-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathlayers.py
554 lines (456 loc) · 23.3 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
'''
SMASH Layers
Andy Brock, 2017
This code contains the layer definitions for SMASH networks and derivative
networks as described in my paper,
"One-Shot Model Architecture Search through HyperNetworks."
This code is thoroughly commented throughout, but is still rather complex.
If there's something that's unclear please feel free to ask and I'll do my best
to explain it or update the comments to better describe what's going on.
'''
import sys
import math
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init
import torch.nn.functional as F
from torch.nn import Parameter as P
from torch.autograd import Variable as V
# Softmax helper function; I use this to normalize a numpy array for
# use with np.random.choice to give properly scaled probabilities.
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
# Elementwise-Sum Layer: this is a simple wrapper in the spirit of Lasagne that
# is useful for designing ResNet with the module interface, rather than having
# to make use of a needlessly complex forward() function.
class ESL(nn.Module):
def __init__(self, module):
super(ESL, self).__init__()
self.module = module
def forward(self, x):
return x + self.module(x)
# Elementwise Mult Layer: Similar to ESL, but for multiplication.
class EML(nn.Module):
def __init__(self, module):
super(ESL, self).__init__()
self.module = module
def forward(self, x):
return x * self.module(x)
# Channel-wise Concatenation Layer: Similar to ESL, but for DenseNets.
class CL(nn.Module):
def __init__(self, module):
super(CL, self).__init__()
self.module = module
def forward(self, x):
return torch.cat((x, self.module(x)), 1)
# Apply simplified weightnorm to a 2d conv filter
def wn2d(w):
return w / torch.norm(w).view(1,1,1,1).expand_as(w)
# 2D Convolution with Simple WeightNorm.
# As described in the paper, I found that standard WeightNorm
# (normalizing channel-by-channel and having an additional scale parameter)
# was unstable, but that simply dividing the weight by the entire tensor's norm
# worked well. I use this primarily in the definition of the HyperNet.
class WNC2D(nn.Conv2d):
def forward(self, input):
return F.conv2d(input,
wn2d(self.weight),
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups)
# A convenience wrapper to prevent the forward() method of SMASH from
# being annoyingly verbose. This version of Conv2D simply takes a user-input
# dilation factor, and slices its input weight as requested.
''' Now allows for variable kernel sizes by slicing. Assumes ODD kernel sizes.'''
# ks is kernel size, may want to rewrite that to be ks or k or something
class SMASHC2D(nn.Conv2d):
def forward(self, input, n_out, dilation, ks = (3,3), groups=1):
# print(ks, self.kernel_size, dilation, (self.kernel_size[0] - ks[0]) //2, self.kernel_size[0] + (self.kernel_size[0] - ks[0]) //2, (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2)
# print(dilation,ks, tuple(int(item) for item in ( (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2, (ks[1] + ((ks[1] - 1 ) * (dilation[1] - 1 ))) // 2)))
return F.conv2d(input,
weight=self.weight[:n_out,
:input.size(1) // groups,
(self.kernel_size[0] - ks[0]) //2 : ks[0] + (self.kernel_size[0] - ks[0]) //2,
(self.kernel_size[1] - ks[1]) //2 : ks[1] + (self.kernel_size[1] - ks[1]) //2].contiguous(),
dilation=tuple(int(d) for d in dilation),
padding=tuple(int(item) for item in ( (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2, (ks[1] + ((ks[1] - 1 ) * (dilation[1] - 1 ))) // 2)),
groups=int(groups),
bias=None)
# A convenience wrapper to prevent the forward() method of SMASH from
# being annoyingly verbose. This version of BatchNorm2D simply
# slices its weights according to the size of the incoming tensor.
class SMASHBN2D(nn.BatchNorm2d):
def forward(self, input):
return F.batch_norm(input,
running_mean=self.running_mean[:input.size(1)],
running_var=self.running_var[:input.size(1)],
weight=self.weight[:input.size(1)],
bias=self.bias[:input.size(1)],
training=self.training)
