From 51b2ca1632fe75e852ebed49efd7b7c5193dc580 Mon Sep 17 00:00:00 2001
From: Seyed Mostafa Kia
Date: Tue, 23 Jul 2024 10:29:48 +0200
Subject: [PATCH 01/68] Minor modig=fication in slurm job and log file names
---
pcntoolkit/normative_parallel.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py
index 4733bf77..2be391d1 100755
--- a/pcntoolkit/normative_parallel.py
+++ b/pcntoolkit/normative_parallel.py
@@ -1123,13 +1123,13 @@ def sbatchwrap_nm(processing_dir,
output_changedir = ['cd ' + processing_dir + '\n']
sbatch_init = '#!/bin/bash\n'
- sbatch_jobname = '#SBATCH --job-name=' + processing_dir + '\n'
+ sbatch_jobname = '#SBATCH --job-name=' + job_name + '\n'
sbatch_nodes = '#SBATCH --nodes=1\n'
sbatch_tasks = '#SBATCH --ntasks=1\n'
sbatch_time = '#SBATCH --time=' + str(duration) + '\n'
sbatch_memory = '#SBATCH --mem-per-cpu=' + str(memory) + '\n'
- sbatch_log_out = '#SBATCH -o ' + log_path + '%j.out' + '\n'
- sbatch_log_error = '#SBATCH -e ' + log_path + '%j.err' + '\n'
+ sbatch_log_out = '#SBATCH -o ' + log_path + '%x_%j.out' + '\n'
+ sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n'
#sbatch_module = 'module purge\n'
#sbatch_anaconda = 'module load anaconda3\n'
sbatch_exit = 'set -o errexit\n'
From 0b4ff50717fbbd1a3080e873913a78e4e6c0f953 Mon Sep 17 00:00:00 2001
From: Seyed Mostafa Kia
Date: Sun, 11 Aug 2024 11:35:15 +0200
Subject: [PATCH 02/68] The HBR test is simplified
---
pcntoolkit/util/utils.py | 157 +++++++++++++++++++--------------------
tests/testHBR.py | 116 ++++++++++++++---------------
2 files changed, 129 insertions(+), 144 deletions(-)
diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py
index 9eb9208b..ac855315 100644
--- a/pcntoolkit/util/utils.py
+++ b/pcntoolkit/util/utils.py
@@ -5,7 +5,7 @@
import numpy as np
from scipy import stats
from subprocess import call
-from scipy.stats import genextreme, norm
+from scipy.stats import genextreme, norm, skewnorm
from six import with_metaclass
from abc import ABCMeta, abstractmethod
import pickle
@@ -879,90 +879,83 @@ def calibration_error(Y, m, s, cal_levels):
def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
working_dir=None, plot=False, random_state=None, noise=None):
- """ This function simulates linear synthetic data for testing pcntoolkit methods.
-
- :param method: simulate 'linear' or 'non-linear' function.
- :param n_samples: number of samples in each group of the training and test sets.
- If it is an int then the same sample number will be used for all groups.
- It can be also a list of size of n_grps that decides the number of samples
- in each group (default=100).
- :param n_features: A positive integer that decides the number of features
- (default=1).
- :param n_grps: A positive integer that decides the number of groups in data
- (default=1).
- :param working_dir: Directory to save data (default=None).
- :param plot: Boolean to plot the simulated training data (default=False).
- :param random_state: random state for generating random numbers (Default=None).
- :param noise: Type of added noise to the data. The options are 'gaussian',
- 'exponential', and 'hetero_gaussian' (The defauls is None.).
-
- :returns:
- X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef
-
+ """
+ Simulates synthetic data for testing purposes, with options for linear, non-linear,
+ or combined data generation methods, and various noise types.
+
+ :param method: Method to simulate ('linear', 'non-linear', or 'combined').
+ :param n_samples: Number of samples per group, either an int or a list for each group (default=100).
+ :param n_features: Number of features to simulate (default=1).
+ :param n_grps: Number of groups in the data (default=1).
+ :param working_dir: Directory to save the data (default=None).
+ :param plot: Boolean flag to plot the simulated training data (default=False).
+ :param random_state: Seed for random number generation (default=None).
+ :param noise: Type of noise to add ('homoscedastic_gaussian', 'heteroscedastic_gaussian',
+ 'homoscedastic_nongaussian', 'heteroscedastic_nongaussian', default=None).
+
+ :returns: Tuple of (X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef)
"""
+ #np.random.seed(random_state)
+
if isinstance(n_samples, int):
- n_samples = [n_samples for i in range(n_grps)]
+ n_samples = [n_samples for _ in range(n_grps)]
X_train, Y_train, X_test, Y_test = [], [], [], []
grp_id_train, grp_id_test = [], []
coef = []
+
for i in range(n_grps):
bias = np.random.randint(-10, high=10)
if method == 'linear':
- X_temp, Y_temp, coef_temp = make_regression(n_samples=n_samples[i]*2,
- n_features=n_features, n_targets=1,
- noise=10 * np.random.rand(), bias=bias,
- n_informative=1, coef=True,
- random_state=random_state)
+ X_temp, Y_temp, coef_temp = make_regression(
+ n_samples=n_samples[i] * 2, n_features=n_features, n_targets=1,
+ noise=10 * np.random.rand(), bias=bias, n_informative=1, coef=True,
+ )
elif method == 'non-linear':
- X_temp = np.random.randint(-2, 6, [2*n_samples[i], n_features]) \
- + np.random.randn(2*n_samples[i], n_features)
+ X_temp = np.random.randint(-2, 6, [2 * n_samples[i], n_features]) \
+ + np.random.randn(2 * n_samples[i], n_features)
Y_temp = X_temp[:, 0] * 20 * np.random.rand() + np.random.randint(10, 100) \
* np.sin(2 * np.random.rand() + 2 * np.pi / 5 * X_temp[:, 0])
coef_temp = 0
elif method == 'combined':
- X_temp = np.random.randint(-2, 6, [2*n_samples[i], n_features]) \
- + np.random.randn(2*n_samples[i], n_features)
+ X_temp = np.random.randint(-2, 6, [2 * n_samples[i], n_features]) \
+ + np.random.randn(2 * n_samples[i], n_features)
Y_temp = (X_temp[:, 0]**3) * np.random.uniform(0, 0.5) \
+ X_temp[:, 0] * 20 * np.random.rand() \
+ np.random.randint(10, 100)
coef_temp = 0
else:
- raise ValueError("Unknow method. Please specify valid method among \
- 'linear' or 'non-linear'.")
- coef.append(coef_temp/100)
- X_train.append(X_temp[:X_temp.shape[0]//2])
- Y_train.append(Y_temp[:X_temp.shape[0]//2]/100)
- X_test.append(X_temp[X_temp.shape[0]//2:])
- Y_test.append(Y_temp[X_temp.shape[0]//2:]/100)
- grp_id = np.repeat(i, X_temp.shape[0])
- grp_id_train.append(grp_id[:X_temp.shape[0]//2])
- grp_id_test.append(grp_id[X_temp.shape[0]//2:])
-
- if noise == 'hetero_gaussian':
- t = np.random.randint(5, 10)
- Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \
- * np.log(1 + np.exp(X_train[i][:, 0]))
- Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \
- * np.log(1 + np.exp(X_test[i][:, 0]))
- elif noise == 'gaussian':
- t = np.random.randint(3, 10)
- Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0])/t
- Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0])/t
- elif noise == 'exponential':
- t = np.random.randint(1, 3)
- Y_train[i] = Y_train[i] + \
- np.random.exponential(1, Y_train[i].shape[0]) / t
- Y_test[i] = Y_test[i] + \
- np.random.exponential(1, Y_test[i].shape[0]) / t
- elif noise == 'hetero_gaussian_smaller':
- t = np.random.randint(5, 10)
- Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \
- * np.log(1 + np.exp(0.3 * X_train[i][:, 0]))
- Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \
- * np.log(1 + np.exp(0.3 * X_test[i][:, 0]))
+ raise ValueError("Unknown method. Please specify 'linear', 'non-linear', or 'combined'.")
+
+ coef.append(coef_temp / 100)
+ X_train.append(X_temp[:n_samples[i]])
+ Y_train.append(Y_temp[:n_samples[i]] / 100)
+ X_test.append(X_temp[n_samples[i]:])
+ Y_test.append(Y_temp[n_samples[i]:] / 100)
+ grp_id = np.repeat(i, n_samples[i] * 2)
+ grp_id_train.append(grp_id[:n_samples[i]])
+ grp_id_test.append(grp_id[n_samples[i]:])
+
+ t = np.random.randint(1,5)
+ # Add noise to the data
+ if noise == 'homoscedastic_gaussian':
+ Y_train[i] += np.random.normal(loc=0, scale=0.2, size=Y_train[i].shape[0]) / t
+ Y_test[i] += np.random.normal(loc=0, scale=0.2, size=Y_test[i].shape[0]) / t
+
+ elif noise == 'heteroscedastic_gaussian':
+ Y_train[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0])
+ Y_test[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0])
+
+ elif noise == 'homoscedastic_nongaussian':
+ Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_train[i].shape[0]) / t
+ Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_test[i].shape[0]) / t
+
+ elif noise == 'heteroscedastic_nongaussian':
+ Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0])
+ Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0])
+
X_train = np.vstack(X_train)
X_test = np.vstack(X_test)
Y_train = np.concatenate(Y_train)
@@ -970,32 +963,32 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
grp_id_train = np.expand_dims(np.concatenate(grp_id_train), axis=1)
grp_id_test = np.expand_dims(np.concatenate(grp_id_test), axis=1)
- for i in range(n_features):
- plt.figure()
- for j in range(n_grps):
- plt.scatter(X_train[grp_id_train[:, 0] == j, i],
- Y_train[grp_id_train[:, 0] == j,], label='Group ' + str(j))
- plt.xlabel('X' + str(i))
- plt.ylabel('Y')
- plt.legend()
-
- if working_dir is not None:
+ if plot:
+ for i in range(n_features):
+ plt.figure()
+ for j in range(n_grps):
+ plt.scatter(X_train[grp_id_train[:, 0] == j, i], Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j))
+ plt.xlabel(f'X{i}')
+ plt.ylabel('Y')
+ plt.legend()
+ plt.show()
+
+ if working_dir:
if not os.path.isdir(working_dir):
os.mkdir(working_dir)
+
with open(os.path.join(working_dir, 'trbefile.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(grp_id_train),
- file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(grp_id_train), file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'tsbefile.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(grp_id_test),
- file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(grp_id_test), file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'X_train.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(X_train), file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(X_train), file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'X_test.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(X_test), file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(X_test), file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'Y_train.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(Y_train), file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(Y_train), file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'Y_test.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(Y_test), file, protocol=PICKLE_PROTOCOL)
+ pickle.dump(pd.DataFrame(Y_test), file, protocol=pickle.HIGHEST_PROTOCOL)
return X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef
diff --git a/tests/testHBR.py b/tests/testHBR.py
index fee7065e..1d2ba679 100644
--- a/tests/testHBR.py
+++ b/tests/testHBR.py
@@ -16,18 +16,15 @@
import matplotlib.pyplot as plt
from pcntoolkit.normative import estimate
from warnings import filterwarnings
-from pcntoolkit.util.utils import scaler
-import xarray
-
filterwarnings('ignore')
-np.random.seed(10)
########################### Experiment Settings ###############################
-working_dir = '/home/stijn/temp/' # Specifyexit() a working directory
-# to save data and results.
+random_state = 29
+
+working_dir = '/' # Specify a working directory to save data and results.
simulation_method = 'linear'
n_features = 1 # The number of input features of X
@@ -35,75 +32,70 @@
n_samples = 500 # Number of samples in each group (use a list for different
# sample numbers across different batches)
-model_types = ['linear', 'polynomial', 'bspline'] # models to try
+model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'
+
+
############################## Data Simulation ################################
X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \
simulate_data(simulation_method, n_samples, n_features, n_grps,
- working_dir=working_dir, plot=True)
-
-################################# Methods Tests ###############################
-
-
-for model_type in model_types:
-
- nm = norm_init(X_train, Y_train, alg='hbr', likelihood='SHASHb',
- model_type=model_type, n_samples=100, n_tuning=10)
- nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')
- yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')
-
- for i in range(n_features):
- sorted_idx = X_test[:, i].argsort(axis=0).squeeze()
- temp_X = X_test[sorted_idx, i]
- temp_Y = Y_test[sorted_idx,]
- temp_be = grp_id_test[sorted_idx, :].squeeze()
- temp_yhat = yhat[sorted_idx,]
- temp_s2 = ys2[sorted_idx,]
-
- plt.figure()
- for j in range(n_grps):
- scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,],
- label='Group' + str(j))
- plt.plot(temp_X[temp_be == j,], temp_yhat[temp_be == j,])
- plt.fill_between(temp_X[temp_be == j,], temp_yhat[temp_be == j,] -
- 1.96 * np.sqrt(temp_s2[temp_be == j,]),
- temp_yhat[temp_be == j,] +
- 1.96 * np.sqrt(temp_s2[temp_be == j,]),
- color='gray', alpha=0.2)
-
- # Showing the quantiles
- resolution = 200
- synth_X = np.linspace(-3, 3, resolution)
- q = nm.get_mcmc_quantiles(
- synth_X, batch_effects=j*np.ones(resolution))
- col = scat1.get_facecolors()[0]
- plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0)
-
- plt.title('Model %s, Feature %d' % (model_type, i))
- plt.legend()
- plt.show()
+ working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',
+ random_state=random_state)
+################################# Fittig and Predicting ###############################
+
+nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb',
+ linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True')
+
+nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')
+yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')
-############################## Normative Modelling Test #######################
+################################# Plotting Quantiles ###############################
-model_type = model_types[0]
-covfile = working_dir + 'X_train.pkl'
-respfile = working_dir + 'Y_train.pkl'
-testcov = working_dir + 'X_test.pkl'
-testresp = working_dir + 'Y_test.pkl'
-trbefile = working_dir + 'trbefile.pkl'
-tsbefile = working_dir + 'tsbefile.pkl'
+for i in range(n_features):
+ sorted_idx = X_test[:, i].argsort(axis=0).squeeze()
+ temp_X = X_test[sorted_idx, i]
+ temp_Y = Y_test[sorted_idx,]
+ temp_be = grp_id_test[sorted_idx, :].squeeze()
+ temp_yhat = yhat[sorted_idx,]
+ temp_s2 = ys2[sorted_idx,]
+
+ plt.figure()
+ for j in range(n_grps):
+ scat1 = plt.scatter(temp_X[temp_be == j,], temp_Y[temp_be == j,],
+ label='Group' + str(j))
+ # Showing the quantiles
+ resolution = 200
+ synth_X = np.linspace(-3, 3, resolution)
+ q = nm.get_mcmc_quantiles(
+ synth_X, batch_effects=j*np.ones(resolution))
+ col = scat1.get_facecolors()[0]
+ plt.plot(synth_X, q.T, linewidth=1, color=col, zorder=0)
+
+ plt.title('Model %s, Feature %d' % (model_type, i))
+ plt.legend()
+ plt.show()
+
+
+############################## Normative Modelling Test #######################
+
+# covfile = working_dir + 'X_train.pkl'
+# respfile = working_dir + 'Y_train.pkl'
+# testcov = working_dir + 'X_test.pkl'
+# testresp = working_dir + 'Y_test.pkl'
+# trbefile = working_dir + 'trbefile.pkl'
+# tsbefile = working_dir + 'tsbefile.pkl'
-os.chdir(working_dir)
+# os.chdir(working_dir)
-estimate(covfile, respfile, testcov=testcov, testresp=testresp, trbefile=trbefile,
- tsbefile=tsbefile, alg='hbr', outputsuffix='_' + model_type,
- inscaler='None', outscaler='None', model_type=model_type,
- savemodel='True', saveoutput='True')
+# estimate(covfile, respfile, testcovfile_path=testcov, testrespfile_path=testresp, trbefile=trbefile,
+# tsbefile=tsbefile, alg='hbr', outputsuffix='_' + model_type,
+# inscaler='None', outscaler='None', model_type=model_type,
+# savemodel='True', saveoutput='True')
###############################################################################
From edac27925f64d305468700f87b3a4dbfa0eef896 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Thu, 12 Sep 2024 22:58:14 +0200
Subject: [PATCH 03/68] Runs the testHBR script correctly on pymc==5.16
---
pcntoolkit/model/hbr.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py
index 77c60f1d..f95e3e85 100644
--- a/pcntoolkit/model/hbr.py
+++ b/pcntoolkit/model/hbr.py
@@ -233,7 +233,7 @@ def get_sample_dims(var):
pb.batch_effect_indices = tuple(
[
pm.Data(
- pb.batch_effect_dim_names[i],
+ pb.batch_effect_dim_names[i]+"_data",
pb.batch_effect_indices[i],
mutable=True,
dims="datapoints",
@@ -520,7 +520,7 @@ def predict(
# Compute those indices for the test data
indices = list(map(lambda x: valmap[x], batch_effects[:, i]))
# Those indices need to be used by the model
- pm.set_data({f"batch_effect_{i}": indices})
+ pm.set_data({f"batch_effect_{i}_data": indices})
self.idata = pm.sample_posterior_predictive(
trace=self.idata,
From 88e12adc31a6df79d0a9dc7f442b5b5c450472d6 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Tue, 17 Sep 2024 16:22:43 +0200
Subject: [PATCH 04/68] Suppress warnings due to pymc==5.16
---
pcntoolkit/model/SHASH.py | 12 ++++--------
1 file changed, 4 insertions(+), 8 deletions(-)
diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py
index 39bf0646..8d43908b 100644
--- a/pcntoolkit/model/SHASH.py
+++ b/pcntoolkit/model/SHASH.py
@@ -152,8 +152,7 @@ def m(epsilon, delta, r):
class SHASH(RandomVariable):
name = "shash"
- ndim_supp = 0
- ndims_params = [0, 0]
+ signature = "(),()->()"
dtype = "floatX"
_print_name = ("SHASH", "\\operatorname{SHASH}")
@@ -194,8 +193,7 @@ def logp(value, epsilon, delta):
class SHASHoRV(RandomVariable):
name = "shasho"
- ndim_supp = 0
- ndims_params = [0, 0, 0, 0]
+ signature = "(),(),(),()->()"
dtype = "floatX"
_print_name = ("SHASHo", "\\operatorname{SHASHo}")
@@ -239,8 +237,7 @@ def logp(value, mu, sigma, epsilon, delta):
class SHASHo2RV(RandomVariable):
name = "shasho2"
- ndim_supp = 0
- ndims_params = [0, 0, 0, 0]
+ signature = "(),(),(),()->()"
dtype = "floatX"
_print_name = ("SHASHo2", "\\operatorname{SHASHo2}")
@@ -286,8 +283,7 @@ def logp(value, mu, sigma, epsilon, delta):
class SHASHbRV(RandomVariable):
name = "shashb"
- ndim_supp = 0
- ndims_params = [0, 0, 0, 0]
+ signature = "(),(),(),()->()"
dtype = "floatX"
_print_name = ("SHASHo2", "\\operatorname{SHASHo2}")
From cc8352677194e62eeb9dfa74106d8725b1360249 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Tue, 17 Sep 2024 16:24:27 +0200
Subject: [PATCH 05/68] Correct error in SHASHb name
---
pcntoolkit/model/SHASH.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py
index 8d43908b..1ccffcb6 100644
--- a/pcntoolkit/model/SHASH.py
+++ b/pcntoolkit/model/SHASH.py
@@ -285,7 +285,7 @@ class SHASHbRV(RandomVariable):
name = "shashb"
signature = "(),(),(),()->()"
dtype = "floatX"
- _print_name = ("SHASHo2", "\\operatorname{SHASHo2}")
+ _print_name = ("SHASHb", "\\operatorname{SHASHb}")
@classmethod
def rng_fn(
From 255ecca39cf7bc6920ef527d4a76c65dbccc6f49 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Wed, 2 Oct 2024 15:36:01 +0200
Subject: [PATCH 06/68] Address issue 215 Speedup for python==3.12
---
README.md | 56 ++++++++++----
pcntoolkit/model/SHASH.py | 76 +++++++++---------
pcntoolkit/model/architecture.py | 12 ++-
pcntoolkit/model/hbr.py | 2 +
pcntoolkit/normative.py | 15 ++--
pcntoolkit/normative_model/norm_hbr.py | 3 +-
pcntoolkit/normative_parallel.py | 103 ++++++++++++-------------
pcntoolkit/util/utils.py | 62 +++++++++------
requirements.txt | 4 +-
setup.py | 3 +-
tests/testHBR.py | 11 ++-
tests/test_normative_parallel.py | 28 +++----
12 files changed, 215 insertions(+), 160 deletions(-)
diff --git a/README.md b/README.md
index fa37c7d4..51c7d474 100644
--- a/README.md
+++ b/README.md
@@ -8,64 +8,92 @@ Methods for normative modelling, spatial statistics and pattern recognition. Doc
## Basic installation (on a local machine)
-i) install anaconda3 ii) create enviornment with "conda create --name " iii) activate environment by "source activate " iv) install required conda packages
+#### Install anaconda3
+
+using the download here: https://www.anaconda.com/download
+
+#### Create environment
+```
+conda create
+```
+
+#### Activate environment
+
+```
+source activate
+```
+
+#### Install torch
+
+Use the command that you get from the command builder here: https://pytorch.org/get-started/locally/. This will ensure you do not install the CUDA version of torch if your pc does not have a GPU. We also recommend that you use the `conda` option.
+
+#### Install other required conda packages
```
-conda install pip pandas scipy
+conda install pip pandas scipy pymc
```
-v) install PCNtoolkit (plus dependencies)
+#### Install PCNtoolkit
```
pip install pcntoolkit
```
## Alternative installation (on a shared resource)
-Make sure conda is available on the system.
+
+#### Make sure conda is available on the system.
Otherwise install it first from https://www.anaconda.com/
```
conda --version
```
-Create a conda environment in a shared location
+#### Create a conda environment in a shared location
```
-conda create -y python==3.8.3 numpy mkl blas --prefix=/shared/conda/
+conda create -y python==3.10 numpy mkl blas --prefix=/shared/conda/
```
-Activate the conda environment
+#### Activate the conda environment
```
conda activate /shared/conda/
```
+#### install torch
-Install other dependencies
+Using the command that you get from the command builder here:
```
-conda install -y pandas scipy
+https://pytorch.org/get-started/locally/
```
-Install pip dependencies
+If your shared resource has no GPU, make sure you select the 'CPU' field in the 'Compute Platform' row. Here we also prefer conda over pip.
+
+#### Install other dependencies
+
+```
+conda install -y pandas scipy pymc
+```
+
+#### Install pip dependencies
```
pip --no-cache-dir install nibabel scikit-learn torch glob3
```
-Clone the repo
+#### Clone the repo
```
git clone https://github.com/amarquand/PCNtoolkit.git
```
-install in the conda environment
+### Install in the conda environment
```
cd PCNtoolkit/
python3 setup.py install
```
-
-Test
+### Test
```
python -c "import pcntoolkit as pk;print(pk.__file__)"
```
diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py
index 1ccffcb6..4be5c947 100644
--- a/pcntoolkit/model/SHASH.py
+++ b/pcntoolkit/model/SHASH.py
@@ -23,26 +23,42 @@
"""
-def numpy_P(q):
+def K(q, x):
"""
- The P function as given in Jones et al.
+ The K function as given in Jones et al.
:param q:
+ :param x:
:return:
"""
- frac = np.exp(1.0 / 4.0) / np.power(8.0 * np.pi, 1.0 / 2.0)
- K1 = numpy_K((q + 1) / 2, 1.0 / 4.0)
- K2 = numpy_K((q - 1) / 2, 1.0 / 4.0)
- a = (K1 + K2) * frac
- return a
+ return spp.kv(q, x)
-def numpy_K(p, x):
+def unique_K(q, x):
"""
- Computes the values of spp.kv(p,x) for only the unique values of p
+ This is the K function, but it only calculates the unique values of q.
+ :param q:
+ :param x:
+ :return:
"""
+ unique_q, inverse_indices = np.unique(q, return_inverse=True)
+ unique_outputs = spp.kv(unique_q, x)
+ outputs = unique_outputs[inverse_indices].reshape(q.shape)
+ return outputs
+
- ps, idxs = np.unique(p, return_inverse=True)
- return spp.kv(ps, x)[idxs].reshape(p.shape)
+CONST = np.exp(0.25) / np.power(8.0 * np.pi, 0.5)
+
+
+def P(q):
+ """
+ The P function as given in Jones et al.
+ :param q:
+ :return:
+ """
+ K1 = K()((q + 1) / 2, 0.25)
+ K2 = K()((q - 1) / 2, 0.25)
+ a = (K1 + K2) * CONST
+ return a
class K(Op):
@@ -58,23 +74,19 @@ def make_node(self, p, x):
return Apply(self, [p, x], [p.type()])
def perform(self, node, inputs_storage, output_storage):
- # Doing this on the unique values avoids doing A LOT OF double work, apparently scipy doesn't do this by itself
-
- unique_inputs, inverse_indices = np.unique(
- inputs_storage[0], return_inverse=True
- )
- unique_outputs = spp.kv(unique_inputs, inputs_storage[1])
- outputs = unique_outputs[inverse_indices].reshape(
- inputs_storage[0].shape)
- output_storage[0][0] = outputs
+ output_storage[0][0] = unique_K(inputs_storage[0], inputs_storage[1])
def grad(self, inputs, output_grads):
# Approximation of the derivative. This should suffice for using NUTS
- dp = 1e-10
+ dp = 1e-16
p = inputs[0]
x = inputs[1]
- grad = (self(p + dp, x) - self(p, x)) / dp
- return [output_grads[0] * grad, grad_not_implemented(0, 1, 2, 3)]
+ grad = (self(p + dp, x) - self(p - dp, x)) / dp
+ return [
+ output_grads[0] * grad,
+ grad_not_implemented(
+ "K", 1, "x", "Gradient not implemented for x"),
+ ]
def S(x, epsilon, delta):
@@ -102,19 +114,6 @@ def C(x, epsilon, delta):
return np.cosh(np.arcsinh(x) * delta - epsilon)
-def P(q):
- """
- The P function as given in Jones et al.
- :param q:
- :return:
- """
- frac = np.exp(1.0 / 4.0) / np.power(8.0 * np.pi, 1.0 / 2.0)
- K1 = K()((q + 1) / 2, 1.0 / 4.0)
- K2 = K()((q - 1) / 2, 1.0 / 4.0)
- a = (K1 + K2) * frac
- return a
-
-
def m(epsilon, delta, r):
"""
:param epsilon:
@@ -298,9 +297,8 @@ def rng_fn(
size: Optional[Union[List[int], int]],
) -> np.ndarray:
s = rng.normal(size=size)
- mean = np.sinh(epsilon / delta) * numpy_P(1 / delta)
- var = ((np.cosh(2 * epsilon / delta) *
- numpy_P(2 / delta) - 1) / 2) - mean**2
+ mean = np.sinh(epsilon / delta) * P(1 / delta)
+ var = ((np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2) - mean**2
out = (
(np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var)
) * sigma + mu
diff --git a/pcntoolkit/model/architecture.py b/pcntoolkit/model/architecture.py
index 0dfb09c9..8894ce3f 100644
--- a/pcntoolkit/model/architecture.py
+++ b/pcntoolkit/model/architecture.py
@@ -46,7 +46,8 @@ def __init__(self, x, y, args):
# Conv 1
self.encoder_y_layer_1_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor,
kernel_size=5, stride=2, padding=0,
- dilation=1, groups=self.factor, bias=True) # in:(90,108,90) out:(43,52,43)
+ # in:(90,108,90) out:(43,52,43)
+ dilation=1, groups=self.factor, bias=True)
self.encoder_y_layer_1_bn = nn.BatchNorm3d(self.factor)
d_out_1, h_out_1, w_out_1 = compute_conv_out_size(y.shape[2], y.shape[3],
y.shape[4], padding=[
@@ -57,7 +58,8 @@ def __init__(self, x, y, args):
# Conv 2
self.encoder_y_layer_2_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor,
kernel_size=3, stride=2, padding=0,
- dilation=1, groups=self.factor, bias=True) # out: (21,25,21)
+ # out: (21,25,21)
+ dilation=1, groups=self.factor, bias=True)
self.encoder_y_layer_2_bn = nn.BatchNorm3d(self.factor)
d_out_2, h_out_2, w_out_2 = compute_conv_out_size(d_out_1, h_out_1,
w_out_1, padding=[
@@ -68,7 +70,8 @@ def __init__(self, x, y, args):
# Conv 3
self.encoder_y_layer_3_conv = nn.Conv3d(in_channels=self.factor, out_channels=self.factor,
kernel_size=3, stride=2, padding=0,
- dilation=1, groups=self.factor, bias=True) # out: (10,12,10)
+ # out: (10,12,10)
+ dilation=1, groups=self.factor, bias=True)
self.encoder_y_layer_3_bn = nn.BatchNorm3d(self.factor)
d_out_3, h_out_3, w_out_3 = compute_conv_out_size(d_out_2, h_out_2,
w_out_2, padding=[
@@ -79,7 +82,8 @@ def __init__(self, x, y, args):
# Conv 4
self.encoder_y_layer_4_conv = nn.Conv3d(in_channels=self.factor, out_channels=1,
kernel_size=3, stride=2, padding=0,
- dilation=1, groups=1, bias=True) # out: (4,5,4)
+ # out: (4,5,4)
+ dilation=1, groups=1, bias=True)
self.encoder_y_layer_4_bn = nn.BatchNorm3d(1)
d_out_4, h_out_4, w_out_4 = compute_conv_out_size(d_out_3, h_out_3,
w_out_3, padding=[
diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py
index f95e3e85..4d051b38 100644
--- a/pcntoolkit/model/hbr.py
+++ b/pcntoolkit/model/hbr.py
@@ -448,6 +448,7 @@ def estimate(self, X, y, batch_effects, **kwargs):
init=self.configs["init"],
n_init=500000,
cores=self.configs["cores"],
+ nuts_sampler=self.configs["nuts_sampler"],
)
self.vars_to_sample = ['y_like']
if self.configs['remove_datapoints_from_posterior']:
@@ -559,6 +560,7 @@ def estimate_on_new_site(self, X, y, batch_effects):
init=self.configs["init"],
n_init=50000,
cores=self.configs["cores"],
+ nuts_sampler=self.configs["nuts_sampler"],
)
return self.idata
diff --git a/pcntoolkit/normative.py b/pcntoolkit/normative.py
index 1c62737c..14a35643 100755
--- a/pcntoolkit/normative.py
+++ b/pcntoolkit/normative.py
@@ -522,7 +522,8 @@ def estimate(covfile, respfile, **kwargs):
if warp is not None:
# TODO: Warping for scaled data
if outscaler is not None and outscaler != 'None':
- raise ValueError("outscaler not yet supported warping")
+ raise ValueError(
+ "outscaler not yet supported warping")
warp_param = nm.blr.hyp[1:nm.blr.warp.get_n_params()+1]
Ywarp[ts, nz[i]] = nm.blr.warp.f(
Y[ts, nz[i]], warp_param)
@@ -804,7 +805,7 @@ def predict(covfile, respfile, maskfile=None, **kwargs):
Y, maskvol = load_response_vars(respfile, maskfile)
if len(Y.shape) == 1:
Y = Y[:, np.newaxis]
-
+
sample_num = X.shape[0]
if models is not None:
feature_num = len(models)
@@ -853,13 +854,13 @@ def predict(covfile, respfile, maskfile=None, **kwargs):
if respfile is not None:
if alg == 'hbr':
# Z scores for HBR must be computed independently for each model
- Z[:,i] = nm.get_mcmc_zscores(Xz, Yz[:, i:i+1], **kwargs)
-
+ Z[:, i] = nm.get_mcmc_zscores(Xz, Yz[:, i:i+1], **kwargs)
+
if respfile is None:
save_results(None, Yhat, S2, None, outputsuffix=outputsuffix)
return (Yhat, S2)
-
+
else:
if models is not None and len(Y.shape) > 1:
Y = Y[:, models]
@@ -891,9 +892,9 @@ def predict(covfile, respfile, maskfile=None, **kwargs):
Y = Yw
else:
warp = False
-
+
if alg != 'hbr':
- # For HBR the Z scores are already computed
+ # For HBR the Z scores are already computed
Z = (Y - Yhat) / np.sqrt(S2)
print("Evaluating the model ...")
diff --git a/pcntoolkit/normative_model/norm_hbr.py b/pcntoolkit/normative_model/norm_hbr.py
index f972bfd0..b98674d0 100644
--- a/pcntoolkit/normative_model/norm_hbr.py
+++ b/pcntoolkit/normative_model/norm_hbr.py
@@ -135,13 +135,14 @@ def __init__(self, **kwargs):
"random_noise", "True") == "True"
self.configs["likelihood"] = kwargs.get("likelihood", "Normal")
# sampler settings
+ self.configs["nuts_sampler"] = kwargs.get("nuts_sampler", "pymc")
self.configs["n_samples"] = int(kwargs.get("n_samples", "1000"))
self.configs["n_tuning"] = int(kwargs.get("n_tuning", "500"))
self.configs["n_chains"] = int(kwargs.get("n_chains", "1"))
self.configs["sampler"] = kwargs.get("sampler", "NUTS")
self.configs["target_accept"] = float(
kwargs.get("target_accept", "0.8"))
- self.configs["init"] = kwargs.get("init", "jitter+adapt_diag")
+ self.configs["init"] = kwargs.get("init", "jitter+adapt_diag_grad")
self.configs["cores"] = int(kwargs.get("cores", "1"))
self.configs["remove_datapoints_from_posterior"] = kwargs.get(
"remove_datapoints_from_posterior", "True") == "True"
diff --git a/pcntoolkit/normative_parallel.py b/pcntoolkit/normative_parallel.py
index 2be391d1..f6a957e7 100755
--- a/pcntoolkit/normative_parallel.py
+++ b/pcntoolkit/normative_parallel.py
@@ -132,7 +132,7 @@ def execute_nm(processing_dir,
kwargs.update({'batch_size': str(batch_size)})
job_ids = []
start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
-
+
for n in range(1, number_of_batches+1):
kwargs.update({'job_id': str(n)})
if testrespfile_path is not None:
@@ -181,11 +181,10 @@ def execute_nm(processing_dir,
memory=memory,
duration=duration,
**kwargs)
-
+
job_id = sbatch_nm(job_path=batch_job_path)
job_ids.append(job_id)
-
-
+
elif cluster_spec == 'new':
# this part requires addition in different envioronment [
sbatchwrap_nm(processing_dir=batch_processing_dir,
@@ -225,7 +224,7 @@ def execute_nm(processing_dir,
memory=memory,
duration=duration,
**kwargs)
-
+
job_id = sbatch_nm(job_path=batch_job_path)
job_ids.append(job_id)
elif cluster_spec == 'new':
@@ -268,11 +267,10 @@ def execute_nm(processing_dir,
memory=memory,
duration=duration,
**kwargs)
-
-
+
job_id = sbatch_nm(job_path=batch_job_path)
job_ids.append(job_id)
-
+
elif cluster_spec == 'new':
# this part requires addition in different envioronment [
bashwrap_nm(processing_dir=batch_processing_dir, func=func,
@@ -301,31 +299,31 @@ def execute_nm(processing_dir,
if response:
if cluster_spec == 'torque':
rerun_nm(processing_dir, log_path=log_path, memory=memory,
- duration=duration, binary=binary,
- interactive=interactive)
+ duration=duration, binary=binary,
+ interactive=interactive)
elif cluster_spec == 'slurm':
sbatchrerun_nm(processing_dir,
- memory=memory,
- duration=duration,
- binary=binary,
- log_path=log_path,
- interactive=interactive)
-
+ memory=memory,
+ duration=duration,
+ binary=binary,
+ log_path=log_path,
+ interactive=interactive)
+
else:
success = True
else:
print('Reruning the failed jobs ...')
if cluster_spec == 'torque':
rerun_nm(processing_dir, log_path=log_path, memory=memory,
- duration=duration, binary=binary,
- interactive=interactive)
+ duration=duration, binary=binary,
+ interactive=interactive)
elif cluster_spec == 'slurm':
sbatchrerun_nm(processing_dir,
- memory=memory,
- duration=duration,
- binary=binary,
- log_path=log_path,
- interactive=interactive)
+ memory=memory,
+ duration=duration,
+ binary=binary,
+ log_path=log_path,
+ interactive=interactive)
if interactive == 'query':
response = yes_or_no('Collect the results?')
@@ -508,11 +506,11 @@ def collect_nm(processing_dir,
# prediction is made (when test cov is not specified).
files = glob.glob(processing_dir + 'batch_*/' + 'yhat' + outputsuffix
+ file_extentions)
- if len(files)>0:
+ if len(files) > 0:
file_example = fileio.load(files[0])
else:
- raise ValueError(f"Missing output files (yhats at: {processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions}")
-
+ raise ValueError(f"Missing output files (yhats at: {processing_dir + 'batch_*/' + 'yhat' + outputsuffix + file_extentions}")
+
numsubjects = file_example.shape[0]
try:
# doesn't exist if size=1, and txt file
@@ -1129,9 +1127,9 @@ def sbatchwrap_nm(processing_dir,
sbatch_time = '#SBATCH --time=' + str(duration) + '\n'
sbatch_memory = '#SBATCH --mem-per-cpu=' + str(memory) + '\n'
sbatch_log_out = '#SBATCH -o ' + log_path + '%x_%j.out' + '\n'
- sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n'
- #sbatch_module = 'module purge\n'
- #sbatch_anaconda = 'module load anaconda3\n'
+ sbatch_log_error = '#SBATCH -e ' + log_path + '%x_%j.err' + '\n'
+ # sbatch_module = 'module purge\n'
+ # sbatch_anaconda = 'module load anaconda3\n'
sbatch_exit = 'set -o errexit\n'
# echo -n "This script is running on "
@@ -1142,8 +1140,8 @@ def sbatchwrap_nm(processing_dir,
sbatch_nodes +
sbatch_tasks +
sbatch_time +
- sbatch_memory+
- sbatch_log_out+
+ sbatch_memory +
+ sbatch_log_out +
sbatch_log_error
]
@@ -1212,7 +1210,7 @@ def sbatch_nm(job_path):
# submits job to cluster
job_id = check_output(sbatch_call, shell=True).decode(
sys.stdout.encoding).replace("\n", "")
-
+
return job_id
@@ -1240,11 +1238,11 @@ def sbatchrerun_nm(processing_dir,
written by (primarily) T Wolfers, (adapted) S Rutherford.
'''
-
- #log_path = kwargs.pop('log_path', None)
-
+
+ # log_path = kwargs.pop('log_path', None)
+
job_ids = []
-
+
start_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
if binary:
@@ -1284,15 +1282,16 @@ def sbatchrerun_nm(processing_dir,
print(line.replace(memory, new_memory), end='')
job_id = sbatch_nm(jobpath)
job_ids.append(job_id)
-
+
if interactive:
- check_jobs(job_ids, cluster_spec='slurm', start_time=start_time, delay=60)
+ check_jobs(job_ids, cluster_spec='slurm',
+ start_time=start_time, delay=60)
def retrieve_jobs(cluster_spec, start_time=None):
"""
A utility function to retrieve task status from the outputs of qstat.
-
+
:param cluster_spec: type of cluster, either 'torque' or 'slurm'.
:return: a dictionary of jobs.
@@ -1300,7 +1299,7 @@ def retrieve_jobs(cluster_spec, start_time=None):
"""
if cluster_spec == 'torque':
-
+
output = check_output('qstat', shell=True).decode(sys.stdout.encoding)
output = output.split('\n')
jobs = dict()
@@ -1310,9 +1309,9 @@ def retrieve_jobs(cluster_spec, start_time=None):
jobs[Job_ID]['name'] = Job_Name
jobs[Job_ID]['walltime'] = Wall_Time
jobs[Job_ID]['status'] = Status
-
+
elif cluster_spec == 'slurm':
-
+
end_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
cmd = ['sacct', '-n', '-X', '--parsable2', '--noheader',
'-S', start_time, '-E', end_time, '--format=JobName,State']
@@ -1336,9 +1335,9 @@ def check_job_status(jobs, cluster_spec, start_time=None):
c = 0
q = 0
u = 0
-
+
if cluster_spec == 'torque':
-
+
for job in jobs:
try:
if running_jobs[job]['status'] == 'C':
@@ -1352,14 +1351,14 @@ def check_job_status(jobs, cluster_spec, start_time=None):
except: # probably meanwhile the job is finished.
c += 1
continue
-
+
print('Total Jobs:%d, Queued:%d, Running:%d, Completed:%d, Unknown:%d'
- % (len(jobs), q, r, c, u))
-
+ % (len(jobs), q, r, c, u))
+
elif cluster_spec == 'slurm':
-
+
lines = running_jobs.stdout.strip().split('\n')
-
+
for line in lines:
if line:
parts = line.split('|')
@@ -1373,10 +1372,10 @@ def check_job_status(jobs, cluster_spec, start_time=None):
c += 1
elif state == 'FAILED':
u += 1
-
+
print('Total Jobs:%d, Pending:%d, Running:%d, Completed:%d, Failed:%d'
- % (len(jobs), q, r, c, u))
-
+ % (len(jobs), q, r, c, u))
+
return q, r, c, u
diff --git a/pcntoolkit/util/utils.py b/pcntoolkit/util/utils.py
index ac855315..5b1550ec 100644
--- a/pcntoolkit/util/utils.py
+++ b/pcntoolkit/util/utils.py
@@ -469,7 +469,8 @@ def __init__(self):
def _get_params(self, param):
if len(param) != self.n_params:
- raise ValueError('number of parameters must be ' + str(self.n_params))
+ raise ValueError(
+ 'number of parameters must be ' + str(self.n_params))
return param[0], np.exp(param[1])
def f(self, x, params):
@@ -570,7 +571,8 @@ def __init__(self):
def _get_params(self, param):
if len(param) != self.n_params:
- raise ValueError('number of parameters must be ' + str(self.n_params))
+ raise ValueError(
+ 'number of parameters must be ' + str(self.n_params))
epsilon = param[0]
b = np.exp(param[1])
@@ -896,8 +898,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
:returns: Tuple of (X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef)
"""
- #np.random.seed(random_state)
-
+ # np.random.seed(random_state)
+
if isinstance(n_samples, int):
n_samples = [n_samples for _ in range(n_grps)]
@@ -927,7 +929,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
+ np.random.randint(10, 100)
coef_temp = 0
else:
- raise ValueError("Unknown method. Please specify 'linear', 'non-linear', or 'combined'.")
+ raise ValueError(
+ "Unknown method. Please specify 'linear', 'non-linear', or 'combined'.")
coef.append(coef_temp / 100)
X_train.append(X_temp[:n_samples[i]])
@@ -938,23 +941,31 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
grp_id_train.append(grp_id[:n_samples[i]])
grp_id_test.append(grp_id[n_samples[i]:])
- t = np.random.randint(1,5)
+ t = np.random.randint(1, 5)
# Add noise to the data
if noise == 'homoscedastic_gaussian':
- Y_train[i] += np.random.normal(loc=0, scale=0.2, size=Y_train[i].shape[0]) / t
- Y_test[i] += np.random.normal(loc=0, scale=0.2, size=Y_test[i].shape[0]) / t
+ Y_train[i] += np.random.normal(loc=0,
+ scale=0.2, size=Y_train[i].shape[0]) / t
+ Y_test[i] += np.random.normal(loc=0,
+ scale=0.2, size=Y_test[i].shape[0]) / t
elif noise == 'heteroscedastic_gaussian':
- Y_train[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0])
- Y_test[i] += np.random.normal(loc=0, scale=np.log(1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0])
+ Y_train[i] += np.random.normal(loc=0, scale=np.log(
+ 1 + np.exp(X_train[i][:, 0])), size=Y_train[i].shape[0])
+ Y_test[i] += np.random.normal(loc=0, scale=np.log(
+ 1 + np.exp(X_test[i][:, 0])), size=Y_test[i].shape[0])
elif noise == 'homoscedastic_nongaussian':
- Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_train[i].shape[0]) / t
- Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=0.2, size=Y_test[i].shape[0]) / t
+ Y_train[i] += skewnorm.rvs(a=10, loc=0,
+ scale=0.2, size=Y_train[i].shape[0]) / t
+ Y_test[i] += skewnorm.rvs(a=10, loc=0,
+ scale=0.2, size=Y_test[i].shape[0]) / t
elif noise == 'heteroscedastic_nongaussian':
- Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0])
- Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 + np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0])
+ Y_train[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(
+ 1 + np.exp(0.3 * X_train[i][:, 0])), size=Y_train[i].shape[0])
+ Y_test[i] += skewnorm.rvs(a=10, loc=0, scale=np.log(1 +
+ np.exp(0.3 * X_test[i][:, 0])), size=Y_test[i].shape[0])
X_train = np.vstack(X_train)
X_test = np.vstack(X_test)
@@ -967,7 +978,8 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
for i in range(n_features):
plt.figure()
for j in range(n_grps):
- plt.scatter(X_train[grp_id_train[:, 0] == j, i], Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j))
+ plt.scatter(X_train[grp_id_train[:, 0] == j, i],
+ Y_train[grp_id_train[:, 0] == j], label='Group ' + str(j))
plt.xlabel(f'X{i}')
plt.ylabel('Y')
plt.legend()
@@ -976,19 +988,25 @@ def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1,
if working_dir:
if not os.path.isdir(working_dir):
os.mkdir(working_dir)
-
+
with open(os.path.join(working_dir, 'trbefile.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(grp_id_train), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(grp_id_train), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'tsbefile.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(grp_id_test), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(grp_id_test), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'X_train.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(X_train), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(X_train), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'X_test.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(X_test), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(X_test), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'Y_train.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(Y_train), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(Y_train), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(working_dir, 'Y_test.pkl'), 'wb') as file:
- pickle.dump(pd.DataFrame(Y_test), file, protocol=pickle.HIGHEST_PROTOCOL)
+ pickle.dump(pd.DataFrame(Y_test), file,
+ protocol=pickle.HIGHEST_PROTOCOL)
return X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef
diff --git a/requirements.txt b/requirements.txt
index 58c3f61e..1ec16b74 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -10,4 +10,6 @@ pandas>=0.25.3
torch>=1.1.0
sphinx-tabs
pymc>=5.1.0
-arviz==0.13.0
+arviz
+numba
+nutpie
\ No newline at end of file
diff --git a/setup.py b/setup.py
index d37cd554..00693595 100644
--- a/setup.py
+++ b/setup.py
@@ -7,10 +7,11 @@ def parse_requirements(filename):
lineiter = (line.strip() for line in f)
return [line for line in lineiter if line and not line.startswith("#")]
+
requirements = parse_requirements('requirements.txt')
# Note: to force PyPI to overwrite a version without bumping the version number
-# use e.g.:
+# use e.g.:
# version = '0.29-1'
setup(name='pcntoolkit',
diff --git a/tests/testHBR.py b/tests/testHBR.py
index 1d2ba679..30168317 100644
--- a/tests/testHBR.py
+++ b/tests/testHBR.py
@@ -24,7 +24,7 @@
random_state = 29
-working_dir = '/' # Specify a working directory to save data and results.
+working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.
simulation_method = 'linear'
n_features = 1 # The number of input features of X
@@ -32,8 +32,7 @@
n_samples = 500 # Number of samples in each group (use a list for different
# sample numbers across different batches)
-model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'
-
+model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'
############################## Data Simulation ################################
@@ -41,13 +40,13 @@
X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \
simulate_data(simulation_method, n_samples, n_features, n_grps,
- working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',
+ working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',
random_state=random_state)
################################# Fittig and Predicting ###############################
-nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb',
- linear_sigma='True', random_slope_mu='True', linear_epsilon='True', linear_delta='True')
+nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo',
+ linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie')
nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')
yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')
diff --git a/tests/test_normative_parallel.py b/tests/test_normative_parallel.py
index 89644c59..1a861429 100644
--- a/tests/test_normative_parallel.py
+++ b/tests/test_normative_parallel.py
@@ -12,7 +12,7 @@
# configs
# specify your python path. Make sure you are using the Python in the right environement.
-python_path = '/path/to/my/python'
+python_path = '/path/to/my/python'
# specify the working directory to sacve the results.
processing_dir = '/path/to/my/test/directory/'
@@ -21,29 +21,31 @@
cov_num = 1
# simulating data
-pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(os.path.join(processing_dir,'train_resp.pkl'))
-pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(os.path.join(processing_dir,'train_cov.pkl'))
-pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(os.path.join(processing_dir,'test_resp.pkl'))
-pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(os.path.join(processing_dir,'test_cov.pkl'))
+pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(
+ os.path.join(processing_dir, 'train_resp.pkl'))
+pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(
+ os.path.join(processing_dir, 'train_cov.pkl'))
+pd.DataFrame(np.random.random([sample_num, resp_num])).to_pickle(
+ os.path.join(processing_dir, 'test_resp.pkl'))
+pd.DataFrame(np.random.random([sample_num, cov_num])).to_pickle(
+ os.path.join(processing_dir, 'test_cov.pkl'))
-respfile = os.path.join(processing_dir,'train_resp.pkl')
-covfile = os.path.join(processing_dir,'train_cov.pkl')
+respfile = os.path.join(processing_dir, 'train_resp.pkl')
+covfile = os.path.join(processing_dir, 'train_cov.pkl')
-testresp = os.path.join(processing_dir,'test_resp.pkl')
-testcov = os.path.join(processing_dir,'test_cov.pkl')
+testresp = os.path.join(processing_dir, 'test_resp.pkl')
+testcov = os.path.join(processing_dir, 'test_cov.pkl')
job_name = 'nmp_test'
batch_size = 1
memory = '4gb'
duration = '01:00:00'
cluster = 'slurm'
-binary='True'
+binary = 'True'
execute_nm(processing_dir, python_path, job_name, covfile, respfile,
- testcovfile_path=testcov, testrespfile_path=testresp, batch_size=batch_size,
+ testcovfile_path=testcov, testrespfile_path=testresp, batch_size=batch_size,
memory=memory, duration=duration, cluster_spec=cluster,
log_path=processing_dir, interactive='auto', binary=binary,
savemodel='True', saveoutput='True')
-
-
From 053d0c1c27a66ed57c9a89703a6458ab0abff587 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Wed, 2 Oct 2024 15:36:12 +0200
Subject: [PATCH 07/68] Formatting
---
pcntoolkit/normative_model/norm_hbr.py | 119 ++++++++++++-------------
1 file changed, 59 insertions(+), 60 deletions(-)
diff --git a/pcntoolkit/normative_model/norm_hbr.py b/pcntoolkit/normative_model/norm_hbr.py
index b98674d0..170af404 100644
--- a/pcntoolkit/normative_model/norm_hbr.py
+++ b/pcntoolkit/normative_model/norm_hbr.py
@@ -40,7 +40,6 @@
class NormHBR(NormBase):
-
"""HBR multi-batch normative modelling class. By default, this function
estimates a linear model with random intercept, random slope, and random
homoscedastic noise.
@@ -144,8 +143,9 @@ def __init__(self, **kwargs):
kwargs.get("target_accept", "0.8"))
self.configs["init"] = kwargs.get("init", "jitter+adapt_diag_grad")
self.configs["cores"] = int(kwargs.get("cores", "1"))
- self.configs["remove_datapoints_from_posterior"] = kwargs.get(
- "remove_datapoints_from_posterior", "True") == "True"
+ self.configs["remove_datapoints_from_posterior"] = (
+ kwargs.get("remove_datapoints_from_posterior", "True") == "True"
+ )
# model transfer setting
self.configs["freedom"] = int(kwargs.get("freedom", "1"))
self.configs["transferred"] = False
@@ -261,8 +261,8 @@ def estimate(self, X, y, **kwargs):
"""
Sample from the posterior of the Hierarchical Bayesian Regression model.
- This function samples from the posterior distribution of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'.
- If 'trbefile' is provided in kwargs, it is used as batch effects for the training data.
+ This function samples from the posterior distribution of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'.
+ If 'trbefile' is provided in kwargs, it is used as batch effects for the training data.
Otherwise, the batch effects are initialized as zeros.
:param X: Data matrix.
@@ -291,9 +291,9 @@ def predict(self, Xs, X=None, Y=None, **kwargs):
"""
Predict the target values for the given test data.
- This function predicts the target values for the given test data 'Xs' using the Hierarchical Bayesian Regression (HBR) model.
- If 'X' and 'Y' are provided, they are used to update the model before prediction.
- If 'tsbefile' is provided in kwargs, it is used to as batch effects for the test data.
+ This function predicts the target values for the given test data 'Xs' using the Hierarchical Bayesian Regression (HBR) model.
+ If 'X' and 'Y' are provided, they are used to update the model before prediction.
+ If 'tsbefile' is provided in kwargs, it is used to as batch effects for the test data.
Otherwise, the batch effects are initialized as zeros.
:param Xs: Test data matrix.
@@ -332,8 +332,8 @@ def estimate_on_new_sites(self, X, y, batch_effects):
"""
Samples from the posterior of the Hierarchical Bayesian Regression model.
- This function samples from the posterior of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. The posterior samples from the previous iteration are used to construct the priors for this one.
- If 'trbefile' is provided in kwargs, it is used as batch effects for the training data.
+ This function samples from the posterior of the Hierarchical Bayesian Regression (HBR) model given the data matrix 'X' and target 'y'. The posterior samples from the previous iteration are used to construct the priors for this one.
+ If 'trbefile' is provided in kwargs, it is used as batch effects for the training data.
Otherwise, the batch effects are initialized as zeros.
:param X: Data matrix.
@@ -350,7 +350,7 @@ def predict_on_new_sites(self, X, batch_effects):
"""
Predict the target values for the given test data on new sites.
- This function predicts the target values for the given test data 'X' on new sites using the Hierarchical Bayesian Regression (HBR) model.
+ This function predicts the target values for the given test data 'X' on new sites using the Hierarchical Bayesian Regression (HBR) model.
The batch effects for the new sites must be provided.
:param X: Test data matrix for the new sites.
@@ -373,8 +373,8 @@ def extend(
"""
Extend the Hierarchical Bayesian Regression model using data sampled from the posterior predictive distribution.
- This function extends the Hierarchical Bayesian Regression (HBR) model, given the data matrix 'X' and target 'y'.
- It also generates data from the posterior predictive distribution and merges it with the new data before estimation.
+ This function extends the Hierarchical Bayesian Regression (HBR) model, given the data matrix 'X' and target 'y'.
+ It also generates data from the posterior predictive distribution and merges it with the new data before estimation.
If 'informative_prior' is True, it uses the adapt method for estimation. Otherwise, it uses the estimate method.
:param X: Data matrix for the new sites.
@@ -427,11 +427,13 @@ def tune(
"""
This function tunes the Hierarchical Bayesian Regression model using data sampled from the posterior predictive distribution. Its behavior is not tested, and it is unclear if the desired behavior is achieved.
"""
-
- #TODO need to check if this is correct
- print("The 'tune' function is being called, but it is currently in development and its behavior is not tested. It is unclear if the desired behavior is achieved. Any output following this should be treated as unreliable.")
-
+ # TODO need to check if this is correct
+
+ print(
+ "The 'tune' function is being called, but it is currently in development and its behavior is not tested. It is unclear if the desired behavior is achieved. Any output following this should be treated as unreliable."
+ )
+
tune_ids = list(np.unique(batch_effects[:, merge_batch_dim]))
X_dummy, batch_effects_dummy = self.hbr.create_dummy_inputs(
@@ -516,7 +518,7 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None):
Args:
X ([N*p]ndarray): covariates for which the quantiles are computed (must be scaled if scaler is set)
batch_effects (ndarray): the batch effects corresponding to X
- z_scores (ndarray): Use this to determine which quantiles will be computed. The resulting quantiles will have the z-scores given in this list.
+ z_scores (ndarray): Use this to determine which quantiles will be computed. The resulting quantiles will have the z-scores given in this list.
"""
# Set batch effects to zero if none are provided
if batch_effects is None:
@@ -525,9 +527,9 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None):
# Set the z_scores for which the quantiles are computed
if z_scores is None:
z_scores = np.arange(-3, 4)
- likelihood = self.configs['likelihood']
+ likelihood = self.configs["likelihood"]
- # Determine the variables to predict
+ # Determine the variables to predict
if self.configs["likelihood"] == "Normal":
var_names = ["mu_samples", "sigma_samples", "sigma_plus_samples"]
elif self.configs["likelihood"].startswith("SHASH"):
@@ -543,24 +545,21 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None):
exit("Unknown likelihood: " + self.configs["likelihood"])
# Delete the posterior predictive if it already exists
- if 'posterior_predictive' in self.hbr.idata.groups():
+ if "posterior_predictive" in self.hbr.idata.groups():
del self.hbr.idata.posterior_predictive
if self.configs["transferred"] == True:
- self.predict_on_new_sites(
- X=X,
- batch_effects=batch_effects
- )
- #var_names = ["y_like"]
- else:
+ self.predict_on_new_sites(X=X, batch_effects=batch_effects)
+ # var_names = ["y_like"]
+ else:
self.hbr.predict(
- # Do a forward to get the posterior predictive in the idata
+ # Do a forward to get the posterior predictive in the idata
X=X,
batch_effects=batch_effects,
batch_effects_maps=self.batch_effects_maps,
pred="single",
- var_names=var_names+["y_like"],
- )
+ var_names=var_names + ["y_like"],
+ )
# Extract the relevant samples from the idata
post_pred = az.extract(
@@ -568,9 +567,9 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None):
)
# Remove superfluous var_nammes
- var_names.remove('sigma_samples')
- if 'delta_samples' in var_names:
- var_names.remove('delta_samples')
+ var_names.remove("sigma_samples")
+ if "delta_samples" in var_names:
+ var_names.remove("delta_samples")
# Separate the samples into a list so that they can be unpacked
array_of_vars = list(map(lambda x: post_pred[x], var_names))
@@ -586,7 +585,7 @@ def get_mcmc_quantiles(self, X, batch_effects=None, z_scores=None):
quantiles[i] = xarray.apply_ufunc(
quantile,
*array_of_vars,
- kwargs={"zs": zs, "likelihood": self.configs['likelihood']},
+ kwargs={"zs": zs, "likelihood": self.configs["likelihood"]},
)
return quantiles.mean(axis=-1)
@@ -599,12 +598,12 @@ def get_mcmc_zscores(self, X, y, **kwargs):
y ([N*1]ndarray): response variables
"""
- print(self.configs['likelihood'])
+ print(self.configs["likelihood"])
tsbefile = kwargs.get("tsbefile", None)
if tsbefile is not None:
batch_effects_test = fileio.load(tsbefile)
- else: # Set batch effects to zero if none are provided
+ else: # Set batch effects to zero if none are provided
print("Could not find batch-effects file! Initializing all as zeros ...")
batch_effects_test = np.zeros([X.shape[0], 1])
@@ -624,7 +623,7 @@ def get_mcmc_zscores(self, X, y, **kwargs):
exit("Unknown likelihood: " + self.configs["likelihood"])
# Delete the posterior predictive if it already exists
- if 'posterior_predictive' in self.hbr.idata.groups():
+ if "posterior_predictive" in self.hbr.idata.groups():
del self.hbr.idata.posterior_predictive
# Do a forward to get the posterior predictive in the idata
@@ -633,7 +632,7 @@ def get_mcmc_zscores(self, X, y, **kwargs):
batch_effects=batch_effects_test,
batch_effects_maps=self.batch_effects_maps,
pred="single",
- var_names=var_names+["y_like"],
+ var_names=var_names + ["y_like"],
)
# Extract the relevant samples from the idata
@@ -642,9 +641,9 @@ def get_mcmc_zscores(self, X, y, **kwargs):
)
# Remove superfluous var_names
- var_names.remove('sigma_samples')
- if 'delta_samples' in var_names:
- var_names.remove('delta_samples')
+ var_names.remove("sigma_samples")
+ if "delta_samples" in var_names:
+ var_names.remove("delta_samples")
# Separate the samples into a list so that they can be unpacked
array_of_vars = list(map(lambda x: post_pred[x], var_names))
@@ -656,7 +655,7 @@ def get_mcmc_zscores(self, X, y, **kwargs):
z_scores = xarray.apply_ufunc(
z_score,
*array_of_vars,
- kwargs={"y": y, "likelihood": self.configs['likelihood']},
+ kwargs={"y": y, "likelihood": self.configs["likelihood"]},
)
return z_scores.mean(axis=-1).values
@@ -704,19 +703,19 @@ def m(epsilon, delta, r):
def quantile(mu, sigma, epsilon=None, delta=None, zs=0, likelihood="Normal"):
"""Get the zs'th quantiles given likelihood parameters"""
- if likelihood.startswith('SHASH'):
+ if likelihood.startswith("SHASH"):
if likelihood == "SHASHo":
- quantiles = S_inv(zs, epsilon, delta)*sigma + mu
+ quantiles = S_inv(zs, epsilon, delta) * sigma + mu
elif likelihood == "SHASHo2":
- sigma_d = sigma/delta
- quantiles = S_inv(zs, epsilon, delta)*sigma_d + mu
+ sigma_d = sigma / delta
+ quantiles = S_inv(zs, epsilon, delta) * sigma_d + mu
elif likelihood == "SHASHb":
true_mu = m(epsilon, delta, 1)
- true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu ** 2))
- SHASH_c = ((S_inv(zs, epsilon, delta)-true_mu)/true_sigma)
+ true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu**2))
+ SHASH_c = (S_inv(zs, epsilon, delta) - true_mu) / true_sigma
quantiles = SHASH_c * sigma + mu
- elif likelihood == 'Normal':
- quantiles = zs*sigma + mu
+ elif likelihood == "Normal":
+ quantiles = zs * sigma + mu
else:
exit("Unsupported likelihood")
return quantiles
@@ -724,22 +723,22 @@ def quantile(mu, sigma, epsilon=None, delta=None, zs=0, likelihood="Normal"):
def z_score(mu, sigma, epsilon=None, delta=None, y=None, likelihood="Normal"):
"""Get the z-scores of Y, given likelihood parameters"""
- if likelihood.startswith('SHASH'):
+ if likelihood.startswith("SHASH"):
if likelihood == "SHASHo":
- SHASH = (y-mu)/sigma
- Z = np.sinh(np.arcsinh(SHASH)*delta - epsilon)
+ SHASH = (y - mu) / sigma
+ Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon)
elif likelihood == "SHASHo2":
- sigma_d = sigma/delta
- SHASH = (y-mu)/sigma_d
- Z = np.sinh(np.arcsinh(SHASH)*delta - epsilon)
+ sigma_d = sigma / delta
+ SHASH = (y - mu) / sigma_d
+ Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon)
elif likelihood == "SHASHb":
true_mu = m(epsilon, delta, 1)
- true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu ** 2))
- SHASH_c = ((y-mu)/sigma)
+ true_sigma = np.sqrt((m(epsilon, delta, 2) - true_mu**2))
+ SHASH_c = (y - mu) / sigma
SHASH = SHASH_c * true_sigma + true_mu
Z = np.sinh(np.arcsinh(SHASH) * delta - epsilon)
- elif likelihood == 'Normal':
- Z = (y-mu)/sigma
+ elif likelihood == "Normal":
+ Z = (y - mu) / sigma
else:
exit("Unsupported likelihood")
return Z
From 4ade92700dfac402eb7da629d7005524dd411895 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Wed, 2 Oct 2024 15:37:00 +0200
Subject: [PATCH 08/68] Git thinks this has changed
---
requirements.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/requirements.txt b/requirements.txt
index 1ec16b74..dda3803d 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -10,6 +10,6 @@ pandas>=0.25.3
torch>=1.1.0
sphinx-tabs
pymc>=5.1.0
-arviz
+arviz
numba
nutpie
\ No newline at end of file
From e43e1881d7ac98d28f2fcc4d37ef089f90e74857 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Wed, 2 Oct 2024 18:46:39 +0200
Subject: [PATCH 09/68] Added test notebook
---
tests/test_HBR.ipynb | 188 +++++++++++++++++++++++++++++++++++++++++++
1 file changed, 188 insertions(+)
create mode 100644 tests/test_HBR.ipynb
diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb
new file mode 100644
index 00000000..1abbd02d
--- /dev/null
+++ b/tests/test_HBR.ipynb
@@ -0,0 +1,188 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "\"\"\"\n",
+ "Created on Mon Jul 29 13:26:35 2019\n",
+ "\n",
+ "@author: seykia\n",
+ "\n",
+ "This script tests HBR models with default configs on toy data.\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "import os\n",
+ "import numpy as np\n",
+ "from pcntoolkit.normative_model.norm_utils import norm_init\n",
+ "from pcntoolkit.util.utils import simulate_data\n",
+ "import matplotlib.pyplot as plt\n",
+ "from pcntoolkit.normative import estimate\n",
+ "from warnings import filterwarnings\n",
