forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
txt2image.py
102 lines (90 loc) · 3.69 KB
/
txt2image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright © 2023 Apple Inc.
import argparse
import mlx.core as mx
import numpy as np
from mlx.nn import QuantizedLinear
from PIL import Image
from tqdm import tqdm
from stable_diffusion import StableDiffusion, StableDiffusionXL
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate images from a textual prompt using stable diffusion"
)
parser.add_argument("prompt")
parser.add_argument("--model", choices=["sd", "sdxl"], default="sdxl")
parser.add_argument("--n_images", type=int, default=4)
parser.add_argument("--steps", type=int)
parser.add_argument("--cfg", type=float)
parser.add_argument("--negative_prompt", default="")
parser.add_argument("--n_rows", type=int, default=1)
parser.add_argument("--decoding_batch_size", type=int, default=1)
parser.add_argument("--no-float16", dest="float16", action="store_false")
parser.add_argument("--quantize", "-q", action="store_true")
parser.add_argument("--preload-models", action="store_true")
parser.add_argument("--output", default="out.png")
parser.add_argument("--seed", type=int)
parser.add_argument("--verbose", "-v", action="store_true")
args = parser.parse_args()
# Load the models
if args.model == "sdxl":
sd = StableDiffusionXL("stabilityai/sdxl-turbo", float16=args.float16)
if args.quantize:
QuantizedLinear.quantize_module(sd.text_encoder_1)
QuantizedLinear.quantize_module(sd.text_encoder_2)
QuantizedLinear.quantize_module(sd.unet, group_size=32, bits=8)
args.cfg = args.cfg or 0.0
args.steps = args.steps or 2
else:
sd = StableDiffusion(
"stabilityai/stable-diffusion-2-1-base", float16=args.float16
)
if args.quantize:
QuantizedLinear.quantize_module(sd.text_encoder)
QuantizedLinear.quantize_module(sd.unet, group_size=32, bits=8)
args.cfg = args.cfg or 7.5
args.steps = args.steps or 50
# Ensure that models are read in memory if needed
if args.preload_models:
sd.ensure_models_are_loaded()
# Generate the latent vectors using diffusion
latents = sd.generate_latents(
args.prompt,
n_images=args.n_images,
cfg_weight=args.cfg,
num_steps=args.steps,
seed=args.seed,
negative_text=args.negative_prompt,
)
for x_t in tqdm(latents, total=args.steps):
mx.eval(x_t)
# The following is not necessary but it may help in memory
# constrained systems by reusing the memory kept by the unet and the text
# encoders.
if args.model == "sdxl":
del sd.text_encoder_1
del sd.text_encoder_2
else:
del sd.text_encoder
del sd.unet
del sd.sampler
peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
# Decode them into images
decoded = []
for i in tqdm(range(0, args.n_images, args.decoding_batch_size)):
decoded.append(sd.decode(x_t[i : i + args.decoding_batch_size]))
mx.eval(decoded[-1])
peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
# Arrange them on a grid
x = mx.concatenate(decoded, axis=0)
x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
B, H, W, C = x.shape
x = x.reshape(args.n_rows, B // args.n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
x = x.reshape(args.n_rows * H, B // args.n_rows * W, C)
x = (x * 255).astype(mx.uint8)
# Save them to disc
im = Image.fromarray(np.array(x))
im.save(args.output)
# Report the peak memory used during generation
if args.verbose:
print(f"Peak memory used for the unet: {peak_mem_unet:.3f}GB")
print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")