# A convenience wrapper to prevent the forward() method of SMASH from
# being annoyingly verbose. This version of a fully-connected layer simply
# slices its weights according to the size of the incoming tensor.
# Note that the bias does not need slicing, as it's defined wrt the output dim.
class SMASHFC(nn.Linear):
def forward(self, input):
return F.linear(input, self.weight[:, :input.size(1)], bias=self.bias)
# Simple class that dynamically inserts a nonlinearity between a batchnorm and a conv,
# using SMASH convs (and potentially SMASH BatchNorms)
class SMASHseq(nn.Module):
def __init__(self, n_in, n_out, dilation=1, batchnorm=False, preactivation=True, kernel_size=7):
super(SMASHseq, self).__init__()
self.dilation = dilation
self.preactivation = preactivation
# Optionally use a "fixed" batchnorm
self.batchnorm = batchnorm
if self.batchnorm:
self.bn = SMASHBN2D(n_in)
self.conv = SMASHC2D(n_in,
n_out,
kernel_size=kernel_size,
padding=self.dilation,
dilation=self.dilation,
bias=False)
''' defining default value as self.dilation here may be problematic'''
def forward(self, x, n_out, f=F.relu, dilation=(1,1), ks=[3,3], groups=1):
# If using preactivation, (BN)-NL-CONV
if self.preactivation:
if self.batchnorm:
return self.conv(f(self.bn(x)), n_out, dilation, ks, groups)
else:
return self.conv(f(x), n_out, dilation, ks, groups)
# If using standard activation, CONV-(BN)-NL
else:
if self.batchnorm:
return f(self.bn(self.conv(x, n_out, dilation, ks, groups)))
else:
return f(self.conv(x, n_out, dilation, ks, groups))
# A single layer with variable configuration.
# For now, no BN in here but we might consider it.
''' A note: this confusingly has self.op defining its own internal ops,
and takes as input op and gate, defining what op to actually use.
We will eventually want to rename this.
'''
# Gate style: one of "add_split" or "mult"; if "add_split" then we add the two items,
# slice the result halfway (maybe along every second channel ::2 for ease of coding?)
# and tanh-sig gate it. If "mult" then we keep the two channels separate, tanh the first,
# sigmoid the second, and
# Options specifies whether or not a given set of
class SMASHLayer(nn.Module):
def __init__(self, n_in, n_out, batchnorm=False, preactivation=True, gate_style='add_split', kernel_size=7):
super(SMASHLayer, self).__init__()
self.n_out = n_out
self.n_in = n_in
self.batchnorm = batchnorm
self.preactivation = preactivation
self.gate_style = gate_style
''' may want to make n_in and n_out more dynamic here'''
self.op = nn.ModuleList([SMASHseq(n_in=n_in if not i%2 else n_out,
n_out=n_out,
dilation=1,
batchnorm=self.batchnorm,
preactivation=self.preactivation,
kernel_size=kernel_size)
for i in range(4)])
# Op represents the op definition, gate whether to use tanh-sig mult gates,
# dilation the individual dilation factors, and NL the particular
# activation to use at each ungated conv.
# Groups is currently unactivated, we'd need to make sure we slice differently
# if using variable group.
def forward(self, x, n_out, op, gate, dilation, nl, ks=[[3,3]]*4, groups=[1]*4):
