*J&mj8 z*~eH9){56hTtKEGm3WjP9YusTMCwd#KB>6#h*biaX_y;(CMu(21o99oqwr1-I9a(c zg)C86PlAV4{rR(b>L6+9umhtB)Q6WNL%FC<86qJ1bGNrEHvFG8tL(e1+PL*I6IM`R z(u7}qUuj7DwSeOUFwY>5d?iz7(&Aa zZhKKMs^74Vc^b8L1e_sMhpk5W4vMt(3Zkt8n^Ub7m>e=18-?Mts)K|cY!BCAZDCIQ{RyCcf*eA zTV3Pz6Nj@TlH}inIyxTwzhb8DTMMhOCyojKvrvuys|wP9(0^DH{_>Fm`$6yKv5K3> z&sRMJxF!>Ps;4K$!>zc6$)=azf-r`F1d^Tqf<`1eRSbZWIaIr6ByFI4-H~Yu*&w`@ zU-{$&|2j5p%HlvGh$7L@$3S*uq8p-jVrMtwj-$<1S?dlXo`X-0#Kj zT>C+#51q>Slv_DO*P)U_V`pkFsI@da3Fa^r=IA*w!;acj4c6+|;73K*Y^GsNTcRIA zPjffa)+-53#Wp9AGW8qvyxihgX(_nZ{biM(rd6n47j21~uOKUZdD!JI2Gmr)zqK z+p9nf@#^=vjqsTZ1PSlO5-RoRlGV;faz5iCs{GDvt&&`PI`8$Bw&;1>Ewz8UiTbu0 zyI_-1In^~V*bj8`W;jsXw}99Vl#Y0-vZTpIBVe+ehha{}$`m8|C2H0j3w-bRu>1Dy zLFAe@V?!|7U6$zT=>>vS7C=BdYG7h7)HcuNW#uOu-9tDHf>RJ-`=AXoG_2o+TV-%488J@^4oRL7xSRd>g!@mW_^d%QdPK-? zAu>1PKGcD@wDsx5x8IE9c-AI7<3{&7GMNYi)oD&$*^98B zrei&1S77TK8#NRn-Vv7gGo!>&)d3?g3Skk${ZF4FGvIq#Rn`xW^a z?c+kYw-TVDS~8s$zyp(p57L(ftl}laMrk#l>FEU{^wziiz6gnf?CTA-UI=SQXBz%| z7z7C$z?KA!7G)@Im2esIh!y8P_wNra4#P+UM-lQLmjEMHsEI$SmKOq&g6v8-=`mXP z0`Y(I(V4mym|{;vCxHpO2uZVnd4u(3ti4;t=>0(#1#V0m41f%)d&SDUXRjbe&J|xaKzTgo0P-t_UN*k;h<~-MFHev#(?5_R#~4aCs*nM ze^3BLNpzi9EIt_*x3+%-;Qay6IOJ$U$kH|`vcs&OEYfrVlS@w0vo!J==nSL{!Vp~y z*l$0i=pq0Z94;I8RNpG>O8uHa>tjcc24NrkXj{cZ2BI-w+L&-!tx!weev9CdaP1m_ z%#@xoDcMAn1j2$IG({nfs!O3cl8XW^BWZU--`YdA-weu-mKMcs&gk7m6FaH%8N1=? z&qP6AU+pWK7*+a=fgg9#ASp4?-H*5;gC+OLoFtMZU_FAVP$dJ>6)zU=F!{>ZxUSIy z*uy%Yi>t{Tmh%vqOYU2QJbL)Nug@d71DPgbSw`Q@($=nnf!HS-g!a+sYg4`%N12~8 zCk!u)fI#9X!q}wnW+zK}Z<0;zt8JZJDcmf1&d{1yQ?~#Qi=ey{J#9v1DZ3H;)3E)1 z)*F3X#O7#cXg3s=jf_;?Bzt&10TR`3wGgfMZ69eaGC3Ei=TOY2F% zU^9->*|x+n3l_~g^!`$j1lgbi$Czjh-2$T!=)-sHxKU~?gS@V zy`WX*>njRRaPajw3#?XdLpe}Me#}KSycRYKDha+d58o^s0XdR8qRiQbMeOfeJt@8Qa+vop0QaG_LMW^gn}7FPd>4kewk5I*Eb7)XHTCuGc!yD} zI=pDN8;Gy#;kpaJp*MNo9|(#}F8mN_1w@t<32u=DueX*TTc_yw0^EsHIP4sYShF+h zSNZ}sRfZ{EZk`%gMXPLo>FeI-ttX6Zp69P7)5szgzd>hTFi8cyinv4;nS7W+X<2w2 z<~_!q$14GR+vjrN+?CtYk=SjCd<@EAD>94UBZsDXhX*eKz?AM0w_ezycoJg{$b{p$ zZQnZQYo1M^)LWB|fvKnS=YC!Ms&YXqP+$&8kd9(#j&xWwgl-#!qs?i1ODBL#`$g`> z8L<)~iK(FnLpIX;*RK%J4?HWYh?dF}1?!EhWZUJ~=TsIr`{SPmQB#nZzrk_?~iDIM&gn>en3<9Lhlg;YxZs z85S3BR>^io7w82HjoM2CvbpX+@=_cEaN)Z0oNihh%QfR$XA!Y0qytx!cXzg<=~Ne8 zBrG40SujtHr<2^tSZ65El|CHtfgDL@rbB*+;RNth?(@|6cQ1(P1u4@h>Aj>dGGkVt z&b5Wskp~JA(Fb{zXtOunFCwOu!=r6R7)us0F#maE6bdO{U=h=ROCvG8D4ZVyjj|r@ zrq$=WaBB>((L`~P=$AmpUqNt13~zfGzmRm&f`c}I*+BB*zEpPAM|dQOU$o-DRC_|t zQkBsh6ia0CVRHY`lPd+tlo(?KV!4`oj5~MllB0s<$0U8j0H;^q11^)CivFsdb_Ju- z6KrX*J=QmI)>H;&DzpK+ZeRu#n1VqpWJr%^!*t3P0cm`=qON|KaBD>FWnkGNJqdeA z28oHnwO$fOu{;heJ|!A|<;aCxax^L4a9W?{f_`8~rOU_wZo$%OMjI=;<&YC-jr{=T zw#>GCln%9HXl>1MO0j4phJrlto*1rRf&q5Ti8_>Y9;y1KTY;@ir J{dQ-}KLFO({FeX# literal 0 HcmV?d00001 From 91767a3931be985b0cb11bb28a735515c2f3172a Mon Sep 17 00:00:00 2001 From: Stijn Date: Tue, 19 Nov 2024 15:35:49 +0100 Subject: [PATCH 67/68] Update docs --- doc/build/doctrees/environment.pickle | Bin 285780 -> 343429 bytes doc/build/doctrees/index.doctree | Bin 4031 -> 4109 bytes .../pages/BLR_normativemodel_protocol.doctree | Bin 91997 -> 154464 bytes doc/build/doctrees/pages/FAQs.doctree | Bin 4535 -> 4615 bytes ...R_NormativeModel_FCONdata_Tutorial.doctree | Bin 38767 -> 179379 bytes .../doctrees/pages/acknowledgements.doctree | Bin 5030 -> 5117 bytes .../pages/apply_normative_models.doctree | Bin 72552 -> 60279 bytes doc/build/doctrees/pages/citing.doctree | Bin 16090 -> 16168 bytes doc/build/doctrees/pages/glossary.doctree | Bin 8947 -> 9025 bytes doc/build/doctrees/pages/installation.doctree | Bin 14406 -> 15660 bytes doc/build/doctrees/pages/modindex.doctree | Bin 394153 -> 410015 bytes .../normative_modelling_walkthrough.doctree | Bin 113777 -> 161333 bytes .../pages/other_predictive_models.doctree | Bin 93205 -> 112567 bytes .../pages/pcntoolkit_background.doctree | Bin 41905 -> 42095 bytes .../doctrees/pages/post_hoc_analysis.doctree | Bin 46105 -> 46310 bytes .../doctrees/pages/visualizations.doctree | Bin 19938834 -> 19938996 bytes doc/build/html/.buildinfo | 4 +- .../_images/other_predictive_models_17_1.png | Bin 18179 -> 35783 bytes .../_images/other_predictive_models_56_0.png | Bin 24851 -> 47682 bytes .../_images/other_predictive_models_73_0.png | Bin 26035 -> 51001 bytes doc/build/html/_modules/bayesreg.html | 87 +- doc/build/html/_modules/fileio.html | 140 +- doc/build/html/_modules/gp.html | 167 +- doc/build/html/_modules/index.html | 47 +- doc/build/html/_modules/normative.html | 262 ++- .../html/_modules/normative_parallel.html | 370 ++-- doc/build/html/_modules/rfa.html | 82 +- doc/build/html/_modules/trendsurf.html | 75 +- .../pages/BLR_normativemodel_protocol.rst.txt | 1531 +++++++++++-- doc/build/html/_sources/pages/FAQs.rst.txt | 2 +- ...R_NormativeModel_FCONdata_Tutorial.rst.txt | 1885 ++++++++++++++++- .../pages/apply_normative_models.rst.txt | 369 ++-- .../html/_sources/pages/installation.rst.txt | 15 +- .../normative_modelling_walkthrough.rst.txt | 654 ++++-- .../pages/other_predictive_models.rst.txt | 415 ++-- .../_sphinx_javascript_frameworks_compat.js | 17 +- doc/build/html/_static/basic.css | 68 +- doc/build/html/_static/css/badge_only.css | 2 +- doc/build/html/_static/css/theme.css | 2 +- doc/build/html/_static/doctools.js | 137 +- .../html/_static/documentation_options.js | 5 +- doc/build/html/_static/graphviz.css | 7 - doc/build/html/_static/language_data.js | 9 +- doc/build/html/_static/pygments.css | 1 + doc/build/html/_static/searchtools.js | 267 ++- doc/build/html/_static/sphinx_highlight.js | 16 +- doc/build/html/genindex.html | 49 +- doc/build/html/index.html | 71 +- doc/build/html/objects.inv | Bin 3947 -> 4330 bytes .../pages/BLR_normativemodel_protocol.html | 1513 +++++++++++-- doc/build/html/pages/FAQs.html | 54 +- .../HBR_NormativeModel_FCONdata_Tutorial.html | 1816 +++++++++++++++- doc/build/html/pages/acknowledgements.html | 48 +- .../html/pages/apply_normative_models.html | 233 +- doc/build/html/pages/citing.html | 48 +- doc/build/html/pages/glossary.html | 50 +- doc/build/html/pages/installation.html | 67 +- doc/build/html/pages/modindex.html | 390 ++-- .../normative_modelling_walkthrough.html | 631 ++++-- .../html/pages/other_predictive_models.html | 386 ++-- .../html/pages/pcntoolkit_background.html | 72 +- doc/build/html/pages/post_hoc_analysis.html | 67 +- doc/build/html/pages/visualizations.html | 68 +- doc/build/html/py-modindex.html | 47 +- doc/build/html/search.html | 47 +- doc/build/html/searchindex.js | 2 +- doc/source/conf.py | 1 - .../pages/BLR_normativemodel_protocol.rst | 4 - ...HBR_NormativeModel_FCONdata_Tutorial.ipynb | 628 ++++++ .../HBR_NormativeModel_FCONdata_Tutorial.rst | 2 - doc/source/pages/apply_normative_models.ipynb | 793 +++++++ doc/source/pages/apply_normative_models.rst | 369 ++-- .../pages/apply_normative_models_ct.rst | 624 ------ .../apply_normative_models_29_1.png | Bin 32916 -> 0 bytes .../apply_normative_models_29_3.png | Bin 31992 -> 0 bytes .../apply_normative_models_29_5.png | Bin 31880 -> 0 bytes .../apply_normative_models_ct_27_1.png | Bin .../apply_normative_models_ct_27_3.png | Bin .../apply_normative_models_ct_27_5.png | Bin .../normative_modelling_walkthrough.ipynb | 648 ++++++ .../pages/normative_modelling_walkthrough.rst | 348 --- poetry.lock | 35 +- pyproject.toml | 2 + 83 files changed, 11867 insertions(+), 3882 deletions(-) create mode 100644 doc/source/pages/HBR_NormativeModel_FCONdata_Tutorial.ipynb create mode 100644 doc/source/pages/apply_normative_models.ipynb delete mode 100644 doc/source/pages/apply_normative_models_ct.rst delete mode 100644 doc/source/pages/apply_normative_models_files/apply_normative_models_29_1.png delete mode 100644 doc/source/pages/apply_normative_models_files/apply_normative_models_29_3.png delete mode 100644 doc/source/pages/apply_normative_models_files/apply_normative_models_29_5.png rename doc/source/pages/{apply_normative_models_ct_files => apply_normative_models_files}/apply_normative_models_ct_27_1.png (100%) rename doc/source/pages/{apply_normative_models_ct_files => apply_normative_models_files}/apply_normative_models_ct_27_3.png (100%) rename doc/source/pages/{apply_normative_models_ct_files => apply_normative_models_files}/apply_normative_models_ct_27_5.png (100%) create mode 100644 doc/source/pages/normative_modelling_walkthrough.ipynb diff --git a/doc/build/doctrees/environment.pickle b/doc/build/doctrees/environment.pickle index ed234a5f140bfd90c5f1fa77710be7a6babfde7c..36dff56fe43cbfd5ee630d3adbc87e6c122c8b50 100644 GIT binary patch literal 343429 zcmdRX37i~Pakp(*+SR?Q`_{rX#>r@Q*S zdiAR6)vH(Udg|;KUUO0Ut>+4v0|w{?jm=MM z+}Y@NXIYg>W7wUSDW_{y+s@>w4R@KqQLp6+1F4Et%NBAY4YxaWvQ|Bgx5f*Q@xsA| zJNvPYU3D7ne5aPnmooN9*+%y6sE!8B#TC#2KJJ4b7>uwE?SMD>Ld8`vA-p$BI;2cZK9BfMdB@wmwp^ z#%!QiYkVLS4r+}e3)YBT@MdFQ>&2o~ooKl01Th3GmNQl*#|Yq$4R@)5wPaPw1-o4G zLdSFVnRGd0H*B}NV3o$|AgAG8WFy)9LOE>}>=bxOHFvxCyVJ1T#hjHXyM(;C64*Gm zUK>sBPCCTW1tmz|N%69w5xq{mQmNXGlR9HnOGwVqRk&;$ZvXKrv<3AYw-fscxl#_r zCWh^Lwd|yGD8f#hl7gRuie}5ujJ}grZp==cz^h#yEmt#FC5B3ws+~AEkT_~pZ?9V= zXhyFnBb6>!CaSryEOck(wyU>Y9hiEqPLht%XNZo5lY_KvJRHVdo7)YwH9a)=5z1!`fZ&1)W zREs!6uqCx}I#nK_rVgE|RdWow(GN{IS+IyBM5~#TDHp9AM6@1xim6dBp;WHfsj59{ zqs+7oCA84w&$$a&My@@?utk-LF|ue-)7k`RhIL@p4vjerJt>f`C@F$hrE&?0diA$* zh06wvTvW4*70AkVn1!RZ(!-kdU`lcNmC87F>W|FE+ zR2U;xfL%C;Im0Y1b27K%d>cQWZFs6`kgoIP01q%)DZqyvC zg7JW2aNb>1fg<B>eT|!cb9UtN-lkRf*2^CQ@OEHxoQ(F%e){+ zVGN3h4|7WOA{pCr?o$4gf_cMJDq~k*6%SwNE);OIWEe`;opcEkh&rC+#xQXiiJZ4E zG{=Lvu>l5}4J%9{>^?=m3^b2yT5<#y>ooEo$)Q&%jnS97yS`|h%@t8NY*oo3txv(` z;E!Dz12MzyVlve!5Hy0;gEk4Wdl|^S9c+h^F%pN}`7#|ZQ}A@)-~^pM7)E3{Uocx0}7!bD0KScp2$3N^fiyZ)5mo<82X3h*rVuE$d!*Ih8VL zK5Q_9Ey~u4g;W|Hkp%U-t9VNVaIlgt2@hicuVf;-(N@aUTy3IpG%?G$3*Amo>Qo6W z>Fk+Yrj`{Mv;UW;w*?oZIhDn_3mL(%Z=wav5_Km?y#j4f2^@4vU}~4Junm`249!1< zW=y`rId>Vu1{ydh#Ykx!zCiGW*%Y*3YCX9UDLZTyV+C|D#k&jGWrieUJLzhU**0Q2 z2f{akDH(x}0k7(Qx0j_n1HPb9ktqkhdFYjMcOabwcV!+!F4RH#OVwH?B|wYycV#h` z7%)R!=E9VfQ*eaPgdBmGTkK(XF3Um*V5%UzBs~sP$Q@b0K8;%AIna*wwUE8%wcyf0&XjV!R;iN@B>n2y%&#V|gqf~#5$XoV1RWZ2 zl1qbkrqo*r=gz%oAR#ddYGmJlw!j4?;6_v9MM&z?=+x2Lua^v^p+H917r|=Y$VT82 zlY4-q>jaTd7wUOgzgj9w7c2V?Q47{@!aYN$f+B`FFLtEJpx_<73?<0Jn$dW%;XW!` zt5uvmgM;ZzX&~=p>_Tq5I#9A}gQZGwP^7&9ZPnR{#&I@TEEbY!q6CRyE+sOfri&y@ zSVQUxFS@lKF%)eWy^RRLxF+DiEu69!**2;^RJet5y+ub7W}v#>Wobh%85r+)&63 zl&fP%KA$|?v(kjmf#*D3CiG0XdYT-;!?R7ORZ64tCv&t)qZL4-k{A8uCJcfSt&)&m z&4wA9-E}%m6*>nqQbcDUNxJcd>id}6X{O^t=X!|`@N#$9)Ry`TJa(mARXCiK72WU07dIGdIGMB6av9h84(w>P_%+vX|$a3DtV6tdz4H9efrxg zzZe?aEyu5DoAPt149BBpIar8i!*iSfXlIC=ldTh6A%XP^oUvlLW z;EJ%XCHoAxf}YvExL(2#(p}2HG$vQw2W`g~qut4M|Qu-dmZjRJg0*A71ye zZ_Tw^M$n-8ZK4lTmDfXw&_&kAKxO$f+rQoW zBv%^D<|xFC=%P+aAqa{wh_t;bt^9z{pH2;CQuKn_2Lf)yM>GKHyL!o$;cSGb#bb#J zbugU8{Fw8|(s&(M4JT75-9vQKx1(2rU|9T(MabZV378n8%|^t_8izMvg3a!2jWOOy zjYFX_++E?Z1$U$QSyqmQ-i5NoLdNHUlc0l5r3+<;x_?xj+#nX_B+m+Qcr@|Z>>ZTR zH&j1Wv{|SI_5|*uyTB?SdNE?d!yx};rA)=KsGtw<6mw_MPv{gfh^akA*d~sgnb%wi zv1Vv_CaHjRcdf(^N~i^5M6AoeFhzbYl0%#;Qa8jbB&!)wPwfTsEP%Rmbx!wEnNfX* z%}`@=%s!C!hoBGzsB|f;Jwq1I6y_PM@?#P4D|a?)ws3@G5)pMo*ax0X6^4C{{30q& zp=4e~V#jLv6&(SxjANpJ2Z32cLdhUIR=;`9~K*5obfR@qh0vK zpBBn*%sYel#P3oGC));EXhs8?qre<@3jE@|&797AT>9jGdfbWt|E%N) zLI?9tQRtnAn9+eOljsE@5|KMEnJkr)qtHs45m_RW3Ad7$=C1I9L7r8lSS1Ea3NiJ) z)Yxme3Rg2eSp$*rDT>vxQ5{mOGgI((fc{4| zB)AOgJqcJ)Sxys>j?+*{#5+($(tP%}*90ortWZ!mu{59-3YdQd<~H4xLZ4y%?G#JN z+!WSeR+!&Pu;48|*$Ck4PrYU?*8GTBtjY+F5i`Z;)<$q1aS?}!kkwdz7Z?nlVAh9N zq7$&$7n5fglceCez&TDKR+&O{xlq8P&BcL?m=DBvX0=#lGdTP$#L{7y{=g@5$i7r)`$TV0P%$%^O6&q^UXD#w9$yn(U1Jcoa5+%BP zGGuDLiFMeXlpvjA8cRGtSQjP*FSJV58~j`5Nh@4sz%|ohM}#6NcWb%IkiaO4iIP(LSrQNJ!O?pTQTPdzh2G_i*AdYHwA(t!n_p<^}`q`_-L6;V)`05VpS>) z4M4>F3h|2v?>$lZ?Cb7q+||gwk^UmylE(lR6ILW0rOIdbi zcjbSJMvlj8Fo}CHIZp(?HoH6j2M*tpeUwb{X#IFy_Ie3@%&>ggoZTWHugqR0A8*JG z$;Z9t+%6GDp;GpplOGOd56H*;`tio>O%ghg9h8rUvq$9P(X1-_xO%$zZu$9ydOE3| zPGuh}Ki{H?f1G;y^X%hg#s4Dve`LyAv$x5|zs#m&0&7@4ji~%vv)g3Kv??=`wPngt zMdp}#%BqC9Y+mNRdN_MMSadpDV82C`x^#{K%GnD0y**oHzm6iIcKAYxq@Ep@k55qu zo~lwlO~L+3k?{2FGh~)$D&Soz;j`4!-RkSP>^(BeUuRwU_##=1n4F=&CwIp$JFXTm z$n^{6@&&nifmQ3pYSt`!AK3Ad?0xL_rP;rsUpbSOtC5qigMs+080;}Ee8}!%Fg`t` zg1Xr)3@WC<>LZ8`!|2PzqJgO;5ZT?7I{UKh{p|N|#qZ0r_sgojVzYdDrFwc*_SF*j zciGp7$NbOGrt&|>ABO79*?*L2-g0=BeEcWH*niHxRRZ58xtV?Y;R_`2U$XBoDnjjD z%uX@v|0)Q5m-u}k`)&q*Pxif18{e0GzkK{a_TR*#oR4BmbswdLHTi0j1TFhWNOy_{ zY$Zk&(q};>64tcf&3;I=zz=6XB5U$d1$=Gx?gjtb&-c~S57g5Svk%G4Kg#~6eEhNc{&4mu68KYv@@LtfOW-fE*Rz)PUn<8hH95b^ zzC)(_wQBkQt?Kog>~H1g-(`OU0HrEUh?zkj{wZ4=LPgfAX-Szi!{Jpzy~5&)WGI@ zyDJ$i06|a>Ll2ml#r&&OZZg_pk%~JR z&-0g4qAO&UetO$1-?q@(mGbQ>dP~Z;0eTyhZ&%~t@P&+qt@OBoJ#M4N+3ayU9(kR2 z;3>Zoe;E84JZxr9yYZx==nQf#AeqTqaX7eQJm$7P|Eqv0ka8CXPsv%9Rr z7fPu=N)nKNw0y!cMub%mON1|n0kN2jR;G-_y;(%QS)D^tjDB`k{?llX?#5#!n`S8N zgb`~=lt&ZrwrO!1;>|~MPTDS@=f(VpgSDhwSFZ!D`RnnAvGXzXc7uEy!UGq`UV`tF z@cnq;Oh2Gf9HbOC(jU>#Z=&Zz2H?-|Ec?^^Vft{y_k+ zX!W1O8BDS@rLv&g4ZQiP`QqT^oJ>|TzL@cK4C^XT8&5swGri~rCpdAQj9WU`YIJ)jd+{Hl&_;|`EmLqcz=eT&l-RU zJWEcvJ(xRaiiwAG!f7QH%Sz(EgYZ8Qe^|495*}o4p1;$0aTkjqcx0DfdH_#0u;rhE zm;6)d5BHJsPow9*G5}Af=V#y#qwAS?kRD3@F7xGClz8;SJLyV48W`D`R@$CYv}p42H@}UtXTCr`tW+=>p#--TMWQI)AL&mz}xVw zoW=ax@g|+f{J-Gk@B&HOJMg9odMA4kBKTLlC=>WDyyPFCKjQ1V>G?hMM^y5?cvj4L zAH9&wF%L%JT@ju2%pG{d^M1ng0sLW#@^2=t57MU((H~LLhw1qv2H>OgY%=^~1o$}q zFl?Wow+H3hC+Y1|^6k^~_8Iy1Sv)8)e$IUPcS`qp`XlQ9MLetOeu+MO+4%YuJS#+B zHIshLeEGVW>>K9GH_exCnJ?cqU%q3$eAj&W9$plE-#1@=V7~m&%<~Xll*E5zzWk?| z=g0JgarR+6@s9B)lz_p0N-)W#U$Yl3w|afVUC5UeVKE98EMxt}g_tmA3ylPX&#Kd` z!W=B2p&5x`w@djfi}+OBfC6+K7w(MOxBCw6QZ=QGz zlcNq>1|a~TiKDyM?O}7xm`$QsI`fO}r1cdvSB7 zbjq{dlxu=@L#MBM)6e6w(chow{k}l*U8i`mHwE^`XuZ;@&UjNTkmAxQp5jf>H-$Fo zjCXi5u5HoGbcU)o!|K3xr;|J04{0@etKe@e+4};4!@e77|UKu zPmC9@rzcj;H_{WU#hdAg=*<5U{*d`qTfwL`iS_IQd`XuxkZv5F<*pJYRsplvONVK3 ztf0HlUD^CG$0u3no7^R+GGY(q;kjzxqy+N@j`XXWaOnj?M26h&C$rHy*T&(C+~rNV z_yV5B;fsCc)0Qw~XeP_4WdP3hBl7V0!#C715yba^kfB3Q#8-pUG?xdCg|FBdgy|YE zg7yl~3~N8u@W7oLw2R5T2n&N~f*b2K)#?!UVi-~E-RWWT-Fy`$V%lKnId?hM zhghevO9ji~Fs+AOe{2^VW{4};O+`LBTkk__viZVcfSmze=K(Bc#dgz0l+u{B!}6Ev zXxhkoxy(yO7z^psSok=QvumRa0kn6Jq7j6N@_8^V%9T88xU+-qB4l7At<+hXi6%zT zw7gRv@j`pWWIg8S3Zt}q`ZSWx%Ual3$JWNu%F7jOi4SZI*1KWp6xNEec~{~IH|{RPuJf+{|HOg()GBf>y@wLNrIh>d%Bzj#~6x`zQH|R^Z)y@uM+d7 zaF*`r`r~DnvxFf$lY6>8`qP1L5Y{L@#ywrL_6<@lW?Ap)`uAfm`WfEpw84{BbYouv zZOwG&!}%#dfuVo&CKmos8GF_hC-SL);x{6AW!up|!tg zzzz3gq^#ckIczZkw(!7-92=DDCK%Q|(Xe9EHebcjHc7hw9i-)h>sUl7xfD za&8(J7{q@DYBFKD@*vrb9QH>6`{N>E_p;GIjOJw*21l$3+rc_chWT<|=_TpdqNB(9 z(1KlH35VJs0X{6lvA%U-ExvP#tD_eCo^FE%gAKZd96h~b168iTMR{u*r8uXt<-A%N zWQeI(;Eiq&`rGhtd-Fe( zmWOBb`LTRI=%63I^_r9@b9dyd*NUw7<{uKpZ{s+;zOg8~3Ap2$)YU;8*uiVmG@yL0 ze{={?t8N#cM8}P%pneo!a}@vFM*c^l2B!q)Rhwpd(mdW3RcdM%zEs<`OXf~DTFxbR zTG4Lr7`4}MK~F2S;O(x?pxxdXv_jjbn+ZERL+v((_TKz|igvM|w~H17aM2!GecicD zwu83NXj|15nw`6(B+);i(vzjQR`s3Jf^MtS%X{+=3o`$blNlzWDCiB9bnDeAZshJ|!yp>69N;Ad z#}ozb79X))d)qZBVTanrBfOEe@rVjyKrhx|XD}5Dw&s6{KQvr(7h-cZ?WD5`XRHYa zp?!BniVlCFZQvBnzz#J!&LnHoQukGSkvM(uf9x(|2O|waL=nG05$?rew8+Yu!@?je zrjY+8eWid2_n>JFJ_eGrSqcm##bIM}tJWDl5ka#a-RUe&0)yL&)g<}hiwXTH+EnQVV_a{X5eu~EO(x--!)TTa?{}%E5I7;I6%Adp|CLmAY2UU3-e%v(&*$&=P ztuT=oa!%Ws#LcvymyNwS&G}oAE`J(-KyUsw{8BhIg|?(vCYD15I9BQ%eAx< zd(o=I9HB|YJKLm!Mu}5UF^CDYS`t$r2{{*;D3=mypp#(3Aw;?peBY7d5z&X+q>qM? zQ_y$iE#{Obty~L9+rPI-8x0U!)5c8l9PAw|W0)>&xYx+-KXCL|;@EIv_}Gb~L#Gbi zav*W^*!}}Y4h`Sv;omonv=k>ZQ13++~9o+ zMAQw7`!l@5;{JmF{F49tn*aQU{cwwG*nb*8wB{SL|8tLE$82Ih^`EA;UpU)qZNnCx zzW^Cw?#b7iqU5RjPPw(gBy5qFu-NS8($iffd3_xrc$1gl{0h87jH~$18ve76|7>7C zqT@{91)OBFkdyb}J0D9+Sh2Kp)W+7*61Ni$^<;F;1eTZbW!DI&Gkap6NicuOWa|J5 zGkVwd*qT2Eb*zun-FXEx$tLfMc|Ku0lZ)9R50l8fULxc9Amm5nLpTHTPRL^(y>|9k zn?x`NfI9Phh#t91%=&xU=B;f~z&c~2;;@4sH-K*(<9!Tc{ss668k_a!UxqIj)A6CO=Asz73Axe$ODB>pNEnW& zaVQ%QcVS4%j>WwVOZ$Ri_IJ@SykaabPqNB?3M5)?x7ziO1teW*i=Xc3F20ek%1B_< zQWd9K;LshcaiZ?cPsHj;mkWUB`OmO~`G@dh>@4lm9XP2v#l3F3*3RU~GJUo@(5@s?ez9Z$OK;lFJW@ zL!J|tV>2ZVVM^>L!xyE#zt{C$dj9L%KOA-q=Uvc-C~GMw{p8D3DMg5-9F%Msk3V`k zI|n-$hFhp}+n4Idh#@+l?zj&NqadE z3GH4pBhoe}Hi<>eD~t%{U5!MLR#T}a2R9L;`smMP^ydov@v>~mFF9t5dYvGt0)Uac8$@y(mPZ1hz)&1sQ0_;Kk za{g~yeRy@N56sgE8)ZEN;-DDm zii?8U0q@MXSfjf)c}>Op+o1w}4GSuszt-4#%5YQH^mK+)p{ZKr29y=c8PqLuEkn_= zMfOj7le}UtEX`pT!GL%mK~Jr&7RQj4V_}DdwCzWw&c=Dlb&R` zl(cZ~1rBOS3UV60#(Q1+yx$WSg>E+2aPdvI-#$20V1Yw+dzi@@Au0#wU}MPy_6V^n zA-uv$cT89Veb}@^2l*0R0V3mMB_&yYp*~xMQO3VBeRg z3EkB(sr2^Ut_sF+(^RmpwLCp8*EHjw8W%+~<74zwx~t>%G6o7w#j3a!5soLD$2yN) zUCRY3@0li*q6$sb)x9e&)3gG;gQ1Ag)y47I*_>0CIKExaV|XW~Sd3&AmV0_y>UScu zRRo??aoj8WdSsRbPZ;^c<1R#}DYhpO@xIpnmFOiebxzYc`+O&kILEYcx4^7r_{F#~ zj4|x`Hp&VNhB2`%M9l{>xS^$xJKgW?02ks0w`lPYQO}>DL@v8|KoQNe3oEI-5*o#Qmv^*4hzwIVz?*T1sO8c6~90@D!6<%q} zD)_~{BRUBo#l1B$<{20F0upy%(;jPI*qO-u2rKMmUSabJ_(g3+Cm^J#|1vV>85i{m z5;b;V(}^}%gC8jLM*Bj4US!UM75WCR(3`8`7yomjlM+(=e;pa~jEjFB6F=5lH5v8y zw=eSdMCL|VkuPZyImq{m`CZYA4=Lt%M8-VhVrI^oSP$AH>7TYQ=^saCNLWcXIcuT@ zeqlcpoq~|U{(fZ4GcN2^tWER9zc}3to2@c=T++}a_qB7|cH33~MQ5D!L{kg*RmQIZ z%cBz$QU#Vo#@s>$Vnj`J;DwL;VxZ8YhR^fCW2<0koMHat!-lSX<#B|&y@9w>?JM5R zktGt=;LPvC!4r~dAx1r6H5|R%kUDmlVU7`-nf`ITsQmygMQ<`0Pi|jwPmIpNz(u_N zn9O2Bazwk|LY$3Wc1Y>fBV+bih$=&I9!K<2%o)F&-vCmCHM7&?n zuZdoGNI}0UGUgc<^a?3x+$fZyv-fdHl+)C(ztq0KzYv)-VFkX*6u4Olzu-R?orsWv z|8!)`Ed(E<1J^zP?4Zo8v1Fr)*pNXsp_|KAzC=#aA878$e8It(%t=db@?D1;o) z{bxZ+o87-1nIU0&1L@|Wbq)mg{v*-L4k_kTWXv-z=H)`nX203g`MR0KaWtcE66!!jK+-92zp&1^WR16}|9~ z^7~n2%swmeFhg_E!w^Bf%r+HDnjy6uhl{3I0=b zE{1dpmYQ}05)AeW-WzV~`R>W_&=SC+aqyo%| zjJbsZ#OUC)kHCA67$|1YN1(Zall7vhZzTC>u85q(jkaGosbieEh(Tff#yIf?~%rA9Rbi-4jt&Sn=m zn?$j%*Z)&w4ZszPq4xg$55xRO==B$(=5ps;lZ6;;Uusu%Olqt{FlhHnZ*%mrLrU-R z$e4YWp^u?BfBpUCW1`j{er$Fdf_1jeKIoU85i^d z;#J_*uXF8-`L4+P2rFjh#cR_2LVkMmqC*P#sgW_yxRB=&r|4+yrk4En_C@^9k+~68 z#B4fV67Co9KSnP&q=5e+GUgcgt*ST?4;i zSrMIrkQ%o%GG?E~O|g$_+GRbjg%5bBeMujT%#E;CWvMA?adL%U&ikU5A5zXYM8^CG zkn^}zsQXX&7;j(BPGoMxlCz-SFXu}1@mp;GaValytZ|$A z=z5{n+&h1xeNlfkGDpISdZi(1vkv}N{iWzMgp~IeB4eI$dC#j=t&%fpSDX6g`8{oW zV%en>fA6dCi3%Xv<%UTW^1cegL&osl^awmqBv7t!vQ@3!b= zhm`MNWXv-z--WpNB73H4RZ^v5Q&YCv7xPGDhJ+RKMs2p)X+F6Aw=iJT#V__$bXr1+ z{np5sXI$({(pfuwI+ZVvq;OS4t=`;aKfit1KQ}U0!pi>AAlWxp$gcoybb>-Ez`4kn zXIudmD1J4I{=Mys{(;E+2rK#xlZxK)3;mtZNeLMyDgBxbu-Q&$zhfRqblMntVj*NN61-`gy*Qz-iQC5uFnw|DfwlDRMM`lS_sc#CFx=|ay=syyj znvkOZU}VfQF8cY{V^T|J{f+(i?Th_4k=YSe?13(vs)=9Zzlu&tNRj^{GUgc;zbQI7A%(voGUgc<{$kFp;IQne_GN!_WR`?& z^MR(`QyahNhoe&yQuK!-W1ex*&vPocF4S-7pVq$ApB$MRVWl4E*2#+a1^&e7goG6M z*~pk@T;Pk+RU3=VQ*;4&vsd?~_J#h2$Q%hP^p$`nt$hSr>JEVLc9~twE%Xj{nYL4bia=E6K z{M`11>_%osSRtD&SyjN_lFvmaAf%-4ii|m`q^JK%#yL1l;l#lq&k>6cv@hj%MrK7= zDbMe#j#_lo5>YMqr*C9@d-QTc3iqEG=10P5OFg{uEe>4zLHok{ZgeJw>};1B!jts- zh4`)L<%bmF*CS*0wa~9H6zA{IrCuRzIoN2j$V->C?L_wgMQ5DoWu~}g1^n_}7@dHS z@}3tN^Nh=TxsW#vI$B)MctiU#zb-Ok!rJFmrp(Ps_~pJQIuRk|eobV|GcNbVLhgab zZWY^?cs?>q!b*IJDREA|U)E#Miw`O5Ok~V6E^9iO3GPeK>02*tU(zp*%#g5>?lC1z zM~C_4+=y8C3+G>O;RW>Xwno@=jbl z-YWP7ekwW%Aq9SOWXv-z@cE2ePR(xKs`9M%W&MoE>n~dMuzL?(BKpLngxg!u@LWf#{etd} zUVKPF&yI}w5hCbxZnV}sMf#}r1-&~mKf<(EenIbyUVKPFZ;Ooi5hCbPfS|MO z3)+s%k9dM+>WM+hw@?wwOt_1YX&y8Mo zND;e{G0(V&my7Ua4m-ziPQ6{l@z714*azAd_j@BVCak#EN^u9&!{53eh)zdH(Z4e? z<{20L96HdfN!CAWU)B#t=0sRoE3caf_Y3z&(F+bK+#f{7JmbP$z)q_R^19cpY}@Nz z4HO;rx;6QJL9d8jd`Lkrjg0vbBIqEm`%wFWJ{XxFVcW9ux|yI`c-{M=7avm4H$=w# z2oZFU*FE08pqh`7lipb0eD`n+%3)=lg z`~K)1_;!mA~!c z3of{`(VtJ@_qImf;y-ErWAmRe_9H4nRMbcEKbUpF1ugeZv|LOdXS>VeP`bPP_`cy< zxm-A%t0neY>CPS(mv zMMP2);Zx$*w9n^P#YLeF(aX80UV?_P`DqO@MJLfbve)NNF{=|-APe?m+j3>rFBP z$0LAGbW8vX`)IFpQWolC_($V%OIwW(#YNF^hOgO+Q$Es(x?_#miT-rCShPx+1k~T& z>|y^;JI4OieRR-BI>|^#3JQ`$f#1gbI4&QxC?1N7qT`}i;Sq(CuI4H=JL45Y@9L-? zUdZ0kUG5QsEZr}HMW7&>gD4u57Qy_uC^{~JE00@M3+MJ1at=CxgxD&F)t%HuI2GH@ zpc}>)CsD6>n#Ycg$>plPib+#a(?mT6qX}Iz(Ub&DKI64DF0Zw?2I8V<7FP_!c1GzaCWaCeCs zOSxXF)SEi(v(wZpsLoS4_w~4Hsx`gJP_%UJTl=4}2S`g!-f}dNE?AC}8_lJy8cdDH zuDrNY40M7$C#RM(q&u)mav?}C=NHP zGqRwO1tVv>`X6eK3grDh|XWF-1zbb0$S>Whm)x10nQ z^K={Ez2Ss8nPK+yo<}++)O{g^I+>yN4~h=Om5esd2jik>7H$m7s*N)@12Ir&D!6fu zfkIQk-R2l5G!^BzeH~GOLD56!cTjZYEjg!d6>@iQ=dwH+c0hFRG_@3}?^FY#XUA1h zt>yPH6fwG)*nRq?d#kvj9I+NFZ6~m~wrUscgzi<+m_KS7W4^glEOjsI8zEv4WC1Zr zL5$IV2x5GF#~a&c{OjW~K5qZM;eg;ZjuXk%urk|V`graRkGcPJ$2h*RPjXq3VX&LX z@bUV=_IdrWxG1#w`Y;#QbobLrC?$IgmS$3+{MUI9iX>wyq5Lc^N44d7I4+82p~UEx zbkD|{VGIa&SH>JkqEaZ=;CYYwZKc=m-n4dl#y`G}$L;GIXQU(=9h{U+*CU|V<{*K9GMPHhip7fUPGo3?m`KMdy z^>I-&iy%f5)2) ze#3t1`QPDpIJTQOfkcu ztFcQw$8gVhR$v@w7-KlQF?_BTQtZ)-q!K4<Z@wlsqt*vqAZ`mT!OqZZP&uhmF$fm>*oGT%M?pOknE8!aU zLcv&a=An$TI>uVYX>0Lre_supNM4U=6L ziccaVSK#xhGeaj2C$@TZrh8qJ&hRwTr8BdE9sw7oGfNT&*-9-a3#NXV?s$}h(so8k zR&yoUDpqYlJ3s(a7CA)JT5%DhxGk;t)Bk^3vCXR$*9K|Dwms9O6}t?r*q1n7wXtXg z69ZVXnl6hOgA}b95Hkj}#*C&%Fb!KNmmFMipuf>6TLT_7BIKP>qeEPcwk5HXn*O6^nN60o|$?qAfn&E4hD2PJ9rln0DTJ<0kRg+fjoHnic7-JCEs#OU&9n_>!9^IiF zozb0*Tz7V=fKQX+_%-CiamA}Ott=icS2I@WJ5Rk&E_x#O2&O25$u9&FtwaUUe>^!}zlcicj7A;i8nr8F5!pdj zM{HLC*^VBgk#&+ZCne2(?fXq!)zRAbtGFm;PW!I$YTv+m5?+(`T{CUkcO}rvVcHFe zL#4zSEMChdvJ;g`IgMpISTp6+M@DmYA=B?{PGrhh9Ld#CO#G?Y*TRH%uNh(PjMg3C zT6Yabb4f;S(jYe}$xTAxKrMBH&^|F0rKV>K6MlW`XS`@@0C-tk6f>c3OHPrOy*tr= z?D(le$A*WFZ1$>Nib+tY-U>vOe95P4Sa>UA8@GYG6NhNE7+JIgws_S`X8J-Xy2juYZq^t32A?-4YkY%<12?E%onSCc`HE^CX`x{d+cJ8`rSN>Xso)s5GvkK{nwy^P4cm7DdP{2i66khkt zwnWF3*W@^HqjK-zYVn_wP1?2I>=9$Sheb>0vH&}6aP=tM=b6Gq>79aSTc|dHb7y%S z3jJ(c9nfm@skkV#+&;nCKi#WkR_$Z=)+bKUqOHMG2rnj1RtmYM@Uy;yYf=mC`wKGWTJ!wOpb;|Aak;;3-{| zk?7yM_oR1U>*@{M8xB7O9kLN%c}hhRLz{~^G0CbTCOI;qmZ#{3vI6v&%TvNyy1bUp zQikIEOeZt@vi2ZO**JoI(^l1F_E9>|z+-W)?HIGy;S`@5+q-R5O&+u34E&DKuJ*aS zJuV8}3a;jYnr?HnawwgySFQ8}1r{+QlF2cL*Sjq1){co{Ri7owr?{a!sTPwhela{g zE)TV`-x3!^$HlM=wkEN!TE^~`Td-mqJGYwmSU#m=GQght5ht0Z!jm}TSQhT<4W1O2 zds+Y!aZxl2AcjXq?i8Q;<~A<|3Qffn&Oz)xY2&_fsbr^XWvnNctq}`qnRUcMO7Cee zZ|ayzB>J#RP0*oQ<+$xX@J07UZ-^^etsSppC|dSK)40BckF}QVJAQQXM)#?Xad>%O zx`K_(Q#QI!w9nR$#zmpk{X=n4=tjqd+sQ^3cf^xCf*pC~M8DrDxiWEND>*3$`c%a( z8m~k6$Bya8mOk1wS`P413R}r%F-Y=vmA{WGF5MP?6BmV6nkj5#Y;m2)We|1?7T2~( z#g*9DDgS*-UzMl|64$mV#kC$}wduyMiHoA+;@Wipii}P3iDA3eLTFnDk4!GNeI1kA z_CA}Fmn_*qLjp9m!qfu1AujiId%G?!ie>@Eu&^S~^yBjzXzDlon|<(Y*trVBb{$<} z8qZ$A31kpWq=lRW>jV7>e`f)!z76cBsr=Yr=MNRw*FXLhBlj)(f><@+20KLyF>1 zlT-5Kkc2P%`&Lwf=7DA8Yw9)-ve~&e_3=|@Mg+Y9T_~+;EHZkr>9gfYC(;el!h1{m z!h2I(6wgLRu0n5!i6Uq^g6ont@l%UIXtXA$Qx>C#bVjVH^+zwh2PSkze|q`3m1lZV9K28_cIk+xt~3ps4{uI4cRe0c(Uf=2j0 z2wK?djn`eA=oGiF!ZEOH#|8W)K@}RTpeji;@pU$wCZ8ZK1YxG98(M$0IsMO_z3z!Cig0{J4_b>bGW_+UMPdxG1#wSQ{6`7a=!p5V-`~GGc$= zO3*489=px0fKLiDV(bU-Zx=ZU4s^zpt;8e{U*NA7_ahQ)`E}uVTq)>wbd;fJY0x^< zj<$K*k<&3=igvWk&$~+dyeq~jD0vV`_0VriK`07*2~lb9f3ods5Kl z^8$YwS8}@T{g|OR-)(P)x9#XauS+TIR-+gpS(+w`F4$3>yrUUys+y6tfZJ|f%R zmZ3~0!E}41fbF4WvGa<84}(tH!o+AbVULbtn%3LsZs?dkT-j%3GMJplp_U+tb~UiI zDoGX(5hNugNxt@WU0iAD_O^$iIN$AUr?#GyrHG!0|8qMg_1?bbHIRP!yKywV&ucmVTLlZ+=G1{SM?6RT47+P5^Tg2E`PC_++oEZs1HXl2Z<6+*;7$t(0hEVKqp;pJQ=*1E5jVlRlx*p(cd;ykO1>LSW{R5kBJ{Nnn zw>5pIWBlwEld)I(o6|SjXW!T2qR`Fh%UlA}J+u*gZkqI--Pb9-m3$7E^}Yy&w&`d6 zX}b6v!{%tS#T!cu6k6KcY{fvKso>s53>2D*PI-H44`B0Aovq-3yN4@}?JB0j`RYQC zOL9ZU^l(j|t!TjU9v%vO&d7D`Yvvw?;(Ypk{rhdYG*D<4XEx}HmXW{}Yt$M6!| ze!#B+@*T`4VoCv{tvAM%jrI^<&l%gwLu|?Mxb17b%}neV!ledxcx>3GJI35a z*iKHRCU;mk+fLp7qFwC=+h^p*;-b(^?Za_V=%&WS*~z9BSMV#@{l7Prjr)Id8Qb#4 zGXA$?DzK^#HvzHxhm-RD;Uq8L*K7SDt{8Ny`fXekS{b;-iy=v^4BUB%fkIQkUC9_I zhzgt=_wX#NDQ#t3rhoVuZ^zQEOQ*-GQ)L5pEakPO*^aW>94%cP7ljsUlA&m6++%mA zCvVExSlEY6MmX6lp*FY}N47NWSVA~+3>SiD=&+rVgPS>UDL9sM)Nz)#joaI>p2HhS z`14MQ%01baHE2(&%`V0XFUmvEyX;|1aGtlI9k+sF-3OyRsK!O1+h3W>uvJtjcKh3IWvoig&J5y|82pgHhDsT@TSu+x z?R9Er^#5@vI$(S4DrDtd%JFh0(e`(d`Q@|&3#1rrNlqJy3&g-FD+=0JTdFYHk|TmP zpZs1Hm-)H@-N%_9y#d7*%T5**y?PH~Cj2rKwKXU7hN1U%Ofa~ooc6O^t!_q9#6{UR z^g#P^dFSMEY1v!F^+>yqjoa1noPEY)slM4UM$hdl%L09B{k8Vl_vN@Kv|0L(xG1#G z$%Poj&3`7DHhRV?4)2g;(PbTS4&BXS?m}N0 zA_(G61t%!U2=eL6d{EV<8`&KfMaLzzpGj)l9_)KA@qv5droAWlDgt;J=hmdNdKQFL4)156@2_oxA~S0uFe!5A!iMfB2+iD-a}Xr~(bdSyi0 zABLiy}M(wx}3{um!2*qVKHiwlg{4# zYg`6v8U0IK6wNY<;ZSOyln?k~pwLwC0ecJ-nhGAbiGe~>!NYbjP>5)3eX?k5ONTrD zu$P~6Q^<|tdOn+c)8d6-Zh&YCbgUY?BPF; z=0Df7pWwI=)jT*f`zquTrygA9^{J;WOE?GjD-?fVD9&TRdl5Sep6$zFyQod4H_<8H zxr_VQovQ3)a&z;x=H+^nZH`Z3@N!LD6faidSjkYdRP4BcgN^;i#MK^~`DM2(vc=cM z_@uC}V^Y}Ar*0Tw;?PuhE-=+Xxgjn`wSr$47e&W~vR)4s`4vUl+Tbj4&xm5QgCfzx zKz{QOr-B?JqCyx9Es}Ixerl0CAufuJi)5J=i5>`hByp}|lECS`YCvuj?i0XWak-}j z@btJSIxc{oqfPy+hxu>p81sAkiYQneOKlt$uQmVmak-`$|Jt}HI?nh_bh--mg2V04 z)QiOlaSRv^WULg*H3~F(B=PBvN#YW5U=g|ej1qD97tUH#l=#}jgK_z)Mf0(^C^{~h z^~Z$-SYSg<=>~;3{;OkR+0ZAsAGD}ajhA(6`B_|kYLPq~7e%v3^!OvRSNDA7l5r0? z1`18ZZ<&*==O`mlQ6H(hi*fR4s#GtgaGea>B6??|KmSdP5Ds6M{}%uGHvjn!|M@Qc zT$KMF{al>?KKE zD&Dcvpa9dH4%YB;5JKGss0XQVueqJV4LF55*5J}wUn2505c?_O=R@@8H}q%D9Q^5~ zKlA9%0{XLv{`AnFCG=+#{pq7Wm(iaq@W*!C9v1mb)yk==JyOpVGAM*&f39H3y{s7h zM&;=@Dph+O?fbn7>&fPSNz=r^j8daJt&#|q^U)QmCF zX*{>#_Hypp84q+`rd-545cAtndH2FJ@xYyr0B|kkOcY0OMy|Wcsbq7dvjaS>Gmsuo zpXQw8X*Yk5R zhuyABIbFgDzK!Ah?--)RIp>6Jra9;Krm(=KfT{CRYGfkCQbUK9d7u&vDObuWl}qX? zSWzEwyUHVZc03BS>TRT$7u4Ok{Nh2(I58G8#gQB zw#Vb(U(q2hOUO`l4Db2FEb9^Wm$5T{6wl|}xtbfdHQa@aLHh(x8@GW!`81es)O$8G z#6HXFz$=}95DkH<#G53u8@Dy`WH<0bb^||TH}FGt13zRpZfo@SyBAliT(#l$U~Et? z*pEuEwMJNH)NmJb5MO;nknHutHE81;+ILy78}7=zM@}UAp)k0HCRb89H#gh`63YOR zhJ_Nt$=eT{tu)tiKF`d)d2+1r)RX5`H5HO!P+wiwdh6PhwZ|yXU*A5n z2D-jYI98cB%p9H?td?~iI&Mdx7z6a_-9=`q7&%@d%QKW2NM#Z;uK$~MNmeW z##7=d-7_^8Nc^OH0X^Fa*#|Y}p*Bl-=)0$!)keS5oJrQKsjp!@La*!*)Zkb7B6?H0 zr=&}0pfph_W5XqJgRCHPT@nfdIT7k*KqvR0@i-B|NR}8#gvZf@f^Yw1e#q1)L}Cw$ z4fffZUCOksNRL4SOX|tK7IECxc^B%u6z?@V*#xPw1;4a)Zlm@xu?NK#iu1#*c5wTs zW2bQ1;3UY_X;S>zJZRU^0H`%pi!>ri=*haiXjjK35yoO8FQxQkHXWy6S@!DeO`6O+ z+e;m5+$MhD>WN7>u|i`pGk9pB)qrdRLTf%4(vgWhDAv{LrAb&}u#pnVtgK0{@ij^2 z>fo+x3_e#2r%lyDe>3&#su9b{o~c@uRH@ja5-KB_>jpo%0Rw|1kMVhHI%}s-r}7w3 zWBqci-ip^I{=NYG&1gJ@T&cc>LBD=7^iC7vG8mbL{}_fZfru3X58^Gj5ZA8R;qdC_ zsJJws@_W!;X`i*z^{{w@=+y{3i2HAM>LcN(T@%1wk=uiEbJecaOW|;?4Ztb0dyo#` zPyxi{(6pg(VU$7lLz=f993J#ru!9#1MZ*ytBsP`bgLaUEWsO2K!A$`S@gngQFu=cs zZ{k60@!;^F-^>p749ArqQOfKRsn^#)D6^EoQr%JQYiN*Z#xCWTpQm7pa!s;V8DPFv zsFwjVgDjkxtrq@<$_X?})Jw20*P_!_xx6R>JMB%Z_oeuvS0zjwOVtZpLv-;h8fkJR zpo>;nK*J*SGT`f?H=V%&Z7@=~T&VI@YRO6_$N92@s*YNS3y2U zAO*;qhad7`@y(Ndz2TedB-+hhqJe=v`UdHLQ_XZ*jbNz;2FuqMSI`+WmX#XVdOWgD zd;L1O#?h;RLEirw>HX_uI`3i)^p6788>0Z7PG>fG*yKYo$u5$TrKx~i8PQN7T=8zo zcav49WG$LGIc-mPwTY*Ote5hq0W+yb=n2tYija%Sg6C}CvfJzsTy*5#4a{G9}V1_3MnJ!Sgu| zW)3`=HZlWY;ReR0_N)r+HL|8y!T<#6+-NNn0+uiUK`AT(me7L$O$9ct(yHowhOJyfNa7>N)L*)2q^f%2}*?*3fb{Qo{a0p z%Y|*@cDjYcr1FSVGAlE63#6&5*K!zFi9RjK-k6!Q*`zL}YG_gyKQyU}ADYy~4^8Ug zhbDFLLpxmYQ)fT*x_eQc=DPaxrx0|7EzDX@%Erdr8mt)4 zPSZ)}*lf}{Hkove%_W^7i6^(2g$ z@n8KJ1*_EDi<$i0zIp`BwwO8I=Pw{|e#Ol5Z~i=!&ZL-mKkUzI%%YenKjy1T)8vVn z_(4Bf$tO8yVkZBzKY6Pu5;NQ9{MqCTiJ9yRKFWy}nsNxT$zSp#_05Ku*uUye-!uzi zrv8RMwP*grO#5wrT1j}2_57Yc`CJu%@fg7$BBfyjgC{mjO8%2jcaPRfY3j&DPi2IQ z6<{V6DeZ?eJ6aS=K-pNs> z8BAca24;puK^b%@Di-QtbuTg*%01OIfLY$Mpz=b+`AsYZZuu`>uo5F1rY+swT?DEC|yf%R1Q zQAlgFwpLMV6aDo;=!4?aW~QMjG6fp#{Xv-mL(yhYHwNWu4nUh3{wyeiQH+i_o4Jk# z<(h>Er-#4Ck;>q&8E7_~nnA%MW>?+d^3feSC7ehF;7nccLb#lh~1hc z+&N_)9w;>PJax)EJVI;cd3sPD8Cnz3TTf-~3d%591lBC=Tu^4oH;O-cigJTeOTMva zC69TVB|LY^Jbu1Cf66?5zP&IgkK~(-q?&}iBq&2r?9|NkH$j=2LZ)W=zYR(+sgi+G zGs7!`GF;5!q-L_eLo(g=>-o3fokF1RBKQM@WByULPAnj9n7uxGJ&Q5rzeA}HZBcl)F(%4LYeMZw)a&Gn4cQt*b&RBo_kEXBGmFTa(Zu&}gPJi7Ga!s0v6Y8su zw9cwx$({}hs|f5Yr^a^LxbrL3@)+O6%_7Ajcs!?Ijo1Yi5O%xAY#dTXn-B6Cl$yQX zT_}RIg)$CV#h!rP)G1oKgpCjwd>*fs&r*mMn^CZ9fbCjAFd8^;E-PZ*vkx&;&uWZ3 ztKoJdbjwkLkO?{xgui94&yS%fpvdQ_qIvvr7jRMHOcSDoBbejZbl7VnUt^R7D{Rh4VFp4vo)ht1njZEu`rRq1SZbd#2Z#BQv9BU?adTP zmLjQBxN8pT>_aU3%_=*v_gLxErSh4Aof)%>C&1+4 z!WtQ=+T%GfoxwBEhotv|+k4oT7$_Fx`01E@D-@gSXo9&5!~vQ-3G!S)%S6)H3d7FT zWZ*P-sEIpjE&; zWC>-D+d+glSqnQf5(s{j>(#U(C23>}Ac*Hm%3LUBC}J@nt>^YSZlOnAt2JC9M@^7( z)qvwlH-fu8H#a9GiNGXKE97RunDl8j2JUjLPS})`K8^F!>LvI)v`NzZh@DO9qq|(I z8qSJVa1^}qOxCI;a0MP6KBiGWMj%{4pOZOgH5n6#c^YaXDh-)MyTH=8>kdtZf*3{%cM|M|7HYe!_6(MkFn7UzGYRsn;VR7J zfR!`lVv)}1MS-L$48tm}wJZgW6l4i-HY?VUx@)+i24)8C6&~DluMC|IEb(H-30lrI zASpj0lLx1SZzdjINgHsmD7BEI4QXmlGC#0c1uR z*MyTU!!)1=N{rfAkc($NY0XlLYZ_H*$d*#0H%hA1?&VZk2(+MJo2H;vt=l+&vsz>Q zF9e59$i`koruTkoD5s!?azc4|P7*oK$f4xqGS&-TGE7s~Vlv5t zoN%?7lpNIRN_l+__W{bIlNte9*wK_FSstC#09+|=3JOyI2)cBHPVxFFlqj3FxUlkI9dpbtQJTbV-QlImR7si2 zD3Wf;aW@>89F190$sXe#(4-~FR4q%A2@FmVDJbcZ@mv{w9y>q<&1=-pQ^`${k{xgY zyFTjYC>qfvw@i%=r7lmy3&&zZu#Ml&B&;|SoBW77h0Krc@_m7sfbNzj=+$VG4`ULK z&em!bXV2i^7_L{Yk6=+nanO=SiJ=1tc?)(r6wB<8K3~te zWeZ;*<*uPL!QCkQl>G;e9!ne>P7EJAadha^p<50ljvm{8;K-rj8%em!wrtUkVZy=9 z?Gp-bkN%QmU*N22Z!vL_5)+QAwrr_kyp_0m&z3Fl{;iDYl;BJWf8X#V1SM9O+W%2pzUdw!syQm^p?4%tF2cNHsptMCj_ zD84fqu;b^{(8vkMp~aw@)1Ed#R}J zcB-$ON^dsrq81xjEw)QH(|4Cz!%Z;aaQyTEvA@uV2}NEfirnETl6VYhp0TPKK5`&4 zL_p;@aV48xlld#*-vb|KU6Y))j#aM~el6d-yyxWW zxFV0fWECcll|+Yti(LK!fnw|q|2bW!vsoOvvy^&Kgc%b2L>VdEgRG*vlM-bzC($7y zBhf+V80%|vbY`(Ym*nWA!2xl{j-NVoYn|dXj$v-b*Vu&MuuJjfN|N zu7sqnFUP{sG9wNG3#^PwR9XsG@U#eJjiJk+{TfLm1;XPB;XautaY7|Z^zYq!k_8=T z$2E(GSXHw?7MBqPQW6#sv8rY{Jc+yZAP^iuyaWi00*+E(hgi1KN~h~pD?LH>Tsmkh zpv!8bK9jjNKf5c3jEv~)R>$zPZa#@2v1iK zwP-;&z6BA!@A%O`!jm+XE+_gaSml-8m5IVuk|u0KHFpPNj?|vbEK`6u3tLIJMvjJ? zJi-g`OZUpek*y?cBRSKiWHpE2dJB@awIYdS3LCYQOf9Q(eTN137lhU#oza zs3J$FZxrO{Oglv`wMK{921dz17(Y;buQg#iM3`T0MA%VA*h!iK+9xA*r)0cM^%Fg8 z3CcVpyOZ!SWv{ISSrVuEh zQy6jQiZ#N0I2uNvhe#gc^E4rg08w37#!*RZg@eKBGKXH1TLC{Q;7GHA*Vz~@iBTEL zBEK4AA7T`;!Crz@zHF*gTp4bbx=oe}IMOVoQc+Pm!Q(;@wxen~0Q_d&;UCeDH&F}82ldZC z%NC(>jQ`|T@N$=^Z(K6;#a%XJWRO;yFkx#G=4BA(!_^VwHHyiK5$3L9(m^2Q$q?fc z$;5PnPUdc;`7A%8y-9Lz36ZMWwce^-E2{=L(yW3*%+5gckM~*QQQw>UGh{u`Dl71I zbE9>&ES#x9a_iOj!p#=G=w!;ciDa;DA{o9Q*;*SeCErm939vn~Fg@bXPA-SlIti?} zxS~eb`n3nl?3nMgt2#T-_v0j5Oe2o)hy+HTqQ7OLrlB6XYfNCKG1bhNqS6Nr-p%xG z|NgM3H8+&e72JT;72M!vcas`}H49D82r@c#!e;5|IlxVNh}K+jIlTzVun>#iaBuNg zJ3}vk@&bBy;X#pTh$TX{mHwGbem^v9(5x8Wb;uwi;Cfy#1U`X`>$BVN_!YPb zc?B+Kx6B&p_S~QXho-y_7=-R*CJ7hT%E-C$*Cu!J*tNggD04E}eX?%MD{?_=x4Ko8 zb4tIv`i57e+sw`E9vw2LFo)82GVaiQcHJgN)X(a%RrtaP--`5HiFtZ{J*OMtZc$LO zpHYJNxVoYufjc94lt29amYm2TMr2#pPrCb0l6TzheVeG*C9GnItuqInDYLjxQD5!I z$=<}sp7iEL_Yy|d-#{9PPyjsUdyH-8TYJevS? zE`9zv9Pm5^cs>WbkN|XKef~upaGwIalmqTpfWPH{S1Q1(IN&t|P-ldI($^7y)&u5W z&r`fn0sesl{!szm!U1npfVXkLI~3rZ9Poewyqg2wrvUHgfDaOY4s*$Whyy;V03YLk z2NmFx9Pk+h_$&u}UID(q0bf#pFLS`x6yWO|@GSz+5|RA3IpBK=@O=(=NCAGt0S_y{ zPdMP`3h)aK_>}_ungf1I0J7@&-*LeI5P+r-^MB-k3$B!a3-JUoT&w`IIiOns=5oLS z1z5-dJqpmv0m~F%IR~s#fYltZP65_)KtcgFaloYta2W^mE5K$BxQYNY{gO{|z|{({ zl>>Gtz)lX>tpL|@z@ru5Iu5u&0fsnWzXBZKfSVNH5C0|9B3#RRM0}fF~$`#Q_-wusI;B067jQC_s?|DhhBr2h43h+D*Xehu7Ip8G>lr z6yP-+@Hz!}JqNr|0sesl{!szm!U1npfVXkLI~3rZ9Poewyqg2wrvUHgfDbCbhdAJ) z3h*%wcu)a8$pN1s0Be<><$%vCz!x~+OA7F14)~e^e4PWnr2yaNfbS{5_c`Dp1^5vM zJgfje;eekjz%Mx9SO1T_caM=X%kqS(rl)&)JUz^8@4OKIeC?z+B34RSh z4}Mi2{6={2_sav1pZe(YIE&+27u+Co^3fL{+8@#=@MVjBVl-N(YnFmvej648UWD@p zi1r7^b1(3V zS%F_d0Y7bei7!=3(4fN1&0gY{tOWO=AAKa59=q^Z$Aum0dfwgqW;a0e%jXvUtyuWa zTVZZBadcnzj=!9}{&iP{iKcJX{rWe%*S%!RN^oK{Q4bp#?Ot25%3qAVbe5}<0(N7`DqoMi zTwkurZ*ImaZ!B5mMyzsm$tvH7i|6Z0R!NrX*OsgD&18vgE?MR45wLGs6^b!Gg5&v} zd*V|H)^Q3iU-->{6x3ke-Au;wjpeKTR>Jgt%c^nP{Lx2Ozw_;T-C)Vzk>1{Z^WD2V zn0FtX(3I6X>TX`|h9&(wR-b#A- z|NQIx^T+)2@9@um#y|fg|NMLW^WXB%zsf)VHvjw&{PQ31&ws@~e}{km8vpza{`qI| z=SR2}u79Lk>IeTg9(?qRw|omp7%moWi{Lu_7M*^|2`(;@cgkA9wauW9CL z{Q3o4{>II8j!*=?{T1AJ$XH=yZAJWWcRrl6LA?0&`~`dGMlSDuHGhZjmt$;2to0A% zZ=|_y^8PpS_t=kc!@v0luf29Kos5cZ_uzy9T-|N~_ec0^K!*ZV9-eA8u}cl5`a|sJ zFpFNgWYv(C`Is@u#rRn3ATSya>@Ag2Bix&|L2nk=VUr>qec~nW4976ZzBQdrrk5^V zlAx*r>woJ~fzRd3mxK2Ss^v~ym!!yBriO*Zmfk47W#A{g>zXT@3QyZeA`rK>^bvdi zcCk%R+UwF0pTISi&q8wVHXdBxC?0MUXR*-PY-4sqiWx90rG@Z!wyqsK!v?2TO?M$c zeBE@QFSjVvjo95*f#kE`K^zT!!aUle4HOr7b_6Ob`EaYaTRbmrSrEc>+B-{MpKTSJ zw~Cv5EKcOO7iKV@!TD=2KAb-(?ke!!7K{RS;myP5dZ7x`-4f_FOWWn}w-7*qh+k^b zOeGE{T>4}=xL96*w@{Lpi8yGZgrWFkI!1R_inCd9HB26z4F|n(Ks!-ipb*fS6%x!r zfY#>dk(Ku;7)@ssuQ4%g=u;2dd$3ZkgFf+9l83Js>qW7~78nVPi0&aqjA0m|3rYnd z_5(6kPh=U6P~Lc=R&P+&jN$q)Md0quS@G@R?8yXIquscE{Tu5#X;nyJeuK}GMIetS zLtKsr;@OuaC#?&JULd>@cz8r8bSB|;0_PPW9^!n~Dd33(zfc%qVL~6kPXa}I2oUVS z4>EeYw0qJJym3ZYH)&IxM{qMW7KI8k;EgX5+B8bSU1-`?e|T^J0*BLXxw!$N-b?Lm zzz=+it-fzg7XY`1jhEJyeSvI>n@>(@=0`!E(!f*b-%2urBb$6*=U4~88=an<5WPX{ z3?G~vV%bP*@cio2?LQ+)Sr?dD*hXcy!TdiR91WjLCjE}m*S&#^Xn&x*DVtYhoS-Rp zT-+P%PY%b3f-`=!qcQ%)9q=w%|2E*`Os(?(+>S*3Jvgu6eyC#athm`Jc6w8!XCC+E z6_}rv=?@OTw_!Y-cf0M`;OJnZxN_ww;zAB*>k127TI0OS_zzDcnS(UKH{&jxn5H0n zt;0(N+AV$9+9)=!Uyr${1V1~;)9W5W#mcw;U%4@6T{Z$-L!07ORYrzMF6^6wx z1CX`KR}nleT7Mm9i}L~lFOUe|>yv@(f9=pd-|}<0)D(BPq+>dnq2oQAmbku8W`q7^ z+g@0E4K5hWD-roY=zvtzQEoUs?u-*&D{sa}?*oB#ZvmEdR2WJF#x0e)eB34_R%{hif~oYE56QXA_QAkqe<9xnnva3rit3 zEa$W+QeeBqid!If{<~4gPhST9*ndZ8fd!T)p>q-E4GXODdRyKGNWvJ$Q1(oZB@yNb zh`An0G|Y!J#(zT5rp8z(yF?`s=0Y9mKJtO|r!wGB^00?&7=V$(On9>}-Y%BY%-A!& zioo~qbX(Y3LjX`*>)|1wp!ufIOLWK*c^n?JrN$w<_?-%3_)!i!Y!Y6B-TM85_9^BtGmQ>&)?B z_xj@qBY8^>w@%UVX5}$j20W*`TN}dk z2G4rWhqK37u_`f!_Po>G&AiI9ZXeBpi}v8J4$+(EfZgj`w@x3&wZle4_LG8eE9DUS zlX)AJv9$TxKjSXeb66%EEz5)=5LQ;;MtPqK7@N#kO9{>@03t&t5S006?8Q;A3v_Ul z(&OXxC3^^6h>+teg~BNpD~}$KY!h}Dq60%k#|_IjQ<1N4LYItotDXEP-cZ(@vaR)e z;Hj^t{h_6D3$+QgA*}oT)A>1 z1Kgq&<3!+iG95lgAQIFn7vx$3`B87Q*YDxFah&u4CP4`JT76M>d0dmhVvm}&?P$*- z@Z(f+>}}x4ii^WG3YqG-Pt)bOv_YR?o37iVi{E1kL&(mq7o)Ei z&c}%6!ucBQ;3ZJm$I^m#I*fypv7HhfZF2AqwVw?!E6m6#1RooqnnP%~LRP)F;|3It zBDvp`uhJ|ITkr-vhQ6Aq(|8JH2wac=iuRy$sCoy7?d}FuJ2*>l^+EE(NNl6$5xaeV zcsS~Hd+Q~@+IN&td(dJ8w6n?O1&gFKG*&gjMN$AdE6@3mqhdt?qzJGsl0euoKVUQ> zM>LBOw?O1kf~Zn0-@9l7fgtpbmbvRuFcHGW_w^1I0B)AzRN!tVs1T+`pRK#C(o$3b z{W5B0(&7`+6c2$KoZjC+1Pine<3k(-bwv7Cmq&z#iziO*Sbc#Qsf^GZq2LDOg#i9oJLn zXh$bd#Ep=uEg)iz5pF6{P?|$#JzRIG%BP^*08fT$IOxnKN4P;xn+5ysJlIGIJKbde>eUVh z)SwNvRXNoJ31p7Y+QYdIOrgIbeI6y-btoDK8S0!jFi^nFhx0|l!kXqi*cse;kHkt_ z8>#}Qs7(j7rd!Z#esXY-H^lSU-TV>x*sc5#)+`?4ui}V$NxO!W!0(2W_BUq@IL~*VKJH z@?r9j@~)o_Otz`7WZTr37cYYGa;IsRwyK-0_0nF2!26sf6H;5pr) z5}jzZ9oqV)vx7WPwCO6uo;iDN(q@=6^=x83T@=nZeFs!)ic1vdtS; zW+x-=UbIvto0)OL{U;L`e4m~fLtMuv4AQXKjw=@VI@~ z3|=V7h17Mi+Hr@UK<*7gPn#KYjYJ%7UXun=KAtO4og;(0Bg zWVdLaU40n0n9=(B70lf1`%}~1W_^cd6m3_pcYd?DQnV541+~FlR^-gz;Fsg!dT}+B zcUsYZ^ARsos@K?7X+Ry_xJyr)K@rGDR!e>uYH)O*ZcE=c*Vm!kY#3<5+MK^G=E7?Q zWBal4xFY{@Z-26fsMM@+#XSFBO({j-6vo;IXAMl)S!_-<5|Dx`=k=_Dqs4>|XIi}t*h`Pt3GLYs7oQDaj3*@$XRSLoTAf5_Fk-(G#b3M2sgc5yHQPkb;`)HI*(r`>izVGK ze=i``Izw2@F)Jt8mN|6k84_{pPt;|@;0Bu`!#acYu~obg;Bfu!>z!T>G(0CJiW=NIu7B zlanJ}VljeqlWdu;aDeUT2pS4HSUH&75O4;DyHnI;+y}n`5==(MTNjTrQj9;Ke+mbO zs0t0R-G7Mo?(2!Z^B}UEhj%DjLIqJhebZl8n- zS`T^h_i7I_sVbdJYCPb*%n3=@Oc+)qp%38_A&lGfo@o*KG6I*CBB4yhXdAW9$U+*5 z(e^N;7^b#|>tfVaH@t*Ra!%GDG~q6zFvAgcZf=goLf8;>#PEvC)WrJ;R2nZ?qUDVm_!fS7SilH)?HzjmF|mv zk5wY|Y1jGG#YL9bC(fP5J-~5Q7efE0_AkqWa>so=W|hE8m0mdtfOw=-fNfMJO%IW} z_+k_5Q4M;O3tRK4)d+)>! zmA&TkB)U{6Wzzj%DkPq<&c^dF8rbtgFo=A#uq!Vqo!N9QdGHN@1~Ls~ANgoNpnqA1 z>`mT>X^gWET`v?&R4Rt0c0My!o66GMcvfM-xru}Tg16?@8bQmgE%GJ0>OQ02BEh_Q z?^aZ=`p|rxnf+e(AYHq+HdLhudrpPMLbcuDMj^zVbI&I3Yz9s&228-<%(%p@5<`6( z??Vq+-?ZNwr+PbORB>83u*i_ZG$-7sm#w58^jpCw)4+{-0T^^|iZ0_mK2kmW9eK zC=OKsb=Zh}o7dFN7bRuCJ<5J)rbedX9<)btL$mp529KK#G-2fh@lD;*^Y%>#z#)m2 zi(k%DbFmD7;Xk1hJNwHsdAOz_L>_BE`-5ccLD-X=k`)2ehj}!D@GY^DLH1?LP^}+- zSx?}#RddMj#3Em|KOWVVM|e%Q@-PYnds#xxc5DBzwb43;Ug-!i1g$Y{B^XSv!g}4u zucPaG2e^f8ueILbpbikSDH^UK z(HrT9d~KAJyx3^y zSkxVY!glc`b^RtD$SuXCr2ViYgz_yapx(o<-uR54&}s(}yMu9`2Ie^bEK#x2@?j04 zx<_5E>F%ClESMS0kg-ubzrIbdmm*U3p&v$SZ3nV|-ebl3+6vb@0`D+JT)K?dqh4Rv zPX!;|ZSB9tV7BdF=)QqI-g&hxh|lr1R=lHE4wY#N`JLG}EHb#lGn;UWbAkf0@)y>C0 zL|`E`E3uZtTvW;_Vd&5yiMVT^B*_zHOwT1z%8i>qX96WP3Z-N(g1sd+_Y zk>_4Zv+4vz!jskoswf)P(sVq!_Aj&`9bj%_&;WLAaM z(4>S|rHUMQqstP7A_vE!)5Kz+oF!{S;d^n&1Q1B9(qE~E{)Ad7w>ZHHW;;#Ec|X@y zVdh@gZ;lwM@J<|{JludbR&4&56_~#qsD3K_-<4HFDanW>i>|}ckT;1BPUI~ZfJ{T= zcPSa>+ce6OBx6zOcD;bpphA!ruOHVt<^qjYutpJhU~wf9;Dpg(T&(CH&OB9_h;k^^ z$coKw@L&Z|L&HQAu&l%dVqnndZfUT=kDt$D_{-)s(ZnVJFxBl*LDZ5F|4}RWd?qTu z`>H|2uLlSbaPMo?=TrWf930>_4fT5~;PuUXGGU;SfrK5sAvzV9C?3wP)T*OEDGy*b zfMAK3M;@F)8@7KUp9wN==;LJf?81$-+v|UDQX5n=YuG1!Hu3M-5@kwAKflqWf}}#$ z8p~|Lo@qPLvp{f!v*zF##KJlD4B2A9HTz`Cd%0yu4VKu*IWx(2!+g-($YWk+P0?}) ze-Fv}@GzGp6rpScF88bm347Q-L5xpD*M9cW!*FEFP9SZ|R!K7gt_os|6Rwm*R;)lE zoJSPKh;1D3wqHZr5}^)rga%Il)G?JvLEBREFILk|l_C5?=a_onSUJ zZ(+HVS}i9M0OFx$%%#FZuyBan%MqGeP!zU))SY67Ab+Rve25D}`*GP5q3;~9RQi4c z)QI2skNM6}!EXA&P6W)7QaR1Y9Du98kl!V8A~uIx^WgG~crzO5-4j!s-R;J5r8Mqu z>JNl$F7I&Rpu7DZ<}pJGJ99eF`DWL^4x-;A<&Oz~=+K-#ahEXtRbcnchk5fz!sY0E zbwqFU>X5NW*I`}RtObgd048YOTPEoN zl4OqLOoiF0;;mdLk(_erD=8=pE0M80*ztNA=zTV$DppIWu%Gzc%x)}rNuJ0^7|Jat z$gg`csK}YQbUExl@A|n)MMx8Zw~NC-W1KJ+q#?OF7M9G5LKue3BsJEH-@$Dq*=x2| znZ`;9mTKWrL778II91~HHcm_rUpLQt~ zB$o^^piF_n9Z;(@$qqwZ0Ij3AdZy4ts`|&^aU|D`Tp<8?bcxIU}OF z$l7MOVqrv8Wh3zN4v=V&b~m@euu2JM-YDl9U<1_w!vDs5&uK9f?T$_W7nTJBK-=MQ zzEH#C?#v9fvw1%)oQ-9zxG566ph<$!#T$#0EWhAx$M2!htTLvuiB)rmFp%<&4n~{l z#+dG+Swk$X3`6F4_E<=k8b4XvGz@2yTdB+jk$W%vJSp>9ZiSvGwuQj3!s9H0s>+~;ZIN>jX)YYYi4b2Imn6mOmyn*c+OR8740{6F9M z-0OJpD^k1^)uTmrKL7g8ud&Q8u#6dl?bUC*zVkDeGWHUA!OW2{By7G{B@R) zad-)P_g7xu`5U2O+q3M|zxDdg|IAmvCUB{4H&I7essHu$op*i)r9OvJAAj_DNiF;F z?Vp#2CrpqlFXY~s67;-ErVNuj%P=HQ8c-we5-iJaK~WfqJZc;P-=2K*MY$9j(L5jH zf~B81JpQ=-@Gt-N%g*FGnR!m%*;)9yTzX$k>zf+ZJgu*|JY~_Q&1F4=mDz;(-I4_( zw~l2K=AP7rUA`xCsIPl_`~Ldox8K~sOK7n6kd6gHika{)U83EW%=+F5!ftsw!4dE& zE_NX2v%3ay^5r@dG3Iz5xz{E~Plxl4-1opgI1*}}1x+H`L_%L3Gws z+A}?)4w5eq+W8E(ZARS(jrKAYD>OYcPY7lq$~sGq#5a*{r>+Q+UeF*lKy-|1^J9t( zC7M~9E|`P?2t5k1B-ds9J1vHeOKAqvx6c>9?#I{RTuiO2b9pmbJ{QGiVpEiTZmj9y zD853LU|LU`lWd*Ef+y*Mq^f8Ojl<7r4|9OlW$bEnu z;-oxuIGmwNb)E38VAA=AGDKYlE?leTWFqxrtV-YV-V*(``DLTiLH(uDYG-L8iuhx3 zDy)PnKtJ(e8CyDHW}g=MmJTi{y|hVTh=`f_Wpt!7EVB=({}R>hdc;E$ATpC>NQM=( z2Oy${K2gt!z)&ivDn(0VxMiIoE{>zjm00c+RLiXn^uzn2jeoeJ3>u;XPnlo6u20<1 zQfktSbT34qG0~^Yu4vG^^hN>oYMRwRya4L_ImP^t4$F=4{K4l!4RRXMZqtFORDO2wh}b4{rMFu-fW_Xq$9F#rKi zEX@IW_1?84DE$Id`4Y#za7b}@Ikw=&hw^`U1~~;NyNf&(V8p^Xy8L}Ba*>2A0uzCgD-ArgBmgdjUFl`A5v*Mt zm+Dmf)pHGYzS#C8LmiS`Cdm(M&wJkNgd~*1v|%yWs;UzSg{+~9Q=dzY z&N6Png<&&pRWHUARY`kmDc-1%z9a@IyD<2kL||=pB9C0;E&pM2t$N=U#wgjGZ_M8@-i4DdFXO}?Sfk8Sukpb0@x0HFFXg4D#81XPczX4qj9 zs4Fqa$bp;seKqV5HmNr&^3(m35l;-5s`6<;E`ae%QK*|xL$jzt_9--|VHV6Na7WnC zHDds@_I?KoWb(64@iq=cgXcZod{Y*%-o#=BTmYo~e1j0;FtH&|DDr{%CebfMSS;TG z)Ton+VXN|I5#<&$=o|HN-Y3AK;a@*Fx0ZqpeO}C7eB;{Y05VysJ01 zz3L+EO$NDZ$*jv{Z(ni?q*b2B!-QdS2-3+?+v8nm`6-35ux*noZh*qFyYLXCH*b2U zhM;>GsFFw@K;Ogcuoms?6PPF}2z_k`jn8P8fzMWP5uT+XYGtItu0XlF|5#k9pw7+R zl~_3WXx5N)V5Z^mVZzhV^jqEiQbK+?DqCaPsp zr43@1BPF6U8E2++%*Uu*l5UnKgBKxzY>4^vXH$hKG|(U`tijh4PE&ZGCw%(eNyhCS zlJk@l54k%yCk#!s`nOx63&J`(nn1ZVYnRp)3-TieL8lMV#~2twAj2GatWZxR)>J|% zi`t6kxCTW%H2rwvu4kb72~||;c+#ZYXC2r2{N8) zgCp|@-4fFFpUhz8Nu`wE1EB$!L@$r&!?Vg=j+g>?!jvy`gn5|SlW%u2=b2EJu7k!3 z^!%4njHslPPo%LsP4_y=D6Akl2q878sUt1(({c49@&EGfew>YQc5ef_!BV9<5qS01 zUjiv|vd-ZHFoQ+cKVmb}iy!axW;j>lGBi2te-Af640|IuA}1F?-h_2gEf9ytqa(P3 zO^)^^*bhKHuyzGCs!&ky6njaR8bb4pPzuSmhVG!L5UsUP7LJgTWKDg5+)6{RPLvrQ z9wYP<-Uu)mC~QYa2}gfY_`rx$8X^tU_l~}Q4Ebjamhg@NE-sZ$O4ljA*(q{_;Xw&! zkq^D+ZHeSizGG3_zu?V^U<(#A0P^6_?bk#5_sss)sPk>yo|rrElaT=pN87wIaRVv; z<*G!@IuiHGI&E5?Y%h8I7tWR=uhT zs{4hht!s~GAnLeg1=)A7!0DqTyr6R%DhN!Us9il<*xf|eB~@f4qgs*$>JH=W(%+Of zOFaPvsD!^^ilnu$!2K|(B*vAgu6s3Hs&;L@eUZC30xa3;v^>4g560xN0rR2CGE*0$ z8{?%Lw7N7+-Eu@8q`V3&zFXCs>wQNc?QU-Al;;bgq-SWpjYFwj|He%6nBcR>B8&&2 zx0lQ0ylXV2rQtN)lHGIa(?&M9;t5Ab~!7{Yky$zyU0YEB+W0P(PJ{@EmE2wg=FJWPivIuHDA>n|o<_)=SP1Yv_GpzI6d0;zZ*j z?Oc;Lr1!~I$Tl=UFGHl7HQAF+?}PU5XP_j)bkHM}69D4{^-ozoc3BzjcujQk6H(6F ziLO|G;+@dHeXXw={4R2pHz%uY&~FR79Bu=WIBD!LjufvDLC4XuYm$=gwEXAyuk>%j zvoRa^Cy^jEKvzc8@>x=oCi0QfLf4!sHB|eg@}-6jm)s`fT7AI;so8$I5i^HvOVZC= z&yb#FJd8-JHkv<+1jP@xSN#?=3acLYLw&&uwxsKzO#YJzZXq#QmTvMDXW$H=`4DUV zrOum5O_NfPEaFwC;S5lH@_9H*V-1kh;3a+3nCm!5@b?htF6rYA!*60}yLrebOt z+}q^2@t_$%Fbc0^fU1G_bR*>qe~lSc8b)E_A%i5ZKTZ#fp#%rzWC|*^l2Q5PgRUz6 zDz!qJ^5zrG$d{Z2uzs^E!OqK@=L4)+_gJzi&R(J>5try9>3O?qHIQ_wd00vD=A$%%xG+ci)aX(IG1BWgu=}8JD%z4P3o#ge z%_eP6Fx|uWCebrtp~a0?$U3SuC6~)ZhLMn(t zJ5T^hXk3xhOrofN`Av1HjFHqDEB(gp4TKN>ioZ>rSv17>cIWojQQ{Z81kh$LzH$36 z;>DNz1${8=&DQO0y!knM^YI67FelO zu_jHy`Lo>FKX&_{Ks}B&l-LjW`K!188eVcr!po$~f9Cd|;4KmEZ>`tAA}^%PlTo?D zfAjW#gj&QPJXE;?Y%czj+yAw3f9A)%Cj%QiKNv0&ab|{^A{M7 z{!8*MDp$3ao%ZWH*ZBI2d`%u>&o^J+xy|R7_*`}O_Gahxof+T!0^j5@^(U|I{0UzP z9M1c!+Mm9@^Y4dhApOpkuRezsZ9M;*Jdr^7NR1k&j&Ud0azP@;pqm{L1J=o(R1K z3Xw;ONPU~lk~}KSjy%hzS)L>W5gQ8g#z!X-^pDv8pJ(!Kq!l?GAO*nR{j=9zTl>m2 zY-87u%)j5ewl^GKJ3d3&dc^zIhiBJBY%lo;4HkbO-cyui>9Bw2}1PQ&N~OJ0%Iz+ zF5D`|yFq*Sj*Mo!RMk2!Vp|X_G%1=07SjFHdQ`v~yii{HENM~%WD__+JTdYKc-Dgc z5Z5t6;M`E_3f_Zz3&>ka4^)nmcR4ud*(5y;vi>jthJa2AGs3|dNP)( z#SjSzdD-b7%0df|tvKnt_lM>Iuc;qG%8BW!DJL8c=;>g1s0V{`RtjeE8BV+;>3=v8 zWR(ks1==yL11}o$AwL%=&CH zp2j!yFYCc~tltGch>s~?S%Qu(uk!?PB>C7SiqcB2H`2q4Cg8v!>Y}+c$j;y+W!X18 ziog?oe1PnfZ8nXIaGZPU~FF$YyQgjSFT2S;=&-GDp5s`0CNa$@C1aE4VYk zg;(B0@czclKhwzw*OMN3KHz8Y>xAb83X_kp7diH`6LOE?fvm3(+K<$rn%hB2Vxxin zy*Jw*4(Z5*9bP#OnnapP%srL?-6|23C8>zXQl&jp8&%sH4^F0&;iz{=@0V(m7|@d* z?_1UurL7ycEDWqYJK6gHyWR|;q_R;najtrx^#p6+g$CJlAn8M~TH?s`h-aS5j_$4E zZQzPS0p}v07Bp4yDv(%RpP(&V%mFMC*+qLiJeUuW>+r}f!nLxPy)B}YGsw`~Y#yL` zDZYNIKpAKPYMRi~;H-GGh4d%ojKK<#7eN~YYavJ^9jOJh5a{6qw=g5Q4{v1;^e2j) zmW(F390%ya`PM3N6kRD1YQd2dWQzZj1F=FBtL@9AbO|QwDWPvWGGoO@u?iZz0Y7vt zZbRf9qGV;cRxqhV@B(15S*wo5Gw06pae@59^I?JucFyh|`DLbdXn!O~;CO76bHCsX zDeWu#TUx*GQK$jkjYjmKgg-Je5l#<52h0&n8%to7Dhz-$GXiFl^u4dEpOXfOnKQ?` zuggRvJ&AzfJYRduTktvB(p4tjyIk-H#?G=UFCbxv%L+r3o7D>#?bwl`e&ywm?4OFb zzE#`}Ie;_|4ubB6AS%jhQX;QLi5(qp6%TUJy;_PWvSN-c6?Oay4)N6j*GRq7AjIV@ z;gY#6Xw&_sxti(B%j+%*Ikz|3DnJUFTCDctp)FWG^bqYU@hcD)Mr{eL(B{+FrX-6hFOt}_E~^!qp2w!cp&2>sxxBCpd+VWTTY4)rJq=BV71-D^ zORUgzFEkyNkJKg+;7QWbWrUC{oc`z4raW)=KG!YINMbR=86k9$Ec2wR5@pDmfacp) ztt@A(IHMZ*rz@9L>E6P1Ynt!1!s1TA=q(wVFE8a`&ybf7O}WUA{rHFye@Obbe}YU$ z=IG$dF)1%c1h#?0I+wdb+VPS~-PljlmqxVJxbBME7T5*w<_Z|c<)Ck~kZ3HCqKWyh%id9Gs+tBewxrUa}ThwpJVh5!5qe>N4f~szb0> zPJpDO!pEE;%ws0^*iMSa5Vdjei}Pu3qU2Xz*;||h zt$^}RpLJ#k@|(9?+iAl2!E>AjE?cu5HD$Da&>}JFLpq*;5?jRzz6!H$#GPl-F(DXi!K=6^tI)mzjT|FEPm+mzs_2%fk=5^QnCY1o|yU6r|7T zaDTSF+q(B;!Yh35?c9Hh|K7KM-+K7oclnzNwbo-h*|b_Mq*NKfDmo|z(tn|O@@;+!;r&Rv2+L&iUj$I1{1TOe~l(8GTDA)sw6OGIrk z1(@m+V~~`z^^U4qe0=HMD_G_T#-GG(P)1OP|k6Y;IXcjR&#ZZtsIb!u69spSWQwAi%rpV z08JMyD$wY+_@HUe51|JzCWF}@hhU-+5?Zr;}#v5`9=GZR>At~8+|g-Hq}2oA;8%9G5D+& z!sat;*Ooz%-SLOWo5sTYh6=VNbloP?ek2jCEJd`~kJwKf1fZ2MJW+!aCm_6J2lAF* z;s~1wj&G7Nb{XuKV~-^aX8(4LBqXyPV75sQDJeM?BKf4AH)doSK`wd~&IZ?b#zN+x1HANUrQM(0~e07%;y? zWZ#8IRg3FTktH}u5bk2NZ@=?qeKkxG?&?B7`4n+ObNP2X0&h7wM2?Xb{7hS=Y2f{& zA|%>glH7Mq_@Cl6V?xS}b1i1Rhe{mc*@qoNf6h42`4U(D1JgEz06# zekKCXdZz=L&-jQ}2Z?$+O2aC!L*Ktqxb*AtFno-$-^q(N-;MIeVkDzGd?6eN;vo=^3W~mI+ z)Y4>y(6u9v17#wsu}HkpYFMWYl~OrJ%TiAP3|1=exf!gq;QO(N20>8MVjw}Z=4}un zLBUqnDQ*o!!wQ^Dxpa;Nr4_hz{s{z381SdyH_oEg6jd%V zQ`Q6PGu`GcTxr?gnuJ%PgQhkEjn#u2Zqp!~ESr(se3CcYYJ~(gOx4^&mi|Z^Xf)mjHsZ zl3EI)9!-x_6cu=&K7BE;W%UFm!uHCa z#qg>75A=g@fx&sw3>F)K(QcG)0tdVHyo1oalm!cwkwmp7Dj07VB~|bMao_+ZVhQeN zhIWFy9;zj%gm|e1yj>=)pyB29^Wpx<5rS^<)lJYrsg1p9fNRAEN0Vp9>#pEV5Sjv> zUZu&ss`ocMnK6nfd0kSoam$I_G^yX();j~Qcpf=I*F%yI)2vV%K}T2Y(@+i4^T5ET z5)kTAY~obQTQL5S zlT0MX_TZfEHw-s}5PAj_K9dMnp{-nlvV1y49ZCTOx>2wL^eVa;xv5UxQMe={P){w> zRA#PLQUS1n?2zKmoRx5!4t-mo0lXL4ZnxpEQYBfeomR-)Ntw;+Y- z1hNd46XycsQ&cwO*>sfFExlc=?rAT$B+NXuenZMk;DXn5@!EH+2|yn56%O=XXM(pM zy-~uVA~wbTf_abD0^FM&Fdr6O*#%t2Zc0vHPOJO%2qd(+kr{>ro;=IA0@n@`E@47~m_u0aOHY92jWiOUt>H~90!GDK0mH;WAq^%i0u?YDAYBX0n_5GorGr&?-kL6ZU!X=6| zW|_?~j;nD-Xs&eptTgvN%7}G`xqD|22?k19u`w~2p;V2<4AVbA?MnbdMV`V8 zJsBX(Ue9CU9Pgfb^Qm<&Uuhxq`JxcQMF|+S9D0@!wLT_Ow!x zOSGmaA7^F3jZ4Mw1SMMV#j;BjY{~G(`sbyx=_^+9$*`JhaMpfG)+Vv+6>>l zQ4mrxp-=?3TYQA3l$dP9kjfb!pyoGo3!zpixa8Y1@ZGQkV%#PPBOT~%D$#_vtj7ZD z#6Eh6C-wLat)@S4rj@2b-+EBWX`U72IeV5Yv^8Bzf%=}k&CrgVrL|w_7(4c=}az&0;8wdJC$`2WcFmpfI`u3yRDTR$?R#;r=GoOKwQqRgR}-q z1O5@Mymuur3>3_zQPU!t&k*TZWOi(ZTsvIilsJ@JnW2`yp!yRZeG@?SCDbWoO4K>S zzQ70rR_4yG@iE?1^v2P8z$C2^W|}Uir4T=TvHl=&_23!paq8b})f$pfH0IL1i;Hq5C=hZ$EL3q6{{+la;FKu|lE-bi^a zS)CuB(?!6t9J=CUGy_~!0pV=gm0B2Py?sj?g>gmA+q+r=tPNA|Cqj0<2Ehlu7b2Cr z%Y>*2u5x%dF2j3GmIw>;(Xh|8r^(EW?%)Q16c+)GH&USD+(}cc>yeG^c1Vd9E3a?x z&H(FZBh5L+MS$^u9mDw#(mxbW;ygAVphnq5P0}wH#&r{bEGaDG%8?t$m0T{28=MKU zA+}n)PMk-BZ=%I)gz{mi5^dWaclE)xQ9bhFJ;C08G|-5+P_2yK>nT zvNtX1H0RSjoae=+VUm(;Z2mZGZk$g4ph17%ydYQ@Vq$55T5l1!q)jrky#))^i%P3| zjmwqA@=5ZF%C#X%K%<06^s9q|1Bt8S_`g!T!z_VE!w=;kh*J-aF|roEVw<41!hZ#X zxL6`N!f@`Z1xe6f$UR5y41k`3XQ_A!6|%yWaR`}`L$2O?bA&b7r&x}I3B+ZDORI0( zkI}^kS%460T_$<#aT9g+6>F|6I>E9!n>6?B)%HHpVZF>+Z*(`^Z)qk>Mok?`C)x&<)D;gB7P}w^5&!D6<~tH1V(-&SCnc z?Jee8fOy_uP+lG(x^tklH=cn;M(u~YMC%q z6Ghdc@J`ZI5Q-^3fv1#kYDd+#>=rj{5Yk5hP0sKQIQm_lFjUm*W`lw@6>J9UuS-AR zwyXpAn~~IbR^sKqn9ObbpBQlC&^RTvw-so+qmGZfw&g2V6sP$VvrTG^Argy>FbY?{ z2{V8IOz28L#-_62u`MjpppnQq7vJ(T9(9BsO)+up?hdqGYRM-_(tU+`Fnu!q5LY7O zQKcVkOaH3A!nCQVZIoQ8lQ9r_B_#V+Ns9O8DO3p~5Ewl!t<4S07lgDuRtN^UJWP|EWwv1r&Xx<|}QQ+GFAuz>Y98jyr zC&MwPuYPFdG_%c66R#EA)MGPWEGz>#7CycJV*^a!s4qg)2uhs8E?h||{Z*@gPMps| zp5mdftg0xn1P2`znvx%8@&w?3CP~Jo_|ve)cRPP4IL8aa9FmP&i1O4}AoUC_|ci$)RFq zV4=JiAkkNOM_9D@u5Ue0;Z}Pqz^9t7h#q-yvPCN>>0FTh_=LU9zpoC5uUseMrMNE z6Mlx>WrRnzb8qYZy<}@a`mpopw*A{ok>pz9GgNzm&0#Gahj*VoR?hr**E#d(01sw883& z5yuh{Dzdgx4~<~GpP(8e0u4gX*&XeV_PZad55Qv1YvQGLo{GB!sr*?yh!QBeMk$Bn zjEc9hWS-#VUZ_iu0Jn_&B~FY`U%in;Un6sbKY$xY1; z&H){3P|WRkqPuQOgL|F%UiW}bm7Rm`K8`lf#&>y2W0iG=YkDL8ubozQcnqpPqBL=u z%WvO&=gwQVzS8N;o(_*iM4^R|{wfq#?)L7|GH9}Q&4%yiB)?&PtFesP^&DjWtCb@X z1t*R|B7vE%#*@E^Hh;giDH=PzY*w;U7@X zZ%PEbu+8SBV7--P)%q@pszu!jA)&>Z!<^1d>wfQ)bfAY{aR1&_N-?;^Fu^i4z+?;M zbe9R$TdH~-wf#WIwz|^Rs86%;vpss0;|vcv&j+LFT04E@3qLC#aKaH;;>lZqv>xrMe!AX zEo#p0kDtKO#Jvm6xXKR?{Oh6yg20aQ;X9h~sVHp; z#;cQXdl^-XJvxJ#P~gP0{He;Bhe~UtGg@tw)<9wjD*=sC=&fI1KrPkppu#A?N#11` zQK?*1$t`=*Odd)k$dW;xfn^=qfFKvBg{Ii^nt-6^WF(ebk>QRIi&7)F1%=RgjT)+} z5?hsFMDqsDBXabBi9_r#y~9IL8=VPyVrY^hb5xNL0}-VqTLxcJ8WelRa;_mI-FDJ^ zuy%-eY<;Q~1+PqjznP1rR%*B9fvtHpeVm~&)bM!GQjN@E9Xl z5Y)Cxr5=C$Hmrlym>>#w@Ey0bZWe5e7ZZrMPew!ld~)*! z#D`Q{2$E6J-kUH;JZb2AxD6bxp=^T1;^vjNMjsb#ET!stxKaH)-pT#h%RxyCB^35s@8>u(9EFj;LaD~RO-WUZFHp&q)<4CDiOg_PTXL7BC;_kQci>cqpwH)=K*dzB45!57bmufv}FUHerTye<%Nlin#>A`Kkn(cF3eE+03p2L=4 z4xkTUtU(m10i`JuP4EGM1*)AH#F2M}l8G_8WG_V12 zImkdO{u!7}%~cVGF76f_mTu7o#|M+W?y&Fmhw2e-?`V|RvRJ!{KR;jkQ5^SRNTM@H z8rQSdwFTzuVHOWX**mu+ADWX{8=DhPR&j09|B*2?=EUC5TGYkWJ!2LKu4kDG_+FdC z@Bn^!6{0N?_$0c_R^Lr@1d)jIARWHc5O>=5VB57}3XcPSQt}Xj-eJGfyaGCW=N+SR}bdS;(#<_nhaT%70=f@{57)^xspt&ygo!( z9^JK*NS>v#@kLhNrec|3XTxe#5rnmbu9nwBq_xt)i%LnAAsoGLSk_(gHuRP}s}Gv4 z*WM_iWGUt7=Oc7&t4U^w)}a(geVAb|Om<$V9m~(jc4`x3Z$6Y8hlZz5}-f@ zvev+r^SLMHjHD5O$V%dXAm#!tssm)J?|&ts+7hZ&85$br+kiy$T=O~wOrxo#Hi$5C zUSH0+vq$nCAyl|1B|eCx5cod}=#O>mKbwBQuT^y3L5MpSDkZKY>E^;1c>v7t1Pih( z$GSHLt)p64_z4G!{OzK#_cAdH5 zz^h*lp#{ugn{pTfAsD95Bw^zb(--jGX-1{-Yy<7VpwHkkOOTPsDV&BgoHpu0qv{-1 ztCKjl;5AUINtl`oz+>7X+Sr%w2^K?-xH<_lptRtLPQ1CiS}lm($+(L|B{;;Q9fX4+ z0U#svyJ_o*6G2ArizB1RL#WY3q)%9b+!l)Lq%xm23&7X27?a=?R5=_qNx5D zTH`c&=z;-JuMB2D+O95f4}=P&$l0xYYU)+PrK&WQjfHa`@s{=1fZI^!Tpmb(QOJ)n z)l3&GuolkF;x{07&NHAN8XH$LV4bR358>W8TaZCXoV@H-0US2Q&-;NQuvRM`l}{A_ zsmdLqAES^F(hPm8*o;h>;}24f*3N}_HtNo?c{Nr=ZZK$f;L4}kwz6jFcPqF?bCLiH zHbIK5R3}wiWy^Yqc%(~ww+=Fv$`QaP{_*-vH60KbAr}K8rxb)sDsO0Nt{D)o?==HT z06{h{)vQKgVh|({Qb2|JNKiv3R4QfXNRKy|&my|fwl5+CyS0P}K->&`bI(;Cz;jw9 z>f~+d48-S;Bnr$jL1cM8_?Dj~r2sALrne+6Ip1Me%&l{BgncFZx&w3G{vL4d6^JHL z!b)`Y#UlzIJxh6yPfv#-cCt(5(RJQC{}tMJ767Z#pUq@)Xk;}b3>Q%HwYOHh4Nggh zN}_TNr7ZEDWv6it8#-pAl*8lwPY8L5K`jXnGx_hWrTnV{&r#9^t#Uj`8WHvj8KB~7 z9r-JKrXiHVPa0=Lx<4w?eE{(iHxGJZAyzISgjTli)m~{4y2k9e0x+Ms zY@6{Db3}z^E3<25-pBLpM;GzGm1OV4xI6LYYqq>e!BZ7o#WGbIT@CDjh7#u8lU236 znS<`?5QAVZ!32V&2P&%9nNTSw!`fyRRQ@8$?WbG8^k)upkQ{XO+}QfS`oezDn@X;+ zRjsW!N$CzO{c-gkPiDA>eTempq|Bhqy%TCw3*2C*c094T=~eAa&OC<51P;!GR3J;# zB0HDHu<@uvZhE4%>mx4K>6TGk;F`G(^Z zV=lja=boJ=(%`zpDgwVm8q=T$w&ed5C~*cuO5h>Fd1$#ezMxypS^*a1Wl@eV*-0CA zdiZw?;fVpe(6}`R1DfV54%ZboeG#d{^5#2C5BymAeR!`|xxCW$Zth z4EHS%V=dgOA!39G4hgaQ#O7<86Kk6S6^T5_)lfT!3W|5-->aK^0Jr4iuZ7hS)`So- zQ{zZDO;B9Q-23Bf;^XQsQA&JK?@y2#-F4=pYk*H+ea)XpPXwRX5*GY%hBM!+%VjN_ zYgRUx1yg*z1h400#;pmMnu{{=zeZ;mM#)|DM}{^ z{t36}!J&_npmyM_F_tI3a=5WUYS&mXD+lEekqK?*kb8n!<%7XM$U`KmW%kFAY+Rr+ zQlj7!i3n5Ul2EO~g=BKq9NP^y7Z6eWAXR+1e^vEFC6?2H=io29vczW47?rrG?p`{< zA7p2ao(bUcmpgT(kM@>+MqBKb}Iro}=?o%9oYLjs@!GJ$Y& zHObIib|6Xd>;hBsz)O@$`YREt$=H!nswbSJnY%p)dmCL0n!xULgO3+?hl z=S-FyZL)UDsABot*JfdHTdBa2#D<7&OeB+-6L(Q?Si;UA#iY~ZC!wlc*!Gb>5TAcB zV2HjB3e7xo3rAA+B#AS|w^((Fbe8fHT03!{qDK}~o$&*xY=<9%3d%9{`ruJg5W%ci zDo$UCoxM?$zjb*N*mdTwtw5k~)cwUuH;2C*gtC*%3Qf9qSXLz`Ux#ENW|EY~DJ^8p zvY{1`gFH&p_VB#Kz7C=O+u-k$f#P5|y_fu8U;=SlUTOVvyIYp{vL1Et8fuu?MH6KP z&N^^-T7fDS5JY-XPP_m!nCj*`sPiNPpKSWHR9vn~^T?gAG=Z4$ zWCL9*zNgpRYNQaOb^?#^4A&5ero-cT!8_bEhKL{lOlNJml7}xd)<%V?>M3ej+Y2wN z#k|oe{nZ-eeVIb~i9sFF_cZPZ#15}A0(U)P{wUgDW@iW%d(L2{XWSC0mXe#EB{)9M zD#bJgQ|#mDZ+NV+2xQQ#Qn`?j4eBj;(DtE0WEwlmC`}GG%(#YKI8~a+b3CR@o2gg` zJU?0yQdeC?3S;NgJgsCB;V}yinuk+d^xRmPqF%RBmru{FN@`^vGTLN=q!u%dCVi1> z;C0+k!Fq9kk(S1Dhc0;>)iGXQi9MSIe|7nLYDZ;cnNAl-fzF6#net0KVIZB!iL_Hh z(LqTFPW)NZwJf3ykqt?2Ba6?fI5hdcP7&J=7ntBf6)8d7JZ!D=+n3$!)=3yqk50# zexn5Kg1)1xk4mYtF)?ojcG-axI)&xDM+sI5zqlCy?y{9^`}M*=Hc>gsE3=Y89H&MJ z$%x30s=01;d7qM0tjWAaqEJ?LY0)?N@P6!mcs#~)Zu~>r)Q~zG?2Lzlb}BJ*~9&v%;%)#8WK}?{bKJ<@i>$!=u%m@$@=|;{B_hS|DmjIfwVZbMyXp z=vWhGR~_vj>S&^AW|xNg!16~Y8S6Nt&dCEa?rn+uU)yZFl2|I z^zZ84cFXexq^_*^jWuj{3s^`P!CLXATzvp9D-9In+z#M}bw(WkF0$C)AIxwKHyqXJ zU3mnjtiA^RL$uwOi=PjA5Fh(2K3mU@4OL4N4FdTpr(Mh~tJ!JMO{+Nh1ZBYb8<#t7 zOe@7PzK8q>?aL9kTN8IYi7n=NgxV}s8cD#g1YI6XCnH=C_zX!RAf{cz zraXqj$!xI$UK6OV#QiSux+A%}6QL{$^B(iV4TbbtpSrqAj@2Juj*)Z-Zd2dVg$-97 z3`J66q^Au{BQ7o@bwg75{MDuYP#$GIf8rX7g)Gp3C6dDUO#Uc^fYAuOr2|#xP|5Gp z#pXgsC+atNrPz>uPLlFRUhr5aZmf29`aXgIaqbFfJ8-1a#06Oj6?K@RZLoXLW7-!a zF&{viGJxls%6zdzp(Q{yh@=x_i}U5lXb-NfNKK-am6^GjkeLd@L8p;zH_F9#A*0V|_^rFY0Wlt%SrKqWj6U2K4%quE6B@+MWF(XV)#> zeEVeLWI%wk-ltEdXx89y_99Mo%e$A6G;&qI1)cG#4tK#b3r8d{C@J%u3KXTH=_|Uj=xVht(wC_B6X~r~ zVIrjgR^BHLJM?igCmV_yksBDlKvPU%kWO2r44d1$-m>U*wZD`=(1)3#F0$uR+4v$W zj};r=q>8P$c9Zv?x&L$|?^ZR5LGW_v;7Sf$RrT^xpTKi6G@knX#QW>Osbn>h)Y4B< z4GT_nAqeCqccv1em3UowwUkfKpk;=*s5{SCbt!fmf@wMtwIQz9X(k$P$rzV!3(I=E zF7$MzCOXCQesX_=b;uB&zQH8MLj4o&+E2IpS3_}Ga{Y7TsSP+@nk%BSxSsK+FGc> zfHv$%Lkd;qZ3-Byh3PYG#Y!1bWvNxd^=KA`t@bl*MUA#%AIgyz(pCt{BU8P&x@!c<#SkZoN^S@GaR za-yh_X&KLXKO~>;r~0YTRFud6DN<8#*M9*e#i}ZbiaO#m1x2dfNWXu|6ck7*3s*LC zq_#{;?m%EagSY9A&BH>0jOM~k_(X*~B{yD)=Hf1ru1p8tKS4(Oey6y3^sIL_gXw%u zhjnt?%*yTv+rq0As>LyEF1VLP*)vneP+pPkxV;JYdU>vLzv&@jdp8!eXHErqgE!bb zQJOUv?P)JDtq>QB0i2wXaMuo#Ypw1a)k+=7X>(mN7A-7uBfT}nR>clCfEU*e z#9f0NMUE#zl3cU=oO?eDw)fHvFLRzj$&0(k(KYBDHg{V{ z+B)oaPbbfT`PSpk>`CuN~4PZNVXh8{p}9$6rTYI}KGk&Kk10dZBLPdH!VBeKvn zL)e|WXDW^aCOR`VMt20L$0Jf0<4?PE(rhD40MQ`*$w>ZbZ(hH?0f)xqB9HNiG_gVj zj57{B^K-h;A%7>`ubG^k~P896i12XvFf7JVvi2`p?VAKh3u z050>NzyVa3h51!fCUQA-g^=qCbGfQx1yrf^;l$~*`HUL!SUg@s0F4}WkYA7|Log8r^xtY-{)3>0V~KCb#%B<>>uFIQ{E21n==SuJCL%# zt4*)L&mI?+?nkvl1YF9)^HFM}q1~2rN10#xL;5o*65H78&4&9mQTn_pc8Y$&VbSpc zUw>)h>9g30hmvf|cv}^(r`G-{^A*mv_fKnHGCUgUsBJ|}LjfvWwiRhLC4fI(OkVRw zFAS0t-P=HLL;!p?=(phsVJmqGWRR2)o-+RP>9Z(!*~tBl_orNb+q~iHa_chwK7F?P z^s)X@)e3HIbyRU85EKRq43oqP^4ch8t$6GCU>_;QEu2IzqzI{o1*`!|v`IPay3MXb zA9%1%B4pxqhu4M;!~H6(DC;29ao zfMIR81R15<9rs3qZkG<^m%ClI)$LwZywo)O@gINh*I$2)pC5kQ{^-lJAn^JYN%`GH zpvdgw4}R_HYp>mY>-OV+^y81d=rnIn|M2#o@aaIWI2hQ|KfV3`;OUpr07QH9|LuJJ zb*W&hRv+(t^Yxt{{0yFd?qE2#NB{88?EE);^mCSO)*k`Sv4{W2=Xd^03KB#1?0@?F z&d+`U1uw-3vNvD&!p_g(%?UAS{naJ3d1CW-?Is zo=y-+)ZUk-up^?96vnu5a78||(QwXKGYn7o&=Ibr8cbOQA)eE|)=*)A=&;=o709jB z$&1&D6Ja>{BT9g`<6%ayn@@*FXY0j-;(L=LM!ap{jyVk!=MCBScZ%D?-bR5y@sr^P zv;JU=0(U4IJe_S2U{DMInqo`<;^y1MPH+1C6LgAqFOxK{Ub-YqxZ6EAL5gc~+~MeW zGG#h<@NzuWtn*E!`oq)VjN9}jt2UYWH?V&H%8M`k`|Jt!nD9-_{^%G8;WZeb)4oCoiWsnxkHUZJTgZ8Hvy43o z8<}o2j*0#8d@?zD3KC;a^QW>eR$g{UjqoUtL4bZWesnm|&7GmY$FU)+trCOX$CwxC z5KZz2s&k!^v%#!8nRdt8BmfbE22?`xr=6}i8F#zT?pzu?-ya}b)jLv46Wj|B$Gw?$ z6{~u9b#D(m0D>HWuS;zS*b+B*){G*HKXIAGDyV#7BUyy1 zCe$p#$E8c}z4PYnJ8yO0yZ7#cci(*X4&+h8ZKw3cE{dU8b27(Ou%iX}NbqrnIlG*lksf2 z3N{45y_5NbVwxu2gQqa$kyA({oC+CCI3B=%ZjQOfwhKY!>7aL*8_0bX!a$C-C~^SX zz;W}5XYLa^0)_FpZRdzNpFhDPpX_v?={%K&iMzAsCP<+^s1tk!d>^-fkvdTk8-EXR z%xzDWT09R=2eb76ogYs~0BP45bExmT+O6rf^IrX7qtX3t2)_5Cm=j2T z)5&wyfjG@GD*)#U(+jPIH!TL1?|f%#XJ_mF{j8(wn_Kc<+R6TDSF`~jjWAe|P76_` zC_hLmn1UcI%laAM>jkq9B0g{W*^e*)xs|F+1bn*$AvAy?ZTpm_gY(oeTM#t!WD~hhPfkVdT@|Sg0OZ4|4zx8O+y&?vmw(=$O(eSj(=b(WIEDU_xZK3x?t^Ti^&cpu*xo#GaZ6H^|KH(4JTNu zXWB@zn}@H{ft_{W&ViZM6h0(k*M^ZSF>EGRiiv$fb^8LewaDXIPQ@VM-uy(jACWoH z@(JRK!3x1TWJu*U_#5dl^l^#Y|bGf1lxwr4;%1d`D1a5RF( zgUvRM2w8ljCtfV#r{sMcD9JnaP7cwA;%Oh&O3Sn3-0Hl8T0Evn?+-BL{mH&$sSvh7 z2zjF8iJ7Oq^vI^j3#mdNHiw;2wqDlFP1mLOBGk(!2qoLK@DkfHy#5NzEbHRgKPI%8KNJ?#>01qe@X`(>T|W+6+`)&1zCsMicuWA zk)x+OInZGWBIqAqD(1B-#SJA`1h%1s)hxTL=sJ0PA%fN7Dg|;=WnEFoVYV7<37j1B zyx;zTjf1x9&A&yBzlC-c=D{h-a!)w zeAB-C)kjyqI=cGR{)4Z6XX~pwTVK8J8E47McpayuZ-fE6f`~UZ6EA`?$O?~vJ9a3^ zI)S)~JU|A*6L`)ZPih5Dr9TiwqaG!siXBNs|*DTD&0aPNs;X#$;}n% zK-UUoE!EXgX`I!{YuoW7(?rmd+dk87O5YnM%@|mzupD=vO?$`Ob?TNwX~!s6$L~~W zQ9G`*PLN4dnQ?CUd``{>COv|mUs_wwmfQK2MD@i#=NFCpYl;K^PD&fn^W*zC^b`M1 zqLzW%f1cluwCJ+Rwtrc&o}SUSO?Pzej7VR8*xvRpOZFwQ&$j%navQd+IDz%|_?W3S z^=GxH@$f)mEkV zu;RKjrSx(u6L+PFN@@kNcT!)8<|7BFU06!rU;#Sy3z$H44G^~t%cas+{dz%y(uOSs zH*HYK39WhX;o-4WeNiZ`MvvXW_!KEZCu1u0irq@jgfge=eBU)*mp@#Fn?yDo)9o(k zy?Uyu?YSP!YlRB?988m3T`N;_3r~rEv1~2(p(62knv<1X`loJx2JPgyiwCq^-u$T% zSGgu$ouKD)k^W1Q!HaS2&t#|+pV{}wL9@s9BQVgv7i6erg=IGMAD(c2I>|wRZlr&nQ&1nZI#>Q@1UxI&a65N?U{`HlTey13v?^jt%WfxTYpL2+GoN_ ziC}VSIDb1yrR(!cYwIf>EMMAc|9eVUS#BYGCaaX_yZm!idN1e}6g0x;Q~YPj6rKf3 z8rAA1#A(sxSml*#iI>qFRK-i>JdyeieM8ul+^u3A94!Rry3J6Gu1Er+fy|! zZ?AHD>qddh0KK#AZ(KK1F&oeewrHOfJA9bCXHV#RCD{k8NMcmYE1I`XRbjNmVj~GH zsT5sdS8@NE22WaopMTV1zFlkc&r9krWkR%b+iZ$EX+U0G6?v9=V>Dc<$a0u&LwZ#= zzlQ|T>KgC8)Qhk=$%yeyU5TnqvLSBq;v=_R1poJT>t3CQ*6-HHq-+8`dMovPSfP|Y zbE6;&G=0S7s)oi2x86iE&g!aabXq+OnjgjTR6)>_Ws3A_!KWLml3px}EIF)Q&nXv~ zX;_ON)ig9A>3qu6R`_>iJ%6ZLMd2#_uDS+8w>1>7O25f0r8AcB$kx<^%z_(S>U4d03#Q60m+h}%R+5FXV9%8J{W4uBTIgfRv2o}N~Rl()(Fmk}qc}-2{kSrr{P-&cthn(n{ z(SV5rmB!$BQFBm5Vc`}P9)k@$PF$WOQQ)PJf(m-DXPMifc(GUB z2gi5WRr@ES(V1MAtzxn z7GD@>bSps1FzNe@lm@dv+&sQblot#%h8r`GqCg!bfWq8+C7CB5d@?rfs6KU=cp}|W z;&*$q{o$}~=2@q@#U`yB_d8fH{jP@gmzxN)nAf<4*!j1oaJ3HQ6X^|(^zf?$fL_NE z8E!^j9_2EpgME}j!X(59kCAx#`gu}}wtQZx$ikvFtlXh`Ifkd_HK`pZV=RRaAkSYr z##mrn>&4XqnKyI&1@WOi*C}#_N0a^CEi@3I*&RP#w;an|w6!~i^>6cW#2)7qtA76p zwu_RTFpijo*de;28L-x@h6snef`H&P6rSMBR4EK%O>;2HUFx$EJb+x9DPh7!Fhb50 zjG?hopgxx82ctfx4h^N(b|l$l+2(ov;$j!Jsw9ulabM_L=j=QhNw#STXRwhAKtN(; zEbJ`#$Xo$UZkeZeB#SD?q?T)LBR=-a68!Gu;vqpvD>B047M7oyidXw z%UgYwBj%&B9WLXMad)cO<+74AHAG5ICfZ@)m^icD*k;|1CwQ$7w7Jl($M#Y{7wmj2 z+PwRvjg-ew+5y?nOWg(8VA_9a5ZO-1vI+WM;wDysqHY6B!IUjF5=BmKY|Uu`{BH3k z$in_fd#F}S-&+4+-RIra?V!zl#L{UG$$s<#doBatuwS3Y-gGyRki0M?eHORz3+}2u z?jQT6>c|b7v_By0=q$BS2i*9eUgY0TX4CgU`o8bKV|bW4;Zy_wnSQUOwD6g`pfPmO9%QF1OwH06p-IZszWS81uiZXUOi`W#o8ax%>{5Hx*nyN(a1Y;j#ckc?#b zlkB(nfdn1W3-U^-j;KMc*Nmv3y~i#qNV}M}4#{|t11xR8x{P^R5WL=Fe2V87;WlVC zI~zkfxIzE7DPgG^!>fM4z-_Ca_NCLXRopY>In;L$>P=HqQJz6IX4VubfenxO6D3y? zRq(_pBp6Y__x3d>Pl9F9v3i0r6-CJuROlWJ$#x`&a#=fW{>l&k-+}24M}3G;?Na zh6IL`4OCcq7Ai|GHh>$>lQX2OU>Y^tr+~ziLJMzxSDBC8f;_~iHHk0}Nyv}el3vLYco#)W4pIHmLrHC0dd3vEsdf%|I^VtZ?pE=p z+UUTa^pYVpC-BCh;tU1{=J7;Mnf?TmP8Gwm$@FRQj7fAXnIflw2`r#JP+dQkdj zqmh&%YX!BOdem3QhX4v>Rem^&bXQs;-^MjcH7x?hFDZ8lt!bMJ{=QKrn|Lw-vZ*@~ zfYys|VO3$>eN)#Bn_Yt~Y|h+ALoh$w5l>qK$Vlcc+7|Fc>}Jn! zw~7$3r9_PRIJAB0zLq7yILBFC_6#NP3^`!C2*@+F2rR1Hkh;tzM_l?bL;`m+_>lWNoSXR#8B%=MnEsB{3Y^vB^zn@u-eR`n&gJ0*Il_M$VL(O+tQL7P#!su@>h) z9Z4&W1eb$$70{$H_Eg6T7-{+4Ug_42e*DD+MbcCclGV99?+{*KxbBAtawZhtE>U@ZWm)-gjTw?2l$R6s$n}R-XTyJA5k}htCJ+51*xy;qTo4|J(bzAGxw5 zukPud-5JmBvSOr_Rzm2mjg?t;Wwz~}+1aU?8szp@d+jQFZO@F|HJ&7^@>V(9m6_Ff zv+OEsfCnBxXkS3Re+61CpcPL@zyoM`M*{IBA%TR%GvW>L`$fe0x*wTYWxHn@b;@#O z-g`dc#EFO#5hqTZyLaE(@ToAx!{3UO9D_j=kVrj?MW$892!nT*&lV4orJ_Od=i3`( zAvcye!G6*)O6_!r#g!#SSl}WiS&_MN9T&I_G*!Ic*uwS6Ys?_)CS&_#@yI@j#`Vct z8`bz^jA_M}U`s6-xDvk?j~RucQE$FQmfXgLMJEtQS{(l`6h~Szj2pifj~j)eaes9C z+FP4%D5>#Q{IFnTfaf3G4v+2dSPtKR>>HSpNPHEY`g+TMaP#~Rdbg1M`F=BP&vedu2>AXQejMWtNpj|WLThI zF3 zQSInG9O9`d+bn|I)by9O7z6O-F)&@!21P#ZVkAajT$TiXg^q}sw9l%9v4|+%1VNnEJeBeDjA9t8 zg;QhpK&f&<_Ebpv!VAyG(bJ7G=3B5z(3KY=HKl`V)+iehsdg2S?0QNp~flvNjTyvS+8_C||eAPb)B+N^rD`Lq5>%kebUT8p$^$6{HkFdX{DA>V*&|H ztdz*ZK@sGwJZUD4%jqa$VQV$3gmDsMccGY-UIJ0jmN*?!Q%Rgh^V-7 zN*WUP)Dk4Lh=O7ON(2gGiwic64)J%nPw2hQ-^x5g? z#?`GMn-jSX7s?%YB8kaBG~8@C9o0P0jfo}5W|8DcVMqxleOFI8X_=ICa(BZDP1$zaKYF9n0S0iK@0k}nkuA!V6BvUmA(9 z1bZzo+!Fv&=1N}G^Hx$MWi7sH=cjqHP~q$95Fj3-IdtM+DO>Ro}G%FeBCNLoh&SCAv;-5ft}z#2uG>x z#8T;$)TxhC(S?EbtD#@jVY(PF30L@8nMqv^Da+yFettR`+P%Sffv_ap-Rzoa$mb$4 zWX+uitPpaXXX~F>(u5$P@)+1;-KQn}@T6pSG$P1z?VG3*^ur_n3^M z)ex9n)YU3xgSnO5Tx%c0vC>QHDUq|)Lh|(S0Qbuw+zc6YTBG53)IVxfPED8Lul{aL zC)-xL=3JF4@5!}h_zD;yghnST8oI(sG&dz^V=yFwIc#W=K(GGDXWOJxNoha!$l>JnpCh7 z;=pW)Fi&N35a>&jVo92!g_jEjj0qK_csfuKMJB;zPLMAP(@SwI{AkqO>Ec;gA4DCR zsLH4C4rnzkWzm^RHp`Ekt+YUI$+`uW&v6zcpYnG5&~nY1$?C;a_3bpC#aClQmo0jm z8w`i75C|Ko|CH@kP4HOT0Py1hsiMaR|2isVltu#_lHW|S2q1D+@(MK1@S-4W*S#=G%~@f~e}@SKJWHGxcI{b| z{>|v@!dk{Qw4=u8eAZW{tvgjLm^_#5^Z2@yntw#xfY|hTA(A?Ju40Wqk!l1}wrB+i zVCjM~l4#)YQpp4iBqS^Lhvl-syhsMZFflB`6Xpn|?I9szXaqe}Ne0s@nA7A@c>y4s zsHoJp!jy&=M}05qxVD!ifvG?ujR8Hhtipf;PBcM@oCcSoDb)5>Lcx(dW{~gl#vEkt zSe%bX1IaaSj>#`1woda}Yg-!nAJ%hOhWwr4IHiMP`;xf@iE$)9%=0`y&}7)9L@lRG zkz=;O>*U4JbQ~`AwB>nzP?xO6rDvYb&(EA>b=k=7454SV`-A?$Y(au%O!nKz^Fpa0 zOCFerra(AC6lTszDkZcFSaAZOnY5mcX44$&8(Q(K>(;)eysK5(FLQg;4;q`|zEfrm zNV1Vb#4OPch#ZMAm>~!nha5}U&i5xTUEX+?Hr^+V7bnCt|LkyxqhvBWnz0)Q8Uu!X zv=*hCFS5>$aNyvSahbqg6$C z?yb3=;UwE*wX$1ys&D4sCPx)tq!Q07RVyz_&XxJwPnDFa$?UlfzyCWjd?bbhr&_pN!+m9-&S3eSz*lk`>Gm z3bO9wAeP7s<|t2Q0U@wFV#MdF+4J<}EWYy~1|`N-X(0W~A45WYv}%dIbWK6U{&XmL zZQ|k-4(HM7FnnZrhm>;C@U8j@oTcb-86?@h2k zJ{yr^4~t|c2fRiR0ot(DcpQI5N% z1)9YOVj1p6G~{VLk}gyu2Lz8)9M&3MY@w<0kiyH>cod4W#<|B!rFd(;iQ!!Kj9Hmp z=0s42%NGFVEZfUf%E=liu=S^VFyY5ci6ty|%<`JR$&nxQ>-Y`__t;wDZuPG-m){(3a*4?l+vah1KNJPc~4wfCY`R zU152bk&f3sz%362M#{vpDJc>(K`s!|Kj4j4ODbrBLeFfn^2p=P4&MkcB*plXbjT(; zGijwvkJ`?(v7PDwrLkRUjA+tZ3pBBLwJ=t*FBc|i2j&<*p1Ch>;+_kx#Svi3;)>2% zEv({wksOZ2YzW;iZ+&r)Rskxa)Aw~b>u+Ke2{~v3-{n~3kTA1KP$<9ig1SM8>fL2C zJ`-d&zP+VCfFa@5&W@GYiPlBO(3Gj5S*{qQ+j`VFPKB#TC!#Migu3Ah4+w`y#@4q< zesyh8O1ba8-J>w`VR2vaQj4Ps8&A5_@9y_80^9;Dn&fVO-;@N&?7?A$3O2fPA~sy# zwQv+pRKo~FpH3;%Jx4*^yy|pgC97C602pYC@fOcR%BdZmnFR93U-kLmivgYKcf4uvaC?I z3vl{JUFlHPIJmj6{KV^%OMDcqob@u@%Xg3Mi`mxMpN-FApHrZ9t9OwhqwEMtK(W2A zni@NGDxDOSl^i~#syiTz?9$|W-{Td~;^6uWnQQ6Z;_Ir->Mn~+Em^(jGJWQ*u}q)J za@^z(L(d~#zSJkTa1^);NsU(On9fi|hGa;LLprxbzazllK~Y!h?N&hqky;s>zut5e zJA=rFgR8k5+^JK{VWXt!6E1_56p?trw86D(LmCEWh?hh)QKte!Bc=I?k&p-SBh3x_ zoxN?QZ~pG3OQY?i$-$v8zg~~lKLDv7iRkx0s~ssYA*HHoTZsGPkJmOf)*e1gdb)IZ zP5v3)f^qPWQ-KWx7!_igN|R38Z|hX7IH$qecIi32Z6Fiq=2~VI63~$(Wp66WWxAcJ z)yj8}*ORis%_W6L_6u#Zvsr!B+2=D)Jf180r8S0IwphQsc5pCWZ(RgTkbG=#71J&f zNvB^Py@a-jH9D8)j=r2e6|bDH18@VJnU3Q00N1zcMj<%tC|>Yu^&Ey+RDYrvTs4zP4dhV-5qA`KO~gM0^b)b{Yhv(?3( zKPq+eFt2J&je%B70JE>ArLp^OaO8*NX4^0^MEWSuer;ygj>QEr~DFirkFTE9+t)8d2A6Vp-#k6B<*dDSF=mOC}2_D`LzlvzWA6Q zMJyUA>m%z{yu`*@EBxd}#2P4yKq`KBwj>Dnd%6jyFzT4;Q&d;lBJb<`TgVd-xt&8Tz2i={U@?`;hIFv$hVCxOm#BL z2Bq7f8^<+4$s0atTjpZR$9hY0#W8}{wsaJrYf0sCV8aUTRZ=tl*4Pz&40`usyz!$AT2Vya%}69#wX#Wp?J4V2 zh_J!^37yF6~F(tXh#Yk@pOBrb`EawPlse(c#g3LOr(mOi83N>hQo;$@s z41aN_h{L$LsSL}mKJenJPy?rJoH9n_xj5&)3N;YwgV1+@A0@W_D%jwwU<29V;%Xm) z4Sb-17xw?Z#Tj6@P7R=@@kPWPm_89j9yD!Mxh=$#hY1LK&kYrDOL`47sxX=3gxWQQ zN6j7+Uik2S$i^2F3zb!Eq-F!%2I_ao^|ve!Zj7GF9pdq#ym!m8 z)t%X>@nkdijqlBBN6y*0glDyWLsn8&@>|s{XTFdjkXEqHg|Mtcq|kM`?yJ@j84&# z!8bU?yj=9n+uO+{vP`rD3X_}VvCWXZ?BkwqMoU=CHfF(08@_#pNPND@EX{~9roxLw(N6*ygz^J{lJdD&h;XvlPzKig-|Kk1wwb{i3E?|6s@SL02 z5x&iD+_>W^i&Rl#iPObI3Fs@UIL0_w zZnq$KT`RE;93;Qu-+2mp*{~)SoGGzSHw9-!4FJqfRIOANsrVJVCkZr z21*9J-$Z+sNc=Bq-L?px6aX8iiZN#;g(WA@L2(v@z2fP%I0fHL3SunWxGrn^H z$Z~?w89_ZB;8@FM$B5uUL4yghSPzY~Gz_`LSZPCmYewTY*AM~?l}HX9Opn+ zy?_s-$D`$4fUf1Wpvfx0&^waQ)0O}awIhmDb;eCyys4LAzB&Ek^31@cALJ{6MTZ{_Hm)L4?e*qcO)_w1O+|{x!I9kek=;l;VQj+32 z0-Yo|nO2!d<%?(@v5ucg0VLr3?2H(Hj6`tAP%y*9w>o3_|FQhv0sR*J?fv|U{v1!9 z<^4fEt#W3o^AJTa7E?&s(hWRu@bPyCbB&W->%hEBA%_dRdfaeY01PzmHo!u36S89* zPIHTkwo4UfND5;i)KW2oHskgiIq~783lpb-OR05LVx^jP>h%C1FVKa~7DL$cW;QX!G`1OyT!AFX(ZG<$V!&x8u zoltUclD?0##Yl{Bm; z*~u>AO4Otaz7lp^)aD;GwE5XXHR>+Tb@`IUN3JV2v8;pJo zL%cu6p?x{(ucu_N@4Ac4Q!EJsHNoRn8_>p@j z!b$$Px3t26fcqoW@3BAvFj4ihHkN}T-&x7F^V!QhA7`_d@F+5R?=v1Ngbz^^0j&Hm z2l|KmU^uApzkjK$FEc@+7a}S)RQ|OeO`%5yh6{6n8YfgTg8m7P!=i{xuc2WQsS(*# znVp|_?4Bp-NcYJ;(oPn}8|Nh;L!Fzb~O|+|7;_SuVdmF#t zi*HGkxW<3mtH1N!#((6iU$?^`_V~ZNxAD&Vc>E3LLbvDdy}$82KL1U1%vdbByauWwx9%ik`~puPX_>l@Gc z{)~TL*qia!H~u!>91^+d!2id4@4Qpjpgd0+vL}=MeI%8UDUc^Ig0)CIdGaLSQ+`Hx zl;7pC%EK6M@}Pn*ty{vqJdCJ>zYqWTFUR5eQ9g_w)ASzq0zy zI|%Z_!T1j(AWTxCXw*M5v31_)2Mxjq?C)WH#W%};<)J|utE@B1wnk9Z={9|ub+#p; z%CNxKoop+F20zVyI7Hf^{rpE~&atVVhFpGEyV*t`3B_<=;?2WR#(>MT2leGBAMgCv3mvGW{gmh=o`tO}TVO=BVOAMA{0lga+`;jGK_$wO@1 z=rD-U;Y7q#xu7J0>~8mu^J1DK?}JwO=M4aqwnbkKv1CZJWm?3$l`!1# z5L-cXEA^3qU`VYMW_UNd4FmC+=HimNG!aocF0{%L$8ZNt4)+IGY59KEm*f1vJF*!9 zJ3}NnfNG$v%5;li%#}J=qAw;#@Sn5#bn+5Jg#<%s0q7W?LMBQP&3kTk@@9TGoggj1 z9`zD|Q-%y!aH5CD8hNM}D?6K$90Fh;>c9q%0A#i{YZKpV*>^ev!wP>>Z2;v;Xepav zZ_I-`;fRsmOp+2P$y-ZqzSgW2{+2vktOO`vNEt}%Q(-U@eGR#k@i6P?V1SVql3;9z zEM5Y%l%`Igp9|T`$rQ-%WP(G$IzhhvF@~rN;mYAGk&qDzE&+{G1i=^%D>z0zC^&WP zv*Y2gyZ7qs3TdYP_1Q=)4CLV`pd%VRQNHNNa0;{+<6F?CyCcdy(@S*mS2eP%jC z-EnRLg=0akmK`R0b_jgIB>40`>|nxiPe}n^i-vI_Z$n1QP^KQ??Ex`C-6E!wGrB!t zhKTjhesmlJ@0x{vMM{VQCF>Iu8 zDu_CGWd>+R#2i501(VHiX?gdN02K8(n9SPp6XP1~b^E*U*yP`Tcgha}m>uxLN#EVbHpw0g?K&0Rq?dVmlvT0Nz$P^fMN%@(hoO501WppTiN(;caknzkSc zHrL#&OtDAc=UTP^F>?^wSi!>-#??uIsEz+mu!`P)HpF5V$d7zT>Xe3g+$rCAjs&E+ ztUy?1NCq{Olr{h%&kZ`JyBZcNOu_^Bxem5VkKq^;HHJ%q6^2=VIa(JX>^NEo4K!h8 z1U3SSmq&Q>SeZNa&zURWmWtaHXJND?eI@AE-7ft~j%4MeHn4*PS=ePwXNk>LX9`o2uE~Zj%+q$T(-IaZd=eK zlpRXnP*gs>+=mt->?2K2hF7)g8@&Kdo1H|)LV1;w4ovHX?jM!JMugAmru(K41iEf8 z5gAQMff@ARQl;qrPd^n0G-x0Y?f*}G$1nj zVw;VxCas6zZ_;YNe4DmtTv0mUXq!HU8)S~|sU8UUPEtup6}rDvqQ1+6-v$D}3p@n8 z%8t8qHQg)P7vM!IN_ygbdX*qnB%z^3GWvX(WnK~wlxS!5<-JZ(r#}j~)ckz&T=6Yd zqQWD;3=e?rWQe#ry{cq+PS%vWBhN*>Vus88)~HiuS07v#3>hXg)&{=3HJ7s=-?{q> zrQAFV7F&P-h6~b}h?UOieJ6on)l(tjsk6KXC9bb45nLU-P6q1P(h6tXh@lcnq=3?l z%eWE{iV87C_o!B3a=X95c`L=rdM}^|O!YXHQKg zxCYp_w$nw5+nyu+_F1ifQIPVt+$mw6iA-ZkV1Zq4VPA zJ1Q?Xudxjb2#t1K5v>6AS)RJ-spcE?Z`LIdso*fx+M*H;$a1Hyh<2)ECKO-5{|`-5 zT6M5EhJ-F!O=Yd>;pSw9&4K-#iD&bH>=3liUh_7o)PvpS3S`Imtm|B8rW`svsM^P0 z-p?Tz!PQLicVf$%a~;SvN2)uzQAHI8cBIMJ9@4b-j1$*Vr4kEhD;;-&aL8_$%Ng2a z%|cgRG#z;LrPa}eOL&>llI|3kZFwJea+te7Lwd~h0t@Li+%7VeT!2L=>mIfPPFyQ= zYA6MK<#tiJU*vZA2rROL#fH0_anz>~NHay6$}2XQC{*IKK_sV63xp#agxt}=by!`n zH%uJ~6LbmeF;hEom5sm&$pn*vc~Zp@f=LCZVs8jvpe!7$L>olj83)!t4imER_5>Sq zO0{2dHB69k6?&3#u;S88F)>ZecSu4P!(OdDZlm%MPW|9G5WSPo$0FU-TBDwIOe430 zaFARgy?Fr^0`jEaSj{*tuB4@8dU3s2rKAXuok_mCiwg30xHE((h=SMaWK8Ic-!5Q_ z1~^xYaH8j1Uz;asHB%za|ey+%5aA=&WEL9}FDB zIX2BOGmP!@>nz=sPt-C-j658c!DGhz<)6?~haPd#t$&122^rodUwCU;IT^`+9NJ&W zR;=8&r8~P24wiLIs*l((+T_%;n|l z)*eT#0hdW@_KvNUUOkr99<#N_(%NG;4%?>Cg^4aOZcg(r1~?U;b)Z~`K*b~+OaQ}n z;iPK&@hh(lP(9G`iDm;gX(4xV23(`bOF9m9I>e4PI8bGzsjgM7am9Nz+!`w~#@1dg z^EBw(rhqi4zyu)7`3K980K$2M^6@HRiBEV=?}$z3l|ZHoL4TMMMoDnM1DR z&B%psjD17bTl$dI-~?X}FT&-0cCw4F1{CQTp?TaTL?}yi#s#C?f|F5vL@dyCGuGz# z1+3NV$t$wn5T1E2c-G~cVuy{7(pJ=a$QQu*){q`3X&t|mw)u+t;v+0O*a175P5a)$ z&)Ru+uN%a-6SBq1UzgcnUC@gzO`xPeHGBiyYKLUq&!#hORt|>!J=^cal``Go_(fa5 zxylLlZ3cMU8V857u$&0%uq==O9Y#QJ`qd55>Jop7lL`_s)d6v#Ei@2*TqvG!6c-_2 z@YjP#LadBVgjZX{BdTBiNz-cwriz}>M zTxqWCIj>pZ#M2b!I$#I_X^8=*D=LTz;$Tb12LPe?aKdHQ6l28uC(>2VUgq?qO}uV%m%iPhq82Jz0d zex0{Ps{e@o3x&cjHA}aHei7?>6YHX#hY81AW3T+$8K9#l$4+`ZYLaJr2uB)@d%d&D z#xhjKRRWk7TbI|6b?Ngz`Q4p&0O1d9Q0W_s1BT*X4*7)}bLSbRb!Q)8 zwArou4<6jSs*?n}=mGRyY_Q+Vaaa-&5?B2_OtMJ{GPs2}y#mWmX7)|?fMGUro05{~ z4O5S>sY%^AEbQEb{D@J$tj(iPug*Vlw@c2Plje^F199ZwT zSQQ2E0ivkHn5MEI))#KYdJOIm?rLz5=u7ifpx&AVX>vgLDRwL`DV(N)BQABC;Wv7a%Bv5J8mgVME*0NGtr9w+KURV{_7yQ~^aIfS_7m zN$kD?NEE!VfA`wO7&->Oz`V9^#qLV>l$tBc!7#y|x{@>z7f)L;{`nOapl@Y7K>)4S zZlD@LAi@VgD+9PKUM@s$f$=i8UM-@VX2>bzQMUAWsH zZ4dhTD_iPl1B!5;mkW+?^AjT%fY#9Ux4O(36zR zy_jhH*lWh|4h5bFYzvCWncGe%#1Do=naStI9({<>%@C70q<#OKn5P>QAbQ^a{ zsP`MTl&{Cmx;pn*^~RA~OWt7d#USh6pl!V2|Ne7MJd4<|L6+eeDVAZuX-}KGY)%G{ zzEH5`CE-tB8uWN;-_qB;aSwgbF~E(R?}ou)F{FSYIl8S2yGQqN&9md=Sx|d9K0(F- z(i#VWWz#EDC%kY)B)Ux><(|zKAdqh{+5wq_uEFg=Ug1*EeUy(2ceKLc)E}|n13Ata zRpYb_L=2_C(&3^_auMqZaP7xI3a1(uTmDIZ|1j5mo0gsIwZInU#X#LiIcMvSySU>F zjtR(rKNT2Kg25CfH{jz1112=dp!pyST&p(?oMjo>R~dY?1ZjJ92eK=nPIag_CMx`x z*%(F!dDcFz_usJuKgUS_RKRiBa|PubusM~qh{AqckJ=I$*CQ8&PKVw)bg)N-I~-dB1}<59-*2xMm|eyS`>~)VvcY%y-O1k`AVoRyyqpO zstl1&h&yx=oQa(oC+k55-p|77@VsK_MJO@OEnpi2i-m1~IP}ZP;%m!^7TU71l!XT9 zbZ{z_`FEjpOovCanVXBexRf=ILe@M z*a;mN;uuM^ytN+=_eOn{ZIHVLR(q(ALxupq;Bd%{41A6~5h|E8Rb+|vyHQ-fr^CHx z2=9Xo@UZxq1#QTvRJ@q%^KT;_kx~F({$4*4=^?@MfsM|=&naMt(%>^?aG7J^3q_>g z!phnV3HaW3&vOF@xp(v&aS(1`N9_@Lj>?yHa@6jn1^{2`e($^34AF;Wpzn>asp5IS z{F*il8_(u0^rHbWw5~!&wnlXXd~X6 z%6{f2g7x^(f{6DWjN8Ij-RnoI2zjmr3x2`FJb#tQ?Z@|gccT$K^a7(m6NVwr;J))k z9b|;-1IS}>IJ(gR&=RByCALM{yx0|s-3~&ZAKwF%`V%pk{E6QXiGGaqOUhmfPgXfw zuAWdja1m07t9oT4Fz|?h3elgs3Ozr zM`;||l`z9ycpTp$hLqCkkmlmM*Eac(nTJLw*s0s_7C zTFrw{O!g5=*aXhi6S zb$dzn8OyheZLc zoJV)U<|iUvpsi!2;b}xa0OBYDa*nWj4Z!Uv^9?!COp?MPQpyG6yxjdM&z`Qiz#kTd zf50O?Q6wxWZR7{%XtX7}9f%M3fsrIOm9d*DR+lM45&f|{Y3q5iZhm0CLaim+NuF~} z9itlDABS0CQ6Yn#Fi+1i<*v&%XM$%_wg5>?B96e|a@SY_N6#{$HL(Obk`4@J%$Cy0 zrV$rO>hcFV$V7&%WSs;QH$JyAU%;qX`3k=rKoT|;*S5V7o3)W!AV@aB10<=*)Df1J zhHgCoiyD9cY-plpn9GALkTR&UZqU_XRZQ-)_rw(nT{}AqZRf1`ZKBZ8NWu!} z@rur@cD^rC!_NMMRzD>D>}(_TRELt-yP{;g66iUUD;koJ-QJ7B_qzyxvN&{PkQc~uY- zF%k)UR zJavhkqj4`XG4sgZwISW0w4-tNoPVn%$)`5Nd!$7hA=gIcThgoPF**g_>!wB1@^UsO z%c)Y@4N^wV7Q@$}HEjRQ^Q(BTt z;x=Mf)b?3bU}8HaOnzBHis!(pLNkg27cCaY9r-0}OKZI>%+F(-Zoh#2OG9$(UG7s=NDdv4 zDjS6XSBs2b8U-?*3x?pCnKY?&%OXzK63ezU(sRy*sayE84}|=5yDvaz42GTbW-bL4 zT$%G)Q^Nfv-AV1b?H}72@7(!5Hpaj0UPdfn1%7bnr%{2}yJ`iV+}T2bZ&?eZaC`Ce z&fmj}-?SIH%-O5If9D_J)o}Js%WfY@BZtZ|BZLQ zrj367=|!f!`v#xM9>0Gs8}yZ~b+|@c_T3 zp)&{x_?JIgHYC6$?|Qw|U$cC4z|LK32XOGw;fbx!fqOQM5`!TuL>;2bCI)i}zTjco z9qtwLlYGg#BFVbK$)_c=e3fdsTws#Ri`Fo_-r#&#({ONr+tnWc!7lYE!l4VfL||b( za!*`qbw+29fq}LwIkh~lM zNFvMK!-MGIfE(8RnmpTBMOp*cCi%Y9b;S^%9vVN;7X1RvrAI$4c~$D$+JJObkbiRT zZtv=&yH^Qw>*@?4BfSUrZWmo2z;))#{oB{>+`ZAe|KQ%Ed)MyWMM0a|Zt2autbYhH z(gkndC)~GONX497dlpCKR!AiHmrV`mIPKy}4=OE{-zH55`OYUV78e>JTj&t^ez8nV zrnZK2JA+8P*5BVb#JO+A12~0-$wnO%{)n=HqCqZFRhz)lwV(-AnC{;OTH%+_y#Q|e zMX;NHj2irKH9JE3AJT3P(Jd*OlA;kMYm4eX_sBx9YS8iS-`3dG1O*p#EwXj!{%xBB zi_>DTyPUU2=otbu^aw*W41mb?Z3KCNv zEWC!jDZt2=5W-7H$Z;w-0SZ1?3Fcy~oy?@QLFiouILToU*G8zd3=UI7t2pF1u*%Ni z@8S$Bkk3+1=2tpNt4a6UBCz$lej(&9_2&OLM2y8DD1vLu~xrD zY9|3E(temOxA*^lK+LaCV{$_2NW9RlXPPszrjX%|aWuC)5$Q)GDaNLqlnD3uRK zoAnQo(FSH31OfchDHhQb2C@a1)5AFg(xFO{(;4-07mxp*@;<8I_^FO?US;G5v-&b5 zV|1%w+>SX+^T*9+@t?S)hT!B6aR7#CEEe)H2ie?Dg@J!XIhUhACb>og1d^_$WlzVp zTUaLGbZVPQgJP|IAXUxJ!_``ZN?rEAFsUX9bZG#{Lb;V~Zh3mb22HX_)l@X{(Gux{ zFg9Ju;Lv0SP)dhYIc0%Zy#W(63fIHjQdY9nQmf&ApA~P-CpU!H$ABfj&}HNX)qqQk zn($FKMrJs$sx1ykj)a7bAXLa>8B7z?`W{{WKji@9FT6G0Vh=rW^YRPuS3b=%?6 z01*L*#kos_w6N6O1&%pOB#Dxrny$32ElUo7kVVL&fLoEwsU}^yr5r{qRz-yN!W8x! zaf&lSsBHs3uHBGjwB71DJ(x!WsLysy?+w32)s>&IGi6r>5A_sz|7JtI6+!~HYJ2gA z7Fxbtq_L6yo(-mnm&P|NtJk82akxTS*(qMg-cIL|d3nvEMh~9jm}%rV@*wH; zs;+t*Mpbof&rO^~Z?{8~$yB3A=_{s5zzhEqyl(!a`C`KKbpmzTVKbs1d1bB7C5Y7% ztZy^GacZhH@e`3PjCy7CLxd&~GdwG&<4z&Rh8L8kPmz%>3*&%QDZ!u)rFK;a5@Mj0 zB6ooq-~lN~FC5qQ*50e=K8x`7ioPXB(6eZD>?!HC`jk|h>O$xl5;D}i2;Sm_n;rr| z0@0hUCh{b%Yxjl-bNR{wJ^>7!Ch)@)Nv+>duF?Sp_WHoZ%#aKn;LAw$q2d7F<(bhu ze`*>lP9W}#%14376mTc&YNRlWSLpl$It8#H{Q+AvqR%=%64E*u@e^JA)PQzs`e%E? z0fXZ_#UdPFAcO7!8)b%94WO7Yn#a|^`idsfjItgaBPY zDT%KT4HuJY7_{?wpy18~XU$09d-;S}+Huze0*5)961EVMT&{7NT*VVRO9Z_x0VWk+ zdcN4LZJlU?ZOnSOk5Bv}EF&+K=r}7fCd)ucpyW4dB7ephu?slDBPr0aqcU^OKZ?x7 zgvV0+SV{RKMtR)hX>wl1*)F9mHTvSmV(_?;IEP6vFQa?IEJvU!EW2$W|Wmx=*=!?J|`LDen+pI%hxu%I-$ zi|rDghT~Jya8XI$L4t}B8(NSQer{8ct24i2(`-Q=S%^z!CPeuIT>OAtc*In7#MWf* zHc2>s!89a0$gX3_|3&Cni(B;XR?w&Xm zV1cclwOB4ZA@b;>cEg6o(%H{Ew*Hx?u6{c4RF-%#hfrRAuqj4%#Zye!tJBPkD!_eAOj8yE9y2}lLB z0AH$vaExD+K^C(23kqtDGOn*OF~3B&18;!AM6Th$KK{_kd3nR z#Po7{s%fHSJ=J=6$UC@21*S&IARKvt_&_*em(pKp(>ExoY(ym{mZbd1>51BSvzDkO z#jF%CUSCUe9)i;-i3YchV|m5&q+KRjqG7-*_!=rhof^62k!t3Ex5~*x31Z8dVgj=0 zO0x8+#+M&?jnM05+LWq^EV`u$x)$n6dsfB8@ku+B`20{i-J@w?|KH;G>)`yWR7b^i zxlXEwpG9GmREg zK)p~IFo#wkP`k@e^xS>jM3t3xKhGSZAb}-JHP4TNGMOmn1~-eIaH6KKH&HrGHd_}J z-ZwUB4mZn9nwdH>X{;G0twBvu#bmfUa83UPyXGod3Gp^=G2Nw+# zc?ZXtkdui)&SK$cM5V_RG=7Dana)9+4mIxscoymDjEe4+)y35@AI%&)9 zS;pOI&84Dy$W(%rNCT%fCzm%UMDm(@#|Hyg@JL?{z=OkB-jZwL4~^+o)~b)mRwuj~ zcT(Fd$D`P8#BhiR&_85f4Gzr?EaQwO2CPHF>|6{A^HsY^a7Pf<5J55K;Rru5E+&k= zNjk^)f*sce3_JLncG{d_dydy+RM5_*yR*pxl*_%gYDQP4Bf@rdIvVF`+(*tc%;9E# zlV*lo`6cpK7{JedEn)Mdh}=0&>--d3@pb(qvl38B!eA%{XMs;S3n!syxC&XE>4aUQ zy71JIqz;`kvWO}pUxW~3jFH7OS=FK)M0Tn+On5-20*#3;l5Gytj*n4Jz}s2up< zP2Mn*5i?lbjY26UFt%IbdVgi3If=OR*;fYEx$qFtuT`R?+fybc$`c~QGIu7NG@A#L z+mRw9zw|x&FWe=>Q72nkUi?7<^Q9u0h_sbRX6X&===-G#iW=Fr6h6p>Lv|CB2LR4*2@aw zd@k@7R~i%_GO(`j*YWKp)ejj)P{Ub*E78Gl=Q%PnI&ry*lOmJZ1ef`)m(GF3%SKeZ zfrFv>&Dma#`B%@rEYHD228DbH23}=EwnfK)l!Z>FFTDw`>d9FM&?Y>`fywHp(J(y1 z$q`lDswdzSYI`Ml|Mq0$_~|rMSLvJ3ch`12iLw5?_5YL zj1cR&B~lN(z(Pl42BAw!yAf1|vfa?(2P+{C^~=o$ZY2~)_;!B=7q{H1jTG=aB7_YN zZXoaP=lc~CM4Qs(QgUG+zgtNOdxT&Ds6p;@1Mj)VEe_CBp&9eU*eu^e0$ic^C2R}d zNx~!W=!aIVCuz}(X4DJP#ZZI30j&x=$&eK#hOHDXOew(qhwyhFj(X2?7N^ z%E4l~<~~wzQYl2GZQk9p>`+TRS=5U0`P>ncA#99WhOnI#ncW@P$;Gu8bYr($?X63l z??1h`f};b)3fwfJSCcFdbhwl6AGh~Q1ANHy#eJk$&><<(UBWY_uS8}8W;vTT#D`V08G4A{{I7R6{tw^0&!(*O|9yAkcfQ7F z?A4zA?$v;i63U4A0BRZ{~!6-+C2aO delta 64278 zcmdUY2Yeev_J3w2_ioF*$!WHe*pBT~r#cBqz)?s6l3WOiEUzsovLvfG2~CuvHVYN{%P&&%cuJIkty^7(C6XP}2S zdn|rG?{$%Qlu~2LVf@X$KyR;oTR48xF#IZ zH+y~l@Je4Ov)|$aPG)FcIFw>{_3+ySJ2w+$2>ZAR!c|<0kfp0cvxOrv>sA-q{QXX| z-^TazX19kiKPB7{%5b{-+-A4SxjlStD6hxv^EfTr&Coa>lpo#^2<3XV_x1BGzt8OR zZ+8+Hd>)(KwM}SGX*@Qca`pKwe!G>l%NE`QJk29uYjIfs#vV(13-22AwRpC-w@z(w z+PmSG-{y9;H@8j|nzGsuFT9ezC4HsIsPmm2=7k$Gs|2BRd|NK>33QvSfO4I@xsGuxpO;gIg5Gf#&G4O*N5D#!*~ zo2@;hgPMg`o)fmsu+6mf!;esb$Ln^0NX%BZXS>(lXY+?cV?YpuD@{4gHr?hWS!UU0 z(=4_Q@kc1d@9vpu*&enHFkTrD284V2L4=Hw?zFi20+v3&mg8MvLKHH&suUV4EYMBU zQ<7IVacWv054y7rvO-x?ZLJ~$uiNdXS|CzvlWff__e8E{6a8hIXsc(bvwQenOTg(j zd)**Tu?}UHo*r{=z(v&#BL!bfeKz-2 zvn2p>^!ma(Sh1b9MGTn+TO*+e)hVSx7PZ*6ghqw({Cq#Cou4;%Lze;^Rx*0d7M}OW z-AUwFZL4ABl|Xf<(t}v~``s=xbU)IAHicRCOz0+N-eU(1k2I5#JV9u=Oe^$z?fnEj zKM(19ofhc1Vxx0C5M}XhhuD6L9TbN1fFP+#WV?922l@o<3*nV3iJIgy8pwxtk?uom z1C7Y;x41kYV4peQ1%(muN_W})9=mnR_V5mxDpw4f?R_q{mxp!$S(uYrQADFtU4edL zei#gbIkim0(QMny>Xg?HJ0f5Kc>xMocsa{qj2VpEWI@9m; z5d&cF1(U!SXAzRsV&%Plp9E#Vw}=$e2bvP0W%&Rt|3JVEP)70=Drja4)i3CH150?O z=vSpRriM6&C2SF1ORLUe<>ioGF5KGOrY9{IYSPPtdO{*U8gjOii z6xNN!iRtZr&~{rpqh-B!CS7 zKEmeo>Y%a|pOqNhu^+1+Rf$#5N=B40?IV#k_CYE>LSm(Xic6MH6guVS zaTDDYO`wyG!Glqn8mTJwH?FavT0neWsnXOV(d}2E*fjwWIKWVSZZ6w(&y3i(DS{P z$T-L%ifM!s25NJ_(*rgR%xo>S{ballhbte*x!VFp^Au{jgxc&%7t3BmvorHUfU{d^ z&!Tx*9I?ytz!nY}m`Q4;o(~M;&4fcZR0PAfr5lX5m-l$h?rt)i5r5)zW-Nu(*+t`7 zo9s3RD?68#t&|u6^0e&YIV_$H{$xlri!Rc+EP{=;bTnWQWXuJDlUfT8WgD3wUdt|< zHK61~)HmVpn`|S*YBEXqSfuP-DcOsW(3!l%gbYxVUP2M} zSuIXb3)X!UP=#o{^Ud8BA5X>&@E|CH^Kxr59VKYY7#2Jsx1@q~MVfw^d8^kBULhEN zn);WyCWiOFa*NrIH*<|5cKSS{*t}da5ICR{14?8p5F18E6d4Cu;C~VBlW3e!<2dMi>UBy=6hx*gUhEicX4p^LFf7n9hkjc^# zSC|du!h-x_GmWZbQKT2JU;W@Zfl+V<`oTS>NyL&!l5NmMBg1()OYe7kocti~H2auO z4>JR?jGg&qHA)6lb3xGH^>Z##k#mIm^UEq|l3d1&cfwEtzBqF%gm?3+dTDf)SQZ^= z95;e)P;!xitQZ$*T)r|+G?~hx05~g{tw>Skf)X7>3;u#SdJh-WMQR4U6NWhJ7V7$m zUdy8ewGPUyfG9MJ_VQrK!F+Y0=or7fpLYkqjfjre>h^8{8y45;g^LCr8H>+4m z%nUO|_~rISL|fzoDLQ%9dn2~n(GlsAp#soCyQ|ktyh^3^g(i5s0@pAuoj4*h9X}x9 zyGb)=()t!gvRFJGUbOSn0ff#IiHefGsi=}Q+E!FsN0}5yQo5jM-fyuxL0bY$O@*t9 zs#x-Si)xI_VB|o0zuCoa1t9@YA$`CF{xgXaJ}xQ~yI{JZdId|Kxeca};DPx4l4qD_ zHQRg4FrlSmGzFWbEhO_nm_-ba6E+!qY)%r&wGuZKCJn@`8ElXEt7TT|^uw%_MT2n^ z6Nvt3snz3QZUiwjYS*7sKDW4ZJ*$R+q>NJ$K$gV9&>QG8JKgRr;QZ_W%MA9aNRFV| zK~@jMIN|Q%Y7v>|izhJSbk!8oSegxl2Wr7PJ?8F!s|SWNuxTqD%Q)zdprw|Q+B7jB z1WSx{k%&;PoR9e%kyMkKmZn8=-&SI1ka8I09A3U3{B1U~h{Ox8lvJimf&Y|LFNp*~ zMRHCb*e2*34tW1nKv+%}W~rDBH2NhDmX>9(AvSNoFWlHX zV>S!r4}c#CBB0Y$7=@(yWVRT=<_@70m)m6-WF8mTSvEK}mVtW$Iv^}B8!wKM&a!bi zl(TKTZ368a*O%2Z!T+mlTrO2Ko6%NBe+aGRwW4~gDlccLY~^+A$GPRrV@17$xrZC9 zgW12`!-JOFVT`BlA5q^Y%g3|ypOjaMys|55#9xytBI>uSqIw)_ajw0;kIv+J2JIdg zUqY$k4-ze$Qc+#U(&a?bQQHq|M(j>g-Btk|o_Y+ARV){O6;#$od?Zy)v&Bo6w-|IQ zD=X)Vew-naia4cY8P0F_M0}}GK_s#l95J)cej*?4%4Q{AR|!~?Ig9X*N~kOO1$qhy z`2ziP{;lxc2tcT+CXeQ{)ruCOMyRVY2&SrRCcJZ6t1~WvUdNbjr~>?nOt)8!71s{3 z`@9y9ZP0!qm}pqc(UB{K;g+h><&<@(L`niflP3VvD>ij@+(Z}?q(Y^37fcB4ei)2+ zGfhs-9Tg-g@5ibtR&YgiRV~x#0%aB|cjAze#9h^OA_z|D*CW+qMcTX7pqHfWX*J-z zQLO4~swXn6%3Kx?Earf{gvmd+P%X==`0nGlV7*(o$GDfK^CnW@KR}R3Mc}X9$B9;&D>R6{=#u_*(iS^>EdeL^^;f z(H4F?F+`DMzpkxb!gv)+$y6OBvT7y8S_5Fr`Xd8&WRXHRSX*7q808Jx`K`n{fuHSh zd&!aofDUU5Mo@eDYlabe9TCJu?M*oYp;U0%h^MvE)+RjLKCZ-;Zp$F+YN2#Mm#u(Z z7;X?e=JA4Sdb9A^wDP=M>Tk3}mZgN1)5Z$7o6Chy78eUG(;M3iEPl}L1LxCzB6Wme z)XipOtKCl|7RqG7rJbvNVd3?;HC(7luyj?`hG8j|_%khiPPfkot5T6Q-|)^rw{4bC zJG&Hd!pzx6qg3IX*)!nx{j*zdu#_n=L^Tp zIknu@Z`0X!?+E2Y)<0lmg~bQk$wJ=T+MuITH)hPT&KJzKP3t@NINGJqrf-anc~Z!H zdxc|~6zZO{%Q0OJeKWzaKnnHlS?8E5h5Eie)3Hzr+4Jfhv!#&Z$6Fl18B*}TR|ZFi z6#8_{-yAcg&=(JS9P_2n*O&A=W=WxM`^GxvL_#N&oNWk%U?G&aTAJJ(uRU| zgcgD1I_leIo7-9Haxt|RRuio@SSur$#5gJK^byjwvN)PH2z*(1r-J}Q3hZcZZejmF zVWGXn7wCqSZRpg#W?0w^t<{!U_~-n3;hE0yGut)gvvgZ&X=8*uZLpZl{a??63 z8EHG37tR&_x?ueDnObtTkl7kMG7)a>EEQf`m5J|%5IpsllCK`G}`k1V}4`s zzXh`>D&fM;@xn7lteoFw7CTGQ01|e(HuF?rV97BH+amonG0mnLxj@v&M0+HaF6cL@ z*o-!@qlXevu_B^kV*6%7`_|5Em-uND{pJOYq{AoHVUg6~NnO&~%rl5B6BaC-EY_`! zV85WvJdN78oz$==q@KbX%jX4KXGAdjuPCc1L;t!R(SHooT&ef?E_U?SB8-uMa02OT=D*E#*8?3WU}-Btt$O@)#y;UZiicQ1YxnEIh4?BO5vQH zuz0%Axv*i=&Oj&~W~pS$T2I)~59;Lbz~!tkY(dL`hnTzt7XF=EE!%zJ3t_I@56>Im z`L;z&>Vl*py*QJmc~bpk3kF$sXmE52zg*E;IS@*>+F*YkEG)rdq9b2VvK&L6(F*vs zB5pi36>(|8w<`)zk&t8BFvU>-DFWSe`N2^Lzv1aM;Z_VkZ3B)HxB;7TxP>aPr;e*| zhR+I zHe^bsAhLuqLP5YiWW-swBBQ!}OOq^?tksNAtZ;u%b&$4iZIT6%WuOrXBJC?)BrTEn zI*hQZ!sUYn$goQ(&&^3zgRDP|Tn+qS8dttWS!REdWs+5{5y})gZN)tl;}erCh%BIu zRM0=Slrv$TlVm|;$n#`l4?k$9 zYr;mlOT?$D+s#SVjjW4C)h%0TH1P=yXe?8`dy*`QII&ShsY#K#$- zB;nrGvzU@Ums~-CP^Q!E>QfG2q~s#tI@(|qgfyY-MJv`A{bUcD9d?