forked from huggingface/transformers-bloom-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloom-ds-inference.py
302 lines (218 loc) · 8.81 KB
/
bloom-ds-inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# usage:
# deepspeed --num_gpus 8 bloom-ds-inference.py --name bigscience/bloom
#
# to run benchmarks:
# deepspeed --num_gpus 8 bloom-ds-inference.py --name bigscience/bloom --benchmark
#
# This is going to improve, but at the moment, the process is a bit cumbersome - we first use
# 1. use Deepspeed-ZeRO to instantiate the model on GPUs, w/o loading the checkpoints,
# 2. free the allocated storage
# 3. start Deepspeed-Inference and only now load the checkpoint
# 4. run generate
# Done.
#
import gc
import io
import json
import math
import os
import time
from argparse import ArgumentParser
from pathlib import Path
import torch
import torch.distributed as dist
import deepspeed
from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock
from transformers.utils import is_offline_mode
# the Deepspeed team made these so it's super fast to load (~1 minute), rather than wait 10-20min loading time.
tp_presharded_models = ["microsoft/bloom-deepspeed-inference-int8", "microsoft/bloom-deepspeed-inference-fp16"]
t_start = time.time()
num_tokens = 100
parser = ArgumentParser()
parser.add_argument("--name", required=True, type=str, help="model_name")
parser.add_argument("--dtype", type=str, help="float16 or int8", choices=["int8", "float16"], default="float16")
parser.add_argument("--local_rank", required=False, type=int, help="used by dist launchers")
parser.add_argument("--batch_size", default=1, type=int, help="batch size")
parser.add_argument("--benchmark", action="store_true", help="additionally run benchmark")
args = parser.parse_args()
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
deepspeed.init_distributed("nccl")
rank = dist.get_rank()
def print_rank0(*msg):
if rank != 0:
return
print(*msg)
### Model loading and instantiating on GPUs
def get_repo_root(model_name_or_path):
# checks if online or not
if is_offline_mode():
print_rank0("Offline mode: forcing local_files_only=True")
# download only on first process
if rank == 0:
snapshot_download(
model_name_or_path,
local_files_only=is_offline_mode(),
cache_dir=os.getenv("TRANSFORMERS_CACHE", None),
ignore_patterns=["*.safetensors"],
)
dist.barrier()
return snapshot_download(
model_name_or_path,
local_files_only=is_offline_mode(),
cache_dir=os.getenv("TRANSFORMERS_CACHE", None),
ignore_patterns=["*.safetensors"],
)
def get_checkpoint_files(model_name_or_path):
cached_repo_dir = get_repo_root(model_name_or_path)
# extensions: .bin | .pt
# creates a list of paths from all downloaded files in cache dir
file_list = [str(entry) for entry in Path(cached_repo_dir).rglob("*.[bp][it][n]") if entry.is_file()]
return file_list
model_name = args.name
infer_dtype = args.dtype
tp_presharded_mode = True if model_name in tp_presharded_models else False
# print(get_checkpoint_files(model_name))
print_rank0(f"*** Loading the model {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
# XXX: can't automatically derive dtype via config's `from_pretrained`
# dtype = torch.bfloat16 if model_name in ["bigscience/bloom", "bigscience/bigscience-small-testing"] else torch.float16
# use one of these args to `init_inference`
# 1. injection_policy is the slower version, but it's plain pytorch so it'll always work
# 2. replace_with_kernel_inject is the faster one (fast fused kernels)
kernel_inject = True
# kernel_inject = False
if kernel_inject:
# XXX: for now ds-inference only works with fp16
dtype = torch.float16
else:
dtype = torch.bfloat16
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage("pre-from-pretrained", force=True)
# Construct model with fake meta tensors, later will be replaced during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device="meta"):
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
if args.benchmark:
deepspeed.runtime.utils.see_memory_usage("post-from-pretrained", force=True)
