-
Notifications
You must be signed in to change notification settings - Fork 1
/
bitnet-mingptmlx.py
339 lines (269 loc) · 9.84 KB
/
bitnet-mingptmlx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# %% [markdown]
# # MLX MinGPT
#
# %%
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from bitlinear import BitLinear, test_bitlinear_forward_pass, test_bitlinear_initialization, test_bitlinear_no_bias, test_bitlinear_quantization
# %%
bitlinear = BitLinear(10, 6, bits=2)
input_tensor = mx.random.normal([6, 10]) # Example input tensor
output = bitlinear(input_tensor)
print(mx.round(output)) # Example output tensor
test_bitlinear_initialization()
test_bitlinear_forward_pass()
test_bitlinear_no_bias()
test_bitlinear_quantization()
# %%
# hyperparameters
batch_size = 16 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 1000
eval_interval = 100
learning_rate = 1e-3
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.00
# %%
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = mx.default_device()
# %%
# ------------
mx.random.seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# %%
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# %%
# Train and test splits
data = mx.array(encode(text), dtype=mx.int64)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# %%
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = mx.random.randint(0, len(data) - block_size, (batch_size,))
ix = [i.item() for i in ix]
x = mx.stack([data[i:i+block_size] for i in ix])
y = mx.stack([data[i+1:i+block_size+1] for i in ix])
# x, y = x.to(device), y.to(device)
return x, y
# %%
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = BitLinear(n_embd, head_size, bias=False)
self.query = BitLinear(n_embd, head_size, bias=False)
self.value = BitLinear(n_embd, head_size, bias=False)
self.tril = mx.tril(mx.ones([block_size, block_size]))
self.dropout = nn.Dropout(dropout)
def __call__(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose((0,2,1)) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
mask = self.tril[:T, :T] == 0
wei = mx.where(mask, float('-inf'), wei) # (B, T, T)
wei = nn.softmax(wei, axis=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
# %%
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = [Head(head_size) for _ in range(num_heads)]
self.proj = BitLinear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def __call__(self, x):
out = mx.concatenate([h(x) for h in self.heads], axis=-1)
out = self.dropout(self.proj(out))
mx.eval(out)
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
BitLinear(n_embd, 4 * n_embd),
nn.ReLU(),
BitLinear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def __call__(self, x):
return self.net(x)
# %%
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def __call__(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# %%
# super simple bigram model
class LanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = BitLinear(n_embd, vocab_size)
def __call__(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(mx.arange(T)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
mx.eval(logits)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.reshape(B*T, C)
targets = targets.reshape(B*T)
loss = nn.losses.cross_entropy(logits, targets, reduction='mean')
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, _ = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = nn.softmax(logits, axis=-1) # (B, C)
# sample from the distribution
idx_next = mx.random.categorical(probs, axis=-1, num_samples=1)
# append sampled index to the running sequence
idx = mx.concatenate((idx, idx_next), axis=1) # (B, T+1)
mx.eval(idx)
return idx
# %%
model = LanguageModel()
# %%
params = model.parameters()
# %%
# print the number of parameters in the model
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
print(f"Total parameters {p:.3f}M")
# %%
# create an optimizer
optimizer = optim.AdamW(learning_rate)
# %%
def estimate_loss(model):
out = {}
for split in ['train', 'val']:
losses = mx.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
def loss_fn(model, x, y):
_, loss = model(x, y)
return loss
def step(model, optimizer, inputs, targets):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, inputs, targets)
mx.eval(loss)
mx.eval(grads)
optimizer.update(model, grads)
return loss
# %%
import time
start = time.time()
model.train()
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss(model)
print(f"step {iter}: train loss {losses['train'].item():.4f}, val loss {losses['val'].item():.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
step(model, optimizer, xb, yb)
end = time.time()
print(f"Training complete in {end-start}s")
# %%
print(model)
tree_flatten(model)
# %%
def compress_weights(x):
x = mx.round(x)
return x.astype(mx.int8)
# model.apply(lambda x: x.astype(mx.float16))
def is_bitlinear(module, key, value):
return isinstance(value, BitLinear)
# model.apply(compress_weights)
model.apply(map_fn=compress_weights, filter_fn=is_bitlinear)
# def valid_parameter_filter(module, key, value):
# return isinstance(value, (dict, list, mx.array)) and not key.startswith("_")
print(model)
print(tree_flatten(model))
# %%
# save weights
model.save_weights("./bitlinearshakespearebigramweights.npz")
# %%
def generate(model, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, _ = model(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
# probs = nn.softmax(logits, axis=-1) # (B, C)
probs = logits
# sample from the distribution
idx_next = mx.random.categorical(probs, axis=-1, num_samples=1)
# append sampled index to the running sequence
idx = mx.concatenate((idx, idx_next), axis=1) # (B, T+1)
mx.eval(idx)
return idx
# %%
# generate from the model
model.eval()
print("Generating..")
context = mx.zeros((1, 1), dtype=mx.int8)
#generated = model.generate(context, max_new_tokens=1000)[0].tolist()
generated = generate(model, context, max_new_tokens=500)[0].tolist()
print(decode(generated))