+ "filterwarnings('ignore')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDjElEQVR4nOydeXwTdfrHPzNpel+00AsRORQoRe5KARGVoyIUVtQVD8Rr5VBAPBBXZVFXcGXXggh4IQoKP1c8imABl0ukUJBDsCCCiAgtlZYe9Ewz8/tjMukkmTNNmrR93q8X1iZzfGeSzjzzfD/P52F4nudBEARBEATRTGB9PQCCIAiCIAhPQsENQRAEQRDNCgpuCIIgCIJoVlBwQxAEQRBEs4KCG4IgCIIgmhUU3BAEQRAE0ayg4IYgCIIgiGZFgK8H0NhwHIfz588jIiICDMP4ejgEQRAEQeiA53mUl5cjKSkJLKuem2lxwc358+fRrl07Xw+DIAiCIAg3OHv2LK644grVZVpccBMREQFAODmRkZE+Hg1BEARBEHooKytDu3bt7PdxNVpccCNORUVGRlJwQxAEQRBNDD2SEhIUEwRBEATRrKDghiAIgiCIZgUFNwRBEARBNCtanOZGL1arFRaLxdfDIJwwm80wmUy+HgZBEAThx1Bw4wTP8ygoKEBJSYmvh0IoEB0djYSEBPIpIgiCIGSh4MYJMbCJi4tDaGgo3UD9CJ7nUVlZicLCQgBAYmKij0dEEARB+CMU3EiwWq32wCY2NtbXwyFkCAkJAQAUFhYiLi6OpqgIgiAIF0hQLEHU2ISGhvp4JIQa4udDmiiCIAhCDgpuZKCpKP+GPh+CIAhCDZqWIgiCIIimBmcFzuwGLl8AwuOB9gMBlqbpRSi4IQiCIIimRF4WkD0bKDtf/1pkEpD+GpCc4btx+RE0LUUQBEEQTYW8LODTiY6BDQCU5Quv52X5Zlx+BgU3XsLK8cg5VYSvDp1DzqkiWDne6/ssKCjAjBkz0LlzZwQHByM+Ph6DBw/G8uXLUVlZ6fX9u0tNTQ0ef/xxtG7dGmFhYcjIyMAff/zh62ERBEH4F5xVyNhA7n5iey37WWG5Fg5NS3mB7KP5mLc+D/ml1fbXEqOCMXdMMtJTvOPN8uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+XSlxWKB2Wz2yrj0MHPmTKxfvx5r165FbGwsnnzySYwePRo//PADlXoTBEGInNntmrFxgAfKzgnLdbi+0Yblj1DmxsNkH83HlNUHHAIbACgorcaU1QeQfTTfK/udOnUqAgICsH//ftx5553o1q0bevTogfHjx2PDhg0YM2aMfVmGYbB8+XKMHTsWYWFheOWVVwAAy5YtQ6dOnRAYGIguXbpg1apV9nV+++03MAyDQ4cO2V8rKSkBwzDYvn07AGD79u1gGAYbNmxAz549ERwcjOuuuw5HjhxRHHdpaSnef/99/Pvf/8awYcPQu3dvrF69GkeOHMG3337r2ZNEEATRlLl8wbPLNWMouPEgVo7HvPV5aglDzFuf5/EpqqKiImzevBnTpk1DWFiY7DLO5dNz587F2LFjceTIETz44IP44osvMGPGDDz55JM4evQoHn30UTzwwAPYtm2b4fE8/fTTWLhwIfbt24e4uDhkZGQoetL88MMPsFgsGDFihP21pKQkpKSkYPfu3Yb3TRAE0WwJj/fscs0YCm48SO7pYpeMjRQeQH5pNXJPF3t0vydPngTP8+jSpYvD661bt0Z4eDjCw8Mxe/Zsh/fuvvtuPPjgg+jYsSPat2+PhQsXYtKkSZg6dSquueYazJo1C7fddhsWLlxoeDxz587F8OHD0aNHD3z44Ye4cOECvvjiC9llCwoKEBgYiFatWjm8Hh8fj4KCAsP7JgiCaLa0HyhURUHJ64sBItsKy7VwKLjxIIXlyoGNO8sZxTk7k5ubi0OHDqF79+6oqalxeK9fv34Ovx87dgyDBg1yeG3QoEE4duyY4XGkpaXZ/z8mJgZdunQxvB2e58msjyAIQgprEsq9AbgGOLbf0xeQ3w0ouPEocRHBHl1OL507dwbDMDh+/LjD6x07dkTnzp3t/ZikyE1fOQcT0gCDZVn7ayJG2h8oBSoJCQmora3FpUuXHF4vLCxEfDylVgmCIBxIzgDu/AiIdCpOiUwSXiefGwAU3HiU1A4xSIwKVksYIjEqGKkdYjy639jYWAwfPhxLlixBRUWFW9vo1q0bdu3a5fDa7t270a1bNwBAmzZtAAD5+fWCaKm4WMqePXvs/3/p0iWcOHECXbt2lV22b9++MJvN2LJli/21/Px8HD16FAMHUmqVIAjCheQMYOZR4P6vgfHvCz9nHqHARgKVgnsQE8tg7phkTFl9AAwcnQjEgGfumGSYWM9PtyxduhSDBg1Cv3798I9//APXXnstWJbFvn37cPz4cfTt21d1/aeffhp33nkn+vTpg5tvvhnr16/H559/bq9YCgkJwYABA7BgwQJcddVVuHjxIp5//nnZbb300kuIjY1FfHw8/v73v6N169YYN26c7LJRUVF46KGH8OSTTyI2NhYxMTF46qmn0KNHDwwbNqxB54QgCKLZwppafLm3GpS58TDpKYlYdm8fJEQ5Tj0lRAVj2b19vOZz06lTJxw8eBDDhg3DnDlz0LNnT/Tr1w9vvvkmnnrqKbz88suq648bNw6LFi3C66+/ju7du+Ptt9/GBx98gKFDh9qXWbFiBSwWC/r164cZM2bYS8idWbBgAWbMmIG+ffsiPz8fWVlZCAwMVNz3G2+8gXHjxuHOO+/EoEGDEBoaivXr15PHDUEQBOEWDC8VUbQAysrKEBUVhdLSUkRGRjq8V11djdOnT6NDhw4IDm6YLsbK8cg9XYzC8mrERQhTUd7I2PgT27dvx4033ohLly4hOjraa/vx5OdEEARBNA3U7t/O+DRzs2zZMlx77bWIjIxEZGQk0tLS8M0336ius2PHDvTt2xfBwcHo2LEjli9f3kijNYaJZZDWKRZje7VFWqfYZh/YEARBEIS/4NPg5oorrsCCBQuwf/9+7N+/HzfddBPGjh2Ln376SXb506dPY9SoUbj++utx8OBBPPfcc5g+fTrWrVvXyCMnCIIgCMJf8btpqZiYGLz++ut46KGHXN6bPXs2srKyHDxTJk+ejMOHDyMnJ0d2ezU1NQ4eL2VlZWjXrp3Xp6UI70GfE0EQRMujyUxLSbFarVi7di0qKiocTOCk5OTkONj0A8DIkSOxf/9+Rc+V+fPnIyoqyv6vXbt2Hh87QRAEQRD+g8+DmyNHjiA8PBxBQUGYPHkyvvjiCyQnJ8suW1BQ4GLsFh8fj7q6Oly8eFF2nTlz5qC0tNT+7+zZsx4/BoIgCIIg/Aef+9x06dIFhw4dQklJCdatW4f7778fO3bsUAxw5Fx05V4XCQoKQlBQkGcHTRAEQTQtOCtwZrfQMTs8Xui/RG0Kmi0+D24CAwPRuXNnAEK/o3379mHRokV4++23XZZNSEhwaaZYWFiIgIAAxMbGNsp4CYIgiCZGXhaQPRsoO1//WmSS0KeJXH2bJT6flnKG53mXJo8iaWlpDjb9ALB582b069cPZrO5MYZHEARBNCXysoBPJzoGNgBQli+8npflm3ERXsWnwc1zzz2H7777Dr/99huOHDmCv//979i+fTvuueceAIJeZuLEifblJ0+ejDNnzmDWrFk4duwYVqxYgffffx9PPfWUrw6BIAiC8Fc4q5CxgVxRsO217GeF5YhmhU+DmwsXLuC+++5Dly5dcPPNN2Pv3r3Izs7G8OHDAQgNFH///Xf78h06dMDGjRuxfft29OrVCy+//DIWL16M8ePH++oQ/IqCggLMmDEDnTt3RnBwMOLj4zF48GAsX74clZWVvh6eIu+88w6GDh2KyMhIMAyDkpISXw+JIIjmwJndrhkbB3ig7JywHNGs8Knm5v3331d9f+XKlS6v3XDDDThw4ICXRuRBGlm89uuvv2LQoEGIjo7Gq6++ih49eqCurg4nTpzAihUrkJSUhIwM+blli8Xi02m9yspKpKenIz09HXPmzPHZOAiCaGZcvuDZ5Ygmg99pbpoFeVlAZgrw4Whg3UPCz8wUr87tTp06FQEBAdi/fz/uvPNOdOvWDT169MD48eOxYcMGjBkzxr4swzBYvnw5xo4di7CwMHsDzGXLlqFTp04IDAxEly5dsGrVKvs6v/32GxiGwaFDh+yvlZSUgGEYbN++HYDQW4phGGzYsAE9e/ZEcHAwrrvuOhw5ckR17DNnzsSzzz6LAQMGeO6EEARBhMdrL2NkOaLJQMGNp/GBeK2oqAibN2/GtGnTEBYWJruMc6n83LlzMXbsWBw5cgQPPvggvvjiC8yYMQNPPvkkjh49ikcffRQPPPAAtm3bZng8Tz/9NBYuXIh9+/YhLi4OGRkZiiaLBEEQXqP9QKEqCkq9/Rggsq2wHNGsoODGk/hIvHby5EnwPI8uXbo4vN66dWuEh4cjPDwcs2fPdnjv7rvvxoMPPoiOHTuiffv2WLhwISZNmoSpU6fimmuuwaxZs3Dbbbdh4cKFhsczd+5cDB8+HD169MCHH36ICxcu4IsvvmjQMRIEQRiGNQnl3gBcAxzb7+kLyO+mGULBjSfxsXjNOTuTm5uLQ4cOoXv37i7l9f369XP4/dixYxg0aJDDa4MGDXLo46UXafuMmJgYdOnSxa3tEARBNJjkDODOj4DIRMfXI5OE18nnplnicxO/ZoWPxGudO3cGwzA4fvy4w+sdO3YEAISEhLisIzd9Jef+LL7Gsqz9NREjU01KDtIEQRBeJzkD6HorORS3IChz40l8JF6LjY3F8OHDsWTJElRUVLi1jW7dumHXrl0Or+3evRvdunUDALRp0waAUJ4vIhUXS9mzZ4/9/y9duoQTJ06ga9eubo2LIAjCI7AmoMP1QI/bhZ8U2DRrKHPjSUTxWlk+5HU3jPC+F8RrS5cuxaBBg9CvXz/84x//wLXXXguWZbFv3z4cP34cffv2VV3/6aefxp133ok+ffrg5ptvxvr16/H555/j22+/BSBkfwYMGIAFCxbgqquuwsWLF/H888/Lbuull15CbGws4uPj8fe//x2tW7fGuHHjFPddUFCAgoICnDx5EoDQTDUiIgJXXnklYmJi3DshBEEQRIuFMjeexIfitU6dOuHgwYMYNmwY5syZg549e6Jfv35488038dRTT+Hll19WXX/cuHFYtGgRXn/9dXTv3h1vv/02PvjgAwwdOtS+zIoVK2CxWNCvXz/MmDHDXkLuzIIFCzBjxgz07dsX+fn5yMrKQmBgoOK+ly9fjt69e+ORRx4BAAwZMgS9e/dGVhbZohMEQRDGYXipiKIFUFZWhqioKJSWliIyMtLhverqapw+fRodOnRAcHCw+zuRbdLWVghsmrF4bfv27bjxxhtx6dIlREdHe20/HvucCIIgiCaD2v3bGZqW8gYkXiMIgiAIn0HBjbcQxWsEQRAEQTQqFNwQHmPo0KFoYbOcBEEQhB9CgmKCIAiCIJoVFNzIQNkH/4Y+H4IgCEINCm4kmM1mAEBlZaWPR0KoIX4+4udFEARBEFJIcyPBZDIhOjoahYWFAIDQ0FBqG+BH8DyPyspKFBYWIjo6GiYTVZ8RBEEQrlBw40RCQgIA2AMcwv+Ijo62f04EQRAE4QwFN04wDIPExETExcUZagxJNA5ms5kyNgRBEIQqFNwoYDKZ6CZKEARBEE0QEhQTBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWUHBDUEQBEEQzQoKbgiCIAiCaFZQcEMQBEEQRLOCghuCIAiCIJoVFNwQBEEQBNGsoOCGIAiCIIhmBQU3BEEQBEE0Kyi4IQiCIAiiWRHg6wEQBEEQzQDOCpzZDVy+AITHA+0HAqzJ16MiWig+zdzMnz8f/fv3R0REBOLi4jBu3Dj8/PPPquts374dDMO4/Dt+/HgjjZogCIJwIC8LyEwBPhwNrHtI+JmZIrxOED7Ap8HNjh07MG3aNOzZswdbtmxBXV0dRowYgYqKCs11f/75Z+Tn59v/XX311Y0wYoIgCMKBvCzg04lA2XnH18vyhdcpwCF8gE+npbKzsx1+/+CDDxAXF4cffvgBQ4YMUV03Li4O0dHRmvuoqalBTU2N/feysjK3xkoQBEE4wVmB7NkAeJk3eQAMkP0s0PVWmqIiGhW/EhSXlpYCAGJiYjSX7d27NxITE3HzzTdj27ZtisvNnz8fUVFR9n/t2rXz2HgJgiBaNGd2u2ZsHOCBsnPCcgTRiPhNcMPzPGbNmoXBgwcjJSVFcbnExES88847WLduHT7//HN06dIFN998M3bu3Cm7/Jw5c1BaWmr/d/bsWW8dAkEQhB0rxyPnVBG+OnQOOaeKYOXkshtNnMsXPLscQXgIv6mWeuyxx/Djjz9i165dqst16dIFXbp0sf+elpaGs2fPYuHChbJTWUFBQQgKCvL4eAmCIJTIPpqPeevzkF9abX8tMSoYc8ckIz0l0Ycj8zDh8Z5djiA8hF9kbh5//HFkZWVh27ZtuOKKKwyvP2DAAPzyyy9eGBlBEIQxso/mY8rqAw6BDQAUlFZjyuoDyD6a76OReYH2A4HIJACMwgIMENlWWI4gGhGfBjc8z+Oxxx7D559/jq1bt6JDhw5ubefgwYNITGxGT0MEQTRJrByPeevzFOW1ADBvfV7zmaJiTUD6a7ZfnAMc2+/pC0hMTDQ6Pp2WmjZtGj755BN89dVXiIiIQEFBAQAgKioKISEhAATNzLlz5/DRRx8BADIzM3HVVVehe/fuqK2txerVq7Fu3TqsW7fOZ8dBEAQBALmni10yNlJ4APml1cg9XYy0TrGNNzBvkpwB3PmRUDUlFRdHJgmBTXKG78ZGtFh8GtwsW7YMADB06FCH1z/44ANMmjQJAJCfn4/ff//d/l5tbS2eeuopnDt3DiEhIejevTs2bNiAUaNGNdawCYIgZCksVw5s3FmuyZCcIZR7k0Mx4ScwPM83k/yoPsrKyhAVFYXS0lJERkb6ejgEQTQjck4VYcK7ezSXW/PIgOaTuSGIRsLI/dsvBMUEQRDNgdQOMUiMClaT1yIxKhipHbS9vAiCcB8KbgiCIDyEiWUwd0wyAEV5LeaOSYaJVQp/CILwBBTcEARBeJD0lEQsu7cPEqKCHV5PiArGsnv7NC+fG4LwU/zGxI8gCKK5kJ6SiOHJCcg9XYzC8mrERQhTUZSxIYjGgYIbgiAIL2BiGRINE4SPoGkpgiAIgiCaFRTcEARBEATRrKBpKYIgiBaIleNJE0Q0Wyi4IQiCaGH4pGs5ZyUHY6LRoOCGIAiiBSF2LXe2phe7lnulXD0vS6H31GvUe4rwCqS5IQiCaCH4pGt5Xhbw6UTHwAYAyvKF1/OyPLcvgrBBwQ1BEEQLwUjXco/AWYWMjVo4lf2ssBxBeBAKbgiCIFoIjd61/Mxu14yNAzxQdk5YjiA8CAU3BEEQLYS4iGDthQwsp8nlC55djiB0QsENQRBEC6HRu5aHx3t2OYLQCQU3BEEQLQQTy+CFW5NlFTBe6VrefqBQFaUWTkW2FZYjCA9CwQ1BEEQLIftoPl7ekCf7nle6lrMmodwbgGuAY/s9fQH53RAeh4IbgiCIFoDob6NULfXCrd28Y+CXnAHc+REQ6bTtyCThdfK5IbwAmfgRBEE0c9T8bQAhh/LyhmMYmZLonRYMyRlA11vJoZhoNCi4IQiCaOYY8bdJ6xTrnUGwJqDD9d7ZNkE4QcENQRCEh/DXZpSN7m9DED6GghuCIAgP4JNmlDppdH8bgvAxJCgmCIJoIEpiXbEZZfbRfB+NTKDR/W0IwsdQcEMQBNEAfNKM0iAmlsHcMckAFAuyPetvQxA+hoIbgiCIBtDozSjdJD0lEcvu7YOEKMepJ6/42xCEjyHNDUEQfoO/CnLVaEpi3fSURAxPTmhy55jwP/z9b5WCG4IgGgfOqupz4s+CXDWamljXxDLeK/cmWgRN4W+VpqUIgvA+eVlAZgrw4Whg3UPCz8wU4XX4vyBXDRLrEi2JpvK3SsENQRDeJS8L+HQiUHbe8fWyfODTibD+9JXfC3LVILEu0VJoCuJ5EQpuCILwHpwVyJ4NqFwO6zbMxoXSSsVN+IsgVw0S6xItgaYingdIc0MQhDc5s9s1Y+MAj6DKfKSyx7GHS1bdlD8IctXwlVjX34WdhtDQZRG+pSmJ5ym4IQjCe1y+oGuxOJRoL+Mnglw1Glus2xSEnbrJyxKyfNJgODIJSH+NOof7CU1JPE/TUgRBeI/weF2L1YXFkSDXIE1F2KkLDV2WKDwnfEtTEs9TcEMQhPdoP1B4+la7HEa2RUbGePE353cBkCDXmaYk7NREhy4L2c8KyzUxrByPnFNF+OrQOeScKmoan4cKTUk8T8ENQRDegzUJ0woAFC+H6QuQ3uMKEuQawJCwk7MCp78Djnwm/PS3IEGHLgtl54TlmhDZR/Mx+LWtmPDuHsxYewgT3t2Dwa9tbVoZNRmainieNDcEQXiX5Azgzo8U9BQL7HoKcs/Vj17Bpunn9cBXr/m3jkWnLkv3cn6AOGXonKcRpwwbKwjwlti8KfytUnBDEIT3Sc4Aut6qWQmjKcilahoA+gSbI9lc9M9dBJfpHlHHcudH/hHg6NRl6V7Ox2hNGTIQpgyHJyd4NRjwttjc352uKbghCKJxYE1Ah+vdX78FVtMoPXmLws6C0mrZm6gJHF4KXAVlHQsj6Fi63ur74FDUZZXlQ368jPB++4GNPTK3MDJl6K3gwF8yR76ENDcEQfg/LbCaRk2zoSXs7M8eRzyKFGXcfqVj0anL8nkQphNfe8E0K7F5A6DghiAI/6YZV9MooafMW03YOWdwtL4d+YuORdRlRTplEyKT/Gf6TCe+9oJpSi7C3sSn01Lz58/H559/juPHjyMkJAQDBw7Ea6+9hi5duqiut2PHDsyaNQs//fQTkpKS8Mwzz2Dy5MmNNGqCIBoVI9U0DZn28hOMaDYUhZ1nAoFcHTvzJx2LTl2Wv6M1ZchACEC95QXj68yRv+DTzM2OHTswbdo07NmzB1u2bEFdXR1GjBiBiooKxXVOnz6NUaNG4frrr8fBgwfx3HPPYfr06Vi3bl0jjpwgiEajGVbTqGH0yVsUdo7t1RZpnWIFkapOfyG/07GIuqwetws/m1hgA/jeC8bXmSN/waeZm+zsbIffP/jgA8TFxeGHH37AkCFDZNdZvnw5rrzySmRmZgIAunXrhv3792PhwoUYP368y/I1NTWoqamx/15WVua5AyAIwvs0s2oaLTzy5C3qWD6dCOGWKs0hND0dS1NDnDJ0rlZKaITWGL7OHPkLflUtVVpaCgCIiVE+6Tk5ORgxYoTDayNHjsT7778Pi8UCs9ns8N78+fMxb948zw+WIIjGoZlV02ghPlGz4JDKHkccSlCIaORyXcFJku2aT946/YWaBE3QAsBXXjBi5mjK6gNKYa3fuAh7E78Jbniex6xZszB48GCkpKQoLldQUID4eMcntPj4eNTV1eHixYtITHSMiOfMmYNZs2bZfy8rK0O7du08O3iCILxHC8tCpHaIwV3hhzDd8h6SmHrR53k+BvMsE7GZS9X/5N0cdCxN2ALAV14wvswc+Qt+E9w89thj+PHHH7Fr1y7NZRnGMeLkeV72dQAICgpCUFCQZwZJEIRvaE5ZCA1Mx9djft3r4J2yVAkoxjJzJqZaZmLcmMn6n7wb6i/kS0QLAH83IvRDmoKLsDfxi+Dm8ccfR1ZWFnbu3IkrrrhCddmEhAQUFBQ4vFZYWIiAgADExvqvWyJBEA2kOWQhtLCVvTPg4fysxjIAB+CNqLUISX7RJ8NrVDQtAPzIiNBP8XcXYW/i0+CG53k8/vjj+OKLL7B9+3Z06NBBc520tDSsX7/e4bXNmzejX79+LnobgiCaGU05C6EHjbJ3FkBIVUGzKXtXpYVZABCexael4NOmTcPq1avxySefICIiAgUFBSgoKEBVVZV9mTlz5mDixIn23ydPnowzZ85g1qxZOHbsGFasWIH3338fTz31lC8OgSAIwnN4qezdyvHIOVWErw6dQ86poqbhTtvCLAAIz+LTzM2yZcsAAEOHDnV4/YMPPsCkSZMAAPn5+fj999/t73Xo0AEbN27EE088gbfeegtJSUlYvHixbBk4QRBEk8ILZe/ebqDoNVqYBQDhWRheVOO2EMrKyhAVFYXS0lJERkb6ejgEQRD1cFYgM0W77H3mEV06E6UGiqKcx68bKHr4XBBNHyP3b+otRRAE4S94sIlkk2+g2MwaahKNCwU3BEEQ/oSHmkg2iwaKzaihJtG4+EUpOEEQBCHBA2XvzaaBYkuwACA8DgU3BEEQ/kgDy96bVQPF5m4BQHgcCm4IgiC0aIK9jaiBItGSoeCGIAhCjSba24gaKBItGRIUEwRBKCH2NnJ2yhV7G+Vl+WZcOhEbKCZEOU49JUQF+3cZOEE0EPK5IQiCkMPus6LUAqDp+KxYOb7FNlAkmg9G7t80LUUQBCGHB3ob+UtQ0ZIbKBItEwpuCIIg5Ghgb6Mm2/aAIBqAvwT0FNwQBNE88HRFUwN6Gym1PSgorcaU1QdI70I0S/wpoCdBMUEQTZ+8LEEf8+FoYN1Dws/MlIYJftsPFDQ1Ltb/IgwQ2VZYTkKTb3tAEG4gBvTOrthiQJ99NL9Rx0PBDUEQTRtvVTS52duoWbQ9IAgD+GNAT8ENQRBNF84qeNCoXVaznxWW04mV45FzqghfHTqHnKBBsN7xoaHeRs2m7QFB6MQfA3rS3BAE0XTxQEWTFHnNQDjmjt6C9PDTuvQ8zartAUHowB8DesrcEATRdGlgRZMdzorcrV9i4ydL0L78AFhw9rcKSqsx5ePDyK7oDPS4XQiSVITKYtsDFaUOEqntAdGM8MeAnoIbgiCaLg2oaLKTlwU+MwWpO+/H4sAlWBv4CnYFTcdINheAcc2A2PYAUFTqUNsDolnhjwE9BTcEQTRd3KxosqMgRk5AMZaZMx0CHCOaAWp7YBDOCpz+DjjymfDTgEaK8D3+GNCT5oYgiKaLWNH06URAqT2kTEUTAAcxsvMll2UAjgfmmldhS00/cLbnQCOagfSURAxPTvALQzO/pok2JiUcEQN6Z81ago98bii4IQiiaZOcIVQuyd4gFyjfIDXEyCwDJKEIqexx7OGEp1KjmgFqe6CBmDlzrnYTy/gVKtII/8SfAnoKbgiC8DyedgvWIjkD6HqrsX3qFCPHoQQMhCdQEgF70F5fs4yfEcr4u97q941JiXr8JaCn4IYgCM/iq2kG1qSr3NuOTjFyIaIBkAgY8LC9vofL+AlCCgmKCcLHOJjGnSpq2rb83nIL9gYaYmSOB87zsTgb3hNv3d0HUSGBzeMzchOP2+t7qoyfIGSgzA1B+BB/ajTXYJraNIOKGJkHA4YBym94GX+PTcHLG4x/Rp7ujuzLbsta9voMhFL54ckJ+sekM3NmDYuDH3xbiCYGBTcE4SOaXefopjjNoCBGZmxi5NNcf0xz4zPydNAqt72YMDNeGZuCUdcmGd6eUYzY6+vWW4iZs7J8yAXEHA8UIBZ3rK3GCxn5TetvgfA5NC1FED5AT6O5l7OOwPrrzqbj/dFUpxmSM4Dph4GRrwKpfxN+Tj8Ea9cxbjUD9PT0jdL2iissmPrJQczfmGdoe+7gFXt9lcak4imdZ7kP58ssPukqTTRtKHNDED5A60l4BJuLuTUfwfSRxDTO370/POEW7AvkBNA5S3Cy9/PIL41WXE0uW+Hp6Ru17Ym8vfM0el7RCqOu9V5mw2v2+rbMGZ89G4zk/BcgFvMs92ETlwrAzWkvokVDmRuC8AFqT7gj2VwsM2ciAU5uuP4oypXSULdgX6AigL5mxzS7Q7Ea0s/S092RtbYn8sJXR70qcvaqvX5yBvaM2YG7ap/H9NrHcFft8xhcs8ge2AC+6SpNNG0ouCEIH6D0hMuCw1zzR8L/u9xJbDev7Gf9c4pKZZpB0y3YF2gKoAWHYmkTTTmkn6Wnp2/0LldUUeuVG79Yyff1j+dxV/929uyTFE/Y6xdWWLCHS0YWNxB7uGS7I7TLco3YVZpo2tC0FEH4APFJuKC02uHWmsoeRxKjdpPyQ1GuFHfdgn2BhgCaAY8kxtGh2PF9V2M/T0/fGJnm8fSNX07EHB1qBgCUVFrsr3nCXt8fu0oTTRsKbgjCB4iN5qasPuBQhByHEn0b8DdRrg0rxyM3aBAKb9yEzpVH0C2iEmxEgvcdit3BoEOxTNcql2yFUtAqXc+I03FqhxjEhJlRXGHRXNaTN36lSr5SW1DzxLBrcFXrUI+VpHv6vBEETUsRhI+Q6xwtuuFq4m+iXAg3xMGvbcWEd/dgxv8dwa3rgUEbYpBd0dn/AhtA9zm8d1h/3d29Pd0d2cQyeCWjGwawechgd2MAmyc7Tea23kUGPZV8a/f9jtHXJiGtU6xHBL7+2FWaaNowPM+3KKvNsrIyREVFobS0FJGRkb4eDkE4mrOFmTFg/Q1gFLw/BFFuEjDziF8FDEpP+uKtyC89ezgrkJmi6LMiPddWsIYM9DzmcyNTyXWej8E8y0SHSiJPnt+cU0WY8O4ezeXWPDLA4z2EmpWpJeFxjNy/aVqKIHyMS6M5BddcvxTlwkvutY2BikOx87k2Aeo3cqdGoenJAxveHVmhY3YCirHMnIkplpn4MWKIx2/8XvG00Yk/dZUmmjYU3BCEv9GURLnwknttY+GJc63QKNSU/hrS3P2sbJVcPHiXaRqWEdpDLI7+PwTMegGmAM9exn0t7vWXrtJE04aCG4LwR5IzhB5MkmyAX4py4dsnfY/QkHOtkF2xexLd+ZF7waitkkvZV4ZHUGU+cDbH41VzDRX3+rIHFkGIUHBDEP4Ka/LPcm8nfP2k7xHcOdceahQqFwwcPXYcPfWMQanii7MKLTvO7BKG0uF64KrBugI2pUo+QFvcS5oZwl+g4IYgiAbR3Mp4dWcePNAoVC4YSIgMQorlMt7TM1i5iq+8LGD9dKDqUv1r370OhMQAYxYByRmaxyhW8rmMTSVQaXaNYIkmDQU3BKEBpdnVaciTvk9wEv9Kp6AMZR4a2ChUMRgoq0EhOuN8UAwSUCzjVC00lrSEJSLIuZVFXhbw6X3y46gqBj69DwfTFmPqgSs0j9GIuLfJisqJZgsFNwShAqXZ9eHOk75PUBD/Iv01ZHP9jWUeGtAoVKshJgcW8ywTscycCY53bMUhtpA6nPIsUqXTTJwV+OYZ1aHwAOJ3/wMXahaDheCIHYcSFJZHY9rqSrx1bz+HY9Qr7vV7UblKQEs0T3wa3OzcuROvv/46fvjhB+Tn5+OLL77AuHHjFJffvn07brzxRpfXjx07hq5du3pxpERLhNLsxvD7Ml4V8S//6URsD3gaPHq5rKaYeRAbhWr55Mg0CtXTEHMTl4oplpmYa/4ISZImqmLH7EldxjiucGY3UJ6vuk0GQBJTjGmmLzAhYJtDq4/zfAwWf/kwhic/Z/gz82tRuUpA62+Vh4Tn8GlwU1FRgZ49e+KBBx7A+PHjda/3888/Oxj4tGnTxhvDI1owlGZ3D78t49Uh/p1ueR+fYpFs00bZzIMBnxxn9N7kN3Gp2FLTrz7Dgmjs47oiLirUVcNkoCXHrIB1Lq8loBivWv6FX3ZchS433qN7W4Afi8q9Vc1G+D26g5s//vgDV1xxhUd3fsstt+CWW24xvF5cXByio6N1LVtTU4Oamhr772VlZYb3R7Q8/D7NThijgU0yRVyCEjd9cozc5Dmw9jGpapgMtORgZOJxlhGmvNrlvgTccJehaRu/FJV7qJqNaJro7i2VkpKCVatWeXMsuunduzcSExNx8803Y9u2barLzp8/H1FRUfZ/7dq1a6RREk0Zv06zE8Yx0CRT9X25oCQ5A5h5FLj/a2D8+8LPmUdUMwJiMKDsYyN04E6I1NfTCoAw/RWhPk2q1WyHZYDQqgIhGDSAX/aGMlLNRjQ7dAc3r776KqZNm4bx48ejqKjIm2NSJDExEe+88w7WrVuHzz//HF26dMHNN9+MnTt3Kq4zZ84clJaW2v+dPXu2EUdMNFX8Ns1OuIfOrIZS41IGGs0pRZ+cHrcLPzUyAXqCgQW39cD3z96ENY8MwKK7emHNIwOwa/ZNyjov1gTc8i/FfRrqIuhG13m5RrCARkDmCURPnyOfCT85q/B6A6vZiKaN7mmpqVOn4pZbbsFDDz2E7t2745133kFGRuPOVXbp0gVdunSx/56WloazZ89i4cKFGDJkiOw6QUFBCAoKaqwhEs0Ev0yzE+6jQ/xbFRKPfdVdG62cXW+FmaFpz+QM4M5Vrj43kJ+KUsTNrvONLipXEws3oJpNN1SF5bcYEhR36NABW7duxZIlSzB+/Hh069YNAU59TQ4cOODRAWoxYMAArF69ulH3STR/mpx3S2PT1C7qDuJfeULGvI63uH5ulbO764XklWBAbCdhcyg+W1yFLw+exePmr/StH9lW+Dzd/IwbTVSuJRa+Y6Xb1Wy6909VWH6L4WqpM2fOYN26dYiJicHYsWNdgpvG5uDBg0hMpHJcwvM0Ge+WxqapXtSTM4CBjwM5SwCeq3+dYYG0x4DkDKQDhoMNNS8kPdvySjDAmoBOQ4FOQ3Hg0Dl8f+ATPA6dwU36AuD4Bv/+jPWIhTc9B4yYD3w2CUar2TTRUYVl7TrGf20RWgCGIpN3330XTz75JIYNG4ajR482uAT78uXLOHnypP3306dP49ChQ4iJicGVV16JOXPm4Ny5c/joo48AAJmZmbjqqqvQvXt31NbWYvXq1Vi3bh3WrXMtayQIT+D33i2NTVMurc3LAna/CZex87zw+hX9geQMQ8GGmhfS5NUHEB1qRkmlxf66Lwwg4yKCkct1xXle2fEYAHiGBXP7B8Iv/v4Z6xULh8U2vOu7MzoCq6r1T2PYl8E4V+bbz74lozu4SU9PR25uLpYsWYKJE5VTu0bYv3+/gynfrFmzAAD3338/Vq5cifz8fPz+++/292tra/HUU0/h3LlzCAkJQffu3bFhwwaMGjXKI+MhCDn81rulsWlgaa1P21h4oSzYyvF4OesIrmPz7B40uVxXcGDte5EGNoBvDCBTO8QgPioUL5VPxFIFx2OGAbjxK2DqNgbITIHfl08bEQv3uN39ru9y6AisQqoK0K72MM6h3laAzD8bF93BjdVqxY8//uhRr5uhQ4eCV5Hwr1y50uH3Z555Bs88o24vThCEl9D7tLx3uXADkdxEfNbGQtSN/LqjwU0unTm54xP8t+Z5JAU6uvzOs0zEJi5VaS+NbgBZrx+rxlTLTLwo43h8IW0ueqf8RdDpePg8eQWjYmF3ur4r4aatAJl/Ni66g5stW7Z4cxwEQfg7ep+WNz1X//+RSTjY/VlM2da68dtYyGmDtNB7jHlZuGbHNPBOR5WAYiwzZ2KKZaZqgOOuAWRDhMuCfiwYg0vrHY/rwuKQkTEe6T1sD61+WD4te8wNaH3RYBpgK0Dmn40HNc4kCEIfbpTM8mX56JUzHSNY15u9V55kxUzNzxuBPUuNr6/nGCVTXM5DFl1+55pXYUtNP9lWDiJGDSAbmv1y1I/1kQ+OGqN82gCqx+xm64sGoxFYcbyQDcvllPsdkvmn99Ft4kcQRAtHvKgr+uq6woAHb7vZs+Bc3pc+yTaYvCxBL/LhaMOBDQ+mvgRaC9v0nNJZYBnYWzmoYcQAUhQuO7cEEbNf2UfVG2aKiPqxsb3aIq1TrGtAqfkZGzhPgLLBng40j5nrL4iFI50Cu8gk74qeRVsBAM7nibf9Ps9yn2pgS+af3ocyNwRB6EO1UaTKagyQBPW+TQ1+klWq4tKBIKjlYR05HyY9T/oNbOVg1ACyUZu4NqAZqAsNsAzQfcyzx8DkSbGwXlR6ij1XeQ821/SSXY3MPxsPCm4IooXgkWolpYu6DtT6NjXoSVa1EkqbAsRiXu19mBQ8GGl6VjCguTBkAKlgmqe3ieueU0VgWabh1WhuNgN1oIGWAYYb1/pC3CyaJUo+M6b9QAzNK8T/kfmnz6HghiBaAB6tVnK+qF++4CgiVkBOYOmRJ1nNKi55FlvGYTefYi/fHqU3e9R+IBASA1TJT6XxNjHrpOETcObrn/UZQKpkOQpr++oa1rRPDqCkykO+KjI3bt0ZEQ+U3TeZxrUyVVhk/ukfUHBDEM0cNaM5e7VScpyxG5n0os5ZBddfBYElDwb5fAz2OQksFZ9kjdr+G6zcEQWfmdbbHXQRurNHxzcoBjaAoDNC+gKkJ1+B4d3bamfLNLIcXW94C1Bo6ClFGtgAHqhGc7d8WqdlwK7/ZcHUcYjsOWnqjWvJ/NP3UHBDEM0YPdqF7V+uwMjNq8G4a7WvodNgAFwYOBdxB0K1n2Td0WkYqNzhbEOTCj4NZY/sWQkVQmKErAR0GEDqyHJcc/CfaBuZifNlFkMTbz7zVdEZbH66bT+y/hcom2FqDo1ryfzTt1C1FEE0Y7S0CyPYXLxq+Zfrk7aojcjL0lfxIuo0FCpXeo+8H7tm34Q1jwzAort6Yc0jA7Br9k2ugc2nE9XHIoeBKq4CxDp40Mhlj6wcj5xTRfjq0DnknCqClZPcXvVMgVUVA7/t0lclpCPLwZSdwxsDKh3GqxePVqPpxaAPjFzFl2g8CLgeM2lXCD1Q5oYgmjFqmgQWHOaahb5trrcI23P/+hnAN88A5ZJSY6VMioZOQ/VJtiE6DVvmiP90Ing4PrGJcckKazq+5frZ9TUiztkjLW0SV16g74nwvxOBqpL635XOmc4sR2qbOiy79zqXsUWHmF2mo+RwV5vilgjdoA+MUoaJtCtEQ6DghiCaMWqahFT2OJIYtSd6Xl5bolbxYkCnIb1xdq44hO4NsP3P5vrjy9oZQmsByTEVIBbzLPcpugUvvL0nBl3dGgCw8cfzmPrJQZdlxMzC34Z0wNmD56HLQUca2ADK58yAaV56B1cdB8fzuOe9vZqrXyyvgZXjDWU63Bahq0xTyk0LAsrOvaRdIdyFghuCaMaoaRfUSrPVaXgDRecbZwa7G4sDdazolOmwcjz2nCrCs+uOoIRLxeaa+tYC0kaWSlysqAEAbPwxH4+tcQ1sgPpb89s7T4NFR5wPikEiisEYur8qnDODbQScs1+1dRxiwgJRXFGruveXNxzDe7tO68546BKhq21HoZxcK9iUyzB5Urvi0+atRKNCwQ1BeAKjFT6NRH3TRFffDbnSbP2430BR7sapeyySTIcYIF0orRQCGlZfQCMlLiIY2UfzMfWTA7qW58Aiq24gHg34Grytm7aIOL2ijMw5a4Bpnnj8WoGNSL7OwMRjpoGSacoTp07ixa0XNT8bb1Y/+aR5q59eF1oCFNwQRENpgBNrY6CkXTgb3hNVpgSEVF2AuwZ4RsuwlW6cuVxXnOdjkIBil35NgFBOzkgyGGKANILNxdwgx6korc7cLDikssdxTWgF+vERGJqlX4/CgkNGwG5B2+M0Tt3P/87nzA3TPKXMih60AhPDBnpq2KYpO7UfjDP7toJX2K63q58anIlyBz+/LjR3KLghiIbQQCfWxkJRu3D8dcPtFBww2EBR6cbJgcU8y0QsM2eC4x0DB07MkNgyGGKAlM7uxVLzIpdtqXXmHsnmYq6oy6kDsPoN/JePwTxWORiSoq1T0oHcOUvOgPWaUTi+dxOqLp1DSKu26HrdSJgCXC/RapkVLfQEJs5TQ2Iw6DzVZ0SkrJZB9Hb1U6O2rxBpIteF5gyVghOEu2hW+EDQWDiVAauWGrs7Dh1lx7JNExVLuNsCIa3gsQaKNtRuiJu4VEyxzEQBHJ/eCxCLfamZ9ptB7uli9CzfjiXmxWAYuGhfxPuTc7POkWwulpkzkeAUnIjB0Eg2V3XsLDgMYo+oH6Aqyucs+2g+Br++A7euB27f1Ra3rgcGv75DtiGmVmZFD2qfg3RqaCSbi11B07E28BUsDlyCtYGvYFfQdIxkcw1PIYkZxIQox/USooK9kzmxYSQT5RHcvC4QnoUyNwThLjqdWKUaC4/P+3si9a1Uwn18g2caKErQuiFu4lKxRUYU/HEXISCwcjwK936KpebFstNXItJmnXu5ZDxxcyc88sMTYKpdwzWWEbJDc82rsKWmn6wmZCSbi/nm9xDDXDZ0vPUonzOjUyaeaDmg9DlYOR4czyM6xIzrar7HMnOmyzKJKMbywExwVb0A/EV2G0qiXV9UPzV6Kwc3rguE56HghiDcRa/exLacx+f9PZn6livhTs6A9Y4PUbfhGQRVFtS/bqSBohNazrOAMEUldg+XajE2/piPF788jCzrv3Tvr0NQOSaN74P0sJPA98qfl1rn8ltMuVhqztQ5a8cIGS9zsC79jDtTJg0R3appW6SBNwsOc4MEDyQXbZHtd9O6B4UtpoyT3YaIc/De2M69rcOCPLqcJgavC4R3oOCGINzFgEeJx+f9PdCcUAnxyXtLXgG+PBSKkoqF9kxKXVgcMoaPR3ryFYa2KaKmvXBGqsX4V/YxvL3zNAaweUgK1D99MGpgb1yfkggc+V7X8s7l8Sw4/CdiDZhq6FcMj1mku+mkO+JdMUA0OjWlpm1xDrx1aYt4DvjsfoBdBSRn+Ea0qwedn9vuUxfBskzDM0kGrguE9yDNDUG4i6btf73GwuPz/kZS3wbIPpqPwa9txYR392DF97+huKLWnknJ4gbim/LOmPLxYVktiF6UtBfO9xNRi8FxPN7eeRqAfm8engfO87FgRX2LwZYAgJBxWDvCipBqnU/Yoa3rs2ViJqzH7cJPD3a/FgNEo7dfJW2LXOBtyAMp+1lY6+pUg3dACN4brC9zg4uXa3Qt99b2U5jw7h4Mfm1rg77fRq4LhPegzA1BuIsBjxKPz/t7IfWtp7zYU9UlctqLvu1b4Yczlxy0GADQ/59b7OsZ8eaZZ7kPhz87gn+MsSA9jANCol2dg+0w4COTMGPM/ZhQYanXgmx+zsBBzdc3VSfxPulcEQIWnKYvzy8XLiPnVJE9q6BU3i+SGBWMF25NRquwQE1ti1zgbcgDqewcju/dhPxS5UUMlY97GKPTeB7ppu6mdxHhOSi4IYiGoNOjRO8FVveF2MOpbyPlxZ66UclpL5x/zzlVhOKK+t5JWn44AFDHs3jc8jg2calIv/wdrv3sEUB1ikXYEJO+AGlXx9W/zFlRc2ANdCsxInTcCJ0E4N0B5ATHYm7tfchWKUVfsu0klmw7Wa9fSY5DethJjLi1GMfKQ3EiOAXFlVbEhAchIdKYSFcuoBbPs14n5qpL5wC0VXxfLCc3HzsHsN0a1cxOj85LikcCeKXrQmgscOu/qQy8EaDghiAaikbDSED7AmvYxMygbb8W7pQXe6y6xMA+tPxwAOAxy2PI5q7DSNYmBNZCSez72/cIqr2kuToPgNEzzaAgAI9DMZaaMzHVMlM1wAGErMKXnyzHDVFrEVIlNPHsDqB7A8zh5AJq8Twv13P+AIS0Ug5sHLyF9kP414hmdkZ0XiIeCeCTMwCOAzbOAiqLhNcqLwKb5gAMSwGOlyHNDUF4Ag2NhXiBBVxn4t0yMRNT32pblKS+tbx13AlUvGmVr7YPNT+cKZaZyOYGOHQ8VzylITHAfV8BM4/I3mhO/XpK/0C1phlUBOAMeDAMg38EOvryyDHCFrAFVRU4viFWyOVl6R+zDTHwlp4mFhxKEY4VdSNh5dW+k4J+pOt1I9E20owBbB4y2N0YwOaBBVfvLQSnzFkDxqsH5+/78OQEWZ2XFg0K4POygM8m1Qc2Il4+dkKAMjcE0Ugo6SQS3PW50Tklpqc812igEh1q9ppVvhSlyiAlPxxRu6Kr2qeqWAhIbK7Hzt4rhXw0rtExxuNdH0M3padwUV9zeoeqAJwBjwQUYf0YFt9c7oQl21wDK4eAzeVd9yvknDMbI6SZFsetu4waAJC+AKYTG/Gt6WmEBNYHXfl8DIIg9L1yDTB1jNfNvkxq3/dds29C7ulifH/yIpZsO6m5LbcDeC9WMxL6oOCGIBoRj5uYaUyJ6S3PNapLaKw+ytIbr/O4xCqu0dcmYs+PjtUtuqt9ft6I7IrOsjfDCf26oaOKvofjgQLEoKTvDPltyxksatA9sgonwyJk39MO2Nw3hxMD7+1frsCrlkyX92U/bzGIBoBPJyLE6ROKV9FFaY7XTXNKI9/3dQf+8Nw0sTNk5OdzaFqKIBoZ2TYIDUFhSkzLWweoL8+VTpvp4VKlxXN29RqIN95EpymFmDAzlt7dG4vu6u0yraK32offsxRffrLcJTNUUFqNN/53CgvZBwHU63lExN8Xmx9Gaqc2rhsW9TUGAhsAQHi8YrZAd8DmpjlcenIc5oeuBsMoTeUxQrn7be8C938tTOd1vRV89mzwMt8y3V9r5/EqnTuN6Rx3v+8emSZ2hoz8fA4FNwTRRDDak8qot44YRESHmHWNpzEExSLpKYnYNfsmrHlkABbd1QtrHhmAfX8fjlHXJsneqMRqHy1bFR7Ai2ZXrYu42jbmOkV9z1TLTAwd96DrDVB1SkKF0NZAu+tkNTCAgfJsd83hzuwGU3ZeJSvHC4LYiER7EJ27fb3GOjqQjrcBfZnc/b57pdcVGfn5HJqWIogmgDs9qdzx1klPSUREsBn3vLdXc73GEBSr9SmS4qxnslf7BGaqbp8FkMQIbRdyua4uGp5LlRYkD7sHd+QOQrvLh+3vnQ3viRfu6CF/7jWnJBSovAgs7glTn0lY3jMG83eVYB/XFVbbM6h2Gbx8hZyV47HnVBFyfr0IQMgaDugokzF0o53Ixm/3ITXQ2GGqjrcB0znuft+90utKbzUjZxUa3hrQFBH6oOCGIPwcd23t3fXWGdAx1rNl625iNKBzvVENAH+iBszeZZr7Gsb8gP8ELXXQtJznYzDPMhFXte6Fnc8OR+7pvsJ2w8xINR2HqeJ74LTMTakhUw1l54Htr6IngLWBwAXE4sXa+7CJSwUHFovND2N+3eu2hbXN4bKP5uPZz4+gpLLeK2jJtpOIDjVjwW1OwZnOLELunwHoa5sCam/E7E8O5yqzBkznuPt990qvK00jPx6wVAKrxta/3Ijl8S0BmpYiCD/GiI7AGaXpDREGQrDgHKRo6W94ABk9E73ayVkM6OS0MFNWH3Cxxxen7L7+UXjqH31tEtI6xYLtequu/T0U8I1LuXICirHMnImul7bX66QCf0Da+htg+mgMsO4h4MPRQGaKow6kyEAJuQZxKMLywEX4dMifWPPIAPzzuefA3PkREOkU3EUmuTRKzT6aj8mrD6Ck0gIWnEOZdlllDSY7nUdruzRcQKziVB5na2kxMycEe34tEqZ4NKb/eF745/I6AGvaY0JzVsl0609lIfpOjEwg5u733WuI1YzOn1VIK+FnlZOHEpWIexTK3BCEH+NOY0URNfMyLdFkekoi/jakg72nkzPv7DyN3le28kojRKNNRlUzPMnq0wMcAJ5nwYBzmephGeH9aw7+E7jhLuD4Bu0u7ACwfb7bx+6M8LnxSD3+LyD9PmFQOkwjrRyPf2T9BMDJRM+GmJWatz7Yfh5zz5RiZe19qgaJ8yz34XxNHXJOCd4taqaKYlAj53DM88CfOZ9gZd1f8dWPhfbPjgWHnOBYxKEYjEFzyoZ8372G82cV1gb44lGFhalE3JNQ5oZocRgV5vqShvakclc0aeV4ZB1Wbx7orUaIRgI6zQxPXqGq2SEDwMS4BjYiLACm7Bxw+jttoes3s90TEmvAAK5NUDVMI3NPF6OgrEbRRE/MSl1bvtMusC0sr9Y0SNxkd1CuP0aldRhGPrABhCAoAUU49H22w2fHgcXc2vvA8zx4HeaUznhVJOwu0s+KYYFytb8r9xreEq5Q5oZoUbgjzPUl7uoInIW4O56+0aUppdoTbEMyRg1FLlATexNJxb4FZdX4V/Zx7QzP7DEwKZgdMsljgT1LtQd1Zpe20LVcp4i45z3A4Y/1LSuBKy/Q/TRaWF6t6tLMMkI2ZoH5Pfx06lqgwzj7d0jLIBEA0jq2xroD5+y6LOk6w5gf8FDAN7p6UsmVt2dzqZhqmYl5gasQD4m7r0KbDGdkRcLto2A6mwMc+d634l1vlIi7aXbY3KHghmgxuCvM9SXu9KRSC+DG9rL1AOKswGnlC6LHu5gbwDlQU5pWyfv1OeSXJiluxyEAU5rKObNbX3DjwWTM4aCeaMN/o9r8U45j5aHornPZuIhgTdM/lgFa4TIG734QOPo8+gybD0CwARANEuWIjwjEgE6xmDu6C1auWeMQAOVyXfGfIB3n00Z7Rj6Lkc2lYnN1P6wfw6J7ZJXhm7aDSDgvC1hs3BDQK3i6RNxNs8OWAE1LES2ChghzfYlRszFdQty8LEEE++FoRVGsx7uYG0AqDFWcVmGKcfORpzGSzdXcXkHJZWFa6acvhBe6/6V+Kkcs2VWToUa29aiL7NsHqzHPMhGAqzmgEhf5SJwM7eH4ImcVjuvIZ8JPifdLaocYXB1yWf+gyvIR+PkkXefz+qvjYDq+HulbhmNt4CtYHLgEawNfwa6g6Zhm+hJJjL5O4jwPPBGwTnGfHFicDOulOPWmCzcNAb2G3u+bnoa3/nZsfgYFN0SLwKjBlz+hV0egJ4Db/uUK8DouiL6sPBEDOtVpFdvPuTIGfFJGsrlIW3+jciCntwHplWmCXkIBHgAPBlXB8TJakfrt1YQmIru8o12nUopwxW0C9dVGz1smIS4yrP4NHQFqz25dVbctdwRa5xMA+lZ9J3tTTWSKMcv8me49igGQ2j7F4NktnVwDDAG9hsGGt4r447H5GTQtRbQIfDnN4gn0mI1pBXAMOEy3vAcw2s38TKzJvcoTD83/p6ckYs0IK5J2KgebDHi7AZ/cFIqY9XHp+iitbkrO0NeA9PR3AK980xc2z2Np+fV4IuAz8Izzk6OwxOGUZ8HtrH8nCpfB88rCWwB4u240DkcMrQ8kxSd2haqtg2mLMPXAFbhQGo6BQWqmf67HoHY+AUH7NOb8Ytd9w9XNRQ8sAyTBdZ/S6Va3dXL+2t9JZ8NbVfz12PwICm6IFoEvp1k8hZbZmFZgZrTxouEu5h6e/09tU6drOTlRqlrWR7bkVqu8WqfA8wyfgCmWmS4aIfHGZQ0aBOzc4zA+pcDGyjN43PIYvuHSsEwMJDWe2HkwiN89DxdqFgEA1tTdhFkBn7mUaauh1sPqOvY4wmuUz4W4Cw7GpgWk+5QGz1vyCtzXyflzfycd5fyq+POx+QkU3BAtAneEuU0NrcDMncaLuu3pNbIJzgZzutApqrx3WH/s+t6M4op6F163OmiLJbsNGEtrpgQrren2yqFrQisw9+6bYLpqEMCakMrxSIwKRvvyAxrjA0wMD4S1wbKxkhu4xhO7mM2aZvoCEwK22fdhxNlFrYfVXd3MgB6PQt4W4OjcsXSfYvA8PDkBg1/bav9GseBwHZuHNDYP4IEcPhkvZ5ntPj0u+Ht/J7Xvmxb+fmx+gE81Nzt37sSYMWOQlJQEhmHw5Zdfaq6zY8cO9O3bF8HBwejYsSOWL1/u/YESTR6vdwH2Ac46hL7tW6nqZNxtvKjZxdxb8/8a4kseDCpDEmBtNxDPj3KcRvF4B21NIajAi+bV2BU0HcPZ/djDJeOjy/2Ry3e3P5GL30O941syJskxM6FzvE8ErHMRYXM2/Y7S1JHoQJzLuWp1WAZ4dEgHjB3cV9f+36gb7+J7Iw8DPrItZjxwv70h6q7ZNyE9JdFhmnUkm4v9QZOxJvBVTA/4EtPNX2JN4KtYX/MATu74RH7TnhTv+hvN+dg8hE8zNxUVFejZsyceeOABjB8/XnP506dPY9SoUXjkkUewevVqfP/995g6dSratGmja32iZWN4msWG3uaNjYmSDiGjZyLe2XlaViej1XiRA8BEtgVj9ILorfl/lf48HADwPJ4ovQub3t+HmDChhFn0w+nM/qFvH3qfbG1j4T+dCB6OT4XOmhnRIE80vfv+5J8O3530lETEDOsP7NSx3z+PC3ofccrCwJO4nLeN6BrsLEOSOhBL/WxGJMfjug4xuC/tKgQGsEKAquL4zINBPh+Dt6x/wVvWvwi+N+x+PGjKlhmT8AuTvgBpV8e5bEucZh3J5mK5OVP2GFvhMlrtmArER7hmBjX7O0GfeNcfac7H5iEYnpfr/NH4MAyDL774AuPGjVNcZvbs2cjKysKxY8fsr02ePBmHDx9GTk6Orv2UlZUhKioKpaWliIyMbOiwiSaIkWDFH03/lPx6xCP425AOyDqc7zDm2LBAFFXU1otsIW+v/8vQpehy4z3GBnTkM6FiR4vx7wtlvUaR0fKc52Mxz3KfxDFX3g9HVawb2RaYeUT3DSD7aD6+/GQ5XnTW08jA8UAxIvGy5V5cQIzdBK++LUQc+MwUoCxfts2Ay7hF7VLXW4WqKKXgQkOcLFJjboUgS31vI7nzCQCL7upV740kYp+CBJxvqjyAybUzXLYj99kgsq2qgDbnVBHueXc3vg+ajgQol5fzAJiQWODJ40CATItyWS2Y+r6bDM352GQwcv9uUsHNkCFD0Lt3byxatMj+2hdffIE777wTlZWVMJvNLuvU1NSgpqbG/ntZWRnatWtHwQ2hiVYQ4QvTPyvHY/BrWxWrokTtkLMjcUFpFZ749DAAJVM84eY26s6/ud7MtPh1B/CRjgvp/V+7rzHgrLD+9j3mfbIVJyrDXBxzlYI2tf5G6H6bECzoEHNKzzsLDpNM2XjRvFr38MVeTpttN/1l9/ZBOrtPNkiQGzNvaxUh9q8SMki8SwZJ8VidODHoP3hxW7GiA7HImkcGyIvYFW6qP/f+O0Zuipbdp9Rl+tFbB6J7WrrwhoKo1srxeHz+Yiy1vKh9QAAQGguMzpS/qTdnF9/mfGxOGAlumpSguKCgAPHxjmnZ+Ph41NXV4eLFi0hMdL3RzJ8/H/PmzWusIRLNBKPNGxsLvX49P5y55HBTEhsdAur2+pOMVovlZQHfPKOxkHKzQ92wJuTy3fHR5XLXt1Qqo1Rv9D99LvwD5Ku6JDeN42UhuFDK2fbG4iIfbWj40qmqzVyqQ1sIPns2GKdpPedxM7ZKKCb7WWDmEZy44S1EbH/eJYOkJ7ABgE6drsaZ/RbsdVdgr1Dt0xksEvdslRXuc2Cxl0tGQlQw3ki7CTi+XrW6zsQyeLR3KKDtKyhQWaQsXm+IeNffac7H1gCanIkf4/TXKyaenF8XmTNnDkpLS+3/zp496/UxEk0EFYdXfzX9M+TXIzm+VOYntI00S0p1BXv9LG4g9nDJ4G1TJoaqxcTpCdVGgLY9jnhVuBHKnGu9KB27WBnVoBjT2dXVySSv+5a7sStout1NV7c424Y4trnmVWDAIb+0Gnt+LUJO0CD8J3kd7qp9HovrxgFQDlAYiXbpeKuhGFyzWFjPor6e81YQ2Ra4ciDu6t9OMbABdAjsZZp36hbuH1+vy13XmBGhjRZuXkcINKnMTUJCAgoKChxeKywsREBAAGJj5f0/goKCEBQU1BjDI5oSGp4s/mr6p9eHp+ul7UDmK/bjMwH4NiQBT7B3YROXqt+UTwFrXR3qvn4agSp+vACEc5oyHtg8x/Vcj5wvTCXoTKcrHfsw5gddY1ZH4n3DccBnk+CsaZFmX7Zw/ZDPxyDeQH8oZ8O6aR8fQEmVWL6uv4IKly8gLiLZHqDGsTrXs3Gw+2xMfX2HYvCuJbDXQlO4nxwHZKpV10k8iGxVQXzZeZ3l7G6K11vQ1E5LoUkFN2lpaVi/fr3Da5s3b0a/fv1k9TYEIYsOT5a4iEG6NtXYpn+pHWIQHWpGSaVF9n0GwF/DD+GaHa/D+fhCqi5gWeAizAl4Gmsv97K/bvRmln00H1lffYqllgLthXvfB+x4zWUsKDsP/Pd+x9c0DP/kvIpGsrl4KOAbXePWxnZj3DjLdbyo76Q917wKrIVHEGrdyhaJQUx9YCNgpFQ/tX0MEiKDUFBWo3+90NY42PNF3LatNXjIBzZPDLsGj93UucFTrar+SKe/M1Zdl/4amE/vMzaAyxf0ByzUfLJZ4tPg5vLlyzh58qT999OnT+PQoUOIiYnBlVdeiTlz5uDcuXP46CNhPn3y5MlYsmQJZs2ahUceeQQ5OTl4//33sWbNGl8dAtHU0PRkEZ4aU6f/6Jemf1vyChQDG0BosTDX/BGYOvnjYwDMD/0YY//6CAorLIZL20WR9Ri2EJApTHEh923oNuXXMPwzsQzmju6CD9d8jDQmDwzD427TVpey5gZTWaT4lph9WWpe5HajcKVgRKtUnwcDxqZdMrEM7u7fFru3fY14FKOIj0ArlCusBzChrWGdmYep/96lGNgwANbu+x2P3dTZzSNzRNFR26i7bnIGcOcqYP0MoErnNHDRKVtVmUbA4g3zScIv8Glws3//ftx4443232fNmgUAuP/++7Fy5Urk5+fj999/t7/foUMHbNy4EU888QTeeustJCUlYfHixeRxQ+hHpyeL6WyO7t5KjeWDI4qc1bgp5CRCqtQzKkzZOaQF/Az0MiZClIqsdWcLqi5pL2NHpi2ClLwspG+cjvRAI9v0HkY/Yo4HCiBvkgcIOqh5lolYZs50aZfAwfa9E71L8rLwyA9PYXpgfaAgNtmUam843qZHHP0Gcs9exoXSSgyQEZIDjjoytTYfDcYdd11RwPzrTuDTe4FapY7nDBDSCtj+qutbzgGLzgcd2e9iE8EfPboaC58GN0OHDoVaJfrKlStdXrvhhhtw4MABL46KaNYYeGpM73G9pumfV31wnNLquXVdVEXOABBWoy+jwpWex95TRYYuelKRtVaWQbjJRBsMbgBFzUReFmB0asIt9LV/1FuVJCL6CC1kH5AtuRYRu4XPNX+EJInDcAEfi/KhL6NLcoY92xDsNE65DFYBYlF+g7CeaeNK7Aqa52QBIJSoS31pvK4jE911Fbx6FKvrWBPQ+UZg3DJFnx3X16Q4BSzNvPmkP3p0NSZNSnNDEA3G4FOjmnZAyQfHpamfO2JFGR1Ar+B4jGQnONyIpN4hhYhGa6ZE1+EtWp+DRRXh9t/1XPSkNz21LIPdk+W6KfJP0HqQBqGcVUe5uafwkO1XYLhDdqE6NAFnU1/E+CtG4vP396quqlSq/0arPugiyTY4BzKiJqiIrzcPPBveEztvGA7kZaF/7kzwKiJp8XvldR1ZQ9111bpq97lf4zsnCViacfNJ3demZgwFN0TLwo2nRjntgG4fHCYXpk3PGhMrKugAgqsLHW5EcmZ8l/gwtaO381tViMPvei56rcMdqw6VsgzlgXHIT5uLzoP/CtOBlSrnWgVpEHpmt0a5uR8iCWz40FiE3voaunQfh84cj5iwQBRX1KquLlZCSYmLCNYU47IM0BpluIAY7OWSsSyjB0zg7AGRXEsGUST9bU0/xEWFNo6OTC1A0eOuq9RV+6cv9O1fXEcPTaz5pL96dDU2FNwQLQsP9WTR44NzbflOsP9dBJcbu5pYUUUHwIAHz9RX67xlXuSyTDRToTpukQtOTQ2lF72busY7uBvbp6xkrpayWYbqruA2sUjcswNL+zyL3jkzoHe6R3ZKwq0nZ9tnOfBx4OhnjjfQ0NZA5UU3tikgHoXcbUFuaoivLAL+OwkM8xFMyRkY1ysJK77/Tff+7OL16l3A1zN0rXNNaAUmjbMFqraASOk2Joqk+7PHMWnMvY13w1MKUPTqW+TM64wELO5Oj/k5Rjy6vKqt8jEU3BAtj4Y+NUJbl1DvmmtQrKihA2ABJDFFeMW8QvjdxclWHTVRq3jRGzD/fw6ZBXHKqqaOk9+mTJYBELJBt21rjc9vXITePy3Q0DdIRu8cXIa21lhPBulnOewfjjfQ8nzg80eMb1MySrG7tmOLBMhGNywAjudRvf5phHS9FcOTEwwFNwCwtM8fMP13BvRmwObefRNMHW0ZOJ3B4ZzB0ejp5lSF28JVT7vrGglYmmnzSX/16GpsKLghWiYNfGrU0iWIrrnKKIgVdd6IYhnXNgRaiJdu587PzkgDGxYc2pcfwMZPtmJInxSwCLev66z3ce5PJN7npx64AruePgLT2Zz6c11RJG/sJxdc6lTv8kGRYG79NxCR6PhZOt9AT3+na3tqyA2Jsf/HFZYBQqoKYP3te6R2uN4+NaV1DmPDAvHPcd3Qe8twGMl8ma6S+DTpzGa45QYMPxOuGg1YPPCg42/o1Uw1tkdXY0PBDdFyacBTo5yhnBQjbrMOeHJ+PyQaqKofR21oIqaX/NWlY7MSLpqeo8D1wbGYW3sfeECm+aZr5Y09BX6mFGmdnM518hh7cGkJicOq84n47ZcatC/6FfelXYXAANtNvuJPXeNdaxmCVuz1SO+gfkO1tktDXWgCAisvyHbkNsLiunEAD0w3f6lr+VO/nsI1HYfglbEp+GrtctVzGBNmRs6cmxF49nsdWS8JztmG9gNRFZKAoKoChZDW/ekXvxSuGg1YGjo95mdoXZt85dHV2FBwQxBuIPbQUfLBMeI264CetHporD7NyB0fAQxrv2AHtEvDj6/vAKNw0ZMi7bItJQ5FWGbOlF1frvJGRDYFzppgbT8YM9YexIYf88GjPhv1z43H8Mj1HTBnVLLugO+r6l7Yq3FDFbMM15bfZT+OhkhMdnMp+gNZAIV8NK4BMCpgH24JzISzE4Z4DqdaZmLcXyYLAZ5ezVFIK2DMYpebd3ZeIb4svQtLzZng4OSfY/PFYdyYfvGVcFXXFJjRgKUZNZ/UujYBxlqtNFWaXONMgvAXxB46CVGO6d2EqGBMmjBBCFIUVTC2BoZyXh7prymvAwCj/q1v21cNhrX9YOSE3oivSjsi90wpXri1m3RLsqh22bb9h2Fc35M2h2ThqM+RS4FnH81Hj39swtc/5rt2kOaBt3eexvyNefUBn8KoOR44z9friOatz4OVc73lilmG/NJqe6VXgZOwGiExQpCggXSfegPZi3ykMF1kE40zUDiHDPBG1FqhBxOgP5s3/gOXwEYMQLIVjrcAsZgT8DSsXcfo24eExmgua+V45JwqwleHziHnVBE2/piPwa9txYR392DG2kOY8O4eDH5tK7KPylTTyTT2bCmoXZtaQhk4QJkbggA4K6y/fY9Tv55CIR8N01WDkNqpja4nG9UeOib1uX/ryPnIPV0i/wQqZ4AX0goYs0i4gbGspq4gO69QVgsxLDkO/ztW6JA1kG5FSy+kGhgxjs0hlVLg2UfzMXm1thnnu9+dxpMjuiLQpqMQPHTqBy7GMFIdkdhxm2UY+7nt274V5q3PAwMO10k0LkNqMtGPPYE4lKAuLA5vPjlN+AzO7AZ+3gjsWQrnc+y8T9HQMBHFsloc8Tw/b5mEjKo6XaLxkKqCej2WZjbPxldTgFv+5RDgSAMQJf8crobFWDcqZwrLqzU1Q+Jy7iCn5ZGjJXm3GEH12tQCoOCGaNnkZaFq/dMIqSrANQCuAXB+Vwz+bn4YQ8c9qOtiqdhDR2Xu/2D32ZiaFY780j32lxOjgrG0zx+20mmZm5i0r46GrmBjXX9M/cQ1eMgvrZa9WUhv+p2ZPzSPWYth7H7stVVQOafA9bSREG+a8SjGgbX7kJrAoLjdSASfy0E4V2pfrgCxmGe5z2UazLHjNhARHICBtbsxN0he45LFDQTKgfvOlAqfZYfrhX9XprmcY+d9cmDxkmUilgZmAk7tD0TerhuNbG4A9n31E0aMuaTvwitOR6mKZCWUF7hYDDgHFkqVbe4EIF0vbceuoOc1dVfuCFeVtDxyGJ0Ca0ktCRSvTS0Ahlfrf9AMKSsrQ1RUFEpLSxEZGenr4RC+JC8L/KcTwfO8iw4BgKB7uHuyW0+DDhfQMDNSTcdhqigEwuORfbkDpnx82OXCbQKH74KmI5EpVsiO2ISfM4/Up9hl3I83Hr2Ax9YchMzMjCxyZoAN5SIfibFB7+OFjB4u5y/nVBEmvLtHYU3t8ZTxwfjUOhTfcv1kMwVSxCBpGPMDHgr4xkVjI56jaZYZuIQIPDUwCv26d3PQZ2Qf+QNZWesQUFEom50QN/dmrz/Q59gCh3Ff5CPxguUBfMNdZ39teOgJvMv9Q3HMdoY+BwydXf97XhbwzWygXE1c7Pgd0TrXImseGWDsJij+7YB3OPvi+ZximYnNXCoSooKxa/ZNhoIHK8dj8GtbNTM2cmgdh19VdhGGMXL/pswN0TLhrOCzZwsXZwXX1hfNq3BH1iDDgkjlC+ggDG+fgHmvbZV9Iu3vTvm4kxAy+2g+pn5yUPdYlYTD4iOP0R5KIq2ZMuy8K7jea0WCWpZAHI/abiNQjQdN2dinEdjIBUlyLQt4HnjTvBgBDA/sh/DP5iKdzfW3BaKdAch3y06w+wD1wuBDSZrTNP+r7Iz8oBgkKAaxNn5YCQx5ylErUqd1w7d9R7bNBzregNT2aZ6vnLFrhpRbQIiOx+4IV7W0PGqofbf8srKL8BoU3BB+i1fTx2d2g9Hh2tru8mHknu6r+6lW6wI6c9g1ihduI+XjcucGgOZ0jxRV4bDNkNjVk06v0zCETJUMStMU0vGoBVWMbQhzzR9hS00/2QBHKWhT2l6Ai4v0efCf3odL7Ghcx/ZSzBDFhJmx4+kbERjAIudUkeK0j7M2ZU3djZhlXqc+sPLzwN7lQkau6JSxPl3fvQ589zpMkUlY2udZ3LattVuVM7J/g1qaIdvfzpoRVqS6ESw0xFxO6btFLQlaHhTcEH6J19PHOstr41Ci+2Kr5wL6we7TiuvrrbrJ/TMAM5zS9olRwbirfztDT7xuCYd1NSe0oVDlo+TDoW18KBkbAySh2C5cBoDoUDNKKi2qQZsRGAATuK8xIfBrWS0JABRXWPDDmUtI6xSreFzyPcDCoYtNz7l/AAD4snz0ypmBN3u9hld+7YyCMvnu9nIo/Q0u7/kreurYd2qbOrfG7I5GRysDRS0JWh4U3BB+R6Okj3WW1xYiWvfFVs8FtKTSovi+WHWTgGKFmzKDqpB4TNhsghWO+ykorcYb3/7i8JpUlBvLlKGIj8QFxNizEHozRWV8ED6sS0dYsBkpvW5F6uDRwIGVKk/v6qZwSj4cRvxiROJQgolp7XFLSiI4jsc97+81FCTpRY+Hj/S4RJQySFG47PKaN2DAg+OBPsdeAxu4DE8MuxpXtQ7TzISq/Q3O31WCtYE6du6mIaWWCZ0zejJQ3m5J0JJEyk0FCm4In+J8URBLdr2ePm4/EHxkEviy87KqDbEH09nwnrr1CHovjNEhZpRWWVy9XWxVN8sCM11KnmH7bZ5lIqwyI3belpooV8xC6M0URTI1eNz8FWAFsPMzVO1LQEjvO4Hdb8rsXV9PHtGHQ5oZ0G18KKEQ0ZiQkoi0TrGwcjwSIoMQd7nE8Ha0kGpJnKfCpMGveFzPfXEUJRXVihkkUesDyE/B8QpVV+6OPQlFuLLiR2R+W4dl9/ZRzU5oZSD3cV1xAbGIQ7GCw7P7jseAugmdHFoZKEB/NuhieQ2sHO8hjZ3TmGTE/y3Je6exIRM/wmdkH3U15Bow/1uvG4MBAFgTmPTXwIBxqSoSf3/Jch9eyOih+0Kn9wL6wKCrALhO+zAQvEgOpS0GE+l0oQ6NRX63SfitMtDFIM8ZMVuQAPlzlGjLQkSjTP/0iISgqgLwu98UOm47jzMySb7buQzpKYnYNfsmPDHsakSFmO2ZKz1VXjwvBGnS4HNLXgGq6zi3giQ9sIzQtDSVPQ5A+LwSZaZC0lMSsWfOzbg59CSSGKUsnM0ZmIHs8XoqsJEiZsaUTA5FtDKQVrB4sfY+KIcdfIMbTiqZ0CVGBWPp3b2x5pEBWHRXL6x5ZAB2zb5JM5MrZoO0TuvLG44pmwLKIDWGlCJmme3bycsCMlOAD0cD6x4CPhyNmoXJyN24EjmnilQ/D8I9KHND+ASltHdxhfK0jRSPdLRNzgBz50dCt+aqAvvLBYjFYvNDGHeHPp8bEb09XR676Wp0SYhwedoTn0B7pyQCw++tN5L78VOg8iKSjn2AtYHyXiIievQmjC1r8KL5Y3xQNwKzzJ/rPkZhH7bb2tF1wPTDwNm9Qqftij+BsDaC2SBn1XVz25JXIJlOYzHPMlFoi6CSuRAzHll1A/HCHULwKf0+5UJreq9hxKFEcyokMIDFY/3CgVzt7ZUiDK1Q4dlBylCIaF3aEj1/W72ZEx4enSsNNqGTZEpM4fGYO7oLpnx8WDYb5CD4Lo/GtNWVeOvefqp//7pFykwuTP+932Wv5ooC9Ns7A1N2ncasiCFUju5hKLghHGiMuWO1i4KIlvOpxzraJmcgpOutLg7F/9TpUCzFSE8XzQs3axIcivcsg/NFUU3/oVdvIk5VHDN3Bx+yDYyzG7IGjFhyfHavMM5v5zpocGpCE3A4ZQ6sXcYofoesHI9nPz9SPyZwuIb5A5UIRjijfIMVK7nuj9yPkOQ4l+8TpzNIcpdCROuaCqkJbqNre1MtM8DbNFCtmRK8aF7tqaECqJ9iFdtTAEBhWQVwOk92ikTrb2uO6WP8LWCjehYk+1mht1MDp12UTOg0r1N5WS7mi+mRSfj8xmcx9cAVDg8VclO45/kYLP7yYQxPfk7xOqBHY3ehtBJ1G56BSeZqJ53qvL60H5WjexgKbgg7jWVwpXVRULrYzLNMtBuDebSjLWuCqeMQXNNxCK5p4KbSUxKx7J6eLqZvcZEhmJB6JWrqOOScKtIev81LRC71r6r/MCjKfSw1CsxVi4FP7zO0np2fN8oGYNKn0mkhg3BbzwT8JfYsukVUgo1IANoPxJ5fL9kF1iPZXMw3v4cYRp/QlkF9i4JcLtnl+yT2jppvfg8xHhTv1pijMeOe+zXbc1g5Hk/sCcV/Ndoy5CMWe7lk+2fIgsPDARs9lnWSa08xks1F+pZZQGV9tlL09UFyhmoG8hZ2L/4WsEE7YHT2Y/IgmtepvCybm7NzeX8+eufMwK47PsTK4h54ecMxRcF3AorxquVf+GXHVehy4z2y49CT4UpljyNIep6dEB8y+rPHsZdLpnJ0D0LBDQGgcQ2u1C4Kt7B7sdS8yOV1h27JYyb77x9/XhbSt8xGuuU8YKsoKQ+Mwz+5SXjj2xr7YtGhZgCO1VMOF2idXiLSUmjAuCi3Z7euwg1o6HPGfFREfvw/aAVgL1fxePCHVY4ZpcgkXEyYAaCdLuM+RS5fQKG1o+xbYi+laaYv8WBANlrpDJzUCOo+SsgkaHz/ck8X41yZBVmmgXg04GuXDFL91FqaQ3DKgcWbAQ/iVevCBo8VcG0Vkc7mYllgJlDptGBZvr11gyk5QzYDyYLDK+YV+jNheruZG0DzOnVPT6RvkX8oECeLTJvmoPWN2apTuOL3t13uS8ANd8lmoPRkj/U+bMShhMrRPQwJignNuWNAW4RoBKWLQjq7B0vMi+1CSymy3ZL9Ac4KnP4OOPIZsN3W/8cpKAmrKcSrln9hJFsvwCiptLiUhYsX6I0/5uPEqZO6du988dQryuWdu5IPeQqITNJpz2cjOAqoLFJ8WxTgLjUvchE382XnkXFiNm5h9+oy7lMkPF71JsOBxZvW29C3Zjnuqn0e79Wlg+NdRbwcLwQcms1oDn0iCEPzslQXE5tKZgTsFm6pCiaJGQE5DgLxW1IS8Mo9N7gX6NmoMbfCzNqpuKv2eQyuWWQPbEzg8KJ4rl3Wsh149rMAZ5UV9KayxxHLlOsfiJul4ErouU5lZa1TfSgQHZw7Vx7BdWyequCbZYBQsYGpDFoiZQZAXZi+a5X0ocQjekKCghvCmMGVJ5C7KIxkc7HUvBgmRvnu4tAt2R9wroDY/iqUshiAkMVQq3QSHYEfW3MAL269qGsIhYjG6GsTYYv97HoTQL4KR4QBHCtaWBMOdn9Wcz0HrnAVNCvh4oBs+7nA/K7qDUYVW3CmpxJGdA5+pW4iplhm4gIcpwULEIO360aDh47jF7McKgFOXESwXf+kdvOUVl8Bwt8i08CMR5DlEu66+TqciejjkBUaGfErklRbPvD100mor2YTK5P+c+05/YMIbe12KbgSeq5TAQqu2M50K/sOywMX69uxwuchauwA+cpHAMjIGC9M+SmcdY4HzvOOeiiP6QlbOBTcEF43uHLG+aIgTQ/rwgvpbsOI8/qqT4n1yN3IlOB47QyMeFHcx3XFD2cu4a2765+yRb3Jn4xCajuyrUu5dvaRP/DajkK8X5eOcoToOiZ0HKprMaWMDAMginGeHzGALTiT+z4NYPOQwe7GADZPNqDkXYJQHgf5zphimYkCaOm5HLMcclyqqDE0JSFSVFGLY+WhutZTY2POIbxwa7JDyfSSMUn6Vpb8fYmC3rHXJiDpd/VslQO3/tvjHi56rj96p2XZvcsQqVeLpZKBUipZT4gKFqbye1whaJkAl05cznooJWsBwj1Ic0PoflLw5BOF1MStffkBY46yGuludyu+dK9na7rpernSRu8NT1rxw/HynaznWe6DFSzyS6vRKiwQu2bfJBn/ALRu/wJwNsexTDsi0cU8zPrTV+i97gmkB9ZPMVl5Bix49aminQuB4FZAdQnkMlbO4/YoNzwrlJwf+QwIj0d68kAsu7cPtn+5AtMt78mK0TdxqSoC0kv2CrTBNYsxyZStUbXEy4pmrRyPPb8W4bkvjqKrzhtte8bRU+VkaA90j0wSMkTGJgrtnKgMw6pPBK3c2F5thRdPJ+ha95djh3B1j9sdX9y5UHUK0oG0x4Hu4/QPVid6rj+5XFfUhCYgqPIC5M+dbc6b53T87eozI9SsfEzOAO78CIxT9ZZUD6XHZZkwBgU3hG5/Fk8/UYgXhVNbfwd26VxJqhORwd2KLyPr5W5fj1SdGRtnjAh+xQzMXPNHSJJoVpxFooDwVCtbNqtVrZKXBfa/96MNzztkzlnbN0E1QKmuLx93dlT2licZB4AJbgXmwIfAjgX1b0QmIT3ldoysexNwmtoUxejTLDPwgnkVAGUBqViBdpGP1jcgSZbD+Tukx2+H54EnAoQGmm9Z/yK0xYgMg3XkArD/vR88HNPrHF/fulQ27uaBYkQiHsW4js3Dy1nm+uqb9gOFm7XKd5fngbCfPkb2kclC1gEQspR6xeZXjwBGvqJvWYPouU7FR4Ui4NZ/Af+9H65NXm2/awqrJOg0I5T923N2JLZ5Qh0+dhxvH6xEdnlH+7ShHmsBwhgMzxv5pJs+ZWVliIqKQmlpKSIjI309HL9BrEIA5P1ZvOq/cPo7QbeihztXKbrfKlVSaB2DkfWyj+Zj4ydLsDhwib7x2hC9RgbXLJLtLq2GlucPAKx5ZICuCguH7FSYGQPW3wAodEfneYADo6qDEt+pNUchyFJqf/0iH4ksaxoeDNik5xB1wdkqjtx5rhVv+q2ZMs1l76p9HjFhgVhqeVF7w/d/DXS4XvE7JK0E0xJM5/MxWGR+GEMyHsTLG/JwbflOGUuEWGTVpeFvAV8DcM3oOe/nPB+D8qGv1Jczb39NV6Ay1fwS3pwzHSZwgq5MbzBvOx/eQvd1SsbnBpFtgeSxwJ6l2jsKiQHGLNLltC2L7P7ry+2pF5V7GLl/U+aGACDf6wdopCcK+xOlShqeMQG3r1C82OippHjuiyOosnBIiKy/mOh2GU0WUvrz1uehvcFyazmvEUPr28SwSrQKNaOgrNrun6PWDFH6+Q5g85AWqHzTYhjImo85LGP7WVNbi3KEo7Wt3Lo1U4Y7TDtU1zVKTUg8QphawTTQICwDtIZ2YAMIU4fpo6cA/1uu+J3kwaA2NAEB7dIAle/QJi4Vb9TdjifNn2nuNx7FmF/3L0xZW4t8LhX5EErZ5QLbg3xnl4ye3KeegGIk7pgGxEcIfzuxnXSdg4CKQqEkmc3TH9hoZFU9ge7rVHKGYCLo3MvpzG59wc3tHwCdhro3SBWfHWm5PZV7excKbgg7DbY7dxfWJDzRfDoRrqlk4bcT1y/CcUt/xCncwLUqKQChtcMT/3cIQP2UU1RIoP5KMc6K9uUHEI9iXOQjEINy2akBZ08TuWkkOZ8bcWrEKJcqXY/LORiVyyy404VbiUimymXsETaXYSMuwc7LitmIY12nITl1BLBqrGcGrEIhovHyxp+R2OdZ9M6ZAefvpHCcPKaX/BU/vr4Dd/Vvp/odOsPr07qIn/+L5lXYbDNnVApsRQ8fsev7i+ZVaCXzfWRtJed2x2Cd5dmFiBYEvCYD4v0G9pPSvRu91ynW5JpF0nyQsuls3M0+qZhv2h+XPOTeTKhDwQ3hgJLdudexie6cU7lVIQmYZ5mItZtjABwCIH8DN1rJVVhaiZWfrMYdXQIwgK2TneqRYvp5PXr8+CrWBtZf7HneVZMi3uD/YxmPM3yi7DTS30d1w4ODOwCAwwX6UkUNpn1y0E0JqYCc6aJSdsrTDSYVY2CmPgumBMcDJQhHDQKRKKMvmpQ6Hajc1uAxVplbIaj2kqpeZT93Dayl1bhtW2t8fuMi9P5pgaIQFKXVkt5Y8hg5z0rmjHKIgc8ANk/Vf8beKuPMbqD9QNSEJsBcUaB4DsRWDTMiggFWp1fN0Ofcn8JxA7evU6oPUrYT0pAgTcN8U0mITngeCm4I/8EplZz7ZwAmbDbB6hR0yN3AjVRyObR3OA2M12hGOZLNRf/cRZB7GnO+P8hlaVwOMzHS/pTpfIFexjL4R9ZPKCirkVtVE+epNBPLKGa1xHJzJcErzwMVTAhCUdUgzwitpI1YqD3H8jC2cI7TMPu4roiLChXE7GcaZgpXjEg8V3EflpoXywqlxamrnUEz7a0+ph64Ajue/BEzX1/q0E7DyPSi1nmWQ8yq6dFb6c7AXb4AsCYc7fEceu+ZrhiYv2S5D/HiOYeOKeOIJMEEsqmg8CAlaGIWuB2kWTkep06d1NfCxR/sLJo5FNwQ/oUtlWzleMx4bSuscL0py93AtSopRLTaOzg3ozSBw7zAVeDBu9zOGNs0QhEfiZct9+ICYnTd+C5WKAcuYsp9ydaTeONb9zovS6fS0jrFKma11MrNAeH4wlHl1hgU6TYWOPM9UFlvUlhujsMzFXfbz7uYsXAuj7W2S8NFxKINX+RWifnndQORzQ3AFAvroleR4vBdKE3Fqr1nsbG8M4DOxncK7fMsRyGiVXusOVTK6cwM7Sow4YcLvyBzR2uMYJWr8DZzqVhmL0nWkem45bWmN8WipMlx8zhEPVv78otYG6hjBQ+7NxOukImfn2PleOScKsJXh84h51SRx1og+DtGXZPV3EJFNNs7wNFFmAHQnz2OBBQp/qGwjCCevYAY7JE0QFRDK8tkYhnMGHY1lt7dBzFheq6U8ohBjdr+xHJzbeM6eYzWWh6OuB546gRyh3yIFwOewF21z6N3+X+wiUt1uenbjdBs2bncM6WYW3uPcIt148/gW64fAOGYh9RkooiPkN2O83fht6IGGA3a2MSlYqplJgrQSnU50ZwxGmVYZs50aVshBl7SVh52w0elbULY5sT/BeCNb0+At41ncM1i3FX7PKbXPmZv1bCFT8Vbd/d21GyJmY5Ip6KCyCQXM8gmhajJ6XG78LMBgc2U1QeE65Fm+xOmUYTXBGVu/JrG6tLtj7jjmqxUSQHUt3dQe2oW9Q6TTNm4yEejLiwOUZLyZjWuCa3AxIzeeHnDMY/4BWUfzcfLG/JQXFGra/9y/HaxAoC2P8gmLhX/q+mDPUHTFEXSShQhEkF8LcJRrUs0PH9XCXriZ7yz0wwe/R3eEwONhwa2w22xZ9Etohhs2EmAiwNYEwpKq1CCSMM9qKQ6EpF+7AlVnYpU+wJcpWs/SlNILDhcx+YhNeQPVHS6E+t/+Rmjue0uXjXiDfFly714UacfDwcWPFi8ZJmIZYFiRtLVb0iuUk9WrMwDrcKCXA9OI9Nh5XjsOVWEnF8vAhD0MAM6xjZOebOzn0wDMjBGcdazqWfpPKDpIXRDwY2f0phduv0Rd12TpZUUBaVVeHnDMZRWVBtq72B3prUAF/kIXcYqc+++CaaOSWBZxqWbMuA6xaJG9pE/sHLNGvRHCQpZV52FHh0GAKzJ/R2P3XS1PaslNy6RfuwJtDbSFNHGK5a7NZx8BcQAYx/XFbnfnVasJUlnc/G3A48jHhI33JBo4LqpuMTeZrjCS+nmrnc714RWoOcV0ViF31WXk5tCKguMQ1mnsWhz6r8Iqi0BrABOAFcDKEcwLAhAjKQFQAFi8ZLlHiQxRaqO3c6i44SoYIwbMxkM29dFR6JHA+aM4oOFXPURhGvVs58fcaj8W7LtJKJDzVhwWw/vXqc0/GS8jVyGWcl8s6GaHsIYFNz4IUa8V5qr8VNDXJOllRQhgSas/GS1sfYOEmJQbs8oyGUMOB6oDk1A6FWDADTcL0iuFYJz+wA9OgwAKCirsetuxHEpiZXdLQuPYS4jhtHXo0dsF6EkihKya5mupVVVJcD2V3GPeSlKmJsMjU/p5q5Xp9Klc2ckRKn32lJq6RBRW4jIY+/KrhPOVIPngX9LqupaoRwvmlfp/q7e0SUAMwYPkJRB12dXTpw6iRe3XjQsfgZ0PFhIMiW5fwZg6maT7D5KKi2YvPoAlnviQUwuO3N8g6afjNcCCdt4zMeOYQBb6nKepaX6cSjBnTf2w+CbMyhj04hQcOOHGNGbNDsjKNtFw3T5AhZdJ1RLcfZmAAJGsiDpKYlIHBwN5Koupog4DcBAuez7TL8X0U1y0XLbL0ihFYKos3inbrTdmVaKkhgacJ22iwg245739rpsw2hZuJiJKeL1uXyvsKarZg+kzVOVTlOgpQRPBHyuOa5iaAu8tSqYxON74VAUIn8+4Na41T5t8b0JAdswuGYxhrP78ZaM0F2N//3B4k3xe1VXC+x7F7j0G9DqKhyLGYU9XJ6h7emaNnXKlKQC2BUkH1yLGcbdX+7D8NCbYLpqkHs3d7nsTEQiUFcDd/1kGuQQLBlPPwBrFaotpdN+f+1wHXJOl5AjcSNCwY0f0thduv0GmQvn0VY2n5vLveyLGXVN7tmtq9vBDVB/0yrmIxCL+qkbMSswsf1Il3UM+3BIzL+UdBYPB2xwGI/z+1IdhojzU/jFy/KVWkbKlaVTPaUI1zw0QBDzqk2npbLHNTMWDABeZWziuD6sGy5T2+a0rFQbAdf+TUD9VFZJlcVhXelxtGZK3M4KMgyQZOsBpRXYOYzdFnhll3cUHnBOZQI5SwC+XlKcwTyPfNMoLLDerW8stp+qDwwKzrtywbVDhrEOwEdvuDddpOT2W54vu3g9Tn4yTtmmJ/aE4lxZ/eeqW8to4BwAwnmNDjXjyU8POWRMW4p20pdQcOOH+KJLt89RuGiEVF3AfLyOB0a+hbzooSi+XIOYsEBEhQTCyvH6nn70tHfQwUuW+3ABMS4351EKAYMhbOZfSkfDMnDKX7m+L9VhKD2FK31n1ISQao7LLDhdGZBWKMeuoOmK02l6p8XUPu0KBMECM540r5PdhzN7gwbho7axGHH2DYdxqelU5KYFG8q97Le6t+cceLXOeQU4ucLVJJHn8KhZyPLpCXA0HxhUnHedg+vh7H7ZaTrD00Wqbr86uXxB9qHpv3wM5rH13wtdWkYD54ADa9e3Xaq0uCzfUrSTvoSCGy/jTvrTV126fYaGZTkDBlfmvoQHrW3ce9rSaO+gF+nUDWOrgGmDMnSuAMAlGE+5S3UEfx53a0zOxKFE9Slc7bslCiEXmN9DK4nQlWGACj4Qe7lu2MX1wEfWEaizXTrUgiLxRpxVlyY75SJ92vWEW3I4asDDMdBUm7IrqbLgHyc74SUs1iXQVtLWNJRRJv1pRWngFYA6dD61Utb9WfyWPxywEf+23gmL5FIvvvfEsKtxVesw9euS+B39dYeq864YXKtnoQy2H9B0+9VB0Slg+3xoZVp0aRk1xiMn9K6yWB2E1iItRTvpS3we3CxduhSvv/468vPz0b17d2RmZuL66+Vtqbdv344bb7zR5fVjx46ha9euMmv4FndLudWqW4zoTZoMOizLQ6oK0K72MM6hvnRVbKGQODhamHpSKwFVdCVtC4x4Fdg8RzGzI7YG+I95ORLlnrC3LAH2Gky5y+kIPEB7psD1KVy8QZXnw1TxJ5b3DMD8XWXYx3V1cX8GgGgZgXAYU4ubTIdxk+kwHg7Y6JANUaoOEat/xGoqtem0ITVv4AJiEYcit7p+A/Idw9Wm7ES0GpMC2pogI/2zXNaFvk7nL1nuxUpruj0rMC1sGxirkruNsM0AhsPUsG1YVDHc/rruaV03vqMD2Z80slAG2g80wMWXA8BEtgXzwwfQm2nR1DLqHM9TA6Ng6TYAHMfjnvdd9W0izVo76Qf4NLj5v//7P8ycORNLly7FoEGD8Pbbb+OWW25BXl4errzySsX1fv75Z4d2523atGmM4RqioaXcblXd+NDvoUHovGhIpy4cpgdyIfzTmtNX8+pgWdnMDm/7vRUuq+d7FFLuspm74+vldQQqiBVbzt4ozss8EfAZhva6Hn1TbhZelLlB9YQggryAWLxYWz/90ibUhMygtWA0TInlsiHO1SFiBkRLSyM+7X41JgAxUW8An03UfbPXi7iPIUEnsL3GvYcgreNwN7AB6j9PJfdicWpPGtgAwF/a1wK/am9/em8TBnQbYFjcbvQ7CgCTTJv0LfjzRu3gRqeLr1LG8OxVd+DKHzMV11Pq46WoZdQ5nn7duwEdYvHVoXO6lm922kk/wafBzX/+8x889NBDePjhhwEAmZmZ2LRpE5YtW4b58+crrhcXF4fo6OhGGqVxPFXKbajqxsd+Dw3CQKdiQGV6QM+cvoJXh1Jmh4lIhKWmEgG1JRoSVdeUu1zmrm2kGd+ankaIwZsGw9iyA1DOEojLtN37Eqw3T4Bpdyaw/VXFbcahCMsCMzGlVghSOlUfQQhXoDkWpWyIXAZEr5amrvQ8+v+vPa6rnYn55vd0l5cbIdLivk7Gkx3UlZCryOPBgGF4zKut9+lJiArG3NFdEHRko67t/s4nuC1u170KAIYHwmXapciyZylwZZr6tUlDK6fVbPWRwLZQfkSux/mzVdQy6u0obnMfbpHaST/CZ8FNbW0tfvjhBzz77LMOr48YMQK7d+9WXbd3796orq5GcnIynn/+edmpKpGamhrU1NTPw5eVlTVs4DrwZCm3rqobpaesxvB7aAiS6RKEtgYqi6B0ERMdZtWnBwzO6Tsjl9nhOQR+pPfc1afcsys6y2bu2l0+jJBA7QBCDj3ZAZYBElCE2n93ganmkvr2IARDYpASr9BrSWk/Wt2rWXDoEFIhmNdpMH9XCUq4JGyCkAGaZvoSDwZko5UHgxwlXY8eU0S9mqCXLPegLS7iwQAhg2Eko1OFINQgAK1QYX/tAmJw7roXMemaMRglPuBU74Jp03DN6SKeB6xg8WPb29FB/zDc0rqIh6n/eHX8napo5cTsjFyzVfHzm95K30jEz1ZTy2iwo3iL0076GT4Lbi5evAir1Yr4eMen9vj4eBQUyF/8ExMT8c4776Bv376oqanBqlWrcPPNN2P79u0YMmSI7Drz58/HvHnzPD5+NRq1lFtDjNugm7030TmfLx6VWB0ygM3zyJy+otDbObNz5DP9x2SDKy/AvA21sp9IY2QAAMCsEdiISIOUWMZ44C89HmmQ0J7Jx4SArUiyqo+DB2P3oxHhwOJN6214yzrOvr0/EYl3zP9GOGpkb6BaRouFjGP7BRG9poh6S+UfDtiINXU3uzVNFcrUINQmiL7Eh2FFXTqWWv8CbgeLZe1qMbZXW+Hv5r/3w/nv3TmbJ56P9+pGoWeUPi8iOwa1LnxoazCVFw3OJerU3iRnwHrHh6jb8AyCKuvvC4VMLP5RW1+x50xiVDC6XneDoIVTyfyID026tYwGOoq3OO2kn+FzQTHjdBXged7lNZEuXbqgS5cu9t/T0tJw9uxZLFy4UDG4mTNnDmbNmmX/vaysDO3atfPAyJVp1HSkDjGubgFfY2FgPp8BUMqE2y8GuoMDlQu083QRCw43h57E1L7h6J3sKEzO/TMA+o3rBc6c+Q39yw/ZWycAcPBFaQyMXi7jUKLbkE+KdKrQOUjQ9+kCc2td+x4BrtNcT1mmYLk5U/FGztv+X05/IbcPpelNqaZoM5eKhKhgLLy9J/74ZS4Sc2faHhnkjy4BlzArwHhA7EwUKvBEwDqc4NthC9cP6z5fi9hfQ9Drp9cQYFOCSXG+ZFrB4r26Ufgw/EHsMpoZ0NuxesjTQIcb8MvJE7jm+1nay8uhEUgJf6vhuFC60P43VBcWhyt73YRN3/2OdDYXL8oEpwtrH8SW48lIV8r82H6KD02GfGfUtHtOusf0rtfh/0ZY8PXuQzhRGWbPKhn16iKM47PgpnXr1jCZTC5ZmsLCQpdsjhoDBgzA6tXKvW2CgoIQFCTTCM6LeDodqVpOrvcpy2m5Bjl0NgQ35vOjcBlLjZYMK1ygnYXe9psyVwzsg/DPplXK5vpj2mYTvgvSZ24HAGBYdPjhFSy2NfMu5gWTO6mGxMozMDHGy9F5HshHDAAeCbhkqMGlFu46FOdyXRWDBM3hhcZiX/e/Y9N3+v7eN3GpmGyZiX+YP3LQWORDyLQAkK3YkvOsUZvelGqKvq3phxduTQYLDrXmKOR3nYTE37NsU6iuSB2tG4K4nfnm9zAXHyKJuwQoGyU78GHdMLxSNxF1CMAydzIDerUlQ+cArAmFJy/iGmN7qEclkHL8W60PdJlyAN/9joUpZ/CXk5kuQ0xAMRZyCzH1kzrg7slIl9PSRbbFid5/x6hWQzHJneufnHZPLhvNsEjlOeEBKRCoCo7H79fNRecb7qaMjZfxWXATGBiIvn37YsuWLfjLX/5if33Lli0YO3as7u0cPHgQiYn+Ff16Mh2pWU6u9ylLspxPu427OZ/Po75kWH16wFHUJ8VZ6K10U+ZtWqXtAU/Dil4qXX5l4B1T5FK/mPoR8kK2QaZ0WQvxJq7HbE8Pzh2zz/MxSESx6nakRnIADLnrOlB5ET1/eg0j2bt0N3ZUqsoSszJq70nRW8U1vXMhvv38PTzFr9BttOepexbLADG4bD/fevmB64rWUeGqf8+qDzcSbYngMuVYPcgADtoS01WDcGlXuEF9lPLfqTg+taIMEzgMPrlQGK5CcPqieRXuyBqE4c+Ogckp08K0H4gurAldXDfvHkrZaKfrQUh1IbrsmAbER/inDrIZYayjmoeZNWsW3nvvPaxYsQLHjh3DE088gd9//x2TJ08GIEwpTZw40b58ZmYmvvzyS/zyyy/46aefMGfOHKxbtw6PPfaYrw5BEbGUOyHKceopISpYtyul+OTiLE4Wy8mzj+bXP2Up3iYZwcvFdhHRtU1v4qZ3BcsASUwR+rEnsKvTU2AYRi45L/yQXHilSIXe6j2BhAvUdMv7YMHZfVwKoJJpY+T/lBjGNeBgGRiOaqxgMdUyA5u4VGziUjGtbjqKEeGwTBlCDW2TlwQpHFi7IR8PqN5QCxBrLwMXgwR3b+iBlRewPDATt7B7MYDNQwa7GwPYPFkdhbgLcbpqZ/AN2MMlO7RaEN/L4gZiD5es2DRS7/Rm999WYSG/EAkGxNZqGM/XGQ+WChGNhbf3dLzGcFbg9HfAkc+Qu/VLDFmwBRPe3YMZaw9hwrt7MPi1rY5/+8kZOJi2CIVO3/kLiMHBAW8AIa0EPdrp75DaIQb/DRht8Kh4xb9TQLsooz97HPEoUryBideLdpcPI/d0cX2mpcftwk9P6g8NZaNty2Q/K6xHeA2fam7++te/oqioCC+99BLy8/ORkpKCjRs3on379gCA/Px8/P777/bla2tr8dRTT+HcuXMICQlB9+7dsWHDBowaNcpXh6CK2w0UYbCcXKeC3y+6jevNNCkQhxK8ca4Pxt/xIUybntUU9UmRCrg1fUvAI4mprwZyzhj8CUGf0gZl6BBSgSesHxg6DsNn9/YVmBgyBOnl1Qg7tRHJP65Ga6a+z5WVZxDFVBraZL7MlI2SId9FPhJf1g3Ct3xfh2xIQwXSDHjwAN40L0aAZKpOTtTLA3jh1m5oHRFk/1vaklfgkoXUg95puJtNB4VxeujPgQELPiQKTJU+wbcRpFm4ixUSp2Y32g9kH83HlG2twWCRQyasFcrwQs5LwJ7674YpMgn9+z+D4pyv0QqXdZ2rnLg7gaBBSFVooaJVbKH3exeHEu/7yBjORvuhDrIZ4nNB8dSpUzF16lTZ91auXOnw+zPPPINnnnmmEUblOQw3ULRhqJxcp4LfL7qNN7DPUyGihTEGD0bazKOGTAulAm4jF0cRMSvgXDrMVHFAoOFD0UdkWyB9AUzJGUgDgLws8EeetoUE9Tj3nXKeohJ1IJ9ah2A3l+LQMdv5eLZw/XRP73iibQIDOAQ2gLxRIAsOXaoPY3C0FWDjAQy0P0As2foL3t75Kypr9T0N661+8lRQUw+HxywzUFRbh3gU4wXzKsQw5Q1OoTv3nLJ/13U2epQ+3NzUNd7+EMRLtC4j2Vy8ZV7suvOyfPTe8wR+7fIgWp14X9d4F/1xDfa8u0dxOlyr2ELv964Q0d73kXHXSbkBDsyENj4Pbgh5DJeTqyn43d2mN3DwitCPszaksLxa0ZBPSU+Q2iEGMWGBKK6oNXRxlCJXFVTBmw0di17qhr2KgIGT6z9Dlc7hzjdh59/F0tlsJ22L3PFc5CPwpXUQvuX64WtugOLUDmCsm7gRnI0CR7C5eMX8AVp/X5+tEoXfW7j+yPz2F0OhsrQnVmNjqryIPZwwTVxtCazvTO4UjBo5n6JwejOXikSxWMFgo0fx4WZVzm8uD0F6/KU6/vEVuP5/A7/vXcUmr85/x0qO7VpFGfu4rriAWLRRmJoS93M2vGd94Ya3HNzdzUY3MIst4rPiED+Hghs/xa1yciX33YZs0xvYMk21XzyGQEup5uLOT6WA8hi1xNKvjE3B1E8OaN6UnS/CgLIAOYyxGG4ZoOXLUoBYZGztiFeiC+sv+hqdwxUZ+SoOhY/Fpo8PO76scDytmXI8HJCNh5Gt2lUb0OgmjoZVDYmi3jcCliDDtMf1XJWdB28TfvPoZXj7m7hUrLCm4+GA7AaM0jjSgFlpGrA6JAE11ZcRxV9W7GVVjhC8YHnAnoUTtUf2YoXTxho9ipwpdp3e1JrGBXig8iLYfe/Yx8dDvixf+nesNB2uVZTBgcX5tLmIy5kBjudl9/OS5T68cEcPYZvedHA3nI1WF1MbwafFIX6OTwXFhDLik4uKTLj+Cc2H23QXa9cxmMU/oWvZYkTa0+dqY9Qjlh51bSIeHdLBflMGXMWzchdhrcaJSueU5+sDGeftywl3pfu+WMk5irzdTWOHxyO9xxWCwD1SCAq1jkdEnL4YyTp2rmbB2QXApQjHNMsMF8H1BcTi35bbMbN2Mir5QJfzoJcM0x6Vd3k8ZVmOsewuFyGyOMax7C48aNoou8z/uD7uDQqCV0pNaCIm1D6H6bWPYULtczjPt1IUY3M8cJ53NRPcxKVicM1i3FX7PE4MzgTu/xqhz+ThtzShdYbSeYtAFaoRaBdOx4QFOmZA3OjZBgDtY1yF6e5oq5y/VlIhuhTpdLgUraKM3iPvB3PnR6gJTXDZz3PmZzDu7snCuRCn5pwDPdHBPS/L8LE5IGajAWiH8+pFD0bweXGIn0OZGz/FG+6W/uSYmXu6GBsvd8Z5FQ8ZngeKEIkBNUtQhwDHMYITnkxtKWZruzTdYuk5o5LR84poPP+VGVOq9HmjaD+5ysMwQDkfjAhJzx1x+4DgYxIjKRdnmXpvHJF/ZP2EiGAz+AITBhseAezp7/SURAzv2gZffPlfnD+Uret45KYvlIzTXrLcixJEOuh0hrP7Md/8HkKZWndGDkBd98IAaM2UYVHgUvs4HDxvZI5RKxslh6yGiWEQcOtrOP1VGHLKBAHvPMv9slksZ9M4Z0Q917HWvXBNh7YAgN7D70XtDy/CXFvietyMMKb55vfsn8vzt3ZzfFo32LNN9N+6L+0qvLfrtMOUkFFtFWP73lzmQ7DSOgK7ue7Yq1K9BshPh2sWZSRnIKTrrbD+9j1O/XoKhXw0TFcNwj87tRGWaSwHdyXdI8M6loNrFD3oxS+KQ/wcCm78GLc6g/tgm+5QWF6tOqUhPv3+3fIg6mxf06gQMx4YdBWGM7lApmOlVF1oAq4tvwv5Tn7CDmLZ8mjknuqBtKvjMOraJIxMSUTu6b7YV/YQOlceQZewCkzfkI9N5R1hdboIN6Qq6NO6G7CF7+8izh3J5iIal11unNG47CD2LCirwT3v7QWLAOwKikECU6wr5crzgtbm4OUOSAeAvCzUrn8at1cVGPrLl05fROEylgZmyhqnLTUvxhTLTGTZ9CTitJfapVVtes4d3x4x06S2mlRMG4Q6Xdt1HkdNaAJCxrwOU3IGJuSfwBvf/gJAeZqpgJc3E3TGYbr1zG4EygQ20jHF4DKmmb7Em9bbkBAV4qi/COuCAZFJYAy2HwgMYF0egnK5rijiIxArqdDTgmWE7NLjAV/hXv5brKhLx1vWvyiX5ytMNWsWZbAmmDoOwTUdh7iaCXrbwd1ZxzP9MHB2b/3v7a5z/N1DOh+/KA7xcyi48XMaUk7emNs0inghU7wZ2LIbEb1uQ/SxCyipsqCkyoK8rR+DDcx00XMEVl5wqa6RE8tWrXsXyFgIJGdILpqxgK1/cEZAPr6RyWy1Z9xrdgkADwZsQq6lG3aF3IBLFYI+RzotJOeDo9R12x4MQltwyjDAasuNWPLxYXw+dAt67ZmJoAYIYZ5Ki0CPY++BqdQeMwDF43MeozvvKcEy6gGT81iftDxqaPvidyLk1nqtxlWtwxyWUbINaB9YgQG1edjPXYN+7AmHYJe3WfI7TLfqnFZ6MCAbn4f9FZcqajH4ta0ON73bQ+/G61gIOJnxabUfcH4I4sDioLUzhgUc1H+yJLRiKvCkeR0eCNiEOZaHHYI8MWPklelwNx3cdaGm4+lxe/1rXij39oviED+HgpsmgLvl5I29TSNIqyE2can4X00fTDRtxpVMIX7n47DKOgLhoSG4dOAP+zpiQODcPwio90v5p3kFgi21uJIpxBMyPX6CqwtVO6XLZbZYcLg7YKtbmQSg3l35wOiH8Pj/HQED/Q65othTzEAFoQ5v1N2ORwPWIxw1iuuLnOETkM7uxbV73gSDhpU292ttBSqVgzzpmAG4NY3nCfR2T09CEQayP+EiH4EYlOuqTmLE/25+DkgeA7Am2YyDOM00ks3Fv83L689FoGv7DWFKbyLGjZns+IChc1qpFXMZd8b9gWmfWFzyM59V9kE5O9MlyNfTfkB8CFr5/WnkfvOh3fOnIbRyykp6fTrcDQd3XSg5Eos6HoXri6fwm+IQP4aCG8InSPU/chqOhwM2YiH/ID5HveBTT0DQGvX6C7lghNExz+6c2Qr4/XskHnD/Ri3eSC9VHrEHTnHlJbrWjUMJbmH34hXzCocpAatOcW57pgCzAj5rYK8jW3VHWBtdS8ehBIyMw7A/8njAVwCE74r+8mvHqQylsmWlajTW2dOHKcaywEVg2L4AJDfE9gPBh0SDqSrRHNGpX0+BR7yLZ1Eu19Ulk3TvsP5IHTpGV/sBE8ugdXiA8FCBhvfMErVCYoYvPirUu9PhevtkGalcaiwdjwqe7l/YHKHghvAZ6SmJ+PzGi+iVk+lSEZLICM3vKtj6aSajuhflJ3jh5mT9dSdMpgDZ+XBpZotjGd1NC9WoLPoDUQkD8Ex6VwSeLdK1zZvZ/bJl0CYdd5mLfATuDtjq3mDtSKo7QlrpWqM9U4BJAZsauN/Gx/CN2zaVISfUV2/v4YhdgeJ0Q8zOK8TvNen4G9ZqDqUQ0bLTsFLxtFjuvXOXGW+1u4QBnWJ1ZUs6Vx7xaBZODPbXj2HR9bobYDqbAxz53rPeM/adSX215MooeKDP/cBPX+jfv7d1PDrwp+IQf4WCG8K7qBlncVb0/mmBix8G4NgsU9SdeMINV8rl1fciStrYMjIJ1pELkBs82FGLFJGgvBEDvHOoElt2C2XNLELQLzgWcSh20EKIcDxQgjCNMmh19lq74daAXO0FbVTxgahEkEOGiI9MAtPnfsBaK3yWKk/BwpjDZacD3UUa9HreLdhx2xwPFPGRWFN3Ix43f6W9kmQqw3k603h1neMNceOP+Zj6yQGwGI3bg5TbGoii4GiUYamMe7Cc03NJpQX3vL9Xtx9KtwhjbT300r18F7D4Ke94z0hRqmQSg/Xtrxrbvzd1PAbwl+IQf4WCG8J7aBlnaZjSOetOPO2GG8lfdniM5svywf53IlbW1t8IEqOCMXd0F6RHJoF3x0AP9Teg/1V2rn8NLObW3oel5kyAkem8zPAI4K0NuqGfQpKh5UOYWjxY+xR4sIhDCdoz+bi3bCvipRf/4GjUF5tKBKpOsY4nHxjlgl9vIE5r7ua7Yzz/HRKZS7KBJw8GtaEJyC5pj7hTRXa9inQ603zsHLDfjUFcvoCNP57HY2sEfQsHFnMsD2OZOdNFayae85ct9+JF8yr7MTgfk5w4HQAKSyux8pPVSBwcjZ7duipmLVi9wf2IfwLfvQ7omEYDAOxZ6vqatzQrzg7uRaeA7fPhlmbGWzoeN/CH4hB/hUz8CO+gxzjLoMmYmvGeEURjPTk9jqgHEI3eCkqrMeXjw/jlivFuBzaAvL9Jtq1S7IKT+R0TmYTjXR9DJONepYNoFpcjcZ3VSxuUYQ+XjBoE4ImAdYjjLzkuUF0i/HSaoipALN6oG48YRt5RVwk1Yz8rz4BhGiewkdIGZfbvmfMkEm8L6qaX/BUz/u8IJry7B/3/uQUbfxS+5+J0Zr/u3dza92c/WzD1k4MO32+lrvSiKd4lRKh2Zhc7ZItCb0DQA30XNB1rA19Bz9yngA9HA5kp8oZ2Nt0Kr/AXwIMReqANmAKMedPwMTtvDYDbXbOtHI+cU0X46uDv+On7DeB+/K/QDZ2z1ju4d/8LcGAllDUzGvsXdTxqdqiRbT3iQKwH8Ts3tldbpOmcamwJUHBDeB5NwR2Ei0doa12bc7arnypzodc9NFtQo1YmLL0RiEew6oR7Sc5CRt6VVWQTl4qB1YtwV+3zmF77GKaaX0L28M0wte4su7wW0mBqL5eM83yMoUCwENFgwWG++T3F6ioegMXK4cjNqzC99jHcVfs8BtcswhnevTS48/DE4HNl3Qi3tucMxwv9v/Seh0JEYxOXihM3vAVEOh5TPh+DybWOn2dxhRCQzN+YV7+g5g3QER4MChCLZ/aHy74vdTGWnvNNXKrhJrCi0DkBTtNmSo69Nt0KA7gEODwY4RXRcTc5A7hzlW59ljySKTpIApZD55BzqghWhQ8y+2g+Br+2FSvfX4z+X96A7lvuBvv5w66BmxHNjByqjsQSjZqXxMSEPmhaqoXi1WZrei8eDKNZyVAVEo+zgT2BMov91cMRQ/Dj6Edwqeww3tmwS+isrLOUtxThaCXV2SiQbms3IBrunagM09X52zrsZRxHB1SV5COkVVucCOmBTZ8eUV1HLBsGAKYc+Objw1gzXN/NwbnCx9ld+SXLvbJaDDku8pHI5briOjYPMYzyOWIAmGtLsOh/J/AtV/906pYmihH/U//55yMWL1vuRSJTZHhzzhU94n3QChMAi8wajssWIBb7uK5IjApG5xvuBm64CzizG1x5AR5bfx7Z5R0VTeje3nkaPa9ohVHXJmoIWV3HzPM85iq4F9vHJ/meSDHSBFZPA0zZSh+bboVxmmZm5Bx3xSmgrMeAQ5/oGpscXHkBNuvsnSS2IhihUKHGl+WDEaebrDrdstUyy0o6Hg85EBMNh4KbFojXm63pFdJV/KlRyQCEjHkdO7sOlw3EXlpfiq+4+s7Kaj40YiuHGZZp+DhwvubQJgVsxiRstlebbOH6oSo4HiHVhVAKxBCZBNPAaeguuSmUnTJ2gxZvzk/uDcW2wGiYa0oU3XsBxxtUER+Bly33OpgYvmherRn0idt63jIJHFikMXnqK9j4S90mfIv66Rd3NFHCYjwutr4OL53vj0JEIxpleNG8ynCFjtynIo4jEtpTfAyEZoscWEmliTCVsfdUETaWa4u7X/jqKEam2CzvdVry5+t0L1bCSBNYXQ0wlSp9nHUratVFrAnodHODgpu/ffEHvq1yLSl07iQutiJgVCvUeCHLlP0sMG6ZvgFoaWaMnA+i0aFpqRZGozRbMyK4E28ATul/RCbZRX1yc8rZR/Ox4vvfAABbuH74r3WIpttta6YMHBjVqRpnDYhYbTKc3Y/fr5srbs1568IPmVS0VrNS2TEAyC+rUUy/K9EK5XjLvAgj2VzFqQcljctma19kcwOEX3QO9kbTIYdmlA3RRMVczMVGLlVo72BerHvcUvL5WEytnYF3THfp6s0sR3hwgGPzSRt6nV6LKmodG0AmZwAzjwL3fw2Mf1/4+fcLyB3yocv0krQZqXODT2ceHdIBibaGkuJ5Zxj5aSMw9ZqvYaxOlfPlC8L08unvgCOfuepWetwu/FS7kbspqBU1Y1ur5Kdmxc923vo8ewZaWqGmFFgzYuDG857TzBg5H0SjQpmbFkSjNVszapyl9wnIVlbOlRcga/15sOiI4ex+xQaJcohiUbl+VnKZH7HaZF7gKrS5/gQQHyGbiraOnI/coEEoPHTOIbtkYhm8cGs3TP3EmLtrKnscIXWlitdfuUCuvjLmQ1EJ4foEq6ChGW76ASO5XGziUlHH63vmCWVqXRpWKrXT0IIFj4mmTXg44Bvd4xbheKFz/JCaN8CBxQt104Xvs8GvMA/gpcDVCE1+zuU9I06vLoGQeAO0YeV4zNgbgXzJlJ6WR419UwywZEIfjLo2Ec+kd5NkNAeAq+4D06ZnXaaNDnWfjc3bWiOdzcWDpmx9B1F0StCpNKRMW+M6INcmQ02A77Au6nsniedbtw9W5UXNjDFpZpo+FNy0IBqt2ZoevYHzxcPpBuDC0S+BjbOAyiKwAJYCKA4KR7QO/YyUQkRjD5eMKZaZeClwFeJRP22kJjJOQBFwNkc2EMu+3AHzsn5Gfmn9tIU4zQcAL284ZmiMgPuNOoXy+UvaCzqtw4PBXPMqMBYOMwM+N9xqwtlPRXTEjUcxFpjfRQijrncBgFTmZ7fM4sQS7n7sCQDut31gGSC0ukD4bNsPdPiMU9unISbMjOIK7ePQCoTEv0PRTXgY8wMeCvjG5a8kAcVYbs7Ef+pux1vWceDAYsmE3oKmB3ItVMYC3Ua7PCT0Zk1YlvQHeq97XE36Y4MRxMDS8n+RsvPGyrRVrgNiEFOCcMRI/oadNWNaiFPVgAHNV3i8cK0hzUyzhoKbFkSjNlsTp5vWzwCqnG42IdHGtrX5BWC3qyhWFAbruQmLuoP93DUYwOYhJohHzIT3gQAWOP41kPuO9kZO76jPKNkCseyj+Zjy8QGXe4boIRKHErRHNC6gq+qTqDOeNizUggGPJKYI/zR/IPxuMOvh7KcSamYBK8CDxR6uG240/ai5jQomyJ2h22lI53Yp+d++icSyR4Dy+ilaU2QSnrvqcTz1U3vVdRN1WN4XllfLZmqcT7mYvXrS/BnuNW/F+bR/oPe1Kt5FKoaZ6eGnARTpmHLkoR4B8cZaCyjojsQgZgvXz6VdhJG/EzFLmhgVjH2l6tojHowggDaaMSaaJBTctCB80mzNObABBJMvHU+AVo7HyW2rcY0tsHFRuui8AYtPiVl1adgZNFO4ofAAPlkkPKn1maRvQztfBw59bE/NK03z6Z1iUMPThoV6kboTG0U0XZxm+hL3m7ejtemi/T1Vsbft5xfWQRhv+t7t/XsqIEw8t8ml6oovy8f4sjnYwiqX9QPAC7d2g4llVKsRu17ajjEyFT1qxKEY8TkzgHatXP5mrByPkzs+wZV75yGkWiLml04j6RX5dxsLHPtKfRmjrQWcgoifykIwZj1nD2LkKsC0YFDfO0naiuAly0QslZtydi5ZF2FNjlk6MWtHAU6Th4KbFkSjNluze93IoVJyaiP7aD5ezjqCrJo5DbbdL0YkDlk74dGAr12Puywf2D4fNYHRMNeWaD8zShxMc4MGuUzzKTVLlLPBV0MUicppg/ydWQGfwVkLqyr2tv3kEOBWQCetBgLgkaDQVTLOKzr9ArBPMYX8/Bv2/NkWT+4NxTmJfYG9GjE5DtccfAU8Y6yawz4e5/5TR/Ox/csVeNXyL5eB87bvKnfHhzDpFvfqlGKXGyw8kGQ7u3I84ndulb0OyTX+dD7X4iFKeyfVtyIIxpRyuGi+ZEvWAW0XdaLJwvC8njqE5kNZWRmioqJQWlqKyMhIXw+n0RGrpQD5ZmtylSJucfo7wTxLi/u/dnkCFMd4HZuHtYGvNGgYpXwIopgq1WV4MLjEh9n1O9o3RUEQ/dWN2Zjxf/UeNiw47AqarlmSO7hmkWzqPSiARU2dY1QglwUygnPGRCmDIn4XPBFDOWc99HI4dSF+3L8L91q/FMaic7oRgEPQKA0wvREU3lX7vEO2QS1T9z+uDyaaNuNKphC/83FIv/FGpO56qGEDsP3NZB/Nx7TV+/GdxneukInFodu2IX3LSO2gJCgSqCnTHsOIfwKJPd2ezpG7Dimdx4Xsg/i8qo/9NTXbCnvGrKwCnSuPoFtEpdA+Qm58oou6S4hlO5GebgFBNBgj92/K3LQwGq3ZmpvN5aRTPQ3RUHC8cImKgHpgAwhP5THMZfzbMh4TArbpqPIRSko7Vzqa82l5iDj3ynJ+Sh14w2j853+/OqzjLM590bwKrXQaFgLAZQQjwsnjRS4TpGdzHC+m93nFGynLuB8g9exyNa49/h+gTP82ShCO5ywPO2TD3K3Y0ku8ZJtamToeDEyMREi76+OGD6A8H9Zfd2L3l1txv+lPze9cAoqwcu2n6NTrdlydp9EeQU9gAwhTtGIrDsBwtsP5OqR0HhOZS/g3/288OvItHG81VNNwtF5kHQvgSuUBaLqoq2eWCf+HgpsWSKM0W3OzuZy0okuvhsI5GyEGNoCxJ/czfCKG1GTitYC3MT5AW/tRe+kPDGDL7MFJvM4baRxKZJ9S+SMrcD78Xqy93MtheakzrWhYqHeq6lHLTHAIsI9RMMhbbfimL2ZI3q27FX8L+Npl/5y76RqRkBihgaiqs7UrrZgKRIcGwrloTgwKJ5my8aJ5dQMG5soL5lWotgRiC9dP0TSOZWzfS6ebJ8PzDU6P8dnPwlRZhJcAwKxvnTiUYNUJs7COJ5AGNoBbDS+HJycgItiMvb/kY/IPU8HUyU8HAgy6HPwnusy8y3OBhpEWDHq1RYRfQcFNC8W1jNSDcFbBgTUkWqVDsJPXjQ1ppZYoqk1EsepUSgkThlaokLzOgGXknsjUac/k1wuOdXDV/lewNrD+SfciH6FvPSYfMwPWuTbuLMvHfLyOS+wM1V5U79SNxiMBG6Bq6c8DlxCOPVyKyxTYtzX9sCdomu6WFQBwGSF42vIoNnGpOMh3dsmKFDKxaD3kb2B3ars/y1JVDJzQ6cEigQEwP/RjjP3rI/j+10tYsu2k/T0OLFZa0/FwwEaPCrNjUI5l5ky8UTde9bsi951tiH5MDNr5yiLD8VEholFYCV0tRBDaWvCCMYSxbIfokn5t+U780/w+QlWF7F4INNzMLBNNB3IobgbobSzXKORlCeZfH2WoBzaArFGWtFJLFNUKvXdkNsMDb1tGo2/127ir9nm8Z7kFPC8YwhmB44FiPhxPBKxzbSaoAA8gindM4ceg3N70UWk/5/kYTAjYKjTvlN0q8Hr4GkV32pFsLv4W8LVLRsBhK7ywpTmWh2W1Pf3YE2jN6A9sAOCjupvRlrmIfwSsRFvmIobW/MehieOh8TsRMPRp1e7R6jDAj5+6sR4Ppuwc0gJ+xtXxrk0n1VyTOR6qn5cS4nl7MGCTG+Otx3m34ng4Xt7hWdyv3EVb/TsniK1zua74k22t6B7N8UBVSAJw678hfDuNfo6SIEQFUW9zbflOLDNnIgY6K/Q8GWi4mVkmmg4U3DRxxE64E97dgxlrD2HCu3sw+LWtnmmjYBRRoKc1tSBpreCMc7sCUT+R79QF/CIfiamWGVhgvRscWORyXTEqYK9hZ1oejMPyRm74slMR4nadbiDibMQ+axckMpdUjN95RNZewE3Bv7juT7XpYT35aKValeWOlmlKwNd40bwakwI240XzahwLegBDmUP4X8D1mHT3vUjvcYV692jNAIIHKi+ikg0zPDYAwOULihYG4nfIuZN8AWLxdt1o8DDeLoJlgFYqzUX14PwRFiAWky0zMcUyEyWQ7w6u9N2We108ppcs9yCVPY7R7B58VHODw3vOy86zTIS121j5lighOqsoVYIQPX2gFPFkoKHZtZ3R34KB8EtoWqoJIz4BOV+XnRvLNQqqAj0bITHA7R+o9mCRelaInqZSUa1Siah2Q0B5mIhE/NJuvLbQ0nk9hdcV+9rYNBhDTOodwkVCawXnZBM49Lcdd2umRNcxPmmZghwupX5MTsLliwo3TjWcn4JY8Hg04GugDvi5oBOGJ/MOzSJdukfrvIHtsXTGTabDhscnuAjHIDrEjJIqVxdhte+Q3DSbXi7x4YjC5QZPeb1kuRcrrengwApBLD5ssAUAywCX+WC8al7h0OW9mBc+f1ln4JpeGHu6GGlyBnecFVg1VnvHKkGIqKkbYOjvVX4Ku0GouqgrZ5aJpgMFN02URusTpRdNgR4EXQVr0rxgyFV0cWBxIqQn9ijY37tdWfWX5bi64k9AXyPsBsEw9a7KWhQiGuNDDuAZ/gOHFhF6aIP66TI54bKVN/59cNEH2YK1hwM2ouu3d2JN7hn8I6O7EExLboxc3ldg972rez+7uB7GgxvbE7aJZfDAoA5449sTsotJhdlSNnGpYC08lgYuEo7NwK5X1KXjiYDPZPuUAfqDuot8tD1YFwJ1Yy00pPuV7jMM1XDOhYmWB/+23I4zfILLw4Jd9+bcEoWzGusZJ4PhPlAi3gg0lLq2UwuGZgEFN02URusTpRcPC/SGJycgIsiMnF8vAhDEz4XlNXji/w7JLu+2O23Fn7CGxaExn88u8WGIQoWqF040yvA6t9gtAap4LpTKa41qkpRgGCAAHCaaNmNF2SjHbKHtxsgCgM7gxsqzKOBboYiPMOSUbO09ESbbje+xmzrj7Z2nUFlr1b2+CRxeMK8SjknnOuLn9JZ1HH4PuBKzsdIh83MZwQhHte4eXdLvrzuBulIwpdZgdULANlnPJUWHcg9kOwz3gQptDYx+w3uBBrVgaLZQcNNEadQ+UXrwoEBPrKSQBm/rDvyBu/q3U1zH7XYF4fF462Qb3MeHoRVTob28BxCe9tfJl1MDeNlyL15Uudkq3TClTr1BLK+oaWio47MzVzKFwrgAPLvuCCKCzRjQMVbIGFbqzzqx4LDE/Ca2WntjWMBB3evN+74aA9vkIz0lESaWwaNDOuKNb101S0qMjPgVSRb9U1L1Wpb7EB8Vij3cQAwu72Of8voTgrnYQ+w3uNF0CCaVYFL6mYlBh9FA3WiTU8DVc0kkNixQ3aG8gdkO/X2gACa0NTDrGBCgp8SrAWg17SWaJCQobqL4pE+UGh4S6Ik6IuesVEFpNRZ9+zOGhZxABrsbA9g8h4oie1UM4ypmlYO3jcfaLg0rdv+OFXXpmus4Y7T6Rqxcecv6F1mBazEisaLuFiQyRUhilIM0NfHoPMt94MCiN46pbsOT/M7H2f+/pMqCe97bK4jaj/wBbJqjeztiBdlA00+G9n+iMgxTVh+wi+gfu+lqRIfWG8Cw4DCAzZP93sSEmbH4VmO6tALEYqpNsH1X/ytxobzWPuVVgwD827wcawJfxbCAgzAxPCp4s2wFlPNnxvFCb6oJd/wVNaEJbladGcM5S/Ty2BTtaezkDGDmUcEpefz7ws+ZR3RlV0RNHQcWLylUsQlGkYyQsfF2YEM0Wyhz00Qx3CdKpWOwJ7CCxcnez+OaHdMAm4ut42igmbJW0xGNELUjfLHdq8O5GeUmLhVTamfipcBVDjoVlxYEkiZ6uWdKUVJlwVv4Cx4I2IRWuKz5FMzxgjNuNcxIQr02ogCxyKpLw98CvhZK0mWyMuKNbBOXih+YVGRYNmIwcwR9TSfQminDw+Zv1HeuQAnCMUfi1OupDtlaWHkGH1lHuLxeUFqNlWvWID3QmCkfwwChqNWVjXDuKSXVmC24rQcmrz6g2cS0uMKCnyvC0F3H2BZbxmE3n4Jcrivio0KxbEyyQ7sMpWnAEFjAQPAdkhXxSqraWkcEYWyvtkDQ68CnE+2O0CJy56UhmThplujRIR0w6lqZQE/p2uFmtsPtPlAEYQAKbpooclVFIuK1zt5YzkvN4cQ+LlvyCvDlofMorojGSHaGay8knRcrJR2RkWaUm7hUfFvdD/3Z45gzOBopIUWo2/cBgioL7OtJL56Fh84BEDI/cywPC5b5KlUqYpAyx/IwtnD6q2+kN7LEqGAs7fMHuh56FSEokN+RATi+XiQq4qkO2Vpss/ZCncxlhEfDAiytG7ZYWv+y5V67ZkSqMUtPScRryb/hjlOZLus6f29OhvZAdw2hLB+ZhP5jXkf7CgtmSBy9c04JQTQLDvPN7wnuMApuxdUIxITa59AGZYpNIe2Z1gZWnWkhDQxjwsx4ZWwKRl2b5LCMrm7jblLvkt4L+8oe0u4DRRAGocaZTRw5fYpDYzkvNYeT26+ItPT43mH9kTp0jK6L1VeHzmHG2kMu23KnGaWYudo1+yaYwClmrXJOFWHCu3vs62k1qjzPuz5ty3UyBuDyWkigGe/c1w+pNd8j4LP7oTWBJla96cH5PLDgsD9osq5MVENwbiIpZYAHGp9q4Zy9W3RXL4zt1RbZR/5Ar3VDEMcXaX5vPn5kINJqvrf9nQCyjwoKfydWjsfg17bi9suf4EnzZ5rjVTtfMWFm7Pv7cMdpIc4K7F0ObHpOc9t6Eb91/9/evUc3Ue17AP9OQpu+oaXQUilQYYFglUp5WASuoJaHIPUCynEdLFf0UkSQy9GFoBdUUDwHXCAqD1+IL0DlInhEpB6k4KJIUUAeokeop9W2p2JpqQVbmsz9Yzohj5lkkiadafh+1mJp00myZ5qZ+WXv3/7tooErYe01TnHpFdfVxp1/3bxrB5G/uHDmFcTjOlFBWhxOrb6OTM4/EAAUfRWBL282uc1Gsq/e69BmpfwgXxejdNw7p9liKl3oA9MSkBAdjqq6BgDu9VDk5FC1b9vehj1kAoDn7+qL2j/+QNWW/0EHUXnxSUe+xCSux+E20yG33pxAch0SUtIO56X8IyEwq40rce2F6RgbgZ3Hy/Hmxo3YFP6b6hvLx2tU7BkMTBsLmO4AJr4J7JjrnATtpdfRbBKwaGwvDPpQ23Cip/XHlijlu5jMvhWvc106ITIBgAhcvDx8KvdcDlTZp8urjb8mNcHtGPp/7SBqKQxuQoDqOlFBWBzOU16MwqsrTkdX6vVJjrNg8oAubkXYtA5tqG1XWfsHYLPCemYvyo7ko67BCmuXIbjmxtEwt2kDs0nAkvHpePC9b+zPUaqH4tguuafmVtMh3Gd2Xw8pWXC+4co9aQCa8lDUb7rN1RHVTpWMg9Fr4zirS62wogk2LAx7ByKCO2tBnmG0KOxtHLfchMyu8fiPZV9ggMbPzfQboi4P3e6a7xzYRCUCI5/12jsxKqYY0DjTrr2gvOq2lO+Sovg7zcGNPLuo9CvnXkrgcs9ldAdpjOzCWaB4n9sQkHx+D/BaZM/3awdRS2JwEyBKPREtUjzPkyAsDuetvo4Sx+noqlWVz9dj5T/cp+9qzR1R2+6ac3tQ/9wCWBqqYZ9I/sNaVH8eg11XL0DqTZMxMj0Z04elYd3eYgDuw0xFtmvwXzd1w4rP/+l12Ep6PiAKAla03YSj/zkTA7t3AAAM+etuzTddf1Wind/VmrWqQAK2Nw7G/4a9rdpj1Zw22AAIPkxvlnthVtx4AV//6xzKa/5Apamdpuf27X2N+tDthd+AD6YCgpfhFx/Onz/C4gGHEjzto8OxeHy6ciKvTJ6J6K1I5pjnpdlFSsFG2lBpPz/K85h7J5/fA0zV2naIC0uSQTG4CQCveS96CcLicP7UzZGHm3zp9ZHZ69cIVYo9AJ6GR0aaDqJnwUrF5JW24u+YdHoB8k5VYm7sMCwa1wer72mH3R+9jrnWN5xuzBcjkxHe6W8ojzmOZy+t1NRuASKiLlYgq833gKkjCk//5tNN11eOx2GB+d2Avq4IAWaHVdYj8Aemt/m729/RcYjIgka/3k9OFPanx2lgh0Zsa/p8HrL1hFUUYIKouqK8IJiBq/oDL/VDs4ZufTh/Ft+bjXHitb59CXIqnqdy9gyeDaTnqL+GWgB3vlx6vCl/Rj6/NSekc2FJMijWuWkmT3VZHGtv6CIIi8P5UjdHgBTkydPR/en1iYuyoGbYkqbJ28774Tq92pE0NLMBUOkBkB9bFPYW/l1zATPe+QadyvOxzPY8Orn0OERe/DfMH+TiKdMr0mv7cOO11UqzoeSbhhysBXbhdgGCIGBV2DTcZjqEaW38m07uytYUaLhWNI7HBQiC8sKhgDREJOcq+cPvQxOTZP989jf9ALOgHNgATZ8k0QrkP6F96FaN/TzzIjYF5m43Iat7e4zPuApZ3dtr792Vi+e5vk9UIjBpA5C9WP25XnPvIAVwNqv9+Hn7nIp+XDuIWpLuwc3q1auRlpaGiIgIZGZmYt++fR63LygoQGZmJiIiInD11Vdj7dq1LdRSd97WdwKk2hvWwN7JtJO/8QFwD3C01Z5x5bpqtxrppmjDC4NqYT6xBSjeh8rzvlcArr5wCdXdRkFQWKW4Au1VV7+W1+fx1AMgCECKUIWBplMwwYaUwqegPINJBCDC0lDtc1G8hz4uw87j5fabhr3YILSslK1RXAqEu97CM4/Nw6p2mwKWzyMK0uXBl7oqJgFIEaS8lTIxwadCdHVimJSj42P7bQDEphut/PnUPA296DVt23kafnE6zzwY/dfmJd8qFc975Afg2hz3bW1WKafm2IfSbCuNAZx8/ESHz6lb8UH5f7iwJBmYrsHN5s2bMWfOHDz++OM4fPgwhg4ditGjR6OkpERx++LiYowZMwZDhw7F4cOHsWDBAsyePRtbtmxp4ZZLfFnfyWeOF6fifdLP/rB/43MZHotL8Wsqp1xfB/B8D7075giOxz+CgXtzgS3TgA1jMSr/Now0HfRxB5p6Pa65HchZCwx9FKXpM/GnhgUYUv+CYmAD+FZjpSOqMcB0Ckn4LWB5vnI14s9qr8aMd77Bubp6e1CYb+uPOvhbOVoAYlOAe7e7VYc1lxbCcqGi+fsQmQBkL4EZNr8TkjuiGhsbR8CXfpho4ZLvgY0Ud+KHGx4HTGb75zPgdX68Db/0uQO46+2m2UkuIhOk3wVi2rRcPO+6idJ/lYKLk9uBlenAhrHSuad1Gvnv/3Y6v3fZBipW0q6PTJa+bHAaOBmYrnVuBg0ahH79+mHNmjX2x3r37o2cnBwsXbrUbft58+Zh+/bt+O677+yP5eXl4ejRoygsLNT0noGsc6NUl0WJXHtDs2AU3QtwhWKlPKOE6DDcmXEV7oo5gp4FM12qFMt9IiJmNMzBToWgRKlejA0mfDayGr0OL3E6HkrTrR35UmNlcsMT6IhqrAp/SdP23sjfdOVeJbnmzoIxvTFr42HMMv+fppoo7rzUFzn2oXQz86ZdN6D6J/XfD54NdOqr7bVU1IiRaCtc1LStKAJ1iECM4Hs+l1x3aMxd/+10ju089jNu2DIMHVTq3GgnSOfenGPazhebFfjpS+kLiQCg6xD1ICQYVOtaaZD7d3sysuP5LZ+XPaPqMHZwhua6VUSB1irq3DQ0NODrr7/GY4895vR4dnY29u9XHt8uLCxEdrZzqfeRI0fi9ddfx6VLlxAWFub2nPr6etTX19t/Pn9eeSqmP4KyvpPGxD+fBXhxONX6OrABKydC6eIqQIQIAQvD3kZ+fX9YNdSL+Yd5GHoWbHN7PaXqxI6knIF4dIL60JQoAuVIwEHbNRhkOunXcVDiWlZf7sFbtP0ETLDhvjbu08cVRcY71SfxWulZa3JnjXLPqN3xLUCPW7W9lgpfAhsRwLrGsZoCvsWX7sFJsZtb3aGpLufYqOs6w2paAeGD3KZPnT/8GLo1mYGr/0P619I85tZ40hTAOeTPuJ/fg40xA5RII92Cm7Nnz8JqtSIpyfmCnJSUhIoK5ZL0FRUVits3Njbi7Nmz6NTJfWbS0qVL8dRTTwWu4Q58Xt/JmyAV3QsWxfo6xZ5r6wgQkSL8hpGxZ7CjtgcAz8sr/Nn2keKNybG+SX59f7eEYim3JVd6XYWkYrm/8qlL97o91zvnBS9ESPX1X28cjc/FTMWy+gBQVdeAG02nEC9oLK438U3p76y1t63rYCCqvfeVuEWb59+f/0U6QHEpEM+Xu/XABZIgACsuTcDL1hz8qc1ur5Wo11vHuFWi7qRyjpmvHS9N4/77HJ9WJ7drbWscea1rpUQ9gFOtn0XUCuieUCy43HVEUXR7zNv2So/L5s+fj5qaGvu/0tLSZrb4Mk/5J27rO2nhS9E9o9JY9+KlcSnY+MCNeOHu67A85j1AZfaNpyMnJ68ONJ1S/P1ntoH4qdc0TQm2HaCxR+/GB93ylxqikpF3aQ6WWKfggK2Px2BJcy5QZLzU0+Ytv8KRyQxcf7e21/fmwllg1F+bwrjgflv/SezkMYFVfv+nXWbFOZ1jsAFnCoB/LAF2LwFO75G+LPS5Q7pxazXyWZ9XujYMf2rO+Jl7R2R0uvXcJCYmwmw2u/XSVFZWuvXOyJKTkxW3b9OmDdq3V/6GYbFYYLFYAtNoBZdXuHWpuOtPnZsgFN1zEuSVwQFoHhoxxSYjK609UHwSaKhs1luqBQwJkSZ0Kv1E8dYsuPT8aE5A7TUGyF7idBzbpGbh22UFEFR68Bxpfp9BM/z72/QaAxxY7fvzXMUkSQGVwuKNWlbs9sWfbx2Aoq8i8FmNlMCqtEr0kWvn4eg3nQGlc8xUBCx7GLjomLi/TAoQx60CYjWeg1GJwKA8Q/SK+kXrsOTIZ6Vtg3UNIDIA3YKb8PBwZGZmIj8/H3feeaf98fz8fIwfP17xOVlZWfj444+dHtu1axf69++vmG/TUjyu7+SLIBTdswvSyuBu7NVU1VdYdhrfD0CF02H90rH9kPvjPeuPI1JUX3Vbrmw7x/whCsU+KBcTkKQyLCICaAxvh6/+WQlz428Y2H2I/e9rBlRXaHdlL0qo8j4ApNk1wx7x8CoeeD3+GkQmXP779LlDGgb9137Yaivw84/H0eGHjc6rRPtN+iwMvHkcvrzZ1HT+ZOBf0TORZD4Fc12l/QZ8g8mML29TqAJ+6mPg/SnKL3/xnPS7iRu0V/htzTd6redeaw7giDTSdbbU5s2bMWXKFKxduxZZWVl45ZVX8Oqrr+LEiRPo2rUr5s+fj19++QVvvSWtk1NcXIz09HRMnz4dDzzwAAoLC5GXl4eNGzdiwoQJmt7T0KuC26zSFE5vFyetMzdkQVoZ3Pv7weU9Fd6veJ80ZdUvAi5GJiH93HKn5GTZHab9Ps2AqhJjEI/f3WqtuPZUlIkJWBV2P27Ouc+pZ05tBllV3eW1sgDnHCP3AEdo/t+jOTNmACm4efRH9c+YzYoThTux7pP9SBSqsTDsHT/eJACfPZsVWHEtUOulUGZsCjBqKfBBrvo2g2crF8Jrid7OQPLl3CNqZXy5f+uac3P33Xdj5cqVePrpp5GRkYG9e/dix44d6Nq1KwCgvLzcqeZNWloaduzYgT179iAjIwOLFy/GqlWrNAc2uvClXk0Qiu75Up3UZ2r7pqW2TtNzbefLcA5x6pVQRbmEnitp7tWcmsmKgQ0An6vktmsKbKoR43G7ZFTh2Ut/w0fvrXWqQD0qvRO+nDdCyiWanIGND9yIA/NvdSt6+JlK/RDEXRWYm498/CPj/Xv+xSrPeV0mM67JGoOi2BHYYB3lX8XlQOR67F3uPbABgNoy4NfvPW/TeYD7Y671YjaMlX4+ud2/9raEANe1ImqtdO250UOL9tz4OxSk+Lyr/Ju5obVnxKHGhSZa9k3tW6/Cc+VPoeI6QCIAkwmCwyyfi5HJmFMzWbXODQBkmY5jY/iz2vcJ8qycBDx6aTpeCluFtqjzOHtnkmUt9j52m8chSHmJDsA5SDPDhgGmU5g/pJ20gGOgewVO7wHeVh7i9WrC61Iiswfyfo00HcRq1Z6oJrEpQOZUoH33wPSAnNyuPhylxHVavROFHtGW7u0MtNbW40SkQauocxPymlOvxiHPodkXp2AkKWvdN6XaOirP9bZMAkSbPRHSGt0RQ9+5gLNeeps0z4ByIOXhVKGXUIp4QX25CDlfJ/X3ozhYnOlxyqxa0nnHtlGYOu7P6BusxVXThvqff6Mhr+vyfkVgRi3cEoERlQhcf5eU5BzIm6u9N9IHqoEN4DQLMW1oqyvJoCjAda2IWhsGN8EQiItjoC5OgU5Sbs6++V1kzKGN103EwdO/4eyFA143b04J/i6CthlcHVGtaaX0gCWd+8JpNWlvqc4y94JunlzerwwUnZ+GHheOoXfsBZhik4PXW+BrPZeIdsAf1d63kwN8X0oyMIAgMiQGN8FgpIujr7OXvGnOvvlVZMxBUwCmJZgALs9M6iSc87kQ3TnLVYCGNKRKtNNcgVqXomhyDobrEKIi//K6Lu9XewBd/G2pdr7OsLvxQWCPhuFJOcAPdkkGIgo63Yv4hSQjXRwDnaTcnH3zc39FCFLOUVMApjWYEGFC+Y1PNu2lth4SEQLqozph9qPPQhRMqiGRKAKNogm/RKdrr0CtF6XVpOXp0Y5aS9Kp1l7G8FhpwcphjzTtq9pnwPnzFdSSDETUIthzEwxGuziqfXv3p7x8c/bNj/0VIUi3JIcATF72wtOK7ADw4uQMZGZcBXSN19xzIQCwjP0bUP61x2UKBAFoAxuez6pvHevtKA1z9hnXOpNOtdTyiUoE5n4HtAmXflYdnlMI8APd20lELY7BTTAY8eIYqCTl5uybl+eKACA4z4oSotpLxdUcAjB52YsZ73yj2rMyfVgaxsqrRCvte91vwK756sHeMW2rdg/s0KhpO0NqrUmnHnOJmoKVsSsuBzaAbwG+ltf3tSQDEbUoTgUPllAuptWcffP23KyHgKMbpbWNZCrT55WK5rWPDsfi8ekYc72GGUiepssGawo9BY4/JRN8mSIdyJIMRNRsvty/GdwEUyhfHJuzb2rPTZ8A7H8RvtQWsdoUSvIHYpgoWNWiKbCCXc+F9WKIDIPBjQctvvxCKF8cm7Nvrs9NHQSs6ushL0aHYCKUe9+IiFoZFvEzktaa16BFc/bN9bnF+4wzfV4WyERsIiJqMQxuyBiMNH3eUSCrRRMRUYtgcEPGYLTp845CufeNiCgEsYgfGYM8TVxroTUiIiIVDG7IGAJdSZmIiK5YDG7IOOQE3jiXGjWtZVkAIiIyBObckLEwgZeIiJqJwQ0ZDxN4iYioGTgsRURERCGFwQ0RERGFFAY3REREFFIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQh5YqrUCyKIgDg/PnzOreEiIiItJLv2/J93JMrLripra0FAKSmpurcEiIiIvJVbW0t2rZt63EbQdQSAoUQm82GsrIyxMbGQhCEZr3W+fPnkZqaitLSUsTFxQWohaGJx0o7HitteJy047HSjsdKGz2OkyiKqK2tRUpKCkwmz1k1V1zPjclkQufOnQP6mnFxcTwJNOKx0o7HShseJ+14rLTjsdKmpY+Ttx4bGROKiYiIKKQwuCEiIqKQwuCmGSwWCxYtWgSLxaJ3UwyPx0o7HitteJy047HSjsdKG6MfpysuoZiIiIhCG3tuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG4C6I477kCXLl0QERGBTp06YcqUKSgrK9O7WYby008/Ydq0aUhLS0NkZCS6d++ORYsWoaGhQe+mGdIzzzyDwYMHIyoqCu3atdO7OYayevVqpKWlISIiApmZmdi3b5/eTTKcvXv3Yty4cUhJSYEgCPjoo4/0bpIhLV26FAMGDEBsbCw6duyInJwcfP/993o3y5DWrFmD66+/3l68LysrC59++qnezXLD4CaAhg8fjvfffx/ff/89tmzZgtOnT2PixIl6N8tQTp06BZvNhnXr1uHEiRNYsWIF1q5diwULFujdNENqaGjApEmTMGPGDL2bYiibN2/GnDlz8Pjjj+Pw4cMYOnQoRo8ejZKSEr2bZih1dXXo27cvXnrpJb2bYmgFBQWYOXMmDhw4gPz8fDQ2NiI7Oxt1dXV6N81wOnfujOeeew6HDh3CoUOHMGLECIwfPx4nTpzQu2lOOBU8iLZv346cnBzU19cjLCxM7+YY1rJly7BmzRqcOXNG76YY1ptvvok5c+agurpa76YYwqBBg9CvXz+sWbPG/ljv3r2Rk5ODpUuX6tgy4xIEAVu3bkVOTo7eTTG8X3/9FR07dkRBQQGGDRumd3MMLyEhAcuWLcO0adP0boode26CpKqqCu+++y4GDx7MwMaLmpoaJCQk6N0MaiUaGhrw9ddfIzs72+nx7Oxs7N+/X6dWUSipqakBAF6XvLBardi0aRPq6uqQlZWld3OcMLgJsHnz5iE6Ohrt27dHSUkJtm3bpneTDO306dN48cUXkZeXp3dTqJU4e/YsrFYrkpKSnB5PSkpCRUWFTq2iUCGKIubOnYshQ4YgPT1d7+YY0rFjxxATEwOLxYK8vDxs3boVffr00btZThjcePHkk09CEASP/w4dOmTf/tFHH8Xhw4exa9cumM1m3HvvvbgSRv58PU4AUFZWhlGjRmHSpEm4//77dWp5y/PnWJE7QRCcfhZF0e0xIl899NBD+Pbbb7Fx40a9m2JYvXr1wpEjR3DgwAHMmDEDubm5OHnypN7NctJG7wYY3UMPPYTJkyd73KZbt272/09MTERiYiJ69uyJ3r17IzU1FQcOHDBcl12g+XqcysrKMHz4cGRlZeGVV14JcuuMxddjRc4SExNhNpvdemkqKyvdenOIfDFr1ixs374de/fuRefOnfVujmGFh4ejR48eAID+/fujqKgIL7zwAtatW6dzyy5jcOOFHKz4Q+6xqa+vD2STDMmX4/TLL79g+PDhyMzMxPr162EyXVkdiM35TJF0Yc3MzER+fj7uvPNO++P5+fkYP368ji2j1koURcyaNQtbt27Fnj17kJaWpneTWhVRFA13n2NwEyAHDx7EwYMHMWTIEMTHx+PMmTNYuHAhunfvHvK9Nr4oKyvDzTffjC5dumD58uX49ddf7b9LTk7WsWXGVFJSgqqqKpSUlMBqteLIkSMAgB49eiAmJkbfxulo7ty5mDJlCvr372/v/SspKWHulovff/8dP/74o/3n4uJiHDlyBAkJCejSpYuOLTOWmTNn4r333sO2bdsQGxtr7xVs27YtIiMjdW6dsSxYsACjR49GamoqamtrsWnTJuzZswc7d+7Uu2nORAqIb7/9Vhw+fLiYkJAgWiwWsVu3bmJeXp74888/6900Q1m/fr0IQPEfucvNzVU8Vl988YXeTdPdyy+/LHbt2lUMDw8X+/XrJxYUFOjdJMP54osvFD8/ubm5ejfNUNSuSevXr9e7aYZz33332c+7Dh06iLfccou4a9cuvZvlhnVuiIiIKKRcWckOREREFPIY3BAREVFIYXBDREREIYXBDREREYUUBjdEREQUUhjcEBERUUhhcENEREQhhcENERERhRQGN0RERBRSGNwQUatitVoxePBgTJgwwenxmpoapKam4oknngAgrcs1btw4REdHIzExEbNnz0ZDQ4MeTSaiFsbghohaFbPZjA0bNmDnzp1499137Y/PmjULCQkJWLhwIaxWK26//XbU1dXhyy+/xKZNm7Blyxb85S9/0bHlRNRSuLYUEbVKq1atwpNPPonjx4+jqKgIkyZNwsGDB5GRkYFPP/0UY8eORWlpKVJSUgAAmzZtwtSpU1FZWYm4uDidW09EwcTghohaJVEUMWLECJjNZhw7dgyzZs2yD0ktXLgQ27Ztw9GjR+3bnzt3DgkJCdi9ezeGDx+uV7OJqAW00bsBRET+EAQBa9asQe/evXHdddfhscces/+uoqICSUlJTtvHx8cjPDwcFRUVLd1UImphzLkholbrjTfeQFRUFIqLi/Hzzz87/U4QBLftRVFUfJyIQguDGyJqlQoLC7FixQps27YNWVlZmDZtGuRR9uTkZLcemnPnzuHSpUtuPTpEFHoY3BBRq3Px4kXk5uZi+vTpuPXWW/Haa6+hqKgI69atAwBkZWXh+PHjKC8vtz9n165dsFgsyMzM1KvZRNRCmFBMRK3Oww8/jE8++QRHjx5FdHQ0AODVV1/F3LlzcezYMaSmpiIjIwNJSUlYtmwZqqqqMHXqVOTk5ODFF1/UufVEFGwMboioVSkoKMAtt9yCPXv2YMiQIU6/GzlyJBobG/H555+jtLQUDz74IHbv3o3IyEjcc889WL58OSwWi04tJ6KWwuCGiIiIQgpzboiIiCikMLghIiKikMLghoiIiEIKgxsiIiIKKQxuiIiIKKQwuCEiIqKQwuCGiIiIQgqDGyIiIgopDG6IiIgopDC4ISIiopDC4IaIiIhCyv8D0JM2LP49U+EAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "########################### Experiment Settings ###############################\n",
+ "\n",
+ "\n",
+ "random_state = 29\n",
+ "\n",
+ "working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.\n",
+ "\n",
+ "simulation_method = 'linear'\n",
+ "n_features = 1 # The number of input features of X\n",
+ "n_grps = 2 # Number of batches in data\n",
+ "n_samples = 500 # Number of samples in each group (use a list for different\n",
+ "# sample numbers across different batches)\n",
+ "\n",
+ "model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'\n",
+ "\n",
+ "\n",
+ "############################## Data Simulation ################################\n",
+ "\n",
+ "\n",
+ "X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef = \\\n",
+ " simulate_data(simulation_method, n_samples, n_features, n_grps,\n",
+ " working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',\n",
+ " random_state=random_state)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "TypingError",
+ "evalue": "Failed in nopython mode pipeline (step: nopython frontend)\nFailed in nopython mode pipeline (step: nopython frontend)\nInvalid use of type(CPUDispatcher()) with parameters (readonly array(float64, 2d, C))\nKnown signatures:\n * (Array(float64, 2, 'A', False, aligned=True),) -> array(float64, 1d, A)\nDuring: resolving callee type: type(CPUDispatcher())\nDuring: typing of call at /tmp/tmp01rwehf6 (7)\n\n\nFile \"../../../../../tmp/tmp01rwehf6\", line 7:\ndef numba_funcified_fgraph(_unconstrained_point, y, batch_effect_0_data, X):\n
\n",
- " Sampling for a minute
\n",
+ " Sampling for 2 minutes
\n",
" \n",
" Estimated Time to Completion:\n",
- " 35 minutes\n",
+ " an hour\n",
"
\n",
"\n",
" \n",
" \n",
" \n",
@@ -235,13 +235,13 @@
" \n",
" \n",
" | \n",
- " 37 | \n",
+ " 58 | \n",
" 0 | \n",
- " 0.01 | \n",
- " 8 | \n",
+ " 0.00 | \n",
+ " 3 | \n",
" \n",
" \n",
" \n",
@@ -255,6 +255,16 @@
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
From d4e0631737f0f1938fd362b5181a0196b7ecdc52 Mon Sep 17 00:00:00 2001
From: AuguB
Date: Thu, 3 Oct 2024 15:19:37 +0200
Subject: [PATCH 12/68] Small bug fix in gradient calculation for SHASH model
---
pcntoolkit/model/SHASH.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py
index 4be5c947..a3a48a84 100644
--- a/pcntoolkit/model/SHASH.py
+++ b/pcntoolkit/model/SHASH.py
@@ -81,7 +81,7 @@ def grad(self, inputs, output_grads):
dp = 1e-16
p = inputs[0]
x = inputs[1]
- grad = (self(p + dp, x) - self(p - dp, x)) / dp
+ grad = (self(p + dp, x) - self(p - dp, x)) / (2*dp)
return [
output_grads[0] * grad,
grad_not_implemented(
From 924681f3a584d64d343fca2ad6aadc1fb2c835bc Mon Sep 17 00:00:00 2001
From: Stijn
Date: Mon, 7 Oct 2024 15:04:22 +0200
Subject: [PATCH 13/68] Refactoring of SHASH Prior tuning
---
pcntoolkit/model/SHASH.py | 139 ++++++++++++++++++--------------------
pcntoolkit/model/hbr.py | 49 +++++++-------
2 files changed, 91 insertions(+), 97 deletions(-)
diff --git a/pcntoolkit/model/SHASH.py b/pcntoolkit/model/SHASH.py
index a3a48a84..d9139d67 100644
--- a/pcntoolkit/model/SHASH.py
+++ b/pcntoolkit/model/SHASH.py
@@ -1,4 +1,12 @@
+"""
+@author: Stijn de Boer (AuguB)
+See: Jones et al. (2009), Sinh-Arcsinh distributions.
+"""
+
+# Standard library imports
from typing import Union, List, Optional
+
+# Third-party imports
import pymc as pm
from pymc import floatX
from pymc.distributions import Continuous
@@ -11,61 +19,17 @@
from pytensor.tensor.random.basic import normal
from pytensor.tensor.random.op import RandomVariable
-
import numpy as np
import scipy.special as spp
import matplotlib.pyplot as plt
+CONST1 = np.exp(0.25) / np.power(8.0 * np.pi, 0.5)
+CONST2 = -np.log(2 * np.pi) / 2
-"""
-@author: Stijn de Boer (AuguB)
-See: Jones et al. (2009), Sinh-Arcsinh distributions.
-"""
-
-
-def K(q, x):
- """
- The K function as given in Jones et al.
- :param q:
- :param x:
- :return:
- """
- return spp.kv(q, x)
-
-
-def unique_K(q, x):
- """
- This is the K function, but it only calculates the unique values of q.
- :param q:
- :param x:
- :return:
+class KOp(Op):
"""
- unique_q, inverse_indices = np.unique(q, return_inverse=True)
- unique_outputs = spp.kv(unique_q, x)
- outputs = unique_outputs[inverse_indices].reshape(q.shape)
- return outputs
-
-
-CONST = np.exp(0.25) / np.power(8.0 * np.pi, 0.5)
-
-
-def P(q):
+ Modified Bessel function of the second kind, pytensor wrapper for scipy.special.kv
"""
- The P function as given in Jones et al.
- :param q:
- :return:
- """
- K1 = K()((q + 1) / 2, 0.25)
- K2 = K()((q - 1) / 2, 0.25)
- a = (K1 + K2) * CONST
- return a
-
-
-class K(Op):
- """
- Modified Bessel function of the second kind, pytensor implementation
- """
-
__props__ = ()
def make_node(self, p, x):
@@ -74,7 +38,7 @@ def make_node(self, p, x):
return Apply(self, [p, x], [p.type()])
def perform(self, node, inputs_storage, output_storage):
- output_storage[0][0] = unique_K(inputs_storage[0], inputs_storage[1])
+ output_storage[0][0] = spp.kv(inputs_storage[0], inputs_storage[1])
def grad(self, inputs, output_grads):
# Approximation of the derivative. This should suffice for using NUTS
@@ -84,10 +48,9 @@ def grad(self, inputs, output_grads):
grad = (self(p + dp, x) - self(p - dp, x)) / (2*dp)
return [
output_grads[0] * grad,
- grad_not_implemented(
- "K", 1, "x", "Gradient not implemented for x"),
- ]
+ grad_not_implemented("KOp", 2, "x", "")
+ ]
def S(x, epsilon, delta):
"""
@@ -137,17 +100,47 @@ def m(epsilon, delta, r):
- 4 * np.cosh(2 * epsilon / delta) * P(2 / delta)
+ 3
) / 8
- # else:
- # frac1 = ptt.as_tensor_variable(1 / pm.power(2, r))
- # acc = ptt.as_tensor_variable(0)
- # for i in range(r + 1):
- # combs = spp.comb(r, i)
- # flip = pm.power(-1, i)
- # ex = np.exp((r - 2 * i) * epsilon / delta)
- # p = P((r - 2 * i) / delta)
- # acc += combs * flip * ex * p
- # return frac1 * acc
+def m1(epsilon, delta):
+ return np.sinh(epsilon / delta) * P(1 / delta)
+
+def m2(epsilon, delta):
+ return (np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2
+
+def m3(epsilon, delta):
+ return (
+ np.sinh(3 * epsilon / delta) * P(3 / delta)
+ - 3 * np.sinh(epsilon / delta) * P(1 / delta)
+ ) / 4
+
+def numpy_P(q):
+ """
+ The P function as given in Jones et al.
+ :param q:
+ :return:
+ """
+ frac = CONST1
+ K1 = spp.kv((q + 1) / 2, 0.25)
+ K2 = spp.kv((q - 1) / 2, 0.25)
+ a = (K1 + K2) * frac
+ return a
+
+# Instance of the KOp
+my_K = KOp()
+
+def P(q):
+ """
+ The P function as given in Jones et al.
+ :param q:
+ :return:
+ """
+ K1 = my_K((q + 1) / 2, 0.25)
+ K2 = my_K((q - 1) / 2, 0.25)
+ a = (K1 + K2) * CONST1
+ return a
+
+
+##### SHASH Distributions #####
class SHASH(RandomVariable):
name = "shash"
@@ -181,13 +174,12 @@ def logp(value, epsilon, delta):
this_S = S(value, epsilon, delta)
this_S_sqr = ptt.sqr(this_S)
this_C_sqr = 1 + this_S_sqr
- frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2
frac2 = (
ptt.log(delta) + ptt.log(this_C_sqr) /
2 - ptt.log(1 + ptt.sqr(value)) / 2
)
exp = -this_S_sqr / 2
- return frac1 + frac2 + exp
+ return CONST2 + frac2 + exp
class SHASHoRV(RandomVariable):
@@ -224,14 +216,13 @@ def logp(value, mu, sigma, epsilon, delta):
this_S = S(remapped_value, epsilon, delta)
this_S_sqr = ptt.sqr(this_S)
this_C_sqr = 1 + this_S_sqr
- frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2
frac2 = (
ptt.log(delta)
+ ptt.log(this_C_sqr) / 2
- ptt.log(1 + ptt.sqr(remapped_value)) / 2
)
exp = -this_S_sqr / 2
- return frac1 + frac2 + exp - ptt.log(sigma)
+ return CONST2 + frac2 + exp - ptt.log(sigma)
class SHASHo2RV(RandomVariable):
@@ -270,14 +261,15 @@ def logp(value, mu, sigma, epsilon, delta):
this_S = S(remapped_value, epsilon, delta)
this_S_sqr = ptt.sqr(this_S)
this_C_sqr = 1 + this_S_sqr
- frac1 = -ptt.log(ptt.constant(2 * np.pi)) / 2
frac2 = (
ptt.log(delta)
+ ptt.log(this_C_sqr) / 2
- ptt.log(1 + ptt.sqr(remapped_value)) / 2
)
exp = -this_S_sqr / 2
- return frac1 + frac2 + exp - ptt.log(sigma_d)
+ return CONST2 + frac2 + exp - ptt.log(sigma_d)
+
+
class SHASHbRV(RandomVariable):
@@ -297,8 +289,8 @@ def rng_fn(
size: Optional[Union[List[int], int]],
) -> np.ndarray:
s = rng.normal(size=size)
- mean = np.sinh(epsilon / delta) * P(1 / delta)
- var = ((np.cosh(2 * epsilon / delta) * P(2 / delta) - 1) / 2) - mean**2
+ mean = np.sinh(epsilon / delta) * numpy_P(1 / delta)
+ var = ((np.cosh(2 * epsilon / delta) * numpy_P(2 / delta) - 1) / 2) - mean**2
out = (
(np.sinh((np.arcsinh(s) + epsilon) / delta) - mean) / np.sqrt(var)
) * sigma + mu
@@ -323,17 +315,16 @@ def dist(cls, mu, sigma, epsilon, delta, **kwargs):
return super().dist([mu, sigma, epsilon, delta], **kwargs)
def logp(value, mu, sigma, epsilon, delta):
- mean = m(epsilon, delta, 1)
- var = m(epsilon, delta, 2) - mean**2
+ mean = m1(epsilon, delta)
+ var = m2(epsilon, delta) - mean**2
remapped_value = ((value - mu) / sigma) * np.sqrt(var) + mean
this_S = S(remapped_value, epsilon, delta)
this_S_sqr = np.square(this_S)
this_C_sqr = 1 + this_S_sqr
- frac1 = -np.log(2 * np.pi) / 2
frac2 = (
np.log(delta)
+ np.log(this_C_sqr) / 2
- np.log(1 + np.square(remapped_value)) / 2
)
exp = -this_S_sqr / 2
- return frac1 + frac2 + exp + np.log(var) / 2 - np.log(sigma)
+ return CONST2 + frac2 + exp + np.log(var) / 2 - np.log(sigma)
diff --git a/pcntoolkit/model/hbr.py b/pcntoolkit/model/hbr.py
index 2237a203..8fff24e9 100644
--- a/pcntoolkit/model/hbr.py
+++ b/pcntoolkit/model/hbr.py
@@ -247,22 +247,24 @@ def get_sample_dims(var):
"mu_samples",
pb.make_param(
"mu",
- mu_slope_mu_params=(0.0, 3.0),
- sigma_slope_mu_params=(3.0,),
- mu_intercept_mu_params=(0.0, 3.0),
- sigma_intercept_mu_params=(3.0,),
+ mu_slope_mu_params=(0.0, 10.0),
+ sigma_slope_mu_params=(10.0,),
+ mu_intercept_mu_params=(0.0, 10.0),
+ sigma_intercept_mu_params=(10.0,),
).get_samples(pb),
dims=get_sample_dims('mu'),
)
sigma = pm.Deterministic(
"sigma_samples",
pb.make_param(
- "sigma", mu_sigma_params=(0.0, 2.0), sigma_sigma_params=(2.0,)
+ "sigma", sigma_params = (0, 2),
+ mu_sigma_params=(0.0, 2.0),
+ sigma_sigma_params=(2.0,)
).get_samples(pb),
dims=get_sample_dims('sigma'),
)
sigma_plus = pm.Deterministic(
- "sigma_plus_samples", pm.math.log(1 + pm.math.exp(sigma/3))*3, dims=get_sample_dims('sigma')
+ "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma')
)
y_like = pm.Normal(
"y_like", mu, sigma=sigma_plus, observed=y, dims="datapoints"
@@ -285,11 +287,11 @@ def get_sample_dims(var):
"mu_samples",
pb.make_param(
"mu",
- slope_mu_params=(0.0, 2.0),
- mu_slope_mu_params=(0.0, 2.0),
- sigma_slope_mu_params=(2.0,),
- mu_intercept_mu_params=(0.0, 2.0),
- sigma_intercept_mu_params=(2.0,),
+ slope_mu_params=(0.0, 10.0),
+ mu_slope_mu_params=(0.0, 10.0),
+ sigma_slope_mu_params=(10.0,),
+ mu_intercept_mu_params=(0.0, 10.0),
+ sigma_intercept_mu_params=(10.0,),
).get_samples(pb),
dims=get_sample_dims('mu'),
)
@@ -297,23 +299,23 @@ def get_sample_dims(var):
"sigma_samples",
pb.make_param(
"sigma",
- sigma_params=(1.0, 1.0),
+ sigma_params=(0., 2.0),
sigma_dist="normal",
- slope_sigma_params=(0.0, 1.0),
- intercept_sigma_params=(1.0, 1.0),
+ slope_sigma_params=(0.0, 2.0),
+ intercept_sigma_params=(0.0, 2.0),
).get_samples(pb),
dims=get_sample_dims('sigma'),
)
sigma_plus = pm.Deterministic(
- "sigma_plus_samples", np.log(1 + np.exp(sigma)), dims=get_sample_dims('sigma')
+ "sigma_plus_samples", np.exp(sigma), dims=get_sample_dims('sigma')
)
epsilon = pm.Deterministic(
"epsilon_samples",
pb.make_param(
"epsilon",
- epsilon_params=(0.0, 1.0),
- slope_epsilon_params=(0.0, 0.2),
- intercept_epsilon_params=(0.0, 0.2),
+ epsilon_params=(0.0, 10.0),
+ slope_epsilon_params=(0.0, 10.0),
+ intercept_epsilon_params=(0.0, 10.0),
).get_samples(pb),
dims=get_sample_dims('epsilon'),
)
@@ -321,16 +323,16 @@ def get_sample_dims(var):
"delta_samples",
pb.make_param(
"delta",
- delta_params=(1.0, 1.0),
+ delta_params=(0., 2.0),
delta_dist="normal",
- slope_delta_params=(0.0, 0.2),
- intercept_delta_params=(1.0, 0.3),
+ slope_delta_params=(0.0, 2.0),
+ intercept_delta_params=(0.0, 2.0),
).get_samples(pb),
dims=get_sample_dims('delta'),
)
delta_plus = pm.Deterministic(
"delta_plus_samples",
- np.log(1 + np.exp(delta * 10)) / 10 + 0.3,
+ np.exp(delta) + 0.3,
dims=get_sample_dims('delta'),
)
y_like = SHASH_map[configs["likelihood"]](
@@ -558,7 +560,7 @@ def estimate_on_new_site(self, X, y, batch_effects):
chains=self.configs["n_chains"],
target_accept=self.configs["target_accept"],
init=self.configs["init"],
- n_init=50000,
+ n_init=500000,
cores=self.configs["cores"],
nuts_sampler=self.configs["nuts_sampler"],
)
@@ -751,6 +753,7 @@ def __init__(self, name, dist, params, pb, has_random_effect=False) -> None:
"hcauchy": pm.HalfCauchy,
"hstudt": pm.HalfStudentT,
"studt": pm.StudentT,
+ "lognormal": pm.Lognormal,
}
self.make_dist(dist, params, pb)
From 500f7cdd22151929b941c2cabb109d4983fc089c Mon Sep 17 00:00:00 2001
From: Stijn
Date: Tue, 8 Oct 2024 10:58:33 +0200
Subject: [PATCH 14/68] Modify test script
---
tests/testHBR.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/tests/testHBR.py b/tests/testHBR.py
index 30168317..2dab4972 100644
--- a/tests/testHBR.py
+++ b/tests/testHBR.py
@@ -32,7 +32,7 @@
n_samples = 500 # Number of samples in each group (use a list for different
# sample numbers across different batches)
-model_type = 'linear' # modelto try 'linear, ''polynomial', 'bspline'
+model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline'
############################## Data Simulation ################################
@@ -45,8 +45,8 @@
################################# Fittig and Predicting ###############################
-nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHo',
- linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='nutpie')
+nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='Normal',
+ linear_sigma='True', random_intercept_mu='True', random_slope_mu='False', linear_epsilon='False', linear_delta='False', nuts_sampler='pymc')
nm.estimate(X_train, Y_train, trbefile=working_dir+'trbefile.pkl')
yhat, ys2 = nm.predict(X_test, tsbefile=working_dir+'tsbefile.pkl')
From 24d84debe9cbd9a9194c6d9d9f6d0e98a8277ade Mon Sep 17 00:00:00 2001
From: Stijn
Date: Tue, 8 Oct 2024 11:09:57 +0200
Subject: [PATCH 15/68] Modify test script
---
tests/testHBR.py | 2 +-
tests/test_HBR.ipynb | 2455 ++++++++++++++++++++++++++++++++++++++----
2 files changed, 2250 insertions(+), 207 deletions(-)
diff --git a/tests/testHBR.py b/tests/testHBR.py
index 2dab4972..edfad541 100644
--- a/tests/testHBR.py
+++ b/tests/testHBR.py
@@ -24,7 +24,7 @@
random_state = 29
-working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.