model = model.eval()
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage("post-init-ds-zero-init", force=True)
### Deepspeed-Inference Loading
checkpoints_json = "checkpoints.json"
def write_checkponts_json():
with io.open(checkpoints_json, "w", encoding="utf-8") as f:
# checkpoint_files = glob.glob(f"{checkpoint_dir}/*bin")
checkpoint_files = get_checkpoint_files(model_name)
# print("Checkpoint files:", checkpoint_files)
data = {"type": "BLOOM", "checkpoints": checkpoint_files, "version": 1.0}
json.dump(data, f)
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage("pre-ds-inference-init", force=True)
if kernel_inject:
kwargs = dict(replace_with_kernel_inject=True)
else:
kwargs = dict(injection_policy={BloomBlock: ("self_attention.dense", "mlp.dense_4h_to_h")})
repo_root = get_repo_root(model_name)
if tp_presharded_mode:
# tp presharded repos come with their own checkpoints config file
checkpoints_json = os.path.join(repo_root, "ds_inference_config.json")
else:
# for normal bloom repo we need to write the checkpoints config file
if rank == 0:
write_checkponts_json()
dist.barrier()
# checkpoints_json=None
model = deepspeed.init_inference(
model,
mp_size=world_size,
base_dir=repo_root,
dtype=getattr(torch, infer_dtype),
checkpoint=checkpoints_json,
**kwargs,
)
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage("post-ds-inference-init", force=True)
model = model.module
if args.benchmark:
t_ready = time.time()
### Generate
print_rank0(f"*** Starting to generate {num_tokens} tokens with bs={args.batch_size}")
input_sentences = [
"DeepSpeed is a machine learning framework",
"He is working on",
"He has a",
"He got all",
"Everyone is happy and I can",
"The new movie that got Oscar this year",
"In the far far distance from our galaxy,",
"Peace is the only way",
]
if args.batch_size > len(input_sentences):
# dynamically extend to support larger bs by repetition
input_sentences *= math.ceil(args.batch_size / len(input_sentences))
generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False)
print_rank0(f"Generate args {generate_kwargs}")
inputs = input_sentences[: args.batch_size]
def generate():
"""returns a list of zipped inputs, outputs and number of new tokens"""
input_tokens = tokenizer.batch_encode_plus(inputs, return_tensors="pt", padding=True)
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
outputs = model.generate(**input_tokens, **generate_kwargs)
input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids]
output_tokens_lengths = [x.shape[0] for x in outputs]
total_new_tokens = [o - i for i, o in zip(input_tokens_lengths, output_tokens_lengths)]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return zip(inputs, outputs, total_new_tokens)
# warmup is a must if measuring speed as it's when all the optimizations are performed
# e.g. on 8x80 a100 the first pass of 100 tokens takes 23sec, and the next one is 4secs
print_rank0("*** Running generate warmup")
_ = generate()
print_rank0("*** Running generate")
t_generate_start = time.time()
generated = generate()
t_generate_span = time.time() - t_generate_start
for i, o, _ in generated:
print_rank0(f"{'-'*60}\nin={i}\nout={o}\n")
if args.benchmark:
torch.cuda.empty_cache()
gc.collect()
deepspeed.runtime.utils.see_memory_usage("end-of-run", force=True)
### Benchmark
# benchmark it!
if args.benchmark:
print_rank0("*** Running benchmark")
# warm up
for i in range(1):
_ = generate()
torch.cuda.synchronize()
# benchmark
t0 = time.time()
cycles = 5
total_new_tokens_generated = 0
for i in range(cycles):
generated = generate()
total_new_tokens_generated += sum(new_tokens for _, _, new_tokens in generated)
torch.cuda.synchronize()
througput = (time.time() - t0) / (total_new_tokens_generated)
print_rank0(
f"""
*** Performance stats:
Throughput per token including tokenize: {througput*1000:.2f} msecs
Start to ready to generate: {t_ready - t_start:.3f} secs
Tokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs
Start to finish: {t_ready - t_start + t_generate_span:.3f} secs
"""
)