~4RqoB?Dn{4d zM?gS7CI~|+eUzXq^^+t^{Rsn9_VPuv$-&`m{vpZI={QBkAiB&xV(Z6*f(FG%5?cmY zDaj4jBaS0M=8t5qksqKbB~g}S*>pT1V+DO;5(A5%(kn`XXBmF7F<4oJ2}xFg4gkcC z)Ai)&Dg>h(v+QN7;&g?!B(%h+`6um8Nn4v zmNbgF6(+B*VFhhSvY^qd?M>^)F>BkKTtR`59(E{;69r;t>BJzbI{*tMY=0)(xH{bR z&lgVLP?jE<4hVZTOrISIfPO}%7#Y&T?09_06he4vMQb~oIGm%UJ;GDHl|k~jG?dBq zsF7#I@PuESOPmF~7}qo4S0It;$Y~OblPL?wAly__A*-nL4UQm0h0*{{x`T=C_Z<$~ zPoEHlQt4hQe;8(P7jNu9Hw*vTcy`D-#k{AaA0mx$=P8`C|jK8MmEqp zo`7~$Wo9md=S_WHcfcilyKz(SX>~Il_d(ckKe;>rm#&>xVZ0X(OjYrV$!huWTf*eLW*Ube7ICnE{Dr5&Q{jA}2~bwh~24#Ey|_ zL{@WDChP>|a?VMRDwZ{9aGV||#&LGM2*uJ+hsp=q0D%AG6&q^d$rhN=Ec|gqjENv4 zTllq<#c&HBacdeJha8{$C9sMIb7h`9o1lC3mEPhuhSbELrga1=)Gl;hQiSVHLq$Ql zoF)%}f#d=5#sNqg0hRb10pq&tk0z);P1rPrYo4tH$E0bB{wDc%ULx>;Z*?C0@=W4TlnlJ_Kll{&pNUO{JhHP2)&`+VQF9p(COd^oQhe`&J7JyAu0D zhg%HTuV4Yf697e!S+l?kLz#Q5E!=LR&&C%M`r=_K_!Rpb%V#Ki`+86%`uDI;Z zGiPWt7OZ@S>Jg`G5!}?O9D29X(CO@hwP3%kAL}neMNEX3CLluoGSm<)!rfZ%k1axh zvKa1Z$8;nY0*|B|No=|tO<@?^r5yvI?u=sm^5w`Fjl-SE<8X%-7EUFWvJTzKusp;L zB(AIHDpiB=%i5vC6;}?o05521v$Dyux!kLTMH~yjU>mLb((={4SGE95i$`Pe-?0Fd zN05Vd$dnTAt>=nVlFUli?pFQccc>-01Ed3=Bt3-`%HpsYf+Md%)0rWdoB#$-T!ZFE zW6+R11{1Wfh@;J88IFh82!!g66JMX=jc`g1y!B|u|M&wcV-T)P0K)d`(9CEEyR@`F zwn12~g~j28FlVW~FW}{k(>jgt1|*p{&X6`q4QNMDIQ`n9AiT!}ESsiTnh48b(?pjR zG-3m~Wh53s#|Znk_=o8xlgM`21zwXTit$6i*hNUkoEKFI4nd_{G=}Z&p14oDvZEFlnC9+5+#x2 zW#2xYL=t}dz;C4>*I{u5fn zbat#(NYFHV)1T1tXe(NqJP1{k#c&WJkEK;A0-G8o3=(}pm3}lF1xMajSFPzT`bmhS zF}-i3PhO_sk|9(R4atJ!A(^X%MVx_UwiX^r`ytPEm}KHwbOuHJ$OB6`t;Qj>yijha zajl>C7+X8wK^o3!;*6@<&H$9D>2V_{_r$w~d-|?KA(Tz<7A-8|Ec5*g5aJbgqt&86 zl>k^D+>O>ntNku5Emi894Auo&Sj18Lp8+hQZ)2&xwRaeol0zVka3V5ZcrPkv5Dp~( z;qUJqJ}vsAmiEVn@HQ)AYp4GzQ@M>N& z)x7B)#$&{{H0;>*KxB>n`vf3-{Q;8-nEjopjZ#9<-IV1)UWJc&L!4iBaZBd`#sZ1nxHD2XWc znXCM9g*%?mlmzM&?`1UQ4xlrqXcic0#b^RMEm5RopXC(FV)*Q3^c`f0XfTCqiF>Qd z>9+J3$%*P@cM2SC=U2^TuFf1YNt*{890pgYWL%F}P!lPLZcrfw4O@J?GIR$+v@vu;W9|wS)+(SMhBCFyG!_V!PmAzp52J$UVdXE0LLe*S16o+b z8H1C8F*b_$z$1~TvF|1TSiwt0c>ANnpT@qWrM0om?HgKH97e!S|2vw*MyjkV?HWb^ z%YJM)VCldsNyjBc3yV08%g>-;#4Z{Z)3de7lNWIZB%bs*%3?4!Yljh^`8b*s-AN~F zX@6{;YtX{t@Ishxf@7JDurHCmLrcD}p;}j2tsO+Vg{tU@;ajLyYC$13kX>3>99|&H z#Aorm5#B&B!uJDuJITXTI2}hdeE78j8e^C)AIG!j{(KXZ)kMmQ6g6z59?*hVEYO2v z9Iixp9Ey>;JnpLpIQJi@ne}z76;-qV|LPyZmt(?-wp1RFcWGg9cvZA|mDBAfN1{>{ zCC~ct15Y9YgYfPIAguc*YL7OTLt5G&OX0>i{-}k;h!Bo8&!y$Zn<_Iue>4`Xd^HbQ z?@!d?Z79(YCua0b=%|UAdaB$N(*aBDO$>TEhsyqcs#Pn3q{gF7!amX>U?nPYH#-oA zg(!{@ro6In-iyP7X~hUEMB&g^#iN9?PA#2S!bxb>OwKW39kn`Jqk9-6^&Cwk6~Hw~ zN3oQ$7(Opv7xS^6Vi{rNd0H$8=@9^UYC2~S&bOyAT;^)U1uYcbu-8Z1ui421F+&TB zIQFYu3lC)%k)P!;c_e4Q49QdjUPYvb=0tT7bq_f*mV6WIB5(o^Qw2ZNTGJdoNa{IS z7a2$t3)yP9D2w4;Wc{d5{}b&aPo;B{R2E&(iVb}3^1S|GE8;to2jhG#EaJ?>f5iYz zYy~Km<~hoRn_Y968r`WKDh!WWii9rr)M&GEhnB`F`?IV(w`yS#$E^GectK@D`Ktr) z*+n=B#p{Qom*DJg^(^uQ?Ld-Qr0}|D*bAQnlQ+ga8Og~0oA&QBf$rdH1pY!od+ymYe=evncS3J4J z6&q>GXkwe4C|oXfhqFR;YO{9pbl(Vi6%x580(YA;8-mz;uyL$ z497z^z&5bMhf?8lI&c7-d|ptHoGTQ{nl$Mci*Ji@YR9BW;mEv!K9flk>8jPVGqr%N z?3<@UMtai8N_y1HN=FSj3Dt2bYb`Bs0?u89N|)2sJgZCm1iGqplG@ijngwT_oNga9 z3{(EllyUeT16LiS3wd%e!`AUmqBTq4s8zX3Y#V_^Fg()!ciEEt4C-(ORI4#4pF2x+ zpmS{(Z1o$i1B|Yc!XK#=56r21Ut{PCN2q<0^bg zF}FxH4I(MDiu99X&@joEa_BbMKSBtbHH;zje%Qa9U6I-N3 zzz!A^P&t15I5d&$R!jdBFKa5(E=t&LenTne9{KAGFph8S|p&x# zAroSNq9hvFGUIXhic+prWnf7Pts*^r2`a*mZ$x#`a`kEvN^H5hwXpafkn4;%a-E@; z>va_7Lnha2DN2r1I&dz>x0Z27s-#NdwMsSP1hhF?pug23jo1RcN(+ns0fEkpBhZ;@ zfxbu)K4b!Yo}wfQbRoW?oaMoP!%LPac~~lq`Z;zNjQ?_{9w0p?H-HMxY!M!M|bgfivv|MO?)!} z2%mMJS<%Dv>ss0$yEE?B!XnPgqdyOX_{u7-M&+ue>#cm@YLZrXgTn@l z(ByIbPJSn`%-P@$xXg=&2N4*wQ$%lBPla^(hFkTxEnT2)(I(gWK z^5P$pj$e17I@bG5T5$#gy2?HLy@aC@ZK({_GA%3)uNv3Fs~s-h>Ua0^qQ>GMJxCnN zJ=!6p>%M~n!`FTLwO|n2h&r^eIIKo=cMVsHJzgYkkrcG!h9CA0SG}ED8XOz5^R=*u zv-#_17L09Y%w4L^zLYb`B}4c3=hSd2IVj5aN&<*R4q^30yi2}fhW z%2)G{hwVWvuB;Lbag!DOzSxK}`$M-?nSL9RDZ{h^jb3e#RCKg?dMj{E(#LJ4EaK18 z;~wyo&{_xH(}>11MAm9W1kJ}qlZJn>VpZ}OnBrg%a}!zeM_B(b2{keddm^}QT z98dBX^lM=e$DTSEj>)e{$g^yG;grZ>OuG{R>&q#_T|q%hOO+Nx_NaGiVR87t+TD!A zlPm8^0INXr@a3C3wKOy~R(EJ&arm&p=e3}5tQWqV09Y_pGvNHGs3h7Cd_hZdVw_5)HW;Y&4Hs4YB-@kLsPAOf}%y3H`2WY!7SI2uJlM=1-7sVl$mwT&UHZYhSqMakf2%k!1Uo?2{9)R!trrH_?cX+XJ$mshC3qx z433$J=0@A~VDcE8tc69K1*Gi^$3y92fhEB!bGhmG)>)Aiq-zoYEoJubsq58RTCB8a zva5Ba78Y^rI|D7QRb+-emQj=qE7RZ6Sd47nH;gR1gbX0mJyf&UY4Q2&R*Mrq-Vu30 z<=F&8NH^v!pEG=8-cwqH5L=Ewpj3O7!N9&_u zGXS3?htdKqEaDgg2HR*onL-}V*<-pq8jGJ|3`XNIVl|j!5toHnek{8tD^Z6QMO5mc zxSU46Z6CW+A980;xOcTU|JbNiC4;1%qxpL4wP=?T3wg9Uma;f}zTVD7sFk_DCu)TR z&B1w#QAczy-I_cI{x~4~OukYn7!Y1Sps;#_%|&Y51c$6VJ$4; z_~VIt6Fz3_ak}xN%aDH!5W( z>pdIKMq{xq1`pZASffS$s%qft{)MV+oiKEFAqV-;c2|Led|?SfXAOb1a7Hhf>#W@9%ay<+u53aNaX$dFcbtj+LQ2yKfEO!&{veFZoubD~xY_ z7LDr+rMbHuu*Js*aM)&bjR}M@tTv0Qk0(b?145xRF(}2STkU?v0itcQ@b}N4rU_=~ z5RRo#3&&>oC4|KTOUS$2D;+&RTIt{oxbImws<4lSZ1hU2=CH%>9S#RvVFA)fZ?I5F zPUH~lWNW2Gb&Uz7@h-pD&Xd|Qp+OF!dT=AE2REX6a3iV*H==rQBdP~CqIy|yCkIWz zZ3b?54oyP?c++!eX8OQNKk(dbz`uSD&6Pv1J%{FJN8-qI9`AV$8SznjQHh+$wim6G zL-+4RGvv^BdzI`KK9AOjaTgizWzVB3IpzJ&qXs#2@Od;fUr}&H4;-(HJ^N4@Ub+tz z$_Y2`LyP3l_5097IkaydYL-K}FQBQ)w$$N;FQF2=`2}T`3tm8z*<%3P-MTNM0U|DO3?hTps8X$5b})>SD>hc5l(ft z_v3;6sIh?jviNzqbZpy?=E!B4b)@`~Xe9Eh6mdtkZJ0SK2`%yN2^;KmP|MM!Et}LKd+$xG&_X8Zicnuk39)qu; z#d7GO*U+3iMb)bO0T-USACv=1$jXI~)JTA2!Ru(QGWC>hix2m|g(l-ay^iW+uKQm{ zn~D`&CtGd2b&J{I?j}thkN@!oDi$_Blb+>MAo%My(CR`(rb#`#llSu&y@@8`m*0dZ zgR}pQvgATm{2Q%ScC>~8U!a?%e&*k(TB+}iIEPfS{!LUP=Qq8H*2$q8-$X~tA>CVO zgB)wEIa>9m2=&W@Ok{tpT92x0U*I)Z0p^FMeC8A^TLJ%6HH_xjYba zyBxY)j)M|jdq>%Z)OVGpXU4lqWf^=|*;T>X81NJCqGly7Rd~+3s0NRJPpKda-&6LN z6W^0~Lg{zEhsMh_d;2|QttY>)Y@h3W)G4PNdSBTezJ!oca^>X35PaJEsI(-D4EJ_- zGodJS!|?%{Epxj;6*`~_H61|h$|g48&Qf?WI(Pt0lNsD|05!>>j}IuBw|=M$c_F0i zSyevEAaC}t+Tx=RpmhAohbTj4cJMT!6Mn{04t`*u~~d(9=4Mc zzd;^)chHe{2OW6V?Vtni4m$4cpu_GCI_mDAgYFJG`a&^qp*Rop>q zxFbNl5Zf(efOi@2T_2&2G*nq$J2pMypDjqYYfpT(OV!-tuqk1Ljas%G@F=|wj zt}x(TQK|MA@WUUYR%NQ+8L;jXG@(?%{`UY-D7ByW+uS{P>c^-Uw>*#1a~+B#*Bh|o z6V$#=LAptiE4;%WK0O@b`aEG}u3I6A<7sFIi_T;t*&_I!h$`6~2K>+$(A&~KMLEi< z-f6%eeF3$Z`68-wk-#XQ)<5`ac8qeWuR%qyb<385*xl^^^fW^BJ0=Bt1(@EGu0*aKtuG z=b9y|8a{8pb3R8Cl<8kI;Qr6m;(o<|_k508l&M~$O|Djw{%yc%U#MIAHY*#i_yT1r zlfFlrT!v5j0u?Ih2f$hT0#ztUA5rntDM_DF$&6EyzA)h0FOe$Me+=04r5eL;X?2S6 z1z)N~{euDj;Y(C)Q0Nx|y`jp3^S?rs%A)ke_>=FzMxFmP$}DS+98a%8HBC%%+E=JZ znKhHqt8>JUj}P+Ay>`DUYmS0D{_rc5rOcntB6oj>G6ntL45~g-BxXGRYm`;gZ;8^x z5;6AN|EK{k7wLEZ2N{$lRf+V2|3T$SdaX!jjrWTmZBw;ite6BUQlQK_LC#uSsX)3R zf;8)>$e{xfBc zhH`!zZ-uvdqSJJUX~1)-Qb}Q+7!mvy)hMgEP^91YEmG<2Vn&DRs5<*nG5Lb;)ZP0? znT-K|{3c4h=pD7CTp=ca@(skqYt{QS^<)xb6pVTTJhuOjUJG5Hsk0P%DasW>5_-JuGR5&f9BI zRi;l}|4fJ{^Ncl1J5|XX#rStWsLfn|G2Z)w+RS;1apsR|%kC@2i+)sR94yBEAJtOa z4(xwK6Bj9fJsBz%8P&w`DU~@(s)_~G^)JG8dZg~xXNV}R(sAi{!}};(h2dE&_TnH{ zrj*6GBKdtTr^x5$)e3%|6sa;!7l;K_BThBm?Gouh#N`+)KC9iXYC%|zR#^}%({u2H zh)Yw}?=ms6mNe=k#APTWe%q371foi8`4_!0OF*SfCR9w=noYwgKA!wXcpZNb2>a zl6ObEBsq3-i5MFcGm~*pjus-(Vl1)Ua_r+#vBbE@v2R7ilCCSq>Y+x;YAq%`Lyle> z6-}^^Vwp1=(s_M!F%2AAwx)%fQn+dk+}jl?Tve(MSl9-zD}|c~jq^h&lxKEYPTX#$ z!B{q^pPD7WRX8>DWfHFLG=r6*&lC_L1P@oXDAq_`gn`iY70Bg1!7EYS!-zu<0^6r^{`6r zQ1DXK%yD4~<%qjdxh1F*?@Z-3p>F)qVy=7wTjvW^bX&IbK0CbM3Qtv_kR~tR=jCC4 z4XkK}DzK-HtH8I_aiypoKUT*bpGp=7LzD4^r=ux&-B_+2-#nHphseK=%SEvj(T?q%c)zxz~_NThlFKytO z@#PKNc!+$kfja?iwT;|DxNUCaI`Dy1t{Tn5nQ1^W;>#O3V>(+w4H@yHw<4o13_r5q z2YzxgHy1wFoi&9!6>h(p!YxlFE3KghJo_#v2Q_hnjL?aHxEn3P4>WOZNZ8U$Z&x;R zgAgid;dZiA6Yy0J!D`IYEdWDz8du0UrsEURxGBM63OKAed;Pu+qwL1f?<5)&kxf!u zyboDI7buQ=N>TmIMmj&0BNg9SoC>Snq2kzIdIWyCWH~|R1?$WBfvMb4@FAnjR?e16 zD_Kpx0at@}w{jgof2x&R2DkDyZptxb5tm&0I#uM0QLI8z{ID-dg@%9FO3aEo+qecO zz|qFJ;PyfrcSL2V#OB^=^t+9)QV(Cjk`J_X%*DS;;})ZZ_}w&aD%{G`xp`96m>^uyKM}+C3d}%m&EQUg+f5nVoS--b2Z?7hQ!W|`0Hw0e5`Yc}FT8uaZY%Uf zqoPmJ$-bNf-aV&DRNZ#OldhqF{BBEubxWVu9dPv+eSS9#A&w6G3j;R=`rA1MZfr@^ z`M|8u$@Ea)vZzCSLsP^vjOoe3X<|;CTFgyOr6&WI;rrG=w^~)qdEf-uhl;s}8NHUA zSZTyJmT0pM9(%JGnJsFb@BZtKdp&*0Wo&b`Z0Eyej(v<#nC!JWYf4S0Zu z9@ARMwJx0`uCLk$d8yOG+5P0}P(A#hoi4Z-eO5PEIJT-2Qsf{Ootg=}GlwgkAJ%kC z4ZxZ~m6?3U6nJBIB{w^j9wtzRSK9%AM=QA_;H~$ZD!^eTKDCNl6r4m37BGqj3$#QI z7BJF-1<0uek=Bq^BD%g4qB(xzQ3RpkrzWTmO~9$u+(f8LQ#E%S+X0|HP-{T zt{Uzlxb3guE{EHRwVWU8GPyE%Ev+h(TLriNOm02g9?9g^!mT2U>xA3!S=_o*`YxXV z=S_t*l_#^HJI}}E*<2Vl%H5pJ1>x45!)<`uxjEeVa4X5>cERlrx!hSKE)Nuh?p0re z|1}qET5Ucj!0w$p^0^&wn^(XENT`6b!>ziI>xbKUg`5p;pBHk|g8{Pd$?bAlx_KvC zTO;m(gZTt!haIPp(CKtogb*2V#bFmh7m^UU*ajeU5ebn8nGOMd0bw^GkO9zv8R0UC za5*DfQ5uXSxsp+?mXiFI5w4X8zh{K&CBhAiaI-|Xg%NI-2zM~Tof2V)5$=`Pn!w7pN!t;#qVvtbCqeI6_jIy5) z$k66^l@Z>M2>)h;wB2+R$jYOzr zgs~D~93xDW2=$CGNg_;Ugl0mZ-%)E}gf>Ee=dti*!*)iQAyURTW->wtA<%CZ&0&Q3 z5@7)&ERqO|8DXhJSjGrP5rQ;!0cIvbAa>rdlBNhcR!fvMl;Sv6A{@sE8zjOn7-5q{ zIDru?5}}(Bc!|)<2zH6!V1#}~ApOt9C<9UwFCzpb!XP7Tmk1{^!YPD6jJD%cMmSv} zoWTfZNrbZ*VTVNc6(PWx^XE&H3s{m}65%37xL6|WW`s*6!exx`8;NiQBkYj~S2Myj z65(1#xQ-Hnr1IA@%1wkqjIrZpMz~EP+|CGpk_dM)!d(*KZbrCIBHYgi4@rc-Fv7zU z;Su;11f6({Q0RM6kFzBIkO)sQ!c!9AX-0TXBJ5>^7bL=qjPQy?*v|;BON2KV;VnX- zTVEY-Gs=5}Lig;x&j=q%goBLmiA4C65x$TJUoyhi65$(4pi|ILil6uPli>xP|D?hr zXV~8n4rTc~wsgB|TQix^|WjaZWB9>}rs7UtV32TYL_K{MxM~XRFm8ur+T*#GHw#}C7 zu`NyliNlF85)=c6>5(F^n4kl9&gJS2ZRV+wnBPRlNR|IXbd1#aOQK_>id+{RGc8h% z5FI1c?b_&=8Ie3!MaRsH#OzVVOe}71lfk-CjGBoH=5w`%8FI{hsu=wJJT5C^NJ*<9 zjHI?a92M0rNBvnHHGQgCYUeFcQLVDh{4FYKx-5nJRZ+Nk0hgU|r;1iQQz5ilRZ+rC zM`n;N|1XhBtc|Sal02VNMd!Nu%~m&jMA+kxfcm5=K^`P<5AxnYJHIuO;-z6JVClf( zbn?!ENRrpYB(reC9BzEZJ5umi2sZpE28lh8t0;lT!S*Q9Q|I74b2wu#Kz{$KoY+os zIiFn4A(x%x@(8)O$>l+E86uZc$>j-hxrST>a5EpZY4*5b1~nGOlk<#>IF1jcudHroCJ#X?E{k&R9voYVMjw8U{O}$aCaovLlM%wP!C^ z7NiL}y5>QGG%*2bnvqiSfC7()o6Tms%kDRu8B|?Mx|TxnOfgbq2SQoiwMHz5WTHE- zD7Ib4bR7#3sVoCwzmO6N7Q2fE=@VX633&DMTp4M>mgl+hQd&WG*U7*j9T?E$zye?K zJXb>!-TypSN$xK_&s9yQiGR~|tym4|=`j=;q*T%(vMo&6BHXf%D_KgjKGwA_k~Ok- zjJ4p!u6M*1KyK24>nI@`9^0sSU9gXqWCp$u7 zBBC@yghuv_x$r4_xeU6nBT0>MQwg1BBx)s#o04QXiRuqYn3%0Z^=O(LiKeIo;U&q; zfo9;^7r7EvjeJFvs9KZ{Q7R%5xq3vrR;e7yQj#UjLNR0Mvk0PqzC8WhV@UpiDx{lbKskA)|U*O`4V?M!aHBm z!wG_yb9MN&Tl8t;VACE92R=U24(F13{YDRbxzQ#Al(vX5HY6k{YQDT!vT8nLv(*SQ%(pT5rBm5Lqtx*YtEcR5!IRD<{7 z+aA_e;S1j5CgH13;>z)pkLc6!L+^1{;Xgg1@5H})pKFsM8t_}{;KC0Sv2FO84>%V~ zY&ZZ*O5S=C$`4ar%c`FAjXj&A^{Ls`pj_iImz*9!@}aGTME{m2gb15t?Ac zt3T$(;;jd{dH9}#fO7XoTnoPBBkm&H`Z2%{vCpN@%y{A_+*`HuXK%n|1q2C8c%CuE zcswnbKsL1CQ*N>mo9FAM4!u#RySRAhk_O#p#Y4}`*WF!=kA8+r8Jcvgu8G69J*6Lq z8`kS`v3rNEX=uiJU7a3J-K4t!-+qj4!O%mSAUrg)Tjx#Bce(w>db$V-TI;vf9?%o0#;STtrv&fmo;`46MW#W97Zqm>^r|wcD=7*Et zrTi?-5TrRcE`G_mg$*%Fh*_;6sBcsLA!OE!hBp3AcTO&ArHo9g3{9kha%7tvSri+d zbB8{uw* zsAa$jFC4J+UzwWd04iH!I8kus$xLX@-V zS31)UJU>G1C0^OqQ4`Rp@B5js1pq& zO`>Q%J0eRPj#ty+5uf9{_tI$5&!E|T>*La@g3|)zvWYiKl%%ujU>v& z3r^MN?tV*Gj1O}9Jbdd(T=CEYZ|a`b$1eu5y@GyHF+)&HJ;E(->C*8x27SfQ2OsLz z9x~1w(9mDL)Sb!UQ@_?7k579K+Sc*CZW*h%ak;(%Ulri=_{tx_#58@Uvy*h|rF2v7 z{89I9WdX4>W`3Kc-{a(s^Nbre;ZG~{7vsHC^aZ%{_xd7(Isr-1k%?cg*BjC!+3=nk z{UkiENk5hpn2x`w1ksS@;_GhE=VpVg@3zArvmLBFZoO1*z%5n!S~>U85F(_!T2D_i zY_aMwGpD3MS@OoIn;M5csM1?k>0rDV+SspuT!+oO^lOHGHK6x$=|r`B^T6Ibb(b3;lgK`)hRZid<7 zvcSy0$1-%CU4M-((&nk$(0?w}_aS`UtGaw0xcB%MyYxcJ6eIb$+Nv+Y-|o`aA3?^w z4l?WSClPeG=`bE+<4MQ|qa<&%2E4GX&F|b!A8W#34!aP@6G`w3w$O)wb}z2GNZ*A2 zj`sw<;fr) zup8+mjjX}&beX&Y2D|5>U|$1%`8rVeiYxWA@nu))r{Duuf?qu6D!nn6M1xk4bJiQc zi5j>{KM`MkmHsIF-c_IjaLLA{d%(KUUyJwX>)0><9(_6f)7AQV#<}{p`ZZ}#WWej{ z!1w%C@5YOMr=MI*WZMg8xkDjDXrwIYkDLDrp3&pK16TjvKLA)&*Fdc{T*H1%z!zTw zoz6ufelURP+CeQ!xnBP}yzvIT zJ9zOeyXaf=WOG$0Q@I0_4!tu?3+YfwcbU+Qp>)t%DlU3tTHUbxWQCa@%%o_{UC4A4 z896f)`%P(tNoVRN5m~Uw(zexW@z6YM!fMx<9wc#T~8rr(l?To%E22Bqk0^`@Vj126VQhX$)GQ~6*V(93uZaN)NgE2VL2o)!hqQII`lo+!lO8HTW zj3^DJ%Sh62&hb&LrBo$!l%Rr)AjUFB!B2_lvZl-!D!*BO)RaP^S#)E7nQaV!HH%YU z)R(O%;_5PW4H98(g?&n}@tAD4q~z^g7Xdli5xltTUP6_fB%1aC=I%*O6+ZZ)zUF9F z8#yTptKB43wP*sRx1_ApjG>J$=`W!RM_+ucug#_f&*@qR)hWWpA5k$|G276!5h!F% z51VqO#T&fp8$Df7-13c{Ezxw{)O9-~%o7vJwWNIi*!40*=0>Z=e{uUN#23s-DeWQgrXploNo*HOVPzX!Y0PS5 zx`o7~k=-ir!j#y_??k4DDOr4vN+kasnf6gWG_|-V7)lDwNhv#?^7{apz9K2~Y@aTr z{eVm*WM-i!xkOIooM|edrNWL?yNfP9Lp^75rXvV7+v4=VYtn&!GtA;ij@@%psMb`@ zO{rmvS!!UJJVaLtrXzI2A`?Etlz~Q*DM6+Lv0n6drm|%UiijDZ)P-0g5onr7hK~gC zs*aRWR!tEH#)*O{qNboIc&lZ|SW6qI?dN`Y JI@#U){{T^6$M*mL diff --git a/doc/build/doctrees/index.doctree b/doc/build/doctrees/index.doctree index 6b3b646b4e6f25ee66dca996c9d4b2893e73e18a..de33cbad63e47ad3683c2a1e37bd53286925fd6a 100644 GIT binary patch delta 205 zcmdll->bmdz&e#lU?XcIql~qFXmM&$v3_w$W>#KGYEph`k$yl?epYI7N%7`|jJMcK zdPGW!67!045=%1k^WqDN^3#h_i;Jh!PSNOLEy*uQ%$efN(8C2&lbQnLmQJqb2)FEE z%P%b{C@q=dm%;DX!0#8L vGWk7+mrzF!Z!ypjd8N7W6>0fJxl=ke`*JEUGXC0}$MueoO>e{+`0U8v50XPr=a5Mmi&_Gb(Rn@Dm z*QlyjeD75+9F9b-Cge(FhfR}OV#`Y$Nlw1lkrG*oB7c@*e~xWMv6U~T^u>-shtd~Y zk)y($cL4K!wZnCa@S_wI7;x%ZxXwtLR!AO6zwAG-fO`Zstw=(XJL zPR?#Lx?aNx_6CnNyn4Umbi=(b?#+Mi-Wz+F!Q;NY9e91e?(7ZjLy3CJZ8vaNqRJJwatYu|E1>trhod%@b`;)WZx`n6o$>nz$G+y6}8?lu-*K6^P7 z1y9|qR`+CwkNZy30jL074F}*nE8jkJ)!CtO4l=U>vG;>}0w<63Y&0A0wZ38ScvYjU z_2A$UiK)wjhcFsv?{dFp4^nm*`fjZs0>gyS2i-;h>Pn;H8=S5;-><~4;F*a-Rw4;n&gx&-X&F?zMA%06ZW2!~-TEgG^7an`~XKn{3xu zH(9wH_G|^TS;ta!EVGUk)iDN`!T=u>18kiTfV7?vdqb`5OzRo-U~v9w%dsx2u~?UA zFm89lI`3ohwmtur)%1Mptk>!FLk!pJV!^*0>|$5hp}%VZT|8{DgrB=>&B>LEv3y*N z<#Ov7EzW)C_C;gp5BF=+hW_zS1vJt#_O27ScGtRy9bo&`E6#@R1ObL>VXIn~`t8uo zUU5V0c+U@c$6sx^^;=yOvR<@9TaEp$wHFQk+QA0@DP!=DVepR+9>>nNH+;L-GDync z^jY7rL#JWYcCDLNYCX0ZDhJuEl0+ zj<+9eN1hh5!r18{-^a3osY+WwBY^auAwn0lTA{U}b zOEqbUCatJRUd>UHmTJ<{O?n4)zp-m0S=Fr|@=73LNtiF*K z(N6ub*;b!Ag1&6*)b~s$Q`rmMAhg?U(Ed6|jt#2Yc5A-vyG~%eU}1CDc;c+4+s2VB zVLf22Xdr*}U<3InV<68=AIPIuLZ@dHatcKKJ?i|I4%YcE7@a?h&NmdDx%L8B#xu@_ z+a(fLZ+l&$^t84 zn(kO`H}tp@Q6=Scw_M-r60>V%959uRZ++bJHqh5uuZ=Z;V_FQww%Q)?rLr&CJ+EZT z>!x93;9(pI5O8h}o@%)ptu}tb zs_k!(s4;kar_){wusI+$Jca>+JKv%|+je)OkNtu_U9qZ5d=h_E9mc1O8jk z0J)>QAeB011rF^k?B|{xw!l5}_R>ghSdmo57&EthHhaqYRF}vC?Z0gt!YyYDJCIIU z3p)zL8SE6X%5rP^{VvlSYezO}^{sU)eUhMqJdmY&r{dF? zwvJhD)0)=&0_cDv2Fl=N>Mh`po`C+ykwbK;w=fQfn+!gYNDP3AM5J*(C16S~64k@N z_XoxtQw)w&$_sM!7Dk!D9|TBl({sBS>SG}t_CbtYyB(w#(j;D~lRP~?FIVlgWIn}m zd)v>arWF73u#}?pFIvCX`adR6gKrr}4F;cl-lAhx9md^$*mIrK@WWmmhc4@HVlT2j zw#8@quJ6$P4{{+iF_O``>+LG+Y~Bz0btDKn9wEqJ<{t^bo@EOLGyW(&A%@L1H7F#} zm|PziFQb)@N(4i@A-PouHjr1ki)@y4 z4F;h+#4SJY;C=U91?eaGk59==1LsxSvl}=Qz(WhheI9?-+kGfrE!#2#NvcIhYt#2S zDLO%JzSIZz47Rk3MG$%&htx!*RkOas>w~*K-GE@53c`M4H&QliZ*S*XR1as3td{fq z4JhYOY_V1E(Rm2j(x%F!f*_7Lb@Rft3sDmrBYpz)VZi7zW1q)1`8>Dc`?8z6b5wk`i+cL<^KoZjczh7l$LOYZU<7dk82NEE z^8G2;$Z)TH=z;t0OK4g`)5g-Yh-Zjzf{1BTCMT22Q|gKe*cZh+U~@&%^*3O#OX*r1 z8kP;gx{;F4y8TXXmmYO{>Jd(#UfT=74(58h^cU9vCm^eU9@jh{R+qpEx`BGS>FxG* zQ+&z+N`Q6F8WTC)Q;SisT43bpE`D;F;+fi*$VWE5#B=MAi*Baw2> zPFT5vUmMb(fD@8R3os;hZ2^oy$AfvFc!W9PL>A|u*J*>fVg^_6Ay8hVz>-2;(`)3g z9vanpur*GtK@C8o@zU9s3&niC3g)T00X~F`YQYwC8!0fSGq-}%X0!!$7QMqprPs%g z9M$@`JZXKr0!~!S2{XVMOf_puz&JCzy zpsi=Y#(~n5+R%am+c|P63vC_MEWX=@tykF3?z6&3Ek_p4ufp%-y0K_TO>Z&}gLxeA zISAL8CKSun0M;sJy^vd4fGn_!Khq7{zqR4JjcDf_poRwbZ|wu_G+V?}4P(_9+t9eq z(6|~dSOYK2U;!>zJL{4>wEE8a9Er%F5v)9cl@Jd?SOW2+<&Ys{y)u77(et~}l*Ytw z92F)YKb!0!oaVq#!B7+VuMMu`a$ueCaBa<+;y6`hHN-U6s%oK9&F6aEjZ{h?X_BAU z;6ZjGyST5j)&ct58>H&cjkq|_*)48x|M9)e|BKK%coK#SSejwP<8II2ok5bExA}E+ zAZ=XkFs3ylJ|IGu+wi@9ueO`Ho~9+1zA>MJnywBnJ}09OpZyE!_40>DwO-o8qj-Gq zAlx;L)pG5N)_wO`*2#vuWx0*@xkfW_!aeaR!)jh!;6x(S(XBta;E#hCX<_ zHLu&=&3esjxZ88A*SQI51~xx-0n6I3Tz1#2j@xLoofG{2jTHYH-{6!sLa#Tmffgz2 z7$T#A5RRY7Hqz%9@owoaW~#D~NnzSAKO8*g`gZe`ADF&@|FXc%*+KqO`_40bCj zjK5@`(>p&^hY~rA>In!tj@^wv3&KYHQO6xARb2W=ywp;D@k3yoDX-E{qsA`;ocv#8h@l@_1D%dzxT*oYdtNGCm%B#8Za%HJhi1%EmH(+YrLg9Lp2-?phZvIw$1FgRKn< z&Qe{lJY+h+JrlB-Y?s*J2~AUe5hZZE3bA6YSnlo2vF-4T2Z zb6vtt&f;e)i)G!y&lY}O!h_d3m3($7pKn$2cv-06;YxlBzhCPVi+Kw_EqoDg$|%Bb zCOp4{s#z3@YUsAg<-BD)uK)mQiEE(H>^0^VX(fS^+1ijxYEdi(v3ewfL$d`Jcj*3x z_(shnDfBnn&W_-;ENjE=tyzU)Pd-qbpV)Q>tAFNs6E7Y5M-w&vf9{i`Ugw$gN=};>WtJ>(Uuv%Guv8YOl zb+KlZ^bjn#hQW|ZS{h)V{!?YQ-3It!qv)j3uC<^y^{0-xc<#*k)2iW`x04N8He3zR zXK%+U;0N$n{zlEtRPqZ}rHr5D1uLH`&Er!RDaqesiWQdTRpV;d%jI*YE8^h@+>)5U z=D($(#uY8da@m>(I@4LRuy2McU&ry@an?ycabtMZ>^I+~Gv)HqQVhHoi|0z`&mN$M z{c&6_mCr26CM~e-qc|QyAkZxT&kbV_>uSwv_+C%WQAXikPmxizG#^L&dH$zH#=B6+ z6TG-jl5E-w#jYe(9bBX>F&*dH*1D#o>aJQ2MtXnu3R`?UKa)N-BUP4d4sCCmsI&%G zb(&*pAapnI9*98LU>|GILhhF1cb#_5u9I)mY4R3_gTcqFG<)x+tu-r68#sMJNP-qj zS-ai3)$Diqk|B+gdLKSvZaKU2dig0_V5ID6x^CSm3ZkK^w&@tU%0gWW7exKWE8g7q^*w{;H6L6IBwzE60Xm|@7nI( z!a<3fhwI7+&tx2C9pNC7(>UoYLivnqg5IrQkpQfULmN8qZtWC35T`h)sJYb1Mf+6R z==h^nntgl7h>5E$P-es6*@yd2oDT?cSV9Viaw+6oxJCIdUA=UXhHJdnsJc$p2B_hy zq_arhpknews8SiD%9yzpRWWEXPJNQw$>^409~JA-m?p7ju{voM(3f7P!ajOVQ~>|v z!p;?qMphUajeJH^85LB+wtM8bbCz!L!Yhq?)6KoXNWuZHsfpwtQz=t}w6yG$O3V3r zcBQdg$d;W_4H~3!Ia{j~3rmgi%IfOUicn$*YB0hp!t=9!3trSi>|*qgnZ#K-nZP7o z>2KgJ2&^B}Logc;c=9kDAUTgo1`upn8UM@9_>5l{Y@%e9B+EprkUi2Z<_uS@(o0MA zY#~>$^4X%5Tg69lt5B}z;U`+ity=hM6w>l%Ha7>j=mN0>g!gvjPK>o3Qmqr5rCx`x|0z*Clq@GdPM7^3DV>> zo2_k3;J~uvliJoVhxw&!mU)|@+C#jIDlpuJ!F*U&HjCXzWVbQg)9KTiBQlB@aK8BB zi?l76eVM?2>^Ib5<|8&#lL;X(M}|7gQm6t$Lp6{4p`jY%hyyVm9hC~RYdqR1b2-XU z!zC~i&99^pqkQ!wu6is_J%*zejHT!-LV@gVl&_AsYC+m!-1Nj@4l#O@20J`cddLRL zw=Yx81%^1nVa{7Kh32>gnUo79hJ=YD!q%djaiO!OCZ2ePaZ@~6awcr3X7w(W2r(ho zWnxedbIM8zi;X4d@fj?siCS934+mb`ZIDwcR^XVHNp-F$3%r!NP=8ZA2C*XKf)o;m zDm9@gyG#B`a8_O8lh3jUB&z_2Dfk%&nF2W;HxZU1WFeBl|5mVAY~Da2D*QUv%zs4F zMA^TTOGm&X%rN{j0jNupLVusZh|{}x2vBBdTmu5@%1m&S-gG!L$ZUw23Fz`6fS#pw z4a%(8s~iy^VvVdEQR{k`Gp%g_%jzLunYsBlh`G^n@{p7q6D6Y)KQkmi3bs6YdxjOJ zvkBD@lPolb&$JYrBhG!aMUs`7odNS7`hDkwWi2iu{tbEQZ-KgLF9)#GV4rc9T1Yfw zT4EjUMK=g3v=0fGQW+-+ZUhB|91#SJ+7e?GTr+?eBh^TGJto0QKm<7HKycq@nfXpH zSfeuO8&;jKOJ*G3_x!l9?zNp9zsRJ|(R-@_HvqarPIva9=pAZ*4IPM91o0=fZU(dn zpTudHIRI9pqM$M2NLCmYz+^J>*7_-pXq?%&B%vgrgDfa$X=V|NW?5`^S3N^0e`7ww z3_>J6D&djdYD0whL%H-O?g^IZ-;lT`O!Q?)+!G{WBNvb(^PEtYL~K}P-lacVrxN!B z)A2^33BMEf1Z8y~2aCi#A#qP&N1MbwA#qQDLxXZ#NZb<=_k=N~b8Y(`R+1*}3DPD! zq^E^;Wz_9u*p`sECy+Z^qyv{|RN^==DAhNKdqU!#khmu#?g>OL688j%_=$Uh;m)Z{ z@`kbfT;iT!cylD~39O7u+!KTsO~i0Tb`5O{N!$|>_XM^N@s>&46MX4LqmAXWI1mU! zV&a|7aZgYZbK;)B4ibrbg7!=wbBW}g;+~)*H#~`8fK$V1JtE?O z?hPJl!QXyQhHTkPp`MI15e&s>h{D7nTNFhIE{;S9Mrhi2K;C%BTg00+8u}nygvbRF zJQo}tDFkmkn~5rcB`iy@d19oWmKpeWpSZfuzDz-aD25P6SriS*sJ~<138ZF#jzz)_ zCykml-tK~~LGgAk{rvri6Eh_ZlZf$KipBiJ_Xvh>)h*5n!@91)F#ICH5T(fQ5cKyl zB1tSz*m`)Cau_B!1l1^{JaXX5hA$&x*D?-SM zXtt?sgbzfrt$rOhvyl5kq{MjTlNW+0eA|o2_jJqdW;pdild0+r!wzVwnZ(d_J|Iu0_a;Q|3phWa0(i1pVfQZ0=1Tm#~dP7{o3R(!Y zXW4Zm)D!g)2a#5GQxT zgk#85RitRay)E1x>pcM zv?S>hMNh6M`@q2nh>j;rc)$Vi+_j&^;uL!(At@XNLL3NhQIZld2=Rp+F|_R(7swrDCoGxK()aEUV3@}<8w zaVnN?-gI_2H`tX=o%yzNXRltVzIfr4b)+K=TZ^G5lO!}X&%_sg7jNDa=z4tcD7X$v zGi5|t+x%XFkuu#rHz*yVaf5jM;6X;a`TbPd+Wa2;+ApD}Ld>sCM9k*Rn>HkgI^rmX zL6Prc;|8N#Z*<;gkJF7tr{h`(J(tZQ(id}SGJR(@%T;h?%dvEfUTUw}ZdJj|iDH!Q zMdEVv2LQIpFtzz(G!%it=Dh*K!1_;6=d;Qr3hQ4v0M>u~ZeZO%5Z3)!u>RK%f%Q8B z!@&B_9tP|G`2n#04`W!50zG~aVZ(N9Ty!~L%xPZF(PBPq;OVi=XnOosgiX+6(3-yk z{7+SiOi4;NEfDOb-QN2wtFZxU^}*mT zewt)AB}J0# z^X&j?#5?@+gHRaFJN(a+ChFQ#VCT;uA<{Ona)OJ4Fb^({v=RtXZUN8xO(do_Qqbhu z-Ue4T#RKFO0#C^L51x8j5aU_Hl+HTnM*{f-U4;nwP3cULt(s(Y3;}Uo`^Y_y6h$P( zV}Bum5NA75r~ZW(!LlO23z$ig#lQCXpCCTqYoGs*=w@Qm-BC)m1T&+UiI(9X9%>o> z_QYlQSuDdf$%d}oq_yXg$Usx`oySigd<+HtxqjWsI@X6@ci)gPU4liuGI-hDxN(BS z0r)^+@~4#h9P%O~cU|_hRj?3*k8*R6W{64DoOKFIv(u|$9iISOSarJVH>o}K(E1z# z=OONHwurx=%4}QN0{*hMZ&}&%R(d^crC;yijwc`}zL7TGEEsPJZ=}ET<_QZN%^fsf z5{)?ZmS@e;a2GIWhM522#^1nrPKl9GQi&55m!`repwJ`Cb{!!I3^A|Qk_kD)eBa#( zfwHBIZ85YN-l2QpZfpg#amPEsVC7Q}9zuY61eInLTfZJ7h7l|O1@M4X!7t6q&Z9j0#A+HVG?kA!Le-HFpu($k{i=!1Dr<6)Ze^a#Y6Z}2d! zFnFlCda(JU8tm^)9PI0QuyCvHwUKl?mNMvQ`PFW0rZlniOZ*;&7e@D50U z)8$h9jT0Bim2`;O3TbaD3>x`ojtcpIFcJCd5%MX8)5KF2Pm^v4|TsVoBcrQ|UrJ>R?Qh9;wrS&A@ zZ@onDH`$8Q6Oww}<6bp_ca93d4?HlzBy{ar2!-d#+SA@$AiY7?5tbUmATPKY>C`}+ ztd-NeT531^^>a6^t$QR=X}+NMU%&m0wUo*hQc<`X!!l+pIuKYlKrVQi(+ zC@(Lq)Ux^V@-pH>=POyev{cTPSC%TP#d=|BWqDPnz0$$yq?_YABg5Fe$O$HsJI;;f z9FrMHMC2xlQ51#fX`NCmS^T+T&*IPZLXKYGukpEm==hI{jqiW*d(|wJI8@T7Y#E7w zPoAeJK&z(XD(Xd?VIPGy%?%&Jt59**mIX($Di>IA>v4q19;*~JqA zu%At`^o-BmlZ3%Z!r&xfaLfSt98=q}CdA6rxuQN$k= z)|h1QBuh_{rAKEULQL%3J2^{Ft+cYT++3|>mscA#$X?5KwpOy2vh|8xw@bBhtx>k` zI7`ngolIa7lPo<+mL7@=0WWfOwOnT!L4w63OHVT!MN^T%<3|Gkio_-=P?1hqLm5WQ z?3Xg<$Vl$XBumfO{Fq6Wo+zYGlBLJ%;F=a^nVpbENCy^~A(4)Va^_=5F0ZT%L3$pa{45GIk6Ei)lAN{raYMU|20#ZqTJ zhp;M~D2|#KlO{clWMZ>vQil^Lhi=$*)^P`j+k|@)yqQS1%2x!*`3V7H;8u#;@yOAR zFfAgd_i!7Wd~AIVVm~~fch@*Qs2urW(lEmdOXp$Eu2%Av{E=pGBi(WlNt26tp*RawPE35OihCzS3p^(#K7!^yK$)(=FlYAc2Ru_V()lIcR2D%evk zGK-DTCnlLLl1vxGjV2~ONk5ZJ7m0~aY=<{eClOS0x9tf1W>ELtUMOx=*uicWA-(%u z=nIjIEuyQ5i7zqnS;l%uOni2|?gYW+&pmuK&O!x~Nh^r+DE;Ynz^b{m1YPP)C_u!STF2+q~(2%X^JJ*Cy)3;L8KK{daC=#9O$TZf%% z7h&qf58X#nHH>@_I@gjT%#R;0fiA{YZODuy()!%marX->y|0l1m*5iYx z*;rUblt@HA@75h7T=w8`J%wt+KPu-mYUuyjXPF|{_vRm>47MiqNzwKPoNVK$S40G& z80+T0L-*=N^k8oP1*67{ML2zFMLj+F(De9Sq1LS$W9bl!K7!|) z4>9a3N3mrz@e~-EoDD#xfNFged5S)2(nHDzg*7_%=+L*Ut0MM`(}*38x&WSMClLgN za^vXG_3o@;J^IQ%^D#K=3A<>bY6wl^qDbh`R1p_u5~_5e^o`@$fwx%(57hBYbX&)70PE171NfB}#*0cuvO!-^0 zm)DLTw=Og-6&PwkBq7@;8dPdrG$=5oDoxkE(V$XSbeb)WWJTQNIWsnV6vrw8rDJzR zV5)k{so&zTR0*G3Ki_^<}5p0YTt6hob^c*K{7bm zl7l$oeKg1^MKH$87e0RJG&R_Bdrq6u=mDxveIj+n^=fwa7N@^4-%_SA@Z*TT<=Qo5 zAQ47VfwRJo->DG+T5ek*5;qa zFJf7*{cWtYWL>=z)|H@Fv?6G7%@r}3T{JTmogJn|Q6-rxv^0_{6e%r7a)rinWm29> zqorpdEOXjUksKqQDOA5U(m#xJVWtV)Hy39C@!~lNW|VvMg-PiT*^4w#8}1M_qZ#;H zu^E`00*+?jY0TL#>l&Qj^WuZpo%`k(EvsmK1CetS-y<0Qk#2F;9HYOkYcLF-Bp9MI zX%2z6u7dn`Im0Nq*LIM30;CZMB$NW(cc4OtSjpr!LOEu=fmm`L2r&+Tlwf+Aj!kM2 zl=Vns0_{aWiDW^@5xid}utXxym!NONDTaWbBe^3}P1nbPfJm}nf#yY)OX|6UCN~@+ z?+Y?#DEzOpo$8Z$eApou#uEDtt$dwa%w3$!E{;Q+YVA0 zTGPmC)@4nRsyUD2z}+Bi4|ypYh(TON7CR5rP9r$bB8 zts%kv=Z{$($^?tV!^~DvqFQ9gS)XHSF-L)Ec^e}Rtk>lrs$hzdNk{Ep@s>8G*r^}_ zylusrSBb0zH5i*wm*zj9_^q74&x~Rm$u~DIg}Wo^>MU-9k<%ZtxT*xDbi`)ICV7g3n4S5NIp!tFYWk=#yoq*ZXkDYqv4XW z92qf*{_;`9)R!AZjvH=^R$pg@<$@C@li-qmju;t3}T0c|;6$LHX%o zC5QIBgrKH4JVf5YD1%{ofh}$1?16t226eWAh`mUXOAv&?#KusjZuc8@8~8ySVb8DQ zyzIAu&1qGFK4dHuMzSbm3vW*>3Q#8(RkpWe4uh%l^VXh2z4`BZ_=q-tb<*Y^eCC+- z3Y*=)@fbzvHhfa3s0vvs*OV~I1AtneoE ztP%abqe8Sh5z!w}hgwzh@VE;u54!6TRcb#EW-P4-^x>l#P>NT&?n~)(BnH?Wj)-=Q4QCR4OdHYgTFhfX0mSHl=F6z&Du7FhY*@9-alHz zfp~!NpBdzwHJsI!)<(=2nFwjn44xmIw73AFNWBw)rJ68rlGQC>`2GOoFK~nJTX<9okE% zL^`y={gxqi(^Iplp+s$iCk#9*>hY+=ywS*a#TuCokIcfX;rSVIOn95jpx6hbwTdGy zQX5T6dA>Eg%A-nBYgHc6T0u!NqP2=?Ur6&|w6q8rmy}3w%$IyW{-SInb~_7pP%vn$ z%aST2TR}W1$f|~by`TOm4&0EwYd^iv@zY>iqpjxXm=)-Jt1lZIJncP!Xw)umo-7S5dPI-Porf(-KYWp&PW?v+K8TP*Dd$ z*@eWaxD(%KKs&{m(jkfq>fK@(YJIoOZbM3cw}4{+4inIwRU7?I$9006Hwh1RmW-76X*-5TX1*#<%+4u`VLF#4!N z$(`Xh1PqeI85JqjW?*IV>vV4570YMTJfcM)P?( z?GzCkQg^*No`oHroXnU)q=I76XI*7OglU;5(mEw*Q?qiE$g`B*%w=T9+c0uFn-Ta&$}?zPF1gLoy=><=a4_bGl2ie$dn> zIGE$1iXcvoJi@_MMV7m<&xaC%94wj`W!UU{%WaSzfU6xzap7xj+d8sNk4FN%og0%vF;8CCUE6bXuxt zvooZ)(dlqPucrd(!AzLRW~0!0Noc4fG*l8A>LQ$@b8rsGq+tNGYgzErlHf)nYzTjY z*R?1o)CQdLB+35Lhu_azF#F3aV$s_n`^%T^zYpFx_$MMVT}#ZJZ?7~kiMcbfi8f9h z%33#KSxwBHf*Txb)g5D+PRyN2CLEnRM`zV3m-Cj9Q>TJdJd|yR4WuX(W!u@W#@r%p zaYQ=Yl40FXE((37j58`ij?$8iL|W;<2rpd4R;ffp&9<{6VklbHhTU7U3Q!}62dtZk zwE{&%sM{D#&3o)zV(v`Lor$@V4~)dzsfdlrR)gC(lmQ4gO{XOTO3a+JhzPp!8#vC#tXExlnX~(SV(vt=CK&*jHr$xBuwFkz)KvtZ?ZVaallQzjvP zg;b-vtvPE>#;(A|pE6`b3ODj-}cZo0g5_0mOAm7dX5ssq+i zJ?0Sq2{4^)x$QM8NZG;H zb(C#4^zH6Y<|l0c_K8-iViQcjg2P)mqSiGi2pokFr8B{@dI(r%Zr-^2M4Bs=qJw$% zBomHhCFagahTzEg@~xE#=bd8i)R#$rZ@Sv|bo`F%QogvdT3L0n$lbD(Ew2^}S-V&$XA8xpTD?&#)bq{g z8mIPa&{}tuhn1!HlYEiW3Xn|2krxDW`sSy_H|0PPpy64g0D)PrnWbyd`W&(-p^FFt z!jV4Ltd84gv?U*}boOH#oYDr|mINn1rUAN!3UG|t6eu+-d*|~`)zul#-tBi>^Yjmf z!09(Y@7_h%vHcyP`FCu8Bf}YaV4wuZ@rA7#mzyJ_b?emFE3Ze`-`IPvWBa>1_{`;U z82ixuVex2atsLUfM2r?HE6edN%gedtVyV1LFNQjvHfQ7-Fm$tdT9+&FE|=hoyt-5= ztR7jH)bbEw%f;O4%Ib27*3^-Va+Ox}aF>-_v6wHd9vNa+X@-WoEaaBUh2rwv86{ee z-`4J(DpXdB7KeHM)h}CR6}#i)V(%2PT=KC-+&rtN>uoy-*5~voD2&qq&Ol=RQPzr= z7&#{=+|NNdI{S>vIr7O>?*au5wUJJ9%i(J}vmDqHuIZdj?s6x0xgkR%s?~4GAOiA7}Ob?G78vHcCV zn-%JaHLD!+U%8GrDjjFNVf(jk477fA=~!RBW8TtIbNbS#g@#G9rv+YfDSex-{*=N;zLH70Z=7c5axZlL<^> za+f=~%gv-Mxyzm0<(4wF!c5pug%jrn1YjgVgVpcf3KmOd=pyF~Dd-%P zg;tx3XSn7p4A;d&fHFhl8j$_(PzyLpZ#o|{xS>3lcK>1)vFNRLms`8WyNzn8RzUQx<$ShWD#2X8)PVP7xt7n`%f*$7UC6K0 zmzv5Z&(?Tle~fO-Z8-4cr*v*g%Lw|qpGH`b;5EasmV^Wm={f7$4YwbxSxfnkD4ilM z9Q6HwBK`C{#65TX=!Mh+#M@Fz(jiA~%NljjrH&&vT|@xFe^Ki(hg~WxE&ryrRUu)B zm!q=dP*FU0=KSfXha*)LYi+ElEH;KPLFcQ+GksEr)xNqbQ}H`{SF@n5Tq>VgIy)V8 zLn?H{cas0-bl@hM7Ay{|p*4$=h{@nknS5MLZ&WVL8%jL6vd;5A1&p9B+O2~+IXS^P zr;uxy=hUN5yJ729nb;|l9^(x(LCf-SwFxPyhfe;A+#TAzB{!#aj0BsEk*@X*dpt|S zBd*I@JDqkHrpZul?K9ra`W)?^ zVj2JI?sx;qV$zMFXH$CJ^|?#S3x(B}R&wQw1$-OkIP&&PoD-{;_gWAh4lyj>KD>?bdcwShj*C$*W2|vQstbcMA1mp^D!%3YkT!uX=}|&(-MXnSgvy2x`%w9 zINov1Z1~{EC2r3{ZXj`x<&d1lsd?Tlsg!)>1g?Q z%V6ZQtChSZf0PbDbMA#=9vpIhE4y6GxA3!tpO^69wN53UUCQTMl{{V|ZqG|PN)Mbp z$GgjQCOl74q9ieb5;rEALlq~)_Ss?t&4Pkx zs0z>8@5(^**tju?8=dXfTRE*u=qxHtLa<0ktcpY1?d^7Jr|5w=#VLt8>l;ok+NaV| zXF;;wN0FNaCx6?qeafuvBUx|_o^PXkK#((h-sDmkimH<~-s|a1+~|nR@HLFoP>i5i zOgV`gT@oWGi4g=MmCX)Eo>{Yw4YL%g03G!DQpm8qWV}1zutmuzGt^R&5`_bs4>5Y9 zY@P_IF+5XJKRv|qB`HyqALXCozJQZCAN1!~7chedmN_EiPJDJ*($CTNK~6 z({G0^ytHuB8AjT~jn4MNU@eV!tG=%zY>^8MiH6n~N3|T^5Kr9bj=+(C5Uwoxkv(4t zj}Rm2W-UdSozW#isn8QQI=Pw?H#!+#by(<8%;+&w@te5Obw`3>C{LZljV^JcGo0=c zH#%I3Hq`c7HI2}Lxp$@;osNR{)Fb!Z7u4+5hu_%Cv|hNe*UI4MIDQuJle@7u*grVm ze=!{I&Ir!uD|g)M>C*^^fdpFBt1WP?U3et&jdcC~db-`JUUKZNeqRlB$%V8(`Q?op zxen@O>>W2)FU+ghe{V+D8mZsBA5sq+T5#c!q0oYkp0>dwLFn|dOMAAOz`>*R#9GSX zk(|qZtK3SVfgeKT!`Aby2U~Nk6Rl&HzWc#`&1mU3;%{f6*KsK{bT;&|9XLq0v&anL zWP`d*SqQRDv+2~s!03%?S*jMg2zE#&? z92Fj!4%MSq2-%gK0!Dw2V7RJVoE3&|*EJZ1GQqH+5OM8qK5*ZC7rMd+#@Vsy=FWn( zO|I;YMd5$FCf+&h&Tch51brmDA+S1pWEvLfhwv~(XvDLe^)l>ds93jsr`d0}cM)fU zBQrXdv(s~YmvXDvZL8q~?nW2cLJ$ti>snqn#mySif%skBz(q<7n@R-8FyeHjdp+`u z_?EZb6)@rQDYke3zj~*aOMNO}(5$A6D`GW$uY*9A?kzV&l3cRwWp3W&&Z-1-mFNEE zO(dWW@HBLryENQUaQfUZVS?7;@DjC=0VU|eVi-~ylz4R~3~;>$e)kwr2;50j5?r8L z++47rZw@%XCplST7%AMN>Hy0@&bo|fmJ8HC)Ac)|8^!_;glB>mvhDl!ZeRiV1cepY z9VZpIpLMJZ#YMvyqfzKy(5mX?JCMMo;gN;Z>N@c9R&4;r&pLpn-S1!~GC{w#N!xZF zwoxuK7K#Nj@AGSp$>uxIJOr5i6t!CSc#i{-w2JVehdFj=mfd>G3R+&j-LPuWC@j0~ zdqE%;AJyR%hk?>~#cs*8o*VrByK5ouMO2}t_qd=6n?HbUt@ilf{o|IrqA}0JcZ1RF zW~|xC2RsPg=J%sd&^&?#B<8tm{|)k#CL0Ue_iekeCNHq)q*t7R$sRN%Pf#I7L!CcZ z6ThjKl>*b>6``)VHi3tHxzYm*iD#LwP-tbIp z$~31isJw~;oX`U?j)(ebONsNaMA3it~ojGjvXbtWigc`Nf8ay8xkY0n=vY=0) zPm8I_r{p@VMOt&Ypk?=n38>Q1q+ZGes$M#=ideJJt6070UC)POac1r+bz>ZZ+`o&P zw{uvc5lHhXRi1W)UiFMuOBIg*iHdXc>RcTzZVW0aPtA`n?nF3HyCXr|ff1+o?O!~q zef!d+Wj?q)aj{vMLTRbAV3p@nS0^kmD^n`1iV_pnlxn0R8yQ_jvW<#bKW`<7^u+w! zJ`>aW7p>nTsqU)~bze1cO-G$6Q4N0a`0=x^T)2AS?CFcvm8<7oUORr=x(cROh_c(v z+Y*m0#1Uq)Nu-csEk!CMxd6{o?6$}f46ayW7o*g+9Y9=yV5N9(nzz6SbJPWdE;uf- z_@<6PZik7QDO^Qzz>qW}IqA(WJ!CMC?;9PCBI!>JkJDfr|IR^3_2wS>!q8 z;HTa;_=*lE0^ZaO%*G&nr@4}b^d~|SQ!#WSLK6e!z=$R$re$CWe~RuyXcd-YS_XWN zM)SYNMl+T1XHCcN=o+kLu!pq_ZHNY+CJ~;NJ1^^PtX83UAs1UO672*xfh7$_j!Hv( zM2Uv8!)qTKCj|;47Cgj$QrbZ-l!CWWSnUs{S|nvMQz>^81mhqDl?C=$-SY*-LJ2^D z4oPvLgme_NGBw^-0$5UW=s~2sI)Y>PPGg?8pN4!03~b4cmTaZy4B58rQA3^(c_F2T z*tZNODKp$I)ne5Lj(L{GNgnqsXUlH)Ddq>1DS{y24=&rSJE@Kn`feQp$18*(4Qhlz zsmw9xfq@XjX4nB*SexPoLEqs)b)mUI`MQwhnOw;BT-*pJm~5-# z0}^RTRjE2?8-{Z8Cbd-U(nQ?6DdrCYh0=+K*>LL6{iLKi042F2J$OM$jggZQ3g`=@ z@+4Se3I&zGwI`E>$10U%;faN3(71oADb_fh$y38iR2_M|u*JGHn)>5dQ&Y*M(vwjC zeB8Zq1nWN{QtiSK(;10NRD%z;%be&8LKP zkMzbMNc)vl0@kdB!TQY9u$sHKA>^7p{f0-6NZ#*EoanC}vp$X>U6^2|^f)^tUkYV+ z&Dn$o81F2{CXFqzrU4zFPz}I%0Q*jKRMDBrhcA`@&TBrR^!b%))q7R9u>*CFTq?Yv zu8S{1Z&O7Xvh%H5g&VohtI{EpnNPVp?!GlqX0)bS5AWOo>SZ&3RLdruxNOcHv#!`% zQg=`5LM^K7h@E~39Mr@+KCz|>!ts{qtPOe(C#FxWv9xJ#{Rgq%1kgnV`)LTbmX zvz(e;@j%-ytU;Gq4Il%Q5hXr(mcI9A{0S(*-t1Ufy8J@SUs{tm$JhC8=1VtJ40R`X?)1kJkF?V zSeid{1*rylmWZN{tROyYXP)mmfts|*1q7s8uP}l%yp3csu8-h@%eqoJeK@bF$r5=s8chs1o zssB+uk+V#_(((T=Q4F;PhPc%_O+uY!QgN5kj=jdtu=3&cIx`maU@McR$$}Z6n#Psj zI$aCSg*zcAEd_{j{Ppv8J76vs8VT`5t2OUQUz+^>C&1K^Sb+Y6iO4*sSbs2Kj4Lvo zguX-&mMjjY^mk4`7Tz)LG`j9mYZ@WHa8wBS;zWd;SBpv^L@u5~V&rZ$r&03vj|wGU znTQhG+;AkJ#rGSYjczyR5Zmn@^rR8_PmT(aKQR%JFG_hxEiK+_&LLOU-Dymt<6j;X zI{v~$bezLhqvfQ~A$Hnf@o|@0(+Ii$u_GeJ|M5hGRGueO(e>-r^H$ceUisvODl-Vd zqIKiO2~trbjKwW*Eyk-8U@jEbdD!ZD$j=_tkbip8kgxrhFxVfnE_=w~VZl$4Jq=rS zcS8u993l$`J?rq56CLq*+k}No!|6FtWk9k5=LdH}6!R^3(Xq#Z-|wW+Kp=GvIBZhhKN!pluw@Q@t@XNn+Zl*a-`-a=AtP?v2(r=9~&I8i$Wj!KvyF$5-Gz#1*3B z+<<41+m2pECAs4GlCsUFODO0%a?vFd$eiUq^TGVoTWtdMw*SacZTtUh;vuuaC?%4E;~uYLYU*R1m-+d1&=4};W9jn(Y#tpKH?8w7`I2eM$p zZrc<(-}U@D2vENbf$~n94f;?Jp+UF@kW2L)H8=TQ#36=^#%6|1(S>A&p(l;6=9#fL z!+L)6W>^!B<$VZ;>0t9;nY2JU*l54KfprX55@GkZpjIQ5O@KohZt;Bl9jB93@i_Yz z)X<&V2fD#w{V9Lh9LkVtVghu0(#|prqo5wfr;lnFzdAe&Lz5~TRaQoHve4*F)f1AA z&S>Tt@d|jGV+Zhrz;ziowvdui_-dWWUcoIT+;~%f z?prQ``QO(N%%W4HYfC?@YcS0JU>}%;N_SQ3CiV9ShCioUoE3&2*EJZ1UmsHGUVHk% z`|i8!ZNt|aMn%v8+d9K~eE6W$7=iSh&5-7xIzppP@nl&xd+c zUKdMo^yHpLqaah3*WT@V9oKHdQR*_pH!(9(R_i)_h)o?E8PYd^d%(qh{ICUvDd3c2 zG14U^p|B^#x^1*5r#sp&q<o|>Ew_bB|-F7F}bt&-W)?%r=yt=YfSXn%E zvsx9qk9?kf13pj5-bnUFJHCQhmGQRS8-{`KKh(KM==c*{LFKM`%MdJ903s{6$gdd zQD(A#NKBkMS502@+CRcw?qhtGvim2i(r{uyO-AveSWjju63Ne!s6EIt(f~o4ZCDvD z%L=u+*K_fNyoKaZ1Xh)9f`jnCz-&6*_KZxfe8%7~;LFdri$I(pY0+RY@`4<}lG{Y? zxeV#?7Sds#%;&Jer5Dm?F1}Lj`CjNjX@{?oek%>lo#A#-@7LVACbe=~WI%x%yd@$Y zU_Q0e0VMD=${#CKz@hWk7x2s8(N~)g7r5KNc;LA~hYjKpfT%Z-%FYknx(mKdct+8w zNkaiAf>u#~-CA8bwwh0!!CyjyQLT~hLD#7=2a%!97Pzl@KrfXX)Qn&-;%A(3k5)j! z7H)y^6hVe#mGqXRlyn<`uy~3KMd`ETkwORVxTb+eiiL%G^K2!h2FA>XnkS?V@xCm#0xa$PCT2ti6CNQ+^s(NLg=F^=?V0LW&S|3@eYWmb3X> zUO|hN8G&ZOfg0}65D%$5nJ$6%ZZAjmAS90O(Mq#eC2X4W0(>&W%wAQPBxKcN#8F`m zz|_>89$n$0OVlxdpi!nh)WuIGLvSt-m{6Mr;;Xn;c0GS%p)fxWY{(cDsuc-aycHO! z%~qUgt)O54pRIkcf?+6YFQ6bm1%3`tTOvo?`ota;Gbva48L=7UlB8`zuU~Gt0{MK~ zJ9GU^#+~PV$7`FQxW2ZKzi~srg3{zr29PEdcg*5cT@;U_50ikl4uWm!I#zx*%qSut zE$N5At!`l$zw$gwsJoQ#66#K;LPFgW>dyR>I%UO~mr!>c29wXyw;*-bTHjxXjBq5b zVE=TYz_10I+`c@dHQ6SY+Q0H-o5c*3(etPQZ?<~-8ti6kMk$p>40JP8pJqc-hk7yt z)5I5AdPg<`dgJ}C`)oYZruD$1hVU(HT9MQ)J=<3eqldWe3#EG8iW1k(lV;p#>04N$ z%W7dU%LasOO{&MuXltVAh^@gaI&5ayj2ScbGYov_94^^H40Gac%u3TTxjK}*WMh1_IBGFxoo+(@X6(hh>8%!q zUvprkfomZz)W!lS=b@cq4T3_791+RL&}-4XH^iWJ8+}st2V24jt@ZDNXUEK|p+YKHRUw>CDE(2ZDvHo;y87jm-VJuFg zu@iTM`%`ze$PGBA4+>%52>jvgphosg{FTw{r8^p)3nSk>+Hnzij$X4j+*Rx-P|(MiD)V=@4DzBX0wJ$uFX;DPx&I z9o1{(UW5V@R)~(15yX~nNs@w_?)+W4a`7VlKKCkpUb%GT9Q}Sp{cd?_Xv5<3J43s) zQf6&muA^%SqV|~xxv#L$9Biv25z{_2yo{r@FQWHm3weXDe2gNcTEy*)FqSdCi8+=j zabzT$REYCUco1#O?>h)B;hT%!qiZnV^ew}D)33tuLvxkH1jUYY^7J6Vz-AqB+w*#4 z)fZj`*qvm|;wyLL_(73nL93ALxzqFf5QZBl=#8+mWZzPr;%LO@$i;BnK*U=_3?v&+ zgQBYv6x#FvQxFU@$mmbxnog}X-7Z)Q z;lN>2j2XMWOa2hduK-x&Y+=t0VfH}{>2Tr0#Xv;VZHn6PZvg#iA%qSJ!My{#9Y)x6 zHxMYX0iI9<_lXrdjODOeo7#y4r3WHCc;^stc3c?r0~=rPnx0ThGA)d$nhmJ1r4J!g~-vc zvcc9R!thF4q`*xySjD#@idGwUbiwIK2Nlg5A_lGr{ONY!!9NJGi3D?L`VH|C?7=ok z;Ss=Xx4m67Naj?`W0M^~%*Ghg{qE4vXewkl-WHuKw)I)ZM?`FRKJr?C<53q5E2z5Hmq71<&`ooBO56cM1hsT z-2;JE)7eH~B*BxXY=5Iq5uQm>!Bq)bZQIyaEv)w@CcZ=O2r*ta3efX;9JI-PeslM; zL9YL_Ccfi@lMjyH`HH7}pRsaYsYa%9ksfegfE{A9AT?F69IdM^VxxS+PUvsIf<@KNj0Z&6l@pRAI zcG~Uq8fkK@m&F(IarIreH^MtL+w|eGD60s*16r4s2M(cW<0K&$QS4b9GIXxfnSfri zXU>28$~?LvX-RN6^2}aSr`LI7lj|Mv5TqN1jbJ%2vGjo*ODm;dk~G^ zl2ar$CN|fvfCf*K&?0@l$azwX?Z`;I`x*G)js{LeTvOT&&;lSag}p)ikWiNjIi=-$ z{SB~-#4`%<1dNkl?Xmt9J9_gb8E)awg}{j-@}i;bWd^RSB9y4jo*LQgEEnj2inNf$ zUX%g|1>vIWvIL+~+mZ^I<59!MO(qGcb1+-AH+esdh-0$F?Uo10iS(E$$%2AIgyRze zu82S=92JQGQ5<=+hrpI1t}XN9cIxKME-X7D1qCor+eI+RZk1&^sF7_-#6g(3-0!?h z0uM4okVIxj?uI}pums;RFr`AHOFA2{&0Z9BMNkV4(*q9pCD1+yj_`An*MtFPitz4Pp2F%nuM_|&)i4GdL{ zkeO)03MKPkk=AhXlaj0&wbVf0h48)q2aEYsYSY8Fz_L!+rbyrYSDh<3cu+H}C6 z0w1Lf3cP3HuZ(6>so^Deu+{Rf-<{+qVsPWLG8==t5<5=ymCtMc92VVU)aNbh92+SrLvkMFkwJ`HP19txq z)rn=ICf1F1oI|#QfviV^IZP{tTzCi=#)*W7XvP%xI8gAxCxx0Amh=t-$Ea+lE-6s^ zYBe!*hE)!?2I|+_PB&vbn@3Dq>pD0Ma}8b>*0~$xuCE%y(!8ENckSg@)1!~sdN=x* zjd^1plWh-8-%vaFtk;29rNP#5b(!5Hp#g66*f2CQP#u9UC>#@p4-a=$#9Zq`WvD2e?x}3o*{0hIH*kG}ZhnZgdEkg471>rX3k5bY z>}qfkc_Ja5phG4*!7_80c&Le5AVGv(mf9fL+Ow2FS?iWws#cwt$B6eVGHG?*=^bY6u~T zfaiEhK&}2exQ_X_p}~pUx`%cvSCRl5TQ=5~xmkH8Cv0T-ZtQNB@5XLv`EKmKR`1m2 zmJDjb^(0(R!u1eyoNzs+@-*Rk60QeaNy7C^V75%AW0>DcxSqE%*Q3oab5OobGs7G@ z7}wc}3Z|!EK{d5S)2=STegKCe$6rG%8#vEEBpv$xvhR^sjuu%UJxmN5s)HFUnxPC9 zp|4WWTqj?lGUI)w&I$i@>QoqVtOD6L3UFBx?q2i;eOMV8sHb4f%WUZlr)l@w@GaYg zpDIPz0G;-Zz&eyC9 z?RFN6paDxaRx9l16cqsuU_L!uFXReK<&`BTTUeQ2BUK-*gbr+G(+no25o=%429??^}_?65opPYC1qkv-{5IO8JgwbXsT;@{GK9nvH3Y zylrN*l+RU4tEK#eJ-WYSRXD_qO8elKoJN?%)n3{)9UiqgB0Y{9nQy z#I)oIcaU%g9A4v&EgyGnk1oGC+<{gDX7_zxJHC!P!|uTmJzc@xn{nE=`*jrOud7^p)>wN zU4uhs{1XbDF(rUU=0zu{`^Z=_?&g-tm15(LmI8eC3ehP3iiT;{%rAdQ*Wgk7_CBMK zVMvPcFeG>oLGkmt%~_%NIbDOH_-6z~bieO^!Tr7qGG0QVus~r#kX6z_P;##a6Ai~1 z8NSB{^BL9xx!LlqSO*u`X1K>kK_HZCC463CU(uUJdd5$=vBzN|5GmiI;0xp_D_V$5 zJIX;h1(Q;X0-I3>h#c6qaXGjlF5qGM$u|;rca5vB4GeT6+x7wxMB`=T%L$Ozr0&54 zMM+-(RLu#uDY9CKC;)uh5Zj>Pa$F5|HYTTBits_nY^YahMM5jmR}<)@a3yxT&I$8G zsD1*F3}5syL>r>=Kw;jNbgDB52CxFKFB>9b4HPy5Jp3XbmI$;e1Dm5 zRr2go$oU~?6$)v3sWM!w?S_b{M|V7NX%ADFq8rpy4?#G@hSNqmRKo3Sj?aRt$w<*7 zkd3f^?#(jQZvczzA&$5RA{J>_SCuHxR*JyeL2n!@)fTFfIFtbV6Zp zsND?@SGR@v4oT>vcy=GV!-Z~a!@sRJ)wu8yGv4I;wOAul>Eh=1W2b_cQqL4f;@X$+ zeez|#WWOc*&2PLp`z<=H;@c!*Xr{%7_&Tw0>ew>lLkxcLnDxmiK{zEbIs2SuI5V5aSk%@{`}Ml<PeweSj`twOL_gIm@nrGOR43kOtDhV!^B9bZ)7{A)#YNTn7WK(am_mS>Vnk> z;dHi!d-9$gR?6TXCIOlSSf#@1YQ+RJzmm@vRyCj~Q>-lKmzFf3RBLIuREz+nC&m2o zas()zxVGJ00XJlc6d{8?O5-$U&-N?jPA_rG|!rnLrFnQ36rV->|!~jgFFb$jceB23-~x z5(_R#ZYWVli7Wzsl0ZZxLg-_V>k|Pk`9>$z)uQ{maO4r!_wW-3(f6pNeshlvaeWc1 zsFZd^L*XTZzd|)K68tr$bs>F+(N;$BfLVyKam8I$rqyLtk*!$Nfv&?MXH0J~q+S{U zCZ@>RPX+Y+t8Rc`?6f-L-H08dyx9jcl#C|ig#%3pB~Cu3Yp~KN^VoC++#St&p^jU|If>t*Ybup>(qLgodxSUN*8eD{yNv^+xJwF?#hd6 z;S?JW_pv9|pvqjMpla0isZmrlimHZ;JBLV78w*w~mFl&_oCvm?Y4qIn(h7!-@07w1 z1byAw^mco@NN%}{_^?9o;`=#L9)mkQrwd#cV%P#}729@iy_j1<^SkSFRC*3qr`v94 zJ?(9GfnSi*Hm6CXKQ{twiS^9N!ivCw;KSpe3s&1fXyS%&*hd1&wq0}Dfox@W=o`;j z2QaklPOV{EJ8L7;sHYHo^@0V)5Fab^3t}2`^r%#(=Vh5AF%FLS4ji?6EgNg10{Ebg zBRq7&wv$O;B~>eBVmPPunXgh3Qs^_Ol7}$0gq#8Z zl8x2cxMYEMqT>PP@vR{+^ z`c~bqS|&J$^Y=&;K3U@W)ah;>>Vsn^B~wA<%_^2l#ht=Rv5YvANLi7$PUGY`r8te5 z%Id*9UAHW2l9vDWr#iyc@Q7bo0+ z9fmmP_IA6qQ#Y&C$SU<+M>}A{XccHCTCm+lw)ro-Rq&#A^kZtC4ESG`tf;*#MSuLr*@RQd}(+KMU@8c0mF>wvDvbn zC21@YWaSI1Y_pg)BCW=xK9aJGW}jDUc~ovz!fDi1RCuB!JJNkjSl&w|4`?-f|lVoU4}5#P^XP`qMM7D8f7m#(zcEU^?~+38I>KUHcFyoZilyxn2ft zyz=TLtKPP8n;tnsgaMo^wBiw{jEF40736;9CvlxQ^u2Z}%#wQn-Bp#I5faH{;nqip zcJ@I7n z!T~Ad=k5uGoG>;`BxxQ-iDZ0sBEmF{NPdclq}sDXTlM)#TNSx=5LQ3p1e7ir5&Jfv zz7C*XLb4nVi-D39H3J?=>~}I|S3<#UwA2J6Lt(w=|R zNSK_mHE$d#7L1Md|Ham)vC;nAz20aCL)Nri_wbXm8mq<%6+d!McHQj5)mxBeYjg|7 z=Ww-*$Deq!)`o(3P>9?csTSzyS?{``vxgh z#%bVdpQMNT2TvgZB1N{T%C;^Ko>WiB6tH)B@EE8OvHZc_;Jpp6-Vc#;G1v4V5x}gm zH+bY#ii8vFeQ{5yp9YTz?qlzA>*>pb$3X-4LV7B3s4>g%>M4);C)RrLvp$C@(Y9a1aQ4Y z6x-?!1fI^`7Y0uuX1Lp{LZ8Ap^w8jQ;)&CC_(_#icvY5tFc|bFE0BD|51#ZL%41n= zBU=g3`M@C6vfKLW!-MxaJ1($@%Lx5I6?%B^aKowfH_+Zw+ahKZN zMDV#?aBNlRbG!y{y*GHgA2zcq*}%o$-#GlT>i9lvdkBHwK%g|t0D)Q$_XbZ3%p0vd z%&qJVzA5%5*2Ly(AUK1kM7t3Ts`fVyzlc>HJVRp$fT$Kw1T&AbH+WAQ-qwBS0)g=c zzCYk}_Xf|xAKLR9Rh9h)>MO$ZBO;0#VZ?2y1<`tB@RZ#TJ*47Mj|LC8SZ?oW^gF$( zUXnm8Kj2*jiJKaHnx6>rgxQZC^#Z5g@Txl&RI)XR5F#hq9 zeYy&xExCMSAQbBj6(3bw1>5dP42I-kmY(tMJ+he4tnS^|8+?#lFwjZh_+$je+)!%` zO!*VOy{*4~;{L&VX}@9RbT_aNVRUrEy-Uxe2T%2!UKP6p{`ye%(O{mWCy3wgRB3Ar zKBTBU9tQ|iMzPIua45l!`T&(=08kQ zCfMzUFod_`2wyWJ+%fTRoWBSL|EK(S)1JV#%!o)bh5F-gLb z>C~JCcJOZ730jU5qK^;MQR-IJfxfj}MV3&K#u)1NQp+^s6vIu>wA+IRo$l7&<$i7O zn4l)uzF3Kr@t*DqRAHUpa6%s3djS+y7Bslj1}ypksQKW1Lr=SK_2kEBt*O5}LL{}p z&mX0S;_poBbn8@Wuk~kIgVycMEkwN84Cupx$hk>*rZ-7XwD|%0n1@^I<_q-kJbipK zef-xC;p1=6$IsHoU!#xje;6O1r;pd^V~0N0AHl~OeJs&Okv`gw;=`qne@0(_n?4%! z)uxXhq>t~Tk1hdpi#~n??p~V%`uHRI`tRuDU(v@O(8r&o7e7EBpF_Hv&0YHV9{x%n zS(H}fc7$d(~!XI#UyR~<_ zH4q59&B(gVh`P;4y3Gi>&B(dUh`G&3xy=Z<&B(aTh`7y2xXlQ-&4a(q1Ha9KzRd%^ z&4azo1HH|Iyv+l=&4atm0|N|z7%=cB4dylv>3X4<+#lAH`{VQ%PcCK57L)r7&G6@Faw$Wj zm|RlKipeGCDlxg_pD!l&7|knBF4^&Ta#`ilhay@r4A>{UOWsp=#T7!LgW?GtJ*u48 zj^-0l4ipG9tW)#an#^(0_s1UU(vJ_d__*qoE4^>1eRi|i!YDK;UC<41w79)~oNJ`$Ap|KahUEnSO zTpgXFmar$6Sr|3cQTFLq)nZ4GOp7!ZPT<)-MVq}m}!!!JN4u-j;BrE zO=eoR-~XS-J-`B3?2=277HA6#+!a5z*!CbW>9oDTKAwtvEo%rfm`3Wy3yKC#Urm8 z+Oqxwp<9eRzpkrS_Eh#(9=N)Zs_bj+iM*)l8n0S!JK?Omq36`CvtHeG0_&n%4%{%L z7N`~~-GA9#qtWy&`~4eYta}>{Miy;U-q_lg*Hfw7*V-#*aK3ea6+La7Zx)Ng_oMw8TR|;uX4-~6T7~&zm@2NXA@$JD0S}$fQe$CA^0=GzgHZxAWRC9t%xU`zNaPoZQ`_*e+l)*4FVsx2?Q+C75 ziL)2;bw8*%k+11Q4uvAq~}Gw?PlN1B!QRHkWSn9dWed+lCxb$d2OEu<^&sElHl>{Xi)t=Zx<102Us z2CfsiC9AM*EnafGvTI#zMin=}wkTOg6|kaJFN)lNSGwS01LZ?1du%bE*Ngj*(UdXN zi{`v5GrH%go9GVUc&u}s?zwU_&j^#b#l!b$GDrI;36* z=~$j?RwFNc$%|Z^NjgzDj+ZN5@md{t(0bO19JLt-uMls+U@*9tyCz|bRkT4La_w9G!SjzheeODfPrSyC7{wwq3RbhHOH%GqGsd= zo>LX*R^ivaxYui}*9(b+SdN~D`93uJ zK7xgLRUB=)zIvj7cq@N$>ruRRkksc$-j{^31RCGFb#fcDy~emS?<360o8=uSPYaR2r>&b zEO*VRHL5NH#RkrI>j{)*5Kyn5twC!$Ki zt*>~2Uner&O1VIlZeYESQ82C;AZ82npO}hcReic}WM8s--b|KXPppINrwM{mbb}E= z)K#7sLTqq|#ryRS2j8!XetR1ZAn#l3*L|%=s-O`9r<%tlR=j2)$JV6-7SK5FT~}Yh z0}6d0q6R->kQn%Vo3gwo)ja z!G9xNtJG*djB0f2qSo~IbO!%*t9982;-EoTDe!y1vSZUTC>OZR5TyQ8Hm9EFvN=2_ ztdf>5vozp~K-%6)+l)F#nwzn+)7Clfg!N%7H*Qak)Avj$r+^khzsfD}000uv00xo~ zgJI~%jWq=MZ3MYGZ_6b3>38HR|EKbQiPZc$xW}YADRgpxf#TEh573IdfBZ0!IAnpO z$Nhubui-=$OI}7AC6%m>!(?8P>GUz{g*siLbX%>0@u|2gxUWFYyB6*rP!rg{B(abe zS+HlKKeUULk{6_snHPX2!cAO3cU~YlVjZ%)C97YD zqqs+1F?Akrs#pR3p(nV%B`hGvDONBu2qt(!L}Fk{R3s)XMiRy-iEsckc0NuM03AbA z$8WfXimvGZkaZWVp+3+1w>ZzOK36E6^~yJUT$5RK_|1dgI&i=u`cqM<=>R+UrKX2_ z5!*GiBM53G3o<}SJqc^KCNUFFA{NxN-Xn((NrB{3(wa|66PJ=EE+s9v6h{f`T4^Q>E=6v`%8lS_vD$eWHct+-XcL0gtv@YXzD zaf~rT6>aNGWZ^D@Y{*Z5^$WcMm^55!gz8J)5=)pP1_r8xR?4$odo;d`7)rQ^pj7dM zcskj?yyL zEzrR7s*Cq&3Zyrf{m@+-5!;1U-Etk=fV>%)xOVWp4uN2T2e3qX2`fb-Ezyo2VO|*D zXab?-FNyKReZ;i@7AE~cInc(!cM=Bz_IzxxY*1bt*UO-rtU2pe0X%q#pvh29l-!03 zsT&dWv@~=z3)!XhQqv7-8Do{k^OtYkS%^j0%g^g0DD@dy_}W^!Jx4|%n8Sk~P-Fa; zI>z5eKq;m01NCF^3E!wJwQSC_;G3ig=hXNS(W? zL5Lrt!X@mkIMpV;ZK^}Y4>nsss7giFuI3BWN8QaAoX~@aL^2!sbC=GZmFQszqCOzf z%)v*nkNQb0cFf_N>#=iNzt_g~gA$V5G;8umqE_=)1c!f+D3Q!TQU-vyVggstA>jNI zAW5xx?09HFol?FSu0Z_Ii?Qc+o;!IVH05MmdcS;pxAx0Iul;fnl&M%BCWup5cu?(Y-Y7`P`6~yZoP$!|0}_n#Ug_Ydbr1_o ze?TMiAMi*AuZ~(3e|0|TlcFU#q84j6n%0o|%x*#IL%ksNTbX7UWLV>r0h-T9`Mf=y zDS2U(R+=uDK@pdM(-OED(BT!Q;bs`NxESVgW4W0*iv)Qe0I~5C8Iin%5W*38FP;-tCw3Ke>$q86wvUzyw7kp(9QJiag>0phz}4 z9#zZqEjKT{N4~Jd9x>&`uCeT$BIDKwu526Za%u^(&3p)*qdT9op)m=gb$m^hoZwnH z@JjLC-$o5R+%Il1+#O#Qo-sF*%xN8`d13bwy^;bV7`4{sUupDr8!KoU-L;+ob|#bGw3ZIBC~qSc+o}>Y4O5odS3XPP z&pz_m$1jLpEoR4A&ZRbVw^sr_B$qt|0Buh$Yv~#+m;HVWESAewA(uT5>*!I^kAYF) z8xNdDfplkd%bmM;Mo8iM8m?H7XC>MMiA1NeIgQX#oDmz5N(C9q zDC=pm0AhCRbl|#SGl00%N{got5Ifk_Q1SJ%brkv@WE4Lg1KK1&0SoUb6`4 z987Y=*e|~SOc+zx&%$W@np00d?^Ua?9tS5G!DJg!4wgU@4S?wObhgzQ0^&SEJlFto0g z>{Y)?;!U=~;Ibzxu+=Jp$OFOS741q?tFo|~h2ug@+7uQAJTd`JP=&C-QEUc*2aC?l zkW>Toiep81!iH4|vMj>*nO>5wX)APD$ykmmW@CaYfhGtiq{D_=^p?EhC?L}WBa7aI z%G0$%lH0m#kooi4MirvfzzSJT5f+%DKKOJNrVAb%G%z(FEZ%sBvQQX{95xF)Be`@! zSPX$Mxdt$7Xj`EW8(YwYLNesY6=qXbVf9?0#?6Kb#PH>^S^~Uq9kT?)6gxJT*I2x=a=|44P8 zlw(B|;MWS>m(^-Q<6OEZyIe=%2=F+{)2)PyfwhzJb|M51l_}labLs%yc>{~r;PSwS z*mRfpc&{~>UR-q7Sn_=7g%jU?>g451`Df2uoQHHHs$?QxYOa?wm6T^G;NqeH)xOpP zpfkwc)3EehF3}LlFYbxf_zoI3Fji$dlU-h-(oZcH@TZ^WfeDvS^n%Os;-UkZy$DV? z3dbUcwCm}#+-G#hrw`*d?3z8RTEVxPE66fQf2Px1h4?W`i%hA#e6^C-WGdOBNKh`9 zF=}P$xqO{wA|SYQdxl{E{d=f$b`BJGRqty8kW@f_Wg9^M8@B-H!M1=N3{p za_ov^;ZwcVF3r4sp4bl7;t1J3i}iU`y9?~MSxe9FAMV!tex`kXT6WO-=?@U^rnpEV zkzA8oW)8kT{g{yCLMI2xywxg6)K`V^E;zpK@(Bs zWT^+QIqih*bYVi9Fb6Rw-is<^oeF7s;Al)tI;H@Zdbmx5upJ}z9p?&`U2KM?uKqL6 zf?kCWD2Pd7!oT+FCy5yN+N(cBhFweEn%WaX$ZUp8ybJ$uN4xOnd+ow??7}%oiOwz3 z*7Jy6U^49p{9VXG{>l|A?OIR2;$6>>^tb{4UcE1P(_OuKgqQ&s>SO8ql>0Ee1Yt^= zK5pf#gD2VVj08fAnGRaVurX_mJa+LBP=6 zl>a&^4az@#uKh&DROOF={>Y2VdRz7-sFq%LM9tW;WG5|w3No8fq~x79Fil_GbKfq} zkH6GwmB#fdDdigI$Rr*n$(~1m&wPW2Nd?Fq)zx!-e7ENM`CfBx-N?-uNTwHNH? zW7wAh9|4L|y@1>8wSwMFwxZ`hwOjN5r@iL?r+WTZl60{W6O+7(v)1*w?ZDoo;Q~g{ z2wCWF)Hl$ z)LUx}ZnT@$y2q$ki?mr=o#@mqF?%c7S}?vH+G@;r6?O}qTI)nNtu;ov67?uxf;4Q7Aed5U=MxaWFXrk-`&>I<9!rC5OK5Qx?^46wbRkx04O_65rhudSg zJ-TfVfw9PriVU9y)}v@i+rMqcM=?irTH*UENoS>OPy+h-6$7Kk2>t3+8_KDAicB8o zbJ}9=RyC(F^vk=2q5q&4M4nbN*Cv96^?7l7jbP4XmJ?eD4pvytrnOtM`D*)Y_Oy71Zku#B*dmb?|qE6pD)Eu~9^iNbhs%t_Cd#;4K~v$^rKlUpjLXR;GZZmu+0 zoS2hH`Eo3yEUK5=Ysr*$Rt(!!3#WHlah|>lzh&xHdJ7M*4ewx1$6?EAUa3@dkMR5J3I5Z)!9Hz7exqjtEI5PE zH68(3l&RhW3caK19);!_Hrtq_(A~l*3%)Az2XhAzfe1og09MVEp>h;=fg^!%6q6Pf z-v>9hAHy)J96Or9hXe;&IHoA7&gY7{>U^#ba{L0{0=bsz3)Ty5)Abz}6VC?!t(v78 za-v6hg}e3zGP1qt(y{c!gq_7h2_x#i=fiQcr0SV!$eD@3gPYjY$t0rpZ0cmPThEiQ z(u_;0PVkquEtWmQ>rP*AlJpuOjBW%A&n_o~_VPhk-62F{@fsbTIz74UpP@*6FouLp zUMe}@VN8x3)MtdwiDhw2;dw}lxm6q~&>4CI5?KNZLa=+PCs185IIufgk(-h&`JMH- zI;5{hupiOaQG}bLC?gEW|fna;9^#xyx) zP1+L^ReKga*x4!kP19fgkygL>i}^#mmK9#ErE@tecNVQ#_>bD^(FPY8LlJ7Qqm5h^ z_K`O?4$SbV21IV!p2%6#_Uu$OowLWM`Jjhw8v-Z|FdYoq6heE zPv%exjib{sen@>*(cBC*Ozq6%0J0g>=7#Z!rl&C?Je+#@9F{0&jb+gXEg9Dw6GK7| z(`a#g@~kZLvRGzd*p;$ASQ&A$j4K)o{UIOT$eKQBlxmW6jFpKa9r; z$^|Dil^wOFCh*_%sD(X=;A^VLxGdVGSZ;DeHLj*TJ#p&zlz1q|eFYaz&7CLTsjKbV zVXGw@KQS>eIoZ*}vty^mPoLaI4_kw2VtnGnq-@f%x`C+;27r|OzugW1pzk@01eg-c zDFs3eWuxl&NGI%0^FK8+;B-a8C;~&ME!B~;pl3%QPD>oTQ?LLr?i>|W-bP@MVEqz% znfr(>c4)vGOt#u~dTF_!cGSJ7j%~h{gnt=gmYBmRtB}eRX!)8O)ZMD>6e*z5af(a| zj{Ln=k|RYXtvM@6r!jd%5RQaAoN&DkuZCuwqxI8#X$QNhQ0@B{`~LOA{IR-xa_B z;<{I^8;fI+$~$#H4|D{o4MfbZ8_?C0@r!4@`nBiaEc`WLwwov64hMaWn<11}|I-kr&{AvWbieZS1KSm~v;>9wIaa z&s{!umL}a+LIdpzxjMtCB~N@0%j=U8=d&4XTcs{bFDhg5FlqdtCvbaa1$?Fni zz(Q;-At^gWO$)MG%KL{r>yT%a`=g!38}h8`wq|a5$g>W4)-HVSkY^q8tl&F_JS+3* zL!LE=hCJ(#XXVhZJ7nM6c>~E*40%?;1P*yt#SFhbc~-6C{q$Bk-o3Etfus9I>wXG> zu_43tEPsj=`yzSWAGd3BV{QFmrJEM!vw5M8W*I{J8%nPyJUzElMbF`LTg_pIvDMEl z-P>zw7uqM#dusZPHn@F-ZHwp96XT;vsQ;34>B*_<+9cuDH>|<*>$?S}N99S9~T=@SSY%C{KrPZO*ZNEI!FSVLGKX?LFCZW-;}6QPPxm&$*A%t)TE0&{Zrj{QMy#J%i;Hf)O)iPVs9g+rmM{76-{ukdHC^ z^2i%Q@D(^h>imkgbTGw91rp$6i}PTd7J&`A2HK_d56Pd7ZJWRpA}ff9C&lM4Ppl%P zh(Yvt&H~ZF7vHtx*KFwbU`2N$eAl^8^jh=<%5QqeI?2g+fIF**w@lm<76HpCf>N>- z-l~jAOkpvd&Kr$6pA@W#jbwf@r5>&-#=hJz3%ajZw+!RZ0>huA9Yd3Fw7W{9CAA|S>=4%@97$uDiNg7Bqb<}ZxG zo{gbQ(P@?(7#_m-)!e)aDBa{>(h*x_S#ZY?}Rbu<$8isw>=gwY3 zefU4NTZjLrdL91OONXqBB25#;hVO#M1xQc*V8h)N|EMIh2B&gJRZVgykPw1C-YeIjg z=Y%HI;PaXeCM>L;UV(>j*-efnk-UjMIh=!@-_9!Q>3(syru(_}=`Lr`kqU_0`pwO9 z9BXk=F5TiH1s`;DK2<>qX)XsG1|@74ms}S- zol8!jE6*J<709ngNd@G6is*6_F<{jTIjKBd(cG$#NYeGWihKi-i|G_fev3^kwLELC z+K!}e{}C;i;+DR00406<_ozhDx7NLuA;_brW>alJ>RJyO8%SZs2jrGA8u{-Xjr1Rn zj6to(^K*C6))Z%)L|&bMi)B%L(rljlWjevX&nwX%NK)jb_@HhgFXUBYA(W9bM~R@) zAZZ1W$&xTBf{K&r=c?`hx8eSyppvbX9QEFt@qb_v-Zf%`bw4B(#FSDb9w?av&6j1PC%D$Y!XHM!tkw2{%(P6-b*{h(z8rhM)}n z8oDA>eW~e@oDDKa2k~-@EZHxBC#F%#T&*${A9WyvWeD2}PwG+$wMC8`1nyzf&v^pi z)83-U~o}U$YCufYl|Ah;G-5Kb%(#4;z)ubp+RA#vh#H5U@pwx z(Xd9X+`N?QwLKpZcTNh(@&CQfSKGkqhxN%2;+yuX;qlG;LfsJi+c%8SEH*f1OuA8*N%jw8Z^W~o=gq)U_e_CDsF^NL8;u`{&Rv(g~FKxm%dLP>4vCEWC zJVW`!ElOk^DKxhEMSND*w}Z%-&REekn9lgEb~@u9LlbvK-c&M!A4k+95%)~?-Abe( z6il$ROzMCUMqt60 zDPD*xPE!$7%@Y{4X ztNW*oMEvoEJny?v3txb{My+-A0AC21%?rF@Y|QQyqav5I{5VGC^Xi?VCPBud={(`H z`K&#LkmA5Uel1Ul#N7FbF->jWsl(IM)Ms$Wc7<^LYR8gk6V2Ati-rj;U%~<%Kf^%n zcKPtdq43O3tH*or3){g)TC4xHjtOb4{z4k~DGG>3;T?e;CpV>yNK6eEw|JheCiPNo zQ1#O7sECafzv`$LzvJv7se_mK%8ai;zNI|`wnAQaV@M+jRh~{nkK*w_;^N%Ax>tD_ zAly)`>%qn4srl~3-53VybPNHvZNTYs`^DWlw|~@Yo40QC+-z1VH$FK&YE6tJF8A1A zR%(2FR+Q+mr&J?TvXRZ(NVYMh_RpO(BE2xbzs15x|H8`GVa)j7OjwhE9IgRv8nIvL zq7l0cx>sa@*-laflbDtnPLwFQ zYkX92&XB-Po)1X)Dc&}z0%VAJaHp~`%j-9Bv+@9f4Gt3!a^P4()g^EohpeX#Nz@_6 zD3s5s0-r)LSe-zcT1xmu#H)k_^9Y|-K{;V;#3bus-~`t+FRZ+d$RZX}7tEWPWKI|` zDs>WM!ds_WEG%I)hU=1E2&G*z+y!-OLHr`{2flDwnExhfF2&IYi*k`5q=y=hMrzg> z))m3dxJX;u6^&(g(1Gwlt}|)2?Ru&G?ORmwJ-o5SzBQV9OGi`v@uf6ep#J$v zxws4aKSutY(;N)>f72w2+Ian6RBRQa;XI?}6q&?z&E+NJ0UVVw+N!K#$p&gz$Q1@^ zSgqY%IC4$UrmMh)V`<2Y-DTKV;9Z=D$26OVDMox% z(VeQOTHM!sMd|yClWuvXHNmbEXU!Yxir6TUDh-P$&f_S`n74q2DTHG-C%$py86n9PHDiZE=UMPy{kM(vbL3u`G- zY2k}Dp}a+{X@GpkZUN*iJpoeabUWZ|#)7J00*DAZQqa+967(HuL#1fqiEphr#Y_LgdLg&t zw04NLzS;wAWLJ?Ep-4DFkx5d8JIB$Z<-;pQz9Er7I+diwf)*x^K;o!~7~XcY79klS zC8a@rp3{izz^PZkT8kfAqIX;R(s<;PyM;%RJ%M>j(XgN<7*?b;hyn>9Y*}E~Y)^2UlANmohd60F zg~u&wO#|eA?G`}hdje$Y0I5i>T(J&VX?DcTvwSbiSXZweAvOYDKG#6CSQp=aM!q@% z;zH43JFTv#{NMw-#9ANkHRXj<&{ZE`vdW_yeX$7fHQX@ZSzC`XaWJQJ2~LZgvm-;! zGJt`Um>wa^E&()vOkMO(zv5k|V->@#SZV{B03#JUV&Ro-XYjYNxqb}j3>D58mw{2i z&Fc=kSKvL(72@mF7>{T>eifJGirq`fHkUjCLEV*`Up4Mp|&dX@hMvm~K&~8<*VImYUdFqo>D63zddP4HBob(#z<9-&yVNIsz^| zELdz}n4fE3 zNkK?&gjvN_*3EFT2os`5K#bP0K-T3hjMS0Y91)jDCPGFT_ybR4N-IwJ4n6qyYe6;S z6A)A<*!n`K6ayClEs%Z`t%Mjo{=l+%ouqLQrIvzb^)kotAjf7Q;S`N}5Jjygq;^#_ z1(P~z9iwsTWl@%PH{{>2yL(xvc9rC0ox_QsmusZn=G2D_H4>qAfEPjl#1WzXc~mGM z655NtkzF0lH;@OCmB0A1UiWLBQ-y;1ybrZ8uM8*-YPs$b8GPQ&W5d07khr($k z08`HMMdsw#hf+Z4Ac&=EQ7(79SBYIB4>`CEcy7^!leUYgsNx}dKo}G?8)4S2LVi&D zana6}vCdKsg;B37n|91J@Jmeuy>hH_6~QZ^%5MfMJO$f2jlnE615`lFO*eA9Dx_oZ zOTe^Apap2fBSGFZYw>j8yzE$RgeVWzQI%1x(JUZ_mR&CvJiA`4*>$gCm;IH@_{8+= z%w%pRb8Io6*9PkgzXM(K@N5jvMzwPXGo^pmo()6K{k{5b5VuKXMu&|!auY{LUBC|+ zr_kv2uXXg=TZ-PgpA;$^E!_|-?=~vSt&xFGG)Hlq#x+P&#cho+2evVkP5{J2Oh3c< z4-$=~?p0H&yYPE3uR6qcDQypUTf?&m$PoTf0fjacenByJg^g5&?3QeTsy>)Ti1t%l zmcvaUxx9xbWNav}B2bbJg4zJ_Kf_cs`Q^kK0={E#8C-(16T1EYNYj*O` zY&LNM--JO@zCa43x{JtHpt(}i*(molg3(KxCGN3s`B3-YD?1_d1FAfrdU5ti#qz8}N(Lz}jTy^PGroZFI?$|#BV#R?w5 zJB&pIqQ0I>tjOYaQJP}lp?sKXYgyJFMXuN&34b5ZOz^Srud#K9YP0H-A0S)oNq>QO zr?EvDY}a6k25U0Pe?r1`OaOuNsUFz4?mb$_)T*WMBcdx39S&Yq2+?HKLqt@8SOQ&B zbQ@%EPaba_1A@$jj!_-|rBXD`Q5q%$3!(Tad;qRwua4$MMgR>5(3sD4j;*s5&`@S8 zZogJgFoe2%3#eckN7&_Kl)wozLGN4V&Wh|IrwcbpK1K^{*!HneaTDxLs7yCSBp zoJe^ivDAu2ab<2ad-bXq3rdqNA4BR@+%=0+by2(%d{_juwH;_v*B#{tgN#A~Qunh1 z*yWsFliv@SXGu8u#k_m#T|AMrX2sGRS|eSMqV3So zM~I@EWb|gycJ;(^hZ2AV>V1>|Po9Ef66O7Y_?mryU`xv)WhEu)T_6_we`R2i31zJy zvHzEK4Ho-vw2S@!4G_*HCGl4=cq{~8Q8EJrT@k|NumRtlC1TKtdsYGs`VPv+G(Hr? z*$qsv+ia%DvWRKhI#c%|7FqIDIDj(QYfK{<{LyvV3=WjG6AwK6fM;CS>( zFn%ITx9KEw1d@M53?(Np6^oPzG@rsa;h8pBH=4$T!4@OgA{(*OoDp%LdoyI;i|xa} zD0XWsAseHDMvJy}do>9+;*h&rwNCwy| zUJ1FYEEu~9&8n7Kx8BrcT@8uXSM|Q=7K`Lza|fsm`k>krMl*lX(M)d{9yX+k*hYP` z4DOF#7n{ofSAVEK+OZ84;2$zJr_tD7+!XAO-P|TO#?gOL2x~*bZ$A!dW{-8gGMY_1 zxDB=Jrmf{cHFld$T#TMOArW6i{lv&WL3fzK(`{npcK|(WnX3%hNrzBl1c;S|*>9Y! zfY1Xe?itf4q(=dqV#fmxu4|tu#N#VTAbf~2ljkm- zJxhO2y-1&z&Rsf1e=n-P6(3nLxk+>B2WXdy58A%mM+-whZLtvYTw$Xf#If2Hw&tfh zwy}0^Somi!F3{8uUELiQAXyU-*@=j7xTveX-ymg)&|G6Llfs1EBFMOa(rVyj*DbHs zKte6b>H)qo4njvd6sS(n3+`GUdI*Xk2;%_6zeD^WQZke%)|wz7q!tCb2GUr__-3~C zfeQ4>bb!!S*+uYS&<#i%KsjS@RVN$^N(IyqfgtdlTU+w#xQK<3fJ6S{P7x7-VT(Yw zI|f_zAdwbHK~NX{OQn7QH8wpb-454=4jrcz31X-aOb9^kV1`Rx8A|*TD5xdwP7CHS zp0?<0RGuT*8PkP232v{(^yjV1LDS`kdISmXH^C$mhSLlX^e-+R2-sr) zDVh>Z8vrUo8$;K)uva8al=dPK)&OL!(bio1SSWca+uf_tFgO#mYRrm=pnQ6z+9#{1 zJOtFJ!jVU~#L!qYC54E1=HQPb?Imnb5O+Y3Vy0~hZ$Xu*6SQg7Uq^$avcozq$&h$) zW4toWdfU`!bTT*}=Mi$Om)!udDPjD^djZBRbr?~EA%$he_9RsXj7d7R8T5)~AtNxd z)@98~F}wkCvXD$ToZu9z5R#g2)=DYMhY=aIK!G3*vk2`Rmc&|eR}u6;P_PK*Uv5&o zN22RttxCIR73ZqLX)?%61n&qiem!=+e-+o#@I1e^=h+~XCOQbEc8B*Tx}SVSfjw^Q zUz|ij3r5pNJDMJdyr=OndA|a^%WHsMjPdse&691QF%Xdg&YKP3=+{Q`=Whl)3qOrx zBp@_Id4RwjiSlCFzH=)LM%({v2T>HqwfhOIei}v{Wt=)z%FijJ3?vOVOBr94%-T*k z>j=e*d*ZCHq`atgZ+0SWQTFB!c1TCa4 zppvADu)-xTye8X`h6}nONq7*x5U((7_Ra;>1q()|=V&z46J1DnLRmj`lQF@f2#PuD zSz#+`oMOgDG3{g$emY#Ras^%(E>Y9~BY8(Ik(L%O0SEWvXJTnFLck#`+~?a*WLrqM zg_mIJ*)=L09SE?^h*a&Ai6j!zIKiq^0>4?VC{JqQP(aHI>K;cx94MHg8o8D@WKzly zk1`E6q5QVhc~5LQ@5~xV&RsAu;y6kkgko$oV9-nhRB}#|xpII?*iltM$pW<$Ie(!# zo_r)Wab&VZk$8z@4hczxf=GmM4Wd;G_izq+K!;ZGPw_DVWr`?wBJW9Jaj_27L1CG4 zxF9kVQr^=Okrxx>G3D%}=jWTX3&isvL^hpGC$?$>KmjG#CxK5AB2W@?fO7U@Uvz;m z*qt9lu+Aflgi;&~9m7mW7E3Uf!X&(mKOwBg5ks3}Vo8f~HvSf?hdG0hEBPo!mfSMG z3SmbfW|1i%k#twZV^TtDj?7J5tzk$enOQY!=`kO(%fn5m7~$b2yuF+7R)k^v@V02; z8A=WI)bg5Q8BQTK-Ob}#gG8s6P3N9==4ikKW62Z z1OGF|9_*kxk^I!eywQ%k!*(!{`FJurX~ht2>|hMtq#8SD#*|o)Y;%WAve#E~(x4i{*1VEDwQ%9Z zK~^w*cmb#)=3Z|rLq*}3KxOOhDtUNZh4&G8$AC?P zngbjiC{4#2OG5`k45yl0jGjo&M59A$CXrH;gEd1d!jmVimz3bT*A8zOV`S2;gQ78E z^z^4=WTJ1nSL#jR7t(H!djR1aZ__J2dF$AE{ac#&F! zA=NXadNe&Yq*E}6;_E`Dbnaias~jt_fa&kS2*8vU_4Dnz z5cp&{rg;*u2R9MTp|=y685S^cN_Zqtr$W#P8X* zoj4VTY$rxf%pNZkl{{R!yKm|AQUBT&M?E$gc;~rqnx|K|m>DPd7jc3!%`nJN;Ff9z z@yaq11=!OWn7c&jhEu#o0ZlTEB9zsB6-ll$yqhuwvg?6Ov)x#q%gs#Bk$n#W*?qtX zNL@W=ovBvSIArBo zo}8E-pYCz$wp_B=+)Xc8zpxjHTf1cay1HwYY&>gEjn9r}dz`YZxyqfKGDVRN36Y!O zDu;xKP+8r{Vw)i$0uhx5K_XcECIWiH2n*?uuOT#Lc(`FHJW zcUI_Yz|7&j-mYt~bKCpxgIKFi5VF*>ZdeSEQ=^;H7g_N^!&P(O-lYaUc!hWtSv{sf zbCaZX4W7kCnnmmn^&jArcSgoJ$mQU{MybQ##zx+EkcxAB5O%K;;Xz10#Q_z_wh&4( z^7@R)2@Wvv{6Xq zfUT~xMLe$o;&upUJ2G?=-L>^WHlbKEicf^_7dmhmdnp1%!w-+bS@7zTk!ag!6$oj0 zsWR+Jof6!H$wHGuBGCX7C3sbHTot$!BYleiHiE}tSRO~(`_#Xn;Hn_=TPREF>W^$L0kMdunUiadkUcoqEy3ZmLuDjeYji;og(t-#!=he zdy^a8@IE=F4^_7aZv%Qho$hF)FGf;9xTt3e0I~3KoZQ~dPs8&zJa0kiwK;F`ZPj^9 zVp5`C%(fSZ;8E9>sY+`7$|39heL_u2WXK-bk!jWsQ+*if+X`!?5J+1jmM~2Jm2vP^ zrGzQ)R;4bI;jdXpUHW(P6g2tzAt0e$vF34lE&al0f$rd24`UVlo3gX~4_7SibNZLH z$8uBCFggjN5lo^|v&Q4D1fl{r>>G836p!8%cI}NRa8YrG*XJ)6TCiOt+$@s*? zL{1Kr{3*6ER6uZghO%~O^*YYCMK2hA}aj#rl{- zoy?8TOii0Zoq_;+d{Pb-C%to|O5i-)v%@{x6BF=WyMy+uM(&L*kh^KWRWI6kK*H>lX_@9G*1j-RCQ#J1so^S*oTK@4Vi(&ot-+OMaQuqTDQXdNlu*75oPmTE$q;mBC5$T{R9bs7t*GR36T31jy2hZdyT%VnksUo=)3x^ZVE!Z+?6RQ^#-028SzP-dgt8 z8|%o+w~k1#f>kqpI$<%(ndjyO<2K52$g0zrAG0UX{QCSsDt!J*R^UbeE{_KVl7hA~u~TA}1v zYjc~HQ7<7V@lgw;BtB+FM#VDP^k{s7o=?a`PMyOMzX79aqvBvsOksQwVDbi;ugm1gXeT$y8#;2n8U)lDTYlWdj}6r9om&=)DAB?O>U$45L`f=v$Nk!=;KFr&sh z(JxZNubbC->%dX1hkzdkT`BMtf#(N(Ln2Xs^_ZeC1}Lc~@|7(nVlqOXH^hGcmWe2WqDB@h{oLl!b18<{s zw!t1ex2DgH%E#a^__^i(O>m(+O&>A#jN~+aqfG_c`cvXkIRGiNTTqKZ%ShRVg`!K5 z&BE`ERZ$dD-jeG%L3%P!3`o{|dX(8qsDGCz;W8B>om*lNE<?l!^5Qc8fLo4IiEymV|zmk=K~Q>gldObvR?OpmP6?IX6~ zG+8ekTg>NUJ=lkKcfy96>@TqjW`IB=_xTUrDR5Dk;X$=d#`y0|w2wb#s5b3onMFNr z1u4|mU$X_*DcNZSfGRsuvUje_V0xK{Qp0gxvB<2ym;`u;=@jlS~f0q$tka4JT6525oWrL1^_W6sGvtd-FI^-sg)Fbe!?B1)4* z0Yp(M?}=p1$?8HQTWwi`2FN<$HAXiLtVq7%7xQXGx?!BwodhA{d{6476=DSgKmE|{ z#!r0!skV2FT;lya-!X-4qNoqw78KQEZW>F`I&8*LovSk#mipI(rPP^4qgoujaG=*w zMH(D<*T+|}5+5TnSs4=R5b`19wc+RhD4FPgDk0N0T3P}nLE*PYI!`N7-n<6H0nZe) z99uAf=*SB}dABqB(XMCqwF8xLY!^EAym4$lcDs-5mJscCco#b+vdzQ$y|?A?_MM?V z!n7uvk8tNo4R(aT((4Gf{!iPcj9~s1F2Uj-Hzq9BK!D&0Tl{t0mckwmk~CJ;Kf<)Ck9$MEN%4P_C z2Z7g!c?dUJZ!G!6W`snGHs^AOhGV0(_eF~B6K?$2h7|ccdcL(!WMD)p5!BxYH8$7} zr`EuaheS7dw0#Xf6Y^&>sN&Zn5$OE_bO!Vm-R;4+g7uBo<4e9D5gTp1eE#0nBO#1) z5!^GsMi%fJc(Na{l)XkC0uWA*hbEsAPu!}@Px2%g%QLTpA)`lGf%qwY@NnQ#ipqS| zU2&@$&%dFSs5n*qb5HAy?wSW!!Be0aszQ5OdrEGhSw?&NS4A8clz^h4@k@Z{Mr&U)T1wBPLl58I-u^Q01_6|L2n}AUx&h!!LoG%dtw#l& zXtc72TiIy6qvK6S6U%>qgWTFL+KtDcYQMexMMveE{lfT{pQQ0%xHtw*Xb$ZkT) z28fsN`web=qxB}3Oe3sRUS+j`yon&aR|KCThwUz^4!#IyLwxKN08*%O5{#gl@Cs=hteqr5=N|z8|_2O5F`)P2MF% z1hw^`?c*)_XdYTxvI@sUC`1-2KA;XnWwiA$CPVx)bK7|Lh%6>#mK#?$T2F9fc4WJ8 z1Je3pZK$;pmi(c>S=B$WMc+uL3OlD>#zuse(Tg_DJ(g_kZ@7&-fC7_#NatuW57QIG zHFxuLI9gAt+X0V5h@dHAnGKth%tq@iRFVgPl8Cd5ESNZP8?6WNJpJzM1mL+pSSofj zPfz0JpHa<|%?WMUYi?kBZnVUG;Miv>QLT#3_C-zsrwFR&jprY1y#sr)meuh;AQ@}{f9%?+(h}8nmE@X0QDyREq>-XFcTgFwC^ZZ9E=Cc zC(av|l0k^t*P0Cq?1s^?ic;c%8`wQQJT;fF2NYs>oKOW4{dAOLximV1zMO`1KVv2A znOeau;Rvr+-LT@i5juHG5v8u>T}Vi)d1L@3_Kk=AMrxUsoB}fmw05I)pIcwqINvO^ z9u(*V=NDU%a=(*5K_2?}vK#U2-iSeAYXK=!8_?lXV7k`hZBOek2j$0TZAt&wOGl{0 z&mW+N;(KcO@8gg!e~vz`BG>rx2kB!P9P07}eY^wauFG$ukE_Vyviw2%cw!Ge-b5cE zeKhFf<-Pb=rH>b=fs6F=I8pP-K~(a$f^#~bPAe){-%>hiPn@iF@O!}RfU^zj+` zI6yDnNgqE$AD_lYv$c=LO%|>+3o-H=Jn9=f;u}0#Ji#Du@F;Ka2ygJ{Zt%!%@ThL^ zh;Hy`ZtzHM@F;HZ2ySriH@N2;&B_7livU!4n4weo0)wXVB>|T?0u#fg|;+uCQ# z5W0BZ(%F`Lb5AP))Xrwhbca0zl|JSC#a_qt{=i8xV#MXE>kU7!{8E<_?n0%s73xit2jnq diff --git a/doc/build/doctrees/pages/FAQs.doctree b/doc/build/doctrees/pages/FAQs.doctree index 28e269f6f31e9255d9ee445ec4ee84af295184b4..c71de8ed54a357fbde75e0e912564eeae2b2fb3c 100644 GIT binary patch delta 207 zcmdn4+^)jXz&iEMMwT>283+B);?$yI{o<0$th|)er2Nz({eYtUtkmR^;?1p$!HkUa zCf75IG8RmJ$20+n-MLwoC5+9aN2H`EF|Rl$u_QA;FTS8CKfNfmxOhtK6pbF%lKhgy zoGIQ6JzOv~sVP8i>EvRraIPM<{L+$w(vm5DlTUHU3l!z&mjJb=re#)4>0#8LGWj`| rmrzF!Z!ypvd8N7W6>0fJxl=keyK*ZqG9KKV#`Bqpv14;Ie+&}<963!Y delta 124 zcmZoy*{;mez&dr!MwT>2X?y*Q{M=Oif}+&qoXot`QvJldl-$H3{o=Ip&25aqjEr+9 zH!_P({=hT=&g$H(z!Jtbc@C3&T}@fB(LMY&VF88=Vk VR$ye@wRtVic^(MvE?&Jaaw(FML0U;b-04|Ozh?$BvlvJV?1E(M0t*A!B`6STRCi@h z6{fnXSyhd}EWHvXi!x!gOj~U6%#dtaXUcZ?b!Ued@+16|P05ctpG03=P%^`3I^=iU zogE6@ozE9{-=Fo$?x~)tZpMK9vxk57(4lu7qCbOYy`Ev( zcgvct+m6n?;oz9=wEJCd`@=5|=YMSY_OLiO?rK|}(|6l^I5>n7ZNs#5m)pae`1lN! z_f5+yhYcL{c-uD}JFagWHjWraZw`&)gTub*TU`1wc=Og}m+K~K+~MrJW!h$2v)Cox zcO9>7a=XphHOH|wO`n}He81UCsS;U$gbf<@1;Ppy1hC&E_!d z@VLu69H0X9XgC1pz2VmVDF?DJ1 z1V+P$m-;PjP|$qeHCufj7$%H9Zt5PeH#pk1G|$6J{C?Qhy1{S9^nNdSXldF5qwZ=CE%p z8qcE8Q^tpl$BmPNTa`CF?s^r^H*ecIZ#mqpTy~w?APG;Jq6#op2@qB3X&c6))Kul0S$H8rd3dO-N8S09rh8Wejm0hQVz0hMftfJz}< z47CV)xekl!Fu4v(>PRCkV5E-+BQ;(O05P5n7D+_pMdRJki^0{8ncUS}EEl5bbJ{ld zOwDFj_=d|p4@-o_BW7aAfPRC4nAtT~vpo7aF}nn zPJhE-EzL9AjHaDoUa1k{C9LSX8hAs1o&uJUPrrNIUtqU@9ClSRH~6}-hs2V~ zF0x2PBGHo0yH2HLIju?;U00%Zy~?@Qt~7hD<2!A~5)XDnw_QQE(YLbM+qPT8jS3T{ zy5qR4>$sfh+}BKNegSCUOl$jn&`UgGr$es`qH%9Q(1*ZU$Fw!e+D2us4d%j`;cS6! zsbWAp)R<_6>*xkc$^#&y^yCEuRWwcvF7NfkM7$E@^a+`qjQ7VYW;(2)X!ZgDfJjp-~_FWD2u>0JJOEJIR1gU`?MG{QN^r#|iTqp*FrN^LoQL zDLDC23{o&L40Md6OAP&`^DftXtftmByCql-yVA!hbFq;1gyHyGrtfoCC@3usM%DC) zJ;iznt+pqnrX&)2TP7iCp)B7=cj)ciow4 zgp`T50*J)KJS&Tz!HIS-0j1V{#1$Vv-v5$A>xC`2V#zMO9iNQ>D6Qcez`KBpS$i6D!@VVUw zwRF|zJyu;~AGbXp5(SD-8~TanZZpelL4h&3$DU^p=B+?5cT5Y4YB;PJYbOKytJ4ka zYtq2phk+d*JZ)hvT+M1iShqJNbz|`TAMTkwW`@J+wITe3DNz`CZ}D)KMUR!sWi*eHR#0AdY>tt9l=}h~ zF8_4jbUB%}9;rz|3tI-~)}*SJg$7F9b)ldMrL@@FhJHu(Oxbt3)_i(ZX$o3ikLI)ti3FCz>8*}TZyLIx;`e*y-gY*k zVLJ9K#|O(gvskVQTsO+A046W4lLktnVyWG0)T-gnu4Zpz9{YEj^=9pK^X|%W6I2|( ztygP{(aSBvDkt<(tBJX~l29MhEJ!h(M3ZlN9h2*8%r;wEi(6-wL&%rP4N!?`vr6A{ zE8uIIRl&$AAtxx;sukVz{1W)aCfU!E2g!=mR(-yZ1wp^t+ddP}Xsujd-lNW`sq$iG z@4fAATN-?ArCi-30G7(sSSA2)Ho?bKvbg5jgatuAwek|^XK!Xfw3P=8X%=dG*Le-} zl-)bmS`Nk!Zi6KhFe}i`9$^5j<{?DSyemyW4J%@g`Ul@dW0^>3la1VWd)sH%!H{QJ zg$W}W=g(VOLM&dOS8$rDX9u9A`>_lBzt)&lfL}z9_F%ytrl*R*IRIl8T5;3AOn-A=fIoh-Z9@2 zJhd^)YE02uCSVHMe;&$jYi)Q8VvahC@W~I;611D_#n`r-zTPw2n--s**z*Ge5tsv* z9yUib&=1fF1!X_s0rljdAE@J?X~%`aQeTF?gnzK=_8BhBTjrW`&9(v2*C?OfUvSXF zY7X@tyF0LWdLZn!Z%IlK=6pYq)yPHRx1AO^Cn*XuX)u#5hY7rZRE2D*EDYa}6)b~y z%z~*A_6BHn8d(!SJPj(&u^jJeuB$;$u2-S_&7`Q$3?aG%kI%zXjU}7=ZM_qy^D{`q znPH@f&Q|OLB$lvG0Pm|Wm|J7|MKLpwRVWzQQUHt&auP_N$sihK+tU!DnC9%o;=e`C zxsVWNP|EflKysOrclzu)1l`i~)0-}6rokloUCu#`5a(fzdR0p9PNhEKBd^s^cWp1!|62I2F7WXXp?A7+HhQ8;npHH97k)5%88?z<=gROEIQB< z?5Gk1Nh52F6d*cNx}LnmrY3E9f~_}7Huh>u*kUVV^9%g`5tmGjl*B~9zps*RQU>3UmVS~|VbsV(ZO?N&qAYl};(E4r?= z8a2II#VD`h5GjxWT|vh-a2rqCYpmjTdleiKDDj@byCng8NqAvOouz8MkE0Nk0H>8z zUTH5@>Z_GTtF1M(rHFR3z^vY60Th>==%ge3y>C>lI>-E!(WlXZR+*w_1FE+GB{d9Y!TJNkj>dS?z{Wcv* z>GbKmBW>LK5^=?p9G+jHb&y82BUIxcT)}-Pn!q^3; zj}yB5F1BB(r?8k%MCG!qL57v6@kZ1Zl}|bcD?^DjQ3T{E4>9hYPHx8g+Cha;WQ5(* znY7@bL2y)Hv=;4x?^t&Q>5xKj1O|}EOgDH*?ZH1jaWlNWlD_Y~R1OX)WNbV4w&6pd z-3Mp}Gx<0IDCe<_b~>M~7P=5;QX}KeNDa+4OC|qEV>bUt(qV3YN1~mRJq|S4moPhf==zVpT z*`C}v7JatwD&EhWp3WxqoNLQ+%p}>n-t)QaQg^hV%IqB+Irp#j+IKj*{BpYn$G1hX zWjQ@6A|D(Wv$O>B?SJl#dvdI2;<(v7ey?1QGj+b_2K^`jc!*B0;vmv@(Z2TL#ctTgjzJ>b; zCkD@s*^&?M`2Meaxhp(%zhMoo zadp4pL0E31TpK!g+A4Yw_FFE%a$0fXIvTb)=qT1K{;)|xZUVY;d1!ijVOr)x(mQWp z=7KAqnVDiN&Ty1&+8I>$8=}jb>V8A6E3UZ@F{}Fxq!~`)oVhkI(+?xfpfTp2G;xDM z-ESDX3q4^H)%^zP`WA4Mo62%-EKB?M>V5+qa>Nz+5vxnxZwTUej9g2bh7i^LhR{=Z z-=|*H{RTM>$bF+z-EX-6W7z6`!+3m}S&!kX`wfwisO~oub2{(T{e~bsn7ZGPa`rxP zzN-5T>VAW|-w*`O6IT(`{f1H;)(^q{)cuAaW@cK{Ldid(?l&Mn>!h%Zlg_&5bVDUu zD&jcd^zPS5{j2*8Sw}&m{mi|?d9E!>b-y79i>mH71b9&Q8>WeZJGOcz-zHG^8?b{k z89g}-ZFRpPPvp&T<^y-_X$%58xA18+w83 zLf;mt=a4<=ykjGF148r{!t`T|(uvio)oPHZ1!?3uI0@OLH{~#*KT_D4zS}N4?nZ@@ zwNRFTAmIqp3c{UOq8wbJS6q8eQYS4;17(tW<@S4!4ol8{Azl2qyw`(?ZiIX!7m_3( zzh?}{>=ZGnU9j2#4E5YhL;WdfsBy-Y z!S4@8=y-+jx8QOf(>&JG<9G34Ve#JIj6R6q1N6@BMX!Qjy#>J*6W2k6Nd(u1vrn{Q z#kq+dED({vxP2LT-Ss-wE{SwVo*2J1Az98(r=tE>!X*i+X@Y9lIy*^eC@JyZNs9Dx ziXs1th0Ht=Y0J9 zxr;(5h)`V?gave@FzMq$0SRTz4P*-?sU*}DQx{nwNpzVVkqy^pUR#5Hy%6M`WESuE48gGwCJveII8q^@5HbQMA}^M5#8se=g<2Rx10=r+2*xDh zk?BJAi6M}XbNY~-(5Jk$2+QBeC`jn)b1{|VNxvFtEWaSp7w9S$FxQVfe&`UXy5Ji< zy-abqn{Dq-G0q2!sVoQi!JtvQbUO$cvPAB}sWVQBM5&}73Ef(#*63<(zEC)YfLS2X zc0k#q1RRlW!ECp>fRcbMBUtVY`sKzPk;vRlw!Y5hsNUR7Q7(87=|`Vfm3jzQNNf&> z)Tg8okhWITEYD$=k(kkI^<7Fd%i9{65J)WT*oZ1-fOZ>5$<(FrxATP%W9hJbIDsXz zT+$^VF9>=M#~2N*jA&n5hSQpy%AB$+P^j*Kd*Z_KF>ILqy3d*6ItaR-Xro zDdL{FAVRrv-~}1+d|nj&g|f%gshM%4dScTrc`HyV(2w$jTeBca2>wtEW@77 zh!W_TM5T7O43U9S*ccpS`mRZrdC9(aeZ;WG_F5A zNiO}HTZayv2~%5^OuN_jON%A#Gy-?FRy*|;Z=GFRT4Ps(?2Vs*0)F1_DGNjW57lBC2g=qKz1?Y zl2#&xv;^(U>w9>j0fP6E&>WW;8ECDotg#Dyw96xOvhxO98C-u!=#DgqR}huaT?0l9 z?G7|GH}JW&4P+%1d0;{#6%p?~T==BZXBsp^;9i8p6zIadgel!oiQ0y8NQx;nUS{X} z$dGIMkh|dAo-nBd9^1&7i_$=?$01}|eK-LOL{AUqi723i6ilCR$qiTBf*3IZz#z>@ z-xbqN(@T$7lMXl?mO`!lD7-Q;xj4CG?QgeG=-HzXnUwiLJJ|<7K7hT z$1jFOb*+9EN;?sHOxp`c+`Gxw3I)A$<0ML)ym>>S?wFzrg*Tu8-O@Wd=${3(BGUJ6 zVVr{ak)hsUJ(2LbE3lnRDs7Qtv4L`tDF}so!mL1g9MD;S^G(isUVvt?V1d3E(SYJs z`Jq}`SX;YlML8DPzA>+d3Q_luC&i2uGg8cGH#x7EQEr9kewnsnMv56JW~7+Wo>*s! z87VVOnQ7vB{62X=lxCzfBjqzvKBI@i9jlm;Vn&J?DQ2XYQO53@a$v*BqIT2NZkpOn z3(gp+-L!Z|U-^ub&q(=t`8b5@-*Qs<1+IU{w>NS!lM*Fl2ID(X6jx(+haT{g9wrgqcR-86MKExxgz z!~9TYnljVWMOk%G_Wtjnt3!|K(4#u^s17})rzvpL^ znWoG%Wu_@JO_^!$U`)09W!h?MUv2HHt$nq%ueSEp*1p=>r!*)k(&LO_YSq@h+S*rJ z`)X@nZSC(2eXYzibvI4jO;dN%9{Rg!BEM15I5GI=83(ftbi#u$XC(4H{Gv!EA!W1F zDbJ&aM34KK3?a%Q_0Dt_XU_PGS(!7AxV+PM&Ef6;4kan~;rl`qQ7+5tFF$tZ5cY{w z8V5?qpwc+ZoW^0t>N`Go);E2NH$i^L+h(`<@QcGZvF=B5rG1E&)TtafA`$@pUdD>R z8o2#;P)1q?18v_kOeF9H?CJL31qd-do}dI2(QqHrJ4xw(Hp6JDJb8}SP2J9P#QCgMhVIcLHSk&QWHV>`%{>uvM9a1$VdBt1m#cX zp8GGP%)JtnN>Dy3g7Qyhtb~IlDF4a~qfvq~Ls0(x45TK4^6M$gQVGg~EGYk%vAO@* z|MVDKtoUOTZw`$Y@OJ@!%QuG!5qvX+2$aNB67x}!nE!rkNsOkOk&5;H?$ zKJ)nQZu*2-z8fW#5B5>=!G1XR+@DIBdnG89pnOyWk zA}D_-g;^@o@*ta*o4Mz{n=qZ!?gZ2+FUf zFiRyU53->ATJE|3<&?Qsf>H^}M@3NnTEmJ$oI`K8YL(*1m$uDQWHVBlEN&NpghQe z^5ePZ{?(MZSAtRr%11>|ekx-n94w2{o?$dfP-Y0q&t@Ps5tKik!Yq}bJjjCbi@E3i zXH({02}&g>9~D9Qr!!WL75>a|4{}~6G8b;QkbO@lm}T*ek=Ff|BIBl zSAtRr%11>|{vR1D;a~~M#|}^LNLGR}Lr{KK22vA2`F@lH!Hfg|Rf6&$3(C3Nb3dOl z_exMILHVc%%C(G@aIggBYcq^S3CavX`NJ7VO$6nw6lSReqvl&QD1m&MgVU|iz9%MoJH*(MY-%Oc%B`B4kd{hMG z|Cq574wj(&UuPJN5|kN&@;_%FH4&7*lfo>OpghQe^6-(}_cD^XKZ=s$Zg(Xpm7si7 z1m$;Utb~IlC|{UiG)hor2+A`VNKKgK*%W4}1m!^%l&|NW``?!`_exMILHVc%%2vio zI9P(xpJ6mgP-Y0qpUgmNA}Bwf!Yq}bJjjCb%em+N=Thcg2}&g>9~D9Q7cy4D!4i~z zYlhJ%L75>a|ECP3CW7)eQkbO@lm}T*{;S+`|Jx~ZuLPwMl#hy_{N0R|aIggBv7@_h zsiciY3CavX`Fk>unh44dq9jnPu7_y8R(9NtN>8(O?H~)vQtr90q|Ch%luA%ODuVI{ zGgd;HXwjHydp_6n1?D@f$K8(OcA0N*rg@&ZVRyOhqX^TOXWAPUXDHlb;2DhDUf<;? zYIq1TbHlVXi|wA#`iWb5=T?-`_A$Mal)f^P+?5|m0%J}QFp4`r-`gC!_`eumK~L75>a|56506G8dkr!Y$; zC=arr{JXj5{#VlG{(B3Ib=r=7W6m>uZuh%$H_MjOzG3QjZ?bh}CMxbPA~Cer;>P#A zJuDi}BP;Y+hG^rP#&43d;_Jq#SHEts+dj%0A2uF0P8u)vTgI=>|Jaaf9=`sEs3CO5 zUb5|%+?L}uHCA6NjJ|5IMm>DxTbk{o$V%{hPP2To>p+{YH=;N8hU2n&HGJgeZ7BB5 zAJU-R*H)uy+_g-*c~NsW`j*K(R$mT^pVzuA*VH$7^IX5ZX>&KJbKc^2IC|GvqZSl? zjhi~RoAugCmDNH3qj&Wx-mM1ZE}GVs)`z9hY_Y|#qlu_|_*KcN3#u z2?r9tX}|^JyG%vxF zhe3XaUvzYCH7}fh{Spjxt$D5Q!#dZjX2-O+SIJehR&6%QJ$s{22*x*wWepzhyXJ84 z!#%*3v*{V27!C?;@DLNj;T|S+@U9nzw;w+SCOCL1ay&EzAlGw^ZWa(oN&H>RA~9p* z)Wsi^C#f$n^}#Xc4tMXEd~2vh41VO@0vLb!=8zbD!C=PMA`TCx|CN!3>g0PVRZHZt z(JZTE^EUT9&D}0pX3N!Fu;9{$tF=lr%Ox=;smmqdxv8!RhYzZ=xH^lgv*#H#z^DNh zH82L>S0(t~2PyPqM1RH+#KZ?cT{2Ex>bJCs0+n$5ENXmDTtm#=%a36kZ^mH%?lqDrTb#K7 z)9G5<%~mRRN&+1&s`KB$_xNgH@4S-tnEN3 z`lf>sn3!eF@|=RpKixNhe=PxqW&n=>gauVa)1lO0V2v8 zA*eTLexL}pxa$!CMZ^PlE8MD>1J?Jr&cwvZD@42qNd?QN0BW+CZh{)MZLY@?wqMOB z2w9m4A+L@hB+*x2eeBR7--R-4_sYQ{EB9>^!|fJ5^DVwk>T}sMv>v}vy*ba$GKkm$ z)Z2CTBfeWG(C4P8FA9=!?YlR_*HkKb&2JV8yY*zYTisoHqR&B3qF~fh@S1u`UQ|D*0NDiGh3LXyG5ParFc=tvc@RR54g=d^4)(%2 z^P&Bwp_e11MgTiJJ-ZSPL8=Q<=mNUzsTmwi8*t5D;$ zYPAXo$|yo$3sm!5b$D1OL|UFYQPH5Y5Uu$uhCPOy>$)Nl%3rp;rY~iog z@bYwF8E?ldd^CT$aGLEj@K=|G{k*~w1HaZ_wUxpui;Q_P@R!)>0=kS|3H!drRtmKm zlkNN33i&1gYGmNAvgHEWi>-OqSYeAxh1z2BDlqVCOEez*L{YNv0WcnynXvGe06@J^ zJIz81Umy#8#TNbwTP*;EvVmX4t9q4520kj(8WGD;)AVppQ@n()XDnga=)Wzm%Fx-C zmR*ykpwX>b!o7ES$ASy`HstqK$QC z(#C#V9@L2UunKML6nni#MuTP*P6aZb)U%#mc5ya9s0(w3@Atg5O2yT-${Vn7`YmX! zF7yL9IsJ0m=~ggo-GuFNhnL#$44Q3?jMTpCcx{v0ZC<&2{*v!F)~4x~bl!C;WZ_iE z*i6wpLNG|ldJtel%FL-ymOL0RMg>_2%L775q@4*}E#iNQc2Y=K(a!j)9;Ka_Df<~r zd1k%pCq|iFvc)ne3MX2v1YSihsZ!*fDZwF93SCkq;gU+cb@Re?20vC{U7dS}ZO1VP%wHWzpyyF)P-i1$unptE1mIF(==f%#E{q80~&{yK& zPUAKD0#Ry&DOoHJ&e1p^c5ckMM)M+2axFqcGe*hW!kjhvBOJ@{$Qmd1q^Wq({>A-T zv_CV3idf~kehkLYOXNGjLLeV2v@F)8O^pR|)7l(rR#YQtQfeuSPVfyf*|S9gGNbvrsNz#*Pj;I=)-*1d=TV~Q(!!KPo)I6gQEYJwBSlK15fizcGA_^#{W0RY;% z_{KEQ-u`te&2Ik>_y?Tg#DHajmEeUc$(tmJNQ^e63`ufDKJA~Ih?fuCy7fumC0dMu zIEpcG`!~>CyrBXFplpnQPf7^*-^ak(b?+uZz<-Dk@LWp&$&jho^h5sR6Nfx^>y}v1 z&5%nZ!w(m>EP;!oD0t6~x)C~_9%)lT&6CGR!Ow-7qo^ckr^wj~S}-ty}Yg!HKO716v&7b_Z>Ci9&crnSkpR zLGugK^de#N)Yxc8r>Bs>6V1z!06?jU?;mR-*Mv~NVnR;rGEk|L-Qhe=a0-+}U>+9F zQUmMv1?6KvbwVQJz~o~Zzc5B3$-d8DK&Geb0bZfl6hlYD4RLVdW(BU>dGh^Zd!)Br z)cx%qc7otl@#hPlj4MTTNIAMWp>*LC7-OVCkIG=8GjS}6#4|){;nc|T+tE#Oh-+aE z#piDB=o33W*jqWp(6CTqsr5qMMkh751^)_jdfYC~h4?D>Hmy0FG1+R(fsmjJV!L3IDR*oV8)4Hv}R5k7#qW+Hu6n5YR`bi08ugKMkjo> zCNbZrnAW6^ql1Pcf()`vvN+ zO#=1$rQdVtkmkDDcJamyR=v3(PTD{i9H57q4E4kOP?rIH1Rfglcpm)2q72Rhd03Jm zP!Bhl!hym8$r42e3I}^n2g@?MebgRK%Y#!7H<-eK!U6FRMF$E8JLq6V=9Z82!>T;e zJ$^$ToUSJ>1w&9LR2l+I>IBMt)5_+)y}Rv*AE?&(t2sgKU!49>{}ivDDPV z4TS?NriY9UWM#YdFh9sTU+tZGkkzl+JM>VOwX}!t;bwedK)ek(CvYX-lA7mq6?W)YUtD=y2 z3PKqsm-q)SiC|duQhZy!WVBqwm#27Bco~J8Dn+qxM35|T zy{i<(x=5mAy)2?+A$nEZ8bfQ-Mz7N3FeDTYUy3(>QG}4%C4kmR5kRZ4#xCF{a1a~o zf@A3vc6-BhoGxM=M_1AE6iosl{LC~#6-0>nFT^!O@T=c?0zn{>KnUMLAOwmhLwAyK zuif#=J5{wS04x7h(eDS z+m6-m+K4Jfv6N_{oj!sJa1FPhk+|W?>mNsuG1u8b0SECb-8)Dm;n;{?j_?Wn)@=$j zHjfxccXACt4q*@t03%2UOn{Fo{Rp5BXm$ZMsgezyh$Rvsxk>oVgX!p&d<5q>qQgKX zN%n#ugum!4#7Dlqg1h?SdUVv6j1zIWJqerwuqbarIDHh;Jh*(HIi#qd+|j87#bPl> zVXuNdiIl<^R813kK{vRK6$BX5X=bE_>{*GT24n*+hZhJj1i(W?jPxqtE)<-;55|=b z`ywTZS3xWdv6xs;ml2g9rkDu+6$csff;e@EBevz5KBAo#EGLMWp0#pOF6@H3!JktF zv%_r1k5|0uA@+Jvf;#fue{D zK0?$qco8=3utpdIEtQB7JfsBh-h5{@w_3JqhK! z6R5k$0~M;fiGF@k=;u(51xF8~u8k?jyK3J;huuZ{{*chV7uVP;fqW4HC5qG;r+CUJ zmFV1mGuEK<#8ah!vwuCVA$0ElOgeWGMD*7YMD&ugMG->{?GCauAuShDG7yv$`6>poJZFcLHW^Js)> zHsZ%3o^A`tgFI8SkriqK>ajmxg)2%6@_UTz8{&>Wt?f{&77)y7!&@j2j$~zHT-_3+YGCGo+3olv z=_z3jB#H}oeh;QrihTEvV^Ru;Z!}!sQ!)`m7Ui*sE~I9@G1g43kb%^<2pRZCA3FMy zhPFF~o|GstLeSBWHl;>>`@Zn=uW8AC2he!J6UULB_;PlO;`%!zKqBTi;)gi-_@P5R zf3qC3x^hIsF!qFTzaIV@d!quIA^90u*z3_R6H7*>-+J`Ri_x}uP(J( zVh7ZB@@k1KqW>4teP4pl{ntqXZEz&tNp#6VkxI$pu<1tl~R zX^};eBFX(;cqOrH1UF%Hq~biN?qifcTi6}t^4`#Q9hTIBFwNER!Q;s9Bt@^k zzJwOfc>cD<&x-JPYp^VR_L(SD9xGv^h_(_+Tc++CC1goitbXK0R(Szge;r|9z|l_y zpt+*}d!aI^Dz=VlOF`B11_FTQtp}4fs`oN-Pq}bdBe7-P+OSun+QNRlDzbLwgLo;a z`%zcZk>twvDlY?pshz)F5F;-KVnsq>SGyZvZ;h=~tG&A~#u)0turh7*g11aV-tOd6 z2XtEMXkF9VUSo4t`G&*U8y`oA=xdtcbhQQcQEu})`1eij>afD#u0?`iq_%O*PSQ#R z^lmxs8avf!H00MUt-T2+LLXUiq7t2sRI#V&IxN2cw4`Foxm!ZwR^8cJV^y{YsF(5A z-DqjW>Vo*MT$`7RyVzSO5$^i1eOKhMivdy&RrG;|1W8@(B6Bt6IL6>%k|Mt^ z&|!8W1zAsPQzABJGa|FMM^Nrl1`rAHf+A@Mpx7AaEl0qFQCnKiL+{aV0)i`0Bj7yH z>}`hJ?=C#&=o2O{_qRB*^9Gf@3Eg9FA)0+(m*9wz2?U6_4!hF(Xgd5zwoX^ugl}F9 zVr0b9n(_fvNkaxoP>qG`I6KCLfc(DG#h}rZ=UArBPOYr01jWX%Wk?`aDrpo^?cl$t z?kK8_H5=>zJ_k!L*5=t~g5|$PdyU0$o-zL-8}C}GUEjTSefQdp-D@{?uf4c??Zw?| zFYR7?Nz@)e8O|+oPF~Zv9 zMB8Ql#^gYcHs2gL(LN*CS}A0C;F~W7FSf$DZo#)p3q?%Z55oIpYREtDawL7H(;8so zB@gMQDgHSO;Z4w9OhXZn$s3xhg!${bo}e}OlrqsZPXCP-%)#)nKx04xYNH+^kOVuE z_~IlUNp%v|EJW7Q(o)hgeUBtnyDd>kN|!QY6YcI4c6E*ZOPb%=N;Kb@OJ+h3i;Igh zHb1^pCUnrKonC1#=j>ybB{Eg>Zx_x~0&Q{lv%mP)4v9ZO7BZzt%ItVd1S(CE)UZe< z35rviq&T=1itvE{#7uJ%msFah(j?oeVsmXL@Jh2qjbP>{W5<*Nt7Ar1OdoXDYq8 z@HNNBaSP$fgm3E%97Q&A6R)52={-CnaB+Gk&(=^EU(U)kUuyesWTsSwdkY`py494r zv8i>zv`x>zL5>iD_(KB8SaT65qNEIu7%rXjAa9%PY{}o^W<%dNI=p7m5mEcY$cs@UpskLG$zKMbQ=5?G2OWR1a;9Ta!s6!zr%~VezLYyttPL8p%lIhr==2A z4xfej8T?MN;tbB1XnOJ-ymLoigayxD4n^#lif^QsAYZVz%jd*hJ-JZqm7ZK=)cL%# z9NtJnpzkAtJma?bgqaR$By8gKOHjNDT6lKwpdk7l@PA{3X%6A~^S zxoGtJnW$hqhtU`L-;{ZkKS#gsoa^X|{4XdsoV1-2M&*E;vDuGmV|-_cx^^#-^|{s_7>}hmHXEZ?~dw+$)&x)vDd`~qhb`~Q+g2t@BS!)W?rC$1o_=L#Pm0E-B>Wih+Zl+@L1Vuv&&LRjefQ3@MfH)hMUxA}0N%?0 zP^Q6uDnpXOebjc1+O7$Y2C0KTIL)RG{>Vqc)WM%!k1VN!Kl#rWjh|+??|qcW!=tuq zl2bOH8SxycgFm5VpF(Tu;LixDq+lrhT#69i!o8wSjz=e2qvH?0 zIytTvl>(_0$mqsIay>RN;s$^IF?%Q0?i5jt~gcrxy#K6W`0 zH&yeJ0vS6r|CE^<@4? zLVr*mWk};m;MFArUi}y%-67lv?u8%}jkWDjd>&kfK}>bsvEjtQI8lIthiVqWii?um zb#dJUm~qWEg;mvjWE|*QI@LnZB@t^6A>$|(sp&ENkAQO&P>-UjideVHB6296Ze7*P z4gT%Ve%UMd2%_VfxR-Or@co{*R;g^5zR_=$5j}>^IqGJ3#RlgoDO_sF=6%=k+KBDb z=9SCmFZqsRQG5&$8>(eFtx6XrR3&QHtDJl7N)zr8-$672@el`B6cZVLE1SJ-yLI+f zvspj{R&nM}-1@ob=(sk4X%6O=f}8%xgGHYdu=80^h4EqIapPnV7u9%wba!g-m4_V5 z(Mox4CoxC^{J_`%Cr4}@JV7C7hl8X&77@YFs1JVf;h?W!-&i!>2Nj2A4h-nT;JYW1 zTd?+vVPSci^Tin*$ZTLFQ1u6CJ(dBWLri8cP_RT?%?qMo zk;u4k{`E^Dq#cEH4p=G$r$)U3cwCS8EEW6s`EwT$z=~o=hXI=xhX6n^L<_RgaJ`QEsn?r9(v5XiG~2Ci(|2#oA;$LH%?dV(=F7g*wENxOc2W1Y zdwd;N1T=rX@X5GRRL9hN-pvW6Pl<_YhB=;gRJ}1rD+ImFEzEiR?%d5C?Laoq7xFeT zp?YBpf|)rzZWrgmF@tkBw#a0Iv`AYmWN!ieQ#kwJereBaZ(6*pWBA3MUVa(s)CCtj zx)@fUUl4`o<(5Ol%-V8TJ*{O;4^s5Z0B;KB;vNd8*fns+AYf(D=3C-7#EzdY1Sy4@ z{@sp?aJnIN@LbeEv3H}20fq1zQ&31+^_i$-_l9y&O5DT@h?g)JBU~awgaVE5G(+Q3 z?X<@IyL&`0F^o|!A){5?LvatqJ!Ii1#FQ)zr1d|;0+(t>OHXcGTK_XNF4azJd>^?- z>=O7Sw3&U0=lsVeDm-6$Y^p?wLNiKa`7|jCcT^=dIuedPGi9ALMPh>IXUz&IByrS4 z-b{ZZ`UbiV(@JGRJwiG2g=v!8LH7(yDP*~uD*aw$f>FKDE0QNaqi~G`S^G|jTzzDu zkbwfDCQ5}P3=^0-fo&N=B_+R$Kt}SrQ%H3qlHwtju`rHATY+;e%#ze`oo>1b6bV&D zp;3~KOiEJ}Dv~w5V-y-Q?#=yT+`lx&xD#i^uaL`9_;s0XcHnIx|0y|X$&Z`9qJq?s zBAPecLP0Lh0P&X=opbZ*WtHBvZuE z@%ub^i~$6I5t*tGQXC!?a1oKjD}grltv?cDNt_aI&*YT&dt*}_-&eo>FX5Ef20{^G zzP`ZTYI;aS4FCQ*8_g^fG2Yyng~C1T(SIU|oSklHv|jiWNyY3OMCsLYCnid*9wn#9 znXM?bjX0IX{WOw0Q%focGbB4oZD*zoNU1H2=n%=n#B@NZjb!ImO0AYV;ZkbtJXx4h zD+X#xkm^bLeYznNN1QHSQz|Txs*E)s{YqZB-IF+_wiJwHn#@kA&E!n?lv;Q998ikc zr6MimrDAp?NKwoVR}FHcoEt$}^dK>~T$#0^dL#cTW;cQk@i2ke#g@ZQ?U&{7^-1dF z;M{8t(g9&-k&eUA5tqUn9zA~S+?8-665)~P^|jFXAU1M^&>v67wHHmrsQBXO!&Mfv2_%8qpXFByNxij)a-bQyUDCguzQs%@L}a{v3B@3?q54RcXYx%Rw;i{ z7-A)fgAxPqk23&}_uD@s_mr~Vu0rc%=l6;c|IG}<=dcTYRGts{2J@gc#bJ)o{6{m? zjED5^GKM76(jSyzPoX7sc0--rP-i#P*$w4-SFU$bY*RL&mFr!(-j(YeLDHfy@#^db za`;9mbd>_B6iB5&Dg{z0kV=763S{3~V`I6VqC__8@UJ@js}BDnKi-*&=L-cgc4+>e z84k@HKH7oo=Nvz~@eOr$L+x&Ada%DsLW=&V-OT_GlaUc%N$qaxXOUYBCpbnn$0Ov? z(GHy5sP0~(wv_&TPY!P=_NESRaK+wqWSuZA@8sFSj)j`a>lJ$oG4Qamw^%P8= zH>Nnf@sSL~=dcW(m*->T^v1$0scELG6qE2$#z15WD$5WD6eQ8>lT!GYDCxk+ySUHu z8GQ~8W7)L%@ZR7V!`v_|{PmlfyWtJr7E8$Zt-&#*b@2_yZiplmUk?{kT?TLjr5~EB zv>hAa^!*AVoHRvRnJBVJWiA3Yqf|VAH!=nwBke^QrX5JDzw#!9@YBmK1Z6V_tzVpb z<@)6}n-oS7yn}}kYI_L4;ul|eb3Ougma6dx+8HC5c?y0&9`48#oQgD4#;S!Xev}s* zEA`q^p%(nUT3e|_W6M=G9!x)DF!FSKRE95{jwGJukG^CheMcC!(nPGqZKuy{XNwuy zoiIgI7+bT&ZQelyOr43~wU`}bQQAaNi|ZS_ptZ0X;+UL1^N@$h=5CPmgd%KOTyv2F z#2(3p634=P;BW-EEka`a0U%dSQZqSK59L>hl54ysqj@ArO-UrFSt><=DiL%@%2HGE zol=k=rWE9dNwU_IMb;W*mXT_TfTCfbQXq9Cv&^n(Y(&zRUDDV*FVfg7ud$DVX}Ab{ zEHZ)x;g5RU6=EHsRwH`NTRcJQ&rgL`N?Y^gxQ0kya`_lmS4_Fre+TKmUhn%oP#q5w zn}N8Zv|c)B)kan`$A%yHQ!g+IB+5z@&^gS+MHysl@x`kbMm~rnGZa-8)$A@R#fi4U zlxcYXLwKztHnc|N!oZ}TdZBQ|aPZ+WDBS}rh*#=zON0$aA{~E=asc^mpK_Jy5hPen z6nYe3BD5(Q?ujM}NTq`WBb1?x^-4i@b<6-JU!)^TnnjH(7q7m8PF=_GgE4uZ?jsS8 zUI_A>$sI?D$i_Rp8Z_bg08Ddr(?bD5Pa$lI1x=wdFz*uMcY7AH^q`Q8s*6`&dkr52 zTH}`9LLmgQMDTA<4DTvOP;F$DVf6+w0u?Bi6;h>bZEck|w7%y7pV-=ObI&U~?nY&! z*R?8bL+gPey~>qO)XP1+BPbBr%dY>O`~+}lA_35si3EU;sRV%cX#{ZSz6k&gPe}l% zalZtBCUO!0N=_mGe99&O>S>e!qzq|)E?(_BQot?FOee@oHe2O{Z~c`qxF(B(!4a2t z`mQ;={Y$75B}k)j$@0J`BG=dp_$%cci-gD(5+V`XlPe8AB813t2`W*{or64QC7C-X z!sB@%JiyQ88X*H4ts%iNp8JegZjz&I&=AQCxLyJig(6UDZI{3?TqIo6TreG5r^gb` zXn{eMTHHnOYhTL37FDkV)mdwsI3aR|Mb!hwD5`^DM%BmQdpVHJBobbIZUnq52C8aq z8=<|CV6mlbb7CkZmv4Z@dJqMrn3D&nqil!*66W1yg2wS(L*3kSx=eq{awELJU+i!+#T^c+Uy`fOf!%Kr>$N)u}fHxexM|awN zAAX%O6hN{p^x@#hn@A~&q;_8%2KgEXM*^E@c*%J7(%|?8bVgT0W=ynn9B~(+;cML< z9-bs|1yCWS?+yp=stgBD1|T%i?BfNcsv;4g+R)8#xj?XvTJY zE`9v`;AxMyedJ?l-X*PN`1!#z$hcwlnn=ajMMVz{o(SG>i;Fi+O2*V|Tbc(kO#Ouw z;ulXLyPf0uO^e^*K<8tFf}vUQ;TLhD7k0Hq@9VLfJbMp>jAl-uFAD6)1%G{ez<)n?e>h4XhlCyO;q2wGD^M zvjOI%Rt}3+hJz1{eHm-w_VK3=9U43nw41;X)&AhOAfQ2yy|(puRG1V@Jd}8yc;@<isbJYXg~3qdf1%-_(Wk>=O$t)&4Q~zy?-${!5wRG| z4EzUkL#^qU@+VzwD}H?SU4!?~dIROy8z4jr2^sz2#dpsQp6T&k6G#d29ME8%qBqDd zz?-x*2Hzc}1I25v9JmOC?lc^{k4g#vP!bu&x|kjx({T*%OCPB&0-w*go%UGs^d@Qk z`KWmcno1aoFxK$G2Oyg1_lG`${C$i2b4 zy=~jq?lxm@2ONf$L!|$d2Wj9pKi$Ww_JFAOis#_5X*uBR0ct-4y%6v~8V2hPQz=l0 z+ME3zc~StKZ~BBm2zAO8?P`h(-tGo^_nIMDY!(e*v!7w(B(?};Ao ziQevsp6-cW?uj1miPrClmhXvH@AZx6shzXNQvvud8-K!hOTcb?RRC^$Er8mGNf1E& zJp{Ud`VZ4@0_rai=mP4$PQMALDIKPOTBu$9!P7F)3N$|5HbMF{4?u13hIms{E|@R* zO;8TA2qN#c94lT2qUd*xy^KpAA8GM;)T^lU+(`QnGp;`b(|F%_Tj3W-dvH!9wI*c| zq7@mVt$-dOJCB|Z-+vL4^SR*_Z~<7G;3ps_4}>3d7&Fk3*H6Z;1?@g*+HI?^(^}ae RvMuPu<3n~xiVX5!|NpPFQw;zB literal 38767 zcmeHQeT-b!RkvfWy*vJj-Nq?(K3?KFGpp{*I?e~_w%gWrY!Z@nEXPfqxXbLDnK$#^ z?wj`}@4eZN(3F5E>Y`Uf>Cl!^S}G(Y5YQHZ_zzXIDt{CeDoQJmDxg9X1VVsliwXjM z=iGPSy>E7Bc4q2LOtO|ee)HyjopaAU_k7)RUmE+x+DCWspZG}FvK?==WY%h)U$eqa zJYMsw?WW~Loey^=f3ovprw~sB=1S2bSYgXu(o^i!$1XdVQJ5(1{ z_g=MDX-osucz;KXdtb}MD5H*jG@dA@VA*@(eF-#|;=QipS)EJmiW%q3C<>fPI|3F6 z>OD>^BnbCcT{8^v63=6v*%VLXwRTH=shHKJz^YT3cDz3_8}w7hK4PD+588Lwd+a;o z^0e(Yt?5=^RjJSRwCUBFW-uMrSEetYzZChtyW~XE80NGX-E_-rSmE?z=dP45`9af+ zoMmecbL5sUo`336&5X?Q)pq0uj_H#r}VAmYb#j;f-@M*G(KtkY$RmbwG zmWG02&1(A771ys!H_`F5Y&V=f_vDpwEAS(~>bv~KlXz(|UgU2jr?uu)-o8*S=P>>h zc?M$-y*G@y9~ezPu#B1&nT|U-1teI8S&iBt!W3S=POo#^csNDi3!K#*&ve~2R1T}4 z7|XEz6(a&71JeuZR=|yMD^?BNV9G)a1O?h25at=711y%9unYF_`0|aOmQJz&Kz-AK z`YzdbfyRk8K&2KI1(vd0-u77h>6?Bc1s6CTA5SUnTQB{RqB#xXx9AX?_T5;@_C4Sr zC-LtT{^jv+5=(h6FVXn*X@mLDkfhd$_W@7s!0E(4b8`@Lr)|I4{$ZL>OylwR6E`(s z_aHy3=VTCYMf*;B3OsC|l991?dTR*){Y16orW-MmYu8~c&8=ZAlQ?l4ogb`MtTa$fIpYf|0Vl>K;o zx1`S=pr?fMu6AXx2{^Rr1Uz`QX0|W^)8OODJe>6)1Q>H>@O+zCBmKLK%^dH}SpnuI z5-bi#7_G7*qi8Th>132{y&$7>GKC;Qa){H!=Bl&6@03agznqydBucT(n3WRb5Q_wq zQp5KfuEn%P0zni`bAe*TtTn7sxZKDY_%jokLBom$X+`XhH)d}nF@fZQ!Q=(rAal8# zV5>cO;Nl~2H^z8s_B0l7T83d+VhPYN;($~{n_ZTgw zWjG03tt#XnmT+fhPnXU-EJ4_+m>4Vi{#@9PO2)7aK%`lZ58F<|cJVJNV;PblA5W|{ z-I=gulJ+tVIW)9_WqNc?uhAwh5RYRyM7Hlez%%%nWFz_^32|m4`ou+ujuFYxQdlrn zEFl)QL&%dPJ=X)j$ui)=#kR-F5TwfUzK6+;{ATWQ;4k9Ipyhi1>C>mh_62#lUiG~) zy(vMGr6N$OoG7T4{Gc&Sdl(6sRo(~M!{Evf?hb}4H zyD640Ty&sR)7o~LEufXxb6`E+cA&``;3i9q6%u;niZoXIV2QNL8p>d$2Wu&sZcu9q z&hHHm=P3=&&!#)jdlT^dFqb^F0FxOS_}i+b?^5>7@1rI8gV%1h*65wrlCN5zHrL8A z6NJ^G<@yo!GKt348ol6FT-YqgwsSmwWd|Ymn8h)eNJiae>_4)A-SLBg9tc88A?*%`e^Wh|544OJpzu z4G_=HL2H8ySA|`U%?Z#{4chMfHg-|6%*{wFzm`#;=xQdV5@AK`Ep+L->RUDX0$rsW z&b8_-yLOSF3;xlnLAf?-GOQ&|#<9OUVMjm zywvub=i63clAGynI#-7fwn~_Bqf*$e&{i21>P{ncUa)2h_n(YYz5I2R#kpJZDuOz*0sxXSer0z3+c0*u1l>jU_o=PMRH{V0KI@{TV8|l#c~Vz zCm$1QJQZ%!c8u%I<~*h|sj!+E+10OFSOLopVy&NNgO~^0kJ}gs?^xPZtxT4IFfdF{+pvql#pTDiTjE3R9Ho@*%2C zwk&D$Nvrp@Wtq|=Bgdy%&z>MFQy;l#lFeuL&p@Fkegj}>zGTsegiyXZ$ThZ1*)gZvZaL~xVjV z8eL`R=^2_HY~>Xz2#J0q?X*&X8j@5^OuW86c%lg8Id~ewMt@%k<p|b4ymFk9)1eEK3H+!u!1SkfbqpxY-6W(eG|qR8!j@607HBeBAu{v zKocc*cWM_IwYuW?zcCWWe=!S>;`k4OE=!{ix!;q<+m{?_9n+cto)T2 zhh&*2c_Vqn@R4Q1axkwDQnG7M_#dwA(2oeU%-G7x(GLAk{Am^`S^5zi4Q%NTwu^`V zM26>S%6fs7_4|up)TH_rrRG(H=2c8o-y*SX%_=a-DmwJ#q*7L0%jnB})pF8j`>5rQ zvRZy-hGHIIyo4j#fMW~FX{(K01eSN{U7jM#o^Vu?zF0A%s%=hKF>!yHWW0RtoJf%IVK)cmjUXtvNnNU||2do)3E4gQxQSjKz`?ZbVb* zg8kR+TCg9?Vj>l~u8pI|vt+WzDv%y94i29pTaaf#&{8YID6q~Bdrulv`{4-EowKEc5mI5EYb3jUTC>}Vc}VzB|$~9G*Uz? z-iF@NFd4v)vMKz}YVe=w8dYEasD!^H;Xk%X{|aI%Hax^1>jiOsVS)G9a>61M^vSB$ z_ufJl14lR1mDo6xX;Z_@rLNHrgqa_em^m&n(=|4Q9V$9Jc0S$SSlWc*XLq@BaDTlCPV=$JgGODz%)XmNzKg~je-h{PB>*T{7^T+ zTG~S{2S7k}YSv)m9%R-;9cdOHV$!k|N1HRWF#;Y0q$%hc836C2H7P1?)?^gksQJRk z(hgw3GvVMM7pMx~!aj}YTf~;)Yy{aU1 zzhV^xautXrK#?th6}1B|X&C`6X01?9BT04^zd~bvXYptFdl&E7S^Qh=D;p7ZlP-QC zOF$s_7{roo@zQ)MBW)-NB|gg*zB5HQR)rOq~9H3O{;Ym@716(qx0AFJTKY!!T9#<&O$jlf(O{4V+~PLqT<-{$*G1fxiq zaFC)($ou_a1V+lqu=u-a4Yuh0p>DCd_RYP!c9EV;TLt6=8BM?FJ6>0;JT?)X4^Gk+ zf*=T8*l%YPUP9ftq3J6ecH$7NNNkyk=rqJX%&Og(Up6M%3Jq|B? z;IE*7564`v%y}9R`hocAc7@N4O~SOZJP-i7Xea>y1d6=m2_OU?VKjXPtEy~0I#!b; zlFNLoVE{}^;YE(K8_}tjhJthsCqXE8mf&NszJv(HvX|^j#|g_EN+;~<4G|$iCfbsC zWI?^7lM2PWl%+LK^hw9L64P4QsinuUKx3QIOs0jcXGIEgTMt~9`VtIb;0Yo!z4Ewo zIlmo&Z4HKfPSX)iLr3AoWQe+a_ywj?wrLV6io_bi_>Q2sm4J@^dpXyar)m1HT$D?? zpl_> zqmv|;;$(->?J&Ck&x|e=-oLP2!u#hnX)+T_e-8`q4~Qsvmdxuy*hK_=BJ3*R{9YE$ zAsRD7PwdHEqH$l*nk@-fgL>3G;0?R;`u zMjE8fnSibCw-C7s!G1I36z#JVMq^xgyF+m5Zk;BkxeG zea^2elg!SM{Z`efBWKZq={9DeaS4};3=y#P^*pAd*77@W)x`WB)vvf~{ zH-RHv(&(187<$fqW?O6Nk0hid(c|RrIDZ4CRug;3w1+~e_wZaVtXK_)mW z25p?(&VZ=CXqwop_KdWS zz#A|%D<5cs_U?iw=Ja)3WfBsJedA|KdJP=Le%I=d%IB5NOP z1Q0d?r;6Yp+l*j9Y`X}_q!2GiLpbb>bwSbvju7H6))d~boW!#0!z>FxY7*HJGs!ts zdd8bJA*>3|c;73FK5Yv=)3pU_>9{_1lVe#57RNaGWri3u0B5=Y>@8!+WUZ>bH2WH* z?z+ixv@X)jv7GpZ9%)+j5S8v}9!zrh=L`o>b>cf%?|iVB$P3T`idgVPVJy``!SCc{ z3zbk6WCbZL*mY`LKb1}DTOVz+#M7MFd@+y zbJ9oW(;BRg{yP9lnP~i{PdiP=H3O(`5Mx)s42=~;%MkYjKZG$AK?&fNWP?r*Pjd_} z^HUK)=Hs+xawHwaM24Iese(y{?J3eQk-C;r<@iR>PLFbD&sfjEnSdZO*5tAZE3suT z;UrC4KaDg!w)LumOHqKA&gUQ&2^kss9~vcO#P8ohbJxnkevUY=ImFddPkbic;|FT_S%J*WS~hDpD1sW>aIP~ER$lw4UII(Y346Ib?)yoP@uI!#Z%c5^6xqr?xWwlr&Metd{x}`V zHVRGo_Rnn--<~_VJIlD0iv9(%(y=KsO(KiKsFakSv~^l%8&(t_?V^0JymUo0S#AZ% zDQ%;L&`tzuCM#4dZSqEQPLu?n;w&ub5tL>#Q7ia2DCg`cB?$x1lVl{tATStqxAIL< zyz=R6xJ-Flwd5Jt_*DUmQpJB2)G)B;P~Q48cX!uRt20*@(B2vl3Qr2spT1BI5lRb_ zHZrPY{9|&y2lkIC_k;E%g@LV|W?CinD0juJJ!z_r_9R)|*6uZ}l6qvqm0O+q($mwW zYHCkgJMOf?>TzIio~oif4dMXOimOM>*O&48_3{&{n%WaB+~ItLT4nV}%@F;7H09&g zjzd*ld+O~?915-;p2wX9rJ=g-qgq3lQ}tzMLG{HNE=75bET~ihBCFGOXs&Z7yS7Co z0sX{T@&_b>hJ)Ra61jPZqT>)cCe}n6s#qS5)N!iX~5EIxZh4YAHowfH$y}q$Bp6AO~sUGM@xZ{-W|9vLIiKSwc#gDoq}UHA^dzB ze(Zh0-8ibOIJL;`JaGu_$;JOA08T9aH~zz6u3b2cCX`OH{Zvr&K>jtwlIrpGyzl#D1 z;Jc~$6N`6n(M1FQb)inN&xwm|x@`}ks&dTQ8#Um!Qj2_l^DxxJ1Ac@@(L1JL!+;g% z*(79e@r^W+6N|SG(CTfXsGuO8_ljTJIEjVD6DXL)P@zB8Zn-ok(M696Pj%{YXgs}x zCbl{NM9IW1aMAulJkoXDvmEb+_iFGjjz0Joh8_GslRPir9C~^tE<9sQ8yBu!envvA zy;1P~%1H3OlP2rqgTwn#0Yu+bcWDd!vK!xnV)r)+yUN z_wN-+|4z+)vx-mi!P>3>EC z>A!{rXs=?vV-HtINR&V5pQ^} z2LI6LgFiFu;J0;(_N;|xB)t5rV0_m|Fg`{TbY*ZDpW>qZC+KzB1aZ*2rYdgwn*zce z9SCPwAcmNz{zb2oo+Pb+y^F?s$>7*|;uf+deP37(zsHut{)VUTh@#TsDQ*M2lu2N4 ziml%dBj1>^D~n?!McuBfk{H~_R&Q9M^%^qTLbF8ovv#wwSb-ZG`T_Z(JRo0G2jsOA zEt#^2y;!qCSQH=*%fs{=?d*Gm&5F-}?Cr-+;(a3Dc?U(0#0Tj%gQ$%g-W}8J0QL6n z_;9t2z1oY)Nx@6;LHWjofunON9>@87GR}vc_-M_qwj;+4ONaoY3vO$jc;7ReZ&=w{ zk6el;a4jlbx&%E9UvS1Bjy2r=g)aw0H)XWFgs(|L_;NdN@$FFLSIZS#QBS{y9kz?c z$Ldfca6P!C{qn@__)v(;7Lc*Fyh^Tu4&EH5d_%2r)o*hCGPHL>ys=!)7Z8@|TtK<% z;$~+k8R#ylkiIyGqc6xTUv`nn!3A-~Ib3a+ejSUCTB{Ba6(ONnC<~3nV>PSNZlJxx zD{wdgQ7D1@4^6z8fFq@95k#F2#D_TpUfJ?+gELBX;)!-tFFpb<44&`E{#fRNjb$5l z3)c#OWEyHU>cmIj^rD1Rs+BQrr4!%T^-EV1i+=*15FZxpZmfMr_J^*@@vQ_y2t?UH z5#8+Gi4VD^*JvXb12A60_ggHl6TdF7AT-o)7d-O!*3gZ^nBFIn_Yp>%S{W=6S))4k zzWA^SVnjkP`6|A}0Yx36DBp5QbwDh?;N^*vp)_?z_>FK=VfxjpR%o?retES?^mMDW z+VVrItk+~JsYc~x2k}r$pGR$CCA-XuN6?Nur&BupZR;vu8 zAT|u!0|9f8-XILi;*}ASG$_0H>&yjWb>4bgGhGC3QCR@)wvI>`Dr_9y69{I&LylOcKVFRcY-FH z<#c(b0F=WPQOJ6HYq;h`=4#o-g&{6o8q$gPx;~Nq!LW(@LCep#v93cP>UI2Gd@bWX zK@<7G2(@=sZKxSlaB{KUFqMo#)Lw!sYaOKFS0g9F5AMc@$uh7Sr>Ekm9 zAYc3~`uHpQ_y&DEhrM<2-SqM2^zmo(@kwgxm+{e#C#WCF4Nkp^p4PdSb?#xETVLmv z*SXboZgHJkTj!S6+x9(Fmj-AbilI?{9WgY@dntxS33fMBjG04K2jons1-8T+;y1FKm;(KcD2Isw;WjJ2o6af1?g s1Sli~EsG9QrkHtsAbri`c);Qb`o$%gS$Qd`N%^To`T<4xS*gh-#hVKm{aN^B zGjuZKyg4$YGkh~-GMFcyV_gRodsyyBe1lFa