+working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results.
simulation_method = 'linear'
n_features = 1 # The number of input features of X
diff --git a/tests/test_HBR.ipynb b/tests/test_HBR.ipynb
index 12e03746..45ec901a 100644
--- a/tests/test_HBR.ipynb
+++ b/tests/test_HBR.ipynb
@@ -2,11 +2,16 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
+ "from IPython.display import clear_output, DisplayHandle\n",
+ "def update_patch(self, obj):\n",
+ " clear_output(wait=True)\n",
+ " self.display(obj)\n",
+ "DisplayHandle.update = update_patch\n",
"import os\n",
"import numpy as np\n",
"from pcntoolkit.normative_model.norm_utils import norm_init\n",
@@ -21,12 +26,12 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAEeCAYAAADy064SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0kElEQVR4nO29eXxU9b3//zxn9sm+J0ASQghLAFlEQBYVsIpWrK0t9ipu5Yq97f12cbkud1F/vVfx1nrb2t66XK1abdVa24q1URFRXABlEwxCCCGEkJ0kk2Qyk5k55/fHZCYzmT3rJPk8H4/WzJnPOeczYTKv+bw/7/f7JamqqiIQCAQCwQREHu0JCAQCgUAwWggRFAgEAsGERYigQCAQCCYsQgQFAoFAMGERIigQCASCCYsQQYFAIBBMWIQICgQCgWDCIkRQIBAIBBMW7WhPYChRFIUzZ86QlJSEJEmjPR2BQCAQjAKqqtLR0cGkSZOQ5fBrvXElgmfOnCE/P3+0pyEQCASCOKCmpoYpU6aEHTOuRDApKQlwv/Dk5ORRno1AIBAIRgOLxUJ+fr5XE8IRlyJot9u5/fbbeeutt9Dr9SxcuJAXXngh4nmeEGhycrIQQYFAIJjgRLMtFpciePfddyPLMseOHUOSJOrq6kZ7SgKBQCAYh8SdCHZ1dfHb3/6W06dPe1U8Ly8v6Fi73Y7dbvc+tlgsIa+rKAo9PT1DO9kJiE6nQ6PRjPY0BAKBYEiIOxGsrKwkIyOD//zP/2Tbtm2YTCbuv/9+1q5dGzD2oYce4oEHHoh4zZ6eHqqqqlAUZTimPOFITU0lNzdXZOAKBGMUVVGxV7WjdPQgJ+kxFKUgyRPz71mKNz/BvXv3snjxYp577jluuOEGDh48yMUXX0x5eTlZWVl+Y4OtBPPz82lvb/fuCaqqyqlTp3A4HFGlywpCo6oqVquVxsZGUlNTQ67QBQJB/NJ9uJm2rZW42vsiY5oUPanrizHNzRzFmQ0dFouFlJQUPy0IRdytBAsLC5Flmeuuuw6A+fPnU1RUxBdffMFFF13kN9ZgMGAwGMJez+l0YrVamTRpEmazebimPWEwmUwANDY2kp2dLUKjAsEYovtwMy0vHAk47mrvoeWFI2RsnD1uhDBa4m5ZlJmZydq1a3nrrbcAqK6upqqqipkzZw7oei6XCwC9Xj9kc5zoeL5MOByOUZ6JQCCIFlVRadtaGXZM29YTqEpcBQeHnbhbCQI8/vjjfOc73+Guu+5Co9Hw5JNPDjr0Jvavhg7xuxQIxh72qna/EGgwXO127FXtGItTR2ZScUBciuC0adPYsWPHaE8Dl6Kyp+osjR02spOMLClKRzNEm8cOh4MHH3yQP/zhD2g0GvR6PYWFhdx///0sWLBgSO4RK4qi8MMf/pA333wTSZK47bbb+N73vjcqcxEIBEOL0hFddny048YLcSmC8UDZ4Toe2FpOXbvNeywvxch960tZN3fwCSE333wznZ2dfPLJJ6SlpQGwdetWvvjii6Ai6HK5hn3/7YUXXqC8vJxjx47R3t7OokWLWLNmDbNmzRrW+woEY4nRyqxUFIXq6mo6OztJTEz05k9Ei5wU3ZZQtOPGC0IEg1B2uI5/emEf/SPj9e02/umFffxm46JBCWFFRQV//vOfqamp8QogwPr1670/P/vss7z00ktkZ2dTXl7OY489Rnt7O/feey9Op5O0tDR+85vfUFpayo4dO7jjjjv47LPPADh8+DBXXHEFJ0+e5OTJkyxevJibbrqJnTt30tnZyWOPPcaaNWsC5vXyyy/z3e9+F41GQ3p6Ohs2bOCll17i/vvvH/BrFQjGE6OVWVleXk5ZWZlfLXRycjLr1q2jtLQ0qmvoC5ORE3QoXaH38jUpBgxFKYOe71gi7hJjRhuXovLA1vIAAQS8xx7YWo5rEJvH+/fvZ/r06aSnp4cd9+GHH/Lv//7vfPbZZxQXF7Nx40aee+45Pv/8czZv3syGDRuiul9LSwvz5s1j9+7dPP3001x77bV0dXUFjDt16hSFhYXex1OnTuXUqVOxvTiBYJziyazsv6/myazsPtw8LPctLy/nlVdeCWgGYrFYeOWVVygvL494je7DzTT89NOwAgiQun7ahKsXFCLYjz1VZ/1CoP1Rgbp2G3uqzg7qPr7JJZWVlSxYsICZM2dyyy23eI+vXLmSkpISAHbv3s2CBQuYN28eANdddx2nT5+OqqWcXq/n+uuvB2DZsmXk5uZy8ODBiPOKsxJSgWDUGK3MSkVRKCsrCzumrKwsbCOQUOLtiybFMCHLI0CIYACNHaEFcCDjgrFw4UIqKipobW0FoLi4mAMHDnDPPfd4jwEkJiZ6f1ZVNWhWpiRJaLVabykIgM0WeW7BrlVQUMDJkye9j6urqykoKIjqNQkE45lYMitjxaWofFLZwl8P1PJJZYtflKm6ujpsO0hwrwirq6uDPheNeMsJOnLuXDwhBRCECAaQnWQc0nHBKCkp4Wtf+xqbNm2ira3NezxYiNLD+eefz4EDBzhyxF3o+tJLLzFlyhRyc3MpKiqiqqqKlpYWAH73u9/5ndvT08OLL74IwJ49e6ivr+ecc84JuMe3vvUtnnjiCVwuF2fPnuXll1/mmmuuGfDrFAjGC8OVWVl2uI6VD2/nH57axQ9fOsA/PLWLlQ9vp+ywO8LT2dkZ1XVCjYtGvJUuBz3V4YV2pAj3hWC4EIkx/VhSlE5eipH6dlvQfUEJyE1xl0sMhmeffZb/+q//YunSpWg0GtLS0sjOzubuu+8OOj4rK4vf/e53XHfddbhcLlJTU3nllVcAmDx5MnfccQeLFy9m6tSpXHDBBX7nZmRkcPz4cZYuXUpnZye///3vSUhICLjH9ddfz6effsqMGTMAuPPOO5k9e/agXqdAMB6QE3XRjYshszKaBLyZPtGgcCSGGDeWyiKGOyM/FHHXO3QwBOsXZ7PZqKqqoqioCKMxutWb580J+L1BPQHEwWaHjiSe7NDm5qHbtB/I71QgGKt0H26m9fXjKJbwSSWaFAO5d50XVWKJS1FZ+fB2vw98GZiPhgwkWlBpTNax418u4pc/+x86rJ19H0C+qJBkTuTHd94WtFzCVtlG81OHIs4n85Z5o1ogH+oLwUA/c2PpHSrCoUFYNzeP32xcRG6K/wd8bopxTAmgQCAYHJ6kkkgCCLFlVvZPwLsALa+SyGMkcD9mHiOBxyxavnivmmUOd3JcgEL0Pl7mmIEUVCHBUJSCJiX86nS0yyJGIiM/HCIcGoJ1c/P4SmnusHWMGSmmTp06pKtAgWCiEE1SCQSvE4zUbco3se4CtPwXpgARyERCereWTNJZK89jl+4YXfS55iRgYJljBoX2tJCtziRZInV9cdCm2R5Guywiloz884szhvz+QgTDoJGlYfmlCwSC+CeapBKA1G/OwFTS1/Qimr0tT2KdDPwIIyog91vNyUheYSxSsim0Z1Evt9GNHRMGcpVU7znh9vRMczPJ2Dg7SJG/gdT100Y9K3QkMvLDIURQIBAIghBtsojqU4AebbcpTwJebruD7DC7Ur6yKCMxSUkLOi5SQo5pbibG0oy4NNIdiYz8cIg9QYFAIAhCrL02Y9nb0sgS960vJSPEXl4sRLunJ8kSxuJUzAuyMRanxoUAQl9GfqjZSLhX0oPNyA+FEEGBQCAIQqxJJbF2m1o3N48bL54+6HmO9p7eYPF8IYDABFjP4/vWlw5bPoYQwXAoLqjaCYdedf9XcUU+RyAQjAs8SSXh8BWggextrVwzDTlZH3T16EGTYiD92lkBgjyeWp2NZka+2BMMRfnrUHYXWM70HUueBOsehtIrB335ePQT/Nvf/sZ9993HoUOH+H//7//xyCOPjMo8BIJ4IZakkoHsbUmyRNqVkbM3TXMzMc3NHLY9PdXlwvrZXpxNTWizsjAvPhdpmK3b+jNaGflCBINR/jq8cgMBhTmWOvfxDc8PWgjj0U+wpKSEp59+mj/+8Y9R9R8VCCYC0SaVDLTbVLRC69nTG2osb79Nw4MP4ayv9x7T5uaSc+89JF9yyZDfLxyjkZEvwqH9UVzuFWC47e2yuwcVGvX4CT7zzDMBfoLXXXcd4G6rtm7dOm644QYWL17Mnj17KCsrY9GiRZxzzjlceOGFXguVHTt2sHjxYu91Dh8+zNSpUwF3x5jMzEzuuOMOli5dypw5c9i+fXvQec2YMYP58+ej1YrvRgKBL9EklQxmb8s0N5Pcu5aQecs80r89k8xb5pF713nDHuq0vP02tT/8kZ8AAjgbGqj94Y+wvP32sN4/HhAi2J/qj/1DoAGoYKl1jxsg8eonKBAIBsdg9rZGOntTdbloePAhCNY5s/dYw4MPobrGdy6E+Mrfn86GoR0Xgv5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL58+aBeg0AgCGSsdJuyfrY3YAXoh6rirK/H+tleEpYuGbmJjTBCBPuTmDO044Lg6yeYlpbm9RN89tlneeONN/puMcJ+ggKBYGgYC92mnE1NvT9JaDJLkAwpqPZ2XM0V+G4H9Y0bn4hwaH8Kl7uzQMOVbiZPdo8bIPHqJygQCOKDkfDV02Zloc1bSMKlD2FeeQem827BvPIOEi59CG3eQr9x4xmxEuyPrHGXQbxyA24hDGKmtG6Le9wgiEc/wR07drBx40YsFguqqvLSSy/xv//7v1x55eBLQgSCiUykhtq+BOs9mmrScfOKIv55zfQhC6tKpqkYl3w38LgxDeOS72L79AlQzmBefO6Q3C9eEX6CoQhaJzjZLYBDUCc4Ugg/QYEgOmIRqliIxSw2VO9RD6lmHVu+MW/QxeOqolL/8B5c7XaCRb1UVUXtbiXlqyZSLh3ZMomhIBY/QbESDEXplTDrq+4s0M4G9x5g4fJBrwAFAkH8MVyu5tE21IbwvUc9tFkdfPeFfTweItM0WiHvc8gILvKSJCGZ0zFMnxflKx27CBEMh6yBolWjPYtBIfwEBYLwxCJUsRCpobaEu6H2V0pz0chSxN6jvvie5/s6ohXyaB0yoh03lhGJMQKBYMKhKiq2yjY69zfyxz8fCboeGqyreawNtWPxy/M9D/qEvP/9PEJedthdSuV53Y4Ga1T3idZJYywjVoICgWBC0X242a9F2QPo+D4afo6ND3D6jR2Mq3msDbVj9cvznBftinOloqXjbyeiMgqG6C2axjpiJSgQCCYM3YebaXnhSIAQZCLxX5i4IMS6YCCu5rE21Pb0Ho31+tGsOEvanbT+/suoBRDGvkVTtAgRFAgEEwJVUWnbWhn0ORkJFfghxqAfigNxNY/VLNbTe9TPTV5VmNd0nAtP72de03FkVQk4L5JAy8CPiH7+Q2XR5Am9Wg80YqtsQx2GWsehQIRDw+BSXOxr3EeTtYkscxaLshehGaLs0Hi0UvrlL3/Jk08+iSzLyLLMPffcwzXXXDMqcxEIgjGYMoa+jMjgyEjkIDEfDfvp68A0UFdzj6j90wv7QlUcBzTU9vQevfu1Q5Qe38d3P/8LWbZ27/NNxhSeOOcqrt94o/e8SAI9Hw3ZUax3klbnY5ieOiQWTf1DzgCaFD2p64vjzv9QiGAItlVvY8ueLTRY+3qE5phzuHvJ3VxcePGgrx+PVkpz5szho48+IiUlhZqaGhYtWsSyZcsoLCwc1vsKBNEw2DKGaDMdM/qt3a6cnzfgesF1c/PYfEERT+2s8utTLUlwy6qioPNeNzePZbWHOPP75wLnZmvnX/c8x5Qzi6D33EgWTv1fTyh0OeYhsWryhJz742rvoeWFI3FnBCzCoUHYVr2N23bc5ieAAI3WRm7bcRvbqrcN6vrxaqW0du1aUlLcG+H5+fnk5ORQU1MzqNcqEAwF0WY/hiPaTMeWflLy5AdVUV0/GGWH63jygyr6RwIVNfR1VZeLpoceQiKwik/GXcPn6+4QycKp/+sJxVBkgoYLOXto23oirkKjQgT74VJcbNmzBTXIG8dz7OE9D+MahJ/gWLBS2rZtG62trZx77vhumSSIfyJlP4J/GUOovpuGohQ0KaE/6BVUGlA4SODfdqgyiXD7Xv3nLaGSK1soklvIlS1IqAHXVRQXFX/+E6dsnbQkGIPLl4+7g4dwFk63XntO2NcNQ5cJGinkDOBqt2Ovag87ZiQR4dB+7GvcF7AC9EVFpd5az77GfZyXe96A7xPPVkqHDh3i5ptv5uWXX8ZkMg34NQoEQ0Es9Xbt3T1hQ6ap64uDhuoUVCTgF9hQwlzft0wi0r6X77wL5LMs1Z0iQXJ4x3apOnZ3FHivW7H7Y7Y/+ySdZ5uh0O1SY+xxUnqmmdz2wC+t/d0dwlk4dct6Wl444i2Z8L623hitdaZjSDJBx2IRvlgJ9qPJGp1tSLTjguFrpQR4rZTuuece7zEYHSul8vJyrrjiCp555hlWrlwZ9WsSCIaLekt05QnvlNdHDJma5maSsXF2wMqoCZV/pTugTtAX3yzMUKUWnn2v7sPN3vEF8llW6yox4/Aba8bBal0lx44eoWL3x7z+6INuAfTBptOwrzCH+pTAhvfB3B08Fk5fWzCZ84szvHuZprmZ2JfIdDstfuOtrg4+avwLf3n5ISp2D9wo3EO0IdV4KsIXK8F+ZJmjsw2JdlwwfK2UnnnmGVJTU4HIVkqbNm3iyJEjzJ49289KyeVyea2UMjIyQlopXX/99WGtlI4cOcLll1/Ok08+yVe+8pUBvz6BYKgoO1zHT974IqqxfzlwJqoWZaa5mRhLM7BXtaN09PBlh41v/e1QwAqwP54szGj3vbK/OQ0JlaW6U4A7GcYXSXIbuJ85vIt3qw4Hv1DvoPJJGeS0d7lXcZKENicnJncHRXGx7Z2n6DrbQqZxCiZNIlZXJw1yG4pWh2ROZPv//YLi85YiDyID3hNyDhcSjbcifCGC/ViUvYgccw6N1sag+4ISEjnmHBZlLxrUfeLRSukHP/gB7e3t3HXXXdx1110APPzww1x66aWDeq0CwUCI5KjgQQLSEnSc7Qr9wds/pCnJkjcT8hyHkwte/Ru0tNBiSOKLzGkoUl+QTALSE/TUt3fzcUUTk6tr0ESx7zVf0jA7yU6CwxFynCSB3dpJu80e+sNYkrDpdZxNMJJhtQOQc+89SDFki9ce+cK7ymyy1eBISsWeV4Cq6zMHtzl6+Oj3j7Fq44+ivm7AVGUpZMjZQ7wV4cetldIDDzzA/fffz6FDh5g7d25U5wyVlZInOxTwE0KpN5r+6EWPDkmZxEggrJQEYxGXorLy4e0RG0p7Pkq/s2IqT390MuJ1f7FhPpemJKJ09CAn6bEf30PjQw/hrK/3jmkypvD4OVfx8ST3/ruMu9au1NZEQft+0iUt52evj3iv9G/P5LUzRzm+592IY421J9BZzoYds6C6gQJjIjn33kPyJbHZGx356H3e/OVPAXAkpWKbXOx+wnd52isFGzZ8i9I50X3mhiL4fqmB1PXTRqQ8YsxbKe3bt49du3ZRUFAwKve/uPBiHr3o0aB1gnctuWvMCKBAMFaJ1lEhPUHPf319LikmfUQRvAAt8/9WQ3NX376f0t0NUh7QJ4IZtnb+bc9z/OeSG9FOWsiPMLqLzY0JYJyKzRU+s9qDnKRnxewpHN8TeazkDL1a9JB/x51M//rVMa0APSSmukuxVMCe0/u5GiI+W/a3rcyaXYosDzxlpH/IWU7SD0kR/nAQdyJot9v5/ve/z+9//3tWr149avO4uPBiVuevHraOMSOFsFISjEWi7dX5b1+dzbq5ebgUNWzB+IVo+U9MSF3+iS9eF/U9j+Os2w+4V34qcHtjJdl5y93X8/nsNshmb1ZlqAQzyaxFVVQKCgtITk7GYrEEHYcKCZKRksQZVFr3Bh8DJGVkMv0bVyMN8PNn8uw5JCSaaFc0qLowSSmShMVqp7q6mqKiogHdy3spn5BzPBN3Ivgf//EfbNy4Map/ALvdjt1u9z4O+UYbIBpZM6gyCIFAMDCi7dWZm+Iu4QnXokyDuydoMANZSZJQVRXDvGtw1h3wnikhkTXzCgDkfkLnOQdCZ22rVictTx9Gk6JnzaIV/OWTvwdOvneSy3pKmJqQjc3cQa31WNDXufrGzYNKWKn8dDcuRUXVRpeV2dnZOeB7jTXiqkTik08+4dNPP+V73/teVOMfeughUlJSvP/Lz88f5hkKBIKRINbm0xC6YNzTOzPktSQJ2ZyOJrPEe0yTWYJsSg+90pMkJEnCroT35XO195D5Xg9XLV1HQr8m1gkYWOuYR5GSjQQsn/p1EtP9s86TMjK58rZ7KVkavKY3GjzlFzarLaqwK/iXZ/miKApVVVUcOnSIqqoqFCVSTm38E1crwffff58vv/zSuwo8ffo0l156Kf/3f//HZZddFjD+nnvu4bbbbvM+tlgsQggFgnFALM2nFUWhurqazs5OZiYm8sGdF/FZdRvbyut5+qOTpEfZO1MypAT9ORz7W97F5upiZfY30GoMIe+U/RlcY1tOvdxGN3ZMGMhVUv2kWe6GG27/Gc3203S2tZKYmsbk2XMGtQJUFBfbn33S+1hj7UBy9KBqdYF7gr0kJycH7RdcXl5OWVmZX8QtOTmZdevWUVpaOuA5jjZxJYJ33323X4nA1KlTeeONN0JmhxoMBgwGw0hNTyAQjCCelV3/DjC5Ph1gQn0wX3LpOt487E52ibZ3pmpvR5EkmrMysaXKpMmtAULVH4PGzGRzCTpN+M8hpcuBjMQkJS3sOLXTSf6CwBregeJbGgHuLxCGhlPu7FBVDSqE69atC0iKKS8v95Zk+WKxWHjllVfYsGHDmBXCuBLBeEN1ubB+thdnUxParCzMi88dUGaWQCAYGOFagYX7YH71j6+g6ykG0jmIi0YUMpGCCpqqqqjdrVQbrexbfwXdZnPvM/swqwbOd8ygSMkOPAeVRRkDyxRXUIOuCh3N3YOyi+pPZ1trwDFdRxvUVmLPKfBLkgm1qlMUhbKysrD3KSsrY9asWYPKKB0t4loET548OWr3trz9Ng0P+tcPaXNzB1SjE4x49BP89a9/zeOPP45Go8HlcnHLLbfwgx/8YFTmIpg4+IYzExMTKSws9Psw9bQC83wp7TyyCzkzk7KPPgx73aX6E9TpqlFcyfzcOoP/woyC6ieEnjrgirq/8dGKwH03K3be1R1ikbOIBa4it/mu2pc8MxCq5EZ26Y7RJfUl9SWoBpY5ZjB1G/zHx5X81drtfS4Wu6j+eEoj+qPraEPb0YbLnISq1bHm2htZfOHqoCJWXV0dMenQYrEMSUbpaBDXIjhaWN5+m9of/gj69RFwNjS4j//i54MWwnj0E9y4cSPf//73Afebeu7cuVx00UVBW6wJBDA4k1uIfp/J/aV0C6ozCcmQQr3ZheXckmCX9JKAypSMd2k2NbPXkcJ/nL6R/2ebQbaPeDWi8hhWJs2cjA41MDrY+3ifroovtbWc75gZsCqMhSq5kXd1hwKOd/WK7RrHXG6wZrEVvG3cPL1Pf7NxkVcIVUWNqgZv8uw5JKZnBvQk9bw0rbWDpIxMFl94UchVXLSZomM1o1SIYD9Ul4uGBx8KEED3k+4YesODD5G0du2AQ6MeP8GampoAP0EPzz77LC+99BLZ2dmUl5fz2GOP0d7ezr333ovT6SQtLY3f/OY3lJaWsmPHDu644w4+++wzwO0neMUVV3Dy5Elvx5ibbrqJnTt30tnZyWOPPcaaNWsC5uXxEgSwWq04nc6Q2XECQSST20jbCZH2ma5acimzZs52d3V5+DkM83+IbHJngypyPRC5p6jZ6S6hkLTtfDr1l1xbs5H1XQuZhES93MZeutFLDqZqI+8bWunhXd0hb0ZnrCio7NL1lkAEE1sVdusquMae7edu37/3aU95S9Su7bKsYc1Nm3n90QdDzuui6/8xbPJNqEzRgY6LN4QI9sP62V6/EGgAPl5eCUuXDOgesfgJ7t+/n5KSEhobGyktLeW9995j3rx5vPjii2zYsIHDh0M03vXB4yf4yCOPsGvXLq666ioqKyuD9g999dVXue+++zh+/DhbtmzxWjcJBL6E6uvpWbU8O72TSS88HnI7IeI+kwrv7N5B+gcOJIeC8bxb/Z42EV1C3O1nNnLYeIiK1HryerK4rLuUTrmDXbpjmCQ7Mfmk9ArVLt0xCu1ZYRNmglEvt/mFQINdvws79XIbGYr/6/P0Pj20/SSZ204HnBrOtb1k6XKuvO3ePpumXow9DkrPtCDd8+9YwmzzFBYWhi/4J3RG6Vhg7O1iDjP9PboGOy4U/f0EFyxYwMyZM7nlllu8xyP5CZ4+fXpQfoLB+OY3v8kXX3zB0aNHef755zl69OiAX6NgfBLJ5Hb5mUNkPXJ/wJdJz3aC5e23I+8zSdAluQUBrTtRxfdvJldJJUE1EDLxU3XvsxW7JvMN6+XcdeY73NC8ns7esGMXYcQoHL7zipHuKO/ZjT1oRqsMJH8U/u89lGt7ydLlXPO1b7O08gwLqhtYeryW1UdOkdve5ffvEgxZllm3bl3Y+wbLKB0rjM1ZDyPBPLoGMy4Y8ewn6GHq1KksXbqUN954I+K1BBOLcH09ZVXh1s//EvzE3i2GhgcfoiPK7k7d2L2F6X73QWKZY0bvdfvfx/2fZY4ZaHzcINzhyAr3g2Bv/xi8BKIVNF+iXb3a0AV1t5+PBn134HFfQrm2qy4XTVseJqOzm0ltnWR02fp+BT7/Lqor+PVLS0vZsGFDQDPq5OTkMV0eAUIEAzAvPhdtbm7IQlIkCW1ubkxeXv3x9RNsa2vzHo/kJ3jgwAGOHHFblPj6CRYVFXn9BIGQfoJARD9BD01NTbz77rsiKUYQQLi+nnOaT5Blaw8dKOzdTtDVnonqXuGEo0jJZq1jHgn9xvh2YvHFG44M3TomqjmFmpeqqt7/BSPa1euLijHA21ACik3RiWgw1/ZYtnlCUVpayo9+9CNuvPFGrr76am688UZ+9KMfjWkBBLEnGICk0ZBz7z3uLFCP66X3SfcfSaxeXsGIRz/Bxx57jPfffx+dToeqqvz4xz8W5rqCAML19Uy3d6ACZxOM2HVaDA4n6V02JCQ0mSVIhhRUezuZThcGcyL2rs4QqzK3mKmoVMr1QTusgFsIC+1ZfjV32UoKjXJ7wHkDWb0Fm5cRHdlKkI4yqkJP5TZSv34RPTVJAcayntXru7pDfdkuPtcFqHIUsrPfKtAz7GsrCmBb5C8PwVzbh2qbR5blMVkGEY649RMcCEPlJwjDXyc4Ugg/QcFQ4/H6C+bYsLruIxZb9mHT932/LtIXszBjLTpjXya0ZIRPc7s4ULer94DPRXovqkdLj9Tn+mBW9SFLFDzF56ekJo5r67FJfT0yPTV4BnS8qd834Nfti+eavnNxb1lAxsZSPxshR4OVjvdqvPM8oKniC20Ndp/X5rlexdzpPFXdHDTj9tLSXOof3hPRtT33rvMCyiW6du/h1I03RnxdBc89N+CEv3hizPsJxgPJl1xC0tq1omOMQNCPUH09i7tOMMf2OTZd39/IZPMMzsu+KuAaig3OPWkmQ57nLhz3WaUZ0GHHQQ/+tkeeEoU5rnwKlSzvCi9Y8bkvvjV4BtV97QHWuQdc0zfs6tm3bNt6gtzSDK+N0NmXtwGGoPM0qFrmOPO9hfhfHmnlnesXcUhy0dhlD6i9HKhru2ebx9nQEHzvU5LQ5uQMaptnrCJWgoKYEb9TAfjXCUqqwo01L5Do6vIKo2JOYkHOZaRKKeSqaQGhTBUVCcmvhZgRPe/qPqcHV0ShMqo6pjtzOax1r7LCju8NrzpwucV1KMpfe695jX1FwGs7elEOyd3VTJe7adzyMPUrb+U984nAefZ++vbfwwxV9wcDd233NgGBoNs8k4egCUi8IFaCAoFg2Fk3N4+LZ+Xw+SenOXuskjP16TS7rPQkpWDLLQStjo9xf/AHCx962o75Npaulc/SI4XPgPRgkxzRCWDv8wMui4hwzXq5LaAxduovHsVc9T71wKkpU9hlrgyeeBOi9jBc3d9AXduTL7kEfvHzwG2enJwxt80zlAgRFAgEA8KzIslu7yEbLbPyruUj6TBH9PUBH/jBwofBqJMCGz6HJQ4aGgVLuEnsqEMBTk+ZzCcrlofPPO0V0zq5Fak3gceT0NO29QTG0owAgRuoa3s02zyKolJX0UaXxU5CsoG8klTkATbwHgsIERQIBDHTfbg5YG/qhNzAEV0DQZUpxIqnv5uCKsXB7kz/zM0I+JZLeBwplOYKFElm/+Lok0y26Q7ikPqKIxJUA8s6ZpBWNWNAguchWIPyUMkvlfsb2flyBV1tPs29Uw2suqaE4oUD75kazwgRFAgEMaEqKm1bK/2OKah8rDsaXjz6hQ+DJYoYVd0wTbqv5MJKT8iyDD1aHDijcyDsvWaukup32HF6D9q8BZxddDlW4/Gop+grgNC3ek48MomFxef73zpMA22X4mJf4z6arE04651U7Kqgw9LhPTeUZVLl/kbKnghsw9jVZqfsicOsu3XuuBRCIYJhGM6wQDxaKXk4evQoCxcu5Hvf+x6PPPLIqM5FEH/Yq9oD0vTr5Ta/soRwdGOnSm7gXV3gB64NR1+66VBF4Hw6yABh6/TmOvPZp6uK+tLTnDkBSTH6kksB6NaEKU6Pht7V8/ZDHzL/8qXetmTBE2PciTQfJR1gy54tNFgbmNQ1iWWNy3ov1TfHYEa4iqKy8+WKsNP58JUKiuZnjbvQqBDBEAx3WCAerZQ897n11lu56qqrhv1egvgl3EojWEeSWArRjej5QHcYCOJs7ltzMURIwGrHXIqUbKrkxrBjfWv3ouGQ9hTZaopfmYQn4d7MEGROS9Bh7/J69QULQ4M7kab5hXJenfwcDckNoML8lvm9lwguWr5GuHUVbX6fdcHobLVTV9HG5JnBPQrHKqJtWhA8YYH+bwpPWKByf/g/pEh4rJSeeeaZACul6667DnB3lFm3bh033HADixcvZs+ePZSVlbFo0SLOOeccLrzwQsrLywHYsWMHixcv9l7n8OHDTJ06FXAXy2dmZnLHHXewdOlS5syZw/bt20PObcuWLVxxxRXMmDFjUK9RMHbpPtxM/cN7aH7qEGdfOkrzU4eof3gP3YfdDReCdSSJti+mJ9zZJTnCtCZkSBNe1N6m106U8FZGQGUsq7fec3bpjqH0KreCSp2mjROaBlRUzOHapMXAey9u5+3tJ2l9vTLkGBXY3PBNZFUi05aJ2WUOa/xrsVh4bc9rAHRZovsSE+24sYRYCfZjJMIC8Wql9Pnnn/PWW2/x3nvv8ZOf/GRAr00wtgm30vCk7BtLM9Ck6P3CcZ6+mF2E6M3ZKwTLHTOHpn1ZjOzWVbBPewJHuPILyR2O1ama8OP6nePZ57TjCFoMD8ScbNOflrM6TK+dQEkMvWcqI5HtTGeOdTqtanfIcb48s/cZUvNSmZ0cXZF8QnJ0X3bGEmIl2I9YwgKDId6slBwOB7fccguPP/74iIRdBfFHsISX/rRtddf9pa4v9jse1tWhl3nOAiSkPieHESZaYZvhzHO/hhhWcNVyU1CLJntv1xsDg0v46Uo+wYm0XRHDuQDpzhRsmshOMgA2jY2H9zxMdnESCanhBS4xzZ0XMd4QK8F+jERYwNdKKS0tzWul9Oyzz/pZF42klVJdXR2VlZVcfvnlALS1taGqKq2trTz99NMxv0bB2CNYwkt/XO12Pt+7m9qMs+RfkU7GBxKKxX1OkZLN6u7p7DHV+ImBUdWx3DETCcmdlBLnJGJiqiuLk9roPUO9YdQQjvEqCksc0zGpeoyqjrfkT0GrC18/qPrvmTrkHt6VI9dantW202xsxqqxYnKZgoZEVVS6Nd00GZvACgea97PqmpKg2aEeVm4oGXdJMSBEMIBol/uDCQv4Wik988wzpKamApGtlDZt2sSRI0eYPXu2n5WSy+XyWillZGSEtFK6/vrrQ1opFRQU+DXZvv/+++ns7BTZoROIYAkvwXjqkyd4P+UzZEViTcoqviLNJ/V4C1kt7eQ1H+Ubi2+ixQTdUo+36BvgZcNH7gvE+efobl0FOjX6IJlGlcNnxkrQg4s9uuPezjkXuObygfZogND5nxc8aWiX9hiFPYHO9goqzdpWvjAfBwkOZhxkWeMyb3s6D2rvEvdgxkHvv0WTtYnzFp7HulvnBiQEJqYZWLlB1AlOGPJKUklINYQNiQ5FWCAerZQE8UuwguehdvIOlvASjLPadtY0rSCvIx+b5GAPZyAfjFOSWO64jqndevIU9/vLE3E4I7eGbHAdF/Tbs+tfsxcOVwxjvZ1zeuaytmce72s+x6n1uXE4UYQ+Z3uplUlqev+neDLnVdTe088knGFX9i7mt8zH7DJ7x3VrujmYcZAzCX22TFlmt0l48cJsiuZnTaiOMaKBdhBCFY16GEtFo8JKaexTXl5OWVkZFh839lAFz4NBVdSwVj2elcZzqX8nrSPXfbD/Z6MK85z5LHWWIEkWVNy+e5VyPe/pvxiyuYZkkAkoAddiCK/nc10jOq6xrcDu7OS17r/SkzUpJlPf5fbZlKqTvI89DbR96wQ9yMikd6djdBmxaWw0G5u9r0lCIsecQ9nVZWjk8ZMLIBpoD5LihdkTMiwgiD/Ky8u9K35fghU8DxZJlkJa9SioSMDf5D8yyTKbbim0HdEhbQ2ZajL5qha77iWSey6PuoRisOiQQY1yJRdJMKUox0V7PZ/r2nDwsvEjSpx59CTGJoAAnzpsrNg8F8nq8KvjvJiLWZ2/2tsxJsucRautlTvev6N3in1rHk+I9K4ld40rAYwVIYIhGC9hgalTpw7pKlAwciiKQllZWdgxvgXP0aC6XGGbJ5vmZpJ27UzO/uUYkrXvA7ODVro/f5n5KWb2zQy//wXwoe5LrrNfQGLPNShArkL4EoohosCVRYGSyXu6L/zm40esK7yhHteLDQeHtKdiO6mXnDk5JMwIXrSukTWcl3ue37FHpUcDVog55hzuWnIXFxdePKA5jBeECIZBlqVx1x1BMHaorq72C4EGw2KxeLuJ+BJM7DrefTfQRic3189Gp2LXRxx4YStYXRg0ZuyubjoUK4lnq6maO5tus5locEguXjJ8yIqemRSpOUi425YNd3ZopbaBerWNAlcmpzQhvvzFy/dYKeCHqFl70cyYxl9cGLhCXJS9aEKvAD0IERQI4pTOzs4BjbO8/XaA2MmpqShtbQHnOhsa3Earv/g5TZ0JqB+3cX7iV6G3OqfT2c42x4ecKlwU8/xtOHhXf5i1DokiJZsiJZtFzqKYenMOhC7sdGns5LsyqNG0xI/oDQWqSrLZ3Wc4VoKtEAWiWF4giFt860SjHedxD/cVQCCoAAK9DuMSzc9+jH63C5MmyftUldzI6+ZDNKcZ3XtWMe5b9W8rpqCSo6aiVzVD3h802H1Pa1qG8SajgKqCBOvYgTysv8CJhVgJCgRxSmFhIcnJyWFDosnJyd5Vgepy0fDgQ73CFh3avIUYzrkG2eSfbl8lNw5N6LK3rdgBTRVHtWf8yySGMpMzyH3Hm0xIqJzPXkq790D1x1C0arSnNC4QK0GBIE6RZZl169aFHTN/+jLqKtpRFNW9B1gffQNobd5CjEu+i2RMQ0HljNxKpVxPrXyWT0I1mh4g+7RVAS3FJgwxtmBzn6MGfJlRJYmPWUw506GzIcSJfbgUF5/Wf8qbJ97k0/pPcSlR9kOdYIiVYBgUxUXtkS/obGslMTWNybPnIA/RRnI8+gnef//9/O///i+TJrnrj+bMmcOLL744KnMRuCktLWXDhg0BdYIa1UBCWzFfvmnjyzf3k5Bq4NxiS9R/0CoSmvnXUCe3ckpu5ri2Pmo/wAETwrlhPLPUUUKCome7/osgHoaRCuOD92Ar40JmGjKx7d4TMst3W/W2oNmgdy+5e8Jng/ZHiGAIKnZ/zPZnn6TzbF+GWWJ6Jmtu2kzJ0uWDvn68+gnecMMNolVanFFaWsqsWbOorq7m+KHTHN7WhK4nGcknkNPVZuODvXrmZs4nu/lgmKtBfUoCx+cvpy2lfPBdXHwXK6HKEYbYGikqIs1rBDCqOkqdU5CRWOuQ3Q4TvqvhYALoEcaQ4ihhIZlP7vw5GUePeo/6Zvluq97GbTtu86sJBGi0NnLbjtt49KJHhRD6IMKhQajY/TGvP/qgnwACdJ5t5vVHH6Ri98eDu34c+wkK4hWJz09VcujtdnQ9KX4C6HkeFSqmf6u3rD049SkJ7J47i9q8tMGHJ3s/Y+c5C/we95/WiOMrvKN1f9VtGyUjIUnu7Nhr7CtY6igJf26UyUed3f5WSZ4s37a3ytiyZ0uAALqn5T728J6HRWjUByGC/VAUF9uffTLsmPeeexJlEG+iWPwE//3f/53PPvuM4uJiNm7cyHPPPcfnn3/O5s2b2bBhQ1T38/gJ7t69m6effpprr702ZLPuP/zhD8yfP581a9bw3nvvxfzaBENP5f5GnrprO6f/IGNwhjFKlSTsxjTaUkvQZM5AO/k8NJkz8CiBCnwxKRN7bn7v+MHNy4yetY55LHWVsNYxDy2i5syNSlErTFNy/NxaZCTManT9WSNhsvXzC+zdP6z9r5/Q2Bl6X1hFpd5az77GfUMyj/GAEMF+1B75ImAF2J+OlmZqjwyuD2K8+QkCfPe73+XkyZMcPHiQn/zkJ1xzzTVUV1cP6nUKBoenj62jI7rxuVrIXX4r5pV3YDrvFswr7yDh0ofQ5i2kJcGIJWcSqs4Qe7mDh95VziJHERvsKzCgo1Ku54Rcj5M4WV2M5l6jChf2zGFyT/B+lVG3jwuV4auqGKxWMpuCfEapKnLjWWbXRM7CabJGbxM13hF7gv3obGsd0nHBiEc/QYDc3FzvzytWrGDhwoV89tlnAyrMFQweRVHZ+bLbgDbk6s+HHKmeJQlT8Fa69yKZ0qhf9g0+kg7Qox/8n7wBHalqAn80fBzfzhCjgQSf6SpZlFrAGbmVbuxeOykZiVwlNXz7OFUFlxM02sDEmV5hnHb0CHKYMpi0KHoseFwjBGIlGEBianRt0qIdFwxfP8E2nyLmSH6CBw4c4MgRd3NjXz/BoqIir58gENJPEAjpJwhw+vRp788VFRUcOHDAu/IUjDx1FW1hLb08qKgk6E+QkaalTtPmtdLxcFJu4l39YWy6IfjOK4FdcrBdd3jiljxEoEuys9NQwZv6fbyn/4I39ft42fARVXIjMhLLHDPcA/vrWK+wGeurMdZWIjn9s3UlZw/G2kom+/ydBiUzPeSXJgmJXHMui7Jj7wA0XhErwX5Mnj2HxPTMsCHRpIxMJs+eM6j7xKOf4L/+67+yd+9etFotGo2GX//618yYMWNQr1MwcLoskUXGbmimO/k4zZoeTvYe8xi3FinZKKjsGuKavyG/1lglVCNuiQCB8/oIOuYx1ZXFWnVur5dg3zpEcvZgaKhB19EGgLajDZc5CVWrQ3I60Fg7MLkU0q0h3heShDYnh29+8x4+3nkHEpJwjYgC4ScYBE92aCiuvO3eISmTGAmEn2D841JcfY2NjeksstnRdDVR05LJq6+dRZF7kBV9b1Zo3yeu3dCMJdWdIexff+b+z1rHPAzoeFMvkiCGnIF0u1EhAQNXdM3jYMt2TluPBYhcyEv2fkxfMH0OiX9+w+8Y4A2bTv7Fz71lEv3rBHPNuRPGNWJM+wnabDa+/e1vU15ejtlsJjc3l8cff9yb8j8SlCxdzpW33RtQJ5iUkcnqG4emTlAggBBFzU4n/9iQyhn7cizpfb08ZZeeRMt0DPZMFBQ6kkOs8HpXIrt0xzjXMW34X4QgOnpbyG1tedEreFprdBlPeqeLubXNpDZayfmfR2nY8rC/G0hOjp8biHCNiJ64E0GAzZs3c9lllyFJEr/61a/YvHkzb7/99ojOoWTpcorPWzpsHWNGCuEnGL+EKmrW2vI50nN+QAKnIvdgSS3H1DUFm6kBVeMMffHeD9xduophmLlgMOFgRauLuZhk9pkWctu7cLZ3oUlLZ/q728L6QoJwjYiWuBNBo9HI5Zdf7n28bNkyfv7zn4/KXGRZQ/6cwAQSgSAqFJe70XFnAyTmQOFy6P0S5VJcwYuaVTjn7ILeB/0+aXtXeN0JERIjfOghjFAKBs8AwqL9E16iwejo+3d0NjUhaTQkLF0S83UEgcSdCPbnl7/8JevXrw/6nN1ux27v2ySOZEAqEIwY5a9D2V1gOdN3LHkSrHsYSq9kX+M+vxCoh0xbJmZXGOPaWFcgIoFl+Im2J6iqIjl70EQZAvWcY3Q4Se/qK3vSZg28vMFv/1mESIE4F8EHH3yQiooKHn/88aDPP/TQQzzwwAMjPCuBIALlr8MrNxCQImipcx/f8DxNxuB/ekaXSDQaK0gqzHHmc0yuoae/joSo8TM01IT4XhIk1bT3nNIzLd6j2txczIvPHdB8RVPt4MRtneAjjzzCa6+9xt///nfM5uDfjO+55x7a29u9/6upqRnhWQoE/VBc7hVg0Eaa7uCnWnY3WcbgLfNsmsiNDiIybvK94xsVOKytIa25HVP1UYy1JzBVH8UQpsbPU/4QDKPsH7o2Opwsqm4gt723fliSyLn3noC9v2jw7D/3jz54mmpvq94W8zXHC3G5Enz00Uf5wx/+wLZt20hNTQ05zmAwYDBE2YZoAKiKir2qHaWjBzlJj6EoBUkemvhSPFopAfzpT3/i/vvvR1EUVFXlzTffHNHM3DHPB4/4h0D7IaGCpRbXkTPk6JJp7GlH9VkxNBubsWqsmFymqLrEhLiJYCTo3aNtTDeRcNy/vEEXpMYv3D/L8vMKWdrxe2qtKTQ1mLEf15NytqdvBZiRQs59/583+zMWQu4/4/5aJiHx8J6HWZ2/ekKGRuNOBE+fPs3tt9/OtGnTWL16NeAWu927d4/oPLoPN9O2tRJXe4/3mCZFT+r6YkxzMwd9/Xi0Utq/fz//9m//xrvvvsukSZOwWCxotXH3Folfyl+HHaHrSxVVpq5nNl1KGp+/9QH/klHFHTnp/qEzCQ5mHGRZ4zLvB5SXIHVhfqi9m1NCBEcOCVSdHpc5ya/cIfryB7fnx3klBmTlWvKP/o38hDOoU8HapMcpZaK9aDPmq38woBUgEHL/uW8GfU21J2I2adx9wk2ZMoXRrt/vPtxMywtHAo672ntoeeEIGRtnD0oIPVZKNTU1AVZKHp599lleeuklsrOzKS8v57HHHqO9vZ17770Xp9NJWloav/nNbygtLWXHjh3ccccdfPbZZ4DbSumKK67g5MmT3mL5m266iZ07d9LZ2cljjz3GmjVrAub1s5/9jNtvv91rqhupyFTggzcMGpxK2zJ2WjbRpfS9b051rOae1jIenvkhLh/hOpNwhl3Zu5jfMt8vScZk7abwVDVfzpoVYs9JCOBooWp1AzxTQgXqPvwT+QntfUcTUklY8z244A5vRvFAibZZ9kRtqh13IjjaqIpK29bKsGPatp7AWJox4NBoLFZK+/fvp6SkhMbGRkpLS3nvvfeYN28eL774Ihs2bODw4cMR7+exUnrkkUfYtWsXV111FZWVlQGt08rLy5k2bRoXXnghFouFK664gvvvv39EzHzHPNUfhwyDVtqWUdb2LwHH7WoS9rZvsXHvZXww7WWqMj4H1Z0hmtsxlZTWUkzOJFTZgazoSbQo5NWeQt/5KYcWLEDV+djyDNQVQjAkDKTswZdOZz+Lpe422PEQZM+G0isHde1om2VP1KbacZsYM1rYq9r9QqDBcLXbsVe1hx0TiXi0UnI4HOzdu5eysjI++ugjPvnkE5544olBvc4JQ2fwcJOiyuy0bOp9FFyojM4ELjn2HRbWLeeK6vVcWH8hRd15OJJPYkk5jEPThYqKJcXBvoXfQu0xkXD8c0zVR0lrt6NTxZeUISfaYJSqIjnssZU9BCFRG+wzR4Wyu91RhkGwKHsROeYc0VQ7BEIE+6F0hBfAWMcFw9dKCfBaKd1zzz3eYzDyVkqFhYVcffXVmEwmzGYz3/jGN9izZ09Mr23Ckpjj/VFVoKtBT3u1iRMN5/SGQEOv1CQk7IZmpnXnYVD6rQg0KrakGizph+hIO0p7xiGOLF1AWuZcko25tCYbcMSLj98ExdBQg6QS2gMwDCoqBp2dyeYQX6otte4owyDQyBruXuJuzN9fCEVTbSGCAchJ0Tk/RzsuGPFqpXTttdfy9ttvoygKLpeLd955h/nz5w/4dY43FEWl9mgrxz6tp/ZoK4rS96Hnyl/Kp+mT2dGUQvkbOZx6L5Mzn6RRU14Q8boqKl3JvSH4KKKaTo2LmkwjZ7PToz5HEBtTXOG3Kjzozjb4lz3EIISekRkFp9lrMvBmgplPjYbArzQhogyxcHHhxTx60aNkm7P9jueYc3j0okcndJ2g2BPsh6EoBU2KPmxIVJNiwFCUMqj7xKOV0re//W0+++wz5syZg0aj4YILLuCf//mfB/U6xwuV+xvZ+XKFn79fQqqBVdeUUJX+OVt2P8ycmhKuOpREm95CmvU4Eio9+qQwV3Xj0LejaGKILPSKnlgBDh8OSx2kRy6/0na2g5SIznwR+TXbOJPUiS2kcbG/x5IkJeFKXszr6ckczurb289xOrm7pZWLrd3uAz5RhsEgmmoHR1gpBSFUdqiHwWaHjiTCSmnwVO5vpOyJUAlIKgfy3mV6y7kk9vRl+hpsrZQc/yMuWceR0pvDXt9mbKQj9cshnLFgwPS2NjMfP4R1+jnurM+QLdAcpNZNR6MrQJJkdD0WVnx8L60JBhrTp1GfcxEOfRISVpASkORcVFcd9D6WtZO91357xjPuxChA6v1IfrSxmYu16fCjQ4POEJ1oxGKlJMKhQTDNzSRj42w0Kf4hT02KYUwJoGDwKIrKzpdDOzGowPy6tZjtybgcNbh6vsTlqMGmT+bwnFuwmSK/V+T++4CC0cGntZkMGBpO+R3vPy6hLRutfiqS5P4YdeiTaU+dTnqXjYxuHXrtJLT6AjT6WWh0+ciyFo3PY0mSvXtyy09+A0l1/+xpnvBwRhqur/xndAKouKBqJxx61f3fQSbTTCSiCof+z//8Dz/+8Y+Hey5xhWluJsbSjGHrGDNSCCulwVFX0eYXAu2PhISrpwKH9T1QO32eSERnuogzeSvQ21rpMaT6rSgytBJGCRJkiQJDBq+rBrqwi/29UaS/s7uuow1qK7HnFPiVo0jOHkwtekwE7qvb9ck0Zc7n8JxbAp4LVcYiIZHUk8bcugvo1ndg1VmoS66kXiux771/4zyNNnyZRIRm7dGiKKr7/W6xk5BsIK8kFXmMfd4NhKhE8K233uKvf/0rzz//PAUFkTf6xwuSLGEsTh3taQhGkc628Jm2rp4KHF1bA59QO3FY38CasJ7i2i85OfUKVMVFrqaNcxLTMWv6iqtVVWWZYwbv6g4NzLFcMDBcTnRnG9D02EO2NtN1tKEN0QLNlTAJjb7Ef3xPJ+WlN7v/GWOs3VxR/Q3vz536Vj6a+hq75J0seuUGNBueDy5o5a/DK9cHHreccR/f8LuohDDcnnfxwuwwZ459ogqHlpWVcd1117FixQp++9vfDvecBIL4QHFhPem/V6eqijfs6ew55V4BhsFh3YGpu5HJlb8hy7mdpck5mGT/7iKSJFGkZLPIWSQEcASQXAq6ploSjx3A2FyHznIWbZjenp4WaP3HOaw7UFXF/UBV0fV08kXpze59wEE2L0joSeWSY9/hHWUVl+bnsW17kHpBxQVbfxj+Qlt/GDE06tnz7h/x6GqzU/bEYSr31o/rUGvU2aG33HILF110EUuWLOHOO+9ElmVv7VpjY+NwzlEgGBEUxUXtkS/obGslsf0Ik4/8AlvtRcC3AIKHPSOhdtBkhNpUuCJ9JRB6hZCihvERFAyO3m29c3qmUHXir0SuhtcDETJ21Q4UZy0a7RQAHLrAjOvopqYGrd9TUVl+8hv8YeHn3Jao8ujeX3PxeT/oG3TyQ+g+G/7i3Wfd46ZdGPTpSHveoPLhbz+kKOMWZKlX8AcQao1nohbBvXv3ctNNN/Htb3+bO++8U7TSEowrKnZ/zPZnn6TzbN/+qV43hXytDYxhwp5R0JDkItM4FbM2fJaaieFzRJnoGFQtKx2zqK3/mOjawTgjDwFQuzDYW3HJepy6hAG1rwvXySWpJ43cjunUJVfwcMXLrD73+30lDVU7o7tB1c6QIhhpzxskOp3p1PXMZrLhC/chH1/M8SCEUYngv/3bv/Hiiy/y+OOPc+mllw73nASCEaVi98e8/mig+4PdoaeypwmtdAxn944BX9+h1WDSJvodU1Cpl9voxo4JA7lKKrlKKmZVj5UeERYdKlRY6Cxipj2DAy3bqbUei/JEJapRJZV/J9kuc2BBhLCkdzqBq75ImB3JqJJEvcPi7/QQ7WXCjOuyhBNAn3FKms+j3o3rsrth1lfHfPlGVCJ48uRJ9u/fH9bbbzyiKArV1dV0dnaSmJhIYWEhsjw0VSXx6Cf4gx/8gA8++MD7+Msvv+S///u/+cEPfhDmrLGNorjY/uyTQZ+TeoubndZtwADNbiUjqDa6XX0h1Cq5kV26Y3RJPkkIqoFljhnMdE5iv+7kwO4l6KO3jGFKs532zl28aTsd1E9vMHTrXDy75hRT286loDuGqaHyee4O9E4js5vPjzjeqrN4f/ZzeihcCfw08g0LV4Z8KiE5uuhDgtza74ja19KtaFVU14hXohLBF154YbjnEXeUl5dTVlaGxdL3BkxOTmbdunWUlpYO+vrx6Cf4y1/+0vtzfX09RUVFbNiwYVjvOdqcKj/kFwINQJIYsAACGsNCXLZPaLadxuq00KDr5l1dYOF9F3be1R1iqjIxO/kPCk8dn08o0lPu0B7GyX2wnJjcSflUmbb2DgrKozvHs9c3o/k8jM6EsCtDFZVOfRt1yX2uNn5OD0WrwJQG3f0FygdTeliRyitJJSHVECYkqpAot5CnD9E8ZAhauo02olg+COXl5bzyyit+AgjuLgSvvPIK5eVRvuND4PETfOaZZwL8BK+77jrA3VZt3bp13HDDDSxevJg9e/ZQVlbGokWLOOecc7jwwgu989ixYweLFy/2Xufw4cNeN/iTJ0+SmZnJHXfcwdKlS5kzZw7bt2+POMfnn3+eSy+9lNzc3EG91pgZwaLfbdXb+Pe3Ai2OfJGQyDLmU5AwmyxjfvShLCkJXcJ6tMalICWiorK35V126So8F+5/IwBq5QiJDgJ/egXQWFuJqfooxtoTmKqPknD8kH9Pz2GgJse9/KtLOo5V10q0IVQJCZMz0ftzMDyr1o+nvoYqqcGdHmQNrP9l0PO9rP9F2HClLEusuqYkxLMKILEy+Zm+pJj+DFFLt9FE9A7th6IolJWVhR1TVlbGrFmzBhwajVc/QV+eeeYZfvrTKEItQ8kQFf1Gw7bqbdy24zZyJD0QXOgnm2ewKGOtX0KL1WlhX8u7QfaWEtElXAp0e1tieTqJ6MyrcXRtpZo6bHKY5BhJ9AMdCMbaymEXPF9UVLqMLhrS3asnVVLRZb8Atf8c055fuHESEp9OeZOqjM/DOz2UXumuBfz7v0CHj61a0iS4LLq/m+KF2ay7dW5AnWCito2ViU9RbNwVdIYkT4LC5RGvH+8IEexHdXV1wAqwPxaLherqaoqKigZ8n/5+gldffTXd3d1ccMEFPPXUU0BkP8Hvf//7g/ITXL48+Bv4o48+wmKxcPnllw/49cVM+evujLP++zZhMtFi6XDhO9aYpGPL5w+jotKQbqfL6MRs0/h9KE02z2BF9lUB1zFpkliRfRUfNf6F09Zj3iJqnXYxsloQ8oPNlDGLzswoU+hFwXz0SBKSa+S+OHjenXtKz6L6/Bu9Ovko9/Y8yhdt38HsSAt6bqy0m9z7fznmHO5acldop4fSK90JKtUfu8OTiTlucYohYaV4YTZF87P8/54cO5Ff3U3/xt/eN+e6LWM+KQaECAbQ2RldDVi044Lh6yeYlpbm9RN89tlneeONN7zjRtpP0MPTTz/NjTfeOHJlMIrLvQIMmrgQPBPt+N4G3v/9MWxdfY7exgQdF147g+nn+oRoFBeVb3/Iznd66Orqez1f0X+Xj6a+RlXG5+wuPcvqfVle7ZGQWJSxFgj8PUmShKqqZGYv5KjW6G2nZeMsna5PSLSUYLRn9c5cJVFfhSOzm1pN4pBk8wkCUbW6yIOGCKvBye45ZzmV65MJI0m0azTcNf0UCa77mFl7KefVXoYUYrcp2tXixnP/gYJZ/xyd04OsGXSCiixLTJ7pK+BXgvx8iOjMlnFRHgFCBAPwFZ6hGBcMXz/BZ555xpt1G8lPcNOmTRw5coTZs2f7+Qm6XC6vn2BGRkZIP8Hrr78+rJ8guMX91VdfZe/evQN+fTFT/bH/H1kAfZloSuFK3nn6C47vDWzQYOty8NZTX9Bw0sKyr09j3+5fcvLdT2g8fSv9t789HTnenvEMVbmfs2NhMxcdLATFSqZxStiavpOaJj7UVQL+H76qxklH6hGcXR3oHMnYUo7TLA/cfFkQHZLTEXnQEKCaz+VPF/wZRQ6dZZrdNp/zakNHUDx7fZESYnRJ8PULLh393p1DsMqMd4QI9qOwsJDk5OSwIdHk5GQKCwsHdZ949BMEePnll1m4cKE3DDsiRJlhVnnwLNsf20mPNXwh84F3TvHEqQc5kLaX6xrvI4Hgjtqejhwn0w/hME/CmLwZxVlLYkg/OHd93y5d735g0NW0SnfCaWLImBcMlF7bI421Y8guqTEsxtXzZb9m6EnozBeh0ZeQ2/E5Z1KOBz1XUiVWnHT3/4y00ouUEPNm3m8prlHjw+x2CFaZ8YzwEwyCJzs0FBs2bBiSMomRYEz4CVbthOeuCDuk0raMsra7or6kVdvBtpLnuPJIZFPgvZPdiVDn1q4D3A4PKxP7hNC3sN0q9bBbF67NVC9iX2948ckKjTopRjKiM38FIIjrR5/QqaqC4qwFtSsgyelg3nt8MvUvQS8/qX06V5b/v4G+Ii+fTnmTfflvk2POoezqsglvejsQYvETFCvBIJSWlrJhw4ZhrRMU+FC43L3PYKkj2L6gomrY2bk5pkuanUlMtkyPaqxH/Dy0OFW6FIV2TRvVmmYqNfXYpBhDbkIAh5X+tkeRkHWl6BIu8YqZrCsOKXSSJKPR5Qe9zjl1F2HXWNk/5R1Uyf+9anaE/7CNlnZTEyoq9dZ6/w4xgmFBiGAISktLmTVr1rB1jBkpxoSfoKxxl0G8cgPBMtHqembT5RyajLtQqKg49O0ocg8uTTevGupwaMR+XtygquByug1vQ9gehURK9BNACC90YS+FxJLTX2Ve/QXsnPZHTmQc9D7n29llMCR39xkx+3WIEQwLY+sTfYSRZZmioiLmzZtHUVHRmBPAMUXple4yiOQ8/+PJk+ha8q8DuqRNY8Wm6YrYLstuaOZs1m7a0z+nI/VLrEnVOERCy8ijqn3/638cMNZXo49gexQMnXm1nwAOBSZnEl85djNLT673HqtLrqRT3xrm/aaioIR9P6qozG5Y7nWZ9+sQIxgWJsxKcBxtfY46ihJdZ4zoL+hyZ5+5euCqx1FcCnWV7XS50kgonotZleCtA1FfzvMhs+LUNyKMdAugJTVIB6DBhDPFfuDAcPagaz+LMyUjwMk9utCnEb8Wdz77fMPFgrq1NCaeoirzIKqkUpGxlwV1a4Nkf7rfk/WJVUzqLA55PQmJJEcaeZbpKHkd/h1iBMPCuBdBnU6HJEk0NTWRlZU1aLPLiYyqqvT09NDU1IQsy+j1+sgnRaJfl5hK2zJ2dm7uDX+6gIMkpBowmLXYrQ6iUZdoO3aoqHQmH/ecNHSIt1j09H451TedQd9S5w6GN9UGdXIPi5SEPvlmVFdd0H2+4cDzPruo8h84mfE5kioxq2mp33O+o0Ehozu6NmNmRzLfX/I9kRQzAox7EdRoNEyZMoXTp09z8uTJ0Z7OuMBsNlNQUBB9eNiz0utfZ9SvS4w7AzSwl6dvK6eBWNGEolvZiSI+Y0aVYKs8j5N7LOjMFyHLWpBj3+cbLAbFxKKaS5jbsAqTMynMSBmDK7r64pvP2xgf5RETgHEvguAubC8pKcHhGJmi2vGMRqNBq9VGv6IO1Q/00ofgrXvwCKCiyuy0bOodELz+DtSQXThixWH9AJfhBDBtSK4niB59/SlklzP6VR4QmDDlOTz8Ic9oWFx7WdRjJakbRTWG/DKXkGbgipVjvyfnWGFCiCC4P7xHrA2YwE24fqB/vBFwBzz3GQ2c6plLl5IZcIk+JIYqzqgoTlz2vUiagXf9EQyA3uJ2fWtjyH9JSbcYSTYjySZQbb0/JyJp8lBddahKJ6piRZJNSHLSsIc8o0Xy+f9IqKqxd6RCsNzEVRtKRr9TzARiwoigYOgJ28A6Yj9Q2GY2sSUjjQatlunN+YxU8MdlPwio7lWIo8fde1LsFQ8vvXt/hoaakFKhNV+B1jAj9DVGIdQZPbG8f1SMchcacwJdPvX6iWkGVm4ooXhh9pDPThAaIYKCAVG5vzHAeiUh1cCqa3r/iCP0A91mNnFbdqZXIlO6Ry4VXFXaAPfHlqHhFLbJxe4PaV8h7PdYViUUSWQYR02/DNlIGZ4aw+LwAjiukLEpSXxt0wIkWYrKBUUwfAgRFMRM5f5Gyp4I4o7eZqfsicOsu3UuxdrQ/UBdwJaMNLcAShKSKjG78fwhTXoJee+eCpSePpdsXUcb1FZizynwS8s3YyDRZaRRtoCEEMBIqKBDQ6lzCulOA7WNn1FDXeQMT8mE1rR2DAjg0Ne9WDt7mHHeCJtWCwIQIigInb0ZbKiisvPl8L0zP3ylgqJ/zA6ZwrLPaKBB637rSarE3LoLSOwZ3o4w4BZAR9fWgOO6jjYKXdkU5y7FKtkxY+SU1MRhbc2wz2lc0Pv9ILfZSkfnHqpsp1FRQ3y4GNCav4ok2UakjGEo8Hw5c5fphG/eHgsJyYYhu5Zg4AgRnOjE6OZeV9HmFwINRmernTrHfCaH6Af6ntkEQFHLOaw4+Y0REUBVVdxNk3tn41uHprV2cm7GWkxKEpIk4UTh74Z97hNFdCoiCaqB1OZW2lqCNB3ohy7hEjT6qcM/qSGk22DhqhvOp3hhDnUVbXS22fnwlQo/L8tYSUxzhz8Fo48QwYnMANzcuyzhBdBDZ7sD5ZKHqXvxYbqUNBLks+Tpj6BKCm8kJlDUcg6XHPvOEL2QyLibJXfiSEoNCH1qnC4aFBtFirsB8hHNaT/XcEFwCl2ZlPRkUdO4mzPWYxFGG9ElfGXUSxli5WjmHtZvWkxJkTtsOXlmGrVHWwclgAArRQZo3CBEcKIyADd3iD6E8/4fvmSnnIrd+pO+c+Vm8jKeo02u4atR+q4NFo8tjtP2KY6kVHcSTD9cGpl3NYdY65hHkZJNhyTcAMPSu/+33FbMm6d+g0KQNnpyFpJ2KrIsI2ny0eimxH3YMxhrv7KYrxT55y1H+0Vw3prJnNjX7Bc5ERmg8YcQwYlKFG7uSnsddTs/pMs805u9lleSSkKqIWJI1GFToN+HY5eSzvGm21hoeHPk9gB7feNUwJ5zjvuJ/uUQkgQq7NIdo9CeRZJqGva5jRn654P0fme6oGc2+5vfCSqAGtNl6IyzR2R6w4khQcv6VYFmstF+ESyen83Kb84IXUYkiAuECE5UIri5V9qWsdOyia4/uAD3Xo+nBGLVNSVBs0MjIwMKi05fMoBzY8OTBCMhkWnMRzEn06kL0+tUgi7sfKz9Eit20QS7FyM6bPSF/hIwsNA2hdrGj6kNEgKV9eeOAQGM7h939cZZQQUrmi+Cnj0/WZaYPHP4v/AJBk5cimBFRQU33ngjzc3NpKam8uyzzwoj26EmMXQj39A9PG2UPXGYBRdPwZCgxd41kEw5Ge0wOnipqoLiqMHR9TaTzTNYlLEWszaZT7THgMjZnl9qw62OJxCqW/C+ZV9Oo9SGVbLT0nmSzvYqPrd9HMQOSEJjOBed+YJRmW70qD7/DS6EkUKWsixF/CIo9vzGDnEpgrfeeiubN2/mpptu4tVXX2XTpk188sknoz2t8UVXC0gyqP7hrPA9PN2d8A9sqwnx/OjiG/6cbJ7BiuyrAFBQqdTUj+7kxhK9OrHMMQMtMikOLSda3g+68pO0hcjaqWgM890NrOMco0li1oopVHzW5LeSMyXqKFmaw7RzsqIKWRYvzGbdrXMDGkaIPb+xh6TGmdFeY2MjM2bMoLm5Ga1Wi6qq5OXlsWvXLqZOnRr2XIvFQkpKCu3t7SQnJ4/MhMciobJCgVr7HP7S+p8jP6cB4nGEdyqnULp2o7F2ICNxRf53MWncJQ9n5Fbe1O8b7amOGfROSGtpI9Ouo9vVSXNv3Z8fkgmd+eK4zPY0JuhQVdWvps+QoOWcNVNYfFkRsiyFb/kXA0N1HcHQEosWxN1Xt5qaGiZNmoTWU0wtSRQUFHDq1KkAEbTb7djtfd/CLBbLSE51bBI2KxS6lLGzf2E3NNOZfBxF0+sCnzkTydFD9lkrZm3fG7+b6LL5JhQqaJBZ5ZiFCXeiRzd2tC7YffJ3WFE5FfJkE/rkW+Ju5XfO2inelRwQVpyGaq9O7PmNfeLrXdxLf5ueUIvVhx56iAceeGAkpjR+iJAVmiC3juBkosdT6uAxTHUkGuhI/TJwnFZHQ3YKVY5GipRsFFSsUs8ozDiO6f1zusgxhyLFHbbz/I191PgXQn1B8qBLuHgYBTD4Xp3epKGn2xX0jFAhSCFOgmiIOxHMz8/n9OnTOJ1Obzi0pqaGgoKCgLH33HMPt912m/exxWIhPz+eO83HARGyQvP0R0iQm+lSMoiXPT/fvT5wf0x25c4HdEG2LSVQVXbpjqE6VHbrKuiSxErQlwTVwHmOIorUPtGwujrYf3Yn9a5EdInfQlW6cXbv8P7OgRHx7jMYVOz2vn/UhFQ9q66ZQdH8LO/KzpyoR5Wgu6NHhCAFgybuRDA7O5uFCxfywgsvcNNNN/GnP/2JqVOnBt0PNBgMGAyi/15MhMkKBZAlhZVJz/BW+52EzqAbufqBYP0+XeYkVJ0u9EmSRBd2tusGUsYxDvEUtztmonOp1DTuZp/1Y04ZCzDpS+iRUmhxyci6i9Hp+zJ3Nfrpfqtv3z6fnj3CoWt2oJKYqHLdljU0VLYHDWOKlZ1gOIg7EQR44oknuOmmm3jwwQdJTk7mueeeG+0pjR8Kl7t7g4YJiZpkC+FFbmQE0Lffp99xbRgB7M9EXyD0Rjant+upaX3PneQiGdAYl2ExLqWjV9Q0QapWJElGo8sPcPcYHrcPiZXXzUOrlYXYCUaUuBTBmTNnipKIIAw6E83jFpE7L6wIdroyhmC2g8fT77M/Ln2Uq/+JLoCAAR1FbRpO1+9E1i9Em7gsCucGldqkSuqTKnFJTkobl5Po6BMmu9aK0ZkQ8d6F8zJorumM2F1IlBUIRpO4FMGJRjTiFtHENhLB3CJCcLpnXsyvIVb6J7oE/WBWuwLPAxypWYEmuAI/NKrMHMckeurKqbUe83NtDyx070OS4JJ/nMfJTJUte16hwdrA/vx3yLMUk6XmsWDqPBZkzufo72wR57Dw4gLySlK9721Tkh5Jdffe7O5wYErSk5gq9vQEo4sQwVEmmLgZzFrOWdtX0xSVie3C7NBiGqQu0IXb169JoyHL5WKRzY4Gd7eYL21rh/U19090AUBKRGde7Z90IQWuNlzmJAjX/myCcp6jGAcuQCXDaaaq/n1O2j5FlRLQJaxHoy/Bpu3idMqXFLcsItS+7iX/OIfp52YznYtZnb+afY37aLI2kWXOYlH2IjSyBkVROb31Y9E2TDAuECI4ioQSN7vVyadbT/L59tNcdO0sPvxjZBNbVVH58I/HA1eK3yqm+P2+ukBFlXlDXsBrpsnUGawAmJ1JGAytfMf+GWcaNwW7RVREs1cUytgWtbP3+HqvEMraySAl+ollTPuBE4hMNZlJLrfYvCbtZNv0L3BK0/nq7G+yZvI51KmnsGXZuCDxIlJr8/noj5URO51oZA3n5Z4XcC/RNkwwnoi7jjGDYSx1jFEUlefvDf9teqhYl/owxcZdVNqWsa3jH3GG2PPr1nRgciUN+D4G21lcsh6nLiFoqFJVFezt/xd0n8+LlIQhZZM3NOqwfoDL/pn3aac5ie7CmQOe43hldc8cUjHzq9QPSZm1mK+XrmLZtCw0IYRoKDqdBItiiP09QTwwpjvGTBSicWiPjdDlDB9avoOqSrzVfmfY4gajK3FAd7Zpuig8tZ3ZFW9ROe1KavK/EnRcqEQX/+l2oDhq0OgLcfVU+AkggMbageToca8IxZ6gl+cyy/jQOp2esyv5RcECVkwPL0JDEaYsXpjtV78navYEYxEhgjEyVL0CozXmjJ5Qc5DoVLJ433Jr76PQcx1o2rvBZaZh0hXoXYaQAggETXQJhqPrDVT1K+5ibdzy7jInoWp1SE4H+oZT2IOY445rQnx7UQErEu81fg0Vt/lxdpJxxKYl9vwEYx0hgjEw6AxNH6I15oxMdIXrNjVliO4XiFs8VWryex24Q63QgiS6BMeO0/oGAI6kVOw5Bai+yTBOJ5LdhmqcYOa3/f6pPRsZux3TUNEgAbkpRpYUpY/G7ASCMcnwGbuNMzxJLP1DmJ4Mzcr9jTFdL684iQRtK/3d12NjMOeGJ1wafVAkyW3NFCZE6U10iXQpJLKM+aRmzsU2uTgwGUarnTgCqLrbnK1xzCUB/y9OXeh5z1HMKSXdq433rS8NuQ8oEAgCESIYBYqisvPlyBmaihK9cMg1n7Aq8UnoXUWFIzHNwKW3zCEhwb+BcKLcwqUpPyVBbia0ICoYpbao5+Whf2jULnfHfI2Aa0oyOvPqsGMmm2dwRf53uSjvH2jMTAKkibv35+PrN03J4Rr7CtbrljKveAV7dPP4k/0cTinuVV9uipHfbFzEurl5ozhhgWDsIcKhURBNEktnq526irbo90c6Gyg27mJd6n/zXvs/YVeDZTApgOTNtpuWaqDu/+6mS0kjQW4lT38EWVKQJLXXCV7B/3uN+/wLk5/kw47v0KWkE8v3nr2Ty2g1N2DVWUCVuPLIP0dV5B5sDJKEQ9+OYkwBwyWorR8gqf4F175GuGfkVuySI+q5jik833l8tF2jSoCES+r7MpOAgWWOGZQumINpRjpykp78ohTOlSWuUlT2VJ2lscNGdpI7BCpWgAJB7AgRjIJok1hiSnbpbWRdbNxFkWEPezuv5qB1PXa1r0QhUW5h5ZW53v1GuWgFk7NawVKO7+rRI6Y7LZvoUjL9z09+hmLjLh+hjJ7alArOpBwHQFIlupT9aCyfBi9y100HVJw9FTi7t4Pat3J0JOVizy1A1fZ9wEsZ8zHUH0XX0eZ+jMSiDHeRviRJ1MWppdOg6f1nW+OYixE93dgxYSBXSQWgXm7zOyYjYZqRjnmB/56zRpY4vzg+2tsJBGMZIYJREG0SS0zJLt5G1nXIksJ5SX/k3MQ/Udczu3el10ZeZhvyJZ/3nSNrYN3Dvd1f/MOoxcbdFBj28AHzaVHTyZDOcgEH0fWuLIqNu7g05ae83X67N4swFCoqnfo26pIrvcfyG4zI7YHNrL1F7uYrSGj9hDZDi9/TjqRUbJMn4+5R49OEWePCNrkYTlei62wj0zjFzwg31i3JsYIBHSsds7w+fv2ZFMTUWE4SHXIEguFCiGAU5JWkkpBqiKpNVNQEETRZUphs+AKvWFz2vHucL6VXwobnA/qAbsucxJaUBBqUFsAtRDnOXO5uaeViq3tVNt30CfCzXpskCJZV6kmI+Xjqa6hSr12OCkvL0wmXierqeIM2vQqq5B2iAvacXh/I/vt6vRpuz81HW9GKSeOfMJOnpnGAk0HvNebodXH/iuMcJinpyDGUomhSDBiKhi+zVyCY6IjEmCjwtIkKx4DaRHkELblfMkPyJPfx0itDn/ejw3DjG3D102z76k+4LUlLg+K/x9ao0XBbdibbzH2ZlNNNn7DuKi0JicGXWp36Nt6e8QxVGX0r0JyzBhJs2rB1hIqG3gzRvmNu3z99mJIJCVVnwJWQjNXVyRm5lUq5njNyKzlKKlp1HLw9fVzcpygZMQkgQOr6aUhir08gGDbEStAXj9VQZ4N7z65wuXclVrwwm3W3zh36NlGlV8Ksr4a8b0hkDRStwqW42PKnS4OWNKiShKSqbMlII0lRaNFoyTKksuji88mQdnD057/D2qXQo09C19OBXdPOq8tOUJXh/6FrskeYSwii7fPpTEyhJiWLKu0+7zGjqiNNSaRJYxnQveOFSOHPUGhSDKSun4ZpbmbkwQKBYMCI3qEeglkNJU9yhyx9VmRD1TFmqPi0/lO+89Z3YjrnkqpkNr10NmBN4s4lhZ99Q2bPzL5VWG6LgXW7c2OeW9R9PtXeMGuoX+PIGdkPnt6/pkIli1LXFPKUtKhXf8lfLUKbpEdO0mMoShErQIFggIjeobESxGoIAEud+7hPaDLe2kQ1WZtiGi8pKlf97WzQ52TcQnjL3xU+KwZF6xbChnQ7XUYnZpsmeEg0hLdf1H0+x1EdYLCVn2eVHi6crEkxkLRishA+gWCEGQebLoNEcblXgEHTEXuPld3tHheHpBtja5E1u0YlsyP0wkoGUrrhiV8rLDnqzixVJTiR19v3s3/gIIy5rQQYGk6FPi9axoIuqKBTNfyDfWVA6NOKyh/oQQ3Th0fs/QkEo4MQweqPI7itq2CpdY+LQ6QYV1FpEUwcPCRb4fbX3EIoqTCtLsFzw/4T8H/cT9x0HW0YayuRnP0K38fR6s+jbBc4StEG+ZPaOSeZVbcsJO3a2WhT/MsdNCkGMjbOFnt/AsEoIcKhnQ1DO26EaeluiTzIh9Yo3ZIk3KHRm95ROJVuIsEW5VsliLjpOtrQdrTRk5ZNT25B1HMdK3g6uwRLfpEStGy6boF3lZcwNxN7VTtKR4/Y+xMI4gAhgr2dW4Zs3AiTZc6KafyRfInmJEjviBwGkIHMDph+JvaAQX/7I421A9nljPk6cYkKWmRWOGaRgNHb2SUYaV+b7idykixhLE4doYkKBIJICBH06dwSfF9Qcj9fuHykZxYVi7IXkWPOodHaGJXzgypLPPsVmdtfU4ImXSqSRHNWJt1GEyZbN5lNzaRYYnNsCGZ/JDl6kK0dMV0nLun9FV/omBOx7CHxgsmYz4ntS4pAIBhZhAiGaUXmlYh1WyLX7Y0SGlnD3Uvu5rYdtyEhRSWEn87U8PpSuHK3v/PE6SmT2bdoEd1ms/eYyWol4WwTKk1R5ae426QFGt6qWh2u5PSwiTRxQ5iSDHfoswSzksn9Zgf/nJ9BVnUXqq0vcUpO0JH6tWIhgALBGEDUCXoIWic42S2AoTq3xBHbqrexZc8WGqx9e5e55lwuK7qMN6ve9DueZ8zhZ491oW1u8x47PWUyH61Y4X7gK1K9bw9jbaW32XUoFKBrxgL3F4ZgQjcWBBAwqFrsUl/o1qjqmO7MpUDNIkdJQUaiae0U5q8tQiNLqIoq9vkEgjgiFi0QIuhLmI4xYwGX4mJf4z6arE1kmbNYlL0IjawJOD7rpJPTN/UV2CuSxBvrr6DbZAopXpKzh4Tjh0KuBh1JqdjyikAzdn5fobisZyESUoCbA0AbCpYLJrH88vBt9AQCweghiuUHSm8rsrGKRtZwXu55EY+37tlKc4KRlkT3Xp9sMPuFQAPw9Pg0J6ENsq8XKgQ65lDd4c5QXV4UVMwmHXPWTR+FyQkEguFAiOAEo2L3x7z1p+exT5/sPeZIjq7gPlgv0LBOEWMJHxf3UJmeMhL6bhf2qnaR4SkQjBOECI5TFMVF7ZEv6GxrJTE1jcmz51D56W5ef/TBgLEBhewhkBw9Ace8ThFjCbU3BcpH68LV+vVH6Qj8PQgEgrGJEMFxSMXuj9n+7JN0nm32HktIy8AVRMQgih6fqorObsPU3oZD7/+WidYpIm7oXfGtDuLsHm2ja2FyKxCMH4QIjjMqdn8cdLXX1Rq6s4ynx6dtcnFgBmdv3pSmuRYNkNnawZnURO8KUNGMrbdQqBWfbnICusmJWMuboTN0n1hhcisQjC/G1ieYICyK4mL7s08O6FxdRxvUVgYWuTt7MDTUoOtow6bTcCo/H1fWFBxGY9/J8Vz6oIIRHUsdJSG7u/j27jTNSKflhSMhLycaXQsE4wshguOI2iNf0Hm2OWjLsmg+trUdbeBy4TInAhIaawdan3MdyWnBs0DjRQD7F7n3hj5XhDK1NWnIuHqGX/Nq09xMMjbOpm1rJa72vvCxMLkVCMYnQgTHEZ1trSFblhkaToUtdnefl4+qM3iPOR090HueCthyC3svGCeiB6BClpLMFCWDo9ozWLF7nwrb2NqgIe9flyFrA/uimuZmYizNEAXwAsEEQIjgOKK50xqyZZltcjGE6PoSrtWZbXIxrrMNqLIG4ikJRoVcJZV1joVe+6KFriLq5baokl3SvzUjqAB6EI2uBYKJgRDBcYKiKHz6Rbn7QTDPP1XFnpNPoupy/9zlNhYMW+fX+9iRkTuMM4+R3hDnRvuFGPu9fWUkJilpYU+Xk/WkXVkswpoCgQAQIjhuqK6uxmLpCB2q7O36MmXpKhr27/aK4Fis85vnLAgQwJBIYJyXibk0Q4Q1BQJBAEIExwmdndFZxn/56S60lrPeIGHc1fmFcXBAhbnOfJa6ouvbmXRZIUkrpoQNewoEgomNEMExQrAOMLJPc+/EcL0/fXE6/DQm2m4xI0YwAfQWuM+hWIk+NGuYkiwEUCAQhEWI4BggWAeYxPRM1ty0mZKly7G8/TY9Dz6Eacl5IZ0gVBVkpz2gAbbG2gGOHnfSSzxlffoQS0szX0R7M4FAEIm4EsF7772XP//5z+j1egwGA1u2bGHNmjWjPa1RJVQHmM6zzbz+6INcvPZy9P/zK1BVFu3b5/YE7Fe87jHLMjTUBCy0nEmp7rFxJoBLHSWYVX3MLc18Ee3NBAJBJOIqVrRq1Sr27dvHwYMHeeqpp7j66qux2WyjPa1RI5oOMB++/QYeS8gpp2tZ8dFHmLq7/cZYVR2fd6UFlEd4SyPiqfWZCgmqgTmufIqVXCaFsDWKhGhvJhAIoiGOPv3gsssu8/48b948XC4Xzc3NTJkyZRRnNXp4OsCEw6aROZaTRmZnN+ldNqacrmVS7RmaszLpNpow2bp5pOQbHM6cxnxNAomuLreDAnFggRSiw0s4OyNwn2OcnY6t/GzIIaK9mUAgiIa4EkFffvvb31JcXBxWAO12O3Z7X4cQi8UyElMbMTrbWqMaV5mbTiVg7HFSeqaZ3PYushubvM9nFHSyQNLhyP4qSd2f0aq0oWi0o14a4RFjD9Hs/SVfNpXEFZORtTLdh5tFezOBQDAoRlQEV61axZEjwZsT79+/n/z8fADeffddHnjgAd55552w13vooYd44IEHhnye8UJb3ZmYxtt0GvYV5rCouoHc9i4AtHkLuT3vfNrkNnal1FKXmg5EZ6I7XExxpXOOayrZSgqNcnvUdkaJF0wm+cJ872PR3kwgEAwWSfVsKMUJ77//Ptdffz1bt25l/vz5YccGWwnm5+fT3t5OcnLycE91WAmVEBMRVcXocLL6yCk0eQsxL/kuVXIj2/WH3c/HgT5c3rMoYmcXPyRIXDWZ1MunDd+kBALBuMFisZCSkhKVFsRVOPSDDz7g+uuv569//WtEAQQwGAwYDIaI48Yag7FEQpKw6XWcTTRTcM41KKjs1lf0Phf9ZTxfjaQYzwt/UXfIM1dJ9T+ulci4YQ5KlwNXZw+SSYvjtLuUQ5thIvH8SaLeTyAQDAtxJYKbNm3Cbrdz8803e4/97ne/Y968eaM4q5FnsJZIANqpC5BN6ZyRW+mS7JFP8KVXADuceSRr64InsESaSAxJL2nfnIFpRr+V4eI46lcqEAjGLXElghUVFaM9hbhgMJZIKuA0J1G3dDX1NZWoUuzRbgk41zGHnUoKa9VMdumO0UU/IY0gjNEmvRhL00lYEFsRvEAgEAwVcSWCAjeDskTKLQStjoP1x2GAbUFVCXIw8ANMoJgotGf5WRTZ6GG3rsJPGM3omeWYTIpqxoQhqqSXxFWTSf2q2OcTCASjhxDBOCNaSyRtR5ufpITyBAT6lmQx7O11+whcMIuiqfbsiN59QZNfdDLmeZmkfqNE7PMJBIJRR4hgnBGtJdL0tZfTsH+Pd+8wbOG7JzYZzV5eLybCJxxF493nS9LqfAzTU0UJg0AgiCuECMYZlo6OyIOAomUrufIfb6X2yBecOHGC9/YeCH9CtLoTKoNzkOhyzMKpXSAQxB0iHhVnnO6ILpHldIeKLGvIn3MO6VNDhEGDsMAxlTnO/L6VoS/Rti0bAKKZtUAgiEfESjDOcJjT6VJ1mHEEjWyqKnShx2Hu6/pS3hS9ZdAkNZ1JrjRyldSArM+BWhZFQjSzFggE8YoQwTgjJ9nMbkcBq3WV/R2RvAXsexz5XJ3sNtF1KSo/39XKyjDC6T7ZncHpCXMWKdkBWZ9RWRb1q33QpBgwzc+k84PakKeIZtYCgSBeESIYZywpSseRNIkdHbBEd4oE+pzfu9DzqSMfR9IklhS5V4J7KlvItTjplosw644FCCfgFa3zHTP9RC7W5BaA9H+YhZygC+jVaShIFs2sBQLBmEOIYJyhkSXuW1/KP71go8aeRrbcgQkH3ehoVJJQkfjN+lI0skT34WZy/nSMx0gAJYEqh4EPdEdw4PS7pgEtKx2zBxXmjCRoopm1QCAYi8RdA+3BEEvT1Hin7HAdD2wtp669z1Q4L8XIfetLWTc3j+7DzbS8cCSg6sGJQr3cyh/kJqpVhQVqOt9RcgaX6GKQmfTv54u6PoFAMCYYsw20BX2sm5vHV0pz2VN1lsYOG9lJRpYUpaORJRSnQuufjwOBlQ9aZCYp6dygpHENnfwHiYPP87Qr9FRbRImDQCAYdwgRjBMURaG6uprOzk4SExMpLCxEI8ucX5zhN677cDOtf65A6XKGuJJ7ry8Hia+jI3uIqmCUjugzUAUCgWCsIEQwDigvL6esrAyLxeI9lpyczLp16ygtLfUe84RAo2WGTo9PXs2gEHV+AoFgPCI2eUaZ8vJyXnnlFT8BBHdM+5VXXuG5Nz/kk8oWnE6Ftq2VMV37yqlD4yAv6vwEAsF4RawERxFFUSgrKwv5vKrCod0fcP8HbaxJMPNAV/S2EHKyHkdNZ1RjdVMScJzuCvm8qPMTCATjFbESHEXczbItIZ+XJEiUesiRO5C6YotrJi7JBZsrqrEpl00j/dpZyAn+34k0KQYyNs4WdX4CgWDcIlaCo0hnZ3QrNRMOWgIafQZHTtCR9vXpqE4lqvGSSeut5zPNzRR1fgKBYEIhRHAUSUxMjGpcNzqqcdGIQiZSyJo/OUFH7j1LkLUytsq2qK6dtGKSV+gkWRJlEAKBYEIhwqGjSGFhYdhCTlWFTlVPg5KEAvwcW//WnX6kfX26t6DdUJSCJiV8Rqds1pK0pmBgkxcIBIJxgBDBUUSWZdatWxf0Od9m2Wrvyu8DnPwr3bii2LuTZInU9eEtltK+USLCnQKBYEIj2qbFAcHqBDtVPXsc+ZxS+socJCA3xcjOO1fjrLZEtXfXfbhZNLYWCAQTCtE2bYxRWlrKrFmzqK6u5qMjp/nVh6dpVJJQfPb+PD/dt74UrVZGG+XenWhsLRAIBKERIhgnyLJMUVERRUVFZBYENs/O9WmeHSsi4UUgEAiCI0QwDgnXPFsgEAgEQ4cQwThFI0sBzbMFAoFAMLSI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTlnG1J+gpeQzXlFogEAgE4xuPBkRTBj+uRLCjowOA/Pz8UZ6JQCAQCEabjo4OUlLCe6GOq44xiqJw5swZkpKSkKSRKSewWCzk5+dTU1MzprrUxBvi9zh4xO9waBC/x8Ez2r9DVVXp6Ohg0qRJyHL4Xb9xtRKUZZkpU6aMyr2Tk5PFH8wQIH6Pg0f8DocG8XscPKP5O4y0AvQgEmMEAoFAMGERIigQCASCCYsQwUFiMBi47777MBgMoz2VMY34PQ4e8TscGsTvcfCMpd/huEqMEQgEAoEgFsRKUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiOAQs2PHDjQaDb/61a9GeypjknvvvZfZs2czf/58lixZwvbt20d7SmOGiooKli9fzowZM1iyZAnl5eWjPaUxhc1m46qrrmLGjBksWLCAdevWcfLkydGe1pjlgQceQJIkDh8+PNpTCYsQwSGko6ODu+66i8suu2y0pzJmWbVqFfv27ePgwYM89dRTXH311dhsttGe1pjg1ltvZfPmzRw7dox/+Zd/YdOmTaM9pTHH5s2bOXr0KAcOHOCKK65g8+bNoz2lMcm+ffvYtWsXBQUFoz2ViAgRHEJuu+027rzzTjIzM0d7KmOWyy67DJPJBMC8efNwuVw0NzeP8qzin8bGRvbt28fGjRsBuPrqq6mqqhIrmRgwGo1cfvnl3paLy5Yt48SJE6M8q7GH3W7n+9//Pv/7v/87Yu0rB4MQwSHi73//O21tbXzzm98c7amMG377299SXFw8aq3wxhI1NTVMmjQJrdbdCVGSJAoKCjh16tQoz2zs8stf/pL169eP9jTGHP/xH//Bxo0bKSoqGu2pRMW46h06nKxatYojR44EfW7//v3cfffdvPPOOyM8q7FHpN+jxwHk3Xff5YEHHhC/0xjo/61blAAPnAcffJCKigoef/zx0Z7KmOKTTz7h008/ZcuWLaM9lagRIhglO3fuDPnchx9+SF1dHUuWLAGgubmZrVu30tTUxAMPPDBSUxwThPs9enj//fe5+eab2bp1KzNnzhyBWY198vPzOX36NE6nE61Wi6qq1NTUjIk9mXjjkUce4bXXXmPbtm2YzebRns6Y4v333+fLL7/0rgJPnz7NpZdeyv/93//Fb66EKhhybrzxRvWxxx4b7WmMSd5//301Pz9f3bdv32hPZcxx4YUXqr/97W9VVVXVP/7xj+rSpUtHd0JjkJ/97GfqokWL1LNnz472VMYFhYWF6qFDh0Z7GmERK0FBXLFp0ybsdjs333yz99jvfvc75s2bN4qzGhs88cQT3HTTTTz44IMkJyfz3HPPjfaUxhSnT5/m9ttvZ9q0aaxevRpw98DcvXv3KM9MMJyI3qECgUAgmLCI7FCBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAWCMUhbWxsFBQV88skn3mO/+tWvWL16Naqq8vTTT1NSUkJxcTGbN2/G6XSO4mwFgvhF1AkKBGOUN998kx//+Mfs37+f2tpaVq1axa5du1BVlRUrVrB//36ys7P52te+xle/+lVuvfXW0Z6yQBB3CBEUCMYwmzZtwmg0sn//fm6++WZuueUWfvrTn3Ly5El+/etfA26x/O///m927NgxupMVCOIQ0TZNIBjD/M///A9Tp07l3HPP5ZZbbgHg1KlTFBYWesdMnTpVWCoJBCEQe4ICwRjm/fffx2w2c+LECTo7O73HfW2VRLBHIAiNEEGBYIzS0tLC9773PV577TXWrVvHnXfeCUBBQYGfo3x1dbWwVBIIQiD2BAWCMcq3v/1tpk2bxoMPPkhXVxfz58/niSeeoKioiJUrV/olxlx++eV897vfHe0pCwRxh9gTFAjGIK+++ipffPEFzz//PAAJCQk8/fTT3HzzzRw8eJAHHniAFStWoCgKa9asYdOmTaM8Y4EgPhErQYFAIBBMWMSeoEAgEAgmLEIEBQKBQDBhESIoEAgEggmLEEGBQCAQTFiECAoEAoFgwiJEUCAQCAQTFiGCAoFAIJiwCBEUCAQCwYRFiKBAIBAIJixCBAUCgUAwYREiKBAIBIIJy/8POapuTj8OK00AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAT5CAYAAACrqqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm37zMz21VWXXKR5W7LNrZxAwOh1wAhJC/JGwihhBZII/AFSIOQBPJCCAlJSKOEEkpCAoGA6aa7YRswcpW7rS7tStt3Zs73x0orrbZojWVsw9zX5cvS7JmZs6Pd+c3znKcIKaXEwsLCwsLiU4iyvydgYWFhYWGxv7BE0MLCwsLiU4slghYWFhYWn1osEbSwsLCw+NRiiaCFhYWFxacWSwQtLCwsLD61WCJoYWFhYfGpxRJBCwsLC4tPLdr+nsBwYpomu3fvprCwECHE/p6OhYWFhcV+QEpJT08PI0aMQFFy23qfKBHcvXs3o0eP3t/TsLCwsLA4ANixYwejRo3KOeYTJYKFhYVA4o0XFRXt59lYWFhYWOwPuru7GT16dFITcvGJEsE+F2hRUZElghYWFhafcvJZFjsgA2Oi0ShXXXUVEydOZNq0aZx33nn7e0oWFhYWFp9ADkhL8LrrrkNRFDZs2IAQgqampv09JQsLC4s9wjAM4vH4/p7GJxpVVdE0ba8CIQ84EQwGg9x3333s3Lkz+cZqamoyjo1Go0Sj0eTv3d3dH8scLSwsLHIRCATYuXMnn/hOdRKkbiKlRAiB0BT4mAPz3W43NTU12O32j7T/ASeCjY2NlJWV8bOf/YyXXnoJl8vFjTfeyPHHH5829pZbbuGmm27aD7O0sLCwyIxhGOzcuRO3201FRcUnNl3LjMTRu2NgDtiogFZkR3Ha9vn5pZTEYjHa2trYsmULEydOHDIdIhMHnAjG43E2b95MfX09t956K++99x4nnHACDQ0NVFRUpIy9/vrrufrqq5O/90UEWVhYWOwv4vE4UkoqKipwuVz7ezr7BDMcRw/E0RR7emRJADSHiuLa90Locrmw2Wxs27aNWCyG0+nc42MccIExY8aMQVEUzj33XABmzpzJ2LFj+fDDD9PGOhyOZCSoFRFqYWFxIPFJtQCllOi+aM4xui/2sbmCP4r1l7L/MM1j2CgvL+f444/n+eefB2Dbtm1s2bKFyZMn7+eZWVhYWOxfpJTEwiHCgR5i4dB+WXOUUQOMIc5rmIlxBwEHnAgC/PGPf+T//u//mDFjBp/73Of485//nDU4xsLCwuKTgmFK3mns4KnVu3insQPD7BebSCBA+/atdO7ehb+lmc7du2jfvpVIIJDXsePxODfddBNTpkxh2rRpzJ49m7POOovVq1fv0RylmZ/w5jPONE2++c1vMn78eCZMmMAf/vCHPZrLcHDArQkCjBs3jsWLF+/vaVhYWFh8bCxa08RNTzfQ5I8kt9UUO/nJGfUcU1eIryU9VczQdXwtTXipwVlQkPP4F154IYFAgHfeeYeSkhIAnn76aT788ENmzZqVfmzDQFXVtO1Cyc/Nm8+4hx56iIaGBjZs2IDf7+fQQw/luOOOY8qUKXmdYzg4IC1BCwsLi08Ti9Y0ccVDK1MEEKDZH+GKh1by1PLGnPv3dLTldI1u3LiRf//739x7771JAQQ444wzkvEX999/P6eccgrnn38+c+fOZdmyZSxatIhDDz2UQw45hKOPPpqGhgaEQ+W1pW9y+GlHJ4/z4boGJh0+HYCtO7Yx4pA6rv3B91mwYAHTpk3jlVdeyTivxx57jMsvvxxVVSktLeWcc87h0UcfzX2xhpkD0hK0sLCw+LRgmJKbnm4gk4RJEml3d7zZzJFfHouaxboydJ14JIzd5c74+qpVq5gwYQKlpaU55/Lmm2+yatUqJk6cSGtrK/X19bz66qvMmDGDhx9+mHPOOYc1a9agFuSO/Ozo6uSQQw7hV7/6FUuWLOGss86isbERj8eTMm779u2MGTMm+XtdXR0rVqzIeezhxrIELSwsLPYjy7Z0plmAA5FAS1BndXM453EMPXcgysBo1cbGRmbNmsXkyZO55JJLktuPPPJIJk6cCMDSpUuZNWsWM2bMAODcc89l586dNDU1oTg0hCZAHSTKqoJW4sBut/PVr34VgMMOO4zq6mree++9Iee1PwJ9LBG0sLCw2I+09mQXwIF0hPScr0t/HDOcuUzb7Nmz2bhxI11dXQCMHz+e1atXc/311ye3ARQMWFfsqwIzGCEEmqZhSBNbtQet3EXMKUER2KrdWRPlMx2rtraWrVu3Jn/ftm0btbW1Od/ncGOJoIWFhcV+pLIwvwTvyoLs4xShomJD74hkFMKJEyfyuc99josvvhifz5fcHgwGsx7z8MMPZ/Xq1axduxaARx99lFGjRlFdXc3YsWPZsmULnZ2dKE6Nv//jERD9QheLxXj44YcBWLZsGc3NzRxyyCFp5/if//kf/vSnP2EYBp2dnTz22GN86Utfyut6DBfWmqCFhYVFHhimZNmWTlp7IlQWOpk/tjTrGt2eMH9sKTXFTpr9kYzrggKoLnBw9OjRCGES0nuImanWo1srTJbs1H0xbM70otL3338/P//5z1mwYAGqqlJSUkJlZSXXXXddxnlVVFTw4IMPcu6552IYBl6vl8cffxyAkSNHcs011zB37lzq6ur4zGc+k7JvWVkZmzZtYsGCBQQCAf7+97+nrQcCfPWrX2X58uVMmjQJgGuvvZapU6cOfdGGESE/QRVeu7u7KS4uxu/3W9VjLCwsho1c6QunTE/NYY5EImzZsoWxY8fmXcarLzoUSBHCPhn77an1nDy+PLk9EPcRMyMoQsWtFWJXUs+jlbtQnPvHxtm6dStz586lvb39Yzlfpuu9J1pguUMtLCwscjBU+sKiNXvf6u2U6TXcfd6hVBenill1gSNNAAE8tmIKbaUU2yvSBBDyT2i3sNyhFhYWFlnJJ33hpqcbOLG+eq9do6dMr+HE+mqWrm+juamHCreduSOKMx5XILAp2VsH5ZvQvi+oq6v72KzA4cASQQsLC4ss5JO+0OSPsGxLJ4ePL9vr86mKYMGYEozCveg+oSoIR3qlF4vMWO5QCwsLiyzkm76Q77h82FsrTvPaP7EdLPYFliVoYWFhkYW80xfyHJcLKSVBwySugFsViFydGhSR8MUOHKMqaF77x9LH75OEJYIWFhYWWcgrfaE4kS4xFH2d0PsKU9vsdkJRA900iUpJuzTRewNaCh2CUaHsIqiVOBBODRk1kKZEKALhUC0L8CNgiaCFhYVFFlRF8JMz6rnioZUIMqcv/OSM+iGDYsLhMH6/H9M0k9sk0GPaifXdhoUAB3halqN2N9OhlVNUdRg2pX99TyoCW4kjae2J/ZQG8UnCWhO0sLCwyMHJ0yq57awCKgpSLbPqYid3n3doWp7gYMLhMF1dXSkCCCCQFClRCtUQAEWbn2XqfQuY8I8vMOb5K6n575ewPXYYHVv+y25MtmOywdTpyWiTDs1w9RMcTv773/8yd+5cHA4H11xzzX6Zg/UYYWFhYZGF1tbn2bDxp5REm/n54YINXeMJmrXMGH82J80+bkgLUEqJ3+/P8mrCtnRi4Nz+FNUvfxsGCZwt2Ez1y5ez7fi7CY09FYBdXWFMCTZFwbMHLtDh6ic4nEycOJF77rmHf/zjH0QiwxdctCdYlqCFhcVBj2mabNmyhQ8++IAtW7akWV0fhdbW5/lgzZVEo80AKEIypXQTc8pfxe7/Jh3tLwx5jFgsNsRcBNKAyrd/BkgGy5noFcURS24CM9ElQjclOzpDbG4PsK65B384NuQ8hrOfIMDixYuZO3du8jhr1qyhrq4OSFSMKS8v55prrhmyn+CkSZOYOXMmmrb/7DHLErSwsDioaWhoYNGiRXR3dye3FRUVccopp1BfX5/XMQwpWeIL0BrTqbRrLCh2sWHjTxlsmSVIpMlv2HgzFRUnIER2a8kwcrc3ArA3v4saaM36ukBiDzbhaV5GcMThKa/FDZNtHSHGlEGxK3vy/HD3ExyKjo4OZsyYwe23356zn+CBgGUJWlhYHLQ0NDTw+OOPpwggJGpHPv7440nLJRf/bfMx950GvrC6kSsatvGF1Y3MffsD3oyOybGXJBptwudbnvPY+bgT1VDbkGMA3DnG7e6KDNmLbzj7CQ7FnvQT3N9YImhhYXFQYpomixYtyjlm0aJFOd2R/23z8fU1W2mKprYfaonDnVzLchak7SNNQbB1Et3b57NzXQdmjjqddrsdRRkcV5pyNEzP0OkVAE5nFU6Zef0vbpr4mwKY4ThSSoxAEN3nwwgEMCM6h0yZzsaNG+ns7ARg3LhxvLniXb71//4fbZ2dSQHdo36CA6zcfNbzDtT0DUsELSwsDkq2bduWZgEOpru7m23btmV8zZCSH27clcXhmRCuB7gIc8BtsmfnbBr/eys7Fl/L7iWX8PrfXDxww9s0rsrszhRCUFzsTR518FkAxJipGAWVGVYE++dieEYQr5pPoZldSHRTEm/uJLp+PbGtW4jv3Els61aijRsZW1jGGSeexkXnXcCOnS2sDUZoDEXZ6esmqJusDUYIDXLd5tNPsKOjA4AHH3wwZd98+wkeCFhrghYWFgclgUBgr8Yt8QXSLMAUhEIn5ayTU6nnQ3p2zmbX21ekDQv6oiz60xpOuWw642dXpr0eQyWuCOzSQMp+96gQJg5HCE0zaF34Q6pf+DYSkQyGgf5QmcD8G0FRUQG7FMREunTb4yHMYIbC1dLADLbxl1/ewS//+HuOP/pIpKbiKSmhtKKCi777PeKmpD2mEx9g1X4c/QQXL17MeeedR3d3N1JKHn30Uf7whz9w5plnpr+PfYTVT9DCwuKgZMuWLfztb38bctzXvvY1xo4dm7b93y1dXNGQ2UocyJXy1xxuvkXjf29FD5dAFoutoMTBV3++kFgsmuxvF5UK2zoSeYBuLYzX3oNAoggTVdUxTYHhtyPCAteuN7C/+3+oof41N8MzgsD8G4nWnZrc5lMkkUEiaAPq/E0gcwTiKCpq0SgkoCuwqSB9vdKmCKZ6nHvlujzY+glalqCFhcVBh5QGRUXN1NY24/eD319JptWdoqIixozJHOBSac/v9lfrH4PSsRs9nHvtLtAVpWmjj7Ixrt45Snb7+tfKQrqLkO7CqUZRFQPDVDHiKnU9LQjNATO+iH/85xHNy1DCLZiuKuJV80FJFatMK5w1eiy3AAKYBlKPIDQnNhPchiSkpopd3EzULy3QPj1dKCwRtLCwOKjoS2CPRpsZU5fYFo26adw0j46O2pSxp5xyCoqSOfThMG8BNQ4bzdF45rAVKfnK7tc4d+PDbI5MYW0ec9u2tp0lW1sYVeak3eeDuAZKakHriOGAXr0qVASieBSKUCAGBZqGOWohYVMSzzApE1JcoTYElQhcpplRHNMP0C+Umglk0Lr4XjoHD7Z+glZgjIWFxUHD4AT2Puz2EFPrX6OsbDuQsADPOeecnHmCqhD8bOJIAMTgG7+UnNb+Or/a9BNU2vEoXUPObe1IG1/TOrnF6cGv2uiwOdGLnBQSxGFG08YXIhiJkhDAASiARxHYMngkveUuahWVESjUojAOhUJEmrWYlQHj9Cx3f9seukKllJgRHSMUx4zoQ6ZqHGhYlqCFhcVBgZRG1gT2vvv29BkfMqb2BurqxqVZgNKURLf4MXtiKIV2HGOL+WyFlz+UVfCTXS20Ovtv/jVhnbvW/hZk4tg19rV4lHaCZimZbIe1I23884hEekHxgO2motJdVEJxwAd6lKjiSMwXqMqyttiHSxHEe1slKapCQakDp9uGXQG9IzUlQWhOEOqQa4JCcybXBAe7QiGxJuhR87eNzHAc3Rcd1NJJoHkdB01LJ0sELSwsDgp8vuVpFuBgTLOdkpJ2FGVCyvbwmnZ8Tzdi+PtLjKnFdiLTy3G+1cTTSFaVqLQ7BOVRyWH+VXjs7ckYGEWYHFV0D4t8/4++ijF9GAKeP9Sd+EVkzgns8RRR6msnSkIEi0wdrVcQs6EARV4HikPFNqBGqOKyoZWRJj5KQRlmT/bKM6qrAIUeJBotDnfGMSMctryDYsxwPE2MATAkekcErYyDQggtEbSwsDggGWy5RVzZb/ADiUb7x5mmZOvzW2h9cQdOISnTlORNXvfH0N7chRYxUV0qc7v6rShbHu7PPowR6+lxH55zjCkU4g4n9licmGLDY0ZhCBEEsNkU1AHtkpKNdzWBrcKFS5eQ7CdYgNntIN7cjIz3p34IRUFzG2j2/nW60TGNXaISv1bY+34FIxw2vLb8JEFKmRDhHOi+GDandsAmyfdhiaCFhcUBRybLTRSWUDBuDoHKlbi6JqNFi9EdfsIl62FAsIjDkcjVa1zVyhsPv08w0O/ecwqTGS6VEXYl2R+wzmUQEToOaUf0Wngm/UWmAUyp8Eb3xX0zSW4f53iHcOm7QG4RhIRrVBNGIrpF6hnHGNJgle892qPtlDvKmVd6WDJ2xRfX2R2N9+bySZxEsAuDUruTInshQgjU4mKUoiLMYAipxxFmBCXcBCLRSukXd93LI08+j6oq2G02RtaN44Ybb+bwOYdmFSspJfFIuL8ZsNOFjBqpLtCMb8ZERo2cPQ9/+9vf8uc//xlFUVAUheuvv54vfelLQ17L4cQSQQsLiwOK8Jp2Oh5Kj8WUPTDivasw1ACaUZjcHnd00jrlYQJVK3E4qvF659G4qpVFf/qAwTl9EQnLQwbzICGEQuDCTtu4f+Fo/DyyN109ak5Dl+WotCMENMWmEjTLU44lMDiy6B7ej43O630pUuKyCUw9TNiAAmmgDCi+/UrrYm7bcCetAyzZqnVVXDf/OuaOOIZtvd0i3AQoowMNPaHiUeiJabicI7DZihNiWOABKaFlZ/ISXHj1jQSCYd75z/2UeBO5c0+/9BZb1q1l4dw5afM1DIN4OExPRxuG3i/aqqZRVFg+xIpmApmjpBzAtGnTeOuttyguLmbHjh0ceuihHHbYYVnTWvYFVnSohYXFAYM0Jb6nG7O+LhCoRkHKNi3qZcR7V1HQModJE3+ElApvPLYhuUcm1oSNlCjGuLuF3TN/h+7oc4Oq+OKXgkjoTNAsSTtGjX0thWoHh/nfpzLSkRCdLCjSxGbo+HSNDoroshXTMuD1V1oXc+0HN6QIIEBrqJWrF1/Nvze/AEgK4z7Kou2I+KCECKkTDm8nHh/QuzAWADPhFt24eTv/fu5V7v3VT5ICCHDGCUdw7v98DkhvpfTG4sX86/HHOO600znus2fw+f89l/UbN2HoOoue/y+Hn3Z08jgfrmtg0uHTAdi6YxsjDqnj+zf/gIVHH5GzldLxxx9PcXEilGj06NFUVVWxY8eOrNdxX2CJoIWFxQFDdIs/xQWaCTFI2ETvbWzk5m9QUX4STRt9BH0xsgkgQFhCh94vWrrDT6DqXTZ/5ntsn3MrOyY/wEvdc+k4/A8ElfKMKRJ921RMftF4Z2JjFiEsiISREuIDEvP8AnZhEjPj3Lbhzoz7SSQS+NvqX1HasRu3L0is20bUZyfc6cCIpt7CI9GmfnE3+tcFV61Zx4S60ZSWFDMYPRIkHOhBj0V58803+dGPfsTy5cup9BZx1TXX8Nvbfskr/32a8778JS771rcThzZ1shcFh46uTqbXT2fJsqXcc889fOUrXyEYDGYdD/DSSy/R1dXFnDnpVum+xBJBCwuLAwazZ+gGsUCvNPQjENCjEN3iJ9idO2Cjj4hMHCfu6EisKwIISbhsHaExr0DtFjzjT+MO+Ue+x1nERSTlvAOtw9PbX+fGhj/giYZTzqFIk6JwELseJyDTA2F6kDzrW5VmAQ5+tx2RVho6U/v4SUMQ7banCKE04xhGr9ioqZGZKa2Utu5g1olfZvJRn+eiy76Jv6WZoM/H/DlzGF1TQzwSZsW7K5k+dSpTJ08G4AufO5Om5mZaWhNzNXKkY9jtdr729a8hhMirldIHH3zAhRdeyGOPPYbL5cpxLYYfSwQtLCwOGJTC7I1hBzLQGjQwed+9gcVFy1netAy7J79QB0dvMI3pfT4lsKaPqUc7WbHLxzPhEEtkPf91Jc7ZJ4RNsan0GGVJ4+/y9sd5cum3OG3tW7jiUQojIUqD3dh1nZh0pFiBA+mM5ReJ2hHPPC4WTBU72Rd0Yy9AKjYkMHv6FDZu2U6XL9F1Y3zdaFa98Cjfv+oiOn09yX3dLhe+liYiwWDOVkqqpmIYOqYbUAWR6IBUid48w8HpEdkCbxoaGjj99NO59957OfLII3Ndgn3CASuCN910E0KIvLoYW1hYfDJwjC1GOpS8q46sd27lggk/5Ptj7uSXI+/jklX3csLfX6RH5C4i5hJQqgkC4g2qO7dT0JTugltXOYkfbW6iTWqMjquoCN5yxAn0iqBE5c3eiNG++I8ZbOS6wJ/wGj2UGj5KpKBcFjASO+NQE9VdBuF1lOX1Xsts6euSkLAIjXj/rVwIre8Hou4akDBhbC2fO/kYLr7mJnz+nqRwd/Rk7qIRCfQwZ/Zs1jSsZcOmTQA8+cwz1FRXU1lRQe2oUWzfuZOukA9btYdHnv0nKAKt3IWtwpV3K6W1a9dy2mmn8ec//5kTTzwxr+sw3ByQ0aErV65kyZIl1NbWDj3YwsLiE4Wux9CyWE19mNKkPbKTfzn+ieYPI8og1jONyK7zANjsMpgZyv6MP92logoFtzyKl+ML6fgghgxWM3r8s4BEqNXcuttNSXcnl3Y7KJL9x7ILGGsX2Iqa0Jyl7OZ8KmP/RSHRW09BoiLRZCGaLEACISQ6UNLbKKlPSJ1qlEMrJlDhKKMt2pF1vhX2MqYXT836uuztMygUG6rqQUqJjBrETQ9dcgRlopX7f30TP//tX1lw+vmoqkJhkZfS0jK+edll6dfXMKisrOCu22/jyquvwTQNigqL+NNvfwNATXU137j0EhYe9Zn+VkoClN68wHxbKX3rW9/C7/fz/e9/n+9///sA/PKXv+Tkk0/O+l6HmwOulVI0GuWYY47h73//O8ceeyzPPPMM06dPz2tfq5WShcXBTXhTJx1//TDnmJ3B9azseJmw0e/GCzp1Xis5hkbndEBwAhqXxpx8EDaISECYuMs34nL5qJWljO6ZwusY3EmEtgHrfKW2IBfXPkh35bE8330kX3wrAL1pE/0kxo9ceDeFo1YBoIW9jPnwCJ7zFXNi4RjCR89hzIha4pqNFiT6gHNoCFQ1SoW7PZE3CCzetYwfLLsz63v+8ZT/x1Hlh2V93eGNodpMXK5aREDFDMmUuJU44CeCTgwhDWyxoddN3cVeQn5f1te9VTU4CwrStlutlPaSH//4x5x33nkZ+38NJhqNEo32/zGH6jJtYWFxYNO+bnPO/LOdwfW81fpk2nZ3ROPUpjd5rsJNY8F4OpCMsCvU2AS7y1cQrP870pVYUwsDayMlPLHubNpaZyaPIaSJq7uLp947jqNK1nGqfwagpEWjJqJOTVpWfZmCEasRikR3+mic81/mvnclWngKAEEkbRl6O+hIdMNOLFqAUHSEonPMyPn8fP53uPP9B2iLdCbHljsq+Ma4CzmqLLsAClWi2kxsFGFs86E401s+aUA5TnZhJypjeBlaBJ0eD3anK2OeYGFZRUYBPBg5oETwnXfeYfny5dx66615jb/lllu46aab9vGsLCwsPi7CRhB3llAFU5qs7Hg542t9MnVq24s8h+SDggkYSIJVKwjM/H3aeMXRxTdm3sPd713Iu62zGR/czFEdb1LYF1nZBoh7MN3HotonZjijgh4uJdQ+EU/lBvrKz4QmP4K5ag6YccLxEAVSRVc0TKEQ622p5JSCQlOghL30rcgJReeoimM46pS5rG5bz8YuKHJWMMV7CC6pQzzHA74kESGqduOwZ07c76uOU4nCZsWGKRQUmX3dVCgKUig4PC4cHk9axZhcpdCsVkp7wWuvvca6desYO3YsdXV17Ny5k5NPPpnnnnsu4/jrr78ev9+f/PdxJ1laWFgML65xXkJ6d8bAmPbIzhQXaCYEklPbXuSY4FYUJG1T/t73Quo4kfh32cz7OVF7mVNbn6fAGJTHJgPEg09jxDZmPZ8R8Q48Odq6LsJv34YeC+Awg7jNEEV6N964j/JYBwWGjtcUaSue0tSIBysgXsCcyqkcM+po6ktmowiVqOIg5HAhlMwrV9JMpErIuBuRo6WSINGB3oWgR8ttxUnTpKOtlZaWFiKRCHaXG1dBIXaX+4CvBbqnHFAieN1117F79262bt3K1q1bGTVqFM8//zynnnpqxvEOh4OioqKUfxYWFgcvI6dNZ210GUCaEIb13AI4kAkdbxDyrkN3duXKmUeRkhm7E2uQ2YbFQ4uRWawm1elL/uxcJSj5i0abJolpKuYgsVCkiUfmdr7p4UQEqKqk5uBJ29C3ajOSX3pJVYGDkZWlKEO0TFLiMUzDoKuri3A4nHPswcwBJYIWFhafXEzTYMeH77P2rdfY8eH7mAO6nBum5J3GDp5+vxn1+MN4q+Xf6VafyO92JQCbEaA1un3IsYFmN/GgLXcdTNmDqe8a/G7QXJ24yzcm/IyGRtE/NSTQWJk5lUEIO2KI9yBNDVN3YJiDLDpdJiNAs2GYefWWx+PUsMs4pjHEeCmh95h+v/+ga5abLwfUmuBgtm7dur+nYGFhMQhpGIRWvIve1oZWUYF77hyEmrhpG6Zk2ZZOWnsiVBTYqRQ9hENB/Fs38eGzTxLo7E8DKCgt57gLLqXRM5abnm6gyd+fcD3LUUXT1j9S5hmFSy0gbAR4z91AsdOFO6JmCFZJpyeokqlZkTQT4qeHNMJd+VlPyIGuUhMQVM1+tN9Fqeqop11J54oPidmyVVLJT8R1w07ESJ25YQx9q9bNGNI0crpEURWEQ8UI5mi+24sQdoTUwFQwpUEsFsPhGLr908HGAS2CFhYWBxbdL7zA7l/cynu6m05HIaXRHmZqIUbccB1vj5iRJmZuopwYWcHopvfTZCvQ2c5/7vgFz1aeTJNnXMprq73Tea+4nvN3/JdSsYvCYJAVczsoCLo5dlVFXnPd3W5nVMCO5oklO8/7Nhey6+0q4sE9bPYq+nPcNJePqtmPJtMj+pAFOmOmfI2WWOZi0WSIFB2MNAz8y9ch2ruhtBw5YyaoKma+AhrpwuYuz/q65rUnKr6oOdYOhQOhFIFQUCVgJKrkREO6JYIWFhafXrpfeIHHb/0rf5x5Me0ub3J7edjHMX96gScmxtNKKoelRklr9q4QEjiq4y02u+sAhVG6gkcKgkKyS5W8OGoe9ok2oloXQWUznUVhXqWNY1ZVoOSyBoUTf3AJvF1B3YkJV6ZvcyFbXxyZZRaQbVVQUxVmz3mQkCwhWhrAXbExY5CKGvMCUO89jEyxnFLGENLM6taNvvkqobvvwGxvTd6YZXklxpXfJXbUMUihJPbPghQQFkHUoES4SlMtQgGyUOWnv/w5jzzyCKqioCoKI0fUcM23vsn0+vrEMOFAqN60YwsEkW4DuyOO0z183eJ///vf88c//hFVVTEMg0suuYRvfetbw3b8fLBE0MLCYkikYfDPu//Jz+adn/Zau7OYf044JrGGNCgYZESkuT/tIAMCKDQCzA+0MMusS1ZmMWIbiYdeBRmA3qW9oHMkS+s72V4T5jXaOGZVZXYZ7NUo/5Yitr4IY47bxa63qwacdfAssq13SU6rXsPE1oQbN+JX2KB6aCvvt4ikhGjUjd9fSYEQuLQCAlkmZprdKBlEJvrmqwRuvi59h/ZW1Juux/zJLbiPOIJw3JdlnuDWimguaMfTGkLGQwjNidDsqKVe1JJCvvK//4uvs5OnHnkYb2/7ohdefoX1Gzf1i6DSH1zYlxIxkEBnFIdr+LrFn3feeVx55ZVAIs97+vTpHHPMMRlLrO0rrMAYCwuLIelZvoI/1Pb2jxt8A+zLN8hwYxwb3JzX8ReGoxTKxP5GbCPx4NMJARyAO6Jx7MoKaptdbKsJs25CAYhBof6iENV5ONDvkvVvKaLxv6N7XaDZbt7p2wu1CGeMXMvEov51TEfMZEZDDxXtiWTzvliRzY3ziNBfhzNrAIyMImVqvU5pGITuviPnrNQ//BqntFFg86Y04gVQhEqBzYtLcWPDgV5bjW3UKGyjarCPH41WWsSH773HU//5D3fc8vOkAAKcdPxxfOFzZwLw2BNP8eWvfZGrrr6Mk844mpWr3+WVxS9xwmeP4phTFnLWOaexdl0D8ajB4sWLmTt3bvI4a9asoa6uDkjEcpSXl3PNNdewYMGCnP0EiwfMJRQKoev6x56CYVmCFhYWQ7JsU3uKCzQfxgcamdmTXwF8ITwIBFKaCQsw0xgSBcwWNJSyo2oXO6qizGq/MhG5KYMgPCjaSPTw62n72jsmEKR5yHmojnkompdTSn/DeHcHg7MI+mzGSY1B2srsRKMeNjfOo6OjFhcDrcN0t6UpFFSlCCFS3Yn6mtWY7dlbKQmAtlYiH6zGNWsONruTHhlHlyaaUCgU/dGtmlQxHTY0R7+4SClZ8tabjB1TS4nXm/EciqqiOZwsXbGEl//7BuPGjqetvY3PnDifJx55hvop0/jnk49zyZUXsHpl9pZIfXR0dDBjxgxuv/12lixZwllnnUVjY2PG+qH//Oc/+clPfsKmTZu49dZbmTFjxpDHH04sS9DCwmJIOp2FQ44R0mRkeBcTAxuZ17WCU9teyO8GI1wo2iiAXkELZB8KeCIax+2YRlNRI0GHH8U2CtU+BdU2GjPeiBFdmbLPSPckpqvj85kJFc5mFpzwOyYVpAvgwDk4oyadK2eyfNnn6WivxSMdVJtepJSEjRAIBaG60LUCQpoXn81LQCtDiPTAErMzv+oqemc7PUgaMdktFFoVjd1CoRGTnl53ri4MNCXVtolFwpiGkWJhbd22nRPOOJMjTzyZ793wA0zDQLPZWDD3MMaNTVyrlatXMK1+BvVTpgHwxbPOoalpNy2tQz9M2O12vvrVrwIM2U/wi1/8Ih9++CHr16/ngQceYP369Xldj+HCsgQtLCyGZPTMKbBiedbX08qOkavveCqqfWq/+1Dm7j7ex7mtVdR6/OyqfpuqlpPpiO/ApgcolKtQ6XcjCgSHlh2PursB1TDZMmocQU8RnlAPo5q2ovT5M6XEGdcZM+4l3CJzYriJYBsjCeChgCAEHWAq2OLFTI6NpwOTHns7q527mKfOx7QJNE3ilDpOw0EkiytWKc0ezTmQSGkpHVlqke5CUg3omonTcGDE4whF0GOatHcGmD6tns1bt+Hz+/EWF1M3ppaXnv4Pjz3xL158JWF5C0XiGVAPNGM/QQF2p4amaRhGf5pFJBJhKIZyc9bV1bFgwQKeeeYZJvc28v04sETQwsJiSOaPr6BIg249/bXxwc2c2vp82vZ8V3YU2wArTaS7yzKhmy9T31XNw9F5dLji4KoGwM1oFiibmdy6GnuPnwlFh+LWinhsvJe753+fQEG/m7Ag4Of4t/7LpM2JijH1uzswiyUxR/rMG5jAIo6hm36LWJVQ0DMRV7iGHcAmRyvdBQ0UDF6nRIIawW04MdHSrGNt+iyU8sqsLlEJiIoqfDNmZny9jzYk4yM1GKF+EdcAu1QZV1fHKSccz9XX38Cvb72F4t7qWqFQKDlWUQSavX92cw+dz9Xfv4oNm9YzacJk/v2ffzJiRCXl5W5Mcyxbtmyho6ODsrIyHnzwwZS59PUT/OpXvzpkP8GpUxMtotra2nj55Zf5whe+kPN9DjeWCFpYWGTEkJIlvgCtMZ1Ku8ZFx0zkzpc2IqTJiEgTbiNESHFxVMebQP6i14cEAqoHl6sAj55oV6RoIxPBLjlcoiD5R+QI/hU7I21BJ4SdV80pUK1xXlkZk0UdL1cq3DZrbtpRAp4injrpf/nc839n2sYPKFMCtE2U+ISNiF3BETMRJATwcU5Pvz5AoGgjimnDHi0jUJRoPpst+NRUowhdI6oJTAUUE+y6RKgq7iuuzhwd2ru79xvfpS1Hbl9iPoKIKXEPmIAGVAk73aqLO395K7/5w9189gv/g6IoeIuLKSsr5ZuXXYaqaag2O6qqYC/oJB4qorysnN/d8We+8e2vY5gGXq+bv/3t/4hEmxgxYjLXXHMNc+fO7e8nOIB8+wneddddvPbaa9hsNqSUfPe73/3Ym+secP0E9warn6CFxfDw3zYfP9y4i6ZofyRjtV1jxBOvMb/59ZxpD/kigedHz8Q1YisnbriQuN2PVOKY4Y0I39KsolrmGMkdVSfSrTrJLL0Sj4zwNX0FC6J1XHHqLDpdjozRq0hJYcDPpX//FdMmb8NxdOJ9VbRHmdHQg4ngN1xMNwWZzyVBMR0U+CfRXfoBAAUFBRxxxBGMHDkSTeu3M6KajYDDnVJTVDElRWEduxEl9sbrhH//W2R7W/J1taKK8m9cjXnUMezOI9l+BApFg+aZyHeXdEdbsu7X1xtQ1wOEQlsAMHUH0tQQio6ipbZecrvHomUpwm31E7SwsDio+W+bj6+v2ZqypiekZMy7b3DUrswdXfYUE8GiihPYVhpgvLOdpppXscveqEkviPJDcLRsx9bjS+7jVAuYU3YCrZ7xdNPvxhNIqpQeXMQJY8PT08ZRHW+hGkH+NSJIpzt7Lz6EoKfQy86aOiqUDry7JQXVIdrKHXxQD44NXrr1HEFBImHhxe2+7GNICGC3M90SMhWBz2OjJKDgWngSzgXHE1+zCsPXjCjz4p0+D6fqJJTnCmumG7og0cg3aivBpvtTWigJVaW4vDLZG1DKfn93QviiGIZGXLejCBNV1dPGHexYImhhYZHEkJIfbtyVcssd27abIza+R1VDorvD4B7r+bhB+8Yl/pd0V46j0TOBuvhaDmtNFylTsxEZOR52NVIZdTKz5BjKnaNQFZW1A/LxapVOFti24xEDcvSKYjjCNuiBoHvoqFYAf2kVHWtK6WgoxeaJM3JhC4yDVqMS9jJYUQIBhyv3+d0KDr+BUFXsMxOuW0MNExI6Dplof6QhUjrUD8aGwJXjryEVG+32MuxmHAUTE4VRlV6czv6UDSH6JUHX7USjbqRUB7xu4HCEUsYN5mDrJ2iJoIWFRZIlvkCKC3Rs225OaliGEuzGtDuR7kKEHkcN9SAAw1WAEo8i9HgWxyRIzYZpc6CFAwhRQNmIAFcX/o0z4lU8bwp0QVpBbCEEUkKweiwLIwvwqEXJ6MIyBAKTI8tWscDVSCzmoru7kr4FQjlAQD2h/Nov2V3upFDHgza2vjiSmvkmhrsmr/1tMS9RowVTiaW9FlcTTXVzYSqCmCZw6P0ipxhODC2IjoENlSoEu3KIYGWWsuIS0DGQGNgg2dzXpip4HKkSoKoehGIjHhNEIunuTikVIpECXC4V7ROiHp+Qt2FhYbGnmKbBrrUfEvB1UeAtYeTUaTRH4iidUYgaYFdYuOE9lEgI6XQTHtMfti7iMRwt20EoREurcO5qTLMK+27X0apaHLEx2NQyhDaCeLQLs+AtSm3/xRAnpdy6TaCpuJyQ3YE7FqXG387r9igz6SRUsg67PcIoVw+3j3oFr7O/Qmc06qZxUyJpHSFASqJVoxnZuIaCYDcBd2HWNUFPNEx1oJtoeQ3O9qa+d8iuFSW0TDiflqotOONBavzt6XmPvWuC9piXgu4JdHsb0nJDBvcVzPr3SEvMFwipYmICKoUIRqLQgkyxCG0IKhEUZpDAKDpBEcEUEgfgAAwpCEo7Nd70BrlCCJyOGgI9fdc2U5RPorWS0+n8RDTYtUTQwuJTyMalb/PK/X8mMCBRe1flTF4uOxJ7JLFmND64GU+skZ1TZhKyO5OipNBvbdnbdqMXlRBhPI6W7Qi934qUmo1oVS16UQmezjpUmxeAmFFOc3wqYUfqutLm8hreGn8IQWe/69ATCTOj6V26R7xO2O7CSxdTWEvxoIosdnuIqfWvsbbh6KQQSpsD6SrgmHcX88xRZ6TXNu2NCTyi8QMUIF4+AjUaRhgGG+umsnjOMQQ8RcDs5FyOaHyfcX1C2bu/u9OFQOCIllPom4p0706Zm5Jn7KGSMe5FoAyQ3kIEBQjCSHQSN3BXFgswik5PhpxHRUiKRBRb3Il02tKEzDSdyCHyNU3T/MS0VrJE0MLiU8bGpW/znzt+kbJtk3ssz7kPh7ABQjA+uJlxnh08fNpFBJ3u5LgUIZCSeEk5xGPohV70Qm/CTarHKKzsRisELRalp8uGLVaccr6AUcpqWZg0NDaX1/BC/fy0uQYdTpbUHcEScWRyW6ls53xxL/NYmtzWa/wxbvxyOjpGMdA1OnHrWk4qq0oX2GiYIxo/6Bc1IDJyPJsrRmSdywv18zmpYRnj2psQegxHyw5Ejw/D40K1TyQuNZpcTSn72QwdRZo5XaKKKbHr6WKZCGpR07a5M8he2AjgUFwoQkUCQRHJuGArACR093SjBSWa14Hi6l8XHJgEn4t8xx3oWCJoYfEpwjQNXrn/z6nbELxR1isyQqCYOqNLO3n66P9N23+wEEibA1vbLuLlIwDw1voYP2E5Dkd/9GY8XEzbSjvdu+Ykt70SuAyj24VSsQxdifHW+EOS50+hT90G0Ekpd3It3+G2NCF0OkMUF7fi9yeS5/vWL8c3baOubTdN3ooUV6sy6FwmDDmXt8bPYO7GrcSaP0hqTDy0mI017bwy5UXGuc5L3Q0oiIYzRof2URxK5CRKU9K2o4dIII6jwEZtnQuUocOPTGkQ1gOECaApdlxFXsxo6nWLx+PcddddPPnkk6iqis1mY+zIMfz46huY85n5SSHM1WtwIPmOy4f169cze/ZsvvGNb3D77bcP23HzwRJBC4tPEbvWfkh3Zwe7nSMIqW4cZoRNIyfhr6iAqMHEnes4rvM17v/yNxM75BCCuvYmFMAZDzKt+x06xpUxpn5Z2jk1p5+ahX/EfPsKArsOBcAwE9ZlQfcE1ta1plhoaaTNQQFp8gAXMYflKAPy50wUdnvL2G0fiSfcw4RwAAE4WrYTGTmekf7cUYtNxeVDziXodLNxzBjqmtfQtwBoEsAuJ+NwnUhTuYYUsZSlQYcepygSJOBwpViEiikpDpk445Kd67tY/eJ2wj39LmVXocq0EyoYMcWLhsBu6jhUJ3bFmTKtkN4fAGQIE+GyQWpqH1dffTXBYJD//Oc/eHsLab/5/GIaNqxl5iGzsDkTLZLsdjuKohCPx7MKnaIo2O327NdpDzAMg8suu4yzzjprWI63p1giaGHxKeL5tW38bfR5BLQCjEon8anF4Oy/DWyvt7NybTSlvFgavULQVFzOSH878bikscnGtGPfTdgrWYy5qtmPEtg9C6SSXMVyRMuR8fzSGFIPqtBJOevkVOpJlD1bzgIe4CI66/prcRZMnpMojbalAbNtN7HKTE11+wnZ81vj6nSoTPeOJeDbzIax9bx8xGeT12yUkITsTmKqxsB+EQ49jl2P90aLChQpcUY1FKmxc30X7/wrvflwuMdgxb+bmfpFF+VTSlAVkwI9QBlgV5yY0iCk9xAz+2t3FpdXIAZV/968eTPPPfccy5cvTwogwGdPPA0bKhgm9/31Xh5/4h9UVlayZs0abrzxRnp6erj11lsxDIPi4mJuueUWJk2axHvvvccPfvADVqxYASRaKZ1++uls3bo1mSx/wQUX8MYbbxAIBLjrrrs47rjjMl7LW2+9ldNPP51AIEAgkKtS0L7BEkELiwMEaUqiW/yYPTGUQjuOscUIZe+i7wZGgDZ0SX6+PIRUPQkBnFWaNj7gKeLtucfndew+wSgJhGFkCFtB9jUiIcDm7kIbsQytcyqlejFRKejQJSU9+dULzYSPEiAhgHdybdrrydJoLzzCxC0NxEoqQLNljhQF3LFoxu2Zxqk2NxvG1vPUSeluY1MIgg4XmqnjGBAsJAC70RsQJMFUDURMZfWL23Oeb/MLOymb5MVQFPy2IoTejdsIoZv9KRmmUHB6y3DaJPGID6SZOKMQyX5/JSUlyXMriNT1RhPefPNNVq1axcSJE9m2bRuzZ8/mH//4B1OnTuVf//oXl19+OatWrRoyICbfVkrvv/8+zz//PK+++io333xzzmPuKywRtLA4AAivacf3dCOGv/+mphbb8Z4xHtf0/LoMDCZTBOjXVA+vlx3Jpmm9tTTzWIPLRp9g1ASitLnzqyCil66nyYjRKR0cFp/EHL2C1V06/w50E/BkSWPIQTPVmCg8wEX98x9I7/t55YjTmLB1Lc5et2g2avzteCJhgg5nzpSKGn87cT3My0ecnfm8vQQcLuxZcij7IlRad/pTXKCZiHbH8W8P4K1LWM09agFqvBvVVPG7PCiojCgET3gnMhLHxIZHOAhKd/LvmYwClYnSZpdfehmRSJiF8w/n97+8E8woRx55JBMnTgQSAnXooYdy5JFHYhgGl1xyCT/84Q/x+Xw55wrZWyktXLgwOSYej3PJJZdw3333Dev64p5i9RO0sNjPhNe00/HQ2hQBBDD8MToeWkt4zZ5X3+iLAA0M6lVXYASZrm0gZndlF5zkzTKLGEqJJxKipnd9zbCNwtGTn1DHYon1tiBRXrZ9QLPaynyPyskfvp/5nLkEWUpe5UTWUk+nKM/5fnoKvHTNrsDW48PWvjvzOBI3xCMac8/liE0fUGDaWecyEy7QHMJtCoW4mtvWiARyC2AfsQHjDKHQo3lodZUSFU4UB7iDOwibCi2U00EpQTzJuU2fPp0tW7bg8/lQEEytHc9LTz/FlZddQntXGz3xToI93bic/WuNfa2UHA4Hbrc7af0JIYallVJTUxONjY2cdtpp1NXVceedd/KXv/yFiy++OK/rMVxYImhhsR+RpsT3dPpa0EB8T29GmvnXuTdNg5f/9NuMAiKAoDtz4ePME8x83gmtO1EkKIaDXSO+jF+/kniwIJduEom48fsrE3MUsMtbzl9G+bmtai1lkXZOaliGJzroZprLMhSCTlHOKy1n5vVWnHMNCibHUWJRMLJbruPamzLOxaHHmLt1HXXtTZS0+/IuyTZUsryzwJbz9T7sg8YlA2ykJBjV6JRFdFGMmeG2Pm7sWE496RS+f/W1RDv8RGPdifXEAa2UTATRWIzWQICAbnDYYYexevVq1q5dC8Cjjz7KqFGjqK6uZuzY/lZKQNZWSkDWVkq1tbW0t7cn1xG/853vcMkll3DPPffkdT2GC8sdamGxH4lu8adZgIMx/FGiW/w4x3vzOuaGB/9GMBjIKiAFofyCDyZvep/1E9J7wAG8N3oiVd1dzNpUgkAQVj5gU+NMpsx4K1tOOpsb5wFK1qT4Ixrf59ylzycrxnS5C1lZN2XIeb5bnnmOg/HSxYjDmli+/rPs9ibEeISvnREZKsGMa2+irr2JVbWTeH/kBKJ2O1GbgxVjp7KhejwnLN1McTy/22fWZHkJIKgcVYyr0JbTJeooslFcm/rwoosBNT2BMK7EubK4hH/169u56447OP6s09JaKUUdLnoKionbHDSZCoSi2NyF3H3f/Zx77rkYhoHX6+Xxxx8HYOTIkcPSSulAwGqlZGGxHwmtbqXz0aErNJd+eTLuWZVDjpOGweLPnszKYmfWMaYQ/Onca3rX4DI4g6SkMOjHRBD0FGVvQRTW+dYzPcTsrfR4E9ZCWfmOtDzBSMTN5sZESbOUpPgMStmXfwiwq7icp2f1J8lnf9MDbmFZ5lpKB+dxH/dyGQGRem9wxKIcvXF1StI8wObSkbwwPcPaae/5PresiZdmlqStH45SJL8oUqgcXYtqs1Ea7E5fE+ydsmI4c0aH9jH1i2Mpn1KS/F1BYg44qg2DYmXooB5bXEeVAlOayaCaqMOFryg9SKqPMS47Xlv+9tLB1krJcodaWOxHlML8cq3yHRda8S62to7cx5KS49/6L5AhCKb390PWriCYa71LCHrcNraVqwQKNya3dXTUsmzp53n/vRNZt/ZI3n/vRJYv+zwdHbVDJ6IDb42fkcz6q/K3I6Q5dKBOJrNz0O9jaeS3XEOAdBdm1Gbnhfr5bC7vL5ZtAm9NnJ5zri/N9LJwU5b1w14Ke/woukirJwoiKYAAoyaXcPjZ43EVpro8HUW2NAFMzC91TkqerZacagEFmpciWyleewU21Ul3rnQYYHc0jpQSKSXRaJRQKEQ0GuWTYj9Z7lALi/2IY2wxarE9p0tULXbgGFtMXDd4YekaWrt8VJZ4OWnBdGxaalSd3tZGaTCCM6YTsakZRUwCk3at4+wdD/JC6edScgILA36Oe/tZjCGCOfrwF0YoCBmkJgcqyYotA8k3Eb0v/7CluBw5RPeFgftm3S5NVpIlGjY5RvLmgAIA+c7Vqcc5qWFZmntX6W3W6zQSLk4RBxQNVAVTtaHq7rSKn6MmlzByope2HT1EQ1FsZWHU6mqMAW2LNGHg1CIE4qmuxcGimI2BdUgVoVKoefGYCj05LnPclHSGI8S7/Zhmf2ECRVEoLi7G5Uq9TlYrJQsLi7wRisB7xng6HlqbdYz3jHE88uLbvP/OaziJASa+4lY2ro4zcuLhfPHECxG960NqeTkCwfQeOytK0ysy9z27v+Q9Bn25wmXtt7Ozpo6guxBPqIdRTVtRpGT7iLF5zd8Vasq4PVM3iHwT0fvGhYapIgkiDztJCEIDBHhP5jqxbRd17U3J9ztCFXhmTsOme1KfDUw9cWGEABEG6U47nlAElWOKsHnaUO0SaCKiOzCkiioMHFoUw1TTRDCOiikTxbEzlljLlBfYS1XEpKcgd4qCPxDAaaZ+nkzTpKurCyBNCA8mLBG0sNjPuKaXU3be1Ax5gg6KP1vHY8tfY8vWD3AAZeXbB625LebFV/7ErBk/o7B1Dr5FOp5Tfsk4RxFK82KWxlcjjP6AC1NV+XDyXKIlpVTHtlBa5KMotIZAoxvkgHWtpq0UBPyJLgpZ1tmckRBGdC2mw5WyrpIp8MURjzKmvTmv69GXf1hpz2/8cNInfnuSNA+JdaW+kmwFvV3aE9ctXX6VeAxTxBGahmKmC710BgnbFVScuIjg1FLnoikGTjVKxEgVatUeRcbtpLU67p2CRzoz2os2E9yGJKRmtyZzdcI42NsqWSJoYXEA4JpejrO+LKViTHTTMrZ+68us/cxxOAWUl29nav1rafsqdPLBmm/gbPgfaiOnYXQ0Ev3gccwilaoFNXi7mwnFVF6tOoyXjjiDKZ61XM4fKKN/7TAW0Nj1dhX+LYkggr51w6dO+t/MLYiEIOLy8MRJ/4snEuKITR8wrqMpazeIqM3BhpoxKVVM0pASd28iOphQFE2Mz9clOgwkCwDsQdJ8VqTMXPdaSoSwZxRAABHx0KMVEbEJVHTKaMdDamsjVTGgN01PQeIRMRxahLgSw4i5YUA3eAWBRzpx5Ljda4mWhRlRpIktR0rJwd5WyRJBC4sDBKGIZBpE9wsvsPs732HJhJm4FB0wGT9heWJcliIv8bEvEV9WSWT5XygcFWbevCBHO94HD5gSJsW7qWtpZu7Yd3p37D+GzaNTd+Iutr4Ivi1FGJ4CDlHX4173JM/VHY/PlT3CLuhw8cK0+Zz44TLezhb40j/bxH9ZQvkNVaVjrI3q6k08YvvW0Betjz5LJaNgmQgkEiX7vKTEHo8lRa0vaf6F+vnZ+xBu+iBzZGFfhRbTgCyVUAS5Xb1FIYNIsYaBSivVVNKcIoROaaCIKAoSDZO4GqPFMBMNeG3daKaGhqBYFFIYLRhyxVDP8ZxREA0Puf/B3FbJEkELiwMMaRi0/OIWkBKfJxHNWFzcmpJ2MBghwHB14Qs9SMWoMNULu1mlH44vVko80s2OlhBBw87Mw3IL6Ygj2ohU1zJu8ns4HCGmsIbT+DsN0Xn8Tvs2PYo9685vTppFeKi1tGRZtsxrV1HNzhOjT6OAnv7x+ZCscjPIcuy1PE/lPzzL5zKLb99QJVUJ+pLms/Yh7Mi8Htp3fKnkWGcTGlIYSGSyg/xAVBPsuiSmJVyqHZTjIYhqSIQpcJgGQuiAIKbECGqplqKu6OhAhE48wo0ilcxGKQkBDKkCVYAxwOtpUwSVqkipVJON/Vn2bG+xRNDCYghM02Tbtm0EAgEKCgoYM2YMirLvXHShFe+iNyfWw7zBHroBuz29Q3gmpDPIujkLuV/WY9h7XVh2EK4Y5fID7AXZ3VpCgMMTY8qMd1K2K5gIW4AeJYfACTG0AA48UTbbolckB+fy5YuTCBH6A05K6eR87sVDgGfFWTnnFNdsvDxlDieuezexTfYnzfcH+USo3dyAUVY19GSyrAnGnC50Gygyjs3Qe7tKGGi6hi0KbVvWEe72oVeW4KmfhlAUCvQwnqiBIiVB1YWq6XhkDN3Q8KsRnDGJZiYELWJPvbbdWpSSuIt4PM4vf3c7jz31T1RVxW6zUztyNN/8/g1Uzp3FSKcdmxDEpcQmBJ7eThQtipISFTqYvWmrdOONN/KHP/yBESMS/SinTZuWrDTzcWGJoIVFDhoaGli0aBHd3d3JbUVFRZxyyinU19fv9fEN02Bl60raQm1UuCs4tPJQ9La25OvzNr3P+tn1RKP5Rd+tnziHDeYkIFXspGaDipLMO2VgsLHkF/nvu9fsRYBFRPQLYKH0cx73MY+lPMgFee3fWDmK4lAPI/ydxO1u7LFEjdSR/nY8poPZ0VGsDPgI5RBBEzAUlZjNDgLsveuMEYeTngIvZoqF2G8Rt65cyvpH7yPa1Zl81VFSxuz/+RKHTK3BrxWw21FJXPTnEmoyTkV3O4X+/ockXZF0FEHQmThugZ54OLnke1cQCAZ5/cmXKPEm/p7PvPgcOxoaqJw7C5sQFAxIuTEMA1VVKS4uTkaBZqK4uHivgmLOP//8j72R7kAsEbSwyEJDQ0OyTNRAuru7efzxxznnnHP2Sghf2vYSty67lZZQS3JblbuKb3vPZgIgEfgWVlA8shH/7lqiETd2RyizRkgIBD1s0usxFYMmb2p6giJEsnj1UGQ6vpfsN8GBOGNRIrYMLtN9TYY1wR4K+S3XcDpPsojT8zuOEKwcW8/KAZsK4xGO7mjltO2lTIxJdpletsZjiQeLQe9zc3kNWyYdwiy7g4C7EGF3oJgGzkiIUMZao/0C+P7dv0p7NdrVwZI//wHPxRciDjs17XVdaDQV1yBFM0W+hLtcM6HKBy1eiWl3YpMKG7ds4qlFz9C4tCEpgACnn5g45i4T/vHgAzz22GNUVlbS0NDAXXfdhd/v54YbbiAej1NQUJDsJ/j2229z8803s2TJElwu1171E9zfWCJoYZEB0zRZtGhRzjGLFi1iypQpH8k1+tK2l7h68dXIQe6y1lArN4Tu5ivzJ1PC8ZTMeox697s0jJCsbVzAzPpX05fTeg9Ruv5zbKqqzFqXc1y7STTqxm7PLKQ5lsuYwlpKZTudlGYptWZSFA+yYGMDL2YKJvko7OkxsnSgf4b8Cmxno8fm5JnqWp6phopYhDPfnkrhrmWJlkwD5tgXGTtKSf2bmoqaRQATSNNk/aP355zDW/96iiPmn4xI+6wlXK5tReUUxLajDFg2LuuGrrKEZffemvcZXzeO0pLM5dEqVBUhREo/wdbWVurr63n11VeZMWMGDz30EFdeeSXLly+nqKgIm82WNT8w336CAI888ggvvvgiZWVl/OhHP+LYY4/NeS2GmwOubFokEuGss85i0qRJzJo1i1NOOYWtW7fu72lZfMrYtm1bigs0E93d3Wzbti1tu5QGXV1LaG7+D11dS5AyNXLOMA1uXXYrSEl1u4NDtlYxY+coykPlSCmpbXIRJ0ow+jw73/TS+MwYCpY2U+t4F/eDTtTu1PUXLVLKiPeu4h3b4bxQPz8R1j+AoMPZWxZsJI2b5vXOcfCc+382UWhgGm9zJA1Mw0RBweR87iVRai3T+pCgTtmIMx7lxIZlOPTcRcHzJt/SXFkrxiggMlfO+Si02ezcc/RRLJ80i62ajd2FXkzIXRJuCLo2riXalbvUXaSrk66N2QoqCAw0giWpa7KaCYre/9kb6LJs3LqZeScfwfSjD+WK//dN3LaEWA7sJ7h06VJmzZrFjBkzADjvvPPYtWsXfr9/yDXAbP0EB3P55ZezdetW3nvvPW6++Wa+9KUvZfxO7UsOSEvw0ksv5dRTT0UIwe9+9zsuvfRSXnjhhf09LYtPEYFAfp0WBo9rbX2eDRt/SjTajCmhMaoQVkqYNuZrHD/5clRFZWXrShybu/nSmlqcsf4bk6l5CRfX4u5Izz2LBzW2vzyC8q2tjCu+gUhNG4bTjxYtxtU1GROFvx3d+1SeJXrznYn1zNv0Dtu2zqRmxAYcjv51pHjcgd0eZTkLeICLEv35eimV7ZzPvcxjKafzJM9wVvqFEIL3tUN5f1aiIHX2MIqDHKGAlLw174TkpqJQgMnN2wdY33tWUzPmy8/VPNQ4XdWQjihiQG69ISOYwmDm9EPYtKWRLl8XJd4SxteNY/nzb/HA4w/z7CuLEI6ECCYT/envJziY4eonCFBd3V9e74gjjmD27NmsWLGCMWPGDHm84eKAE0Gn08lpp52W/P2www7jzjvv3H8TsvhUMvBmkO+41tbn+WDNlZhS8kK3xus9GiGpAGFo+SPlq/7ODQtv5N1XV3LsygoGR0gKPY67owPSqkpCn9urddIsJrrK8fhSm9iuKlHpcOb4OgtBj70QpnZSx4fEYg62bp1BJFxMJOam2VtC2xhXxrWzTkq5k2v5FrfzNkcNeU2ituEqd5aeoH9AMGge3S4Py8dO/ciHsw9Yo9ubcSo6UpUpnx6PTaJrHUwcO4EzTjqNy669ij/f/nu8xV4AgqEgSJCR9Kjhww8/nIsvvpi1a9cyderUlH6ChmEk+wmWlZVl7Sf41a9+NWs/QYCdO3cyatQoADZu3Mjq1auTlufHxQEngoP57W9/yxlnnJHxtWg0SjTa/9gzlPvKwiJfxowZQ1FRUc7PVFFRUfKJVUqDDRt/ynshhce67ITM9Bt2e7yba17+Ll9+eVxWmcuNQLF5M77S7shPIHwkbqR2e5QxYz5gUfsX+XfRWUMUi06srf2FKwiLPB4ODhSx+rhI5j5+NEomTsVRUpbTJeooKaNkYrbeihIVAxcRoqoD3W1HNXRcegS7C+IyQrca4U93/JHb7rqNI888DlVVKSn2UlFWwbVXfhe9I4IZS3XbV1RU8OCDD+7TfoI/+MEPePfdd9E0DVVV+f3vf8+kSZP27ALuJQd0P8Ff/OIXPP3007z88su43enFZm+88UZuuummtO1WP0GL4SBbdGgfA6NDu7qWcN9b53NfR58VlC4E89ebnP2GnXUjRiIB0+5MRBhKiRoOIBl6kb7CWctxNf+btn1Ficrl89O/I4P5gfwx9XwIwDK5gN+Ia3un+ykTrn3IwH6CIs/cyWzRoX0cc9F30Q4/nMxRUYJKmnEQYQdjkq+rUqdMtOMwI+wKjGAcKjl72KuCWIUrJU/wo6Q+WP0Eh4nbb7+df/3rXzz33HMZBRDg+uuvx+/3J//t2LHjY56lxSeZ+vp6zjnnnLQvUVFRUVp6RDDczL99fbeYzAL4vX+ZhDUPUiTsQDUWQQv1oMSjRKrH0FowMud8RrknsbAyc6Tj7C6DykiO3nvSpFS2M4VEcIWJwoPiot7pWgK4/0j8vSoPXcAhV3wPx6DozQJvGad+7bvMmDafmmgYlVRrTcVIllTroJyBnz1DJEquRRUnxUo8twACGJKmngjbwzEaQ1HWBiP44tmLK3xSOCDdoXfccQePPPIIL730El6vN+s4h8Nx0BZttTg4qK+vZ8qUKTkrxjSuauUfi1fjK838TClMyQUvmjQXe9hWUZwmVEKP42zehqYM+DoKibs6zM6RY/BTwqSeqRwancRr5RFaHAGqogrHdbiw9d70BJKL1rVz68yKDLUuE6XDzudelN6QlXVMTQl+2SMOpPW5gxiByRi2EsGBgcbo+kM48oa7aNq8jlB3F+6iEkaM60/B8UbtFBhB/O4AEhUVHRcRTKCLEkIMdjf2l1wrE0MHrkBqIe24KdkWTkT57klneauf4F6yc+dOvve97zFu3LhkvojD4WDp0qX7eWYWn1YURWHs2P7+eqZpsmXLFgKBAN3NOque6KS53A2lgITySDlOw0lEjdDubGfqDklZD7wytYIKVy0utYCwEaA9srO3dmTCHtDMxFN38dhumj4zhnucX0sRqlukiRT9DXALImEuWe9D0YN86OrGFgtxYsMWlkyqp8fWn5fWVzpsHv3fob61wY/Ep1kAh/EBQKIQwYGLCMJUccTKQYFRE7IXYNB0D2Yohunoxq0mHqYUoIQuCumhgzJCDFy3TaRPREV+t/pMhbR3R+MUa+pB2yppKA44ERw1ahQH8DKlxaecgWXU+hrHxqY7UUNlTO6aysTu8TjMfu9ESA0RDa8mMraGk8afg1vrd62G9G5WdrzMrtCGpBOreGw3bSeO4vfi6rRzy0Fu1oDDya8PqU65KTviUcSgBIVM36Z8K8BYkLSk5xnvsFw9fFjbOxm9t2AtUpb3Pg7VxK6m/1U1dKpooQUGCSF0C40aRSDMzPfWgYW0BxM3JUHDTCmp9knigBNBC4v9SaZanmpvrceBgTKZGsd6IvW4G99nXHt/dwGX4aJeO5OKDOHhLrWQIyrP4q3WJ9kV2gBCUrOwlTvEjxMDMuX7Df590ANjVEtPT+jqTXH4Drcxh+U0UM+LnPyx9+o7aOmNjm1UJ/EtbuchLqSTj+hKHoQpbdjClaj60EFNfdjswZyvl9HR6xrt/7xUFTiwKQp6R7pbtO8T1OLM/lmIf4INE0sELSx6yVbL87r513Hc6ONY9PS/Acnm8hEZG8f2VWY5ec1S5q99H1ckTNjp5rDiI4H0ZGEhBFJKZpcdz+7QRjzVITYXTNqztbqhhBKSCd5/5XL+wuUEh+rQ0Nf4NtvxcvXu+6QiFDopp1D28BuuYJ2cio8SiqWPu/k2XaLkI10PR6QYdQ9iTww1ghC5SxFo6DgJoxpgkzqmolFZWJZIci8D3RdN6ZmkKwkB7NGyz9/2Cf5bWyJoYUHuWp5XL76aH5d8ie5wHBORvTxWr2X27qiJXHv3b1GlRC2fhPtIZ6LaGCbhkvXojv5KL0IoeLQipnoPo3q0wTM07ps3KAQBivLLZ+uzDqXM2lD2UyWAA/BRgoKZTDNBwNf4K3dy7UdaL9RMkVwXBpCmJL47gBHSEYUm2igHCmriU6mYmDK/Ska10SZcAyM7I83E3VX84td/4JFHHkFVVOw2G7W1Yzj/+uuZMD3dU9GHTelvq7QveOKJJ7jxxhsxTRMpJc8++yx1dXX77HyDsUTQ4lOPYRr84vUbE2vRg+5hJhB3TObB5hZmU0pTcfkQieWC9pIyPpgwhVkb1yIciUCWnsoVtE55GN3ZvxanRUqoXHcuha1zme49ikB8LV5WDP8bHDS/vRr/KRW/PjKtpc5jKTe0vsBfik6gzTW4TVI2Egnu0hYAIxHEFGn0EXhjF+aAJraiUOA80YVtyp5V4bGZqakU0oxz4YVfIxATvPPOO5SUJAKjnn76aZo2bsgogn2tlEY4bPssKGbVqlX88Ic/5OWXX2bEiBF0d3ejaR+vLFkiaHHAkmt9briQ0uD5Z39Em+lPE8Coay7Bkq8wSW2hrGA7xcHtbLSPyOu4XaOmwsZ1yKifnsoV7J75u7QxMYefl2a+itheyajWOir9VYyNbqXUkaNbw8fJp1zwUpAmpXQm8ywHM63iz9z+zlaaa8fSMXo3xXyeUtx0MZJsCe5ltKPZg8RsPowP7ASeS+9UL3sk4X+F4GzyFkIhJaqRKsCbNm/n38+9yo53X6JkQNpZXzUuX1zn9/fcy7P//AelFRVsXreOH9x+B/ZwkAt//CN0XaekpIS7776b+vp6Fi9ezDXXXMOKFYmHto/aSulXv/oV3/ve95JNdfdHkRNLBC0OSAavzwlTsrCthK9WfpZZU4/DPXcOQt07QWxtfZ4NG37KGtkGpOabRp3zmFQ+j/P5AWV0gBuYCUTaeJn09cDBjKg7Fc+pC4nvXELT5IcSGwfcB5ezgAdEb6HqOqAOSmOCr4hZnM+9ve41K3DlgEAmRGshbyTzLNOGANphLzJKkdSKEdg5HTdhbDTTQXkyChQSCe5ltOMhEeBiSp3ga50Zj9tH5KUw2iQbQhn6wcQZMdPKNaxas44JdaMpLXZDLACO1NZOXpvGCIeN95a8w+Jly5kyaRLBjnamTZuWbKX08MMPc84557BmzZoh55BvK6WGhgbGjRvH0UcfTXd3N6effjo33ngj6l5+t/cE6xtmccDRtz7XJ4Dz15v8/g8G3763ndJb/8b2r32NTcefQPdH7CwiTUnzuy+y9cUHUJq9FA36FtR1zGRm0Ry+w+2UklrPcbrjfUpl+5CVWYpnfJfOqa/QfVIPusuXJoB3ci2dpIbFd9qc/E77LgDf4TYK6flI789imOm1iN/mKMwst0whgN4+giYKMWyEcKNgUql346ULL11Us5tatiUFEMDYoSN7cq/Vym6JsWOICBod1DaB0aFixNLFMunSNOI0NjYya9YsJk+ezCWXXJJ8/cgjj2Ru/VQKNJVly5altFI699xz2blzJ01N6RbrYPJtpRSPx3n33XdZtGgRb731Fu+88w5/+tOfhjz+cGJZghYHFH299voCVPrKjQ1Gb2lh17e/g/GbO2mYdzitMZ1Ku8Zh3gLUHG688Jp2up5uxPQ7GcHlSGlS0b0cR81/aKttxsZ4ZPQwJtj+BBniHBRhcr68lztFhkCIAZVZTEcnHROeTDu/icIDZClX1huK/wAX8RuuIIKDP/LtfC7bp4P9WalGCDopZ52c2h8Uk4HlLOBFvs738eKgDIEj5S6rUphiBQLIQH7pB5nGKX4QcRCGSLZQkghiAQ17gY5qT+wze/oUNm7ZTpevm5IyG+PHj2f16tXcf//9PPPMM8njfdytlMaMGcPZZ5+dbM579tlns2zZMr7xjW8MebzhwrIELQ4oVrauTHGBXvBiQgAHf32klPx3wUKOCNv5wupGrmjYxhdWNzL3nQaeaeki0ugjtLqVSKMP2ZsgHF7TTsdDazH9iVJQ0d3v0rz7O+w49W5qj9zFnFqDQ2o3MHPBr/Eowaz323liKd/hNipiqY1jS+nkO9yWqMySZd9kubIcTWA7RTl/4XIe5oIhr9enAinRZPSAWKPMVWmnz8L34806xiBRzzM4oMSZKMjvfWUap0QESkik9BDsIx5Skw6LieNq+dxJx3DR926mub2/j2QwmD3n8PDDD2f16tWsXZtYBx3YSmns2LHJVkpA1lZKQM5WSl/5yld44YUXME0TwzB48cUXmTlzZu4LMcxYlqDFAUVbqC3589QdkvIMHsHmYg9PHHU0/zztvPTXonEu+XArv1wd4bhWHRNJW2EAOasYsdpPBR4UFFbvWkZ1/M90X6KnhS3kwzyWcsKOR3lnfCM+SvDSxRTWZl0z6iPfcmWvi+P3qj3PJw2dYepRuJdkq7ST08JPob+eZ581qI7WEIUip0tUFAnU0YNu1zoZxa8PaQpMXaDaJFLCfb++iR//5lGO/MwR2B02SkpKqKys5Lrrrsu4/0dtpSSlpKyslPXr1zB//jyCwVDWVkpf/vKXWbFiBdOmTUNVVT7zmc9w1VVXZX9T+4ADupXSnrIn7TMsDkyWNy/noucTN5MjPjT59n9SRaW52MOKumr+dN61BDxFWZO5qyKS37y5heW2DQQH3Cnc0kEoWsL095/Fc2UjNmfkIxsYhbsOp2fkO3u0TwPT+Ln46Uc74aeVA6Fgt5QU0MPdXJzxQWfg3zXfVkrV7MJFwo0YXxdLRIFmwXW2Oy06VG0TKOEsO/Ri8xhoDpM4gpBeSVQm3J3eKjf2XE2YPyLxuJ/1G1Zw9Ge+yJYtrwMgFBtORw02W/EQe380PrGtlCwOTKRhEFy6DP8z/yW4dBnSMIbeaQ84tPJQqtxVCARdg/q3SqBhRDk7a+oIFBTncCkKWlwKD1c0ESSKCewqLmdjxUg2egsxHM3sOKEGu+ujCyCwxwIIMIW1vYE1uS1GiwHsbwHMg49SkHxgxKhtip2C02tQClIbHokikS6Aen4CCNBuU9iiaWyw2+hR+o9tGsNv+8TjfsLh7UgznrJdmnHC4e3E4/5hP+dwkNejwK9//Wu++93v7uu5WBzgdL/wAi2/uAW9uTm5TauupuqG6yk66aRhOYeqqFw3/zquXnw160cK/C4oCiecSJ0eJxG7RtCTn5UfsjvYXJFa41ORksNbQpwWeHpY5tvnSzVRWEs9DUxHIvDQQzH+ZG5Zn/WgYA5IgTgALJxPOsN1jXsr7jxvnMrJynNp1uBHKUiu0hvtaYLms6NUqNjPLiPaHKDFWYhaaEeMtiMiBlpnFM0MpgTADIWuQMeAeqCm6H9gVTIUyt4bpJREoomo0TFjRiatwIFEok1oWtEB140iLxF8/vnneeqpp3jggQeora3d13OyOADpfuEFdn37O2nrVH1RmvzmzmETwhNGH8vDsc/gfuoZtEKFUMQOUhDt7WnmCeWXOuB3eVhRNzX5+7Etca5ZG6UqKgmVjGPH+GGYrEgERPyVywlkqclZKttTWhnNYTkF9BCgMON4i2FmGB82HlIv4ll5JufL+5jHkuRicp+F30kpQ68wJ6rFuMwISg+ofgHEkcQRQNfUCqKe/ua6YZdEjRoURiIIM38PQsegj6MiE7l3iqpgcwxvHp5hBNMswMFIM45hBNG0gpzjPm7ycocuWrSIc889lyOOOIL77rtvX8/J4gBDGgYtv7glc6BG77aWX9ySl2vUMCXvNHbw1OpdvNPYgTG4tUvDfzBvnciMXQ8yfm4XY47rYMIZLRSOCuPorYU4qmkrBQF/jlw9iScSoqGmtwegEBzbEueXqyNURhM3EVfXZNSIN3dlqzzoiwjMJWidvV0clrMASESIBkSW9UyL4UWIYb/OnZRyp7gm8ffs/fz0WfiJIrG5hCrhOigMtyOaRK8AJtBVld3lVfQMEEAAUwhMERvysyo0J8LmwbQ7afEKgs7+YytSxWYk1icLSh3Dbo1JmV8V8KHGSSnR9QDxuA9dD3wsbfXyXhm95JJLOOaYY5g/fz7XXnstiqIk80haW1v35Rwt9jOhFe+muEDTkBK9uZnQinfxLMheTWXRmiZuerqBJn9/TlFNsZOfnFHPKdNrkB8+Bf/4GmJQDU/NZTLyiC7kW/BerIqoTeOit5awYfoxlMQkXQ6FNqfCqhI16aSa2rSNd+smMZUPKZFdfHu3E5iI6G2bLVCoWndeopxZHuGhJgrrmJoSCQrkFxHYm//3Ny7CTZBnODP3ySyGn+F0Pfflc4qLmCOXJ12j80ikzrzI14HM/QE1w6Cys4OQI8T2CoErJhAUEre5CTucZPsgKnoAkU1cbW6EuxRF9Fp6QKUwaDM6CaiJhcOCqBfDFsNeoGDYYkipDasQijyb9uYaF4/7iUSbUizKfR1UA3sggu+++y4XXHABX/7yl7n22ms/1rI2FvsXva1t6EFDjFu0pokrHlqZ9jDb7I9wxUMrefio8SxYfjWKlFnb5lXP9jOvoQbv+C/ipgjWpObptTgEv6/T0dY/S/kUnfP5daLkGRCcBVsGFKyWmKhxD95tJ+Ef+RqGLZ4mcn03t+Us4AEuSmlxVCrbOZYX8297JBS6KOcX3JTfeIvhZbit7t7WSutITZ6fx1LmsYsCfkopHtxdIGJgqBqqoeOOJh4AfW4vDs3EZietclAmNCOzBSVsbhRPRdp2VarUxCtoFV0Iu0bA5UeXOsSAGGiKRo2nhiLH8ETRq6oHodhyukSFYkNV09MkoD+oZjB9QTVQu8+EMC8R/OEPf8jDDz/MH//4R04++eR9MhGLAxetIv1LtifjDFNy09MNSQGUgFliB4cKUYPjunSqG+6nraIbR8yG1x9Pex4WAnTnAmqmX5j1/JURk5vWKbxQFWTM6EVpr+uOLnbP/B0lW0+lp2ZJsqNDNpFLuLdIBLEMopNSnuDL2S+GxaeCTFGhCiZ24rgJ4TIESjT106yrGiFPCSB6MwX7vhmZhVobIJ6DEa7SzNt7/6/QS9ikpIuLburs6NnBaEYPixAKIXA6ajIKWR9OR01G63NgUE029mVQTV4iuHXrVlatWoV3QPVxi08P7rlz0Kqr0VtaMq/DCYFWVYV77hwgUZszusWP2RNDKbSzytSTLlCj0kl8ajH05ijNlUs4Q97LFtEBJL6MjqjBpE1BKjv6LT0pFXzxS3tPl/mLIITAxGDclKUYZLilJPKU6ap7Lrmpb01vMH3reAV99Tszljj7xKTYHvxk6nO4Fy5QlwwQFkMHcAwVFSqEC6GB1PtFrLWkjNRPZ//P0jRp37WTSDCA01NA+chRVHam1q9N7qU5EUN0VREmuEwHYSVKPB7nL3f+hef+9VwiOMZmY+Tokdz289uYPXv2kO91KBKWWu0euTS/9a1v8dpri5Ey8V3fsGELP/3pd7n88nNTxu3LoJq8RPChhx4a9hNbHBxIwyC04l0KTz6Jrr89kD6g9yZTdcP1CFUlvKYd39ONGP5+AatyqXwGjVcqNfRZ/U+uc+USvsNt6S2M7Cof1BcxvaGHqo5EPHjUnIZBxZD3tEjJBkxnV/YlvgEv6Gjcw2Up76N/XGLdJ1vEZ8o+VqrDAYAk0Z62XxSK8NOdo4RZ6u4mRXRzLvdTSieTWM935e+zt7QaorUSgDAVNFsV2ECaBnrUT3Ohm4A7s0tw18YNvP/qy0QC/dHPbo+Hkw45hMkjR6aM1RUFRdXyimzUeqNCf/itHxIOhnnouYco9iYEafHzi1n1/qqMItjXT3BPsNmK0bSiRLSo1BFCS7hKs3w/fvvb3xKP+wiHd9DS0s4hh5zK5z+f2duYb/DNnmIly1tkpfuFF9h0/Als/9rX+gVQSf3IaFVVjPj1HajFXtr++Cgtv34S3ZfqurGFDY6tLEwIYG+0npBG0t2Y0WID1o0bTcg4DABD5peMrDvyS8hdzgKu4s/0iFxJ99bX46BBKEihcp68lyvlr/mB/DF3cVl+hQl6C59fxJ85kjeo50M09OzRngMKpSuY6Q6B3t/VqHfA9FRsrlKE3Z1xCrs2bmDZ00+mCCBAKBjkyXfeYf2uXQDEVYUep52gw0ZYG/rBy1QjqFqMpi1beeXZV7j5NzcnBRDgmJOP4Qtf/gIA999/P6eccgrnn38+c+fOZdmyZSxatIhDDz2UQw45hKOPPpqGhgYAFi9ezNy5c5PHWbNmTbIb/LZt26iuruP663/GEUccz/Tp03nllVeyzrEvWOaRR/7D8ccvpKoq8zp7vsE3e4pVO9QiI9nyAunNUyo46SRK/vfLmH4/Lbf+MiV6VDhLcBzyJWwjDkVi8ta4TTw9LsDpOwOEm4toLy4jPsGgTGR28yQOArrLx86CyxjVI1BFfsnIWnToxfNsLlCLg59i/CzkzeTv+fRmLKUzJY+zj75ozwe4iE7Ks44f/AylRotRY4UohivlDiuBqohJT0GqdSVNk/dffTnn+3p59WrqRo0kYu+v+qKbMUxpJKNCB2JoIXRXB1IYFAI7P1zLuLGjqS4rIjxI0zWlf5Jvvvkmq1atYuLEibS2tlJfX79P+wlCf1DNQw89yc03X53xeLmCavYWSwQt0siZF9hL4IUXCC1Zgtndnb5/pIvIsj/S88XjaVv4NhVOP1cCjALFA8X/0PCtdCO/NPRcdEcXXV2X8ab9X8wkggcHIkc+g671gBQgMs89/0LHe4DlCj1gGLxGl03ICqWfI3idOSzPWfh8HkuZw3LWycyRw4Mp3n4cZbu+SuDY9ILfArCZ4DYkoQEVW9p37UyzAAfTEw6zpauLmprqlO0hvYcCmzdlm6GFiLvT09YURVCuSdp1WN+4g+9e+F2ikSjHH3M8f/3rXwE48sgjmThxIgBLly5N6yd45ZVX7lU/wYULF6aNFUKw8t1t9PQEOemkozIeL1tQzXBgiaBFGkPmBfZi9Apgpo/mzuO9iGOfS3vd8ELXJTrE0sUzE1q0BEk5PjmHJbYNHB+fgURmFMLuiuU0zfpD9oPJ3lZGSp5pDdZa38FDjjW6PRWywSiYOXsIDkQgEEOsMmkmDFi6JBIM5HXsQIaefTEzQiDuw60VJi1C3ZXuYZk5cwqNjdvo6urG6y2idmwtTyx+gtf//TovP99vhX7c/QT7+NvfHuOrXz0Pzeb82PMErUUPizTyzQsUZBHA0SOIfzbxxc6Y8wcM2RlHghL2IpF0Vy+h2NvCVrWFF20f4BfpuUgSk7apf++fWBaCwSlDnLjvgJYAHjQMWqPLRJ+QLeRN6vkwbwHcU2yhyiHH6IPuuk5PfhGP7t7Gs4OJmRF8sTa6453onghSpFduGj9+DKeddixXXfUTAv5uPKrK6MLRmLHs1+Hj6CcIEAgE+Oc//8kll1xBgWcybvdYXK7RuN1jKfBM3qcCCJYl+KnHMA1Wtq6kLdRGhbuCQysPzTsvMBOmEGw8vpbJzq1Zx+SlLQKkFmHnvP8DoALwxu20bhyL+P3viEw+FeOwKegOH7ZYQiz78v5S5jOw0ovowlWwPr83YgngQUMJnXwtw5reHiMhmUezh39+KRO7x3cfiunK7IqXJAQwNKh4dcWIETgLCnO6RN0FBdRU5v5e6mYMYXdBluqFd9/9M26//c8cf/y5aJqT0tKyfdJPEKCsrIxNmzaxYMECAoFA1n6CAI899hizZ89OumE/7tqiVj/BTzEvbXuJW5fdmuzkDlDlruK6Of+PUV/7MWabL+f6GwjU8okIRzEy6sdo30hzZQUNX6pjytQ3c+yXJ9nKmYVBUdyYjv7+a0rMg2lP7ZKdLQk+hp0ABVlD362o0IOA3tvWF3iUs/jX8Fp2e9hlue8O+kqPSseOBVzXfSmBYwsYM6IWp5bq8gjqPZjxxOe2r4qMTdd5MxRm2dNPZT3H/DM+x8yyYtQc9XlVTaNkZAWh0JYh5+x2j02KjZQy75SGfNi6dStz586lvb39Ix9jT9jbfoKWJfgpwzRNtm3bxpKtS/jr2j9T3tbKhCB0FcDa0YLWUCtXv3E1vzozxsh7lKzrb1rNbByHfAllQMWKeMzPTvsmYrF1wzPZLN9D06nQwNjUOp62dAHMlgSfPHAmwbME8KCghI7hsf4yYdpAzd0RYSB9erE2orGpaDV3ux7nXHFByhhpGshwJ8545sa5E2pr4Yyz0vIEXYWFzDjmeEZOnERPNIy3uzPrPArLKhIChorMZg4CAjUZabm/6nUeSFgi+CmioaGB559bhNunMLIjyK/XVWDb3UJfYlN7Idx/oqTzEIkyx6BLmJTco6VVr9dqZuOcf3na8TV7EcdwKC93qkSjb2G3h4bdq7icBTwgMpQ4E/cyTy5N9vbLGgHamwRfQAAJBLE8BgcLZ8l/MJKdexzYssfsgQAOpEiVICWrPev4gtKJJlx02SuxBSO4gr6c+2qGwciJkxgxfkJaxRjRm5sbdbjwFZVS3NOVKDLfi6KqFJVX4iwoQEqJ0glG5mpqifGdQOG+q9dZV1f3sVmBw4Elgp8QpDTw+ZYTjbbicFTi9c5DDMgfamhoYNkjr3JqfAYFOBMVyuZ/BjPcSfT9x9CbVlHaA9/7l8mqbhPOArMAhEyr4onjkERuw2CXieit2THPqOfvrSdz7Kh/p8eX5C6TmNMVNVSJs++I25jHUtbJISJAhUKAIgql3wqAOYiYxgd5R2l+JPrWBLOk1wxFt5GIC/18TwC3FDTbCyjs6cEVDg65r95b/kwoChWjs/dsjTpcCFPDGYvQLU1CaIyq9OJ0JvIHzWAQJWCCITBKZUoUKjqoXQIlbGIGg0TYf/U6DyQsEfwE0Nr6PBs2/pRotD+tweGoZtLEH1NZeTKGEef9f7/J8fEZafsKZwnO+ZcTWfZH9KZVABz6koKxwkZ4dvqTduHUWshStBcSQlhs2lld8GXeExO4wPwrJQMS3UUQpIc9XnfJx7p7gIuYw3J8Ir/qMj3i0+HuORCpkxv5LM9QjI8/8E18lGV/GJGSUjpyligbFgR8lAaTUoLPgFC4jAWOz7LbdBCN2hjV5sOpDO1e11VBxKHhJIyKjoFGhOxtlRymilu48QmTGBJ9QE/OaDSIAJQwKLsE0gFSlWkd6SMxH1I7OJvgDjeWCA4iU7SkOkSR2v1Ja+vzfLDmSgZ/eaPRFj5YcyW1o7/O2rVvMavnWwBp63tCCKSUOGZ8Cb1pdfI4ig88r6Z+gQtHhSmZZqMrjxJ+n2nV+XXpYbyrzOELgWe4ds2f6XqnGJdvEqFD4nR+fkPm73iW++A6puZuW9Tb2uZ5earVsf0goIzOZGWXC5JVXTJY5b1uv1zpD8OO7gAtOvQ4+oNi/u2zs1vxsUVbj3fM+ZzodGGq2tAl24DuUskotqfcjHU0OigjRKoAaVLiNmTvmN5tA4RWV8A2YLyIpn/nAQxl6AbYsO/qdR5IWCI4gKzRkvOv44QxJ3zk4/YVodbb2tAqKnDPnYPYi36MSaEOtuDcdROZn14T27bv+Atay9EJF2gWhBAIdylq+USM9g2Jbb2uTdl7HCGg6lA/Rp7ly05tivObyQ5MYeNfntP5fzvXUTruKwTHbMZXf/8eZ6hmalmTiYfERf2/WK7OA5bJNCR/7qvq8lcuJzBojbaAHr7OH/dNAEwWGppGMXVUIzD0x8eMwvbdCtttiYGO8AqKW3ehF/2YHm8JmmHDoetg6shoD8h+8dEV6C6DwgwpFRo6VbTQAilCWBWWCCAOhJHYVAWPo/9eono86EpbIiE/C7oCitODmUfBin1Vr/NA4pP/DvPkpW0vcfXiq5M3/T5aQ61cvfhq7jjmjo8khN0vvEDLL25JqcCiVVdTdcP1FJ100keaZ59QT3AYXFU59BOryzn0mgSAs9JDsEMmyo7R/wQpkbgqYtjcJpr8EAUfJl4kJuGS9egOP1q0GFfX5GS1jNIYzO4yeLdU4+g2EEVX0lOxgqaZv9/j9wxDt6zJSF83XksIDyykycmk9nvsq+rSIOtZy3QA6lnDVBqG3wLM4oqXEqJRNx1bDmOndDBqdEOGQYn/XG8K3CtU7JsEo6VggddkywmV+N1nUuEop2KMh9K4PZEiYXcAECuJ4o+H0fWEEEXsUGNLvd9IadDT00A83oXNVkJpoSAkPGgyIYBFemJ8KyYSGOF1pqzZuW0edno1yjvTLbh4PM7//fWvPPr8czgcLjRNMnp0NddddwWHHJJeRGJf1uvso6Ojg4svvpjNmzcTj8eZP38+f/zjH3FlKQywL7BEkIRldeuyW9MEEEimCPxy2S85dvSxe+QazVaEWm9pSWz/zZ17JISDhbpIzW/9Qi3ande4ymnbUSe00LKymJ6dfR9CgVo+Ca3GRcTYiUP5ELf6Kk1lo2md8nBKgro2oHM7QHlUokjJNWujmMisFV1SEtqzRP5NYS2lsj1HaxtL7PYLe3Lde78Hp/EfNNJv0gom01nDdIYu0LzXDBLCvq/o5sZ5gMLWrXPo6SlnwsSl2O39D5pmVFD6gIJrtZLiZlR9MOGfzYTPeZ5i27cIDzyV0Ik7OzFtIcJCEO3t/uBQJAMbQXR2vcP27X8lHu8ve2azlTG6+hpGuE5FAIY0aRYQUQVjvC6KXal5iEIIistG0GLuoKxbpliEl/z4R3TFwrz85quMqR5DPO7nX/96gHXrGjOKoE2r3OdBMT/72c8YN24cTz75JIZh8NnPfpb77ruPb3zjG/v0vAOxRBBY2boyxQU6GImkOdTMytaVzKuel9cxcxah7r1xtPziFgqPPz4v12gmoe428vuAht+LYEQ6URwlWT7UJiodOJQPwWUy8ogudr0FYWNhSi5gexxU2ohWP8DuGemJvX2d20e8dxWFrXPxm2uZ21JAVbSCUMn6jBVdcnV1H+gCUzBzdwTI2g7JEsZ9zh4I4RyWcS4PDj1wH+LddhKB6uUpn8do1M3mxnl0dPRHZna019LZXElVcBk2t44eUtF32jlmzfb0tfXe5QP7i9vY8bNfUuK4Gd3RScwBppaoq2kCUXOAcA7Yv7PrHRobf5k213i8g807rsdeGqHUfSTRkSOpUFU8DjWrQBU5iqBiNE3uJtRIHM2ETVu38fQrr9CwqYEx1WOARO+/s88+P5kn+PDDT/HEE89RUVnOhvXb+d3v/oDf7+eGG25A13VKSkq4++67qa+vZ/HixVxzzTWsWLECSLRSOv3009m6dWsyWf6CCy7gjTfeIBAIcNddd3HcccdlnG9PTw+maRKLxQiFQowaNSr7H28fcEBmBm/cuJGFCxcyadIk5s+fn+xhta9oC+VXKzPfcZBHEWop0ZubCa14N+0lw5S809jBU6t38U5jB4YpMwp1Y1ShSxdZmz1ICZGIm3fMU3nL3ti7bfDgRN1Fr+3PCGEm72XFs+sTuYDOYkIla+muXkKoZC1xitk2aWdiUHr2BACtk/9Oi9bOtvivOHLnciBzn7++lIdOylK296U8LGdByva+taNSsicMW3y8nMwzFJC7AwIkOrVfxa+4mv/7GGaVG1ukjLGv30b3i0fR+NZE3l99AsuXnpUigH1fKkfLLoJNHnyNxQSaCoiodro8mV11AoHWJbDtAKnEMW3hpAAC9Ax6aO1bHZTSYPv2v+ac82bf77FVevF6HBQ4tSEttCJHERNLJlFdMRZvxWh2be9g4oSJ1NXUpV4LW3GyXqfdXsqSJe9x04238e67qxg/fjznnXcef/vb33j//fe59NJLOeecc3Ket4++VkpLly7lnnvu4Stf+QrBYPqyzI9+9CM2bdpEdXU1lZWVTJ06lTPPPDOvcwwXB6QleNlll3HppZdywQUX8M9//pOLL76Yd955Z5+dr8KdX63MfMdB/kWoB49btKaJm55uoMnf/+WpKXZy5hHplqpE8G+fjQvLYmkP44PdOxtcfmLG+xwdqsNm708NUOnAa/szLnXg9VUIqF+np2IFbVP/nvLErMQKMO05qt4L0F2dvDvyOe5tvJkKPRHQEnOnPhDsScqDgpl0mcaxcRl3IST48fIBh/C6OD77fCz2KXNZznk8QIOsp4EZtFNOGe3UswaBpBvvvk9u30PapjxCV90i4u/U0rNGI14QRKnSMe39tpnQYzhadmDr8aXtH7Xlvm2qPekCZZLqubEpNio9VYh4E92+D1JcoJmIme30yA2UcFjuNzcAIQQeW2JNz6mlrh02NjbyhS98gXA4zGc+8xn+8pe/oKpujjzySCZNmgR8PK2U/vGPf3DIIYfw0ksvEQqFOPPMM7n//vu54IIL8n6fe8sBJ4Ktra2sXLmSF154AYAvfOELXHXVVWzdujXZuXi4ObTyUKrcVbSGWjOuCwoEVe4qDq08NO9j5luEeuC4RWuauOKhlWkzaPZHuGdxO64x6fu/H9a4rwM+741Tog3MFxrk3hGCrWobreo2/nfjB5TV21DowqF8iBCpN6eoOQ1f5baMQSymLb+2L0dEJ1Cke4FEhwf/qNdS1mHyTXlYJ6cSpCCjy/Q87uMDZlrrgfuDAbl7e72Wt4c5o8NxDt3RRekxXXTHR+LfAlrAx6iQwdbqCoQeRw31ZJ2SI547bcAoTL+HeFy11Lk0dFNHUzTcmhshBHEF2uP5BX1Fo+k9AvNl9uzZbNy4ka6uLkpKShg/fjyrV6/m/vvv55lnnkmO+7hbKd11113ce++9qKpKYWEhX/ziF3n11Vc/VhE84NyhO3bsYMSIEWhaQp+FENTW1rJ9e3p5n2g0Snd3d8q/j4KqqFw3P1FJPZOvH+D787+/R0Ex7rlz0Kqrc65VadXVuOfOARIu0Juebsia7GCExiIMb8acn/fDGjc3uXiyZTzr1h7J+++dyPJln0917/SeM+Tx0BFvxa2+jlP9IE0AAQy8tE55uHefwfPO/b770KL9cw33rQcO2DfflId3mZfVZfpbrqFLlFsCuC+RMn1duzf3ba9y92Si6HnpprNQo969m2M+ZPkcj1zYAiKRdlDe1k5heytasDvLx1zi1OOUBMNZXpXoJZJ4bf/1EooNlytRfsxj81DsSPzfJwg2WzEFBfm193I4hm7TlI2JEyfyuc99josvvhifz5fcnslF2cfH0Upp3LhxPPdcou9oPB5n0aJFTJ8+/SO/z4/CASeCkP7EkK3RxS233EJxcXHy3+jRoz/yOU8YcwJ3HHMHle7UD1qVu+ojpUcIVaXqhut7f8nQVA+ouuH6ZFDMsi2dKS7QwUgUQk2nZyxonViUFyysvpC2trH4/dUM/tOawK7icjZWjGRx5TxiITXjvS3YYqdNdqaJVr5ICUgwbP3rRJnWA/NNeXiL3hYtmVymFvscDz1pa36ldPIdbvvouXu9n7vqhgup2HwW41+/g1HLr0WJefIr2JJZg9KHravL+boQYC/QKahOFLV2xnXqd/fWvEy75yR+r53SmvVrIRDU3ngH9dNuw2YrwekcmVc/vPLyY3A4qsn+hRM4HDV4vfkF5WXj/vvvZ8aMGSxYsID6+nqOOOIIXnrpJa69Nr0UIaS2Upo5cyZ33313xlZKxx57LF6vN2Xfga2ULrzwwqytlH7zm9/w9ttvM336dGbOnEl1dTXf+ta39up97ikHXCul1tZWJk6cSEdHB5qmIaWkpqaGJUuWpLlDo9Eo0Wh/+HJ3dzejR4/eq1ZKw10xJt88wadW7+Lbj64e8niXnhLglba/pATJVLur+f7c7zNh90heX7SYMFGaFV9fuh+by2t4a/whBJ2JBX1FGly3/i98s+URIPHV8+90st1XRMwpiFdLgqfl8YSfzY0lQYuUMu6N2xEohErWsmNeauSbicK3uTtHyoNJEd10C+/Q87DYO7IsKPe1KQKGTGHZE0TcSc2HX0+m0vTRU7mC3TN/1zsobTqItxyULTewNULrzTqml4yfPykhHtTYvaSCuhOGXr/a+tIIImvdHLt2OwJoLvbQMKKciL1/tcjmiTNyYQtVUwsYs/tMIr9/Lut3OlNrn6Hor/wEqU8CiTc4Y/rvqaw8Oa9j7W+sVkp7SWVlJbNnz+ahhx7iggsu4IknnqCuri7jeqDD4cDhcAzr+VVFzTsNIh8KTzwefU4BPeuWovgFJaWH4Zk3Ly0torIwvy/LxNChnDfjUZqKNtMRaafCXcHU1jH0PLoFw9/Ocb2JxgEiLLFt4JUqjRfq5yf3P63tdW7e9BvcLj8tFXYcMYnfb2fLqS7Mkj28sWV/cEV3ddJV+yIl209EtwUSCfgDChPnTHno7RS+kDdYxBl7NieL/JESGzEK6KGLAeutdKSlqOQsXD1UUfQB49RYIeNe+zVKhltPYetcqlZcSFP9Iyiefq+IHtCwPWWn5u14shhD8T80ui7Rs+b77Xq7CiOS38OrHlKp392RPEy1P0ilP0j36BEU/+gGsLfhrXXiclUnC9PLs783rFWgKitPZsb032epAfyjg0YAD0YOOEsQYP369VxwwQV0dHRQVFTE3/72N6ZNmzbkfgdaU92hClsPxDAlR/7yFZr9kaweISHhjJCNyXENj9fBUV+ayAibQsdD6YWF+wJ8flSvsmiUG4TgtLbXuaXlZjZM8BAbUGop400sV7DCHgQyKDEPZl+vvwz75MoT9BDg5+Kn+Z3IIpVM1l0Ga+873MYclu+dpRd3oEhbStRwtmjlEauvpLB1bsqSR98tqKvxWdQ1/wFh0jHdRrxEoHZJytfECB1v4l6hovr692ufqxI4J4K9YMA3xifQnnKypnsUEbtC/bmN2Dx6xmVjKRMCa7+lgBrfgD5/vYNH7mExiz4+iiXYP6fc3WAs0tlbS/CAFMGPyoEkgtkKW+dyb2SLDk3S+8LnQnYmxRNfjDNrXIhw5mg1iaTFqXDmZzwIdJ7d8WXaR/X5lgbeochb1DIJZq6KL6ZUWCdy32Cz7W+icDn3EBT7/4HmoGOQCglpIAfcTJMFCXp7MPYRC4PpAIcYOt4oHhe0rS5jxS4PgbEljC4y0e0+Ip4mFnp0igeUBIsFNHa9XUVBy1wOLTset9b/Nw3q3bwdfIdnJ4zmqn88QKWvPw+0p8TB6P/3dcThtdi1cuyNAqOtk5UBha+v0pHC5Gz1H/zvtmUIv8C5SSCkoLnYw8oxVRSP7aHupF2Ja5DhIW9c/BL0W54ftrKGsHciaLHnWCI4gANFBKU0eOvtz6RYgIPR1CqOPPJ1VDXVLfTs+01c9chKTAkCSZXSg4s4YWy0mIVIKSiUcGm3kwpN4ciCoT3aty18n2Pdf6ZQyS+9ISemoPr9y2if8hi6o4vlIrslB+RVDSZ56Axi+KQ8myeU/937eX+akJIT4y8w3/ZW8lpOYj0bmJz6oNEb5VnwjELcL3h2ssIz1RozXAYXlsWAzNbc1vY6Hik/n7XUM7JpB5WdzZzy+j1EnGGKQ2BKJ0FbNQUjwmhuHT2kEWh2p9SkLXeOwqUWEDYCtEV28uRJX2bjuGkopsnM9Uupa3mJcw49lmNOvyKrm3FgTu3C3R9w+ftPUhHpD8LaXVvFxpHVaFW7GbmwBXtB/8Oiw1GTdDMOd4F7SwQ/Xj5xa4KfBBLujBzVYgDdaOHx2+9n/klnMn52f0RqiceOKaFW6WSBbTse0d/zKyhtLI3Xst0sZYem43F3ArlLDPVUruAMz+/26v2koEhs8WIq153LUzOX52xym4lkA9xB0YXLWcDfuCiR8tBLiWzncN4YEBlhpUJkRUpsuuQzH4SY3xhDk3Nwlxfh9jTTbqi0jNjBlJENKANySSMxF2/uOIF1tfVogTfYXvwBEiOZe3q2N453wHi/4eV+9essrzy895wmO0aMpaL9KWZtC1GeDCINEy/vou3o08BTxfq3FoPsT1+SSNoiOwAIOHWWHdpFvOx1vuCxM76ghIX1c5lXdemQAWmnTK/hxPpqlm3ppLVnFjb3RYzq3ILZ3o5WUcGUuXM4VsCutR/S09WB6mmiqNqD01mV4mYUqopnwfyc57L45GKJ4D4g36TWuN7Goj+t4ZTLpieFsLUnQq3SybG2xrTxbuIca2vkdW0HL49/lp3xSk7a/t2sx5eYyXy/4dQP3eHH03wYD+uHJ5qXZaz4kiWBfVA1GIAnOZsn+HLa0C7KeFacxbC/gU8avQ8Jn1saZOquOG+N+Rdhew8hrZuo6Ob7wW2ctK0NZRv4im10aE6WBiazODAPdyjIwqanUaRkPiNpKY0Sdhi4oiqNXXY+OGMhgZpifJSwTpua4lJVjC4Kuh4iPnI30cd+Q22bN6M1dez5F7Nr7YcEfF24i4tBQsDXxW7aidW4OK2g6iNHYauK4PDxA3NIU1OcBDB6Wnp+moVFH5YI7gPyTWo1Il4A3nx8I2NnVqAoggqPnQW2RGGATOmFEpiHj+dUP826nU61G69RiJJhUa+vaPVwy4cWLWZViUqbPYerJ5do9VaDeVKezSucmGL95X2MTzODommLQiYnrQoxZVeMsBai29ZDtc/JsTtqELE1vGg7hgZ3DxXCh31biN2hIkxgyqAKLwqCms7E39RTWsax372Uwycewlu+HgSCnxS7UYVCayyGP7iFSqJUeb7RL2DjMk9XUdSMQjR0qJuFxb7HEsF9gNc7D4ejmmi0hUzZv1KCHi4h1D4RgEBXlKaNPkZOLqFKDaS4QAcjALfh5rM7P4vTdLJS2crxxoy0JHqJRHf4hveN9eb/ubom01699wKVyfr71JLNcu618uZsXYc3HMAdizJ2p4dO9ziCLpWCsEltu47SO+5ox1Oc2daOR+miesxawOQvZaN5LuDBGVMJ2w2KQj5mbfRmLLwAsPB/vsKCs7+EoqhMBo4qLcww4bIM2yz2FkNKlvgCtMZ0Ku0ah3kLUIfpYTAej/OLX/yCRx55BFVVsdvtjBkzhhtvvJFZs2YNyzn2lJaWFq644go2bdpELBbj8ssv5zvf+c7HOgdLBPcBQqhMmvjjAcmv/fQtb7Ws+jLI/qf5gC9EcOlGwivfpaKllfaKcqSSvSqKw0zkR25V23iZDzgsPimle3y3CPFI4Zscm++kB0eIZvod+P/s3Xl8VPW9P/7XmZlkQtYJJJOEBALGANkghCU2ARFIIbJJv4WUq1ihCLbWXivVC1KxYi2iPy9KvSqoKPaqyHLrAtagCLgRthIMIRRjSEII2ViyTJZJMuf8/hgyZMgkmS2ZOZ3X8z766OXkM2eZAm8+n/P5fF7ac3dDgAIheifNp2JvDwDgq29GRN0VXByohd7rxtpXP30z0otO45bLFVAY1PCrvwUXDcG4pbEFCniZ2qnUeqT7v4JEr29Nx1rUCvwQE4jYkBaEhizBa+eyTZssXAtow0/OhmJAp91XAgaFYOp9KxCbar7JMfWPT2tq8URhOSr0N/4RHKH2wjOxkZgdqnH4/EuXLoVOp0NOTg6Cg43bFu7ZswdnzpyxWAQNBgOUDkwQssbKlSuRlJSEv//979DpdEhLS0N6ejomTHDeWu3ecHZoH6qu3oezBU+hXbzxjrCtKRhVuYugK7+xGXdozSkkVXwEXL2RKNHk44OT48ahfIh12VqCBISJGqgUgN63Gdu1n6FeuIpntM3wU6PnJRDXfwf471VAVSOgPVRC4yQRUqftPVVNGoSeuweBNcbfnAYAc6f4odqaufRkeXLP9WPjS84ipfQHKATj9nYVQSFo8lbDt1WPmIt+8DIMgEL0hqo1EHoAfxtnwOXhoUiolbBMo8HkIQMREavB5epsVB1fDaHxCvTeAmqDvKD2GWyaBXnzbkjJIWNQee5f0NVeg78mGJFxCVA4sDsSGdkzO/TTmlrcn1/SzYIq4M3EYQ4VwsLCQiQnJ6OsrAwDBw602Gbbtm344IMPoNVqUVBQgJdffrnP8wQTExPx1ltvYeJE48Sk3/3udxAEAX/961+tfjbODnVjWu1MDBo0HTtf2Ia29hoYWjTGIdBOPcDQmlNIPPNGl88OaGlB+nff4bv0dKsKoSQAlcpaAEBz5GeoMzRBEIGgnSq039t1Z43OFNeAoN0qDDh1474CsiV8f4eEEQ0SlHUCfBtHYMCE8cYhNEGAEsCjZ/X4r2QfpjhYQd1mXHKg9+7ay4svVaDVxxuishUKAJF1l6EwqOFfHwO13vx96QAAa5JGYMjI4C5DZdrwOxE6Z4ZpsfUtNy22trQbEieNuJ5BkvBEYXm3m+cLANYWliMzJMjuodHc3Fzceuut3RbADt9++y1yc3MRGxuL6upqxMfH4+DBg0hKSsJ7772HrKws5Of3nhbSkSf4wgsv4MiRI5g/fz6Kioq67B86YcIEvP/++6Zt1vbt24dRo6zbUNxZWAT7mFKpwsQZ85C9xcJvHEnEyHPvWaxNAox/AMYfP45LkYN7HBq9WdARb2BCE+LKJGiPKNDcokLdwnaInXp2Qj3ge1wBnzwFvK8vMDa7viSgrlqA7/Xdsgw4hZZjm6Ee/QsI15Pmp1W347ljNVifOAB1fpbeGzmBjAusqq0VcZUXMOxKJSLqjPsodu7lRdRdhgKAWj8a/g23oM27DqKiFQrRG16tQRbf1wFAitIbI4Itf9+CoERwsPWZc+R6R2p1ZkOgN5MAXNK34UitDund/O9ujd7yBAFg0qRJiI01zlXojzzB//7v/8ajjz6KlJQUhIeHY9q0aaixMovVWVgE+0HMWC0yH0jENzsK0Vh7Y8PviPZieLc3dfs5AYBPaytCqmtQEx4GX19fNDV1375DaLVxUXDw9bXxA04p4PO9F1pvlWAIMvbsLBW+DhKAKwHAVwnAlE5bRrZX5KK94hSUIbGQ1EGo9jUgTH8Zd1wcgapht+DIOKvfQFpPpgVwREUJ7vjhVJeYlsi6TpsKS4BCVJsKnnerxqpz+wU6d79ccq3q1p7zCW1tZ4m75gkOHDgQb731lunXv/71rxEfH2/1czkD82j6ScxYLe79cyrmZEiYHl+BORkS0hKs28FlyqCBuO+++7By5cqex7clCQMaG3Fbfh0G1ku41mnkQZAEqAsV8D2hhLpQ0WMBBIBtP1XgzHAl6n1unt8qodSnER+NC8eX42JxJO0niAgZBOsihD2AJMGvpcm8AF6PlzJvZ/wv//qYm3p8FvL7OvEPViMiVuO02yXX03pb1xextp0l7poneOXKFbS1GXvBJ0+exEcffYQHH3zQ7ue0B3uC/eTmSKUmAC0W8rUs0YZqoR0+HACQmZlpyvQyc/0vzpTcXKhECUu/ELFxvgKXA4CBDZb/tXPza0KDIOBwYhzeyUzEpUGAV8tZbJlVgEf/bjC1vRgVie/S07veY0MtfFpb0OKllm3vzWqdi5SFiS7pRafNCyAAQVRBUt74l7xC7PrOT5DaIDb+CKGHkNVJWbFQKP7Nv18Pc5vGHxFqL1Tq2yy+FxRgnCV6m8bfwk+tt23bNvzlL39BamoqlEolgoODodVqsXr1aovtO+cJGgwGaDQai3mCw4YNw+2332722c55gjqdrts8wWPHjuF3v/sdvLy8EBAQgJ07dyIiIsKh57QVZ4f2g/rPP0f5w7/v8V/4PRny9lvw/8lPTL8uKCjAPz78ELq2G+8RBjQ2IiU3F1EXjZsFGwQBC575NX6S+x4e210PCeaFsONO3p71/6ASRZQMjsLXYyfCoPJCZ4KhAWPz38Tj7x7DwEYBe+fOQfOAAWZ/+d+cV/hvTZLw04JjEIAuz+zX0mRaztBBEFUIqBsBb/0gs3d+0WIQ4rxbkF21FxB8ARgwtlaPlP/8GWpCk7sMnfsHqzEpK9Zsiz1yT47MDgUspQk6Pju0PzFPkMxIBgOq1j/bQwHsOcJBqdHAb6L5vobx8fEYUt+Ak//1GJp9BmBASzNCai6bFkwDwLuZ81E78HZ8NjUNrQO24oGPjyC0/sa4fZPvAOSOTUHVLUPxVWwy9F7elu9O4Y+To3+PXz36V6T/qxjD4Gv28/MhEWZ5hf+2rn+3Py04hpjLFYAEDKupQL1qHHRqFZTKUoQ1VJr+oSGIKgxojIRv41DjryFA3apBpApIHqCAQqHAd9WfwtBeBgHAT+csQNLd90JQKhEIYPiYUFQU1qKxXg+/QOMQKHuA/75mh2rwZuIwi+sE/+ykdYJkGYtgH2s68U+zmJauOv5is1wMw59eZ3FHe/8J4zFYoUTbhQtdPmUQBOzKmAPvpuPwv/Yu8qKu4qHfSIgrUyCqVotbmuNMi/GHXa7AoZgx12/F0l6fxmMN2t/hWFsJvC5fMs1qFGHsDXX7WUvcaTNsG+6l86J1wDicGVgfA23L9X8UCLFo89Z2O7tzlFqBET4KCIKAxvZ65FZ/ifKmH+AVGIxZ9/+mywJ1hUJA5MhgkOeYHapBZkhQn+0Y01+GDRvWb71AZ2AR7GPtVk73VXhJENtu/GbvLtNMFA0oP3sG9deuQj9vDnxef7NL+fz+1lFowxkEXr6x4FRSCCiIFlA/yAcBNcYhNRHA1xGJaLVmyEZQ4GrULdgTdQv8WpqRXpQHdVub7UOg/fQHWt3agrD6a7ikGYR2lYVe7vUCqG5vNduhxfwcbYi7eAW3VtUhulIJJUIgKYLMilxHeLHl2Z0SIpQCJvir0AQRO6FHnlrCyFsMSAyZhp+PWIKh8VygTjcoBcGhZRBkOxbBPqYKtW7eZGT6VQgC0D5xNVTxk+E7fhwkASg7k2fa0aOpoR6H3nkT19raoQ8bCsnLG5Hp6Ug5eRK+zTf2vyoeMhr+194F0LVv2aI0Dok68h6vUe2Dz+MnIuli16SLPmPNekHTDiz/QsqFc6be6smhI5AXeStavW8UQ199MyYVncawyxWmtXsDWo3v4Jq91dBcA0aVx0AheQM9zH3tmPatQBtEdH6fKiIcdRhdfhxls6ehZlw80oIG4PfDB0LJYU0it8Ei2Md8x4+DKjy8hyFRCSpfA/y0rcZggPHRQNJEFB49jAPbXofuqvmwQluABi2RMaZflw+JwqXIwYgob0Xw1WC0egfhfJQSSsNVWHLZ5zLOagfiq1EOvMcTBECSUBhm3ZZuzqBua0VS+XnoVV44Gx6Ndi8vi22mFJ4ym5iiADD+wg9IufBD14Xq17vQN6/d82mMRIAupsv5e9JUfwDtrSLq1JEIar6MmQUfwS88FNo1j+NWOxPKiajvsQj2MUGpRNiax1H+nw+ju12pw8bW30jG8Q9D4dHD+GTj+i7nkgDow4ZeP3GnxAhBgRb1FFSFeUOAgICmf3Z7P5Ig4PCtNr7Hs0QQ0OLtA59WPVq8vG07ly27wEgSxpWcxbgLP5gmnfzkfD4uBYWgXBMCnY8v/FuaEFl7GYOvv6u0pGM7MhODwngPwo0Fv4LBC/71t8JHb/uqx5+cPwtNbSGUwcEIf/xxqMLmOZxQTkR9j0WwHwTOmAFsehFVax5Be6e1qSpfA8LG1iNwSAsAAQgcDHFIKg48v8LieQy+AZAszOL0ag2CUuy0J2Vr91OC29Qj0ealsfdRuogqr8SPw4bavr1Zb+1vno3ZiQJAVN1lRNXZ+PJdAiApEVgbb3p/Z+1WZT3dp1p/DZraHyEIAiLWPdXlPS6RtQyihGPFV1Hd0AJtgA8mcvi8z3HHmH4SODMTt257FkOnXsHgn1zD0KmXceuc6hsFEAAyN6D83L+6DIF2kG5awwcJUOoDcFXVhMJB/0R5YCFEiIioj4F/m7+lKEOISo1Tn0scoMC4krPwub5BtDWSLhZB3d5ze3VbK2ZYKIB2u/5dBNaNhLo1GML1//Nu1cCnRQvvVo3tBfC62B93QzUwGJGbXmIBJLtl51dg0nMH8B9vHMHDH5zCf7xxBJOeO4DsfOf8GWhra8O6deswatQoJCQkYOzYsZg/fz5OnTrllPPb49NPP8X48eOhVqvx6KOPdvn5M888g5iYGMTExGDt2rV9cg/sCfYjIWk+/H6nALJXAfWXbvwgcDCQuQGInwfdd191//n2G+uHvFsGoUbZjJzhH6GxU3iun16D6fXJWBh+BW9fVncZgRXab7TtkZU9u/PhQ6w7XyfDrlTiJ+fzcXLoCJyOvBX6ThNW1K16JJUXIaXT8Ket1E1haPW5DElxY6jT0g4tvVFBgnGPl26+B8mAxDNvIdxwAbd+dQgKb8trLYl6k51fgd+8e7LLv1sr61rwm3dP4rXFKchMdGwnFXfME4yNjcXWrVuxa9euLvuPfv3119i+fTvy8vKgUqmQnp6OSZMmYebMmU69BxbB/hY/Dxg1Gyg9DOiqAP8wIDoNuD5N3l/T/dowZVMDhLZWeLVH4LKyDftjjfv1CaKEuDIJwTrgmt9V7Bl6EEsA/NRnEPbp2qFU1pp+fsWnDN8GN0Py9uk2yVzd1goBQIu3nRs195CS7qdvNq0z7HbCin1XNW1IHVA/Aqgf4fBQZ4xagXOWwoOvD9UmFLwN7ZXvEbHpJRZAsptBlLBuT0GPUUrr9hTgp/Hhdg+NFhYW4sMPP0RZWZmpAALA3LlzTf+/K/IER4wYAQD48MMPu/xsx44dWLJkiWm7tV/96lfYvn07i+C/BYUSGD7Z4o8i4xLgPzDE4pCoAEBdVQYf7zQcTn4OADDxBxFLvhAR0mBsY4CAw0OGI3tCECbcKmLKqRGY+a8juLW87PqOMnXYW/wO/nvpA12L1fW/3KcUnsLQyxV49yd32j7pBTDNHu11X01YmLBiLwsbUneXytB5p0BLO9sDEnwEAcO8WhGo9MHpZgNaOv8NJTYg8ewHGKyqQhiHQMlBx4qvoqKu+xQGCUBFXQuOFV/FT2IG2XUNd80T7MmFCxcwZcoU06+HDRuG3bt3W/15a7EIuhmFQolpS1aYzQ4VIeCSTwSalL7wF/3g7X8RjepaTDwn4g9/FyEKAqq1ITgcnoidkZNxTR0IiMDJHwBffz2afzIQo/TlSDl5ElEXyzHr+FcIaGvCs/eugN73xqa8/vpmpP14GrdcMb6DuL3wlHFLNHsy/W5qf/OOK84mSMY9Oq0a7pQa0K4/B5XPeAtxMcZqp9KfwCdXvkHIgCgEKP0hSANQ39YESdLhjrQEjLh/JWd/klNUN/QeQ2RLu+64Y56gLffcV9tcswi6odjUNMxbuQYHtr2OUy0B+GbQJOhUnYqV/ykoRAlLvhBxMSoSuSkp+Jc6Egfbuq5ta4K38bi3hOb0AUj/7jtEXSzH5FPHMer8Cfz6kQRoa4cg+Yc2hOtq0Tr4FuMHBQG3XK7AjIJjDm2OnXCxCLdcrnDKMKd3kxYtfuWAQjT9qPMenZaGO9uacyAZrkFQDIAkSfDyvQNieyUM+lxIhgp4+U4FhBs7dCjbmxH3r/cgthVCNzgENUKZ6WcBg0Iw9b4VXbY4I3KENsC6TbatbWeJu+YJ9mTo0KEoKSkx/bq0tBRDhw616RzWYBF0U7GpaSgcEI1n3z/V5WfNhgCMKwNyk27H0XHjMUDfgiPVkdd/evNvNGNG/dH2oRiiuIaTY8dicPklKCQJYfUSxhQWoGDov1AbNBhDqn2hKC9CS8Rw4HoP55bLFaZdVco1ITg5rPuYH0tuuVzh2HBnp2FOtT4E/o3DbHrXJ7WXQWy/CADw8psLQVDAXz0CCUEj4SVeQlN7JVoFPXK9NDjYXo9nD/0JKhiLbOSAAIhLsyDdGgN/TTAi47jFGTnfxOEDERHkg8q6lm6jlMKDjMsl7NU5T/Ctt96CRqMB0Hue4LJly3D27FnExcWZ5QkaDAZTnuCgQYO6zRO89957e8wT7MnChQvx0EMP4cEHH4RKpcJbb72FZ555xuZn7w2LoJsyiBL+/Om/LP6sNSAex0b9FV9P7vSHoqUdXmfroKy29C8yAU1Qo0oKRISfgMuhIdBWG/c0DdYBIS0hqAlRoKrFC8FtoYDCvM/W8d4uou4yzoVHo1HdzaSazjpNgrHJTbNZb57VaW0CuyRJgNQAsb0cgA+8/H4KH+9YTPBTIERl3MhakoagXWpDptAIvdCKZ6f4Yfg9b8Fw+TJUoaEc7qR+oVQI+NPcePzm3ZPX/8l6Q8cfhT/NjXd4vaA75gkeOnQIixcvRn19PSRJwgcffIBXX30V8+bNwx133IGsrCzTcOyiRYuQmZnp0HdgCfME3VRO0RX8xxtHTL8WJBGDWyrQFuaLC7clXD/YdeKJ16mr3RRC4HavItyivIrbDucg+sIFXIyKxKFJKfAyi0cS0dPyUbPopO4K4fV7mVFwzOZ3gD66wVC3hjg0q7Pjt3Rb0z4IiiCofFIhCApM8FVisLfCrM3L+hL8I2AA1mb64xfpd9p0HSJL7MkTBIzLJNbtKTCbJBMR5IM/zY13eHlEf2Ke4L85URRRWloKnU4Hf39/REdHQ6Fw/p4DnV+CxzSex+Qr38JPbMKWjOsLSm8uQNdnZLaNCoKiusVi2RgA4zrDAS16XIiKRE56uoXfAD0/izXvCf30zUjvNMHGFurWkF57et29q+ggoA0GQz28fGdAEBTwEYB4H5gKIAA0iTocHVSD6TOHY/3oNKiU/KNArpWZGIGfxodzx5h+xj/5NigoKEB2djbq6+tNxwIDA5GZmYn4+HinXqvjJXhM43ncWb0PAFA2eDh0/kHdf0gQgAEqiMHeUF7rvCOLBF+0IkyoQ1jgNQRMGIgcdcz1kUfb/4B1fk/YOX0BbTEIbvBDWH0lGgNrIFkaSewuQ/j65Bev1h6ez/SY0vXUhk6L7IU2RHqpEeElYKByAK4aBqBFArwg4qvyl/B9cDAGz34IrVcb4TMoALdO+QlGqvjbn9yLUiHYvQzCXTBP8N9UQUGBaTy8s/r6euzcuRNZWVlOLYTjooOhhIjJV74FYKwbjb5W5oypu1afjIEncVvix1D7NKF4WBha8kbbuUkYjAWrU/qCwtDx3k4NoB1ACHxqBqHVuxZt3rUQFXoIohqCJKDZ/0J3+4ibrfHr7sKDvfIwN/gZKAQR5a1jcKVtBiD9BINUA8x6hyHXO32nr34HEQZMX7oC0anj7X1iIvo3xSJoBVEUkZ2d3WOb7OxsjBo1ymlDo/8svYbw5goEGG7M3vJrarDuw3qD2S9T/Aoxb9x2U3lpbbVvuYOpWNWOglLy7vG9nQAB6tZgqFvNd8DxaveHLvBHiMobPdWOyS/eLYO63aFMBR2mB72KWwfkwCAFoKF9HgQpCyEqyxNXJEmCXmzGqZZ8LFi5hssaiMgiFsFOunvfV1paajYEakl9fT1KS0sxfPhwp9xLdUMLfA1NZseiKkrgr6uDzi+w223J0GKA4pr55tQZMd8Ya8v1j3h7N3f5qLV8GiMxQK+1+/NqfQi8awah1asWkrLNVEQ7CqwkiRCEzv+QkDDEqwap/legEiahpnUu9GICgO5nbXZMenml/Sqm/P45xKbYvr8pEXkGFsHrenrf13lRaE90Op3N1+2u8GoDfNCk9DVrq5AkTP/uU3w84z+63ZbM6191Zp2pUKEdsWF5Zj2soKBqeHs3orXVF912vSwRAHWrpfcVEqBoBcTe9xptb8mFJDXBWxwNQXGjlyhJ9RANOii9BpuODRBqcXvg6whSzoVeHI22buYx3zxRplqQsAkt+FodiKwgX8sfIiICiyCA3t/33XHHHVadx9fXtr9weyq8E0fFQQwbjoYaP/gbGk2lakRxAe76fDu+TJ9tPkmmxQCvf3VdJ7giqAIKwbx6CIKEmFuP42zBlO4nqnRDVFiKQBKsKoAAILYVQmy/CEPLMShUkYDgB6AN2gE+iAwwQEAuwrwLEaC8jHCvs5CEgajUJ/R4znaxHe8o2nFRkHAFEr6HARKM08sdWWBM1O9EQ7eb6zuqra0N69evx/bt26FUKuHt7Y3o6Gg89dRTFlMk+sOnn36KP/3pTzh9+jR+97vf4YUXXjD97Pjx43j44Ydx6tQpzJo1q0/2DQXcrAiuWbMGH374Iby9vaFWq7FhwwaLO487kzXv+06ePImAgAA0NPT8Tu7jjz+2eqaoNRNt/jQvEf9fxSTcWb3PrFaNKC5ATMlZXIwYhoHhdwAIwd5rjbjcaZmtFgJ+J6oxvFmNmgsTofSphW9IIQSFsU1ISBlGjfoa5wqmQRKs6+kCgELsPi2hYxjS0vIF88XrACABQgB81MPw05BPEONzxFLHFlfaVqBj6PPmHp8kSbjQeBZ/Elrxo98tpuPOXGBM1G8KPukmZu05Y/qMg+QWpRQREYGXXnoJubm5+OKLL/rsHtwqVHfy5Mk4efIkvv/+e7zxxhv4+c9/btWedI6w9n3fuHHjej1XRwErKCjosZ21E20yRoViZIQaX2qnQac0323BoPRGrBSA+69pcf81Bf4P/vgrfPEnDMBf4Yu/tvqitUHAqaqhKDm5EIVH7kNB9hOoLxtrOkeo9gIG+3W/bZIZyTgLtKclDB0F6ub9F24sXj8E08s/IQBefjMxN/R93DrgCESYz3w1IARXWh9Hi3hjQkujQYfzDd/jh7p/4uSV/Xi7bDOeFFpxOXSk2WfDg3yckr9G1G8KPgF2/tK8AAJAfYXxeMEnDp2+I0rprbfe6hKldM899wAw7iiTmZmJX/7ylxg/fjyOHTuG7OxspKSkYPTo0ZgyZYrp77ZDhw5h/Pgbs63z8/MxbNgwAMbF8iEhIXj00UeRmpqKhIQEHDhwwOJ9jRgxAmPGjIHKwnKlqKgoTJw4EWq1nZFuVnKrnuCdd97YsSMpKQkGgwGXL19GVFSUxfZ6vR56vd70696KmSXWvscbNGgQsrKy8Nlnn/XaI+xtpqi1hff48ePQtl5CyECgImgCqpp18GtvQoBXOyS/AESK4bi+/h1KCEi5/j/npVYRx5sM0Ksvd5mJWftjCoY2BWLIyK8gigIMleOg8C80DnN212myeglDN5vkSg1oazoEse1H0yEv3ykIUF7BYLXxD9XVtlUAFFDgGkQEQy8moEoS8InQgnJJxBWIyFMaEK7yhq+hHU3ekbg0cDxWTInBf2XGcYExyZdoMPYAe0oUzF5tzCG1c2hUjlFK/cWtimBnb7/9NmJiYrotgADw7LPPYt26dQ5dp/Ou6b2169iW529/+1uPbXubKWpt4b127RoA45q8CJUOxs6Sr+mPSjP0XT4jSRJONxsLYL2ma49UVLSipHIofIKHwrvZD4bmQfAXJWPbbt4PCqIKAfVWxhRd196cA9FwFZAarw+BduoB+k6B0jsWkwKfhwAR7VII9GISACUkSIAEbEULFD8JR2ZSJK42tODpj/JgaFGgfIBxo/BBft545a5EzBpt7O3JfYExebDSw117gGYkoL7c2K6bHFJryDFKqT/0axGcPHkyzp49a/Fnubm5GDLEOJX9yy+/xLp163odB3788cexcuVK06/r6+tN57BWdHQ0AgMDe+yZBQYGIjo6GkDPu6531lOhs7bwdh62sKRSUYtGtMJX8jL9Br/SLqFZkqALvN7rshwqgR/OpMO/pBlqP+OyhcDa+C69xt5iinoitldigHcEhgyoRXnrdLSI3oDgB4UqEgHKK5gU+DxuURv3Rq3t9N6vGhLeaK/FjLFq/L/5N3adzxw9mL09+vekq3JuOwvkGKXUX/q1CH7zzTe9tvnqq6+wdOlS7NmzByNHjuyxrVqtdni8WKFQIDMz0+IklQ6ZmZmmoU1beo7dsbbwTpgwATk5Od22kwCcbjIgdYCX6TdsiwRj1JDS0izO6wRAVKpgULeZDnWs3+stpqi3VPaOCTC3DTyNicHvQqkQIUp/R0VrHBoNwfBTXkOE91koBGMPsLZtBZoNP8FhoQ0foBXfS+0I9Vfhlbtnmp3332E7KSKL/MOc284COUYp9Re3Gg79+uuvce+99+Ljjz/GmDFj+u268fHxyMrKsmpfUFt7jpZYW3hVKlWP7VStQahqVeG4ZEDSACUGCICP0N0yhq5ElRqS2AAI/hAEoUtMkSRJXXqSxggiyfTzm2drCgBu8WpEbMCdkIQyAJehEEREqs+gXRqExvZMXGubBRHBaGiPRY6hCX/yakD7jQugSg8cK77KokeeITrNOAu0vgKW3wsKxp9HOzaUKLcopaKiIkyZMgVNTU1oaWlBVFQU1qxZgwcffNCh7+FmbhWlFBsbi/r6ekRE3JjV97//+7+mMeneOBqlZG1CRHfLGzrcOuVWjIwbiRRtCpQ9vMi2dkNuS+2UPj5QXgtAUF2c6dgglQA1JFxQ1OLawLxenzfwShIU9T9C5WOc5WXrcIUkNkFQ3Fgb6SNcQ+KAYER6e10/YoBaccZssgugxOHmEnyhEHDAOwgGwfLkoU2LknFXcqTFnxG5M7uilDpmhwKwmCiY9TenLJPoD4xSckBhYaFLr69QKKza9qy7nmOLqgW5A3Pxfxf+D7gAhPmGYfXE1ciIzuj2PKNGjeq18N7czs/XDz9c9cZH+wuQVHej3ZV24x8eJYKgMHh3P+OzU2KDoB6Jtsa98PK9AxCs3KD7upQBf8MQ34toNgTDV3kN3rgLrVLnf60qoRe7DoFsHxCKXPS8NrEjRYPII8TPMxY6i+sEN8imAMqRWxVBOelcmI6UHMEb595AjU+NWdGpbqrGykMrsfGOjd0WQmsLL64PVdb+qw3HjpSjpbENSR3/8920hZoAAf71t1qe8dlpuYNCUABCICC1QF/3pmkHF0EZDK8BvQ+9RPteRKT6DHTiINS23X9TAeyqY3i1aoASQrOhu4EfhHOnF/JE8fOMyyD6aMeY/sIoJQ+iUCgwNHoolp9YjpoBNV1+LkGCAAHPHXsOU4dM7XFotCdFudX4ZkchGmu7LokAAEkAhJsKobplEAJr46ALLLKY2NB5uYPPgHFok24DpEZA8EOAlzcMQj30kj+6209hgNAGb8xCTes9qDHE4fCxLbi97RjEcYvh52PcYLvL+0JBgP/tkXhy6AD85t2THRNVTbjTC3k8hdKhZRBkOxZBB52sPomqpu6nLkuQUNlUiZPVJzEhfEL37SQDamuPQ6+vhlqthUYzAYKgRFFuNbK39Lw4VYDQZdhTrb+GkMrvURMxvdcZn3NCt0EBEY1iMPwUxtmbxfqJyK79LwAizAuhsWuZOMAHesm492igANze1gKxsQZ+PqGQIEESJCg7JT0o/b2huSsGvqNDkQngtcUpWLenABV1N6ZWhwf54E9z47nTCxH1GxZBB9U0de0B2tquunoffih8Gnp9pemYWh2OW4c/iUPv2ZqCIKFUUwOp7QwmFx8GwlLhpQ/qZtKLCH/FFUR6n4FCEM1+EuNzBJma5/FN/TI0ijd6jQOEdiQO8MFgb/MeoqAOgvqWaRAEBQQAA+8eBYWfF8SGVigCvKEeHgShU+8uMzECP40P59o/InIpFkEHhfqGOtSuunofTuf/FjdPjb5cNBindzRDbPWy+LnuCQjTBSNz//+hQuOHtqaD8PKb283CVwHpAW9BgGjxTDE+RzBcfcy0xs9HKUIQ/+umvD8jr+FToAoZAWWQGpq5t2BAYu+7y3DtHxG5Gougg1K0KQjzDUN1U7Vxy6+bCBAQ5huGFG1Kl59JkgE/FD6Nmwtgw8WxKD/8a7vvyafdC7WaW+HTVgax7Ue0Ne6Bj99PIeJGovwAAUgcoIJGOQ0G/AgVbrzI7vx6USGIGOx9BgBwpW0NWgTz3zKSJEHho0Log3OgDFJ36fERkfUMogEnq0+ipqkGob6hvS6zIse5VYqEHCkVSqyeaFxsevO7to5fr5q4yuJvZOM7wEqzY5IooCp3kekM9mr1DsTAxhb4tLZDav0R0/yBND8Fxvkqke6nxE8DVRjsrUCLmIZK/VbUtK7HldbHUNd2Nwww750ZEGIsgGLX2Z+CIGDgwhHwSwmDT4yGBZDITvtL92Pm/83Er/b9Cqu+WYVf7fsVZv7fTOwv3e+U87e1tWHdunUYNWoUEhISMHbsWMyfPx+nTp1yyvnt8emnn2L8+PFQq9V49NFHzX62Y8cOjB07FomJiUhKSsLLL7/cJ/fAnqATZERnYOMdG7Hh2AazSTJhvmFYNXFVt8sj9PrqLseaLseivdnx5QHq1noIAOIvXUbZyAnw8wpE9/u3m6/nazD8wuIi95uHVG0Z+iSi7u0v3Y+Vh1Z2GU2yZpmVteSWJxgVFYXPPvsM4eHhqKurw7hx45CSkoL09HSn3gOLoJNkRGdg6pCpNg1lqNXaLscMLRoH70SCuuUaNLXGDbTD6xrhd60dGGzDGSQFWgxJ5kscYOz1BWYMhSpkgMXJLkRkO4NowIZjGyy+TnHWMquOPMGysrIueYIdtm3bhg8++ABarRYFBQV4+eWXUVdXhzVr1qC9vR3BwcF47bXXEB8fj0OHDuHRRx/FiRMnABjzBOfMmYOSkhLTjjFLlizBN998A51Oh5dfftliQPqIESMAAB9++GGXn3UudkFBQRg1ahSKi4tZBN2ZUqHscRnEzTSaCVCrw6HXV6HjvaDSp9aqz3b8gek8BNtxbNTl/cZ3eh3p7KLKlhoIqAUoVCpITaYdPaFir4+oTzhrmVVP5J4nWFBQgJycHLz++ut2fb4nfCfoQoKgxIjYJzt+BQDwDSmEasBVWN5I1zgRRRQbcVQoQ4Nw04QaQcLHvq3wyZrRcQEAQElLHaohQuzmnCIkXIOI87eFImR5EqKemoTBT9yGkOVJGLhoJEKWJyF81QQWQKI+4IxlVta4OU8wOTkZI0eOxPLly03He8sTvHjxokN5gva4ePEi7rrrLmzevBmDB9v0z3mrsAi6mFY7E0mJr0CtNsakCAoJ2jE7IEnmsUXAjV+3NX2JmLpsvBHQjA/89Njj24oP/PR4PVCPQm8R5aNTEbnpJajCjOccqK/HS2iBAHQphCKMyQ//H1rglRRqmtwiKAT4xGjgm6zlhBeiPuToMitrdM4TBGDKE3z88cdNxwD3yxO8dOkSMjIy8MQTT2DhwoU2f94aLIJuQKudifS0r5Ey9j3Eef8Pos/NR1vjHkC6KZhXakBb4x5IbT8iwKBDhL4CZV4i/uVtQJmXCOn67zFtgA8CZ8zArV/ux9B33sFPV/0G53xEPIFmXL6pCNZAwhNoRmGQivt1ErlAxzKr7oKrBQgI9w23uMzKWp3zBGtra03He8sTPHXqlCkIvXOe4PDhw015ggC6zRMEYHeeYEVFBaZPn45Vq1bhvvvus+mztuA7QTchCEr4lN+Kxr1n0ay7ALHtR+jrikybWkNqhNhejs7DpL6GJvNzwHzzaUGphF/qRPgBWDe8Ar959yS+hQ6jocQgCLgCCXkwQATw2tzR3K2FyAU6llmtPLQSAgSzCTK9LbOyhdzyBJ988klcuHABmzZtwqZNmwAADz/8MJYuXerQ93Azt8oTdJSjeYKuJIkSKp87BkNdK6qbL+Bg5fZeP/P38HkoH2DM3OsoX68tTul2783s/Iou+3VGcL9OIqeyK08QxmUSNy+zCvcN73GZlTtiniDZRV9cB0OdMe0hxCcKA5QBaDY0dNu+ycsfl3xuFC5rNp/mfp1E7sueZVbkOBbBPiaJEvTFdd1uJN1BbOgUdyQokDJoOr6r/qjb82Y99DtkhI6yuZhxv04i92XrMit3xDxBMmnOv4zaPUWmHh4AKIO8oZkb02W5gSLA2+zXUX4jka6dj5NXvjTrEfoHDcS0Zb9GbGrvobdERNQzFsE+0px/GVfePdvluKGuFVfePYtBi+PMCqF6eBCUQd5mBTPKbyQG+8bicstFNBt08AsMRtLT/w9KFf9nIyJyBi6R6AOSKKF2T1GPbWr3nIckdpoFphCgmRvTpZ1CUEA7YCii/eMx8u5pLIBERE7EItgHOk9y6Y6hTg99cZ3ZsQGJIRi0OA7KIPOhUWWQukvPkYiIHMci2Ac6T3Kxtd2AxBCEr5rILcuIPJBkMKDx6DHU7f0UjUePQeq0K4uj5Bal9OGHH2L06NFITk5GQkIC/vjHP3bZRcsZOLbWB26e5GJru44ty4jIc9R//jmq1j+L9sobGaOq8HCErXkcgTNmOHx+uUUpZWRk4K677oJCoUBraysmTZqE1NRUzJs3z6n3wJ5gH+iY5NKTjhR2IqL6zz9H+cO/NyuAANBeVYXyh3+P+s8/d+j8HVFKb731VpcopXvuuQeAcUeZzMxM/PKXv8T48eNx7NgxZGdnIyUlBaNHj8aUKVNQUFAAwLjTy/jx403nyc/Px7BhwwAYF8uHhITg0UcfRWpqKhISEnDgwAGL9zVixAiMGTMGKgtzHQICAqBQGEtUS0sL9Hq96dfOxCLYB7qb5NJZ0Ozh0BfXoelUNVqKas0myRCR55AMBlStfxawNNR3/VjV+mcdGhq1JUpp7dq1OHHiBGJiYrB48WK88847yMvLw4oVK5CVlWXV9TqilI4ePYqtW7fi7rvv7nGf0u4cPnwYo0ePhlarxfTp0zF79mybz9EbFsE+0tMkF//bI1H36XlcfuM0rn5wDpffOI3K546hOV8+C0yJyDmaTvyzSw/QjCShvbISTSf+6dB15BillJaWhry8PJSVleH48eP45ptvbD5Hb/hOsA8NSAyBT/wgsx1jxMY2XH3/X13adrd+kIj+vbXXWJcTaG07SzpHKQUHB5uilLZt24a9e/ea2rlblFKH0NBQzJ49G7t27eqyWbej2BPsY51z+dTDg1D36fke29+8fpCI/r2pQq3LCbS2nSVyjFI6d+4cRFEEADQ0NGDv3r02n8Ma7An2I1vWD3J2KJFn8B0/DqrwcLRXVVl+LygIUIWFwXf8OIeuI7copV27duH999+Hl5cXDAYDFixYgPvvv9+h78ASRin1o6ZT1bj6wble2w1cNBK+ydp+uCMicjZ7opQ6ZocCMC+E14cQIze95JRlEv1BblFKHA7tR46uHySif0+BM2YgctNLUIWFmR1XhYXJqgDKEYdD+5GlTbJvxvWDRJ4pcMYMBEyfbpwtWlMDVWgofMePg9DHC9adjVFK1K2O9YOW0iU6aObeYjFvkIj+/QlKJfxSJ7r6NjwKh0P7GTfJJiJyH+wJuoCl9YPdJc4TEVHfccue4KFDh6BUKvE///M/rr6VPtN5/aBPjIYFkIjIBdyuCDY0NGDVqlW48847XX0rRET0b87tiuDKlSvx2GOPISSE78aIyLOIooTyc9fww/FKlJ+7BtGJu0fJLU+wQ01NDcLCwrBgwYI+uQe3eif42Wefoba2FgsWLDDbz647er0eer3e9Ov6+vq+vD0ioj5TlFuNb3YUorH2xt9pfho1Jv8iFjFjHd88Q255gh0efPBBzJo1Cw0NDX1yD/1aBCdPnmzah+5mubm5WL16Nb744gurz/fss89i3bp1XY6zGBKRq7S2tkIURRgMBrNNpnty/lQNPn+joMvxxlo9srfkY8byeNySbP/eoR15giUlJQgMDDTd16xZswAYC94777yDHTt2QKvV4uzZs3jppZdQV1eHtWvXor29HRqNBq+88gri4+Nx6NAhrFq1CkePHgVgzBO86667UFRUhJKSEqSmpuKXv/wlvv32WzQ2NuKll17CtGnTutxXTIwxcu7//u//TN9ZZ++//z60Wi3GjRuHTz/91OL3aTAYIIoidDodWluNa7A7aoA1G6L1axHsKQbj22+/RUVFBSZONK6RuXz5Mvbs2YOamhqLhQ4AHn/8caxcudL06/LycsTHx2PIkCHOvXEiIitFR0dj8+bNaG5utqq9JEo4tUPXY5tD759FraHM7gl0X3zxBSIjI1FaWorS0lKLbUpLS/HNN9/g3XffxcMPP4yrV6/innvuwebNm3Hrrbfis88+w/z587Fjxw78+OOPaGpqQm5uLgDgxx9/RGtrK3Jzc3Hp0iVcuXIFgYGBePXVV3H69GksWrQIH330EQYMGGDx2pWVlWbnA4zDoOvXr8eWLVvw5Zdfora21uznnV2+fBmzZ8/u8mwNDQ0ICup58xG3GQ6dNGkSqqurTb9esmQJxo8fj4ceeqjbz6jVaqjVatOv/f39UVZWhoCAAIdiO+xVX1+PIUOGoKyszC33LnV3/P7sx+/OMc78/lpbW1FVVYVhw4ZZtXdo+Q+1aG3sOWuvtVFCWMAtiByhseuefvzxR/j6+mLs2LEAjHmCWVlZaG5uxuTJk7Flyxbk5eVh8uTJuOuuuwAYh0rHjRuHhQsXAjDGMf33f/83wsPDceutt5rOZzAY8OOPP8Lb2xtjx45FcHAwvL298cc//hEKhQJjx47Fpk2bTOewJDw8HDqdzuznc+fOxaZNm5Ceno4ff/wR+fn5Fj/f0tKCkpISnDhxAt7exvXXkiShoaEBgwcP7vW7cZsi6AwKhQJRUVGuvg0EBgbyLyIH8PuzH787xzjj+2tpaUFNTQ2USqVV79RadG3WnVfXZvc7unHjxqGwsBD19fUIDg7GiBEjzPIElUolFAoFAgICTNdQKBRQKBRdrqlSqaBWq83eGXYMQ3Z+5o5zdv5cd/dv6VpHjhzBihUrAAA6nQ7Nzc2YNWsW9u3bZ/bZjuv4+/ub/aOjtx6g6dpWtXKBbdu29dgLJCL6d+AXqO69kQ3tLOnrPMF//OMfZp91Rp7g1atXUVJSgpKSErzwwgu48847uxRAZ/i36gkSEclNRKwGfhq12azQm/kHqxERq3HoOn2VJxgdHY3Y2FizzzojT7C//FvlCbqaXq/Hs88+i8cff9zsXSVZh9+f/fjdOcaZ3589eYJFudXI3pLf7c8zH0h0yjKJviCKIiorKxEeHg6FQuEWeYK2YBEkInIie/9StrRO0D9YjUlZzlkn2F/kVgQ5HEpE5AZixmoxfEwoKgpr0Vivh1+gcQhUIbN9hZknSEREdlEoBESODHb1bXgUt50dSkRE1NdYBPuQJ0RC9YU1a9YgLi4OY8aMwcSJE3HgwAFX35JbKywsRFpaGkaMGIGJEyeioKDr9ltkWUtLC+bPn48RI0YgOTkZmZmZKCkpcfVtyc6lS5dw4sQJq3fJcScsgn2EkVD2mzx5Mk6ePInvv/8eb7zxBn7+8593u7kuAQ888ABWrFiBH374Af/1X/+FZcuWufqWZGXFihU4d+4cTp06hTlz5pgWaJN1GhsbodPpTLu1yA2LYB9hJJT97rzzTtMeg0lJSTAYDLJ60d6fqqurcfLkSSxevBgA8POf/xzFxcXszVjJx8cHs2bNMm2zeNttt+H8+fMuux9RNKDsTB7OfvcVys7kQRSt24DbGn0RpSSKIi5cuIDo6Gi7Pt9TlNK2bdug0WiQnJyM5ORkTJ061e777AknxvQBWyOhqHtvv/02YmJi3GI7PHdUVlaGwYMHQ6Uy/lEWBAFDhw7FhQsXMGzYMNfenAz99a9/xdy5c11y7cKjh3Fg2+vQXb3xDz7/gSGYtmQFYlPTHD5/X0QpXbp0CYMGDbJ7bWVvUUoZGRnYvXu3Xee2FnuCdpg8eTJCQkIs/qesrAyrV6/GK6+84urbdFu9fX8dvvzyS6xbtw4ffPCBC+/W/d28WTyX/tpn/fr1KCwsxF/+8pd+v3bh0cP4ZON6swIIALqrl/HJxvUoPHrYsfNfj1J66623TAUQMG5Sfc899wAw9rwyMzPxy1/+EuPHj8exY8eQnZ2NlJQUjB49GlOmTDG9bz506BBSUlLQ2NiI0NBQ5Ofnm179lJSUICQkBI8++ihSU1ORkJDQ7Xv9ESNGYMyYMaZ/xLkCe4J2cHYklKfp6fvr8NVXX2Hp0qXYs2cPRo4c2Q93JU9DhgzBxYsX0d7eDpVKBUmSUFZWhqFDh7r61mTlhRdewN///nfs378fvr6+/XptUTTgwLbXe2xz8J3XETMhFQqFfRto5+bm4tZbb8XAgQN7bPftt98iNzcXsbGxqK6uRnx8PA4ePIikpCS89957yMrKQn6+cWcbg8GAlpYWnD59GoWFhZAkCT/88AMEQcCVK1eQlJSEF154AUeOHMH8+fNRVFRkceu0nnz11VdITk6Gn58fHnnkkT5Jl2dP0Mk6IqE6Nn5dsGAB1q1bxwJog6+//hr33nsvPv74Y4wZM8bVt+PWtFotxo4di3fffReAMZx02LBhHAq1wcaNG7F9+3Z88cUX0Gg0/X798rNnuvQAb9Zw5TLKz55x6DqdRwyKioqQnJyMkSNHYvny5abjkyZNMu0DevToUSQnJyMpKQkAcM899+DixYuoqKgAAHh5eWHMmDEYPXo0Ro4cCUEQMGLECAQGBsLb2xv33nsvAON71vDwcHz/fc9xUTebM2cOSktLcerUKbz55pt45JFHcOTIEYe+A0tYBMntLFu2DHq9HkuXLjW9FD99+rSrb8ttbdmyBVu2bMGIESOwYcMGbN261dW3JBsXL17EH/7wB9TW1mLq1KlITk5Gampqv96DrvaaU9tZMnbsWBQWFuLaNeM5YmJicOrUKTz++OOmY4Axk7WDJEkWc1kFQYBKpTJLebdm9ratGa8hISGmXnlcXBxmzZqF7777zqZzWIPDoX1s27Ztrr4F2SksLHT1LcjKyJEjkZOT4+rbkKWoqCiXv0P111i3Q4y17SzpHKX01ltvmXq8vUUpLVu2DGfPnkVcXJxZlJLBYDBFKQ0aNAj/+7//Cy8vL9Os7o4opXvvvdfuKKXy8nJERkYCAKqqqnDgwAH84he/sO8L6AGLIBGRC0XGJcB/YEiPQ6IBg0IQGZfg0HX6Kkpp2LBhuP32280+64wopVdeeQUff/wxvLy8IIoiHnnkEUybNs2h78ASpkgQETmRPakGHbNDuzNv5RqnLJPoD3JLkeA7QSIiF4tNTcO8lWvgP9B8c42AQSGyKoByxOFQIiI3EJuahpgJqcbZorXX4K8JRmRcgt3LIlyFUUpERGQXhUKJIQm2TSAhx3A4lIiIPBaLIJEM1dbWYujQoWZLI/7nf/4HU6dOhSRJ2Lp1K2JjYxETE4MVK1agvb3dhXdL5L5YBIlkSKPRYPPmzViyZAmamppQWFiIZ555Bm+//TZKSkqwdu1afPvtt/jxxx9RWVnJBfRE3WARJJKpWbNmYdKkSXjsscdw33334c9//jOGDRuG3bt342c/+xnCwsIgCAJ+/etfY/v27a6+XSK3xCJIJGMvvvgitm/fDj8/P9MekDfnuw0bNgwXLlxw1S2SDSRRQktRLZpOVaOlqBaS6Lxl3H2RJ+ionvIEAeMG2hMmTEBCQgJGjRrVJzsjcXYokYx99dVX8PX1xfnz56HT6Ux7P3bep5H7YchDc/5l1O4pgqGu1XRMGeQNzdwYDEh0PJy7L/IEHdVTnuClS5dw33334bPPPkNcXBxaWlqs2qPUVuwJEsnUlStX8OCDD+Lvf/87MjMz8dhjjwEAhg4dapYsX1paymglN9ecfxlX3j1rVgABwFDXiivvnkVzvmPr7voiT3D8+PGm8+Tn55uSS5yVJ/jqq69i8eLFiIuLAwD4+Pj0ScoHe4JEMvXb3/4W9957LyZOnIiEhASMGTMGX375JX7+859j0qRJePLJJ6HVarF582YsWrTI1bdL3ZBECbV7inpsU7vnPHziB0FQ2JbE0KEv8gR74ow8wYKCAgwfPhwZGRm4fPkyJk+ejOeee87peY/sCRLJ0O7du3HmzBk89dRTAAA/Pz9s3boVy5cvR2hoKNatW4f09HTExMRAq9Vi2bJlrr1h6pa+uK5LD/Bmhjo99MV1Dl3H2XmCPXFGnmBbWxsOHTqEXbt24cSJE6irqzP9fncmFkEiGVqwYAFOnz4Nb29v07EpU6bg/PnzCAgIwPLly/Hjjz/i/PnzePPNN+Hl5eXCu6WeiA09F0Bb21kixzzB6OhozJ49G8HBwVCpVFi0aBGOHTtm0zmswSJIRORCigDv3hvZ0M6SznmCtbW1puO95QmeOnUKZ8+eBQCzPMHhw4eb8gQB4H//93/NPtuRJwjA7jzBu+++GwcPHoRerwcAZGdnY8yYMTadwxp8J0hE5ELq4UFQBnn3OCSqDFJDPTzIoevILU8wLS0Nc+fORXJyMlQqFRITE7F582aHvgNLmCdIRORE9uTbdcwO7c6gxXFOWSbRH5gnSERENhmQGIJBi+OgDDIf8lQGqWVVAOWIw6FERG5gQGIIfOIHQV9cB7GhFYoAb6iHB9m9LMJVmCdIRER2ERQCfGI0rr4Nj8LhUCIi8lgsgkRE5LFYBImIyGOxCBIRuQlRFFFcXIzTp0+juLgYoig67dxyi1LasGEDkpOTTf8JDAzEypUrnX4PnBhDROQGCgoKkJ2djfr6etOxwMBAZGZmIj4+3uHzyy1KafXq1aaF/K2trRg8eLAp8cKZ2BMkInKxgoIC7Ny506wAAkB9fT127txpijCylxyjlDr76KOPEBUVhXHjxjnyNVjEniARkQuJoojs7Owe22RnZ2PUqFFQKOzrt8gxSqmzrVu39lkSCnuCREQuVFpa2qUHeLP6+nqUlpY6dB25RSl1KCsrw7ffftsnQ6EAiyARkUvpdDqntrNEjlFKHd5++23Mmzev116svVgEiYhcqHPhcUY7S+QYpQQYC/G2bdv6NBSa7wSJiFwoOjoagYGBPQ6JBgYGIjo62qHryC1KCQAOHDgASZIwffp0h569J4xSIiJyInuifTpmh3YnKyvLKcsk+gOjlIiIyCbx8fHIyspCYGCg2fHAwEBZFUA54nAoEZEbiI+Px6hRo1BaWgqdTgd/f39ER0fbvSzCVRilREREdlEoFBg+fLirb8OjyOufGERERE7EIkhERB6LRZCIiDwWiyAREXksFkEiIjchSQZcu3YElZWf4Nq1I5AkQ+8fspLc8gRbWlqwZMkSJCUlITExEfPmzeuTWaecHUpE5Aaqq/fhh8KnoddXmo6p1eEYEfsktNqZDp9fbnmCW7ZsgU6nQ15eHgRBwPLly/H888/j+eefd+o9sCdIRORi1dX7cDr/t2YFEAD0+iqczv8tqqv3OXR+ueYJNjU1oa2tDe3t7dDpdIiKinLoe7CEPUEiIheSJAN+KHwagKUdLCUAAn4o/DNCQzMgCPb1zOSYJ/jAAw8gJycHWq0WSqUSqampeOihh6z+vLXYEyQicqHa2uNdeoDmJOj1FaitPe7QdeSWJ7h//34IgoDKykpUVFRAo9Hg6aeftukc1mARJCJyIb2+2qntLJFjnuDmzZvxs5/9DD4+PvD29sY999yDgwcP2nQOa7AIEhG5kFqtdWo7S+SYJ3jLLbdg3759kCQJkiRh7969SExMtOkc1uA7QSIiF9JoJkCtDodeXwXL7wUFqNXh0GgmOHQdueUJPvXUU1ixYgUSEhIgCALi4+OxZcsWh74DS5gnSETkRPbk23XMDjXq/FeycQgxKfEVpyyT6A/MEyQiIptotTORlPgK1Oows+NqdbisCqAccTiUiMgNaLUzERqacX22aDXUai00mgl2L4twFeYJEhGRXQRBieDg21x9Gx6Fw6FEROSxWASJiMhjsQgSEZHH4jtBIiI3YZAkHKnVobq1HVpvFW7T+ENp404rZBv2BImI3MCnNbUYn1OAn58qwm8KSvHzU0UYn1OAT2tqnXJ+ueUJNjY2YunSpUhKSsLIkSOxevVq9MWydhZBIiIX+7SmFvfnl6BC32Z2vFLfhvvzS5xSCJcuXYrc3Fzk5OTgzJkzyM3NxbJly3DmzBmL7TvvDdpXOvIEH3vssS4/W79+PQAgLy8P+fn5yM3Nxe7du51+DyyCREQuZJAkPFFY3m2QEgCsLSyHwYFekBzzBL///nvceeedEAQBXl5emDFjRpc9Sp2B7wSJiFzoSK2uSw+wMwnAJX0bjtTqkB4cYNc15JgnOGHCBOzcuRPz58+HXq/Hhx9+iPr6eqs/by32BImIXKi6td2p7bojtzzBVatWYciQIZg4cSLmzZuHtLQ0eHl52XQOa7AIEhG5kNbbugE5a9tZIsc8QR8fH7z44os4deoUDh48iIEDByI+Pt6mc1iDRZCIyIVu0/gjQu2F7kqEAGCw2gu3afy7adE7OeYJ1tfXo6mpCQBQXFyM1157DX/4wx9sOoc1+E6QiMiFlIKAZ2IjcX9+CQRYClIC/hwb6fB6QbnlCZ4/fx5ZWVlQqVRQqVR48cUXkZyc7NB3YAnzBImInMjefLtPa2rxRGG52SSZwWov/Dk2ErNDNX1wp31DbnmC7AkSEbmB2aEaZIYEcceYfsYiSETkJpSCYPcyCHchtzxBTowhIiKPxSJIREQei0WQiIg8FosgERF5LBZBIiI3YRAl5BRdwcenypFTdAUG0Xkr2NwxSumvf/0rEhMTMXr0aCQnJ2PHjh1mP3/mmWcQExODmJgYrF27tk/ugbNDiYjcQHZ+BdbtKUBF3Y0tyCKCfPCnufHITIxw+PxLly6FTqdDTk6OKUliz549OHPmjMVF6AaDAUql0uHr9iQhIQHfffcdgoKCUFZWhpSUFNx2222Ijo7G119/je3btyMvLw8qlQrp6emYNGkSZs6c6dR7YE+QiMjFsvMr8Jt3T5oVQACorGvBb949iez83jet7om7RilNnz4dQUFBAIAhQ4YgLCwMZWVlAIAdO3ZgyZIl8PPzg1qtxq9+9Sts377doe/BEhZBIiIXMogS1u0p6DFPcN2eAoeGRm2JUlq7di1OnDiBmJgYLF68GO+88w7y8vKwYsUKZGVlWXW9jiilo0ePYuvWrbj77rt73KcUAPbv349r165h3LhxAIALFy4gOjra9PNhw4bhwoULVl3fFiyCREQudKz4apceYGcSgIq6FhwrvurQddw5Sun06dNYunQpduzYgQEDBli8577a4ZNFkIjIhaobeo8hsqWdJe4cpVRQUIA5c+bgrbfewqRJk0zHhw4dipKSEtOvS0tLMXTo0F6vYysWQSIiF9IGWLfps7XtLHHXKKWzZ89i1qxZeP311/HTn/7U7GcLFy7EO++8g8bGRuj1erz11ltYtGiRXc/fE84OJSJyoYnDByIiyAeVdS0W3wsKAMKDfDBxeM/v83rjjlFK//mf/4m6ujqsWrUKq1atAgA899xzmDlzJu644w5kZWWZhmMXLVqEzMxMh74DSxilRETkRPZE+3TMDgUs5wm+tjjFKcsk+oPcopQ4HEpE5GKZiRF4bXEKwoPM/xIPD/KRVQGUIw6HEhG5gczECPw0PhzHiq+iuqEF2gDjEKhSIa88QblFKbEIEhG5CaVCwE9iBrn6NjwKh0OJiMhjsQgSEZHHYhEkIiKPxXeCRETuQjQApYcBXRXgHwZEpwGKvk1y8HTsCRIRuYOCT4CXEoF35gD/t8z43y8lGo87gdzyBI8fP460tDT4+vpiwYIFfXYP7AkSEblawSfAzl8CN+8ZU19hPJ71NyB+nkOXkFueYEREBF566SXk5ubiiy++6LN7YE+QiMiVRAOQvQpdCiBw41j2amM7O8kxTzAqKgoTJ06EWq22+7mtwZ4gEZErlR4G6i/10EAC6suN7YZPtusStuQJ5ubmIjY2FtXV1YiPj8fBgweRlJSE9957D1lZWcjPz+/1eh15gi+88AKOHDmC+fPno6ioyOL+oR1uzhPsL+wJEhG5kq7Kue26Icc8wf7AIkhE5Er+Yc5tZ4Ec8wT7C4sgEZErRacBgYNxIzPiZgIQGGlsZyc55gn2F74TJCJyJYUSyHzu+uxQARbDlDI3OLxeUG55gkVFRZgyZQqamprQ0tKCqKgorFmzBg8++KBD38PNmCdIROREdufbFXxinCXaeZJMYKSxADq4PKI/yS1PkD1BIiJ3ED8PGDWbO8b0MxZBIiJ3oVDavQzCXcgtT5ATY4iIyGOxCBIRkcdiESQiIo/FIkhERB6LRZCIyE0YRAOOVx7HP87/A8crj8PgwKbZN5NblNKOHTswduxYJCYmIikpCS+//HKf3ANnhxIRuYH9pfux4dgGVDXd2CM0zDcMqyeuRkZ0hsPnl1uUUlRUFD777DOEh4ejrq4O48aNQ0pKCtLT0516D+wJEhG52P7S/Vh5aKVZAQSA6qZqrDy0EvtL9zt0fjlGKaWnpyM8PBwAEBQUhFGjRqG4uNih78ES9gSJiFzIIBqw4dgGSBbyBCVIECDguWPPYeqQqVDauXBe7lFKBQUFyMnJweuvv977w9qIPUEiIhc6WX2ySw+wMwkSKpsqcbL6pEPXkWuU0sWLF3HXXXdh8+bNGDx4sPUPbCUWQSIiF6ppqnFqO0vkGqV06dIlZGRk4IknnsDChQt7vYY9WASJiFwo1DfUqe0skWOUUkVFBaZPn45Vq1bhvvvus+u5rcEiSETkQinaFIT5hkHoJk9QgIBw33CkaFMcus62bduQlJSE1NRUxMfHIz09Hfv378djjz1msX3nKKUxY8bgtddesxilNHXqVGg0GrPPdo5SWrp0qVVRSsnJyUhOTsa+ffsAAE8++SQuXLiATZs2mX729ttvO/QdWMIoJSIiJ7In2qdjdigAswkyHYVx4x0bnbJMoj/ILUqJPUEiIhfLiM7Axjs2QuurNTse5hsmqwIoR1wiQUTkBjKiMzB1yFScrD6JmqYahPqGIkWbYveyCFeRW5QSiyARkZtQKpSYED7B1bfhUTgcSkREHotFkIiIPBaLIBEReSwWQSIi8lgsgkREbkIyGNB49Bjq9n6KxqPHIBk8N0/www8/NB1PSEjAH//4R/TFsnbODiUicgP1n3+OqvXPor2y0nRMFR6OsDWPI3DGDIfPL7c8wYyMDNx1111QKBRobW3FpEmTkJqainnz5jn1HtgTJCJysfrPP0f5w783K4AA0F5VhfKHf4/6zz936PxyzBMMCAiAQmEsUS0tLdDr9aZfOxOLIBGRC0kGA6rWPwtYGuq7fqxq/bMODY3akie4du1anDhxAjExMVi8eDHeeecd5OXlYcWKFcjKyrLqeh15gkePHsXWrVtx991397hZN2A5T/Dw4cMYPXo0tFotpk+fjtmzZ1t1fVuwCBIRuVDTiX926QGakSS0V1ai6cQ/HbqOHPME09LSkJeXh7KyMhw/fhzffPONbQ9tBRZBIiIXaq+xLifQ2naWyDVPsENoaChmz56NXbt29XodW7EIEhG5kCrUupxAa9tZIsc8wXPnzkEURQBAQ0MD9u7da/EcjuLsUCIiF/IdPw6q8HC0V1VZfi8oCFCFhcF3/LiuP7PBtm3b8Je//AWpqalQKpUIDg6GVqvF6tWrLbbvnCdoMBig0Wgs5gkOGzYMt99+u9lnO+cJ6nQ6q/IEV61aBQB47rnnMHPmTOzatQvvv/8+vLy8YDAYsGDBAtx///0OfQeWME+QiMiJ7Mm365gdCsC8EF4fQozc9JJTlkn0B+YJEhGRTQJnzEDkppegCgszO64KC5NVAZQjDocSEbmBwBkzEDB9unG2aE0NVKGh8B0/DkIfL1h3NuYJEhGRXQSlEn6pE119Gx6Fw6FEROSxWASJiMhjsQgSEZHHYhEkInIToiih/Nw1/HC8EuXnrkEUnbeCTW5RSh1qamoQFhaGBQsW9Mk9cGIMEZEbKMqtxjc7CtFYqzcd89OoMfkXsYgZq3X4/HKLUurw4IMPYtasWWhoaOiTe2BPkIjIxYpyq5G9Jd+sAAJAY60e2VvyUZRb7dD55RilBADvvfcewsLCMGXKFIeevyfsCRIRuZAoSvhmR2GPbb7dWYjhY0KhUFjehLo3tkQp5ebmIjY2FtXV1YiPj8fBgweRlJSE9957D1lZWcjPz+/1eh1RSi+88AKOHDmC+fPno6ioyOLWaR1ujlK6dOkSNm7ciK+++gq7d++27YFtwJ4gEZELVRTWdukB3kx3TY+KwlqHriO3KKXly5fj+eefN0u26AvsCRIRuVBjfc8F0NZ2lnSOUgoODjZFKW3btg179+41tXOnKKWcnBwsW7YMAKDT6dDc3IyZM2di3759vT+wDdgTJCJyIb9AtVPbWSLHKKWrV6+ipKQEJSUleOGFF3DnnXc6vQAC7AkSEblURKwGfhp1j0Oi/sFqRMRqHLqO3KKU+gujlIiInMieaJ+O2aHdyXwg0SnLJPoDo5SIiMgmMWO1yHwgEX4a8yFP/2C1rAqgHHE4lIjIDcSM1WL4mFDjbNF6PfwCjUOg9i6LcBVGKRERkV0UCgGRI4N7b0hOw+FQIiLyWCyCRETksVgEiYjIY7EIEhGRx2IRJCJyE6JoQNmZPJz97iuUncmDKBp6/5CV5JYnuG3bNmg0GiQnJyM5ORlTp07tk3vg7FAiIjdQePQwDmx7HbqrN5YX+A8MwbQlKxCbmubw+eWYJ5iRkdGnCRIAe4JERC5XePQwPtm43qwAAoDu6mV8snE9Co8eduz8Ms0T7A8sgkRELiSKBhzY9nqPbQ6+87pDQ6O25AmuXbsWJ06cQExMDBYvXox33nkHeXl5WLFiBbKysqy6Xkee4NGjR7F161bcfffdPW7WDXTNEwSAr776CsnJyUhPT++zHiGLIBGRC5WfPdOlB3izhiuXUX72jEPXkVue4Jw5c1BaWopTp07hzTffxCOPPIIjR47Y/uC9YBEkInIhXe01p7azpHOeIABTnuDjjz9uOga4V55gSEgIfH19AQBxcXGYNWsWvvvuu16vYysWQSIiF/LXWLdNmrXtLJFjnmB5ebnp/6+qqsKBAwcwduxY2x7cCpwdSkTkQpFxCfAfGNLjkGjAoBBExiU4dB255Qm+8sor+Pjjj+Hl5QVRFPHII49g2rRpDn0HljBPkIjIiezJt+uYHdqdeSvXOGWZRH9gniAREdkkNjUN81augf/AELPjAYNCZFUA5YjDoUREbiA2NQ0xE1KNs0Vrr8FfE4zIuAQoFH27YN3ZmCdIRER2USiUGJLQdQIJ9R0OhxIRkcdiESQiIo/FIkhERB6LRZCIyE1IooSWolo0napGS1EtJNF5K9jkFqUEGPcOnTBhAhISEjBq1Cjk5OQ4/R44MYaIyA00519G7Z4iGOpaTceUQd7QzI3BgMSQHj5pHblFKV26dAn33XcfPvvsM8TFxaGlpcWq7dlsxZ4gEZGLNedfxpV3z5oVQAAw1LXiyrtn0Zzv2JIDOUYpvfrqq1i8eDHi4uIAAD4+PtBoNA59D5awJ0hE5EKSKKF2T1GPbWr3nIdP/CAICsubUPfGliil3NxcxMbGorq6GvHx8Th48CCSkpLw3nvvISsrC/n5+b1eryNK6YUXXsCRI0cwf/58FBUVWdw6rcPNUUoFBQUYPnw4MjIycPnyZUyePBnPPfecaVNtZ2FPkIjIhfTFdV16gDcz1OmhL65z6Dpyi1Jqa2vDoUOHsGvXLpw4cQJ1dXV46qmnbH7u3rAIEhG5kNjQcwG0tZ0lcoxSio6OxuzZsxEcHAyVSoVFixbh2LFjvT+sjVgEiYhcSBHg7dR2lsgxSunuu+/GwYMHodfrAQDZ2dkYM2aM7Q/fC74TJCJyIfXwICiDvHscElUGqaEeHuTQdeQWpZSWloa5c+ciOTkZKpUKiYmJ2Lx5s0PfgSWMUiIiciJ7on06Zod2Z9DiOKcsk+gPjFIiIiKbDEgMwaDFcVAGmQ95KoPUsiqAcsThUCIiNzAgMQQ+8YOgL66D2NAKRYA31MOD7F4W4SqMUiIiIrsICgE+MRpX34ZH4XAoERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CVEUUVxcjNOnT6O4uBiiKDrt3HLLE9ywYQOSk5NN/wkMDMTKlSudfg+cHUpE5AYKCgqQnZ2N+vp607HAwEBkZmYiPj7e4fPLLU9w9erVpt1sWltbMXjwYFPskzOxJ0hE5GIFBQXYuXOnWQEEgPr6euzcudOU42cvOeYJdvbRRx8hKirKFLPkTOwJEhG5kCiKyM7O7rFNdnY2Ro0aBYXCvn6LHPMEO9u6dSuWLVvW+4PagT1BIiIXKi0t7dIDvFl9fT1KS0sduo7c8gQ7lJWV4dtvv+2ToVCARZCIyKV0Op1T21kixzzBDm+//TbmzZvXay/WXiyCREQu1LnwOKOdJXLMEwSMhXjbtm19NhQK8J0gEZFLRUdHIzAwsMch0cDAQERHRzt0HbnlCQLAgQMHIEkSpk+f7tCz94R5gkRETmRPvl3H7NDuZGVlOWWZRH9gniAREdkkPj4eWVlZCAwMNDseGBgoqwIoRxwOJSJyA/Hx8Rg1ahRKS0uh0+ng7++P6Ohou5dFuArzBImIyC4KhQLDhw939W14FHn9E4OIiMiJWASJiMhjsQgSEZHH4jtBIiI3IUkG1NYeh15fDbVaC41mAgShb5McPB17gkREbqC6eh++O3w7TubegzMFj+Bk7j347vDtqK7e55Tzyy1PsKWlBUuWLEFSUhISExMxb968Ppl1yiJIRORi1dX7cDr/t9DrK82O6/VVOJ3/W6cUwqVLlyI3Nxc5OTk4c+YMcnNzsWzZMpw5c8Zi+857g/aVjjzBvLw87NmzBw899JBpo/AtW7ZAp9MhLy8P+fn5CAsLw/PPP+/0e2ARJCJyIUky4IfCpwFY2rzLeOyHwj9DkuwvSnLNE2xqakJbWxva29uh0+kQFRVl93fQHb4TJCJyIeM7wMoeWkjQ6ytQW3scwcG32XUNOeYJPvDAA8jJyYFWq4VSqURqaioeeugh2x7cCuwJEhG5kF5f7dR23ZFbnuD+/fshCAIqKytRUVEBjUaDp59+2vYH7wWLIBGRC6nVWqe2s0SOeYKbN2/Gz372M/j4+MDb2xv33HMPDh482PvD2ohFkIjIhTSaCVCrwwFYLhKAALU6AhrNBLuvIcc8wVtuuQX79u2DJEmQJAl79+5FYmKiXc/fExZBIiIXEgQlRsQ+2fGrm38KABgRu9bh9YLbtm1DUlISUlNTER8fj/T0dOzfvx+PPfaYxfad8wTHjBmD1157zWKe4NSpU6HRaMw+2zlPcOnSpVblCSYnJyM5ORn79hlnwj711FOoq6tDQkICEhMTcfnyZfz5z3926DuwhHmCREROZG++XXX1PvxQ+LTZJBm1OgIjYtdCq53ZF7faJ+SWJ8jZoUREbkCrnYnQ0AzuGNPPWASJiNyEICjtXgbhLuSWJ8h3gkRE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5CYMkoTvrjXgw6pr+O5aAwxOXMEmtyilxsZGLF26FElJSRg5ciRWr16NvljRx9mhRERu4NOaWjxRWI4KfZvpWITaC8/ERmJ2qMbh8y9duhQ6nQ45OTmmJIk9e/bgzJkzSE5O7tLeYDBAqezb5RkdUUpBQUEoKytDSkoKbrvtNkRHR2P9+vUAgLy8PLS3t2POnDnYvXs3Fi5c6NR7YE+QiMjFPq2pxf35JWYFEAAq9W24P78En9bUOnR+OUYpff/997jzzjshCAK8vLwwY8aMLtuzOQN7gkRELmSQJDxRWN5tmqAAYG1hOTJDgqDsZhPq3sgxSmnChAnYuXMn5s+fD71ejw8//BD19fW2PbgV2BMkInKhI7W6Lj3AziQAl/RtOFKrc+g6cotSWrVqFYYMGYKJEydi3rx5SEtLg5eXl+0P3gsWQSIiF6pubXdqO0vkGKXk4+ODF198EadOncLBgwcxcOBAxMfH9/6wNmIRJCJyIa23dW+lrG1niRyjlOrr69HU1AQAKC4uxmuvvYY//OEPtj98L/hOkIjIhW7T+CNC7YVKfZvF94ICjLNEb9P4W/ip9bZt24a//OUvSE1NhVKpRHBwMLRaLVavXm2xfecoJYPBAI1GYzFKadiwYbj99tvNPts5Skmn01kVpbRq1SoAwHPPPYeZM2fi/PnzyMrKgkqlgkqlwosvvmhxFqujGKVERORE9kT7dMwOBWBWCDsGEN9MHOaUZRL9QW5RShwOJSJysdmhGryZOAzhavOJHxFqL1kVQDnicCgRkRuYHapBZkgQjtTqUN3aDq23Crdp/O1eFuEqcotSYhEkInITSkFAenCAq2/Do3A4lIiIPBaLIBEReSwWQSIi8lh8J0hE5CYMooRjxVdR3dACbYAPJg4fCKVCXhNj5IY9QSIiN5CdX4FJzx3Af7xxBA9/cAr/8cYRTHruALLze9+r0xrumCf4yiuvICkpybRH6V//+leznz/zzDOIiYlBTEwM1q5d2yf3wJ4gEZGLZedX4DfvnuyyY0xlXQt+8+5JvLY4BZmJEQ5dwx3zBBcvXozf/va3AIzbpCUmJuKOO+7A6NGj8fXXX2P79u3Iy8uDSqVCeno6Jk2ahJkzZzr1HtgTJCJyIYMoYd2egm6jlABg3Z4CGET7N/dy1zzBjixBAGhqakJ7e7tpo+0dO3ZgyZIl8PPzg1qtxq9+9Sts377d7u+gOyyCREQudKz4Kirquk9hkABU1LXgWPFVu69hS57g2rVrceLECcTExGDx4sV45513kJeXhxUrViArK8uq63XkCR49ehRbt27F3Xff3e1m3bt370ZCQgKio6Px2GOPmaKbLly4gOjoaFO7YcOG4cKFC1Y+sfVYBImIXKi6ofcYIlvadcdd8wQXLFiAM2fO4Ny5c/jb3/6Gc+fOWbznvtrmmkWQiMiFtAHWbfpsbTtL3DlPsMOwYcOQmpqKvXv3AgCGDh2KkpIS089LS0sxdOjQXq9jKxZBIiIXmjh8ICKCfNBdiRAARAQZl0vYy53zBDvU1NTgyy+/NLVbuHAh3nnnHTQ2NkKv1+Ott97CokWL7PsCesDZoURELqRUCPjT3Hj85t2TEGA5SulPc+MdXi/ojnmCL7/8Mr766it4eXlBkiQ88sgjpnDdO+64A1lZWabh2EWLFiEzM9Oh78AS5gkSETmRvfl22fkVWLenwGySTESQD/40N97h5RH9SW55guwJEhG5gczECPw0Ppw7xvQzFkEiIjehVAj4ScwgV9+GQ+SWJ8iJMURE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5C5EA1D8DXB6t/G/RUPvn7GS3KKUjh8/jrS0NPj6+mLBggV9dg+cHUpE5A4KPgGyVwH1l24cCxwMZD4HxM9z+PRyi1KKiIjASy+9hNzcXHzxxRd9dg/sCRIRuVrBJ8DOX5oXQACorzAeL/jEodPLMUopKioKEydOhFqtdujZe8MiSETkSqLB2APsKVEwe7VDQ6NyjFLqLyyCRESuVHq4aw/QjATUlxvbOUCOUUr9gUWQiMiVdFXObWeBHKOU+guLIBGRK/mHObedBXKMUuovnB1KRORK0WnGWaD1FbD8XlAw/jw6zaHLyC1KqaioCFOmTEFTUxNaWloQFRWFNWvW4MEHH3Toe7gZo5SIiJzIrmifjtmhACwmCmb9zSnLJPqD3KKUOBxKRORq8fOMhS7wptzAwMGyKoByxOFQIiJ3ED8PGDXbOAtUV2V8BxidBij6dsG6s8ktSolFkIjIXSiUwPDJrr4Lj8LhUCIi8lgsgkRE5LFYBImIyGOxCBIRkcdiESQichMG0YDjlcfxj/P/wPHK4zB4cJ7gjh07MHbsWCQmJiIpKQkvv/xyn9wDZ4cSEbmB/aX7seHYBlQ13dgjNMw3DKsnrkZGdIbD55dbnmBUVBQ+++wzhIeHo66uDuPGjUNKSgrS09Odeg/sCRIRudj+0v1YeWilWQEEgOqmaqw8tBL7S/c7dH455gmmp6cjPDzc1G7UqFEoLi526HuwhEWQiMiFDKIBG45tgGRh39COY88de86hoVG55wkWFBQgJycH06ZNs+r6tmARJCJyoZPVJ7v0ADuTIKGyqRInq086dB255glevHgRd911FzZv3ozBgwfb9tBWYBEkInKhmqYap7azRK55gpcuXUJGRgaeeOIJLFy4sNdr2INFkIjIhUJ9Q53azhI55glWVFRg+vTpWLVqFe677z77HtwKnB1KRORCKdoUhPmGobqp2uJ7QQECwnzDkKJNceg6cssTfPLJJ3HhwgVs2rQJmzZtAgA8/PDDWLp0qUPfw82YJ0hE5ET25Nt1zA4FYFYIhet5ghvv2OiUZRL9gXmCRERkk4zoDGy8YyO0vlqz42G+YbIqgHLE4VAiIjeQEZ2BqUOm4mT1SdQ01SDUNxQp2hQomSfYp1gEiYjchFKhxITwCa6+DY/C4VAiIvJYLIJEROSxWASJiMhjsQgSEbkJyWBA49FjqNv7KRqPHoNk8NwopQ8//BCjR49GcnIyEhIS8Mc//hF9saKPE2OIiNxA/eefo2r9s2ivrDQdU4WHI2zN4wicMcPh88stSikjIwN33XUXFAoFWltbMWnSJKSmpmLevHlOvQf2BImIXKz+889R/vDvzQogALRXVaH84d+j/vPPHTq/HKOUAgICoFAYS1RLSwv0er3p187EIkhE5EKSwYCq9c8Clob6rh+rWv+sQ0Ojco1SOnz4MEaPHg2tVovp06dj9uzZ1j+0lVgEiYhcqOnEP7v0AM1IEtorK9F04p8OXUeOUUppaWnIy8tDWVkZjh8/jm+++cb2B+8FiyARkQu111gXkWRtO0vkGqXUITQ0FLNnz8auXbt6vY6tWASJiFxIFWpdRJK17SyRY5TSuXPnIIoiAKChoQF79+61eA5HcXYoEZEL+Y4fB1V4ONqrqiy/FxQEqMLC4Dt+nEPXkVuU0q5du/D+++/Dy8sLBoMBCxYswP333+/Qd2AJo5SIiJzInmifjtmhAMwL4fUhxMhNLzllmUR/YJQSERHZJHDGDERuegmqsDCz46qwMFkVQDnicCgRkRsInDEDAdOnG2eL1tRAFRoK3/HjIPTxgnVnY5QSERHZRVAq4Zc60dW34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIvJYLIJERG5CFCWUn7uGH45XovzcNYii85Zxyy1PsENNTQ3CwsKwYMGCPrkHzg4lInIDRbnV+GZHIRpr9aZjfho1Jv8iFjFjtQ6fX255gh0efPBBzJo1Cw0NDX1yD+wJEhG5WFFuNbK35JsVQABorNUje0s+inKrHTq/HPMEAeC9995DWFgYpkyZ4tDz94RFkIjIhURRwjc7Cnts8+3OQoeGRuWYJ3jp0iVs3LgRGzZssO1hbcQiSETkQhWFtV16gDfTXdOjorDWoevILU9w+fLleP75583infoC3wkSEblQY33PBdDWdpZ0zhMMDg425Qlu27bNLL/PXfIER44ciZycHCxbtgwAoNPp0NzcjJkzZ2Lfvn29XssW7AkSEbmQX6Daqe0skWOe4NWrV1FSUoKSkhK88MILuPPOO51eAAH2BImIXCoiVgM/jbrHIVH/YDUiYjUOXUdueYL9hXmCREROZE++Xcfs0O5kPpDolGUS/YF5gkREZJOYsVpkPpAIP435kKd/sFpWBVCOOBxKROQGYsZqMXxMqHG2aL0efoHGIVCFoucJJe6GeYJERGQXhUJA5Mjg3huS03A4lIiIPBaLIBEReSwWQSIi8lgsgkREbkIUDSg7k4ez332FsjN5EEVD7x+yktyilLZt2waNRoPk5GQkJydj6tSpfXIPnBhDROQGCo8exoFtr0N39cbMSv+BIZi2ZAViU9McPr8co5QyMjKwe/fuPr0H9gSJiFys8OhhfLJxvVkBBADd1cv4ZON6FB497Nj5ZRql1B9YBImIXEgUDTiw7fUe2xx853WHhkblGKUEAF999RWSk5ORnp7eZz1CFkEiIhcqP3umSw/wZg1XLqP87BmHriO3KKU5c+agtLQUp06dwptvvolHHnkER44cse/he8AiSETkQrraa05tZ0nnKCUApiilxx9/3HQMcJ8oJQAICQmBr68vACAuLg6zZs3Cd9991+t1bMUiSETkQv4a63aIsbadJXKMUiovLzf9rKqqCgcOHMDYsWNtfPLecXYoEZELRcYlwH9gSI9DogGDQhAZl+DQdeQWpfTKK6/g448/hpeXF0RRxCOPPIJp06Y59B1YwiglIiInsifap2N2aHfmrVzjlGUS/YFRSkREZJPY1DTMW7kG/gNDzI4HDAqRVQGUIw6HEhG5gdjUNMRMSDXOFq29Bn9NMCLjEqBQ9O2CdWdjlBIREdlFoVBiSELXCSTUdzgcSkREHotFkIiIPBaLIBEReSwWQSIi8lgsgkREbkISJbQU1aLpVDVaimohic5bxi23PEHAuIH2hAkTkJCQgFGjRiEnJ8fp98DZoUREbqA5/zJq9xTBUNdqOqYM8oZmbgwGJIb08EnryC1P8NKlS7jvvvvw2WefIS4uDi0tLVbtUWor9gSJiFysOf8yrrx71qwAAoChrhVX3j2L5nzH1t3JMU/w1VdfxeLFixEXFwcA8PHxgUajceh7sIRFkIjIhSRRQu2eoh7b1O4579DQqBzzBAsKCtDc3IyMjAwkJyfjd7/7HZqammx7cCuwCBIRuZC+uK5LD/Bmhjo99MV1Dl1HbnmCbW1tOHToEHbt2oUTJ06grq4OTz31lF3P3hMWQSIiFxIbei6AtrazRI55gtHR0Zg9ezaCg4OhUqmwaNEiHDt2rNfr2IpFkIjIhRQB3k5tZ4kc8wTvvvtuHDx4EHq9HgCQnZ2NMWPG2PH0PePsUCIiF1IPD4IyyLvHIVFlkBrq4UHd/twacssTTEtLw9y5c5GcnAyVSoXExERs3rzZoe/AEuYJEhE5kT35dh2zQ7szaHGcU5ZJ9AfmCRIRkU0GJIZg0OI4KIPMhzyVQWpZFUA54nAoEZEbGJAYAp/4QdAX10FsaIUiwBvq4UEQFD1PKHE3zBMkIiK7CAoBPjEaV9+GR+FwKBEReSwWQSIi8lgsgkRE5LH4TpCIyE2IoojS0lLodDr4+/sjOjoaCgX7Kn2JRZCIyA0UFBQgOzsb9fX1pmOBgYHIzMxEfHy8w+dva2vD+vXrsX37diiVSnh7eyM6OhpPPfWUxSil/vDKK69g8+bNUCqVMBgMWL58Of7zP/8TALBhwwZ88MEHprbnz5/H/fffj40bNzr1HrhYnojIiexZvF1QUGDajcWSrKwshwvh4sWLodPp8Pbbb5vlCdbX15vilDrrjzzBuro6U5xSR57g3r17u2yx1traisGDB2Pfvn0YN26c2c+4WJ6ISMZEUUR2dnaPbbKzsyGKot3XkGOeYGcfffQRoqKiuhRAZ2ARJCJyodLSUrMhUEvq6+tRWlpq9zXkmCfY2datW7Fs2TKrrm0rFkEiIhfS6XRObdcdueUJdigrK8O3335rccjWGVgEiYhcqHOGnzPaWSLHPMEOb7/9NubNm9drL9ZeLIJERC4UHR2NwMDAHtsEBgYiOjra7mvIMU8QMBbibdu29dlQKMAlEkRELqVQKJCZmdnj7NDMzEyH1wvKLU8QAA4cOABJkjB9+nSHnr0nXCJBRORE9k7Z7+t1gv1FbnmC7AkSEbmB+Ph4jBo1ijvG9DMWQSIiN6FQKDB8+HBX34ZD5JYnyH9iEBGRx2IRJCIij8UiSEREHotFkIiIPBaLIBGRm5AkA65dO4LKyk9w7doRSJKh9w9Zqa2tDevWrcOoUaOQkJCAsWPHYv78+Th16pTTrmGrV155BUlJSabt2f7617+aftbS0oIlS5YgKSkJiYmJmDdvXp9MuOHsUCIiN1BdvQ8/FD4Nvb7SdEytDseI2Ceh1c50+PxLly6FTqdDTk6OWZTSmTNnLOYJ9keU0uLFi/Hb3/4WwI0opTvuuAOjR4/Gli1boNPpkJeXB0EQsHz5cjz//PN4/vnnnXoP7AkSEblYdfU+nM7/rVkBBAC9vgqn83+L6up9Dp1frlFKTU1NaGtrQ3t7O3Q6HaKiohz6HixhESQiciFJMuCHwqcBWNq8y3jsh8I/OzQ0KscopQceeACBgYHQarUICwtDXV0dHnroIdse3AosgkRELlRbe7xLD9CcBL2+ArW1xx26jtyilPbv3w9BEFBZWYmKigpoNBo8/fTT9j18D1gEiYhcSK+vdmo7S+QYpbR582b87Gc/g4+PD7y9vXHPPffg4MGDvV7HViyCREQupFZrndrOEjlGKd1yyy3Yt28fJEmCJEnYu3cvEhMT7fsCesDZoURELqTRTIBaHQ69vgqW3wsKUKvDodFMcOg6cotSeuqpp7BixQokJCRAEATEx8djy5YtDn0HljBKiYjIieyJ9umYHWrU+a9k4xBiUuIrTlkm0R/kFqXE4VAiIhfTamciKfEVqNVhZsfV6nBZFUA54nAoEZEb0GpnIjQ04/ps0Wqo1VpoNBMgCH27YN3Z5BalxCJIROQmBEGJ4ODbXH0bHoXDoURE5LFYBImIyGOxCBIRkcfiO0EiIjdhkCQcqdWhurUdWm8VbtP4Q9nLTivkGPYEiYjcwKc1tRifU4CfnyrCbwpK8fNTRRifU4BPa2qdcn655Qk2NjZi6dKlSEpKwsiRI7F69Wr0xbJ29gSJiFzs05pa3J9f0mW/mEp9G+7PL8GbicMwO1Tj0DXklie4fv16AEBeXh7a29sxZ84c7N69GwsXLnTqPbAnSETkQgZJwhOF5T0EKQFrC8thcKAXJMc8we+//x533nknBEGAl5cXZsyY0WWPUmdgESQicqEjtTpU6Nu6/bkE4JK+DUdqdXZfQ455ghMmTMDOnTvR2tqKhoYGfPjhhygpKbHpua3BIkhE5ELVre1ObdcdueUJrlq1CkOGDMHEiRMxb948pKWlwcvLy76H7wGLIBGRC2m9rZuaYW07S+SYJ+jj44MXX3wRp06dwsGDBzFw4EDEx8f3eh1bsQgSEbnQbRp/RKi90F2JEAAMVnvhNo1/Ny16J8c8wfr6ejQ1NQEAiouL8dprr+EPf/iDHU/fM84OJSJyIaUg4JnYSNyfXwIBloKUgD/HRjq8XlBueYLnz59HVlYWVCoVVCoVXnzxRYuzWB3FPEEiIieyN9/u05paPFFYbjZJZrDaC3+OjXR4eUR/klueIHuCRERuYHaoBpkhQdwxpp+xCBIRuQmlICA9OMDVt+EQueUJcmIMERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CYMoIafoCj4+VY6coiswiM5bweaOUUodzp07B19fXzz66KNmx5955hnExMQgJiYGa9eu7ZNrc3YoEZEbyM6vwLo9Baiou7EFWUSQD/40Nx6ZiREOn98do5Q6rvPAAw9g/vz5Zse//vprbN++HXl5eVCpVEhPT8ekSZMwc+ZMp16fPUEiIhfLzq/Ab949aVYAAaCyrgW/efcksvN737S6J+4apQQAGzZswJw5czBixAiz4zt27MCSJUvg5+cHtVqNX/3qV9i+fbtD34MlLIJERC5kECWs21PQY57guj0FDg2NumuUUl5eHvbt24dHHnmky88uXLiA6Oho06+HDRuGCxcuWHV9W7AIEhG50LHiq116gJ1JACrqWnCs+KpD13G3KKW2tjYsX74cmzdv7nbYtfM999UOn3wnSETkQtUNvccQ2dLOks5RSsHBwaYopW3btpmii4D+jVKqqKhAUVERZs2aBQCora2FJEm4du0atm7diqFDh5qF6JaWlmLo0KFWP7O12BMkInIhbYB1mz5b284Sd4xSGjp0KC5fvoySkhKUlJTg97//PZYvX46tW7cCABYuXIh33nkHjY2N0Ov1eOutt7Bo0SK7v4PusCdIRORCE4cPRESQDyrrWiy+FxQAhAf5YOLwnt/n9cYdo5R6cscddyArK8s0HLto0SJkZmba8eQ9Y5QSEZET2RPt0zE7FLCcJ/ja4hSnLJPoD3KLUuJwKBGRi2UmRuC1xSkIDzL/Szw8yEdWBVCOOBxKROQGMhMj8NP4cBwrvorqhhZoA4xDoEqFvPIE5RalxCJIROQmlAoBP4kZ5Orb8CgcDiUiIo/FIkhERB6LRZCIiDwWiyAREXksFkEiInchGoDib4DTu43/LRp6/4yV5JYnePz4caSlpcHX1xcLFizos2tzdigRkTso+ATIXgXUX7pxLHAwkPkcED/P4dPLLU8wIiICL730EnJzc/HFF1/02fXZEyQicrWCT4CdvzQvgABQX2E8XvCJQ6eXY55gVFQUJk6cCLVa7dCz94ZFkIjIlUSDsQfYU6Jg9mqHhkblmCfYX1gEiYhcqfRw1x6gGQmoLze2c4Ac8wT7A98JEhG5kq7Kue0skGOeYH9hT5CIyJX8w5zbzgI55gn2F/YEiYhcKTrNOAu0vgKW3wsKxp9Hpzl0GbnlCRYVFWHKlCloampCS0sLoqKisGbNGjz44IP2fQHdYJ4gEZET2ZVv1zE7FIDFRMGsvzllmUR/YJ4gERHZJn6esdAF3pQbGDhYVgVQjjgcSkTkDuLnAaNmG2eB6qqM7wCj0wCF62ZO2oN5gkREZB+FEhg+2dV34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIjdhEA04Xnkc/zj/DxyvPA6DB0cp7dixA2PHjkViYiKSkpLw8ssv98m1OTGGiMgN7C/djw3HNqCq6cb2aGG+YVg9cTUyojMcPr/copSioqLw2WefITw8HHV1dRg3bhxSUlKQnp7u1OuzJ0hE5GL7S/dj5aGVZgUQAKqbqrHy0ErsL93v0PnlGKWUnp6O8PBwAEBQUBBGjRqF4uJih74HS1gEiYhcyCAasOHYBkgWtkzrOPbcseccGhqVe5RSQUEBcnJyMG3aNKuubwsWQSIiFzpZfbJLD7AzCRIqmypxsvqkQ9eRa5TSxYsXcdddd2Hz5s0YPHiw9Q9sJb4TJCJyoZqmGqe2s0SuUUqXLl1CRkYGnnjiCSxcuNC2h7YSe4JERC4U6hvq1HaWyDFKqaKiAtOnT8eqVatw33332f3svWFPkIjIhVK0KQjzDUN1U7XF94ICBIT5hiFFm+LQdeQWpfTkk0/iwoUL2LRpEzZt2gQAePjhh7F06VI7nr57jFIiInIie6J9OmaHAjArhML1KKWNd2x0yjKJ/sAoJSIisklGdAY23rERWl+t2fEw3zBZFUA54nAoEZEbyIjOwNQhU3Gy+iRqmmoQ6huKFG0KlIxS6lMsgkREbkKpUGJC+ARX34ZH4XAoERF5LBZBIiLyWCyCRETksVgEiYjIY7EIEhG5CclgQOPRY6jb+ykajx6DZPDcPMEPP/wQo0ePRnJyMhISEvDHP/4RfbGsnbNDiYjcQP3nn6Nq/bNor6w0HVOFhyNszeMInDHD4fPLLU8wIyMDd911FxQKBVpbWzFp0iSkpqZi3rx5Tr0+e4JERC5W//nnKH/492YFEADaq6pQ/vDvUf/55w6dX455ggEBAVAojCWqpaUFer3e9GtnYhEkInIhyWBA1fpnAUtDfdePVa1/1qGhUbnmCR4+fBijR4+GVqvF9OnTMXv2bKuubwsWQSIiF2o68c8uPUAzkoT2yko0nfinQ9eRY55gWloa8vLyUFZWhuPHj+Obb76x7aGtwHeCREQu1F5jXU6gte0skWueYIfQ0FDMnj0bu3bt6pJY4Sj2BImIXEgVal1OoLXtLJFjnuC5c+cgiiIAoKGhAXv37u1yDmdgT5CIyIV8x4+DKjwc7VVVlt8LCgJUYWHwHT/OoevILU9w165deP/99+Hl5QWDwYAFCxbg/vvvt+/he8A8QSIiJ7In365jdigA80J4fQgxctNLTlkm0R+YJ0hERDYJnDEDkZtegioszOy4KixMVgVQjjgcSkTkBgJnzEDA9OnG2aI1NVCFhsJ3/DgI/bBg3ZmYJ0hERHYRlEr4pU509W14FA6HEhGRx2IRJCIij8UiSEREHotFkIjITYiihPJz1/DD8UqUn7sGUXTeCja5RSl1qKmpQVhYGBYsWNAn1+bEGCIiN1CUW41vdhSisVZvOuanUWPyL2IRM1br8PnlFqXU4cEHH8SsWbPQ0NDQJ9dnT5CIyMWKcquRvSXfrAACQGOtHtlb8lGUW+3Q+eUYpQQA7733HsLCwjBlyhSHnr8nLIJERC4kihK+2VHYY5tvdxY6NDQqxyilS5cuYePGjdiwYYN1D2knFkEiIheqKKzt0gO8me6aHhWFtQ5dR25RSsuXL8fzzz9vlmzRF/hOkIjIhRrrey6AtrazRI5RSjk5OVi2bBkAQKfTobm5GTNnzsS+fftse/hesCdIRORCfoFqp7azRI5RSlevXjX97IUXXsCdd97p9AIIsCdIRORSEbEa+GnUPQ6J+gerERGrceg6cotS6i+MUiIiciJ7on06Zod2J/OBRKcsk+gPjFIiIiKbxIzVIvOBRPhpzIc8/YPVsiqAcsThUCIiNxAzVovhY0KNs0Xr9fALNA6BKhRdJ6e4M0YpERGRXRQKAZEjg3tvSE7D4VAiIvJYLIJEROSxWASJiMhjsQgSEZHHYhEkInITomhA2Zk8nP3uK5SdyYMoGnr/kJXklie4bds2aDQaJCcnIzk5GVOnTu2Ta3N2KBGRGyg8ehgHtr0O3dUbywv8B4Zg2pIViE1Nc/j8cswTzMjIwO7du/v0+uwJEhG5WOHRw/hk43qzAggAuquX8cnG9Sg8etix88s0T7A/sAgSEbmQKBpwYNvrPbY5+M7rDg2NyjFPEAC++uorJCcnIz09vc96hCyCREQuVH72TJce4M0arlxG+dkzDl1HbnmCc+bMQWlpKU6dOoU333wTjzzyCI4cOWL7g/eC7wSJiFxIV3vNqe0skWOeYEhIiKltXFwcZs2ahe+++w633Xab9Q9uBfYEiYhcyF9j3TZp1razRI55guXl5aa2VVVVOHDgAMaOHWv3d9Ad9gSJiFwoMi4B/gNDehwSDRgUgsi4BIeuI7c8wVdeeQUff/wxvLy8IIoiHnnkEUybNs2+h+8B8wSJiJzInny7jtmh3Zm3co1Tlkn0B+YJEhGRTWJT0zBv5Rr4DwwxOx4wKERWBVCOOBxKROQGYlPTEDMh1ThbtPYa/DXBiIxLgELR9wvWnYl5gkREZBeFQokhCaN7b0hOw+FQIiLyWCyCRETksVgEiYjIY/GdIBGRm5BECfriOogNrVAEeEM9PAiCouuuLeQ87AkSEbmB5vzLqHzuGC6/cRpXPziHy2+cRuVzx9Cc75yZlnLLEwSMG2hPmDABCQkJGDVqFHJycpx+bfYEiYhcrDn/Mq68e7bLcUNdK668exaDFsdhQGKIhU9aT255gpcuXcJ9992Hzz77DHFxcWhpabFqj1JbsSdIRORCkiihdk9Rj21q95yHJNq/uZcc8wRfffVVLF68GHFxcQAAHx8faDQau7+D7rAIEhG5kL64Doa61h7bGOr00BfX2X0NOeYJFhQUoLm5GRkZGUhOTsbvfvc7NDU1WffANmARJCJyIbGh5wJoa7vuyC1PsK2tDYcOHcKuXbtw4sQJ1NXV4amnnrL5uXvDd4JERC6kCPB2ajtL5JgnGB0djbFjx5qGbxctWoTnn3/etge3AnuCREQupB4eBGVQzwVOGaSGeniQ3deQY57g3XffjYMHD0Kv1wMAsrOzMWbMGLu/g+6wJ0hE5EKCQoBmbozF2aEdNHNvcXi9oNzyBNPS0jB37lwkJydDpVIhMTERmzdvtu/he8A8QSIiJ7I33645/zJq9xSZTZJRBqmhmXuLw8sj+pPc8gTZEyQicgMDEkPgEz+IO8b0MxZBIiI3ISgE+MRoXH0bDpFbniAnxhARkcdiESQiIo/FIkhERB6LRZCIiDwWiyARkZsQRRHFxcU4ffo0iouLIYqi084ttyilDRs2IDk52fSfwMBArFy50unX5uxQIiI3UFBQgOzsbNTX15uOBQYGIjMzE/Hx8Q6fX25RSqtXrzYt5G9tbcXgwYNNiRfOxJ4gEZGLFRQUYOfOnWYFEADq6+uxc+dOU4SRveQYpdTZRx99hKioKIwbN86Rr8EiFkEiIhcSRRHZ2dk9tsnOznZoaFSOUUqdbd26FcuWLbPq2rZiESQicqHS0tIuPcCb1dfXo7S01KHryC1KqUNZWRm+/fbbPhkKBfhOkIjIpXQ6nVPbWSLHKKUOb7/9NubNm9drL9Ze7AkSEblQ58LjjHaWyDFKCTAW4m3btvXZUCjAniARkUtFR0cjMDCwxyHRwMBAREdHO3QduUUpAcCBAwcgSRKmT59u+wNbiVFKREROZE+0T8fs0O5kZWU5ZZlEf5BblBKHQ4mIXCw+Ph5ZWVkIDAw0Ox4YGCirAihHHA4lInID8fHxGDVqFEpLS6HT6eDv74/o6GgoFPLqq8gtSolFkIjITSgUCgwfPtzVt+FR5PVPDCIiIidiESQiIo/FIkhERB6L7wSJiNyEJBlQW3scen011GotNJoJEIS+T3LwZOwJEhG5gerqffju8O04mXsPzhQ8gpO59+C7w7ejunqfU84vtzzBlpYWLFmyBElJSUhMTMS8efP6ZNYpiyARkYtVV+/D6fzfQq+vNDuu11fhdP5vnVIIly5ditzcXOTk5ODMmTPIzc3FsmXLcObMGYvtO+8N2pe6yxPcsmULdDod8vLykJ+fj7CwMDz//PNOvz6LIBGRC0mSAT8UPg3A0uZdxmM/FP4ZkmR/UZJrnmBTUxPa2trQ3t4OnU6HqKgou7+D7rAIEhG5kPEdYGUPLSTo9RWorT1u9zXkmCf4wAMPIDAwEFqtFmFhYairq8NDDz1k3QPbgEWQiMiF9Ppqp7brjtzyBPfv3w9BEFBZWYmKigpoNBo8/fTTtj94L1gEiYhcSK3WOrWdJZ3zBAGY8gQff/xx0zHAdXmCw4YNw0svvYQ33njDFJu0efNm/OxnP4OPjw+8vb1xzz334ODBg7Y9uBVYBImIXEijmQC1C/WXdwAARANJREFUOhxA14JjJECtjoBGM8Hua8gxT/CWW27Bvn37IEkSJEnC3r17kZiYaPd30B2uEyQiciFBUGJE7JM4nf9bGAth5wkyxsI4Inatw+sF5ZYn+NRTT2HFihVISEiAIAiIj4/Hli1b7Hv4HjBPkIjIiezNt6uu3ocfCp82mySjVkdgROxaaLUz++JW+4Tc8gTZEyQicgNa7UyEhmZwx5h+xiJIROQmBEGJ4ODbXH0bDpFbniAnxhARkcdiESQiIo/FIkhERB6LRZCIiDwWiyARkZswSBK+u9aAD6uu4btrDTA4cQWb3KKUGhsbsXTpUiQlJWHkyJFYvXo1+mJFH2eHEhG5gU9ravFEYTkq9G2mYxFqLzwTG4nZoRqHz7906VLodDrk5OSYkiT27NmDM2fOIDk5uUt7g8FgcU9PZ+suSmn9+vUAjJtst7e3Y86cOdi9ezcWLlzo1OuzJ0hE5GKf1tTi/vwSswIIAJX6NtyfX4JPa2odOr8co5S+//573HnnnRAEAV5eXpgxY0aX7dmcgUWQiMiFDJKEJwrLe0gTBNYWljs0NCrHKKUJEyZg586daG1tRUNDAz788EOUlJRYdX1bsAgSEbnQkVpdlx5gZxKAS/o2HKnVOXQduUUprVq1CkOGDMHEiRMxb948pKWlwcvLy/YH7wXfCRIRuVB1a7tT21nSOUopODjYFKW0bds27N2719TOVVFKAFBbWwtJknDt2jVs3boVPj4+ePHFF03tN2zYgPj4eOsf2krsCRIRuZDW27q+iLXtLJFjlFJ9fT2ampoAAMXFxXjttdfwhz/8we7voDvsCRIRudBtGn9EqL1QqW+z+F5QgHGW6G0afws/tZ7copTOnz+PrKwsqFQqqFQqvPjiixZnsTqKUUpERE5kT7RPx+xQwFKaIPBm4jCnLJPoD3KLUuJwKBGRi80O1eDNxGEIV5tP/IhQe8mqAMoRh0OJiNzA7FANMkOCcKRWh+rWdmi9VbhN4w+lhckp7kxuUUosgkREbkIpCEgPDnD1bXgUDocSEZHHYhEkIiKPxSJIREQei0WQiIg8FosgEZGbMIgScoqu4ONT5cgpugKD+O+dJ/jUU09Bq9UiOTkZycnJpkSLDs888wxiYmIQExODtWvX9sk9cHYoEZEbyM6vwLo9Baiou7EPZ0SQD/40Nx6ZiREOn99d8wR/+ctf4oUXXuhy/Ouvv8b27duRl5cHlUqF9PR0TJo0CTNnznTq9dkTJCJysez8Cvzm3ZNmBRAAKuta8Jt3TyI7v/fkhp64c55gd3bs2IElS5bAz88ParUav/rVr7B9+3YHvgXLWASJiFzIIEpYt6egxzzBdXsKHBoaddc8QQDYvn07xowZg2nTpuHgwYOm4xcuXEB0dLTp18OGDcOFCxesur4tWASJiFzoWPHVLj3AziQAFXUtOFZ81aHruFueIAD8+te/RklJCb7//nv8+c9/xi9+8QuUlpZavOe+2uaaRZCIyIWqG3rP4rOlnSWd8wQBmPIEH3/8cdMxoH/zBAEgPDzcFJSbnp6OsWPH4sSJEwCMUUudk+RLS0sxdOjQXq9jKxZBIiIX0gZYl3xgbTtL3DFPEAAuXrxo+v8LCwtx6tQpU89z4cKFeOedd9DY2Ai9Xo+33noLixYtsu8L6AFnhxIRudDE4QMREeSDyrqWbvMEw4N8MHF4z+/zeuOOeYJ//OMf8c9//hMqlQpKpRKvvPIKRowYAQC44447kJWVZSqKixYtQmZmpkPfgSXMEyQiciJ78u06ZocClvMEX1uc4pRlEv2BeYJERGSTzMQIvLY4BeFB5n+Jhwf5yKoAyhGHQ4mI3EBmYgR+Gh+OY8VXUd3QAm2AcQhUqWCeYF9iESQichNKhYCfxAxy9W14FA6HEhGRx2IRJCIij8UiSEREHotFkIjIXYgGoPgb4PRu43+Lht4/YyW5RSkdP34caWlp8PX1xYIFC/rsHjgxhojIHRR8AmSvAuov3TgWOBjIfA6In+fw6eUWpRQREYGXXnoJubm5+OKLL/rs+uwJEhG5WsEnwM5fmhdAAKivMB4v+MSh08sxSikqKgoTJ06EWq124Ml7xyJIRORKosHYA+wpTCl7tUNDo3KMUuovLIJERK5UerhrD9CMBNSXG9s5QI5RSv2BRZCIyJV0Vc5tZ4Eco5T6C4sgEZEr+Yc5t50FcoxS6i+cHUpE5ErRacZZoPUVsPxeUDD+PDrNocvILUqpqKgIU6ZMQVNTE1paWhAVFYU1a9bgwQcfdOh7uBmjlIiInMiuaJ+O2aEALIYpZf3NKcsk+gOjlIiIyDbx84yFLvCmyKTAwbIqgHLE4VAiIncQPw8YNds4C1RXZXwHGJ0GKPp+wbozMUqJiIjso1ACwye7+i48CodDiYjIY7EIEhGRx2IRJCIij8UiSEREHotFkIjITRhEA45XHsc/zv8DxyuPw+DBeYI7duzA2LFjkZiYiKSkJLz88st9cg+cHUpE5Ab2l+7HhmMbUNV0Y4/QMN8wrJ64GhnRGQ6fX255glFRUfjss88QHh6Ouro6jBs3DikpKUhPT3fq9dkTJCJysf2l+7Hy0EqzAggA1U3VWHloJfaX7nfo/HLME0xPT0d4eDgAICgoCKNGjUJxcbG9X0G3WASJiFzIIBqw4dgGSBb2De049tyx5xwaGpV7nmBBQQFycnIwbdo0q65vCxZBIiIXOll9sksPsDMJEiqbKnGy+qRD15FrnuDFixdx1113YfPmzRg8eLDtD94LFkEiIheqaapxajtL5JoneOnSJWRkZOCJJ57AwoULrXhS27EIEhG5UKhvqFPbWSLHPMGKigpMnz4dq1atwn333Wffg1uBs0OJiFwoRZuCMN8wVDdVW3wvKEBAmG8YUrQpDl1HbnmCTz75JC5cuIBNmzZh06ZNAICHH34YS5cudeh7uBnzBImInMiefLuO2aEAzAqhcD1PcOMdG52yTKI/ME+QiIhskhGdgY13bITWV2t2PMw3TFYFUI44HEpE5AYyojMwdchUnKw+iZqmGoT6hiJFmwIl8wT7FIsgEZGbUCqUmBA+wdW34VE4HEpERB6LRZCIiDwWiyAREXksFkEiIjchGQxoPHoMdXs/RePRY5AMnhul9OGHH2L06NFITk5GQkIC/vjHP6IvVvRxYgwRkRuo//xzVK1/Fu2VlaZjqvBwhK15HIEzZjh8frlFKWVkZOCuu+6CQqFAa2srJk2ahNTUVMybN8+p12dPkIjIxeo//xzlD//erAACQHtVFcof/j3qP//cofPLMUopICAACoWxRLW0tECv15t+7UwsgkRELiQZDKha/yxgaajv+rGq9c86NDQq1yilw4cPY/To0dBqtZg+fTpmz55t3QPbgEWQiMiFmk78s0sP0Iwkob2yEk0n/unQdeQYpZSWloa8vDyUlZXh+PHj+Oabb+x7+B6wCBIRuVB7jXURSda2s0SuUUodQkNDMXv2bOzatavX69iKRZCIyIVUodZFJFnbzhI5RimdO3cOoigCABoaGrB3716L53AUZ4cSEbmQ7/hxUIWHo72qyvJ7QUGAKiwMvuPHOXQduUUp7dq1C++//z68vLxgMBiwYMEC3H///Q59B5YwSomIyInsifbpmB0KwLwQXh9CjNz0klOWSfQHRikREZFNAmfMQOSml6AKCzM7rgoLk1UBlCMOhxIRuYHAGTMQMH26cbZoTQ1UoaHwHT8OQj8sWHcmRikREZFdBKUSfqkTXX0bHoXDoURE5LFYBImIyGOxCBIRkcdiESQiIo/FIkhE5CZEUUL5uWv44Xglys9dgyg6bxm33PIEO9TU1CAsLAwLFizok3vg7FAiIjdQlFuNb3YUorFWbzrmp1Fj8i9iETNW6/D55ZYn2OHBBx/ErFmz0NDQ0CfXZ0+QiMjFinKrkb0l36wAAkBjrR7ZW/JRlFvt0PnlmCcIAO+99x7CwsIwZcoUO5+8dyyCREQuJIoSvtlR2GObb3cWOjQ0Ksc8wUuXLmHjxo3YsGGD9Q9qBxZBIiIXqiis7dIDvJnumh4VhbUOXUdueYLLly/H888/bxbv1Bf4TpCIyIUa63sugLa2s6RznmBwcLApT3Dbtm3Yu3evqZ0r8gQ7dM4TjI6ORk5ODpYtWwYA0Ol0aG5uxsyZM7Fv3z7rHtpK7AkSEbmQX6Daqe0skWOe4NWrV1FSUoKSkhK88MILuPPOO51eAAH2BImIXCoiVgM/jbrHIVH/YDUiYjUOXUdueYL9hXmCREROZE++Xcfs0O5kPpDolGUS/YF5gkREZJOYsVpkPpAIP435kKd/sFpWBVCOOBxKROQGYsZqMXxMqHG2aL0efoHGIVCFouuEEnfGPEEiIrKLQiEgcmRw7w3JaTgcSkREHotFkIiIPBaLIBEReSy+EyQichOiaED52TPQ1V6DvyYYkXEJUCj6PsnBk7EIEhG5gcKjh3Fg2+vQXb0xs9J/YAimLVmB2NQ0h8/f1taG9evXY/v27VAqlfD29kZ0dDSeeuopi1FK/eGpp57Cq6++isGDBwMAEhISTDvNbNu2Db///e9N6RTBwcFmG2w7C4sgEZGLFR49jE82ru9yXHf1Mj7ZuB7zVq5xuBDKMU8wIyMDu3fv7tPr850gEZELiaIBB7a93mObg++8DlE09NimJ3LNE+wPLIJERC5UfvaM2RCoJQ1XLqP87Bm7ryHHPEEA+Oqrr5CcnIz09PQ+6xGyCBIRuZCu9ppT23VHbnmCc+bMQWlpKU6dOoU333wTjzzyCI4cOWL/F9ANFkEiIhfy11i3Q4y17SzpnCcIwJQn+Pjjj5uOAa7JE/Ty8gJgnicIACEhIfD19QUAxMXFYdasWfjuu++seVybsAgSEblQZFwC/AeG9NgmYFAIIuMS7L6GHPMEy8vLTT+rqqrCgQMHMHbsWBufvHecHUpE5EIKhRLTlqywODu0w9T7Vji8XlBueYKvvPIKPv74Y3h5eUEURTzyyCOYNm2aQ9+BJcwTJCJyInvz7SytEwwYFIKp9zlnnWB/kVueIHuCRERuIDY1DTETUrljTD9jESQichMKhRJDErq+O5MTueUJcmIMERF5LBZBIiLyWCyCRETksVgEiYjIY7EI/v/t3X9U1HW+P/DnDD+GEIfBZACjJuRwg2GoQRfrYl0quUqhRPfmXA9xVs2ys21bm+05tq30xW7HNfNq3T2VdjN1T66b2rEftoJ5JSsDlRVDpFtcRDAFB1MYRmSAmfn+QUxMDDAznw985nPn+TinU35483l/PvOHr97veb/fTyKiAOF0ONHT2IHuk2b0NHbA6RBvB1tfXx9Wr16N1NRUpKenIzMzE4WFhTh58qRoffiqtLQUWq0WRqMRRqPRdZj3oMOHDyMrKwvp6elITU1FZWWl6M/A1aFERAHgWt0ldHzcCHtnr+taSHQ4NAuScZ1h9BNlvCG3KKULFy5g8eLF2L9/P9LS0tDT0+PV8Wy+4kiQiEhi1+ou4Yd3v3ErgABg7+zFD+9+g2t1wrYcyDFK6Y033kBxcTHS0tIAABEREdBoNH5+AiNjESQikpDT4UTHx42jtun4+IygqVE5RinV19fj2rVryM3NhdFoxG9+8xt0d3d7/9JeYhEkIpKQralz2Ajw5+ydNtiaOgX1I7copb6+Pnz22WfYvXs3qqur0dnZidLSUr/ffyQsgkREEnJ0jV4AfW3niRyjlHQ6HfLz8xETE4PQ0FAsWrQIx44d8/KNvcciSEQkIeXkcFHbeSLHKKWioiJUVFTAZrMBAMrKynDbbbf58faj4+pQIiIJqZKiERIdPuqUaEi0CqqkaEH9yC1KKTs7GwsWLIDRaERoaCgMBgM2bdok6DPwhFFKREQi8ifaZ3B16EiuL04TZZvERJBblBKnQ4mIJHadYSquL05DSLT7lGdItEpWBVCOOB1KRBQArjNMRYT+etiaOuHo6oVycjhUSdFQKIcvKAlkcotSYhEkIgoQCqUCEckaqR8jqHA6lIiIghaLIBERBS0WQSIiClr8TpCIKEA4HA40NzfDarUiKioKOp0OSiXHKuOJRZCIKADU19ejrKwMFovFdU2tViMvLw96vV7w/fv6+rBmzRrs3LkTISEhCA8Ph06nQ2lpqccopYlQWlqKN954A9OmTQMApKenu06aWbt2Lf7617+62p45cwaPPvooNmzYIOozcLM8EZGI/Nm8XV9f7zqNxROTySS4EBYXF8NqtWLr1q1ueYIWi2VYmC0wMXmCpaWlsFqtHvMEh+rt7cW0adNQXl6OmTNnuv2Mm+WJiGTM4XCgrKxs1DZlZWVwOBx+9yHHPMGhPvjgAyQmJg4rgGJgESQiklBzc7PbFKgnFovFFTHkDznmCQ61ZcsWLFu2zKu+fcUiSEQkIavVKmq7kcgtT3DQuXPn8OWXX3qcshUDiyARkYSGZviJ0c4TOeYJDtq6dSsKCgrGHMX6i0WQiEhCOp0OarV61DZqtRo6nc7vPuSYJwgMFOJt27aN21QowC0SRESSUiqVyMvLG3V1aF5enuD9gnLLEwSAQ4cOwel0Ys6cOYLefTTcIkFEJCJ/l+yP9z7BiSK3PEGOBImIAoBer0dqaipPjJlgLIJERAFCqVQiKSlJ6scQRG55gvxfDCIiClosgkREFLRYBImIKGixCBIRUdBiESQiChBOpx1XrlShre0jXLlSBafTPvYveamvrw+rV69Gamoq0tPTkZmZicLCQpw8eVK0PnxVWloKrVYLo9EIo9HodjRaT08PlixZgoyMDBgMBhQUFIzLghuuDiUiCgBmczm+a3gRNlub65pKFY9/SHkBWu08wfdfunQprFYrKisr3aKUTp8+7TFPcCKilADgl7/8pccopc2bN8NqtaK2thYKhQKPPfYY1q1bh3Xr1onaP0eCREQSM5vLcaru124FEABstos4VfdrmM3lgu4v1yil7u5u9PX1ob+/H1arFYmJiX5+AiNjESQikpDTacd3DS8C8HR418C17xr+XdDUqByjlB5//HGo1WpotVrExcWhs7MTTz75pPcv7SUWQSIiCXV0HB82AnTnhM3Wio6O44L6kVuU0sGDB6FQKNDW1obW1lZoNBq8+OKL/n8AI2ARJCKSkM1mFrWdJ3KMUtq0aRMefPBBREREIDw8HA8//PCIobtCsAgSEUlIpdKK2s4TOUYpTZ8+HeXl5XA6nXA6ndi3bx8MBoN/H8AouDqUiEhCGk0WVKp42GwX4fl7QQVUqnhoNFmC+pFblFJpaSmWL1+O9PR0KBQK6PV6bN68WdBn4AmjlIiIRORPtM/g6tABQ/9KHphCzDC8Lso2iYkgtyglTocSEUlMq52HDMPrUKni3K6rVPGyKoByxOlQIqIAoNXOQ2xs7o+rRc1QqbTQaLKgUIz/hnUxyS1KiUWQiChAKBQhiIm5Q+rHCCqcDiUioqDFIkhEREGLRZCIiIIWiyAREQUtFkEiogBhdzpx5EoX9l68giNXumAXcRu33PIEr169iqVLlyIjIwO33HILnnvuOYzHtnauDiUiCgCftHdgVcN5tNr6XNcSVGF4KeUG5MdqBN9fbnmCa9asAQDU1taiv78f8+fPx549e7Bw4UJR++dIkIhIYp+0d+DRurNuBRAA2mx9eLTuLD5p7xB0fznmCX799de47777oFAoEBYWhrlz5w47o1QMLIJERBKyO51Y1XB+lDRBoKThvKCpUTnmCWZlZWHXrl3o7e1FV1cX9u7di7Nnz3r9zt5iESQiklBVh3XYCHAoJ4ALtj5UdVgF9SO3PMGVK1fixhtvxKxZs1BQUIDs7GxX7JKYWASJiCRk7u0XtZ0ncswTjIiIwMaNG3Hy5ElUVFRgypQp0Ov1Xr6x91gEiYgkpA33bn2it+08kWOeoMViQXd3NwCgqakJb775Jp599lk/3n50XB1KRCShOzRRSFCFoc3WN0Ka4MAq0Ts0UR5+6j255QmeOXMGJpMJoaGhCA0NxcaNGz2uYhWKeYJERCLyJ99ucHUo4ClNEHjbcLMo2yQmAvMEiYjIJ/mxGrxtuBnxKveFHwmqMFkVQDnidCgRUQDIj9Ugb2o0qjqsMPf2Qxseijs0UQjxsKAkkDFPkIiI/BKiUGB2zGSpHyOocDqUiIiCFosgEREFLRZBIiIKWiyCREQBwu5worLxB3x48jwqG3+A3fF/O0oJAN5//31kZGQgPT0der3e7XzQl156CcnJyUhOTkZJScm49M+FMUREAaCsrhWrP65Ha+dPR5AlREfg/y3QI8+QIPj+gRilVFNTg1WrVuG///u/MW3aNFgsFoSGDpSlzz//HDt37kRtbS1CQ0Mxe/Zs3HnnnZg3b56oz8CRIBGRxMrqWvGrd0+4FUAAaOvswa/ePYGyurEPrR5NoEYp/cd//AeeffZZTJs2DQCgVqsRGRkJAHjvvfewZMkSTJo0CSqVCo888gh27twp6HPwhEWQiEhCdocTqz+uHzVKafXH9YKmRgM1Sqm+vh4tLS3IyclBZmYmSkpKXAdzt7S0QKfTudrefPPNaGlp8eGtvcMiSEQkoWNNl4eNAIdyAmjt7MGxpsuC+gnEKKW+vj78/e9/R1lZGY4cOYLKykps3rzZ4zOP1wmfLIJERBIyd40dQ+RLO08CNUpJp9PhX//1X3HdddchMjIS//Iv/4Jjx44BAG666Sa3RTLNzc246aabxn5ZH7EIEhFJSDvZu0OfvW3nSaBGKRUVFeHAgQNwOByw2+349NNPcdtttwEAFi5ciO3bt+Pq1auw2Wx45513sGjRIr8/g5FwdSgRkYRmJU1BQnQE2jp7RoxSio+OwKyk0b/PG0sgRiktWrQI1dXVSE9PR0hICP7pn/4JTz75JADg7rvvhslkck3HLlq0CHl5eYI+A08YpUREJCJ/on0GV4cCnqOU3iyeIco2iYnAKCUiIvJJniEBbxbPQHy0+1/i8dERsiqAcsTpUCKiAJBnSMA/6+NxrOkyzF090E4emAINUTJKaTyxCBIRBYgQpQL/mHy91I8RVDgdSkREQYtFkIiIghaLIBERBS0WQSIiClosgkREgcJhB5q+AE7tGfi3wz7273hJbnmCx48fR3Z2NiIjI/HQQw+NW/9cHUpEFAjqPwLKVgKWCz9dU08D8l4G9AWCby+3PMGEhAS8+uqrqKmpwaeffjpuz8CRIBGR1Oo/Anb90r0AAoCldeB6/UeCbi/HPMHExETMmjULKpVK0LuPhSNBIiIpOewDI8AREwUVQNlzQGo+oPRvZOZLnmBNTQ1SUlJgNpuh1+tRUVGBjIwM7NixAyaTCXV1dWP2N5gnuH79elRVVaGwsBCNjY3Dzg+tr6/H9OnTkZOTA4vFgvnz56O0tHTcR6BDcSRIRCSl5q+GjwDdOAHL+YF2AsgxT3AisAgSEUnJelHcdh7IMU9worAIEhFJKSpO3HYeyDFPcKLwO0EiIinpsgdWgVpa4fl7QcXAz3XZgrqRW55gY2MjcnJy0N3djZ6eHiQmJuL555/HE088Iehz+DnmCRIRicivfLvB1aEAPCYKmv4syjaJicA8QSIi8o2+YKDQqX+WG6ieJqsCKEecDiUiCgT6goFtEM1fDSyCiYobmAL1c1uEVJgnSERE/lGGAEl3Sf0UQYXToUREFLRYBImIKGixCBIRUdBiESQiChB2hx3H247jb2f+huNtx2EP4iil9957D5mZmTAYDMjIyMCf/vSncemfC2OIiALAweaDWHtsLS52/3Q8WlxkHJ6b9RxydbmC7y+3KKXExETs378f8fHx6OzsxMyZMzFjxgzMnj1b1GfgSJCISGIHmw9ixWcr3AogAJi7zVjx2QocbD4o6P5yjFKaPXs24uPjAQDR0dFITU1FU1OToM/BExZBIiIJ2R12rD22Fk4PR6YNXnv52MuCpkZ9iVIqKSlBdXU1kpOTUVxcjO3bt6O2thbLly+HyWTyqr/BKKWjR49iy5YtKCoq8nhOaX19PVpaWpCTk4PMzEyUlJS4Hcw9tF1lZSXuvfde717YByyCREQSOmE+MWwEOJQTTrR1t+GE+YSgfuQapfT999/jgQcewKZNm1wjRjGxCBIRSai9u13Udp7INUrpwoULyM3NxapVq7Bw4ULvXtZHLIJERBKKjYwVtZ0ncoxSam1txZw5c7By5UosXrzY73cfC1eHEhFJaIZ2BuIi42DuNnv8XlABBeIi4zBDO0NQP3KLUnrhhRfQ0tKC1157Da+99hoA4Omnn8bSpUsFfQ4/xyglIiIR+RPtM7g6FIBbIVT8GKW04e4NomyTmAiMUiIiIp/k6nKx4e4N0EZq3a7HRcbJqgDKEadDiYgCQK4uF/fceA9OmE+gvbsdsZGxmKGdgRBGKY0rFkEiogARogxBVnyW1I8RVDgdSkREQYtFkIiIghaLIBERBS0WQSIiClosgkREAcJpt+Pq0WPo3PcJrh49BqeHw6T9Jbc8wb179+LWW2+F0WhEeno6/vCHP2A8trVzdSgRUQCwHDiAi2v+iP62Nte10Ph4xD3/e6jnzhV8f7nlCebm5uKBBx6AUqlEb28v7rzzTtx+++0oKCgQ9Rk4EiQikpjlwAGcf/q3bgUQAPovXsT5p38Ly4EDgu4vxzzByZMnQ6kcKFE9PT2w2WyuP4uJRZCISEJOux0X1/wR8DTV9+O1i2v+KGhqVK55gl999RVuvfVWaLVazJkzB/n5+b69uBdYBImIJNRd/fdhI0A3Tif629rQXf13Qf3IMU8wOzsbtbW1OHfuHI4fP44vvvjCv5cfBYsgEZGE+tu9ywn0tp0ncs0THBQbG4v8/Hzs3r17zH58xSJIRCSh0FjvcgK9beeJHPMEv/32WzgcDgBAV1cX9u3b5/EeQnF1KBGRhCJ/MROh8fHov3jR8/eCCgVC4+IQ+YuZgvqRW57g7t278Ze//AVhYWGw2+146KGH8Oijjwr6DDxhniARkYj8ybcbXB0KwL0Q/jiFeMNrr4qyTWIiME+QiIh8op47Fze89ipC4+LcrofGxcmqAMoRp0OJiAKAeu5cTJ4zZ2C1aHs7QmNjEfmLmVCM84Z1sTFPkIiI/KIICcGk22dJ/RhBhdOhREQUtFgEiYgoaLEIEhFR0OJ3gkREAcLhcKK1oQNXLTZMUquQkKKBUjn8pBUSD4sgEVEAaKwx44v3GnC1w+a6Nkmjwl3/loLkTK3g+/f19WHNmjXYuXMnQkJCEB4eDp1Oh9LSUo9RShPl/fffR2lpKRwOB5xOJ/72t7+5EikAoL29HQaDAXfddRf27Nkjev8sgkREEmusMaNsc92w61c7bCjbXIe8xw2CC6Hc8gQHPfHEE7j//vvR1dU1Ls/A7wSJiCTkcDjxxXsNo7b5clcDHA7/D/eSY54gAOzYsQNxcXHIycnx+93HwpEgEZGEWhs63KZAPbFesaG1oQM33BIzaruR+JInWFNTg5SUFJjNZuj1elRUVCAjIwM7duyAyWRCXd3wEevPDeYJrl+/HlVVVSgsLERjY+Ow80Pr6+sxffp05OTkwGKxYP78+SgtLUVISAguXLiADRs24PDhw+MyDTqII0EiIgldtYxeAH1tNxK55Qk+9thjWLdunVu803hgESQiktAktUrUdp7IMU+wsrISy5Ytw80334zf/e532L9/P+bNm+f9S3uJRZCISEIJKRpM0oxe4KJiBrZL+EuOeYKXL1/G2bNncfbsWaxfvx733XcfysvL/f4MRsLvBImIJKRUKnDXv6V4XB066E5TiuD9gnLLE5wozBMkIhKRv/l2nvYJRsWocKdJnH2CE0VueYIcCRIRBYDkTC2SbovliTETjEWQiChAKJUKv7dBBAq55QlyYQwREQUtFkEiIgpaLIJERBS0WASJiChosQgSEQUIh8OOc6dr8c2Rwzh3uhYOh33sX/JSX18fVq9ejdTUVKSnpyMzMxOFhYU4efKkaH344/3330dGRgbS09Oh1+tx9uxZAAP7GjUaDYxGI4xGI+65555x6Z+rQ4mIAkDD0a9waNtbsF7+aWVl1JSpuHfJcqTcni34/nKMUsrNzR3Xw7MBjgSJiCTXcPQrfLRhjVsBBADr5Uv4aMMaNBz9Stj9ZRqlNBFYBImIJORw2HFo21ujtqnY/pagqVFfopRKSkpQXV2N5ORkFBcXY/v27aitrcXy5cthMpm86m8wSuno0aPYsmULioqKPJ5TWl9fj5aWFuTk5CAzMxMlJSVuB3MfPnwYRqMRs2fPHrcRIYsgEZGEzn9zetgI8Oe6friE89+cFtSP3KKU5s+fj+bmZpw8eRJvv/02nnnmGVRVVfn/AYyARZCISELWjitjN/KhnSdyjFKaOnWqa2o0LS0N999/P44cOeLlG3uPRZCISEJRGu+OSfO2nSdyjFI6f/68q93Fixdx6NAhZGZm+vcBjIKrQ4mIJHRDWjqipkwddUp08vVTcUNauqB+5Bal9Prrr+PDDz9EWFgYHA4HnnnmGdx7772CPgNPGKVERCQif6J9BleHjqRgxfOibJOYCHKLUuJ0KBGRxFJuz0bBiucRNWWq2/XJ10+VVQGUI06HEhEFgJTbs5GcdfvAatGOK4jSxOCGtHQoleO7YV1scotSYhEkIgoQSmUIbkwfvoCExg+nQ4mIKGixCBIRUdBiESQioqDF7wSJiAKE0+GErakTjq5eKCeHQ5UUDYVy+EkrJB6OBImIAsC1uktoe/kYLv3XKVz+67e49F+n0PbyMVyrE2elpdzyBIGBA7SzsrKQnp6O1NRUVFZWit4/R4JERBK7VncJP7z7zbDr9s5e/PDuN7i+OA3XGaZ6+E3vyS1P8MKFC1i8eDH279+PtLQ09PT0eHVGqa84EiQikpDT4UTHx42jtun4+AycDv8P95JjnuAbb7yB4uJipKWlAQAiIiKg0Wj8/gxGwiJIRCQhW1Mn7J29o7axd9pga+r0uw855gnW19fj2rVryM3NhdFoxG9+8xt0d3f7/vJjYBEkIpKQo2v0Auhru5HILU+wr68Pn332GXbv3o3q6mp0dnaitLTU7/cfCYsgEZGElJPDRW3niRzzBHU6HfLz8xETE4PQ0FAsWrTI9TMxsQgSEUlIlRSNkOjRC1xItAqqpGi/+5BjnmBRUREqKipgs9kAAGVlZa6fiYmrQ4mIJKRQKqBZkOxxdeggzYLpgvcLyi1PMDs7GwsWLIDRaERoaCgMBgM2bdok6DPwhHmCREQi8jff7lrdJXR83Oi2SCYkWgXNgumCt0dMJLnlCXIkSEQUAK4zTEWE/nqeGDPBWASJiAKEQqlARLJG6scQRG55glwYQ0REQYtFkIiIghaLIBERBS0WQSIiClosgkREAcLhcKCpqQmnTp1CU1MTHA6HaPeWW5TS2rVrYTQaXf+o1WqsWLFC9P65T5CISET+7lurr69HWVkZLBaL65parUZeXh70er3g5youLobVasXWrVvdopQsFosrSWKoiYpSKioqGhalNJgkMai3txfTpk1DeXk5Zs6c6fYzofsEORIkIpJYfX09du3a5VYAAcBisWDXrl2uCCN/yTFKaagPPvgAiYmJwwqgGLhPkIhIQg6HA2VlZaO2KSsrQ2pqKpRK/8YtvkQp1dTUICUlBWazGXq9HhUVFcjIyMCOHTtgMplQV1c3Zn+DUUrr169HVVUVCgsL0djYOOzotPr6ekyfPh05OTmwWCyYP38+SktLh41At2zZgmXLlvn+4l7gSJCISELNzc3DRoA/Z7FY0NzcLKgfuUUpDTp37hy+/PJLj1O2YmARJCKSkNVqFbWdJ3KMUhq0detWFBQUjDmK9ReLIBGRhIYWHjHaeSLHKCVgoBBv27Zt3KZCAX4nSEQkKZ1OB7VaPeqUqFqthk6nE9SP3KKUAODQoUNwOp2YM2eOoHcfDbdIEBGJyJ8l+4OrQ0diMplE2SYxEeQWpcTpUCIiien1ephMJqjVarfrarVaVgVQjjgdSkQUAPR6PVJTU9Hc3Ayr1YqoqCjodDq/t0VIRW5RSiyCREQBQqlUIikpSerHCCry+l8MIiIiEbEIEhFR0GIRJCKioMUiSEREQYtFkIgoQDiddly5UoW2to9w5UoVnE772L/kJbnlCfb09GDJkiXIyMiAwWBAQUHBuKw65epQIqIAYDaX47uGF2GztbmuqVTx+IeUF6DVzhN8/6VLl8JqtaKystItT/D06dMwGo3D2k9UnuCqVauG5QkCwObNm2G1WlFbWwuFQoHHHnsM69atw7p160R9Bo4EiYgkZjaX41Tdr90KIADYbBdxqu7XMJvLBd1frnmC3d3d6OvrQ39/P6xWKxITEwV9Dp6wCBIRScjptOO7hhcBeDrBcuDadw3/Lmhq1Jc8wZKSElRXVyM5ORnFxcXYvn07amtrsXz5cphMJq/6G8wTPHr0KLZs2YKioiKPh3XX19ejpaUFOTk5yMzMRElJiSud4vHHH4darYZWq0VcXBw6OzvdzhUVC4sgEZGEOjqODxsBunPCZmtFR8dxQf3ILU/w4MGDUCgUaGtrQ2trKzQaDV588UX/P4ARsAgSEUnIZjOL2s4TOeYJbtq0CQ8++CAiIiIQHh6Ohx9+GBUVFd6/tJdYBImIJKRSaUVt54kc8wSnT5+O8vJyOJ1OOJ1O7Nu3DwaDwe/PYCRcHUpEJCGNJgsqVTxstovw/L2gAipVPDSaLEH9yC1PsLS0FMuXL0d6ejoUCgX0er1rqlRMzBMkIhKRP/l2g6tDBwz9K3lgCjHD8Loo2yQmAvMEiYjIJ1rtPGQYXodKFed2XaWKl1UBlCNOhxIRBQCtdh5iY3N/XC1qhkqlhUaTBYVifDesi415gkRE5BeFIgQxMXdI/RhBhdOhREQUtFgEiYgoaLEIEhFR0GIRJCIKEHanE0eudGHvxSs4cqULdhF3sMktSunq1atYunQpMjIycMstt+C5557DeOzo48IYIqIA8El7B1Y1nEerrc91LUEVhpdSbkB+rEbw/eUWpbRmzRoAQG1tLfr7+zF//nzs2bMHCxcuFPUZOBIkIpLYJ+0deLTurFsBBIA2Wx8erTuLT9o7BN1fjlFKX3/9Ne677z4oFAqEhYVh7ty5w45nEwOLIBGRhOxOJ1Y1nB8lSAkoaTgvaGpUjlFKWVlZ2LVrF3p7e9HV1YW9e/e6pkrFxCJIRCShqg7rsBHgUE4AF2x9qOqwCupHblFKK1euxI033ohZs2ahoKAA2dnZCAsL8/8DGAGLIBGRhMy9/aK280SOUUoRERHYuHEjTp48iYqKCkyZMgV6vd77l/YSiyARkYS04d6tT/S2nSdyjFKyWCzo7u4GADQ1NeHNN9/Es88+6/dnMBKuDiUiktAdmigkqMLQZusbIUhpYJXoHZooDz/1ntyilM6cOQOTyYTQ0FCEhoZi48aNHlexCsUoJSIiEfkT7TO4OhTwFKQEvG24WZRtEhOBUUpEROST/FgN3jbcjHiV+8KPBFWYrAqgHHE6lIgoAOTHapA3NRpVHVaYe/uhDQ/FHZoohHhYUBLIGKVERER+CVEoMDtmstSPEVQ4HUpEREGLRZCIiIIWiyAREQUtFkEiIgpaLIJERAHC7nCisvEHfHjyPCobf4Dd8X87T/Cpp56C0Wh0/RMREYH//M//dP38pZdeQnJyMpKTk1FSUjIuz8DVoUREAaCsrhWrP65Ha+dP53AmREfg/y3QI8+QIPj+gZgnOLTgtbW1ISkpyZVU8fnnn2Pnzp2ora1FaGgoZs+ejTvvvBPz5s0T9Rk4EiQiklhZXSt+9e4JtwIIAG2dPfjVuydQVjd2csNoAjVPcKg///nPmDdvHuLj4wEA7733HpYsWYJJkyZBpVLhkUcewc6dOwV9Dp6wCBIRScjucGL1x/Wj5gmu/rhe0NRooOYJDvXOO+9g2bJlrj+3tLRAp9O5/nzzzTejpaXFq/59wSJIRCShY02Xh40Ah3ICaO3swbGmy4L6CcQ8wUFHjhyBxWLB/fffP+Izj9cx1yyCREQSMneNncXnSztPAjVPcNCWLVuwePFit+8gb7rpJrck+ebmZtx0001j9uMrFkEiIglpJ3uXfOBtO08CNU8QAKxWK/bs2YNHHnnE7frChQuxfft2XL16FTabDe+88w4WLVrk87uPhatDiYgkNCtpChKiI9DW2TNinmB8dARmJY3+fd5YAjFPEBhYAJOZmemahh109913w2QyuaZjFy1ahLy8PEGfgSfMEyQiEpE/+XaDq0MBz3mCbxbPEGWbxERgniAREfkkz5CAN4tnID7a/S/x+OgIWRVAOeJ0KBFRAMgzJOCf9fE41nQZ5q4eaCcPTIGGKJknOJ5YBImIAkSIUoF/TL5e6scIKpwOJSKioMUiSEREQYtFkIiIghaLIBFRoHDYgaYvgFN7Bv7tsI/9O16SW5TS8ePHkZ2djcjISDz00EPj9gxcGENEFAjqPwLKVgKWCz9dU08D8l4G9AWCby+3KKWEhAS8+uqrqKmpwaeffjpuz8CRIBGR1Oo/Anb90r0AAoCldeB6/UeCbi/HKKXExETMmjULKpVK0LuPhSNBIiIpOewDI8ARw5QUQNlzQGo+oPRvZOZLlFJNTQ1SUlJgNpuh1+tRUVGBjIwM7NixAyaTCXV1dWP2NxiltH79elRVVaGwsBCNjY0jHp0GDEQpvfLKKz6/m1AcCRIRSan5q+EjQDdOwHJ+oJ0AcoxSmggsgkREUrJeFLedB3KMUpooLIJERFKKihO3nQdyjFKaKPxOkIhISrrsgVWgllZ4/l5QMfBzXbagbuQWpdTY2IicnBx0d3ejp6cHiYmJeP755/HEE08I+hx+jlFKREQi8ivaZ3B1KACPYUqmP4uyTWIiMEqJiIh8oy8YKHTqn0UmqafJqgDKEadDiYgCgb5gYBtE81cDi2Ci4gamQP3cFiEVRikREZF/lCFA0l1SP0VQ4XQoEREFLRZBIiIKWiyCREQUtFgEiYgoaLEIEhEFCLvDjuNtx/G3M3/D8bbjsAdxnuDgJnqDwYCMjAz86U9/Gpdn4OpQIqIAcLD5INYeW4uL3T+dERoXGYfnZj2HXF2u4PvLLU8wMTER+/fvR3x8PDo7OzFz5kzMmDEDs2fPFvUZOBIkIpLYweaDWPHZCrcCCADmbjNWfLYCB5sPCrq/HPMEZ8+e7frv6OhopKamoqmpSdDn4AlHgkREErI77Fh7bC2cHs4NdcIJBRR4+djLuOfGexASpHmC9fX1qKysxFtvvTVm377iSJCISEInzCeGjQCHcsKJtu42nDCfENSPXPMEv//+ezzwwAPYtGkTpk2b5t3L+oBFkIhIQu3d7aK280SueYIXLlxAbm4uVq1ahYULF47Zhz9YBImIJBQbGStqO0/kmCfY2tqKOXPmYOXKlVi8eLHP7+wtfidIRCShGdoZiIuMg7nb7PF7QQUUiIuMwwztDEH9yC1P8IUXXkBLSwtee+01vPbaawCAp59+GkuXLhX0Ofwc8wSJiETkT77d4OpQAG6FUPFjnuCGuzeIsk1iIjBPkIiIfJKry8WGuzdAG6l1ux4XGSerAihHnA4lIgoAubpc3HPjPThhPoH27nbERsZihnaG39sipMI8QSIi8kuIMgRZ8VlSP0ZQ4XQoEREFLRZBIiIKWiyCREQUtPidIBFRgHDa7eiu/jv629sRGhuLyF/MhGKckxyCHUeCREQBwHLgAP53Ti5aFi/Ghd/9Di2LF+N/5+TCcuCAKPeXW57g3r17ceutt8JoNCI9PR1/+MMfMB7b2rlZnohIRP5s3rYcOIDzT/8W+Plfxz+et3nDa69CPXeuoOcqLi6G1WrF1q1b3fIELRaLK05pqInIExxqME+wqakJ8fHx6OrqwqRJk6BUKtHb24s777wTq1atQkFBgdvvcbM8EZGMOe12XFzzx+EFEHBdu7jmj3Da/U+Zl2Oe4OTJk6FUDpSonp4e2Gw215/FxCJIRCSh7uq/o7+tbeQGTif629rQXf13v/vwJU+wpKQE1dXVSE5ORnFxMbZv347a2losX77clfo+lsE8waNHj2LLli0oKioa9bBuYCBPcNmyZW7XvvrqK9x6663QarWYM2cO8vPzverfFyyCREQS6m/3LiLJ23YjkWOeYHZ2Nmpra3Hu3DkcP34cX3zxhfcv7CUWQSIiCYXGeheR5G07T+SaJzgoNjYW+fn52L1795j9+IpFkIhIQpG/mInQ+HjXIphhFAqExscj8hcz/e5DjnmC3377LRwOBwCgq6sL+/btG/EeQnCfIBGRhBQhIYh7/vcDq0MVCvcFMj8Wxrjnfy94v6Dc8gR3796Nv/zlLwgLC4PdbsdDDz2ERx99VNBn4Am3SBARicjfJfuWAwdwcc0f3RbJhMbHI+753wveHjGR5JYnyJEgEVEAUM+di8lz5vDEmAnGIkhEFCAUISGYdPssqR9DELnlCXJhDBERBS0WQSIiClosgkREFLRYBImIKGixCBIRBQiHw4nz317Bd8fbcP7bK3A4xNvBJrcopUHt7e2Ii4vDQw89NC7PwNWhREQBoLHGjC/ea8DVDpvr2iSNCnf9WwqSM7WC77906VJYrVZUVla6RSmdPn0aRqNxWPuJiFIaWvAGo5R+fkj3E088gfvvvx9dXV3j8gwcCRIRSayxxoyyzXVuBRAArnbYULa5Do01ZkH3l2OUEgDs2LEDcXFxyMnJEfT+o+FIkIhIQg6HE1+81zBqmy93NSDptlgolSMfQj0aX6KUampqkJKSArPZDL1ej4qKCmRkZGDHjh0wmUyoq6sbs7/BKKX169ejqqoKhYWFaGxsHPHoNGAgSumVV15x/fnChQvYsGEDDh8+jD179nj/sj7iSJCISEKtDR3DRoA/Z71iQ2tDh6B+5Bal9Nhjj2HdunVuyRbjgSNBIiIJXbWMXgB9befJ0CilmJgYV5TStm3bsG/fPle7QIpSqqysdIXsWq1WXLt2DfPmzUN5efmYffmCI0EiIglNUqtEbeeJHKOULl++jLNnz+Ls2bNYv3497rvvPtELIMCRIBGRpBJSNJikUY06JRoVo0JCikZQP3KLUpoojFIiIhKRP9E+g6tDR5L3uEGUbRITQW5RSpwOJSKSWHKmFnmPGzBJ4z7lGRWjklUBlCNOhxIRBYDkTC2SbosdWC1qsWGSemAK1N9tEVKRW5QSiyARUYBQKhW44ZaYsRuSaDgdSkREQYtFkIiIghaLIBERBS1+J0hEFCAcDjvOf3Ma1o4riNLE4Ia0dCiV45vkEOxYBImIAkDD0a9waNtbsF7+aWVl1JSpuHfJcqTcni34/n19fVizZg127tyJkJAQhIeHQ6fTobS01GOU0kR46qmn8Pnnn7v+/D//8z9Yt24dnnrqKWzbtg2//e1vXekUMTExqKioEP0ZWASJiCTWcPQrfLRhzbDr1suX8NGGNShY8bzgQijHPMHc3NxxTZAA+J0gEZGkHA47Dm17a9Q2FdvfgsNhH7XNaOSaJzgRWASJiCR0/pvTblOgnnT9cAnnvzntdx++5AmWlJSguroaycnJKC4uxvbt21FbW4vly5cPS30fyWCe4NGjR7FlyxYUFRWNelg3MJAnOJgaMejw4cMwGo2YPXv2uI0IWQSJiCRk7bgiaruRyC1PcP78+WhubsbJkyfx9ttv45lnnkFVVZVvL+0FFkEiIglFabw7Icbbdp4MzRME4MoT/P3vf++6BgRWnuDUqVMRGRkJAEhLS8P999+PI0eOjNmPr1gEiYgkdENaOqKmTB21zeTrp+KGtHS/+5BjnuD58+dd/33x4kUcOnQImZmZ3r+0l7g6lIhIQkplCO5dstzj6tBB9yxeLni/oNzyBF9//XV8+OGHCAsLg8PhwDPPPIN7771X0GfgCfMEiYhE5G++nad9gpOvn4p7FouzT3CiyC1PkCNBIqIAkHJ7NpKzbueJMROMRZCIKEAolSG4Md3zd2dyIbc8QS6MISKioMUiSEREQYtFkIiIghaLIBERBS0WQSKiAOF0ONHT2IHuk2b0NHbA6RBvB1tfXx9Wr16N1NRUpKenIzMzE4WFhTh58qRoffjqqaeegtFodP0TERHhlixx+PBhZGVlIT09HampqaisrBT9Gbg6lIgoAFyru4SOjxth7+x1XQuJDodmQTKuM4x+oow35BaldOHCBSxevBj79+9HWloaenp6vDqezVccCRIRSexa3SX88O43bgUQAOydvfjh3W9wrU7YlgM5Rim98cYbKC4uRlpaGgAgIiICGo1G0OfgCUeCREQScjqc6Pi4cdQ2HR+fQYT+eiiUIx9CPRpfopRqamqQkpICs9kMvV6PiooKZGRkYMeOHTCZTKirqxuzv8EopfXr16OqqgqFhYVobGwc8eg0YCBK6ZVXXnH9ub6+HklJScjNzcWlS5dw11134eWXX3Ydqi0WjgSJiCRka+ocNgL8OXunDbamTkH9yC1Kqa+vD5999hl2796N6upqdHZ2orS01Kd39gaLIBGRhBxdoxdAX9t5IscoJZ1Oh/z8fMTExCA0NBSLFi3CsWPHxuzHVyyCREQSUk4OF7WdJ3KMUioqKkJFRQVsNhsAoKysDLfddptvL+4FfidIRCQhVVI0QqLDR50SDYlWQZUULagfuUUpZWdnY8GCBTAajQgNDYXBYMCmTZsEfQaeMEqJiEhE/kT7DK4OHcn1xWmibJOYCHKLUuJ0KBGRxK4zTMX1xWkIiXaf8gyJVsmqAMoRp0OJiALAdYapiNBfD1tTJxxdvVBODocqKdrvbRFSkVuUEosgEVGAUCgViEjWSP0YQYXToUREFLRYBImIKGixCBIRUdBiESQioqDFIkhEFCAcDgeamppw6tQpNDU1weFwiHZvueUJrl271u1narUaK1asEP0ZuFmeiEhE/m7erq+vR1lZGSwWi+uaWq1GXl4e9Hq94OcqLi6G1WrF1q1b3fIELRaLK05pqInIExxqME+wqanJFac0qLe3F9OmTUN5eTlmzpzp9jNulicikrn6+nrs2rXLrQACgMViwa5du1w5fv6SY57gUB988AESExOHFUAxcJ8gEZGEHA4HysrKRm1TVlaG1NRUKJX+jVvkmCc41JYtW7Bs2bIx+/UHR4JERBJqbm4eNgL8OYvFgubmZkH9yC1PcNC5c+fw5ZdfepyyFQOLIBGRhKxWq6jtPJFjnuCgrVu3oqCgYMxRrL9YBImIJDS08IjRzhM55gkCA4V427Zt4zYVCvA7QSIiSel0OqjV6lGnRNVqNXQ6naB+5JYnCACHDh2C0+nEnDlzBL37aLhFgohIRP4s2R9cHToSk8kkyjaJicA8QSIi8oler4fJZIJarXa7rlarZVUA5YjToUREAUCv1yM1NRXNzc2wWq2IioqCTqfze1uEVJgnSEREflEqlUhKSpL6MYKKvP4Xg4iISEQsgkREFLRYBImIKGixCBIRBQin044rV6rQ1vYRrlypgtNpH/uXvCS3KKWenh4sWbIEGRkZMBgMKCgoGJcFN1wYQ0QUAMzmcnzX8CJstjbXNZUqHv+Q8gK02nmC77906VJYrVZUVla6RSmdPn0aRqNxWPuJiFIaLHjAT1FKJpMJALB582ZYrVbU1tZCoVDgsccew7p167Bu3TpRn4EjQSIiiZnN5ThV92u3AggANttFnKr7NczmckH3l2uUUnd3N/r6+tDf3w+r1YrExERBn4MnLIJERBJyOu34ruFFAJ4O7xq49l3DvwuaGvUlSqmkpATV1dVITk5GcXExtm/fjtraWixfvtw1ShvLYJTS0aNHsWXLFhQVFY16TikwEKU09IzQxx9/HGq1GlqtFnFxcejs7MSTTz7pVf++YBEkIpJQR8fxYSNAd07YbK3o6DguqB+5RSkdPHgQCoUCbW1taG1thUajwYsvvujbS3uBRZCISEI2m1nUdp7IMUpp06ZNePDBBxEREYHw8HA8/PDDqKioGLMfX7EIEhFJSKXSitrOEzlGKU2fPh3l5eVwOp1wOp3Yt28fDAaDz+8+Fq4OJSKSkEaTBZUqHjbbRXj+XlABlSoeGk2WoH7kFqVUWlqK5cuXIz09HQqFAnq9Hps3bxb0GXjCKCUiIhH5E+0zuDp0wNC/kgemEDMMr4uyTWIiMEqJiIh8otXOQ4bhdahUcW7XVap4WRVAOeJ0KBFRANBq5yE2NvfH1aJmqFRaaDRZUCjGd8O62BilREREflEoQhATc4fUjxFUOB1KRERBi0WQiIiCFosgEREFLRZBIiIKWiyCREQBwu504siVLuy9eAVHrnTBLuI2brnlCV69ehVLly5FRkYGbrnlFjz33HMYj23tXB1KRBQAPmnvwKqG82i19bmuJajC8FLKDciP1Qi+v9zyBNesWQMAqK2tRX9/P+bPn489e/Zg4cKFoj4DR4JERBL7pL0Dj9addSuAANBm68OjdWfxSXuHoPvLMU/w66+/xn333QeFQoGwsDDMnTt32BmlYuBIkIhIQnanE6sazo+YJqgAUNJwHnlToxEyShLDaHzJE6ypqUFKSgrMZjP0ej0qKiqQkZGBHTt2wGQyoa6ubsz+BvME169fj6qqKhQWFqKxsXHE80OBgTzBV155xfXnrKws7Nq1C4WFhbDZbNi7dy8sFov3L+0ljgSJiCRU1WEdNgIcygnggq0PVR1WQf3ILU9w5cqVuPHGGzFr1iwUFBQgOzsbYWFhvr20F1gEiYgkZO7tF7WdJ3LME4yIiMDGjRtx8uRJVFRUYMqUKdDr9WP24ysWQSIiCWnDvftWytt2nsgxT9BisaC7uxsA0NTUhDfffBPPPvusby/uBX4nSEQkoTs0UUhQhaHN1jdCmuDAKtE7NFEefuo9ueUJnjlzBiaTCaGhoQgNDcXGjRs9rmIVinmCREQi8iffbnB1KOApTRB423CzKNskJgLzBImIyCf5sRq8bbgZ8Sr3hR8JqjBZFUA54nQoEVEAyI/VIG9qNKo6rDD39kMbHoo7NFF+b4uQCvMEiYjILyEKBWbHTJb6MYIKp0OJiMYBl1tMDIfDIej3ORIkIhJRWFgYFAoF2tvbERsbO+r+OPKf0+lEb28v2tvboVQqER4e7td9uDqUiEhkVqsV33//PUeDEyAyMhIJCQksgkREgcRut6Ovb+Tj0Ei4kJAQhIaGChptswgSEVHQ4sIYIiIKWiyCREQUtFgEiYgoaLEIEhFR0GIRJCKioMUiSEREQYtFkIiIgtb/B4RFGY4AoxtiAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -34,38 +39,22 @@
"metadata": {},
"output_type": "display_data"
},
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
{
"name": "stdout",
"output_type": "stream",
"text": [
- "(16000,)\n",
- "[[-0.25317189]\n",
- " [-0.25317189]\n",
- " [-0.25317189]\n",
- " ...\n",
- " [-0.14649218]\n",
- " [-0.14649218]\n",
- " [-0.14649218]]\n"
+ "(80000,)\n"
]
}
],
"source": [
"########################### Experiment Settings ###############################\n",
"random_state = 29\n",
- "working_dir = '/home/guus/tmp/' # Specify a working directory to save data and results.\n",
+ "working_dir = '/Users/stijndeboer/temp/' # Specify a working directory to save data and results.\n",
"simulation_method = 'linear'\n",
"n_features = 1 # The number of input features of X\n",
- "n_grps = 8 # Number of batches in data\n",
- "n_samples = 2000 # Number of samples in each group (use a list for different\n",
+ "n_grps = 80 # Number of batches in data\n",
+ "n_samples = 1000 # Number of samples in each group (use a list for different\n",
"# sample numbers across different batches)\n",
"model_type = 'bspline' # modelto try 'linear, ''polynomial', 'bspline'\n",
"############################## Data Simulation ################################\n",
@@ -73,129 +62,32 @@
" simulate_data(simulation_method, n_samples, n_features, n_grps,\n",
" working_dir=working_dir, plot=True, noise='heteroscedastic_nongaussian',\n",
" random_state=random_state)\n",
- "plt.tight_layout()\n",
- "plt.show()\n",
+ "# plt.tight_layout()\n",
+ "# plt.show()\n",
"print(Y_train.shape)\n",
"\n",
- "random_group_offsets = np.random.normal(0, 1, n_grps)\n",
- "print(random_group_offsets[grp_id_train])\n",
- "Y_train += np.squeeze(np.array(random_group_offsets[grp_id_train]))\n",
- "Y_test += np.squeeze(np.array(random_group_offsets[grp_id_test]))\n"
+ "# random_group_offsets = np.random.normal(0, 1, n_grps)\n",
+ "# print(random_group_offsets[grp_id_train])s\n",
+ "# Y_train += np.squeeze(np.array(random_group_offsets[grp_id_train]))\n",
+ "# Y_test += np.squeeze(np.array(random_group_offsets[grp_id_test]))\n",
+ "s"
]
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"nm = norm_init(X_train, Y_train, alg='hbr', model_type=model_type, likelihood='SHASHb',\n",
- " random_intercept_mu='True', random_slope_mu='False', linear_sigma='True', linear_delta='True',linear_epsilon='True', nuts_sampler='nutpie')"
+ " random_intercept_mu='True', random_slope_mu='False', linear_sigma='True', linear_delta='False',linear_epsilon='False', nuts_sampler='nutpie')"
]
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 4,
"metadata": {},
"outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
{
"data": {
"text/html": [
@@ -203,21 +95,21 @@
"\n",
"
Sampler Progress
\n",
"
Total Chains: 1
\n",
- "
Active Chains: 1
\n",
+ "
Active Chains: 0
\n",
"
\n",
" Finished Chains:\n",
- " 0\n",
+ " 1\n",
"
\n",
- "
Sampling for 2 minutes
\n",
+ "
Sampling for an hour
\n",
"
\n",
" Estimated Time to Completion:\n",
- " an hour\n",
+ " now\n",
"
\n",
"\n",
"
\n",
"
\n",
" \n",
@@ -235,13 +127,13 @@
" \n",
" \n",
" | \n",
- " 58 | \n",
+ " 1500 | \n",
" 0 | \n",
- " 0.00 | \n",
- " 3 | \n",
+ " 0.02 | \n",
+ " 511 | \n",
" \n",
" \n",
" \n",
@@ -250,7 +142,7 @@
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -259,10 +151,10 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 50,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -274,7 +166,7 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
@@ -286,14 +178,10 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5367d8f840af4551bd83b9c02e9b05d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Output()"
- ]
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
},
"metadata": {},
"output_type": "display_data"
@@ -301,9 +189,12 @@
{
"data": {
"text/html": [
- "\n"
+ "\n",
+ "
\n"
],
- "text/plain": []
+ "text/plain": [
+ "\n"
+ ]
},
"metadata": {},
"output_type": "display_data"
@@ -315,7 +206,7 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
@@ -327,18 +218,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ecd32eb3521a473cba91608f3f0d2398",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -349,6 +256,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -358,18 +278,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2d85af8e3b1a4c46b6be990b16991288",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -380,6 +316,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -389,18 +338,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "611ab6569ff040328353ffbd973f7e0e",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -411,6 +376,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -420,18 +398,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "60eee6c3c6ff4f6ea2a272f59cbc4eca",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -442,6 +436,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -451,18 +458,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "43eac13b81734f20bf91b8c9a700066b",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -473,6 +496,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -482,18 +518,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d0fbb98d97764f1bbde9823805438275",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -504,6 +556,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -513,18 +578,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "58059d001e0e4555b975382dcbb7a98c",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -535,6 +616,19 @@
"metadata": {},
"output_type": "display_data"
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"name": "stderr",
"output_type": "stream",
@@ -544,18 +638,34 @@
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1fa65f3f89f942658491d560d2569198",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
"text/plain": [
- "Output()"
+ "\n"
]
},
"metadata": {},
"output_type": "display_data"