# The following block of code defines the 3x3 convs and various
# possible variations of merges and splits that we can employ.
# First half of op
# If we have the first gate, then we're definitely engaging
# both convs and having a single output path
args = [(n_out, nonlin, dil, k, grp) for nonlin,dil,k,grp in zip(nl,dilation,ks,groups)]
if gate[0]:
if self.gate_style == 'mult':
out = (self.op[0](x, *args[0])
* self.op[2](x, *args[2]))
else:
pre_gate = (self.op[0](x, *args[0])
+ self.op[2](x, *args[2]))
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
# Update args if using an add-split gate.
n_out /= 2
args = [(n_out, nonlin, dil, k, grp) for nonlin,dil,k,grp in zip(nl,dilation,ks,groups)]
# if no gate, check if we have two starting paths
elif op[2]:
out = [self.op[0](x, *args[0]),
self.op[2](x, *args[2])]
# If no gate and no w[2] then just call w[0]
else:
out = self.op[0](x, *args[0])
# Second half of op
# if we have the second gate, then we definitely
# have both of the second convs active
if gate[1]:
# Check if we have two paths or one
# We could also check if we're gated or not but this is
# more robust to future summing junction function
# compunctions.
if type(out) is list:
if self.gate_style == 'mult':
out = (self.op[1](out[0], *args[1])
* self.op[3](out[1], *args[3]))
else:
pre_gate = (self.op[1](out[0], *args[1])
+ self.op[3](out[1], *args[3]))
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
# If we only have one path incoming then read from it
else:
if self.gate_style == 'mult':
out = (self.op[1](out, *args[1])
* self.op[3](out, *args[3]))
else:
pre_gate = (self.op[1](out, *args[1])
+ self.op[3](out, *args[3]))
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
# If no gating, check if both second convs are active
elif op[3]:
# We could also check if we're gated or not but this is
# more robust to future summing junction function
# compunctions.
if type(out) is list:
out = (self.op[1](out[0], *args[1])
+ self.op[3](out[1], *args[3]))
else:
out = (self.op[1](out, *args[1])
+ self.op[3](out, *args[3]))
# If only one second conv is active
elif op[1]:
if type(out) is list:
out = (self.op[1](out[0], *args[1]) + out[1])
# If out is a list, conv-sum with the first path.
else:
out = self.op[1](out, *args[1])
# Final out as either the sum of the two paths
# or the current path
elif type(out) is list:
# If out is not a list then we're chilling and we already
# have the out we need from the single conv. If out IS a list,
# we need to add its elements.
out = out[0] + out[1]
return out
# A convenience wrapper to prevent the forward() method of SMASH from
# being annoyingly verbose. This version of Conv2D simply takes a user-input
# dilation factor, and slices its input weight as requested.
''' Now allows for variable kernel sizes by slicing. Assumes ODD kernel sizes.'''
# ks is kernel size, may want to rewrite that to be ks or k or something
class SMASHC2D(nn.Conv2d):
def forward(self, input, n_out, dilation, ks = (3,3), groups=1):
# print(ks, self.kernel_size, dilation, (self.kernel_size[0] - ks[0]) //2, self.kernel_size[0] + (self.kernel_size[0] - ks[0]) //2, (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2)
# print(dilation,ks, tuple(int(item) for item in ( (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2, (ks[1] + ((ks[1] - 1 ) * (dilation[1] - 1 ))) // 2)))
return F.conv2d(input,
weight=self.weight[:n_out,
:input.size(1) // groups,
(self.kernel_size[0] - ks[0]) //2 : ks[0] + (self.kernel_size[0] - ks[0]) //2,
(self.kernel_size[1] - ks[1]) //2 : ks[1] + (self.kernel_size[1] - ks[1]) //2].contiguous(),
dilation=tuple(int(d) for d in dilation),
padding=tuple(int(item) for item in ( (ks[0] + ((ks[0] - 1 ) * (dilation[0] - 1 ))) // 2, (ks[1] + ((ks[1] - 1 ) * (dilation[1] - 1 ))) // 2)),
groups=int(groups),
bias=None)
# Simple class that dynamically inserts a nonlinearity between a batchnorm and a conv
class seq(nn.Module):
def __init__(self, n_in, n_out, kernel_size=(3,3), dilation=(1,1), preactivation=True, batchnorm=False, groups=1, activation=F.relu):
super(seq, self).__init__()
self.dilation = dilation
# Whether to use pre or post activation
self.preactivation = preactivation
self.batchnorm = batchnorm
if self.batchnorm:
self.bn = nn.BatchNorm2d(n_in)
self.conv = nn.Conv2d(int(n_in),
int(n_out),
kernel_size=tuple(int(ks) for ks in kernel_size),
padding=tuple(int(item) for item in ( (kernel_size[0] + ((kernel_size[0] - 1 ) * (dilation[0] - 1 ))) // 2, (kernel_size[1] + ((kernel_size[1] - 1 ) * (dilation[1] - 1 ))) // 2)),
dilation=tuple(int(d) for d in dilation),
groups=int(groups),
bias=False)
# Activation function, currently deprecated
self.activation = activation
def forward(self, x, f=F.relu):
# If using preactivation, (BN)-NL-CONV
if self.preactivation:
if self.batchnorm:
return self.conv(f(self.bn(x)))
else:
return self.conv(f(x))
# If using standard activation, CONV-(BN)-NL
else:
if self.batchnorm:
return f(self.bn(self.conv(x)))
else:
return f(self.conv(x))