  2. _g43FP3r6xXzVCdQ<=+Is$-*GlObab-&Y}6q zv9=xL);>{FkI@eFd<=~B#k^Icuh zmh4p{`35&r#Y83eCKkJEst6={aL)<0>_UHhdHSOhv+MS%zn%e2HzK~u@O?UT%f{m* z?3d4IFM~IyYWrqg1*!T(ZcwOT@4K$eY_L7Sv_J`3-eSmk2nPQ$hZ1RH%BMS$b4ZE4 z(zDM0NQ;p0$}XNGedpe2nGJ-;@0_@UBn3}D>>GQfeVm#Ca$32D&;ri3VxZ=x9X7)w zYAFY3^c^T0xxj4t#wTI=ZFS_lM<3U;B8u;76NO>(#nos0j7S6P2Aie1UvTu< z22-Ca3W=M1KqO<9s4ms@ahaTx;|hs0VrEg>N-l*?^y~j%_kMiohBs~iqzmeY}O71ISD~32*!9M>8vM#gy zVB7C6mj$(^U6r4o>YuJeZpx^1D0wOI$5=Bcaw*4MB(zE@vXed8yy$P%v?dZmdg!;N zrLb;)r!f{JSCIzg34bxy9cj5YG{Y#qq7ZCRbImZcBU@`BfBNKI_GxLbbiD}ROL6d}K+ ziXsrTqpQ+Xwf2D5w#TuBn;s-AkkS#uP`W{&Z>znFF_q5gVP<>}&MB*{66MltsQ;mO zdaor<>yO@e=(XV9hIsS+a(jB+e80b=2^MdIW2bF~V?o=$+!2<#NJU`Oub(k3Nbp0f zgN*ub8w{vGa#W>eCmXy|#*c=tr%uwFlDAZbD)di$R5pbco=C06N=-zLu{C-wS;J>} zzxyyfbm^D>La}3SdB0F0B`vevr-PHU?epECC$#ePm7d0l4ix`qhv;{f_W0arzsEIG z%dF@lAcwpRT9jfQPpU!5WByE=ijLSXOGib4!-pY(8Y3U*5subaII0&$_=_!sX+jd> z{1r`r{#A}%j%B0f0@Fy+cb}g^ehSZjR)XY0w@1X5Hbjnbf+Zsim!jR>nmyJx*F^rj zR>@N=LGLt_?MpM2?I3(=JK^d%3}O3g#WFVir5vQEq}+47YkMn$t3h2Y zXV>%;1=O%B=Ii1hfP`7_!ZWKegSfysD0<`sTG9H=z&p&(9KJGg*4Z^*Eb8>;WXI#VAJ7s__Y0G})coZ(O2?BZ zc)cp)b;J2@)({;Xe$<+--1%vTw0EbpS$(c^Y&*Q;CDEJOT6A;MDn$WC1RpspK` zLGO|ozP2fHFCi_}SKh{F=Tssx;t*rJLEWgZ-O09o`rBsi+dFEUTEBTJocCJ|x-Tl= z&JB=PG&jwX}N>YQ}@S2{vhVDO-;I@v`ZKNJS%UG6XRyO|@OuDG}_tM@nNePY^@ z4KI?ckOht}`9*DB{E!LYtSN+I=D00?xop)=ycS5b&7ceBs&&@~;oDa(zDF*H+N}fp z2yKDRZdJ_VBz35ovhkG7)`V)1<-8WYK%L7*UU6QbaU3m7Ry85d_X!TxKbdJXoby{n zexGR0LQuNniu>9O_g+?vsSWNslyJ@Td9}qeiW`ZWp4DSJ-v!&7q!+mFnAeC=tq}%c z*M0qxFq7^y_iOgc?lI2A#b8S>XTyw;2Y&SjDDGjeVEYcn(+fGQb_O)JEp^ITjSQT) zslqL&FB~b1RsAl<7zvS50uE+uydDk8rL^OMw?r)tQ7UGt_WXM{uQ<3L5N^OryVw!R z2`MI`f)a~yOb&+Bxiv{Y891K|elR7<=xICo5?4Y0!M*RSW#^Gh!1CfPg`hvJXTf-# zp%$bz+}d#IYYU@FSMfi#^rCCU_c)PNlcP&W;J^u395}IZO05hhwJARLzHah$N75PF z6rkN#Ptbet{w29Mk8q%DL?>6~{h9=gMAz=Y!%wprGd^mN|G7FXQhH;v-6(T*1#ui8ezkjMqR`PAc!N4EztP91i%pN)Kt>xX+XIaT4f8yx+H?~qB6aB>Fv z>!jv`WWwQw9hb}Vbd1j025_a}J*IaChWkvH@)Dl`E`(<<4%35;EFtqEfa!8?l;QZk z?SLT|-7Y-jbsswEiR&$ObFhm_pSY#`KWVCRwYx zSuY8#fg5N2@yL0g1&AFi@ zE%4CP4FgqLt14OAou;H@GV54~lWVR!7(MpE7|RqFY31AcH5HTl_j`g6+wFs(Xmjl3vYXqe}= zA6;**mBpBd$;@_tV%>X4*!R^48F%_K?qZQkbHRlEwjn1d5@QQe)lBz#-)>p+bWJ{z zw#@E6g`NaISY6N3JPF|a`dj8qvuTd-9t;-v_o~`rr06F8qFOsDCu+;`+8186-QkAx zbvOI^K``L(nG1! z(r1)BQjpXGw%ur(%=c&8eU3=k}33w zN(_`m{gpqBKy8{1<_iPR2dT?*`bH+gpgccyIPIMOlbUeE82WH671YTz5Y@eO(pqz7 z9*|y3G=(a?9%v*aUoWjQr(zjs2d4*^0*5$?q?+J%=7*8AE=O(x*EeI68DZw^U$5fl zmd|@Jd1yPSkuqNOb>h|CK*f@jkNKKz$;e#!AFgh;>uv!`<5cpSn#1KSiYRQ|bX|9D z_sQbKG49f5?w&)WB~Ka(-e7_4?A_;}#-AH8UvPHS>-m{RZ`*stKA1+6c}N!WLTT>D za$T~)x)I$V;g+(&0MLzaWtdTHhqklW;KVP8jJR9Vp&;1d&z&L`p6?O?Sjl&#@s+Y zlQZ|C5hCI$mpgUfm|1DaY>xgI^gv1>_~KdK2NZ-xdN+cT(iZ=*R}Cpn*uGT}*FuW= z?06ckwnUDwTMqA@$d;Iv!p!-B6~fSH@;k+8lgWoEtqQ<3@n17 zUNp}>S9?;Y?fI@?Q(0L@wiq{xS)BP63=F$fjlX7BieS`6|Ddii&Y5P&E%UUd^zT&` zznpFZZv3ZvW=0ez@S_2}l^r_`h)e+O6G@&95msSh^T#B5= zDdNAkDz)7!cu|3E{^9`IMSqF0h-3w-C95_g`kUJu#TT)m!#s75kN?vGthp4!GM!(a z(o^K)(Q38edS5Q?{^|eL>q=v5#*UZl<0QEJ!s}aVEJ5s?Y}4^=sz|&ysWQN2oPBN}%XtYbsNIL%fBRuF$6MTNQlUPCUu)Z+;=Ar+x$ z><7%*UBAgR2{JY3KntAK^_}g7^~#6PJtkL1Tbu;+-sbtGP5tfQ0o+QXKw?B3|MX|ae-+8v%9lk?Zxg6}Eo z>7b=0c8SCD-1gk{T}l`OqUJ|X{$4-yag(WvDJ_!WtDhw$UZ z@+k~NX-%K6KC++0G1_1#ct*sV3sVb~d!vQE-~NarW8y$<-}DAF0E8!UKYL~wN$Oqj zZS?Xv@bvhz)6+eTNpj~XDE(peboj4R$l>u>v10tsO z&3~X1H9RT8f^L)v4@-8n%lQQeJjUx(X9;m)X5GBWNsjMuLE;Z&6v`F5BtGkk7jw~B z>iK?7@G=Z#!|A{xY%Zv_%JiD8xw5{}%=ND=FbuawHxrw5dVe=JQEU8Pb>lYX>?TBm zlK??AsUC(z21bgkOLF9&d5#|s3-MRp zwG$lq9sc1#a5&IZWu!JqaQU1^>T5zpO`jtFklRvT;DR&%9yj=L#py~014IKr-h#qf zIioi!6%>UuhsJ>exp)owXf~FOXDxCnX~q=me&P<%r0vu=$vuav2-*INM^ zAH)tR0zE^!8(k%uiEDY$T!NLNlENGj(t-exVNT6*3^Eh9u=!Z4^tk_2wpGb*{tU4^yE`rh zuO#Vbs6W1Vw7TBzN+8i>ZzJ`2wW>T!D`~E&>5yPhsQ*` zC3EgN)hZD!@7Sn>j^G_k4dh-}a@az}DkMj~Q8@jL{AliZp7ldRT^8K}X(B@FT>U8Y z`fAYk^nUr^2djn}Wh+_GU}LYTV%`G^2V~{P6u`%ZMlzcMrgH7osZ-HpFh;nje2#K> zvz}MF|L+R`81Zvo>It6jrmTCluM_Tz-LCDb5|(lZKjC+R0hAmzPp^@~gMNrt%{sa4 zr_3Kp@v>gyYp{UqV8EaH#_RU(`>s!>q1I=LveBL!6LI8Oi$g)M*uP>1dP0N~lbYTI z0S?YB&OtxOjss;k<&PMXBgIAgnu`E|`}oNGVVmnciv=b!EDr1WxU}|x&W+yuGjaM2ZH(@LZi(d9Cz1cBf z@%+2D6n`XDjk<1M4I?L+>4xe2O8mZw|7M4P-oDWO0if(RBzn>g9;}PSu4ZmstID(r zn;CbFgsH>8+!=(N5Y^21L|xA|2J*40JcerJl zELL@NbXZ!{2HCf~m{9CMrc)4-B{*^IEI>11d!~aZ5`n>hBpU12{rs|-++Si|mECTT z+2Fu=`t~{C@nOhe5yOzW0YCxZ!jX3MwN9dQ&-CEccYH!YV!;NUMh#wLQsNK_;n(|P zrF}xbGl2&{GD(v2J3*UsTAgAS#u{W!BSpg-(h~%4fm3?;SicMo57v@Z7T`h+1>V36 zp5A%v8cY)+8Vw~~fhBwUCrR=cyVbtJe&sr&eY=@)ZLB-PV04woYw`}0(1r;4&zNS& zub|_&k-wT+@2Z4l?t~OEv?N-N#X+|%L6S*R?k-WPa-g1&S*-=vQ>Z`vaPz74hI!pJ zg8EO=;9patUA1DptlKP{St)jks`bf;k~;!F1wRVh*GY4>bYR4k+*CFA84xX!rY9tkvokOoN%7r%O&< z3$66)rWrW>r-|EPZf^48GD+`*n2gRLpVnchG3WrpSlm*Mc{#DOO}zqc!q-xHtf(zZ zS#Q1&s6|b*&i}W_md9n3&Bs+RqcR>9XpRHB173~KQVA~@vuu-_q_5JYYh(Tp|CCc; zNv;V70bp%y<)eM`nl*oWG+Monc*r|AC^Idyy~f{0hWo*U5!}Q6>6le>PzR-l$>Ww^ zDR4WKFj??6>tnTcV}YRjeJ-nJlST zLmZ=aYkV4N;BDAyK%?z6<6(ZNNQA{PJn`99kmQ-eh{pN=+G!{D*9M}2%?Wo^4Z!ev zt%;nu#ol7~izLv2b9xD;HV)czN*Z*)HNqd&YrUY=H-;NvybYLsi z7g4Vl?c|-%L8azEb%gS*75-dvea85xwc$e(?V|QK&~{hRH-3BGJX~-**yd09ebJ#U zylQp)hcJ}amlLa}MmHlwJn;P9r}uEa1D@2?=Vzk?b2>!Y8sjF=P#`@f39F$lj_Ve> zQJM;JV)|a!we|tNimPUZP9>D~FdvG=W5|58C%rkV)nN9!v^fW~@9Hzkw&Y|y!JHPz z71rmKP%Ra!aAkQq;1Zo4mzJdsXQ&K~dlZY_8iKiI<-<;372;fZX4p#2y2tpfca{ZFAz6# zwC42e&Uj1tHSHldYx(?^@enlq@<4C+0C~CZ0(Q#Ig5;Qu7?9AQYJ~ub`Wm0uX9|Sz8GFqx>LcYmxc**IM!o{lIa7x7nXvmHHayohm3kD?Sk6 zKtsxw!2%0(fKq4=6RZfW36oaX{HC!rhuFug0TtCCu+=KrnnQCRVl#TXY9UhGyaq&Noa0w0aBn;iv2gV}wl-RX&c|0;v5swnbiPPH)-(Qk6ETk{I zOG26LEtj8_WgB4Nx5z88bz@9Uvrey?E05%e%?Wp}CnGS4JtW#1J}w7?13cEkWX7$B zO^J2Yq6n2^L>-t5%8>YmJOM||w9;CeIuZ8L(vs>j*E;96$4k{ZjdDsp&Ovxjg8TV8 zEiH{@2Xcz$ZkXXI<|egc@Agri zaB531BDOt%Le?8z3O83f%`m|Sasjq zZ8!Z^zpd!d^!1y^-^Uk46UbI7C$WloSf!RpK4PiTDIgzVpyT(I_{f18Ow*}sn@XaW zsJ~x?xY51-XMMBVWWi}GV>j%%*Zlw5;h>F1Qvbv~k4E}&L1J5o*No3$^=M;M@9}wX z3yGAN$z5(MqPo&78IvV2e49&gp^p1o3p}KSpLS>~^Ttjr5UhAYgf6M;y&H@wU?YKH-87E2hRAyTyWh^EliOA7wKnWdFNUODWP8HBAu#pJ1M(I zgCP^SA(mFuL8^9oF0Tb zr%yvp5Lx3Sj@Dxb3ewAbeWt#=@fJ-yQP(1wp*^_f5O-Ms9JAh1;%HiV3tjRlUCI0! zm=2Z$^%&5FNCi^*qh~|S*uS0>Mvk%uzzhlU} zWCPslv)wAkE8hF#o1m+Uanr1dT z0&tr~|MnsbMZQjs^60Y)%?5N`Y*NA~pU%kq*fA)pAsUKFeeq}shK`mV*XOxM9vpz_ zR0VzkR0UGz@?$4V_tJDq;+%4hwf*_UN}j~{R9^troG{~y*|qJ`SHCs_Z2Lt_RJ(A zDPz=M0)-2v>R^bh3h$}dm{8Jhm)F3Pm;OG$%awjXdX|6I3ei|%sD8QJ%jIREP>K@E zm9|mITwleza;8(xc#!}61u1VOJYwr>E|6zIuncZt6XRWrzy@wW+kZxvFlJVWh?7)6IF&R4*En4=NP`)+4#3`WV z=gO#{s?o+koazR}0%c`?)a{ps&xbGwWrQoc9C8poA4T+A0J$f(B=4N53{IE~=Lw+Z zoKouI>l5HVlhRFePHYn6HTILw-~`ec>A`;+cppO=933vk`q%1n)_j7@OVUrPQI^u1 zkxD)+&pTdZvE-)!`+`0ePtl0Ha_Gq+Kjr}2^5JSL06}wQkTRIRaZ4iO%q!$tv&C%p zkyvz+!sHm*sYO>THM(zeJqKD zQgb$Sx<++R7e-7M*|$AOG0xIi5LO+v)?xw$4jx0iw$oD%8;~B>6S}%O zY?nXzY`XJ zeU8^YdN-*PTB7F$p=fyWX1;k{^ymOzlM6Ct09+F!8%)J6SR=3cu00*^`30NjxkZMB zLbBTY%nxluPpLpBWS~_8Q)6E76FNn!eGI85dOLFC-*J2k0j>Okb)nPsQxZVkOw?+s zL4qqNppM*h44692SW!F7iELv$#1df$M{K{P{~e~tMic}`q#(=0zFYWEpekwz<_v5Gn`WLeUEL zs+6Qu!QyX5WoLWiU3ro+3Z1N(5Z#)>@$VLg1t49**n!m2dyFfmZiowv+#e9DTD-aZ zj#rj2a$lNLgKmCn&Cvmpr>~jljGt;YWV-XA=>A>SpBDgAE6{-dP(t#M!p{coh7*_S zdW{)7B1nMUOpd={yk0*S$aLh`-Lolg25P}`OOvFUCkmnh>=rVwWjmq1KR3!tfHlm+ znnIKA147BW=!pc>Qh5;FVm4b7*?um)1x)5EdGq>`R*lQ5QSA|`N~m*F#9I*2LF`5+ zn+c%we|Ox^ubQD7TpQ0J=PuY2dZ`Bya`Ne_p@*J`Q0K4mnXn0RXy4e%E1`-I8jjz6 zfJn$@Qd?|yPmm}94b}M_=O^&*91^_noYI^;VUM5xkQ=iUuUQ?yJw67J{aT#mmuxRO zrfUMFqa3w&_I_0vU=F@D{BD^4=Qbk%QAk+qwoLV4#&W*1IHmx_$ol3Tvleg7NBYG$ zS)jpSc%>=19RCHVpynq@1(fYvPrFz13%{b)O}8xeOnt;y%=q__*0T5rToW1tx2r%w z2Feq+vL#1;wPT);`9<%!Z@@DG1-iqle;luAusGnC__!YG5AVh~#J{-B|&F~s-LF@I`P9LpoF zCP^JxI|@BzI2^#aZ~rl$xp=eL&76xjRn?krkf+E%wAaNo#z{J>Z#;hOiTBW@`?b7# z+y25-iSva*=TgGzq2*`6BYp^2mm3j`QCAl?HEenw^nL@!lnn?AYs6W@*&iWq@&37^ zf6pP>@)&St?$4W0ph$0-T*1EkeekVR2dsjRoxjpc@d1e)R89!`+J?2sE zsyhD|Uz-Ss*x~IxA&rfRh)4jzk%05I%pd50c2Sj+dcb$-(80F@0T5sIu_%S;<1_-z z>^Jr>0BNTWD9js`>#p8Gs(C901%Ej!nd4c$pfI`3<#&g(B$c6n@i4m}&w&*9fmbbS zOMn*JB1sIqt|`69=YmT1r-I8=(aaT8|D2+ZlLi1A^@PmFtzQ_*7U6D zt|ROKjE4|LO?0bmf!ERo^0E?2wx$Oy^{*83%D6B!4F*-u=GLkuzC&ZtCRi z=}jciVG$r`A>`L*%Cgm)CZHC-kG4>NtQpOTb%`~oN^y$s$_&4by(pv7GuaUm#%nQP zx$nFNq#A&fOM3?cTkj4}i;qVE3UIp!WqhdGCfgOA5)gX6o*%&%V!CB~#6 z;Z!-jfTEH{AN(xDC!cmM5yA&K2UA!n9RmN2KH2Xj+43tH-0+r(ZX=2Z)GSt)zD9?O zPX5%+u^#h@BJ%=@g__i+096j{r0WH8lqHrVNBeE{DZ5vc2a+3GL$BX}mazMm^L?k1 zg=oMUi9265M@1t;!YCFmuo-@xZHwtkt-g7gWhy`bZ%+&L0g_EpUwMUbTL^F+8lW19 zgH$5|vu+0D2;`_|nz1ur$P}+p5Gn9qLn2+*GoGya$0V>46~_OVHhREEfc*4ipE^Mt z`A?OvYjZ)DVZv|6bFCY40+7JO>JTIUQZCuL=S((8esMMQ12M!>6?GnNm+YUGSS>Ky z(;vdiQN06ztQO)`*;kmXAduk z2xN8ff6@yU5#T`>khHtkFheCc^4HWxA`M;zDl~rD)EXTrdzneP*uA|k=fEL|4dg6g zySfpxzskqU6#3fBuLIz8qx94x`+r@KJp}FdBb?C^CkU5xcIU0?5vj{}{Z< ztiMeIn&VgRvq>>>2Eew|Go0i%fWQDi;s39?wSVWb7ArF(&$KVkY5$}2oe2N0?R12x z0(&^AK!&s6`nnd8|6mt>o~1f(8bA3|Huxz(IpkOl6oF2{aAxaMZoC*hMDUzQo!K*O zL#tY6PXjkN7}R?2U@b*l=hQ$(va6hjnRS}QUwMZJ*`x#?yLyC!?eH&td1;>>J3)=t zVEeYP7eF}x*lvrT_1*+YZm1~?D0sDPJ3cj?;5ZNcHnD6j1Z}gPNdp1p|GpY6>^%6J zbR;RkMhg(M#A4)Ud^iX=ZPw3}Q*(0UK#yBpTAe3cMI!;Bl)#`NYCgHXfE_R#pQ|TK zaBUbBIVgr!+@Z~IGDzVNKFg8n{# z^%Y*5;LW9tSSJ$s|M_h|!XuVatsHGce1y=E{;HTK#Ybkl4 zo-2wvn{SR1WW4gCJx!yu&zV0uD{+9vP6$0VsgyKxKlTkZF7x+ylvVSAjTXwDyouC(|at#MO*W1n@b(CP^1#3DtH~|F@T*L*fU|2@U#-nrTh3&5H8q4wSd>>d4wK zgHTKFe@@>O?vJLw2!k7i*7E!O18E$M23~qbGjep`Tr$A+pD9t02l)Z8U!99!fx8umu1kM(Hv_jJGbaa?J(=8Abc@}cZ2_bRQXr= zQdcmCwbNR5yyZ+41a3;Sm(|mE9Re+H{<#b383(}9P!KLAGxXV*2u%vbsB;t%>WvhO zEw$KGHmfKjFYLD8EEh*4!fU_nI7L~W9b3966n;mb%KTBwxo~lr$wmDJuTKt2inYx; z^V@$jl-;4>Zo0|Xrx->H3X3k7i3JUy?b z_XD~DCP-CM0Er*Qe1)arcI)Ywj15DgJ<#euYi0p^MUHnHC^y*~Plnz2ol~#$hX+J# zj-s@oMp%i-eHnd^We&yS6(4J+3y$AJDHgpr;oj=rDCbMNMmj-yzd0CxJYD*a=b+z0 zLMLDlW{Jn_9GbM02g3Rq=4;G|nVl282Tl0fUMRyou-=uuVu0U+wTf4Caozhwo9BD` z-hCxCj8<`WQq!ln*0!kDRUKV{^)QDTiJ(r2xefbi0$cO z_7O$FfXG(=rvb>&B3q?|k`GsBDBnPtm)0s;Qf_Tz^VCZ)#VIPW9LsK^-B^?=9iOHB zW1Szd%)S3So|&-PSEo_oe87vWwVTqVUq5xRVzoWmc99U5?#&T)370I~?I7qd{Si3L zyUR58?^F2qlk?~}R`RS@Rx9p(2TW{_-}L*}TTPg*RRrfi@o86WQ|j8g-k6#pOq*wF zB+KyB%Wp^;{BJ};zZH*&0rDxlVLnzBIMIdQ5ARl9Jml8O4)gzvE6Ry0a#RwM=z!@U zzF{{qaM`-O^!t@mAOE=Cw2pN1#tmB??P5}sdi!7#@juHPY-QN-#{P@wRT}4k!VO*1 zp$)r^b@EGQ+w5p1*OvDQV~f#z8On>*(l`#`&OnxTsbAcbH5^vASKIBF<>bhjM3*>0ERKNGEpQ$(nl zmZ`QH+Wq>k6O;Nk{4d;tJuDypfnMNOK9&7j!~k=QrvG1<{kVbjUuFQ8W{ca16vs6o zX;*y4Eqk9EV1&Nrah8E~8{R@K;!S=m5uLdacx{AT>O6aZAEN9KO+u4*wQQ@WPs;FN zDVD4~`Z~AYZbN|fEcW5aJMLff4f44*=|9yOB!Z~{&~x2Z>jd?2;nV;38(xpzaU77c z7d#dC#y>RDzkmIIfBD}v^6$rv(dIXnEPRqIOqMLPku0iJAaQq?~#FE%}#nd=OQoQ2<^Ss}rdB5HA;zIM*F+b9B zu&f`~t4g+7@49`O$cf|iS@b;FdhTQ-TE4VqAbO8+LOPBv4)xKGH{q2Smc1O*GL%7w z=?a-V@eaZ;LKAIX#(34#w|*@<7zDp|zn2||=7`czx(brDzcmBZnfMjrX!Gcxt683j zTJf6a7i?es4PYV{2S&3&KR>Ed!Z2G)o`SVuMxHn;tP$rziv$+{-P`ZV3KL(#e1 ziFTk`peQuC-;g4`fK=|rtj7HLTI@)qPg7t=Nsvemx=4&-5fckyQdaGinxu1ulXP}J zeSRGNOXc3Q17hfh+G)|D@6P|2A5EUM?*}|R+X`cb>>WkP@L&7|trX)}=HG53w<)B0 zDMK>CmV<>1bQ7=I0=h8BVhOgcH!nwN^K{2G?P@>0pN$5P6M75HZmEN}^ios`fjp$- zT@n{=e+@KlNo|{D7FZ{@3$-^Rs;OK5xYOnA($pDLKw&WPU?h>77xu z#cgxEN!;UmX;p;=M0~AKntO6{336moGMYQeWErz|Q3GYo?;3l`3|oMCSa+>`Okt52MG%CwhFV%vrWwhnK=unP+SB`Toe8TAMfh?-StW8*)H{V? zaqZAC-%_e7MO9l{Qw3+tSU1Ibv9AAG+LDoNQ4Hj?^F2wYld7>4!oZ|uCG>( zJiKB!7H71I1~G*=$YU7tu-|A|G|PJB61{Iumr<0aB=bYPse1Nr4|e>CbW=CN{dojFX|EnXmBKAz>DYm78oVL=cKy2wmA62M-D}X{JW8XJt_FKU|?XP z0H5IjJ>V_%F}al$4N>5e{mmPk81`Q=X$i(QG0n03(cmmA9~lRem`#Z-r^ltZ+$O=X zOwk3SrYAXS_fz(}@}oO6&qp^Lq5TJ@(R_@IQVL=eN(sId#KjnPzZk-oC9rQ?>z|+= zUc2FQW4Wm&oPo~3bMcTzH}^lepaWUJuSW#|c~QGn9_r0wXCk}rAbu1K>kc1%3x z3SBldCU@W*ThriFYbEZf6Xr+Jla5LzLIgbVo^3gF2DGfKLwD3o0j#56J9Im)(NavV zKpL0>nJ5ZmHy33Cca=w1_2;6d<|5*Qwk7FQVr>1{s6G#+Y^LI((&mIyeTgf%D!Kt8 ziHrl?dg@!_nC)_%Ix`B$R;d0pc7(*pxr}Z~b%)KF1^s@En zu!^?n;wYTgveIc>wWbwS0=3{!{SxJ~ZF$AcnI{%^y_HtXMummf7@MDaO?uJjG4>ms zmVIBlup12ui#2WsQi(Z@L?{xNQSqv(B4Pw_2k@Fbx36_0hcw@9MCKh?Z5I1RRGig( zj8qnrH{Ptctz6b91RHqFpL+Xr;78YXxbp>(N_4J)VaXg12g8cJl2;*!v3{Wo#{kWA zl;VNhI0O8X{Cno8YR!4meyi}^f-pVP)~nqq#~su)n-ozLiPw;&m#EHaZgas|zsMIz ze>HwMT9aFD<9gn0Eiu;x9AVP9F{X~#Kp`f_g>-bYW~xO_{ET&Fv4e1>tfzWiX;$we5>Njb@J`#aHe^x20^mw?EtA#_bs(ev#NOx zPAjd#GO=2j@WOk7T5hI+&Zl0A@)r?#*a|apnGQz8%snn;74=b-aR9C7h&E^aEhL6Q++6{0h-9MBw4nTK^ z=*%}2HTmF^`n=>9=d1O)tlM^_;6YS>*Ly)}QNH!n7I=-yrTDenIqwREzEKRHpU`AJ z?+C0e!T~b>3x3wOzyH+GinNMM2_2_z3BamCmH)uzxTd(3aeWT&&|X2+-*kde`QsDg z<;!Vupwy8pVGE0zb;x;1xni^~ts8Tt8Ud#8MNtt#@t*NYdWWk8LVqhZ_qRITRs6Z2 z?yp5ncJIT?e5L9eIh2qa3yTt4ea`(hSb$}6y|v{?DAn=7@V=BNJ_ zz){ywu@$D5n2NI*MFP<&CO4V~SknJJK7q@6A%^mQ32sjaejO7@=zqU{fdYRdL}Wje JeboQ@{{T_j64d|z diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_51_1.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_51_1.png new file mode 100644 index 0000000000000000000000000000000000000000..b07fe78a9e9a94124f770fb05e2389b19dc4adef GIT binary patch literal 117982 zcmb5Wby!yI_BD!$U7&&zqEdpQgfu9jGy>8sCDJ7gHiC-M4N4;=El4RK($XRVN=S)x zNqu9zzI%Va>zs3)^PNBT_EmVEwbp&ld(JV&9CLYJle@Zi*RfqBBqVz!CBzg-NVZCo zkZcaxu^s=yEnq~0KX~oM)$En5jO`uuZH-7|_3f?At?bQBZ=ASoWNT+?Wyx`l=iGVL z6F2Sct?l^O*ew403+JqCP1v}y@>207JFO+u?MO)W>l6Rmlq{TNO0tQBL{jYXb*IQ* zJ&ta&!?fkoO%1)?ev*giM3ep0@~(<1#yyA?^H!Hqc=zP9MxJuYG4Fh1h1}a|$IdEf z)<2#na}_(FKD=0MVQFV{)&IC#pL$)I+I+{+Xe=qJ39!uTB&H{~n+}@9?2Rv0?YJbbwA_U+r8R=ts1NcY{0a$H%kC|#YAKBJQMxUi6yUMldV!*~akpbKaB#phJK zB7LRq(=#(4K7810XJ=PjTs+d5NjuyW(=_uJRZ&rKX}X#=MJZ`tmCxadZ{H$ogIG8`R-K}S+`}jG2315vHkWOz z^KaR{=OvbeoJD1isHmt^Ak*b^jl3N@cmDX@^RDnU$H|lT@)f^H>%z^Z!_FTO+2BSo7=rr+#?RW?S`@YH5pVymOrFaJz#4Z_GBoRrun?3;SWm$zJW8riKPtrHk*1 zI@2|;t}IO0*x2C1TaO<<{#rG&@k^G0^VIjt(U~m#H8nM?>e&zQ%>9Fd53;f@5R0f& z;vy3x6lKyBZRGO%N$PIxx7K$zZQ1_)$B(;VVPPG`XA7Al#;~z&e@2t8r>Py3mX@xs zub-Nl`X2XOsDH2~KwYQvNlbHN6u)U-sURMi;@C08M42#wZ)XuS;`fN~EKdCRlroNF z*GsJu7v<@>xwc~Ym6py&)hoOQd(p`8he_7!C39;&6~-I-$q-Lf*gCD8CzX$ zb)=gq<$mK*D9L4$*Xdz!4iym_^mY47oiGLGh*8QS4| zw^4Xw$XtsoigNLmxJ3h9w zveKGss&wXh@+HJ_q34DW&fD%J#Fj#C7ZT?Y3iW%)fs9Vox7Oe6woi@8Rd?7h3tnf!&wHNsG8>apPxw zn1JVcQzJ2?atW#3dQ5fSkv(wMdkHmhoH*pF|ONB06xIiW37CJxPY4X)F zRV7_QLZbZh=NC8xQ@yT}`j(cB&2d-5I86^VH#fU&tSyE{L~uCI47$DZXeeNOnUOfwoD1B|!Oq~QIxzMn%>2_6Jg)$HKx%qkT$B)ZDd^p)@#BKRa!rJ=0 zPpqE4{`=3bM5kwGE6U67AgP|W=@YCH$l)R?%4Ny!oXRg>)RwX1twGBJ&xJXS%q=W}{OP67 z9A(pyQT>e{bOvg^yPe*VWzn5)>U&n}?fD8d1Z3i}abJ5om-gg~w{LldK0Z4hrXwvS z<#ULNDviXau&{7u>PLmWQOg4Brob4_bzbeTr6s4K^n%`&xtULCAyPV60R>4($(p$( zZ!$*m-Me>hyN1MBx2G{l<1V|??O5QJiByHS zM~PS8ccg2!QkQvdlqPoiL`O#>s8Z~Wc4eDLzRrzt_!@nPQgUKi&%huK;lWeE9>S)p zLPbq|_|oXNLc8Gkp)1%?u9zV#Jv*!2;HQJK`(HE(ZwT~Ex2^1CLKL8YsIptIB^i+& zIz-OM$hhqqD=TYY+|}oaECCDA*ezzq-`^xv873yX`6r9xDyyqajzt_0d93=Ro+#@5 z&(1qd>D_979c1Z=e8t%p+gE7km07kPZaY+)z|vXb>L?>4L-OUFV`fK|WB|ja&l%eM zE(^cH^j8=d80y0~Nbj(yX1p=$JeNLzRKvr^XMC(oD&fZ0T+@;9@!7!|vJVv%9A|fb z&bQD+HubkGLq$M&BWdgVleAF&Y5!1dP;34E06%1}=2TU-OM;G9ZYRn{Ji32hv}oxJYy;=#V++!FtSuVIoj#sIr5qAtwfWBLsVZkHY;gkI=G#?CR{xA=3gCn#beFmNQ64YLsZV%uG+e^4wUzj;7)KG}7V&1KGdm}Av zZ4~=mB=Rvr^qicWt@(3vb82s`>5yW1ePj{7&5ZxxD60qig_cgV8ep%sx9#-yrRFzQ z`v`onfB*hVf(OlBBfuLB!;!l@f-g9^x+-NGN|LPO{#fg<$hK>L9B^k9Kn*+&W8^q# zFHvkrP|pPFX7As-$1WJWaF-Y8p@4Kh&4I&*t5Bx6IuTJ@E*ToeGo<+W-Kg?uE^-)` zdA>N(ESeK_(dK%r*v^InDG2*8EEH9BM1FL=zYYoNMOAk=%XRO zOHlF}!nx|Ex&Nr2&D+KMPUmxJa7f@BWY zTUpHWZ3yG=^4d>3gZyX*cmS~UA&^<=b8BlwXJ^PhYQE37V|z01#15rmr)hKA-%4Jj z%swCPlkR_0P|%cJoH5whWTJ4BKUK`wvM$l1qiZely=Tn)6JZnQXNc^|)XV>%`$}nv z2=h>3Pa%h~wwh*VHX*IO$2cVdm`qy}_X@hqy+juI($%GZ<3?=QZj{-FW}O+Yn52ZX zFR$~sE~GIi+%PezMjke8iQj2d8~DDZC5f1l9k%*xcFKWJAq+HbOVX!SV)~$d2h-e+kU=A;sYXn;fis3wm8xIvpxM ze!Ru-Vb88z{UN#@HMzgAEVi_UbUSwMKE=$u)7{;D0oZ5s{L8e`DEV@YA`0#Ldc#RxKgx-<167K%~{+YHbm-*fQaFPJ~*4UN?=Gxsf z973U0-#5(bvHI3nE+q1FGV9s12=T*a9clXC%kPp@R#v{T>JyR;YjZ)g^W6TW7Ceu$ zvEy3PGrx#sDf~89w>o`kV~lW&ks$BHK?HVOSL1k-iB3ZP+UoKwmFMq=^z%8szP>*J z*~5aRWn>0Nn&UKviIdOqm$fZOuBw$F}naaNzxE~-S{%}#R!1`D6aoi%7nQzsDimN$CuH{bsC#qamGtIuhs zfs!|k(Qy$-YI^>TOGbEGkdla~C9+*XY*FW(R4GCP7I!Pwi|J2%lC;xa#` zfGQI$;QRrVx(gq}(I0w$pVWT5L)Om2`w;z2;8c_k!@A(JoMs(QJ=XsG7#phv;ZV;p z-m9;#PXK!?_Ro|>smm)<75kS_aU>)qUx`0CvWHeE5*I*P`5?TpTJe;U<1I)AYD`13 z^$XDY1C*4KD9}s4a+;FWa~J@TOL+%N&|!Nos-x&vdeo3@?p}eqCmeCSuMS2@e2yo*`v44o6 zlEKHP3MBOJ%6wg(pT4o5i z|G7TCiUW4$+_`gM(F6Vcv5`XV8a56N$|MQkY@;`J?A_ZQNO09TzSy`pt|0_C6peT-|pcVf{4cag36Zxh{lF-f=xc`(1X)#vR2{H|L?21Zhg0Y9!>t zEG((4O_P0PW&V+okw2Ez*CL?-oMvQXvG|%>llvQR6R74w_#&R8=1ug$Q&$W%s_{*^ zwZLv?KqMNPOAsG6k0yqcWn`WzmU*mE<@I16?1xPpg=aNX6v*jWS!FIQ0bGj*c+tDeMVWK6UE1+IuAhhgkT`AL`m`R=h@j~ucs*5LrXx&&b%k3 zjpt9oX(I}0lhDdjFrxve2I@s$dV8bstSaDokX!8COI$iUCa+#iLnGU`;n>3O9_dV-k}0TaDE?sKK1bQ)kPb)s%7h7m4XMew zD5IW-hi3{5a;BQr^8h)y*k9?O;`8SNnwpv*R22yMt{fBjV7n^v2hd(@7JjKiWq43f zzztRs8Xm5gp~dU6_`3nvaT!@*7Z(Ge8{L;u*kzN*_P>?RlX5Qqrz$8bH7oXb2TFUo zIs+Fs_F-ynj`hyt2N{BHOE1PdGlxgN6|<%gzeG;|R~Oxi6kvpvEfi{MZx2HB4trh_ z8Ah~T1yq=|&q$+%I@_gC`c+{oCvPJKc3z!uHdw~ zbOA(gWYnm~QS8x=!TU(6-+%o|8$bWwU-Ns0z|H^u z&U7qTNMuwLSJRZbpP{6X1htESkrDm>)`4Sp)YZ&U{>2=BSM2{)@BI`>|L`;~Zy5NR zwin%lPxl~#Y~Q{;d+Xc3H*duw8BBf;)I3AC%r};)XrK5Fzr7qB93a0J*x6egnEri4 zYTV2wX*s!{$f)2Q`etSzY9q^Xx1unQc&uF6PJY5f0S>5!~gC9 z*69Bxh|l;)$SEwbjM0ogUwd8_``a&aW-L8TDN%;fxG^$i{QNHQxGT>n1f1SvR4`f7 z(a~K`*WjuiV$&^s3JDwVYuk~4f3IE4Dj8h7IX}|pRqtSwy~Y&xeHE&>)_Y|s+|G=e za#iFKu0V)&st}B#$DTcY{1Qll?XV`kozo^XG!%;BHh`=ZMF(RfB-RSosWURG>bQ;T zXAZNdq)9lYp#&sfKLgErm+<+2Bb}-Lw7O!Y1@B?eGF{&TvrIZ>8x2>d=T?R!?w*#p zapMMOCUDUW#77<^N&WC_pV$|Gt8p$srBLi#N0)GvWMyRbK;}YLzPrA*lH;~K6OzHr z!KUMhe^<@WVt%tQ6M&5N>eVZamG$)%D-aWJs4l*-hyHHt<5-|8z8OwB=2lg=8|*J> zTsRgMCD@Ny2NbalE=r`+@rJdB9pATaUw8=e;F%z)*>xZ{B5OF$8oyRfeFPx^$>G$Q zGd?&$23A(jq2+VkYC9nypq1Kt)awTx`p7vg2}pd##>P%gPN>n3%m)x*74P5Q%{Hn- zMUVZ91A2(|Kq8IVCApn3f3gb-I;lKo z26v*qR-qGc_3Bj!7Qq?5p`jESxi{}3${@cHptfhtX=#eC#AW^iqL77!1-k7A=%Tu3 z7N8e`K~&_Kb#ktN?8scZc3}JVuPk0Bj*}z|vf&R(N(6(0g9(9k$!X#=O*ugQ^uoeN zsPz!ZkKSye{m(}3*xq&Y;I>yEM$*G*%zhb3-&_o*@+pnUxGJf!YmA1$D|S-poz_m0 zG1=a#HO8HzwK~yl{RswgXuBw&Rs>-g6j4M__^v=8q=ck^^0zwIDxZ6+-3Qs~M}NP+ zsUYaqP`6bX2pY57Vvpn2ZQBUJ8HqZ2Kutzg7G(ScJ-ztsn=+sle}8`>byM@-Hbhdp z!{_`Rq_^04_H$?FFv1=JS!r7d1*9(5g3y@T&SzqnWLklqaL&aGQ8L9a1+5@1*$Bu`DJCo(!s1h>e$K#p?{=l z75WRhE=;w`3!Bys4fX=E`Jm%dy0PvGs8>y>2nZ%-&HS{)XhK?ZnY#%k_x|(e`vI^M zAUOeQwWezpgcLRXn}!tBaAY3zctkqKo@N`GX?<%maPwoz7iIIdsCbS$^w1j>{vRc;3g9i^{kM095vAZo<*M_j|zvJa~HGe|DWezNKce*>FBxBD& zsa~eSkK6@rzx9M%Taw1aYD1%W$O-Tf=9Rt=g9t|84x7h~n z2VP!g^XDkh2LP^)1Nb0$TUdCIlClQmkN!W+LMJ0Iy{jjymrYz`YTrjCSQBC`QpWkpk9vvLCza~IsmL)g^hk16GID9 zk%VU<(b(w+d<-rjOrmFMTH|->YVHlR>b9Lg5)frx_69_M6J6u;NqyPHZ& zOT*oN|Nae)N@jK)c>ya)Qw*WOMq_! zWJR3q!;X%QI5W;*sW_m*rXx%zg0dV;Erk8z3Wv}9*x)m&Ui1I#CS zi0sDo6a;O-F;F20;hMdRW`m@On;mc7G&mMbyOxA$fUup|v?Bv|+9Q9do5t;R9wm=$!HT zBp@J=jclP1Hk3j+wO(I!Zg6E|V?zexahXdt?gMW{Q}gc6lFUptZmZr(vM_bY@*>ej1N|fjE)u_goEq9d zjEes4f>P|-_vN-}Ub(z{g#GkCeg7>I*@K4@mtfcvVH>ScuM-r6E z)5t%dpa*Da=x3Vv+^V!TF*m0w4#XQ zm!e1yj7V|e##SJLS9t28eNcqACaadzG}#j6(kY>4Yo-YKJs@zQja56CDTvsB+y~0Z z-*f8{e#gEtZ=V{Uk@m;efklx75Y};R$q{=j@_lj=rMxVo0{`Ym8AKB}cc)stUbFw2 zB!lB&{95k;{2GxG`@io$P(pg`Zr5(I8xcoTH=I3oQ!S@_7KNruC-x&C`XB3wQ;zl? zuk@JIg0*VV^wKe9tA5LrVJ4gOEuM0Bd&qt~r@K~66_}FR9g0}nq44sr&E+w7XVmPJ z+5T&aogTCs{A6kEzW{;h25#dDvh zP0pXM{X=z%Ve5WpZROe>2Js}A{X1(dF9Aw(`}(4^MHqVVU$GZg^>~IJuq+Ew&$la3#A`z#UvSZ)AbF1Zq4?+9u z-iWKO3)V!+$9sy~l}6ofo);-uTRHJ|M%6=%kqFO|BL4K^+JoEG+7I8bx;gnAiIwfn z14&3WKe=#8fcM-5!cd_E!3HVP_IhS|`dRP+HtHC7XLLQ5>2Xfkv{iK;0@3sY0K$V> zB<48T)^>G;A)8J8>f&f9MQ0e&*`p^f`b9UR& zX64VH{$Ic9zvh{7t#o8)V?}oh2?=Q!#Rz*gLZZ&f$*BOz0dxayeWh#+bV+Dow{A%d ze0)~uwrpE;aS`hR-f#g9D{Rr-Eu=GplD|C|&{|9oblp+MC$cKaq)n#LSnoCz5!upu zznr%G6}vzQX`S$$;pek-YQ%{e2|q1uZ*))TXQndk>pCso7o}IdkBGak*52K?-H;Y& z6SZtk5TtNUZ}j}G71|o1k3y)w{I`F7M;`-Dn9tBm;Vua`BFIsKsMo$o9-DhV8zRWa z$twX@as;YtYkh#Q?m^5o`t!NOaZ-oiHqgl*KYePrzPgOg&;`irB>n*bM6V1X38Cx- zt>>yAK6TQHdte(H6emxgez22_!5X?Q@KzYVV}?o?Y!f;5ql(Z*yUIL;VZ#~q=fv_4 zCdGL4qjmBfwip5(6YdifC6XzK&;&5Yy#XxmL43s-*8E~*`qdogrJ`sA_5$~qpmrh3 z&l|{bpbsBVGOZmQtNZ$NXP31g{i7Tb5;3~gS5S~BxNZfiP%9`X5UYTen_MK%dzcWq z3an_+X!z7zLXM*07r8a{T}8=mJ>_FUYP%jWEGrfG6}sG0+wJ<6dZ(F7ng6WMPGTb> zPD}e_ztvpUJVy)M=?hRn2z7)62&A_(68GF`JiUOhfsJRD5p1Mufqdt_eTh({0pvLJ zKWxRufYDsbpYU9ru0~v+2cz2a{5ds$F#5R7>6+Yx%Lh@kjBYx-T|y+_lZ>dgaGiLg zm|n}&5tKbi&j<gql192M_ASFKumxwW3ygwv2!4csxLwX9R=}g z*RB=u$}`ACO5lW{H~F!m;y$0l*m>6la}Q$gODvE*%gt9d$KJlDKh{!qds(y0fq6-f za^!f$a>E+~t@REzB72IMyc{R#Rf{ocHV{k5TyOm#Wa5x;mV3#t*P!+xPO(|Z^CwSE zAqcTKhsel86%`MGR@UX4NW!+k)eUJCqKOUohIu#l#f!$!%iZAd0x@IjfzI(f2M?FN zRRTsXECl5LKtfS~YY{l;rxSYGd1FqH6Nugr30xUOGr-OqUknF?2}L)SxJ5QrM&%QIP z1J6K^bm@@w0>uZhOt4BEpr(!*6(l0uj)#2T`pe#Zk^6mva?Zu5CZwjSep2t=z0kC^ zd*)i6()(O`Vud#oRp0`9Q|VJP>NmEE@;}3W6w{xXx9Q~E|A{w+n>IAUtboJ(%lUk( zzDC#$Y;f+{+5(9_63g6SDAn1JX=uy&gkZYo`)NuhthO-fD*ax>KfJ zcj`Bq-;sAqTE8#ey;jWnwykzu;2*TY%f2UxskPPXPR&NCv(2F*&puKa#gNvl|0|25 ztEds04Tz4WLH064e2;#enV%nm>j_6Y$rWY@qIU+Sfo(6NlVOw7(E!tH;6djpJ%Vx=)b&&Wu~NDV7Ev3lm_^*Dg7Rg;hhm`%*gq*1PxVB86Xk|Dgl zWZ-*a&yF1@=;-bOq^_>5wNkUGW>CRz_^Yo>H-`;|m&cEHG`u)zWi@Fpny8~C)CJeX zr%#{u2$P;V6-QMC_lC2ru!bP1n$)4yRh}fdsQw76(&qYt7G$~7wFONYVUK#a6?P`O z78nl0)Ay~|S;;I0{a<*9_8jAU{QbKgth#b=N~pu$3in4Me463eL`Rb--#tB15T#~` zJO>IU+YSA3&+&^-<%QQE{gM-^8IIr=lpGZm74&eQp_8HnO&j3;6NEUznP)4ICa$Zi z%Mp1+SJ*wf0WDIrdM-e{LO%CJp@)C!EYSuhL?og`jATaql+bC=#T8Xk3sn(>-EeTC zpwGDc&L%WAcZ2erJaww8)SVwx2fv>*wi?oGkrA=T0vWzJxd z*5jvHC$|db-^&tT82$%qe|iy3pLuWBCo#|V=G(K~Jx6+>SXbRWm+D$$~9PYp5V zij3UTO1K@Hn-#``io#_f=Pi$=W)k!W4delo#?hb3l)Sd5ajjUiVPI1^4m5|D%lk@r zyog^8<*_-5zBwxD8=HYEplBp$+V$r&3B|!b!+G;F2|A1_X=;80E5=4f4}*e~6RR0z z!^OZAmmp?Mv41g(G5m_FL+Y5Le_bp0OEdMw=qgt*zR02o7P&TuZI=#~L= z2|c9|JjR%`s{2ZE2OY`06sMWXho~IA(fDYm_RqQ22Iupy$)7f}BrTA8Z$*2V&h0KS zI`DWkPLZ5GuI9YhIe27lSXeY5Dp~~HK2}$gQByyQh|u&Mu02qch0ITc3?vk0Gy`7c zNBR5TgG2)p2~o<=wdFs&xEyu3|8T+l?j^H*6rm!|8@><5y;IAezW3(H7#;7t*9ZPM zhoesj8Yu6tM7~eFZ+KzA=@+YPG88cP5|Od@%l_Few>|y#R2;NQLul>AqT)ckb(%g2 zejf{^;h{ehk?e?Fg!E773qU}~;IiPcyNfNrQ!S|1#39GrXhP*p9v6b)Gr>vT3wXY%*vuIjR=Y;cy+_DCSF_ z#MBm1%%L57I%t>mn~VB=pBThlB;+g~{UCqki6FrK4z|ozj~zCN?%h^>=JQXl*dV4& z4gwaQTi^Li4d%NfL_c8sD@lIJ5^Y}OkPReZx>O(Mgxz5)ez{BS;7TXH1DD#D5MTaP z$a;lS?Mnq|-TO~6oeDqQlH~YX&&H>{fVR*dWV>SX)7!r|(Dm@YoH#QvYM@P2 zbM9HY^j6J~76&o)9GkoQgYT6dj9jL^E&pkq3ilYh<4sO|*VJ5O@c;f?^Z<)~-=6u~ zT@@o7sad=p}G>)0P?R)?A zfwQ*TPN%x87pKms`LjBUpH4bWX2Wq$Hss<#{4p44sO=SK_FvjQ@a({mBaa|P5wsl! zVbFFPw2`S|TEVcl@2AnyL!|Dy_JM3(ie29F{+i|ip0bg2w*V!VKc8=J`r;z`O?KW# zXs5gbbrA6!bm9u3#Y0pi6RAPQ&XWaU^Ou!_7d;}}Pel~p_CEB&u!en1_w1wIW=gC2A)Hs#?b zNHzD-{v&z+{ymg8^t9rYjd2W;uRm<9V$EsN$NbB~77rbK6HF32cI=RFG>1NbU&Z;k zj+8~GBg@P@rKyWY`kDXPl$Sztgzt5T!HxOJUA*)seo~~3GqMa~TbcY9BFidXjjT{m zj!c^>$=?cLxjgkzIv{VT0Htiqj+K`LG~NW zpo;**nobXDfJ+U^^wIUrO`*G>LX+%w@DdVKZq~7vLQl8To|n+FOscqKX6r}!Oqm=EL*5OHwlV9)*^Lf80R}l97bs=pAUiQV>K3=ar zczB;=@W`ju%A~N;XhvbuHc=}E>hK5m{C~R*^=;rkL1=2LdR;ZzLohcQ_Nn04RjekM)d<#No^&K$=)905f5#0(8KdDgYhqqZLY1 z-oRHlO_nTjPOh!4T3cJ|^;deUf6RkdZLBl%IT#M+d4MxtFv>^Y^sTO}{2VL38=VUq zJ39mTJa}os4dITTFNC(LcVni{yba#4w{PEK7Uc?5MKl?uRjaxC-0nw3Q4>8=cwa#M z6!LBTV_l6Y!8WZ$XjX<~2+1|M?sVh3(r1xZ`n1L`)p@EebaCvIOK-OjAd=;=2)QcjKUY|f zeBAE#?TdEj5AtK!Wr=j7Ja%{YqH!e>-)}W@O1Pqm>{VWOl}u=Dzx``j0`i)ap|#Ky+rIKKo5BP0=+fG}7lw0#f7OXk)*GgZrPZ{NcLO<4SZ z!cUW5x zbBr5^83lq+0sKOBZo<$}HQbsckDok=GpY-|o_y^t@yO^Jr|Za(?57oq$M^$`6C)3_o^epM+lE;p`jWvD)ZQ-RpzqGpDIL!}F zT;P3Z+TFP2b86}Fs)lFTyaV(4pxSqLsjNS{Op@5ot=z;nSEdO1W+9v{Zj25|vbBSwTEB30wFJNNHrL_{F|w~Xmf zvE|2vq1o~Z6J>d9?CbYtgEY(X7NBCmzwcAsD z6Wo6^9~g18ge)!6o+zr1xxb8gW{|lr?!?ZHD3_&WR4`xnXKnVoAGP1uMMhVC?V7on zaYS5EOK^9KrSuW{S^2Rop0Dxv5ahqW911TYD$g`*0_Lv4ILzuf7I4u4>F1Z6g}tW^ z1`u>{FM)p$gpA--CXG~tTg&^<9fIx}7*s&INLGm3F8XNCE2QVu)!C+{udxPpQt zF~h+4M<#$D1Sb)3JnF)6$Hl1$d#qMupJE*IA914r?BK%r^W_+uwEG4|2tHxj3&j<@ za#?&<$l@gIl9c#b)4b8a_;u1bT$AV!^Ql0lNjI!1v>PUxka@L)aTz0)o2M`UgoHqB zI}C{(fs#^EAHIG)c8xJV{Gx?VNXStlOPP21BVdf2GF#X=IpZO7Jb3iTcC>|FKu|DG z$ng$rX~-G`hR$2S@M#DRzF9^Nh>=Fc^IM%6>B>Y?{@2&M-MgR61qfXc7njTyd#oz? zLCN96iQkDXRiXL2+gLsoH_pwy>N%;_M*cfeS=V#1L2t?U>E5Gg`{Y(KGH|eH_0+xd zG;m~n+Lt!>URrkoiR+()!fiPSu^Jv)B?yxZl@ZQSpJ&07VRslBqr!aeIo;C8(P^-0 zc5H~p+Po?r*J*u~7d0*SX7fGh(?6FYW>)o#L)YA=^Jc4h>!Z8ntxR~VymuX5FkV>t zis7W_0GHYO@J4m4fTv`+uiQo?`@DO{pO~0f3_0fX>C=Yl@?YuBzl^RvO&<|Na_`=~ zrT!;u#E@}w^T84=*5j0i4vB!(5H@4jf-x<6Ax$mo9@+zF)S(#MEGpzw?+ZD0h)9qWNDN@N^_X;bCwguZ5q zpoW{fySJ~eF=S*|Kw4p!T3uaLD{*nipT}&`eIOzm%uKq>jreUGoytUb<6o)+aNE0~+EMaP4f0zs`eM3Z3KpBEv) zAt9=X)ldf|aGzYWwDEk7zp1c120uPLB-+pD2#N4sdSogAcs&V$xYpUl zrGIp^1}eN1q!~Dw>5)+TJU77l$1s;OEz=#1riyZ^itJ*}&+&0-Lqo$v;c*=u9UOa` zxe*2A-tEbr46PY&3`|VCqN21Lt;E8|g`BRvOKKs$CSwgL94&;`@OvG6)syr>{ z;rOk|B%HqRal*Rd{rq|7+&SlIKIjcZi3S6CU;e$J)@}E+###J~%na6;>zdLQ!&@G#uZ_8|MEGmM z#Uv+tOS-ZQNJ;lm>A_hH^obU?Gz1r3I0=4RUD-5aH*eq)H~J;aR9LJ#qKl)X*?v`P zjh#2g+WD`A0(bBcAeES{%oh}!iGY^@jfRtO!$5el#xNmPm@u%X=#=n5={A52McAbO z73wi*IJK~_y(RNrfM44m$XMxlo`awKsCcX|any_fJmfx_`ybW`AVmU*p(F7gvwq6^ zO3%8%4hSbnn@d7QE(gX!2pj>`mza=-z9m`UQxAK>hgk6^YT1T6q33>w!uJDZUBiOt zXdqj&L*d8NO%njo&b@nyk$w_lt{yen4vuHyCm4b8fz1HTiLQ_P-`EYyAp@|V6^72n zARk?iQoxI|09A|dph6YgaR&oB!2BaU@3;}p=3jHYp$6Y-Z!Yun{M}b3k63>E_%Y#+ z0^VtXjRE~Cj$2TJ+r%=wv{G-m8@K}nUh9^XZf1fFxE6`Ag?eM5+v@P8O@TlFgLz@B^z`)1a5C?DiN@m@ zD1{AgzNzZECwLR)Ls>^RKvo~{l7A-T>m8_|S1XbXL53XlMYl%A`{~o`aAXCKyR=G4 z$tmuuqEftg#o{{gr@w!I&g;_1U3>Q`r=_QJO*&3|O(3a-ew7=!x zYk^fJp}8uMi#xBc77|8#CR72;8~R}eJbn+w`Ag0ioCQ8gLZgZa+xz)-CgvWbFhJI- zor+(Z>CbFJ&;+6lb_Rx2Vn|sLs+|#HJ$wNE?`yrl*j1>9#LNVeSmKwiE@t7?Dbd8v zI3}N;CW}>_2o^3Qz?}HNbJ`l{kt!1;6)0DE+)jyHoRZrzQW3+Yu&s)~zU0M@7#xD! z+HrLdGTg1K001b!nQ=Hcz zndkd4^*6qFmX}u@eHaByS0un&g$CPo1@O)^hek}`CqRxAhqYUg7+1q!%au*UnDVXK zNMTQ%oqP6NH#avYM*}$lPU2edfgs>DafR#+%G%66bviMcZ#;=ieLPIH6fELh0#cpL zJ?T=1DGi!1WIf_bgu-x~*prpZF?&uO z2UBgSH=9D)Bc>eUSpxk1KWJK&Q~}4}Z5Th$b07VgT7 z4mXR_{}bnxveBlwz)JULQ_TM4%uJAHUf)v}FCIa3Aj>@n3R(yqgJS>y92B-SJXDeV zEHV28YwBrs_UzAJi#^u(5Ev++=)X*oYrIP#zz_~CRB*dj1=@i%koEXxmX5IA+>^C& z-*)oSu<}c`ictxh`mA%>GXq(+mct@kq zg(DIWz@aG2YKdjsNC3%)2HIK5D%bZ*xrnS>lMIY+;l9@Q+&_A1>Cqn{dZE^TL`fZ` zPFew@(Y~?6vR*5$B`V(j-)b@b429y3i+EsL%^8lFez9lEqe$A}@vuW4jR7l-F!dH2xCS>4$>0hsj{OZ7*u1}^?53+IA<w zOWO|lD?%hyKGgIh z%fuU>-09*^<>e%>4x(A^H<`6-)4w(+xvv+wxaeV6XSCQ&Clx5c)ab^YgaLR7 zKd$qTVmEd0o;z6QtG#3#BkA?XfnzK?AVDSp6bb@3+cb>eXf# zkqQb5>X0S`b>0_qR4TXcUhRD8#CwyLfu(OyWefu5H@XGBv^|QMOc)mv8GOI~#IehB znGeYyTZ4Nx*S26N+%Iow$7hFD? zN$lHt0@GA=lJ$hu`TR$X2%_T0-#E^0k5YN9T3bl-N=HFLyW+mrO3lwBwBdA2>R(VbqNb3n~+u;rIj?`Fi_9Bv5f@ARCK}&UFB}2 zv3;D4#j9GtsqU&h%mpTNGBc| zCYt(pD^ERe+7{WjtGiUuid1InqNDxsrtw%U11HC97uRZ@`CX#KZSFgr#3a*`_*=Op zF5`H9aEtzlbOCy4h#REIu4Z7-!kAyy&f5MGf`qfFR2?)y!Y)bzdi$~b#L9)nzZr>8 zI!Ct!&}RKiI-7JO8M8Z4M^+nN9>H z!7$S2$&gc(0xi*RCw|5`p*t0S=@0`kM%f7^E-O2`vIaTYCtoQ@{W@{RRHVK{E@#>K^1-a8~x92WiU zz7aLuj|+h*`x}z(VdgDaM|e{}dHO4thp&cclU1pRL&`oazzmW4D9K3Y8!8osM|{4? zBQ;9d@!&IUnYy%hKpLhom65>00eK0?Zc90e)_Kmh(q+@K!u|X9HRd-Enx{=%k(nt_ z42+Std~a~EvlB))66ivY0EH7-X7Lrohy@A8TP4u;wY~1B!{qa!^+7yU2~9O4yK#jn zyVPX-@7-MoY6g}nsoF!-V@JgQ$KaA#A6m_b@qfp6I55f3Pzaa=L`Z_+Aq=8fJ2)62 zCz23Gp=*qBgdxyfj`H~Nf$!h%q^7dK)KY<0{J_UZGPZ0(P?W42RWJq*pjkge%=_DA z;?+ektuU#iQNWZ#2!3!L8+9kb3eu6s&%^UFDQP`VQclkJ(+j%)Sooe&`2B`wU^NuO zNc9a3Hum<0sNaaV$4CNZwM4%Z3{e553;Z-iIrRt(qaG<=H1o}CP*=OkJj;yxpqk&r z%Yupw+UYpW51_6I{EAqmY*Ntxlk(N+fm5rK|Ri7DQ@^Q#9%ick6<(ob@;_u~bSbPSzH&8G7Q)R4tbXv= zF)7HRa4@kQev*=s^7EA-8paSVFq*aMu@05rhgVE&^&u zn|XJgkt7|Pk;V6)jWgy3QHNg9|8_oPcUxzx-gkbQP>RxTc3tCVn&ca?n#AZ9hIGK} z>j37WGoE5IAxgDrSn^~ldVR-Rh2XIaOtm|E_ADWHVZDZN1c;aZgd578!IWL_IqmQP z8WyY9|HrzrYC|C^+Z`9RV7zrG+Ta@bLulx49L80ImIuii?ytj^j7+farQ8?~KYxy8 z4}_S8geZbnDTKRV?7j{{FsFAtru$~*J9Rm3RPKO-d^(Yjht`*M zQxHvY8O5*KalTmY`{_w839k|+ek`%iyJzxC{G;G7i5!`H^0PN!Yi;29IMMl4^}Gd# zImMnmgp`M1Al~zU{U8MN@EUH|DVq>r=Q&)L9m3hP-j*YGY{FoiX*5l4Pfrgo^be?4 zf@SM}STIO_nvQN0SoXhfjL4<=wc97eHr_7Vl`5?ofCM$&;ycSAx#jG4YbeHz7_1N`}Fdqg+Oib~B8{kq^1U0Z!9E7>p&~*}pDZr8@24vfeUYdAI1HuiH zn8n7r|20l>>aGi)c;NIU!|8C%B z8UabY_c0+P6fO0;Mb`ux>Zh+b6<(lBE;GfPA0NnCQ@b-NS?x5{F&Y{g-g6O$VYEV4 ze6{>Y>*)0}%D!G7+7{nbHGh2&@w}fSvOsJbk6OgF|HayS$8-6IeZxkwBO{U#*@Wz^ zP_lRSjv^uwzA}$UC--&J({S=?|FX4 zalF?t(R9h9#%JC93Zg3X!NUJcTY%p2o(d#i(CQ-IOrVRA;60GKf~D}JcNHLuXrLR- z?%($f3)2j`C!+uljvJIu$i{^yZvl6nQk>vBRmlTixUZmp!^!gdojx}|AGyNh=yZ*X z>jD6g5ImLiv?)}>Z}>jB`!m3n8$ceZ3XD87^X%^*q3t?@5c1xSHsSb< zp|HXBLWSzx0R#O#25ptKgtD@-fhXS3 z4I8W=7B>LM6P0sZc$IwQmZHd?9bpaS!o(H0^QhlLv7ExVW z7G;M9N0e-P@v`Ct!}F%)brdK!*C2vAlAtpxFO=Iqi|PJTRI!g*ngW*FhS&f~OPRr)1-Thcz_!wgyVk?y77a@m z5`}<*g=*&8U!3#h2Nxty7O+fgCiw3N_=BW~_YJ|~-Tba-6^f}}eT?VQgHeo9K zEi?jJ@o0pu2Xi3ur2+py8j#X8ILk=s3Ttegzzc_X-T>l2;@==!09yMlpjO@XH&Q;t zLv{ynQ5F!>LB?%N4e|k~nqGp8HOGsN7APxRJUm3^2kV-Uj*br0Fip@MW*JuSg8I0{ z=@%N@!`GOZna6Cj!2AWwXgc&22n`M1vrlm4TVOEl1+6P^e(y3eEGsJ{AhbvYHiZ!18GIyB=Xnb<-X!2dQY6{|C1Llb!~sNrHV7T zXjU|r8x$5)vI^va;S(ACmY75&2T ziuX^EcN4pWJ=n5)a8c;m;>QxX(z#1V+#g=ctgUc!>Pb}9-G#&xb?+criSO{zATw$j zDD+s%LQTJNKvX%_dmsN4*Qi+)xtYrC#051}r2@8t-qH?XaYlf`@#XdBuXMpS<-h`aDA?5=!r z03)VLHhJuG4A<0u)m;p@zXKw_j@1y7l$Q7yRE+ed%~EB=8>@Ghx_wyB=5_as3xUc zAmoc@G|XU4W_|nA)~7bnGjW8~=AY4Ubm%ve>?)cJxc&$@SDk4>S_rpEz}rWu*BEh9 zWS#X#CRv!0@W6h%D*`*3a{0yvO>k5$CsWK>g5d>rauoM*f>~00`_9PThS&~Y^_|?Q z79K<*DLp$XW#-_Jh!S&<6u#GEEzA)7t9t6>OHm#s^#SfL_N)bdD8e`O@5-z5J4HOr z)jaQ>8?}Ot+H17B6rJNY5>(|xlsS8UZE?jSF8;0ku~XlPd}3n+=H$JzIUjBY#0?7V zx8wYlaz zSg*p*b@ z&-x8xCfh`Lf#~9bOXt!beH=F%J=?3LkuJ>cGBXj|_P49UMBm4@V z?4D{W=u`fvc^ng!qo_{yfjZI0N4h@jftE+&Q2Hc$5j$3avvE#Ms%$7zVPN=u|8aa4 zo!qnM@0dH?62M1f27)!fqeg+31BV@iH*tPj_}5rd=qiDGBs7%Z5vl=ETjS7iV#{b6 z$uVt(y}0r87|Ygh@)m#IGG1%IAEB)*t+?`C^WQ=EXwQ3_Y53Bj;yyfGC`phVeOrH5 zeSgQ(s&&V!?j~;ZxnimyR;`dLrt=0x=}dV`*{4qP2FoW{H#0OW5Abkt-LjG3?x>aR zzjjNw*W@3a0pz1b-dh$IGZqXqF`2@V8#p)tY+<;1_3GG1a3X;;^C1}Frm&eI7{@pG z1-?N;{W(e9^Y?<_m5`m=4(+yPqSULOt0}TB|GQX|i!h@qw)aIc-o*4~e`r(ek9Z$n z|GDlfX7{Q(r;6ZOx8r$T5o?OijvCyGXR#fY%(+u!&LLO&CN?%2rF6|Lz)Cvl$IHxo z=Ti+7Pj`Z8J1U&c-kFsa6}1fhcKi;iJ46cx{0)+QmC#H~MHS1nw86eZjldVs$b+vr z0YbnY{pJQo7DZIlQBoFUjy`+JM!m06GiJpVz6GMYRMR0H?`LoNWC~7kwF{#)SKy)q zw+@3Jt%UNd-iX;=f{lb?;#Qn>+#`%lsis4xt8fPCZ(<=>CmfNO;WdA>dLEa$Y_=^S| z92`J2c5*g1ALyOZK+J=c^Fl;!2k!1D#90~KJ2@NYmLYVi3xH6%sC;S9J|7L)_fHz^O! zL;s9;y+CY=fD=Sg$L|46vbqe~Ih=|^q2n96HDeCxC=H#>!)-k84;K9+26r01(ENe^ zWrI4-_yT|KGm5WXe`r+Fr`Yd&RycI*V0jG<^PLgT`eBtQlqJpn1|C^EwTE4UJn9%= zx!GWne1)qr6xDVS%iO-6aUq`k?D#xoOr6#n&`el@{0tCFZ1^eR;!^-w!3`myOkn-m z6D8sRW-GGkX9wL!`Lk6jSW}o+85l62&Qo3|@HiPg(O6npL9B-$DnXup3F>ZoU|=BZ z8E?cb2*?b$+-N}X2-*Qm(1BnjLp6vzG62mi9zFyBPNp2Hd&MydZ(yJie=XwU14q`+ zVoQ9GSM~hiV!sB{b%96$$>f6+C!~r3#gTPH>xx9D0us^!?h+)VC3#I7M0()`qrj&k zWdc;!P+b@h}V%$;mPwqv!t{7|>f7>;E7$4kIO9gkIqa_HG zkj4+(YZ#OB^LL<`gP$CE0g&BK4h1(rB7O=PjS!{pQ~<`k4U_e^)qpCd149jAkFNpP z%@C7>paoDu@ss+YTwM|CBjB?wAP+5vIA`cYq3%-yVbaa9H%(2~9-QI)0^+uk5$PMD z_d+T^Z*MecdC?KD5U`W(<%msyQ+wcjRJyERs0Vm&2+BaP!Nu}&I|YC0{r_8dC})$3 zI7j~{(V^&u_=QLppG=pA6y9^EXsF(cyYEspZso=}NZ}RGXcfNy!Esz?PX+-5WFix* z)pwtp<4JM}^5?(*Hs>A|HW_@&P`D)2L@_&Q@O2&El@lS@5uu!H&tF?DL$m*64vo`8 z>d5g{u2ZROSc+cfa7QzM7LZMw3W}DUwK0QFQjl>AWHu5_4R|Be(a7S4t=$W&EXro@ z_CFCJ*uyx-K7y3TX}TE~P`8|+OjbP55<>y&1Sl(vKG@hju^+9es;U~GW`#8m_B+p> zYSp+F020qb#jbBBDw6GvmjFmRoOAgWVD=kOh(yG@fa2=rDgmk^P;(t`i}nf?6&&gm zfQliQ3$zD_LNZqgYG;5L5MoCE2t*WZ&?N~B>H&_EKP88JEq1Tt{U^u_g{fmf@OnZB zUuu?u{EHHg$pJQ=vX?4tCY5rjuD35!%6!WxO8zKnz4eIasUGIx>&hS{D1Pw^#@)Yf z$>^X{PMJvB@T@3c1yd`ZK`PVUL&+2@cK($!Nd3eiwMwQ}Omnm!ql?zT66 zym4RLK0v{v+AvJ|GD~DEziyE!I;d59MI(nt8o@{iTM&`sLp&3>3hDuW0$gOlfEvjL znV3jILK!C~C!gN%{0{@B8!TCnNl1P5VMVV7Xhs+hd66E zp1uKQ0eDDMkY#VWJY?gM19+By0$EFdb6drBLmVUnq(MO=tN|{9KSp0TEcq>A8UtKZ zZO%&L(^KWO7RgWcmJfO66JXnq?A_gesL@Z}AHS`Kg+M8(_zo#vhLrIWAk*XG7bGfb3;taE|M!|8lfqXxMX0+;NY5<|8p~TdZa;2+F!w|cl zlSS=^S+)=01x-Y`ON!o|Uv1QjkdaITO_!~;QA z(B=lErCkGTd~s=M6YO)-PzdN5mnp^Yf`INNRB;d%8o$8g&7qwm3xa(R@ed43InLf4 z_dK$Li|8g2BO`>+3ZZ}q0q95#ct$Wt-$0pW2F6=Z>hOYx9>@=;KBHBTQz9y+M@fKl z0PlbpGvGV$IxlPKmp$$Pl;TG|!*(l6Qa9kSh@TY5eccL2Cd66*28n}b!Jj^X>I}GC zzCWrnxLIVtg$LXkJ9uND6jtKd?-?qKA`)?M} zSBb3X;O?aO??^{(1!&W@02t7Ky9H6yLy151*_sq}rgA|TSVk~U1Oa>p?~0qe4Km^& zu()Sf=YO(Z>hl%i)Po2I$@+thkE9SoF=kHkQ^F(r7Htb~<8uX=BU+dcRbFj0w?=9a)>A_;l`ooGO04?^I85r;o)QeRhh14)Gk zlK@~ch?2OMuuOh60dQ+25YuGAP!8B^5Cq8l4J<5pt!XRExJF?~FLm%AZbbmUd|SOn zHDwDsnX##GY;x^3lm))T_SIemqb$emc00RT1a|WgC%D$P&u~*Z`U6O+@WhuZUsq5J zqIK8VcyYet#J@VN^9BhiVs0Y-FCj&Z5Hhx+3z^6uG(zOni)MyowUA;m^XnIKQiAGC zC8cZvX2C#8$v$Ah_%(JRiN~FRLJEzfy3}Yws@^9C-4+~_nMu)lIA|m@X7Y;Vv?*&w zy&Tj^+XFIMaH6-Vlf5GHJdS(Wv$v!>7Sp<}(|MY%l{wG|23JRn@_|=GkvEoRi8v)b zk-1!P@wD6JIFBk^xEh|9IA*eg8b_xuMiiBBxFXL8c<;BAH+=p>3uS)hV&X7|l*x*zpR`gTRrdau?%4@)$JqLsH$|1$Pfy8r z=90odHudwg+93*lz#F{X7VnefI#tDmO(fDuu&O6smg1N1?40N5f>9N&@1_dvQW?wA zrK(+LK%lk-4@48rI}A+Bk0m9R;EJN8x^(R553{uZ1M5k?g$bzJS0tPq%uc=6v0#O@F(;gf~l7orZcH4{>{1dy~YW;eEcu75{h=6{=V1vaI#nSW${>(O=U(;if?qB zGTwf%YGJyKbMpmNO^OF4Wh~F?27hQcBUR+%yEK`iSX4*3vKn`$-+`?JNpkw%Bu>6x zvjvJ4CMsU*cVI-7IbR8OEfK!=y8fVOSw@(j?$>vjT_1xWV*r0jl{3wSJ+58Cx4@Kq zti^Ri8cJ%`#NzP0;?N_kF!@wXEn9e_4)fUUM3q46JVCzXXH!hCFL%3;)G1wk^NEYSDVNm)u$x7Hv;ekjSbA;MfaA1r@Wy(rvVzob@}n_%nH`uC&-~ zqVRUuJswI>P!V881g3{GLfel~k3A<<-!Yt@+~k$kfu4<4{J6nB4>m+$ z@nKW4hC9F&5p<0;NSzD@zncCt!-d{47HG#(bxw-)D1xfe5~Iaz{80P%Gs*Q$Li1{h zBHs{ko7>qcPq2I73vcNJ|M8Og3*DOLb55OoLhv)v?-~9rRg*#W0G${GtaT6UjGS9w zls`omch5r53Ych?6b*B-038_3qQ3N1uRZ696xAi6msjK(J_|oRq7jd?zVMB?nRj84 z8tqVf$*<(2^NX*i?4f^LubY*cWV#b)bzVHq`smDh+)*sDL6otL*lqPWWTO&=#`G*A z@(7{S{Ag*RuE2p$ke1~UX=U|ltXspCZ>H*+G9>jw&?pI!JIUGxTKhx&N}O>CV!9|*H!T#)%$Dz zp&9218&6ReqtC+@1rGCgO$fp))8ZAfVnAC^VRWj-!A;0p>(^lu=xa=6s^XU%TT?m0DE;W6ZnnN28uKX<%)IdEb+nT z)?(Mb<#+Zy6dbx&|IZHHYOS#fw|ZrAn0I77(b9qg@Jg| z35ZXsy~(Ox3W&^K{~fS*F!0z4?6_f5ClCdt@uKX67hrw}oq}kVOtIfkf~0C>vqIQ0 zAVbY@^PAUo$8kxLq$^yKhlBtbs>Y=X@(#2+GoWAa{EP^a{B_3ns<9^5fctqjCx-Rh>J>auDuixF6vFhTTSh zXg~j+@I=J{b3t~u5zf3j+p!Sl0d$-G5nODM>vr?9Kpw!cYzWik;MRkHUu5LTR{kk4 z=n&Xy0r|*iJU4EbLHY~)75a(cmVAh3vK~7ECon?wCwvLhgpy~p)*}uGYsE)rpu~50 z@}x&yOS<|NTqu^rh?>>4{^-pusW+FmU$tq&S@dXszR+wrdYiirCeXXNY1ox0=tS>J}S3B zR+k3JOO!B+2f}4QI+W*p4C)aiVgpRVFl4SCB;Y^#pMYvd^y#8Egr`8Sk_n{Yt6t2z z{tR;J5O(7rfuUrZ48%`KkF(aaviU!8xBUwXZK zHrI0_?03gds5hb<%d=U(8alCW@bSB6|AsF6|Ap`fn9cJyA@>sml^`%7Atv^&^BP`D{xFG6%DzI=-L1nehCngW=-X9M}zDI0qb601USO^NFAN_fg^h5!KSKmnw+dK}5f3}!iMAWLr>`S(hFNlb=71`aG%b82jm37`QVXZ)pvBfgO>#^1XYlom7{jq zf%Wdo)ggj0sktj&D_$eR!x&%;1x?eTUW}81IvFS|k!f@Xvtg?I@}Wo*oEaqg}&g-gan(y`hsuMyQmR zt3mf-Yq1BRYtV@z11S)k85FG0KqHR!&)=1SXNOB#67rvJCKw(<6BHxr%ntq^W^wU& zXq$_HfbZ~#12;RIWd$FCKneu^E)u@H=n%t_~D*q7_@R@%vgtyrSU16y=f8hPzuRIU4^7MQHJaeWCFGbjoy7ImDUB7)Bii|tz zG|U;&X;UBJo&hEViE#kL65{ythmyj>5$SI7+EfoTNf2R;*ziF{aPT|%5XNS}V8&bK z=76fOAt}$G$VK$Fpk*qtIT^Ib1Od3Ko75Kn$CxSR}|Ngs*YmNPX?9;k)p1hj4cDS|q!vp)vI8RBk$<_e}8 zCBnbbfK`dez95egN#X?!HiTk<`4p4|fZ4l3Fh4T?4OCV7h?^^IsWmhQ5JEtF6`e+h zhV(cZcBY*{_ZkmoZ*%CjOQaweH!Ca4c7|-a#9^BZRNSm;X;Ftvz6CY?m)7E6N&uot zuhvLo=rnNc9wfcq|5hk*zilZlON(dpY~q36%2|E!?~NT=GN+eBgVLMDdOGLYj~_7O zvf=hU&5|cwV8)_8Sbo5$MPt!bBWBMQ)61*$`Zi*e3wvLI8hSc?T&@18m?Qow% z_#&WDNZ_RD!)WJwqF|^*@{FMXL!@rGU7TfuY5?RR(#$non_y;o<3~?iPK^%camxjK zy;Ey!B3+yKsk0NS7#(Tyeqq$ONPp!014jmaW;5tQ|L4OfFQU2UtX=51psQWOUv&HT zS*HZ*h}D40{?@C&DS_8*8Vwa!NvkiJ9ik53=7`{_vE1oZ@Q^B=Z;_S{M}x9tW_Gq2 z&H?bE45GkWXZ>AIPp=1{NeEi3hc%8kUSYg0HZqrWcD7o1%j$n=wTQ+5aYU@T8xkh42z`A$S3Je`&8x%;94+A!*K#`DcBESked zx1p$yPs*kHaYgxCr;_`=Urmez^6RetLbVxCiE|=(fS@i$9vT4HBve%2;gO*u@-F}i z7a$@5`4cb{k^`mLvCM(QB!O-WK+7-yOlKAUi}>pkM32B>q5^ttR_z=lOZU9##$*GM zlm-xd5Vc6-U-8#@$j>E=xzK>*ws#>?GYR+70Yvuebav_ir7dtt=YT*!{vEvfFwl4Y zFA*3d54-_Itay0qNQdAb&Y=~tm8l^;@28pvcunBFsl$|WQ* zBnI`08XvoyCYzR*8OdOh6-7)%bu|j2gAQL0c8H1!=vZ6TD$)+uQ8PQ5X!q~WWW0;7 zbiw1pw1n_eIcM$ZBQwO|Wr07FJ7@<&H9>~wtLy3q%P52cF{SyFrH5%MJx^R2|4v+?w z69NP3J0*Fe)`F4zJ-E9xGZe@X1QzlEa{5c*oce;ukr@c3*d-ml$4}}sT$N@*qS+(3fHH8awqq`{GDRDk_{$ivqZCD*k6KlV0J|gofzoh;e1l5tPygwOZR=_J$Z80)&Qc(X1Wq!RkprQv zHrVUPCWWFf4T#8By;k~A?9an?hhn>|d&H9*((YU><0sCyiTQ+LpodMZ)&kbxA1_it zHE?{iXR=Z;Nt!<53Ve(|jAp`#K48(YpLigXowQlGw{8;;7Qbh|@x9Uo_I?`9(?Ig4ZN- z^>cQA>Os-Hk)E?BE5EOM-iUcISaY|V&$phg?`)#|Rh;T$5)?a`w`#5jdqAi-z;v!@ z{U9%Yq&MM%Ffic6^#i*YxLqw^!@{TnVWTM+<=Tu`cA*qwgPB9{{y*q&>uG5D>kNds zFViyN1~-(@@+aZ(eyVZp=RY*8N#BSeEMiy$?AcL}A`%?LL5VC(+uNmey4L&`>?pod$^v!j=lR8&yo zzOp}Aj9TiyAT{UutC;vU%(^}t>BWwkn#YCpBvCf!+AEE~fwrR`7)b-c70xKkP zxN;jlIu@*mxGgYx86IMKUlh30qS3&8i`f;4`!~i4#EA22itt#rj}y&D+m2WM%qbgk z|Ne!9$d?r~qmqP=j&3RhA{qpL={?S6?%3o0h~Av4=Gdy#)aS(_JG|sw|#_|_}X}7JVeS9`lwO+*Bwf16Wq6q7p zp+AF)19(EmrwfK{9_@7x|1A$?MbY`&;i=D=R(E6BRb~=NHXm zxjNGcSHvL7^cDlr>&GYb@rQ)ouPW)=m8ie2*Q}UXMOJm~zh5N2WMW8AKWi1nW~R>2 z)%fRIG6M7mSVx>F0k8)lAT7va26fY@ZMyqYb)Db)q-!e;^xP$hgG&(TmPVMvp`9T~q`T;LCOmTA7{3fOh#Y;sG zO<*B5g)5kpTRv*Q#Ich>cr*0P+qn2X6Gt~EpAaxn5D@r%9w@X7{+`NO__w z*Z(%jzpwn|nwRb#!(vId1LNl?Ogi`iV_iKb?M_(0} zOhzQA)zX4@4Aay!EwC?t@qKP)(BN0Ty*@)Ub_-c?#JgwdKY(5RwrpW3U@v`q}k|I z8A_a_Maywk7U6jB#n$@eXV@9v=F<545zK6=Br(q2OyG|c zJDg$Iy2>y^35Lg9L;Jha+fEZrg8vH9wa6EixM;tP3Fn{ITjX7DkM8TZHpspGqaw*) z$v<6XNt7V(29LctMc3ci*JcWtXTCF1xhpcBFYw+eLD(sldNwSWWo`gsjn^niKnTf9!W zEg=qA>(Sryn~GL3oom{>lGm=nLXo|7FN2UkH@Sc=9xJLE`F_%jZ-QT!SWN!H>yFOe z%jx{_V~2Lcaf(Z4T~4j{tB;Uae@lNGV=&&plJibh@5_0vj_qX@;-!B-K3Ez4_WjC`d!-Nx2 zv_hA>ps;-H0^?=V?pr|IgSIq`*b#0`D5d-q|>k4?zn4jZN*;uen}0 zI$z!L?DdU*h^#Eu$7?3O84_X4L)tz%&!p$>b=h7bEu8a{s70$D>Bkg%^v1AebU61> z1-a*&Ucn5v{DwzeZ#xDPBkH?Gju4 zvL?c#K!#!n%4j$=8+AJieA6a!S6+Hz3|hg?^>563D$wK`-*#oPUI|%6tQWZ4ngUaZ zDK2OaH~6kzPTa?NqhdPcDTOw^ZcNJYX4K=v*wvGMYIDjpe5?M)7~f#ZoA`hGfS@e6 zX`po(_0785G+MstV(Q(j;R}adnuB{@X`##@LNp0F!|ZOTknCq0{;X!6pX z=RS>4R_UxlVxo;z2KEOfh++6X2D(Cr;w3`@?Cw`4)}T~Er5l5||a z@mr&Al(uLHpVxHUrDoWheF!s{d|S9hX>46-XbmyM9#Gbt&-4dj~V?+oH@GKwQ zYL?L5#$arYhWk<0jDi9;_fF$MfAS5#TT(K9Y{{+F3bVh{9^N}~zv7);W0TTqeze25 zOcLYaD2SG36P%i3(N8Vq=PC(BAlx=vZMByjoH?QmaxXRnMIb-=?WlLxs*BDmg!@!I zF#R#YOD~5L;vPc3@xW_i0yDC7*;g*?#?bI?)!3kX-_p{gdSt1<_xa_yngaJJy7}O= zl56(-sB1c1^ojp?@M8xv8tT~G0-|H|QT=Gx#epw-`^}mic|Lh78ap@yWdpNFb|*z> zsw^=FTO*)%qxVwQ5T8MnaSdJPS0@)VZSBx2u#%2l*W}Q~ZFVjN4Fpx7Xg8n#bzjVu zBx@Ee(Ky$f9CbfThYKxLIC}v7keNyTcL!RMGIH;zmyb$dE4trYBy`9jDE#H4(DA9} zDBi0eZBS<7JQsi7Ygj{O#CMCL*{vKCAHfSYyRQn8 z;^34BOqwT6*47w0d@VFN?uOi$tklPQjdUkh*<}SRy(}rhox6UoWn$8PI{J>;&JUN* zsCL9TU+ki-Wd$@z+f({Tt4QPn9RK?O5&NtH0oS(Bg$FUaZu1`8!O>hgFv;p6BuVXG zw`~4X0I;@j<-Lq(qL(DearWKxl97+HT`w41i7A<3M{A1JZX6qu)G=!p69|?yVpugC z=}FP>Ll*26$8*SZrCF>5m3Nn_z0hsj8W;Obje7gkan+y47}OU{B)`S>op>Q&ag}}m zev=+AHBHKUFE?4y_fW>H-Nba}eOjjQ;?a9A``6}{W?$3S1f0mf2Dr2QyaLSbI}yz| z)sB8A|LSXhjtvHG>ga6LHMnhB$klQJk=GjT;6pLs^Nw^>1S@VL0#`&D2Q%Tqv*#FM zQrcw(b%cqE^^Kx_s%Z~?OXcL;H(X&a7ma9n!m6JTsmJmFou_)@tDWNzIS>;L!I~lZdGEeTjudO%p#{@m19olcTPuB{^ z!qGjg?L2lQQ0~?984OuU*QU{rdng{$qH(ypn$hr6hpc2Ctvn?bqP?U3eIPV|CTDJ0 zB+}5ZG3}?E)|0Hp#o;t3nl~*5e|NOwHTpYD3JhzvDu#KUvPH+lA;*Lj$_u|=Oh%e4 zj|wZK;RATf%#?^uOs$C`I7>LNXUcrs%M7KAY<(iJ+@GVnR=p8pvU8N27h+}bpOb7u zkM6a_i=5|WFHin^SBGe#By3Sv))HTkWSH&5QoD3eNJo2DU=f^QelM4CeXrC4+Yncj zux{6v1zjzNs=AnzUC^x{)9{J7x4YR#t*4*OY*$7Fo}I1jxHPX!ThH|dc0Nu>;-C#F z`?o3jQbZhD74w~FKN2V`6#Tk}V}`+`(6CryI)ihI#k7qPN_JWGg)02hUqn5@$QtB-xwlr ze~`6uGA~_n0XZo`oGi!8_LJZ!#eX!}@*KJ9TDTYPHROc6CnglAY}~gqHCd}jdbXJo zCmy7d4Cv8o!Tj)<6K50+pK9khQ~x7kn}~wl(HjB(RxCr+nvpkQVeU%)xVP1eGF1@q zv`F6~hDRR-`Li=R!;=x@b#Fx)6Zy^O1URFv19+bEJ#RJXD4Xu~*N;2hgn#ZM{Ox$J z{Be{8hh*^cqEDY^5}4P;U6dHs|D8}l{@6vR&r|JMU1vxY)4XkSz|QZ5)%|iWcVn^` zSz>SkTq;%7Olw3RR`zMA^M0kBD1HKuDIjpLx4u6_a@WYQ+Uuz_KfVe#+GPLvLXA?{ zA@Kmk+582SNC4S*EWeW>cFlwY8o=F=5J$vdvADQc?SJD7AgN$;7YD;JL}N@XF5U&X z_hms_N(B4k<>mcx;sSIf1Q{SE5{PF27YkSgzCwZvGBZUqflGA;5CU~s#^%Q18#(m% zFB4JzuCgIx^JP6gZ1=UHp_k;fmR9jcK81L&ukQXMjCkF15BtdSXiZ+|jrZZ6lL)f< zvWbTF;df3%uH>~klhcIBXj8*gqss;^wu#M5TZwlHyFBD_0Y&5iFcyZT{qU#;>33{E|3j&gR9K0K+zK)ojvIoDyaN$LZVV-%;be|YS16&Pi1tNn%N;8 zgb4Yzta1gOFv0vio>_`4DSlNG^X0?sJSiI4mE{b*6Pp!k7R5EWu?O|9(VJ~7Vn(dF zByxYZ|JawEcibA27+fj=V2BquSojHw(UoQZM}h6fA7Ytf z*tPqjGl4z=A5oU!HyD(YiX&QllSzSpUjCXKlRATJh=qY@cGQb&=V<-%*O6WqFK(l1 z!`&o;^&>m3#p(BL*#HxVbH)#RppmG0R*<7GpA@5-Cm8vmQ+Y`}LoN~WMeh}GD8l&A z7GOt;ii##7ssy4?m^)?=3IyO_G(=te{9rDs0&fGxZ{CNAU0|C>k~;w1j$V6)s-exl z_vY2@;o?Q04Aek3`Ban!?BUbE^mZ}cgJ)#jmvs^NW{gQ7ra=`UK5|3B5=@U|>N;ny z1-Q{ri(+!SLh%1ap6;e|Jl!kF-v+zaB>wFCp!bi8%vpW0d_3GDShKr%x=iLf$TNpL zmn0>YBOh$O89J+t{w3Xl_4QZ+d^q>^Oq6SQceljvgj75){!7Pr3c>@=?T&3z!_m+mD)R6gPy z&m5J6l^bM%?2~5k@;oZZR2{;r$Sdes7$-z|q!p|mQWvc9!0qIphn46(fy$PZzwF{_ zsZ-0S(1|T+c9e1SklzMFMP&*4)r5GgdT%OBMs*FGS$4f*km-c4kTNUXJqze)cZKJT zj!>^4cWv8TLDE>zghfTSI>jokWRlU*B{>2hy?ptxPTK2~JkecAs2>AUviyor;Wqoa z`Dtd=Sx{X++C}y1I!L(IU=Te=>Pd!cgQZPLnDp~E$_4$RT%@zv54JQuomHH#fB&_h z&yg)==EP-mxZ&Xac6bqML;8oXEm83hBF6|$Bn}u!5rcRj&Zbr1Z^9i{lTiQl>v^>Ndy1g+hu6#iaj9(!+1hRIcdK9k&+Czcqod3!=u7?0nQvSe2ztd* z26IIyPg$Z3Vi9cVBRrKMqy7u*W|gRPg=7#(NB;22$tVuEG1;RjU{%Ty#?9^Aw@&YO zLTheaFm*yJ;8g8pYtFf?(uFxWcgQ_syAnT0ANc%z?)_FIZUh)fRhK2jV#olI`lR|S z0jwTOmwQ393o9`Os61eeG9d68nG6XeEfRqN+!WvQL|8xFrFI5rh<0UdyymD~5H>J` zr_-tR!vs48IdcH-BX>|g579>@KTt^o8Rt?-!B7GUCq+uQ9<{XtemHYWr)tsSt6yE* zbuhhT>!!L(VIzL&PCf=l)pL}H1YcN=g7HJW%VoW#BA!8(l5OR5&U6%F6achn82hnq z$p?io0cj!rJgaymMmZTB0q~zaTb8ne#FZdpu%fALW&Kz}sCo#Io&>=H+aCNTLNg)L z5ZhxeN8N>h>vd$H8_@RmJT*e>L6S`|_(35fiTB-gF0LRL z3CK?Y9p~-(k4clGfEqMFNov^HMT<)x=pT+Na)H?4T&c%ZQb%7NfrNX?xx;%V&Q(o* zJd59+=cA1+ZF_IOP-Qi?6t{7g9GypavF(C2LK?u?@%&_W z5JVa`U>n1jKWW(7t}s3wG9soS7ibpl42Y=^ZTpD`iD1H`CKoa*`fvzA2yYI$G!}IA z?HZq92CpGCh8e1}M0;Ax;{1cCrp+Xzf&Zc-{WfPy^hE6aXTyS#2Y}#7_AKwT%jdAW zRd{HBkNDiV>2&Py8{3@3;-PK08`hfXlZH1 z4*r6$A;5T%VdijLYC_=oxa$mI>Ep4$n3%&Gh-!v6*0&nsiSEI)iO0RnFiiubaUa2Z zM6jp23c(4?ps<_^{gH#jEMh5bX!p0M7ry+!EuAa$r?pMqSVWhAvPnz|Yr+VD2c}s? z$s!3~=NdGOQr$VW4rg<|(mCEBBuw&+B(i$oEn>U!rvH|fCS28?l)cO&>N|)^*MBamx5WSxQnTpkA%LmUMxu(Hm zby?h%2WTgHaKeD(6VxG1FkTbfn1aCYJ@{E<_ON7F$>LLK>DPt^`i|R3iUK)J4wdlN zS27XLx?LXECT2j#DV;yz!#txUy;~Ti?W2ujMs0R$!<`OC{DNT6#`K*mG1dtaK`!++ zm#PBH4XXtz;mDRDjig!i2Gq_@{y@~7IjT9iXa>4DVLgrFbTcK5XORPpI{x<`w5r@G zL>_r8zjf$TDIAvy6`qiT%^wU}uXk?SS_@M^+g;DwEbsBjC*9ybypx=0Wt_ zRGtW@0*{HK(U(RoBVXMZwOdzKvCVjXA#|X+?}JUy-h_v{P$pgc*WuCFR%Mn2x91FJ zb2-K7N|yyf*;rXwf7sE1lqQt3)!HPuZ{$J$UBTT_5M)}@8WhV4{OEbe51P+wO$+-V zIny8!t%EUjNPY>9I?mE=kq7&z=(&5pHyVeZUlC#TWyRpk(~|Db4pb=m4n@J%VE(lY zcYFVGe9K1-%|>dq1?tA4>|7yqFePilScphLSE8zso^Ny5bv`i`zkVMzlWl53-(^8| zz^#+^a%DjKOdiI~+*ML)cc{wMA!G`4UhZq{c?1GE?m5)GHggTB(;e2C*^n=wGKHXL zt9@#CqHKjRqK}btr7z&N!yyqs=}|sTosyZp#9!VUU5?N#VaG-Hn_4Hblnx?3Xn4TK zNr&;#Y;u6gcpN<_Ch2CEVjWFwYg(3TPWVU5`)}fjwsoIaV!1G^s};zK7#Ey5O3Jdn zrPpZ<1r;TxO+W__!+fJ_U?OH494UDel{T2Ak%0#n!ud&%>BR^d@9yoXR-8VSW)yJ? z)ze_ngJBV|9?0RK4rRwTxn)#vVe&ouKS+Xj{7QXMhWGi-W8AY-8w4fRSK(5RFc=oj z>Q~)m{dnE(bCee~c~|O7A+-HuIc3fcr{56=X6-VUjC9Y{!{u32^0{N1^3@Z#+j&8t z8@>V+g?r`5;!{x&51sc0ZLLw|)7H%uh$JHO200QaG{UA36$#s57^z4rl3$Mu>D0(k z>Lmrq2Gsk#zkm}+#X&9Nudrm@dH2rPyYw$wYNq)qO5roc@%D}VRY52|$gofnzY@?# zKA@o<3ew);#B7Tv#B(#QquyX);0h5Xr>5*KG7s82TN+iBWs+4dQ!+Z=NBN%UBA!L7 zc5ymfj!5d1H+)A&5GXw;jS+Kstl(%45>;LO5397*AbR1aBBXlv8a7boktp!YDlviE z5YJ6aOMBWbi1@1^S{w}o(d#keteEF1PhWy0QDh8PQZyk5)Ti8Y$YAPB1gD;-}3eDO@pm{eA@+X8%UTIGnhN z7cW2cuXZNgJUcLbJQ{d*WcKm+$<8H&9BFRneDDotP`YqxHCJU;_0bJNKIMYi$8Rtg z2G5Q_n{*QbZ6HiD1z2%pyecx;7fvrESSs~)&Q2EeB%r-w(kVm|%xVvpIiMf;3bJJ+ z76(x-fV=^srjfWnsBY0={?a7S+wSush{YW8e~}S+pwdl;pswnpwJIcW6vDv37^Yk9 zV5ZQR331%dHyW@jjt#&^LA^CZAof9K->Avs0(r`wQkGcv(M*% zts-ec_9N<=$1bKeBWQ`3nri?zPyuIg!-Mze% z=aoiyJ!hVCvqH*2YJJUvLXl5VkZ4>fBlPQ|yBx*bEE8i%xm*t+IRLRRAX8vL5DD4i zZ(#Q!qDDv+jE5;lW3uup9#BRgQ*NOQM`m4t$^sHF(&6StDh}x8B${M#v#dTs*LEMm zHxU;n=u%*a#k+_Ia&QwP)0U8C4J2ao!s-mb-KGA>2@HKe!bG_?vKhkJ+RDKal_QJm zy}%$J4oE|ghls1$JE~ir+gELqn4zv}3HpYEX%5)$Kcx{Xon#?>i1~G?5HoV%*&cXYvujf6LL$T z3t5{lQP-ayQH#z#w$37!zP~*DOjm-cTPA6!dszUUw`_y+8ABc=UI-kwTPpEn(GU(MF(xgmGNy{Ffi7xszOPBYd{rqs;dGKtPCQ2c$^`Wo*w9rz#$ z&&hlzUT%n)KE~1xWgmYksyj^6=yR1fdM8(&m)MiVMEbfQ?Llsa3ScUf=&Knl5yT8h zeao0*b-rUJS>Nl6*VNK-fecQatZ*Y9c>AKSv~cdvuYqkr3a@ zBC+LPxZW`t>_YGGIuA?E67lx9Zid}Zt2G`!HN0(POPNQD^-;CH*6zgoJ&?zA9k{!ZSs;l z`@-W+}$jfWOPk6UbPr$4_$mhL}HPmAQrt*Hms8N zV&&}S?8)b@2bP7MLBiT9?q@|4_1`a08#a^@B>Nrg_OIO6vQE9B`M@aXES-y-N~Z8k zy8pM^P7{UMuFToY)J6Fr`>isW0*18TCz4{UwhjnUDdI-L8!x&(?B^jMmvf{KcLU@Tu3zDecAaD{H zMWo=e?ZI@xMvJO;^xFeP=2`z~#X`R^lg5yP+@t{&|27;eRW6L zjI(%6r|#vFr%zU-bMf+#hpzDFp{sl}dwqKKVs_5W#`Wyhb1yx4ZDEY&ThgnS2CVIc zsBr_Hn-WQE5U5XMt2zh@h?9bI+;2V zF?!Ndp9uRrFJ#)%koor{Ax7{U(50X-&l0!7+#nVX`d4F`^fXjRKdxb z)`Sc}64i?qpAw(&XzzZbiMU%-{3!?)u;{asvn)$AN=`>GP(MYV_xhpeoeo75Uc zs`=l}=9YrPGAc1so=M>d=b&PLM)|SZB}t5!>)d0K4PE-|Fq3>JCM>RMG^(FF&b<3N zD==(&ap2<5*uLhHZ5B2AB4Gcd$t<`C`?9uxHJ&whC?LGfjCAI2S-3Q`yARjZBg!$o z)V{G{HAmvRRG_4MLI*BY_pm)+i6?OmXcx&QN#^eJe8GM}d+VC4nK|+rC{@j?mp5T< z{Vk$hKPp<2UYfN;Oryq6N0B+Pf_l?x>et`M8=b(PKY6NHweD{TQ~qY@`L^SOu?6}3 zTvQuM>ZX1vIA0}kH8d(!^}A<(bB}wAW!z^Oym3M*CuiA0=R}qHfK~(nf{K?jvqzT> zs3}-yF7%5bF#DFteVjb13oczbOwCPazOfR@G}?jZ@`K!vCIXeY9A5nCd(Wwt(HZ_3 zk5_zNf@@9B%E84{Ry5>XX}R(w#3ozO@Lai|z-ZlpM7fKxwx8^)_aB7(G$TH@lGI4D zsi&%wUuvznNzI;Pr|ItImv>fLbWi>TN~UjO{XoFsafbf2B$S)FW9ahIhflZVZG{2t z?+MnrHhN2n!k@&1-Z%LKo7j<%EAN#vcSEkb<Q+>_z zQ|N%7o9dD3d6Es**#C>E{|=}6|Np>ovbPW-WS3-QCRB**b&i>pz2`x8R>;Vfy*WoV z*;`f_;UIgDWADxH;r0IfzTa zpB8u7FBrzZZ4psjzdJY4FPrpP->3<3iJkCa8Yl_yu5xvpo2A5N-Nk)>De$4)H$!LC*L~O!a{OOW4o?hQ+NoX1bpmJVt)JrU>K6iY}{H7?wX$ z5xDWO-&*9kdka3JX6x*`W4yA8{=2K02Ri~A+pDx$7&|Qx+Dq<~sz9f`FkksHU{;@x zsHsV+&GD4;$D06MS_iI}N0X6rk33 zcJ~Q4H3i#L3`Om;74yquR>)lQ@9KF$gCB7cJ+YT^F~>qrMe6dR~~WP0rP?H ze-C3zmjwROn~yHF61{2n;7OF+S2(v(N~S4L_VhgygWZOh#_&9S57vp3j-(85kCX6y z|Ckj;IwaqXu*cW=5aADLV0{lAK-gilV`#x(56~EXo{0tLDa7J+2phOUCZfqVYQcgO*ticy-hL@1&;S&XazoTOG{AoJe)3rxB z7a?h_yb$j*ln4$t3yPn}O6EjLvKhp&zQk$^f}swz5^<3tZ9NaL4r+Ng**-^Bp4_L5 zZJl0-pq~7p7J1@pzw5b0FfHRbe!{uc%#)E#asCwaPpl8vq>OULi^}VshDJe*ovZP9 zSdg?e<5IX+Lf31&l`663G31YtukyC<$J85H_2LI_qa`c%v}7nRN2x)xes>R9icE{- zdZe7$Xef>YcMgB0qRO|FFRfk7$ZBqbp2vm5htc3*|}ddol)P6#>}HqwcR0vDpX&)Rpau98)LV z3ug=>@F*oh+B0|FtRFnxNvaM+@^>BpRVc0#-l7f2? zDduL6z*%}7ky~+N_L74SEtSh2JZ`&Re&u=wW*3jK_G!+`-`}c5o>wXj+%uFaz7KIj zq%$yv-IE4;QEK^*jR@?}TAaUGDh;Iz<;4tsyIjW;BgW4CoSEA!9XQIN!zg9if~wG{ zLrCRzFS0dK)TrGKeU z2yO5k)=4X{>KR7vO9B`p@kXslh;1ht@8#bt2isR4{{8SUuvn_BnPWB(zM|VptDiZ5 zt-pFU*G?fzwq&@Zi@N10WRab6Q>0a=^qJn2QSeXbvQs+xky5G8L3<_W0O(9|I`PZJ z()KIrf!UdNJd{t2Tx8k)SuP09!@mp*V@4shDONUiWPAi?{GEGP+-&?%hS25mx(7sw zomw3(Q8#n&1L^N4j0ZY-t9v)5ux}oASRbxwcMSZtM@GNr7_}5ty5;ANv;~hZw7n~H zR!a6VHlIuags}pC8tS7Qu%138{6SAd?)G5zM)i}?QVK%bt>Ohe0-$kB0d)KbbnkIx zWX#f3H*|Q87fKQadU8*L!fBC>VeHgRIsfZVzk)j^%Mq51--ATBY=zrLRZTf~_>+F|+G9}DqQ8%->%B?auXSd#lv7Y6W4TJF zNh#v}GAKc)*tL_Y#;mK(S0krGtgh;P#?C+iJ5!105`px1*x0>&*}xsf=1frdPhBrt za$(U!xZxiC2aVo16SqM)%R6n7rLLOY76(|-g&s{cS?YB7rdzMtxMd;N3WYhD+dIACNil#-Sw5iiS8hEhN^(X3Q;8XKa+; zGNtERm9KA26xbpoeBPJ%mAOLHmpE#I>jUz#*$bHHTl=ycZnKm9g+D&5b>o9Uv@h(& zVPsVvBJOc{wjhml(ry3OufVQgwO?8IIaU#U1-S3tvWz$!_$hQeUG^_+@7N4xgZC~u zb?g?B%tT=jF*I(nx0>!AWpq!X&%PpXm9=keZh#mBEeFGiAMi1xJd=8Ra+Y94ma;X7 zj&M`TO8`e$Z18H=!`Dd6T^Ta|87|oie5NnTo?P!3D}HtcQ2AcY*B*Y97C-rQgHG!HWVj4I&#m)%|#ng+=NiJwv$y zt2r9|d55F{@>EJmA#XQ};m01>q#J4ygWEYwQGpJcP%=wWFz7G2eq45*=6c6r+4c@# z@~5tKe2iC*>9c-;kv1c;rkmO>Yyy_fc)ai!dN*~woj1!E?&l1W_m<~5YnS8qo!?;> zg^{RyKO|GK^bBMZ&xj08&N_(+6O=VB=~Bc=^V?>C2aK_SG2*h3 z+mTp=C}mb-d`dAvDirK|3MaIVsdZoL3-q~^*cQe;*`mLIuL!(lAD-Qv{NQbtt3Ubu zZ*T5@t)jp&+reifI~msLBRmH|OM; zPs(yDSV-QRhTb>j7Zh6LI!Y@_Aob%g?dL>4XoG_1ANo-Hvx7&l#w4ifTH?`6n2+oa z(z^SO44^ftd#%P2gDBa-8+)T$Awx4fZaaU( zwgR2%fY^biLH>*mV#@J8Pf@Vd7;22eGPK{%zb^1#V$i_~j`9SZjvUW|{S)Y~Gsg#* zU?p&o_?S@#8q-)tzxDgO2*Tzi-Cj}_LDa|m&uP1EcYL19OL5`;GrA=}TqrNO6#=w@ z_^4=n&-_%UC-zL{n11ez)}1H=;s{p-VZ2{TA_097}K{ zspPZ4EWi&-E@4~#Fq@fd-dqpZ-*;~sL0w70_?e9wl$MKVAwm+xyBP!e)gbBMSO^w0 zrDl}%1?IgdT7>dW+LsA-6!nXLkx|H)w7z0!y!@|xLrdd|p+n@q__A|70o!tEq2pc4 zwClitr*}KaTjvLUM*SQsPgJugA-!6%~5qeUr1mBR3=Qyw21>3EDFHFw?GE25v=u z2r)?Uazk8Rxx%MbH4uy0PS%CP#8xLSe5OAsmVW6tG#u1Kxpt^p`Ky~r;^HSsHj}*c zVWxQI%*O^R{hs4pb7tQLRwb?pu8kvSX+pcX z&r_7(-c+pXM+H=Q-R`BIv6`#+)qwh@mH^5I=Jf78YFTzuDC?g)%vZy_kl-(E9qBu{ zgEq$(v^Wlk?BupI?R+j%(ae2;Xl@AM$? zq2teZJR&v{F<#Gj9nafzIGOXwBgu1j9>Zda3I$}UE7aq8;Y4~L3q|pSu~plwyd39S ztSsG7CZTimPnJq9(kT*R-9?^no#85Rs?|&>2JaY9rk|mwDGmO}MZ}aB7tNy}Okc$a zv&ply9n8?tN(H%2YY#lzrHCa`f7BIAt!x6eK9^q^p~rC<`e> z)Z#cUSdu?(5dXqVknSA`F6^9fKW94FToVDQM+XmYSF_jTpC;1my^)Q_^SG(H@E8WX zzbGGh-6T{2u~dd@FYQfoCg3IBPmbi%ZXneO2zVB)p8ks0CyBDBiD4%$89HY^P7*|Kc2tjzeDq;NFalO$ zeZivTLH5z8!x}aBC;~xkdz}x@=_|LT+Sxxr@J#?Ezk?1{--NEY=N!Y}O;0J6PhN~S zt02*AAQXjysjjaqH#7j*#+xjVAz#JQ;xic*Q=pxIme@u5iKNROqgxJj6HfNHmu*Lt z^$hLia+E5kfW2!XfeZ4`5(s%hzN+L+nQI~tF$=!b^sg>3Ae*=zbXQ|CbRUvY@_@6F zG|9@1ETaeAsMVyF&&bATpj$BhALW(*kZbW_-y<%HO_lUfRh%OD4hV4Rha^tSEMc-UqV6p+CyDdZUmLsqA}~Tm zx_CCuP(itKOc=+F)(TMdp!X^KF^1>iWtuD;MA|-zA_@9tZ6&*y(5q694Y7>% zEv0fIN+42$cJy*?kH*B*2ee8y^RFi56j_bZGUOqGVv3aSDZlwZt(A*##cd(j)PKPr z0kbxpW>s8pGy27Y+f1mzYBVZWs4pzD;*o~8DE*!y&*u5}2}X0pm^Hv%NfnGVTS@ub z*w; z&z?2ro~og#mEaYNMT#J%CZ*gR@V3+<=9;_}j`s;f&}CXQPveWys$2?+MebYfroP?} z`VjCy63QCw{fYXJ3SyD;x-@?9BYD-Ixov{hDZS~Zma*63!E2HOho}85e>07AzFJ!3 zGBr=cG7m0xHhZ1?EaKzw9sB?+)<*iq6p}6SG@BGs5rudJnm-GFhnS*T^#I|6oR5#X zkyOII{hC0Q+{ty-?uFJz(P>d!aat(fO_ItJsG@)=(gG6SaaOESqA?kU6Mg#UdFIEZ zs#B7>plq#U;LXUfX`noKc%h6Q_t z%1SPY6?H6dLXdx_8f)L-hCcYFD=)dEHE#B@2($j82K6gpJVQbH732$F>Ke~Om$UHJ@Z-)0ErFCzP$Qy^x>4Ie9 zqS*?u^H+X5cGjg{V!1(YT)V705w)^4@v@GYa`oRUt`OO9qxr7S(^2(<4T`fX)xo7J z&bjSzxot%~S~H(H7%PlDCe2Fk)=M=pPXI7C-b65;=AtruaBNP_`pq>gK@eT1F*|=F z@Wbb?o5){(!Ddgxd|7Vo$M+Pl8O4uJE`kfsk|P7#ovMkTxQ@~DHS(ZyX(rd7F61Ca zqlr}OU8xU%j12h;muM_2jNiT~*g!nAb{d)RGba7Suwwv`EjPh217n1dNx8A9urTe( zt+Lpx3Fnc4$~w7u6w{KH(>gYoeMkFTvoYrffBQPUMu|Vz;@JB*Lv=U7)2eC5;NSy} z#S6eZ=??YE^!N_3e8!M2fx8q&82nCe^zDaZE=1M`SCTPsOL$@rl=ywsw?d#52KIh4 zIN&w|I90WnK~dhy+Y&!37@J}eoW5noAPzywJ`I#PNg zj(gYM2f<}cLwl0H*P-wp2a@K0BPFozD!e0rL2puGD|KihbW*k_2|ccr1)hmENTe~! zyWTQgT^7|37DJjd!ca0l-7h0Pg0n4{rdAa7c<jT_0*EsF2@_DZpfTRrzRuO|P%E$mv)* z2U#Hr8Zpjndid&(P{*MIDDtbxGJX;i8lhA3tbnFj!|JK5(f*G~Z{$HrYpkFCu>kzl zd&QQgn?@5#DYz}iYPW+Nf`Z|kuGY}`lxD68?=<(~$T6h+NL!B0&(nsh^%p5uLg+n( zhS6OADLQycmu#q9>plhzgMPEIvaH|ww<8(j>jC-kzPQ!C0`*W`iv7-gAgk3X!8hZ zl6S;rAU%!s%=5VJp^KVc^4mU-M85jxCPFw0k_?Y$S{s5LnD z;pb$J&FrjPexeE#A^RVuO1kLo9eu|Ws9&D5uB(P5idVLp=UCx;UKZ+1`R@A50sKqxvKpB~Aip|+9u30EuT!`qX)Y`R@~)TRdLE@QaVg+(+fJeS)gSdaN-hp4@nRkr z{h*2~O}Y806mQfAbtlVA{xvI}pWH3pn9o(d5NyjVIloH+9nN#Iequ0Z(nPYh(-^5l zGP4<1V7aoT3E#n=`1O6BZz5@mr*32Uia>?J3N)-GpbU_Q6*14WjR6?!f08_>Zz~`hPQrLz* zo4WjExs>GQL65ey8P)x3fVD+}A}Cd%qZcE{jwW(&l~5XIFz#=gM99_sV^T^tRRcnV ztDhq+p#iZ%zkQ9!A-16zI_L{cMd-!wmBJ-LvYC&9MJNyd<>q@t9N#<5-C!l*>WH{j zG4~T0$SQq#nbNPZKO%K6klSvSh4G>i<<^ zMbps#7iH#9_zz{42x-h3?^tyk)iSWgNvfsoGi`y4t<#?sVl)s~Gjd4H2sv^?tjs2B zff`t|N8k*exA3#;5dx+n_TK6g$8)XmQ(EnNf&S$-RtHNo?pq8E*H4Gj+4CctQ1U}b z=h1DmrL5f#OF}P{Z>+wj;{H2fO#N`R<$A)!VL5D08ONE?kvPP6ww9Ah;?@4u7O{uS zy!bbJ`a8#9ab@!zU<7L+?H`!YR6c6@`Q!>vxbYQdLW zYW%wGb%tLTp}rOg{fr`=>WKw;s~gqXZcuY25stU7a=`i*tM5w312I~Z64dL*2&+zW z^2{%G8MHgMbwtAT2u#^xpL3zGW1xSVhO&BY68bIt9xXId1*XPEn=G)8_c9OJhb(p4 zzDLGQpR&|hZp~C?%A+|yJ9|RPX*=o)gsrBp;&qD{Ve!+z z9=bU_#1UoYnlFJe==NV^fojdF?Nwz(Ov`|t*x1_k01$b)xC>)U7^U_B&d=>5o-(?! zuLx_Y#&Ag{rW`{NY|?&-a28#GJd`ehuy>c(e7?R7D9Kp8-NYXWjq*PxZ#`vzear^U z&`AtDNA7ot!sOs+AT^lR=;vOr$h}eYm($NTGedts!~T56GUul1*;kDM^MTjnXzq31 zNE>#!BM-4k~9^#9u3?`*`;E!p&Ki2Dv}aThH@Tc=gBH|?v-WCF!}^GP&r zsmaEs?zc?(1p!GFH=>b(tB+F09?0kx*@zuCPhGm(&v|Nn*Dkl*W8;Yb^YO*ECl$FB zQn{say2x0TEBZlxcdR!#F^n_KDkF?nr*Hl&RpqpOpz-r0*;~hp*LjZ&C0*41n^k6& zD;Ec`Be-6Da04hN8Cf66VH+FgU2hzXehOI@`XSs2n(xW9e2K7!uTBno!Yw{MLVG5<5X}(x1S@A8 zNL=$HQRh`jg=K8;$B0j7n=Kc3VWTFmlkIPG z#-L&!;&J7OHr;|IP;WY++m`F1Bk*wTg1C&kbT*1kPmwOZhv1YO5q%m>()w31B7>`^ zf8@|#={G~S-Qfx)L+UoCaAwLIJa5RP?T;;F@3eHzC~I%U@83z@R)VHBePys7jjdw* zHxlYe;r#9b6%z3v!IS47uh=%^5sv2iwe6~L0J9{dI&_yy5-DrNMHEZME(V?}Wbr-d znsz%j=8)*WpEYE9>8Z<@(tyzwvYe&bZ$dy$CnD(_F#Qta&NbS^poX=GIbFxaXY{GYHyLm~j&*n$=xGXX)^qC>&Smw(Xd}w6~UsHGtVt(B!t^}p-?-H8U(2zrelx5)v z1B%e!ijH7ycN_fW^gC7`6tTaNZ%<%qJ1Ry9=w+++Rr18bb?{ihMmS#es&+i_<*QQl zyzu7@uh#?f&ed$iN>^4Nf+k@^UXl|FpE(KvkIh zOae=y=m&i!vikCHk$>>9-2z?MusSroRxlAk&KO2>+f??E8dx1HJ+lz%9lihHQI^pB zv{f~Pom1sl^pkDN!v5Klmm|*t%UL`9=IB8SmL*RZRs5(VVF0`|&EF`4j1&Bf_tww^ zN~%X(0ICA`C@*1GR1^F6Gc|98zHrLDlFi5UeDpxMTl+F3MBb#Wu#3a@b=x(m> zv~ac6Jp2*GqaTzkD0pKyd0)sTm@vN3N^9Dm%DYhzvm+m+(K)48gE2`NQ5?f!SO=D4>_>_<8l>P6gayP+uaS|b0Lu~C}p=I21F}#n`KTqqA zm@jg$!%8(M%C}`H8luMLRLPMGBK=2oh*@H*8L#s*59!@agGsE=M^!3eUm@h2*QbTtTYx|ldh~HMmWWFGc-J;r^Xab(p~=kN zu3Z~{uFpm(UmTgYu(^@mp(MIqNljGpGp8({Y#h(%j+43`i4*ffzJEASyW7M>H?s$Y zv&e@l#IO!BzM#HxWmlZ|m*RsAl^M*%d)5CH+M7j+H9I#l-&tyCNl?0lnTVYqS?Dmr zR)}hFel|ZzjJ#d(W&q?Z`Y1x|sTT+0PozAuC6Pxo8HyaAi{w=dxKf%6>7zVyn~!Sw zzi|tcFO*f`1b%>u#dY24@yIYxnMX60S=G{Hg5S=Z04ERq^{4-fs!N6&TCvh#{rJ>S zh0cb}b`7eJqxt1NQQi;va-{P!VvWK5>n+(#xzxZJjd<2xN|+#FZJDzmIBCP!eL~;l z&hLTek!I@!CQbP$6ZYv>87KR3h}iV`S;YZE0^q3Oqi*bvE?wd$f}udGtV({YlJ-~b z`n2ALH1NY0P~xcp6;7~Gs+8akPR|&iHu|7hNs0>TUQRySj$BsF{88tSTyT-_K3?p`A5(E`v5Y6DY&6CbHt8?%(*0 z%o8v81Ua{t?mD0GXi%@hQLAsY#4%k$hmQHylll)dqCFk&mt{uNTz~&lT+Pv2B82%v zKAB69G5jg-EKjo#it*1rT9eX@tL3-R029)(0I_fK!!$P$EX5kz-odgHaxZ%@?4-fPGKG%5I2U+Wd|A~ST+ zK3uaro%-d%Dfw0dWxJpBgL5O7SetFL!(n8P=qx77v%qRBP;t*_#d5R0|A`@r% zhy(bT>~s6-r_Jn!%F~3VbJe7O`uV+vm@lCpot67pRWsh>j1%X}#`z^9;!~fX$9JZA z^$zizoH*j1d{*&=l|Q$BpU@fH@oxon87a@a;i-o9-c*+UTOS#@ydG?^fqci{{ben< zYxb{PbhHE{Sf9#k1dgA)m8Aka@*@vi5xfByp}b?{b#7OH#x7<=w?x{Fp>}(fBYrgb zR6$2eOK!a+26Pg^Dp-A4Bu5tQRux+2k=xjk()X9a5a9nF*G4?a?Eq!lV-S6I|TSKOmek|eb_WUMbBT1i8~N0^s$rtuXVV0E7iukw)otB%^Y>wmyH>&&x$jQ6(o&er!3Iqxs0=p zl=?<{**19}<%!5IE9uXrc~8OFrU^ZMAIm$hB|Eb=jK*)KQXRnfRxLb{dHIzy0dgKD zOXBWMG}ef=R3jTB(6ZseA?tL-4r@4`8gdRsC_L#p(IZ%e{6D@vx|bF(o&U6%Jvz(; z07e@PolX|Z(DN}?y(j7cZ)Ptyayay>_d_6P>!rNY14Oi$GS<$OIOGrfAPE$PlTxrT zqB(CxixV%>5)K7NQSFLfw$GMxHmEBsG*#Xj>~ zu|WOzQcU9Zv^ciW=e(< zo5OL0vu|09is(h9BMv&N;ox*RZoVI`3dCH$;&r*{8NDBxIxFV)7- zUw+?%bX-Rq0^vCvq=IP;9k~K)Pb_WQ+AQ^+m?j>Zt4n!dUJD(u^9#mpJkRI*xueA_ zWpz*aURxVd<7^+djaM2dk-};k~pE@hyZLNvDZ7r$x z@W$xb$npx`9lZeCVyU%V`k1un6}8m~#~6s=$yIM@8_V6$VNQ^o`J5k7@FcXBT(4-V|=nIk@~?`Z(4IK0ByXt;ok>;zTG2HpO&LnP&&k-SP!i{-*2zTD!=zL zr^_dfNL*do0{W4pwj;C-&!SuXH_YD3G4Crndq7N>l!-QMSSsx}20^a+sPk^BKp1-l zN%I)tX#E4c-RQ(C*N(0l#)IYs@x)-14J2S8*pgYoBvFar^DP1u{Y)3av=bp2+#SV< zCL;tRlOUcT_}Nm>7HWXBI7oCW97NyuqQ7VhW87Q*i9n-1OjMwkGX>&)@fr6}Ktp|$ zG>P?U^GD)WY-!9F7E6!GT=1?Yj%7sZU@s(cu^a|V+fDvOf2x!0^W|J7gix=LXiU<9RXAS6IKw}w3ou(mh*3gWxr8kdk zdf}a2ILwCNQvzIaWDC;inTkBK{`3#x{J@@Y!TWX$0xa*D7^vwhIq+f!0`wk^{9<>K zNx>}&E;_}*(R7CylwYaEoBJ!lL!E#<1<)LC=G{=Bb%F>MeouzB`;J~OGr5+gpufj_ z7`ATx^w1kD^s)rLdT>fGUyG#Y-N9M&U2Roje`4yY0S96A>Jv-{P^@PUw|^Ifng%UP zRs63L`}O9m2}16A@>& znDezPy7FA@I!-IQVSOK>(H+A5Bk}V+9)VMXeACq5H+)?a@_A(gb5?K(UeX`Z-ax&f$dYkZ14Wp={L#)h`q%ghCyyD5?k91gbk;TFM0tnoS&} z)9mWHkwP|EhyuRG$lM^@pj+e?!eqf$93z5Gi(7K>Dx=m&-h~j;3e4@NM!a|~snt?L{n@>st^^M&77rbUyotdR{Fn@`vHvN%Jr{h&4R52)ihCJ6cjF~EiAnM$BKtFNVwRLigb(fcR*(6F?qnqZF8boWk;i^w;-%k7R|HoK zLOc{;UX91P^Od}|?__CcphhpwKYlK$Nc``qq;iMY-pq%Bw`v2DHj$ueP6;|33V!8# zMvhbhP1&x#0_bm>(Y}r{?Q{fHqZBqetb;Fgo6x<@lDW8|PniOYE?sJGNB|LTr^ZcH zwn93m6`HX20O*)ne?Ik-j^7&J0qi<_t~5$lFHCky_|!I=iH{Un z_VucZ1M(v6nunAUCK+|C5ZeN-nHI?R@nyVMLMKIC`c&g^0vcG^cTpo5gi;{9^IbdY zFNdmH^Jk9Agxjx+maKZ2Gb|RD=`^bDu2>%qsxbD&8_{n?2 zrn>O1P70+$C0VN*^LO4<6Uxuhh80kfGoFRXCA&A_mtHaFbdAK4642_aBeg6tPlbjq z6xC&*hSyc&QQ+AkW>VL+g*=G@6ZLiaI+DIXDoTM9nDN2O_KyR96rR_)lwkB51b_84 zwQm`XXeM}hho1q(R>ixN%r4jS9W}f-oWx=AbT!y8xs^*ig52nl2;C1_9L*YpYH;Ze z2D=bw*YLjvQX_GN&k2rBqUPs<47bsMdc#yCUZ>|F(*Mb7XtMiCr7WxTBaU`YbD~=f zs#`$J8&y*~KPAtMG}a&tO2HY$UDrJIZ>j_rsxUaY$-JZvT8b332Lz)GR)D7bqjkul zeqct~UtJ-nZ#sW^IVBUM&L+(|;$?RQ#5)Qh|{IuM0o+zWvj6ub{#$D!61NF%l50!51 zYV}H7hsjdj&VSJ4crSG#dKAPuGfEL5ony4uzIg4+zD&b;8o2iuIc~mXP$Bh{V0=er z$g}M&u#q@&eMM9E(zI@{Zr(Y3N}QO8X6(d3KJ5kU;I+y=XGXv5h{I#scB%Y@5JI5J zTCOX5g+O(J=29dy>iu!1bi|(1E;{{8mOmsdbbBko&$d=DIfHchEJI9?o~D%7_QKD_~?PtHdvuu6+G{qEY9 zZpVcMtl(Obg(6p{KOfb^Q;fQgs?;4HeE`G*Eb+U@TwW2`gb=TI>QaPK4Et6tK=Q;a z+m$rI>Cq-=$YGn468B5?hSWKr)9S$WVKy+xs& z^qC1%KRypP*sRGqy&Z)$HM?t~g)|=TGEIm-7;0TdsuV?m4_;E_+hIWdn3wWHN(aH_ zvKS|=5{{_ZdV5ZirQzBooueDq_Z4wndz+OdNe1=yY|N=(o19eJm&{TeFY-ntT2*13 zmInIIo1U_C$NX;;#?8TRh>a8ehb2UuTP*T739iq+BL+Fhl`sa6VEId?C@jWv4f5~$ z*{e2@O^gSO2cu1g4ri}w>xruNQQ~~^g-BYOC@7wxvt?1j^ZO)*{R9qckjcwu)hZ8I zVAy@%?V?|UQ*nY0Jaz$ey(W9^kssM7taOX6JBQOmEb7s=H`mrTFsk~%9Z+xnevNXz zl77;W0{wWh_v0CXF_|%SnGqUEHp8BN?5TV8LXmU`gu?XyK6$LHI;?`g-+NfxPLs>B zJrXqVqo21g_U9{A6%9OKrB*#p1L0C%5b$Sf8VF4Nicrr{C&~REGB-v8rC%^A4Sm(BHDb$$d_S|e zRc_25lj>h>V`{9LZKX^;)GQ#=-l^QXlJF5fx$r0^$wz@^v(h&8aJ zwN!=!)4~x-$pG2f;DWOM`uiWz7e#m@pYjz_;{+JqEtqQ>@Z8=r+u#)@8DAB1n@tid zTAA2jix+L0$O8anS#33@@hQ|?pS)>Oo zqnhfd?0=m&6Mk-|JFaL68M{xzNU4b9ZV8tfOzlW-HWML-hJAykXz<6ynGrwm%pysb zV6nZeT^g#uPmh5Vd2nrFzXz>d&Ld+XDSfyjRH^d%_L~8bu}=_BH84ENZMe|06{W~#DDrOA+fDxOI}MUZM#Nr|GFZBE=Am*6lFOEc3)g+`KULaE51PAp^HE{aEJ}jH z#W5Pe&|Vi$>V$M?$w{Hno-|STt1Xv5UL=3uxjQg8zkUkHe|d6N<8-;n7IIFy6jIF% zMo0%_cg`B2#bpVcxsMin!5&p2=%#i=l8F>yp$u5E*%~r~=Qwru$$ojxhytgCe$Lan ztGyRFKO^oLLg%3TPuQ1|-pv9#JJ5$oQHa2cl)T*D_QY33$s=X|0wOpi>~ly1YVI%y z7L>1BNBZ~Q!h8Jm=&i0 zmX#Y}nm+~9vig(zWaa^b!z~`Z%^Q0W(M%71eg0p|pFQMBR)_$Ll>!5p8vNbx-7WYO zLiTY!$_MpZ>z@vfW1`mrS&)H5cyhM0E7nm4PF_*brMFvAu4HWa{1{@M3w>w448p(60l_77>Ll6|vvmH+9D(4D@HDw9d3Y3IF+jO*=9s`y}%pvP!0! z%hJ`cZ7fUf>RO-`b9qRm(#}W;P8HSTeLH-V+aLfBz}cU8-^du747C; z`8TBzdG?(79Y+|!{{{}J=o6NqZ^Ct-9>*eL>F0-45K8!A0nUcI-w7A1~~fh=~0Ikgx&F3`Q1_K&PK87N}{8!)ZaICg1yw2Abo# z&1|7$s#jW5Ma`^=U5L)kI;e^uaye+ip;{`lnVtU;o~vnwH*p%}y-0~=46wYV5ivV? z^=XqQRhxMHCvEcJy@`Y%k!$EXeWwbkgpSa~_Bvw1OCpV^K)&CZALuO9-y}kSrp68X zQF4x*Pzu`hs+{D}+TN2Fk*r_r(0KC9i#dT=+w1h}==DwuR3cot1$BM!N{X?9C7$)u z8xHwEkXQ^sf-P?R8`)A+XO0YbNKl$%Ox#-Sn#J~?gL^V}T66ZNC`0vC$PToAZL60l z0J)s9_qcHOVVC>oy5-KG_e)0^Wh-K^nLqcePJ+9PM=xXR@~rCXjYR_I1h$rdRD6&> zoFF1f!yr4RNRs$Zus7c*?DD|MUvcKGHoG=(XO6tVeRZ3ol-*dSbY1d*Wm0NFME3a- z2DoelEQ>NV+bA3i?2nB$7E(stV1|cN+q`_guXYcu)}hii4?ok3{l4JL33VpFdnahM zgN^U5M8r>P(HM#2jPT%cHfje%kGZXtxMy4Bb_RkLg)cfeL#rOX!NsJZW z?v|reqKyeBj+Y0B#awD=8aQ7wu4-=uvj~S)LK(gq+$4Hq%h=4n+bR#8STFf8HJU{TX ztn9N16!VSQ>sdw0ii*r(%I*PNk6Trlv&MOEx1@vtJ2}x`h@7e)&nE zO#fFr8J*T0->8+w>RGibNmMQHM!c-8RlUZ(0t1u9#g#iRF~SFIEx*u~PuDP98P0 zvrN{a$7#h^c3&<~8Vc7Zh}ZqjmcZ1-EgX|RNB5=xr&MTa_=nsodn;KL9^ov1($xK$ z?-PbhvB^p=)N-?H`+D8n;N%Y^s14v8LyHgGjffOl@}%*9e!}S+yVs-v&Dy%A@!7_8 zwg%83Qg|qdosC#@H&Duam-FOvD+X|;=9>lU!HMIb`q@ie;8GGz3+B9ftCOF_NLmiT zXrM29X$l+#SV8UA+HNU8^u0H3@V%dKq7q6bBLviJvT@5?x9I13ZmRkN`-#du;#6uiBWA>rv_^+)4pQ`yg7A3sY=i_v`6j3qz~Y zAD6>Gq0A2g{?D-L?DVWuG(>Ko%^AfK4v?%_V%WJCVLcN5Cf_Z_gw zU38KR7~21vM$sZJ)CA766>9GKYuNNnKqr^hk(; zaw*~FH{;wFLd(TIH^4EhyAEIC)AF=^UM)Xvrr08&eQH6@L_%F{E(@}H=X`I)Kv*3! z4-Y9w3Fs04O`JXPPV@1)ZRHIM2j}ZBgT8% zTs+dM?nUij)uT-2w!OVvkNDab+sj^5GU-!AVJjww3d0K)To9w7-k&e`P7YVs({i3p z#gAIAGtdvHL@-zD|1-ak{se5Rz|1)FRaQuifu6M~FJ^s(sq^zp9W&Bxit` z6PM@pzrY@5Y54>Y4;NH!+)YMLpT4sMECuhP{c0Ot&p`kb&cJ8Xjwxt68MomIoT2`U z%@uD3foH($?hW`8JO!+rLY&tIR-T9hwzAPZymCZQ^RC_A3|^Gih`4@*zli$EtmO0k zaz}o}RN2KU$2%WzsHP^m3NY9*b4%?%?jAos>8!ELU#y*|=V@9wGVj8k1L_><79yM4 zJ=)VF$ET;`&(#yN=p{GQi%D3ELi;~R#9iHI1i%oS^tn>GjaK^%x4=^2!HNp%)TH3eBHdV5?seG@Tb?{KuES`Xdn zy5c&FATK1PeyZ(svZW1-GG!DL2!TE0UG$*K|Lcea9RC14>Lo}cW|d#vK@$f~wjlh` z@#4r5?as@#%%}r63S$GGKum0Gr}}yi1-AjXE8!(HWPez zz(9(ej;(yY*#*y- zOtx8mAZo&I{R%TM0iKdtY|m5vqN-By#3kRm;I7#G{ySP{*_Bt=?IV3T*nOp&jX8Vl zQMR_97l&OYxGH$`W0G8%L^)YRsNV^aLCS<7@*ML~P!A451}IeyR^&piNFUz&+8{Au zTR3*V%VTXOM$Pt~jRy|b57n9mZ}jas?r+e7pqbZ+yN4GCBXMQ?YpqoS!ij$xt=2%q z#q8{%Af*|l4NX;OA8~vH1)Nk`F2QAMA{sdMg5bEewg4QE8>yJw4bD_QFx5o^@y^_5 z2fw+U4_`FiMLiodKLYP6@Tco;{k)NZ{JVKRn0&q zUmSOaPry%*`vr_UohWiZy!{hHvX9Wx*k#sNYzPtXe{BxtI)V8b0~l80D!6`ypYW|~ z!Hsv)huo-s(4c$J9bGU~eM;#rkNUURf@N=Df7NlNE?A6GiD#sjq}DQiY$_kupOf+a zF8aXul)G&>{TnG(zrp95!}QyiOH9ZZky|lTU~el!W^dA(ul_z^v6AxcInF*&# zxQvz>WIWR>nO|O(0>+;S2`_(BFaS$l5W|HA{Aoe(_5Y8nuZ+qv+O`H!L}`!~kVd*Y zL`pgZq#Nn(6a_&_y1To(ySux)yW!if=iEEKasTUhdG_9`=2~mcEfz&6a_NMgu}lfz z#yY#Ze^Y(U+t_nv0<#uGZ)-;4ja?JLY!Lx-xoo5KSk5#cx3vO!~Mal_<4V^JDfq*Er^#&W&J%?rK?6W zpbr-ZC~IGA?JWZ(q)*81+dRv5)jcRGtnZJKUV(vOQ=ns<@fI zia6#BpWH1sBO~2h*VM$nMeD|Ivwh>E38Y&NCrfrad$a6zjtB+Zjf_|V&*8jf^Clqr zgk1sTVZGMt6A&FyheK7sU0Un;%*V#YY1wfBXtC8bG=LE7YUQ-%`m~nk;Hj-XWR>F` z@i(PJMS#KfqC42g+1uQ%8e|b9h-(Xd*uu44GI_u(p712Q)>ujx{2F_<9xq!<+feg{ zh6(J)i2JQ2t39u5?sxk9h5vZX9c^X!_x^*g6GCfYhMMm^JfLh8alGN4dCbgviL;+c z#cxY>0ZVhOm>gYYu;OzmoBJ*4H&w)q5WdFt5yg%*!no`7*5D8;(;^=YU7!cv9V#YP zmr)_V9w4v~`J)K;Gr`Sqc=BTx2qiE;6jQX^5T_X$@JD{!ybC1}wTYksinKDufIVL{ z1W;frregKh82dWn_Te$%z9{EoOlbrU>X_0ZA-`<2{6c7ts59`VQMZ+?+=2BjU0^7`7p7 zbU-tDZFN<^=Pd>##veDFBLR2YbK(rhI2CtI@)jHixMDmc5(iB#$s?>^Yoz6Uo_!>H z7(?2c{5rVi#wKVs_fb2wG_|2|+k7h_PB4uw^eD2v+@s}gTOtDF;_kTr$VM4l5N9?E zp8Z@uI%ZYIbS162#*7;ynNwE@|Mc}de(t{z9N(=gqF#QuM+Ah7n|#vX)YhDhSs1jT z!Q4lwPKgU?2hY$_)069J$P<;^+8C7PEUkZ-8zx3{53=i5`=k0r9!i}^=gWh^lK6t! zytqSYbH=YxuL3?3bw5k!>FGJ&oDe|)J+(f&dHGCn9q_mm72g3JW=SdK=^@yignWNInWag@kgfs{IxNL@j%7d<8GG%62waNUI*c_ z_OVpe)Nrh=A?R^4<0gWAY<(JY#bdPVqn7I2JZXovK|#=3tAGtTdQi)IL8zrE^hFX5 zSavTY08tD7kP65^`VZlJJq3}zgLT84@nbB z_x7mvB6A@x5D*J@F7-X#>SBRyEt@{TRaEFL47iF23kZ?*8d`Y5i)pZ?TD#aM-vpZ^ zYHz$P2{kyqJ-jAicgDt%*&M41G)uZ1TdK|83d@nn(8~<2D4dysLw$StV59yGNaKdu zEH3fw|1{?2=7u6BA+f#SN=;4uI1MD8{eeI-L?p7qAHAci3+?^;0YGsHco2n(r_V=4 z2{UQtdv}~69L9kEli6@!tIL z#7g@jp3C(OdE62g;7!v|8pQt4zi*!|92;D0V2K!s6xquS>=UPP#(mC#XV|4%ewX34j#Kt@VxmK9c=^N{ULPcm#4+MbxqXIoDYOUJRE{_ zue08O*Hx=`jF7IJzg56~)y_|t-JGb2EZX$?Sov#O#uEb=WdJi>D`Iv$%>)h5EfGnq zrDZ)2)SILAqMRspQ1C%MlFg_-;=ya}=_XqUp7y&&fI$7x6tk z+c^dSwJM{>Kjwh-UkErK8+J9rXW9WPX?uj3i>mMf{1i)%z=H02DK2 zou2S`ZtOhF-ZSIv;n1wGJ#c`y9HqzrW`Y_4^XRaLN6ps*15A7(Vt`S?t>5Y)>4q_D2%FF3HWZZvW9{25 z7a|2I=}RLc);pVxp3njylRAC~B!y)_90!WG+aPzG^+@Ej-C_W)K4KocFQ89)G5v&0 z$d}OkbO#T@H7=W3%$dsL-DR!YEfW+dL^c3}>Mmb52n1I4_GEyWoLnl-3ea?#byI<< zAWBV#*9TkY>B;D*gg+WHd9^AYVwPOgPUbUlJALo67r_|NU!Xel@$egc@*vQa0x->j zkzo-UB^XhbP*eO?77B#ohJGg){ap5CA@QSS!L+m4{{<}WkgBTxQJ)av((93iel%+F zyEY5I`Euu$_7B;%UZ?6h`rSEZe8snhW>4du%elB0F>H5lKRtB{UZHh~&5Gr4vvtML zZG-^PnS7IU`^Rr%4Dj6C5~e`L-RppMws*%K=sra2q`gd0F4p|m8wPRZVo@0$NdsA@ zK)%`+I4RqW9@L>^ei=769wjBP1Q&i|dpJP8zc}&|aL8{6iRH7C$?57ZA77Hu z$%&RzW$viXbB>#ntdZR8CgeRi=bx&9bz&cBz*rB6o*|zA^e<4~y^Gkb3IP()VA#5% zSak2O+=MjVWgh5G8WBh&`GtQ)=ndJo6i;Z1#d zxnzDu2b7tHE!4Ao>ndFE0i-?^nvoZth~gqhCToG;cPD)92@|9x8%a(MLU#8^oFI;> zEoD=P`{~uC;eJrzOVQWmJ8i^(h*<~_Lt^hSMifQX_x-a0XJ9(`-)LrQ%5YpBr}dM= zI|mDY%N20v`Z`D+YjF2JnFY|(kb~*6JfyEUa;Co+L5?M}X`-XGSZ5D?a(?b=SSD!# zE>NmgGg~_GeWOUDi*GKnY9ZUWxxzpG>joDButx<3BTws&I&%usPuvdxiZS*u_o&SG z{Yv1@A3`3%pqS9$h`GcI<8CO>Y546J&qMT*=_3@6xHG5Kdjra zRu+DO$h5r%q;zERRsp-EOK==<4*n)CZ%4NEtr;u<>yo_-7+4nVH_2pPWMkm@yQv%n zW1?tP6&wrd1EAkvyxhc_5;c0PeDNe^Z>%vr*XLKC{yA}fD!;j`(Z<4qe2k{ zg-w_}D9C`|19S=SzzF#g7E2AiwYJ+(ku!|p7IUB9nPPpWV*nlw(muh&g4z2wk#%;v@u7Ta!^6cfJ6mpKJY9s($jCS|KY!j!kvx(q zfu*af3lRbjz@&YV0+_iIxa_G06>(*I!!}I9qcvUp0Z>J2LF<({1bmtUp!UyyoVC$5-nSw zLSnnISZQkqRbq5CZLtW7D?;n!5^J~-3ZSuq*C`MTku`y)_BCSXvYyiO5nKU z{8~+I-tM|ztn4KO7ot(G`3q1KYk*XmnVIE)^aAEJ(gwJt&QZqw+C@+h(`eL102zw) z_4RfTPbn3$5P-UrKB$BcaF|HD`T4=rj9(j#Ky*upk>^IWL^CvG10q4%HfL3_-AQ1l zA}`)^1E%t-PJEu28}{^Wec$Y4u_X#m4U}gvpMH`L!s$}mQlpE01ho5~K8hrVzw(#P z&R$0TU28+1FwLd39o`fx!~Xa*a1H81?CLNJv-cHpe8a*&^e6QFAp&haUuA_*#*w9E zaviYcY+ov`#JvUx<$*>kcKz<11UPD1|OU3DG35 zj2~Lm8H=-xsHj?jbotBrIc}}l&*)&-5I$&P4FdpgSE)80WMahk;F&D8ePMh9_5jP) zw~(HWXP!}GQN+aZ!ydHepVLJn39^v#XG%cz;aItJQ8X2w;`f2=&Rid;9uo-hYj;Ls z6x5V?!y4eN?5>I>o45mQGiLi9h+i%ZO_^i_AqGlwUxjxZkdi-)pZiaDj<;pL(pap+ zB@rSzOH_>7fX)Rhn#l26z z#qlBIhlNjSr)QUIN;icOec>j-laT!2Y4TnnO9)5dHx1JhW=R z7yv}?5J~(7X?E78UO{|;;&+mNzQB*?tRLF5Y0(1%OvM~LmY`2z;&^shoG!Of{N`_+ zYKt;Ynx|AtD}dbaHYg1s^AUdD)Bs?i5Aot~{OIE1}dYV)T} zM}wK7(eg)*rM5aH_u8=a$Wf>r;37M0;R3``)(hN!b&@g|Ig$9X=0~hnjlLO0nBnkR z+0iCvP3-7^MGwNxMXCMI%)CF!tMS>Da!G!UL|3`%62MRmpx3~BZY1WQ*jz#M;a$}o zRyLr+2NEu05tQnp5!~UpBs=@?e?KQAJ$So~%YSs<-aeazAI`075oMiR;@Z}+`_!$iw{K26|yJ!i&CY6i&lc3c5~a7KYh~FntHeEAh z651#Kz>9JxlP?M9~2%)y^rld zp4yta$esGlH+hGGjT$os$Hu|MVerzry$lijXa+E(f7#fto)#I`M?bNVv7SMH&C5Qc zy2ERuCJJ&!U-BWTov)eEp~UanYW_=ti1MnvHRY$9%Z&m-H*XfO0Y2l)H$P1f!sN<3 z1C_Ejdlo^r#>Mu-$)`Bfj>i0}uJLvS5flg-m;2IJWZeG90}yN~Ntp?&T?gV-YPvZ2 zkIsw0l+-Po>_rz^7BGNiB#32DDuD*!06%jw5SW6>`I?7W&OMkFr^kveN-o*DFpv-& z$u(9gFA8CH2zbV9aBqYt93y(*&8$@a*bANnpQryR2s)zbqxs%n5VYXJ?<}q%)Si$* zOBT7b>3s!}SI9YhpU}wCzJ!Ba{ST33pJRp&Pv#}LIf6iC4s-JP5bGx8_Vt*)WJc=r zJ|~_VCcPHD!_u5s0UIVm;0FR=b5j_q{r__E&Y{YC)C)~36wv2sTnrYmkjAm72XQBh zAV&O60Gb&=0}fVw;C&pN917sqK}l1Y0RoI#g!gfv@eds5ZQh}>UE#vy1Rz-cl0G_8 z;ieE5W!Wc6%ddMscnCSp+ff6DR|mSvEp+M!>ey?1zd$E3_q*2U1kpd7lhJ6K^}=OG zW0-7QNDNSm9ZS2vZu#YcPAW(Ihv&aTyT7c3DTL0OJ)gVDpQWH!>@E5LinuALwlPyV zVhVnv{IW}_ZM_|u)w@QjlMT}O>nsci{D28!q<&)UBld9ee;Fk^7Hjo==jm!|e!Vin zlm+7lYQAQv;31HRPzf#l9c=|GkZ44K+h76!e12cyiCT>DfK%h@e#6uWE6qTLtn`K^ z_!D`dT~DqqrDHQ*%J$X0do;c19$!SimOmm7l!YMoYX5gUPz1-~o?(mVvEd#y5qt1? z?l}aY0@#f5K!<_`LjBGO{sVxZ7=h+H*yR8v;ko&5OXJnCwuw}K;uauP)HHcNR_&to zg5<^QO8pNhk9Y_!T03kLbx)HmS1V%j(t2`fMs+TZOCP+|wc7V*?mee?sVcGYjJ2YJ zlGTr^2gpJcBIBTfz59A>lmX|%K>Od56?$?(yZ<#D?9uhq@(5*DG!a`o=Pvv)UY;GNu89zG7(azM0$2Jr=rH=o_EZ|XN@=TMk!;-{ zt2f>Ia%WeeGK5rIsFe7>^Cvy7Kt5L(3-h$!M{8u)UeP|MuOPTQM)>bMI!iLn6)3f!NZ53v(-z|NJExPR9lidq8ON3f#&gP&+i6 zG;es$bc|Z09bgYK(lmrYXfOm3f@(&Y;Xk1s7bry5prQ$XRFlv=l%;JyT&p}C;N`{g z!rE`51hYN||J^bqIvWDy7dHnxM!!0JbWC;nvkUnngZI-~>Tz9IfrA7qS}7nP6wa`L z8_KNB^iK!AS#F_|{QEAG5&w0Y?ybx+SHoPXi|_oC^)B*OQj)|hn!zlaetbd&ny_~u z5*ygm2Fr_(p9gfZk;+OhWV7w?4ISg8Fn&{kY{Ks#Kq}B+*qqh-rsEMEMdF@d|vOi*hR% zwF)jZGG2#0*1-x_S+Mv8L(vfjIeTJYWNoBB2|BS6m{8qOZX|rnyCwnEHN;T@2Ram(lcp!n~Omv~i*Y_|Cwe_ODfTk;X=t&6tsJ-~K4(PJz z`A`b|_}^E84>ax!p9deVm!Cn168yL?Kk%LZC-Bg5Tr5Oqk^pumaSUGB%ojm1y;S`a z^x+6}hCzpdg>wEAIS;@)dz8-|wTzxDwDO`W^}tkfDT7QiPVKRtmajREuXOSHe`ZpA zLP5-X1~j}VX)U1nquX_gW7b%T;T1(kdz;nH4lF*Ng9+&0`oz9UT;Lk*Ekq|8CHhF> zXDPbS)jtgnocBWF0wnBtUOxQ`dr4`NyPVd{5g_0uNX&tqZ{vYM($)lY2%VeT2`m)h zMM11i8o-U2?>Edq3uckpF?k$r4o7ygDw8&Zp*+HQR#va=lSpe zgKq7oO*H9XmyHfZ~{;T&__wVvYUx37rU5NKR7F`t~*bsIAe^4`18^iD!kjn+( zM<1PT{bA;LG$6Y*eQGO}BGU;&bWH9TaUSwmL$`mpwUOYOq=`Oq0EEyy?9MjS518nC zQY$~V2(dYV3r+^}qy-G*5*Z0{*lOR+C?QCKpd%9WNTCh;Q}N;R>i5I%YdyaxIf{7d zyg>>*Z(&A4+{)lxlW58fDz{zr+;T{yc?YkWm~_Q_os~-|CIwT&F=yrEqRi<#*mluO zS8}EJp)fDfaL}}n`5?6NtWO*=0+(qn4p}M!lFfBZl4PW2qR8YbWFb9&JSPNQ-8PVc0>Eu+<1zewlWk19Ba*^g77I*X zK5EBgVqQF#I(VDxKq$vBh7x)N2ADnMxv;VJVbhm38pgienmX1x4{k?B zP)imMRbaXSLLwu&W7%b< zt^}MMWn5ol>i!ncf)XzWWwH@lpV#9dw1d71SQ`o0eN!%?fSo~Vl z-pNWO-9x{v>@J3MZ+b%C>hOSZqzvl%&A@gnf=mbD*P8pXiFpQxP=0<=P$?Nf1(8_a z=J8A7heJH1feXHhx^f%cf_G8gH{UDyML9t;K(li&6${k8-}ocxgg=vm(DNn`4#d<0 zxjq;fM^^8d-mYFqO7t>?+-ng&VDqyqHkNl1-Djn`g7@`RRGRhh2_c6 zyCNi~#HRM}m|v2~u6=Xo2~C$V)%A7j>SN^1o)Mo7rudbiu@`1ofpAvKf`YBs1jSgc zJOyN~3{pbOqO+eMs80M;faGJ;+R7l5 z1FvJ`*Np;dGBSwMAU~bn{ZOUV(0!Z2Kp@h^dw$cLY?t2fQ{3ui0kL~bUGUQ8>LbQb zZ-4g>7Kt8Kv1-$(>g~IqU!crr2Ay)vC!dXuo7&Urs$h|x4R;zHQT`H-bu0-4(K<-U zNEVyurm>r(`FC~13rR_)k;mCcJ&qkV!e2?Fze5#pIkxY+eZt27RH|U#JiHFWY&0Cp z3&*@&P=2KCNiEZER(L`}O&PCF>gY4;-E zhu@rPGf89ma;RXh>09I=mT-K-UOU$R5!xh8(nytB`Grb+?a;59Q_G3KYa1qcJLoUF z&~~uehdPBfj^gCuql=~7i}>~D7Q>FSVHG~C+tVmoD8o}5g=SJqe*$vh*BiT;r(6rZ z3(&xQPN&Y5M~PRGR8(bT+!dzrs0n9NL5j#=Z&7U3`rf(bC22GDl*uZkWrL?Mull2tIDjE& zZIFWam((A8?a6MbOs@P_9rN#l-H&`(#S+U=NviRX(~%;g;|~V^qJ+#ipz2krI(c?+ zdDbiI7&UAc8`Pe6FITTLdT2==)QcQArQ|gq;lFz}&&3lYO+h7mq5DAI7z57XMZzHC zM16UH0egMU2Qf6)p{*1}2?Thn3BIl2_2`(9*~_N-FV*Xkn8gn+Xo9?)sLZgsmP;qE z#+!#92Sr8s+S*#Y2iMv4bhJkYm@$5BIdX3w5vz>B&54)1v`83&V-aUhXecw0KclV? zh%8tWFB8wB_bk+HkMK~@XbNL+bf;-v_)t=ISU9Jv=sLV*btj)nuGZOx^4eA~fhMqo zX$t)nqS_Z@sgHyNPk+sO=b?5sCjw;dJiQA;&Eba&%xg3q^ST~f-yK;-_K7=Wepf|F z?%_*qT%H?=E7jD)IcC;W7kl?IRe)8Tb-PU5Uz}PuC7G8lDlTxH5Lr|IsjJ3CPopq! z$Bt7?Uy;J-a3<>FxR+(=iQ=s*GmIwT#^Czmd}^`lF};{#E*ZfCmG`d$CUWEx-7TwT z*zU-Q2nLfu%D4IO&e`4EJd>xnhDo^}DiBaWMeAGx|aQ_%ARx=(E?-MtY~TU*U4P1~@H+mMWrN85N? z_@tgvfSKTG6OlLBU_s$4i4^mRFO>O8x@pDfgSfM3;k~Kw&h|`7c|Fwmqro9@+=}-< zPM+#iJb2~tR6_e(rY1hchn8upr?8PRHs*xkX5xz4w%^l9olEDCvGOP0`Ws|NrA9>5 z#MG5A*byZja8+JR%tf?gojI@Fld$7s?db*NS2Ft6abfTDGEPjk%E|=)D0(m0ICpQ- zyfE;4SNcO!2a})30qf@*BwyE##jbis0IK#luMHFch^@ z@;}ZY#~mzgdvbXUs=$-*0w>{=RsCA<0YA<)&#_P>cdK|kTBV92G(leK$Ly5@xg_2} ze~xyx>ydkrNUq_?_Wc*?0{yKMBuRpm#g!TfvS{pj4;t~xuwufSIN9kD*zPxNjbGk5 zVOWTZ(xq2NOG(JA`$`t)DKioG_@fG3GHc~UQrU>-_0r|GE#x>f#8;wfEEe|EB^0J9 zN^C?ZX+5RT7@oFQQe07AYmC4u(F9(Y>}RPz-F@blp$TLWh{4UgYvNlS$RE%f`oa0W zkK<*F>~-qEJ~OiIV-+f?nbeR`^wL<3-?=k8p8c67Z_kBFfIDG9|InI-YN9bUO0f&Jvm6 zXs@eSH0)dH@e8rq%?BHfSh?2gC8lZqU=8BJ5;SgRn51LdN3tjhX*z*irLpN+`bUjB z_H~3;sphD$WI-vkhEWSL6DIx-XK{0Z5n)v1S7zCdC!UrX2&U4R3UcWtC#Q1fz9v7( zjtc`;m&1)Y;rlchYq^7(T44(u@o{B|QS z8GkJ|SXd+9S~Vj%C2DB3^ZALEcdM7cf+Ge`u24}fQ&u5UQBGsq)IM?k>syRTar?&N zuW#+qoActwL;G{Vk_ukw*d$Ghi!j|k$3D}*svI}9R5y6erS)u@Y=(5jpWoed`4Sm^#{ zyVkOE9I0$EYA&1-b1~sR;Xl$ZDIppq!?iVv)3h5K0%v_C7A9nDpJ>4!4MSamz$f1u2PHUGzzPY3s*LQ zST%vKhz`=w%pWFyrVcH>NI;Sp06?9Vl*KcMl*}h z>};6$7yq1fmpiynqM37uvb@qradgF7BAEJ7bfiSfo5@|~HtftdANq;gRL?;Q+4SUD zIaBHMW~-Z1%_^#!i>J%Aamn;Y?Ay=%X#G|%SJ`^?nFbIq8Q3SAt7f}vw2=!*c zgvI1py?z>esICm6#Nk9LH7u`3*g>d%P6(ga`wp#?Q z0wsXT`*Dy{Sm1lOkf9g}N-WuDL9{Xnu|C@7 zym1+_S+dCpMJkTdC2ez*jn3rY@_Vy(9O|w+uJ_5z*x~)G>JACL#Q7O{RaJj{h^ok8 zgB;TAI;%F!2l!c%nS^l+T?_|~xsySGhI`3*L>5Mhny55T*JH;fY&0d|>QKs}E9u9q zCzw!KSW^65YBBfdmC0qKWZXP_*>`5$cZl>xCLH4;%uTAfMbV5C@)!0S_Dnh(>^;9~ z*=)BAFOBujaHY3JOW57fOJ8MI4jb!zZ^u4nlsrlD`t2jy-*_WJ`b6#%l_fh_br2*? zo28n&*5A!-S{-s@!fzc*=CyU686N*ifG!S~|LrL9>nBQ@ATJdaNcw)W&RN~it`1HXKFCW2l;jNMTG@r zea4>=Vb@%xyxZmSMW+$+r7Ocghxm8bER+sAP=@NvG8P3mJPhpDLoTMX4y6q6H{YJ5?yb;LEC#PtIM z58d7T@!e~9LB99sDYV|PYN}E$&S-@1oulD9vHlXRXQo8Qykpu;k}Pk=n_BnVQZqDkab8uwdAVYq${lH?$7O@lbytVI&whMP_0_~YD8|>Mn&?;(CJ;x&6vI*OZi4l0kdTpsOQ(54rln*Q7DX59-a!M+r)h3zi`^Q zzVk0nCrTTcnngJjfK;-zDC%XsD$0SXCuh$J+e}+^;YkIn&MtalEYC`y*rk>bR>p^=GKeGp@8=hq3!$&Kjgzgn7t>V|K! zVC&p?_~1s~x9~RKQHN#n|Lu+JncS+$*CHk>h1c5BY#D9y%XXN z0wlMsZMjB>`p9T`{(igNdyk1CGr3+9qg*aSO%<(a6hMR6|*j@ZoW z4J_5Rx4#d8cMlF?G>hXZv41mm=|~cHC8$!2S+pDPZ-VlWRyS+sso~U{CXK^@a4p&N zqSW7d$gp*YW89 zyRLmG7EjeZo_!CptCDSX>Bfp3izB5#L~BE#zvyhlh^jTiJ9|Bhlc9PpoE$s4vq=ON zmM29lKIq>lDro)6^TK-iRC_gVsUZCW@8_3w+z!p@m>prHsj_0z^mnd!8i}}jXA$4z z#Y_Y?rM5#ARPDzZ+a9x18hk-5R9B~_<4|kZ^NggfZ*b$|vJU*UogEWE1<;%mhkJo@ z3PeQh*HFu+^7-R^hMN~@(zNUux*Vdp*6ESd@NTY2*tCOYHr7j?7In*1bodJKwYAK4 zf}!h~gMLrUtos(PwHrCypzuqHm#cgq!h1{DM!V;P2tBvwDxE_)Lk9w5#0;Iu>ufa0 zUp2RW%KqI;n@dzK{TPwYuS}1j_*Y3qOm(%A0@Kj9uEUK%($)2;i#Y>RQFEN@w$CPI zD$3tFGkox_$F53avbSrxH3IVI?rsFeSDqqX5yM?m)JjStXA@jl?Fm@hGscIrm2W-Z z4q+tef!xWgw&s!h1)iBU6j1y9?fwtsralZ2KRFEZC{rsiLNP zCw9sw+^ZNzde2;-nb$AvTo9Y59ByN|plq4G{MxiXh#qlSq(L6LY z2?>HOxWB1&Yg&I_x=Tj07~V7dTfvF7fOq)vv_+-aImBp)HskVGo z;&<40BmYt-nnB(iBUid61)dSSVAro22DXmaVCl7EH53a_%5-3Kl#=Tps?k}bN~V5% zOC8<2dpwqW%D1j246hrhnzr1=3%oX~N_7Suh_740SJ@%a=H&xY-#J0zOI4YHcwh-! z@m_Ma@yxc=8P0w{}Caj|ewaOPqb!gR++p3&*wM4_=) zIlZr48$)tE#w)t!J^7*|9{!keJ%T@PRbQuPXjf;hbQ->3XTR^Xl-=Nb;%V-_D!KP_ zW>f_Z)s-RaoNi?`)yL|<%TOFMzrGb+&Dtvu2|ZpBSYxhPJKJV!3OoT63k?w36F+i) zODu^~;LNVLp2wbJm~y2-cOzf1IP&<(%Th?aXyxSs9Zr1=6=G*=a35=C?w+FqjWmF> zD#MKzYV1H?Ggih9fF@vgY4QPLJ#+?3-#wF#4xw9O19e5{c)iMfQnR4)oCUt6Drv1YQMW`tB@l zG4>vEB&oNMP$Q?4M3q}hC3Y<%yynZVn6 z;;UZj6+!vMZCiRnY>GZz#%Im@>g%hy`+6?BO`_!A*av*rB#Wk|jI5O)X&G3?7B#ds zH%Fs@7u*WEGIB~m_t|81tEK+29IOd0Z)7_39Mt+*2p3~hc_?#H8x1yDkN9HhB4R&< ze$bZp@Flh?3itneb;G5R4?zq=)P>1k&oHkOSkPxi&K*E^_3*ZX`S>pbOd)+vW z8GpF_BJN9%U_&!kYDHJq87x%N?P$~eObC*$t>YJ7OLW9Wj&Mx!c=kP}S@1O7CcG7!(b5i-i<4^g z$-$8&coO|r2^3U?F)UhS;v3@#U6PAx52lfx6fW?m=^>KyA=`kbl6Xm(lR zfK-Ek8zrP zJH3gJF=sI)DoH6^E|)Br6nHGNAW#?QRfPwIG=6M{!Qb7|@j-~KvH-O<-SA~0ZQqpf z6OuWvcfJO`iu2xYk_hGey-I0^x`o~D&as^=eA}W4(V9D{n?9n!|I`XK^toiL-DSb0 zAbdJx9(+!ndXU21!3N;6t4vC~UNyIgz`{F|2on#^gaPIHVbf(t5m?UCp`RXUwo2&K zG{r<*z~xO4Z`j}{z`DT1eNwu9J{qIjoEQ%s9qm;QXI;}3`@${ZhCg6YVVdfLKg=}* zKd)7@Tl2MD2{b!gnFn^R-YHYv@DcleeN8Vfm;Pd{yn| zxPZUL2e}A+w&sP+o-iaA31ce-72*(9l9BD0AsdBx*WiHEy!XsfjWu(VMRZe9LiAm= zk(&_~-*RkAayMNmCwX|{>1@MTGjBMoQ)M07uKA?@#tUf;s)htc`GHLDw}))6ZDGty zgvi4goxRvy>TJ9J!4TV@Be24jXwiWdiB$S}C4*Zatlh?)i4E6Ll?Q zrGxrUz-2ZDmbab7!T!XbP6z9xWz5iC(Sq~rH!5ObDt2zDP5fD* z;BTl3Rn(Zt6z(g-4#G?x-VdrUmgYOSjl7;O##5;c1-@x_+x&N7EHoSW-R0Z0w{4H0 zavIu5)){n`f?u=o**ew~%}O^HSXi#~45DeL!jf04Z!W1*RU-!rC`2dJ!B z2jsn@0yzH{P!+iuDIY!}7jks;Mzp!;@tOs)CK{{LIyDt%!!c9~7_b^#)}1w0Ueh{g z&ACg2JbLt8U)UT?Dk_+=m{evw-qRN;qEtE2^YRwn4v!#JM{HhriYmmEvtfdww9N>q zqv8kDK~=zf3@RfGi3SN<(DKCE4}F2}LI1@QKAVCzl4ru>&tYjd-_M0DOFc<4g8b%@ zxw(#1*%^O=Mq|zVBq{d5DFIj=XTCR9c6n;LS0s$|i7P1&F-JdAG4$_OagjtWvTC4y zdL`jN{vrBDP%gAX*4<1T?)Rry9PP0IACp(9wThHfGqGjip#L>t3g)u(`&Eid1FvzG z(`fw!&K;Xc=;A}FJHo??dp!X1*SawJWM_|cDY++~H$kc&Z9I3Gg@GQf*)cmHA7S#Q z7D1N}J8N*@Th%>JDNbiJe2FUBhVBm^>;Bh0zviRm!`hlA+=ViPt*GwbnRXX-wzt7} zfo{}{t1{(N;`d{t`RIu#>H{_OEqY|QQ)4}54f?ETv4 zCwOhIK3ohKzIh1;G1haD`*XL%&30wQkNMc;76`GMv64u!0~ylcad!rApW{hETSfAv z#IGnN#jhO;g0{2qby!{u(+qrj_ozy~O0+!X^~&;@+G=K)pi{|VM-)OWWofq&M_dHp zDxAIJnJxK+|4r-@eit%MzGVftFr^}zPLspK!)N5fs}$$?kA)T-dYPcI&ZoE>UDB*M zq_K(3GW`wCyb7GT22zm<_O3tm(&zXH#e|N!^L-W1R1f$y3#3H=`=xfOqG$nB{B*rl zKk8U4ttq$;7rqKi41aI6}y0{fbt=W8Bz1GP$y<8q`0$EU_%4krCCUt;!R<+CW; zKXrSt*EjSk;3u1~Rt8#ZxjB3U&!mKv4SwYPG|${%Bs=V_`uS1`)5D8o3*LZ$OjOq; zBvUJ~+3V5e@{0@k_ks8`93FZBO~-FOn*s>zKSylGbWd7NY#6E$8kD3S@@#jHEOW;@ zo5lPVSQeq)?7jQwURnKI&xsT(>06k~$3`9}8A;uW0S?a2ey*!E$LhIe%-acc z65bDR6xTc(05bi#US2f+1}bsCcL?{J8Gb zfp)Jfk$LYX_@esaDN6Ffm|@2xy=6|RLktpLe56L^FKXc#HSz*GX^kM>{ii=!e^t4u zw83O^_=O4(7>qrmi&PR$78DEof2sS+NYzfq(dAMm7cvvEp!!AK2uiD{Z?C|FzUv|Qn%5oFY-8m8lxIZ z#kx}aasRQRntvw6Si;<~wx}=C;8Rs}^ecZZ>d&_QRKvRNYc5mdMTOJeHR<-Ez&l@& zFicy<4)23AxT^bNagAMX_L&R%6Ge6sSWP}M`MomYqL}d0(Iay8HK@QM9?@!)o z)AoG*Dcn7sB0Aup%GHZhOr56bi<2tHz5Mm)crHb_AURCjrmfy|NG1Se+SJ>3))%rh z6T|TSZ(WpTjzuGe_DuTFZbZSCF8|FxvM z6o-$=7C}Y^PH0P4S>U=WTH|%$J$jfRDdLdmE zxD-`k20t&D&sF&;*K?IHxtb#|?M34QM^>-J zN6=P-5^YL=9!=Q29#0_pd2RZ&Cs_wy24^-6oO$qn6Wq9Q5L+5NPu&0H1u%@Uu03iV zGtZgYNyzM1sSi*a3F^b{r;myC6&~vA>DXn42Qe@5797Xt2U1mblm@&4ZDAct!!O7( z`%3eJ0+~@c@;Mc(x}Y~oh)iZ$rYO$(Ba(V~J92VlxjX84@=bxAnW_@DYAFV1F%qF%?5WwVtTjf2^sIl-|TBW@d&Q52b zjt5l4S8C2=4RKKl+fWS$a}5C3)Pz**<50&w$0?ZMKEJkia1W)1WB#wy=NJb&h0WbYj;*DS)(P7AmqrP*GQ z8e3&8B87air{nK$Yonu~H>Wkw6jh}x>G3?As_L&w@wY9~#ZxV;mJ{c{l{wg$Yi}0v z%aDZkvh;fmAkY~Vd^ahWiO2iC-vH+gfTXR?GIDD~wXiDL)QNlzD&+lma%c2GbnmZB=hBiAHF7;e{Kfkb?F?lcGnHs zf6>KFHHy_5Al&h&b5AXH#eBem=h7%*M%&RH-TGq=Uk&mnx_27dT6285=eoDLEm(61 zp|kf!wv_8AsYR*3YJErNYuUS83XOWr+&p;tNutj^im$C%tj%_J7s@8Q-@>{#A^V88 zjV}BxK$C*a1I->wgtOIA3k#u)W1YDsW9%J3K)WE4AQ?|V@)c!{>AxrnOXbFzzM;qf zY10P+FMoUrrow%e3wzb;$jdOQSMz%10PJi1e@uOKT-DpsH;9UWf`E#Mh)PM9fHb0l zv`9D7A>9pvqNH@Uba$uH-QDe`yLo4ybMJHC|NZDWzddWMnQu+QpVQdSr}pZb+W52I zGhUTH=q<*n35v>-6Fql+UefT0209X}qx|JFy-L(554*afGO3*ElKS?L8CGk}&xk?! z3OsG|m+aLHTp^QrFw1DvqOyIk-B0Ui57ro`(TV4Mn<+64T2wkO7K@ld;$fsoKJ zn5^XU@T`)Cx_LW{(Kzt3!|3nu)rsCd-?5@m;dc>35oqy@L#>&~gy%EpByocYJTl^_ ziX1vMvqwhR3W{w{X9BZ1LM7BqiCkQ2(X%8|3ao6Ouf2;(adf9|PLCl7lnZO7X~^3a zTwzzTYyQ&9_FY4m1-}6=k;=F{-~EQrgAWR>Ds646Bl-*}C;KC0i@SUn=TlSQjMcM#3RExQq0aT7>xi`dlz}BB z!6A|Ru8(W}?A8#hKDLS?eOITUr`^(QPQ=vDT5B4{fYmrv9&2f9&LMwSDZ}C&2bMpr zhIBs#3NQsL!7lN$8uPu4ELFpy5^M-kmQlQD#k^p@vKp!dff&Mpws$cKn0~37sEI1{ z3yHb8BgD!_QEp@ndI46MbZU;W!`?oj<~1!FT;ZaAnRE3b^0qW`l7EwHF3tm5P;#l1 zjI=b}f>WNU*^~_*yw)dl*j1*Xk5LYs__g=5O&hTK&Y%9+P6UB}+PAR)Xw&W-LANXS zp<(%ETb`n$WAODpviBN4Z2m=HG!yNiN>|(fqC4UzYs=p%0_hv*qn2Lg$|dP+T?hn` z;bG$6lEg|2uq3%=jD~8)Y@H;a=$;cu_bE4OoU|s!p(JyOwX7Y+5%q6ZjXmakMd$k# zAlV|UbK%}PbP5lQBUN77I@O!#c_z%rT`xuS0+q3MXs)6*?lv~_+?@Cp8e>U^jK9hY zt+sCIYMx>=5Y3ddkC5Fm4g@G#fX0gA>Nd-7J&TNeJd4Pfwpfb2kG-PeVW-ZNa5lsQ zF%S}IMNFI?>p@w7C|l?Pg?=fqJpV>nU&`9`YSE(W$7;?`GKJH(w<>g4!x33B!SYIP zTq-E?=S@`k@+}ydt}5L_ffhPfrp({nzw&=BtYMVtDvqj5Ktl?^$>#PDrfqxo=w?{6 zvE($8^ca1_YFzp?uol}C`*5yrGnaPKAWwVY=)D z(W-HpivU;Kw-W{{m}sgTZ~<8D<>%U7QR07z+Aq14BU+Lfr4`u%pP2GF-IvZ?F%--! z%#wzn+(Xq9%f)!B;$UvpqAx75yODZK+oL+4f?Ot#@jHfVYeSZQ zKR)A{FAVIM-S|{{$6wJ}mwd^anN!JD+jr#QldHoQddwnrmuU-D)@Ab`gLo$x@$}`j zg4=1h-*sLIXa$n}P+xFa@{v|gkfDL=TKm)0S1a??{(k8Jk!~8ji#wcSz?-GEI1d8G z%wP29(^f@HmSOhbO-0TMrNZMt3Ag2~$)lQ_gTDfULsP%KUDdMgWOJWxd_q~LC&;Pk z$8BwvA(5vcy%w|OWbo~S=s$2CBVgt~%Xbn36aAk_T041zB)6q8!QSOEjs8Bexs%Fx z=eEojK&H~1MQj5*I#%5-JNzy8QD$CXB+reR3g%6o;6}%kx&9 zS4hbVe7Y9!+39-8ujQ6ceEnSoL^qaLvv1ec_jm=B98{e;Ol%+aVq2Mvu!V_Y2w38> z{)@5tB_?FL9pThU!af!hkI9=mpJs5PH~7y5i(@}0F&Cr%O{fsz7`+mqBvQU@r7XGZ z^R!qFkV*GH)eaqQ76>Q6EHi5Q^W==K(O4sd2Zw(Dj;d2fndPWbRYlaAa`M->wZXKJXYJtUL5N;bg44O*X-B`!L17a!O4fm&c`wsp$}IKj zep}SQ+8zIcQud`Sc}Fehij-17in6wNDTMKMZtQ4>>Fm0lp^cw?JLmFT_x`-@w}D}K zN6T#j#o^T<2>LD&4^zVi$N7c7CVk11aBj+qRcjjWJ*5cv%z4(cf;=pVd8B$h6Q9bJ zhFsO5gyd~%8v{E@Z<~`e2BC`nHSU3~<0S6wCAW(((NCm;d&_Uvv~=X@t(@3&#pjbD zB02Li-BcDd76mM&$v)2EawUHjTr6q#9&W9>dQG;g!1dj^%Ig7&sNp2^$`n~lV3u^9 zwH<0C*enS5_X@N=Q|f)Y;Vr@T#jFZ2(8SuZ(nYk{5dufG3B!|JdA_vqB~HVVw_-{= z2WT{L!{--<#u_?X~J8Wds%muC~N*Ol?I(y>%! z8~7Ia_4 z(8vNw&;g{dP0PxlQPX%uEV&jJ2MhBkAs0&@TnkD>B}(&FhR-VG|7M05UZa+;#jz^T z*wlC3P>4S&O{$d8NJ&d$b%oL3_QmtZ=|l>B+F7HKk7iA@#Ci_d#ILSJ_vNU3_#kRn zN@=QhvbLl`U2|QZSCrB^>W{)!!D_oH-Op;!`&|*2zjx9V_7E+)+)9btKNuc-0-|3* zA&P;UlKq%8$5seMws%H`5)p)}yUl3R+#@ac&Qrrh#r*n8Rnj&^Z02-AECC-=GW(}Z ze;K_sO`8VUYTmmd^6@X_=dYF@N4(LLdX9qQz}ve1q^RI!@#j*G&p+Cxc%^qc4D^h%@AzKi^ZoE#|Cq` zioPQL$mYTaKK)FBr&4sgb$Ad(QW<~a$5o9$qFnwnb2OSHIei9!^5`lSa&64t+~3^E zNIB|aBA{|V0(#5)5T8H6NB74PAmcmTQ4dkFeGhJBN^6mg4qZdvi)IKw@}FKr3*Utq zZr1;9j^H4@AOyU#w&zLt2neZnPIijRJ_i6kfFdeMw{#Y<1?__Q^G;S@#xh2vd}2W? z?M%uq^V@wX8io5+m?giOhg-w!YgU-*jroK5%08y(u7=|R8_Ht+lYPKT&9QI2tb9hn z>3kH?V@%5lUZ7AoAr>KJ=XhPu-Jy(K`^hqa9!)M!4#CL08=ZO4GN%dnqbogsD)e z$+IW_q9`uapN7v!GJm*+;fS8_^422?j ziG0%It~-SI^PPY$UVr6-yj$vESnJjaH&muw2_O2YoW}A2MoU0n&|Wsk#}i$bb0{mD z3y^m(Fg?1k!a*t3y$M)mx(Y^iaTyDFcDF^!a&|-FN72Vs3j7iVNQ7>GyI63A;$2pj z?9jRMrm4&K6ZbEf*HCVg%V!pPeNbA(8sxo9E6N12!I-AV$YswuTIbW zj%y_JK}ouOa@x}V&ru+kL!5Lt=801a2R6kr8t~C8W7AKnA1tSIDd2lL#sbVxREkFn zfJF>JX`R{swfDLaeHUp;khQqrbAp&uN4Y+Jz3_zF+a=CFfsSD7Y$BdM+Q2m$Mz2k8^-!q{g-W7bcRG~$D&(t z(CI%W%aDdQ1oKQVIlo6Y-jPo{paI?RM3eEl=tN6Fr`BM)QSpSYwO{14HD|yH&+r$P z>N44^Ohp$54g}sv0U$i^)JCsY0N{Jmxir9co_g7LwY4L0Bad*etxxj!Vtwma>16jP zy>9C?X&IaiNPG>NB2*2-gpNk9FNB2aRtxBujXeDSDfiF9Xzz@qQWVC&(pw16cm-EQ;AcS@o)#Qo78p8PZRgDah!rEz{#9)w&vQ~H0V9vfnlvyw+3MxIRM@zjNZ z;?~3wqtovkuI3xj3ozts&-kJqaB8?OADcIR!vN*a49-QInnX=*QQ8Ela8%e)ys_j{ z-Ym}z)35W0r-i+qj`9Dg?uwz#AR4&wq(yN;h;Z&7a&^* zc-9q&l=jT)0@e`yWo>bLf`CjoOfb{``I?A|9YM%u48HN}iA?W<-r5M4ly+GFPAN@( zWntDd(&yWTR*m{0eek$*%wfv;V6SwkEZo7+)XS+HEk&fU`7M-7=1re$wE(f38^+?m zIJNbnco{KEqU=)d9rK<#UP>Gjr6@_`8zxNft8JZE9)#j}8dn8mKb3LTtgsEu)MK}Qjl=P8A zQ`?^(IA<=SFJAi;8j>ga90I8N8zvdMB%vy!X0d73$cwcz!dW&q9gnc714}jWoUrdA zG)b0KU-;?aWE+8aYfYR4yI z$>Mv_HLh$#!EBnQ+LCU@D6dOjUmw4Tr$O|AVV-_a9DSmgH`X4(Oxx%%Qf5lQ+Rdea& z)-^bYvcuY@>A@O!pyiEB`{G<%&VAxkEbHwKw6^4#DwsOIN4$1WDsVRs`@}%>cx@-o7Owz#o&1pY2hdds_r)&ey5vnb#ww=o2-^M4~gb2T6!XZ zw;M^T(-msRMzPYV1dg;Pt09lg{!mvq^h@3mS>fN=clW5pRl~t7vNxxf$<^PYGo&(45O1kFj$$aQ-WGZG z4h(yOhMn;KqNmDW3I6!2|9a@6+}hGwcymVXxAct$D)Q(~ z=C0;@8qwbq{m~^_BZe(JbsP5W_m_|rsZI12%2Vxu+L5>yF$|9@EPO@#gC9eJ@bvKY zKm|btK)lqUD<~?zrQe3eZV;ippkY!E4F=5AxUrwFg9PsP9M%c<&P8Cf|JlNl8oW9c zh!vln0KKs_ops3>9JgAPc(8!3G$jxeuoc%LE@s|asBv6P;q`RC>N0mrDR?q)^K4h9 z$7cSoIq8cWswFTSHA?^Hh_R2b)*3M|3Os*!MhcYYZ8Kv2bmbRu%W?BXm3KI!>_aNh zSAwMCQ0o_ewu$|HxmJ2updtO3?{WEiw;~QA^(|ZRyYqQPt_8EJ*J$t1j=gjVKD14* zkfD+}cX;*n{v5%J7bDugPB@|p_J4FImHy~W{Q)?mkx>I)FKrt~sHOL$H;gbFAh%ia z|3dgx_UoeT@|;!*Rb$!*n$-(O(@fc+gJ#0DM{}kNl6>JVNc9~2Xu~h^m;;Wmt6Lg; zJy332leAa!?mg1U_$cDS0ra!N2tQ>s?rRBO4D-~qG{04C(pz85(Emq`&I-u>ml}O^ z;Cv`^NL35c`7{d&)TpKWp6lGdSuT4tQfG=O$~mB#6sA7wKg5lD(A}0D{32ystmj>#4`BZd4`O0_@3kAYAD=I-oJVh)*2s02Jx@*# zLXF=@2HRfRN)=1On~O&R@cj6yummOjeXe^H(}nLM`SNhzR8g@cNEV%b*ZD18>ui1J zYlVkCw_hY~-~ksl{J?`;{9Oho^aE>ka)20TmL>wDX(s!Z*4Il7isz~?Z(a;~T$ z8nh`ywzMe7G3|Pyl*-ySv_Y&06?+18rUFrqcPd+9WWwO$`y-!L`y3E<6f86>wcAdC zP;o8q%M8YEd!!EZ#-fjtW6HWv_R|b+Ea|c%%XF zfq?3pwa+tzsudF>hYIRvISW` ze{PrV>q@OYH!khkpw9W2zaYkj{8kYWUVklUqCvikM83tW3URN$20w=;OJp6Bf9L!- zxj(qeJBc=C$lQY}fd(8&QKjXpiTO28h601S9Vm64?AoUbBNUM=bLAN~ABl)yMp$oX zhh1p^I^5L_jqjbN-Ifin8umRr)4mRLWDqP=x1j!1jqBQG{k>*56Z&D~1GMVM_HC>U zlkR!ib1!p5%O|k%xSm~vYgEk|HLJAJX|)EK4dP|T4Myi~9-!T!BB%0I=EF`=YV&TO zDQ@Y?>6*6W;J#WgN4aU0zp#-=e9OvUIz`}%8RgsjUy(mF+G43PsWm~W4dfACG)YI( zyw5=?-vYp_l|3jgHx58GMbXQ4mxPAIm}x8wNkc+!`Mulk<}B`vP(+_|v$6V(Y^lsK zTY9epDZ+K{EFcSlqsfu5HsQKw&DcTSM`+$}`62ye|G%_yDqHlitl|A=29xFJR@3(k zqUbLP@F~2+bbqb1Qski8JS+3PGV#{~u^>ve_CEm@kQK?9JjL#z_cHu%0iQiW2JkXle`G!7tV7)GfZX62_=YR9Cj% zT}+X;H}!jPdeoF39(M7V7E)T{IIEr(T5Pv3$6Ok>y~xyF`^V-a?)Yh|fnO*UXQxSM z@FlJi)4%jn|0@wAksloa1GIB(K004|u0w&Nz6!JVC9ti&rSCm^GIng>-7>B}{;-V2 zbYz{_4vAn~CZ2>)i!cqaEO_veFb-<1c9GbP0Tn=$)DM2;cjh|AXZ6TJv$AOZE%(?7 zblW3p6K^CCd`52y_m}XPYg4^^r-pf3)fS- z3AQoIQVQx4Z!dOUF-a};JmWGaA*|3ME??&Gb$tyT&=x~$Of(e2=wbTn04)J}%h!;?iO9E`z} zTZBd8i&3wl{TeIh=f8xqfdgfcLivUT(&(Zc4gFsg2>cSy0q>- zbrklkoS^@F2;Lwv^Njr<-L>u|R{&PexzF{keMUo306{wrwyRrBU`?sn=LF-YsHLd3 zQ=!XFbM{Csv)~0TA+y?ThrqUH!KRh8s~=r%fbv|CBs8%`1YJWnz2iGSWwXtLe;Nc& zA{uzr!^_o=mpU278`o5cD|dCn+2NW!p$Mq81YfRG1p=bpg@KtzinpEAaUfM-iUOer zQwbb!xNV9UtVseZ0@KO6c1NZH)`!(TSIAgk7`-tPJ9w9i~<^o@bW=p;Ae2_Lc?c4-~Y;9f4Gf#Mqzm`7;6(WohT>C*$ryl@%qC8duF& zM2fg2Uk3XJ9gfZvPVO#0Y7Tah)YPL@qQvqu0)bJOG4oSsuAxO`F)nA(J=GoeF$OK8 zuM(H{d8U)DRdfRjYESXDFHsLzdlo?>2|Ds^0d+~>(;2)4vFJqpm0lO~-uK4reh@=W z!SId6UJv=G=g{79Lkl3OZ{(NGar~#Tn~;Q}_;;@9pH6bFnYV|&!O3hD%_epIdP1J4 z`sKt?-RQ$HmAz^}AHZFzsjB_^pF2ZWAt71eHx=BolO@@^w6%VhVI?aghFAgEdk>K& zR%C!mo25w5A9xCANAF2~RO3JaUJTx@yqcg%CHSq8%68TDs#(Kj%=*+{;?-4Gs{4x$ z`)2E}A=U#Z;j-coxx1T#{w#{sy9nXi2aD^DT)wv0lBsY!L1?vIushcgtiD?}dNpUV z**(r=6kWV0Ysm%LK*>`0zgC4_d-6lL{O@YJ+yHcnn{+dHise`Tvd}@LiTRm7_r9*I z%?-YBobj1ZUsM<_a9HrQ@`KY(*-P;gp22CpV_w1~LS!aI7DAbOUGF6K+;$<3$AH`s=xc) zMF~euG(;sU`rrs2vW(G=+53Bb?y|6gf`n*~<&)YcNfPnB+5bMu!V{s2VHq2>_`w8k zR9s?gh|AsmQAJAdLVq<54TjdzJ44@(e3e}hD0oFk6Q;5zGs3p8fc4Yo?^s#_F+0^> zn6vPR+{#e~8mmK+LC^HB8j96YCHLR67YyiizBy6@Rs~cq@;J{<-#d9bGKxe;9 z5+`Y=RBoe^Z_HTdcf1jY{WyIPk0_b>SX2HQ)ye%4<9OOz;u(q_^^e$%`?2y^cud7Q@Sy}n&)vLR(mIDokyM92D z&o5&whhT0TR%ww6`u0x8v70_2aoTP$?h(B%x=9Q#VDK2_$yVQ0kW9?=dXG39=CTo$ z=Dc`*2h`jmB42-Fsp*q zCDH7r%@Y$<4I5>d`T0Lr;$7ol4aJPv&%sB6NFWg_wU;PhX6Gh2evHp0@kb$VC%heQ^6v7_msR9(Ax`39 zy7^f*EQL-6x_+PL9!7tNNKjRS!uCk}N{MJ0dO~n%e<=A_{PEh{XtJR+8fj17ip)Qiq3+rWQn~3|{h5%+!YKAL9Lfks zGx~y)f{@`5wIb*25rqf)$|(A|)POsDGW|T$nkRA>KCmI!ZYJnW77(p@6*3MOC_<1I z3^XG=6|3z;b+zwJ3|K{N;ud-qGT!4oTy3{!E#}F)v)!n0HNMi3)%kn8SIN=h)zPd9 z$aHVie`xs$$nh;}Eb>9}d+7LHg7JAzU#8|AQ54#paZG0Wjq*67oK}{+4#0eOBYDK1 zB8@ps4RyX!PB3Tj{W306VQ->q(#3J`Kw2eZ*6Ttzo6{_C_mQ|)-sTgz&WFoFI6YiF z68N5#QBH*2u+ec9_C28F)t*wrD!FQ1U!@%6s-ELxJ6bxrwzjs{l3Ryiq>o>jxm{kI zp+(Jhz}hwED(RYUA}L9ZN1L!1BkE*t1^>~b_ImfI%z@_$7FT0G%Oi1cT;G>eUK7@N zE8G10MaN5{1g;7tMv6aQ`)o(s1nDw_>BMtJYG3j4#bv0b?tZQ>LIE*xD_~3c?4`)} z`YD(A**pvuo%>s~M54$~oGS!`BX|&jaQrEq*p_Y0ZmTEKdheV4ZKI&9Q9Wkw6F^>s z7#^U^>YKD?qjND*j7D0%(<|vP0$0l15pEs6Ho^7!MBg`%VAF(Bh6;^|dt&Y?HD&P~ zXm+&HGn}>_-ZNi97Ts9{Le$FY zr56s#gNC3pUnM&8Spm-YCubotDXEwhg^eDW`z<^9R`6m&%!f+UuV6oc9R9?Q`Xka? z6~$f#XQ_!{gCo8Nj7PHv-FYmXS_;WMZ{S;&*8zESayB{RL~_CNb?7S!5}GgBlYuFe zh-X7Jhz!Kg1sax**WSsZJbb8^q*Zs5I9X<+oP%fOJ2|UB^ikWeUF{vo#-2W3I_a|! z8jBd&xTe*TWXO8ku^(NzeV~7Q{-We%C_sV#$gmaVjy}cXL}wG*8HLEIG=YMw`os-K zjv{JFSg+`133J}PZ}&YXh89^x;k8C_`|$$0MRN({aJHa&z9ppS z%a>l2Leb3QH4SDIQ=APmarSfuNoV2EOmAd3+C1-K<(WB)<$~+)%NCepXQ4~Bc)9li zpG{0du#8Y_JJL*ja0e93i^!m*i6F9_hHos7YZU5NHS|*N>=+06M1L`BBEBIyzp#M1 zeRx>=$?q;7U!Bnt%PiQil%CnIVt)%0GwIhaPuT0SyVt`fEhBT?t+tjIR-1K3vUs7Q z-JGw&cXY&$IYo>C(lxx z(!O*Ljcz=tQ=um!7h84h?*}3~+H7hvHij^bDvb?isS2q-OD(vdFQ371MT@fedC7Kp zeeC9rf>(*4YIRX*(h$l#{&zxhNT!qfR*)Q%w=9I8 zWM_7EHX{>LVs&-Q;NT#Ue+?{Wj5%~HQ4%jRnR?}V=~TnS%F4PvUg85A_K>?<7>$Or z5t~~_Gp>5DV^={*sZhHuXdgOLov5=IDq94K4(qf54(p8fmTA@3 zw91B7BMiOE4=u5m7A~>!nTri8eoVWCCf>hLJsYXo`ZVLUQwRoZK7gK*1r!_F)`Md@ zdE3B!HeN87F^Bv;G>G_Nf*k&q^dbzP6EkP9+=?MM{XikT>)d&C9=weMY9OR44yj9X zSQ$ZByHqIwt?@h33-~^yQlPq>d!sZc3Xe=!fFd}NW@IV8?+WbZzwWcRE)Yumy0_bu zd;OBr<%g}Hm9|y>fV26MN_p9@#qhlm^Dd5_>^YYM7cX*Q&AFYgD84(7-nfbLdz|Ti z_xg&?cjxNI%)ILx$y{6Yn<6N;53G()Gw8)c7<2)=IgII=gVz-#%-u*DT_=IvMptvm zt=GyYu7soo`ZxL*@h95`t}cD+KwZl3L$M=C)VhfMNDr;XLI z>D1}c9D*{uSRy}=;7C`A)oeH;TCI!kT+995`9m8HcqbXZ>2|HOyT21RN*f=;ikQ+MX)$Er_ zm-~LgQyLBOGfk zN{P)=ld-_Q05SlLKl>BV!NN>pr)w{uW>V7nG@n~=$#3Cw(u)gu8!CJZiMo8>tF z^T{}W(W=`3CNpTdaZ&Fr{H@o-wT&&JZ-&=qI(^(N_`+C-5 ze04ZTm#!o&Z8@+bAC~oyaB7;fFbk`UUZwm4(Tj{M^*R@^2u63;tBY`G2w|VpE$rN! zy?og0?Q*^&WMyTgP+>uCaWYjl$qakbn?5OjhZcpq!VOS-(763d7f761HZW@ZmzZq+ zQyyb`Soiw}nfQ&Jz6~KjLLZCmZw5U7fTY0Rp5eMtTyW6yNhtG|epJlZXhz!}`_Tg| zK{I~~3ZD_5_~DO#DEnd-BU^RnRZMsu4mcuSA#(v>WCGPHkmBHT#;WJS-P(p%0B%1` zkSuooU}LG(S6YmIY2OBd#&ev~PRUn@2A)=^G&u1x63LV@##6idqhMDnWcS z!a6}F+&JF*h{c%&$v(9EJ*Q?Dshau^|7;o#ooz0IQVEhbz(Iz&RKMB#kZ!~v_Hgat zrvxK@DQjG=k2YqE3r~BF`Tn6i69!%p1c8%YaaZA%#fVi3NVx= zcjCdWz1_V%VNublxzWZ(0XV5P;TeO(u0;Zc)-AAP-LOs_cA>$CTwPn6+uG`ZrP20X zT8IZhetv#K{%bG;#l^*q_!2}(f=Gxci5c<=Bm``XHM%?b!{^-neG%&dd53I}kiwez zsP@&#jk>0*oBToue<%r0h{F>Vs}l#G1T9hV?UG*<(ECPIKQz860+ywX&T)elz)hh) z?h8dgEBXGX>RtCz_v@qAHBwD&JoJDPysN|#s`L&}5O{@QP#1`%>lz*2Cf=k5gqadn+ERH6OClP zIxrE-bJeuNjMT}&=wi4X>-?J3HEz^RJWW{dV0++qih7fAP z2bvcdxf}Z-%8{Z_%7(&Sao#-Z!c)mp%RnE%X{mnfv{%Q1#7dSzheIsDe+EAWk^_Q2 zonW6=XYpmIuacCg*|`4qY6XwL7~Fjpw~z@ zLR*1bq0(I5O@I52nFbhGXTGV=jy7ErWZ+;rT1fj$RGaG%p<0E~rjR9n#=77hve=vWt7 zOL(Djy2D?EUVPN1UFZ-yoJ$ejMhGjAUT@qi016UPe%=V$-^B8#pKW2`V+IK_DYwwe zcE`GcTKWO6<6X#^dtk!T0i5F{cU*hwsu(gEd(WANvG;yFlfd4`Eb<4&BZJiTrDa?a z4@wkeLHrKX5gD1Foj*{EX%z7RasE&8Y+XQwGaSbbbx{ajBw(1E8)q*&nwi0N6gmBb zyMM?}9h=gUEvr~9VNt+@5M*?J`gs#yGYbd(nsDxgk}pOLl2>;Qg+0h>EP^?5_zxex zhgG#0_$#D&`F%klr67|vp)vZz}v@%iJjo!vB^6CATIYRvVE#cgT;UP+(2e2Otleu z5y{js$cOCBkY4F%^$Vf^iMcRv89xthvc)|D!}~zpP;A}yr|>^kFvv}R+{N84%B7ac z-mNh5(3Qyb%V!Vdo;Uu9`ml)Hr?(oN-(<*vw5kbmfP9ZKHlo;EF6{7p@OBuFp8l)L z7Fd6?SxKq{s_dZ^`90&ovPJnNv{{|GCPb|Iin|TY%fD@{Z6Vjd??}oij-PH@#-w}r z-T(H1?OjS9fub=mUP4={W%zGSO!T1c%Pq07wteRTra>m{g=4>0QLkXb;tH7bqxOvQ zSqqmurb)hId0Q`r$lzAmF%ZXgMluznIsd))4R_I^0rnhD6wrN_m^ z-QQGo6`zC^%aI(G6uoA5lT3cjkLkrPrNz5cE_2YUR=)MZCQi@HeE#CacUYUKviAi^ zB*eL#8lVXJKWE%O(A#)y5y}3ck-FQEQSRieW$R>o@o};|433c zh3p29Mi7i)$FZstSkWs2MrHGth;+6yGVol90BgVfUzU6JV;lLuT8W?h6a3k?-zoiq z4<1XMK{cmw`WkRkj-M`W^M5s=0Ufr@5 zA+I?W6Q4QplOp^@Fcil)5%q|%G8lhBK;@QANqLF~rEt(O-6eZijLMgfIe!{P-M=Pc zt^MsSp;G^177jy~aFg)(5|^Zn6CQ&o1InfNarlYXicw1?OkLVUzwX2xPaLx=74U;L z(Q(Lsk@(ztlR-i!KC`U488!x7(qAA&*f8^Sai+nP>%y^zRrlv2=}v^LPrqnfXX#XohAD?l^>Mm)z|X^-*0 zH<6)%O>GSM?1g$zK%>QQz!G6#2^hIgGS-OpXo?boQ3J>>M4{i#Fsu z$WgXx&*)*l>!O2nNm-d5tY{w5E}O&zb;=_!FF+d5tcp#>q02xAQn>VLpsJ?JST>11 zn|krWV+%hnHRCHwtMOfu!;9@&6<2!(jv#x_gCB?=T|Pr<2kD53XEXgR6*x#SbI4H0 zobi(L$l5#-%?TCAdCE+Qr%t23p*IT|N6SU{@uDT$~kT*tserqfT4cuY|HqddERbM&5~k<5FNlw*e&?6 z=jY!AO${BSsnCH}A*MVtxQm~U3#kxGcb8x*o3|S_pZ;Oz71RD03~SX>7sgMvw#ya5 zop4}g|`yH&dX=-*Oty-5%tRAwZy}8s^-P$4f8kXF3BsG6x0*MJ1^%!_5 zJq366614%)G%t8LpP{z#*Z7Qc*9f$&aI%p35LjLLpJF$-_Ig%bk<=xO*DU|UqJ7Mo zGt}u!^5WW2iXc#5=L|@$cwNIUtft6X`doUW)>1x_{7dsijG_fHN)#$H#F}$#-^BFy z=v}>U=&z>CW#lsC3gN$d=AEmTr>9p1di+;sL39MR-wCrPn`YY&a?n>YqtC`>o+G!X6YG!dZQCAXWsKS<(hINX7 z2c8HTNT;gQXJ`t=e8Bg(lXS|^BN+O*oz+w!DN#e0N0-uBY7}Z8rIT`$p9|wb_}$#= z9&}}=whu;9W%!6S(XUAJ>yxc%{}FWinS9i*y{D`b%#U9$xL}37kTHCYXMt>xfiR`M zPrXqJGBCj#TnqZT+xu#KlWCt;d{&x6vJwRB6i_qgnlVs(% z4jTRl4#!l4C>wB6-y4S97Za_{(YpjljoifLa_nc5rcKeRNMQJo?vB++Mj-hGi%I%k zoITj&!7TZbU6}2VvGQ9Uhq8wDBC6oY@)IlT)pm4eUj1f503cpwgHac44Sh7cGT;rN z7gAU@lrKBJffYap+$$H*DdtSp1{FWp5&^Uhi&bjw%T7jlxb}#tVBsx*c%^-RgHiza z+zGP-AL`Be#`ggR9?o`|;am=7Qheg&bxUD#_z-AzpOsopV!d&jpK_zrIpfSutA}W{ z?O>GA1T9xLmyW$}!V2kdC3Xq`ueWxq9pH>&8_crzM)MZ7zd8Y;;U63>dM9EPv8~A` zsfKABP?4B!)E|aa&KUVL;6c^GP+}pHmCw%d%PXyfjahAEEE{h)w$_C*8X0+B*#vh| z(*NvMZmC1F^Sw_xJ8%dk-ql%<$)x0 z_!H;%m7$FC{xrTlOxYmiW{rU_V!V9It)_ryg5vWV$(2j4V_tYhU~LL+EWsW9FnL~* zZEjG%WcC$`;E*rxAnzJogD^{niRj(wR{z_p8Z$4>2sVvLKEL`c=@qmFL1~qcJk?SM zV9*Xxb1(#-0Vc}Ng>?~T7hr%_b;fOhObblbU~x%LBjgDuNKMr{a!g|$n8a_MW@MVI>} zv7f))c*UH%w_#gYabNhIFw*@1f*F*a8{92}-O^hfXo86bNO=_W*m!uLgF=y^rdb22 zy3EH73uY}$MAp3Pb&aI80SS4QM+RGvuoK_Huyf*n9kZSFK$a=YFdk@T#eIpa!t{gMM4=LBmn;wCMK;~g6A5T=&UT(1Nk2NI{p=L-N|vMS!R6UvweB@;v-x8}4q zb&vW3o%o0O>1%y0aP22Dx^EYoA$?kHei>!e%W51y3{Bw9v;KilAS?-r@qWxN?P!Q( z*d1;ghtS6Snq=mk#_P$o>$=SGJ&52fMw7I%#i!)DhJrDca{G+=n(!BE=~KLU-HfS2 zP<@^(tdsoLbC}Vy1=_qF5UNc3xA`S{SbGV!ZC4WTRPHji1Yx0U!{9W2S6vXDi_|n> z(7o3JDPSuJ)oA;lh2^x3-uJdmJ}v02B)?C& z1LEPBHm)}o!n>>!>KHCx**WV_L7WmZ*e_E}Tk|(%M&0<|%r`1f0F9r4nfJfJP^*yC z<{4cTjIs<*g1ym}^1&uTe<~1=Hzb3SEH1QjVnYB`d2W5kfOOb48j8C&L3VJ&xDNG& z>Z3F@exMyljJ+3}BqDXMuyw2X+T&e#{RSe1^sCfPmaapV2H}I*`Z7t|foa#o)oVD$ zcDF)*&3h&C^$ujfvXDZ9l+aYBPrt9Lbg3ZkCn#{(>>`&Yk~m*RN|ilo>wexLdd~SO zg2_3Z;mrl{Th(AWf&bVwLBF`t#Ybw&x%rQEs^9AV(NIv7diQxF7%&8=sLa{Sbw8~N zNb!s4O9KJ}M`}Pf0mS;dfRjHQHF=5xQXa7}o*QVyXb|v`9q!%_LM_Pg{Wl%Lp(d*b zh502(s_0ExTvYtm`nv2`8q0Evc+ea|{2Nj^j1+J{Q^~wO^9f!^5pV=0(kH%(cvU>u zQLYzC(|*FbDeuC&$D)HN{(|*~3w0cxDmN!)Fq>K$#Hx(@bA=zj=d0&0bEhRPF212Rw(qY;yt1)f zMwL#@55~5R28KP0-j1YF4K!qwuif_Z89_2BrIhQl8F3qs+nDemE)oSPCWceDD90jt zX;(o|Q}a1W8~Y^m1c`S7lYolcbd7WBt1uuTyxzs*N~|Se*Lr)Z8d*1?>c-Y2L+3o>u=Kk(-vOnLYD&CJ$cI) znX@eK+ubQ(P;fb3>QGT6u*Q#;ex`tv){#CPc)#jv-=lIDb4f<@x7W*`8+(AS8 ziv4Z;Xhf{|->%8D;&0WpkN)j-ik`(jfKE<>n~_og`XI6RJ!Z;{{06OY4X*^_S19%t z8!6?0&Z4|S!>`W>Kv5AGe6EeEWw4=11x^P(QXBSB4T<=UV|M+M;;3+WF%3OBo@H296_ zA6^Jy99=k&kZ|y;RM&ImHQ@s9)gQ63Ogx1frMeJ|m-?Cy4t_SOt?O1+=)1&kxIA$= z-o{Ii%lKw)nI02GB6G~2QBeUjJzXgNl>j?t`^m$qg@PhQ;f&;TmJNMPtdI$z~cX;xAu zu%=S`#6@UO=r?9t{=*goPY&-Lai8*@F^Lz+8*0|o2K4tH2SheFLMUi`;H z-h7s>g;i}b$NZQWj-e9l75;?Qo-^*ZFr|yv!h7mP%2$b0d3q%vPucN4n|&2lUZpKJ86ID{(wl*6ERObTLAIt;VQgX|Vr! zgwvt&Sa$kJOyZpg7K?oT5O?mBRd<{Eu)t$znkPA_)l7W8vAdY144MrX7)+QRp@oSUMwV%oah4PY+Qe1aqlV)RnF zwO&^S$VNI-5*{iAD~C59VGdx|fI88qE8)n{xO-M(c8y2M$HtyihYE-3oR#yXx?^pl z`PE4G-SY%Zx3Qdu!VibF#KfeUuQU=b6Pb8YLBZ~+*ug@nE*dC1!^1h$Obn1ICZ_+m zB+(ljUD@1kADX7moK=QTTn?FybNdv`PC|~0K&X5W&emM+t!m33Ka;#1^(H22glv6c zWZXYN^Jg`b_9G2J$)nce>UgzG-g1%LEtSozR$k%A4AG*5^OMc-t5ARSqnw`_pGF&K ze^BrN#9A0R6<@nJKlmQ1{+h;nD}ePW*a=lBD18+Siounn(uw)vVvbMl)t)Df;_D@t z;A$;<(=PyZ*7s}A$APXiCa7=sEx(%q`PuTWQ!H%L(V9${9*N8xvCW)E?E$ue?ptc% zQsMVUJglnbC|WmX;-1gSIf}$#Qd2Zx7e=Lny2sh?!X{- z3trLBIu#LM zHmo(=hh>MgJVrjxxe`77253#_$zeY@D19M+z>snEcr%3-0OIyR_796DFrptzDK5I>4aa4i$;ZI`>^&+#K|)70*}d?5B(kV_yB(T$<0CjVs}kRV%9L zEoHGY1M@nS38Fd*?<<=Iw(6+)U|L++s~!{X6@DQF!rQ_>o`+BMLNNM2)J)8G{DW7U zN1{B8_)^}mTI^2Jl*C8nqq$ zrkzHd^5M&md_;>JdSXZ=2YN;C|6rNKsHAbcy>T%eD`V}&1n6)fW3tY;qhG6>gN%e} zZ(pzFk%i=yI=d#9S0EcR7=Z(Qk%mjREK;#EuB{?PmPI!QN%*n==T%-Oh5>5ocaY4WeFLK#lcbBAk$3F zkh^9|(DvzvP;ul#b#JoAMt+&sLoO^`loVtqeQe}T@zTkH3#7&LKSx;6EnNTDyye_* zMijs4F(18>JYsh*4RPvLx1NQZ=ouOyLun8#KI>gE2tdh4HouBS1wBDx|5yOC5d(dtK=AZmM@ zQVbWp8#^0D?ZHtsT6=I7!Ff%jKAffZK{<@1EMFhnggzot5$o>;v??F{IBi5O{;2IK zeKya;mIV`x9w)5cNh*Ffbmx~NRldFPVlS^8NQg(kp{o*$qY$9w-4+lw9#3>aW`!EP zP;=|uzcUSoDM)+caUn3ANWn^W%5a5e*NPK@;Fdqh|~>lHO;9p^j{w; zWY1mblg?rtcj0m7a&Tt_0hevyJdv70zpzlFrcoP>S68im>1zcM972_D3BD6P&_JHICPKK`Ko#6H`i5(E&&ps2a`Y0hvS#s;*N7aPMkAK zlY`T2sB}c`A0qouXudC$jWyjJ$d9pqV5blG3ywL9)6SMb)0=N1s7kYuDKQ+O(&(Xx znXwHM&nmcQ32NIg)bk@?q7+}$wK_arwxMf~Qi`ziiUY|3v}pB8e4eUfs+j;3N`Wr( zoKimvLITZIYYM)PPz5W1yhl0r&MTXt6ch|Iy6^Oo0MDhw#M7~66_ISV=SP>Iu%U>8 z`H}uxSfKGxJ~Ss4kKrgR`2OPWyYG7;{{Z1_fzk7zU~qr-`jnQ$8Gph)r3rvN5Kfg< z8!W23f8^@Z48K(~wwmb4`TURs>dQaU_f(`+<{W#8Gv?58c{15k8$}#(Mw4t+E|lU- znp%a3U|zxbeb>LkIy8POfdmhom{;0YdcP+GIC=!O+vrH)>g!wixX`Y5%5jVi=Q_`1 z<<33&D0R!i*2!~Rx?=s{jWpC)Cp6E`Fm9^R{fM2lwa(Ln{##IvQx_pm+{6zZK&WEq z(1UTHQP6sUb{DG8XNQA;MuM^c$@o2wQrN|NZdO~E)7vwL+3ViOspyXF@CE4mSqd?R zLkw~+6$+h(NB%oP_RVpBY~-Q@L=Z=Zvog|Vo^w^6-#J{?67H&J};>Ii9$}a zAWefZ265nHUakd7P08P-2O(O0gZ(J~ZE~7iN%Lo6 zPwJsFn2XD}gR}32FZ(G+`xh-5AlTj|%rO4paW6{zPqz_l3$VC)l33)1|JnD4&M71t z2ZZJIBm;$%*FnnvDxqM4Y@Pjc{=3e?gqeg8W9YhAY6hG3QxvGE!=Jtp{!G64W#`^A z*tR{}V?;ly$zSGovo)lXcs|L{8v3Y@Wl8cQ7q3Eul7I#owdB+C{@lk(36J^RcyCW% z0T|!C3UoU%&*WURv>Kedy+ZqLKRvo~31KeAu&Z&s#H+h|Bn}tbWRTkWT$nNY<-$GW zhHH3fVZaXPzbHo(Ukyuc{)cFdC6@NK+y;oT%$zi&5+GHw0W<{XCQY@Wi{XT@r&&36 zGXI0}neg_2uRP4T*&d*;$UnpG*_SeeM9-OXce?EMgzs5`aI$RL0i@aCaT>z!OD{n} zF}}KaFKIXsmw#d8DRhE(fKWu`iP&&k0isT7XoT+UGL*luqC$i8r0+XtQ$p2J)YN_7 z_P~pi(5Sp^zh49z5JvwR2U|vH@O5NtDpZ7?`*^2EJAGeC1JnHqjofGM;m?#}Q1CYm z_MA*$9RADJ*s!_03k}TLH2o`P(InJF2!y{$3fJ0A9*45TOOtwgV(}w;q@cg*A$;bU z6=s3ixifAHtjIc9tpo z64&zxBzJY;RLZ3?#zcCsK`|G}%Lf+($SplSrhKMCR{Zsk^bY)3UC{pnF)j3$P~3zJ z#D(xRzS*n}#)o|za$qoVk?x)*e*BMmFJ%w|XJ$uko1J;?Od1*Ig8pmeaKdH`P3n#( z%|rgjP@fZcz*hqjW~z?i`wu}SK?X*OH~e^uOj~p2GE=b^!*AWE+*;U_xWJ*BZEt-u z=&KF>??u+hPJZ&N8f0M*`Fa%Bh=T#hqB^)<6hazYE=*}$gSv`tISI~iJ1i88C;|1& zraZJx9c@d)3?3L}qXZK!U`+IRt@NzgSu~CE-b&uL&Y$AN&1iqd^}F99Iz$Ot(b@I$UBS zz!J$I6EfGohl~L5sv=Nfyjx%_jYi;w+J;T(|tXg@$VwIt~T!?q-^4S!0-n`w5tZeIkn zHwI4I}LS&dU6z@vy>y(}iO?iXsXEZe8wjhVn=cM?M$XeN^-fr<=Pc zz|Ak;i2wR$?Uz$!(*~o*-_@JXzPc~97ya*< z$^Q;-E0GLPkxc@s%6VW>a)o2_`=KXN^9axc>woy>%kB7T5HC_~<7;5_dz1dw$he{K zGb#}ILWH+aFzgg$8QU>Wc%XJ`S8@$$4%IlFy8r|0C=9TAHIx$oLNF2({pd@i=f8UV zj1;p7H^(UlVe}9+6?eA{MJP;Cv6nR)O|0X&vCh%BC?O>IbGjy2L_oz^yj}SBJGdN< zpgbrx3NkvVbc6c^JxZPhBM*K}ahn*gWc zMH`Y{rNAvCrxI{p3&$Lk?h7QZD8*KIBRm5uh|K$=kEjT&TcM=AJ+Fe7xx13xGv_}? z2mekoQ?y~T*BcQS`4Kb`<3aj6qW{yLlAh|XIpZ-Gali6u>fQ6V{!6}^t;=MDE4gsR zd5v@g%c)#>w7&NcNNX7R+3$ii91X1$4Lg-dFeF_63{e(ZzAc6eed&~3Owm^3GY4PR zMHqRdrnq{8RbmnqloXm^t_cgL9xLb@z;GXz+RzD^98NAg=yM(?oNd<~8(S;EDnxjp z6SYT)?Ob6tOK)G{zD$3|02coumFO=3DU;llit07SRi!bV1Ii5I&n@V@0rAJGG;Yl~ z$?>R>;eZ&&c0oVdFP2muqdomF?;6jV-oH{Pf|q zDaXP-I)5htKi#==-kaqU=A-5VoCC+DnF~Vks%lx=6^bf`o9WOA}YD=TC zi`q1^Z}&Hzd90Z3#Qi)|$>$BWGQpmj)9JjKq%xytC?M;Mt3F^mCtE}HmYuM}5Bs~( zVq~y@hvsR_eqn`Sy!>G^u?*|hR1n7qmnw(yW_Yyu?6JCG)bTNf4R+x-jSl}cLeXO` z{UKo7@dn5qX7yiu+A;QOQ~gCxqB*BTeFw`fLlF0t{Z_|-J#y>8Hhj{2{%(2<{5uD) zGSSp?Se0@XSE!xSSF5>I$65Gy=H%mZ+Vc%XUFYc*ne#g#DLVv`*OY~BA&TbNo0CFs8OCiS5-&`4 z@9M#S);4$&Fou?DeK8c{yL*pU!n{KnH;&M)5kun&;fCE-Un~{!NM4h(1tG45>-XJx zx9L$2FOfWX@n&P%lWBTpHYCl4=sorGUvBY%9(*sz1A0D{66kXGr5Y%=FKi6W<4GPL z-gVa}JzRa?KRBd>6Gteu&=)5rE;Bt7ezPY>TtuQVlxNt)^>^t_i;@Hu3%1hRu&rMY8%L()(`v z`2CpV9ZK>ocb}`LWDG>l*5qca-zyKHbbCW(5;VyDQFWpTAx zuqRwxCHPVG8I6{R*45@G30L}3Rk_=Cagg(!#s%w~B5hmmN05`eyK2{>!&Y6y-SNYD z*x-gKuhj6FWUmr2+_R9YHP-_-^~Iy77g1O1NvFL-_)*MsMxo)K7|~+Q;+(P;UD8)d zyUV!(n)P&sy7VbOPn_J=w5I0bGpwwQEu_E7hDCGpdW1HIvOeMcLA(lYdSAs2`>oVO z8G+rqu*5hy%puKn{g|pzc@9@`a&S$|j8tLFUZ!l+rcJDS*zk%a|rFb@E0n8Sy+%jKth0iK+SWR9&Q z?JfGi4858?jDxbn?Z?~Lj!nn6B}C{73lsbk*A=yNpQ=|X+ra~rvw`xK7Pa)g($9cE)-Z^S|M>2Hd;T z9vMEf%}YF4e>By8_(g=5CvKI)iRxAL#EQ-jc5Y4_GR>C`vTSXKs~pY7!o<(FK1yY@ zo$Janbk~>JAt#02-;61f@GEyOwhRmr+!VPwqRrKctzJdkbdFM7s?=GGl&#AAtY)~>@im>h;Oa}%K8nxu^tN63k`j15 z8=D8Dli_nu%x^rM=k3XEV!9a{W9Wb{vGwZRZxmbgk>INFO5*Y9$_La4uv) zopEm5aFoW%?TylF(OGQ0N4(s6H*ZL$t+t&z^cqSB|CkWH(0 zQfIl)2+R)g`rs$2I=;W{F15Iq;|ccL+=C{a;O-EVky;^3EeTd<-+3+Pw?XUn@%r;w zjR)*3Hupjc3tSx+d{yLk?P+~}dQF#rr0)$Jsn6)Go641MQIZEX=ja2ol7R^hw^ex^ zmN>ifDQJ}QblvJ3|I@Kw&YC-XOOAcj{Vn~kza}$(QIc(v|7}z_5*#Go@6^|!h*97ah?Zv$EVexWD==C6%xY1-h?T$Z!>F3<>a>jtH zPVLh(uznpmOMG)Kvt--5TQRWTV8ogW3qXAIFdud&g|s?-AO}4X_#Mr&r zwv@DwRIZ5pelOQIYjLbzaZQrb-cxp#y!n2cQETV?#&697^$Ogb(=Kle!mzVKqd6jIehl~?%&;YYs;B3Vf{EZfx_cl z)v%V-{);iE!^8;MWwnQm3mDwQ?a8~|oK93|FROAh{g-89M9!CArgU&0a%GDKFHqCb z@NT0>MXqBksNIl#dud)VCogx#o1Fh?b;|1$U2z%>#o7JCT-0H2& zL$U>D+4*Y;dv>l)h)L|(-pgKb(r1hQ$>Tup&D5~@#E-6gHG!p%^p(Je2nDW^xPUIJH#g@`$e{F%_78a?;znt_FW%?T!_qw zYfBMXB^7u};|8`HH)p#Dwbtg=k&`)hz%s;3; zVy2a4q&j)cClkxHhtNnYCWGI5#QSIGet{caDK7TpbeXqgp1+04w9n*G-B&)kxL4cU zPb;#(Y0nuiwv3%Occ6eOS6gvPbGzdFU@Pw+H_@0#c(@&lhLt*KV5DD5aAfIM%rB<6 z=XMl)jPbsK(#eLq@i*G<)_X%_>lu=|aC}i$SO2`;)jrypr^0D>@ok9T%KhCYL7zJG zST~PLCJt@aKgSl^pF_!@%V;=mT#QfOq_pq1=j0XIvs8ZX>Dkn+|TmT`)Pq$ z-xug^K@59X;Cgsi5bnP!kEw`Ga#g6l>)3C#d~1R?)=!Edx$Ka?*_f#9bd?a5bwRPV ze*A67fOPJ!L2J~w^8q8i`0RJVI$_JHhKqZG>$mmP|CtbS_3qNkw`HK!T2cop#}~0h+&%K}_a63_moMrUst-2kx(Bix=L~rT3y2qPZ!Qq+ zFL2na4_|x~k}DNCX!_~7BAo#n*5?mjl@J4^s8_IdW}Ucs5}$?b+FlT9g1Qinq37s1 zmH*|(InSx_?I6+;!baG!hueBsD89@+|D|i9otN;l>8cJTr-OTp4mS-lsZuwsvd|Y# zvTv$(SZM#W5Xi~N)ix_Ckhe~g*BXfEt~X-cQm=Dx-P)(2G^Cu-o2iR=Y|)+OoJHy; zUAM)C_1l99TGv%Kyn1DKX-lp%fl$TcZbxAUtl~zCMHaK=%p+u2Z>LQ!-9m#$f<+C% z35LA?%Jvj3J;M7+xH)gMDz)fJpI>10E*v5>?QKo| zr-wQA-*^_v*5%vfT5=}woLp6`ls4~YSD~ybVjC|-s(1q{aT98G5(0Bq)@>psC$&uK z{TR_Rg<$ZLQtWh!l7IWz5v>@F6G1HUxi79b-a0Nvs-c@EyVFfmfRY{A zI?phk`CD+2-=w)I(HO-2G$;9Ao1p3|Ik0IvGvr&A&a8cdLGOtlmu7F!Bp}c>@x^dq z(rdZA@|2ld#_(z*?ect8WWX!iG)=zFiK+xYso5MN?PUE(rC(}z(Te*z0DlFNuJ?q1Vy-k>UvE6?NY2Pe`~E#bN|gVS*qbK#MvIJy72toM;Sc}WMW z^$>shs7<`cc^>7hnmd9Tfys@-(Pg^^Zv_f-k1ZpfM=Nr&d!e6d1dQE zQkZyawscz&@Cy+lC$aIZ%hmI^Ir&HnbVJko@}2{-6PE(ie=U(BYWqPtcS(TLS=)?G zjS%XW+6m&F$WFL*%tlM4ceWBVuaJkmM=6ExBsA zwaO=W`N<1mIx+CK09vUeV0ZArJY#5`AUhFN|f{_YgC+o)50> zdVINONV%Ohy$wnI>PV< zq?vWL|A{}{G`3e8wHnZEE#cmhpJ^G=ta|uXe!&to?s_1FFP=R3WkEe~PCfkomyTOl zga=cz*gI+?A&d(}N?g&uu>b5D!Q@9ALtLAHwuT6Eg9w%?UM9W2gPut~>7}VLS(1>T ztGV-?o1B0w!L@PUB6t4~!&BiB+Py2r$~pRIlmxUKd;NRUpc(f+3S2sm0s0eV_57g;pqOaqNyTY%A?|OH+(Xa zM!CUKvN}E14ar^Yp{t8Hv@MWO7&=AF@yIO`Im<6UZfAYKNG6v1BNl*?P5AExnjNht zA&9E<;4_g)r>YHog?66oo9$%SQP$I;3|1mxy!Owh9VyGrqes~~b*%5W%g<`00VnL*#YdG@?f`I~R7fJZ=)Z6}=(vc<`DWgJo5B9v z*uE)u+Aaf7D60Q_6}&w0zL%u!z~vHsKnCh#un85P(J9&$S7Ic~P5rM2q4a=J@P$HV zx(DmEV(h6CIq%WVf0zDliZ$d@5N3Cq<~l8phsHsOl}Esg^|U?~VI)3}-@~wBIGoD~ zgUmSN51OVBdRwhkH9mZr>4l5JqrOL_p(C>s|3s2n_JBNN<8E4M#wVA8wS$tQu6#8) z;4U7RGLSv`?ZGJ1fKJ&eh!eG%H&|#$HVE;NdC%Uds>4QvWZ7eBc8wjw9W@vd)PIr~ zoFIz&k!Ehq5#P`Y0F&oekvMMLNO_dLUYi&xa6?kT`ma}_5E2(icnh?WPL*Zj$tA2% zJ30yYfmf_#veB1G*;lMr^*O9oFUVLpMtAPH39AT4r|5>=rTb%OqCq-;_%xI`fKgZ8 z(oG|&HM*4NmML2OwyFZ?XIJ$iStHLnU5`!%1Cw$@7|Al~p8j#kg70Dr!$uG;%Qe>3 z+-YKnOAD{P=U$4mI938xn5TVCmt4{lEWZnIeG$Dh_tMXhCB^e8eUnh#SN(d|dQ7$l?y);3nGCLe1AX<<{;X@e7{KdaTM^ zf>seR1<^vk*HmyT2J%JVD&<{1MjuvGbh&(8P{1ak-wk;=%3Eea81VZ-KB6p!%!KB& zp$L{+X)q)@=y?RGtbVm#eaN3s43 z)lwF^(Arq3*Apd`pE271>oly6-jUN;o0*UyGV|xNKZp^s3fU^amNTb;y82BF7l9#R zHJZ7F1lv#Mg327~U7!AQRa)D-^Va~|A&FQ#|Bl{VP8jSAiAFlyzdQouu3oQOF6De$ zzP#izKy#b%6~+h+^K8*=HSuD-MWY)I6ZOIO4Lg{vXGPDQKW}Akp9)&F7cO38F&k#X z#lzdalQaaK<%DcT*ZRIG)D8_1IXF1H=>76IOQRwZ#A(^hM~i2yf`WqD;a zF)JV>1n=tAtMcheL2F}WdA5tP-90_q5B}JRkLWW+@Op`4Pn@==*dZ0y9q}?le0~8< zfB2FH^`#!S(UVfUWykp_LmxlCvYAuj2QNT@=F&HXwD5(OsI${!CQo#1gVo`Jp~8_e z2PV*it(>daA9o4F=Kr-3e-`BV`n6Jy&c!e~g%-Q-#l;*TCsE>l!ewr5Uc#sG$I$A! z5%Oa&LzmNX7sW`IKbiM1A?%BP@d^?}#Q`3eak#sjZ!!>2d3H+jlAPE1N17tjxpU{T3k&B* zOKjeFd*@ltwQ!SrY)%VFQsZ@WbnN`>@_cAE{ItT^j+B%XG#LM}nQzk`$W%wv)(Xu= zat%Al)zs9sj!gd84GwMiHyD)jtWn6-bVv{X0R}UcNeC_Rx-qqDLI6OSR#HCtf zo+9LTS>)}>%YN~9O1~14bB&5wK{Nc=Sf`WgljdGS|u8Nm# zc5J&6H?6pVOKYRhWNvQHa{+QnJWAnDj(}NJ(y0=5P819x(QxT#Qo49j|a%IOO?F z3xH34Ulii-9S$a})fs#P1KBMW^nAx+>Vrwx&1aXma&mI!SHH@Aw*GZs#bx`m3Z$pR zq@}63V06#+{M6bSa>~&b$uh6aU9vf#>9GlVgs7rd?EDI z4Kxq%L@l4OYJE(XQ-&Wf%<5gFk%2?9+`POpLl^j*n@>B$B{};cv5TXwl0$&F#L=Z`%;IRgA`R z^mTQybPl{~8>e!Jb}fKs1sOTKrdWbGkfq?{@&GlKI4-;CUx(W$aLZneDmj0MWOlz>33WOkqXl$?yNY zQp#hv62=~;0i2&?QfgF>G{?Nbd3VcOmB%w`~f7v1EhPBrRk6u-1 z9zNB;Yc?=*nG@g3TZef@J!K9S4=u*AszBMZGvBz!I!x-1;U}~GISBfYqIhJGwI$|)EFecj|oD>8?zd08o3;Pq6v118^}!I@Vu~sc=VQ1FS%}{=sO0~H z!p6o1kq{fVIEaHNFvtTio3&wc*s1fYF2@fa`gRkoE-wQv{*475X5$n=<&r4TIXY4dw zRv&DC#wK7#+_z3UcpOlkTX5fqbS6oCDJW2Td zG?*rv`DkQUlF0U?CpIntK_dib1Pq`c$j-kOeQvYRp+8;c`)K}JTp<5xWY1?ALzl7W z2PWgsNB=%=Q1|W5`ru1fh&N95C$>Q-`x<-;_jLM9o3}2fPRm_!}cA&hD^xuBosq{=E%K z%)f~&{5|(yye%mB|I&|1B+&0-0IooR0o*_~$nTGX^>)(G=lYRY;Vs1d?_v|QRWH| z{hHdDB--_-!vXm+$TQH^udJ>T@w@YY-w6+(kX>5bzAKym^FHn0 zKSJMjCjak0{&OCIEcXAi)fM;s`O^rTeP^-N%+JA`J20c+KYJ?ImM2KoaDQ#A9FQi@ z>A?)ZSR9BI0LQ*OOS*(W&*lD%@PNCrFCft70JsJ1B{2x|U!G?WL!ccT8k(A!5rE%0 zge?VFCC64iNY(-n-+ZO^l}qPgbA|^{%F^kbjOy?Al-ij{h_th-T=^WzOo-($#tuSS zPXq)onfyg*2Xgf#3QdQsJM96cOoHTMO-D!OHCf+KjhKgKpFoLv-*jPat{(KFj6pZ; zb~0|zSpg_uzJC2$R7QrqvIt@c?ye=Zti1j{Pm}`Op|~VYPeV6a@`l1UdEct4NA8Dn z1QH@Rv|%8ijJm7&okxc6kP`gQN7)o{@P^rL$Myzok=0(91WNfvIG`!RpqyJ*<0~Z2 z$Is6Xj?TFE3y!XTX;b_qCd7z`1^15CZY{@81Q5 zh2d`SB^u$k0qGoqANvObqk4GwDBLZOXX~GnMyAk~ zGDx-=?hrB%6)xdKU~y9F;2$iGmfVNC`E86Dnw9YYY$l%HEop9T^#c*uNX;yzoKM-G zd_%<@ju{O4DqI|1^rvHdNYb{Y2=?fR=WTUauRyPYApU?yLGZE{lBNnhwY1E3I-YF~ zxgkkG!Cq2YdhSDPtmzabMM^7uR(Z{P5_Uok%Uc;L1-Z7QIJ8tqHb?tfR#vucg!8ap zRq%2@IK-hMi<=)fL!|{TH|FZMDpk7k>bHbyL;OQrQHsx>>o__VJC!}pP=V{nI#W?o zBM8f&BNnmQHhRnQy%|m8srUKa~YmBH1VE zfyoVShqVhIL8FoFMQ>A$uVAwK$&u^fTm)pO%3SY6zh>*V-uQlcWMXP+8p-d$cgeH5 zJ4jIc0SygJsr{-r?3917uwbKl!4QFKFx~>*0qjXc#LITM|GlQi3BIbTs)WdQ3xpQ9 zetT+a3L@^MCbej@@p7jd(v-5Lw(H|@pu$Y}GC7$NVnj2t&=t-PKtpT}w3ZVg)ZLJ# zmCa2_P2HOIW71)bay;1`kZ5O3p%5B^t+TPQQM`I$zdFp~dSJ%QIXi5m!9PwEc z0DqXBw)AdoziJ&C8iJQWN%IZdN}2uY%Qh!T@FEPcKTnMjp2kZ^NT{pOOcj0xevLsX z`z73`GFQ0IuR!>Z9Md6I7)&x)Y?Vaqj8BWoGiaxH@E{C8L~vweQ+JAlg^A6^@>wR~d5&P+Yw=;hHspj| z=k`FB=4W`f^HhVtgVexI)R~f}ux2N?r^akiR$Q#a3?WpsE5uHDYI;2F0wa({Rjt zvMq7&A`nY_`SK--PX3G5l;FM$uunlx!lR?b1Ic*@3(ZIn00>x%FWZtXsGFXREffSA zO-I_IAGGpZEfWu;%Qx!!#QX{FO=%Qd7X*OH<6?S^L}_kpN0c$~U0+2(x!y`uSl3z(7WEoSp7h&QBv+*_!T$RQ>(^H>4TC z)Hp!NTv|ni`1bAFY-YpPJv=-}$;e8acj+J)x$-#YLK;5KVvEC=QN~7mRB9LB=dstNPq_w-1F55gxUq)^Etk z9NV9vs`~JQC`LrjnatZaZxF;iGd1;WBk}SpXM`se{kjJ^M;>rWK(#dZ;?Wel9a@-dja1C`~a7P_H*UIK)3>yc05Y z2gnr_t{2~B|K;!i%KS@?!ZmOFhj;YROZ=C;`~T#}*B`?&|G_t~NX6^hhsVdd%!C{J z`<3em0}yKa`_@Fii;IeCL7sy}&JzhX1iEm3@FD@yT)1%I8ZK@PgixP%?@H&2f#w=f zBi-2Cyv@kSI542`-L>S96yjBf+-XeX!p>*A<$kA9gsi=;{`Z^Vy=g&Ig7?+~@EQOP zr|r*cz(XXbq~HMVhqPa*-~~RC#31Xr+bai@3+_v>xJ|$hXqIy=_<+_Dma#BzFfd#2 zLj*ar(FK$%yELf8^%A*|2XJRIUq8oB!-S}Zm5LcE4}e2>1i^D-Ym4Ic?N?vE+^wmp z0YJttDkU{{yk1Ge$qB)w9~E^m00dC+n;2Zd_ugqF0)_D^(EC02GAZc}xPglGW0eZ$ zUEUE#C#SJ}JMgZ_M$di|=4%qp&RpPf^ucGM4vvnt7C$F|PkUXhRh)4GI+Cq@X^K&N zZd?!_D)c8{uvfdPMTL;K_+^Cd02dd^sQOTZ^Ts_jpDv>dA7Lv3&K_Hcdklee{g@Pa zxL-!U8Sl{uQ2lRIyZaRqFmC%5~dG~`$?RZ1$FO&jzEA-$X%LDo(j^LNoq5YO?i?M^W&G| zP)ApHsKSLEf`<;owf!+ngW9)Oc2-9aN%(CS`1-oKx@?;TX)w3L&BmMS%fzq_Der%u z5d<5;Yhbg$Cgot(>@a2~B;;{qo@oq3XLX6tQ)DQynz;nd6TND9I2wkE%t=7;Jm?iy zS674ALp_BcbhN)N17X(Z{d;|Y5-_=miISRn3*4nPYt&Y`b!Pw>H!{BH>({R+o?jca zJIe!sTXU^=`1tj~R1$-5*8sKk;=^@r0I18rq6V+Gc3A88vt0ejX=z*gR~*jtkIuHcdb5nx42ww z8A3zlG7lq==s|Zx=8t|M77{g&kjX(jv_FH&L4dUO51R$?_O4jv2Ggj+U9W_rS@-ujYWHGBU3Uu4)PI55|ItmRQeO$C`op&aVRZ zuQ#%%aSWkl_W2(l84tTDx+qJ%EPQ>TC@*g&$}nDgZ)FJ1a=?D0IIKQ7A+N{p1|w@_ z$NFs!6wGAlR5>m;4tSC*-9A0N7bAM+uN^LSgf0lI6FH}L-f0K z7KiLWioZLMR<$tQDZn3y(~boGg!O?Y6_j$ZWujBS^(Hmn1%v93kcEN3Kg~o|f+~B& zx}Cj!$1@iKf{2lT_OGyYP{5*uChc*y!)~Sc^8n-}#l=59K0d#_9Ao1>``LMS39`5g zRWJbX1VqmHBB2NJAc{W+Tch54 zt0OT*0J@ZJ4HWkXW`Wbwhj;PFpz|F}`uX-KGftJ=yQ{9T(FS0kOCi7gN~BX6914__ zKKHte|FW&`b*5TLu-OQh#+7P#o6Q%0Gcc5$Z?BTQtEk}pz{!w$%Q*tP#Q;yQ9vD5) zsd4pw1TeJm@*_Cevb3>j-Cv#;g6TqSBOw1SQD_E}+Mw+5!UvESlAh;irdzhIQg#^~ zZHDO|;b}I05J&C*zDb2IPhV-*zD0{ln?W`{9InkC9DpHgtd*@Bj5NR|1`ZkR1Nc)I z6XMW%Ef#Up*v**2qM|-dF5oaB`5rA;h2?LjzpT%D@3ZsHPwnwjz~gJBTtUEt194fx zR|%lP_)oR+Xaq3OJ?YB#Z{-!$A&RfCNAuKGI37L>2j&X#(TM`yYfkUe1*{M@3&1@Z z!d5V<7M6E%H}T8xY+isRI6s--ajFe7Pm(`>p6I^^7!y+Z^HH@v!v2Io%O((Id{qiw zpk?beUIjz58(AOKV`X{Kd)IztFlc!jSpWkSE+sIsHNT7uMmUQ*?{>7K-IFS%R%+`D zPy7r{yO5|1u3>X$hw@KU27=>>k`f^REza-45K6ylRB$y0-ek{ud7jyELksJYz~j;9 z@k+|dIgXn;D0ujVBNYIjNZJ8; zZxH1CJBvL4-#$Y=8Va;4pn-4(#j((om{g)%PWTa)I{qjH-ayJg@&c(1ari0n9AZ%OCw-M1P zW=g{Q&s+nlF*(1BnG~^J0(csKa^C2sCQ(2PO)t^Te^D=c2(;DU;2?wxVTjVaE_=xA zpDFOBuE(oIoOGcm0HxO;vD;pT&9vZ>NLdLvv(?HV%Y0ju03^m6ySw%M{o&~3j=zx> zkiV9YHM%Nq6$54=<#UY$HsJ3G* zBdqitZ7ppaEzJ#XI2+qLnA=$MuyeC>v)(XsbhH)b;P|i4*=_7iIieXt-Xah;5VDew zR9q95$J{(a22SfXx-MOkgxQ#_N$;g~+TY z=zcbIzZ<&W5v}q;q>3_^b&p#A?X5@5PAbfNkC>nH23j1cukyfaDdv(V%yZ^5RkYE< z3YwiK%FIrZ%zTQ>&+oQXSR=DsSPul)xK>n+pE*9Bbro7p;}KwWk+KU>3mVG6oUlk@Rh*n75xk!-m@jV zhbMy1`W)$Ip4&X~c8?`RXg%>x-hyw>LpQyL?7FYZ{D$l3^?06LH6xNgr*R*h)T5C( zTyA}v+<#-(lZ?0MXE%!Zx0;0)#Y5)jID=#&xSqs0h5bs`XPgem$gPCR2nx=d;Upl$ zaNgmK`BEU6i!kn%>}!2V_w+8WznME|rrE6T^Ld6WIgi0ztX=DSXgukb0{0z-IixaW z>6$yjpCk;~TV>Xxd3JF|bn3||Duv9JexI(JdhMu!y0*E7|F6f@eZrsy*XzB$ZJp!! zI>oac?eF<}BKYxbTi&nYvKG%e zwW6A@@EhF6wZxC`L#l5|u+I78gqu9!@Y`S%pjdC8vrxi&#@{Pm&_Bc@=YDu{7sp$D z(?nyF(&UN9SOkB)^z}Qw1~f_Gg$YM&&jcU4yM;*mUWgyu7iBNpaUZIfIE}VAG?fj< zO*J+S6C)9O#FI&LE_QVh159mvi*sHd zHui3kx&3-fze~@}iX_-5c!!%|EPIqc_vb=LuSTZvuOp%-IPH2DIezS~ALDbPO!wbR zY;Jv`W@zR1x{^~O_K}Y~*XeSTz)pZ)=E~2bQp{o3#etuOo-En~>$M$T!{`#RuO+2? z{$?3-)RqgqXpN=U>b-Yy3m-C|BQ>L|&RuhAw#enlAp7ZBeVSFG&|*7I5z<6jcjLjv zs4NE#+LuscDJXROAQVb0wN#r}*6y5BftiW5=7`6gHrckMpf^7jWs ze@kpiq&wZr>(Rct8S2L`xU-Fz#_{-jJ2k`5D_Rbk$gInC1R?rdCB6|4o30g7wS}u+ zDaODCw++#M>cshm!VAxnz%wn9sEK;F_*&4f!7ob4sB=l@*k9%<4t`m~Z|mvW_}(Uf z6KyDp?w7oFP{P_Q{Lnwt)5Ct}v{3MKNsZH|Z!2>H&D6bD4Q{Q;gy?W;=G#T0KQQ@| z3q>>qkWcGVeByg#k!W!6K8CI9=6S}vx#cXwuwJqLXBSrYz&ZITD+!EUS5{>jH54E()x zEqjR5;_XOd1GhEZ2I@ESmR=GB`gcN!8U24HZeRE%oV&ACCc0&F_H+N4&_j#r+lFsY z*#got)7FdrJq2oMC7ryCquiH{oEcmhiasXQXhfFSWt51KZmS?EF8sym(z}QskB)pd zpuy2@>s|UggY~`<+a7;!omxOk6KB#WuR`xqPG*T%LhzEq{eieWMd43h^@ZLu5Q}6- z+W*#IGHow7_HK=EGbm5rA!PKAYOf%d2pSc_`H4_ecgLaI_&itMB&`$d`L@+=u`s9P zLyR)(&}I~ho_b5^GS`dAR!NJ*v=Y)j4aMeIwTs~jomb&Zcksx0rF9vcbqyQEl~&d#5FRK@2yoggdzKozt>D_H$Eid@3z_CLdNzO8K9 zfwSg$a&Ba+unR6)C4lvcS2}BRw0bA;{Ho%MQYtwTJ$KT9nlJDgYYs(f0SH1co)u7txVBuWL}*tWEcI78hoXlILR0si8ZWpIY}DQIJFy?L0U~ zX~>IvSM80fvB8i)8XC{eIHGM&Q3qY?tsI4FKTlM!7>e3SS{0GXX7B5K@{pGU(-2zhL8gS7QZAHuHEeu+S9Da&Bpx~ zM|LTqO-WSY6Z6AszGKL&DC#Z7cy)TEx(76!9+#-oB8LNdcOz2)AQM zIH3 z``0`P4AUGgx)j=_mV~JyOPcnZD(^HEBo|RLxSl0GX64}$v#iw@;vhA=RbQz7g5r?Y z5aoI$1*fT1jmmGXu9j7i`%ak@ATaYARq`%6&0QicY9LX$mmSQ^cQ*kyC^^!2m%6~r{Q#qFy z3RsS)>GALKdzz&=c`tG`9tHjj-F|wpu(B@4V=5DJs{&uDsg%6@EoeLW@V`EmW8V2x zEfUww_AiqAZ;)Q&W4?v@=-F8#cCGS<1_lO?0&n_1l?tXr+t0O@S5{Iw-unj~mhE&4 zuw%c{5^*Q%MJ_Ee>lLX?kbE&lQbxvMs{VYoYQ9eQ)IacXG+MbKEfN(Kg$j;D)v}y3^)#_6*sfiag1QtTY!g{l-%`@-a5{NgTKFXMM(1StN67 zB=ap%3+$!KIRr-?QX}1Q2k|2D`4LRM(scwWxv1 z>3LVgfZv246J6-YrQQPaJ#IH2A{eh}@2U2JFBQ}z!BZMbLW=-0eeiDiG1qmEP^6TE z;oco?RYrPQ9c=Ji8>;r5(O8;@M4k9GD*XJ9u`4I0qop)nEFq}>49+>wSXwK=I14P5Crio581jGO`qbg-?vBbr-C5fD{Q2{Uj>lvj z&Koj@RTZz_+0PpW2B7R0~^Vr+DTh9WO?`I&6^``Cr5jxJAZ$> zWiL5rKmRJdHQ&L5j_WY-^z=-)pK06{Eo5E%=aGjaK?u=qT9GbVD@HX#o~FK` z0Vh__?&j+1YSj)#6LTCHd6kH&^u%IwZ?Ab`Vq#I)WqI(?&^Ke62hOYv-usM2rd^%d z>y)A%yR+hF2Z~9pzsLlvM<CPxqTu*~II8I7>f9^TqwQVTvkIpT5r z^Nd!&y8Ta2`cRn-0}c+({=q@dXW1(XNg{*~pFAO087adLdDBwohi5+Y?GE3|e%miU z$f>D+E%s%~%F7$o`Qq#!9!@VTG>2V(fDm+ErVgd$tGDDg% zzPULaXPPwC8pVRCvZ+0Z9xk!yOL>F`GiO~LxWDguft2n^x^(FJ)|O$z8xn=ao^%Gkg;DT^-fxNrz`4$>ite|@n%(YUf>|yVf*5gpa^j@0u$NFP zpsC@Zd|v0`m!>l>pI82~{qk;vEm`uTt|6V?QTse%Z}oNG7`N(j-M*n}r(1682h%e- zJzcNsbJEzE_<&ifoO7hq%5ZtGFh{-U?g$@~LV_L)$Y{A89tQ`<8pveCF-5;C|CwdEMj&J z#;ZLJR==+ax^3RRbm@{-jb~h?(-JonrOQ{Y&~O_Oq^72-Wt}P}@ ztHQo?OQYmvKyWbe-H&fuJ~Hv>)gg3zPMi=g2lAf6Ru*#ldlinTGF%|pz@m7~| zk;&6fJHxb;6tuKRSQ0SVsRoVj;E`!LX&=JUELa`t{_bK!$;#=yqgiG>_sOPaDm`2b zH)Q;c!$PMJoeWgMd)k$}Z802~3W>s3Idn$j%Pa=iKkZS|(!NYAGvJQnjFU$kZ}%xm zN=kMYn=2z=ItU1UX+MU}1ocjT%53IlwP}3=tf@-ntvivZa9nM!yY?JT^TQA3oJC0} zt=6nR;*_I%9eavyU-NQAf5z`rqFs!I4v#BZ0H-h!(w!FG)Me< zdHMT@2!pMvZ6PWl*j8jPMJSTXyG-20w~@@R+L>`*2N9rGTnYOPd=_;ozjNQV^5KvMFO}$r^Q^#wMxC z+pHArwl&YHS$fe|Ia9%IbyTRTs!GsfmlcLwZ-0Ht@o)dzhCs5dzhCn&)6*-sx(ZUT zyeQT*(bK!Z@*?L3A77MQ47>V*;OCfY6cp$65^v#<)6umj2sv~QQ&&5$Pd-9?vK#C} z%TY;((?7MfEqJ^~4FyJ3*Xw*8RDoP$@tuC<oy>9M_ir*$mDbl@@A+{!mMm0X87Nt~9-m9L; zZGs=>F=?khK0aRFm7Z;6$*+>o(4eiUso7p0`glh!dUAfg32N2G#>NjzeuwQpN;>X~ zcRmf|s};|;Ogs?GLbsi-a&V5c~AqqpDMGH1xi5h-YIGR)a zbbH<+H_+rsK1oVR>A_oh=HGM#jj_L0mTc>MY|;dzEKc&$2mH8FA1s}oYYu0??t{*& zw>Iywvy-~G00YG?BJ6X0xFtjBsJ6%JmW=K6Wch#BESoS)&gYMXbH~O=@zE-=nBjSE zf=>BA-scDL+Fu|=N$But4VV4wh^S-cj<-WEL?&+1CH=~cq&>%5B;wU;znl_@OwRR` zun=Wyen7tG-z9bwa(22`d;89vDd->X86Oh~-^NaBkjINglvG7RDOH)h=CeGmKeMRO zO4@eAfcUG9Wa_b$rp*Hcd6M=E=sZF-1+kIH*Of~gUsl(-x|sI z7X)4Ns_BVYNj?}T^p7z7S^IPF&tFQ25E$6pb(m~Y{Zb!ScJo<4#L&qCYO?VaVLK@_ z;(yj7?6hx-nhGh}mSp6Iw@$;q(>?9{PfhTr=)L7K@q@n$4w1Hn)#7ocgk9h1l>VoW z?=s&B<+2EWmZicaE#Qt9WgPlBja`aH$wv}L$~2jmok-2mvDnFnKv7Zg{_|`jucXLG z#}NxMI>Ea2sfNVtd?==lE5pAJJptWpuT6*xq?%s2eEC&ipiG7+N2%3F^hy;poXs8? zhB>*!(qhY@h-L<#gpf8?m(@`knEK4t#fe(+ud4Z-TmQnJ&O^%ubp`FPnG=O^m3!)> zp-t&Q_(W0xmnmWgjc%^I96d2MbC~Y;x5lBr_;v(a)cb%9&$Es@O1U!H%Z?1<+pY9cG}IrEmk zd&Q(EPAOe_YGwxS;meozp*N@LH@u0JzdPTROjZXENO1AuPfPxpnVALv6jqpluc{o; z9J-`+(2m_s4;FIWG%PH%p+4oP71qa}4qN0;&CNCPbcr-Xv8d(@_y+{^q)8ED>kbr9 z-WOPMVkcvk>*jKzq@_*7RhTZ|;WN>e`ZbVx`N4jYjhgSamQmTD^j?IEsTnVI>C;!U z{_SopgzIA?(rZ$lyg8oC4yV2y6+|=j0mREgMfg-yRHuha9L}qwvQzZ|L#0;N44cD@ z;R%QGgzTozJ#b#0Yzn>R>gL8}ImoG{tzDEj00T4Mnb-y$jR&m=T^y6ES!C986WEX$ z3}KhZ*2QG+LuPn%0OqgKWx@^kKdm%XL!*{Ifd0mK_wE}23Rj?^Ady6XOfnz6zR=Xh zqlZZL+NA+tP_@mz~@_zkKf#^J%?_OIDscJe( ztYX&f4Ha$cDfH$Gl$P>36tx&)ggd6 zAbvz@C{^q0a$q~^c^`dOaeEo|h&E+V*>UVamN_PiD zDb%CxDb*it?QhJO|IVg>r@nRn{<~;4&Ecx1j*gDQB0!JK%*@VhJ{yfxal%g7PSlsF z$87(FM{TLp1G$>bpJhKH_5nR!uWVA%u$XU;du(fKTUyoK{fyscT>k9z^;p_vNoW8iBBNroG{yCwiK-R{f$1O1#cyj)(z`Wr<%Z=m15QY7_~fI_(XNr(8o z5LKt!p{Q-gx59D@u3IOh?*RRx&`1Opis`mGIyo87{`vrLr!SuJU)YoLmG!!aE4gpR z(@)>*(OmhrVg28d2}5)P1OmQDNJdt>@^iDU?ja^$S5ZO&7x9x&M@C`~}Bnhe85n zF1~z`SV_U4-?io;=()rB`swR6?Bgd9FMQ4?iVFWKC1kMur)PUbtX5Rdw~o`g(!72}X!&t>%b* ztkNkRU~T_b)$q-^w!Q-W#}=nhj%Y+&IRl6&(tze*?D0uxB~?_eLVb|2cv@jUr&jAN z%E-vr9?ONNs;W9VHg+%_%&|P4jJn^~s<{ZPu^#ADmTEpdlKFJ)?34_;DfUe=@#BYZ zIXBoaxeX=nt}@rdP|%2Z3KkX?g37Sobj@aRWo2cQ_#Zh+zackLr74eRx0rfE{%J9$ zU6eP5=+6D_gSVaMuO}(1G*u($9ZyeBg_rKj{0GK5f3@d?5sDE=LhmTqTH|<3vD^&H z>7?GxdNsZ(FBe=oy#ix0(~FjCkLLqFN6c*2>ptuok@9)V@LAon2aVG>B<6F^leDQ^ zxGYCF$BA9TS4%3X99@U*q3eq={DHYox&nUnbbJ!PZWgE~(sJ&rqn_q!2+Q%RxGd#N zATtucthTHMWB#GYCzAsf8|_1O@y;1U#hdrTG4YBG;%I}n@AkCw&x5Zim;&ofVa;Od zOOmKZFDMfaP^JI;VYR$PN4b-XEsItV;Yw&nsLNT+r-lJi9!9--FTR1BiSmE`Svurt zh@1zmA4E;l+`d~`wTh#7mGh-CnS?1ET`O*4b!76rHw`TM8D#RT#&l%)tbc-lV}(`F zC;y!7XwEuwWj^F}r}Kr!wc8&)DU(o<{zu)F{PCdbGCyhH?711YWw#lj(G7|NfAX{& zp8G3yr^qMs4GUh(Do<#tDFav6{#l>c>%3Z7I~yx_5|g0!nV9h>p2=FA*^2;eJzG7J zmmXrc)YX(SdDo|m``Y%buuq;=_kS)n5vXuN)SkpC?yFMYNXh$b8u}<9bt;N2s?_@?}=%ZJ44X>m^+^8nS>j1p$>ML{c{Bc5F<>yM4>pjEhM_EJ`ok#*xBhQe!UOR zW^_fAaZ`DNyR=XA{=}Fd%pmCz@9ag>{3f1?B96v)<%oi@TP{jT-#c|&>~3Du59)SdTecjeZN8whc6@pxYI zdZ;6Q?GuBF34$N|@bG)T8Oy!w|1$OL+Un`Xe`W#FZ*g+I2bu_~=PzFzy!D-(#;&gL z>kpg}w#$QDw0tl9hb)_nxG&Mr5K>>OgsnhKMK#0l^O{Z7kM=koD}H~I_Si=tKXJv$ z%g1v5h(G;-&oDVRCskz90VPy`!E5`2a(>U=gpVR98dJM*-^_d+40<+qGwRtySM zXcv0&4qs*7G3Ms_w#WI)5#$o1gr<2-TrSNt!kDj5f;Hw4IV_UT?eis@nbxq|fpBc- z;=cF8(&EXNKen^Sg2Nlc?sD;QDeD-#ys5nR6s;ZVtfg4hDgO90j@id36TQSNBte~lxO+`hY0T^n~MSWRj7$7BuY%q zUrz3eT-?9ovJNg$FvSd#hu) zqIl4=uwC`nuP2eH+e}O&RT+Q|0a8xQ&r2U{&Q*9Ga7VG2GN8J%pR<5m2a*?7@Wa8o zuzt9dkM|5ZarTScR_GTH;lXN(S|E5XB>N=A^M%^^X_i_RdKW0foTk>ouVRWpfBojP z^kNDBFSM|mw{BGcz64b&&8#QwDw_tc^6T4QxAm210s;e-tKFR}L^!I}afvBe5qhvk zax}|GeSw;yDjm%cr8W}^YHHK~u+N1^%fWrZ+~Yy}pW7MG&4f#xJAZyC6b*(5t8PsK zFth@%Bj+UxEW6SuwUn)}ZxSE}26u;-_v#I0_pT&StbT|9Rrc1+oAnyIpwvofX(fzR z2Ds|2#NtxzJ{ky^93hFP_6aVhB;3N&Uuj$Ky>M?9RbWTNC`q47`n^uk^vvk*R!t%EGV|5ii2k&j^ZDhq$sg)6{shAUv8+ECGrd6;bI!vVNChM^S77pHA#jrJnY*=X-DB^IUcyEoD z2e8_J+FJ2&kaT=zW%C`Mia>fsfa25$TL6nUfm!x{QF=Yq5ZITc%tXo{)(*YM z?00rlhdr>#81q$0pmD*JY~Q?Z`M`$E)2fgFh%{7gcME9G&&I|=^S-+X*q9OK_TNQ; z!QBOR0L2y2yxzip}YSSx@-99O`~>ecRis(D&ClU?Fxvt<+BGr+AsqtQJj z7OHm@liE3Ij}6Mkfh+NN9Xet!