forked from olincollege/just-dance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjust_dance_model.py
229 lines (186 loc) · 7.43 KB
/
just_dance_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""
Set 'JustDanceModel' class for the application
"""
import tensorflow as tf
import numpy as np
class JustDanceModel:
"""
A class to represent the model for the application
Attributes:
model_path (object): An object representing the model path
Methods:
__init__: Initialize the JustDanceModel class
run_interface: Process a frame and return key points
calculate_angles: Calculate angles between specified joints
store_angles: Store all angles between triplets of joints
score_calculator: Calculate a user's score based on
the accuracy to the video
final_score: Return the final score for the user
"""
def __init__(self, model_path):
"""
Initialize a new instance of the JustDanceModel class
Sets up the interpreter for the TensorFlow library to
interpret our data into key points, according to the
defined machine learning model
Args:
model_path(object): An object representing
the model path to call for the TensorFlow model
used in the application
"""
self.model_path = model_path
self.interpreter = tf.lite.Interpreter(model_path=self.model_path)
self.interpreter.allocate_tensors()
def run_inference(self, input_image):
"""
Format and run the TensorFlow model on an input image
Return the joint key points with accuracy scores
Args:
input_image: A frame of video or an image, represented
as an float32 tensor of shape: 192x192x3
"""
input_image = tf.cast(input_image, dtype=tf.float32)
input_details = self.interpreter.get_input_details()
output_details = self.interpreter.get_output_details()
self.interpreter.set_tensor(
input_details[0]["index"], input_image.numpy()
)
self.interpreter.invoke()
key_points_with_scores = self.interpreter.get_tensor(
output_details[0]["index"]
)
return key_points_with_scores
@staticmethod
def calculate_angle(
frame, key_points, start_index, middle_index, end_index
):
"""
Calculate the angle between three joints using trigonometry
Args:
frame: A dictionary of data from a single frame of a video feed
key_points: A dictionary of coordinates of the user's
joint key points
start_index: An integer representing the index of the user's
start joint
middle_index: An integer representing the index of the user's
middle joint
end_index: An integer representing the index of the user's
end joint
Return
A float representing the angle between three joints.
"""
y_coordinate, x_coordinate, _ = frame.shape
shaped = np.squeeze(
np.multiply(key_points, [y_coordinate, x_coordinate, 1])
)
joint_start = np.array(
[int(shaped[start_index][0]), int(shaped[start_index][1])]
)
joint_middle = np.array(
[int(shaped[middle_index][0]), int(shaped[middle_index][1])]
)
joint_end = np.array(
[int(shaped[end_index][0]), int(shaped[end_index][1])]
)
radians = np.arctan2(
joint_end[1] - joint_middle[1], joint_end[0] - joint_middle[0]
) - np.arctan2(
joint_start[1] - joint_middle[1], joint_start[0] - joint_middle[0]
)
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
@staticmethod
def store_angles(all_joint_angles, frame, key_points):
"""
Store all angles between triplets of joints
Args:
all_joint_angles: A dictionary representing all the calculated
angles between a set of joints
frame: A dictionary of data representing a single frame
of a video feed
key_points: A dictionary of coordinates of the user's
joint key points
"""
all_joint_angles["left_arm"].append(
JustDanceModel.calculate_angle(frame, key_points, 5, 7, 9)
)
all_joint_angles["right_arm"].append(
JustDanceModel.calculate_angle(frame, key_points, 6, 8, 10)
)
all_joint_angles["left_elbow"].append(
JustDanceModel.calculate_angle(frame, key_points, 7, 5, 11)
)
all_joint_angles["right_elbow"].append(
JustDanceModel.calculate_angle(frame, key_points, 8, 6, 12)
)
all_joint_angles["left_thigh"].append(
JustDanceModel.calculate_angle(frame, key_points, 12, 11, 13)
)
all_joint_angles["right_thigh"].append(
JustDanceModel.calculate_angle(frame, key_points, 11, 12, 14)
)
all_joint_angles["left_leg"].append(
JustDanceModel.calculate_angle(frame, key_points, 11, 13, 15)
)
all_joint_angles["right_leg"].append(
JustDanceModel.calculate_angle(frame, key_points, 12, 14, 16)
)
@staticmethod
def score_calculator(angle_video, angle_camera, threshold):
"""
Return a score based on how accurate the user's moves are
compared to the video
Args:
angle_video: A list of angles for a joint in the input video
angle_camera: A list of angles for a joint in the user camera video
threshold: An integer representing the threshold angle difference
Return:
An integer representing the user's score based on the accuracy
between the user's move and the video
"""
accuracy_count = []
video_array = np.array(angle_video)
camera_array = np.array(angle_camera)
angle_difference = (abs(video_array - camera_array)).tolist()
for difference in angle_difference:
if difference < threshold:
accuracy_count.append(1)
score = int((sum(accuracy_count) / len(angle_difference)) * 100)
return score
@staticmethod
def final_score(all_angles_video, all_angles_camera, threshold):
"""
Return a final score based on all the calculated scores for angles
Args:
all_angles_video: A dictionary representing all the calculated
angles between a set of joints from a dance video
all_angles_camera: A dictionary representing all the calculated
angles between a set of joints from the user's camera feed
threshold: An integer representing the score determining up to
how much counts as being the "correct move" for a
valid score point
"""
all_scores = []
joints = [
"left_arm",
"right_arm",
"left_elbow",
"right_elbow",
"left_thigh",
"right_thigh",
"left_leg",
"right_leg",
]
for joint in joints:
all_scores.append(
JustDanceModel.score_calculator(
all_angles_video[joint], all_angles_camera[joint], threshold
)
)
final_score = np.mean(all_scores)
final_score += 20
if final_score > 100:
final_score = 100
return final_score