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -568,7 +678,1940 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEiCAYAAACPwherAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBxElEQVR4nOzdd3wc1bn4/8/MbF/1bluyJMtV7h2wDaabbopNQi+hJKEkJNwACZfwvTchjfxSySWFQAIEkwSSEMChmG7jgpvkKqv3Lq20fWfO74+VZAlJtmR16bz90svaaefMSppn58w551GEEAJJkiRJGqfUka6AJEmSJA0lGegkSZKkcU0GOkmSJGlck4FOkiRJGtdkoJMkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6KRx5Tvf+Q5r167t8/bf/e53Wb169SmvH6hbbrmFG264oeN1RkYGv//974esPEmaiGSgk4bV2rVrURSFZ555pstyt9tNZGQkiqJQVFQ0MpUbBXbu3Mn1118/rGUqitLt66GHHhqUY6empvLss88OyrFOxdGjR1m7di12u53MzMxuv3fSxGAa6QpIE09qaip//vOfue222zqWvfLKK8TExNDa2jqCNRt5iYmJI1Luyy+/zJo1azpeR0REjEg9emIYBoZhYDL173IVDAa55JJLWLRoETt37mT79u3cddddpKenc+655w5RbaXRSN7RScPuqquuYufOnZSUlHQs+9Of/tSlCa/z8unTp2O1Wpk/fz5vvvlml/V//etfSU9Px+l0ctNNN+Hz+bqs13WdRx99lNTUVCIjI1m7di379+/vd51//OMfk5SURGxsLI888gjtc6ELIXj44YeZMmUKNpuNadOm8fTTTwNQVFSEoii8/PLLLFq0CJvNxjnnnENpaWmv5XRuumzf/x//+AcrVqzA6XSydu3aLu8bwC9+8QumTZuGw+Fg+fLlvP/++/0+v9jYWFJSUjq+2gPd7t27O+6IMjIyeOyxxwiFQh37fe1rX+soe+7cuWzatKlj3dq1aykvL+fWW29FUZSOJuW1a9fyne9856Tn/de//pXly5djs9nIycnp98/yzTffpLS0lGeeeYZ58+Zx++2388UvfpFf/vKX/X5/pLFNBjpp2EVGRnL55Zfz/PPPA1BeXs62bdvYsGFDl+22bt3Kbbfdxn333cf+/fu58sorWb9+fUfTZn5+Ptdddx1f+tKX2L17NzNmzOgIMu0ef/xx3njjDf7yl7+wZ88eVq1axfnnn4/L5epzffft28e2bdt47733+N3vfsevfvUrnnvuOSAcaF988UVefvlljhw5wh/+8AeSk5O77P/tb3+bH/3oR2zfvp1QKMSNN97Yr/fru9/9Lj/84Q/ZsWMHHo+Hr3/96x3rnnnmGX7+85/z1FNPkZuby0033cTFF188KM2/9fX1nH/++Vx88cXk5OTw7LPP8uKLL/Lkk092bBMfH89LL71Ebm4u9957LzfeeCM5OTlA+C590qRJ/OxnP6OyspJXXnmlX+X/93//N9/73vc4ePAg06ZN6/fPcseOHSxfvpzIyMiOZeeeey7bt28/hXdDGtOEJA2js846S3z7298Wb775ppg9e7YQQogf/OAH4gtf+ILIy8sTgCgsLBRCCHHttdeKDRs2dNl/5cqV4pvf/KYQQoj/+q//EitXruy2/qyzzhJCCOH1eoXdbhc5OTldtpkxY4b485//LIQQ4rHHHhOrVq3qtb6PPfaYsNvtoqGhoWPZt7/9bbF06VIhhBA/+clPxLnnnisMw+i2b2FhoQDEb37zm45l7efYXqebb75ZXH/99R3r09PTxe9+97su+2/atKlj/Ysvviji4+M7XmdmZorXXnutS7nnn3+++J//+Z9ez+nzAGGz2YTT6ez4Ki8vF48//ri4+uqru2z7wgsviKysrF6PdeGFF4rHH3+84/WUKVPEH//4xy7btP8OdNbTeT/77LMd6/vys/y8O+64Q1x11VVdlr3++utC07Re6y+NT/IZnTQizj//fJqamti5cyd//vOf+fGPf9xtmyNHjnS7+zn99NM5cuRIx/oVK1Z0Wb9ixYqO5qz8/Hy8Xi+nnXZal228Xi8FBQV9ruv06dOJjY3tUsbPf/5zAK6++mqefPJJ5syZw0UXXcT69es566yzutXp88c6cuQI8+bN61P58+fP7/g+JSWF+vp6dF3H6/VSWFjItddei6IoHdv4/X5SU1P7fH4ATz/9NGeccUbH6+TkZHJycvjXv/7V5XmdrusEg0EMw0BVVZ577jl++ctfUlRUhM/nw+/3k5aW1q+ye7N48eKO70/lZylkqk2pjQx00ojQNI3rrruOb3zjG9TV1XHBBRdQWFjYZZuTXaiEEF0u8J/X3rHl/fffJyYmpsu6uLi4Ptf1RGVkZGSQl5fHm2++yX/+8x8uu+wybr755i7PgU60f1+YzeZuxxJC4Ha7AXjxxReZO3dul306N9f1xeTJk5k+fXqXZa2trXzhC1/gv//7v7ttr6oqH330EXfccQc//vGPOeuss4iIiODee+8lGAyesCxVVbv9bHvax+FwdKkL9O9nmZyczOHDh7ssq62tHbEOP9LIkYFOGjE333wzP/3pT/n617+Opmnd1s+ePZtPP/20y7Jt27Zx5plnAjBr1iw++uijLut37tyJ1WoFYM6cOVgsFiorK1m2bNkp1zMvL4+mpqaOC+zOnTuZNWtWx3qn08k111zDNddcw/nnn88tt9zSJdDt2LGj4+4kPz+fxsbGLvufqqSkJFJSUigpKeGKK64Y8PE+b+HChbzzzjvdAmC77du3k52dzf333w+Ee0fm5+d3eUZpNpvRdb3LfomJiVRVVXW8rq2t7fK6J6fys1yxYgVPPvkkra2tHXelW7ZsYeXKlX3aXxo/ZKCTRsyCBQuoq6vrtSv7fffdx5lnnsmvfvUrLrjgAp5//nn27NnDSy+9BMCdd97JT3/6U773ve+xYcMG/vrXv5Kbm8vSpUsBiIqK4p577uHLX/4ygUCAJUuWUFVVxWuvvcb111/f7S6oN5qm8aUvfYn/9//+H4cPH+YXv/gFP/vZzwB47rnnEEKwcuVKNE3jH//4R7cg9uSTT5KVlUViYiL3338/Z555Zp+bLU9EURQeeeQRHn30USIiIjjzzDNpbGzknXfeYcWKFZxzzjkDOv5Xv/pVnn76ae644w7uuecebDYb+/bt4+jRo3znO98hKyuLI0eO8O9//5sZM2bwi1/8olvASk9P58MPP+SSSy7BbrcTHR3NmWeeyXe+8x1uuOEGEhIS+M53vtPx4aQ3p/KzXLduHVOmTOG2227jscceY/v27fzlL3/p1nNXmgBG8gGhNPH01BGh3ec7owghxHPPPSeysrKE2WwW8+bNE2+88UaXff7yl7+ItLQ04XA4xHXXXSceeOCBjs4oQgih67r43ve+JzIyMoTZbBapqanihhtuEJWVlUKIvnVGWbVqlXjiiSdEfHy8iI6OFt/61rc6Op+8+uqrYvny5SIiIkJER0eLCy+8UBw+fFgIcbxTxV/+8hcxf/58YbFYxFlnnSWKioo6jt+Xzih5eXkd69977z0BiGAw2LHs6aefFrNnzxZms1mkpKSIK6+8slsd3nvvvV7PERBvv/12j+v2798vLrzwQuF0OkVkZKRYvny5eO6554QQQhiGIe69914RExMj4uLixLe+9S1x3XXXiZtvvrlLfWfNmiVMJlPHz8Xn84nbbrtNREdHi7S0NPGXv/zlpOctxMl/lj05fPiwOOuss4TVahXp6eni97//fa/bSuOXIoR8YitJQ6GoqIjMzEzy8vJ6bf4bah988AHr16+noKCgS4caSZpI5Dg6SRrH3nrrLR555BEZ5KQJTT6jk6Rx7Hvf+95IV0GSRpxsupQkSZLGNdl0KUmSJI1rMtBJkiRJ45oMdJIkSdK4NmY6oxiGQUVFRUdyTkmSJGliEkLQ0tLC5MmTUdWT36+NmUBXUVExaJPFSpIkSWNfaWlpnyYwHzOBrn2S2tLSUqKioka4NpIkSdJIcblcpKWl9Xny8jET6NqbK6OiomSgkyRJkvr8GEt2RpEkSZLGNRnoJEmSpHFNBjpJkiRpXJOBTpIkSRrXZKCTJEmSxjUZ6CRJkqRxTQY6SZIkaVwbM+PoJEkaWcIQBPw6fk+QgDeE3x3C7w0R8IUIBQxCAZ1QQCfY8X2n/4M6ekggDIGhCwzdwDA6vxZdXndQuvwHbeOmPj98StUUFFVBVRVUTUHV1M+9Dn+vaJ2WdXmtdixXNAWt7Rjt+yqqgtbt9Ym3Ubt832mZ2vNrRZVTGw4VGegkaQIL+nXcTX48rkCnLz/eTq997iB+Tzio0Uv2SkUFzayiWRRUs4JiEihmwGSAZiBMBkIN/49FYCgGotOXrugd3xsYnQ7c9r9oC3AoXRaDAgJUVBShoorw/4pQUYz275Xw/yEFgiqKoYSPZygoBoi27zEAQ0EYIHTAAMMQ4f91EJ0Ccm/vw0AoCt2CY8eA6M7/9RTsO9Yrx79XQIjwvJDCaP9fhJe1/W+yqNz6w9WDfzKjjAx0kjSO6SGD5hovzbUeXPU+Whp8tNQf//K5g122VzUFS4SK5hQIe4ig00cwyosfH37hx2/48Bt+/LoffzCIHgqi6wLNMGESZjTDgskwYwqYMfnMaIYZkx5epgmtIxgdD0ymcBBqf43a6/MU0REABQLRdkEPRxwdgVAEQtExMDAUHUMJYKg6uqJjKDq6YmCoOoYSXi/a/tc7fR/+MjBMeqfXx/fp2B+d9piiqCqaooCqoKKiqSqqqqIpKoqioikaqqJ2fGmKFl5G+HtrayRayAJmHRERDK8zNLq8GwodwT78snOwU9rfluPrjLblQiCUtiDX8c/o+E5VFUAGOkmSxoCAL0R9uZvGKjdNVR4aqz00Vrlx1fkQRvgKqJoUbDEqRIYIOj24I1poNVy4gx58QT+BQBBT0II9FImjKRJ7bQT2YCQqDqyA9fOFihBmw41FeDAJPyYRxCRCaOiYRBCNABoCDQVNCU/XpBC+EKuKAorStqztNWr4dedbFUH7TVv49iR8xT++juPrBAZCgCEEIDA6Lu5tdzaEL/gGIFAQioIhQCgKQpgxFDMGCgIFXVHRUck322hWTUQIwdSgQFFUQmgIxYQQGrpqxsCEgYZA6d6m2g/xJgWbAj4B9SHR4zIDQZnJwK0InEIhNaSitgU6gYHSw8eEE9XIUAJ9qptuCHYUNlDT4iMp0saKzDi0MdTUKgOdJI0xHleA2tIW6kpbqCttpba0heZab0dQsMdoKLFBPHEuXLFNNPub8fl8qH4rkd44IppjcASjsOAkjhTiAEV4sRpN2EMu7IYXm3BjUxTMmgmTZsakWTBp1rYvGybNilmzgRJHgChC6IQUAx294/sQOiEMgoTwEEBHR8cIByDFQBcGhiIwRPgOySCIoQiE6P6MLvxt2wVdgBFyIgwzqhJCNblRFYXwfWH4n4YaXiba7qLa/lfR0NrupDAUjgoNG1YSUEjBIKToqIrCTkPhj6g0orAQjXgUjiFYBaxBaysrXJ7S8b2CAewVQeqEzlShME0BRQhCRgAhDAxhIDCoCWkcCEYAMMmsMt+uYe8UOEKGjopAVY9foj0EeFWt4VB1NbH+Voqtkbwbm8r9FQfI9jYgLE5CUZM7PigIRKc7v/b/28Ni+AOFIUIn/X3bnFvJ468dpLLZ17FsUrSNxy7LZt28SX39tR1RiujyWzV6uVwuoqOjaW5ulpM6SxOGMAQNlW4qjzVRkddExbFm3E1+AExWFUuSgcfeTJPeQLO3Gd0HUb5EYnyJmAxL21FCmEN1ROl1OHUfTgQ2kxmLxYnVEonFFEkrTnwAagiLyY9PDeDGSysePMKLXwkSIERA0QkqBiFFEFINjD5+qFeFgirCd28KoIhwYFAEmILRJBkx2IUVnxKgXmlGmFtBCV+ahAAlGAnCjBKyovoTUYzj95fTrAY2aystWjN5ajkhtVMznUJbQx3hps2274uNWEzBLL5MJEmd7oI8IsQ2tYbHhZM1wsQD2IlXVAwEVWoTjcJLmeEjzlMJ/mYqVBetjgVEeBT8ATfbFB1nwjzuU+xdjuvGx+GWI9R7GgiZdfzaaSRqVjLNKpMt4e0638m2X5Z7mrTY8Lfi3/tnQpV70FHQ2m5tDUWhYkoa9XPOQIlMwWpoNOPudN7h90MXghJhp0Ux4RRBLvnStdS1+kmKtLEsPYay0hJaWlpwu90cawzw648rqDYiw3esnSjAb25YMiLBrr/xQAY6SRpFDN2gtrSVirymcHA71oTfHUJRFWzJAre9kcZQIx6PF6snkjhvCiYRDmiK0URUsJJovYVIwG5xYLPF4LDGYzFH0Kr4aFG8tOClCRfNuHEHHKiedNROgUNX/HjtFShtd0aaqRWz2YtVMWPDghUzWttztWDQhm5omFQDi+bHr1vQdQ1FDWLS3EQoNlSh0hqwUqsbKKofxVoHqkAPRJHkT2e+3drlbsZrCPZ7A5Sb8hF6FDpmhBoiRrESF4rGL6A+BNk2lSyr2tbs2fb+CUEFbvxCQQhBbaCQJqOcJHMKiZbJROLAr5txozKt7W6pp2DiNwzqtSY8ih+X4uWwqQKP4u9YbxYa80JpzA2k0xjyUBMMUBiMZLJZZbmz+3HDTaaCDwINaJqfGEsIO2b8SgibMOPERooR09EMeSLtl+zKI28TrNpHbFM+lXOW8Vn2NDzm45dzp7CyxJ+BRXegK1BrauAVRw45Rhqtnul8fnTZVLWB0y2l2OnenOkWZrYHp1JixHVZPinaxsffOuekzZi6IdieX0dBUREOJcTCaSlkZqT3KWlqT2Sgk6QxJBTUqSlyhe/W8pqoKnAR9OuoJgVzgo7b1Eyzz4XSaiXWl4SCiiCESW8kMlhHpDAwWSKJMEdgs0bjVRQCqo9WvDQKLx6lFY8aRFdM4ecxCqhBC7ZgDOZQJIrubKtJ5wuV4PNPdgxCuKOO4LfWMSWQRrQ/BT1kB9SOZ0h1IaOjqWySWWGeXcPRpTlOUB402OMNoeMl1exkhaPnoACwUy/mkL2UoHb8wusQVk4PziQtlIjW3gdDgSq1CQ8+vEqwW+AQbR0yqtQmvPixY+0WVAwElWojlUojTaqbKrUJn9Kpo073twQATajM0icTKexYhIaPIA6s3QJXvlrNJ+ZDBBS9198FmzCTpacw1UgAwEego67Qtf7JejR+QyfHB0pEMfstxT3/GIFzg/NJNxKpUptw46NIbWCrvgW9NpZakc2BhGmkak2cbc5v+1l0r1t7lHgvmNUt2P3ljtM4PSu+1/PanFvJb/7xITMDx3Cqx99Ti93J+ssuITs7u9d9eyMDnSQNAcMQVOY10drkw9sSxOY043MHsUdacEZZEAp4WwI4o6wkZ0VTnd+M2+XH7jBTXdJE9afVmEOCiClOklekkL+3jor8JtyN4Yu4ooESoeMXXoI+A2vAgYYJgY6CF1PIh1ko+E0xGIp2SufQ3rHBqir4DdHxf+fOD58nEAQtzThNQaaoFmarMVjVnh/t+3SDqkArkZpGnNkRPq8erppCCDyGgUMNdz5pDzIVSgOtqo8IYUMRCntNReEderh4LwllEiXslKuNFGk1BHsIIO2BwypM3e7IbMJMqh5HQAnhwkuT6jlxr41TYBcWzgjO4qhaQalWf8rHNwkVAejK8WEXNmFmeiiFAq0aj3qCDiUCrJjQ0Lqcv2aYcDbHseSzD1Fai3jr0nWYtBP3pREC3Fj4u39Bp2ZMg/su1pidComORJYkLUFTj/9+bs6t5IkX32GtOZ/OHUTb64YCGzdu7Hewk4FOGvXag4bb5ccRcTxIdP7eGWVl0oyYtu7Pp3ZMT7O/bRxYCFWBSTNiUFSF1nov+XtrcTcHsNo1psyOo7HCQyigM2l6NHPPSqW20NUR1Fx1Xo5sryLg7f3TeG8mmZVuHQ28hiDHq1MZ7Pqn11Ovu/7ovD+AFYE3VEu8SWW6IxGr2nuA9OlBPmvYSZmnEEWxolim4Uy0UOeoJ6Ac77BgERrpeiKTjbgudy2d74hQIMWIwcAgRyuhVfFhERqTRBx2YcFPkFbVh4JCCINytZ5Qp4v4SfVyd9WvfU7lGP3V+Uc4FGW1H78vx+7lfBXDRHpBJUXTE/tc7Gb/TKpENKbIXKzJr6GamzvWJTuSeWjFQ5yXfh66IVj9g3dZ69uBta01oad6OewRfPO/HuhXM6YMdFI3nYNA5wDS2/L+CAR0tv0tj6ZaLzGJdk6/ZgYWi9Zrucd21/DBC4f7FDRMVpW02bGYLBqg4Iy1EPCGaGn00VTlQQjR0R29pd6H6Me1crD1FKQmmRWWO8LvRY9Nc55wsOspGHr0IPtbK6gI6KimKSSYtS5BrON7YZCseciwRWL+XCD7fPCZZMQyyYjt8TmQgaBKaaQVL+VqI8Wm2j4FH02oRBl2mlUPhjImLiXjx2AE6/4Ey3aV5XwSHUNl9ubwrj30jP3p2p/iDC3m679/i3XWIyc95E033cy0aZl9rkJ/44EcXjDGGYag4kgjpUcbaK33ExFnI3V2LFNmxqKqCvl7avhoU15HTz0AZ4yVGcuTyNtZ02356g3TsTnMlOU1ogiYPOv4sdrLaw9e+7eUUV3o6ti/7FAjuR9WkJQRQdqcePa9W0oocOrRJ+Q3KNxXf8r7D4eeg1SA/a0NLLInA92b7xRFQRcGk5wuHPiJVSzUA34l2PFMxq6aWBk1lZDQqdGa8bWtSzKiqVabqFQasbUFr3gjiu2mo9Qq4Z/FJBGLlwCFWk2X4LOXIhDgNMx4lSCgYEbDLEx4VP8pBSpdMWjU3P3eTxoEg3GXqNBpfGLf2AKtXFhcwXtxdkomebusax/S8MMdP+Qr0/9AqnHy4QsApXnV/Qp0/SUD3ecM5d3PYMvfU8N7fz6M39P1l2n35mKsThNzzpjE3rdLu+3nbvL3uvw/vzvQdeGb4WOdfcNsgG5Bsyc1Ra3UFLX282xOnRAGRqgchBsUJ6ppCkC3ZYrSc9NI57uxuqDe637TrCpOBWxth3GoCtFa998Bu2pmZVRyx/OnCrWBcqWeOrUFExpmoVGmNeBXgt32DZ8QOAwLJjQ8qr/rndXnrkntwavzsnpO8N4r4NbayxX4CeGnbxcjaZxq/yAmxEkf0imhACZPCwArDsVRmlLeecKW8GYIqjxVNBtHUTuGuJyYKsynUvM+k4Guk/7e/ay5dgZZi5NGoqrk76lh89O5va73u0M9BrNT4XeH2Px0Tqclo2dGBD2QR9DzHojOF/f2P5rOgcSGapmDokYhsEKoitmRqcyMmkm9ydPRm215yIEraOMzSzWNWh0WypgfyiRLmYKiKFSpTbTioUirI0AQHQMbFszCRLyIwC4seJUAtUozFUojAVXv/9ulgEfrpYNBT8caPT8OaazrLdi1Nbdbq0s7BpxH+EwkN1ipiu/5g29CjJ+AIx5Vt2CovT+jUw0rGekZg3QCPZOBrk1vgeNEdz+bn85l3V3zhj3YGYbgw5eODmuZx5vyT/2q2tOdV/vdkhAGerAMoZeGf/lNqSimKQi9EmG0IgwPimoHJQIFgRAepllUHFYfVfZZlAVKmGHPJkOdQp65libFjUkxERnUCPlbiAvZUIBocyzRlkSs5nlsM+fxF20boc499syAnY4/SjcGH1qO8qE42v4G9KqA6lN+byRpKJiERoi+fdiy1FagRMbht9u7rVNCAazVpZhbmrost/t77+CU7EzirqunsPuZOozowz13CAISjFlMmRXX0yEGzbAHury8PG6++Wbq6uqIiYnh2WefPaVxFIPJMAQfbco7pX0/fjmPzIWJw9qMWZnXhKe5b3PUDRohugUi1ZzWrTmwt4AV8u3E8H8GnQajCjT0iOkIkxklUILmaSEyJhPN7MAuijB7D+HTW1FQSLKlYTcpeKx+MNsQWjQuxcs+UwshRQHS2Y+b/eJopz+mQDhoAQhf2x9WWfhLoX93R/KuSRqD5ofS2GMqOnHHlbYmSUt9JYt278VssVMTHUXelCQUPYQaCqJ5Wnrc3Wvt3qlMQSHZkRweapCi4T57McVbFNxR+RidWipUw0qEK4sLb1k95NfPYQ90d911F3feeSe33HILf/vb37j99tvZtm3bcFeji8q8ppM+d+pNa6OfyrwmpsyK7X0jQ4firdBaDRHJkH4GnKCr98m4Xd3reqK7pc+vFzhQEID3pM+voK150P02cHyuO92/HTCj2ZaR7FyJlSYsRiPeYD5evZl6XznxtlSSzWYcJi+Y47DFrCdkBKnzl3JIFBGYlEGo422YCQJaO/2+m0Uk2aHZWLFQrNZRodaePOCcKFDJYCWNJ+0d5ntpalRCAfKPvULWpPMpjmwipPXQ0/lzTZK2YIj4ploSamqpMYXwWXoLEQK3Tacm1kfnP6z2Fp9vrfhWx3i6a66YRV5qLFv+MglPoA5DDaAaFmKdSay5ZeawtIgNa6Crqalh9+7dvPXWWwBcffXV3HPPPRQVFZGRkTGcVemip8AxaPsf/Bds/ha4Ko4vi5oM634I2Zd321zoOp5dnxGqrcWUmIhj2VIUrWtQdEZ1nUc+5D9KyPsuiM49oJxotgUoagxGsBgjeAx6mNonTAUlKtwsqDlRlCiSbMnYTBFYCeIlH68tmVhLIk5TDAD1/gq0qESqIzTq1L3YhYUYw4lXnQpAvJhPJHZijDgmGeEPAeGu7vWUqk48akbv71mboKKzz1xy0u0kaULSQ6CZuj9X6whe1WiOi3H5ZhLtCdFi/ieB2FgwHb/sdzRJuhqxBUPEucMfZi0pKay+6HLeefcNemtzzJ5cxIeGQnWnCQSSHcl8a8W3OC/9vC5VnbE0iazFiSPWoW9YA11paSmTJ0/GZDo+7c/UqVMpKSnpFuj8fj9+//EA4nK5GKjegsjnA0d/9br/wX/ByzfRLUujqxJevgnjymdpLknCl3sMoQao85dT/8lHmOvqiXP7UABTSgrJjzxM1AUXHC+vaCcWXwsBawxB70fo/l0oKCTY0rBrEcRbp3Rs2+AvxqO1UBcMhie2BXRHJJjMxKgxxAat2DQHPt1L0G7HZo1jsiUNRVWpVBppVH1EiDnMagtYKgqFag2HzM0YStdu5WVaQ7e3YB/FaG0zOxgnG5cl77gkqbtQAM3dihIIhpsSdX9Hc2IoMgZf8lQwH+/dqOgazqYEbNoaFFO4pcYWcJFYEaCsdi+6IxJhNqN0bpJUFM68+jqmxCR0uTY6Yr1s+cdmWkPHr3GRJj9nJxcww1rPlaWw22al9vQvkzjr0m4zo3SmqsqJW76G0LA3XX5+TFFv49WfeOIJHn/88UEr1/XWW1R//wlCVVUdy9qDyKTzzscZYz1B82XvDdwRseFPJt0YevhOrsdUxIL66rNwP6Og2nUgPH7EFppE9eRmymOOYg2EmOIT2A2o+N/vsVAIYi68EKHr1D7xBDNDyeydfha6fxdTHDNZEn8uNlNkD/P5LQXAE3LxvucDKuLMYAr3SvQCLmFlWiiZYlM1bsUPNJJDY7ca76MYk9BI0+Mp1Gp6eZ96pvdn1gtJGk9O1mW/nR5C8ftQAz5MzfWAoGxSiKqYFoKhJqJN6cyr34AzFIuulyGMUgJOLwemHGNfxmsk+BKZ5JrKjHILUc0mXPZ89kzNxWxq4SpPGXXuIj5IsiMMJ5NrQjhdxy/9kfEJnH3zncxYeUa3as1YtoKs3P9HuSea1pCFCFOAKY5m2m/ENGC5zw9Tz4OU5YPzng2BYZ0ZpaamhhkzZlBfX4/JZEIIwaRJk/j000/7dEeXlpZ2SjOjuN56i/L7v3a8Tbtd2y/glJ//jNrERb101zc4HuS6/8L22uuy8CN47tIe61NffRaeqG+2VaH7jBmbW/5NVZwV3XT8k5HD5+PSG24g3e2h5OabEcBb87JIiZzJqqT1FKk1fGrJawtWYU5h5bTgTDKNJLZrR8kxlXY/hVOZpmg4pk+SpNGkp+bBUBACvvDzdk0DQ6C2NKLpIVQ9hBIKcDS+lGjVTqzLiaZNIogKmo4INaIpFnwmN5WxjexJrWNWWRQxrRp2i49Pszy4TcefmytCACqTXFk4glF4zC6qIo9hdHq0nhIK8WB9I7GGQa2mkajrLPH5O3IUbGERT0dNxqt5mFRvI7UpBUWz8+0nv4faW58BQ4efzQu3QvX4oV0JP4r5Ws6A+h3016ieGSUpKYnFixfz/PPPc8stt/D3v/+djIyMHp/PWa1WrNaBNSlCuLmy+vtPdA9y0PHLW/39J5j+7jusu2seH72Yi7vl+CYRaj3TbR+T51uDu21WcYCISFh9Xfcg156J13TgID19vjF0Fbfl9nDfiB5mzChUqilPdHTbz2O18vLf/salWVk4gQanDUNTWBJ/LkVqDe9aehgagZ93zTnMC6WRa+plTJ1C/wOXDHLSaGfooKhdg5NhdLoOCPC1otWVQ3QSKCrC20hrRBCfw4TTp2HzqihohAL15CdWYbdMxWFE4FFaia2qJMIPiUqAxmQvzViIVQMsCmk0mjR0Z4CZ8VU8GPCjAV4H/DQuhnKzCZshyAiGqDVpGEAScGurzjJLHYsdArviw2hvEmwLWAt9fvbYrOywNYEGyz0+ljT42WezUqNqJBnhoNZTqBFCId99Dv7Wy/hSpYGmgEkBTVFQgkbvQQ7CwWvdD9sewbRfLNq1vbfrfjCsQe5UDHvT5dNPP80tt9zC97//faKionjuueeGtDzPrs+6NFd2IwShqio8uz4ja+UKMtUGKl/6KW4jFqfayCTLIVTF4PTI56kMzDm+/AsPoC7sGuQ6Z+I9TXXxUg+TArgaF6JG9DxmxEDwqaVtmMPng0nbH+wH5eWsUxT8ZhMJtlRspkg+tezvZR9AEA5yJwpOMnBJo4HR1sQtBAgDgoHwXZMjgo5fUqGD3wdBH5it6CYQIkAw1IwRqsesaJj8KgRbsZn9+KKd1FptCD2Ix1RDlDmII7IFlPARJ0/RWe4Ld8DYabPRatKoMptRgHl+P99saMIO6MBuS8HxO6WUnoMKnXOQdur7ZQe+3dDU42kLAS3B06gJfg2Xtgu79Seooq1JsNM2K7x+Vvq6Pl5Z7vMjhIrS6fGALix4jWT8JNIsZlBqnINhUdHigvhFgADhJLpBJUiIEKtO9nPJvhw2/qmXTnU/6LFT3Wgz7IFu1qxZwzqcIFRb26/t1KhkplgPdFuvKkbX5VHJXdZvzq3ky8/v7vi8s8OYTYWII4UGOncsCum9522qUpu6ND32pMXno3HWTKxlJdi1iJPvI4OYNBDG556vdm4ZUZROTXri+Id9YUDID6oSvqsSoBitWIwAGmClBc3qxqxFoAonfhHAGiphKmXMDARo0S28FmdhX2oQRYHTvH5O9/lY3n7HcipXLS1cRQJAL9OnnuHr/e+o41kUPfRB7OUxXEAoNBBLjUigmWgMFJYpOTiV472jW4WNN8W5HDHNRJg+BWC2uJQLlPeJ7jSVm4sI/sNZeLATQSsReHDjoIUISpRJTKWSCNy04qRYmYLQOg8XOgyEmz81w0AzBJoBmg7mvj4+z74cZl8yqMOkhtO4nxnFlNi39BMd26WfEf6kcrI26fTjD251Q/D4awe7bG2g8njwJn5j/hmGoCPYmbTeJyn20rdhDpYNG4j43+9R5mvu8z7SBPD5oPR5QqCKIEa4m104wbRiAgQqggg8pFHOJGqJEB4CPoEz0EiUyd+lA8JJioD2w/anuqa2v7a2/eYFQZSDUCwYworfSMeveFEVHxDChAdFCWIIMwIrmuJBYCIoolAJoipuFBS8xhQ8RhpuYyox2n5UJYDPiMdrxBOpFaFjpkWfgkkJ56NrCE1DIIg15WOlEa+IoUHPxEDFqrTgExHU6WnEasXYlBZ8IpJaPZUErQQrLViUVvzCgU9EUqNPbcvbJtquDYJ/i3NIMJViV1rwCCe1+lQEGlmEs3AoQkEoS3iLxSRppdiUVgIikjo9E6uiYUNBQUVXNJyKRjQmMhQTZhZgVsyYMLNYactP0TYJpVBAYKBjEFIMQugEFZ2gFiJ4olx2n6dqkLmm79uPIuM+0DmWLcWUkkKourrn53SKgik5GceycO/EU2mT3lHYQGWzj8/7j7GCLwe/xmPmPzGZcNf7qNh9uFwNKLbYbs/o7PTtmWTiGWcQ//OfUfvkj1HT5IS8o05vzzyF8bnPTqLTxkqnZaBi4KQFEzpBNNxEoAI2AixlD2YMmohCQWEyldhwk2zUEGkEQQVVUTAUFRfRvK+vYrW6nSilDkUBF05UBB7FQjQeVATNONhPGt6QlUAoQIPfAj4rDtWMMHzUi1hCRjQ2sx9VUbGYWhCKFQUrAo0QFlqM2VQZ5xFUBHblIJrSSIuwESSESWnCLWzoCKxK+M6jnFSCKOiKgYFAVwRGp6AQvkCH3xqhdVrevgzR8bZ1nppO6bxEDX+FX03qWBZ+PTv8zmud9tLav4s//lMxKW3fJ7YdOYAiJqEwqa0cgwpSO+qgtC1VxPF6dCzDTCszw6+FgrAIBAKj7cxEp/OuIe34MsLZJUTbdjoCQ2n7H4GhGB1b9qcVxy9MXNz3zcescR/oFE0j+ZGHw70u25taOlaGfyOSH3m466DsfrZJ17R0D3Lt/mOs4G3/Mlaoh0miiRpiWOit4gZbbEc+tXYpRgxOYcWNv9cJUCOdEaSnp6NmZnLmuedy6Dd/x1ljDTdf9rJPR7juZf3x96PX0+h5v7HeLPr5czCMtguOig4EBZgVCHcZaG8KMlBoGxcI6Ch4hBk3NnTFRJUpGXNEIjZXIWmhcpxKEK+icVhEU++Hc2pcJEakM8WZQqTawDGtnBrVTbWIpJ5IIqOiOW12GksmT6VxbzP5e2qwABGZreRGbeVjbQtveQzWF9lYUBDEJrIR8WejRWXSaIkgT3VRadRTSSONJi9BVQcVcsik1dxKq+bCFvAx2eVlaoOH5BYbjlAsmj2FSc5kLPZEbJYYzFYHHpsfN37qFR8u3Lhoxa0E8CkhfKpOAD08T2h7eh8NYF+nNzSSkFAJYidIDAYaQlEQihZu0lRVFEUL/69qqJqGoqjhWXra8gy2f6EoqEpbuGhfriptf9PhmX+EEG0tqAJEW1AQbd+LTmHSaAuWov1/o+M17fu0NcUe/1502qa9mbYtsAjo0sml0/ouy0Wn9YhwT0pFabvra2vmhfA5KUr4d05R2i5TStv3bcva3i9NM6FpGppJw6SZMZk0NJMJs8mExWzGYgl/b7dZcdhsRNitRDhsRDrsRDqsOKzjPgQAwzy8YCAGmnj1ROPoOg/G7qKPU3dty6/ni7/7tF/1ubOhnOvsKZjsxwdQGsKgWK093oPy85MRKLBxw0ay53adG3TPm9v456f/6XkfYH5oKjmmkvAhehheMFVPoF5rOenzwc8fV4FuKTo60wXoqFhOkGYmfN3RQNG7No0JQGi4hZlWNFqEhQZhY4raRJziQwX8qPiFhobASghVUQgKBT8aVlQCqNQLO35hwqEGcAsTlrbhIm5hoUSPIEn1EWkSWBxRXHHWYq5ZPo3PihupafGRFGljRWYcWj9mb/B7gnzwl6Pk7azGn17L32N/yWWHvZxTvBDn1HW4nVZylEJKTU0YQJMWQ1LaNM4+bTGnz0qltqSFXa8XUpRTjyUWytJyeNP6EjE+LxsPW5hfnIQWcxrOuDlotmgq1EYKqaRGa8Hbln4nhKDR2kC9rQZLwM2iGi8LSzxE+VMR9kxM0VNxOKdgtcTQovpoVjzU00SD0kKT6sOtBtE/NxFwQKh4saBrVhSTFc1iw2KzY7fbcTodRDojiHTaiHDYiXKGv2IiHETaLURYTdjMarcWDEk6VTLD+An0ZXqtU6EbgtU/3NJj82VvFMAkDP6cZSa9vgahBvDGJGApjKNIreVT89FuY+LOP+McFl24ssfj/esbv+SAsxm/erwpUxEW6oMZlBpxuNVKVphLMHVKrqkJE1OD07EGY/lQMYgyteIkSLzio9FUSbDXfGkWioIZfGREkai6SFFcRCk+IvQgQQRNmoUyxYShOHEGErEYLTitOpGxUbgsMcTRwrRoE/Mzk1l32nwECn/aWkBJSQnxFoPMSQkYEfFYNY1jFXUcKa3B62rC63bh9wcAgUMJ4lCCJKstba1TKpo4/gA+3Kzz+Yu1RqvqxBaTRFpaKkvnTmdZ1mQsJrXbKZ6K6iIX//ltLm63j61Zf8fUvJU7P5tNdMbV1DsUdmpHcWl+WoSNyNRZXH7OaSyeloKiKHhcAba+cowjn1ZhjhPsSX2bT61vsD7fxvm5CZhjziAqYT5eq4k8pZwitQ63Kfx8RTcsNNlcFEYeIEAdF5QarDhmxm7MRI2dgyMmC6s1lnqlhRqliSqlgTrNg1c5njrFLzQ8ih3FFok9IoqoqGjiYmOYnBTL1OQEpiZGE+Mwy2AljQoy0I2Qz/e6PJlJ0TYeuyybdfMmdVnuza2j6bV8gs3+jllOIpwRzL58Kc75vU9++pPv/hhV14kybEQqTuKNKFyhGMoDTVi91UxxH6LB1khRYixuqxMzdrS2DtJ23UxiKBKPmEwJDmp1nZC/keRQEVHWEg5OKqLRaWGl/2wSq6ejt1gpTPRzWHjRdA+pajOZ+JitpzBTpGK01uIpe5c9k3J5ZqGf00JXMrfgLAhpLL84g4XnpqGdYnAxDEG1y0dBZT2l1XVU1zXgamnFHwgQDAQQQqC2Ne3Y7TYiIyNIiIlm+tQU5qQmEePsWyLI/srfXcPbfzyIP8bFP5N+zNc+MjM17gv445L5WDtIi+anUY1hwbKVfPHc5R1NRkIIDnxUwbZX89EJkTPtXXaZ/8Wde2zMr12GI/VMdGc0R5RSCky1+NQQimFCC8bSENXEjri3cASa+cIRC9nFCWhRy3AmzMNsj6dKbaSYaiq05o78diGh0KI40SLiSEhMJj11EjOmTmLmlHhiHEPz3kjSYJOBbgR1Hkf3eSlRVr64YioZCc6TNokJQ+AvbMZoCaBGWrBmRoefR5zA//7xX9RWlmPyNxHZdieoCIVow0ayHkkqyaQYMej+FtyuQoINuVQ5i9iRHklldCSxgSQig5EoCjh0M+l6AlliMtEhM811+wjWf8B/5tbyr6wgawNXMatgNcKnMnN1CsfsDRw8nIvTU4VZMYgPOVhsZJHgN+MqeYedidt4foHgIvcdJOTPIG5SBOfflk38lIiBv+kjTAjBnrdK2PZqPnWTC8jjN9yTswLntEvYYc6n1NRIkxLF8tVruXbtIkydun37vSHe+9Mh8vfU4ppWwr8jn+KW3YKFzauJSjuHSquX/WohjSYvhmHC4UtAVWM4mraT3da3uDLfxnkH4jDHnElk4gJ8Fo0CpZJ8rYZWLfw70CKsGM5EUqakMicrneWz00mJtss7M2lMk4FuhLXPjFLV7KXBHSAuwkpKVP+f9ZyqQMggt6SWPYcLKSwto6W+BrO/mYi24GczzEwKRTGNSUzSY/G6K/DV5eLz7eDdbD87UiLIaJ1Hgi8WVdUxGypZehLZRjqauxl36Vt8mrqfF+canO+7mcn5C4iItnLuzXMIxWr89d0dlBzeT6xwYTNMLA1lkeZz0FyymVezdvBZxiSuLL0HxWXltCuyWHRu2kmD+GglhGDHa4XseqOIo5lbmVL4GueJm2iOT+Rj8yHcmEjMXsFXrjwb++fSndSVtfDm/+XQ2uLl/awXSanezRcPLyMm43KKrS3sNhXgV0P4jRgSWyZhN8exJ/0tcpXN3LnXTnbdUpypZ2E4YzislJBnqiGghggIFbctkbSMLFYumMXKWWmD1jQrSaOFDHRSN/6QzvYjZezMPUp5aSm01BKleEFAnO5gmpFClkhBb63DU7WdSusOnl7mwarOYX7NGWhKC0ILEhOys9SYToJPw1XyFv9J387bM6LYUPk1tJpIFp6bxunrsxAK/OOTXD76+BNiA9XYDBMrQzNJaA3RUPwiP1pdziJxK5ML5pGxIIHzb83GYh97vb92vFbAzteL2Jv+JufkfsbcxLvZHVFDkamOJvtk7rt5A9NSYrvtV3GsiX//ah8+p4t/J/6EBz62MSnlOpqiHGw1HcGnhGi1pDDDPw291kTl9Fzedf6Ru3dYyPaeQ9SUVVRYPOxVC2g2+fALDX/kFGbPns2lqxYyOdY5Au+GJA0fGeikkwrqBh/lFvPJ7hxqy4uIDjaiKYLYkJ05RhoZoThcNXtpcb3NL1bVY9izOaP4YoJqLSFrMw7dzHJ9BkluaC76Gz9beYRk+5XMOXYmk6bFsO6uedgjLAgh+Pf2Q7yz5T1iA7XE6Q7WBOeiV+fwbsTf2T5jNufn30J0rJOL7p5PbMrYuUDveqOQ7f8qJCftTa7cc4yUzJvZYjtMgxogNvsM7t9wbo938CUH6nnj/3Joiq5kv/lJ7jtwOvbMC/nEfIQaUwuNlkTOnLOKhg+aCdp9/CvtKVYfKeOCitVEpZ/PMWs9+7QSgqpOgxZL1pz5bDxnBZPixn4zsCT1lQx0Ur8dq2zkH+/vpOTYYWJDDWgozAqlME9Px1d7kFrXP3nyjGaWiBuYVDSd5sgyhLmOaN3GKj0bU20xe/QXeWVhMpcU3UOEw8ElX1nQ8QzOMAR/emsnOZ++R6Twkh2aQrYnlqriZ3lytYdLar6J1e/kkq8sZHJPKY9GmUNbK9jyp8McSH2bK/cWETv9Wt6y5NCsaJy/fgPnLZ7R434lB+t5/df7qYsvJtj4W67wf5GmxCQ+Nh2mFQvTl65hiSmVHa8V0JxSxscRv+ChjyYTn3ETFY4gO03H8Ck6Lc4pnHvmai5eMXvYEldK0mgiA510yoQQfHKwlNfe/Qi1vgArOjNCySwOZeKu+JQPov7N23OmcEXhPQQVL2XOoziVVqaFElnqTaWxcBM/PK2U85oexOGN5oqvLSYp/fjPqqHVx//34r9Ryg8QY1g4OzgPf9EWnpz3Ecv83yC6KYUL75hP5oKEE9RyZJUeauC1X+6lIGEnFxzcQ+T0DbxtzaVJi+COW29iTlrPU87VlrTwyk8+oyq6gIjqZzjP/lX2RTZQYKql2ZnGg7dtpPjDanb/p4Sj07YSUfEP1jeuR5u0kPfNB2hWfTTZJ3HVJRdw1vzMYT5rSRpdZKCTBkVJnYvfv/IOofIDWDFYEEpjpieahsIX+eGqCs5u+Qb2+jhaZrfQUrcPp1A5OzQPtXQ3v858k7mhB4n1JnP5/YtJzuj683pjx2HefeNfRAkPp4dmEV9dxV8jX8QefTeJNZmce9McZp02qZeajZz6ilb+/qNdVDiOsfLYu8RMuyYc5MwxPHzvHSRGd0+vBOBxBdj0/R1UizJiqn/HaXF38aGzmFrVQ8ycM/j6xvPY+e9wp5bPMl7jnNw9LIi7k7xILzmmUlyKk1XnruOq1fNkb0lJQgY6aZDlVzby27+9ibXuKFGGhbWh+Yjy3fw+9R8kW+8mpXoG6Rcm8vb+LcTojSwJZpJa5+bv1ueJirifOG9Ktzs7gDqXhyd+/zKRriJmhFKY74pki/c3VE3dQFrFfM67JZtZK1NG6Ky783tDvPz9HVT6Kpha8QLpaTeEg5wphkfuv4OEqJ6DnGEI/vmzPZSUVKG6fsXq2Nt433GMOjXIaeuu4rLT57LrjSK2/6uAfWmvc83uQlKm3cz7tqPUqR6MSdl848bLiHXahvmMJWn0koFOGhJv7DjM22++TrRoYVEwnYwmwUe+31OR/gVSK+ex+osz2ZTzCZbaQ2SEEljsiuNfwf/DGnMPCfokNj68gojYrpNWG4bgxy/+B3fedpIMJ2vcGeyp/TWHpl/O1KqFXHDbXGYsT+6lRsNHCMGb/5dD/sFKDO9TnB57I285DtJoiuLh++/sNcgB7HqziO3/zKfO9DSXWq7ivYgCGhTB+Vdey9mLppO3q5q3fn+AA1Pe5ur9pURlbeAdSw4uRWHF+Vdw5ep5w3imkjQ29DceyAE2Up9cvGI2/++/7iWYnM0eUzE7Yl2sjX6QuUdfo3jSHj556Sh3n30e8QvWUqDV82F0OZda7ybY/DSuYDNv/N9+QgG9yzFVVeFbN6xjwXnrqVS9vOs8xqLke1ly+C3KknN5+48HKNjTt3yCQ2nPWyUU7qujWv0TqyK/wHv2I7QoNh74yu0nDHK1JS3seK2Akoi3uYR1fBhRTIMiuOKLN3H2ounUl7fy7nMHKU3Yx/r9RdiyruQN6x5qNTvX3Xq7DHKSNEhkoJP6LNJu4Xtf3sjUlRdSrLWwOeIQcyd9maWH3qY6Jp/Nv83l+tOXs+zCa6hRvXwcWc7Fli/RFPwdNWXNbPnTIXpqQLhmzUIuuPp6alSD/zgOMSP1ThYefZOKhMP85w+5VBxrGv6TbVN2pJFt/8inIOYtLg+u4ZOIUlwIrr/5JqbER/a6n6EbvPOnA7hsVVxRH8FnsS004ueCq65l5ew0QgGdzb/Podlay5l5O4nIuoZ3rbk0W+L59te/wvyM0dNsK0ljnQx0Ur/dfvHpXHLtTdQrCv+xH2RG6l3MKXqdZnMd//71Ps6fP4PTLg4Hu48iy7hMWc/RiGfJ21XDgQ/LezzmWQumce1Nt1KvmviP/QAzptzBnPzXqI8s5fVf76O+orXH/YZSa6Of//wuh7qoAq4sVzkQr9Ogell7xUYWZJ44EOW8X059mZtZtVupnDKZSrWRWWdezNqF0wHY9o98GmtaSax7lZjMq3jHmkuTOZZv3/cl4qPsw3F6kjRhyEAnnZIzstO57pZbaGgLTFmpN2JuepamFhfvPHuQi5fP4bSLN1CneNkZ08wN9YsojtnKR3/Lo6nG0+MxF2dN4vYv3UajauZt+0FmT/4Skypeoslcx2u/2EtrY9+zQwyUrhts/l0OLr2ZhWUf0jR1NsVaLVOWnsv5S2eecF9va4Btrx3Do31C/ORV5JhKUFPnc/15ywCoKmxm/5ZSGtTXmZewni3WgzSbonnkvi8RHymDnCQNNhnopFO2IHMSt91+O42qmS22w6yO+CJVynOUHGhg/3tlXLJyDnPPvpQqtYmClGguKW3GrTXyzrMHMYye+0DNSk3klttupVEx8Y79MAsTbkU0/47mQDP/+sVefO5eUgcNsk9fzaeqqBnD8wIJqZewy1RAIH46d1y26qT77vx3If6gj9V6DNusBXi1aB66dT0Q7oDz7p8P4rKVcWFwBh85CnFj4etfufWEz/skSTp1MtBJAzI7LZGbb70FlwJbI8u5KrCWsoj32fpqHk3VHq49ewmOGSs5bCrHm76ISU3/oaqgmb1vl/R6zOypSdxw6600KQrvO49xrv1GKo1f0tDg4s3/208oqPe672Ao2FPL3ndKKXK+yhrbRXxkzcOtRfGdO6896Tg2V52XnA/LSPZtoyDRgo8QN974RSymcEqkQ59U0FThZVHjQY4kKrTg57Jrv0BqfPSQnpMkTWQy0EkDNjc9mTMvu5p6xcP++CCX1qm4TY28+6eDCEPw4PXr8EZnsN2cR3rimdRbt7D9tXxc9d5ejzk/I5krvnADTYTYGlnJhuAGDtp/RUVBI+/88RCilzvCgWqu9fD2cweoisnlmvpUdkbX4Qa+dNtNOKzmk+6//Y18ArhIiZ3OMa2KyNkrmdfWsSTgC/HJP/LwqzswTZ5PgVZDwsI1nJGdMSTnIklSmAx00qC4cNlspq44nxK1jtopGaQ1bqEq38XhT6tQFIX//vL1+BQH2+2lnOeJwau0svWVYyc85mlzpnLGJVdTq7rZHdfKbQ3nsTfm9+Tvqebjv+X12INzIEJBnTd/m0OL2siakoOUTk6gVmlh6QWXMyv15NOSueq8HP20mln+w+x1VBESDu7ZeH7H+v1bSvF7gqwgkp2WQnzWZL561dmDeg6SJHUnA500aG6/5AxEyhz2moqYnLyaFtNnfPzKEfzeEE6bmUuu2UCL4qMsOYbUlq3kf1ZLZX7zCY958cpsZqy6iDK1kcNJFm4vz2Z/8t/Yv6WMve+UDlrdhRB88OIR6ipaiGh6GXP6Wg6YyrBkLObK1Qv6dIxd/ylEiGZInEyT4mH1pZd1NFkGfCF2vV1IbGgnBfEKQSH40s0b5JRekjQMZKCTBtW3brsKnxrBp7Yi1vhVfB4/n71ZBMDqeZlYMxdzyFROStICfKZiPth08mbIGy9YQdy8NRwzVVGRmsZNRx0cSd7C1r8f48inlYNS78/eLObwtipKrC+wJOZSPrEcxW1J4r9uuqxP+/tagxzaVkmWXsg+axkhWxLrls/pWJ/7QTkBb4jUqEkUaDXEzF3J9Mmjd/JqSRpPZKCTBpXDauaqazfiUQKUJ0cTFdzK3i3FuJvCGc4fuP5S/Eok223FLPZVUl/i4ejO6pMe9/4N56KkLmS/qZjWjKVccbiC4qTdvPPcIY5srxpQnY/urGL7vwo4krCZq1sXsi2iHA8m7r/rekxa3/5E9n9QihLyEEiIJUCQazZc0bFO1w12vZvPZGM/uc4GDMPKl68+b0B1liSp72SgkwbditlTsaQv5KCpjMzITAKGh+2v5wNgNWtcsfEaPIqflqRJ6Mo+tv7raK/DDTp79Lb1eGIy2WY+innaRaw++imlyft559mDpxzsSg838O6zhyhN2MPV+V7yk+w0Kl7OvvyaPveENHSDPe8Xkk4BB80V6I7JLJo+pWN9wZ5aAs2CyJg46tQWFpyzrqNJU5KkoScDnTQk7r/+EnTDSk5EA9MC+zn0SWXHgO/T5qSjx2Sw31zKIsWEpz5E/u6akx5TVRUe/8r1tNiSeN9ykMT0L7D46FuUpISD3b4tpf3qoFKcW8/rv95HTUwBa/I+I5B5OkdNlUTNOf2kg8I7K8qpJ+QyCMU4CRDi6msu6bJ++1t5JHOIw7Z6hHBy9VmL+nxsSZIGTgY6aUg4rGYWnXsRtaoLS3wqumjls7eKOtbfccN6DCEojTfjFLlse/1on4KU3WLikXtuxaVFssV2iKwpt7P48GbyU7fz8ct5bPnTIQK+0AmPIYRg35ZSXn9qHzWxhWSWvEJsxpVsNR/FHZHG1zr1lOyLHe/mkaIc46i1FszxLMw6fjdXX9FKc0mAyEgrjaqbReedLzugSNIwk4FOGjJXnbmQkBZLjrWCGaE8DnxUjrc1AEBaYgyOGUvJ06pIt9tpqQxSnFvfp+PGR9r56p230qxYeNsengT6tNwP2D7z7xzdVcVL/7ODvJ3VPTaH1pW18q+f7+Xjl/MoTPuM+LJnmZNyM+/ZDtFiiuHRr9yAqvY9ELU0+KjP82GLNOFW/Ky55MIu6/d/XEwUFeQ7WtB0K+tXL+zzsSVJGhwy0ElDRlEU1l15OW7FTyghHhHycuCj45M6f3Xjhai6iWORXhziCFv/3be7OoDMlNjwVGGqibfsB8lKvZMvbi3h7zP+h0ZnFW/94QDPPfwJ7z57kO2vFfDxy3n89Qe72PS/O6isrOe9eX8k+/DrnBFzL+/bj9GChfvvvpUoh/XkhXdy4NMyIqmhyN6CSbdx9qIZHet03eDQtgoSra3Uqi7STlst7+YkaQTIQCcNqdXzMjFsSRywVDBVHOOz9wowdAMIN28mLV5FudZAmg0ai30nHVfXWfbUJG65LTwJ9Fv2gyRlfYn/+SCLrcrj/Gfp/9E8pZSS0hpyPyrl6L4KGs3VHFj0Fi+kPcBd7zWyJPF+tkQco1ExuOb6G0hL7P80XDlbi0iwNlKrukhduapLICs50IDJE6Am0sCsq3zxgjP6fXxJkgZOBjppyF121aX4CEJsJKFmg8J9dR3rbr50NZquURZlYKWYXe/m9+vY2VOTuO3226hTrbxu20tw1jq+VfAl7nm7hs98T/LTtHv42dx7+P9m3sPzzodZsm8LT35yEfHT72Sz4yB1isHFG65n2czUfp9XfXkrem2IpkgFs66w8fzTuqzfs/UYyVoZRVot1tQ5WM2yp6UkjYRBDXSPPPIIc+bMYeHChaxYsYItW7Z0rDMMg3vvvZesrCymT5/OU089NZhFS6PY8llTwRTLYWsNyRxl55a8jnV2i5moOUsp0mrJMHsp3deItyXQr+PPTkvkm/d/mQZbElssueQmKaRlfouv593EM/84nWf+No1n/j6PJz++kjWO/6Zu2jxes+2hRrVw9fW3sHpe5imdV87WYhK0Sgq0GrT4jC5zYYYCOhU5zRiRCgLB1Vece0plSJI0cIMa6NasWcPu3bvZt28fv/vd77j66qvx+cJdyp9//nkOHjzI0aNH2bFjBz/60Y84fPjwYBYvjWJnXnoxbsWPPdJM3TFflwmdb11/LpquUhWtYtNdHNjac3LWE5kUG8GPHrwT2/TTOGxq5GXbDvYlgSf7QrR5d6DPu5bSqWm84tzLdlM+rugMvnHfl1k2c8rJD94DYQgObS/H5PARUgzWXdZ1AHjxgXqidBclVhcWHGSmxJ1SOZIkDdygBrqLLroIuz2cOHL+/Pnouk5dXbiZatOmTdx9991omkZcXBwbN27kpZdeGszipVHs7EXTMelWih1uoqgh95OyjnVRDivWjPnka1VMNlWw+72CU8pOYDFpPHTDOm6966sEkueQa/LwniWXf1l3sdmyl53mSqodSSxdt5GffP0mJsdFnPL5VOY3Y2oJUGsPYg+ZWJTVNWDu3Z5PtLWeRrWVtNNOnsNOkqShYxqqA//xj38kKyuL1NTws4+SkhLS09M71mdkZLBr165e9/f7/fj9/o7XLpdrqKoqDQNFUZiyYhXFn20h02pj/8fFnH7Z9I7OG7decwFPP7mf1mgLoXqDssONpGWf2l3QjMlxfO8rG/EFdXKLaymtrsdpt7JkRioJkbZBOZ+9nxSQaKpkn9pATEbXIQOGblCZ20RiFJgNhavOWTEoZUqSdGr6dUe3Zs0aEhISevwqLT0+k/y7777L448/3u2OrXOPtJN1I3/iiSeIjo7u+EpLS+tPVaVR6AsXno5FV6mPBJpDVBUc//CSGO0ERzL55loSlUJ2vnfiFD59YTNrLJuewpWr5nLBkumDFuSEISjcW4vhDCeAveKitV3WVxW6iA61UGpuwmyK6lMeO0mShk6/At1HH31EXV1dj1/tgeiDDz7g1ltv5bXXXmPWrFkd+06dOpWioqKO18XFxUydOrXXsh5++GGam5s7vjoHUmlsslvMqAkZFGl1JGnl7Nta0GX9WZdcgE8J4ogQVOS29LtTynCpLnJh9/qotHmwG1YyUmK7rM/5rJAoWxOtio+s1WtGqJaSJLUb1Gd0H374ITfeeCP//Oc/Wbiwa3POhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvqSx76JLzyOEjikiRMFntR1j6iA85s6iWyize3GKJo7sGpwUPIMt97Mi4i211KouYhcu67a+cE8lHkcIi6FwyepFw19BSZK6GNRAd/vtt+P3+7n11ltZtGgRixYtIicnB4Abb7yRWbNmMXPmTJYvX86DDz7InDlzTnJEabxZmDUZm26hzObB6vVSntfUsU5RFOLmL6dSayLZXMOeT/o3pm64HPusgoAzhGYoXHlB144mrY1+LI1+Kk0t2BQHNsuQPQaXJKmPBvWvMC8vr9d1mqbx61//ejCLk8aouPlLqTi0jUXmavbvKCBt9vFOJ1+4ZA2/yt1KS5SKtzSEq85LVIJ9BGvbVXOtF0ujn4rkFuzCRkKUo8v6goPVRFsaKFG9ZC09Z4RqKUlSZ3JmFGnYXXXhajShEIowKN5b16VjUozThhqRQr6plnilioPby05wpOF3dG8F0ZZ6GlU38Yu7N1vm7jmGYQ+gCoWLzuq+XpKk4ScDnTTsEmKcWIWdcksLDo+H2pKWLuvPvOh8AkoIm9NNzrbiEaplz3J2FrQFMrjknJVd1gkhcB1upsHqJyKodbvbkyRpZMhAJ42IlGUraVTdRJvryd3ZNZitmpeJPaTRaNfRa4PUl7eOUC278nuCBIr9NFj9OEMmkmK6DjhvqvYQbXioUpuxTpk2QrWUJOnzZKCTRsQV565EMxSCzhB5e7s2TyqKgpYyjVKtgUStiv1bR8ddXVFuHXFaA1VqM5ap3TOQHztQidnailAEy885fQRqKElST2Sgk0ZEtNOGw7BQY/FgqgvhbvZ3WX/BJeegY6A5fBzZVd7nPHVDad9nxzDZ3QhFcPaFZ3ZbfygnH58thE1XWTYrvYcjSJI0EmSgk0ZM1LzF1KktxJjqKMit6bJuQeYk7LqJWnsArSlAQ4V7hGoZJoSg9lAjLruOM6gyLyOl2zb+Y83Um73YhRlVlX9akjRayL9GacRccv7pKAIMh5ecz7qPmbNnzaNCbSTBVMPBXSM7M05jlYfYgIcKrQktOrnb+tZGH1GGl0a1FceM7BGooSRJvZGBThoxk+OjiQxpNFqDNB9xdctYcMXFZwEgnAEO7SoZiSp2OLq/HKu9mYASYv7Z3af1KjpSg2IPpx46Uz6fk6RRRQY6aUSZkqZSrTYTa7RQV9a1d2V6cizOkJkqqxelJoirztvLUYbeoX2F+G0hrLrK2Utmd1+fk4/fEsQRUpmVljQCNZQkqTcy0Ekjauk5q9EVA7OthcO53ZsnnbPmU6M2E2eq4cjuihGoIei6QajQQ53Zi0OYMWnd/2waD1XTaPbjMLQRqKEkSSciA500ok7LzsSmq/jsOnn7irqtv+iCNSiA4vCTs7Nw2OsHUFPoIlp10aC24pg5t9v6UFDH6Q3SqLRiSc0Y/gpKknRCMtBJI0rTVOxYqTa1QokXvVM2A4CMlFicIRP1tiD+Ev+IpO7J3VeEavMAcFYPz9/qSlswWz0IBRacKZ/PSdJoIwOdNOJiFizGpXqJUFuoLW7ptt6UmkWl2ki8Vs+xfdXDXr+CPaV4bDrOkMrM1MRu648eKSVoC2ExVJbNyRj2+kmSdGIy0Ekj7uwzl4MAxe7l8IHuvSvPufAsDEVgsreyb+fwpu4JeEOYav1Um1qwmHqeu7Jgfz4t5gARQaXH53eSJI0s+VcpjbipybFEhFTc1hDH9nV/Drdg2mScQY1mu0HzUTd60OjhKEOj9Eg9URYXbsVP0rKVPW4jSl3Uq61Y7BE9rpckaWTJQCeNChazg1pTK2q5t8fpvrT4yVRojcTTRNnRxmGrV87eAoTNhyLg/NVLuq0PeEPYCBFUdOIXLR62ekmS1Hcy0EmjQsLiZbgVP06Tm6ZqT7f1y845k6CiY7G1sH/X8DVfVubU0GINERnSSIhxdltfXdqMYvUBcNrpi4atXpIk9Z0MdNKocO6ZS0EAVh/HDnUfL7d6QRb2kIrHYVCyr3ZYJnlubfQR6fZTpTVjikzocZujecUELDoOXSMtMWbI6yRJUv/JQCeNCsmxkUSGVLxWnSM5Bd3Wq6qK2RJJhamZCLeXhsqhn+S54EA1NmszQUVn+ppVPW5TnnOMFlMAR2jIqyNJ0imSgU4aNayKhQbNg+9YQ4/r085YhUfxE2lt5PDush63GUy5ewoI2QKYDIWzl8/peaOyVhpUN5bI2CGvjyRJp0YGOmnUcM7MxqV6cepB/J5gt/UXrVqEyVAI2oMc2j20yViFELgON9NoCRAR0rBbzN220XUDs2KgKwYpy5cPaX0kSTp1ppGuwGDRdZ1gsPvFUTo5s9mMpo38HI2nnbWS4oLdaFYPFUWNZGZ3nRw5wm7BoZups/owl/vxtQaxRXQPQIOhocJNtHBzVHWRkDK9x20aK91gCc/UsmKpTM0jSaPVuAh0ra2tlJWVjYos1GORoiikpqYSETGy48BmT03Crqv4rSEOHyjsFugAnLPnU5n/GXNNDRTk1JB9+pQhqcvh/WWYrS0IRbDs7DN63KYgv4KgOdwRJSUuckjqIUnSwI35QKfrOmVlZTgcDhITE1EUZaSrNKYIIaitraWsrIwZM2aM6J2doig4Qwous59ATjFs6D5A+/zzzuBPxz5DsXvYtyt/yALdkb2FWG06Nl1l+ez0HrcpPHQMtzmIIyQ/YEnSaDbmA10wGEQIQWJiIna7faSrMyYlJiZSVFREMBgc8SZMc2wiNe4a0msCCCG6fXCZNimeiJCGy6bjO9yCrhtogzztlh400It91CZ5sBsWVLXn43vzKmmM8JBgkb93kjSajZvOKPJO7tSNpvcu7fSV6IqB1ezD3dRzpgItbjIVWhMxejNVx5oHvQ6VBU3EaC6aVDcRc+b3up3FZxBQQkTMmTfodZAkafCMm0DXX7oh2JZfzz/3lrMtvx7dGNzmp2AwyOOPP87s2bOZO3cuixcvZv369ezdu3dQyzmR7du3s2jRImbOnMm5555LZWXlsJV9qlYtmYMiwLD6KSuq7XGbxeesJqTo2Owu9n/WfczdQB3YVwRtaXnOPue0HrcJBXQUS3jOzcWnLRr0OkiSNHjGfNPlqdicW8njrx2kstnXsWxStI3HLstm3bxJg1LGrbfeSmtrK9u2bSM2NjzG6rXXXuPAgQMsWrSoy7a6rg96k6EQguuvv57f//73rF27lp/85Cc88MAD/OUvfxnUcgZbtNNGZEjDZ9HJO1zA7MWp3bZZs2AG215R8dkNqvZUwXWDW4fCvWXYbToRQZVpk+J73KahqhXdHMRsqMyamjy4FZAkaVBNuDu6zbmVfPn53V2CHEBVs48vP7+bzbkDv+vJy8vj1Vdf5ZlnnukIcgCXXXYZ119/Pc8++yzr1q3jpptuYtmyZezYsYPNmzezZMkSFixYwFlnncXBgwcBeP/991m2bFnHMXJzc8nIyACgqKiIhIQEvvnNb7Jy5Urmzp3Lli1bANi1axdWq5W1a9cCcNddd/GPf/xjTAzBsAmVJs1HfU73lD0QTtZq1RxUmlzYW/w9zo15qnzuINaGANUmF2ZL771QCwrL8JvDOep6e4YnSdLoMKH+QnVD8PhrB+mpkbJ92eOvHRxwM+aePXuYPn06cXFxvW7z8ccf8+ijj7Jr1y6ysrK44YYbeO6559i/fz933nknGzdu7FNZ9fX1zJ8/n+3bt/OHP/yB6667DrfbTUlJCenpx3sLRkZGEhkZOSaaLx2T0mhWPWjN/l63mbTidFpUH1HmBo7sLR+0sksO1xFhbsajBJi0sudmS4CSA3m4tSBWY/hSBkmSdGomVKDbUdjQ7U6uMwFUNvvYUdjzFFT90bmDR35+PosWLWLWrFnccccdAKxevZoZM2YAx5+lzZ8f7vhw/fXXU1ZW1qegZLFYuPHGGwE47bTTSElJYd++fd3qAIyZcYZZZ4SHFZhNOn5vz5NIXnTWUjShoDsCHNjVPYfdqdq3Kx9h86EKhXNXLep1O19+Dc2KF6tD5qCTpNFuQgW6mpbeg9ypbNebxYsXk5eXR2NjOG9aVlYWe/fu5eGHH+5Y1nlwdk/d6CEcqEwmE7qudyzz+U5eN0VRmDp1KkVFRR3LWlpaaGlpYdKkwXkGOZSWzM1EFQqGJUhNac+9KmOcNpwhE/UWP8ESf68BsT+EIajJbaTZFiIyqBIf2XNGcQA1EJ76Kzp77oDLlSRpaE2oQJcUaRvU7XozY8YMrrjiCm6//Xaampo6lrvdPc+4f/rpp7N3714OHToEwEsvvURqaiopKSlkZmZSWFhIfX09AH/+85+77BsIBHjhhRcA2LFjB1VVVSxYsIClS5fi8/l4//33AXj66adZv349ZvPQTJk1mJw2CxEhFb9Z58iR3u/WrNNmU6M2E6c1UnygbsDl1pa2EBv0UK260GK6z8rSTg8aqFr47njusoUDLleSpKE1JIHu/fffR9M0fvWrX3UsMwyDe++9l6ysLKZPn85TTz01FEWf0IrMOCZF2+ht1JhCuPfliszen6311bPPPsv8+fNZuXIl2dnZrFq1infeeYcHH3yw27aJiYn8+c9/5vrrr2fhwoX85je/4eWXXwZgypQpfPOb32TZsmWcffbZxMTEdNk3Pj6eY8eOsXLlSm699VZefPFFnE4nqqry/PPPc//99zNz5kxef/11nnzyyQGf13CxGdBiClCe03uS1XPPW41QQLW72bvz2IDLPLinBKutiZCiM/us1b1u11jtxrDomIXKjLTeA6IkSaPDoA8vaGlp4Vvf+hYXXXRRl+XPP/88Bw8e5OjRozQ3N7NkyRLOOeccZs+ePdhV6JWmKjx2WTZffn43CnTplNIe/B67LBtNHfgAaovFwuOPP87jjz/ebd3KlSu55ZZbuixbt24d69at6/FY3/nOd/jOd77T8frzx+ytnNNPP73jed1YY4mOo85bR0xF73nnZqcn4wyqtNh13AeaMAyBOoCf3dHdpUTadSyGwtqlvf9eFhVXEDDpOELqoM/KIknS4Bv0v9IHHniABx98kISErhmZN23axN13342macTFxbFx40ZeeumlwS7+pNbNm8RvblhCSnTX5smUaBu/uWHJoI2jkwYmZdkyDEWE0+CEeu/ZaIpOokJrIjbUSlX+qc+S4m0JoNYEqDG7sQsrFlPv4xqL2npc2nTZ41KSxoJBvaN78803aWpq4pprruHf//53l3Wf7+6ekZHBrl27ej2W3+/H7z/evdzlcg1aPdfNm8T52SnsKGygpsVHUmS4uXIw7uSGU0ZGBnV1A382NRqtWJrNro/fBEuAhko3iWk9ZweYe9Yatr75V2y2JvZtL2DyjCWnVF5BTg2xpgbKVDdTs3vOVtDOk1dJs8PDJHvvnVUkSRo9+hXo1qxZ09Fh4vP27NnDQw89xNtvv93r/p17Fp6sq/sTTzzRY3PcYNFUhdOzep71Qhp5SbGROHSNoEWnoKCcxLSemxLPXjqbXf9W8dsNqj6rRVwnUE7hA8u+Xcew2L0oAi48p3vWhM5Uj0HIaRA5ffia3SVJOnX9arr86KOPqKur6/GruLiYyspKVqxYQUZGBn/729947LHHeOyxxwC6dXcvLi5m6tSpvZb18MMP09zc3PFVWlp6amcojVmOkMBtClKQ03tHE7NJw6bYqTK3Yvd4qSzof/OlHjJoOtJKky1EREhjSkJ079vqBqo5/CFtzspF/S5LkqThN2hNl6tXr6ampqbj9S233MKyZcu45557ANiwYQNPP/00V111Fc3NzWzatInNmzf3ejyr1YrVah2s6kljkMVipw4PtvyaE26XsHQ5BXveJ8NSw75thUyevrhf5ZQeaiBWd3FMbSIytvvcmp0113gxzCE0oTAnc3K/ypEkaWQMW5exG2+8kVmzZjFz5kyWL1/Ogw8+yJw5c4areGkMisyeR0AJYQ3oJ9zu4rNXhGdJceoU7qo9YeeVnuzZegyLrQldMVhyzpoTbltWXk3ArOMMaZhkj0tJGhOGLHvBs88+2+W1pmn8+te/HqripHFo8crFHDm0HcUSwtcaxBbR82D3hCgHNsNKpcWDs9FDcW490xYl9qmMUFCnfH8zcdECm66yan7WCbcvPpKHRwthC8oel5I0Vkzcj6SGDoUfQc7fwv8bJ75r6K/RkI/ummuuYfLkySiKQmtr67CVO1hmTk3CYqjoFp2a8qYTbhu3cDn1agtx5kp2fZjX5zIK99URFWqh0tSKyRRx0nFxrsMlNKseLGZLn8uQJGlkTcxAd/Bf8LN58Nyl8Pfbw///bF54+SC59dZb2bNnD9u2bePAgQPs2bOH22+/nQMHDnTbtvNcloPp7rvvHtbAOthUVcUZUvCYQhwr6DllT7srLjg93HwZoVJ90E1rY9/mK935Xh7R1hpaVC9TTus9W0E70RwgqOhETM3o0/ElSRp5Ey/QHfwXvHwTuCq6LndVhpcPQrAbDfnoAM477zySksb2FFU2AS2an6qcoyfcLiHKgRkHpZZmoqhh33snDowATTUeGo758TlVzIbCFWuXn3Sf9hEyGSuX9qn+kiSNvIkV6AwdNn8LTpSRbvNDA27GHA356MYLa0w8LYqXUHnLSbedesYamlQPCeYG9n9YSvAknVj2vl9MlFJBqaUJsykKh/XEE17rIQNhAkXAvBnpJ9xWkqTRY2IFuuKt3e/kuhDgKg9vN0CjIR/deJC0ZAkooPUhGe6VZy/FrCu4oswIb4Cc98p63dbjCnDwwwoSLM20Kj6mrTpxb0sAV70X3axjN0xE2OUzOkkaKyZWoGutHtztejEa8tGNF4sWh4egKGaDwElyztktZoieQqGpjikcZMcb+fhagz1uu2tzIYRaaIjSMOsql65ZdNK6lJZV49d0bEPzSFWSpCEysQJdRPLgbteL0ZCPbryYnBCNzdAImUPUVpx81pMLL7+QACG06Gj8AR+f/L17D8za0hZyPigj1ThCoVaLlpyFzXLykTbFh/PwaiEshhxaIEljyZCNoxuV0s+AqMnhjic9PqdTwuvTTzypb188++yzfO9732PlypVomkZsbCxJSUk89NBD3eYL7ZyPTtd1YmJiesxHl5GRwZlnntll38756FpbWzvy0QFcfvnl7N69G4BZs2YxY8aMjkSsY4kjpOA36RwrKGXKSeYnXTYzjTeVCI7ZGphcX8jhbTaSM6KYd1Z4xhOfO8ibv83Bp5WhRCZgUMoVl5/Xp3q0HCnBpXhJtcgZeyRpLFHEyWZXHiVcLhfR0dE0NzcTFRXVsdzn81FYWEhmZiY2Wx8yg7f3ugR6zEi38U+Qffmg1XsoFRUVsWzZsgFnMOj3ezjM/u/h/8FrtpISk8EXHzh5J52/v/8ZOe+/xhp3BluUUia7VjH79BTip0Sw791SXK2tTG99jwNpMTSb7fzPo/f3qR7P3/drjsXVMmfKbK694wsDPS1Jkk5Rb/GgNxOr6RLCQWzjnyDqc3nnoiaPqSA3kVgjY3ApXkIlTX3afv2axYRwst9ew3mVTeROf5Nj+6r49J/5NNqrqFCfxEieTavi49zLL+lzPdoffaYt799cmpIkjayJ1XTZLvtymH1JuHdla3X4mVz6GaD2nmxzNBrP+eg6i1+4kOKdW1D7mOhU01RWX3wpn76+CV/aYi7+7O88du59BM0Ki4o07g1+mfeiywlZE1m7cHqfjqnrBrQNLZg/M2MAZyNJ0nCbmIEOwkEt8+RdyqWRt2jZfHbv3IJigqBfx2w9+QeSdSvm8N6HaexsyefCtOv5zRubIVSKedIV7E0K4kHn6mvX97kOLXVeQqbw0IJIh3xGJ0ljycRrupTGnLSkGKyGhm4OUl958oHj7f7rrutoVR28YzuEf/Y6HHO/zr5EnRKtjrTl57A4a0qfj1VaXk3AJIcWSNJYJAOdNOopihLueWnWyS/ofRD458VH2rnl1pupscayxZLL362fckxrIjp7DbdfuqpfdSg+fAyPHFogSWPSxG26lMYUq2HQaglSevAInDOvz/tlT03iyYe+wquf5NLq8bF8Tjrz0vs/TrL5SDEtipcoi5wRRZLGGhnopDHBEhFFTbCZ+IL+d74xaSobzhzYIHrRGCAUZ+CcMnVAx5EkafhN2KZL3dDZWbWTNwreYGfVTvRxlo+uoqKCCy+8kFmzZrFgwQI2btxIQ0PDsJQ9FGLmzsdQBGpgZJoO2ydVS122ZETKlyTp1E3IO7p3it/hBzt+QLXn+JyWyY5kHlrxEOel922WjJO59dZbaW1tZdu2bR2pel577TUOHDjAokWLumyr6zqaNrhDGzRN49FHH2X16tUAPPjggzz00EP89re/HdRyhsu85fPZv+8jFDMIQ6Cowzefp2EIhFmAgHmzM4atXEmSBseEu6N7p/gdHnj/gS5BDqDGU8MD7z/AO8XvDLiM0ZCPLjk5uSPIAaxcuZKCgoIBn9tImT45AbOhoptDtDb5h7Vsd5Mf3WRgN0xEOUbfzDGSJJ3YhLqj0w2dH+z4AaKHeS4FAgWFH+74IWennY02gMHjfc1Ht2fPHmbMmEFNTQ3Z2dm89957zJ8/nxdeeIGNGzeSm5t70rLa89H95Cc/4dNPP2X9+vXk5+d3zHcJ4TvGX//616xfv/6Uz2mkqaqKQ1cJmHQqyuuYFZc6bGVXVtYRMOnY9fGTFUKSJpIJdUe3u2Z3tzu5zgSCKk8Vu2t2D7is0ZKPTgjBV77yFWJiYrj33nsHfF4jyaob+DSd4mOFw1puSX5h29ACOYhOksaiCRXoaj21g7pdb0ZTPrr77ruP0tJSNm3ahKqO7R+3RTPhUn3UHcgf1nLrDxyjVfFhMY2tKeIkSQob21e+fkp0JA7qdr0ZLfno7rvvPo4dO8arr76KZRyM/7KnTMKvBDFqPcNabrC2laCiY0sYWJ5CSZJGxoR6RrckaQnJjmRqPDU9PqdTUEh2JLMkaeBdyEc6H90nn3zCL3/5S2bPns3KlSsByMzM5NVXXx3wuY2UyUuXkvdWMcpwJ5ZqS2yevHDRMBcsSdJgmHD56Np7XQJdgp3SNlLqp2t/OmhDDIbaRMlH167e5eaXP/0xM1xJfOFHd6OZhqdB4vmv/4pj0XXccc/XmJIQMyxlSpLUO5mP7iTOSz+Pn679KUmOpC7Lkx3JYyrITUTxUU5sugndrNM8TM2XoYCOYRKYhcrk+OhhKVOSpME1oZou252Xfh5np53N7prd1HpqSXQksiRpyYCGFIyEiZKPrjO7DgGTTklpFXGT+pZLbiCaat2ETAZ2Xeuxw5AkSaPfhAx0AJqqsTxl+UhXQ+onq2HgtgQpPnyMRSuGPtCVVlTj10JY9THRwi9JUg8mXNOlNLZZrDZcipeWI6XDUl7Z4aN41CBmIdPzSNJYJQOdNKZEZGSiKwa4AsNSXmteKa2KH6vdPizlSZI0+GSgk8aUaSuWAgzbpM56cxChCCKmZgxLeZIkDb4JG+iEruPevoPmf7+Oe/sOhD6+0vS43W5WrlzJwoULWbhwIevWraOoqGhYyh5K2dNTw+PozIKALzT0BYpwQE1bumjoy5IkaUhMyM4orrfeovr7TxCqqupYZkpJIfmRh4m64IJBKWOk0/TY7XbeeecdIiMjAfjZz37GAw88wCuvvDKo5Qw3h9WCwzARMunUV7UwKSP25DudIiEEmAEBc6bLhKuSNFZNuDs611tvUX7/17oEOYBQdTXl938N11tvDbiM0ZCmR1XVjiAnhMDlco35uS7b2UMCn0mnsLhsSMvxu0Ph9DzCRKTDOqRlSZI0dAb9yvfUU08xZ84c5s2bx4IFCzomITYMg3vvvZesrCymT5/OU089NdhFn5TQdaq//wT0NBlM27Lq7z8x4GbMvqbpefTRR9m1axdZWVnccMMNPPfcc+zfv58777yTjRs39qms9jQ927dv5w9/+APXXXddlzk1zzvvPFJSUnj55Zf5xS9+MaDzGi3MQuBWA1QcODKk5dRWNxHUDGwyPY8kjWmDGuj++c9/8sILL/Dpp5+Sm5vLO++8g9lsBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bxJ+XZ9Vm3O7kuhCBUVYVn12cDLmu0pOl55513qKys5Nprr+V///d/B3xeo4EtIooWxYe/cGgHyxcXl+DTQlh0ObRAksayQQ10P/7xj3n88ceJjg5PlZSUlNTx7GnTpk3cfffdaJpGXFwcGzdu5KWXXhrM4k8qVNu39Dt93a43oylND4SbMe+4445umQ/GqujZcxCKAN/Q5oerPnAUtxrALG/oJGlMG9RAd/DgQXbt2sWqVatYtmxZl6aykpIS0tPTO15nZGRQUlLS67H8fj8ul6vL10CZEvuWfqev2/VmNKTpqa6upqGhoWO7l156qSN9z1g3a2n4zhdtaCOQr6QRrxLAFh0zpOVIkjS0+tXrcs2aNd1SzLTbs2cPoVCI/Px8PvzwQ5qbmznrrLOYPn06F198MdD1TuNkSROeeOIJHn/88f5U76Qcy5ZiSkkhVF3d83M6RcGUnIxj2dIBlzXSaXoOHz7MHXfcQSgUQghBVlYWzz///IDPazSYMTUFTSgIs4HfE8TqMA9JOcKvgxNiZmcPyfElSRoeg5qmZ968efziF7/gnHPOAeC//uu/cDgcfPe73+WSSy7hlltuYcOGDd3W9cTv9+P3+zteu1wu0tLSBpymp73XJdA12LUF4Sk//9mgDTEYahMtTU9nT37ne8TpEVx4x41MntZ7p5+BeOFrvyIvpo4v3no3s9JThqQMSZL6b0TT9Fx33XVs3rwZCF88P/jgAxYuXAjAhg0bePrpp9F1nYaGBjZt2sS1117b67GsVitRUVFdvgZD1AUXMOXnP8OU3DVbtCk5eUwFuYnOGjLwaToFxUMz56VhCAwTaEIhKzXp5DtIkjRqDeqA8a9//evcddddZGdnoygKGzZs4MorrwTgxhtvZOfOncycOROABx98kDlz5gxm8X0WdcEFRJ57brgXZm0tpsREHMuWogzyoO2hNhHT9LSzIHCpAapyD8PZCwf9+K0NPnSTjt0wYdLGx/hDSZqoBjXQ2e12/vSnP/W4TtM0fv3rXw9mcQOiaBrOlStGuhrSKbJFRVPhb8RX3HDyjU9BRWUdfs3AGpLpeSRprJMfVaUxKTp7LiiAf2jGuJUcy8erBbHI9DySNObJQCeNSbOXhIcYKEM0xKDhYD6tih+LaWh6dEqSNHxkoJPGpOlTEtGEijAb+NzBQT9+qM5DSNGxJ8velpI01slAJ41Jmqbi0DWCJp26qoFPJtBN26QryQsXDf6xJUkaVhM20BmGoPxII0d3VlF+pBHDGNxOByOdj66z2267DUVRaG1tHfayh5JNDw8xKCwsHvyDm8JNotnzpw/+sSVJGlYTMh9d/p4aPtqUh7vp+IB0Z4yVNdfOIGvx4IyZGul8dO1ee+21HufRHA8sQJPmpzL3KJy3ZNCOG/CFECaBxdBIiok4+Q6SJI1qE+6OLn9PDZufzu0S5ADcTX42P51L/p6aAZcxGvLRQTiFz+OPP85Pf/rTAZ/TaGSNisGt+AmUDu4Qg8aaVoKajl1Xx+2HBEmaSCbUHZ1hCD7alHfCbT5+OY/MhYmo6qlf4Pqaj27Pnj3MmDGDmpoasrOzee+995g/fz4vvPACGzduJDc396Rlteej+8lPfsKnn37K+vXryc/Px+l08tWvfpXvfve7HdkkxpvYuXNh94cQGNxm56KScnyajkWOoZOkcWFC3dFV5jV1u5P7vNZGP5V5TQMua6Tz0f31r3/FYrFw6aWXDvhcRqvZS+YC4SEGgzhlK5UHj+BRg5iRY+gkaTyYUIHO7TpxkOvvdr0ZDfno3nvvPbZs2UJGRkZHU+fcuXPJyckZyKmNKtMmJWISKoZZH9QhBp6CGtyKD6vTOWjHlCRp5EyoQOeMsg7qdr0ZDfnonnrqKcrKyigqKqKoqAiAAwcOdNw1jgftQwxCJmNQhxjoniBCgcgZswftmJIkjZwJ9Yxu0owYnDHWEzZfRsRamTQjZsBljXQ+uonCGjLwmkIUFBaTNj1hUI7Z/nx2xtLBnyxakqThN6j56IZSb/mH+ptLrb3XZW/W3TVv0IYYDLWJnI+u3e8e/h8aLSYyojPY+MAXB3w8XTf4y7eeosBZz7e+822s5gn1WVCSxoQRzUc3FmQtTmLdXfNwxnRtnoyItY6pICeF2WJi8Sh+AmVNg3K8ljovIZOB3TDJICdJ48SE/EvOWpxE5sLEcC9Mlx9nVLi5ciBDCkbCRM5H1y523gLYuQWCg9NDsrSihoCmY5NDCyRp3JiQgQ7Cz2GmzIo9+YbSqJa9eA67dm5BMSm99l7tj5IjeXi0IPaQHFogSePFhGu6lMaXjJT48BADk4G3ZeBDDFyHi2lRfFislkGonSRJo4EMdNKYpqoqjpBG0BSiurJxwMcLNfjRFQPHlLRBqJ0kSaOBDHTSmGfVDXwmnYJjA89i0P4Hkbp08CaJliRpZE3YQGcYOqUH9nPokw8oPbAfw9BPvlM/jIY0PYqisGDBAhYtWsSiRYv46KOPhq3s4WRRFVpVPzW5J57H9GSEEIj29DyzMwahZpIkjQYTsjNK3vatbHn2t7Q2HO+xGBGXwDm33MmMlWcMShmjJU3P1q1bu0w3Nh7ZYxMod1cRrBjY7CgeVwDDbGAzTMRG2AepdpIkjbQJd0eXt30r//rp97sEOYDWhjr+9dPvk7d968DLGCVpeiaKuLYPDpoxsB6X1ZWNBDQde2hsDTORJOnEJlSgMwydLc/+9oTbvPfcbwfcjNnXND2PPvoou3btIisrixtuuIHnnnuO/fv3c+edd7Jx48Y+ldWepmf79u384Q9/4Lrrrusyp+batWtZuHAhDzzwQK9zbY51Cxa3zUlpNggGTv1nV1RYiFcLYRnkZmxJkkbWhAp05YcOdLuT+7yW+jrKDx0YcFkjnaYHoLi4mF27drF161Zqa2t58MEHB3xeo9GU+GishoZu1mmobDnl49TlHKNV9WNRJ9SfhSSNexPqL7q1qW/dz/u6XW9GQ5oegKlTpwLgdDr5yle+Mm47oyiKgiOkEDDpFBSVn/JxAhUu/EoQe/zgTA4tSdLoMKECXURM32ZC6et2vRkNaXoaGxvxeDwAGIbBpk2bWLx48YDOazSzGgatWoDS3KOnfpC2yVDiF8qsBZI0nkyoXpdT5swlIi7hhM2XkfEJTJkzd8BljXSanv3793PXXXehKAqhUIglS5bw85//fMDnNVpZHBHU6C3EF9ac0v7CECha+E54znyZh06SxpMJl6anvddlby5/4JFBG2Iw1GSanuP+/tf/kHNgG9Prk7nhl1/u9/4tDT7+8cTvKbE38Mjjjw54zkxJkoaOTNNzEjNWnsHlDzxCRFzX5zCR8QljKshJXWUvXwCAqoGh939C5vKyWoJmHbuuyiAnSePMhGq6bDdj5RlkLV8Z7oXZ1EhETCxT5sxFVYdm0PZQkWl6jpuZlhye3Nms01zrJTalf1nWi/LCQwusg5TuR5Kk0WNCBjoAVdVIm7tgpKshDRJNU3GGVAJmnZKSKmJTsvq1f/2BAlpUHwnahP2TkKRxa8I1XUrjl1U38GhBCg8d6/e+os6HTwliT5k8BDWTJGkkyUAnjRsWs5Vm1UvL4bJ+76sQ7pM1ZfnSwa6WJEkjbFADXX5+Pueeey6LFi1i9uzZfOMb38Awws88DMPg3nvvJSsri+nTp/PUU08NZtGShDNzGkFFR2ntXwJWvzcEJgECFs6bPkS1kyRppAxqoPvmN7/JFVdcwd69e9m7dy9vvfUWmzdvBuD555/n4MGDHD16lB07dvCjH/2Iw4cPD2bx0gQ3fWX4bkxVw+Pi+qqmrAndEsIusxZI0rg06E2Xzc3NAHi9XoLBIJMmTQJg06ZN3H333WiaRlxcHBs3buSll14a7OL7TBgCX34Tnr01+PKb+nVh7IvRkI+usbGR66+/nhkzZjBnzhweeuihYSt7JMyfMRVVKAhLuOdlX+XlleDTdOz6mBhSKklSPw1qF7Of/exnXHbZZfzmN7+hsbGRRx99tGPaqZKSEtLT0zu2zcjIYNeuXb0ey+/34/f7O167XAPLNdaZN7eOptfy0ZsDHcu0aAsxl2Vhnzc48xyOhnx0t912G6tWreqYIqwvk0SPZTaLCYeuETSFKCqoYlHytD7tV5GTh1sL4uhfi6ckSWNEv+7o1qxZQ0JCQo9fpaWlPP3009x4441UVFRQXFzMiy++2CU/WueBuCebkOWJJ54gOjq64ystLa2fp9Yzb24d9c8f6hLkAPTmAPXPH8KbO/BxaaMhH92xY8fYvXs3DzzwQMe+7XfX45lNF3hNOscO5fd5H1HuwqV4sUQPbI5TSZJGp37d0Z1s9vtf/OIXFBQUAJCUlMRFF13EBx98wDnnnMPUqVMpKipi+fLlQDiFTPvs+j15+OGHu1ykXS7XgIOdMARNr534Atj0WgG27HgU9dRnx+hrPro9e/YwY8YMampqyM7O5r333mP+/Pm88MILbNy4kdzc3JOW1Z6P7ic/+Qmffvop69evJz8/n4MHD5KWlsbdd9/Nrl27SEhI4Ic//OG4ntgZwGIy06j6sB2s6NP2Qgg0AUIRJCySPS4laTwa1Gd006ZN48033wTCM/Vv2bKFefPmAbBhwwaefvppdF2noaGBTZs2ce211/Z6LKvVSlRUVJevgfIXNne7k/s8vdmPv7B5wGWNdD66YDDItm3b+OIXv8ju3bv5xje+wWWXXUYoFBrwuY1m9mkz8CoBLN6+JU9tbfSjmMPvydJl2UNZNUmSRsigBrrnnnuO3/72tyxYsIBly5ZxwQUXcM011wBw4403MmvWLGbOnMny5ct58MEHmTNnzmAWf1JGy4mDXH+3681oyEeXnp7OlClTOPvsswG48MILCQQClJX1f4zZWDL3jHAzr2oO4m72n2RrKC+uI2QJYdM1JidED3X1JEkaAYPaGWXx4sV88sknPa7TNI1f//rXg1lcv6mRlkHdrjed89E988wzxMTEACfOR3f77bdz6NAh5syZ0yUfna7rHfno4uPje81Hd+ONN3bJR+dwOIiKimL//v0sWLCgo+PPlClTBnRuo92C6Wm8IVQMS5DS/DpmLznx+R49kI/HFMIxvm90JWlCm1AT+1kzo9GiLSdsvtSirVgzB/7JfqTz0bXX4Utf+hI+nw+bzcbf//53zGbzgM9tNDNpKhFBBZ9Z58iBgpMGurrcclxWH1FCThIkSePVhMtH197rsjfxN8wZtCEGQ03mo+vZ/z3yPTwmE1H+DL70w96fAwtD8PxX/0R+ciGZidO4+as3DWMtJUk6VTIf3UnY5yUQf8MctOiuzZNatHVMBTmpd5aUVFyqF5sriB7qPe1OU40HiyX8HC/ztBXDVT1JkobZhGq6bGefl4AtOx5/YTNGSwA10oI1M3pAQwpGgsxH17NpZ6yk5N+FmK0eaktcpEyL6XG7/KOVGNYgqlBYOrdvg8slSRp7JtwdXTtFVbBlxeBYlIQtK2bMBTmpdysXZKEJBcMS5Mih0l63y8vJx2sOERlUcdoG1gFJkqTRa8IGOmn8slvMRAZV3JYQx3YX9biNEAL34SYaTF6s6vjuoCNJE50MdNK4ZLE4qdNaUcr9BP3dB483VXtw6H5aFR+OmcM7nlOSpOElA500LsUvXYpPCeIwtVBysL7b+sN7ytGs4XGNy1Yt67ZekqTxY8IGOsMwKCwsJCcnh8LCwo4EsYNlpNP0HDx4kEWLFnV8ZWRknHDuzfFmzRmLQIBq9bB3x7Fu6w/uLkS36lh1lezM8T/ZtSRNZBOy1+XBgwfZvHlzl9Q/UVFRrFu3juzswZnvcKTT9GRnZ3cJqvfcc0+P04yNV5Pjo3HqKj4buHKaCAV0TJbwe+xu8hMq8dOYHMCma6jqhP28J0kTwoT7Cz948CAvv/xyt/x2LpeLl19+uSM9zkCMhjQ9nfn9fl588UVuv/32AZ/bWKLaY6kwNREdaubAx8ezGex+u4g4rY5axYVtupzIWZLGuwkV6AzDYPPmzSfcZvPmzQNuxuxrmp5HH32UXbt2kZWVxQ033MBzzz3H/v37ufPOO9m4cWOfympP07N9+3b+8Ic/cN1113WbU/OVV14hMzOz253keDfzzDPxKUEiLLVsf+MYoaCOrzVIzodlaHY3KHDOeatGupqSJA2xCRXoiouLT5qp3OVyUVxcPOCyRjpNT2fPPPPMhLubAzh/5VzMhoLfacLfGuQfP93DKz/5DD3kxmVXcAY1ZqUljXQ1JUkaYhMq0LW2tg7qdr0ZDWl62hUXF7N161auu+66Uz6fscpmMaGZoqk0txIf/Dc1jfXUB+rJ9G+jQmvCiB/fmRwkSQqbUIGuc3AZjO160zlNT1NTU8fyE6Xp2bt3b0dWg85pejIzMzvS9AC9pukBuqTpaffHP/6RK6+8siNV0ESTuWoVzaqHpJgF/CP+m3xsewQSZxAgxJnrzhnp6kmSNAwmVK/L9PR0oqKiTth8GRUVRXp6+oDLGg1peoQQPPvss/zxj38c8PmMVdesXcr/fvAOR5wuvpe7AUwRfDClBkwxnJ6dMdLVkyRpGEy4ND3tvS57s3HjxkEbYjDUZJqevnnhrU/J27qZ+cGp+JQAeaYqVl36Bc5fNnukqyZJ0imQaXpOIjs7m40bN3Z7c6KiosZUkJP67gvnriCQNId9phKOaNVYpi3nvKWzRrpakiQNkwnVdNkuOzub2bNnU1xcTGtrKxEREaSnp4+5gcMyTU/faJrK979yLf/ZlYfFrHH2QpmSR5ImkgkZ6ABUVSUzM3OkqyENowuXzRjpKkiSNALG1i2MJEmSJPXTuAl0Y6RPzagk3ztJksazMd90aTabURSF2tpaEhMTJ9TExYNBCEFtbS2KomA2ywSkkiSNP2M+0GmaRmpqKmVlZRQVFY10dcYkRVFITU0d9AwKkiRJo8GYD3QQnslkxowZBIPBka7KmGQ2m2WQkyRp3BoXgQ7Cd3byYi1JkiR93rjpjCJJkiRJPRkzd3TtPQNPlmZHkiRJGt/a40Bfe4yPmUDX0tICQFpa2gjXRJIkSRoNWlpaiI6OPul2Y2ZSZ8MwqKioIDIycsiHELhcLtLS0igtLe3ThKGjgazz8JB1Hnpjrb4g6zxc2utcUlKCoihMnjy5T1M3jpk7OlVVSU1NHdYyo6KixswvQDtZ5+Eh6zz0xlp9QdZ5uERHR/erzrIziiRJkjSuyUAnSZIkjWsy0PXAarXy2GOPYbVaR7oqfSbrPDxknYfeWKsvyDoPl1Ot85jpjCJJkiRJp0Le0UmSJEnjmgx0kiRJ0rgmA50kSZI0rslA1wfvv/8+mqbxq1/9aqSrclLf/va3mT9/PosWLWLRokVs2rRppKt0Uo888ghz5sxh4cKFrFixgi1btox0lU7qmWeeYf78+ZhMplH9e5GXl8cZZ5zBzJkzWbFiBQcPHhzpKp3QfffdR0ZGBoqikJubO9LV6ROfz8f69euZOXMmixYtYt26dWMiZdgFF1zAggULWLRoEWvWrGHv3r0jXaU+efzxx/v/+yGkE3K5XGLFihXikksuEb/85S9Hujon1djY2PF9eXm5iIyMFA0NDSNXoT544403hMfjEUIIsXfvXhETEyO8Xu8I1+rE9u7dKw4ePChuvPHGUf17cfbZZ4s//vGPQggh/vrXv4rTTjttZCt0Eh988IEoLS0V6enpIicnZ6Sr0yder1e8/vrrwjAMIYQQv/zlL8X5558/wrU6uc7XildffVUsXrx45CrTR5999plYt26dmDp1ar9+P+Qd3Uk88MADPPjggyQkJIx0VfokJiam4/uWlhYURcEwjJGrUB9cdNFF2O12AObPn4+u69TV1Y1wrU5s4cKFzJkzp0/TD42Umpoadu/ezQ033ADA1VdfTWFh4ai+2/j/27mfUHb/AA7gb4xWYweMNj3mT3JAMYoLLkopOeC22H3aTXbQygWFyw6Six4cpURzkCIHSflzIXmijKKIuUjK53v49l1fv3zn2e+b7+fZ0/t12p7tWe+tp8977fPZp6Wl5Z/vgPS3rFYrOjo64lsTNjU14eLiQnKqr/0+VsRiMUNfywDw+voKv9+P6enppLeBNPY7k2x9fR1PT0/o6emRHSUp4XAYlZWV8Hg8mJ2dRV5enuxIus3NzaG8vDzlBjsjikajcLlcsFh+7vSXlpaG4uJiXF1dSU5mbuFwGJ2dnbJj6NLX1wdFUTA8PAxVVWXHSSgUCsHr9aK0tDTpc1Nmr8vv0NzcjNPT008fOzw8RDAYxMbGxj9OldhXmRVFQSAQQCAQwPHxMbxeL9ra2qSWnZ7MALC5uYmRkRFDfOZ6Mxvdf7/5Cv5t9luNjo7i/PwcMzMzsqPoMj8/DwBQVRWDg4OIRCKSE31ud3cX+/v7GB8f/38v8H2/pqa2nZ0d4XA4hNvtFm63W9hsNpGbmytCoZDsaElpb28XS0tLsmN8aWtrSyiKIo6OjmRHSUp/f79h5+ju7u6E3W4Xb29vQggh3t/fRWFhobi8vJQbTIdUmqP7ZWJiQtTX13+Y+0olVqtV3N/fy47xqbGxMeF0OuPjcUZGhnC5XCISieg6n0Wnk5EHtN+dnJzEb2uaJgoKCj4cM6Lt7W2hKIo4ODiQHSVpRr8uWltbPyxGaWxslBtIp1QruqmpKeHxeAy/8OuXWCwmbm5u4veXl5dFUVFRfEGN0SV7fXALMJ18Ph8aGhowMDAgO0pCXV1d0DQNmZmZsFgsGBoaQm9vr+xYCVVUVOD5+RlOpzN+bGFhATU1NRJTJba4uIhgMIjHx0dkZWXBZrNhdXUVdXV1sqN9cHZ2Bp/Ph4eHB9jtdqiqiqqqKtmx/sjv92NlZQW3t7fIz89HdnY2NE2THSuh6+trKIqCsrIy5OTkAPi5J+Pe3p7kZH8WjUbR3d2Nl5cXpKenw+FwYHJyErW1tbKj6VJSUoK1tTVUV1frej6LjoiITI2rLomIyNRYdEREZGosOiIiMjUWHRERmRqLjoiITI1FR0REpsaiIyIiU2PRERGRqbHoiIjI1Fh0RERkaiw6IiIytR+1gCl1HQZKowAAAABJRU5ErkJggg==",
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Sampling: [y_like]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAUMCAYAAAC+y6wJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dWH3zsz23elVZcsyd24F1wBY2xjejUJCcVAAgkBPkgjJEAgCeT7IIUSEgiBhBAInYQSOgZjwGCwDe7dli0XSbZ62T7lfn+stNJa1cYGE+Z9Hj32zty5c2dWmt+cc889R0gpJTY2NjY2Nl9ClC96ADY2NjY2NgeKLWI2NjY2Nl9abBGzsbGxsfnSYouYjY2Njc2XFlvEbGxsbGy+tNgiZmNjY2PzpcUWMRsbGxubLy22iNnY2NjYfGmxRczGxsbG5kuLLWI2XzpuvvlmZs2a1ef2t9xyC8cee+wB7/+sfPvb3+aiiy5KfR44cCAPPfTQITufjc1XCVvEbA46s2bNQgjBww8/nLY9HA4TCAQQQlBeXv7FDO4wYNmyZcybN+9zPacQotPPDTfccFD6Likp4ZFHHjkofR0ImzdvZtasWXg8HgYNGtTp987mvxvtix6AzX8nJSUlPPbYY1x22WWpbc8//zzBYJBQKPQFjuyLJy8v7ws577PPPsuMGTNSn/1+/xcyjq6wLAvLstC0/Xsk6brO6aefzoQJE1i2bBlLlizhiiuuYMCAAcyZM+cQjdbmcMK2xGwOCV/72tdYtmwZO3fuTG375z//meZW67h96NChuFwuxo4dy+uvv562/1//+hcDBgzA5/NxySWXEIvF0vabpskvfvELSkpKCAQCzJo1i9WrV+/3mO+44w7y8/PJysri5z//OW25saWU3HjjjRQXF+N2uxk8eDAPPvggAOXl5QghePbZZ5kwYQJut5vjjz+eXbt2dXueju7EtuNffPFFpk6dis/nY9asWWn3DeBPf/oTgwcPxuv1MmXKFN599939vr6srCwKCwtTP20itnz58pQlM3DgQH71q19hGEbquB/96Eepc48ePZpnnnkmtW/WrFlUVFRw6aWXIoRIuXlnzZrFzTff3Ot1/+tf/2LKlCm43W7WrFmz39/l66+/zq5du3j44YcZM2YM3/nOd7jgggu499579/v+2Hw5sUXM5pAQCAQ466yzePzxxwGoqKjgo48+4hvf+EZau8WLF3PZZZfxgx/8gNWrV3POOecwd+7clLuxrKyMCy+8kO9+97ssX76cYcOGpQSkjVtvvZXXXnuNp556ihUrVjB9+nROPPFEmpub+zzeVatW8dFHH7Fw4UL+9re/cd999/Hoo48CSRF98sknefbZZ9m0aRN///vfKSgoSDv+pptu4ve//z1LlizBMAwuvvji/bpft9xyC7/73e9YunQpkUiEH//4x6l9Dz/8MH/84x+5//77Wbt2LZdccgmnnXbaQXHJ1tXVceKJJ3LaaaexZs0aHnnkEZ588knuuuuuVJucnByefvpp1q5dy/e//30uvvhi1qxZAySt66KiIu655x6qqqp4/vnn9+v8v/zlL7nttttYv349gwcP3u/vcunSpUyZMoVAIJDaNmfOHJYsWXIAd8PmS4m0sTnIzJw5U950003y9ddflyNGjJBSSvnb3/5Wnn/++XLLli0SkNu3b5dSSnneeefJb3zjG2nHT5s2TV533XVSSil/9rOfyWnTpnXaP3PmTCmllNFoVHo8HrlmzZq0NsOGDZOPPfaYlFLKX/3qV3L69OndjvdXv/qV9Hg8sr6+PrXtpptukpMmTZJSSnnnnXfKOXPmSMuyOh27fft2Cci//OUvqW1t19g2pm9961ty3rx5qf0DBgyQf/vb39KOf+aZZ1L7n3zySZmTk5P6PGjQIPnyyy+nnffEE0+U//u//9vtNe0LIN1ut/T5fKmfiooKeeutt8qvf/3raW2feOIJOWTIkG77Ovnkk+Wtt96a+lxcXCz/8Y9/pLVp+x3oSFfX/cgjj6T29+W73JfLL79cfu1rX0vb9uqrr0pVVbsdv81/F/acmM0h48QTT6SxsZFly5bx2GOPcccdd3Rqs2nTpk5Wy9FHH82mTZtS+6dOnZq2f+rUqSkXU1lZGdFolKOOOiqtTTQaZdu2bX0e69ChQ8nKyko7xx//+EcAvv71r3PXXXcxcuRITj31VObOncvMmTM7jWnfvjZt2sSYMWP6dP6xY8em/l9YWEhdXR2maRKNRtm+fTvnnXceQohUm3g8TklJSZ+vD+DBBx/kmGOOSX0uKChgzZo1vPTSS2nzY6Zpous6lmWhKAqPPvoo9957L+Xl5cRiMeLxOKWlpft17u448sgjU/8/kO9S2uUQv/LYImZzyFBVlQsvvJCf/OQn1NbWctJJJ7F9+/a0Nr09hKSUaQ/vfWkLEnn33XcJBoNp+7Kzs/s81p7OMXDgQLZs2cLrr7/Om2++yZlnnsm3vvWttHmXno7vCw6Ho1NfUkrC4TAATz75JKNHj047pqMLrS/069ePoUOHpm0LhUKcf/75/PKXv+zUXlEUFi1axOWXX84dd9zBzJkz8fv9fP/730fX9R7PpShKp++2q2O8Xm/aWGD/vsuCggI2btyYtq2mpuYLC56x+fyxRczmkPKtb32Lu+++mx//+Meoqtpp/4gRI/j444/Ttn300Uccd9xxAAwfPpxFixal7V+2bBkulwuAkSNH4nQ6qaqqYvLkyQc8zi1bttDY2Jh6eC5btozhw4en9vt8Ps4991zOPfdcTjzxRL797W+nidjSpUtTVkVZWRkNDQ1pxx8o+fn5FBYWsnPnTs4+++zP3N++jB8/nrfffruTuLWxZMkSRo0axQ9/+EMgGUVYVlaWNifocDgwTTPtuLy8PPbs2ZP6XFNTk/a5Kw7ku5w6dSp33XUXoVAoZU2+8847TJs2rU/H23z5sUXM5pAybtw4amtruw3n/sEPfsBxxx3Hfffdx0knncTjjz/OihUrePrppwH43ve+x913381tt93GN77xDf71r3+xdu1aJk2aBEBGRgbXXHMNV111FYlEgokTJ7Jnzx5efvll5s2b18l66Q5VVfnud7/Lr3/9azZu3Mif/vQn7rnnHgAeffRRpJRMmzYNVVV58cUXOwnUXXfdxZAhQ8jLy+OHP/whxx13XJ9diT0hhODnP/85v/jFL/D7/Rx33HE0NDTw9ttvM3XqVI4//vjP1P/VV1/Ngw8+yOWXX84111yD2+1m1apVbN68mZtvvpkhQ4awadMmXnnlFYYNG8af/vSnTmI0YMAA3n//fU4//XQ8Hg+ZmZkcd9xx3HzzzVx00UXk5uZy8803p148uuNAvstTTjmF4uJiLrvsMn71q1+xZMkSnnrqqU4Rrjb/xXyRE3I2/510Nanfxr6BHVJK+eijj8ohQ4ZIh8Mhx4wZI1977bW0Y5566ilZWloqvV6vvPDCC+W1116bCuyQUkrTNOVtt90mBw4cKB0OhywpKZEXXXSRrKqqklL2LbBj+vTp8je/+Y3MycmRmZmZ8vrrr08FcrzwwgtyypQp0u/3y8zMTHnyySfLjRs3SinbAxSeeuopOXbsWOl0OuXMmTNleXl5qv++BHZs2bIltX/hwoUSkLqup7Y9+OCDcsSIEdLhcMjCwkJ5zjnndBrDwoULu71GQL711ltd7lu9erU8+eSTpc/nk4FAQE6ZMkU++uijUkopLcuS3//+92UwGJTZ2dny+uuvlxdeeKH81re+lTbe4cOHS03TUt9LLBaTl112mczMzJSlpaXyqaee6vW6pez9u+yKjRs3ypkzZ0qXyyUHDBggH3rooW7b2vz3IaS0Z0ZtbA6U8vJyBg0axJYtW7p1yR1q3nvvPebOncu2bdvSglNsbL4K2OvEbGy+5MyfP5+f//zntoDZfCWx58RsbL7k3HbbbV/0EGxsvjBsd6KNjY2NzZcW251oY2NjY/OlxRYxGxsbG5svLbaI2djY2Nh8aTmsAjssy6KysjJVONHGxsbG5quJlJKWlhb69euHonRvbx1WIlZZWXnQEova2NjY2Hz52bVrV4/Jrg8rEWtLaLpr1y4yMjK+4NHY2NjY2HxRNDc3U1pa2mui68NKxNpciBkZGbaI2djY2Nj0OrVkB3bY2NjY2HxpOawsMRsbG5vDlbZioTYHF4fD0WWZpr5ii5iNjY1NL4RCIXbv3m1Xkj4ECCEoKSnptlxTb9giZmNjY9MDpmmye/duvF4veXl59vKfg4iUkpqaGnbv3s2wYcMOyCKzRczGxsamB3RdR0pJXl4eHo/nix7Ofx15eXmUl5ej6/oBiZgd2GFjY2PTB2wL7NDwWe+rbYnZ2NjYfAVom89LTetJmfq/lBIpJYZhtv7oGGYCy9TJys7F6XR+MYPuA7aI2djY2BwCTEuydHs91S0x8gNupg7KRlUO3OqQUmIaFrpuEE/EiURC/OEPd/PiCy+iqApOh4PikmKuu/ZHjB4zqvWg5D8i9X+Z2i7oEKTSuk9IQEoEIKSChkJLQzU5BV1nzFiyZAlXXHEFkUiE0tJSHn/8cYqKig74Gg8EW8RsbGxsDjJvrK3i1pfXU9UUS20rynTzqzNHccqYnh/yUkoM3SQciZCIR7CkDtIEC4RpIaSFkPDDH11HOBLhzX+/QFYwC4HgjQVvU75hO9OGT6JVuhBCYJomqqq1bUmdSyQbpDbJ1v+bikRXTHRFosWj3Y5z3rx5PPTQQ8yaNYs777yTa6+9lqeeeuqA79uBYIuYjY2NzUHkjbVVXPX4cvYNxt/TFOOqx5fzl4smpgmZlJJoJE4o1IhlJcCyEKaFYlmoUkUTGqpwoQoNRahIIdhcvpXX5r/FJyuW48oJEhJgCZj2tVOxBNz/5DO8+vwLZOfmsXXTJn7x+9/S0tzM3b++DdMwyMgK8su772TIiJEsXfQBd9z8C5597z0sBJvXb+D7532D19dsoGLHDi6aOZ3LLruMRYsWEQqFuPfeezn++OP55JNPcLlczJo1C4ArrriC/Px8dF3H4XB8bvfbFjEbGxubg4RpSW59eX0nAYOkx04At768nuOPyKeluRHdCINpoRgGqqXiEA404UZRNCwHRDWThGaRUAS6omAKBROVt8o2UjJkMImiUmpb+xdYKK0/plD45OOlPL9oIQMHD6auppozph3Loy8/z/DRo3j52X/xk29fyisfvYcqEyhYOK0wYOG2mlCkiduowmVW0tDQwNixY7nzzjv5+OOPmTt3LmVlZezcuZMBAwakri8QCBAIBKiqqqJ///6H/ma3YouYjY2NzUFi6fb6NBfivkigqinGW8s3MK3Ag0u40JSkaEXcJmHNIq4KEoqKQbs1o2KgSR1NxnFIA5fVjIKJy9iFZVns2L6DH1/6Y+KxGJOOnsKRUycxcepE+pdkYSUaWPXx+4wYPYIjhpUgE82cMfdkfn3dDezduQ30KFJakIigSNASBkKCPyrIiHhwOp1cfPHFABx11FEUFhayatUqoHNk4RexGNwWMRsbG5uDRHVL9wLWkXDYgeoOEnIaRDWFuHBg4QYkThI4ZBSn1YQl45iWgZQKEhWkQJEwfvgIdpSVIyoS5GbkkZOXx3uvfMjT/36KtxfMJxAPkOXOIjeSD4A/lolTOsmO5KXGIKQgK5ZDo9mE0AWZ0VwEEqXFjZAKDiMHYYW7HL8Qgv79+1NeXp7a1tLSQktLy+ce2GGvE7OxsbE5SOQH3H1qJ/Nd7PR5qHf4MYWK22rBbVShJXYi47UQD+OM62REHOSEcsgNF5ATyScYzSUjlsPokkmccuLpXPvTn9PUlEAIJ0JoRKOxtmiNjmdjysTJrFu/hq1b16Ng8p+XnqVfUT+K8nMZVFrCzt07aG6sRhMGz73wFAjwKDoexSCRSPDEE08AsHTpUvbs2cO4ceOYNGkSsViMd999F4AHH3yQuXPnfq7zYWBbYjY2NjYHjUn9g+T7HVSHuk8UnJvhYmyJD4dZg25FkZYKUsWvK2h6LgIniGQIvEQkowdJflYwUYSFAvzt7j9y571/4LRzjkdVVIKZQfJyc/nxVT9g85bNKFi4iQGSfjkBHrz7Xq764eWYpkVmRgYP//kBBAn6FeZw9eVXMueMOZSWlHL0tGmARNcsLI8gJyeHrVu3Mm3aNEKhEE8++SQ+nw+Axx9/nCuvvJJoNEpxcTGPP/74ob/J+yDkYZTRsrm5mczMTJqamux6YjY2NocFsViM7du3M2jQINzuri0t07Sord2L1GMs2tTMz97aDdBlgMdNZxVw7LAsvCa4436EdHcwnJL/UTHQhIUiBAIBUmJKAxMr2acCQlPRnBoOpwPV4UDVVISiIIRy0LKLlJeXM3nyZGpra3tvfIB0d3/7qge2JWZjY2NzgEgpqa2pxkxEcOjgUv3MHOvjFwEPf35rJ3Ut8VTb3IDGD2cWcFJxMSLiRECrpSVxCANNgEAgLRMdE0NIVKeG2+fF6fWgKPbsT1fYImZjY2NzADQ2NBGLNuCIW3jUABGfpMKlEBMepo1wccxQFyvK62kOQYnDw8TCwtaMHQKBhVMYqELBskx0aaA7VHzBAE63+7DJ0zhw4MBDaoUdDGwRs7GxsdkPEnGd+vpK1LiBV/hIeFQqPEnx0kjgNatJGAlcpsbxOf0RORqtNhZOoaMKBdPSMYSFM+jH5886bETry4gtYjY2NjZ9QEpJTfVerHgYl+lEcfqp8VqEFC8aBl6zhoQRx2U4yYjntwqTQBM6TkHS4hIm7uxMfF5buA4WtojZ2NjY9IKuG9TWVOI1BW41g8aASaPDiUTgtRpI6GFchqtdvITAJRKoCOIygfS7CWRl28J1CDgkM4XxeJxrrrmGYcOGMXr0aC666KJDcRobGxubQ4qUkn8/8ySxlkbcugPpCbA7qFLvCOCSEbREBUo8QW44H3ciaV25hY5HJDDQceb5yBlQRCDbtrwOFYfEErvhhhtQFIXNmzcjhKCqqupQnMbGxsbmkLGnso4n/nkTJXs1HMPG0uRXCXuSrkOPUYU0ICea3bquK2l5KUBCMQgW5hJQBOxYDKG94C+AAceAsv+Vi2165qCLWDgc5h//+Ae7d+9OvXl83mlIbGxsbD4Lzz3zb3at+A9Da0uITxxNg1vBaalkRutIyBg+w4vDDAACp0igAXGhEyzKI6BpsP4leON6aK5s7zSjH5zyOxh11kEZo67r3H777Tz11FOoqorT6WTAgAHccsstTJgw4aCcozfOPfdcFi9eTFVVFS0tLfj9/s/lvB056O7EsrIycnJy+L//+z8mT57MjBkzWLBgQZdt4/E4zc3NaT82NjY2nzfSksTKGgl9uofHb/89TW89x8ToTBbMKeLfARVPJExGSyPuUJyMsECNxxEyilfomFLHVRAgp7QItU3Anr0kXcAAmquS29e/dFDGfOmll7JixQo++ugj1q1bx4oVK/jOd77DunXrOrU1TfOgnHNfrrzySlauXHlI+u4rB13EdF1n27ZtjBo1ik8++YT77ruP888/n5qamk5tf/Ob35CZmZn6KS0tPdjDsbGxsemR6Npa9vxuKbV/W0Pjv7Ywq/loZuV9j1em5LAiksOsxW+iWPvm3rAwzRYsryRnQBEOl6t1s5m0wLotxgK8cUOy3Wdgy5YtvPDCCzz88MNkZWWltp955pnMmzePRx55hFNOOYVLLrmEyZMns3TpUt544w0mTpzIuHHjmDlzJuvXrwfg3XffZfLkyak+1q5dy8CBA4Fkxo7c3Fyuu+46pk2bxujRo3nnnXdSbU844QTy8/M/07V8Vg66iA0YMABFUZg3bx4A48ePZ9CgQV2+Hdx44400NTWlfnbt2nWwh2NjY2PTLdG1tdQ9vgGjKZ62XZMqV6/J4sz3/t3j8fFwS3r5kR2LO1tgaUhorki2+wysWLGCoUOHkp2d3W2bDz74gF/84hd88sknDBkyhIsuuohHH32U1atX873vfY9vfvObfTpXXV0dY8eOZcmSJfz973/nwgsvJBzuOrv9F8FBF7Hc3FzmzJnDm2++CcCOHTvYvn07w4cP79TW5XKRkZGR9mNjY2PzeSAtScPLZa1pdtMjBxUENbHdqHGdnmIKTcNAj0XbN4T29u3kfW3XAx2jHcvKypgwYQLDhw/n8ssvB+DYY49l2LBhACxZsoQJEyYwduxYAObNm8fu3bv7FHTXUz2xw4FDEmL/wAMP8Pvf/56xY8dy9tln89e//tUO7rCxsTmsaNlUh9WU6CRgbcTNvlkbafNN/oK+nbyv7brhyCOPZMuWLTQ0NAAwZMgQVq5cyY033pja1jHIQkrZZYi/EAJN09KuIRbrvSba4bRc4JCI2ODBg3n33XdZs2YNK1eu5JxzzjkUp7GxsbE5IHZur+TNp//SYxuP2rdIO1XtEDY/4BhkRr9kYt8uEZBRnAy3/wwMGzaMs88+m+985zs0Njamtnfn5jv66KNZuXIlGzZsAODpp5+mpKSEwsJCBg0axPbt26mrqwPgscceSzu2u3pihwt2xg4bG5uvFO8t+IAVbz3ApJZjINC21cSlrEOhAYss4tZoct0leNRAT12hahoOtyf1ORaJEp/0EzIW/gQJ+0hZ66dTfntQ1os98sgj3HbbbUybNg1VVcnKyiI/P58bbrghJVZt5OXl8dhjjzFv3jxM0yQYDPLss88CUFxczHXXXcfkyZMp7T+Ao6cfi5Sk5vp6qid21llnsXz5cgCGDx/OsGHDUkUyPy/semI2NjZfGf7x0F9ILH+P4dpsHppt8eOVY+mvf0CW429ooj1buyFzadS/xzazkE+bFzLxgkvpV1iAQ00Xn2BBEe5Wt10sFKJxb3KOybXzHTKW3YkaqU61lYF+iFMP3jqxg0lTNEFlYwzdtFLbHKqC3rSH4489xq4nZmNjY/NFYlmSe+68ntyNuxnU72R+PcPNRnUoJzjvxdu8mGhCp8QHSquxpFJLjuN2AjPvJyN4Bc26kdafqmkEcvJSAialpKWufRlRvP/x1JTMxFm9AiVai+XJxew3hdyBQ3oMFOkNKSV63MQyJYoqcLjUzzw/1RRNsKMu0mm7blpUNMS6XCxwOGGLmI2NzX818WiC++65htLNAmPE8fxsciG52yu5+oNfUxeVvMYIAPxanOMLyhiWUYcQyYKVrnW3MfDKZWwr30FmfgEOTUNVVRxuT5p46LEoppEudCgqicL29VdYEj0WxenxHtB1xCI6ofoYltlBVgTgSIBqgrRaXZiitbqzgqo6cDidOB0ONE1BUdPDIKSUVDZ2H8hRXNqfD9Zs6zYw5HDAFjEbG5v/Wmr2NvDY337C0O15bDyqlAeHjWD0thXMfOvNThZRyHDyUsVIzmJDUsja1nRVrkCIHJxuT5q7qyN9zYjR13aWZRGNJohGWjDMOMJUEEYXgSYSSDhRrBYEidRG2fqvISS6gIgQSCGwFAWhCBAKinCAw5/mQuwK3bQIx0387sNTLg7PUdnY2Nh8RjZt2MbrT9zCqJrhvDknwDOFRzM0sZYp77/BviEXSQQgWbh3MEMCdSnXIpE6cOT0eC5V7VugRnftTNOipamFeCKElAaYFoppolgCBw5MpecAE0v1gysBQiKkQJEgpECTCqolEFIipcQyTCxMTGkgZYSwokMvwSsAhtWz0H2R2CJmY2PzX8eidxez6tX7GRudyqOnaMwPHsOR0bfRVi/GF+/JLSZoMdxURDIp9TUlN3lzQO/5fA63B1XTOrsUO/asqiSEA0drLF08ptPcXI9lxcGwUE0TTTrQFCeacICqEneZxIVEjfXiypOCOoeXhNZVO4mKiYqJJiWaBQ5LwWW48egajT33DICmHJLVWAcFW8RsbGz+q3jumWepXfQCoxzHc8+pKku9E5nS8gyU13Di5lnozO+1j4bEaEp9HyUzz/c7Enbs7LG9EIJATl4qOrErGhUfe2vDqEj8SgTVSgZTOKQLnwxgORTCToNmDeKKQkI4kLhwJyyy6N0Scun1CKK0zoohhECgglABFSk0DKERV52YqgYOwCNRWnR6ilFXsfC5Dt8SMraI2djY/Nfw1wf+gPPTpQzMO4Ffz/Sx1TGESQ0PkrvVw5Rt56GpW3ozqgCwOAMplyD2Y02X2+8nSBEtdTWYhoEpTdaH11FnNOJ1FdHfOQ0FsJQYLY4WhGibH0tQSwRTy0YqfhRMnDKOx2pCyjjCAsjtdD5d1/njn+/ihZf+nQw2caoUF/fjJ9f+kNFjRiGFxBQmhmJiCoElZGuKLROHsFAVB4riwnB50GPdS0GmjHUZ1FFZWcmll15KeXk5LpeLESNG8MADD/SYz/FQYIuYjY3Nlx4pJffc9XPy1+/CO+gEbjo6nzolm9G19zBiw2AGV80kW6smIEx2+DKIhrsv++RRA2S7xxCf+TjuUadBH9IwteH2+3H5fLy+5XnuXPEnamL1qX157my+PfJKJvXrKtuFiWrU4LRaSAgdCweaBS4THLqni/bww5/+D+FwmFdfeItgZjKT/Ztvv86WjZWMH3Fs66xf0sQyTQtF1VrvlQnomFqYuCOBpSRQHA4swweyg2ALgfSoGEbXZpqqqvziF7/g2GOPBeCnP/0pN9xwA3/961/7fL8OBoevo9PGxsamD+i6wR9+fw391tVgjJ7BTccMIKJ46L/nDo7+9EgGV82ixFGJYuxm5u0XcdzJF/fY38ScOShCwcqe3GO7fZFSEorpPLv2ea7/6JY0AQOoidVzx4rbWVq1tNs+DKGTGy4gJ5JHRiwHl56LoHNU4rbtZbz25ivcc8d9BDOzcAoDr6JzzkkncMnXvsbzzz3GBd86hx9cewUnnTmLVauWsvDdNznh9BnMPnUG55z3Nco2VuOP5bB+wQYuOvFsCnSLDFrYsfUTTj16DKqzitqdy5g4YmyXpVgKCgpSAgYwbdo0tm3btl/37GBgW2I2NjZfWsItMR689/sM2upl+9RR3Dt8DNlWHY5df+X0lWfjiw1hqGsH1cYezv/TT3A4nQydfDShDypYXreAqNmS6sujBpiYM4cSX7LihhJw9nkcjeEEFY0RdMvk/nV/7rHto+sfZXLhZBTR2YawhImuGbhMgSYMVEi2k2BISbKGtGDNulUMGjCYrGAWqpYATWIIkVzfZklM1eLjZUt45423GDJgEDU1tVx44kxeeep5xo4cyzMv/psrrv42i99ahNI63yaEC6/pJDPhQ5UqueE8wtFaGhoaGDt2LHfeeScff/wxc+fOpaysLJV6CpJLB/785z8zd+7cPt+zg4UtYjY2Nl9KKnZW8+w/fsYRu/vz8cxcHimdyiBjM/Gdz3D+iktwmLmMcZezU6vjontuSM3ruAZlMqDfWPp5h1Eb203UDOFR/eS6S1LComa6cA3K7HUMlmWxu7qORsMBwMbG1dTHOxcA7khdrI4N9RsYnTO66z6FiQpY0kA6FJxeBx6/D6U1PF+Pm3gCTjSnQl7/DIQQlJWV8fWvf51oNMpxxx3H9OnTOXbGDKbOSCYaXrzqE46cOJGjT56FZZrM+85FXPuLn1GxdzcKBgoSr2IgkajCBCRCOFDMzG5LsRxzTLJvKSX/8z//QzAY5Pvf/36v9+xgY4uYjY3Nl45Vy9fx7r9+w6iGcbx4oocX8mYwNr6YcPm7XLzyclTcTHDvoKogwcU3/jTtWKEIgmcOoe7xDeR7+nfZf/DMwclFwd1gWRZ1tTWYepQWKyO17KwxXten8TfGGrvdp0gVb24Qt8/R5X6nW2Pa0VPYunUrjY2NZGVlpUqxPPLII7zyyitA96VYFFXF7fMhhCCntJCGeAipChw5HsJNLURjIUDiFQYepeslAx0DPX7wgx+wa9cuXnzxRZQvIBTfnhOzsbH5UvHma2/xwWO3MSZ0DP84LZMX8mYwKfwKbF3KvJWX4URlgnsX4fF+vn7jlanjLMtk17rVbPjwPWpFJVkXDkfNTHcZqpkuci4aiWdM52hASIpBbU0N1VU7EeEwqunDEgpeBBkICl09L4puI+gOdrldkSoO04Wi9rwu7FCUYglFI2QX5fPy26+jaCquAj+mU/ZYiuUHP/gBW7du5YUXXsDp7Lv79WBiW2I2NjZfGp549B9EP57PcP8c7jjJySrXaKY0/xNfWYzzyseT5VlIELBOOZljTj4+ddyWJYt555G/Eqpvz8buz87l+G9dTmneWKyWBErAiWtQZrcWWEtziEZjD6oOTsWN6VaIKRqDdZU2m6kgeCT3uvKpjld32QdArjuXsZnjsehs5fjjWaiqgqMP67K6K8Vy/fXXs3LNOnTTIhQz8LnUPpdiGThwIMcddxwADpeTjNzsbkuxfPjhh9x7772MGDGCadOmATBo0CBeeOGFXsd+MLFLsdjY2HwpuP9Pt+FftY7c4hP4vxmZ7FZLGFP/IGdvbGFe/FP8agdXXkY/OCVZ9mTLksW8dPft3fZ71rU/Z9i0rotUSkuy8d11hD0higsL0JxeBKJ1vZUgQ3o61Q1bUP0uP1vz827Pd8vo25iRNwtTmIScDSS0KKoAXzQHl+klI8+D29u1K7E3uiup0i/oJtOz/5ZSeXk5kydPPqxLsdjuRBsbm8Ma0zD53W9+hrqpAnPwMdx4XCHVah5HVN/Jhat0vqu/RY3iYQ3D2U4JFgKaq+DZS7DWvcg7j/S8bmnho3/FstIT81qWZP2LW3j3pwuILapHk048IkCm9JIhPWRKLwGZXL+1r902J38Wvx97O/mu/LTtea78lIABqFIlM55LnnSTZXhx4f7MArajLtIpoa9uWuyoi9AUTXRz5Jcb251oY2PzhWFZkqotjYSb4/gyXBQNC6J0cOetXrWGF154FomXaJ4X9FpOXtrMlqyNTCk7llGeF/gj36FZtCexzaCFU3iXUZRhvfJTwvVH0HXC3yQtdbVsevjv9B87Ae/kSZStquPNv68GUwEU3JrFOEtgyi7rNHfJnPxZzMqbwZuNK4jF6sh25DI2OB5VdOEmjOZgqhGC2c4DFrDeSqoAVDbGyHA79qukysCBAw+pFXYwsEXMxsbmC6FsRTWLntlCuDGe2uYLuphx3jCGHJnPkiWf8PrrL4NU0hTDk4gzfs9gMtUoL6kzO/XbjJ9n5RkcEVuD1RDDm9GfLMNP3ApRG9udKlTSkcqH/gaNIaoHzWDNgPMQ+zipJBCzJG4Jjj5qgCpUZmcNJ252UUIlrXMFIZU+Z8LvinDc7FNJlb2RBH6Xhk9VDtv6YPuLLWI2NjafO2UrqnnjwbWdtocb47zx4FrGn5HPgmUvAlonk0e0bqh1R1Nb9m0Bki3acHx71iDYhdW6kPmovDNYXreAisjmtCNcuoFEsLng5B7HHbEkmlPBUECzwGvKHi0yp9SJ97C/jUzCOC034OpD6870tVTK3pjOXtPEoQj6uRwEHV9+CbDnxGxsbD5XLEuy6JktPbZZOn8VUnQWsBQCpBB020AIpMOF6U26GaNmCx9Wv0hdrIrp+XMp9h6RbCcl7oROdjhGY3AoCXdWSiS7QgJ7XIJKj8JOn8LWgEJzl+VPwJIWluzbI1YjgWjYDtHGPrXvdHxf12e1NtMtyY5ogka9+9IxXxZsEbOxsflcqdrSmOZC7ArZx8zxvSG19DmmFfULsKTFkTlzUlI1qrIOAcScfYuIVqx2d6QhBBXeroVMEQqaEuzRUkti4hCt81lNu+mxLko3+FwqDrWXx7kiYJ82lXGdwyhA/YCwRczGxuZzJdzcu4MtKA7MrbYvwkgvvBI1W6iL78SnZdDfV8CZJRsYFqhlyRGCv5wW6lOfVhfryPZ6RKeZtoRhUrv8E2IL30Rf9SnSNDsdB9CidDjS0iERQkqJYYTQ9UYMI9Sr0Agh6Bd099hGuju/GOiWJNzLXNrhzpffIWpjY/OFY1qSpdvrqW6JkR9wM3VQNmo3i4Z9Gd0LVJFDMNaj4lJyeEa6CBPvwWMoun+4S4kwEqiRlk67XMofcCvnc0q/anxqHW/O9HJXqR8hy5hc2YAvEezWpWgqdFk92RCCesJkSQ+KUGh6fyH199+FVdu+6FnJzcd71bW4jp2d7IukgMWEQhg3fpLWmG60ENMrkFa7AAvFgdtVhMPRns9R13Vuv/12nnrqKVRVxel00q+klO/84GcMHTmmfXCKSAqY1rXNoh+gJRYOhzn++OOJtZaqKSoq4oEHHmDgwIEH1N+BYouYjY3NZ+KNtVXc+vJ6qpraQ7yLMt386sxRnDKmqFP7omFBfEEn4cb0dUtFDsEUb9JaEAiO0o9ggWMN+64mlkhq3bX0c7tJNPiTuzpG2rU+lF17d3UpRQG1jhzH7ehWfywBd/YLJg9T4MOBz3PS5stSi5n3pdnbvZvTUECxFEKLFlL76+s77bdqqwn97w3wi9/iOHY2taqVst4MVKSEmOZCNzvnX5SWTjS6E+ifErJLL72UUCjERx99RFZWsp7Yyy+/TNPecgbPOIqQYbBXN0BVMM1kUuGucBxglKLH4+Htt98mEEjOO95zzz1ce+21PP/88wfU34FiuxNtbGwOmDfWVnHV48vTBAxgT1OMqx5fzhtrqzodU1s7n9zxj5JUp3ZX1lhPq4C1PlQHWfnM0cfi6xCxV+Gt4I3iV3m/6H2ezprPxwUfE1XTzy2MBO6KMhwtjfucWRLQYpT4mgBwKDtZ7naxV9NSIrg9ZzXzj3iYsDP9WEtImr0KsR7i6zULpGlS++e7um0DEHngDwjTxNFh3ZmQTuqMASR68aLG4lVIKdmyZQsvvPACDz/8cErAAM4880wuuugi/v3043z73Ln88uoruHDmsaz99BM+fHs+5884hm8cM5XvnHYyZRs34FAEyxa9z+TJ7bXT1q5dm7KmysvLyc3N7bKemKIoKQGTUtLc3PyFJAC2LTEbG5sDwrQkt768votVV+3G060vr+fEUYUp1+KevW+wbt3VuPOh+JgG9q44HyOaTY4m8HThfhxk5TMgnkdF/VIWmS/z8Yz0QpOVvkoqPZXkxnKZVJZPXp2CGmnpwoZKjnJ2wTbaTmMhKKOEklABMTVGrbsWRFLIyrPXUNQ8BK+egS/DwUD393A7unYyOkwD1TRQzQTRNRsxa7vPmwhg1ezFWLsSz5ETcSPQpEXcykbRYgil63mz1FVYOqYZZsWKFQwdOpTs7Oxu237wwQe8t3QZWskA6muq+drUyfztldcYNnoMrz77ND/79sV8smo11b1YYnV1dT3WEzvhhBNYs2YNeXl5zJ8/v8e+DgW2iNnY2BwQS7fXd7LAOiKBqqYYH2+vg2wXb5VV4657jImagiosAiUr8PdbSaR2GJnVk6HypC77EVKyeucanvxa67n2feYqUOupZdHQBs7dVYxAoAkTQ7Y70AJanNkF2xiWkXTVrWcobzCL5liAaa3dRtQIq3JWUemrRApJZeZWAIqcRfiMzg96p6Hjj0dQW92XhkMj1rC7D3cOrPpa8lCSD2ChYKkQ60XA2pAyGRbfcbFyl/XEjj2WSaNG0qgbfPDpJwwfO5Zho5NzZXPPv4DfXXct0dqea58BvdYTe/vtt7Esi9tuu43/+7//4/777+/TdRwsbBGzsbHpM5ZlUrFhHaHGBsprTYS0kF1UKO7I9z4toy6v1U/m/CnZspZLeJgpLEEoEl/+Zhya0q2IvVG7mNVD6jBdke5PIiDiMdmbHaeo3s2YzEyOyFhMyHDi1xIUe5tSFth6hvIsZ3TqwmN6OKr6KD7O/5hKX2Vyo4QsIwOfqZEbtah3JCsoOw2djFgXZU+yszpv6wIlO5eO8SEK4EajL9kNhdA48sgj2bJlCw0NDb3WEws6NEpcDryaSn+PE4cQyYwdJIVQ0zTMDpGTbYEaPY8hXdQVReHyyy9n2LBhn7uIHVIH5q233ooQgrVrO6/Mt7Gx+XKxZcli/nb1d3j21z/ntT/dQeWTd/OtXY8zJLytx+Ma9okoqCebe/gpy5iW2hbN2oTuqkeSHu69M7yJptCHSEfXdbL2JeoyKfYewRHBKyjyaIzIqKHU15TmQnyDWa3exX1zISY/j68bDzJpAQKcV5fM4uEzYWiLRf+wRUYsgqBztg513DhEXte1yNpQ8grIHHdkp+3CdCOsntfHCcWBqvoYOnQoZ511Npdddhm1NXWYhoVpWIRC6csEpJRYMYNpE6awZtUqqrZsxq+pPPPMM53qidXVJa3Uxx57LK2P7uqJ7d27l/r6dvfu008/zbhx4wjFDBojCUIx43NZg3bILLHly5fz8ccf079/15VTbWxsvjx0V87Eb4Y5tfpNXs8/mTLf4E77pVvFytqnBIhQQFr8k8uYxDIULBCS6hFP0G/VNanIQEtaLKt7G4FgijINpWkv9VoT67xbsUTXD0dvXGVizhxApV6/ggT/IWJm4VMbKHJuYIfoRzOB7sP2EXhNL7mxXFRHNZfv+S4T5HBapIluxVEt0FAQyr4FWFqPV1U8V19D5JZbur2X2Vddi1PrLFYC0GI56N7u59RiEY1Q0w6EhN/936/4471/5qijpqAoKsHMDHJyc7nm6ivZurWMRDRGvKIZBYUs6eDh3/+Red88H0tAMDur13pibXRXT2zjxo1cfvnlGEZSrPoPHMQtd/+FbbXtQvpZysD0lUNSTywejzNr1iyefPJJZs+ezSuvvMKYMWO6bBePty98bG5uprS01K4nZmNzGGFZJn+7+jtpBSU7IoGQ6ufR0nlprkUJ6BOysQo8nY5RpOTIBpPvxp6lwLWOaNYmJBJ3xTHkrr8EP26qozvZ3PwpE3Pm4NUyWvu0qMr9lPl58/nUtZOyuJK0hyT4YipXfnQUJxTNozJhsSZqEuvwdHOJZnIzFrDS03v15QnafI6OnMH2lnzWyxWM/uY36VdYgENVEUJgOpygdm8D6O8vInrffcgOGeDV3Dxyr74O/4zZ3R4ngQYliuUMoyk6bi35fJSWQEa8CN2DgooQCgKR7taTydTGSWtW4FRcyEQEK1oPssN8m1BRc/NxFvR+H/paT6ytDEx3DMjxditkn7We2CGxxH75y19y0UUXMWjQoB7b/eY3v+HWW289FEOwsbE5SFRsWNetgEHSggiYIfrFqqjwFAMQ9DupHupPEzBhWZRUlTO1qpG5exxk6RC3huBWxzAgs4JIv9dYE2nkHdciCqxsCuMK0/PnYmKx2ruZiuwVULKYgYEmjhZwNNBoCD7Z05+WpgGM3JmBis7KxnVs0z0oWjGig6jGZQbbo7PBs7rXa5bGNNa3ZLG8+kW82enuQSklSiKO5aRbIXMcNwPH5ImYa9Yg6+sR2dkEx41E82dhWTEUs3N2jRYke5EYlhNiyQe+iiSo6qiaRHeB7hGYioKFwBJJAZcIHIaBIiVSgFQEpWFnUsAiXQRuSBOzpoq6WCMikE0wmF7+Zn85VGVg+spBF7GPPvqIZcuW8dvf/rbXtjfeeCPXXntt6nObJWZjY/P5YUrJx40hqhMG+U6No4J+1A4Pm1BjQ5/6uX5mP+TgCeQH3Lz68XweKshL7Ru2bR3Hf/gqGeFmAPaVEX9tnONDFXwtYzWz5XJeih6LLzGDd1zv8MiQBdS2rdtqgmDIzdwMnSHNLmRYY5q3hoy9U9lYuYNqs4Xq2M5kW+HH4Z2N4hyK7mzCUhIIy4FiOrGURNcuRQke6WSVzMBXP7/HoAFFT2ApavpCa2hdbC1RBCjjxqK6TJx+A6kY6CRFRUgVLZqDaniBpIBV0Dn9k4mgznQiXRpoAhUTFQNFWqhSRzNMnAlJx8xVEjCkghap79RfR7yhOGGrjupoE0J1kpNbgLaPm7Mv9cT6WgYmHDfxuw++3XTQe3zvvffYuHFjygrbvXs3J598Mg899BCnnnpqWluXy4XLdXBypNnY2Ow/r9Y0cvOWCqri7SmOilwO/m9YMafnBQHwB5MRdwJBrrsEj+onanauzXXk8P70G17IPXdfz9BNVWSfO4R6l4Nh29dz9vynehxHyHDyUsVIJkd3s7E5n5ARppY3oBZmV/lYMirOzsJk6ZWMCh/ht7Ipi3V8fK2hkyrJEFHrHWI5e5CO9nEKs/W4fae1WpscYwxndXwVsX3yLnZCSrAs6FgHrHV2RujJOEPVZeLK6NyPFGZy7iuSj2J42dvlart2lGgcxVUNUkGiYiFwWCousy3BsWgNRlERCKJmlIDsJWRfWjgVHy5TJZGIULtnB0JzkZNTiOboewLmvpaB6Wu7/eWgi9gNN9zADTfckPo8cODAbufEbGxsvjherWnku2vLOz0+98R1vru2nIfGDOT0vCDFI0czNH8SI11TU3NTABGjOVWbK5CTizOrmHt+fxX9tygYI2aDoxlhBjnlvVf6kMk9WQPsk/qSTnu8MZXZy/NYODFpxcxentepTVuc4L7n0aJhvOUriRf0x8hIirFUWtdZSQ0p2kuR+HAxTR+GCwchLQbeQJe5FzuiYGGlJXSSCD2BaA1Zd/p7LnViuOswQx6MXkRMSpXMcD4OqSCEigRMpZlkBkaBEE4U090hVZabkM+LO16PZkS77bfWqWB4FTLjXvwxhXg0RN3eHQinl7zcAkQf3Ix9LQPT53Ix+4m9TszG5iuIKSU3b6noMdvGL7ZUcEpuJon1DUz0ndCpRIhHDTA9fy4fVr9I4ehpLLr3PiY1jmLJ0RoPDh1BXtkeitaX4Y73LATtdP3AFAgkkqnrslOeu31zZ4jWcXcVMygMHXdFGTGGJIWstbGUgl0iTtQZ5Yh4CZP1ASxxbCEs4oAXBgxH6AmcPYxfmD40CW6lGd000DssilYdVmsUY/dIxcRQ68DsfX2ZJbTkvZAxpNWCYnS0bBKgChDtc21SUYl68vBEa7oVMk2JEhVB9riduFwxgm1iFm5mr7EDjzebzGDPQXZtZWB6cik6VAWf6+CU19mXQy5i5eXlh/oUNjY2+8nHjaE0F+K+SKAyluDhlbuY89JuHHRe4NqWRf6YgrkouyxGK7UoWQ0UVWSzMl7F9iqdfNGE0WrRfJYpfYHAH+/5cdVD/Uwk4Nq7EyMQTM5hCUDVKZUuiLuAEO861nXqQ2oOEsH+yJ6sCOkkZuYiZAN0XK7ci4C1oYm+1H4GrzDRrDgxs6uSMRbSbAJVIPYpYxNzZeHvQsQsoWBIE+LVeDQHhhpkr9tPoytGTiyAN2YSb6qhzoiQk1vY7bjaysD0FJ3YL+g+JEEdYFtiNjZfSaoTPbu5lL1RHOsbeC2xl1PxddtOCIFHWUzQ8Vc0kQwA2MtQJtYez3CnD5wQzUhaNK69O7tIyptcgFzpLiKievGaEfrFqlB6ca/tL4KkRaZGWjB9GSmjct/nqiWgKjOXiNOFNxGnqCl5TVLtzoqwOhybCbRHA1oG7ClLEG228GQo5A9ydBkF6COGAwO9h8exA0Eg001zQ1OP1ynNFoSWLmJS0TBVF6qZLpZxVzb+uAeflCRcjTRrtXg0DV3NptLjwu+KkBcOYkZ7X2ie6XEyICcZhdjRIvs81onZImZj8xUk39n9n76yN4pjZTKyLacX+8mtLCbH0b4IuruUTlJzECseAvtkl9/qHcSinGMJaf7UNr8RYkbdBwykFqk5UuJzIO/xlhDsLhpI2BvAF2kh2zAwpEBFdhKw7XlFfDhkHGF3+7IAXyzKGRWbAZGqNi2EglNxETejdEx6JFAwHV4wYlRtCrHynQZiLe0PdG+mwpSz/PQf2y4yhoSEhH6ijh2yoNvryEcgLRPTaH/50HWdP/3lAV545RVURcXpcFBc3I+f/vgmxo6etM99UFMzd1JRMJx+nC4nitRJ4MSVyCIvIYk7GtEde/E6vISVIJGAJDsSpjdn52WXXcY//vEPmpubEQ4/hmWhKUkX4qGywNqwRczG5ivIUUE/RS4He+I6WJL+tQaBiEle7W4+qXWiCwUQ1PVoEZkEHX8FkhZNKqVT24aOCAFSEi8oRWtpRJAUsNfzT+7Ua0j18XrBycx2lDFATYb3Cz2Oa89OtHBzsuBlF6ORgOkNpISvrKCUd6afTsjfXkjSE40wY9saBteml4jZllvE/FFTO/UZdrn5cOhYzlUNTIcLTB0prVYBo9WFl5Fy4WUoMZZtU1j/n841wSJNFu891szMizNSQtZoCrKFICgiDGAvlTInZZG51ThOxSTD0vCbHgyZPuf0o+tvJBwJ88q/niWYmbzG+QveYdPmDZ1ETM3NwaFlIzQHii8Z1h8LhYk3tOBJBjYSkw5cehZ5uiTkbsChVaCpGcR7yY358ssvp4RKCHFIwuh7whYxG5uvGIaRYNWbr3FN+Q4+qBEc0TCSjHjbe3o244TFOx6drU6TPUoDy2mmABdFVhZKB/lwKevQRC2WVKiMj6TcGkpMKWaAcx0F3griToUdsoTG5kJAASGQDhemN4ASCbEo59hkR10JHpIleimlSgOKAKk5iZUMxdVqye0bwKEHgsQL+iMdSbdVd6IUdXuYP2oqJ61fmhIyC/hwyLgexxLXnChIpCIQaZHrFtJsBDWIEC40K07Zmz2vq1r2UojSkR5UPYuo2pB6CGeKCBlECGluLLeFEO2iFZcqmtYelbmtvJzX33qLTxe9lxIwgJPmHI9Qs3j6X0/w4svPkZubx+Ytm7j/gftobm7m5z//OYZhkJWVxV/+8hdGjRrFggUL+MmPr+X9l98GIVixcQsXX3YeSxd/yobqDZx70lwuvewyFi1aRCgU4t577+X4448HkmVabr31VhYsWMDDDz/c43UfKmwRs7H5L8WyLHbs2EEoFMLv9zNgwAAWPfkIn77yIrL1rT658OUtdNckHN7jsJA0qBZjRCOTnNtxKwmWt/bnky6O0o9gkJUPgEIDZbGjWNT8HcJWMqtFJiCUEoZn/J0h7g9pcrp574jhbK8bRkNdMZmZ1WhDolTWZ6W5EDsjiOBirxWgSGlOuhMNHSOQhenNwFVXhWhdx6UHgklXZdt104soScmHQ8YysLYKheQcWEcXYuehCCwhMFQVh1ARZpSE04WlKCiWhTMRR5rNKFo2e3bqxFt6nm+MNFns3OBi4AAP2RhY3ibCpkCxJKaiIlWjc4CJMNHNPWguF0ZcsHbdegYN6E9WMLhPSxUhkkK+5JOPWfDqIiZMHUNzqIFRo0axcOFCxo4dyxNPPME3v/lN1q5di6qqaE4H/pJsGvbU4BYGCFCki0AsSH1DQ7f1xK6++mpuueUWMjsI6eeNLWI2Nv+FrF+/njfeeIPm5ubUNpeqInZswiH3DYWWmPFPqFcsns+fRo5axyxn58z0YeIscKxhjj6WQVY+OxL9WdxyHZZRAXIjCB+KVkzYyuaNxp8xzvsyA11LOW3TGq4dfRL5wzczTvsQgJaqicn1yWmjIJks2KVC3ERpSOBsqccd2gFCSc2NoSjECgcgVQeYOmYgCxAp06wvohR2e6nKzKW4qZaIs28JFyyhEHc4CPkyk5k6WlEsk4xQE27DpLY5A+jsStyXSMigRUQJ6AGcRga6uw7dEQHZFkvZNU6/jhF3tl5Gu9SV79jJd6+5hlhM56hp05k66SimTTmaCVPH4PY6eGvBEiZMmMDYsWMBmDdvHldffTVVVe1uVUVVySkuZFd1FSDxCh1NmN3WE6uoqMDpdHLGGZ3nQD9PbBGzsfkyYpmwYzGE9oK/AAYcA60P1vXr16cylHckbhjQRXAFJB+bgegKCsNZHBusBbQurJhkw48dm+kfy2VJUwvxltdAhlJ9mL58FO84NKU/qyJnsjpyFj6llotXPcvZx9+AZpmMqq0ns6GYUl1ht2YhBZj5bvSRmdBhPsUZjdG8uR85jY72IbRGObortxMtGEB1Zik5Snrevr6KUls7b6JvIe6mIoi4O0dqWopKY0Y2wZYYbr+jiyM74w4kv6uwiOGUfpzRfOJGM9LTc6ooFAvVn8ERR05iW/kOGpuaCGZmMnDAIBa89j4vvv4ib7z5Ot5MJ9m5mbi9yfFIKbsMsOiqnphhmiiqish0Ind2vQxDCMHChQt55513GDhwYGr76NGjeeWVV1Ji+Xlgi5iNzZcMueZFIo/eiFHXgOY28eYlEMF+cMrvsEacwRtvvNH1gV0EV6R2AQLJCZGlxPKGd39ykbTIPmQhkeZPkuMBEjlFJLILQNOARqARxXTibx4K8WyW1l3FvKU7ofoydkWTZz4faBYWLwxS2Tkh2OlUCbeLN8cdkzZ/1Rbl6K4oQ9RUkRNPQFFx2nF9FSWldZlBUVMtvliUsMvdWbgBpESRkoTWc5h4s89FXqmKJ+Ag2tL9GjxPhkZufy8IsJAY0sSBioZKT4muwvioIxfTo5E1fiIzTz+Da371a+7+/Z8o9GYDEI1GUTWlU9qoo48+mu985zts2LCBkSNH8vTTT6fqiZmmmaonlpOTk6on5ssMkFWSn6ondvHFF6fVE7v//vvTCmAKIVi3bl2qGOfnhS1iNjZfEizLZPPdP6fqpbdxhN1kh7OSNag8JgUTG8hovoQds/6c5kLsRIfgCq2LlEpS65slsbt5Gyqt81GFA6CL4ywlQXNwPRmNo3DFsxmwI5N9lyR7paRhlC81tn3Huu/8VUch9m1dQwAP7Q4xi8zManKc5bybmECLw9etKAVCTVRs09kSGI4HndJ19Wyc2C+ZlWSf8iYIcJgGllB6DPO3FIHuVJhwYn8+er6s23ZjT05P52RhAWqPBTHD+KgmfcHx//7lr/ztzt9z1lkn4RAKWRlBivoV8vObbmTDhg1pbfPy8njssceYN28epmkSDAY/cz2x9lskMc3kWjLDCCGl75CH1XfkkNQTO1D6Wj/GxuarxpYli1nwwJ8IR9qzNbgTBqMqaylsSm4rnt7IjiPG81z06F77c1dsw9GcdF21haYb/kz0YG6PdbLa8OzYhFTV9oCK7h5aEoSpkl1zFIpIf0ibiS2UZZbxzFkX9nq+M1d+QHFTetSfZ8cmBokSdpRm487dwpChy3C5klkjljGNe/hp57G1Pu7Omv8U/Xbu5NHSeQzVNc6OONlY7OSNSW5CnnZB9sUinFGxhXPHjSQweBiiF1dlMGziSUh2b2pg5Vs70ywyT4bK2JMLKB6Z/mzLtLw4WldxRTJ2odA5ce9OBmD2YHMolqQoJMkpPrgC0ls9MV1vIhavQlrt1ykUB25XEQ5H34I9Dst6YjY2Np8N05Is3V5PdUsMffdWtj92J4q00h7IMYfK8gEFTNwBhU0h9q4I4C/eTY/1Q1rpGNnXMTS9dyQOJYoSaSEytJsIwLQTgdRMIvpTeJiG6hyWvL7EFvTwy4SLxvXprF3Nc0nNQSwRYmrQhz7qvbR9U1jCD+UdPCYuo572emC+eJTZS99m+Pb1ABRHq5ijJytSj6zQGVRTw8ZBlWkZOzL8foQc2adxKq0xMyXDsxg42knN3j3EWoxUxg4hTGKxBKbpBAkKAq1DAuFmK5egsjetzyjuHgUMklZgIkP/XC0gXW8iGt3Zabu09Nbt/fssZJ8FW8RsbA4z3lhbxa0vr6eqqT1gwV96ETPqPmBoZHt7w1bX2vp+ORQ0hTEiGoU1NbiLIWp0k0tQSjB1LM1BPKeIRF6/vg+s1bWWo22k0RvYD+EDqRrozS9jmUejuqagRxYC4OslS3wbXc1zCUOnNr6L/kcsTV7rPhc8VSxhklzGOn0s6yuPhkYXRU31+HZsSrWZaWwlIIemPlvWToqbGjudS7VMFGn1uPRbsSROI9lCcUTQ/LUUBTTSH7MWHk8L0WgA03Dik+7UsA0BDYofdJ2gUk+btvUmYG3UGY344woZrtYq2K1uPikNhNBQ1f230rqrJyalJBav6uKIdmLxKjQtw87YYWPzVeKNtVVc9fjyTg/LkOrj9fyTObX6zU5CFnM6qPd5yPeUEkejkhay8LcuCG5/gKTyBWpO4sWD2zfu85Cx6Jw/UAEwDTx7diIdg0mU7J+733S6Ed4AMvIRZmwFkBTokqpy/KEmQr6MbuevfPFoKodh2zZhJFAjLXiLwpiexm7PqwqLcY5VjBuwiniBl22bJxDb0C6cp2nrWJk4pbVbCyuyGujfZV/eRJywq/vQ/cyIlbrbDm/PUYZudxilJQNXh0dw1AKQyLgLmn0Ip46CjlM16TXvEyAw2RPeQ8AZwDCaO7v50NC0Qtye4GcWFtMMp/XdFdLSMc0wWo/rAT87tojZ2BwmmJbk1pfXd/2232p1LcqZzuBIeVqC3GLvERTPuAKHO8ibgRW8OXgRGcYgRjYUMLC+JeVdFF31vM/DbFtu1/kDp5etZvqGMobmnMQid/dBC51oFUk9rx86dEgEnBQxRUrmfPgq/znpgq6DKoDpZWvaPaSt27TmZhI5RZiDI0Bnl1ZXOF0RRoxdTFnTCOp3ZFKVmYNRqFEb0uhfayD1CtRwNUIvTAa47HNvnKaBGg0TcnuwOqRiUjHIoRavN4YeycaSCkLpPK9lmhqWVFCEhaoaOFQTTAcWELUkpoSCRhNFOol5ki5QYZm4og1oGQaGqtJtuRppIKwYOhCO12Al9nZqIzHQjd1E9ybwZmSnwu8PBCl7XtC9v+0+C18ZEXv073+itn4nDkcOwYxS+g8YyZFHjiQz2/tFD83GBoCl2+vTXIidEIKQFqDSXURJrBJICtj0/LkAvJ2vcNPYsZjacTQBu0ogEDGYtWoDxZGNyYCNHt7Ae8ofOH/UVCbqg1je8GnrWPpwQV3EjHWVCPiI1srPC/bJc+iPhpi+ZTWDGmvSOxECPSeZgilh9OzS2ucwpIS90/J5dOrlhN3tf/uBiMmJS6sZsjFZsiVWPKRLUXUZCdwNLeiqhqUouDxxFE1iohJTHLj9NbQkArg7nNcwnMTjXqRUO4zFRAoDVULEar9P+1ZvkYpKzJNLTlMLe7Oz6LpiGnhDYQzhw9B0TL22x69HddfRXOOBPA5YyITom3T0td1n4SsjYo4VKygJZ2LIzehiORs/+jcrX/WRyPSietz4/Edw8onfYODQgs91ctTmq4spJR83hqhOGOQ7NaqbexCwDkTU5MNXIJiYMweAhQUObpjgBtJfylo8Ki8fNYaT1kc6Jb3tSF9SNT00PJuvLY33JW4k/dgu+ooVDkhbq3bE9vUMqKuifPhEwh5/uxvT0FFDjaA6MP2dgwSamguIxn1scw6kSWQRpIERbEBh36wkST4R07jf+YNO21s8Cs/PHM7Z8VEcsX09VJR1EfAiEXocYZo4TRNUqA3kY9IuBCoGWY52V6JhOInFOrvTpFQIS4kidZQ+PIZV6aGoZi812TkYHaJHVSkhahCRHpAeSECFbpLtbsDr6LoQplBMFC1GqF7B5dEO6Hmnqj6E4ujRpSgUB6rafRmfg8VXRsQi+cWU98+nIOygX4uX4U0ZOKMxWvbWUB+vImx+xCsbPiCWF0D15jHzuIuZOGWkLWg2h4RXaxq5eUtFWmHK3F5y7gksjsgqY5C/gkCDj9zwsRj4MYE7R7ZG7/VlrVUX9CVVU61HS6Vq6hPd/e0IAZqDRE4RrrqksOqBIIl+g+nX0gihDjWzNAdmMK/rfoBtucU8ofyZFiWQ2pYta7mEh5nCkrS2Fgr/5LKux9Z6n94+9kxc8SgRbwBvpIWipjqcOXkIQ0fEY4jWumJSUdAdHhQTTGmBBKcFilBoVvJABZ9sYufa3USam/FkBMkbPAxFaXfuIsFS4yhG749hqWh4YwaDqyqJZeRiONxE4gl+98c7eP0/z6GoKg6Hg37FpVx57Q2MGD2WfGq7FTIUEythocdNnAeQdV4IgdtVhNMZZPTo9uv6/e9v4Jhjkhn03a6iz+X5+ZURsTfHZLMoq30RnyoNiqxKSmIhBjYXceSeIRxdkUFzVQXV0c0sKfsl77wZxJMxlPPP+x9yC+11a/+tSEsS396E1ZJACThxDcpMW4x6sHm1ppHvri3vNENV51dxuhREvLMVMTF/FReMeI5sd2NqmxYrQ2ycx0p9GtXuHuyjfXIFdsX+pmral26DQXpqYxg46+qABPGC/qmx9pXu3J/1ZHMPP+VH3JEmZBsZSb3I7dQ+hRCEfQGePes7qU3+UBNfW/0+01pdo1JVkZoTlKT9FIyGkVKgmC5U2f44LV+3lU//8wiRxsbUNk9mFpO+dh6l4ya2ng9AYgkTRXa/0Dl1XZ4sfJqTAAKpSy770VWEwyEee3E+Ga2JgN9963XKNm9gxOix1MeyUiJmmiZqx8KerQurLfPAlwm3hc+/9fZT+LztFuv+rhP7rHxlRKy2ej0l4WfwOLPwaLk4HfnojkHscg9gqbeYp4tUcsbXMDLSwMS9ozl+SwGhyp3sKVvN4zuvwizIYcb07zDlmHG2dfZfRHRtLY0vl2E2tZeVVzOdBM8cgmdMDw+8A8SUkpu3VHQZvCGFwBgZTBWkbGNi/ir+Z/zfO7U3XA1Ujr+P3TvzgdG9nrtboZKyz6maGrwBKjJz00Sqp2CQNhdmd21mq25GVucgHemBCL2JYs/uTwWkxT+5jEksS7kWG/sS4rcPIV8G70w/nbO0GBrJbCf7IpBINYZlulGkxo61H7Pon3/q1C7a1MAH/3iAYy+9sl3IACks6IOIRVQHjVgUo1C+vYy333iF+UvWpgQMYNaJpwLwn2ef5I2Xnqe4wM+WzVu4444baW5u4dZb/4RhWGT68/jdbXczrWAi7777Ltdddx2ffJJMI7Z27VrOOOMMysvLU4udv/3tb3dZigXA7zsCj0d8plD+z8JXRsQu/nQIYXUk0cBm6vyN7MmoYKe3AlN5nXxnA/n+QaieSWz0juGDIQX8Y3ATE0N1zN5xDEdt81GxcSWfbv9f3n8/hzFjzuXkM06wxexLTnRtLXWPb+i03WxKUPf4BnIuGnnQhezjxlCaC3FfBoe3MaRpNct8EwlrfgQWF4x4DujCSGlNyKsUvkZfRMybiHUZUo8QrfkDI8kQ8m5C3RGC5QNHsJx2kQJ6DAY5cf1SGrwZfDJwRJdtXpl5OuaKlQzosFysZ1GsIDOzmspgTi/uT4V6ctkoRzKKdQBkyoa+BaSk9dNaT8zlQXe2BsR3kxjZUmMYlmTZfx7rscvlLzxD8ZgJKRdcs7uBjGgequx+cCaQEMlXn2okK9auov/AQWRmdS/MK5Z9zO8X/oexI/Kpqalj6tRzeOWVhxg2YDrP/usVvnf1t1m/cV2vt6Curq7bUiwAs2fPRtd15syZw//+7//i832+z8WvjIgV+DyUx8bhaxlPZkuCIXsspkkXlmVgsZuKfu+xonAZQnud4QEnPv9MVvqn8t6YLPqPKGf2nv6ctW4KTds3s3vbg9y1+l8cMXIuZ55zqi1mX0KkJWl8uedQ8caXt+EelXNQXYvVCSOZULYhAXETXGqy/IgQDNu2jrPnPwVALst5dayXoS4rzYXYCQHDXEvJi8epcTp7zBU4aP1S9PzSLhcpK8DQ6t2sKh3Wbah7R9pEymW0WrDdzDG9NWpK0jLqcuzJNu+PGs68JTtQ6D1C8kTzDaaqlQToWxBMR+trULycgNpCi8O/X25LhMBUFHTNgdbtPF/yn5ptm4k2NfTYXaSxgZptW8gfegQSiSHihJx1ZMa7f2Fq6RC2qCOxSC/Fsqt8Oz+54hJisRiTph3DhMnTOHLKUQwbWgrE+eSTNYwdO4JhA6Zj6V7OnftNfv6r69izZ0+vl99dKZZjjjmGHTt20L9/f8LhMFdeeSU//elP05ICfx58ZUSsxXQy2VODJUyilk7UgnrDSzM5qAxh0J5SBu4RGFac5swFLBq8EpfzdSZklRLxn8SjJcfxQnETxzbUcOHqc9B37KBi+z+4a/0LDBtxNmd9/XRbzL5ExLc3pbkQu8JsihPf3oR7SPCgnXfH9kZc7+1Jm/eSLgVjRAbHf/gqACXeI8jql8ObvqfJ9va+zkbB4uqqjdwyYFy3AnT84tdwNTfiaG4gPGx8p3B7C9iaX5r80GV1Yzpvk5J4F+619ON6+Ztona9bUzyE0RVlvVRYhre0U3mLUwnIJvrChsqpVMrhuGMGgYoEc/ov5sWBJ3VtkfaC1Yf20Za+jSva3AhAREvmekxoUULU4o9nQYc0VCZJAYuJ9BeJ8WPGs3P7NpobG8kIBikdOIhn31zEf559kvcXvAmAz+dFxr0k4n70SCbSdGPpXiSSuDOOlJKIaaGqalopllis9xeEtmdd//79W8/l43/+53/43ve+16frP5jsV7Tsl5kz//cCfHP70TjSoCaznnpRiU+WM1bdxmR3LcPdewmqDSiKn2DLmZy96lt89+NrGLtOJbbjBYbu+SmD45/yVtZULp85iKdPyaS0ZC5jdw2h7o1/cvdvrmDxe8u+6Mu06SNWS88Ctr/t+sIba6v444vrOwVuiLjJhE+W41E1srJGcnT+2RRaBQA0m3170I6s3ctZ61bgi6c/gPyRFs6a/xSD9+5Cz8gi3pZxfp8Hcio6cT8tlIPFR0PH8vjRp/Z5DC0EkkLUXf5yKRHS4p3i6bxQchpPDT2Lfx03m4EDV/Ej7iC7D4Ur90XpQ650T0bfghk8GUFEcjYttS2qRalz11KvSBoVSb0iqVGtTgIGMHzQEE496TR+9dPv09zULpzRSDj1fxULUyokLJgwcRJr169h1c51VAdVnnr9dfKKiwllZKHnF7GttRQLkCrF0kZbKRYgrRRLQ0MDkUhShC3L4plnnuHII4/s0/UfTL4ylpgvmMWYmTMYM3NG2nbLNClfu45lLy5Aq9IZ54gjNJXdukodBQyuuJCBuyUtvg9YcMRSirwvk5tzCguDM3nvOMmMpiYuXH0WBeXbWL3r93z0UT5nz72eoSO6Tl1jc3igBPqW96+v7TpiWSYVG9YRamzAH8yieORoJEoqG4ciLUbXbiM73oIVdFGYncDn1okFBrMLeNZazNT4EHJ1H0UbBqEfuwXN09D1s12CFc9gYShEv1CEeXU7OwRExChqrEXRHEQH9FAjjL5HJx5KYvuRi7EteCMZqm6luyzbIgn3sQIbyOIefsopvMIs3uZ5eV5rX72IppQoloVmmiC0Ho3LvMHD8GRm9ehS9AazyBucTITcMS2Y17LQRIyEEiIifd3maXQg8CB49O4HuPXe33PxWXNQVI2MzEyycvL47tU/pGLr+vasLgKy87K4689/5gfXXIVlmQQyg/z+kaRY5RT14+Lv/5CJkyYzeEApx00/Ku0FobtSLKtXr+aKK65ACIFhGEycOJE//vGPPd/LQ4BdimUfYuEQC//5b5pX76XUUUxMMSmL55CQHhR0Ytpm5o/6iFrfHvJyT2KdZzYCixPqP+WST3Ooq17JLv8ujJJSLvnWTeTmfz5hpjb7h7Qke363tEeXoprpovD6KX2aE2tbuLxtyWIa/vUoeqi9ppc/O5fiUy7gmo8Mjqlcw5WrXyQv1sTukmI+nD492ajTg1Qyav12GgLn4h6wieLpDyS3CoWNjKSRLIKygeFsYNP6GdTVdfPSlEqY2PM1VGTm8vKEY3u9zsORgGyiRbT/nQlpJQWsD+LUlzYliuRPLp3S/BJUd2v77ivPUL52FR///c/ddtkxOjEiQjjV5HKDjrkzElKlSubQROfFwl6thUKHDsLEVOIkQhox3Y0lFJyeBNJygVTSBimBel9GWrqsfXFInZHhbe1HKQ7KGy0mH3t8t6VYDgaftRSLLWI90LhnD6//+Umyap1kurPYntBoMPOSYqZs4+3R77PXv4e8vNNY7Z5NgGZOr1rL1z/NYVf9h1QWtKD1G8X3rrgOl/vA85TZHBq6i05soy/RidI0eeHj5fw6JgiUb0oFZnSWJNimjeCaT5PzXlIIXjnzDKKe7qIBQbFcZNdMRSDoP+BTNhy5iUec56etdQokWjh6y/oes3H0BQt4YtrJ3Vc3Poy5St5DNvWs3nEctUYBHw0de9D6VqTkysoEcwc7yC4oQnM6sNSuX3zimoOQK5lXsXr5EjY9/Qjxhna3pTeYxcRzWteJSQCJEougIMlwxnGr7fOfrbvZKfPbhUyYKFojQo2R57BwC4g3OjH1dmESqsSRITtkCUl+lwlVo8nTeyLeIdGd+M32BdLluyqZfPol1Nbuv/u1r9gi9jlgWSbvPv4ctYvL6e8pZoeuUGsUoKATV8p5fcy7tGTW4c39Omud0+hnVvD1HduYtTpAedNC9vZXKBg8mwsvufiQLqK12X+6XifmInjm4F4FrHn+fJ59/hVu/ualCMvie0/eRSDc3OVLugRcusnx68tRgOr8PBZ2WGvTHf7mwYwW2VQXZ3P9hNaQ8i4CN05av/QzC1laZGBX0YmHqbjNsBbwbf3vLPv4XLbklbJg1JSD13mrJfYXj0JJbgHC4cLSOgc+xDUHze50q0laFg1bNpBobCDL66HfgEHJsPrW2xmQbnQ9TMJK9hd0xjoJmY5gs5oBwkIo7Wv5cjQLrwLxZgdmPH2NmSuYQAotLV9jTHPQ4u49BVT/WCVZRkvq/AmcmMKBmt0fp9N1SILX7KKYnwOKonL8Jd+ES2Dl2+9i/ftjJrstdhiCGmMYc1cPpMW1ipdGv82ozNeIZ5/PvYNn8EbpZuZtPIZJmwy2736Vu3e/z4QplzDn5ON6P6nN54JnTC7uUTn7nbGjef58dv7ox/zx/5KLWkv27CAj3NxtewEkHCoNPjc54RjRTmucLAIZ1UQd0JTIoKUxj6nSyzHOIjy4uX5k6x/3AaaV6g0LcOk603fuZkW/XCKO9vH5ST7UQhw+L5YdWaTMYYVzCicPWoS3vm+LtvtM6zqxZkcyDIMusrJLINRFiRahKGQPT67fU6SFaP39UBD4pBsXGg4tQCKRFLEW3YlLMVJfsQCcSHwiTERJ/2ZTv55W599TaQk0VwJNSyQz51sKUnHT0oVrcl8crdcXxUUTASzU5AXW1aMoCpmZmXg8PazP+wKwRWw/mXDCLCacMIs1Cz/AfGYRk9ywXVew4pO5cPl4ajIW8tKwp5mQncHe4HncMvYIJg9dzmWrTqOwvJKynfeyYsXTnHHmdYwYPfiLvhwbQChiv8LopWmy97bbWTNkODVZOUDfizvGHck/OU+s3WWTk7OTAUM+xecOpbaFY0GGbpyHr9rFp1nqAaeVast8EXa6iDrdeBJRCpx7GJzYhpFw09SUz7bc4k6LiwOyiem8zySWMYKky3WjHMk6xvKi+EafrvWAOIDQd4AQAZ4rPY0TW5bgi0UPrltUCEwBYYfEa4VApuep1FWtx7kmAEsoOBQvPgM01JS1rggVTXFiWAlMqaBbarJ+WAf2nYhQBUjhpkVqmELFSbpwiw5rylTVQFWhIZIBnp7urcQhDXxmlCguGug8l29ZFg0NyYCVw0nIDrqIxWIxzj//fNavX4/X66WwsJAHHniAgQMHHuxTfaGMnX0sY2cfy/pFH6E88T4TPQab415k84lc9sksyotfYk+/+5icN4LNgbn8cJqXWSPCXPrpOTRvWcP8B2/itdJSLr30ZrJyD8833K8CUpo0Ni4jHq/G5conGJyCED2nAKp94AGMvXupKx2S2lbi3dWn88U1hcqgH7e7EJep4M8vZ+So9zq187kaqRr/Z8Sqa6hVjupT3/tGGHaV+aKNtiS5qh5nvuOcTvtbCPAGZ6RlhB/FOkawgffkbBrIOTTuxbZ6KW3/38/jPjhiHMdsXs2CUVMPWBC7o8XrJeLIxB+P4jL0VP99WT+WHKKGo4uYQ6WDAJpdOKM75nexFC+WlsMeWqMkM0GxTDJCTbjiUYQqUR3tSzgMS6U+lkXE8CCiJtLb1SM/Wd6lX7wagCbakil3fV1NTU243e7DZl3sQZ8Ti8VivPPOO5x6ajKTxX333cdLL73E/Pnzez32cJ0T6wuLnv0P9e9sI9uTw8ZYNrp0YcoYK4c+x/KcnRTnz2K192RcxDh97yq+uTyb3TWLqSgI4Swew+VX/Binyw7++Dyprn6TzVt+TTzenrXAKfIZnPtT+o0+p0uXYvP8+VT84IcArBw2kh9f+0uENLnHuoq9T2ahhzW6/uOXrc+K9n1CURh98SZUl9H1s1aCFsumYe0fuHJq75PyZ6z8AEFSzJo8/vZUT92lkSLpKgwR6KaNRTb1/JGr0kqbLGMa9/DT7vv+rHxG8XEn4gzfs4Ot+aU9p6bqIyWK5PYMhfzS/ojWF4WMWBiXngAh+hw00T9s4esi4W6zXo9hJedks53RlCWWnBODLc7k0gOheNG1gm77DzbXk+kPUB2NoSompqUSM/dZOqEpSI+adn8d0qBfbC9BM0QcB3Vk93otOTk5uFwHZ1nGYTcn5na7Oe2001KfjzrqKO65556DfZrDjhnfPBt5rsUr9/6D/pt24HD52BQrYnLZhYwvq2XB2Ffol/E+GXnn8EzBsbx7yh7OLR/F7FVeti9/l3tvv4J+Q0/k/Hnn28EfBwlpmkQ++RSjpgYtLw/v5EmpUhrV1W+yZu3VsM+bccKqZmP1Twl9WEH/Yy/ANSqb8vJytm/fDlLivP9+soRAlZKxWzeSV1/LcMdGcv11aMckKH+rmH0LFwog190fj+onaoaoje1GIskfvxfN3UNGDgGGp57hrCc/NplqVzdh41LiMHQWjpiU/tDuSQxEcn1VSPTwstiaf3C9HIWCpJEsMmUDk8QyfsQdPMSVnefJDob18xmPjzmcrCodxonrl+LW48RGh3lLO6XnvvfT+gu5PDgNHdF67xXLxFL2seAtibYrhBLSET4NT9DbYTKrrYmZEjBVWDiUdgED2KNprfskCS2n5zFlZlHq91IVFcT0ruupYVg4I1CS58OQEocQeGJRFCOEBMxevBBtdMzw8UVzyKMTL7nkEnJycvjDH/7QaV88Hiceb/fnNjc3U1pa+qW0xDqSiMV47va/0K8+k7Cisj1RioJOxLGJl0Z/iJIVJZF9AWXaSIbrm5i3vpFhWxLsiH5A7eAAQ0eezdlfO+OwMde/jDTPn8/e23+D0SE3nFZYSMHPbyRw4hw+XHxcmgWWhgQtmoXzowt4zx0mZqY/ELREggkrV6HqOi/POQ+ZZTE4dwXjM9+mpdxLxeIC9HDSqi72HsGEnONpdlpEiePBRUZCYWX9ArLOfQXN3c3DpgNFq6/kE+tYfjahm+CO1LgPrvusDZ9sISw61+uaxDLWM4r1cgyVFLNKTiKhfvGLpoFkZv54lKs3PsaE8fNZxrSk6HYl2m2LppMfOuV67MoSA8iMhnCayZeQhJQ0BdrzNDo3NuB9axdqS7szUPE78M8oTpt/DemNXUYnJkgKWEtrQIdU3JhaUdq4dF3n73fdwRv//leqntjQQQO5/sabySwZ1u2tGZDjJdOzz8LyaCNmw04MlP2yxBoaGrjmmmtYunQpmqZx9tln89vf/rbX4ztyWIfY33777bz88sssWLAAr9fbaf8tt9zCrbfe2mn7l13E2miureXF//sbwyilwoC9Rj8EOnWBRbx4xBrys4NUBs+jWhQyJbqCy1ZqeHbtoUL/hPrBQUaOPpfTzj7JFrP9pHn+fCp++KPOKYla72Pw9v9hfWbnl6o28mrjyM2FvKCfnnZcCinZERzMB0eMocXb/uaaEdW5IPwiM7KeJrHIR/baSehHnM7Hji2EO4RH+ywXU/0KxuS/9ul6Spddj+kI8/KoDTzi/GbPNbEOBZ3yMSYf+m31uhYbx/Jn7UfJfYfZ7+rM6sV8L+8uAAw0/s73WMIxxEW7xdomygD/5LJO97c7EQvEwriNpEi5w2HiDgd1mdmoW1rwP78N6NqxnHHqQLQjnMRlCMMwMHSVZkeALDWGgkWLI9QpGtFSfFhaftq2n19+GZFwmF//+QEyWrPZr18wHysS5oyvfYPKxhh66wuYaZq4nQ76Bd2dBawNKYnWV9MYM1oXi3fdTFEUCgoKEEJwzjnnMH36dK677joAqqqqKCoq6vrAbjhsRezOO+/k6aef5u233ybYod5NR/5bLbF92bl2PYvu+w9DPKVsjrtpsbJA6mzr9x/eLt5Gaf4YNvrPJoGLGc3LmbfKj1K5m93mpzQOzmbEyHM4/exTbDdjH5CmydY5J6Dv2UO9z03coeHSDbLDseTfpBCIvAwqflnTZebQvNo4o9eHuMv6LhHh6/KhvC2niPmju19PddW6f/ONPz9P7Rk38I5ve2u7joOEvLztjBj1Qa/XoyR8FKz/NlXjkxkgDKFxDX+lhYwvVjCkhYcIx8p3eVuchuwlOu8LQ0p+xB1AZ4HyyWZO4VXm8nxqzs9C4U1O5XFxWapdXyyxQHMzmmEgLUndS80QsrrNTiUCAv/VGam/Z0MqNMb9uHQNaek0edrzH7oUiQokhJuY2i+1fUfZVs479mjeXLeJzOx2y2mI14VfU3nkkUd4+umnyc7JZcOGDdx59z0koiFuuukmDMMgKyuLv/zlL4waNapTPbGPF3/EN877Jks+XsKu3bs49dRT+eY3v8nSpUsJh8Pcc889nHrqqWzdupU5c+awffv2DhWr95/Dbk4M4O677+app57qUcAAXC7XQZscPJzpP2YU8x4YxdJX3yLw8ioGeyJsjGUxpOprDKyM8snw58gI3kpR/iw+zDiBD2YIZjY1c/HKc+hXvp3KbX/nrrXPU1A6gwvmzUNz9M1v/VUk8smn7I42s2FMf6Jqe6CMO2EwqrKWwqYwsroJ51ZB4oh93t+kZMTmENutEiJK1xP1FvDh0B4yrUvJE4NPYOqInaz1VbZu36cTAYlE3wIO5K6jqRnxZOq4zQxPS7H0hSEUovh5S5zxRY+kVx7iKkJ0/j7D+HmO8yllV6oCtILFyfJ1XuMs6nuIwFSkhcNMltURloVmJMXMqDYQoZ5dxLJFYu4y0AYkfz81YZHrbqZOVRAJL4oFLk0SVCVa6vRRdmJgogKCjatW0X/w4DQBcygCn9ouJh988AErVqxg2LBhVFdXM2rUKBYuXMjYsWN54okn+OY3v8natWs7jc+fEUBRlNSvbUNDAyNGjOCWW25h06ZNnHfeeZSVlbF+/XpKS0u58sor+eSTT8jNzeV3v/vd554E+KC/Pu3evZuf/OQnNDY2Mnv2bCZMmMC0adMO9mm+lEw9/UTm3n8tzcMkpWInw90VaMLNUZvn8a2ll6GVbyB3102Mji7k3cxJfG/mIP51cpDS4nMYVzEM871X+eP/Xc5f7r2bUHPf6il91dj23uMsH1hIVE1/P4s5VJYPKGBPZnLBp9qgpWbPLSnYWD8UbV0Qhy6JiM6u7zZ6zfYuBM3eLDZ9L4Y7d0u3LhnNEU9Lwm6g8Tqn8wjf4XVOR5cauq5RoVZjuNuLOR5IdeKvNEIQapvP66oCNJJ/chlWh0ehMxbkxL1hesIfjyJavzxfayZ3ALOPa61lqLMDLFOzCDsiZKCRq3UUsCQ51JL2C9Wxnti2bZx71GSGDh3CvHkX0NTUwFFHHcWQIcllIEuWLGHChAmMHZtMyTVv3jx2795NVVXXWV6EEOTm5qCZAqfTyRVXXEFBQQEzZ85M1RPTdZ2PPvqICy64gOXLl/OTn/yEM888E8PovXzQweSgW2IlJSUcRpmsDjuEonDa/3wrGfxx2/2MMSVNQmFHopRT1n6LuLKDt0YvpND/Frl5p/B21izemWlxTEsL564/lUG7W9i5Ywl/3X0FMjeb4465jMnHjLHnzQBr7YssXrUBcNJJPVqtpBWlRfRzSEY2DSDKG3y6ZxxPbfo6TfFMPnVdCUBAdP8A62u292aXl2NGvceG9TO7SM5rMWToJ6lhPcVFvMpZyA6RYU/wLU53vMQFAx9PO3IPhX06v80+dPvSkYzA3GCNZLi5karySVRHLuKZcf26bg94EjFcrZGJvnAYh64jXRKpggj27ZEq/J3HowlwCYnX1XVuRh9h8tlDHbmMGD+enWVlNDc0kJUVYNIgP0vfepPHn3iO1xfMR02YeBwa1ZU7QFMJhyJdPiOEEGia1mU9MYfLRU6/5Dycy5WeckoIwYABAyguLmb27NkAnHzyySQSCXbv3v25rgs+TB3Z//043W4u+N9rGXvz6dRTyWRXBXlaLQ5rKGes+TYXLP06ZvkKinb9jDGRt1gaGMMPpo3hrtO8GONnMj06m/7r4ZPHb+Wu27/HQ3/9Ky2N0d5P/N+KZVLx71sJGS66NX+EQKqSV4dM4qFdRXz85ok8sOpSGuJBJmVvI0uEEAIGUEEGLewbfg/gTfTtVTtLJDMbDB6yDEh3L2VmVuNyRVIC9gpzkfv8KUoUXmEuT3FR+yWi8A4ndl9Dy+aAaRJZaJpJ8dBP+MfYnqNA45oTkYjha2lG1XT0YolRAGYuiNESEej5hVJkCNTSrsXOrSQzcnSHjzD92cHIgV5OOm0Ov73mUjIa1+ATLVi+BmppQXcIDLcTVXHit/y4YoLxRwxi+fLlfPTRR0gpefrppykpKaGwsJBBgwax/QDqiU2aNImMjAxWr14NkJpTKy4u7vH6DzZ22qkvmGBBPpf86Ua2r1hN2V9fZZIbdhqCGmMkc1cPIaZu4Z1Ri8nwLmBkzjS2+k/kxgm5DBu9mZlVgzhtw9G07NrOnq3v8Lcti5A5GRQUTefrX/s6nsB/53yjZUmqtjQSbo7jy3BRNCyIsmMxoaa+pX769uZXycltwRSS6dGlPNjvAoLjJOFFToyYiuY2OSXvXZ5VzgBMMjNrcDqjJBIezCar57RGrQuER7ABIcDtjpCZWU1TU7sF5XQm3U8GGq9yVnJjN/Nrr3A2Y1jNaNbyIl+j4fOOTPyy08dlB0GSLx0bGUmD0vN6LEtRkJoH4Y5i5qS/UAhF4D7RQ/T5SDdHg/sEz2cO0tJkjFv/+Gse++MDzJkzD1VVCQYzyM3L4cIf38S2TZsJawoVmQpew0mJYyh/vfterrj8u5iWRVZWDs8++yyQFJ3rrruOyZMnM3DgQI47Lj23a3f1xAAeeeQRvvvd7xKLxXC73Tz33HM4HJ9v0gY7i/1hxvoPP2blY+8y2N2fcl1QZxagkCBBNR+PfIP1/j0UZw+j0T+bbdoIArKJac3rOH2LmyG7HVSFN1FvbaIhz4vMDpCTO4XTTjmb/OLgF31pafS0ELmnfWUrqln0zBbCjR1C1oMuTp2+kcT7t/LsznE9njdzUDODplZCsP3XXmkA9388BJe2uVQEzn5D2HOypHlsOU53u4Ubj3t5tfp8nittXdDfQ+h5G+vXz2CVPpnKYC5ubxOlWZvJ0erYxHAWiFP7dL/8srn7zBo2XdOnemHpWUk+ZAb3ix+lNekqOrEoYuB27YBuYqz0jQlib8WQLe1WuAgouE904xjRdYi7IaHeFORrvT+Sqw1B3BKoQtLPkd6+WlcxhIaqeDEULwlcCCQ+K0JOVEEkdBIygulykpdfjKp275ArLy9n8uTJh3U9MdsSO8wYNf0oRk0/ilXvLEI8u5hJHtitW+w1Spi54RKOscJsGvwiH+U8xdBAjIyME1iccTRvT/YzeEIZE+vyOaFsOKP2mlRu3kTjhld4es0bxHP9aJ58xo4+lenHTsHj/+KstK4WIitZWWSedSZqRiaNzz6LsXdvap9WWEjBjTdSK4dR/voOSgTUaoI6QyKFSdTxCYtXrOVsbxNuRSdmdZ36KXNgMwNPrOi03QpC5FtRvP4R+CtG4hg4g/CAbcTG38e+jxunM8I5JQ/DLsk7pUfRQLtllE09l/BwmoAtYxoPHHEFMUfHaMT9D3QKEei9kU06fSmKieASHkbBYhnTeIxL+9S1pujdChiAY4QT7QgHYksGtCgoXg2lv8Dwdy8GjnqB5gAz0LNL0ZAQb81eb0pBTErcHdoH4xnopiTqjKMrMZyKiaZmEFH8hH0KfrdFbiSIEQtTu2cH/sx8fP7eM9wfrnxlLLH7//QLopFq0PxoaiZ+fzEjjpjMuLFH4M86fJJZ7suqd95n3b8+ZLCrPzWWwc5ECQoGpoQW30IWHlFOtauK4qyRhL1HsUUbg4XCUGMrE2v3MGNnJoOqXdRHdlMb20qLo5pQ0I+V6UK4s8jPGcfMGSdSPCivxzeyg0W3C5G7wBSCNUOGYyoqg9RCSgefhdJBDHQzxi6zjA3eKHvVBr7P33ly85iuRUxIRl24FYev+zyFSiyHprV3U+MS6CPuZ5hjKYroHC4tJZimAprCW5zMXgopYA8n8iYa7ZFZhzzHoE3XSKtT1o2ucMkIZ/Af5vI8nzKl2+9qX0tMk5JBsRYMT02v53BE81B1H6YWwfDUIUUX6ZoMUBsESqvBH8p24PJ3X3G81hBEO5Rgaast1kaipQDLcCNIVri2RJgWdwxd0XFoAaJKBgJJTiKCPwwxEULxBMjNy+/ibIeew3ax84FwKEXshasux2GUEDWb0a0mErQQdSaI+33E/R40rwpakML8iRw/6wQKS7MOK2ErX72WRX97iSEUE1Ik2xMFGNKJgo5u1bJx8Gt8mhPHcO2lKONImrzTKNNGYgmVIquS4aGdTKg2OGZHAd6WGPXxKhriu4lQSdivEg34ET4V4fThdhUyoP9kRo0YTb+SHFw+7aDci7aFyB0tsO54f8IUlo4azyWvPU8/zwDcU5ORg92NQ080UdnyGh837+xyv78ozNCzut4HScHZdzFsQDZxKX9lGh/vd3sLhSv5O2HbBfj50pZCaj/ueZasRcfZrbt2XxErjlj4ZZSEr/ffY2e4ECksdG91t23UWlAiyfMKhxfhycZyxjuJniGh0UwXMCBV5RkAS0FpLkzm3ZQSXTqS2TeQSHRaPM3oqoGiZRMTXrxWhIIQ6EYzhttFfkG/z/25Z4tYH7n7jpvYMLCQ3KgkP6xR2OJhUH0mzlicsN5AU6KWkFFNhCrCAQfRLD+qz4PXM5jjjpvLqLEDD4uMGbUVlbx+z2MUhgP4XJnsSKjUm/motNYjEltYN+QDVgZjSNde8vwjsTwT2OkaRYPIwSET9Dd3MiBcw7AGgwlVQQbUe4jHG2nR62hO1BIzq4lqTSTcDhJuNwmvC9WloDg0pOJFVT04tEy83izy8mO4PTpuVyEB72QCfj8+T3LiWloS0zSTiUUtg/DSj+HX13e4GoGaOwzhykTGmzBrtwCS9ydM4e0p07n1b/cAAv/Jv0G4e36pkK0Prw+rX6QisrnT/uCQJgaeUNnlsT1aTFJyBi9yAY/3uf3pvMh4VnK76JxSzebQ4pYRYnRRAbsjXaXR6sFyaxOxwpJS+plOMgyZrHoc2NW1ZdWKJQWOUDGWv6rHdhjgqBQIhxfFl5fehxpDKibCUtmrtBBS0yOQ950T83j6I/ASaWpGjyRwSBVFUUlIMKQDkFgiRoO7BUXxEBcZqMKkMKEjomESbpWCwpLPVcjsObE+8vHgTD7NOpKwaF+575AJCq09FCSiFEWyGNCUxfg9R3FkvYuW2mpqd+8mbH7Kuxs+5NXcTNRAgMKCaZxy8unkFHwxgSe5xf24+I7rMQ2Dhf98FnVZOZNcFk0k2JXIATmSyWWDGS9VTLGRbf0XszrnA1T1BYYFNDI9E4g6h7EyYxjvZObCQMiy6uhnxCmMBihu8TCocSgjq7PIiKpgxIk2tBAxmokYzcTNMKaswVG6goLhCq4WP0aiiWhwM3LnSKq2DqahQaHWqoTWd0Ak5KpF5FfW0ZZVTSs6Ete481A87RkHrGg90TXP8udzL+beO29JtssdltamO4RQkNLiyJw5VEa2IPcJjzciXf+qWyj8k8vaOumyzSvMZTBbUxZWj+2F4FU5l42M7HXMNgcZaREnvWBl5zZdBHv0MWVWblyS0fp7JQAtmtOjhVVvguWuIF/0YidoyTqbiqvz77liusFMLvbItRyE1PQ53aDaOh7FgdtVhMORzOaSkZuMsJRSEm5sQjZH8YpkaZcWPFgJV2udMhMTqBBOgh6BPxpm755dFBSWHlaeqJ74yohYaO9WvI2vEHDE8Dsz8DjycDlK0R2l1DoLWeceTjTHB4Mhz6pmYKyZIU1FjK0exLSKbCJ1e6neXU7L+ud4fMXL6Ll+nN6BnHD8hYwcN+Bz/8JVTeOEyy6Ey2D3xk1seehFihNNZHsKaLBi7EzkocsxjNw5jOE7VEwrQiTzfdaU7qTRsx1VqWeAJ0625wiEaxhhRzErA8NYkJkHJclzZMgmssx6sowEWQk/OVEXmfE8poajjNt7Ko617X90EhPRNtPtAVOatJhN1KhhUFV8eMjL2EuMT9CKjky5Bzsi3Fl4p1zB6TvryG+sT25zdU6xJLGIZm3CcDWhxTPxNAxHoCCEgk/LINddQk0svUhlaI+XREjrNCe2kZE9J9RtbfyQvIoETrYyrPcEvEJQJof33Mbm4COULlb27dvmwP9OVYu0lbWq4YVIfie3n7BUQoaDKAm8Sh8dXU4NsW8plw4IwCFVPJaLqBJHExr53ix8qhPLUEC6kaaC1GSnRcn+rCD+rCCxcITGuhCNXZ1HShoNDcvrIzMSpnrvbgoKS/s29i+Yr4yIXbB6FI3GCaDUoPs3UpNRw66snVS4d5JQIniVegq9CkH3cHANZ49rCJ8WTuDpIpXAuCaGx1oYVdef6bvGM65GpXbnDmpjm1i49ae8mh9E9eUyccJcZsyagqp9vmvIS0YM5+I7r0dKycaPlrDp3wsZQIigJ48WGaVK99Fs5uAPncZxG+IcLZ1YVhjTuYYdxevYHFxNzPEJimiiyNFC0JuP11GKUPNJaLmE1Gwq/YU0BLKZsVdy5YauFvymX/MOtZpK9ztoopEQPnZQjLefi1M9mfjGnQd0nt8SQiCRXFiTASiouUNRAukZsVvyP6F6xBPJVEytaLEs8jfOI1A9GYlFoF8Uj0tDiwdpqXJTF60kx1WC2OVkwwiTRrII0sAINvQ5jVNE+HmAH/apbevF9L2tzeGNlKgSPPuIGCSFTG3xprn9FNNNjXMvEklFZTU1sRg+n5vi4lyU7qYkLK3HaMc2/HoGTilwKJJwKMFv/vgHXvjPc6itpVhKSvpzyy2/YtrRUzod6/J6aGk2wOw+t2Oz4cDpd+MOR6neW0V+QfcZ6devX8+FF16Y+tzY2EhzczP19fW9X8hB5CszJ/bKD//Ajvj41k8SjQRCWBjSgSUl0mzA8K5je9FmNgUVqrUWpLOOPH9/nO5xVLtGsVsZgBQKxeZuRrbs4KgKhanluYQjleyNbKLJsYfmgiBKZgalpbM584xT8fi7KXtwiJGWxYaPlrDi5Q/wNEGBoxChKdQZBjVGJlEreX81YkgEhnQgrTBS7KIlezk7s0NU+1QaNIuQkiAhwkjRwpPlNxLUg4huc3RDs/o6xdqjZIpQalsTft6Qs8jelMXIgef1On4r3oLiag8rl1ISKviUyvH3JTfskxUewL9nKpGcdVjO9rRRWiyL3A3ns7BQ4/6iMWlWVLasZTZv8Zy4oNfx2HxF6DRfJilRJH/xKAwvKMWt9fz3LAFDmHywewkrF60kGmqfw/L7PcyePZ5hw/bJaGGBc48bxd97SrFmwigxMDXBVT/+AeFwmD/e+WeCmcmXsTfffp2WUAtfP/c0FIdGMCsbhyOZViqqS7bVhno5A+DVyDciOCNhlMwgway+vehdc801CCG49957+9S+DTuwo488+cP7GCjzUFWBJUziVoIWC5pMD81mFrL1NUgTMSypYloSi3KqCxexstCiwtGC6m4k3z8awz2eba4xhEQGmbKR0eEtTKqOcdy2QpSmeqoiW2hiO025PmSOn8ysI5l71nnkFn5xC7gjzU18+Nyr7Fm+g6DhIkvLw6E5aJFxGgyNBjOILpMT4gIDTSSQUmDgREqBtKLkqnFmBNvLo3fl1nMrH5Hr+E2yn47Pgv9n787joyrvxY9/zjmzJ5mZ7BshgbCGfVcQV1SsS6lyqXUFae2iXa6tden1d/W2F+29Xq+trVVbt2qv1dYVrYgLWFEWkUU2IQQI2SfbJDOZ/Zzz+2OykpkQYAIJPO/7slwmJ3POGZL5zvM83+f7bf+fyj2XIY287ajXq+kqgbR9nc9tbhrFofN+TsTcTMz42d5MWUPmK8Z3jbb0PdH0aSlGIkZ7MogFHwFp6O6TEdp1fyuL0wE7/tc0kvFiItTjg062X+Oe8iATplgozBveI4j17N/d9ff1FZtZ897HcS/zyivP6hnINDBWSsj2YX1OKaroNEtekj2t7K5t48KvncvW9btIdfZeS/vr317kjZV/JT0jnX37y/ifhx/B3ebnvvv+DTUSwe5w8osV/0PxmHF8vn4dj/zyPl76xxoADh7cxQ9uuI5tmz6novQrLll0NUuXLuWTTz7B6/Xy2GOPceGFF/Y4XzAYJDc3l48++oipU6fGvYdYRGJHP33rf3+A191M7f4DlO8to+lQM0GXjyTNSJ7ciNWQiqToePQgjWEzTWQgMYZ81wiGuXQiGkSMOygt/IIdzrXYlJcosmdhts1mv20Kn43M4akRAcYF/UxpGM4FB6cxsUGlbv9+miIf8pc9awlnJGFJLubiBdcxpiQxGUB9VbfozmZ3cPGy6+jYyxlo8/LlmnW4PtuJ3ByhgEbsxlQMBhNhwni1CD5NoU210KbZUZUkrMaupJh403pFpRZ8Deei0IxZ3oXUvs8qmuQLaYVVNNO3WM8thS3oxj4q90ux096dNBCMl60myaBr7QH22NrTC4PQ0f7tOr4ep8nnt3mCGXzOV9p4POECSrZ/i2nNOnqKRPeCZioajcZGMsKpSN3eQiOSiktuYMOnm/q8jLVrt1NcnNc1tShDW6oVCGHX47foCapeMELIlMyOXRsYUTgyZgBrv1k2bt7CZ+9+ROHwfKobqljyzSX88eWVjB4/gXdef4U7v7+M1z5c3/s7VT+gU2e1oBhtNDY2MmnSJB5++GE2bNjAokWLKCsr6yw9BfDaa68xYsSIYw5giXDGBDFJlklJSydldjqjZ/ecL9Z1HU9DAzs/WY9rUwXGoE6J4sFqdBCQgrjCCvWRLIzqDCYfmMAE3UBEa6Yh+z0+z9+GbvyA0ckSjqTZ1Fun8udhk3khX6U4coDJzZnMLx/BOTVW6g8fpCGwm/f33cFb2Q4MthxmzfgGZ50z9bh6hMWqfGHIySH73nuwX3JJ9N7iBDlLUjKzr1jI7CsWdn5vOBDg0Jc72LNhC37PTpL9NdjdCsbmIpT0caQFNUgagydrc9e0XjcRczP7J4Jv+zWkuGaiUI/T+BRWJfqLIklgs+2kqbURTGkxg3i85+4zgHFE2ns37j56QkUvSiaIGIWdScwEuj7Y0LvSSom0C0y7KGAKCuM5srGIgowKlFmqyYqY8MlmVEL45SCuSlePKcRYPB4/VVUNFBR0pdMHzUaajDaCIUgLRdfgOuiaiu5vwhz2EU5ORlWi0+zdf38OlR/glu/dRCDo56zZc5k94yymzzkb49QxtEaC7FhbyuSSCYwbPx4VuPwbS3jw3+6kvq7nXjcFsIeS2gM71NuMmEwmbrzxRgDOOuuszlYsc+fO7fy+Z555huXLl/d53wPljAlifZEkCXtmJnOvvoq5V0cLsmqayqEdO/ni7Y+JVLZRoviwmuy0aH5qwil4pUxyG67lqgaNiBbGZ1/L5sL9hC3bGW51k5kyHa91Bisz5/Balok8tZJJrXbOqprLWeVptNZUUuffy859K9jwvh3JYSM5pYQFC77ByNG5Rx2lxat8Eamriz7+m0cBjhrkujNaLDiKmnB6niJJcnc+rrd8Sdq+FOzN56Gj4Rr3l/YX7sgXEtDBNfb/SHZNRyWdxvC9pOkPIkseNFKRaaYq9CH55iUxpmP6eO4+9Jn2fqwjq34WjBWGrmv4KyP0gz0SfGR6JztEzC1xnyMjkoZXqaJZCSIbnPjkJCTNh99fEfd7umtr6/mhTJNtjPTqdC+DqErQZJIweppRZI2ILRlF1cBgZNKEKRw4VIa7pRmnI5WiwpF89O46/vq3v/D+R6sASE4yoehhmg3J1FkMRAwy6UD3TQGSJKEoCqoWza5M1cLUBP3Imowp3Ei8/tTd35/Ky8v57LPP+Nvf/tave080EcTikGWFkVOmMHJKNBlEjUTY8fE6XO9txB5sYLQpSESOUBMx0BDJIdl7GQt2hThPkwmZtrJz5HYaUt4kw/gkOfZxRGwzWeecwnupyaROaGJCWxMzaycy/0A2sqeFOtchWiPreHfPP2nLSMFgdZKbO4cLz19A9jBnjx8aXVWpW/Fg7NJNenSHVM3/+3c0t7vXl7sHuSMDmcv1Hjt2/KDX96j2EDUzn0XanoQSTuoxzdeLBBFrE/7UvdiaxwMaTZG76J565XSGQe29nuZP3dv3c3fTfe2rBcfR0977SwSwoa3PdS8dCY1L9VUYpKM3bjQE43fQ7p7ubtUC6Eo6umLFZC+EGBVejpSU1LX2o+kKWb7etUxlPbo3rcqRicfYlRapaBp5Y4pZePHX+Nef386j//V7HA4nAD5/R/X8aMdpLdSKSW5izswJ3L9zFxtrDjCpsJDX/vYWWTl5ZGRlo6oq1RWHScFPVm4G/3H/S0iAvc0JoYOdrVhuvPHGHq1YOjz77LN84xvfwOl0HvW+B4IIYv2kGAxMveh8pl50PgBN1dWsefF1OOhhsjGEYjDiiqjUhLMxR+YwZ98UZugGItIhDgxfw9aMNdiU/2OEIwejbTZ7bFNZNyqTPxQHGBUKMd6dxZzqEZxVbcdbV4PLfwDvnr/yt82v4nemoCRZSU4ew4xpFzMq3Nhn6SYJ0NzuXiMdoHOkUbfiQVIuuqircryusm/ff3Q9wZFP2D7Cyihd3K/Xq+tTbO/tBlr6Ng6M+7+eASvgwFg3tV/PHWvtSxCAzhY2sbIMAS7nLcyBFHQlhGZsi5skZAikYW3ue6+fQY/+7kS6nScjvwBLcgoBb/y2QCkpVvLzu352DYHoxuQ4v3ZkB3U83bqbqLJMc7LMf/3mCZ743//msm9chCIrOBxOMtIz+eH3/5XS/XtRdBPpvgw0yY9i9/HQ4w9x77dvIaLp2O0pPP3E06SpPlLzHdz5059y4fy5FBUVMW/uXCQJZF0h1Z9BWlpa3FYsuq7z3HPP8eyzz/b5Wg2kMyY7cSAFfG188vKb1G0+RB7pJJkcNGkBKkMZhHQbCkE0XSGiN+LKXsXneUGqjfWkpRhJsc2k2TKBcmUUEclImtbIGP8BJjb4mVOZQX6zEY+/loZgJW2Rw7RZgwRak1i4ZXO/r0+XdEKjdFSHjtIiYdovY0gfQ8aP78I2vQTzCAfulo1s2Xr9UZ8r86tvUT/upaMeN+zzO0lqntDr8R5rXr3fYzrfd3plGbZP+YiiusLxkHSVy3mLH32l4vhqBh77GuoueKf9i90ObP85TC9bRPqBq5CQiaRIeC5I6pWdWGmqwy8HUQ056HLXGltV6T42rXwj7rV0ZidqClo4HVvQdtTrL0+S8Sk9L1TRIatFPaJ3q46RMEZZRtM1QroBDZmOclNuqxdZkQkZ0tGRyAz4MfuChMwqmVnDkduLgPtaPajuAHsP13Lp18/vbJg5EER24iBgsSV1Zv5pqsrW9z6iYfVmhtFKmiUbD36qQna8Wjb59deTX68R0YJ4HB+ybfh+ai07yTC5yE4egWKdSrl1PBsKh/GnQsjSainytzKqJZ+pdWOI1KbxUfgwCzl6EAsWa2gp0PIvEbT2rR7JdTNw7L4eYzgN3xcqvi92oDhMlE77kl59R2KIGD3IoaT4n2Lb1U76U+cG5A59rXl1fYCW+JzZvCDd0mtP1w08y4sd6ZXxUqhFYDstmXU/QSl+5l4s8/S12PD16DCg7hhG6KuDOGZ/F3lbEfXjj5gRaP/xaRz1Bi3DPibrq+ux+o9IBCOaieiXg0jI6LKlx9fzR49h9pWL+HLNhz1GZClJyZxz1jSGZ+cTdEuoYRnFRL/Wfw0aR2yGllAlsOTasKigqTqyImE0Rw8K+f14m1sxRFQMkoEQENGtpPksBI2tqKZaJFM6dZYk0hSdFI9Kfd1hMrKHoygyNnsKbn8IqxTu78t9yoiR2ADSdZ2D27az/pX3SWqWyTbnEpIj1ISMNKrZgIaBEGHdgEY5VXlr2ZalUmt0Y7H6SLeNRTePo95UTJVcgI6M5eMa5ECE595bQXqgJcZkXbRetZoKrv8Id83mSdEAlrf99va/dltj03V8aV9ROevXx3iDxP8FbP+pytt+O8mu6fhT99KWtpum4pU9DjtyxOUhhd/ys/Zr7p0GLYLUmem7+m/IoLFzDfRF6Zajfs8v9P9HCbt6PJb+v0bSRv66s6C0jkbjyLdoLH4jekCMUVnOvjvRpsyhMG84ZoMJCagx1uNV/KiGLHQ5dnarrqk0VFVhbmwg3ZyMM82KLPf8jbUoSdgMR+8VV2eRaDL1/m13+FqwRILoEtEC5ZKMQbFitzswmY3R3+0WD4GWNsyyiYAmoWFAJ0yTrRnFlIJfSsER8ZLaGiFgDpGZXdiZ/h8JhzEMcKdmMRIbxCRJYuS0qYycNhWAhsoq1r7wOvLhNiYbw8gGhfqISl04kwjFjKgpoKgGVE0lbPqCA8N2sdf5ORHDR+QYm7Bps6kKXoImKTwxeRH/tun5GBl+0d+81sWRaADTJazusRgCTrL2RkvEHFltQ5IkrM1jMPhTo59K420mhn59auw8TofqCX/EMM4WM2Ej1tqW1J7aG29P1zGlLQqnjQwaOwOShsw/9KtoIi128d72bs3j2NPtMVBajFjdY3sVlG4Z1r4xOc6iVEPxG6S1NzKNSCoNhiY8hhCa0jOAZYUaMegRqs1ZgIQkK2QWDEfOH0ZGkwtN713JXouRFRlLJM6Ht2TNgkUzoOs6GiqqFkGjhWZ/C7pRQZYtpKdnkuS00+ZuwdDiR5Y0ArqJdF8mLVozNnOEFkMqusNLaouOq66c7JxoPdiBDmCJIILYSZQxLJ/F90RHQn5PK2v+7zW8X1YzUm4lxZyBXw9SFzbRSCamyDlMLJ9JySEFVdNQpQNsyKyg1laGZPCw0ZbCs0kLuHnr+yjurh9wNTUawALTdJLrZpD11fUYg0evAi+jkLX3+uh6VaxSBBD7l7wvEmAMEjH0rrUYb1+X3ldF8X5WGxdOIzECkozGTTwT/fk5so1K+wedjm7N0ceif2Qf+i7WWeN6PP1RM2Il0ExthC3NNFrT8ZgtIDnQJQtH/gKkqG0kq35aDCm0KV3rXIoajhnAgLiPHykS80dfpz5JR0ZGRseggUmVsYatWCMykVCQiOajIXwYDEbS0nKwOew0VbuwqSH8ugFHIBWv3oLN0kyrkops9+Bo1XC5qsjOHtavazvVRBA7Rawpdr723aVA+7TjlzvY9PqHyHUhJhn8mIw2WrUADRELzWRwOC3E/uHrsHXbu1I72kTdNWFM+yWUFgnVEU3gQO45ddhfKa6ZZLw6jqaLvupcQwNOfPBzxPf3p/1Jn8Ta1+kpTiWNHgGp3Sw28hP+OzqSp9va6REblyGaaZi197pogWhjz9WTvvaCdSdJGimKm4icg48j1+Z0jHqEJDW6ydmo90zfV7T4gSqihdB0FVmKX+wgLHNEUkeUSQ+goKIjE5FkgoqJVsUAJjAQxqoq2EMpJAUlQv42mlyHkUw2MvOy8XvbMDf5CKOQHHTi01uxWd24DU6UFA82j5/mpiZS047+AfhUE0FsEJAkiZFTJjNySnTvRSQUYvN7H+Jadxhzi04kYyurR/2j1/d58IMMoTE6aDqm/RLWL2RUO2TVRjMN+yrUG4v1SyPZa4yERuk05ZqpnOAkf1LV0b/xGBy1/Ul/9LMFvTB02GjDR1dps1gBqbtZbIyWidJ7Z7ECOMovxO6a1Zkq70vdQ8TcghJwYHWPQUbpcy9YLOk04iOJrk9m0WmLLH9D5wxGWOr5tqr2UQ8RwBfxkGx09nq8Y0Kk7sgtZLqKMdKKrAbQpOgSQvRYFaOsY5DNINtoU2x4rApmSwBHyEqKXybY1kpdpBxHai5Jeam0VDdilHRsITtttGK1eWg0JmO0SigeN6HkFEymwT2lKILYqaapUP4ZeOsgORsK52IwmTjryss468rLCEci3PjMrYxqnI7P2EqNvQy9vcnegZBMc0QiZwc4/2bonFZUMsZgPOf4PkFZZizDv+MVduPno/ypZFu95PNqwm4X6Hf7k1hsupfz+JB3uSKBVyScUu2bkH/Pt9mvjzlqJY3uZLReyRsdNEN0ZOTJ+oL6I/YlGgKpZH51HSmuGRgCqfELSx/BQAQLgc7u0bKmYfe2EAlqNEhJWE0R2hRr+22phD1fEAy7MAYMJJtLkGKMuEJagFa1FZvBjqFHxQ6NVtmDxR/GGEhBk0zIuoQpoiORAiTT/aJ1XQUpQMjkw2fwItOMxWAhojhwmZNpMQXICKRg9UfwNFRhsDlwFmTRXFGHUYKkkB2P1ILZFsRltZKvQnN9JVl5RYO6QaYIYqfS7rdg1V3QWt31mD0PFv4aSq6ibKuLj17axfyW63C692MOteJOmsvKqVs5kLkDHYndnxkp+WvPRaxYjST7S7KkYpv9XVZOtfJxloH7d+1GCXyIanYnLKfCedQSwPH5pGTe1a9KzIUIJ0+8ShrdNiGbCMcNSMfDk78eT/76I/ZRRUXMzdRM+T3S9tvJ+irOWnAcWYF6WsLJyJqGKdS13qvqEt6gEXMwQKvvU9oOP4QWroteC2BQMshN+x522zm9nrPF7MOltJEWNGONGNA1EyHZhCIlIyNh6Dbyk9CQ0IiEw/zv7/+X1956raufWP5w7vzJXUycMBldVwma3YQMDVgNCmElnSqrGbupjQyvnaCnhfpwgKzheTQdrsUoSaQEHbTIzUQsqbiSDeQ0m2lqqCU9M3ZfsRdffJH/+q//QpZlJElixYoVXHbZZUd/ERNIBLF+UnWdDW4vrlCELJOBs5zJKMf46aTjOWqDIVrKVpL12b+RrYaYTtcWEL21hsb3vs2nh3/CF/szyWrwMO+Lv2EJujufZ8YOJ6+cW8A70w8T3a/Zc9JQD7Ye/41KOr7UvdxR38KdVUlk1k+g0Xw+jaPeOP7nPMI49pCit+CRjj/YijWxIaR9bctIiDA958YkdC7nTb7FiwN7DTGSknQd9k14kvf3nkVKVSHzsg5jNR19x5EalLGE+ijy63obT90vOTJ6RtQGKup/RUHmv3UGMk2GoFnG4QObP4Skd+0rM0kKEUsKkska/Q3XdTRdRUdHQ+f7d96Gr62ND15fSaojFVlS+McH73GgdBdTJkxAlQxYQulYQuCXGwlb6rAZk2hVnAQcIXLa7Mh+L3W1lWQPH0bT4ToUJBx+Jy1KMz5jBs32CE5v7OLbTU1N/OAHP2Dv3r3k5uaybt06rr76alwuV8zjB4oIYv3wTr2bfyutoibYtfEv12zkV6PzuTzTeZzPMRV56vMkN7/IcM8G7m5sZrJV5csxaUjGCMk8zXklIOeC5jPAtq71H3PQzY3vuzH7ZTK6VbfpqMyhD3ND6h6szWOjmzFj9P2SYuwwi9UCpSWUjKVlxLG8XJ3iVd2Q0VjGU/xWj7EfrD9EABtc2qcD9TjJCR1rWzP4nJ36BNZxPkEsjGUPl7AKQ6868QkW58dFkiDZGKYufQtsTGdv/Rgm3LAfg0WN/yOmS0RC8X/+dF2lruFxYg7/2lU3P4GSNherZkJRnTh8QayBht7Xp6sY/W7CRh1jWiomm61zn1lpaSn/WL2KiooK0tqTLzRV5YrFV+D3+PjrSy/wxttvkZGewZ7Sffzn/f+Nx+Pml/9zPxE1QkpqOv/2yKOcXVTI5x9+xL89tIKtW7fRUuFi194DXL/8Wj7asYE9lW5uOP8cbll2S69+YpqmRZvVeqONNt1uN8OGnfyMRhHEjuKdejff3nmo149kbTDMt3ce4k8Ti44ayLqeo+d8haak4km7nbAryDspu2GMB474hdac4P5OBOmPBqzbZHSgKclCwGhg7i7Q8SIB/qlat8ocFTTxawyBVFJqzsKTu6HXesCR1TTitUDRTF58mTv68Ur1FGsPWEfVjRQ8qBiYw6dsZN4xP7dwChxlOvCHPEKK7sFNKnbcSEALzl5rW5PZwWSO/edpIC04kIu3Lpq8UPlJDkUXV8VNgNVDfSc5+II7iai9A1J3aqQByVOJwToLJLAE+55eN/l9mJN69h/cunUro0aN6gxgALKiYLPbsdntJGU4WL95Ix+9u5pxw0dT39jA7AXf5NWXVjJmQhEvvv0Sdy69iVc3bCZkNSHrUO+qIj0vB9O+vUg6WLwGLFoTzU3NMfuJZWRk8MQTTzB9+nTS0tLw+/188MEHfd7LQBBBrA+qrvNvpVUxP1N1hKP7SqtYmOGIO7XY8zl6HjP64B4u/PQd7L4WSq6LTk/0epr2DZctiyO4DznZk5tJwNT1z1aak8741Gr069t6nTtibqa56N2Yj1dP+R1522+Pph33twVKP9cM4u0BayItWo1DjKQGN11HQu+xZy8ZDxEMBOhZ5y8ZD9/mibgZhENCYwiIBqeWg3YOvQ/5c+swJXd9oNQ1CHkNyDGqZnQXUZv6dUot4sIqh5DCIaSj7BXTw2G0Nh9Kcs/KIN2DWllZGddccw1+v59zzz2XefPmcc455zB7/lw0TePtNauYXDKRKePHElaN3HzZMn511wO01Byk2WhFkyVMfo2mpnoMdiuSBGbVgs1viNtPbOLEiTz++ONs3ryZsWPHsnLlShYvXszu3bsxGE5eaBmQM5WWlnLzzTfT0NCA0+nkueeeo6SkZCBONaA2uL09phCPpAPVwTAb3F7mpXaVjlE1nU0Hm3B5AriMxHyO0Qd28fXV0UK6ybm+Hr8wvUigpcH+s1IIVPecsgmYZIKLgtGyh/HKYPdRlb6jJFS/WqD0I/b03dtLjt0+Rhg82tevfsj/dI6sOkZTALv1EvYwEYASdjKe3UfNIBxQoSSGbb8NX9qeXiXNjkbXIdxmwFvbMzC3HLTTciiF5BwfBlsEgyGXcQuMqCkyYV1HlhQ0PfY9G5T+ZQUbDQ4iRo3kJAsR39GP1yM930OmTZtGaWkpzc3NpKamUlxczLZt23juued4++23AUhOjm5XkGWZ5DQHitmApoewSjp+3YikS0jhNmxKhKAGwWQrprY2PG1edMAkhTBEYhcnliSJ1atX43A4GDs2uoXhyiuv5JZbbqGiooIRI45vCeJ4DEgQ++53v8utt97K0qVL+fvf/87y5ctZv753G+zBzhXq31x99+NW7azhgZW7qW3xMSa1jJRsP+OHF/AV4zvXDCRN48JPoxW0JcBg6995DDa1V2BIzvUfNQDGe7yj71d/N3z2x1H3gIlR2OByxLzZ0fZmTWQnE9l54ueNGLFXn0PEWk/AcRDN1HsmIXp9xC2DpgPPt4RRk98jzW/ncr8JoyXUr9rQHZ+lqj7LBj3WN0h4a6IjH1ta1xu5rklIZh16F6GJHmueiEnJIqTWE29dzGzKYfjYS5EkBdUb576PIBl6TmOOHj2ar3/96yxfvpxnnnmms5dXW1vs5zv77LNZvnw5Lp+b3LRM/vG3V8jLzWNMyjj0XJ3q8kPsa/Mz3prESy/8GUmWUfUIZikSt5+Y2Wxmy5YtuFwusrKyWL9+PZqmkZ+f3697SpSEBzGXy8WWLVtYvXo1ANdccw233347hw4doqioqMexwWCQYLDrp6G19QSy6gZAlql/L0/Hcat21vD9F7cwLWs7d5z7KmkWd+cxjaTzgr6MqpZRFNQextZtRBLx9e88sY7rbwCM+5ztyR6JciJ7wISTrP1n8Cz9E2awud97sxIh/dDlZBxYBMAO91oOWz4ic3Ij9uFtvfewxwlkpQ3D2BZowqYcIGNvGlXVmTHXs2IN/sNtBqo+y6bloL3vRpoxtChhLBYT5iA9RmSypGAzOinOuos9NT+jayqkQ/T5x4z5f537xeQkG5LRiB6OP+MjGY3ISb1HRM899xz/+Z//yZw5c1AUhdTUVLKysrj77rvZs2dPj2MzMzN54YUXuP7661FVFXtKCs///ilkNMY6x3PL97/NdeedS15hIefPnI2mRXDkZ3C4uoL09PSY/cSmT5/OPffcw/nnn4/RaMRoNPLKK69gMvWjHUYCJbyK/RdffMGNN97I7t27Ox+bPXs2Dz/8MOeee26PY++//34eeOCBXs8xEFXs//TEQ7R4apDlZMymDDLSi8gfNoriEcNIy0zBZOkdIFRdZ+b63dT5g+TXHCLJ56HNlkJlbhG6LCMRzVL8/OwS0OGchz5ggryKa2e9AcT+Rdqz+zwaG4dHvx4OYa47jNHbTMl1+zEmReJ+igy3Gdj9f6PQkKnMLaLNlkKSz8M4djHmyvLjfl0KPr8LS/NoSi/+DqAf116wI7ss96fCuHCSxXij7uixNSDp7X2MoORQMqM+/i3oEj7VwzsVT3QWrkbWKJqiU5RTgNGXhSHgpH7cX3tMd8vBFLL33MjKyp3U+yvIajKjtJ/MMaK113pWIGDDtamAkNuHwaYS8bVPIepS5+syrbyOgFFhT35mr0u2pWUw/VvLyMvJxqgoRIxmkCyYNBOyHkFCQ5EkrIql85YbPB9SVv9fhCJ1nc9jNucyZvR9ZGVd2uP51ZYWQhUVcV9KU0EBiiNxHzQ7hEMh2mqaUTGiotBsayJsTkdBJbc5QNAcxh/QmDlzJg0NfSernIhBWcX+yN3d8eLkPffcwx133NH599bWVgoKCgbikrDvKCU1kElYbSasH8Yjr+NLo8YWs4mwxULYYkI2SyhGBV1JwqA4SE7OZXFYJrT5A+xtXaPE1iQ7a+ZdTunICfxydD6KJPH2W+9x6a6nmfPN7UCM5aD235eRxZ/T2DgMkNENRgL5xVBVRtVn2X1+iqz6LJt9RRP4cN7leJOjP9CyrnJh7aeMDDyOYg7H/iDZx5tJR/daX+pXIB3fZ5nYleij9dzE1OFJFjelLvpvezv/g1tPo46cHj22BuIyoP1HKlZrkz1LO6fwtjZ+2BXAdB1UCeO7LaRPuwLF7ESSJFJcs3psEbE0jcGvtmGsWksuPXt5daxnJeX4MKToeFLH0tKajdXrY8bGj9mbk94jMcoSjlBS3UhOSxs6cCAzlaBR6eNnV8akO5F0HaMURpElJF0hrIejdTxkC2iQkXIR6cnn0xLchmpuxpKci9M5K2bFDsXhwASEa2t7jMgkoxFjTs6ABDAAo8lESl4anuomdCScvjRa5SZ8xkya7GFSW0LUe7wDcu5ESngQKygooLKykkgkgsEQbRFQUVHB8OHDex1rNpsxm48sDDYw6vNyKSvKIsM/jKw2E7meZDK9VozhCGooQMDfhj/ixa96CEQ8hLVyvNp2TCE/zWlBGuwq1qBCdpOZlLZWrlr9EjWTJ1O61cRjrUGCe3aQk9vW5/qUJIHF4sPhcNHSktMZ2YLZBbj3uyl/Hwrm1aAkdU1RhHwmKj4fzg6phH0XT2ISX+LWUxnZ0MAv9/+OvFA9rnQTO0pSom8MsarPx3kzsa1XaPRvQi8+vtqIcSvRi3Ypp4STRsbqX7Gd6QSkrumnNBr7XOfqIdaHnqCEcUMmvrMaMZj62EPVTgtLNOxOJXVUa4/fh+6FeNvUVrY2fkiVb1/n180RlQlVDeS0tBHa/less7+HrutIkoyteXz08tojZI/g1+seJNpqkqAGiryHyPDsIaO+AVnXyWv20pRkIWg0YA5HSGsL9KiCWFLdwNbCnLj3ZjHYMEgRVD1MRNfAbCA51UFy+xSaruvoQRVd05FkiUzzef0q2aQ4HMh2O1qbDz0SRjJEpxAHutyTYjSSnJdGW3UzOiZS2uxgd+NRUrEm6WQrKi5X/YBew4lKeBDLyspi2rRpvPjiiyxdupRXX32VoqKiXuthJ9vH45184pzXY0OmQQ/j1N04tBbsYRVHWMcZNJPuTye9TaF8/0o2jKnFZ+1KgbX5FebsTqOwzkbBjt1kGjNwhaJTBsZ+rk+ZTN12+0sSutFMcXobC5Q9JH8Rwu0wEjRJhEMWVoYvpmJUMuflf8w3eKvz28wpKkpKGzRCVmOIibs87BlmR3V2PbXcDNbNMv5ZWsyq9K0X1iM3P4GpJvY6VrzNyh1f6zsLUfT+GihG3c9yniKVppj7sTTkuEVx45FDCvmVFooqKticZaHRbsHXYkfabsFbk0R9RhZ2OZXR5+yNO+DTwhJ129Ko25oJukTNpqzODL+Iz4jVPQaXXI1f/T8aApWdhWtBZ1uxm4ixGSt5ZLe0EanZSs3OZ3GOX4zN0DWV5FM9vYJfXzYUNnHtOm/nRIMEpLfFrkARNjsIF17MsFQLrtZthLTuVTkkFMWMnGTCYk9GMRpjBhhJkpBiLE30hyRJvdLoTwaD0Ygtx4Fc14Jft2D1mtBS/DSareQHdZoaqsnIOrnJGsdiQKYTn3zySZYuXcqKFSuw2+08//zzA3GaY9Ls2ktGy8skmS1YjE4sSgYGQzqakkZYScVjdFJtzqIlxUlAspFX+Tbhyb1HKD6Lyprp9VywJZPCOhvVw53I+2uR6H+CRijUs5XDeEpZlLkFiP6SpbZEpxQ0QlyT/io78u294kHQJLOzJAVpt4esxhDZTSEsX3o5WOdAdYDSImHaLyHpEilv6ngXqniv6Gg42fU8mhMCzv41rEzSW1nIOyzitX5kIbavzou2KQl3FW8wn3/2eKz7y9xXUdzuWrDzKefylX88BZ+UckHdRkoNo/EeNlHps9PZFjwJpKCP8MEkfKFighc0kSZ1/cwEQiYOHByJe6MNm7/bG3+3DD8AL5W9rqHNEmFTSROHc/yAwq4RdbizxnDhhipSyjaw01eKt2ASVkMyftXbI/j156dq2yidJqfMT1/Ten1Px8es8uGzSE4fhtuRRpsUIWyFvFHn40i3kpaTgXNYIQGDkbT83B5rNqcTo9lM2GnF6g6AaiYUaCVkNdOYbCDdEzrVl9enAQliY8eOHXQp9ddtHYtXOxvdcpDWlAoabV4aknw0masIGlQCUghd8pMseXEaQuhqKPo7HGeP1caSJgrqrFT6VTomSr21NkJeQ58JGsGgjZaWrG5Pp7GQtdH//8gBDVA6Kin2L2v7VOS+4iQyG0NIgGNYgJE61G1xEPF3pXg1JoP3Qi1atS7eXrKO32gp/jRhm2TnVb7Fe/rlzOXjWFcVmwhkUX2tWR25EBrnOEdI5/btxaim76CavHjLD1CTbSd57GaMtqPv9Qv7ZZpKnez3jqbCPxybr43za95B1nUqcXYeJ+s6I+qaSAmGMYcjONsCyMDGOZfx/s6zqJkcxIkbN6l8ZRqPPk5BGq0yrLacpLZWiirLGFX+FdZgV1DzG1UO5Hpps6lM9I2hIJxPutlGk15KRoMHRzCZ6fWjUMwGdp6rktLowhz00xYKUB6uQtK6RpMemx2jGsYS9MdtRO43q9SlBalNl/mfq+GW1Tpp3m5Zwc40sn76r4z9xiKUPjbndiQenO5s9hTc/iCmYIjkgB3N6KbNkIbZ5B/UOcdnTMWOLIuCL1gE4SLSmyJkNUc/XWi6gooxOteuBdF1LzWpW1k5sXf/rk4S+KzRX5BLN33GnvxMdEC12jm8dRTF53wVN0HjQNks6Fa3sFCvwiF5Y36sdDuMBM199CKSJIIWBbfD2Dl6sxcESMkP0FZv4rXkC/nbsIksMz+LI6mPINIevND717DSSwqr+9sKRQSvqI4fgF4/GCoWgr0qYcT7AfrF7iApzePRfE0Ed7xMS9su/v6Nqzjk+S0Tmj9llG0TU5K2YzZ1TYGH/TLN+xy0lqd0ZuUl0cq4I/Z7+S1J5J09n7lWG/Izf0at61aqLCeH7HvvoeSSS1hGnHqiNgv/75ILSDMacIUiHG7cxro1DxJsbekMKNlJOdw1+y4WFC7o/L6l/Xj5NE2las8uWpubKDdYCRSOwrhnG/ue/N+Yx0vAkh/8goVFZup99WRemsm0B6YQ3LKNSH09hsxMbDNnICl99/o60zizM2g8XIuMQpLXhppcTYSTk7dwvM6YIObWzcy0NICkESZCQFcJaODXDPg0Kz4tGU2xIWGjNal//2gRJUhhQytfjRqJN78I3WjGr0NodzbFxZswW7o+hQaDNg6UzepMr4fo+1IS8bN/gqb+BYCAUUIFtljM1CsKmarK9OwgN7GKKzyfETQE2M3Rtyw4yuazvriZJvkoDSs7Ui2Ffuuo1r5Y/yvv65dyOFBMUluQCZVlWI0aNaFzqVMzMEea0dPcfFA0lVZzV2AzRsIUehv5ONXPtvABGpKaGDXSjNVbQJarmWTv2yT5PBhqAuxmNMk5Poy2SGc6ua7Hbo9qSLZjm3k2+dNmc/GsGRiV6FuCfsPN+DZ/EfcN//JMJwszHH13dsi+gNvHncsW15ZoILFlMj1rOspRmkTGIssKBROiTWMndDyYexGlSVY+eu4pvE1dKeAp6RlccPOtjJ4zt/f9zpl9zOc+XonofNGXcDjMihUreOmll1AUBZPJRGFhIffffz9Tp0497udNHZaFt7IeTbdib0vBbIxfauuFF17g4YcfRlVVsrOzefbZZ2Mm8Q2kMyaI/ct/LaPuwEG2f7GN+toGtJYAxlYNkyrhxES+bMYiJ9FgUdltbuzXc5ZUtVE9LJ/WwjE9Hm9sHE5jQz4Oh4uktnLktmm0+qfgth9AVrrml9swcUhNjfuvYAr2L1BUf+zk4ZEGVo/oeqLsSIS7G5u5yNdK41GKlnYwf9YAhmuhPxVjxAirXwx6iLl8wnKewkCEQNBGUZmXlMZm0KGNXBR3CbnBdJyKlxdn/hodjaK9o8lvnkFLyjC2jivGb0tmf2ou+1PBnpXOJbs+YbicSYUjlaKWSvTqQ53nTEnP5NxvLueAZKKxqZGCtHTOnzaJTze9Q31dFdawwuj8EhzpmeSPn4AcI6hIikLSUd7wFUnqUW4t5jGywqycWcf12vXH6DlzKZ41h6o9u/C6m0l2psa9p5MpEZ0vjmbZsmV4vV7Wr19Pamp0wm/lypXs2rWrVxBTVRWln6NOWZZRHDbMLQGCmhWTEntN7KuvvuKuu+5i69atZGdn8/zzz/P973+fd95554Tu61idMUFs/4GDrFq1qqsqiAHsRXYWLlzYWdcxEg7z6KOPktGWgTVixa/44+6xcnrh7L0B/nHF9OhjvRa0FFpacvCo+aS552EEXgsmk6x4sEph/Bip01JQmMAdyl+R0Xs8RWuFhYatduRCDc1J/I2jzWDeqbB8B7gVjU1jo5+aXIrCHVkZPOJqIFxnB68Ud62u43mUjfvJZgeMmNj/F1boSdfJaAkyulqjuC5CYUOI5HQbVSnX0Kp4cHtS6ZhOljUzya3FmILpAHxS/AqarGHzK4wrc1Pc+CmRiMzZn0vRDe5JGTjU0RS5c5D1uUgZZq5bMpoRU9JjvomPO+LSLp7/Lyf3tThJuo/SBoNEdL44mtLSUl5//XUqKio6AxhE6xdCtJrHX//6V7Kysti9ezePPfYYLS0t3HvvvUQiEVJTU/nDH/5ASUkJa9eu5Wc/+xmbN28GYOfOnVxxxRV88ckGXBX7Oe+qi1m2bFmvViw7d+5k6tSpZGdnA3DFFVewbNkyGhsbSU9PP6H7OxZnRBDbvXs3r7zySq/HW1tbeeWVV1iyZAklJSVUVFbibWtDQmJK4xQ2ZG2Iu8dq+WqVpowM/LbYBTIBkCQ0g4bNVM5erQCfpDPC5SIt6KHJnIIrI5mIZOCPkcv5ruHtzmWQ1goLVZ9GfzAdf5Np/k4k7nU4/m5A0SU0YOn7Gp+PltBlCV2SkHSdX6elcknZFKwHjIyb9FnctTr73w1IukTJxpVkXnUJ9c40MdrqS5wX8ppPvZRUdS8hJOOrH4tePwYFHT1jO7a2LExqEsaQAwkJXffgklZTcLiaMaXZjJLyueiy+RQPt1NVH8ZrziM5LZ3csSXUlXloaw2SZDeTO9qJLEevYTC9iZ/JEtH5oj9itWI50rp169i6dSujR4/G5XJRUlLCmjVrmDRpEn/5y19YsmQJO3fGr4OZmp9FVW0VTU1NMVuxTJ06lS+++IL9+/czatQo/vznP6PrOuXl5SKIJZKmaaxatarPY/7x+hsUtHrwWLvSZ/N9+ZzlOovt6dvxG7rWtqyqlX/5zMKcffWUD7fGerpefMl2svdv47l9r5IZ6Cq2W29x8MTkRTyUdx0A3zG8g6zp1G3p2KEvYd0mwR8N3XqFRcnN0QBmbW+WKQMZHhhfobO7MPrLoUsSaY3FtOWMpa0Z9uw2Ujzqc8zmrrLZIZ+J6k8zsZR6sBFA0XVuf+V5/v3Wfz1zswqPVksvxnpgij/CpVsCjK+KXQNPkkJUyTJq0yjsrWuYu/gaUvNHk2Q3k12cQs3eETGnw46sX5M/djDniQnH2/niePSnFcvo0aMB2LhxI1OnTmXSpEkAXH/99dx2223U1NTEfX5ZlrFnpsdtxTJ37lz+8Ic/cOONN6KqKldccQUOhwOjsX/LF4ly2gex8vLyoxYW9oZDbPn5nShpadBtLjnfl0+eL48GSwMBJYBFtZARyGCm6ws06rEG+mhR3k1a2R6mfvl/vR5PD7Twb5ue51ezb+ahvOt4KO0mrtHX823/yz2Os26TsWw3Ehqlozr0HnvAep3L0+0NVodif/syuCRF1+oah+FwuDCZ/ASCVvZqo1GVRvxjyrlg21YUXWf+ts189+9/5dmrFhEy9y9Qnzba6wkWs59n9VvxSL1L/kg6TDtYx0hXCwGDg7Y2E1PrdZK13v8eJlqxaF/S4GshS2/Dag9y0Q+/0yvpQIykTg/H0/nieBxLKxagvfJJ7M3ZBoMBVe3KZg0EYm8GP/L7AK6++mquvvpqAGpra1mxYgXFxcUndG/H6rQPYh2ts4/Gb7GSX1pKy9R0WpPoDFgSEpmBrqKgdrudKbfdRu1P7iCjvgGrz4ffau3xqV0DahwZ+Exm0txNTNj1N6D3spbcfux3d7zJ+pwSQuMzqdnRuwApgKRLmEuPPiqyd+tNlBHIwIT1iBPLtLTkcCAjl0/HT6bNEg1S7wBPNTdy/Xsf8+XYc/lsfNLpH8B0nWSfhwJ3A5Ku4wj4mFBVSrrDhclo4Huhv3K4bSFes4WqdCOSrpDeojCrLIRBM9FGOu9bw5Sa/WxIgWERiSRV4rzADkZq+ykeVczkH/2QurKRgyrpQBg4x9r54ngdbyuWPXv2MH78eP76178ybNgwcnJyUFWVgwcPdq5lvfDCCz2+N14rFoCamhpyc3NRVZW77rqL2267DVtfSywD4LQPYt0/jfRlb3YLD10p0Wjf1PmYNWJlSuMU8n1dJVcWLlxIWkkJu3+xA+eKZ5m+ZQufzpvXOfV2ICOXT4u7gsOUfbsxReL3DJKBLL+bklAlX1iH0+g8semilm4/P9ZI7OoCBzJyWV3SO/Os3pnGo9/8Rv825A5l7dOBF+3exPjDYYyqjUBSNbocoSPIy2o06WJMMDrlM/0AgEqIMB6jm2HWEM8bnLja6xnpEgQNcF7bNkzNn5K76PvM/NblgBhlnUnOciaTazZSGwzHXBeTiGYpnuXs3/tSX06kFYvT6ezME8jPz+dnP/sZM2fOpKioqFe3kXitWCCaIXn48GFCoRBf+9rXWLFixQnf17FKeCuWE9Hf0vvHQtM0Hn300fhTirpOveEA/yzYGv17j8X66B9nuc5ivGF8j0xGgHUv/Ddp//kMVcPy2TJ9OruGF3cFh/bnufDzT7nvmd8d9TpXfnM2j5z/r8iaxku/+CEZ7ibi786I7/7rZHYXyki6ToY/k3PrzuvxdQ34y5xLaTNbTv9gBTHvxxwKct6+bYx01ZFRPy+aXIFO2NSCJoeQNVNn0kXn06DTYHAx1rcZpzGN4pRZmA0WtqPSiE6S6ifS8CE1/ipmL1rK/GsvO9l3KgyQeK1C4unIToRY3cRISHbiyXLo0KEzsxXLYCLLMgsXLoyZnYgercK2Pf3L6N9j1X0C9g/fz+OLH8d4RHfVc2aMpWYiSDuryK6u4fkVv+v1PI2O/o2s8nKjdRo1WeZ3S27mgaf+Fw16BDIdUCWJnaPG0ehIJb2lmUn7v0LRo7XkGlNgT4EEOuR688l0T8AvG7Fo4c5foBpHRucoMaahFMA0DeQ+Qn3757MZB3ejt9dyzHM3kOduQAbsrSWdgUpCwhRyxn4adBzsIFj/AdVANdA8ejs5zuHMGHkpTXU2GkIeHNmLWbJgNoY+ShgJp7/LM538aWJRzH1iv0zgPjEh6oz4bSspKWHJkiU994kBVp8Pe/VGWkb2XXG9IdjA6s//xmVzvtm5nqHueoMtK7+LZ7iJ3J3J7CoeS1OMgLVj1DhczrSYIysdaEyy4HcqJNlcpKsuGuUMPpk2m3+/9V+5/ZXnyXI3dR6/es45PP31a6lP7UpfzWxu5LZXnufcbZ/z5NRLSa9KZ2ZEI6nzM2AYXW9P75XAZxrcJWT6RdexBv1cv3E1tY4Mqp0ZNNuSqXFmEuh2f0lBP/PKdjCyvqbHP6+kmUhpHYU5eJTKJNGToQX34/J90P43iJhNpJ1/IxfM+BqSpDB463sLp0q/KpoMAUVFRQM6CkuE0346sTtN0yg/eJD999yDqbaOjPp6PhsPv/360Rfa769xk1I7jhHfeoDybC8PfXQHdYqEpOn88Tcqn0+cy6+W/zDm987fuokHnvpfdLpGVrWOJHbnpRMwdY3u9CSJN+d+k9KRJSDJyJrGpP1fke5upiy/gPK89oTrHlOe0QA8cc02QqqBC4xlvQ6Brlm1KkcGK6ee089X7BQ6SoPHS3ZvYmRDz/RgTYcaZwZhNR+b6iW3uRlzyIHFl4dq8sSdKox/CRqRwBeogU96PH7Fv97D2LPmHf+9CUPKsU4nCsdGTCceQdXUuLXaZFlmRHEx6d/+NlU//gkAqf1sXFqgB5nl2MRbf7yDP47WqItuUkeXJd6dJTG2Nn4F8SNHVrWOJLYUZnd+XZPaKzLYkpm2ayNJeNlWfBaaLLN9TAnoOrZge9przN5dOjvnTWZe2ZdUhzLIbWmIXeBDh+ZGGUMgSMRsOjVThye45pYU9DNv/45oADti87cMjKqykOx1AA7oNkZS4kwVHskQ3k8o3EJWaxW1SftRu2VC91WTTxCEU+O0CmIflH/AQ5seos5X1/lYti2bu2ff3aNqtv2SS+A3j1K34kHGV9SS3qrTmELMN1dJ18lWVWYEgwBckF3G9t3TOZzt75ywe22uzJOPfUVmcyP1ztSuXlrdfDJ1FjtGTeMX//c5zcpbRLvCS+wbUcKH8y7Hm9y1Hymlzc1l6uu8K18FksK5uzbzz4l91J+TJDArfFoyDYCkgJ95ZV/2GKl03Fqx0sjevS7qJw/r+8VMtPYR1ILdm7CGw7SZzPhMFursqVSmZRPutt5oCQU4p3R753F+kwVrKICj3sWYinRCqQb8MXoHWtuGkewdeZyXp4Pmwet5iyl1NUi/cJNnzcUhL8PIKJEeLwiD1GkTxD4o/4A71t7Rq2W5y+fijrV38Mj5j/QKZCkXXYRv8xf8cPP/cT8f9BolSO1vvIvqk3hbPZss3Mw2fMVYuY3sJjO16dHApssSf1oocdsrz3P/rf8aneLrHsg63sC3B/DnNxGujL7s+0aU8OYl3+p1Lx6bg3dZBJKEIRLBeIwDlzazhdUls2NOuVkllWvcX7D5kIfNI0riPEPida5PHXE9VPXcV2cLBcltaYiZmWlvnIjJmIbJCzZvEQFbNaoSQFHNWHz5yMeVz9nV8j7sW8OI+mbG3HYNKbMuxOmchSSJoCUIg9lpEcRUTeWhTQ/1CmAQzSyTkPj1pl9zQcEFPdpAdFTqXlBfj+ep1Ty/UKKhW98tR0QhUHcl/+05u/OxXBq5wvYB1uDeHueJFt79gp+98L88f+XNPZIv7D6NS7b6oiWJkqOJGpok8eG8y9sv5Mgpwq5WJxd+uQHzsb43t3//p8WTKGqoifnWPv3wPvbkjoifan884tQTnHloD9MP74sbYmQgv6WPxWM9WizXFE7t9j0SNl8+sqkVLWSnP31+DYBD9tOoyiB1S3DRPWieD5nWtIfp9/x7dKQuCCdI1XQ2HWzC5QmQlWJh9og0FHloJXYMBadFENvi2tJjCvFIOjq1vlq2uLbEbAthyMxkzj6dc1sCNF7mpV5ROBgezcOtP0M/4q23llT+mLyEXP1lYFuPr20aK/P56C08/fEaXk26h9bkyST7NYY3RJA74qseLdhZmVvUYwqxl/ZgEDaaGN5UjSUUJGA8hnUsSaLNYqPGkREzQMjAvLIvo/vajpJE0VfXYUsowOi6SsyRMHtyi3qk78cdfR2L9ktIbi3uuW9LB01tBlKJFcB0zYcaLsOgB3CYcjDqjbwhudHTk9l/6ULuNjnIr6olVFVGptVLwcTrSZ49SzRJFBJi1c4aHli5m5qWrhJOuQ4L/35lCQsn5ibkHAPVT+xYLF68mM8++4yamho8Hk+P4hKlpaXcfPPNNDQ04HQ6ee6553rss02U0yKI1fvqT+g428wZGHJyCLpqmdrUjGQJMT/07fYA1vMNMvqYTq1vIUn6diSpa/Qn6TrZOsy49TGqKiZS/cbhXucKtM2izfAlXlv/in8eyMpj0+hJPVLHj0VfKfUjG2q4ZPemHhVGujOHQyBB0Nj1HLagn5KaQzj8bb2m/qYf3tuvacE+HVGtv6NdSfd0eF0LoqmNKMY8QGdW0v/hkGvx6w4sciv+cBCjVs9BLZ99HvD7wasksbvoW/zujguZm5bSnupcCMw51isUhD6t2lnD91/c0rsVS0uA77+4hT/cMD0hgWyg+okdi+9973s8/vjjne1Yuvvud7/LrbfeytKlS/n73//O8uXLWb9+fcKv4bQIYpm22PUG+3ucpChk33sPVT/+CXVbnFScnU0NfbQSkCT0iBPVNwJD0oHoQzpkBDK5Zcy3OWybwpULhvOnD6qJeMM9RhBVBpnNafOZ4NvXr2suzzqxXUi2ULDPr49sqKGooSa6CbpbEkVSexCC/q1XQT+mBY+kSXQNUdvpCjbvMBTV2isdPrp2pYFkbA9gGpc6HmaUdT2qnoI3chURfRyqksaa2lIqffs730g+ST+HX183h/npid+6IQgdVE3ngZW7+2zF8sDK3VxcknNCU4sno5/YoUOHOit2LF26tFc/MYAFCxb0vjjA5XKxZcsWVq9eDcA111zD7bffzqFDhygqKjru+47ltAhi07Omk23LxuVzxVwXk5DItmUzPWt63OfonrH41d406EeSmx6Jjqby2vKY3jQdc8TMvuq9NP3tU1KB4txp7PMUoUty5xvxfoNKmWUkWhtImoYuSX1P5cFxfz0p6O8MRH05WvA5psB0DOzuaPPNsMkNgDHkxBRyxt3DFa2crRB9O9CZn7SOLONw6kOXE9QmAQptEQ9bGz+gyrcfAK+SzJa8c7lz6TcSNo0jCPFsOtjUYwrxSDpQ0xJg08Emzi4+/p5bJ6OfWIfGxsaY/cQ66ifGUlFRQV5eXmf1GkmSGD58OIcPHxZBLBZFVrh79t3csfaOzjp4HTreEH8+6+c9kjpi6chYrHx3Paxr6fNYgIu9cxifNQ/Xweh6XH5FJdO3bMHm72jRsoYci4ntU75BXeo4qiUDX5gsgMT+YePQ+yqZdLS1r46v63rchIp5+3ccZ75eAnT8E8TrJK2ZOwOWOXRsRY+tksREq0Ka8SJau+3j+o3u5zVFJcc+DlvScGSbncsWzOX1BWPFgrpwUrg8R29jcizH9WWg+4l16KufWH+vD7qygBPttAhiAAsKF/DI+Y/E3Cd21+y72Pny63zR9gpGs4RkMIOSgkG2YTTaSbalYbYmI8kKsqwgSTJOE7hDR7ZT7qBjI0RqoAHXnmiKuFc2YTQns6dgBFNL96DoOpXthYH9NoCvSAEWa0ZeD01CPeaUw9gmVZZxIDM/TkJF9amrhajLIGlxO1Intxb3/lrHIboOupcUWcJhSKbAKCFLEkEkLBKkG6QevyA6ELIqLLp2GosUiQZvUGSDCadEVkr/Knr097h4Bks/sXgKCgqorKwkEolgMBjQdZ2KigqGDx/e31vst9MmiEE0kF1QcEHMih3h/a+RZJyKL+LBH2klqLai6XVEpAARKUhI0tDb/w/gQnMhr9kvBo7M3It+fY6xAlnu3XoFIK3VzQ2r3yCU0Tv7MEkKM99wkC89mVT3te7WT0WNtZx9YGfsdavjCWDx4vaxfL8mk14/l7C5Ca99P5oS6vyyrJlJah2JyZ8CUu9fro5Pa8VGL5NSev7A67oOEr2mGyUg75oxFI/tTy1EQRg4s0ekkeuwUNsSiNuKJccR/YB1IgZLP7F4srKymDZtGi+++CJLly7l1VdfpaioKOFTiXCaBTGITi3GSqPfMCWdLUUWnCFI89tI9+diDxpwBA04AmYsESOyLqHoErIuU6xDph7gpbCRVr3rZTLLfiZY9jBcjXAgPT9mX66mFAe/veZmLtm1iZGNPYfrkgSFSjO2Bhervfl4k+xx17Sk9l1uR1vzOvo+q36WetK7/Rlj9HTU4NZ+nL11HDIy5mAGpvr0Hi1ODEE7EhJh30oAjLYLQOrK1JT0NkYYvCTpbg56Wkky2HGrPl5TDHitefwIC1ndLkRxmHFeORLrRBHAhFNPkSX+/coSvv/iFiRit2L59ytLEjJDMBj6iV111VVs2bIFgLFjxzJ69GjWrl0LwJNPPsnSpUtZsWIFdrud559//oTvOZYzpgDw4ld+RWXqWDyKEzepqFL/4ndxXSU5ZZ9SmlRH2NSIYjuIhM7Cw5fz2qyraDNb+wwy129c3WtdKi3tMPn2raz+6uKuih0x1rSmVJSyvWB03K/HqsgRUz+DkKyaMfszCVpdPUZPkmqIjprkbgtQWjRZRZfVHt9/ZDp8r0vRdVKlLUyzPkWyEiTTAhtafk2bqpGkmBhpzeT9SAPPqk3YVB8+xUa1JbezlYoMXJBk5dtThzGtJAvzCAeSmDIUBtDxFAA+GfvETgbRT2wQkWsOE2rZhCz5SJU92MwKZoMNg2zDJKcgyUYkvX1fmCQjIaPrYdRgE/vyo5XhDe3vlRn+DNwpw2iz9NGGu4/Nxl5vOuEsBxNc22G1zofzruix8TnZ72Xuwd2MbKgh29Pca7qy35uIdZA1E0mtxbTZy44ITEbM/kwUzYKsGZE1c2c6e5J3RK8GkUDnY5JqxBR29ngsXnX4js9IkiRhxMsFjj8w2vZZZ3JlY/heRif1rOP4jimZKmL3PPvF5eNZOm+EWOsSBrWFE3O5uCRHVOw4Cc6YIHZ16QwawiPQNT+63opkOkzYUk2bxUObKUhYCaJL0a1LuiShSaCoGp/mlkezurv97FlUS7/7csU6LhSy8dVX5zF82ibGrNtN8aGvqMotos2WglnXSTeaOte0uu/jOqZNxJ0JFNG+Web6jKMGnA7xGkSaQs4eQanjsb5IEgw3bWFK0nsMM32BLGkAqGTgDt9KQOvKcNJ0nXpJZztq7+chupYgApgwVCiydEJp9IPBUOgndsYEsWTFS1NERldSgBTQ8jH7dKy+CFmoSO1vrkDnXHal/QCBgt6bkgNKAJu/703EHWJvNo6eoc47EWaUEdxmZHj1QXSgbdTkaPzpNn0Ye82r7wyMIytd9NW5+JjoHsK+taAHQEoC3QeAwbYQWelZhcQitTDN5ibLOAv0WTSGdyHTjEYqQW0C0U8HURo6kgS/ofeCeKLXEgRBOH2cMUHMYzUzPlyKSbGjyCYkWUOXdCJ6mLCuoXXbXaYTXXZy26piPleDpYEZ9RUkBXxHXROLv9lYIhhMwlGk8FTBDeQFasiRW5hkjJ1d1PO5o9+PdEQga78Bm7cQW9vwfjV+7C9d14kEPkMNbIIjw4yUgiRbAZ2xlg8ZZtpBstKIia8T0rtGWkFtco/n6/6yBS0Gsr8xmuuUCKVHrCXkDMG1BEEQTo6EBrF7772X119/HZPJhNls5qGHHuosT3Kqfeuh2wEIBwM0V9dweG8pza4G2hrbCLb60cNae08pHa3jT7n3tBYAEuxI38bcspG8H6uAbsdm47KjbzbONjfjtLRQJeVhki3AgaPei6QbsPiyCdrq0LolW8iaqXP6sP1COLF8+fZn0TXCbe+ghUtjft1oO58UpZlz7M9QbNlARO89VdjrHkw6lmIF6+RiFIelM0FjIYi1BEEQ+i2hQWz+/Pncd999WK1Wtm/fzvnnn09NTc2gaultNFvIGjGCrBEjjnqsqql88Oq2mBXyq5Oqwfsa5+8J8fnImT0SL4yRFrJcrzGy4eh7QcxmH98a9yqPb1+Ov5//HCnu8ZhDqSR5R2Kf8ieqtxiwOZ0YAhehh7tn8XRMjPYvAMTbsxVuexstvL/3tcsak9IlRiS/gS5dRpJ0DvWhq3pNFeq6ju5vJnzoTZyLrydp3ow+swpPh7UEQRBOjoRWJbrsssuwWqNv5pMmTUJV1T4XBYPBIK2trT3+G0w6yllJSL1m0NCjgSxr7+t8+2+Pcc0HL7Pwn2+SV/sgzpofE4qswaf4YtZy7HgCs7kNh8PFjOwv+cGUpwkaVdp0I3E3PejRNPaOtS0JCX9pKsbWZtQaBS2UwpEX2t8NFDF3Wugewm0rYwQwHasc4rujPuXc9HWsl+dynz4Wv3Ye/vYaht0uGUmClPOzGPn6H0m/6SIsxU6RFi+c/jQVDn4CO/4e/VOLM7NznMLhMA888ADjxo1jwoQJTJs2jUWLFrFt27aEnqcvixcvJi8vD0mS8Hq9Pb72ox/9iKKiIiRJ6leNxuM1YKX1nn32WYqLixk2bFjcYx588EEcDkfnfwUFBQN1Oceto5xVurFnfb+koMwFWzIprLNhamtlbM0Wrsx/nV9MmEW0EBVsT98O0DuQtQeMkcWfd7ZymZH9Jf917gPkDt/Z/tiR3xP948i+Wr46DZCim4aBI0ddkiR1Bihd1+PXL9P9hNtWEvK8Qsj7DiHPKwRbno4ZwAAuzt2PJGdQEb6be7Tp/JMIv8BPwxHXbXCYSb+hhNSrzxa9uoQzx+634NGJ8PwV8Ory6J+PTow+niDLli1j69atrF+/nl27drF161aWL1/Orl27eh3bvaxUIn3ve9+LGzQXL17MunXrKCwsHJBzdzimzc7z58/vtRO8w9atWzuD0IcffsiyZct4//33GTt2bNznCwaDBINd2Xutra0UFBQMyGbnE6VqKm+t/TPrPnqdFFM9Myc1EWkzEfEZMNgipBc6GDv2PizbJF77/U94boFMo10iry2PKY1TsKlde8qkcBCz6zBTF32OwaL2ygtpaCigbP8sQqGuKtG9NxJrJMuNeN0vEJKGYUpZctR7kAmhahqS3DW9q2s+IsGtRyRs6NgUC1PSFrKt6SP8qqfzeJtiYU7GcIYlFxPUSvgFIf5Jt3U5YAoKd84dwfQJ2WIzsjDkHfNm591vwSs30Xv6pv33YMmfoeSqE7qm0tJSpk6dSkVFRcxK9ierFUvnnUlSr6aYHYqKinj77beZOHFizHs5qZudP/nkk6Me8/HHH7Ns2TJWrlzZZwADMJvNmM3H1+zxZFNkhW9cuIyvn38TVXt24WluRCmqwZ6ThMWSjdM5CzTYv2IBc2p1Zu1T2VMg0ZxcgdNbSUYgncN5OdRaFRSfBwmo/CSHooureuWFpKdXkJZWyZ73LiMcmoukmTCFu7coiY6+zrE/g2Yp5W1X369zhwvtvydDGcY/m+dyuG0nmtaCFqmi5y9bdA1tWvplDEsay7CkMTQEKvGrXqxKMhmWYciSTIWm8RsCbLdK4O/67myHhe9eWcJckUkonIk0FVbdRe8ABp3r06vuhnGXw1G6avRlsLdiOZkSmtjxz3/+kxtvvJE333yTKVOmJPKpBw1ZViiYELv4ZdvmTURqa6PH6TChQsOWGcJgUYkQIKfSwbvD2qf3JImWg3YOvQ/5c+sxJXdV0wi3Gaj6LJvw4YPIRgWj7YIeo5lkubEzExALzFV3szl4+VGvPVlpBGkOs5xFzHAMZ497PftaGwhpXensVsXO9PSLGJYUDYyyJJNljRbi1dFpRec+2tiGigb85bo5yLIkMgkFAaD8M2it7uMAHVqroseNmH9CpxrsrVhOloQGseXLlxMMBlm2bFnnYy+88ELnC3e6i9TXAxJKxmhseVZSi6qwWXd2bqRW9W1obZPY2dBClc+BLsm0HLTTWjGGpMwyDLYIEZ8Bb60N9OgPqBbeT7ClDNmQT5YtifMz1pNr2tNZ+QJglnMDe+obaNPSiL3MGZ16zDXtoTF8PRANThNS5zHeeXbMkdaRmYpatBQxvybAFlQkorXgzipOF0FLEDp4e2cyn9BxcQz2ViwnU0KDWGlp7H1Eg4Wuqvg2f0Gkvh5DZia2mTM6kw00Taem1E1ba5Aku5nc0U7kfr45R8Iq6z7ejG/tViZe+iCyNTrEbwZag/WkGR/ErOxDkVqZkPwpE5LBE7bxcfM17GtqJElJwVvT19BcR4tU0uzVyM3bxZGXJUsa8+1Ps8r9c6JTjd0DWXTqcV7KM2iktae/d//e6EhL13W0SIDw3nfRDUaMYy5E0bp+POrR+Q0B/klEVNAQhHiSsxN7XByDvRXLyXTGVOxoXb2auhUPdk73ARhycsi+9x7qM6fyycultLm7kkySnGbmf3M0xdOyej2XrukcLnPx/pq3aHFvQ3f7GN2SwfTkK7tnlwNglPdikvf1WvdKNvi4PPMFpjvuIayexd/Lfwf0/QkoqMlU+RwUJPXsOq3r4DSV0mTZSEFoFG1aVxX5ZLmReSnRqcfG8L3ougzE2A8mQXNqM9qSc5m0+GIMBgPBgy1s3e3iT9sqWdPmp2PsJypoCEIchXPBngetNcReF5OiXy888am4wd6K5bbbbuPNN9+ktraWBQsWkJyczP79vfebnqgzohVL6+rVVP34J703TUkSrowp7JzwbeJtCL7kOxOwpCl8vvkLKqu2EA5VoHpD2Jo9JHvAaSgm2zqS3KRRKMhHlHpSyTEvR6EhXmUqVD2D2tDTfOJaQ3XbF0e9l6/lfcV4R32P5wA4EL6bi7XJXCxt4gdsxKopJMnN5Jr24FctbG+exw7fcA44pvJNSyFZ3UZrss1A6tWj4/bkUjVdVNAQzljHn50IMTuKJSA78WQRrVgGAV1VqVvxYHRO+Miv6VBavDhuUQsdnVV/2gTKX7D6QqRrDpIM+WRY8kkyZ/JViYePCjyoOLlne+9MI7O8C4MU/x9fksAgNWCWdzE2ZUy/gliyIdTj7xopNId/iFmbyxTaeE+fzfvMZLa8hyypGc07n9JgNl5DMtVZ0b5cH9PGyyRjsBpJmZdHyoXD+0yDFxU0BOEYlFwVDVSr7uqZ5GHPg4UPDZkANlSc9kHMt/kLIrW1McdZbucogpbUGF+JkpCQ9CRKDN9ELQiyJ6uZ9elhDtgtHDKn0iSPQtEjXFdV2fk9uq7TGNEJ6GBXVNKNco8kjFgs0kYyLMuxKik99mT1pJNiCJJv6zmV2BS+i6A2FYD09rvUkNmgTYgGZmP7f533BPfMG0l2SY7YwyUIA6Xkqmgaffln0SSO5OzoFOIJpNWfCqIVyyAQzRiMLWjq35Tlo1NS2FgUrbVo0MMM0w4xIvA5w0NfUddaSn3LNOCbVIc0dvhVAp0zCBPZ1PYk8+1PR9Ph40g2vElQn8D09Iv41PVGjCOiT3hB9oHOpA5dj/bkCmpdmZ+N7cdl6RI/lMz8liD13aYzcmwm7r96oljLEoSTQVZOOI1eOLrTPogZMjPjfs0c6l+txhT5K2a07MITLKfF10wokokeSWJCo87Cyusx6KM4ZFPZ7u894mrT0ljl/jkLnf/VZyBzGp9iWNLTzMtaxJbGD3uMyFIMQS7IPsBoeyPQtQ7mDt8KKGjo1KOzXY8AEt/TzVwgmTgXI9tRabYqFM0bxjkXioaSgiCcXk77IGabOQNDTg7hGFOKTvd+zIFmgmZnzJ5gOjo+o5dm72cU1kYoaCwgyf0vyFIehvb6hipmFCnILn+YXqmJQDTdXWNd6y2MMG+KObUoSWAgujY2LGkyebbR0b1bEQ82Qymjk18iuVufse5dkTv2b/2GAEm6xLXhVoaHKigfl8W0+edwSYpJTBsKgnDaOu2DmKQoZN97D5U/+nGM/A2d0fv/xs4J30FH75FZ2JG0aQslc+WOG5EllYhuRpcVZCKkGRpJN4RIlmzUBnxU6sP7uAoZr5ZJTWg8+ebexTm7jmqO/tlt79b6mn2sqZ1Gvq2FAls6w5POAXkWHQGzTdN4PxRhhOrje4qX/XoFcx/8ITZ7StzzCIIgnC5O+yAGYL/kEuqmXoRzzxdYgu7Ox4PmVOqyZ0ebJMeo/g5gknw4lRbsSpgU2YisGfGFm3CpbuqcRoZ/fSKpWj6Vz8YujNxdmxY/iQRAo+fX/Qc/YuKX75KXZCFoNNBocbNywU4q7WVcUjUZU9toGiMSEyyVtIXdWK+Ywk2X3tjPV0UQhIGkaipbXFuo99WTactketZ0lCGW2DEUnBFBDKB2xHjU1LGktDajhENgSUZNG06hLFNAHegSXtVERFcwoGHVA6i6F5/uo0X1U2+RUEdlM/n8GeSPGYMkd+2zqtrb3K9rsMmxj+tK0uhZTaNq3Dhem/8tGv3p2JKa+SrlEwqaZObuuoJWyUq6wcVUc5hDyU38y3/djtFkOv4XSBCEhPmg/AMe2vRQj4a62bZs7p59NwsKFyTkHOFwmBUrVvDSSy+hKAomk4nCwkLuv/9+pk6dmpBzHM3ixYv57LPPqKmp6VHFPhAIcO2117J7925sNhs5OTk88cQTFBUVJfwazpgg9q0HbwMgEg7T4nJRVVpGW6uHgM9HoC2EQVFIchhJcjhIzUons6gQS1Jyv2qE5Y52YnOY8LUEibXhTEfHbG4i17Sn15TmkUka0cd0PKYw3z5vGLKUy5iWv7KvvoYlmxeSEpqALKmUWKuo9tcw7PtXMXfC+BN7cQRBSJgPyj/gjrV39Ooj6PK5uGPtHTxy/iMJCWTLli3D6/Wyfv16UlOjszgrV65k165dvYKYqqooA9DP73vf+x6PP/442dm9y2jdeuutXHbZZUiSxO9+9ztuvfVWVq9enfBrOCMqdgwUTdP5+KMNbNnyCkptMsa289sjVLe1tfb/PTz1Fb7hWMW0g61YQl3JHRG9K0kjemT0O34+1UqjcwONtW9xds0oxh/6Okgm8o2VpOohWkbLXPmjZYOqEKcgnI6OpWKHqqlc+uqlPUZg3UlIZNuyWXXNqhOaWhxK/cQANm/ezLXXXhuz7JSo2HGSaarGxk93sOHzv6F6a0mpaqYwXMiwlJHsynPhbk7DEujaXewzt7I57zMmHnCwpfUJ9mbuZ7h5G7maD19rPimGC7DR9Q9UZ5Z4eqyfRuVxQofgxi9vwqTlYJZ9lFjq2R+q5Px//w7OrPhbBwRBODW2uLbEDWAQ/ZBa66tli2sLs3JmHfd5hlo/sd/+9rdceeWV/T7+WIggdhS6rlN1qIEP1/yDhsataB4PKXVucoKZ5NgmoWTmsGpsHb/LtvKVaRxOtYnZldsINpYRwcj0ShvnH7gIXTJgkdoo9jhobZjMO3m7SXMfZqT5AJWj7GzKzOOgJQXMq6mo/5TLd08hv+EidIwUmw+jhb1o8wq5cbFI3BCEwareF7+4wvEc15eh0k9sxYoVlJaW8sQTTxzrLfbLGRPE/vHWm5QfLiczcxTFRaMoGJ6L2WyMtluRIOALU1fXQFVtLZWVe2h270OPuFH9YaxNHpI9GoVyIdnWGchpGawb4eLlPDPbbAUEpLGMiOxjesuTVDV+hdeXw/wDZ2FWx6FjwKJ4GGP20BpoZnNSObJSy6hDwzANP4dHZobZZJvCiMg+jPWPklabxvKd30cmGbvSxChDgFKji2/++keY+lN8VBCEUybT1r8Zkv4eF89Q6Sf28MMP89prr/HBBx9gs9n69T3H6owJYnVr/05Sk4ZbWcN6o8Q6swmtfU5alyRkVcUQCiNHIljCJvLIJMmYjcOUSbIliwPj/GzOd/NlupU9lmH4pTFkaHVM8H1AU+vHhNqSGdGUwmVlt2GUk1ExkSw3U2z20exvYp8jSHPaPnLKQhSlXsKrF7XwZk60lNXM1ueodh3gqj3zcfqmA1BiqaIx0EDqTedx45yb4t6XIAiDx/Ss6WTbsnH5XL0SO6BrTWx61vQTOs9Q6Cf2yCOP8NJLL/HBBx90Xt9AOGOCmM1UgG/KCApbU3C2mTGoYdC0aOaFroOioCcb8Zt0quytlGZ4OGyHapuFgxYnDXJ0WJ6vljPBtxpP2waaPBGMwUyu2TcPS2AeigSabCTLWEW+wUi1v4qavGTK1X2kHHQxSZpF+VQHP5uQwkHDFCYH19FU+ya5riIWln0PSbKQaaghWwpRl+njmnv+tUcqvyAIg5siK9w9+27uWHsHElKPQNaxF/Wu2XclZL/YYO4nVllZyU9/+lNGjhzJBRdcAIDZbGbjxo0nfN9HOmOyE6//+//wYfpFAJj0AE7djUGPIKMjoRGUzHilZHxS1xDcovvJ0mpIDx1AD+yiwbePSMDBiKCdWYeySWm5CKNsRMWMgSBF5jrsuoGySAWjLpvJZ3s/wlB5iALPcJy5U3hqVitrU2aRo9eQ3vRnIo0SX99xKWZ1GEYpRImlmUP+Shbccx3ZhYUJvX9BEI7PMfcTI/Y+sRxbDnfNvith+8ROBtFPbBCpdpcxXv8nVkMmspKOpqShSwZ0ZEBC1kPIWguorYTURjyhSjy+CGEtDS2STEkzFFUsQlEnYpR1IphAlsg01pBnkPEFW6g2tjDpe99k26o3+OyzF8mrsVCQdjmvXdjE27l5+BnJjLbXqKz7grkHJpPTFE3cKDIdxqQGCUxycv0t95zql0oQhBO0oHABFxRcICp2nARnTBC7ZpuRZoeDhqRWGpK8NJkOo0rRwb4GmHQJW0THEdBIb5PIbpqPwT8RSUpDkXVkNCJYkGSVTGMt2QYJPaJyWK0mNG8M865cxvPP/5GX/vwfZB0OMSnlfD49O8h/FzupUiYyMbgBb/1rJDfmsXzPD5AlG3almdHGAHupYfGvbhf1DgXhNKLIygml0Q8Gop/YIDJcGYXSOIbspjAAmq6013+PzlNLaMhoIGnoukIECyjRx1OVejKMQVIkK4Gwh0q1npaJuVxw3dVM0Yz8+bnfs/nXPyDzcJDxSfM4MNnIv0+wscs0ixGRfUxwPUDQbWTxritICo1DknTGW6to8jeQfO1cbpov0uYFQRCOxxkTxHRdYpLVhV9XCWgSfs2IpsvRvA4kFEnFLEUwyxoWScImmdE0iWDEjUtz40qSybhgJjPOuxqD0cj+ryr5w5MroL6GzFqNiclncXiSmV+PN7DFMpl0vZ4Zzb+jurGOhWUTyHRfgI6RXGMlaYSpzw5x9c9F4oYgCMKJOGOC2Pjrz2bPp5/jdXnQvGGMqoyMhKRHs4ZUScMra3iMMkaHmYKJIymZOxtnTk7nngi/J8gLf36Rxrr1mGtayPekUWg/n53Tw/z3aANfWKbgxM0MzwtU1O9klGsEXyv/AUgmkmU3Y8x+SkOVnHvfctJyetcaEwRBEI7NGRPExsyZwZg5M47pe3Rdp7aimbf/8QqtLV8iNXpJcwUoMU0mI2UUH5zTwOMFVvaappGmNzDD+xcqXNvJbMnn0n23oUg2jHKYceboni/p/Anc+PUbBuYGBUEQzkBnTBBbv249VVWNFBeNYXhhLo40G5IigRYNVj5PkMOH69h/oJSqqu0EAuWoviDWZg/2FonRxtFkW+dweLzO30d52eRMp0Eex3D1ANPdj1PZWEZ6ax6XfvUDDHIyuiQz2lyFFAnQPMLA13/4EzF1KAhnEF1V8W3+gkh9PYbMTGwzZyANQCX5M90ZE8S+fPv3KPVtrDdKfGI2E7aYQJI6ysxjCIUxBgIYgxoOLYU8wzDSzHmkWLLYM8HLu4VedjhtlBmKMRNkTPALcrx/oKElyMj6dC47dBsGKQlNVhhuqsKh6xyy1rP4vtuwJA1MuRVBEAan1tWrqVvxIJHa2s7HDDk5ZN97D/ZLLknIOQZzPzGASy65hNraWmRZJiUlhccee2xAruuMCWK5/uFYCieT6jVjiISIBALRemJISJKEIpvQk824s8PsS2vm88wgB+1WDlnsuOQxGPUQIyNfMb31GarcXxIK5nLe4RwyG65EkWQ0yUCBqZI0JMqkaub8/CbOGZZ/qm9bEISTrHX1aqp+/JOuZoHtInV10cd/82hCAtlg7yf2yiuvdJabeuONN7jllls6q3sk0hkTxF6bm8aqrHGd1TocqoSsa+iShI6ET7bRJKfil6LlVBQ9Qp5WQV5wD3mBl6ht3U8gnMMYt4lLy5ZhIA+QkSWVYksNSZpMGdXM+un1zC0cfmpvVhCEU0JXVepWPNgrgEW/qIMkUbfiQVIuuuiEphZLS0t5/fXXqaio6AxgQGe7k5PVT2zBgvjVR7rXS2xpaUEeoOWUMyaIVformOZ+DEXJQFPSCSlOdCQkPZpknxSpJletR1Mb8IdrafbVEQmlE1FTmNwg8bWKW1AoQJE0VEykKE0UmnyEQwFqTG4uv+Nm5oqMQ0E4o/k2f9FjCrEXXSdSW4tv8xckzZl93OcZKv3EbrrpJtasWQPAqlWr+n+Dx2BAgtjatWu56KKL+M1vfsPtt98+EKc4Zhft9FGb5qEhqY1G02ECiooeDWMAWDQZexgy21RyWtJwNF6JzDAUOVrGU5VMmCQfBaYGUiULVYFKGvOSuPyHSzFZrKf47gRBGAwi9f3rE9bf4/oyFPqJ/fnPfwbg+eef58477+Qf//jHMd/n0SQ8iHk8Hu666y4uu+yyRD/1CZkYnkx6RbT1iaYbUDHSUa0DQCaMQgQkHVU3ockGQMOhNJJtDJAsWWgK1FGv+Bh389eYM+XaU3MjgiAMWobM/vUJ6+9x8QyVfmIdbr75Zr73ve91tntJpIRPUt5xxx3ceeedZGRkHPXYYDBIa2trj/8GiqZrjDA3kmtsJNXQRJLcik1uJUluIUl241DcZBsbKTI1MMnqYoa1gQnKQUxaOa7kerKXT2Th4z/kxkfupmjK0XvpCIJw5rHNnIEhJyea+RyLJGHIycE289j2rB6pez8xt9vd+Xhf/cS2bdvW2aKlez+xESNGdPYTA+L2EwP63U+stbWV6urqzr+//vrrpKen9zn9ebwSOhJ79913cbvdLF68uPPTQF8efPBBHnjggUReQlw5F41j//ov0drCmCIKaZKxR7+fkB7BQwSPVSE518nUBVMZPmE8sqg6LQhCP0mKQva990SzECWpZ4JHe2DLvveehOwXG8z9xFpaWjqnN2VZJjMzk7fffvuYR3D9cUz9xObPn9/rxemwdetWrrjiCt5//32ysrJYunQpM2fO7HNNLBgMEgwGO//e2tpKQUHBgPQTEwRBOB7H00/sZOwTOxlOu35in3zySdyvrVu3jpqaGmbPjmbcNDQ0sHLlSurr6+OOtsxmM2az+VguQRAEYdCzX3IJKRddJCp2nAQJm04855xzcLlcnX/vz0hMEAThdCUpygml0Q8GQ6GfmCjmJwiCIAxZA7bZ+bnnnhuopxYEQRAEQIzEBEEQhCFMBDFBEARhyBJBTBAEYQBomk7V3mb2fV5L1d5mNK3fu5n6JRwO88ADDzBu3DgmTJjAtGnTWLRoEdu2bUvoefqyePFi8vLykCQJr9cb85gHHngASZL6VafxeJwxBYAFQRBOlrKtLj55uZQ2d9c+2CSnmfnfHE3xtKyEnGOwt2IB2LJlCxs2bGD48IHr7DGogljHvuuBLD8lCIJwLEKhEJqmoapqjxqD8RzYVs/qP+7u9XibO8iqJ3dyyXdKGDn1xGondrRiOXToEHa7vfO6vva1rwHwzDPP8PLLL5OVlcWePXt49NFHaWlp4b777iMSieB0Ovn973/f2YrlrrvuYuPGjUC0FcvXv/51ysrKOHToEHPmzOGmm25i3bp1tLW18eijj3a2Yrngggs6r+nI1ycYDPKDH/yAF198kQULFsR9/VRVRdM0vF4voVCo8/GOOHC0ehyDKoh5PB4ACgoKTvGVCIIgRBUWFvLEE0/g9/uPeqyu6Wx7Ofa0Woe1/7cHt1qBJB9/Cab333+f/Px8ysvLKS8v7/X18vJyPvnkE1588UV+/OMf09TUxPXXX88TTzzBqFGjePfdd1m0aBEvv/wy+/fvx+fzsXXrVgD2799PKBRi69atVFdX09jYiN1u5/HHH2fHjh1ce+21vPHGG1itPbt3bN++HZutq4v9Y489xrnnnovb7SYUCrFnzx7C4XDM+2loaODyyy+PeS8ejweHwxH3tRhUQSwvL4+KigpSUlISXmOro6RVRUWFKGmVAOL1TBzxWibOQLyWoVCIuro6ioqKjlp2qmqfm1Db9r6fr00nO2Uk+WOcx31N+/fvx2azMW3aNCDaimXJkiX4/X7mz5/P3LlzmT9/Pl//+teB6DTjjBkz+Jd/+RcgWgX/f/7nf8jJyWHUqFE9nstoNGIymZg8eTLV1dWYTCZ+8YtfIMsy06ZN4ze/+U3nc3Q3ZcqUzsr569ev5/Dhwzz99NNIkoTJZGL8+PFMnDix170EAgEOHTrE5s2bMZlMnY/ruo7H4yEvL6/P12JQBTFZlhk2bNiAnsNut4s3igQSr2fiiNcycRL5WgYCAerr61EU5ajrSgFv7JFGrONOZI1qxowZlJaW0traSmpqKmPGjOnRikWWZVJSUjrPIcsysiz3OqfBYMBsNvdYM+sYLXU/VlGUHp2ZDQZDr+fq/vqsW7eOvXv3MmrUKAAqKyv52te+xp/+9Kdebbo6njs5ObnXh4S+RmAdRHaiIAhCgiTZ+1cLtr/HxTPYW7HcfffdVFdXc+jQIQ4dOsSwYcN47733BqTP5KAaiQmCIAxluaOdJDnNPbISj5ScaiZ3tPOEzzWYW7GcTMfUimUoCwaDPPjgg9xzzz2icn4CiNczccRrmTgD8VoeayuWsq0uVj0Zf0/Uwu9OTFia/UDSNI3PP/+cyy+//JS0YumvMyaICYIgHI/jeZONtU8sOdXMOUsSt0/sZDiV/cT6S0wnCoIgJFjxtCxGTMmkptRNW2uQJHt0ClE+gbT6U2EotGIRQUwQBGEAyLJE/tjUU30Zpz2RnSgIgiAMWWdsEFu7di2KovC73/3uVF/KkHbvvfcyfvx4pkyZwuzZs/noo49O9SUNKaWlpcydO5cxY8Ywe/Zsdu/uXa5IOLpAIMCiRYsYM2YMU6dOZeHChRw6dOhUX9aQV11dzebNm/tVreRUOSODmMfj4a677hqQPQtnmvnz57Nlyxa2b9/OH//4R6655hoCgcCpvqwh47vf/S633nor+/bt4+c//znLly8/1Zc0ZN16663s3buXbdu2ccUVV3Drrbee6ksa0tra2vB6vT2qaAxGZ2QQu+OOO7jzzjvJyMg41Zcy5F122WWdNdQmTZqEqqqDfiF4sHC5XGzZsoUbbrgBgGuuuYaDBw+KEcRxsFgsfO1rX+ssV3fWWWdx4MCBU3pNmqZSsetL9nz6MRW7vkTTjl48eLDQNI3Dhw9TWFh4qi/lqM64xI53330Xt9vN4sWLefvtt0/15ZxWnn32WYqLiwe8dNjpoqKigry8PAyG6K+hJEkMHz6cw4cPU1RUdGovboj77W9/y5VXXnnKzl+68TM+eu4pvE1dH+iS0zK4cOmtjJ4zNyHnCIfDrFixgpdeeglFUTCZTBQWFnL//ff3asVyrKqrq0lPTz/qXrvFixfz2WefUVNTg8fj6aydCHTWmuxIm7/nnnv45je/eULXFctpF8Tmz5/fa7d6h61bt3L33Xfz/vvvn+SrGrqO9np2dBz48MMPeeCBB8Rre4yOLHQttm2euBUrVlBaWsoTTzxxSs5fuvEz3npkRa/HvU0NvPXICq66496EBLKB6ifm9Xppa2sjPz//qMcerZ/Y3//+95hFfxPptAtin3zySdyvrVu3jpqaGmbPng1Ey/+vXLmS+vp6HnjggZN1iUNKX69nh48//phly5axcuVKxo4dexKu6vRQUFBAZWUlkUgEg8GArutUVFQMaAPB093DDz/Ma6+9xgcffNCjLcjJomkqHz33VJ/HrHn+KYpnzUGWj78AcEc/sYqKis4ABnSOPp977jn++te/kpWVxe7du3nsscdoaWnh3nvvJRKJkJqayh/+8IfOfmI/+9nP2Lx5MwCff/45119/PatWraKqqopvfetbfP3rX2fXrl34/X4ee+yxzn5iCxYsOO57SJTTLoj15ZxzzsHlcnX+fenSpcycOZPbb7/9FF7V0PbPf/6TG2+8kTfffJMpU6ac6ssZUrKyspg2bRovvvgiS5cu5dVXX6WoqEhMJR6nRx55hJdeeokPPvgAp9N5Sq6has+uHlOIsXgaG6jas4uCCX0X0e3L1q1bGTVqFGlpaXGPWbduHVu3bmX06NG4XC5KSkpYs2YNkyZN4i9/+QtLlixh587e5bEyMzM7W7HY7XZaWlo455xzeP7559mwYQOLFi2irKyss35iX66//no0TWPOnDk8+OCDZGaeWDPQWM7IxA4hcZYvX04wGGTZsmVMnTqVqVOnsmPHjlN9WUPGk08+yZNPPsmYMWN46KGHePrpp0/1JQ1JlZWV/PSnP8XtdnPBBRcwdepU5syZc9Kvw+tuTuhxfek+FV1WVsbUqVMZO3Ys3/nOd4Doh/bRo0cDsHHjRqZOncqkSZOAaHCprKykpqbmqOcxGo1cd911QDRhJicnh+3b++6ZBtEPuNu3b2fLli2kp6dz8803H/M99scZNRI70nPPPXeqL2HIKy0tPdWXMKSNHTuW9evXn+rLGPKGDRs2KNYTk539q9DR3+PimTZtGqWlpTQ3N5OamkpxcXGPfmJAjyQLXddjNhqWJAmDwYCqdmVOHrlFRpKkXl2c+9O0uGNa3Gg08pOf/IQxY8b0/waPgRiJCYIgJEj++Akkp/W9dSclPYP88RNO6DyDvZ9YW1tbj+t66aWXenWCTpQzeiQmCIKQSLKscOHSW2NmJ3a44OZbTyipo8Ng7idWV1fHNddcg6qq6LrOyJEj+fOf/3zC9xyLaMUiCILQh+NpFRJrn1hKegYX3Jy4fWIng2jFIgiCcAYaPWcuxbPmRLMV3c0kO1PJHz8hISMwoScRxARBEAaALCsnlEY/GAyFfmIisUMQBEEYskQQEwRBEIYsEcQEQRCEIUsEMUEQBGHIEkFMEARhAOiaTqDMjW+bi0CZG11L7G6mcDjMAw88wLhx45gwYQLTpk1j0aJFbNu2LaHn6cvixYvJy8tDkiS8Xm+PrwWDQW6//XZGjx7NhAkTOvvmJZrIThQEQUgw/84G3CvLUFtCnY8pDhPOK4uxTkxMM96BasVyLPpqxXL33XcjyzL79u1DkqR+1Wk8HmKzsyAIQh+OdTOuf2cDjS/G7sEHkH7D+BMOZKWlpUydOpWKioqYlexPpBXLzp07ueKKKzh06FDnZuelS5fyySef4PV6e7Ri6SBJUo+mmB39yCorK3vUcIzlRDc7i+lEQRCEBNE1HffKsj6Pca88cMJTi/1txXLfffexefNmiouLueGGG3j++ef58ssvufXWW1myZEm/ztXY2MikSZPYuHEjTz/9NNddd13cGo0dysrKSE9P51e/+hUzZ85k/vz5fPjhh8d0j/0lgpggCEKCBA+29JhCjEVtCRI82HLC5zpZrVhMJhM33ngj0P9WLOFwmAMHDlBSUsLmzZv53e9+x7XXXkt9ff1x3WtfRBATBEFIEM3TdwA71uPi6d6KBehsxXLPPfd0PpaoViyxHK0VS2FhIbIsc/311wMwZcoURowYwa5du45+c8dIBDFBEIQEkVNMCT0unsHeiiUjI4OLLrqI9957D4Dy8nIOHjzI2LFjj+t++yKyEwVBEBLEPMKB4jD1OaWoOMyYRzhO+FyDuRULwBNPPMEtt9zCXXfdhaIoPPXUU+Tm5p7wfR9JZCcKgiD0YTBmJ54sQ6EVi5hOFARBSCDrxAzSbxiP4ug5Zag4zEMqgA0VYjpREAQhwawTM7CUpBM82ILmCSGnmDCPcCDJfSdEDDZDoRWLCGKCIAgDQJIlLMXOU30Zpz0xnSgIgiAMWSKICYIgCEOWCGKCIAjCkCXWxARBEAaApmmUl5fj9XpJTk7urGIhJJYIYoIgCAm2e/duVq1aRWtra+djdrudhQsXUlJSkpBzhMNhVqxYwUsvvYSiKJhMJgoLC7n//vt7tWIZKIsXL+azzz6jpqamRxV7t9vN+eef33mcz+fjwIEDuFyuPosWHw8RxARBEBJo9+7dndUwumttbeWVV15hyZIlCQlkg7mfmNPp7NGc8+GHH+bjjz9OeAADsSYmCIKQMJqmsWrVqj6PWbVqFZqmndB5SktLef3113nmmWc6AxjAlVdeyfXXX89zzz3HwoULuemmm5g5cyabNm1i1apVTJ8+ncmTJ3Peeeexe/duANauXcvMmTM7n2Pnzp0UFRUB0YodGRkZ/OxnP2POnDlMmDCBjz76qPPYBQsWkJWVddTrffbZZ1m+fPkJ3XM8YiQmCIKQIOXl5T2mEGNpbW2lvLycESNGHPd5+ttPbOvWrYwePRqXy0VJSQlr1qxh0qRJ/OUvf2HJkiXs3LnzqOfq6Cf28MMPs2HDBhYtWkRZWVln/cSjWb9+PY2NjVxxxRX9vr9jIUZigiAICeL1ehN6XF8Gcz+x7p555hluuukmDIaBGTOJICYIgpAg3Xt4JeK4eAZ7P7EObW1tvPzyy9xyyy39Ov54iCAmCIKQIIWFhdjt9j6PsdvtFBYWntB5Bns/sQ5/+9vfmDx5MuPGjTvWW+w3sSYmCIKQILIss3DhwpjZiR0WLlyYkP1ig72fGMDTTz89YAkdHUQ/MUEQhD4cT7+rk7FP7GQYCv3ExEhMEAQhwUpKShg3bpyo2HESiCAmCIIwAGRZPqE0+sFgKPQTEx8LBEEQhCFLBDFBEARhyBJBTBAEQRiyRBATBEEQhiwRxARBEAaArqs0N2+gtvYtmps3oOvq0b/pGITDYR544AHGjRvHhAkTmDZtGosWLepRPX6gLV68mLy8PCRJ6lVK67333mPGjBlMmzaNiRMn8vzzzw/INYjsREEQhARzud5jX+l/EAzWdj5mNucwZvT/Iyvr0oScYzC3YtF1neuuu441a9YwefJkDh06xLhx47j66qtJSUlJ6DWIkZggCEICuVzvsWPnbT0CGEAwWMeOnbfhcr13wucYKq1YOkpitba2kp6ejtlsPuF7P5IYiQmCICSIrqvsK/0PIFYhJB2Q2Ff6SzIzFyBJxz8yGuytWCRJ4pVXXuHqq68mKSmJ5uZmXnvtNUwm03Hdb1/ESEwQBCFB3O7Pe43AetIJBmtwuz8/4XMN5lYskUiEBx98kDfffJPy8nI+/PBDbr75Zpqamo7rXvsigpggCEKCBIOuhB4Xz2BvxbJt2zaqq6uZN28eALNmzSIvL++Y+pD1lwhigiAICWI2x18fOp7j4hnsrVgKCgqorKxk7969AOzfv5+ysjLGjBlzXPfbF7EmJgiCkCBO5yzM5hyCwTpir4tJmM05OJ2zTvhcg7kVS3Z2Nk8++SSLFy9GlmV0Xefxxx8nPz//hO/7SKIViyAIQh+OtVVIR3ZiVPe31+gU3KSJv09Ymv1AGwqtWMR0oiAIQgJlZV3KpIm/x2zuuXfKbM4ZUgFsqBDTiYIgCAmWlXUpmZkL2rMVXZjNWTids04orf5UGAqtWEQQEwRBGACSpJCaetapvozTnphOFARBEIYsEcQEQRCEIUsEMUEQBGHIEmtigiAIA0DVdTa4vbhCEbJMBs5yJqMcpdKFcOzESEwQBCHB3ql3M3P9bq7ZVsb3d5dzzbYyZq7fzTv17oSdY7D3E1u1ahUzZ85k8uTJnHXWWQNScgrESEwQBCGh3ql38+2dh3rV66gNhvn2zkP8aWIRl2c6T/g8g7mfWHNzMzfccAOffPIJ48eP5+OPP+b666/vV9X8YyVGYoIgCAmi6jr/VloVtxELwH2lVagnWChpsPcTKysrIysri/HjxwNw3nnnUV5e3lmiKpFEEBMEQUiQDW4vNcFw3K/rQHUwzAa3N+4x/dHffmL33Xcfmzdvpri4mBtuuIHnn3+eL7/8kltvvZUlS5b061wd/cQ2btzI008/zXXXXRe30HCH0aNHU19fz4YNGwB4/fXX8Xq9HDp0qN/32F8iiAmCICSIKxRJ6HF9Gcz9xBwOB6+++ip33303M2bMYO3atZSUlGA0Go/rXvsi1sQEQRASJMvUv7fU/h4XT/d+YqmpqZ39xJ577jnefvtt4NT2EwM499xzWbt2LQDBYJCcnJzO6cVEEiMxQRCEBDnLmUyu2Ui8t3gJyDMbOcuZHOeI/hns/cSAHqO8X/7yl1x44YWMGjXqmO6zP8RITBAEIUEUSeJXo/P59s5DSMRqxAK/HJ2fkP1ig7mfGMB9993HunXriEQinH322Tz99NMnfM+xiH5igiAIfTieflfv1Lv5t9KqHkkeeWYjvxydn5D0+pNlKPQTEyMxQRCEBLs808nCDIeo2HESiCAmCIIwABRJYl5qyqm+jBMyFPqJicQOQRAEYcgSQUwQBEEYskQQEwRBEIYsEcQEQRCEIUsEMUEQhAGgajrryxp5c1sV68saUbXE7mY61a1YqqurufTSSxk7diyTJ09myZIlNDU1dX69tLSUuXPnMmbMGGbPnt1ZcDjRRHaiIAhCgq3aWcMDK3dT09JVwinXYeHfryxh4cTchJzjVLdiURSF++67j3POOQeAO++8k7vvvpunnnoKgO9+97vceuutLF26lL///e8sX76c9evXJ/QaQIzEBEEQEmrVzhq+/+KWHgEMoLYlwPdf3MKqnUcvuns0g6EVS3Z2dmcAA5gzZw4HDhwAwOVysWXLFm644QYArrnmGg4ePDggVezFSEwQBCFBVE3ngZW74/YTk4AHVu7m4pIcFPn4Nz73txXL1q1bGT16NC6Xi5KSEtasWcOkSZP4y1/+wpIlS/rVpLKjFcvDDz/Mhg0bWLRoEWVlZZ2lpyA60vv973/PokWLAKioqCAvLw+DIRpiJEli+PDhHD58uDNAJooYiQmCICTIpoNNvUZg3elATUuATQeb4h7TX4OlFYuu6/zgBz/A6XTywx/+MOb1dRw3EEQQEwRBSBCX5+htTI7luHi6t2IBOlux3HPPPZ2PnaxWLD/60Y+oqKjg5ZdfRpajIaWgoIDKykoikUjn+SsqKhg+fPhx3G3fRBATBEFIkKyU/hWw7e9x8QyWViw/+tGP2L9/P6+//jomk6nr/rKymDZtGi+++CIAr776KkVFRQmfSgSxJiYIgpAws0ekkeuwUNsSiLkuJgE5DguzR8Rfy+qvU92K5dNPP+Wxxx5j3LhxzJkzB4ARI0bw+uuvA/Dkk0+ydOlSVqxYgd1u5/nnnz/he45FtGIRBEHow7G2CunIToTY/cT+cMP0hKXZD7Sh0IpFTCcKgiAk0MKJufzhhunkOHq+Iec4LEMqgA0VYjpREAQhwRZOzOXikhw2HWzC5QmQlRKdQjyRtPpTYSi0YhFBTBAEYQAossTZxemn+jJOe2I6URAEQRiyRBATBEEQhiwRxARBEIQhS6yJCYIgDARNhfLPwFsHydlQOBfkxFaSF8RITBAEIfF2vwWPToTnr4BXl0f/fHRi9PEEGez9xH70ox9RVFSEJEn9KjR8vEQQEwRBSKTdb8ErN0Frdc/HW2uijycokC1btoytW7eyfv16du3axdatW1m+fDm7du3qdWz32oiJ0tFPbO/evXz55ZcUFhZy9913d3598eLFrFu3jsLCwoSfuzsRxARBEBJFU2HVXRC3GQuw6u7ocSdgsPcTAzj33HMZNmzYCd1nf4g1MUEQhEQp/6z3CKwHHVqroseNmH/cpxns/cROJjESEwRBSBRvXWKP68Ng7yd2soggJgiCkCjJ2Yk9Lo7B3k/sZBJBTBAEIVEK54I9j66a9UeSwJ4fPe4EDPZ+YieTWBMTBEFIFFmBhb+OZiEiEbMZy8KHErJfbLD3E7vtttt48803qa2tZcGCBSQnJ7N///4Tvu8jiX5igiAIfTiufle734pmKXZP8rDnRwNYyVUDc6EDYCj0ExMjMUEQhEQruQrGXS4qdpwEIogJgiAMBFk5oTT6wWAo9BMTiR2CIAjCkCWCmCAIgjBkiSAmCIIgDFkiiAmCIAhDlkjsEARBGACqprLFtYV6Xz2ZtkymZ01HEdmJCSeCmCAIQoJ9UP4BD216iDpfV43EbFs2d8++mwWFCxJyjnA4zIoVK3jppZdQFAWTyURhYSH3338/U6dOTcg5+lJdXc2yZcs4dOgQZrOZcePG8cQTT5CWlkYgEODaa69l9+7d2Gw2cnJyeOKJJzqr4yeSmE4UBEFIoA/KP+COtXf0CGAALp+LO9bewQflHyTkPIO9n9itt97K3r172bZtG1dccQW33nprwq8BRBATBEFIGFVTeWjTQ+gx+ol1PPbrTb9GPc37iVksFr72ta91Fgo+66yzevQaSyQxnSgIgpAgW1xbeo3AutPRqfXVssW1hVk5s477PEOtn9hvf/tbrrzyymO+z/4QIzFBEIQEqffVJ/S4vgyVfmIrVqygtLSU//zP/zz+m+2DCGKCIAgJkmnLTOhx8QyVfmIPP/wwr732Gu+++y42m+3YbrKfRBATBEFIkOlZ08m2ZSPF6ScmIZFjy2F61vQTOs9Q6Cf2yCOP8NJLL/H+++/jdDpP6H77ItbEBEEQEkSRFe6efTd3rL0DCalHgkdHYLtr9l0J2S82mPuJVVZW8tOf/pSRI0dywQUXAGA2m9m4ceMJ3/eRRD8xQRCEPhxPv6tY+8RybDncNfuuhO0TOxlEPzFBEIQz0ILCBVxQcIGo2HESiCAmCIIwABRZOaE0+sFA9BMTBEEQhAEkgpggCIIwZIkgJgiCIAxZIogJgiAIQ5YIYoIgCANAV1XaNm6i5e13aNu4CT3BleTD4TAPPPAA48aNY8KECUybNo1Fixaxbdu2hJ4nnurqai699FLGjh3L5MmTWbJkCU1NTZ1fv+SSS5g8eTJTp05l/vz5A3ZdYp+YIAhCH45nH1Pr6tXUrXiQSG1t52OGnByy770H+yWXJOS6brjhBrxeL88++2xnJfuVK1fS2trK9ddf3+NYVVVRlMSm99fV1VFaWtpZyf7OO++kpaWFp556CgC3291ZqeONN97gP/7jP9iyZUuv5znRfWJiJCYIgpBAratXU/Xjn/QIYACRujqqfvwTWlevPuFzDPZWLECPUlMtLS296iomitgnJgiCkCC6qlK34kGINcGl6yBJ1K14kJSLLkI6gZHRUGnFctNNN7FmzRoAVq1adXw3exRiJCYIgpAgvs1f9BqB9aDrRGpr8W3+4oTPNRRasfz5z3+moqKCX/3qV9x5550ndsNxiCAmCIKQIJH6/vUJ6+9x8QyVViwdbr75ZtasWdNZKT+RRBATBEFIEENm//qE9fe4eAZ7K5bW1laqq6s7//7666+Tnp7e5/Tn8RJrYoIgCAlimzkDQ04Okbq62OtikoQhOxvbzBknfK7B3IqlpaWFa665Br/fjyzLZGZm8vbbb8ccDZ4okWIvCILQh2NNAe/ITgR6BrL2N/D83zyasDT7gTYUWrGI6URBEIQEsl9yCfm/eRRDdnaPxw3Z2UMqgA0VYjpREAQhweyXXELKRRdFsxXr6zFkZmKbOeOE0upPhaHQikUEMUEQhAHw/9u7++Coqnxd/M/uhjSGkDTmHYQkxGDohJDw7gsqLwfiKJ5csaIHUiDgiXfEmvGHpUZrcMjIBK2iuDOjhwvcQV4Kbw4ooILXxMEJiEMCZBLEJCoxJBlCCB0hnaaDtJ3u/v2RSUsn3U2n9+qwt/N8qqyps3vh2uv8wde193evR9JqMXzG9Ft9Gz97fJxIRESqxSJGRESqxSJGRESqxXdiRERB4HA4cbHehC6zFcPDdYhP0UOjEf+d1L86FjEiIsEaqo04tqceXSar69pwvQ6znkhBclaMkDlsNhuKiopQXFwMrVaLkJAQJCQkYO3atcjMzBQyhy+tra1Yvnw5mpqaoNPpkJqais2bN/c7laOwsBBr167FV199hfT0dOH3wceJREQCNVQbUbKlxq2AAUCXyYqSLTVoqDYKmWf58uWorq5GeXk5amtrUV1djZUrV6K2trbfWLvgQE4A0Gq1WLNmDb799lucOXMGCQkJKCgocBtTVVWFiooKjB07Vvj8vVjEiIgEcTicOLan3ueYL/bWw+GQd1CSGvLErFYrVq1ahU2bNgXluKlefJxIRCTIxXpTvx1YX5YOKy7WmzD6rpE+x/mihjyx1157DXl5eUhKSgp4nf7gToyISJAus+8CNtBxvig5T6y8vBynTp3Cs88+K3udN8MiRkQkyPBwndBx3ig9T+zo0aP45ptvkJSUhMTERLS0tGDBggX45JNPAluwDyxiRESCxKfoMVzvu0CFjexpt5dD6XliBQUFaG1tRVNTE5qamnDHHXegtLQUDz30kKx1e8J3YkREgmg0EmY9kYKSLd7fNd2XmyLkezEl54kNJuaJERH5EEjelafvxMJG6nBfrrjvxAaDGvLEuBMjIhIsOSsGSZOieWLHIGARIyIKAo1GktVGrwRqyBNjYwcREakWixgREakWixgREakWixgREakWixgRURA4HHacrz2Dr/92FOdrz8DhEHuSvM1mQ2FhIVJTU5GWloasrCzk5OTg9OnTQufxprW1FQsWLMBdd92FjIwM5Obm4sqVK67fExMTkZqaiszMTGRmZmLPnj1BuQ92JxIRCVZ/4jj+umMrLFd+6uwLuz0Kc57KR8qMe4TMsXz5clgsFpSXl7tOsj948CBqa2v75YnZ7XZotVoh8/bqjWLpPcn+xRdfREFBAbZu3eoa8/777wclQ+xG3IkREQlUf+I4PtpY5FbAAMBy5Xt8tLEI9SeOy59DBVEsg4U7MSIiQRwOO/66Y6vPMWU7tyJ52gxoNIHvjNQQxQL0nJbvcDgwY8YMrF+/HtHR0QGv2RvuxIiIBLnwdW2/HVhfVy9/jwtf909fHiglR7EAwOeff44vv/wSVVVViIyMxLJly2Sv2RMWMSIiQSymDqHjvFF6FAsAjB07FgAwdOhQPP/88zh27NgAV+kfFjEiIkHC9P4dM+XvOG+UHsXS1dXldl/FxcXIysqStWZv+E6MiEiQ0RPSEHZ7lM9HiiMiozB6QprsuZQcxXLp0iUsWrQIdrsdTqcT48aNw65du2Sv2RNGsRAR+TDQqJDe7kRvHl39qrA2+2BTQxQLHycSEQmUMuMePLr6VYTdHuV2fURklKoKmFrwcSIRkWApM+5B8rQZPd2Kpg6E6Udi9IQ0WW31t4IaolhYxIiIgkCj0WJMWsatvo2fPT5OJCIi1WIRIyIi1WIRIyIi1eI7MSKiIHA6nLA2dsJx9UdoRoRAlxQBSdP/1AySh0WMiEiwH2q+h+lgA+ydP7quaSNCoF+YjNvSo3z8Sf/ZbDYUFRWhuLgYWq0WISEhSEhIwNq1a/tFsQRDa2srli9fjqamJuh0OqSmxOM0VgAAc8NJREFUpmLz5s2uQ4mtViteeOEFlJaWIiQkBFlZWdi9e7fw+2ARIyIS6Iea73F599f9rts7f8Tl3V8jMm+CkEKm9DyxgoICaDQanD17FpIk+XXYcCD4ToyISBCnwwnTwQafY0wHz8HpkHdQktLzxLq6urB9+3YUFRW5DguOj4+XtWZvWMSIiASxNna6PUL0xN5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy/ud9Bwb57YwoULAfREw0RGRmLdunWYOnUqZs2ahc8++yzwBfvAIkZEJIjjqu8CNtBxvig5T8xms+HcuXMwGAyorKzE22+/jSeffBLt7e2y190XixgRkSCaESE3HzSAcd4oPU8sISEBGo0GS5YsAQBMmjQJSUlJqK2VHwbaF4sYEZEguqQIaCN8FyhthA66pAhZ8yg9TywqKgpz585FaWkpAKC5uRmNjY246667ZK3bE3YnEhEJImkk6Bcme+xO7KVfOE7I92JKzhMDgM2bN2PFihV4+eWXodVqsXXr1qA0dzBPjIjIh0Dyrjx/J6aDfuE4Yd+JDQY15IlxJ0ZEJNht6VEYZojkiR2DgEWMiCgIJI2EYcn6W30bsqghT4yNHUREpFosYkREpFosYkREpFosYkREpFps7CAiCgKHw4Hm5mZYLBaEhYW5TrEQRclRLCaTCQ8++KBr7LVr13Du3DkYjUaf5z0GgkWMiEiwuro6lJSUwGw2u66Fh4cjOzsbBoNByBxKjmLR6/U4ffq0a+yGDRtw9OhR4QUM4ONEIiKh6urqsHfvXrcCBgBmsxl79+51RaDIofQolr62b9+OlStXyl63J9yJEREJ4nA4UFJS4nNMSUkJUlNTZT1a9DeKpbq6GikpKTAajTAYDCgrK8PEiRPx7rvvIjc3FzU1NTedqzeKZcOGDaioqEBOTg4aGhowfPhw15jeKJacnJx+f768vByXL1/GI488EtBab4Y7MSIiQZqbm/vtwPoym81obm6WPZeSo1hu9M4772Dp0qUYMiQ4eyYWMSIiQSwWi9Bx3ig9iqVXV1cX9uzZgxUrVgxsgQPAIkZEJMiNhUPEOG+UHsXS67333kNGRgZSU1NlrdcXvhMjIhIkISEB4eHhPh8phoeHIyEhQfZcSo9iAYBt27YFraGjF6NYiIh8GGhUSG93oje5ubnC2uyDTQ1RLHycSEQkkMFgQG5uLsLDw92uh4eHq6qAqQUfJxIRCWYwGJCamhrUEzsGgxqiWFjEiIiCQKPRICkp6Vbfxs+euv6zgIiI6AYsYkREpFosYkREpFp8J0ZEFAROpx0m0ylYrUbodDHQ66dBksSeJE/ciRERCWc0luJvx+9HVfUS1Nb9f6iqXoK/Hb8fRmOpsDlsNhsKCwuRmpqKtLQ0ZGVlIScnxy0CJZhaW1uxYMEC3HXXXcjIyEBubi6uXLni+r20tBRTpkxBVlYW0tPTsXPnzqDcBz92JiLyYaAf4xqNpfiqZhWAvn+19pw3ODH9vxATs0D2feXl5cFisWD79u1ueWJmsxlLlixxGxuMPLFLly6hvr7eLU+ss7MTW7duhdPpRFRUFMrKypCRkYGmpiakpqaivb0dI0aMcPv38GNnIiKFcDrtOFv/O/QvYHBdO1v/OpxOu4ff/aeWPLHecx3NZjMiIyOh0+lkrdsTvhMjIhKk5x1Ym48RTlitF2EyncLIkTMDnkfpeWKSJGHv3r147LHHMHz4cHR0dGD//v0eDwmWizsxIiJBrFaj0HG+KDlPrLu7G+vXr8eHH36I5uZmfPbZZ1i2bJnbOzNRWMSIiATR6WKEjvNG6Xlip0+fRmtrK+69914AwLRp0zBq1Ci34icKixgRkSB6/TTodHHobeLoT4JOFw+9fpqseZSeJzZmzBi0tLTg22+/BQB89913aGhowPjx42Wt2xO+EyMiEkSStBif8to/uxMluDd49BS28SlrhHwvpuQ8sdjYWGzZsgWPP/44NBoNnE4nNm3ahNGjR8ted19ssSci8iGQFnCjsRRn63/n1uSh08VjfMoaIe31g0UNeWLciRERCRYTswDR0fN4YscgYBEjIgoCSdLKaqNXAjXkibGxg4iIVItFjIiIVItFjIiIVItFjIiIVItFjIgoCOxOJ/7WcRUHLnXgbx1XYRf8NZPSo1hKSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzLH8uXLYbFYUF5e7hbFUltbi8zMTLexwYhi0Wq1WLNmjVsUS0FBAbZu3YqOjg7k5eXh2LFjmDBhAo4ePYolS5b4deDwQHEnRkQk0MftJjxd0+RWwACgzWrD0zVN+LjdJHsOpUexNDQ0ICYmBhMmTAAAPPDAA2hubkZVVZXstffFIkZEJIjd6cRv6i/4SBMD1tRfkP1o0d8oljVr1qCyshLJycnIy8vDzp07cebMGeTn5yM3N9evuXqjWE6cOIFt27Zh8eLF/c5o7I1iWbhwIYCesx3b29tRUVEBADhw4AAsFguampoCW7APLGJERIJUmCz9dmA3cgJotdpQYbLInkvJUSwRERHYt28fCgoKMGXKFBw5cgQGgwFDhw6Vve6++E6MiEgQ44/dQsd5c2MUy8iRI11RLDt27MChQ4cADH4UywcffOCKYgGA+++/H0eOHAEAWK1WxMXFuR4visSdGBGRIDEh/u0L/B3njdKjWAC47fJef/11zJkzB3feeaesdXvCnRgRkSAz9WGI1w1Fm9Xm8b2YhJ4uxZn6MA+/DoySo1gAYM2aNfjiiy/Q3d2Nu+++G9u2bZO9Zk8YxUJE5MNAo0J6uxMBT2liwJ/TE4W12QebGqJY+DiRiEigh6P1+HN6IuJ07k0M8bqhqipgasHHiUREgj0crUd2VAQqTBYYf+xGTMgQzNSHQeuhuULJ1BDFwiJGRBQEWknCvSNH3Orb+Nnj40QiIlItFjEiIlItFjEiIlItvhMjIgoCu8OJk41XYLx6HTEjhmF60u3QatTV2KEGLGJERIKV1FxE4cE6XOz86Qin+Ihh+O1CA7LT44XMYbPZUFRUhOLiYmi1WoSEhCAhIQFr167tF8USDF1dXZgzZ47rmKr4+Hhs3rzZdQJ+fX09li1bhu+//x56vR47duyAwWAQfh98nEhEJFBJzUX8cneVWwEDgLbO6/jl7iqU1Nz80F1/LF++HNXV1SgvL0dtbS2qq6uxcuVK1NbW9ht749mIotx22204fPgwvvzyS3z55ZfIzs7G6tWrXb8/88wzyM/Px9mzZ/HSSy9h5cqVwu8BYBEjIhLG7nCi8GCdzyiWwoN1sDvkHZSkhDwxjUaDESN6PiFwOp0wm82uA4CNRiOqqqqQl5cHAFi0aBEaGxuDEsXCx4lERIKcbLzSbwd2IyeAi53XcbLxCu5Ojgx4Hn/zxKqrq5GSkgKj0QiDwYCysjJMnDgR7777LnJzc/1KWu7NE9uwYQMqKiqQk5ODhoYGDB8+HAAwb948fPXVV4iOjsann34KADh//jxGjRqFIUN6SowkSRg7diz+8Y9/uAqkKNyJEREJYrx68xiTgYzzRSl5YocPH8bFixfxxBNPYN26dR7vD+jZrQUDixgRkSAxI/w7wNbfcd7cmCcGwJUn9sorr7iuDVaeGNDzaPE///M/XTEuY8aMQUtLC7q7u13znz9/HmPHjh3gSm+ORYyISJDpSbcjPmIYvDXSS+jpUpye5P0xoD+UkCd26dIlXLlyxTXuv//7v105YzExMcjKysLu3bsBAPv27UNiYqLwR4kA34kREQmj1Uj47UIDfrm7ChI8R7H8dqFByPditzpP7JtvvsF//ud/oru7G06nE8nJya6iBQBbtmzBU089haKiIoSHh2Pnzp2y1+wJ88SIiHwIJO9qML4TGwxqyBPjToyISLDs9Hj8myGOJ3YMAhYxIqIg0GokWW30SqCGPDE2dhARkWqxiBERkWqxiBERkWqxiBERkWqxsYOIKBgcdqD5OGC5BITFAgn3ABrtrb6rnx3uxIiIRKv7CPhDOrDzEWDfyp7//UN6z3VBbDYbCgsLkZqairS0NGRlZSEnJwenT58WNocvXV1dmDFjBiZNmoRJkyYhOzvb7ZT6X/3qV0hMTIQkSX4dNBwoFjEiIpHqPgL2LgXMre7XzRd7rgsqZErPE3v88cfxxRdfICEhQfjcN2IRIyISxWEHSl4GfCWKlRT0jJNB6XliAHD//ffjjjvukLVOf/CdGBGRKM3H++/A3DgB84WecUmzAp5G6Xlig4k7MSIiUSyXxI7zQel5YoOFRYyISJSwWLHjvFB6nthgYhEjIhIl4R4gfBTgK1EsfHTPOBmUnic2mPhOjIhIFI0WyH6zpwvRW6JY9htCvhdTep7YqlWr8OGHH6KtrQ3z5s1DWFgYvvvuO9nr7ot5YkREPgSUd1X3UU+X4o1NHuGjewqY4dHg3GgQME+MiOhfkeFRIPVhntgxCFjEiIiCQaOV1UavBMwTIyIiCiIWMSIiUi0WMSIiUi0WMSIiUi0WMSKiILA77DjVdgr/79z/w6m2U7DLPPS3LyVHsVy/fh05OTkYP348MjMz+8W0iMTuRCIiwQ43H8YbJ9/ApWs/nZEYGxqLgukFmJcwT8gcy5cvh8ViQXl5uesk+4MHD6K2thaZmZluY+12O7Rase39vVEsvSfZ/+EPf8Dq1auxf/9+AEB+fj4eeughSJKEt99+G/n5+UE5IJg7MSIigQ43H8bqI6vdChgAGK8ZsfrIahxuPix7DqVHsQwbNgy/+MUvXGcszpw5E+fOnZO9bk+4EyMiEsTusOONk2/A6SFPzAknJEh48+SbmD1mNrQyPnxWWxTLn/70JyxcuDCwxd4Ed2JERIJUGav67cBu5IQTbdfaUGWskj2XWqJYioqKUF9fj9///veBL9YHFjEiIkHar7ULHeeNWqJYNmzYgP379+OTTz5BaGio/wscABYxIiJBokOjhY7zRg1RLBs3bkRxcTH+8pe/QK/Xy1qvL3wnRkQkyOSYyYgNjYXxmtHjezEJEmJDYzE5ZrLsuZQcxdLS0oIXXngB48aNw+zZswEAOp0OJ06ckL3uvhjFQkTkw0CjQnq7EwG4FTLpn3liGx/cKKzNPtjUEMXCx4lERALNS5iHjQ9uRExojNv12NBYVRUwteDjRCIiweYlzMPsMbNRZaxC+7V2RIdGY3LMZFlt9beCGqJYWMSIiIJAq9FiWty0W30bP3t8nEhERKrFIkZERKrFIkZERKrFd2JEREHgtNtxrfLv6G5vx5DoaIROnQJJ8EnyxCJGRCSc+dNPcaloPbrb2lzXhsTFIfbVVxA+f76QOWw2G4qKilBcXAytVouQkBAkJCRg7dq1/aJYgqGrqwtz5sxxHVMVHx+PzZs3u07Anz9/Ptra2lyn3b/11ltBuS9+7ExE5MNAP8Y1f/opLvz6eaDvX63/PG9w9B//IKSQ5eXlwWKxYPv27W55YmazGUuWLHEbG4w8MYfDga6uLrc8sc8//9yVJ2YymVzHTX3wwQf43e9+h6qq/gcf82NnIiKFcNrtuFS0vn8BA1zXLhWth9MuL+VZ6XliANzOS+zs7HT7TSQ+TiQiEuRa5d/dHiH243Siu60N1yr/juEzpgc8j1ryxJYuXYqysjIAQElJScDr9YU7MSIiQbrb/YtY8XecL2rIE9u1axfOnz+PdevW4cUXX5S3YC9YxIiIBBkS7V/Eir/jvFFLnlivZcuWoayszBX3IhKLGBGRIKFTp2BIXJyriaMfScKQuDiETp0iax6l54mZzWa0tra6fjtw4AAiIyN9Pv4MFN+JEREJImm1iH31lZ7uRElyb/D4Z2GLffUVId+LKTlPrLOzE4sWLcIPP/wAjUaD6OhoHDp0yONuUC622BMR+RBIC/hgfCc2GNSQJ8adGBGRYOHz52PE3Lk8sWMQsIgREQWBpNXKaqNXAjXkibGxg4iIVItFjIiIVItFjIiIVItFjIiIVItFjIgoCBwOJy5824Gzp9pw4dsOOBxiv2ay2WwoLCxEamoq0tLSkJWVhZycHJw+fVroPN50dXVhxowZmDRpEiZNmoTs7Gw0NTX1G1dYWAhJkvw6pzEQ7E4kIhKsodqIY3vq0WWyuq4N1+sw64kUJGfFCJlj+fLlsFgsKC8vd4tiqa2t7ZfbFYwolttuuw2HDx92i2JZvXq1K4oFAKqqqlBRUYGxY8cKnftG3IkREQnUUG1EyZYatwIGAF0mK0q21KCh2ih7DjVEsVitVqxatQqbNm0KykkdvbgTIyISxOFw4tieep9jvthbj6RJ0dBoAv+LXQ1RLK+99hry8vKQlJQU8Dr9wZ0YEZEgF+tN/XZgfVk6rLhYb5I9l5KjWMrLy3Hq1Ck8++yzstd5MyxiRESCdJl9F7CBjvNG6VEsR48exTfffIOkpCQkJiaipaUFCxYswCeffDLwxd4EixgRkSDDw3VCx3mj9CiWgoICtLa2oqmpCU1NTbjjjjtQWlqKhx56SNa6PeE7MSIiQeJT9Biu1/l8pBg2Uof4FL3suZQcxTKYGMVCROTDQKNCersTvcl+Jl1Ym32wqSGKhY8TiYgESs6KQfYz6Riud39kGDZSp6oCphZ8nEhEJFhyVgySJkX3dCuarRge3vMIUU5b/a2ghigWFjEioiDQaCSMvmvkzQeSLHycSEREqsUiRkREqsUiRkREqsV3YkREQeBw2HHh61pYTB0I04/E6Alp0GjEniRPLGJERMLVnziOv+7YCsuVnzr7wm6Pwpyn8pEy4x4hc9hsNhQVFaG4uBharRYhISFISEjA2rVr+0WxBENXVxfmzJnjOqYqPj4emzdvdp2An5iYiGHDhrm+/XrllVfwxBNPCL8PFjEiIoHqTxzHRxuL+l23XPkeH20swqOrXxVSyNSQJ/b+++8jPT1d6Lx98Z0YEZEgDocdf92x1eeYsp1b4XDYfY65GTXkiQ0W7sSIiAS58HWt2yNET65e/h4Xvq7FmLSMgOdRQ54Y0BP54nA4MGPGDKxfvx7R0dEBr9kb7sSIiASxmDqEjvNFyXliAPD555/jyy+/RFVVFSIjI7Fs2TLZa/aERYyISJAwvX8ndPg7zhul54kBwNixYwEAQ4cOxfPPP49jx44NYIX+YxEjIhJk9IQ0hN0e5XPMiMgojJ6QJmsepeeJdXV1ud1XcXExsrKyZK3ZG74TIyISRKPRYs5T+R67E3vNXpYv5HsxJeeJXbp0CYsWLYLdbofT6cS4ceOwa9cu2Wv2hHliREQ+BJJ35ek7sRGRUZi9TNx3YoNBDXli3IkREQmWMuMeJE+bwRM7BgGLGBFREGg0Wllt9EqghjwxNnYQEZFqsYgREZFqsYgREZFqsYgREZFqsYgREQWB0+HE9QYTrp024nqDCU6H2K+ZbDYbCgsLkZqairS0NGRlZSEnJwenT58WOo83XV1dmDFjBiZNmoRJkyYhOzsbTU1Nrt+tViuee+45pKSkIC0tDXl5eUG5D3YnEhEJ9kPN9zAdbIC980fXNW1ECPQLk3Fbuu8TPfyl9CiWgoICaDQanD17FpIk+XVOYyC4EyMiEuiHmu9xeffXbgUMAOydP+Ly7q/xQ438lnWlR7F0dXVh+/btKCoqcp2zGB8fL3vdnnAnRkQkiNPhhOlgg88xpoPnMMwQCUnT/0Befyk9iqWhoQGRkZFYt24dDh8+jNtuuw1r167F3LlzA16zN9yJEREJYm3s7LcD68veaYW1sVP2XEqOYrHZbDh37hwMBgMqKyvx9ttv48knn0R7e7vsdffFIkZEJIjjqu8CNtBx3ig9iiUhIQEajQZLliwBAEyaNAlJSUmora0d4EpvjkWMiEgQzYgQoeO8UXoUS1RUFObOnYvS0lIAQHNzMxobG3HXXXfJWrcnfCdGRCSILikC2ogQn48UtRE66JIiZM+l5CgWANi8eTNWrFiBl19+GVqtFlu3bg1KcwejWIiIfBhoVEhvd6I3kXkThLXZB5saolj4OJGISKDb0qMQmTcB2gj3R4baCJ2qCpha8HEiEZFgt6VHYZghEtbGTjiu/gjNiBDokiJktdXfCmqIYmERIyIKAkkjYViy/lbfxs8eHycSEZFqsYgREZFqsYgREZFq8Z0YEVEQOBwONDc3w2KxICwszHWKBYnFIkZEJFhdXR1KSkpgNptd18LDw5GdnQ2DwSBkDpvNhqKiIhQXF0Or1SIkJAQJCQlYu3ZtvyiWYOjq6sKcOXNcx1TFx8dj8+bNSExMhMlkwoMPPugae+3aNZw7dw5Go9HnocWB4MfOREQ+DPRj3Lq6OtdpGJ7k5uYKKWR5eXmwWCzYvn27W56Y2Wx2nVnYKxh5Yg6HA11dXW55Yp9//rkrT+xGGzZswNGjR3Hw4MF+v/FjZyIihXA4HCgpKfE5pqSkBA6HQ9Y8Ss8T62v79u1YuXKlrDV7w8eJRESCNDc3uz1C9MRsNqO5uRlJSUkBz6P0PLEblZeX4/Lly3jkkUcCXq8v3IkREQlisViEjvNFyXliN3rnnXewdOlSDBkSnD0TixgRkSA3ZniJGOeN0vPEenV1dWHPnj1YsWKF/4sbIBYxIiJBEhISEB4e7nNMeHg4EhISZM2j9DyxXu+99x4yMjKQmpoqa72+8J0YEZEgGo0G2dnZPrsTs7OzhXwvpvQ8MQDYtm1b0Bo6erHFnojIh0BawAfjO7HBoIY8Me7EiIgEMxgMSE1N5Ykdg4BFjIgoCDQajaw2eiVQQ54Y/7OAiIhUi0WMiIhUi0WMiIhUi0WMiIhUi0WMiCgInE47Ojoq0Nb2ETo6KuB02m/+hwbAZrOhsLAQqampSEtLQ1ZWFnJycnD69Gmh83jT1dWFGTNmYNKkSZg0aRKys7PR1NTk+r20tBRTpkxBVlYW0tPTsXPnzqDcB78TIyLyIZDvmIzGUpyt/x2s1jbXNZ0uDuNTXkNMzAIh96XkKBan04moqCiUlZUhIyMDTU1NSE1NRXt7u2t8L0axEBEpiNFYiq9qVrkVMACwWi/hq5pVMBpLZc+hliiW3iOxzGYzIiMjodPpZK+9L34nRkQkiNNpx9n63wHw9IDLCUDC2frXER09D5IU+M5I6VEskiRh7969eOyxxzB8+HB0dHRg//79CAkJCXjN3nAnRkQkiMl0qt8OzJ0TVutFmEynZM+l5CiW7u5urF+/Hh9++CGam5vx2WefYdmyZW4HBovCIkZEJIjVahQ6zhulR7GcPn0ara2tuPfeewEA06ZNw6hRo9yKnygsYkREguh0MULHeaP0KJYxY8agpaUF3377LQDgu+++Q0NDA8aPHy9r3Z7wnRgRkSB6/TTodHGwWi/B83sxCTpdHPT6abLnUnIUS2xsLLZs2YLHH38cGo0GTqcTmzZtwujRo2Wvuy+22BMR+TDQFvDe7sQeN/712vMIbmL6fwlrsw82NUSx8HEiEZFAMTELMDH9v6DTxbpd1+niVFXA1IKPE4mIBIuJWYDo6Hn/7FY0QqeLgV4/TVZb/a2ghigWFjEioiCQJC1Gjpx5q2/jZ4+PE4mISLVYxIiISLVYxIiISLX4ToyIKAjsTicqTBYYf+xGTMgQzNSHQevh1AySh0WMiEiwj9tN+E39BVy02lzX4nVDsS5lNB6O1guZw2azoaioCMXFxdBqtQgJCUFCQgLWrl2LzMxMIXP40tXVhTlz5riOqYqPj8fmzZtdJ+CXlJTgN7/5DX788UeEhoZiy5YtmDRpkvD74MfOREQ+DPRj3I/bTXi6pqnfeR29e7A/pycKKWRKzhPr6OhASkoKjh07hgkTJuDo0aNYtWqVx1Pz+bEzEZFC2J1O/Kb+gtcgFgBYU38Bdpl7B6XniTU0NCAmJgYTJkwAADzwwANobm5GVVWVrHV7wseJRESCVJgsbo8Q+3ICaLXaUGGy4N6RI7yOuxml54mlpKSgvb0dFRUVmDlzJg4cOACLxYKmpiZMnjw54HV7wp0YEZEgxh+7hY7zRcl5YhEREdi3bx8KCgowZcoUHDlyBAaDAUOHDpW97r64EyMiEiQmxL+/Uv0d582NeWIjR4505Ynt2LEDhw4dAnBr8sRSUlKwadMmAMD999+PI0eOAACsVivi4uJcjxdF4k6MiEiQmfowxOuGwlsjvQRglG4oZurDvIzwj9LzxAC47fJef/11zJkzB3feeaesdXvCnRgRkSBaScK6lNF4uqYJEjwFsQCvp4wW8r2YkvPEAGDNmjX44osv0N3djbvvvhvbtm2TvWZP2GJPRORDIC3gnr4TG6UbitcFfic2GNSQJ8adGBGRYA9H65EdFcETOwYBixgRURBoJUlWG70SqCFPjI0dRESkWixiRESkWixiRESkWixiRESkWmzsICIKArvDiZONV2C8eh0xI4ZhetLt0GrYnSgad2JERIKV1FzEfW/+Ff/xfyrw6/8+jf/4PxW4782/oqTm5mcV+stms6GwsBCpqalIS0tDVlYWcnJycPr0aWFz+GvFihWQJAkWi8V1rb6+Hvfccw/Gjx+P6dOnu07NF41FjIhIoJKai/jl7ipc7HQ/g7Ct8zp+ubtKWCFbvnw5qqurUV5ejtraWlRXV2PlypWora3tN/bGsxFFO3jwoMdzGZ955hnk5+fj7NmzeOmll7By5cqgzM8iRkQkiN3hROHBOp95YoUH62B3qD9PDOiJaSksLMTGjRvd7s9oNKKqqgp5eXkAgEWLFqGxsRFNTU2y1u0J34kREQlysvFKvx3YjZwALnZex8nGK7g7OTLgeZSSJ7Zq1SqsXbsWERERbn/m/PnzGDVqFIYM6SkxkiRh7Nix+Mc//uEqkKJwJ0ZEJIjx6s1jTAYyzpdbnSf23nvvISQkBI888shN7w/oiYMJBhYxIiJBYkb4d4Ctv+O8uTFPDIArT+yVV15xXQt2nlhZWRn++te/IjEx0bW7SktLw1dffYUxY8agpaUF3d3drvnPnz+PsWPHBrxmb1jEiIgEmZ50O+IjhvnME4uP6Gm3l0MJeWKbNm1CS0sLmpqaXO+6amtrMXHiRMTExCArK8sVzbJv3z63YicS34kREQmi1Uj47UIDfrm7ymue2G8XGoR8L3ar88RuZsuWLXjqqadQVFSE8PBw7Ny5U/aaPWGeGBGRD4HkXZXUXEThwTq3Jo/4iGH47UIDstPjg3WrwjFPjIjoX1B2ejz+zRDHEzsGAYsYEVEQaDWSrDZ6JWCeGBERURCxiBERkWqxiBERkWqxiBERkWqxiBERBYPDDjQeA756v+d/HWJPkld6FMuvfvUrJCYmQpIkv85oDBS7E4mIRKv7CCh5GTC3/nQtfBSQ/SZgeFTIFMuXL4fFYkF5ebnrJPuDBw+itrYWmZmZbmPtdju0Wq2QefvyFsXy+OOP46WXXsJ9990XlHl7cSdGRCRS3UfA3qXuBQwAzBd7rtd9JHsKpUexAMD999+PO+64Q/Zab4Y7MSIiURz2nh2Y10QxCSgpAFIfBjSB74yUHsUymLgTIyISpfl4/x2YGydgvtAzTialR7EMFhYxIiJRLJfEjvNC6VEsg4lFjIhIlLBYseO8UHoUy2DiOzEiIlES7unpQjRfhOf3YlLP7wn3yJ5K6VEsq1atwocffoi2tjbMmzcPYWFh+O6772Svuy9GsRAR+TDgqJDe7kQAHhPFcncJa7MPNjVEsfBxIhGRSIZHewpVeJ/csPBRqipgasHHiUREohke7Wmjbz7e08QRFtvzCFFGW/2toIYoFhYxIqJg0GiBpFm3+i5+9vg4kYiIVItFjIiIVItFjIiIVIvvxIiIgsDusKPKWIX2a+2IDo3G5JjJ0KqssUMNWMSIiAQ73HwYb5x8A5eu/XS8VGxoLAqmF2Bewjwhc9hsNhQVFaG4uBharRYhISFISEjA2rVr+0WxBNuKFSuwfft2XL16FWFhYbh+/TqefPJJ1NXVITQ0FHFxcdi8ebPreCqR+DiRiEigw82HsfrIarcCBgDGa0asPrIah5sPC5ln+fLlqK6uRnl5OWpra1FdXY2VK1eitra239gbz0YUzVueWH5+Pr799lucPn0ajzzyCPLz84MyP4sYEZEgdocdb5x8A04PR071Xnvz5Juwy0x5Vnqe2LBhw/CLX/zCVdxmzpyJc+fOyVqzN3ycSEQkSJWxqt8O7EZOONF2rQ1VxipMi5sW8DxqyxP705/+hIULFw54nf7gToyISJD2a+1Cx/miljyxoqIi1NfX4/e//31A67wZFjEiIkGiQ6OFjvNGLXliGzZswP79+/HJJ58gNDQ0oLXeDIsYEZEgk2MmIzY0FhL6FwwAkCAhLjQOk2Mmy5pHDXliGzduRHFxMf7yl79Ar9fLWq8vfCdGRCSIVqNFwfQCrD6yGhIktwaP3sL28vSXhXwvpuQ8sZaWFrzwwgsYN24cZs+eDQDQ6XQ4ceKE7HX3xTwxIiIfAsm78vSdWFxoHF6e/rKw78QGgxryxLgTIyISbF7CPMweM5sndgwCFjEioiDQarSy2uiVQA15YmzsICIi1WIRIyIi1WIRIyIi1WIRIyIi1WIRIyIKAqfdjq4TJ9F56GN0nTgJp+CT5G02GwoLC5Gamoq0tDRkZWUhJycHp0+fFjqPP1asWAFJkmCxWFzX5s+fj4yMDGRmZmLWrFlBuy92JxIRCWb+9FNcKlqP7rY217UhcXGIffUVhM+fL2SO5cuXw2KxoLy83HWS/cGDB1FbW9svT8xut0OrDU57v7colr1797pO6vjggw+wYsUKVFVVCZ+fOzEiIoHMn36KC79+3q2AAUD3pUu48OvnYf70U9lzKD2KBYDbUVOdnZ3QaIJTbrgTIyISxGm341LResDTQUhOJyBJuFS0HiPmzoUkY2ekliiWpUuXoqysDABQUlIS2GJvgjsxIiJBrlX+vd8OzI3Tie62Nlyr/LvsudQQxbJr1y6cP38e69atw4svvhjwWn1hESMiEqS73b+cMH/HeaOWKJZey5YtQ1lZmeukfJFYxIiIBBkS7V9OmL/jvFF6FIvZbEZra6vr33HgwAFERkb6fPwZKL4TIyISJHTqFAyJi0P3pUue34tJEobExiJ06hTZcyk5iqWzsxOLFi3CDz/8AI1Gg+joaBw6dMjjblAuRrEQEfkw0KiQ3u5EAO6F7J9/gY/+4x+EtdkHmxqiWPg4kYhIoPD58zH6j3/AkNhYt+tDYmNVVcDUgo8TiYgEC58/HyPmzu3pVmxvx5DoaIROnSKrrf5WUEMUC4sYEVEQSFoths+Yfqtv42ePjxOJiEi1WMSIiEi1WMSIiEi1+E6MiCgIHA4nLtab0GW2Yni4DvEpemg04r+T+lfHnRgRkWAN1UbsevU4Pvhf1fjLtjp88L+qsevV42ioNgqbQ+l5Yr0KCwshSZJfhw0HgjsxIiKBGqqNKNnS/y/sLpMVJVtqkP1MOpKzYmTPo/Q8MQCoqqpCRUUFxo4dG5S5Ae7EiIiEcTicOLan3ueYL/bWw+GQd1CSGvLErFYrVq1ahU2bNgXluKle3IkREQlysd6ELpPV5xhLhxUX600YfddIn+N8UUOe2GuvvYa8vDwkJSUFvE5/cCdGRCRIl9l3ARvoOF+UnCdWXl6OU6dO4dlnn5W9zpthESMiEmR4uE7oOG+Unid29OhRfPPNN0hKSkJiYiJaWlqwYMECfPLJJ3KW7RGLGBGRIPEpegzX+y5QYSN72u3lUHqeWEFBAVpbW12/3XHHHSgtLcVDDz0ka92e8J0YEZEgGo2EWU+keOxO7HVfboqQ78WUnCc2mJgnRkTkQyB5Vw3VRhzbU+/W5BE2Uof7clOEtNcPFjXkiXEnRkQkWHJWDJImRfPEjkHAIkZEFAQajSSrjV4J1JAnxsYOIiJSLRYxIiJSLRYxIiJSLRYxIiJSLRYxIqIgcDjsOF97Bl//7SjO156Bw2G/+R8aAKVHsSQmJiI1NRWZmZnIzMzEnj17gjI3uxOJiASrP3Ecf92xFZYrP3X2hd0ehTlP5SNlxj1C5lBDFMv777+P9PT0oMzbizsxIiKB6k8cx0cbi9wKGABYrnyPjzYWof7EcflzqCCKZbBwJ0ZEJIjDYcdfd2z1OaZs51YkT5sBjSbwnZEaoliAntPyHQ4HZsyYgfXr1yM6OjrgNXvDnRgRkSAXvq7ttwPr6+rl73Hh61rZcyk5igUAPv/8c3z55ZeoqqpCZGQkli1bJmu93rCIEREJYjF1CB3njdKjWABg7NixAIChQ4fi+eefx7FjxwJb7E2wiBERCRKm9++YKX/HeaP0KJauri63+youLkZWVpasNXvDd2JERIKMnpCGsNujfD5SHBEZhdET0mTPpeQolkuXLmHRokWw2+1wOp0YN24cdu3aJXvNnjCKhYjIh4FGhfR2J3rz6OpXhbXZB5saolj4OJGISKCUGffg0dWvIuz2KLfrIyKjVFXA1IKPE4mIBEuZcQ+Sp83o6VY0dSBMPxKjJ6TJaqu/FdQQxcIiRkQUBBqNFmPSMm71bfzs8XEiERGpFosYERGpFosYERGpFt+JEREFgdPhhLWxE46rP0IzIgS6pAhIGs+nvVPguBMjIhLsh5rv0fbmSXz/f77Clf/+Ft//n6/Q9uZJ/FAjrtNP6XliVqsVzz33HFJSUpCWloa8vLygzM2dGBGRQD/UfI/Lu7/ud93e+SMu7/4akXkTcFt6lIc/OTBKzxMrKCiARqPB2bNnIUmSX4cNB4I7MSIiQZwOJ0wHG3yOMR08B6dD3kFJSs8T6+rqwvbt21FUVOQqcPHx8bLW7A2LGBGRINbGTtg7f/Q5xt5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy92HTTsLU+soaEBkZGRWLduHaZOnYpZs2bhs88+C3zBPrCIEREJ4rjqu4ANdJwvSs4Ts9lsOHfuHAwGAyorK/H222/jySefRHt7u+x198UiRkQkiGZEiNBx3ig9TywhIQEajQZLliwBAEyaNAlJSUmorZUfBtoXixgRkSC6pAhoI3wXKG2EDrqkCJ9jbkbpeWJRUVGYO3cuSktLAQDNzc1obGzEXXfdJWvdnrA7kYhIEEkjQb8w2WN3Yi/9wnFCvhdTcp4YAGzevBkrVqzAyy+/DK1Wi61btwaluYN5YkREPgSSd/VDzfcwHWxwa/LQRuigXzhOSHv9YFFDnhh3YkREgt2WHoVhhkie2DEIWMSIiIJA0kgYlqy/1bchixryxNjYQUREqsUiRkREqsUiRkREqsUiRkREqsUiRkQUBA6HA42Njfjqq6/Q2NgIh8Mh9N+v5CgWk8mEzMxM1z/jx4/HkCFDcOXKFeFzszuRiEiwuro6lJSUwGw2u66Fh4cjOzsbBoNByBxKjmLR6/VuxXTDhg04evSozwOLA8WdGBGRQHV1ddi7d69bAQMAs9mMvXv3uiJQ5FB6FEtf27dvx8qVK2Wv2xPuxIiIBHE4HCgpKfE5pqSkBKmpqdBoAt9D+BvFUl1djZSUFBiNRhgMBpSVlWHixIl49913kZubi5qampvO1RvFsmHDBlRUVCAnJwcNDQ0YPny41yiWG5WXl+Py5cseT7sXgTsxIiJBmpub++3A+jKbzWhubpY9l5KjWG70zjvvYOnSpRgyJDh7JhYxIiJBehsbRI3zRulRLL26urqwZ88erFixIqB1+oNFjIhIkBsLh4hx3ig9iqXXe++9h4yMDKSmpspary98J0ZEJEhCQgLCw8N9PlIMDw9HQkKC7LmUHsUCANu2bQtaQ0cvRrEQEfkw0KiQ3u5Eb3Jzc4W12QebGqJY+DiRiEggg8GA3NxchIeHu10PDw9XVQFTCz5OJCISzGAwIDU1Fc3NzbBYLAgLC0NCQoKstvpbQQ1RLCxiRERBoNFokJSUdKtv42dPXf9ZQEREdAMWMSIiUi0WMSIiUi2+EyMiCgKn0w6T6RSsViN0uhjo9dMgScE5Sf5fGXdiRESCGY2l+Nvx+1FVvQS1df8fqqqX4G/H74fRWCpsDiXniQFAaWkppkyZgqysLKSnp2Pnzp1BmZs7MSIigYzGUnxVswqA+zkSVuslfFWzChPT/wsxMQtkz6PkPDGn04nFixejrKwMGRkZaGpqQmpqKh577DGMGDFC6PzciRERCeJ02nG2/nfoW8D++SsA4Gz963A67R5+959a8sR6z3U0m82IjIyETqeTtW5PuBMjIhKk5x1Ym48RTlitF2EyncLIkTMDnkfpeWKSJGHv3r147LHHMHz4cHR0dGD//v0ICQkJeM3ecCdGRCSI1WoUOs4XJeeJdXd3Y/369fjwww/R3NyMzz77DMuWLcOVK1dkr7svFjEiIkF0uhih47xRep7Y6dOn0drainvvvRcAMG3aNIwaNQpffvllwGv2hkWMiEgQvX4adLo4AP0LRg8JOl089PppsuZRep7YmDFj0NLSgm+//RYA8N1336GhoQHjx4+XtW5P+E6MiEgQSdJifMpr/+xOlODe4NFT2ManrBHyvZiS88RiY2OxZcsWPP7449BoNHA6ndi0aRNGjx4te919MU+MiMiHQPKujMZSnK3/nVuTh04Xj/Epa4S01w8WNeSJcSdGRCRYTMwCREfP44kdg4BFjIgoCCRJK6uNXgnUkCfGxg4iIlItFjEiIlItFjEiIlItFjEiIlItNnYQEQWB3elEhckC44/diAkZgpn6MGg9nJpB8nAnRkQk2MftJkwtr8Oi0w34ZV0zFp1uwNTyOnzcbhI2h9LzxEpKSjB16lRkZGRg5syZQTlyCuBOjIhIqI/bTXi6pqlfGEub1Yana5rw5/REPBytlz2PkvPEOjo6kJeXh2PHjmHChAk4evQolixZ4tep+QPFnRgRkSB2pxO/qb/gI00MWFN/AXaZByUpPU+soaEBMTExmDBhAgDggQceQHNzM6qqqmSt2xMWMSIiQSpMFly02rz+7gTQarWhwmTxOsYf/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy92HTTsLU8sJSUF7e3tqKioAAAcOHAAFovFdVCwSCxiRESCGH/sFjrOFyXniUVERGDfvn0oKCjAlClTcOTIERgMBgwdOlT2uvviOzEiIkFiQvz7K9Xfcd7cmCc2cuRIV57Yjh07cOjQIQCDmyfWKy0tDYcOHcLEiRNx//3348iRIwAAq9WKuLg41+NFkbgTIyISZKY+DPG6oT7SxIBRuqGYqQ/zMsI/Ss8TA+C2y3v99dcxZ84c3HnnnbLW7Ql3YkREgmglCetSRuPpmiYvaWLA6ymjhXwvpuQ8MQBYs2YNvvjiC3R3d+Puu+/Gtm3bZK/ZE+aJERH5EEje1cftJvym/oJbk8co3VC8njJaSHv9YGGeGBHRv6CHo/XIjorgiR2DgEWMiCgItJKEe0eOuNW3IQvzxIiIiIKIRYyIiFSLRYyIiFSLRYyIiFSLRYyIKAjsDifKGy7jw9MXUN5wGXaH2K+ZlBDFIkkSMjIykJmZiczMTBw7dsz1W319Pe655x6MHz8e06dPdx04LBq7E4mIBCupuYjCg3W42PnTEU7xEcPw24UGZKfHC5lDKVEsx48fdzviqtczzzyD/Px8PPXUU3j//fexcuVKlJeXC5+fOzEiIoFKai7il7ur3AoYALR1Xscvd1ehpObmh+7ejFKiWLwxGo2oqqpCXl4eAGDRokVobGzkKfZEREpmdzhReLDOZ55Y4cE62Y8WlRLFAgAPPvggJk2ahNWrV7uunz9/HqNGjcKQIT0P+yRJwtixY/GPf/xDxqo9YxEjIhLkZOOVfjuwGzkBXOy8jpONV2TPdaujWACgubkZlZWVOH78ONrb2/Hiiy96vD+g5yT9YGARIyISxHj15jEmAxnnzY1RLABcUSyvvPKK61qwo1gAYOzYsQCA4cOH49lnn3U1dowZMwYtLS3o7u52zX/+/HnXeJFYxIiIBIkZ4d8Btv6O80YJUSwdHR24du0aAMDhcGDPnj3IysrqWV9MDLKysrB7924AwL59+5CYmOiWPSYKuxOJiASZnnQ74iOGoa3zusf3YhKAuIhhmJ7k/V2Wv251FMuZM2fwzDPPQJIkdHd3Y/LkyfjjH//o+nNbtmzBU089haKiIoSHh2Pnzp2y1+wJo1iIiHwYaFRIb3ci4DlP7H/nTRbWZh9saohi4eNEIiKBstPj8b/zJiMuwv0v5LiIYaoqYGrBx4lERIJlp8fj3wxxONl4Bcar1xEzoucRolajrjwxNUSxsIgREQWBViPh7uTIW30bP3t8nEhERKrFIkZERKrFIkZERKrFd2JERMHgsAPNxwHLJSAsFki4B9AE5yT5f2XciRERiVb3EfCHdGDnI8C+lT3/+4f0nuuCKD1P7Fe/+hUSExMhSRJqamqCdg/ciRERiVT3EbB3KdD3zA7zxZ7rubsAw6Oyp1F6ntjjjz+Ol156Cffdd19Q5u3FnRgRkSgOO1DyMvoVMOCnayUFPeNkUHqeGADcf//9uOOOO2St0x/ciRERidJ8HDC3+hjgBMwXesYlzQp4Gn/zxKqrq5GSkgKj0QiDwYCysjJMnDgR7777LnJzc/16zNebJ7ZhwwZUVFQgJycHDQ0NGD58OICePDGbzYa5c+fi9ddfd10fLNyJERGJYrkkdpwPSs8TGywsYkREooTFih3nhdLzxAYTixgRkSgJ9wDho/DTmfV9SUD46J5xMig9T2ww8Z0YEZEoGi2Q/eY/uxMleAxjyX5DyPdiSs8TW7VqFT788EO0tbVh3rx5CAsLw3fffSd73X0xT4yIyIeA8q7qPurpUryxySN8dE8BE9BeP1jUkCfGnRgRkWiGR4HUh3lixyBgESMiCgaNVlYbvRKoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRaLGJEREFgd9hxqu0U/t+5/4dTbadgl3nob19KjmK5fv06cnJyMH78eGRmZiI7OxtNTU1BuQd2JxIRCXa4+TDeOPkGLl376YzE2NBYFEwvwLyEeULmUHoUS35+Ph566CFIkoS3334b+fn5+PTTT4XPz50YEZFAh5sPY/WR1W4FDACM14xYfWQ1Djcflj2H0qNYhg0bhl/84heuMxZnzpyJc+fOyV63J9yJEREJYnfY8cbJN+D0kCfmhBMSJLx58k3MHjMbWhkfPqstiuVPf/oTFi5cGPB6feFOjIhIkCpjVb8d2I2ccKLtWhuqjFWy51JLFEtRURHq6+vx+9//Xt6CvWARIyISpP1au9Bx3qglimXDhg3Yv38/PvnkE4SGhg5wlf5hESMiEiQ6NFroOG/UEMWyceNGFBcX4y9/+Qv0er2s9frCd2JERIJMjpmM2NBYGK8ZPb4XkyAhNjQWk2Mmy55LyVEsLS0teOGFFzBu3DjMnj0bAKDT6XDixAnZ6+6LUSxERD4MNCqktzsRgFshk/6ZJ7bxwY3C2uyDTQ1RLHycSEQk0LyEedj44EbEhMa4XY8NjVVVAVMLPk4kIhJsXsI8zB4zG1XGKrRfa0d0aDQmx0yW1VZ/K6ghioVFjIgoCLQaLabFTbvVt/Gzx8eJRESkWixiRESkWixiRESkWnwnRkQUBE67Hdcq/47u9nYMiY5G6NQpkIJ0kvy/MhYxIiLBzJ9+iktF69Hd1ua6NiQuDrGvvoLw+fOFzGGz2VBUVITi4mJotVqEhIQgISEBa9eu7RfFEiySJGHixInQaHoe6r311luYNWsWAGD+/Ploa2uDRqPBiBEj8NZbbwXlvljEiIgEMn/6KS78+nmgzzkS3Zcu9Vz/4x+EFDKl54nt3bvXddzUBx98gBUrVqCqSv7Bx33xnRgRkSBOux2Xitb3K2A9P/Zcu1S0Hk67vJRnpeeJAXA7L7Gzs9O1WxONOzEiIkGuVf7d7RFiP04nutvacK3y7xg+Y3rA86glT2zp0qUoKysDAJSUlAS8Xl+4EyMiEqS73b+IFX/H+aKGPLFdu3bh/PnzWLduncesMRFYxIiIBBkS7V/Eir/jvFFLnlivZcuWoayszBX3IhKLGBGRIKFTp2BIXBzgoWAAACQJQ+LiEDp1iqx5lJ4nZjab0dra6vp3HDhwAJGRkT4ffwaK78SIiASRtFrEvvpKTxeiJLk3ePyzsMW++oqQ78WUnCfW2dmJRYsW4YcffoBGo0F0dDQOHTrkcTcoF/PEiIh8CCTvajC+ExsMasgT406MiEiw8PnzMWLuXJ7YMQhYxIiIgkDSamW10SuBGvLE2NhBRESqxSJGRESqxSJGRESqxSJGRESqxSJGRBQEDocTF77twNlTbbjwbQccDrFfM9lsNhQWFiI1NRVpaWnIyspCTk4OTp8+LXQeXyRJQkZGBjIzM5GZmenxxI7CwkJIkuTXOY2BYHciEZFgDdVGHNtTjy6T1XVtuF6HWU+kIDkrRsgcSo9iAYCqqipUVFS4jqcKBu7EiIgEaqg2omRLjVsBA4AukxUlW2rQUG2UPYcaolisVitWrVqFTZs2BeWkjl7ciRERCeJwOHFsT73PMV/srUfSpGhoNIH/xa6GKJbXXnsNeXl5SEpKCnid/uBOjIhIkIv1pn47sL4sHVZcrDfJnkvJUSzl5eU4deoUnn32WdnrvBkWMSIiQbrMvgvYQMd5o/QolqNHj+Kbb75BUlISEhMT0dLSggULFuCTTz4JcMXesYgREQkyPFwndJw3So9iKSgoQGtrK5qamtDU1IQ77rgDpaWleOihh2St2xO+EyMiEiQ+RY/hep3PR4phI3WIT9HLnkvJUSyDiVEsREQ+DDQqpLc70ZvsZ9KFtdkHmxqiWPg4kYhIoOSsGGQ/k47hevdHhmEjdaoqYGrBx4lERIIlZ8UgaVJ0T7ei2Yrh4T2PEOW01d8KaohiYREjIgoCjUbC6LtG3nwgycLHiUREpFosYkREpFosYkREpFp8J0ZEFAQOhx0Xvq6FxdSBMP1IjJ6QBo0mOCfJ/ytjESMiEqz+xHH8dcdWWK781NkXdnsU5jyVj5QZ9wiZw2azoaioCMXFxdBqtQgJCUFCQgLWrl3bL4olWCRJwsSJE6HR9DzUe+uttzBr1iwAPZ2Nw4YNc3379corr+CJJ54Qfg8sYkREAtWfOI6PNhb1u2658j0+2liER1e/KqSQqSFP7P3330d6enpQ5u3Fd2JERII4HHb8dcdWn2PKdm6Fw2H3OeZm1JAnNli4EyMiEuTC17VujxA9uXr5e1z4uhZj0jICnkcNeWJAT+SLw+HAjBkzsH79ekRHRwe8Zm+4EyMiEsRi6hA6zhcl54kBwOeff44vv/wSVVVViIyMxLJly2Sv2RMWMSIiQcL0/p3Q4e84b5SeJ3bjb0OHDsXzzz/v9ptILGJERIKMnpCGsNujfI4ZERmF0RPSZM2j9Dyxrq4ut/sqLi52/SYa34kREQmi0Wgx56l8j92JvWYvyxfyvZiS88QuXbqERYsWwW63w+l0Yty4cdi1a5fsNXvCPDEiIh8Cybvy9J3YiMgozF4m7juxwaCGPDHuxIiIBEuZcQ+Sp83giR2DgEWMiCgINBqtrDZ6JVBDnhgbO4iISLVYxIiISLVYxIiISLVYxIiISLVYxIiIgsDpcOJ6gwnXThtxvcEEp0Ps10w2mw2FhYVITU1FWloasrKykJOTg9OnTwudxxdJkpCRkYHMzExkZma6ncphtVrx3HPPISUlBWlpacjLywvKPbA7kYhIsB9qvofpYAPsnT+6rmkjQqBfmIzb0n2f6OEvpUexFBQUQKPR4OzZs5Akya9zGgPBnRgRkUA/1HyPy7u/ditgAGDv/BGXd3+NH2rkt6wrPYqlq6sL27dvR1FRkeucxfj4eNnr9oRFjIhIEKfDCdPBBp9jTAfPyX606G8Uy5o1a1BZWYnk5GTk5eVh586dOHPmDPLz85Gbm+vXXL1RLCdOnMC2bduwePFitzMaH3zwQUyaNAmrV692XW9oaEBkZCTWrVuHqVOnYtasWfjss89krdkbFjEiIkGsjZ39dmB92TutsDZ2yp5LyVEsNpsN586dg8FgQGVlJd5++208+eSTaG9vl73uvljEiIgEcVz1XcAGOs4bpUexJCQkQKPRYMmSJQCASZMmISkpCbW1tYEs1ycWMSIiQTQjQoSO80bpUSxRUVGYO3cuSktLAfTs2BobG3HXXXfJWrcn7E4kIhJElxQBbUSIz0eK2ggddEkRsudSchQLAGzevBkrVqzAyy+/DK1Wi61btwaluYNRLEREPgw0KqS3O9GbyLwJwtrsg00NUSx8nEhEJNBt6VGIzJsAbYT7I0NthE5VBUwt+DiRiEiw29KjMMwQCWtjJxxXf4RmRAh0SRGQNP2bK5RMDVEsLGJEREEgaSQMS9bf6tv42ePjRCIiUi0WMSIiUi0WMSIiUi2+EyMiCgKHw4Hm5mZYLBaEhYW5TrEgsVjEiIgEq6urQ0lJCcxms+taeHg4srOzYTAYhMxhs9lQVFSE4uJiaLVahISEICEhAWvXru0XxRIskiRh4sSJruL81ltvYdasWTCZTHjwwQdd465du4Zz587BaDT6PLQ4ECxiREQC1dXVuU7DuJHZbMbevXuRm5srpJApOU9Mr9e7hXNu2LABR48eFV7AAL4TIyISxuFwoKSkxOeYkpISOBwOWfMoPU+sr+3bt2PlypWy1uwNd2JERII0Nze7PUL0xGw2o7m5GUlJSQHP42+eWHV1NVJSUmA0GmEwGFBWVoaJEyfi3XffRW5uLmpqam46V2+e2IYNG1BRUYGcnBw0NDRg+PDhAHryxGw2G+bOnYvXX3/ddb1XeXk5Ll++jEceeSTg9frCnRgRkSAWi0XoOF+UnCd2o3feeQdLly7FkCHB2TOxiBERCdL33ZDccd4oPU+sV1dXF/bs2YMVK1YMcIX+YxEjIhIkISEB4eHhPseEh4cjISFB1jxKzxPr9d577yEjIwOpqamy1usL34kREQmi0WiQnZ3tsTuxV3Z2tpDvxZSeJwYA27ZtC1pDRy/miRER+RBI3tVgfCc2GNSQJ8adGBGRYAaDAampqTyxYxCwiBERBYFGo5HVRq8EasgT438WEBGRarGIERGRarGIERGRarGIERGRarGxg4goCJxOO0ymU7BajdDpYqDXT4MkBeck+X9l3IkREQlmNJbib8fvR1X1EtTW/X+oql6Cvx2/H0ZjqbA5bDYbCgsLkZqairS0NGRlZSEnJ8ctAiXYJElCRkYGMjMzkZmZ6XbsVGlpKaZMmYKsrCykp6dj586dwbkHfuxMROTdQD/GNRpL8VXNKgB9/2rtOW9wYvp/ISZmgez7ysvLg8Viwfbt293yxMxmM5YsWeI2Nlh5YpIk4erVq/3OgnQ6nYiKikJZWRkyMjLQ1NSE1NRUtLe3Y8SIEW5j5X7szJ0YEZEgTqcdZ+t/h/4FDK5rZ+tfh9Np9/C7/9SSJ9Z7rqPZbEZkZCR0Op2sdXvCd2JERIL0vANr8zHCCav1IkymUxg5cmbA8yg9T0ySJOzduxePPfYYhg8fjo6ODuzfvx8hISEBr9kb7sSIiASxWo1Cx/mi5Dyx7u5urF+/Hh9++CGam5vx2WefYdmyZbhy5YrsdffFIkZEJIhOFyN0nDdKzxM7ffo0Wltbce+99wIApk2bhlGjRrmKn0gsYkREguj106DTxaG3iaM/CTpdPPT6abLmUXqe2JgxY9DS0oJvv/0WAPDdd9+hoaEB48ePl7VuT/hOjIhIEEnSYnzKa//sTpTg3uDRU9jGp6wR8r2YkvPEYmNjsWXLFjz++OPQaDRwOp3YtGkTRo8eLXvdfbHFnojIh0BawI3GUpyt/51bk4dOF4/xKWuEtNcPFuaJERH9C4qJWYDo6Hk8sWMQsIgREQWBJGlltdErAfPEiIiIgohFjIiIVItFjIiIVItFjIiIVItFjIgoCOxOJ/7WcRUHLnXgbx1XYRf8NZPSo1hKSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzLH8uXLYbFYUF5e7hbFUltbi8zMTLexwYpiAYDjx4/3i2Lp6OhAXl4ejh07hgkTJuDo0aNYsmSJXwcODxR3YkREAn3cbsLTNU1uBQwA2qw2PF3ThI/bTbLnUHoUS0NDA2JiYjBhwgQAwAMPPIDm5mZUVVXJXntfLGJERILYnU78pv6CjzQxYE39BdmPFv2NYlmzZg0qKyuRnJyMvLw87Ny5E2fOnEF+fj5yc3P9mqs3iuXEiRPYtm0bFi9e7HZG44MPPohJkyZh9erVruspKSlob29HRUUFAODAgQOwWCxoamoKfNFesIgREQlSYbL024HdyAmg1WpDhckiey4lR7FERERg3759KCgowJQpU3DkyBEYDAYMHTpU9rr74jsxIiJBjD92Cx3nzY1RLCNHjnRFsezYsQOHDh0CcGuiWPLz811j7r//fhw5cgQAYLVaERcX53q8KBJ3YkREgsSE+Lcv8HecN0qPYgHgtst7/fXXMWfOHNx5552y1u0Jd2JERILM1IchXjcUbVabx/diEnq6FGfqwzz8OjBKjmIBgDVr1uCLL75Ad3c37r77bmzbtk32mj1hFAsRkQ8DjQrp7U4EPKWJAX9OTxTWZh9saohi4eNEIiKBHo7W48/piYjTuTcxxOuGqqqAqQUfJxIRCfZwtB7ZURGoMFlg/LEbMSFDMFMfBq2H5golU0MUC4sYEVEQaCUJ944ccatv42ePjxOJiEi1WMSIiEi1WMSIiEi1+E6MiCgI7A4nTjZegfHqdcSMGIbpSbdDq1FXY4casIgREQlWUnMRhQfrcLHzpyOc4iOG4bcLDchOjxcyh81mQ1FREYqLi6HVahESEoKEhASsXbu2XxRLsHR0dOC5557DyZMnMWTIEPz7v/873njjDQA9J+0vW7YM33//PfR6PXbs2AGDwSD8Hvg4kYhIoJKai/jl7iq3AgYAbZ3X8cvdVSipufmhu/5Yvnw5qqurUV5ejtraWlRXV2PlypWora3tN/bGsxFFWrFihescx6+//hq//vWvXb8988wzyM/Px9mzZ/HSSy9h5cqVQbkHFjEiIkHsDicKD9b5jGIpPFgHu0PeQUlKyBP77rvvUFVVhdWrV7v+bHx8zy7TaDSiqqoKeXl5AIBFixahsbGRUSxEREp2svFKvx3YjZwALnZex8nGK7LmUUKeWF1dHcaMGYP/+T//JyZPnoz58+ejuroaAHD+/HmMGjUKQ4b0vLGSJAljx47FP/7xD1nr9oRFjIhIEOPVm8eYDGScL7c6T8xms6G8vBz/8R//gaqqKrzwwgtYuHAhuru7+90f0BMHEwwsYkREgsSM8O8AW3/HeXNjnhgAV57YK6+84roW7DyxhIQEjB49GrNnzwYALFiwAD/++CNaWlowZswYtLS0uAqa0+nE+fPnXfljIrGIEREJMj3pdsRHDIO3RnoJPV2K05O8Pwb0hxLyxKZMmYLw8HCcOXMGAFBZWQmgJ9olJiYGWVlZ2L17NwBg3759SExMdL1rE4kt9kREgmg1En670IBf7q6CBM9RLL9daBDyvditzhPrvYenn34a169fx7Bhw7Bv3z4MHdpzev+WLVvw1FNPoaioCOHh4di5c6fsNXvCPDEiIh8CybsajO/EBoMa8sS4EyMiEiw7PR7/ZojjiR2DgEWMiCgItBoJdydH3urbkEUNeWJs7CAiItViESMiItViESMiItViESMiItViESMiCgaHHWg8Bnz1fs//OsSeJG+z2VBYWIjU1FSkpaUhKysLOTk5OH36tNB5fOno6MCSJUuQkpKCCRMmoKCgwPXbr371KyQmJkKSJNTU1ATtHtidSEQkWt1HQMnLgLn1p2vho4DsNwHDo0KmWL58OSwWC8rLy10n2R88eBC1tbX98sTsdju0Wq2QeW+0YsUK3Hvvva4TPW48i/Hxxx/HSy+9hPvuu0/4vDfiToyISKS6j4C9S90LGACYL/Zcr/tI9hRKj2IBgPvvvx933HGH7LXeDHdiRESiOOw9OzCviWISUFIApD4MaALfGfkbxVJdXY2UlBQYjUYYDAaUlZVh4sSJePfdd5Gbm+vXY77eKJYNGzagoqICOTk5aGhocItiqaysRFRUFN58801kZWUFvK5AcCdGRCRK8/H+OzA3TsB8oWecTEqPYhksLGJERKJYLokd54XSo1gGE4sYEZEoYbFix3mh9CiWwcR3YkREoiTc09OFaL4Iz+/FpJ7fE+6RPZXSo1hWrVqFDz/8EG1tbZg3bx7CwsLw3XffyV53X4xiISLyYcBRIb3diQA8Jorl7hLWZh9saohi4eNEIiKRDI/2FKrwPrlh4aNUVcDUgo8TiYhEMzza00bffLyniSMstucRooy2+ltBDVEsLGJERMGg0QJJs271Xfzs8XEiERGpFosYERGpFosYERGpFt+JEREFgd1hR5WxCu3X2hEdGo3JMZOhVVljhxqwiBERCXa4+TDeOPkGLl376Xip2NBYFEwvwLyEeULmsNlsKCoqQnFxMbRaLUJCQpCQkIC1a9f2i2IJlo6ODjz33HM4efIkhgwZgn//93/HG2+8gevXr+PJJ59EXV0dQkNDERcXh82bN7tOxxeJjxOJiAQ63HwYq4+sditgAGC8ZsTqI6txuPmwkHmWL1+O6upqlJeXo7a2FtXV1Vi5ciVqa2v7jb3xbESRVqxY4TrH8euvv8avf/1r12/5+fn49ttvcfr0aTzyyCPIz88Pyj2wiBERCWJ32PHGyTfg9HDkVO+1N0++CbvMlGel54kNGzYMv/jFL1yHDs+cORPnzp2TtWZv+DiRiEiQKmNVvx3YjZxwou1aG6qMVZgWNy3gedSWJ/anP/0JCxcuDHi9vnAnRkQkSPu1dqHjfFFLnlhRURHq6+vx+9//XvaaPWERIyISJDo0Wug4b9SSJ7Zhwwbs378fn3zyCUJDQwNb7E2wiBERCTI5ZjJiQ2MhoX/BAAAJEuJC4zA5ZrKsedSQJ7Zx40YUFxfjL3/5C/R6vaz1+sJ3YkREgmg1WhRML8DqI6shQXJr8OgtbC9Pf1nI92JKzhNraWnBCy+8gHHjxrl2ajqdDidOnJC97r6YJ0ZE5EMgeVeevhOLC43Dy9NfFvad2GBQQ54Yd2JERILNS5iH2WNm88SOQcAiRkQUBFqNVlYbvRKoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRaLGJEREHgtNvRdeIkOg99jK4TJ+EUfJK8zWZDYWEhUlNTkZaWhqysLOTk5OD06dNC5/Glo6MDS5YsQUpKCiZMmICCggLXb/Pnz0dGRgYyMzMxa9asoN0XuxOJiAQzf/opLhWtR3dbm+vakLg4xL76CsLnzxcyx/Lly2GxWFBeXu46yf7gwYOora3tlydmt9uh1Ypv71+xYgXuvfde14keN57FuHfvXtdJHR988AFWrFiBqqoq4ffAnRgRkUDmTz/FhV8/71bAAKD70iVc+PXzMH/6qew5lB7FAsDtqKnOzk5oNMEpN9yJEREJ4rTbcaloPeDpICSnE5AkXCpajxFz50KSsTNSSxTL0qVLUVZWBgAoKSkJeL2+cCdGRCTItcq/99uBuXE60d3WhmuVf5c9lxqiWHbt2oXz589j3bp1ePHFF2Wv2RMWMSIiQbrb/csJ83ecN2qJYum1bNkylJWVuU7KF4lFjIhIkCHR/uWE+TvOG6VHsZjNZrS2trr+HQcOHEBkZKTPx5+B4jsxIiJBQqdOwZC4OHRfuuT5vZgkYUhsLEKnTpE9l5KjWNra2rBo0SL88MMP0Gg0iI6OxqFDhzzuBuViFAsRkQ8DjQrp7U4E4F7I/vkX+Og//kFYm32wqSGKhY8TiYgECp8/H6P/+AcMiY11uz4kNlZVBUwt+DiRiEiw8PnzMWLu3J5uxfZ2DImORujUKbLa6m8FNUSxsIgREQWBpNVi+Izpt/o2fvb4OJGIiFSLRYyIiFSLRYyIiFSL78SIiILA4XDiYr0JXWYrhofrEJ+ih0Yj/jupf3XciRERCdZQbcSuV4/jg/9Vjb9sq8MH/6sau149joZqo7A5lJ4n1quwsBCSJPl12HAguBMjIhKoodqIki39/8LuMllRsqUG2c+kIzkrRvY8Ss8TA4CqqipUVFRg7NixwufuxZ0YEZEgDocTx/bU+xzzxd56OBzyDkpSQ56Y1WrFqlWrsGnTpqAcN9WLOzEiIkEu1pvQZbL6HGPpsOJivQmj7xrpc5wvasgTe+2115CXl4ekpKSA1+kP7sSIiATpMvsuYAMd54uS88TKy8tx6tQpPPvss7LXeTMsYkREggwP1wkd543S88SOHj2Kb775BklJSUhMTERLSwsWLFiATz75RNa6PWERIyISJD5Fj+F63wUqbGRPu70cSs8TKygoQGtrK5qamtDU1IQ77rgDpaWleOihh2St2xO+EyMiEkSjkTDriRSP3Ym97stNEfK9mJLzxAYT88SIiHwIJO+qodqIY3vq3Zo8wkbqcF9uipD2+sGihjwx7sSIiARLzopB0qRontgxCFjEiIiCQKORZLXRK4Ea8sTY2EFERKrFIkZERKrFIkZERKrFIkZERKrFIkZEFAQOhx3na8/g678dxfnaM3A47Df/QwOg9CiWxMREpKamIjMzE5mZmdizZ09Q7oHdiUREgtWfOI6/7tgKy5WfOvvCbo/CnKfykTLjHiFzqCGK5f3330d6errweW/EnRgRkUD1J47jo41FbgUMACxXvsdHG4tQf+K4/DlUEMUyWFjEiIgEcTjs+OuOrT7HlO3cKvvRor9RLGvWrEFlZSWSk5ORl5eHnTt34syZM8jPz0dubq5fc/VGsZw4cQLbtm3D4sWL0dXV5RbFMnnyZMyfPx/V1dVuf3bJkiWYOHEinn76abS3t8taszcsYkREglz4urbfDqyvq5e/x4Wva2XPpeQoFgD4/PPP8eWXX6KqqgqRkZFYtmyZ7DV7wiJGRCSIxdQhdJw3So9iAYCxY8cCAIYOHYrnn38ex44dC3C1vrGIEREJEqb375gpf8d5o/Qolq6uLrf7Ki4udiU+i8buRCIiQUZPSEPY7VE+HymOiIzC6AlpsudSchTL+fPnsWjRItjtdjidTowbNw67du2SvWZPGMVCROTDQKNCersTvXl09avC2uyDTQ1RLHycSEQkUMqMe/Do6lcRdnuU2/URkVGqKmBqwceJRESCpcy4B8nTZvR0K5o6EKYfidET0qDRiP/gOJjUEMXCIkZEFAQajRZj0jJu9W387PFxIhERqRaLGBERqRaLGBERqRbfiRERBYHT4YS1sROOqz9CMyIEuqQISJr+p2aQPCxiRESC/VDzPUwHG2Dv/NF1TRsRAv3CZNyWHuXjT/rPZrOhqKgIxcXF0Gq1CAkJQUJCAtauXdsviiVYOjo68Nxzz+HkyZMYMmQI/v3f/x1vvPEGAMBqteKFF15AaWkpQkJCkJWVhd27dwu/BxYxIiKBfqj5Hpd3f93vur3zR1ze/TUi8yYIKWRKzxMrKCiARqPB2bNnIUmSX4cNB4LvxIiIBHE6nDAdbPA5xnTwHJwOeQclKT1PrKurC9u3b0dRUZHr4OFgZY2xiBERCWJt7HR7hOiJvdMKa2OnrHmUnifW0NCAyMhIrFu3DlOnTsWsWbPw2WefyVqzNyxiRESCOK76LmADHeeLkvPEbDYbzp07B4PBgMrKSrz99tt48skngxKMySJGRCSIZkSI0HHeKD1PLCEhARqNBkuWLAEATJo0CUlJSaitlR8G2heLGBGRILqkCGgjfBcobYQOuqQIWfMoPU8sKioKc+fORWlpKQCgubkZjY2NuOuuu2St2xN2JxIRCSJpJOgXJnvsTuylXzhOyPdiSs4TA4DNmzdjxYoVePnll6HVarF169agNHcwT4yIyIdA8q48fyemg37hOGHfiQ0GNeSJcSdGRCTYbelRGGaI5Ikdg4BFjIgoCCSNhGHJ+lt9G7KoIU+MjR1ERKRaLGJERKRaLGJERKRaLGJERKRabOwgIgoCh8OB5uZmWCwWhIWFuU6xILFYxIiIBKurq0NJSQnMZrPrWnh4OLKzs2EwGITMoeQ8MZPJhAcffNA17tq1azh37hyMRqPPQ4sDwSJGRCRQXV2d6zSMG5nNZuzduxe5ublCCpmS88T0ej1Onz7tGrdhwwYcPXpUeAED+E6MiEgYh8OBkpISn2NKSkrgcDhkzaP0PLG+tm/fjpUrV8paszfciRERCdLc3Oz2CNETs9mM5uZmJCUlBTyPv3li1dXVSElJgdFohMFgQFlZGSZOnIh3330Xubm5qKmpuelcvXliGzZsQEVFBXJyctDQ0OCWJ1ZZWYmoqCi8+eabyMrKcvvz5eXluHz5Mh555JGA1+sLd2JERIJYLBah43xRcp7Yjd555x0sXboUQ4YEZ8/EIkZEJMiNGV4ixnmj9DyxXl1dXdizZw9WrFgR2EL9wCJGRCRIQkICwsPDfY4JDw9HQkKCrHmUnifW67333kNGRgZSU1NlrdcXvhMjIhJEo9EgOzvbY3dir+zsbCHfiyk9TwwAtm3bFrSGjl7MEyMi8iGQvKvB+E5sMDBPjIjoX5DBYEBqaipP7BgELGJEREGg0WhktdErAfPEiIiIgohFjIiIVItFjIiIVItFjIiIVItFjIgoCJxOOzo6KtDW9hE6OirgdNpv/ocGwGazobCwEKmpqUhLS0NWVhZycnLcTo8Pto6ODixZsgQpKSmYMGECCgoKXL+VlpZiypQpyMrKQnp6Onbu3BmUe2B3IhGRYEZjKc7W/w5Wa5vrmk4Xh/EpryEmZoGQOZQcxeJ0OrF48WKUlZUhIyMDTU1NSE1NxWOPPYYRI0YIvQfuxIiIBDIaS/FVzSq3AgYAVuslfFWzCkZjqew51BLF0nskltlsRmRkJHQ6ney198WdGBGRIE6nHWfrfwfA00FITgASzta/jujoeZCkwHdGSo9ikSQJe/fuxWOPPYbhw4ejo6MD+/fvR0hISMBr9oY7MSIiQUymU/12YO6csFovwmQ6JXsuJUexdHd3Y/369fjwww/R3NyMzz77DMuWLcOVK1dkr7svFjEiIkGsVqPQcd4oPYrl9OnTaG1txb333gsAmDZtGkaNGoUvv/wy8EV7wSJGRCSIThcjdJw3So9iGTNmDFpaWvDtt98C6Hl/1tDQgPHjx8tatyd8J0ZEJIhePw06XRys1kvw/F5Mgk4XB71+muy5lBzFEhsbiy1btuDxxx+HRqOB0+nEpk2b3LLGRGEUCxGRDwONCuntTuxx41+vPY/zJqb/l7A2+2BTQxQLHycSEQkUE7MAE9P/CzpdrNt1nS5OVQVMLfg4kYhIsJiYBYiOnvfPbkUjdLoY6PXTZLXV3wpqiGJhESMiCgJJ0mLkyJm3+jZ+9vg4kYiIVItFjIiIVItFjIiIVIvvxIiIgsDudKLCZIHxx27EhAzBTH0YtB5OzSB5uBMjIhLs43YTppbXYdHpBvyyrhmLTjdgankdPm43CZtD6XliJSUlmDp1KjIyMjBz5sygHDkFcCdGRCTUx+0mPF3T1O+8jjarDU/XNOHP6Yl4OFovex4l54l1dHQgLy8Px44dw4QJE3D06FEsWbLEr1PzB4o7MSIiQexOJ35Tf8FrEAsArKm/ALvMg5KUnifW0NCAmJgYTJgwAQDwwAMPoLm5GVVVVbLW7QmLGBGRIBUmCy5abV5/dwJotdpQYbLImsffPLE1a9agsrISycnJyMvLw86dO3HmzBnk5+cjNzfXr7l688ROnDiBbdu2YfHixejq6nLLE5s8eTLmz5+P6upqAD0HFLe3t6OiogIAcODAAVgsFjQ1NclatycsYkREghh/7BY6zhcl54lFRERg3759KCgowJQpU3DkyBEYDAYMHTpU9rr74jsxIiJBYkL8+yvV33He3JgnNnLkSFee2I4dO3Do0CEAtzZPrPc0/CNHjgAArFYr4uLiXI8XReJOjIhIkJn6MMTrhsJbI70EYJRuKGbqw7yM8I/S88QAuO3yXn/9dcyZMwd33nmnrHV7wp0YEZEgWknCupTReLqmCRI8BbEAr6eMFvK9mJLzxABgzZo1+OKLL9Dd3Y27774b27Ztk71mT5gnRkTkQyB5Vx+3m/Cb+gtuTR6jdEPxespoIe31g0UNeWLciRERCfZwtB7ZURE8sWMQsIgREQWBVpJw78gRt/o2ZFFDnhgbO4iISLVYxIiISLVYxIiISLVYxIiISLVYxIiIgsDucKK84TI+PH0B5Q2XYXeI/ZrpVkex1NXVITMz0/VPYmKi21mO9fX1uOeeezB+/HhMnz7ddeCwaOxOJCISrKTmIgoP1uFi509HOMVHDMNvFxqQnR4vZI5bHcViMBjcCuZzzz3ndrTVM888g/z8fDz11FN4//33sXLlSpSXlwu9B4A7MSIioUpqLuKXu6vcChgAtHVexy93V6Gk5uaH7t6MEqJYbmS1WvF//+//xcqVKwEARqMRVVVVyMvLAwAsWrQIjY2NQTnFnjsxIiJB7A4nCg/Wec0TkwAUHqzDvxnioNUE/uGzv1Es1dXVSElJgdFohMFgQFlZGSZOnIh3330Xubm5foVU9kaxbNiwARUVFcjJyUFDQ4Pr6CkA2L9/P5KSklw7wPPnz2PUqFEYMqSnxEiShLFjx+If//iHq0CKwp0YEZEgJxuv9NuB3cgJ4GLndZxsvCJ7rlsdxXKjd955x7UL83R/QM9J+sHAIkZEJIjx6s1jTAYyzpsbo1gAuKJYXnnlFde1YEex9Gpubsbx48exePFi17UxY8agpaUF3d3drvnPnz+PsWPHDnClN8ciRkQkSMwI/w6w9XecN0qIYum1fft2/I//8T+g1+t/Wl9MDLKysrB7924AwL59+5CYmCj8USLAd2JERMJMT7od8RHD0NZ53eN7MQlAXMQwTE/y/i7LX0qIYnE6ndixYwe2b9/e7/62bNmCp556CkVFRQgPD8fOnTtlr9kTRrEQEfkw0KiQ3u5EwHOe2P/OmyyszT7Y1BDFwseJREQCZafH43/nTUZchPtfyHERw1RVwNSCjxOJiATLTo/HvxnicLLxCoxXryNmRM8jRDlt9beCGqJYWMSIiIJAq5Fwd3Lkrb6Nnz0+TiQiItViESMiItViESMiItXiOzEiomBw2IHm44DlEhAWCyTcA2jEniRPLGJEROLVfQSUvAyYW3+6Fj4KyH4TMDwqZAqbzYaioiIUFxdDq9UiJCQECQkJWLt2bb8olmCoq6tzO2rKZDLBbDbjypWecyF/9atf4aOPPkJzczO++uorpKenB+U+WMSIiESq+wjYuxToe2aH+WLP9dxdQgqZ0vPEHn/8cbz00ku47777hM7bF9+JERGJ4rD37MC8hrEAKCnoGSeD0vPEAOD+++/HHXfcIWud/uBOjIhIlObj7o8Q+3EC5gs945JmBTyN0vPEBhN3YkREolguiR3ng9LzxAYLixgRkShhsWLHeaH0PLHBxCJGRCRKwj09XYjwdkaiBISP7hkng9LzxAYT34kREYmi0fa00e9dip5C5iGMJfsNId+LKT1PbNWqVfjwww/R1taGefPmISwsDN99953sdffFPDEiIh8Cyrvy+J3Y6J4CJug7scGghjwx7sSIiEQzPAqkPswTOwYBixgRUTBotLLa6JVADXlibOwgIiLVYhEjIiLVYhEjIiLVYhEjIiLVYmMHEVEQ2B12VBmr0H6tHdGh0ZgcMxlagd2JSo5iuX79Op588knU1dUhNDQUcXFx2Lx5s+tgYZFYxIiIBDvcfBhvnHwDl679dEZibGgsCqYXYF7CPCFzKD2KJT8/Hw899BAkScLbb7+N/Px8fPrpp0LvAeDjRCIioQ43H8bqI6vdChgAGK8ZsfrIahxuPix7DqVHsQwbNgy/+MUvXEVt5syZOHfunOx1e8KdGBGRIHaHHW+cfANOD3liTjghQcKbJ9/E7DGzZT1aVFsUy5/+9CcsXLhwwOv0B3diRESCVBmr+u3AbuSEE23X2lBlrJI9l1qiWIqKilBfX4/f//73A1+kH1jEiIgEab/WLnScN2qJYtmwYQP279+PTz75BKGhof4vcABYxIiIBIkOjRY6zhs1RLFs3LgRxcXF+Mtf/hLUmBa+EyMiEmRyzGTEhsbCeM3o8b2YBAmxobGYHDNZ9lxKjmJpaWnBCy+8gHHjxmH27NkAAJ1OhxMnTshed1+MYiEi8mGgUSG93YkA3AqZ9M88sY0PbhTWZh9saohi4eNEIiKB5iXMw8YHNyImNMbtemxorKoKmFrwcSIRkWDzEuZh9pjZQT2xYzCoIYqFRYyIKAi0Gi2mxU271bfxs8fHiUREpFosYkREpFosYkREpFp8J0ZEFAROux3XKv+O7vZ2DImORujUKZAEnyRPLGJERMKZP/0Ul4rWo7utzXVtSFwcYl99BeHz5wuZQ8l5YgAwf/58tLW1QaPRYMSIEXjrrbeCcl8sYkREApk//RQXfv080Occie5Ll3qu//EPQgqZ0vPE9u7d6zpu6oMPPsCKFStQVSX/4OO++E6MiEgQp92OS0Xr+xWwnh97rl0qWg/nDQfuBkLpeWIA3M5L7OzshEYTnHLDnRgRkSDXKv/u9gixH6cT3W1tuFb5dwyfMT3gedSSJ7Z06VKUlZUBAEpKSgJb7E1wJ0ZEJEh3u38RK/6O80UNeWK7du3C+fPnsW7dOrz44ouBLfQmWMSIiAQZEu1fxIq/47xRS55Yr2XLlqGsrMwV9yISixgRkSChU6dgSFwc4KFgAAAkCUPi4hA6dYqseZSeJ2Y2m9Ha2ur6vw8cOIDIyEifjz8DxXdiRESCSFotYl99pacLUZLcGzz+WdhiX31FyPdiSs4T6+zsxKJFi/DDDz9Ao9EgOjoahw4d8rgblIt5YkREPgSSdzUY34kNBjXkiXEnRkQkWPj8+Rgxdy5P7BgELGJEREEgabWy2uiVQA15YmzsICIi1WIRIyIi1WIRIyIi1WIRIyIi1WIRIyIKAofDiQvfduDsqTZc+LYDDofYr5lsNhsKCwuRmpqKtLQ0ZGVlIScnx+1k+WCqq6tDZmam65/ExESPHzMXFhZCkiS/zmkMBLsTiYgEa6g24tieenSZrK5rw/U6zHoiBclZMULmUHoUCwBUVVWhoqICY8eOFTr3jbgTIyISqKHaiJItNW4FDAC6TFaUbKlBQ7VR9hxqiGKxWq1YtWoVNm3aFJSTOnpxJ0ZEJIjD4cSxPfU+x3yxtx5Jk6Kh0QT+F7saolhee+015OXlISkpKeB1+oM7MSIiQS7Wm/rtwPqydFhxsd4key4lR7GUl5fj1KlTePbZZ+Ut0g8sYkREgnSZfRewgY7zRulRLEePHsU333yDpKQkJCYmoqWlBQsWLMAnn3wy8MXeBIsYEZEgw8N1Qsd5o/QoloKCArS2tqKpqQlNTU244447UFpaioceekjWuj3hOzEiIkHiU/QYrtf5fKQYNlKH+BS97LmUHMUymBjFQkTkw0CjQnq7E73JfiZdWJt9sKkhioWPE4mIBErOikH2M+kYrnd/ZBg2UqeqAqYWfJxIRCRYclYMkiZF93Qrmq0YHt7zCFFOW/2toIYoFhYxIqIg0GgkjL5r5M0Hkix8nEhERKrFIkZERKrFIkZERKrFd2JEREHgcNhx4etaWEwdCNOPxOgJadBoxJ4kTyxiRETC1Z84jr/u2ArLlZ86+8Juj8Kcp/KRMuMeIXPYbDYUFRWhuLgYWq0WISEhSEhIwNq1a/tFsQRDXV2d21FTJpMJZrMZV65cAdDT2Ths2DDXt1+vvPIKnnjiCeH3wSJGRCRQ/Ynj+GhjUb/rlivf46ONRXh09atCCpka8sTef/99pKenC523L74TIyISxOGw4687tvocU7ZzKxwOu88xN6OGPLHBwp0YEZEgF76udXuE6MnVy9/jwte1GJOW4XOcL2rIEwN6Il8cDgdmzJiB9evXIzo6OuA1e8OdGBGRIBZTh9Bxvig5TwwAPv/8c3z55ZeoqqpCZGQkli1bFvhifWARIyISJEzv3wkd/o7zRul5YgAwduxYAMDQoUPx/PPP49ixYwNYof9YxIiIBBk9IQ1ht0f5HDMiMgqjJ6TJmkfpeWJdXV1u91VcXIysrCw5S/aK78SIiATRaLSY81S+x+7EXrOX5Qv5XkzJeWKXLl3CokWLYLfb4XQ6MW7cOOzatUv2mj1hnhgRkQ+B5F15+k5sRGQUZi8T953YYFBDnhh3YkREgqXMuAfJ02bwxI5BwCJGRBQEGo1WVhu9EqghT4yNHUREpFosYkREpFosYkREpFosYkREpFps7CAiCgKnwwlrYyccV3+EZkQIdEkRkDT9T80geVjEiIgE+6Hme5gONsDe+aPrmjYiBPqFybgt3feJHv5Sep6Y1WrFCy+8gNLSUoSEhCArKwu7d+8Wfh8sYkREAv1Q8z0u7/6633V754+4vPtrROZNEFLIlJ4nVlBQAI1Gg7Nnz0KSJL8OGw4E34kREQnidDhhOtjgc4zp4Dk4HfIOSlJ6nlhXVxe2b9+OoqIiV2GLj4+XtWZvWMSIiASxNna6PUL0xN5phbWxU9Y8/uaJrVmzBpWVlUhOTkZeXh527tyJM2fOID8/H7m5uX7N1ZsnduLECWzbtg2LFy/ud9Bw3zyxhoYGREZGYt26dZg6dSpmzZqFzz77LOD1+sIiRkQkiOOq7wI20HG+KDlPzGaz4dy5czAYDKisrMTbb7+NJ598Eu3t7fIW7QGLGBGRIJoRIULHeaP0PLGEhARoNBosWbIEADBp0iQkJSWhtrZ2gCu9ORYxIiJBdEkR0Eb4LlDaCB10SRGy5lF6nlhUVBTmzp2L0tJSAD2FrrGxEXfddZesdXvC7kQiIkEkjQT9wmSP3Ym99AvHCfleTMl5YgCwefNmrFixAi+//DK0Wi22bt0alOYO5okREfkQSN6V5+/EdNAvHCfsO7HBwDwxIqJ/QbelR2GYIZIndgwCFjEioiCQNBKGJetv9W3IwjwxIiKiIGIRIyIi1WIRIyIi1WIRIyIi1WJjBxFREDgcDjQ3N8NisSAsLMx1ioUoSo5iMZlMePDBB12/Xbt2DefOnYPRaPR53mMgWMSIiASrq6tDSUkJzGaz61p4eDiys7NhMBiEzKHkKBa9Xu/224YNG3D06FHhBQzg40QiIqHq6uqwd+9etwIGAGazGXv37nVFoMih9CiWvrZv3+71N7m4EyMiEsThcKCkpMTnmJKSEqSmpsp6tOhvFEt1dTVSUlJgNBphMBhQVlaGiRMn4t1330Vubi5qampuOldvFMuGDRtQUVGBnJwcNDQ0uI6eAvpHsdyovLwcly9fxiOPPBLQWm+GOzEiIkGam5v77cD6MpvNaG5ulj2XkqNY+v62dOlSDBkSnD0TixgRkSAWi0XoOG+UHsXSq6urC3v27MGKFSv8X9wAsYgREQlyY+EQMc4bpUex9HrvvfeQkZGB1NRUOcv1ie/EiIgESUhIQHh4uM9HiuHh4UhISJA9l9KjWABg27ZtQWvo6MUoFiIiHwYaFdLbnehNbm6usDb7YFNDFAsfJxIRCWQwGJCbm4vw8HC36+Hh4aoqYGrBx4lERIIZDAakpqYG9cSOwaCGKBYWMSKiINBoNEhKSrrVt/Gzp67/LCAiIroBixgREakWixgREakW34kREQWB02mHyXQKVqsROl0M9PppkCSxJ8kTixgRkXBGYynO1v8OVmub65pOF4fxKa8hJmaBkDmUnCcGAKWlpXj11VfhcDhgs9nw4osvYtmyZcLvg0WMiEggo7EUX9WsAuB+joTVeglf1azCxPT/ElLIlJwn5nQ6sXjxYpSVlSEjIwNNTU1ITU3FY489hhEjRgi9D74TIyISxOm042z979C3gP3zVwDA2frX4XTaPfzuP7XkifWe62g2mxEZGQmdTidr3Z5wJ0ZEJEjPO7A2HyOcsFovwmQ6hZEjZwY8j9LzxCRJwt69e/HYY49h+PDh6OjowP79+xESEhLwmr3hToyISBCr1Sh0nC9KzhPr7u7G+vXr8eGHH6K5uRmfffYZli1b5npfJhKLGBGRIDpdjNBx3ig9T+z06dNobW3FvffeCwCYNm0aRo0a1a/4icAiRkQkiF4/DTpdHID+BaOHBJ0uHnr9NFnzKD1PbMyYMWhpacG3334LAPjuu+/Q0NCA8ePHy1q3J3wnRkQkiCRpMT7ltX92J0pwb/DoKWzjU9YI+V5MyXlisbGx2LJlCx5//HFoNBo4nU5s2rQJo0ePlr3uvpgnRkTkQyB5V56/E4vH+JQ1wr4TGwxqyBPjToyISLCYmAWIjp7HEzsGAYsYEVEQSJJWVhu9EqghT4yNHUREpFosYkREpFosYkREpFosYkREpFosYkREQWB3OvG3jqs4cKkDf+u4Crvgr5lsNhsKCwuRmpqKtLQ0ZGVlIScnx+1k+WCqq6tDZmam65/ExES3sxxLSkowdepUZGRkYObMmUE5rQNgdyIRkXAft5vwm/oLuGi1ua7F64ZiXcpoPBytFzKHkqNYOjo6kJeXh2PHjmHChAk4evQolixZ4teBwwPFnRgRkUAft5vwdE2TWwEDgDarDU/XNOHjdpPsOZQexdLQ0ICYmBhMmDABAPDAAw+gubkZVVVVstfeF4sYEZEgdqcTv6m/4CNNDFhTf0H2o0V/o1jWrFmDyspKJCcnIy8vDzt37sSZM2eQn5+P3Nxcv+bqjWI5ceIEtm3bhsWLF/c7o7FvFEtKSgra29tRUVEBADhw4AAsFguampoCWq8vLGJERIJUmCz9dmA3cgJotdpQYbLInkvJUSwRERHYt28fCgoKMGXKFBw5cgQGgwFDhw6Vt2gP+E6MiEgQ44/dQsd5c2MUy8iRI11RLDt27MChQ4cADH4Uy3vvvec25v7778eRI0cA9DxujIuLcz1eFIk7MSIiQWJC/NsX+DvOG6VHsQBw2+W9/vrrmDNnDu68886A1+wNd2JERILM1IchXjcUbVabx/diEnq6FGfqwzz8OjBKjmIBgDVr1uCLL75Ad3c37r77bmzbtk32mj1hFAsRkQ8DjQrp7U4EPKWJAX9OTxTWZh9saohi4eNEIiKBHo7W48/piYjTuTcxxOuGqqqAqQUfJxIRCfZwtB7ZURGoMFlg/LEbMSFDMFMfBq2H5golU0MUC4sYEVEQaCUJ944ccatv42ePjxOJiPzA9oHgkPv/V+7EiIh8GDp0KCRJQnt7O6Kjoz1+b0WBcTqdaG9vhyRJAX8Ize5EIqKbsFgsaGlp4W4sCCRJwh133OH2cfaA/jyLGBHRzdntdths3o+UosAMHTpU1gn7LGJERKRabOwgIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLVYhEjIiLV+v8BXmEUwcDse4sAAAAASUVORK5CYII=",
"text/plain": [
"