&s+@{`FMXOTsC$_DyH1`s5n@RFHl0$fcArloIQPyc=dCwf6|6m5ZGt4k zf!XFf!L&7+^Y^#R^CGd;ls81F6wFl{s5g0*V$_c>o#7|l5dq=HpYKEg+XkVg7;etC z#J#yb7o)1<768J*)Y6h1@No5SMub2YbF?ZVfJaaN{rfI6lL=PVT=m{~I^YlfHefLs zup}^Ke;z%0L?`Z@;OmP(U}5oQ8;3dYUFeNJjkq^}%)w6v2L=Xqa2It}n2nUO!9W}S zcy+$mVjv90qz}Xy>(O$YI)B0|*j5O7#~oRgcTt{8$qE^Ad47{SGkqtY6js;YuwMdez8R$b;RHvYIN5P`RFLlR$n}ahTyTw zBc%}^7Qh}lB@5epm{a=?0~(^T9nDCMzCI7OahuIkygmz@lw!>J>kZm7Yis#Mt8%u- z`*wf9e0g|j%;)bweiy6?&yly&VIajejEyA%b-D~P^sDp4U%<;qn)&VoVgoz-Rd%h| zYL7i`(0}mLR3DCKPWxTvzAho=ui)?_-==dRd4eqXRjM`9pVD7uj$lK1-QW_6GBsV1 zwCLEgIfv^19V?zulCd{G{&V!5zF|!0p7x9cGet(pZdnwQC{;ak*){&zkQiO>xS${c zFnAUR@^x!?SrH%#$%NC3K9Q442LR`}J7ju*$|Jv-d|Y|OJK;ixj^66bAm4LZiLZt0 z4fyM`eUp3jiJ@3Ky=C-z=E07Ji0)~6VTnEtxjW;w-*O4UTq_87^S7$**av%H%Pl`% z)wg~ zeeA(_J(tgctONbc!+2P{rv`DWipNL-z8Lg?gN+13;^)8ABtk6UvXI9yi`&KFTW?+9 ze&h3KB@ed9ian9*3(@w7ylfpnGr+!8FyBp_Dk&+m{%vs%KW_l{AK`S`dhkKBntSO= z;Iki*-?{0t2oe|S83Of3J|BlF!qfF+7i=vDAAT(C!ldRLO=zAM`2*YOA8O$;eBf1Z z;$r^v-Q#%LlST;W=kgtx_Nrbr<>(*k@bPvo=P;Q z^XN4TCA3i#{!88996D>bZW5y27pG24@2)K+HO}&LWRzV>>^;4R#Ab~)A(;})LQ(%1 z^&pw!g;Ja%-&)^2-!o?PXu0D5lC99?lMxc?LnkCnT$q~j8?wxR$}1lqxyN`O+UL)< zwl>=Q>JyI9u|zt}7613|$s4wbOwu%;Si-4fvg?D&~ z#h3}TUSb>;zr5(f70ZqIS`0(gFEBn1MDO~&L%-v?KNt+&ti84lNX&$?QJl{Qpteg!afY=?=kN6FJ@4u5h5q`bo1 z*p5t=Qt7$;V$Yk(NkE>-ypT~5&&_maek53Y=uAx_mdlqSm+op{Qvb$;*rg5VT z3FhaNe{gRjbd6f9ar$v2`mRwTG?sYvisu%ep;wRdkV|AbM(xA5v_fPb;(=*T4cGJS<>${jIQ2;K+EurxsrI-?Oq>puJXWJo6gxPwN(6xk zluE3W3broblLt;`5(JZbwu6W4{V$1e^2g(Z|L(mOz8-o&N7b+@e_euLDn&?Ka#M5r z>0OtNmg3Cw$72>;KY3^UR!b1g|K=~)82;w|H}Q)*`6YAvUYOuw3p|tWYhQw4(dL9V&~v+3xsHp^SB@=k?HXuEj|4Jq-1JwZxQGMCeZUi0)7Rq zUAXMWyBmNCOux1z)p#ADa$>nw(11ZeiF%F2{veBkg@~4C7zW@g2OA6Pk5C|ayfjWeiuhku^gn?S7 z2Lk43rBg6yiI=Zl{i$tMOSGZ)@*3>qT*uL`x5;R%I?_Ht)7#`^1^@|I>0TvID-KXD;3=GkwcaNLBqUDRd62)k^sj>q<}5-F=*;%& z*fn1&UC$o(RiM6qAmRbiUwvQS#}~OF{7WDSYigJWTFpOule9Q+0*>}I4hz$$cdyse*B2*O;1a+*Ulg(3)QXhO}9wd`TmS=p+b*l&Rs$CH^OX# z)ZddpvG|pHC&}DZiJ&UAnlll6@9&*5V@n&5RfyZ{^-K31C=0Su7D?|Mc|q zJrKY_yZ-fDo1UINl3jaPSk(|{GHjT7Yi;0>j3Oc;&2OXtXsXwE3h8ZI8p-PxnUDZr z#D-j;At4}VkWgvrG46Bb1woXs;I@g{TONCA*(%J)sQZnuAig!yfTj*41_`1y0?h22 zVq)W|11dp*!*c}tt5#onF2|qrWyx)cWU{TZxmFQcdS6M~;+1#-^Y1(-eY3CTL8mew zJ=)@AS@+GdVD0NGK1q5{ssqypaOu`6o}9fK`6ude@@Rwq9-6*UZG{;}&0S!rGj!Xg zd()xhOAg@KpZ_nZ_}SMNY&xz}=V2-KXz+OM+rr&S0U!H=$-Q=s-%<~%2CvQdXx8EB z(Zm^0w`bPlRkDzqQmb<1%F4>(U;1`uCLtIEp>I|r{NRB~C5w5*ig^iR(;i79Kv%F_ z8RY6L6dLP{HG_I|Q|g_dQ`hdGCRZCq6qglbBhbhoeRJ>LFZWaEZ9(ter9nk8%Vk#0 zqgxutclql?F`fGHs!e;5EeoMGhxRU)lFmnroO(Sl!nTMmLrwXE&eJZ{FooXOChPU z3fZTfCYC2QpM7;Rg}5SbOkYzwNGs&E`m~oA_82Cd!hVzJglf%nmZt=C`wq*4kuIx+ z(Capw=%K5^Vm*b3n^g{xD18l!Pac;9g;`$)&QTi;>E1M)y5pBo_jHnp$xtr&m)Cbj zC2_Sdt0I$o=$CrDtlkZS-HM|#!(}$%fUqDZ6T%>_LrV#90n&W`*SZp00uH|mg1$#d z=u?es72l7(Kd+_l^x)Om!$DDEg$0uh2_V+$5~%w#0(5h4?e9p4TV4zaDRS|sK$1oe_ddhO@ex`c~EAAK*^dFGZl=~be#OXr5Kl(woM`I-l7>&GQm z9mR2*{T`xKnpr>nd0Ljhqxhir{4FA_LlLa(Jw0qb$a|Td%s1LFq2~An^8Vv!`Wtti zEB{14%lN&gMU*w#VNM*6Tf5@t^jLq8-j-v*lLmz6Yel6p_NQIvUQ``lwGJpE!#kNe zCQI1gI>*3&w4NFVSSOBfEFYojJA};IL1tw^?3&ZLSuB9dkvV-PI#87K=`2Pg6Bm!u zUHSzJx(0=OisyZy66d>LoWf`zkcH#-2?Sq{UdvtjQ%SCsa74z-_jId^B5=@4I6k~` zVCJkc?u$w`HPOAPd5M?tO}V!0nCr|ax=OZJKh@O4FZOQQRM;~53vM*)de&^QiXOA{ zl}qo=mGbOrh-jXuU%MkRNOziC*XuDwRu#@AxhOPwnUgpc&MK^$sUx#`sYzasJe}=S z+v`GRy`iqY{pg`=Nb0jSyuM;g8C|X>92*iFI%Ge#JLjH{AX}g;?bg^Df0J%0X8+b@ z(;snV$<8`&plqJI@0-K@?-D9pOwfHE*N;UUwf5VS7!60YwN}&#X=q&_`25H z%WH_CpZZ{s7vhH5)%wNIDOy!cIXR0ehM=v+5{||ak;c+ZjiqdjB>_u5)?y6O!pea> z7ve3L%2-TgdFb_umEYG>OIGtr*uR!I_h}6DYAAMVm`=EY2mLdVq7Y}-=K@Z?pK2+y zoltxQTZFNAvY}Zp6Lr7Hk?Y(|fDFmw-dFE`b~PU2xNV{?+sa6S@2C1;f5KzkqkLD|!Ct;H$bxU!MqWM!qfp6TQ7GNNH8r&J7U9r+qZwFj(vG7A@K}Z z2<_EE1B`?%t5;5dm9liIEBTx~JQP&Ez6b^N9k<RW#sTD<&$oa4^=s-Hqk2#s^YhJmFg6#OQW?IH8tODv~P;d{Ze=)wM}FAS{ybvS{4{zRD9EHXX%+UdXaaYKHkIBovpN%tVR98(rqT{#XV}U zL|Br)e+I4fF{J0Frlu}l7mfr(ppi_)9I@py9LCR%xUZVm4#ASmt7|KODH~|Nr*qAf zLF*}U+cH_&g2p?wvZ8&XkYMBC;gnZ7^@Z!Ej~8DmXdljGeXXk4BoECNZC!@BceY!u zO(}a-y$&KC#EonZk?iga*#ZL2>!fFw!*ZNY-5GyAwrPILVkzeNb}Bddv%C6;L!Gza z9$sc%a_gB6vF{*pCz|R8-0}>&lWf5M96aF!^Bh+X^qc-%O>7K1U#A-SjsfU5V1HjJ z8fpg>!$#A(+I?qzeSH!TOmc(M>O?KW#}@EqOh5_T-`^K>;^^t=0kIbz2WzMNDmPe% zq=s)y3>BnJ(jk1{x!og!fb`%SP>y>cLL3hs_uDH?FPpx;$gOW~4g?B!iJIE1s0L&! z@W!wA3dm^{8k`4|STHXmCDl{uWC3{`Me!3}aA5EzA=QCZvUGJPwxRk)$%V*0${or9cYaVhQV6F)|Nqsbi(_m%p8 z2dKuJNJyaA=XHx+@$U<8M|V`y&mHeb1O;L`K3^Tz_K9R_`@UsAd4<2LMQ~s`Y}sPt ziPXp27kC&1X#hX1h+o9A z2VvH1n~55Pd_3=4fERY)je!YnaKc#&YC0xIy#W;EeTW?YDt9;p7YiHJBp@c9fhg^C zlxoOx9V{LzwH&I)er^7f&2kf#enMKQ6Rz`bD7W_P5vZk0SQ`S8p?#2RhM+fTUC^al z)clszGGTP75&=Y*tupH|q><5Wtj{MRl2A~*P-z-rZ2wcKlc3j(>am zRINGnTD)7M9A|3ru5CV1QqBCDKdBTF?h!BKG0$UwtMxB&2x6;U-wfe2x1LlkABrIdBHjNOccA3({ymup{z`71krY#T5An*sgZhhl-~o;HQB=f$u14}bN0Y>FE* z{;ZxGTq|T9-C?P|_B>U;M8+!Vqj{cGiD!~UYDwYe-I9-!;^a5aOfLp(ez80z;o13B z5%OK0mWoF7!OHFdj~DCXv~TNQaPjy}6}!&o@{Ny=L)uC}a~!+@$fOv9vX0GrLl|Z@ zJ8XMA7--}~X=g0;(bsciu#8{hlc5R?q-sufN3rEneJj=SX&}cDr2Qf6CO?{c^+gq3-Hh?O1))fRq^w52FH0d4wpW$sP_Ay#j(LdW zg{gM3f~|>X)#v-oJ}ksSN;adPw`0&rhFNpzaKK3Urfv#c z0L!<;&yINzkZ&)GE_B^60K?wFQVm!zR_euBhZbjdQdxKh`F}G})IB8s@i!s)3DN^% zrr`wkHNucx8fL@o>|_ti7#6xl%>JlX9n62i(mNT3j$^jRAMZZR*((G`XX)8DkRMEt zid4YGATSUV%yajHPL=Bi7S+7b-J}55lmrsLZW_H+;vIJ(Pxa&6s~1>@x&oF6S(gXi zL!zi9##W1n*<^=*W_7-`z*zt11k$eNy=ms-I41ou@}Tg}m~t4~Bo3d$(8mjg)Dt!A z^o>?z3+=`EQr>$S3ByF1&5sgEyWKrc@7SMY{bv>++6!NHrk*B)zFWVvN7;`%?7GQ< zMT`m*9yRcRAT7lY6}17BGSe=4l(MqhQ~=d~5L$W7d;Ot%4TUz2jC=yNW-ONs#6Fmc z12PMRj*BR$)#vNrgvtKwM@6h=H{Dnp^ZgAkZCQC_qMR3o#@!btv{^iTpb_YFpqs=S} zB|oZ(X4<`h@-O=P=r9#>wH!5(`vwmN{^0qP2}U z5C_8gwzf|^zOa-92L(M@T;TNBwS4vJ6-w;=($c7sk`mT<2gO7=U7Dmi;X&pHpUhs5 z%$~aB#Hm$T>SMC2zw#WQV?*36XXdl4J9PUDBCQY4->eqT7KRXwV#z3zZCrq=fLHDwW^E4D^pF|b zb@Jbd6u)zv=W;rth<`B1{oSENrA_!6itT|#jiq_lI7|5ciDb$u)4eksUb^&XkL|IH ziOJitt^9c+1cq}PBimWZZ{m&n*d1UNpB&-{f^EFrKFu z_gqDfr87N!diQZle1XGNk=n0kh&!^ay_flju9RstRr)gPmbxGPv1t7gP;*~WbXzI& zaa1-51ADLgPrGtkSW`OAAZnbjqZ&DqL0j0kRZVN>EBjBs53a+UZfFTTLKxA8TI)Wix*Fx zPW54vH}+g6v?ccnlb6fO%P88FJ92qR=wLFjecyp#LL(yvS?-`%&Ot#$d$0ul%4+=B z#V|eJ1$E2ztM_}ga}uiYQ!4ANl%?SIA#uCa#EPf7zdXBR@dG^p`cERZr(-nX zPwAIQ2Tv3hiV6#VK)M?IB8aH94i*|J*K~qOT-j{#NejXIvY!Axfe7otR+qSt&uLZX zhP#_v5Ac(RD|c&*+bH36t z(rdm)@IC*7Igq8O3x;S`y1^M31O`EA<&vjup4J z8ri459>e(_=WQVT=))zkN#xfJ+}3ijCF`&=YJh9RRU1cugSoC2e{_&I6mB!=8@>AK*8$kkZuv;J^kp zHj04i2uVp5hDxDVL)=3Gm>><`%c~H=!@I%F9RX73G-R8gpDPP{AHi|d`S~|rzp}uM zzzNJ-zb&xQInYV*3gGM=^w+3wYyj6G@ATPGK^%gQ2$%^t_H_jxA0ONpNk>P=RxW%} zx)iLh1?d#)u}bi2Qg`+^WZhk?DYV8ebYwh?6JA_BW#ta@u1%bhaui9z8!cc-a3nsd15A(Tdk3$-X6?<@mxr4 zS(YgqwBA%7eQErlZtL{G)e~^RCUAbBJxTP_NSTe{%a^TN z3th}AU&tQ^k~WTxCcv>z3$IW}(_teype_9Q{gn#NTK)v<6w+VZhD{f}!4MY6i&_Sj zDgTL|ZEgvytjXo&b})4gTKV9-UI*+0Y>otYIT~gSSO*vUSv(# zUWxde()|yv-Z3uB_KzD5%eHH^xMf=ltCrnz%U-szxMeKcE!+08wOY1)A6@_Ze(^l7 z_gS6iasK$l5%7+_F8V+d_$rC~Og;7MLR|-LEVl zyzjR00?}WY1OW2@NW~B6o@5f}$$g$5!Bg6UJuI&1E0BtNJ{;8(^E!q?!62SK-K?>> z9BTujy!h%wKIZb@ADnqU$oK34_c>E50`D39{Ms|N$EIk#$<~9FrG{_NbB_bjJ=bQE zOORUe8?T|7B{_QfmQ^0GlC%nQxZCS|NisyDg{q&RWTawNu`yCRYL41e=uA30g11+j zY|jhDVTKWFXqPru7(LAcc(1D5^$NMpSH|LD2De1vDrj)`1Trvyn(vh-#ATQkTJGr) z3&T_2dEw#X11eWCUgyJ4K&kH}cmw2Qg}SZ05)u+Xx9SJz%CpBi2av>&w?MwM2V5R0 zbMB|>kh8P1TjMW!CVG|nBKKDZ{XpC@04Uv|3qVe|8%OqlQ4?%Q9mB)nU;&1D)d!ZA zmQF_01L+C9R?Tkw4v<7j15}5ZlQUoJJ0`H(VEcm8ef6pg#VhL(gXHQ3Qhi9L+*kYa ztB=-~chTKz;Roz9oa3tuRxQ)O$}SU`$4i*|}Ss|6#6g;8Vz(EHNiD zLD{2KFB_a`LbC>a(0#ETP_=jLU6Ex3i_d1$aUtNKW)#E8h+b}Oa&T|PI<9{z)REVu zrM|P(9@yHX+KXg%wK{)G%eou66OKnaR;*TXi5ZYht5T*F57Mvgw>2O!i3Qx_z-zNQ z{QC?nJ*88PL>v}9fW1;`Lq$T8aafx!uLasxtvb)@^b4R(1^hWI2oVJ=PAC_GSP`|^YBR#iO&}u=|s`R+Ad8O>ZxhciO&t2{Qd1al~ z_xA3_e!nu*Kqk;S67z)AaIdP5#Yfy^UsZ zqSS)~jc_*g&pf;W{V!~|c`l1|E}+S-Mm+74L(e>fzJOdj_`jM<%aegHiw z;o2n9DpHIl0i~y0CYE6*NEdBo>hLLK>nVSc=p;ikbAdPq-2v|As$RM6Lp?n^5-(-&Y*fR;KM+)Ufxfc ze`zaQEjRf3wFm6*x4^<}XK&v*GZPQ|#y^0HUXsi!uFB38^g-3t6VBAu0TL6OHYk}X`?d7+^bKwo)T+g~s~RSt_g2u4=vL}Of;E?$kMHm9?f@v? zkV&t|B`R^p;NW*~Qc9&7Ea1N>3G9F`qDLq0vDt(0+JynKW9R6Y3#4~+%3+|U^aC{a z)z$*adrwyvl#Gm%;4Nrbq0!O(3k%5rxL`FN!iM0qn)i*3#VRicQqgZgV1>@RbEvAU zTra6;bIPO#usz80U0*iSZ z#*RWK!8alOyUtJ!UpPA9+lu9W#!%8NUGQUso^<1VeyMy9GrFoP!KWBI5ECv_sIN)> z7blzjd!;!#e{MvGygL67wImB2?-Si{4QS`ejc>@ zhH++(B&G3&j&l`rw`>A2}i_AFGVQXt5Q?&PB^s&(7P`PR!W6IfLd+<;*0Kp{?ec~3VEu0(6XKzO6B|4-5A!D37`J zyGk~iTO`Fj4YbSer3s+;rsZU*Sex-~mo@9Qk@c+$wa}?IKztA?mu+j|Ie@<8BKcKl zW!X7@CHN+2uR(YzAFAdF;n=nFcVjSuLJVbqD+bnh4M`g}F4KT7tn=P+M$2rrVOAJH z2|A8D66Yn%0pf%;4*pL1!(F3bBQqP@J9c&zZ{OG|N^wOX&6#P+t)OfrC&%SPRj@2_ z(Lv}lXVOJ>#T0o_HKmOcVroZo>}Gvg!s9iOygMhnkjWtI>7ik@Sb^EZ;%G|i$iq`P zfR$_uXf8l`4Ig(d(-$XE3d6f{2aeA*_>n7Q4H-)Y^#uE@DmRMZyQUV#v~Mn-kw&Ua zx)nbT3Ye=9zN$UIg814hOhPE6idfm$a$d#4B*AeyBq^vOf)#(s((Sle3`Tu`noe6bgh^^ z+V7*1%~f~jIo`kMVsU(@Z>?cB%EA49W)U!H>bHL>b#P7)#=|#!H7K6W@21qmD-%Px zO*?npQPjJBO~+j$?@(V^=z9O;9K54w|HzR`x*eX>-v5?O5^gT$HAswKVAoAdW!XZq z7s;&D6i8sS7L?L#W=Gj1ofqPBf4vnfDiBvhV(W7=Q-|Von>LJkAYPGRz=pZ@hJlpK z>^7wRB4i|D>d@$|6-NmciOWY)D@ML^GG8Z7OdCls2gAH;3)SA=Ag{?= z?}Qqi`Fpl)Pyje(&)Kd>YvL;_*k16|h^WCnyt+{Qx4!Y3_SYVnS}#RfI_~Lyp*XOT zI5p2FZ?8Y4YH{bdXCO=bdfJNv*KtWBkgFk*lOmEE2BG_jhGqnz+n%JR-#1#olg}ao z`Zw+1H~OX?c@I(ANFcgf5V{^BIU^!DxVR8#C3QtZkDGMWK?UrWi3k}D5RL_apx<}% z;^tl&3;f^L{5!{jM&9!3`|9+M>CmIvCTL3zeC$e-aO1Q5e%{RleJ5 zGVqV1r0YHwh%{X7B&xBam;O*-s6|rEWJgxtZNoNVoCL-+F4WF81pPJK6xnf&4xYeS zAr5jem~~=i2yW;RXei%59a7|hk*GU_2)|(XecSzbI@CJw%`O((-29$8ZiGejaVlYH zQA+VdJuasL+oJ7dJ<#i@>F^uB5=Me9tcv+gio8c#pPm^DKV?-a5S_FGYW?kms$$&f zTwS}M2?x|I1UEvB0yY(^xsby;{HYLm530Cg%TIt^9oami=sILc2o=t9%;;c?8vwAW zPTRG^HG1f>JoZ}jWI5BRcJs2rw!iqVU&DgtL4p|$Jt|3J$Kvt+=G|;H3T^?V)Z&sC zPiXgC26JB8J1WHOsr{r@KMw>?jDcmee-=U(7zEkR4_qt(x(6NXI~AHT(P~1Cxr#_= zZ_#hJYe%PiKV?>+XZzw7JYa;vy0@omK+uL^zAP%I#gLj()8I-yh(oMFLE)G8{&&K4 zr;?Rd%CwshWo;mjs9sh#xhj@kpD&aeXU)i0b1s(?wIPnNCoz@Lo`#+E30haJk!qR% zwji*K{&79}-JS#`Jxj4Z18n#m@MI<(}tvp%_P*VkHb zLDHuDyToEk_NmlT(Qw$}ZpKO$O8$1l18CD;OW>sCeA(M1>(~Lno)}t zn;V`}Hu|d6Q3(}n>-m8cM9q^5WC$SV6fM(@a2aEyu?HCHU1sM zc?$mTLUpHzh&SDHzi6lh73;BTk|4!PIe>zv#59Z)% zRn#hA*FIdY#7@}%*4h$*s*z_rj3s@Vn)iOU$I?ouR~t(jpjg2E6u=vEhGhqTiXqzK zO~gRC$5QM5d$2cP7@oX_=mJ2IL*JuD{gx!NMx*t=P|fIEKL{F5&JH)IGj>Jm=rB*7 z%W~DzTBl|3tZ1Kl-TK=)>&zVKV=342TYJ{;pp<^{)3xZ|wOGlzmn=H| zcCJR7QP%7$vnNV_R|xAS`|ZZRyN2C`eyAXFxcc9v4w#iEj@BvS0W4$ppvTR!#taG2 z;e4?B#nx%(yNa+0+Ggp7^&8>c`}p#h1^j%d03&kbMF(D7gxNd z4LcWAj3W{j>LB9yvwJ?ta^V*)?A4(T|N9gC8PYlu_C|XT^~{o3ST?;nc3wg@?W;RH z`{m>lC}(Wq!G&qrWkVv(jYXUe&F60;I(=M~XL*H6?&qj|R<+lJuFCrAYYNmfKTz8= zj*PCuub`H%;uSml`?Li;RE>pFw#v7YHjiHQZ;b4&i$N+M>F!{%Bha_kXg?^1XUgnj zPseaf?Wb-{miDN(Ob==4TG|hzn=uG^*i6-4i{l4 zX8c`9Vp;c9?!CK$J?~dgn&-O&^p_CPX=SIhprT%)<~PA&lRh&9h$+dZ{cpJtx5pp; zx#g;Fv2Yq1oa`rUvzYXxT!{7WRX&Tto87Q!#QDlXlT(*L`bfoG?%9}OU%XrwsLmLI z;#+)W?_pbF$q?L(EblW-@rY4+fN)ouxuaE!Tzd&?9UH!NENmXhqAKnF*;2OeU`Of$ zf?LAn?U1dEVjR4i*HVy#t~4xzCns9Cm_1nS?oPHMG|nWSRk*p~T_e8wR{t`#0)xi~|_ z`=@NT2}Iv*o)WK1h=0-a&{02*4`;5D66Z{B9+x=rXd=~`Q;eX4+pH-t9)}e1gRFXLns)i)S5=zD763YT;+!Xy8y{TNO zV7-NsT(Ntgc8AAfhwj3?VX{(b<1-?=DKjVL$jNqCqd94C8IR;wEB|XaB7%=Q+xjth zoM?f8+}(gKYn(pxnsdd)8K)<4*Yf4Hu;1w=32w}1v#@u=dgLS0cK;ag$32vLXNtG+ z(|v~?(&?Lhh`+vwg)_hQ--lrqZ@cM2MEYv_axi0>!MQ>*;D}3=d9M*>QZl3Cqr^da zL;S)PKbyJs08Ho5_1H6_H(%C54Oa>$U07EjLn6->-pCxuFS8wOidg><&HoQu8j(Fr zh&UXxzpFGM?nIahs;>j*Dc!-?vavoiUva`jIq*hsSt#~4AV4dQ%|1{GFA1kd1wvTzIXN}}zz z+x4oY6|YMM%jkzc^)?Hi;hA@e^|F|aQq@hyM11z+sN^q6L-SgzSux3k%6N1iknbxN5mTB}| zGupOu7NZU&C{(}u4Xsq;K$sEaGJMo}YLu$e{z`17l>S1mqXdKDyXhVZa#(j;UnoxZ zFkY7*ubh~YS^;gPCA}o|`P%=}0`MaRGPbv#N!0&&AYD6ZmEhai{A{boal~go$;ZNq zIdX99@ATXfq2ZB^$HJ>3JRXbIRIU=+Q}%I&lq!bO_>=x8%8QpaktK^>b1m_Qbll7+ zt!0$V}rY5f#b23_+Drv5otxgDSJlhjZrw)lq6 zQn|i`RnPQw6femGK#XH2%~eA0J$SX(P|8e(=^_XyW0631l+w?mU3)@q6MoFGudw1J zK_3FiVgKHIa5CB=W=^avw;iqasPwKXPr!pwX!8ck50oU!w<_jvAtoK&NU-1KW4=`# z38I}f5p*S%9nxtjfVYHbhIVfEn%?XpsahOvdAeEM19b>AqenR6g&_&X3hU>k`}MYP|``9*?JuH`))-LB42s{*7ge zC6sFYs{}D|;R4ZNe^YhT?HP1J1)Ur}X#LbCAL?8rzfuhE_*?0~9`^#F<-_#hV=HvB zHfXrUst;}cG;=e$2)MmU>1{-Wz5OL)`ZgA?T|r;xtt~ZdG9S3w;h&>R=WJI5hUM4= zzjO#G?p@i;*E7wxhj)|uEYeDH7c1$O{LxW6&0{l;=}=98>AUGV$rH3VV~3dad86h$ zapb~0meZc;K>oj9DxS#Mbtg2%fomH*6A zURR3d^yy@RRV)bO=|<9b$lB00I&ZgqGsrBrN)g_&G)#hO=o&XS*OBftRR z409;$HBG@HlIDJYiR-9`!ijT<=g3I?zu=)1gyr-uMICl|LW!8E#b!DCj{LlmO4PYQ zfAl4G-?)^OM}bcB<=(l*`F-EbL-}8lTa^dsNZHI`#9GtAfAVh?LniCM*Q9^o^8F%D zahIQi1z>;zpAMP-O*8!9dp==p%nD7|kj7c&w);Bp{O@R~;0ii&h9~S1G!mfRf`VS? zgvX6_8<)}4xUSpyi5iZs^)r0ujZPY!CN0^!Io-GH6lxCvNb!ExNb8+E-279oXUmCm zO6e~iVmmq3$Sr$l?F9Ua(}oQPr|OanW2L@q!&$4J3jfGQW61n3E#E&n7uz~JN&0$O z3YYB(0+1V3+iRr8Im*$FA$d?lx`@s!A*9#K;*|Y;)Ndlj>_5Ae&)F7|g$raY-oal& zP;hf7jkyLZeDbNAZfYPx=X$CSvzunSTH_vkh-{vqJ=*<;$})TB+#@ug{`Zb3 z7z)|E>>26jmuL?a)vFJrIVoznJ^|m7ans`j3t|#JTki}gzR=JMep9Xw_~H#0^r3rJ zo}9G@47Ey})!UEIaQZot57KK|Mn?QyT2U|3oDI{h9p3fyY@tryPE7b~_V;$JP<&chV@by= z^5_XKX($^%`0al&G;)12ciKU;I1YDk4q+wel40xe@F!o3rR{h<&Yeq>ZWu$9xx|43 zEXw+qdavN9nUCFXi}f>x<$1J%M1t3H2WxV4_Ku(0PczNk_-QmcV7Qj4;u^SF!MIs}PV z+_LHa;+6w?uf-9yUD%t*saRV(cf&s}m!6hd@aNzcCgna}p_~-ep$Q)6mBrqGP`H<} zTJA=8#!@vRbzYY_hn~rUudnKwI08(p=~dXXKNC(kTZ8?zl1%u!ZV8wPcc;V(L=MWa zBT?tA$v)nKEZ-~S$it)}44&`qlCl3ZALy2_>sTfjZfv9yU-@J|`N3FaPO-wb7OBxn`18w~K(TXcNt%)KU2li&ZN+d2Dx%J-Ry%z}ZfDm#x}vY#|4S`ophDp5&pOhk zRZ8}d&)L0MA~@gX_!li=GoO@d;v9G~dQ~uo5QZ%6w3IU-dBQ{ZbPsUbcxwjy>eUcQ z1K!eh+7r}BLG_b5-37x22r4?HMgro_n0NKBG)N!8;ZF6%?AVJ01L;FCm%Vg@Xn&qX zxAfrpmb_*R<(?PPE#C7Jq_%s2B@@6F_a2ta4YAluNmW9W)b7~$L<5wugOo)I@ZIfb zbzGdqf80047{Y|L?hIUh(9<>Y-ct@px)l@r;*x$V7I_Wl!;B$46P#u=t<)P67f>X? zz!=L^!J@pl2Q;0}CFt8<|BAhn@z9vV`ivwx?qng(x!3yN>@oR(efFjfIk+o6b2K`z zzh?@pS){F@2F5RoDvT-BGViF(Fz2xJw3WSNT)rqI{ntXV5V3F1AcTwD5;{27dpE zAc4Q3Jol?Htk zypK1eu{@SWqQ>5eW`EQ;s86_>o4cSmhT*WXWbU+v0s<-)%nH=>dWN-xy6q*XQ|3+b z6=!Fo<@UcCD<)3TP%&w;00$jk*?Gl50X;wMegCDl98j6WPY6Se9~&itQB-19tCO3b zLL)|90boGF<#PIV6EgOE>7A!Q)*iOqqe8o%wARn5Y@oJU4QVde$gs__pot@Vx?8Io zKD_YinFhV1RF}0nXQ~;X*sqEj2Cmwzx#9LrwUJ1nrN_aOGM@seWNKSV+=>qdy8fCd zrW-fY(PU$fr|H?8^ws=*^vB8pV7L7r+G+44esI#64`oG=?M#r6OT2kIivEh-Dcm5c z46WBp-1fMtY3qvAK2n)GE@J)i5Y4f_M^Twf`LFaNGwc^FR%a>zurh-O&bIP+L_mVQ zr~~K?SowHco6tS|6kj5;yX#O75$DDG!$=ku%xNxCM!NGt!{v6qF&&Kw7x-D7uKlon z&}kVfw}bTF-5&u&`khTh#x-0@%E!5QbR4K9$zs_~O1e~;V{-%3*bJafG`Z#Hvnk5K z?LNMxke>5H!z&ap%Kc1U@H+kz#AJj1hkgbeDf)Rg%D5zLQcU%e5jU0Nhr5>)fC2mI zA*r$592PFmXlQORSiqPuIn_qPd1tk{x16E+f}EjGX7cNoUqB@EHpB1%-Tuf_zLx#{ zT)olEnJ`#W^5bI@!ezsog)jCheK3DLsUH1fkXo2$3IVrw5ca0X?|&@>Y)cOAuotc} zgYL(Vv7!@3C`n&m%;Of40U1Rp#hN=MvvE&qcE+*fAAWvSUQ$!66=BP#rp(uGV#I>L zV%5;*hq}ba{BHmsgkaJx=TB%IROT+H9zGge2xl;rDKY(Vg>m?(`}^J4MQsh>-^WATjr%zd}p7^T;aD}@ObspJuImN z92-47<{wLeB-2u%;9Q~qYAS0S+|JBc<+U}p)lASC5tC9y3yRQD0?1Vv5pz(A}2M$`3uzIH7-fF1*N(*qX zqDNU`2*@Tlh$i1l{9nM4QzLVtKwM)wNTsDGhoMNeUMl>4nBC*(Lc_*)p?7`gBJO`vJ19?<_~RX zdZ(l1C5vQcx^H-y0%*ML^s6?Y;wYgP*1e*u{l=4~`yf-1uWKOY+f3onzME>?jln-8 zxJM|s<9!=_6-KtvAs!N=jGx%ocT)@Mx&#=)i~@8fI7l;nBudV-EvwB{_iU>p4H_Te z-C}~J%uDf8ky-p1OcDXhv>PoRsh&P~auo*c_#w6UwSy~^tRN#rL2K=FV@YVc52mtk z>I@%3RLu~tBs;&uD71a2Z=^FOlJA;H$8{RgoGLRZLe8Lhe$1dp;|ZuP;y_9H7lASQ zOEl_riP>A?kw0CL)@WtgYm@Ap?g^a%kX8@H13jw>c979cG>h5GTleGr?{m;hg5~!t z54xN%$ze=xdQ^ZTRq>qAW$ z>CJQbHB=otw(Ux&XhZoRf6J+<^`0Zgm-aN|U$V6+xQH4Yz`Hg7Ya6diX3zk+^^(-v@gw0#NBFeoS`)|0( zWwQTS`CEukSw;|nY~-m@!}~xl^?fg*iSySz#AqbbnRwNj#mTT2k{2>jcoWWFgKc9E zw+;LKNjszKaFEc2I;EWNbR?^|?3jq2xJ;b6-4&Nv$pCP)Nk%+YL!w?IGyxdXG$a@K zLXs9Ly6~_lnJut+E40}`274)x8_|4sgS7Oh8dX96`lj15V(41+<{L#?4Dd_Rk@rXg z#~is>DLRG1D{$2%J%@xu{{Q2}#M)J^IdDZUF+_>6MENmA#Sq9JgV0L?(N&#V>p--M z9Ns}uZNXMwL~h@{t0i)<<~taP+Akv&7c`8zA=a|8=v;Pipi{3TmPuhUaCjK?)Y$lV zj&C~3K@m`lk}Wa_J0i%IT9U;}A3WA2SXpoUH8#xZv~66%mL#92@e*Q(^z_84!C}%4 zQhJh4<8~b7STNGiq`-pUgT>Dzh*Vfivd!_ZY$|)k&CgGmS65_(mt!?@;Hpy`UxyBe zb!28VcnAq-njmy7Ja#xq@XuvPO5riE>B2TgK zum*)c;8YV%&~o1L31j#qaU+CrjNM^inNH01@5@NWpl+;rYa>TVMR~scU|*?ieY)P4 zXX)-3l{JvftBAF%Gv>O%H<2kg_k1~3560#gOZ*qViA*{aM#l0E4=3I9)P-8M+b%bCozrHlgl0u-O*ZW>FUN%V zwhuhd>)dyr&;K+kncnkW=jApgsD@SHgQf<1NYnwBC!~K2=ity25(yyg8qM_}V?iwE z2&+$!$_z++g4}TJZoXbbyU%c2z8OJrPv-21D+y^^&YviO)+kEVucaxY$AjvSP^M+6 zpyqp%@SjI<%@ud2sN0)#9R%_*fUbY2wbqK%25XcngkJ|!g>^ct7?f8KI!q1sO0+Qh z#KTn&)cST0h15CUA_AsW`<0f? zElaG`tI@5ZW={o(==$SHFp5%4P0jJ4&e)1u-xen-feby=bC7_Za4)VEgI<8-&*-f} zaohsyjPU<)bbne}L=@xf$b0Okw{jTw*$Y$<$bUhY>Jy!+!2fwuh(PO$whtfpueRGW zmNXTS{G2Wf^J%iqSt>fD=1~x2*rnymS69y<1AD!7-Qna4tp!tOF}m!{oOySL4)h}%v|(a$Jb{KfL2s`4rb~7e={WoH-GSgM}=a$KT4YA*L7-%0onNpJgfH@ zbLMm(uCKfDLXobdr>A@>V^+T9$pf z(j!y}>WK%Yx|J8nD6OwpfKEw}iZ*X;q7u@hO}m(<7C;r%`L)8iw;ZpCXQdA9j6|+W zz@?16?VwM)e_626p$;ZAJij%7rB}zspc{swcYT51c-k6_b?k}-?>0HLL}^9zJvyHv zL-_*wGq@z+8jD{k^vJ9H`<}e)AmQ_tx7HajHvem4k%$Pj&_YHYPR1V8K z=$Is3loe8DtN3rmy#X03bYs`c>!T}CE-)URG-rxZ(3wr^s14QGW@i^>5D=HkPTWR1 zQZ6I%dJ^a2j`YT9_-I5z!Id5p4h;4%GL@U>h}z)|LyF;6>t5|slzQX%yG67^q~eOY zv|-<%ci~)fs0npq(9nxv3M~cNV5OmPh2Kr@sdxmTzng5z%%&a25iiOE4j~Hhtx04M zns3RY25O%|!={)kCd3l1DiVKBhPiKI9d_^fNL*~xp)J@uz>%pv{vaW7VQ$~^)V9`P zV<^8Vv)Cy1RD3{+65#GD{!qfoN8DP;!etC7yk!sE(ZJEf8a*Gy1?c@K0D^5Sl6J$= zNmYCYLXn}m4=S`uzVa(h+5!2rm8Sg5f{0{{fvipo?nWP?DacqxoRWxZ2Vh?rM@ee> zsrmFrPj{m~gG*#|Vdv5;HsW5rpLH{jt|#-O{lxyu(#W?X)(gGT_KMY@j}LN zMZcz@$^*v1Y}{EcUwDAZoB1h%46Z&WbK&6x2KZ4vpkN0HOTD^GiJfk|t0v6Vs zgr@doyT>MvTl?d1E^AJtWSSG`TPlAzM2{Q4_Uomw6eg|3>Yej<-a;6KPky5XA}pr! zf>65r>>8dimrWTj*E`SEW+qO>!A0MrxOC+h{2bCJP95y_q_ho}eR6Pnw+qFcGp)bb z3+%C!ap1&*RMUz*yLX$E7L5sa*zwqF+!9|3(Oc70jFar(==k+A8w4gJg3r5mM;bcX zW3Ye1Iy0jBX1fksb%i)t5+a|8_A1MujZmXEq%N_j8)Vmo6QMoTp4bp~K0NCF9kd8U z|6IY9ri7b!d%nhm5Q#c^_~X*>6EOdj7!HpJc;7BheUttEoz77Q0f7ZD2xgclM7flZ z-Xcu5SM%2H)9+=|&UvqEPK6-gr~^KFm=(+IExmrA98$Jr)$-Z_#{U@Mc@Oxr{ahXL zK$r=LP$;=PhjisaW6PsS+Ajxjm#z&MDg6B1v zaPj&Ajj%qAK#~2jiW1y#o@zLmBTUd3GyPeRO-v*RyLhbuxfH$w5agHvX`MyGa0+Qy}Y`S zGa)MPw}WOxL*I*rsy|o7+^amoCPA)+B`PV9i*aNM{eZA?->Wo|ip~JlBsqa95FarP ziWE}4_D+`)D2mOYM;!e3f~Narh*t4z}pjffh^ltg!|Rhv7u>q5@8T9V!m~dD>s|o7BJqr^VxjoQ`RHzWexBMT6z?! zj=7gBlld`l)tz$hvvg~3X@wt(CA#EobRg*ap=T4U!%d4E`E8(m_O|wE&+VUkAQBo3O1)s1iDu!0>;v>Z)8?uizWKrw%s|6%=wm4zvzjPFq`yO3 z3rSpv!{Z#K^s?6I@vk>tyqC(1yXGr031<1X#$#e_ZOa0m3BD#mcbxGL>BJ2V5ae&H zhibEYW}a25isPO;F(K04J8v%kb)Y}fj4?X)RAVv%7CltY)`RySqF|VF?Sn4SFrfg@ z^I&Rl@fLp{#>AW9PG22-eHz}t`j7Lr?hjWsxm0D}(FN|gtL0mbk` znF9+&DY9Ej$n-*~UhYgNX0pN(+AuY&FF4|Eep-9xxcVp&Vmj&@Ff}UJ#?O`yl9_VN zDX?!KTNSae;Pl@q=qbiAEP9j0#Ffw?iUoK1(Y>@9P=`l@8~w(9HB>Q2N*LS~>zR{X z<3Z-}DVAN)z%~QjhO5BoX6#eOgpoR0lpwdXUVq!+QA=Vnis?{~sH7-7^<462x8ZY7 zr^^riIsR;Xl&$y^9Z_nk;s4LcbNrS~X15Bni?m~mW#7{8(m5o5cutB0ST$v|v!etU zu*GHPkJEzXWM&vIr0SOEMeS57wJm?5Ae4ouI{1PMPw9XR8YmVi2@)irF`~2d?XM1G zh&JwRTnQoMZ9g7{*Avt0yN{U(=c9#XpHBVDxom&L=z~Et66pJ2+@PDWiS>7Zr~yx2 zPu_;V+0WYhi{Q80(DL|Z!=H1aCv(HrHUjP96)UZFHTGNT(RvO&DphzaXEk5e#kKu| zS8@mqjmnLUdUAw1h1P^a^fK=ygHc%dJP09>iVJ=#w#l^}+qU;3->;;C8q1a~)q9Ed z$=NC@rIaHX`B*QXpCl1q@_?a?&R7?5TrHioalk(ieFs~-D1Nc-*ODTT$W`^Ya(stq zaDcj&4XhO~_(?SK9@U{lSbGw)kj5L`5d#q$a))%{8}62TN%jw@_PQTVXR-ABj%n_A zG)e>9xChUcSLqsJJ>u(by|HRvv{)7_S-~k-2iPvmxsgHtf*t4)m4A<2+!5EL{5p|^ zd*PbCHiZd#wD5=Nb@Q*pMqJurIe*S247z{o&%pyKl$;Bh=&Lg(268{1@7(zQoZ5B= zd!&y~Lf-nc(mXqS`AIm%3Q5rbYSqYgK-&HzN=1l5 zOz>i;DmwIekcj!#H1WmGnv1{rX>Ir8ya2vEE~0v1rp$UPV(D;6yuo{qLfeSJ6j{|5 z4^2OciZLo!W|n~WN9%u#UC)HQ82`cWH@z_?D!iz3_&HN>jPCIj73JbKyG9414%MCS z=I=m%>DiZViI+&R9?5k89lipvm0v&JNm#r+`cSh2l9A4#fhgW0Zh^d&?LX4!WZNyT zg%hj1;MLV-FLc8dm-fP&yV8!|IqnzvR>ue3%qN*bXz7yG=4JxtDQ0ft_gQFGPuKtq zN5gA9f5uG3AFfFB$qTkd*~cz1$}FV%_zK<{*A*7n9guODyAuA06I%`*8_s-$L-)i% zl~Y{nC>;_h(%Lud;+Hzow?Omf&Dg)*5OQPLT+{nF?{y`oU0t+)5q7R8;JL<7=}_aY zGbgydD6_&9vgEW!&gWvaS<#X@!R^#rC?VAP>!z=o$o1a6YUi4iJq#9DR4*$QGm3*s z_O~A=mt^fyJK}$Q_af> zZ-au75$^8=CRgGV$TAZG!HLq{b!_fhe8hRtm5qJ&-xN%>BkoHFl!YV{(5T(pk#=CJ zm0!p;Ow6jECKBX%H0cDE>{5QxPfYc!(^b{8$C-E{`)j)1M7xc+=PipLXx++sOM|Po zMiZ>0%K_f_Q6@C#VfBRyWe`E^X?*(p2ijP781;S|Ztn~iWy!a7PJHQxVwX`&!|AO} zukdiF_B1<#S}htfNSqYWagG-%E}n?FNOZv){vO>aDGg06L-tFv#i@5SnY4(eWNF6n zC+}NGU4M>Kl7RxAU16jrt-19m#!%9Dv56|+e3dDhh3Hy$Nf~|ia8h1wi}4%5vtc0o zH0h0Vv_+wpQNMs*NAmWBM-K01a%^vKz=>MJDNW5Is`N~tzR(p%qY{$qTzf#nr%+_b zk}3eo@7fl4?`>6Gxn;$j9ZQq`9 z1O0V(RDk$3*`QlccE?Jrh3G~z&Sp+#r9e+`(ULXECD#gzt>4S+*JQ22JRc@o|992X zFVfS#*FqOQ*JEs@VGfqvH~B7aAd8?3MZ)~So!uOUy|_6nqp|mCHL+V;Ta-LfpIN90 zBXLUS!JpssMVyakMD%y$JY-#q#w&dr>bTR!$YdbzVOo7NQtDE6#m~*ol<`*;+Fwr0 zfm|?c!RSc_Ps6OX(mogn0-Mi^I-vAdYMm&zsn4uUc`OxUe+D2CBu{1zF~Gki9ps<3 zesg5vn;Rsw=$oHeBtQP?D=FfEqpUT#T`N2-y-s>M`4pGGyKcNYuW{ERi95fcY0eN% z{u=TlO(+3xtWtho2?1A3RZ`U!vMv5$cG*4s<%{CisPtH3Ra7EdtFH@r#*|;F z)=f70@Q&K`?E*US_u{`vXy%LV9n2;=xQzckoMhFSugxs594{uFMEYxP+d22q>$bfX z@6P&!WA$VzcPsKTQh$pgX-#&z9nJ6CGvkP*YsDT-SjC&t@WzoJMt-z1zRXDy|$7`3WlpM&)WCJ-p{qTVhN=!wBu-Y2r<%yB^p;F0xPZlagdj}$>JdO;>0w+$ry-lGJ z53$?td_qTR&OYl`^n+-try ztb(`6_Lrd637hdBlBGCvt&DK*$I%5CuG zS|lSziUsJnHbz7n8W6uJiLIrqaqph{$a5g76Hy}AgoITUg*t7vZB3%)AGdW8>`!=!Nx(tB!R$p^R+Aa{qqpdY|QBbEG?=aHQ61(qusq;^Pnf zf@5q{o+kEVgQG^PwSwo)0{r3Ouz{t$UuKnYO=lhkLvnWJI-7Mnv18Sg-w+;*ZgMJe z#`U8+KcA-uHs^VKUm8*&L+v5e|L2z+Va^&nzUZZP4$I+7B$bSu?0{@5iKHfH8Io>8 z$7$>z9CI+~f+uRsPPMZdMk09MVv2IVU6uzL?I81Kmr-6^~<| zim>~|iiXnO3%Vmuwic1S>U{e0`3^my@7~I-0PCL0t8UWJKm?7MIl%lOJT2*qw;Rt| z#8N3`rPN$4L{6P(dM3Zag%0o*u)Ta5LwYs zNUw#kSpq1OqjG6Fg5oK1e!3%BrFNy#6!(s@>XjKUR#g)>rjH~ztDmAiH1$-Wm*sBj zFN-9IF_P2MAtON}NpKO2Hh`bc!Z?8D=;ZET_w@-~GSheG(zRxSkryjzIP2|BUU$*+ zx)_9LdDFo&+P?ZSy>I$iGaXHHZ|~l}DQDoUgwXJ?W*BT7e5@FL8FK4kRSo*p_@juB z5}_(q{9`IG!@9J-b)_{c9FxL0h}5A{p~{X%e3#RenZ@i|c~hh)YsU(c+mGb3-k>a+ zUT?2wpg&VM9)2*I=u0W}=rK%{Kpg#VDt+v8`*|^~c#{2P(Zcv;i=&#J&S=>1hfj+6 z6Vpv}%AWZXOSN3?yywfGtvBVaNucW9=vx{Nhe3X@2&zg{$}{N6=$HC5Y`iog$NeRq z0)5s(e@~x$;`Dx__{>y+j{G>683RUxN6l06iAH!zglUaKh)+BYiw?WeAb0?_xdw-T zy23zTZK&@FPq^$4>*2W3^5}rk$%D>scE%0f)&n+f7C6{PO8(R^ks>u#{U->}hoOHC zXCoF4ts5F?KnWc;4IR~J6CdDTD6UZ>U$_*<{8k~l#xbdisIF&b7v|$lHUtx@4d2XAx~oMd#hRe|lmwvpG_O3q~tj6VAn{An@CHFM355 zk*wVEzo=tlSoYel@Cs)Yh&H7yk4ZSSN0G;l>177O?yi7$wT&1<**3Yo#S(Iy6~+Z6y7A zH6Mpe@5lV}i5VKrw?oQdcj+I6 z><%KP@1Ub-h>h&G4CScOyHwWV0FUs-9mddBYnV9PSb9sgor@>KGu>9sJHSQ9mQahM zbf3JH8QPO1X}L2}yg%FQuZ_4+hEh_x8;YM=Mc3KFChuw`aU^UlAxm9s z@AM)x6mDXYSAqwF1=F{G*_d`Ou0*}9!%m+s-3lb%kJ)Fmi=ys~Ja#O(3G3ANy_3-$PMX!{DTPdCgkPmXo7 zi*CRFN|~9)LsVnZrOViHeKIM#L9Y5UpqGggG_r)g+l4mA!0?N^2+#GAHjlL=Y-I*b z67OeSMFxWYeV&~i&abwdToo&pxBVwmfD&=CD(Z%JgDo zd)d3$-fv{E(t+F_5pPQRzW6w}KBEDo3o?5(#h@jWO-E1fp2#z{S+47UBN+yHF0Qwn z$`y%(3kaowPdO>@(JJp>So>xs2gVprIU!JhPCXl4gnVjmZp_cm$)x+I2AT)!R=c(5 zUh{J2w_Os4zh=wGO2%uI0;zV9RG(&Ca3(9k>@Z=SZSBED7TDh;dsJ`mzqHjWuIWi! zN6fp3z~U|2Z?R>ai+v9pw5ogMISLIb$MPa*?vHA%KnJIRSVrTO z4Om6g{5dz5Eog!$q){#;kSIqIUALEDCm#6gJrJ{O8@0v7n{(%*_j0n z`_^GKyt4fh-a;WRX>A2sc{$E?z@t6~r$YrAVkG0fI8G32+wz;_L3$Q&y_91vHywzp zv?{03o5d5%CT8rXStLCfCR+{T%-;rfdDKyNtp-h zte)?w%wa}Vnt9u;D4l;)eWrLB*y29hzLcWba>T^_KtlNZ@-XfXs-MtG0!PEugDj!}}@>K)q|5rZ2EeL{Mk|76Kc4;=L;OnTM+G$o!MgM8NGK#JT7z0`4tH7tVeZzE#d3z#Q_;< zNNGseH}#Y3X|eRClp7$ZIFw1kS1~UL$CAvcLUZE@{>6{aN{`48r1#tQ-g4gpuWS;v!rRi&%M<&5`pkk$0c_)GWRIFreH>XFaNEoqY@ zxNv9g;%EnXd}fbtKx|BAO!2GJCFnTl$fE$|H_=$A2uZ4%oi74@b`gDM#ZO5tkVFfx zh!IV3h<;(g4pZ5j$;x(wv=Ig5xhYE%XuL@r{g=0Q?rg0x$x$y+bo2Cl6#>?CkNCXy z&)fZzqJ^qNNrDRK7>iI@fp^XfX0x}j#;hmD_avfov^-GXbN!#w>RXF*)PLSz-$#@S zV$W<~TnIqbNAUenV&ZK6+-8p^fld%|O-_+Do0j$VD}X8n?!}lKdG5rNY6hl!aXs0f zx5pT@waH=NP)5a(qO7)p5H$_Sln_vvoL-tulE0_r&Wka>nRBj?cSKe?*dE^g*3{qs zd;M&?D5saXT#I!1Xese0FqU=mf?v2>FC`^~8;7BzoC-*xT-*eY{0zvg3bN%*vQ{?Z z3S3#fI&?&j#*;kN;+Z@mV;QpfxuNG!NL1?Pn+;WQB`3QgCYcClM~W*%DHjGtmq?HT zH>6ODP#JbziQ?UEF|+Ex81HaG9~^7vEHt88ZS2nxQM8-7uVnP^-!OTqC0#+^7I5n* ztxZ+3?;gaOf3z#08|BJ9KPHM0Av4PSs(z0Jb3X?%O^L;Uh6Li`KeDKroR{m~>@>fH z5$lDm0{f!K1ugnE5L8n5e(z9>J&{`$m!K6~`Z{`rYxc`7(bK9hgF(+{}eD+;>r) z(1)u)XM&ZuCNr{xPqpT>wVW!r&RuqwRn(daVrl5Q(t>$%@^Qlw15pl1&+pHjmH-~o zS2xeyoZD9-{+wY91Gz7Qhrynqt_AU}l4NNV9h(uA5W@3`bT;~Odni$I&#+)2R>~M1z`;?$ZjSda z1Fw5_aOwAe%UW60wKr!a$qZ_+`c>q#J-{OyWG(|!kBgN8iY`ojaA?PS`>$Z%th3)I zn9uN2iu)&@g3x3<>*)U&0l%%)IhSv0;D4)_LZY+;5jRy&R4+|nbLUPmAlGHHW(nE; zkb2`1i+AIuMEIj_l`59EKXk9Z5JYyRdieFJd2Uac<50#5ef+xHOul>|ZlA#LOLQ1% zWO^5zrn$DjHH9L*6sIGy=^yM%$ykgP5wN=}ExJ}JZ71p`%GOWlpX;7j-`-t&)z}!O z7JWF#685Y=d_`jW<_e71U8n-MFP-|2r}0PqHhZf#eKufK$)gC-T5ETyBKRIMlhYVRsW<$yyOk>}@~YwdFKV)%~RfHPOp3 zAs7Y)7DnocB{nD%4K^Tdcjl?>=9}-d7PA5!ut!wFRDA(uRHodO_AWx_>MS>{#X!FV z35d&BjE5ADH8(cZtcL11N<#Ivg%v9Myy03R9bK`(q-SC4L79>G{9J+b({4nZy>)L@ zx0G?5P1pO{bT(j{w*@jXIL#u=i9Dj3i83iIPUkr@bKRFYnTX66YQ*@-`jlB$d)8zZ z=_2HVQezhkt*X4#iHZ4eq+o^w{WHo@;~q5(5m4wKP_bXtSAIuL`tQu<30QhZ4^KUV z5z735mo=$73vKJI*=0zNlp=LDRpVf(`CTxr=sXMzLlM}R_|D1_1k!;3{Aa6pBe&1> zhoQX4Ra;aQN++cP{|Hv91XZ#8)Sp$u3t+g2!+l44@PyXj4Q#07cVt{*MWWQHP4(ut zlV#oKRxf_x=F?fw740OgD_g9Ioe(P|0`e+QQ-9U?a0wO?EgH+2ZgM>~w1iNf3IwXc z`htWshX4XKDid~8r(n_;aVSZc{juNl7?$ z(|M+vvSoz(D7S|kne<^V|4s}dVV?brnd7XtSjRUhU3gIac4OPY`_4^J_vSs!69-5c zbW#@{k>tiu>dv9vUvu6}(fxa@%AVd!q0_J^)tTCI9uK&!eG0WOw;}fO!pmA(1s4%~*zVeKzDzofe^4Koq zHUK(1guID0A+elzljqO4`okTUPH83z=#O`@g-b4lfD*jO8x5f={; zi|Xl~^MTex!JIY*FMP?xax?0~+fet6l!`EacGIPj-H48Xy5)fBtuT4blK%EPFEH(u zkQ%Du;#*BB|0i|5XY1G~FzChI`Uvb{@WRNZv;S%JS?NAHlfWQwh{qoyY$N}XD8++5 z6v!WUS93JO%`P=>cy4O9D=VUtpsjErXLmdzDS_DqBETYL1|U&JBu;#CdKdYz1J~G0 zeKlUoe0Dm@cPi=eiC|81sIbGQanyrID^Xqow+o{~;%+dxg%J|w2cF6?Zq4ZDdr#MZ zzObs|%4Fk|w)5r1xjnNUUSf9|iKQ=!71Z1>EWGP*I--@G#>etC!N)S2;*M~a*33i$Yu+szD#Rqx6Y9y zHmgzi5Sx-Ud{mw{JiCX)$Odkf7dp9<04tiby<{$nTs#7jMmD7jTIUI0UV#*co^>EE zPl>Z}Cew0hvm^M_O748;Urj}&flElPHC}kzsN%|%T8E1!{JD(Bt$_#F5K$?`io(dV zcGavbT{6;1T92A~6CXJCX1asH=u&rAb-f~;s5f17!D4v^SC_(~lM2;`?-kOWMk!9( zzkMF3>)xdkIMEgi-TVK?0)&zH@cpjfNb;oOn4ut#>y)z#DC@WsvA%qXkExUx=lkCh zhHmqzV*_V$$@ZF6EaAcDdGpqq^OW^>lCQFp2VV1uItQDhcFm*y3VWSf2`f7hVFtsk zw62wj03efAQ>LGDK5^r|Rp{2h7ajC|Sbe9%JDI~!{q)@Jn`ERTO_HNUY2uDvcqo6a zUCcV7C^6|uu~CaJNnV95I-f`BdPK`fJea$w_Wn*v73EVKrJG;bd*H;OBb#czH|$b% zn>F=07-Tt#CIMXS=mcSg-Q9r!02Iqg`t2ct>Lb!dUb-f= zP9{h=Fi8!;X2$ObS0|CS9Iz=R|8J9pl5z|8w@f*6;f)<{>G1QZ(uPF|F;rN1V59DW zy0h;yh7n`ba=QM6LA|rP9Mr!YX0E2?IQ`~9mlksysh3^a+wzl>%UXu~gq|7?bX=(S z$_0(duVf^EYE=MuO~^0z`87gMH${=kh)I(Vs8g=)Ln>VcKk*8GmZn3V{>hoZ@I=+= zw$`JobCa9vGON#4gef}LWkbmrNq#0jKGlfg9jK>x-d2p&?l->9NNzwp^B4u*JDV~l zy_v(7fV*P@EYQE=6H}XuJ|X8CCJN)&`J%M}Os8i}EQW$+^u+g7B&fAbS^Bj`zzt%eapHE{dFm`|gh?%c(r&24aD`B7YyP zz3H{JraL4GVkaD2-`1S*J9j;;v)Yc2*RgT;dkE2QcWwy8~J3}*2b>F3~qURQqL z+|Fox3P3C9HAD~+)A`l&FX-x-%Qb@yNun%6Z^rCAjx+sEp&iNOYVn)6UA!=>NB*bD zTmc#P#L+LiBqCJ*%)N!*%B*mz68?m>S+B{`$S#~227`J_&OAO`^@*$(3lf)W-kO?p zoBT#V?K+NOSyg&~&-hu^!{)ADx*oAoY= zQ8FIYkS0}`MaMJinbayef%?U}hyVKpYFh(hy4r77U;1;VT8|5cA$jV3bag<0G}cx zG*@6HR9dW|cmHAXJnXFONNwI0K>PITJ7g%s=h)bPG zk1=6xiVY34fr_D4z#!ArbyG^^;Bo`qG1xxIkN{3AeY-dqpxG>8CU#ZhJYsJ2gg9O} zh%<9YPAW{>EfC^TM=U)l4h|;N?M%Yl$`&Qk+vuf?3yLSyQ$*G&>oAtdbR{|kjFk&J z0m&NsH@NXpX0nu<0(D>50KRPyT*xzT$>3kv@KbnAF!sPG!h-l$SDYvKCPZ^Ej$kclwWZy^V7Cx~wqe@irkcrsaEblc__#iRB8G0p<}0L(Q@mIGhc{%T zbHt>S<_wnk0J^?ixCY^8cw9xBb!eCJj#i>ZCte&gD!Xa~Wb99J>Y z?@pP%&fgFOO)(M!-R&QKk!_}@hAv^QV5{XPM5-??XBoWJ67LJ?G?M_hW4)oXHq>tQ z@S2h605GGgn;le8ZEpNb{lQ@$xB0jUBrXwt1xWnw>6p_!Ap`fJo=~6W{A^UxgEi0R zQcrB$xloDdq7fKYO6Z>P)OLy$5*=+3pXKxD-AN*vDjWKK2jU3o<_%2GHQ=dM*NP=k`0I|hj(ts{bvSm2)V#eOtvtWL=si>7I@7oEe3w+*#T1^C_@e4fpSmb7fPGU7MQx@% z1n>KaFR!Xw43I=VPtp^R)!BJ8*+@~o%?lQ9wRvKOi_131DyXmjFx{%W{3;52zX}_q zcDb#<&6r|)5T>V9wLS3l;2~9;R@{exJm;4Q17me)9#w$SzGCd#^7Ulj?aU@FBh;f=0L*`Chy4KkwvrXJ# zA0A(y~rt>P_-{%|w>fKp&d>lT>r{md+D7bdX=aUd)12+(BHq}&wW^ghp-QpSZh>eh~} zXOcUaDeeU1a-n%Y|2Q`)5pSH&KTZ2VH!hjAYM;=?^i)FYll1f}r9w|rl5WwKqem9%C&zgFlEqW-Dp%@yGn|TrY7dtvFsA z9U=Zfj7TR83tSa-pOysWYh_p~YcT*65t~tDIQgo7ZBZ!gpzjZNy$byM3lhVQP4;KpHzbrhqcuAMO3+?hPg zS_e4Evb3tI%bvk80`c)gC&32sMH$SfXGoacYRXv737Ha1=2wbmQ<_yn$6QO3_)yk1 zLf>OiweE7_pK-NN97w$deQ=7>7#}Q$x__>1tNNCHWja(q0X0nRl`$$#53+~|$~?+B zj`Hp1b_e2q_oF+=pr_vlZ*cetY!#a>18>%AvwJQ2BoQxU#W`xb<)V`x8Nom$+DwCL zMEZE~uMy&=C!}fj_Z$+@+E8U4NM~4Qx!C;X$)!nDZ6tbvD*o|jAg%dqd?3oeUg)1#3%1w}+51}`Zn4|rbk1B=h3I_eU0rJW0jJ=}s=h)} zg9WG{DN4N?^!5nJ%L?~L`XfUV#ToAQPsD}J(%bKfm%MHU}?(jhpr4o1xRmW<5!)82dVL3f#!c;V$Ttx*Z z1DrGMA%3?Et#Cc=dSYKs3HL<#+Mr$VfmIg3VQG2}-qacT%(* z=1w;1J}^>4HFUtX@<3GT=mw6|^N)KO$No*or@D?sdqm3_re?Rpx;4wVF``OS(D{UNS*mp!j@{rShr8Dc-|p^8!NKIV z`L})|{ITqL-nX{n#l(ouR9~gB483nFbxdcR6y$yM{1=V-W5TW*Z;RaCFQhB~IgJ~K zO234BpVG*+(7OeDYmy4(QF){i-5Hj`CVvXiKTb(*oM`&e`{b|(rM*WzKngJlJri%V zAJ7+;Q#BkIJQ_v2c#??jgpJ1lUVe?E5M-IeJ;U5=z>(e(?h|jMvHR1<%lAOsj(!s^}~n*tN2^2cw{{)V}|YROT~-qsetvY-V3jgj_?D$fWt6}fIll^ z{qEY>^pdgpongu!T3d2ka=_FAw*gNckPe!sdOs3Ta(tD-FH&IT-Zrr$<_(E_`W2)5-STU6LGO-gR1@eIa zHSIx>_rat?cu!e?k_O$ueWua}`884g8tMk#Hlg;a09z!O`X+3}`RM%BwLvaNf?zwy z8}wQX$?@M@-2lF8_A7!dB_J)MG9&==Dd!R zQbUp@v2V-pOe9W}RQ1!4&XvOz?g4WQxaOFPDhN!LoJui~*~j%Rt~4An*s4%W97DfesVq?cwBt7@Tb z@MyT+UE*{T_G*>BjFEOAkDbgxZyRVNgp*?ZYwf(zY^;S1&Z$$tpNCxSBZuZ;{FFQcIzW)S3QTaN|ld z;!6^8V8w6OL_kAkc_$gLlWOICH4~jxEhgz;dUOGD1_sF8b9KS{Rv>oHfo0`$dksO`6n6GOsmZ+}d@JrAL&c6Ylg7#k*%uR=r3}iuxR+jsxXFpuan;O; z2|C%y_f8#+)i4mw&0v@QmP`0yVsk)^nIVRdztAM!~~b@Nf*-i)jD$22ozv00O*!0TL}b;kOO5m!43xv4g*}z$6CB1)*Z>~7WLYZxvJs=l`b(muP;I|IIuCbWN zCx$WhuY5HiEEtgIHm9UV)c*zPjJVd*Te4UP>aVpI!)alr6;!laG_ux32-l>A12LfV zcdt(bsf~iNYkzEoGN_n^)qV|{`mngh@{j_;$TFTwQVdPT^t9~N_=324TZTaRun}|Z zz0U7VN}1piiU$vxJ(qgZDib1KxJ{+57WYvfGsb;1b>}aGNTJec-lM@c80qB^|RVUFiQS31?fGyZTrBj8ZHqGHYFuYKBQ!bD`NjS?Cseg z`j%-UkqBA-{ot%~Lb|oG+8OwwZY$6bEn6`?pE_fqw%1Snfowr7N5ri0nPN|kG?{@(9o+%0HCph()v)fT1=9{bIkO`D5r3U*~B z8hgQ8Z5h)o*v-hah4TFi67?QY4LYxAY+Y-z-Xmm#T%gbepQ(cNHHAycw`xs&rkzRe z$V?f$>nsX+5q%V_6ya!+kPEYxxLgSr(-gnIV6DRF&uG+2bJ#Riw1@_e1+8za15r7i zf?V2btsq_wAVCKJdVG{9{rzgc5GpYgVr#wPl5{QilEMN_WT_2yhby7LHvR7pX$%v*l5S+wov2XNT1-xOuP>n)T7o}J* z0YDz$*C?l9e*@%CK+2oxT8Kybkb=9n>*-&~UyIZz*vs!3ZswEN^^BLfGMmF`@p}04 zBWD=Ucu5=JYkst@wI)_b z5fkzpkULcrI@s~ztfYV3k~DlU9(wgiMQsOo$E~qVdP{ibil&3b*X8Fj*oeV3k*MkN z)40loo7a!iaP#AEvvt)%j|$oD`}G|TZGDiU1K0x8&tF&gnwGUG^^tvH00(`&A&OnR zso7@4L;Snb+(6Q_JoRsDp)LD8BNb#tUtXjzJL1dpve!N>z#|MV8XwP11wx-|93PuJ zs&6m=(7Mt7u`;@pso-ScB)aCWSnYS_7>BGH4T|pJHu_WkT^Fx$hz_g+er+m9C~R6v zY%(i|B-VY$bRfBnia@k;<39ft4Mg*EU82)oWH!76m|r+fW}djqWe@6Vu-qd(`~qN4 zdluTOn3h2yU;5h3$|sOV|E=S{GkpwgtrL)J(@Fpzn3%g<)emlc6=y_e_Crao64{+S z`Mj|qu5!F6Pfr-M9rSo>$p-(`iPsjVypLdt5!*Z1Y;So-(^Ef@Kmxt8uQZ&O zMO%pGGEZEg`jgS}x~M4vrl^ zfRXQdI`VX$w@PWZz5u3+TJ~Rg6U^&F8vqtwX01h;P$W%{V+1>JK#tR5iuApnB~@Z9 zI0Sx#+l$BFOao=1eFHzEoT(ptHy8p@(rq-Pv-k6$acUFD7BU6ZO%c*2$g8MsXiK%M zfObdp!~EsqZ@%mGjzzwdzpVA!*VIjqjX9m!*!jwZ(Sm!Aek2^9G2qF%-mPUQR{ zfX4cd=iQClz^MljMXpWN`K|kPIj1>U@T;uS8zcAG4<>&$A>}G(={HcFC4wF98Bkw<;4IH%oL%!NLLxCN$PMFnv=kVHb)JoE`?2ujRsN|SCihh zFul;x?;$3Cf2+!0;PzG^1EdhpQ+|{sj#`w=#>AeBNi7k$JhmEz-%B3V5UCsRf1Eg-DOf#Y`cpO#L6@p!u@3BWpV= zASz(|jU*FN1I)(8iUDM;b>7*pC@Es>O@dW@vn!N}N@Pf^Yhy0cCUf_ncb^!juxZ@z zIigWW!zrxhWQHzn5|N{c1fPE5uDmAAY&*$Djcr)^4Jctcs6=s_V*8wk-DN3I%h+*( z@(LL6xK0-E?K=2wY6Db?9Kduw9>Sb{|1iil{<_Fic7mjc%gGy18}=(h?YP9vZgO&e z64vX+A*d2-!`L|h|Fm z65;a0vZdYMli?H|sFr9e|1Xt`qUYnfkP{@#|Q-pEtKJ=XF} z3I|#Jlr#}1gw%MzEtP;=dv(3@(#4h3c{GBgwD)LQ&iLt0x7nwcU~TIsxV5S5-`Yd$ z@<0Hx_?Cz|a04=GqN^c6@COSZI+eX>GnG_1^epoy0h6=YkvtA?IFy{pE=tE^sM+zy z+q%&2Zhv%Z36%z9>k#QNzkgp!+;qEQj0VWW&qiWkr5?g-yNy-6s!YJ+8eyk>Y)RA- zBsU#AOblnkdEMSsXkW+VOO}vqAce*C0BUF3GBCC=F^F+)Go*VQ*L0DEl^dV0@YkEk zb*nfh;Og9pMU>+I+m1n}jP?Ix0f62`aCxz&7D;_3OFYy{7kdn*q)b24$1wwVV92u+ zS*HH;{yuIbZ+Jx{?fd!*(}o$>hC_R)t85^S@?_V@5|Sw8{)6 zE1Zv%3fPVUB*^ZJiFOQ+fOfRa+v|=wUy}HBTNQqd<2xBa#f5jHlwSf>zEDW)k6j`O z#8RpgE*k`$?w$yxnVviTts|v*Vq)Op^QHkwK1!=H-J%?W8`CuQQo7WyITK(8!T>0c{v|y)CO@lKYYgS% zWW!ClV1SwOMyjYusl8NoQF$_5Ek8L>H`h`!zo&B0q?^w1_wVW0(rn{tRq@H9D1HKDTVd)s#2?GLC?_#s581e2OJ507$C;&6B z0yMtxJMpJ*R4K-~43PIvC3e5E?KO#s+|Np3%sqqt$>yxyb&=$nJU-up&>>aSp#P9z z+Wg9(X%m}dq?}PG1dn|iGr@J~?$i9Bq5zC8ge%9>(>nFYD8kP9$*5`@+=uk z3BdLPwj3PLcIzOb&s1R!A=yD6bDi~l#+gp8*9gsq{1pM1OGmb+3U%yq3^Z;sb{spu zv_1~XG`ecq15F7Gwih-Rhs97S)0u$xmJ%>staGd_()Oj2fc7V8X318Oh7$1F`B%e0 zSGY$fqN)rk$+ObWGr1IzHelD$R(v(UR%YWba>^O6E5T36t}2ocCQy|^c9>Axgs9vm z!cmh1%jr?so?P)9z?@_#SRwl%Cu%H#{qFAXve{bNV|=3BU93o}oTBK#J`DIfDGg`T zKIbR5<5hpg>@S~`(p^n{d|NVgt%HK$v1!n+(zUkYcX#sFu*GC;CX2c?@6s!v3QtebTFk zf4?uxOnY-Nw{2tw%hgl%LQK0r@IR zmYc6CAR@5>#%CVB(gQU#>dCkFrly0NajHu9QG`( zFaf@`S&u!rsD@4o-HoesOrKZfGYLk2Z?%6*54FKFMJkAxNL%QfH#_sdHFp_q>M^%| zK;AuJ*gseCMJ6O<33lGU8(XfX^SXY>5)M+({7Y^g)VT&N*Z8Ua^+ZXWo=yB?qd6*U z1@n;ikGBblx-hTuoIh5c$c%yB?Af1z-L<78T|krnzkQh=O`?O0f)2iIMo0%%wkGJ} zzsXirEU0xQCRCtMP40@=o#Y4Ii4mF7fkliRp!tr3J$V@5 zlwm^#q7${Ms7TJJZ3Nhbbr(lAO}{|Gn5<(9r7}i%mxCNp+N&@*!=ryikD@^gYo9d2 zA!>?G_5nJ3Kxj0Qr#8@>(oW1I3TKS5fLmAznQ7@wikwR<)kLb}>usyA9aVBw^@?F? zN$lL2yXyppNVW?FLB1E{_&^sx9X)WXS=)fr_8Ka=0(SM z(6CbNrxH<|WTxB7{C<-G=mgo8m#70>0-G3-)AVUP%JA|4~sL~GR0foUcUQ%0I z!g(x3&hkwi^4Ry-&h;>05p5Q2Qf*?Ku*2oYLFkw7eBoi{0(hhAg&P@w)Z0#)9>==) z4A-Whf6Mb=QP9<086}0nv+1Y7R!iT0NG673> zic1a?*ko?vC3k#zG1)>abZ{`k5Zjig+8*+LJDG^%)gO_t!x+hJdW;(BtygA`TAx|% zw+LZ7Z!1^a)C%C>5NLu`VR&cl{Tpulk_;iK0&<=Q;!zLMQDu)UmKiq*zy|o_bTF>kE5pJJ97j|F)?GI2ChVZXBuV*8iws?GdhiQxDjrn^ z>g)}?gP01&!i2q~<@vDN5Abu^%1P76>$^v|qHsFxO0`!Zr}ov1AFFkIsfFBkFow>< zK5M#lImjj=5;`mSO2#KgRGA&k$AGt`VD_=;!ldZ(7-N?3F^3_|CiV1m#45j{VI8T2 z99SZd_HwwZVtsFQbA&GJ$Kk*xq^*XCkj@Myev3+P1=CSVO{!E)iOm3ULkfZU2FI88_O*qQ}XN;%W)|W!a+N<1Z*! z??yzvXZNSAq%XP1GgsVbk(bBx7o;UN4Ym67YBa^$^1delS!CR@fAKor>EJX=%1Sad zKng~w!oE#1B}*kTxpB8`#}ed|Q#35UAM)2n2Hb&$4+4`MlN}7vX>Xu>`LSmUq+Ajs zM<49kmaHjA0vD6A43%d`-WW-u%3`T|1Al%u#%Ze;9@d5W!sfXPLO{1Z%#(IWVW9yt zKtM58 z1v{pho|aD?6DmWo+Lfyjrs5p59i8&0($~9r9A#?i1sIg}vct{R&mFwI@!_L5o|s-#b)d#`dlckb_n4x+I3nor^-YKN2{{2xY`gFq(*l9f)>5P5SLk~76@|3az&)QRag?< zPafnV?aZ`@AU!L1Q6_x-7MqQl!I{#uU)Vmng3eq1Y&19<>2GyDhA#8tFyxEk7i5}T zS2bl2iIL;Vnoerj%&>5L{pd()Hp!BkW&V0x-X75MD=s}o;xS_V+WLl~MkOp=WPGaT z=Mg?gqwcefwg+HbZFl1+r~ExyTxxy_i3szo@?bQc`B)`$r45hzh9UHwUC1V$y%8JV z-#ewAh@NZETRcpu1e%MTI0YE*S9NfL-4oaIL#u>~_#|9gWSlU*n!2Mx&5NLY{E^ca zb9pU*0Frg+{ebNbyzHpp4FOK`LG1nWP^hw57%EgOKQ)gfPpyfuua?oVAk@(ALOgG_ z>%Lv=>&^;ow1e1jn8v;lFB>Tun|u(W6cz90Qstc$YSA}ia!jHv4&+T5^G+TjP<+cbuoVTp!EL3jnk~m$pqv0hzEt7 z=kIgH6KIoDP%m+YXby>=tk)r2=SsVJrZbx#zvT~5-crjSgr1ibSWLWj0DW5aPg>zU zulf{+y*t(PEZeu44$ke8wEG66K4twurg%E%LuYay2L;=od|8$LCCSk_^R=g9%%#$6 z+jkjk=#e-1PQ9T~CxajrTx~tc8G6RD)ex|))YOXmvFu23$x@Xr!qv5m2CJ_Yx0$eZ z&gi&rAYZBfNbqaQTK17tJAJrG$Xf(l@cu3p4RCEQD+?%!Bfo7Oqnk6siamXd1xAhd zmLC!aONbnvJ1RWaIBDFuVqu9H(y0@E?-L~BQ%6Ob8xHMayM*5c(bg?t_HuLP_QG>S z5==CZ63pu1TuSTR4w4n6Y-x7r9bGS-Don*r^&@0xYrlb$Tt8E}7P?)_VAsc5FhtOF zGqZ|G4poCYC=HXm?raS#~jTdRXft_ERF3q+iE zt|@VidVh_LLe$vJA~)T;22VkcFSp0OM~#p=Ny&l`{&y{YUuenUYJo2Djd)OKfM7?- zpHYn}{&cjTlx$(m$Y^xh!8;qjZ#rF4TVl#z_$D-m$8t<=^f(k2}@OqULu;*A9y)-Z!kltx|-Rb%E&;dv6yc>JrEh)C{(#t_c!q< zqtot;wGBl8^{D;(xt97_Ip*q01Of}5okMMmLCWXrEt)u+S3 zS^I#rA2xlBOTwCyRIqoyMYaT*v)Lxqp@6gYqv8s#SKO1WBn9s~^CJ);BF3geI*RT@?W$O;Ip zdkSupFq5%--7M`eZ))&ibHHUeH)9;|fa5NG=$ol~`l-V+QST-Sr{NCz`p2*=YYJO9 zjVpEMA~T?~m4DolzUMHZGR0F#te zGpE|19;|&IB15!0%l6!FrkqkLvUrqv8b~S_*At9KEHa(HwYV5%tGExtVA`8KJKEOq zhDvTVSmW}??1cSrx+;T(zhM6LQOT?W`WQ%$@%2S_iAosGkPMJ?}!!kFkbX~d1Znw(g#kSEH&ut zNJ+6i?e*-g?Gmk82*^pPzaL%EFpp$ISXoBeXWp^+)b)w_1R3}f3GbSS7;6G;*yj~$ zu;7FI98~iB3#QGM2wDg(wXHxeA$2Vb$Gfn>uoR3?X&Y#TLWaL_NhmVeUqj=QlwPMz z{U5TvDk!fe*cOMN!5xAHcXxMpx8UyX1lQmm+=9D%aCi6M?hbeJpL6fat;z$bg8KG1 zyQh1t)oXepxX`c7hmuV+_z?r$x-;6k3tJ3?)k;MHJdJ$Qk&fw?E#x0|KG{g{uB};YMHoK=AZ={*itMf8n_FLpc<%FZ@Apb(-R|0L^u%tlP7}g zFCvJUzD@@qq4?B&mVm+FN3G6UD%JrhZJ1|N4b;dcUp#Ub zj@_O5Ex>I1YmH@4TbmDz3K^bJUgsg#R(cN+$nN{PC~~KdmNA`U@60Z)U&02Kw9*}b z+95+4o;;5yWt{fArUfsqdt}#b2?Hx!tE^a56?(&3JL&w63hmfMnYA=(gEM{UR^#>g zQE{X7v1;Swj%imtYkTPK#X5B=U5w5nY`45W(w1M~1PLCsfQa*k{q!-ctAV%V=2=K< zkwGR_R&AlTDwgovWF5hAJpOZsc5XOgO9n2?k1|c=Gw~j)=Qw{kpZvN*j7mf&g{8$B zbgBY%yUqhLq|gBF9uv&v(|y{HTY6XfJ0DqG6Td#)zXXIv1>?4KAyn}^zr;kpY)elV zS-d#q$>5CBRWD+HF*h13b5TTBp*$qTS)o&&1GW$!j$c8rF-ixeJ6s#7bXz5Tn)VOF z5CFK;`n?(>YKEtd8I>gg_d=64{jS?S-A^8B#-b#vjlw|4p^8WCs7u0twx8Uit@M3! z1&^D5{}vignY}B5xXRh4ynK_?3~|wmKpxWeO7v}y@2%(?+W5&)UNITt*~RG9Y^bNL zwvcD>R5W(NGx=?iMsm&LSMUA}vNa!}poTS-tD0%%bL}YHg9f@wQ1g&TSR{&!_oJWe z)|H`wrkDl99Tqq`?*0o4Wjb2p#?nZ7nH7vIeE;x>WLloCl|*=I%nQ#@?U=eY-L4Z; z6uno=jq8i$6Sw^hgbBmSl8r)x?lu(VP!bS<_?Y>Zh%kFX?mWq+-(`-JBE#_`v&ZXd z!lUGk#)lbzjZ$NfNKRXpv?o}L!<-a84UzFd>&M4^jcvE!mk^tt7&X&(W9R_?asz>H z$$7Q7^u5Jwtrp5DU5g?F8H21l@2LmjUt!jl#YDrzcdy2`Don(MkeYQ}wB|5=x>urF z4Ek`I(M-6=-Ib1i;uxd5>c4yXdm;o0l1lZ58%2!colr6R{Yr(ufl%y%;qwK%e*EPA zpjwWqqu!oFDVb6jHf6yAQ(J}$YLj$JqFh;IPbilxGHeNXT{|~xZFQl&SFYDj+`QKv zJTS&W!J$B#d3AEV){oQF?dC;z+~4S0b`FsCuH#YvC7tN8tlCq~UiB1%N#^P&WjB zCrMfRg$(JyNYRzn*js>S>KEREq-q6v>62w_FCc2hb2weVZwPMSwR*vz${ZfABu%@B z&kogGp1nsfQO9m>uiB_%Ez~pdBiW{QsV2V=NhO#RerIqk6HGsaq>s5MW#C(NKAN`Y zt4dY{SS*;DFC2(wavbTG1~u`FH0Y@#lMq&?p0Z%8xVl%>lR5XZTVf{8cz|B)>Z~j; z5p}TC(lAfI;CcPLs5#F{W*Hw9*x8b|cP}Dli70hpS}^mI{$*g(&%`$0`FRqll&ofTP=cMf4P;is&lE zv*Nnt2B{tsYsf`VL$iYMg{=@w+|RaEs_E9m#&)_F;E=tW&%vr%Qp~2!EqkePL$}ynS^$> z0|qO(5XIs^gyADCkYn{)>X}}!oCq8APP-dkOhO&wiDk|K#A1Q!I;P#&>EC~gj4!8K z;STRwXoCL87+&f}P_KtH31k>H3%~{Xi`u(F8oH2Q-eo<@9ILDw^n!Jh4~3G-qM+i) zGAyy`yZlL{4VE=6%F|SZ7GrVR{yQETrSB4g!GCVH(nx*i_>x7x6E+r{^Veyw2fh7g z$FhqVCRazyebVYKAlqQ<%Si-SCGrLQg`rTzz==^XHRI^;wAcpnRMhhcsqJ35=7a6% zYq2@KT@ZquPzF-&iCZvkLH9S(0t@r|K0X#t-YiS*?fF_*e9NS8`4*KV?3;=z!g5eCy%&QEy+SdT&y&K(gbBTUM^~|Y#zks#@J_{FbsPK8+lQ+bb1@>c<-Iwl|$T*fiI#8IQ zN}n5`e4R*SpmElr~FSEP}#2qs5R-RxbeO-HO) zr;kh!^`di)YzAM=jw2{=vO*l%1{}Dz*?fIo?Q2{ZT_xzFX+~x4JN!TTCAj$MSg@nd8sUp z5ytAW2P;WR{fA4{ zyhcfc8OFXt{JhrlIKNc9*676WnSK569;-%b zo9C-fLI6QhD(jrRDY2$zNLZb{ExOJI1h%9?Bb2+lV1Ar| zayxEUQ)cYejckg<>>+_o9U!zE^dQ`Hfn86U**hY`KY%{)1*4VbP%s(ZX}ao$7n$zc zcLs=hb8ODt1(fr9r5wjBL|L5;2*gUo9%o4thxQ@eyazmB>v?hLH@uE4ZKJ`c=c68V zZDGmkoN2zPMXpKT=F#`)>*i=dW9_NmVg$1sRsSIrfy^UpN+4RDZMk7cdLwk}-Vj)* z1M$;&{3#j`xisYl-heOldy39Nwat_1W`OJk|wB`Li5mscaS({8@NEH zX2>WtBXzb-%TBBi03wfV={6BEt-rRdOd9*5A66U7W1IW`D!GL(#X!INW?NYSFg zZ>dhMh`{mtg9BIo*)lD9qfq5bGFN0YSd9n6##kNQ*qc z$s?CkGTHLVfmXl>18W4?9InNC$UL})c!#cs#tU%YqN${p@TVWt}MfZH`WwIb|LO#?AV?qp@oBlYBIFMKo( zqXW124r)bi&ZBfRNukcXS)6E+#u6>pax{qsE}6#uPKiCzNZOE$cBdR$Cn8j2pdb>& zroYIdEScEIP*`7R(bx-?Ncq72f&_!(AfF3g@ksBX<3{E*OAPUk!lg&_$D=jhVDn{%_?TUVd~ zi~%y-jL}>sCko@0smpbyeN#nAoF2f4dg#j8x%uDs4S4?DQxN~x3*fZT^0X>NzrJDD z-OzCDtBS_KC60`d)k!)~NX|dWDU*R?f^EK)?s4(WZu_h1Sn5j0Ju^DAnkiM0E4`;? zv9}o=spKC-Jm^gS3JRed&Z#djpesYQuMF7-o`k7ze?i{`Ahtl}pwCBYd3H+QWCN1A zDYm$(F(p8#Kq~wpYia1mPFjhb6x+jPVvNt`8?4(KOdthal|Qx)o;t+!bu~JgaoM>-$d+a=7>n| zicWBJA$B3HOiiPL;>rwsM)@FyY2trBC(dA)YG{{Kd%QaAKg=W-$v4NgU&4mTB^;3x zLR=7p)XwYw%T`nfTz27%__A?O-N0gEpD+?-yDf!K+}kieHg#;ldjozDiZ9c%kqhxxxH3Vkv}oUGr8yO386fb0Ed>@ay#trvhQbK6(!p(ji!}O_yme`_*)>;qKY2CzXstZ*d|Hz_* zLUS;Ph~6{m?VeFVhQ^3+9~z-C=51tQrc7jtIrXHw-s7sV!@+w)fTI5iB@D|$CwL_e z2*T?z{V&E?K#L@IdKj2LmfWu=TTQLX5DBs}_Wj0)osgl!@3TSimS%66)RY@1od(t- zCb{kY*WvqVhQJ5TTiS+cYfT^JS3tO)w(DU$=3K1>V0KHJ_c|AR*)#Q<;~ORx-B59O zJIJV)(32;FEi|;<_v?X(S?`$!3_|B&zlFAM8t#Tfk>Hq-dT>3`S2H`r%vKKI&EP72 zulsuOq_~OK6kqJ)O*qM7ogl$j{i&XYoh9N`Kw%&!hHKZTCJmef!y1tl>RpdznM3(Xj6=i|uX+{W9;`iP4w{ zfk15W!zh#HlMvJvNPvxTNsKQI>C1Jdqx2@ZT%-QRejo5)aES-~wvSDxAXxKBQ33TP zvjcT-#z7WfP(FeW_HK=ZN@)lBqFvbq0}m=#R&v3}Nx$U&r}HISlO=6Pfsv`-osIeN z?`2_=xq4sVGXq=m`K81zKr-bDyYQW)g$5tLUu+LmG5oXZ*ISz+73i&zi!6)#i z1zh*wH8QCsA}e9l(AJUz?jMkasSnh~jx?B{=wPFSfi<}5*6&8qOx_&de=08@u&SlG znB3#J3y`Mp!TISQL-B^nWDm-bDyz2RW59PwR1I+$O)MAhpAY2T{U@+bo!B1GrRU(+ z6VgB$;>m{Ss4uPQ1Ck4(IFx8({m;J0$RtdcW=;KV6inCxy{@Cf!6^DJzxK#agh=Cr z0jr4}R6e+{|0nRSS)H7cPWeE+Z+&(I7!L7!ixI=pIRMk4n(4dbbae@W26yi&ba#7V z4G9XG@SGODtlyG&gqHLHm)z&}e$k3~!kKV;-3K3d^MQ?)E7BczjI!AiJK!R7s@4av z(TTg+1-DMSA9D5v-&`%b@2-#F9qO ziE7JzAMWM8ZHYp5wky=lL08kIR}=bp8HP}{0iE#|*|>(U?KF_nQ(1So?zEu?Rrz6& zS^_aUVCKnByigoLGh=TYDWsA(q@&l-)-ja9GY3~eX`Q5!xB)e_G{vTFg24GM&<)TM zCDF%AegKh{G(4NBzdH@X{+pBj6(85d2d0dAG#uq0Oqsl(Sg>?XF3cDHMT<(?eP*tc z&}Ebbs7K4pFJ|Fj!j+Fam>6tR#+ldXsPG3JfGoLnX0Th%66)n1AgpR6p3d%xZ;e;g zY}#>79~8V5T*IJxHJRx8`R!Y0w@=|>a%(%#nW5NnglPxKYc0^vXe{(c;~H5&3gla;r^4!sl|mXYut~3`bjdl*EFH9?*E80?Cy&D)g_8HO9XTgIK$$`DrBEM4 zwkQ+`9-%IUkQoq+H7AC6_6gD4sPOIK$$mN@6h3)@PN8W~j$WU5bRZg;(siz%#ZK0U z)MK-yrjs+aM$>M(_&MnBz*oEvXT0)weu-y(U%hvx7jzZY{5>GDqo|fszo%>>xX+n_ z#Jg;k^J;DQ=N8%gP75)F@Gp>uofr?QnHuu^?%tyu2}M=ge%Q~xwVN}eg_hoINQK9h zLpQlfEvu~i8mNh6&?3FThx!J+!=Ve3enkVp*5UV@xIAWbPG!vd7piiko3b}XV1Wazm}9hAga zlP~Vc3AixcD1eLNhap4teW}rpfX-SPa?^KjrT7A03L&E?Qc3-hT0F(Wsx8Pz*Cu{y zBoqJgB_c~^YfTS{zBdTJ5O&*lktYQ`L}5*R?59%_fLQQ4?dn%LmwKllnea9;DWfkz zEB+88&ZxBc0e}RNB9R^Iv$2o#_t*ed=pR;kfwUyDOsoomPcb zWZH9D9vOqcC};i!1i)>d;oCxjgR7$foMi3(^-o=g)Y!Labo;6N?8+mP{N(9yFbEQ) zmS!}b)J7B;bNoqO#~8ovgV8X~MJ5qA4;w(2Hi$0iunpWw7gy~bWIZt9RDH8nYIfhm z!kk+lylhk{R0NPS&t6AhGWY$5C-m_X2Tyal|SO&3CCw|ik)be6BY#}oSSGkyD$IiT7Z(sz67en zkCrP?T!DDlVnE8+yETA>a=Cqei*{ll(`3IiZH`_&yVb<01)Ki+t*u7ftlQe-%aTpH zdPA}JTLkCD+6{13xxcJkUyzZ3ZsQg>EI*|7CiG(Cloz4|$^**mlZiUanPqameo+n^ zX<49JT)8BM6D7RLqI)7ZXc1i4i9l1Uk!rM$X90m~S@!+r7nWTW?`~X&ajm6}4nV?@1~H zGG&2UcI(3%)~hp+%Lgr2u_3>NZlpUE@U!(DU{kRL0==gpIgU3O+#}S-&FkXT z5L*_Vs7ik;;j4*(?y{x*A^BrR z05Kb#9au%HeI>rH)>W|E1z@AYoM43rEXLYW49|vQ%~8UpCQY=s@<4P!YiEeg!nrX_ zKw8FZL<01)Pq@|0k+`#H7!5R>hLGL`TQ1gq5YHXLwsi%0sn@Re1D34W7o#`ewzuo zxomN4L0Cfu24Dz~Cpwla#3JG>x>VKBDSO$G7G92WbVDjXySCw1RB8qTZ5(L~S?1Fdv>yKilvve9de}=qfa*O>3 z7$CTxBCWRh2(Ocd=t;yWcJ0A%G_Yoe)|8?FEPT3quciU5PQbywI$cYAF(0*uno32Ie}KBO=ERq`zR?7;QR!n`t( zQ=@ET6q-QK!iCUwe%cF&2GmGZ21d4hTj@WsHO)vT3K2G|??-YLdn$yb>;_c*rcC_n zLW!Ah;6X<-y)mx^k`1#kbygwm&I3kdVOgvL1Qc!o;KJZNXn$M#`_sZ?b`^L*C<+rT zHyK6-suL|`yb5jOlpPtb>bdd{;qZkUWEguG*l7o$3H-)hVL^ZU9WXyu0inzK1th%- zyu*}t#ha5jz!xrtDbEAl7jG#?0GN>THJd;_R+iU%cP&Jp``z;L1Wt+#@;hAwx2UGh zCsP$tnq6!bS_3$Wo#XmbxwnN1C}An3Vtn4hh+ zig;t8TNz^$Pf{;ON#hD+!Q87R<+?>PXGuGfT!Yb^z|M2^Na*)*DSv?g%dh+Hj=-Pw z93GqQ{Ws%olf{(-vN!h^mY%+Ex}hxf&FC+&<@5Z7QbjXT!!}Qtbm&Dag=ys2be~VX zFgHBc+iiz?#^qy~C?hR(+k8*LSc()uR;up$Tvx`1s`s%&-Z(miux;FJ^=B&o%#e>DsS|s7Rzl)~U$cB95LggnUwB1y@rDh0A z>FZ(3)L(^#&~mfUaa#C4oMExh^nJIJ_tx{=hAWmhB{CLUOCXZ*sb02p)0ERH)s@|7 zla#lARwCt@90>+_Fjq4)Z8g6Gd4VRzh;2Dt4mKkI1|Gf#Y)Ai?s$6eOv*)Q`r@AEqNxVRfK0 zHUna^g$E}c`AX%$`GmJ77_piVTBN9<>VMGH;3(y&t z`oo4UPc9D#zeP?-6IB~%XYoODaO@A%(V>g30eW!pUxuDP?iuR>J8yEf8Fu?AfiET{ zVGWc2D!#3`k8@q&~oi^<(KZs~Nc ze=fQOT9ui}e;?iY_>!p!_4WZ0I}P%;V4xZZe`fnH0PYH0_Z*;sdg!1o0mE3LS3YDPz^=|=|u8`{Sq@zrrilFY$ zUQYkck%2JqY`rsfUZ0+$)~3Heg^9o%W~|PkEFkB3$;^WDc3!?@`~ne3+&5r_o96lh zCjm$P2T;QY5D$Wx`7(oA=SR0)X=sED10fnC$O`RnzoCht zs}U5M08LBX$l@yT1b9h%pMTwzcQyX5E?_vNJ;m0xqsg-5yfMVI@?CX{c4f`ST5gxR zC$Fv!AR0B$WM5*#4ykyabh&uuTe`!ZJ4eth;&nQ#@)BxJDF6&*_blaWxL@{~=LO3? z-Kr!fQN|)?$bfmb{Ymf>k{8LMc3^%4ELbZ|7lkKF89Z8G67n$GUoENU;*UIj- zBl$)Fu+Y2expw;*3T5ugoI^?9E!*soW`kK=Ll-(4gKN^qNrSs*o4_~sLO`mj(()CZ z>ihP7vH4*nyon&{*&~^30{k8DsXu8(KRaUQi07ZcwX#x|Q9TX(($`FUB52_HtdW|f z+*+LX0Ph)^nl*rKlLDhbdoy%3^h4XdrUK$;GLMnB!<8)$(DDbm_0+#re~-Dclubo- zzXW``vP@EvKf8wm3;2SgSZ&XIn7uDT7LhEe!^!ks+@ZWF&0+(3qyLL=7 zex!hIy<27Lhu+fJh9(R9-t?-8S&N7|4AI5s3;1h()yeZyFpMhqp$Lt zM@E|3+y zOa7IZ-A^B~0Fc2f@q?n>)zg7xha!Jne3ySJdz1T3ZWdNHxY`}vf3MXB4daCheN|CI(&OL!q{}s1RxQww@mnSDIoIlPzYwCt6mlxE< z_N-|(m_7Ruo!zPDPjEwMg8mO;V-s4>=DV-GLI%ze3rs;vwcuZ9~a_9feT_~L%^(>dEXmSh*G*^32{~pIYB{$xIa~6-B;_ zGwp4mty!;Q0h`pP?5=-ij;V_t+CNEMjj979TBItt`!TGx1f_SqpzX8t16fu?Km~-` z_WYZ0wqRLA#pRz9(N!s%el(i^0pK05AFVixUEqy(%z0TKwgtd0Jhg?>!2m7|4L=)R zZCh(Y@1IvuW$cIzay74$|mgpJ^Qf9n9Gu+SWnz(1NR}!qN($0CVP0z zW5=w!4{gM*DlfnHn`!}S)P3-|(NoeM1TTD^cj@&b()FYplCh2_-a5N$alW*;uf@kG zTtDz6^m#OYf&d}3nZONSGx_OuQ-0aQirm)K*8ATRvY+c)0$@*oGbH*70}+VXJ2Mxr z&;1&qR<-9B`VlHtMR{vQ0K?tg=CxV)u)k4`s3ltmI}S7-U_juK`lY$)(o!W}x$2SS z*pg+gImLx6*{VuM*`?@Lc2hMeR|D47^OiC3`UZ8aI;yKd7+4t##pekg@9+06&i!u0 z-q;DgM5?N*Atz%cpIm*;V$;o-2ns>fb_hc-nQFgv4q=k4o!e(Z;vwjE=C{1qByEE9YrRe}2$@A#~$D*M_0rW8bxex?>+ z^Hw%ig1oxkvnT88O(ef-2Q`1iLSq!Ef&hS6ai07(aDryL?LWW2`dJKM-Mkx}_cQfN z3Xfnv>5_brI(ynV#Ps&KmF5}s+5v8$3_64a1DFuXr)CBCZT^+z>(^9XaOqg-lk#gf$;!4)+BJ({j#IcC<%Kx93!TNmkTZ6I!EgjQYiQefJnLj&z4_* zuMo0G5CdQ!?=0c`MSI$F93agDeKf$QjN$I739K_j6_i`TIg|AZgO0VX#=6s8K9P$D z(I^w(Ta?O3`OZa_PJrt*HC00d6qfu9t0wR4Vut^9Qvvpv_k`7LgDf8!p!)`JHNZpN z1MJHK9`gKOzf7MNj|@#~M0ge1Myg z>*34OzG!_GsXEKagT@lCOh4O?zTywx5x_~E1}rDrJ{u%f!)ILRK_Uj>8;tZ&MwRde z(rf#sopb_V+I4LuKtGJoq+;aSY>^+dusG+(QA7v~yS`40guxWypoMA&&8WUzNceEw zeWUby$8aonRqayQ7v5_NUTrKM883;Z=yeJsy^z#;tWS$-)kZeJBK5Wsx*!8j0VLZW zCjCHP!{yHEb#W?6esXv?gAB09bX9Y;Z++*Vgyj)x_vz(&Gc$~<=b@sjILWCDEKKLW z<%P{Eb2imkcPNL~k^}_JL&b(c=9jgIu71E0x&+WfV4*En7mLcQ7RAdhL?tyq=BkVb z7ky5y?~+GpxV#e{xaQq=o-UVEd{@1)7S~2+0dF^nXlXT*IT>(VsH^n@I44mKtJM#L z#uddyKx73RR|jHJ_(%yOte&pOejZHDf9~|``JS>C_YY!#WWkp+ezGX^71+Q1FPKl) zhbe24?R|g6P}Anzm2!2&KOdV6HCnF^w{2s~bIoPpPBSzk3m3Z;o|JS<#q{%}IIv}> z@-1UAaa_&djWtbcFCbs(#derG$twP&_|(6RqZfa+?R@}C2yg`^ff*Igk6ELmni}ZO zwJ>c`AH!F>XgVvuY1T?Xf>PW=1TzJ&jO#l z`(R(*&r*~~lc$`A-ReVek8xjLv6hU_?#9rttOC?kX@Dweb=()4DPg4>HzfPs#Kspa z)H*qGV|LCCr4#mo-C*RjsA9}kscav5w>iSt7L(k0mfhk|U?r8ut zO`COy2_QyKbOt7=#ie=Ko}>1Hp(z@gSO&Y%+gUCzGAS9$qg2HV0-6wsTkNILDq-YX z=+Doc2m2fFm=umBhR?y#(R>rk@;CF4pIGM>FQ&?p`fC;nh{;f%D!mWRkNGw@Sz{^M zl?Fe4^n%1niG^G3B_)-(SOSdK_V-JAdg{!21^2p6+b2&bmq}8p1aSC!>m#PoNwg0O zz3?{*iN8U%;9s*)vd-?EZ9L z^PX6k*s#`P$m2|zCHv#UL`7CkT(AI^G!Zsj?!GuEji&&gYpBn*fl79VT;DB5-Bda3S9#Rm#`|St)*LIk^gIEC=AQtFzUEN+OgR0~KynO_kN3xa&@$|#)P_HOERj&4X z8WInmf%SS#FS|DIU{W9eKict{Px+j}lqZ>+>_ZEfP5{5+7F-s9NYa|^h|TgQw`NyE zxe#4oIezrj?0G}fxrTnl&JJ=lTD3GzfHicq zisnG!k?6DHlx@UHMw2T}{L#tP(^hEzs#Xu2vAJ>tO4HD-{}G^B%i|uf(RkV@#u0{* zej-$};VBaX%O4Tp#=WPrb(#Pc04O1I`8@*;C!6Qd!#!~HBg7Ur0?@%vp39ksPK)A4 zK7S9tJ-yBsvubA|)G^3B3 z_kh_2NRg2=qeDZf5_vwK^&x_5TXOr8&eJY7G1RTgXsKJuT6@xct!z)gH=+@JwTBQRcQA(I$8jS$Rt%k$Lb zJ4lXS_X4kpfthhvt(R8ES_k-v*g?oFyB9g^r+>gG@jH0n0YQ1U(l9z&`K^jV<;IvU|Ls|IjY`$14L;x zM~bVdWD}Y9^bQ>0%-YpjV>Jr>49+Sv;IY(nHSf%q)=LkSon6i%w924z(sfz$VcP(ydH{9dG58VvvtUWYf9gj2R8Al}GrLQ`fv&g4+ufhwg!VwO zxbl08h`$&MCY78I*!4%PMsJ2?f#w1w62R3=CfvW#xd3+x;OHg{1Htou?$*^z7UyZ` zf)4_tuH{?@{+F_U@M+h31gHvt)Io;CSW%f4f$Fxr`1(>IC?P~3l)Ie*k_mL?kmTyD?!(aR70-daD0Y=d!Q*0&mu^Kq1krkxeBDFqg(61;Pzh^u(7fk z@K}@r4Fv%Y(zHsTpIPwCK~#7{@#Ip`K@+MW|AAfO43QCIlcyXl7u9SFkt>)hH;95v zndpkQ*|W%~f1`WqmMO(8nl;6>w)yDWx_Ex>T(2X|l_Ao#{Kk>tkZjlLldwEX`*E{h zWp}-oOb@49B`WvccGuP3c+4t=Nj;u*cVR5h2Z}SVFyvu0(I0)j8+Zc;2jVu_$CLvx z^-L^?11=i?DG`)h^U^E6kkct`27>jG<=uPLKS23j}bIz1T zp20ty*AaQh+!mW$j*8p@VS)W|GL+qHK|I?ipD)~i=)Lg7T;!ImR|05CO8rt-_Xu`Q z#Cs6*bRKb0{GElD9tV>R6jZ^G0v}LsX=@%#w0+u4zPs+W8J@URmF}ueOc5piIveVn zK4Z2;=dL=!MaQ80|EA=qAFdcKnWy+h@1h4%^%hp}G2KsDyMu1zo4o|j8y0NG&c8%6 z3i}g*%mXJM{7QmF{q;eF(}6z4JfbyEYuuK@5&rBA>#wKy~ISRpLZn2xma)1e9F%TadGt4tj9-EUqt%r)OG8etTOUc#jH+^j3z9SJL zhV?Pro^I09Z=E~s?OJ@xm=9Is#xEB5jMPo*m!hFNEo0Su83eHg?Ech7BakJJALJco zcc$H$pktf7*-qF8cybi#R9)=TH$2(=_9+dnl@0d=4X)hwgw;^$xzjJN(3)1EnpP>= zRKc>0dow@ljY9n#FH+Wy&K; zczveK)F3Q^&V9rEhu@RHN}?Z1uB41&^^Mx-?f;okzk1y{;Pl)tnT^9^cbFBKFv;BA zE}A$S$javFKueNVGc`Vm%jEHjH}msIUNu{rz|`)XVmKC}Y3dIyHY0A!vg0|B*D1iC zyyLJsi@2fJSnO^~JGZMEH>pHg8!YcDD*&-l=|om;l{Hkz7nE6NOWLUOys=uV`rLTK z>cjA)kghhlY(tqJkLTX9J9syEk@+fG>BAs+A< zJKs%cJ>TtjmA|P^&_#A!^MRi*sU$f!lAyat0n2Ola|mg`8z|1=@85i^JNQRXOcEaU zujTKY$oCJvwDV2ZgC0nv+G}8_lxY2q^?)V_PNLP;lBt_qiFP9$iB_zE%bMke{zvDm z!{?)6%@iDtHw@AG@%!0!9-Dr5OB-u)^OiPOpjgm4&vxTi9L*2oMLuyB87^FtJA5DZ zIW>>EYU@_2w+Wc-?spy4`$7uN8pTM2snOV2^U_S6(!xV6c7(1j!HQ%xF?X)~<=V~W zzTV>XC>%nx;IhZ&*a6ot&2hANaszJdNIru1?9>2wCh|SNNv+=8A3`*OX1qxg$Ym zZx%wE$FP0FaSQFjirKj9B>D#}<6_6*5s=Jr4(at;mnYZ3rplz5KduG_`2qFtcBR9c zkQ$Yqbma})4zz^Y;O;!5d+PRgcrtul8Vmz0z`voH2@4%+K1fibF^?*EBN>4#N&| zgTv~_4MTbkA3N=H&tw?4n%zc=JOd#lxb6n;;A5N2n@8sHKc$y*+t{k{79-@D18BQl zn(w=ppmhA+i`>tnFRB;PY0eU%d_mJe%k0nMkP&ZtS@Di7tj?Nm&a)w$!IME={8e&5 zr@k!yy^IYAwW0I1S)qL3Ulx> zw^>4BvItN~;4QdKrrl z`$e~Fj6YEFlEveG#dnwgt}9WK((NZ!viAt#1?8!|L{=NDC^CwUxh-3a1>%J@h$Lly zU}7(rjNaZa|K&+~w2K3ue6pkF8KHCK8NJSHVqvpol)-!0e*f>p^u#9OrIv%@QfV`V z4vI4Blfy;qZTTwm%?ne1op!a12z^>BPbHw4Xe|gmB{Cgp-vZ3|Q;tp&%cYDmF??;rV7Y6bcX1DTq z_781Gn8-uJrdB}Z#G@B;*6iCH3eOO`MY{tjo+zt~6EM>M?E ziB(3OrbhvVSVo5m4Z{1audE|;_G|`34?1NBOZLX#B*`%bQcaX9lxb&tEx{{)Wl@K# zv3cfhiHh^lEXRA(fvtz_C4X*meUZTY@kUlaT7C0ZPWIhZz}GI1+)=YvxYt6x5Px?e z#%SvSd^ss~6|x`Lr+sxBzCu!9!hSd-3qcj1vGLS#aC0tup;RX$8;Xj7(Ek>B;~LuZ z`B^VFbp?gRocO~hh}nE&?2MaJ9dd36q1W-pg=NfncVS~2mB1=qcfUd(@)z^pxQ@?G zY(7c!k%lEONFDqtOwW`W9i;_{9rI-N;h)YA)Q)|A}SL`h{M(N<75d}n06+Cf4=Zhy5qW4}pVADs5qjuY0!#1_f?$O;`?=R1)oFBg^aSFAnYpYy2osbN8 z4``p?rUiQi!@3`3P?{*@z(0y`_oO`seg_r~8Uh*u{OdnLkx4Gzv?eP8UbDM@HKMUK z&r_D(N8k_b1v^5p9gH@E47GO>3;3GilWDx4S^F81h!_*yi#VBGt*d8T+17OKTCt$0 zSc$2cbW5wE((ow+ksQrmij4Y7t8H;9y*jDu|Frhy;ZTKt-(xAVglwa1jV;MC_B~lb zSwg}zp~hAd#=dVA4aQnYh=dSB#aNOk3?d56*momj&%QnP^t;|a-s^p@=bz^}|2T8a zea^Y>bH4ZYvwZJ44t7-vr;sTpGR2c`D?o>x-t}69A_9$6sc?2XCtCC8pA*VLL!Ei? zf;0N_C%}MDAiAxXv`{Pu^ILhQGs-xma%xJ)WlNbN{>7520QC$kmmF!ZbK*(Ua~9Xu zSb^c-UwCk94goA5GPxOI4!xCrZj3ETk&a zdQ)WD(Ixg%ndzR}W#j+@|K-Hj!hm43Mg(U4-gdjfEoIOUd;tA{f!r4Rnw5Ctm0MTz zHp|5+!`9ORa3cG2e#4xBFzUlQWqB$qQ5?2&K}+N%u)^23*^+vL5U%1L8Ac%SzbI)| zJV(}vHaL37Yx`ROpUEw#r;YHoAdk-m9t$C2fAx)4l;8@S`JDNDySYDssDDSE8FfW{%J}0A= zDAQZ_quxK@byU z+wG?pZuHFA!n|WOkJ4K40_)&+l4C?cZ9O zBh=(|349u+I2TS~d7b-Nc$OVH^S?i-DLK65`*tAqiL1G{_#(^1*$K1O4xjm2cCYo) z(}cse;5VK*X61JEwtjBUnu_&BRl3Ihc(g}}LH>IF$SLyPtzsMT6Z4SOsi6R43beX^23K-FHyE2?V3Lz#UIRXpeC}T z|7QQnH005qd{Sa^*Y@dlrNV62%FNMy8 zWq*m#^XuG_!!UTl+9{IApM#EpaLcNjSQ!nmxj+{gvl{yJmXxTCIQn^}I=tL1>O zRh2`NIpye{mMa<=5}?yvy&6;o1|-~!8;_S6096S~Gj_pKU5EJxEcSBg;5PTxc`Vba z8UD5e$)e2wsMgD`9E5>d)%^7P_U`wk);D>XS&3qkoOe#$33P6eia2)xV%cK_t@h{t zhk?ob(Z{3Lwl*Uq0Pdw+HB{F=y0cGQg=C;7rsDQ^yR(MFc8BktkG?*MSMu~)=)1Yo zni0XC!@rFA`YCr(cUlwh28G?-pQ43gKHbA1fdPwk|G2}|e4}@yQvetMibFp;sWuP~ zm~?suM7y#ye7>|ci?zPt3fL@Q0bXmj268cQ-c4Eummn@pWbuL?U|KmYf&W&4%H zndAor)T!As$9Xuk(NI~^lL$EaQ;#wKslEX#GsE?dkU}~vmm=AwHhV6>WY)9fh}e4O zqRZ-GOX%<_>f7;We(D)UxlhwGjQZBjkp%6p0uD5em@B;X%pX$8=y|Ci`3nCP?Z1Vs zmmld*qi;wKFV*kbzn;nqlGqiAv(F5_VLgN56SJ*Hg26`8v8GE zjrHsToNiH8iUMAbO?5adeJCJ{ui|-VuV&)->Z!1OQHB;MGjNU$fo4v!(*S!s|Z27_5 zRSO-wQ)G29kxQ2dyt?=)*z7ec z-^DRLyNjD|5tIFZ>HgX|`Rc|Cgm2lv3&XM?QS#y~H$oAh!4zYE$w4YW*ZV9N_!W@$ z7bp=kLrhwEHaM5v#JSEzHJg@bWNO8n>kCee$Htiw9GTFofw36kh-%_xZYJWqtKE!Z z?oBOTSZ(FSyBFan;D29^JTF9OwrH^~e;Ml@1G8mEeD40K27yEA3fD=XQ#u#4*ibCi zSFH=o>$UY`40|+7)n*=cIC$^fLi<_6&)WY4(>2?3Llfj63sKLbC;JJC=7qoM>cJb$#tjg1GACm)S(dex`8J?@acuMF{d1DaBEahROBaCFOIR^jHIWF;X!#~&n;ZR*WHrs5lL$?r|k{{#c6Kxq{%A0qBAwloRY z#LpsK5mGaLf?VSe%aW9D+#(L>n}&eR^y}2#)Y^r*IwP~IE97OYw10X_imfvO5@{J#;3hblCFmFIbkg%4-_O)E4&HqYn5APh zeay;@$JI3mzFf>wPx{Q{ee)vZ8Q zEC1xI1ruu2?dUkw3oPQc(A;c7@oR_m&)H5+^~m>7wHRO}^ui-=e8#r6R(I#g0~lXA z_w&^gGs?2Pd1h>oEA(mOOECexuaI=yJeJdci+Ud}5$e{z?6TQ{l8VjHVc=BjJRwR-VlnpA$0pyS*WY_(|$F<0&O0f5%Ii2IqmzlnExAdB}nk8PEX?zDOq*b$nvw%;m zXB+!Y%3~c2+V|z?v(XJjvhJGwB}Cax&W|J4kw)SDKHh9O_jez0kQ0P|Tx3V%V~k_T zVufNAK#l>f+P>fXx7HyWb-1(x762#lOi0VCly;ODm%^e=|HRrZW%%&2b|^W0b?21d zx?77ZFAa=-q2VH5O&+FI(=-q*FRH;g!@_N1UlZSvNu0XkR z3J84%3e>5eWk2C!{I1MvKrv5ds~Z_PGCIdS_fmgr6r~h0d*2?p3#0P(LXn)$fBb>6 zYFzB~ECdMv=ce^F{)7S3=d8H+s~JAGamDv=FWhiyZa8Bl;vZ$=elOH&Q(l)KM-07- z8(8*`8ilUM!zrJUnww%MoL|I?8+mjV6bFX<>^ zX!}nL$Hy^CidOLteZ@M9FiLR{_f#6ngP__Mnq1gJV9Gwm{gjFCb7QYA8oNHJ2_r5l zmh^WjIly44yUq&^t2G#oor-#it)At&@ID!vV26 z2yN%) z5k0!lUmrsI--tIevRgKLl>9dtI+60xt0=!Hd<|%^6nhA$Um+O zt(*{{(nwIFnU+n7$OUx%ac^ujkjWqBev6ZcdrjDtM%+{; zS5KXnnNQL4qN(&2VxzlAw^)H3bHmL!<43#>jZr3ij;G$y2dX@OVZc;5K|Uz~Bw%}k zxeKT`;5;-ksM(uchp7h8X?A{gmc}~t*i7&D9B<{R3lKlu1q^_N7h0!KLkWKJZ?R7B z(iu5r{(;6eXOUu%mw+wau{nBRy!WCOB_6i0^$T+@<^Hrk;avBc$bhupl$ua*iod1? zNt3Y;^6}$P8AIqvMH&he^`YxVC>#0F^4_9Y*-JEz?+(rmg|qXSZcDiuRAiLR#KbsR zd!u{RxX>K(&tDzV>YlisdIrqd{ZGrTqxS2{bQG5HUD@*4w!7qI@Uq|qFPn#T(10n` zwBg!Ed;y)~<>Uivty8dL*WpKZKKV7>bad>OZ89=7|Gqhzq!NzHS+y#UHaaPDR}vws z{r@Y446Q>@CZ0&n>YQp4(SDv2fxh^GR8>i;Dz$w-`Rs@uX3qn>h03K~;AhCWOI05e zmOglZK8@9*Qi}Ep2^y+>u=x32>ywMx?Vyk${6jW*@61?EkY{1W%fPZx zC?3m252V5E`$O;V8~1-5i#XUjwmk5>GRaQEF2^TErx5 zF|e%F4sDYa@dbfSfGb3$)uh!Nl*8Zfuh5j`-dLWMFEPrsg1w_RCj>HKOm{y6M5gj+ z!}6f(9f=eLv^2vLHkYz#E|8bApM*evxp0LoY!rA!6RB1VkVkhd-=6>^Uqir7|I;{e zUd5a0#5%1@R5GG3JxAO+#DoF8P-f4(h(4Q|H_XEeUqaR2FC+U2Rb)O%A-wz(mprwE zdbejQPy`ufadJ{9bL@sJzhhx!2%b27a-)*qkCXwO1G*nOUFoDt zt7l|l>a^K40K5euP#Y>laogVHtXi8I6#}Zqr749qKfjRuH*Z@UjTF$w)H2~WE?GT& zqes0K2KkY}^R0#3cgM^lRC$3N*|%YFUaom|<~nlvW5d|UlOLzZ;hbcerpUoY)mMHV z0Yg=!Z2CjCKvweF2Xja@-PNceZ!25ub_OU-LO@ku!n5HpA!_~j2Mw?4id-gaeueRc z(S~%YWYdpBtCQCrcI-GFFo?c1eGSOPC!Z#b3x6u)eAfH`1p_vaQ6g~l4ti^!{^cU# ze+_Y^WKDyAOMdQJcQltj2|-!P=%5;U_jm2G6GJnA8s8iK6d7i`x9#2W97qdJAI%t+ z%u7Hi2#xG=;9-cA^b9OKhAQs`to50S-{dH_tj%s29dC+>I>T=yYKfWd^GO-{^;$n4 zB1il|xM2edf3SN&T%M)j4^gg(&N8T*TrFbYhcw}=0Qf7*d$P}zj2VHaZ&htNlMzQ= zG3qsxe;&Q@C-v5wK>re#ch?Y2UHcxVX4#jha#IR$WM zPVnqUpM=zY-2XKkvQhsZ0`EZ)^+(~Dm^s?5vWL=~I#znAZT>N_wrE{e7 zjp140l(hg*S)xFke-o3^NV5Xx`=keMC5L6bub=p+a!Pk~Xct&&upVZ(3?=~W0WH<{ z;u~_63!ZTUNtI+S_Fc>Vzyy>-mTu~)X5geqJ8J-q# zuqnIb8QMS&fdfm(ad86RE$7WsRV$;W%RfKg3kkotsWG;^n+;rojK@l3CNppngGWHP zZ3~;1x9o~6y!hlS4}||DxXnJOjWe=!-?yg&d)(DQMO_?Z42{qAbdh($Tik#R%cc~B zoiBJxM|HEP&%);LAr^}@%FWGY<`80k!rpYX!~PEX>kW`nx|qqIlS^1Bn_`Rq(P1tQ zJ=(jZg^nWSJZfF_!yG5*P9Xpdu65Zowu`agM5@w-+05L$Fl`v9c(AF2wo%>9n+4Lh z?)mRDor*VCj!2D}Iqkg-ywq}UEr>v&|Ma!Bv%2w*dtjxc$ zx{jc$27!6EA>bA-Rno_q( zZh!{Vty$_i@?RUQO;HW|zeeTPyw3h>WDh#?uhD;dA|hhJHzpK?Q=|RkrF!|;cu^Cd zepewmpGz^=^vb0?up@eGVk7Vwp=vT(X8XFA1v?Z)vPIuif2r53S8gon_BZ3{gUevY zh-r7h0u1s0=~i2WkeYywD097d0a&bW$#fd*2uuDbH~e1ve|p^g-wkvv9sVW>PSHYj zo?i-y66szhz{Bu2f|K_*Sl;p2GV&kSjU?%C$u&cJ2N8AM zwSkizIQXx~h>2Yd`<@Ba$)QtG5%%Nz#rr2yIk|a*midqdEhk^mm8tl`%m$A8GEi*M z3YroLa9P@tsL>jxgu7kMoI=)vh|JWDe7MVn71)Z+`1??EG3{)#y8J=gJwI zq;VUc;H}==;>M^iSV1~;!jF`hKPV7>M>=%FzYGh%J)tec5ITOi857DTuDz%m9X-Ug z_1+`gnWKGDa$I~oTzFvO0xbGLu#A4Q$oDYKSvRJXqdAJU2Szb^TNGuYH_qyqMeu(Q zr-&CS#CA)0;A$C)5=;6=AQ!4gZ#2#8e?;E zlNH%5gvQ8LO~+)yCRQ(~IUs>HgKn{u;F@((PsPOC;aM=4BslUFlXizHG?I8H9~smC0w?th2&ejRX{yo!U9C+6{iLx{Ss zbDA&+Y0zePU3>~pD8v&oO9@GkBgg|Ue3^|fm`1B$*_%Y9SL1SH0%?%`u}JLr;glNP zZ^ow#+CHkO+l*V7qHYYnR0TX>SnY%zuAn|ovMUeFd_z7|_VH0V<%#nbnEJ#uVWdH= z8m6(!#B?SQX*t(U6)`B%TXu~Vu>=l;b+<10@D6(Fh&BYpB*ds@OloHMoSl4#gUgO* zxV}GG^9vEuH(>-DDE_0(Q}pXve%qB};!ZyJV`V|mt5HxLy*K&7Zj0JPb#Nfa1)(^& zi|EREc2?iMYv;UD;co=lJ@KZU-lJ?#)<-lQctY#THi^$IT0tQz(Pez7*BEZz90a;` z)>UTJeaSgx3xR%8kyRdr-U^KDURS$O1$Y!3Wy1FA@!k;Q*82pwOX^+&Sl&gLDx79U zb?P9a4b;o5C9=KUb@mwQ@PsF8Y8l&QGK~ww^nykiq{i9DbOIRD--&dB-ZI%(?9>u{ z3?GVzE(C+;u|D&giJrzMsyZuv%kaF+n!SRfW10_P*kL?41=JGvEqlZMGGupAvK=Cg zcTz9Y^U(NV7VrM#XKW#;^(iA4Y8y&Ml{i+tF4Amx9VFh5M~AnZK%=l223GlrHxDO7V1Vvq`U9KB|qDHo! zb{f=4k8I^A5wCZ)99S&v`Rwj)GDVP1FZugB5K(yet zCi`tD%H-TTmLj@Rh~RsYN1L~~O`2*5 zF`XUN$%yIR63ZN4>o(t~e5HM25aPEjM=H$1TTW>w%LDII-vlxiK;C zr^eDrYep+{8g)1^@)uB?=O7zkx6_QaR>>Wq`z+(CWh$#GG#8y}!-dKwor?+nd(PU1 z9{UV#v=?YT-b9;2pr~)OV>D#CBT7WQ;($Dnp3VXCrE#H=5smkASb%hXj~CL>&p&5L z1t`ze3(O(g-hzJwFK;+(RX>!$#Lo`TY$8}XJtPs`ti<#Z4Bqw`jpnrEh2fnOG0rM^vr%j@%2jK*ILkmR>(r!dr z)uh$d^Q%c4EUZSK))Voy(G{F6x!^oUt88 z!v0-G3|;ccP|8N7U5(0mX3T8VhG%ek+e1wnZmR zB3SQ??dt`6! z=TYbPx~|{jd)>eLkNc17ygEBMKA+=#yx*_abG;5%8L6wgNhwK5NJw^zUArtxLb6$c zgk+=N_O19EZhjpa{2!0im0MPFX1Z3k8WuVv*EOu}8k<=e8)zQ0(Xp^JFf-*ibK%Tc zmSg%>R(CCV+1O0}^#f8ksWuhDOr+`kZBPA+wfK>&VXbC35nR{OY-+Z zMmuaBs+-q~CY!4}UHvYlUAw%ueHOfYRI+_S~i`-~T`VP53!Ey%OC&KPbH2>k+-gzy9U8>?>{8zn8#uE|Yq*?EBY6 zuU+!~k56E_mU{VL*QeVe=KrsM5sp6g_rvlysHv%C7|9nF7RYTFdA`5Bae|z5i#sJ3 z^Qa8*iC!ZA_3{&e8Ai=-WEk;qB$q`+ zdqzfH1P4={JbCh#vT}W@j)YVwZ;W|I)K$*_e!FuAndOUGS^_k`xYfPC&9`yWCXS=i zD~r>+X!wsDK73eGQu6Hi^QB+DJUuSrvX`1Vq&p+atV{RPqb=zM4O_Qu+qP@>Zgx)2 zlFrVs_qTIX&AJM9B|GPOT#=RCfBNRT2z(Mblk8?KEiGn+gp#U24p$G4nwbo3MO9Vm zT$?e?mJb?@Z*M%NyW$p+m?)8=`Q@!b;-P|q0)D$GdKJg5n>T+;QsFi>F=0P@w&?qJ ze?iBkyQ@pHyOLkHyX%yDGjJL#=Dvu9?s)#tz|DeV!iXsemQ8?*C+gLP39nb%DRMn-~%mvH&Fo;0`?4tQ zcXV`gJ9t_&-+uPi$GgYb+1ZEGmgmNWxy?GYagP`H__VaOqiQp8aN-ci-{{80K(nzv+jBI?~y~#JJ^6|0;nGMa&iZp@_ z7phbCA2{Hr?z9*q8z~cQ#~RUCS9jx#dI5j+2p(AIxHS{4fc=b2X<1oZ>$C9i@SKjO zL`A=F$2p~()y8*9auf#-`f+nFspsFHui;$7PGOP`x!`3=J2y8cez7&z*6i1CQ=%U) zFYk~On|Gm}S+4VXL8`;zRAA{j!^XFq$z6rch4occEX798_8d*XmXe%aa@kGAyg{ef zWw%@?pGDvE9M2P1J+$u$`LtgT<>jg#;jqu^m`~HI^}Qa%S^k?+LPFw~y7Q`^h9u9v zLx*DDsb*WaXz}szFq!@M=+!^VG%5PQAy_w1e{XCE}g zNjG5abF79QWn^$+GdN6FbFa)ctA_~O_ov{{J$rv{ls~s@$BrGoXKqunv9TF`f9Dz+ zdKAy;$%6;)-J z!2Mh4`uof}^FFn=Q(e7!6-)8nd~6`xSxQD`F9|kJgvhf!#5piAF`=WQyI?y`&1W-u z&GyH6leWEw4?n{;#-olhY0o@DMRnlFk*^^7o6Al+uGW!COSj0z&(S5*Bl)9 zo!1sm?L2&@uP*9px^b&_QPIWGv9W3T&N%6C*<>|=@y`4g1qFhew(g41D0aDU;lkd7 z2fsYrwCz^jJ@zcqjyI?pAwteHmX_0;%cNvvaaTQQ@U$kI6xDAOIyqwd?AX4&sHB9x z-NbgH)7{gPOgsiB>VT*_<Oodqqi`5t|)`A#&BMTTEhL=E{h)DS0^vDoV=)Mz5^ z%NWU`miKY$dy-0go8$WG{IE@Xrb)vE+n+@nX0sI%Z^lqaNJ_q3@^QR>e_1|FRVcFE%tnQA#WmE!?MA5q&Zo->E!wIHW7^I1^mJdv_o`w|Cx!I<=_MBPrFi7%Sj#zR zSXfwm2Wmnk(yBxGY<s54sGEcb-vBiP0v|2$q)Ph*5 z;Jw1n=U+4uO?>jkLeC2}w3nL+y-CU$vd(U63zJ#}YfDBIzDzy|x5EV;&z?O?@^fLb zmvR8dd(*`-kE27)$?8G9R7Z|{uo{vj`TY6w1(d2%JG3)nW8->v^+=fycRp>z{;*qJ z;#yl<8_L`=_$_i1&ciipRdw}nY_<&v(yKmtclw^5)2VnnQXKuIy4rnhb$L@l8%3bf zhdUck1L8fnO@9Pz*tC@-A?PGlM=l&Emtt~q@`0g?w5Z!5)`ZDfY%c6U5_t|w97+G- zAau+RnqNpsyuG~}(_A|hZrr%xfE_~OusYi;pLmnC+6EQQVYW$;WM!`1EYE3`w^^$T zji)-8dlPXp?yYB-vU77etOjK+D%hSnVcB2xsix+PM6X`s94gKLz9NZa7=IwzcC?|E znOSX~-89K_50BE?TDFc9Jl|Uxh6k6HmXzGCqjcs<|A9t=r0dIF>-7SP@v;mT{ay{W zWf%pS03ev#*ld-5ddugEsA$3q1DoMSrs5;2w{J74=ifi^7IaT@5VCVEHQEMjS(tYrdA{0StTa<@BKd3l(MjJ@8-K(pO$7vcI?_kf9A}Y zjuDP_g;*>IZl5QL4!6JaHJf^WyIG;mL}$K1L8&&5F3KN&M-IdI`1s&p^m?r?9$Eyx zsH$p6sRsidlGRw7-|R?pnoi}RjT<)(*2nC`k$nSfHawxB{9ZMC<9mG{Rb!v&iB!g7xetyKFvV{>a7l7!6$~2yH_PZ$#I&b+_R~M;Y z_Xex=0R7P*L?y?H2}^qiI|ogT-K>+pzdHDtzyBekJW9Mivy1w|S%u?ueNH$=K|{gI zeZMY=$9NCahHL5Q_-QPE_Er=MpZMHD!Ei3E{ruwn(AHXtmHB+9 z^S?gzEqD1<`C2YcDwO5+{9JJ2z7wKv4={|iXTO30E#J0Z-CHs}C$Y%L89_E|x0>%XCPMm0Z zdNw~lpFkH4Cdctl`HYsuXka6 zzf=s$Uu;Z_Se#bErr{TRq-{H@n5@=4JiH{uK<-`G9Jm_t$+>G}#;FE8$sr)RD3PE` zI~5Y-Z#eTh0@YK`nosv%w@zu8A+363I43GEFYi(M)eINe5@GSHg5tY`n3Bke6Nk^J ze!a_6`{l*qCa&A5-Vx`xxMF~?j5~7tx{IG}+PiPxC)Wd~8cn>HU0=NDMO&trvz;4N zx~M>Pf^Sw_^7{3rS`KlCE!(!~wMgI8y9_Ro7(OsFz!B$N=7i7pFPzxIuz3F{C1nMA zPlL%}T3YElcOpu;2*S4KFJZHYyzIK)VQDCiWM!(7jiO*uT)HCqq9_Nc)5>Jo=(bxI zz12lTC$C<<`~m2bWp;kFmBR+db$k&k{5Jgly?fg1;(oP)%aW`7I*~toSEEPQO;9sm z+gJV?^$4{n^L@F0I~BKS)rWB3FA`mOc0Q(jWMpL4t3l|QeE6>dFWB*ZLvRf&dTO!)FW&56(Ej?0rI1FZDM750=L?!owT>8p$|rliP|W#Q=mo!e^~$PU>DH~Y#w}+_ z@EyJYX9adog+C*sO*L#v*i}};3>rH-mmhrIL=(u1B9kBpoMOI;ZCPg0;E)>vcr0T} zJ;cia5-ULmH#F_f1ra2_W=v47-Lh!}&How$ta(neWcwjDwW@IEHP^(%(~q~2#j54o zlb^o%5-`CMRosJCs3y~-{odLN4?xXLb#*i_iSIy2enFHM&biNKYyboPmg7FSzw)qzb6I9 z{5s}$TJaH*XJ>aK z-`-l>k9o`6&J|SnK=7%9GOUpa3W@%uv!@l`N8e0RF8T7M4g!H7*h^cw!Q+$^b}(nq zn`iA=W}D91&kRztRv+QDVg#${!3k@SkeF z{Xu7E=eh9?Lc3U9p0Ax75w9c@S}8&~{OGuRK1$SG6A*1?xakF$bVPD;EiRdTZ;}o* zviEm)F>YALZh7p-w}u8S;BLqjE?>W1!|GL{5HF0T)q*qkH^$51?ylxX)uQwPkK8LL zV?f6``i7i1!ZIlL3L7h`oH}O5J5+Wsj*X3R7&m{=5MhWg2CGl7MDMLIXozL9wz6u} zik-(-zbSh4s*x%!4bA)Xv^0r%N)5r{nS* zmu-TQwbs{G#W^_Ab|usDTD?67%>lG|iRT8hUj=%r4wj)|ti8JWI>o+yk!$v#u?BM- zU{+Sk1c()F$71NUg+dsI*yf07~#kb=P^l?XZAB{ey=b* zG7?ASnVFes@%^3BkXm@_{59adWeNXog1*>YjFdU6Q$had@nZ^f4BT)WnzX)=k(QyM z_~O*B$+o6E7Px z*pzq}+jeEbd0oQ#I`kqQ`x(XqCnY1WkQaD(;gzR8Iti!^GPDUq;HA5JynOtA z4!xQ_?4(;NDtc|T*wjQV1LRU%e-~5M*yxK(TdXXYFU?PQzId@SHa2!}a8M>){|4ld zPv0U%fbPk*kf++!%OvLlF0mIR`^k<2q?{*-?!Wb^tkMI&f`99ro#yBM6t=%w z=YQ8P|0tTz$+buB;1a^WQL|>x$G1jeky}%BrjOIzXu*N`gi2>&Wg?X+k4|#Dli_dI z+l)ohLIr6psDUy_z#7MkZ@!s8Y(i=68&qx;f;d~UEcJK$;1}@$(Z^J_4LppFrXTMr z^o);ZB7OSiulD)pTbHQ#iZdju<-gG`_trPi;kUi)-`)2RECDK+N{hyyD-i#nJAg&` zBz+WlX`Zs#Ei3fH8hq$L3dQF_kPRFIHJ`N)Z-gmitpTp?8(sCZ_u z?lF$~Y|7xEKCWMe>Pb+yT-%A#@^Yr;hq_N+ypRYgYfm>Q2722`?~=uE@}$K?r@+gX zFBxyVdE%hSTEZtDFTelr;WB`n9lLjbX>FxoWmSr2{QF$W7|Y5D!6nCLOk7fO7f3lF z9F@9LK_DrPy&g=QgioJ7r5iT60paKv(DwSG34OsK=P=>EKWFT;`0Fr<{rq^SZm=&0 zFJQVjumF$sFgb3r)s5*?Pj4?unlIyxjUpn&4z$wSy)3cI2Zx9EA37uo8F}m0txu17 z|9!M?_V!&+BHFa3rY4v|chSR5fXgb5@5OvhLW4#5yM+=(&~9kVt;6byim##C>b9I@ zXTKq!Rnpi<&c>F^*=`MO>C)q^H=;y$&$1lew(Z$QF@Jg=3I^dkTJ7`y*aLJ|CrE3; z1S%(c%Qg%)Cx?r^p>IX)zH4p0g#aguvOgNTy27zPH+_qji?h-*1rvE?+L3dx#p2lC zM}+0eE41)sX)SQfU9yAzP(OZ4;sqN1hTlD3c6w0rc>6@2n`w|1iVu&=+I;ojJDd-{ z#ADvGnFJaK!Sy?Ac2k{~7ZS3Y(w1@&ZzlMq7!{;>N>2S(ajS(!`+a;@4o>+VJ-pVP z{3?$AWWF=s2sE${DAAwyL|r6Abhd&89Ja5vSQfNrhRU&tAK8zEBYy%CFCOyw=iKz& z^zdfDmfBQQUcTdK=uBmp?`g#|OJM4Y$*%>c_caFJ4=_C~&7s+_ zB`1mhdVcn^R$B%-^-?)Tatgsz73Y&m7cY`*+P0@k!5CarwoK#Bor`D`fDcOVm#V%3 z7&YW=n-J-i#(lsv0eBO)elPr#l#!ei>_p}FLy$A#YnAYwX)pJN$`!_Mx3LKQ!CRvp z&Ek%+@vb5OQOmt*OR{G^iK&fGA8)f|cywGS{8W$5yVA*RY+4jk(~Ayb0Yp=x1wQ^< zRVCTm0sz=#0xJo$MQJz-&>b4UFWv&8pzhmu31a8%94ifIJjOphvNx~B4vaO^;_q+W zx>ex*`ZbJ-$?55a3pPtL1~mNlBG%HF{(MRNLoU;Ys9v%{-0bY->5fxWsd+!_PV)1I zK!MmG16H|_?Z*<(HW(QfP3ys%*)T0t0t`+ z?c9LAx($~H9fKZ6o01YF#{Yo02edrcI=?FXDw_j^{wdU6w5j>lcPqHB+S}U)W;QoB zZ##yHlq(W50;;A1}JlVi;|_U*SH8ua795oO`tfb zClY=mSCXA%xLV+ITC;h4TW4Scv*Kid$;!fHRk%=ieT;-$^tFB93=-J%-fL4Ki1od}W(69Zd3Fx-9k%!G-#>t&1x+c9`bA{qaTr$kwD_)3T0WbX zPo8Xc0r|oCYEqFz1L%c}0=WAiGxI!X>_sT9iu0OP0qj_zmq+<*?m$r}aXr8T2|$$9 z6IEjp+Or3ZfE%QCFfT$0r(Crf|3M)lB0_-Z>}(#ussTu&CoWtFfU4EcXoE!!;x?+O>0Ir9VaX7{Cl$$_UW}8>mmM5@heITvI zw0lB|2d><72cVQiDfJ2JPtVX$pusMPcQ~P55P;b4{=B&7C~pb+4SJV?vyju$&?#p5 zw--@=xC|SQ;Rv#8mA)MrLVwWXt-%_}RliA4FBH5#KhD6+>;^15JzXm_-KrP9;e%-h zuRDVwc6k|UJGwD!kUej8)uXAG@hFH64LvLVz{`J>8spZ~r!X0?&<_e6mtlo5p1dAZ z0wT!>WSj8jol>?fZtV>q_smE$*#qF=pA!?wUKc}ot(kWoVj(OQ65xUT3MX=s?>6y_Jhm8@R4H8oTF)M=s_VR1L;w`Z~*I&{dc-ppojWF)ccTfh9b znf{@$hNY}qNihcB-JZu9+iI%zs($fPC^uX3xpL)7_sB>kxSQ+q=f{p8e;5#O1X?G@ zXq;?}`0xN8DxgtJkojaL%6y7p6LU{b4?&$O*$TnUj}u!!MMcHEL;>YH<->=cDBXmm z>viI4eWA1S_hfZXSR_zLVt&!Zj`yhE_v!13;bRHE3<$3B!x$cNQ@M9u zklkb?xeZr+<;wSFD;78R><#V?hidE!h$ zWAPmtjmmoMg_Z`we=e`Iy*(H>MMGczxx4#rWo0F{{N9lf349tX5^iiq9dJ0~w)7pa z^4!OatE;LSYctZ*r}EE80Vcvr8D?N(VmP&#!%g4>bXvme2J*1zucB}QU2(X#Wt~A9 zrcAsS|3*B&n%C?wpop8^qSxiOJ$8(=p7F4TmT6Jr`CpUo^yQv={mQ2{IjUOVU`GPj z;@2(3Sk7^g1hT#5IbRp()U)T`!X#8uPM8#I_%3@k!+lt-Ff>kL&E7D0YU1*t2^e?? zKKw+Z0e^?ffh@x*_0n_P+*kltY%K$Naa=6>{``AU_J)XvW8e~zYk^xBRWe!NR5NVb zLrolj;SNngcOrv1$?`=uR+0ith{v-30(gCM*(j?2%G8(BVcwbcb5#{tMs z0?9-6diJ)aamsQDU3h}}KQ7E?Z~~|;2Dn|ZznLCsU^ilGf4c?O8fwpC1MQ8xH`()& ziu=q}73KjK;mA8sejL^o2RQY=k+8C|@(Tzoj^|F0G|9e#<6931g4n|~!0;iE>sUT2 z7*Cp7KDz<2Zq-vi`d_V3^S8KRb}yL$}U z=q`$LPga-L+gszE*Vlj}33sCOB?Y0XnVOn9Ony16#3ea7xpWZ`o`eI8VBorAZ5b3Egm?^N z^7)Gw#c&zX{C?3Ja{)lZxcrcnRXc0p1ty4UXGh#_(oPwZ3~EYBx2UM7QYqn{UK{LP z0>RGDD^9#Q(Ybp{@8;i{c%AReO7ZjShtHX0EjTOaE5^vLZSxhO$hUP?@n}wgMIC@s z0QxI}j0GW}Kyd`-a)Ho}f=PN&L5t8Vc#evi01gdnMz)43SU@b53b_zz&XRpZ2ikqY zW%szaQz#NVWH+B@Q6v8H_ATR&A3p#d?~JyjfUJCrxb*n*9(av^0QI@(Y&oO-ZK9Ek zR%(%wXBpVry!uFKl{)HX9bffoyXNNdK@5#WGe&aboOw@)yh(*WE79V(GO23f`xq|3 z+5i~S8)-ut=o_{SXRUza5@%C3um}vFzIfC(xX)i<@36x%fUFF??|75x#eY!dGp{?yZatx7*_|B(Mz&YMu_fCYuylQ~c`gxDYKX;mXT}9%dVu#*})$)M+ z068xkJL4?J(F$LuxM9Qon;u5~&)2V2?>{a`{qLvcD(2d_{EI`4f&Yq^lwe8Q*C5BE z^N~q0w?BN+5wS7!@6-P)==}Kv2kJdf!%i}@uU_6!^muSvh_h9}&qoz{{}DF3oO5&4 znq6Xy=BiN5z%^2j|47Su#rAU3PS1}$VaZ_Ckf#feV*1aN+GXaHNmqxARZ`bFk0Z=( zZ;p*wUmzvFMWrOylxn!)YJl^9r0|~0JMka-92!@5E0AJJA#?|$SiX>?#YP>~YV!#z z^X5@+?eb+hrhUSm#lKh+)=x1Uvbo&a|MO=Na4ad`OJM*Q2}sBIqk}D!WDrI|QlH|Y zov!_-$xS4DJC&?t!@2oEvhwRV>%jh&;I=qJJss^YpG9|0ewb$*+&k?@FVVT}5}(G6 zE4P{{Gw0-1oo`%enskVeVLaymTGaox3y^Q?9_oO^76etEpbB9_Q+S z8aD`C(f8G*!UaPodIwwpPQkVSKH_+};j`mgAtAJdHsGJy82Uz@IWV=C)O?3nqwN`~ z)7(^RIqQctl0ScIt{-R@?K+pWruv;zy|}<*S@7fK9S@{5wjDdSFa3bi*cLNsTep`o zM<=EZ_?iXBiHL&2hGQoMGRei>?JeCs%Z`>XYZ)UehL9RBZ{RwkAEOud7bp0W1keY2 zxC}ZWy;OAu3OlfHg!wyIG*9D7=X);*)TSHyXh|R$b3*9|rBvv*i7>jyLH`27sO zyHXr`IbZihH|w2;LYhe1-`@|^GuuocX{e(pV6sWdTr;z?gsgG=`0;e3<~;=Claxep z-ilxa8!p$Ut7sCD3 zg#t-WzoPhM5&f|-QIQOGM8#`1&%#0>JQy5qJxUP*N{;(vWMqi;=+=br5R4g`b)nNL z?!D=wAn-7J4kQRK;Rla!n^NPu#yT#~4WEbhUlk@mgrTrf@v7P9R5Fck0D!LW5VGwb zxk@A?G!%kB<=JtVESgZg(fb?A@DCTnu;A8Hn!vCthF5_=MM+W71N+(GeS7yt)allS z3HY+A90E*)HeUtsEbDI9Q?g^YIoT7m5i0yHTEUR!vQkUL4%>XIL&Zjj}LdQrAB|KVh&vEZ4OH~uMu}_%4usTqryP3)T*t% zmr9#se+r~5$k^2AW1=zQe$U<9-T?7a^IAQJx`z&n8nqiKGm1G5lQvGI&OT#>^;=UJ zaJ&4#EX79P@&tkaZfWcRMacukAELXCa(m z#6is0R_p*X5x~n{TDF`Yzs+kkcoCWt0n}hI=z;W8IwC@XSfCh?N4C|_el(bVkiK11 z=UF7?W&c*|8y^l)Z||>5t^D5ua^qb`J zb2=_r1wqsbJg38`oX!Y0PZupt{@ty8dU|^QlS&$r+(%1Gi{|R$<8uJbl@6c<6jzsb zZGE+C9gC z4+2nqf=ATrWehC>ml7DSLJj*yEM7QSKKXN|U#k(G6Hgdzyq`}5}mP(IjM<(zXg0`_;YbAdp%|Anv6 zqeY^s5ky<;enuO>ZAQbYoE`yx5|PgR*zY%!)pi#__PB_JxdojT5g0V;xCFa%z>ScE z77^mQYhx3OmP`-IXhKf>yhOsQ%sZ3R zl67|z%SG9==ns-rcS-?*$NVMVrG8heuu)g7v6F0-fjjD+9QEeS@7Y-$kS^$g@Rl#4 z2E}qn5HTnxQ)6QyqyYk3VdVh*K2|!s2C7octK%ZFp@ncB5u0ng_JIE6Nn|D^;DjUA zh1BvPBO{~PMbJ{i8LakBn8bS?v{S5ZZ3j}galSB&LQP0jN16ul?1}Xmbbw6#q~vD`2odC@!F0GF^KyT zvfI1cxrfjOK!;?juR+s1E+`m={gmK2G(0Surh6S{J=Q4{N}l*EuUrmp0e*xglA6O> zNXfv8fkD}j|Lh+g^vEwDTDyMYwV14Mdj&)Mz&m@-SNw@3mE}8)v_@X$EJP3`W{^U! zv$SAOfS>$9%j;>TuEN%xf?ufm-pvGWd+E+qMj>F&38zbYZDkQw9JuZ^XrBPAl^?>h zcBV6vlUjd1#)16Y9sB^qt`kjC7vKX(2A_9_h!dStQ&e`l!Y7Di3af)3N%{%KWWU`5V5V>zPu zb>ATt;xwnHf3h4e%D1Q;0_C_KJCpQ+1 zHeUC&e3G&sW<^CsG$Rox#*JmNrl*Zf zO+Ebl4sO`6fgn6G)%KA6_~BD-AWjZco&(Tp@zffQCPJ~E8Se;2fK3j`Rj>`87;RTz zYekx~7C#6Qpe zhuzBX?yk|?Jw=24XKn>02;PwjQ>gzQ&l)3XF}F78$WZQWdwVf6VeH|&djrdy;Z0dT z#`0d1$Cef7(}?}n#a^cZ08)3HRq)q)-Y1G3Nksj@85K_nkU$#}MzT63EiDTBSKq*Z z2udTEMiivR*_&{Os=2!yic#nZ{1Oq=;T;IjKK1j{CU-4pT}Virh3Vtq;P6&0pBMF< z$dw~N;0Kj9vE2zgk?7Q?PMrcqD6{QyEF-iVt>B=bbM`a(1uIh$&|lty+Ow$_^kG$? zchw=pTF;zp8@x#USr={QD?Fm1ie>#0gJ;nL>)my*mm8Jw4yAD-k$d1_` zn3Yk8Dk-SpV~?V5{a>uvy!o_?~)oIdSb3 z3RN1S1#qdQVHq%@mw+ipp`R!z$M$x6*{e^2+D#R%uX_H!aNYUDb`L6U58TZ+aB!SX z3WyKr6wTLEiC`*F(IZ&hmdkS{XeV!#GnhfYHeZyMCL;HD2WpNIND9&`I&a04BL@dZ zDR=?-$230v!8WCdr5O%cS6#0<6HkaqI(mL!bHKc2kPHBqwg$BbF0aNa)2)v zY(|gxoV@-9oeiTwgw+Z?Fpc^jVS;WwBxm-?*x~UgnIg$#H+`dc!J^wvH@Fg`6^3rM z1hpR0eg0H9Ql7bi+2wfZ@pI?)BcY&H;1D>xTi@82B{DLS@M*Jex-e3s=0`&v|B++; z0tsL8!4}}ck2yKmd56))M>ZZ+(f1Zg`*VtVv?fm;_d4{#({g#z$i694&py|UMD@PC z`x$4eOA?V^=4{%{Ic-_`u1$-IPIPnuN|#(6fz(u1QnDGS04m%U2r+LF8GT4EPK1#W zgMjnbhXsZT>-+7SOpfhD*o4;3zwK~yQH78h@lkHUgB%HgFP0YEBu+SA_WwVo1+Zd7xTs9&N1?!anCEy9I;)?&EoMWHEMW;Ku zRY)9~+74QZH0_D_RQq_6Z2s!QM-TnB5=$rU&CnAC<($p^s1d1mQW7gxiN!bNA1+4A z9V1)r8>)EE=hfxgahmB#s~4z5Eywz%Ft$u>p4k6?Om7haa4$s+6e&;j5nqNJM=!1 zTZ<*X@O;GbXP)ZGH72HgpQSD}ikwZ^xXc?76S`=Phg5R^PTi+FG?z;?6&s(g8;wQ_ zIt~0fI@i&B}+s4{kC{_fe2OH5t-wt8(v zs$;_)`&`l^gKP5|MHQ8&#bi&`{q}MBc*w{7ls1J2K>;_v-Oo@sS1;*{8LhV-+s0Tz zK0@4h&i~3cT6=1)lKv!cvva*{TOIFnA4?PW{wJhB$8>`$YO@aIsda%& zv%G{*TyT=6&0+k^K(YFrcX8E!Q~ph*JwF37L&j$uJv-F_;(;MFA|X@R{Etga*QL2%I4|zAR7}{7 zHu1*;D5N80v=;!qs&5pc&F!KN$Q_FV%Z~Oa1~G#D zkp?$Kb#^fmx|)WO(ar~d$u*>4{dB@Wx4)mX;@>&10Y<*%oRbuW-;g)`Ju@R|ji{R) zS|6?@Pq@aHl?edOhwt2T^qf(xwOVP3TxaRa&Wtgxnxulfpv^iP!`mFh4^}ciJ@Aw7 znm5D5h4r(}qBKX#i}kCWLj>HMO1?&&m}bz}kGPZ*i*ovQ)G2o@C~-Hl6qxFKrO zyD*b>hmdy`h)mn%%bO8UCn8FbBF|FcpQ_FW8-qnaJr!Ne08>RQ;unNpyYr$pi;If} z4rCa)(C;d6jQrxG09l`!$KnaNi~+SeU^lwVQ*u9qWj>WKo3;O0`sW;3;iRKGn6}9}*h% z|HDykmh8*R-vtx;f3b45Fg~!$~HnG~gPBE;5!J zu)HviK7aeR7gQW!lGiM3*Hb@y__k00sX^<`@2i{~xw;LqNs>q+UK~6oZO>Dk>tun2qFwYfKCSk>rH$IIIQm z+Eeax3gH&yPl) zD=OR&okXPBXIC#mhod8JZSu>XD={hj*`fmbUcV~o8&f11yxFkFHkXcapjlN(L|ArX zQ&NIlM~=P5lZ6^@ZL#C=vl2;GwCXgA`yWhu*2D$fn96)sN5->0n73q9n-pd+7uXDj zNCeY9+Kf>`DkG>QoJfnoZ^z-@PR`6kqs>2g_DrvZQ1yus0WblA|AT!^L;W`X0_Wfw z;x=e+P-i@FQ|6;B?0abV36XTDEh8}}DJzRR++k`5j_=CqeAi1_AsWob%`Ou39NDoT zPJ=gsu}MkQAdm|X>t(B7T|2aY|094?2vU7$n1uTbKtLpUt%K21%`tTWN4o;^PncKQ zLh!EdM%OC?IrI>?p#{Vv65E^@oq=9RdRNzZ)>f&HG0;NLb53dPn}fsuEz8x^wkJ;d%`|i);T@vuR8l z0wR!91#!KAUw?OQw3Ty2HIJ2@-3xbWfg6B?`4y$;qr>7kAerHy6GE#q2QUVF3@iX; zaxV={4S{JDrDhL5O-oA?4aX>71gwYn&ad~8B90M12>M+CC?@yiA6DM5ij)w>^lEC^{nP zPNdPm25#lsb0JtJ|5oN9N-w+i*S*%X@KbP(L!lqVdnPHRZH4QNFc}kMKYz_b!VXW= zgq{{QCxneqUaC+EY+HJ@u=UK!uBPP&9!`-@h^(A;S%+R7iy--~q7wi20aQbVA@jMz zS5;-H$Nk3})88u{IbP5}uOxe|#!AR%oM+5gD1#ZIx`bnlaaM9~!7k!at!(X ze+U#xv1zP0+ND@?5Ni<#2n0sP_%<>31%s!_bwANip=o}?nIHsK+mB3f&&Tadf)||{uk3hf@{bgSeCzMj+@+#2H49kS5bb1aR!S zuxsC8g)get-$m#f+)|^ZQFSR+7fGWCoF^n#@>GM|_xq{BFSC}tv3jd4-uuHR;M9su zFZV@-#OR3g$@jvcg}gd4q^mZVo}i=f?&Z6CLv8YD~bQ7?Ub|rsImY+E$>MI}p`r?QpiN}?|_LfAEN%aM6zz=`K{^Z*@i^T1nsZViq3TB z*$-v)m^Lyo&3>#0gtZOG^grKgCPFpX6NK8Ca~mo%j`5$^0X9r=Z7mrh7Et7_Ac+HN zub-n;ixCJk^q)OFZ_M*hPd0Da67xsBfm!ho@;J`gRzjcSv}qx<{QCNHBiwXfMg%QI zEo1A6nO=8Vl)^u94kqv#Ym?r+V^m6|$ATgC!Pk)j=^WFNrx8|(fdF#P-hK)_ch>~P z#iyhP2?2s=#smhOQ%Thp!ySsD`!$tG;}1AAP05z1mnEg833{*dR(Xl+16ro}-MbgB zUR|?4AgulAapm1Rsl#>+$)93n+r}y~o(!-4{9)K4xY;FSW7Ny_al+amEgs?Cu`r%T zTJ&Hk#ypj?>B2hy98a*R@kaR!aqXL8ZP7&|d^N?LkDt09(lm%(JlR(9)eV2{(U|b6 z@!L}QSLZSB{=5Z)XxAX1a)ciDZbks%uBBx$qAk!|EHPUJ%6SD}J|031CKd=41kf2# z-crCQV#>Oy>EN~eol?r)%j&7xuBDT}%jW0{)?Q6e+znZV2(bdighBZf3m?sf~49Kr+{5Nb9;mIyHuv$O=N)X?xUSRuiP(Mdq{ zjyVkKXrM|G_yw}wS*MkIXH-8Dp$U>foK9FxM0^w*4nPmzr$CezGT<)=A(;Ghhoy-4 z3Nh*KxHLn&I3h{o>0a8jkIf%q*yu|iT3WvKEBAM;*1b5Hn(&L4Pe_rqi+CSMC%eR+ zj=r_ZTY^lQUk9$sLSdmz4-0s5MD<0EY@z%rr~Tez;Chdq z`2%{1?a3P(6S(U!jv9$d1H9*g#V~3dVBC)H3NR*vWFx}Ego;nNXb^!O81j?@+Y*Kj zFd_c(OuByEBb4LGrCB2=v%UtYo8>EYI;A#4m2?G1!OPJlOxvm6Fs_E29a0y5@$KaT+t zRIryc0?PRzcu&PutxbD(CBX)Zf}u`m-Jk#@$cZlY2b&R6AOd~_62VzIRaqH< zQ4J2scZ78YiJge!Az{#hxh%N0@`pchv9oJHB0}Ja0>F*1qztpKPmTJ*CxN!)f)JCs z!{ipIjjhV>8J;X$8>J$Xe)Oq?vW@L=m3Onf=r{9&`a_>*g?_F`Z#h87OkP*GY4S8@ zU1dmOvl1UfhG8!FwVB#f<*Yi%5qTv;Kkdtr@)c!t*#{AQL^>1VV+j#KR{giYG;}?M zks44_3-kaL=U__!j#V)n1;{Z_w9__HaVvrFretR7Vy(9b&gDw3Rgq45eN5e*IkSQM zo6$C3(|{oc!&9$|J|)ZN_V41|^JO|Y)|dEl3Swg7Iqw%D`EfI!E33j0K^d=Z-uRYhweVX5C|3S(G!m z%7Xdqypqi=ZM2w5RurK=l}TOmdmOSqSB^$i5IQVse~1JXw8KgkvMdB zON#9*mN#+Ap4*w+qkf|_uZmBhzWX)A5BXZChfe}-DGSk9>p*je%adUt(Du9>}Qv3W9i zk?ER(k&%o}pn~^7i)UDr?UUx)1@<_v<-WKXd_|_@xb3Q+*-nM~8^l}AZ`TadvnOT} zyqaq|>`MDBZ8rqe70~6h#dr0as^G11KU695p6-Uv_?D0#U0}U z5t?OrLs^T)jLKW-CO*-sSJ-?ent{B7=6;_n^$ih5)+z~nGOgcko)*i3Hea;U5CcGuF$Z{`g8Lq$zp-94pwBP!4hzdq?I zmw7LA@5;Utw@b4aU+V^UJ#y|{3?66+YODX8a%IESg*ETLuU--~-jMjSl;+#_$5M%x zYA={AvnlMRl$ICh;@BG2QPaK#74bRe59fWwbnC$+lKMm9`+6Js(!S7_{IvZ-_F#kQ zrf+rLsWD1^e@AXGCin*9^8i|M|IAwV;1X1)k?x;AUulFRDoE(}M0ORa z5>4px*%rT!a2b+oXlU?w{L$qn-fmO8vrgYM9oz6J)?)3Y-2BcD$ve$&e6S{=FCD18 zfQ2h5j2+7nw^F6!qIUZhKYYp{vz0Q>FD^xzNk`W0yN>eVyH6&vRAc-IbOA#9{N+n| z+7})k{m?x^_-s9(KcpZm1TWg+sQyi0-RS${*tEnuO^EhKU1;9B6|UkPNF_)lJ^Y^Z zYa8b9o-7(ERytTk=x%t(~z&5cKEZ8gb?XBs)75WH72SL8(#BKQvf%9l(XcDvwPTXzGXnU;Kn{o( zQMgF}85N!+TSM;V&n%B4qK~&7uLFiQjE+G1B_xqhMj{rDU+W>}EJJvZN;!Z5 z2dD+7iOKA>YDN-QG4VB0y9$q;>%SGh%I)`we()prYgySdBn1!K99cAlEsEg^?GehS z!k_SW(+o5i#cC*+{N1-T;MS#Oorr6zWaa!i8aqu26a>~SX`Y1FbWP&KIQVMz><`SD zW+qu3=IPNi3DV6q;m(@8(9iz8^n3d0hWE!rR*wCzVIfJp)(A3HL$ufd;x!E1U2omu zF#Vl&=hGwO`DDCh3WKB^4g`=y%7|z*lT%aTX~{VJ=y$t{2#*T$M8rS?n3Zl%iR)-r zA??wlN8dz65yrKJmC#hf|7AF)(m2~EIoS+JqH-!-IRCQ?m|}oU%8sxATzm^^2~p@F zLE|INurv!^1}cKB6EP%Mh4D48s+gO*MDWf6Hr3UmHOZUEziDhaa+oc^{It!JijGTx z(aIhNmQ(MPVy11fZejfQ^>G2uNZ+T&PwuCA_TJFg3p04jsIoK*-$bk3heY2yP- zNaKgan+U7^PrjW%1$+0t8c6AH#2V~cT;$)!rp4tUbdRF)Re0@y#AkXsI^k8~JwuQP zDa%AXX+j6Ibe}>W+P81t4@|aW9*an-gy`;_RI5u%B`B zD^qw{5|_#3>7~}@$7SBNL734u1h zdY#~*U>1RZ;`MdI zk79!Txg5_GQzn&$rQ@sG>W>mZf#M%Os9`;s8>6vfqiJF;3U%mKrg7j>+sBU=kb`kS zIvm;r#>oFgogyV<5 z-IM)PcIVF4qcFLhHB<{L@i+k&t8o91FM6T-v!?YsdderbQ?MC@8TG#$hVVbiS? zrAs#aW{E(N7|w*NYn1n?%7}f^)i*pFkKn4BYb>uAZS%iBHVnIBN!nLK-;M|!1d=1XNaqr%}51=L^Rt?7YCMhX2@fO&9 zlUW-Z2!6Y)WT1cL2ctcxwbk zfh%C+EkFb{sE>BdsU|il-ls=g4Qexy5nNlbOOTI$W6A-k6_;&EH#h*Pu#fN>8yb9w zAou8KNL0)0%natA@yZ`hWJWe7JSjtg^D*2Zr8_^4mO$i&Kw=sS9Pgttm!ZUSEnRS0 zxqwyF#CsKpcLU%>AP^h3ze-5jE8Lf;W!XJW@r_%~p;3Ya`3#9E_r6sYiF7{Y)m|(aEEp zYqOgKmcEr${RGkA-D;)zx`Hi1cSumqOdxfdCUYEcj`p4C9Ba^$A)RglI^LK7Zb5G?Jbcp#(da z$7*mdMmh&jViXJOFmOqaB-I9av7^ueGx6psgy(UYI8-|1`8QxxYKX;sw)|9(%H7uX zcFWm>gn)Wri-5BlkCxPk;q%e1b#=N?bjx=tSss{rc#0Q&>>?2o5)y}0W{OmY2UIO& z?uL6ol67GTftIoxeSb$?)(N2+all&Gwu>0hLZX`i^27IQ{@TAfS=I86;JpDjvpX+B z+8|mtl0kCwL~ai*Kyp~O0*1JVkQsjDG~Uf~`O^-8_ss7|zb&aW$p(CucP4*AEz4k* zxqEYXM?`2Y87pzfLewsov0G*hI}SgutbRO7cRJs0+68p|ZJ|`QwT133>x>;io%|9ewJw6iWo*++Oh(I%5wTizEbgIH|5gd( zZTUA|yLPPzl~bl#R=+KsiAasv+t*{)@(16TDWi41gDFV7-3jIeV9HTs48d8SczEnV z)0E9(z4`74eq*?#8Kx4&IqmJ3J%RJ|7$r#-!>}a8v>1lBNibcdhmA7qgqG+LKjhpL zV{NSvE>qyJ=#4()&W^W0fOO{AGu6NnK>#QYWo7t0vaXaWs_F<2fJq{To;azD7#)#2 zJ?AcP0>Qsh>^fGJ%)5PG_u0>l1~O;c0rW^tbO1ug9+XDXB2zTA56?LSg$mwBf+q&F z{|T6hiW;ozoWc7SPA&y9AAh(%VTL42>giE0X7+lGEi1QZ$HV>~(*8Ou%e9LaMPFJ< zQ9w#$f*>GDmnb2KiliXjB?!{ppdg}zG>DXxbc1wSKo0(@}fj{kiRj^uxPbBt|0wDln9!k+liIFkQcIX3Eu8sZTVpAFzWi24%?|N0iB76Ax!(++L6 z^b;mzP`z^bH2xcetD*pU!@2ulpdfiZe#Bp|TMFKtBXADl;^EE0On9_IDY7pB<6~-^ zVQ7e#*Q4qH7H=XHQ+S>}d1d*Prmrutlx%1@Bz}(c7(H|*{gjf9#zXyS@$}D|t2oBR zs1iaL5)-BL50jm9W&u0fw!$Uw=xQ#UL3J2wUloikTC==;o1tK~7Z2sExaiBgCM>8V1GcrmGX0o!gV*un5__FUo;Cu*!ZVH}br+p46 zWY`cy0UBjw^kGrXNKJ#%m8p&7Y7~$lE>d8mDfPiZhh)-Z)&LaDU0z;JS;11}dL&;J zz~c#LA2{T37$LYbW} zM&eZN%P+!TSG?sexl+Q*rvo-ON2R;NW;$uoG0jjoIKbHkhbL4o%Z>5-al#&5aPF#t zb^L7oV^F7xwHNIckeJ@Ecym~7^wHaNF1!uGXMLx6nL)5VPb*<7?H(8 zVN}R?$qZdBPA!?X>my){5qBIkbW8BjtJ&FH2(KD|N&7t_9r6&6+ye+Md{ryXW)i!v{Gwnzo-+R6?%&(8d`8eTGoLAdEJ>TZb0KX^00$PjgpSAaweP@HJsJ zfR+^x{>4^#0QG}!UCFIK_i(7(j>6^*w;3P!xBGX^82JiTNzVDDU2w{oba`x+e7!Pb zG<`%p{NVB^Tl*do*sM39t&1uCSkL@>dt=1P(6p5N?R2B?J==A^{2Z%tGx0%#lUq|^ z`&0!5MT=0LMFu1444R-RLGW4>$PPPg{T^Faj`)%8uufJ^tNwaVJohEfsy6NJxi%^9 z<-;)eC5huV%$Jg)@O6FQumxil1iOBQ+M8h%0TAU52oDiuFcQ=Pau^6$3UanbR8sul z<^&-=+}R~n4d~z?h#>%hm%wET-6*uvFBoyb6GZ{x9w6|A(?}ko4Fc{3_07%Bz6}Tn zXujoi&PR?Q+6nkV5VA$g+^9|NZg z2sTj<9#m*F#dXxzi|YHS+HX#z#k;qGz)=-QRj9H^nS=mG)ubT6c6Z?jv;?0Y@-2`* zRyyUL`C=OMTss;X+;3L!{VZzBC|m{TTQnJNGeh72Q>S6>&ld26(s3|nUsu&JMx%~+ zCyLMd#*<~tnmirOlAxw{k@hlUOkO%#g0XKWcmyL1HfwapFV0>E##p<%_yGaX`8gWz7> z6L^?lXi&0yNWq|tgabhXhk$#C3cy+_I5;>eCT16+8-Y3D?rLgozV@$^t>2so!Y;pn zzce3`Il=a!JUsJ(yER^wcJfw5wP(#)Z6h9bJZ9*%`x~nehGDDjB+zG1h2#2sopVLj ztE+#8B7@q6phLHnnZ5gmN;UFLhk6K?M%?bd&9J}zhC%};+qR93o;h^6GLs8rZxk9% z>|&V&_okms(fsR(`-n?F#QDQ+?K;SMns-KjL8VJ*(mVL!o%>&S-MSt zka^BY9jvRsA&E>j-oX^n(fJ1oF-VBKfh?I@Unfk^nuVU2&iAc7XvLUnO`UR}^n)|` z)g%+udhdYcjj#;td^X*&f1b6eQnSJPLQ|5&cQgOQ8guk7#3RY~0^M?c+q)0&OlNlm1k=UgWC26Uc*PVs`$NqXZ9NC*b^OiZg9lzu$-4SR31} zTnB7w)sWxmY9`Uo#qM}nC@%0|PQ&YVL)abB4U*Zbz!`Y%Y(-{&UU5rh;%WxHddSj zm$HqhwHUHz{xt7yFi1i~Tdw=Y(h|UhAVx==`yz^5iB@yt7h<=|ggv3G8LfPQw?fxE z=h#cN)SP-HTR^SCKKuA+%#P8!l^KBi^Yar6K&u@gUlL@gjh&s@c@5W~7y3I_=6;EO zkwM8F{q=}PRjx0eY48;VnMEmwve~V#rcG@kpDbQ>U+MPr=vu0lMJ}$t;ZyUg=XWVh zxiG5VsPQ(Gv|QZpDmEHo@8?K1I*P+0nQ5VgYYTLNJczGR;AQ9pOG|i0C)5i>cY^{m z%(G&u7BKU^U?Ksn0w|U_sdu4X{hq9%Lhptw3OAu|2bOUbZKOuU-%itM3OP2ql6ddQ(KJ-d?wP>D(!40{b;18 zEDNhG{ATxlU3NmaX@N14qlY)a;plhO)9cagmCH{B#wR95z-<9!`#+qVA;1`F!)_*$n`)pJ`iKC1C0x%8B`k335i7*Wg%_GHO1oUihQQb*rhWGsd8hvOft z-7DiddhHMIU|PH+sdV?YGn+XTur$ZZG22PCfKT0wjV0T(*%?&Wvnz_4ETO{_KQ5$D z=(@A=yEj_zec5ojbTV@bmm~^|Z4FQm4Sw7TBji8I&SbN{gg;J*Jhrqll$> z>%!|B^Qzmt7okzTitF-iRNt6lW8pU*s4XUu%ug!rq{mir?XYtoVVk0FXY1W4=eqM?VJ2L-*_C2_z2 z`2&%#0G^>UsjPT}VUe=U|6suMbUwG^9RnxC=<&+O5eF;l?L?A@B-!za*v~soz3b_!%o4QorF&BTo8koxl}*D#zjxmJDib7htRgE|vUFCR+=H=Ww#ss45`QrMGKS8RijUE^pQGQzM1Ba{ zV%rskd{3ir%yn;ZQe92c;ZfQB3vp7#7Gd^~yH48l45G_cKPtudFOnPU1D_exL8JJ8 zrQCHz&3@CB6n^H4AtRkQ`1#?=!D55*o;p=+j5oayi_uT1T>l{-#=fCnuU?mCL@lpb z9&~XcaLN&`KCTZe9yTF*A!A?_kwq`8|JCU$U-fL1KM3)r?RKBAAH3gQW|1F_WMC9!o# zNvLbGG=`gvnJxpVG)NrN}&8}`@lu4|D}uV?*PlN*mxr5;BeZnWN$nRE_Wi|Wrf zcyFCe%ds)F?wz!o^Y`6Lj+gbdI*N~sqFiQAS3Hs$({{A=;<{?o^J2NDJ6jv=@nLTA z<6*wb&oV!@)U+G~TqFqfM;iRB$RR3l0El|E1+X1m11p7w-r$7|7574QBfq_VF?tgJ*Qu=wI?EOIoC^x0J2po@}z(@-v z46;7A0h@p628s?07;TWKC@|eXUY%^Q;XZ)9*0w=?`mbM0z!{_h-R1Ex_~aaS=5awe z+-n>Y7S;%V`)EE?wr6N44btg;kCnrbRa4x@bDo4R}dEh zB3Qs=eB*2JXoWP`HtM@{GnVY0ibUTo+u-CC3Pux-oojATR{648m?JCwk$i38M-6i} z%e0HFwE?LC=zthEs&E2F)XYo5bnZ)nAxQzU*KFu zM@LS$5%(eJ9e=_6j_7HSc(n}aXU{Idi->4v0BqiZ5PfJ$nn5HD{#=X%U>aa|i#NcP zkZ|1&W2zG{WjP!8wg0Jh5fdEPr{Mwz!7VWPAF5rzDf>aD2b~1cx8IW_36(q`C2J9zM^7IwtJs7{&N|<+7{H&;`lkcnV41L zas_fH4BG$iqSK|y+UnoDP4Mh?e*1p~LCrUKXc74zK*?zW!v9)j|IbCa184(xFB=&x z-3^$6>HVcd-2W{}E{)>ADncN@ED23@znQg75EsC#rU+&P-ggPWQxBn6MQr>~(S8~8 zd7Qg~e5&Q*{EsjS@o|Il24VQXdnt&l838~R>1&}<0LWSkb1*sQd`q)%bPZk5vynYDE;MZ#qOPx93c@|^-l{`88500n$@vhg%^f1L%X8W z5g~b(-|`*hW%2YC6>iz%#X@Gw6Y__Z1P{)yRF-~^Sb<*7akJ^aam0DRK0%LpS1K3R znX)n8rKLySn4{KA#N9UvGBns((Q;|h`b5xPF(|GJ5ry1kHZFgXL2*;{sy!aBZChpR zpNOn8xz)uDg(Ao`Aij1@6j)Po_URho1Q-RQVlvM?Prxl*^jZN>C$Od@!^{QQws)21 zs?Gk>*mjOG!;|_~3qPFq$W1E!Wk^`qV-Q|~_6$jkEjCfycLLG_{BPgRowugzPC?MN znyYY|6G?0U#*e%CuBtqb0u;6)_}VR-USKL zr_Y{!K>Sdz@gHEdEM~-&YF&ahzPx=iXk71Xg`EUXWw@BruFasjUBuot;{eyg=b@qc zv@pRGd28I&edaHp76eTMjx*N1mASpu&n@k-`YFRs+~K_;DPL$YCqAC%iAX*6H;E|r zAj|zxgzkAg@SY{RLu<=&@6|JskdWT{M;4q@HkXYJYpxGhfawfNIzN`kj}q{4v>1UukI!2;nktZE1`vI2*# zCp6Ankg5&inS2w!anCoqJ!Xy3H+_PKoeH2yCgMrf5?mwy=5sct@pW z(9PpvRen6&tW=dy{FdxG_BQAq4fwJ&Q&R}zY!oXd6GXUl<+ny2K=uYOP(Ptj>C3VU zhQY@lXo%ioQ)Ngk^M=C#@+p$Qe*mCkNL19xdNTBFVqhu(H}fxkEx5G6DfUVm!(f3p z=wTcIxeCTKpktH|e!~d^%Mha1qaa}l3G!;r2fQJTQW(4kASg)>!otM-9>3Hi*!ArH zwe-V!yAr*1Vu*UrednF5W{Xr#>wSGUYGh(NF=V{& zdUiEa*1NaHeZ!~;C6^>T{_qmtpUe{Co0gcigq$@pNZ#nv^p`sWfh;hNzL+ZG&t@@P z7i*kXW$3)|<;5snkb8|mxIAvf)B1_N1dGc;9^c)SePiWGZFutKv#k$3Uxm?!PFPOb zEsTjq#@GJN7JdfBqy?Yfh425d0u}AMeIvq0UIFF!!1Y=HE&<9d1Yb+Q9Gq=)aFQV6 zT38`r38C@GMkNR=*CYji&=+K#;Hf|sO(3%%;AK0NnV3&71z0M3B$`W8F`z!<|KAw(3qL$7+< z`>^(_I>yii>YnCu5%!+6&48xPq0PBPgA-)hg6{rfey1j94O3)WB=;OV{b+~-5#F2D zm_SlI<3CjE{<{x1WoE3($ARY~~Y7&&ieLA8Pv-Y^-E$+-d(u z5>%zCm`{*7J>|Mfh#bZMP62%83o!%|L!$03zi1DPFdw9+XQnu4cLLAl zl61>$hJ>@4G2HkgH1p#n=^B{H@j5bx9aA^)(5Ejb!|U=L2cL6gLD^?`{_yuhCiP^` zwetyqy{XORRPA@6Pn*|;+3_F&TZw}pnDBp(2XnLh1`hgPJXk+s(*M(2XnFrjHbe4H zS+=&JEPn)dBBYS8ZRLxbKz7y#bP^g27RrV>(+m$!y9+|=U^zE(3Q1qXw8JHFf^Z=Y zqd8AmjzPBJ6i+t&+1F4|2NI{$Dl5F5l28d0-Y?fV+^q@{g;O3N&|%F7kIU-_g58jv}?NHjfd>E zH2AVdLWls>=0H}S;ko}kMJ`6`U?xBRfR+|EPYqamm`&AT6-iaejY@%_u#EQ1XW(aE4t;_Z z!{q0LMpcn6t}*ZfBUoM@t^BR)9%%VM z3U3U~6gU|4VT=PKKhJ=DBcRB26(#sx*-C;Ahh&yo(-gmbL+&)X|kREFe=WAjRcFgMRO&jDt3G(y;nqBA^+ z=f(0v0`H};%P9LavbQm;d?AccY!|)(zDj+0HcO7Km}8e1zZQ(c-n`u z%PT)VHl*8sK9Hoh{qcx=M*Xsk*JrT={Yw+Pi>nR(e_}iSZX|tNC-K}n8{?k?pNuHe z&|K^BaQXE4wTVZkR?O(s_ppQyvYs@_FFKK#vLdL8LykY>k|xS(ajpDmpI43k@#S4Y zhtX#ueD#w@^)ZzzKmGZe0+apn9tp=CRpk5?Oa#6l@*1pc&ApC!Ha4-Hzi|9 zOW0F-;Vsn(HT}O!PD#EBFNqy8_i(*f-%3r2oXY_mkg6us0Tne>W*w2nOBP1g?0k1+ zF%W2MYO;;pu`(B@zWj*mMcUX;nx^Xv`A_Zs;uLhUouf7Zt;3iAm?asR`QFtoJ>D_7 z7KYnjk}eHy?4#@P@3*+NTF5e%2wNUu<-Vo(Lw)z^)R0qDu4)hvM~9 z!B?A#Zfbn#DJ<&~k_+PAPC4(zUOeGdG~4GlTp~3Wat-IBj!_dE^AJ9JuutuMSZ0rpnq{(qQ=I$ugDe z%uo{&j}jd>9qy;r62{K_*mK^Zu`ct6Hn`#+gbz4Pd0F2zL*#VjW5j!JkYj>0QE^@0kWBy;5&Y5G1=O}cHpN?PU!v{ZUjAYdqwd+ADw>{ge|2#?lW*_f zL3`hjRahyHP70R@geTCGFlqPO*H{V=v!#r+$yy1Y?N#!rud} zKs@~=r`;0iBt89$G%1czMds)Q)A+`RGo{m0sDaD;c;Z4HkYR*e^QPH7Y}`pmf9UbY182QuTZ#)YTN*knQjAT z1o{a*7)^k%ndgrv_3`mR;+4Pz2ciB@1+cFSem%Dbdlr0W#1>a*)dxvkpBK;Kxr}70 zgJP*b?=7AvH@*7B+2j;aDu^c5*3~6WV-SmyR34HK_bL}RnMHRe9OT`wBL-}$+7#oG z3uS=W3$ek2Y_If3gTm=9k^YAr(Q1L>PSlaDz?%96bSGUAHo1b)f=xtowrO8)^)F>} zcg$lS?Wy_0Cor<-jwyF2)$30T*i}lnilxkkf7j%UCnmeX+OTrh7*##0D>8i zv3vm0rsUiq;7j?1p(}2puH2WU-amb$qk&#&t;EjCO6x}}e9^h!p(Wq15@hFQ0;$oT zuhd;9FuRBK>0(Ldg}&fhI=bkpB{g`wQ?Rt!>uS;ISZjZc{C6pw&Te~ws02mcpT}+Z z+@R{9rEu8jO?AGio!NqGoZ_{8a$b7{h9OBlrGe^eufgk&2F}~ZEl-VBwpTk@Ud6`- zg!DI!hFzTVE&aZsRpk_(avr97_xKfvc-?^_Pm*Ke4umK+Tu|Hq9L)soIpDPvw5k55 zU;~#|-AZTg?m6*#MMf$Iz9IuzioTgyKvk6>EHbSFF&yB9=v${pHb5MU2h)i|0wbW^ z*C{0e^YYk%jS@qC570$e(ExMB)1(Wqk@b|AsqYVgvJUa+LmO#GJ_N!9m>aP`vWhgd zAk+i^^_$Se>HrI5yK%sxX~4wc*^7X-8RBuZ4UWG^OH1=?R6(-_|7mp>bQOspT7e9R z-XB(T+(wm1Y#eBoV1EH(D+A37@L)@kk0^Am+6GZg5pGBP_@0Xj)2HIOhZv!4m zWTMv{2j4R20b`L>Ye9g520?M?1rX}xy2s%R4*1sIL1HWX{9ugMnmdK2;5D=?h(ei7 zI}X|YwK@lCMg%;-$Hzw&mwTha#+6gGc2ii_FSIRzFi!kz_*Dx zyr!-uaspHrhpx)1F;sa8l7^_kGty=d#lX3!Dq&plc>lDq)N<+ZzsI7&r_*{Yr&SIt)GnXJwL4UAx!|;2@8Tf;9}pyP?h?eyQ!rGVt#Ev z=FFYyu|6u3lZ}JRhttA`Foz@q8Hh(mYPJB*`O_@~& zlkO-ML`EAf5h4kkD)XF-j|B0U#Kt(oDD%*OTjl(m|`-Xy1{>; zB05dzqE&5nE~ENJ6=57%+k{Ljr=M&??r1w@N`CUVE>9jEYA0A=Pw=*H`bzyj2c#e4 zq9E4`7KwCO5df19F4uer>q1ZiyAUK;tv@~K`35o@5M)@30TRiiDqna> z0mcL1FYpmO17L!5JqZ~~@H2cZh#ko5OMQDO6?5Hb{Ms=B5;6zg#waV zLm6cU`AZx&wLmAG8yA4^3L-qjh`ATw3FV1{ip}aIC}FE93SennfawVqGSaLfYF2&7 z`-C?^-Ob`Zku-wKBl_^sQA)rGAu0Z1vb zE$lkj%-nyp<|p%^IpqU>fEm@2LRf9|LI!moiCWKV!Z4;74}G_PAf2L?z>eU4-h2g0Ah*A6ZSBm!}^_QAqq=uI%5q4UD`$5F*AuTN$M5l@HG$0Yz00{n< z-LU&RU=^ZUy&w+=21N*xKqw|iGe7_>D9ZgA`&0h0u)P-vB`r41D4s^J3fMMrgWnQ` zL{z|Tad=4j*Qd1JhW0{8AgoH6fKM3PQmUgNYeSm{z4pJ$g@WIz4L?V~>e}O_Ds%2hb;T%9Z zh=UIV8zx0%pe}X3Em;5dJ4DI8a z0@bK`nYVF%t2FuoBk?1}yR&Z9=VHYhE?H^#u^Db5Locd{ZHtQ!b7CIcBcoZGognKF zwtVMzPl2qZi`R{K`NuUSzIT~5?`*ifhdARV!<;aFvOlibiIJZahQ7r^ncrufGyvyd3u267U>50_-wVA&(AOJOd>cqHmBE0z~ff&Zlrd>_RXPvY;4T zB87Xe1Xcf!#NFrdRTY{Akk$CFW%5-HDgkCZ9J z(QDSciTW)j?gr&0qS+G8KS8v(UYH@juL*9t9h8MmL|as+e2x{gskU*SjdhqrB2eKd zM;5xIIKF{*mjWn21V00A`1ygFfdM^uL!L!+1}DfRifTYQ znpE^&wv$vYWQ(^H9TSxyEybh!i(G(0la4!|@4nUpF(?j7+T8%W&& z#uu!ep-9&NQO=NMfC6f~UZ+(h<}nV=-zEw=$^y0t2pAH{9kMyJlyB~WJ`0IfCS_5Q za?OG0aer8L2CX3{Xq1tJ=vrVKS|izLKvtU`caoV~Jqz!~DcD?o#^owyQyO)BMV9Jz zpG5-{CI<@XtgI~9Y58oH14LfB|`wDZaj4S3Hs&uqTt>nd$J(+J8#v3NnX){$Y)_SNfzRS6a?4^Q81!UJWT(e;K zw%`W10imbpwXi}G5&t2Z2jRlsRWI=e0po3ZZDa){9BoUWyL{+=I(*mW4rtH7_^Efe zHG?qvaN_R3$03WcfGEPOb=jN|}WGls_ zvY`-jDA0H#5Mp^lj!Pa435`!_+!_HGMTlmo&(ij%4>l_spzc7b5gs^>^q}a2u!wo2 ztmb%?1)(?)<1PpkkS*I6pcmE44ukx0Bu*5v(aN0n?_8YjUV+)+=jyM@R)F)JAkGT{ z&1JXugM^MhAb%8KeB>WSE*!|5^9@m}fNJUT@N_D+WK3maAe%fCKczoh-TLg*glX41rF=iumcadz8!ZVwrCb4=E=|>_h+ew zLK9F3Lv|y957bpZXsD6e2!0=v5~oh+_@U?_ra|DCKYe3D7U@|(q%wO>GTjzJLQ_L3vgBgD`R|1#w9&vgr5NGY9Q_K(tdz@}CBfI6@^ zB4+|Pgcu(Zu%X~9BnKc|zNp-Kq*0qvl z4%}Uv-DkqUCtpGUl6ekkdThA&j@Y&Ao}T9Fdf2L!5hl0 z&~;P<1cnXxO`#QtSy}4BouA4gS|M@0dG1WO$6@m8$MI(B+San8pxdjPi}TrXAAgMI z&vrVmXzj+vWC=P&{`!Q`W2{s6d6b)J%{C07knv`iUQoe{xIP^OFsB0a=53<=&V#+yC>Y$S6lErzB5;!JJmCe>;!mBKu z$E>@Wzew?;Gw5?JruU>bAU z4Fe``FF-qxhZ}JmgB-6t%m$y23u9u%wu9FQG|G!#U`#v^{CXYq*$7yuju1JU&?L1uBvB? zZ4zmlq+U$7BIJJ5wBX(NUam3!()#mauFd&+^9Jx+5M5aqYcOSYI3am`EBl>~V-pmD zHn0;G{63Y8Y{SYYnkD70xq5mbUs`b*y;0mFeC7~r*kYbEP`l}t`J(E_7)z8vmw}O4 z9sII)`_I|$n$r&}6|7ttuT}eSSe5W8Jpy-bvTvQO!%yzY#exJg5Jap3b^XDcggBZhp|X(tUyV*Id&TZ3;p zDPOu4__kmrb5{6b+RlB-iNbTU;;{GIH<lWtqU>q={-a+Rphps=@WWuAy#oR)}EeOviJ`9_z*m;W55lK(Is# ztI$M~e!O)Y3+tu9 zx~}b2`-=F4$8Ng;u`LpL^Q47&c?ke4j#sZa{c=UngYB#CZqT({zTN^owCc66^WsUT;CBHGHGi_7EWJJ%u@Z_>J;~w7 z(q-<$Iaq_jSifSJr}uqSX7~x-Z#>$@LK5+r_5rWu0K9uF*ArBI_SmQgC~QyNjxA8{ z4+-i<>!tV>Hn8g3uCCf=UzKzF?9@!^i7CnHlazD|umUyQ5q_}z! z(=l))=IN0$VQ;PDx>xnNF30weV|NOPKF*4xY}(y6jn7aqUYJrSJ7bCn8yxEnmw9own0@6Ro)fXSnm~lKl$BgF+CbZa6sXo zoszvm+}F|&a!zDVJpTMqP??GJ9bKgmBQQCOejs}wMAMa{gx_KpLs-)FTHvmdk5B4ce=HlZI%&*3+Wo84|&OQ*I*4c6f3mP*sW z)-`KCznJb_ezm7%=rRPapdSpO%@AS%i$)0`*A~HD*4L$B6pa>g69BCQ+e0|q_7UhCi8|8Pe+Sl2WVbvR z_aBRkN5iINV1xtHKKU$&iNG1B_0Bn|&o=5ClWW-`!C2Qs%cy+&6o!dhP6Ejl9-JDz z9M{oQbktO~a7%QBZt4{iT`Wzb4C+Ah-|sMLz6hnlUDpwK7u>Ckh2B&6aG}*_uvjCKTnGK+)!pdA)w`PW(T;cg6jmN z2tvq)T&n-;Y&05S_YMgA11zT#{}2A9O9`NW?G{9qF+&Fk8gI>vmI!8r_lSu;QPjt_ zn+?VTGBPrV&9}6dQ8xjX@ulE(vs3a@BhRV_m1Q(v@lsdv(#Kf0cS}AQbF)`z^QfJW zI5!b@s*{N89-ivIdEgKqvT-@fB@Hc*_mxWK&8;h0PU@QGJa4E-a!mfdaTuNBHsPCm zaSa2LAF1`V8aipuB%cL*3}!Vgx8(VKXY-|-FW;RS-O=QmnqJY;w7evD{=8@PNG)@Z zdKMD5xk1r&7XlCw1vTU_&%v@}=(M|GW#cexqy+d2XBuWP#CHoz@%-c71MLFGd@wl^ z0+52rYaRenBq5*qhI#Fh+MchL|7 z1IwKo2)dDkt5zP?H}V(^sMxf$`*H=t7q^8iDlXNQ#=6qW?cf=6Q{MjbT}qcsJx9=g zc2_a2Q=umLx$yU43V-L~-4~Sx6L_>caTSRie)0P8#p$0DMR02esnp9T?MWF;8IQv@ z^+%KSkRg>vPQK{2ZPXpF5UI~I9U%y)4k#_;_<-R43W#E*4~~;1V0q|V5ZWP(lYp3L zyuZy4+gcHmGT^;1Vy8gF2J=Q56CUknZS%-ZKf*W@MKu9wU3_Ybv z4XF1sZTFlnRh4&VT~?Xgg{6CggyGTiH zDnESjBFUSIrbzDMYmFLJYtsou_q?>hW@@T^(hK}caguJhh43l754xs|cB5TXjCuSw zXG4)Y+7eWu?n|nLXV_5@u9s*w62pCH@h`4Kw&gfF%h6!Pp;yAS4XK88kui zzfhoELbi-gEJ?I(fkYJ92DuW?WC_Lqk!%UDMUTAvV+sNwlt64C5}UQG@wfVvZW{fl zR=#&I;&xeOv~urrd)-xnXqPbls^HWG!6R)lZSIhpUzsQ0Xnc8ZIN>)y;p8%7r8nEz z^E1`p*7u8?@~Q*sOIJAEkS=>sZC5&@ujP`}np>`|L?r6`g!E99C1e3P@As=;;x!-Vw{iiXaz)@N$b$7^L*PM! z%qe_Nm|Ot@(x`Ed9UdNz4BQ1vJ_?YHt@^V#cQ+8qu6+5M^T#s2;~Og*FBUNb&6er@p&7jc^trz z_Mfp+c5>xFlC(n2W@Y1g3kQjP{=&qo^eF?6Xu;AymaOwP>?7<6zVrVxM_g`)IViXy zIlgkQxGf_5Nd{O z!i7@<@w$NMJA9QNd^nzJOb6m|?q@Ku{`Z~cn!M|G5);U4OK}dXD#S3*t>qCHpE@$gRk{^KdPkFcI9#e zWZvGk_m{}VkbVn`kRZnog@o|-+Qp?|Tz`@j4Ade!yh|YTCXNS?-v}mlZnM!a#QVuF zBRUZV;KeqaAuqfC*z*2_7fGAH6e70ZtO*rF+Kn5MFLWj+R95c-Wa%NCSwxwGN8Q(C$+;~vz+vg3bx_a05Oi>~3W9voQwvmEw!SmI4$ z!qd*W{Mbm&SZOjef>gVbZbtlIYC?88N#xDFH(WsU|D8x$Po`C`mUp4D4c@%+vAswa zp1|g(HJuZ`_Ldp)a9eXIw2|Cb+cmR{qE z>k?vPKxC=-$0f)ix@NQ3A#r+Sm>tL{73KNqljLlY3J2HAc)*Ei3!c}a^H)$7MfAAw z4p%$ImO#O)>m|NXef@1x0D}$AP;yj^+hT`e^6JDZ!*tEwfbWhNN!PK6GP%UgLQF6c zU0wD!7C-8)idRC(pv#mUpXnJOdXrt`zox?6z*8Cr_Eps!#-sHeBLgCp2Y7E~Jl))v z3(4Pn<>aQ(EhjLHpnsNL*ircAO@F;5ur(_Jvak}iz~*+*8N{sLhI7i%(UBeSU1XQ| zfkd(ySc@Ny;T}OU0|aN#d5*560vd~`BO!VY_RTc{SZUn<{VI&bK+mSU&VjRn0eH#n z;K?isaBb3!Ia;Fex_vX}J463C=s2_S@!M8sIoF$qZdagJ^VrXoNvXe0l1uzbKXHJ) z*g#mjCGB9Mg-XKZZfvUP3hOA7cU<|+fOl>7bc<4 zU=VKmXCu(J>gh2Ke+`d1UCepYo|YoEUi6{qEnJm(T+UZR9l7b51vnG z?eabz=lgpCh%%b{6trq*E8edzyfPR;k&ACVKY2B9Lim07;K#af>@*M06C;?n?J5>6 zzjM$x*j!xF%?V$6jEjy=5DBTRPGa(oBD45ooOO zk(Tgz^(qA(vFmWb4aF)AzYhakCRV6zXRe}ivjb9+Ew5$Yyv2KVW?&DT7lC=BTRHa0 ziv-hRx_;(xuVXsdXe(=MlxDkqil>+We&Z8C@209pWLOMT45WkCRawPm3L%#g-STM1 zaL?H-<0KZSX{!f`EYfO%)OqaWS{ezzSBA9v+xQwyy@_iDzsU$_0G!6a$=tw_$g;1;$G4;4FP95>zHom zST1~_i*y|1Ykg3-*aFJd)<)r7--1$4Upn1Ojtn9hTj;j z*VjFM*scmY*3pn19N_Utb0I*g*wf()e2po5rGp-~z%Tbcf1LiHg57bzNPp+%6dkM7 zrZOSRC;!})>(RN2DQ^ifl+isoBxSFWL{x8hGiTfz6KHJW$ClvmnH|4hOxOq7ikRUDzB(ZCdW^YYa)1!#uvsT)Fsd4J_-S0X&>+>W zdmXCT1(NuJ0^&VV&nyhco#bOJxD4X3Sf^)gA3CZnBxbT4kb_IXNfQF-52}?*$7Im| z6r^uZUd`0+`F(5L{f5}~=|RWMm&7gtquF)Qkw{#iwZLTh_Ak!>>6kz+g(lh{ zj$|M-(2?*92)Jqj?GLh%4q>l=gO(sD0*HSXzJ3}%5)%cS!DWOjhL6I;#M}aR zrsw7wpiTQ_QjFw(gt4(*6@(jKCijLsiyZwUnrr!^aCf*2X?*NE@%mp0@meN+eK`^{ znVB(A`%=&bTW-HkT>E``-<-Bfn@5H)n&BU_#$GVht#ZQTu5Pb^wG1!u2v(y zRGZ+;kp6Obf#GT8@W@l65m*kU77#HL?wfX2`#CeuHsRPwql~QIV<_3_gEC`7=?4VG zg;YyN*gpfx7{piMVon2JpBK`TvIs4m-S&Pxg^juFR9ZWljC3ck!o^tDL^{MNGTz6ZjYBWTR*l%zr$_8-q8 zX>={j>b^cIW{R7lwOL~6$nmbgxL8|lUv5G>t={DDQ!Jr*ixmRN>42Dncec1 zX-0et-CA_f)(=oHA$cG6Gdtv_rNF$3I2$0i9~6T6JM_>{)dDGu7|tOuvKEZ* zfHRm3X8lAqO+q?OI&9;~XbA!r^A({(PcUH0=jl8G%6bdZoq$_H{5decKTCKFn9GKp z9_?3ETs6sMA*weDH8BS@0ZS?lJFI|YdsJ&tPkl?Ba3UUg`n0AVFkqi=wJwq}L^pKb ztKGU+jTVGQL`q=#MB;%i?c);L{YUg38}c!4T?Z2B0&lajR1sNwQJ2~$JPJL?x|Z}P zdv|XOouBmW-R;ox25vYDST{DzUS%?8FGLOhUO^@OU%0=KF9 zsnC+XgmFj`=G4esV2OO1y~h;8wx46|XHMf&y!m~MP{^}QP%7?S>y3W_N9!c~m;qLX z1p9kdtYNd}X%@cQi^45ERHUQItc_&rccNT}qzybKGRaa*2k6L2$*cH1KYw@Z!|pdp z+~wwBci80qec1Jo7?PifPm2~Hx^|XnVWyTUK)U8Cf=tEanql`wDPD6YJ6}&@Rk%BJ z{fqnSog0rAgLVEU%a3{E)O{)KUmvx2>ySy}P_fPQvCihq?<1dFuC2TK>Wc4R|1l|D z%VAF8m6UPnA7nS%ecNU9xWA}0ccmwM(YkCo&G)0AZ%+c)5$xD<>bAFHd?@m%pE$r< zhPIrZ^iMG{RVw}FX{!kL*zPJPKP+W?3co)xFlWjY&)Ja|F9TcrN=r%$NJvX}DIg&& zDInc~ba#hHcS{LKcXxM5Bi-FK_cPa8-`?k3`}{e-)(_WpG3PsEtbk z;E)M6gTohJ`9pF|1o<}6eg{Vvf5MYdF{ldhPrdo&E(W3gDk#@F)RT)bcj{_=6%h2w zKDC)$8%NZj+&|FD`d0QO0FB+2e*36*-`|}tzr>|P3uXTq<(h+k)M$nLlnJSr>O2MG zE7cGyQe@qKrxCB_d+T?w14$-p>$t1avO}b_V&WeznAff4QDgJ`z{sC!$>y9z!MCG2 zAL`KT4-SerBl0T-4dXel>C4drt5J=%n+t2VW@l>9Vw++TzZm#AWTyH%LNm5wqVIg9 zcK$_;x}zZpgz{dz(P`_9NcS$f{-dRbUliI$!Ioaa{|=?^AC@YVU_CD>t<2rMk%KI- zPGk`3N(;p(ttkI8-AWj9YCY)F7qb68dyFMBnYn9WzZRRYgN9x{ zBMxa&rdSy)(eR3B_{EF7JR1f4+i9k+ac_+ghDA%Z3sh@KJxDzYj+~$jMa1Z|^0qH0 ziOu59LW{`TU>1QCc}h5HP(i;Xh$^!QlQ4|7 zha`qr23AlIab*t?70F3TwFRP8%FOrgOdfpuw(!)YeW+knN!C&C#na!Aa0I(#1c%=v z2du8k9FGg`2wu;%+)Xu_g{kEf4IDkXKHpS^*H=RuF1EOBxdtoYsx-D);Vrbtx1a7O zeK{ot>pG5aF7P_V&!2t~Uc|b_vwu5KTLEvJ&9z(bsT6MtSy|ed#uq&fP1#Cgoj!B= zP1z5PFFdJFr9p`bO4#S9$+1GA&3Tam1Di3e%@6Vm z>Cr|}xK%W9*ok13wVLx9_Rm}^*}ZH||9dMqK?A5GZxYJx=)kfLG!h+1jOit_u`jN& z4=Z4HrsB6v8Sulo5r1#BOC5X!p*~H?>chkV=; z2A<%oRTzZbNi+8zE%);pER z?gph2uTNXhl`G}NS;Pw~mhtYqS2~XQe$@UN)S~=DQ%gxYcgkI&g}Ot*4GerP^XDR( zP{`LD^80EH9f>(0gBpCVfYYqu8sO9viD zvcmbHW*-~NL7T6U0w4aZ62VN5NP&;?HGFbNTkH6NHKJJr>^4;PjMubJwJ{~F!_fp+?{R}Pv^iB&BS}JO_NgBzL ztX#Gv&*NYYX*|JW&*+!Ewgcr`@sm8G_cs8`*Nc$S%MAv&+{@oS;_$#-T+hCh1l*n)`3HWMpI3$z z{;>7IZqIcdZ^!lo*A+s@vcu_HO+-Tz3);|;LTLmEW!X%XzVAmXtJI~X-beBFifmef8HistXd6t3Mqy_z3E($_CAgcV7~l^8K>+&amo@x!pM8hBn{ zvfteG{V;)O$B0Pcp;B`t16ZLlDVdlQC2t9Fo7G5y6ucc`QO0`bJ1q2>xof;k+}Sry zW7n$mN~kRlta?=Qr(2THh+hSGPIG(?GkQ z&ZFaysx=&YFZPwaUR`}R#)gt^sWo2=u5(wWNN05d?f%wF&o8!Ps%05WVB(<>3&8e9 zp4gHBcC}T66Oob)XW52AUhZ7U6i4y(d>Nv(Z)m%duM3cp z)@wA`tW6ap0r&zwip+u?sn=V^rZ+1VcTtq%U;ozmzu%>Jv!)S{tNk%r`x%B$mwOu~ z(o%8ePP`FcUT^ci7p8$D4gR|on^864nwGXp3G^byGhP!*>rm?4#gm0DR&o)4+O~2I#DEqL2O;*C~FZTi;Y`u-$TJ@?jPH0N^ zJWKz=Uu?N;-knnV^=hGOJ9qX22RxINJEmqejfA5m=;~Q$a8N|XPiaXFrz-h$WgN9T z^aTNQha1rMaE#KQKJEKw;ayJePRu}tT2D(mhDqr5<9fX7?geVHqaP@Yo4ClwS~Tff z^p~M_vkv-1Wc#@ z;3vwd12CDmX+ps8A21};4$3Yv_dE-zg`W?KE3C8XB&_YMlP+B`A69TjUT>LvDtP6) z8w>d|SRVbL%%2`D7Grd)|&KRD7oItek3sR*;wBu%Fn_7mR&6Az@R z&F_|qFg!_Xbrm53Bpu2Pawz~7L)FHhyF&^_cfV+dW9pD*I=u?nKnj~Jgrl%i3N8-a zt7oRIiu*hP32$>i?*&ijzxU_<`ihmcJ&oF&2%t6@0-CB@9rX|B@KVp5=)fQx2d$3$ zuajg7ak38Z0-3h_5=cLMh|!F!(RPs$x${vzD~fwwF~DQNzF<0m zy-})d#xEiPB$SmO%SBt*|NAqpUcRl$r_b+N=kJF*p8r0;!0Uz`j_9$Y<Z0FOK7K@Xf5m~=s-yz)t zj`Sl!me98DcIt{{scQT}w$Yud2e4`sd0@Rs6#B`Dr-5yT!e9Tylk=$-4m%kV+7j3N zXMfDu(np591@?QyFIQx3c=L*XNX&BVcFPouJ zMbhVNH8e1Ez!JgA=lVRSgoC?9n?6+7Zu|-F3Da;R&VB-bgpH24jdGVbp8h^08iFQ$ z_S9)RJ@B-)!(Gg9^4ltnCe+4s5dh6o`mOwvFPT*tMr}!zj8kz*2-&i{SL;7z#19ZZ zzwLMH6BjXF|MIk3d0AA^&UsA?7KH#|ld2yK ze*JGJRvsd#U96N9>a&WL@fT?UBf@aS!c#Qc{u7Pj+noUP9Ta@*E+neM zc1GeVMicl=42MFr-GrHflKk+Q!Z^B+88%@TT0jwfWPP**w{P)vzlp;*fU+j2REs1D z0{PUJ(~6-29B*%5;-zZ7zx#AR(BQ~`Po~qkG@b?+Y^4Qz)XjxZlAO=di5Dq=0)+%V zJcZp0x5hhtJH%A=o)O08z4do*Fpv)Ydrkp6^kq18OmBswFO%mJLT*8f;bOLVP$g#v zBKOD{_;MXuZ<|AzLZjkNdNYn>VL;Mxvv}Q z7k4mLiIG|L+7yPDLt8ug0sufBxvUTpl>3^2DGcxnBnvl+6IO&on%8t#6cG_=<$7MhRc@n9`QFKWm5;`)H1zC)1U`wB;S7%qs5CWK=6R= zAH$X`Z@%;a*7v-J23M*r`3TA0x2@Ioz>4Kom5{M? z4P&Fi4ccdm&)PTq$b5L44Y$j1EYN*7hsC*z{*grNPqgcUGjhmmvI}l$Uda(3iAwvn zjC9K%trD6MTvH>0OFj~oZ?PbgpSV``dmuEo> z|6SWgtb|j{E(#c}6KL4(`~n$ElMyr@Jl3Td!3`OO9`vM@%cS(4Z-I zfiK-r!JMM6*AZNFRGzl9;i_+Lnp|LO1{MM{^o{7P_;)QU+LKK(0-myCHE{sd#22+v zepyB9RceAA$EdFHu15WfDUzyVTc)W|avmmyIdC!`VxDJ$V*%JNXk3Ooz89-<*>J2< z%OX;`7a{*z+^WPg5{l>*_-_cv^=;{hCE3MqKCHMo6UMZ~_>8oYm-Z=Nr(3{$D?U8s znP3|q-%{pT(r{5zIbKs%9w=%uR)VR9BynTa%Ja(eP@{mW!WOx%d)()tC~Ip1WB`|` zuwa^vg%M6wbs87;>;40{XsIWezcHf})8x<3w|HkLZ6@Ypf++WjLx#7!@BjlCYjRPj zh_GTOO!y{0^lYDuBtk#kvu%2If9plve=W$M%~rxK0!GFV21Cn6Z|9JiYbW#Er;O}$ z z(SU@EtbY~0A#(0pl%`nC{?p@mk}9omV_Pp^KL>}g>CQ&I^VrV9Gh6Rnw$`n1rUn>_ za?972LBQz--R#?Xb%L|>SJ(UvT#bFsMCSWt8J-pCgP!P-=KmsCPE)dvD0zacOditC9?PE<*KX z!r$Up)Bc#6kg13;_mG)&GkhM5rn|pX_A)F0_Ib0%OcEBdS^c#v>KYFw#s|I2)DSB$1gnU}Av=LU4zsHu=aN45%+Qy9OYPy~nL-rEHy<0Ogest)h zxcV32IH41$e?rs^!BoGZbg@))!oiJ@dtsd0qD^8x(0HLhj6=`~t6HDOqD*P>UJ&9- zDfDEyDcqq{+s(Hh_jj=6Je1VUYRs|Lofzyh9B{iGv9QUF4DP-$l>U7=eLt5+2XG2= zxh2D$G0j}GKl}8wEAV3&xja&MVbOCe(1kcd^)@gXE8RU9yDGx&L8e&SKNRl zlj_e1?}n6oMNBa>ps8vCgKCY&dpb_ZG0B26)dX%+3VVuwyaaD#(~D{r+Bp5j3G%=|5g9_Wy_{Ye-4h$H;|yrUu#L z;JC^bfjlKF5-ZUMtP$i(Is=bg-cPHe1i&=%8s3J!R-*Wes97Itt{p zFnveQB2B3AwVBvn)=pC<*G&6wg_aNQxg5y>DwKVVBQ7rqB$5kUoiSfXj1Y?5lr`vd zBY_pgBnp!y+(-zE8;#n=z6=$)O<@_mT-hHe-Vy>aOf#W^XLSGI0;hN@58MgxVL|r590lm4p8=!D^+m_!93Yq}`2H4n)prU915;O^ z-Zkp^P6Csr0uuv;MyGEOAlj1#iFa)L0Dr@L;??^_jRVUoJ57tgGlw0lq$h4a0ToP? z-(}0Zu^z;WPfkDC!pr{4{g9U0=cOZ#y1HK**H^5T}BjRFu zhfNG9$tZXXU{4n4&$qDC52?xQq%`3<7RCx)gOqFV_b;HCdZ%#L0E~+C4Du59R zlZ}EjAqb3O4``)7o&V#JM~*#1Y3PVO@Z*ljJj`Ye>PUJc@UX4Hc+u)1i&q?KG_~<* zkdG|_%rFq*BI50x#poIO=I?n;#&{zv<_s;hDOTtnzW&`lb;VnXT@_L)a&I(mo%h6Y zzqa`KRw3*ynF_zb=n2DcFfF`2!pK-grk!8lkH!&AkOAwA#~SyP7JQM2U9rT;4nK=> z<1Vq*qByhCN_pG>m)K6B>z7Ua7g9x3R8I{=je>y>1CSvjd;voE5dTHW zuRR@aD%0ZDY>gEecrK7H!2F~DQA*fS;>sf9=?XYi!BroCzjulrVhD&9J8FS?td0N= zQ<*C;eTqJVpg+K=R_l+>jnc29t(I<1aBkQdW~_hP*UwE&xcq##>{!?|0PdwVUqZ5V zz+M-wDPJ^E%0ffzYVC0qq-J1ZD9npt4F9SU$D6Yd6vD+~rT{79#hzn|w}h(_&z~<` z_RA04O#F%2ZU7p#t^1~Dpw)XhU+r^)$VsTX@r*-$Rn2RSQLqDiU4VN9+@f+UJHJnh z1_W-P_QkG2!jP>)h*l{y1irHnzkq;pK>D>y-vX2lq}Hx3e-L1k|-zy&;9s9)8ZIu9Y4TLArOex1tnd+AgG7vJ`gHg?PpmdmHXopzy^im3p^*JHZE@ zEk$Qkn)Q~t2}dj`#Z(iDKs@(pv4nP0ISl;p%?nT}>X?v$Duzlzuwe*E_T@14ZO29t zGExh*YR!J~9-$*iVO&-%$l?_(LqK|s_S2P#>5Xr;rJTzvd@X?}M6K)<&v})x*9{>Rt07#v5`E|$f|4mUZ#M@zgi3*%WLV+?4n~3Oc{2LIs z#@D(7CXVtIj3*b;16$XaV&TKl2ly!TcuHB~Z6}TYwjpn}P<;_D9z9jT7AhUVd@{Q< zV$x8~h%&%4j0FZZIzmYx1evc__e+GTn;BKunsM z)Z@J`*B?7x+BIMG*@6QF?3|)9@Y7c}o0a0+*kCK&YMi2881UswJcla0WKObvbf?{o+L%bIbjc{8<{{ zP9ih&&ynWzcuKBX7syA}jg})@a4)m76R47W22a&o<>dHNcf_TG}@(nH=v8g+;SLOmyl6#E3%^ zw)iPVq#R3Mb8^N7VoY76Gw%w+|6tY;1V;b@630~Phi!qLywei&>fwYOus0h>FM>yU zdU`4>=Q)!&E&Bm?T#3XS3H}})4!8TG zlvR6t(@+DE9^kq5k%I2&v@}|JWnB-|gaG#n&mRSEwFHi%w5+msH_XGZpV8Pt+GUe*n!I9+U(;i$h+P63{i46 z#<8$kq|iGbLA?HIzs)u7vu#w@qkXZ$G1djgTIXTP(@Gc<`78YX_VuaR#`CtQ-rioj zR2txq_{|k$vwyC)3kJ%KwWA|BplSyW`!eZ*B!IdF8p;Vdp^u-d&lmvd3zp~&h+GoD zM-i571#IkK`GBw>WWet|`x{7x1=`npR~ntiS*~EStC=g|tMI z6n~ZMwVvA)^f!`MSyxx}uLc{24d?3*ZE)CWO~g7nGzl~~$L_Few)5QU?rZgNv4_X&Xg+|KkdlA6QDZY;%kymIh&_tyXLd)&Z= z@@L->ACoQp>i|)v>c*Lcd4Atry}!#InBVXh1_}laEAfKWsSc#7I|gP4__wf}H3C?r zu^JiR;bE*buY`mI@ObFx=w^8|D^1$Kbyx6z@$Xd%o5R7Cnd|bm3`p}pQ<0!IDxNn{ zX1AjV1TitWDDg1XFdkmq^#`lzFu+RqEJ_yf?M9ycM1hzy&N$QFaTB9h3~nn$wT4my zf5@i-1y)jY_MtxXx~kTtHeX6dzQ6{9T9-B2zls!vd5PI|e`=5Q*T~8y)yg++@j${* z+LTg%T*zjHvEo%fWN^VX{9x-4Jd8Y_Q3cDFt=`KkQny6t&&XLf!PbWDGT)xOQSN|S0e*351T5z48&+6d4Z@}MJs>1gP694k@$t|_?S63%vBtXI< zYC6*7J{C&o)}yb5v6P1d!D?QD32e)Oc@PjVz{~?c zS85A<*9C9ZvFm~FdE4=7oIOx70M;jsD{MLB8bh)+wj>~%zuHREPiut!`<-b-ys?%M zO@uz#Sx>N#NnI9|5a~^%tHM>URkBdQgVhDbap_g>uIVNrV8ev{<|OnAe#EZBq^M$7 z94}WCL7ZWRYfUhud5$c-{ISNM|9?}S?0Q45@Ik`>s0^P;f`&6jD;sHw>2O&_T9G__ zm7qS|Ph5t5@6A%PTVx*)guzDZ&5q(Y>~LsW za_g;tO9oa=1TgN|ulg_f90Ewbo!}qyL5T%J3ovL?1X%#E;5gvU_PiC`IzVlx@ediE z0;9f>WXQV!5;hgFGSJLeuo=r7N)zkgNO{Ei_xPy>lT}|j4HO2^>B)9o|2kB)*kL;G z)XDLVMI6ug0Kba*4OTm{?5S~Bhq?qUm0+Cb|K}Qru_f@{keuS#bTj3FAMhNQPN^Me zD~u?u8bAHmBehvzWq%^{=Qg%}(d9{u3z|G%m1R>It`|(5dF$-wMDZ?>3NW*gRsa#3 zdEp9pTm-j8oljplxj^G_qugDVLHqOC^#HU&h?7-O=hZ&Ljej zu3z+Zqo*bYrz!~-ZA_`=fW&) zg;jvp*m%YI_lQ;MJ$xSr0CKo=E<*NM9)%-YxXN3e{tYeb*`y3a1IJ1v(algsC>~SJ zAm82^d34j%M&YvnJlz`QAu1tE`FoK5#jUq$sF~ zD6gve$iFpl2Fr_!dQ13Ro8@W4wZvx@JgTfQZkOr7CI4nzvA=&F^c$NVEbEI8x^D~j z-qIrO;{58+VSLn+yrZh58$(9196nfzo>;FK>gg269y6;1$Xgsoyb_aQ`V8*KQ7gux z8{D=2jNzrW%W)K?cE%4fc2^r!mkFBV<8lHcT0f`hpU~km7S=S@wC|`^YW?SM+3$eD zGzbN$#AVchmA_9J$WLPd@(RzAb^2^#gsM~N9}z(YTn1AakHfy&ue*b#CcbYCU|s~u zK471Ja;jMP64=*0`1`AtfW(m62MgiXf>vo&eTGY>{p?X&50}1L z`I^kCy0qSZ|k zLhDsv%a+;p6bw6_ekXhg+aRgS;hR@Py3@ z1gJGV_xAd{zlVgXNoJ9pFFCUBBN^q1?8lO-jfFTMs zHyAlOFy61ipUo9I@@!S9dI~mh78+BhecSS2iK7qH%Xw@4Czo__=^6{g@)9}b{a#k0 zr;(tgO0}c~bkAg?7c-sQVyD`_WDj_6Z>_2ed_2KHDMk=tzlQ_p5L2MG(Q0Hc3})$@ z?)MS8{nRzw?*p$&`qnbhJ!?C= zbwKXV28~Z=XXi1fd8acvW_Q%E)`(Ofsi*-hzb(qoA{q$QL9FBg&Ip_7_-nz(Ykdf) z_dOsnOcdx?fI`3+{0G)xfjJvYk>F_M03YAJ??9Fb3tS8KCIS(EOU_#)Fw4Z!(iJel zga2FL?TQjGo&zpiAc&2o7|h|IohN5tkePdiLOy=Duc5{Zak`v2j%Ho~;<~Qyi30SI zK0OL2*U*Jfm0J@2(OP}B-B-gm0u?SA!J>Na)a<^#2pwUj=GSg2Tlu;r3k`YL`MU^D zW1bfu_NsiYtpSOk%>F4dvJmHOBq!Cp0l+D8HhR9EfxVOo2Mif9i)Z~ie37JJmZ`dx zb-XE9I>577bc%YDGWZsVfyVdq7TZ|ufcivz5GT&nE=6zZuO!|)=2Px95`3~IY1iHd7!1^OV#FX3~fC+@%?qo0kZkmrDU>!XW|AUGhi+^~<09%8N51Ggx zh50XkG(-w_xjJi_cqPVFp)AwrP0%8@(sV5OaujP$AK`|cV`$eD&YI>F{cLzpe=6rw zC*kA<5zs}j<&VGOjX8X!WoeV369MfXoL~bRg)gReIZiyThOmc&5tjy>;`wl_t9945 z1J)e}SC-FeKO~IF7yHW>pxC8HtFbE@z@PFYW`}9mrCj9s0K1adSgYxG=2Dv*YeXy+ z&)*A4T`X_b!mp`)Gex*Snb{h_^GxD)jg0>Zw$zfij=Xl;t+22@;Kl_LrU5V$xNyO8 ztidP)>=Hh_m5K(z5r%# zascCcqftoV2SgQeR~}Lgu?K2y9&gJ6)aW)!I_1JW^}wbU2qc-j zqlmYQ>8uonDhL(oX$2P^$WIX82qr}x@!rVycX$Ivqg(C%>+Y~==CW^oUp;-Nv4)F$ zqM=ESS?%mx=)GG8=w(~0@YCtYqJ`cksqQi;F`Z)VE$&molH@|$><4wilJW+a=D+hv zI)ADJJH^WMGrXXKQMMXKe+Of_i8r|t*r2UaPIy?{>11@TsB&^d@&cxg-px0c6jE{A zgHII5lbt)^Lti2}NG7o6pu@;1UCn%w9C*8UzXs%&GbicP=r!?@ad&K)cS!}NFJ7@T z#dzS}o|qQPRk%paj@M;a^FEZN0~*-Kyvi3RO6 zrl6e66P9?&+mJY{SHs9I`*At=NRMqf z5P6#LOEWQKI<(E*FYa1l8!?||!9*aWb>IhjA)f6bLBGCxhG8!8vYNwmxuTH#dS402 z9H56;J~|$0;biSqi-2(wKSG|MZTV|?J>{_d#;WL9 z?+Tua6&whVJK=R{vUD0h!#z_SJm(2k%>#x_%~r<(u;rEi7M^0omyb!#90R+ihI~MA zaAqGE;?_*}1K7wYWxp5vgE(`SKjoLle!b)6Yk4=I6|#+0!f8JhznCcc&=LbCj_9xlkf#fMX%=5&qNY|kE|W`9HSIkah= z_H3NMuBfFxjmLP?nsJ{HGOc0G8^1HyDg~dDCdM?KZ$gQvLfqR}advG3jR$S3ux?Mg zx2QF|==GBf>x4nP*mGr)iTN68j58XY?6wrk8$DcVkb{ zg74XS7c00s1m`7A))wrKNha2x9xZ1U_lLV9dti61AHB3Z(8hAARdR)OR1c#Y`Y z{-%ex0sDK|YU+D+q~Cr5Lciuoaz)ED-W+mn4HDallT4u~!?v{qLg|>MuV9?O57uUh zE}1Dm$WN~W2#X-VfKxI4CnQMv?K44)n~*}0AI4;Ig@UvjXH{v}Kl@t(*71GhhR58i zc^^*@0LRef@o7!OFY~%4P2ZfVog=N+b2gi#Ek#Qsh^a?XD0n^oevQBUYDux>QZv^85b@!iz`Pri5s5)d0et#mw;k7{f7ivb z%jj!HAK252xVz403JooIlFZ+3AG0x#Wg$vSaUqoOZl+g$u(|Rhe8tm*x|+rwDvv7J zh9!Zq&HvDq9$oC|)&6NEbR*m&RuEY08q^0bUvfE2K7gMqRkwG@gNm=-;d-x~x zuw*nlL4tv|q#7C?6ai`N7^WdNO3f(Z;1g2BdEXG6EMu&e!vDH*+ul6 z`E&SfRODrcU!7j{RIGx3ennc_lqJD&+mQXKPq0i|4W_JE`SZEfk#2`)X4UM+PbnP^ z&2>}Lhm@xrg=fRxxSN#G(%uXCdGBQ!yt}v?Cl98W?BY$NBDPk3=1GA_3g0-W?CW0BvT{BSZF%; z>d8wZlJdS3Gnc{z)ROvEFxw>I$lYDfWht#GRJ=&0zh%5h50%MCFTS~rwkHGYHzSKz z?!<$Z7&Q;%p6V}~1*RYy;76`hpA7&skcniuJdsF5>PGm;c*)Y&(O~Z#B;&C5YJvA@ z#P9q?L($)&ol1@=f_3N)a>x%OKRv3Q{(7>$}Hy z)qmVY-fsM!`DO*e?H4as+1}4VLvXqXR<~QqgtkP7 zVXaJs#!$N=z2R0GE+L8Be1R*>@dZdyWe&8c)}Uz)AN{nTN_(He7xJbfu$Yb6^Hcr5 zkNAcrx88?9b7p-U;+IEM)nhwz^Po1 zMAYdq-eaQsD}TaL7xy~CN~x~3KRqzk12{u191r0$Ax&{*w#dL4lNF|c`jEGc$?;5a zl;%yL{xb6}lJR**OoX$3jYcQhWN1oga{35X*#Heb4`?2~CCM+Z|KV5T(kO0HJdv!o zJwY7zxeiuK^#-OqCoQDyRt{`C8T-mJ?GX#c(|l>-UA@D}a&u5Y88hg7xsx>50%wXo zA{+6=_ojaJTh7?3PkX8ncGd!$QF%f<;RCSC0Z`C-q`08?!gcCK!x8 zg(F1grE7c_wiVVKb=6MoUzE35Ers&F29AxDu(VtjB$assuDO`NRM?+s?9Aa_{KLn+ z6CD^mZey{(qVhqpuHcmn1u*xc23Mov$#zK6a0-LcI$dYLuabxbBn0=V13x}g2zuJc zQ&Fj3j>N2dT3lS*4R{W6es|uIBOCP3r*3_9bgY?T>}?115VPBX*J;Jgpn%IPv0m1u zDhG<`3NNj0TGePl74!fQcj4*Le_1_Kuf;Thx)3Y2H-xI zS#TrOq-Qi=`YK%KLvSDUc+D$g1vz;!x{hL!@{yIYJo}IJbpi2q))W!GhkJ$@R8{+| z&jJVGyiBsIk=ZKHv;Noo&48Dc9LKw}*{_bygFe19H#S2ADHaT~kGlH&sTLDLy}qHx zj%-!%ic^oHCpGxsbFa3WG-YuB2XqhT1N@IL|Gpy3OPlbs?oU$?;p83 z)WtlDS11;Dyc=t&$Raa|lDNAazLSUSU#Tj#7V}bM6jr{rM&pGKOrdx}igDeX-pV0n zPR0cq!$$2KM$*!*M_UH_$kA(Tlhee$wY=%a8poTZ^Wsre@G7AaIesCgXDWWxV(Ag* z_?gKwUhxY%9cq%Rp8!6Y{PaX5NA|A1Rcc$&k7#KicimO=&V&}&|30l>Im0Z4_>BCj z`hZ1zt%cSaZZ2mdL#JJCYKk~u2dOXV@@Rw`bR$oE__q|VYlu_6f9joTt~gfV zC*%LaJR{WQF+m$D?2o>Cxp7bmjo*qNSf?i!n=F@d!%0yu*520O`?cqX{q#OtyK&t+ zE~MqCwsRfIq?a?cren=|Lz>Pi{p$gC#{-U)C-Z&spU0Vr;pj))yNShyhDsvIWai+O~?=N)^ zAfN6EFtjYj&va{a5BR`UiG?=Bv5Cw3I_LEkg)|6A2Hq%eY6@TRZ+@pMh9Ws8C;k=g zD-O~Gbb+I~%NAdE#EE8QS5qkcVE6F&_r7qN30HS3bOaK;=^b^{5`O-|yx4zI^QjMKQy)t9cqc=NY727nU=LOrhiM-Jpj59gz1{Z5M^pCz1^ikzl9C#~> z8V@P7E74VFu2U8%8B$~yFTP~7H!5D6v0gM;QZ#%Wv z312SH(mZ%$$;WHxEFu8o5#w)38l236EeS!_&!oV$DRzRlBb0|p4daD5dy8P`az#HO zkNE9ng+Z&K<^HfMt0wq*L%%8x6F24D_QYk>F_G})w+k23+n>GNMQIx5#Q4v1lG`>c zt=&s*OYIeAOjU^>{&dER{6i)^H+NxL_Jm$!zXY>R>v(oiNIaFGf_W1+Kh6dP1(F%L zs=v6|^o-3c#%Bt?GhLl}e|R0LnpJ6TDp>eHphI#UvMhHmTlHirUpvD^MUH;HK$BMp z*fkAI9>l}+cphR}Z#E*m_nG)qw|U_=t9`Md!n2!ZZR3rv*6E0o3%_pB7kH2=@1V#! zm%3LeiR9l^-+ssl_4e{Nd$qH!XU*_TaB;F#lDy@!!b?tBtCfMN-H+vu_904j`R2Ds zJc4BCa;h~AgCBmWUOfRo!2gJvevBwZQW+3@C+KA*j%3_kn_{A!zT6#gg#XgxbRkM} zZlrkE{Ir-_coB&2Gn7j8w$H>qElL$6QsSv3-f6#|e%^#YgI6GJ)BcrOVA&o0+HR=c zIZ*_N&Ce5^g8&WwF_z@|@{q`c;^^H)+vwkT_6XP=e@LS1uwrq!{Lu`m*<$S;aEqP; z6t#*4I*m5K3JVY*VakQH%QS|g(iFF9=fVI{4Pf%~@F>`sSxBx7n8d$oc6H5T+xVb- z-5qI?X0L9B;8&u&Wn%ZG6jp8pFQkhD9Tk&xd`UUopT^dUp4^U09;k<886~A?ARDXv z;^4umbuILc-SsWEaM?Vbzm&eOyr3YJ<+LE1cxgOur;WYD{p^g_O983G9kIkcD!0Q3 zX?Sx>Ur4FF?r9-kaW@6N(SA@7IfpcBBJjk{9qSR&k>~jP!U07C3aOIFzgyx#WJ}*w zw=zxU$5i}Hf>V;rarDl>Q=Ibie2zA^&g}CeBpQd6tuOtQZWtO-~bJ*XNUww1KSBSa|lt%&iNFqf_g$A>RfYLa%=f4 zQYMBeWNFXUR^XmDJcM)gDz`;Cg9+iPL*JCmo|#F<%rkVdM8K(sY0_Ly`+n% zwY7@JvrnwEi3aWzVYljOKEj`6lo*x1ot%h3`g!oN@Hq7-Fob%xp@mbSzPY&P?C11vNo{*fo7hs~r4$x%s*PMPwL~e3` zp2x=SNv=r2A??@Ox0*fa;161Cd?vA9B7Ne!<{~t@Drb`s?rs96^NU2h_enUfzR|sQ z^m{*NT4mO-IsS2qea&x42B|Bmej5zp9h| zE&U{74VLt3e}EY@Gg?e1(dyJ?i?=P%?vp@(6WV`J!kf+42cBZnutl%UTHpENXgu&O zgb~#dRR|NNCi)$K4vjS@kIZ+IShp>c2%!7v)y)JZ$zOGI9KPLEkT3knbC5PYZoZ*O zA^5!yfwufzHIhf&wVjqVi;p*hxADNFrB~BAnbr8owE0aDvOX)Zp}mXG;nj=8QYUk&e{f2LAlzTADD*+3 zsStz5Xvep=Yn38u?!%H`)VW*iOvT5%Anqn_k%|cG<6X)Hl45m^O60D%8WmsujX9Ac z|2L1CERlas+N7Fgg7(D}a9|iLbn!Z(9o=7jPWKHH zCld_Bk^s4Q=0HTXjM`O_k1`-W-7&`sPY@sSWB{>!mcuMyF-TyRt2ZOm{|xy2O?_!*;O~TM}`brLjslvK}?LZhoN?(vnGbj`HHwb@@_+=*- zAV=ZEO>$QL2xSD`1s}}QQGe!aehSH|UikRTi`yk%8V^Eo*dfP!{Y6p@A9ZB~{bLJc z221kdy`ts_od{N>)*tQy{MjkQe0)zhlu20#Xh06IU6jy%##mv*aVGK#WGnpj&7t9O zx_E&;jW-CeK)uKG0&lFmcA!7odK6ehZt40DWH{+|61If$0fh8Gx+)%pGt$zOov?d~ zs3%dvxE9+v@EcP1+l{I>iY@B|Fc-K3rC5iS!?pDT7HUhLk*x!|=KEG-Q})qE{91SA zhtzUs2D|&I{WFffhYB;V^~n}VF^LF#Y2-MZQzbGATipC-2;CwRB`cdERn2{~Q)YRo zdGJ)mGrtI=f2&svo&gDa9X_cvaQ+@Mxzd|mh>0I}?s9Xvn`$Nx z{{}n6r)uqN(GaWJa^rV;ui^POv%(!e<<*1b0;tjcLTgEl#_~^L#O8#b(Lfy9@W^0$ zsnY}GFZ&`KrY{>b53c+z$+X?jTRrwkd=U&kr)cU}qd3HxXP+*R-j8)>^XsWSb%Jhoh6=q(2w z`K^F}WU_w{dFksb+g_xS5#e2*9aWw`VbXU)6(+==_T&=b&mVirX}sy3lqO7Onni0? zb=l`};1x!rKKu};aLRzsN8fFqACy`}1p;XzM?@Z|aItXZfV%`|oQ6eF zpb<>aAlnpya(TQKNd~sfWu*tAbn7Mmz=X}}jsZM(C2M9@UAc}#ioI06=`)%w0S_(t zItI)9&xX~VI{Hk!3OsgC(Tj65ge&KSIrcb`r#dj1kB?c4JmoAmQmkDk+6nusmE*s; z*0>nX0_0Y-MhFAbnk@#{>Re~*R8^7@6BIc#KW{iN+;fGof~QtU@66U14dEk=}el0 zHIJDXZ6)l?U%)VfU`<8dxW$i4gHlL^FH%;~Hp@5AZbrMqkg24iTM5_hyR zt^#9xA^uShUMTpbARa32YiwvXrdTn#g_d!M&^3ZupMrFVbVJ}nQ)XK@S(L1NnnD}a z%2M3bWeH*1fF|wPjw1X;%%5KYDD=9_c^X(@qjGALIM)Z4lD=!tUkqD+X*oZ!64HEw zYXkFG3`LrZ@yj?s(buhJL{#n#YjlkVNfJf`DR0{N^djb7YLkImbn+zR2OZ;O>|1_b@B zF6Ij+zb+_O9DDa**p*8xdOduNUnH=6_ZIYt^+7(nGfL5*k&bJv*ta*Txnw#WMy06AZL(Ze z_x1KrE!UQ+EseOR5rb)|o1f4pCiCrDi3Ypn?Gk`ySf-DsS6;RevnGFT>=59@q?j2G z{u+n2ry;7_rxXOaUhc$ENQl|sM~MC*R|@gS*!B^&8YO2!HO~TVutxfnBSjst7b_1x z6%CRsC^IKC&MJ52tUrAji}39HLJowGC`albiM7{Q0gTCpg}Sm*7Od@zzrw|cJjJ7yqk)}H3Y+B=|G0qgO!OcD7L1@~c>(px8?u-|2adDTggmigUgN9yT zA-f~yKxOrfdJv!Y?No2`_i6_7HLAQRGLtmh!znVQ7}w^qMm1HgkPy8M!|TK+Z_E{w z_tBr>i#)ZEqUY+qr+H4|e;)s6Kg9J7{Z~7;H<>hX1rl8B7E!7sXh+{#P!Jx(O0J;U zN{<$H)EihQ^P)IUdi>@;qGR+rOc=owmw16suUVs>T+L}8cx@{s@6Xx z(kx$#-RMvF!AAU>WJ(+E=Tr6lm6{!@dkC2i*JG}A+UQ~fW0MRe1mvmDxPhwdKue4- z`F!MGHk=sIC)&cQZrscT?cb`PV|g=8Y_V&c=5kv zI1UBMp*hwMYX@}1x33*cSQMBTp9j3rP2UI^nHd2XKmRJcyLF{Rc64^3&LG9Ei90XTvg$v&qt#x0^Ehv8IWsDkU8!Y5ppN z1cSw-_qdbi|I<7S#~8Ue;>xXk;NWyHGIYqX#GJfZ)%CVR*ZDGS(>ZrWlb7&%{3&Ux zyFdJ?7-k=^)F8Rn7Wv)lFhp)C$<4W>075*-H~FJ98-BF~&@0dpc(Z&7Y}=ZL2E(0u z{0ebFodFAsFrcK9x;^J>qC%tT=QoY9%L3&Q_$_IVV{fYa%y_XDyFT%mGUFi4#NvQf z&R==!^s+*HUyaEc=4^-jrzyG^E(ULIWP<YX&aE^jSce<{5KE+`yAci`1s1pM1?Un0@X-D-6bt?0<)+)>mQ;IUZSf^^P$=*n0pPZI)M z%k-KWEH;ZgK9;aTz$-D1-pxk?ruc9}C8cI1Ro-mzY7wVca1gZZtbz9IaWzp-IH0hXFLgSekH>4jXMiwoV%7_sfD<|8Y?ib?irS~PXq(ZVvnxQ zd{$FmE~66_n1E5`h{nLVv5y<%*ZG6E0=MN1VyhQhJS5V`Gm*RLN6@TKc=WQh$AU_6 zDabphrf}c=Q0?7AA!XpNtX$}YCf2yyFsNJ?BU)qLSH5lZHOCr02ELJ@SnHbkSS?rH zgU)l6oDyLtKO_NMK_Ev&u#^Qa=PzyPTf1h{hAZ+Fx$+C@L$hPax4Ba1=}lI1SJjeN z&ZcS_2+JS3c0n`~T5Z-Qk~zCA&-CqNv&(pwwn)fG+hTB7ZiAKD>hC~L$)HT>n@b60 zo)~C7vzTZkxyHY06%HXFye8(3J8d`>a5v(PO2%5m-h+uEN+|QABHEu7!x|P_7v?VK zlcKEht;$d-vT7)4s*pNtImDTlh_sDpIP5Fq{W~`wXw%(dVt>`?K+raOEk>2q<{DGlj<>yw>yh%Ufcn z(^YgDY*o(ZSw0*jyCBp;7K-(UnrFiX8{(mV6Rt z-Swp1@|A$Y00SB%HjQW_ z>NN|M^w#^%^4KIuFtsa6`nUCVY!;!G!xhVETxH!4CpTJW$AmoLF(a7?ZiI%sZo;&f zF&oD{PZ4N&{*nT4?fE?_JadVXB}2rdnHGP4VTUQ6yb=It|JmQBq-6lA1<1%Kg|6IX z;A@v1rY2l2EOb03(X|IOr06*cv5bv0xVfqe%DycE4~VV<#OPNW+X7p2m2wDAq`Zhb z+k{cpOtze-!W`a@jxQe-InQ?oHfvB`<;A$MRAi{MzELd;dEwM z2Aj@R;9oL!EY?CV*>D?RO54AjC6Zi)%lfm+Zz|8-p4!M6x$xT4{iSL|S@RPA6HsMR zuRrggF3;NU0%Jf!^nM2zK^Xqm$pX0y`)7;XAnL8B>TD;)@Z(TNeFcAW&6~YSsDWya zd&UOk>YJ`}XAvzMz-t}47dOL7!Y_ua>ueO0Y_e+wwk44qZa?0$$w=D`0^;$-i_TtX`dsngi!%nQ2Ni|NgMe!#j zl@4Uq*sH>n8iaQgYSghIc}Y3$#k5s;FGVUBzlP=7<8$NaD1$mEiU)I5<8sWsw%EU~ zKqtQopZ^%$fYh`JRZ_A;|NKq@PvwIAR3>Y_dzW(f<4u+Wqm_6!kxOh`Zep z>gQ~Jn#(5ckJSs;VdF*6NJsrKi5hJOGlYetCyi%kNGE-%ZOspk(AUYR3WMsNP8u450s_!BoKBlWU6!G8iV=PC6L&|cAIya_z zKTuH%U?qQ6>3Gm_CH3!S){7dNf&i;!BE!zVC{?jWu4gg=yeI6+BT|s~^8*y6qx9&K z!4nc0C!YaD+9GKqCRHN%P_hr=%^n?u_;LtjCStJZ&O6kJ zh-3X;sh()15W#&n5V{ubr0 z>s5DXE7>Mf)nZVOWnqmQGY3N3OzPezUCX*@%3!2QNUGc$e$!1Gj(4s&){c78HTn6B z<|EMEYIl$E{SB5{=En6Xw8O7mNLF5*@+Ei?_IFWZHyrH;zc}&gQ$>>wj8^F*H4(uo ziHXo9;4fF*qkHOY)0UEK7;fWU#m8vl%gU}+LV!t|=dFij%TQO#W8oUip%rkDEtIAO z@Y(*VsL8vNF~_^QM=-am|F2iEuh{$r1QVxjo*c@lR=es|v(kM4KTdysS4K=U!)x`KNku zQnZ-YcN}(iEG8O93*)ALnEN6j-atTz2=L0g7>nX@>GT=0e1be%BL--&{0rx=?($o7 zAZjp|E%OU@)U-rB9v-jL(U-x@R45f1T4wNP$S2#KyqKwbVn_fLe0wc`8Cr71SUyrp zRjJQ)o{Tc!OIP{LfT{;Km-o9YoIlk}e76DbVEp{$x+*JFNoVpIK-AY!_GBmu9KgYK z)*|l$)*m3;8UjP^oT_2^9}_yP54pLUr;l|PpMw5Tgj}^Hsy^O7T; z5?0gcA+u51{ocU`k&cTPEt7a!5N2srJtyp1#Tik&i$Ot_Nn}@rya3aK%$VWa#t*va>okS7Y8d#yhTYtlAX`JTsZzc7hzSfAFi#3W7l1 zf+|ctHk=R08tz@iz2jE}`_Osq@rtcS?ZfSfCDTC@GqosTtdYuu;LUYMFE1elZ(H!t z5?-4`U2P2I{Cq`>Hp`k}qg+O$DPG?pieJ=xE^@b^X}U4-8!i0|4{WV#9h(Rtd0f9` z6oeDjHQ*vx!L34{om|<*g}n&-;o@18Rd#mp;Rb4#OIckuKwO)FiaEZHWLj|r0!XID zEGVeCGg{>}Qxh3BIzp^;g7c8|JU{L~J-qoxy~)OkMavI{YRj`FdXeE5nm!tAlt{xk zb9cjkF;AaiGr2-#eue~g(Md5Pt-!xi4!a#HH<~_ubijf$+Gj!XCLT=A19aHHzgf~? zA`2$#_iHuEZxY>eyNYZ@ky>U0bxmg!kxR-(k-Hi_v+Qj9?B8~U zn$a%V%a`UehI}wm<8BV-?yc6kn8?2$b)c(y0`K*}8K~q<7ixH6 zZ5P^(Nlev-+mqTl&{#clYKX$*UWdkvGt9+UmYdDR{$O?xzkl4GqaT7#_RWeR5#yxE zj+a|0j)=e!l)(l=rbxNJ|7D_r4RuoS2~FFaDQd|8BsQsqjsIyA6uKa2zodm%}S@cd{NyUJLb-f*GP@qO34e^!0lSjC?I*Zy=%p1#*w);=>s0b8{HS5@-6ioo5 zW@4lk<)3lLj_v1TZP_hFnYCAh>ogq%+(y>=5zaO8>F`?-V6O8fN@6-sfs1Gc;AKB^ zf(|gJnit)QhOj`>CJGra3Ku>-{xa*ngcz8kkPZ2C?{eL>fb$EdsJZSVBqm?(>a?T> zgctRC&l{GnYI#iHnuyR?SbDAY#vsY)C8_^k5WvRnH+5viFHpFyt_*n|f%;+=OlAac zz@QV59SwNR()vm@-pcC0qZ=Vk4MrkmY?j(t7TO-P_dh zfVGE1{=V2R(mly<)lq-FHc5LOCPg_1k}QCM8<$gzlhtuCB&m1`3q1iqyAx=7p~OCw z+hZ`@$-Np(ah`~j*)}ECs~oV{C#c-t zh%7V8rGJJmwQ@_5doRTZ?%_RC*ii>9|0~Vtvr{QUnzrd*QuH@&e8uvb;Q=uh0eD^7 z@^c_!_a3&i@^+%LYd3hecK3RrdtW9C#AnZ6A}6#PYab35|1);j6752ijVX`i=;H#| zT@Pm(TR8FN-pej8@P%iB4D{HrqF`IT0*5J*c+L03r}>UnoG-CG=!a9ne7U7^gWB5+ zEMKy1!YLeoKWnygViG@!ZS@8QxjGI|9421Qndl( zVhLb^v@2GG0>h~Nl|eS?AcG22;q1#5)n{1@40(A0bLH~el5)qguDty~ z${e@->G-FKEXE$l9*~a%jjP=5_xqEqfJ=%^D-SYqW*#Esmo@hpU4xyan%=e)+tte3 zMo*6KHnEZ6k8B&+BT{$n&=CpFo?iB6glmUdPLJKyC|pX>?JK=g@HjW4Y<|ad1GSA}pG~$T+6w*4w;Z|?7m=ck^H(BkrUMtX zRQH^xq059qk))ccb|K%C@x~|lZofbK!mD!i2!Xv(Mo|dxr7ECfa)z4MjUx&rx@DQ2pj5sUL!A7f$ zoqX7PT;9Bu2trvQ-&N{pe#dBN`1VwjS~>pv6TZX}W5k$`G&yr(TM=ue=zdgx-<}^$ zZ1k58vNRxNH$Pf`JAclJHMVV2=83D}qbA)(DuxF|=ozQUm6dE(dPp{&$f%gnc1#Qn zlA5TjBpQUnjzh>LPOoxlxqS8KJ?0E~vv^Ffgp|$2=-oVH>~DfxUrMk z#U9(T`zxVy#{q5u1q~{$HURb`1iBc&_HW*q@5V(iYDb%ry(~W0N81JNgbl0AITGav zjn;dLNESHV1vf%?d%XEXMjifAS&NcnHll6i>TzwQRUz)Z>DfN=zWdqWf%m7mazl9> zN&dVj$7@;Il(|lqg@xfzpJFv)&eV>IbUq7Si$@%Is`K`gVdWO4m-lNuzs{cLJQ%}H zG$o-m^bwOMBW|%7rQ(rG6V`>P!zlukKf)0sP|*tM`-iAK|M2?}@dK^PFF^1e3Hsip zMEl(ZV{*|!M=;zY!xx|_pB;ZyVUOvch>94;|F=^0%LRmlddB{c=8p+@>fXy7osyXk`U3QMDh;5msq9PWH6* zDM;i{10;hDr($LFKYvMGJ;8`16{q2cT%T}}HV8gflJe4f3o#CdKP zcZe1pZ_M0r#G+e@;*xs;jeaTn^vS@VR75>YELSGvWtd_?3_2K(^6UzapX?697WJAzmglB%icNvPol7Nnx_e8*xN6`XwR~rR?RJ?d!0+x`lnl21v_X{mIK*Z++_N zCx%SQEY)e3r;&DBonF|?#^Jl^H5C`ylHB9Oo^#ILk19r=(h{dJvpLF%bT_?^t86C) z0~4E2h~)hKZ}EKyJ%sy6gA}HFoPe!)q8P5!-~yS6e}3(Q*kp$Js!1+_)_aO)wC?Mh z96)XSx;R}-Ete>s;VT!Mo2s|y%h}XG110i1p&92)DBNGMlCH#?CF%{d_!5*o2Nq|G zEE$oyQ&O@T^877)Pufg_vQQ4>pTZG?r5S5=i55|_xS6NPL&6a1sC!pY=H%!1<{IhS zq>MR3sD9(2{@*usw9l_xSC>Q7A6{MJeXi7ns%J~(7t?YLye%d zGZXC@Gx#qi$1*W7lTQR`Z|vMlKfjM+ma_6LCfP+BWz<=O62~An|5yX9gsW7(e!}u@ z5dwdO4n^3(9dcJO04*gaE8Q?ybecu9hv83mq>T`!m_9hMsS@g`NZWeU#pPMkg14`? zGpg)LMSrDnKD(J}8_HfmNfpafa+qy}a~xM~nsWB-sIW6TadfkSU8JPTO8z z?x7bQLHUMF&Wg!p(6~ZjzG>p=lFCo$|Q&3HQP*25T(K0V)S`&G|x`Sw<8MRKk4DZ|$P3GFU>1^F^A|8Ta?w&Qd zDb{nM=?}f^TW)=Me%6te{or~xkgD|6?U8~1oBxG@KYd!$Ws@X|W6N5zcdjx2l0K5ZCw8v2Tp51Obi zwc!lCwicACD36HrGp5xcAsJ=tx?c$K@83bgV_s=~Pr|Xd!jC*5)$|?v{>Hpg_${K<2Gdqx_RzG z=&tY5)07g_ZEwN`hrXeB6*iMK8adD{C<$lzy$S`5h$}2EWPIStVwL{w(#It8#-KrEnPDItU&Ggr~KmBk{=`iT&{` zSdddYH;19v#`F4Q+j6&okWz9vZZ$Ty1sn2t8t2BR`||YMR=sa7M6f!_ z7$Y-D66p{}+!&)R04BWVl@^&&#W^J2F&S*<|Bjq%M4qE!0-L>7XY5!+NK))_X?kSm@j7?gb%@DLOJpJl$F?x_B3p=R%024urCMqv*<{P*M6k!DV3Q+ zIoDIaFKYAjeqON|v&(Qv$3*DpyQv~Sdwvs_H6(aBUb;682tT11H~zE-UFZD6iCKIe znml}8`2vw^ZhA+R&(A@fu9}i3^2_C%4RPnb(eZyU;G*5-K{C6K4;vH=)IGIHv+{UHf6}% zSqIF)+&BJ@5-!Oojz<^IlEmR18!y_1Z$n|=Jfk=?QrXqSckaK(8QmH^?94See*uJo zPqefWoUt)6-2fg1a-Eq0Yf<}frr61aJBcqfIeBQSKWe_tdXr>vVq&7s;TQ)%*t!9W z4S-yECaWQESk3Q-b{U+QO&KHl0$_2Cep=D5YJ+Vb9yJP8@aKcBrLtwuka{4@_={uE zD8>SZeeUR}aQzbLZwMa8CiNhCjNQ-EO?6w$v*=7e^L5)JDJ=*-h%!ZKFN^(>mmZLf zD6{rKwhE|8AE)T@Udq1Cl-O{e*d%&^oH{07^)x_4rk11jIJzLws}0*WK9a%IQ11$s z(42BqhSsMDmSiOo`*iXf`wOeLM`gF!?afARh;@l>`>PO}(MCrU6twWV(x}&qM37d{ zyI&Egh|jn$7v6KyU(fKbo{FaQzPWr0d|mvBilSj5RAon!-VA#!D$7kOM_izqw0^ql z)tV-pac)3iRet@1|H5e<+%R4Iap!PAT8mBna!@Ncm{jCx)h{@Y8SNV`JCEjPxM!(% zWDxwju?^CY46jda5D!jQ&a4?wK9rZ(Z*998+%K-3q_ zC>GEmCo=e9D=I6?%gfh0-}C$hbR2ynqe|Uw_?P=#LI@mY<2La2%ByL430*$1u*870 z@t-?GA0hmZ@dpA>N&bPadU|>UgoSO-)_4JRb`ZQhLR2v{G_)T-emHHgOqsHza5|FH z(uPtg6rf;X`DYuPTSMU>fWlGyr9-JSa;k;t{D_efya%HV*GRH1X3Rm z&}W*KQej5kyYu`&E5fD_Rlz&xyzI=aoyuSS=FP# z`Y5E&YGkvCwA}z64_J zW3?x&tEPE28<2+|$VSWs=tn$mH*9otbb#>jNz+=V&jo0tvzN!yw+(UCTtB{lhv4Pq zjZaFdG@Yh`c~AGCqZvsG-Wxf21I3{EYD)@;dVPDg5lmm9-42-&Rw}J4GMDp2zv2H{ zySw^J7<%A$V91bd0I3LG@VB0hUfNES*~r{Xb^KBWvO@7N0sBtYHI|CU1*Rdn5RH2|t;GSxIMrpB+uTd4GFfT^mMJss z^{5#N-u=h0Ct}4u2GsxmNLsGXs4)!AMd={M7E7q($p;hkp{vT*Bf$1$H&s z%j`QQ^ln!QE1j7IyXck06RK&Po}u?U;_^(xOGhA;=^5R3v$x`$MW#im8%dKJGPc1v zfJ@y}Zn-B}kI;@@g@$QcQm7;dA8S(?oN$|LK5X%E!L*C3M}KLDoy%;;z5nWOk3Z*n zFAWaqDQeMco~WLVBm5QU1|Z{*~bF^))t!^ZOED82{KpSC=flw@EA0}f$@uJ2DJZl|+P;G>(_zk?@< zHJ&;PmRb*q-~yBdiwJzps@v4<6y)kc3wo)DuXux zw_hKRL;dxJ_dT8k0_VZ%DPD$j+tPW<)iout!nYI1r^&Zd^~8(C%OSG&$uPl8uyj_a z*-&inKZGn!|7IJBO&I+h5<;iHWxxQ+W6SK-Ota#Wr24;|7zuIZ^qqNx9rN)b?1QU6(NCX2mcNf6cxm#CGM5vcB{ z<@v7H!SEB0bMONgx&lRV7Nm+MIn5EZ>LmvoDmR(IpK524Z5V!5WL`d9u!fk66i04g zaO~Tk`C?#sSWr|bgmR=?*_iR+kRE>LTarmK#rQK}iE%&dk+eLXa6DFfUDA3uIsAq2aJgRfH$HmFSp#H)qW{)8v&vN8`GB1 z#Do5aBT)&3x|8*s5N<48u&)k+cGdlZKKB~FM5fQ&43^ov-`>Tr-&%g(la&$EEX751 z*Crx%t2|?6jBAG0zv5Sx#YV4@_?|DrRCrB8?j-d&34u&Fu+_Wr6;1|9yF>NtNQHHl z+Q7lT`%-qz1OgMPDl@mX@`R$^9p>ejmctY&0d}~T+xqt31;1uLvZgS!(fb4XGuM`E zl4#$<81{;$v*cro3azWqUBkwSwqRR_97Iv_OjwOQ;ejTZNSOdR7GGI$dguHaYG2(^`@S3bPAegA|D`-Eoi>XDdHzTNr6iH#<^6>=krPunk^Nn{x3=hdGpT{=ZPNlHg1JDZ7Hn*m(%TjG zMf>H=^Dd*S4?~Ea_DcpS6>ZQlTkTth=J_k8dOyi{6}YVHo6_KmWQ0N=MmtkLv7s88 zI}Ikgoff)pRM>eVN*W6wdT-bE_wNP5QRqv5udLsOQ__JrcM=L=Y)2N837@JeX71-J zxmX$%K2cG42tz|dyOX5^5E>s3$a4obL>F*~h*K@d@7{eLXQx7B?N(p@dJ$Zw!;Ax! zlbtq9LP8?<(q+_xj)B>AP*~V6Yw$*TvVj~OS4!XbIYT)yT7ttA)W+mO@bdSm#b1cSS06U&9YLPENZ-wQ7 zL&g#BR4>2YS7a%eJXZTnt!GfA__Ye zhOhYmGO_T!>^|`rlOky>HLM*=|7NPH=$gk(=J7vC>nPsj`)b0Gqy1RD zT=pop?lq-PIyXB3x{rR|BL-jD+1VE)8Q;PnY7fTJN-eDd2K>;F_(HW=FJOEIyQh$e z#WDbV-FNIRI<=Y*P=SA_FXhWv0~j&AnIe^LZl3Re@M?cJ1CCk1B})euA)Na9`mLQE z)79MUY?(qu+D`h;ahKSobs6tj;<7S-L%lAloJz0dGf=4qb%##j(zMjY53{jmO$2b< zJSZG~={ACQ=X%gKm3N?Am_?uX$bI`2sO=4|?2Przu&*g~-6v;|{Bx^4HQHs3@H-AZ zOY(bHVSOckD2MbKf5o>)