# A single layer for use with derivative networks.
# This module defines a fixed-structure layer and is compatible with
# the output of SMASH.sample_architecture().
# It presently only supports ReLU activations and gating, though the
# SMASH network supports variable activations.
# Probably want n_bottleneck too...
# norm style supports "before," where the we only batch-normalize the incoming
# read tensor, "sandwich," where we batch-normalize the input and the output
# of the 1x1, and "full," where we individually batch-normalize the input to
# each convolution, or WN, where we just normalize the 1x1 as in our SMASH net.
class Layer(nn.Module):
def __init__(self, n_in, n_bottle, n_out, ops, gate, dilation=[(1,1)]*4, activation=[F.relu]*4, kernel_size=[(3,3)]*4, groups=[1]*4, preactivation=True, gate_style='add_split',norm_style='sandwich'):
super(Layer, self).__init__()
# The number of incoming channels
self.n_in = n_in
# The number of output channels for the 1x1 conv
self.n_bottle = n_bottle
# The final number of outgoing channels
self.n_out = n_out
# The list defining which ops are active
self.ops = ops
# Which gates are active
self.gate = gate
# Dilation factor
self.dilation = dilation
# Activation functions
self.activation = activation
# Kernel_size
self.kernel_size = kernel_size
# Pre or post activation
self.preactivation = preactivation
# gate style, from mult or add_split
self.gate_style = gate_style
# norm style, from before, sandwich, full, or wn
self.norm_style = norm_style
# Initial batchnorm and conv
if self.norm_style != 'WN':
self.bn1 = nn.BatchNorm2d(self.n_in if self.preactivation else self.n_bottle)
self.conv1 = nn.Conv2d(self.n_in, self.n_bottle,
kernel_size=1, bias=False)
if self.preactivation:
self.initial_op = nn.Sequential(self.bn1,nn.ReLU(),self.conv1)
else:
self.initial_op = nn.Sequential(self.conv1,self.bn1, nn.ReLU())
else:
self.conv1 = WNC2D(self.n_in, self.n_bottle,
kernel_size=1, bias=False)
if self.preactivation:
self.initial_op = nn.Sequential(nn.ReLU(),self.conv1)
else:
self.initial_op = nn.Sequential(self.conv1,nn.ReLU())
if self.norm_style == 'sandwich':
self.bn2 = nn.BatchNorm2d(self.n_bottle)
self.initial_op.add_module('3',self.bn2)
# Op list, not to be confused with ops.
self.op = nn.ModuleList()
# Use batchnorm in sequence?
self.seq_bn = True if self.norm_style =='full' else False
for i, o in enumerate(ops):
if o:
self.op.append(seq(n_in=n_out if i%2 else n_bottle,
n_out=n_out,
dilation=self.dilation[i],
kernel_size=kernel_size[i],
preactivation=self.preactivation,
batchnorm=self.seq_bn,
groups=groups[i],
activation=self.activation[i]))
else:
self.op.append(nn.Module())