    d-7^~Ms>meYGDTMK$M6Ab+ZXE2mGaFN_47MNN{%p2{0Vh{gOm|p z1#eb)_0%Pt3xJcVU@;PZ?0d_Q8ZQ70_y{Ci*;5-wqLi52v5-gKoBKr|M2}O53P@fN zmW;Qj6m!fo@8GaO%U$T^eq+Hu-Zb|?VCNu3vqaJIz(c()+yCIhIs@wim$ z!I$jKM4=B7w#mRlA=zuH+bn2ypS--L;qL9*I$#+o`FUl`N*)0o>#rVqM+ERbAg13)YQ}nCl~hyr&8N4g^Jhl{`DK_{nN#MDPv69 z+#rPHhE+jq=ozV0BL`L2h)9J zv&n09)4UC}_3;&W^G_09QsUM-AT~E7)`J7{ILiI=8>BpuOY<^+`rBZ>wXMoNwmQ#6 zxe1%A&OEe!HaMo^mV-0%FOdk2$NVQ-)&Zdw4qo1B#9H(~q|%X~Xutu}P+xt#tRcM> z)A>B&7wuD(uc3WU!6AKB#=*^9K~|i2XumzC7`@3(N9?l>2G>tM9OPvc2=+9TmCZu1 zRL4HV*`G?1OP)%ao8*RKbQx#(#dfQfaZFEOCy~~wr-#XyN@OC%Q8B!h2f|Q4Dr_oJfXIDs zfZ?p4t(8#G)(!E z>q~>{R?GAj{Vo#E#BZmzuWYqfx+`%5BO)#rT+c?z2}nq-)7=lWTOZCGmvk7c;;99Dn*TO!a0$>HuRYxQ5w97Mq;}Z&hvi4*4f9K3aHV9HXZkA4iZ<` zUyYymEnvciRFBsObY=??6a6zaIaJB*7}Zk$86 z(}36Nb=v_qFZN?HkA-+48pSb-hKi{2cE~fpH5rzB=2wk749A z*%2tbW=P5U9Ew}zsMWu_#be}MwYAz=cp}uo6_S>1_{*)S@oPn zpSVv_5WYb{Otrn-?=Bao7ZzrpDQc3X#~L)YCtLG*7&}y)P0JxomS`puDlEb-M_1!h;M1& literal 0 HcmV?d00001 diff --git a/doc/source/pages/other_predictive_models.rst b/doc/source/pages/other_predictive_models.rst index c67b860c..2b841cad 100644 --- a/doc/source/pages/other_predictive_models.rst +++ b/doc/source/pages/other_predictive_models.rst @@ -1,24 +1,23 @@ -.. title:: Predictive modeling tutorial - -Predictive modeling using deviation scores -============================================= - -The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5. - -Created by `Saige Rutherford `__ - +.. code:: ipython3 -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/BLR_protocol/other_predictive_models.ipynb + ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git -.. code:: ipython3 +.. parsed-literal:: - ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git + Cloning into 'PCNtoolkit-demo'... + remote: Enumerating objects: 1237, done. + remote: Counting objects: 100% (360/360), done. + remote: Compressing objects: 100% (185/185), done. + remote: Total 1237 (delta 200), reused 306 (delta 172), pack-reused 877 (from 1) + Receiving objects: 100% (1237/1237), 141.45 MiB | 10.83 MiB/s, done. + Resolving deltas: 100% (562/562), done. + Updating files: 100% (70/70), done. .. code:: ipython3 + import os .. code:: ipython3 @@ -42,7 +41,7 @@ Created by `Saige Rutherford `__ import numpy as np from matplotlib import pyplot as plt from scipy import stats, linalg - from sklearn import preprocessing, decomposition, linear_model, metrics + from sklearn import preprocessing, decomposition, linear_model, metrics import warnings .. code:: ipython3 @@ -62,7 +61,7 @@ Created by `Saige Rutherford `__ plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title Load Data ------------------------------ +========= .. code:: ipython3 @@ -85,7 +84,7 @@ Load Data Create Train/Test Splits --------------------------------------- +======================== .. code:: ipython3 @@ -117,7 +116,7 @@ Create Train/Test Splits test_mu_centered_ct = (test_data_ct - train_data_ct.mean(axis=0)) Principal Component Regression (BBS) --------------------------------------- +==================================== .. code:: ipython3 @@ -131,7 +130,7 @@ Principal Component Regression (BBS) .. code:: ipython3 - print(f'First PC explains {pca_model_z.explained_variance_ratio_[0]*100:.2f}% of the total variance.') + print(f'First PC explains {pca_model_z.explained_variance_ratio_[0]*100:.2f}% of the total variance.\nThis is an artifact of zero inflated data') plt.figure(figsize=(10, 7)) plt.bar(range(1, 51), pca_model_z.explained_variance_ratio_[1:51]) plt.title('Deviations model Variance Explained Ratio\nPCs 1-50', fontsize=25) @@ -141,15 +140,16 @@ Principal Component Regression (BBS) .. parsed-literal:: First PC explains 23.41% of the total variance. + This is an artifact of zero inflated data -.. image:: other_predictive_models_files/other_predictive_models_16_1.png +.. image:: other_predictive_models_files/other_predictive_models_17_1.png .. code:: ipython3 - print(f'First PC explains {pca_model_ct.explained_variance_ratio_[0]*100:.2f}% of the total variance.') + print(f'First PC explains {pca_model_ct.explained_variance_ratio_[0]*100:.2f}% of the total variance.\nThis is an artifact of zero inflated data') plt.figure(figsize=(10, 7)) plt.bar(range(1, 51), pca_model_ct.explained_variance_ratio_[1:51]) plt.title('Cortical Thickness model Variance Explained Ratio\nPCs 1-50', fontsize=25) @@ -159,10 +159,11 @@ Principal Component Regression (BBS) .. parsed-literal:: First PC explains 24.28% of the total variance. + This is an artifact of zero inflated data -.. image:: other_predictive_models_files/other_predictive_models_17_1.png +.. image:: other_predictive_models_files/other_predictive_models_18_1.png .. code:: ipython3 @@ -176,7 +177,7 @@ Principal Component Regression (BBS) test_transformed_ct = pca_model_ct.transform(test_data_ct) Fit Linear Regression Model --------------------------------------- +--------------------------- .. code:: ipython3 @@ -184,14 +185,14 @@ Fit Linear Regression Model # we will check that this matches sklearn results later # fit ols model on dimension reduced train data - train_features_z = np.hstack([np.ones((train_transformed_z.shape[0], 1)), + train_features_z = np.hstack([np.ones((train_transformed_z.shape[0], 1)), train_transformed_z]) - train_features_inv_z = linalg.pinv2(train_features_z) + train_features_inv_z = linalg.pinv(train_features_z) train_betas_z = np.dot(train_features_inv_z, train_phen) train_pred_phen_z = np.dot(train_features_z, train_betas_z) # fit ols model on dimension reduced test data - test_features_z = np.hstack([np.ones((test_transformed_z.shape[0], 1)), + test_features_z = np.hstack([np.ones((test_transformed_z.shape[0], 1)), test_transformed_z]) test_pred_phen_z = np.dot(test_features_z, train_betas_z) @@ -201,14 +202,14 @@ Fit Linear Regression Model # we will check that this matches sklearn results later # fit ols model on dimension reduced train data - train_features_ct = np.hstack([np.ones((train_transformed_ct.shape[0], 1)), + train_features_ct = np.hstack([np.ones((train_transformed_ct.shape[0], 1)), train_transformed_ct]) - train_features_inv_ct = linalg.pinv2(train_features_ct) + train_features_inv_ct = linalg.pinv(train_features_ct) train_betas_ct = np.dot(train_features_inv_ct, train_phen) train_pred_phen_ct = np.dot(train_features_ct, train_betas_ct) # fit ols model on dimension reduced test data - test_features_ct = np.hstack([np.ones((test_transformed_ct.shape[0], 1)), + test_features_ct = np.hstack([np.ones((test_transformed_ct.shape[0], 1)), test_transformed_ct]) test_pred_phen_ct = np.dot(test_features_ct, train_betas_ct) @@ -216,34 +217,20 @@ Fit Linear Regression Model # OLS using sklearn - lr_model_z = linear_model.LinearRegression(fit_intercept=True, normalize=False) + lr_model_z = linear_model.LinearRegression(fit_intercept=True) lr_model_z.fit(train_transformed_z, train_phen) train_pred_phen_lr_model_z = lr_model_z.predict(train_transformed_z) test_pred_phen_lr_model_z = lr_model_z.predict(test_transformed_z) - -.. parsed-literal:: - - /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead. - FutureWarning, - - .. code:: ipython3 # OLS using sklearn - lr_model_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False) + lr_model_ct = linear_model.LinearRegression(fit_intercept=True) lr_model_ct.fit(train_transformed_ct, train_phen) train_pred_phen_lr_model_ct = lr_model_ct.predict(train_transformed_ct) test_pred_phen_lr_model_ct = lr_model_ct.predict(test_transformed_ct) - -.. parsed-literal:: - - /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead. - FutureWarning, - - .. code:: ipython3 # ensure matrix math predictions and sklearn predictions are accurate to 5 decimals @@ -270,8 +257,8 @@ Fit Linear Regression Model Passed -Mean Squared/Absolute Error of Predictions ------------------------------------------------ +Accuracy of Predictions +----------------------- .. code:: ipython3 @@ -326,18 +313,18 @@ BBS Cross Validation def bbs(X, y, n_components, n_cv_splits, pred_summary_function, verbose=False): assert X.shape[0] == y.shape[0] - + fold_accs_train = [] fold_accs_test = [] np.random.seed(42) shuffled_idxs = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=False) for fold_i, test_idxs in enumerate(np.array_split(shuffled_idxs, n_cv_splits)): - train_mask = np.ones(X.shape[0], np.bool) + train_mask = np.ones(X.shape[0], bool) train_mask[test_idxs] = 0 # create train/text X, y train_X, test_X = X[train_mask, :], X[test_idxs, :] - train_y, test_y = y[train_mask], y[test_idxs] + train_y, test_y = y[train_mask], y[test_idxs] # mean center columns using train data only train_X_mu = train_X.mean(axis=0) @@ -356,7 +343,7 @@ BBS Cross Validation # fit OLS model if verbose: print(f'CV Fold: {fold_i+1:<10} Fitting Linear Regression model...') - lr_model = linear_model.LinearRegression(fit_intercept=True, normalize=False) + lr_model = linear_model.LinearRegression(fit_intercept=True) lr_model.fit(train_X, train_y) train_pred = lr_model.predict(train_X) @@ -364,11 +351,11 @@ BBS Cross Validation fold_accs_train.append(pred_summary_function(train_y, train_pred)) fold_accs_test.append(pred_summary_function(test_y, test_pred)) - + if verbose: - print(f'CV Fold: {fold_i+1:<10} Train MAE: {round(fold_accs_train[-1], 3):<10} Test MAE: {round(fold_accs_test[-1], 3):<10}') + print(f'CV Fold: {fold_i+1:<10} Train Accuracy: {round(fold_accs_train[-1], 3):<10} Test Accuracy: {round(fold_accs_test[-1], 3):<10}') + - plt.figure(figsize=(13, 7)) plt.plot(range(1, len(fold_accs_train)+1), fold_accs_train, linestyle='-', marker='o', color='C0', label='Train CV Performance') plt.plot(range(1, len(fold_accs_test)+1), fold_accs_test, linestyle='-', marker='o', color='C1', label='Test CV Performance') @@ -377,7 +364,7 @@ BBS Cross Validation plt.xlabel('CV Fold') plt.legend(fontsize=20) plt.show() - + return fold_accs_train, fold_accs_test .. code:: ipython3 @@ -389,23 +376,23 @@ BBS Cross Validation CV Fold: 1 Fitting PCA model... CV Fold: 1 Fitting Linear Regression model... - CV Fold: 1 Train MAE: 0.599 Test MAE: 0.619 + CV Fold: 1 Train Accuracy: 0.599 Test Accuracy: 0.619 CV Fold: 2 Fitting PCA model... CV Fold: 2 Fitting Linear Regression model... - CV Fold: 2 Train MAE: 0.572 Test MAE: 0.713 + CV Fold: 2 Train Accuracy: 0.572 Test Accuracy: 0.713 CV Fold: 3 Fitting PCA model... CV Fold: 3 Fitting Linear Regression model... - CV Fold: 3 Train MAE: 0.577 Test MAE: 0.687 + CV Fold: 3 Train Accuracy: 0.577 Test Accuracy: 0.687 CV Fold: 4 Fitting PCA model... CV Fold: 4 Fitting Linear Regression model... - CV Fold: 4 Train MAE: 0.604 Test MAE: 0.608 + CV Fold: 4 Train Accuracy: 0.604 Test Accuracy: 0.608 CV Fold: 5 Fitting PCA model... CV Fold: 5 Fitting Linear Regression model... - CV Fold: 5 Train MAE: 0.581 Test MAE: 0.687 + CV Fold: 5 Train Accuracy: 0.581 Test Accuracy: 0.687 -.. image:: other_predictive_models_files/other_predictive_models_32_3.png +.. image:: other_predictive_models_files/other_predictive_models_33_1.png .. code:: ipython3 @@ -417,41 +404,43 @@ BBS Cross Validation CV Fold: 1 Fitting PCA model... CV Fold: 1 Fitting Linear Regression model... - CV Fold: 1 Train MAE: 0.622 Test MAE: 0.643 + CV Fold: 1 Train Accuracy: 0.622 Test Accuracy: 0.643 CV Fold: 2 Fitting PCA model... CV Fold: 2 Fitting Linear Regression model... - CV Fold: 2 Train MAE: 0.605 Test MAE: 0.723 + CV Fold: 2 Train Accuracy: 0.605 Test Accuracy: 0.723 CV Fold: 3 Fitting PCA model... CV Fold: 3 Fitting Linear Regression model... - CV Fold: 3 Train MAE: 0.604 Test MAE: 0.701 + CV Fold: 3 Train Accuracy: 0.604 Test Accuracy: 0.701 CV Fold: 4 Fitting PCA model... CV Fold: 4 Fitting Linear Regression model... - CV Fold: 4 Train MAE: 0.624 Test MAE: 0.646 + CV Fold: 4 Train Accuracy: 0.624 Test Accuracy: 0.646 CV Fold: 5 Fitting PCA model... CV Fold: 5 Fitting Linear Regression model... - CV Fold: 5 Train MAE: 0.614 Test MAE: 0.722 + CV Fold: 5 Train Accuracy: 0.614 Test Accuracy: 0.722 -.. image:: other_predictive_models_files/other_predictive_models_33_3.png +.. image:: other_predictive_models_files/other_predictive_models_34_1.png Connectome Predictive Modelling --------------------------------------- +=============================== .. code:: ipython3 # correlation train_brain with train_phenotype train_z_pheno_corr_p = [stats.pearsonr(train_data_z[:, i], train_phen) for i in range(train_data_z.shape[1])] # train_pheno_corr_p: (259200, ) + # there are some nan correlations if brain data is poorly cropped (ie: some columns are always 0) .. code:: ipython3 # correlation train_brain with train_phenotype train_ct_pheno_corr_p = [stats.pearsonr(train_data_ct[:, i], train_phen) for i in range(train_data_ct.shape[1])] # train_pheno_corr_p: (259200, ) + # there are some nan correlations if brain data is poorly cropped (ie: some columns are always 0) .. code:: ipython3 - # split into positive and negative correlations + # split into positive and negative correlations # and keep edges with p values below threshold pval_threshold = 0.01 @@ -495,15 +484,13 @@ Connectome Predictive Modelling .. code:: ipython3 - fit_pos_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum_z.reshape(-1, 1), train_phen) - fit_neg_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum_z.reshape(-1, 1), train_phen) - + fit_pos_z = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum_z.reshape(-1, 1), train_phen) + fit_neg_z = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum_z.reshape(-1, 1), train_phen) .. code:: ipython3 - fit_pos_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum_ct.reshape(-1, 1), train_phen) - fit_neg_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum_ct.reshape(-1, 1), train_phen) - + fit_pos_ct = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum_ct.reshape(-1, 1), train_phen) + fit_neg_ct = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum_ct.reshape(-1, 1), train_phen) .. code:: ipython3 @@ -512,52 +499,48 @@ Connectome Predictive Modelling pos_error_ct = metrics.mean_absolute_error(train_phen, fit_pos_ct.predict(train_pos_edges_sum_ct.reshape(-1, 1))) neg_error_ct = metrics.mean_absolute_error(train_phen, fit_neg_ct.predict(train_neg_edges_sum_ct.reshape(-1, 1))) - print(f'Training Error (MAE) (Positive Z Features Model) = {pos_error_z:.3f}') - print(f'Training Error (MAE) (Negative Z Features Model) = {neg_error_z:.3f}') - print(f'Training Error (MAE) (Positive CT Features Model) = {pos_error_ct:.3f}') - print(f'Training Error (MAE) (Negative CT Features Model) = {neg_error_ct:.3f}') + print(f'Training Error (Positive Z Features Model) = {pos_error_z:.3f}') + print(f'Training Error (Negative Z Features Model) = {neg_error_z:.3f}') + print(f'Training Error (Positive CT Features Model) = {pos_error_ct:.3f}') + print(f'Training Error (Negative CT Features Model) = {neg_error_ct:.3f}') .. parsed-literal:: - Training Error (MAE) (Positive Z Features Model) = 0.631 - Training Error (MAE) (Negative Z Features Model) = 0.666 - Training Error (MAE) (Positive CT Features Model) = 0.662 - Training Error (MAE) (Negative CT Features Model) = 0.665 + Training Error (Positive Z Features Model) = 0.631 + Training Error (Negative Z Features Model) = 0.666 + Training Error (Positive CT Features Model) = 0.662 + Training Error (Negative CT Features Model) = 0.665 .. code:: ipython3 # combine positive/negative edges in one linear regression model - fit_pos_neg_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T, train_phen) - - + fit_pos_neg_z = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T, train_phen) .. code:: ipython3 # combine positive/negative edges in one linear regression model - fit_pos_neg_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T, train_phen) - - + fit_pos_neg_ct = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T, train_phen) .. code:: ipython3 pos_neg_error_z = metrics.mean_absolute_error(train_phen, fit_pos_neg_z.predict(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T)) pos_neg_error_ct = metrics.mean_absolute_error(train_phen, fit_pos_neg_ct.predict(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T)) - print(f'Training Error (MAE) (Positive/Negative Z Features Model) = {pos_neg_error_z:.3f}') - print(f'Training Error (MAE) (Positive/Negative CT Features Model) = {pos_neg_error_ct:.3f}') + print(f'Training Error (Positive/Negative Z Features Model) = {pos_neg_error_z:.3f}') + print(f'Training Error (Positive/Negative CT Features Model) = {pos_neg_error_ct:.3f}') .. parsed-literal:: - Training Error (MAE) (Positive/Negative Z Features Model) = 0.620 - Training Error (MAE) (Positive/Negative CT Features Model) = 0.642 + Training Error (Positive/Negative Z Features Model) = 0.620 + Training Error (Positive/Negative CT Features Model) = 0.642 .. code:: ipython3 - # evaluate out of sample performance + # evaluate out of sample performance test_pos_edges_sum_z = test_data_z[:, keep_edges_pos_z].sum(1) test_neg_edges_sum_z = test_data_z[:, keep_edges_neg_z].sum(1) @@ -572,44 +555,44 @@ Connectome Predictive Modelling neg_test_error_ct = metrics.mean_absolute_error(test_phen, fit_neg_ct.predict(test_neg_edges_sum_ct.reshape(-1, 1))) pos_neg_test_error_ct = metrics.mean_absolute_error(test_phen, fit_pos_neg_ct.predict(np.stack((test_pos_edges_sum_ct, test_neg_edges_sum_ct)).T)) - print(f'Testing Error (MAE) (Positive Z Features Model) = {pos_test_error_z:.3f}') - print(f'Testing Error (MAE) (Negative Z Features Model) = {neg_test_error_z:.3f}') - print(f'Testing Error (MAE) (Positive/Negative Z Features Model) = {pos_neg_test_error_z:.3f}') - print(f'Testing Error (MAE) (Positive CT Features Model) = {pos_test_error_ct:.3f}') - print(f'Testing Error (MAE) (Negative CT Features Model) = {neg_test_error_ct:.3f}') - print(f'Testing Error (MAE) (Positive/Negative CT Features Model) = {pos_neg_test_error_ct:.3f}') + print(f'Testing Error (Positive Z Features Model) = {pos_test_error_z:.3f}') + print(f'Testing Error (Negative Z Features Model) = {neg_test_error_z:.3f}') + print(f'Testing Error (Positive/Negative Z Features Model) = {pos_neg_test_error_z:.3f}') + print(f'Testing Error (Positive CT Features Model) = {pos_test_error_ct:.3f}') + print(f'Testing Error (Negative CT Features Model) = {neg_test_error_ct:.3f}') + print(f'Testing Error (Positive/Negative CT Features Model) = {pos_neg_test_error_ct:.3f}') .. parsed-literal:: - Testing Error (MAE) (Positive Z Features Model) = 0.705 - Testing Error (MAE) (Negative Z Features Model) = 0.696 - Testing Error (MAE) (Positive/Negative Z Features Model) = 0.697 - Testing Error (MAE) (Positive CT Features Model) = 0.710 - Testing Error (MAE) (Negative CT Features Model) = 0.695 - Testing Error (MAE) (Positive/Negative CT Features Model) = 0.701 + Testing Error (Positive Z Features Model) = 0.705 + Testing Error (Negative Z Features Model) = 0.696 + Testing Error (Positive/Negative Z Features Model) = 0.697 + Testing Error (Positive CT Features Model) = 0.710 + Testing Error (Negative CT Features Model) = 0.695 + Testing Error (Positive/Negative CT Features Model) = 0.701 CPM Cross Validation --------------------------------------- +-------------------- .. code:: ipython3 def cpm(X, y, p_threshold, n_cv_splits, pred_summary_function, verbose=False): assert X.shape[0] == y.shape[0] - + fold_accs_train = [] fold_accs_test = [] np.random.seed(42) shuffled_idxs = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=False) for fold_i, test_idxs in enumerate(np.array_split(shuffled_idxs, n_cv_splits)): - train_mask = np.ones(X.shape[0], np.bool) + train_mask = np.ones(X.shape[0], bool) train_mask[test_idxs] = 0 # create train/text X, y train_X, test_X = X[train_mask, :], X[test_idxs, :] - train_y, test_y = y[train_mask], y[test_idxs] - + train_y, test_y = y[train_mask], y[test_idxs] + # create correlation matrix between train_X and train_y if verbose: print(f'CV Fold: {fold_i+1:<10} Computing correlations between train_X and train_y...') @@ -622,18 +605,18 @@ CPM Cross Validation # create masks for edges below p-threshold and split pos/neg correlations keep_edges_pos = (train_corrs > 0) & (train_pvals < p_threshold) keep_edges_neg = (train_corrs < 0) & (train_pvals < p_threshold) - + # sum X entries with significant correlations with y train_pos_edges_sum = train_X[:, keep_edges_pos].sum(1) train_neg_edges_sum = train_X[:, keep_edges_neg].sum(1) test_pos_edges_sum = test_X[:, keep_edges_pos].sum(1) test_neg_edges_sum = test_X[:, keep_edges_neg].sum(1) - + # fit linear regression models based on summed values - fit_pos = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum.reshape(-1, 1), train_y) - fit_neg = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum.reshape(-1, 1), train_y) - fit_pos_neg = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum, train_neg_edges_sum)).T, train_y) - + fit_pos = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum.reshape(-1, 1), train_y) + fit_neg = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum.reshape(-1, 1), train_y) + fit_pos_neg = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum, train_neg_edges_sum)).T, train_y) + # compute train errors train_pos_error = pred_summary_function(train_y, fit_pos.predict(train_pos_edges_sum.reshape(-1, 1))) train_neg_error = pred_summary_function(train_y, fit_neg.predict(train_neg_edges_sum.reshape(-1, 1))) @@ -646,27 +629,27 @@ CPM Cross Validation fold_accs_train.append((train_pos_error, train_neg_error, train_posneg_error)) fold_accs_test.append((test_pos_error, test_neg_error, test_posneg_error)) - + if verbose: - print(f'CV Fold: {fold_i+1:<10} Train Pos-Edges Model MAE: {round(train_pos_error, 3):<10} Train Neg-Edges Model Accuracy: {round(train_neg_error, 3):<10} Train Pos/Neg-Edges Model Accuracy: {round(train_posneg_error, 3):<10}') - print(f'CV Fold: {fold_i+1:<10} Test Pos-Edges Model MAE: {round(test_pos_error, 3):<10} Test Neg-Edges Model Accuracy: {round(test_neg_error, 3):<10} Test Pos/Neg-Edges Model Accuracy: {round(test_posneg_error, 3):<10}') + print(f'CV Fold: {fold_i+1:<10} Train Pos-Edges Model Accuracy: {round(train_pos_error, 3):<10} Train Neg-Edges Model Accuracy: {round(train_neg_error, 3):<10} Train Pos/Neg-Edges Model Accuracy: {round(train_posneg_error, 3):<10}') + print(f'CV Fold: {fold_i+1:<10} Test Pos-Edges Model Accuracy: {round(test_pos_error, 3):<10} Test Neg-Edges Model Accuracy: {round(test_neg_error, 3):<10} Test Pos/Neg-Edges Model Accuracy: {round(test_posneg_error, 3):<10}') + - plt.figure(figsize=(13, 7)) plt.plot(range(1, len(fold_accs_train)+1), [x[0] for x in fold_accs_train], linestyle='--', marker='o', color='C0', label='Train Pos-Edges Model') plt.plot(range(1, len(fold_accs_train)+1), [x[1] for x in fold_accs_train], linestyle='--', marker='o', color='C1', label='Train Neg-Edges Model') plt.plot(range(1, len(fold_accs_train)+1), [x[2] for x in fold_accs_train], linestyle='--', marker='o', color='C2', label='Train Pos/Neg-Edges Model') - + plt.plot(range(1, len(fold_accs_test)+1), [x[0] for x in fold_accs_test], linestyle='-', marker='o', color='C0', label='Test Pos-Edges Model') plt.plot(range(1, len(fold_accs_test)+1), [x[1] for x in fold_accs_test], linestyle='-', marker='o', color='C1', label='Test Neg-Edges Model') plt.plot(range(1, len(fold_accs_test)+1), [x[2] for x in fold_accs_test], linestyle='-', marker='o', color='C2', label='Test Pos/Neg-Edges Model') - + plt.title(pred_summary_function.__name__, fontsize=20) plt.xticks(range(1, len(fold_accs_test)+1)) plt.xlabel('CV Fold') plt.legend(fontsize=10) plt.show() - + return fold_accs_train, fold_accs_test .. code:: ipython3 @@ -674,32 +657,27 @@ CPM Cross Validation fold_accs_train_z, fold_accs_test_z = cpm(hcp_z, gscores, p_threshold=0.01, n_cv_splits=5, pred_summary_function=metrics.mean_absolute_error, verbose=True) - .. parsed-literal:: CV Fold: 1 Computing correlations between train_X and train_y... - CV Fold: 1 Train Pos-Edges Model MAE: 0.652 Train Neg-Edges Model MAE: 0.673 Train Pos/Neg-Edges Model MAE: 0.644 - CV Fold: 1 Test Pos-Edges Model MAE: 0.636 Test Neg-Edges Model MAE: 0.671 Test Pos/Neg-Edges Model MAE: 0.632 + CV Fold: 1 Train Pos-Edges Model Accuracy: 0.652 Train Neg-Edges Model Accuracy: 0.673 Train Pos/Neg-Edges Model Accuracy: 0.644 + CV Fold: 1 Test Pos-Edges Model Accuracy: 0.636 Test Neg-Edges Model Accuracy: 0.671 Test Pos/Neg-Edges Model Accuracy: 0.632 CV Fold: 2 Computing correlations between train_X and train_y... - CV Fold: 2 Train Pos-Edges Model MAE: 0.648 Train Neg-Edges Model MAE: 0.678 Train Pos/Neg-Edges Model MAE: 0.636 - CV Fold: 2 Test Pos-Edges Model MAE: 0.651 Test Neg-Edges Model MAE: 0.659 Test Pos/Neg-Edges Model MAE: 0.662 + CV Fold: 2 Train Pos-Edges Model Accuracy: 0.648 Train Neg-Edges Model Accuracy: 0.678 Train Pos/Neg-Edges Model Accuracy: 0.636 + CV Fold: 2 Test Pos-Edges Model Accuracy: 0.651 Test Neg-Edges Model Accuracy: 0.659 Test Pos/Neg-Edges Model Accuracy: 0.662 CV Fold: 3 Computing correlations between train_X and train_y... - CV Fold: 3 Train Pos-Edges Model MAE: 0.644 Train Neg-Edges Model MAE: 0.662 Train Pos/Neg-Edges Model MAE: 0.636 - CV Fold: 3 Test Pos-Edges Model MAE: 0.65 Test Neg-Edges Model MAE: 0.708 Test Pos/Neg-Edges Model MAE: 0.646 + CV Fold: 3 Train Pos-Edges Model Accuracy: 0.644 Train Neg-Edges Model Accuracy: 0.662 Train Pos/Neg-Edges Model Accuracy: 0.636 + CV Fold: 3 Test Pos-Edges Model Accuracy: 0.65 Test Neg-Edges Model Accuracy: 0.708 Test Pos/Neg-Edges Model Accuracy: 0.646 CV Fold: 4 Computing correlations between train_X and train_y... - CV Fold: 4 Train Pos-Edges Model MAE: 0.653 Train Neg-Edges Model MAE: 0.676 Train Pos/Neg-Edges Model MAE: 0.648 - CV Fold: 4 Test Pos-Edges Model MAE: 0.626 Test Neg-Edges Model MAE: 0.659 Test Pos/Neg-Edges Model MAE: 0.625 + CV Fold: 4 Train Pos-Edges Model Accuracy: 0.653 Train Neg-Edges Model Accuracy: 0.676 Train Pos/Neg-Edges Model Accuracy: 0.648 + CV Fold: 4 Test Pos-Edges Model Accuracy: 0.626 Test Neg-Edges Model Accuracy: 0.659 Test Pos/Neg-Edges Model Accuracy: 0.625 CV Fold: 5 Computing correlations between train_X and train_y... + CV Fold: 5 Train Pos-Edges Model Accuracy: 0.631 Train Neg-Edges Model Accuracy: 0.666 Train Pos/Neg-Edges Model Accuracy: 0.62 + CV Fold: 5 Test Pos-Edges Model Accuracy: 0.704 Test Neg-Edges Model Accuracy: 0.696 Test Pos/Neg-Edges Model Accuracy: 0.697 -.. parsed-literal:: - - CV Fold: 5 Train Pos-Edges Model MAE: 0.631 Train Neg-Edges Model MAE: 0.666 Train Pos/Neg-Edges Model MAE: 0.62 - CV Fold: 5 Test Pos-Edges Model MAE: 0.704 Test Neg-Edges Model MAE: 0.696 Test Pos/Neg-Edges Model MAE: 0.697 - - -.. image:: other_predictive_models_files/other_predictive_models_50_4.png +.. image:: other_predictive_models_files/other_predictive_models_51_1.png .. code:: ipython3 @@ -710,51 +688,61 @@ CPM Cross Validation .. parsed-literal:: CV Fold: 1 Computing correlations between train_X and train_y... - CV Fold: 1 Train Pos-Edges Model MAE: 0.675 Train Neg-Edges Model MAE: 0.673 Train Pos/Neg-Edges Model MAE: 0.659 - CV Fold: 1 Test Pos-Edges Model MAE: 0.659 Test Neg-Edges Model MAE: 0.67 Test Pos/Neg-Edges Model MAE: 0.653 + CV Fold: 1 Train Pos-Edges Model Accuracy: 0.675 Train Neg-Edges Model Accuracy: 0.673 Train Pos/Neg-Edges Model Accuracy: 0.659 + CV Fold: 1 Test Pos-Edges Model Accuracy: 0.659 Test Neg-Edges Model Accuracy: 0.67 Test Pos/Neg-Edges Model Accuracy: 0.653 CV Fold: 2 Computing correlations between train_X and train_y... - CV Fold: 2 Train Pos-Edges Model MAE: 0.674 Train Neg-Edges Model MAE: 0.678 Train Pos/Neg-Edges Model MAE: 0.636 - CV Fold: 2 Test Pos-Edges Model MAE: 0.661 Test Neg-Edges Model MAE: 0.657 Test Pos/Neg-Edges Model MAE: 0.668 + CV Fold: 2 Train Pos-Edges Model Accuracy: 0.674 Train Neg-Edges Model Accuracy: 0.678 Train Pos/Neg-Edges Model Accuracy: 0.636 + CV Fold: 2 Test Pos-Edges Model Accuracy: 0.661 Test Neg-Edges Model Accuracy: 0.657 Test Pos/Neg-Edges Model Accuracy: 0.668 CV Fold: 3 Computing correlations between train_X and train_y... - CV Fold: 3 Train Pos-Edges Model MAE: 0.659 Train Neg-Edges Model MAE: 0.665 Train Pos/Neg-Edges Model MAE: 0.644 - CV Fold: 3 Test Pos-Edges Model MAE: 0.699 Test Neg-Edges Model MAE: 0.704 Test Pos/Neg-Edges Model MAE: 0.684 + CV Fold: 3 Train Pos-Edges Model Accuracy: 0.659 Train Neg-Edges Model Accuracy: 0.665 Train Pos/Neg-Edges Model Accuracy: 0.644 + CV Fold: 3 Test Pos-Edges Model Accuracy: 0.699 Test Neg-Edges Model Accuracy: 0.704 Test Pos/Neg-Edges Model Accuracy: 0.684 CV Fold: 4 Computing correlations between train_X and train_y... - CV Fold: 4 Train Pos-Edges Model MAE: 0.674 Train Neg-Edges Model MAE: 0.678 Train Pos/Neg-Edges Model MAE: 0.658 - CV Fold: 4 Test Pos-Edges Model MAE: 0.653 Test Neg-Edges Model MAE: 0.656 Test Pos/Neg-Edges Model MAE: 0.638 + CV Fold: 4 Train Pos-Edges Model Accuracy: 0.674 Train Neg-Edges Model Accuracy: 0.678 Train Pos/Neg-Edges Model Accuracy: 0.658 + CV Fold: 4 Test Pos-Edges Model Accuracy: 0.653 Test Neg-Edges Model Accuracy: 0.656 Test Pos/Neg-Edges Model Accuracy: 0.638 CV Fold: 5 Computing correlations between train_X and train_y... - CV Fold: 5 Train Pos-Edges Model MAE: 0.662 Train Neg-Edges Model MAE: 0.666 Train Pos/Neg-Edges Model MAE: 0.642 - CV Fold: 5 Test Pos-Edges Model MAE: 0.709 Test Neg-Edges Model MAE: 0.698 Test Pos/Neg-Edges Model MAE: 0.708 + CV Fold: 5 Train Pos-Edges Model Accuracy: 0.662 Train Neg-Edges Model Accuracy: 0.666 Train Pos/Neg-Edges Model Accuracy: 0.642 + CV Fold: 5 Test Pos-Edges Model Accuracy: 0.709 Test Neg-Edges Model Accuracy: 0.698 Test Pos/Neg-Edges Model Accuracy: 0.708 -.. image:: other_predictive_models_files/other_predictive_models_51_2.png +.. image:: other_predictive_models_files/other_predictive_models_52_1.png Lasso (Linear Regression + L1 Regularization) ------------------------------------------------------ +============================================= .. code:: ipython3 - # LassoCV uses coordinate descent to select hyperparameter alpha + # LassoCV uses coordinate descent to select hyperparameter alpha alpha_grid = np.array([10**a for a in np.arange(-3, 3, 0.25)]) - lassoCV_model_z = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, normalize=False, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen) + lassoCV_model_z = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen) +.. parsed-literal:: + + [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers. + .....................................................................................................................[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 0.5s remaining: 0.7s + /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07308221069854426, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15375414865695802, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.10611096508367268, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + .[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.5s finished + .. code:: ipython3 - # LassoCV uses coordinate descent to select hyperparameter alpha + # LassoCV uses coordinate descent to select hyperparameter alpha alpha_grid = np.array([10**a for a in np.arange(-3, 3, 0.25)]) - lassoCV_model_ct = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, normalize=False, random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen) + lassoCV_model_ct = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen) .. parsed-literal:: [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers. - ...................................................................................................................[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 0.3s remaining: 0.5s - .....[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.3s finished - /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead. - FutureWarning, + ....................................................................................................................[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 0.2s remaining: 0.3s + ....[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.3s finished .. code:: ipython3 @@ -770,7 +758,7 @@ Lasso (Linear Regression + L1 Regularization) -.. image:: other_predictive_models_files/other_predictive_models_55_0.png +.. image:: other_predictive_models_files/other_predictive_models_56_0.png .. code:: ipython3 @@ -786,22 +774,18 @@ Lasso (Linear Regression + L1 Regularization) -.. image:: other_predictive_models_files/other_predictive_models_56_0.png +.. image:: other_predictive_models_files/other_predictive_models_57_0.png .. code:: ipython3 # based on cv results above, set alpha=100 - lasso_model_z = linear_model.Lasso(alpha=lassoCV_model_z.alpha_, fit_intercept=True, normalize=False).fit(train_data_z, train_phen) - - + lasso_model_z = linear_model.Lasso(alpha=lassoCV_model_z.alpha_, fit_intercept=True).fit(train_data_z, train_phen) .. code:: ipython3 # based on cv results above, set alpha=100 - lasso_model_ct = linear_model.Lasso(alpha=lassoCV_model_ct.alpha_, fit_intercept=True, normalize=False).fit(train_data_ct, train_phen) - - + lasso_model_ct = linear_model.Lasso(alpha=lassoCV_model_ct.alpha_, fit_intercept=True).fit(train_data_ct, train_phen) .. code:: ipython3 @@ -832,23 +816,23 @@ Lasso (Linear Regression + L1 Regularization) Ridge (Linear Regression + L2 Regularization) --------------------------------------------------------- +============================================= .. code:: ipython3 - # RidgeCV uses generalized cross validation to select hyperparameter alpha + # RidgeCV uses generalized cross validation to select hyperparameter alpha with warnings.catch_warnings(): # ignore matrix decomposition errors warnings.simplefilter("ignore") - ridgeCV_model_z = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, cv=5).fit(train_data_z, train_phen) + ridgeCV_model_z = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, cv=5).fit(train_data_z, train_phen) .. code:: ipython3 - # RidgeCV uses generalized cross validation to select hyperparameter alpha + # RidgeCV uses generalized cross validation to select hyperparameter alpha with warnings.catch_warnings(): # ignore matrix decomposition errors warnings.simplefilter("ignore") - ridgeCV_model_ct = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, cv=5).fit(train_data_ct, train_phen) + ridgeCV_model_ct = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, cv=5).fit(train_data_ct, train_phen) .. code:: ipython3 @@ -874,14 +858,11 @@ Ridge (Linear Regression + L2 Regularization) .. code:: ipython3 - ridge_model_z = linear_model.Ridge(alpha=ridge_alpha_z, fit_intercept=True, normalize=False).fit(train_data_z, train_phen) - - + ridge_model_z = linear_model.Ridge(alpha=ridge_alpha_z, fit_intercept=True).fit(train_data_z, train_phen) .. code:: ipython3 - ridge_model_ct = linear_model.Ridge(alpha=ridge_alpha_ct, fit_intercept=True, normalize=False).fit(train_data_ct, train_phen) - + ridge_model_ct = linear_model.Ridge(alpha=ridge_alpha_ct, fit_intercept=True).fit(train_data_ct, train_phen) .. code:: ipython3 @@ -912,21 +893,81 @@ Ridge (Linear Regression + L2 Regularization) Elastic Net (Linear Regression + L1/L2 Regularization) ------------------------------------------------------------- +====================================================== .. code:: ipython3 - # RidgeCV uses generalized cross validation to select hyperparameter alpha + # RidgeCV uses generalized cross validation to select hyperparameter alpha elasticnetCV_model_z = linear_model.ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen) +.. parsed-literal:: -.. code:: ipython3 - - # RidgeCV uses generalized cross validation to select hyperparameter alpha + [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers. + ............................................................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.21318694590257792, tolerance: 0.0423918944559644 + model = cd_fast.enet_coordinate_descent_gram( + ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.17936527851907158, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + .../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.8618322913218321, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 11.57867990423236, tolerance: 0.0423918944559644 + model = cd_fast.enet_coordinate_descent_gram( + ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 10.2273489799189, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.4036642558553467, tolerance: 0.04401109832998077 + model = cd_fast.enet_coordinate_descent_gram( + .................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 8.073063075099014, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 18.227358858718446, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ............................................/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 14.883650580549045, tolerance: 0.04401109832998077 + model = cd_fast.enet_coordinate_descent_gram( + ....................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.18805636326129616, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ............../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.0544661418971657, tolerance: 0.0423918944559644 + model = cd_fast.enet_coordinate_descent_gram( + ........................................................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.1788130249701112, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ............/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.13839227040918445, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ........................................................................................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15009167262110168, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + ........................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.20204581109658193, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ............................/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.09891903798924773, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ......................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.13078279402705562, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.18265009272980137, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ..../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.0877297694903234, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ............................................................................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.11087317503455552, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + ...................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.16051209546739642, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ..................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07594686106816084, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ............................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.10611096508367268, tolerance: 0.04382929483334259 + model = cd_fast.enet_coordinate_descent_gram( + ...../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15375414865695802, tolerance: 0.03970345334827422 + model = cd_fast.enet_coordinate_descent_gram( + ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07308221069854426, tolerance: 0.04611195889050071 + model = cd_fast.enet_coordinate_descent_gram( + ..[Parallel(n_jobs=5)]: Done 35 out of 35 | elapsed: 6.3s finished + + +.. code:: ipython3 + + # RidgeCV uses generalized cross validation to select hyperparameter alpha elasticnetCV_model_ct = linear_model.ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen) +.. parsed-literal:: + + [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers. + ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................[Parallel(n_jobs=5)]: Done 35 out of 35 | elapsed: 1.8s finished + .. code:: ipython3 @@ -958,7 +999,7 @@ Elastic Net (Linear Regression + L1/L2 Regularization) -.. image:: other_predictive_models_files/other_predictive_models_72_0.png +.. image:: other_predictive_models_files/other_predictive_models_73_0.png .. code:: ipython3 @@ -975,12 +1016,12 @@ Elastic Net (Linear Regression + L1/L2 Regularization) -.. image:: other_predictive_models_files/other_predictive_models_73_0.png +.. image:: other_predictive_models_files/other_predictive_models_74_0.png .. code:: ipython3 - elasticnet_model_z = linear_model.ElasticNet(alpha=elasticnetCV_model_z.alpha_, l1_ratio=elasticnetCV_model_z.l1_ratio_, fit_intercept=True, normalize=False, random_state=42).fit(train_data_z, train_phen) + elasticnet_model_z = linear_model.ElasticNet(alpha=elasticnetCV_model_z.alpha_, l1_ratio=elasticnetCV_model_z.l1_ratio_, fit_intercept=True, random_state=42).fit(train_data_z, train_phen) train_preds_en_model_z = elasticnet_model_z.predict(train_data_z) test_preds_en_model_z = elasticnet_model_z.predict(test_data_z) @@ -988,7 +1029,7 @@ Elastic Net (Linear Regression + L1/L2 Regularization) train_mae_z = metrics.mean_absolute_error(train_phen, train_preds_en_model_z) test_mae_z = metrics.mean_absolute_error(test_phen, test_preds_en_model_z) - elasticnet_model_ct = linear_model.ElasticNet(alpha=elasticnetCV_model_ct.alpha_, l1_ratio=elasticnetCV_model_ct.l1_ratio_, fit_intercept=True, normalize=False, random_state=42).fit(train_data_ct, train_phen) + elasticnet_model_ct = linear_model.ElasticNet(alpha=elasticnetCV_model_ct.alpha_, l1_ratio=elasticnetCV_model_ct.l1_ratio_, fit_intercept=True, random_state=42).fit(train_data_ct, train_phen) train_preds_en_model_ct = elasticnet_model_ct.predict(train_data_ct) test_preds_en_model_ct = elasticnet_model_ct.predict(test_data_ct) @@ -1008,3 +1049,5 @@ Elastic Net (Linear Regression + L1/L2 Regularization) Test MAE Z model: 0.680 Train MAE CT model: 0.633 Test MAE CT model: 0.692 + + diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_16_1.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_16_1.png deleted file mode 100644 index 4b8e0cbfcef0c795e048109cdb507c9d8efe9d90..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16613 zcmeHvcT`jRwr)ZYL0AR&O85=tP6un9td0HL?M#op)MbI%*++;_))@BMcfgR#cyYt7&Mee;{&oGbCy ztjvWDNE`rxKtdLmOs|7LJOLmOcz8b_u!Zjj-%((}8+^gym;JzB^nN!qur3gA$u1ZK z5BqreC*T=2S=ZZQsRnrkpQ@1BYrx@l{4}^tX04CAVJL z-B}GK(97l!uHqG*9nq!do^HQgSxYBALh(bkKx+Fa7h73yP7|jr$YgZicEQTp)kxQz z5-_Fv^HLSso#_i*>>*x389zf$XmFCD&zcLYO84!?P;Lge)@YRFdOxUvXj`UwlrMiF z?(kC}HT^B@eWxKvLUS@2ou|Rsfj5%pUad>(Luv!hHSZfX;tP-?k#neQxp60=D~b+I z<_q1oYXn0IhTl_tZtmd5>_Lrb4^9?wXyyWpYJOqxuKR5!dWbI^854y-baxmFVK-Dp zd+_7V8k~<<@P_=zD48y_WSbIy6asZPOP!z;qs9b|47 zIW5jGE`^eB%;TgV>wQv12D{N){EWaQ0WSH6+%-Lj}D1 zK<1X`Cv{X77#pGN-oELSvoeAndgDw(*IJu4o`rSCqgk-=Zgj04%t#vA^COL0w~~p{ zmvb5ZxPnHP_BXP1$NNL8i*eroe^ zRi0`K(@p~Fk4Cd8EE&H9^cC1RV5sjVM(k46>?E|W+_*n%{Aty8J$gL_J>-39V@__o zl@gRyy^b_()P@Nk{Ux+Dc}79Za*GQ(ibbR!WI(I;;K?~L_I=M~{K37-g$9glP9^yVG!__+0lZw`< zVQwHzM@wH;|8BWIBrCcOS-lbxB_%z1u(Os`eZzG7o}ntY!H=#F8~;#0roDmme<@wf zl{!LT51_*@m`0z5A)Qz)r%7w%)wE(dhN?jdo1~jn`GTesTsyBiL!5|S$2t)b zN?cCnHZfr{-}vDAdF38HlJ1&M({3}K9D@qcoO3rxZ+c6~AlgPTwL?mO*p@WSt`JuY zIjW%08KvM;0U^pgD=RUa&DEowv8MwrD);yj)$G~+{K#0Mhu_ln@c@gW?aiAb(!{tJ z(mam?jTC0RBNbM|Bw&9t>ci}$QKstOm6)f69-kaZP~aIHh|snvf%+^(3)K#y+#BBx zQ0&&;=-aco{NW5#Isbs~$RAC0eighWJi`9Hd>C#QZneGv-=qbK)$FJq_9y$+7gy~# z8Ozi2?sV$B)r__5*$r^?Wv{MM!_MVc4yU1lS@f`h7K8<&~4b}5eZebEPId*L@FM{h2AEwAvPLJGa7q?a1>c6?=yOgtk z+tRY(aQId0k(tbDzHo0=umioqIvQN-pIaY$quF}oo*|WKrnRejndJE!GS_oxx39k; zJ?IHum*PKbHzfNx> zWf=^XFS3VPl6#E^F-uQwI@VNDbXmItYx)SiQgMP$S<_Kt6!l3wi1EnK(;gx=P#Ns? zh+gwv<=wWTwsS%IDkjD{Czkfyy``DCA@CCCh4tO;`= zAkEuv9SpY4Fcca2O0)1e*{^JH)WF6X-!3X%Z8>aUWfQhAlsSdOu#~c5ete0U;f_%> zc7=wjx?4m76h)m$Q@x^~>klc+gtb_d!oY_8HJ%3L`!ND5cB>HV{$oZ02H@H-OR9j* zi}+*9&kJYOOsZKe{pH5*t76ywh!7NY#!;)8xfkkw|6xPe@fKK+XK<>>JwIg65$=tf ze@Bo~rqeZj#Xp+tM712J`ie0=6Du;e3G9T=Gv%T>5vdbXk(ckbl&^>*vkrwTEW9+D z%;?wX3S9QO8=<^&p7?^8vK#&JzwWrjPU z-a5NuB7G@leU7rb7Jb*kGV0)oGhY0vwz}0>l)-DgI@y8rMW~r)4u=leKerbNSnV zTG{*Esg-<9?tTaDyHRr%MGB?Xn_FHZ=1-z`Z}l5+4PWlKUuxnPR<_=FVDS8)OaEXX_B0q@I%(Eni`#ft28d+XoGsBTyx$J zP~`es(&It1GZs$PGT;0x??!?rbGzL!vAm+|f1oBy{CtZ=tHrmyKZ@$Kc#%%)}xj7Ql(nVR*=zMhDGFPdEzshKfLrv>zmc=ksVz2j%0Epi)K&aA8%C-E7)@$ z#@jA_t{&vFYIZEk^m<+l0ThmtDp!;%_X5{JZ zH6n7d(6t3g^-T=9A9-nY9!obuYE8c&M5Lbye6}HO=-K5-x7-Cwl&kjnv7qT?)i*-R zZ_#)5g)53?L}v>}12n|;?iSenX3b2@A1H%0d^XaOq4uYZwP<<2CicuM%-|yg zH)MPm+tMaf=Vv3XM(W8&l4Nx4>@CY3Gs|nvKr5X)+cM(i14e&ICa5Qu9yTGZ`O0eT zI>m6FFLi~HLu_{r?l{p}&+x;>KVkZUKga13|_jWGOoM(nirt z<=XpHZb4rfY}Rn`((?Rg+jOj?;>207ftprRM_ygT_i^&Jm;Z+1qb(eC@??g6 zs4(>A-`(L>J;eVwIe#wbj-j3Bm)r4tjn38md{3EV#7zM~%j71{!iXm!F=nmy*!{h)x4+WQ4G+HA?yJ=N zyte55zP=Y)COX*(pjU;z$2j5uY7!HB{R!c7?bb#)WvkQN(fNp(eTqEXSR9(mi)`uM zY#?uw_FsG|4Vha$PuI;V2n#|c2R*tzapYtqXZ}m;8kd4um2Fp?6Om*?`g}W?9P3Ga zR|f?*Y5tO3EyMJnMq@!8IoN6^xhPVwi?OJA*mlEdEIx^i%+ZKqAg*DKYiHh5Q}sPj z-N0Q$jMxQ=9lLHSv*715QL@o?f{_$AAF}! zH)(VG)lq7JZp>yK*05XfWj()o_Qc`Vjq4!0aQ z;`63*g>Dwmb+@in4;T{J2<8;LqNd%4vRZNcJvF^+ zDwh=2RylA*VK=+?bFHjsJNyj0UCgI3mb}4!1s*+EIQT%?nNBkm9|y1B=sDllw0Zjd z`~;@t`#WL<%*C^)xy&l}X4mTiIxFKgw;|?_=S!9!wO3;`u@MRjJDZ_HsJgD$K}khz zLvkj$Q6JuNN!*_$Oq$x9`~HsEzY$XZtH!~uV_kYRrDapo| zH~bXOvb`FeEOt@+Ql&uomSM!b@)(1o+gOj^f=-s4pJ@=ryq-Wpdfyj2Ne((B=vrl| zV5)Is0gMyDUdd3iw2x1vxE*qPSjPiu z`Np>GM)xZyHbP+G#pbHN7lZa{ezEG!%GxiHQzP`EyzOK{Cs|xK<^W#+90se-ceuM# ztH)Bo4sTr>jV z>W%r`FZq<&o?@uBnaJyGZJ~{CF}h{UO?;Kl&k{Zv$*+B|LmRKb*}Ceme`gbke+C=J zp5rXX$NIgrWVo)(*{sx;(aKZa95fsAA7&|q74S5kd}7e_nlcb3iz|tobLO}s6-C9$ zxDR*RiEdl#Hdh^1&q!tlZfusA?5IcfomOoT@XEDYOS0HAlpA&nzWDXGTW-vY*oaf^ zvbAE952$Y12M*2@>L+WQ?ij-a_L==Y>mh1cs&AP zs^T54?kbU#I?Jfut-jlmg!;_$_H?ad?A)rQUCoantZ;qYlH8bqkZV`LR?jQn)q%{= z6Ypx?4!5uIc9(30!M(QbP0Xul(nr9P8I|d=l9TPB?Kd|cDGs(Yhn%EF{;K6eSxZ#H zNbAt-9ZL~+C#;v18ZzVAjC_L|i1y5C-!X;E@5)x<*O8Vz+wTZk+ZrJ{3YX7pJRsfn z>_Sr54FN;D!M82#_1&@#j#|I(OAq00SgACWFunN<>5qb<$usAg3DL5p8>;;CaMAW# zU4ye%*!h~fGe_qtu6RpsqbRkHG57K^%k-tchN(LH7$B}i-R+PZT8Eyrs7s1Xd(jd# z6ZMm*wb&(+*cYLz+ds5QE%{u12FiX-l68H#oaoz^7CRKT^AT4+?=oTjeEYBol86$k zUZUBF{90Anc2J^vJG0q?1@c0=jZh~-Bl+@uU*;@das9Tr=F`Gdzf)5dNNtQhutokB zlIauGZvbgI?G?$+tMt1&VIC5bivwS>cNalSn4j56jc@qFECNH3xq47y%%>s5XM5-s z?{4s^InB0EqZW^d29d8}{v^$$xlmtYt!d*|M{7g&hD68LOjml4W>f=*UZP*zIPchb znm0hxx7~<(7h~>eSqEfLEr=L%@vm!CL-(i2Yi7ER15&c)%lQPqkxWb3cLT^oT5K=; zhqwQRk*E2JPsXb2Oo{shIOEnbW={-hJIhlmuHz@$-S%jj*4@f(EjGSf^pYJ&XjJp= z%3WH#(b>|BpSAYhO#xD5&7DG@ZR+rrB0=(Ka5Txr33ox-5pL9Fb(Pm<%Es&-QszYY z?$djR-Rky5I+H5&jZMVYe3ePk54@FJHJh?E6enKm%_AoKhOTIE8VjRelN+-&x_h=> z)n1tjC8dn?!8s~v819)##=69b{o%(>C`v^X=a9F-lc9?P7@02(N^$|t2O2Y$UKLs= zZoe@LJNAx$z6e8WQDJS%+CC`?cR}DZ1Uqx8$-$a>ty^#n;a&Qh@*xXXtz;r$^`E>WZIp z4_S7#6N3%28QJ6|J)RGx!ZIVYIOqnPK zAcpI;fvi&H3tbQX$CbwT^LyK786)lvVrauyGB2{Coc9R#FCchl&T zFsGlO>K7b)(C9w7@rUSIBiQ^ibO>~jfZj7fW) zj5=(Dd9Ge4#OOlANuLQB#``-xO?NmwV5e)j0(#!C@q-L&etC8#*4yK*xVNH6x07`Q z4PkuCojJje5g`S;iIi4o^+(P-)9D8cjN!(E_}ct^tui_moRjb{KPL=-FVyD}ACyGE^{6AJg^W8Q?Xrj9_E(p=0yb5$9HXs33>S5$IL#xR%T>?mLcA z)Ro3fKK}t{4QOKy=yVtP9dVvG7)L;*Tx>0=sGUzm5K}jtz!p4T$wI_^&_y3cY@9id zT0FXiL~a1XT*MbjiJ`?*&{e*6W6lxVSyW%8CX=LF@ZYmmpEiB6 z&#m|CB4=FV`OP^V?Ko5AC1%>XiLRA{l{`bU`!}q!e~YBUBT6Dx97wCb_IlU7AUA@; z{bRPapk*r#gje~C!w?0}<6h3_*jN<$Hcw-I_m&F+>E2KBDwV3j(O)}=)x_k4h%8*W z+|vh%Yaguq{JwTxaDd%E{TLgufilSDzX`GD+2Zl&`V?uA$piSHimCFQSZ8OvvXZtU zDB4RRq$TIj>lm@2r$KY0!Wc=#P>9pMgLA|7pj{mpg@XGmDL1~24!1QmxPJ+2$Xez% zS*q-l(cc-soVEY+txa2Z;*3lDOZinxVrwAJ*p{wP>yo}aIHwVTK+psnE(k0fsW;~d zvzb3OCLDetMp_#B)E&_Rsu7q+Y8CX78#Q5m#Ua9id?&i#dylstTIOgf1&WT3XMFFc zO!v4GW(VOR+LUPs-ljd;&ZI73`4ch5yXX6A2u%~y*Tp>qjapNpI&ec-@}2j4Yos%; z^fs3BTlF@^qwj@1MIH_BJAHc97$t`iF>5`=fD>!r!R15*t%@z>+tnZdq(;pLvaP2L zqa+tFb&mQL!5w?9IW0yQv{o8?*CY~t2O%>O>@ihOq3d6D#g@JwZT%>;aQSj6MU55W zreNCo2ye4C1RL*w2Ckq6x#Cqga^uh8VKEK<(n0U$n0jMgsUI?zvz{_j&z1rPJL^9K zYR>bb-(Jum5i4x%m`OyS*5J&rBc37&9qI~kixr2)renDVFE{ZFBO(L{mbwT>dO;s3 z)P3Uh+NsM7{WIs1&;&)pa7(0xAjU8twSGLBlvn;b(NjwWyHQ1swnWTd5x9dh5m)oO z!q|bTD;8whVCzo8U5Ttjafe@mpHAcU2Jy&dPHiuu3uJX&p&zfF?L?RP2`cA2aTsdS z!qVWZlD7{oM1@dxfOr#P8O*uB;~mwTX^xqLLPeyn?Y`D)5?UW2mt^K+-9QS3S7>dm zg-x-^=r^uF@gg0%D8m?>**cNN8(dShOFMIB(4au%t!#R;@Ry5G+ewdKaUpk*GS4AZhG)5grDfDL0j zugW!<&mk73jYcq;Te_e_tl!Fth>8wGzMMZn*G7sW>-Z z_h)SIVxot|DVU4qf*Fb|HBxjoKiN?66J^4_g8iO1bj@Qzva*|JR|h_LvGo8$flwKx zI5^;IQilaGx-+?=t|fg)OoP37SuCPNykd8tf9~ekRRK!1>v-;B7D~*W*&;& z)JiAm=~!c2m&kEX#1Q1q;;hqOi+@t1t*{$=TtAVl z&wO@RnHi-C#I%zuIqc}Eda?se&9~wJ<7V;gPa9LY#`L1&7O7_o(Y4XnGV#|={EOK4 z4}tLidL=zEO&1mlw&E4$Ne3JA?+WQ0hx;EbOQsi2##S_kg1WoNF$zj+NAGHWlnsbw z1Tpf67T5@?POhsKA$-n5p{rsw|IyT4OL>c47tJ7$7&HacEIi8_EwO$aknRB6ntRC5W|>z zMK+L!J7;07AvCaoM0g*1rSb5PC{UiIxMBB7y8I{tYRa7{>(2B>HKD9|icq%_7j^d- zgKs{lWVKm(fAK!rSlYJPUBiI;rap#tj@XSPa^o>LTRc!Y_rNST`UKp#?}GHz-I7xK$I1&uiw`P4@v02;e*<6IhQr`Pz)bsv6Fa_XbT%3 zCT!NcK6v2Z0*y=-zYW}|_n~%o#Wm;4KxUyYHx9adtxC*2u{I%YaOIDd0xNBayV|hT zeNGN^KU;jtGc-KY02^_e#g2lF2VAxuRe+6)60PGPsFxV^A2jv0sporke*vi_16A&u z8jEMPJg&3vl?Vj=$aj13v@~ZTHpDVh)k+8{ot491cQssTM z+NR^=;H4m8S#^K9xxG76oG3nVx+cBhr|{j{Nx&nHWL-2C&fas;|E!bZU-wx2&z}E| z-QYI?IA}0!-I5#sut(r1d&T;)omVTf*E$J=6^9$FG51T@M{?t{dmSi14?-twd;(h5 zqqFDAGxdN&pu>3=q!|GWd!jz76XhD`Z`xW8W!dpX=cPAPQaFS=>@dKkV@QpM*F_kM zL@|_Y9Gj;H+?|9LOWxdrf_lG>qY-q-EU#1=mhFWwYwaK^qqM>1N!NO^;>J*Ea8B(_ z!}e=D6>A{=Dkl42k3qZ8BRQ8Q!Tp`92pSG``20CzZG_Q*|%*E*cbX%~oL180_ z7|HmC9*RtjtOg4cHg2uS=khrS8#Lj?=I@0VwhRl?KpGq=2IB69Vy+3$#-o08<>#5* zkjPMk-+cu)W*4!Jc#}v=>#xxMcp|`0Ww68p5^%F;38V_1=f(XD)vxX}ZM8-D#&IPU zg8>u>p%s8f^H|H{;OUJ1X+OB5HNr`xkuMw+aL+Vb2I?P=P62yBxB`uC-+1K4zoK=F zVcjjOBi;&jh5#--_V4#*q*JCXA-!1})GjkaK$|rMpixBX_sg5=0cPyN0bDsAf`=44 z)M+T#8Sg<^sptgpVrx;HHOK>$0;=Z2ovRaEm4hx;Z`kVt`|C8lK!eMPD$)R?wFJIr z0bNI^8lKz^G5}ug*a&X~QY>6`0nVsJeog_NU&SnsFTnUi-}%8>!w**cj#RCjNMwyw z&vaKdw&r@^1G9!+pc|YyNTX=D8^J@30U?Uc1dVI}1<`zi z64nJ$l3=?H-@aX`g=MlqNPiE&34o_sCcePlx+bG%e3?eW)r5|$V4e=k>bp3Gf${wr z0J0$nz>rx0zV;9d0NwTWqkAhMiT|_m|HlT2hk^N_3SHbq*PepSqtR8+z{{pS#t1|G z{vdB}!&?K9Vc7gpFmw@MbM-goi_zgsolan!X39_GArjH%AZPwi9wVXcpTZ9XoDR5V zT1+B`$n{qgQz|3@YLo}0iX8q@w|6 z&swys9o++_!ag&-$9JOW!n_n7_PhmB?xT#(Sy(kLALolQ0V+I(9e8jC#5x82w1zaA zaY$+xWAsV#9D=4v+KbtD4w^Ob`Em6O_2Jr;q8c0o!{M&-UAD!{u;kDootkv-!3wZW zkw*lm#YFeUW-0LrT1N-wBnoXeYc-N9X#t$}t@?~ozxm+w7f7$#o8@nFe9?iKE7w?_ z24zT_)ox!*a?4Yn+$)Cr2iH!E@HF*MbD7L|_zyq(hbLChZou_&qQd&nc z{J_HEdBMcLldGgfU@EMI+>@$BNVEBHIaudTvb_c;Hg4+r{N>26>Pj_ugdc46g*=%>_NGOxs_%fcw#GUOZ2Z;HR$2O2!*@0<4 zNU!V-{G$@zEGt7x?D*-fa(>2L=Y?aO2`UOD z=D~ceZ@>56FJG`P5Sjv%{!Es>!5{S>$7PZ zx31$NA|)pE>Rgr1Gg=@;8l1E|q%aUaN+j|8$>hd|OW!tZmR46AtNKdty!YCLNqu;7 z718-GKr0gb6VM93{1g4}|2pmYp9}nNifY>d2FxV`9Ug1ya2Oh9+B&kQidM^3;H16k zs;Y2BUQG>&w|5^yU#zT*2kr&k{*WtXT}S^_y60g>@X!VrlzH4(+~>GQaxS^#MxRR? zPeFKa4TzdpzYCD6gfBXV0qi%t{_Sqe^wdrYaH!t#llyQf~-lVOv@prj>2d^!3$)D-3ePsnuC8a+4 zBWPM38d`^-<~-&+2Fq_mr11s7(?6_aw8tf&n-rV;{Cmj$iS|Zt>mKq;Y+caC(j>g) zA#lH7pMFruw79+Au_kQn#8rx|bq*38L|Q3TaJB?y&=-Fo*)$K)`yo+dJ}~{-n+izG zTAFMb;vC^qR9euQGSQe4fxlY5mzZ9>2N1x&peSKArvS(c{{f6HwpP#S+sL^HlCGVY zn;Zi-`k!-5!8?epXN)~# z7%VsT83?{&nr%^6cvmyPp$L~3cbI6`m3DMSNH9kB`l! zJWiJ*c>l~E8L+!*q*uOTkWyAhtWAzt&-O&z4(gU!t3MC@Z8j`MI6&ycISgPnkR1JS zCXlcGJNf{8zsWp8*o)vH{ZVAWit(Zf*QA*8HS&UEGB6~3NB@R0M~nU)Wem2KhXT{- zw(VY8F;aWH>1_=#6hH#r+xFjqgto{-j}Vk+gUHbPnr z3)n&+PImzc>pv-R0QmkdiXZ>a_q;m6Y2wM$Rd(7MelzWDtrwn5F-?{4I{B|_H2)oY zM!(uYe0@s0lG^XP`X_-U-v&FF&K`oYQ_w{)pgH`uBouGjy6Q@)Fj1+grUc(0gk=~- zWL#`bkQ=v!E>56pRbYP4(4`k!b1(jS9++z*#fi}eG+{E}Xz3w=^|K2m3=3iz@jSHb z6nqfK0?Y68_z^QuDLf63rx1SgRwE!eDEi8YYvD%(P+v8k-TZQ zms9#=doySz0<`1~a+oGuZrqJ=n3#piGb{Kv)GE2rqfRUg(dDmNaz1Dvx$Xm`eUrvA z>qi#0Fn8zET%(U9-7WW?B(eZ)B2z>z2U*7q%wf0=+FFB>}a!zTTrne51*o z!Tr&P>Wssiw|>sTVmIEAx7R`!ZcaH1HP$qb`D6BygUX|ckvl_skd}LH=3jBJw7McI zwv0MJx~@+pNe~U|t<+?mBQ0{~waiz3f&w316#BQEk*B|a1|m(fW9O;{t!@(bfJ*y6 zYFEiKU>$)W(RBv|PE*kqfx}^y;lYzjlbz-TH-XIK9_x>vq*k6h1+tvqWb}H9K*ItYQs6)cD0BDq?PV z5X1)UW&!8H$Lp^EiRURfp+B;)8D_1+7!b=H}BPJ0o33d0J>H=JoAUn z-WNn!@c&pNeN|Qxm-fE%yBXkqM*n&O14UNBRBioBsb^mSHIx7JGo%T}f|;}In=j>k zlmAwejbc>VeZ*U(R=)b1KK@UH@d?X=*E`*`^-ggs6 z&HYMl6xR_OIxrNK8oA0>&D%|w99i)Jrl%e4s;WJJH#SE#QBe*l+Po2Ht>2TGUUHe^k&{&Sd*y#EGE+h$ZX;CL8D{`N$MGc=Z~O2! z@x#z54<-p)a;wj^;q=w&&fnbrT2y`;aqqV+&>oon_cRiF2e5qa+cSW0mK`efcj3O! z1-ix0XSIuu~#5$~A&06d$&xHQ{ zZhJQs{NQMIfT6*;&hWXrZ=oFbCqaY5gJa-uSZE4*ENZ51pH2nSdCa!w_p05B5o?!M zr1Gf?P1RO{iF4&=hE)aA{#x{1@XmNKf8lX+N=5ztp#%*p>K9@fHKpPin)fUDM0irWHVs~2sVBkK+N+*4aO7^j{@X?C%DEKNNr{{WK!wCQ;-NR z1)R%Idyc(j6*dfbb;9uNJ-1F}(se{C=(GP!Orf)?hc32qVB?O^#R2rXyQ!OLba<+U zbuzl=V(SVt(B3rK80I7cUCS(5aU#Q9fbYq4U`B_b#wFDC_vrOIrrUOGOLIa{b?4~> zbd6c7nB4fY`lQknH2Y$!B+LEu4rxd=_%zJvc1x!Q4Dg~JwpnXtq|ewPC_NEvoWlxn zES_P93x_)zz9v7^xj7prX_L!ZK<+n)50a*(pl&!l)dngWEpc>^AGm}!l;0>7t0wiF zt4mafqsGO8OZagYBP7}tG&mclI1hLb^0f>F6VA|PanhS7vV+>{6FN?Rya z5*nzm;K;Z@s`_GYixX=)RC{1ZA6|NYvc{2lyXo|g*tjS#_1l!E2@pRQR7vh;T%J(@ z1CgP9;ZcZYFRNRT&}Zl>pe;iwCe^=#+`{T;2}piPUe^3gP)G0*LoJe->oC<4);t)f z-l7<{l!pSX7E!l9LzZZ{OL-yuAImklNX#*VIOA9Bp8gfFg|j5F!6Sy8u=l*d0^7}V z8fw15Enp7)ml{r#Pez1qE@)S<_UCnKeUkHNn#aBqmu~YH-|wQ!tOu%8^hC#|m$aa& zh$B#rYJuw)+XA@)fZbe|*c>zL@aLsKo|?5%f*ZZElE?-MaJ7!e%B$lMM4+sQjX)M9 zQ{$N8jj=|8MRj%^WHq4H>%n}2+qeZ`6a3e_PYkOD=lk^`jc(#oyt*nJnKX4wEJ_%^ zja=ry7|ldaY+W@LJNdpzd$7j5Yh2IER&eIFI!dzZPi`bzlob~oM^MBop5@|h;+=n_ ztsW*3djN0R>K;4g8#@1?ufd+~W6$xjMa3|S&@7?M+e2hS1Gf=;kk1+SlAb1-=Y74hO3pW@% z48-Mykh1~u3mfPm1vnSabiCI742X_huh2StI>|v9t8X}sdRa~6QQgkFGy1mk!bqKk zCUp4rcF8bP0k-;fxxUE|-l9%t<-y?A1%sSj7|=mZmUUy=U?hL8aqDYGsvhMF$n$(V z^EWd1ss4UYHPGf@B9nbtyxxUNZfsUanA5PHN$JBYW<;Kb81-MSc0|}2hHM@u71p%K zlnoWkX%uK*>gyXtuV5&R`$CG35|fzbA@x+$GBdg4{NPtlKOvve&5QNQljED6%%FEi zD$wD&?u{R0uRW|mLhg>Ja!$k5@VrAQNoZ-757m9u*JQXk3RF|WpYSfx4YZIF;slo& z{uml@Y;t+}r4v`nJG1lPNZysxfG30e&QA4D$2H}30$;WQy(gOcr@B_26_%0X=RQf+Ub^)&U5y|2=$S3&4cCV`0O3XYNYAcyxshvujEVT zG_-xoB|ld7Y^%IF`gP3#xOk)D;O!O3uVJ^OzJ^uT?8p!)G0f7}iK;J%i-Zke3M|^( zk(=Qt5)x2Nimt7W2Mu&%FqGnWv&hMEJYg}d-gubeQ)Y8ho)PVB>_ed{))2`ijs z%&5S^!v|Bj>6->^a79C1_FHb1jyIf>cvGC}o<7hw?Ehx@$M&y>Kn9@jQX`?p~LiM-llq-J48( zp7~zE@conN6S=m+`JGBV)>LHkpl?~rt97-IZ{EJS8byly3?ZT~W=go3r*<$p7WZXA z;*I5@+pZ1dh=y5#Y%|?=G18Nn*;y$6K`j>5)~kVRAEnv;djjy?o#490iQ3!F)J5y5 zs3x(`2}{;p#uu$U;K?JcWq(WC!$lwclLE?5=_W0}Zwn~z{Vu?N dsj{*i%fJc`3EzHT3Y-SAxM*csa^dd7{{;{#Ua|lH diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_17_1.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_17_1.png index f832a94921ef5dab9b435f03c5d8d6aab6a57044..99be9491af448f3dafeb51d316f510be7f90fb3a 100644 GIT binary patch literal 35783 zcmeFZcT`l_*DXr7ZC2D)On?|Lfr1K(o@!%X@Bany_%Jgy`zDxA=d>1duwwmdvlYk zTPcRNb|zMqVj@RH4(!`{!`|N7PD)hN;y-^u#LCuK^l(~MA}+Gj`izzx7uPBS^8erB z7 zCYv2`?TN@}`8?R>YE<=WqnE)F+y>X*n>xxFzmfmSZD0MK{Q2hU9|y^wsT+^2Ab;*t zSiOM!`Do4m?#I?2q^!T*baQj7h)z5<)LvLQTQob#45mrvF4C!*yUio45yH|))Tpe@ zPBF?JYWiovVi8Bjn=&FzM_dkjByU*g%Tu74bmj1fRnFB956c;mzwfxOd(3?9pxxX$ zVU6>#X9HEUOdIU$E=cshT`W)^a`4({xoGhoF|iR_M}Dq|$*;Fp4UQX2QwD$JC(F8y zH#dyo*VbKCwvlz38EcC4Xv`le`A01IWO6qB%a@C%6ciG4X%v_4K+Vx6eNSDs$caDF z5)~+v?5Zf)#M_HknNE$fCI=EzMr+TB_K(x8G#e5wjp6SDzkYTG)54p)`|GIT(kYEe z+WKrZmuA*I0gubGv$H*&p<>1^y1}e`{Kci~$?0YF5?r}kUcP!Y@af5pE7|6u3ch^t zAt4*b`s+^b-Mcq9R^EG=-gn15X|B?5cZZlw-H$WtK^LA6R+u=s;6SN?D*VzH{f!Q#1;z z7LQfgaUohx7tdekzw_L>)vNz@kl1#snTPq2*Q(x6eztFv<32UsAFS_Dvsl3GS%=5e z1^>~Z;<Kl(?(pfQX}n%pvzldt7qH)^S1Z_tAld@)cL_ ztrBP)?k;zjV&%B1mku-}W_iwe(4eJNfkP{K+6qukA<25pLjmHk}G+!oSfW1ef(36 z*O#CFx$|sDar9A}?Z0sjZM(0#z-4S8HuhX_S@lpY7u8^+%kbyjfk8o(P}fCV!Rtiz z+So41&Lcg04r=%3mwz^G!+Tj=H^z-}O*3;Ml>M44X=W#NbRycFI#-VT{QPwH*yr8RxmoOZHLAG5yFaq5I`kyktZ(1Cb!*+0Ey?)~ z%z+l;=mxKqyu-T1Hk}`P76zBxTjfZr-XNlLvA;I9(xG^I_#CZQHniu6w6wNa@{_)42Lx)tcoDJCdV|dT`m;7S(>WUpYByQ0vo@GJT zz~?po`s?QQ?c3|K%rq;*C90EL>;^c48P)bfg%b%1KAV@VTp1W09ep-vU;LFU)A(zp zzAlK#EQ1oS;~b472WDfB*=NZHvEHmUk15teZ|{KO;$mEG^he1mv+|(*+)U2TQUQk! z_lbDh?y}*D3C%p)Zu?Sx#~aw(TPF4%Jg9=T(2P;=QGb4Xp&i|{@pWjs+sFleDf>^I zQaKj%SJY?^d~t)SwRI|XI~A)qkd)Id^rK5!er`G=%DHFL;TvDxv?U8^Ccl6iVMGtw)(ckgEdU4Q$Z-%st=%~wBhkNa@W#It8x7cN{#?#r|( zIkMej$|6$6xi)Fs+_*7A_CqhCLT^*SRu*B2eYVJ6(apD4sSG>J zvw5?Sr>EzoxQoYpcqJMii5A7-rs|U9q-l&d$dcmb%?B7xoj%K!FIT&9Bkt3c5l+CmlKd9%`0-Z_-QKFmx>5m8 z^G2RO|9pY{9f#N%sH6G??bG^hGxwS@*nBW>zjos^U4Hb-36UmA_sPudJ9bn$u=AP8 zGE+*%L%riH`WU`A!IF_Lq?P{i-Me@5$+$sNzo91P^zx~0o`E9+?B4v0>e^_JNySw% zKW>`V$31`Z<}X}WWB--RFYh0$4Se$C+fOrkrpeRqot-?qyopEx;dGlv>-USB*6*P) ze=?ptdGeg(Ipir-&Tu!+x^*wZ4x7ya^a8p$@C2 z#l{qNn~8d|PD{7hw3PwzlKvZo0%yd<2cmr<>#kd zWDy{AsVwA(MOdOd)uv>nMDv*01e@`(QlcZmiowWtKr|j2PI9DYTPWDuXVN{NO4{}0 z4kij?5f3rL@j08XZ+`1+)V6YHHA=hs!CSO=x>iSi|NhF{p`xi_R_`@GS)=QQhIxbM zjEr6#y#8r*3=$Woal^WG*S$9%E@L(QYBfvQ^x+|o-4*@NLx$cv&jsbqcs{;{O{jp& z>l7&m3SBznG5xdDjd`WWEl+C}NymCBtDAc4_9CN5$2OaLbf!b!m$y18_y^}ntykwa zzqlJ zslcxf8}v5bBC{oUI2U-hvM~rrS(nMafZ{?{~_p z??)6<6DJO#U`u;rV|8om<30IcCpz1|{whMJv`HFW&bNi zK2?@8$+3w%YV*z@@Ad0_F`jd?&XkumH8l#%#w4Fz7s56^fBu|OUHaj}rrzr4YPBW+ z3YOf)#$;WlhCVX6hh5|rS(h&7b_V}AN-(P|aF5En`#wI0TQg0rWtz9tk|Yu3nZH5b zt;RsNv(!(5T`-~)<1sU7)S?=Dc9UbfGqofd0HD&+-O({QK0aOnfjl^={`&I4&R5}< zhpyyUvQn!%Kl+qU44KgE5XV8fM}2&KkB~2T|M6oFXSL^ei*aP5^Jrg<%;MZ{-@bjc z$YB^|nl)A3KoVCeba9{^kVG+ao9gGLZ#`mCD@eQjkCel}MvKa@ed<9CvF`pQu?q?K(L%#XHhdX~&#b+d?}AP(cB3c6ho_{@2&rZuCsq%R?<0)S7s;-Ly$Wlj(cBFdiZGA42y@1xwbs zc=54Kr;o&D63sbDZTht`Ki(|hj7v^T9k%N^KVtLu-_L4N4Nk-$;VS^9vIfS+#vGhi z`v(RZjlL@ALuGliWAaPmOLZ%(g0?X*9@d8|nq_`&*8C$&v$`kC@-UMmeM$ zvR~tM$WP>>E_zdWmXFKY_j=CVJTdrmPbYBgCZzuZc>P9q?%Zi^a0H0ov_Vv_B4-ui zQS8Nw7sCbF5$;|rxud82uArRyXDemlUhl0(u6gTfA~}SE?L6@}>0R7mA9C3U~o|Rj5uQ0Y3%rH^ixwI04uCkShME zs;WxOh@?sUpQUH#@sADmzFy%5Hd`keu!Gh#-h9n(Q>mXojxe5J^NwA+J|8ZWk+U^w#99EY-n9s9m)qpex1udl!3;K3S$$ZFY%2rUsj;ID7@1o(WnM@rg# z3_*n102pn|Fs`oZ746zW-x@UXTVs*?luU{tkdy*8VnzCX?QC&08pdZ1Vd=f2J!e~z zr%7tibH$q5j1Ov2XEsVxUNffb5l@?tjkAPDriO}nFNBGw2}@whQ5|NdN2)1?Rs}y5 zc5K`BHo2m`(A5XPspN4$?}DmOHL6m}-J#YjGhR|)pM-{*Xj%e*D4@Zpur)9+_=r8o z*QmAb*dQ>a7m%UW5c)ZtQ$pK$J$*To` zw3Nknvv(BdwG`=Z+qR9ovo+{#5T$a}n-(wMAd)G~`vRe<#H^f|cznH$Lbvz`6g51! zsZ%{LExzd|H+dt<{US0BDGfB%T$C&ObB-TdC}AtAyChB2`1|+o z!v!g>KvNK%MKYHaML1&g^e6Ya_Z_9`)DJ!cDS5ImuV!j}@RyCHQtSFMn=?|aNx zqVx0n2OoXUnFfQ%mX;O;yld9D3f_;G4Q?o-0>#o>S&sAGZO9^rS+yBPUIJOFX=9=W@QygYWafQ`>cQ?0Th6%pw_2sm8 zGS))K6eW?_7F_!@lOxKlUYg%lLU!d3a&){G85GphxYx+bVB_sYD-SV&)utE&`UZ>B z(0;VI-;m{WJyl{#qtKGVkYVmY4e!~)_C%M>=cQV5z&jvd9nI>Yp8MFPd)fw=kHxus2n9hKA-ysT_M%a%uw5R&xIwl54KR)@=7FN=Z{w)4rx8ZHZv&vrQjk zXU_m$VGz(CFs{R?eD z10ZiVjn(5JAA2t5M3p%`yVCN`ra@h!uGI`@zj=47QM+J6kH2^-`YR_{64%c zzr%Bm!5)=7-BFgTmGLn-T7G6!t;m7hlCitGKfsq@!|C+*9UUFb8OF**V?D2*syQO> zlstKh*8)(O<$6Io+uY^~1;CwRxZGvs_b6G{LGC+|pZVYGL~b@OkG!p;eBIcX9;wtf z`1Rn#KeWUdS8!AekCK)%Yy#SYNJCw;ts@YqmDV=Yb;PJ*qg^DML33qLeA|YSsPf6p zZ0YIgX>atF2*Kj&v5^rm;Fka^*}RTwq-ff-|48xNOp2D=(WA}%_vgA>6$)2gP5%8C zdW5S%E0-*>{^fY~!i6m9Q(q!4Mu&x&IxeFp>(Yh;(qv1XX=NCRFbB~_GR!g#-8VEg z=9QoRahnk;h{`FFvSIu^Dsn~s2#q^8?$%{;;|GuBSTb}PCDCHgs;8!_0`{6$ggN=_ zy_67umQFhET(HrG%*aUVFVBuyHca)!_=S}dUL&d(xzhoqFx;>B*Z1XA2Yz{vwq#$R z*W8AC?^bW#oB*(`=wDk~+ZNRyf1om2zC(xIQCxiM_U)1V9nViJZb;Upf19kbA8OY{ z?^2QD&GJ@6HL|_D>%f68I_*X7v~tR$cae_m@t;0@aw`|NY-`rxUbU*peS#5e#i3i$ zDs|csr6q^5J$nHo|5~$V4X077*uxzgxa!-auZJd@6L2&5qoChi8hZc^Zu=gd?*y&RyXx>p;60s)X z8Pn^*>bMzwe58TVqPDya`-`x$p?-_G`TA@l=caq*d&ZxJg(U#1By0l7H?N&3Y_c?A~qBb&UQP}!#i+|>aRg6#Wm zilOH<_!J`RnvI4)P*Fuig(5w4OUiZpwZ~-tZVN{KB`}j3wzlaaI=O#q8iBg$8Gf?k zG+{b;u1qEK9ku>zw^GCb0h;THR`LkaL5QpTeI1!5YQctJkIY4+r8gF$rdBS9#_qfU zut!;JsgcTvmsU%=ddiMNdT{5|tJ>`~X4RiQeaW_|I8FQc6he zl{Zba`kLh83go03Y@>jPh}YiUD`@={xEDt|4hU=!=IF#k6R5L+^oYcnH$9c%EVg3* zz&YRP2s!sww%#eUWj1DoNVUQ;GCIc9Q4IjWG1zI%W3;WmFIZ6dMg6jyyE|!H7+6!X z?v$bSByN7GkmzbOA?PPUO2_g?V$TB-I53lP!jAP}BQz{nCG*urJCEnXkpU4$xoTYL z5*UP$@pZo0-M0pJ+jSLPDkC@JOKV#yp3`Rgs4Q62%5mStW|ZSqGawH+L3v<0#IL?z zlH<3)Zm^?R9|)-ql$OJAmtyS8mq#OKXDUL)l>8PxddM=i0uI*xhX!2s(8s3%7p|0A zmYy>5$Faf9*Ic9d6@_&3Gm)-5E3iB{l)*gRTKYs>8moYU%lE@*$vOd&?OQxm? z>-SxL265nM^)laM;>i)%*|M3ZG5MO7uC@PS%yd}dr)Ut zV{QF*;DdBLwr$Is)lcO=D1u#Nnfq;#gllLMg4JY8?i7d94`sm7l`+y=9bQgViWJJ+ z3W9&(%&$(ryQ;xSpy~!nR>_OYFRh7+cJGC~yH}7~#uDnAxSsdi=imUBy`Zd~M< z|Cz&}gcCl>chrNl1-C+2CJ%sCO>191D9H!A`y7l1%{{|Nn?1N-nXOQi7)UJBj-tXN z=FMM!=Cemz!rgDi%q^rZ$il97)}ijFv&6;3GX9E|*SrllVfOCMQVO*nrJ{`8Q^8)g zYL%mOK?_@~O>(R;^hLV@I9e zhGT~bE;WfJ$o|(41Bbz8mGWRwM`xp2Y=e3fYN~!~Pp|D3W9MPV?3w9ocl}43o9^pg zv#oXWZR_ZI_3G97v(kCW|5O;b7B)ei8l<@S&)m2S>c4H)OH>~6RPLsC$S`A&10e%w zO?LXp+xJv#8X0{M5&ceX<%hM|(t^rzI_Bj@#>Typ4GDWz@*X*lgs0-SMRwih&0)P9 z#I0^h;dmH&<585Y%Z({70;X=4FeZc?^V-Imebe)_jUjiGAG-U~lQrm>zX#+~xsG1y z-~TwbW(w}yz1!^Vt%cm>t>{Nfc_ekOFReee=(iTIuH)#8HlWB9@fs8JBxRBmceOt-*Eg)}Hcd4raOn7`Ds_XN4y zpC2}KGnt8`W3HX$$!?1&#I6-d*-^IFSa?DT`AYos#x@2wWABFb>y146e?p6Jwl8by z9tEco8j}Rlvk7#4LyEqCtGIq@7}rNl)0*)HR7nvacnlHsE#=> zAz?>tUX)IqQEvC7rzh{SuX7WZ{+6<;9#>QpSube!22N*CG#Y7nT97=Zs z-g6RZCJg4APZ^(dG@`A!HrI;uU+A-0Z^qrn$7OALM~YGpY^SUQ%~TU1X;)DSlCM&1 zpP6gn1(nEXqA`Y)XTKHRw(Z!12M_#3D(gqSoLI$^n}nV~5K`qQ z)1vpDiZ!WwH2^Y|<5c@nQHnAcQj(rM)eJC`FY~nD)@pHfbVt;5q-c}Pderhmgiby= zSFfhrz4w}{&j*OGfbd1fhwiZ)^wIb=yuH16XN$5)2cq_PXxG~#pHR2I7;M!5%85M)2Vu?I+bbP2!*SZNr9CVzid<~@KO~whOBMvL zn;M?n9zGEdA%rlQa3(k*2oK;%Nm-_nn$f#x|$6%`e~GkU&)b5Eyo2;??xZ%N@yL2g*KiX+blk6KD}6a>0P3q4f4 zf_%B8RG*Cp-^pxIJa?`R%07S4h`j*KW5y+?RWzY9uy%v$zH(H)sUVfVn<(VW#}Z^kpzB1*I!#L?FvzgDbxkIYbh!A*`CIZ z?bM2j^RzW4r-z=hhJr+N2W+qJl9r~6bV*&4HXOdSaCvgr=M{qS+Budz*Wr5U%cz#C z1JJ8n)dLp@!*!@osYx`!{V$c_%xc0TPT!i~LvNR$os-P@1%2gbzKEx%XO<i7Hz+HDvna zms8~PAe$Z!-IM}Fg`zK19Vy+^Ed>_aC$`C1S`D@rnp%-Or)w=u%hXQCqEriA#Szht z11n0B=E4!mtqYF``( z8C=vHRnS9lek97E>&v1{WN$Y>NZfE8r^J z&zJ4qPEubTD_Yi7gZLA87`A2Oi!$-<_kO8VvXJ*ILgSwVg?Fni?S&3X21wXA=Zh`q z_XsL+D?$$gF(88D1bpFaxjG^mU%0QM+N|WjV0IvYUf$tb-##^D`{WZ{s3*Q0+0X@0 zX}OFP8TM;Hn)*V@B44FkR;4N+UA1*YoIC%(5%)%r;LG2 zPw&qsxZCQg8<<%_AF#!@8k0U{Y^XyYJ+_@zHmXBU>Ij@Z&o%X&Ke#0$7jYYRjCiqD z+-EkWI8Lr)&dy9Zz}u1Ue&IN%(u!?UXwjP3E`hfOYGUp=e=*i-p zE~ma>FG`A(cBDAP{6Je12Qs^-bLrY$M;S(%DA**mHfTbF^VuZ!(M`r-KwWmMUQL9$ zS?R)shSB~yR&rfFpE*?v0znSrUV36^v-!ktpuQTw4Dkig(+wZ7A$*p5TzMgw1;tTE z4s3S23v>UyZlx%hco4CA<7Of-@?48jG{8fFI;E+&oIYaJ{@SXDv#WY&D7TY)3RcS8>R3!S2n)p2d1@KTrAaN!C8n{M!c^xS`;i6+j#I&?A|QPT8r!j2>onsL29}X>8&*d{c*tWqUhP@eT2&bj!`sY7M#t<2bbpTO| zo=h2vh>ep^m*?z=z=)g{@mR=Cv^_Qcc%xr+i7SfVqb~o|R;Ny#YSB%Zt2r&uou?Vb zk{bsqw04=xf=gm=hpTLl5ibQUjH`|r6Sp=Wx_+M{Cm>BZj}S^JIY7bpz$sSB&KAus zP1N|i@x5?8f_J3NTvAq6m-N>lO8MGFsbB@dWSrB>Yjz=Bkvk(+lH$49#F*2538Z7B zXD3NHvR}h_29ftTxl?>H(}Afm1N_n>VUta5lw7-J&2vzLA&XCCH~qe@(d0pGEdTop z5{#F`<5e5Gz$+rs?Cvridw9~wr@{d3!MNE&niK+y*1bm^6mUbHoiXS)ef;_d(&|81 z%?wZb0m{I3>SKW<2)Qwci3tz}2|h;Yc0fOws9)@n54QvloKEoG4UAOF=g`h%Bi59v zzljJDGZRW8u_M6`r-*P@1q|g`zy1}Xlhu}|1_+bBd=KLNb*vaSPhfC*a7$|_o z6T$bo45pRV|oMnRcGVFlCEx~@Y8I8DV%;_!8CqdtdDM!PB z;f)dzix*)EY4z;6bHc;nwzS#;XFDi_JF0&xTPe}@b(petmF(za7?NH=Ul$e@J_pJ7 zVzI}}e5(&YNHEO${a0R!7X3Po1d|VmEbCe+2ow9bJ^HFe37RR%#QH;YHo<=6=%!Z} z!bicICO~yPd-iNC)@>BVvOa|3!~6HYKty^TD(p&pH6mi4#egc~DL)Rd7_DFAsg1Vl5?W8^zPl2VZbNs-M56e2GM zYY$(-akK$-AcHEI5?_wO(1#HSDY3dplnTp>yl=LFNnl|V%8G0(|< zs&gYW;ny}Gk#ib5kUbgsRk)e}F*=odXu_=Y3sRmp;xV)s28Am{tkVh#DEFY2S&eD# zt4@1wd@{tGnq;P|MEc2@?Kybx;K%1D?hPjm5g$;isBwyDaj_MR7d!^b zVdI(e=k1wuTT5YzHT?DKm(yqw>~qiGcv5c>W8ugsSu6)L1`=Q1Sh0GJrEVwuK$bHp zPWcyF(k<-Jv~rj8$-30Xsm4Amm%DfO?k40I8?%n@l~diHnQaBm87g3Fb8-?<-lUQU z*gqI1Va5I_XVmxQxn-eM`=8M6$CgU+wS63I=DEapru3#qk z-Hk*`(M+l4fo+J>mgxXOIGh;-z3?c^d5jS;<0^ZmT`Zzm0iCTjJs6H4($)U4Xi<;0 zv1L?2_0OL_EsJwVC4s5#TTMsO0c+Fmm)_P0TtW=a%cl15*2 z!3M#6es4=HnC*4^{47c#+W9)dKSL%Z+@+9yk=yh3VkWLohu;IZ*l*+Q2RULvO_oC_A=j-D7B zYao0t8f_scG2h!IDdqcfZlK1XlAkGxX@^?@v8G+L;}8jONGsx?zJuq)e*5h=Qt*i9 z_Xh5#ol^XXnA&a}&#(s|(EOhBCNpk2X{D(UBY;uer-@|k8KmbZqo&mYUaf<771b{hDk)s&!`q>wqonvbg9Q0yVA_dlbT0B|$J0;3aZg7~YV()^YFM z<7`Ia7_*7wMHQG}a2cw$W!{HxV{IDS?_-=q$6$E*Rj%Zf5n=OFChK>Qf8@IPVF{*b zFm!V8)<*K@W$&$Iu7+#WM-4Ph+tJBPDL1})gc=3i0bJe4P8RqZ}IqL0I=f<9qh)oqId5CLqp>U)J0G< zs42_F0+p3Pyq|W(ZmIP5fONaRW1_OA`kZKCmkKXDTTQUS)I<8al%TGNNGD4KzqCkY z$iWj(N=}UqaD5&4;Eur=%YFte2X2{fHBxwqH6S1WEc-P$*h7RhxB^S4b~hS&2M9d< zz-aY|&+jT74{Oa*3SVJE^z!~iR22|H&pu75;{Bn8`x4`T#FapV|4Wqd!4{W+c%Zm| zuFUgzG~zA&@bRNd{VJ~9AdW7Zn~N)1j%-yd56i<5VME9z_A^iDY^JT5@uU^MfB(K4 zlkc!;0Nhi_Z5^x7^=qJTAmIg|mc>9n?8gg#A_$q^3}YBq3Y^l&*Erw}Jk~RKJ3TYe zq1m zZQ+Sv!i4_?EsN=_CGZOA9!9}a?2(kzf@i-5ixB_j&70%>3%GPDa}`!_U5q0t_j6S*gRF9i|LkzPIhXKh(AuG?$71Vl|#~Q~Df^u2zSz z94LS*G)j{H)2Efp_fZ~`CgsV?Gv599Rszrbw*J~Ua7x0g;~|11(#aqZAcLSH{F523 zDZhPnA!AzW@{u%1)5~^zv_Z5=%@UqNl=#P-T;v<%XVgp>FP$(*nYq*k~@Vfqbaswj| z4>yQf%FW^fBLSPxCRatvi}u&P=LO~H$lUy@jl5?xMeqAZ032&kyGW)u1xhOjZv?fK z2R$diI_b#6q#cuiqGc_oTu2{pCn+wjPMmf{-O*0pm)ddQ6+}*Qe=>$?o%NcHd3;iNivG9@eOj+FcmqhRVSdu+ci}WzXDR@9{3t+qbJo)xXqyq5q^m+%rp`?j zH)&BR>MaaKvzr*W5J!qAJ0i+2o@jL&M#LQ~}#%7lrU$3)<_uV+t_g$~6|3@L|k ziBe4@#e$D#{LwII_OT`~)&+=kNC2{DJXRfOrvSSUtX*J8$PM2zo3aQqFN0cCO&1+BZd(5Po3T5{hI{^mJ~}^xRhpOb?Fte92boOm8yTGLW`I)NC9W9gAax(s zcA70ICfLZBRJi8buA4||Fgi0m@O+v;gc$ltBBc(=&IMEiF-8PCkRYW{ts!^RC1qQb zqj|0ysao*nu-E*T6H5|pcQdhIPq-aFek+d;l@{fAo#|9Ib>nzn%?Z*WmDmCqk)FFA z-gHB-zor7o;(1ovtfzn3jD#hj@C~%P4mEUremYX9Bsx*~9OZBToLM*b7MVRI2fC20 zj}86ywe{U~ey*FxgF`~%2tnhZf*fNa}k=WtSV*}mK6$U z`lqHIz*{+k;G$X5SVw4Y3^#fajhgghQeckiq!2zM_5HpmcVXoK<7m4_QYW~qEw-Tq zEyL8G7ik#D^bHYA872=FELw39d2z6euGIdGe5bk9<^r%2$5ZA^Rgh?jmt$T;gbxR) zTM>SS3?SWSs1YVWwx%uVv0AfV-`*ZTU&9!4&$g}J*UzpDwNvh{UJ=NZ>_|%Bk7k4} zLoVqxJUE*Vo2o~3(3R?+xNi4*_qVIvH^@krQRT@{SxSqmt7HbAm0HdD^(zi}gn*MM zmw~+m`}&Jqc=Z!qnHeZ5=f*s!Zj5V=R<9yy5gE@Gb2TkjK%qJH0;PJhn31;!gzt9 zc74|>G_v0gT;v`|Ma&~`u#s&KgnQ1PI7SFdgw`@uICv_`00C{;5Iq%kKyzZt zf}3Xim|XpuM!IOy+W#{EeC6e=A5Y%gf&9SJ=H{BDiZ;&(f=Tb8>7Yjwd#~T^^=5NE_}L z`NvJOKd8HY=Ms5@G!kBpDNYsOjwhLF>DLuk3drfe$=!&DI1HY2Y_O$H#^PYD9eOOGg90BYB}OXLImFfsObZLHd|MD_Tq za_wk?v>mJ%`3*YBP-YzYar;ZKde&N)?NdkD5))7cw_>^L!;7BI&KNur6EkF)ywA1L zuRkz!&#guIEMeQs+jlb}*&cwTBFsW;Ou&ggYj>_(Ju)>MeAmy*PBraPlX4<_^QLI8NB6gi;64@ay968k80k(QbEr}6!E$8Xu2 z94Tei;3Rd9?)5U=YM{Mxv2;a=#{!Pre=IGsC zVFDps>?iOKAuL_kdA)o}>kNc<>^OnONgbtvKT7Er3|VFsAqRWbajMMQ3tB7%`>se? zu)$$8q2B6x)gm3oBMiySll;L3fDk+3ifvI)imlwJWz@w{OM?}Y4HirA04US5P+o##@)Tmsbh z18WkW7ZKOdFRMUDHsXN3zX6A3PbX@i8F0n$$cP%sb3NfEQ}p!>%L1O@m64_hQ9MAv z5d7nUiulF`(sPrF&^N{h6@kbXBU4b|PzFN%_!-8mKux_G;gkZ^XXAEv?%l)4B>B`O zG{j`s4^T1=p@KH90ao=`nCkmr@lDgV!amw8<78drpbsY%;UEFRDmw@vNmL%NKyjcR zZvZ$^njRN|!-vqL^Ss~)S8l6~00{?8-~xga(cRP`o^~n{g1f+ZWL^(ok};cn*uVJX zf`RbyNQ98(G^)Tgwf}PJvp3t$=ZpW@RrP*{Z`ryJqa38l9J$H99l_nxGczbRd&oSj zWgzJ@$-FWXAsH+=D!mn~BT z$j$;=pL6`OFM4CbMqt5GF@(t%6pyw8n?8Y1#6?AX6t2Ix=kMYPl#MKtx?Mo}e*spg zB67$CF1DfYks}%y{qe_3)^;EkB#g~}A+ZS-7)1c0ttwGK35ovf*|Y5)hl87ds4}5( zl4}uf8Sn+bTV?TEG%DLYJ?DPUBBUPVx#O^Ge!(x3N!*5bwbMi)nR5UACUfckI8WfC zxjUcN9eB5H4)qH^W2K4TLYV!;{3S= zUx)p7?qZVP`u}jk0r{=}|K}t8pM09<=zSvEfzW&S-~nNg3Ah90Zqk-(LzIP!3}BsB zP^3`Nli|F@j}EIs?*cghxD^8e#7SKre$Je*NkMWTE zYwNzY(d!$lj1+5^(Z1(!)!wTVQjk(KXuLdtdzOYS`WO`i zcoytz_o^`?r>gJv^DavLpp85vV4?=Rd?^@+*}2X!LIddVwpA|jXg`vQ?M$>3LX%^z znMfc2#d`qI!NWD~j&^(T{{2a!_aG4psl2#TYSC=;9_(Twj1$CiM0$I_0pv3kZ0?HH zjm4gxXhn689Xm!q6P_{_cTc{6bXAr`93#Iem!0wBwa0VHw`^p@FL5Os>&=>!+szp9 z3XF;p0nJZ*(HFvx9F8`FUIqdxcH0TBJs2+^Dj4zA^PF+;qsJjGfNo_8429s60W0bl z2sT%~_Yg#=xMRgy3@;GAaU>5?3>m`4bpoN2!DP7APuckovd+p*4nEEJai+_dsiJB} zkvj`<4IZ0BjK4T+Dey$qbW)J!UZcT{!vxf_6)Q$xC6ebR->#?%iW7h+ntGn#aA>uP zgv=QOOYhRKo_s@YN#fQcp0jRtdCJjpzQW^Um(UFER3wri5t zOfTc+4zlM=l2cQ@PJX?#nhvA9;9eo2vmPE*qGFF8Joud9+W-rqfe3wkw**$%j#66Q zph@nsX|dn!X4nVFF&Bym;p;_)=fKc`98|1@eo)Y-_m;>&wXrp{A3uJ$m21SSp7OVc zW!Lcf^>q$SJC7Rkpa-lTYH^E4;V;H8n-s7roX9Q(m$b2^YIYo1PY(2E9PmdP&@z2 z{96_uq?>e!>g0Y+cdPoO0`2MFFL0^V+&eeR4I3f$Vo!Cq6zflN@rKWxYHQC0>@g6b z+2tF+2rM|Ev~u4v$(ga2DXOzGWU#`ebvwCq?)QfKmqBX^&djYfz+_m(Cb2f1{Ff=1C7*wd>Tzs=NYwF1 z4)6tq13BllVKhlNpKyC$rMfSzHfzgGyOMchn_`%hLqcPUel)d0dZ-`kl#`77@;)<%uuh zdef=3*6w_mxFQ_nB%6Q~8H1xO5s{3)HsOc_0{9eFF&d9_SIBpa>5132g~{|?^p>qUlz#6WCl#f(an=dAOo)2D^ePGMBq6a&S?Q$oZC zA)$oS$tzni&(I1_F!@*HQz3ZpF$9H!ZnDWIiH3*JN}LpzzcovH{BalRgY7eYf$#?W3KIu_p0i9YI zb5N>aKV%24;VJ;+#NUlTcFD9c#C=`5Ea2SFnaF>zuT_PF}qF)ueLwr3u z6uiISyE82rQb>LmK(M1zfwV>jJkSjkvPH?$=YAi%e;F=Uz?wh*{IjdKmx`>?v&o$XaDus; z6u>vgCi>{b>ygOJHFt@LsS&vr0BNTp@z4?FHD~Jc{dpBA{{HFrzVl;`{>$64XK z?&S)ALz1np?sX z@Bb2&qIao*Ke;C~mMv}tFsu4a5oE%}9u~U)?_6LV)vxoRyL$s>G8Jo4U9(_3@M}G= z;smTBj|GV!2fW2ye%Pe;B>LMRLG*}!xm|EIXVEF|WAfp>%ylk@L^Quprf8kU?wG zsai@QSG%|l^%hh|fFQQu=j!Telf00S5E*8!8PGL1^Jiux=ug?{A0_@TNpA_2w>rZE zYk)!+NR=U1ShuiuZ`lLP*)UWWu(x$y2 zNH82p%fz8XE$b7R|oe}v^PF%d+ zkP|`1-t)Gb?G_Y#uS2OaHf!x?|zu}7~XBaRH4kwcVfh~)^=*}JRlB-h>so5e_aAVn}f zmSm)qauWI$py1D=_ZKc&6jsi@6BO|zrcJGSgOPN0jGAw2DE1M2hL$@81>-=#5WUUc z-#-9H4T1gX!|^cnVCWB{i6`cg?mkAUK?%b6`mB>n>rPzwCNsSB*lV=tJ?YX^UJRj} zwH*>yu%dr9DN&KeduUoNTCla`Kz*{V^!zjdWD#`Qd*Ov4fSyDZ$nc%IVT^+l@sIMr zn8x9-A&NY?=dU6Jgzm~njl5X$1eT7FZJ+DvCd_yDSvUBy?yIvY=n`Hb87bBhsR)f+ zg#kaAazXU%R0L1y5;gUNfVIC2ewt2BLWDl+4=peTlnk|-sLUcw@oJ@sM{JuqO{BBy zS~@_Ka~hwHOyhYSzQ13Z^KWoO{U`uOh!FBlO&otK}C`~=XP%R>}$(TCEIQ42{!=-S1 zU2DwjJldimMouUxdNe+VJ`TS>cPT_4JnzDh(ht4rb-E803N7JA!&1-wM0`4GEq?Dmh{h`LYjY zx(4t~4FJ?KhDfc6IqfdxCj6k@vWPpF2$sYXe$;lCB1phGgjqZ)rz=CBe3SJD=9+{3 zwI-fqf5VWOg6CVfcrlsl#G51MFB11CG8ND3+eJmBPU7q1kV%BLZ$FMOhSBa~Q?f2{ z%69nkP8AhZ>7NB5NluF){?Ju&zn&5EBCs@3)a`>y$-TPUNbs(^adQ5|%CD0D#a{4VK*oP{AN==^ z$?N`a#JcrgGs^#FI|y5^mUjB_jGSJFGyOnR1d8ZhK|Ub!*8xF68XMgM1o!I|Tn3&~ z10_k0qXQ8SmxBooXxY+WhpdLdUtQ2Q1T^wM^8_=T07?rdaYh&6#L?qSG4ei+e*a%H zarw8ATwT6D*ewnziE2oWyd*+mQ4y!N3`STc@kD^D|CV_k9!|JjnJNPRcQP)<;nDG| z;Pv^s<8S(uPBpK^cYdAxZh7Q~%Sm%YqD$ZNdt?9{wm&!uRPir$xY2r$Y>KK^uacRb zmmrI+!fOC0Dp#*ZMuN+U(9)ocf`C?cDyqFYPm}y5P7&ilHqBoKBSQC+v@#U@$r*?+$2OSc5izhF^>r-Hhs>>EjLUi8b4nx}WPRX0 zDb-*PlurBdJrQKU#@#bSjxR;MAg9&Bpg$Zp&!D5~EKHl{YcLcGaNV1!1CvpdLt7TC z==a8)TC2b|RCHr1>IOXXL~2oo-ig|<7e|LeO;Q2(nB_R6=Qla;2W$Uv^nRqgryhD7 ze?jzdJ=)n&9MJAP5hMqm#Zdm${Y|NG>-E^ODdr0ps4MHR$Don5=w<|=!-CoWJXn`W zG&gv2eO{e)?21=0a7a?nyTba0(fZf!W~2?ccHs1T4B!iqGgNvL0X>?V zFDupp!oh9Xl^TU?HnQa^nmKjYL1YI0ZIsJ#%Wyf6#>k%}TA(vI&u`+$f4TKkK!q?1vC@2 zj^}ZK(Zh*Mf)_|R%o!L(Yu(o2yz(R#iz?VpV2M7gysAd{00fw%OV_C>Sl6v4!v{P~ zk;&%OQFy`{rHjE!kbb7W4A*8V8co-2&<#+~3Qvpu5RtE|$+%LTagW~TV!V^u3`r(Q z>>v&3g#u)@vhp^x`bZnl%|0$b#UUXl06B-ZT;y&oU9}odgC(0`N@}NEC~yIRw>300v>^VYEd;y499GH( zJaPIry@P{eXNEW~#Ws;N_?|+MfN4=H_X|4OXJZ6i4=_v)@CVKy?`uE%rwU4r$|9Gy zmh*ptc9}96Kr{K!lgrzxeWkT}9?s@CYPVDFJa+j=m;NsOJ|2Q}tJZFuFx1gNjp_mZ zAsXUUy`RBm91hfAuM1J#3Wex7TWL>nh3O}GLv)DhOoL4l2Y`H0aNLs3CC#Bdj%*Pq zCfVVz3GYMUVqSUx^5cxIhqJM8lt_B3S(p~i5r;!Ek=Vz6#sa`Tz}y7#?A^N{&0A9@Oz<%lacG4q%usFk zK4S=6NNEf5uhy0^mKN>gg?q)^(BG^5Hi9Ar;8C|x1qoaW{q&NMgEPsde5(q!chZvT zAgaR^Y8hOF&WOdykn{q+GgMCw&g4}WtWL+}`S!C0(69K_FI&2lK@yg)FQ_8TrJk{HrzY8m${fbwls zA&V50(PXutAVksLY;W8oh$DIMuG2P=zFSsr0T|z52)U|8LtmGvqEd<-x@QT3T8XsSZ@h)g^kT zi)7390A!j4nHe>e_*!bsyx*BP9MB<10OUTu=bA4SSOq~KgkhSTup7Y_vvpLGuYFsQ zoB)6=mX*4RO=8`G5H*#;H0XC0_)!@7`AEd1q3>+p7|MfMh~j3F@P|Z%&^=*lGYbuVEvdtn}(S zVXuk~>{+-)CG>#={3`olkf3`@~0cl$cQ zKA%W;ZxPxcy1CLD;b)(Y>X4+jcoN4{3PL+iX?RQ_`5ixoL^i<_MAi}}8`5?3I&}qk zv}}ADPLpzYjUk3jQ1e%D(}Dv_&pwnaJo&Cm7gIoR-f}kCmasc;D%_EP&1wBZc+j>< zC?2h>)1WoIde%Jsb!F3;f66dFIY1qUGJ;Xn5kN^b61=U2T2~>ebp|VO%ba(=#MJe= z`!mSI_n(6FhC55sN8BMOhV<3EYL95Wzrl1wf$6ukMf@I8C-2GIKfYuO`oe+ug}?4j zuM){R7l!v&n{|+o!e$;)XtrwzCH(7iZFm>qU!ICH^xJNJ>BCY6bPnvhw5oorXPfqN zHM(=+#(4g@G3pCn@&D0Z-^Q3B*7M&g3(5@tFD}M!1{^ie@Eu3GQGN|6*Q9>!_2-&9 zPxUoy(9SWy_6X(x*?bc5o=|%xI(F{#Yxw|x>B2mtlcG*_MYyUos zJ%BbvE|I4p`O%Gk!HhS+9-@aJ{e=hp&Y!;u(f|n7UhMFc&IRPc+5Mba4V zM{sq%=gvuh{-U@H#0_~RLTW^IVq$->J<2i3uu0eztfdF4c~UUT6I}6~Q2COy6l(uO zgl(XpDshQ}PzMm;`QxJnNf1c&8+p9d%#nh=5nsrUpl0q5wB;;~|uCv=yXq84F?M?^^V_bZ8M4+;I!A@r+_54mH$ig>{YC=fK* zh^o9;bVcI;i+9$iT>~DY|o&F zrNP9x=J0o{^9W6i7haO^#j3C4YA}TGWGUaHf`iy5^%2PXiHM0qzUC6zlr4e65hiR? z4vVKz|Di*C%uUYD&fZBt;jXoYU%Ao*p`{Ki!*CnSU%7mF3d;gAeJtj@gSP~a(Sd6D zz6-Q9=G)lxL&_za*BEri??7|^9n*Vn7A$e7e2|}Cf{eXS1G0cKM5CxMj}=Df{NxYx z39=@Ldb!ic4VHc5f-Jy^%(mdWugp}G%u*`P7*1)1WfaLD45o9(&)-qvren!s`n8Vp z_m;>2Mkkg2?!}jmi^F6xcNzN{cVqeb$F)%?&xTd+YouXOa1l&rV!+i=^^fmt`Ujj9 z4m0Ql9P^`lpi0-{y0Xogzv2;wV)a7Y4xwGLX(T)dD*+c#hH)dWAAyRHe|ACoDzs?r8#|wy(O?~N?L51d4=7@u>|99ya=^xDstxnWJY8V z%0HzUW$?zMPFp0S2+lMEvHb`<(WXMGz-D7igF^{$lu^aDL*()$_dvHU;F0@MZY7OP`>Dzk#rEiw2+!} zBD!!?&(|Q`h(aS=fr&7mB!AFOLaT^6u|9Ga@+O*}-@ZLMdjnMO#3Ew`)h3krwiV_e zQCiKv=dH-G2QAZxsQClxc*{jCKJ}pw>Uc?+TtoVeH%yyT@EzJo=?1f5cT>v3&V`sD+^HZ>~s+rl=dlFUr3sJa?=U=jNIvyN&~594uO^O2n1e-eJoEXLL3GKEB3*M< zujl8VeYR&rdho@~3Mv9o6F2;Gc{*kMFiX814BSO5CjOni;iMVB8hM`^Am_W)a>-^tUkqixl86wxQ2(sF$Es z&bS(Ed!pp4!%dM(pJ2;L?*)8(_{&4lKh6AV{fwNi_~J~-8K-cX?>oMf?`g5{XAAG^ z1$De}UKn?D7+=br&x=N%Hg23}7VKR|r+v$pWp~nJEniI+xkUNA9EEE}xbby-r26{M zY|(3GU#FDu`djPiSzk%*r~2{G(w({YgIm*r+D5W6{4+)A&1CMlrdYr@qKw6i2BJXXf5T<&}Q=itM})GqAN%}=jm z#8j_t`tx=~X+RlWhB%ZSoPQB8-RXZS&1!qypQ7vUMFeQ8h(_PRlInmFRPrIL2^qVRD1J0h#Ik9#c?Hj!)wWgG*eJpNcsy!WUHIqApjYfg z4L~U4LqxTMcWHVuVhH-n21N~QY!-MOH#aw8HOR@W&IQ(p%2NZIN)d4jz zPS7iXAYQfk^ zFd<;g6ue{o&3E6mpbYl2Z5rTEs$a~^nfWAXfM_kR+XcWL4qZte&zJfB&G!F@mJ3)_EhL&`0|?lrTt@}9 z`&>Vpn|KLiiIS31+A9@OMk$O$a0&ADWiaiF-x{nh7sT+1g5<)G7~}M~n=MXhvMs6l zetj>x;*8T}+jHyn3hnitow~D?_m8~vkk+(!>*U&DXj_ zc`;*S;}&Gd(Ubt_>blIrE<(Jl1Be!Nz-qwlGDXRjW;+58D?T-^kxmwLJZbjrvlO9Z z;cR(I`=Mx&Jg2ESa7+C@I_i@yT6r&|WEXkIWfRF_;+W|wV~Q8PwNp`@74URVjX<(6 zy=ur#yh&V7tE7xfzLB8U%oZtl!%`_r)34q}GGl~*z?>WQrZda#SFblLW?6gJeyM=N)Acb_F^^QXrb|jgOJ=^Ihl$U^Nx{_>aH|BRbZi8uS8V+^ z7*t0%6=GZwi)P5#PD1!w)fRmYIv)%da96#y^6N+O1zEzTiX9UxN2}&89A?4Ns66du zm~ugPE(Z#`t%yfqGle4lYDNMfhD}-22GQjE z#^hmQh6&_|kS6SY@*7w+@>j6x4HVoLjLYso@n_>}3T5va4I7umM<5vu%)^>=M|^(q zBU`Xdl;V6~7GdKCk2;`gM4O(?M3X-gW3EOU>BA71B0sIrw+rTdz^jKC5IpmW>Me!v z8%r^jq1iyo&u;98O5=jK3!da5+-AkY=xLG=Xs@Gw|M&Hn7Y@$^aSWb7KWRKLSEwj7 z*q`cX^7eobhskOqq?!03g9*a{G%`t3%Zkw)fG|gnNZ;*`P2|`{{9rhErY6LkZGh|^ zdMH=`3@BX&!X(Gd2WgEh19iFX^~COcBG6P^)bZ}10JQNZq!Gqz!;rYAcEasP_z)#A4aOZnGcTep23;5wk~9v$W*e_-hALoH4kPkQMj++U zhN6F^z^)U%!=P!GaBv3m5@I3H*QIDJMCw4YO)0Mx@J~+?xr5M-2w)_T#Y=%Pf_Zu~ z?qE8ru5mMJE3Ba*CM&daYZ8~@`)P)3eN#sNR)hoLG`)KN{_0N?gmL2(!@4o*c6W*? z*1ZSQq$6-jH5?Fu0|Iv%4aA0Bx-&vOInZP~aAf2F5L^za@fuuwc=3F|@RPp)r@RSz zNlLb=jzV~W9cA89lK|~^6y!1#CxFv4W`>(Y$|j6=EO{40%pDF0R$R7Q!@!Poy}G_) zbS-{%dP$X@hi5;7GQrpv2Gz559k_EUp5m6PZ<9RfpU`K(eu67^vxVk%kvYM_6_;c_ zdmdUUnId(eqq{rdz;kTsZHcOb0WGIg28DQIW`oMCk}T$9&}S8NaGsFJE@O`u z658*HXrC>(U>N5(kA{8P8_Fmt^;3cpBWP5FVzvB%TU`;^jCao5o!sS0dY)JoGk!5vUpGLOQbx zTaz&%s)z#lppZ@?cN{U|bpAfjooC!F#`{ZsQeu}8_1wj&EH zHnqUErEE@NHwatKc$zY>5BAdss%CId=f)1RVP(L9vSal;gnW47tW0&eU0%pK$nX5l zd5$Svz^5o83r0$vC^4X6;SERNXw@x@tY1W{(dv{6fsI6(&Fn8mvRrU8kP!?EQONaO^9gxTP4f z4lI!!j;LTj2|0$T$WV&F`NIxJUc>zkx1Bny;nsUN=VYt3<|-x&FWLm!l39fEsaw^r zyIcptKSF)SaJ_(rAHIXJpfz#dfezx8- zf7Hm4PiVSOVo>XPb0C{5p2@L-aXmSd8pF;TdpD@j3#k-s+9uP zbj2z5k?A+)kf|PmBv1{r8Gw7VAxB@|@}OKFq;dX%BQKg2F}0C)ErM&1n$%vV{Hu=v zD~mJ}dcKE!lEuklKPk2Fr4pgddgR*SD_mL9y9+9`25Sg-yHpG9hcRKlFNWHQvR{D` zZH8dWmmvVdK^zMm01cVCp26~>xLNcIYuE(dKu4RFB#P&~l0^R4C1=6U2}3B2yoPR$ z<5Jj_wmDg_aaCUm#cAK;>{ChhYpI0K%NAt=4m`@-#<(O$fFGl0)B#KlsQb-LYC{W#6ZvaH7wG*w}6?tv&R8fA`XY$29Q*}Bf1=4ZY8 za7Lx=F-#?N0uuWQVPgqE&IlS@wkH6$cdgL%+1iLIOLd_MkM%aPDP#HhXWdY*ZEkq5 z&`9O*u*#C8MnudJeFQ`n@p3=9Vz45mhh^WunL>GAl+1!Xg2vpFCm9E}CS4=Ub}a#n z20dT3xd<+7F^v^LTxukqFClCI_gWIFS)o&p#ZSfPiN|1n%+4Gk`H6j@!R*S>OJ4Jz zo39XG_e_5OkVSo0PVWO;PU8dYr&r??C`t_SLpylV0g$eRvu`tegTd#G)0dcgslD;1 zZ675~OKM|CF>aKCMl9E2JoH5X+ZlSwTawiT@^L0w66~Ay@{9^YFU?%W`26ywit;^+ z6gv4Qq1^a1D=R5|+7q4uN;sf(xW}P6m8Z7qnQ0|YPPnm7PX%coQP_f-pkAh<9OPCM zAnS(oF_i*Sn*bZq_!$7`6dl+QE`pmZ6us;#AdFFP>{0dts(4i+3fZ^mCpQ_iKN3s; zm59<9Q7I5ang@c~n~EYmaVE0kf?Wl$GMfRCle*_~3n2a4fgDvT7uOOxLj`6PT?%w^%QqAd|Srmx7K zF>7I_!*sR8K1s7%eGLoDJ}h1&Z`&~1#{Z^Irc&ct58>VOK_^|S;&K~(UDZP$=H;Dx zu-o15`?>F)>RMQEFjnQR*+Fzj*Me3vD1f$1u+G<{*e~+?`KlMT}3ii`DjI;zrR%a9g2eWt(duB9s7o#hk1x#D5>ZK`Kgh1;T);gJ*O zGj^^p1%kU?Y0Bt5X5B4Zx$0D#RYmQ7qQb($)l-BdFWtB?uW@eTO^fGI>FFva>1}Q1 zjg?_=H++2ZLynYslkGMd+@z`L#fVHz-HN$<_Xk~Gd|O@x?Sr%&uC8`SDKd2EEIwe9!EV--|*= zIH3R_TaZ5%{W{RBjlD;Y9$kp>kv_ZiIb8OGx`=^Gm!>05J+OEc23LJ_6_lDcXU?3L zj}%+h?%QW!aTA)VhM14<`V&e^OO>o_kXCRoF@S&WvKgD}z-q-@zI=zV)yU`yWcSZ5 zKZ#It>dGOp)i)7^jS1Sb6rNyf`j7xeQFY(e*9)qN1p%71kasXVPlMPC0|j#0^rr3knK0>*&$o+%oZ4_S%lJG; z4|uIo;F*%n?o#n+Goq4`6x!dse7}FO%i9fbUTVwypfxW*TSw;{1$Nm z>w^O_x412(xP|YTE~{E=*6GL+5fO3z@Ge!|+)QM*G<8T_kz4wMB%a-yR( z^z`&jt_*8#ZPmf&nRRXxZXP0MaCpxiH)1bPPN!bQt-Fp72{>4H<9PPOnt9*zB+-_F z9z6U##q-nOuN>kR MSid}O>5e1+1F0*3(EtDd literal 18179 zcmdtK2UJsQ+BTdJ1QCG~Q4whxL_q}ErHS;G z!~=pr0Hq_4L=X@H1PBlyko+6Z%r`UN`_4Br|G(b#ul4Pp^ucuF-r<>D>U>E-YHy>|#895ob^C#{F z2KuVX%Kq)XjE}#oY>L>k#~{!Nkb%yX8= z1GW{vc3;QoggfCBM^cR4_xn%ubi{eA4qv~2;@&}%V`~CA<~dxapG%gqoqS?d4mJBt zLlVZ;ed5xC%Q&3Y(6_AliSWY6`B(h~bJSVnhUM(Qard&_rJFa4Ve&6d86-7~cxv~? z0DmY(aU>_5GMFd4wg7%*3f?eGI#ne9z|bJ+R1m^U${;DX=iph_6R><3OnmY^kB02~ z?=xp$J*E8`A=+p$3)i7uY~{@YMNw#lkB?Z|g9fn=j3K)+C23)3#Ru=%o0WD{y=Im= zI?*eQv?yPG#YM+c6e=5!!X=`L#V0pVo40kw4?_j?TgPCN1~e7ZNLq-s#?OrjGuj2Q zbhVL#T1HB1a@V-+bvy;3Ap_1c3tXKV1%4&X_he?x<@+~Jl4b&y9%aG1Gf$31cCPvC}mA~s)zZSDP33rWHNvskyiG-7kgV|@hZh()IHkM2O4NyYQJ!z?i+shKdKPGT7*qd&ZmOd$to)lY zcj%?%5U8I4q9=S=BYVuXM>bl&bqTL837$^ITguU@94>P`$M7L$rWHPio?ph)XUQ6* zdtkP1lB4Hw(W+;C)-4<<+jP#EyZNWO>j_P=@>-A`KauMFn=g5kjc87qOGOdf??tBN zK2i}g>p60+Go={heu#{qPOCR`#R}@Dt5Z^xeGWD$0$urhWnH(mZ>Bj0y0VEA&3voFnS{&8=`(O75U2vqC|imKN-vCe#QPJHqKbY%y;MNdH0>bItf zPd1?HYKZ}1w{@DZHIC=+L06Jc)<>YVLoQ4`9bo||gkE`X<+X{9dV@E~XMoYa^cdwK zJ}D1fSw)4mveRmB>+E=C&P+i4e8s&og+|1kSSV#Jn0MLO+E!*{Ec9fnemYfEUNA#4123x%lR@!M0^sB+QbF1wgH2;rcNP!bd1N} z5=Th%c+@ATUzk0KKCrvGfEvkr!AhN1-Hoyz64PlV>9p23=hFrx>9^<`>%bD}LxtW% z!#8s}WuBrEhg=p*NtI5YRU9vGd5KT{j@m45C?^U)wVt68bz3zThX!=QK7RMnY0YW> zvA8cQ)nz6*C`!z>7t9i!c34w@`dMjYzk)&&1#jKf5UpGy+3K{eK>d&!wL3c>e?R6Y z9RS~m?)2j!eE1yuxXJIwRZY?3ptDox zU70~yS=l(|FU#Z@84@3Kp5JcJWFoI+=>mq;P3yk*D!^%%Hef_itgBuUfIme!zqQ-V z2qe}#L1~q=PbX**wh9NDf}$S;p7=jbG; zFhGg9sonse_Tu zq}i|Wss--Y77k;d05YNNQuzABfs#@dN%OUxJS#mNr?Pawarh(!@pFgZs8RkdsMP%h zeLS6RM_$;bKZqQYisef@r*&%AjGU#XK?m2GEzuX^!#kg^*ZGh(^+DP03+H<0jo_oU z-sGSl+tSjm4>jggftc<%0@Y_tn$f$x@s$yi$|p(xfnD6aOk#c@s zSmbB%sz+R&(2~_UvG^Vv6c9dP(!I_c)=qI7VD=Y>JXsYPR~z!7X3YA4#|R(&8mlUr z!`i=y#N(n1UMPO8muhq7rP3+d1kk1s`y1Hyf4ED zoAH+{Xx$?WToIW^20F)StVr?~Xw@A!0&iOO|3=Hp64 z*@*`h?D}gUCf)ayxTE@h zmj+&E1v?*S9aOKWD2bEX)%D|wydov>d?`|JM~jRJ+CiWlX>pfKo7S_F5!l&W97FbCO$++_y$u<_f(3%=8n5Fi=p9Yex2dcNxv$emfle@ajwz-+IG3pYLf?V zVtJnUjNiZp2Cyby8+nxzr>#d>1r_+jd9z-UV(^m*j$9?2XOCz_U%|0eqrw?`1^3x| zKQf#y|E7=p&>V6#lySbS9bUpYWkbH`HS7AQf4=m=P3hIFG3#1L0gs(SKS}BBPJQH* z0GL$l2Imk}{J2vd;9tmStDUd&0UJF++jeZeY&qkx9ewZ`BjS2E1%;$kJF)^un+_Km zdfB^>F4DBP%IfU(Qk+oiCrF>E+mEfI4{WuW*nHM3YKwUYVk0MYX2@YzcFri=R3w@k zVzU@~=Igx`;pfcQ^o_63F4lbdtkBd(Dc3LsoYQHE-3fz>ilx6Mc1wYS*<^*DW8Ynz z5J)I=CEcNveo{a0s(LI+2mYhd7033c2ZGPo2~yq8FN-6r_03>E{NN+aNB^+ZD_I*(zzn^+qShW0VR?}Etm$HR zi*ag5>m^p>&@Sh%DVh6oN^EJ&nD3>sK4nN|xXxApqm6}d&XCUbWkyH&zuq~tDDp)B zqLv_8`(dUr^?RzLg9B~n?q|(lt$27kq*JTe&wr%pB6iq<_LeJ!)@L)LP}!8dK15;( zCSl*caBV(1mOh*4v3)&qD!SBsBjzY$`;5?3`fP0NGf4((J^!l`6KV`U&8mh@3n0BXDUxy65*GdQT)(J5^)GFD2E-z%~`eon8U3^Aw@JV z*Xw(y5i6RSE|wuhH~&C=Xz9x`*}BhG=i92-@YZ}LRnOQJhN(|k6+b|hs9-)YZsrUu z>mkU}Qxp46Zr4Ls7A5)SF7@(6n^(rGDg~<2bz58JArOHfPNgMEMx4DZp(UE{I0nOK zhW-7GpQmmstTVFl!tLlxT79Y3E6l~2N_Vr5gdMQ2&Mtj_XLBT%;Kmt3`xX- zYARLRhi_>AVr?#(t6Hyluu>H!de3v}oJUQmHEYCsYUmD)uvVXpZD{oFBChuScy+O; zRI2xddXm4G@4!l}xr`L6`~CgOz=-Zv&o(RkINh?oVTEo|(l}LB?J-3ai~l?v@h-w@ zDDv#P*?d9c=tIp|vGR;uGoBO7BO~P(w_VZjisq>Ku*@W%?mq%%QB|DtzU2Nl+Jt)= z8%QIODE?4CM9t#+=I#$`VoHhcTDm3ApcT`vOu<2>uRU4A1HAxO=OIUsUlA5abk>vA zm|i0(_%(fyAk@n2{xIFOmigsTX&mS2&;7Wpu=Z7Hl?MK0V#T=nhO58my|5coRE%fN z=<-RjtVeV7<@(xZs1b}m*D=TDo)_Yii^iM@7j`e$m5Y(QBxfI*&pr~&X26`RIt6;l z74=A6YY=TvquB<_oOWRj>Et)XGU(aIeaE&o36uQ{Woof~@6qZBLaNPSk)VT@`a?u8 z#cwpP?5cEX{L~1!I5A(ZB4K_1L#B_LZO9;k(bB-UJnS`U%f!5rKON*h6m^yovR!VL zKo?+})oaCK>KzVVdfGm0Oh82JBSfZN?S}K2W=^?PU$phPFNm=Am{9h~Wj{Wi1R?r$HO zzPn=uUHO6O=@tGdlB(AJ6Dt|s?oU(pX6`-}@8mUVtXQF!*bimJI%Fp^S_4VXnnAPx z%qXj~k68cxK0#eo9;fhnFtVqIr#iZc$Y@XOAn>`ẘrL8NAka>tCuNt$O^=t8$ zy~D}wosoIH`BmQW^7F^;<=5`YjK_T_6J?K5lV?fGGi;A4wT77e)s9q)Ynyju4aGlV zjm3KL99mdM-pOJWp0o0_Gw3sjH%*M-MDwkT>tu;*1cZsV5g%$NMpi(%kp z<7gf`n>d^xe_-eJdMclxfDEMwhseIrg8X)DeQ3%Xdhx5qmFt)-&CdQDkJw?|)-T~U zs`C@&H7XaX9*_<0&NO4TZs(gSC%%sO{_HI6G9oIgPozH*y}PNTmyB_3W;hF6+gw+Z}ySnrd;nM`!sBU z7g^nGqsyQtq;w!$I-I^?@}c`^XN~CWT|)|K0)4b}czDI<3F<|=>he!i=+5ik!*Jf^ zmed-0E`6gigLB-yzw%^{gng}x&z7ryPuh{&MA6N!+f>{6#K&1>?Ze;NNb-+u5gOR^ zM9v_hPQ9$N5!n)Yanv8{ai5#~tL*qeU9`+Y5K$1ym*J+1**a-x^u>k@$mh261UTzb z*&B5iZeMpDPpz}jIwiCVR}Uhm%z{j(sM*<<+p5+k+SjIgs>N5kiwQfY`;{0tw=XVO zR4Dkp)h=D^xC{Sg=q|l5Ow1{I6wcuwclVozWUUUUNmH-sVg8Up#{-wr!El3c_yvHM zziu;?r1x$Jg?K9;2puo!CU1xBKH_~9x4jQJFKmJnxQBbaB;+iO_R>J4Gr(sCqT!hs zE0-AzI?^$qGq2B&ujQb}SM{vbNCv1sUUh11qf(!@0d@##6yt0=q~L+LW4qxL=c*qW zegn>wmXd8u^C&Ry`IP89VGC~%g==~3X!woGomsirvkavhXrkeFnq|bj^LJq3SH&X( zIyF)YE=+LE^2V=8#IKOvex(XbcZ@lZLZ(!;#I`?2c8`U>{HU+U^RGkDe}Smk4y(&T`8 z+@QMUOLRfi=6b{3O*u+P6jnB`WuziAdw3DVpird z_F8XWFrT7NOwulGFO)E5tI=X`(?u^v`i2J@)HrOfTj@M5M8Vc5#baSo(%;0&T|^h) zTGBOhpUV{P`Kia>Htp`|)#?tMowYSvl3rMkQ!J#>+Al;NVygCM-s8*@`%F1T+CrAg zeij>C{JL;ALZB1EpPg^#opo=*_zlf*;EL~q=XSjE!Cqe zHdawjdkrWu{I54=^}Xv?|!-k;?jk87yJgv@)!5;>!pO@!au@@+v#-CU=gp=pP-) zz#G@8(buQEBD)yZA2pqi^>@S7o9J6=_Py)<>^ zoS6?|!el;mBUz-HCEWI$8dJkCNcA#s6Y&hb93|UNDi2_$x9MRE6jwzjj%iIz6{kd7 z!bimhcEmh>2sT8zZwFwmL@4}}_u0LHn32HCk@=)jqp`MD_!?szmU6?fm#~vVXu_56 z2uP_7k<4uFE9O+0+3nj2lCE`NdGq&7DWJn;HH}nIM=jZ~@V72>Bg~c~LR8!BHbc?{ z;$uF$ZrC~fN`RhRpU{^*#F-Y=Npa{DXrsx~yzEmvoRcxprlYPsuS*&^B~ydSa+)To zW}O>8wj?bJZ!|W$?^Sfq^MVzGDlXNG_-@UnGnKrEKAOi#iHQ2W?>POPUWJ&si90p7 z>FQcLTE=~CCt@Z0mAVZ_+RH^ba;~x@OGI^AAfCrSo=d*b*TPB@MCbYB3 zM|W$r;n^WyO>xe^X7jErK6ReWW7CgT;>=}4vahSSMMo2=%HLLjaQFKT_;ODlxN0^u zaYi!pB(ADUuI5Wq^lBerXXCZ;x_T&RIyk*pis5axq_6`wrh6&7%F#T~QT|#cx8WJ) zYzc{$HVQo%Q*)%NTNV+5)75At%Z6L^8GQ$Wj^{lr!;MFHQuHrOD1Cq5E7MGX`dxC# zD0R6OjmB(cqh(q^Jt&k0=XGUyxT#9EyO5d^{ekwUz zP$^kTVaXdrRu*;D5C~NBuny%+|ET?)bc&Yw2C28F1@;^RF9;lE_jRJyKfSGtB^r*- zq+0gy8A)C=qHq=?n*TNsBw>&=fVq;Fi#!57Cl2F`Sc*qc#3w7ED}9RPU!I{zPf!7{$tS2f1=vy| z3h)>wqm;#A8|jHI?`R(`!5of4sn1Zddab5HT{VFz`4#S;8$6=Qe9U{F!Y1#d>Wa$f zRQ*k)mpSymKo2&{?)ye7!?KXe(Qbe0@m6{E!qjCyEFZd(0rZY?R@1qLqlOT z#Viufjsqgf`?8u_%c$wjhZfBd>gbV|k8cZ!^VU=MuS>=K+*Sfvs z+fKfFIn9hDMG3%YZOmX! zYUD%;u9nSe7?*LSXIRa6@^(7 zUnaPfqc4^85t`Is-sM3F2h1egH1-Po4dxVw8WG!M>j!sZ;*Ex%3XS@>%y^f#z<-*x zKl<=wb!|hIjjvp~L~Y1V$=v(MW;<#m{PHMq7afv_(UXlFdr^O?C{a2&Nihv|Z2iWD zevIX;;|JCOVQ_>p>=r0{A2uB`b-$FSY^yccd0Ye!_zhgh{)XqK)MDV-r23atMSIiv zXzgX&EGL>FtOZh+mFHUwe;XDwMa@(-rpZe3&3i(c9`$Y0`@`Uq9nh7hBJ)|+I_l?O z-omR}yEW@~XR7gy6kKoFgsj5E?Ks=`qIaoLv!Csf2HJla{^D9w=}e2fXK)~>nq6pg(2`s3T(1hjwXh%09?ceLw`K4l0H*H!OdTYY5(ATA_^jLOzik2 z{nlIPlpcpD1NZK|BA<3imEZZjZ`SDy2I+^uYRYF{=gQ^HUvsUOSpJAQcJycWJAz#@ z=HiclrSm55=y&Na^?tbJORt?FOGsY;P)YH?da3H{Kr}rOHAFwC*ZMiY9zo2&Wbbph zp|5ej&vdFSpB`hvW*O<$JPcnF1Y%egOuT9nXI*Hp>-9eEOaP+dJJiy!=NWv^iyve^ zp+@9jM97Z&ZuHkQ5G|{X(8z?t)Fq#(2cCbh&b0H%+djqe3lp z)T^<1aW+fClBTa9C19*_N0V;rQD{W~wIxu05u~Qr4|96jk($L1n{2`5rTYIh7XZ3q zs{mTK9@2;kRhbs;7m?bv!eVj0kvvnj^EiFo){O9Sr)MaQnCLfwl~o*}w1YFIeWzvQ z^w)o$G^jiWyTx_}e0S#aP%SiQ!GH^tJ#=grBr!6c5F~cB3A8yyuoHnA#Zr~}M03Xr z>UpMP1!J-YcUYIct1lWM-!;YW$^{JmzFwYNRy%KE2&#wl^RS12qSGFtlT_`sFmE;u@zLkqb5gd45C!D7 zyV^IicMdr)Q}&Af@Akz1Egj;&R{Ed4WLx#dmHY-V$2FVSEg$sl3hlxfAoqf{w;2CE z>*D`wHGdh9f8I7lb0F)$2nGbr{j_z)1)!EtKRulV+TCrSrRnxhzagHX+95z90$Vm1%cIV(%&U9>cI)oU{L%IEW$O#z2=L~y z_Xm}Ql_g;t9RwuoJEaf#^CpdnED#bb4&=7S<7h-qvMIaWYeT+|odfTjo|dB*#8gB5 z%ygPGVF^!Bkv2Uzp!ylJu`ZHnNlS5DE?nEKV;r&>(H>T~zNVhTOWlX%RWG`I0)}O8 zIwkKTdeI)3-|jax(#d1P-$k_h!ly#g9)ty#whV*0)Hz3vZYq$kl80kW4`w*(2n#|} z^;@TvNS@<>sb3OMd=zyyoVE#CR@*~VVlsvW*^!xcTb|`@Je-A@y*sl?u)}uAG!pvH z8zr6cviZi5+kR|Y~0srnWMZibj z|4J0i8GUGTn(1cM%o&2!@;9&2Z0h34Hnf#hWGaBwu13AsnRqS5pjF3EXHYMPR}{1a;pd{ zodrI-eG9sCmaFdM_{gpDcP&4KqG8k3Ps$&o3P5o120Jf@x6|(HWYwi2{2bKpw>*zG z?QC%%KDOvAOiPwz>R!J+cGp6@O6_=G8F8IXR# zI^P>3rvza&Mga}4it#+SyT_#6V*ll8{9oBt|Ksca|KFN2BnzLRB%muF_tImQo}!BO zG(zyJ_gR_l^+h(lJk>-A?Nw7<9p0^R<&G*~FfK8UR(BtRCUVN`3*M&*i4Y1s?JMl- zr~}Nzp!EE0JIW|zlWqB;qoA*{ubIxmOAJZKY>k)v3_L}3Z#=k%F+%?~#wfoYU&Pe= z-``3G%tYNSXsfZtLKI{SrY;$2a#=%!k3($%Y!D)UNso4cua4q_@HFvBKd%{J%^7fO zkAv-ge`yZr<5#Rc#8pwyl6pA!x+(hLptFnBpd4XxnX(S}@*Tf^0%s{vP63kEL`j zQkD}=&NZ*75zIBj*ft8-Q*0r)13Mz`4{z3@LRa5&>9xK9l6iFOqG;Vpi5QJNdu`SG zYU+Z>dWC_1CS>280fay)LHz)rDpewwWQ!)Z|P;CMgq)Osn7~^U#$dQ|J(Vvy`gD4&=nVigAlYU)>5+EJOaGz+*y3Y6bQZ83<2S`jWARcuaD8kKOeB@t>{F%Ezi&!wWWHe{6~O7nrEs%bL*vQaFWd&;H+v zBcnP%8tM7RC_cSb9;hE&$5^*j5Lz+y`})F-uIqzg-i7NjZnv2(&=>2p*_Xz)z{;%j zF&}#dT?r*yI9ieA@wKt8Z0%r9z1AlLyNS11pQ^JoVq`&LkQ8tngcHb|!)!G}r^R?) z@r>{D>iP!3i@_ZcxemNQvuNHfTt)Ql4wiMtlYlLy!P{4i(<%wz& z*Vm~1z~13bZssR6?%AYS@#_!&4vJ{MQ$89hns+ncdIoZDNsN1pS=7Tt9MUiz8C)3T z8DFmVN8Z!Z!ZtW+*ky{Q)7MM($^6V90-I$P-VKkzY~`iUq=AH85Dc{>cn8wscq}m5#b_Mr1H|6z*;rn&F&)0~XW3H81 zVWSMHRB9K?f5&rg=hMCyzQs@rQeMdFn4tKMG$+ZIx@PDR!;KQJQjl<+ro>fHZ*iM( zbWYXU?=<~<)6C#6>fMil{yTa-=zKcA9D^Du*;77Z&d z?sQw4v8bmJqT7l@bGqJQYgd|A;jlhn_a!{XBvR6q>~T!oNkXD<#}|Rcb^Bl21GTEC z>*C9Xos=V_BTxp!3LI{}jcz&~>I`QV&%bA-uRq3P@gA^ADZEvTM(l&w49P3S!2B!1 zO0$_g1drHhd_CH6HI%%9$Kd}9+vubSWIGgy1Jf7(`IK}r5apCAzvlTeglwsxuz0Jp z5u2ECcRMnuu9tjz(lYflb~Z>yUZy=gwFk-P?TM-jYtPPF@8$9taJAuNvTwlfR%w z!i+V>KygDm=NL)79A%I!63IqI@^y)(LtJB`1KZwfc{QoHe@#z>W*-J^cBgFZp&sWq z2WHftNOIiJXhsx2t2U%v>Z$=Gsk@8vphycb%Ak^S(%NV|!5 zzIuu2k`LIDXUShO52&R@Y^|BnyC_>;~GvffF zLMm#BrK`&AuC4zfBcdQVnkw0lYz1?gRdm^_j{!U+F!&t|tuVo$Mvhv8$9e1&^Rv2Q z!efr?akFko>BR22>Xky(2;cj1z)Yp=(c-GQcauno>KwvD%IQb>j6Htdeo;GMO2 zE$E0q=ye_ShpSK8egTKI*1bsZat*5P*rw+D^i}rF04cut@%_RVKmG!ulxkie6W|-l zn)lUJWc(y|jF_cEX{i5L${%}f9)=mQHDLd;u;J^?ljLp;G7|oR#h!I}?j^uWmL3h6 zv5nGVLR@A_|7wp(DTZ>iIQ(~M+D5IJV!!vkgyL+!^@ykbZU8GW;2zK$G~HYCM^FFh z1yTGu?c-&WlI6=BQMW7*xx^O$^zf+a|Gjhrh3)baU^YA@>;0tvh_>jxAVHW% zH!u1^mm%aA_@^;+2<`|Jmx>t;{-vWEPtRHW{P&zKpQ9C))$m(@TjT{xhkOqIR0=$E z=6?ZDYJ$hPX)ylq@)GvP%NPax8)(IPT38L3w{**DLn52Uj#FI=COQmw+ySi-?Z$x) z+KI=9Q*ex$+rNl)d<|WE$tq5OcmLATKha4-vrN^9*ME~6{FLSSlXJrZ-$iLR`1WEC z$Xz-mmw9ZE<%fVz4QC&XRt(l{Pdq8C& zG~I}!Xlt}vW?j|_yg?+Wb1HK>Zmmvhp2Ws(CHNX7iKc(6`8&|D8|H_$n`Irs9U769 z_Ysl5zK5n2fExz@ojY{ZC5O0{rQ}!1VX(=Y04wwXGhAn`JLea~qovaUSBxD{)}9Mx z4fpXhtY+UWPzWS7zGzmCEb6E$JzU}{Z&<6_J*UtQH|3JVU2%JJ={3NqY)<^?J@GyH z{;+a`?ABdJ4{{U1u3tzH+68mE4c7<(&kh1uKd+KM6n%vx6of+Ia@Esl3WnU%(q1!r zq?hKL#2MsZfNY*@ggHf%&pOH)W+z!ed=|Q*Z;I%VHuY( zl|om};HB^n@TsxR;@ib{&&u~^I{q@8r@+pKL3-(&FJKSlWRrc}l*lk9{~$D#x@Z)O zJBf8>gz|#3ASE1{>`f~2<wjPpxz{s*Sj@jV@%DF>Rc0G{9a`wM zNXo5u`IG$s@fi1G!*982+zpd1q5j>{><<{o-;JA3I&~djY%^&e3jjJrp7sH3>2C+^ z{;pcu6%n`CUFyGYQAQ!veA zP$iw#Na)2QP*l=?S70`N6vs!r=|=*l!|(@p2DPQ=}$Upx3xm3Ps9 zYhu8$xuA2gn3dI5>DBC*Diq8P|s4uCWb9pOa-Hh_0 z3LlEGOS)wI51tiEjZ)pe^P=?Lss>7M5B*HH#9(GYv!L^E?0C3b9@6n?{wc4pe}D}2 z!96O!FW1X#D^pcCxO{2}5I_zcqhYT<)p@${0pv{ZZgHO)5&Ui^vZvTyVI4S^Hxd8Fljd3ysGjn~$r{*~UfH=74kWhU7 zxZ!Z;-}_9DD3?Wj8>miNhf^fo_`kdO8`x}$t^(TTTh*}`!@fsfH|F-%h?^w9FuamH zzoK(T|FR7KB7A_jO)j*_SjJ%S*bT$J^A|SJRYkz9T;zb_rf_OG#wzJ38}-ky(O+~z z7b&Ug1ue?NfIAl0+r3~1H6^+wWTOGcRgwH2kD0uQ;FjLzm) zxm^HaOwz|{q6~#(0XEd9*G{&y2?f#=fJx091@uYS=k(H$(y>*kcvs-;tc4LrcHgfg zi*B&3L3PnZ;B7Z?$K|4jJ-}((+_>LtuT{UA5E2<)HpwvT0_}vo`-YLFVAb zpHZ$~F|Q1ElD1auuQA*XHHh^8pNUre8xf(Iux~(b(wYQ7E0Q{JLBNhQ>y`I;96>>^0AR-?X5F;KVE=Su1PS5N! zVK*TVYU2xMbvkzw3lK9I9JylPR}et2l&8hJ>9@YXzgQ=oVIv7v)_E-+9G5c+a@(l0 zKYF^h>yID7x6{UDxceWC$l%bJMgr}U>mIWcDkiAM9V+a32P8Der}hRn&$lgpxKRK1 z?@R$s;YfWEZ>>|!O3V$FLf4uWS$6W6CH=Z~4PF=Cl*yVx1lS7ZZ7swOqD2{bifF~b= z0!N6yTA8vuj^qAx!QPgHFet~5BpL7HLfuJg|=ZP0F`}=s)S8;L09@wpHZ8i z)8u-epa92NDb&wYCqf?Pa0HssI~<{f)@_|cZPHMifjSYjWm9UfN#Nf~CMV_i^tepG zc^FX?nw^Le8w!f>(23B1nY^n#!E<&h7~=|E`4A@41-yC^8KnlhHRwz!Lv2z~n=iMr zhU4CCYh-C_D)CB9RmlA=oh;2$S56zl%S+LNqByO;M`i{9=bOP>Q6E)6AP$4Q?*&j7 ztmCc|wdRPpBo9|S#rnvK4yPYId-F)U-wvZ3KX2_WpsE{tT=1>z!`E&%j#@(>CF{xF zdi491+b@3GAB-&g{R2Z6C3*H*%g>Y77T*@#zLGSNQ=)z=u=44hl=OA#cN~XOKT%#g z0O8ZCg5x`{Sh?{nPJt0UL`ZKQcHj=>9pO5^FAAK0sQ9dO0A0{!pixV{QUx#GYK9)f zTj9;|4_kLCdcpGQw39h?=oUgSgbEVlcOGnv;leAEZ5{77MrTTu*P+kz%x!~4#Eu#F zyz@f@D=dR9>Uc`M7fRz5=05LFN9NsX5R8E(kc##j3|i=Y{Ie+=bj(*zb=Fh>t%2TzP3(Kt^+W91&IMm`(mRqR+!T*#jhl-K z+M3Ye?2mnVIMvW8!0`&xYffFOr0&LXF^B^g3tBRs4Gp%(eAj88c6AIr9er#WsXBvx zM>2w&UgrDK?{vF5`LsbT&h~kkg~>_gmgu{&Ncs1WG&h93gq0WGmp-_J?Xcwbc2e~{ z^}cmN=`OR)FHH zw?q`W8-~?dwF4hy6Ah$i+2prBD5@<;4N$e#-;xFD9w_qc{!tYvHOn2S_Fhyut*-gh zpqjjw)sF>RBjXgUuLO={t32>*dDX_BkJFQeGm_*%3-?p;hugX)=xL(} z$AcG=(r7orUSLE(cIgfXt%xJ3NtjV}rzYZWPU_P|I&uDY^3#AG4Jc;89>o!SESk*i zu=156_zFbu`$pE+Mg$#MiLO{sH8ft zhS#53Y~qc+-jsJUUA)uMFNXx$R%khzZrUGw<0JFiOSG=DOrG7t6+^KlaTMn@?Dx=Z`OBh+2jAah%{tC^icB_?B1>&3sPjh@7xax(6+b+Iz`FEtzs@ZZSP zQ!ipYYNVbmH{4CdOzaS-;p*wb3nwR$n0!08`+XAnVtj!~!KUU>$6a`DogxARx{ z9n~+!O}pZChUMZ#oDuyoZgVb5zKSc{{`Q@W4tb-Lywxrg-?T)lh0W~Cls-0@;9Xj+ zM5)#eyWb}Yc(pxvy^g_;aXy^NYorZbI#Cwkby`(IA6&rCHy^?GYI;e`HNo8OtP`U4 zw^}?c#jS~>PE5Lg1UffPx=grO|1fl$5lU8no3jb?jcug%2YPnotnSgxj9^lJF~$|mo?N-X*Y&x9*)|_JT)}hEINXlr}v9la9{KzD}2gZt9!Oj z^wcBq9i3+@+dQFapU%^te3-Pj-Q>P_FZd&~2!H%-OQrayl@ISI6Jm!}v?+p4HBY=+ z-}2bTrarC@E+s2hC*RLKmka~0K1Gc}@x4F1EDJ1jfa_bnNgfKgs;*}mLV?RIL-j8Y z2A$Of?&o^V-*^Jtzcw~dbQrk*qNd1F>Q?~_fug``tC_;*t^!|J12WJx(J8y?c>n(a Dn^v(g diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_18_1.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_18_1.png new file mode 100644 index 0000000000000000000000000000000000000000..46a04ca9c1aeaca58c64526d9f4ecb483bac3dd7 GIT binary patch literal 39366 zcmeFZcU0Ba`z}agjIm+tqLe7us4BfD5=Dw2y@RNL^mgdYSinM26p${`yYvn!5tOP_ z=_1mbv_m;Zyd0->1F%!4(DRo!bs?qobqSDRb#> zWjeY|!E|&#NB{OKer3PC#?Sa7Ou3**QL#3rI2qa*(OovA*jQLoEKINc;b>%MZ)$DD z%PquxhVze`6pD?#2oI0t|M&)OYdaGj{;a%Ie8^UtOIr4Hbh`}6KR+c&CYsXGh4RY$ z{gb@b@B_4O~`)*YW-&Mpy*c|JWH5n=D-pn}%Z3Qyx#HZd-|~;lR6OO*q;Aq`SGBe4OLZ||QR=~2@)p^CG`jZ}IsImrlOC*Tz}_?k={a zMKw~wL!12XP(x(uUw3{@R*sk5wrf{=wAZ>zY{}Ff&zPTXtqzYSMhg@KFo`A%)`qz0 zwx?<3)J?iBj3p~XiUhCxO1I(YZ8*|hWdHEdqvp5wwl6fv@sQ666S94|qq6X*$BLlQ z&(lYGeln@@XG&Fyy=dh6j~t%Eix+05 z+GN34ZyC*RL?k0Nm`f)t(@Pz%CB8Os)}dvIqQ0RPHp>T8=LPtY5ar6H#W>Y)NkLp ziJ$;V_ zwd2Q+%LG;huw?qMcxw6`<}Yq2qx98>ZM8~CeuZV>@LLd;WLt(_37_Yxb7G8gpjlg5 zvW9_&n%m-3Yq)j!Y3u25ZjMcKSF>64aJAEpOyp9En3$O}@L~sL`{@3V{Jyx@ z?zKM0;^UFb=JEZ_7QrOx4SK=LuewW|GJoC0Y@wf_6zi>?sXsZ(u6J+S{wDLxGO~VB zns{nc$QJ8dd&5W4|CEv4?U4)R>Fdlc z^5obB)pTwCg^3Oo$@QgJxyo8CE|oI#cJ7@l61q-34k5B3+*~|7Je#*{5#`(&AtA03 zs9j(+Nf}J>tyOd@&i!uSwHE(`RXPPLHswmp?bX#))j}IXwM>1z0I}Ko60`~4NHLdl zT_WqNbBcaP1hE+$l(8Ju@J-7rD=8Ko*=C<##pt^X?w|aeRXHfpQ}goW%ND%#dw1_9 zU5Po*uJrQmVZNI$3VL1Th8rSlXV#-Q&srVw4(8N)IUMDt;M8sFL#~m9g=IgF{*OzJ z@}O$1O?z#q*x6;jlRglWFW^_CW4YmT?cT5X|c{CLE=GzJ@v z+`#PI+|%gjX!02))8#sf63cNC8>@4S8qXzMX5&uCKYu}+t}xiouKKv5qQc$7L+$0? zTU*n0H1tXwTe19-JZRLSHRs5zjp)7#uL`!&e;@31UF>mEtMK#);?~pl^z=;8FDu4s znV7$F>)Eq?m%{}vr|T4`U%mPQpSFMBzPOW7&gVaU`ee0eI#?6rI#o2RnySu4%EtQo zdWvpQwus|IQlkV-{veM&rKI7)qXVP;J}m0-vO%h^uKu-o^X6oH-&m^99Id=T` z1-#R|Vu$erRMpg*pI)MlJWf$femT`sGLAc`INJPRqVh|MS}NuHm%l=$%~}2?h3flv z8=tPmNYO->xuImQjdio`!YuM)3=9nRpH}``Ek*THY=A@xPsOV8>C>mV^M)rV7w{h| zL*dr*uQ%-)p>|n^R8)8+G&2<0v-_Zj++3a=JS^c}*qLh@`*1%;O<$h@xgE`{ms2Iv z5@och5@ApE_}a1gGwO?d43j-28rBtS`P#WR4a=Rj?`Mzu^5v?-Sc?pc`}copGbjJq zv}GQDE(JHgZQHg$ysw`(ZE|SWa~dUutRYggXR2=@-=gE3i;GKW<62_0XV`#8Tc!aI z3eTLx^=kim)f1`h_M=VluJfOy)$+{LmT5GyP0c>NyeF~zZSS0@k=2LE#iZ1}%@JG^ zfe{gD47|qA*S^oqsbFKb6xo~9M@#liRvRDkKESE@!X(P&B0AoX=URT3Rr8%)5=rFA zXk_TxrZ(WGjV`ns;Np7Xuf2PijCX*i9jxy@bHTEwxOGxuDBid}EVL_8A+qV-_Ji46 zUa05wVf=Dst_w{)PJQX<4q<&C&YwTul4GLyV=HKDYX>`Y-{(p0N+P?Mm~Ie< zMlcp6X^LpJ3*+sI6>HRRxrH0GgWyXA8}mk?p|YYhcX<}kgwm3*ayuHD z6(uLzJg_7kd}s-Aafj|~+0{T5KBbWnk>xPnW-%Ul_WH%(%q(84|BJYPUDusWeLf6% z79CBTyw|IIIlCSP1UM~iBw^iT*$+3!4@P;enC8@tXI5B6NP6{-^p?5hd!XTZ+m3vU zVPwfP)ODMdn0?PGEYbV*-J>Hp#`QH><+~(TKN_+;?TN+;4PK}V<*h!Yp7y+Uqp~`H z#c6cLxVpT&uuy0KT|ltr+3BZ7;n-W}@~!)mR9-M_!F7%!P?5cT^}6e{Lwc`6R6rK;CwRp12) zt}hQqTa4EfO1>Ifni-&v-j5r!9rX<1F%Xb_cFM5V`pfHo=nE8|pLsL5=!#45-FZad z+h^mdHE9crwA}{|4CN}&)*j_FUNTWn(=`0$*I$cUhHu@XyN)d;Ocl>O{x&ZfwX7YK&Y6_eDE9JAaQezUF;rvsb+GH&RgncQY|fDo2twrIdZ+ zgGFC0TAkC%Qd+jx<#_YxaA5|1vuBka^ehq)Mjb$D44b#@vl%VBlBmEmFkP|XsNJ~G z@Jq$&>?7MQ%Ywnr3N-2@mxoi)Y5GgLCx8g`-E0vKy3_DyyhCpq2uiU24iRh>rBzrdv#r zaidP0<)NXQGF%nk1$1=+sZ3RDc-pI`;X1VOsMxXhCf73b%TlD7UH+~O=6cE&#ABe3 zuHKB>&NHe#U_U>GC*HPcm)MJukr9i4d;X6esdVLAG9|2#s)?tt|iNpq8wBVe|F_Ez5Jm`wt#8$)JYn=|!zzkIyd+1dM|r%+AaZsH7HmX*cN+?QuXP_2Y3zn}rS_TM{5sb+FYGHp)K%J*1Z zvduGXt}<+4^N>9F`|mICGDb!|#RkSLEjc?(b!!0us^xP~PM$oO3K)sc406%?=jY8o zmImO7t*xzy^Y<6%GcUn>%s#&Oi(66yxLOreA}B1(OkX4B{APm9W@l%Wv1f&gk1#Q% zyG<2Io42JES#d~(oL0GrciN89bX-r=*bdZ4xYzpA%L_y67i+|JIxbH2&_^c*v8ySg zuI<6Tdk0zB@+Br={4zJYBCu9R=4uxi3*Mx~*)n*StKDJYez&fe%{H<@Hin zV=H}jjiWXX4emKEn`G9SLSC4%vU09oRBTGk)jJ9em(%nI>SvI<4)drlth2Hy3jol&49vc&I*k@?^+CUtgc}HK2raa+%|8 z>9Pt6ZCFDKfG1-gW29Elv8_^`zU*?FE?b-j_AtjHl9iQJ4qz7Fw}1a}7M5svqb)lQ zy+HAmQO>&dj?ay1;o>qV7Mh`vsXvtU;kaC|DjFjmZ3>g9U(vh9I&u=f4h$UEqbX=$MUf?`Q((p4_=q+TAUQS|V$cS95n<^exv`qV z>@lz8qjdrmRvC|SaCkTo7hun4*%&2m)>EA4xjcA~-?WLXRs;_;t(w`b&ah7>-$DzJ z_7pe>?tws4@0~{yP<#WTA9df@=#;H-Je!9%8{U{xZ>)kBsG6ZGjLk9*mIiJXvK(oN zf@Rhe_u$&KYZO#4;TC&w-Z!hubFF1=PCiN|wDueL24fnzzA!=SjQt$yN$2lvn-Uzd zWvjo?D83j`$>a9m!GogSi|5bZR>CdjL>{~F@X+qvyXj-iWn^Tk(CEK>Pc=-}&hrJq z6HRYk*VyglK9!q@H_t=Ox863R~xqS^_sx^jJZ zF5%%Cyr5t1-cg8NTb~WaC0M>PmMULS$}B>8Z+N$*y1E*bL-Jf}NMPXC@2RGs9;77; zTY~@f5UAt#`0?+F1ziCv{Fa?9pR=83ds;@e*HjZrtsGC; z4K_A5p=UIp+?_zgITIjy#&>;ujs*Im5EzI3lZ9==dg|2s{tEZTs1UCJyGT+> zPJOs&NtZ*6+j9lP1d>Md%5!XsX5@DAIL~&j{4O2IWVUANXDj z^4UB}TWv{JsY1o^E14>;T>?#uY-_LZ^2%Yx;~J2%P-CqV!G6bSoX%gK@ zyX9!1+St-H`4-rseoz$-&kZ*^t$1(>3wJDGNia!lM^Om3jC2Xz3XI3%Gh7J9Srs6; zKJq;*Le#0@(AjHuD?PuL)23?Y^=;l=-px7Qo@p)d_~XZqVx|M}A^LVpdx}w|IcwKJ zeC?gHs{D=&=jv7oX0i>S3pyrCx-6eKEJ8`D^f&4)brEj!7_8aPit^pOK**S4;&bRK z9ad{A3tW=^-H&zNCD`ux$263;35Z}e_W4N*d^etQJe;GWOo4;jn;x6e5yjgH#fJhzQdjVtXJzCPkH)>#MprZ;%roEX?q zV$*+H&Jw7wv)@I#)Y&%JXmXJy(D&7=SDcIdRNb|vDYNKI{W3GL)$f(Yk(s5lvcX1k zW*ciCPDTs0(AH_w!=I{PV1!zx!N)6Tz1Kg^l4a#gkfK*DEs%PwY$c0kkD7XUKrwAz10g^=n(j^Lv2=h zTAD#cZ(1TmDdzTpt+e4Hl;jTYR#s_$q1CS=0|QS7Y}0|gjh8daS87Z{QG&ya0QN!# zGM`6#t|V*q8s`YFwXQ}w^`5QW$EDpOKT_WTX zQH8<>!}-mJlno|&_NBhTRI(HpRlnyEGgVuz5YCH(-!)X%!+j^ zCX}JM+($*msMSMRj1m$Ou4pHjI$Z+cmqBRxc)$)ui}NDeA0FTeo6NcvNWq&It&?7y zcV?9d<2CUw(krmi0~+rbD9$z?i1A@Q7mz;LTUG+ytM~t8|8(ta zAfbDB^4Xl`6^ADvk!OP1=$Lh_=QS42+N%@65~88pq_z_DskyRiUKSKbJM#^u{rd-B zO|PIcj9<&-6@@5C5UNbOM5>wcFTfTrz~A5GCd^bOha=mfBi5 zQYdL92I|!5cow`fm+)}{^QE4a~_Z)wh4E#&fGnIuV4SkrJZ{Tf@W=AzIaFVPy&`^c=erMfB7ZJX}Y%~xS+#=-kc##ucR%#b@BLU zf@Wzoj2HuhKHW?&;Km`xn>Ul>hN~=~Lqh7S|5#!>P{nvq@YRM%xl&u2)^#gE%T86G z#rnKr9=+l?{MRV9S}@+Gpj@v-F53L06B@yZ;|n*T^;SbW=O5A zPvp7!m{sJq@WLK{48@JaM=#G#1KoXu+-{0`jouD5=qSW37-#gRU2$6n-$y z32n5;bAZ-8qOQ~M?VVeTT84Ws%FUt}YLEcRsAaolGJvtGoYI^IDzp!Lv$)RKX4@g=pwYrScnDy2WSv z9!yHQLF4Lgx+VjDNm;7s$TfYcvmq#W;T5NTY2os{X3uwR-PbCL<3vU4;l)+1s@0d% zn?Q4&`s5;L4{~xRHFb564Xlue*Aj3%IW_X_tDf55?n%>K+sxt7A{AIEn=y4sPEG}S zfQxW}el>-(sLCy`fv5P5>kb8s*QO5}qc{ywQQ(<89E$9j}4 z&Q~4*J4%P2Hv-3wRKM0&hEni0jJhsjjV^TCH;z{Bl6*$7q~rle67`6qiAJ679cfW|XJzb5+Ji;Y6P#YxRx;$LjE5QpFE?h8$ zEMirE*w(>I4`nQ5oFeV+UaIf8Y_#^hauM^P20ZJ3+7XTRLpl>#3kOvE82Zo_~JReicm$GU9L(IaDu=jWe)-p9yj;eW0x z(`NcXse3?iP0*s9!u0jZGmH(Q>-b(X2)W#O)*D3;GixRl(M}8e+qQ0f0(ZJ=_|iBLWs5Ax5z2(OPq$a=CteaB}|JQ$-Q^ z=z6XxiT0^rCu;Gxck8?ZMjGSw$+}g?2gJoY<`&j}{s?!$k5O0|U|m*5=2NN5+&q?1 zXhC9p{3txqvpi1YZCtgB?f8wBSm|8_;cwojY2yH;N;gws320{QdVS zVPP#LB_*?t?0D?A07mJMKCcZAvfU>=yYEl`t1eN|d?&u7Xd*$VY8LEFuwc^b!UwJ> zg}gkT@a7|LpPs(!@}@jm*zaxOHSlEmm~4>ku(Q{_iL3|JZxl^=NSJeHrH!fUf$Wf( zvfv|`v1J6VO}7IlkA9M7DT}E%kdPx85S$pnB&C&oLnd9nOdD2%^3xNS&oQw)hf4$L zY6L7;1Kz>Dy?Y08tt2HS*KoPSMTZ`{F3)O679lukYo>uD@d)}0|JBjbpOEDBK7UC7GS4w#*+KcZbw4fHKUMBkaERoMLHs7EAMi^n?iQkU=bG&U-hxh=Lq1FE;Tf)^v?-tdiL)l(W69-Ub< zqrWg;U3L%3v#UySgsuVTzX`;b|b^Kxy$E=y8X@$Y!Jby7WHUP0VJuW|v*MC+*JLp3oXo1A&5}>S2DGr}i5E9QH(*gh#Q9%iFtKT?d0SvdaQQ z8+jsXm-K5V4dStPGJwHS6r&~1?T~tOfJ+%kg#~m;m-%s9tE>%4hrzNTdN?8C3oR$sHQbliC zzQ7|Pq2J%%PlRE)YT@3x*=rl2wlfd#xJq)Jr4=Sk(gwbLcq+`jjgsTMGMWe*>zqsz zHfJtu1N)dAv=>@st`0r+jp7R9gt8a?{%*3MF9TYviKxel@n-`b?cDdPe|1z>OJj++ z1qbl-_>DPPd6supXjE2K<~h$?lUwMi^W0c-x*Q>Nwt2z2Y$2E!11QslYSD?bn1};q zA8OL)nH?@vt$hRRc*3#Wu0ygSs{CTR4g}f-><9Cu@BM)p^-Ipw4ii$X5(lgOj+j^p zT6JqeH`M5VdoL$#<6^}wtH0NaPJ4IYUI%SD)?ZI`UzId^7in-4`qFT&e|YHHs#|LH z-c=CgA)Y??!?vSz<6h0T#RX+!&fjB92-ospigdxxfWpRSKW~LDg{Vsjyb}8|E{zVa zpBidgX;?@L?^y$2EJ`$i#pS}g@Yx>;gg)MMHu1v4eM-*Gg(T(ygL@PW=`eH@;UEEc z+>o+ra;k01K2Ou&7){K&v6ZZuR1NSoCw6~hOI&lR`rV;S{hzv>dc_pmrE9^=CwO!V zuQIc8$|#C2s0KT58kBc;drs!H+lif6#B=XjECP-e_B5=(lFZ1+9`)~DbuZJWl^o#$ zW*|*(IaUYic-_4$+(0V|XF)rw&4OEm;URk30gZrNjU(!=0mUyNf6!MO4zs-u-9xnsyi3c6iH=>_b z5QkoIZsn!91$P!LVwPbWhJ{qDub9KzV)0yh6H#oO(?L3sv6j!8L|4%6`||^Ltl6As zr9krI5^BPcYZ7CC?74jLAImd<37@mpZwL^j8*h|zw9{4x0grg-x*T)W&7VJO`ZSjm zUBm9?_A6fnN}!K<*F0@o&;*?5GUIaOzyV{c4fw0vOv4_$5y1^zT{7R3>uX@@@*1JIsJDNI%CoNo0}UFfHCU+gVragl2-q| zduKY?nMWTGgMQM%Tr$`oK|}ecAI>gO>RyZZ@JLNguN5AW{l)VjC*^om0pn&ZNl%0? za~(haE`B3brye)Uv|a#fDFd;9WMpFKQy(iJu!72JSJaC-DCGOq#E3iyM_@ob{p1!c zx2eJ>;E^5ECo7hR!gZJH3i=XHLM`{5H-5LyU;L!lX?p66*)l4R3H!hl?T@o(KMfAt zpJU(qx#EPVl-;`>u{d1guOV>Qc^4A?Dz7 zb*a-l(@2!vetp%&M^FufS}f}Pll?Rvv!dnA#jr3)9LdE65R^HZ`quMrLvXT=Dd&bL zar4m|pKRtQavH-_)IiR^*}U!Srh@N@y1#D>7gSV42*hDm2oWd}59uLl#Z$iYa?rq| zXL+!3{or@sMEcoWW|>fhBeoo_L!l;hlSI?$Kj?0P>TYaBe7#*_-~UWFM`g8!yj(Z) zXb`@lo-5P(T=d5CignnnolPMdtS3-hVa;*g5M;?Z{>rw<& zmVVg811)EPq$)#b^P>Z8&*~r_a&#&6K0T>uHv8?v&>#%gLie#4Un}(U)Rpk0#_ z!$2606PmRSAl1$Nd}5hpRPFpeR>!IC(N~=deyWH)03yi*4o`7wCj=UE8{%Sm1{?5$6$83F7^A=KV>_3>dGJ0 z2jA|cO4afj*S&AutPN$##4~FJmLln3NF?&r&JsA~%fNfC{s9ctdqo~2ACH#79#WY0 zn*An&$2a5Mczi>Uh-FK5>tM^{?+zN&QSb1fz!Qm7dJ@<4CjoFgjiJ2K$f6WaHM^ks zSbHw^AV9~FX;0eS2mE6l49}?h523ZBb+8R3VUoGdrH)up?vp5CGpcO zsG@)T@%m_s&~>ku%lK2GwH~vGvCe+8uis1cAfzZ;>_Qz}rDRxz-@O&jx+9BQw=oLL zn~W?D{V-Dlk_iN)DlGo!ST5&ikX(~cOz0myFgni8E=zP`)4xY97P>B^M7ht(*dI2- z+p4#x>k0=?TV7I(5Q>3#*)}Kug&`5Swzs1u*Wgz&yN(>46RL(}R_x&a*4HWzcv3c) zbJXT@6^Ts39pJ52DuPZm1|*Qy*3v7kCp87xKckRC2hyI_8=Oe=S065zig;)7fWPQ7WNq=kCM*1&pI;f$v)(EiMB8n@yLIo4L*8V4 ztEFiw5#5MnewgRfQNuVZbsdq*Oea2o>s-AcTx_*?)PKU|S`scFA^8jhc8IcvOj{;& z_7T`^p$a)yV9bca{2Kc0J4rMGCM5&MKxzskSqxYxW2hD%LwQY9NiYGfs&@8`2k%U_ zAW-rOpmnQ$g``x zwvY4I*^PHs5>ptdK zb_pQuqq9a^)Bx!qBKfDR6~`+eO$(SYlrSa8LDI82Ob8kQHQgq z2KNa4b~H7!ya}a(8@e}9^)_gI8+H@ZFw5tm&78*eAb|=PfD53Aqp)|I{}bk82V*7D zFJ!1Z$4PC_c?EE8ElL98uNPp#7cB#Yb45V9kN5{5)B+y!bJ`)N+s`?I zc?>d86-peUi8c;thrZp9NwkfzeuheI!vmZ=)5@dwA@DfA{g6Dl3U9+x=guiddr(86 zW-nWGl`i(W?ccjM7MG%ga@7hJl_)x0s)CJybYmN2Xft~HOYP^MuJK7b^_T&Ypqa~u z3s^RR@#1mzIuGoGeDH&ngFdJtP8^?*ForZBW)4aOEIz*g&mI9GCy=OFgasiH1W-S$ z+S+1);_s&`)X7w!Eq2^ET>4hjxdc+NqTHrF5d=P9V;wi&xIVwwmvA{e7tGIR|FtbU z567W=$`m_VP+)EGUwuu7uBhm3coRStpB3ycyo5t1-n>b|{?l+y`?h>;Fcd*ASn$SC+Bwks9b<%PP;PtPnilG}@baV$a(-0l1} zU;bp};^M0H%+Snw%c)ajXH>v4oTL<+ZCL^7m40yG>sLmr#t+ZWUf&U3KQuew_u#K18E~KcByc%bj2F~nTG8#nsE%YyhXomza2zj(;ZxkTXbCCCB^r5I zA+8^pO@jenyy6>T^B<+SE4)Gc=L!u*5v2ZdWtey_qZ_Y-+J#wZ?f41%JA#n__3j@Y z9;R-10hLOLQ!`^Yyn1_ktI)e5sMS5?XzEq*!^clj9je~F8`SKLZ0|hN?G~*VCDt+M zA&a!PA6~=I=XK~*zCUl?_D!=7c&TTluLyN)2AX5Z8lrM-^|Ny~@G8>JEsUc#+K-kK z#a1pL2e(*-(9J+o`RATRRS^wIRydJ@mF?|<)e`L(ybwZ`OpX><+Ub=TE^MFBkB&1- z8w0|r%g(^=s3ghMuIW~2FvatQx*l~=tLXOcW6GiKAI4n_OP8~b}45_3ij0gg}= zz&vlzhb32JH9yBU-uGNvG3uiFLBcGSv>(oCKGRL}cYwV=0C+;7Ianig6YLO$sOwGe zMSq81Hg9Ht^5aCC8T@yhKS-C>E$_5EYvi->4z`04dvl4Cbx2e!37@1#JPrvZXnS;6 zR^1DL+Gbg}b|fKmn|UVu2RPzc7?4QCixP@(eG`h2hf(}QRe5<|2q7lx*Pauxw0w=K z;{j`dzB=m$3Bj$+H!G5=YNxxk^`TR*3y~>GT&WYuSf@!KzeSzB5TX#VJAqQe-6h;a zq$?2jNQslM+1dfyT9Z{yCN3@@ABV6Cl(FmFNBz48Kp#O*%}KU_`A=g15f?AG%N=?T zW5T_L=Vzs0DwbrN8~~^cffN^y*sthXe3w3^l72;i3@<_oU6E2aiPGD8>!(fGYhEE4 zeo^;)e9WPhD<}?s1n(jBfNW{1SBr5@GNR-}$Eln-ym4S-xzQ^Z8f4<5nK%xe{4{K` zBwTtS#i|Ch)(l&h401&DG9#^zjv=fke^m6RpMF|F&<#&SGFj&7iH>qBf^x+dyJL4r zEWPe`9yoG*AnRE{k7GC)xoGl0V@|(+|2}8?W|Dp;157YP21kd(MM(oh*BSE{ow9Lt zgL*=ASV*~-1?!V5$o8}BE7!vouc!VyfY4ggcAnD5gTDn(EFC^TJ{?Oh=(Q7Ss|h7h zKdfd%=$}*`vlhJb=pauDn(xqj6@FMDr6wM{J2Z0*D;08X0Au0}Z#*6JQmqV4Eu=+I z8*h%aBwI;r8@74}d{$akwgBK_4mf0nCYay1-%=nP9wkAYCZhInc-;gydGBJGn!oZG z8xOWOa}ySi_>tYUQa}y#K1WGf5$Rx?Q*&5bHzz)4X+<3*8WaJwsayA+C~S4qH@=M= z8<`de6LZO~JX^^?^fB!c$MpEQ`(3`{%a)&{P~u4ercU=|5`h-=oa7my@DtpCVU?cP zlU}&Q6*L^8pLbXY5HNuqNTQN+UzEBvF@U9A=9))Z8Nxjz#fsvSqEnCovt&@2iNtv^ z#*>cc61G@@!IZk|Y>yYAIU}YR4-h^Mz{su~cc08r0GF+q8~C8mTB1Q_Wo3y#o+fcx zpeO==QdAQCF$blWGK`QnG1Blc&mKR10a0N;m$oWukXohpPPmFA%Hp^z5_2W7%t#EW z;Xc_BSHhoeMc7L%>B^h8v1JbbR#%gkKnBPHpFUM9rkD~qgT*}WJT{MP$vleD2xLbD zfK@MDx=-Fehe{U8BSH0}*pIMk9%p7|64jQ-k8talqs7*Y9Z)yGM=yeeUqR(1j}uQL z8SC4Mr^=@6kax_;$juAV(j5EmVzy3n%yQAVOt%hj0c7w9Wfk^|KkxRtygiZ!r65LdIhCH{MST-VX)Jgsu z8AteK-G(tNiamSY?7ufC>j+fKgW)!p6y zFW>lo^8vTyu(Xbc*9Q+`yd|2v4rmKzFs4cOueJmwxlCjcQa2ADP5}`o!Ee=MOvaxtQSC+MfWSdSztS;M)s^v;WngE|{C~(E=|nUzYVo*`kS0=>Hscat zckP9?1G?-$r@APi_9FNiY=l+t1M_oo)}?#W(OEI|3KnmoyQQNDxs z-hGa8orE&nS!f$eCY~%K!Sv?R^$YK^wmUIBL(S5qoiG$QW%bHFLg2MNwGy;GR7%fyqQm4?0fw zrX#guiv5g@5lmy+Lf1Y28-|q&$bcA$@-}x7%ew6Q+wJ7S*ocTd)>V*sjFmMfZTf$A z-tqv8+7t<1z>-j{@brLjWI&>fZY_d>ek_vu_~n|QV#w$T$SH+|n71Uw0DF+}9NtVF z1pf)wV3PFIg|LE+`qXjaa|{UikSq%wo!~D2tY7H9rH}zQ)axr~c=h9CMh~*A5SOIG zn5xeetrAB|bPG8$wsDyKcrx$?3HFeQh%yL&v()k;&yyYy{PV1OL_h(;sAQ1vE8Tks@W8{o#=eyfNVL?e zS|Me182HJh2mw}7#%q5{1CnxuexK{UY!`G|rAju$UJV*01@bWlUNgiS zo#Uy13dD}4-kc3k;^^#$p`Xm$+}zTsV{~6cST%p9oBbE=+DW7<=4SEq&IJ)!2MY@t z^m#F)`ze^{_C>Xchn{h)whOtFxSuxtIs!dK9qVHd-^gea3&EDh5{HE*PN&* z+U*J5idd(ms~E6LLh~-_^g*r#ig9C1Bn6RgY|SQ+fII*fB6@&x-N8ExO!Zh2%$C&8 z$1X)TvB@6<(sjgEkRmBdmkqF!Ayby0=-LmW#yvK{R6w02Lb^U(AZS+1u_tA~A3rQm zqg{p=>X9%koxlwec!#(EimOROgc6x-Fss>DAHe`0W2GC0MaWb;{>`gt>`=-@_oeN^ zD=el5q*a4m4GsEM|CyncQ`JqKovq1hm2I}{E$uj}ifyQk;D!=(WTqOTxMD500K?aP zYV}G5|1sbxn-3(t6K*O(Qz>92WLVF2ek6vBMOTXu!gI!`5Iu`K&(gpOjB3h>na)P# zzg{UBtFck2!HN;?W@citwDQ43>ZK>giaN{Jp0z=c7z0~%)XsoNRE&mCR?Y~-ay;Yk z%T+4njG~TpVnep8OEW}-gol-D5n!JushG^xsb#KDottaM1kIN#Luk!I`KkT?GGS~*pg>PNDic4ms5c;71|ttGX!Jdpk07K| z>K5#L$<^<7rpjqn5WP>;itO3Dm$!BFA&K*KK{F_ZZWvyMDpQ9lb4&LL#uS0TN$^Mo zl$J5!4LzgK71Us-Q`QyF1IW(=D&{MIpcXd1(8ms7v4DB*n@|Tt+^A`Y@y3z12{)an zE(8D}VDfx$7o*S%O!^8lvY7J>)D%%0?H$iWx!&9F{L`1dd&#d*-bkq#H1)+benb?3 zSI@e_MzQLihn*B;nYu}cY(%C(UEXMq(mBTg+n{b1&nW@m&>WnPjJVDN5MC7FReC_S1;n^!bp1&0U9=07a|)StJJIfv z*wxccjdr%whUmM>AZpfpJwQAGlE&W{{csTal}~bRcD4z^z}PG2#%HHhB7(Wl87c?o z_dD1JX6gR<=dJLvU+^r+Pbp0Q`@tS!9#lF2y5e)66BJfxd!4)-)Tr8Qe=I`Ov=eM> z-&|S9gen=t{bvjFM^I)qz3s1%LMSVTYb(?K)*7~@>*7>8?swRg#jch_cR-azy3S!; zS9tGW_-cCu+>lHula?>jnPU=wH}?YKgXptb=Y|^M;*B*r%Nr>Sm*Wbx|1UiyUc?F; zdal$P!0o-CmC>F92NJ*zOo14}z)&$^K5j$9JK!^K<0M)p3~Tc1*gruhJ+iK$n65y@ z%jQx6;HjOwAvP#yVPTPQHFRd#c3~eE61%(wkM^BDhI-g2vX!pz^x6Ff=xn6$X?5KS z2>sxjqjFVpZz^H#UKT@cpU`cf*2N@7xz-D+9UWPxG<_h`Rv#8rjQ2_kH?L)VJ>6k!M9}{GkiEDOZqW@e~d&uFHfmH~4=Ci)Vd ztA)}Ft4Hc0Mcccnhy_CMY_>NCEc(e}oava)(Tyg%-mXHbUVhZSPg>OZ1 zwy6|b{`Qow)_pPX$ViyG==8ufTOb+w_4@H7Ovs_^ zle_9@BcmU9ULWm}o@My86lMSZBKz5@2jE%8h{9bI-wR3Qs@d&``iVwqa!x!HaQ|K7#V|NIbKjIB^j= zi@nfhZ#HuD1V E38s22e^EB=!lEUOx`BC_4NO`2#B_3&_>9ELz9Zf&iQf5fl7ie z2~dOJ;thw4k&+4zGnw2p^a3)F3DQ6gRv@q$_|j$drWMfwFmj*7*T!hU>y7t z&~fnF-#Gey!nZF!H#|fJD+yuARLJ@JRo!Mn;3(^SlHq#QNXtJ~+43!oRus{_#=JbTvQ@*q+IV zYu!Yg4QNi;YF;Uj7R&Us5{O}9?iEc0+nZWC{CB&{B(?*2LqO;V7+VWRwekKAg4pNTQJf=awyOQZfGH1 zBtfFJrKQ=8AApwBFp`TBNad{Ehb%8tLxj*3N1B#zd$?c1NSU5=K}Bg3NkQLxBTP_~INLwFIPTYzyyT+B19{1v1~M^S9% z?{e1}vWxx@bQZhTf#E44W&u_ahKPfPzS_{>x$@ySD48Zef(*f4=gLU|7@KM!vM3@c zP~OS6uCA@scaaeSNNMaMBHH)_GO^qI=@U683B6Mle1{Z!G7LhFa%mP&QC9voK0dB4 zX`OFyoS;XvG2d{mBf31yewtROVh~QAuwf)XR3+(I+)*j-BovLnIFy)iKs>7gUSu9{ z1+sw&@}XaU2bTt$4LfJ_knJ>bzsL;5G`sd9(~75711Y5srgktGb5{(}r08Zv18xug z7(T%vBvmf&^z})ukxhp9tVlF=n_(HC{9g$qDiL~zC>Nxa>xBOWl94+j##;dCDa1{Z zX(F@KU`R!+yT~X1Nfp}`jGhw223s`=M}}zyn*)0lm4VO~bmB~qW3 zof=313=&DN?s0_QTQ^D8G=Y=wL0=Ln6^t9wk}{6TiEskw$IJY0*ylDkg@l8_#_Hy94NOm^CE*a}eEm7*iGj=suJOwB1YUFQmo{O*yIb|Zm z)IrOQc*RBb!*!BQiOb|^zOH!C^(GsLHjtq!D>D&lwU)o9 zD^72KLKsA`T$upYdTQiGI1(iIN@zzYJsMc{zyA8Gtex)F>QMAl-uWU?y%x_mQ4yV4 zENAOJ`>zc~tX%b?VFT!mo&51foR}l6;-F*&#=&G~=jZ3IwS${1P=K8?s&s^5+_oSR zyAba&GP7x&I-wBzkKLUXm#m*z5qnp%ttH3#X_j*HopT6Y|MJ(n*tb%_mHDU*iIiib{>iS_o~KU|9wE}Oq}^}!2HaNZ6RiQgK%sg z{)P+@((H&6qtf82TnfZVY|lqkk3sMuVXruI6%AypCUT?5d1g&{yW7%gN>^uVhn7!8 zyG;ov8j;6K7wWQ)^SCKOUj${DnWYfy4B3etAqArEVRVa}lP9ALzktwDr6U-pBm>55 zr%?e(q62Jq(a0; zpwi^$&kvEgG?h^JeB($Me8`W&m5k!Vv`>Iw^9U7;;M+c^CLr-gek@~y$5wLN@1v?& zg99NcoFuT02uSz=B=JFBDTK3j@P|ZvIF@z2_Lj0z!do#IPmcb;;1V%Ouz+6Rm77D^ zBe8SzN3T=JwX`8$l_qRIL{9r6HiEmmyDAWC43#L`X-bPG$&O|iSXb2_$M5kk3e>Iu>pZ`_?iNN`#%So-M)RhC0_0z z+z7sE8g;By4vJZP1w^!A?dTt?O7eTY-7r>BGCKW_^NmWN2EL4q-H&~WJ;wpz1%+p> zkQ{P=wXR5x25HAh7#tE3`sfx{FbdBHCEvy6EZvW~)E-{_<{XF{#C`ypz-up2G4L+_Oj1)2_N9_0i z0oN8VVIUVc)}EP(>Qjqxs6e8blGGa!hH(G!@nN5r}S(15V2jyE#L*=&PeB!d1$sk!(akGX@n!y|^5D?n2-*uxg~8K28dd zPoryd-p6^6Q}e2okuXy70HzPXF=8pCs&>t&3Bb>L>Bwi&`)0>PFz0sKDf?iOvTB z0VZl15V#gf2q_;A>$L`G+kePXj~TCP3jS}<;+jQk$q5D)@j z5{r7Q&Quqj$1h z#vmPbBOLu#7F}`*3hF>nE*F_8%q_h*@jy*+b!kPC8Ghk!d_HDqBmBA{E zClZ1cpdNfcnd+yagVq@5U=%nR!jM8211vurg7yc2Jy#P{9daXx2Jzl4cN&N6SKx*13RHnfGKsSlqHNrvi;d^ z+}ieQPVJUiY=}BZb-EDw7l03&!9K%5fb`4KkL4zQmUrEGs9p{m1vM|#r4;!Jb}*dO zRCrc30PfLJ+tL1FGg&a+eaH)9u{}~q5o~D(titz_h-lXmr$|Y293C<>uYPL2R)jB4vm{_ z{=M-2yGo?g^Ct-|OWwX2IL+?r#dQ0*A0C@WjR_Rj1dV}_AeSpDEfSP!A_7p94fdCk z#jzX8wY`M+Bww8m)%aszCgFsrF9PNa!hdrQG@>X0^8C_NSU-1ZRWO3ZTg(w|F*+7K|Sufr}#RAwx78@YU zDWl01PrI?Swg3SH8YB|pPp^7>`2P&6+80nyKqlqYa6;eJX3s|2SByM&nVFB{YlE!A*l%{!q(Z}0B!i`--Jk1E6L^{Y zg|i;j5g;gJzBj(3BFz13R>;^qN9gdD26U042K7um!B<;LA46Dm-Jwwx8Q?89$_yQ% zgdcmO3_?*Z-TOvKg$_dGj{P!SB##tUtFqY-6ZU+`G0f6DTxSLt$b+xyGpMW%s9n~i zIpuP&j{z+-N3_r-7##!mwW)sK?l=3!Cr8}p1%X!WWV*WrSudigi)@}2I~7&sl=~V@ zZblV^;{|IpN$&04{dJbyBN~0eIQDd9q`tE_QJFK$z zW)$8IzH((Iga^2DKq*X|I;d7Q z;-=i8H^=R|I_K;nn`WIUusyGbZI*aQkKO0kqYq+#(}E^hzx8g~%MH_?iQn00;4IWZ zSLm+K%g!1(4r;1@2XFHDpqXSvy6 z3plMl(9F)dS9FCKiMKO#*U(x(PG548z@Pzvoi+e5^gfr6x?>Hq6DJf&G!&%~vIqrL zzRC2EkdRVfbD)dW5b%s#%k%i$u0mGIF7v&FxR$ht(cBX8>kJU0Z zz6?EKV5ABVDyZcIRRwEe=b2=^hSP`u7czq2TAFhO?_~26O6ERIZ_oYh0FZ=SAGPNp zE0mzJ0X7Q4Yrh~RpgL{ym-{lY&E*Lplv-okwF8+XZ*&y6ADHjt2JZ6uzaGh{aSK`I z{#Ei*sq*Q(HsML=+vd^u~i1os0C81rB9-TB4qQOx-vdlwefU+d03+-Rgm*Fnmd z+YZGaf~*i<|FQ2GJK|-b8vvGi8Qnk8CtDwKs2r#H0l;|bR||`>@m(8YXi&N=q=8Uy zKYoG$4NKoHMCJGs%um)R2&74_2s(hE!)Nx{f@CU#0ldMWWj38fo!E1owx4*uhMgp_ zMvqHih}#!Ol={S;2qm9@6%i~KYWw@I0F5}4@PTp|iX;5ORfEOn&TU*uxd(_?FL3NZ z_eCNI@)}?d2P?C`z58JhMhUZuqBW|FnS^%-G8-j$r ze0;Q_e8N#sP_thpC3^FTKL8R8tXVroPaC?kVu<4D;RRq7<=9k2lM;fTjz!Wj&YEl# zM6l(ao*M@S2oDxTo1es?l3v#ul?Sye096{Bin;y!XW#65JFv0=ui_*pC!^&I2LNy; z83vTq=xxgYQB6RJgif>BXYq5pn?8sUxP@UGoX{^FE!J4_QOTTU5iAGG#zpchVrim! zi4;g60Fe*?2jk}zBT>`s!x#`?=IW&HA$$tlyf|uz)^Btq*l(VkD^Qx`%Ei9AZ(uQr52 zMc)Qd0wh%kY-h<(5a6((` zAR#^UA3g+%>iCJ4X*!L6SU#l`JqAq0+7vX* z713xYSC_-Xno9FddQg&5F%Bl+T8s&-Eo9tv*gb@f<@nqbIpdAL;YxTb&Z#D?si_sJ zyQjon|6Z#o!9W%9otUvgJ1q_g3+b)k=>vPZuuA416I;8I!H1D(#Xm6fGdTJD?Y{WLf3-Rd5W2p3hhd1H6a#)nQ4tL7NfT~-r$*G&r8TeJ^=&IQ! zpCkb-$+1{X(8K<8YyBR5qHIe_?CZmyjAIL}Hv368HC`k(4jkPxE3r)oad+XLs20wB zv~j%a<0(ipzm@ANJc*SI2`FnhH17hn^v%*E$k|4HF1l&T32!_mdUFtAERX=vw?k56 zWd38UP>)s}XiKRb<=0G?#Qked$d(Ft1}GAZL%a__jIH9*_BCWDUdvfvQFu`$;;nA# zjxf~b_#c{>`s=|kc1Ga@IibjaG?VdH24)00ZYKLZJgboXNteEZw7?2@T!s93kUY%_ zy`TMDK1W8J&rOo0w|&{0>L!%uhy_3g9Uuvea64Hc_Wh@&6U)Xr&IBMo5DGY#tR_ls zl;Bn9y?=0VXg_FT2_fyI$U=fRi>s3&Wq)Y`9K~Rw4dITB1D_ZHBMsIibzCeNY)G^u zQb?-o_6D+(qKS0=6io-F_^sAHo?v_sedPUya)S;lF!vBr&gaiBdQ~#DjaX<^IQnU{ z3HUwux?RKPgRXrFkIzX{L4b7d=;Q$uz6ROIOm#&{xxpsZV!xSgIiQtGbk}GANV*Ph z&${!n8<7etv*%MhZEWbY8+(r>g1>DVNnk2?X-yAVLnEr@qk=0A*)~4=`|G=w*UvL)Yw2+kVeelwRO3%y9evfB(09el(BmrOqEkON)j7U!|??r~ufK3ITzT zgvQ;S!8|n$*ntY6Cqm5)|5b$7Z3FRO zB-|r-NbFLOscQ(zL@$2Je$wmWLCMXV?V$P%O3aTGVG033pe@wlXOQ(BjufR;6mUY? zbl8&0YHxq9Sl)S>0?Vc`A_UCNG0??0nkOiXI-tRh1c|~4MY%-6GwiBDyX<}?{t(G? z9S&cZLzJL><%FV?BUlMRE7&5jb7=#GAk#z#Qj@H~NRlnH<4$jn8Wg7fEb`)^hPVJL z=9^y^3g?XfR2jD|{K*qsK@z1>IfknyXgeIs9&$#mV!eHh(M^SrrF0-xsEHyWel52a z7^mVSNm9lsfvMUXV_l@6#U8+6q2DppPohTkaibaKhjE))z;3o5^Y` z+a{SPNS2m5Q3+413b#ZVr8{;s-6ojJh&N}=A9Wvs$x0HiSs2^ioZtEpg)YY+ zh=f;7HYt^amq7vqFV{3SWj7*M)+G50cQZ;MnD76F$?QElhj-SM`1WXNZK!lXE7pP0 z3CbK4&lll4(K9p@k~}`VZs@MnGNP-O;o8`lxSR^d4hieYcWg`|*|p2o;U=_ILN`t% z2t~Dyz!O7AC5w#mWOPUVNUhEb`XHFz0@PB`8>QK0;TLV6r!UPTx&8cPWNq|eV)G^y zCB*%XUVJH$M<@*y%&bTdeiT1YmA#jHWd+dM2qPfK!4-JAY91CkOV~;|q4-cpyZ=wf zMhOI0T(1Ty)$yYD+XfB|`gu)WjwQZaweU+mzXPVYFCk`fU~523j*ySzk@^ z1WDigb&EIsDEagQq7vXK(}j)yI14nlRB_}=>TVIF!KU_-M)+Mnk8<=iLi0H+jDsQ9 zx;Ua?tw;0H$8uaUc~U!jF~~N06rtB5PMch@C|D^j1%N5guws~nc3>@fcZG(Kkbscv zTj<^i8p9-%C|nn0I$j`4E{H#64poD=AIz_sQ11@+=!ggE;LnKEBYQOl_vBxDh9_ty z(w{=U!=L}WxGOqU{Lip7)%H7E?)9UUoO24y*mCjoY4jpcctrwykHTX`^yBw=dXy~$CZy4E zD!riHL5O$*DRqvZwU3aKrtG|f&GVtuh|_tyV6&ir=44kgGEt~(XAk`m6Kiy4G=2Ze z%-~;T7`e=%d-Zq_n)>x5kPac;f{21q#^1wS{_*(w-Y;my?^hLf{gHoUGU1uHJ1)Es z51RYGVM)h1{AOw3ny=qS0N36$=O*FWorG)a%=-bc;q{Xztd_y@Vk__6CuftG`Y(Qe zL?J=e*ahhX zK%-Y;zoKEOkn~Zk0^vKr%W{3>*Kh*nY`O}_Z6?g&Sf@#DjDLX~zeu1x2;NE%4kQGE zqc9YXps9$Fh3>OrTarP`beuU;rxdVSVv?j@DBPst2wF*RgZhb-Qh1n23k4>hgod?? zDDJ6%@ARLNWT`4CEyEs!=a?3KDxNSWg_aRK&H0IgxzDZ?mVfe8V=j?0 z2d>H1G2+E^)u72OMCq~s%N#ikQS;i~_*pn_d?eQqOGy!ooh2|IgQsmq0(uER5QwKR zs4%s34pXh%Ch_&bWkB*T&0apyDu*oLOckjZK6u?qr#6wzK{R9(MZJ_lr9k1#tXT^d zXn}x)H5e^84dP>20#O=OY{;!?T(I>auwIX?0WSyb(x$2CvCmckzj282!5lHcr8`)f zauqkm<2s{ly;(YnKIXgpe&P3jCK)%a`k7<24-3Wuo>I!oe4Qe77@JA;OxwYE1p@yKS)kK{Ktsc>D8nrm1)y z1FKME?u?=dmo#B5u-V=Wl`$t28=Ux(CFLbkS{6hfHI!DZvvy7$^t? z4TTHB?_a@)K3tKcQ*>{U7z`O#?BE~ubjo>IJ(#5FpB!l~`c^u*X#gYA{_EEGNA}4C zq*_kD#_9pg-GziM?cm!#0iT>y--~SF>XE8hvVu)p4^3d~LjLr1e!Om`D|(!W>Wv?j zj9&>eicd**b60YJ2BWxIzlhKdzEx3VAk+1`!(&npols>yPyA7Ea5wFgd$MxbVvU0a+9huJQTcFx z;q#d6gZ*;Wagnr?{9?s5#|M6UMt)9weGkj2zK##gb|m*#zP1?n&AQ3gKD^GH`~UAw z>o@EDvIB&R+4WBl8TV}@S6QSezg%RMA@>NGoU!{SR8Sc~Uu*kHh~wsyoAQPGL`b$W z(brwAjl?DB-~abub9wjP12?B60EFGp#7~O4z+OoT9aJW#rnsGAQ9uoX%-6#hh$R*D zVJQB^0#L@BvJ;Rf!iUn5tu2x&^uNTqbH{x16iUH*eHL=!=bAry@y8>aEQ9j#RxIK<6?>yF(J z(y-a}0LkqjHQ57-2fFjoW5$g;;OjdIQ$aFfXJ1^&{VMU89l*!OXR&>|hel)uMz-w- zthCk?wId75-9hZDA!%v+$T-PB$c}Z_z`z5IoJvTyT({NW(IQkF?P0hBNX9XrkLpf48(V zYqilwt0oNev4v zx?4~%8a>^>!k({nuv?mT&tpYEHsSV}Pv;#N6_et>&n>isZ+y?R)vErKfcHZD(soYMsGTQL!7TX+_^~?r-=* zVq-`7`1suVlCa=02w!_7npLFgwKO7@!(A`N$s)Gz+O*|g$|$lMChbQWSTxmbNCTzL2 z_3Y-BmRA0VOP7ABOkSi4w)^@E2LYuoW0zmVkJ2)eB5+?gIyx$E?uA>F+48>9e}74- zQFr$WpT=!!%W9K+lM<69t2S=WGnp6P>Rt6-cf>aQRF-#FM6kWS(6RkC=G6hc5&f$k zr%3u`-c4$$a1!Bbc=BQFt*L6|P4GO8Wd<~%MZ69(jr^=zG8#KNEGPNPrEuh2Qk-^lb6{DJea(rwmN37x2c&~4M3$+x7(VV??d!B&p2bq z%n8GenSAuuiCX3CyaXQ%c>I?o2^JPx@{doSym;%}tPvH*=B@CZJi>nZp}Wv0j^XE* zDb#G*;3O7+a=vJ01^uDj{A2ls~XOk4Uf?F2q99tNo<7mJ(npGHMTpX!9VNsvFpT%psqR#^ci z8TCl5MFlq$Al#fjdv;V=Ov=gzDYKlh-c#sM-(+%++~D-`A>C#7dXOFLi#xVIlbf6S z7SS4cPxTYcM$VU(=3&4vFNJT+Mrg&5{ZK?LShQ#wxXl_@DZJnMjT?_bDSr9(?dMy0 zf}5MInr=+p*Io4@9?Fdh`Lk!wzQyv?kAc+g9kLs%WPd!M4TTf)fNrkouBfQEwlgg) zEgt4o=GpKnl?(FEV&_d5HgEy|NcXncM@>yluXW&m*z#C^z|DL z?~KM|Y^6%IHEXU}|MX~)81;_5suEjcJavWaS_yfaI(8)Ws_urM?sIP3(6eFt*)!XL5!A`mWaH(5W*gmR;?O{FiAi3;rJoLJm1@G1E0g{qzjO?A#M@tqfONj z>;ZnCK&Pz78VVcG7+B5+T-TG7m6e46Ojt4UdbgxR-{IKiT{4##39{t~&_^M?7@Z^o zyeX6}p5ESXw4ItuW;Jz|&t5+cpX0 z)Eq+?M&1m6r*(x7`om3|1)b}qCl+|>hM^ulbmYkLkS8yJewM>_ni)Ed0r9?GL*oE~ zl!j=AtK35j{ma_ggP8h92S|f$H_1e%@2DS!2KNZo?kig20EGpxN9kf0uV`FtX#qj% z=C|-)8l(O{v(#Y*UNPpms_jE;eJ4(xI)uB|84rVm#0Y?)7{Xci?1JpbGuYX_wruWQ z4vC**bWcyuC7q}Qgch6wYZ3cx^5PXiSWkdh)4Re;yb^nkl++mT!?0%DLopu@H#*|m z%1bu0*+UTx?SgA?H#>VU<}Wbk5n5K)&>-{qOzOF3- zlLC@JFK=u;Hm`QtfYfxP4R~Q?;Zbzbj4G|cz1LrE-H!PV*~0G1>(<>!6~1LS7ubzN zXBU{YVYdw1(?_r9F-DLKuV13kS~h#Epr9acw{dlf$AJU=f{bS%&u|X{@OZm%BaRai z5;E&PgH{nGL3@PS>i)05qb-lrIxEn1|NipC4wv)xbCb?lGoCofL^mljgW==XPTB?f z=2Z)1UPCbH^4*2ruS$?xc@hDSfpq1p)Do*3{pB|8m{xnTZpCOh7M2OYH4+=5b*J9I zn3%CBWG<(t8{iZ0f>1qDLRz}mMfk{^ zu@^CdQ!_L04w-1%R=K#OE3J8$?5QZjV=+34u#Zx=*5g3z=d1y6r8JbcE~ zLu2p&VgJz9)-KxYXJTTqN?$*S?P6^m<>}+&Z|u9_{@`Q?MUDY_86K=EroXqfav^T8 zuqCiQb7Hbn?1dYQGs^+9hn)cf)U5rysAw7hhcJZ$h|r2Dn~cXRVb+t2_b4{FpS!1* z*SNsIKpnru1=4L1ad+;_H!~QG%hXBq$_qzCtDlGoDQj5;z>g6D6}-~i++3l6GstWD z(Rw<|8?z)O{bMjaSG?2(@jh)e-VY}N`cjd3j+O7)&dG~QiqTDn=^MLJ;O&IrxPaGM zkt`85`vOYp9i5Jm7eG&}`qbS$oT)+OJ#F^vJS*deAH2Jptc@R@v6pkxOZPa}g7&`X z8?-)KTb!MLS9^74mspG$w_HR)L6{jcapGYJ>>fT1T3|U2*w1h#r=Y;YZqF+V{sAMR z9Qr?N|JZuee#H(rwFWUM5RAvoe^5Yi?)i}9Cb{YAPNpbg<}Qkmqo@#=5af+Ms{dvYr{Y|hk5<&@MB$bb1~eoJPcGcM^2wU zU9oq>yP_vgrrtVvcF-M!tGq-4b0#!02{2&?Rlb#7(P^BYGGj)-oHt;Q7LTW%lUo1^pU<-NSTLVI4ner;IqJ*A&}Qqm%WG{>Rfu^?aW=O`n{ zY(Y~sqvL8+)TOc(9x21>Cup=l$@4I}H=QK0+SyoTfADt26hjfzQiGxD95H3l2=M5? zfB??C`4+eK!#zpM`!|FBu&}iqROps>TolFRTrKg5diwh70kjDhhx~GdTTb$7qJ}7v zH?ex%j1mi~^UyfhO$(z&)n>WX*VUbI8_}PE*n0n+uk~|h^kzBRZwElAq^UU`Z5ouG zW)91;d|ahf$MIYY4!Z5fUJ9kcC0LJc>81;QBxu0CdV{wV<7{Dtt9Vx2TNN#w10|*&fJf+}mnDMx5tljB~>H7(Zab zUlA{!1;Hp4T_sPSVjC6_6Uz=AS(_;bN1^ML=;#cr=7*xAC2m$p+g6`6(6F@Y?dht; z(8m+88o;tkL(k2tJ$ptsZRP`wHg}uTt@`@&}5f7NxT_g2Lh?GJn4sDS| z)8xG;btPh`m7|lBF@RMIYwH!*4wdhA|r<~Qs$2ZPn7VuN5{mhf)Jwg z3neUt^`xcA;3&?U=SVmlQ=DgJFn;^tokpmccnaNy_ChYRP`}`loFgPT+$D~Dlpjya z*Pc1?0dA813@G5E9>ROeD>SEzb>k=R0B$O;O^e%@I0)LjtLtp|7PA_`B^2F$7h{SK z;mi{IX$;^Ss_WWH%H+J@XdwADS@iuw#{psi`Q6k*zJb((HZDiY*p6N%E=1M#RL7MAS(Z zS^|cFdLsjhJ`?coBOflsjG61bH(&HT4$Xg?xE56r{4v*Br||Q?#oa!Mc?;4cPx}*S0|u4YyaqCtw8U4T z5{!EfT7M|h&pjtMx4Cy{kvsnAq^}#6%yl+buU#iC*u!O4p*t0)Od z71Oa4isv~@F#0cK@atO9cn33&e0uq?}PWUqn@5)@Gwo2liRch zQ2{8vRwBa25D=p$^pak%g*Q2?fdR$oDx_7(|nJ_K96AcNW zS8xP`T)M=A#|2GR21@I9kZ|2ADA;~6LRmEl{<$~LZk9ECd3yT>5Rv^rb87HuU=Lnx zXD5YJ;dlgp=bu}e7*{MhX-j(|3t<^4$Rx;=@eaBabM@*lX!x=LF%i;*ew+`3RNi)U ztWs7ULOcUS80tcNw@zUfltA$qFf?J(q+0ZTtJT%V2w`xH1m<{#Ph4qfL4)4j73}*q zUa?C$0Ls5a-3yI@m*TEm8G@}1t@0`x8_BalL6=IcUbVOT0SuLWmoXl_MEBy9lQR5owjZt9@aemM;}}wrXqoBh_5SZzx|?A0;{iMls7VF_jRal_cJ)$ t-}C%(=%^_71;=&_{QtNLPJ1T{t^~Ts&nPJLDDtmf zXn3UU%)5JN$Xp#9?&p$7%b{hH;sh_`MvT4qK}<{>&nOfA3@SkClBe54zur*1X=Uvi#QhBPablj8Qx4M)1*u!bO&im7kGla*X2r7nP zVrd+P;93LDVL~bJ0{j&#Dz}Dw5BZWM*Xcjs=zXA8_s>^}rA_e)bpQRFfhRk0OYr!~Eru_w0Q6hJ`E}8t&jm18z?JKaV4( zL2~}$@5&xDkYf zU!P^ok!~`lZcUW7veWTBi>nk1|7(_b<|yYYt>z6q*u)dq#66hCTk4+pD(GR&+LRn@ zB2%G&D_#xr>!a-gsMkQ8Uk}OnQ<%oNi%R(0K!yf!r^Wu=&M%F8xg z7tek^2-YQ1Z7WC3Iz#P8&bPAZ&wanIn5Ua`Ua*`ttKNih(*C=wO(zwy%P^9j_LH$`(l7 zdM<^!q-_|Y_TwYs@oDh;{gAF^;V14Z&LfFYs#p%XaZ;(fgh#34Wq$i z5SNcc4~NmI(An4>tFRX^@X&8~JP2N+#s@408U%<*y`+C&nFsZfws~Z+(s*CWX0S>d zm#@5YREg#EJK~ZjK<&rFQuJOTc5J^&=vypjy<4JMYheVs7A7AiA!;VNXW)m{bA^Hw z$o8G-f%gn4YA|XChkqvYnO(^#kwQUrD`V@W_ZHFtk+l4F4JRRgZSR&(mqY?ei#9>nDm=opA!)^nBEB_Ln z>Jx1U{~-GL-aY+0mwCy)z4`O;+8R5Uq=oz}!K&h!&Q4|SshnFhe~UfI9p_Ojcp8)a z$MZSC#6*QSOF^br<~r3Gt<;e1i&s|10p3z?xaSqQiAE>_?u-1S_8Z8QHKy&4Ys5uB z=oD$g5F%K|c?$%VR?G`;A=|yLHs-n;5mPI7JE*UYO}dA_|KO?D8yjD)pN@&#@s9#f-In_lM$r9QAHq-DI&mS} z=&c%A32HwSym*HG+?Y7tA73_(X*#)0*wuk->wNBSh_dQJo1GNG@(@4VXACAjldE~g z(Ai;KqCCB}k!I%o%Ep)1@gqV+nZ@<~_#><=w7iDiw@WPwEIMX$n5@hT*-+LH&o4H( z&~_JX`J&)-5BHfV_nGq38fWDnP_>0tZl#(eya1vv7ZFntW-pH(LAIa4CiInR^7@lL z$Vj5@qi3?gW(@1a?NAAy7Ee5b`2;w%YQs+%sMp|Cwl>1IyF5cC3A>LK3RI~#$=GN6 zTVGIbo|*o+Et|@(idKGN@4Z>|TrUMND>oZpg<0Vm^_V?g4EWzyWZ)wz{Jtt$i8yB` z@?;rf-!rl1arLF>2o-h-E)%%D9UWGr@S3?4Hd9Vc5L*U!y*V zQ5K|W4fwpWX_7?W$d9-8+M{DjtuPY)LW}u8RiVxXZbHhe<(G*PM|jV@61j%-CSVO2 zO$bpZ1F;e`QDmVNw*Hl|2tM^3r!@Wq8G*5}@Fz0$YW)N0e*eA(A~nO9ZV z$9FeR1;$bgi(k}RG?7S$b^e2Gl!l&cx0LJfOH-J}Q5oqoSojm_Kh#Fk0*Y?B)aCxA zhL7ji7|2U#Uhyw<^G zGx4V!{#w=Y_0L&gkRyB8)4D<_2AviLZc=sJhbEiL@xf;EVdjLL@vpGQ2adCdl+ zZPUHNOK7A(*RxBj!1|6|q@iF}*;%b()1+kM`;O(;kkg(3Y=UY~!7=tPiWeNquQe1;n zc#pWz9k|e$x$Wm#-nd-*nQ8v@Bk~|Qwm*;|KUw? znJ!UvAP{IM45=!lt1HN`!5E=xU!iJ*LuJKK>pbWfp${5qy1F#WX}Fqo2&~Z(Ht`NN zQKC?AGFvv@?~6oZ^ZM^G$z3blqpCK({83^bx!<%@YxKAf2xV0j zXZ%Sc;>K4_Z{=IlM^Vs;KE;su329j$P5du+OFq%y)I@~`zOO=LKAE|D&W(1VU~^;q z3H`0L!~r`u`_Fa-EeLb5HC&KMw3){|y!Bd24}Mx4nZOZDTo;&5mTRY-Q?-y9UnUmG zzQSxR;$Zpe$W<9^VvWOhCnKw>3u<0cxl)9P#M=}i^J-$u2MEZbvOBT)k2c<A;f}~@KiH9K53laG||K4 zW_qobuFK(=;091N9d0-k0k`@k>^+?lMZP@^TuV#q{lhoSc!h6JQBg&nJ$sg(jmz+A zST$eykt|WVcFl+RWNpfUj%SZ1Tdd~mUCji@7+ytJ*-RF*LAIr<$7tZX8kM#&Q}UAG z1-csaCh_>&#cL&-r9*5rOaDum z>Gjlqn#aCK*qz)IvS2j-g?N*MnfRX%mDerT+Gluv+c3}9ONy^NQB@#ob+N0*A9OrO zBYIw;Zig{r1OGOzp7-z0GTI11>V#~kHA}zhFO*jaKJB30mfEAEq3nf2FEKpOwXiG4 zA&UwYp8rz&F!p83HRE)%SqMw~D$RgKB|)HQk}LCAhsYPvUz~6IFK8YTUgL=sR5gDc zF8|Mrw0pDrLlBn_&0puyFRhvO83hP(Gaph>C=@7wpR*$k1%52nuia7~29|b90uuws zq{0xF#g85F|25`O%w|1TeY${MrkW}&hw>`5SJ<6JXv7Zfggkf zzBELdZDU4OI}h4Q{gaGJ`OC`6=4u^-)bo|!{?I76DmE0uiTHyHMrdc`;UV$&_eVoRJ2*J_ z5*|X#IPeSxUeeRkqk#7rA3xp~RrxogBKiWR5hv;IXA#N}?9sbAl9>tKSa6s4H}|5Y zcXV_Fql${&1F2N^{Jgk&w+Be9!a{%D(k*?pCf>5BzVdf)dnJv7zlrxGxc5Wy>3;OR zKjh0sm3P=$XRMtN#J5NhyIVrlZw<%GB)}A2ML*@BkQR$XMBdaG8yk(5JI=tTjymxy*R$@Y!NkhB z&>Zaw^I^i3Y=@O@0)5}pcOO4~bZ~Zl$ANe`f+vemW7W$9cN7*~y?1pwX|Oq6!EDwKWw2jp z^zih2TdXVWb-p(gPR523788@NQK0q=CggEo_~Y+esMp0}<33 zg(o$Nm=Pb`>1kK9{MV=V$;i4&jXDmFj}_xIE6j(KIKZ^h8aY7A^4&X6gS6Uo3k}sC^hzr=Cjpy?7FpIWFpAR9DYk@cx@F7Ui1sx zTpy2Ud{+%L8%QwIrewTgxgmD-{H{||yin(yU(rF_?&(K^f=%9rUzlyG*E1qogY7o- zNs>Z(@D0v)l&Z{7*$njkfTD=^VWFxX9zyYK@7>%U5<#=F=#?|X`aY8~rxe1*= zk&wtZ+nuej{>7RiXg@qx=ggwt=n-d<^X=Q;qX8~qr&XLx|6AdFmCQV)WS)zwE9bKv zZLn9i>+`jaCIa>ggIm7}t$zJ@_rtNspe18{D0RHjN*z&RkjZ2>nDjjIk!S*sS-->e z#o^Uua{+LRY_QHO{S?D1e_A9J3iKd0sYE1W913BfUCsM%6kk>R+$_{Wc~FA+h`DV$ zG<$qwX^p7x4xf~*jmURt3KAAGl2RK&tZm$vQNed@$YHi{8S;s)$PD~BOvo~y!f*3Q zEj%gdVR!T+#jbF&!;=#w4^ld?t+I5!uOi4fo@tje(bCdBVATlw@`boz-p@9w4u^n1 zhNbKBbX&XDf#Gy}k{OsR2q^&;nZ5}X7LQuojyFauz!O5*-baJofPL3O@$mBEv7IUn z)(mfLm71xx8vyI8)#y<+J39j`KR*isdqpXl!aK zcwa)Ro~OjH(0ylLv|&)|5QvJ7rJC~!S65Guw0=l?oJ+q^4%i-xS}xAQ!h+cC#ft4r zB`!CIpnc;Z7ECd*dwl%sk9URThHW1on9Yy)x~}z;VG&ThDl_gP=}!`N&YNE}KHd7| zvNIJ6>~v*wQyxq(UBq>{X3Gt$2T)SQd_mI1m z9JM7fSS{wo$|O%lOsL?*mYGCiyV1E|sl5b^E}9=K3vsMk$h@lZS5lFoGspz&TBQC7 zv%ATVb)!YeqS;A~BN$W8}LPL+wX6?swkgKD)tXTkpDX;y47#cb{CAT4p0t-2p{-7dP6Vgcjg2z#Zl2KC12VoKPCUVi~ z)w{HHb%g-IkSW)o#V`F60rm3AN{91^xU8uu)1vSBBfFVOqiqEI9<5kXZ?Bw)%O5FQ zTXtZd8_5mtiMza2@HX@)jYFy>8#cvW*E><7Ktxn^OnZY)uwPY73!ag~RK}O|8@BBe`My zn(tr*%Zxg(e!MRk1_pqOBRBJgmz6bqYHI4i)kvD~%bUy7!_(6zAP&i=sIkht&mJ9B zZEtTsI6O2ONZ`;Y(HCcc%f`?SW=dx6x7=my&8r&(pMah4@b)GpCGGh6O_t?-aazYD zJtt>0;ERs8*PhXjL|-TKn30Sb8yh2|#ALDF%E{(9Awjq@TxX(Tzj>h6apf6s>z?RG zE4{IgH3~JOkW>>)QvrHWgH~@oL1JP(vP~-7v5I62Y@OFQe|D{xbpgF zZ2&tdAtdijYProMXYl^QHBKlRI(5Nm~&1aTkTb(z3D0{$Mh1 zD1aPVz&@x1Y{BzcC0mCZWYS2k{d!E zpn&KU!#5HW8OikY=~ISJCl0QzF#o$-OL($`uUA|p2v<&jkIY2ec9Qm{6Brp8L7aZV z#|IT$@CbVPCWZUMoDi_+ByJ-#6l6>k5J*swyy5G5`2kn}E-tPShzN6yp1d-*XMU*@ z0E*B9h$JrPvyD-gc6Wy^4p##Gb*xE_4-O35gK=3{$u&KX*Vn$qNGN>Q3Mindud8$1 zo#B@N^dlJLGtb!pjbzE|8T#WJFKDkX0j3V#mWpS6XE{~M@cZ}gxq4SNqdR~YSgn8! zsOvi0Xls6DR>3mdnkZm-D)t9pJ--d2a(e9RyVdv{;=1XA-BKg536E|KlyXR5`9bGH z%Ub~&Ju|F8`&$fwH^Dq_vX$w+Pqb;s1ru*3Xmg+uNNNpCZ@a7SaQ)usIuD{7fbx{9 z12@>svzsmt0Z$Hv>(n>_S`i%TU07i;GP5&mqBvjAVlaV)g@xv@J5%NID(yKs*1e^h z^F@pG!Q|kOkSAiffFzS$)Z~1nWmd^xVrRdHA}A<`N5=XJFq?k+qp`3>zEd@m)BS#$? zCf*W&ZzZLB79$x?goLJkm$xZV&;EGFrU{310Z-qYDtmnY{{3qZ;-Q>+NGHr?lWaAw z$z3hhZ^CN@bOgHP_<6BW$INs-{QLLs!8Y+}sj1WeS_LK#&N+0HkH`UOCosaH^p6UE?oio9UdJioQeki_1&9qNK}=t+yLPjnSRWLuGuGHU-_}o ztDN0iF7K~@T$6$aOT$Xm(j3Zi=v|> z*Mg<`b6LW5tQ|r_zm0Tvkp36~_+`0_B?6EG%)nIE19xt2&T=#hm0IwF=}-#)X0a~H zJu1GicZHhIUAHuVzxIN-`4e*7j?cxkx%V}>h-d+D-%Z*FX|Zi<&CSiPUcV-xrjBT6 z@Q$nWKHqZ$93<6oZePkx)~v^OZDXSc5d1n|Qz>Nkz$yR${2UqCxbMUp6j=w-z)NR_ zox5SNiA1l7>7NfdIaQ0FxZGjsG%e$s_*=;I>>@-{aGB>=!^$Up#y81pX^yQUjLT-h$NLR=Ofw*j7dR!#D3c>J$mr&VSPtsk%ldi_eR^~o8JT7 zr6yF@q-#6RLWqTRRaJ=rjJ+u*3__%gj*c?%9-HQGWOzpdb8G<#!CSFx z1b-GqD=s3Bxig$D+IWi42}pMB(*_UWwHEl{dAy*BOed_1N7>3<*QxNCQ`Xev5 zSS0*E1@M1pI7(ITbF-v^Uibj&H|H}GB^YtNn_`Dp)jBo!ehH<-puPAmtck-gX4DyW zzwu%@V&ccU2*B--^GM*(0VyE;BT+X~5Ui(ZzeYsh18>iA-(O(YtA~OxF;;G-$ojrG z66E>7nTqrp5rn z3$`kmHF#HVE>zjmVrcN8x6*kMHdgp?rw}u`KNR!e&dA76O5ytqg6hiJn#@XfRI;%1 zQ_0(lZ|bZRC_w#S*DenR9>Z&cUbwt8*SSAg&`TD>18(Q%Mb9E)_dpqQRm_H8lf z^agML9LVn_y9uzZv0)H|wyl)3_bm>g`Fgj6q>sN@%W*%e->zT`FA?|nJC_n6mwEpgJ&SVrrJByEO}=;v|{QU)`ROTcGv zifc(|&8QpoV8Y;ca^n+DO_UT9!Pz1Tc5X15wB?2GFW6_RKH)`a?5>?{Rlz)WcsUVIiI=AnE|`{~O_>tnj2OCld#T=J8km2C!zg?~pR z5)0JFON)>}J2Jt`ukc${|6%Az99LSo$b?UiTkMIt3i^S@44j|?GjrmL z8AtPkVmv$Gm`*AIg(sY3U{i`{w#dz_sw|_dJTJtwj~*@wjOwtgrN`1k)lgg2TlJPw zP5a&i_P4&a=|YpTc|@d@$mI8yC7DNdRc+%eDRhQ4eNe|awrTEIDk?vFf8?P5gU2LAM9W&=kGx8R)ETD>;2EwX3Oo6Piu~Ajwxz!kxMJQ8w;5QS_6rJiq4x&@s zN`zn_2gtFoC?mfSE#b0{LJU+A5bfo9$=6KqQ^zG7RjM!VI$!OPI?pPJZtFc1QHry& zNQWD8SKyAuFb;|7)O?6i3-5}c z$oI58+Fsq-Qjn5D;eb>cE;M>l-s(qR?ltT`6tI2hd9-SDaqt_dYhn@bTqZqpB9Wav zW`k7A?&Q*SRoZHxAWZ3_0~2=NQ?fUFTytjk1pO(*+&Ec)%uwRI!C{67Qx($&Nl3m} zKpT#JtyNe5axHq@`KB`2$oiZ{Yn0-MoDZKGv439OMN2 z{QTs{tPw@YdfCFZJ5yyKMYvB#H)0Ya{yI~_7b#FsaOs-@Qhe_rcL0leUa9kjG8Q3C zFAzwR1nj7|noi>8#U3*j50ETy1Fes zy9OdB?(A|`goU>7a@z_hq)e7am4E#(zi+`j&k55|SHfHlKwO>=a_ZRJ@E`C?A?rd% zUa`(vSAPX*2+dN2M5&Bo4Cwj1@lzU6dk}4V+9145UHYqTIr0iMDli}PZtuv2^xl_# z`BHr+mEVROFwuK-5@{egv5jF7U+};4?T(~;2~;jXJeGdS(!Fu~2hBhdhiZu^q9kM0 zFdWGc-&tr%1wzE^p!?;?rX_rHvV`u#hv=A71wZl0BJG!jn(!n(E0U7tOX~!^5x^)= z<+_#`PUzWl1bfSGW(wZo9Mac0()xK}hW`p)w-*(q`i(>J{@GpdCg&-nmJ-Krn~~k~ z{!`752Cv)y-V8^ph57H^p-L2BW&4>o++kbDLK%RLl@AQ*0SDv(FgK){B53 z8n|$NQMVnrDgX6B%1?xk6aaApB5N)X6oZ32d9&AsRSODu5yZrNQbs#YY ztaflE*m_j?28$=vKqvu{sbU}+CQ#FIflz^@ov&nIK8bT+wotXs&Q5N(9W7SPqOkmY zX24zF#L)sGH&teWOGpUlhL}c?*7H988=$Ke=r@Vz>+3_=wc~&>6Wg1l93q8`Dx3HH z2^4JP(Q~3xd)oJ@$po%?-j|zhhacalL>#24G1}ngwK@u!tko)ugOcrs~P#4JrxOk z#&-$@Xi3uf~CmZulRvVphSuK?~*ayx5a!*pAV*+LB&ln8xnQB_Qt`; z5B@5p3B?-t-^2r*ZLHDL8H609e;Lw_f(^B*NS%Fe;M?_u;pM^E+4^RFW}d_Ec4R#P zF#HPJX`X7^Y2#yv`|eCUh$*ARdZHrkdrH6CL%!xpUhPx>86h2T?-h_zfPJInvn1Zz z+uK=e$poBvJo_a!q}sL*C?uW0g8EVgxxT%QQivM?V||BIvA#*+%hoD0)@|~N2O`9H zgS$N;ox~tg!P1|k756H&8h?tEpl`4LYB&1`)A?O60BOV+=qK{gH*1Lo9+#W>pQEGm zfM_9hKIg0pL|b66hrdJVcmP)pHUTRk4=xCcih=?C1X)4gwHPk7{K@F|cZ~upnng|5 z081sp$}a#l0IRwDYjc0x!dUDzNxERW(?XF(wC9M^prz<$D92`-Rs4HUDd*@!w;wQt z_pDBOZ75mDGV+Y4%fV}W3r;s;k{8dLav)rO^4sdORnal-ZZ6BHP6tabu09XQT8V$V zx$*BN=Q%ez8kv$l&pbbRo9y>SA(0b~>buVi@|Dw5ijON1^&qWx z8@Pvy`!hhl)G)B)uXaY1+Rh!Q3X+m@M2Cfqf+8$(Aa5_PEo8w(_-tpoqTb_hxgMn4 zm!RGxKP72C_>kZaK$flf2KQO^79h!dXh-ERF| zlb5S6kP92ke!+F#8#K6a7~Peb^i(!9G@KnDj|2Hme(x*jCD;Ta>Q+Di$|Gv(RHl}e zyIWBi%AY@f)&n(kW@w0`>&Bd;#cg-y5>&Ntuk7dRVL?GbRS^*p5+EUJzXjRn_VwRm z8+Z5f2a~!saNsBD2OB_%-`&{A2MF^04wM#{dTxOG&CJf~OaeVfhL$pZt3~oNifC2( zhMjDK47|ctM+cE8mjyjSr9yKLu#48TW-mgoQ{N`3LX_L3ioIZYN6!1@ipfDN-3Rw%x)$21Vb(rF10jRmkF#=g8$Bx+-S zhi=&qW$EnhJ_4?!mhWxVO%D zPb)8-AmGc0>CE(;0?RY)9-o;;B5d;Hz^lU79rh+!PGOq@WD^f{X@iX%mjlN*zak=T za#J?(;?wNuPp+Og_xBnD=*Kkd_(UMkgZckUusFE5za{Vf5`jV?51=7AZ&C&LY^T1k zzWb5;kZ9>1pqcbSLP=oviD_w-*ZSj8$A4{sLdePPECn!Pmknxia;zjyRY3jtKFlRi z=z9d}Hx1UyBep$`R^?NJHi24#C*|Sc5nlWjc&duK7?2~e2G8FNFD_>Or>;Q=N}i8n z#NvvNwh-`C<4jj6PoNE}sIlF>q1Yak`T%!LQ~N=ehiQ_nX3gM$XNfz}RaAB;FVY-JOqBP_ zz9atesP|_j(W}yflRy#Q!Hss*sT+cwJ3>Nsj5{9H2EmCPTnU-l7;%2fWpGF~7)3dpmC3FK~fl%P!5D*YBS_F7l0Qw^U!hZv3U-@C43WzE| za{n9_W(dq%K<8cSSrUy6C17v3S4E2)o)M`Wh{c`-Lw`1%mY52mYY1orym!nkiLYMp z5ElbI6OEt}@&3_}BFh?)%j46)xz7U&gcIlq#t@a)hFDH9m=G(tv$AM0aWxHuP}Cyn zS7uOZzHei%Z@6aA8C`pC$EX?WDi^9vcYDvfrG^X#Q?kw;Sb7X`^!J~SM3e+tXE60zm}1Ki7fCq)_m=cXFCQWEK@=OYD_SYX~JfL@H5ME^eHFD|pA2O*r-e0T396 z>kZhx!z%w4vbho?xeh|P5{T2le0c$ibw^Rlf~^CE)IKOrQ9Q9MYc^uL)PAv9!yhC$ zv}wf?o7T>gkW2*Rd>leC4)L~xE84(AZQv!-LYh`^JCL1k+dyo%;I8`VPBI_7&FCf| zlJF|RQHZxSoXry61A1Tce5;9xN>eG8^0QSdMJhddrhnpCIG^(ndEEE~W;ZMyW;=L^ z4sH`7v)jA2Q*{u!SF!l(JHpV3z2bZJ=nlyQz$ALmm@CT#mT~HUr8XVNyzW5`7jraaj6kS^`6?Z=Vbrr_mbcUo}*xUyY)=YY|F0%=J{D3MC%|B*mj|8m$ z5X@Y?=7SzsoF2foK~3T@NKvYUFDSA=%7uZ6`9w?(gy;uEF-1E2z4P$z2skE|~N(8>i`KIjtzQv(3F1{@ja z1(N5F-sj1~?=(ML^@>m|2Riw+AWYCJGtP^Ooax87_A(H%nl|Dsp$H?)K`PAgS?ebE zX2f&%F$n{)Qkry&TO(tebo@dv>b8XMR_2caD@F$?tNJ3i=k^?V*0rH3_xxJ?I1;uB_Kn)>GOn&Hws4Lw7tK~KE{cSyX z)R}<+MQ?BKZNP6f0VZw-3ye%2@^AC zQdqDFX+}X*Kmfy;L{1l^UG;$FUlx`$D>&|e-0x(7tEC9EH|2|qi&w?O#1w0ljJ$|C)k}tywklBdn9(PN5l^$8ar(^P+tUwXXi43)2UeO%f3vZD^4!GpRdk#O6%giom7{O3zCmYTRn^niPeCia!>3>St!pnwZDKXpJ8zCz z(4tJ|nydFAp*jh#%O=&87jR$oMWg_&Er;cTA3IN2!bjvwp#RBh=R%?(MGC7@ zp7>Hh6u*DAIhf~bV_vs1@)9>Xkd3FjU7^%2eG9bbJf!wq9)T!5c@kD9a^ow+$m_l!uN$B<=vZudafNH%gvL;w znol&bX(K^#%eTUF=1=6$8GvS%4V2vJ@yOrEMp_;z2vF7uDeicJY6ofpz0lJhMG>2m z7o5?x^>!RgOfIS4Lj<=m{|mbOo%!~z#z-L_d69M5T~aZ#rw?eJ%S#O>Cc<;)@>r!j zu5+5GG~Y?b4)yzV{Ul41>-dmuZAXrd6=DOu)&V>5I=MhTFUNnv5geoJSq~i@cLb(gD26yqW6Qy;FD!vV#BI!p|{5E@VuRh4@YU}Gk zAMBVD!z)dZOE%j(5?bH;{gS_TEQ1{)Q?WI6Z6zj^+ZXJI*wrP)h!#S!%!$6AieW&V z-E!;VVq%B{Kg`k7OCehCOPgkbIK8yue7DWehc_>68n2UR)W2dL+ZecQ>h>(QqN^tv z7uU@nJ@kD*bkJDTAhi0Ow9+|iEDLB|M0SSV-rj<~Tsi;{n~b2vmIPu0gpNAL6)Yrq z0(>8|u;qE`TeG<+f(lJh7XP3(R&+_|i|s7AcR;OqwO;4h7C8WHPFK{ZoAj3lLW3_{ z)7j0XPTIwVFE%z7^pfxKPcKLJeglr;m?79^;u_k0~gg4C3NZ!xldU9$*Hy*lTVUmh>!LL{*+IK*c^Ay#qMj0i|6>Ne zncK5NhgwqHt7cxdKm!Sky#>`KwuwCxR+^*5Kw{}tDz&=OFa06CPUksB*7)Ogt1$SN zlG2LDB#hox1Qu>d3f+M+#NGg?`QeoO^)Hc%uqrs$>8k*DVo?8y7n=-n$_VVNV+yr0 zVj^Z3eQC4yxY?@FAMU}q8WgH_ui{1 zNwTtNx;7g1N={J6@iyK|>bd~inD2*8A^3fY@Oq#%x`5dGe9>gSDQm^Fzz~N4Lrj&+ z&~z{aoMC;HFiO?DZG=F1SW6zR=?*%mSMMdpfHK@*Wwm?pj6}B}@oSpih1y`^l9fp!vy_ zi^|UjRqP1(%@X6CFm9|7$Ko4d&AzUA(5W33s&~6weJ&ZmWw>f37ZwQ-CFH!uWw^se zW*bq&!a7lVdHbdI^jS(Wk0msp%7Q~+wOR**nNBSYljwiZUW3V)c9yvwTv@2rNNQN` zBPa97+C?y^=4DAoDsz^pcm-$owBB&E5)MP!OB=0Q5naO28Q)u9)D`NB*5N$nZLk9R z?ue8^;&roC*@pe zq1pIvrA~ZME4&y2S2sRsF|m)S9bZX@q~qCSlgVF!NCgK3?C*$lb9heHe@%Cr#TDSH}`b+E=U2enCav%_^=(1mrVi(hf=tpEBX&{v0 z=<;1yW!e;ujs(AY>$|-_U@<*B>S|ln4PG9mlpbITwTw*P2S;1hN2&ZMaeF3T^r&Rp zs)H+yHh+NQK?&X>A1Y$fw++fVL26r`)IIgA zFfUe^01J%spA*y3&tT@PupfCfwhT0G%p~LlpFXyYp4|zHg45x$`W}0t2Sz48AkH^rR>O z&k#)fnXCX$W#psh{E#XBh#x*@@o=;P=q+J3>Yw%+{TreC+$i$pV(XaoPpU8!36%sf ztXhH-O$Fg2>+{D;oTHCD|EWKw+P>EwaC@^H9@3>YAh1CIqadm->@n133Sza5r- z@-3-f22-s-7v+?FRGG0xu65+4oZV4xP29s!WX%YeF@F{C?H85w;7LDp< zrgNcG828Ygz5AiTnvH8zc6--WH$QqqeZYZ4Xksg?8(Q6n05ba&7VCi;C*%PYBLmK4 zCj_mmLEj~$`mNg-{OV?`H^0>E3eDW%>}x_Jn<19%du+eA3Z6_7@-{bA=3=r8OHT|R ziK+u z<};Z7aQ8mFQ(?p8VAc;bv#ebYBu2>*jrfeNcpnVfn}4bIZ2QM873wVewY|Y{GA*5_ zKD*#Nn1RY;I-5&O_$dM$leQUZL9g6qR@g#sL{maQ{6TsCTU9fxYT=$s=RLwZDVF$= zzdgNgi>BI^ zZAzZYe)`t`Y)`bg|LFGaV!QuiDVh;8lae+M+EWZ{PIgv$>cG*N-{0-vv(;yl*1NQb zX&BtD<(+`E)C-w8A?c5}iq%r&q6~vO+vh#L#xGO8kjgt{9{NepitRb=IWKNF7d_o@ zF5dPsaE14M_spzM`64}1cIou@hs^B$gim?Z8GY#^%MSm^kTAZvZp>0wVclbsu%^yk z>sPA-TN3xouSp3%IK5_MvoQ}23#(m<=$(FxN-C^FVZW&T3;W8kJIT5Dd3PlyC-yK( z=7e*mii5F@_pkdpqMgojI=f}$876x8Pk+#I!8fX8tlu997y03M=@TX{ZoBa_I%Q+c zp-kRkRkz^T&^b0x-N$tcxiV^Fw;bosVzk&^e&=iipGPlh(+<{i_U$l{vRUfd!Y_<^ zjt+io<~HsfppBATz@B$&c;BinQA-JzR?e8wc|@O6n+zu>m_^o+{z0X|kT_m%3QPNz zb5Fl{UYl6tRM@Wl3CXj#76SR24%rdu?v}aY*RMXlbBwK+wvb^N)FV-it#GyKC7fTx zlt9aP-W`cqjoK&VZMcJBy=PcC%%vW^&+AMfDkh===;gXI%E!KmU@5%6p5syMi2!D&o0Ahkbh3%sV2f(2UV@ zNKGM0tl^Q&>dsz3WEwnTlC)Wj?t(PXe}#{X2*o!rKkz4F#zcQ%14DUiyd=DU7r5>isT*RMa#nuT!*dDGkqbZe`+Zira^ zMC^vY$}ON73G|N)86|hP(izQDyqOFO(+wlabc@UG7DF*Xx8F^CZXQ%6P*&|6*r1`e z>Z2)%!+d0TiEqvR3Qg}yD5-*2nJy61IcukAmh7_}J$_v8bp7|bFH04U_igpj-b>yS zx3;U7VH)j>b~!8Un?)Je*LVdFw|2C+hH3UFWl8 zjJ(41Nx-weYX^_VGAUNq4Z2}o7UgN9S#vTy1RfIZ zWHhswZ6*qy^S;5)?0nL<-beK8Y4~Pc$eG_V^**-P&RLg6n_Y*MS~2LJqKB!t0rxrN z7bh{=a{h9RThus^yiCuiMkh0jkiTPMav<9aeZL=6Yx?jwYxY-ISV_GHUZn5D^xgXW zVy#|O*hT%1-s$T3k0MUhoC*Q0@P&6haelRIF*?z{pToxVPFo87)6DIY z05&m<>j$lHYPraFz-QF=S zEB=rj_Olaq+1q!Mk&qwHVLDhf7gDGGG#Fqc*npfyL@7?vDP!e6F24HG6m1O~$$bMy z<<%YD8M+NIut|n2!njm?k))t zVF7}KbayQpX#weOq^0}J#r}TpIPW{g_l@uTarW3_yT@>@XU=)YbzgU^XBio`(Wlxl zNJ}-6O(CzdVUVC4nYMjHxnFM!*6Y?39GU}JmNuSB@~7<q=Nh<1@!cca2d|Oi9 z7M5C6=)2_;GHeUZ7yHU?O>(ep&&3<-cT;Mxq!daz1lq#QL$Q1(>e>6Po@1?KP}iI& zw#x`t-n~o9C-zb=G(6zk1OX5^Sv^xYnPJAu3;%fGLM_hZT6pOz!1{o;VYz!{z!172S#QcL{up1w1jg^`)-B6#) zPv|Di4~+Lh^feGBgchOywLJ@JxPNu<*DL%d85XHpY=zyga9GnT?P1p2+~)-9^LU&L zOMgS=5P+-DM#GqSdb1$e-E7J%haPU9$}XI_ z{Js0BwZ>Bjo{|#ATT+3UN$w2!YZ>onjW;-y!c?z4{~&;4GN{He=Y8ewx_llm7KBx> zS{nYjIk;#Dhgq3`vxp_6IU7NBT>Qe`F@e)~N^UDEN?EyK^*2mS{n3!}TnKsBo_nXX z`ibN{IL%TNeS4XR;?Ac6GlU~tlnmY&jz`#jqF}keP)%siiw%VhL75G9e}Jb$z|+sH zJkWWsso7d&+7ltmDVMryk@L{*UHH?b88ia7P1HL3ha%q;|SB*(k{q36}H z9~_9YfXn^%S}JdtEtZwaS6Tg30k&^0C?AnCWMa27g0@2tf3bR9?A0-aYCQ1nyCgd$ z_iunXXh0H?+~iN1x8udy=g$^{7hdH?AmUP%_v6PLCjz0gSbf$m%6n2BdVd(8&?aDa z&vMo!JV*VaN>4c{`H5b8&jGfD028zS5O3p)=I`!3>1qG1aansaIU9! zC3zalhjE&wbFMQP%ZCIvmvWkBahf)BKAUhTk?cx3i{z| z?#DLn-wbYUJ}({NN}HTg{i}H3keu6jcp^W(1!FAyDervCub2KMzgisl;Bfs^XheH;z3|NQh zhpT`3nGC#J+*C}u3Gs*cqS`^$S;%6Ux+2C{I)6fDs z?k-{ES5!$cQBl$H^20-!84bxU9NVe0 zjG;dWOtCk-j0(bvX)ibvxH^fvYXTsO7BY*=NctK`ZBUcFyjJ7~d4r$VtA)Sxdr_QL zeyG04^_rINfUu%oi9MRv_UMn8*u&Vt6s;Q9*S0C!h)qf|<9hj$ZIyf^L6I)7MIU3= zXtBEHQDG1QpSh#?Zs|R*8EX&EK3`h_OT_vVbhSip{5Z4f$W7wc`=~+6idO9u%^3k3 z8Mfj>nu#$Qp3?C&?k>+zu1<6ALGIjoY$_C7RAoOD<9;4~m1LIB=#45zw{YA?D4J%G zVQ9}5xfvP#oW`f4^qVmcKYsc0`H~je)Ok!XrWq=0aM3%IVZh#a%fOgfeRl%dM7 zU|Y~8B?38ZWl(T%zs;QO(jjdfMfM*J0qQ;q&(|Fr-Y)ry@x9`;WOcanqvlKWuB5Mi zI)znG3lDMQep)y!(&6D@m58*b`1ArS)rwIVITds4&Xb79hnN_9^bY^-A;H^bteR%z zx!`)eFR})CbOKjZYvC}buo{x#OyTZK!9fj?`R24M$3q$$boZr538^LSr|ig*erjDw zq1we4=!2Dov9G9MN^!Ubf`jg#wY4nMYsQ~xTapO5?CHL9TMiFMNk!K{?UG!sxpx@j)~)8`mn+=3JS9v> z*5%`-+LrHhEJuCi;7p5_T}hMcZa5=9dj|!}Dq?9#g_t3JC3-HhT4IqVE-N90zwz; z;jk0r`CGAr=neisN{2z7wCB@(eq3NZv*Na{J_`i~Z zo2G}k^r+gX?CJ|EZIoQYlw74z-k|b{@G?pzwPf|J!2tUkFu zdi{JBv!>XuIAE?=wxdQZp|z2!)Fzcgpups(sY|oMabsH2I#rV_+HKURsxZ~{B!8^!T#z;^HqSL-Iu;C;3RS2QkYTL(;od;)@i^odmgEGUfufU*| z=VLLPTPFrbx(5rI=tM;z#B`h$di2T#KRkLAd6PHu2d(HeRUKiSfhB!Vd%8eb1;_!U z2Fc)*SaybP<(RbSieMY@aC#DXV z);{p4g$E7|NLVPj(fnKQ^)T9%BQla;dv(uLNNeV6=Cxf%udM@b)reF1~W3g-CS z7?FWV4gL|OQzmcAYcJ*K3_B*r!k`z$OTWb|_IyCB3>@I$tAQZysH&LO3|5Xc_Tiie zgr%I9OujXkcKF;tr`+-*R2$0^IG&{iTh`&OH;(89*ONK?n-Uk04-nn)xt7OQ*Emr% zUReTVn+x(VKzWW@_n))Ac{s6UJjiF6irH5C0pY^3i?!Eu&nHp$?^?rt{!t~u;tq%5 zJwQAZ5V17Yz>;R%rC0<_Bj%6v!+OV04+nHk$xeIqg&&Ce$daR(S%;s_DRwmRCT?)+ z@tnZ+v2c=y_-U>s1pMV*$ zE+`fveH{ydqDG6N_Xc@fQP|pY$zR4-Ja{W5m8?JeJn2%S=ay34d*K2@vm^bvJ?|rP z@fzJEk$pI*0W8-TEV?3`0gFvCN3wO};FSGwJ-hCWB+%MnG@z)jf#v~eT1XUZ4wq-Gk+RKxR8na3YvE9ND@{^^{yqocOM z)assqP>~Fn;%b4$HY8;myhz~%JiZUO6EIVr1SlIbw_F|d2 zFi2w`kU~O03h`9*v4PncvKstdK*X2jw}PiZQ%5i+<%s6>>wfY>bb3+rZ|pDZc^_=X zXK?omwfLiI0p?{!fygf)$|^&BFtYH+9*sfANAi<%n)hw%a0f?zeWUXgykeEc(M zG`$(6I>mM4X4K?L->-fe9!bW@`!Fs%SxsDggVhmfi!lE~bxoWko*^xU8UtR^J%<>%D z!wbn9LQwyX4^H(x7Z`O01ON<^lc4GPjM&B&jE4X}l zjVK10C0#?M2QfH#DE_q!lDCx$J*wxMJ-Dw5#CACXLJtVmMd*=({uTMJpck_mtoF`n z5NH4_NBUP?KDkk<;DgaSWY%dwOhQAsb3PL${iE27eZane??w$^`+90>Me)5a1llP% z5CpSak(jKfDZb$B&|gOAe1x=(!SEEtY?O+;-)}_#Sl#W<7xvYQ4$_0Y6u=vO$UN~2 z=mXO<;A>~~z#l-i$ea53BUS=g`?c14&$iuggqx}V9sa)FMmgF}dGyX$zL_(pgR)|X z@+g5bM^f^`Bqi4fCD#IF{C3^MW8;30t|Xnt+Ed0Z%IymWJ;@I`7D`I%xG^DtZIv6a zAEBXW)oiFs>vsVRGlpAy8JV+ShYyGy7XSav0n#jGP-2jB8@)sh+dNuA8gY}(Nu^Hi zEybM8s{~|s@V%;oO9C<_<`b3GLYNGwBi*7nBJWj?i|U+w=Um5H6kXJSr=HApP;%kB zVz`nd85W6Xt$3ch6W){5V--pIDFzt2SnMkNIBN zfbwQGMak0>0gu_RR4aOd6(2-F1G1dBP3K@_{=tXRxpCc@XE~xd6t-L3qm>t5Gn$DY z^_rGL7w`AY2}RMgk$()ikQnz98c>#EJm=`rHI8%}rabcHG%e)J8FY{2oLH7`b)VF3 z=2SaY~=CcymBD_}p+NnjY!ADm5pK^o);3z`ut9rvE^Kf%Zew}++%adPasA(F?Qx_W(Ft~bAZb@sEfM zOb1j;QUQK0V>Vi`<-dNG`IrC0$@!uCo{H1$_o~yCzl_2R#LU7zwCDzrVHmf;BpO#5 z?3Q0HJrDR-vsybCQ-fx~8!mYC9BF6IJti+6HfGfR{$A-+2Z3g{Hb!O6EeVWQ`fN8C%eYjG{Tuw?0sjoHd))P$ z`Z<&8cA9>TE_mv6%hvjskv4H5uSd(A10-lJ!rh>(|M_p2Qdd$nd<{;u81KG!gr)e& zirrY=(sFm};YNrnsCjoA!*QHux8J~W)_ES$Pc9EoV_9@E8cgjHl3}jU-xH8S%oXpg z!cmW1%;9FnWBLte>5(z)vsV8pU^wiZ1?EcQ(<1zbWlg^OfB0`Ghab9@xmOrOQkg|k zX|9MuZIgo%;p_@k84ry6-@|U0d;PN0Ha0XZZ3=b?4q`V(7=>esPEHjti~bOZE3wI6 z2?6$X?-c|R5~&N+dLi%;n>KN;uN1@i5GZpWnE>;LH9@~Q)j_437q#qLGU;uZmy^w}NZ4Q05(;VY6im#D% z3rwC1h#B`|SXvbcacnb6e7{=60z~N9wNg|NsNvTl^TAJAf&uZEmO-%1c7fOmF;GfA zbePYP4ioDg@OAM)m4vn(Xx$&s4|1W%UyUj1PM&!svCIdEd^3ym;2ThcBl`J95m>%N zgC@coWLI8dSf3Y>Xx0BkMo@13ZD+NS_Zw1!gBn0e*a{KYswFps(a`qFjmPCp_YnCV z3oqc?o&O-J;o-!Rtrc?Ya>Xs9ef19@THp5$M4{Cz0flagFI5rj3B+p@wfnTiHS0+H zWXuroG#d~Kl0PR$ymAo6)Ni6NB1sitl>*#L`TyuX{JKCaOacp)wU$_VfiVB4G)oj~ zKqy3o?O*I|hWk+r$h8>0mo0<87m@Sff2bWlYGt1}JGDmd55t zqx(3dSM|76E>Z78L|Ejc7p6_C$KryZ70!@8>&2#a~dPa|yT^PCJRY6Qz5MYm4Vgg|_ z;0(>1%Xx#9uo~~Zjx1)Bsx4sVx>@UO^lQ*IFkRakPj$rDCi!EePOs9ZXqk zkk;Cd7*5pyCoWcUSh9KZt{nhv3LD2E)6FoD?81G&A?&A~9R=WpC4FTf{d%y$=i!$#ms6)t*h+|uNa~Owwz{&fo+=_q)&H8{USgkk^BsO)5 z{pp-f*E@#yDKW^SNd9XxEPE1)sw_H7`yq;UXC0#S(}ie+c_=9a%; z-nk>xuahCFqL4s*s`C2`z2`sZ26b3U+W7lipzPobE*M&#i#Ix`{pN?v7WdqNd*Y`8 z^gg7r0CSdp3jbS?R_fu<7XksChJ}l#QfJN&@edVGdZy%jl-;w=ad{}33y*OdJ((-_ zR{MX95#WOq=t&nm3ko}-$XjrNSgZhg+It4{A~+#qxd0^n!a)XKhu62PZr=U^cuRu&o~64fj-W zV`910uIicc22|po7!XZnJfSb%8+aTsfXAM7n)>=zpklI=6 z{24F+QH6n^lDxvev3>q+)|{3_T#5)FmjL~*LiDh+W`cq}4Jj+9?Xr|5;a(9h?iE0>`!7{q=C8-BP!lu6A1cNcPk3`P@9;hIMz04XpO92+vb;w$FEU{NiqK>HJo$>eKPRg{=J zsJFT+$3Niah z^*`A236yDr1r6tu^rz!V*I8>g8iLgFIt6GAxqXJ<2vxW{)d{w+CU6Q0%yMZfhKqWO zR}%F;3ZDH1CV8k~RsX6N@>~e@2rB;TPCoE}U@g1!oE#8`SBKSgq5o*Mv6G73L0WdU zwJb1?eT?$Vb#IQ|6^jzP@MV`24CoG!C)7>s>pxu5`Re~SX0P|~>0~9PejRnVy{-FW zgFBhQ6(GtHTRqJ7exLRwtI}hg_e&q*DS==6<^LbVzRH=x7U#3ysF^&trw^Jb3O!PD zI_b&yP{z(qUCftsCproQB?ztBRe0EEmscCRd%Mt3Wo4hFp@2W4TKQ zlgiPDpIN}Xan0}=&5A_yKw@kP{xyiYf+6c8X`{3pv-B6cBL;H#%gWyth*`0b;V zAjcP0@sM+z*BbJ*D-69-r7?i5C=Bt(0OaloiZI)i8hc&sLY$>YW80AF04&}=&@NHX z^-v1R&=g}!oUV>E<7)yF;c!Ozs%06Y=FyB^I-dOS%p9{3^9hnUzlVtRu~*w?twm8M+Z5$)c-^6{MUGrIrJc#Foq20;Jo;nsnJA?okOAI{e;6-Sq<|0yT& z(VqI?))e~ce+4bt9(2yGPo?9}#+}*vXHqmR&nS(F{nAnSkXHOq0jW10pKd$S`>-p@ z7|Chu8)8SCzSm|>GmadiV`;gk^?L^7VY(_Qcc_1@*uZX2;7-)oVD<;cw6(9MweTy< zT*Vsnri4xec*uzl8tLjDpgpVu6b6gfe5l=$KtN7;;;y$zQ1tuhs`KvM6vzxJ-o}ITnSludaK1$jTYr+b4OUMZPc&ENJ?2P0U&N6J z2zffM%`*HPGy~H58y8b83#W7JjP>ldRDnsl9G7lF$K%TUY z0H7#GCF3AA(idU#GanM)bC1 zZXdYwqv&eQENM%^1RUXg!ZtTaksy#w79A)e1Mw?AEf?w6!zEigSZ8>jfT~&g<-I-e zY2%u65Cp-Rz*A(MXx+u7nBi$xu5M)&>k?9bv%r6(q_T2Goj&DjB+N8Ag`QL0Ujf1+ zePTAb0ztW#1<}O^V|u@X9tV1y7)LsaSiyUB66Kjs4%m)zDL!HC5|}@ZJgN;HlT)e$ zM}bsPIaefO#bS)~Aoc|nLhPvfdyGMNxMIW_%L1-fpke0pza%FJ40=N~Yx;;0Lp$Io zQWmlU{VPi!Qv`I>kzdUpRtPtK;_`in8+$Z-uie;(w+CI(><=SeK>J>tw^Ix0=F4`7 znXMwO(b2Bm*PTw!uzx!?S zUx>|%X(xjcmof(Q3qsk!NC`N-_%H3Zm(3FExx3Jl#DIiEjkw7QR2RLOnD94!49wMO zTs-;Gnh$+4HxZF4B-&q<$+&`${hK3m}Z=1x^_677{D_1`R#-=YZA9` z@Gq<~U7AsR<1sT?+n3eVoGnOS{%ifuvPps~Cx5F-?1!!NUp-0D;9FBs*8g=-d)iM+ zHq@~+XHIsw)@;MdREoYu)WV*A=uI;U z65H049}^a*JSDlL<96t4FA<^|Zf(S12J$scE%N3A8YE@E?!u}dJQj;52ajx@4pZ^t zf5Ox+9ly;@+#ta4#?Zy9L_I~t@mtWgYznsq4GVxHG`t(+oa|O&%zWz(IhFnq#?zd9 zb&T=EMrNa#;5%d+G@OQijP?Y2NE8Rvg- z&|D%)bY0XPB(|Dyx}$&kF39gtgWxY75rkp{Bh`&hPw}Ls<2K?2qQ3Q`S=4?+bWTWV zS;U&R@AL;@v1rAkPuB`(lZLJRNX*A+05>+4k zW|t|L^cd%-w+3|a^z6L>7srF7PepoLZo+7qxbm2E)#JC-%@gYPl5rL76KlObxsn^` z-%ynkKy9dc`cxnd*q!;r%h}z3&F{6$wXkEH6Ba)8uD**V}rUh($~cux%m6x6aLY3IMptHNY$x>alhhsvG;$>fPQ3sr=2#R z9F3G~otm>ThWBmF)bWU=@+WOE7@IHj`jE@lJiu8CemqxeD9aZXZ2UHcMs!7|jpQKlif^0lDa&aFjJo|dS+wsp>I4maYr zG+SWJU9kGcDzZPIzJ7RmGMgK*;mSM+*~5YherG;-aG+-Jh12wBRdpq&{*3mO@PRP@ zXy)I%l3(D4f9i?A>rq0-_Kp~GlhP9h`qI~xU2`J!X>|?{qENrt$q@)vWA)n{HONTY zcYpD!Tj_1y5q69l>laoxS#wy(jFJkrSz-=oc==HZ*O=|Ed@Z?u1cAlgY0cjje?*1+ z)Ocv&9i_1~GRE?gR|=Tq+zwU>&j7ZEe6?Etq=k;;);;v^pnL$yf&<7UpNX}^WB`i! z?M#lB-p4z#l(7AT!i51??%ONJCr>(BWSAai`b<<`F9!Pw^IIcPm*dC{IFkF9%qG2a z+h|{~QOUge4Gz0!@zS3(LP!;iROuJG|71Jy#LxO8tMsYIRCPye;*VLI6 zPB;(H&rcpo8!N4W!}z!whulZ(M^}?n>m@^`TfsEZX)m&6Frf)PrbYzyl~!BMZpGMG zoKH@|pXF(A$ILr&?(YjrSg6xQaM`;a#@}?v)EJdRWe&XcKufI{O#qb2Y154F1P4E? zf>JzN=DOEk3$%RR<%m!I6V3{^htp^0eL~)eCmuMmf3t0901-S-P*eRkUM<=Gwr@Q^ zPX-H*GZMs|gjLt##-9%Fqm*5lAuNI07%pq|t$G4lx?R*d1Z5EB7_pX$6zIbIz~@P4 zdAZQFoFz_2D~ef#Z?!+PewamZf(oBQ2uiAj=mh1F#-ie)%=q+z8{N?rn7;A3;&rRy zro>=;R`70Pyk9Zg__7C{D)|CI6u@uvMT|ITCZx45#Xoh7vG}!<Rn25N!`H;{XJMR>Q-`^>#7$q#9KdY5PKh})L$fYjDU zO%fFEu?xGY6sXLK=2qOUJySMWQA`(CQa1nSIv^7Q;53fMFpe}-a>u8-!oeco@%(73 zVanL)Al;&P*@dX)+Rv8$C?wChM`u zU*0*lQbF1z&U?QX%PWR1{YBObeK0C!S;rCeNB0=~CX}3~Hu5LbIFPzeV(F@TsR$cK z{%5-6PUN+3klAlPgx%;E>^M!L)av`9|IQ;)Pbt)pO>TN3O=(j|UUg2xmm&Qi8iVoTOM#>#Lj^qz)OPKp{}b z$BZq%Pt-ZMlS%;al=cjgr;gS${#0L&4b+Wjngpwy8-xMVcc2l~>W_=mB`+L$R&&6T zIxWS)#ThLici7=F_B^PBUr%{3C7l++!yH54Oq-oK^0HJ%CnqxW&fR7&^U4PCz1r3MK`Gu99l^c{t6Z_DC zamfS?ZMN;1Sm0S*czZb)H==u+dBo~gg0Fx#f1B#&#CUxYZVG5$7r~aIDl;qE*SqZX zw)PJx5r6T?$toNr@grW^_b~Cly;5HSXxs-p1J4}nQX$}+AD9gW1jD_$2ZuA%__^4& zT473u$6Mg%iLQS)|H##f{W1gsuc(-Na_BH&G1cTZCP3b}N+X*46TrOF!Gpl{%r}4d zq;W&@|uhOuN=^>J9!0OE;N_T+3!_9wYNCJzqJLbatYRX}idsjP{)5?Tk z{aLqzl15ZAW;w7B8IS0=Lzlo7Y`6j8E$r zNrIgjUrPKSZOy4I^sk!1k4^s8-5?bGUf;a#=i3x^a{q2=%irFm?;VziHV34gKzP^u z_GKvZ81O@~-vBNTB^$VynW9(ce_tkwgVez(vo>-qeVtQ`HH9`raU@5YQbndCE{+dEIGr7dN3D`#i4cMBUkuRjA)A1~AK($369urk`VPQv_+1)H#cUfoaYxB5f? z9}$^|iJU-_P?f2=GR>&W>34@2a_g@^c5D^n<(xI4Kyq#$SCE0Ta1_drGW}StGp`*# z{B^NL3i}^|>U91;1Qn5KP>-qo&_xCbs7xs@h1y`Eda3&nGI8j$U2~S%;mu3iY^$<$cTDZ11XhXpO~1%Jg?~^5i>4Yt3YMc1XkBu=!u{9 zJjY4u`Gg0#|A+A!2E*xBoR1JTceay70;$uL zi#bbk-{J@h;8bF{>ur()op&!-OI8Pl@XG)WIyJ>IdC&g94xzCaFO;75LYdJRDl<8 z4+H_Ou#Z5U`9Xj>Lrc56A$dP5pPWUT4nDVvdjeS|2=9BLS+#`(_-}=w&toD4|D8?+ zcth;rJp4T9JP_ozZXbcmzDC?3g1w}C%GyfzxuIOR@$v!X z^yUmY5s^khg2usRVgL}17U!vF-#`{*19> zq~tAi&0Ab;;F4py+-#Pt>8A8hCHGT`6gIq_@k9`10XhSae&|m@WG?@aOtEbNux`)V zD@q{n65PLUz%?|Ex1~Z)nd6Y0%4;JhYG_QP)kW!d1>R%_Wt1ra7&8RXroPg0%Q;M3 z`d(%^4q%}MuORiYRWB<9APjYgqp`EHFi7<+xh17mQC5Lxw_biChpyTmt70KsiR(pl z3dzcG#vA{^C6Z1=78qXWiO3X<7R#GclVF7Hc#`$zC5fh>4FlAEG@1ON10Yx;bltAJ z76$k@Co@yp*4K`a>>_Wh@KDzujhS&Z)%2#`+PolI`y+$+{RQM!x>GG&84t4w4bPTT z3VV8u!A+*np=LznZB7BHL5mtE`|?sr8g- zATIBp6%4LML-@(OlcD!cXgid~kgEwxYX=rgBc%7{>}O)XeB{b{2i@`JaPRIvDJfkw zC382MT&_3ZSC!f|7xQmZKJLTw<-p;RO)`J$#;Zatv{3Jsbd7J^z%s1^OMtUyXY zj9z}%(W!ZR>~XL8+LFpfAP-t2ad&+B9YGX0AT3;sOwnZl^%m#KQvSUeB%LgZLx$j@ zz!ygH6mU$Ro)`d?+5Ns;mR^-eWn+SZ%md`h(7C-Is;b%;&X#>+L}l`CLNh!PUZb{v zMko-N=UeL~DxlT!Ck!D79%n()dK@cKE5H=poJz*d2=U7+A1Sv!Q(Dj7h3;0jgXa`) zPJ|)!!dF|si$h`#kx@)6wNMew)4DKOqv@uU-J=}<;m?|8I`yY4E7}vH_Zw7w1RDAQdqk7!OEL(~R?w;c{_&SKLy|%-VL0{JKM7T$^`|9B}P!W@-Xk zVCq&n!JOW*E}#@-=(r!P{Xie*UT)ViAG6ouo4OIHge3xG^naDoDS=CEfC%x$kQE|Y zbl}MJmT$G(z>7DXUPM9Fgr7_J2kEq$W(VIF0J6XTD|&S$2Ef>gzUwq30>v2GOW+1H z)QmRk0nGsKKhIr(zCjeQ+D-&^_#NZai8ADA##6QAK*hnP`&w-u`!ql&Zu+*b0ko zdOLHl{WjGj! zmm)Gp5kQA()^Vn!Be#Pv~%WdiT-LvDtId%>aQSYaxbJ{JiAM9@C7 z7M4bM1aK@ov@Z5KpupM|iFkKoA{V^?}+3=pP)dDr4 zZsu27b-%yGx!K7Jtv@?6QI^29(l$$wc#?!58lo=b{w>uPj~L(fZp~Js^WjApg1{Nv z^%{Nl^8LNC{JS?~6w977gnZ>gU@+6%bk!<=9e_Tg#Wnx#W*Uw*^S6cWR)+Yr9$~$0 z!+$I;o$<%t_lYK7IPF$u5lz1TwE0P-V70s8k1D8XW$JH5kDbcY(+Ts93BghGRBfW4 zIK^s~txZpfh*Zh>I361^Vm-#0nm_73^Jrf?eHLi@tLc}Q$l$LF`<8|Mn^_lrzCPx3 zg)Ete_*I9K;Dz7Cd5Z)2g7)Pv&#%9c)LB?_ay`Rq{6H?Xdd^c*U14!#tzKNPe8K8r zX1>3e!0D#zZu%Gps$lZ(r(aoaRGYNy666NFyXK%Ud@o&ddAG}nyLc6Z0BoM zIEf)ugdb_~SA2eJDsM10+$vXGdPd47flaYhlwTdT(4_t={NJ1W?PRKNUk4~mDavc5 zwg)4!8gdey(vi+_9$n&BwSTiYdX-N6PZ`Ndvz};1h%yR^ zsJjyqxw>eGoR#El>Jl3DCJ7fO3w>knXL};Xca!*)G?v8XXb`nfS7X4~Mpa2~LS9iF zBVEv#=Ih{#)oT@*vj~AqEF20`UaWK819Jn?QdCW>*|j|$kxwgb2Ksz8tF;~u{SGgE zpTeWy=5SjBp#$s#Nf)06#*!l2$7RkFd`Ab{YAoy}CfoBE!Faz+5NH2NYQ9Dhi~OSe zy#2;fG|N**VMBRbV~929cs2HKHesyj@83%aHZw!LeEDvF2WZE5s$RZePXUr$9MKBu zfAMB6%AbUot^X7D!3z#@SJFw`1e7B`R(RcBa|!0I@H;}by}!$e`?VfA{SJw!8iZ)! z-G1%{g5o{q=%Ooo1<|L|*c2mVE+CJ+VPP)VoYiu1UwQxzWw+HIhC9k{8SA|tAcCn? zpW`2*zo4jK%*+_oyVg5m#3p2^+(LK70=ZepsCL$$EDw=c__?x z*nX{R7g{k3>&PTHa87nn0F-ZU^;S&dAeZ1YR-i}Iwu`?wP3T*UWxE2AoH%B(j@xBX zs_^A&vXbT&0+;76dJH%GOtohS?&j0tzqHOpG#fqu)Dnk^Q5tpJG+j%1UChKavU8R>w7A>LjUtZvT?qsVfR4HV!d&P$1f( zccwL4KRo$!Ju{jT^MITv=t7|JUyRJnm3x~L1)IAdkC(TrC$FF;QmseRw?9ewVu84o%v=WABDbfey zsq@{w7sl-i*M;qiH3gwVBaP+cI5*^fe-M*a7B|`2x|&cu7-{hMMQP&skHHuLEfg@` z*B^2rBm0rmqJi6kVnO?&bxeCFf2VV5H{$bhmyEPsJ#!*JVL%p86A!G=&GpL+b486k$hG_OxM}fYY#p z(E6ev4?N7k1l=eSPuqV&$@pYD#ghT6zvKhohs5j zF92^F+hH{R%;__&nV3L&7-nvK*{N&~xl!{7sc=8CPE1rQb?>uAT7O5~r8{g&5u0M|zzH6$EcTHMLy@`uM-k)}Zb)e=?7ruZ} z1()|PJ@nven3}t*An2vo;(o#$@D@sLztt~My=P?rZcb1rn+pUnEv(XFuZs6YPy7>!UxF1`0}=A z0dq~k?rf`4I9;CmrfzQN?2Q#6_#sD%v;%P?5H>+CngFgU@${au@K2s~jtb}ny!$y# z?E-g|zjZ}iUZ!7fYL<_^eGD1NCI0PD_EcDLclpwMsjNVNN@i_uz*L=p6v+)u92NiF zv_9>IfY87vE{+HT{hsOh=4M%lNl=QN*QN1FUa{4(ONkY<)AGw~qa!WDQMnd(!RM#h z(l9}1&GNToasp+RwRgLX@p(4Z8-C^3)f3#D?q%$DJ!B^hVMDWg}Fmbr9WY1>@l)%rK{GIjkk@qux5G;z!5;2u=_0-?iuHc)< z>YkI*P($n^%^ft}(^UteEla9^NH>*k4x7J}r*y&{l9n|Ujg4_O!nJ-jV$HEbL$Drz zDV~M4Qa}g-kEf@Fep*>%=VS!k;IWQzS1XTB5_<;5q-%aqaM0=gAndYJ+RD;&yYoa9 zB%w`qEJBX&koD2KP-2L86ga;c5JbB8I?Q@~7`wqIY|_%__gSWZ_n|pFJw@$=L;Z;0 zmT>7ked-ff2Amm=YruCv*&4Vv1rI_yVlB2k3yC=u__-mW9Mqsv?IhOM$L#iRfR@H$ zdoePsT}xTJKbwp3rKhZV`CHPkf~ux~6&n7<@k+$0Yl<{qtZF;so@493p*cw*> zMJDlELTmp%kD*R@>|NR6HkSb}f|*a7>6j)s#H_C)`!4rW!9_@kfZ4^Y}}gA*5ZCAXI>qr^)j6(n&^ zLhA9c>!zqk!K*?)f0Y)u<^{$W(9OB=&!IxF1n(C%xd8u}N5OLOQd;30R9Y&_5-^FI z)V83kmo6KCzyVBIE#u2KGc$(*S^_Yo!p!;ck6?U7=dido{HiJ!j6hkNwp)aBAWM&( z`IVV58?dkeSULy$UeA7dy>6;Rh=t=e1@`AGKUxqs2t^B;m#yNNMQnvl@i+))iyc83 zSA%Im*jzjb*DikVQSvaPeddq z7!>ijEeMx%=9IT|x$2E~jkA!)Ujk0&NdrJ_h(Vx95`MuxwU#aHlADozV@n_bW<->Y z897}rg1gAIms!4G8<3*~#n#CvsW4 zu!)QL8yOe{cP*;jB~6-HmKR}any4rafPd4ThK z!+&vjoaoL&x$BV-4dK6NSOmvQ!B|c*}IZRZ{q$JMb-y zgVr>RVEn;V2dLs|?+9dm!Rs@<=#^qj;?2&cEk1V*9T7%m2>qWfExf$yyf3G0{u1kt zgfjUuxSp&^pRv)nS)G5Dw|Wl59EWnBQ^Xa|rcQ_!E&*^)b9cZTD59k#y!n$Z&{J#h z*X%U`Ee**d|AS#^#YfETw?-Rld+sFI|H>%^HSh1;a&KLsuk=)yDLj36oD_=eN@D0m zpO|+3Xm7#-;(sa3#4aR>So|mm2gan%cV!lb8p8Q&|pN>*Mi^_9FWi(C|d^<7}7wsYW)3{(rfyB+? zH&zkt`zf?6Mp8DZk+C+dAZ!xw`MCFB4fqoR!OE~jj0pX|`agzyX*&-uBfsq;i^|(m z{qSp&D;9r}JRkpmwQ6NyOuD-GNcQl2FaTM)7T#xv@n zLsjt8`wywr*T0SYv|6SioPZ76aEj!8%vf589v^T2;*Gb%&p~n$$=*R-ENa@&wZYYh zUjC%kVubi_|1VAx8OUR?)FLo$Cr1;Q1y+7f9J7D>1Po${bAc5Gi+>6@03105xHgKX z>RI>kA#4JtguwA_h(4)mmSh0);6gl@cKFu3kvqq=+_z5(c82D8GmF8r<07itO2VmI z^Obe11&vX`ZaRT}Mvw>DKG_jGDtQh6BefKyv}kP6an>lt6g~u9C>`&ui{?$CT*yF> zZf&r~yvL}gAAFjp{MXDs@oz!!A2c?0&0=fAOtu~W1#;c>>0f7xVnZm#F5$f6X#XLq zz^gR=4UzfU5?T_}$|kXUlYx7hCk1Bc(uV<093n(RIA)ie(akEtZr_IHn$ygreDB_qmZWKaq8ld+3Y{LjRvTT}=1SmJ zk;7KeWc^I5euELYJ;#OQJFR@Mik`h9ZJx;{;vO3DTrYpOi<2r1zwdrZFhb)9fzx^_CE zI0M*9Q7)5icGb?tFxvJKR=-f>k_n12l1uPtJ-3=du~p4WaHU(D=fSkRY^U1OCx9GG zfzwB+bp66Y0TCflcVE6dV$U#% z=#qRN4QE6UvX7KaVs0ClKGjDiyjWIF9PaUGbR4 zW+@FYrSi`KkA33hkYihP!?b*KzYNYeti2YRKT=XL_iAys_2?LGFldQ+EYMikYe)(J zRt!)}&XWk2Y$c!MLTYm|8cf*VQI6AmX#AT#jAnHsnYRM@DQ~pM(Bbk#m^ZtE4 z(cv&G?S}1r!hf16%sl=uPB-j-cQ$}bIS=y!Eg%w;1KMD z_0c{G-AqRX9txsN8Rm?*K~4foKRUN02~cWKHlr%2+~g9s%#$j`(MM5}!?I$byAS;K zp|j<%{6IsB2lf!m54g3>d-`D&VJi2}RW6DftSYbam04sex*#@Bvl^*Gqk;>;=Q`qu ziO?ua8a3~;kK{YcUoUM%rl5<@^%<%Xz-3qL*^3vYYH8g4pop~+@;=38#rKphEjNw^ zgn=v|-@TI1=k|nQq)aE9#-)2oq=TtTv}@rH@YcAUhCk22$>tO5%B0dpe8u2(EA-Yl zqq(}ry^|})3VYkHB-!q+7bljQwC|(M+xFvbc4_zc@bb!7Cd<$+S4~~aksBY5*hQUP zyl2PJ^ghhLocb}w;ebp0H3f`p-Z}u7x@h9 zJCui!Uali*KfPbzLM|~o;2q%BwtZ*v2W5?vw<IcS@t~ae!`cTQ`@Z}f8bV-qGf6Bor9C{BMV`r~v*$qXkhc zLNX&eR(^!oR^gn|W&LSds)_r016r`zorTHt|KU7XNBT|u@}~ck(<%ZsQeZf-)1O@W EH!j-$LI3~& diff --git a/doc/source/pages/other_predictive_models_files/other_predictive_models_33_1.png b/doc/source/pages/other_predictive_models_files/other_predictive_models_33_1.png new file mode 100644 index 0000000000000000000000000000000000000000..21cc4855e1b2be7414b7103864656dcf8429555c GIT binary patch literal 69309 zcmb?@cR1H=|MyozON5HDN}{3cy&7awwz7%ry;oBy<1#X`8d8anLbj}gl(P4T%HEsj z_36Iu=Xj3aa~#iKkK=IPU3`7V`8m(``?cPmz>6xfyLTSkNg|PU%gaftkw{wEK``#wjqGPAF zZ{IF=t?|lEw&ePi>KK8;ZL?+(4*qYfxvCQ^%)dnaGuk#2Uu{AkaO2*;U!-2636k`` zUvFuTD*pH1{TJW<_n&N(|Nnl>)^SWTb?^QMcl_3t+r%RIt=r!n$A6_L$F+;?rKYBq zKk|RQ7TeueJ`2kI54Jw2{D^;zGKJi`C->%=S>V4PL5@)&>c1bS;>rK`vD_O0^E!HK z!)@1ldyT4s4xE2))igOfn|$%fxp%f5QThdLm15(6nqC*qd=V30ohGsa02% zkU4Ya%-a@mhhEYx^4(8OD(`!EdG+`8ovpmT?|`@mH-}2R+;r>r7pgOD7D?ZVeZ3VP zo{&it_xu#WLFMP?=Q7e9>^jnX)N^&sm(#?=Bu3I#boW92Lx#mZc!`TeUapd>ljp~~ zi{eI2<4XW|wsSl7 zSFm~e>J_*JyLWruz5L!POvv7#v$K=96h+<(=G7rgue>N6ZQI^fE+54I9<9mB8o**j z^e(Qitz4Nnsh|JO)y8Sq;Dggqtk`q2n((|2ABZRU)0|%0nq~UIbwukCi?-9#XU~?# z3no0KYdDT;rP056^9CQH@#Uo>>{u-wotS#l2}Au~gEbL_vyF<8T!zfPndYSt>e7KU!eV0TsT!~N z#jmikhM%HmWo7;F^q^6x$fT?_w3oTEVCM#a&C%&P^oq9`*d81 zzl625wN1aLChj#kZhQL)wooQsvwPG`ObNfH z*4Nj`jTTo{I9hW(XUs=L1ns-y2WJk5+0Fj?7Ra3RV{F~Ir_l5JweCXC@anxMG(NQ! zdAo=6Jg;oawg^5bV8!M+=JfOP0spl*?Wfh%zLMH+^enO2*n}myxw)H6cb9V)uZ)Y8 zH#Iex>xG1bRLQdVn$2WY`UYPJVT|qdkdi8)@L`vcW;-d;l_ZX{SQDJ@Hum|>E;@Q1 zlP&32a;tDrn8e(;y=Jf7ymiZSeQEgBmE6;+l1psH#>PIlaCq+nqoZ~Ct|N<+Tuhdu{*oY8&5`8u5oZUhM8)DWNj6XwT$?#8eB#7? z-m9O#zEbD-(~_ZD6Modu$*F&|E!(CuFHASv+;O04x2Wr%im)TH$24C4Q}4_q?(xso zUHdP-ym)Qusi~IXd20VLqB>J?zNl&qF+U573hg>^y?Nz0vx8SG~$HC>-S28Lps!f|V(M$P> z-?(uD%d-_fkX&CJpzvN-dx~dbl=O+we62P0MQnnU>9^*EXWehF_q*|VddI?e*T7UY z%W&z9&BCIhjn8DM+H-6b@vFd~AhV7fTcvp6u-DodjXAbg@Dh_VGqwMC*mvfgeRd&O z*neFdN0ow}o8<5BPt>t%*N!m=+88w^%g2kl-bV>>=q)Al@$sRNX!+ng{Hy6T-T3%; z&_RLwRly7czkYqfr=OagRhnykZ{5XhtA%+0O44sPAKms=%4^r2B_BG<8HJ6~Ne4un%x^+}WKl0qgMq2vzr8FI$&D`P=62aH6U*BTd zFUf&xRfP*f6BM{I)BIFs*Aa2?PIDVn&g_>KXrkhK47|q#m^}x>wk+gYw|rSXwTwr5 zY^*IDzmj8f({XKOp}M|)_w})k-0BV?zf})XqTjM*qW}7mbjHNcP!-NM8QuUVPG(4M zPkH&Rr!o)PgL+J|Cea!DusagO+*|V;pVeoP@UIl@41*ox?yjyspGO;Ps>qlv*nfGI1-za+xyXIM{Yy@1lCdd!i7!d zcU0A;hZ|TXHWo(P%CQH@vUy+Nc!em%Z-3^yKfYUo(x*pU{32-y1V}ZKOGU%hs)AH6>D}5sG19VWR*X zT`dL$Zl}I|`-b9;MjE$Qe+BCiFXn#w8_(&}r(MR{1!P)O>}*Cy%(Ha*i=xL{-dk&r zynCE%FoL6*8vFX5-05eDM_E~?&%C_&o(M?old8+OQ2KF_lUlCl1`jM)+i-V)XKLrDS0(A*}WDT`YI*=e*_|kA?;WYEm0@ zs@ar=HqK!mby(;58X9V9&qG+wj?UrU-hW18@&f?kgn^HCJ zmwZ#TdZj7XHgIP#^k`A>+WZx~&B%VMkYwibYW0R>@$vDWlBA@fxeSMJNT%kM6UAfE zX0pxe4}M9MsJ*>|Hip}H6D1|(k2m^p7Kxq#bcQ}WXODbqok4GvYNJ}n`hJU|yca9B z_q3jH&D4DOrHO`7hp}Xu*jG#pE0;MIByVjPjI8unSOzOgOFNPOMeB`+?cVmq*%v=K zdyD+I==eI7c1H1Xs=%ejEK}J;?6p+w43#J6?l?F*XU}gsuKSj4xFM;UJBY$-%YlK# zsexu`dHmL6AXo^{M&!A|!;iJKyDTg$NappAt|s({|1gzHU66MwEGp8)f_Tr58lzj= zw7tD^Ya0~}6H`6fJ?bV)lHc<2liF_vv#ObEzgk-eIrb!Nqh!o1rmXS&_2e$^Xgf}n z+}CFu$8)^m&>~Y78ILo?UCMB^GNGjoi$6)v)qO)i8LW@gB}#bn z+INe`nc8>dKU_YPT^cXqeDD7KkKew90Ti{zlSlr@opIC$Hm+H_bm`L6iL*57C4Rm@ z6;v_bgL7=!KH?8_ihV>-`F{R>ku)?>vVkHaKJ~>J7~|>Fr{QU*0~1nAvUJomHTUGE za=0yPneaX>J5k~9zn@cw`+WGJS4D1ea@!xC)c&Hi<4$Xf=!b;^s|%MqypjU%$&DwI zXJ9Y?zL;&UJd*oe%za$xyNF7nxTUR|)$20Om?nlNPo7xjUoa=|E7{9S&n|?osrAo) zmHUh~8xjA7z+XDv`N?c&fByU_vob%Xn`3hzqi}jBi2y602F*NK!)Oz|y=AxL6YU!k zC9bzI91&PkC@d^Y>ySTMtO8^)=&5#@`qFEyQzLGddy*{od5@viJzsQfIFXg%YGib% z<&A!}$Z1~QaP%aPY81m;|E~8joyxAzJQA?B8BY?hj&fZA-cdD$sG{<9PFK#H(b&KsF$vI z`o(;^qqdU#i5r;?eIMBxXmdS(gX-9Xc&|=Xr>|KP_>425xT)CJ+gfcH2=3F{krZi^ zEcy%KikrCf^MB+&x@cu+4HVoK$w?5?7vN6YxL?EHg36aXppN#=DiWf>*wk9u1l zKR!fG$+$g6-HM!wIljMovw6m&)`#lm4T%ZA-X#+V-Lf$mAKCqCT*=0I$50+X@^qsj z7g?rt%V`791GX0%dLNwbfO4^Wjzy;GWIc6V>Xv!1pNAld)!WF)+2hzgAHx$R>tvab z2xLE{rE%YNebqC7iiI*peRO$YBI#%rHsAbXqL8!x{sCBN;5(U^ht5?YKCGm4%66qUHmM@Y}R< z%X~j;_2XsPw`a0IZnv~&MTH1#klN^MS2z0{d3-7aXN9r;k-#%F5SKqc z0>N9<3OyW4S0@Vq1fn=~H^r#GByf>Obwdo#Em>yI+aT(I)wN(UN;oM~laq(gs(=oh zK^aL{oWzt@2hImj826UmAXXUgn9u6Ru@hQppHRVd(Kgjzs64mp$`52uFhPykB_t#S zz0zT6jcpPpDJ;{TPYzl@EFX{UT_&dw0>BREv@A7ggsi4=dPXdzmf(aX8 zxoz6t1>&MS_gEU6b#Qbv#-rZZ_avg^9Tc?r#9&`|_QC#B4lXXl&JALb>dt@K0Is8O zW7Ae%iPJb07bs9J^{hZm$&J_+M&96xg1jy*9ToY~)6+wu@b}-?vO*wjG|Yo4Dk{y^ z?fIS_9`v|~!S1VI5kcWc72CyApe0m+$XVh~4_yBSGQEWd6}Lkaob~I_z;+6XcOh{S z-frQcA_7$*OmTw)%z`#LZ+WVGefZ4lGM9Yv^YZ9-(VbRuSVhB&@LeZ+ruJN+3de}n zml3F22wfvW-0#yrhcCFexIC@qn3Lq8D8CmHA}H!MdTpi?7lH4ze!kh-2DS@_SE5jl z&-WpMc{AGEI5=d2x()A@5W*%=ob|GF{oQ!<8HnNWe7BADHCo1`&Y9TetN>$r>{K40 zJ=-dfp=&;~-(&$y#sz55RusQGKt|)eUTMUUW1a zWPv9Z4T(M|9(wsMHOuM#X^?mb%0=w)6B;kCgAqXLRQt>23}0kG@0tD?ZTQx0?DCf+sZcCG-rCPt zi$r5=q~;WpSFS^K2jcuITKiG0P)5Ov(Uw}@Ufo3~7ue2++1Ud&ZQXehg*)GULIs^P zT#xnQzk(_=#czeEG~Mg~FnVf6#`s_BJNKQ)#A{*UqyIR+II7#2s(G?G!;od77!`D? z?=A~_$665{&8eRsiDQ!@s)de3eAP%a>M2m~*>eUJVf(IK<=?-5zdU{r6dD{XhR2i~ zD&=EnW}r<}TwEC%2_+s={ef=mB|UkL13H;TWM>M^J+rX?ZyVENRR}TU^1Ewi0bL!P zod+Q7`Czq2Av>aVPJ_xjV^4xvs_%RKui!e!Z25*0-DU?mVs%YTplwIaRI6!dWrvjU z$1UAHGs>h3q0IGoCyh*_YrwPw_yY;Az{LhsV~g3m-h9Qr4}vSe1+8+cw5;rRC>Pci ztEd{&P!i2O($HRruW-I({INv?^N5=F=53UNBN-(s-0WCpkaefgR-Wmh`dai2D4#0+ z6^>~TOaWpye=YIf;1}9j;5a}I-S!A8>rJbsRL5Ump9E2;Ls#f1@S00?js5Wh6%Y_~ zXY8J^)(-6C4-S3j9)&2^hJVH@x5+ ze)+wE`ad~7pv=u<6)C;RksxPyGZrYst7{8A2dE!GvJT;O{i8wDus;Jf0@~5>_CG&A z6x{fts3O`zwTGHItAIbWXxQ-2e^h2i|9!bL(aVhGw{%7z~vR_>VLi-;atsl-=5Ht5_II(dOnfXoW2q6zwlxi~YMwmDVYk#f95U(QTuD6^_pg zHw=u8B@F5OyEJUhTefXee<~d)t^K*k@X-lHlMi`$Y+~I_P5Z8AW@i2{_?+T7Go;IK z_xX#|K`aab@Ls+=#<_o2kM9B##FH9kA(M)G9?w5#spjS8=7tl9hxlsKQE0bF7S-(^ z8Zz%9ObIuiQJ06}p3}+mYJ&9%VszZJJOs`EE^_YNxoa(N5?tjAffc?3j_qX{`SZt0 zdDFihhTM4gpC*U?sMpD6R`^5r>ygTB@_`cG^A4+vjwDf+UuU5Cf{;MvCm8(vL=ROd zWHV35)qHG{|6RW}wFFL_+wztcy3)%JjcdV9(rUudN|Fy3-frw@6@cVPa6Ukh&66K@ zad8`eyiE}Z8uy&mRDNBEG^pk0{rKLt7ym+8fvUiZd`!Ka2b^porxM4RN%p zpSVgSpoYyHFMhn&J0R@vSfH&DC>-58dbFK5Z^YNMk-U1!W2m~#V~}k*L~+ooM6a^j zcNg+oH*=nfzRxkfHy*q%c(wC|?MZ7D;i;So zIlvbHyv2AOY&#Q>D%~8VWgbei< zrGC5jvE>=M4YOF6JWSp~ zPOb)=pizD7-}fqFn4ce)1CWQKKD9iOq5kCD*3Pc38fZkYs(!*FVFw~W{dg`07fW?| zWuj#B*SA*{(Q3oTo$vqquGp&J9~w^_a>@r*geJUw=gyBE9Ua|$#P0{M1sLx+a6n#3 zDX8c?HiON_vNAF>WzPMIj~c=rHH=@Tgq|xc{q_!k5?n16&|1h!^OUmq*#SHdr1IFs z$0XPjv0kVCV+B@>qj88pqlUUtUR}LSRaKRdiRt^??x%P?O1vHulQINrKu2~?&LC`e zGpmo%1e+&nDj=XUc$z{Kr#!T_zuuwQ`NYJ;#l=O3@lFxqE%bf7!#8&Mx7FkcVx7Vb z@QgGxH$y{1X>icPlX0GV$HtWLMq}G~+?Z>^1-s5=T(>Zuv?fu;c4R7`f(Gi(v1iB45tMz;$_gu=wz4`b){4ZCHvz8p zXD2H+#%E5Gr%MH#U>c>1zITu5C6uyz$s_1}^s z7o|qLHuJfRWE;It&+CHE|E&Qugy~zsEWYc7O=muJ=2h`6YY`u&a9z!4ExyG6=ZwVg zS%egohjF@L`9MSEAl;(qWEazE!ET!PI!N}{nUz=+;MOjZ58pa&aQD&WV!%>CELy$xWi*;e^fA#iW&&?HrG?L=Kv2Fu8sX1J)H2fvu8ORNobpp;G zu>rjAvQcpp`)RbSjQSu|cGh>3?!@)|q77S0E*Mpm1|}Jo@lDFOwoYfI5(V)s!Ph_{ zr~rAd*2VDH^b{w6W$a;QMjvt)25*#FUp!JCu=^R@NOYeVh~JwCR50R66tdJ2JdBP6 z_s?tgSJ>guN^T0Y0AasXVK9ZVo}MJws+3%Hjye%#ivftA!hvi`2M_P*9lpL8>)iDYQ8< zGczAQxbQg7d*L)NTQ0i->*_C>MDTmM|a=ItR$G?16m8yqu zM~J;8Yx4{csjj_kNffeA6tLWzD|+;lLiFi`URPV>7gQzY_U>j7WCOYcHk%rXvsZh3 z=7x*@Ns0BP>a<7c5V^Zd_5?n+6lP`B9cyICTsq=hP+#49Wxs+@fR%pT2D|3r{!#L# zq#Nr}W&cP_{@U{?g6ig%@*%3enbge8ZSkuzMZ~6Tv;Mk~Ja`khbvR>Is!mVHOq^Aca@&ZYQNd)@V$>B1A%QYc2G2PSN9d&dOS+a0S)2 zpz81@!kaKl|HQ2$NHSr4(im|u+oHWeGxMpgE$^(b%OlF84A-f5`={So(l=65ZWSfF z`F=GMbx9vWLzWIFl=8jTiDm(P=~A(eC;AC~igl|JU56Q}1al7b;v#+nRO@_OnSo-rv4i0Iq{r93 zJ@uKYq&qG-4_1_dGv2&mk4tb=F=~quIw@=+cF$D^taj<&29G*5JU zE==^O;^D{i^Z8-2PMLi0AHA`8+po6l7w^mLKRErQ7j-!X*b(X;45Ic8Rtb7lAVe*K zai-^Xv$C;OnCtQI@DPFxj`4T6GduSlyPloR2h{o;5;+9|5=cE9U1}ZQ@LaxaPFxL;lnpZjN*tEm^4rs` zpy_3mm3II(2pe|>CnIHKm`{;D+zyLKZUkef4Vj&qaX+tG?hD=wRkx=DsJ$cx8vK98 zcm_Kjtse=R7YyQAqA)e4Di@x5U@R?rbyYw{y74$CXPvOu>`UtX`^_gV_6Ob%;c-jI zw@ahQGa40j?YehAB+FecmYkbZ-qRyhCJ9e^q!O@9w1Ajm zDJrW6JoPTo9x9N02oc0^9fhXQ=u(u|@EsM+He?0GE`6XXl!e8<2Pks4p@|qlw)2-V@G(mxJI_ciH`mT?ns#I zJ$A8l=mY#lqZx7h(acc2;_UF+dJ8wtHY(b~RPG?#Nb-djh%5iX0rKl4p?h#&Ula3l7v zbT$0Jw}8r}qXNhrJ##S>JMPG^vH#?}VNW*U@uny<0J9y}%j4!MS>+Y5`tca@wqBt} zSmgscJ~%vtytF(&R*ObwV_*sqglNOi3;tr|_g0!f^uivKhX`F95^kw~Z~&IPZex8x zYGewJ&bDJgLu7cP_ z9=miCC!0|D;RdyW4BgCvv%3v|BN-|(alY{`sA*_ELNtmIvS)^>W3)Kg=K_i@)a`K# zIiAR9L%&#%2PY76A_qo%6a)oIx3Tz?!eOJ;!*RI}O{ftH53~0u52U$Us4*bi7N`kC zl}0xPRw+Yif_VS7zS<31CtC46Xn7FoUOBM7Q^Zgk4W@{XOa<*KmD7xg2f| z0B~6+NDd(l07Z@XF>1$Qe*Q=>jV!M@E7(!7y{*u``z9t-FJ9c!-Q7)bfcG|GZ9J9U zVb_^gh6o;XQTx^ccP^rxLQZN(RL^LPtP1nc0KBcqcP{6aOuwe(wJOYSo#FfQS4k85 zQ5vnd_|;18#>L>cdvX_Q>>eJKVky2B=`|u-K2dz-mA^glpA&od7>~c?Bnv`>?*L@h z_nwJpJVYu<-e3fptN^LpB#WMi^JPj2JUj}>5U8aLoKk*FFE5jf9x{$9FY^^b6D2{| zyhY8-oS5R=nE^|I+z2VS132+2E_G0$(n2TjbjmaD)zoyI`aW(w0=C-RGEf)GhjR+n zbNf=N#_`SEmvilGv1K{F4L}^RE2=^#q8a5-*+=N@;l9k+@yrtKLowic2&jN1LCTUW zTL-=*;$vCGZn7ba^4#opl|+&;2nuIgp+RRBqJ?s^AAU7He;|+oVVOZyYV95MzI`Q+ zgit0uAV}{nokTFaOP#NQ|TTN8?88sm0hBKyN@z&J<^`WAG^Tsqq{lB zcjsa4w}Pjs!!)2a6;NM__1d)~)NJ;T6c0_oddUV;_VTgAePOZtZ-oU%)fe?(W2YAh z(U@lG97EJCeAoj5`f-rQ0OL%oo=fG-bS>8vZ@!9$QvQB$tf*oh(xP#_l3WO85F%xl zrM`Y`o!=j{Z$;VH!$VjKam=Tth!(^d`CQ;#*BAAG$;@x{;~uu+=C8m{tE;Odg3uF0 zsJ=cJ7=uVJN;e3=ma%S#s93J8aB^@k0;K)z$NX;~CB4NC_3tJRs)H#Emg{Ys%@9A4 zPjtrlL)=HG&H4)Gej=*$%bEJhR$35Qyb~~%>Tf)L<$kiVvIag=GNnHDm4cKZuQgt& z$!qC|&wf2$I90_!N`s)@=6{mV5r|-8?>aP>Dda^-Y?ozbpmaMfjO&w9RFe`1cj`Ja z9H>sT$4MsR zZfTZtLj*|%qIo6iZgWJ1iYk=9+P#EGyrQ~;>z3izc=p|)>mMueT@kcyP9uAaz(M4x zD}v|Wbf7e{EwsGW4uxOQzPyno&k5WBFCbLG6?xK#N7y|e~6^YztQ;vq7 z-T_(1C%ok~3`;<}2kv!i3X#Xo!dFvw8ADC#h@V$`c47C38z4qal9d130T5ATbl8YO zbEq+dpN4kUTp?%kmR(pl2G9goHsV(npqaAMvJUvsB488D7MGj8#HS^}r^ph~uZwD3 zP=O$w{yo)(pudVyoW_WrKqT!Oj4WF3sx|lqZ9_1(p-i>B-gYDRu}4C3wZ+4anvcgg zCKu_2^Ba}o<2RT>(s}GX*B+}FzHHl7xU)k<2ZxRFb2L}dQ%zlpa-;RtB_9Ol2n+G{ zojYxe-WxkvUunKlI~upr?`NcJwUy=y=ue*O$bKZ> zo(wroDF^Up5(K{l;}+#0gcym=3A>LFT@7T)p~8`LkasA2XdLdeG<`L0C0uc5@(-wB zBtFMzz3GuKS>`^_{CIKCaM-6n+>QIR@9f-XGydR8YB?u znHy=bWmm)p2|Z6^=u^4w)5#)hW|lnXX$RDH-*7`GYa#&%;bdj?g$oy)u+-qJk*U^K z1qp)BtEj}EMo+PDv+s%5*K03}jwpPpWU`v)w%1-?&22a1>6F}6QoJor>gIjhCwBhF zx-^>DSxvM(*TVn<2Z_80haEZ-C!Mu$XOgjI(K{VP;lA zw^J|Vv{Va>jLZ~}*m7^-ERU$DXw&fg+}uwnqyWZ_xSA9R_p?nZcUr4iBJ$Ymo2Bjm zi|{voAD~BNgt#~1jd8z-fbViK&%t;a4e8e+>Tt^PLHVMn#{ckWQezG>{N5#X&h09*u5mFngd^pKjDmUa+)EYe194mrlW_gg5WZ8fR$Bh~qi9g~YX&h1~(Be}Y}EPmINBas8MoEc+z^wBg zav5%8?Su=2!i*%=8v$J>_-n{hla)rOO2!)RAm`R@l24teSTm9Olxz7tfXEzowW!v3 za|ozi88cG6Q2me@9O?y7WM`2#fk5HKe}Qsz7V6a0)Kr#M6+xdMsgTTSlag@wke3FM zGPobAn3j9L=;};Kr;N1I%i6nrE&dE2a+tR*(Q<{=Md@`u(NdjpTe=s^FY=DwF5!k@ z^~WKqCu(BZx$>6&nm`?I`hOW2yR4j`NOULds!)un@Dpd~D*n7V`k4HVa_$%rXLb@k zlsU+<;0v+}t?gzOgsJn>0kt^JxP}G{4F2F3q*n=X2*>UjkY!z*P{VSc5Z}RqlmHk> z=)RB^ST*IN>h_Dd4x(z+%;()p*l(7l!^=MvsSAt8$~LC}Ta6j0QM&r-e1i&(zN3Q! z;*S9^VxKR27#bRqV5DR>d2^harF#Rk^nl{-Pp)%H$s%{2=lE{)%15(mKIwYFJt{0N zP#LeXmv*bHc3Ef0q^51_l*ny^Z1-eV)&nW7O;43ZG~-w$r&gTzPC1%h&S-!4=FxKF z?6xxO)pVAN1#V+je3xhr9{fzGJP)5dmxpMZ{#}FUaZidA``OQ%l=y}w+*AkmMxH;y zxJBUsgd#HY4akz)3#w?eNAFJHUzCv423ui(kjy7SDwZFb3BfMnFk(MxgV~3Y#6z)_ zZEbDK;xC>rpPVm3_~JL)O6%a3zf#6K<%#m9XT6v9wEOQkpmD-V`!w^=Y#g27$Hz<; zC$>7w1zfq2=}4iJMxnU;@%Jf*o=$Dp^e^$rMm=7O?Aj*&IeA<_SGf0*TVa!4U^p9U zvTkmK0%u*k2w!*WXezi2kwv|Zb)9Or&Un7q3a0tif5R_s1zNMctx5sBLu}{DKw1tG zpM1oR=`7vDZd)S}+Cf0awneA^ew=g+;!E|85c_gY*T-q}9~KK-i``B|rTSHttr>3J zz^PLSy6w64RA;~#UTdW*G-YK?Fkw6KTdDl>r~jvlG45hJA`TpG5ltRjieZr!Q=ygaQ@-!HD!tgUVzehJrL z#EJzhLK=-b2>Vq>lnyF_@$3_WuN{154ZfL+Q;i&NnYSQb-lgFxHN;?LF|VwvtD8E zkY%fIdz#?Vlcd-)YVX00-ynE-1|We<*yYzA6bBQy0&vYkiERwE=dENI``w&d*1822>^g_WT8VMg|3ILQN_F^D71ef)*#@6HX z1cYbbJX+J#^bnF&FT$sAE^u^SAR9=S`^Z{nyH6NsWf;^W^Zg1C57mQEgmq~;f)4P( zralZJ2mOK9XVD?YuIn?pFX8h;Hp{8P&n6ka3k@Krko6|-M~T1x`ozZi-;V%VJq2xM@N?ZUk%4Yi(wVyCk!Y?&b-tG0TGk=pV znd#22`}&%zhZE~NFP0F_TfW(S{bbIX2~yfI4e|+o7qdA$_GY@j!?lwq=Az&&)F2Di zhE%77*X+GqDGW1lUdah^@9}LB9b+pviIERNDu3T%V2bypSLF2&?;;-G;@_sg;0Q$? zIP$1xH_{S~?=003=&>o{%4ug4Bghb%!mbAK847~_;?L`nqXFw9HA88B|My^TzZ?BA z?75NS?Js<#P2anz+wMNN+x9ibjU{iky5!{VRU@sq)#=kV%cK*zLbM#u4-SX;orVGQ zb6}txt^;A508aJ+P6&<mrp@np6#|^YeKs39|`q^;1|&BB>BW&vO&P#|%Vo8hZLq zz+8?lF3D$ZY$9St5Wk2Z27#-d&VUNGJmN$@d5m2eyTq+F_Dz=MCtd*5_O5_+^PW9> zN{K(m15h0`-sl|w^d@Em5aNls>Ij~CAJiYJt>Gk4o+D%+U}jkyFiVI=|HcG$_p4s` zjd1zClUino3ygMthyd}r(sKnTVwect0D$8$2vi^ky$>piF;<(%RzO%H>^XpG%kIJt z^;--9EeVx|fYexMBD?}G7t&uaS}C4A8A=8b_QR@Jw3#aGeh|h)XYs`t15LmQhmRdQ z)?r>L%|^Rb|N5)ly#{+0H(2-?j3@5BjrM+G{=Q~i#QeQ{+UnH-jkv}3lcLl$k$d~ICzJ|d9R)s&6kgoKHSQRN}NOKOFb{0HptL@e5>FTc|nbW(8H z39Nj`^Y~a_(ieS+JBx)d<9_q)U)!^%2Maiio%CDh_H}+R9zG)jpJ4E83S2+A%laZa8LA(3sQPR# zzBitaZuyBXc&{8uxsQ1rS*Ol^8TP)gGaqlRZkjlq^+`jDl8(MLr8YsJjvv`64?P?=+ zl-U{NF@ZD4Ae=^uHgp zoEUwPvs#@c-;!|G=lSC~VQ<-)-b|gx9=0>hf6ixrG~2Mr^P#6aC1}6(#G@i*D;I71 zzm}>z-QN%TBkbqUU8e`PJ}70rjxIXl#r?tae9^FRuN!@4P1>ZR+uafWvSn)SEM88Q z?H2B@+i_W7;7C6N0zXdeL+$6&)oCYAq3|QuUVPgAy*$&*d<7J(m7&syF-C`?|JjYX^XB@g?_^5Z}ThUsoFsTyrjHTDkbR(03p#(s|~_@@Av2lpcNB zFWYLBJoF`YN|h|xzppV8UMTo?g%e#k6p5LGOylyG8m~Z`nE#vPLo|#Sd>xue6mcep z;GKE}wn@17Fpv-71isYHU`BhXhD-{Fk_UlaJWbq?jtpD${rlH{a-Go-j`Z$~A37`& zTDgg;=}w5cQLE#%mE(K8T7C34bV%8k%ifVst_baM>*)SQq!#1^jd+6I`6uK+N&Zia z!r|%4NsX7Kr~${J9Hln+f^HCgUaBd;XeDq3ZI}C>AIFKPZ%qUTZP&!uSUqGlPt3Kd zGg*W9BaI1`M`-+i24vXc+J(v8d?-Dq%QxI^X;Wiy4^(pZew1`x>N`?<_(WY{&v7b^ zF&mZdo-Y$)uTh67(Sbw)+F{nGs=mISh)&1}MmP5`yjmJf95R!~a0}rla&l6D$q>Va znBPFU&lD*fc+s1=Y1zRP%4<)$D%yYmPh)cKs2D_4M^2qg(se8yN_XfMQ#j5qF`o%# zlVpUpfw-`G2ka9jmj#sgD z%-=h%PVmLAiW9TkKgOt<^3Np}&fixVyz!U_79?NDQHkQWY`hHvjTrL-F!318s_q|4 zf|X}qyu?nzJAru5WBEZT{QrvoA%vN@WuO}#05O+El3W_3Mc_5qW5s=}{Z2`V6ox6l zB(q_JX;fmaTkbS1GsX9V=e~-(Y@-!bdG9VAzK>$_>Crm?6AeFy_?Z@S+XsL9zgGT} z+KviN6j0VzVf$*r`R6!^*-!M7ZM{pwNvi)GBO}tGu$0J&5l4822-wND=Q$n$)!OnH z$Ucx=0a7W^v&o=_^TOv>MT3E{Ep2^M`A4 z?mu>kMN}Cl@ZHjuomyBp#`tYLl9Yx*HzoKEiGTWcL$WJioD4Xzc?>}S4nLD^+dyG9 zm;NVC=zRI~!(_;d-T7V6mZht0x(j2$9!BW5-K}78f|Z!o0gdKU-XR$_3z7WKHp`Zd z*HylkDL0u=C5tchhTXt8z;N^VV2iSvdcB*AFZzZQL|+G#-dVdW4^v#4jgEM6h+QN? zd3d416gRNCwwB&O435-3x7oR4M;5y+4xS7MI}H;Z!^qlHX9ielUO~a;11zsmiw;K{ z*IN&{mA8~~88^j?8{tDQ9dlVe7{Gk1ndN+$!X8h$O+#gMLzAwitzznsS6EpCg`Ebs zV-yl8JR0~2I@-Jv9+QuY&eO`PJqkaHH?#RMoDKk%Hb!j}gDur&kvJTequGHJg!VHy ze+p$@%g{CK^cWw;n700Vj%TL(!Wc`r>lAKe#$9|z&d-D%%~s&pKov@Pb7Re1D^6pA zGUScJPwq6PdDJDv$xxIfwiOZQp`f|*R$g`=h^ZlBu9+A<0Su}}8qnU}9&jF)Uw;u+ zL>`jJg{DX--mWwuEE~*wYv|h(QqC~%`=(LM|0>Q35F{H?3jvu9pARs5%~pX6`U;9Y zLWskd*^6y_be1g}89~&)FThA-9vDRmXN)4{1EWMX#ysrj~cxcg41Gi2<4f zG9i!q(MOz(FE}rz@QkiC+wA9LWwmSu1V)}wIZm+t>kOh|QGj&nNMyj2YQRqWf(5{7 zKE%d$8{%`eO&c$AZqivMl^&1}ckJSej-9||AOX}~1xq_#oMKE5%*;Z9s(=z2{Wsro z^X5&0IuY{?&~^&f<~t5Jjn5v$3L_Th;qA?b@GEjB1tA z``*1SOj*R2-=*s4G(BVFhs`PX+3E z1AOc)q!z-n0_l;4j`K=4o1Lf!*aY+eghm~)+AsJ9Mx_%HQY54=0v;%~m&E9n_(=ez zZYD$-WS@z=H!(e=p|KZqn;KVO*neZi@KHvX0RnN&4K|3#u!4)_T;XK3BqFgGGeRU* zsyA!L-Bu-=3xp4tb&{E5AynO_@KxZx@DO*TLqI%#EN_&Rl{KfrnKypQYP3Xhj&0?w zf4u$x1>K4D!PeD-F}ckHeW5a${(^u;+lqzkWm3;~tzS$(ndj9eWK=jN#LXjso{ui;J^>3P2Fe>SqKgCc$;%&R$<)Gv1yDL6wBcq4muczb zW1;1_iap=4{|bf}&fr}4ceNl-NJPw$lPA&hnNvUnsQC7cN54hkHRKZ@EV7uX`-A+i z5(8-6cMr4*`Ky_{$Y#q)v%g%qetzIT!~H+*_& z8uIuIzB!hjr()v3v?{0%4Yjhmy4uU%=Is$&ElmBhd3Pau3#D!68C*k*1j#neaNAh* z6iZ+~kk>VD!ldD+$dP2}&IT>;Pqzo>+0xb4UX|94l-QT6@xF(zBzER=N?CFRP9Gul zk>Cu=`5(4XA6XzN}G-u|MhQo6y@+GKba-`lv2Pra zimhh$4)R%=?i(FdLf{IQVkf)_6G(8)Y~-sgb^LAziF7qBzhF_xTUHT*mV(NYkbaGz zKBCrLSA+?X$kX~TRtT;6P4a#;34~~R2?_^SMX-S(SAG)lAd(Iy!7wfG92Pvv{x=jTZAb>Fg6Jp@!&pQPLVn1u6EihXpuX1=ZO}sl)RZJT{MC7w~bd+(T$Z4Y$rSm(c zPGN;#K;DyR-l%VWg$)5DskPaNxvZg@2qJaPjq}S^5*d2$o)PFbar*_R@eRw}xR1wA z_!Y*0EX{t8b0SY@?tD;r4n3E&2%b#OZA2o*Q=#6Vwtt70PTY_HlXfFu!i96qS8#WW zZ77QI2?>M`NeI7qB8+0S4`uzoa!1W=EFS{G$cu|HLWL@Fq{dOmzMG%4nVay=q7;vE zLrfnLX~D%9UBnPpyXZQum3&CLK~X*#J$9#(rqX{CInVzHQ)fM!G%8yCQP!DnY zfw=0bZo-!w;eqa?>{ghRWSGi40GTYknpm(`qJlh-butqt5QC6&vVmw!QJSg4Sp}5# zoygwE8yP*WcidR;->_iHMdHh21$u-9;0oJPAwqjI7tGAeZq6WRc)7ankw7gHSME1W z*Vfj8i5aey_Fy8G^P%M5dz}nyGwUY=< zMk!XJ@)`TyAoP~O_omPvKOZbd%eM_d`2O8`IpoI(jY?#BqO9S&zQt2L`hdQCBqtuW;;DfQZ{ zJ89R^xwF5~Ym!|30r7$m&OCqsJP(?)DRyhQ2gW_qSG3a=7FV&It4S2_CWGQ$Ajq7Ric#o{Wx_s-nU`?tH*@2zK-S342zQTRnzgfzs9-+qk)PG{h^kn_-vo;NC&k zAWVK~E%7hO0ycSuve7(1%&~464vymtTnqnz>QsgMfdpZ@9bgc$c~2|QUzyrnGM zCuL-jN^mdYQ1&uWrpql|&q98FA@C@=-^9W5-hqY!~gc5MX6m(%n6(+NKNI|Hmb<6ZPh!*cGzgLM8!O_3Zv6&lH)s$GDzi$}R z0t1lC-iP2WA(x*z&f#7SxM58YL2FGBSggWT4hDKS2-qnA)MW;AOmF0;%d#L6cv4VT zt-#H;9261h!FN2K(`Ey?J$`&{6Wz8DgR3x4&qpdp_C600o2SE`6GaPYQ#dIt^de5l zQ?*VddLb)P#aC({@ zF>NcSsRtuwkXyE8b>(hGsPUHeFM|)v0%PcB7)DqU6_eWsHOuonzIIdJH_Nw)=3H`q zxFp7E_mpjZq3T+aUMzRkL(Vp0__+r~l~zI!VL{v$;KLllYM$Y>btrz#0|V^m$LVNk zO*=7rRkntjB=6Uea4?Hyo(MvWJ0A!zhHG;G>E-u{d@yFeIbxr`mD~mvtuQmE7S1UG z?mc)Gc}3*k^l87Xz<0pl2BK&m6?8ag9Yyi4eK*0`#u3T0-1#nJFv#wiA|>GdQdn)gk5<@ zTeF_Ib~HDdAW=%Fz$B23Xo%j=f2vJYBvKK+{&CS1oX2K!C8YBb>OD2GX2wal6H??n z2&eb151XtFcybwvP39x_WN`qZ2nC$(`S{iJ>$LAD!~Lx1>i4-8Tbj%ZwQVqUDi&`< z$-ObB-{Z*PY~NQlITIJ-Kf|%TbhRNrx6Uzk-+94D3sQdn=M815u{Oj$FC7g-hQfTL z7--^3ZXCa*$&4s&69)uyRr*ulPD)C4US68(Sb(daM3|VEhzU><8Uqy$nSzU+jVi6X zyE|^q6MncQq?VfkwWki7$rGdhurSDb5j4y??Z$&ZCRhtG3=7s$S#x|!<`S5wB2MLi zZp1hcv)6dG#$+`(pyJ_gNGz4!Y?y81{&>ghwBnNDIw&)zU{{(-gv_#%l z;wD)b9N^G7^$BA+bcX!evJ^XZJb^Io1NA77nPnw*7M&34(NTJJ#Om3So)Hm4jAM~9 zQA^EC69ufbo<4Yh5vlTg*6-jWw4;QYg6pNjxgQR81)<~599+nl&cF7J6}Ji^f_y#x z8%6K68`j7v=#9prX&16xRigepzg1>)@JF7bDQ14Ypl~QcJ@+K!nc$_->;_@CQF;>Y z(_wX!@)PQR7W+kHALB-8y^yCsZ`u`OpIYJf56!^8`Em>cHDD-{m?`!|-R}=3EDYRi z>l6v+kGS`d%<%p&#wu>3IYoyB^1W}!>$`K@rCFyu_i{&g>^2DC>oDG66wYtg6B#xk zrTH_Yy5A99dveVc`f>Oi>%>RddAlmxGm|p(hOA3ZECr@n^E}MDm(-6TRfE}g65Gn* z5-bnWuh+p7vb`7VF6Y?nI0Hp2-4v0latv1Uo$5}$eS5V2T=LoF{1*;{Gt4m@V=Kw4BHIYel2MsHq8*tBN4Y$NuK^^3kpt%ns}xRhzu-X+LhQZNet1N1!8 zVPC=neoc&TfSY2ZyAOBAkaLIFr92k5l|v||HqR}QQl-X!ZPk?M*NPz6M1JHL z5`$k5F{%R$s)ebB0S&t-iKsl5(Fwz!Y!azj=~io#A8_oqgdQJP5Q#0?8G<|LKpY*! zAD9BVH&b=tPDG629(%46pRuil$1QN+e=+vfVOe$Ew=ms;bc50eNJyuI(x`->pmazJ zNT&q~iXbA=D2f7-Dj*_VN+TuR9RkvDe{uad?X~BcbIdWu zEX|)hbPjU3^by$ISTp-vA1Efkn5cJFW-DQ{fp&jaMD(_?neKdPDREgT*bBCJwkxQ^ zP6C3L5`c2(eMF85@W(ad=|}%D5X%2YoWgRNm_3rl!Nn~D3R>u2dr=9i=RvR|FKty& zCrRrpR6Kv4`Jo6e9UdZ*IQ&z1w}9Ojb<~H;891bi2_iK}my-)Q4jn0d?GMWP>8$GhNM=#6lKO=t8 zeCa+l0pb?J#Q-NR2_RaJ&ABTGgN01i5Bj6?oo@&M-zwH)Y$gM$F2DiQjEszKk0zp! z#0efK(TNkbuu@3IDU#KQupkiuXR90+u^Pb6KX#vm(-WC&YQ%6rI>W^f03ijK&H6!4 zGGnhXO4u&Iu7qm%A}zl@*NEu+lb^j_R3d5Jzn(^>9MSYar1}ZOKK+A(aA2(sy)LaI056QK*vV@fyny{4qoUGqysF8o`SJ?5G~jsdNrQm7`W`kCCF|O z@Ah&lT%BN0jw9xmr+cW_(Tvb06HBrikDe=j&3Cs}(?7B^G%49B#TSSxH69k5h+!&j ze39{`zc;4MHBwS%wIVzSi$Oh*7EpKC@wZiKv?E>lN3800h=mZGJ5c#d0N8*~H9(bn zWTz4H4r$GxHynrjjGEp4bmu_N0(`g9;QWCINJ~P0Hu?1IGCU%;Z+{2?BX3EOgZ3;? zE|?L!`Dt0D)J1Gu(P}#MwvD_AtL(pQj%ARG1 z#8SN8?IEZW?3>yh_#l$7s+CYy@0^m?<0+d|{ESYgjxk#4;uBk~ z4=0t5j9rS3MjfBS37}zwPJm)*X_dujOHKAFm4o}umF#oZquc*JqCyDc;uomvhXNft&r+yfKP~*;Fe#$STXbf8kv0FzRfB1{`#z;Kq~F zdP`i>=!eaHaC9&!0dJtV1>{{*=KF^OK*0fc=V><|DXV#uknUR~4JfC0Q&(q|22BD* zhn)QKJAV0%l(N{iN$XSQ{H63{0N(bUu$-AZDMGjT{iAhp+6xg-25IoMiF z^>f~3p~;tv)XkFeq{?sl#;397DyXu(@CbQJ3+S(&2x~u6{d?Sf`V!!6vF8luvGQ5N zzAM#qk0xS*me+8f^I`u_`=?rG|GKM5=MRoZLO(}0Lsirjlmbz>Ub_W(s_-j%LwW|P z=HEl38LEVfgk2!~D1y>wQNL&__sk>O{nBW5r8bB_%Pg%SR>l-!WSq_1VF2el1}UzZ z-{vcSylfC_s5%a%)-~g#WS`_J;IsA3`EEur zAq>c{3b)Q6KOk^+ag7~~A1(6?hqS8;gnNtOf9oJUMiMbBWCD5Pi_slasihn)A%2ci_{{BtmR# zL?ea%?>H2dC6cx-AmIn{2z0CNB5w+4mH^sNL}UC5o=rI8IXf(jZnXo@`5#Ke>P7?p zw*iEz&bQk1pl?(IGRk~kK0ByE$1}p&IKb!(Ucmw&NFo0XC2B?BkTF8+MG*2^unf6LiAsgzqC|0?6z~;fg zix{LR4M10N=*?vWL=oJxk`SdUaMuGxvu}RIe@(yw8QiT@06rx?apEm-)lqL4)Y$r9 zQ;3NA;I{^rTK0f+1B#OXrw2($2u3GJ=UUA(FH#Z`F)U6#zNV3khzN+CO-8jlnYqVM z;~mar)+ZWURDlB`UxFMN(u~iAT(ojKXUcT3DzG-9)M=Gy8k+_*e;{G~1?}u&A3h4f z7QHVI5ydPB>Kh~mM~=yh(xy^?V?)mibHoacn%+f?SO~p{f;@}26rAuPuE6oF7X1g< zR2!2D(9-LK4NOx%19q+m7eP$Qt#8|nU%|mhywSH3Lf7?nW(J0Ycb*`c_zeb$Aw|&x z&?M;x)cKn=E-voJeKcw$E z=^WC%#TMG#|8z8>(Q5Alj1r9%D~5tS+fvUHBno7$>I0B(EY;_Th_ex#Fc0reY9-07 z48FTjnN)HIL)cS}+BNTsD&Ek>I9GwsDj4N-!B#<(Jvfx>V80QADFYOufQ(-TQ$Cc- z1CDS^#O_CYHne-;Ff0J7A-FiR=b4pR-O&3C`wZEZ10pr~tjX~X0Ax$QKSu(#R%lsE zfT$e9<@0GOb6|M{xGnPhMJ8<^Oqu~|1h5ZqLG0n={PFtd*Kim^$1iK{8{j4gO2>l# z+xTU0>8)IE)Gy$GL;Cy*NQ;2TQzKe0ENLASUEuY)21q~Hqj*B;Zk6I6Lkkrt5D=Bj z1OMOyj4=kiHDJ{t6Dvqo+TaFspi5OGm>RVXE1(b1BeI`^>w znTmmGM=%n352J>S@DvnEl;GSO>KR$XTtw7!_fMplnFG(t@bd9{JU>R$@+6` z4KC<&Ocj+`wS}#YZIxkGg#YmUnkS_2!JC!;@{~@q1X@e5B>aH!ea=AXsL-v$3S^dn zSd?XrPbw{kH9X6A`M9;z^nc_Ki8GStA7EF+E5GHfo*pl@kuwd_FduzR!Z!KwDkG1##YlNTcQNg{mSrk&$a!&nU7P} zK+t-Tg?Pen@Wr3eR^#&N7wt3~uI)Ka;Wi&>{Pv>_<8iCXA2-}Fe1J%6gDkvhAaYDQD)3)lUq@jL3cm5zs|ea8flNvan3#lS}?Vjd;zLpQghBi-kMHUPtOLE2rnR}b{YJ?h>D17fY@dn){1zyV`@Ltj| z*}7U1MQPO@8>=zrO)b5*N~;`)2oVn7@)TN|JX6+U%=wi00l;;od#&_K(sRRw{|z^GEkl zIO!>kVJ`Jm&dP743ZZN+3uL=%$2s=7c5R7+4})hRDxe#$;FgzJY)Lb;GdL2X#pCJW z0Twc0@P-70!()&^j9YjarDbey9)^RSCH9;dS*Xxt%kr1B^NLFQ4V)Z|jh)12zJ#S} zx70ntn2s6Itc---Ft0KGJYK%#Zo{Z{p)Oa}qMldEta6-1#gii*~OyK^)BB ziIrX0@ewv}2WMMGc(6TBPj!WCzub}vNHX-NN;X@fOSM5h>7HQh405ftKYswBB95%L zS}g#tmNv55Q@{uZBns$WXmAAb*8A(HzcFy5IhG7aS{gjEpDAY)TwJ%W6HK$A{cfey zdBxpBVJXSwXt1g>q{f%#exgE#o_UjbL*8kvJ>W1PoC@F#z&4A0z_TK@we;)PSWwGA zF81=B4HSXbbegGRbUe0sbb`oKgjEmeGnVlnzHkiGe=N3p+ZJ6!jMWl4cbrbZ;rj<5R=s(Z?2 z&DWgc`Dp-B?gUU{jFM>fN`7Y|(h&HFod55&Ue*zB@uO;6zDpH-9+OsG-8pjQk%r!# z#THZtOc*D{xsc!4Q>~XI&e64cJ-&3-^BZyiN)HJ~uL3r=c2NRsSw@G(Sx}$=^EaJ! zZ_8Ls?BVC%He2u;FzbQ`=5EgegWbI(asx>33Li-|lrwxfV#xMt+AD=nQk2AU@b>P1 zmY>XHo+6O324P6f7*o-W^B||@MeQS&HMhP)`|rjz=suif z4z%(Adljd|$bd`W)CiUz9WHE{*4IQRV{9&5s4`c2RiUfrre{}Be_*}#xmIRo@EkZf zk=^l<5S+jFnLfd&ZCC#^(3@F{_;@H|G7tAsU-A9n!&~O%zXI~I_GWyx6{4W4Dzg9{ zNuJtaFJ1y8wkc(5YL}~VTpDp}qd|*D?JO^~5kGHhd)scuCA;kK7tI=<1;o>-YHQ8$ zG_~7FbwJ#d=WAPetn`;BY-k(ZHHVeCk6XloKt zbGoV5!nBA&zb{H=B1fij_O6?Z!{0CzYYAVN;}-K0YwBQco^eFpNPZpiq2_0fufcPN zaK}@|ge7Cc%l&o~Nf%1MG_H{^|jJ|OyI zf8+8-fp=-yGKP*O-x{u7E!#^(Za0AbNl2yrX?Kr%PK_;&(n4Hd5Jiz#V5$j1%x&$5 zy_23jk8kU3k)MZ+B`R9rAu>dIH+(^P(h>+dYITNhae>Ax`JS}GDxP{@BGiD{QdvrR zjg=;wESmhwG4c5t=K`DH3cgQ%n7VTD8Trliko}6tSC3+yzdO4-qT2PE8)*EBS(6pg zyQRk7hdfr}V!rKuzw625sPQ;)aemjs63au4;&%Pr_^n4^Ajp-&K#=QqqHUSLn0>CK z_kh(G^OB_O{cEmx#f%7z-migpk`-{I9}xxq{4K>s858I4Ok{>3B@d)f+6<=;7R}K? z+dC)4yo#N)#W6OoIK$!sFls6dn;!fE3Ve~CjkI70ejA9k$Zad9dngW(pg$*rxF;ueDhd zbU;t2>xY8UrioSCuwuzz^3RX79&r05MBnj9zp75%;2XqAWdI8Kk_!54pk;|=Juqiw z57Vuj)D^&kg857fji4$RE3xQfhrvF~^0A+NMdZD4b=;L+orx)eNDNHi3<#QNe` zzVvEwO<(%p-tMwf*8JGQEjWMF#Pklaf#_W&GV5(FYlHqqt;_DGy1N&xw6yB>?hJhj zMZy1xZcQnA-33OQKu&xm&rAl`hj5Z0&r47)Jb->5B@0XYHAR1uWoT+uMFL=+%w1K1ov3vX>}ORuMpqwJ~< zSxe9l=cVhplJb?r1x(`5};RLd^{o$plh4L)ncWUMNDq>x{4pI(+j` zvm^qcRXP~+TPIGsTy>UFD-KG+cwXU66Eau7@wA|V1@4c}z;tk6blJ1uefTTB51U+{ z7+gS4@l|CIkg!J}feXCQ$7iL^}p>aPF*ml1CYWVvwph^|9S zB>-s)BDcbD3@lVF0<$A&g2Ct-hew)#x~0Ft2K%r#b;igB3SC@Ic&_1PtfzTM5-Uy| zxuN5jGNx{rG|bJky64U1Or}lqmy7$PcK)`_@IXNeEQf`}_jlEZtB^(js9IR4hb1N^ z*3&moXiW$dQ2eob6p96}_^^Q;L`=nvRf#z&|4gq5@GkYo^MAIsX8!h>mmFcBVl`mR zi8v5gNFA6G*<*_f!C6p*_ZY>V`3AdK28)gGwOJChS2do*isA8(ipcB&r>-BC$Euew$ji|8 zUQPMFHh0o9px$C!a6Es@i^H}OTOTd4^yK?XH~ z0e{o>TF}k~;y1T6&s&%|MByZs3BUn(r)~hz<4XE@Y-FMcfF|gqP^}CvWc`dEfK33+ z%oM4EvEBGY{r!+!5M-foPFQw-H9@+n4_3igKZP{K*^u3ZI)bq zPjdg}!w18sC!V4Z9z%Eo(rUSuA=fQQP)m&Z78QacDd?-ppa4G~E6{<3EUw`{EbwGb z%U(n<(pOe$YE{U#Uy0wM06XyVjMXo>4=2)A16V1as2mm<|Ir&o`YQOZuG8}RtoJd^oYsn_Eh6~GMJeyn~;?!r^G_6%kUbN05>g~(}o2O5pNg3IQ+mk8;rK} zppm@`ZSxPH#esiC*ayfT{=j`qj9Dl~fl;`H6ZaHQAw)n;sP z4LmvR5vObct z*T9h}3LtA%kDhb6T%w8Q-}jXBjDxdA!^8gaid$sUpgSMo(5u2b3YQ- zT)zD5Z~SlmiyUPa;Y4P#vU?xdd;cBgU;M~QY*%^H*Sc&ZT)nG+3TQPpvWM78C!_*i zl=>!it16HV$Yryf?rEkH&d2;%G!XmD^F@V=+rZoTMiy{BVCc-xnSS0>-;Gd)mu_eE`xR!u2^~)DG zc^RF=c=9}88e_rX$N@e?Go`?&GA#k}dvdlD8n)QGJoT==Za4&^-%zMcM-TqO;6^kk zAD)zy^f&SLBwdV}+J&lh?31+Q(`@1X!U%VWNv@Xog7;O#?2tOX0!vgAlY(Npqw&+4 zuGy-Hu-`#rg{QZk@-=E26d|Q&s7$>bJa@@P7ih13g_#<)hBs<~y92Ud9CzT2a53i} zQ_7b2sW}RppJ&F(7J~3+l9iJ~(wUL)C53Wo;My;mJ6&{?nkUl2q56lco_Z0IR20TI z$~5OBOgc_*r~ty|u>b1l=B0b$+}dccz%ZO}-mj7C%??n@vC$YNAS-D9y@O=2SRgjt zg_FzWsp_{j08$BaQZzW)RvxC9Ck!t0h8a_qKZIP1 zQ^BxNM-q2wj|yjI0Gvt37*;65mzB2*tTEVoYntZy=vCs(X2J#OUni2%q zbBYC$Gu!Fvp~OU5uF>rP?1Je)6#~y4l0t6(l)jq*tzXZyp@W~CTu;Of2v88@@k0R@ z=AL^3Ce8c4v)a!1X+TT4={HTg_#Fo8iFE=9<~v?pFma(cIsYQX`}H_<&@`82-@(R& z7*m>VFeMM%>T`!QJNz7($)T88Kd!4HAYOpI`54N?*K0TiYf}Nr`X2*jaDWx_n9@LD z&%}fQEU~OW8HEMy>@es6)te3zwAg4mf7S#h6Sx!Tz3xMvk%;(#1(d`ouuFUm&2l)h zilN;BbP|~PAPxiuB;*I|qESu}dOPr|uTx7wA7>J}Md$#4Sc3Qu@Z)y6J23Vr0azoK z!N8M7iT;0qHkmJObNQI=DoIPTugBk4maEoX^?_+Yj~<2DwpXVKKnl;Wmb0sy4hMsy zOA=O+B32~l=1p?j#NTqSoq3^H?gqAk$-mrJ>(c~oi(2!4#D{l-_;us4kQf_4^?tk2 zSU3X;J*Kt5rL9nH8z}YhS*iYyQManO(E$20Fyl@Sw$gJJA0=+>sW5;F1m{nfq+>3P z^;MzLYKlC@QlwnSOdbpWObuye!YC0`(wV=~1jfU^&ul$UQyrdNV$$<|0r2vz#D~;5 zu&mH6i~trw3b2pIR#x=jv3~&FAkwvCV`GC9PTvW3<`O6cAx(v`oBSv!K@I>twQrcC z{bcFeHFmG@TI>oT@tp>mSQePRp~M$Jqlt+L6>xxot{E**?54rT;DcTq44hLrTbpRy zx_mJoK?bog$s1LW6Xh^KQ5if((b+8Zjvj;{V`;brR?o@~n=H7s#5BI1(XPwM?n!Y2N;1k}khTdU@^BW}xpDn!`0QTkX|`haM=K+Nma zTQyArsdi7$4^0WvYj#ewnl`0@ML&!tmRDE65<1qK#lcn^b zY>}UKR0xpEGZj56@lV3@h6w|j<;O}KKsq{n84OnmE`A!wT}5y&#FK&6ciZFrOzvJ` zD;uZH`2*DB77;@6XmC%|j0~&fTgPoC>A5sg${0b*!t?vW8Fic|*`RW*9!^4_nOafg zJyOd?HB{~L?Y)PR>xDywe6p}>C(;0L8 z>80f*SCfs$Wy8JxbQ`dZJM3{gXc??LFW^%PRu9)MwDc6y^jP3>FU&JF5;{{w&^Uur07yGL>8`jwc2 zF%9TBMJU`Sd?heCRDpfLNhK>^LRazm`~YnXh6O_m@PbK8Na!%s#ZYG(I-mGBB305C z9s0Zy9YU1N*E_EiY|4~+vwVA81G}fbcI3*mKXQQK-#n8WJTT9ikDp;4d1$~~%^&@W?}}2jAVSL%JjaYH@O<)B$Fn=kHrOwy712iG z|JDVEXn-m5o_WrGJx)_wzWDGQ9DObu_LHT_u^shgJB7YghT>?--!o;a4Mcf8=+>GJ zlg-ix&6!NyKmf8;G-sr))_DB&-TN|u;LNhT3L zhPg^psiS768+({R#l~*lMbcv1Uq zh8$-Au?7VkUMVN&2q9K^2OYx)T%5xd#H6WV0m_#ruFS2ym0>j~f;l1_6h+Hv)xaP# za+B5TUbhB#{X$t|#^1)7E#Wtn*QJvAjnJUr|4_*=@{^O&Z43pI-U zdymS7T{(8-kC&M1&H_c~*LGY2!2s;D?1=cu5zB^b|7r$U$0qO<;zQN31JwUk!FvRf zh1-Pjl@4uTxxewV?;N8AvDfKHKkYL75P#4l2N?yz5THhny;{zzT4m;$Xxle{+MS&K z>40vnpSq5b96DhB7O7f(2^!82-Cn#o=aqu{efrc6j^GM$%=qzs)?eJYRA3obc37u= z`TJWa!O(h1hkQKul7yi6l4fe)aW>b*dr7g_a8O9tte-T;ybCR~O!IW@jF%SK`+XL9 zv8EA9VtBmrCMx-_Ley~Ox2WR&AP}7+Ry6RZN=X@j&tOg9lFbBiJ4%(jgl<00)$_MP z95xQG;1eS;a2yj_2DOwU9j7s6DKH%{C*h zHR`d};xn_U)l7H%VU``Xqdj7l8|eT}LQ0I*wR2(fo;t?fHJa5VR*usP4OG%4b5Xa<;n0{`5rN@q1vR z9$y`Qd&ax`(dDm&;0mAy4<~kTd57if61K71oOtU2=XLln*fBr=9tr}1o{0>Rl@-8T z5fNtn6atu(v%CG;m$UNW*(AZuHn$$hV3{^14Z0{j_{RM&5T}4O!(gDh`@=Um7C+U| z{+_C)^TMX{4u9_sHs{yBLzd2k9?;ZPN*~MJ$dlCg6h3zs+EJeRcAfuWDG65yy8B|L+?fI05#FgREJ11A>oBnXMixaYJXq z&g~Xj57#t=D05IeePTV9pH|gL`&IbYuN@Wu7-NQJ+D>dFsfMZ(C=bjWZ^or|NUSe~ z*YvbdtvwiSjdh26FvH%k=&S5LotB8hy#S|;kU4iC@luRksQ;b7iV27V9g2T|J zN|_R}5dW57=}_7FVg#)>Vp`_<|Fv zPUU7qoPs3tOk0#1ag(38?{oxVgyXsjP#D6+l8wd?5r-cJfcJA-T1bek@Dgsg4F?sZ*GLVR`U29gKPc6MGQ_=H%hPHEaS#TP8fISY~oV;rHgr_uGk5mcHwx1t!O5*p&Flg;xFBV8Ow@&pdLx?lM1nCf8I$M6A;7g#S{saH9?N zLGO?x;Jau^S|SPC_v3xxk!STeeWS9{AUKU+-|jf|NS=UB^cvX^sU-b%-*wNRuve&| z5=#w%UI1c4A2Zf8`@cA~VdO`Wh%q%WQ1~`+|UR07mdUvf@oF z*=rkUWmz+Pl}s#2{e>?c(|54gL6H8sAYS`f9QsQ{L*PtuD?T|gLVga? z#Giy%4+rE5jzICq^$LcB#3Wnw8M}LD?S?yLxm9&GALov)S2NGZD^M3C)g6=R97Bod8*`u%+mYTiL&m0A7sat;hzFZiTnrf~ed zMSy7MvXK3!N5HT?_1VWTwizw}JTT!?Mgc!rx}fmSC5I16${2oEO&0a6xJ0y+sIVbJlm zQ;WI^0=!J~%3whC$pNeb;1s6(;sD}e3A#8K!p#$a<}QlBIA){+2eAzrA_wRMnn;UW ztbyEb*B2fZ6EA3*W1R@k^o z1=2eH{p2Pe`&RH_%+{y}$l5Z%tO_bY-mjHVQ2`k^9>~*gWzL5JIjIw@(SV@;VyYCd ze#Er(M5DQp{S;zQ%b=nV6a^wifAC>c_vEDNKga41vRCWgy=||Kv3*u4NcNljEZcFu zRp-3^H9cpbHgkHvV~rLCiP%4`Y4;dg$J->{_mh8Z#U<2jX_|+Qyh7`804@#=8kvMV z5unnwsw4XURJtI5hGOb2l-q@Fql(b$@A684#y$vLnxQX(JqJ@NU>P%@CPyVJOyfib zaDYL_%C{rP6Bv=8EJ1oM0F{uS8tS<^;5Q+B7uAozbksCR=3rdtpnw25L6l+-@Ep94 z>bs4t(_$gP)WLrABym#4tq>uERvuK{b+vn)=`JxRf8$Xs;pIdD?L_fgHPEfN?cres zv|#zIe(OJ5m*BYr@0&Ulq_;4jAwe9!A0z^xKZ^w6H+XP?b1(U$r{~D-f!r=RnQA5k zn0kop36f0$fDdf|yG4_RJ2xQD7@L@g%|^`y#)U1vgx-@Y_{!Ze9h*YOftM=Hvg&t6 zfg2t4%{>>7Y2&a#gGD zpoEJ80vE0bP)-5lF$hWl+)%`4#S9A#VMzkEId~B{yv9S*01=%H8enLo&ABT$nX*?n zVl%8>a+lNN)i0|2>(r`oordZl5a;dTX$~4lNIG&*+R1eo?AM2?OF;Qw@cD(lg`ss& z%`YAgj8rPThYOTA>@iqHaCMRC=|ciDEC7L#0{sI8P4Q?m$XKyJh)EA*!dtS@8u2?W zB*_EhZEyewg{vE7xv*gLWas1VQxTmy=}*jh>$N@&KlWQN$H$KHP?dv29Ioa_<5jY{lukB~fpmr8bREq-_L>{fPD zX8%Zj*)OBp*OGyBv}<~S{EcFGqV8!?x|vamSGVkpxjFO$x2dg@#c>d+`F8AAvX@O}j!3M=-a+Nki5ZPw&9KMnVc)0# zU~oy{?M$9kYOYsAAYLxxNl7AEUGZ|%;d=dH0PkWD_F2~g`_s-ljBBXi8i3Ag{ zzQDk5;mx4>rN@~p?y`cK+S;6_Ph*Gf{UxmoMxu_L9R>q=D{Jc%*><=LR;Q%ai@^8a zg`O8!Wfx6uMMaT;O>iv;i`zhf;kt7?J`Lt2B9Nugu2{wuY!ShcXjW;yBLf$Dl3y)d z=I7_RxVfkIsLJ@2zMuHBUsX;=cGy%(XQrl>`MUJ2@X%pi;nAP=f{<5beUJVY}TpoBKbZ;;Jwz50JCRG%VNmCD!AryvOnnVoayD{ z@Zjv#G1#1Q2{#}? zI$HAH+2Vd<{3u*FDup5#|B~*D?8f;5uJX<^3@@vPH2nQ#v3jy)UUp2&Q!tck1E99S z0^a4q7o$WHS6QUpL!nDVvm+0C*BZ%mxYsP0k7?QQRnzpE&Y4SaY zF;-9ciD}fkJa|oLU*#|l?VA%hVmI4c9GNtgI(i#%aQL~rvec=p#^J=^-uVqz7k5rC zoExIc(>qtrerz5YxDu!BO(Kh?GQjD9&nD+ScD~Uc-UEEac9`Wr68IEOC{SA1S2>(D zjXR|=^=|3#x5It=+hGxxs=CY4ptBj{(JWB4bHBIz-EIE1uEx{q`OpsNX1#tQ2V;>- z`0eBHaBRNSvLN!wL9Ku@oBi-uWNN7F_x-2j!M5JUlPv&jIB{0Xubddz9(4XpNny9ZbyRC0YWRR7|Yl8_}p#+_NhMA^f=^jZ2T!)W~MHY9~g+h6%>0(;E%! zjJc)_3ojCaIV?#ipt#Royf7NO4Ia~8xu9^J|0M&n7nV&-KlZ9bxB6k+)EQs?+K7l_ zNNU}Q6B43axbw?FjFR$0GSdi&s-j5mVper({qe?|mTzG_!PwmKUW)7}oM%)c>@jWp z=0Xpt$k{^Z->Qc-el)KfDO`b(J_fT0$A*FHp`BiTOP-i|%7P_^H7gZW?BaLDpgrkc z;EW4wCJ(fOpUDLfJ0xctXEwb)I?>p7&s2ip4{_<&B-lR@8uLVz?EZ>Qxi1y5v%Vym zMn@Rlcy+5_ELbB-bPxaO9uAlX7N}+CSv}x}zL!s~eQV;2RZ+>LCtwEM zA}>{aef`v9EibSyuo&ch-BZ7FLGKYAjaZ104Z1+Nc265y+dnYT$fCSA5Twj(0&}MH z{NHoQA_Dt;3;Uh1yn>t1zEIOjixi03p>ZsE5a-J&qFMRp84OXQDjr`g2*5Tm8~@(^ zH|#BqW?{*tz_n^Zr1s3s6$J5g6$B>KABH=bMkc2(jH49EAX)piGZ9%Yi%j!E_PW!s zzz>1~G={bio6=W1JXLQiYWQ7IAL(?w;8&z9|q?xa$Zo&Tv*$DP`FXW%h0wQ)}$_eT3zi& z!}qsqlW9->4zH?E&*u9+%Wk$3&Sh*mAqch_(CwTppTvzyN0xFhkW0Kh2zWf6W{Dec zl!$?`6;3Nt55Y<7Hq6H(~;N1pZ2bjw|Qwhi&3fdk9A*WJb>G*36EiDc> z8|&)Sz!@&ZKi80wSF(DkI+XQd2)@v&=yB95qAzdV+3rXrS4g{e*G+3uCUgTG2>d9}SF)stWiQ6vV!%(2NDTEV4`meuqwy@9io-%#4c zM^@e!^s9${wNZ&W*gv9iY_=|NV#AZX-zXK9g#)?Jhl${Wa|fGeOG|6-{mif&XZME# zo|_ZjZW!O*TluoKuY-i|d{AQCcpDXESy+(vlk~a?t0>~DmmwnKlvI#^d>AIw%`ojZ ze;-l<4O`3N>R5I7nR1?}r2KTX#}_OgY24D3#T7_B*ISVq-m&s79y*%(uBD|_Yp*Vs z;F?unc{ZNEex$Ibrk1=uIp}U7Q|e!pPT)O)zQ9| zJPkNK1OKc^@=WdYJlG(#__JDNCsBTe@9+UYxoLtWzNJ{4ec7=r$ewx_wZ;DFJ3c>jWfQp1pcW{rUfhkjQZ zhGZ1eX|f%{d^ZsVsR#|ftHLZCc1(*xn7hlxEpU#XN!8|!I#TZ?bC99ge zWovtWs`l9n0^OC+Jc@r2Z@15X=dYC1=y$xv5V6lJlpoG_QCY4yyun-<-nzK6@VcbT zV`DQ*Ba`c6NaNhM8y{uK_IXVN|6Q=?rXTU|5yCHmCL-8pStMY8@~`GzyIA>VgYe0b zy7lb6@aO>}P3{c%>dZRluqWM5{yw9qs?0+qt^K#k6Sud;E(Y!Og_EjVjNh|p z6^B*kkNy%wV4D9|?s3AcO(iORWfE;Qt(xp+_gyZ$`!zSZTk>EQQ0Bz?iHEmItA+`m z=7(b{NW9Ajj2>zDd3Xs0?iUq)Ka9RO${9oTu0Uq)Rbqz!8PmQjcX3RIsa~z zPH5%fksITpQ9e@;v0A2Mxqs)JeOxNhiLcci6cU$}wVu>a#Y_|pS`IvKNGOtZ$rxq- zccUI4VZk*ODufpa=;ObS7+H4N%oHr^ zvc_gCkFWSeWIfLI0j`SMgH5hU>ggQ%);uk>ABn@{0_LI5nX79l8qQ*ko+{3X)zX94 z;Wih`!_}j9*jJ=?O%spzmF@Hl@tfK67OJIQICN1`ik5US+14A4Cl9$z%*IAAD$7@4 zCm4m+P*K`nJ9m2BvPtWKsq4MGXtX#H8q+fd)D1#-mqMh=h_5Q<6U%TI)#qdG^@ND` z;$lcFabcrolfffyyN;2PW_8i2VB8XR?~Fzt{Xpu9z1=3Jca zRpco=$|a4kIN2vFep27Q=u88-f8lp~S-krR$5(9BwWP-&-D8q}#Ch=b$B@5T<|bF# zy)x@l=kS@fAC!;wOfmBtz}9$t=8!~9(aLMeO^)Pu)W4DK4 zs+idLS0o#a%3b{L2WTz^k>{D zUk*5r3Pmu%O*-e$jwW8j5CqWQi)4;EqH>gk`2XQG+F(sDe0OGUSqCi|bd;7HZ!jX? zJ`u&+TO^?dS0G&IHc@_<+X_Chc;uK%h^g&Y=CPuJRen%7_#}PG5$BgHZV9II__XFS z{rFB~fwZ8sW(B`sTmjwjgzRVBcty+H0D1frHt`a+59{!iG7(w|7o6fEj^!NdRf zl4HAtN^Y!jZ%qysV3?sOjj_^@x7}p_p>?l7xdU?v_Qh*>@6XdeWzxNYy^?_Q+4MM6 zMNH-YRP9(6wXT@DB7GS7VLBp$x+|Z7^RB_f=~9WP1B%kp#2YUnV3`816-S9yzcS9a z;x>1Lf;emoOM(OZ#39RrK?OHKt`u}4mQg0P`nCqSQtaSWm+p?u+r!GkevCPA@oi@? zo?*1msl4484ZV1cvY7>f?bf^3TTkzbx3H5k8l#tiWTQ4|ZBfhp?|o6v(;~lMRaiF3 zFHe=|Erxbe2g3YBjsUlNB))hyr{l)#i0CNkEY_zEMEwEL|8FwGF zfoIkH67JJE{QJFSj6`oO2EQl!-wM;1@A#JfWwfr?B$oa>46gv5zHseO=QDreg$K23 zj0-3DrsI!n9%E&4RTX7L-Pz_Hj~_(GGh}a7DQ+tN$v8FTZQ(f^y_6uOyL9)yYQx!; z!j0$1pOuxwC;!>Rb->vC(J#?(Wac#R(KKMV(}64pWc80C~Ns7&DC;1(94X=uSWz9e0W z6MXO-wu&LEdT&*>@sqzP2IMJ+Nnubtz1^@j@epUoa+{-<3BvpwVO$KmY|} zSmra8!6BjXs?~|uq$}atyl`uo>&;r>_><#Z#P3IlF1BM!T`JC@y8Rfw*Iz78Ws1|{ z=iRHd8N&{+ekj^ZOjs@PeH>)VyBS*c=Cn{VJd`sO<*e~agrZ8!a;1%DvCSofu{B4NLv{GU4?EnF(k_^XCnd`3RGW? zs+Oq3t1<<-QA~EVYdCFt%?r=VIWj}L@BY2`ejTzk4tpd8>ldVto};Iv)@*M%V$$@D zq-67)_lpQacX+;z{Sp-9f`s%^sG>7I_itAU?|mb4S&>Mr6i&dRe+mbaMt#if9wM#S ziS(-sLsHCU!!3DQQ}5t8{aEcH-r1tH9$vlkzOTB)5$-ngTcL?Xf8)t6MgVK5J@kcN z!86^pFRt!t9N*M?e-*buDAX|wmRg?!?s?j-xF)vo6epuf!1?ysf3N-z&TU5#yR$oe zQtxJj5{Y_s;KA~b_Ub-3)UK{)z1SYcR080D#-l4HaK^o(IAwRvcSpHS$Ne@+r{JZ^ zKX9ytxVD1Z*jt_53{h1-c=;xt(qXF!g&#Z9UvXH*SnqDjX7Ee*gHaD?ek`DZh&vAY zc%)GF0H?Fq_nm0m1+tEXYGeYSb+9^z@@gnxwE{s&Kn;|JeX>7_0mApwd;pe<)fQ== zrwrgbVH|T;6A5~lUtNESk~XY6ziXN-J8o**?Rn}Bf!!r;1OABa*B|tRbe6S8q zUiy{6L0PHW(IE$%U<$w`EnV9GSySfAj4mhNpN}WD1Jl!C2dO1@Ln5d|zI4?@oVbl0 z1-p&6ytPB37cc9Ve-yRVSAJxuU!OX^3BNElG4U~&iXpQgn5gx1-?j448&IGIG-n!? z$QO(T9|t}931Ws;a18*b9~&T-g3W?>-yygMg5URDkf2+Cz8<-mjEL5tf(L8b=ja}v zx~rdg^hT+s_f>;`zfyJ9yMJd|y>%f&5W`tkslBvTR(uK!(TGG#o=zQ$q<~;B(Zn_* zyT;Qbiq!9De>*<@T+9WEM`#mat#znUOp|C8RX}zA$$5Y(6!@#5EjqL1k3c9A176+aHmuIWK_mcKA-1GS*{e;eyHD{lb;?0Egburvz#tFtz+SWOmfd$ty_8uvoMw_LClr}3z{`m-QC?E8ntCg z0!}ZP;+%DD`1_n~Vs>gzyZ_)43d3?xm#L_P4)Ulb#h`=iB7k53 zRbqw0n@s0FuMJ$yb@_Mip?ft=qzaQ0v;lYmbcY2b`W!&Qh7J|=$&-kLeGMS>nA8nm zm(PMb$5067a0o0W^?Ep`ho%_-Hnkq!mLQsUI7a^U%fuHcaN*rI#<2fOqkq&qc+)U# z{|{U5X$$-yn@q0V)zzh;p@CI8j+Y3(5?Xe+=bfE%4Q2tweV44Z=drP|i^`1THRm!629#B}T z{d_U+-aC~irl{4f_O~m^pP)KKF@}Q9$#UP3!viBMq2)uoV0B%_W z@&^AX21t;4fycT37oyjW%Div$uDXxno)C57=!tRaf2UtI&MK3L>uF#7^GjEEW}q^O z`C+}N(=SR|P*stpoFWOk-ijpaIj)kDQsY;?m%TQtC;5MH%i*W+^6^E0VJ}WJD~unr zu5cNYY?M_{NCE42no#>xzlUJiDQ%>xEU%ydCqw&RZl0Y#F47@bfp;yM!oNP$hlTi| z_tCC_oH|lqDV2gb3zEI2R=ER(!0oSvY-^I@l|Lck=uCNe62i!PXhkYc9w2sa z7ws3uxddz=6vT%+fHA=!A`apM$77@ zsGmuHA*`&=0tGBC#>!g)oyt8Y4g|!@aK-X#z7;+T?1h*4@!4~&4u;7L*5YT`4!KK* zeV>JE*c#^+*nqs|>0hwIT~}zZD@FsWuud{S0TFzdtk@17e%JtvPJo>f-&$!?lSZSg zToZNzjN9@qujt4J3|RJQnwah5$t?)6vN!VM!W1GcSFI-Z#wgS70swVfHyX|Ur}le7 z;WhK*fzB+C^5cXW*YN3fh9{2|a4nW_-h>rK&*12$N4Mw3IP-_aV8&&L5e-QC$wA6a-KTz8Rzuq!)=RgoXLAlSJG53C%_fQ zG1sTQ*$1EC%V1DhR8)iv(1FMe>MtS0sDQU1&iJMuekg#tFbJ^TDuojwz0%?QB`kPT z!=cqL=F}?)kFOfY?tb7w%&Ls+T)MMzNd4a00ub7GN`X>ER(18|zqgdDgsG%zPG)R^ ze4oSeP#lHW{v+E4FU`>MQ3)ox$OzR!rf)dFIw`iO#`%}iQGqF%f2uW1Su-i~u+0;# zYV!vdC}hos0xq2K(>|5^H&U%Za&hge7e6GQ0$YBW$%E^{pjH{Gu&m>4@HU2h8MFTG z%B50!*}x5&+$2Yxrd#K_U|)Jf4id*iGcCGCE58g!=Pt{ctv0Gq81+#AMwO`{M}F|d zpg!dh5qSo(y>o!Q!<3s_zdz0E(#ybGjNEwc6H`0X0Y?~p_O@DT~B-Q zi14my?F&y4x2QiCjp_s?nFalR5ovvMswu@M0rUc()gSrP%;U4sQGYw4tEBpm^C-3C z@p*flra#1Yi_774pFEKh!PtAm2&IuR1;Zh&p_>g<_S1yi zgHn$&W`cB?KvhYyml=ayJ_BWdp%AZB?Ye!`oqYQAS`*+2d^iOK(r&R7mA5cfWTYrh ze|O*U@vi2ox8K>Zf5G~&wfkgoJz(692x}aoK+rXwE9MQn4u%X++y!dNo)Act>a8%p zdknTfh|kR2+*g9TlfVV8#7jM>?F{X1X^Qxe0eBCXd|hSr1viY^V=W~i{osD*g3a3+ z-ix8$}dU1QAd{Qjw654oL%)Mnx2)8|e~|1{I_ckS-Mv2?+t| z66qAATT1Ch`pmV_=X>98ykngA{Bial&ohQU-Fw~ZUTdzou6fPtI!v|{tku-~`7>+> zs=L6oNnRxcz-oQHmghAUFIJCN7Mz9>GPNkmec!>Ybmj64$+a)12h*y&?^bmU9gbZ( z{1u^plwqkyzzCt{0k!EPfKnR`)(@(J7Xx~_0P%1`m|ChOdh|1HXS!uMyN?cgsk9uP z3`u#%URL%NjZWdbs(7(D0w_wVEW)r2$!5Ky&UAc-cgcLklU@gv*>*+rl5ckIw@+^V z9eeRD!Kx(_izobU_(Gy^zfPqL%;fzbjXk*U*6vscu$rPCp3FDr*?m02%^UgT9CNza z%7?o>X)XW4k%BVw45f0cI(|S+6-`gR(*FKJtKe42_uA}ZL`;0}qnV-Ct7|s{*4qiI zvH}rG=k5I_wLI%aOfX;(o+P7R@8`0F`2L!?9Vvv@LHzC}KiSGVQTMY&Qt+$7Mp9?C zu4uhFJsxo15v5EIeQL0)_l?xTLme9;UxzyO&7~#LHZ;0>5?0peo;ib;Sb=TN4##5Z z5&&op`|uyBU>!DBrBO zR}zMn7&$DlIr;?8$u{!Y__mu*>;ck*4-@Ikmls3{*yp{sk6|vnOl_`vG#UGekVTN5 zpwNPBISlY%CRIBjR;P|ah5~b^Lb(KJRQ2}0mREXwAyy~jU^6YJNqnN9b-^>sjj;D! zr}(e^LiCe@@RO!yJA{;vkD6=LGBWNn^M>KonbUtMA$h#owxPR)lw9D-MxT1aZ0aXj8x{x0Ms z=R>!!Z?fp|@Z`;oX5AnwIFt5}AJSWC8Ev080qdQk&Fr5Jd>|klRMdjqR8dJ}J1CH*^Qo?;(ISc}s^!4LVBiTt4E04H@ z>hKG&*bRCqPGXSk3d1#KqF@E6yh$rLa5&=>TYp4mDPJ8)F=CWpD`vu%Vpg+b7jjvqQbB8;QNeq;Vi`y%1rrxpO@ zpJCz|?v1(g%KI4%6N-1Pm!7Q1Jf?J)jJt>I(p6f0X&8Iy{DEh6dO*dXgexAZ7(um> zR>9$zXVu3(Eh|s;Rjtk)_(OW8ZI<3O577VNssN@%SgT$mLac{v)6 zDU#AEF!2`cIj-&k=vVeL>8DUmL+{mN?bG^C_))x`%~TO4{Cp0zIT26X@Z zqOA*Au_$(LK#!K89W3iXf4@3^QJycdPk8aools0oLx`odt0SrWBF~3m{DdQH+v8xO zNUM+rCyiYce4m5vrL7F8z*;3~cmejgPW$83t1<3%6_sy#+b7?I5S0+PZkOax?-HIk zfnl!@1*cVZ5iG>vh_7=M0*%(lp2sV?H z^4{@ra+!l|%gvD%RBQx70ph5&9U7k9xM5asQ@Eb0N6Hr&`K&xY5x zY^}Rx>+-?cx=_nV0gp?outC25-01_wtgV}88M^j+3Vp`ihd@%UiF5fz-5>PpVX4iU&uE%~qtJYe#8-sRB`0iuemABnq!fO(5{M5d{v36OvY)qs#zjDwqE$t|aR!dB+W4loM zoII*+QFIEaGZn+@U!c+z`LlSY7ycIdmlL)9K^_|HWV06W&m%ugbwB8e?ZXKsJZkrA z#p&0!H$-_!BABrE4U(K}6*;Q!)=xZfN`OCw>6W}dv@h|*icpzbYyVmyrLNuWhhi&_ zBl*w6h3V>^Ry&Ve`C-!ZJ!AheknddAN8{aou{*#!4)*<4gLB6j+qS=|>sX`^c}HkV zW}0=AEbsG>q-!6~L6r+vi62&ZFfA08`0bwXLLZ{CM6pR>*Aigim`_!yLl)`C*eV|yx9 zkl-IgT z_xrybV4#>i$6o0Z0F(Xr+a2|hFqc{GGor)rK9YLP1z80gR_Kt0+f|jk%DTE&z-htc z{viAbgjW?}UO{9t4L3#PP7NIS6DLkwWM%aS96SP~W-Wop<4j`@Vy>dwzb*rfOA2U- zaL=f1YVreW7dIH_fnLSkM~@!)bgPW13!hHc;O;IsI5P8v8&lyRVtVYN$@_t_pG&*y zS>dzhIbY^4O`Nq!mrMkCDkv75(N>vYP@aREYayWqIB`K^K0=yCcB(NKDSAYrwe!FN z?PMLWya6+tjP`N3*#Oa0EOTHVK(ZBptUW1QVi2z%IQ+ot7gW~-#1G(3ItB*dCoZmy zH&Ml$1C~sV>ZP?uk%ic5YG~uYM_R>zxw&}YiMR?2zH0?;DRy&a+E1ywUTwIyc11r9 zop&w36Lvv=*Y*D+R<5?2qX&BZYl|ZzL~r1SmOvFd2b$cGz_6Yk9lAJ!QCZvOGN^%8 znHK;~SPiBSQJ}g2Jqvmuz3vQmM+AnsgT;{5be#S9LZM{ozH37#q=k1c>U=YPwGb1dWb@dlk7THXMm{Sk%bKMz}hVp^qSa5rEd3 zh3k4v`GEFY4IXnR@bT$HMX7-lpVFEO;;D|C3j}0iO)~6d6Q-%Rk@h|yuM&6e;KJ1D zgL0s}NO{Lg`U^^9q2;wHc%QtgToSd_ z9q^J*`$`r)oQW7?RWJUL6VGF$uzz>%=hvfz!dR6cKlr%B?o;RV)}Qg9Bd}#gQ&Zxt z%iC$wfLc1=e}O<2?$j#A(@dLi!+B0TB52vRgNIpiX(8caqk&Ad+XG6YA6K(R(%+0< z2PDjY-7NIn8*fFf8ax?3bDleXTYvtv1GtGDG&@j`rCSEN_bIKQZ8G-jK?n4Vl$QGE z7jtFzsVCB8_~Pdrr)2@k(>>lXG6 z50WRJA7*J#fwmUb|C*g1>$o3_oP0lj_Rkyv4U^)r<$qlCG)vP**UFFBu|MD1tPabq zEi6QQ!6e#OK<3QoOuvs2_^YC+i?35SCZLQ--v5e-cnC_ux?s5CD?vPA-H16H-* z(d7VEM@KI2A_pLgKau|hzV_&x=Iz?I7~SJr+7dal<>bB9S198AeE%~7D~Xl}o?8Lg zfK=Yp-9q#EPlE3m!id?ef32K)(8Yg*rlKFRYTD!^Wg(f*;FUSJ^b85HD?E4*CwNy{ zS~}APthEwAnF57=fQUhr`6qBzbpdh*m#>jps4!X?6t;m}apC5$Q$u6pSK!TqL-F|h zyi0YRT)c1;P%!Hva!U+k^A9M-J3W#*9Ts=?3C3N~;DY-<1)OA8)~Yk@jkd=&2>Wcy zFc*oVtTo~GR$dh{#$W~XQiqCeB;)6<$4UTKGEZx|KDKs6v?)P*w|*| z8)-Xp7HhF|^)wJKor0-nfB*IYf$q#Kyeb3FhgsO3$E4w~K@y5YL?_{5vTvGE;Y4-X z&B9#7Kw!6QdG9EsZ+V3S=p6hZKo$OHYfGT}c2ORK(<{mQY<*0>gu$v1AUx7%bFk{E zW+7Y*EfsZkbRbJ+s1{<4f^o-BaA>khE64ji(YCdC#VT7&A=WAuEtnHGAjKR%s#Q?+ zUh2%^;HVeg;-KsJ&X<9U&ccJ+c_@}$xYFGk0`(p2Yj*l)CqVis5Ee{1wLnnC{mXr^ zb@A8T%G-5w0m}rDeUlz?8{};_vI+%i!H24zwv%cN)add^8bPZquRBk03+|UMaE0u|%#0s=#_2+z1 zIaR?*H@)W>!1bli6t&1f1Ut&%xCTCEi*7;>l{}|Zzu_w07LiBCVj3<#pknlj7Wff& zzdm1n9cFI#Fqws$05GTsUH?U=wTRlq7v72|Ayz^22o709ubyUONCKQ_Lfz0W@N|X} zYNDWbbk-fH)o1$)*P*-|XbW{Qk2(<$wMH&22)X1iY^9X2>1BR5_Gwg;@X8f}0(Up> z!`YRTALi8>yahRFB+xyJ8ig*^p}YxdCgVF)1?_+KZznZgd8EJr=|`O-RA9EKb#wcm z_R5Y0rvvKwlTSbr+gN}=FGJDy>@zhzy(HZ@s)^lhAb3~0?XS{cEfkKQhSnU#Uuo$xQhIu8i&3CSl1(XcrWhfR{g{)nfm&HusQSNQ`2XJcI+JGZTAx> zMhd(YnP3XQ8dDm~2#@@MdUY>IhR5rIkCO=a-9=v)!H~^Mri;FhLFE6`4 z3?`Pq-acIkIx?uQj`DIqdh8=H?H{D0n*5vdz&9CCCE!hALxW5u1E|7YeFw|DCB{&t(-Ci)Xy8U9IJ(p0U(Yt=t(>pNm1N0RpefaQmcD4yr$K;`)ASoxO z4?Pda6AVdj<$w%}TBlj%37OCKF~WaFUo^*y2#u_kLb?zr#f!M~kjf+jczeU3lOE4F$Rzup%14sg@QH|I-5z}TtkvNQ=s95c-=@bab$17-XRdwgbYA8&fz(+ zJD~ObIbh+$vcwe^8%T3q9*zoMbsNvopLhXIG3uUZk1Hy^81^_NG1{vFmk{cGqFv^t zx9&-uwVT0Vct9BTa6_pL=XW_8*06P{a+RojE2he z@Y7&auz){6+YcH$$A15o0@4ZOtz*zwH3bPRxEPIpXhZxhTH4zas6OKr-E#5w*=CyK zQK_)&g)cC{J(4cLi(Ebh!HpFu5inF6olDZe)=GXcI z_vE*~{U%?x;QCR!A8o2C0kx3hAHVkkG?;Yu+Ujr_UP}v7X@`CUrQDOKp~XDgo^y9C zv+taM;d}yc!@G{&aZ3i$1{Sa-(Z@QMd=pgSIJ%)xU?)6M_3r)oXbb<7xMVArczz`B z(dyh&#{4~6{;bXy?R!$dX|(blFfte6C(gwwcj#B%bfkui5K*_+N5rULY|z?X1h=a+UDW0Sz#S0pjj;7}Z4JX;Lg) zAP>jFo>#)DjjL5XqP=;`X0~r%vsbVh?vyWI2cm2T6%!7}Kt)wc9%_IUE`pPDf9i+T z)2kWI4a%E4*Pn9O$rpq0PrUIYmiGLh9=jD3ryi8xLsyH)%N0`AX z6briqoD?X}zvN2eyvNa-k?ho(fscCFgmI6&L-l#5umyqJNge+g4EtMA|ES~U8kWD@ zvZq=)gdzZID?h===MIfzF@)telkG(z9r`z(zK2|pRumq1Y@`cT<9&BF+a(}I3Wx^#>tp?EwI9UGu zRnv8sb1D+L3 zc8WK;5-teoP7U2Gv=4!AhIA04rN7WO* z$(##LgANMJl8#I? zmBD4NoP9{;zGOZL8lX67a-fs3xGyx=QJ~mJ5}YRS?@P0KPPLo!^nS`-IwE;Z;m>l4 zU1djI0FYJRttNG3-519Y$I;u?5%t6Iat12>g-|P466vI?*ZGzqh@5(C)NXna|5=Ht z$+=)@!1geMeM7jQ!LiM9;t3XM(AW3J1El!t_$%XUYTX`?1Q1mzwcfO3A={!s>^p0s zRK3Awwi}p%f2-m@0aU*>+{)#IQHy{}t2666L#6&y^uzfGKV0F@dPJ0(mj|lL=+hX{ z|LNWAexOqnwTj=ieG|7TDsZi(}i3 zOu7cAatlccJrha1hScXfNRxS(b6X0_%|unKY4xq$X;1tzA&&id!e9!+*n?nR)M}S zO5GhZT*-130?+d=0#f;vS}%x5lMkm+L0j_7zx}W^`R^D}WFxP6QQ2WD`eaq3I5;O3{Q z)z|VIN5Y7{~Bx& z^HeGEXD43t|EOwfD$A204aTbl?joLyH0rZJpXqOEg^f!086Ov34VO{kK4NK;!;vjV zRcmijKbd|(c)3g7T`fT4YR|rquCs(APioDBWTJ-d{twpgRbCCTcVIgiHu)S0}?mcc1cGu$>^PNS=I?Aapf1T}Q_(tPb^W0le4o{{L z8dcB(1V4|vD{ol!g>33}4Y9pImz7gO_C%s#cR-eG}81^QI!M!2+uC zD?{bEfy1;O!wdd1gYH)9Vn&KhDT*fbdHsKWw>!`#j{k8z5a9Z38n{zDqVR%fY`rM` z({_xv;yL~E;eWddL!p;?aS!;p8EQo#h~~F>7E7)8sgG1B1G2`t732r0Es&A6hQU^y zXaO9{z)drD5jiqDuXiZ{B}GKO=kF{1_WDhDLr9!ebDwoc^|BIW!K+ueT;-}_xCQBc z5hdwNwtE(B7ijHkb9g1(Nbd5Z)zRV|cxlc2{L2zFEERp?aB-mM<{I9G`}Okrx;}Jq zgZEt!(AfYBZ3E9NJTi|4P*wn2D3(?uNm<#6K%oUKXt>3K6=ezR89*{gpw$}QhCaAk zI`6Ibz;gEeDKlQin z8o$p8!guO>SnK={&l~AjfecCro<@}|EdgNk=tC{yI8l56j$+Vqs&PcC@eNZcc(T?A z5D*G4VQIQ<(F1>kRju$f&~K-lVu#G@jPpSlI()jEfB4x8xT#aPSM1GOlqIWz{Vh6 z*OZR}*`C2=9+Z@cX=s8*#){cuK!{dG=<+5ef4*o(()RT+6&!e=gr%MHtcV0dObB!OZ+eE9{fZlh>k~E+{5Ou`YA4<{8_JoIOT7+XlymkT^+A_ zHf1W%uq`%CRnT*4Nk^^V-W}Tpk&S})R`#~7MLo563^KcT1`0=VOoU;T%; zW5u&ik62RfCe#||E2PL%)y?y#trx8CJ_5lAq=OC-!n8jxwcZvQjNk@k04E&l;Ca=I zoQiW{2@#w*hKkd;vE{Li9hyItKXV7d22?JZ#%I}#ediT)T&%x~{=KeCe|iPLkq`b0 z963ULsqeqQkw99-dNT0ks+5!z0-c?~I!vwH`2rTG{D4SnHO>Cgar2V-FU|?be{-vQ zRn^?w98k?Spg|*~o{k14sUKo9w+NxT;d9tt@5st~4K3dI!cR;=n`U3jJEg=I{2``V z(Wy0zuC_34Ij>5Yr`ncPNWCDRv7lABaE&S)Fuvf|ud!~x{yin~1*4(y=XFTPEezYY z;es{b)u3S=YdB{CNHmB50WHy0YvxBP(!6zupN3vx_ncF}*2-?T;d|2V4kNPx9Uai9 z0QrcgX$F|B?VFLEQ$bS9Ke6y-%75=FAyCK7Zec$mA+DUYFVLzEJ{CUbue-jVODQ8c zR<=mEJiPhpSN}&`A}X=M5;Jw|v{abJ+misj#m3Gl?`&@mFa4Rzo`5LAFU*(XN1D|p zngGh*z{W;gU__P!6UsmkCqcwX4X1ft=rTZb;3v>Q0p)`x(6sH2o`-*q<3$gUYEnvy zkZatVHxoZLfoKm{di+`84gQzQLt;kiS-WVwgKFx(dW0igTLShO(l_GurJhp81gT$~ z`F8ugyqaDk|4w19K1a3COH0*NE#X1to@8m-F!da}aJ|)~rNXi0J`XWt;~9d$=BuD1 zQo5R#$AhqDB%NW)8!`uaM4(K|2}J=hV4UXwss$(|3QENq93>it#%1@*P|O4b#d>Ck z$pVh?`*rNZ39)yw6G&mFR(9R)d5qSm;yIjvJ+t$3O@Ht>HVR6YR;{PYTL}uYY>u|l zefT^V(aG9(p)PAWWXrDYarux<_{{LaU}q*ZO!5hfGavUEXwSKKYD=|xrGd;+SV-i#0{3xeR!h)dA;EqS_y(2fxW;n{92ku>E zpTSie&ncICme+Q5?t17q*ygMQw$ZB%znzOF=`_s+q{dZ5@fXkBg242Sw`&CYcdP|j z;b5}K@Uu3O+c+KkUJds_y8|$;!K{#dsTT??pPw!3U_qrSoQ1W)l^QdX5cAJ{NkEC^ zGv`+Mxr(B_zp1AGGS#_Aw4oHa`gGkY2CYL9n8#p0)#~K57i(aBn#Eb_SHIf(bPZd^ zF8*hU%k;JQ*I(CoUqzNror$A(#Q0wK#Ae1c)raPx*=Q;0!Un zLkR~Vm<8l1=RZ0Nt8uD$ZK`0dGU^-8`#{YkiO^_$CCpsDiF{tW|ELX)#j9_;c++dq zeD-t(1jo&Ae}3T7%J3m)F5+6ac%9XfDOdVNoPJk%?lH#_o4X~&;xBtrbU#9t5}B;5 zEtREFhRD-UPDR=fP*0n58ib-P)huX&3)%*PQ#>&_xiq+J0DT$C6r_JhZ`;)$IRhFY zDc!N_XU~R%JIGMZsoFjj7T-S;&tHVZ+QpUvT>(wzbEYSA7Ip16YL%9ADkks8VX;%s z54@Dv;nP0&O&2bnpwq{m;sYsdYdG1Isn5Inau!~%DE8#eTKc@X3deifVw(T0+qZ8E zV22>?E=Xuk2>{di`v*A+q>v8{5TNN(SR!OkHH-jTFg`tk^vjD@TZL9dG6CSlP>LfX zBh?}%_4M@4P*Q?24lPJB=s_^p@?r}T*&sXE->je-(S*{mubSb1a7U;JYfjXK<+n(% zb8K{8y)F2~OcG1C#EUCWOvG8lFDw;9MYzCGyC1Iy&p@T?Rwkl$q5Gz;8w+`QOY4Wr zCn4e1?HbNaGSC>gIg+YvOZ!!!~uQoUg?0AZ`LG@3>%H^XGR; z0zlvrnLEgC6DgKsT))9$H)?htlA`Zfn%A+YotJJJfcNJ#C0N$+SPaKPyo2VICTLe# zbrwUpISBAz;ZqAoB7t#-`2Qi@8Yy+)hFUK$<^7QS)$@q=X;-v;x(rf!@@NENBEv04 zh_T?hlkrF>s^^Qz_On8G<`bLtr;_Eo_unBPkcsef-M%XXj_>3qtY%dT|-%9c7T0hX3z=d4-i1PnTQE0KzykAZ14lRd>d5y=+d+k~z zWPMY8Lm{0YDOL#Rxd7BE$~Sj*c2)sEw}O78vwtXYQYE!d!d(HP{j~9h%3-XZB&UcS zqBMn+6Al6yuP$7&5;-r=R~(t?b}=Z@zTpel3yVD+FQ?PcdM$jPxUMMaY2ExgUjKcD z%U{KwD9XUSZ{>l3_Q^^Z4$|-fJ~}<99f5zz3%EL2!x~%$3)C^N1Y8`CJtU)!Ma?ik1<&h!5i{_zr>sjl3Mw)~)^L!|^VdC5h z*vnUbdzV{xZgKwV^HVN+3}G={28OHOPl?}2(1Gn0=*o*V_Rhoq1mRe`-TKFcL^x{u z8hKcQeJ_NcjerY6Q;uJAfbW>l-*3F%C**|ApGBSxCEs7hch0A8#$DzT3=DYHHa%lu z4JpQ*m#-|HWFXtUudGm;rl1_s>B;ijxoq|9>U$l5{g@$!@nZ5axjf9`n5Yfu;PM%? z^3D2EJ8@x0=$(Yvf^lL_g#ypAl#z4pEDzjGdJ_^Wd@3R+UJP_yrWJn47Vu+4JdMGV zUOywvi@pz($ROF#(okfD)aO#C@owLbmADulZi}?i-P--)5*4!E;?t0OCZR98AlZ`r+40~poH;pTme}1U z1oDGwtb^Uc-rh^wgWtK7BV44Cld_ZinOK1r*FNRO=mvu>S7B?cbuRO>$In=Os*sY? zoc9j#mC%;D@IYC?8K$?~*H_y%aEQS*-W-4#ZPT86hZA9a6>jdapExPM_iCn!D{yBx zyNyz!G%00djsG{rd2tA}3#N}%-O7`pNT5)AHvEnMOG>aroa!~}cz5&Sc(IrD-JRmY zw?F9xPx#PUR3L7$L_U{JFi^zGCvad-cnDnuXa&96AMVK|#lnct*RaOS_tV8;+r{|L zo|kSa-gdz#b}04sj+_)B=Mq-abxU3mB2JK^+9bMRz8aN<^oz9sdCUWN~{yU@W z1fO%h6L$|E(GhRRtmEn%r+%XXbacKchven7@q>uvpgi-|jIYDL2%dOfMLdveYqLxt&b zRA|b|tmM}Dg8>Re3!C#*i^24CB55S)IxIL1b8)p|`YKyv zH-u&0-_2R*8Qha|qeiMOf{^j}L5@VIKFwqi0Cy=x-gamva3@ zzNivjuf@&jAv3N_Rk7%v@3tWj55u~AUY;%QcMQ2LByaT?ed8zH>8y4BE&9M-zn-0# zAIqCM%FjgZyzJ?jwJTyej03)xMFj$G58UN+Q)7~#2l+PZFxPc7=rT3~4>(MmPtecsR#hM1DE!y7M~zFa(1gIyMl!wJX1kxwS$ z^J50q$qK-CMJtn;53}u4d+{K-s;+ynBiMt+B>huC8kfZ`fdS5{Uy)6L18CxUKb%HD zaiY(5jAYf}dI@{cVqiEPY*He3I<|Tnb6R;4f4Hy&!$N!CS5du=L_wLDs;&c8T{Wfg zjuTg@*a>(v9-Id&hv7p}6b>)eek)&x`<$`GPhAS6rs3;wO)x9OXrq>%%dkl*eD8fu z1?|H)IAQA=WB|T~nYuvyfSYPFKV!Dd+Y z%L31$EiZaFPnH3D=TcWXax>TY;TGMG;#yzcd4y1#svoDhyUw4QcKCD;#k5Q0YHd$V zE_}g!lR^g`1)RE0V#PdZnJ}J^y5u+bkLCobL*i0;qu|^vc*Sy5wdWE{biABNYK7Ff zM9eNtRRP*U^N?c*@A02hC34tlMcfeKAyRh8mLLaRUpZJ;Npx|ga1?^_L0!WsSXfYk z;eyac`*n79rHuLSGPSK?OwO@%Vuj?ur^FfND&o!^3lhvLWGeoX#4}~#rymdV4)P8I z^K<@1%^|-YWc0e!=BN_9y-jr;j%>2-OD_eF%vdNqJ`7FYjB|6xmK*@#hm{3UgXAzp z7)`&*=}@~Lc!-U|x&p_bbNCHvwEgyVe-{FFyOR<61 z$*fh-P-srB3pys)uOp+SCR!gjhqXZ@AEK~U8W4O|{Ch-(h{?rAiTiQRG>?p3Z4PXJ zy7{g_^$Weld_+{Uow-tSfYiulC`doYEPe5n(6RwN$Uj}LMLHEU)CaC#==pR+?gb`4 zNDGJX4w)23xs#Ymcb5qh5$D}z&vdvp$Nm%t5cH;NJieJ`5JVo8o>e8?-+0oPT~Eu8 z5^T=_ov4bdo93aJ0md9(RF9(B43_@%Hm9P+WQVid=_8uYBHe-kpTM%_j$hZp7X@3A zDfi^Q8t)JjX(Wt|t$(Dr*Yb_I<}qgT6EiWxjqGlZUCeHzZh_R>0-?)aF@t1|fI$v- zePA0$)5+}Z&q@J@hN09NQ}oj+O$(z!LzX2EO9>sLOQb%5k=dC$W}PfvZ(qT`bl z0mR{Hn86=E`sx0@4LL)SPUY;Y;Wz^;3w%W|z@w^|*zzU-Qc85)gv8>u_===#%Y>U# z>zNBw5XpguKmEag^jb_ZYEF{IckvtA7PMgd2jxjFM7C zO2=EwizUic8!^+7?Pw?(m>8D-8x?}zW5)D3)F^+s^BvrpHxe%Isko68c8?_Kp0LmV zTeK51*a!3URqPkZhkXWqnZunm2{(Mhp{(U*zecx$2FP~?-=jtQP-CNa1gdYJ z9Y+Mv<1sP*WJ~$XBN#~k-HOtu;%A{qNd>B^&d;P*NLd|5l%!HY7lAO(fz=Vr!HoMQ z^AqN)WYMv=_T*z6xSmhGglV!+BSzO0D9)Tz%G~5HqKA2cpgw!%z19G*H&9iRY4LLg zUpI|l+u$e8jJ@@3^H6e8>N^&pYy@brC4~&YSbU67^QPrfdKHPAmNsLp;Z+DV0|=1Xe8yr$ z^>Fm5-e~lDj`0rnw-)&>4Di0G&3A6T3LDsW^4TpsO*78geTEOlu>B-PJ+f4}b+n*D5dbjkGOx`EE3#xmCQ063<$j7{K@vT4s> zyWhRih1PXrJ)|j%Pl;vTk1KC98NroAXrUxIoUpoD%=?6r8_D4sQau0o5rv7(9AD0K zubH)G%COVj9@jCIGMW&qn53bIN18nBI%?*n=@ z%UuZ7g3@#ix6uFhYO!B}8Zt74!t1%;y-+pgwEFq&R?y>o<8$D~zyP#;_&=T8KIBKN zTNmh0!5;|N2O%lxbk-~|r^4i=rVk>pzD(7#qLVCKq`W=n{HTA+oeGXV;aO*5=EX`!k&DH~RN`IQ`@kvQZ&WnVn zPU%8{6skOV%59no+ESow4eq7a0e!W7*Y>@{-lBYKiUL@9acK{>$X?`H1^TR<9jc?q0I-jY?VbQ-f3aM{yrqZcyIT9|JYnV;bl z7JeD{E(~^2)JuA>E?%4K3xyJ}vx^JT(ucaxWnSJeFr`=p90mK1)@R^H?(Xi!ib}L* zPXKn32woL9)T+S1#1;!g80cNmtz+(>iHq<-LAyEck`f^hnLu6@pgBzJj(~ZP?oF9d zRHl7+dvH?mym(EvmJ{oANT%j-2a`~fGC37=1CuoBwP8kO_s^zEvAROG5CxWpDBz}| z0XG%N?;u6BksyVEj^+hh;I5Q4OVPDv2Z^vU_W_~!r~j)=@{uFLDO^gq1FRJIOncoy zi|P8_8i|PGTD|Q7JVX-+F=1DNN%ynW7XCQQqX8k4$M{G6@9Aq`aSBRX)dsou%N%XN z_fZb!#D)q=`Qp&vf^>keKshQA#CI{p)>LEIajwE-ZLoH`sRXl7;7PuCwX<BfSQQp61lLahH&J=xaZwmn)J$(3{t zm?KwLx8okpXiF(7o&_%MQGay`0K1xP{96nXp~VQ~gOFG?=zv+-+h=;nO1-2Xab6{W zs@Ks`Pg0FhP>*ifECju#*MN9+=eUA`grDY>(m^bi4liWkFo`A@O9 zDOD8nv*SN$<+kU+;41;X+I#O-O$Dtz~Db=?>sD748Gww;BC$of)6 zFAH@|LqP|QQj~}sZ(~@6$;AIh>1Z-keLFv0_@T8aWMcC;ioM| z$^+K{RFpj_0|eg%Wf~#7jLPvqYLVzgUGbzRkXDkl7oR?=(lhoWIi0oleA9EYoNtUN ztBdP(e>S&u*Nj#Ca@568;GT$vWVX2t>ZKJ^RsM_Am?)s*D|kdhxWC|J(1zJp4{oVl zn|Y!~bD|GMm+eMnb;zNF(vc|D@|h*??0@lGsA>5$ngTV;+wpa0dq7m}4{(E}Bqb|H zMiLPG3C&b1(6mEBOsp_EjsSMVu?85q8H7TRUfe2=ubjO6)ZXR@RPY!LUJBBNN$t%H zmtK1-&^G+tpC)si@3Gr2VTvHS>}5%8VD%IhJUCiwXLe6({0eHxg3!J73unr-1?uo0 zf{rHwz5ua4D%^JO_eh%EJ8h{iemNbr8+YP*A9r z;$?w6Rh+I1^fN&{tP-`30CVISw2wFdb07SE%(}g=>?~?wsd(y;N{4+rP2YK(%1$Zq6V4Q8=Kc9 z(7Q;($E;Xi=H9k+@u2h*(DV`#n$@PevA$jgWm)ZpFczg)k#kyeYh;`{#~>IW^I&%? zffi6XX#vtT_)Coc^DCJ*jD+$_1Vua?w0vpq(RsE@J52 zm$!k7V9S6UR`d)Ee$LOgKz#qQyHvPn<=swrE8hJpnmS zI}arhV~s{>_kf<0Y39~KS&aIK+0TVEh*t{B*ANWUkof?hH`O1@R>dP}C0Rx>&aJWEy1pNo__I(BVC3=?+dVfGK-Nwbo zdzJjh(p0iX%hp!@K$Ji^36wdZ2djGQSo|MjMv)Ku^?47E`xIGr%_-a#_nm;u#!Vw9 z!Q5@nBZ73%peI#a7?J8D0g*{Xy1`IeUp1kj}hEvwv6kT&pNl#Fv9jOhPyaw+Z1 zO`qJ@;m6RrHFZK1myj9=B`kO%!=Nbm=FQn+`^8r9HS*ImIszdUruj5nS&-og@FvtY zvw+j(v`}>19hy)7WDNq@}Y z{7@&q4{=)lOz=G4^Ovz;Zk*tQ9swb$a4ayr_B%z&)?V)71jYgp*g+*ve-rZ>ll8Cy zzsUtyOznLS&PjoK`^l3h^NhQEf%7t1%nqu7P`lB|QT7f9xN2!F4+bO9DWq0p?FnKz zXQ-&uCstWNu-qZ)5yf>%Z$ooMe2UWvj5`)-D&_J1GinK(>bFjQN;M*)Rao)erp-R& za3tMTzUS$%jMPTYVWPa#4b^<(8YrHik_yy?aRLcj`)HCt(Wpk?VenbIRQZkipQEFr zw^7Q8mj}VymY(5zP&~ zInY8;>^3CM3KGqr7_E78=@Z$H51CMJi9nZv1Az?8+EieI(D@r|et-gYk)GZYoQT?? zxb7STnMs-M5M*;dA3i%e-IieQ&xQ2Q;&*ai#Aak