# See SMASHLAYER for an explanation of the flow control here.
def forward(self, x):
out = self.initial_op(x)
if self.gate[0]:
if self.gate_style == 'mult':
out = self.op[0](out,F.tanh) * self.op[2](out,F.sigmoid)
else:
pre_gate = out = self.op[0](out) + self.op[2](out)
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
elif type(self.op[2]) is seq:
out = [self.op[0](out), self.op[2](out)]
else:
out = self.op[0](out)
if self.gate[1]:
if type(out) is list:
if self.gate_style == 'mult':
out = self.op[1](out[0],F.tanh) * self.op[3](out[1],F.sigmoid)
else:
pre_gate = out = self.op[1](out[0]) + self.op[3](out[1])
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
# If we only have one path incoming then read from it
else:
if self.gate_style == 'mult':
out = self.op[1](out,F.tanh) * self.op[3](out,F.sigmoid)
else:
pre_gate = out = self.op[1](out) + self.op[3](out)
out = F.tanh(pre_gate[:,::2]) * F.sigmoid(pre_gate[:,1::2])
elif type(self.op[3]) is seq:
if type(out) is list:
out = self.op[1](out[0]) + self.op[3](out[1])
else:
out = self.op[1](out) + self.op[3](out)
elif type(self.op[1]) is seq:
if type(out) is list:
out = self.op[1](out[0]) + out[1]
else:
out = self.op[1](out)
elif type(out) is list:
out = out[0] + out[1]
return out
# A transition module, borrowed from DenseNet-BC.
# This module uses BatchNorm, followed by a 1x1 convolution and then
# average pooling with a pooling size of 2 to perform downsampling.
class SMASHTransition(nn.Module):
def __init__(self, nChannels, nOutChannels):
super(SMASHTransition, self).__init__()
self.bn1 = SMASHBN2D(nChannels)
self.conv1 = SMASHC2D(nChannels, nOutChannels, kernel_size=1,
bias=False)
def forward(self, x, n_out):
out = self.conv1(F.relu(self.bn1(x)), n_out, dilation=(1,1), ks=(1,1))
out = F.avg_pool2d(out, 2)
return out
# A transition module, borrowed from DenseNet-BC.
# This module uses BatchNorm, followed by a 1x1 convolution and then
# average pooling with a pooling size of 2 to perform downsampling.
class Transition(nn.Module):
def __init__(self, nChannels, nOutChannels):
super(Transition, self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1,
bias=False)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = F.avg_pool2d(out, 2)
return out
# Simple multiscale dilated conv block that uses masks. Note that using this block
# will mess up the parameter count. You could do this less efficiently by using the
# masks to write the weight tensor to the locations in a variable at each point in the graph,
# but I find the masks to just be faster.
class MDC(nn.Module):
def __init__(self, n_in,n_out, dilation):
super(MDC, self).__init__()
self.dilation = dilation
if self.dilation==2:
self.m = torch.FloatTensor( [ [ [ [1,0,1,0,1],
[0,1,1,1,0],
[1,1,1,1,1],
[0,1,1,1,0],
[1,0,1,0,1]]]*(n_in)]*n_out).cuda()
elif self.dilation==3:
self.m = torch.FloatTensor( [ [ [ [1,0,0,1,0,0,1],
[0,1,0,1,0,1,0],
[0,0,1,1,1,0,0],
[1,1,1,1,1,1,1],
[0,0,1,1,1,0,0],
[0,1,0,1,0,1,0],
[1,0,0,1,0,0,1]]]*(n_in)]*n_out).cuda()
self.conv = nn.Conv2d(n_in,n_out,kernel_size=3+2*(self.dilation-1),
padding=self.dilation,dilation=self.dilation, bias=False)
def forward(self,x):
if self.dilation>1:
return F.conv2d(input = x,weight=self.conv.weight*V(self.m),padding=self.dilation,bias=None)
else:
return self.conv(x)