diff --git a/doc/build/html/_modules/gp.html b/doc/build/html/_modules/gp.html index 72e63591..1fff0f37 100644 --- a/doc/build/html/_modules/gp.html +++ b/doc/build/html/_modules/gp.html @@ -1,28 +1,24 @@ + + - + gp — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    @@ -134,7 +141,9 @@

    Source code for gp

     # --------------------
     
     
    -
    [docs]class CovBase(with_metaclass(ABCMeta)): +
    +[docs] +class CovBase(with_metaclass(ABCMeta)): """ Base class for covariance functions. All covariance functions must define the following methods:: @@ -148,7 +157,9 @@

    Source code for gp

         def __init__(self, x=None):
             self.n_params = np.nan
     
    -
    [docs] def get_n_params(self): +
    +[docs] + def get_n_params(self): """ Report the number of parameters required """ assert not np.isnan(self.n_params), \ @@ -156,17 +167,27 @@

    Source code for gp

     
             return self.n_params
    -
    [docs] @abstractmethod + +
    +[docs] + @abstractmethod def cov(self, theta, x, z=None): """ Return the full covariance (or cross-covariance if z is given) """
    -
    [docs] @abstractmethod + +
    +[docs] + @abstractmethod def dcov(self, theta, x, i): """ Return the derivative of the covariance function with respect to - the i-th hyperparameter """
    + the i-th hyperparameter """
    +
    + -
    [docs]class CovLin(CovBase): +
    +[docs] +class CovLin(CovBase): """ Linear covariance function (no hyperparameters) """ @@ -174,7 +195,9 @@

    Source code for gp

             self.n_params = 0
             self.first_call = False
     
    -
    [docs] def cov(self, theta, x, z=None): +
    +[docs] + def cov(self, theta, x, z=None): if not self.first_call and not theta and theta is not None: self.first_call = True if len(theta) > 0 and theta[0] is not None: @@ -186,11 +209,18 @@

    Source code for gp

             K = x.dot(z.T)
             return K
    -
    [docs] def dcov(self, theta, x, i): - raise ValueError("Invalid covariance function parameter")
    + +
    +[docs] + def dcov(self, theta, x, i): + raise ValueError("Invalid covariance function parameter")
    +
    -
    [docs]class CovSqExp(CovBase): + +
    +[docs] +class CovSqExp(CovBase): """ Ordinary squared exponential covariance function. The hyperparameters are:: @@ -202,7 +232,9 @@

    Source code for gp

         def __init__(self, x=None):
             self.n_params = 2
     
    -
    [docs] def cov(self, theta, x, z=None): +
    +[docs] + def cov(self, theta, x, z=None): self.ell = np.exp(theta[0]) self.sf2 = np.exp(2*theta[1]) @@ -213,7 +245,10 @@

    Source code for gp

             K = self.sf2 * np.exp(-R/2)
             return K
    -
    [docs] def dcov(self, theta, x, i): + +
    +[docs] + def dcov(self, theta, x, i): self.ell = np.exp(theta[0]) self.sf2 = np.exp(2*theta[1]) @@ -226,10 +261,14 @@

    Source code for gp

                 dK = 2*self.sf2 * np.exp(-R/2)
                 return dK
             else:
    -            raise ValueError("Invalid covariance function parameter")
    + raise ValueError("Invalid covariance function parameter")
    +
    + -
    [docs]class CovSqExpARD(CovBase): +
    +[docs] +class CovSqExpARD(CovBase): """ Squared exponential covariance function with ARD The hyperparameters are:: @@ -247,7 +286,9 @@

    Source code for gp

                 self.D = x.shape[1]
             self.n_params = self.D + 1
     
    -
    [docs] def cov(self, theta, x, z=None): +
    +[docs] + def cov(self, theta, x, z=None): self.ell = np.exp(theta[0:self.D]) self.sf2 = np.exp(2*theta[self.D]) @@ -259,7 +300,10 @@

    Source code for gp

             K = self.sf2*np.exp(-R/2)
             return K
    -
    [docs] def dcov(self, theta, x, i): + +
    +[docs] + def dcov(self, theta, x, i): K = self.cov(theta, x) if i < self.D: # return derivative of lengthscale parameter dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i]) @@ -268,10 +312,14 @@

    Source code for gp

                 dK = 2*K
                 return dK
             else:
    -            raise ValueError("Invalid covariance function parameter")
    + raise ValueError("Invalid covariance function parameter")
    +
    -
    [docs]class CovSum(CovBase): + +
    +[docs] +class CovSum(CovBase): """ Sum of covariance functions. These are passed in as a cell array and intialised automatically. For example:: @@ -303,7 +351,9 @@

    Source code for gp

             else:
                 self.N, self.D = x.shape
     
    -
    [docs] def cov(self, theta, x, z=None): +
    +[docs] + def cov(self, theta, x, z=None): theta_offset = 0 for ci, covfunc in enumerate(self.covfuncs): try: @@ -320,7 +370,10 @@

    Source code for gp

                     K += covfunc.cov(theta_c, x, z)
             return K
    -
    [docs] def dcov(self, theta, x, i): + +
    +[docs] + def dcov(self, theta, x, i): theta_offset = 0 for covfunc in self.covfuncs: n_params_c = covfunc.get_n_params() @@ -333,14 +386,18 @@

    Source code for gp

                         dK = covfunc.dcov(theta_c, x, i)
                     else:
                         dK += covfunc.dcov(theta_c, x, i)
    -        return dK
    + return dK
    +
    + # ----------------------- # Gaussian process models # ----------------------- -
    [docs]class GPR: +
    +[docs] +class GPR: """Gaussian process regression Estimation and prediction of Gaussian process regression models @@ -407,7 +464,9 @@

    Source code for gp

             else:
                 return True
     
    -
    [docs] def post(self, hyp, covfunc, X, y): +
    +[docs] + def post(self, hyp, covfunc, X, y): """ Generic function to compute posterior distribution. """ @@ -435,7 +494,10 @@

    Source code for gp

             self.hyp = hyp
             self.covfunc = covfunc
    -
    [docs] def loglik(self, hyp, covfunc, X, y): + +
    +[docs] + def loglik(self, hyp, covfunc, X, y): """ Function to compute compute log (marginal) likelihood """ @@ -475,7 +537,10 @@

    Source code for gp

     
             return self.nlZ
    -
    [docs] def dloglik(self, hyp, covfunc, X, y): + +
    +[docs] + def dloglik(self, hyp, covfunc, X, y): """ Function to compute derivatives """ @@ -526,8 +591,11 @@

    Source code for gp

     
             return self.dnlZ
    + # model estimation (optimization) -
    [docs] def estimate(self, hyp0, covfunc, X, y, optimizer='cg'): +
    +[docs] + def estimate(self, hyp0, covfunc, X, y, optimizer='cg'): """ Function to estimate the model """ if len(X.shape) == 1: @@ -556,7 +624,10 @@

    Source code for gp

     
             return self.hyp
    -
    [docs] def predict(self, hyp, X, y, Xs): + +
    +[docs] + def predict(self, hyp, X, y, Xs): """ Function to make predictions from the model """ if len(hyp.shape) > 1: # force 1d hyperparameter array @@ -591,7 +662,9 @@

    Source code for gp

             v = solve(self.L, Ks.T)
             ys2 = kss - v.T.dot(v) + sn2
     
    -        return ymu, ys2
    + return ymu, ys2
    +
    +
    diff --git a/doc/build/html/_modules/index.html b/doc/build/html/_modules/index.html index 4cc795aa..087396d6 100644 --- a/doc/build/html/_modules/index.html +++ b/doc/build/html/_modules/index.html @@ -1,28 +1,24 @@ + + - + Overview: module code — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    diff --git a/doc/build/html/_modules/normative.html b/doc/build/html/_modules/normative.html index bb71c8e8..c143588b 100644 --- a/doc/build/html/_modules/normative.html +++ b/doc/build/html/_modules/normative.html @@ -1,28 +1,24 @@ + + - + normative — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    @@ -116,25 +123,37 @@

    Source code for normative

     #  Written by A. Marquand
     # ------------------------------------------------------------------------------
     
    -from __future__ import print_function
    -from __future__ import division
    +from __future__ import division, print_function
     
    -import os
    -import sys
    -import numpy as np
     import argparse
    -import pickle
     import glob
    +import os
    +import pickle
    +import sys
    +from pathlib import Path
     
    +import numpy as np
     from sklearn.model_selection import KFold
    -from pathlib import Path
    +
    +try:
    +    import nutpie
    +except ImportError:
    +    # warnings.warn("Nutpie not installed. For fitting HBR models with the nutpie backend, install it with `conda install nutpie numba`")
    +    pass
    +
     
     try:  # run as a package if installed
         from pcntoolkit import configs
         from pcntoolkit.dataio import fileio
         from pcntoolkit.normative_model.norm_utils import norm_init
    -    from pcntoolkit.util.utils import compute_pearsonr, CustomCV, explained_var
    -    from pcntoolkit.util.utils import compute_MSLL, scaler, get_package_versions
    +    from pcntoolkit.util.utils import (
    +        CustomCV,
    +        compute_MSLL,
    +        compute_pearsonr,
    +        explained_var,
    +        get_package_versions,
    +        scaler,
    +    )
     except ImportError:
         pass
     
    @@ -146,15 +165,22 @@ 

    Source code for normative

     
         import configs
         from dataio import fileio
    -
    -    from util.utils import compute_pearsonr, CustomCV, explained_var, compute_MSLL
    -    from util.utils import scaler, get_package_versions
         from normative_model.norm_utils import norm_init
    +    from util.utils import (
    +        CustomCV,
    +        compute_MSLL,
    +        compute_pearsonr,
    +        explained_var,
    +        get_package_versions,
    +        scaler,
    +    )
     
     PICKLE_PROTOCOL = configs.PICKLE_PROTOCOL
     
     
    -
    [docs]def load_response_vars(datafile, maskfile=None, vol=True): +
    +[docs] +def load_response_vars(datafile, maskfile=None, vol=True): """ Load response variables from file. This will load the data and mask it if necessary. If the data is in ascii format it will be converted into a numpy @@ -181,7 +207,10 @@

    Source code for normative

         return Y, volmask
    -
    [docs]def get_args(*args): + +
    +[docs] +def get_args(*args): """ Parse command line arguments for normative modeling @@ -197,74 +226,67 @@

    Source code for normative

         :returns configparam: Parameters controlling the estimation algorithm
         :returns kw_args: Additional keyword arguments
         """
    -
    +    args = args[0][0]
         # parse arguments
         parser = argparse.ArgumentParser(description="Normative Modeling")
    -    parser.add_argument("responses")
    -    parser.add_argument("-f", help="Function to call", dest="func",
    -                        default="estimate")
    +    parser.add_argument("respfile", help="Response variables for the normative model")
    +    parser.add_argument("-f", help="Function to call", dest="func", default="estimate")
         parser.add_argument("-m", help="mask file", dest="maskfile", default=None)
    -    parser.add_argument("-c", help="covariates file", dest="covfile",
    -                        default=None)
    -    parser.add_argument("-k", help="cross-validation folds", dest="cvfolds",
    -                        default=None)
    -    parser.add_argument("-t", help="covariates (test data)", dest="testcov",
    -                        default=None)
    -    parser.add_argument("-r", help="responses (test data)", dest="testresp",
    -                        default=None)
    +    parser.add_argument("-c", help="covariates file", dest="covfile", default=None)
    +    parser.add_argument("-k", help="cross-validation folds", dest="cvfolds", default=None)
    +    parser.add_argument("-t", help="covariates (test data)", dest="testcov", default=None)
    +    parser.add_argument("-r", help="responses (test data)", dest="testresp", default=None)
         parser.add_argument("-a", help="algorithm", dest="alg", default="gpr")
    -    parser.add_argument("-x", help="algorithm specific config options",
    -                        dest="configparam", default=None)
    -    # parser.add_argument('-s', action='store_false',
    -    #                 help="Flag to skip standardization.", dest="standardize")
    -    parser.add_argument("keyword_args", nargs=argparse.REMAINDER)
    +    parser.add_argument("-x", help="algorithm specific config options", dest="configparam", default=None)
    +    parsed_args, keyword_args = parser.parse_known_args(args)
     
    -    args = parser.parse_args()
    -
    -    # Process required  arguemnts
    +    # Process required arguments
         wdir = os.path.realpath(os.path.curdir)
    -    respfile = os.path.join(wdir, args.responses)
    -    if args.covfile is None:
    +    respfile = os.path.join(wdir, parsed_args.respfile)
    +    if parsed_args.covfile is None:
             raise ValueError("No covariates specified")
         else:
    -        covfile = args.covfile
    +        covfile = parsed_args.covfile
     
         # Process optional arguments
    -    if args.maskfile is None:
    +    if parsed_args.maskfile is None:
             maskfile = None
         else:
    -        maskfile = os.path.join(wdir, args.maskfile)
    -    if args.testcov is None and args.cvfolds is not None:
    +        maskfile = os.path.join(wdir, parsed_args.maskfile)
    +    if parsed_args.testcov is None and parsed_args.cvfolds is not None:
             testcov = None
             testresp = None
    -        cvfolds = int(args.cvfolds)
    +        cvfolds = int(parsed_args.cvfolds)
             print("Running under " + str(cvfolds) + " fold cross-validation.")
         else:
             print("Test covariates specified")
    -        testcov = args.testcov
    +        testcov = parsed_args.testcov
             cvfolds = None
    -        if args.testresp is None:
    +        if parsed_args.testresp is None:
                 testresp = None
                 print("No test response variables specified")
             else:
    -            testresp = args.testresp
    -        if args.cvfolds is not None:
    +            testresp = parsed_args.testresp
    +        if parsed_args.cvfolds is not None:
                 print("Ignoring cross-valdation specification (test data given)")
     
         # Process addtional keyword arguments. These are always added as strings
         kw_args = {}
    -    for kw in args.keyword_args:
    +    for kw in keyword_args:
             kw_arg = kw.split('=')
     
             exec("kw_args.update({'" + kw_arg[0] + "' : " +
                  "'" + str(kw_arg[1]) + "'" + "})")
     
         return respfile, maskfile, covfile, cvfolds, \
    -        testcov, testresp, args.func, args.alg, \
    -        args.configparam, kw_args
    + testcov, testresp, parsed_args.func, parsed_args.alg, \ + parsed_args.configparam, kw_args
    + -
    [docs]def evaluate(Y, Yhat, S2=None, mY=None, sY=None, nlZ=None, nm=None, Xz_tr=None, alg=None, +
    +[docs] +def evaluate(Y, Yhat, S2=None, mY=None, sY=None, nlZ=None, nm=None, Xz_tr=None, alg=None, metrics=['Rho', 'RMSE', 'SMSE', 'EXPV', 'MSLL']): ''' Compute error metrics This function will compute error metrics based on a set of predictions Yhat @@ -349,7 +371,10 @@

    Source code for normative

         return results
    -
    [docs]def save_results(respfile, Yhat, S2, maskvol, Z=None, Y=None, outputsuffix=None, + +
    +[docs] +def save_results(respfile, Yhat, S2, maskvol, Z=None, Y=None, outputsuffix=None, results=None, save_path=''): """ Writes the results of the normative model to disk. @@ -406,7 +431,10 @@

    Source code for normative

                                 example=exfile, mask=maskvol)
    -
    [docs]def estimate(covfile, respfile, **kwargs): + +
    +[docs] +def estimate(covfile, respfile, **kwargs): """ Estimate a normative model This will estimate a model in one of two settings according to @@ -474,7 +502,9 @@

    Source code for normative

         # '_' is in the outputsuffix to
         # avoid file name parsing problem.
         inscaler = kwargs.pop('inscaler', 'None')
    +    print(f"inscaler: {inscaler}")
         outscaler = kwargs.pop('outscaler', 'None')
    +    print(f"outscaler: {outscaler}")
         warp = kwargs.get('warp', None)
     
         # convert from strings if necessary
    @@ -627,7 +657,8 @@ 

    Source code for normative

                         if warp is not None:
                             # TODO: Warping for scaled data
                             if outscaler is not None and outscaler != 'None':
    -                            raise ValueError("outscaler not yet supported warping")
    +                            raise ValueError(
    +                                "outscaler not yet supported warping")
                             warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1]
                             Ywarp[ts, nz[i]] = nm.blr.warp.f(
                                 Y[ts, nz[i]], warp_param)
    @@ -730,7 +761,10 @@ 

    Source code for normative

             return output
    -
    [docs]def fit(covfile, respfile, **kwargs): + +
    +[docs] +def fit(covfile, respfile, **kwargs): """ Fits a normative model to the data. @@ -756,6 +790,8 @@

    Source code for normative

         outputsuffix = "_" + outputsuffix.replace("_", "")
         inscaler = kwargs.pop('inscaler', 'None')
         outscaler = kwargs.pop('outscaler', 'None')
    +    print(f"inscaler: {inscaler}")
    +    print(f"outscaler: {outscaler}")
     
         if savemodel and not os.path.isdir('Models'):
             os.mkdir('Models')
    @@ -824,7 +860,10 @@ 

    Source code for normative

         return nm
    -
    [docs]def predict(covfile, respfile, maskfile=None, **kwargs): + +
    +[docs] +def predict(covfile, respfile, maskfile=None, **kwargs): ''' Make predictions on the basis of a pre-estimated normative model If only the covariates are specified then only predicted mean and variance @@ -905,6 +944,10 @@

    Source code for normative

         X = fileio.load(covfile)
         if len(X.shape) == 1:
             X = X[:, np.newaxis]
    +    if respfile is not None:
    +        Y, maskvol = load_response_vars(respfile, maskfile)
    +        if len(Y.shape) == 1:
    +            Y = Y[:, np.newaxis]
     
         sample_num = X.shape[0]
         if models is not None:
    @@ -922,9 +965,13 @@ 

    Source code for normative

             Xz = scaler_cov[fold].transform(X)
         else:
             Xz = X
    +    if respfile is not None:
    +        if outscaler in ['standardize', 'minmax', 'robminmax']:
    +            Yz = scaler_resp[fold].transform(Y)
    +        else:
    +            Yz = Y
     
         # estimate the models for all variabels
    -    # TODO Z-scores adaptation for SHASH HBR
         for i, m in enumerate(models):
             print("Prediction by model ", i+1, "of", feature_num)
             nm = norm_init(Xz)
    @@ -947,6 +994,10 @@ 

    Source code for normative

             else:
                 Yhat[:, i] = yhat.squeeze()
                 S2[:, i] = s2.squeeze()
    +        if respfile is not None:
    +            if alg == 'hbr':
    +                # Z scores for HBR must be computed independently for each model
    +                Z[:, i] = nm.get_mcmc_zscores(Xz, Yz[:, i:i+1], **kwargs)
     
         if respfile is None:
             save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)
    @@ -954,7 +1005,6 @@ 

    Source code for normative

             return (Yhat, S2)
     
         else:
    -        Y, maskvol = load_response_vars(respfile, maskfile)
             if models is not None and len(Y.shape) > 1:
                 Y = Y[:, models]
                 if meta_data:
    @@ -986,7 +1036,9 @@ 

    Source code for normative

             else:
                 warp = False
     
    -        Z = (Y - Yhat) / np.sqrt(S2)
    +        if alg != 'hbr':
    +            # For HBR the Z scores are already computed
    +            Z = (Y - Yhat) / np.sqrt(S2)
     
             print("Evaluating the model ...")
             if meta_data and not warp:
    @@ -1008,7 +1060,10 @@ 

    Source code for normative

                 return (Yhat, S2, Z)
    -
    [docs]def transfer(covfile, respfile, testcov=None, testresp=None, maskfile=None, + +
    +[docs] +def transfer(covfile, respfile, testcov=None, testresp=None, maskfile=None, **kwargs): ''' Transfer learning on the basis of a pre-estimated normative model by using @@ -1044,14 +1099,14 @@

    Source code for normative

             return
         # testing should not be obligatory for HBR,
         # but should be for BLR (since it doesn't produce transfer models)
    -    elif (not 'model_path' in list(kwargs.keys())) or \
    -            (not 'trbefile' in list(kwargs.keys())):
    +    elif ('model_path' not in list(kwargs.keys())) or \
    +            ('trbefile' not in list(kwargs.keys())):
             print(f'{kwargs=}')
             print('InputError: Some general mandatory arguments are missing.')
             return
         # hbr has one additional mandatory arguments
         elif alg == 'hbr':
    -        if (not 'output_path' in list(kwargs.keys())):
    +        if ('output_path' not in list(kwargs.keys())):
                 print('InputError: Some mandatory arguments for hbr are missing.')
                 return
             else:
    @@ -1063,7 +1118,7 @@ 

    Source code for normative

         # or (testresp==None)
         elif alg == 'blr':
             if (testcov == None) or \
    -                (not 'tsbefile' in list(kwargs.keys())):
    +                ('tsbefile' not in list(kwargs.keys())):
                 print('InputError: Some mandatory arguments for blr are missing.')
                 return
         # general arguments
    @@ -1266,7 +1321,10 @@ 

    Source code for normative

             Path(done_path).touch()
    -
    [docs]def extend(covfile, respfile, maskfile=None, **kwargs): + +
    +[docs] +def extend(covfile, respfile, maskfile=None, **kwargs): ''' This function extends an existing HBR model with data from new sites/scanners. @@ -1299,9 +1357,9 @@

    Source code for normative

         if alg != 'hbr':
             print('Model extention is only possible for HBR models.')
             return
    -    elif (not 'model_path' in list(kwargs.keys())) or \
    -        (not 'output_path' in list(kwargs.keys())) or \
    -            (not 'trbefile' in list(kwargs.keys())):
    +    elif ('model_path' not in list(kwargs.keys())) or \
    +        ('output_path' not in list(kwargs.keys())) or \
    +            ('trbefile' not in list(kwargs.keys())):
             print('InputError: Some mandatory arguments are missing.')
             return
         else:
    @@ -1376,7 +1434,10 @@ 

    Source code for normative

                                      str(i) + outputsuffix + '.pkl'))
    -
    [docs]def tune(covfile, respfile, maskfile=None, **kwargs): + +
    +[docs] +def tune(covfile, respfile, maskfile=None, **kwargs): ''' This function tunes an existing HBR model with real data. @@ -1410,9 +1471,9 @@

    Source code for normative

         if alg != 'hbr':
             print('Model extention is only possible for HBR models.')
             return
    -    elif (not 'model_path' in list(kwargs.keys())) or \
    -        (not 'output_path' in list(kwargs.keys())) or \
    -            (not 'trbefile' in list(kwargs.keys())):
    +    elif ('model_path' not in list(kwargs.keys())) or \
    +        ('output_path' not in list(kwargs.keys())) or \
    +            ('trbefile' not in list(kwargs.keys())):
             print('InputError: Some mandatory arguments are missing.')
             return
         else:
    @@ -1487,7 +1548,10 @@ 

    Source code for normative

                                      str(i) + outputsuffix + '.pkl'))
    -
    [docs]def merge(covfile=None, respfile=None, **kwargs): + +
    +[docs] +def merge(covfile=None, respfile=None, **kwargs): ''' This function extends an existing HBR model with data from new sites/scanners. @@ -1518,9 +1582,9 @@

    Source code for normative

         if alg != 'hbr':
             print('Merging models is only possible for HBR models.')
             return
    -    elif (not 'model_path1' in list(kwargs.keys())) or \
    -        (not 'model_path2' in list(kwargs.keys())) or \
    -            (not 'output_path' in list(kwargs.keys())):
    +    elif ('model_path1' not in list(kwargs.keys())) or \
    +        ('model_path2' not in list(kwargs.keys())) or \
    +            ('output_path' not in list(kwargs.keys())):
             print('InputError: Some mandatory arguments are missing.')
             return
         else:
    @@ -1591,7 +1655,10 @@ 

    Source code for normative

                                             str(i) + outputsuffix + '.pkl'))
    -
    [docs]def main(*args): + +
    +[docs] +def main(*args): """ Parse arguments and estimate model """ @@ -1620,6 +1687,13 @@

    Source code for normative

         exec(func + '(' + all_args + ')')
    +
    +[docs] +def entrypoint(): + main(sys.argv[1:])
    + + + # For running from the command line: if __name__ == "__main__": main(sys.argv[1:]) diff --git a/doc/build/html/_modules/normative_parallel.html b/doc/build/html/_modules/normative_parallel.html index 1cb6ed98..bcd334f9 100644 --- a/doc/build/html/_modules/normative_parallel.html +++ b/doc/build/html/_modules/normative_parallel.html @@ -1,28 +1,24 @@ + + - + normative_parallel — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    @@ -135,7 +142,8 @@

    Source code for normative_parallel

     import time
     import numpy as np
     import pandas as pd
    -from subprocess import call, check_output
    +from datetime import datetime
    +from subprocess import run, check_output
     
     
     try:
    @@ -157,7 +165,9 @@ 

    Source code for normative_parallel

     PICKLE_PROTOCOL = configs.PICKLE_PROTOCOL
     
     
    -
    [docs]def execute_nm(processing_dir, +
    +[docs] +def execute_nm(processing_dir, python_path, job_name, covfile_path, @@ -192,6 +202,7 @@

    Source code for normative_parallel

         :param testrespfile_path: Full path to a .txt file that contains all test features
         :param log_path: Path for saving log files
         :param binary: If True uses binary format for response file otherwise it is text
    +    :param cluster_spec: 'torque' for PBS Torque and 'slurm' for Slurm clusters. 
         :param interactive: If False (default) the user should manually 
                             rerun the failed jobs or collect the results.
                             If 'auto' the job status are checked until all 
    @@ -211,10 +222,11 @@ 

    Source code for normative_parallel

         cv_folds = kwargs.get('cv_folds', None)
         testcovfile_path = kwargs.get('testcovfile_path', None)
         testrespfile_path = kwargs.get('testrespfile_path', None)
    -    outputsuffix = kwargs.get('outputsuffix', 'estimate')
    +    outputsuffix = kwargs.get('outputsuffix', '_estimate')
         cluster_spec = kwargs.pop('cluster_spec', 'torque')
         log_path = kwargs.get('log_path', None)
         binary = kwargs.pop('binary', False)
    +    cores = kwargs.pop('n_cores_per_batch','1')
     
         split_nm(processing_dir,
                  respfile_path,
    @@ -234,6 +246,8 @@ 

    Source code for normative_parallel

     
         kwargs.update({'batch_size': str(batch_size)})
         job_ids = []
    +    start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
    +
         for n in range(1, number_of_batches+1):
             kwargs.update({'job_id': str(n)})
             if testrespfile_path is not None:
    @@ -266,9 +280,10 @@ 

    Source code for normative_parallel

                         job_id = qsub_nm(job_path=batch_job_path,
                                          log_path=log_path,
                                          memory=memory,
    -                                     duration=duration)
    +                                     duration=duration,
    +                                     cores=cores)
                         job_ids.append(job_id)
    -                elif cluster_spec == 'sbatch':
    +                elif cluster_spec == 'slurm':
                         # update the response file
                         kwargs.update({'testrespfile_path':
                                        batch_testrespfile_path})
    @@ -282,8 +297,10 @@ 

    Source code for normative_parallel

                                       memory=memory,
                                       duration=duration,
                                       **kwargs)
    -                    sbatch_nm(job_path=batch_job_path,
    -                              log_path=log_path)
    +
    +                    job_id = sbatch_nm(job_path=batch_job_path)
    +                    job_ids.append(job_id)
    +
                     elif cluster_spec == 'new':
                         # this part requires addition in different envioronment [
                         sbatchwrap_nm(processing_dir=batch_processing_dir,
    @@ -310,9 +327,10 @@ 

    Source code for normative_parallel

                         job_id = qsub_nm(job_path=batch_job_path,
                                          log_path=log_path,
                                          memory=memory,
    -                                     duration=duration)
    +                                     duration=duration, 
    +                                     cores=cores)
                         job_ids.append(job_id)
    -                elif cluster_spec == 'sbatch':
    +                elif cluster_spec == 'slurm':
                         sbatchwrap_nm(batch_processing_dir,
                                       python_path,
                                       normative_path,
    @@ -323,8 +341,9 @@ 

    Source code for normative_parallel

                                       memory=memory,
                                       duration=duration,
                                       **kwargs)
    -                    sbatch_nm(job_path=batch_job_path,
    -                              log_path=log_path)
    +
    +                    job_id = sbatch_nm(job_path=batch_job_path)
    +                    job_ids.append(job_id)
                     elif cluster_spec == 'new':
                         # this part requires addition in different envioronment [
                         bashwrap_nm(processing_dir=batch_processing_dir, func=func,
    @@ -352,9 +371,10 @@ 

    Source code for normative_parallel

                         job_id = qsub_nm(job_path=batch_job_path,
                                          log_path=log_path,
                                          memory=memory,
    -                                     duration=duration)
    +                                     duration=duration,
    +                                     cores=cores)
                         job_ids.append(job_id)
    -                elif cluster_spec == 'sbatch':
    +                elif cluster_spec == 'slurm':
                         sbatchwrap_nm(batch_processing_dir,
                                       python_path,
                                       normative_path,
    @@ -365,8 +385,10 @@ 

    Source code for normative_parallel

                                       memory=memory,
                                       duration=duration,
                                       **kwargs)
    -                    sbatch_nm(job_path=batch_job_path,
    -                              log_path=log_path)
    +
    +                    job_id = sbatch_nm(job_path=batch_job_path)
    +                    job_ids.append(job_id)
    +
                     elif cluster_spec == 'new':
                         # this part requires addition in different envioronment [
                         bashwrap_nm(processing_dir=batch_processing_dir, func=func,
    @@ -376,7 +398,7 @@ 

    Source code for normative_parallel

     
         if interactive:
     
    -        check_jobs(job_ids, delay=60)
    +        check_jobs(job_ids, cluster_spec, start_time, delay=60)
     
             success = False
             while (not success):
    @@ -393,16 +415,33 @@ 

    Source code for normative_parallel

                     if interactive == 'query':
                         response = yes_or_no('Rerun the failed jobs?')
                         if response:
    -                        rerun_nm(processing_dir, log_path=log_path, memory=memory,
    -                                 duration=duration, binary=binary,
    -                                 interactive=interactive)
    +                        if cluster_spec == 'torque':
    +                            rerun_nm(processing_dir, log_path=log_path, memory=memory,
    +                                     duration=duration, binary=binary,
    +                                     interactive=interactive, cores=cores)
    +                        elif cluster_spec == 'slurm':
    +                            sbatchrerun_nm(processing_dir,
    +                                           memory=memory,
    +                                           duration=duration,
    +                                           binary=binary,
    +                                           log_path=log_path,
    +                                           interactive=interactive)
    +
                         else:
                             success = True
                     else:
                         print('Reruning the failed jobs ...')
    -                    rerun_nm(processing_dir, log_path=log_path, memory=memory,
    -                             duration=duration, binary=binary,
    -                             interactive=interactive)
    +                    if cluster_spec == 'torque':
    +                        rerun_nm(processing_dir, log_path=log_path, memory=memory,
    +                                 duration=duration, binary=binary,
    +                                 interactive=interactive, cores=cores)
    +                    elif cluster_spec == 'slurm':
    +                        sbatchrerun_nm(processing_dir,
    +                                       memory=memory,
    +                                       duration=duration,
    +                                       binary=binary,
    +                                       log_path=log_path,
    +                                       interactive=interactive)
     
             if interactive == 'query':
                 response = yes_or_no('Collect the results?')
    @@ -425,10 +464,13 @@ 

    Source code for normative_parallel

                                      outputsuffix=outputsuffix)
    + """routines that are environment independent""" -
    [docs]def split_nm(processing_dir, +
    +[docs] +def split_nm(processing_dir, respfile_path, batch_size, binary, @@ -543,7 +585,10 @@

    Source code for normative_parallel

                                              protocol=PICKLE_PROTOCOL)
    -
    [docs]def collect_nm(processing_dir, + +
    +[docs] +def collect_nm(processing_dir, job_name, func='estimate', collect=False, @@ -581,19 +626,15 @@

    Source code for normative_parallel

         batch_fail = []
     
         if (func != 'fit' and func != 'extend' and func != 'merge' and func != 'tune'):
    -        file_example = []
             # TODO: Collect_nm only depends on yhat, thus does not work when no
             # prediction is made (when test cov is not specified).
    -        for batch in batches:
    -            if file_example == []:
    -                file_example = glob.glob(batch + 'yhat' + outputsuffix
    +        files = glob.glob(processing_dir + 'batch_*/' + 'yhat' + outputsuffix
                                              + file_extentions)
    -            else:
    -                break
    -        if binary is False:
    -            file_example = fileio.load(file_example[0])
    +        if len(files) > 0:
    +            file_example = fileio.load(files[0])
             else:
    -            file_example = pd.read_pickle(file_example[0])
    +            raise ValueError(f"Missing output files (yhats at: {processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions}")
    +
             numsubjects = file_example.shape[0]
             try:
                 # doesn't exist if size=1, and txt file
    @@ -947,7 +988,10 @@ 

    Source code for normative_parallel

             return False
    -
    [docs]def delete_nm(processing_dir, + +
    +[docs] +def delete_nm(processing_dir, binary=False): '''This function deletes all processing for normative modelling and just keeps the combined output. @@ -971,11 +1015,14 @@

    Source code for normative_parallel

             os.remove(processing_dir + 'failed_batches' + file_extentions)
    + # all routines below are envronment dependent and require adaptation in novel # environments -> copy those routines and adapt them in accrodance with your # environment -
    [docs]def bashwrap_nm(processing_dir, +
    +[docs] +def bashwrap_nm(processing_dir, python_path, normative_path, job_name, @@ -1036,7 +1083,7 @@

    Source code for normative_parallel

             job_call = [python_path + ' ' + normative_path + ' -c ' +
                         covfile_path + ' -f ' + func]
         else:
    -        raise ValueError("""For 'estimate' function either testcov or cvfold
    +        raise ValueError("""For 'estimate' function either testrespfile_path or cvfold
                   must be specified.""")
     
         # add algorithm-specific parameters
    @@ -1065,10 +1112,14 @@ 

    Source code for normative_parallel

         os.chmod(processing_dir + job_name, 0o770)
    -
    [docs]def qsub_nm(job_path, + +
    +[docs] +def qsub_nm(job_path, log_path, memory, - duration): + duration, + cores): '''This function submits a job.sh scipt to the torque custer using the qsub command. Basic usage:: @@ -1088,10 +1139,10 @@

    Source code for normative_parallel

         # created qsub command
         if log_path is None:
             qsub_call = ['echo ' + job_path + ' | qsub -N ' + job_path + ' -l ' +
    -                     'procs=1' + ',mem=' + memory + ',walltime=' + duration]
    +                     'nodes=1:ppn='+ cores + ',mem=' + memory + ',walltime=' + duration]
         else:
             qsub_call = ['echo ' + job_path + ' | qsub -N ' + job_path +
    -                     ' -l ' + 'procs=1' + ',mem=' + memory + ',walltime=' +
    +                     ' -l ' + 'nodes=1:ppn='+ cores + ',mem=' + memory + ',walltime=' +
                          duration + ' -o ' + log_path + ' -e ' + log_path]
     
         # submits job to cluster
    @@ -1102,10 +1153,15 @@ 

    Source code for normative_parallel

         return job_id
    -
    [docs]def rerun_nm(processing_dir, + +
    +[docs] +def rerun_nm(processing_dir, log_path, memory, duration, + cluster_spec, + cores, binary=False, interactive=False): '''This function reruns all failed batched in processing_dir after collect_nm has identified the failed batches. @@ -1133,7 +1189,8 @@

    Source code for normative_parallel

                 job_id = qsub_nm(job_path=jobpath,
                                  log_path=log_path,
                                  memory=memory,
    -                             duration=duration)
    +                             duration=duration,
    +                             cores=cores)
                 job_ids.append(job_id)
         else:
             file_extentions = '.txt'
    @@ -1146,17 +1203,21 @@ 

    Source code for normative_parallel

                 job_id = qsub_nm(job_path=jobpath,
                                  log_path=log_path,
                                  memory=memory,
    -                             duration=duration)
    +                             duration=duration,
    +                             cores=cores)
                 job_ids.append(job_id)
     
         if interactive:
    -        check_jobs(job_ids, delay=60)
    + check_jobs(job_ids, cluster_spec, delay=60)
    + # COPY the rotines above here and aadapt those to your cluster # bashwarp_nm; qsub_nm; rerun_nm -
    [docs]def sbatchwrap_nm(processing_dir, +
    +[docs] +def sbatchwrap_nm(processing_dir, python_path, normative_path, job_name, @@ -1164,6 +1225,7 @@

    Source code for normative_parallel

                       respfile_path,
                       memory,
                       duration,
    +                  log_path,
                       func='estimate',
                       **kwargs):
         '''This function wraps normative modelling into a bash script to run it
    @@ -1202,14 +1264,15 @@ 

    Source code for normative_parallel

         output_changedir = ['cd ' + processing_dir + '\n']
     
         sbatch_init = '#!/bin/bash\n'
    -    sbatch_jobname = '#SBATCH --job-name=' + processing_dir + '\n'
    -    sbatch_account = '#SBATCH --account=p33_norment\n'
    +    sbatch_jobname = '#SBATCH --job-name=' + job_name + '\n'
         sbatch_nodes = '#SBATCH --nodes=1\n'
         sbatch_tasks = '#SBATCH --ntasks=1\n'
         sbatch_time = '#SBATCH --time=' + str(duration) + '\n'
         sbatch_memory = '#SBATCH --mem-per-cpu=' + str(memory) + '\n'
    -    sbatch_module = 'module purge\n'
    -    sbatch_anaconda = 'module load anaconda3\n'
    +    sbatch_log_out = '#SBATCH -o ' + log_path + '%x_%j.out' + '\n'
    +    sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n'
    +    # sbatch_module = 'module purge\n'
    +    # sbatch_anaconda = 'module load anaconda3\n'
         sbatch_exit = 'set -o errexit\n'
     
         # echo -n "This script is running on "
    @@ -1217,12 +1280,13 @@ 

    Source code for normative_parallel

     
         bash_environment = [sbatch_init +
                             sbatch_jobname +
    -                        sbatch_account +
                             sbatch_nodes +
                             sbatch_tasks +
                             sbatch_time +
    -                        sbatch_module +
    -                        sbatch_anaconda]
    +                        sbatch_memory +
    +                        sbatch_log_out +
    +                        sbatch_log_error
    +                        ]
     
         # creates call of function for normative modelling
         if (testrespfile_path is not None) and (testcovfile_path is not None):
    @@ -1239,7 +1303,7 @@ 

    Source code for normative_parallel

             job_call = [python_path + ' ' + normative_path + ' -c ' +
                         covfile_path + ' -f ' + func]
         else:
    -        raise ValueError("""For 'estimate' function either testcov or cvfold
    +        raise ValueError("""For 'estimate' function either testrespfile_path or cv_folds
                   must be specified.""")
     
         # add algorithm-specific parameters
    @@ -1268,19 +1332,20 @@ 

    Source code for normative_parallel

         os.chmod(processing_dir + job_name, 0o770)
    -
    [docs]def sbatch_nm(job_path, - log_path): + +
    +[docs] +def sbatch_nm(job_path): '''This function submits a job.sh scipt to the torque custer using the qsub command. Basic usage:: - sbatch_nm(job_path, log_path) + sbatch_nm(job_path) :param job_path: Full path to the job.sh file - :param log_path: The logs are currently stored in the working dir - :outputs: Submission of the job to the (torque) cluster. + :outputs: Submission of the job to the slurm cluster. written by (primarily) T Wolfers, (adapted) S Rutherford. ''' @@ -1289,15 +1354,22 @@

    Source code for normative_parallel

         sbatch_call = ['sbatch ' + job_path]
     
         # submits job to cluster
    -    call(sbatch_call, shell=True)
    + job_id = check_output(sbatch_call, shell=True).decode( + sys.stdout.encoding).replace("\n", "") + + return job_id
    -
    [docs]def sbatchrerun_nm(processing_dir, + +
    +[docs] +def sbatchrerun_nm(processing_dir, memory, duration, new_memory=False, new_duration=False, binary=False, + interactive=False, **kwargs): '''This function reruns all failed batched in processing_dir after collect_nm has identified he failed batches. @@ -1315,7 +1387,12 @@

    Source code for normative_parallel

     
          written by (primarily) T Wolfers, (adapted) S Rutherford.
         '''
    -    log_path = kwargs.pop('log_path', None)
    +
    +    # log_path = kwargs.pop('log_path', None)
    +
    +    job_ids = []
    +
    +    start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
     
         if binary:
             file_extentions = '.pkl'
    @@ -1329,11 +1406,12 @@ 

    Source code for normative_parallel

                     with fileinput.FileInput(jobpath, inplace=True) as file:
                         for line in file:
                             print(line.replace(duration, new_duration), end='')
    -                if new_memory != False:
    -                    with fileinput.FileInput(jobpath, inplace=True) as file:
    -                        for line in file:
    -                            print(line.replace(memory, new_memory), end='')
    -                sbatch_nm(jobpath, log_path)
    +            if new_memory != False:
    +                with fileinput.FileInput(jobpath, inplace=True) as file:
    +                    for line in file:
    +                        print(line.replace(memory, new_memory), end='')
    +            job_id = sbatch_nm(jobpath)
    +            job_ids.append(job_id)
     
         else:
             file_extentions = '.txt'
    @@ -1347,73 +1425,124 @@ 

    Source code for normative_parallel

                     with fileinput.FileInput(jobpath, inplace=True) as file:
                         for line in file:
                             print(line.replace(duration, new_duration), end='')
    -                if new_memory != False:
    -                    with fileinput.FileInput(jobpath, inplace=True) as file:
    -                        for line in file:
    -                            print(line.replace(memory, new_memory), end='')
    -                sbatch_nm(jobpath,
    -                          log_path)
    + if new_memory != False: + with fileinput.FileInput(jobpath, inplace=True) as file: + for line in file: + print(line.replace(memory, new_memory), end='') + job_id = sbatch_nm(jobpath) + job_ids.append(job_id) + + if interactive: + check_jobs(job_ids, cluster_spec='slurm', + start_time=start_time, delay=60)
    + -
    [docs]def retrieve_jobs(): +
    +[docs] +def retrieve_jobs(cluster_spec, start_time=None): """ A utility function to retrieve task status from the outputs of qstat. + :param cluster_spec: type of cluster, either 'torque' or 'slurm'. + :return: a dictionary of jobs. """ - output = check_output('qstat', shell=True).decode(sys.stdout.encoding) - output = output.split('\n') - jobs = dict() - for line in output[2:-1]: - (Job_ID, Job_Name, User, Wall_Time, Status, Queue) = line.split() - jobs[Job_ID] = dict() - jobs[Job_ID]['name'] = Job_Name - jobs[Job_ID]['walltime'] = Wall_Time - jobs[Job_ID]['status'] = Status + if cluster_spec == 'torque': + + output = check_output('qstat', shell=True).decode(sys.stdout.encoding) + output = output.split('\n') + jobs = dict() + for line in output[2:-1]: + (Job_ID, Job_Name, User, Wall_Time, Status, Queue) = line.split() + jobs[Job_ID] = dict() + jobs[Job_ID]['name'] = Job_Name + jobs[Job_ID]['walltime'] = Wall_Time + jobs[Job_ID]['status'] = Status + + elif cluster_spec == 'slurm': + + end_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") + cmd = ['sacct', '-n', '-X', '--parsable2', '--noheader', + '-S', start_time, '-E', end_time, '--format=JobName,State'] + jobs = run(cmd, capture_output=True, text=True) return jobs
    -
    [docs]def check_job_status(jobs): + +
    +[docs] +def check_job_status(jobs, cluster_spec, start_time=None): """ A utility function to count the tasks with different status. :param jobs: List of job ids. - :return: returns the number of taks athat are queued, running, completed etc + :param cluster_spec: type of cluster, either 'torque' or 'slurm'. + :return returns the number of taks athat are queued, running, completed etc """ - running_jobs = retrieve_jobs() + running_jobs = retrieve_jobs(cluster_spec, start_time) r = 0 c = 0 q = 0 u = 0 - for job in jobs: - try: - if running_jobs[job]['status'] == 'C': + + if cluster_spec == 'torque': + + for job in jobs: + try: + if running_jobs[job]['status'] == 'C': + c += 1 + elif running_jobs[job]['status'] == 'Q': + q += 1 + elif running_jobs[job]['status'] == 'R': + r += 1 + else: + u += 1 + except: # probably meanwhile the job is finished. c += 1 - elif running_jobs[job]['status'] == 'Q': - q += 1 - elif running_jobs[job]['status'] == 'R': - r += 1 - else: - u += 1 - except: # probably meanwhile the job is finished. - c += 1 - continue + continue + + print('Total Jobs:%d, Queued:%d, Running:%d, Completed:%d, Unknown:%d' + % (len(jobs), q, r, c, u)) + + elif cluster_spec == 'slurm': + + lines = running_jobs.stdout.strip().split('\n') + + for line in lines: + if line: + parts = line.split('|') + if len(parts) >= 2: + job_name, state = parts[0], parts[1] + if state == 'PENDING': + q += 1 + elif state == 'RUNNING': + r += 1 + elif state == 'COMPLETED': + c += 1 + elif state == 'FAILED': + u += 1 + + print('Total Jobs:%d, Pending:%d, Running:%d, Completed:%d, Failed:%d' + % (len(jobs), q, r, c, u)) - print('Total Jobs:%d, Queued:%d, Running:%d, Completed:%d, Unknown:%d' - % (len(jobs), q, r, c, u)) return q, r, c, u
    -
    [docs]def check_jobs(jobs, delay=60): + +
    +[docs] +def check_jobs(jobs, cluster_spec, start_time=None, delay=60): """ A utility function for chacking the status of submitted jobs. :param jobs: list of job ids. + :param cluster_spec: type of cluster, either 'torque' or 'slurm'. :param delay: the delay (in sec) between two consequative checks, defaults to 60. """ @@ -1421,11 +1550,12 @@

    Source code for normative_parallel

         n = len(jobs)
     
         while (True):
    -        q, r, c, u = check_job_status(jobs)
    +        q, r, c, u = check_job_status(jobs, cluster_spec, start_time)
             if c == n:
                 print('All jobs are completed!')
                 break
             time.sleep(delay)
    +
    diff --git a/doc/build/html/_modules/rfa.html b/doc/build/html/_modules/rfa.html index 986a44c9..0ea213e2 100644 --- a/doc/build/html/_modules/rfa.html +++ b/doc/build/html/_modules/rfa.html @@ -1,28 +1,24 @@ + + - + rfa — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    @@ -110,7 +117,9 @@

    Source code for rfa

     import torch
     
     
    -
    [docs]class GPRRFA: +
    +[docs] +class GPRRFA: """Random Feature Approximation for Gaussian Process Regression Estimation and prediction of Bayesian linear regression models @@ -191,11 +200,16 @@

    Source code for rfa

     
             return X, y, hyp
     
    -
    [docs] def get_n_params(self, X): +
    +[docs] + def get_n_params(self, X): return X.shape[1] + 2
    -
    [docs] def post(self, hyp, X, y): + +
    +[docs] + def post(self, hyp, X, y): """ Generic function to compute posterior distribution. This function will save the posterior mean and precision matrix as @@ -240,7 +254,10 @@

    Source code for rfa

             if hasattr(self, '_iterations'):
                 self._iterations += 1
    -
    [docs] def loglik(self, hyp, X, y): + +
    +[docs] + def loglik(self, hyp, X, y): """ Function to compute compute log (marginal) likelihood """ X, y, hyp = self._numpy2torch(X, y, hyp) @@ -275,14 +292,20 @@

    Source code for rfa

             self.nlZ = nlZ
             return nlZ
    -
    [docs] def dloglik(self, hyp, X, y): + +
    +[docs] + def dloglik(self, hyp, X, y): """ Function to compute derivatives """ print("derivatives not available") return
    -
    [docs] def estimate(self, hyp0, X, y, optimizer='lbfgs'): + +
    +[docs] + def estimate(self, hyp0, X, y, optimizer='lbfgs'): """ Function to estimate the model """ if type(hyp0) is torch.Tensor: @@ -324,7 +347,10 @@

    Source code for rfa

     
             return self.hyp.detach().numpy()
    -
    [docs] def predict(self, hyp, X, y, Xs): + +
    +[docs] + def predict(self, hyp, X, y, Xs): """ Function to make predictions from the model """ X, y, hyp = self._numpy2torch(X, y, hyp) @@ -347,7 +373,9 @@

    Source code for rfa

                 torch.sum(Phis * torch.t(torch.solve(torch.t(Phis), self.A)[0]), 1)
     
             # return output as numpy arrays
    -        return ys.detach().numpy().squeeze(), s2.detach().numpy().squeeze()
    + return ys.detach().numpy().squeeze(), s2.detach().numpy().squeeze()
    +
    +
    diff --git a/doc/build/html/_modules/trendsurf.html b/doc/build/html/_modules/trendsurf.html index d01ca0b3..1470dd83 100644 --- a/doc/build/html/_modules/trendsurf.html +++ b/doc/build/html/_modules/trendsurf.html @@ -1,28 +1,24 @@ + + - + trendsurf — Predictive Clinical Neuroscience Toolkit 0.20 documentation - - - + + + - - - - - - - - - + + + + + @@ -62,13 +58,24 @@

Tutorials

Other Useful Stuff

    @@ -135,7 +142,9 @@

    Source code for trendsurf

         from model.bayesreg import BLR
     
     
    -
    [docs]def load_data(datafile, maskfile=None): +
    +[docs] +def load_data(datafile, maskfile=None): """ Load data from disk @@ -179,7 +188,10 @@

    Source code for trendsurf

         return dat, world, mask
    -
    [docs]def create_basis(X, basis, mask): + +
    +[docs] +def create_basis(X, basis, mask): """ Create a basis set @@ -223,7 +235,10 @@

    Source code for trendsurf

         return Phi
    -
    [docs]def write_nii(data, filename, examplenii, mask): + +
    +[docs] +def write_nii(data, filename, examplenii, mask): """ Write data to nifti file @@ -251,7 +266,10 @@

    Source code for trendsurf

         nib.save(array_img, filename)
    -
    [docs]def get_args(*args): + +
    +[docs] +def get_args(*args): """ Parse command line arguments @@ -293,7 +311,10 @@

    Source code for trendsurf

         return filename, maskfile, basis, args.a, args.o
    -
    [docs]def estimate(filename, maskfile, basis, ard=False, outputall=False, + +
    +[docs] +def estimate(filename, maskfile, basis, ard=False, outputall=False, saveoutput=True, **kwargs): """ Estimate a trend surface model @@ -406,13 +427,17 @@

    Source code for trendsurf

             return out
    -
    [docs]def main(*args): + +
    +[docs] +def main(*args): np.seterr(invalid='ignore') filename, maskfile, basis, ard, outputall = get_args(args) estimate(filename, maskfile, basis, ard, outputall)
    + # For running from the command line: if __name__ == "__main__": main(sys.argv[1:]) diff --git a/doc/build/html/_sources/pages/BLR_normativemodel_protocol.rst.txt b/doc/build/html/_sources/pages/BLR_normativemodel_protocol.rst.txt index 479b5163..4c23523b 100644 --- a/doc/build/html/_sources/pages/BLR_normativemodel_protocol.rst.txt +++ b/doc/build/html/_sources/pages/BLR_normativemodel_protocol.rst.txt @@ -1,27 +1,22 @@ -.. title:: BLR tutorial +`Predictive Clinical Neuroscience Toolkit `__ +====================================================================================== -Bayesian Linear Regression +The Normative Modeling Framework for Computational Psychiatry Protocol ====================================================================== -The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5. +Using Bayesian Linear Regression and Multi-Site Cortical Thickness Data +----------------------------------------------------------------------- Created by `Saige Rutherford `__ -Using Multi-Site Cortical Thickness Data - -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/BLR_protocol/BLR_normativemodel_protocol.ipynb - - -.. figure:: ./blr_fig2.png - :height: 400px - :align: center - Data Preparation ---------------------------------------------- +================ Install necessary libraries & grab data files -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +--------------------------------------------- + +Step 1. +~~~~~~~ Begin by cloning the GitHub repository using the following commands. This repository contains the necessary code and example data. Then @@ -33,33 +28,28 @@ your computer). ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git - -.. parsed-literal:: - - Cloning into 'PCNtoolkit-demo'... - remote: Enumerating objects: 855, done. - remote: Counting objects: 100% (855/855), done. - remote: Compressing objects: 100% (737/737), done. - remote: Total 855 (delta 278), reused 601 (delta 101), pack-reused 0 - Receiving objects: 100% (855/855), 18.07 MiB | 13.53 MiB/s, done. - Resolving deltas: 100% (278/278), done. - - .. code:: ipython3 import os # set this path to the git cloned PCNtoolkit-demo repository --> Uncomment whichever line you need for either running on your own computer or on Google Colab. - #os.chdir('/Users/PCNtoolkit-demo/tutorials/BLR_protocol') # if running on your own computer, use this line (change the path to match where you cloned the repository) - os.chdir('/content/PCNtoolkit-demo/tutorials/BLR_protocol') # if running on Google Colab, use this line + #wdir = '/PCNtoolkit-demo' # if running on your own computer, use this line (change the path to match where you cloned the repository) + wdir ='/content/PCNtoolkit-demo' # if running on Google Colab, use this line + + os.chdir(os.path.join(wdir,'tutorials','BLR_protocol')) + .. code:: ipython3 + ! pip install nutpie + ! pip install pcntoolkit ! pip install -r requirements.txt - Prepare covariate data -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------- + +Step 2. +~~~~~~~ The data set (downloaded in Step 1) includes a multi-site dataset from the `Human Connectome Project Young Adult @@ -88,8 +78,8 @@ depending on the research question. .. code:: ipython3 # if running in Google colab, remove the "data/" folder from the path - hcp = pd.read_csv('/content/PCNtoolkit-demo/data/HCP1200_age_gender.csv') - ixi = pd.read_csv('/content/PCNtoolkit-demo/data/IXI_age_gender.csv') + hcp = pd.read_csv(os.path.join(wdir,'data','HCP1200_age_gender.csv')) + ixi = pd.read_csv(os.path.join(wdir,'data','IXI_age_gender.csv')) .. code:: ipython3 @@ -98,8 +88,8 @@ depending on the research question. .. parsed-literal:: - /usr/local/lib/python3.7/dist-packages/pandas/core/reshape/merge.py:1218: UserWarning: You are merging on int and float columns where the float values are not equal to their int representation - UserWarning, + :1: UserWarning: You are merging on int and float columns where the float values are not equal to their int representation. + cov = pd.merge(hcp, ixi, on=["participant_id", "age", "sex", "site"], how='outer') .. code:: ipython3 @@ -108,29 +98,348 @@ depending on the research question. .. code:: ipython3 - sns.displot(cov, x="age", hue="site", multiple="stack", height=6) + sns.displot(cov, x="age", hue="site", multiple="stack", height=6); +.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_16_0.png -.. parsed-literal:: - +.. code:: ipython3 + cov.groupby(['site']).describe() -.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_15_1.png +.. raw:: html + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    agesex
    countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
    site
    hcp1206.028.8374793.69053422.00000026.00000029.0000032.00000037.000001206.01.5439470.4982721.01.02.02.02.0
    ixi590.049.47653116.72086419.98083534.02772150.6119163.41341586.31896590.01.5559320.4972831.01.02.02.02.0
    +
    +
    + +
    + + + + + +
    + + +
    + + + + + +
    + +
    +
    -.. code:: ipython3 - cov.groupby(['site']).describe() +Preprare brain data +------------------- -Prepare brain data -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Step 3. +~~~~~~~ Next, format and combine the MRI data using the following commands. The example data contains cortical thickness maps estimated by running @@ -139,7 +448,7 @@ was reduced by using ROIs from the Desikan-Killiany atlas. Including the Euler number as a covariate is also recommended, as this is a proxy metric for data quality. The `Euler number `__ from -each subjects recon-all output folder was extracted into a text file +each subject’s recon-all output folder was extracted into a text file and is merged into the cortical thickness data frame. The Euler number is site-specific, thus, to use the same exclusion threshold across sites it is important to center the site by subtracting the site median from @@ -147,7 +456,7 @@ all subjects at a site. Then take the square root and multiply by negative one and exclude any subjects with a square root above 10. Here is some psuedo-code (run from a terminal in the folder that has all -subjects recon-all output folders) that was used to extract these ROIs: +subject’s recon-all output folders) that was used to extract these ROIs: ``export SUBJECTS_DIR=/path/to/study/freesurfer_data/`` @@ -157,14 +466,14 @@ subjects recon-all output folders) that was used to extract these ROIs: .. code:: ipython3 - hcpya = pd.read_csv('/content/PCNtoolkit-demo/data/HCP1200_aparc_thickness.csv') - ixi = pd.read_csv('/content/PCNtoolkit-demo/data/IXI_aparc_thickness.csv') + hcpya = pd.read_csv(os.path.join(wdir,'data','HCP1200_aparc_thickness.csv')) + ixi = pd.read_csv(os.path.join(wdir,'data','IXI_aparc_thickness.csv')) .. code:: ipython3 brain_all = pd.merge(ixi, hcpya, how='outer') -We extracted the euler number from each subjects recon-all output +We extracted the euler number from each subject’s recon-all output folder into a text file and we now need to format and combine these into our brain dataframe. @@ -173,12 +482,12 @@ recon-all.log for each subject. Run this from the terminal in the folder where your subjects recon-all output folders are located. This assumes that all of your subject IDs start with “sub-” prefix. -:literal:`for i in sub-*; do if [[ -e ${i}/scripts/recon-all.log ]]; then cat ${i}/scripts/recon-all.log | grep -A 1 "Computing euler" > temp_log; lh_en=$(cat temp_log | head -2 | tail -1 | awk -F '=' '{print $2}' | awk -F ',' '{print $1}'); rh_en=$(cat temp_log | head -2 | tail -1 | awk -F '=' '{print $3}'); echo "${i}, ${lh_en}, ${rh_en}" >> euler.csv; echo ${i}; fi; done` +:literal:`for i in sub-\*; do if [[ -e ${i}/scripts/recon-all.log ]]; then cat ${i}/scripts/recon-all.log | grep -A 1 "Computing euler" > temp_log; lh_en=`cat temp_log | head -2 | tail -1 | awk -F '=' '{print $2}' | awk -F ',' '{print $1}'\`; rh_en=`cat temp_log | head -2 | tail -1 | awk -F '=' '{print $3}'\`; echo "${i}, ${lh_en}, ${rh_en}" >> euler.csv; echo ${i}; fi; done` .. code:: ipython3 - hcp_euler = pd.read_csv('/content/PCNtoolkit-demo/data/hcp-ya_euler.csv') - ixi_euler = pd.read_csv('/content/PCNtoolkit-demo/data/ixi_euler.csv') + hcp_euler = pd.read_csv(os.path.join(wdir,'data','hcp-ya_euler.csv')) + ixi_euler = pd.read_csv(os.path.join(wdir,'data','ixi_euler.csv')) .. code:: ipython3 @@ -221,7 +530,7 @@ inclusion is not too strict or too lenient. .. code:: ipython3 - df_euler.groupby(by='site').median() + df_euler.groupby(by='site')[['lh_euler', 'rh_euler', 'avg_euler']].median() @@ -229,9 +538,8 @@ inclusion is not too strict or too lenient. .. raw:: html -
    -
    -
    +
    +
    - + +
    + + +
    + + + + + +
    +
    @@ -363,6 +805,13 @@ inclusion is not too strict or too lenient. df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'ixi':-56}) + +.. parsed-literal:: + + :1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)` + df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'ixi':-56}) + + .. code:: ipython3 df_euler['avg_euler_centered'] = df_euler['avg_euler'] - df_euler['site_median'] @@ -383,18 +832,19 @@ inclusion is not too strict or too lenient. brain_good = brain.query('avg_euler_centered_neg_sqrt < 10') -.. warning:: - **CRITICAL STEP:** If possible, data should be visually inspected to - verify that the data inclusion is not too strict or too lenient. - Subjects above the Euler number threshold should be manually checked to - verify and justify their exclusion due to poor data quality. This is - just one approach for automated QC used by the developers of the - PCNtoolkit. Other approaches such as the ENIGMA QC pipeline or UK - Biobanks QC pipeline are also viable options for automated QC. +**CRITICAL STEP:** If possible, data should be visually inspected to +verify that the data inclusion is not too strict or too lenient. +Subjects above the Euler number threshold should be manually checked to +verify and justify their exclusion due to poor data quality. This is +just one approach for automated QC used by the developers of the +PCNtoolkit. Other approaches such as the ENIGMA QC pipeline or UK +Biobank’s QC pipeline are also viable options for automated QC. Combine covariate & cortical thickness dataframes -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------------------------- +Step 4. +~~~~~~~ The normative modeling function requires the covariate predictors and brain features to be in separate text files. However, it is important to @@ -407,7 +857,7 @@ their own dataframes, using the commands below. .. code:: ipython3 - # make sure to use how="inner" so that we only include subjects that have data in both the covariate and the cortical thickness files + # make sure to use how="inner" so that we only include subjects that have data in both the covariate and the cortical thickness files all_data = pd.merge(brain_good, cov, how='inner') .. code:: ipython3 @@ -433,13 +883,15 @@ their own dataframes, using the commands below. all_data_covariates = all_data[['age','sex','site']] -.. warning:: - **CRITICAL STEP:** ``roi_ids`` is a variable that represents which brain - areas will be modeled and can be used to select subsets of the data - frame if you do not wish to run models for the whole brain. +**CRITICAL STEP:** ``roi_ids`` is a variable that represents which brain +areas will be modeled and can be used to select subsets of the data +frame if you do not wish to run models for the whole brain. Add variable to model site/scanner effects -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------------------ + +Step 5. +~~~~~~~ Currently, the different sites are coded in a single column (named ‘site’) and are represented as a string data type. However, the @@ -451,17 +903,689 @@ variables (0=not in this site, 1=present in this site). .. code:: ipython3 - all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site']) + all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site'], dtype=int) .. code:: ipython3 - all_data['Average_Thickness'] = all_data[['lh_MeanThickness_thickness','rh_MeanThickness_thickness']].mean(axis=1) + all_data_covariates.head() + + + + +.. raw:: html + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    agesexsite_hcpsite_ixi
    027.0110
    127.0210
    233.0110
    327.0110
    435.0210
    +
    +
    + +
    + + + + + +
    + + +
    + + + + + +
    + +
    +
    + +.. code:: ipython3 + + all_data_covariates + + + + +.. raw:: html + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    agesexsite_hcpsite_ixi
    027.000000110
    127.000000210
    233.000000110
    327.000000110
    435.000000210
    ...............
    168747.723477101
    168850.395619101
    168942.989733101
    169046.220397101
    169141.741273101
    +

    1692 rows × 4 columns

    +
    +
    + +
    + + + + + +
    + + +
    + + + + + +
    + +
    + + + +
    + +
    +
    + + + + +.. code:: ipython3 + + all_data['Average_Thickness'] = all_data[['lh_MeanThickness_thickness','rh_MeanThickness_thickness']].mean(axis=1) + Train/test split -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------- +Step 6. +~~~~~~~ In this example, we use 80% of the data for training and 20% for testing. Please carefully read the experimental design section on @@ -501,11 +1625,12 @@ Verify that your train & test arrays are the same size Test response size is: (339, 6) -.. warning:: - **CRITICAL STEP:** The model would not learn the site effects if all the - data from one site was only in the test set. Therefore, we stratify the - train/test split using the site variable. +**CRITICAL STEP:** The model would not learn the site effects if all the +data from one site was only in the test set. Therefore, we stratify the +train/test split using the site variable. +Step 7. +~~~~~~~ When the data were split into train and test sets, the row index was not reset. This means that the row index in the train and test data frames @@ -540,9 +1665,11 @@ which sites to evaluate model performance for, as follows: # Create a list with sites names to use in evaluating per-site metrics site_names = ['hcp', 'ixi'] - Setup output directories -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------ + +Step 8. +------- Save each brain region to its own text file (organized in separate directories) using the following commands, because for each response @@ -557,6 +1684,7 @@ variable, Y (e.g., brain region) we fit a separate normative model. X_train.to_csv('cov_tr.txt', sep = '\t', header=False, index = False) + .. code:: ipython3 y_train.to_csv('resp_tr.txt', sep = '\t', header=False, index = False) @@ -580,12 +1708,25 @@ variable, Y (e.g., brain region) we fit a separate normative model. .. code:: ipython3 + # Note: please change the path in the following to wdir (depending on whether you are running on colab or not) + ! for i in `cat /content/PCNtoolkit-demo/data/roi_dir_names`; do if [[ -e resp_tr_${i}.txt ]]; then cd ROI_models; mkdir ${i}; cd ../; cp resp_tr_${i}.txt ROI_models/${i}/resp_tr.txt; cp resp_te_${i}.txt ROI_models/${i}/resp_te.txt; cp cov_tr.txt ROI_models/${i}/cov_tr.txt; cp cov_te.txt ROI_models/${i}/cov_te.txt; fi; done + +.. parsed-literal:: + + mkdir: cannot create directory ‘lh_MeanThickness_thickness’: File exists + mkdir: cannot create directory ‘lh_bankssts_thickness’: File exists + mkdir: cannot create directory ‘lh_caudalanteriorcingulate_thickness’: File exists + mkdir: cannot create directory ‘lh_superiorfrontal_thickness’: File exists + mkdir: cannot create directory ‘rh_MeanThickness_thickness’: File exists + mkdir: cannot create directory ‘rh_superiorfrontal_thickness’: File exists + + .. code:: ipython3 # clean up files - ! rm resp_*.txt + ! rm resp_*.txt .. code:: ipython3 @@ -593,11 +1734,13 @@ variable, Y (e.g., brain region) we fit a separate normative model. ! rm cov_t*.txt Algorithm & Modeling -------------------------------- +==================== Basis expansion using B-Splines -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------------- +Step 9. +~~~~~~~ Now, set up a B-spline basis set that allows us to perform nonlinear regression using a linear model, using the following commands. This @@ -615,29 +1758,29 @@ al `__. .. code:: ipython3 # set this path to wherever your ROI_models folder is located (where you copied all of the covariate & response text files to in Step 4) - data_dir = '/content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/' + data_dir = os.path.join(wdir,'tutorials','BLR_protocol','ROI_models') # Create a cubic B-spline basis (used for regression) xmin = 10#16 # xmin & xmax are the boundaries for ages of participants in the dataset xmax = 95#90 B = create_bspline_basis(xmin, xmax) - # create the basis expansion for the covariates for each of the - for roi in roi_ids: + # create the basis expansion for the covariates for each of the + for roi in roi_ids: print('Creating basis expansion for ROI:', roi) roi_dir = os.path.join(data_dir, roi) os.chdir(roi_dir) - # create output dir + # create output dir os.makedirs(os.path.join(roi_dir,'blr'), exist_ok=True) # load train & test covariate data matrices X_tr = np.loadtxt(os.path.join(roi_dir, 'cov_tr.txt')) X_te = np.loadtxt(os.path.join(roi_dir, 'cov_te.txt')) - # add intercept column + # add intercept column X_tr = np.concatenate((X_tr, np.ones((X_tr.shape[0],1))), axis=1) X_te = np.concatenate((X_te, np.ones((X_te.shape[0],1))), axis=1) np.savetxt(os.path.join(roi_dir, 'cov_int_tr.txt'), X_tr) np.savetxt(os.path.join(roi_dir, 'cov_int_te.txt'), X_te) - - # create Bspline basis set + + # create Bspline basis set Phi = np.array([B(i) for i in X_tr[:,0]]) Phis = np.array([B(i) for i in X_te[:,0]]) X_tr = np.concatenate((X_tr, Phi), axis=1) @@ -657,8 +1800,10 @@ al `__. Estimate normative model -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +------------------------ +Step 10. +~~~~~~~~ Set up a variable (``data_dir``) that specifies the path to the ROI directories that were created in Step 7. Initiate two empty pandas data @@ -674,6 +1819,8 @@ these data frames will be saved as individual csv files. blr_metrics = pd.DataFrame(columns = ['ROI', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) blr_site_metrics = pd.DataFrame(columns = ['ROI', 'site', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) +Step 11. +~~~~~~~~ Estimate the normative models using a for loop to iterate over brain regions. An important consideration is whether to re-scale or @@ -693,70 +1840,69 @@ arguments that are worthy of commenting on: :: - alg = 'blr': specifies we should use Bayesian Linear Regression. - - optimizer = 'powell': use Powell's derivative-free optimization method (faster in this case than L-BFGS) - - savemodel = False: do not write out the final estimated model to disk + - optimizer = 'powell': use Powell's derivative-free optimization method (faster in this case than L-BFGS) + - savemodel = False: do not write out the final estimated model to disk - saveoutput = False: return the outputs directly rather than writing them to disk - standardize = False: Do not standardize the covariates or response variables -.. warning:: - **CRITICAL STEP:** This code fragment will loop through each region of - interest in the ``roi_ids`` list (created in step 4) using Bayesian - Linear Regression and evaluate the model on the independent test set. In - principle, we could estimate the normative models on the whole data - matrix at once (e.g., with the response variables stored in a - ``n_subjects`` by ``n_brain_measures`` NumPy array or a text file - instead of saved out into separate directories). However, running the - models iteratively gives some extra flexibility in that it does not - require that the included subjects are the same for each of the brain - measures. +**CRITICAL STEP:** This code fragment will loop through each region of +interest in the ``roi_ids`` list (created in step 4) using Bayesian +Linear Regression and evaluate the model on the independent test set. In +principle, we could estimate the normative models on the whole data +matrix at once (e.g., with the response variables stored in a +``n_subjects`` by ``n_brain_measures`` NumPy array or a text file +instead of saved out into separate directories). However, running the +models iteratively gives some extra flexibility in that it does not +require that the included subjects are the same for each of the brain +measures. .. code:: ipython3 # Loop through ROIs - for roi in roi_ids: + for roi in roi_ids: print('Running ROI:', roi) roi_dir = os.path.join(data_dir, roi) os.chdir(roi_dir) - - # configure the covariates to use. Change *_bspline_* to *_int_* to + + # configure the covariates to use. Change *_bspline_* to *_int_* to cov_file_tr = os.path.join(roi_dir, 'cov_bspline_tr.txt') cov_file_te = os.path.join(roi_dir, 'cov_bspline_te.txt') - + # load train & test response files resp_file_tr = os.path.join(roi_dir, 'resp_tr.txt') - resp_file_te = os.path.join(roi_dir, 'resp_te.txt') - + resp_file_te = os.path.join(roi_dir, 'resp_te.txt') + # run a basic model - yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr, - resp_file_tr, - testresp=resp_file_te, - testcov=cov_file_te, - alg = 'blr', - optimizer = 'powell', - savemodel = True, + yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr, + resp_file_tr, + testresp=resp_file_te, + testcov=cov_file_te, + alg = 'blr', + optimizer = 'powell', + savemodel = True, saveoutput = False, standardize = False) # save metrics blr_metrics.loc[len(blr_metrics)] = [roi, metrics_te['MSLL'][0], metrics_te['EXPV'][0], metrics_te['SMSE'][0], metrics_te['RMSE'][0], metrics_te['Rho'][0]] - + # Compute metrics per site in test set, save to pandas df # load true test data X_te = np.loadtxt(cov_file_te) y_te = np.loadtxt(resp_file_te) y_te = y_te[:, np.newaxis] # make sure it is a 2-d array - + # load training data (required to compute the MSLL) y_tr = np.loadtxt(resp_file_tr) y_tr = y_tr[:, np.newaxis] - - for num, site in enumerate(sites): + + for num, site in enumerate(sites): y_mean_te_site = np.array([[np.mean(y_te[site])]]) y_var_te_site = np.array([[np.var(y_te[site])]]) yhat_mean_te_site = np.array([[np.mean(yhat_te[site])]]) yhat_var_te_site = np.array([[np.var(yhat_te[site])]]) - + metrics_te_site = evaluate(y_te[site], yhat_te[site], s2_te[site], y_mean_te_site, y_var_te_site) - + site_name = site_names[num] blr_site_metrics.loc[len(blr_site_metrics)] = [roi, site_names[num], metrics_te_site['MSLL'][0], metrics_te_site['EXPV'][0], metrics_te_site['SMSE'][0], metrics_te_site['RMSE'][0], metrics_te_site['Rho'][0]] @@ -764,40 +1910,54 @@ arguments that are worthy of commenting on: .. parsed-literal:: Running ROI: lh_MeanThickness_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_MeanThickness_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) Using default hyperparameters - Optimization terminated successfully. - Current function value: -1162.792820 - Iterations: 2 - Function evaluations: 47 - Saving model meta-data... - Evaluating the model ... .. parsed-literal:: - /usr/local/lib/python3.7/dist-packages/pcntoolkit/model/bayesreg.py:187: LinAlgWarning: Ill-conditioned matrix (rcond=1.15485e-18): result may not be accurate. - invAXt = linalg.solve(self.A, X.T, check_finite=False) - /usr/local/lib/python3.7/dist-packages/pcntoolkit/model/bayesreg.py:187: LinAlgWarning: Ill-conditioned matrix (rcond=4.51813e-19): result may not be accurate. + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/bayesreg.py:196: LinAlgWarning: Ill-conditioned matrix (rcond=1.15485e-18): result may not be accurate. invAXt = linalg.solve(self.A, X.T, check_finite=False) .. parsed-literal:: + Optimization terminated successfully. + Current function value: -1162.792820 + Iterations: 2 + Function evaluations: 43 + Saving model meta-data... + Evaluating the model ... Running ROI: rh_MeanThickness_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/rh_MeanThickness_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) Using default hyperparameters + + +.. parsed-literal:: + + /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/bayesreg.py:196: LinAlgWarning: Ill-conditioned matrix (rcond=4.51813e-19): result may not be accurate. + invAXt = linalg.solve(self.A, X.T, check_finite=False) + + +.. parsed-literal:: + Optimization terminated successfully. Current function value: -1187.621858 Iterations: 2 - Function evaluations: 47 + Function evaluations: 43 Saving model meta-data... Evaluating the model ... Running ROI: lh_bankssts_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_bankssts_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -805,10 +1965,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -578.945257 Iterations: 2 - Function evaluations: 46 + Function evaluations: 42 Saving model meta-data... Evaluating the model ... Running ROI: lh_caudalanteriorcingulate_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_caudalanteriorcingulate_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -816,10 +1978,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -235.509099 Iterations: 3 - Function evaluations: 75 + Function evaluations: 69 Saving model meta-data... Evaluating the model ... Running ROI: lh_superiorfrontal_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/lh_superiorfrontal_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -827,10 +1991,12 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -716.547377 Iterations: 3 - Function evaluations: 91 + Function evaluations: 84 Saving model meta-data... Evaluating the model ... Running ROI: rh_superiorfrontal_thickness + inscaler: None + outscaler: None Processing data in /content/PCNtoolkit-demo/tutorials/BLR_protocol/ROI_models/rh_superiorfrontal_thickness/resp_tr.txt Estimating model 1 of 1 configuring BLR ( order 1 ) @@ -838,17 +2004,19 @@ arguments that are worthy of commenting on: Optimization terminated successfully. Current function value: -730.639309 Iterations: 2 - Function evaluations: 45 + Function evaluations: 41 Saving model meta-data... Evaluating the model ... Evaluation & Interpretation ----------------------------------------- +=========================== Describe the normative model performance -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +---------------------------------------- +Step 12. +~~~~~~~~ In step 11, when we looped over each region of interest in the ``roi_ids`` list (created in step 4) and evaluated the normative model @@ -917,7 +2085,7 @@ can organize them into a single file, and merge the deviation scores into the original data file. Visualize normative model outputs -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +--------------------------------- Figure 4A viz ~~~~~~~~~~~~~ @@ -937,29 +2105,21 @@ Figure 4A viz plt.figure(dpi=380) fig, axes = joypy.joyplot(blr_site_metrics, column=['EV'], overlap=2.5, by="site", ylim='own', fill=True, figsize=(8,8) , legend=False, xlabels=True, ylabels=True, colormap=lambda x: color_gradient(x, start=(.08, .45, .8),stop=(.8, .34, .44)) - , alpha=0.6, linewidth=.5, linecolor='w', fade=True) + , alpha=0.6, linewidth=.5, linecolor='w', fade=True); plt.title('Test Set Explained Variance', fontsize=18, color='black', alpha=1) plt.xlabel('Explained Variance', fontsize=14, color='black', alpha=1) plt.ylabel('Site', fontsize=14, color='black', alpha=1) - plt.show - + plt.show() .. parsed-literal:: - +
    - -.. parsed-literal:: - -
    - - - -.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_93_2.png +.. image:: BLR_normativemodel_protocol_files/BLR_normativemodel_protocol_97_1.png The code used to create the visualizations shown in Figure 4 panels B-F, @@ -967,7 +2127,8 @@ can be found in this `notebook `__. Post-Hoc analysis ideas -~~~~~~~~~~~~~~~~~~~~~~~~~~ +----------------------- + The code for running SVM classification and classical case vs. control t-testing on the outputs of normative modeling can be found in this diff --git a/doc/build/html/_sources/pages/FAQs.rst.txt b/doc/build/html/_sources/pages/FAQs.rst.txt index a8879d36..efe98bd0 100644 --- a/doc/build/html/_sources/pages/FAQs.rst.txt +++ b/doc/build/html/_sources/pages/FAQs.rst.txt @@ -5,7 +5,7 @@ Frequently Asked Questions Most of the questions we recieve are about interpretation of normative modeling outputs. -The PCNtoolkit develoers have written a protocol for how to run a normative modeling analysis which should be helpful to you if you are just getting started. +The PCNtoolkit developers have written a protocol for how to run a normative modeling analysis which should be helpful to you if you are just getting started. Rutherford, S., Kia, S. M., Wolfers, T., ... Beckmann, C. F., & Marquand, A. F. (2022). The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5. diff --git a/doc/build/html/_sources/pages/HBR_NormativeModel_FCONdata_Tutorial.rst.txt b/doc/build/html/_sources/pages/HBR_NormativeModel_FCONdata_Tutorial.rst.txt index d4933e38..55d17eb8 100644 --- a/doc/build/html/_sources/pages/HBR_NormativeModel_FCONdata_Tutorial.rst.txt +++ b/doc/build/html/_sources/pages/HBR_NormativeModel_FCONdata_Tutorial.rst.txt @@ -1,30 +1,132 @@ -.. title:: HBR tutorial +`Predictive Clinical Neuroscience Toolkit `__ +====================================================================================== -Hierarchical Bayesian Regression +Hierarchical Bayesian Regression Normative Modelling and Transfer onto unseen site. =================================================================================== This notebook will go through basic data preparation (training and -testing set, `see Saige's +testing set, `see Saige’s tutorial `__ on Normative Modelling for more detail), the actual training of the models, and will finally describe how to transfer the trained models onto unseen sites. Created by `Saige Rutherford `__ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Adapted/edited by Andre Marquand and Pierre Berthet. - -.. image:: https://colab.research.google.com/assets/colab-badge.svg - :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/HBR_FCON/HBR_NormativeModel_FCONdata_Tutorial.ipynb - - +adapted/edited by Andre Marquand and Pierre Berthet +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Step 0: Install necessary libraries & grab data files ----------------------------------------------------- .. code:: ipython3 - ! pip install pcntoolkit==0.26 + !pip install pcntoolkit + !pip install nutpie + + +.. parsed-literal:: + + Collecting https://github.com/amarquand/PCNtoolkit/archive/dev.zip + Downloading https://github.com/amarquand/PCNtoolkit/archive/dev.zip +  \ 64.9 MB 15.9 MB/s 0:00:05 + [?25h Installing build dependencies ... [?25l[?25hdone + Getting requirements to build wheel ... [?25l[?25hdone + Preparing metadata (pyproject.toml) ... [?25l[?25hdone + Collecting bspline<0.2.0,>=0.1.1 (from pcntoolkit==0.31.0) + Downloading bspline-0.1.1.tar.gz (84 kB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.2/84.2 kB 2.3 MB/s eta 0:00:00 + [?25h Preparing metadata (setup.py) ... [?25l[?25hdone + Collecting matplotlib<4.0.0,>=3.9.2 (from pcntoolkit==0.31.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) + Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2) + Requirement already satisfied: numpy<2.0,>=1.26 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.26.4) + Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0) + Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2) + Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1) + Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2) + Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.4.7) + Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (24.2) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (3.2.0) + Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (2.8.2) + Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5) + Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2) + Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0) + Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0) + Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0) + Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2) + Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5) + Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4) + Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0) + Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0) + Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.1) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2) + Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1) + Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9) + Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3) + Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6) + Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0) + Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1) + Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2) + Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1) + Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0) + Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.3/8.3 MB 55.1 MB/s eta 0:00:00 + [?25hBuilding wheels for collected packages: pcntoolkit, bspline + Building wheel for pcntoolkit (pyproject.toml) ... [?25l[?25hdone + Created wheel for pcntoolkit: filename=pcntoolkit-0.31.0-py3-none-any.whl size=114835 sha256=40635c10c24ccf2c319ee965aaf1038272cd5578f14d9cb3dd14598ddab31d00 + Stored in directory: /tmp/pip-ephem-wheel-cache-f502unec/wheels/9e/c4/29/3bca3a5facf8ef69b8622461d8520d24a19d3745aefa093d1e + Building wheel for bspline (setup.py) ... [?25l[?25hdone + Created wheel for bspline: filename=bspline-0.1.1-py3-none-any.whl size=84482 sha256=150d24f295ccda92c9789d421e52c3858d43c66874deec4a463a87b4e5533448 + Stored in directory: /root/.cache/pip/wheels/3c/ab/0a/70927853a6d9166bc777922736063a6f99c43a327c802f9326 + Successfully built pcntoolkit bspline + Installing collected packages: bspline, matplotlib, pcntoolkit + Attempting uninstall: matplotlib + Found existing installation: matplotlib 3.8.0 + Uninstalling matplotlib-3.8.0: + Successfully uninstalled matplotlib-3.8.0 + Successfully installed bspline-0.1.1 matplotlib-3.9.2 pcntoolkit-0.31.0 + Collecting nutpie + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (5.4 kB) + Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (17.0.0) + Requirement already satisfied: pandas>=2.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2.2.2) + Requirement already satisfied: xarray>=2023.6.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2024.10.0) + Requirement already satisfied: arviz>=0.15.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (0.20.0) + Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (75.1.0) + Requirement already satisfied: matplotlib>=3.5 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (3.9.2) + Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.26.4) + Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.13.1) + Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (24.2) + Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.4.1) + Requirement already satisfied: typing-extensions>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (4.12.2) + Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (0.8.0) + Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2.8.2) + Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2) + Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.15.0->nutpie) (3.12.1) + Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.3.1) + Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (0.12.1) + Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (4.54.1) + Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.4.7) + Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (11.0.0) + Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (3.2.0) + Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=2.0->nutpie) (1.16.0) + Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB) +  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 16.5 MB/s eta 0:00:00 + [?25hInstalling collected packages: nutpie + Successfully installed nutpie-0.13.2 For this tutorial we will use data from the `Functional Connectom @@ -47,7 +149,7 @@ First we import the required package, and create a working directory. .. code:: ipython3 - processing_dir = "HBR_demo/" # replace with a path to your working directory + processing_dir = "HBR_demo" # replace with desired working directory if not os.path.isdir(processing_dir): os.makedirs(processing_dir) os.chdir(processing_dir) @@ -65,9 +167,13 @@ color coded by the various sites: fcon = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000.csv') + # extract the ICBM site for transfer icbm = fcon.loc[fcon['site'] == 'ICBM'] icbm['sitenum'] = 0 + + # remove from the training set (also Pittsburgh because it only has 3 samples) fcon = fcon.loc[fcon['site'] != 'ICBM'] + fcon = fcon.loc[fcon['site'] != 'Pittsburgh'] sites = fcon['site'].unique() fcon['sitenum'] = 0 @@ -86,6 +192,390 @@ color coded by the various sites: ax.set_xlabel('age') + +.. parsed-literal:: + + :5: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame. + Try using .loc[row_indexer,col_indexer] = value instead + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + icbm['sitenum'] = 0 + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + :18: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0! + You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy. + A typical example is when you are setting values in a column of a DataFrame, like: + + df["col"][row_indexer] = value + + Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`. + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + + fcon['sitenum'].loc[idx] = i + :18: SettingWithCopyWarning: + A value is trying to be set on a copy of a slice from a DataFrame + + See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy + fcon['sitenum'].loc[idx] = i + + +.. parsed-literal:: + + site AnnArbor_a 24 + site AnnArbor_b 32 + site Atlanta 28 + site Baltimore 23 + site Bangor 20 + site Beijing_Zang 198 + site Berlin_Margulies 26 + site Cambridge_Buckner 198 + site Cleveland 31 + site Leiden_2180 12 + site Leiden_2200 19 + site Milwaukee_b 46 + site Munchen 15 + site NewYork_a 83 + site NewYork_a_ADHD 25 + site Newark 19 + site Oulu 102 + site Oxford 22 + site PaloAlto 17 + site Queensland 19 + site SaintLouis 31 + + + + +.. parsed-literal:: + + Text(0.5, 0, 'age') + + + + +.. image:: HBR_NormativeModel_FCONdata_Tutorial_files/HBR_NormativeModel_FCONdata_Tutorial_10_3.png + + Step 1: Prepare training and testing sets ----------------------------------------- @@ -122,15 +612,42 @@ then displayed. icbm_tr.to_csv(processing_dir + '/fcon1000_icbm_tr.csv') icbm_te.to_csv(processing_dir + '/fcon1000_icbm_te.csv') + +.. parsed-literal:: + + sample size check + 0 AnnArbor_a 10 14 + 1 AnnArbor_b 19 13 + 2 Atlanta 12 16 + 3 Baltimore 12 11 + 4 Bangor 10 10 + 5 Beijing_Zang 91 107 + 6 Berlin_Margulies 9 17 + 7 Cambridge_Buckner 96 102 + 8 Cleveland 13 18 + 9 Leiden_2180 5 7 + 10 Leiden_2200 11 8 + 11 Milwaukee_b 18 28 + 12 Munchen 9 6 + 13 NewYork_a 38 45 + 14 NewYork_a_ADHD 15 10 + 15 Newark 9 10 + 16 Oulu 50 52 + 17 Oxford 9 13 + 18 PaloAlto 8 9 + 19 Queensland 10 9 + 20 SaintLouis 18 13 + + Otherwise you can just load these pre defined subsets: .. code:: ipython3 # Optional - # fcon_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_tr.csv') - # fcon_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_te.csv') - # icbm_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_tr.csv') - # icbm_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_te.csv') + #fcon_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_tr.csv') + #fcon_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_te.csv') + #icbm_tr = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_tr.csv') + #icbm_te = pd.read_csv('https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/main/data/fcon1000_icbm_te.csv') Step 2: Configure HBR inputs: covariates, measures and batch effects -------------------------------------------------------------------- @@ -160,7 +677,12 @@ testing set (``_test``). X_train = (fcon_tr['age']/100).to_numpy(dtype=float) Y_train = fcon_tr[idps].to_numpy(dtype=float) - batch_effects_train = fcon_tr[['sitenum','sex']].to_numpy(dtype=int) + + # configure batch effects for site and sex + #batch_effects_train = fcon_tr[['sitenum','sex']].to_numpy(dtype=int) + + # or only site + batch_effects_train = fcon_tr[['sitenum']].to_numpy(dtype=int) with open('X_train.pkl', 'wb') as file: pickle.dump(pd.DataFrame(X_train), file) @@ -172,7 +694,8 @@ testing set (``_test``). X_test = (fcon_te['age']/100).to_numpy(dtype=float) Y_test = fcon_te[idps].to_numpy(dtype=float) - batch_effects_test = fcon_te[['sitenum','sex']].to_numpy(dtype=int) + #batch_effects_test = fcon_te[['sitenum','sex']].to_numpy(dtype=int) + batch_effects_test = fcon_te[['sitenum']].to_numpy(dtype=int) with open('X_test.pkl', 'wb') as file: pickle.dump(pd.DataFrame(X_test), file) @@ -186,6 +709,536 @@ testing set (``_test``). with open(filename, 'rb') as f: return pickle.load(f) +.. code:: ipython3 + + batch_effects_test + + + + +.. parsed-literal:: + + array([[ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 0], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 1], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 2], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 3], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 4], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 5], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 6], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 7], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 8], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [ 9], + [10], + [10], + [10], + [10], + [10], + [10], + [10], + [10], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [11], + [12], + [12], + [12], + [12], + [12], + [12], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [13], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [14], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [15], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [16], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [17], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [18], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [19], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20], + [20]]) + + + Step 3: Files and Folders grooming ---------------------------------- @@ -226,12 +1279,399 @@ and output files will be written and how they will be named. respfile=respfile, tsbefile=tsbefile, trbefile=trbefile, + inscaler='standardize', + outscaler='standardize', + linear_mu='True', + random_intercept_mu='True', + centered_intercept_mu='True', alg='hbr', log_path=log_dir, binary=True, - output_path=output_path, testcov= testcovfile_path, + output_path=output_path, + testcov= testcovfile_path, testresp = testrespfile_path, - outputsuffix=outputsuffix, savemodel=True) + outputsuffix=outputsuffix, + savemodel=True, + nuts_sampler='nutpie') + + +.. parsed-literal:: + + inscaler: standardize + outscaler: standardize + Processing data in /content/HBR_demo/Y_train.pkl + Estimating model 1 of 2 + + + +.. raw:: html + + + + + + + +.. raw:: html + + +
    +

    Sampler Progress

    +

    Total Chains: 1

    +

    Active Chains: 0

    +

    + Finished Chains: + 1 +

    +

    Sampling for now

    +

    + Estimated Time to Completion: + now +

    + + + + + + + + + + + + + + + + + + + + + + + + + +
    ProgressDrawsDivergencesStep SizeGradients/Draw
    + + + 150000.3415
    +
    + + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +
    
    +
    +
    +
    +
    +.. parsed-literal::
    +
    +    Output()
    +
    +
    +.. parsed-literal::
    +
    +    Normal
    +
    +
    +
    +.. raw:: html
    +
    +    
    
    +
    +
    +
    +.. parsed-literal::
    +
    +    Estimating model  2 of 2
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +

    Sampler Progress

    +

    Total Chains: 1

    +

    Active Chains: 0

    +

    + Finished Chains: + 1 +

    +

    Sampling for now

    +

    + Estimated Time to Completion: + now +

    + + + + + + + + + + + + + + + + + + + + + + + + + +
    ProgressDrawsDivergencesStep SizeGradients/Draw
    + + + 150000.3315
    +
    + + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +
    
    +
    +
    +
    +.. parsed-literal::
    +
    +    Normal
    +
    +
    +
    +.. parsed-literal::
    +
    +    Output()
    +
    +
    +
    +.. raw:: html
    +
    +    
    
    +
    +
    +
    +.. parsed-literal::
    +
    +    Saving model meta-data...
    +    Evaluating the model ...
    +    Writing outputs ...
    +
     
     Here some analyses can be done, there are also some error metrics that
     could be of interest. This is covered in step 6 and in `Saige’s
    @@ -249,7 +1689,8 @@ training and testing set of covariates, measures and batch effects:
     
         X_adapt = (icbm_tr['age']/100).to_numpy(dtype=float)
         Y_adapt = icbm_tr[idps].to_numpy(dtype=float)
    -    batch_effects_adapt = icbm_tr[['sitenum','sex']].to_numpy(dtype=int)
    +    #batch_effects_adapt = icbm_tr[['sitenum','sex']].to_numpy(dtype=int)
    +    batch_effects_adapt = icbm_tr[['sitenum']].to_numpy(dtype=int)
         
         with open('X_adaptation.pkl', 'wb') as file:
             pickle.dump(pd.DataFrame(X_adapt), file)
    @@ -261,7 +1702,8 @@ training and testing set of covariates, measures and batch effects:
         # Test data (new dataset)
         X_test_txfr = (icbm_te['age']/100).to_numpy(dtype=float)
         Y_test_txfr = icbm_te[idps].to_numpy(dtype=float)
    -    batch_effects_test_txfr = icbm_te[['sitenum','sex']].to_numpy(dtype=int)
    +    #batch_effects_test_txfr = icbm_te[['sitenum','sex']].to_numpy(dtype=int)
    +    batch_effects_test_txfr = icbm_te[['sitenum']].to_numpy(dtype=int)
         
         with open('X_test_txfr.pkl', 'wb') as file:
             pickle.dump(pd.DataFrame(X_test_txfr), file)
    @@ -270,6 +1712,7 @@ training and testing set of covariates, measures and batch effects:
         with open('txbefile.pkl', 'wb') as file:
             pickle.dump(pd.DataFrame(batch_effects_test_txfr), file)
     
    +
     .. code:: ipython3
     
         respfile = os.path.join(processing_dir, 'Y_adaptation.pkl')
    @@ -294,6 +1737,11 @@ and testing). That is basically the only difference.
                                                     respfile=respfile,
                                                     tsbefile=tsbefile,
                                                     trbefile=trbefile,
    +                                                inscaler='standardize',
    +                                                outscaler='standardize',
    +                                                linear_mu='True',
    +                                                random_intercept_mu='True',
    +                                                centered_intercept_mu='True',
                                                     model_path = model_path,
                                                     alg='hbr',
                                                     log_path=log_dir,
    @@ -302,7 +1750,375 @@ and testing). That is basically the only difference.
                                                     testcov= testcovfile_path,
                                                     testresp = testrespfile_path,
                                                     outputsuffix=outputsuffix,
    -                                                savemodel=True)
    +                                                savemodel=True,
    +                                                nuts_sampler='nutpie')
    +
    +
    +.. parsed-literal::
    +
    +    Loading data ...
    +    Using HBR transform...
    +    Transferring model  1 of 2
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +

    Sampler Progress

    +

    Total Chains: 1

    +

    Active Chains: 0

    +

    + Finished Chains: + 1 +

    +

    Sampling for now

    +

    + Estimated Time to Completion: + now +

    + + + + + + + + + + + + + + + + + + + + + + + + + +
    ProgressDrawsDivergencesStep SizeGradients/Draw
    + + + 150020.477
    +
    + + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +
    
    +
    +
    +
    +.. parsed-literal::
    +
    +    Using HBR transform...
    +    Transferring model  2 of 2
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +
    +
    +
    +
    +.. raw:: html
    +
    +    
    +    
    +

    Sampler Progress

    +

    Total Chains: 1

    +

    Active Chains: 0

    +

    + Finished Chains: + 1 +

    +

    Sampling for now

    +

    + Estimated Time to Completion: + now +

    + + + + + + + + + + + + + + + + + + + + + + + + + +
    ProgressDrawsDivergencesStep SizeGradients/Draw
    + + + 150010.4015
    +
    + + + + +.. parsed-literal:: + + Output() + + + +.. raw:: html + +
    
    +
    +
    +
    +.. parsed-literal::
    +
    +    Evaluating the model ...
    +    Writing outputs ...
    +
    +
    +.. code:: ipython3
    +
    +    output_path
    +
    +
    +
    +
    +.. parsed-literal::
    +
    +    '/content/HBR_demo/Transfer/'
    +
    +
    +
    +.. code:: ipython3
    +
    +    EV = pd.read_pickle('EXPV_estimate.pkl')
    +    print(EV)
    +
    +
    +.. parsed-literal::
    +
    +              0
    +    0  0.438215
    +    1  0.439181
     
     
     And that is it, you now have models that benefited from prior knowledge
    @@ -311,19 +2127,12 @@ about different scanner sites to learn on unseen sites.
     Step 6: Interpreting model performance
     --------------------------------------
     
    -Output evaluation metrics definitions
    -
    -=============  ==============================================================
    -Abbreviation    Full name
    -=============  ==============================================================
    -NM             Normative Model
    -EV / EXPV      Explained Variance
    -MSLL           Mean Standardized Log Loss
    -SMSE           Standardized Mean Squared Error
    -RMSE           Root Mean Squared Error between true/predicted responses
    -Rho            Pearson orrelation between true/predicted responses
    -pRho           Parametric p-value for this correlation
    -Z              Z-score or deviation score
    -yhat           predictive mean
    -ys2            predictive variance
    -=============  ==============================================================
    +Output evaluation metrics definitions: \* yhat - predictive mean \* ys2
    +- predictive variance \* nm - normative model \* Z - deviance scores \*
    +Rho - Pearson correlation between true and predicted responses \* pRho -
    +parametric p-value for this correlation \* RMSE - root mean squared
    +error between true/predicted responses \* SMSE - standardised mean
    +squared error \* EV - explained variance \* MSLL - mean standardized log
    +loss \* See page 23 in
    +http://www.gaussianprocess.org/gpml/chapters/RW2.pdf
    +
    diff --git a/doc/build/html/_sources/pages/apply_normative_models.rst.txt b/doc/build/html/_sources/pages/apply_normative_models.rst.txt
    index 9a55d8b4..1dabeb43 100644
    --- a/doc/build/html/_sources/pages/apply_normative_models.rst.txt
    +++ b/doc/build/html/_sources/pages/apply_normative_models.rst.txt
    @@ -1,17 +1,5 @@
    -.. title:: Braincharts tutorial
    -
    -Braincharts: transfer
    -===================================
    -
    -Code for transfering the models from `Charting Brain Growth and Aging at High Spatial Precision. `__ 
    -
    -.. image:: https://colab.research.google.com/assets/colab-badge.svg 
    -    :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models_ct.ipynb 
    -
    -
    -.. figure:: ./brainchart_fig1.png
    -   :height: 400px
    -   :align: center
    +Using lifespan models to make predictions on new data
    +-----------------------------------------------------
     
     This notebook shows how to apply the coefficients from pre-estimated
     normative models to new data. This can be done in two different ways:
    @@ -24,34 +12,26 @@ datasets `__ and adapt the learned model to make
     predictions on these data.
     
     First, if necessary, we install PCNtoolkit (note: this tutorial requires
    -at least version 0.20)
    +at least version 0.27)
     
     .. code:: ipython3
     
    -    !pip install pcntoolkit==0.26
    +    !pip install pcntoolkit
    +    !pip install nutpie
     
     .. code:: ipython3
     
         ! git clone https://github.com/predictive-clinical-neuroscience/braincharts.git
     
    -
    -.. parsed-literal::
    -
    -    Cloning into 'braincharts'...
    -    remote: Enumerating objects: 1444, done.
    -    remote: Counting objects: 100% (1444/1444), done.
    -    remote: Compressing objects: 100% (1365/1365), done.
    -    remote: Total 1444 (delta 153), reused 1342 (delta 75), pack-reused 0
    -    Receiving objects: 100% (1444/1444), 57.99 MiB | 34.87 MiB/s, done.
    -    Resolving deltas: 100% (153/153), done.
    -
    -
     .. code:: ipython3
     
         # we need to be in the scripts folder when we import the libraries in the code block below,
         # because there is a function called nm_utils that is in the scripts folder that we need to import
         import os
    -    os.chdir('/content/braincharts/scripts/') #this path is setup for running on Google Colab. Change it to match your local path if running locally
    +    wdir = 'braincharts'
    +    
    +    os.chdir(wdir) #this path is setup for running on Google Colab. Change it to match your local path if running locally
    +    root_dir = os.getcwd()
     
     Now we import the required libraries
     
    @@ -65,45 +45,34 @@ Now we import the required libraries
         
         from pcntoolkit.normative import estimate, predict, evaluate
         from pcntoolkit.util.utils import compute_MSLL, create_design_matrix
    +    os.chdir(os.path.join(root_dir, 'scripts'))
         from nm_utils import remove_bad_subjects, load_2d
    +    os.chdir(root_dir)
     
     We need to unzip the models.
     
     .. code:: ipython3
     
    -    os.chdir('/content/braincharts/models/')
    -
    -.. code:: ipython3
    -
    -    ls
    -
    -
    -.. parsed-literal::
    -
    -    lifespan_12K_57sites_mqc2_train.zip  lifespan_29K_82sites_train.zip
    -    lifespan_12K_59sites_mqc_train.zip   lifespan_57K_82sites.zip
    -    lifespan_23K_57sites_mqc2.zip        README.md
    -
    +    os.chdir(os.path.join(root_dir, 'models'))
     
     .. code:: ipython3
     
         # we will use the biggest sample as our training set (approx. N=57000 subjects from 82 sites)
    -    # for more info on the other pretrained models available in this repository, 
    +    # for more info on the other pretrained models available in this repository,
         # please refer to the accompanying paper https://elifesciences.org/articles/72904
         ! unzip lifespan_57K_82sites.zip
     
     Next, we configure some basic variables, like where we want the analysis
     to be done and which model we want to use.
     
    -.. note::
    -    We maintain a list of site ids for each dataset, which
    -    describe the site names in the training and test data (``site_ids_tr``
    -    and ``site_ids_te``), plus also the adaptation data . The training site
    -    ids are provided as a text file in the distribution and the test ids are
    -    extracted automatically from the pandas dataframe (see below). If you
    -    use additional data from the sites (e.g. later waves from ABCD), it may
    -    be necessary to adjust the site names to match the names in the training
    -    set. See the accompanying paper for more details
    +**Note:** We maintain a list of site ids for each dataset, which
    +describe the site names in the training and test data (``site_ids_tr``
    +and ``site_ids_te``), plus also the adaptation data . The training site
    +ids are provided as a text file in the distribution and the test ids are
    +extracted automatically from the pandas dataframe (see below). If you
    +use additional data from the sites (e.g. later waves from ABCD), it may
    +be necessary to adjust the site names to match the names in the training
    +set. See the accompanying paper for more details
     
     .. code:: ipython3
     
    @@ -111,91 +80,35 @@ to be done and which model we want to use.
         model_name = 'lifespan_57K_82sites'
         site_names = 'site_ids_ct_82sites.txt'
         
    -    # where the analysis takes place
    -    root_dir = '/content/braincharts'
    +    
    +    # where the data files live
    +    data_dir = os.path.join(root_dir,'docs')
    +    
    +    # where the models live
         out_dir = os.path.join(root_dir, 'models', model_name)
         
         # load a set of site ids from this model. This must match the training data
         with open(os.path.join(root_dir,'docs', site_names)) as f:
             site_ids_tr = f.read().splitlines()
     
    -Download test dataset
    ------------------------------------------------------
    -
    -As mentioned above, to demonstrate this tool we will use a test dataset
    -derived from the FCON 1000 dataset. We provide a prepackaged
    -training/test split of these data in the required format (also after
    -removing sites with only a few data points),
    -`here `__.
    -you can get these data by running the following commmands:
    -
    -.. code:: ipython3
    -
    -    os.chdir(root_dir)
    -    !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/braincharts/master/docs/OpenNeuroTransfer_ct_te.csv
    -    !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/braincharts/master/docs/OpenNeuroTransfer_ct_tr.csv
    -
    -
    -.. parsed-literal::
    -
    -    --2022-02-17 15:01:31--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/braincharts/master/docs/OpenNeuroTransfer_ct_te.csv
    -    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
    -    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
    -    HTTP request sent, awaiting response... 200 OK
    -    Length: 628752 (614K) [text/plain]
    -    Saving to: ‘OpenNeuroTransfer_te.csv’
    -    
    -    OpenNeuroTransfer_t 100%[===================>] 614.02K  --.-KB/s    in 0.03s   
    -    
    -    2022-02-17 15:01:31 (22.0 MB/s) - ‘OpenNeuroTransfer_te.csv’ saved [628752/628752]
    -    
    -    --2022-02-17 15:01:31--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/braincharts/master/docs/OpenNeuroTransfer_ct_tr.csv
    -    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.108.133, ...
    -    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
    -    HTTP request sent, awaiting response... 200 OK
    -    Length: 163753 (160K) [text/plain]
    -    Saving to: ‘OpenNeuroTransfer_tr.csv’
    -    
    -    OpenNeuroTransfer_c 100%[===================>] 159.92K  --.-KB/s    in 0.03s   
    -    
    -    2022-02-17 15:01:32 (6.08 MB/s) - ‘OpenNeuroTransfer_ct_tr.csv’ saved [163753/163753]
    -    
    -
    -
     Load test data
    ------------------------------------------------------
    -
    -Now we load the test data and remove some subjects that may have poor
    -scan quality. This asssesment is based on the Freesurfer Euler
    -characteristic as described in the papers below.
    +~~~~~~~~~~~~~~
     
    -.. note::
    -    For the purposes of this tutorial, we make predictions for all
    -    sites in the FCON 1000 dataset, but two of them were also included in
    -    the training data (named ‘Baltimore’ and ‘NewYork_a’). In this case,
    -    this will only slightly bias the accuracy, but in order to replicate the
    -    results in the paper, it would be necessary to additionally remove these
    -    sites from the test dataframe.
    -
    -**References** - `Kia et al
    -2021 `__
    -- `Rosen et al
    -2018 `__
    +**Note:** For the purposes of this tutorial, we make predictions for a
    +multi-site transfer dataset, derived from
    +`OpenNeuro `__.
     
     .. code:: ipython3
     
    -    test_data = os.path.join(root_dir, 'OpenNeuroTransfer_ct_te.csv')
    +    test_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_te.csv')
         
         df_te = pd.read_csv(test_data)
         
    -    # remove some bad subjects, this requires having a column called "avg_en" that corresponds to the average Euler number extracted from Freesurfer
    -    # df_te, bad_sub = remove_bad_subjects(df_te, df_te)
    -    
         # extract a list of unique site ids from the test set
         site_ids_te =  sorted(set(df_te['site'].to_list()))
     
     (Optional) Load adaptation data
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     
     If the data you wish to make predictions for is not derived from the
     same scanning sites as those in the trainig set, it is necessary to
    @@ -207,13 +120,10 @@ same way, based on a the ‘sitenum’ column in the dataframe.
     
     .. code:: ipython3
     
    -    adaptation_data = os.path.join(root_dir, 'OpenNeuroTransfer_ct_tr.csv')
    +    adaptation_data = os.path.join(data_dir, 'OpenNeuroTransfer_ct_ad.csv')
         
         df_ad = pd.read_csv(adaptation_data)
         
    -    # remove some bad subjects, this requires having a column called "avg_en" that corresponds to the average Euler number extracted from Freesurfer
    -    # df_ad, bad_sub = remove_bad_subjects(df_ad, df_ad)
    -    
         # extract a list of unique site ids from the test set
         site_ids_ad =  sorted(set(df_ad['site'].to_list()))
         
    @@ -221,7 +131,7 @@ same way, based on a the ‘sitenum’ column in the dataframe.
             print('Warning: some of the testing sites are not in the adaptation data')
     
     Configure which models to fit
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     
     Now, we configure which imaging derived phenotypes (IDPs) we would like
     to process. This is just a list of column names in the dataframe we have
    @@ -233,15 +143,15 @@ models for …
     .. code:: ipython3
     
         # load the list of idps for left and right hemispheres, plus subcortical regions
    -    with open(os.path.join(root_dir,'docs','phenotypes_ct_lh.txt')) as f:
    +    with open(os.path.join(data_dir, 'phenotypes_ct_lh.txt')) as f:
             idp_ids_lh = f.read().splitlines()
    -    with open(os.path.join(root_dir,'docs','phenotypes_ct_rh.txt')) as f:
    +    with open(os.path.join(data_dir, 'phenotypes_ct_rh.txt')) as f:
             idp_ids_rh = f.read().splitlines()
    -    with open(os.path.join(root_dir,'docs','phenotypes_sc.txt')) as f:
    +    with open(os.path.join(data_dir, 'phenotypes_sc.txt')) as f:
             idp_ids_sc = f.read().splitlines()
         
         # we choose here to process all idps
    -    idp_ids = idp_ids_lh + idp_ids_rh + idp_ids_sc
    +    idp_ids = idp_ids_lh + idp_ids_rh #+ idp_ids_sc
     
     … or alternatively, we could just specify a list
     
    @@ -250,7 +160,7 @@ models for …
         idp_ids = [ 'Left-Thalamus-Proper', 'Left-Lateral-Ventricle', 'rh_MeanThickness_thickness']
     
     Configure covariates
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~~~~~
     
     Now, we configure some parameters to fit the model. First, we choose
     which columns of the pandas dataframe contain the covariates (age and
    @@ -274,18 +184,18 @@ accompanying paper and `Fraza et al
     
     .. code:: ipython3
     
    -    # which data columns do we wish to use as covariates? 
    +    # which data columns do we wish to use as covariates?
         cols_cov = ['age','sex']
         
    -    # limits for cubic B-spline basis 
    -    xmin = -5 
    +    # limits for cubic B-spline basis
    +    xmin = -5
         xmax = 110
         
         # Absolute Z treshold above which a sample is considered to be an outlier (without fitting any model)
         outlier_thresh = 7
     
     Make predictions
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~
     
     This will make predictions for each IDP separately. This is done by
     extracting a column from the dataframe (i.e. specifying the IDP as the
    @@ -294,12 +204,12 @@ the covariates, which is a numpy data array having the number of rows
     equal to the number of datapoints in the test set. The columns are
     specified as follows:
     
    --  A global intercept (column of ones)
    --  The covariate columns (here age and sex, coded as 0=female/1=male)
    --  Dummy coded columns for the sites in the training set (one column per
    -   site)
    --  Columns for the basis expansion (seven columns for the default
    -   parameterisation)
    +- A global intercept (column of ones)
    +- The covariate columns (here age and sex, coded as 0=female/1=male)
    +- Dummy coded columns for the sites in the training set (one column per
    +  site)
    +- Columns for the basis expansion (seven columns for the default
    +  parameterisation)
     
     Once these are saved as numpy arrays in ascii format (as here) or
     (alternatively) in pickle format, these are passed as inputs to the
    @@ -309,74 +219,74 @@ These are written in the same format to the location specified by
     Z-statistics for the test dataset that we can take forward to further
     analysis.
     
    -When we need to make predictions on new data, the procedure is
    +Note that when we need to make predictions on new data, the procedure is
     more involved, since we need to prepare, process and store covariates,
     response variables and site ids for the adaptation data.
     
     .. code:: ipython3
     
    -    for idp_num, idp in enumerate(idp_ids): 
    +    for idp_num, idp in enumerate(idp_ids):
             print('Running IDP', idp_num, idp, ':')
             idp_dir = os.path.join(out_dir, idp)
             os.chdir(idp_dir)
    -        
    +    
             # extract and save the response variables for the test set
             y_te = df_te[idp].to_numpy()
    -        
    +    
             # save the variables
    -        resp_file_te = os.path.join(idp_dir, 'resp_te.txt') 
    +        resp_file_te = os.path.join(idp_dir, 'resp_te.txt')
             np.savetxt(resp_file_te, y_te)
    -            
    +    
             # configure and save the design matrix
             cov_file_te = os.path.join(idp_dir, 'cov_bspline_te.txt')
    -        X_te = create_design_matrix(df_te[cols_cov], 
    +        X_te = create_design_matrix(df_te[cols_cov],
                                         site_ids = df_te['site'],
                                         all_sites = site_ids_tr,
    -                                    basis = 'bspline', 
    -                                    xmin = xmin, 
    +                                    basis = 'bspline',
    +                                    xmin = xmin,
                                         xmax = xmax)
             np.savetxt(cov_file_te, X_te)
    -        
    +    
             # check whether all sites in the test set are represented in the training set
             if all(elem in site_ids_tr for elem in site_ids_te):
                 print('All sites are present in the training data')
    -            
    +    
                 # just make predictions
    -            yhat_te, s2_te, Z = predict(cov_file_te, 
    -                                        alg='blr', 
    -                                        respfile=resp_file_te, 
    +            yhat_te, s2_te, Z = predict(cov_file_te,
    +                                        alg='blr',
    +                                        respfile=resp_file_te,
                                             model_path=os.path.join(idp_dir,'Models'))
             else:
                 print('Some sites missing from the training data. Adapting model')
    -            
    +    
                 # save the covariates for the adaptation data
    -            X_ad = create_design_matrix(df_ad[cols_cov], 
    +            X_ad = create_design_matrix(df_ad[cols_cov],
                                             site_ids = df_ad['site'],
                                             all_sites = site_ids_tr,
    -                                        basis = 'bspline', 
    -                                        xmin = xmin, 
    +                                        basis = 'bspline',
    +                                        xmin = xmin,
                                             xmax = xmax)
    -            cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')          
    +            cov_file_ad = os.path.join(idp_dir, 'cov_bspline_ad.txt')
                 np.savetxt(cov_file_ad, X_ad)
    -            
    +    
                 # save the responses for the adaptation data
    -            resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt') 
    +            resp_file_ad = os.path.join(idp_dir, 'resp_ad.txt')
                 y_ad = df_ad[idp].to_numpy()
                 np.savetxt(resp_file_ad, y_ad)
    -           
    +    
                 # save the site ids for the adaptation data
    -            sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt') 
    +            sitenum_file_ad = os.path.join(idp_dir, 'sitenum_ad.txt')
                 site_num_ad = df_ad['sitenum'].to_numpy(dtype=int)
                 np.savetxt(sitenum_file_ad, site_num_ad)
    -            
    -            # save the site ids for the test data 
    +    
    +            # save the site ids for the test data
                 sitenum_file_te = os.path.join(idp_dir, 'sitenum_te.txt')
                 site_num_te = df_te['sitenum'].to_numpy(dtype=int)
                 np.savetxt(sitenum_file_te, site_num_te)
    -             
    -            yhat_te, s2_te, Z = predict(cov_file_te, 
    -                                        alg = 'blr', 
    -                                        respfile = resp_file_te, 
    +    
    +            yhat_te, s2_te, Z = predict(cov_file_te,
    +                                        alg = 'blr',
    +                                        respfile = resp_file_te,
                                             model_path = os.path.join(idp_dir,'Models'),
                                             adaptrespfile = resp_file_ad,
                                             adaptcovfile = cov_file_ad,
    @@ -409,16 +319,8 @@ response variables and site ids for the adaptation data.
         Writing outputs ...
     
     
    -Evaluate the performance
    ------------------------------------------------------
    -
    -.. figure:: ./brainchart_fig3.png
    -   :height: 400px
    -   :align: center
    -
    -
     Preparing dummy data for plotting
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     
     Now, we plot the centiles of variation estimated by the normative model.
     
    @@ -431,9 +333,9 @@ dummy data for all the IDPs we wish to plot
     
     .. code:: ipython3
     
    -    # which sex do we want to plot? 
    +    # which sex do we want to plot?
         sex = 1 # 1 = male 0 = female
    -    if sex == 1: 
    +    if sex == 1:
             clr = 'blue';
         else:
             clr = 'red'
    @@ -459,7 +361,7 @@ dummy data for all the IDPs we wish to plot
     
     
     Plotting the normative models
    ------------------------------------------------------
    +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     
     Now we loop through the IDPs, plotting each one separately. The outputs
     of this step are a set of quantitative regression metrics for each IDP
    @@ -474,83 +376,82 @@ space, then we need to warp them with the inverse of the estimated
     warping function. This can be done using the function
     ``nm.blr.warp.warp_predictions()``.
     
    -.. note::
    -    It is necessary to update the intercept for each of the sites.
    -    For purposes of visualisation, here we do this by adjusting the median
    -    of the data to match the dummy predictions, but note that all the
    -    quantitative metrics are estimated using the predictions that are
    -    adjusted properly using a learned offset (or adjusted using a hold-out
    -    adaptation set, as above). Note also that for the calibration data we
    -    require at least two data points of the same sex in each site to be able
    -    to estimate the variance. Of course, in a real example, you would want
    -    many more than just two since we need to get a reliable estimate of the
    -    variance for each site.
    +**Note:** it is necessary to update the intercept for each of the sites.
    +For purposes of visualisation, here we do this by adjusting the median
    +of the data to match the dummy predictions, but note that all the
    +quantitative metrics are estimated using the predictions that are
    +adjusted properly using a learned offset (or adjusted using a hold-out
    +adaptation set, as above). Note also that for the calibration data we
    +require at least two data points of the same sex in each site to be able
    +to estimate the variance. Of course, in a real example, you would want
    +many more than just two since we need to get a reliable estimate of the
    +variance for each site.
     
     .. code:: ipython3
     
         sns.set(style='whitegrid')
         
    -    for idp_num, idp in enumerate(idp_ids): 
    +    for idp_num, idp in enumerate(idp_ids):
             print('Running IDP', idp_num, idp, ':')
             idp_dir = os.path.join(out_dir, idp)
             os.chdir(idp_dir)
    -        
    +    
             # load the true data points
             yhat_te = load_2d(os.path.join(idp_dir, 'yhat_predict.txt'))
             s2_te = load_2d(os.path.join(idp_dir, 'ys2_predict.txt'))
             y_te = load_2d(os.path.join(idp_dir, 'resp_te.txt'))
    -                
    +    
             # set up the covariates for the dummy data
             print('Making predictions with dummy covariates (for visualisation)')
    -        yhat, s2 = predict(cov_file_dummy, 
    -                           alg = 'blr', 
    -                           respfile = None, 
    -                           model_path = os.path.join(idp_dir,'Models'), 
    +        yhat, s2 = predict(cov_file_dummy,
    +                           alg = 'blr',
    +                           respfile = None,
    +                           model_path = os.path.join(idp_dir,'Models'),
                                outputsuffix = '_dummy')
    -        
    +    
             # load the normative model
             with open(os.path.join(idp_dir,'Models', 'NM_0_0_estimate.pkl'), 'rb') as handle:
    -            nm = pickle.load(handle) 
    -        
    +            nm = pickle.load(handle)
    +    
             # get the warp and warp parameters
             W = nm.blr.warp
    -        warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1] 
    -            
    +        warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1]
    +    
             # first, we warp predictions for the true data and compute evaluation metrics
             med_te = W.warp_predictions(np.squeeze(yhat_te), np.squeeze(s2_te), warp_param)[0]
             med_te = med_te[:, np.newaxis]
             print('metrics:', evaluate(y_te, med_te))
    -        
    +    
             # then, we warp dummy predictions to create the plots
             med, pr_int = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param)
    -        
    +    
             # extract the different variance components to visualise
             beta, junk1, junk2 = nm.blr._parse_hyps(nm.blr.hyp, X_dummy)
             s2n = 1/beta # variation (aleatoric uncertainty)
             s2s = s2-s2n # modelling uncertainty (epistemic uncertainty)
    -        
    +    
             # plot the data points
             y_te_rescaled_all = np.zeros_like(y_te)
             for sid, site in enumerate(site_ids_te):
    -            # plot the true test data points 
    +            # plot the true test data points
                 if all(elem in site_ids_tr for elem in site_ids_te):
                     # all data in the test set are present in the training set
    -                
    +    
                     # first, we select the data points belonging to this particular site
                     idx = np.where(np.bitwise_and(X_te[:,2] == sex, X_te[:,sid+len(cols_cov)+1] !=0))[0]
                     if len(idx) == 0:
                         print('No data for site', sid, site, 'skipping...')
                         continue
    -                
    +    
                     # then directly adjust the data
                     idx_dummy = np.bitwise_and(X_dummy[:,1] > X_te[idx,1].min(), X_dummy[:,1] < X_te[idx,1].max())
                     y_te_rescaled = y_te[idx] - np.median(y_te[idx]) + np.median(med[idx_dummy])
                 else:
    -                # we need to adjust the data based on the adaptation dataset 
    -                
    +                # we need to adjust the data based on the adaptation dataset
    +    
                     # first, select the data point belonging to this particular site
                     idx = np.where(np.bitwise_and(X_te[:,2] == sex, (df_te['site'] == site).to_numpy()))[0]
    -                
    +    
                     # load the adaptation data
                     y_ad = load_2d(os.path.join(idp_dir, 'resp_ad.txt'))
                     X_ad = load_2d(os.path.join(idp_dir, 'cov_bspline_ad.txt'))
    @@ -558,19 +459,19 @@ warping function. This can be done using the function
                     if len(idx) < 2 or len(idx_a) < 2:
                         print('Insufficent data for site', sid, site, 'skipping...')
                         continue
    -                
    +    
                     # adjust and rescale the data
    -                y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp, 
    -                                                                       X_ad[idx_a,:], 
    -                                                                       np.squeeze(y_ad[idx_a]), 
    -                                                                       Xs=None, 
    +                y_te_rescaled, s2_rescaled = nm.blr.predict_and_adjust(nm.blr.hyp,
    +                                                                       X_ad[idx_a,:],
    +                                                                       np.squeeze(y_ad[idx_a]),
    +                                                                       Xs=None,
                                                                            ys=np.squeeze(y_te[idx]))
                 # plot the (adjusted) data points
                 plt.scatter(X_te[idx,1], y_te_rescaled, s=4, color=clr, alpha = 0.1)
    -           
    +    
             # plot the median of the dummy data
             plt.plot(xx, med, clr)
    -        
    +    
             # fill the gaps in between the centiles
             junk, pr_int25 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.25,0.75])
             junk, pr_int95 = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2), warp_param, percentiles=[0.05,0.95])
    @@ -578,14 +479,14 @@ warping function. This can be done using the function
             plt.fill_between(xx, pr_int25[:,0], pr_int25[:,1], alpha = 0.1,color=clr)
             plt.fill_between(xx, pr_int95[:,0], pr_int95[:,1], alpha = 0.1,color=clr)
             plt.fill_between(xx, pr_int99[:,0], pr_int99[:,1], alpha = 0.1,color=clr)
    -                
    +    
             # make the width of each centile proportional to the epistemic uncertainty
             junk, pr_int25l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.25,0.75])
             junk, pr_int95l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.05,0.95])
             junk, pr_int99l = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2-0.5*s2s), warp_param, percentiles=[0.01,0.99])
             junk, pr_int25u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.25,0.75])
             junk, pr_int95u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.05,0.95])
    -        junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99])    
    +        junk, pr_int99u = W.warp_predictions(np.squeeze(yhat), np.squeeze(s2+0.5*s2s), warp_param, percentiles=[0.01,0.99])
             plt.fill_between(xx, pr_int25l[:,0], pr_int25u[:,0], alpha = 0.3,color=clr)
             plt.fill_between(xx, pr_int95l[:,0], pr_int95u[:,0], alpha = 0.3,color=clr)
             plt.fill_between(xx, pr_int99l[:,0], pr_int99u[:,0], alpha = 0.3,color=clr)
    @@ -600,14 +501,14 @@ warping function. This can be done using the function
             plt.plot(xx, pr_int95[:,1],color=clr, linewidth=0.5)
             plt.plot(xx, pr_int99[:,0],color=clr, linewidth=0.5)
             plt.plot(xx, pr_int99[:,1],color=clr, linewidth=0.5)
    -        
    +    
             plt.xlabel('Age')
    -        plt.ylabel(idp) 
    +        plt.ylabel(idp)
             plt.title(idp)
             plt.xlim((0,90))
             plt.savefig(os.path.join(idp_dir, 'centiles_' + str(sex)),  bbox_inches='tight')
             plt.show()
    -        
    +    
         os.chdir(out_dir)
     
     
    @@ -622,7 +523,7 @@ warping function. This can be done using the function
     
     
     
    -.. image:: apply_normative_models_files/apply_normative_models_29_1.png
    +.. image:: apply_normative_models_files/apply_normative_models_ct_27_1.png
     
     
     .. parsed-literal::
    @@ -636,7 +537,7 @@ warping function. This can be done using the function
     
     
     
    -.. image:: apply_normative_models_files/apply_normative_models_29_3.png
    +.. image:: apply_normative_models_files/apply_normative_models_ct_27_3.png
     
     
     .. parsed-literal::
    @@ -650,24 +551,23 @@ warping function. This can be done using the function
     
     
     
    -.. image:: apply_normative_models_files/apply_normative_models_29_5.png
    +.. image:: apply_normative_models_files/apply_normative_models_ct_27_5.png
     
     
     .. code:: ipython3
     
         # explore an example output folder of a single model (one ROI)
    -    # think about what each of these output files represents. 
    +    # think about what each of these output files represents.
         # Hint: look at the variable names and comments in the code block above
         ! ls rh_MeanThickness_thickness/
     
     
     .. parsed-literal::
     
    -    centiles_1.png	    MSLL_predict.txt  RMSE_predict.txt	yhat_predict.txt
    -    cov_bspline_ad.txt  pRho_predict.txt  sitenum_ad.txt	ys2_dummy.pkl
    -    cov_bspline_te.txt  resp_ad.txt       sitenum_te.txt	ys2_predict.txt
    -    EXPV_predict.txt    resp_te.txt       SMSE_predict.txt	Z_predict.txt
    -    Models		    Rho_predict.txt   yhat_dummy.pkl
    +    centiles_1.png	    Models	      Rho_predict.txt	SMSE_predict.txt  ys2_predict.txt
    +    cov_bspline_ad.txt  pRho_predict.txt  RMSE_predict.txt	yhat_dummy.pkl	  Z_predict.txt
    +    cov_bspline_te.txt  resp_ad.txt       sitenum_ad.txt	yhat_predict.txt
    +    EXPV_predict.txt    resp_te.txt       sitenum_te.txt	ys2_dummy.pkl
     
     
     .. code:: ipython3
    @@ -698,7 +598,8 @@ into the original data file.
     
     .. code:: ipython3
     
    -    z_dir = '/content/braincharts/models/lifespan_57K_82sites/deviation_scores/'
    +    z_dir = os.path.join(root_dir, 'models', model_name, 'deviation_scores')
    +    
         filelist = [name for name in os.listdir(z_dir)]
     
     .. code:: ipython3
    diff --git a/doc/build/html/_sources/pages/installation.rst.txt b/doc/build/html/_sources/pages/installation.rst.txt
    index ce1551ce..18e50880 100644
    --- a/doc/build/html/_sources/pages/installation.rst.txt
    +++ b/doc/build/html/_sources/pages/installation.rst.txt
    @@ -20,13 +20,19 @@ Basic installation (on a local machine)
     
     	source activate 
     
    -4. Install required conda packages
    +4. Install torch using the torch instructions.	
    +
    +.. code-block:: bash
    +
    +	# Command found on the torch website: https://pytorch.org/get-started/locally/
    +
    +5. Install required conda packages
     	
     .. code-block:: bash
     
    -	conda install pip pandas scipy
    +	conda install numba nutpie -c conda-forge
     	
    -5. Install PCNtoolkit (plus dependencies)
    +6. Install PCNtoolkit (plus dependencies)
     	
     .. code-block:: bash
     
    @@ -60,7 +66,8 @@ Alternative installation (on a shared resource)
     	
     .. code-block:: bash
     
    -	conda install -y pandas scipy 
    +	# Command found on the torch website: https://pytorch.org/get-started/locally/
    +	conda install numba nutpie -c conda-forge
     
     	
     5. Install pip dependencies
    diff --git a/doc/build/html/_sources/pages/normative_modelling_walkthrough.rst.txt b/doc/build/html/_sources/pages/normative_modelling_walkthrough.rst.txt
    index f63ec8fa..61a297a7 100644
    --- a/doc/build/html/_sources/pages/normative_modelling_walkthrough.rst.txt
    +++ b/doc/build/html/_sources/pages/normative_modelling_walkthrough.rst.txt
    @@ -1,6 +1,4 @@
    -.. title:: GPR tutorial
    -
    -Gaussian Process Regression 
    +**DEMO ON NORMATIVE MODELING**
     ==============================
     
     Created by
    @@ -10,14 +8,9 @@ Mariam Zabihi `@m_zabihi `__
     Saige Rutherford `@being_saige `__
     
     Thomas Wolfers `@ThomasWolfers `__
    -\______________________________________________________________________________\_
    -
    -
    -.. image:: https://colab.research.google.com/assets/colab-badge.svg 
    -    :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/CPC_2020/normative_modelling_walkthrough.ipynb
    -
    +\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_
     
    -Background Story
    +**Background Story**
     --------------------
     
     Morten and Ingrid are concerned about the health of their father,
    @@ -40,13 +33,116 @@ IQ, age as well as the same sex as Nordan.
     Do your best to get as far as you can. However, you do not need to feel
     bad if you cannot complete everything during the tutorial.
     
    -**Task 0:** Load data and install the pcntoolkit
    -------------------------------------------------
    +**Task 0:** Load data and install PCNtoolkit
    +--------------------------------------------
     
     .. code:: ipython3
     
    -    #install normative modeling
    -    ! pip install pcntoolkit==0.26
    +    !pip install pcntoolkit
    +    !pip install nutpie
    +
    +
    +.. parsed-literal::
    +
    +    Collecting https://github.com/amarquand/PCNtoolkit/archive/dev.zip
    +      Downloading https://github.com/amarquand/PCNtoolkit/archive/dev.zip
    +         \ 64.9 MB 16.9 MB/s 0:00:05
    +    [?25h  Installing build dependencies ... [?25l[?25hdone
    +      Getting requirements to build wheel ... [?25l[?25hdone
    +      Preparing metadata (pyproject.toml) ... [?25l[?25hdone
    +    Collecting bspline<0.2.0,>=0.1.1 (from pcntoolkit==0.31.0)
    +      Downloading bspline-0.1.1.tar.gz (84 kB)
    +         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.2/84.2 kB 2.0 MB/s eta 0:00:00
    +    [?25h  Preparing metadata (setup.py) ... [?25l[?25hdone
    +    Collecting matplotlib<4.0.0,>=3.9.2 (from pcntoolkit==0.31.0)
    +      Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)
    +    Requirement already satisfied: nibabel<6.0.0,>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.3.2)
    +    Requirement already satisfied: numpy<2.0,>=1.26 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.26.4)
    +    Requirement already satisfied: pymc<6.0.0,>=5.18.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (5.18.0)
    +    Requirement already satisfied: scikit-learn<2.0.0,>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.5.2)
    +    Requirement already satisfied: scipy<2.0,>=1.12 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.13.1)
    +    Requirement already satisfied: seaborn<0.14.0,>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (0.13.2)
    +    Requirement already satisfied: six<2.0.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from pcntoolkit==0.31.0) (1.16.0)
    +    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.3.1)
    +    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (0.12.1)
    +    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (4.54.1)
    +    Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (1.4.7)
    +    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (24.2)
    +    Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (11.0.0)
    +    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (3.2.0)
    +    Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.9.2->pcntoolkit==0.31.0) (2.8.2)
    +    Requirement already satisfied: importlib-resources>=5.12 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (6.4.5)
    +    Requirement already satisfied: typing-extensions>=4.6 in /usr/local/lib/python3.10/dist-packages (from nibabel<6.0.0,>=5.3.1->pcntoolkit==0.31.0) (4.12.2)
    +    Requirement already satisfied: arviz>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.20.0)
    +    Requirement already satisfied: cachetools>=4.2.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (5.5.0)
    +    Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.1.0)
    +    Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.2.2)
    +    Requirement already satisfied: pytensor<2.26,>=2.25.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.25.5)
    +    Requirement already satisfied: rich>=13.7.1 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (13.9.4)
    +    Requirement already satisfied: threadpoolctl<4.0.0,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.5.0)
    +    Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<2.0.0,>=1.5.2->pcntoolkit==0.31.0) (1.4.2)
    +    Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (75.1.0)
    +    Requirement already satisfied: xarray>=2022.6.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.10.0)
    +    Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.4.1)
    +    Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.8.0)
    +    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)
    +    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2024.2)
    +    Requirement already satisfied: filelock>=3.15 in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.16.1)
    +    Requirement already satisfied: etuples in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.3.9)
    +    Requirement already satisfied: logical-unification in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)
    +    Requirement already satisfied: miniKanren in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.3)
    +    Requirement already satisfied: cons in /usr/local/lib/python3.10/dist-packages (from pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.4.6)
    +    Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.0.0)
    +    Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (2.18.0)
    +    Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.13.0->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (3.12.1)
    +    Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=13.7.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.1.2)
    +    Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (0.12.1)
    +    Requirement already satisfied: multipledispatch in /usr/local/lib/python3.10/dist-packages (from logical-unification->pytensor<2.26,>=2.25.1->pymc<6.0.0,>=5.18.0->pcntoolkit==0.31.0) (1.0.0)
    +    Downloading matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB)
    +       ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.3/8.3 MB 37.7 MB/s eta 0:00:00
    +    [?25hBuilding wheels for collected packages: pcntoolkit, bspline
    +      Building wheel for pcntoolkit (pyproject.toml) ... [?25l[?25hdone
    +      Created wheel for pcntoolkit: filename=pcntoolkit-0.31.0-py3-none-any.whl size=114835 sha256=40635c10c24ccf2c319ee965aaf1038272cd5578f14d9cb3dd14598ddab31d00
    +      Stored in directory: /tmp/pip-ephem-wheel-cache-nl3hy35q/wheels/9e/c4/29/3bca3a5facf8ef69b8622461d8520d24a19d3745aefa093d1e
    +      Building wheel for bspline (setup.py) ... [?25l[?25hdone
    +      Created wheel for bspline: filename=bspline-0.1.1-py3-none-any.whl size=84482 sha256=1da013ad20b77d85515a6a2318eaf7cc4baaa7772eb1d26249f923ce8d779d7e
    +      Stored in directory: /root/.cache/pip/wheels/3c/ab/0a/70927853a6d9166bc777922736063a6f99c43a327c802f9326
    +    Successfully built pcntoolkit bspline
    +    Installing collected packages: bspline, matplotlib, pcntoolkit
    +      Attempting uninstall: matplotlib
    +        Found existing installation: matplotlib 3.8.0
    +        Uninstalling matplotlib-3.8.0:
    +          Successfully uninstalled matplotlib-3.8.0
    +    Successfully installed bspline-0.1.1 matplotlib-3.9.2 pcntoolkit-0.31.0
    +    Collecting nutpie
    +      Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (5.4 kB)
    +    Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (17.0.0)
    +    Requirement already satisfied: pandas>=2.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2.2.2)
    +    Requirement already satisfied: xarray>=2023.6.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (2024.10.0)
    +    Requirement already satisfied: arviz>=0.15.0 in /usr/local/lib/python3.10/dist-packages (from nutpie) (0.20.0)
    +    Requirement already satisfied: setuptools>=60.0.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (75.1.0)
    +    Requirement already satisfied: matplotlib>=3.5 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (3.9.2)
    +    Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.26.4)
    +    Requirement already satisfied: scipy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.13.1)
    +    Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (24.2)
    +    Requirement already satisfied: h5netcdf>=1.0.2 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (1.4.1)
    +    Requirement already satisfied: typing-extensions>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (4.12.2)
    +    Requirement already satisfied: xarray-einstats>=0.3 in /usr/local/lib/python3.10/dist-packages (from arviz>=0.15.0->nutpie) (0.8.0)
    +    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2.8.2)
    +    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2)
    +    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0->nutpie) (2024.2)
    +    Requirement already satisfied: h5py in /usr/local/lib/python3.10/dist-packages (from h5netcdf>=1.0.2->arviz>=0.15.0->nutpie) (3.12.1)
    +    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.3.1)
    +    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (0.12.1)
    +    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (4.54.1)
    +    Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (1.4.7)
    +    Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (11.0.0)
    +    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5->arviz>=0.15.0->nutpie) (3.2.0)
    +    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=2.0->nutpie) (1.16.0)
    +    Downloading nutpie-0.13.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB)
    +       ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 9.5 MB/s eta 0:00:00
    +    [?25hInstalling collected packages: nutpie
    +    Successfully installed nutpie-0.13.2
     
     
     **Option 1:** Connect your Google Drive account, and load data from
    @@ -77,24 +173,24 @@ them to Google Drive.
         !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv
         !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv
         !wget -nc https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv
    -        
    +    
         # code by S. Rutherford
     
     
     .. parsed-literal::
     
    -    --2022-02-17 15:03:58--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics.csv
    -    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.108.133, 185.199.111.133, ...
    -    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.
    +    --2024-11-19 12:28:31--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics.csv
    +    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
    +    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
         HTTP request sent, awaiting response... 200 OK
         Length: 17484 (17K) [text/plain]
         Saving to: ‘camcan_demographics.csv’
         
    -    camcan_demographics 100%[===================>]  17.07K  --.-KB/s    in 0.001s  
    +    camcan_demographics 100%[===================>]  17.07K  --.-KB/s    in 0.003s  
         
    -    2022-02-17 15:03:58 (12.9 MB/s) - ‘camcan_demographics.csv’ saved [17484/17484]
    +    2024-11-19 12:28:31 (5.14 MB/s) - ‘camcan_demographics.csv’ saved [17484/17484]
         
    -    --2022-02-17 15:03:58--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv
    +    --2024-11-19 12:28:31--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_demographics_nordan.csv
         Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
         Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
         HTTP request sent, awaiting response... 200 OK
    @@ -103,20 +199,20 @@ them to Google Drive.
         
         camcan_demographics 100%[===================>]     332  --.-KB/s    in 0s      
         
    -    2022-02-17 15:03:58 (15.5 MB/s) - ‘camcan_demographics_nordan.csv’ saved [332/332]
    +    2024-11-19 12:28:32 (4.10 MB/s) - ‘camcan_demographics_nordan.csv’ saved [332/332]
         
    -    --2022-02-17 15:03:58--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv
    -    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
    -    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
    +    --2024-11-19 12:28:32--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features.csv
    +    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...
    +    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
         HTTP request sent, awaiting response... 200 OK
         Length: 188944 (185K) [text/plain]
         Saving to: ‘camcan_features.csv’
         
         camcan_features.csv 100%[===================>] 184.52K  --.-KB/s    in 0.05s   
         
    -    2022-02-17 15:03:58 (3.88 MB/s) - ‘camcan_features.csv’ saved [188944/188944]
    +    2024-11-19 12:28:33 (3.58 MB/s) - ‘camcan_features.csv’ saved [188944/188944]
         
    -    --2022-02-17 15:03:58--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv
    +    --2024-11-19 12:28:33--  https://raw.githubusercontent.com/predictive-clinical-neuroscience/PCNtoolkit-demo/master/tutorials/CPC_2020/data/camcan_features_nordan.csv
         Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
         Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
         HTTP request sent, awaiting response... 200 OK
    @@ -125,7 +221,7 @@ them to Google Drive.
         
         camcan_features_nor 100%[===================>]   1.66K  --.-KB/s    in 0s      
         
    -    2022-02-17 15:03:59 (25.3 MB/s) - ‘camcan_features_nordan.csv’ saved [1695/1695]
    +    2024-11-19 12:28:33 (22.1 MB/s) - ‘camcan_features_nordan.csv’ saved [1695/1695]
         
     
     
    @@ -160,7 +256,7 @@ between those two files.
         print(norm_demographics)
         print(norm_features)
         
    -    # find overlap in terms of participants between norm_sample_features and 
    +    # find overlap in terms of participants between norm_sample_features and
         # norm_sample_demographics
         
         norm_demographics_features = pd.concat([norm_demographics, norm_features],
    @@ -189,33 +285,182 @@ between those two files.
         CC723395      86   FEMALE    0        145
         
         [707 rows x 4 columns]
    -                  left_Hippocampal_tail  ...  right_Whole_hippocampus
    -    participants                         ...                         
    -    CC110033                 482.768229  ...              3531.764896
    -    CC110037                 595.269259  ...              3835.426137
    -    CC110045                 655.847194  ...              3681.494304
    -    CC110056                 561.345626  ...              3461.373764
    -    CC110062                 756.521166  ...              4782.407821
    -    ...                             ...  ...                      ...
    -    CC722542                 467.896808  ...              3284.108783
    -    CC722651                 406.326167  ...              3210.272905
    -    CC722891                 393.430481  ...              2423.675065
    -    CC723197                 475.929914  ...              3043.146264
    -    CC723395                 444.301617  ...              2988.001288
    +                  left_Hippocampal_tail  left_subiculum    left_CA1  \
    +    participants                                                      
    +    CC110033                 482.768229      419.948094  666.496024   
    +    CC110037                 595.269259      502.320315  698.157779   
    +    CC110045                 655.847194      476.433625  654.215689   
    +    CC110056                 561.345626      447.258970  611.114561   
    +    CC110062                 756.521166      521.034681  716.391590   
    +    ...                             ...             ...         ...   
    +    CC722542                 467.896808      440.794061  688.130914   
    +    CC722651                 406.326167      393.469843  613.794018   
    +    CC722891                 393.430481      303.049578  444.772656   
    +    CC723197                 475.929914      372.449778  525.739508   
    +    CC723395                 444.301617      330.688394  565.359058   
    +    
    +                  left_hippocampal-fissure  left_presubiculum  left_parasubiculum  \
    +    participants                                                                    
    +    CC110033                    131.719049         285.535445           59.209377   
    +    CC110037                    156.304335         367.678385           60.817591   
    +    CC110045                    146.767569         346.347202           67.481121   
    +    CC110056                    126.615335         327.528926           70.901227   
    +    CC110062                    206.205818         384.356075           80.329689   
    +    ...                                ...                ...                 ...   
    +    CC722542                    184.300085         306.287030           72.629722   
    +    CC722651                    224.292557         254.786917           50.006651   
    +    CC722891                    158.987352         202.213773           46.418129   
    +    CC723197                    172.558200         222.384434           40.304889   
    +    CC723395                    206.235576         197.417773           34.240227   
    +    
    +                  left_molecular_layer_HP  left_GC-ML-DG    left_CA3    left_CA4  \
    +    participants                                                                   
    +    CC110033                   583.239022     313.144932  223.022262  266.801434   
    +    CC110037                   619.053381     311.428298  192.949211  260.551999   
    +    CC110045                   622.037178     322.315065  204.756048  275.428880   
    +    CC110056                   597.467595     323.777115  233.160437  278.133998   
    +    CC110062                   666.590397     364.130988  253.917949  311.079938   
    +    ...                               ...            ...         ...         ...   
    +    CC722542                   597.823380     322.236056  252.159707  275.293551   
    +    CC722651                   558.060369     322.176631  261.160474  282.029715   
    +    CC722891                   384.798819     204.562530  149.220194  184.259996   
    +    CC723197                   467.847632     262.950594  215.411133  232.938256   
    +    CC723395                   470.969863     269.963160  234.219152  241.325755   
    +    
    +                  ...  right_hippocampal-fissure  right_presubiculum  \
    +    participants  ...                                                  
    +    CC110033      ...                 133.101613          263.829445   
    +    CC110037      ...                 148.099481          339.309772   
    +    CC110045      ...                 159.687619          324.398659   
    +    CC110056      ...                 123.262352          290.196432   
    +    CC110062      ...                 136.785201          406.323486   
    +    ...           ...                        ...                 ...   
    +    CC722542      ...                 147.391931          273.150743   
    +    CC722651      ...                 185.053756          232.752897   
    +    CC722891      ...                 140.980648          211.807774   
    +    CC723197      ...                 213.080235          258.567312   
    +    CC723395      ...                 205.934342          210.039976   
    +    
    +                  right_parasubiculum  right_molecular_layer_HP  right_GC-ML-DG  \
    +    participants                                                                  
    +    CC110033                47.651798                586.026640      328.057551   
    +    CC110037                59.693186                617.448302      312.116795   
    +    CC110045                55.738550                609.208671      314.460832   
    +    CC110056                67.410418                569.389816      310.290805   
    +    CC110062                80.403248                767.955163      383.194510   
    +    ...                           ...                       ...             ...   
    +    CC722542                50.874375                572.634593      302.504826   
    +    CC722651                44.493903                533.912687      308.141458   
    +    CC722891                57.371362                387.195124      199.979009   
    +    CC723197                50.846316                481.409074      267.190903   
    +    CC723395                33.216529                493.194601      274.020748   
    +    
    +                   right_CA3   right_CA4  right_fimbria  right_HATA  \
    +    participants                                                      
    +    CC110033      283.392837  282.565685      87.127463   73.589184   
    +    CC110037      212.605572  269.307660      99.657823   60.920924   
    +    CC110045      237.869822  271.505300      69.436808   59.323542   
    +    CC110056      218.809310  267.327199      60.505521   51.726283   
    +    CC110062      268.227177  325.403040      92.215816   85.484454   
    +    ...                  ...         ...            ...         ...   
    +    CC722542      236.946562  261.352283      46.144212   43.966509   
    +    CC722651      247.810543  267.203989      68.730322   59.699644   
    +    CC722891      146.836915  187.083211      27.913196   38.629828   
    +    CC723197      211.618157  244.176755      51.893458   65.474967   
    +    CC723395      232.592060  240.980896      68.335159   62.081225   
    +    
    +                  right_Whole_hippocampus  
    +    participants                           
    +    CC110033                  3531.764896  
    +    CC110037                  3835.426137  
    +    CC110045                  3681.494304  
    +    CC110056                  3461.373764  
    +    CC110062                  4782.407821  
    +    ...                               ...  
    +    CC722542                  3284.108783  
    +    CC722651                  3210.272905  
    +    CC722891                  2423.675065  
    +    CC723197                  3043.146264  
    +    CC723395                  2988.001288  
         
         [651 rows x 26 columns]
    -              age sex_name  sex  ...  right_fimbria  right_HATA  right_Whole_hippocampus
    -    CC110033   24     MALE    1  ...      87.127463   73.589184              3531.764896
    -    CC110037   18     MALE    1  ...      99.657823   60.920924              3835.426137
    -    CC110045   24   FEMALE    0  ...      69.436808   59.323542              3681.494304
    -    CC110056   22   FEMALE    0  ...      60.505521   51.726283              3461.373764
    -    CC110062   20     MALE    1  ...      92.215816   85.484454              4782.407821
    -    ...       ...      ...  ...  ...            ...         ...                      ...
    -    CC722542   79     MALE    1  ...      46.144212   43.966509              3284.108783
    -    CC722651   79   FEMALE    0  ...      68.730322   59.699644              3210.272905
    -    CC722891   84   FEMALE    0  ...      27.913196   38.629828              2423.675065
    -    CC723197   80   FEMALE    0  ...      51.893458   65.474967              3043.146264
    -    CC723395   86   FEMALE    0  ...      68.335159   62.081225              2988.001288
    +              age sex_name  sex  IQ_random  left_Hippocampal_tail  left_subiculum  \
    +    CC110033   24     MALE    1         73             482.768229      419.948094   
    +    CC110037   18     MALE    1        103             595.269259      502.320315   
    +    CC110045   24   FEMALE    0        124             655.847194      476.433625   
    +    CC110056   22   FEMALE    0        124             561.345626      447.258970   
    +    CC110062   20     MALE    1        126             756.521166      521.034681   
    +    ...       ...      ...  ...        ...                    ...             ...   
    +    CC722542   79     MALE    1        116             467.896808      440.794061   
    +    CC722651   79   FEMALE    0        128             406.326167      393.469843   
    +    CC722891   84   FEMALE    0        129             393.430481      303.049578   
    +    CC723197   80   FEMALE    0         96             475.929914      372.449778   
    +    CC723395   86   FEMALE    0        145             444.301617      330.688394   
    +    
    +                left_CA1  left_hippocampal-fissure  left_presubiculum  \
    +    CC110033  666.496024                131.719049         285.535445   
    +    CC110037  698.157779                156.304335         367.678385   
    +    CC110045  654.215689                146.767569         346.347202   
    +    CC110056  611.114561                126.615335         327.528926   
    +    CC110062  716.391590                206.205818         384.356075   
    +    ...              ...                       ...                ...   
    +    CC722542  688.130914                184.300085         306.287030   
    +    CC722651  613.794018                224.292557         254.786917   
    +    CC722891  444.772656                158.987352         202.213773   
    +    CC723197  525.739508                172.558200         222.384434   
    +    CC723395  565.359058                206.235576         197.417773   
    +    
    +              left_parasubiculum  ...  right_hippocampal-fissure  \
    +    CC110033           59.209377  ...                 133.101613   
    +    CC110037           60.817591  ...                 148.099481   
    +    CC110045           67.481121  ...                 159.687619   
    +    CC110056           70.901227  ...                 123.262352   
    +    CC110062           80.329689  ...                 136.785201   
    +    ...                      ...  ...                        ...   
    +    CC722542           72.629722  ...                 147.391931   
    +    CC722651           50.006651  ...                 185.053756   
    +    CC722891           46.418129  ...                 140.980648   
    +    CC723197           40.304889  ...                 213.080235   
    +    CC723395           34.240227  ...                 205.934342   
    +    
    +              right_presubiculum  right_parasubiculum  right_molecular_layer_HP  \
    +    CC110033          263.829445            47.651798                586.026640   
    +    CC110037          339.309772            59.693186                617.448302   
    +    CC110045          324.398659            55.738550                609.208671   
    +    CC110056          290.196432            67.410418                569.389816   
    +    CC110062          406.323486            80.403248                767.955163   
    +    ...                      ...                  ...                       ...   
    +    CC722542          273.150743            50.874375                572.634593   
    +    CC722651          232.752897            44.493903                533.912687   
    +    CC722891          211.807774            57.371362                387.195124   
    +    CC723197          258.567312            50.846316                481.409074   
    +    CC723395          210.039976            33.216529                493.194601   
    +    
    +              right_GC-ML-DG   right_CA3   right_CA4  right_fimbria  right_HATA  \
    +    CC110033      328.057551  283.392837  282.565685      87.127463   73.589184   
    +    CC110037      312.116795  212.605572  269.307660      99.657823   60.920924   
    +    CC110045      314.460832  237.869822  271.505300      69.436808   59.323542   
    +    CC110056      310.290805  218.809310  267.327199      60.505521   51.726283   
    +    CC110062      383.194510  268.227177  325.403040      92.215816   85.484454   
    +    ...                  ...         ...         ...            ...         ...   
    +    CC722542      302.504826  236.946562  261.352283      46.144212   43.966509   
    +    CC722651      308.141458  247.810543  267.203989      68.730322   59.699644   
    +    CC722891      199.979009  146.836915  187.083211      27.913196   38.629828   
    +    CC723197      267.190903  211.618157  244.176755      51.893458   65.474967   
    +    CC723395      274.020748  232.592060  240.980896      68.335159   62.081225   
    +    
    +              right_Whole_hippocampus  
    +    CC110033              3531.764896  
    +    CC110037              3835.426137  
    +    CC110045              3681.494304  
    +    CC110056              3461.373764  
    +    CC110062              4782.407821  
    +    ...                           ...  
    +    CC722542              3284.108783  
    +    CC722651              3210.272905  
    +    CC722891              2423.675065  
    +    CC723197              3043.146264  
    +    CC723395              2988.001288  
         
         [650 rows x 30 columns]
     
    @@ -252,22 +497,22 @@ putative biomarkers that are not restricted to brain imaging.
     
         # perpare covariate_normsample for sex and age
         covariate_normsample = norm_demographics_features[['sex',
    -                                                       'age']] 
    +                                                       'age']]
         
         covariate_normsample.to_csv('covariate_normsample.txt',
                                     sep = ' ',
    -                                header = False, 
    +                                header = False,
                                     index = False)
         
         # perpare features_normsample for relevant hyppocampal subfields
    -    features_normsample = norm_demographics_features[['left_CA1', 
    +    features_normsample = norm_demographics_features[['left_CA1',
                                                          'left_CA3',
                                                          'right_CA1',
                                                          'right_CA3']]
         
    -    features_normsample.to_csv('features_normsample.txt', 
    -                               sep = ' ', 
    -                               header = False, 
    +    features_normsample.to_csv('features_normsample.txt',
    +                               sep = ' ',
    +                               header = False,
                                    index = False)
         
         # code by T. Wolfers
    @@ -278,7 +523,7 @@ putative biomarkers that are not restricted to brain imaging.
     Once you have prepared and saved all the necessary files. Look at the
     pcntoolkit for running normative modeling. Select an appropritate method
     set up the toolkit and run your analyses using 2-fold cross validation
    -in the normsample. Change the output suffix from estimate to ’_2fold’.
    +in the normsample. Change the output suffix from estimate to ’\_2fold’.
     
     HINT: You primarily need the estimate function.
     
    @@ -296,7 +541,7 @@ you will have no doubt when it is correctly running.
         
         # run normative modeling using 2-fold cross-validation
         
    -    pcn.normative.estimate(covfile = 'covariate_normsample.txt', 
    +    pcn.normative.estimate(covfile = 'covariate_normsample.txt',
                                respfile = 'features_normsample.txt',
                                cvfolds = 2,
                                alg = 'gpr',
    @@ -307,55 +552,66 @@ you will have no doubt when it is correctly running.
     
     .. parsed-literal::
     
    +    inscaler: None
    +    outscaler: None
         Processing data in features_normsample.txt
         Estimating model  1 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    -    Warning: Estimation of posterior distribution failed
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Optimization terminated successfully.
    -             Current function value: 1856.502251
    -             Iterations: 40
    -             Function evaluations: 99
    -             Gradient evaluations: 99
    +             Current function value: 1925.145213
    +             Iterations: 30
    +             Function evaluations: 75
    +             Gradient evaluations: 69
         Estimating model  2 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    -    Optimization terminated successfully.
    -             Current function value: 1596.239263
    -             Iterations: 42
    -             Function evaluations: 93
    -             Gradient evaluations: 93
    -    Estimating model  3 of 4
    -    Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    -    Optimization terminated successfully.
    -             Current function value: 1862.316698
    -             Iterations: 47
    -             Function evaluations: 104
    -             Gradient evaluations: 104
    -    Estimating model  4 of 4
    -    Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
    -             Current function value: 1587.950935
    -             Iterations: 30
    -             Function evaluations: 64
    -             Gradient evaluations: 64
    -    Estimating model  1 of 4
    +             Current function value: 1627.864114
    +             Iterations: 41
    +             Function evaluations: 102
    +             Gradient evaluations: 102
    +    Estimating model  3 of 4
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
    -             Current function value: 1916.461484
    -             Iterations: 44
    -             Function evaluations: 94
    -             Gradient evaluations: 87
    -    Estimating model  2 of 4
    +             Current function value: 1922.205071
    +             Iterations: 30
    +             Function evaluations: 73
    +             Gradient evaluations: 67
    +    Estimating model  4 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -365,36 +621,48 @@ you will have no doubt when it is correctly running.
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
    -             Current function value: 1611.661888
    -             Iterations: 34
    -             Function evaluations: 85
    -             Gradient evaluations: 85
    -    Estimating model  3 of 4
    -    Warning: Estimation of posterior distribution failed
    +             Current function value: 1621.445961
    +             Iterations: 78
    +             Function evaluations: 181
    +             Gradient evaluations: 181
    +    Estimating model  1 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
    -             Current function value: 1912.665851
    -             Iterations: 61
    -             Function evaluations: 133
    -             Gradient evaluations: 126
    -    Estimating model  4 of 4
    +             Current function value: 1844.061877
    +             Iterations: 36
    +             Function evaluations: 81
    +             Gradient evaluations: 81
    +    Estimating model  2 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    +    Optimization terminated successfully.
    +             Current function value: 1580.315780
    +             Iterations: 37
    +             Function evaluations: 79
    +             Gradient evaluations: 79
    +    Estimating model  3 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    +    Optimization terminated successfully.
    +             Current function value: 1851.005493
    +             Iterations: 32
    +             Function evaluations: 68
    +             Gradient evaluations: 68
    +    Estimating model  4 of 4
    +    Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
    -             Current function value: 1619.045647
    -             Iterations: 43
    -             Function evaluations: 110
    -             Gradient evaluations: 105
    +             Current function value: 1584.089863
    +             Iterations: 39
    +             Function evaluations: 91
    +             Gradient evaluations: 91
         Evaluating the model ...
         Writing outputs ...
     
    @@ -423,13 +691,13 @@ model using the appropriate specifications.
                                           20, 30, 40, 50, 60, 70, 80]}
         covariate_forwardmodel = pd.DataFrame(data=covariate_forwardmodel)
         
    -    covariate_forwardmodel.to_csv('covariate_forwardmodel.txt', 
    -                               sep = ' ', 
    -                               header = False, 
    +    covariate_forwardmodel.to_csv('covariate_forwardmodel.txt',
    +                               sep = ' ',
    +                               header = False,
                                    index = False)
         
         # estimate forward model
    -    pcn.normative.estimate(covfile = 'covariate_normsample.txt', 
    +    pcn.normative.estimate(covfile = 'covariate_normsample.txt',
                                respfile = 'features_normsample.txt',
                                testcov = 'covariate_forwardmodel.txt',
                                cvfolds = None,
    @@ -441,8 +709,22 @@ model using the appropriate specifications.
     
     .. parsed-literal::
     
    +    inscaler: None
    +    outscaler: None
         Processing data in features_normsample.txt
         Estimating model  1 of 4
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -451,8 +733,8 @@ model using the appropriate specifications.
         Optimization terminated successfully.
                  Current function value: 3781.497401
                  Iterations: 20
    -             Function evaluations: 61
    -             Gradient evaluations: 54
    +             Function evaluations: 58
    +             Gradient evaluations: 52
         Estimating model  2 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -466,10 +748,22 @@ model using the appropriate specifications.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3201.761309
    -             Iterations: 39
    -             Function evaluations: 108
    -             Gradient evaluations: 108
    +             Iterations: 48
    +             Function evaluations: 114
    +             Gradient evaluations: 114
         Estimating model  3 of 4
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -480,9 +774,9 @@ model using the appropriate specifications.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3771.310488
    -             Iterations: 47
    -             Function evaluations: 181
    -             Gradient evaluations: 167
    +             Iterations: 48
    +             Function evaluations: 156
    +             Gradient evaluations: 143
         Estimating model  4 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -496,9 +790,9 @@ model using the appropriate specifications.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3200.837262
    -             Iterations: 40
    -             Function evaluations: 104
    -             Gradient evaluations: 104
    +             Iterations: 42
    +             Function evaluations: 116
    +             Gradient evaluations: 116
         Writing outputs ...
     
     
    @@ -508,7 +802,8 @@ model using the appropriate specifications.
     Visualize the forward model of the normative model similar to the figure
     below.
     
    -.. figure:: 
    +.. figure::
    +   
        :alt: 1-s2.0-S245190221830329X-gr2.jpg
     
        1-s2.0-S245190221830329X-gr2.jpg
    @@ -531,12 +826,12 @@ individual participants.
             S_hat=np.mean(S2,axis=0)
             n=S2.shape[0]
             CI[i,:]=z*np.power(S_hat/n,.5)
    -      return CI 
    +      return CI
         
         
         feature_names=['left_CA1','left_CA3','right_CA1','right_CA3']
         sex_covariates=[ 'Female','Male']
    -    # Creating plots for Female and male 
    +    # Creating plots for Female and male
         for i,sex in enumerate(sex_covariates):
         #forward model data
             forward_yhat = pd.read_csv('yhat_forward.txt', sep = ' ', header=None)
    @@ -544,71 +839,71 @@ individual participants.
             yhat_forward=yhat_forward[7*i:7*(i+1)]
             x_forward=[20, 30, 40, 50, 60, 70, 80]
         
    -    # Find the index of the data exclusively for one sex. Female:0, Male: 1   
    +    # Find the index of the data exclusively for one sex. Female:0, Male: 1
             inx=np.where(covariate_normsample.sex==i)[0]
             x=covariate_normsample.values[inx,1]
         # actual data
             y = pd.read_csv('features_normsample.txt', sep = ' ', header=None)
             y=y.values[inx]
    -    # confidence Interval yhat+ z *(std/n^.5)-->.95 % CI:z=1.96, 99% CI:z=2.58 
    +    # confidence Interval yhat+ z *(std/n^.5)-->.95 % CI:z=1.96, 99% CI:z=2.58
             s2= pd.read_csv('ys2_2fold.txt', sep = ' ', header=None)
             s2=s2.values[inx]
         
             CI_95=confidence_interval(s2,x,1.96)
             CI_99=confidence_interval(s2,x,2.58)
         
    -    # Creat a trejactroy for each point     
    +    # Creat a trejactroy for each point
             for j,name in enumerate(feature_names):
                  fig=plt.figure()
                  ax=fig.add_subplot(111)
                  ax.plot(x_forward,yhat_forward[:,j], linewidth=4, label='Normative trejactory')
         
         
    -             ax.plot(x_forward,CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g', label='95% confidence interval')  
    -             ax.plot(x_forward,-CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g') 
    +             ax.plot(x_forward,CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g', label='95% confidence interval')
    +             ax.plot(x_forward,-CI_95[:,j]+yhat_forward[:,j], linewidth=2,linestyle='--',c='g')
         
    -             ax.plot(x_forward,CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k', label='99% confidence interval')  
    -             ax.plot(x_forward,-CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k') 
    +             ax.plot(x_forward,CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k', label='99% confidence interval')
    +             ax.plot(x_forward,-CI_99[:,j]+yhat_forward[:,j], linewidth=1,linestyle='--',c='k')
         
                  ax.scatter(x,y[:,j],c='r', label=name)
                  plt.legend(loc='upper left')
                  plt.title('Normative trejectory of' +name+' in '+sex+' cohort')
                  plt.show()
                  plt.close()
    -            
    +    
         # code by M. Zabihi
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_0.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_0.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_1.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_1.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_2.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_2.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_3.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_3.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_4.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_4.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_5.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_5.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_6.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_6.png
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_22_7.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_23_7.png
     
     
     **TASK 6:** Apply the normative model to Nordan’s data and the dementia patients.
    @@ -626,25 +921,25 @@ individual participants.
         
         # create a covariate file for Nordan's as well as the patient's demograhpics
         covariate_nordan = demographics_nordan[['sex',
    -                                            'age']] 
    +                                            'age']]
         covariate_nordan.to_csv('covariate_nordan.txt',
                                 sep = ' ',
    -                            header = False, 
    +                            header = False,
                                 index = False)
         
         # create the corresponding feature file
    -    features_nordan = features_nordan[['left_CA1', 
    +    features_nordan = features_nordan[['left_CA1',
                                           'left_CA3',
                                           'right_CA1',
                                           'right_CA3']]
         
    -    features_nordan.to_csv('features_nordan.txt', 
    -                            sep = ' ', 
    -                            header = False, 
    +    features_nordan.to_csv('features_nordan.txt',
    +                            sep = ' ',
    +                            header = False,
                                 index = False)
         
         # apply normative modeling
    -    pcn.normative.estimate(covfile = 'covariate_normsample.txt', 
    +    pcn.normative.estimate(covfile = 'covariate_normsample.txt',
                                respfile = 'features_normsample.txt',
                                testcov = 'covariate_nordan.txt',
                                testresp = 'features_nordan.txt',
    @@ -657,8 +952,22 @@ individual participants.
     
     .. parsed-literal::
     
    +    inscaler: None
    +    outscaler: None
         Processing data in features_normsample.txt
         Estimating model  1 of 4
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -667,8 +976,8 @@ individual participants.
         Optimization terminated successfully.
                  Current function value: 3781.497401
                  Iterations: 20
    -             Function evaluations: 61
    -             Gradient evaluations: 54
    +             Function evaluations: 58
    +             Gradient evaluations: 52
         Estimating model  2 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -682,10 +991,22 @@ individual participants.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3201.761309
    -             Iterations: 39
    -             Function evaluations: 108
    -             Gradient evaluations: 108
    +             Iterations: 48
    +             Function evaluations: 114
    +             Gradient evaluations: 114
         Estimating model  3 of 4
    +
    +
    +.. parsed-literal::
    +
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:147: RuntimeWarning: overflow encountered in exp
    +      self.sf2 = np.exp(2*theta[self.D])
    +    /usr/local/lib/python3.10/dist-packages/pcntoolkit/model/gp.py:160: RuntimeWarning: invalid value encountered in multiply
    +      dK = K * squared_dist(x[:, i]/self.ell[i], x[:, i]/self.ell[i])
    +
    +
    +.. parsed-literal::
    +
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -696,9 +1017,9 @@ individual participants.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3771.310488
    -             Iterations: 47
    -             Function evaluations: 181
    -             Gradient evaluations: 167
    +             Iterations: 48
    +             Function evaluations: 156
    +             Gradient evaluations: 143
         Estimating model  4 of 4
         Warning: Estimation of posterior distribution failed
         Warning: Estimation of posterior distribution failed
    @@ -712,9 +1033,9 @@ individual participants.
         Warning: Estimation of posterior distribution failed
         Optimization terminated successfully.
                  Current function value: 3200.837262
    -             Iterations: 40
    -             Function evaluations: 104
    -             Gradient evaluations: 104
    +             Iterations: 42
    +             Function evaluations: 116
    +             Gradient evaluations: 116
         Evaluating the model ...
         Writing outputs ...
     
    @@ -761,21 +1082,21 @@ age 20. Do that for both sexes seperately.
         lengths = len(forward_yhat[hyppocampal_subfield])
         for entry in forward_yhat[hyppocampal_subfield]:
           if count > 0 and count < 7:
    -        loop_percentage_change_female = calculate_percentage_change(entry, 
    +        loop_percentage_change_female = calculate_percentage_change(entry,
                                                                         forward_yhat.iloc[0,
                                                                                           hyppocampal_subfield])
             percentage_change_female.append(loop_percentage_change_female)
    -      elif count > 7: 
    +      elif count > 7:
             loop_percentage_change_male = calculate_percentage_change(entry,
                                                                       forward_yhat.iloc[9,
                                                                                         hyppocampal_subfield])
             percentage_change_male.append(loop_percentage_change_male)
    -      count = count + 1 
    +      count = count + 1
         
    -    names = ['30 compared to 20 years', 
    -             '40 compared to 20 years', 
    -             '50 compared to 20 years', 
    -             '60 compared to 20 years', 
    +    names = ['30 compared to 20 years',
    +             '40 compared to 20 years',
    +             '50 compared to 20 years',
    +             '60 compared to 20 years',
                  '70 compared to 20 years',
                  '80 compared to 20 years']
         
    @@ -803,5 +1124,6 @@ age 20. Do that for both sexes seperately.
     
     
     
    -.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_32_1.png
    +.. image:: normative_modelling_walkthrough_files/normative_modelling_walkthrough_33_1.png
    +
     
    diff --git a/doc/build/html/_sources/pages/other_predictive_models.rst.txt b/doc/build/html/_sources/pages/other_predictive_models.rst.txt
    index c67b860c..2b841cad 100644
    --- a/doc/build/html/_sources/pages/other_predictive_models.rst.txt
    +++ b/doc/build/html/_sources/pages/other_predictive_models.rst.txt
    @@ -1,24 +1,23 @@
    -.. title:: Predictive modeling tutorial
    -
    -Predictive modeling using deviation scores
    -=============================================
    -
    -The Normative Modeling Framework for Computational Psychiatry. Nature Protocols. https://www.nature.com/articles/s41596-022-00696-5.
    -
    -Created by `Saige Rutherford `__
    -
    +.. code:: ipython3
     
    -.. image:: https://colab.research.google.com/assets/colab-badge.svg 
    -    :target: https://colab.research.google.com/github/predictive-clinical-neuroscience/PCNtoolkit-demo/blob/main/tutorials/BLR_protocol/other_predictive_models.ipynb
    +    ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git
     
     
    -.. code:: ipython3
    +.. parsed-literal::
     
    -    ! git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git
    +    Cloning into 'PCNtoolkit-demo'...
    +    remote: Enumerating objects: 1237, done.
    +    remote: Counting objects: 100% (360/360), done.
    +    remote: Compressing objects: 100% (185/185), done.
    +    remote: Total 1237 (delta 200), reused 306 (delta 172), pack-reused 877 (from 1)
    +    Receiving objects: 100% (1237/1237), 141.45 MiB | 10.83 MiB/s, done.
    +    Resolving deltas: 100% (562/562), done.
    +    Updating files: 100% (70/70), done.
     
     
     .. code:: ipython3
     
    +    
         import os
     
     .. code:: ipython3
    @@ -42,7 +41,7 @@ Created by `Saige Rutherford `__
         import numpy as np
         from matplotlib import pyplot as plt
         from scipy import stats, linalg
    -    from sklearn import preprocessing, decomposition, linear_model, metrics 
    +    from sklearn import preprocessing, decomposition, linear_model, metrics
         import warnings
     
     .. code:: ipython3
    @@ -62,7 +61,7 @@ Created by `Saige Rutherford `__
         plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title
     
     Load Data
    ------------------------------
    +=========
     
     .. code:: ipython3
     
    @@ -85,7 +84,7 @@ Load Data
     
     
     Create Train/Test Splits
    ---------------------------------------
    +========================
     
     .. code:: ipython3
     
    @@ -117,7 +116,7 @@ Create Train/Test Splits
         test_mu_centered_ct = (test_data_ct - train_data_ct.mean(axis=0))
     
     Principal Component Regression (BBS)
    ---------------------------------------
    +====================================
     
     .. code:: ipython3
     
    @@ -131,7 +130,7 @@ Principal Component Regression (BBS)
     
     .. code:: ipython3
     
    -    print(f'First PC explains {pca_model_z.explained_variance_ratio_[0]*100:.2f}% of the total variance.')
    +    print(f'First PC explains {pca_model_z.explained_variance_ratio_[0]*100:.2f}% of the total variance.\nThis is an artifact of zero inflated data')
         plt.figure(figsize=(10, 7))
         plt.bar(range(1, 51), pca_model_z.explained_variance_ratio_[1:51])
         plt.title('Deviations model Variance Explained Ratio\nPCs 1-50', fontsize=25)
    @@ -141,15 +140,16 @@ Principal Component Regression (BBS)
     .. parsed-literal::
     
         First PC explains 23.41% of the total variance.
    +    This is an artifact of zero inflated data
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_16_1.png
    +.. image:: other_predictive_models_files/other_predictive_models_17_1.png
     
     
     .. code:: ipython3
     
    -    print(f'First PC explains {pca_model_ct.explained_variance_ratio_[0]*100:.2f}% of the total variance.')
    +    print(f'First PC explains {pca_model_ct.explained_variance_ratio_[0]*100:.2f}% of the total variance.\nThis is an artifact of zero inflated data')
         plt.figure(figsize=(10, 7))
         plt.bar(range(1, 51), pca_model_ct.explained_variance_ratio_[1:51])
         plt.title('Cortical Thickness model Variance Explained Ratio\nPCs 1-50', fontsize=25)
    @@ -159,10 +159,11 @@ Principal Component Regression (BBS)
     .. parsed-literal::
     
         First PC explains 24.28% of the total variance.
    +    This is an artifact of zero inflated data
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_17_1.png
    +.. image:: other_predictive_models_files/other_predictive_models_18_1.png
     
     
     .. code:: ipython3
    @@ -176,7 +177,7 @@ Principal Component Regression (BBS)
         test_transformed_ct = pca_model_ct.transform(test_data_ct)
     
     Fit Linear Regression Model
    ---------------------------------------
    +---------------------------
     
     .. code:: ipython3
     
    @@ -184,14 +185,14 @@ Fit Linear Regression Model
         # we will check that this matches sklearn results later
         
         # fit ols model on dimension reduced train data
    -    train_features_z = np.hstack([np.ones((train_transformed_z.shape[0], 1)), 
    +    train_features_z = np.hstack([np.ones((train_transformed_z.shape[0], 1)),
                                     train_transformed_z])
    -    train_features_inv_z = linalg.pinv2(train_features_z)
    +    train_features_inv_z = linalg.pinv(train_features_z)
         train_betas_z = np.dot(train_features_inv_z, train_phen)
         train_pred_phen_z = np.dot(train_features_z, train_betas_z)
         
         # fit ols model on dimension reduced test data
    -    test_features_z = np.hstack([np.ones((test_transformed_z.shape[0], 1)), 
    +    test_features_z = np.hstack([np.ones((test_transformed_z.shape[0], 1)),
                                    test_transformed_z])
         test_pred_phen_z = np.dot(test_features_z, train_betas_z)
     
    @@ -201,14 +202,14 @@ Fit Linear Regression Model
         # we will check that this matches sklearn results later
         
         # fit ols model on dimension reduced train data
    -    train_features_ct = np.hstack([np.ones((train_transformed_ct.shape[0], 1)), 
    +    train_features_ct = np.hstack([np.ones((train_transformed_ct.shape[0], 1)),
                                     train_transformed_ct])
    -    train_features_inv_ct = linalg.pinv2(train_features_ct)
    +    train_features_inv_ct = linalg.pinv(train_features_ct)
         train_betas_ct = np.dot(train_features_inv_ct, train_phen)
         train_pred_phen_ct = np.dot(train_features_ct, train_betas_ct)
         
         # fit ols model on dimension reduced test data
    -    test_features_ct = np.hstack([np.ones((test_transformed_ct.shape[0], 1)), 
    +    test_features_ct = np.hstack([np.ones((test_transformed_ct.shape[0], 1)),
                                    test_transformed_ct])
         test_pred_phen_ct = np.dot(test_features_ct, train_betas_ct)
     
    @@ -216,34 +217,20 @@ Fit Linear Regression Model
     
         # OLS using sklearn
         
    -    lr_model_z = linear_model.LinearRegression(fit_intercept=True, normalize=False)
    +    lr_model_z = linear_model.LinearRegression(fit_intercept=True)
         lr_model_z.fit(train_transformed_z, train_phen)
         train_pred_phen_lr_model_z = lr_model_z.predict(train_transformed_z)
         test_pred_phen_lr_model_z = lr_model_z.predict(test_transformed_z)
     
    -
    -.. parsed-literal::
    -
    -    /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead.
    -      FutureWarning,
    -
    -
     .. code:: ipython3
     
         # OLS using sklearn
         
    -    lr_model_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False)
    +    lr_model_ct = linear_model.LinearRegression(fit_intercept=True)
         lr_model_ct.fit(train_transformed_ct, train_phen)
         train_pred_phen_lr_model_ct = lr_model_ct.predict(train_transformed_ct)
         test_pred_phen_lr_model_ct = lr_model_ct.predict(test_transformed_ct)
     
    -
    -.. parsed-literal::
    -
    -    /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead.
    -      FutureWarning,
    -
    -
     .. code:: ipython3
     
         # ensure matrix math predictions and sklearn predictions are accurate to 5 decimals
    @@ -270,8 +257,8 @@ Fit Linear Regression Model
         Passed
     
     
    -Mean Squared/Absolute Error of Predictions
    ------------------------------------------------
    +Accuracy of Predictions
    +-----------------------
     
     .. code:: ipython3
     
    @@ -326,18 +313,18 @@ BBS Cross Validation
     
         def bbs(X, y, n_components, n_cv_splits, pred_summary_function, verbose=False):
             assert X.shape[0] == y.shape[0]
    -        
    +    
             fold_accs_train = []
             fold_accs_test = []
             np.random.seed(42)
             shuffled_idxs = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=False)
             for fold_i, test_idxs in enumerate(np.array_split(shuffled_idxs, n_cv_splits)):
    -            train_mask = np.ones(X.shape[0], np.bool)
    +            train_mask = np.ones(X.shape[0], bool)
                 train_mask[test_idxs] = 0
         
                 # create train/text X, y
                 train_X, test_X = X[train_mask, :], X[test_idxs, :]
    -            train_y, test_y = y[train_mask], y[test_idxs]  
    +            train_y, test_y = y[train_mask], y[test_idxs]
         
                 # mean center columns using train data only
                 train_X_mu = train_X.mean(axis=0)
    @@ -356,7 +343,7 @@ BBS Cross Validation
                 # fit OLS model
                 if verbose:
                     print(f'CV Fold: {fold_i+1:<10} Fitting Linear Regression model...')
    -            lr_model = linear_model.LinearRegression(fit_intercept=True, normalize=False)
    +            lr_model = linear_model.LinearRegression(fit_intercept=True)
                 lr_model.fit(train_X, train_y)
         
                 train_pred = lr_model.predict(train_X)
    @@ -364,11 +351,11 @@ BBS Cross Validation
         
                 fold_accs_train.append(pred_summary_function(train_y, train_pred))
                 fold_accs_test.append(pred_summary_function(test_y, test_pred))
    -            
    +    
                 if verbose:
    -                print(f'CV Fold: {fold_i+1:<10} Train MAE: {round(fold_accs_train[-1], 3):<10} Test MAE: {round(fold_accs_test[-1], 3):<10}')
    +                print(f'CV Fold: {fold_i+1:<10} Train Accuracy: {round(fold_accs_train[-1], 3):<10} Test Accuracy: {round(fold_accs_test[-1], 3):<10}')
    +    
         
    -        
             plt.figure(figsize=(13, 7))
             plt.plot(range(1, len(fold_accs_train)+1), fold_accs_train, linestyle='-', marker='o', color='C0', label='Train CV Performance')
             plt.plot(range(1, len(fold_accs_test)+1), fold_accs_test, linestyle='-', marker='o', color='C1', label='Test CV Performance')
    @@ -377,7 +364,7 @@ BBS Cross Validation
             plt.xlabel('CV Fold')
             plt.legend(fontsize=20)
             plt.show()
    -        
    +    
             return fold_accs_train, fold_accs_test
     
     .. code:: ipython3
    @@ -389,23 +376,23 @@ BBS Cross Validation
     
         CV Fold: 1          Fitting PCA model...
         CV Fold: 1          Fitting Linear Regression model...
    -    CV Fold: 1          Train MAE: 0.599      Test MAE: 0.619     
    +    CV Fold: 1          Train Accuracy: 0.599      Test Accuracy: 0.619     
         CV Fold: 2          Fitting PCA model...
         CV Fold: 2          Fitting Linear Regression model...
    -    CV Fold: 2          Train MAE: 0.572      Test MAE: 0.713     
    +    CV Fold: 2          Train Accuracy: 0.572      Test Accuracy: 0.713     
         CV Fold: 3          Fitting PCA model...
         CV Fold: 3          Fitting Linear Regression model...
    -    CV Fold: 3          Train MAE: 0.577      Test MAE: 0.687     
    +    CV Fold: 3          Train Accuracy: 0.577      Test Accuracy: 0.687     
         CV Fold: 4          Fitting PCA model...
         CV Fold: 4          Fitting Linear Regression model...
    -    CV Fold: 4          Train MAE: 0.604      Test MAE: 0.608     
    +    CV Fold: 4          Train Accuracy: 0.604      Test Accuracy: 0.608     
         CV Fold: 5          Fitting PCA model...
         CV Fold: 5          Fitting Linear Regression model...
    -    CV Fold: 5          Train MAE: 0.581      Test MAE: 0.687     
    +    CV Fold: 5          Train Accuracy: 0.581      Test Accuracy: 0.687     
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_32_3.png
    +.. image:: other_predictive_models_files/other_predictive_models_33_1.png
     
     
     .. code:: ipython3
    @@ -417,41 +404,43 @@ BBS Cross Validation
     
         CV Fold: 1          Fitting PCA model...
         CV Fold: 1          Fitting Linear Regression model...
    -    CV Fold: 1          Train MAE: 0.622      Test MAE: 0.643     
    +    CV Fold: 1          Train Accuracy: 0.622      Test Accuracy: 0.643     
         CV Fold: 2          Fitting PCA model...
         CV Fold: 2          Fitting Linear Regression model...
    -    CV Fold: 2          Train MAE: 0.605      Test MAE: 0.723     
    +    CV Fold: 2          Train Accuracy: 0.605      Test Accuracy: 0.723     
         CV Fold: 3          Fitting PCA model...
         CV Fold: 3          Fitting Linear Regression model...
    -    CV Fold: 3          Train MAE: 0.604      Test MAE: 0.701     
    +    CV Fold: 3          Train Accuracy: 0.604      Test Accuracy: 0.701     
         CV Fold: 4          Fitting PCA model...
         CV Fold: 4          Fitting Linear Regression model...
    -    CV Fold: 4          Train MAE: 0.624      Test MAE: 0.646     
    +    CV Fold: 4          Train Accuracy: 0.624      Test Accuracy: 0.646     
         CV Fold: 5          Fitting PCA model...
         CV Fold: 5          Fitting Linear Regression model...
    -    CV Fold: 5          Train MAE: 0.614      Test MAE: 0.722     
    +    CV Fold: 5          Train Accuracy: 0.614      Test Accuracy: 0.722     
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_33_3.png
    +.. image:: other_predictive_models_files/other_predictive_models_34_1.png
     
     
     Connectome Predictive Modelling
    ---------------------------------------
    +===============================
     
     .. code:: ipython3
     
         # correlation train_brain with train_phenotype
         train_z_pheno_corr_p = [stats.pearsonr(train_data_z[:, i], train_phen) for i in range(train_data_z.shape[1])]  # train_pheno_corr_p: (259200, )
    +    # there are some nan correlations if brain data is poorly cropped (ie: some columns are always 0)
     
     .. code:: ipython3
     
         # correlation train_brain with train_phenotype
         train_ct_pheno_corr_p = [stats.pearsonr(train_data_ct[:, i], train_phen) for i in range(train_data_ct.shape[1])]  # train_pheno_corr_p: (259200, )
    +    # there are some nan correlations if brain data is poorly cropped (ie: some columns are always 0)
     
     .. code:: ipython3
     
    -    # split into positive and negative correlations 
    +    # split into positive and negative correlations
         # and keep edges with p values below threshold
         pval_threshold = 0.01
         
    @@ -495,15 +484,13 @@ Connectome Predictive Modelling
     
     .. code:: ipython3
     
    -    fit_pos_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum_z.reshape(-1, 1), train_phen)
    -    fit_neg_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum_z.reshape(-1, 1), train_phen)
    -
    +    fit_pos_z = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum_z.reshape(-1, 1), train_phen)
    +    fit_neg_z = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum_z.reshape(-1, 1), train_phen)
     
     .. code:: ipython3
     
    -    fit_pos_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum_ct.reshape(-1, 1), train_phen)
    -    fit_neg_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum_ct.reshape(-1, 1), train_phen)
    -
    +    fit_pos_ct = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum_ct.reshape(-1, 1), train_phen)
    +    fit_neg_ct = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum_ct.reshape(-1, 1), train_phen)
     
     .. code:: ipython3
     
    @@ -512,52 +499,48 @@ Connectome Predictive Modelling
         pos_error_ct = metrics.mean_absolute_error(train_phen, fit_pos_ct.predict(train_pos_edges_sum_ct.reshape(-1, 1)))
         neg_error_ct = metrics.mean_absolute_error(train_phen, fit_neg_ct.predict(train_neg_edges_sum_ct.reshape(-1, 1)))
         
    -    print(f'Training Error (MAE) (Positive Z Features Model) = {pos_error_z:.3f}')
    -    print(f'Training Error (MAE) (Negative Z Features Model) = {neg_error_z:.3f}')
    -    print(f'Training Error (MAE) (Positive CT Features Model) = {pos_error_ct:.3f}')
    -    print(f'Training Error (MAE) (Negative CT Features Model) = {neg_error_ct:.3f}')
    +    print(f'Training Error (Positive Z Features Model) = {pos_error_z:.3f}')
    +    print(f'Training Error (Negative Z Features Model) = {neg_error_z:.3f}')
    +    print(f'Training Error (Positive CT Features Model) = {pos_error_ct:.3f}')
    +    print(f'Training Error (Negative CT Features Model) = {neg_error_ct:.3f}')
     
     
     .. parsed-literal::
     
    -    Training Error (MAE) (Positive Z Features Model) = 0.631
    -    Training Error (MAE) (Negative Z Features Model) = 0.666
    -    Training Error (MAE) (Positive CT Features Model) = 0.662
    -    Training Error (MAE) (Negative CT Features Model) = 0.665
    +    Training Error (Positive Z Features Model) = 0.631
    +    Training Error (Negative Z Features Model) = 0.666
    +    Training Error (Positive CT Features Model) = 0.662
    +    Training Error (Negative CT Features Model) = 0.665
     
     
     .. code:: ipython3
     
         # combine positive/negative edges in one linear regression model
    -    fit_pos_neg_z = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T, train_phen)
    -
    -
    +    fit_pos_neg_z = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T, train_phen)
     
     .. code:: ipython3
     
         # combine positive/negative edges in one linear regression model
    -    fit_pos_neg_ct = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T, train_phen)
    -
    -
    +    fit_pos_neg_ct = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T, train_phen)
     
     .. code:: ipython3
     
         pos_neg_error_z = metrics.mean_absolute_error(train_phen, fit_pos_neg_z.predict(np.stack((train_pos_edges_sum_z, train_neg_edges_sum_z)).T))
         pos_neg_error_ct = metrics.mean_absolute_error(train_phen, fit_pos_neg_ct.predict(np.stack((train_pos_edges_sum_ct, train_neg_edges_sum_ct)).T))
         
    -    print(f'Training Error (MAE) (Positive/Negative Z Features Model) = {pos_neg_error_z:.3f}')
    -    print(f'Training Error (MAE) (Positive/Negative CT Features Model) = {pos_neg_error_ct:.3f}')
    +    print(f'Training Error (Positive/Negative Z Features Model) = {pos_neg_error_z:.3f}')
    +    print(f'Training Error (Positive/Negative CT Features Model) = {pos_neg_error_ct:.3f}')
     
     
     .. parsed-literal::
     
    -    Training Error (MAE) (Positive/Negative Z Features Model) = 0.620
    -    Training Error (MAE) (Positive/Negative CT Features Model) = 0.642
    +    Training Error (Positive/Negative Z Features Model) = 0.620
    +    Training Error (Positive/Negative CT Features Model) = 0.642
     
     
     .. code:: ipython3
     
    -    # evaluate out of sample performance 
    +    # evaluate out of sample performance
         test_pos_edges_sum_z = test_data_z[:, keep_edges_pos_z].sum(1)
         test_neg_edges_sum_z = test_data_z[:, keep_edges_neg_z].sum(1)
         
    @@ -572,44 +555,44 @@ Connectome Predictive Modelling
         neg_test_error_ct = metrics.mean_absolute_error(test_phen, fit_neg_ct.predict(test_neg_edges_sum_ct.reshape(-1, 1)))
         pos_neg_test_error_ct = metrics.mean_absolute_error(test_phen, fit_pos_neg_ct.predict(np.stack((test_pos_edges_sum_ct, test_neg_edges_sum_ct)).T))
         
    -    print(f'Testing Error (MAE) (Positive Z Features Model) = {pos_test_error_z:.3f}')
    -    print(f'Testing Error (MAE) (Negative Z Features Model) = {neg_test_error_z:.3f}')
    -    print(f'Testing Error (MAE) (Positive/Negative Z Features Model) = {pos_neg_test_error_z:.3f}')
    -    print(f'Testing Error (MAE) (Positive CT Features Model) = {pos_test_error_ct:.3f}')
    -    print(f'Testing Error (MAE) (Negative CT Features Model) = {neg_test_error_ct:.3f}')
    -    print(f'Testing Error (MAE) (Positive/Negative CT Features Model) = {pos_neg_test_error_ct:.3f}')
    +    print(f'Testing Error (Positive Z Features Model) = {pos_test_error_z:.3f}')
    +    print(f'Testing Error (Negative Z Features Model) = {neg_test_error_z:.3f}')
    +    print(f'Testing Error (Positive/Negative Z Features Model) = {pos_neg_test_error_z:.3f}')
    +    print(f'Testing Error (Positive CT Features Model) = {pos_test_error_ct:.3f}')
    +    print(f'Testing Error (Negative CT Features Model) = {neg_test_error_ct:.3f}')
    +    print(f'Testing Error (Positive/Negative CT Features Model) = {pos_neg_test_error_ct:.3f}')
     
     
     .. parsed-literal::
     
    -    Testing Error (MAE) (Positive Z Features Model) = 0.705
    -    Testing Error (MAE) (Negative Z Features Model) = 0.696
    -    Testing Error (MAE) (Positive/Negative Z Features Model) = 0.697
    -    Testing Error (MAE) (Positive CT Features Model) = 0.710
    -    Testing Error (MAE) (Negative CT Features Model) = 0.695
    -    Testing Error (MAE) (Positive/Negative CT Features Model) = 0.701
    +    Testing Error (Positive Z Features Model) = 0.705
    +    Testing Error (Negative Z Features Model) = 0.696
    +    Testing Error (Positive/Negative Z Features Model) = 0.697
    +    Testing Error (Positive CT Features Model) = 0.710
    +    Testing Error (Negative CT Features Model) = 0.695
    +    Testing Error (Positive/Negative CT Features Model) = 0.701
     
     
     CPM Cross Validation
    ---------------------------------------
    +--------------------
     
     .. code:: ipython3
     
         def cpm(X, y, p_threshold, n_cv_splits, pred_summary_function, verbose=False):
             assert X.shape[0] == y.shape[0]
    -        
    +    
             fold_accs_train = []
             fold_accs_test = []
             np.random.seed(42)
             shuffled_idxs = np.random.choice(range(X.shape[0]), size=X.shape[0], replace=False)
             for fold_i, test_idxs in enumerate(np.array_split(shuffled_idxs, n_cv_splits)):
    -            train_mask = np.ones(X.shape[0], np.bool)
    +            train_mask = np.ones(X.shape[0], bool)
                 train_mask[test_idxs] = 0
         
                 # create train/text X, y
                 train_X, test_X = X[train_mask, :], X[test_idxs, :]
    -            train_y, test_y = y[train_mask], y[test_idxs]  
    -            
    +            train_y, test_y = y[train_mask], y[test_idxs]
    +    
                 # create correlation matrix between train_X and train_y
                 if verbose:
                     print(f'CV Fold: {fold_i+1:<10} Computing correlations between train_X and train_y...')
    @@ -622,18 +605,18 @@ CPM Cross Validation
                     # create masks for edges below p-threshold and split pos/neg correlations
                     keep_edges_pos = (train_corrs > 0) & (train_pvals < p_threshold)
                     keep_edges_neg = (train_corrs < 0) & (train_pvals < p_threshold)
    -            
    +    
                 # sum X entries with significant correlations with y
                 train_pos_edges_sum = train_X[:, keep_edges_pos].sum(1)
                 train_neg_edges_sum = train_X[:, keep_edges_neg].sum(1)
                 test_pos_edges_sum = test_X[:, keep_edges_pos].sum(1)
                 test_neg_edges_sum = test_X[:, keep_edges_neg].sum(1)
    -            
    +    
                 # fit linear regression models based on summed values
    -            fit_pos = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_pos_edges_sum.reshape(-1, 1), train_y)
    -            fit_neg = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(train_neg_edges_sum.reshape(-1, 1), train_y)
    -            fit_pos_neg = linear_model.LinearRegression(fit_intercept=True, normalize=False).fit(np.stack((train_pos_edges_sum, train_neg_edges_sum)).T, train_y)
    -            
    +            fit_pos = linear_model.LinearRegression(fit_intercept=True).fit(train_pos_edges_sum.reshape(-1, 1), train_y)
    +            fit_neg = linear_model.LinearRegression(fit_intercept=True).fit(train_neg_edges_sum.reshape(-1, 1), train_y)
    +            fit_pos_neg = linear_model.LinearRegression(fit_intercept=True).fit(np.stack((train_pos_edges_sum, train_neg_edges_sum)).T, train_y)
    +    
                 # compute train errors
                 train_pos_error = pred_summary_function(train_y, fit_pos.predict(train_pos_edges_sum.reshape(-1, 1)))
                 train_neg_error = pred_summary_function(train_y, fit_neg.predict(train_neg_edges_sum.reshape(-1, 1)))
    @@ -646,27 +629,27 @@ CPM Cross Validation
         
                 fold_accs_train.append((train_pos_error, train_neg_error, train_posneg_error))
                 fold_accs_test.append((test_pos_error, test_neg_error, test_posneg_error))
    -            
    +    
                 if verbose:
    -                print(f'CV Fold: {fold_i+1:<10} Train Pos-Edges Model MAE: {round(train_pos_error, 3):<10} Train Neg-Edges Model Accuracy: {round(train_neg_error, 3):<10} Train Pos/Neg-Edges Model Accuracy: {round(train_posneg_error, 3):<10}')
    -                print(f'CV Fold: {fold_i+1:<10} Test  Pos-Edges Model MAE: {round(test_pos_error, 3):<10} Test  Neg-Edges Model Accuracy: {round(test_neg_error, 3):<10} Test  Pos/Neg-Edges Model Accuracy: {round(test_posneg_error, 3):<10}')
    +                print(f'CV Fold: {fold_i+1:<10} Train Pos-Edges Model Accuracy: {round(train_pos_error, 3):<10} Train Neg-Edges Model Accuracy: {round(train_neg_error, 3):<10} Train Pos/Neg-Edges Model Accuracy: {round(train_posneg_error, 3):<10}')
    +                print(f'CV Fold: {fold_i+1:<10} Test  Pos-Edges Model Accuracy: {round(test_pos_error, 3):<10} Test  Neg-Edges Model Accuracy: {round(test_neg_error, 3):<10} Test  Pos/Neg-Edges Model Accuracy: {round(test_posneg_error, 3):<10}')
    +    
         
    -        
             plt.figure(figsize=(13, 7))
             plt.plot(range(1, len(fold_accs_train)+1), [x[0] for x in fold_accs_train], linestyle='--', marker='o', color='C0', label='Train Pos-Edges Model')
             plt.plot(range(1, len(fold_accs_train)+1), [x[1] for x in fold_accs_train], linestyle='--', marker='o', color='C1', label='Train Neg-Edges Model')
             plt.plot(range(1, len(fold_accs_train)+1), [x[2] for x in fold_accs_train], linestyle='--', marker='o', color='C2', label='Train Pos/Neg-Edges Model')
    -        
    +    
             plt.plot(range(1, len(fold_accs_test)+1), [x[0] for x in fold_accs_test], linestyle='-', marker='o', color='C0', label='Test  Pos-Edges Model')
             plt.plot(range(1, len(fold_accs_test)+1), [x[1] for x in fold_accs_test], linestyle='-', marker='o', color='C1', label='Test  Neg-Edges Model')
             plt.plot(range(1, len(fold_accs_test)+1), [x[2] for x in fold_accs_test], linestyle='-', marker='o', color='C2', label='Test  Pos/Neg-Edges Model')
    -        
    +    
             plt.title(pred_summary_function.__name__, fontsize=20)
             plt.xticks(range(1, len(fold_accs_test)+1))
             plt.xlabel('CV Fold')
             plt.legend(fontsize=10)
             plt.show()
    -        
    +    
             return fold_accs_train, fold_accs_test
     
     .. code:: ipython3
    @@ -674,32 +657,27 @@ CPM Cross Validation
         fold_accs_train_z, fold_accs_test_z = cpm(hcp_z, gscores, p_threshold=0.01, n_cv_splits=5, pred_summary_function=metrics.mean_absolute_error, verbose=True)
     
     
    -
     .. parsed-literal::
     
         CV Fold: 1          Computing correlations between train_X and train_y...
    -    CV Fold: 1          Train Pos-Edges Model MAE: 0.652      Train Neg-Edges Model MAE: 0.673      Train Pos/Neg-Edges Model MAE: 0.644     
    -    CV Fold: 1          Test  Pos-Edges Model MAE: 0.636      Test  Neg-Edges Model MAE: 0.671      Test  Pos/Neg-Edges Model MAE: 0.632     
    +    CV Fold: 1          Train Pos-Edges Model Accuracy: 0.652      Train Neg-Edges Model Accuracy: 0.673      Train Pos/Neg-Edges Model Accuracy: 0.644     
    +    CV Fold: 1          Test  Pos-Edges Model Accuracy: 0.636      Test  Neg-Edges Model Accuracy: 0.671      Test  Pos/Neg-Edges Model Accuracy: 0.632     
         CV Fold: 2          Computing correlations between train_X and train_y...
    -    CV Fold: 2          Train Pos-Edges Model MAE: 0.648      Train Neg-Edges Model MAE: 0.678      Train Pos/Neg-Edges Model MAE: 0.636     
    -    CV Fold: 2          Test  Pos-Edges Model MAE: 0.651      Test  Neg-Edges Model MAE: 0.659      Test  Pos/Neg-Edges Model MAE: 0.662     
    +    CV Fold: 2          Train Pos-Edges Model Accuracy: 0.648      Train Neg-Edges Model Accuracy: 0.678      Train Pos/Neg-Edges Model Accuracy: 0.636     
    +    CV Fold: 2          Test  Pos-Edges Model Accuracy: 0.651      Test  Neg-Edges Model Accuracy: 0.659      Test  Pos/Neg-Edges Model Accuracy: 0.662     
         CV Fold: 3          Computing correlations between train_X and train_y...
    -    CV Fold: 3          Train Pos-Edges Model MAE: 0.644      Train Neg-Edges Model MAE: 0.662      Train Pos/Neg-Edges Model MAE: 0.636     
    -    CV Fold: 3          Test  Pos-Edges Model MAE: 0.65       Test  Neg-Edges Model MAE: 0.708      Test  Pos/Neg-Edges Model MAE: 0.646     
    +    CV Fold: 3          Train Pos-Edges Model Accuracy: 0.644      Train Neg-Edges Model Accuracy: 0.662      Train Pos/Neg-Edges Model Accuracy: 0.636     
    +    CV Fold: 3          Test  Pos-Edges Model Accuracy: 0.65       Test  Neg-Edges Model Accuracy: 0.708      Test  Pos/Neg-Edges Model Accuracy: 0.646     
         CV Fold: 4          Computing correlations between train_X and train_y...
    -    CV Fold: 4          Train Pos-Edges Model MAE: 0.653      Train Neg-Edges Model MAE: 0.676      Train Pos/Neg-Edges Model MAE: 0.648     
    -    CV Fold: 4          Test  Pos-Edges Model MAE: 0.626      Test  Neg-Edges Model MAE: 0.659      Test  Pos/Neg-Edges Model MAE: 0.625     
    +    CV Fold: 4          Train Pos-Edges Model Accuracy: 0.653      Train Neg-Edges Model Accuracy: 0.676      Train Pos/Neg-Edges Model Accuracy: 0.648     
    +    CV Fold: 4          Test  Pos-Edges Model Accuracy: 0.626      Test  Neg-Edges Model Accuracy: 0.659      Test  Pos/Neg-Edges Model Accuracy: 0.625     
         CV Fold: 5          Computing correlations between train_X and train_y...
    +    CV Fold: 5          Train Pos-Edges Model Accuracy: 0.631      Train Neg-Edges Model Accuracy: 0.666      Train Pos/Neg-Edges Model Accuracy: 0.62      
    +    CV Fold: 5          Test  Pos-Edges Model Accuracy: 0.704      Test  Neg-Edges Model Accuracy: 0.696      Test  Pos/Neg-Edges Model Accuracy: 0.697     
     
     
    -.. parsed-literal::
    -
    -    CV Fold: 5          Train Pos-Edges Model MAE: 0.631      Train Neg-Edges Model MAE: 0.666      Train Pos/Neg-Edges Model MAE: 0.62      
    -    CV Fold: 5          Test  Pos-Edges Model MAE: 0.704      Test  Neg-Edges Model MAE: 0.696      Test  Pos/Neg-Edges Model MAE: 0.697     
    -
     
    -
    -.. image:: other_predictive_models_files/other_predictive_models_50_4.png
    +.. image:: other_predictive_models_files/other_predictive_models_51_1.png
     
     
     .. code:: ipython3
    @@ -710,51 +688,61 @@ CPM Cross Validation
     .. parsed-literal::
     
         CV Fold: 1          Computing correlations between train_X and train_y...
    -    CV Fold: 1          Train Pos-Edges Model MAE: 0.675      Train Neg-Edges Model MAE: 0.673      Train Pos/Neg-Edges Model MAE: 0.659     
    -    CV Fold: 1          Test  Pos-Edges Model MAE: 0.659      Test  Neg-Edges Model MAE: 0.67       Test  Pos/Neg-Edges Model MAE: 0.653     
    +    CV Fold: 1          Train Pos-Edges Model Accuracy: 0.675      Train Neg-Edges Model Accuracy: 0.673      Train Pos/Neg-Edges Model Accuracy: 0.659     
    +    CV Fold: 1          Test  Pos-Edges Model Accuracy: 0.659      Test  Neg-Edges Model Accuracy: 0.67       Test  Pos/Neg-Edges Model Accuracy: 0.653     
         CV Fold: 2          Computing correlations between train_X and train_y...
    -    CV Fold: 2          Train Pos-Edges Model MAE: 0.674      Train Neg-Edges Model MAE: 0.678      Train Pos/Neg-Edges Model MAE: 0.636     
    -    CV Fold: 2          Test  Pos-Edges Model MAE: 0.661      Test  Neg-Edges Model MAE: 0.657      Test  Pos/Neg-Edges Model MAE: 0.668     
    +    CV Fold: 2          Train Pos-Edges Model Accuracy: 0.674      Train Neg-Edges Model Accuracy: 0.678      Train Pos/Neg-Edges Model Accuracy: 0.636     
    +    CV Fold: 2          Test  Pos-Edges Model Accuracy: 0.661      Test  Neg-Edges Model Accuracy: 0.657      Test  Pos/Neg-Edges Model Accuracy: 0.668     
         CV Fold: 3          Computing correlations between train_X and train_y...
    -    CV Fold: 3          Train Pos-Edges Model MAE: 0.659      Train Neg-Edges Model MAE: 0.665      Train Pos/Neg-Edges Model MAE: 0.644     
    -    CV Fold: 3          Test  Pos-Edges Model MAE: 0.699      Test  Neg-Edges Model MAE: 0.704      Test  Pos/Neg-Edges Model MAE: 0.684     
    +    CV Fold: 3          Train Pos-Edges Model Accuracy: 0.659      Train Neg-Edges Model Accuracy: 0.665      Train Pos/Neg-Edges Model Accuracy: 0.644     
    +    CV Fold: 3          Test  Pos-Edges Model Accuracy: 0.699      Test  Neg-Edges Model Accuracy: 0.704      Test  Pos/Neg-Edges Model Accuracy: 0.684     
         CV Fold: 4          Computing correlations between train_X and train_y...
    -    CV Fold: 4          Train Pos-Edges Model MAE: 0.674      Train Neg-Edges Model MAE: 0.678      Train Pos/Neg-Edges Model MAE: 0.658     
    -    CV Fold: 4          Test  Pos-Edges Model MAE: 0.653      Test  Neg-Edges Model MAE: 0.656      Test  Pos/Neg-Edges Model MAE: 0.638     
    +    CV Fold: 4          Train Pos-Edges Model Accuracy: 0.674      Train Neg-Edges Model Accuracy: 0.678      Train Pos/Neg-Edges Model Accuracy: 0.658     
    +    CV Fold: 4          Test  Pos-Edges Model Accuracy: 0.653      Test  Neg-Edges Model Accuracy: 0.656      Test  Pos/Neg-Edges Model Accuracy: 0.638     
         CV Fold: 5          Computing correlations between train_X and train_y...
    -    CV Fold: 5          Train Pos-Edges Model MAE: 0.662      Train Neg-Edges Model MAE: 0.666      Train Pos/Neg-Edges Model MAE: 0.642     
    -    CV Fold: 5          Test  Pos-Edges Model MAE: 0.709      Test  Neg-Edges Model MAE: 0.698      Test  Pos/Neg-Edges Model MAE: 0.708     
    +    CV Fold: 5          Train Pos-Edges Model Accuracy: 0.662      Train Neg-Edges Model Accuracy: 0.666      Train Pos/Neg-Edges Model Accuracy: 0.642     
    +    CV Fold: 5          Test  Pos-Edges Model Accuracy: 0.709      Test  Neg-Edges Model Accuracy: 0.698      Test  Pos/Neg-Edges Model Accuracy: 0.708     
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_51_2.png
    +.. image:: other_predictive_models_files/other_predictive_models_52_1.png
     
     
     Lasso (Linear Regression + L1 Regularization)
    ------------------------------------------------------
    +=============================================
     
     .. code:: ipython3
     
    -    # LassoCV uses coordinate descent to select hyperparameter alpha 
    +    # LassoCV uses coordinate descent to select hyperparameter alpha
         alpha_grid = np.array([10**a for a in np.arange(-3, 3, 0.25)])
    -    lassoCV_model_z = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, normalize=False, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen)
    +    lassoCV_model_z = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen)
     
     
    +.. parsed-literal::
    +
    +    [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers.
    +    .....................................................................................................................[Parallel(n_jobs=5)]: Done   2 out of   5 | elapsed:    0.5s remaining:    0.7s
    +    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07308221069854426, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15375414865695802, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.10611096508367268, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    .[Parallel(n_jobs=5)]: Done   5 out of   5 | elapsed:    0.5s finished
    +
     
     .. code:: ipython3
     
    -    # LassoCV uses coordinate descent to select hyperparameter alpha 
    +    # LassoCV uses coordinate descent to select hyperparameter alpha
         alpha_grid = np.array([10**a for a in np.arange(-3, 3, 0.25)])
    -    lassoCV_model_ct = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True, normalize=False, random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen)
    +    lassoCV_model_ct = linear_model.LassoCV(cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, fit_intercept=True,  random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen)
     
     
     .. parsed-literal::
     
         [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers.
    -    ...................................................................................................................[Parallel(n_jobs=5)]: Done   2 out of   5 | elapsed:    0.3s remaining:    0.5s
    -    .....[Parallel(n_jobs=5)]: Done   5 out of   5 | elapsed:    0.3s finished
    -    /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:155: FutureWarning: 'normalize' was deprecated in version 1.0 and will be removed in 1.2. Please leave the normalize parameter to its default value to silence this warning. The default behavior of this estimator is to not do any normalization. If normalization is needed please use sklearn.preprocessing.StandardScaler instead.
    -      FutureWarning,
    +    ....................................................................................................................[Parallel(n_jobs=5)]: Done   2 out of   5 | elapsed:    0.2s remaining:    0.3s
    +    ....[Parallel(n_jobs=5)]: Done   5 out of   5 | elapsed:    0.3s finished
     
     
     .. code:: ipython3
    @@ -770,7 +758,7 @@ Lasso (Linear Regression + L1 Regularization)
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_55_0.png
    +.. image:: other_predictive_models_files/other_predictive_models_56_0.png
     
     
     .. code:: ipython3
    @@ -786,22 +774,18 @@ Lasso (Linear Regression + L1 Regularization)
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_56_0.png
    +.. image:: other_predictive_models_files/other_predictive_models_57_0.png
     
     
     .. code:: ipython3
     
         # based on cv results above, set alpha=100
    -    lasso_model_z = linear_model.Lasso(alpha=lassoCV_model_z.alpha_, fit_intercept=True, normalize=False).fit(train_data_z, train_phen)
    -
    -
    +    lasso_model_z = linear_model.Lasso(alpha=lassoCV_model_z.alpha_, fit_intercept=True).fit(train_data_z, train_phen)
     
     .. code:: ipython3
     
         # based on cv results above, set alpha=100
    -    lasso_model_ct = linear_model.Lasso(alpha=lassoCV_model_ct.alpha_, fit_intercept=True, normalize=False).fit(train_data_ct, train_phen)
    -
    -
    +    lasso_model_ct = linear_model.Lasso(alpha=lassoCV_model_ct.alpha_, fit_intercept=True).fit(train_data_ct, train_phen)
     
     .. code:: ipython3
     
    @@ -832,23 +816,23 @@ Lasso (Linear Regression + L1 Regularization)
     
     
     Ridge (Linear Regression + L2 Regularization)
    ---------------------------------------------------------
    +=============================================
     
     .. code:: ipython3
     
    -    # RidgeCV uses generalized cross validation to select hyperparameter alpha 
    +    # RidgeCV uses generalized cross validation to select hyperparameter alpha
         with warnings.catch_warnings():
             # ignore matrix decomposition errors
             warnings.simplefilter("ignore")
    -        ridgeCV_model_z = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, cv=5).fit(train_data_z, train_phen)
    +        ridgeCV_model_z = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, cv=5).fit(train_data_z, train_phen)
     
     .. code:: ipython3
     
    -    # RidgeCV uses generalized cross validation to select hyperparameter alpha 
    +    # RidgeCV uses generalized cross validation to select hyperparameter alpha
         with warnings.catch_warnings():
             # ignore matrix decomposition errors
             warnings.simplefilter("ignore")
    -        ridgeCV_model_ct = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, cv=5).fit(train_data_ct, train_phen)
    +        ridgeCV_model_ct = linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True,  cv=5).fit(train_data_ct, train_phen)
     
     .. code:: ipython3
     
    @@ -874,14 +858,11 @@ Ridge (Linear Regression + L2 Regularization)
     
     .. code:: ipython3
     
    -    ridge_model_z = linear_model.Ridge(alpha=ridge_alpha_z, fit_intercept=True, normalize=False).fit(train_data_z, train_phen)
    -
    -
    +    ridge_model_z = linear_model.Ridge(alpha=ridge_alpha_z, fit_intercept=True).fit(train_data_z, train_phen)
     
     .. code:: ipython3
     
    -    ridge_model_ct = linear_model.Ridge(alpha=ridge_alpha_ct, fit_intercept=True, normalize=False).fit(train_data_ct, train_phen)
    -
    +    ridge_model_ct = linear_model.Ridge(alpha=ridge_alpha_ct, fit_intercept=True).fit(train_data_ct, train_phen)
     
     .. code:: ipython3
     
    @@ -912,21 +893,81 @@ Ridge (Linear Regression + L2 Regularization)
     
     
     Elastic Net (Linear Regression + L1/L2 Regularization)
    -------------------------------------------------------------
    +======================================================
     
     .. code:: ipython3
     
    -    # RidgeCV uses generalized cross validation to select hyperparameter alpha 
    +    # RidgeCV uses generalized cross validation to select hyperparameter alpha
         elasticnetCV_model_z = linear_model.ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, random_state=42, verbose=True, n_jobs=5).fit(train_data_z, train_phen)
     
     
    +.. parsed-literal::
     
    -.. code:: ipython3
    -
    -    # RidgeCV uses generalized cross validation to select hyperparameter alpha 
    +    [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers.
    +    ............................................................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.21318694590257792, tolerance: 0.0423918944559644
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.17936527851907158, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    .../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.8618322913218321, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 11.57867990423236, tolerance: 0.0423918944559644
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 10.2273489799189, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.4036642558553467, tolerance: 0.04401109832998077
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    .................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 8.073063075099014, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 18.227358858718446, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............................................/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 14.883650580549045, tolerance: 0.04401109832998077
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ....................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.18805636326129616, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.0544661418971657, tolerance: 0.0423918944559644
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ........................................................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.1788130249701112, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.13839227040918445, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ........................................................................................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15009167262110168, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ........................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.20204581109658193, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............................/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.09891903798924773, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ......................................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.13078279402705562, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.18265009272980137, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ..../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.0877297694903234, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............................................................................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.11087317503455552, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ...................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.16051209546739642, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ..................................../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07594686106816084, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ............................................................./usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.10611096508367268, tolerance: 0.04382929483334259
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ...../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.15375414865695802, tolerance: 0.03970345334827422
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ../usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_coordinate_descent.py:683: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.07308221069854426, tolerance: 0.04611195889050071
    +      model = cd_fast.enet_coordinate_descent_gram(
    +    ..[Parallel(n_jobs=5)]: Done  35 out of  35 | elapsed:    6.3s finished
    +
    +
    +.. code:: ipython3
    +
    +    # RidgeCV uses generalized cross validation to select hyperparameter alpha
         elasticnetCV_model_ct = linear_model.ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1], cv=5, n_alphas=len(alpha_grid), alphas=alpha_grid, random_state=42, verbose=True, n_jobs=5).fit(train_data_ct, train_phen)
     
     
    +.. parsed-literal::
    +
    +    [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers.
    +    ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................[Parallel(n_jobs=5)]: Done  35 out of  35 | elapsed:    1.8s finished
    +
     
     .. code:: ipython3
     
    @@ -958,7 +999,7 @@ Elastic Net (Linear Regression + L1/L2 Regularization)
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_72_0.png
    +.. image:: other_predictive_models_files/other_predictive_models_73_0.png
     
     
     .. code:: ipython3
    @@ -975,12 +1016,12 @@ Elastic Net (Linear Regression + L1/L2 Regularization)
     
     
     
    -.. image:: other_predictive_models_files/other_predictive_models_73_0.png
    +.. image:: other_predictive_models_files/other_predictive_models_74_0.png
     
     
     .. code:: ipython3
     
    -    elasticnet_model_z = linear_model.ElasticNet(alpha=elasticnetCV_model_z.alpha_, l1_ratio=elasticnetCV_model_z.l1_ratio_, fit_intercept=True, normalize=False, random_state=42).fit(train_data_z, train_phen)
    +    elasticnet_model_z = linear_model.ElasticNet(alpha=elasticnetCV_model_z.alpha_, l1_ratio=elasticnetCV_model_z.l1_ratio_, fit_intercept=True,  random_state=42).fit(train_data_z, train_phen)
         
         train_preds_en_model_z = elasticnet_model_z.predict(train_data_z)
         test_preds_en_model_z = elasticnet_model_z.predict(test_data_z)
    @@ -988,7 +1029,7 @@ Elastic Net (Linear Regression + L1/L2 Regularization)
         train_mae_z = metrics.mean_absolute_error(train_phen, train_preds_en_model_z)
         test_mae_z = metrics.mean_absolute_error(test_phen, test_preds_en_model_z)
         
    -    elasticnet_model_ct = linear_model.ElasticNet(alpha=elasticnetCV_model_ct.alpha_, l1_ratio=elasticnetCV_model_ct.l1_ratio_, fit_intercept=True, normalize=False, random_state=42).fit(train_data_ct, train_phen)
    +    elasticnet_model_ct = linear_model.ElasticNet(alpha=elasticnetCV_model_ct.alpha_, l1_ratio=elasticnetCV_model_ct.l1_ratio_, fit_intercept=True, random_state=42).fit(train_data_ct, train_phen)
         
         train_preds_en_model_ct = elasticnet_model_ct.predict(train_data_ct)
         test_preds_en_model_ct = elasticnet_model_ct.predict(test_data_ct)
    @@ -1008,3 +1049,5 @@ Elastic Net (Linear Regression + L1/L2 Regularization)
         Test MAE Z model: 0.680
         Train MAE CT model: 0.633
         Test MAE CT model: 0.692
    +
    +
    diff --git a/doc/build/html/_static/_sphinx_javascript_frameworks_compat.js b/doc/build/html/_static/_sphinx_javascript_frameworks_compat.js
    index 8549469d..81415803 100644
    --- a/doc/build/html/_static/_sphinx_javascript_frameworks_compat.js
    +++ b/doc/build/html/_static/_sphinx_javascript_frameworks_compat.js
    @@ -1,20 +1,9 @@
    -/*
    - * _sphinx_javascript_frameworks_compat.js
    - * ~~~~~~~~~~
    - *
    - * Compatability shim for jQuery and underscores.js.
    - *
    - * WILL BE REMOVED IN Sphinx 6.0
    - * xref RemovedInSphinx60Warning
    +/* Compatability shim for jQuery and underscores.js.
      *
    + * Copyright Sphinx contributors
    + * Released under the two clause BSD licence
      */
     
    -/**
    - * select a different prefix for underscore
    - */
    -$u = _.noConflict();
    -
    -
     /**
      * small helper function to urldecode strings
      *
    diff --git a/doc/build/html/_static/basic.css b/doc/build/html/_static/basic.css
    index 08896771..7ebbd6d0 100644
    --- a/doc/build/html/_static/basic.css
    +++ b/doc/build/html/_static/basic.css
    @@ -1,12 +1,5 @@
     /*
    - * basic.css
    - * ~~~~~~~~~
    - *
      * Sphinx stylesheet -- basic theme.
    - *
    - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
    - * :license: BSD, see LICENSE for details.
    - *
      */
     
     /* -- main layout ----------------------------------------------------------- */
    @@ -115,15 +108,11 @@ img {
     /* -- search page ----------------------------------------------------------- */
     
     ul.search {
    -    margin: 10px 0 0 20px;
    -    padding: 0;
    +    margin-top: 10px;
     }
     
     ul.search li {
    -    padding: 5px 0 5px 20px;
    -    background-image: url(file.png);
    -    background-repeat: no-repeat;
    -    background-position: 0 7px;
    +    padding: 5px 0;
     }
     
     ul.search li a {
    @@ -237,6 +226,10 @@ a.headerlink {
         visibility: hidden;
     }
     
    +a:visited {
    +    color: #551A8B;
    +}
    +
     h1:hover > a.headerlink,
     h2:hover > a.headerlink,
     h3:hover > a.headerlink,
    @@ -324,17 +317,17 @@ aside.sidebar {
     p.sidebar-title {
         font-weight: bold;
     }
    +
     nav.contents,
     aside.topic,
    -
     div.admonition, div.topic, blockquote {
         clear: left;
     }
     
     /* -- topics ---------------------------------------------------------------- */
    +
     nav.contents,
     aside.topic,
    -
     div.topic {
         border: 1px solid #ccc;
         padding: 7px;
    @@ -375,7 +368,6 @@ div.sidebar > :last-child,
     aside.sidebar > :last-child,
     nav.contents > :last-child,
     aside.topic > :last-child,
    -
     div.topic > :last-child,
     div.admonition > :last-child {
         margin-bottom: 0;
    @@ -385,7 +377,6 @@ div.sidebar::after,
     aside.sidebar::after,
     nav.contents::after,
     aside.topic::after,
    -
     div.topic::after,
     div.admonition::after,
     blockquote::after {
    @@ -611,25 +602,6 @@ ul.simple p {
         margin-bottom: 0;
     }
     
    -/* Docutils 0.17 and older (footnotes & citations) */
    -dl.footnote > dt,
    -dl.citation > dt {
    -    float: left;
    -    margin-right: 0.5em;
    -}
    -
    -dl.footnote > dd,
    -dl.citation > dd {
    -    margin-bottom: 0em;
    -}
    -
    -dl.footnote > dd:after,
    -dl.citation > dd:after {
    -    content: "";
    -    clear: both;
    -}
    -
    -/* Docutils 0.18+ (footnotes & citations) */
     aside.footnote > span,
     div.citation > span {
         float: left;
    @@ -654,8 +626,6 @@ div.citation > p:last-of-type:after {
         clear: both;
     }
     
    -/* Footnotes & citations ends */
    -
     dl.field-list {
         display: grid;
         grid-template-columns: fit-content(30%) auto;
    @@ -668,10 +638,6 @@ dl.field-list > dt {
         padding-right: 5px;
     }
     
    -dl.field-list > dt:after {
    -    content: ":";
    -}
    -
     dl.field-list > dd {
         padding-left: 0.5em;
         margin-top: 0em;
    @@ -697,6 +663,16 @@ dd {
         margin-left: 30px;
     }
     
    +.sig dd {
    +    margin-top: 0px;
    +    margin-bottom: 0px;
    +}
    +
    +.sig dl {
    +    margin-top: 0px;
    +    margin-bottom: 0px;
    +}
    +
     dl > dd:last-child,
     dl > dd:last-child > :last-child {
         margin-bottom: 0;
    @@ -765,6 +741,14 @@ abbr, acronym {
         cursor: help;
     }
     
    +.translated {
    +    background-color: rgba(207, 255, 207, 0.2)
    +}
    +
    +.untranslated {
    +    background-color: rgba(255, 207, 207, 0.2)
    +}
    +
     /* -- code displays --------------------------------------------------------- */
     
     pre {
    diff --git a/doc/build/html/_static/css/badge_only.css b/doc/build/html/_static/css/badge_only.css
    index c718cee4..88ba55b9 100644
    --- a/doc/build/html/_static/css/badge_only.css
    +++ b/doc/build/html/_static/css/badge_only.css
    @@ -1 +1 @@
    -.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}
    \ No newline at end of file
    +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px}
    \ No newline at end of file
    diff --git a/doc/build/html/_static/css/theme.css b/doc/build/html/_static/css/theme.css
    index 19a446a0..0f14f106 100644
    --- a/doc/build/html/_static/css/theme.css
    +++ b/doc/build/html/_static/css/theme.css
    @@ -1,4 +1,4 @@
     html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*!
      *  Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
      *  License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
    - */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block}
    \ No newline at end of file
    + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search .wy-dropdown>aactive,.wy-side-nav-search .wy-dropdown>afocus,.wy-side-nav-search>a:hover,.wy-side-nav-search>aactive,.wy-side-nav-search>afocus{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon,.wy-side-nav-search>a.icon{display:block}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.switch-menus{position:relative;display:block;margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-side-nav-search>div.switch-menus>div.language-switch,.wy-side-nav-search>div.switch-menus>div.version-switch{display:inline-block;padding:.2em}.wy-side-nav-search>div.switch-menus>div.language-switch select,.wy-side-nav-search>div.switch-menus>div.version-switch select{display:inline-block;margin-right:-2rem;padding-right:2rem;max-width:240px;text-align-last:center;background:none;border:none;border-radius:0;box-shadow:none;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-size:1em;font-weight:400;color:hsla(0,0%,100%,.3);cursor:pointer;appearance:none;-webkit-appearance:none;-moz-appearance:none}.wy-side-nav-search>div.switch-menus>div.language-switch select:active,.wy-side-nav-search>div.switch-menus>div.language-switch select:focus,.wy-side-nav-search>div.switch-menus>div.language-switch select:hover,.wy-side-nav-search>div.switch-menus>div.version-switch select:active,.wy-side-nav-search>div.switch-menus>div.version-switch select:focus,.wy-side-nav-search>div.switch-menus>div.version-switch select:hover{background:hsla(0,0%,100%,.1);color:hsla(0,0%,100%,.5)}.wy-side-nav-search>div.switch-menus>div.language-switch select option,.wy-side-nav-search>div.switch-menus>div.version-switch select option{color:#000}.wy-side-nav-search>div.switch-menus>div.language-switch:has(>select):after,.wy-side-nav-search>div.switch-menus>div.version-switch:has(>select):after{display:inline-block;width:1.5em;height:100%;padding:.1em;content:"\f0d7";font-size:1em;line-height:1.2em;font-family:FontAwesome;text-align:center;pointer-events:none;box-sizing:border-box}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions .rst-other-versions .rtd-current-item{font-weight:700}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}#flyout-search-form{padding:6px}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block}
    \ No newline at end of file
    diff --git a/doc/build/html/_static/doctools.js b/doc/build/html/_static/doctools.js
    index c3db08d1..0398ebb9 100644
    --- a/doc/build/html/_static/doctools.js
    +++ b/doc/build/html/_static/doctools.js
    @@ -1,15 +1,15 @@
     /*
    - * doctools.js
    - * ~~~~~~~~~~~
    - *
      * Base JavaScript utilities for all Sphinx HTML documentation.
    - *
    - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
    - * :license: BSD, see LICENSE for details.
    - *
      */
     "use strict";
     
    +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([
    +  "TEXTAREA",
    +  "INPUT",
    +  "SELECT",
    +  "BUTTON",
    +]);
    +
     const _ready = (callback) => {
       if (document.readyState !== "loading") {
         callback();
    @@ -18,73 +18,11 @@ const _ready = (callback) => {
       }
     };
     
    -/**
    - * highlight a given string on a node by wrapping it in
    - * span elements with the given class name.
    - */
    -const _highlight = (node, addItems, text, className) => {
    -  if (node.nodeType === Node.TEXT_NODE) {
    -    const val = node.nodeValue;
    -    const parent = node.parentNode;
    -    const pos = val.toLowerCase().indexOf(text);
    -    if (
    -      pos >= 0 &&
    -      !parent.classList.contains(className) &&
    -      !parent.classList.contains("nohighlight")
    -    ) {
    -      let span;
    -
    -      const closestNode = parent.closest("body, svg, foreignObject");
    -      const isInSVG = closestNode && closestNode.matches("svg");
    -      if (isInSVG) {
    -        span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
    -      } else {
    -        span = document.createElement("span");
    -        span.classList.add(className);
    -      }
    -
    -      span.appendChild(document.createTextNode(val.substr(pos, text.length)));
    -      parent.insertBefore(
    -        span,
    -        parent.insertBefore(
    -          document.createTextNode(val.substr(pos + text.length)),
    -          node.nextSibling
    -        )
    -      );
    -      node.nodeValue = val.substr(0, pos);
    -
    -      if (isInSVG) {
    -        const rect = document.createElementNS(
    -          "http://www.w3.org/2000/svg",
    -          "rect"
    -        );
    -        const bbox = parent.getBBox();
    -        rect.x.baseVal.value = bbox.x;
    -        rect.y.baseVal.value = bbox.y;
    -        rect.width.baseVal.value = bbox.width;
    -        rect.height.baseVal.value = bbox.height;
    -        rect.setAttribute("class", className);
    -        addItems.push({ parent: parent, target: rect });
    -      }
    -    }
    -  } else if (node.matches && !node.matches("button, select, textarea")) {
    -    node.childNodes.forEach((el) => _highlight(el, addItems, text, className));
    -  }
    -};
    -const _highlightText = (thisNode, text, className) => {
    -  let addItems = [];
    -  _highlight(thisNode, addItems, text, className);
    -  addItems.forEach((obj) =>
    -    obj.parent.insertAdjacentElement("beforebegin", obj.target)
    -  );
    -};
    -
     /**
      * Small JavaScript module for the documentation.
      */
     const Documentation = {
       init: () => {
    -    Documentation.highlightSearchWords();
         Documentation.initDomainIndexTable();
         Documentation.initOnKeyListeners();
       },
    @@ -126,51 +64,6 @@ const Documentation = {
         Documentation.LOCALE = catalog.locale;
       },
     
    -  /**
    -   * highlight the search words provided in the url in the text
    -   */
    -  highlightSearchWords: () => {
    -    const highlight =
    -      new URLSearchParams(window.location.search).get("highlight") || "";
    -    const terms = highlight.toLowerCase().split(/\s+/).filter(x => x);
    -    if (terms.length === 0) return; // nothing to do
    -
    -    // There should never be more than one element matching "div.body"
    -    const divBody = document.querySelectorAll("div.body");
    -    const body = divBody.length ? divBody[0] : document.querySelector("body");
    -    window.setTimeout(() => {
    -      terms.forEach((term) => _highlightText(body, term, "highlighted"));
    -    }, 10);
    -
    -    const searchBox = document.getElementById("searchbox");
    -    if (searchBox === null) return;
    -    searchBox.appendChild(
    -      document
    -        .createRange()
    -        .createContextualFragment(
    -          '"
    -        )
    -    );
    -  },
    -
    -  /**
    -   * helper function to hide the search marks again
    -   */
    -  hideSearchWords: () => {
    -    document
    -      .querySelectorAll("#searchbox .highlight-link")
    -      .forEach((el) => el.remove());
    -    document
    -      .querySelectorAll("span.highlighted")
    -      .forEach((el) => el.classList.remove("highlighted"));
    -    const url = new URL(window.location);
    -    url.searchParams.delete("highlight");
    -    window.history.replaceState({}, "", url);
    -  },
    -
       /**
        * helper function to focus on search bar
        */
    @@ -210,15 +103,11 @@ const Documentation = {
         )
           return;
     
    -    const blacklistedElements = new Set([
    -      "TEXTAREA",
    -      "INPUT",
    -      "SELECT",
    -      "BUTTON",
    -    ]);
         document.addEventListener("keydown", (event) => {
    -      if (blacklistedElements.has(document.activeElement.tagName)) return; // bail for input elements
    -      if (event.altKey || event.ctrlKey || event.metaKey) return; // bail with special keys
    +      // bail for input elements
    +      if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return;
    +      // bail with special keys
    +      if (event.altKey || event.ctrlKey || event.metaKey) return;
     
           if (!event.shiftKey) {
             switch (event.key) {
    @@ -240,10 +129,6 @@ const Documentation = {
                   event.preventDefault();
                 }
                 break;
    -          case "Escape":
    -            if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break;
    -            Documentation.hideSearchWords();
    -            event.preventDefault();
             }
           }
     
    diff --git a/doc/build/html/_static/documentation_options.js b/doc/build/html/_static/documentation_options.js
    index 908cd41f..b86f7e34 100644
    --- a/doc/build/html/_static/documentation_options.js
    +++ b/doc/build/html/_static/documentation_options.js
    @@ -1,5 +1,4 @@
    -var DOCUMENTATION_OPTIONS = {
    -    URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
    +const DOCUMENTATION_OPTIONS = {
         VERSION: '0.20',
         LANGUAGE: 'en',
         COLLAPSE_INDEX: false,
    @@ -10,5 +9,5 @@ var DOCUMENTATION_OPTIONS = {
         SOURCELINK_SUFFIX: '.txt',
         NAVIGATION_WITH_KEYS: false,
         SHOW_SEARCH_SUMMARY: true,
    -    ENABLE_SEARCH_SHORTCUTS: false,
    +    ENABLE_SEARCH_SHORTCUTS: true,
     };
    \ No newline at end of file
    diff --git a/doc/build/html/_static/graphviz.css b/doc/build/html/_static/graphviz.css
    index 19e7afd3..30f3837b 100644
    --- a/doc/build/html/_static/graphviz.css
    +++ b/doc/build/html/_static/graphviz.css
    @@ -1,12 +1,5 @@
     /*
    - * graphviz.css
    - * ~~~~~~~~~~~~
    - *
      * Sphinx stylesheet -- graphviz extension.
    - *
    - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
    - * :license: BSD, see LICENSE for details.
    - *
      */
     
     img.graphviz {
    diff --git a/doc/build/html/_static/language_data.js b/doc/build/html/_static/language_data.js
    index 2e22b06a..c7fe6c6f 100644
    --- a/doc/build/html/_static/language_data.js
    +++ b/doc/build/html/_static/language_data.js
    @@ -1,19 +1,12 @@
     /*
    - * language_data.js
    - * ~~~~~~~~~~~~~~~~
    - *
      * This script contains the language-specific data used by searchtools.js,
      * namely the list of stopwords, stemmer, scorer and splitter.
    - *
    - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
    - * :license: BSD, see LICENSE for details.
    - *
      */
     
     var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"];
     
     
    -/* Non-minified version is copied as a separate JS file, is available */
    +/* Non-minified version is copied as a separate JS file, if available */
     
     /**
      * Porter Stemmer
    diff --git a/doc/build/html/_static/pygments.css b/doc/build/html/_static/pygments.css
    index 691aeb82..0d49244e 100644
    --- a/doc/build/html/_static/pygments.css
    +++ b/doc/build/html/_static/pygments.css
    @@ -17,6 +17,7 @@ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left:
     .highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
     .highlight .gd { color: #A00000 } /* Generic.Deleted */
     .highlight .ge { font-style: italic } /* Generic.Emph */
    +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
     .highlight .gr { color: #FF0000 } /* Generic.Error */
     .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
     .highlight .gi { color: #00A000 } /* Generic.Inserted */
    diff --git a/doc/build/html/_static/searchtools.js b/doc/build/html/_static/searchtools.js
    index ac4d5861..2c774d17 100644
    --- a/doc/build/html/_static/searchtools.js
    +++ b/doc/build/html/_static/searchtools.js
    @@ -1,12 +1,5 @@
     /*
    - * searchtools.js
    - * ~~~~~~~~~~~~~~~~
    - *
      * Sphinx JavaScript utilities for the full-text search.
    - *
    - * :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS.
    - * :license: BSD, see LICENSE for details.
    - *
      */
     "use strict";
     
    @@ -20,7 +13,7 @@ if (typeof Scorer === "undefined") {
         // and returns the new score.
         /*
         score: result => {
    -      const [docname, title, anchor, descr, score, filename] = result
    +      const [docname, title, anchor, descr, score, filename, kind] = result
           return score
         },
         */
    @@ -47,6 +40,14 @@ if (typeof Scorer === "undefined") {
       };
     }
     
    +// Global search result kind enum, used by themes to style search results.
    +class SearchResultKind {
    +    static get index() { return  "index"; }
    +    static get object() { return "object"; }
    +    static get text() { return "text"; }
    +    static get title() { return "title"; }
    +}
    +
     const _removeChildren = (element) => {
       while (element && element.lastChild) element.removeChild(element.lastChild);
     };
    @@ -57,16 +58,20 @@ const _removeChildren = (element) => {
     const _escapeRegExp = (string) =>
       string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string
     
    -const _displayItem = (item, highlightTerms, searchTerms) => {
    +const _displayItem = (item, searchTerms, highlightTerms) => {
       const docBuilder = DOCUMENTATION_OPTIONS.BUILDER;
    -  const docUrlRoot = DOCUMENTATION_OPTIONS.URL_ROOT;
       const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX;
       const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX;
       const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY;
    +  const contentRoot = document.documentElement.dataset.content_root;
     
    -  const [docName, title, anchor, descr] = item;
    +  const [docName, title, anchor, descr, score, _filename, kind] = item;
     
       let listItem = document.createElement("li");
    +  // Add a class representing the item's type:
    +  // can be used by a theme's CSS selector for styling
    +  // See SearchResultKind for the class names.
    +  listItem.classList.add(`kind-${kind}`);
       let requestUrl;
       let linkUrl;
       if (docBuilder === "dirhtml") {
    @@ -75,29 +80,35 @@ const _displayItem = (item, highlightTerms, searchTerms) => {
         if (dirname.match(/\/index\/$/))
           dirname = dirname.substring(0, dirname.length - 6);
         else if (dirname === "index/") dirname = "";
    -    requestUrl = docUrlRoot + dirname;
    +    requestUrl = contentRoot + dirname;
         linkUrl = requestUrl;
       } else {
         // normal html builders
    -    requestUrl = docUrlRoot + docName + docFileSuffix;
    +    requestUrl = contentRoot + docName + docFileSuffix;
         linkUrl = docName + docLinkSuffix;
       }
    -  const params = new URLSearchParams();
    -  params.set("highlight", [...highlightTerms].join(" "));
       let linkEl = listItem.appendChild(document.createElement("a"));
    -  linkEl.href = linkUrl + "?" + params.toString() + anchor;
    +  linkEl.href = linkUrl + anchor;
    +  linkEl.dataset.score = score;
       linkEl.innerHTML = title;
    -  if (descr)
    -    listItem.appendChild(document.createElement("span")).innerText =
    +  if (descr) {
    +    listItem.appendChild(document.createElement("span")).innerHTML =
           " (" + descr + ")";
    +    // highlight search terms in the description
    +    if (SPHINX_HIGHLIGHT_ENABLED)  // set in sphinx_highlight.js
    +      highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
    +  }
       else if (showSearchSummary)
         fetch(requestUrl)
           .then((responseData) => responseData.text())
           .then((data) => {
             if (data)
               listItem.appendChild(
    -            Search.makeSearchSummary(data, searchTerms, highlightTerms)
    +            Search.makeSearchSummary(data, searchTerms, anchor)
               );
    +        // highlight search terms in the summary
    +        if (SPHINX_HIGHLIGHT_ENABLED)  // set in sphinx_highlight.js
    +          highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted"));
           });
       Search.output.appendChild(listItem);
     };
    @@ -109,28 +120,46 @@ const _finishSearch = (resultCount) => {
           "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories."
         );
       else
    -    Search.status.innerText = _(
    -      `Search finished, found ${resultCount} page(s) matching the search query.`
    -    );
    +    Search.status.innerText = Documentation.ngettext(
    +      "Search finished, found one page matching the search query.",
    +      "Search finished, found ${resultCount} pages matching the search query.",
    +      resultCount,
    +    ).replace('${resultCount}', resultCount);
     };
     const _displayNextItem = (
       results,
       resultCount,
    +  searchTerms,
       highlightTerms,
    -  searchTerms
     ) => {
       // results left, load the summary and display it
       // this is intended to be dynamic (don't sub resultsCount)
       if (results.length) {
    -    _displayItem(results.pop(), highlightTerms, searchTerms);
    +    _displayItem(results.pop(), searchTerms, highlightTerms);
         setTimeout(
    -      () => _displayNextItem(results, resultCount, highlightTerms, searchTerms),
    +      () => _displayNextItem(results, resultCount, searchTerms, highlightTerms),
           5
         );
       }
       // search finished, update title and status message
       else _finishSearch(resultCount);
     };
    +// Helper function used by query() to order search results.
    +// Each input is an array of [docname, title, anchor, descr, score, filename, kind].
    +// Order the results by score (in opposite order of appearance, since the
    +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically.
    +const _orderResultsByScoreThenName = (a, b) => {
    +  const leftScore = a[4];
    +  const rightScore = b[4];
    +  if (leftScore === rightScore) {
    +    // same score: sort alphabetically
    +    const leftTitle = a[1].toLowerCase();
    +    const rightTitle = b[1].toLowerCase();
    +    if (leftTitle === rightTitle) return 0;
    +    return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
    +  }
    +  return leftScore > rightScore ? 1 : -1;
    +};
     
     /**
      * Default splitQuery function. Can be overridden in ``sphinx.search`` with a
    @@ -154,15 +183,26 @@ const Search = {
       _queued_query: null,
       _pulse_status: -1,
     
    -  htmlToText: (htmlString) => {
    -    const htmlElement = document
    -      .createRange()
    -      .createContextualFragment(htmlString);
    -    _removeChildren(htmlElement.querySelectorAll(".headerlink"));
    +  htmlToText: (htmlString, anchor) => {
    +    const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html');
    +    for (const removalQuery of [".headerlink", "script", "style"]) {
    +      htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() });
    +    }
    +    if (anchor) {
    +      const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`);
    +      if (anchorContent) return anchorContent.textContent;
    +
    +      console.warn(
    +        `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.`
    +      );
    +    }
    +
    +    // if anchor not specified or not found, fall back to main content
         const docContent = htmlElement.querySelector('[role="main"]');
    -    if (docContent !== undefined) return docContent.textContent;
    +    if (docContent) return docContent.textContent;
    +
         console.warn(
    -      "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template."
    +      "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template."
         );
         return "";
       },
    @@ -215,6 +255,7 @@ const Search = {
         searchSummary.classList.add("search-summary");
         searchSummary.innerText = "";
         const searchList = document.createElement("ul");
    +    searchList.setAttribute("role", "list");
         searchList.classList.add("search");
     
         const out = document.getElementById("search-results");
    @@ -235,10 +276,7 @@ const Search = {
         else Search.deferQuery(query);
       },
     
    -  /**
    -   * execute search (requires search index to be loaded)
    -   */
    -  query: (query) => {
    +  _parseQuery: (query) => {
         // stem the search terms and add them to the correct list
         const stemmer = new Stemmer();
         const searchTerms = new Set();
    @@ -266,40 +304,98 @@ const Search = {
           }
         });
     
    +    if (SPHINX_HIGHLIGHT_ENABLED) {  // set in sphinx_highlight.js
    +      localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" "))
    +    }
    +
         // console.debug("SEARCH: searching for:");
         // console.info("required: ", [...searchTerms]);
         // console.info("excluded: ", [...excludedTerms]);
     
    -    // array of [docname, title, anchor, descr, score, filename]
    -    let results = [];
    +    return [query, searchTerms, excludedTerms, highlightTerms, objectTerms];
    +  },
    +
    +  /**
    +   * execute search (requires search index to be loaded)
    +   */
    +  _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => {
    +    const filenames = Search._index.filenames;
    +    const docNames = Search._index.docnames;
    +    const titles = Search._index.titles;
    +    const allTitles = Search._index.alltitles;
    +    const indexEntries = Search._index.indexentries;
    +
    +    // Collect multiple result groups to be sorted separately and then ordered.
    +    // Each is an array of [docname, title, anchor, descr, score, filename, kind].
    +    const normalResults = [];
    +    const nonMainIndexResults = [];
    +
         _removeChildren(document.getElementById("search-progress"));
     
    +    const queryLower = query.toLowerCase().trim();
    +    for (const [title, foundTitles] of Object.entries(allTitles)) {
    +      if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) {
    +        for (const [file, id] of foundTitles) {
    +          const score = Math.round(Scorer.title * queryLower.length / title.length);
    +          const boost = titles[file] === title ? 1 : 0;  // add a boost for document titles
    +          normalResults.push([
    +            docNames[file],
    +            titles[file] !== title ? `${titles[file]} > ${title}` : title,
    +            id !== null ? "#" + id : "",
    +            null,
    +            score + boost,
    +            filenames[file],
    +            SearchResultKind.title,
    +          ]);
    +        }
    +      }
    +    }
    +
    +    // search for explicit entries in index directives
    +    for (const [entry, foundEntries] of Object.entries(indexEntries)) {
    +      if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) {
    +        for (const [file, id, isMain] of foundEntries) {
    +          const score = Math.round(100 * queryLower.length / entry.length);
    +          const result = [
    +            docNames[file],
    +            titles[file],
    +            id ? "#" + id : "",
    +            null,
    +            score,
    +            filenames[file],
    +            SearchResultKind.index,
    +          ];
    +          if (isMain) {
    +            normalResults.push(result);
    +          } else {
    +            nonMainIndexResults.push(result);
    +          }
    +        }
    +      }
    +    }
    +
         // lookup as object
         objectTerms.forEach((term) =>
    -      results.push(...Search.performObjectSearch(term, objectTerms))
    +      normalResults.push(...Search.performObjectSearch(term, objectTerms))
         );
     
         // lookup as search terms in fulltext
    -    results.push(...Search.performTermsSearch(searchTerms, excludedTerms));
    +    normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms));
     
         // let the scorer override scores with a custom scoring function
    -    if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item)));
    -
    -    // now sort the results by score (in opposite order of appearance, since the
    -    // display function below uses pop() to retrieve items) and then
    -    // alphabetically
    -    results.sort((a, b) => {
    -      const leftScore = a[4];
    -      const rightScore = b[4];
    -      if (leftScore === rightScore) {
    -        // same score: sort alphabetically
    -        const leftTitle = a[1].toLowerCase();
    -        const rightTitle = b[1].toLowerCase();
    -        if (leftTitle === rightTitle) return 0;
    -        return leftTitle > rightTitle ? -1 : 1; // inverted is intentional
    -      }
    -      return leftScore > rightScore ? 1 : -1;
    -    });
    +    if (Scorer.score) {
    +      normalResults.forEach((item) => (item[4] = Scorer.score(item)));
    +      nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item)));
    +    }
    +
    +    // Sort each group of results by score and then alphabetically by name.
    +    normalResults.sort(_orderResultsByScoreThenName);
    +    nonMainIndexResults.sort(_orderResultsByScoreThenName);
    +
    +    // Combine the result groups in (reverse) order.
    +    // Non-main index entries are typically arbitrary cross-references,
    +    // so display them after other results.
    +    let results = [...nonMainIndexResults, ...normalResults];
     
         // remove duplicate search results
         // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept
    @@ -313,14 +409,19 @@ const Search = {
           return acc;
         }, []);
     
    -    results = results.reverse();
    +    return results.reverse();
    +  },
    +
    +  query: (query) => {
    +    const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query);
    +    const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms);
     
         // for debugging
         //Search.lastresults = results.slice();  // a copy
         // console.info("search results:", Search.lastresults);
     
         // print the results
    -    _displayNextItem(results, results.length, highlightTerms, searchTerms);
    +    _displayNextItem(results, results.length, searchTerms, highlightTerms);
       },
     
       /**
    @@ -384,6 +485,7 @@ const Search = {
             descr,
             score,
             filenames[match[0]],
    +        SearchResultKind.object,
           ]);
         };
         Object.keys(objects).forEach((prefix) =>
    @@ -401,8 +503,8 @@ const Search = {
         // prepare search
         const terms = Search._index.terms;
         const titleTerms = Search._index.titleterms;
    -    const docNames = Search._index.docnames;
         const filenames = Search._index.filenames;
    +    const docNames = Search._index.docnames;
         const titles = Search._index.titles;
     
         const scoreMap = new Map();
    @@ -418,14 +520,18 @@ const Search = {
           // add support for partial matches
           if (word.length > 2) {
             const escapedWord = _escapeRegExp(word);
    -        Object.keys(terms).forEach((term) => {
    -          if (term.match(escapedWord) && !terms[word])
    -            arr.push({ files: terms[term], score: Scorer.partialTerm });
    -        });
    -        Object.keys(titleTerms).forEach((term) => {
    -          if (term.match(escapedWord) && !titleTerms[word])
    -            arr.push({ files: titleTerms[word], score: Scorer.partialTitle });
    -        });
    +        if (!terms.hasOwnProperty(word)) {
    +          Object.keys(terms).forEach((term) => {
    +            if (term.match(escapedWord))
    +              arr.push({ files: terms[term], score: Scorer.partialTerm });
    +          });
    +        }
    +        if (!titleTerms.hasOwnProperty(word)) {
    +          Object.keys(titleTerms).forEach((term) => {
    +            if (term.match(escapedWord))
    +              arr.push({ files: titleTerms[term], score: Scorer.partialTitle });
    +          });
    +        }
           }
     
           // no match but word was a required one
    @@ -448,9 +554,8 @@ const Search = {
     
           // create the mapping
           files.forEach((file) => {
    -        if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1)
    -          fileMap.get(file).push(word);
    -        else fileMap.set(file, [word]);
    +        if (!fileMap.has(file)) fileMap.set(file, [word]);
    +        else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word);
           });
         });
     
    @@ -491,6 +596,7 @@ const Search = {
             null,
             score,
             filenames[file],
    +        SearchResultKind.text,
           ]);
         }
         return results;
    @@ -499,16 +605,15 @@ const Search = {
       /**
        * helper function to return a node containing the
        * search summary for a given text. keywords is a list
    -   * of stemmed words, highlightWords is the list of normal, unstemmed
    -   * words. the first one is used to find the occurrence, the
    -   * latter for highlighting it.
    +   * of stemmed words.
        */
    -  makeSearchSummary: (htmlText, keywords, highlightWords) => {
    -    const text = Search.htmlToText(htmlText).toLowerCase();
    +  makeSearchSummary: (htmlText, keywords, anchor) => {
    +    const text = Search.htmlToText(htmlText, anchor);
         if (text === "") return null;
     
    +    const textLower = text.toLowerCase();
         const actualStartPosition = [...keywords]
    -      .map((k) => text.indexOf(k.toLowerCase()))
    +      .map((k) => textLower.indexOf(k.toLowerCase()))
           .filter((i) => i > -1)
           .slice(-1)[0];
         const startWithContext = Math.max(actualStartPosition - 120, 0);
    @@ -516,13 +621,9 @@ const Search = {
         const top = startWithContext === 0 ? "" : "...";
         const tail = startWithContext + 240 < text.length ? "..." : "";
     
    -    let summary = document.createElement("div");
    +    let summary = document.createElement("p");
         summary.classList.add("context");
    -    summary.innerText = top + text.substr(startWithContext, 240).trim() + tail;
    -
    -    highlightWords.forEach((highlightWord) =>
    -      _highlightText(summary, highlightWord, "highlighted")
    -    );
    +    summary.textContent = top + text.substr(startWithContext, 240).trim() + tail;
     
         return summary;
       },
    diff --git a/doc/build/html/_static/sphinx_highlight.js b/doc/build/html/_static/sphinx_highlight.js
    index aae669d7..8a96c69a 100644
    --- a/doc/build/html/_static/sphinx_highlight.js
    +++ b/doc/build/html/_static/sphinx_highlight.js
    @@ -29,14 +29,19 @@ const _highlight = (node, addItems, text, className) => {
           }
     
           span.appendChild(document.createTextNode(val.substr(pos, text.length)));
    +      const rest = document.createTextNode(val.substr(pos + text.length));
           parent.insertBefore(
             span,
             parent.insertBefore(
    -          document.createTextNode(val.substr(pos + text.length)),
    +          rest,
               node.nextSibling
             )
           );
           node.nodeValue = val.substr(0, pos);
    +      /* There may be more occurrences of search term in this node. So call this
    +       * function recursively on the remaining fragment.
    +       */
    +      _highlight(rest, addItems, text, className);
     
           if (isInSVG) {
             const rect = document.createElementNS(
    @@ -140,5 +145,10 @@ const SphinxHighlight = {
       },
     };
     
    -_ready(SphinxHighlight.highlightSearchWords);
    -_ready(SphinxHighlight.initEscapeListener);
    +_ready(() => {
    +  /* Do not call highlightSearchWords() when we are on the search page.
    +   * It will highlight words from the *previous* search query.
    +   */
    +  if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords();
    +  SphinxHighlight.initEscapeListener();
    +});
    diff --git a/doc/build/html/genindex.html b/doc/build/html/genindex.html
    index 1509fff9..d55d9018 100644
    --- a/doc/build/html/genindex.html
    +++ b/doc/build/html/genindex.html
    @@ -1,28 +1,24 @@
    +
    +
     
    -
    +
     
       
       
       Index — Predictive Clinical Neuroscience Toolkit 0.20 documentation
    -      
    -      
    -      
    +      
    +      
    +      
           
    -      
           
           
     
       
    -  
    -  
    -        
    -        
    -        
    -        
    -        
    -        
    +      
    +      
    +      
    +      
    +      
         
         
          
    @@ -62,13 +58,24 @@
     

Tutorials

Other Useful Stuff